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Zusammenfassung

Getwistete Photonen sind Teilchen, die eine wohl-definierte Bahndrehimpulskom-

ponente entlang der Propagationsrichtung besitzen. In den letzten Jahren ist die

Wechselwirkung zwischen einem getwisteten Photon und einem Atom zu einem ak-

tiven fundamentalen sowie angewandtenen Forschungsgebiet geworden. In dieser Ar-

beit wird dargestellt, wie der
”
Twist“ eines Bessel- oder Laguerre-Gauß Photons die

Wechselwirkung zwischen Licht und Materie im Vergleich zu ebenen Wellen beein-

flussen kann. Insbesondere wurde eine Analyse der Photoionisation von Wasserstoff-

Molekülionen durch getwistete Photonen durchgeführt. Es wurde gezeigt, dass

die Oszillationen in den Winkelverteilungen der Photoelektronen durch das Inten-

sitätsprofil der getwisteten Photonen beeinflusst werden. Außerdem wurde die An-

regung von Atomen durch Absorption eines getwisteten Photons berechnet. Der

Bahndrehimpuls des Lichtes führt zu einem Alignment oder speziellen Besetzung

der magnetischen Zustände des angeregten Atoms. Neben diesen Studien wurde

auch die elastische Rayleigh Streuung von getwisteten Photonen an wasserstoffähn-

lichen Ionen untersucht. Die erhaltenen Ergebnisse zeigen, dass der
”
Twist“ eines

Photons die Polarisationseigenschaften von gestreutem Licht signifikant beeinflussen

kann.
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1 Introduction

1.1 Historical background

The first suggestions that matter is composed of discrete particles were made by the

Greek philosophers such as Leucippus (circa 450 bc) and Democritus (460-370 bc)

(Bransden and Joachain 2003, Demtröder 2011). They assumed that the universe

consists of empty space and of invisible particles or atoms. The real breakthrough

of atomic physics was achieved in modern times. The experimental discovery of

the gas laws by Boyle in 1662 and their interpretation in terms of a kinetic model

by Bernoulli in 1738 have paved the way to the kinetic theory of atoms developed

throughout the 19th century by Clausius, Maxwell, and Boltzmann. In parallel,

following the qualitative findings of Proust in 1801 on mass ratios in chemical re-

actions, Dalton recognized in 1808 that all chemical elements consist of very small

particles (atoms) which cannot be divided by chemical techniques. Also in 1808,

Gay-Lussac found that if two gases are combined, the volumes are in the ratio of

simple integers. In 1811, this result was explained by Avogadro who first made a

clear distinction between atoms and molecules which are composed of two and more

atoms bound together.

Various experimental investigations have shown in the end of 19th century that

atoms contain negatively charged light particles, called electrons, and a positive

charge. After a series of experiments on the scattering of alpha particles by metallic

foils performed between 1906 and 1913 by Geiger and Marsden, Rutherford sug-

gested that all the positive charge and almost all the mass of an atom are concen-

trated at the center of the atom in a nucleus of very small dimensions. In 1932,

Ivanenko and Heisenberg suggested that this nucleus is composed of protons of pos-

itive charge and uncharged neutrons, which in turn are made of more elementary

constituents, the quarks, as was proposed by Gell-Mann and Zweig in 1964.

The nature of light was also the major subject of research in the 18th century (Fox

2006). Newton postulated that light should consist of small particles, and this model

explained the straight paths of light rays and the refraction of light at the boundary

between two media. Huygens, on the other hand, believed that light was a wave,

and the wave theory was proven by the double-slit experiment of Young in 1801 and

by the wave interpretation of diffraction by Fresnel in 1815. As a result, the wave
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theory has been put on a firm theoretical footing with Maxwell’s electromagnetic

equations in 1873, while the corpuscular theory has essentially been relegated to

historical interest by the end of the 19th century. However, the situation changed in

1901, when Planck suggested that black-body radiation is emitted in finite amount

of energy called quantum or photons, and he was able to solve the ultraviolet catas-

trophe problem with this hypothesis. Moreover, in a series of experiments on the

properties of electromagnetic waves, Hertz, Hallwachs, Lenard, and Stoletov showed

that charged particles are ejected from metal surfaces irradiated by electromagnetic

waves of high frequency, and Einstein in 1905 applied Planck’s quantum theory to

explain this phenomenon (photoelectric effect).

The next major step forward to understanding the light-matter interaction was

taken by Bohr in 1913. With the assumption that an electron in an atom moves

in only stable orbits about the nucleus, he was able to combine the concepts of

Rutherford nuclear atom, Planck’s quanta, and Einstein’s photons to explain the

spectrum of atomic hydrogen. These pioneering ideas laid the foundations for the

quantum mechanics in the years 1925 and 1926 by Heisenberg, Born, Jordan, de

Broglie, and Scrödinger. Finally, the foundations of the quantum electrodynamics

(QED), the relativistic quantum theory of the interaction of charged particles and

photons, have been laid down by 1932.

Since then, the quantum aspects of the dynamics of atoms and ions in light fields

have been extensively studied in both experiment and theory. In particular, the

analysis of relativistic effects such as spin-flip contributions and higher-order mul-

tipole transitions in the photoionization of highly charged heavy ions is presented

by Eichler and Stöhlker (2007), while the many-electron effects in the photoelec-

tron spectrum for neutral atoms are discussed by Cubaynes et al (1989). Extensive

studies of the atomic photoionization under intense laser irradiation have revealed

many other effects, namely above-threshold ionization, electron wave-packet drift,

quiver and rescattering motions (Blaga et al 2009). The radiative transitions be-

tween bound atomic states have also been intensively investigated, and they have

found many applications in different areas. For instance, in Rudolph et al (2013)

X-ray resonant photoexcitation was used to determine the linewidth of transitions

in iron ions, which is important for understanding of photoexcited plasmas found

in active galactic nuclei. The measurement of the lifetime of metastable levels in

boronlike argon was employed to test QED effects like the electron anomalous mag-

netic moment and Breit interaction (Lapierre et al 2005). Moreover, the cesium
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ground-state hyperfine transition in atomic clocks serves as the accurate frequency

standard (Oskay et al 2006).

Much attention has also been paid to the scattering of photons by atoms. The

first measurement of the elastically (Rayleigh) scattered light for linearly polarized

incoming X-rays has been performed recently at the PETRA III synchrotron at

DESY (Blumenhagen et al 2016), while the general details of the inelastic (Raman)

photon scattering may be found in Kane (1992). In addition, many research teams

around the world use laser radiation to cool a gas of atoms to temperatures in the

microkelvin range, when the laser frequency is close to resonance with an atomic

transition. A great triumph of the laser cooling together with atom trapping has

been the observation of Bose–Einstein condensation in a vapor of rubidium atoms

in Anderson et al (1995). At the same time, the first quantum logic gate was

demonstrated in an ion trap system using a single beryllium ion, when the qubit

manipulations were driven by lasers (Monroe et al 1995).

1.2 Light’s orbital angular momentum

Until the present, however, all these investigations have been performed with inci-

dent plane-wave radiation, and very little is known about the interaction of atoms

with twisted (or vortex) light beams. In contrast to plane waves, such twisted pho-

tons carry a nonzero projection of the orbital angular momentum (OAM) upon their

propagation direction (Andrews and Babiker 2013). The study of light’s angular mo-

mentum has a long history (Bliokh and Nori 2015). In 1909, Poynting realized that

light has spin angular momentum associated with circular polarization, and it was

confirmed experimentally by Beth in 1936. A paper by Allen et al (1992) started a

new wave of angular momentum studies in optics, where they recognized that light

beams with helical wavefronts carry an orbital angular momentum independent of

the polarization state. Baranova and Zel’dovich (1981) have earlier introduced the

term “twisted beams” for such electromagnetic fields. The twisted beams are also

said to contain an optical vortex because their Poynting vector, representing energy

flow, follows a spiral trajectory around the beam axis (Padgett et al 2004). The

transverse intensity profile of twisted beams has an annular character, while the

phase singularity on the beam axis dictates zero intensity at the center.

Beams carrying OAM can be readily produced with the help of computer-generated

holograms, spatial light modulators, axicons, and helical undulators in the wide pho-
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ton energy range from THz to XUV (Walde et al 2017, Bahrdt et al 2013, Choporova

et al 2017). The fact that twisted photons carry OAM presents possibilities for us-

ing them in practice (Yao and Padgett 2011). For example, one application of the

angular momentum of light is for optical tweezers, in which trapped object is rotated

by the transfer of OAM from a twisted beam (Padgett and Bowman 2011). The

OAM of photons also enables the generation and manipulation of multidimensional

quantum states, which may make quantum correlations more robust to the presence

of noise and can provide better security in quantum cryptographic schemes (Molina-

Terriza et al 2007). Moreover, the use of optical vortex coronagraph in astronomy

makes binary system more visible (Swartzlander et al 2008).

During the last years a number of investigations have demonstrated that “twist-

edness” of incoming radiation may affect fundamental light-matter interaction pro-

cesses. In the Compton scattering of twisted light by free electrons, the angular

distributions of scattered photons and their phase structure are sensitive to the

OAM projection of incident light (Jentschura and Serbo 2011, Stock et al 2015,

Sherwin 2017). It was shown by Scholz-Marggraf et al (2014), Surzhykov et al

(2015), Schmiegelow and Schmidt-Kaler (2012), Rodrigues et al (2016), and Afana-

sev et al (2013) that the alignment of the excited atomic states following absorption

of twisted photons may differ from what is expected for incoming plane-wave radi-

ation. In particular, Schmiegelow et al (2016) in a recent experiment demonstrated

the transfer of OAM from a twisted photon to the valence electron of a single trapped

calcium ion. Furthermore, the OAM may significantly modify the angular distribu-

tion (Matula et al 2013, Surzhykov et al 2016, Seipt et al 2016) along with energy

distribution (Müller et al 2016), time delay (Wätzel and Berakdar 2016), and dy-

namics (Picón et al 2010) of photoelectrons in the photoionization of atoms. The

general properties of the scattering of twisted photons were discussed by Davis et al

(2013).

It was also demonstrated by Babiker et al (2002) that in the interaction of molecules

with twisted light an exchange of OAM can occur between the light and the center of

mass motion. The transfer of phase structure from applied laser radiation to optical

fields generated in a four-wave-mixing process in atomic vapor has been observed

in a number of works (Tabosa and Petrov 1999, Walker et al 2012, Akulshin et

al 2015). Moreover, an azimuthal modulation of the absorption profile, that is

dictated by the phase and polarization structure of the probe laser, was observed

in electromagnetically induced transparency systems with twisted beams (Radwell
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et al 2015). Theoretical studies in solid-state physics also predict that twisted light

can induce new electronic transitions in quantum dots which are forbidden for plane

waves (Quinteiro et al 2015). Apart from that, the generation of electric currents

in quantum rings with twisted light was studied by Quinteiro and Berakdar (2009).

1.3 A brief overview of the thesis

In this thesis we will focus on three different atomic processes occurring in twisted

light, namely on photoionization of diatomic molecules, atomic excitation, and

Rayleigh scattering by ions. We start in Chapter 2 by considering two different

types of twisted light beams such as Bessel and Laguerre-Gaussian beams. We

introduce the vector potentials for both these beams, that will be used in our fur-

ther calculations, and analyze the difference between them and plane-wave photons.

Then in Chapter 3 we study the ionization of hydrogen molecular ions by twisted

Bessel beams, where the angle-differential photoionization cross section is evaluated

for a macroscopic target of randomly distributed but aligned molecules. We see there

that main modifications in the angular distribution of the photoelectrons arise due

to the ringlike pattern of Bessel beams and their intensity variation relative to the

size of the molecule. Chapter 4 deals with the excitation of mesoscopic hydrogen-

atom target by twisted Bessel beams. Results of the calculations performed for the

1s → 2p transition clearly indicate that projection of the total angular momentum

of Bessel beam affects the alignment of excited atomic states for sufficiently small

targets of size less than several hundreds of nanometers. We show that this effect can

be observed experimentally by measuring the linear polarization of the subsequent

fluorescence.

Chapter 5 considers the excitation of a single calcium ion by twisted Laguerre-

Gaussian beams which are more frequently used in experiments. For the 4s 2S1/2 →
3d 2D5/2 transition, we demonstrate that the magnetic sublevel population of the

excited 2D5/2 level varies significantly with the atomic position with regard to the

beam axis and is sensitive to the polarization, the radial index, as well as the OAM

of the incident Laguerre-Gaussian beam. In Chapter 6 we perform an analysis of

the nonresonant Rayleigh scattering of Bessel beams by hydrogenlike ions, where

special attention is paid to the polarization Stokes parameters of photons scattered

by carbon ions. It is shown that the polarization of scattered photons for incoming

Bessel beams may significantly differ from what is expected for incident plane-wave
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radiation. Finally, a summary of our results is given in Chapter 7.

Atomic units (~ = e = me = 1, c = 1/α) are used throughout the work unless

stated otherwise.
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2 Twisted light

In this chapter we shall give a brief introduction to the theory of twisted photon

states. We first consider the vector potential of more familiar plane wave photons

and discuss their quantum mechanical properties. Then we construct a twisted

Bessel beam from these plane waves and derive its vector potential in position space.

Using this approach we recall the concept of the orbital angular momentum of light.

The chapter concludes with a discussion of the principal features of another twisted

beam, namely Laguerre-Gaussian beam, where we describe how one can expand its

vector potential in plane waves working within the Coulomb gauge convenient for

further atomic calculations.

2.1 Plane waves

2.1.1 Plane-wave solutions

In general, all the properties of photons are characterized by means of the vector

potential A(r, t). Here we limit our attention to monochromatic light with photon

energy ~ω, and therefore we can separate the vector potential into a part with the

spatial dependence and a time dependent factor A(r, t) = A(r) exp(−iωt). In this

case, the vector potential A(r) is a solution of the Helmholtz equation when no

sources are present (Andrews and Babiker 2013)

∇2A+ k2A = 0 , (2.1)

were k = ω/c denotes the wave number. Let us consider plane-wave solutions of

this equation. If we suppose that the circularly polarized plane wave propagates in

the z direction with the wave vector

k =

⎛⎜⎝ 0

0

k

⎞⎟⎠ , (2.2)

its vector potential can be written as

Apl(r) = ελe
ikz , (2.3)
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where ελ refers to the polarization vector of the form

ελ =
−λ√
2

⎛⎜⎝ 1

iλ

0

⎞⎟⎠ . (2.4)

Such a plane-wave photon is right-hand circularly polarized when λ = +1, and

it is left-hand circularly polarized when λ = −1. Its wavefront is determined by

the relation kz − ωt = 0 that arises from the exponential factor in Eq. (2.3) and

represents a plane as shown in Fig. 2.1 (a).

The vector potential (2.3) of the plane wave is expressed in Coulomb gauge which

is defined by the condition

∇ ·A = 0 . (2.5)

In the Coulomb gauge, the electric E and magnetic B fields satisfying Maxwell’s

equations are represented in terms of a vector potential through the relations

E = iωA, B = ∇×A . (2.6)

It should be noted that the vector potential is not completely defined by these equa-

tions, since the fieldsE andB are invariant with regard to the gauge transformation.

It is useful to consider the time-averaged flux of energy in an electromagnetic wave

which can be calculated from the real part of the complex Poynting vector

S =
1

2
E ×B∗ , (2.7)

giving the intensity of a light wave (Jackson 1962). For the plane wave discussed

here, the Poynting vector is parallel to the propagation z axis and has the same

value at each point of space, thereby implying a homogeneous intensity profile as

seen from Fig. 2.1 (b).

2.1.2 Properties of plane-wave photons

Let us now analyze the quantum mechanical properties of the plane-wave photons.

