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Zusammenfassung

In der vorliegenden Arbeit wurden zwei Experimente mit dem Hochleistungs-Lasersystem
JETI40 am IOQ durchgefürt, welche die Wechselwirkung zwischen dem Hochintensität-
slaser und dem von ihm erzeugten Plasma untersuchten. In den Experimenten traten
unterschiedliche Seitenstreuungprozesse, in Bezug auf die Ausbreitungsrichtung des Laser-
pulses, auf, die sich in ihrer Ausprägung und Ursache unterscheiden. Im ersten Experiment
wurde eine asymmetrische Seitenstreuung beobachtet, welche bei unter-dichten bis viertel-
kritischen Plasmadichten auftritt. Es wurde weiterhin eine Abhängigkeit der Asymmetrie
der Streuung bei Veränderung der Gasdichte festgestellt. In dieser Arbeit wird gezeigt,
dass der Seitenstreuungsprozess eine Konsequenz der Laserausbreitung in ungleichförmi-
gen Plasmen ist, wobei sich der Streuwinkel entlang der Richtung des Plasmagradienten
orientiert. In dem zweiten Experiment wurde ein symmetrischer Seitenstreuungsprozess
aus dem intensiven zentralen Laser-Plasma-Wechselwirkungsbereich beobachtet. Es zeigte
sich, dass diese Streuung aus einem in Längsrichtung orientierten engen Laser-Plasma-
Wechselwirkungsbereich stammt und über ±50◦ in Bezug auf die transversale Richtung
des Lasers variiert. Weiter wurde festgestellt, dass diese primär in nahekritischen Plas-
madichten vorkommt (0.09nc−0.25nc, wobei nc die plasmakritische Dichte ist). Im Gegen-
satz zum ersten Experiment ist die Raman-Streuung die Ursache für diesen symmetrischen
Streuprozess, bei dem die Streuung aufgrund des unausgerichteten Wellenvektors zwischen
dem Hauptlaserpuls und der von ihm verursachten Plasmawalle auftritt.



Abstract

During the high-intensity laser-plasma experiments conducted at the high-power laser
system JETI40 at IOQ, the two qualitatively different laser side-scattering processes have
been observed. The side-scattering observed during the first experiment was found to
be non-symmetric in nature with respect to the laser’s propagation direction and it was
estimated to occur from under-dense to quarter critical plasma densities. The scattering
angle was found to gradually decrease, as the laser pulse propagates towards regions of
higher densities (i.e. the gas jet centre). For increasing nozzle backing pressures, the
scattering was also found to gradually change from upward to downward directions. In
this thesis, this side-scattering process is shown to a consequence of the laser propagation
in non-uniform plasma, where the scattering angle was found to be oriented along the
direction of the plasma gradient. In the second experiment, a symmetric side-scattering
process with respect to the laser’s propagation direction was observed from the intense
central laser-plasma interaction region. This scattering process was found to originate
from a longitudinally narrow laser-plasma interaction region and vary over ±50◦ with
respect to the laser’s transverse direction. It was found to primarily occur in the near-
critical plasma density regime (0.09nc − 0.25nc, where nc is the plasma critical density).
In contrast to the previous experiment, Raman scattering has been shown to be the cause
of this symmetric scattering process, where the scattering occurs as the result of the wave
vector non-alignment between the main laser pulse and the resulting plasma wave.
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Chapter 1

Introduction

Particle beams, depending on their type and energy, can be used for a wide range of
applications, such as nuclear fusion1–3, cancer treatment4, material structural probing5;6,
lithography7 and the investigation of subatomic physics8. They can either be composed
of charged particles9, such as electrons, protons and heavy ions, or be composed of neutral
particles, such as neutrons. Charged particles are traditionally accelerated by applying al-
ternating electromagnetic fields inside a solid structure, whose acceleration field is limited
up to ∼ 106 V/m due to the (solid) material damage threshold 10. Therefore, if the kinetic
energy of the particle beams is increased, such as in the case of cancer treatment, where
higher ion energies lead to higher penetration depths 11, longer accelerating structures
need to be constructed. For instance, the SLAC linear accelerator 12 located in California
(US) is capable of accelerating electron beams up to 50GeV energies over a length of
3.2 km.

An alternative way of accelerating electrons was first theoretically proposed by Tajima
and Dawson13 in 1979. It involves exciting longitudinal electron density oscillations in
plasma on spatial-scales greater than the Debye length 14. This can be achieved using, for
instance, an intense ultrashort laser-pulse and subsequently trapping electrons for them to
be accelerated up to a few GeV energies15. This particle acceleration mechanism is called
the laser wakefield acceleration (LWFA), where ions are assumed be stationary on these
time-scales. In contrast to solid structures, plasma excitations offer electric-fields in the
order of ∼ 1012 V/m thus making them an attractive alternative, as it dramatically reduces
the distances over which a particular electron energy can be achieved. Ever since its first
proposal, LWFA has been the subject of extensive theoretical 13;16–18 and experimental19–22
investigations to dominate in the under-dense plasma regime (i.e. ne ≤ 0.1nc, where ne is
the plasma density and nc is the critical plasma density). At over-critical plasma-densities
(i.e. ne > nc), which can be generated through the interaction between the laser-pulse and
a thin foil of thickness ranging from a few 10’s of nanometres up to a few microns, laser
driven ion acceleration mechanisms, such as target normal sheath acceleration (TNSA)
and radiation pressure acceleration (RPA) have been shown to dominate. In the last two
decades, these mechanisms have also been the subject of an extensive theoretical 23–26 and
experimental24;27–29 investigation.

In the plasma density regime, which is close to and less than the critical density (i.e.
0.1nc < ne < nc), the interaction dynamics between an intense ultrashort laser-pulse
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(∆τ < 35 fs) and plasma have been found to be uniquely characterised by phenomena,
such as resonant laser absorption30, relativistic self-focusing31, Direct Laser Acceleration
(DLA)32, hole boring33, soliton formation34, vortex formation35, laser pulse collapse36

and gamma ray generation37. In the case of the electron acceleration mechanism DLA,
whereby a single electron filament is formed and sustained by its self-generated magnetic-
field, in which electrons can resonantly interact with the co-propagating laser-pulse to
gain energies up to several hundred38 MeV. In this near-critical density regime, the energy
transfer from the laser-pulse to the electrons is expected to be greater than in the case of
under-dense plasma due to the near-resonance between the laser and plasma frequencies.

Although a number of experiments have been carried out to explore this electron ac-
celeration mechanism32;39–41, our understanding of the laser-plasma interaction dynamics
at this density regime and kind of instabilities that could arise during the interaction is
still imperfect. A few of the past experiments made use of foam targets and gas jets
to produce near-critical plasma. The experiments involving foam targets were primar-
ily aimed at investigating the dependency of the energy of the accelerated ions on the
target thickness42;43. Because of the nature of the foam targets, they could not be opti-
cally probed, thus limiting any direct insight into the laser-plasma interaction dynamics.
Whereas, in the case of the experiment involving helium gas jet 36, the use of an optical
probe revealed the phenomenon of laser pulse collapse, which refers to the strong and al-
most complete absorption of laser-pulse at near-critical densities. However, more details
about the laser-plasma interaction dynamics could not be revealed.

Therefore, in order to understand the interaction dynamics between an intense laser-
pulse and near-critical plasma, two high-intensity laser-plasma experiments have been
conducted at the high-power laser system JETI40 at IOQ, Jena. These experiments used
two different focusing geometries with the help of f/6 and f/2 off-axis parabolas, respec-
tively and two different argon gas jet flow geometries, respectively were aimed at exploring
different laser intensity and plasma-density combinations. These experiments contained
necessary particle detection diagnostics, such as electron spectrometer and scintillator
screen capable of detecting energetic ions, and a second-harmonic probe beam, which was
intended to backlight the interaction region. Thus, the interaction region could be directly
imaged at 90◦ to the laser’s propagation direction.

Thesis Outline

This thesis has been structured in the following way:

Chapter 2 summarises the theoretical background of this research work. It starts with
an introduction to the description of a laser-pulse and ionisation mechanisms involved in
producing the plasma. It then describes the interaction dynamics between a laser-pulse
and a single electron, followed by the collective plasma response to an intense laser-pulse.
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It is then followed by the description of electron acceleration mechanisms in under-dense
and near-critical plasma, the propagation effects that a laser-pulse might undergo in
plasma, and the kind of instabilities that could arise during the laser-plasma interactions.

Chapter 3 provides a description of the experimental setup and the various plasma
and particle-detection diagnostics used in the high-intensity laser-plasma experiments
conducted at the high-power laser-system JETI40 at IOQ. The targets used in these ex-
periments, namely subsonic and transonic gas-jets, are discussed in detail. It first provides
a description of the design, construction and operation of the gas-nozzles used, which is
then followed by a description of the Mach-Zehdner interferometry technique that was
used to characterise the gas nozzles. The steps involved in analysing the correspond-
ing interferograms obtained using the Mach-Zehnder interferometer are also discussed in
detail.

Chapter 4 contains the results obtained from the two subsequent high-intensity laser-
plasma experiments conducted at JETI40. Although no energetic particles have been
observed during the experiments, the results show the presence of two qualitatively dif-
ferent laser side-scattering processes during the laser-plasma interactions at under-dense
to near-critical plasma densities. This chapter explores the various characteristics of the
observed side-scattering processes and finds possible explanations of their origins.

Chapter 5 summarises the results obtained from the experiments conducted at JETI40
and provides an outlook into how these results can be utilised to benefit the future
high-intensity laser-plasma experiments aimed processes, such as electron acceleration
or plasma fusion.
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Chapter 2

Theory

Since this research work is primarily concerned with the interaction of ultra-short laser
pulses with a FWHM pulse duration ∆τ = 30 fs with a plasma medium, a basic discussion
on ultra-short laser pulses, plasma characteristics, various laser pulse propagation effects
and laser-plasma instabilities that could potentially arise during the interaction will be
presented in this chapter.

2.1 Ultra-short Laser Pulse

In the context of this thesis, the term ’ultra short’ laser pulse refers to an electro-magnetic
wave packet of FWHM duration ∆τ = 30 fs, which is much longer than an optical cycle
(Topt = 2.67 fs for 800 nm), meaning that the pulse contains many electric-field oscillations.

2.1.1 Mathematical Description

A laser pulse that is linearly polarized in x-direction and propagating in z-direction,
which is spatially and temporally confined can be mathematically expressed in terms of
its electric field (E-field) variations in the following way:

⃗̃E(x,y,z,t) = E0 exp

[
−
(
x2 + y2

w2
l

)]
exp

[
−
(
t

τG

)2
]

   exp[i(ω0t− kz + ϕ0)]   x̂ (2.1)

spatial and temporal envelope E-field oscillations

where, ⃗̃E is expressed in complex field notation, where the physical field is the real-part
of ⃗̃E , E0 is the E-field amplitude, wl = d0/2

√
ln 2 with d0 being the full width at half

maximum (FWHM) laser focal spot size, τG = ∆τ/2
√
ln 2 with ∆τ being the FWHM

pulse duration, ω0 is the central laser frequency, wave number k = 2π/λ0 with λ0 being the
central laser wavelength, and ϕ0 is the carrier envelope phase (CEP). Here, the laser pulse
is assumed to have a Gaussian shaped envelope both in spatial and temporal domains.
The CEP is the phase relationship between the envelope and E-field oscillations, which in
our case can be neglected, as the envelope contains many oscillations.
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For the sake of simplicity and mathematical convenience, equation 2.1 can be reduced
to its temporal dependence in the following form representing the variation of the laser’s
E-field at a fixed point in space along its propagation axis 44:

Ẽ(t) = E0 exp

[
−
(
t

τG

)2
]
exp[i(ω0t+ ϕa(t))] (2.2)

where the phase term ϕa(t) is introduced to account for the various pulse propagation
effects, such as dispersion and self-phase modulation that might occur in plasma. The
term ω0t represents the primary field oscillations, where ω0 can be related to Topt through
Topt = 2π/ω0. If ϕ(t) = ω0t + ϕa(t) is to represent the instantaneous phase of the laser
pulse, its instantaneous frequency ω(t) is given by,

ω(t) =
dϕ(t)

dt
= ω0 +

dϕa

dt
(2.3)

The magnitude of the magnetic field (B-field) oscillations of the laser pulse can be related
to its E-field magnitude through45 k⃗ × B⃗0 = −ωE⃗0, where the E-field E⃗0 is oriented
perpendicular to both the B-field B⃗0 and propagation direction k⃗.

2.1.2 Laser Intensity

The laser pulse’s intensity (I) can be defined as the cycle-average of the magnitude of
the Poynting vector45. For a plane wave propagating in vacuum, this quantity is given
by I = (1/2)ϵ0cE2

0 , where ε0 is the vacuum permittivity and c is the speed of light in
vacuum. For a Gaussian pulse described by equation 2.1, the time-averaged intensity
distribution I(r,t) can be expressed in terms of the experimentally measurable quantities
such as pulses’s energy (Et), diameter (d0) and duration (∆τ), as the spatio-temporal
dependence of the E-field is experimentally difficult to measure. Thereby,

I(r,t) = Et ·
8

d20∆τ

[
ln 2

π

]3/2
   exp

[
−4 ln 2

(
r

d0

)2
]
exp

[
−4 ln 2

(
t

∆τ

)2
]

(2.4)

I0

where I0 is the peak laser-intensity, Et is the total energy content of the laser-pulse, d0 is
the FWHM beam diameter and ∆τ is the FWHM pulse duration. Equation 2.4 satisfies
the integral of the form:

Et = 2π

∫ ∞

0

∫ ∞

0

I(r,t) rdrdt (2.5)
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Whereas the average laser intensity corresponding to the FWHM parameters d0 and ∆τ
can be calculated in the following way

Iavg =
2π
∫ −∆τ/2

−∆τ/2

∫ d0/2

0
I(r,t) rdrdt[

2π
∫ d0/2

0
rdr
]
·
∫ ∆τ/2

−∆τ/2
dt

=
Energy

Area · Time
=

EFWHM

(π/4)d20 ·∆τ
(2.6)

since the energy content (EFWHM ) inside the FWHM pulse duration cannot be experi-
mentally measured, it can be approximated to the energy content (E) inside the FWHM
focal area, but integrated over times beyond ±∆τ/2. For instance, for d0 = 6.6µm,
∆τ = 30 fs and E = 210mJ, Imax = 4.1× 1019 W/cm2.

For a laser-pulse that is being focused in vacuum, the expression for the intensity
distribution along its propagation direction (z) can be written as46,

I(r,z,t) = I0

[
w0

w(z)

]2
exp

[
− 2r2

w(z)2

]
exp

[
−4 ln 2

(
t

∆τ

)2
]

(2.7)

where I0 is the peak laser-intensity at focus, the beam-size parameter w(z) = w0

√
1 + (z/zR)2,

the beam-waist w0 = d0/
√
2 ln 2 and the Rayleigh length zR can be related to the beam-

waist w0 by zR = πw2
0/λ0.

2.1.3 Spectral Representation

The Fourier analysis of a laser pulse of finite duration is bound to contain an extended
frequency spectrum. A laser-pulse can thus be thought of as the result of the coher-
ent overlap of several much longer quasi-monochromatic waves. If the phase relationship
among these waves can be matched such that a maximum from any one particular wave
of a certain frequency coincides with one maximum from each of the other waves cor-
responding to differing frequencies, they can constructively interfere to produce a laser
pulse. The relation between the FWHM pulse duration ∆τ and the FWHM spectral
width ∆ν is given by the so-called Time-Bandwidth Product (TBP): ∆τ∆ν ≥ K with
K ranging from 0.14− 0.44 depending on the choice of the envelope shape. The Fourier
transform of the Gaussian laser pulse represented by eq. (2.2) is given by 44,

Ẽ(ω) =
∫ ∞

−∞
E(t) exp(−iωt)dt = E0∆τ

√
π

2 ln 2
exp

[
− ∆τ 2

8 ln 2
ω2

]
exp[−iϕ(ω)] (2.8)

This yields a TBP of ∆τ∆ν ≥ 0.441, which in terms of wavelength is given by (c/λ20)∆τ∆λ ≥
0.441. Consequently, for ∆τ = 30 fs and a central wavelength of λ0 = 800 nm, TBP yields
a FWHM spectral width of ∆λ ≈ 30 nm.

When a laser-pulse propagating through a material, in which its constituent frequencies
propagate at differing speeds, the phase relationship among the frequencies changes as
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it propagates. This causes changes in the temporal structure of the laser-pulse, which
leads to propagation effects such as group velocity dispersion (GVD) and chirp. These
effects can be mathematically examined by expanding the spectral phase ϕ(ω) using a
Taylor series47 around its central frequency ω0. GVD causes the laser-pulse to simply
broaden in time during its propagation, whereas chirp, in addition to causing changes in
the pulse-duration, also causes changes in the momentary frequency of the laser pulse. A
detailed discussion on these effects can be found in the book by Boyd 47.

2.2 Ionisation Mechanisms

An ensemble of atoms or molecules can be ionised using various mechanisms to produce
a plasma medium with which a laser pulse can interact. In the context of this thesis,
only laser induced ionisation is considered, by which an argon gas-jet can be ionised to
produce plasma, whose density can be varied by the appropriate choice of the nozzle
size and backing pressure. Some of the well known ionisation mechanisms are photo-
ionisation48, multi-photon ionisation (MPI)49, tunnel ionisation50, and barrier suppression
ionisation (BSI)51. In the case of photo-ionisation, during the interaction between an
atom and a laser pulse, an atom can be ionised if the ionisation energy (Eion) of any of its
constituent electrons match or exceed the photon energy (ℏω). This the classical photo-
electric effect48, which in particular works for less intense radiation (i.e. unlike a laser
pulse). However, in the case of argon, the photon energy corresponding to λ = 800µm
is much less than its first ionisation energy. For example, the ionisation energy needed
to achieve Ar1+: 15.8 eV ≫ 1.55 eV, which is the photon energy corresponding to λ0 of
800 nm. Therefore, this mechanism is not of relevance here.

2.2.1 Keldysh Parameter

For a given laser’s E-field (E0), photon energy (ℏω0) and the ionisation potential (Eion)
of an atom, the Keldysh parameter (γK) helps to determine if MPI or tunnel ionisation
dominates50. MPI refers to the ionisation of an atom due to the simultaneous absorption
of more than one photon by an electron49. Whereas, tunnel ionisation is a process by
which an electron tunnels to the potential barrier resulting from the combined E-field of
the atom and the laser field50.

The Keldysh parameter γK effectively compares the laser’s central frequency (ω0) with
the threshold frequency (ωt) above which the tunneling process is frequency dependent
meaning that the laser’s E-field oscillations can be fast enough for the electrons not to
have sufficient time to tunnel through the barrier. It can be expressed as 50,

γK =
ω0

ωt

=
ω0

eE0/
√
2meEion

=

√[4meω
2
0

e2E2
0

]
Eion

2
=

√
Eion

2Φp

(2.9)
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(a) (b)

Figure 2.1: (a) Tunnel ionisation of an Ar atom for strong external quasi-static E-fields, where
the electron has been shown to tunnel through the resulting potential barrier of
the atom. Here, the laser intensity corresponding to E0 is 1 × 1016W/cm2 and
143.5 eV corresponds to argon ionisation process of Ar7+ → Ar8+ and (b) barrier
suppression ionisation process of of Ar7+ → Ar8+ corresponding to a laser intensity
of 2× 1016W/cm2.

where the threshold frequency ωt is determined from the laser’s E-field E0 and the atom’s
ionisation potential Eion such that ωt = eE0/(2meEion)

1/2, and the ponderomotive po-
tential Φp = e2E2

0/4meω
2
0. The time required for the electron to tunnel through the

potential barrier (i.e. the tunneling time δt) can be related to the threshold frequency ωt

by δt = 1/ωt. MPI dominates for γK > 1, which corresponds to high ionisation energies
and low E-fields. Whereas, tunnel ionisation dominates for γK < 1, which corresponds
to low ionisation energies and high E-fields. For instance, in the case of Ar7+ ion, for
I = 1016 W/cm2 and λ0 = 800 nm, γK = 0.25(< 1) meaning that for laser intensities
relevant to this experiment, tunnel ionisation dominates over MPI. The corresponding
tunneling time δt = 0.1 fs, which is less than the optical cycle time Topt meaning that the
laser’s E-field can be assumed to be quasi-stationary during the ionisation process.

2.2.2 Tunnel Ionisation

Tunnel ionisation is a process by which an electron tunnels through the potential barrier
resulting from the combined E-field of the atom and the applied laser field, and gets
liberated from the atom, as shown in fig. 2.1a. The modified atomic potential (ϕAr) can
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be expressed as,

ϕAr = −
Zeffe

2

4πϵ0|r|
− eE0r = −14.36/eV ·

Zeff

|r/Å|
− 2.75× 10−7 ·

√
I/Wcm−2 · (r/Å) eV (2.10)

where Zeff is the reduced effective nuclear charge due to the shielding by inner electrons,
as seen by the electron to be ionised, which can be calculated from the Slater’s rule 52, the
applied E-field E0 = (2I/ε0c)

1/2 and r is the distance from the centre of the nucleus.
For a given applied E-field, the height (δϕAr = ϕ2−ϕ1) and width (δr = r2−r1) of the

potential barrier to be overcome by the electron can be calculated from equation 2.10 by
substituting ϕAr = Eion, where Eion is the ionisation potential. The tunneling factor, also
called the transmission co-efficient (T ), which compares the magnitude of the electron’s
wave function before and after the potential barrier is given by 53,

T = exp

[
−
2

ℏ

∫ r2

r1

|p(r)|dr

]
, where momentum p(r) =

√
2me|Etot − ϕAr(r)| (2.11)

where Etot is the total energy of the electron. Assuming that Etot = Eion, T = exp[−0.162∫
(Eion − ϕAr)

1/2dr/Å]. For example, for the tunnel ionisation process of Ar7+ → Ar8+
state shown in fig. 2.1a, where I = 1 × 1016 W/cm2 and Eion = 143.5 eV, the tunneling
factor T = 0.0035.

