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1. Introduction

Over the last decades, constantly improved laser output parameters have repeatedly enabled
new applications [1,2]. This applies to continuous-wave (cw) systems [3] as well as for
pulsed laser sources down to pulse-durations in the sub-femtosecond range [4]. Today, such
ultrafast laser systems are widely considered as unique tools for industry and science. The key
parameter to access new applications often is the pulse-peak power. Impressive progress was
made over the last decades and one current benchmark laser system is 'BELLA’, producing
30-fs pulses with 40 J of pulse energy, i.e. 1 PW peak power, at a repetition rate of up to
10Hz [5]. However, almost every application is somehow restricted by the low repetition
rates and companies as well as researchers in various fields request such high peak powers
at repetition rates in the kHz to MHz-range. Out of these emerging applications, probably
the most challenging is laser-wakefield particle acceleration (LWFA). Here, an extremely
intense femtosecond laser pulse generates a plasma wave which accelerates particles, such
as electrons, in its wake-field [6,7]. There is a growing interest in LWFA schemes due the
fact that classical radiofrequency-driven (RF) machines are about to reach their intrinsic
limitations, given by their acceleration gradient and, thus, their size and cost [8]. However,
even near-future laser-based accelerator applications will require parameters that are well
beyond the state-of-the-art, particularly in terms of repetition rate. To generate electrons or
positrons at a TeV-energy level via LWFA with fluxes comparable to those of RF-accelerators,
a laser architecture that efficiently allows for the combination of PW-peak powers with MW-
average powers is required. A few years ago, Leeman et al. estimated that at a laser
with a central-wavelength of around 1pm, a pulse energy of 32J at a repetition rate as
high as 15 kHz, preferably with sub 100-fs pulse-duration and an almost diffraction limited
beam quality is required [5,9]. Setting up such a system once is already an enormous
challenge and 100 of such stages would be required in a cascaded setup to achieve said
TeV-level particles. This laser parameter range is far beyond the capability of any existing
technology today, furthermore, there is a general problem intrinsic to all current laser design
approaches. A laser system can be optimized for either high-average power or high peak

power operation. Achieving both simultaneously and therewith achieving PW-peak powers
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at multi-kHz-repetition rates, is currently impossible. Unfortunately, that is exactly what
most applications would require to rise from 'lab-curiosities' to valuable tools in a scientific-
laboratory, a clinic or a production facility. One key question is, which laser-technology should
act as a fundament for further development towards these goals. While the mentioned bulk-
technology, best represented by 'BELLA’, can offer impressive parameter sets, the technology
faces critical immanent limitations, such as a very low wall-plug-efficiency well below 0.1 %

and thermal issues, which restricts further improvement.

This is were other solid-state laser concepts with advanced active medium geometries, in-
cluding the thin disk [10], the Innoslab [11] and the fiber [12,13], excel. All of them feature
an improved thermal management, and are therefore, compared to classic bulk-amplifier-
technologies, superior in terms of average power, while still preserving an excellent spatial
beam quality - even in the femtosecond-pulse regime [14,15]. On the contrary, they still face
serious obstacles when to be pushed to even higher peak or average powers [16]. In fibers,
for instance, the tight transverse confinement of the optical pulses over considerable lengths
eventually results in nonlinear pulse distortions and damage. Thus, to generate pulses with
high energy and, consequently, high peak powers, fibers with large mode-field areas [17] in
combination with a chirped-pulse amplification-scheme (CPA) [18, 19] are employed. State-
of-the-art grating-based stretchers allow to temporally extend femtosecond pulses up to a
duration of several nanoseconds and have enabled fiber-based systems to produce pulse peak
powers of up to 3.8 GW and pulse energies of up to 2.2mJ, respectively [20]. In principle,
the stretched pulse duration could be further increased but in practice it is limited to about
10 ns by the footprint of the laser system and the available grating sizes. However, using a
60-ns pulse, generated by a Q-switched oscillator, already allowed for the extraction of 26 mJ
from a single state-of-the-art Yb-doped fiber [21]. Hence, broadband pulses supporting fem-
tosecond duration and containing an energy in the >20-mJ-regime might be extracted from

a single fiber.

To exhaust this potential without the need to increase the grating size, temporally sepa-
rated amplification can be used and suitable schemes emerged over the last decades. These
techniques aim to distribute the pulse energy as equally over time as possible. The most
straight forward of such approaches is called divided-pulse-amplification (DPA), wherein each
pulse is split temporally into a train of pulses via birefringent crystals [22], or via a com-
bination of beam splitters and free-space delay lines [23,24]. Subsequently, the individual
lower-intensity pulses are amplified and, finally, coherently recombined in time. DPA is an
established method to scale the pulse energy by about one order of magnitude [25]. How-

ever, increasing the number of pulse replicas to 100 or even 1000 using DPA approaches will
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become extremely challenging due to the required number and length of the delay lines, their
individual stabilization and the necessary mitigation of saturation effects in the amplifier [26].
Therefore, an interesting alternative to DPA is to start with a higher repetition rate and to
use only one delay line for stacking hundreds or even thousands of pulses. Such a delay line

can be realized in the form of a passive enhancement cavity [27,28].

Enhancement cavities are passive resonators, consisting of mirror arrangements without any
transmissive elements and, therefore, ideally suited for handling highest laser powers. Intra-
cavity average powers of up to 670 kW at enhancement factors of up to 2000 were achieved
using 10-ps pulses, stacked a 250-MHz cavity [29]. To date, such cavities were primarily
used for the generation of short-wavelength radiation via intracavity high-harmonic genera-
tion [30-32] or inverse Compton scattering [33]. The concept addressed during this thesis
is called stack-and-dump (SnD) and employs a very similar enhancement cavity with the
substantial modification, that the pulses are coupled out of the cavity after a certain number
of round-trips to make them available for applications outside of the resonator. This already
states the key challenge of the concept: finding a suitable switch to enable extraction of
the pulses from the cavity. SnD allows to convert repetition rate to pulse-energy at an un-
altered average power. In general, this technique might be applied to any existing amplifier
technology. However, it is particularly well-suited for amplifier geometries that can deliver
medium pulse energies at high repetition rates, such as fiber-based systems. Although the
generation of cavity-dumped enhanced pulses has been demonstrated in the past for low-
power systems [34-36], the combination of today's high-average power femtosecond laser
systems [37] together with state-of-the-art enhancement cavities [38] promised to enable a
new class of laser output parameters. In a first experimental step as a part of this thesis,
the potential of SnD cavities employing an acousto-optic modulator as a switching device
was exhausted [39]. This required to scale the length of the cavity and face the therewith
uprising challenges. As a result, the output energy from such a SnD cavity was increased
by almost three orders of magnitude compared to the state-of-the-art before this thesis. To
evaluate the power scalability of SnD further, the highest enhancement, pulse energy and
average power levels in such a long cavity were demonstrated with chirped ultrashort pulses.
Additionally, the mentioned key challenge of extracting the enhanced pulses from the cavity
was addressed by investigating novel switching technologies to evaluate their value for SnD,

eventually identifying one particularly interesting candidate [40].

This thesis is structured as follows. Chapter 2 introduces the fundamentals of ultrashort
laser pulses and different pulse-stacking techniques. Chapter 3 explains how enhancement

cavities can be utilized as pulse-stacking devices and what is to be taken care of, in order
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to do so. In chapter 4 the results of the stack-and-dump experiments carried out within the
scope of this thesis are presented, while chapter 5 presents the theoretical and experimental
work on novel switching technologies. Finally, the most important results of this thesis are

summarized and a brief outlook is given in chapter 6.



2. Properties of Laser Pulses

This chapter aims to cover the basic physical concepts this thesis is based upon. It gives
a brief introduction to the origin and properties of ultrashort laser pulses, briefly explaining
limitations in regards to pulse-peak power. Furthermore, it explains interference and the
influence of temporal pulse distortions on it. Additionally, the mathematical description of
enhancement cavities is given, before a section about cavity-dumping techniques finishes this

chapter.

2.1. Ultrashort Laser Pulses

2.1.1. Temporal Description

As shown in [41], a laser pulse, propagating in z-direction, can be separated in a longitudinal

E(z,t) and a transversal part T'(x,y) as follows:

E(z,y,z,t) =T(z,y)E(z,1) . (2.1)

The first section will focus on the temporal part E(z,t), which describes the absolute value
of the longitudinal fraction of such a pulse. A mode-locked pulse [42] can be described as

the superposition of plane waves with different frequencies w:

Bz,1) = / Bw) exp [i (wi — k(w)2)] dw . (2.2)
k(w) = wn(w)/c is the z-component of the wave-vector, ¢ the speed of light, E(w) is the
electric field, n(w) the refractive index of the medium the light is propagating in, and i the
imaginary unit. If the oscillation of the carrier frequency at wy is extracted from the integral

and an arbitrary shaped spectral phase ¢(w) is introduced, one can rearrange Eq. 2.2 to:
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o0

E(z,t) = exp(iwpt) / E(w)exp {i[(w —wo) t — k(w)2]} exp i (w)] dw . (2.3)

—00

In order to carry out the required simulations for the presented experiments, the following

description in the temporal and spectral domain suffices:

B(t) = B(expli(wt +¢(1)] = Ew) = E@epfiw +ow)] . (24)
These two equations describe the field in the temporal and in the spectral domain. Both
are connected via Fourier-transformation (FT). This allows to calculate the development of
a certain electrical field during a propagation, by simply adding the necessary phase terms
stepwise in the respective regime. If phasesin both domains, spectral and temporal need to
be taken into account, the so-called split-step algorithm can be employed to easily calculate
the field after all phase influences during propagation, were considered [43]. Introducing €
as the dielectric constant, the temporal power distribution of such a field is given by the
multiplication of E(t) with the complex-conjugated field E*(t) [41]:

C€p

P(t) = SLEWE(t). (2.5)

The temporal power distribution crucially depends on the shape and duration of the pulse.
A short pulse duration is often favored to maximize the peak power. For a spectral distri-
bution E(w) with the full-width-at-half-maximum (FWHM) spectral bandwidth of Aw, the
achievable FWHM-pulse duration At, the so-called Fourier-limit, is given by [41]:

At Aw = TBW. (2.6)

Herein TBW is the time-bandwidth product, a constant that solely depends on the pulse
shape. For a Gaussian pulse

P(t) = Pyexp [—41n(2) (t ;tt())T : (2.7)

with pulse-peak power P(t = t;) = P,, it is 0.44. The energy E, contained in such a
pulse can be calculated using the average power of the laser system P and its repetition rate
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frep = 1/T, or via the integral over the power distribution of a single pulse as follows:

E,=PT = P :/P(t)dt. (2.8)

The connection between those values is also shown visually in Fig.2.1.

o | I\
= Pulse Energy
ch Power
Ee) — — Average Power
gosk 1
©
E |t PN T R 51 [FTR USTT T ooty
(o)
zZ

0 | |

Time /a.u.

Figure 2.1.: Visual explanation of laser output parameters. The power is normalized to the pulse-
peak power.

In case of a Gaussian pulse, the often interesting parameter pulse peak power can be calcu-
lated as:
E

Py~ 0.94=" . 2.9
)~ 09477 (29)

2.1.2. Carrier-Envelope-Offset and Frequency-Combs

The envelope of a pulse describes the development of the electrical field amplitude. However,
the exact temporal shape of the field within the pulse depends on a frequency-independent,
constant phase ¢c. This phase has no impact on the envelope but influences the position
of the peak of the oscillating electrical field (red) relative to the peak of the envelope (blue)
as shown in Fig. 2.2. It is commonly called carrier-envelope-offset and can, depending on the
system, stay static, drift slowly, or even jump randomly. The change of ¢ceo IS Peep = APceo
and called carrier-envelope-phase (CEP) and describes how the CEO changes in between
two round-trips. For the application of few-cycle pulses, CEO and CEP can be very critical
parameters, that have to be controlled. It is noteworthy, that a stable CEO always implies a
stable CEP (equally zero), but not vice versa. Stabilizing the CEO of a system is therefore
a harsher requirement. For pulses with a large number of optical cycles both parameters

are usually irrelevant, since CEO differences do not introduce significant changes to the field
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maximum. If a multitude of longer pulses are to interact with each other, however, the CEO

gains a certain amount of importance as it will be shown in Sec. 2.2.

15F T T T T T T T -
6 =0 ¢ = ¢ =372 ¢ =27

ceo ceo ceo ceo

/2 10}
1k _
=l //N%\\ “\Y\ ]
0
-1E 1 I I
-40 -20 40 60

Figure 2.2.: Depiction of pulses with At = 6fs at 1040 nm central-wavelength and with different
Carrier-Envelope Offsets ¢ceo. If this example was a pulse train, its CEP would be

¢Cep == 71'/2

=7
ceo

Electrical Field /a.u.

1
0 20
Time /fs

Fig. 2.2 shows the shape of the electrical field and its envelope for different CEOs. For
Geeo # 2km (k € Z) the maximum of the electrical field is lower than the maximum of
the envelope, which can be detrimental for applications of few-cycle pulses. However, after
a certain number of pulses, the pulse shape, and therewith the CEO, repeats itself. The

frequency of this phase change is commonly called carrier-envelope-offset-frequency [44]:

2

Weeo = 27T-fceo = Ti - ¢ceofrep7 (210)

where T, describes how much time passes by, before the pulses are identically shaped again.
If a laser pulse is to be depicted in the spectral domain, this can be done as a frequency
comb. A so-called optical frequency comb is a certain optical spectrum which consists of
typically equidistant optical frequency components. The intensity of such comb lines often
varies substantially. As shown in Fig.2.3, the CEO-frequency shifts the entire frequency
comb of the pulse (see Fig.2.3) [45].
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/ N

05 F Aw
Yrep
SRR o FE o

w w
ceo 0

Power /a.u.

Angular Frequency w /a.u.

Figure 2.3.: Schematical depiction of the frequency comb of a fs-laser pulse with wrep = 27 frep and
Aw being the FWHM spectral bandwidth.

Using wrep = 27 frep, the frequency comb of a mode-locked laser, consisting of the resonant

frequencies wy, with m € N can be written as [46]:

Wm = Mrep + Weeo = MWrep + gbceowrep . (211)

However, there are further sources of additional temporal or spectral phases a laser pulse can

acquire while propagating in a medium, such as dispersion or non-linear effects, for example.

2.1.3. Dispersion

A materials response on electromagnetic waves is usual depending on the wavelength i.e. the
frequency w of the wave. Therefore, the refractive index can be expressed as n = n(w). The

wave-number k and the refractive index are connected by [43]:

k(w) = n(w) (2.12)

W
Cc

This relationship can be approximated by a Taylor series around the central-frequency wy
1 (d%k
(w—wg)+2<d> (w—wo)®+....

dk , 1 (d%
blw) = hlwo) + (m) . W) ) +6<dw> .

Bo (S —— —_— —_—
1 B2 B3
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The Taylor-coefficients 3, allow to describe different aspects of the dispersive wave:

0 wo

Phase velocity: wvph = ;:k( ] (2.13)
0 Wo
1 (dk\
Group velocity: Vg = — = [ — 2.14
pygﬁl(dw)m (2.14)
d’k
Group velocity dispersion (GVD): 3, = <d> (2.15)
W /|y
d’k
Third order dispersion (TOD): f5 = <dw> (2.16)
wo

While 3y and (3; describe the propagation of carrier and envelope, they have no effect on the
temporal pulse shape. The higher-order dispersion terms cause a deviation in propagation
velocity of the different frequency components. Due to this deviation, the superposition of
the fields creates a temporally broadened pulse. When the 55-term shifts the high frequencies
towards the pulse end, the pulse is called 'up-chirped’. If it shifts the low frequencies to the
pulse end it is called 'down-chirped. The [5-term alters the pulse shape as well, but other
than 5, asymmetrically. Third and higher order dispersion is especially important for the

treatment of few-cycle pulses, due to their large bandwidth.

2.1.4. Self-Phase-Modulation

Whenever an electrical field propagates through a medium, it polarizes this medium. The
polarization P(w) is not necessarily linearly proportional to the incident field F(w), but fulfills

the equation:

Pw) =€ [xV - B(w) +x? : B2(w) + x®:E3(w) +...| . (2.17)

Herein, € is the electric field constant and x(™) is the m-th order of the susceptibility tensor.
For small field-strengths, Eq.2.17 can be approximated by P(w) = eopx) E(w). For higher
intensities however, the higher order terms are of increasing importance. There is a plethora
of nonlinear effects resulting from this, but this section is focused on those caused by y,
which are the dominant effects in glass [47]. The refractive index 72 has a part, that depends
on the intensity of the electric-field interacting with it. For increased field intensities, this part
becomes increasingly significant and consequently 7 deviates from n. This can be expressed
as [43]:
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3x®
8n(w)

n=n(w)+nol with ny= (2.18)
and is called temporal Kerr-effect. As a result of the intensity dependence of the refractive

index, the pulse acquires an additional phase when propagating through a medium of length
L:

Gspm = —0n. - l% with  on = nol . (2.19)

Consequently, this phase is intensity dependent and hence the temporal shape of the pulse is
changed. This effect is called self-phase modulation (SPM). The maximum phase collected
by the peak of the pulse while propagating through a medium is commonly referred to as
'B-integral’ and can be calculated as

2 l

B=— nolo(z)dz , (2.20)
A z=0

with Iy(z) being the peak intensity of the pulse depending on the position z in the medium.
The B-integral is often used to estimate the magnitude of nonlinear-pulse distortions acquired

by a laser pulse during its propagation.

2.1.5. Spatial Description

The transversal part T'(x, y) of the electrical field in Eq. 2.1 describes the spatial field distri-

bution and is for Gaussian beams given by

2, 2
w

Wherein 2w is the full width of the beam at 1/e? of the peak-intensity I, often also called

beam diameter d = 2w. The peak intensity of a laser pulse with a circular beam profile is

given by [48]:

o <im0 Lo (5F)] _om (2.22)

r—0 72 Tw?