By making use of the longitudinal (z) momentum operator p̂z = −i∂/∂z, one can

show that the vector potential (2.3) is its eigenfunction

p̂zA
pl = kApl (2.8)
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Plane wave and Twisted light

Peshkov Anton
HGS-HIRe 2017
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z

z
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Figure 2.1: (a) Wavefronts of a plane wave are planes. (b) Its transverse (xy) in-
tensity profile; the plane wave has the same intensity at each point of
space.

with the eigenvalue k. This implies that the plane-wave photon (2.3) propagating

in the z direction with the energy ω = kc has a well-defined z-component k of

the momentum. Plane-wave photons travelling parallel to the z axis do not have a

component of orbital angular momentum in the z direction. The angular momentum

carried by the photons in this case can only be due to their intrinsic spin of unit

magnitude corresponding to the fact that their wave function (2.3) is a vector.

Applying the operator for z-component of the spin angular momentum for particles

with spin 1 (Johnson 2007)

Ŝz =

⎛⎜⎝ 0 −i 0

i 0 0

0 0 0

⎞⎟⎠ (2.9)

to the vector potential (2.3) for the plane waves, we have

ŜzA
pl = λApl . (2.10)

Therefore, the vector potential Apl is an eigenfunction of the z-component Ŝz of the

spin angular momentum (SAM) operator, and the plane-wave photons (2.3) have a

well-defined component λ = ±1 of the spin in the (z) direction of motion, which is

sometimes known as the helicity of a photon.

2.1.3 Plane waves propagating in arbitrary directions

So far, we have concentrated on plane waves propagating along the quantization z

axis. In the general case, when a plane wave propagates in the direction (θk, φk)
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with respect to the z axis, the momentum k of the photon reads

k =

⎛⎜⎝ k⊥ cosφk

k⊥ sinφk

kz

⎞⎟⎠ , (2.11)

where θk = arctan(k⊥/kz) and φk denote respectively the polar and azimuthal angles

of the photon’s momentum k whose absolute value is k =
√
k2⊥ + k2z . For such a

plane wave, we need to rewrite its polarization vector as (Matula et al 2013)

ekλ =
−λ√
2

⎛⎜⎝ cos θk cosφk − iλ sinφk

cos θk sinφk + iλ cosφk

− sin θk

⎞⎟⎠ , (2.12)

so that the circularly polarized plane wave ekλe
ikr characterizes the photon with

spin projection λ onto its momentum k. In addition, from the Coulomb gauge

condition (2.5) it follows that the polarization vector is orthogonal to the momentum,

ekλ ·k = 0. Below we shall use these plane waves to construct from them the twisted

beams.

2.2 Bessel beams

2.2.1 Bessel beam as a superposition of plane waves

Having discussed the properties of the plane waves, we may now introduce the Bessel

beams of light. Following Jentschura and Serbo (2011) and Matula et al (2013), we

define the vector potential of a Bessel beam propagating along the quantization z axis

with well-defined longitudinal momentum kz, modulus of the transverse momentum

κ, and photon energy ω = c
√

κ2 + k2z as

AB(r) =

∫
aκmγ (k⊥) ekλe

ikr d
2k⊥

(2π)2
(2.13)

together with the amplitude

aκmγ (k⊥) =

√
2π

κ
(−i)mγ eimγφk δ(k⊥ − κ) . (2.14)

The vector potential for a Bessel beam as well as for a plane wave is a solution of the

Helmholtz equation (2.1) expressed in Coulomb gauge (2.5). The formula for AB
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indicates that the Bessel beam can be understood as a superposition of circularly

polarized plane waves ekλe
ikr of helicity λ whose wave vectors (2.11) with k⊥ = κ

form the surface of a cone with an opening angle θk = arctan(κ/kz) [cf. Fig. 2.2 (a)].

2.2.2 Bessel beam in position space

Even though the integral representation (2.13) of the vector potentialAB(r) is conve-

nient for atomic calculations, it is useful to perform the integration over the momen-

tum k⊥. With the polarization vector (2.12), the relation k⊥r⊥ = k⊥r⊥ cos(φk −φ),

and the integral formula for the Bessel function of the first kind (Watson 1966)∫ 2π

0

eimφk±ik⊥r⊥ cos(φk−φ)dφk

2π
= (±i)meimφJm(k⊥r⊥) , (2.15)

we can perform the integration over the azimuthal angle φk in Eq. (2.13). Then, on

integrating over k⊥ and by making use of the Dirac delta function δ(k⊥ − κ), we
find the vector potential of a Bessel beam in cylindrical coordinates

AB(r) =
∑

ms=0,±1

εmscmsJmγ−ms(κr⊥)ei(mγ−ms)φeikzz , (2.16)

where the coefficients cms are independent of r and are defined by

c±1 =
(−i)ms

2

√
κ
2π

(1± λ cos θk) , c0 =
(−i)msλ√

2

√
κ
2π

sin θk . (2.17)

Here we have made use of three eigenvectors εms of SAM operator (2.9) given by

Eq. (2.4) in the case of ms = λ = ±1, while ε0 is just a unit vector along the z axis.

The vector potential AB can be further simplified if the transverse momentum of

the photon is much smaller comparing to its longitudinal momentum κ ≪ kz, i.e.

when the opening angle θk is very small. Within this paraxial approximation, the

summation in Eq. (2.16) is restricted to the single term ms = λ, and we have

AB(r) = ελcλJmγ−λ(κr⊥)ei(mγ−λ)φeikzz . (2.18)

We note that in the limit κ → 0, where Jmγ−λ(κr⊥) → δmγλ, this formula reproduces

the plane wave (2.3) propagating along the z axis. The wavefront of a Bessel beam in

the paraxial approximation is determined by the relation (mγ−λ)φ+kzz−ωt = 0 and

represents a helical (or twisted) structure because of the azimuthal φ dependence,

which is missing for plane waves [cf. Fig. 2.2 (b)]. The transverse (xy) intensity
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profile of twisted Bessel beams is determined by the z-component of the Poynting

vector SB
z (r) ∼ J2

mγ−λ(κr⊥) and exhibits a ringlike pattern whose example is shown

in Fig. 2.2 (c), where the orange and blue rings refer to high and low intensity in

line with the maxima and zeros of the Bessel function. This is again in contrast to

plane-wave radiation with a homogeneous intensity profile.

2.2.3 Angular momentum of Bessel photons

Let us now discuss the angular momentum features of twisted photons prepared in

the Bessel state. To do this, apart from the SAM operator Ŝz, we introduce the

operator L̂z for z-component of the orbital angular momentum and the operator Ĵz

for z-component of the total angular momentum (TAM)

L̂z = −i ∂
∂φ

, Ĵz = L̂z + Ŝz . (2.19)

Equation (2.18) implies that the vector potential of a Bessel beam in the paraxial

approximation is a simultaneous eigenfunction of L̂z, Ŝz, and Ĵz

L̂zA
B = (mγ − λ)AB , ŜzA

B = λAB , ĴzA
B = mγA

B . (2.20)

Thus each photon of a Bessel beam with a small opening angle θk is characterized not

only by the helicity λ, just as in the case of plane waves, but also by the OAMmγ−λ
and TAM mγ projections on the propagation z axis. However, when the opening

angle θk is large (the nonparaxial regime), Bessel beam do not possesses well-defined

OAM and SAM projections, since the vector potential (2.16) is a superposition of

three terms with different OAM mγ − ms as well as SAM ms. In fact, Eq. (2.16)

shows us that only the TAM mγ is the same for each term, and therefore only the

projectionmγ of the total angular momentum is well defined for a nonparaxial Bessel

beam of light.

2.3 Laguerre-Gaussian beams

2.3.1 Laguerre-Gaussian beam in position space and its

properties

At this point we might consider another example of twisted beams, namely the

Laguerre-Gaussian beam of light. Unlike vector potentials of plane waves and Bessel

14



Plane wave and Twisted light

Peshkov Anton
HGS-HIRe 2017
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z

xy plane
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k
 k 

zk

(с)

k

Figure 2.2: (a) In momentum space, a Bessel beam can be seen as a coherent su-
perposition of plane waves with wave vectors k lying on a cone with an
opening angle θk = arctan(κ/kz) and with polarization vectors ekλ per-
pendicular to k. (b) Bessel beam possesses a helical or twisted wavefront.
(c) Transverse intensity profile of Bessel beams comprises a central dark
spot and an infinite number of rings.

beams given in Coulomb gauge, the vector potential of Laguerre-Gaussian beams

is usually expressed in Lorenz gauge ALG(L) indicated here by the superscript L

(Allen et al 1992). For a complete description of the beam, one also needs the scalar

potential ΦLG(L) in this case that is related to the vector potential ALG(L) by the

Lorenz gauge condition (Johnson 2007)

∇ ·ALG(L) − ik

c
ΦLG(L) = 0 . (2.21)

The equations for the electric and magnetic fields in Lorenz gauge then become

E = −∇ΦLG(L) + iωALG(L) = iω

[
∇(∇ ·ALG(L))

k2
+ALG(L)

]
,

B = ∇×ALG(L) , (2.22)

where we have used Eq. (2.21). Consider a circularly polarized Laguerre-Gaussian

beam propagating primarily along the z direction whose vector potential can be

written in the form

ALG(L)(r) = ελ u(r)e
ikz , (2.23)

where the polarization vector ελ orthogonal to the z axis is given by Eq. (2.4). If the

amplitude distribution u(r) changes slowly with distance z and this z dependence

is slow compared to variations of u(r) in the transverse direction, the paraxial
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approximation is valid (Siegman 1986)⏐⏐⏐⏐∂2u∂z2
⏐⏐⏐⏐≪ ⏐⏐⏐⏐2k∂u∂z

⏐⏐⏐⏐ , ⏐⏐⏐⏐∂2u∂z2
⏐⏐⏐⏐≪ ⏐⏐∇2

⊥u
⏐⏐ . (2.24)

On substituting the vector potential (2.23) into the Helmholtz equation (2.1) and

applying the paraxial approximation (2.24), we find that the amplitude distribution

u(r) satisfies the paraxial wave equation

∇2
⊥u+ 2ik

∂u

∂z
= 0 . (2.25)

In the paraxial approximation, Laguerre-Gaussian light beam is described by the

following amplitude distribution (Allen et al 1992)

u(r⊥, φ, z) =
1

w(z)

(√
2r⊥

w(z)

)m

exp

[
− r2⊥
w2(z)

]
Lm
p

(
2r2⊥
w2(z)

)
× exp

[
imφ+

ikr2⊥z

2(z2 + z2R)
− i(2p+m+ 1) arctan

(
z

zR

)]
, (2.26)

which is a solution of Eq. (2.25). Here Lm
p refers to the associated Laguerre poly-

nomial and w0 denotes the beam waist, which determines both the width w(z) =

w0

√
1 + z2/z2R and the Rayleigh range zR = kw2

0/2 of the beam. As was the case

with Bessel beams in the paraxial regime, the vector potential of Laguerre-Gaussian

beam is an eigenfunction of L̂z, Ŝz, and Ĵz, so that

L̂zA
LG(L) = mALG(L) , ŜzA

LG(L) = λALG(L) , ĴzA
LG(L) = (m+ λ)ALG(L) .

(2.27)

Therefore, a photon in the Laguerre-Gaussian state carries the OAM projection m,

helicity λ, and TAM projection m + λ. Such photons are again twisted since they

have a helical wavefront defined by mφ + kz − ωt = 0 [cf. Fig. 2.4 (b)]. For the

sake of simplicity, we here suppose that the OAM projection m is positive. It is

worth stressing that the transverse intensity profile of a Laguerre-Gaussian beam

is characterized by the amplitude distribution SLG
z (r) ∼ |u(r⊥)|2 (Haus 1984) and

exhibits a ringlike pattern with a finite number of rings determined by the radial

index p due to the properties of Lm
p [cf. Fig. 2.4 (c)]. This is in contrast to Bessel

beams with an infinite number of rings. Moreover, the width of Laguerre-Gaussian

beams changes on propagation with the minimum at the focus z = 0, while the

width of Bessel beams does not depend on z.
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Figure 2.3: Comparison of the transverse momentum distribution |vpm(k⊥)| for
Laguerre-Gaussian beams with different radial indices p and OAM m.
Results in arbitrary units are shown for waist w0 = 2.7µm and photon
energy ~ω = 1.699 eV.

2.3.2 Laguerre-Gaussian beam as a superposition of plane waves

To facilitate our later discussion, it is convenient to represent the vector potential

of a Laguerre-Gaussian beam as a superposition of plane waves

ALG(L)(r) =

∫
U0(k⊥) ελe

ikr d2k⊥ (2.28)

with the momentum vector k = (k⊥ cosφk, k⊥ sinφk, kz) while its modulus k =√
k2⊥ + k2z is kept fixed. These plane waves propagate at small opening angles

θk = arctan(k⊥/kz) with regard to the beam (z) axis in order to fulfill the paraxial

approximation (2.24). The wave amplitude U0(k⊥) represents the momentum dis-

tribution within the beam and can be found when comparing Eq. (2.23) with (2.28)

at z = 0. It then becomes clear that the wave amplitude U0(k⊥) is just the Fourier

transform of the amplitude distribution u(r⊥, φ, z) at the beam focus (z = 0 plane)

and is given by

U0(k⊥) =
1

(2π)2

∫
u(r⊥, φ, z = 0)e−ik⊥r⊥ d2r⊥ . (2.29)

Therefore, the knowledge of the wave amplitude U0(k⊥) is sufficient in order to re-

construct the vector potential of the beam in the entire space. To further simplify

U0(k⊥), we carry out the integration over the azimuthal angle φ in Eq. (2.29) by

making use of the integral representation of the Bessel function (2.15). The remain-

ing integration over the radius r⊥ can be performed by using an explicit expression
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for the associated Laguerre polynomials (Abramowitz and Stegun 1964)

Lm
p

(
2r2⊥
w2

0

)
=

p∑
β=0

(−1)β

β!

(
p+m

p− β

)(
2r2⊥
w2

0

)β

, (2.30)

and formula (Lebedev 1965)∫ ∞

0

(
r2⊥
w2

0

)β+m/2

Jm(k⊥r⊥) e
−r2⊥/w2

0 r⊥dr⊥

=
w2

0β!