The rate of the probability of ionisation Γ(t) in the presence of an external E-field is
given by the ADK-theory, as follows54–58†,

Γ(t) = 4ωa

[
Eion

EH2

]5/2
Ea
E(t)

exp

[
−2

3

(
Eion

EH2

)3/2 Ea
E(t)

]
(2.12)

=
4.54× 1022

s−1
· (Eion/eV)

2.5√
I(t)/Wcm−2

· exp

[
− 2.5× 106√

I(t)/Wcm−2

]
(2.13)

where the angular atomic frequency ωa = (1/16π2ε20)(mee
4/ℏ3) = 4.13 × 1016 s−1, EH2 is

ionisation potential of the hydrogen atom, the atomic unit of the E-field Ea = m2
ee

5/(4πε0)
3ℏ4

= 5.14× 1011 V/m and E(t) is the applied E-field.

2.2.3 Barrier Suppression Ionisation

For sufficiently high laser E-field values, the electron’s potential barrier can be suppressed
and the electron can freely escape the Coulomb field of the atom (i.e. the electron can

†The original expression for the tunnel ionisation rate of the hydrogen atom was developed by Lan-
dau54. Further developments were carried out by Perelomov et al. 55 and Ammosov et al.56 to account
for atoms of higher atomic numbers, which also takes into account the orbital angular momentum (l) and
its projection (m) along the direction of the applied E-field. In this expression, l = |m| = 1 is assumed56.
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Figure 2.2: (a) Force exerted on an electron by the EM-field of a plane wave.

be directly field ionised). This is referred to as the barrier suppression ionisation (BSI)
or over the barrier ionisation (OTBI) mechanism. For a given electron energy level, the
electron can be directly field ionised if its ionisation potential Eion equals the modified
peak electrostatic potential of the atom51, as shown in fig. 2.1b. The critical distance
(rc) at which it happens can be obtained by setting the first spatial derivative of equation
2.10 to zero, which yields r2c = (1/4πϵ0)Zeffe/E0. Thus, equating the atomic potential at
distance rc with that of Eion, one obtains the critical laser E-field Ec = (πϵ0/Zeffe

3)E2
ion.

Hence, the laser-intensity needed to field ionise the electron, which is referred to as the
appearance intensity (Iapp) is given by,

Iapp =
1

2
ϵ0cE2

c = 4× 109 ·

(
Eion

eV

)4

·

(
1

Zeff

)2

W/cm2 (2.14)

For example, for the ionisation process Ar7+ → Ar8+ corresponding to an ionisation energy
of 143.5 eV, Zeff = 8.8 and the appearance intensity Iapp = 2.2× 1016 W/cm2. Here, the
effective nuclear charge Zeff has been calculated using the Slater’s rule52. Therefore, BSI
is of relevance for this research work, where laser intensities well above 1 × 1016 W/cm2

were reached. For higher ionisation states, however, tunnel ionisation still plays a role.

2.3 Electron - Light Interaction

In order to understand the interaction dynamics between an intense laser pulse and
plasma, it is worth examining what happens to a single electron in vacuum in the presence
of an EM-field. The force exerted by the electric (E⃗) and magnetic (B⃗) components of a
light wave on an electron, as shown in fig. 2.2, is given by 59,

d
dt
p⃗ =

d
dt
(γemeυ⃗e) = −e[E⃗ + (υ⃗e × B⃗)] (2.15)

where, the Lorentz factor γe = 1/
√
1− υ2e/c

2 and υe is the electron velocity. By making
use of the Coulomb gauge45, both the E-field and B-field can be expressed in terms of
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a common variable called the vector potential A⃗ such that E⃗ = −(∂A⃗/∂t) − ∇V and
B⃗ = ∇× A⃗. In the absence of any static E-field, the electrostatic potential V can be set
to zero. Thus, the equation 2.15 can be reduced to the following form:

d
dt
(γemeυ⃗e) = −e

[
∇(υ⃗e · A⃗)−

dA⃗
dt

]
(2.16)

2.3.1 Non-relativistic Case

For electron velocities much less than the speed of light (υe ≪ c), the contribution of the
magnetic force is negligible compared to its E-field counterpart i.e. |υ⃗e × B⃗| = |(υ⃗e/c) ×
E⃗| ≪ |E⃗|, where the relation B = E/c (which is valid in vacuum) was used. Therefore, in
the classical limit (γe = 1), equation 2.16 can be reduced to:

me

d
dt
υ⃗e = e

dA⃗
dt

(2.17)

At t = 0, for an electron at rest at the origin, the expressions for the electron’s velocity
and displacement can be obtained by making an ansatz A⃗(x,t) = A⃗0 sin[k0x − ω0t]ŷ and
integrating the equation 2.17 with respect to time.

υ⃗e(x,t) =
eA0

me

sin[k0x− ω0t]ŷ; y⃗(x,t) =
eA0

ω0me

(1− cos[k0x− ω0t])ŷ (2.18)

These equations describe the motion of an electron under the influence of a weak EM-
field for which υe ≪ c. Equation 2.18 shows that the electron undergoes a harmonic
oscillation in the y-direction centered around eA0/ω0me, whereas its position along the
x-axis remains unchanged. The phase relationship between the motion of the electron and
the applied E-field component of the electro-magnetic field is shown in fig. 2.3a, where
it can be seen that the electron’s displacement is in phase with the E-field, whereas its
velocity is 90◦ out of phase.

2.3.2 Relativistic Case

For increasing laser intensities, the electron’s velocity approaches the speed of light (υe ≈
c), the B-field contribution to the electron’s motion is comparable to its E-field counter-
part and relativistic corrections need to be made in the electron’s equation of motion.
Therefore, both the B-field contribution and γe cannot be neglected anymore. By inte-
grating the x and y components of the electron’s equation of motion 2.16, the following
two invariants can be obtained:

p̃y − a = C1; γe − p̃x = C2 (2.19)
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Figure 2.3: (a) Phase relationship among the E-field, electron’s oscillation velocity (υ⃗e), and
its transverse motion (y⃗) for non-relativistic EM-field strengths, and (b) figure ’8’
motion of a relativistic electron in the co-moving reference frame with drift velocity
(υdf ) for a0 = 1,2,3,4 oscillating with the laser frequency ωl.

where, the momentum components p̃x and p̃y are normalised to mec, and a = eA/mec
2 =

a0 sin[k0x − ω0t], where a0 = eA0/mec
2 is defined as the normalised vector potential of

the laser pulse. For an electron initially at rest at the origin, the constants C1 and C2

correspond to 0 and 1, respectively. In the co-moving reference frame of the laser pulse∗

(τ = t − x/c), equation 2.19 can be integrated to obtain the motion of an electron in a
strong EM-field59.

x(τ) =
c

4
a20

[
τ − 1

2ωl

sin(2ωlτ)

]
; y(τ) =

c

ωl

a0[1− cos(ωlτ)]; z(τ) = 0 (2.20)

They show that the transverse motion y(τ) is still a purely oscillating term (similar to the
classical solution equation 2.18), whereas x(τ) denotes a combination of oscillation with
double the frequency and translation with a drift velocity υdf = ca20/(a

2
0+4). Thus, in its

co-moving reference frame (υdf = 0), the electron performs the figure-8 motion shown in
figure 2.3b. It is important to note that there is no net energy gain by the electron from
the laser field according to the Lawson-Woodward theorem 60;61.

2.4 Ponderomotive Force

The analysis that so far has been carried out assumes a EM-field of constant amplitude (in-
finitely long plane wave) around the vicinity of the electron. This is, however, inadequate

∗No explicit Lorentz transform is carried out here, as the length scales are kept the same both in the
co-moving and lab reference frames
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to understand as to what happens to an electron present in an inhomogeneous EM-field
(E⃗(y⃗,t) = E⃗s(y⃗) cos[ω0t]) like in the case of a tightly focused laser pulse. This can be over-
come by investigating the equation of motion of the electron 2.15 in its non-relativistic
form using a Taylor expanded E-field E⃗s(y⃗) that accounts for its spatial inhomogeneity in
the following way,

E⃗s(y⃗) = E⃗s(y⃗)|y⃗0  + (∆y⃗ · ∇)E⃗s(y⃗)
⏐⏐⏐
y⃗0  +... (2.21)

1st-order 2nd-order (2.22)

where ∆y⃗ = y⃗1− y⃗0. Taking into account only the 1th-order term, for an electron initially
at the origin (y0 = 0), its velocity (v⃗1) and displacement (y⃗1) can be by obtained by
integrating the equation 2.15.

υ⃗1 = −
e

meω0

E⃗s(y⃗0) sin[ω0t]; ∆y⃗ = y⃗1 =
e

meω2
0

E⃗s(y⃗0) cos[ω0t] (2.23)

These equations describe the oscillatory motion of an electron acted upon by a uniform
E-field E⃗s(r⃗0). The contribution of the E-field inhomogeneity can by obtained by revisiting
equation 2.15 and considering only the motion resulting the non-uniform E-field and υ⃗1×B⃗
components, as shown below,

me

dυ⃗2
dt

= −e
[
(y⃗1 · ∇)E⃗(y⃗1,t)|y⃗0 + υ⃗1 × B⃗(y⃗1,t)

]
(2.24)

The force component resulting from the B-field (υ⃗1 × B⃗) is taken into account, as it is of
the same expansion order as the non-uniform E-field contribution. Time averaging over
the fast oscillations of the laser-field and making use of equations 2.23, the expression
2.24 can be reduced to62:

Fpond = me

⟨
dυ⃗2
dt

⟩
T

= −
e2

4meω2
0

∇(E⃗2
s ) (2.25)

This expression shows that in the case of a non-uniform electro-magnetic field, there is
a net force acting on the electron from the regions of high to low intensities. This is the
so-called ponderomotive force (Fp), which can be viewed as the force resulting from the
light pressure difference acting on the electron. The ponderomotive force can be written
in terms of a potential Φp such that Fp = −∇Φp in which Φp can be equated to the
average kinetic energy gained by the electron from the laser field, as shown below

Φp =
e2

4meω2
0

E⃗2
s ≡

1

2
me⟨υ⃗0⟩2 (2.26)
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which can also be verified from equation 2.23 (for v⃗1). For electron velocities close to the
speed of light (υ0 ≈ c), a similar expression can be derived using the relativistic equation
of motion of the electron63;64.

F⃗p = −∇Φp = − e2

4⟨γe⟩meω2
0

∇(E⃗2
s ) (2.27)

where ⟨γe⟩ is the electron’s time-averaged Lorentz factor. This shows that the pondero-
motive force is proportional to the intensity of the laser pulse (through E2

s ) and acts
independently of the sign of the charge. Neglecting the charge dependence, the force
exerted on an electron is however much greater than that on an ion due to the mass
dependence in equation 2.27, as ions are much heavier than electrons.

In the case of plasma, where the collective oscillations of its constituent electron popu-
lation need to be taken into account, the ponderomotive force is balanced by the restoring
electrostatic force offered by the ion population. Therefore, one can no longer ignore the
electrostatic potential (V ) in the Coulomb gauge of the electric field E⃗ = −∂A⃗/∂t−∇V .
Therefore, the corresponding expression for the ponderomotive force is given by 65,

F⃗p = −∇Φp = −mec
2∇(γe − 1) (2.28)

where γe =
√
1 + a2 in the case of plasma (many electron system). Please note that

this differs from the case of a single electron in a linearly polarised EM-field, for which
γe = (1 + a2/2)1/2. Since the energy gained by an electron in a non-uniform laser field
depends on its starting position, the maximum energy gain is achieved for an electron
present at the centre of the focus, where the E-field is maximum. Therefore, the maximum
ponderomotive potential is given by,

Φp = mec
2

(√
1 + a20 − 1

)
= 0.511

(√
1 + a20 − 1

)
MeV (2.29)

The amplitude of the normalised vector potential a0 can be related to the laser’s peak
intensity I0 in the following way:

I0 =
1

2
ϵ0cE

2
0 = 2π2ϵ0c

5

(
mea0

eλ0

)2

⇒ a0 =

√
(I0/Wcm−2)(λ0/ µm)2

1.37× 1018
(2.30)

For instance, for a peak laser intensity I0 of 4× 1019 W/cm2 and central laser wavelength
λ0 of 0.8µm, the normalised vector potential a0 = 4.8 corresponding to a ponderomotive
potential or the average kinetic energy gained by the electron Φp = 2MeV. Thus, the
electron gains energy from the laser-field in contrast to Lawson-Woodward theorem 60;61.
For a given laser parameters, such as its energy, pulse duration and focusing geometry,
electrons can be accelerated to energies greater than the maximum ponderomotive poten-
tial in an under-dense plasma, if the collective plasma oscillations are to be utilised in the
acceleration process, as discussed in section 2.7.
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2.5 Plasma Properties

The propagation of a laser pulse in a plasma is primarily determined by the plasma
electrons’ response to the electro-magnetic field of the laser pulse, as their counterparts,
namely the ions are much heavier. Any effect on the ion population could thus be deemed
as a secondary effect resulting from the displacement of the energetic electrons driven by
the laser pulse. Therefore, in this section, the basic properties of the plasma associated
with its electron population are first described, which is then followed by its response
during the propagation of an intense laser pulse.

Plasma Frequency

The plasma frequency is defined as the frequency with which its constituent electrons
collectively respond to any external disturbance and is expressed in terms of the electron
density ne by59,

ωp =

√
nee2

ε0me

(2.31)

where, e is the electron charge, ε0 is the vacuum permittivity and me is the electron
rest mass. At relativistic intensities, the oscillation velocity of an electron in laser field
approaches the speed of light. Therefore, the plasma frequency needs to be accordingly
modified to ω2

rp = ω2
p/⟨γe⟩, where ⟨γe⟩ is the time-averaged Lorentz factor related to

the electron’s motion. Furthermore, when one takes into account the thermal motion of
the elections, the dispersion relation for the collective plasma oscillations is given by the
so-called Bohm-Gross relation66,

ω2
ek = ω2

p + 3υ2thk
2 (2.32)

where the electron thermal velocity υth =
√
kBTe/me with kB being the Boltzmann con-

stant, Te being the electron temperature and k being the wave number. The k dependence
in equation 2.32 implies the propagation of the electron density oscillations essentially due
to the thermal effects (i.e. the propagation will not occur in the absence of the thermal
effects).

Critical Density

The propagation of a laser pulse in a plasma medium is restricted up to a density at
which the plasma frequency equals the laser frequency i.e., ωp = ω0, which is defined as
the critical density (nc). It can be quantified as

nc =
ε0meω

2
0

e2
=

1.1× 1021 cm−3

(λ0/ µm)2
(2.33)
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Figure 2.4: Shielding of an external applied E-field by the plasma, where the E-field (E =
−∇ϕ(x)) drops exponentially inside the plasma shielding region.

Since the interaction dynamics between an intense laser pulse and the plasma medium
is primarily determined by its density, it is meaningful to characterise it as under-dense
if ne ≪ nc, near-critical if 0.1nc < ne < nc and over-critical if ne > nc. However, for
relativistic intensities, the critical density is increased to nc⟨γe⟩.

Debye Length

The Debye length (λD) of a plasma is defined as the distance over which an externally
applied E-field is reduced by a factor of 1/e.14 When an external E-field is applied to
a plasma with a finite electron temperature (Te), its electron population at the plasma
boundary collectively responds to shield it from the rest of the plasma, as shown in fig. 2.4.
Within the distances over which the shielding is achieved, the neutrality of the plasma is
not fulfilled i.e. there is a net charge. For a plasma with an exponential electron energy
distribution (i.e. f(ve) ∝ exp[−v2e/v20], where f(ve) is the electron velocity probability
distribution function, ve is the electron velocity and v0 is the equilibrium electron thermal
velocity), the variation of the potential inside the shielding region is given by 14,

ϕ(x) = ϕ0 exp

[
− x

λD

]
, where λD =

√
ε0kBTe

e2ne0

(2.34)

where ϕ0 is the amplitude of the potential, which depends on the applied E-field, x is the
distance measured from the plasma boundary, and ne0 is the steady state electron density.
Here, the mobility of the ions is neglected, as they are much heavier than the electrons i.e.
mi ≫ me, where mi is the ion mass and me is the electron mass. However, in the steady
state limit, if the contribution of the ions is to be taken into account, the Debye length
is reduced by a factor of67

√
2. Equation 2.34 shows that higher electron temperatures

result in larger shielding lengths, due to reduced confinement of these electrons to the
region where the potential is applied. For a given Te, higher electron densities result in
shorter shielding lengths, as there are more electrons with lower velocities available.
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2.6 Laser Propagation in Plasma Medium

The propagation of electro-magnetic waves in plasma can be described by the Maxwell
equations in matter of the form:45

(i) ∇ · E⃗ = −
1

ε0
∇ · P⃗ + ρf , (ii) ∇ · B⃗ = 0 (2.35)

(iii) ∇× E⃗ = −
∂B⃗
∂t
, (iv) ∇× B⃗ = µ

(
ε0
∂E⃗
∂t

+
∂P⃗

∂t
+ J⃗f

)
(2.36)

where E⃗(x,t) and B⃗(x,t) are the Eand B-fields of EM-wave, ρf is the charge distribution
density, P⃗ (x,t) is the material (plasma) polarisation, µ is the magnetic permeability (µ ≈
µ0) and the total current J⃗ = (∂P⃗ /∂t) + J⃗f with ∂P⃗ /∂t being the bound current and J⃗f
being the free current in plasma. By setting ρf = 0 and J⃗f = 0, plasma can be treated as
a dielectric medium, where only the transverse oscillations of the electrons in the EM-field
are considered.

By taking the time derivative of equation 2.35(ii) and substituting 2.35(i) in (ii), one
can obtain the following expression,

∇2E⃗ −
1

c2
∂2E⃗
∂t2

=
1

ε0

(
1

c2
∂2P⃗

∂t2
−∇(∇ · P⃗ )

)
(2.37)

where c = 1/
√
µ0ε0. Considering only the transverse motion of the electrons, the di-

vergence term ∇ · P⃗ can be set to zero. Assuming that the plasma electrons respond
instantaneously to the applied E-field E⃗(t)68, the polarisation P⃗ can in general be ex-
panded in terms of E⃗ to account for the non-linear response of plasma, as follows 69;70,

P⃗ (t) = ε0

∞∑
n=1

χ
(n)
ij (t,E⃗)E⃗(t) = ε0

(
χ
(1)
ij + χ

(2)
ij (t,E⃗) + χ

(3)
ij (t, E⃗2) + ...

)
E⃗(t) (2.38)

where the proportionality constant χ
(1)
ij is the first-order electric susceptibility, which

depends on the microscopic structure of the material 45 (i.e. plasma). Whereas, the
higher order electric susceptibilities (χ(2)

ij ,χ(3)
ij ...) depend also on the applied E-field to

varying orders.

2.6.1 Linear Response

The first order susceptibility χ
(1)
ij corresponds to the linear response of plasma, which is

independent of the applied E-field. Therefore, the plasma polarisation can be shown to
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be directly proportional to the applied E-field i.e. P⃗ = ε0χ
(1)E⃗ . For a purely transverse

plasma response, the time derivative of the bound current ∂P⃗ /∂t is given by,

∂2P⃗

∂t2
= ε0χ

(1)
∂2E⃗
∂t2

(2.39)

substituting equation 2.39 in 2.37 and setting ∇ · P⃗ = 0, one can obtain the following
wave equation of the form:

∇2E⃗ =
1 + χ(1)

c2
∂2E⃗
∂t2

=
(η
c

)2 ∂2E⃗
∂t2

⇒ ∇2E⃗ =
1

υ2
∂2E⃗
∂t2

(2.40)

where the refractive index η = (1 + χ(1))1/2 and the propagation velocity υ = c/η. Thus,
the propagation of an EM-wave in plasma satisfies the wave equation of the form 2.40.

Refractive Index

The bound current ∂P⃗ /∂t can be expressed in terms of the transverse electron density
oscillations υ⃗e such that ∂P⃗ /∂t = −eneυ⃗e. By taking its time derivative and equating it
with equation 2.39, one obtains the following relation 71,

∂2P⃗

∂t2
= −ene

∂υ⃗e

∂t
≡ ε0χ

(1)
∂2E⃗
∂t2

(2.41)

where ne is plasma electron density and υ⃗e is the electrons’ transverse oscillation velocity.
By making use of the electron’s (non-relativistic) equation of motion: ∂υ⃗e/∂t = −eE⃗/me

and E⃗ = E⃗0 exp[i(ωt−kx)], equation 2.41 yields the expression for the electric susceptibility
χ(1), which is given by,

χ(1) = −
e2ne

meε0ω2
= −

ω2
p

ω2
(2.42)

where the plasma frequency ωp = e2ne/meε0. Thus, for a laser pulse with a given spectral
width, the plasma refractive index η corresponding to its central frequency (i.e. ω = ω0)
can be expressed as,

η =
c

υ
=

(
1−

ω2
p

ω2
0

)1/2

=

(
1−

ne

nc

)1/2

(2.43)

where the critical plasma density nc = ε0meω
2
0/e

2.
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Phase Velocity and Dispersion Relation

For a plane wave ansatz of the form E⃗ = E⃗0 exp[i(ωt − kx)] with ω being the frequency
and k being the wave number, the wave equation 2.40 yields υ = ω/k, which is defined
as the phase velocity (υph) of the wave. Whereas, the corresponding dispersion relation
of an electro-magnetic wave propagating in plasma can be obtained by making use of the
relation υ2ph = c2ω2/(ω2 − ω2

p) (obtained from eqn. 2.43), as follows,

ω2 = ω2
p + c2k2 (2.44)

where the plasma frequency ωp is the minimum frequency of an EM-wave that can still
propagate in a plasma.