For elliptically shaped beams with d, = 2w, and d, = 2w, the following equation is valid,

respectively:
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i (2.23)

W Wy

2.2. Interference of Femtosecond Pulses

As discussed in the previous sections, a laser-pulse as described in Eq. 2.4 may contain dif-
ferent temporal and spectral phases. If two pulses are to be superposed, depending on the
difference between the individual phases, the temporal interference pattern can vary between
complete constructive or complete destructive interference. For an optimum combining ef-
ficiency (e.g. completely constructive interference), all parameters need to be identical.
Therefore, in order to overlap two maxima the central frequency wy, the absolute phase
offset ¢y, the carrier-envelope-offset ¢.e,, the nonlinear phase ¢, and the phase due to dis-
persion ¢gisp as well as the peak power Iy o< Ey have to be matched. Any deviation between
those parameters will typically result in a decreased efficiency and is hence not desirable in

most scenarios.

3T T T T Ao |2 T T Ao T T T
Identical =2n 4
5L e‘n_'ca 4 ceo. Pulse 1| |
a ) Pulse 2
Sum
o 1 -
3
o 0 i
-1 4
-2 1 1 1 1 1 1 1 1 1 17
-10 0 10 20 30 40 50 60 70 80
Time /fs

Figure 2.4.: Field and envelope of individual pulses and their superposition in the case of (a) two
identical fs-pulses, (b) two pulses temporally misaligned by exactly one wavelength
(c) two fs-pulses with a CEO-difference of 7, but also shifted to have a matching
field maxima position. The initial pulse duration is 6fs at a central wavelength of
Ag = 1040 nm.

In Fig.2.4 some cases that are relevant for the experiments presented in this thesis are
depicted. The temporal interference pattern of the fields as well as the resulting intensity
is shown for two temporally perfectly matched and identical pulses, two pulses temporally
misaligned by A¢y = 27 and two pulses with a CEO-mismatch of A¢e, = 7, but realigned

for optimum constructive interference. Similar effects occur for pulses that differ in terms of
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dispersion and nonlinear phases as explained in [49]. For a better visibility, this plot shows
the effects using few-cycle pulses. For a longer pulse duration, as used in the later presented
experiments, they become significantly weaker. However, for larger numbers of interacting
pulses, their impact grows significantly. Fig.2.5 depicts this in the case of of 200 identical
700-fs pulses with a phase slip of exactly 2km=k)\ between each two subsequent pulses
(equivalent to Fig. 2.4b). Obviously, even though the pulses are much longer, the effects are
strongly visible due to the high number of interacting pulses. Even a misalignment of only
one wavelength reduces the peak power of these 200 superposed pulses by 20 % from 200 to
160. It is therefore clear, that for the highest peak power enhancement, the fields have to

be matched perfectly.

N
o
o
T
1

-
(&)
o
T
|

-
o
o
T
|

50

Power Enhancement

-8 -6 -4 -2 0 2 4 6 8
Shift between subsequent Pulses /A

Figure 2.5.: Coherent superposition of 200 pulses with a duration of 700fs and shifted by kX
between two subsequent pulses for different values of k.

2.3. Concepts to circumvent amplifier limitations

2.3.1. Ultrafast Laser Amplifier Technologies

Even restricted to laser amplifiers for ultrashort pulses, there is a multitude of vastly differ-
ent technologies varying significantly in the geometry of the active medium and the entire
resulting amplifier design. Some are optimized to minimize the occurring peak-intensities,
like multi-stage bulk-geometries [50], some are optimized for high-average power operation,
like Innoslabs [11] or fibers [14,51]. Optimizing a single amplifier setup for both is virtually
impossible and trade-offs have to be made. Figure 2.6 shows an overview of the achieved
laser output parameters with different ultrafast amplifier technologies to this date. Each

data point represents one particular published experimental result. Naturally, mapping all
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published experiments is not feasible, hence, only the most distinguished ones, extending

each technologies range and some historical landmarks, are depicted.
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Figure 2.6.: Overview of the pulse-peak and average power of significant publications presenting
the generation of laser-pulses with a duration of < 1ps achieved with different laser
technologies (Ti:Sapphire: [50,52], Excimer: [53], Fiber: [14,20,51] Thin-Disk: [54,55],
Innoslab: [11], Spatial Combining: [37, 56-59], Temporal Combining: [24, 60], Spa-
tial4+Temporal: [25]).

The biggest leap in pulse-peak power was achieved, when the chirped-pulse-amplification
(CPA) approach was first adapted to optical applications in 1985 [61]. Ever since, CPA
is an indispensable part of almost every fs-laser system. Similarly, developing novel solid-
state laser technologies with optimized thermal properties, e.g. fiber, Innoslab or thin-
disk amplifiers, allowed to improve the achievable average power in ultrafast-systems up to
~ 1 kW [51]. Moreover, cw-fiber-amplifiers can even deliver up to 4.3kW of average power
(single-mode) [62] or > 100 kW (multi-mode) [63]. Despite all this progress, CPA-systems are
limited by size and cost of the gratings and even the thermally optimized laser geometries
suffer from thermal effects eventually [64-66]. Hence, to further scale the laser output
parameters, beam or pulse combining is of paramount importance [67]. The remaining
sections of this chapter will explain the concepts and operating principles of spatial and

temporal combining techniques.
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2.3.2. Spatial Pulse Combining

Whenever any technology approaches its intrinsic limitations or further scaling is unreasonably
difficult, parallelization offers a straight-forward solution to still achieve increased functionality
[68]. Over the last two decades, this was adapted to laser amplifiers [67, 69, 70], where a
seed signal is split into M-channels before the last amplifier stage and recombined after
amplification, hence increasing the possible output average and peak power by a factor of
Nspc M, Where 7 accounts for the combining efficiency. Figure 2.7 depicts such a setup.
This is also referred to as 'spatially separated amplification’ or 'coherent beam combining’.
State-of-the-art setups deliver 200-fs pulses containing 1 mJ of energy at ~ 1 kW of average
power (see Fig.2.6). It is noteworthy that there are also concepts that make use of incoherent
combining approaches, but they are not employable in femtosecond-laser systems and will be
neglected in this work [71].
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Figure 2.7.: Concept of spatially separated amplification.

2.3.3. Temporal Pulse Combining
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a - r_6[1> b_|_u|lrst - 1 b fr;l;l) - f7 1
: -1 A o - : o ;
: o = rep i o= switch
FyE=m)| -pETwCTy gy WU
| g Amplifier  mEs My Amplifier gis
i o i
: ) IS i IS
wn o : . o
Burst (@) i i Continuously O

Figure 2.8.: The two different approaches on temporally separated amplification.

In opposition to spatially separated amplification, in a temporal combining setup only one
amplifier channel is used but in order to minimize the pulse-peak power in the amplifier the
pulse energy is distributed more equally over time by temporally separating the pulses prior
amplification (see Fig.2.8). The goal is to artificially increase the stretched pulse duration

in order to minimize peak power effects during the critical last amplification step. Two
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fundamentally different approaches can be employed. The first method (Fig.2.8a) is to use
a signal at the repetition rate f.,, split it into a burst of N pulses at f., with the intra-
burst repetition rate of fu,st, amplify it and afterwards recombine the burst to the original
pulse pattern. The second method (Fig.2.8b) starts with a high-repetitive oscillator and
coherently stacks N pulses and recombines them, in order to generate an output signal with

fswitch = frep/IN. Each of the following approaches classifies into one of these categories.
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Figure 2.9.: Schematic setup of a) DPA and b) eDPA. The top bar shows the pulse number (orange)
at each part of the setup. Additional optional delay lines can be added to increase the
number of pulse replicas. Using n delay-lines allows to distribute the energy to IV pulse
replicas.

Divided-Pulse-Amplification (DPA) The straight forward approach for a burst-type
temporal combining setup is divided-pulse-amplification (DPA) [22]. Here, n cascaded delay
lines are used to split a pulse into N = 2" temporal replicas using polarization, amplify and
recombine them vice versa, employing n-combining stages (see Fig.2.9b). In combination
with spatial combining, such a scheme allowed to achieve up to 12-mJ pulse energy at 700-W
average power [25]. However, since the pulses of this burst each see different inversion-levels
in the amplifier, their gain will differ too, making it necessary to preshape the burst. Therein
lies the current limitation of such approaches, since this shaping can only optimize for the
amplitude or the B-integral and the combining efficiency will consequentially drop signif-
icantly for a growing number of division stages as thoroughly investigated and explained
in [26]. Additionally, the fractions of the pulses that are not combined will remain as pre-
and post-pulses in the output channel, making a later contrast optimization unavoidable for

most applications.

Electronically Divided-Pulse-Amplification (eDPA) In this novel approach [72], the

combination scheme is identical to DPA but the separation is done vastly different (see
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Fig.2.9b). Contrary to DPA, eDPA starts with a continuously pulsed signal out of an oscil-
lator. Since the power level is very low at this point of the setup, an electro-optic modulator
(EOM) can be used to cut out N pulses and impress the same polarization pattern that this
pulse train would have had after the classical DPA delay-lines. Afterwards, the pulses are
amplified and recombined identically to the classical DPA scheme. This simplifies the first
part of the setup significantly and can theoretically allow to compensate better for the gain

effects. If these potential benefits can be underlined experimentally, is yet to be shown.

Both, DPA and eDPA are increasingly complex for higher pulse numbers, since the number
of delay lines needs to grow accordingly with n = v/ N.This is circumvented in the following

scheme, by using only a single delay-line.

-1
switch

Figure 2.10.: Schematic of the stack-and-dump concept. [28].

Stack-and-Dump (SnD) This dissertation is based upon a concept called stack-and-
dump, which was first proposed theoretically in 2002 [27] and later demonstrated experimen-
tally for low power levels [34-36]. Instead of multiple delay lines like DPA, SnD only employs
a single delay line to stack a continuous train of pulses as shown in Fig.2.10. This delay-line
is simply an enhancement cavity, seeded with the pulses delivered from the main-amplifier
of a high repetition rate laser system. The length of the cavity matches the distance be-
tween two subsequent pulses. For example, if seeded with a 10-MHz pulse train, the cavity
will be ~ 30m long, so that the electrical field of each incoming pulse can constructively
interfere with the field in the cavity. To allow for an efficient power transfer to the cav-
ity, an input-coupling mirror with an optimized reflectivity is to be chosen (see Chap.3).
Most enhancement cavities are operated in a so-called steady-state regime (see Sec.3.2),
where the intracavity power level does not change over time. SnD, however, needs to make

the enhanced pulses available outside of the cavity, hence the cavity is operated in a non-
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steady-state regime (see Sec.3.3) and a fast switch is necessary to extract the pulses (see
Sec. 3.5).

SnD offers a number of advantages compared to DPA and eDPA. First, it only needs one
combination stage, a passive cavity. Second, it amplifies a continuous pulse train and not
a burst of pulses, hence, no pulse separation stage is needed and the pulses do not see any
saturation effects in the amplifier. Therefore, neglecting small temporal fluctuations, they all
have the same nonlinear phase and amplitude when entering the cavity. Third, no parasitic
pre- or post-pulses are extracted from the cavity and amplified-spontaneous emission (ASE) is
not coherent enough to be enhanced in the cavity, hence the contrast of the output is superior
to all other temporal combining techniques. As a trade-off, a large number of subsequent
incoming pulses from a mode-locked oscillator need to be stacked. This is challenging, since
the pulses coming from an oscillator usually vary slightly over time in terms of the temporal
shape and phases they have. This variation needs to be minimized in order to achieve a
stable constructive interference during the cavity build-up. The theoretical fundamentals of
these concepts are thoroughly analyzed in the following Chap. 3, including the key challenge
of finding a suitable switch to extract the stacked pulses from the cavity (Sec. 3.6).

-1
switch

HR

-1
fswitch

Figure 2.11.: Schematic of the GTI concept [73].

Gires-Tournois Interferometer like Cavities (GTI-Cavities) On one hand, GTl-cavities
are a modified version of SnD while on the other hand, they are more similar to DPA. GTI-
cavities offer an elegant solution for the extraction of the stacked pulse from the enhancement
cavity, by shifting the phase of the last pulse in the incoming pulse train by 7, to force
constructive interference on the outside of the input-coupling mirror, instead of inside the
cavity [73]. However, this method forces some trade-offs. First, the extraction is also done

via the input-coupling mirror, which can only be optimized for either stacking or extracting.
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This leads to a limitation of the number of pulses that can be stacked efficiently in one cavity
to around 10 [74]. To increase the enhancement beyond that, further cavities have to be
added in a cascaded setup, similar to the delay-lines in DPA. Second, GTl-cavities amplify
bursts of pulses, leading to saturation effects in the amplifiers, which eventually results in
a decreased combining efficiency of the pulses. Third, such imperfect temporal combining
leads to strong pre- or post-pulses that contain a considerable amount of energy (~ 50 %)
in the so far demonstrated experiments [75]. However, GTl-cavities are of a very low finesse,
which leads to relaxed demands on the stabilization and adjustment and impressive output
parameters have been demonstrated recently [75]. A detailed explanation of GTl-cavities is
given in the dissertation by T. Zhou [74].



3. Enhancement Cavities

While constructive interference is the key mechanism enabling the build-up of high intense
pulses in any resonator, it also demands certain design criteria from such resonators. Optical
resonators or cavities can be set up either in a linear, or ring design. This entire thesis will
solely focus on ring-cavities and this chapter describes the working principles of such passive

resonators and how to optimize them for the stacking of femtosecond laser pulses.

3.1. Optical Design of Passive Resonators

3.1.1. Stability of Resonators

Along with the stacking of a higher number of pulses in a passive resonator, a certain stability
on the propagation behaviour of the beam is required, so that the spatial beam profile can be
reproduced after each round-trip. To define a suitable stability criterion, one usually employs

the principles of Gaussian optics, which are valid in the paraxial approximation. Therein

Ac B,
MCZ(C: DC)ZM(X-..-MQ-Ml (3.1)
is defined as the transfer matrix of a ring-cavity consisting of a-elements with the starting
point between the 1st and the ath element and M; being the transfer matrix of the j-th

element. Furthermore, the so-called g-parameter can be introduced as [76]:

1 1 i
() R mwi(a) (32

with R.(z) being the radius of curvature of the beam and w(z) the beam radius. The
development from ¢; = ¢ (21) to g2 = q(z2) during the propagation from z; to z» can then

be calculated via

20
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A+ B
o=, (3.3)
Cq+ D
_ A B . ,
with M = c D representing the transfer-matrix of all the elements between the
positions z; and zy. A resonator is considered 'stable’ as long as the criterion [76]
|Ac+ D| <2 (3.4)

is fulfilled. The optical stability is a crucial criterion for keeping the effects of small dis-
turbances and misalignment negligible. The cavity is therefore best operated close to the
stability center, unless other requirements arise (i.e. large beam diameters to reduce peak
powers [77]) . The transfer-matrix allows to calculate the beam-radius w and curvature R,

between the first and the last element of the components it includes

2B 2\ |B
R.=— and w= 5]

D-A nfi_(A+Dp

This enables straight forward calculation of the beam size w(IC) and curvature R.(IC) at the

(3.5)

input-coupling mirror (IC) of an enhancement cavity, when all the elements and distances in
the cavity are known and M. is chosen with the position of the IC as a starting point. One
example for that is given in the Appendix (Sec. A.2). It is noteworthy, that at extremely
high power levels, thermal effects in the mirrors can have a significant impact on the caustic

and appropriate countermeasures need to be applied [78,79].

3.1.2. Transverse Optical Resonator Modes

The simple Gaussian beam, as discussed in the last section, is only one of many solutions for
the paraxial wave equation. Using Hermite polynomials H,, and H,, (n,meN), the general

solution can be expressed as [76]:

Ton(2,y,2) = Ufg) , (ﬂ%) H, (ﬂ£>

w w

-exp {— ikz — ¢ (m,mn,2)] — ik (22 + yz)} : (3.6)

2q
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where
Wo o 1
W) = iy Iy (3.7)
and
é(n,m, 2) = (n +m + 1)arctan(—) (3.8)

ZR

is the so-called Gouy phase. The Rayleigh length is therein defined as zp = Tw2/A. A
multitude of resonator modes can oscillate at once, leading to a superposition of the indi-
vidual modes. While acting as a possible mathematical solution, the shape of these higher
order modes makes them usually irrelevant for pulse-stacking in enhancement cavities. It
is important, however, to minimize them and to know about the Gouy-phase shift, since it
is the reason different modes are resonant at different resonator-lengths, making it easier
to separate them from another and only enhance the fundamental mode by matching the
resonator-length accordingly. Hence, in experiments, the energy content of the higher order
modes is to be minimized by matching the incoming beam to the fundamental mode of the
cavity (see section 3.2.4) and by discriminating the higher cavity modes using the resonator

length.

3.2. Fundamentals of Steady-State Enhancement

Apart from the spatial mode-shape and stability, there are further important design param-
eters of enhancement cavities. Choosing the reflectivity of the input-coupling mirror has
a strong impact on the cavity efficiency and effectiveness and will therefore be the focus
of this upcoming section. First, for classical steady-state, and second, for non-steady-state
operation. The entire section will assume that intensity reflection R and transmittance 7'
of the input-coupler are always dominant (R + 7" = 1) and therefore ignore scattering and
absorption effects of the input-coupling mirror. While differently arranged, most of the basic

concepts are derived similarly to [76].
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3.2.1. Field Enhancement in Optical Resonators

A passive optical cavity typically consists of one input-coupling mirror (IC) with an intensity
reflectivity R and at least one more mirror, usually with an highly reflective coating. Such a

basic cavity setup is shown in Fig.3.1.
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Figure 3.1.: Simple cavity setup consisting of two mirrors. One of which is an input-coupling mirror
with reflectivity R and transmittance 7. The round-trip attenuation due to other losses
is A and the phase-shift per round-trip is §. Ej, is the incoming field.