2
e−k2⊥w2

0/4

(
k⊥w0

2

)m

Lm
β

(
k2⊥w

2
0

4

)
. (2.31)

With these algebraic manipulations, the wave amplitude U0(k⊥) for Laguerre-Gaussian

beams can be written as (Cerjan and Cerjan 2011)

U0(k⊥) = vpm(k⊥) e
imφk , (2.32)

and where the distribution

vpm(k⊥) =
(−i)mw0

4π
e−k2⊥w2

0/4

(
k⊥w0

2

)m

×
p∑

β=0

(−1)β 2β+m/2

(
p+m

p− β

)
Lm
β

(
k2⊥w

2
0

4

)
(2.33)

now only depends on the modulus of the transverse momentum. Fig. 2.3 displays

the transverse momentum distribution |vpm(k⊥)| for the beams with different OAM

m and radial indices p. As seen from this figure, Laguerre-Gaussian beam always

consists of plane waves with different transverse momenta k⊥ and, hence, different

opening angles θk = arctan(k⊥/kz) with respect to the propagation z direction as

shown in Fig. 2.4 (a). On the other hand, a Bessel beam can be considered also as a

superposition of plane waves propagating at some fixed opening angle θk, because its

wave amplitude is proportional to the Dirac delta function aκmγ (k⊥) ∼ δ(k⊥ − κ).
From the discussion above we see that the polarization vector ελ of the plane waves

in Eq. (2.28) is not always perpendicular to the wave vector k. In this case, the

divergence of the vector potential ALG(L) does not vanish, and hence the scalar

potential ΦLG(L) is not zero in Lorenz gauge. Because of this non-zero scalar potential

the Lorenz gauge is less convenient for atomic calculations than the Coulomb gauge

(indicated by the superscript C), in which the scalar potential vanishes. To derive the

vector potential ALG(C) in Coulomb gauge, we compare the equation for the electric
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Figure 2.4: (a) In momentum space, the Laguerre-Gaussian beam is a superposition
of plane waves with momenta k lying on cones with opening angles
θk = arctan(k⊥/kz). The contributions from different opening angles θk
are determined by vpm(k⊥)e

i(m+λ)φk . (b) Laguerre-Gaussian beam has a
helical wavefront. (c) Its transverse intensity profile comprises a central
dark spot and a finite number of rings.

field in Lorenz gauge (2.22) with the equation for the electric field in Coulomb

gauge E = iωALG(C) and find the relationship between the vector potentials in two

different gauges

ALG(C) =
∇(∇ ·ALG(L))

k2
+ALG(L) . (2.34)

Since in the paraxial approximation the Laguerre-Gaussian beam contains only plane

waves with small opening angles θk = arctan(k⊥/kz), we can approximate the wave

vector (2.11) by

k ≈

⎛⎜⎝ kθk cosφk

kθk sinφk

k (1− θ2k/2)

⎞⎟⎠ . (2.35)

Let us apply this approximation to the vector potential in Lorenz gauge and substi-

tute its integral formula (2.28) into Eq. (2.34). Up to terms of order θk, the vector
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potential of a Laguerre-Gaussian beam in Coulomb gauge is then given by

ALG(C)(r) ≈
∫
vpm(k⊥) e

i(m+λ)φk

[
e−iλφkελ +

λ√
2
θk ε0

]
eikrd2k⊥ . (2.36)

Here the longitudinal (z) component of the field arises from the contribution of the

scalar potential in Lorenz gauge (Davis 1979). To better understand the square

bracket in the equation above, let us consider the polarization vector ekλ given by

Eq. (2.12). In contrast to the polarization vector ελ in Eq. (2.4), the vector ekλ

is always orthogonal to the momentum k. For the plane waves with small opening

angle θk with regard to the z axis, the polarization vector ekλ is approximately equal

to the square bracket term in Eq. (2.36) up to terms of order θk. As a result, the

vector potential of Laguerre-Gaussian beam in Coulomb gauge is written as

ALG(C)(r) =

∫
vpm(k⊥) e

i(m+λ)φk ekλ e
ikr d2k⊥ . (2.37)

As seen from this expression, the circularly polarized Laguerre-Gaussian beam can

be understood as a superposition of circularly polarized plane waves ekλ e
ikr with

the amplitude vpm(k⊥) e
i(m+λ)φk . The formula (2.37) for Laguerre-Gaussian beams

is the analogue of the expression (2.13) for Bessel beams and will be used in further

derivations.
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3 Ionization of H+
2 molecular ions by Bessel

beam

Like in Young’s well-known double-slit experiment with plane-wave light, interfer-

ence effects can be observed also in the photoionization of diatomic molecules (Wal-

ter and Briggs 1999). The interference pattern in the photoelectron angular dis-

tribution arises from the phase shift of the electrons emitted from different atomic

centers of the molecule. This phenomenon was first analyzed by Cohen and Fano

(1966) almost half a century ago in the ionization of H+
2 molecular ions with inci-

dent plane-wave radiation. In this chapter we study the photoionization of H+
2 by

twisted Bessel beams. We begin with a derivation of the transition matrix element

describing the ionization process. Using this matrix element, the cross sections and

angular distributions of the emitted photoelectrons are then analyzed. Our calcu-

lations show that the known oscillations in the angular and energy distributions of

photoelectrons, as they were confirmed in experiments with plane-wave radiation

(Akoury et al 2007), become much less pronounced for twisted light. This happens

especially at higher photon energies when the variations in the intensity profile of

the beams become comparable to the size of the molecule.

3.1 Theory of photoionization of H+
2 molecular ions

We begin with the general transition amplitude that describes the photoionization

of a H+
2 molecular ion, which consists of just two nuclei (protons) and a single

electron. In nonrelativistic first-order perturbation theory, the differential and total

photoionization cross sections are usually expressed in terms of the matrix element

(Bransden and Joachain 2003)

Mfi =

∫
ψ∗
f (r)A(r) · p̂ψi(r) d

3r , (3.1)

that describes the transition of the electron from its initial bound state ψi into the

final continuum state ψf because of the absorption of an incident photon. Here

p̂ = −i∇ is the momentum operator, and the vector potential A(r) characterizes

the properties of the photons. In order to calculate the transition amplitude (3.1),

we need to know the explicit form of the wave functions of the electron in its initial
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Figure 3.1: Coordinates that are used to describe the hydrogen molecular ion H+
2 . If

the origin is chosen at the midpoint of the internuclear axis, the position
vector r of the electron can easily be written also in terms of the positions
of the two nuclei as r ±R/2.

and final states. As usual, we construct the initial wave function ψi of the 1σg

molecular ground state as linear combination of atomic orbitals

ψi(r) =
1√
2
[ψ1s(r −R/2) + ψ1s(r +R/2)] , (3.2)

where ψ1s denotes the 1s ground state orbital of atomic hydrogen. Moreover,R is the

internuclear vector from the first to the second proton, and r is the position vector

of the electron with regard to the origin of the coordinates as shown in Fig. 3.1]. In

the first-order Born approximation, which is applied in this work, a plane wave

ψf (r) = (2π)−3/2 eipfr (3.3)

is supposed for the outgoing electron with momentum pf in the matrix element

(3.1). This approximation is valid when the kinetic energy Tf of the emitted electron

is large compared to its interaction with the remaining nuclei, but much smaller than

the rest energy of the electron,

Ip ≪ Tf ≪ mec
2 . (3.4)

In addition, the photon energy ω, ionization potential Ip of the H+
2 molecular ion,

and the modulus of the momentum are related to each other by

Tf =
p2f
2

= ω − Ip (3.5)
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due to energy conservation.

3.1.1 Transition matrix element for plane-wave photons

The ionization of H+
2 molecular ions by a plane wave has been discussed in good

detail; see, for example, Baltenkov et al (2012). Here we may therefore restrict

ourselves to a rather short account of the basic formulas. If we insert the vector

potential A(r) = ekλ e
ikr for plane-wave light with photon energy ω = ck and

helicity λ into Eq. (3.1), we then obtain the transition amplitude

Mpl
fi(k) = −i

∫
ψ∗
f (r)e

ikr ekλ · ∇ψi(r) d
3r . (3.6)

Upon integration by parts, we find that

Mpl
fi(k) = i

∫
ekλ ψi(r) · ∇ [ψ∗

f (r) e
ikr] d3r . (3.7)

Hence, the transition amplitude can be written as

Mpl
fi(k) = −ekλ · pf

(2π)3/2

∫
ei(k−pf )r ψi(r) d

3r , (3.8)

where we have employed the final-state wave function (3.3) and the orthogonality

between the polarization and the wave vectors of a photon, ekλ ·k = 0. We can fur-

ther apply the initial wave function (3.2) as well as the well-known Fourier transform

of the hydrogenic 1s ground state (Bransden and Joachain 2003)∫
ei(k−pf )r ψ1s(r) d

3r =
8
√
π

[(k − pf )2 + 1]2
, (3.9)

to finally obtain the transition amplitude for the photoionization of H+
2 molecular

ions as

Mpl
fi(k) = − 4

π

ekλ · pf

[(k − pf )2 + 1]2
cos

[
(k − pf ) ·R

2

]
. (3.10)

In fact, the matrix element (3.10) will be utilized below to obtain all properties of

the photoionization process with twisted light.
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3.1.2 Transition matrix element for Bessel beams

To analyze the ionization of H+
2 molecular ions by a twisted Bessel beam, we substi-

tute its vector potential (2.13) into the transition amplitude (3.1). In the previous

chapter we have seen that, in contrast to an incident plane wave, the Bessel beam

has an inhomogeneous intensity distribution perpendicular to its propagation direc-

tion, i.e. in the xy plane for the given geometry. It was furthermore shown that

this profile has a concentric ring structure, and therefore the photoionization will

depend on the position of the H+
2 molecular ion with regard to the beam axis. Here

we shall use the impact parameter b in order to designate the origin of the molecu-

lar coordinates with regard to the beam axis [cf. Fig. 3.2]. With this notation, the

initial wave function of the electron is written as

ψi(r, b) =
1√
2
[ψ1s(r −R/2− b) + ψ1s(r +R/2− b)] . (3.11)

Using this wave function, the transition amplitude for the ionization of the H+
2

molecular ions by a Bessel beam can be expressed as

M tw
fi (k, b) = −i

∫
d2k⊥

(2π)2
aκmγ (k⊥)

∫
d3r ψ∗

f (r)e
ikr ekλ · ∇ψi(r, b) . (3.12)

This amplitude can be evaluated quite similarly to the plane-wave case [cf. Eqs. (3.6)-

(3.10)]

M tw
fi (k, b) = − 4

π

∫
aκmγ (k⊥) e

i(k−pf )b
ekλ · pf

[(k − pf )2 + 1]2

× cos

[
(k − pf ) ·R

2

]
d2k⊥

(2π)2
=

∫
aκmγ (k⊥) e

i(k−pf )bMpl
fi(k)

d2k⊥

(2π)2
, (3.13)

and, hence, in terms of the plane-wave transition amplitude Mpl
fi(k) in Eq. (3.10).

3.1.3 Photoionization cross section for macroscopic target

We can apply the amplitude (3.13) to evaluate the differential photoionization cross

section. In contrast to an incident plane wave with a constant flux (per unit area),

the cross section for Bessel beams depends on the particular geometry under which

the incident beam interacts with the target molecules. For instance, if we assume

a macroscopic target of initially aligned molecules, that are uniformly distributed

in their impact parameter b over the extent of the Bessel beam with radius Rtw,
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Figure 3.2: Geometry for the ionization of H+
2 molecules by twisted light. While

the quantization (z) axis is taken along the propagation direction of the
incident beam, the H+

2 molecular ion is supposed to lay in the xz plane.
Moreover, the molecule is aligned with angle γ with respect to the z axis
and its center of mass, i.e. the origin of the intermolecular coordinates,
is displaced by the impact parameter b from the beam axis. Finally, the
two angles ϑf and ϕf describe the detector for observing the emitted
photoelectrons.

the angle-differential cross section can be determined explicitly by calculating the

integral for just b < Rtw,

dσtw

dΩf

=
2πpf
jtw

∫
|M tw

fi (k, b)|2
d2b

πR2
tw

=
4π4αpfRtw

ω cos θk

∫
ei(k⊥−k′

⊥)b

× aκmγ (k⊥) a
∗
κmγ

(k′
⊥)M

pl
fi(k)M

pl ∗
fi (k′)

d2k⊥

(2π)2
d2k′

⊥
(2π)2

d2b

πR2
tw

, (3.14)

where j tw = ω cos θk/(2π
3Rtw α) denotes the flux of the incident Bessel radiation

(Scholz-Marggraf et al 2014). As seen from Eq. (3.14), the integral over the impact

parameter b is proportional to the delta-function δ(k′
⊥ − k⊥) due to the factor

exp[i(k⊥−k′
⊥)b] in the integrand. Moreover, by carrying out the trivial integration
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over k′
⊥ and making use of Eqs. (3.10) and (2.14), we find

dσtw

dΩf

=
32πapf

ω cos θkRtw

∫
δ2(k⊥ − κ)

κ
|ekλ · pf |2

[(k − pf )2 + 1]4

× {1 + cos[(k − pf ) ·R]} d
2k⊥

2π
. (3.15)

Furthermore, since we can treat the square of the δ-function as (Scholz-Marggraf et

al 2014)

δ2(k⊥ − κ) =
Rtw

π
δ(k⊥ − κ) , (3.16)

the integration over k⊥ in Eq. (3.15) gives rise to k⊥ = κ, and the angle-differential

cross section for the photoionization of aligned H+
2 molecular ions becomes

dσtw

dΩf

=
32αpf
ω cos θk

2π∫
0

|ekλ · pf |2

[(k − pf )2 + 1]4
{1 + cos[(k − pf ) ·R]} dφk

2π
. (3.17)

If, in addition, we assume the emitted electron to be fast but still nonrelativistic

[cf. Eq. (3.4)], we can rewrite (k−pf )
2+1 ≈ p2f +1 in the denominator of Eq. (3.17)

and apply the integral representation of the Bessel function (2.15) in order to perform

the integration over the angle φk in the cross section. With these substitutions, the

angle-differential cross section for the photoionization of H+
2 ions by a Bessel beam

can be expressed in good approximation in terms of the angles (ϑf , ϕf ) of the

emitted electron as

dσtw

dΩf

≈
8αp3f
ω cos θk

1

[p2f + 1]4
{
[2 sin2 ϑf + 2 sin2 θk

− 3 sin2 ϑf sin
2 θk] [1 + J0(Rκ sin γ) cos η]

+ sin(2θk) sin(2ϑf ) cosϕf J1(Rκ sin γ) sin η

+ sin2 ϑf sin
2 θk cos(2ϑf ) J2(Rκ sin γ) cos η

}
, (3.18)

where η is given by

η = Rkz cos γ −Rpf [sin γ sinϑf cosϕf + cos γ cosϑf ] . (3.19)

Here the z axis is chosen along the direction of the incident light, and we assumed

the internuclear vector R to lay within the xz plane and to be tilted by the angle

γ with regard to the z axis as shown in Fig. 3.2]. We note that, for κ = 0 or zero
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Figure 3.3: Angle-differential photoionization cross sections as a function of the pho-
ton energy of the incident light. Results are presented for selected angles
(ϑf , ϕf ) of the emitted electrons as well as for different orientations of
the molecules. Cross sections for incident plane waves (black solid lines)
are compared with those for Bessel beams with opening angles θk = 5◦

(red dashed lines) and θk = 30◦ (blue dash-dotted lines), respectively.

opening angle θk = 0◦, the expression (3.17) simply becomes the cross section for

the ionization of H+
2 ions by plane-wave radiation in agreement with the formal limit

of a Bessel beam for θk = 0◦, i.e. for k ∥ z.

3.2 Numerical results for H+
2 molecular ions

3.2.1 Photoelectron energy distribution

We previously found that the angle-differential cross section for the photoionization

of a macroscopic target of aligned but randomly distributed H+
2 molecular ions by a

Bessel beam is independent of its TAM projection mγ. However, the cross section

dσtw/dΩf obviously depends on the opening angle θk. This can be seen in Fig. 3.3,
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in which the angle-differential cross section (3.17) is displayed as function of the

photon energy. Results for an incident plane-wave radiation along the z axis are

compared with Bessel beams with opening angles θk = 5◦ and θk = 30◦, respectively.

Cross sections are shown for three selected pairs of angles (ϑf , ϕf ) of the emitted

photoelectrons [cf. the rows of Fig. 3.3]. In these computations, moreover, the

H+
2 molecular ions were assumed to be initially aligned along three different angles

γ = 0◦ (left column), γ = 45◦ (middle column), and γ = 90◦ (right column) with

regard to the z axis.

In the left column of Fig. 3.3, in particular, the H+
2 molecular ions are aligned along

the direction of the incident light (γ = 0◦). For this alignment, the plane-wave and

twisted cross sections both oscillate and exhibit in general a rather similar behavior

as function of the photon energy. These oscillations in the angle-differential cross

sections, if taken as function of the photon energy, arise from the interference of

the quantum amplitudes due to the photoionization of the electron from the two

nuclear centers of the molecules. A destructive interference in the paths of the

outgoing electron leads to the pronounced minima in the cross sections as discussed

previously (Baltenkov et al 2012). For twisted Bessel light, the positions of these

minima are shifted in general and now also depend on the opening angle θk of the

beams.

