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Abstract

We present a concurrent algorithm and its implementation for com-
puting the entire Hasse diagram of the flow complex of a point cloud
in Euclidean space. Known algorithms for computing the flow com-
plex in two and three dimensions compute the geometric realization
of the flow complex and need to compute the Delaunay triangulation
of the point cloud first. Our algorithm computes less information,
namely only the Hasse diagram of the flow complex that is augmented
with enough geometric information to allow the same topological
multiscale analysis of point cloud data as the alpha shape filtration
without computing the Delaunay triangulation explicitly. We show
experimental results for medium dimensions that demonstrate that
our algorithm scales well with the number of available cores on a
multicore architecture.

We apply our algorithm for sketching the support of a probability
measure on Euclidean space from samples that have been drawn from
the measure. This problem is closely related to certain manifold
learning problems, where one assumes that the sample points are
drawn from a manifold that is embedded in Euclidean space. We
prove that a flow complex is homotopy equivalent to the support of
the measure for sufficiently dense samplings, and demonstrate the
feasibility of our approach on real world data sets.

We apply part of our algorithm to scatter plots, which are mostly
used for correlation analysis, but are also a useful tool for under-
standing the distribution of high-dimensional point cloud data. An
important characteristic of point cloud data, that has received little
attention so far, are regions that contain no or only few data points.
We show, that augmenting scatter plots by flow lines along the gra-
dient vector field of the distance function to the point cloud reveals
such empty regions or voids. The augmented scatter plots, that we
call sclow plots, enable a much better understanding of the geometry
underlying the point cloud than traditional scatter plots, and by
that support tasks like dimension inference, detecting outliers, or
identifying data points at the interface between clusters.
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Zusammenfassung

Wir präsentieren einen parallelen Algorithmus zur Berechnung des
Hasse-Diagramms des Flow-Komplexes einer Punktwolke im euklidi-
schen Raum. Bekannte Algorithmen in zwei und drei Dimensionen
berechnen zunächst dessen geometrische Realisierung und müssen
vorher die Delaunay-Triangulierung berechnen. Unser Algorithmus
berechnet nur das Hasse-Diagramm des Flow-Komplexes, welches, mit
ausreichend geometrischen Informationen versehen, die selbe topolo-
gische Multiskalenanalyse ermöglicht wie die Alpha-Shape Filtration.
Wir zeigen mit experimentelle Ergebnissen für mittlere Dimensionen,
dass unser Algorithmus gut mit der Anzahl der verfügbaren Kerne
auf einer Mehrkern-Architektur skaliert.

Wir wenden unseren Algorithmus an, um den Träger eines Wahr-
scheinlichkeitsmaßes auf Basis von Punkten zu skizzieren, welche
aus dem euklidischen Raum gezogen wurden. Dieses Problem ist
eng mit dem des manifold learning verwandt, bei welchem man an-
nimmt, dass die Datenpunkte von einer Mannigfaltigkeit gezogen
werden, welche im euklidischen Raum eingebettet ist. Wir zeigen, ein
hinreichend dichtes Sample vorausgesetzt, dass der Flow-Komplex
Homotopie-äquivalent zum Träger des Wahrscheinlichkeitsmaßes ist,
und demonstrieren die Machbarkeit unseres Ansatzes auf realen
Datensätzen.

Wir wenden unseren Algorithmus auf Streudiagramme an, welche
zur Korrelationsanalyse verwendet werden, aber auch ein nützliches
Werkzeug sind, um die Verteilung hochdimensionaler Punktwolken zu
verstehen. Bisher wurden Regionen, welche nur wenige Datenpunkte
enthalten wenig beachtet. Wir zeigen, dass durch das Augmentieren
von Streudiagrammen durch Fluss-Linien entlang des Gradientenvek-
torfelds der Abstandsfunktion zur Punktwolke derartig leere Gebiete
oder Hohlräume aufgezeigt werden. Die so augmentierten Streudia-
gramme ermöglichen ein viel besseres Verständnis der Geometrie
der Punktwolke als zuvor. Dadurch unterstützen sie Aufgaben wie
Dimensionsinferenz, Ausreißertests, oder das Identifizieren von Da-
tenpunkten an der Schnittstelle zwischen Clustern.



iii

Acknowledgments

I want to thank my advisor Prof. Dr. Joachim Giesen for giving me
the opportunity to work in his group; for introducing me to the field
of computational geometry and machine learning, in particular as a
part of the Computational Geometric Learning project within the
7th Framework Programme of the EC; for allowing me to organize a
lecture by myself; for knowing when to help with comments, ideas
and discussions; and for sharing his knowledge and experience with
me. Your influence on me has shaped my life for the better, and
therefore I cannot thank you enough.

Many thanks to Annemarie Kunze for taking care of all the
administrative work during my time as a PhD student. I also want
to thank Jens K. Müller, Christopher Schneider and Julien Klaus for
sharing an office with me and providing me with valuable discussions
over all the years. Special thanks to Sören Laue and Philipp Lucas
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Chapter 1

Computing the Flow
Complex

1.1 Introduction

The flow complex is a data structure on a finite set of points
in Euclidean space R𝑑. A flow complex has been first intro-
duced by Edelsbrunner [18, 19] in three dimensions for surface
reconstruction with the WRAP algorithm and for applications
in structural computational biology, or more specifically for
finding pockets in proteins. The flow complex as defined by
Edelsbrunner is always a sub-complex of the Delaunay trian-
gulation of the point set. Here we study a variant of the flow
complex that has been introduced by Giesen and John [24, 25],
and generalized later by Buchin et al. [7]. Notably, this variant
is not a subcomplex of the Delaunay triangulation anymore.
In the following we will always refer to the latter variant just
as the flow complex. The flow complex has been used for

1



2 CHAPTER 1. COMPUTING THE FLOW COMPLEX

provably correct surface reconstruction [16] and for medial axis
approximation with geometric and topological guarantees [30].

It is known that the flow complex can be used for a topo-
logical multiscale analysis of point cloud data, in fact the flow
complex can be seen as the topologically sparsest encoding of
the alpha shape filtration of the Delaunay triangulation of point
cloud data [7, 15, 17]. Here topologically sparsest means that
any combinatorial change during the filtration of the complex
also corresponds to a topological change. This is not true for
alpha shapes that can change combinatorially while keeping the
homotopy type. All known algorithms for computing the flow
complex [24, 10, 26] compute the Delaunay triangulation of the
point set first. So far only implementations in two and three
dimensions exist. In fact, all these implementations compute
the geometric realization of the flow complex which is a polyhe-
dral complex by definition. Cazals and Cohen-Steiner [9] have
pointed out that the most important information, i.e., all the
information that is needed for a topological multiscale analysis
of the point cloud data, can be encoded in an augmented Hasse
diagram of the flow complex. The Hasse diagram encodes the
incidence structure between the cells of the flow complex and
its vertices represent critical points of the distance function
to the point cloud. In an augmented Hasse diagram also the
value of the distance function at the critical points is stored.
Here we build on the observation by Cazals and Cohen-Steiner
and devise an algorithm for computing the augmented Hasse
diagram of the flow complex. Our algorithm avoids the ex-
plicit, global computation of the Delaunay triangulation or
Voronoi diagram of the point set. The algorithm is essentially
a graph exploration algorithm (breadth-first search) that com-
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putes implicit information about the Delaunay triangulation
only locally. The algorithm borrows ideas from an algorithm by
Fischer et al. [22] for computing the smallest enclosing ball of a
point cloud in high dimensions. The latter algorithm uses fairly
different primitives than the ones that are usually employed
for computing Delaunay triangulations and Voronoi diagrams,
i.e., in-circle and left-of predicates. In fact the primitives used
in the algorithm are not predicates but constructions, namely
finding the “nearest point” along a ray, and projecting a point
onto the affine hull of a point set. It turns out that these
constructions can be implemented with sufficient numerical
accuracy using standard floating point arithmetic. Previous
versions of this work have appeared in [28] and [29].

1.2 Basic Definitions

Let 𝑃 ⊂ R𝑑 always be a finite point set. In order to simplify
the exposition we assume that 𝑃 is in general position and that
𝑃 has at least 𝑑+ 1 points.

Distance function The distance function

ℎ : R𝑑 → [0,∞)

induced by 𝑃 is given as

ℎ : R𝑑 ∋ 𝑥 ↦→ min
𝑝∈𝑃

‖𝑥− 𝑝‖.

The distance function value at 𝑥 is realized by the neighbors
𝑁(𝑥) = {𝑝 ∈ 𝑃 : ‖𝑥− 𝑝‖ = ℎ(𝑥)}. The driver 𝑑(𝑥) of 𝑥 is the
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center of the smallest enclosing ball of 𝑁(𝑥), and the gradient
of the distance function at 𝑥 is given as

𝜕ℎ(𝑥) =
𝑥− 𝑑(𝑥)

ℎ(𝑥)
, if 𝑥 ̸= 𝑑(𝑥),

and 0 otherwise.

Critical points The points 𝑥 ∈ R𝑑 with 𝜕ℎ(𝑥) = 0, i.e., the
points for which 𝑥 = 𝑑(𝑥), are called the critical points of
the distance function. Critical points can be defined equiv-
alently by the condition 𝑥 ∈ conv(𝑁(𝑥)), i.e., critical points
are contained in the convex hull of their neighbors in 𝑃 . The
latter characterization can be used to assign an index 𝑖(𝑥) to
a critical point 𝑥, namely the dimension of the affine hull of
𝑁(𝑥). Critical points with index 0 are the points in 𝑃 , i.e., the
minima of the distance function. Critical points with index
𝑑 are maxima of the distance function, and all other critical
points are saddle points of the distance function. With this
definition the following index theorem holds, see [46],

𝑑∑︁
𝑖=0

(−1)𝑖 𝑛𝑖 = 1,

where 𝑛𝑖 is the number of critical points of index 𝑖.

Maximum at infinity We add a symbolic maximum at
infinity, i.e., a symbolic critical point of index 𝑑. The alternating
sum from above now always gives 2 in even dimensions and 0
in odd dimensions, if the symbolic maximum at infinity has
been added.
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Flow complex The flow complex is a cell complex that
consists of the stable manifolds of the flow induced by the
gradient vector field 𝜕ℎ. The flow is a mapping

𝜑 : [0,∞)× R𝑑 → R𝑑

defined by the equations 𝜑(0, 𝑥) = 𝑥 and

lim
𝑡↓𝑡0

𝜑(𝑡, 𝑥)− 𝜑(𝑡0, 𝑥)

𝑡− 𝑡0
= 𝜕ℎ(𝜑(𝑡0, 𝑥)).

The set 𝜑(𝑥) = {𝜑(𝑡, 𝑥) | 𝑡 ≥ 0} is called the orbit or flow line
of the point 𝑥. The stable manifold 𝑆(𝑥) of a critical point 𝑥
is the set of all points in R𝑑 that flow into 𝑥, i.e.,

𝑆(𝑥) = {𝑦 ∈ R𝑑 : lim
𝑡→∞

𝜑(𝑡, 𝑦) = 𝑥}.

The flow complex is given by the stable manifolds of all
critical points together with the following incidence information
that is defined via the unstable manifolds of critical points.
Given a neighborhood 𝑈 of a critical point 𝑥 and setting

𝑉 (𝑈) = {𝑦 ∈ R𝑑 : ∃𝑧 ∈ 𝑈, 𝑡 ≥ 0 s.t. 𝜑(𝑡, 𝑧) = 𝑦},

the unstable manifold of 𝑥 is the set

𝑈(𝑥) =
⋂︁

Neighborhood 𝑈 of 𝑥

𝑉 (𝑈).

The stable manifold of a critical point 𝑦 is incident to the
stable manifold of a critical point 𝑥 if 𝑆(𝑥) ∩ 𝑈(𝑦) ̸= ∅, i.e., if
there is a point in the unstable manifold of 𝑦 that flows into 𝑥.
The unstable manifold of the symbolic maximum at infinity is
incident to any unbounded stable manifold, i.e., where the set
𝑈(𝑥) is unbounded.
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Hasse diagram The incidence structure on the stable mani-
folds of the critical points is a binary relation that is

1. reflexive,
because 𝑆(𝑥) ∩ 𝑈(𝑥) = {𝑥} for any critical point 𝑥.

2. antisymmetric,
because 𝑆(𝑥) ∩ 𝑈(𝑦) ̸= ∅ and 𝑆(𝑦) ∩ 𝑈(𝑥) ̸= ∅ implies
𝑥 = 𝑦.

3. transitive,
because 𝑆(𝑥)∩𝑈(𝑦) ̸= ∅ implies 𝑈(𝑥) ⊆ 𝑈(𝑦), and hence
if 𝑥 is incident to 𝑧, i.e., 𝑆(𝑧) ∩ 𝑈(𝑥) ̸= ∅ then also 𝑦 is
incident to 𝑧.

Figure 1.1: On the left: An example of a flow complex in two
dimensions. Input are four points. Shown is the Delaunay
triangulation of the points, their Voronoi diagram and its
critical points. The flow complex has four index-0 critical
points, four index-1 critical points, and two index-2 critical
points (one of them is the maximum at infinity). On the right:
The Hasse diagram of the flow complex.
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Figure 1.2: On the left: An example of a flow complex in three
dimensions. Input are five points. Shown is the Delaunay
triangulation of the points and its critical facets (bold). The
flow complex has seven critical Delaunay 1-facets (one of them
is dangling), four critical Delaunay 2-facets, and two critical
Delaunay 3-facets (one finite maximum and the maximum at
infinity). On the right: The direct predecessors of the maximum
at infinity.