Group Velocity

Since a (Gaussian) laser pulse can be decomposed into several monochromatic waves of
differing frequencies, it is also bound the satisfy the wave equation 2.40. In a medium,
where the refractive index experienced by the laser pulse is frequency dependent, each
of its frequency component travels at a different phase velocity leading to changes in the
temporal structure of the laser pulse. This effect is known as dispersion. Therefore, it
can be expected that the velocity with which the laser pulse’s envelope moves differs from
that of the its central frequency, which can be understood through the following analysis.

Considering the overlap of the two monochromatic waves of the same amplitude with
slightly differing frequencies (ω ±∆ω) and wave numbers (k ±∆k), the resulting E-field
is given by72,

E⃗ = E⃗0 exp[i([ω +∆ω]t− [k +∆k]z)] + E⃗0 exp[i([ω −∆ω]t− [k −∆k]z)] (2.45)

The real-part of the resultant E-field can be expresses as,

E⃗ = 2E⃗0 cos[ωt− kz] cos[∆ωt−∆kz] (2.46)

Here, the first cosine term refers to a plane wave with a phase velocity υph = ω/k, whereas
the second cosine term refers to a modulation of 2π/∆k wavelength travelling at a velocity
of υgr:

∆ω

∆k
≈
∂ω

∂k
= υgr (2.47)

This analysis can be likewise extended to include a lot more frequencies that make up a
laser pulse. Hence, the group velocity vgr refers to the velocity with which the envelope
of the laser pulse moves in the medium, which can be related to the refractive index η
using the dispersion relation ω2 = ω2

p + c2k2, as follows,

υgr =
∂ω

∂k
=

kc2√
ω2
p + c2k2

= c
c

ω/k
= cη (2.48)
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Further Comments

For ne/nc < 1, the expression for the refractive index 2.43 yields η < 1 indicating that the
phase velocity υph > c. It should however be noted that the speed with which information
or energy travels in plasma is rather given by the group velocity υgr, which is smaller than
c (for υgr = cη) in accordance with the relativity theory73.

For laser intensities at which the electron’s oscillation velocity approaches the speed of
light c in vacuum, the plasma frequency ωp needs to be accordingly modified to account
for the relativistic increase in the electron’s mass, which is given by 74 ωrp = ωp/

√
⟨γe⟩,

where ⟨γe⟩ is the electron’s time-averaged relativistic factor. This leads to an induced
transparency whereby the laser can propagate up to an enhanced critical density of ⟨γe⟩nc.
Thus, the plasma refractive index can be accordingly modified to:

η =

√
1−

ω2
p

⟨γe⟩ω2
0

=

√
1−

ne

⟨γe⟩nc

(2.49)

2.6.2 Nonlinear Response

The nonlinear response of the plasma to the applied E-field can be examined with the help
of the refractive index expression shown in eqn. 2.49, where the time-averaged Lorentz
factor ⟨γe⟩ = (1 + a20)

1/2 accounts for the intensity dependent laser propagation effects,
such as relativistic self-focusing and self-phase modulation (to be discussed in section 2.9).
If one considers the propagation of a laser pulse in a gas medium, where the laser pulse’s
intensity is high enough to ionise the constituent atoms, the intensity dependent temporal
variation of the refractive index η(t,I) at a given spatial location is given by,

η(t,I) =

√
1−

ne(t,I)

γe(I(t))nc

, where ne(t,I) = ne

(
max
t′<t

[I(t′)]

)
(2.50)

which means that for a given time t, the electron density ne depends on the laser’s
maximum intensity for times before time t (i.e. t′ < t). This is valid under the assumption
that the electron-ion recombination times are much longer than the laser pulse’s time scale,
which is usually in the range of a few milliseconds 75;76 and the electron expulsion due to
the ponderomotive force of the laser pulse is negligible.

2.7 Laser Wakefield Acceleration

When an intense laser pulse propagates through plasma, its ponderomotive force serves
as a means of radially displacing the electrons from the (heavier) ionic background. These
electrons are, however, pulled back by the restoring force offered by the quasi-static ionic
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(a) (b)

Figure 2.5: (a) Normalised wakefield parameter, namely the electron density perturbation (ñ =
n′
e/ne, where n′

e is the perturbed electron density and ne the uniform electron density
that one starts off with) at the trail of the laser pulse, the resulting nearly linear lon-
gitudinal E-field (Ẽ = eEl/mc2ω0) due to the charge separation between the electrons
and the ions, the corresponding electro-static potential (ϕ = eΦ/mc2), and vector
potential of the laser pulse (a = eA/mc2) for a peak value of a0 = 3 and uniform
plasma-density ne = 0.08nc, and (b) 3D PIC simulation result showing wakefield
excitation and trapped electrons in the wake90.

background, thus setting up an electron density oscillations at the trail of the laser pulse,
which is called a plasma wave. If electrons can be trapped inside such spatio-temporal
density oscillations (like a surfer catching an ocean wave), they can be accelerated to a
few GeV energies due to the longitudinal electric field offered by the charge separation
over a few centimetre scale lengths15. Electrons can be trapped in a plasma wave using
methods, such as wake breaking17;19–21, colliding pulse (through beat wave)77–80, ionization
induced81–83, shock wave84;85, density-ramp injection86 and external injection87.

Figure 2.5a shows the excitation of the electron density oscillations at the trail of the
laser pulse and the resulting nearly linear longitudinal electric-field due to the charge
separation, which can calculated using an 1D model of the laser wakefield 88. As the
electrons gain energy from the wakefield, they begin to outrun the wakefield and enter
into a dephasing region, where the longitudinal E-field of the wake reverses its direction
and begins to decelerate the electrons. Thus, the length after which the electrons enter
the deceleration phase is defined as the dephasing length (ldp) and it is quantified by89

ldp = λ3p/λ
2
0, where λ0 is the laser wavelength and λp is the plasma-wavelength, which for

plasma wave’s phase velocities close to c is given by λp = 2πc/ωp. The laser wakefield
acceleration process is most efficient when the longitudinal spatial extent of the laser pulse
matches with half of the plasma wavelength62 i.e. c∆τ ≈ λp/2.

A more detailed analysis of the wakefield acceleration can be carried out using Paricle-
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In-Cell (PIC) simulations, where the interaction between the laser pulse and the plasma
medium are self-consistently solved and they can take into account the 3D shape of the
plasma-wave, laser pulse’s spatio-temporal evolution, energy depletion and various laser-
plasma instabilities. Figure 2.5b shows the result obtained from such a PIC-simulation,
where the laser pulse, plasma wave excitation and electrons that are trapped inside the
wave are depicted90. A more detailed discussion on this acceleration mechanism can be
found in references91–93. Laser wakefield acceleration has so far been extensively inves-
tigated both theoretically13;16–18;94;95 and experimentally15;19–22;79;84–86;88;96 and has been
shown to dominate in the density region ne ≲ 0.1nc in which, electrons can be accelerated
up to a few GeV’s.88;97

2.8 Direct Laser Acceleration (DLA)

As the plasma density ne increases (still < nc), both the dephasing length ldp of the
wakefield acceleration and the maximum obtainable electron energy Emax decrease, as
it can be shown that89 ldp ∝ 1/n

3/2
e and Emax ∝ 1/ne. Furthermore, for increasing

plasma densities, the damping of the plasma wave also starts to play a role 98. However,
simulations have shown that laser-plasma interactions in this density regime give rise
to an acceleration mechanism called direct laser acceleration (DLA), whereby electrons
directly gain energy from the laser field31;32;38;39. In this acceleration mechanism, the
pulse duration of the laser plays a less crucial role than in the case of the laser wakefield
acceleration89.

Mechanism

During the interaction between an intense laser pulse and an under-dense plasma, electrons
are expelled from its focal volume due to the ponderomotive force of the laser pulse.
The electrons along the laser’s propagation direction are continuously expelled by the
laser pulse, whereas the radial expulsion of the electron is counteracted by the Coulomb
attraction force resulting from the electron-ion charge separation leading to a channel-
like structure. This results in a (quasi-static) E-field pointing radially outwards inside the
channel, as shown in fig. 2.6a. The current generated by the forward propagating electrons
initially undergoes filamentation due to the Weibel instability 99;100, which is triggered e.g.
by the perturbations in the transverse laser intensity distribution 98. For near-critical
plasma densities, the self-generated B-fields of the electron filaments are strong enough to
pinch them together to eventually form one single filament (as shown in fig. 2.6b), which
survives at time scales longer than the pulse duration 38. With the help of simulations, the
radial extent of the filament has been shown to be of the order of the laser wavelength,
in which the maximum B-field is reached at its radial boundary 31;38.

The electrons that are trapped inside the channel structure, undergo oscillatory motion
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(a) (b)

Figure 2.6: (a) Motion of an electron under the influence of transverse E-field and self-generated
B-field of the channel structure, and (b) Simulation result for a0 = 3 and ne/nc = 0.36
showing laser pulse propagation (from left to right), where the upper image shows the
relativistic self-focusing of the laser pulse in terms of its intensity and the lower image
shows the self-generated B-field of the forward electron current38. For comparison,
the B-field of the light-wave B0 = mecω0/e = 134MG for λ0 = 2πc/ω0 = 0.8µm,
whereas the simulation results yield a peak B-field of 150MG.

(betatron oscillation) within the channel structure due to the quasi-static Eand B-fields
acting on them101–108, as shown in fig. 2.6a. When these oscillating electrons interact with
a laser pulse, they can directly gain energy from the laser-pulse, if the electrons’ betatron
frequency matches with that of the laser’s frequency, as seen by the electron in its own
frame of reference. In this scenario, when the electron undergoes purely one transverse
betatron oscillation, it is overtaken by the electromagnetic field exactly by one cycle. A
more detailed discussion on this electron acceleration mechanisms can be found in the
references32;38;39. Similar to the laser wakefield acceleration process, electrons could also
enter a deceleration phase if the oscillations of the electrons become out of phase with the
laser E-field. Simulations have reported both Maxwellian 32 and quasi-monoenergetic41

electron energy spectra. The channel structure has been estimated to expand at pico-
second timescales due to collisions38. Furthermore, this acceleration mechanism has been
shown to dominate at densities around39 ne ∼ 0.2nc, where a helium gas jet was used as
a target.
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2.9 Propagation Effects

When an intense laser pulse propagates through an under-dense plasma, depending on
the local plasma density and laser intensity distribution, the laser pulse could experi-
ence various propagation effects, such as ionization induced defocusing, relativistic and
ponderomotive self-focusing, self-phase modulation and pulse compression. The refrac-
tive index of the plasma η, as a function of the electron density ne and the electron’s
relativistic factor ⟨γe⟩ is given by,

η =

√
1− ne

⟨γe⟩nc

(2.51)

where ⟨γe⟩ =
√

1 + a20 with a0 being the normalised vector potential of the laser pulse and
plasma’s critical-density nc = ε0meω

2
0/e

2 with ω0 being the laser’s central frequency. The
propagation effects can be studied by introducing perturbations in the plasma density
n′
e = ne+ δne and laser’s central frequency ω′

0 = ω0+ δω0, where δne ≪ ne and δω0 ≪ ω0,
in the linearly approximately version of the refractive index of the plasma, which is only
valid for under-dense plasma (i.e. ne ≪ nc), as follows,

η ≈ 1−
1

2

e2

ε0me

1√
1 + a20

ne + δne

(ω0 + δω0)2
(2.52)

For a0 < 1, the inverse of the Lorentz factor 1/⟨γe⟩ ≈ 1− a20/2 and the expression above
can be approximated to109;110:

η = 1− 1

2

ω2
p

ω2
0

(
1 +

δne

ne

− 2δω0

ω0

− a20
2

)
(2.53)

whereas for a0 > 1, 1/⟨γe⟩ ≈ (1/a0)(1− 1/2a20). Thereby,

η = 1− 1

2

ω2
p

ω2
0a0

(
1 +

δne

ne

− 2δω0

ω0

− 1

2a20

)
(2.54)

Thus, the dependence of η on δne, δω0 and a0 leads to a number of effects, which affect
the laser pulse during its propagation, which could compete with one another depending
on their exact values, orientations and strengths. The following section gives a simplified
semi-quantitative account of these different effects, where they are treated independently
and any combination of the propagation effects are ignored, whereas as an exact analysis
would require detailed computer simulations.

2.9.1 Ionisation Induced Defocusing

Considering the propagation of a laser pulse in an argon gas jet, for (non-relativistic)
intensities exceeding the ionisation threshold of the argon atoms, the ionisation process
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(a) (b)

Figure 2.7: (a) Gaussian shaped radial intensity distribution of a focused laser pulse and the
corresponding intensity dependent step-line vs smooth plasma density profile. Here,
the transition of the argon ionisation states is assumed to be smooth, where the
corresponding plasma density is interpolated between the values corresponding to
the two successive ionisation states. (b) Associated plasma refractive index (η(r))
and laser phase velocity (υph).

leads to a reduction in refractive index (η), as η = (1 − ne/nc)
1/2. As the refractive

index contribution of the free electrons present in the plasma is much higher than that of
their atomic counterpart†, any further propagation of the laser pulse is primarily deter-
mined by the plasma’s electron density distribution. Figure 2.7a shows the radial intensity
distribution of a Gaussian laser pulse and the resulting electron density distribution cor-
responding to various argon ionisation levels. Its corresponding plasma refractive index
(η) and laser’s phase velocity (υph) profiles are shown in fig. 2.7b, which is equivalent to
that of a negative lens. Thus, for a plane wave, an increased υph in the middle causes the
radius of curvature of the laser pulse to increase leading to a defocusing effect. In the case
of a wave front that is being focused, this causes first a decrease and then an increase in
its radius of curvature. Further propagation of the laser pulse continues to be dominated
by the defocusing effect, as long as its intensity exceeds the ionisation threshold.

Formulation

The propagation characteristics of a laser pulse affected by ionisation induced defocusing
can be examined by considering the case of a Gaussian beam with beam waist w0, as shown

†For example, at atmospheric pressure, the refractive index contribution of air ∆ηAir = 0.0003 corre-
sponding to a number density of 2.5×1019 cm−3. Whereas, a plasma with the same electron density yields
a refractive index contribution ∆η = 0.008., which can further be enhanced through multiple ionisation
process.
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(a) (b)

Figure 2.8: (a) Tilting of a flat wavefront of width w0 after a propagation distance x, and the
propagation of a Gaussian beam with a divergen half-angle Θ.

in fig. 2.8a. After a propagation distance of x and time t, the wavefront is shown to have
tilted by an angle θ due to ionisation induced defocusing, where the on-axis propagation
velocity υ′ph is different from that of the edge υph, which is given by,

x = υpht =
c

η
t =

c√
1− (ne/nc)

t ≈ c

(
1 +

1

2

ne

nc

)
t (2.55)

whereas the on-axis distance x′ due to the electron density ne + δne, is given by,

x′ = υ′pht =
c√

1− ((ne + δne)/nc)
t ≈ c

(
1 +

1

2

ne

nc

+
1

2

δne

nc

)
t (2.56)

≈ x+ c
δne

2nc

t = x+ δx (2.57)

where δx = cδnet/2nc. Thus, the tilting angle θ for small values is given by,

θ ≈ tan θ =
δx

w0

=
ct

w0

δne

2nc

≈ x

w0

δne

2nc

(2.58)

Assuming that the laser pulse is focused with a half-angle Θ, as shown in fig. 2.8b,
ionisation induced defocusing is neutralised when θ = Θ. For a Gaussian beam, it can
be shown that46 Θ = λ/πw0 and the Rayleigh length zR = πw2

0/λ. Thus, considering a
propagation length of x = 2zR ≈ ct, ionisation induced defocusing dominates when 111,

θ > Θ ⇒ 2πw2
0

λ

1

w0

δne

2nc

>
λ

πw0

⇒
δne

nc

>

(
λ

πw0

)2

(2.59)

This condition is largely true for regions immediately around the focus. For distances
further away from the focus, it causes an increase in the radius of curvature, which results
in a reduction in the peak laser intensity that could theoretically be achieved with a
given focusing geometry, thereby causing a shift in the position of the peak intensity,
as demonstrated by Auguste et al 112. This can however be compensated by going for
either tighter focusing geometry or pre-ionization of the medium or through the choice of
a target with less ionisation levels.
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(a) (b)

Figure 2.9: (a) Gaussian shaped radial laser intensity profile with a peak intensity of 1 ×
1018W/cm2 (a0 = 0.68) and a FWHM radial diameter of 30µm, and (b) its cor-
responding plasma refractive index (η) and laser phase velocity (υph).

2.9.2 Self-focusing in Plasma

Self-focusing of a laser pulse in plasma can occur due to the combination of two effects
namely, the relativistic electron mass increase close to the laser axis and the radial expul-
sion of electrons from the focal region due to the ponderomotive force of the laser pulse (as
discussed in section 2.3). Through the act of self-focusing, the laser pulse’s intensity can
be further increased and it can be guided over lengths greater than the Rayleigh length.

Relativistic Self-focusing

In order to investigate the effect of the relativistic electron mass increase on the laser
pulse’s propagation, ponderomotive electron repulsion and dispersion effects will be ne-
glected for the time being. Assuming a uniform plasma density, the refractive index (η)
can be related to the relativistic factor through the normalised vector potential a0 in the
following way,

η = 1− 1

2

ω2
p

ω2
0

(
1− a20

2

)
(2.60)

where ωp and ω0 are the plasma and laser frequencies, respectively.
Considering a laser pulse of Gaussian radial intensity profile, as shown in figure 2.9a,

propagating in a uniform plasma density of 0.1nc, the refractive index increases towards
the centre of the laser pulse meaning that the corresponding phase velocity (υph) decreases,
as shown in figure 2.9b. This acts as a positive lens thus causing the laser pulse to self-
focus, until it is compensated by natural diffraction. The critical laser power (Pcr) required
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(a) (b)

Figure 2.10: (a) Schematic representation of the cavity formation due to the ponderomotive
expulsion of the electrons present in the laser’s focal region, and (b) electron density
variation across the cavity (ñ) in the steady-state limit corresponding to a Gaussian
transverse intensity profile, where the a FWHM focal spot diameter of 6.6µm (the
spot size obtained at the vacuum focus of one of the experiments) is used.

for the self-focusing effect to set in can been shown to be59,

Pcr = 17.5
ω2
0

ω2
p

GW = 17.5
nc

ne

GW (2.61)

For ne = 0.05nc, Pcr = 350GW, which can be readily exceeded by modern terawatt class
laser systems for the laser pulse to be relativistically self-focused in a uniform plasma.
This has also been experimentally demonstrated (for instance, for the hydrogen gas jet
target113), where for P < Pcr ionization induced defocusing dominates, and for P > Pcr

relativistic self-focusing dominates113–115.

Ponderomotive Self-focusing

During the interaction between an intense laser pulse and a plasma medium, the non-
uniform nature of the intensity distribution across the laser pulse results in a force that
acts from the high to low intensity regions, which is called the ponderomotive force F⃗pond ∝
∇⃗(E2

s ), where Es denotes the envelope’s E-field amplitude (refer to 2.4). Near the focal
region, this force is strong enough to radially expel the electrons from its intense regions to
form an electron cavity116, as shown in fig. 2.10a. For an electron kinetic energy of 2MeV
and laser focal radius (1/e2) of ∼ 3µm, it takes ∼ 10 fs for the electron to be radially
expelled from the central focal region. Compared to the FWHM pulse duration of the
laser pulse (∆τ = 30 fs) relevant to this thesis work, one can expect that the electron
density distribution the laser pulse can accordingly differ due to response time of the
electron expulsion. For instance, the electron distribution at the centre of the laser pulse
can differ from that of front and back of the laser pulse. Therefore, the modified refractive
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index of the plasma can cause different parts of the laser pulse to undergo ponderomotive
self-focusing at varying degrees.

A detailed formulation of the coupled equations describing the evolution of the laser
pulse and the electron density distribution can be found in the reference 116. In the stead-
state limit, where the laser pulse is guided by the electron cavity resulting from the pon-
deromotive electron expulsion, the radial electron density distribution across the cavity
corresponding to a Gaussian transverse laser intensity of the form a = a0 exp[−4 ln 2r2/∆r2]
where ∆r is the FWHM laser spot size, is shown in fig. 2.10b. Here, the electron depletion
occurring in the central focal region for a > 1 acts as a positive lens to guide the laser
pulse. Together with relativistic self-focusing, it leads to a guiding of the laser pulse over
distances much greater the Rayleigh length. This has also been experimentally demon-
strated113;117;118, during which both of these effects become indistinguishable from one
another.