An electromagnetic-wave Ej, is now seeded into the passive resonator through the input-
coupler and is being split into a transmitted part Ei,v/T and a reflected part Eiv/R, with
T =1 — R. During each round-trip inside the cavity, an attenuation v/A is applied to the
field and each reflection on a mirror adds a phase shift 4. If the number of round-trips
approaches infinity (for a sufficiently high number of round-trips), the field inside the cavity

E\c can be expressed by

Ec = EoWT+ E.WTARexp (—id) + EnVTARexp (—2i6) + ..
Ec = Einﬁ{l—l—\/ﬁexp(—i&—k {mexp(—ié)r—k...}

EnVT
1 —VARexp (—i6)

Hence, the theoretically possible power enhancement factor V' (henceforth simply called

'enhancement’) can be written as

Bl - R
V= =— 3.9
Ein (1 _ ,_RA)Q ( )
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Other important parameters of an enhancement cavity include the free spectral range (FSR),

which is, for a dispersion free, ring-cavity defined as [76]:

C

fron = < | (3.10)
ns

with s being the cavity length and n the refractive index of the medium inside the cavity. If

operated in vacuum, n will be unity and can hence be neglected. For the approximation that

R and A are close to unity, the width of the resonances is defined as

c .
frwhm = 2; arcsin ( JFsR - (3.11)

1 - VRA\ _1-+vRA
WRA |~

A visual depiction of frsg and frwnwm is given in Fig. 3.2.
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Figure 3.2.: Intracavity spectrum of an empty resonator with 20% losses and an input-coupler
with 80 % reflectivity. The frequency difference between two resonances is called free
spectral range and is depicted as frsg chosen to be mHz . A frwum is the full width
at half maximum value of a resonance peak.

With the help of these quantities, it is common to introduce the finesse F of the resonator

as

fFSR 7T
frwhm 1—+vRA ( )

The finesse gives an estimation of how many pulses will interfere with each other in a

cavity with an input-coupler reflectivity R and round-trip attenuation A. In high finesse
resonators, the enhancement can be higher and high average and peak powers can build
up. Unfortunately, as visible in Eq. 3.12, at a fixed FSR, a growing finesse also leads to a
shrinking width of the resonance peaks and, therefore, enhancing a broad spectrum becomes

increasingly difficult.
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In reality, the entire build-up curve of the energy inside an enhancement cavity and the

achievable enhancement not only depends on the losses . = 1 — A and the input-coupler

reflectivity R, but also on the amount of intracavity dispersion and nonlinear-phases (see
Fig. 3.3).
3.2.2. Influence of Dispersion and Nonlinear Effects on
Enhancement
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Figure 3.3.: a) Exemplary plot for the build-up signal of 1000 pulses in a 10-MHz enhancement

cavity. The Fourier-limited, Gaussian shaped input pulses have spectral bandwidth of
5nm and a duration of 318fs, respectively. They contain an energy of Ej, = 5nJ, the
cavity round-trip losses are L = 1% and the input-coupler reflectivity is R = 99 %.
The unstretched pulses are seeded into the cavity. Different cases are depicted: without
any dispersion or SPM (dark blue), under consideration of the dispersion (32- and [3-
effects) due to 23.5 mm of fused silica (typical length of an acousto-optical modulator)
in the cavity (red), considering the SPM caused by the AOM in the cavity when the
beam is focused to 0.4 mm in the AOM, not compensated (yellow) or compensated
(green), and all of these effects combined (light blue). b) shows the corresponding
enhanced spectra and their FWHM bandwidth and c) depicts the temporal pulse-shapes
and their FWHM duration, each after 1000 stacked pulses.

Contrary to phase perturbations, a pulse acquires prior entering the cavity [49], every pertur-

bation that is added to the pulse within the cavity has a negative impact on the achievable
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enhancement and the stacking efficiency. This is intuitive since the pulse inside the cavity
needs to be identical to the incoming pulse, in terms of spectral and temporal phases, to
overlap perfectly. If the pulse in the cavity acquires an additional phase perturbation during
every round-trip, its shape will increasingly deviate from the shape of the input pulse, thus
limiting the enhancement. Figure 3.3 shows the development of the enhancement during
the build-up process. The simulation parameters are chosen to depict common scenarios.
The two major effects that lead to the mentioned phase perturbations are dispersion and
self-phase modulation. Both are often introduced by a transmissive element, such as an
acousto-optic modulator or a Pockels-cell inside the cavity. Furthermore, the HR-coatings
of the cavity mirrors can be accountable for a considerable amount of dispersion. Theoret-
ically, such dispersive effects can be completely compensated for by adequate mirrors [80].
However, due to manufacturing uncertainties, it is unlikely to achieve this in the experi-
ment and therefore the influence of the residual dispersion needs to be considered. The
SPM related phase perturbations, however, are partially automatically compensated for by
a constant phase, which is added by the stabilization when optimizing the overlap. This
is taken into account for the 'SPM compensated’ and 'All Effects’ plot in Fig.3.3a, where
an optimization was carried out to find the best phase offset between the incoming pulse
and the intracavity pulse, to partially compensate the SPM and achieve the highest possible
enhancement. The simulations show that a certain amount of dispersion leads to a slower
build-up and a reduction of the enhancement in steady-state operation. The effects of SPM
on the build-up and saturation behaviour are more complex. Even when compensated, the
spectral and temporal shape of the enhanced pulse may be drastically changed, as visible in
the plots. The periodical nature of the phase distortion is also visible in the build-up curve,
which, contrary to the normal build-up, does not converge to a maximum with increased
pulse number, but has a distinct maximum after a certain number of stacked pulses. Both,
dispersion and SPM, narrow the spectral bandwidth and broaden the temporal shape of the

pulse. This acts as a strong motivation to minimize both effects.

3.2.3. Impedance Matching

Impedance matching in general aims to minimize reflections of a source signal at a load. This
leads to an optimal power transfer from the source to the load. In this case, the seeding field
is the source and the field within the enhancement cavity is the load. With the round-trip
attenuation A of the cavity being defined as A = 1 — L, the ilmpedance-matching condition

is given as [76]:
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R=A=1-1. (3.13)

If this condition applies, the theoretically possible power enhancement from Eq. 3.9 can be
simplified to

1 F
|/ 3.14
1-R 7 ( )
Fig. 3.4 depicts the impedance-matching condition visually. The highest enhancement is

always achieved when Eq. 3.13 is fulfilled.
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Figure 3.4.: Power enhancement for different intracavity losses and the impedance matched input-
coupling mirror, respectively. A cavity in vacuum without any dispersion or nonlinear
effects was assumed.

3.2.4. Matching of the Transversal Mode Profile

Matching the spatial profile of the incoming beam to the cavity mode at the input-coupler
is crucial, when a beam is to be enhanced in a resonator. Generally, the overlap of the
input beam profile with the intracavity mode is not perfect and, therefore, the amount of in-
coupled power is not equal to the overall input power. The spatial distribution of the incident

field Tio(z,y) can be treated as a superposition of the orthogonal cavity Eigenmodes at the
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input-coupling mirror (IC). This sum can be separated in two summands, the fundamental

mode Tyo(x,y) and higher order modes Thom(z, y) as follows:

CZjin(xv y) = Z amnTmn(:C? y) = aOOTOO($7 Z/) + THOM (Iu y) . (315)

mn

Using the dielectric constant ¢, the incident power can hence be described as

C€o
Pin = Q5
2

// T, y)|* dady = ? ool [Too (2, y)|” + Prom = Poo + Priom - (3.16)
All the mixed terms disappear since the Eigenmodes are orthogonal. The input power P
is therefore the sum of the power in the fundamental mode Py, and all the power in the
higher-order-modes Pom. Since most applications, and stack-and-dump in particular, are
interested in the enhancement of the fundamental mode, it is now convenient to define the
spatial overlap Us of the input beam with the fundamental cavity mode, in order to evaluate

the mode-matching

2
. UfT.n(:E,y)aaoTa‘o(Ly)dxdy) . Po()
J S Tia(a,9)* dady - [ [ |acoToo(w,y)|* dody P~

Us (3.17)
The essence of this section can be summarized as follows: the size and curvature of the
input beam have to be matched to the intracavity mode at the input-coupling mirror. While
theoretically a spatial overlap of 100 % is possible, experimentally achieved values commonly
vary between 75 and 95 %.

3.2.5. Characterization

Apart from the beforehand mentioned spatial overlap Us, the non-perfect temporal overlap
U, limits the achievable power enhancement factor, the 'effective enhancement’ V.. This
typically occurs due to insufficient phase matching, as well as dispersive or nonlinear effects
inside the cavity, as discussed in Sec. 3.2.2. Hence, the effective enhancement V¢ will always
be below the theoretically possible enhancement of a given combination of round-trip losses

L and reflectivity of the IC R. It can be easily calculated as

Vg = UUV =UV | (3.18)
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with U representing the overall overlap, temporally and spatially, and hence expressing the
deviation of the effective enhancement from the theoretically possible enhancement with the
employed set of cavity mirrors and intracavity elements. Experimentally, V. can be readily
derived from the circulating average power inside the cavity Pic and the average power of

the input beam P, as follows

Pic
P
While P, can be measured directly in front of the IC, Fc has to be calculated from the

Ve = (3.19)

leaking power Pleak behind one of the cavity mirrors with known transmittance Tie,k. It can

be expressed as

Pleak
Pc = . 3.20
- ﬂeak ( )
Equation 3.19 can now be written as
Pleak
Vet = ——— . 3.21
T Pin : ﬂeak ( )

Additionally, if the losses do not fulfill the criteria for impedance matching as explained in
Eq.3.13, an additional deviation factor U; has to be introduced. Consequently, due to the
mentioned spatial Us, temporal U; or impedance U; mismatch, not the entire input power
can be coupled into the cavity and a certain amount gets reflected at the IC and can be
measured as P, . When the cavity round-trip is blocked, the entire input power is reflected
and P will reach a maximum which is defined as P>, Otherwise, when the cavity length
matches the pulse repetition time, P.s drops, as a certain fraction of the incoming field
can now constructively interfere with the field inside of the cavity. In the ideal case of a
perfectly stabilized, impedance and mode matched and dispersion free cavity, no power will
be reflected, and therefore P, equals zero. Since this is usually not the case in an experiment,

min

a power level P4 > 0 remains. This is defined as the minimum level of reflected power Py

The so-called coupling-parameter K characterizes how well the input-power is coupled into

the cavity and is given as

(3.22)

min - 2
K:USUtUi:1_Pfef' :1_<M> _
1—-—+vVRA

max
refl
K is the fraction of enhancement that has been achieved, compared to the enhancement that

would have been possible with the given losses L of the cavity, when using the impedance
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matched IC (R = 1 — L = U; = 1) and achieving perfect temporal and spatial overlap of
the incoming field with the cavity field Us = U, = 1. It is noteworthy that perfect impedance
matching is rarely achieved in an experiment and is for non-steady-state cavities not even
desired (more on that in Sec.3.3.2). The levels PT* and P can easily be measured by a

photo-diode, monitoring the reflected signal. Since only the ratio is important, no absolute

power measurement is necessary. The round-trip attenuation is connected to K and Vg by

K

A=1- .
Vefr

(3.23)

This allows for a straightforward calculation of A, and hence, an indirect measurement of the
cavity losses L with measured values P73, PMi" and V.. A complete derivation of Eq. 3.23

refl refl
can be found in Sec. A.3.

3.3. Fundamentals of Non-Steady-State Enhancement

Different design approaches have to be considered when an enhancement cavity is to be
operated in a non-steady-state setup. Non-steady-state means, that the energy in the cavity

fluctuates considerably over time, particularly due to the extraction of enhanced pulses.

3.3.1. Cavity Efficiency and Output Quantities

The stacking efficiency of a non-steady state enhancement cavity can be calculated as the
ratio of intracavity energy Fic to the summarized energy of all NV input pulses with the energy

Ein:
Eic

Tlstack = m .

Extracting the intracavity energy via a switch is usually also limited by the extraction efficiency

(3.24)

Next- Hence, the overall cavity efficiency is further reduced to

T = TlstackTJext - (325)

For example, if an AOM is employed, 7 would be the diffraction efficiency of the AOM.

This allows to define the output power and energy of the cavity as

Poy
Pout - 77-P|n and Eout - nNEin - f : y (326)
switch
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with fswiten being the switching-rate of the switch. 7. strongly depends on the losses L
and R, since it determines the amount of in-coupled energy per pulse during the build-up.
Optimizing the input-coupler reflectivity R for specific losses L, a certain number of stacked
pulses N and extraction efficiency 7., for one cycle is a rather easy task. But as soon
as a fraction of the field remains in the cavity after the switching process (e.g. Oth order
of AOM), the build-up dynamics change drastically. And since in reality a vast number of
stacking cycles occur subsequently, the task of optimizing R becomes increasingly difficult

and can indeed only be addressed numerically.

3.3.2. Intracavity Pulse Build-up and Extraction

100 F 28 S S S S I N

80 -

60 -

40 |

Enhancement

20 | Quasi-Steady-State
n$s - : -

0 100 200 300 400 500 600 700
Total Pulse Number

Figure 3.5.: Build-up of the intracavity enhancement is depicted for the steady-state scenario (ss)
and for the non-steady state scenario (nss). Each scenario has a maximum enhancement
Vs and Vj,ss. Both simulations were carried out for L = 1%, R = 99 % and et = 70 %.
For the nss-case N = 150 pulses were stacked per build-up cycle.

If not the entire pulse energy is extracted after one build-up phase, there will be a remaining
field Er in the cavity. This naturally changes the subsequent build-up and so forth. After
a few build-up cycles a 'quasi-steady-state’ sets in (see Fig. 3.5). During the work for this
thesis an equation for the extracted enhancement V., in this 'quasi-steady-state’ scenario

was derived as [39]:

2

V;ext :next‘/;ff = Next *

(1-R) {(m)N 1
. . (3.27)
R

(VAR —1)* 1~ (VAR)" yT =]
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This formula allows to calculate the extracted enhancement that can be expected from
a stack-and-dump cavity with a given set of round-trip losses L, input-coupler reflectivity
R, number of stacked pulses per cycle N and extraction efficiency 7e:. The appendix
shows a more detailed derivation (Sec.A.1), similar to the derivation of Eq.3.9 [76]. The
experimentally achieved extracted enhancement can be easily calculated via

E.
Vext = E—t . (3.28)
The overall efficiency of a stack-and-dump cavity 77 can be directly calculated from the easily
measurable values of the extracted power P.. and the input power P, or via the relation

between extracted enhancement and number of pulses per build-up cycle

Pext V:::xt
= = i 3.29

= (3.29)
It is noteworthy, that the efficiency can be further influenced and potentially be improved by
using either a burst input [81], or by shaping the amplitude of the input pulses [28], as further
discussed in Sec. 3.3.3. The repetition rate of the extracted signal equals the switching rate
and can easily be calculated using the original repetition rate f,, and the number of stacked

pulses N via

fowiten = J ]“\j" : (3.30)

While for steady state enhancement cavities the optimum reflectivity of the input-coupling
mirror R is determined by the impedance matching condition (see Eq.3.13), the operation
of a non-steady state cavity has different requirements on an optimum R. It is usually
optimized to achieve the most efficient pulse-build up for a given number of pulses N. Such
an optimization is shown in Fig. 3.6 for different pulse numbers. The reflectivity, losses and
extraction efficiency were chosen to suit the experiments that will be presented in Sec. 4.3 of
this thesis.
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Figure 3.6.: Depicted is the optimum reflectivity R (logarithmic), the enhancement and the effi-
ciency 7 (linear) over the number of stacked pulses N. Simulation parameters were:
L = 1% and next = 70 %, neglecting any phase terms due intracavity dispersion or
SPM.

It is observable that optimizing the input-coupler to the number of stacked pulses is especially
important for a small number of stacked pulses, or in other words, when the energy in the
cavity is extracted long before the steady-state is reached. R converges to A when N
increases, since this equals the steady-state case. Another interesting effect is visible for
very low pulse numbers, due to the remaining field in the cavity (1 — 7 = 30 % of the
energy remain after every build-up cycle). The cavity is very efficient for extremely low pulse
numbers, since the part of the incoming field that constructively interferes on the inside of
the input-coupler is much bigger than for an empty cavity and the impact of the losses is

negligible.
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3.3.3. Shaped Input Pulse Train
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Figure 3.7.: a) Two different shapes of an incident pulse train consisting of 300 pulses. b) Maximum
stacking efficiency of the cavity for varying losses assuming an optimum transmittance
of the input coupling mirror when seeded with 300 pulses using the input pulse trains of
a). c¢) Enhancement during the build-up and d) development of the coupling efficiency
as a function of the pulse number in the input pulse train assuming losses of 1 % and
an optimized reflectivity [28].

If the efficiency of the stacking process is paramount, it can be beneficial to shape the
amplitude of the input pulse train. This allows to reduce the amount of reflected energy in
the early phase of the build-up. Fig. 3.7 compares two different scenarios, namely using input
pulses with a constant energy or an input with an exponentially shaped amplitude (see Fig.
3.7a). This is merely an example and further optimization of the shape might be possible.
Part b) shows, that for each loss value the efficiency can be improved using the amplitude
shape as shown in a). This is depicted in c) and d) in greater detail for the example of 300
pulses stacked a cavity with a round-trip loss value of 1%. It can be seen, that while the
constant input pulse train fails to couple energy into the cavity efficiently, the shaped input
achieves a highly improved energy transfer, ultimately also leading to a higher overall stacking
efficiency. This is simply due to the fact, that the deviation between the amplitude of the
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field inside the cavity and the amplitude of the incoming field acts as a crucial limitation on
the efficiency of this energy-transfer. When a shaped input is used, this difference is much
smaller and, thus, a better transfer is achieved. Subplot c) also depicts the Enhancement
during the build-up for lower losses of 0.5%. Compared to the shaped input pulse train, this
leads to similar enhancement values, which underlines the benefit of a shaped input.

However, when generating an incoming pulse train with a shaped amplitude, matching the
nonlinear phases of the individual pulses is crucial. This introduces additional demands on
the amplifier, leading to some of the downsides of DPA and GTI, which were originally aimed
to avoid using SnD. Furthermore, if the amplifier can handle the last pulse of the shaped
incoming pulse train, it would also be possible to generate a train of pulses, in which every
pulse contains that amount of energy, thus, leading to a higher enhanced energy. Shaping
the input pulse train is therefore only interesting, if achieving the highest wall-plug efficiency

is the primary design requirement. Hence, this approach was not investigated any further.