Hence, the combinatorial structure of the flow complex induces
a partial order on the set of stable manifolds which can be
encoded in a Hasse diagram see Figure 1.1.

Any chain of this partial order is also ordered by the indices
of the critical points. Note though that there may exist chains
that do not correspond to consecutive indices and have no
super chain with consecutive indices. Geometrically, this is
caused by “dangling” stable manifolds for critical points of
index 𝑘 that are not in the boundary of any stable manifold of
index (𝑘 + 1), see Figure 1.2.

For 𝛼 ≥ 0, the 𝛼-flow-complex is the Hasse diagram of the
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flow complex restricted to the critical points 𝑥 of ℎ for which
ℎ(𝑥) ≤ 𝛼. Our goal is to compute only the Hasse diagram of the
flow complex for a given point set 𝑃 and not the geometrically
realized complex. But additionally, we also compute the index
and the distance function value for every critical point. Since
the flow complex is intimately linked to the Voronoi diagram
and the Delaunay triangulation of the point set we also briefly
restate their definitions here.

Voronoi diagram and Delaunay triangulation
The Voronoi cell 𝑉 (𝑝) of a point 𝑝 ∈ 𝑃 is defined as

𝑉 (𝑝) = {𝑥 ∈ R𝑑 : ∀𝑞 ∈ 𝑃 ‖𝑥− 𝑝‖ ≤ ‖𝑥− 𝑞‖}.

The non-empty intersection of 𝑘 Voronoi cells is called a
Voronoi (𝑑+ 1− 𝑘)-facet, i.e., the Voronoi cells themselves are
𝑑-facets. The 0-facets are also called Voronoi vertices. The
set of all Voronoi facets together with the incidence structure
given by inclusion is called the Voronoi diagram of 𝑃 . Since
any Voronoi cell corresponds to exactly one point in 𝑃 any
Voronoi (𝑑 + 1 − 𝑘)-facet corresponds to 𝑘 points in 𝑃 . The
convex hull of these 𝑘 points is called the Delaunay (𝑘−1)-facet
dual to the Voronoi (𝑑+ 1− 𝑘)-facet. The set of all Delaunay
facets together with the incidence structure given by inclusion
is called the Delaunay triangulation of 𝑃 .

The connection with the flow complex is that any critical
point of index 𝑘 is the unique intersection point of a Voronoi
(𝑑+1− 𝑘)-facet and its dual Delaunay (𝑘− 1)-facet, if it exists.
If a Voronoi (𝑑+1−𝑘)-facet and its dual Delaunay (𝑘−1)-facet
intersect, then we call both facets critical.
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1.3 The Algorithm

The basic idea behind our algorithm is to explore (the Hasse
diagram of) the Delaunay triangulation of the finite point set
𝑃 in a breadth-first manner, since this allows us to discover
the incidence structure of the flow complex for the same point
set. The exploration of the Delaunay triangulation is done on
the fly, i.e., the triangulation has not been computed a priori.

Conceptually, the exploration works as follows: Starting
from the maximum at infinity, all maxima of the flow complex
are enumerated. This is done be exploring the maxima graph,
whose vertices are the maxima of the flow complex and whose
edges correspond to the index-(𝑑 − 1) critical points of the
flow complex. The unstable manifolds of the index-(𝑑 − 1)
critical points connect these critical points to maxima. Since
the latter unstable manifolds are one-dimensional they can
be tracked algorithmically. The remaining critical points can
be discovered by recursively computing the predecessors of
the predecessors of a critical point. We refer to computing
predecessors of a critical point as a downflow operation and
to tracking the unstable manifold of an index-(𝑑− 1) critical
point as an upflow operation, see Figure 1.3 for a visualization
of one step in the downflow and upflow operation, respectively.

Representation of the maximum at infinity To obtain
this representation the point cloud 𝑃 is augmented by 𝑑 + 1
points that are the vertices of a bounding simplex for 𝑃 . Let 𝑃
be the augmented point set. The additional 𝑑+1 points are by
construction exactly the vertices of the convex hull of 𝑃 . The
maximum at infinity is represented by a point for each Voronoi
edge that is dual to the 𝑑+ 1 (𝑑− 1)-facets on the boundary
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Figure 1.3: Top: The point 𝑥
can be expressed as an affine
combination of the points 𝑝, 𝑞
and 𝑟. The coefficient 𝜆𝑟 of
𝑟 in this combination is neg-
ative. The other two coeffi-
cients 𝜆𝑝 and 𝜆𝑞 are positive.
Middle: The point 𝑝 (with
positive coefficient 𝜆𝑝) has
been dropped, and we have
been walking from 𝑥 towards
the center of the smallest en-
closing ball of {𝑟, 𝑞} until 𝑠
also becomes a nearest neigh-
bor of 𝑥. This operation is
employed in the downflow op-
eration in Section 1.3.1.
Bottom: The point 𝑟 (with
negative coefficient 𝜆𝑟) has
been dropped, and we have
been walking starting at 𝑥
away from the center of
the smallest enclosing ball
of {𝑝, 𝑞} until 𝑠 also be-
comes a nearest neighbor of 𝑥.
This operation is employed in
the upflow operation in Sec-
tion 1.3.2 for finding the max-
ima of the flow complex.
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of the convex hull of 𝑃 , i.e., there are 𝑑 + 1 representatives
for the maximum at infinity. The representatives are chosen
such that the ball centered at the representatives that has the
vertices from 𝑃 ∖ 𝑃 of the corresponding facet on its boundary
does not contain any point from 𝑃 . Let 𝑥 be a representative
of the maximum at infinity and 𝜎𝑥 be the corresponding facet
on the boundary of the convex hull of 𝑃 . By construction 𝜎𝑥
is a Delaunay (𝑑− 1)-facet in the Delaunay triangulation of 𝑃
whose vertices are in 𝑃 ∖ 𝑃 .

1.3.1 Downflow operation

In a downflow operation we compute predecessors of a critical
point 𝑥 in the Hasse diagram of the flow complex. To do so,
we are employing a breadth-first strategy, and thus our central
data structure is a queue 𝒬.

Initialization Let 𝑥 be an index-𝑘 critical point with 𝑘 > 0.
We distinguish two cases, either (a) the point 𝑥 is the critical
point at infinity, or (b) it is not.

(a) The maximum at infinity has, by our construction, 𝑑+ 1
representatives 𝑥1, . . . , 𝑥𝑑+1 that correspond to Delaunay
(𝑑− 1)-facets 𝜎1, . . . , 𝜎𝑑+1 on the boundary of the convex
hull of 𝑃 . We initialize the queue 𝒬 with the 𝑑+1 tuples
(𝜎𝑗 , 𝑥𝑗), 𝑗 = 1, . . . , 𝑑+ 1.

(b) Since 𝑥 is a finite critical point, it is the center of the
smallest enclosing ball of a Delaunay 𝑘-facet 𝜎. The facet
𝜎 is the convex hull of 𝑘 + 1 points, namely the vertices
of 𝜎. The (𝑘− 1)-facets 𝜎𝑗 , 𝑗 = 1, . . . , 𝑘+1, incident to 𝜎
are the convex hulls of the 𝑘 element subsets of the vertex
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set of 𝜎, i.e., each 𝜎𝑗 can be obtained by “dropping” one
vertex from the vertex set of 𝜎. We initialize the queue
𝒬 with the 𝑘 + 1 tuples (𝜎𝑗 , 𝑥), 𝑗 = 1, . . . , 𝑘 + 1.

Exploration Assume that the queue 𝒬 is not empty, other-
wise the exploration has been completed. Dequeue the tuple
(𝜎, 𝑥) from 𝒬. Our exploration strategy ensures that we never
enqueue Delaunay 0-facets (vertices), i.e., the points of 𝑃 , and
thus 𝜎 is a Delaunay 𝑘-facet with 𝑘 > 0. Let 𝑐 be the circum-
center of 𝜎, i.e., the center of the smallest ball that has the
vertex set 𝑉 of 𝜎 on its boundary. Note that 𝑐 is contained in
the affine hull of 𝑉 . The exploration strategy is such that it
ensures that the 𝑘+1 points in 𝑉 are among the nearest points
to 𝑥 in 𝑃 . We walk from 𝑥 towards 𝑐 until one the following
two events occurs,

1. a point in 𝑃 ∖ 𝑉 also becomes a nearest point to 𝑥 in 𝑃
(but not at the very beginning of the walk), or

2. we reach 𝑐.

In case of Event 1 let 𝑣 be the additional nearest point. The
convex hull of 𝑉 ∪ {𝑣} is a Delaunay (𝑘 + 1)-facet 𝜏 , and at
the end of the walk 𝑥 is the circumcenter of 𝑉 ∪ {𝑣}. As the
circumcenter, the point 𝑥 is contained in the affine hull of
𝑉 ∪ {𝑣}, and thus 𝑥 can be written as an affine combination of
the points in 𝑉 ∪ {𝑣}, i.e.,

𝑥 =
∑︁
𝑝∈𝑉

𝜆𝑝𝑝 + 𝜆𝑣𝑣, with
∑︁
𝑝∈𝑉

𝜆𝑝 + 𝜆𝑣 = 1,

where the index 𝜆𝑣 is negative because 𝑥 and 𝑣 are by construc-
tion on opposite sides of the affine hull of 𝑉 . Let 𝑄 ⊂ (𝑉 ∪{𝑣})
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be such that 𝜆𝑞 < 0 for all 𝑞 ∈ 𝑄, and let 𝑉 ′ = 𝑉 ∖ 𝑄. We
consider Delaunay 𝑘-facets 𝜎𝑗 , 𝑗 = 1, . . . , 𝑘+2−|𝑄|, incident to
𝜏 . These Delaunay facets are the convex hulls of the 𝑘+1−|𝑄|
element subsets of 𝑉 ′ together with the points in 𝑄, i.e., each
𝜎𝑗 can be obtained by “dropping” one vertex from the ver-
tex set of 𝜏 that is not contained 𝑄. We enqueue the tuples
(𝜎𝑗 , 𝑥), 𝑗 = 1, . . . , 𝑘 + 2− |𝑄|, to 𝒬.

In case of Event 2 we distinguish two sub-cases, namely (a)
either the circumcenter 𝑐 of 𝜎 coincides with the center of the
smallest enclosing ball of 𝜎 in which case it is contained in the
convex hull of the vertex set 𝑉 , or (b) it is not.

(a) Since 𝑐 is contained in the convex hull of 𝑉 we have found
another critical point.

(b) Although 𝑐 is not contained in the convex hull of 𝑉 it
is still contained in the affine hull of 𝑉 . Hence, 𝑐 can
be written as an affine combination of the points in 𝑉 ,
i.e., 𝑐 =

∑︀
𝑝∈𝑉 𝜆𝑝𝑝 with

∑︀
𝑝∈𝑉 𝜆𝑝 = 1, where not all

coefficients 𝜆𝑝 are non-negative. Let 𝑄 ⊂ 𝑉 be such that
𝜆𝑞 < 0 for all 𝑞 ∈ 𝑄, and let 𝑉 ′ = 𝑉 ∖ 𝑄. We consider
Delaunay (𝑘−1)-facets 𝜎𝑗 , 𝑗 = 1, . . . , 𝑘+1−|𝑄|, incident
to 𝜎. These Delaunay facets are the convex hulls of the
𝑘 − |𝑄| element subsets of 𝑉 ′ together with the points
in 𝑄, i.e., each 𝜎𝑗 can be obtained by “dropping” one
vertex from the vertex set of 𝜎 that is not contained 𝑄.
We enqueue the tuples (𝜎𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑘 + 1− |𝑄|, to
𝒬.

Note that it is exactly this case that allows us to find
dangling critical points, i.e., critical points that are not
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incident to any critical point whose index is just one
greater. The index gap is reflected in a dimension gap in
the exploration as we move from enqueueing 𝑘-facets to
enqueueing (𝑘 − 1)-facets.

1.3.2 Upflow operation

The implementation of the upflow operation is similar to the
implementation of the downflow operation. A crucial difference
though is that it only applies to index-(𝑑− 1) critical points
since they have one-dimensional unstable manifolds that can
be tracked. The upflow operation tracks exactly one branch of
the unstable manifold of a given index-(𝑑 − 1) critical point,
see [31]. We use the upflow operation to find a maximum that
is incident to the given index-(𝑑− 1) critical point.

We initialize the upflow operation with a tuple (𝜎, 𝑥), where
𝜎 is a Delaunay (𝑑−1)-critical facet and 𝑥 is a non-critical point
in the Voronoi edge dual to 𝜎, i.e., 𝑥 is not the intersection of
𝜎 and its dual Voronoi edge.

Assume that we are processing the tuple (𝜎, 𝑥). Let 𝑉
be the vertex set of 𝜎, and let 𝑐 be its circumcenter. The
exploration strategy is such that it ensures that the points in
𝑉 are among the nearest points to 𝑥 in 𝑃 . We walk from 𝑥
in the direction 𝑥− 𝑐 until a point 𝑣 ∈ 𝑃 ∖ 𝑉 also becomes a
nearest point to 𝑥 in 𝑃 . Let 𝑉 = 𝑉 ∪ {𝑣} and 𝜏 be the convex
hull of 𝑉 , i.e., 𝜏 is a Delaunay facet. We distinguish two cases,
namely (a) either 𝑥 is contained in 𝜏 , or (b) it is not.

(a) In this case 𝑥 is a critical point, more specifically a
maximum (see [31]), and the upflow operation is finished.