2.9.3 Self-Phase Modulation

Self-Phase Modulation (SPM) refers to the change in the instantaneous frequency of a
laser pulse due to the intensity dependent refractive index in the longitudinal direction
(η(t) = η0(t) + η2(t)I(t)) experienced by the pulse119. It can be seen as the equivalent of
self-focusing in the longitudinal direction in a plasma. When a laser pulse is focused into
a material such as a gas jet, the leading edge of the laser pulse ionises the atoms to form
a plasma. The subsequent laser propagation in plasma depends on the interdependent
evolution of electron density ne(x,t) and laser intensity I(x,t). Here, the effect of SPM
on the laser’s propagation has been investigated neglecting the other propagation effects
such as, ionisation induced defocusing, and relativistic and ponderomotive self-focusing.

Assuming that the envelope shape of the laser pulse and the longitudinal electron
density profile remain unchanged in the co-moving reference frame of the laser pulse, the
instantaneous plasma refractive index η(τ) is given by,

η(τ) = 1−
1

2

ne(τ)

nc

+
1

4

ne(τ)

nc

a20(τ)   (2.62)

η2I(τ) (2.63)

Here, the term η2I(τ) accounts for the contribution of the refractive index due to electron’s
relativistic mass increase for a0 < 1. For a0 > 1, η(τ) needs to be accordingly modified,
as given by equation 2.53. The phase shift ϕ(t) accumulated by different parts of the laser
pulse after a certain propagation length (L) is given by,

ϕ(τ) = ϕ0 + ω0τ + ϕSPM(τ) (2.64)

where, ω0 denotes the carrier frequency and ϕSPM(τ) denotes the accumulated phase
shift across the pulse due to the density and density-intensity dependent refractive index
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(a) (b)

(c) (d)

Figure 2.11: (a) Laser’s intensity profile and the corresponding electron density profile, (b) the
variation of the refractive index profile (η(t)) and the laser pulse’s instantaneous
frequency (δω(t)), (c) the modified E-field of the laser pulse after the propagation
of 100µm in plasma, (d) the unmodulated and self-phase-modulated spectrum of
the laser pulse.

(η0, η2I) profiles of plasma, which can be expressed as44,

ϕSPM(τ) =
2π

λ0

∫ L

0

η(τ)dx (2.65)

The instantaneous frequency ω(τ) of the laser pulse is therefore given by,

ω(τ) =
d
dτ

[ϕ(τ)] = ω0 +
d
dτ
ϕSPM(τ) = ω0 +

d
dτ

[
2π

λ0

∫ L

0

η(τ)dx
]

= ω0 +
2π

λ0
L

d
dτ
η(τ)   (2.66)

δω(τ)

where δω(τ) is the change in instantaneous frequency caused by the ionisation 120 and
self-phase modulation44 effects.
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The effect of self-phase modulation on the temporal and frequency structure of a Gaus-
sian laser pulse during its propagation through plasma has been shown in fig. 2.11. Here
a peak laser intensity of 1× 1018 W/cm2 corresponding to a0 = 0.68, FWHM pulse dura-
tion ∆t = 30 fs, and peak electron density ne = 0.05nc have been assumed. During the
rising edge of the laser pulse, the electron density has been assumed to steadily increase
and after the peak intensity, it remains constant neglecting ponderomotive effects of the
laser pulse, as shown in fig. 2.11a. Figure 2.11b shows the refractive index profile η(ne,I)
seen by the laser pulse in its co-moving reference frame and the instantaneous frequency
change δω(t) across the laser pulse after a propagation distance of 100µm. Figure 2.11c
shows the corresponding self-phase modulated electric field of the laser pulse, where the
frequency modulation across the laser pulse is evident. Figure 2.11d shows the corre-
sponding modulated spectrum. The effect of self-phase modulation on pulse propagation
and the resultant spectral broadening have also been extensively investigated 121;122.

2.10 Laser-Plasma Instabilities

Laser-plasma instabilities refer to the coupling of an electro-magnetic (EM) wave into
various other wave forms in the plasma, such as electron plasma waves, ion acoustic wave
and decay EM-waves and how it in-turn influences the pump EM-wave propagation in
plasma. The onset of plasma instabilities is primarily due to the density fluctuations,
which is either inherently present in the plasma or caused by the ponderomotive force of
the laser pulse or the intensity fluctuations of the laser pulse 98. These density fluctuations
can grow in time, if the laser pulse intensity exceeds a certain threshold value, determined
by the prevailing plasma density and the type of decay wave.

When a laser pulse couples into an electron plasma wave, under the wave-matching
condition k⃗0 = k⃗s + k⃗p, where k⃗0, k⃗s, k⃗p are the wave vectors of the incoming light wave,
decay light wave and plasma wave, the beating between the the incoming and scattering
light waves causes variations in the electron density. If the fluctuations in the electron
density are sufficient, it could also set up an ion density oscillation (ion-acoustic wave).
A fluctuation in ion density in turn alters the electron density fluctuation and thus, the
instability grows further. It is important to note that the density fluctuations need to be
of scale lengths greater than the Debye length (λD) for them to grow on14.

Depending on the type of interaction between the laser pulse and plasma, the resulting
instability assumes various forms (graphically shown in fig. 2.12), such as stimulated Ra-
man scattering (SRS), stimulated Brillouin scattering (SBS), two-plasmon decay (TPD),
stimulated electron acoustic decay (SEAS) and filamentation instability. The electron
plasma wave produced during the primary EM-wave decay could lead to several secondary
instabilities, such as Langmuir-wave decay instability (LDI), electro-magnetic decay in-
stability (EDI) and dual electro-magnetic decay (DED). There is also the possibility of a
cascading effect from the secondary instabilities produced 98.
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Figure 2.12: Type of instabilities arising during Laser-Plasma interaction.

2.10.1 Generalised Plasma Description

The evolution of a collisionless plasma can in general be described by the so-called Vlasov
equation98

∂fj

∂t
+ υ⃗ · ∇fj +

qj

mj

(
E⃗ +

υ⃗ × B⃗

c

)
·
∂fj

∂υ⃗
= 0 (2.67)

where, fj(x⃗,υ⃗,t) is the phase-space distribution function of the plasma species j (e.g. elec-
tron population), and x⃗ and υ⃗ denote the spatial and velocity components, respectively.
When combined with Maxwell’s equations, it offers a complete description of the plasma
evolution. Assuming that the ion population is stationary as they are much heaver than
their counterpart, the following equations can be obtained by taking the first, second and
third order velocity moments of the Vlasov equation for the electron population 98,

∂ne

∂t
+∇ · (neυ⃗e) = 0 (Continuity equation) (2.68)

∂υe

∂t
+ υ⃗e · ∇υe −

e

me

(
E⃗ +

υ⃗e × B⃗

c

)
= −

∇p
neme

(Eq. of motion) (2.69)

p

n
5/3
e

= Constant (3D Pressure equation)(2.70)

where, the electron plasma pressure (p) is given by p = nekBTe, where kB is the Boltz-
mann constant and Te is the plasma temperature. Equation 2.70 is valid under adiabatic
condition, where any energy transfer between plasma and external source (e.g. laser pulse)
is neglected. These equations form the basis for numerical simulations of plasma phase-
space evolution and also for the laser-plasma instability analysis. The coupling between
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Figure 2.13: Raman forward scattering and back-scattering decay modes.

different species (e.g. electron and ion populations) of the plasma is taken into account
through Maxwell’s equation ∇· E⃗ = ρ/ε0, where ρ = −ene+ qini with ne and ni being the
electron and ion densities and qi = eZ, where Z is the charge state of the ion species14. If
collisions among electrons, ions and atoms, which are neglected here, are to be taken into
account, an additional collisional term needs to be introduced in eqn. 2.69. The resulting
equation of motion is called the Boltzmann equation 14.

2.10.2 Raman Scattering

Stimulated Raman scattering or Raman instability refers to the decay of a light wave
into an electron plasma wave and a scattered light wave of lower frequency. Depending
on the direction of the scattered light wave, it can be categorised into forward, backward
and side-scattering. The decay waves can subsequently interact with the incoming laser
pulse to grow in time, which can be quantified using the respective growth rates (will
be discussed in the following section). The corresponding phase matching (momentum
conservation) and frequency matching (energy conservation) conditions for the Raman
decay are given by,

k⃗0 = k⃗s + k⃗p; ω0 = ωs + ωp (2.71)

where k⃗0, k⃗s, k⃗p are the wave vectors of the incoming, scattered and plasma waves, and ω0,
ωs, ωp are the frequencies of the incoming, scattered and plasma waves, respectively. The
magnitude of the wave vector k = 2π/λ, where λ is the respective wavelength. Plasma
wave growth overcomes its damping rate only when kpλD < 1 meaning that the plasma
wavelength (λp) is greater than the Debye length123 λD. Therefore, for λp > λD, Raman
instability can grow as long as the decay wave components temporally overlap with the
incoming light wave.

Backscattering

Raman backscattering can be viewed as a three wave mixing process (k0 = kp − kbs),
where an incoming light wave decays into a plasma wave (kp) and a backscattered light
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wave (kbs), as shown in fig. 2.13. This decay is convective in nature i.e. the decay waves
have a non-zero phase velocity93. Considering that for backscattering ks ≤ k0 (which will
be derived in a later section), the wave vector of the plasma wave satisfies k0 ≤ kp ≤ 2k0,
which corresponds to124 λ0/2 ≤ λp ≤ λ0. The frequency of the scattered light wave is
given by ωs = ω0 − ωp, where the (non-relativistic) plasma frequency ωp = (nee

2/ε0m)1/2

with ne being the plasma density. For instance, for ks = k0 = kp/2, the phase velocities
of the scattered light wave (vs) and the plasma wave (vp) are given by,

vs =
ωs

ks
=
ω0 − ωp

k0
= v0 −

ωp

k0
< v0; vp =

ωp

kp
=

ωp

2k0
≪ v0 (2.72)

where v0 = vph = ω0/k0. For example, for ne = 0.01nc, ωp ≈ 0.1ω0, we obtain vs = 0.9v0
and vp = 0.05v0.

Because of the slow nature of the resulting plasma wave, it can trap the background
thermal electrons, whereby the electrons gain energy and/or get displaced in phase. These
electrons can be subsequently trapped by the plasma wave resulting from the Raman
forward scattering, which is close to the group velocity of the laser pulse 125;126. Although
the total growth of the backscattering is limited by the temporal overlap between the
incoming and backscattered light wave components, it can be shown to have a higher rate
of growth than the Raman forward scattering98. Therefore, it can prove to be detrimental
to the laser pulse, as its energy is being transported away causing pump depletion 127;128.

Forward Scattering

Raman forward scattering can be viewed as a four wave mixing process among the input
wave (k0), plasma wave (kp), Stokes wave (ks1) and anti-Stokes wave (ks2), as shown in
figure 2.13. In Stokes decay (k0 = ks1 + kp;ωs1 = ω0 − ωp), the frequency of the resulting
decay light wave is less than that of the incoming light wave i.e. ωs1 < ω0. In anti-Stokes
decay (ks2 = k0 + kp;ωs1 = ω0 + ωp), the laser pulse (k0) couples with the plasma wave
(kp) resulting from the Stokes decay to yield a decay light wave component (ks2) with
frequency higher than that of the incoming light wave i.e. ωs2 > ω0. In other words,
anti-Stokes decay is a secondary decay resulting from the Stokes decay. Thus, the phase
and frequency matching conditions for the forward scattering, where the wave vectors
aligned in-line, are:

ks1,s2 = k0 ∓ kp; ωs1,s2 = ω0 ∓ ωp (2.73)

It is important to note that all the light wave components satisfy dispersion relations of the
form ω2 = ω2

p+c
2k2. Since the anti-Stokes decay is a secondary process, it can be assumed

to be non-resonant and thus not of relevance129. The plasma wave (kp) resulting from the
Stokes decay can be construed as the wakefield formed by electron density oscillations (or
Langmuir wave130) excited at the wake of an intense laser pulse propagating in plasma,
as discussed in section 2.7.
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Figure 2.14: Raman side-scattering wavevector alignment123, where the magnitude of the scat-
tered wave is constant for a given plasma density (refer to eqn. 2.74).

Side-scattering

Raman side-scattering results from the non-alignment of wave vectors, as shown in figure
2.14, that limits the region over which the waves can resonantly interact limiting its
growth123. For strongly underdense plasma (ne ≪ nc), the wave matching condition for
side-scattering yield the wave number of the scattered wave ks, which can be expressed
as131

ks = k0

√
1− 2

ωp

ω0

= k0

√
1− 2

√
ne

nc

(2.74)

This shows that for a given plasma density ne, ks remains constant, as shown in fig. 2.14.
The wave number of plasma wave, depending on the wave vector non-alignment angle ϕ,
can be expressed as,

kp = k0 cosϕ− (k20 cos
2 ϕ− 2ωpω0/c

2)1/2 (2.75)

where ϕ - angle between the laser pulse and plasma wave as shown in fig. 2.14. The angle
at which maximum wave vector non-alignment can occur is given by,

sin θ = cosϕ =

√
2ωp

ω0

= 2.45× 10−7

[
ne/cm

−3

γ

]1/4√
λ0/nm−1 (2.76)

Relevance

Since the minimum laser frequency allowed by the plasma is ωp, substituting ωs = ωp in
the frequency matching condition ω0 = ωp + ωs results in

ω0 ≥ 2ωp; ne <
nc

4

where (ω0/ωp)
2 = nc/ne. This relation shows that Raman instability occurs primarily at

densities below nc/4 and therefore, it is a relevant instability in the low density region.
For relativistic intensities, Raman scattering can occur at densities up to ⟨γe⟩nc/4, where
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⟨γe⟩ is the average Lorentz factor associated with the electron motion. In the case of the
plasma medium with a density gradient, the length over which the waves can resonantly
interact is limited due to the inhomogeneity, thus any further propagation of the decay
waves is heavily damped129. Here, the wave vectors become time dependent and the
mathematical treatment of such a scenario becomes rather complicated 132.

Using the dispersion relation ω2 = ω2
p+c

2k2, the phase (vs) and group (vs,gr) velocities
of the scattered wave can written as,

vs =
ωs

ks
=

c(
1− (ω2

p/ω
2
s)
)1/2; vs,gr =

∂ωs

∂ks
= c

(
1−

ω2
p

ω2
s

)1/2

(2.77)

This shows that at ne = nc/4 (i.e. ωs = ωp), Raman instability growth is absolute meaning
that its group velocity vs,gr approaches zero. As a result, the instability does not drift
away meaning that the scattered light gets trapped, which can become intense enough to
expel the surrounding electrons129.

The dispersion relation can also be further used to obtain the plasma wave number kp
for forward and backscattering processes, as follows:

kp = k0 ∓ ks =
ω0

c

(
1−

ω2
p

ω2
0

)1/2

∓ ω0 − ωp

c

(
1−

ω2
p

(ω0 − ωp)2

)1/2

(2.78)

=
ω0

c

⎡⎣(1− ne

nc

)
∓

(
1− 2

[
ne

nc

]1/2)1/2
⎤⎦ (2.79)

where (ωp/ω0)
2 = ne/nc. For instance, for ne = 0.01nc, the plasma wave number for

Raman backscattering kp = 0.1k0, whereas for forward scattering kp = 1.9k0.

2.10.3 Formulation

Raman instability can be qualitatively described in the following way: when a laser pulse
propagates in a plasma with a density perturbation, the electrons start to oscillate along
the electric field of the laser pulse at laser’s central frequency generating a transverse
current δJ = −eυeδne, where υe is the electron velocity and δne is the electron density
perturbation. As a result, the transverse current generates a scattered wave, which inter-
feres with the incident light, altering its field amplitude. This could eventually lead to
laser pulse breakup, which could in turn alter the transverse electron current, thus setting
up a feedback loop.

A brief mathematical formulation of this process is given below, whereas a detailed
mathematical treatment was formulated by Kruer 98. Assuming that the laser pulse is
propagating through a plasma of uniform density and temperature, Ampère’s law (∇ ×
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B⃗ = µ0(J⃗ + ε0(∂E⃗/∂t)) - refer to section 2.6) in the Coulomb-gauge can be written as,(
∂2

∂t2
− c2∇2

)
A⃗ = − e2

ε0me

neA⃗ (2.80)

where E⃗(x,t) = −∂A⃗/∂t, B⃗(x,t) = ∇ × A⃗ and ∇ · A⃗ = 0 under plane-wave assumption.
Here, a longitudinal electrostatic wave is assumed i.e., ∇·J⃗t = 0, where J⃗t is the transverse
current, and |υe| ≪ c (non-relativistic), where υe is the transverse electron velocity.

Substituting A⃗ = A⃗l+ A⃗s, where scattered wave amplitude A⃗s ≪ A⃗l (laser amplitude)
and n′

e = ne + δne, where δne ≪ ne, equation 2.80 can be accordingly modified to(
∂2

∂t2
− c2∇2 + ω2

p

)
A⃗s = − e2

ε0me

δneA⃗l (2.81)

This equation describes the scattering of a large amplitude wave by the electron density
fluctuation. Whereas, an equation describing plasma wave evolution due to variations in
the laser field can be obtained from Vlasov equations 2.68 and 2.69.(

∂2

∂t2
+ ω2

p − 3υ2e∇2

)
δne =

nee
2

m2
ec

2
∇2(A⃗l · A⃗s) (2.82)

Eqs. 2.81 and 2.82 describe the coupling between the light wave and plasma perturbations.

Dispersion Relation

Assuming that the anti-Stokes component is nonresonant (as it is a secondary process),
the dispersion relation for a plane wave propagating in plasma is given by 98,

(ω2 − ω2
ek)
[
(ω − ω0)

2 − (k⃗ − k⃗0)
2c2 − ω2

p

]
=
ω2
pk

2υ2e
4

(2.83)

where the decay mode frequency ω is a function of the plasma density and laser intensity,
and can in general be expressed as ω = Ω + iΓ, where Ω(≫ Γ) is the plasma frequency
shift and Γ is growth rate. At low intensities Ω ≈ ωek, the growth rate for Raman forward
scattering (ΓFRS) and Raman back-scattering (ΓRBS) for constant pump strengths can be
expressed as59;98

ΓFRS ≈
ω2
p

2
√
2ω0

υe
c

≈
ω2
p

2
√
2ω0

a0
(1 + a20/2)

; ΓRBS = ωp

√
3

2

(
ω0

2ωp

)1/3
a
2/3
0

(1 + a20/2)
1/2

(2.84)

where a0 is the normalised vector potential of the laser pulse.
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Nonlinear Aspects

Strictly speaking, the introduction of the relativistic factor (through a0) in growth rates
ΓFRS and ΓRBS does not correctly treat the intensity dependent Raman scattering process.
This is due to the non-relativistic transverse velocity assumption (υt ≪ c) involved in the
formulation of the coupled equations 2.81 and 2.82, which does not necessarily hold true
for relativistic intensities. In addition to the four-wave process ωp ± ω0, an electron
fluctuation at ωp can also couple to higher harmonic components such as, ωp ± 2ω0 (six-
wave mixing) for a0 > 1133;134. The growth rate for six-wave mixing has also been shown to
be comparable to the four-wave mixing case. A further analysis shows that at relativistic
intensities (a0 > 1), the growth is significant over a wide range of density regions and wave
number space, where a significant portion of the laser-pulse energy can be expected to be
scattered132. The coupling between the laser pulse and the plasma wave, in general, results
in new spectral components (ω0 ± nωp), which can be used to estimate the associated
plasma density through the spectral analysis of the transmitted light 135;136.

Furthermore, Raman Back-Scattering (RBS) has also been treated similar to the Free
Electron Laser (FEL) instability, where the laser pulse plays the role of a wiggler and
the plasma electrons are compared to the electron beam 137. In this treatment, nonlinear
effects, such as return current and radiation reaction are taken into account. The RBS
growth has been derived from the density fluctuations created by the ponderomotive
force of the laser pulse. At relativistic intensities, the extent to which forward, side- and
back-scattering processes compete with each other at various density regimes still must
be experimentally investigated. In this thesis, the observation of Raman side-scattering
for a0 > 1 will be reported in the experimental findings section. If the scattered energy
becomes comparable to the laser pulse energy, SRS could lead to strong pulse depletion
and pulse breakup133.

2.10.4 Two Plasmon Decay (TPD)

Two Plasmon Decay is a three wave mixing process, where the light wave decays into two
plasma waves. This instability is of particular concern for experiments, such as inertial
confinement fusion (ICF), where the early generation of energetic electrons through the
excitation of the electron plasma wave needs to be avoided. In terms of the frequency
matching condition, ω0 = ω1+ω2, where ω1,2 - plasma wave decay modes. Resonant TPD
decay occurs for ω2

1,2 = ω2
ek = ω2

p + 3υ2thk
2
1,2, where if the plasma temperature were to be

ignored, ω1,2 ≈ ωp = ω0/2. Thus, similar to Raman scattering, TPS also dominates at
ne < nc/4 densities, as (ωp/ω0)

2 = ne/nc. In the absence of any direction observation of
the laser-plasma interaction, the observation of half integer laser harmonics such as, ω0/2
and 3ω0/2 due to the interaction between the laser pulse and the plasma wave is usually
an indication of the presence of TPD138–143.
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Dispersion Relation

Similar to SRS, the dispersion relation for TPD can be obtained from the Vlasov equations
2.68 and 2.69 using the density perturbation method. Neglecting the secondary and non-
resonant modes such as, ω + ω0 and ω − 2ω0, the dispersion relation for TPD in terms of
the decay mode wavenumbers k⃗ and k⃗ − k⃗o can written as98

(ω2 − ω2
ek)[(ω − ω2

0)
2 − ω2

ek−k0
] =

[
k⃗ · veωp[(k⃗ − k⃗0)

2 − k2]

2k|⃗k − k⃗0|

]2
(2.85)

where v⃗e is the electron oscillation velocity. Substituting ω = ωek + iΓTPD, the (linear)
TPD growth rate γTPD can be obtained

ΓTPD ≈ k⃗ · ve

4

⏐⏐⏐⏐⏐(k⃗ − k⃗0)
2 − k2

k|⃗k − k⃗0|

⏐⏐⏐⏐⏐ (2.86)

For k ≫ k0 (under-dense plasma), the maximum growth rate of k0υe/4 can be shown
to occur at 45◦ to the propagation direction, which is also expected to hold even in
inhomogeneous plasma as it does not depend on the electron density (ne). The threshold
growth rate is primarily determined by Landau damping in the absence of collisions.