3.3.4. Limitations due to Nonlinear Effects

The SPM-effects discussed in Sec. 3.2.2 can have significant influence on the energy build-up
inside the cavity from early on. If, for example, an AOM is used to extract the pulses, a small
beam size is needed in the AOM to allow for sufficiently fast switching (see Sec. 3.6 for further
details). This results in relatively high intensities, even for stretched pulses. The acquired
nonlinear phase leads to a phase-mismatch between the intracavity-pulse and the incoming
pulse. Furthermore, the phase of the intracavity-pulse changes every round-trip. Hence, for a
larger number of pulses the phase-matching worsens. This behaviour is hard to simulate, as
in reality, the stabilization algorithm of the cavity makes up for the average phase mismatch
between them, in order to optimize for the highest |C-field. This offset phase added from the
stabilization was neglected for these simulations. To justify this approximation, simulations
including this effect were carried out for some carefully chosen parameters (one example is
shown in Fig. 3.3). The results allowed to estimate, that the difference is only up to a factor

of ~ 2 and therefore does not lead to significant better scalability.
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Figure 3.8.: Enhancement factor depending on input pulse energy and number of stacked pulses in
the presence of SPM.

For the simulation shown in Fig. 3.8, Gaussian-shaped seeding pulses with a bandwidth of
5nm centered around 1040 nm and stretched to 1.5ns pulse duration were assumed. The
cavity round-trip losses were set to 1% and the input-coupler reflectivity to 99%. The
AOM in the cavity is 2.35cm long and the diameter of the transmitting beam is 0.4 mm.
To simplify the simulations, a diffraction efficiency of 1 was assumed for the AOM. For an
extraction efficiency below 100 %, the effects gain significance, due to the higher number of
interacting pulses. Dispersion in the cavity was neglected. The energy of the input pulses
was varied between 1pJ and 100 pJ, while the pulse number varies between 50 and 1000.
The plot in Fig. 3.8 shows the onset of SPM as a limiting mechanism depending on pulse
energy and number of stacked pulses. For input pulse energies above ~ 2pJ, SPM effects
in the AOM start having an impact on the enhancement. Naturally, for lower numbers of
stacked pulses, the effect is less influential, which is visible in Fig. 3.9. It shows the reduction

factor of the enhancement compared to the SPM-free case.
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Figure 3.9.: Enhancement modification factor depending on input pulse energy and number of
stacked pulses in the presence of SPM.
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Stacking of 100 pulses with 20 pJ energy can be done without trade-offs, while the stacking
of 300 pulses with the same energy results in a reduction of the enhancement, compared
to the low-energy by ~ 40%. This has the effect, that in presence of SPM, the typical
saturation behaviour of the pulse build-up is altered in a way that fewer pulses eventually lead
to higher enhancement factors. While at first counterintuitive, it becomes understandable,
due to the higher number of interacting pulses, leading to a worse phase-matching between
them. Altogether it can be stated, that the limitation due to the usage of AOMs is not
damage-related but occurs much earlier due to the acquired nonlinear phases.

3.4. Oscillator and Cavity

3.4.1. Optical Path Length Matching

As explained in Sec. 2.2, in order to constructively interfere, the temporal and spectral phase
of two pulses need to be matched. That is why, matching the temporal offset between the
pulses is a necessity. Therefore, firstly the cavity has to be designed in a way that the optical
path length of the cavity n.s. matches an integer multiple & of the optical path length of

the oscillator syn,

NeSe = ksono (3.31)

with s, and s. being the physical length of the oscillator and cavity, respectively. If no
pulse-picking is carried out in the laser system prior the cavity, k£ would be unity, otherwise k
equals the picking factor. If, for example, the oscillator is operated at 80 MHz and the cavity
at 10 MHz, the pulse picker selects every 8th pulse resulting in £k = 8. Since enhancement
cavities are often embedded in vacuum chambers, the refractive index in the oscillator n, and
in the cavity n. might be different and have to be considered. Even such small deviations,
as the change between air and vacuum, are of paramount importance during the design as

easily seen in this short example for a 10 MHz-cavity

As— ¢ ¢ ez nan) g0 (3.32)

nvacfrep nairfrep B nairnvacfrep

This is the length change that needs to be compensated for in a formerly a matched cavity

after the transition to vacuum. Due to thermal drifts and vibrations, fluctuations of the
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optical-path length in oscillator and cavity occur permanently. An active stabilization of
the length of either one of them to the other is therefore crucial. The thereby required
error signal can be generated by numerous different methods (e.g. Hansch-Couillaud [82]
or Tilt-Locking [83]). However, Pound-Drever-Hall [84] was identified to deliver the most
reliable stabilization in earlier publications [46] and was therefore implemented in all cavities
presented in this thesis. The error signal needs to be asymmetrical, in order to be able to
conclude the correct direction for the compensating element in the optical setup. It can
be calculated, as depicted in Sec. A.4, which leads to error signals as shown in Figure 3.10.
Therein, it becomes obvious, that for higher finesse cavities the prominence of the error
signal decreases. This is important since in reality the signal shows some noise as well,
making distinguishing the signal from the noise increasingly difficult at a high finesse. The
relevant section for the loop controller is the small frequency range around the resonance,
which is, for small deviations, linear to the length change [85]. Typically, a conventional PID-
or PI2D-scheme is employed as a controller. The path length matching is often carried out
in two control loops. One loop with a small motion range makes up for fast fluctuations by
changing the oscillator length accordingly. These are mostly caused by mechanical vibrations.
A second, slower loop, compensates slow thermal or air-related drifts with a longer motion

range inside of the cavity.
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Figure 3.10.: (a) Reflected Power at the input coupling mirror of the cavity. (b) Phase of the
reflected signal. (c) Pound-Drever-Hall error signal for a varying reflectivity R of
the input-coupling mirror. All simulations where carried out for P, = 10W, L =
0.3%, and a central-wavelength of 1040 nm, as well as a cavity-length of 30 m and a
modulation-amplitude of 500 mV at a frequency of 704 kHz.The imperfect impedance
matching becomes apparent in a non-zero reflected field at the resonance frequency.

3.4.2. Impact of the Cavity Length

The oscillator stability and therefore the width of the comb-lines, limits the possible enhance-
ment in any cavity [46]. The possible enhancement scales proportional to the finesse. The
finesse, however, depends on the width of the comb-lines frwnm, given by the input signal
that is to be enhanced, and the free-spectral-range frsg of the cavity. As the free-spectral-
range shrinks for a longer cavity, it can be deduced, using Eq.3.10, that for the possible

enhancement, the following relation is valid:

o fFSR(S> — c ~ l (333)

- fFWHM S fFWHM S

V(s) ~ F(s)
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Figure 3.11.: Possible enhancement with the same oscillator for different cavity length.

Therefore, an oscillator that allowed for an enhancement of up to 1500 in a 5-m long cavity
only allows for an enhancement of 250 in a 30-m long cavity. However, at the same time the
required stabilization and adjustment accuracy scales also with the length of the resonator
and the enhancement. In other words, stabilizing a 30-m long cavity at an enhancement-
level of 250 is equally challenging, as stabilizing a 5-m long cavity at an enhancement level
of 1500. An additional difference, however is, that thermal drifts of the cavity length have
more impact in a longer cavity, increasing the difficulty to adjust a free-running long cavity
to the desired resonance before the lock can be initiated and increases the requirements on
the stabilization scheme. Furthermore, when the cavity is evacuated, a larger change of the
optical-path-length needs to be compensated by a remotely controlled stage (see Eq.3.32),
which also leads to a misalignment of the reflection angles in the cavity relative to the original
adjustment in air. This can only be partially compensated for, unless all cavity mirrors are
motorized, which is for practical reasons only possible in cavities with a low number of
mirrors. However, in order to still be able to extract pulses between subsequent round-trips

as described in Sec. 3.6, it is necessary to find a good compromise in terms of cavity length.
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Figure 3.12.: A section of an intracavity pulse train is shown. The N-th pulse is the one to be

extracted. Plotted are: the switching window ¢, the pulse-duration At, the rise-time
of the switch tse, the distance between two successive pulses T', the fall-time tgy
and duration of the switch-window At;.

Arguably the most critical part of the entire SnD cavity is the switch. It needs to suffice

a multitude of requirements. The most important demands on an ideal switch can be

summarized as:

High velocity It needs to be fast enough to switch as shown in Fig.3.12. While the
rising slope of the switch is limited in duration by the distance between two successive

pulses as
tise < T — 2At (3.34)

the requirements on the falling slope are more relaxed. A small number of blocked
pulses in the beginning of the build-up reduce the cavity efficiency only slightly and are
hence acceptable. The duration the switch needs to stay in the 'out-coupling position’

is given by the pulse duration itself as

ts > 2AL . (3.35)

Purely reflective Transmissive elements introduce significant losses, dispersion and
nonlinear effects. Due to the Fresnel-reflex on the surface, an anti-reflex-coating is
usually unavoidable. However, even the best available AR-coatings introduce residual
losses of around 0.25 % per surface (for A &~ 1 ym) [86], limiting the cavity finesse and
hence, the possible enhancement. Furthermore, absorption in the material itself and
in the coatings occurs, which will, at high powers, eventually lead to heating, beam

distortions and ultimately to the destruction of the switch.



Chapter 3. Enhancement Cavities 42

» Large aperture Even if the light is only reflected, a distribution of the beam over
a large area is desirable, in order to reduce thermal effects in the coating. This is,
however, a minor issue if the coatings are sophisticated enough to withstand the power-

densities.

The next section will explain a variety of switching techniques and briefly compare their up-

and downsides.

3.6. Switching Techniques

Some devices, such as AOMs and Pockels-Cells are commonly used in switching applications,
while others are less typical. In this section, the working principle of possible switching devices

and their advantages and disadvantages will briefly be discussed.

3.6.1. Pockels-Cell

Pockels-cells (PCs) [87] operate by rotating the polarization of the beam to allow for the
separation via a polarization dependent component. For cavity switching applications, espe-
cially in regenerative amplifiers, they are the most common choice. This is primarly since
they offer an extremely fast switching process at a relatively flexible aperture size. However,
they also introduce critical limitations, since the electro-optical materials used for Pockels-
cells, typically Beta barium borate (BBO) or Potassium titanyl phosphate (KTP), obtain a
low tolerance for peak power related and thermal effects. This can be partly compensated
for, by increasing the free aperture of the PC. However, this also increases complexity and
cost of the system, since the driver needs to supply higher voltages. The largest PCs have a
clear aperture of up to 10 - 10 mm? and need to be switched with a voltage of ~ 13.5kV to
distinguish pulses in pulse trains with a temporal separation of ~ 35ns [54]. Furthermore, a
polarization dependent optical component, such as a thin-film polarizer (TFP), is necessary,
in order to finally extract the pulse. This combination of Pockels-cell and TFP typically
introduces round-trip-losses of around 1% and thereby limits the possible enhancement and

the efficiency.
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3.6.2. Acousto-Optic Modulator

Acousto-Optic-Modulators (AOMs) [88] separate beams using an acoustically induced grating
to diffract a certain temporal fraction of a beam away from its original path, as shown in
Fig.3.13. AOMs have many applications reaching from the loss-modulation in Q-switch
resonators to the reduction of the pulse-repetition rate in most state-of-the-art ultrafast
laser systems. They can have rise-times in the ns-range and are easily implemented. Their

rise-time scales with the beam diameter d, in z-direction and the sound velocity v, as:
trise = 0.65d, /vys . (3.36)

Hence, to achieve rise-times below 100 ns, e.g. in fused silica with v,s = 5960 m/s, the beam-
diameter needs to be below 1 mm. This increases the intensity in the AOM and reduces the
pulse-peak power such devices can handle, leading to similar limiting effects in terms of
thermal and nonlinear effects, as described for the PC. This impact is described in greater
detail in Sec. 3.3.4.
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Figure 3.13.: Working principle of an acousto-optical-modulator as an optical switch in a cavity.

3.6.3. Electro-Optical Deflector

Similar to a Pockels-cell, in an electro-optical deflector (EOD) [89], the refraction index is
changed by applying a voltage. This leads to a change of the refraction angle, as depicted
in the setup in Fig.3.14. Such a device is potentially interesting for SnD, due to the short
distance the beam is propagating in the material, and the therefore small amount of nonlinear
and thermal effects. Furthermore, EODs can achieve fast switching times and offer large

apertures [90]. However, they also only introduce small separation angles, and the material
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needs to have a high non-linearity. The separation angle can be calculated via:

ANe = e —¢

— arcsin {(m + An) sin [2@ + arcsin <(n2 n An))] }

—arcsin {ngsin [204 + arcsin <smﬁ>] }
L)

In a typical example, using BBO with ny, = 1.655 (for A = 1pm [91]) as wedge material,
choosing a« = 5° and = 47° and assuming a typical refractive index change [89] of An =
1-107%, the resulting separation angle is only about 0.1 mrad. This equals a spatial separation
between the beam paths of around 1 mm after 10m. Due to the Gaussian propagation
behaviour, such a small separation is not sufficient to isolate the enhanced pulse. It is
noteworthy, that, while the separation angle does not depend on the thickness of the wedge,
a thicker wedge does result in an additional constant spatial offset ( between the beams. A

thicker wedge, however, also increases the negative impact of the wedge material.

Figure 3.14.: a.) Principle of a wedge-like electro-optical deflector with the following magnitudes:
n1- refractive index of surrounding medium. ns- refractive index of the EOD material,
An - refractive index change due to applied voltage, « - wedge angle and (3- angle of
incidence of the beam. The separation angle at the output is Ae = €3 — €.
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3.6.4. Piezoelectric Actuator Driven Mirror

Output

Figure 3.15.: a.) Possible implementation of a piezoelectric-driven mirror in an enhancement cavity.
b) Possible mounting types for a piezoelectric driven tilting mirror [92].

One solution to dump pulses from an enhancement cavity might be a simple mechanical
extraction via a fast tilting, deflecting mirror, as shown in Fig.3.15a. This option was
thoroughly investigated during this thesis and many calculations where carried out resulting
in a patent application [92]. While interesting for numerous applications, it is too slow for
an implementation in most SnD-cavities. This can be shown by some simple calculations.
To achieve a separation between the IC beam and the output beam of Az = 4 mm after a

distance of As = 4 m, a mirror of length 2y = 4 mm needs to be shifted by

Az
Asy = xmarctan(Az/As) =~ MR, ~4dpm.
S
Shifting one end of a mirror by Asy within ¢,;se would result in an acceleration of that mirror
part of

1
a= iAsM/t2

rise *

For a switching process within ;e = 100ns, the acceleration would be as high as a =
2108 %, leading to immense forces on the mirror segment. This does not even consider
the deceleration in order to be at rest during the entire pulse duration. If the piezoelectric
actuator could move that fast, it would still lead to an immense deformation of the mirror,
due to the limited speed of the ultrasound wave in the mirror plane, delivering the movement
of the piezoelectric actuator driven edge to the rest of the mirror surface. For the given

mirror segment, this would take

ov  0.004m

T 2R 670 3.37
Ves | 5960 " (3:37)
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which is roughly one order of magnitude slower than the necessary 100-ns limit. Hence, for

a 1-MHz cavity this would be acceptable.

There might be some room to reduce the acceleration by using multiple, tiltable mirrors or
optimizing beam size and separation angle, however, it will not be sufficient to overcome
these limitations. It becomes clear, that if a mechanical switch is going to be used, it needs

to move continuously to avoid high forces due to acceleration.

3.6.5. Interferometric Switches

Interferometric switches, such as classical Michelson-interferometers [93] or more complex
grating based designs [94], make use of interference effects to change the output port of
a device. A simple Michelson interferometer is an interferometric switch. While there are
different geometries, the demands on the switch are similar. It is usually necessary to shift a
mirror by \/2 or in advanced designs by A/4 in order to switch. For A\ &~ 1pum, this results
in similar accelerations as calculated for piezoelectric-driven mirrors in the last paragraph.
While the deformation of the mirror is not such a drastic influence in such a setup, the forces
to accelerate the mirror as fast as necessary exceed the possibilities of piezoelectric actuators

by far.

3.6.6. Frustrated Total Internal Reflection

If two elements, typically made of glass, with a higher refractive-index than the surrounding
medium were brought closely together, frustrated total internal reflection (FTIR) on the
touching surfaces could be achieved as depicted in Fig.3.16. However, in order to switch
with a contrast of 1:1000 between reflection and transmittance, the gap distance between the
elements has to be changed from at least 0.7\ to almost 0\ [95]. Hence, in terms of velocity

it is as challenging as the interferometric switches and also needs transmissive elements.

out
in in

to Cavity

Figure 3.16.: a) Example of an FTIR-setup in the 'closed’-position (allowing total-internal reflec-
tion) and b) FTIR-setup in the 'open’-position (frustrating total internal reflection).
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3.6.7. Phase-Shifted Input Pulse

Another concept for a switch, that does not need any element inside the cavity at all, can be
a phase-shifted input pulse. However, this leads to significantly different design requirements
on the cavity and eventually leads to a cascade of cavities instead of a single cavity. Thus,
this method is classified as a different temporal pulse combining scheme and as such it is
discussed in Sec. 2.3.3.

3.6.8. Conclusion

It can be concluded, that none of the available technologies suffices the high demands and
hence, to truly scoop the full potential of SnD, in the long-term, a novel switching technique
has to be introduced. Two potential candidates were investigated during this thesis and the

results of those experiments are presented in Chap. 5.



4. Stack-and-Dump Experiments

4.1. Experimental Setup

4.1.1. Oscillator

The employed bulk-oscillator was set up during the early work for this thesis and later op-
timized, thoroughly explained and analyzed in [96] and [97]. A simple scheme of the setup
is depicted in Fig.4.1. The 80-MHz oscillator relies on a diode-pumped Yb:KYW crystal
as gain-medium [98] and a saturable-absorber mirror (SAM) to allow for passive mode-
locking [99].