(b) In this case 𝑥 is contained in the affine hull but not in
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the convex hull of 𝑉 . Hence, 𝑥 can be written as an
affine combination of the points in 𝑉 , i.e., 𝑥 =

∑︀
𝑝∈𝑉 𝜆𝑝𝑝

with
∑︀

𝑝∈𝑉 𝜆𝑝 = 1, where not all coefficients 𝜆𝑝 are non-

negative. Let 𝑄 ⊂ 𝑉 be such that 𝜆𝑞 < 0 for all 𝑞 ∈ 𝑄.
We distinguish two subcases , namely (i) either the convex
hull of 𝑉 ∖𝑄 is a Delaunay (𝑑− 1)-facet on the boundary
of the convex hull of 𝑃 , or (ii) it is not.

(i) In this case we have reached a representative of the
maximum at infinity, and the upflow operation has
finished.

(ii) Let 𝜎′ be the convex hull of 𝑉 ∖ 𝑄, i.e., 𝜎′ is a
Delaunay facet incident to 𝜏 . We continue the upflow
operation with the tuple (𝜎′, 𝑥).

1.3.3 Putting things together

With the downflow and upflow operations we have everything
at hand to describe our algorithm. The algorithm maintains
two data structures, a task queue 𝒬 and a list ℒ of critical
points that have been found already.

A task is a triple (𝜎, 𝑥, 𝑙𝑎𝑏𝑒𝑙), where 𝜎 is a Delaunay facet
from the Delaunay triangulation of 𝑃 , 𝑥 is a point from the
Voronoi facet that is dual to 𝜎 and is not contained in the
convex hull of 𝜎, and label is either down if it is downflow task,
or up it is an upflow task. The task queue 𝒬 generalizes and
replaces the queues used in the downflow operations.

Initialization The task queue 𝒬 is initialized with a down-
flow task at the maximum at infinity. (see Section 1.3.1, Case
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(b) of the initialization), i.e., it is initialized with

(𝜎1, 𝑥1, 𝑑𝑜𝑤𝑛), . . . , (𝜎𝑑+1, 𝑥𝑑+1, 𝑑𝑜𝑤𝑛)

where 𝑥1, . . . , 𝑥𝑑+1 are the 𝑑+ 1 representatives of the maxi-
mum at infinity. that correspond to Delaunay (𝑑 − 1)-facets
𝜎1, . . . , 𝜎𝑑+1 on the boundary of the convex hull of 𝑃 .

Exploration Assume that the queue 𝒬 is not empty, other-
wise the computation of the flow complex has been completed.
Dequeue the triple (𝜎, 𝑥, 𝑙𝑎𝑏𝑒𝑙) from 𝒬. Depending on label
either start a downflow or an upflow task. The tasks are basi-
cally handled as described in the downflow (Section 1.3.1) and
upflow (Section 1.3.2) operations with some small modifications
that we describe here. The modifications in the exploration
step of the downflow operation are:

1. Whenever a tuple (𝜎, 𝑥) gets enqueued, then the task
(𝜎, 𝑥, 𝑑𝑜𝑤𝑛) is enqueued to the task queue 𝒬 instead.

2. Any critical point 𝑥 that is discovered during this step
is added to the list ℒ if it is not already stored there.
Let 𝜎 be the critical Delaunay facet associated with 𝑥.
If 𝑥 has not been stored in ℒ already, then all the tasks
(𝜎𝑗 , 𝑥, 𝑑𝑜𝑤𝑛) are enqueued to the task queue 𝒬, where
𝜎𝑗 are the faces of 𝜎.

The only modification in the exploration step of the upflow
operation is: whenever a new tuple (𝜎, 𝑥) has to be processed,
then the task (𝜎, 𝑥, 𝑢𝑝) is enqueued to the task queue 𝒬 instead.
If 𝑥 is a critical point then we have to augment the enqueued
upflow tuple with the direction of the flow.
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Cleansing A downflow operation may also discover critical
points that are predecessors of the initializer 𝑥 of the operation
but not direct predecessors, i.e., it can happen that a discovered
predecessor 𝑦 is also a predecessor of another predecessor of
𝑥, see Figure 1.4. Hence, the edge computed by the downflow
operation that connects 𝑦 to 𝑥 needs to be removed. We refer
to removing these spurious edges as cleansing of the computed
Hasse diagram.

1.3.4 Computing in parallel

Since the tasks in Section 1.3.3 are independent of each other
they can be scheduled in parallel. The only shared resources
are reading access to the point set 𝑃 , writing access to the
task queue 𝒬, and read/write access to the list ℒ of critical
points that have been found already. It may happen that two
downflow tasks that run in parallel reach the same critical
point 𝑥. In that case, of course, we have to coordinate the
update of the successors of 𝑥 to not override each other. In
our implementation we delegate the necessary synchronization
to concurrency-aware containers provided by some library, see
Section 1.4.1.

1.3.5 Low level predicates

It remains to describe the implementation of the necessary low
level predicates. The algorithm makes use of only two primitive
operations/constructions, namely finding a nearest point along
a ray and projecting a point orthogonally onto an affine hull.
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Figure 1.4: Shown is a point set in R3 with four points.
The critical Delaunay facets (in terms of their vertices) are
1, 2, 3, 4, 12, 13, 14, 23, 34, 123, 124, 134, 1234. The critical point
corresponding to 124 is 𝑎, and the critical point corresponding
to 1234 is 𝑏 which is the circumcenter of {1, 2, 3, 4}. Note that
𝑎 is a predecessor of 𝑏. The downflow operation initialized
with 𝑎 finds the critical points corresponding to 23 and 34 (red
segments). These points are also found when the downflow
operation is initialized with the maximum 𝑏 (green segments)
although they are not direct predecessors of 𝑏 in the Hasse
diagram of the flow. Note that 𝑐 is the circumcenter of {2, 3, 4}
and the projection of 𝑏 onto the affine hull of this set.
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Nearest point along a ray The walks that have been de-
scribed in Sections 1.3.1 and 1.3.2 are piecewise linear and every
linear piece is of the following form: given a point 𝑥 whose
nearest neighbors in 𝑃 include the set 𝑉 ⊂ 𝑃 , where 𝑥 is not
contained in the affine hull of 𝑉 . Let 𝑐 be the projection of 𝑥
onto the affine hull of 𝑉 . Then we either walk from 𝑥 towards
𝑐 (as in Section 1.3.1, where the distance function value is
decreasing along the walk) or away from 𝑐 (as in Section 1.3.2,
where the distance function value is increasing along the walk),
i.e., we either walk from 𝑥 into the direction 𝑐− 𝑥, or into the
direction 𝑥− 𝑐. We stop walking when we reach 𝑐 in the case
that walk towards 𝑐, and in both cases we stop once another
point from 𝑃 ∖ 𝑉 becomes an additional nearest neighbor of 𝑥.
Assume now that we are walking from 𝑥 in direction 𝑣, where
𝑣 is either 𝑐− 𝑥 or 𝑥− 𝑐. Let 𝑝 be some point from 𝑉 . If we
compute 𝑡𝑞 for any 𝑞 ∈ 𝑃 ∖ 𝑉 as the solution of the following
equation,

‖(𝑥+ 𝑡𝑞𝑣)− 𝑞‖2 = ‖(𝑥+ 𝑡𝑞𝑣)− 𝑝‖2

which solves to

𝑡𝑞 =
‖𝑝‖2 − ‖𝑞‖2 − 2⟨𝑥, 𝑝− 𝑞⟩

2⟨𝑣, 𝑝− 𝑞⟩
,

then the nearest point 𝑞 in 𝑃 ∖ 𝑉 along the ray given by 𝑥 and
𝑣 is the one for which 𝑡𝑞 > 0 is minimal. This nearest point
stops our walk from 𝑥 into direction 𝑣, if we have not reached
𝑐 before.

Projection onto an affine hull The walks from Sections
1.3.1 and 1.3.2 repeatedly need to project a point 𝑥 onto the
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affine hull of a point set 𝑉 ⊂ 𝑃 . For computing such a pro-
jection we follow the strategy that has been introduced by
Fischer et al. [22] for computing the smallest enclosing ball of
a point set in high dimensions. At the heart of this strategy
is a dynamic 𝑄𝑅-decomposition that allows insertion into and
deletion from 𝑉 and supports computing the affine coefficients
with respect to 𝑉 of the projection of 𝑥 in the affine hull of
𝑉 . In [22] it has been shown that the orthogonal projections
and affine coefficients can be computed in quadratic time in
the dimension 𝑑 by employing a 𝑄𝑅-decomposition.

The nice thing about the strategy in [22] is that the 𝑄𝑅-
decomposition does not have to be computed from scratch
every time along a piecewise linear path (like in the walks in
Sections 1.3.1 and 1.3.2) but can be updated incrementally
along the path. Setting up the initial 𝑄𝑅-decomposition takes
time cubic in the dimension 𝑑. But the incremental updates
can be implemented using Givens rotations such that they need
only quadratic time for every update. Note, that the updates
that we consider here are either adding a point to or removing
a point from 𝑉 , see Sections 1.3.1 and 1.3.2.

Fischer et al. [22] have already observed that the 𝑄𝑅-de-
composition behaves nicely with respect to numerical stability
using standard floating point arithmetic when all updates on
the factors 𝑄 and 𝑅 are implemented with orthogonal Givens
rotations.

1.3.6 Correctness

The key property that we need to prove is that (a) all prede-
cessors of a critical point 𝑥 that are computed in a downflow
operation are actually predecessors of 𝑥 in the Hasse diagram
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of the flow complex, and (b) that all direct predecessors of 𝑥 in
the Hasse diagram are found by the downflow operation. With
this property all critical points and their incidences are found
by our algorithm by starting the exploration from the maxima
of the flow complex. The maxima are enumerated using upflow
operations that track the unstable manifolds of index-(𝑑− 1)
critical points that connect these points to maxima of the
flow (and hence connect the maxima of flow indirectly through
index-(𝑑− 1) critical points).

In the following we are going to analyze the downflow
operation which traverses a tree whose root is the index-𝑘
critical point that initializes the operation. By definition of
the downflow operation the leaves of the tree are critical points
that have a strictly smaller index than the initializer. The
edges of the tree are line segments of the form 𝑥𝑥′, where 𝑥′

is enqueued to 𝒬 while processing 𝑥 that has been dequeued
before. Actually, 𝑥 and 𝑥′ are enqueued together with Delaunay
simplices 𝜎 and 𝜎′, respectively, and we have the following
observation.

Observation 1. The vertices 𝑉𝑥 of 𝜎 are among the nearest
neighbors of 𝑥, and the union 𝑉𝑥 ∪ 𝑉𝑥′ , where 𝑉𝑥′ is the vertex
set of 𝜎′, contains only nearest neighbors of 𝑥′. Hence, 𝑥 and
𝑥′ are both contained in the Voronoi facet that is dual to 𝜎.

Let 𝑥𝑛, . . . , 𝑥1 be a path in the tree from the root node
𝑥𝑛 to a leaf 𝑥1, i.e., in the downflow operation we are always
walking from 𝑥𝑖+1 towards 𝑥𝑖. We need to show that 𝑥1 is a
predecessor of 𝑥𝑛 in the Hasse diagram of the flow complex.
Let 𝜎𝑖 = 𝜎𝑥𝑖 and 𝑉𝑖 = 𝑉𝑥𝑖 . Consider an edge 𝑥𝑖+1𝑥𝑖. There are
two cases:
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1. The projection of 𝑥𝑖+1 onto the affine hull of 𝑉𝑖 is center
𝑐 of smallest enclosing ball of 𝑉𝑖, i.e., we are walking from
𝑥𝑖+1 towards 𝑐. The center 𝑐 is contained in 𝜎𝑖 and is
the driver of 𝑥𝑖, i.e., 𝑥𝑖 flows into 𝑥𝑖+1 under the gradient
flow.

2. The projection of 𝑥𝑖+1 onto the affine hull of 𝑉𝑖 is not
the center of smallest enclosing ball of 𝑉𝑖. Hence, 𝑥𝑖 does
not flow into 𝑥𝑖+1 under the gradient flow.

If there is no edge that falls under Case 2, then we are done
since 𝑥1 flows through all the 𝑥𝑖 into 𝑥𝑛 under the gradient flow.
Assume now that there is an edge 𝑥𝑖+1𝑥𝑖 that falls under Case 2.
Our goal now is to eliminate 𝑥𝑖 from the path. Note that the
edge 𝑥2𝑥1 does by the definition of the downflow operation
always fall under Case 1, and thus it holds 𝑖 > 1. Assume that
𝑖 is the smallest index such that the edge 𝑥𝑖+1𝑥𝑖 falls under
Case 2, and consider the three points 𝑥𝑖+1, 𝑥𝑖 and 𝑥𝑖−1. By the
minimality assumption 𝑥𝑖−1 flows into 𝑥𝑖 under the gradient
flow, i.e., the edge 𝑥𝑖𝑥𝑖−1 falls under Case 1. Note that all
points in the interior of a Voronoi facet have the same driver,
see [24]. That is, the driver of 𝑥𝑖 is the driver for all points in
the Voronoi facet that is dual to 𝜎𝑖. Since this Voronoi facet
contains the edge 𝑥𝑖+1𝑥𝑖, see Observation 1, there are flow lines
connecting 𝑥𝑖−1 to all points on this edge. Thus there is a
flow line that connects 𝑥𝑖−1 to 𝑥𝑖+1. It follows that we can
eliminate 𝑥𝑖 from the path. If we do this iteratively for the
edge that falls under Case 2 with smallest index among these
edges, then we end up with a sequence of points that connect
𝑥1 to 𝑥𝑛 and are traversed under the gradient flow. Hence, 𝑥1
is a predecessor of 𝑥𝑛 in the Hasse diagram of the flow complex.
We summarize this in the following lemma.
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Lemma 1. All predecessors of a critical point 𝑥 that are com-
puted in a downflow operation that has been initialized with 𝑥
are predecessors of 𝑥 in the Hasse diagram of the flow complex.