More pronounced differences between the angle-differential cross sections for a plane

wave and those for a Bessel beam are found if the molecular axis is tilted by some

angle γ ̸= 0◦ with regard to the z axis. In the middle (γ = 45◦) and right columns

(γ = 90◦) of Fig. 3.3, for example, the differential cross sections for the ionization

by twisted light oscillate much less than for the plane-wave ionization, especially at

high photon energies as well as for the large opening angles θk. An almost monotonic

decrease of dσtw/dΩf as function of energy is found for θk = 30◦ and ϑf = ϕf = 90◦.

For plane waves, in contrast, a clear minimum in the cross section at ~ω = 6.5 keV

is still found for the same alignment of the molecules (γ = 45◦).

This qualitative change in the angle-differential cross sections can be explained by

the intensity profile of the Bessel beam. As mentioned in previous chapter, such an

intensity profile exhibits a ringlike pattern as shown in Fig. 3.4. For sufficiently small

photon energy, the size of these rings is much larger than the internuclear distance

R [cf. the left panel of Fig. 3.4] and hence the atomic centers of the H+
2 ions are

effectively exposed to the same intensity of the incident radiation, like for plane

waves also. The angle-differential cross sections therefore show for both plane-wave
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Figure 3.4: Transverse intensity profile of a Bessel beam with opening angle θk = 30◦,
projection of the TAM mγ = 3, helicity λ = +1, and for the two photon
energies ~ω = 5 keV (left panel) and ~ω = 10 keV (right panel). For
comparison, we also display the size of a H+

2 molecular ion; see text for
further discussion.

and twisted Bessel beams a quite similar energy behavior for all photon energies

~ω < 3 keV. At higher photon energies, in contrast, the ringlike intensity varies over

a smaller spatial extent and in particular for rather large opening angles θk, and the

different nuclei are thus exposed to a different strength (intensity) of the radiation

field. For this reason then, the interference pattern gradually disappear, similar to

Young’s experiment for double slits of nonequal widths.

3.2.2 Photoelectron angular distribution

So far, we have discussed the angle-differential cross section for the photoionization

of H+
2 ions as function of the photon energy but for fixed angles (ϑf , ϕf ) of the

emitted electrons. To analyze also the angular dependence of dσtw/dΩf , Fig. 3.5

displays the cross sections as function of polar angle ϑf of the photoelectrons for

two different photon energies. In these computations, both the alignment γ = 45◦

and azimuthal angle of the emitted electrons ϕf = 0◦ are fixed. As seen from Fig. 3.5,

the differential cross section dσtw/dΩf does not longer vanish for ϑf = 0◦, in contrast

to an incident plane wave. This effect can be explained by the polarization vector

of twisted light, since the differential cross sections are always proportional to the
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Figure 3.5: Angle-differential photoionization cross section as a function of the polar
angle ϑf of the detector for H+

2 molecular ions, aligned under the angle
γ = 45◦, and if the photoelectrons are observed in the xz plane (ϕf = 0◦).
Plane-wave results (black solid lines) are compared with the photoion-
zation by means of a Bessel beam with opening angle θk = 30◦ (blue
dash-dotted lines) and are shown for three different photon energies:
~ω = 1 keV (upper panel), ~ω = 3 keV (bottom panel), respectively.

scalar product of the polarization vector and the propagation direction of the emitted

electrons. For plane waves with k ∥ z, the polarization vector is perpendicular to

the z axis and thus |ελ · pf |2 ∼ sin2 ϑf or the cross section is zero at ϑf = 0◦. For

Bessel beams, in contrast, the polarization vector also has a non-zero z-component

in forward direction ϑf = 0◦ and dσtw/dΩf ̸= 0 in this case. For similar reasons,

moreover, the cross section for twisted light is generally larger than for plane waves

if ϑf = 1◦, as seen from the top row of Fig. 3.3.

Finally, we can consider the angle-differential cross sections dσtw/dΩf also as func-

tion of the azimuthal angle ϕf of the emitted photoelectrons. In Fig. 3.6 we compare

the corresponding angular distributions as functions of ϕf for plane waves (black

solid lines) with those of Bessel beams with opening angle θk = 30◦ (blue dash-dotted

lines). Here the H+
2 molecular ions are assumed to be aligned again under the angle

γ = 45◦ with regard to the z axis. As seen from this figure, the cross sections for

the Bessel beam and for the plane wave exhibit a quite similar ϕf dependence at

small photon energies. For ~ω = 0.5 keV, for example, the shapes of the angular
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Figure 3.6: Comparison of the photoelectron angular distribution as function of the
angle ϕf for incident plane waves (black solid lines) and Bessel beams
with opening angle θk = 30◦ (blue dash-dotted lines). The H+

2 molecular
ions are assumed to be aligned again under the angle γ = 45◦ with regard
to the z axis. Results in arbitrary units are shown for four different
photon energies: a) ~ω = 0.5 keV; b) ~ω = 3 keV; c) ~ω = 7 keV; d)
~ω = 10 keV. The polar angle of emitted electrons ϑf = 20◦ is fixed.

distribution are almost identical at the given polar angle ϑf = 20◦, apart from their

absolute values [cf. Fig. 3.6(a)]. In particular, the electron emission vanishes for

ϕf = 90◦ for incident plane-wave radiation as well as for the Bessel beam. However,

these two relative distributions start to deviate from each other if either the photon

energies or the opening angle θk (not shown here in this figure) increases. For a

photon energy of ~ω = 10 keV, the Bessel beam results in a quite isotropic ϕf dis-

tribution of the emitted photoelectrons and in contrast to the well-defined lobes for

plane-wave radiation of the same energy [cf. Fig. 3.6(d)]. Again, these modifications

in the ϕf angular distribution can be understood from the intensity pattern of the

corresponding Bessel beams, relative to the size of the H+
2 molecular ions.
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4 Excitation of mesoscopic atomic target by

Bessel beam

More often than not, optical excitations refers to the transfer of an atom from a

ground state to an upper state. For an incident plane-wave photon, the probability

to find an atom in a particular magnetic sublevel of the upper state is determined by

the well-known selection rules (Bransden and Joachain 2003). However, the selection

rules and hence magnetic sublevel population of excited atomic states were found to

be different when twisted light collides with a well-localized single atom (Afanasev

et al 2013) or with a macroscopic (infinitely extended) target (Scholz-Marggraf et

al 2014). In this chapter we shall investigate the excitation of a mesoscopic atomic

target by twisted Bessel beams. The atoms are assumed to be confined and local-

ized with nanometer precision in this target, corresponding to experiments on the

excitation of atoms or ions in magneto-optical and Paul traps (Tabosa and Petrov

1999, Schmiegelow et al 2016). By using nonrelativistic first-order perturbation the-

ory and density matrix formalism, we first derive the excitation cross sections and

alignment parameters describing the population of excited atoms. Further calcu-

lations performed for the 1s → 2p transition in atomic hydrogen indicate that the

TAM projection of the incident Bessel beam affects the alignment of excited atoms

for sufficiently small targets of size less than 200 nm. Finally we demonstrate that

this effect can be observed experimentally by measuring the linear polarization of

the subsequent fluorescence.

4.1 Theory of excitation with Bessel beams

4.1.1 Transition amplitude for Bessel beams

Let us first consider the photoexcitation of a single hydrogen atom from an initial

|nilimi⟩ to a final |nf lfmf⟩ bound state, which is described within the framework of

the nonrelativistic perturbation theory by the following matrix element (Bransden

and Joachain 2003)

M tw
mfmi

(b) =

∫
ψ∗
nf lfmf

(r)AB(r + b) · p̂ψnilimi
(r) d3r , (4.1)
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where the impact parameter b = (bx, by, 0) characterizes the position of a target atom

with respect to the beam axis. The main difference between this matrix element and

that from the previous chapter lies in the final bound state. In order to calculate

the amplitude for the excitation of the atom by the radiation prepared in the pure

Bessel state, we insert its vector potential (2.13) into Eq. (4.1) and find

M tw
mfmi

(b) = −i
∫

d2k⊥

(2π)2
aκmγ (k⊥)e

ik⊥b

∫
d3r ψ∗

nf lfmf
(r)eikr ekλ · ∇ψnilimi

(r)

=

∫
aκmγ (k⊥)e

ik⊥bMpl
mfmi

(θk, φk)
d2k⊥

(2π)2
. (4.2)

Here we introduced the matrix element

Mpl
mfmi

(θk, φk) = −i
∫
ψ∗
nf lfmf

(r)eikr ekλ · ∇ψnilimi
(r) d3r , (4.3)

describing the absorption of a circularly polarized plane-wave photon ekλe
ikr whose

wave vector points in the direction k̂ = k/k = (θk, φk) not coinciding with the

quantization z axis. To calculate the matrix element Mpl
mfmi

(θk, φk) for this general

case, we express the initial- and final-state atomic wavefunctions, defined in the

coordinate system S(x, y, z), in terms of the functions from the system S(x̃, ỹ, z̃)

with the z̃ axis along the vector k. Since the S(x̃, ỹ, z̃) coordinate system is obtained

from the S(z, y, z) by a rotation through an angle θk around the y axis and an angle

φk around the z axis, we have (Varshalovich et al 1988)

ψnlm(r) =
∑
m̃

Dl∗
mm̃(φk, θk, 0)ψnlm̃(r̃) , (4.4)

where the Wigner D function can be written in terms of his small d function as

Dl
mm̃(φk, θk, 0) = e−imφkd l

mm̃(θk) . (4.5)

If one inserts these expressions into Eq. (4.3), one can derive

Mpl
mfmi

(θk, φk) = e−i(mf−mi)φk

∑
m̃f m̃i

d
lf
mf m̃f

(θk) d
li
mim̃i

(θk)M
pl
m̃f m̃i

(0, 0) , (4.6)

where m̃i and m̃f are projections of the initial- and final-state angular momenta

on the z̃ axis, and where the matrix element Mpl
m̃f m̃i

(0, 0) corresponds to the ab-

sorption of circularly polarized plane-wave photon of helicity λ incident along the z̃

axis. According to the well-known selection rules for incoming plane-wave radiation
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(Bransden and Joachain 2003), the matrix elementMpl
m̃f m̃i

(0, 0) does not vanish only

if m̃f = m̃i+λ. For example, if the initial state is the s state, the summation in the

matrix element (4.6) is restricted to m̃i = 0 and m̃f = λ.

By inserting the matrix element (4.6) into Eq. (4.2) and performing the integration

over the transverse momentum k⊥ as well as over the azimuthal angle φk with the

help of Eq. (2.15), we finally obtain the transition amplitude for the excitation of a

single atom by twisted Bessel light in the form

M tw
mfmi

(b) = imi−mf ei(mγ+mi−mf )φb

√
κ
2π

Jmγ+mi−mf
(κb)Mpl

mfmi
(θk, 0) . (4.7)

This formula shows that the amplitude M tw
mfmi

(b) for the twisted light can be ex-

pressed in terms of the matrix elements (4.6) for the absorption of plane-wave pho-

tons.

4.1.2 Density matrix for the mesoscopic target

Next, we shall analyze the excitation of the target consisting of hydrogen atoms

by Bessel beams. We assume that the atoms are distributed independently and

symmetrically with respect to the target center, while their spatial distribution inside

the target is characterized by the function f(b − bt). Here the impact parameter

b is again the distance from the beam axis to a single atom in the target, and the

vector bt denotes the distance from the beam axis to the target center. To discuss

the excitation of the target atoms which are assumed to be unpolarized, we will use

the density matrix theory (Balashov et al 2000, Blum 2012). The final-state density

for a single atom can be expressed in terms of transition amplitudes (4.7) as

⟨nf lfmf |ρ̂sf |nf lfm
′
f⟩ =

1

2li + 1

∑
mi

M tw
mfmi

(b)M tw ∗
m′

fmi
(b) . (4.8)

For the atomic target with the spatial distribution f(b−bt), we also need to average

the density matrix (4.8) over positions of atoms. In this case, the density matrix for
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the atomic target excited by a Bessel beam is given by

⟨nf lfmf |ρ̂f |nf lfm
′
f⟩ =

∫
⟨nf lfmf |ρ̂sf |nf lfm

′
f⟩ f(b− bt) d

2b

=
im

′
f−mf

2li + 1

κ
2π

∑
mi

Mpl
mfmi

(θk, 0)M
pl ∗
m′

fmi
(θk, 0)

∫
ei(m

′
f−mf )φb

× Jmγ+mi−mf
(κb) Jmγ+mi−m′

f
(κb) f(b− bt) d

2b , (4.9)

where we have employed the transition amplitude (4.7). The atomic density of the

target in the xy plane is assumed to follow the Gaussian distribution

f(b− bt) =
1

2πw2
e−

(bx−btx)2+(by−bty)2

2w2 (4.10)

with the width of the target w. As was pointed out by Eschner (2003), the Gaussian

distribution provides a good description of the density of ions in Paul-type traps.

Here the quantization z axis is taken along the beam axis, while the x axis is directed

from the beam axis to the target center [cf. Fig. 4.2], so that bty = 0. With this

atomic density, the density matrix for such a mesoscopic target can be significantly

simplified if we write the integral over the b in Eq. (4.9) as∫
ei(m

′
f−mf )φbJmγ+mi−mf

(κb) Jmγ+mi−m′
f
(κb) f(b− bt) d

2b

=

∫ ∞

0

e−(b2+b2t )/(2w
2) Jmγ+mi−mf

(κb) Jmγ+mi−m′
f
(κb)

b db

w2

×
∫ 2π

0

ei(m
′
f−mf )φb+

bbt
w2 cosφb

dφb

2π
. (4.11)

If we apply the integral representation of the modified Bessel function of the first

kind (Abramowitz and Stegun 1964)

In(x) =

∫ 2π

0

einφb+x cosφb
dφb

2π
, (4.12)

we are able to perform the integration over φb in Eq. (4.11), thus giving rise to the

density matrix in the form

⟨nf lfmf |ρ̂f |nf lfm
′
f⟩ =

im
′
f−mf

2li + 1

κ
2π

∑
mi

Mpl
mfmi

(θk, 0)M
pl ∗
m′

fmi
(θk, 0)

×
∫ ∞

0

e−(b2+b2t )/(2w
2) Jmγ+mi−mf

(κb) Jmγ+mi−m′
f
(κb) Im′

f−mf
(
bbt
w2

)
b db

w2
, (4.13)
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Figure 4.1: (a) Excitation of a 1s → 2p transition in target hydrogen atoms with
a twisted Bessel photon. (b) Magnetic sublevel population of the ex-
cited atomic 2p state described in the text by means of the alignment
parameters. (c) Polarization of fluorescence signal due to spontaneous
emission from the 2p level is determined by the alignment parameters of
the hydrogen 2p level.

that will be used further on.

4.1.3 Photoexcitation cross sections

The density matrix for target atoms excited by twisted Bessel beams allows us to

derive the properties of the excited atomic states. We start with the partial cross

sections σtw
mf

for the excitation |nili⟩ + γ → |nilimf⟩ to a particular magnetic mf

state. If an incoming radiation is prepared in the Bessel state, the partial excitation

cross section for the mesoscopic atomic target (4.10) is defined by

σtw
mf

=
2π

jtw
1

2li + 1

∑
mi

∫
|M tw

mfmi
(b)|2 f(b− bt) d

2b δ(ω + Ei − Ef )

=
2π

jtw
⟨nf lfmf |ρ̂f |nf lfmf⟩ δ(ω + Ei − Ef ) , (4.14)

where the Dirac δ function ensures the energy conservation ω+Ei = Ef (Berestetskii

et al 1982). We note that the partial cross sections σtw
mf

are proportional to the

diagonal elements of the density matrix (4.13) obtained above.