Dichroic ‘
Mirror \‘

CEO Contro| =

Pump Driver g
Rep.-rate Monitor 4—\%
Length Stabilization ey

Figure 4.1.: Setup of the Yb:KYW oscillator. Three of the resonator mirrors were curved (CM) to
control the beam size in the crystal and on the SAM. One of the mirrors was used to
compensate the intracavity dispersion (GTI). The two end mirrors of the linear resonator
were an output-coupler (OC) and a saturable-absorber mirror (SAM) mounted on a
piezoactuator (Piezo).

The oscillator offered the possibility to easily change its length by up to 2 pym via a small

piezoelectric actuator that allowed to move the SESAM, which acted as one of the end mir-

rors of the linear resonator. This enabled stabilization of fast fluctuations with frequencies

48
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up to ~1 kHz, while the slow drifts (a few Hz) were stabilized using a slow piezo with a large
maximum displacement within the enhancement cavity itself. The repetition rate was moni-
tored by a photodiode (PD), implemented behind one of the oscillator mirrors. Furthermore,
two fused-silica wedges were installed to discriminated s-polarization and therefore ensure
a linearly polarized output of the oscillator. Additionally, the wedges allowed to adjust the
carrier-envelope-offset (CEQO) during operation, by slightly changing the position of one of
the wedges. This in- or decreased the material-thickness the beam transits and therefore
changed the amount of the oscillators intracavity dispersion. This was not implemented as
a part of an active stabilization scheme, but allowed to manually fine-tune the CEO of the

oscillator to the one of the cavity during operation [100, 101].

4.1.2. Laser Amplifier System

The pulses delivered by the oscillator were sent through an AOM to enable adjusting the
repetition rate. Afterwards, a grating-stretcher was employed to stretch the pulses to a
duration of ~1.5ns (measured at the —5dB level of the maximum pulse intensity). A cas-
cade of Ytterbium-doped fiber-amplifiers completed by a photonic crystal fiber (PCF: [13])
in a so-called large-pitch (LPF: [17]) design were employed. LPFs are optimized to with-
stand high-peak powers due to a large core area that reduces nonlinearities. In such fibers,
'single-mode’ operation is ensured by gain-based discrimination of higher-order modes [?].
After amplification, the pulses had an energy of Ei, = 3 pJ at a repetition rate of 10 MHz
corresponding to an average power of P,, = 30 W, respectively. The pulses were spectrally
centered around Ay = 1038 nm and had a FWHM bandwidth of ~3nm. The spectrum is
depicted in Fig. 4.8b.
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4.1.3. Cavity
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Figure 4.2.: Schematic of the enhancement-cavity. PD represents the photodiodes, CAM the cam-
era and AOM the acousto-optic-modulator.

Figure 4.2 shows the entire laser system and cavity setup, including the monitoring section.
The 30-m long ring-cavity was set up in a bow-tie design to keep the incident angles close
to 0°. Two softly focused 'cavity-arms’ were generated by two curved mirrors with the
radius of curvature of R,12 = 13.7m, resulting in the beam caustic shown in Fig.4.3. A
telescope was used to match the spatial mode of the incoming beam to the fundamental-
mode of the EC, as described in section 3.2.4. This typically provided a measured overlap
of U = 80%, as defined in Eq.3.18. The EC consisted of one input coupling mirror (1,
R =99%) and 15 high-reflective (HR) mirrors (2-16). Two of the HR mirrors were curved
(4, 12) in order to form a stable resonator (see Fig.4.3). The z- and y-axis of the mirrors
10 and 11 were motorized to allow for readjustments while the cavity is evacuated. The
mirrors 8 and 9, which were plane for the steady-state experiment, were later replaced by
curved ones, once the AOM was inserted for the non-steady-state experiment (see Fig. 4.3).
The transmitted fraction of the beam behind mirrors 7 and 11 was sent to diagnostics, such
as a camera (CAM) and photodiodes (PD). PD1 is used to monitor the reflected signal,
while PD3 monitored the transmitted field. PD2, the photodiode behind the grating, was
used to generate an error-signal via the Pound-Drever-Hall stabilization scheme discussed in
Sec.3.4.1.
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Figure 4.3.: Cavity caustic for the steady-state experiment (red) and the non-steady-state experi-
ment (blue). The positions of the curved mirrors 4, 12 and 8, 9 (only for the non-steady-
state experiment) are indicated by vertical lines. The inset shows the transmitted beam
profile of the intracavity beam at an enhancement factor of 213 at the depicted position
(the camera-position marked in Fig. 4.2).

4.1.4. Monitoring

Zero-Crossing Error Signal (PD2)

Main Resonance\

™~

Oscillator Length Scan Voltage

Transmitted Signal (PD3) ‘Cyismatch
‘ ‘{ +\ -A | !
HOM |
\ Jh ol —y-

Figure 4.4.: Screenshot of typical oscillator traces as needed to adjust and monitor an enhancement
cavity during the length-scan of the oscillator.

There are two key devices when adjusting and monitoring an enhancement cavity. First,
a camera behind one of the cavity-mirrors, to adjust the spatial overlap and ensure the

enhancement of the fundamental mode. Second, an oscilloscope that allows to observe a
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life-feed of the levels of the transmitted signal behind one of the cavity mirrors, the reflected
signal at the input-coupler and the error-signal. Such an exemplary oscillator trace during
the so-called cavity-scan is shown in Fig.4.4. During the scanning mode, the oscillator
length is slowly modulated in order to make the resonances visible that occur when its
length is matched to the enhancement cavity. The pink signal shows the voltage of the
piezoelectric-actuator in the oscillator during this scan. The main resonance and two so-
called side-resonances are visible in the transmitted signal (red). Such side-resonances occur
when the oscillator is detuned by exactly one wavelength. It can therefore be concluded,
that, during the scan, the peak-to-peak oscillator-length change is roughly 2.5)\. The main
resonance is clearly higher than the side resonances and it is visible, that the 4+\-resonance
(the oscillator is longer than the cavity) is slightly stronger than the —\-resonance (the
oscillator is shorter than the cavity). This occurs if the CEO of the oscillator is not matched
to the cavity and can be optimized by moving the wedges in the oscillator, as depicted in
Fig.4.1. Ideally, this would have to be actively stabilized, but the effect is very small for
the pulse-durations in the herein presented experiments and, hence, an occasional manual
adjustment via the wedges turned out to be sufficient. On the contrary, minimizing the energy,
that is coupled into higher-order-modes (HOM), by optimizing the spatial cavity adjustment,
is of paramount importance. While still visible in this example, they only contain a small
amount of power. Naturally, when the cavity is in resonance, more power is coupled in and
the reflection decreases, which is visible in the reflected signal (blue). Also, close to the
resonances, error-signals as depicted in Fig. 3.10 can be observed (green). It is noteworthy,
that the photodiode for the reflected signal is much slower than the one for the transmitted
signal. Therefore, the depth of the dips does not deliver any information. However, when
the cavity is locked, the reflected signal can be used to calculate the coupling-parameter K

as discussed in Sec. 3.2.5.

4.2. Steady-state Operation

With this setup, an energy enhancement factor of V' = 213 was achieved during steady-
state operation, which corresponds to an intracavity average power of up to 6.4kW. The
enhanced pulses had an energy of 640 pJ. The fundamental mode profile was verified by
camera as shown in Fig. 4.3. The round-trip losses L within the cavity were estimated to be
0.22 % corresponding to average losses of 150 ppm and an average reflectivity of 99.985 %
per mirror, respectively. At the time, the power enhancement was thought to be limited by

the reflectivity of the input coupling (IC) mirror R = 99, which did not fulfill the impedance
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matching condition (R = 1 — L) necessary for optimum steady-state enhancement [39].
However, this was not the design paradigm, since the IC was chosen to allow for a comparison
to the upcoming non-steady state experiment. Here, a higher reflectivity would have been
disadvantageous, due to the additional losses induced by the AOM employed as a switching

device.

To verify if the reflectivity was truly the limitation, the steady-state experiment was later
repeated with an IC with R = 99.74%. Contrary to our expectations, this had detrimental
effects and the achievable enhancement, in the otherwise identical setup, was reduced to 186.
The explanation is rather obvious, considering that changing the reflectivity also increased
the cavity finesse from ~ 514 to ~ 1309 and therewith also the requirements on stability
of the oscillator and the lock. Hence, the actual limitation lies in the oscillator frequency
comb-lines. Those had the same bandwidth for both experiments. For a cavity with a higher
finesse, they were too broad compared to the bandwidth supported by the cavity. Therefore,
the limitation for the enhancement factor is given by them and cannot be improved further
without improving the oscillator first. This underlines the paramount importance of the
oscillator in enhancement cavity setups. However, since this experiment aimed on extracting
the enhanced pulses via an AOM, the losses were increased anyways, thus, reducing the

cavity finesse and remove this limitation for now.

4.3. Non-steady-state Operation

For the dumping of pulses from the EC, an AOM was employed because of its simple im-
plementation and fast switching times. The commercially available AOM (MQ80-A0.7-
L1030.1064) offered an active aperture with a diameter of 0.7 mm and had a thickness of
23.5mm. The rise time of the acoustic waves is specified with 110 ns/mm and therefore de-
pends on the diameter of the beam d. The facets were antireflection-coated for wavelengths
between 1030 and 1060 nm. The AOM introduced additional transmission losses of around
0.6 % and consequently increased the overall round-trip losses to L = 0.9%. This reduced
the achieved steady-state enhancement to about 90. The cavity caustic was modified with
respect to the steady-state experiment (see Fig. 4.3), in order to achieve an appropriate spot
size in the AOM. The plane cavity mirrors 8 and 9 were replaced by concave mirrors with
Rg9 = 1000 mm, to obtain a focus with an 1/e*-diameter of d = 0.3 mm within the AOM.
This led to negligible clipping losses while still providing a diffraction efficiency of around

Newt = 72 %. After adjusting the mode-matching telescope to the new caustic, the beam
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overlap was comparable to the steady-state case around U = 0.8. Dumping via the AOM was
triggered synchronously to the laser repetition frequency after an integer number of pulses,
employing a gate function just wide enough for a single pulse. Using a TTL-trigger signal
with the experimentally optimized duration of ~ 50 ns, single-pulse extraction was enabled.

The intracavity and output signals are shown exemplary in Fig. 4.5 for 100 stacked pulses.
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Figure 4.5.: Exemplary measurement of the entire pulse buildup within the EC using an AOM
with 72 % diffraction efficiency and a switching rate of 100 kHz or 100 stacked pulses,
respectively.

4.3.1. Variation of the Switching Rate

To systematically investigate the non-steady-state behaviour of the cavity with an AOM as a
switch, multiple measurements were carried out. The switching-rate was set to 100, 60, 30,
15 and 10 kHz to allow for a meaningful comparison to the theoretical prediction. Fig.4.6
shows a plot of the measured extracted enhancement and cavity efficiency over the number
of stacked pulses and the switching rate, respectively. At first, the theoretical predictions
made by the analytical approach, as shown in Eq.3.27 were added to the plot and also
presented in the corresponding publication [39]. Later on, the discovery that SPM already
has a significant influence at these parameters encouraged an additional comparison of those

results to the predictions by the numerical approach, as discussed in Sec. 3.2.2.
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Figure 4.6.: Extracted enhancement and cavity efficiency for various switching rates along with the
theoretical predictions, calculated numerically under consideration of SPM effects of in
the employed AOM and analytically using Eq. 3.27. The parameters for the calculations
were used as measured in the experiment. U = 85 %, Nswiteh = 72 %, R = 99% and
L=0.9%.

In agreement to both theoretical models, up to 333 stacked pulses, a smaller number of
stacked pulses led to a smaller extracted enhancement at a given input-coupler reflectivity.
However, from here on an additional effect was detectable. It is noticeable that from this
point on increasing the number of stacked pulses did not lead to improved values of extracted
enhancement or pulse energy, respectively. First it was thought, that this was solely due to
small uncertainties in the adjustment of the spatial and temporal overlap of the incoming
pulses with the cavity pulse, thus, explaining the deviations from the theory. This may
be caused by fluctuations of the spatial overlap between the cavity mode and the input
beam, temporal fluctuations of the lock and fluctuations of the pulse-to-pulse stability of
the oscillator. However, once SPM and dispersion inside the cavity were considered, a better
explanation was found. As described in Sec. 3.3.4, a higher number of stacked pulses increases
the influence of such effects, as it equals a higher number of average round-trips for the pulses.
Obviously, the difference between the 1st pulse and the Nth pulse increases for higher N.
Hence, considering SPM and the compensatory phase introduced by the stabilization scheme,
the numerical model delivers the plots shown in Fig. 4.6. This explains the saturation and
small decrease after ~ 500 pulses much better than the simple analytical model, neglecting
SPM. The AOM created a GVD of « 520 fs*and the air in the cavity was responsible for
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another «~ 490 fs?. This was mostly compensated by employing one GT| mirror that removed

«~ 1300 fs* GVD. Hence, all simulations neglected dispersive effects.

Another deviation from theory is visible at high switching-rates. The experimental perfor-
mance is worse than the predictions, noticeable especially at 100 kHz. This is most likely
caused by the stabilization of the oscillator to the cavity, which was slightly affected by the
dumping process. At higher switching rates, the dumping occasionally led to a collapse of the
lock, which most certainly decreased the measured output power and therefore the therefrom
calculated extracted enhancement. If a cavity operation is desired at such high switching-
rates, further optimization of the stabilization scheme may be advisable. This behaviour was
not observed below 60 kHz.

The measured efficiency showed a clear maximum for 100 stacked pulses, reaching 34 %.
When the number of stacked pulses was increased, a saturation of the enhancement set in
and as a result the efficiency dropped continuously. The efficiency as well as the extracted
enhancement may be further optimized by adapting the input-coupler reflectivity for each
switching-rate, as discussed in Sec. 3.3.2. For a given input-coupler reflectivity, the optimum
working point regarding the switching-rate depends on whether the highest pulse energy or

the highest efficiency is desired.

4.3.2. Characterization of the Output

A switching rate of 30 kHz offered the highest extracted enhancement of 65, corresponding
to an output pulse energy of 197 pJ. Fig. 5 shows the photodiode signal of the intracavity
pulses and one output pulse of the system during this measurement. Afterwards, the dumped
pulses were recompressed using a grating compressor with an efficiency of 80 % resulting in

an energy of 160 pJ.
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Figure 4.7.: Photodiode signals of the intracavity pulse (red) and of the output pulse (blue) for a
switching rate of 30 kHz, revealing the extraction of a single pulse. A fraction of the
pulse remains in the cavity due to the limited diffraction efficiency of the AOM.

Fig. 4.8 depicts a measurement of the auto-correlation and of the spectrum of the pulses.
Additionally, a reference auto-correlation (Fig.4.8a) was acquired in a single cavity-pass
setup without any input-coupling mirror and therefore without any enhancement. Using the
measured output spectrum and the spectral phase, the duration of the enhanced pulses was
estimated to around 800fs. This is only slightly longer than the input pulses, which is also
confirmed by the almost identical spectrum of the input and of the extracted pulses (see

Fig. 4.8b). According to Eq. 2.9, this corresponds to a pulse-peak power of around 190 MW.
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Figure 4.8.: a) Autocorrelation traces (AC) of a diffracted pulse in the single-pass setup (Oth order
of the AOM blocked) and of an extracted pulse during cavity operation. In the latter
the shape is slightly different and the AC duration increased from 0.99 to 1.04 ps. The
duration of the extracted pulse was estimated to be around 800fs. b) Spectrum of the
signal before the EC (blue), of the extracted pulse (red) and the spectrum predicted
by the simulation (orange). All spectra clearly show the hard-cut of the stretcher at
v 1036 nm.
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4.3.3. Limitations of the AOM as a Switch

As discussed in Sec. 3.3.4 and specifically shown in Fig. 3.8, a higher input energy leads to a
reduced enhancement as soon as the nonlinear effects caused by the AOM-material become
significant. For 3-pJ input energy and a similar spectrum Fig. 3.8 shows a visible reduction
of the possible enhancement. The influence is also observable in the difference between
the simulations based on the analytical and numerical model, as carried out for the specific
case of a switching-rate of 30 kHz. This is shown in Fig.4.6. The laser-system used for this
experiment was limited in terms of average power. Since further energy-scaling with an AOM
as a switch did not promise any improvements, no upgraded laser-system was set up for this
experiment and instead a different approach for energy scaling was evaluated by increasing

the cavity length.

4.4. Cavity Length Scaling

One possibility to reduce the nonlinear phases acquired in the AOM, is to increase the spot
size further, which leads to decreasing peak-intensities, as Eq. 2.22 shows. An improvement
could be achieved by creating elliptically shaped beam at the position of the AOM, thus, only
increase its size in the y-axis, perpendicular to the propagation direction of the ultrasound
waves in the AOM (see Fig. 3.13). The resulting peak intensity reduction would scale linearly
to the beam diameter expansion in that direction. A quadratic scaling could be achieved, if
the beam diameter in both axis d, and d, would be increased. However, this would also result
in a slower rise-time of the switching window, the AOM generates, since this scales linearly
with the size of active area in z-direction (see Eq.3.36). To allow for these slower rise-times,
the feasibility of cavities with a length beyond 30 m was investigated experimentally at the

example of a 2-MHz cavity.

4.4.1. Setup of a 2-MHz Cavity

Since the available vacuum chamber only offered a length of ~ 2m, but a cavity length of
150 m was to be covered, the cavity caustic needed to be folded ~ 70 times. Hence, to
keep the complexity of the adjustment process acceptable and optimize the stability, a multi-
pass-cell (MPC) needed to be introduced to the setup. The 10 MHz cavity was therefore
upgraded with a Herriott-type MPC [102] to add the missing optical-path-length. The MPC
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consisted of three 3-inch mirrors, two concave and one plane. Changing the distance dypc
between the curved mirrors either in- or decreased the number of round-trips in the MPC,
thus, in- or decreasing the entire cavity length. With a correctly chosen incident angle and
the distance between the two mirrors with a radius of curvature of Rypc = 4147 mm set to
dmpc = 3765 mm, it was possible to create the beam pattern shown in Fig.4.9. The plane
3-inch mirror was used to fold the MPC.