It remains to show that if a critical point 𝑦 is a direct
predecessor of the critical point 𝑥 in the Hasse diagram of the
flow complex, then the downflow operation initialized with 𝑥
will discover 𝑦. A direct predecessor 𝑦 of 𝑥 in the Hasse diagram
is connected to 𝑥 by a flow line. Note that not every critical
point that is connected to 𝑥 by a flow line is a direct predecessor
of 𝑥, namely if this point is also connected to critical point of
higher index that is also connected to 𝑥 by a flow line. Still,
this does not imply that the direct predecessors of 𝑥 have an
index one less than the index of 𝑥. It also does not imply that
all predecessors that are discovered by the downflow operation
are direct predecessors in the Hasse diagram though they are,
as we have seen in Lemma 1, connected to 𝑥 by a flow line.

Assume now that 𝑦 is a direct predecessor of 𝑥, i.e., we
have 𝑆(𝑥) ∩ 𝑈(𝑦) ̸= ∅. Let 𝑦 = 𝑥1, . . . , 𝑥𝑛 = 𝑥 be the vertex
sequence of a flow line in 𝑆(𝑥) ∩ 𝑈(𝑦) that connects 𝑦 to 𝑥.
Remember that flow lines are always piecewise linear and every
line segment 𝑥𝑖𝑥𝑖+1 is contained in a Voronoi facet 𝑉𝑖, see [24].
Let 𝜎𝑖 be the dual Delaunay facet of 𝑉𝑖. If the driver of the
Voronoi facet 𝑉𝑖 is contained in the line through the segment
𝑥𝑖𝑥𝑖+1 for all segments 𝑖 = 1, . . . , 𝑛− 1, then the segments are
traversed (in the opposite direction) by the downflow operation
that has been initialized with 𝑥 = 𝑥𝑛. Otherwise there exists a
line segment 𝑥𝑖𝑥𝑖+1 such that the driver of 𝑉𝑖 is not contained
in the line through 𝑥𝑖𝑥𝑖+1. Let 𝑥𝑖𝑥𝑖+1 be the line segment with
this property that has the smallest index 𝑖. By construction
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it must hold 𝑖 > 1 since the line segment that connects 𝑥1 to
𝑥2 is driven by the critical point 𝑦 = 𝑥1 itself. Now, let 𝑐 be
the projection of 𝑥𝑖 onto the affine hull of the vertex set of 𝜎𝑖,
and let 𝑥̂ be the first point on the ray shooting from 𝑐 to 𝑥𝑖
that is contained in 𝑉𝑖. Note that it is possible that 𝑥̂ = 𝑐,
for example when 𝑦 is a dangling critical point. Replace the
segments 𝑥𝑖−1𝑥𝑖 and 𝑥𝑖𝑥𝑖+1 by the three segments 𝑥𝑖−1𝑥̂, 𝑥̂𝑥𝑖
and 𝑥𝑖𝑥𝑖+1. The latter segments can be traversed (in the
opposite direction) by the downflow operation. By repeating
this construction as long as there are segments left that cannot
be traversed by the downflow operation we can transform any
flow line that connects 𝑦 to 𝑥 into a sequence of line segments
that can be traversed by the downflow operation. Hence, 𝑦
will be discovered by the downflow operation initialized with 𝑥.
We summarize this in the following lemma.

Lemma 2. All direct predecessors of a critical point 𝑥 in the
Hasse diagram of the flow complex are found by the downflow
operation that has been initialized with 𝑥.

The correctness of the algorithm in Section 1.3.3 follows
from Lemmas 1 and 2.

1.3.7 Topological simplification of the Hasse dia-
gram

The flow complex as we compute it here, i.e., the the augmented
Hasse diagram, can be topologically simplified by a simple
combinatorial scheme that has been devised by Cazals and
Cohen-Steiner [9]. The scheme works iteratively. In each
iteration two incident critical points cancel each other. Given
a threshold value 𝑡, the scheme works as follows:
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1. Determine the pair (𝑥, 𝑦) of critical points that are inci-
dent in the Hasse diagram such that 𝑖(𝑦) = 𝑖(𝑥) + 1, i.e.,
the index of 𝑦 is one greater than the index of 𝑥, and the
ratio 𝑟(𝑥,𝑦) =

ℎ(𝑦)
ℎ(𝑥) is minimal among all such pairs.

2. The iterative scheme stops, if 𝑟(𝑥,𝑦) > 𝑡.

3. 𝑥 and 𝑦 are removed from the Hasse diagram and the
edges incident to 𝑥 and 𝑦 are either removed from the
Hasse diagram or redistributed as follows: let 𝐼𝑛(𝑦) be
the set of all direct predecessors of 𝑦, and let 𝑂𝑢𝑡(𝑥) be
the set of all direct successors of 𝑥. If a tuple (𝑥′, 𝑦′) ∈
𝐼𝑛(𝑦)×𝑂𝑢𝑡(𝑥) is not an edge in the Hasse diagram, then
it is added to it. All other edges incident to either 𝑥 or 𝑦
are removed from the Hasse diagram.

Note the the alternating sum
∑︀𝑑

𝑖=0(−1)𝑖 𝑛𝑖, where 𝑛𝑖 is the
number of critical points of index 𝑖, is not affected by the
cancellation scheme. Cazals and Cohen-Steiner prove that
their simplification scheme cancels pairs of critical points in
order of increasing topological persistence.

1.4 Results and Discussion

1.4.1 Scalability of the Algorithm

We have implemented our algorithm for computing the flow
complex in C++ using the parallelization library Intel TBB [37].
We ran our experiments in a shared-memory environment on a
32-core AMD Opteron 6128 system with 256 GB of memory.
Our implementation turned out to be memory efficient, i.e., in
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data set no. samples dimension distribution time

Random within sphere 50 3 50-137-122-34 0.03s

Random within sphere 50 4 50-199-284-178-44 2.66s

Spiral 3d 30 3 30-41-12-0 0.03s

Spiral 3d 30 4 30-41-12-0-0 0.97s

Spiral 3d 30 5 30-41-12-0-0-0 182.4s

Beethoven Model 500 3 500-1076-649-72 11.81s

Ecoli 336 5
336-1705-2632-
1669-436-29

14min

MovieLens 1612 6
1612-9135-16379-
13059-5116-975-63

48min

Table 1.1: This table shows the distribution of the number
of critical points over their index for various data sets. The
notation 𝑎− 𝑏− 𝑐 in the distribution column means 𝑎 critical
points of index 0, 𝑏 critical points of index 1, and 𝑐 critical
points of index 2.

our experiments we never used more than 1% of the available
memory.

We examined both the scalability of our algorithm with re-
spect to the number of available cores as well as the correctness
of the result in terms of the alternating sum formula (whose
fulfillment, of course, is only a necessary condition). Table 1.1
shows the distribution of critical points with respect to their
indices as well as the time taken to compute the flow complex
for some selected data sets. One can verify the correctness of
the alternating sum formula that as it is required always gives
1.

In Figure 1.5 we show the speedup of the computation with
an increasing number of utilized cores. This experiment was
run on a data set of randomly chosen points in a sphere in
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Figure 1.5: A plot of the speedup achieved using a growing num-
ber of cores computed on 200 random points in five dimensions.
The red line illustrates the ideal linear speedup.

five dimensions. As can be seen, the algorithm scales well in
this shared-memory scenario. With an increasing number of
cores the communication on the memory bus, that is necessary
for insertion of critical points as well as for checking duplicate
computation, becomes the bottleneck. The overall parallel
overhead reaches its maximum of about 10% when all 32 cores
are used.
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1.4.2 Simplifying the Hasse diagram

We have also implemented the simplification scheme of Cazals
and Cohen-Steiner, see Section 1.3.7, and applied this scheme
to the data sets from Section 2.1.4. Table 1.2 shows the index
distribution of the critical points before and after the simpli-
fication of the Hasse diagram of the flow complex for a given
threshold value.

data set before simplification after simplification 𝑡

Body Dimensions
507-3807-8306-
7966-3551-590

507-1234-830-108-6-0 1.056

Ecoli
336-1705-2632-
1669-436-29

336-563-238-10-0-0 1.080

MovieLens 4D 1612-6506-8485-4282-692 1612-3222-1771-160-0 1.036

MovieLens 5D
1612-8060-12964-
8917-2698-296

1612-2812-1252-51-0-0 1.063

MovieLens 6D
1612-9135-16379-
13059-5116-975-63

1612-3299-1789-104-3-0-0 1.048

Table 1.2: Critical point distribution of flow complexes com-
puted for various data sets before and after the simplification of
the Hasse diagram. The dashes separate the number of critical
points of increasing index from left to right. Note that the
alternating sum formula still holds as it should be the case.

The distribution of critical points of each index in Table
1.2 shows a rapid decline of the number of high index critical
points already for small values of the threshold parameter 𝑡.
The number of critical points can be orders of magnitude smaller
after the simplification, and some indices vanish completely, e.g.,
critical points of index four and five in the case of the Ecoli
data set. This indicates that many of the high dimensional
stable manifolds (or high index critical points) in the flow
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complex of these point clouds are not topologically persistent,
e.g., correspond to slivers in the Delaunay triangulation of the
point clouds.

The simplified flow complex for a threshold value 𝑡 at which
the number of critical points stabilizes can be considered as
a topologically persistent simplification of the flow complex
or its Hasse diagram. Such a threshold parameter can be
determined visually by plotting the number of critical points
as a function of the threshold parameter 𝑡. See Figure 1.6 for
a logarithmically scaled plot for the MovieLens data set. For
this data set the number of critical points stabilizes at some
threshold value slightly larger than 1.

Figure 1.6: A plot of the number of critical points of each
available index for the MovieLens data set in six dimensions
after each cancellation as a function of the threshold value 𝑡.
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Chapter 2

Applications

2.1 Sketching the Support of a Probabil-
ity Measure

We use our algorithm described in the previous chapter for
sketching the support of a probability measure on Euclidean
space from a sample drawn from the measure. We sketch the
support of the measure by a flow complex that has the same
homotopy type as the support. We show that the critical
points of the distance function are either close to the support
or close to a dual structure that is called the medial axis of
the support. If the support does not exhibit several geometric
scales, then the critical points that belong to the support
and the critical points that belong to the medial axis can be
separated by simple thresholding, i.e., all critical points at
which the distance function takes values less than the threshold
value belong to the support and the remaining critical points
belong to the medial axis. Restricting the flow complex to

31
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the critical points with distance function values less than 𝛼
constitutes the 𝛼-flow-complex. If 𝛼 is a threshold value at
which the two types of critical points can be separated, then
the 𝛼-flow-complex is homotopy equivalent to the support for
sufficiently dense samplings.

We also provide a simple method for choosing a good value
for 𝛼 in practice. The work presented in this chapter is related
to certain manifold learning problems that we briefly summa-
rize here. In machine learning, manifold learning is often used
synonymously with non-linear dimensionality reduction, but
there is also quite some work (mostly in computational geome-
try) that aims at learning a manifold from samples (that need
to satisfy certain conditions), where learning a manifold refers
to computing an approximation from a finite sampling that
is guaranteed to be topologically equivalent and geometrically
close to the manifold. Exemplary for this line of work is the
technique by Boissonnat and Ghosh [5]. The body of work in
computational geometry does not consider the probabilistic
setting where the sample points are drawn at random from
the manifold. The probabilistic setting was first considered
by Niyogi et al. [41] who show how to compute the homology
of a randomly sampled manifold with high confidence. Later
Niyogi et al. [42] have extended this approach for recovering
the geometric core of Gaussian noise concentrated around a
low dimensional manifold, i.e., to the case where the samples
are not necessarily drawn from the manifold itself. This can
be seen as a topological approach to unsupervised learning.
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2.1.1 Homotopy equivalent sketch

We specify conditions under which an 𝛼-flow-complex of sample
points in 𝑋 = {𝑥1, . . . , 𝑥𝑛} drawn from a probability measure
𝜇 on R𝑑 is homotopy equivalent to supp(𝜇). But first, we give
some basic definitions and provide some necessary background.

Probability measure A non-negative measure 𝜇 on R𝑑 is
an additive function that maps every Borel subset 𝐵 ⊆ R𝑑 to
R≥0. Additivity means that

𝜇

(︃⋃︁
𝑖∈N

𝐵𝑖

)︃
=
∑︁
𝑖∈N

𝜇(𝐵𝑖),

where (𝐵𝑖) is a countable family of disjoint Borel subsets. The
measure 𝜇 is finite if 𝜇(R𝑑) < ∞ and it is a probability measure
if 𝜇(R𝑑) = 1.

Support The support of a probability measure 𝜇 is the set

supp(𝜇) = {𝑥 ∈ R𝑑 |𝜇(𝐵(𝑥, 𝑟)) > 0 for all 𝑟 > 0},

where 𝐵(𝑥, 𝑟) is the closed ball with radius 𝑟 that is centered
at 𝑥. Note that supp(𝜇) is always closed.

Our reconstruction result builds on a theorem proved by
Chazal et al. [12]. We need the following technical definitions
to state their result. In the following let 𝐾 always denote a
compact subset of R𝑑.
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Reach The reach of 𝐾 is defined as

inf
𝑥∈𝐾, 𝑦∈ma(𝐾)

‖𝑥− 𝑦‖.

If the reach of 𝐾 is positive, then we say that 𝐾 has finite
reach.