In the case of inhomogeneous plasma, TPD instability could be both absolute, mean-
ing that it grows in time in a confined space, and convective, meaning that it could
propagate away from its origin144. At relativistic intensities (a0 > 1), its growth rate and
threshold intensity could be expected to be different from that of the linear regime 145;146.
Unfortunately, current theories do not offer a complete description of TPD in the nonlin-
ear regime. This instability could also lead to substantial pump depletion and could be
detrimental to LWFA.

2.10.5 Modulational and Filamentation Instability

When an intense laser pulse propagates through a plasma medium, it could undergo
amplitude and phase modulations due to electron density fluctuations present in the
plasma medium. These modulations could alter the pulse structure throughout its further
propagation. If the modulations are in the laser propagation direction, it is referred to
as modulation instability (MI), whereas modulations in the transverse direction lead to
filamentation instability (FI), both of which could lead to pulse break-up.

Plasma density modulations arise primarily due to the variations in the ponderomotive
force across the laser pulse. Since electrons are expelled from regions of ponderomotive
force maxima, it leads to a non-uniform electron density, where light is refracted towards
the regions of lower density. Thus, the feedback between the plasma density and the
laser intensity modulations modifies the pulse structure as it propagates along the plasma
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medium. The laser pulse, as a result, experiences a periodically modulated refractive
index profile due to electron density oscillations (wakefield) at the trail of the laser pulse.
The density modulations could also grow from the noise present in plasma.

Modulational Instability

Modulations in the amplitude of the laser pulse’s E-field envelope can result in side-band
frequencies in its spectral window that can grow in time 147. Considering a plane wave
of the form E = E0 exp[i(k0x − ω0t)] propagating through a plasma medium of length
L, its dispersion relation (D) is given by D = ω2 − ω2

p − c2k2 = 0, where the plasma
frequency ωp =

√
nee2/ε0me. Assuming that the plasma has a modulated density form

of ne = n0 + δn, where δn = δn0 cos(kpx − ωpt) ≪ n0. A modulation in the electron-
density results in the modulation of central laser frequency (δω), which can be expressed
as ω = ω0 + δω. δω can be related to the electron density (ne) as follows147

δω ≈ dω

dt
δt =

∂D/∂t

∂D/∂ω

kL

ω
≈ −∂ne

∂t

e2

ε0m

1

2ω0

k0L

ω0

≈ −δn0ωp sin(kpx− ωpt)
ω2
p

ne

1

2ω0

k0L

ω0

≈ −δω0 · sin(kpx− ωpt) (2.87)

where the modulation frequency amplitude δω0 = ω3
p/2ω

2
0 · δn0/ne · k0L. In the case of

a laser pulse interaction with a plasma wave, this quantity (δω0) represents the increase
in frequency of the EM wave packet trapped in an electron plasma wave corresponding
to the energy loss of the plasma wave (termed photon acceleration)148. After a certain
propagation distance L, the modulation frequency also introduces modulations in the
E-field of the input wave, which can be mathematically shown as follows

E = E0 exp[i(k0x− [ω0 − δω0 sin(kpx− ωpt)]t)]

= E0 exp[i(k0x− ω0t)] ·
∞∑

l=−∞

Jl(tδω0) exp[il(kpx− ωpt)] (2.88)

where the Jacobi-Anger series [exp(iz sin θ) =
∑∞

n=−∞ Jn(z) exp
inθ] is used to expand the

E-field and Jl(tδω0) is the l-th Bessel function of the first kind with approximately 2π
periodicity. In contrast to Raman scattering, where harmonics of ωp are added to the laser
frequency (ω0 ± nωp), equation 2.88 shows that the E-field is modulated by both plasma
density perturbation (δω) and its natural frequency (ωp). The spectral analysis of the
modulated E-field shows the growth of side-bands corresponding to frequency intervals
ω0± lωp±δω at the expense of the driving E-field, where side-bands separated by intervals
much less than ωp can also be found. This is illustrated in figure 2.15, where both the
E-field modulation and its spectral components are shown.

Extending the same approach to a laser pulse, strong modulations in its E-field could
drastically change the envelope shape and lead to a split-up of the laser pulse in the
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(a) (b)

Figure 2.15: (a) E-field modulation due to plasma perturbation and wave excitation for a prop-
agation length of 250µm, ω0 = 2.35 fs−1(λ0 = 0.8µm), ωp = 0.74 fs−1(ne =
0.1nc, δne = 0.01ne) and δω = 0.288 fs−1, (b) its spectral window showing vari-
ous frequency components.

longitudinal direction. Thus, the spectral broadening extent and the side-band instability
can be used as a diagnostic tool for laser wakefield acceleration 147;149. In the case of a
plasma medium with a density gradient, during the interaction with a laser pulse, a wide
range of side-bands can be expected to appear on both sides of the laser frequency. In
a similar approach to Raman scattering, Decker et al., obtained the growth rate for MI
(ΓMI) in the low intensity limit150

ΓMI =
ω2
p

8ω0

a20
(1 + a20)

3/2
(2.89)

Filamentation Instability

Filamentation instability is a non-resonant coupling between the laser pulse and the trans-
verse density perturbation151;152. In the case of a collisionless plasma, the local variations
in the intensity of the laser pulse is the primary cause of the filamentation process, which
can be qualitatively explained in the following way: any local increase in the laser intensity
leads to an increase in the local refractive index due to ponderomotive and relativistic
self-focusing effects. This acts as a positive lens to create bundles of EM-waves (fila-
ments) across the laser beam, which causes the local laser intensity to further increase.
An increased laser intensity expels the electrons from the intense regions even more 153;154.
Thus, the modified laser beam could start a feedback loop and increase the filamentation
process, which manifests itself as a transverse standing wave of electron density perturba-
tions123. Relativistic self-focusing can be considered to be a special case of filamentation,
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Figure 2.16: Possible secondary instabilities during the laser-Plasma interactions.

where the change in refractive index due to relativistic effects in the transverse direction
also plays a crucial role. Kruer98 derived the growth-rate for filamentation instability
based on the dispersion relation for Brillouin scattering, which is given by,

ΓFI =
1

8

ω2
p

ω0

c2

υ2e

a20
1 + a20/2

(2.90)

A more detailed treatment can be found in references152;155.

2.10.6 Other Instabilities

During the laser-plasma interaction, the EM-wave could decay into a scattered EM-wave
and ion-acoustic motion, which is referred to as Brillouin Scattering (BS). Similar to
Raman scattering, BS could also undergo forward (Stokes and anti-Stokes) and backward
scattering, where the scattered wave’s frequency is close to the pump frequency. In the
case of back-scattering, the ion wave vector is on the order of the laser wave vector and
therefore, could lead to resonant scattering. Reflectivity of up to 10% has been previously
reported156. Due to the heavy nature of ions, their oscillation frequency (ωpi) is much
smaller than their electron counterpart, and therefore, it is present throughout the under-
dense regime up to the critical density (nc). For example, Argon ions with ne = 0.2nc yield
an ion frequency ωpi = 8.5 × 1012 s−1, whereas electron plasma frequency ωp = 1015 s−1

(i.e. ωpi ≈ ωp/100). This corresponds to an ion oscillation period of τpi = 740 fs ≫ 30 fs
(laser pulse duration). Thus, this instability is only relevant for pulse durations greater
than the ion oscillation period.

In addition to the instabilities mentioned so far, an electron plasma wave (EPW)
could also decay into other secondary wave forms as shown in figure 2.16. In particular,
Langmuir wave decay instability (LDI) refers to the decay of an EPW into another counter
propagating EPW of approximately the same frequency and a low frequency ion acoustic
wave at the cost of pump EPW damping. This instability occurs when the EPW is
strong enough to cause a disturbance in the ion population. It has been shown through
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simulations that the oscillation energy of EPW has to be greater than the thermal energy
of the background electrons for this to occur157. The generation of an of ion acoustic wave
from an EPW has also been experimentally verified by Depierreux et al.158.

Another instability that results from the decay of an EPW is the electro-magnetic
decay instability (EDI) which yields an EM-wave and an ion acoustic wave. Since the
scattered EM-wave frequency is close to the pump EPW frequency, it can be used to
determine the type of primary instability associated with the laser-plasma interaction.
For example, two plasma decay (TPD) results in two plasma waves, each at half the laser
frequency (ω0/2). Thus, any observation of light emission at ω0/2 from the interaction
region might indicate the presence of the TPD instability through EDI 159. Any ion density
perturbation caused by EDI could act as a seed for Brillouin scattering 160.

Since the secondary instabilities drain the energy of the pump EPW, they act as a
threshold for Raman and TPD instabilities limiting the amount of energy that can be
transferred to the EPW. They could also lead to a cascading effect, if the decay modes
are strong enough to exceed the threshold for any particular instability.
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Chapter 3

Experimental Set-up

This chapter describes the experimental layout and diagnostics used for the high inten-
sity laser-plasma experiments carried out at the JETI40 laser facility at IOQ and the
characterisation of the gas nozzles, which were used in those experiments.

3.1 Laser-Plasma Experiments

3.1.1 Experimental Layout

Figure 3.1: Schematic layout of the experimental setup used at JETI40.

The high intensity laser-plasma experiments have been carried out at the JETI40
laser, which is a solid-state high-power laser system using the technique of Chirped Pulse
Amplification (CPA) that is capable of producing laser pulses of up to 40TW power. It
can be operated at a repetition rate of 10Hz with a maximum pulse energy of 550mJ on
target. The output pluses have a beam diameter of 55mm and a pulse duration of ∼ 30 fs.
The two laser-plasma interaction experiments that have been carried out during June 2014
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Table 3.1: Important laser and experimental parameters.

and March 2015 at JETI40 have similar experimental setups with a few differences in the
diagnostics, which are shown in table 3.1. Figure 3.1 shows the schematic layout of the
experimental setup, in which the laser pulses were focused using an off-axis parabola (f/6
and f/2) into the gas jet at a height of 500µm above the nozzle outlet. Their respective
focal spots were imaged onto a CCD (16-bit) using a microscope objective that was placed
after the focal region, as shown in fig. 3.1. The resulting intensity distributions of the
focal spots are shown in fig. 3.2, which were optimized using adaptive optics.

The laser-plasma interaction region was probed using a (2ω) probe beam of 400 nm
at 90◦ with respect to the main beam’s propagation direction. This has been generated
by reflecting off a small portion of the main beam and allowing it to pass through a
(free standing) BBO crystal of 150µm thickness, as shown in fig. 3.1. The BBO crystal
was characterised beforehand to have ∼ 40% second-harmonic conversion efficiency. The
dichroic mirror mounted on a delay-stage after the BBO crystal separated the second-
harmonic beam from the first-harmonic, as it has a very high reflectance (>99.5%) for
350− 440 nm and high transmission (96%) for 500− 1000 nm. The delay-stage was used
to change the arrival time of the probe beam with respect to the main beam. The pulse
duration of the probe beam remained nearly the same, as the dispersion caused by the
BBO crystal was negligible compared to the pulse duration. The FWHM duration of a
Gaussian laser-pulse broadened due to group velocity dispersion (Dω = ∂2k/∂ω2) is given
by,161

∆τ2 = ∆τ1

√1 +

(
4 ln 2 ·Dw · L

∆τ 21

)2

(3.1)

where ∆τ1 and ∆τ2 are the pulse durations of the laser-pulse before and after the BBO
crystal, and L is the propagation length in the crystal. For ∆τ1 = 30 fs, a BBO crystal
of 150µm thickness (L) and 196 fs2/mm dispersion parameter162 (Dω) corresponding to
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(a) (b)

Figure 3.2: Intensity distributions of the focal-spots obtained for f/6 and f/2 optics after op-
timisation using adaptive optics. The images are in linear colormap with arbitrary
units.

400 nm central wavelength, equation 3.1 yields ∆τ2 = 30.05 fs ≈ ∆τ1.
To be able to detect any energetic particles that might have been accelerated in the

laser’s forward direction, several diagnostics were installed and used during the experi-
ment. Electrons of energies > 5MeV could have been detected using the electron spec-
trometer covering a half opening angle of 0.05◦ (900µrad) and its beam profile could be
monitored using a Lanex screen placed before the spectrometer. The kinetic energies
of the accelerated ions could have been measured using the combination of a scintilla-
tor screen (BC-422Q by Saint-Gobain Crystals) covering an observation half-angle of 23◦
(0.4 rad) and a Gatable-CCD (G-CCD) camera with sub-nanosecond resolution. In prac-
tise, its temporal resolution was limited to 30 − 40 ns due to the jitter in the reference
signal obtained from the laser system. Therefore, the G-CCD was operated outside the
time-window, within which there was real danger of detection parts of the main laser pulse
that could potentially damage or destroy the G-CCD. The scintillator screen (which was
not covered by any light shielding element e.g. a thin aluminium foil) was sensitive to
most of the energetic particles shown in fig. 3.3a by emitting light with a response time
of ∼ 100 ps. The G-CCD was placed in such a way that it looked at the backside of the
scintillator screen and its shutter opening time of the G-CCD was chosen in such a way
that it predominantly looked for the accelerated Argon ions. Figure 3.3b shows that due
to the heavier nature (∼ 70,000me) of Argon ions, their arrival time at the screen is on a
nanosecond time scale, which is much slower than the energetic electrons and photons of
the same energy. The G-CCD was thereby sensitive to ions of energies < 5MeV.
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(a) (b)

Figure 3.3: (a) Response of the scintillator screen BC-422Q for various energetic particles 163,
and (b) Opening time setting of the G-CCD camera.

3.1.2 Interferometry Diagnostic

In order to measure the plasma density during the high intensity laser-plasma experiments,
two types of interferometers, namely a Nomarski and a Mach-Zehnder interferometer have
been used.

Nomarski Interferometry

Figure 3.4a shows the layout of the Nomarski interferometer, where a Wollaston prism
is placed after the focal spot of the imaging objective and it is oriented at 45◦ to the
incoming laser’s polarisation direction, after which the incoming laser beam is split into
two angularly separated and orthogonally polarised laser beams. The 45◦ polariser placed
after the prism ensures that the two initially orthogonally polarised laser beams again
have the same polarisation and can then interfere, as shown in fig. 3.4a. The angular
separation of the beam, which is determined by the chosen Wollaston prism, is such
that part of the diverging laser beam, which contains the desired phase shift is overlapped
with the undisturbed part of the diverging second beam. The Nomarski interferometer has
the advantage of yielding an inherent temporal synchronisation between the two beams.
The resolution of the interferogram, according to Nyquist sampling rate, is limited to
2.6µm corresponding to the calibration factor of the interferogram 1.3µm/px. Whereas,
the Abbe limit corresponding a numerical aperture of 0.23, and wavelength of 0.4µm is
0.9µm.

47



(a) Nomarski (b) Mach-Zehnder

Figure 3.4: Schematic representation of the two different interferometric setups namely, (a) No-
marski and (b) Mach-Zehnder interferometers.

Mach-Zehnder Interferometry

In the second experiment conducted at JETI40, Mach-Zehnder interferometer was used
to investigate the laser-plasma interaction region, as it offers several advantages over the
Nomarski interferometer. For instance,

• it offers greater control over the fringe spacing and orientation in the interferogram
as the wave-front of each interfering beam can be individually controlled.

• As it constructed outside the vacuum chamber, it offers ease of alignment during
the experiment

• Unlike the Nomarski interferometry, where the aperture size of the wollaston prism
might limit the resolution of the interferogram, this methods avoids such a constraint
(provided that the corresponding optical elements were large enough not to clip the
beam).

The schematic layout of the Mach-Zehnder interferometer is shown in fig. 3.4b, where
the lens L combined with the infinity correctly microscope objective images the laser-
plasma interaction region onto a camera. After the lens, the laser beam is split into two
replicas using the beam-splitter BS1. It is important to note that unlike a conventional
Mach-Zehnder interferometer, the laser beam is split after it passes through the interaction
region (like a shearing interferometer) so that the whole unit can be constructed in a
compact way and placed outside the vacuum chamber. Each replica then traverses in a
separate arm, after which they are combined using the beam splitter BS2 as shown in
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fig. 3.4b. This way, the part of the laser beam with desired phase-shift is made to overlap
with the undisturbed portion of the second beam using the set of mirrors present in both
arms. The temporal overlap of both beams after BS2 is achieved by making sure that the
paths travelled by both beams are of equal length using the translation-stage present in
one of the arms. The resolution of the interferogram, corresponding to Nyquist sampling
rate, is limited to 0.66µm, which is twice the calibration factor of the interferogram
0.33µm/px. Whereas, the Abbe limit corresponding to the numerical aperture of 0.4,
and wavelength of 0.4µm is 0.5µm/px. An optical spectrometer (range: 340− 1020 nm)
was also placed on the other exit arm to analyse the spectrum of the radiation emitted
from the laser-plasma interaction region.

3.2 Gas Nozzle Characterisation

Gas nozzles of two different geometries have been used to produce near-critical plasma
during the experimental campaigns at JETI40. These nozzles correspond to subsonic
and transonic flow geometries. The density distribution across the gas-jets produced by
the nozzles under varying backing pressures have been measured using Mach-Zehnder
interferometry. The characterisation was carried out well before the actual high-intensity
laser-plasma experiments. Although several nozzles of diameters ranging from 300 −
500µm have been characterised, only the results obtained for nozzles of 400µm and
700µm outlet diameters, which were subsequently used at JETI40, are presented here.

3.2.1 Valve-Nozzle Construction

The nozzles that were used during the laser-plasma experiments were mounted on a Parker
solenoid valve (Series 9, Part no.: 009-1669-900) that is capable of operating up to 80 bar
backing pressure. The internal structure of the valve assembly is shown in fig. 3.5a, where
the flow path is indicated. The flow between the valve and the nozzle is controlled by the
poppet, which is mounted inside the plunger and pressed against the valve body with the
help of a spring and the gas backing pressure. When the coil structure mounted on the
outer body of the value is energised using a DC voltage (28 V), a magnetic-field is created
inside the coil, which magnetises the plunger. This way, the plunger is pulsed downwards,
thereby letting the gas to flow through the resulting gap between the poppet and the valve
body. This process has a response time of ∼ 2ms. When the electric current through the
coil is stopped, the plunger is pushed back again by a spring mounted inside to block the
gas flow.

The nozzles were designed in such a way that they can be directly mounted on the
valve assembly. The subsonic nozzle shown in figs. 3.6a and 3.6b consists of a convergent-
parallel flow section. As the gas flows through the convergent section of the nozzle (shown
in red in fig. 3.6b), its velocity continues to increase reaching a maximum value of Mach 1

49



(a) Valve assembly (b) Valve dimensions

Figure 3.5: (a) 3D view of the Parker vale (Series 9, part no.: 009-1669-900) along with its radial
section view indicating its various internal components along with the adaptor plates
and the nozzle assembly mounted on top of it, and (b) the important dimensions of
the value assembly without the nozzle.

(a) (b) (c) (d)

Figure 3.6: (a) 3D view of the subsonic nozzle along its cross section, (b) its important dimen-
sions, (c) 3D view of the transonic nozzle assembly, where the nozzle (Hutblende) is
mounted inside a housing because of its small dimensions, and (d) the dimensions of
the nozzle housing.
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(a) Hutblende (b) Cross-section

Figure 3.7: (a) 3D view of the transonic nozzle along with its cross-section, and (b) its important
dimensions along with part of the inner housing’s flow section.

at the throat section where the cross section of the nozzle remains unchanged (i.e. at the
parallel flow section shown in green in fig. 3.6b), where the flow is said to be chocked 164.
This means that any further decrease in pressure along the downstream gas flow do not
result in an increased mass flow rate i.e. its flow velocity remains constant. Therefore, this
type of nozzle results in a subsonic flow during the free space expansion, whose density
distribution measurements will be discussed in the measurement section 3.2.3.

The transonic nozzle assembly is shown in figs. 3.6c and 3.6d, where the divergent
section of the nozzle shown in fig. 3.7a is mounted inside a housing. Together with the
flow region inside the inner housing, it forms a convergent-divergent flow section, as shown
in fig. 3.7b. The divergent section of the nozzle enables the gas flow to reach supersonic
velocities at the nozzle exit165. The exact density distribution profile however depends on
the length and divergence angle of the divergent flow section. The measurement section
3.2.3 similarly describes the corresponding measured density distribution of the resulting
gas-jet.

The exit velocity (v0) of the central flow region of such a nozzle can be estimated from
the formula165:

v0 =

[
TR

M

2γ

γ − 1

(
1−

[
Po

Pi

](γ−1)/γ
)]1/2

(3.2)

where T is the inlet temperature, the universal gas constant R = 8.314 kgm−2mol−1K−1s−2,
M is the molar mass, γ is the ratio of the specific heats of the gas at constance pressure
and constant volume (γ = 1.67 for monoatomic gas), Pi and Po are the inlet and outlet
pressures, respectively. For example, for argon gas jet with parameters MAr = 40 g/mol,
T = 300K and P0/Pi = 0.1, the exit velocity v0 = 1.27M (M - Mach number), which is
supersonic.
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(a) (b)

Figure 3.8: (a) Schematic layout of the Mach-Zehnder interferometer showing the optical layout
and the positioning of the gas jet, and (b) a look into the vacuum chamber showing
the construction of the optical mounts and the target (gas jet) positioning system.