Mirror 1 Mirror 2

Figure 4.9.: Reflection pattern on the two curved mirrors of the multi-pass-cell. The Oth and 34th
spot were reflected on a small mirror-segment, that was placed in front of the first
curved mirror to allow coupling of the beam in and out of the multi-pass-cell.

The employed driving laser system was almost identical to the one in Fig. 4.2. Only the pulse
repetition rate was reduced from 80 MHz as delivered by the oscillator down to 2 MHz to
match the cavity. The cavity, however, was heavily modified to include the MPC as depicted
in the setup scheme of the 2-MHz cavity in Fig. 4.10.
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Figure 4.10.: Setup of the 2-MHz enhancement cavity. Mirror 3 and 7 are the same curved mirrors
with R37 = 13.7m from the 10-MHz setup in Fig. 4.2. Mirrors 2 and 9 are curved
with Rz 9 = 10 m to create the focus for the AOM. BS represents the cameras for the
spatial beam stabilization of the incoming beam. A large stage is used to adjust the
number of round-trips in the MPC, while a small stage is needed to make up for the
change in optical path length after the transition to vacuum operation. The z- and
y-axis of the mirrors 10 and 11 are motorized.

The cavity caustic including the MPC is shown in Fig.4.11. The spot at the envisaged AOM
position was increased to a diameter of ~ 1.3 mm, more than four times larger compared
to the 10-MHz setup. However, in the first step, the cavity was setup without an AOM
included to evaluate its steady-state behaviour. This experimental step was expected to
be straight-forward but could not be carried out as planned. The next section will discuss

possible reasons for that.
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Figure 4.11.: Caustic of the 150-m long, 2-MHz enhancement cavity.
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4.4.2. Discussion

Even after careful matching of the incoming beam to the calculated requirements, it was not
possible to achieve a caustic that matched the simulations. The cavity caustic was changed
multiple times, shortened or stretched, looking for a stable caustic. The beam parameters,
however, could never be reproduced after one round-trip, thus, eventually leading to an
explosion of the beam radius up to a point were the cavity mirrors could no longer fit it
anymore and severe clipping occurred. Various reasons can be responsible for this undesirable

behaviour.

» Variations of the incoming Beam: The incoming beam might be the problem.
Variations of the radius and curvature from the envisaged values have a growing impact
for longer resonators leading to a growing mismatch of the beam parameters after every

round-trip.

» Caustic Sensitivity: In longer resonators, particularly angular deviations lead to in-
creasing instabilities, due to alignment errors and thermal influences [103]. Hence,
another explanation for the deviation of the caustic might be a sensible resonator

design and particularly the design of the multi-pass-cell.

= Surface Distortions on Mirrors: Small distortions of the surface of the large MPC-
mirrors might become significant, due to the large number of reflections over their
surfaces. Thus, even usually negligible wave-front distortions, as induced by such a
mirror surface, may eventually lead to large beam deformations over time. Furthermore,
since mostly the outer sections of the mirror are used for reflection, the curvature may
deviate slightly from point to point resulting in an overall deformation of the beam
after a high number of reflections.

No stable 2-MHz cavity could be set up. Achieving a large number of round-trips, in a cavity
design folded that often, is more challenging than anticipated. The employed optics need to

be very carefully designed and chosen.

4.5. Energy Scaling

Even though further energy-scaling with an AOM is not feasible and longer cavities do
not seem to be a promising alternative either, there are promising switching techniques as
thoroughly discussed in Chap.5, which could allow to further scale the output energy of a

10-MHz cavity. Hence, the first step towards such improved systems was to increase the
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intracavity pulse energy to evaluate the energy-scaling limitations of the enhancement cavity
itself in a completely passive and steady-state configuration. This can be done by increasing
either the enhancement factor or the input energy. Since the enhancement factor was limited
as discussed in Sec. 4.2 and a higher enhancement generally increases the effort that needs
to be put into adjusting and stabilizing the cavity, the more promising approach was to scale
the input energy. Fortunately, fs-laser systems with the highest average powers were available

to be implemented for this experiment.

4.5.1. Upgrading the Laser System

In order to increase the available energy of the input pulses, the entire pre- and main-
amplifier section was changed to deliver up to 100pJ at 10 MHz and 1kW, respectively.
The main amplifier stage consisted of 8 parallel fiber amplifiers and is explained in detail
in [37]. However, the seed was delivered by the same bulk oscillator as before. The pulses
were stretched to a duration of ~ 1.5 ns centered at ~ 1038 nm using the same stretcher as

before.

4.5.2. Modifying the Setup for High-Power Operation

In order to handle the extremely high average powers during the enhancement, the entire
cavity needed an overhaul. First of all, the beam path was improved in a way that any
residual reflexes from AR-coated lenses or transmitted beams behind HR-coated mirrors
could be dumped properly. Furthermore, the dump of the reflected signal port was enlarged
and added to the cooling circuit. In front of every cavity mirror, a aperture of the mirror size
was placed, so that any stray-light or clipped parts of the beam would not be heating the
mirror mounts (see Fig.4.12). Additionally, the operation of the cavity at such high power
levels should only be done in vacuum, as otherwise dust would burn on the mirrors. Hence,
the adjustments were carried out at low power levels (~ 1W input power) in air, before
the chamber was evacuated (to a residual pressure of ~ 0.4 mbar) and the input-power was

increased further.
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Figure 4.12.: Schematic of the enhancement-cavity. PD stands for photodiodes and CAM for the
camera. The mirrors with ULE-substrates are depicted in green.
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Since no AOM was to be included this time, the cavity was set-up to have a symmetric caustic
(see Fig.4.13), close to the stability center. This minimizes the effects of thermal lenses on
the mode size, thus enabling a more reliable high-power operation. Besides two curved
mirrors with R4 12 = 13.7m and the input coupling mirror with a reflectivity of R = 99 %,
only plane mirrors with HR-coatings were employed. The beams transmitted through mirrors
9 and 15 are sent to diagnostics, such as a camera (CAM) and photodiodes (PD), analog
to Fig. 4.2. To minimize thermal effects on the cavity caustic, it can be extremely beneficial
to use ultra-low-expansion (ULE) substrates instead of fused-silica (FS) [38]. A thermally
optimized setup would have consisted of only ULE-substrates and an input-coupler, made of
sapphire or FS. However, no curved ULE-substrates were available to us and, therefore, the
best mixture and positioning of the mirrors was simulated with the goal to keep the influence
of the thermal deformations on the beam profile as low as possible, while embedding the
FS mirrors into the design. This was done numerically using the code from [38]. The best
solution was to use one further FS mirror, in addition to the input-coupler and the two curved
mirrors, and arrange them symmetrically, as shown in Fig. 4.12. Most ULE mirrors were
optimized for low-absorption and had a specified reflectivity of R = 99.95%. However, due
to limited availability, some with R = 99.997 % and consequently higher absorption had to
be used as well. All of these ULE mirrors were supplied by Manufacturer A (A). The two
curved (4,12) and the additional plane (9) FS-mirror were manufactured by Manufacturer B
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Figure 4.13.: Cavity caustic of the setup optimized for high average powers. The inset shows the

transmitted beam profile of the intracavity beam at an enhancement factor of 121 at
the depicted position (at the camera-position marked in Fig. 4.12).

4.5.3. Results
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Figure 4.14.: Measured spectra of the input beam and the enhanced beam and the calculated
spectrum for V = 121, assuming a residual dispersion of 400fs? due to the cavity
mirrors.

When seeding 239 W into the cavity, this setup allowed for an enhancement factor of V' =
121, leading to an intracavity average power of up to 28.8 kW and hence an energy of the
circulating pulses of 2.88 mJ. This is the highest pulse-energy, ever created in a femtosecond
enhancement cavity. The round-trip losses L within the cavity were estimated to be 0.57 %.
The overlap was U = 74.2 %, therefore, the theoretically possible enhancement was 163. The
enhancement is slightly lower than what was achieved in the earlier experiments, as presented

in [39]. This is the case, as the mirrors were mostly changed from the ones optimized for
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highest reflection (R > 99.99 %) to mirrors with R ~ 99.95 %, optimized for high-power
performance. The spectrum of the enhanced beam looked almost identical to the input
spectrum. It was only marginally narrower, which can be explained by residual intracavity
dispersion, as the simulations shown in Fig. 4.14 underline. For these simulations, a GDD of
400 fs* per round-trip was assumed, which leads to the measured spectral narrowing and also
partly explains the imperfect overlap U. Such an amount of GDD can easily occur, if the 16
mirrors each add 25fs? in average. In a good agreement to that, the GDD of the employed
mirrors was specified with ~20fs®>. One could certainly optimize this further by adding a
special mirror to compensate for the occurring amount of GDD. However, it did not cause
a limitation to this experiment at the time. The actual limitations were much more severe

and an attempt of an explanation will be given in the next section.

4.5.4. Limitations

a - Manufacturer C
b - Manufacturer A - 99.95%
¢ - Manufacturer A - 99.997%
d - Manufacturer B

e - Manufacturer B

—
200 pym

Figure 4.15.: Light microscope images of the damaged spots on different mirrors.

The available input power was as high as 1kW. Since only 239 W were being used, it is
noticeable, that the limiting factors were neither the input power, nor the losses. At average
intracavity powers above 20 kW, mirror damage occurred repeatedly. The damage happened
instantly when locking the cavity and was noticeable due to an immediate decline of the
intracavity power level and corresponding rise of the reflected power level. The damaged

mirrors could be spotted with an IR-viewer due to a significant increase in the amount of
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scattered light. At first the mirrors from A with a specified reflectivity of 99.997 % were
damaged repeatedly, so it was thought that the problem was the specific coating and all the
effected mirrors were removed and replaced by mirrors from B. At this point, the design
considerations concerning the minimization of the mode expansion due to thermal issues
were discarded, as they would not be an issue at this average power level and at this time
no other HR-coated ULE substrates were available. However, most B-mirrors also failed at
around 24 kW, at the same point, were some mirrors supplied by a third manufacturer (C)
got destroyed. Beyond 30-kW of intracavity power, even the A-mirrors with R = 99.95%

were destroyed and the experiment was halted.

Fig.4.15 shows some microscopic images of the affected surfaces. The varying pattern of
the damaged surface did not help identifying the source of the damage. At times it looked
molten, however, this may as well have happened after the original damage occurred and led
to a locally higher absorption. The reason for the damage is therefore a puzzling question.
As mentioned earlier, the highest achieved intracavity average power in a comparable cavity
so far was 670 KW by Carstens et al. [29]. They enhanced 10-ps pulses in a 250-MHz cavity.
Tab. 4.1 shows a comparison of the parameters achieved in that experiment and the ones
presented herein. The mirrors Carstens et al. employed, were the same type of mirrors from
A with R = 99.95 % as used for the results presented in this thesis. They were produced via
ion beam sputtering [104], which typically produces the coatings with the best high-power
durability. Generally, the reasons for damaged mirrors can be manifold. A brief overview
of possible reasons is given in the upcoming section, to evaluate the cause of the observed

destruction.
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Carstens et al. Breitkopf et al.

Pulse Duration /ns 0.01 1.5

repetition rate /MHz 250 10

Average Power /KW 670 29

Pulse Energy /mJ 2.7 2.9

Pulse peak power /MW 250 1.8

Min. Spot Diameter on Mirror /mm 6 2.9

Max. Average Power Density /W /cm? 240 44

Max. Peak Intensity /MW /cm? 1800 55
Max. Energy Density /J/cm? 0.0095 0.044

Table 4.1.: Key parameters for both experiments. Carstens et al. did use mirrors with the same
specifications as the employed mirrors from A with R = 99.95% .

LIDT  The laser-induced damage-threshold (LIDT) is typically given as either a power
density (W/cm?) or more commonly energy density (J/cm?) and depends heavily on the
wavelength as well as the pulse-duration and -shape and the spatial beam-profile. However,
at this wavelength and with ion beam sputtered coatings, typical LIDT are in the range of 10
to 40 J/cm? [105], orders of magnitudes higher than determined in both experiments.. The
question arises, if the apparently reduced LIDT in the presented experiment can be explained
by any known scaling mechanism and under consideration of the different parameter sets of
both experiments. Generally, it increases for longer pulses. More specifically, above a certain
pulse-duration, it scales approximately proportional to the square-root of the pulse duration
LIDT ~ v/At. For A ~ 1050 nm, this threshold happens to be at ~ 20 ps for many surface
materials as depicted in Fig. 4.16 [106,107].



Chapter 4. Stack-and-Dump Experiments 68

50 T T T T TTTTTTT
- Carstens et al.
g 20f
o
3
o 10|
b r
S I N ]
= 51 calcium |
@ fluoride
g | ]
(]
s | . Breitkopf et al.|
[ reitkopf et al.
° 2 ” ot p\;
1 L N ST aa gl e
0.1 1 10 100 1000

Pulse width At /ps

Figure 4.16.: Observed values of damage threshold at 1053 nm for fused silica and CaFs. Solid

black lines are v/ At fits to long pulse results. Red lines show the pulse durations of
the two compared experiments (taken from [107]).

As a result, the LIDT in the herein presented experiment should be ~ 12 times higher
compared to Carstens et al., while the actually occurring energy densities were only 4 times
higher. Furthermore, it is known, that higher repetition rates decrease the damage-threshold
[108]. This effect should also act to the benefit of the herein presented experiment, since the
repetition rate in Carstens et al. was 25-times higher. No scaling mechanism can explain why
damage should occur three orders of magnitude below typical damage thresholds in these
coating materials. Furthermore, it is particularly peculiar, that this experiment was damage
limited, while Carstens et al. were not. Therefore, it can be concluded, that the usual

laser-induced-damage mechanism is most likely not the reason for the destroyed mirrors.

Outgassing Contamination of the mirror surfaces can lead to a strongly reduced damage
threshold of the coating materials. In air, small dust particles can create absorption centers,
leading to heating and hence destruction of the affected spot. In vacuum, there are similar
mechanisms with comparable effects. On one hand, slower heat conduction away from the
mirror substrates can greatly reduce the amount of average power a mirror is capable of
handling [109]. On the other hand, out-gassing of particles from any source in the vacuum
chamber can create layers of gas molecules on the surfaces inside the cavity, again leading to
higher absorption [110]. Both experiments were carried out in vacuum. For this experiment a
pressure of 0.4 mbar was sufficient to eliminate dispersion and scattering losses. Therefore, no

components designed especially for ultra-high vacuum operation were used. This, however,
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means, that out-gassing will have occurred to some extent, which might lead to damage
of mirrors that have been in the chamber long enough to be effected. Nevertheless, some
out-of-the-box mirrors got damaged during the experiment only a few minutes after they
were placed in the cavity. It is very uncommon for out-gassing effects to occur after such a
short time [109].

Coating Production Process The production of HR mirrors is extremely sensible to the
the cleanliness of the production facilities since parasitic particles could be imprinted in the
coating. Therefore, the quality of the coatings can vary between different production charges.
The employed 99.95 % mirrors from Manufacturer A were coated in 'full-charges’. According
to a representative from A, this can lead to a higher number of defects in the coating and the
specified cleanliness is not guaranteed. The other mirrors were not specified for such high-
powers, hence it might well be, that the replacement of all mirrors with cleaner ones with
specified low defect-densities and optimized high-power capability, can lead to significantly

higher intracavity powers before any damage occurs.

Unfortunately, no definite conclusion can be obtained from the high energy experiment. The
mechanism that led to the unexpectedly early damage remains ambiguous. But independent
of the damage source, it is fair to say to say that it could be fixable, i.e. by employing cleaner

coatings or a better vacuum environment.



5. Evaluation of Novel Switches

5.1. Chopper Wheel

For the following section it is important to understand, that the design paradigm of the entire
enhancement cavity setup was strongly influenced by the particle acceleration community
and, especially, by the design proposals of Leemans et al. [5]. Hence, the design approach
aimed for a 15 kHz output. The concept can however be easily adopted for different rotation

frequencies and becomes even more feasible for output repetition rates < 15 kHz.

5.1.1. Working Principle

(N-1)th a

Figure 5.1.: Concept of a chopper-wheel employed as a pulse dumper for cavity enhancement. When
a mirror, attached along the circumference of the chopper wheel, interrupts the optical
path, the pulse is coupled out. There is no interaction with the cavity until the desired
pulse energy has been built up. (b) Top view on the grazing-incidence reflection of the
elliptically shaped beam spot on one of the mirror-segments. dy is the width of the
cavity beam in the x direction.

As described in [28], adopting a chopper wheel from those used for energy or polarization
selection in particle beams [111], may result in a device capable of acting as a switch for
SnD. The envisaged wheel has mirrors attached to its lateral facet and rotates in the vacuum

chamber next to the cavity beam. For (N — 1) round-trips, while the enhanced pulse builds

70
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up in the cavity, the wheel does not interact with the beam. When N pulses are stacked, the
enhanced pulse is coupled out by a mirror attached to the wheel, which crosses the optical
path of the beam. A schematic setup of this switch is depicted in Fig.5.1. The required
diameter of the chopper wheel d. scales with the size of the beam d,, the number of round-
trips between two out-coupling events N and the number of mirrors attached to the wheel
nm. Assuming that a spatial seperation between the individual round-trips of 2d, is sufficient
to prevent significant clipping of the beam, the relation can be expressed as

2d, Nnp,
> .

d. > (5.1)

T
This approximation is only valid for wd. > d, or, in other words, when the curvature of
the disc can be neglected compared to the small beam diameter. It is further important to
understand, that n,, also represents the scaling of the switching rate. If the output is to be
created with a 15-kHz repetition rate, the wheel would have to rotate with 15 kHz, unless
multiple mirrors are attached to it. Commercially available chopper wheels as presented
in [111] have diameters of 30cm and rotate at up to fo« = 1kHz. Hence, assuming a
10-MHz cavity and 666 stacked pulses, 15 mirrors need to be attached to the wheel, in order
to extract the pulses at 15 kHz. This is described by

f rep
N

Since such a design would require d, ~ 50 pm, the reflecting area has to be very narrow,

(5.2)

fswitch - nmfrot -

in order to interact only during the 666th round-trip without disturbing the previous one.
Fortunately, such thin mirrors are not necessary. If the mirror is broader and blocks the
subsequent pulses, either a specially designed burst-mode laser input [81] could be employed,
or the first few pulses in each stacking period are discarded, resulting in only a slight reduction
of the efficiency (see Fig.3.12). The peak intensities can be kept low, by shaping the beam
elliptically at this position in the cavity caustic to increase the beam size. Additionally,
by using the mirror under grazing incidence, the small beam diameter in the x-direction is
projected on the large mirror surface (Fig. 5.1b) and the peak intensities are further reduced.
Similarly to the cavity and the laser oscillator, the rotation frequency of the chopper wheel
has to be stabilized and synchronized to an external clock. However, due to their high
mass and the corresponding moment of inertia as well as their purely magnetic mounting,
state-of-the-art chopper wheels typically possess only a slow timing jitter and a high stability
of the rotation axis guaranteeing stable output-beam parameters (energy and pointing).