𝛼-offset For any set 𝐾 ⊂ R𝑑 and 𝛼 > 0 let 𝐾𝛼 be the
Minkowski sum of 𝐾 and 𝐵(0, 𝛼), i.e.,

𝐾𝛼 =
{︁
𝑥 ∈ R𝑑 |𝑥 ∈ 𝐵(𝑥′, 𝛼), 𝑥′ ∈ 𝐾

}︁
.

Theorem 1. [Chazal et al. [12]] Let 𝜌 > 0 be the reach of
𝐾 and let 𝐾 ′ ⊂ R𝑑 be a compact set such that the Hausdorff
distance between 𝐾 and 𝐾 ′ is less than 𝜌

17 , i.e., 𝑑𝐻(𝐾,𝐾 ′) < 𝜌
17 ,

then the complement R𝑑 ∖𝐾 ′
𝛼 of 𝐾 ′

𝛼 is homotopy equivalent to
the complement R𝑑 ∖𝐾 of 𝐾, and 𝐾 ′

𝛼 is homotopy equivalent
to 𝐾𝜂 for all sufficiently small 𝜂 > 0, provided that

4 · 𝑑𝐻(𝐾,𝐾 ′) ≤ 𝛼 ≤ 𝜌− 3 · 𝑑𝐻(𝐾,𝐾 ′).

Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be the sample points drawn from
𝜇. In [15] it has been shown that the union of balls 𝑋𝛼 and
the 𝛼-flow-complex of the finite point set 𝑋 are homotopy
equivalent. Hence, also the 𝛼-flow-complex of 𝑋 is homotopy
equivalent to 𝐾𝜂 for small 𝜂 > 0, if the Hausdorff distance
between 𝑋𝛼 and 𝐾 is small, and 𝛼 is in the range given by
Theorem 1.

Finally, we also need a corollary of the following lemma,
see [14] (Lemma 5.1).
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Lemma 3. Given a sequence of sample points 𝑥1, . . . , 𝑥𝑛 drawn
independently from a probability measure 𝜇 on R𝑑. Then, for
every 𝜀 > 0 and any 𝑥 ∈ supp(𝜇),

lim
𝑛→∞

𝑃
[︀
‖𝑥1(𝑥)− 𝑥‖ > 𝜀

]︀
= 0,

where 𝑥1(𝑥) is the nearest neighbor of 𝑥 in {𝑥1, . . . , 𝑥𝑛}.

An immediate consequence of this lemma is the following
corollary.

Corollary 2. Given a sequence of sample points 𝑥1, . . . , 𝑥𝑛
drawn independently from a probability measure 𝜇 with compact
support on R𝑑. Then, for every 𝜀 > 0,

lim
𝑛→∞

𝑃
[︀
𝑑𝐻
(︀
supp(𝜇), 𝑋

)︀
> 𝜀
]︀
= 0,

where 𝑑𝐻
(︀
supp(𝜇), 𝑋

)︀
is the Hausdorff distance between

supp(𝜇) and 𝑋 = {𝑥1, . . . , 𝑥𝑛}.

Proof. Since supp(𝜇) is compact there is a finite set of points

𝑦1, . . . , 𝑦𝑚 ∈ supp(𝜇)

such that the union of balls
⋃︀𝑚

𝑖=1𝐵(𝑦𝑖, 𝜀/2) covers supp(𝜇).
Assume there exists 𝑦 ∈ supp(𝜇) such that min𝑥∈𝑋 ‖𝑥−𝑦‖ > 𝜀.
By construction there exists 𝑦𝑖 such that ‖𝑦 − 𝑦𝑖‖ ≤ 𝜀/2, and
thus min𝑥∈𝑋 ‖𝑥− 𝑦𝑖‖ > 𝜀/2. It follows that

𝑃

[︃
sup

𝑦∈supp(𝜇)

min
𝑥∈𝑋

‖𝑥− 𝑦‖ > 𝜀

]︃
≤ 𝑃

[︂
max

𝑦∈{𝑦1,...,𝑦𝑚}
min
𝑥∈𝑋

‖𝑥− 𝑦‖ >
𝜀

2

]︂

≤
𝑚∑︁
𝑖=1

𝑃

[︂
min
𝑥∈𝑋

‖𝑥− 𝑦𝑖‖ >
𝜀

2

]︂

=
𝑚∑︁
𝑖=1

𝑃

[︂
min
𝑥∈𝑋

‖𝑥1(𝑦𝑖)− 𝑦𝑖‖ >
𝜀

2

]︂
,
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where the second inequality follows from a simple union bound.
From Lemma 3 we have

lim
𝑛→∞

𝑃 [‖𝑥1(𝑦𝑖)− 𝑦𝑖‖ > 𝜀/2] = 0,

for all 𝑦𝑖, and thus

lim
𝑛→∞

𝑃

[︃
sup

𝑦∈supp(𝜇)
min
𝑥∈𝑋

‖𝑥− 𝑦‖ > 𝜀

]︃
= 0,

which implies the claim on the Hausdorff distance since we also
have 𝑥𝑖 ∈ supp(𝜇) for all sample points and thus

max
𝑥∈{𝑥1,...,𝑥𝑛}

inf
𝑦∈supp(𝜇)

‖𝑥− 𝑦‖ = 0.

Now we are prepared to state and prove our topological
approximation guarantees.

Theorem 3. Given a sequence of sample points 𝑥1, . . . , 𝑥𝑛
drawn independently from a probability measure 𝜇 with compact
support on R𝑑 whose reach 𝜌 is positive. Then, for every
0 < 𝛼 < 𝜌 and sufficiently small 𝜂 > 0,

lim
𝑛→∞

𝑃
[︀
the 𝛼-flow complex of {𝑥1, . . . , 𝑥𝑛}

is not homotopy equivalent to supp𝜂(𝜇) ] = 0.

Proof. Since the 𝛼-flow-complex of 𝑋 = {𝑥1, . . . , 𝑥𝑛} is homo-
topy equivalent to the union of balls 𝐵(𝑥𝑖, 𝛼), 𝑖 = 1, . . . , 𝑛 it
suffices to show that

lim
𝑛→∞

𝑃

[︃
𝑛⋃︁

𝑖=1

𝐵(𝑥𝑖, 𝛼) is not homotopy equivalent to supp𝜂(𝜇)

]︃
= 0
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. For that we check that 𝛼 satisfies the conditions of the
reconstruction theorem (Theorem 1). By Corollary 2,

lim
𝑛→∞

𝑃
[︀
𝑑𝐻
(︀
supp(𝜇), 𝑋

)︀
> 𝜀
]︀
= 0

for every 𝜀 > 0. Hence,

lim
𝑛→∞

𝑃
[︀
4 · 𝑑𝐻

(︀
supp(𝜇), 𝑋

)︀
> 𝛼

]︀
= 0,

and

lim
𝑛→∞

𝑃
[︀
𝜌− 3 · 𝑑𝐻

(︀
supp(𝜇), 𝑋

)︀
< 𝛼] = 0,

which implies the claim about the homotopy equivalence of⋃︀𝑛
𝑖=1𝐵(𝑥𝑖, 𝛼) and supp𝜂(𝜇) and hence the claim of the theorem.

2.1.2 Choosing a good value for 𝛼

At last we prove a theorem that allows us to chose a good
value for 𝛼 in practice. The theorem states that the critical
points of the distance function to the set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of
sample points can be partitioned into two subsets. The first
set contains the critical points that are close to supp(𝜇), and
the second set contains the critical points that are close to the
medial axis ma(𝜇) of supp(𝜇), i.e., there are no critical points
in the complement of supp(𝜇) ∪ ma(𝜇) or more precisely in

compl𝜀(𝜇) = closure
(︀
conv(supp(𝜇)) ∖

(︀
supp𝜀(𝜇) ∪ma𝜀(𝜇)

)︀)︀
for any small enough 𝜀 > 0. Hence, for large samplings only
the critical points with small distance values are relevant for
sketching supp(𝜇).



38 CHAPTER 2. APPLICATIONS

Theorem 4. Given a sequence of sample points 𝑥1, . . . , 𝑥𝑛
drawn independently from a probability measure 𝜇 with compact
support on R𝑑. If the reach 𝜌 of the support is positive, then,
for every 0 < 𝜀 < 𝜌/2,

lim
𝑛→∞

𝑃
[︀
compl𝜀(𝜇) contains a critical point of 𝑑𝑛

]︀
= 0,

where 𝑑𝑛 : R𝑑 → R is the distance function to the set 𝑋 =
{𝑥1, . . . , 𝑥𝑛}.

Proof. Let (𝑥𝑛) be a sequence of points in supp(𝜇) such that
𝑐𝑛 ∈ compl𝜀(𝜇) is a critical point of 𝑑𝑛, i.e., the distance
function to the first 𝑛 points of the sequence. Since the clo-
sure of compl𝜀(𝜇) is compact we can assume by turning to an
appropriate subsequence that the sequence (𝑐𝑛) converges to
𝑐 ∈ compl𝜀(𝜇). By the same argument we can even assume that
all the 𝑐𝑛 have the same index 𝑖 ∈ {1, . . . , 𝑑}. Let 𝑦0𝑛, . . . , 𝑦𝑖𝑛
be the points in 𝑁(𝑐𝑛) ⊂ 𝑋 such that 𝑐𝑛 is the center of the
smallest enclosing ball of {𝑦0𝑛, . . . , 𝑦𝑖𝑛}, i.e., this ball is given
as 𝐵(𝑐𝑛, ‖𝑐𝑛 − 𝑦0‖) and does not contain any point from 𝑋 in
its interior. By the compactness of supp(𝜇) we can assume that
the sequence (𝑦𝑗𝑛) converges to 𝑦𝑗 ∈ supp(𝜇). Since 𝑐𝑛 is the
center of the smallest enclosing ball of the points 𝑦0𝑛, . . . , 𝑦𝑖𝑛
it can be written as a convex combination of these points, i.e.,

𝑐𝑛 =

𝑖∑︁
𝑗=0

𝜆𝑗𝑛𝑦𝑗𝑛

with
𝑖∑︁

𝑗=0

𝜆𝑗𝑛 = 1 and 𝜆𝑗𝑛 ≥ 0, 𝑗 = 0, . . . , 𝑖.
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That is, the vector 𝜆𝑛 = (𝜆0𝑛, . . . , 𝜆𝑖𝑛) is from the 𝑖-dimensional
standard simplex which is compact. Hence by turning to yet
another subsequence we can assume that 𝜆𝑛 converges in the
standard simplex. Let 𝜆 = (𝜆0, . . . , 𝜆𝑖) be the limit of (𝜆𝑛),
then we have 𝑐 =

∑︀𝑖
𝑗=0 𝜆𝑗𝑦𝑗 and thus 𝑐 is the center of the

smallest enclosing ball 𝐵(𝑐, ‖𝑐 − 𝑦0‖) of the points 𝑦0, . . . , 𝑦𝑖.
If 𝐵(𝑐, ‖𝑐 − 𝑦0‖) does not contain any point from supp(𝜇)
in its interior, then 𝑐 must be a point of the medial axis
ma(𝜇) which is impossible since the points 𝑐𝑛 ∈ compl𝜀(𝜇) are
at distance at least 𝜀 from the medial axis, and hence (𝑐𝑛)
can not converge to 𝑐. Thus, 𝐵(𝑐, ‖𝑐 − 𝑦0‖) must contain a
point 𝑧 ∈ supp(𝜇) in its interior, i.e., there exists 𝛿 > 0 such
that 𝐵(𝑧, 𝛿) ⊂ 𝐵(𝑐, ‖𝑐 − 𝑦0‖). Since 𝑐𝑛 converges to 𝑐 and
the radii ‖𝑐𝑛 − 𝑦0𝑛‖ converge to the radius ‖𝑐𝑛 − 𝑦0‖ we also
have 𝐵(𝑧, 𝛿) ⊂ 𝐵(𝑐𝑛, ‖𝑐𝑛 − 𝑦0𝑛‖) for 𝑛 large enough, and thus
lim𝑛→∞ ‖𝑥1(𝑧)− 𝑧‖ ≥ 𝛿. That is, for 𝑛 large enough the event[︀

compl𝜀(𝜇) contains a critical point of 𝑑𝑛
]︀

implies the event
[︀
‖𝑥1(𝑧)− 𝑧‖ ≥ 𝛿

]︀
. Hence,

lim
𝑛→∞

𝑃
[︀
compl𝜀(𝜇) contains a critical point of 𝑑𝑛

]︀
> 0.

implies that

lim
𝑛→∞

𝑃
[︀
‖𝑥1(𝑧)− 𝑧‖ ≥ 𝛿

]︀
> 0 for 𝑧 ∈ supp(𝜇),

which contradicts Lemma 3. Thus we have

lim
𝑛→∞

𝑃
[︀
compl𝜀(𝜇) contains a critical point of 𝑑𝑛

]︀
= 0.
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In practice we expect that the number of critical points
whose distance value is at most 𝛼 ≥ 0 is increasing fast with
growing 𝛼 for small values of 𝛼. Once 𝛼 is large enough
such that all the critical points that belong to supp(𝜇) have
been found, the number of critical points remains constant for
growing 𝛼, and is only increasing again once the critical points
that belong to ma(𝜇) are being discovered. There are two
things one should bear in mind though. First, this behavior is
only expected if supp(𝜇) does not exhibit geometric features on
different scales, because otherwise critical points that belong
to the medial axis can be discovered before critical points that
belong to the support, and second, by construction the medial
axis ma(𝜇) is sampled much more sparsely by critical points
than supp(𝜇). Hence, if supp(𝜇) does not exhibit geometric
features on different scales, then we expect the number of
critical points to grow at first with growing 𝛼 and to remain
almost constant once all the critical points that belong to
supp(𝜇) have been discovered. A good value for 𝛼 should be
the point at which the number of critical points stays almost
constant. We have computed 𝛼-flow-complexes for real data
sets and all values for 𝛼 in the interval [0,∞), see Section 2.1.4.
On these data sets we have not observed geometric multiscale
behavior. Hence, in these situations the simple thresholding
was enough to compute a complex that is homotopy equivalent
to supp(𝜇) for sufficiently dense samplings.