As can be seen from Eq. (4.14), we need to determine the flux jtw of incident

radiation for the calculation of these cross sections. For the Bessel beam of light,

its flux through the surface of the mesoscopic target is defined by

jtw =

∫
Sz(r⊥;mγ = λ = 1) f(r⊥) d

2r⊥

=
κω
4π2α

[
I0(w

2κ2) cos4(θk/2)− I2(w
2κ2) sin4(θk/2)

]
e−w2κ2

, (4.15)
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where we have substituted mγ = λ = 1 in the expression for longitudinal (z) com-

ponent of the Poynting vector for Bessel beams (Matula et al 2013). If we use the

formula I0(x)− I2(x) = 2I1(x)/x for the modified Bessel functions of the first kind

(Abramowitz and Stegun 1964), we find that

jtw =
κω
4π2α

{
1 + cos2 θk
2w2κ2

I1(w
2κ2) +

cos θk
2

[
I0(w

2κ2) + I2(w
2κ2)

]}
e−w2κ2

.

(4.16)

One then sees that the flux jtw is a positive function because In(x) > 0 when x > 0

and n > −1. In addition, this expression for the flux of a Bessel beam with zero

opening angle θk gives us the correct limit of the plane-wave partial cross sections

(Scholz-Marggraf et al 2014)

σpl
mf

=
2π

jpl
1

2li + 1

∑
mi

|Mpl
mfmi

(0, 0)|2 δ(ω + Ei − Ef ) (4.17)

with the flux of the plane-wave radiation jpl = ω/(2πα).

4.1.4 Alignment of excited atoms and polarization of

fluorescence

Instead of the final-state density matrix derived before, it is often more convenient

to describe the population of photoexcited atomic states with the help of the so-

called statistical tensors ρkf qf (nf lf ) expressed in terms of the elements of the density

matrix as

ρkf qf (nf lf ) =
∑
mfm

′
f

(−1)lf−m′
f ⟨lfmf , lf −m′

f |kfqf⟩ ⟨nf lfmf |ρ̂f |nf lfm
′
f⟩ .

(4.18)

By using these statistical tensors ρkf qf (nf lf ), we can introduce the alignment pa-

rameters (or reduced statistical tensors) Akf qf (nf lf ) in the form

Akf qf (nf lf ) =
ρkf qf (nf lf )

ρ00(nf lf )
. (4.19)

In fact, the alignment parameters with zero projection qf = 0 are determined by the

diagonal elements of the density matrix (4.13) and describe the relative population of

atomic sublevels |nf lfmf⟩ [cf. Fig. 4.1], while the parametersAkf qf (nf lf ) with qf ̸= 0
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Figure 4.2: Geometry of the excitation of target atoms by Bessel beams and the
subsequent fluorescence. The quantization z axis is chosen along the
propagation direction of the incident beam, while the mesoscopic atomic
target is located in the xy plane. The distance from the beam axis to
the target center is described by bt, and the x axis is taken along this di-
rection. Moreover, the parameter w characterizes the size of target. The
fluorescent light emitted by the subsequent radiative decay is detected
along the x axis.

are determined by nondiagonal elements of the density matrix and characterize the

coherence between sublevels with different mf .

These alignment parameters of the excited state allow us to analyze the polarization

of fluorescence light emitted in the subsequent radiative decay |nili⟩ → |n0l0⟩+ γ to

one of the lower-lying levels. As usual in atomic and optical physics, the polarization

properties of photons are characterized by the Stokes parameters. In particular, we

consider here the degree of linear polarization characterized by the Stokes parameter

P1. For the fluorescent photons detected along the x axis for the given geometry

[cf. Fig. 4.2], the Stokes parameter P1 within the leading electric dipole (E1)

approximation reads as (Balashov et al 2000)

P1 = −

√
3
2
αγ
2

∑
qf
A2qf (nf lf )

[
d 2
qf2

(π
2
) + d 2

qf−2(
π
2
)
]

1 +
√

4π
5
αγ
2

∑
qf
A2qf (nf lf )Y2qf (

π
2
, 0)

, (4.20)
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where the parameter αγ
2 is given by

αγ
2 =

√
3

2

√
2lf + 1 (−1)lf+l0+1

{
lf lf 2

1 1 l0

}
, (4.21)

and where Y2qf (π/2, 0) denotes the spherical harmonics. Here we assumed that the

fine structure of the excited level remains unresolved. In experiment, this Stokes

parameter is determined simply as P1 = (Iz − Iy)/(Iz + Iy), where the Iz and Iy are

intensities of light linearly polarized along the z and y axes, respectively.

4.2 Numerical results for hydrogen atoms

4.2.1 Cross sections for 1s→ 2p excitation

Let us compare the partial cross sections (4.14) for the excitation of target hydro-

genic atoms by twisted Bessel light with those for incident plane waves (4.17). To

do so, we now introduce the relative total excitation cross section defined by

σtw

σpl
=

∑
mf
σtw
mf∑

mf
σpl
mf

. (4.22)

In order to illustrate the behaviour of these relative total cross sections, we consider

the 1s → 2p excitation of hydrogen atoms. In our calculations we assume that

an incident twisted photon has the helicity λ = +1 and the opening angle θk =

20◦. Fig. 4.3 shows the relative total cross sections σ(tw)/σ(pl) for different TAM

projectionsmγ = 0,mγ = 1, andmγ = 5 of the Bessel beam. Its top panel illustrates

these cross sections as a function of the width w of the target located at distances

bt = 20 nm and bt = 100 nm from the beam center. As seen from this figure, the

cross sections depend strongly on the TAM projection mγ of the beam if the target

is rather small. When the atomic target becomes larger w > 400 nm, the excitation

cross sections increase and eventually reach the limit σ(tw)/σ(pl) = 1/ cos θk = 1.064

obtained in Scholz-Marggraf et al (2014) for the macroscopic (infinitely large) target.

The position of the target with respect to the beam axis also affects the probability

of the excitation. In the bottom panel of Fig. 4.3, we display the bt dependence

of the cross section for two different targets of size w = 20 nm and w = 100 nm.

For the target located near the beam axis with bt < 50 nm, the excitation cross

section for the TAM projection mγ = 1 is larger than those for mγ = 0 and mγ = 5,
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Figure 4.3: Relative total cross sections σ(tw)/σ(pl) for the 1s → 2p excitation of
hydrogen atoms by a Bessel beam with the helicity λ = +1 and opening
angle θk = 20◦. Top: Cross sections are presented as a function of
the size w of atomic targets located at distances bt = 20 nm (left) and
bt = 100 nm (right) from the beam center. Bottom: Relative total cross
sections as a function of the position bt of targets with width w = 20
nm (left) and w = 100 nm (right). Calculations are performed for three
TAM projections of Bessel beams: mγ = 0 (blacks solid lines), mγ = 1
(red dashed lines), and mγ = 5 (blue dash-dotted lines).

since the Bessel beam with TAM mγ = 1 has a higher intensity near the beam axis,

leading to a higher probability of the excitation. Moreover, when the target center

is displaced further from the beam axis, the cross section σ(tw)/σ(pl) decreases and

reveals the oscillatory bt behaviour. This is due to the fact that the intensity of

Bessel beams in general also decreases and oscillates with increasing the distance

from the beam center.
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Figure 4.4: Alignment parameters A20 (top) and Im(A21) (bottom) of the excited
2p atomic state as a function of the size w of mesoscopic atomic target.
The case of 1s→ 2p excitation by a Bessel beam with the opening angle
θk = 20◦ and helicity λ = +1 is considered. Results are presented for
hydrogen target located at distances bt = 20 nm (left) and bt = 100 nm
(right). Alignment parameters are compared for three different TAM of
the incident beam: mγ = 0 (blacks solid lines), mγ = 1 (red dashed
lines), and mγ = 5 (blue dash-dotted lines).

4.2.2 Alignment of excited 2p state

Having discussed the excitation cross sections, we can analyze the magnetic sublevel

population of the excited 2p state by means of the alignment parameters (4.19).

We restrict our attention just to the alignment parameters A2qf , because they are

required for the calculation of the first Stokes parameter P1 of the fluorescence

radiation (4.20). If we take into account their general properties A2−qf = (−1)qfA∗
2qf

and qf = −2, ..., 2 from Balashov et al (2000), we will see that there are only

three independent alignment parameters, namely A20, A21, and A22. Moreover, our

calculations also indicate that the parameter A22 is small compared with other two

parameters, while the real part of A21 is always zero. The only two parameters A20

and Im(A21) will be hereby discussed below.
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Figure 4.5: Same as Fig. 4.4, but for the alignment parameters A20 (top) and
Im(A21) (bottom) as a function of the distance bt from the beam axis
to the center of the target with size w = 20 nm (left) and w = 100 nm
(right).

Fig. 4.4 displays the alignment parameters A20 (top) and Im(A21) (bottom) as a

function of the target size w. Results are shown for three TAM projections of the

incident light and two target positions such as bt = 20 nm (left) and bt = 100 nm

(right). The pronounced difference between alignment parameters with different mγ

and bt is found for rather small hydrogen atomic target of w < 200 nm, as can

be seen from Fig. 4.4. Nevertheless, the alignment parameter A20 for sufficiently

large targets of size w > 300 nm is independent of the TAM mγ and of the target

position bt, and it tends to the limit A20 = [1 + 3 cos(2θk)]/(4
√
2) = 0.58 obtained

for the infinitely extended target (Scholz-Marggraf et al 2014). In addition, our

computations indicate that the alignment parameter A21 vanishes for such large

targets [cf. the bottom panel of Fig. 4.4]. This can be predicted by the symmetry

arguments, according to which the system “atoms-beam” with the axial symmetry

provides the only nonzero Akf0 alignment parameters (Balashov et al 2000). Since

the spatial distribution of atoms in rather extended target has axial symmetry with

42



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0- 1 . 0

- 0 . 5

0 . 0

0 . 5

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0- 1 . 0

- 0 . 9

- 0 . 8

- 0 . 7
w  =  1 0 0  n mw  =  2 0  n m

Sto
ke

s p
ara

me
ter

  P
1

w  ( n m ) w  ( n m )

b t  =  1 0 0  n mb t  =  2 0  n m

Sto
ke

s p
ara

me
ter

  P
1

b t  ( n m ) b t  ( n m )

Figure 4.6: Stokes parameters P1 of the 2p→ 1s fluorescence radiation propagating
along the x axis and following the photoexcitation of hydrogen atoms
by the Bessel beam with helicity λ = +1 and opening angle θk = 20◦.
Top: P1 as a function of the size w of atomic target located at distances
bt = 20 nm (left) and bt = 100 nm (right). Bottom: P1 as a function
of the position bt of the target with size w = 20 nm (left) and w = 100
nm (right). Stokes parameters are compared for the following TAM
projections of twisted Bessel beams: mγ = 0 (blacks solid lines), mγ = 1
(red dashed lines), and mγ = 5 (blue dash-dotted lines).

regard to the beam axis, the parameter A21 therefore becomes zero.

Let us now examine the behaviour of the alignment parameters A20 and Im(A21)

when the target position bt varies. As seen from Fig. 4.5, if the center of atomic

target is placed right on the beam axis (bt = 0), the alignment parameter A21 is

always zero, in contrast to nonzero A20, because the target has axial symmetry with

respect to the beam axis in this case. For the atomic targets displaced from the

beam center (bt ̸= 0), the alignment parameters A20 and A21 are both nonzero and

oscillate as functions of the distance bt, as seen from the left column of Fig. 4.5.

Again, these oscillations of the alignment parameters are revealed because of the
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oscillatory structure of the intensity profile for Bessel beams.

4.2.3 Polarization of 2p→ 1s fluorescent light

Until now we have discussed the alignment parameters of the excited 2p state of

hydrogen target atoms. Let us consider the polarization of the subsequent radiative

decay 2p → 1s. In Fig. 4.6, for example, we display the Stokes parameter P1

characterizing the degree of linear polarization along the z axis of the fluorescence

emitted in the x direction. Both the target position bt and the TAM projection

mγ of an incident Bessel beam affect the Stokes parameter P1 for sufficiently small

targets with w < 200 nm. However, similar to the alignment parameters, P1 is

independent of mγ and bt if the target becomes larger. Moreover, we note that the

Stokes parameter oscillates as a function of the target position bt, while the TAM

projection mγ of the Bessel beam affects the positions of its maxima. For instance,

the first maximum of the Stokes parameter P1 for mγ = 5 (blue dash-dotted line)

is located at bt = 420 nm, in contrast to bt = 130 nm for mγ = 1 (red dashed line).

This difference in maxima arise from the intensity profile of Bessel beams, since the

first intensity maximum for the TAM mγ = 5 lies further from the beam center than

that for mγ = 1.
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5 Excitation of atoms by Laguerre-Gaussian

beam

In a recent experiment, Schmiegelow et al (2016) investigated the magnetic sublevel

population of Ca+ ions in a Laguerre-Gaussian light beam if the target atoms were

just centered along the beam axis. They demonstrated in this experiment that the

sublevel population of excited atoms is uniquely defined by the projection of the

orbital angular momentum of the incident twisted photon. However, little attention

has been paid so far to the question of how the magnetic sublevels are populated

when atoms are displaced from the beam axis by the impact parameter b. In this

chapter we shall study the sublevel population for twisted Laguerre-Gaussian beams

and for different atomic impact parameters by making use of the density-matrix for-

malism. Detailed calculations are performed especially for the 4s 2S1/2 → 3d 2D5/2

transition in Ca+ ions. In so doing we will show that the magnetic sublevel pop-

ulation of the excited 2D5/2 level varies significantly with the impact parameter

and is sensitive to the polarization, the radial index, as well as the orbital angular

momentum of the incident light beam.

5.1 Theory of excitation with Laguerre-Gaussian

beams

5.1.1 Transition amplitude for Laguerre-Gaussian beams

We consider the excitation of a single atom from an initial state |αiJiMi⟩ to a final

state |αfJfMf⟩, where J, M denote the total angular momentum and its projection

upon the beam z axis. Here α refers to all additional quantum numbers. In rela-

tivistic first-order perturbation theory, the probability of this |αiJiMi⟩ → |αfJfMf⟩
transition is expressed in terms of the transition amplitude (Johnson 2007)

MMfMi
(b) = ⟨αfJfMf |

∑
q

αq ·ALG(C)(rq + b)|αiJiMi⟩ , (5.1)

where ALG(C) is the vector potential of the Laguerre-Gaussian beam in the Coulomb

(C) gauge (2.37), the sum on q runs over all electrons in the atom, and αq denotes
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the vector of Dirac matrices for the qth electron. While an free atom is typically

not in a quantum state with well-defined projection Mi, such a polarized state can

be prepared experimentally by optical pumping (Auzinsh et al 2010), for example.