The pointing stability is eventually limited by the positioning of the mirror segments on the
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chopper wheel. This needs to be optimized during manufacturing, which is highly challenging.
As a result, however, the largest deviations reoccur periodically with 15 kHz and can therefore
be stabilized by an active beam stabilization mechanism that can be readily implemented after
the output of the cavity. The mechanical vibrations introduced by the chopper wheel on the
system are expected to be comparable to those of turbo-molecular vacuum pumps employed

in standard cavity enhancement setups and, thus, uncritical for the optical alignment.

5.1.2. Fundamental Design Requirements

For an optimal implementation, the chopper wheel would have to meet three fundamental

design criteria.

= Rotation speed and size: The wheel should rotate as fast as possible with the chosen

size. This will be ultimately limited by the forces, that the disc-material can withstand.

» Phase errors: The rotation frequency needs to be sufficiently stable, to allow repro-

ducible out-coupling of the pulses.

» Exchangeable mirrors: For a feasible implementation, the mirrors on the disc need
to be replaceable. Otherwise, every mirror damage would require an entire new disc,

resulting in substantial costs and effort.

Those design criteria were the basis of a feasibility study, carried out in order to evaluate the

possibility to implement such a chopper wheel as a switch.

5.1.3. Brief Results of the Feasibility Study

The chopper wheel, as presented in [111], was originally built to select certain particles in a
particle beam depending on their polarization or energy. Therefore, it had slits with a fixed
position implemented at the outer end of the disc. This is much easier to realize, then adding
an exchangeable, reflecting mirror to it. Hence, additional tests were necessary, in order
to evaluate the feasibility of this concept. Additional studies were carried out by project-
collaborators at the Central Institute for Engineering, Electronics and Analytics in Jiilich,
who also developed those choppers originally. They not only simulated the wheel's stress
limits during rotation for different materials, but also realized numerical and experimental
investigations of different ways to mount the mirrors. While the IAP developed the idea
to use a chopper wheel as a switch, the experiments and simulations require an expertise

and equipment not available to the IAP. They were therefore carried out entirely by the
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collaborators in Jilich. However, as the results are not published anywhere, and can therefore

not be referenced to, the outcome will briefly be presented for further discussions.

5.1.3.1. Rotation speed and size

The chopper presented in [111] was already limited by the tearing strength of the material.
Higher speeds are therefore not possible at such diameters. A diameter of 30cm at 1 kHz
is hence the limit and only possible in the most advanced designs with an optimized mass
distribution of the disc (see Fig.5.2). Of course, if the diameter was reduced, the rotation
frequency could be increased, but for the implementation as a switch this would not be

beneficial.
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Figure 5.2.: Cross section of the chopper and the occurring stress at a rotation frequency of 1 kHz.

5.1.3.2. Phase errors

The phase errors of a reference disc were measured to be +1ns over 10 minutes during
rotation at 1 kHz or 1 ppm (part-per-million), respectively. This equals a placement error of
~ 1 pm. Which would be tolerable for the proposed design. The larger error, however, occurs
due to the placement of the mirrors on the discs outer surface. This misplacement error can
be as high as £10 pm. This would have to be compensated for by a smaller beam diameter
dy and consequently increased intensities on the mirror surface. While this is undesirable, it

remains possible.

5.1.3.3. Exchangeable mirrors

Implementing the exchangeable mirrors is the most critical issue of the design study, as this
is a fundamental modification from the original wheel design. Creating a connection that is
sufficiently stable to withstand the extreme centrifugal forces, but at the same time allows to
exchange the mirrors easily, states a contradictory design requirement. Hence, compromises
have to be made. Three different connection-types are possible: plug connection (e.g. dove

tail), soldering or glueing, as depicted in Fig.5.3.
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Figure 5.3.: a) Schematic and stress simulation of plug connection. b) Schematic and stress simu-
lation of glued or soldered design. c) stress simulation of chopper design with stronger
outer ring to hold mirrors.

The dove tail configuration was optimized to minimize the mechanic stress on the connecting
surface between disc and mirror. However, in any configuration the peak pressure would be
at least 1.8 GPa, too high for the material to withstand. A reduction of the mirror mass
or rotation frequency would be required. Furthermore, a thickness of ~10 mm at the outer
surface of the disc in order to provide room for the desired reflective surface, leads to a mass
distribution of the chopper, that is unbearable for the mounting. Hence, for the soldered
and glued approaches, the disc was changed to have a thick outer ring (see Fig.5.3c) but
otherwise similar mass distribution, as shown in Fig.5.2. As a transmissive material for the
mirror, only sapphire and diamond are possible, since for fused silica, the occurring centrifugal
forces are higher than its tearing strength. However, as experiments showed, neither soldering
or gluing are strong enough to hold a mirror of the proposed size at the proposed rotation

speeds. All three concepts are of by a factor of ~ 2, not including any security margins.

5.1.3.4. Conclusion on Chopper Wheels as Switching Devices

While the realization of a chopper wheel with the given parameters is not possible, it is at the
same time not that far off. Most limitations are only exceeded by a factor of 2 to 3. Hence,
in a smaller version it might be implementable. However, in that case it is also less appearing
since the requirements on the cavity design would grow and other problems would still remain.
For example, the price tag of around 500 k€ makes it too expensive for most applications.
Furthermore, adjusting and maintaining the device would be extremely complicated. The
mounting does not allow for an exchange of the wheel without careful counterbalancing.
This takes a lot of time and effort and also requires a specially trained engineer. However,

thinking about the design of such a chopper wheel led to an extremely promising idea for a



Chapter 5. Evaluation of Novel Switches 75

modification of the chopper-wheel approach [112], which will be presented and thoroughly

evaluated in the next section.

5.2. Rotating Cavity Caustic

5.2.1. Concept

Figure 5.4.: a) Working principle of a stack-and-dump cavity. b) An ultra-fast rotor can, correctly
implemented, serve as a switch. c) Front view on one of the curved mirrors, including
the small mirror segment to extract the Nth pulse from the cavity. OC: Output-
coupling mirror, IC: input-coupling-mirror, HR: highly-reflective mirror.

The key change of this approach in comparison to the chopper wheel is, that instead of
rotating the mirror, which deflects the desired round-trip out of the cavity, the cavity caustic
is rotated, while the mirror (OC) is fixed (see Fig.5.4). To achieve this behaviour, the rotor
and two large, curved mirrors with a hole in their center are embedded in the SnD cavity.
Every round-trip inside the cavity is now rotated via the mirror mounted on the rotor and,
thus, hits a different spot on the curved mirrors on both sides of the rotor. This allows to
spatially separate the individual round-trips from one another. In the path of the the Nth

round-trip, an output-coupling mirror is embedded, thus, extracting the enhanced pulse [112].

This setup reduces the requirements on the rotor significantly, since it can be a lot smaller.
Such drives with a rotor size of ~1 cm can currently run at rotation frequencies up to 8.3 kHz
[113] with room for further improvement [114]. Like the chopper wheel approach, it is not
only interesting for SnD, but also for the much broader field of regenerative amplifiers. On
the downside, since not only the Nth, but every round-trip interacts with the rotating mirror,

thereby generating a 'rotating cavity caustic’, the rotation must be extremely stable. Hence,
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the acquisition of data concerning the velocity and pointing errors of such a device was highly
desirable. Precise measurements of these properties at ultra-high velocities have not been
published before. Publications of measurements at slower rotation frequencies suggest that
the relative velocity error can be well below 0.02% at ~ 67Hz and above [115]. Since this
idea arose only recently and the design of the rotor itself would have to be overhauled, it was
not possible to implement it as suggested. However, a prototype of a rotor was available, that
allowed to measure the velocity and pointing errors in a simple setup, in order to evaluate
the feasibility of the concept for future implementation. The results will be presented in the

remaining sections of this chapter. The technical details of the rotor can be found in [40].

5.2.2. Influence of Velocity and Pointing Errors

Velocity Pointing

Figure 5.5.: Influence of velocity and asynchronous pointing errors on the position of the Nth
round-trip on the out-coupling mirror.

Velocity Errors (Rotation Period Errors) The rotation period jitter At of the revolution
n is defined as the deviation of the rotation period ¢,, from the average rotation period t,,.
It influences the position of the beam during the round-trip. If the deviation is too large,
the outcoupling mirror (OC) might be missed. Smaller deviations can be counteracted by an
increased mirror size or reduced beam radius on the output mirror. This deviation occurs in
the direction of the rotation, as shown in Fig.5.5. Assuming, that the separation between
two subsequent pulses p must be at least 4w with w being the beam diameter in the plane of
the output-mirror, we can define a relative deviation of Ap/p = 0.1 as the highest tolerable
error, in order to still have a sufficient overlap with the OC. Hence, using t,,; ~ Np, the

relative error of the rotation period can be calculated as

At A
2t _ o (5.3)
tavg PN

The currently commercially available rotors rotate at up to 5kHz. In a 10-MHz cavity,

this results in N = 2000. The relative velocity error is therefore allowed to be up to
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At/tag = 50ppm. For t,ys = 1/ fior = 200 ps which leads to an absolute velocity error of
At = 10ns. This is the maximum time the rotation period is allowed to deviate between
two round-trips and still enable undisturbed build-up and extraction of the enhanced beam.
While this is valid for fast, jitter-like disturbances, changes over a longer time period can
be potentially compensated for, by adjusting the cavity length. Larger long term drifts may

therefore be tolerated.

Pointing errors Pointing errors can be distinguished in synchronous and asynchronous
pointing errors. Synchronous pointing errors occur periodically and are synchronized to the
current rotor position. Asynchronous errors lead to a different reflection angle at the same
rotor position depending on the round-trip. In the worst case, they can even be entirely
chaotic. Both have an impact when applying a rotor as a switch for enhanced pulses. If
the pointing deviates asynchronous to the rotation, this can result in a varying position
of the beam on the OC after each round-trip. Contrary to the velocity errors, the hereby
caused deviation can be unidirectional, as depicted in Fig.5.5. The tolerable amount of
such pointing errors, is harder to estimated than the impact of velocity errors but a good
explanation is given by Lilienfein at al. using the Fox-Li algorithm [116]. According to this
paper, a synchronous pointing jitter of up to 10 um is acceptable in order to only lose 14 %
of efficiency and enhancement, respectively, due to a slightly decreased spatial overlap of the
beam [112].

Since a vast amount of data points were measured to acquire data on the pointing stability
and velocity errors for different scenarios, it is important to go into the details of the data
analysis to understand the method. However, the results in regard to the usage as a cavity
switch are briefly summarized and discussed in Sec. 5.2.5. Reading this section will also

suffice to understand the conclusion.

5.2.3. Velocity Error Measurements

To allow for meaningful statements, it was necessary to measure the jitter of every revolution
over a certain number of subsequent revolutions with a relative accuracy of At/t,, <
50 ppm. In order to measure such small deviations with a simple optical setup, a continuous-
wave laser (1064 nm central wavelength), the metal rotor with a polished surface, and a fast

photodiode sufficed, as shown in Fig.5.6.
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Figure 5.6.: Measurement setup consisting of a cw-laser (LS — Non-planar Ring Oscillator, A =
1064 nm), the rotor, a photodiode (PD) and an oscilloscope [40].

The laser beam reflected from the polished facet of the rotor hit the photodiode (PD) at a
distance s = 2m from the rotor once during every rotation period. For the measurements
in vacuum the motor was placed in a vacuum chamber with a residual pressure of around
0.7 mbar, while the light source and detectors remained in an air environment. For these
measurements, the distance was increased to s = 3 m. The oscilloscope acquires a trace, con-
taining the signal from a certain number of revolutions (Fig.5.7a). For the measurements in
air, the oscilloscope saved traces of up to 16-10° samples at rates of up to 30-10% samples/s.
This was further optimized for the later carried out measurements in vacuum, allowing to
acquire up to 64 - 10%samples. To record as many revolutions as possible, without compro-
mising the measurement accuracy, the varying sample rates were chosen to achieve between
0.2-10% and 3 - 10° samples per revolution. The resulting time traces contained between 16
and 50 revolutions for the measurements in air, and between 20 and 320 revolutions for the
vacuum measurements. The longer traces give better information about slow fluctuations,
while the shorter traces offer a higher temporal resolution, which is particularly useful for the
fast rotation speeds. Before extraction of the rotation periods from the acquired oscilloscope

traces, two processing steps were carried out (Fig.5.7).
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Figure 5.7.: Post-processing of the acquired traces, permitting to accurately calculate the time delay
between the round-trips. The main goal is to remove the temporal error §t otherwise
occurring when the trace is directly used without any post-processing [40].

First, the signal was filtered, employing a low-pass Fourier-filter with a hard-cut at 10 MHz
to eliminate the noise on the PD signal, which could potentially cause problems for the
rising-edge detection (see Fig.5.7b and c). Second, since the peaks varied in terms of
amplitude, due to beam pointing fluctuations between the revolutions (see next section)
each peak was normalized to its maximum (visible in Fig.5.7a). This step was important in
order to avoid timing errors dt, when scanning for the temporal position of each revolution
(see Fig.5.7c). An algorithm detecting the rising edges passing 0.5 in the processed signal
trace was used to calculate the time delay between all subsequent pulses and thereby the
deviation of each individual rotation-period from the average period of this measurement.
For practical reasons the terms 'jitter’ and 'drift’ are used (see Fig. 5.6). Drift is the
moving average over 10 subsequent round-trip time deviations. RMS drift is the RMS-
deviation of this drift from the mean revolution time. In many optical applications, those
drifts can be actively compensated for. RMS jitter is defined as the RMS-deviation of the
measured time-period from its corresponding drift and can typically not be compensated
for. The bandwidth of the measured deviations was limited due to the limited number of
measured revolutions. The fastest detectable disturbance occurred at the rotation frequency
itself. Therefore, these measurements do not yield information on the long-term stability
(>seconds) but give valuable information on short-term effects. Measurements were carried
out in air (up to 4kHz, limited by rotor-heating) and vacuum (up to 5kHz) for 0.1, 0.2,
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0.5, 1, 2, 3, 4 and 5kHz. For each rotation frequency 3 to 5 traces were acquired per
medium, containing between 16 and 320 revolutions with varying sample-rates and rotation
frequency. In addition, traces for the passively decelerating rotor, just after the motor was
switched off, for different initial revolution speeds were measured. In Fig.5.8 the transition
between activated and deactivated motor drive in vacuum is shown. As soon as the motor
was switched off the formerly dominant modulations disappeared and an unmodulated rise

of the rotation period ¢ was visible.
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Figure 5.8.: Round-trip time with activated and deactivated motor, starting at a rotation frequency
of 1kHz [40].

After this slope was substracted, the resulting graph showed the behavior of the free-running
rotor without a driving motor (right parts of each subplot in Fig.5.9). Thus, the contribution
of the motor drive to fluctuations of the rotation period can be distinguished from contribu-
tions of the bearing, the surrounding medium and measurement errors. To stay as close to
the original rotation-frequency as possible, all presented measurements of the free-running
rotor start directly after the motor drive was switched off. Figure5.10 shows the relative
RMS drift and jitter values for all measurements at each rotation frequency. In vacuum, the
relative timing jitter as well as the drift decreased with increasing frequency from ~ 3000 ppm
to ~ 100 ppm, up to a rotation frequency of ~ 1 kHz. Between 1kHz and 5 kHz it remained
more or less constant. This applied to both the air and the vacuum measurements and with
both activated and deactivated motor drive. With active motor, the air and vacuum jitter
and drift measurements were of similar magnitude. In vacuum, switching off the motor drive
reduced the velocity error by about 2 orders of magnitude. The free-running measurement
gave an upper limit for the experimental error of the measurement method. At 5kHz this
was At/t,e = 0.85ppm (RMS) for the jitter, and At/t,,, = 0.15ppm (RMS) for drifts.
However, it is noteworthy that with deactivated motor the jitter was dominant, while for mea-
surements with the activated motor, the drift was usually dominant. The large difference
of the results with the activated and deactivated motor suggest that both jitter and drift in

vacuum were mainly caused by the driving motor, while the contribution of the bearing was
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negligible (Fig.5.9a, b; Fig.5.10). With active motor drive, the fluctuation in most vacuum

measurements at all rotation velocities was dominated by a modulation, as illustrated in Fig.

5.9b. A possible explanation for this behaviour is given in [40].
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Figure 5.9.: Typical traces with active motor drive (left part of each subplot), and shortly after
deactivation (right part of each subplot).The traces with deactivated motor were pro-
cessed to remove the slope. Blue traces: Rotor in vacuum running at a) 500 Hz and
b) 5kHz, respectively. Red traces: Rotor in air running at c¢) 500 Hz and d) 4 kHz,
respectively. Each floating average (fl. av. = drift) point was calculated taking 10
surrounding revolutions into account. Note that the y-axes of a) and c) are scaled in
ps while b) and d) are scaled in ns [40].
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Figure 5.10.: a) Overview of maximum relative drift RMS and maximum relative jitter RMS for all
acquired rotation frequencies in air (red), vacuum (blue), in vacuum with deactivated
motor drive (yellow) and in air with deactivated motor drive (purple). (Connecting
lines between measurement points were only added to improve visibility and represent
no experimental data or fits) b) Combined traces of the measurements in air at 4 kHz
rotation frequency. c) Combined traces of the measurements in vacuum at 5kHz
rotation frequency. d) Combined traces of the measurements in vacuum at 5kHz
rotation frequency with deactivated motor, ring-down slope removed. The individual
traces are visually separated by solid black lines in the plot [40].