(a) (b)

Figure 3.9: Sample interferograms obtained (a) in the absence of gas flow showing the fringe
spacing and alignment with respect to the nozzle surface, and (b) during the steady-
state argon gas flow for 400µm outlet diameter nozzle and 50 bar backing pressure,
where the visible fringe shift next to the nozzle outlet can be shown to correspond
to the gas density distribution of the gas jet.
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3.2.2 Mach-Zehnder Interferometer

The Mach-Zehnder interferometry technique is used to measure the phase shift accumu-
lated by a laser pulse propagating through the gas jet, which can then be related to its
density distribution. The schematic layout of the Mach-Zehnder interferometer used for
the gas nozzle characterisation is shown in fig. 3.8a, where laser pulses of 532 nm central
wavelength and 10 ns FWHM pulse duration were used.

It shows that a laser pulse is divided into two replicas using the beam splitter (BS1),
after which one beam passes through the gas jet and the other one simply traverses the
interferometer in a parallel path of identical geometric length. The phase shift accumu-
lated by the part of the laser pulse propagating through the gas jet can be obtained by
overlapping it with its undisturbed replica using the beam splitter BS2. The objective
L1 placed after BS2 then images the gas jet onto a CCD camera, where an interferogram
with the desired fringe pattern (as shown in fig. 3.9a) can be recorded by tilting the phase
front of the reflected beam using BS2. During the steady-state gas flow, the phase shift
caused by the gas jet is made visible by the bending of the fringes in the interferogram,
as shown in fig. 3.9b.

3.2.3 Interferogram Analysis

The steps involved in analysing the interferogram is shown in fig. 3.10a in the form of
a flow chart, whereby the radial density distribution of the gas jet ρ(r) can be obtained
from the phase shift ∆ϕ(x) present in the interferogram. Here, ∆ϕ(x) represents the
additional phase difference accumulated by the laser-pulse propagating through the gas
jet in comparison to the laser pulse replica traversing in the other arm of the interferogram,
which is termed the integrated phase shift. Figure 3.10b shows such a scenario, where the
laser pulse is shown to traverse a radial cross-section of the gas jet, which results in the
integrated phase shift ∆ϕ(x).

A cylindrically symmetric nozzle, such as the one used in our case, is expected to result
in a symmetric radial density distribution ρ(r) and thereby a symmetric integrated phase
∆ϕ(x), as shown in fig. 3.10b (black solid-line). However, in practice, due to manufactur-
ing imperfections and/or inaccurate nozzle alignment, a slight asymmetry might result
in the gas density distribution, which in turn might result in an asymmetric integrated
phase ∆ϕ(x), which is also shown in fig. 3.10b (red dashed-line). In both cases, the radial
phase shift ∆ϕr(r) can be determined from the integrated phase shift ∆ϕ(x) using the
generalised Abel inversion method166, where the asymmetry in ∆ϕ(x) is assumed to result
from a radial gas density distribution ρ(r) (and therefore ∆ϕr(r)) that is only asymmetric
with respect to y-axis (i.e. it is symmetric with respect to x-axis), as shown in fig. 3.10c.
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(a) Flow chart (b) Projection data (c) Asym. distribution

Figure 3.10: (a) Steps involved in obtaining the gas density distribution from an interferogram,
(b) additional phase shift acquired by the laser pulse propagating through a radial
cross-section of the gas jet, and (c) asymmetric distribution of the radial gas density
(ρ(r)) and phase shift (∆ϕ(r)).

Mathematical Formulation

At a given height above the nozzle surface (z = z0), the 1D integrated phase-shift ∆ϕ(x)
accumulated by the laser pulse can be seen as the projection of the 2D radial phase shift
distribution ∆ϕr onto x-axis (as shown in fig. 3.10b), which in its mathematical form can
be written as167,

∆ϕ(x,z0) = 2

∫ ∞

x

r∆ϕr√
r2 − x2

dr (3.3)

It shows that the integrated phase ∆ϕ(x) at x is affected by all the values of the radial
phase shift ∆ϕr(r) at and above x (i.e. r ≥ x). If the radial phase shift ∆ϕr(r) can be
assumed to take the asymmetric distribution of the form 166:

∆ϕr(r,θ,z0) = ∆ϕ0(r,z0) + ∆ϕ1(r,z0) cos θ (3.4)
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where θ = x/r. Therefore, ∆ϕp can written as,

∆ϕ(x,z0) = 2

∫ ∞

x

r

(r2 − x2)1/2

(
∆ϕ0 +∆ϕ1

x

r

)
dr (3.5)

= 2

∫ ∞

x

r∆ϕ0

(r2 − x2)1/2
dr  +2x

∫ ∞

x

∆ϕ1

(r2 − x2)1/2
dr   (3.6)

= ∆ϕs + ∆ϕa (3.7)

Thus, the resulting integrated phase ∆ϕp can be understood to be a combination of the
symmetrical and asymmetrical phase shift components: ∆ϕs and ∆ϕa. Therefore, once if
these components are known, their respective radial phase shift factors ∆ϕ0 and ∆ϕr can
be obtained by the so called Abel inversion integral of the form 166–168:

∆ϕ0(r,z0) = − r

π

∫ ∞

r

d[∆ϕs]/dx√
x2 − r2

dx; ∆ϕ1(r,z0) = − r

π

∫ ∞

r

d[∆ϕa]/dx√
x2 − r2

dx (3.8)

These integrals show that the inversion process depends on the derivative of the pro-
jection data meaning that it depends on the variation of the projection data with respect
to its neighbourhood. Therefore, if the projection data were to contain strong fluctuations
due to the presence of noise, it is important to smoothen it first to avoid the noise being
amplified during the inversion process. For the purpose of numerical implementation, the
Abel inversion integral can be written as,

∆ϕr(ri,z0) =
1

∆x

∞∑
j=0

Dij∆ϕp(xj,z0) (3.9)

where, ∆x is the spacing between the successive data points and Dij are the Abel inversion
coefficients, which can be calculated using a method called ‘onion-peeling’, as discussed
in the article by Dasch167. Here, Dij acts as a differential operator and it is independent
of the projection data.

Phase-shift Extraction

The phase shift contained in the interferograms can be extracted using a technique called
Continuous Wavelet Transform (CWT). In this method, a 1D continuous spatially (or
time) dependent signal is transformed into a 2D space-scale (or time-scale) complex do-
main, where the strength of its coefficients denote the phase shift values. A short math-
ematical description of this method is given in this section, whereas a more detailed
description can be found in the article by Tomassini et al 169.

After selecting an appropriate region of interest (ROI) from the interferogram, such
as the one shown in fig. 3.11a containing the gas flow region, each pixel column f(xi,z)
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(a) Interferogram (b) Morlet wavelet (c) Coefficient window

Figure 3.11: (a) Interferogram showing the region of interest section, (b) absolute part of the
Morlet wavelet for m =100, n = 4.5, σ = 2 and k = 3π/2 and (c) window containing
the absolute value of the complex coefficients obtained using the continuous wavelet
transform method for a pixel column of the interferogram image.

of the image is made to undergo CWT to yield complex wavelet coefficients Wmn of the
form:169

Wmn(xi,z) =

∫ ∞

−∞
f(xi,z)ψ

∗
mn(z)dz (3.10)

where

ψmn(z) =
1√
n
ψ

(
z −m

n

)
; m = 1,2,3.....[no. of rows]

n = 1, 0.1, 0.2....13

Here, the function ψ(z) is called the ‘Mother wavelet’, which is a complex valued oscil-
latory function that can be translated (m) and scaled (n) to obtain multiple ‘Daughter
wavelets’ ψmn(z) whose complex conjugates are used as a weighing function. The mag-
nitude of the scaling factor n is chosen according to the fringe spacing, and its factor of
increment (∆n = 0.1) helps to localise wavelet coefficients Wmn, which help to extract
the phase information contained in the interferogram.

Though there are multiple forms of mother wavelets available, the so-called ‘Morlet
wavelet’ will be used in this analysis, as it provides a very good spatial and frequency
localisation depending on the translation (m) and scaling (n) factors. The Morlet wavelet
assumes the form of a plane wave modulated by a Gaussian function, as shown in fig. 3.11b
and it can be expressed as170,

ψ(z) =
1

4
√
σ2π

exp

[
− z2

2σ2
+ jkz

]
(3.11)
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(a) Phase unwrapping (b) 2D Integrated phase

Figure 3.12: (a) Process of phase unwrapping, where a 2π phase either added or subtracted at
the discontinuities present in the extracted phase, and (b) resulting 2D phase distri-
bution extracted from the interferogram corresponding to 50 bar backing pressure.

where, σ is the standard deviation, and j is the imaginary unit and k is the wave number.
Thus, for each column of the ROI, equation 3.10 yields a set of 2D complex wavelet

coefficients Wmn corresponding to varying translation (m) and scaling (n) factors, whose
absolute part |Wmn| is shown in fig. 3.11c. The phase values ∆ϑ(xi,z) corresponding to
the selected column f(xi,z) of the interferogram can be obtained by first determining the
scaling factor (n0) at which the maximum value of |Wmn| is reached for each translation
factor m and then determining the ratio between the imaginary (ℑ) and real (ℜ) part of
the respective wavelet coefficient Wmn0 , as given by

∆ϑ(xi,z) = tan−1

[
ℑ(Wmn0)

ℜ(Wmn0)

]
, i = 1,2,...[no. of columns] (3.12)

Repeating this process for the entire ROI, one obtains the corresponding 2D phase values
∆ϑ(x,z). Equation (3.12) indicates that ∆ϑ(x,z) varies only between −π and π and
thereby introduces discontinuities or phase jumps in the resulting phase. Therefore, each
row ∆ϑ(x,zm) of the 2D phase is made to undergo the so called phase unwrapping process,
whereby a factor 2π is either added to or subtracted from ∆ϑ at the discontinuities such
that it yields a continuously varying signal 171, as shown in fig. 3.12a. After the phase
unwrapping process, the resulting 2D phase distribution still contains a tilted plane of
additional phase that was introduced across the interferogram to obtain the desired fringe
spacing and orientation, which needs to be subtracted. Thus, the 2D integrated phase-
shift ∆ϕp(x,z) present in the interferogram can be obtained, an example of which is shown
in fig. 3.12b.

Density Analysis

The corresponding symmetric (∆ϕs) and asymmetric (∆ϕa) phase shift components can
be obtained from the measured phase shift ∆ϕp by first splitting ∆ϕi with respect to the
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nozzle centre in the following way,

∆ϕ−
i (ξ,z0) = ∆ϕi(−x,z0), for x < 0; (3.13)

∆ϕ+
i (ξ,z0) = ∆ϕi(x,z0), for x > 0, (3.14)

∆ϕ0
i (ξ,z0) = ∆ϕi(x,z0), for x = 0, where ξ = |x| (3.15)

and then by setting

∆ϕs =
1

2
(∆ϕ−

i +∆ϕ+
i ) + ∆ϕ0

i (ξ,z0); ∆ϕa =
1

2
(∆ϕ−

i −∆ϕ+
i ) + ∆ϕ0

i (ξ,z0) (3.16)

The corresponding symmetric (∆ϕ0) and asymmetric (∆ϕ1) radial phase shift components
can be obtained using the ‘onion peeling’ method (as discussed in the previous section),
from which the resultant asymmetric 2D radial phase-shift ∆ϕr can be constructed using

∆ϕr(r,θ,z) = ∆ϕ0(r,z) + ∆ϕ1(r,z) cos θ (3.17)

However, in the limit of ∆ϕa → 0, one can directly resort to the symmetric Abel inversion
process167. Figure 3.12b shows that the region immediately above the nozzle exit exhibits
an asymmetric behaviour, but evolves into a more uniform distribution with respect to the
nozzle axis. At a height of 500µm above the nozzle edge, which is of interest to us, the gas
jet exhibits a nearly symmetric distribution, as shown in fig. 3.13a. The resultant radial
phase shifts obtained through the symmetric and asymmetric Abel inversion processes are
shown in fig. 3.13b, where it can be seen that the difference is minimal. Therefore, it was
decided that the symmetric Abel inversion be used for the radial phase shift analysis.

Figure 3.13b shows the corresponding resultant radial phase shifts obtained through
the symmetric and asymmetric Abel inversion processes. The radial phase shift ∆ϕr

acquired by the laser pulse can be related to the refractive index of the medium η in the
following way,

η = 1 +∆η = 1 +
λ0
2π

∆ϕr

l
(3.18)

where, λ0 is the central laser wavelength in vacuum, ∆η is the change in refractive index
and l is the propagation length. The corresponding number density distribution ρr of the
gas-jet can then be obtained using the Lorentz-Lorenz relation, as shown below,

ρr =
3

4πα

(
η2 − 1

η2 + 2

)
(3.19)

where, α is the molecular polarisability (αAr = 1.642± 0.001Å3
).
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(a) Integrated phase (b) Radial phase

Figure 3.13: (a) Comparision between the symmetric and asymmetric integrated phase lineouts,
and (b) comparison between the radial phase shifts obtained using the symmetric
and asymmetric Abel inversion methods.

(a) (b)

Figure 3.14: Radial number-density distribution of (a) subsonic and (b) transonic argon gas-jets
at a height of 500µm above the nozzle’s exit for varying backing pressures.
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Density Measurements

Figure 3.14 shows the radial atomic number distribution across the subsonic and transonic
gas jets obtained at a height of 500µm above the nozzle edge for varying backing pressures.
A subsonic gas jet is usually characterised by its Gaussian-like distribution with a long
tail of decreasing radial gas density distribution at the edges, whereas a transonic gas
jet is characterised by its relatively shorter (radial) tail. It is important to note that the
exit diameters of the subsonic and transonic nozzles are 400µm and 650µm, respectively.
Therefore, fig. 3.14 shows that for nozzle with an exit diameter 1.6 times greater than that
of the subsonic nozzle, one obtains a gas jet with relatively shorter (radial) tail region but
with a slightly lower peak gas density, which can, however, be adjusted by using a higher
backing pressure.

The exact flow dynamics of these nozzles can only be understood with the help of
flow analysis softwares such as, ANSYS (Fluent). But here, we are only interested in
the density distribution of the gas-jet. It can be seen from figs. 3.14a and 3.14b that it
is possible to reach the critical density of 1.72 × 1021 cm−3 at the central region of the
gas distribution for ≥Ar10+ ionisation level . Therefore, for a given ionisation level, the
desired plasma density can be achieved by varying the nozzle backing pressure, even when
the laser intensity is kept constant.

60



Chapter 4

Results and Discussion

A discussion on the results obtained from the two subsequent high-intensity laser-plasma
experiments conducted at the JETI40 laser system is presented here, which were aimed
at deepening the understanding of the laser-plasma interactions at near-critical densities.

4.1 June 2014 Experiment

In this experiment, laser pulses of 800 nm central wavelength, 30 fs FWHM pulse dura-
tion, and 550mJ energy were focused into the middle of a subsonic gas jet (as described
in the previous section) at a height of 500µm above the nozzle edge using an f/6 off-axis
parabola reaching a maximum intensity of 4.4×1019 W/cm2. The backing pressure of the
argon gas nozzles was varied from 5 − 80 bar. The laser-plasma interaction region was
imaged onto a CCD camera with an objective and backlighted using a second harmonic
(2ω) probe beam of 400 nm at various temporal delays between the pump and probe
beams. It must be pointed out that neither energetic electrons of kinetic energy > 5MeV
nor ions of kinetic energy < 5MeV could be detected along the laser’s forward prop-
agation direction by their respective diagnostics. The absence of high energy electrons
(> 5MeV) also rules out the possibility of the presence of ion energies > 5MeV. However,
the images obtained using the side-view diagnostic show the existence of a preferential
laser side-scattering mechanism during the laser-plasma interactions for varying nozzle
backing pressures. Since this is an energy loss mechanism, by which laser energy can be
transported away from the interaction region, this section aims to examine the possible
origin of this process.

4.1.1 Side-view Images

Figure 4.1a shows a typical interferogram obtained using the side view diagnostics, where
the laser pulse is focused to the centre of the gas jet. The clarity of the interference
fringes is affected by the intensity modulations caused by the gas and plasma density dis-
tributions. The laser-gas jet interaction region shows that the intensity of the laser pulse
surrounding the central FWHM focal region (as indicated by the green dotted-lines) is
intense enough to ionize the Argon atoms at least to Ar1+...2+ states, thus making the
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(a) (b) Region of interest

Figure 4.1: (a) Typical interferogram showing the laser-plasma interaction region, which was
obtained for 11 bar nozzle backing pressure using Nomarski interferometer and (b)
corresponding variation of the scattering-angle measured with respect to the laser
axis along the laser propagation direction.

interaction region larger than expected. This also causes ambiguities in the interfero-
grams, as it tends to refract the probe beam and causes intensity modulations in the
interferograms. However, an interesting feature of the side-view image is the preferential
side-scattering that could be seen propagating upwards from the interaction region, as
shown in figure 4.1b. The scattering is made visible by the filamentary structure indicat-
ing ionisation caused by the intensity of the scattered light most likely originating from
the central laser-plasma interaction region.

Figure 4.2 shows the side-view images obtained for varying backing pressures, where
the phenomenon of side-scattering has been observed up to 40 bar backing pressure to
varying degrees. As the laser pulse propagates from the outer edges of the gas jet towards
the region of higher densities (centre), the scattering angle θs measured with respect to
the laser’s forward direction gradually decreases. For nozzle backing pressures: 20 and
40 bar, the scattering process is shown to undergo a gradual transition from positive
(upwards) to negative angles (downwards), as shown in figs. 4.2e and 4.2f. At densities
close to the critical density nc, the laser pulse is expected to be strongly absorbed due
to the (near) resonance between the laser and plasma frequencies. This is referred to
as the laser pulse collapse by Sylla et al36. Figure 4.2g shows that for backing pressure
60 bar, the intense parts of the laser pulse possibly gets stopped by the near-critical plasma
due to near resonance between the laser and plasma frequencies, whereas only the less
intense parts of the laser pulse undergoes the filamentation process. Figure 4.3c shows the
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(a) 5 bar (b) 8 bar

(c) 11 bar (d) 14 bar

(e) 20 bar (f) 40 bar

(g) 60 bar (h) 80 bar

Figure 4.2: Side-view images obtained for nozzle backing pressures varying from 5− 80 bar.
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(a) 5 bar (b) 20 bar (c) 60 bar

Figure 4.3: Side-view images obtained for varying pump-probe delay times showing the propa-
gation of the laser pulse through the gas jet for backing pressures (a) 5 bar (b) 20
bar, and (c) 60 bar, where the dotted lines indicate the nozzle centre.
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side-view images obtained for 60 bar pressure at various pump-probe time delays, where
the propagation of the laser pulse through the gas jet and the subsequent filamentation
process of the laser pulse, which starts to occur before the nozzle centre, could clearly be
seen. The filamentation process refers to coupling between parts of the laser pulse and
the transverse electron density perturbation151;152, as discussed in 2.10.5. This results in
bundles of EM-waves (filaments) across the laser beam, as shown in fig. 4.2g, which are
guided forward by the local negative lens-like refractive index modulations created by the
filaments itself. Figures 4.3a and 4.3b show the side-view images obtained for 5 and 20 bar
backing pressures at various pump-probe delay times, where the propagation of the laser
pulse through the gas jet past the nozzle centre could be seen. The gas jets corresponding
to 5 and 20 bar pressures can be expected to result in peak plasma densities of 0.08nc and
0.35nc, respectively. These densities correspond to the peak (vacuum) laser intensity of
4.1× 1019 W/cm2 and the argon ionisation state of Ar16+.

These images also show that their visibility is heavily affected the absorption and
refraction of the probe beam energy (primarily) by the plasma density distribution created
across the path of the main laser pulse. Increasing the probe beam energy any further
does not necessary lead to better visualisation of the interaction region, as the plasma also
acts a strong negative lens to refract the beam away from its initial propagation direction,
which may not be collected by the objective lens used for the side-view diagnostic. Since
the intense laser pulse propagates only 500µm above the nozzle surface, repeated usage
of the nozzle causes plasma induced damage to its outlet surface resulting in density
disturbances immediately next to the nozzle surface, as shown in figure 4.2g.

4.1.2 Limitations of Interferometry

Although the Nomarski interferometry was originally employed in the side-view diagnos-
tics to measure the electron density distribution across the laser-plasma interaction region,
the intensity modulations caused by the plasma deteriorate the contrast of the resulting
interferograms thus making them difficult to analyse. In fig. 4.4a, the central interaction
region corresponding to Argon ionisation levels of >Ar8+, whereas the surrounding region
corresponds to Ar1−2+, which results from the laser energy distribution around the focal
region. Therefore, the substantial difference in the resulting electron-density between the
outer and inner regions leads to a sharp increase in the phase-shift over a few micrometers.
A simulation of this scenario is shown in fig. 4.4b, where the parameters are based on the
corresponding experimental conditions. This sharp increase in the phase shift becomes
indistinguishable from the surrounding region of the interferogram because of the strong
intensity modulations thus rendering them difficult to analyse.
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(a) (b)

Figure 4.4: (a) A close-up view of the interferogram obtained for 11 bar backing pressure and
(b) a simulated interferogram showing the fringe-shift (corresponding to the inte-
grated phase-shift) caused for similar plasma density conditions. Here, the trans-
verse electron density distribution is assumed to have a Gaussian distribution,
where a maximum argon ionisation state of Ar8+ (corresponding to intensities
1.9 × 1016 − 1.6 × 1018W/cm2, which is calculated using the barrier suppression
ionisation mechanism) is assumed for the central interaction region. Furthermore,
the transition of the argon ionisation states is also assumed to be smooth i.e. no
step-like profile.