We used the impact parameter b ≡ bex in order to designate the position of the

atomic nucleus within the focus plane z = 0 of the beam [cf. Fig. 5.1]. In an

experiment, such a displacement b of an atom can be controlled with few nanometers

precision by using present-day Paul traps (Schmiegelow et al 2016). If we apply the

decomposition of a Laguerre-Gaussian beam into plane waves (2.37), the transition

amplitude then becomes

MMfMi
(b) =

∫
vpm(k⊥) e

i(m+λ)φk+ik⊥b

× ⟨αfJfMf |
∑
q

αq · ekλ e
ikrq |αiJiMi⟩ d2k⊥ . (5.2)

This expression readily shows that the amplitude MMfMi
for a Laguerre-Gaussian

beam can simply be obtained from the matrix elements for circularly polarized plane

waves ekλ e
ikr that propagate along the direction k̂ = (θk, φk), similar to Bessel

beams. To evaluate these matrix elements, we expand the plane waves in terms of

multipole fields

ekλ e
ikr =

√
2π

∞∑
L=1

L∑
M=−L

∑
p=0,1

iL
√
2L+ 1 (iλ)pDL

Mλ(φk, θk, 0)a
p
LM(r) , (5.3)

where DL
Mλ is the Wigner D function, and ap

LM refers to magnetic (p = 0) and

electric (p = 1) multipole potentials (Rose 1957). If we substitute this multipole

expansion into the matrix element for plane waves, we obtain (Surzhykov et al 2015)

⟨αfJfMf |
∑
q

αq · ekλ e
ikrq |αiJiMi⟩ =

√
2π
∑
LM

∑
p=0,1

iL

√
2L+ 1

2Jf + 1
(iλ)p

×DL
Mλ(φk, θk, 0)⟨JiMi, LM |JfMf⟩ ⟨αfJf∥

∑
q

αq · ap
L,q∥αiJi⟩ . (5.4)

Here we have applied the Wigner-Eckart theorem (Varshalovich et al 1988) to the

matrix element of each term of the multipole expansion (5.3), since αq · ap
LM(rq)

is an irreducible tensor of rank L with projection quantum number M . Although

several multipole transitions are generally possible, we just restrict ourselves to the

leading multipole transition of lowest rank L as allowed by the triangle relation

46



x

y

b

0z 

x

y z
b

Figure 5.1: Geometry for the excitation of a single atom by Laguerre-Gaussian beam.
The quantization z axis is chosen along the propagation direction of the
incident beam, and the origin of the coordinate system lies on the beam
axis. The atom is supposed to lie at the beam focus (z = 0), and its
nucleus is shifted from the beam axis along the x axis by the impact
parameter b.

|Ji − Jf | ≤ L ≤ Ji + Jf from the Clebsch-Gordan coefficients. This is a very good

approximation for all low-energy transitions and light atoms. Another condition

M =Mf−Mi from the Clebsch-Gordan coefficients restricts the projection quantum

number M , while the type of the multipole transition, magnetic (p = 0) or electric

(p = 1), is determined by the parity selection rule πiπf = (−1)L+p+1, and where πi

and πf denote the parity of the initial and final atomic states, respectively.

If we substitute the matrix element of just the leading multipole from Eq. (5.4)

into (5.2), the transition amplitude for the photoexcitation of a single atom by a

Laguerre-Gaussian beam becomes

MMfMi
(b) =

√
2πiL(iλ)p

√
2L+ 1

2Jf + 1
⟨JiMi, LMf −Mi|JfMf⟩

× ⟨αfJf∥
∑
q

αq · ap
L,q∥αiJi⟩

∫
vpm(k⊥)

× ei(Mi+m+λ−Mf )φk+ik⊥b dLMf−Mi λ
(θk) d

2k⊥ , (5.5)

and where we replaced the Wigner D function by the small d function (4.5) with

θk = arctan(k⊥/kz). The integral over the angle φk in the transition amplitude (5.5)

can be evaluated analytically by using Eq. (2.15) together with k⊥b = k⊥b cosφk,
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so that we finally obtain

MMfMi
(b) =(2π)3/2 iL+Mi+m+λ−Mf (iλ)p

√
2L+ 1

2Jf + 1

× ⟨JiMi, LMf −Mi|JfMf⟩ ⟨αfJf∥
∑
q

αq · ap
L,q∥αiJi⟩

×
∫ ∞

0

vpm(k⊥) JMi+m+λ−Mf
(k⊥b) d

L
Mf−Mi λ

(θk) k⊥ dk⊥ . (5.6)

Here the magnetic quantum number Mf of a final atomic state is included not

only in the Clebsch-Gordan coefficient, but also in the integral over the transverse

momentum k⊥, which is related to the structure of the beam. In this integral

the Bessel function JMi+m+λ−Mf
(k⊥b) expresses the dependence of the transition

amplitude on the atomic impact parameter b.

5.1.2 Density matrix of excited atoms

The photoexcited state of atoms can be efficiently described by means of the density-

matrix. If we apply this formalism to the |αiJiMi⟩ → |αfJf⟩ photoexcitation by a

Laguerre-Gaussian beam from the state with well-defined projection Mi and make

use of the transition amplitude (5.6), the density matrix of the excited |αfJf⟩ state
reads (Balashov et al 2000)

⟨αfJfMf |ρ̂f |αfJfM
′
f⟩ = MMfMi

(b)M∗
M ′

fMi
(b) . (5.7)

While the non-diagonal elements of the density matrix (5.7) characterize the co-

herence between sublevels with different Mf , its diagonal elements determine the

relative partial cross sections for the excitation of the atom into a particular mag-

netic Mf sublevel

⟨αfJfMf |ρ̂f |αfJfMf⟩ =
σMf

(b)∑
Mf

σMf
(b)

=
σMf

(b)

σtot(b)
. (5.8)

As seen from Eq. (5.6), the relative partial cross sections (5.8) and, hence, also

the population of the sublevels Mf depend not only on the impact parameter b of

the atom, but also on the helicity λ, radial index p, and OAM m of the incident

Laguerre-Gaussian beam. Below we will analyze these dependencies in more detail.

The density matrix of the excited atoms (5.7) is experimentally accessible with

present day techniques. In Schmiegelow et al (2016), for instance, the density ma-
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Figure 5.2: (a) Excitation of a 4s 2S1/2 Mi = −1/2 → 3d 2D5/2 transition in Ca+

ions with a Laguerre-Gaussian photon. (b) Magnetic sublevel population
of the excited 3d 2D5/2 state described in the text by means of the
relative partial cross sections.

trix was obtained by measuring the Rabi frequency of the oscillations between the

ground and excited atomic states, when the atoms were exposed to a Laguerre-

Gaussian light beam. In this experiment each of the Mf magnetic sublevels was

spectroscopically resolved due to an external magnetic field that was aligned along

the beam propagation (z) direction.

5.2 Numerical results for Ca+ ions

In the previous section, we just considered the excitation |αiJiMi⟩ → |αfJf⟩ of a

single atom by a Laguerre-Gaussian light beam. From the transition amplitude (5.6),

we found the relative partial cross section (5.8) for populating sublevels |αfJfMf⟩
of the excited atoms as a function of the atomic impact parameter b. We analyze

the b dependence of the partial cross sections σMf
/σtot especially for the electric-

quadrupole 4s 2S1/2 Mi = −1/2 → 3d 2D5/2 transition in Ca+ ions that was used

also in Schmiegelow et al (2016), and for which we have L = 2, Ji = 1/2, and

Jf = 5/2 [cf. Fig. 5.2]. The calculations of the relative cross sections σMf
/σtot

were performed for a Laguerre-Gaussian beam with the optically accessible photon

energy ~ω = 1.699 eV and a beam waist w0 = 2.7µm. Based on these calculations,

we shall investigate below how the OAM m, the helicity λ, and the radial index p

of the beam affect the sublevel population of the excited 3d 2D5/2 state for different

impact parameters b.
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5.2.1 Partial cross sections for 4s 2S1/2 → 3d 2D5/2 excitation

We begin with atoms that are centered on the beam axis (b = 0). Since the Bessel

function in Eq. (5.6) is JMi+m+λ−Mf
(0) = δMi+m+λ−Mf , 0 (Abramowitz and Stegun

1964), only the magnetic sublevel

Mf =Mi + λ+m (5.9)

is populated for the atoms of b = 0. The selection rule (5.9) obviously differs from

the known rule Mf =Mi + λ for an incident plane-wave light. The “modified” rule

(5.9) has a simple physical interpretation: For atoms on the beam axis, only the

projection m+λ of the total angular momentum (TAM) of Laguerre-Gaussian beam

can be transferred to the atoms. The selection rule (5.9) has also been demonstrated

in the experiment (Schmiegelow et al 2016) for the 4s 2S1/2 Mi = −1/2 → 3d 2D5/2

transition in Ca+ ion. From the properties of the Clebsch-Gordan coefficient in

Eq. (5.6) and the selection rule (5.9), we also deduce that no atom can be excited

on the beam axis if the TAM of a Laguerre-Gaussian beam has a projection m+ λ

which is larger than the multipolarity L of the underlying atomic transition. If the

impact parameter is b = 0 and the helicity is λ = +1, for example, the electric-

quadrupole (E2) transition 2S1/2 → 2D5/2 with L = 2 is allowed for OAM m = 1,

but is forbidden for m = 2.

Next, let us examine the behaviour of the relative cross sections (5.8) at small impact

parameters kb ≪ 1, i.e. when the atoms are only slightly displaced from the beam

axis. By using the asymptotic form of the Bessel function JMi+m+λ−Mf
(k⊥b) in the

transition amplitude (5.6), we can approximate the relative partial cross sections

(5.8) by

σMf

σtot
≈

⎧⎨⎩ 1− cf · (kb)2, ifMf =Mi +m+ λ,

c̃f · (kb)2|Mi+m+λ−Mf |, ifMf ̸=Mi +m+ λ,
(5.10)

where the coefficients cf and c̃f are independent of b, but depend on the radial index

p and on the OAM m. Moreover, this m dependence is more pronounced, and the

coefficients cf and c̃f are very small for m = 0. Equation (5.10) shows that the

population of the Mf = Mi + m + λ sublevel may decrease quickly as the impact

parameter b increases, while the population of all other Mf sublevels increases.

In the bottom line of Fig. 5.3 we display the relative partial cross sections σMf
/σtot

as a function of the impact parameter b. The calculations were performed using
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Figure 5.3: Top: Intensity profile |u(r⊥)|2 of a Laguerre-Gaussian beam for different
radial indices p = 0 (left) and p = 1 (right), while the helicity λ = +1
and the OAM m = 1 are both kept constant. Results are shown in
arbitrary units for the beam waist w0 = 2.7µm and the photon energy
~ω = 1.699 eV at the beam focus (z = 0). Bottom: Relative partial
cross sections for the 4s 2S1/2 Mi = −1/2 → 3d 2D5/2 excitation of
a Ca+ ion by beams from above as a function of the atomic impact
parameter b. The relative cross sections are compared for sublevels with
Mf = ±1/2, +3/2, while those with Mf = ±5/2, −3/2 are very small
and are not shown here.

the exact transition amplitudes (5.6) for two Laguerre-Gaussian beams of the same

helicity λ = +1 and OAM m = 1, but with different radial indices p = 0 (left

column) and p = 1 (right column). The intensity profiles of these beams exhibit

a dark spot in the center surrounded by one concentric bright ring for p = 0 and

by two bright rings for p = 1 [cf. the upper line of Fig. 5.3]. In accordance with

the selection rule (5.9), only the magnetic sublevel Mf = 3/2 is excited when the

atoms are placed in the center of the dark spot (b = 0). If the impact parameter b

increases, the partial cross section for Mf = 3/2 decreases rapidly and the sublevel

population approaches Mf = 1/2. In fact, the sublevel population varies near the

beam axis in the same manner for both beams with radial indices p = 0, 1, and

which can be understood from Eq. (5.10) at small b: while the relative population
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Figure 5.4: Same as Fig. 5.3, but for the Laguerre-Gaussian beams with different
OAM m = 0 and m = 1, while the helicity λ = +1 and the radial index
p = 0 are kept fixed.

of Mf = 3/2 decreases like 1 − cf · (kb)2 with increasing b, the population of the

sublevel Mf = 1/2 increases like c̃f · (kb)2. For a sufficiently large impact parameter

b = 2.7µm and for the radial index p = 1, however, the atoms are located in the

dark ring of the beam and the sublevel population differs significantly from that for

p = 0: the Mf = −1/2 and Mf = 3/2 magnetic sublevels are excited when p = 1,

in contrast to the Mf = 1/2 when p = 0.

Let us further analyze how the partial cross sections σMf
/σtot depend on the pro-

jection of the OAM m of the Laguerre-Gaussian beam. We consider two beams

with different OAM m = 0 and m = 1, but with the same radial index p = 0 and

helicity λ = +1. The intensity profile of the beam with quantum numbers p = 0 and

m = 0 corresponds to a Gaussian beam and just comprises a central bright spot. In

contrast, the intensity profile of the beam with p = 0 and m = 1 exhibits a central

dark spot [cf. the upper line of Fig. 5.4]. The partial excitation cross sections for

these two beams are shown in the lower line of Fig. 5.4. For the Gaussian beam

(p = 0 and m = 0), only the Mf = 1/2 sublevel is populated when the atoms

are located on the beam axis (b = 0). Moreover, this sublevel population remains

almost unchanged if the impact parameter b increases. Note that such an excitation

52



0 2 4 6 80

1

2

3

4

0 2 4 6 80

1

2

3

4

0 2 4 6 80 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 2 4 6 80 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

λ = −1,  m  =  1 ,  p  =  2λ = +1,  m  =  1 ,  p  =  2
 

Int
en

sity
 pr

ofi
le

r ⊥  ( µm )

 

r ⊥  ( µm )

 M f  =  - 1 / 2
 M f  =  1 / 2
 M f  =  3 / 2

Re
lat

ive
 pa

rtia
l cr

os
s s

ec
tio

n σ
Mf

 / σ
tot

b  ( µm )

 M f  =  - 5 / 2
 M f  =  - 3 / 2

b  ( µm )

Figure 5.5: Same as Fig. 5.3, but for the Laguerre-Gaussian beams with different
helicities λ = ±1, when the OAM m = 1 and the radial index p =
2 are kept constant. In the case of helicity λ = +1 (λ = −1), the
relative cross sections are compared for sublevels withMf = ±1/2, +3/2
(Mf = −5/2, −3/2, −1/2), while those with Mf = ±5/2, −3/2 (Mf =
+1/2, +3/2, +5/2) are very small and are not shown here.

of only the Mf = Mi + λ = 1/2 sublevel is expected also if one assumes the ab-

sorption of plane-wave radiation that propagates with identical polarization along

the z axis. Thus, the photoexcitation by a Gaussian beam is very similar to the

photoexcitation by a plane wave. The pronounced difference from the plane-wave

result Mf = 1/2 is found for OAM m = 1 in the dark spot (b < 0.5µm), where

the Mf = 3/2 sublevel is mainly populated. If the impact parameter b increases,

however, the sublevel population approaches the plane-wave limit Mf = 1/2. This

indicates that the OAM m of the beam is much less transferred to atoms that are

far from the beam axis, as has been noticed in the photoionization study (Wätzel

and Berakdar 2016).

In order to further explore the influence of polarization on the excitation by a

Laguerre-Gaussian beam, we consider two left-hand (λ = −1) and right-hand (λ =

+1) circularly polarized beams with p = 2 and m = 1. Fig. 5.5 shows that although

the intensity profiles of these two beams are identical, the population of excited
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Figure 5.6: Density matrix ⟨αfJfMf |ρ̂f |αfJfM
′
f⟩ of the excited 3d 2D5/2 state of a

Ca+ ion following the 4s 2S1/2 Mi = −1/2 → 3d 2D5/2 excitation by
a Laguerre-Gaussian beam. Here, the absolute values of density matrix
elements are displayed for three different impact parameters b. Calcula-
tions were performed for a beam with helicity λ = +1, radial index p = 0,
OAM m = 1, beam waist w0 = 2.7µm, and photon energy ~ω = 1.699
eV.

atomic states is significantly different in the case of different helicities. For the

atoms near the beam axis, in particular, the Mf = −1/2 sublevel is mainly excited

for the helicity λ = −1, while this applies to sublevel Mf = 3/2 if λ = +1. Again,

this can be understood from the selection rule (5.9) for b = 0 and the formula (5.10)

for small b.