There is also a straightforward way to distribute the algo-
rithm if we are only interested in computing an 𝛼-flow-complex
for a small value of 𝛼 > 0. The idea for distributing the al-
gorithm is based on the following simple observation which is
implied by the triangle inequality.
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Observation 2. For any 𝛼 > 0, if 𝑥 is a critical point of the
distance function ℎ : R𝑑 → R to the set 𝑃 = {𝑝1, . . . , 𝑝𝑛} ⊂ R𝑑

whose distance value ℎ(𝑥) is at most 𝛼 and whose nearest
neighbor set 𝑁(𝑥) contains 𝑝𝑖, then 𝑁(𝑥) is contained in the
ball 𝐵(𝑝𝑖, 2𝛼), i.e., 𝑁(𝑥) ⊂ 𝐵(𝑝𝑖, 2𝛼).

2.1.3 Distributing the algorithm

The distributed algorithm can now be implemented through
the following map- and reduce steps.

Map For every 𝑝𝑖 ∈ 𝑃 = {𝑝1, . . . , 𝑝𝑛} let 𝑃𝑖 = 𝐵(𝑝𝑖, 2𝛼) ∩ 𝑃 .
For 𝑖 = 1, . . . , 𝑛, compute the 𝛼-flow-complex for 𝑃𝑖. This can
be done by computing the whole flow complex, i.e., the ∞-flow
complex, for 𝑃𝑖 and removing all critical points with distance
value larger than 𝛼.

Reduce Let 𝐺 = (𝑉,𝐸) be the graph whose vertex set is
𝑉 = [𝑛] = {1, . . . , 𝑛} and whose edge set is 𝐸 =

{︀
(𝑖, 𝑗) ∈

[𝑛]× [𝑛] |𝑃𝑖 ∩ 𝑃𝑗 ̸= ∅
}︀
. Combine the 𝛼-flow-complexes for the

sets 𝑃𝑖 by traversing the connected components of the graph
𝐺 in a breadth-first manner. Note that the 𝛼-flow-complex is
itself a graph, namely a Hasse diagram. The combination of
two 𝛼-flow-complexes is achieved by identifying all common
vertices in the respective Hasse diagrams.

Theorem 5. The distributed algorithm that comprises the
map- and reduce step computes the 𝛼-flow-complex of 𝑃 =
{𝑝1, . . . , 𝑝𝑛}.

Proof. We need to argue that the algorithm finds all critical
points of the distance function ℎ and connects them in the right
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way. By Observation 2 the 𝛼-flow-complex of 𝑃𝑖 does contain
any critical point 𝑥 of the distance function ℎ with 𝑝𝑖 ∈ 𝑁(𝑥)
whose distance function value is at most 𝛼. Hence, any critical
point of ℎ with distance value at most 𝛼 is contained in the
union of the 𝛼-flow-complexes of the sets 𝑃𝑖, where they are
also connected in the right way.

2.1.4 Computing 𝛼-flow-complexes

We have also computed the whole 𝛼-flow-complex filtration
of the data sets Movielens, Body Dimensions and Ecoli
that we describe in the following. These data sets either reside
or can be embedded, respectively, in medium dimensional
Euclidean space. The 𝛼-flow-complex filtration provides us
with a multiscale analysis of these data sets that is summarized
in Figures 2.1 and 2.4, where the cumulative number of critical
points is shown for each possible index.

MovieLens TheMovieLens 100k data set [33] was collected
by the GroupLens Research Project at the University of Min-
nesota. It consists of 100,000 ratings from 943 users on 1,682
movies. The data set can be viewed as an incomplete matrix
that is indexed by the users and the movies, respectively, where
the matrix entries are the ratings. Therefore, the MovieLens
data set is not a point cloud data set itself, but it is straight-
forward to derive point clouds for the movies and for the users,
respectively, from the completed ratings matrix using principal
component analysis. We used a technique by Bell et al. [2]
(called ComputeNextFactor) for completing the ratings matrix
that at the same time computes a low dimensional spectral
embedding for the movies. Using this technique we created a
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(a) Dimension three (top) and four (bottom)
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(b) Dimension five (top) and six (bottom)

Figure 2.1: The number of critical points of the 𝛼-flow-complex
as a function of 𝛼 for the first three to six dimensions for the
MovieLens data set. Note that in dimension 𝑑 we can only
have critical points of index up to 𝑑.
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14-dimensional embedding of the 1682 movies. When visual-
ized using scatter plots, see Figure 2.2, it can be seen, that
the trailing dimensions are correlated with the leading three
dimensions and thus contribute less geometric information than
the leading dimensions.

We therefore computed 𝛼-flow-complexes only for the data
sets in three to six dimensions. Figure 2.1 shows the number
of critical points as a function of the value 𝛼. The functions
look like expected, namely we observe a fast increase in the
number of critical points up to a threshold value for 𝛼. Beyond
the threshold value the number of critical points stays almost
constant. Note that the threshold value increases with the
dimension from ≈ 2 in three dimensions to ≈ 3 in six dimen-
sions. This increase is expected since the distances between
the points that represent the movies also increase with the
dimension. Another interesting observation is the following:
the plots in Figure 2.1 for five and six dimensions indicate that
the intrinsic dimension of the data set is four since almost no
critical points of index six and only very few critical points of
index five can be found.

Simplification We can apply apply the same simplification
scheme as described in section 1.4.2 to 𝛼-flow-complexes. Hence
in Figure 2.3 we also show a plot of the cumulative number
of critical points of simplified 𝛼-flow-complexes for increasing
values of 𝛼 and a fixed value for the threshold parameter 𝑡. Note
that the 𝛼-flow-complexes are much sparser than their non-
simplified counterparts. Also, the critical points that appear
for larger values of 𝛼 are better separated from the critical
points that appear already for small values of 𝛼, i.e., the 𝛼 gap
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has widened, which is important for distinguishing between
the support and the medial axis of a probability measure, see
Section 2.1.

Body Dimensions The Body Dimensions data set [35]
contains 507 points with 21 attributes (excluding four nominal
attributes) that represent measurements of the human body.
The first nine attributes are skeletal measurements, whereas
the latter 12 are girth measurements. The first five skeletal
measurements regard the body’s torso. Here we restrict our-
selves to these first five dimensions. Figure 2.4 (on the left)
shows the number of critical points as a function of the value
𝛼 for this data set. The function again looks like expected. We
observe a fast increase in the number of critical points up to a
threshold value for 𝛼 which is ≈ 2.

Ecoli The Ecoli data set [40] contains 336 points in eight
dimensions. From these dimensions we removed two binary
attributes and the sequence number and considered only the
remaining five metric (Euclidean) dimensions. Figure 2.4 (on
the right) shows the number of critical points as a function of
the value 𝛼 for this data set. Again, this function looks like
expected. The threshold value for 𝛼 here is ≈ 1.75.
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Figure 2.3: A plot of 𝛼-flow-complexes for increasing values
of 𝛼 of the MovieLens data set after simplification using the
threshold parameter value 𝑡 = 1.048.
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Figure 2.4: The number of critical points of the 𝛼-flow-complex
as a function of 𝛼 for the Body Dimensions data set restricted
to the first five dimensions (at the top) and the Ecoli data
set (at the bottom).
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2.2 Visualizing Empty Space: Sclow Plots

Finally, we would like to introduce a novel approach of visu-
alizing high-dimensional Euclidean data by focusing on areas
within the embedding space with few or no data points at
all. As we will show, the Up-flow operation from section 1.3.2
will provide us with sufficient flexibility to implement a vi-
sual analytics tool that is both expressive and computational
efficient.

Understanding the distribution of a data source is at the
heart of most data analysis methods. Typically, the data source
is only accessible through a finite sampling and many techniques
have been designed to understand the distribution from the
sampling. An important characteristic of a sampling are clus-
ters. The meaning of the term cluster is fuzzy, but intuitively
refers to sets of sample points that are close to each other while
being well separated from the rest of the sample points. The
importance of clustering is reflected in the plenitude of different
clustering algorithms that have been developed over the years.
Another characteristic of the sampling that has received much
less attention are regions in the domain of the data generating
process that contain no, or only very few data points. We want
to refer to such regions as empty space or voids. Abstractly,
one can view clusters as separated regions in the domain where
sample points are generated with high probability, whereas
voids are regions where sample points are generated with low
probability or even probability zero. From a practical point of
view, knowing where the data generating mechanism does not
generate any points can be very valuable information, think
for example of patients with certain characteristics that do not
develop a condition.
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Here we are still considering the special case of distributions
on Euclidean space. A sampling from such a distribution is
a point cloud. Visualizing Euclidean point cloud data is a
special case of visualizing high dimensional data. The two
most prominent classes of techniques for high-dimensional data
visualization are parallel coordinates and scatter plot matrices.
Both techniques are primarily used for detecting clusters in the
data. The following technique focuses on augmenting scatter
plots for also detecting voids. We augment the scatter plots
by the flow lines of the gradient vector field of the distance
function to the point cloud. If 𝑃 = {𝑝1, . . . , 𝑝𝑚} ⊂ R𝑛 is the
point cloud, then the distance function(see Section 1.2) is given
as

𝑑𝑃 : R𝑛 → [0,∞), 𝑥 ↦→ min𝑝∈𝑃 ‖𝑥− 𝑝‖.

A point on a flow line is characterized by following the direction
of steepest ascent of the distance function 𝑑𝑃 . The point either
flows to ‘infinity’ or ends in a local maximum of the distance
function. Our approach builds on the observation that the
distance function attains local maxima deep within voids. But
as we will describe later, the flow lines that continue to infinity
can provide even more useful information about the empty
space, i.e., regions with no sample points, and the interface
between the support of the distribution and the empty space.
This interface is the boundary of the distribution.

This approach is inherently interactive. Since there can be
many flow lines that correspond to different aspects of empty
space, showing all of them just leads to non intelligible visual
clutter. Thus the user has to filter the flow lines. Flow lines
can be distinguished by being either finite or infinite. The
existence of many finite flow lines is a good indicator for the
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full dimensionality of the point cloud. It turns out that filtering
infinite flow lines by their combinatorial length, i.e., number
of segments, separates different features very well without
requiring much effort from the user.

2.2.1 Context

A comprehensive overview of high-dimensional visualizations
has been given by Grinstein et al. [32], who highlight the im-
portant distinction between a visualization of high-dimensional
data and visualizations that are high-dimensional themselves.
Among the most popular visualizations for high-dimensional
data are parallel coordinates and scatter plot matrices. Other
multi-dimensional visualization techniques can be more expres-
sive, however also more complex and difficult to use correctly.
This is especially true if these techniques involve preprocessing
of the data, for example by multi-dimensional scaling, principal
component analysis or its modern variants like t-SNE [48]. Still,
it could be an interesting avenue for future research to combine
the aforementioned projection techniques with our flow line
approach.

Friendly and Denis [23] have documented the origins and
interesting history of scatter plots. Their highly recommended
historical account traces scatter plots back to Francis Galton
(1822-1911). A 2D scatter plot projects pairs (𝑥𝑖, 𝑦𝑖) ∈ 𝑋 ×
𝑌 as dots on an axis-aligned grid, where the values of 𝑋
and 𝑌 are identified along the axes, respectively. Scatter
plot projections, both 2D and 3D, are predominantly used for
correlation/association analysis since they allow to identify the
direction of correlation (which might be positive or negative),
its intensity, as well as the existence of outliers.
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The importance of scatter plots for cluster analysis has
been demonstrated impressively by Hertzsprung and Russel in
1910, who used scatter plots to group stars into categories like
White Dwarfs, Giants, and Supergiants [36, 45].

Adding additional information to scatter plots also has
a long history. Already in 1984 Cleveland and McGill [13]
have discussed how to enhance scatter plots by adding further
graphical information. Chan et al. [11] augmented scatter plots
with flow information representing an approximation of the
gradient around each data point. Their technique supports the
perception of local variations in the underlying distribution and
aids the user in analyzing clusters of the data set. A related
technique, called continuous scatter plots, has been introduced
by Bachthaler and Weiskopf[1] for the case when the input data
is not a collection of discrete points, but a continuous field on
a continuous domain.

The arrangement of scatter plots into a matrix (SPLOMs)
was first published by J. Hartigan [34]. The rows and columns
of a scatter plot matrix are indexed by the dimensions of
the data set, and each entry of the matrix shows the scatter
plot of the corresponding dimensions. Thus, in general, for
a 𝑛-dimensional data set, there will be 𝑛2 individual scatter
plots.

Elmqvist et al. [21] describe interactive methods to explore
multi-dimensional data using scatter plots, or more precisely
scatter plot matrices. The methods include navigating within a
scatter plot matrix by moving from a scatter plot to an adjacent
scatter plot, where scatter plots are adjacent when they share a
common dimension. Moving to an adjacent scatter plot can be
animated through a rotation in three dimensional space. Other
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interaction techniques include reordering the dimensions within
the scatter plot matrix, and querying the multi-dimensional
data set by bounding volume sculpting.

Nan Cao et al. [8] have developed DICON for interactive
visual analysis of multi-dimensional clusters. They also provide
a thorough discussion of the value of scatter plots for visual
cluster analysis. DICON contains scatter plots among other
visualizations.