4.1.3 Electron Density Estimation

Since direct measurements of the electron density distribution (ne) of the plasma along
the laser’s propagation direction are extremely difficult to obtain, it needs to be estimated
from the combination of the gas density measurements and the laser focusing geometry.
For peak laser intensities along the propagation axis shown in fig. 4.5b, the electron density
ne can be estimated by first assuming that the argon atoms are directly field ionised by
the barrier suppression ionisation mechanism and then multiplying the ionisation factor
with the gas density measurements. Figure 4.5a shows the laser intensity levels required
to directly field ionise the argon atom to varying degrees, starting from the outermost
electron shell. At distances of 300 − 650µm from the nozzle centre over which side-
scattering was observed, the laser intensity (corresponding to the focusing in vacuum)
varies between 1 − 6 × 1017 W/cm2 corresponding to the time averaged Lorentz factor
related to the electron motion ⟨γe⟩ of 1.03-1.13, where ⟨γe⟩ is related to the refractive
index (η) of the plasma through η =

√
1− ne/⟨γe⟩nc. As discussed in section 2.9.2,

at relativistic intensities, the laser self-focusing effects due to relativistic electron mass
increase and ponderomotive electron expulsion are just beginning to play a role and tend
to compensate the effect of ionisation induced defocusing.

A more accurate estimation of ne would require a sophisticated and self-consistent 3D
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(a) (b)

Figure 4.5: (a) Laser-intensity required to achieve successive Argon ionisation states starting
from the outermost shell172? , and (b) peak intensity variation along the laser’s
propagation axis corresponding to the vacuum focusing geometry, where the distances
over which the peak ionisation of Ar8+ is expected to remain unchanged.

numerical simulations taking into account argon’s successive ionisation steps across the
laser pulse in each time step, the resulting plasma refractive index profile and various
laser propagation effects in plasma such as, ionisation induced defocusing, relativistic
and ponderomotive self-focusing, and self-phase modulation (SPM), which are described
in the theory section. Furthermore, the ionisation state Ar8+ remains unchanged for
laser intensities ranging from 1.9 × 1016 − 1.6 × 1018 W/cm2 over distances shown in
fig. 4.5b, where the side-scattering was observed. Therefore, any slight variations in the
laser intensity within this range due to either focusing or defocusing effects do not lead to
any measurable change in the ionisation state of the argon atoms. Therefore, although the
electron density estimations might slightly deviate from the actual values, this discussion
still helps to shed light into the phenomenon of side-scattering and understand its origin.

4.2 Scattering Measurement

Figure 4.6a shows the scattering angle measured for various nozzle backing pressures,
where it can be seen that as the laser pulse propagates further towards the regions of
higher gas density, the scattering angle θs decreases. Figure 4.6b shows the scattering
angle measured for 20 bar backing pressure, where the scattering shows a transition from
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(a) (b)

(c)

Figure 4.6: (a) Scattering-angle measured along the laser-axis for varying nozzle backing pres-
sure, (b) scattering-angle measured for 20 bar backing pressure showing the transition
from upward to downward scattering and (b) variation of the scattering-angle with
respect to the electron density.

upward to downward direction. Although downward scattering was also observed for
40 bar backing pressure, the exact distances from the nozzle centre from which the scat-
tering originates could not be measured. This is because, the scattering seems to originate
from a strongly localised interaction region at distances close to ∼ 430µm from the noz-
zle centre and the ionisation stripes indicate that the scattering process is distorted. The
measurements also show that the longitudinal positions, from where the scattering starts
and where it ends differ for different backing pressures. Figure 4.6c shows the variation
of the scattering angle θs with respect to the electron density ne calculated from the pre-
vailing laser intensity and gas density conditions, from which it can be been seen that as
the density ne increases, the scattering angle θs decreases invariably for all nozzle backing
pressures. However, the scattering angle θs does not seem to depend on the absolute
electron density, as there are multiple angles θs observed for the same electron density ne
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suggesting that in addition to ne, other factors also might play a role.

4.3 Scattering Mechanisms

Some of the possible mechanisms from which side-scattering could originate within the
laser-plasma interaction region are as follows:

• Raman Scattering - resulting from the decay of the pump laser pulse

• Plasma Grating - diffraction of the laser-beam by a grating-like periodic electron
density structure

• Ionisation Induced Defocusing - occurring due to the divergence caused by the
plasma lens

• Density Gradient Emission - scattering due to the non-uniform plasma density
distribution

This section will attempt to show that most likely the last of the above mentioned mech-
anisms is the origin of the observed scattering phenomenon.

4.3.1 Raman Scattering

Raman scattering is the result of the decay of a light wave in to another light-wave
and an electron plasma wave (refer to section 2.10.2). Its phase matching condition
is given by k⃗0 = k⃗s + k⃗p, where k⃗0, k⃗s, k⃗p are the wave vectors of the incoming light
wave, scattered light wave and plasma wave. This instability is expected to dominate
for plasma densities below nc/4, thus making it relevant in our case. The corresponding
dispersion relation describing the propagation of a laser pulse in a plasma medium is
described in section 2.10.2 in which only the down shifted frequency component (Stokes,
D[ω−ω0,k−k0]) is considered to be resonant. Thus, if the pump laser pulse is to undergo
Raman decay in a plasma medium, the phenomenon of side-scattering could be viewed as
the result of the non-alignment of the resulting light wave and plasma wave wave vectors,
as shown in fig. 4.7a. The wave number of the scattered wave ks is related to the electron

density through98 ks = k0

√
1− 2

√
ne/nc, where k0 is the wave number of the light wave.

Therefore, for a given electron density ne, the wave number ks remains constant. A more
detailed discussed on the properties of the decay light and plasma waves can be found
in the next section, where Raman side-scattering was indeed believed to have occurred
in the second experiment conducted at the JETI40 laser system. For the maximum non-
alignment between the incoming light wave vector k⃗0 and plasma wave vector k⃗p, the
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(a) Raman scattering (b) Plasma grating

Figure 4.7: (a) Phase-matching condition for Raman side-scattering process, where the wave
number of the scattered wave ks is determined by the electron density through98

ks = k0

√
1− 2

√
ne/nc, where k0 is the wave number of the light wave, and (b)

comparison between the experimentally measured angle for 11 bar backing pressure
and the scattering angle calculated from the Raman scattering.

angle θRa at which the scattered wave is oriented is given by99

sin θRa =
kp
k0

=

√
2ωp√
γeω0

⇒ sin θRa =

(
4

γe

ne

nc

)1/4

(4.1)

where θRa is the scattering angle, ωp is the plasma frequency and γe is the time averaged
Lorentz factor associated with the electron motion. Unlike Raman forward scattering,
where the wave vectors are parallel, the wave vector mismatch limits the energy transfer
from the pump light wave to the scattered one. For a plasma medium, where the electron
density varies continuously along the laser’s propagation direction, equation 4.1 entails
that the scattering angle θRa can also be expected to vary continuously.

Figure 4.7b shows the comparison between the measured scattering angle for 11 bar
backing pressure and the scattering angle θRa corresponding to the Raman side-scattering,
where it can be seen that the scattering-angle θRa increases as the electron density ne

increases. This is in stark contrast to that of the measured values. Higher-order Raman
scattering could lead to higher scattering angles, but its dependence on the electron density
follows the same trend i.e. the scattering angle increases, as the electron density increases.
Therefore, it is highly unlikely that Raman scattering is the source of the side-scattering
that was observed during the high intensity laser-plasma experiment.
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(a) Plasma grating (b) Raman scattering

Figure 4.8: (a) Periodic plasma density disturbance acting as a grating structure to diffract the
co-linear laser-pulse, and (b) comparison between the experimentally measured angle
for 11 bar backing pressure and the scattering-angle calculated from the plasma-wave
scattering.

4.3.2 Plasma Grating

As the intense laser pulse propagates in the plasma medium, the ponderomotive force
of the laser pulse expels the electrons from its focal region from its ionic background,
thus creating a charge separation between the ions and the electrons. As a result of
the restoring force offered by ionic background, the electrons are pulled back, and thereby
setting up a periodic plasma density disturbance at the trail of the laser front, as described
in section 2.7, which is called the plasma-wave. If the spatial extent of the laser pulse
in the propagation direction is longer than the period of plasma density oscillation, the
periodic electron density disturbance could act as a grating structure to diffract the laser
pulse, thus resulting in the laser side-scattering process. For instance, for plasma densities
ne = 0.01 − 0.25nc, the plasma wavelength λp varies between 14 − 2.52µm, where the
laser’s FWHM longitudinal spatial extent of 9µm exceeds the plasma wavelength for
ne ≥ 0.03nc. The corresponding first-order diffraction angle (θGr) is related to the plasma
wavelength using the following grating equation

λ0 = λp(cosα− cos θGr) (4.2)
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(a) (b)

Figure 4.9: (a) Refractive index distribution calculated using the intensity and density condi-
tions at 600µm from the nozzle axis along the laser propagation direction for 20 bar
pressure, and (b) corresponding ray-tracing carried out for the laser-pulse focused
using an f/6 off-axis parabola in the plasma medium.

setting α = 0◦ for a laser-pulse propagating along the grating-like structure and substi-
tuting λ0/λp = ωp/

√
γeω0 = (ne/γenc)

1/2, the following expression can be obtained

cos θGr = 1−

(
1

γe

ne

nc

)1/2

(4.3)

Similar to Raman scattering, for a non-uniform plasma density distribution, the diffraction
angle θGr can also be expected to continuously change during the laser pulse’s propagation
direction. The dependence of scattering angle θGr on the electron-density ne, as shown in
fig. 4.8b, is similar to that of the scattering angle θRa from the Raman scattering relation
4.1, which is again opposite to that of the measured values, where the scattering angle
θs decreases, as the electron density ne increases. Furthermore, both of these scattering
mechanisms are expected to result in symmetric scattering on both sides of the interaction
region and thus fail to explain the asymmetric nature of the experimentally observed
scattering process.

4.3.3 Ionization Induced Defocusing

A focused laser pulse propagating through a medium could be defocused before it reaches
its peak intensity, if its intensity is sufficiently high to ionise and thus modify the refrac-
tive index profile of the medium before the (vacuum) focal plane is reached. Since the
intense parts of the laser pulse lead to higher ionisation rates, for non-relativistic inten-
sities (γe ≈ 1), a Gaussian intensity distribution leads to a negative-lens-like refractive
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index profile, as discussed in detail in section 2.9.1 However, for laser intensities above
1017 W/cm2 corresponding to the central interaction region, relativistic self-focusing due
to electron mass increase and ponderomotive electron expulsion dominates, in general (re-
fer to section 2.9.2). Thus, the propagation of a laser pulse in plasma is determined by the
interplay between the focusing and defocusing effects. Furthermore, since the refractive
index profile across the laser pulse can vary depending on the prevailing intensity, ioni-
sation state of the atoms and extent of ponderomotive electron expulsion, different parts
of the laser pulse could experience different focusing or defocusing effects. Therefore, an
exact analysis would require numerical simulations that take into account these effects.

However, in order to find out if ionisation induced defocusing could lead to the side-
scattering process, a ray tracing analysis of the laser pulse has been carried out by as-
suming a constant refractive index distribution along the propagation direction, as shown
in fig. 4.9a. Here, the electron density corresponding to the refractive index is not self-
consistently calculated depending on the extent of laser pulse’s defocusing and the focusing
effects such as, relativistic electron mass increase and ponderomotive electron expulsion
are neglected and the electron density are calculated. Therefore, any defocusing of the
laser pulse should lead to lesser intensities, which might lead to relatively lower argon
ionisation states, thereby resulting lower electron densities. Thus, the neglection of the
focusing effects and electron-density being not self-consistently calculated leads to an
over-estimation of electron density. Figure 4.9b shows the resulting paths taken by the
rays representing the focused laser pulse, where it can be clearly seen that even an over-
estimation of the extent of defocusing does not lead to such large side-scattering angles
observed during the experiment. Furthermore, the defocusing effect is also expected to be
symmetric around the laser axis. Therefore, it is highly unlikely that ionisation induced
defocusing leads to the phenomenon of asymmetric side-scattering. It should be further
noted that early defocusing comes from the outer most region of the laser pulse, not from
the intense central region, which is also a further indication that the stripes of ionisation
in side-scattering are unlikely to be caused by ionisation induced defocusing.

4.4 Gradient Analysis

Since the scattering mechanisms that have so far been examined do not lead to a satisfac-
tory explanation for the side-scattering process, one has to look beyond these mechanisms
to find the source of the scattering process. The preferential nature of the side-scattering
(i.e., it is upwards) suggests that perhaps the clues to its origin could lie in the non-
uniform nature of the gas jet density profile. As the laser pulse propagates from the
outer edges of the gas jet towards its centre, it experiences a change in gas density both
in transverse and longitudinal directions. This section show that this asymmetry in gas
density can indeed lead to the observed side-scattering process.
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(a) (b)

(c) (d)

Figure 4.10: (a) Simulated gas-density distribution profile for 20 bar pressure based on the den-
sity measurements carried out using the Mach-Zehnder interferometer, (b) close-up
view of the region of the gas jet with which the laser pulse interacts, where the
arrowed lines along the laser’s propagation axis indicate the direction of the gas
jet gradient, (c) corresponding plane of asymmetry normalised to 1 along the laser
axis indicating the transverse variation of the gas density, and (d) direction of gas
density gradient along the laser axis together with the measured scattering angle
for 20 bar.

4.4.1 Gas Jet Simulation

The gas density measurements that have been carried out using Mach-Zehnder inter-
ferometry contain, in addition to the smooth density variation, high frequency density
fluctuations, especially on the edges. This is either inherent to nature of the gas jet,
and/or due to the limited phase shift accumulated by part of the portion of the laser
beam propagating through the outer regions of the gas jet and/or due to the numerical
errors resulting from the Abel inversion process with which the radial phase shift is ob-
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tained from the integrated phase shift. The density distribution of the gas jet based on
the actual measurements for 20 bar backing pressure is shown in fig. 4.10a, where the local
high frequency density fluctuations and the (low frequency) density fluctuations on the
outer edges of the gas jet are neglected. Therefore, in order to overcome the presence of
the local high frequency density fluctuations, the gas jet distribution has been modelled
based on the actual measurements, as shown in fig. 4.10a for 20 bar backing pressure.
The graph is plotted in terms of the radial phase shift extracted from the corresponding
interferograms, as it is proportional to the gas density and we are only interested in the
rate of variation of the gas density distribution along the laser path rather than in the
absolute numbers.

A closer look at the interaction region shown in fig. 4.10b, indicates that the density of
the gas jet varies continuously from the outer edges of the gas jet to its centre. The non-
uniformity of the gas jet is best represented by its gradient∗ (∇⃗ng, where ng represents
the local gas density), as indicated by the arrows in fig. 4.10b. As the laser pulse enters
the gas jet, the density on the upper side of the laser axis is higher than on its lower side,
as indicated by the upward arrows. As the laser pulse propagates further into the gas jet,
it encounters a region of uniform transverse density after which, the trend reverses itself,
as indicated by the downward arrows. This is best represented by the so called ‘plane of
asymmetry’ shown in fig. 4.10c, which is obtained by normalising the density distribution
to 1 along the laser axis, where the transverse variations in the gas density can be clearly
seen. Figure 4.10d shows the direction of the gas density gradient along the laser axis
along with the scattering angle measured for 20 bar backing pressure. Although their
absolute values differ from one another, the similarity of the asymmetric nature of the
gas density gradient indicates that the origin of scattering could lie on the non-uniform
nature of the gas jet. The following section examines the propagation of the laser pulse
in the resulting asymmetric plasma density distribution.

4.4.2 Electron Density Analysis

The non-uniform electron density distribution resulting from the ionisation of the gas
jet can be obtained by overlapping the plane of asymmetry shown in fig. 4.10c with the
symmetric radial electron density distribution shown in fig. 4.11a that could be estimated
from the laser’s focusing geometry and the gas density measurements. The electron den-
sity distribution is assumed to have a Gaussian transverse profile, but it will be later
shown the exact shape of the transverse density profile (e.g. Gaussian) is not of relevance.
The resulting non-uniform electron density distribution is shown in fig. 4.11b, where the
density asymmetry is indicated by the dotted-lines drawn along the maxima of the contour
lines.

Figure 4.12a shows the direction of the electron density gradient (∇⃗ne) along the laser
∗The gradient of a scalar-field points in the direction in which the field increases at the maximum rate
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(a) (b)

Figure 4.11: (a) Symmetric electron density distribution with respect to the laser’s propagation
direction for 20 bar backing pressure, where the gas density has been assumed to be
symmetric around the laser axis, and (b) asymmetric electron density distribution
resulting its overlap with the plane of asymmetry obtained from the corresponding
gas jet.

(a) (b)

Figure 4.12: (a) Direction of the electron density gradient along the laser axis together with
measured scattering angle for 20 bar and the direction of the gas density gradient,
and (d) comparison of the simulated and measured scattering angles for multiple
nozzle backing pressures.

axis together with the experimentally measured scattering angle values for 20 bar backing
pressure, where a good overlap between the two suggests that the side-scattering indeed
originates from the intense central interaction region of the laser pulse and propagates
away along the direction of the electron density gradient. For distances close to the nozzle
centre, the plasma gradient direction slightly deviates from that of the measured scattering
angles at negative values, as the corresponding electron density estimates may not hold
true any more due to the various propagation effects (refer to section 2.9). Figure 4.12b
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shows a similar analysis for 5, 8 and 11 bar backing pressures, where again a good overlap
between the measured and calculated values have been observed. It is important to note
from fig. 4.12a that the distance at which the direction of both the gas and plasma density
gradients correspond to 0◦ remains unaltered. Thus, the ionisation process can be thought
to effectively tilt the plane of asymmetry that is hinged on the line of equi-density going
through the point of 0◦. The following analysis shows that the choice of the transverse
electron density distribution shape (i.e. a Gaussian distribution) is insignificant, as the
scattering is shown to originate from the narrow central interaction region.

Mathematical Analysis

The electron-density distribution shown in fig. 4.11b assumes the form ne(x,z) = (mx +
c) exp(−z2/2σ2

x)ng, where x - propagation direction, z - transverse direction, (mx + c)
- linear axial ionisation factor, σx - standard deviation of ne corresponding to the laser
focusing geometry, and ng(x,z) - gas density distribution. Here, the y dependence is
neglected, as the gas density is expected to be symmetric in y-direction and therefore,
the plasma density gradient ∇⃗ne is primarily oriented in the x − z plane. The plasma
gradient ∇⃗ne in the x− z plane can be expressed as follows,

∇⃗ne =
∂ne

∂x
x̂+

∂ne

∂z
ẑ

= exp

(
− z2

2σ2
x

)[(
mng + (mx+ c)
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x
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(
z

σx

∂σx
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)]
(4.4)

since the side-scattering is most likely originating from the intense central interaction
region along the propagation direction for which y ≪ σx, equation 4.4 can be reduced to

∇⃗ne = exp

(
− z2

2σ2
x

)[
(mx+ c)∇⃗ng +mngx̂

]
(4.5)

Thus, the direction of the electron-density gradient (∇⃗ne) is given by,

tan θe =
∂ng/∂z

∂ng/∂x+ ng(m/(mx+ c))
(4.6)
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(a) (b)

Figure 4.13: (a) Schematic of the light ray propagation in non-uniform media, (b) path taken by
a light ray in the non-uniform plasma created by the gas jet ionisation

whereas, the direction of the gas-density gradient (∇⃗ng) is simply given by,

tan θg =
∂ng/∂z

∂ng/∂x
(4.7)

comparison of eqs. (4.6) and (4.7) shows that the ionisation of atoms modifies only the
x-component of the gas density gradient along the laser axis, whereas the z-component
remains (nearly) unchanged. Equation 4.6 also indicates that the plasma-gradient is not
influenced by the Gaussian distribution function and the distance at which the directions
of both ∇⃗ne and ∇⃗ng correspond to 0◦ angle (i.e. along the laser’s propagation direction)
remains the same. Similarly a non-linear increase in the ionisation factor (instead of a
linear increase: mx + c) along the laser axis will also lead to a modification of only the
x-component of the gas density, as the z-component will also remain (nearly) unchanged.

4.4.3 Origin of Side-scattering

Although the analysis so far shows that side-scattering occurs along the direction of plasma
gradient, the mechanism that leads up to the scattering process still remains unresolved.
In this section, it is shown to be a direct consequence of the deviation of the pump laser
pulse in plasma from its ideal laser axis (straight line).

Ray-tracing

The propagation of a light ray in a medium of non-uniform refractive index (η) can in
general be found by solving the eikonal equation of the form:

d
ds

[
η(r⃗)

dr⃗
ds

]
= ∇⃗η(r⃗) (4.8)
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(a) (b)

Figure 4.14: (a) Extent of light ray deviation (xd) from the laser axis for varying pressures, and
(d) corresponding angle of light ray deviation (θd) measured with respect to the
laser axis.

where, r⃗ is the position vector and s is the propagation distance, as shown in fig. 4.13a.
For a 2D refractive index distribution η(x,z), it can be expanded to the following form:[

∂η

∂z
+
∂η

∂x

dx
dz

]
dx
dz

+ η(x,z)
d2x

dz2
=

∂η

∂z

η
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dz2
+
∂η

∂x

[
dx
dz

]2
+
∂η

∂z

[
dx
dz

− 1

]
= 0 (4.9)

This is a second-order non-linear differential equation, which can be solved to determine
the path taken by the light ray in the medium.