5.2.2 Density matrix of excited 3d 2D5/2 state

So far, we have considered the relative partial excitation cross sections (5.8) as

obtained from the diagonal elements of the density matrix. In contrast, little was

said about the non-diagonal matrix elements. Fig. 5.6 displays the absolute values

of all elements ⟨αfJfMf |ρ̂f |αfJfM
′
f⟩ of the density matrix of the excited 3d 2D5/2

state. Here, the density matrix (5.7) is shown for three different impact parameters

b = 0µm, 0.2µm, and 1µm and was calculated for a Laguerre-Gaussian beam with

λ = +1, p = 0, and m = 1. As seen from Fig. 5.6, the atoms on the beam axis

(b = 0) are found in an incoherent superposition of the magneticMf sublevels, since

all non-diagonal elements of the density matrix are identically zero. On the other

hand, there is coherence between the magnetic sublevels for those atoms that are

displaced from the beam axis (b = 0.2µm and b = 1µm) because the non-diagonal

elements of the density matrix do not vanish in this case.
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6 Rayleigh scattering of Bessel beam by

hydrogenlike ions

We have so far discussed primarily the resonant processes in which the frequency of

the incident twisted photon is very close to the frequency of an atomic transition

between two discrete states. However, not much is known about the nonresonant

processes, for example, about the elastic scattering of twisted photons at the bound

electrons of atoms or ions, commonly called as Rayleigh scattering, when the photon

energy is not close to possible excitations of any intermediate states (Smend et al

1987). In this chapter we shall consider the behavior of the polarization of outgoing

photons for the nonresonant Rayleigh scattering of a Bessel beam by hydrogenlike

ions in their ground state, and especially by C5+ ions. We begin by deriving the

polarization Stokes parameters of scattered photons within the framework of second-

order perturbation theory and the density matrix approach. Then three different

“experimental” scenarios are considered for the scattering at a single atom, a meso-

scopic, or a macroscopic atomic target, and which are all assumed to be centered on

the beam axis. Finally, results of our calculations for the Bessel beams with different

polarizations, opening angles, and projections of the total angular momentum are

compared with those for incident plane-wave radiation and demonstrate that the

scattering of twisted light may lead to well detectable changes in the polarization of

scattered photons.

6.1 Theory of Rayleigh scattering of Bessel beams

6.1.1 Evaluation of the transition amplitude

To discuss the Rayleigh scattering of twisted Bessel beams by hydrogenlike ions, we

begin from the Furry picture of QED in which the electron-nucleus interaction is

included into the unperturbed Hamiltonian, while the interaction with the radiation

field is treated as a perturbation (Kane et al 1986). In this picture, the properties

of the scattered photons can all be obtained from the second-order transition am-

plitude, based on Dirac’s relativistic equation. In this framework, the amplitude is
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Figure 6.1: (a) Schemes of transitions in Rayleigh scattering of photons by C5+ ions.
(b) Diagrams of lowest-order contributions to the Rayleigh scattering
amplitude (6.1): the “absorption-first” contribution and the “emission-
first” contribution.

given by (Surzhykov et al 2013, Akhiezer and Berestetskii 1965)

Mλ2λ1
mfmi

(b)

=
∑

nνjνmν

⟨nfjfmf |α ·Apl∗(r)|nνjνmν⟩⟨nνjνmν |α ·AB(r + b)|nijimi⟩
Ei − Eν + ω

+
∑

nνjνmν

⟨nfjfmf |α ·AB(r + b)|nνjνmν⟩⟨nνjνmν |α ·Apl∗(r)|nijimi⟩
Ei − Eν − ω

, (6.1)

where |nijimi⟩ and |nfjfmf⟩ denote the states of the hydrogenlike ion before and

after the scattering, and where ji,f and mi,f refer to the total angular momenta and

their projections, and ni,f stand for principal quantum numbers. We here restrict

ourselves to the elastic scattering of the photons with the energy ω on the ground

state of atoms. This implies that the total energy of the bound electron for the initial

and final states of the atom with ni = nf and ji = jf obeys the energy conservation

law Ei = Ef , while the photon energy ω is not close to possible excitations of any

intermediate states |nνjνmν⟩ over which the summation in the matrix element (6.1)

is carried out, i.e., ω ̸= Eν − Ei [cf. Fig. 6.1 (a)]. The two terms in Eq. (6.1) are

represented diagrammatically in Fig. 6.1 (b), and AB is the vector potential of the

Bessel beam given by Eq. (2.13) with the atomic impact parameter b.

We assumed that the scattered photons are plane waves Apl(r) = ek2λ2 e
ik2r with

k2 = k1 = ω/c measured by a plane-wave detector placed at asymptotic distance

under the direction k2. To further analyze the transition amplitude (6.1), we can use

the decomposition (5.3) of the plane-wave components of the incident and outgoing

radiation in terms of the electric and magnetic multipole fields. If we substitute this
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multipole expansion into Eq. (6.1) and make use of the vector potential (2.13) of

Bessel beams, we can rewrite the transition amplitude as

Mλ2λ1
mfmi

(b) =
∑
M1

∫
aκmγ (k⊥1) e

−iM1φk1
+ik⊥1

b T λ2λ1
mfmi

(M1)
d2k⊥1

(2π)2
(6.2)

with the function T λ2λ1
mfmi

(M1) of the form

T λ2λ1
mfmi

(M1) =
∑
L1p1

∑
L2M2p2

2πiL1−L2
√
(2L1 + 1)(2L2 + 1)

× (iλ1)
p1(−iλ2)p2 eiM2φk2 dL1

M1λ1
(θk1)d

L2
M2λ2

(θk2)

×
∑
jν

(
⟨jimi, L1M1|jνmν⟩⟨jνmν , L2M2|jfmf⟩√

(2jν + 1)(2jf + 1)
Sjν
L2p2,L1p1

(ω)

+
⟨jimi, L2M2|jνmν⟩⟨jνmν , L1M1|jfmf⟩√

(2jν + 1)(2jf + 1)
Sjν
L1p1,L2p2

(−ω)

)
, (6.3)

where we have used the Wigner small d function and the Wigner-Eckart theorem

(Varshalovich et al 1988). The reduced second-order matrix element is given by

Sjν
L1p1,L2p2

(±ω) =
∑
nν

⟨nfjf∥α · ap1
L1
∥nνjν⟩⟨nνjν∥α · ap2

L2
∥niji⟩

Ei − Eν ± ω
. (6.4)

Here the indices 1 and 2 refer to the incoming and outgoing photons, respectively.

To further simplify the matrix element (6.2), we perform the integration over k⊥1

and φk1 with the help of Eq. (2.14) and by making use of the integral representation

of the Bessel function (2.15). With this substitution, the transition amplitude for

the scattering on a single hydrogenlike ion can be written as

Mλ2λ1
mfmi

(b) =

√
κ
2π

∑
M1

(−i)M1 ei(mγ−M1)φb Jmγ−M1(κb)T λ2λ1
mfmi

(M1) . (6.5)

As seen from this formula, the amplitude for the scattering of a Bessel beam depends

not only on its helicity λ1, the opening angle θk1 and the projection mγ of the TAM,

but also on the impact parameter b of the atom with respect to the beam axis. Below,

we shall apply this transition amplitude to calculate the polarization of scattered

light.
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6.1.2 Scattering on a single atom

To characterize the polarization of scattered photons, we need to introduce the

photon density matrix. For the scattering of twisted light on a single initially unpo-

larized atom with the impact parameter b, the density matrix of scattered photons

can be expressed in terms of the transition amplitudes as (Balashov et al 2000)

⟨k2λ2|ρ̂γ2|k2λ
′
2⟩ =

1

2ji + 1

∑
λ1λ′

1

∑
mimf

Mλ2λ1
mfmi

(b)Mλ′
2λ

′
1 ∗

mfmi
(b) ⟨k1λ1|ρ̂γ1|k1λ

′
1⟩ .

(6.6)

Here we assume that the magnetic sublevel population of the final state |nfjf⟩
of the atom remains unobserved. The density matrix of an incident photon is

⟨k1λ1|ρ̂γ1|k1λ
′
1⟩ = δλ1λ′

1
for a completely polarized radiation with the helicity λ1. In

typical experiments, however, the incident light is often unpolarized, i.e. the beam

consists out of a mixture of photons in states of opposite helicity λ1 = ±1 with equal

intensities whose density matrix is ⟨k1λ1|ρ̂γ1|k1λ
′
1⟩ = 1/2 δλ1λ′

1
δλ1+1+1/2 δλ1λ′

1
δλ1−1.

Using the explicit expression of the amplitude (6.5), we can rewrite the density

matrix of scattered photons in the form

⟨k2λ2|ρ̂γ2|k2λ
′
2⟩ =

1

2ji + 1

κ
2π

∑
λ1λ′

1

∑
mimf

∑
M1M ′

1

iM
′
1−M1 ei(M

′
1−M1)φb

× T λ2λ1
mfmi

(M1)T
λ′
2λ

′
1 ∗

mfmi
(M ′

1) Jmγ−M1(κb) Jmγ−M ′
1
(κb) ⟨k1λ1|ρ̂γ1|k1λ

′
1⟩ . (6.7)

Let us analyze the special case of atoms placed right on the beam axis (b = 0). In

this scenario, the Bessel function from Eq. (6.7) is just Jmγ−M1(0) = δmγM1 , so that

the photon density matrix reads

⟨k2λ2|ρ̂γ2|k2λ
′
2⟩ =

1

2ji + 1

κ
2π

∑
λ1λ′

1

∑
mimf

T λ2λ1
mfmi

(M1 = m)

× T λ′
2λ

′
1 ∗

mfmi
(M ′

1 = m) ⟨k1λ1|ρ̂γ1|k1λ
′
1⟩ . (6.8)

This expression again indicates that the atom on the beam axis can just absorb a

photon with the projection of the angular momentum mγ. In practice, however, it is

often difficult to position the atom just on the beam axis (b = 0). Therefore, in the

next section we will consider the scattering of twisted light by a mesoscopic atomic

target in which atoms are localized with nanometer precision.
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Figure 6.2: Different types of atomic targets: (a) a single atom, (b) mesoscopic
target (atoms in a trap), (c) macroscopic target (foil).

6.1.3 Scattering on mesoscopic atomic target

The experiments on the interaction of twisted light beams with the atoms or ions,

which are localized in a small volume of several tens of nanometers by means of

a microstructured Paul trap, are feasible today (Schmiegelow et al 2016). For the

Rayleigh scattering by such a mesoscopic atomic target centered on the beam axis,

the density matrix of scattered photons is given by

⟨k2λ2|ρ̂γ2 |k2λ
′
2⟩ =

1

2ji + 1

∑
λ1λ′

1

∑
mimf

⟨k1λ1|ρ̂γ1|k1λ
′
1⟩

×
∫
f(b)Mλ2λ1

mfmi
(b)Mλ′

2λ
′
1 ∗

mfmi
(b) d2b , (6.9)

where the atomic density of this target in the transverse plane [cf. Fig. 6.3] is assumed

to follow the Gaussian distribution (4.10) with bt = 0. After making use of the

transition amplitude (6.5) and integrating over the azimuthal angle φb, the photon

density matrix for the mesoscopic atomic target becomes

⟨k2λ2|ρ̂γ2 |k2λ
′
2⟩ =

1

2ji + 1

κ
2πw2

∑
λ1λ′

1

∑
mimfM1

⟨k1λ1|ρ̂γ1|k1λ
′
1⟩T λ2λ1

mfmi
(M1)

× T λ′
2λ

′
1 ∗

mfmi
(M1)

∫ ∞

0

J2
mγ−M1

(κb) e−
b2

2w2 bdb . (6.10)

Both the density matrices (6.8) and (6.10) show that the polarization of outgoing

photons depends on the TAM projectionmγ of an incident Bessel beam in the elastic

scattering by a single atom or by a mesoscopic atomic target. However, there is no

mγ dependence for a rather large macroscopic atomic target, as we shall see below.
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6.1.4 Scattering on macroscopic atomic target

We next analyze the scattering of Bessel beam by a macroscopic (infinitely extended)

target in which atoms are distributed uniformly over the entire plane normal to the

beam propagation (z) direction. In the case of such a large target, the photon

density matrix is defined by (Surzhykov et al 2015)

⟨k2λ2|ρ̂γ2|k2λ
′
2⟩

=
1

2ji + 1

∑
λ1λ′

1

∑
mimf

⟨k1λ1|ρ̂γ1|k1λ
′
1⟩
∫

Mλ2λ1
mfmi

(b)Mλ′
2λ

′
1 ∗

mfmi
(b) d2b

=
1

2ji + 1

∑
λ1λ′

1

∑
mimf

∑
M1M ′

1

⟨k1λ1|ρ̂γ1|k1λ
′
1⟩
∫
aκmγ (k⊥1) a

∗
κmγ

(k′
⊥1
)

× e
−iM1φk1

+iM ′
1φk′1

+i(k⊥1
−k′

⊥1
)b
T λ2λ1
mfmi

(M1)T
λ′
2λ

′
1 ∗

mfmi
(M ′

1)
d2k⊥1d

2k′
⊥1
d2b

(2π)4
, (6.11)

where we have used the transition amplitude (6.2). Here the integration over the

impact parameter b yields immediately the δ function δ(k⊥1 − k′
⊥1
). Moreover, if

we perform the integration over the wave vector k′
⊥1

and over the azimuthal angle

φk1 , we simply obtain M1 =M ′
1. We can further simplify the photon density matrix

(6.11) by integrating over k⊥1 , so that

⟨k2λ2|ρ̂γ2|k2λ
′
2⟩ =

1

2ji + 1

∑
λ1λ′

1

∑
mimfM1

T λ2λ1
mfmi

(M1)T
λ′
2λ

′
1 ∗

mfmi
(M1) ⟨k1λ1|ρ̂γ1|k1λ

′
1⟩ .

(6.12)

This formula shows that in the scattering on a macroscopic target the density matrix

of outgoing photons and, hence, also their polarization are independent of the TAM

projection mγ of incoming twisted light, but still depend on its helicity λ1 and

opening angle θk1 .

6.1.5 Polarization parameters of the scattered photons

With the photon density matrices obtained above, we can now analyze the polar-

ization of the Rayleigh scattered light. As before, the polarization properties of

photons are characterized by the Stokes parameters. In particular, the parameter

P1 = (Iχ=0◦ − Iχ=90◦)/(Iχ=0◦ + Iχ=90◦) characterizes the degree of linear polarization

and is determined by the intensities Iχ of scattered light linearly polarized at an

angle χ = 0◦ or χ = 90◦. Here the angle χ is defined with respect to the plane
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Figure 6.3: Geometry of the Rayleigh scattering of twisted light by a mesoscopic
atomic target of size w. While the quantization (z) axis is taken along
the propagation direction of the incident beam, the center of atomic
target is placed on the beam axis. The emission direction of the outgoing
photons is characterized by the angle θk2 , and their polarization vector
ek2 is described by the angle χ.

spanned by the directions of incident and outgoing photons [cf. Fig. 6.3]. Another

parameter P2, given by a similar ratio but for χ = 45◦ and χ = 135◦, is close to

zero and therefore is not of interest. On the other hand, the nonzero parameter

P3 = (Iλ2=+1 − Iλ2=−1)/(Iλ2=+1 + Iλ2=−1) characterizes the degree of circular po-

larization and is determined by the intensities Iλ2 of outgoing circularly polarized

photons with the helicity λ2 = ±1. Both these Stokes parameters can be expressed

in terms of the density matrix of photons as (Balashov et al 2000)

P1(θk2) = −⟨k2λ2 = +1|ρ̂γ2|k2λ
′
2 = −1⟩+ ⟨k2λ2 = −1|ρ̂γ2|k2λ

′
2 = +1⟩

⟨k2λ2 = +1|ρ̂γ2|k2λ′2 = +1⟩+ ⟨k2λ2 = −1|ρ̂γ2|k2λ′2 = −1⟩
,

P3(θk2) =
⟨k2λ2 = +1|ρ̂γ2|k2λ

′
2 = +1⟩ − ⟨k2λ2 = −1|ρ̂γ2|k2λ

′
2 = −1⟩

⟨k2λ2 = +1|ρ̂γ2|k2λ′2 = +1⟩+ ⟨k2λ2 = −1|ρ̂γ2|k2λ′2 = −1⟩
. (6.13)

As seen from these expressions, the Stokes parameters depend on the direction θk2

of scattered light. Therefore, in the next section we will use Eq. (6.13) to investigate

the polarization of outgoing photons for different scattering angles θk2 .