A very successful technique for the analysis of higher dimen-
sional data are parallel coordinates [38] that, just like SPLOMs
and most other techniques for visualizing high dimensional data,
map the points into 2D space. Parallel coordinates achieve this
mapping by serializing the dimensions. They are often used in
addition to scatter plot matrices for example in the popular
GGobi tool [47].

Finally, we also want to mention topological techniques for
the analysis of point cloud data, e.g. the computation of the
simplified Hasse-diagram of the flow-complex in section 1.3.7
or persistent homology [20], but also want to point out already
here that it is not suited for detecting prominent empty space
features like cavities. In a nutshell, persistent topology identi-
fies topological features that are persistent over a filtration of
some cell complex. The filtration is controlled by some scale
parameter and incrementally adds the cells of the complex to
the initially empty complex. Persistent features then need to
survive over a long enough scale interval. For point cloud data
analysis one needs to define first a good cell complex on the
point cloud, for instance the Delaunay triangulation or the
flow complex of the point cloud, and second a filtration of
the complex, e.g. the alpha shape filtration of the Delaunay
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Figure 2.5: Example flow line in
two dimensions. Shown on the
left is the starting point 𝑥 of the
flow line together with the starting
flow direction that is determined
by the smallest enclosing ball of
𝑁(𝑥), which is here just a single
data point. Then, shown from top
to bottom are the points where the
set 𝑁(𝑥), and thus the direction of
flow, changes. The flow line ends
(shown on the right) in a local max-
imum of the distance function, i.e.,
𝑥 is contained in the convex hull of
𝑁(𝑥). Note that smallest enclosing
balls of more than one point in 𝑛 di-
mensions are always 𝑛-dimensional.
Here only the boundaries (circles in
two dimensions) of the balls (disks
in two dimensions) are shown.
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triangulation [17], where alpha is the scale parameter. Topo-
logical features that can be detected by persistent homology
are for instance connected components (zeroth homology) and
topological voids (𝑛-th homology). The point clouds that we
consider in this chapter do not exhibit persistent voids. This
should come as no surprise, because almost all natural data
sets have low intrinsic dimension, i.e. dimension much smaller
than 𝑛, but persistent voids (generators of the n-th persistent
homolgy group) require a hypersurface (dimension 𝑛− 1) that
encloses the void. Actually, for similar reasons only the low
dimensional persistent homology groups of the point cloud
data that we consider here should be non-trivial. In that sense
persistent homology as a technique is closer to clustering than
to identifying empty space.

As already hinted at the beginning of this section, we want
to note that although the technique that we introduce here
is inspired by the algorithm to compute the flow complex 1.3,
we do not need to compute the whole flow complex, but only
individual flow lines which can be done much more efficiently.

2.2.2 Distance function and flow lines

In this section we briefly review basic concepts for computing
flow lines based on the definitions introduced in section 1.2.

The flow induced by the gradient vector field 𝜕𝑑𝑃 is a
mapping

𝜑 : [0,∞)× R𝑛 → R𝑛

defined by the equations 𝜑(0, 𝑥) = 𝑥 and

lim
𝑡↓𝑡0

𝜑(𝑡, 𝑥)− 𝜑(𝑡0, 𝑥)

𝑡− 𝑡0
= 𝜕𝑑𝑃 (𝜑(𝑡0, 𝑥)).
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The set 𝜑(𝑥) = {𝜑(𝑡, 𝑥) | 𝑡 ≥ 0} is called the flow line of the
point 𝑥. Flow lines are piece-wise linear curves.

The flow line starting at 𝑥 ∈ R𝑛 can be computed as follows,
see also [24, 27]: compute the set of nearest neighbors 𝑁(𝑥)
and the center 𝑐(𝑥) of the smallest enclosing ball of 𝑁(𝑥). Move
𝑥 along the ray from 𝑐(𝑥) in the direction towards 𝑥 until a
new point from 𝑃 enters 𝑁(𝑥). Now, either 𝑥 is contained in
the convex hull of 𝑁(𝑥), in which case 𝑥 is a critical point and
the flow line ends here, or the direction of the flow needs to be
updated. It is possible that no new point enters 𝑁(𝑥) while
moving along the ray from 𝑐(𝑥) to 𝑥. In this case the flow line
is infinite. Hence, a flow line either ends in a local maximum of
the distance function, or continues to infinity. For completeness,
we restate that a flow line might also end in saddle point of
the distance function, but that occurs only with probability
0, i.e., when choosing 𝑥 uniformly at random from some open
subset of R𝑛 with compact closure. The computation of a flow
line is shown conceptually in Figure 2.5.

For a better understanding of why flow lines help to detect
voids in point cloud data, it is helpful to note that the concepts
of the distance function and its gradient vector field can be
generalized straightforwardly to arbitrary compact subsets of
R𝑛. The critical points of the distance function to some compact
subset 𝐶 ⊂ R𝑛 are the center points of maximal empty balls
that are contained in convex hull of their contact points on the
boundary of 𝐶, or formally, let 𝑥 ∈ conv(𝐶) ∖ 𝐶 and

𝑁(𝑥) = {𝑝 ∈ 𝐶 : ‖𝑥− 𝑝‖ = 𝑑(𝑥,𝐶)},

then 𝑥 is critical, if 𝑥 ∈ conv(𝑁(𝑥)). The set of centers of maxi-
mal empty balls, or equivalently the set of points in conv(𝐶)∖𝐶
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that have least two closest points in the boundary of 𝐶, is the
medial axis of conv(𝐶)∖𝐶, see [4]. The medial axis lies centrally
within conv(𝐶) ∖ 𝐶 and hence is often used as a skeleton for
this set, or at least as a starting point to define and compute
a skeleton. Thus, by definition, critical points of the distance
function are contained in the medial axis which itself lies cen-
trally in the complement of the compact set 𝐶, i.e., in the
empty space.

Assume that the point cloud 𝑃 is drawn from some finite
probability distribution 𝜇 on R𝑛. The support of 𝜇, i.e., the
set

supp(𝜇) = {𝑥 ∈ R𝑛 |𝜇(𝐵(𝑥, 𝑟)) > 0 for all 𝑟 > 0},

is a compact subset of R𝑛. It can be observed that the critical
points of the distance function 𝑑𝑃 are either close to supp(𝜇)
or close to the medial axis of conv(supp(𝜇)) ∖ supp(𝜇). The
two types of critical points can be distinguished essentially by
their distance values, i.e., the value of 𝑑𝑃 is small at critical
points that correspond to supp(𝜇) compared to the value of 𝑑𝑃
at critical points close to the medial axis. The latter type of
critical points represents the voids and some parts of the empty
space of the distribution. Note that supp(𝜇) does not need to be
full dimensional. The existence of local maxima of 𝑑𝑃 indicates
that the distribution is at least locally full dimensional, and
the absence of any local maxima with small distance function
values indicates that the support of the distribution is lower
dimensional. The collection of all flow lines that end in the
same local maximum of the distance function illustrates the
extent of the void that is represented by the local maximum.
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So far we argued that the medial axis of

conv(supp(𝜇)) ∖ supp(𝜇)

is a good representation for the voids of supp(𝜇), but that
is not necessarily true for the local maxima of the distance
function close to the medial axis, simply because they might
not exist, see Figure 2.6. That is where infinite flow lines

Figure 2.6: Voids do not need to be represented by critical
points of the distance function. Shown are two similar compact
sets 𝐶 that both have a significant void, i.e., empty space in
conv(𝐶) ∖ 𝐶. For both sets a maximal empty ball is shown
together with the convex hull of its closest points in the bound-
ary of 𝐶. The center of the ball is a local maximum of the
distance function only for the set shown on the right, but it is
contained in the medial axis for both sets.

become important. An infinite flow line in the continuous case,
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i.e., considering not the sample points but the support of the
distribution, hits the medial axis either at some finite point
and then stays on the medial axis, see [30], or it hits the medial
axis at infinity. Infinite flow lines that hit the medial axis at
some finite point typically have many segments whereas infinite
flow lines that hit the medial axis only at infinity have just one
segment. Sample points from which flow lines originate that
have only one segment are on (or close to the) boundary of the
convex hull conv(supp(𝜇)). See also Figure 2.7.

2.2.3 Sclow plots

Sclow plots are augmented scatter plot matrices. Projections
of flow lines are shown along with the projection of the data
points. Note that the projection of a flow line is straightforward
since flow lines are by definition piecewise linear, and hence
also the projection is piecewise linear. The flow lines for our
sclow plots originate on small spheres around the data points
from which starting points are sampled uniformly at random.
The number of starting points determines the resolution of the
sclow plots. If the resolution is low, i.e., only a few starting
points are sampled from the spheres, then it is possible to
miss some of the local maxima. Increasing the resolution is
computationally more expensive, though the running time only
scales linearly with the number of starting points. A high
resolution can also lead to visual clutter.

Different types of flow lines. To avoid visual clutter we
distinguish three types of flow lines whose rendering can be
individually switched on and off:
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Figure 2.7: Three types of flow lines from left to right, finite
flow lines that end in a local maximum of the distance function
and represent the interior of the full dimensional shape shown
below, infinite flow lines with only one segment that originate
on the boundary of the convex hull conv(supp(𝜇)) shown below
in light blue, and infinite flow lines with many segments that
hit the medial axis at some finite point and thus represent the
cavity shown below in light blue.

1. finite flow lines that end in a local maximum of the
distance function,

2. infinite flow lines that have only a few segments, i.e., the
number of segments is below some user defined threshold,
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and

3. infinite flow lines that have at least as many segments as
the user defined threshold.

Each type of flow line can be used to detect a different type
of feature in the point cloud. The existence of finite flow
lines witnesses the full dimensionality of the point cloud. The
technical reason for this is that local maxima of the distance
function correspond to full dimensional cells in the flow com-
plex. Please refer to [24] for details. As explained before the
conceptual difference between the two types of infinite flow
lines is the following: infinite flow lines with only a few seg-
ments tend to flow to infinity without hitting the medial axis of
conv(supp(𝜇)) ∖ supp(𝜇)—they hit the medial axis at infinity,
whereas the infinite flow lines with many segments hit the
medial axis earlier. The latter flow lines do not in general hit
the medial axis immediately, but only after passing through
some small segments. Typically, they originate on or close to
the boundary of supp(𝜇), i.e., on the boundary of a cavity—a
void in conv(supp(𝜇)) ∖ supp(𝜇) that is connected to infinity.

We illustrate the difference between the different types of
flow lines in Figure 2.8. In this figure one can see that all
three types of flow lines carry important information about
the data set, i.e., the sampled cube in four dimensions, where
a cone opening to one side has been cut out. The existence
of finite flow lines shows that the data set is full dimensional
and furthermore, that the data points are distributed rather
uniformly, because otherwise we would see more variation in
the distance function values at the finite maxima as encoded
in the color scheme. The infinite flow lines with only a few
segments allow to detect extreme points of the data set, i.e.,
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data points on or close to the convex hull of the set, since many
of the infinite flow lines with only a few segments originate
from the extreme points. From the flow lines, one even gets an
impression in which directions the points are extreme. Finally,
the infinite flow lines with many segments allow to detect the
cavity that results from the cone that has been cut out from
the cube.

Types of flow lines and tasks. Tasks related to the analy-
sis of high dimensional data can be characterized as (1) cluster
oriented, (2) dimension oriented, or (3) novelty oriented. The
first two categories have been identified by Brehmer et al. [6]
who conducted interviews with ten data analysts from six ap-
plication domains. Here we want to add the third category.
Tasks in the first category include detecting clusters, verifying
clusters, and naming clusters, see [6]. Tasks in the second
category include identifying the intrinsic dimension of data,
and naming synthesized dimensions, see again [6]. We want to
summarize the following tasks in the third category: Identifying
outliers, finding data points in between clusters, and locating
data points at the boundary of clusters.

Scatter plots augmented by flow lines support the following
tasks: As mentioned before finite flow lines can be used to
decide the full-dimensionality of the data. Infinite flow lines
that have only a few segments can be used to identify outliers,
while infinite flow lines with many segments help to locate
data points at cluster boundaries, especially for complicatedly
shaped, non-round clusters, and locating data points at the
interface between clusters. Finite flow lines also support the
latter task in the case of full dimensional point clouds. We
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make the link between tasks and the different types of lines
more explicit in Section 2.2.4 on synthetic data sets and in
Section 2.2.5 on real data sets.

Interaction. As can be seen in Figure 2.8 (top-right) it makes
no sense to show all the flow lines at once, because this just
leads to visual clutter. Thus the user needs to filter the flow
lines depending on the task at hand. If the task is dimension
inference, then only finite flow lines should be selected. For
outlier detection one should show the infinite flow lines with
only a few segments, and for exploring the boundaries of clusters
only infinite flow lines with many segments should be displayed.
We discuss the possible interactions that we implemented in
more detail in Section 2.2.6.

Color scheme. Flow lines can be colored to convey distance
function value information. By definition, the distance function
value, i.e., the value of 𝑑𝑃 , is strictly increasing along a flow
line. We use a color gradient along the hue axis to encode the
change of 𝑑𝑃 along a flow line. We provide the user with a
set of distance metrics that determine the maximum value for
the data set at hand, and therefore define a scale. The most
intuitive measures, among others, are the actual maximum
distance as given by the distance function, or the maximum
number of segments among all the flow lines that have been
computed. We assign the minimum value (usually zero) to one
hue, and the so determined maximum value to another hue in
such a way, that both hues are neighbors on the color circle.
The colors for all distance values in between are determined
by linear interpolation along the hue axis. By doing so, we
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avoid what is known as rainbow effects, that—although visually
appealing in an artistic way, can be misleading and thus result in
a false understanding of the data set, because the human visual
system perceives hue information as categorical information
rather than continuous function values. By using neighboring
hues we express the increase in distance in the fashion of a
heat map. We allow to choose two sets of hue-pairs, one for
the finite flow lines and the other one for the infinite flow lines.
That allows to distinguish these two types of flow lines visually
even when they are displayed at the same time.