The ray tracing analysis can be used to determine the path undertaken by the intense
(central) region of the laser pulse in a non-uniform plasma medium. This can be achieved
by assuming a uniform ionisation degree of the argon atoms in the transverse direction
(unlike in the previous section, where a Gaussian profile is assumed) depending on the peak
intensity of the laser pulse corresponding to the laser’s vacuum focusing geometry. This is
necessary to ensure the self-consistency of the electron density in the transverse direction,
if the laser pulse is to deviate from its propagation axis. The non-uniformity of the gas jet
directly leads to the non-uniformity of the plasma density. Though not exact (because of
the neglection of the ionisation processes and propagation effects), this analysis helps us
to estimate the direction and the extent of deviation of the laser pulse with respect to the
straight line. The neglection of the self-focusing and defocusing propagation effects are
justified within the distances, over which side-scattering has been observed, as the laser
pulse is only mildly relativistic (as discussed in 4.1.3).

Figure 4.13b shows the path taken by a light ray in such a non-uniform plasma, where
it can be seen that as the light ray propagates from the outer edges of the gas jet towards
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(a) (b)

Figure 4.15: Phase matching condition among incoming (k⃗0), refracted (k⃗1) and scattered (k⃗s)
components for (a) positive and (b) negative scattering scenarios, respectively.

its centre, it is first deflected below the axis and reverses its direction midway to cross
the axis. Figure 4.14a shows the light ray’s extent of deviation (xd) calculated for varying
nozzle backing pressures, where it can be seen that the laser pulse can be expected to
deviate only a few µm’s from the axis. Whereas, fig. 4.14b shows their corresponding
angle of deviation (θd = tan−1(dxd/dz)) measured with respect to the axis. Although
a deviation of few micrometers will hardly be noticeable in the side view images, the
following section demonstrates that this small deviation is indeed sufficient to result in
the side-scattering phenomenon.

Scattering Mechanism

In addition to energy, a laser pulse also carries linear momentum along its direction of
propagation. Thus, in order for the momentum to be conserved, any deviation in the
path of the laser pulse could lead to an additional wave vector component, as shown in
4.15. This can be expressed in terms of the phase matching condition k⃗0 = k⃗1+ k⃗s, where
k⃗0 and k⃗1 represent the incoming and refracted wave vector components, whereas the
wave vector k⃗s can be interpreted as the side-scattered wave. Figure 4.15b shows that
the deviation of the laser pulse below the laser axis, results in a scattering wave vector k⃗s
that is oriented upwards. Whereas, after a certain propagation distance, the laser pulse
starts to deviate in the opposite direction, which results in a scattering wave vector that
is oriented downwards, as shown in fig. 4.15b.

Figure 4.14b shows the corresponding angle of deviation θd of the wave vector, in
which decreasing values indicate that the deviation is downwards, as shown in fig. 4.15a.
After a certain propagation distance, the angle of deviation θd starts to increase indicating
that the direction of deviation is now upwards, as shown in fig. 4.15b and the scattering
can now be expected to occur at negative angles (i.e. downwards). The experimental
observation shown in fig. 4.16 also shows that the scattering gradually changes from
upward to downward scattering at a distance where the angle of deviation θd is zero,
which also coincides with the distance of 0◦ plasma gradient direction. For 20 and 40 bar
backing pressures, the distances at which the scattering orientation changes are ∼ 400µm
and 420µm in front of the nozzle centre, which coincides with the position, where the
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(a) (b)

Figure 4.16: Images obtained for (a) 20 bar and (b) 40 bar backing pressures showing the pro-
gressive transition of the scattering-angle from upward to downward directions.

electron density gradient is horizontal. In summary, the phenomenon of side-scattering
can be viewed as a direct result of the conservation of momentum, whereby a deviation
in the laser pulse’s propagation direction results in the preferential side-scattering. The
scattering being oriented along the direction of the plasma gradient can be understood
through the following analysis.

Wave vector Analysis

The analysis that so far has been carried out using the plasma density gradient can be
complemented by the use of the wave vector perturbation method, whereby a plasma
density perturbation (δne ≪ ne < nc) is introduced in the expression for the laser’s wave
number k = (2π/λ0)η = (2π/λ0)(1− ne/nc)

1/2 in the plasma, as follows,
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where the higher order term (δn2
e, δn3

e...) are neglected. Comparing both sides of the
equation, the wave vector component δk (≪ k0) resulting from the plasma density per-
turbation is given by δk = k0δne/2ncη. For a plasma medium with a spatially dependent
density distribution, δk⃗ can be written as,

δk

δl
=

k0
2ncη

δne

δl
=

k0
2ncη

|∇⃗ne|

δk⃗ =
k0δl

2ncη
∇⃗ne ⇒ δk⃗ ∝ ∇⃗ne (4.11)

Thus, the wave vector component δk⃗ is shown to be oriented along the direction of the
plasma gradient, which can be interpreted as the scattered light wave component k⃗s
observed during the experiment, which was also shown to be oriented along the direction
of the plasma gradient. Therefore, this scattering mechanism can be termed as the plasma
gradient scattering (PGS).

4.5 March 2015 Experiment

A subsequent high-intensity laser-plasma experiment was conducted at the JETI40 laser
system, which was aimed at further examining the laser-plasma interaction dynamics
at plasma density and laser intensity combinations different from that of the previous
experiment. In this experiment, the laser pulses were focused using an f/2 parabola into
the centre of the transonic gas jet reaching up to a maximum intensity of 2.5×1020 W/cm2.
The interaction region was probed using a second harmonic probe beam of 400 nm central
wavelength, which approximately has the same pulse duration as the pump beam, which
is 30 fs. The nozzle backing pressure was varied from 10− 50 bar.

4.5.1 Side-view Images

Using the side-view diagnostic generating an interferogram, namely Mach-Zehnder inter-
ferometry, the laser-plasma interaction was probed at various delay times between the
pump and probe laser pulses. The resulting interferograms showed the presence of an
undesired pre-pulse, which causes the argon atoms to ionise, thus creating a pre-plasma,
as shown in fig. 4.17a. This image was taken ∼ 50 ps before the pump-pulse peak arrival.
The pre-plasma was observed to have created by the laser pre-pulse at ∼ 660 ps before
the main laser pulse arrival. Once generated, the pre-plasma expanded radially outwards
due to collisions, which could be observed by varying the pump-probe delay times.

Figure 4.17b shows the corresponding electron density distribution obtained by analysing
the interferogram in fig. 4.17a, where a bubble-like electron density distribution with a
peak density of 0.02nc corresponding to an ionisation state of Ar3+ could be observed.
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A density line out across the pre-plasma is shown in fig. 4.17c, where the density peaks
could be seen. The rate (R(t)) at which the density peaks expand radially outwards can
be calculated from the Sedov-Taylor equation describing the ‘blast wave’ expansion, which
is given by173–175,

R(t) = ξ

(
El

ϱAr

)1/(β+2)

t2/(β+2) (4.12)

where ξ = 0.55 (for ideal gas), El is the energy deposited per unit length, ϱAr is the
unperturbed (i.e. neutral) argon mass density, β is a coefficient related to the symmetry
of the expansion (β = 1 (planar), β = 2 (cylindrical) and β = 3 (spherical)) and t is
the propagation time of the density peak. Here, the pre-plasma expansion is treated as a
(nearly) cylindrically symmetric supersonic shock wave expansion after the (spontaneous)
deposition of the energy by the pre-pulse. For a pre-plasma length of ∼ 33µm, the rate of
expansion R(t) that can be calculated from the corresponding interferograms obtained at
various probe beam delay times yield a total energy deposition of ∼ 57µJ. By integrating
over the electron density distribution across the pre-plasma, one obtains the average
kinetic energy per electron of 460 eV.

(a) pre-plasma (b) plasma-density (c) line-out

Figure 4.17: (a) Part of the interferogram obtained for 20 bar backing pressure showing the
presence of the pre-plasma generated by the pre-pulse, (b) corresponding plasma-
density obtained by analysing the interferogram, and (c) variation of the plasma-
density across the expanding pre-plasma.

Figure 4.18a shows a shadowgram obtained for 20 bar backing pressure showing the
presence of the pre-plasma, whereas fig. 4.18b shows the arrival of the pump pulse, as
indicated by its ionisation front. The pre-plasma is formed starting from ∼ 10µm before
the vacuum focal plane over ∼ 33µm in length. Thus, the pump pulse upon its arrival
interacts with a radially expanding pre-plasma, which scatters off a significant portion
its energy, as shown in figs. 4.18c and 4.18d. Furthermore, the expanding pre-plasma,
due to its highly non-uniform density distribution along the laser’s propagation direction,
might also affect any potential laser particle acceleration mechanisms, such as direct laser
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(a) Pre-plasma (b) Main-pulse arrival

(c) Side-scattering (d) Side-scattering (illustrated)

Figure 4.18: Shadowgrams obtained for 10 bar backing pressure at varying probe-beam delay
times with respect to the pre-pulse creation showing (a) the pre-plasma created by
the pre-pulse, (b) the subsequent arrival of the main-pulse, (c) interaction of the
main-pulse with the radially expanding pre-plasma, and (d) is the same as (c) with
geometrical guide lines showing side-scattering process and main pulse’s refraction
of the pre-plasma.

acceleration (described in section 2.8), that could take place at these laser intensities
and plasma density conditions. The corresponding electron and ion detection diagnostics
present during the experiment also indicate that no energetic electrons and ions of kinetic
energy > 5MeV and < 5MeV, respectively, could be detected along the forward direction
of the laser pulse. The absence of the high energy electrons also rules out the presence of
ion energies > 5MeV.

Figure 4.18d shows that in addition to the pump laser-pulse being scattered off by
the pre-plasma, there exists a symmetric side-scattering process, which is indicated by
the stripes of ionisation caused by the light scattered in the gas jet. It is assumed to
have originated from the central interaction region of ∼ 40µm (in length) at varying
distances from the nozzle centre depending on the backing pressure and spreads over an
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(a) 10 bar (b) 20 bar

Figure 4.19: Interferograms obtained for (a) 10 bar and (b) 20 bar backing pressure using the
Mach-Zehnder interferometry showing the phase discontinuities present in the cen-
tral interaction region.

angle of ∼ 100◦. The scattering process can be treated as an instability or an energy loss
mechanism by which energy is being transported away from the laser-plasma interaction.
The following section provides the respective scattering measurements and also an analysis
that sheds light into its origin.

The interferograms obtained using the Mach-Zehnder interferometer contain phase
discontinuities at the central interaction region, as shown in fig. 4.19, thus rendering them
not analysable. Therefore, in the absence of any direct electron density measurements
of the laser-plasma interaction region, similar to the previous experiment, the density
again needs to be estimated from the gas density measurements and peak laser intensities
corresponding to the vacuum focusing geometry. Here, the laser propagation effects,
such as ionisation induced defocusing and relativistic self-focusing are similarly ignored.
Although the estimated electron densities might deviate from the actual values, it still
helps us to understand the mechanism behind the side-scattering process.

4.5.2 Scattering Measurement

The scattering angle (θs) measured for backing pressures 10, 20, and 30 bar is shown in
fig. 4.20a, where it can be seen that the scattering occurs in a symmetric way (i.e. upwards
and downwards) with respect to the laser’s propagation axis. The scattering angle varies
over ±50◦ with respect to the line perpendicular to the laser’s propagation (i.e. over 100◦

in the observation plane, which is also perpendicular to the polarisation plane of the main
laser pulse), as shown in fig. 4.18d. As the backing pressure increases, scattering occurs
farther away from the nozzle centre, as the increase in backing pressure enables the laser
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(a) (b)

Figure 4.20: (a) Scattering angle measured for backing pressures ranging from 10− 30 bar with
respect to the electron density estimations and (b) combination of laser intensity
and electron density ranges within which scattering occurs.

pulse to access the same gas densities farther out from the nozzle centre. For backing
pressures > 30 bar, the side-scattering disappears. Figure 4.20b shows the combination
of estimated electron densities and peak laser-intensities, over which the side-scattering
occurs. These quantities are listed in table 4.1, where it can be seen that the scattering
occurs at mildly relativistic laser intensities corresponding to the (maximum) normalised
vector potential a0 in the range of 1.0−1.1. It is found that the scattering process occurs in
the (estimated) peak plasma densities ranging from 0.09nc−0.25nc (near-critical plasma).

Table 4.1: Relevant scattering parameters.

4.5.3 Scattering Origin

The nature of this side-scattering is significantly different from that of the previous ex-
periment, since it is symmetric around the interaction region and does not gradually vary
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over the propagation distance. It also has both forward and backward side-scattering
components. The observation of side-scattering also suggests that it occurs perpendicular
to the pump laser’s polarization plane, which is horizontally orientated i.e. perpendicular
to the plane of observation. All these factors point towards Raman scattering as a possible
mechanism behind the scattering process, where the scattered light wave can be viewed
as the result of wave vector mismatch between the incoming light wave and the plasma
wave.

Wave-vector Analysis

The phase and frequency matching conditions for the Raman scattering are given by,

k⃗0 = k⃗p + k⃗s; ω0 = ωp + ωs (4.13)

where the light wave components satisfy the dispersion relation of the form: ω2 = ω2
p +

c2k2, where ω and k are the frequency and wave number of the light waves, respectively.
Figure 4.21a shows the schematic representation of the wave vector mismatch, which
results in the Raman side-scattering process. The corresponding wave number ks of the
scattered light wave can be obtained using the relations section 4.5.3, as follows,
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where the phase velocity of the scattered wave vs is given by,

vs =
ωs
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=

ω0 − ωp
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√
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whereas its group velocity vs,gr is given by,

vs,gr =
c2

vs
= c

√
1− 2

√
ne/nc

1−
√
ne/nc

(4.16)

Figure 4.21b shows the variation of vs,gr with respect to the electron plasma density ne,
where it can be seen that as ne approaches 0.25nc, vs,gr drops to zero meaning that the
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(a) (b)

Figure 4.21: (a) Phase matching condition for Raman side-scattering process, and (b) the varia-
tion of the scattering angle θs with respect to the normalised electron density ne/nc,
where nc is the critical density of the plasma.

scattered wave is trapped inside the plasma region. The corresponding phase velocity of
the plasma wave vp is then given by,

vp =
ωp

kp
=
ω0

k0

ωp/ω0√
2ωp/ω0

(4.17)

= c

√
ωp

2ω0

= c

(
ne

4nc

)1/4

(4.18)

where the relation k20 = k2p+k
2
s , which corresponds to the maximum wave vector mismatch

(shown in fig. 4.21a) is used in obtaining the expression for vp. For example, for ne = 0.1nc,
vp = c/2.5 and it approaches a value of c/2 at electron density nc/4.

The scattering angle θs corresponding to the wave vector mismatch can be related to
the wave vectors, as follows,

kp =

√
(k0 − ks cos θs)

2 + k2s sin
2 θs

=
√
k20 + k2s − 2k0ks cos θs (4.19)
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substituting equation 4.14 for ks, one can obtain the following relation
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(4.20)

Thus, for a given electron density ne, the scattering angle θs corresponding to the maxi-
mum non-alignment between the incoming light wave k⃗0 and the plasma wave k⃗p is given
by,

sinϕmax = cos θs =
ks
k0
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(4.21)

This yields
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(4.22)

At relativistic laser intensities, the time averaged Lorentz factor γe can be introduced
into the expression for the scattering angle to account for the relativistic electron mass
increase, as follows,

sin θs =
kp
k0

=

(
4

γe

ne

nc

)1/4

(4.23)

Figure 4.21b shows the variation of the scattering angle θs with respect to the electron-
density ne, where it can be seen that as ne approaches quarter critical density (nc/4), θs
approaches 90◦.

Thus, for electron densities at which scattering has been observed, namely from 0.09nc

to 0.25nc, Raman side-scattering is expected to result in symmetric side-scattering at an-
gles close to the values measured during the experiment. The growth of Raman scattering
is expected to be zero at 90◦, as the incoming and scattered wave vector are aligned per-
pendicular to each other98. It can be seen from measurements (fig. 4.20a) that there is
indeed less scattering observed at 90◦, which is suggestive of Raman scattering. There-
fore, this analysis suggests that Raman side-scattering is likely to be the source of the
scattering observed during this experiment. Unlike Raman forward scattering, where the
wave vectors are aligned in-line, the side-scattering limits the region over which the waves
can interact, thus limiting the growth of the scattered light. Nevertheless, since laser
energy is being transported away from the laser-plasma interaction region, this instability
can deplete the pump laser pulse’s energy and inhibit the laser pulse from reaching its
maximum intensity. From the laser intensity estimates, Raman side-scattering has been
shown to have a threshold intensity of > 1× 1017 W/cm2.
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4.5.4 Further Comments

When compared to the previous experiment, both plasma gradient and Raman scattering
processes seem to occur with in the laser intensity range 1 − 7 × 1017 W/cm2 and the
asymmetric nature of the targets (i.e. gas jet) also remains the same. However, in the
second experiment, the plasma gradient scattering could not be observed from the lase-
plasma interaction region. This could be due to the short focusing geometry (f/2) used in
this experiment (in contrast to the f/6 geometry in the previous experiment), where the
peak laser-intensity increases from 1 − 7 × 1017 W/cm2 within a longitudinal distance of
120µm (in contrast to 350µm in the previous experiment). This means that the focusing
geometry f/2 limits the deviation of the laser pulse from its propagation axis due to the
asymmetry in the plasma-density distribution within the specified laser intensities, thus
hindering the occurrence of the plasma gradient scattering.

With regard to Raman side-scattering not being observed in the first experiment, one
possible reason could be the narrow plasma density ranges, within which Raman side-
scattering has been observed in the second experiment. The combination of a subsonic
gas jet and a focusing geometry of f/6 leads to a gradual increase in plasma density, as the
focused laser pulse propagates towards the nozzle centre. Whereas, the combination of a
transonic gas jet and a focusing geometry of f/2 leads to a higher rate of plasma density
increase towards the nozzle centre. In addition to the absolute plasma density, if Raman
side-scattering is also to be attributed to the rate of change of plasma density, a gradual
increase in plasma density might contribute to Raman side-scattering not occurring during
the first experiment.
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Chapter 5

Conclusion and Outlook

The high-intensity laser-plasma experiments conducted at the high-power laser system
JETI in IOQ, which were aimed at exploring the laser-plasma interaction dynamics at
near-critical plasma densities. In the first experiment conducted at JETI40, although
no energetic particles were detected, a laser side-scattering mechanism was observed,
which is treated as an energy loss mechanism, whereby main laser pulse’s energy is being
transported away from the intense laser-plasma interaction region. The scattering process
was shown to be a result of the laser pulse’s propagation in a non-uniform plasma, where
the scattering angle was shown to be oriented along the direction of the plasma gradient.
It was found to occur from under-dense to quarter critical plasma densities for laser
intensities ranging from 1− 6× 1017 W/cm2. In addition to the known instabilities, such
as Raman scattering and two-plasmon decay, the results from this experiment introduce
an additional mechanism, by which laser energy is scattered away by the plasma, which
is be termed as the plasma-gradient scattering (PGS).

In the second experiment conducted at JETI40, an undesired pre-pulse was found to
exist at 670 ps before the main pulse arrival, which was intense enough to ionise the argon
atoms present in the gas jet. Therefore, the main laser-pulse, upon its arrival, was found
to interact with an expanding pre-plasma. The highly non-uniform density distribution
caused by the expanding pre-plasma along the laser’s propagation direction could have
affected any electron acceleration process that might take place during the laser-plasma
interactions. However, in the regions before the main laser pulse interacts with the pre-
plasma, a symmetric side-scattering process was found to occur over limited angles. A
subsequent analysis showed that Raman scattering was responsible for the scattering
process, which is a result of the wave vector non-alignment between the main laser pulse
and the resulting plasma wave. This scattering process was found to occur between
0.09nc−0.25nc plasma densities for laser intensities ranging from 1.3−6.8×1017 W/cm2.

Understanding these light scattering mechanisms, which occur at specific plasma-
density and laser-intensity combinations help to avoid their occurrence in future high-
intensity laser-plasma experiments. These experiments could either be aimed, for instance,
at exploring particle acceleration mechanisms or laser driven plasma fusion, where intense
laser-pulses are focused onto a fusion target, within which the energy transfer from the
laser pulses to the target is to be maximised. Any instabilities or mechanisms, by which
laser energy might be transported away from the region of interest should be avoided.
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Since in both of these scattering mechanisms, the scattered wave is not aligned in-line
with the incoming light wave (i.e. the main laser pulse), the growth of the scattered wave
is limited. A previous experiment aimed at measuring the Raman side-scattered light,
which was carried out using a solid gold target and a nanosecond laser system, showed that
up to 4% of the incoming laser energy can be side-scattered 176. Since in PGS mechanism,
similar to Raman scattering, the electronic response of the plasma medium facilitates
the side-scattering process, a similar fraction of energy loss can be expected. In order
to avoid the occurrence of PGS, one can resort to ensuring uniform transverse plasma
density across the interaction region. Whereas, the excitation of Raman side-scattering
instability can be avoided by going for laser intensities other than the threshold intensity
observed during the second experiment.
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