6.1.6 Computations

Before we present our results for the Stokes parameters, let us briefly discuss some

computational details. The evaluation of the polarization of scattered photons re-
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quires the knowledge of the reduced second-order transition amplitude (6.4), which

involves the summation over the complete basis of the intermediate states |nνjν⟩.
In order to perform this summation, we use two independent approaches: the finite

basis-set method and the Dirac-Coulomb Green’s function [see Volotka et al (2016)

for further details]. These two numerical methods provide identical results, which

demonstrates the high accuracy of our calculations.

6.2 Numerical results for C5+ ions

We found above the Stokes parameters P1 and P3 describing the polarization of scat-

tered photons in the Rayleigh scattering of twisted Bessel beams by hydrogenlike

ions. Such polarization parameters can be observed in present experiments (Blu-

menhagen et al 2016) and are expressed in terms of the photon density matrix, as

seen from Eq. (6.13). We further analyze how these Stokes parameters of scattered

photons depend on their emission angle θk2 for incident Bessel beams with different

projections mγ of the TAM, helicities λ1, and opening angles θk1 . In addition, we

compare these parameters P1 and P3 for twisted light with those obtained for a

plane-wave radiation of the same helicity incident along the z axis. Calculations

were performed for the photon energy ~ω = 100 eV and for three different targets of

C5+ ions: a single atom (6.8), a mesoscopic target (6.10), and a macroscopic target

(6.12) which are centered on the beam axis.

6.2.1 Polarization for a single atom and mesoscopic target

We start with the first Stokes parameter P1 that characterizes the degree of linear

polarization of outgoing photons. Fig. 6.4 illustrates the parameter P1 as a function

of the emission angle θk2 for the Rayleigh scattering on a single atom (top row)

as well as on the mesoscopic targets of size w = 10 nm (middle row) and w = 20

nm (bottom row). As seen from this figure, the outgoing photons are completely

P1 = −1 linearly polarized in the χ = 90◦ direction at the scattering angle θk2 = 90◦

for incoming plane waves (black solid lines). This is also true if a Bessel beam collides

with a single atom that is located on the beam axis. However, the scattering of such

a Bessel beam by mesoscopic target with width w = 10 nm, for example, leads to a

significant decrease of the polarization at the angle θk2 = 90◦, namely P1 = −0.58

when mγ = +1 (red dashed line) or P1 = −0.47 when mγ = −1 (blue dash-dotted
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Figure 6.4: Stokes parameters P1 of Rayleigh scattered light on hydrogenlike C5+

ions in their ground state as a function of the emission angle θk2 . Results
for incident plane waves (black solid lines) are compared with those for
Bessel beams with TAM mγ = +1 (red dashed lines) and mγ = −1 (blue
dash-dotted lines), respectively. Relativistic calculations were performed
for a single atom (top row) and for mesoscopic atomic targets of size
w = 10 nm (middle row) and w = 20 nm (bottom row), which are
centered on the beam axis. Results are shown for different helicities λ1
of the incident light: λ1 = +1 (left column), λ1 = −1 (central column),
and for the unpolarized light (right column). Both the opening angle
θk1 = 30◦ of Bessel beams and the photon energy ~ω = 100 eV are kept
fixed.

line) for positive helicity λ1 = +1, and vice versa for negative helicity λ1 = −1.

Thus the Stokes parameter P1 of scattered photons depends on the TAM projection

mγ of twisted light of a well-defined helicity λ1 in the scattering by a mesoscopic

target. On the other hand, P1 is independent of TAM mγ if an incoming Bessel

beam is unpolarized [cf. Fig. 6.4].

Apart from the linear polarization of elastically scattered light, we can analyze

its degree of circular polarization. To do so, the third Stokes parameter P3 as a

function of the scattering angle θk2 is presented in Fig. 6.5. One sees that when the
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Figure 6.5: Same as Fig. 6.4, but for the Stokes parameters P3 of elastically scattered
photons.

incident radiation is a plane wave of helicity λ1, the photons scattered in the forward

(θk2 = 0◦) direction are completely circularly polarized, namely P3 = +1 if λ1 = +1

or P3 = −1 if λ1 = −1. Moreover, the Stokes parameter P3 of outgoing photons

for the scattering of a twisted beam by a single atom on the beam axis coincides

with the plane-wave results at all emission angles θk2 if the TAM projection of the

beam is mγ = λ1, as shown in Fig. 6.5. However, P3 corresponding to twisted light

shows the opposite behaviour to P3 for the plane waves if the TAM projection is

mγ = −λ1. Such a difference in the polarization (or helicity) of outgoing photons is

caused by the conservation of the angular momentum projection: the helicity λ2 of a

photon emitted in the forward (θk2 = 0◦) direction should be equal to the projection

M1 of the angular momentum of a photon absorbed by the atom on the beam axis,

which is M1 = mγ for a Bessel beam (6.8), in contrast to M1 = λ1 for a plane wave.

Let us consider how the mesoscopic atomic target may affect the third Stokes pa-

rameter of scattered light. Eq. (6.10) implies that all possible projections M1 of the

angular momentum of incoming photons are able to contribute to the scattering of
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twisted light by mesoscopic target, in contrast to M1 = mγ for the scattering by a

single atom. As a result, in the case of a mesoscopic target the parameter P3 of out-

going photons for an incident Bessel beam is slightly different from that for a plane

wave in the angular range 30◦ . θk2 . 70◦ and 110◦ . θk2 . 150◦, as can be seen

from the middle and bottom rows of Fig. 6.5. In addition, the Stokes parameters

P1 and P3 are quite different for the two TAM projections mγ = ±1 of the beam

when the mesoscopic target is rather small (w = 10 nm). However, Figs. 6.4 and

6.5 also show that this difference between the Stokes parameters for various TAM

mγ decreases with increasing size of the target (w = 20 nm).

Strong effects of “twistedness” in the polarization of scattered light can be observed

also for an incoming unpolarized Bessel beam containing photons of both helicities

λ1 = ±1 but with a fixed TAM projection mγ. In particular, Fig. 6.5 demonstrates

that the Stokes parameter P3 of outgoing photons is not always zero in the scattering

of such a beam, in contrast to P3 for incident unpolarized plane waves. For example,

when the unpolarized twisted light with TAM projection mγ = +1 collides with a

single atom, the third Stokes parameter (red dashed line) behaves similarly to that

obtained for the incident beam with a well-defined helicity λ1 = +1. This is because

in the scattering of twisted light by a single atom P3 does not depend on the helicity

λ1, but is only sensitive to the TAM mγ. With increasing target size w, however,

the parameter P3 for the case of unpolarized Bessel beam decreases and tends to

zero as expected for incoming unpolarized plane waves [cf. Fig. 6.5].

6.2.2 Polarization for macroscopic target

Finally, we consider the scattering of twisted light by a macroscopic target as it

occurs, for instance, for the scattering at a foil of neutral atoms or at a jet of ions

(Blumenhagen et al 2016). For such an extended target, the polarization of outgoing

photons is independent of the TAM projectionmγ of the twisted light, and as pointed

out already in Sec. 6.1.4. In Fig. 6.6 we compare the two Stokes parameters P1 and

P3 of the scattered light for different opening angles θk1 of Bessel beams with those

for plane waves incident along the z axis. Similar as before, results were obtained

as a function of the scattering angle θk2 for different helicities of the radiation. Here

one can see that the parameters P1 and P3 for the scattering of a Bessel beam with

a very small opening angle (θk1 = 1◦) are almost identical to those as obtained for

incident plane waves. However, the Stokes parameter P1 behaves very differently for

large opening angles (θk1 = 60◦) and may become even positive at the emission angle
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Figure 6.6: Stokes parameters P1 (top row) and P3 (bottom row) of elastically scat-
tered photons on hydrogenlike C5+ ions in their ground state for a macro-
scopic target. Plane-wave results (black solid lines) are compared with
those for Bessel beams with opening angles θk1 = 1◦ (red dashed lines),
θk1 = 30◦ (blue dash-dotted lines), and θk1 = 60◦ (magenta dash-dot-
dotted lines). Calculations were performed for different helicities λ1 of
the incident light: λ1 = +1 (left column), λ1 = −1 (central column),
and for the unpolarized light (right column), when the photon energy
~ω = 100 eV is fixed.

θk2 = 90◦. Moreover, for large angles θk1 , the circular polarization of the scattered

photons is decreased in forward direction, for example P3 = ±0.8 if the helicity of a

Bessel beam is λ1 = ±1. These modifications of the polarization of scattered light

follow from Eq. (6.12) and imply that the scattering of a Bessel beam by macroscopic

target can be considered as a scattering of plane waves propagating at the opening

angle θk1 with respect to the quantization z axis.
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7 Summary

In the present thesis, a number of processes involving the interaction of twisted

photons with atomic systems have been investigated theoretically. We started in

Chapter 2 with a brief review of the twisted beams of light. The vector potentials

for Bessel and Laguerre-Gaussian beams have then been introduced. It was shown

that both these twisted photon beams may have a well-defined projection of the

OAM upon their propagation direction, leading to the helical wavefront and to

transverse intensity profile with a ring-like pattern, in contrast to plane waves with

a plane wavefront and homogeneous intensity profile. We have also derived the vector

potentials for the Bessel and Laguerre-Gaussian beams in the form of a superposition

of plane waves given in the Coulomb gauge, which is convenient when performing

atomic calculations.

Chapter 3 deals with the the photoionization of H+
2 molecular ions by twisted Bessel

beam. The nonrelativistic theory along with first-order Born approximation were

applied to derive and analyze the angle-differential photoionization cross sections. In

this analysis, a macroscopic target of randomly distributed but aligned H+
2 molecular

ions was assumed throughout the derivations. For such a target, it was shown that

the differential cross section is sensitive to the opening angle of the incident Bessel

beam, while it remains independent of the TAM projection. Detailed calculations

have been carried out for different alignment of the molecular ions and for different

photon energies of the incident Bessel light to see how these properties affect the

oscillations in the cross sections as known for incident plane-wave radiation. The

main modifications in the angular distribution of the photoelectrons hereby arise

due to the ringlike pattern of Bessel beams and their intensity variation relative to

the size of the H+
2 molecular ions. Hence, the photoionization of diatomic molecules

by twisted radiation opens up different possibilities for the investigation of atomic

double-slit phenomena. The use of twisted photons will allow one to perform a

molecular analog of Young’s experiment with two slits of unequal widths.

Then in Chapter 4 we performed an analysis of the excitation of the mesoscopic

hydrogen-atom target (atoms in a trap) by Bessel beams within the framework

of the density-matrix theory. Special attention was paid to the magnetic sublevel

population of excited atomic states described by means of the alignment parameters.

We found that these alignment parameters can be very sensitive not only with
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regard to the opening angle of the Bessel beams, but also to their TAM projection

for sufficiently small atomic targets. Our calculations performed for the 1s → 2p

transition in hydrogen indicate that the “twistedness” of incoming radiation can

lead to a measurable change in the linear polarization of the subsequent fluorescence

emission. Experimental observations of the fluorescence photons are well established

today and can provide valuable information about the interaction of twisted light

with atomic ensembles.

In Chapter 5 we looked at the excitation of atoms by a Laguerre-Gaussian light

beam. A great deal of attention has been paid to the relative partial cross sections

for the excitation to a particular magnetic sublevel, when the atoms are displaced

from the beam axis by some impact parameter. The calculations were performed

especially for the 4s 2S1/2 → 3d 2D5/2 transition in Ca+ ions. It was shown that the

sublevel population of excited atoms is sensitive to the polarization of the incident

twisted beam. Moreover, we find that the projection of the beam’s OAM modifies

the sublevel population if the atoms are located in the dark spot within the central

region of the beam. In contrast, the radial index of the Laguerre-Gaussian beam

affects the population of excited atomic states when the atoms are far from the

beam axis and are placed in the dark ring of the beam. In addition, the atoms on

the beam axis are found in an incoherent superposition of magnetic sublevels, while

there is coherence between magnetic sublevels for the atoms moved from the beam’s

center. We emphasize that our theory confirms the results of the experiment by

Schmiegelow et al (2016), which was performed with atoms on the beam axis, and

predicts also the results of experiments with arbitrary atomic impact parameter.

Finally, in Chapter 6 we explored the Rayleigh scattering of twisted Bessel beam

by hydrogenlike ions within the framework of Dirac’s relativistic equation. In this

analysis, we focused on the polarization of photons scattered by a single atom, by

a mesoscopic target of trapped atoms, or by a macroscopic target like a foil or jet

of atoms. The polarization Stokes parameters of outgoing photons were calculated

especially for hydrogenlike carbon. We have shown that the linear and circular po-

larization of scattered light depends generally on the polarization and the opening

angle of Bessel beams, leading to Stokes parameters that differ quite significantly

from the scattering of incident plane-wave photons. Moreover, the polarization of

the scattered photons is very sensitive to the TAM projection of twisted light for

mesoscopic atomic targets of a few tens of nm in size, while it remains unaffected

by the TAM in the case of a larger macroscopic target. Although our study was
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restricted to the scattering by hydrogenlike ions in their ground 1s state, similar

polarization properties can also be observed in the scattering of twisted light by

electrons in other s shells. For example, we expect the same scattering polariza-

tion pattern for Ca+ ions. Thus the Rayleigh scattering may serve as an accurate

technique for measuring the properties of twisted beams in a wide range of photon

energies, and in particular at rather high energies.
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Stöhlker T 2016 New J. Phys. 18 103034

Bransden B H and Joachain C J 2003 Physics of Atoms and Molecules (Harlow:

Prentice Hall)

Cerjan A and Cerjan C 2011 J. Opt. Soc. Am. A 28 2253

Choporova Yu Yu, Knyazev B A, Kulipanov G N, Pavelyev V S, Scheglov M A,

Vinokurov N A, Volodkin B O and Zhabin V N 2017 Phys. Rev. A 96 023846

Cohen H D and Fano U 1966 Phys. Rev. 150 30

Cubaynes D, Bizau J M, Wuilleumier F J, Carré B and Gounand F 1989 Phys. Rev.
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Rudolph J K, Bernitt S, Epp SW, Steinbrügge R, Beilmann C, Brown G V, Eberle S,

Graf A, Harman Z, Hell N, Leutenegger M, Müller A, Schlage K, Wille H-C, Yavaş H,
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übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend

aufgeführten Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

Prof. Dr. Stephan Fritzsche, Prof. Dr. Andrey Surzhykov, Dr. Andrey V. Volotka,

Dr. Daniel Seipt und Prof. Dr. Valery G. Serbo.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden

Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von

Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder andere Personen)

in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geld-

werte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der

vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
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