In air, the magnitudes of both drift and jitter at frequencies of 2 kHz and above were similar
to the vacuum measurements. The change of the rotor behavior upon deactivation of the
drive, however, was distinctly different. While the drift decreases by about one order of
magnitude, the jitter level was similar for most rotation frequencies. This suggests that the
jitter was caused mainly by either the interaction of the rotor with the surrounding air, or air
fluctuations displacing the laser beam on its path to the photodiode. In general, the traces
acquired in air do not contain the fast modulations observable at all rotation frequencies
in vacuum, suggesting that the contribution of the motor drive was less significant than

in the vacuum measurements. Counterintuitive, at lower frequencies (100 to 500 Hz) the
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jitter and drift caused by the motor drive in vacuum was even higher than it was in air (see
Fig.5.9a/c and Fig.5.10a). As Celeroton Ltd., the developer of the rotor, explained, these
unexpected differences in jitter and drift between air and the vacuum measurements for low
velocities were caused by the different modulation schemes of the motor coil, which was
changed between the measurements [40]. This effect was therefore purely a matter of the

motor control unit and can easily be fixed.

5.2.4. Asynchronous Pointing Stability

The setup to measure the pointing stability was very similar to the velocity error measurement
setup. The photodiode was simply replaced by a high-speed camera, allowing measurements

of the spatial beam displacement parallel to the rotation axis (see Fig. 7).
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Figure 5.11.: Measurement setup consisting of a cw-laser (LS — Non-planar Ring Oscillator, A =
1064 nm), the rotor, a photodiode (PD) and an high-speed-camera. The fringes
are due to interference effects, caused by the glass window in front of the camera
sensor [40].

The camera allowed to acquire up to 106 frames per second (fps). To make sure that only
one round-trip is captured on a single frame, the frame-rate was chosen such that only every
10th frame contains an image of the beam for each rotation frequency. For every exposed
frame, the vertical pixels were summed up and the center of mass of these sums in the
horizontal direction was calculated and recorded as the deviation from the average beam
position Ax. The angular deviation was derived from the beam position on the camera via
A« = arctan(Azx/s). The beam position for >9000 revolutions was monitored at rotation
frequencies of 0.1, 0.2 0.5, 1, 2, 3, 4 and 5kHz. Since the beam position was recorded at
one specific rotational angle of the rotor, only the asynchronous jitter was measured, while
no information about pointing jitter that was synchronous to the rotation frequency was

acquired. The results of the measurement in vacuum are plotted in Fig.5.12.
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Figure 5.12.: Angular deviation of rotor position for >9000 subsequent revolutions at different
round-trip frequencies. The red line shows the minimum and maximum deviation and
the dotted red line shows the root-mean-square deviation. Each plot also depicts the
statistical distribution of each angular deviation in a histogram. The center of mass
of all revolutions at one fixed round-trip frequency was taken as the position were
Aa = 0 [40].

In all plots, the angular deviation from the average angle of the respective trace is shown,
with all traces plotted to the same scale. The RMS angular deviations varied by a factor
of ~ 2 for different rotation frequencies. The deviations were drastically reduced from 1 to
2kHz. In the bearing control, the position measurements were filtered with a notch filter with
a corner frequency equal to the rotational speed. According to Celeroton, this notch filter
was enabled for speeds higher than 1 kHz and therefore explains the reduction in the angular
deviations. The traces exhibit a Gaussian distribution for all rotation frequencies except at
the highest investigated frequency of 5 kHz. Here, the distribution is asymmetric with respect
to its center of mass, and the trace shows a periodic temporal pattern. This pattern may be
explained by the gyroscopic couplings of the rotor, which were proportional to the rotation
velocity. The higher the gyroscopic couplings, the lower the stability margin of the control.
Figure 5.13 shows the offsets of the average angles for each rotation frequency together with

error bars illustrating the RMS and peak-to-peak deviations. That offset was calculated as
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the deviation of the center of mass for the pointing angle of each frequency from the average
center of mass of all measurements. Due to changes of the setup, this was done separately
for the measurements in air and vacuum and hence, the absolute offset is only comparable
within one medium. The offset, as well as the RMS- and p2p-deviation, ware notably smaller
for the vacuum measurements. This was, similar to the temporal jitter, most likely caused by
air fluctuations which disturb the rotor. In air, the change of angular offset between different
rotation frequencies was much larger than the deviations within the individual traces, for
both the measurements in vacuum and in air (see Fig.5.13). At rotation frequencies of 1 to
4 kHz, the offset of the vacuum measurement settled, and slightly changed again at 5 kHz.
Such offsets were caused either by a static or a rotation-synchronous displacement of the

rotor and were in any case well below 400 prad.
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Figure 5.13.: Constant offset of the pointing angle and the RMS- and p2p-deviation depending on
the rotation frequency for the measurements in vacuum and air [40].

5.2.5. Discussion

Motor on  Motor off Desired Limit

Jitter (RMS) 3.4ns 0.17ns Ins 10ns
Drift (RMS) 23 ns 0.03 ns - 25ns
Synchronous Pointing Jitter - - Sprad 20 prad

Asynchronous Pointing Jitter 33 prad - - -

Table 5.1.: Comparison of measured values at 5kHz with the theoretically derived limits [112] for
a possible implementation in a stack-and-dump cavity and the desired parameters for
optimal operation. For both: jitter and drift, the highest values measured in any trace
are shown in this table.
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Velocity errors The velocity error, in form of rotation-period jitter and drift of the investi-
gated high-speed self-bearing motor CM-AMB-400 in air and vacuum, decreased significantly
with increasing rotation frequency. The motor drive and its control are identified as the main
sources of rotation-period errors in vacuum with a maximum jitter of 3.4ns (RMS) and a
drift of 23 ns (RMS) at the highest revolution speed of 5 kHz. The jitter was of similar mag-
nitude in both air and vacuum. While the rotation-period stability in air seemed to be limited
by air fluctuations, the measurements with deactivated motor suggest a large potential for
improvement in vacuum operation and the therewith achieved values of 0.17 ns were well

below the desired 1 ns value.

Pointing errors The asynchronous beam pointing stability was significantly increased by
the operation in vacuum, with RMS and peak-to-peak values of 12 prad and 33 prad, re-
spectively, measured over ~ 10000 round-trips at 5 kHz. The rotation-frequency-dependent
angular shift may be problematic for applications which need to enable switching between
different velocities without being able to readjust for the resulting offset change. For SnD,

however, this is no problem.

Conclusion The measurements as presented in this section, allow, for the first time, to
evaluate the velocity- and pointing-errors of the fastest available mechanical rotors. Not all
relevant parameters could be measured with the employed setup, especially the synchronous
pointing jitter. However, the measurement of the asynchronous pointing stability allows to
roughly estimate their magnitude. Furthermore, significant improvements can certainly be
made by optimizing the frequency stabilization electronic for the motor drive, which was,
due to a lack of measurement data, not yet optimized. As a result of our measurements,
this can and will be addressed in the next step. Hence, an implementation of a rotor-based

mechanical switch in a SnD cavity should be feasible in the future.



6. Conclusion and Outlook

The steady-state enhancement experiments carried out in this thesis using a 10-MHz cavity,
allowed to demonstrate an enhanced intracavity pulse energy of 2.88 mJ, which is the high-
est energy in any femtosecond enhancement cavity. Furthermore, among the femtosecond
enhancement cavities with a length of 30 m or more, the achieved enhancement factor of
216 states a new record [39]. These results proof the flexibility of enhancement cavities in

regard to new applications.
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Figure 6.1.: Overview of all pico- and femtosecond stack-and-dump (non-steady state) experiments
[34-36, 39].

Even more importantly, in non-steady-state operation, 160-pJ pulse energy at 30-kHz repe-
tition rate with 800-fs pulse duration could be extracted using an acousto-optic modulator
as a switch [39]. This is an 800-times higher extracted energy than what was ever demon-
strated before with any stack-and-dumb (SnD) architecture [36], as Fig. 6.1 demonstrates. It
shows a plot of the achieved pulse energy over the enhancement factor of all carried out SnD
experiments. While increased pulse energies are the obvious emphasis of all temporal pulse

stacking techniques, a higher enhancement factor relaxes the requirements on the driving

87
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Single [20] DPA [25] GTI [75] SnD [39] SnD [39]

Year 2011 2016 2016 2016 2016

Pulse Energy /pJ 2200 1600 4000 158 84
Repetition Rate /kHz 5 56 1 30 100
Pulse Duration /fs 480 262 330 800 800
Enhancement Factor 1 3.1 10 65 34
Stacking Efficiency 1 0.78 0.40 0.20 0.34

Table 6.1.: Overview of the record values of ultrafast fiber laser systems relying on temporally
separated amplification. When spatially separated amplification was used as well, the
output of one individual channel was calculated.

laser system and therefore offers more room for further pulse energy scaling with an accept-
able amount of parasitic nonlinear effects. The dramatic improvement achieved within the
work for this thesis was enabled by increasing the cavity length, to allow for larger beam sizes
in the AOM and a therefore delayed onset of nonlinear effects as a limitation mechanism.
However, scaling the cavity-length further to reduce the intensities in the AOM even more,
sets extreme requirements on the the setup, both optically and mechanically and a stable
system could not be demonstrated at 2 MHz. Despite these important results, compared to
other temporal combining techniques, SnD not yet enabled designing a laser system with

unparalleled output parameters as Tab.. 6.1 clearly shows.

Due to the nature of the technique, achieving a relatively high enhancement factor is rather
easy for SnD, compared to GTIl and DPA. Furthermore, both DPA and GTI, need to put
rigorous effort in extinguishing the post-pulses, which is something SnD solves intrinsically.
For example, in the depicted GTl-experiment, the 26 post-pulses of the output signal had
a combined energy as high as the main pulse. Stabilizing a growing number of cavities on
each other is also increasingly challenging for the GTI approach and both GTI and DPA
have serious issues with gain-saturation effects in the amplifier. Furthermore, SnD can offer

superior repetition rates, if the amount of stacked pulses is chosen accordingly.

In summary, SnD clearly provides important benefits in terms of contrast and complexity, but
unfortunately, the available switches, i.e. AOMs, limit the enhanced energy and therefore
also the extractable energy. As a result, the achieved laser parameters cannot compete with
other state-of-the-art temporal combining techniques in terms of energy, yet. To overcome
the energy limitation in the future, novel switching concepts were developed and investigated

as a part of this thesis. The idea of a rotating chopper-wheel [28], while disregarded for now,
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due to complexity and severe costs, still eventually led to the extremely promising concept
of employing a rotating cavity beam caustic, in order to allow for extremely fast and efficient
switching and still maintain a relatively simple and compact setup [117]. The therefore
required rotor technology was thoroughly investigated to evaluate whether the occurring
velocity- and pointing-errors are within an acceptable range [40]. Since the measurements
showed, that these errors are indeed very close to the desired parameters and appear to be
currently limited by the electronic of the driving motor, it is absolutely feasible to implement
such a switch as part of an enhancement cavity setup in the near future. However, setting up
a long, high-finesse enhancement cavity with a rotating element in it, remains an enormous
challenge and if a realization is possible, can only be finally evaluated in a further experiment.
The first important steps were done, but whether SnD truly has the potential to fulfill the

high expectations tied to it, is yet to be shown.
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A. Appendix

This appendix aims to give some very particular but potentially practical information on some

aspects of this thesis.

A.1. Derivation of the Formula for the Extracted

Enhancement

We define Er as the intra-cavity field at the end of the previous build-up and for the sake of
readibility 7, = 1 — Next- It is now possible to derive an equation for the enhanced field in
the cavity (similar to [76])

El =t Ein + T/ Trem - ER
Ey=t-En+ralt- B+ ray/Nem - ER]

N-1
EN =t- Ein Z (Ta)n + (TO‘)N V Nrem - ER
n=0
N
—1
EN =t- Ein(r;_);z_l + (TC()N vV Nrem * ER .

ER depends on the final field in the cavity during the previous buildup. Therefore the
parameter k is introduced, which depicts the number of build-up cycles. It is now possible

to write:
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ra)VN —1

EN,k:l =1 Eln( 7“02 1 + (TO()N vV Nrem * EN,kzO
ra)¥ —1

Enj= =t E'n(roz—l + (TOC)N V1rem * EN k=0
ra)¥ —1 a)yV —1 2

EN,k:Q =t- Ein(rcz_1 +t- E'm()_1 (TO‘)N V Tlrem + [(Ta)N vV nrem} : EN,k:O
(roz)N -1 N k—1

) =1- Eini rem
Nk roa—1 ]Z::l 77
t BTt
ENksoo = ra—l (A1)

1— (ra) /Trem

When substituting back 7., = 1 — next ,the extracted enhancement Vi, can be written as:

|EN C>O|2
VYeX - i "/e = Tlext * —_—
t = T)diff ff = Tlext |Ein’2
2
(1—-R) {( )" -1
V;ext = TMext * 9 (A2)
(VAR -1)"[1- (\ﬁ) VT Tea next]
A.2. Exemplary Calculation of a Stable Caustic and
Beam Parameters at IC
4 cM : : cM . Ic
1S
g 3 d1 d2 d3
2 < >
(2]
g 2 /\/\/
§ 11 R1 R2
O 1 1 1 1 1
0 5 10 15 20 25 30

Position in cavity z/m

Figure A.1.: Simple cavity caustic.
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As an example a simple ring-cavity consisting of two curved mirrors and some plane-mirrors
is shown in fig. A.1. Since plane mirrors have no effect on the beam properties, we can
neglect them. The matrix therefore simply consists of the curved mirrors and the distances
between them. However, since we are interested in the beam parameters at the input-coupler

we arrange the elements in the following order:

M = Mgy, Mg, - Mg, - Mg, - My,

GGG

2d3)) 1 dd, (1 - 2}%> e 2<d3+d2( —%)) N 1)

R2 Ry

2(1-%2)
2 2d Ro 2
- —R§+d1(— 7 —RQ)+1

One can now easily insert the distances between the curved mirrors d;, dy and ds as well as
the radii of curvature R; and R, to get M. Using

2B 2)\|B
R=——— and w= AB|
D—A T4 — (A+ D)2

(A3)

allows to also calculate the curvature and waist of the fundamental mode at the input-
coupling mirror (IC), which can then be easily matched by adjusting the last telescope before
the cavity input to make the incoming beam match these parameters at the position were it
is transmitted through the IC. However it becomes clear, even for such a simple cavity, that
due to their length such calculations are usually not done by hand but rather via Matlab or

Python. They also allow to easily plot the entire caustic as shown in Fig. A.1.

A.3. Calculation of the Round-trip Attenuation from

Coupling Parameter and Measured Enhancement

K is given as



Appendix A. Appendix 105

2
P VA-VR
ko1 Byl VAVR (A4
Bin (1- VAR)
wherein P, is derived similarly to Pic (see [76]) . Furthermore Vi is given by
1—-R
Ver =U—"—""03- (A.5)
(1- VR)
The ratio of both can be calculated as follows:
2 2
k  (1-vR) - (VA-VR)
Ver 1-R
 1-R-— A(l - R)
B 1-R
K
= 1-A.
Verr
This eventually leads to
K
A=1-— ) A.6
Vetr (A-6)

A.4. Pound-Drever-Hall Error Signal Calculation
The following derivation is oriented on the calculations in [118] and [85] and similarly edited
as in [119].

In order to generate a assymetrical error-signal around the correct length of the cavity, the

phase of the incident field is modulated and frequency side-bands are created

E(t) = Einexp {i [wint + Bsin(wnt)]} .

If one assumes a small modulation depth 3 < 7 and a sinusoidal modulation, the resulting
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field can be decomposed in a Taylor-series

E(t) = Einexp (iwint) [1 4 18 sin(wp,t)] + . ..

E(t) = Ei, {exp (iwint) + gexp [i (Win + wm) t] — gexp [i (win — wWim) t]} ) (A7)

Hence, after the phase modulation, F can be expressed as the sum of three electric fields with
a frequency separation of the modulation frequency wy,. The modulation depth 3 determines
how much power is in the sidebands. The error signal is generated by the reflected light,
whereas the reflection coefficient describes the amplitude of this field in dependence of the

phase and, therefore, in dependence of the frequency

Scw  w
¢ FSR’
When the laser frequency is a multiple of the free spectral range, the phase is zero and the

d(w) = (A.8)

reflection coefficient gets minimal. The modulated beams have a slightly different frequency
above and below and, therefore, a different phase and finally amplitude. The reflected
signal is now calculated by multiplying each field with its corresponding reflection coefficient
r(w) = /R(w).

E(t) = Ei {r(w) exp (iwt) + 7(w + wm)d exp i (w + win) 1]
—r(w — wpm) 5 exp [i (W — wy) t]} : (A.9)

Since a photodiode detects an intensity and not the electric field, the reflected intensity Ir
has to be calculated in dependence of the incident intensity I,. With I ~ |E|2 it follows to
be

62

I = I [r(w)]* + Iy~ 17w + wm)|” + Ir(w — w) ]
+ glo {Rr(w)r(w+ wm) — 7" (W)r(w — wp)] cos(wnt) (A.10)

+ S r(w)r*(w + wm) — 7 (W)r(w — wm)] sin(wnt) } + O(2w,)

An electronic component is employed in order to "mix" out all the terms which are propor-

tional to sin(wyt) and its higher harmonics. Since (3 is small, their amplitude is small but
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may have to be filtered with a low-pass filter. The final consequently error signal reads as

e == [r(w)r(w+ wn) — r(w)r(w —wy)] . (A.11)

A plot with some examples can be found in Fig. 3.10.
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