2.2.4 Synthetic data sets

In this section we use synthetic data sets for highlighting
different features that sclow plots can reveal.

Parabola

The purpose of this data set is to show how sclow plots represent
a cavity, i.e., a connected component in conv(supp(𝜇))∖supp(𝜇)
that is connected to infinity. Cavities can be considered also as
boundaries of non-round, complicatedly shaped clusters. Since
flow lines as we compute them here originate close to data
points, they can be used to locate data points on the boundary
of such clusters. Hence detecting cavities can be linked to the
task of detecting cluster boundaries.

The points of this data set in four dimensions have been
generated as follows: the first coordinate 𝑥1 has been sampled
uniformly at random from the interval [−1, 1], the second
coordinate has been computed as 𝑥2 = 𝑥21 and then been slightly
perturbed, the coordinates 𝑥3 and 𝑥4 have been sampled again
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Figure 2.9: A scatter plot matrix for the sampled shape 𝑆
together with infinite flow lines that have many segments.
[Resolution 50]

uniformly at random from [−1, 1]. The unique cavity of the
three dimensional shape

𝑆 = {𝑥 ∈ R4 : 𝑥2 = 𝑥21, 𝑥1, 𝑥3, 𝑥4 ∈ [−1, 1]}
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from which the points are sampled with some perturbation
corresponds to a three dimensional sheet of the medial axis,
but not to finite critical points. The sheet of the medial axis
can be easily recognized in the sclow plots, see Figure 2.9. The
cavity itself is also clearly visible in the pure scatter plot matrix.
This changes when we transform the original data set, e. g., by
just rotating it in space such that the medial axis sheet of the
cavity is no longer aligned with a coordinate plane. Still, the
cavity can be easily read off from the slow plot, see Figure 2.10.

The problem becomes even more pronounced when we
transform the data set non-linearly, e. g., by the transformation

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦→ (𝑥1𝑥2, 𝑥2𝑥3, 𝑥3, 𝑥4).

The void remains visible in the sclow plot whereas it is hard to
detect from the scatter plot matrix, see Figure 2.11.

Two Gaussians

On this data set we want to demonstrate how sclow plots
represent a cavity that separates two clusters. That is, this
data set serves as an example for using infinite flow lines with
many segments to aid the task of locating data points at the
interface of two clusters. The clusters in this case are given
by two Gaussians, i.e., the points are drawn from a normal
distribution 𝑁(𝜇,Σ), whose centers 𝜇 lie on diagonally opposite
vertices of a four dimensional cube with side length 1. For
the covariance matrix Σ we chose Σ = 𝜎1, i.e., the variance is
equal for all four dimensions. We varied the variance 𝜎 from
1.4 to 1.8 with step size 0.2. The void that is present in this
data set is schematically shown in Figure 2.12 (on the left).
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In Figure 2.13 we show sclow plots for two Gaussians with
different variance. The circular void that separates the two
Gaussians is visible in both plots.

One Gaussian

As an example for dimension inference with sclow plots we
generated data from a single Gaussian in three dimensions that
we lifted non-linearly into six dimensional space, i.e.,

(𝑥1, 𝑥2, 𝑥3) ↦→
(︀
𝑓1(𝑥1, 𝑥2, 𝑥3), . . . , 𝑓6(𝑥1, 𝑥2, 𝑥3)

)︀
where the 𝑓𝑖 involve low degree polynomials and trigonometric
functions, i.e., the data set is intrinsically three dimensional.
In Figure 2.14 we show two sclow plots, one for the data set
after two dimensions have been dropped and another one after
three dimensions have been dropped. Finite flow lines only
show up once three dimensions have been dropped, i.e., once
we have reached the intrinsic dimension of the data set.

One Gaussian with outliers

Finally, to show how outliers, i.e., points on or close to the con-
vex hull of a data set, can be detected we have sampled points
from a standard Gaussian in four dimensions and additionally
a few points on a large sphere with radius 2.5 that is centered
at the mean of the Gaussian. Figure 2.15 shows a sclow plot
for this data set where only finite and infinite flow lines with
one segment have been selected.
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2.2.5 Real data sets

In order to show that the aforementioned discoveries can also
be made on non-synthetic data sets, we explored two freely
available, real data sets, namely the Body Dimensions and
MovieLens data sets, by using sclow plots. Both data sets
are amenable to an analysis through sclow plots, because they
can reasonably well be interpreted as Euclidean point clouds,
i.e., the different dimensions are continuous and comparable
to each other. Note that using sclow plots successfully hinges
on knowing the meaning of the different types of flow lines.
Inference with sclow plots does not work by loading some data
set together with some flow lines and starting the reasoning
process from there, but it starts with a task like dimension
inference, detecting outliers, or identifying data points at the
interface between clusters.

Body Dimensions

Heinz et al. have published a data set [35] of body girth and
skeletal diameter measurements from 507 physically active
individuals, 247 men and 260 women. Here we are working with
the skeletal measurements, where the first five measurements
regard the torso, and the last four measurements regard the
extremities.

A scatter plot of this nine dimensional data set shows the
last four measurements are quite correlated. Note that a strong
correlation of two dimensions essentially decreases the effective
dimensionality by one. The intuition that the data set is not
full dimensional is confirmed in the sense that we could not
find any finite maxima even at high resolutions. The first five
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Figure 2.16: Body Dimensions data set. Top left: A sclow
plot of the finite maxima in five dimensions, showing both
the support (yellow-orange) and deep finite maxima (dark red)
separating the male from the female cluster. Top right: A
sclow plot showing infinite flow lines with many segments of
the torso dimensions, computed on both the samples of the
male and female cluster. Bottom left: The same sclow plot,
this time computed only on the samples of the female cluster.
Bottom right: The same sclow plot, this time computed only
on the samples of the male cluster. [Resolution 250]
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measurements that regard the torso are less correlated, and
indeed the data set exhibits several finite maxima after the last
four dimensions have been discarded, see Figure 2.17.

Looking at the infinite flow lines with many segments reveals
two fairly large empty regions in the five dimensional data set.
It is not clear, however, if these voids are contained within the
male and female clusters, respectively, or if they separate the
two clusters from each other. By computing sclow plots on just
the male and female subset, respectively, the same deep voids
become visible. This supports the assumption, that these voids
are contained within the respective clusters. There are a few
more voids, that are less deep and that only appear when the
flow lines are computed on the combined male and female data
points. Thus, these voids indicate the boundary between the
two clusters as in the synthetic example of the two Gaussians,
see Figure 2.16.

By selecting the infinite flow lines with only very few seg-
ments, it is possible to highlight the extreme points of the
data set. This allows us to get a better understanding of the
local shape in high dimensions, and to relate the voids to the
boundary of the shape. A zoom into one of the sclow plots
allows to detect outliers, i.e., extreme points with a relatively
large spread in the flow line angles. See Figure 2.18.

MovieLens

The MovieLens 100k data set was collected by the GroupLens
Research Project at the University of Minnesota [33]. It con-
sists of 100,000 one to five stars ratings from 943 users on 1,682
movies. The MovieLens data sets are popular test sets for
recommender systems. The data sets can be viewed as incom-
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plete matrices that are indexed by the users and the movies,
respectively. The matrix entries are the ratings. A straight-
forward idea for a recommendation system is to complete the
incomplete matrix, and to recommend movies to users whose
predicted ratings are high. The MovieLens data set is not an
Euclidean point cloud itself, but it is straightforward to derive
point clouds for the movies and for the users, respectively, from
the completed ratings matrix by using principal component
analysis (PCA). We used a technique by Bell et al. [3] (called
ComputeNextFactor) for completing the ratings matrix that at
the same time computes a low dimensional spectral embedding
for the movies, i.e., every point in the low dimensional point
cloud corresponds to a movie. The Euclidean distances between
the points can be considered as a dissimilarity measure for the
movies.

We used the technique by Bell et al. to create a 14 dimen-
sional Euclidean point cloud from the original MovieLens 100k
data set. A first visual inspection of this point cloud using
scatter plots suggests that most of the similarity information is
encoded in the first few dimensions. We checked this intuition
in two ways, both times using sclow plots. First, we looked
at sclow plots featuring finite flow lines for projections of the
data set onto the first few dimensions. Figure 2.19 shows such
sclow plots for the first six, five, four and three dimensions.
Note that only in dimensions four and lower we can observe
a significant number of finite flow lines. Which leads us to
the conclusion that the essential dimension of the data set is
around four. In a second analysis we discarded the first few
dimensions. The resulting projections looked similar to points
sampled from a single Gaussian, compare Figures 2.20 and 2.15,
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(a) projection onto the first six dimensions

(b) projection onto the first five dimensions
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(c) projection onto the first four dimensions

(d) projection onto the first three dimensions

Figure 2.19: Sclow plots featuring finite flow lines for pro-
jections of the 14 dimensional MovieLens data set. Finite
flow lines stop to appear in large numbers in five dimensions.
[Resolution 300]
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whereas projections on the first few dimensions exhibit a much
richer geometric structure, compare for example Figures 2.20
and 2.21. The sclow plots like in Figure 2.20 suggest that the
intrinsic dimension of the “Gaussian noise” is around six.

We also explored the geometry of the four dimensional
projection of the data set. Figure 2.21 shows a sclow plot of the
now four dimensional data set together with infinite flow lines
with many segments. This flow lines aid a better understanding
of the shape of the data set which bears some similarity to
the parabola data set from Section 2.2.4. Especially, a well
pronounced cavity becomes clearly visible. Looking at sclow
plots that exhibit infinite flow lines with only a few segments
confirms this interpretation of the geometry of this data set.

Further analysis revealed that the data points located at
the tip of the cavity correspond to well known movies (block-
busters), whereas points in the extremities correspond to niche
movies that are not very popular among the mainstream of
users. Also, the extremities seem to constitute clusters of
movies from similar genres.

2.2.6 User interaction

As we have pointed out before, user interaction is indispensible
when working with sclow plots. Hence, the tool that we have
implemented offers the following functionality: (1) Selecting the
flow lines by type (finite or infinite), and specifying lower and
upper bounds for the number of segments for the infinite flow
lines. (2) Coloring the flow lines by type. (3) Selecting single
sclow plots from a slow plot matrix to analyze them in detail.
Here we follow the focus+context technique that is used in a
many visualization systems [39, 44, 43]. This technique allows
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to display details where needed, while the environment remains
visible. (4) Zooming into sclow plots and rotating sclow within
an axis aligned two-dimensional plane, i.e., rotating a given
sclow plot. (5) Rendering label information for selected data
points in the sclow plots. (6) Deleting dimensions.

Interactive techniques, as they have been implemented by
Elmqvist et al. [21] in their ’Rolling the Dice’ approach, would
be also very helpful when working with sclow plots, especially
animated transitions between adjacent scatter plots.

2.2.7 Scalability

In Figure 2.22 we summarize some performance data that we
have collected for the data sets that have been discussed before.
The results have been obtained using an Intel i7-4770 CPU
with 3.40GHz on four cores.

Our tool always remains interactive because flow lines at
a given resolution have to be computed only once before user
interaction can start, e.g., selecting flow lines of different types
or zooming into sclow plots. Note that 100 flow lines per
data point is a very reasonable starting point for a visual
exploration. Computing these flow lines in nine dimensions
for the MovieLens data set takes less than 35 seconds, see
Figure 2.22b. We consider this an acceptable upstart time for
our system. If a higher resolution is required, then more flow
lines can always be computed progressively in the background
at rate of a few thousand flow lines per second, see Figure 2.22a.
The running time for increasing the resolution scales linearly
with the resolution as can be seen in Figure 2.22c.
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(a) Flow lines per second as a function of the dimension
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(b) Time for computing 100 flow lines per data point again as a
function of the dimension

(c) Compute time as a function of the number of seed points per data
point

Figure 2.22: Performance data for computing flow lines
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Chapter 3

Conclusions

We have presented a new algorithm for computing the flow com-
plex. The algorithm differs from known algorithms by avoiding
an explicit computation of the Delaunay triangulation of the
input point set. It is also inherently parallel. We implemented
the algorithm that scales well with the number of available
cores on a multicore platform. Experimental results that have
been obtained with the implementation show that numerical
robustness is not a critical issue although the algorithm makes
use of explicit constructions and does not evaluate predicates
like most algorithms for computing Delaunay triangulations.

In addition and as an application, we presented an approach
to sketch the support of a probability measure on R𝑑 by an
𝛼-flow-complex. With high probability, the 𝛼-flow-complex is
homotopy equivalent to the support of the measure for large
enough samplings and good values for 𝛼. We have shown how
to choose a good value for 𝛼 in theory and in practice (on some
real data sets).

91
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Further we report our research on exploring empty space
in medium dimensional point cloud data. For that purpose we
introduced sclow plots that are scatter plots augmented by flow
lines, i.e., integral curves for the gradient vector field of the
distance function to the point cloud. Here we were concerned
with an evaluation of the analytical power of flowlines. For
this evaluation we chose scatter plot matrices, because they
provide a flexible interface that allows to tweak many aspects
of computation and visualization that boost our understand-
ing of what can be done with flow lines and on how to use
them. Our rationale for visualizing flowlines together with
the data points as 2D projections is along the same lines, as
the arguments for using 2D projections for analyzing medium
dimensional Euclidean point cloud data, namely 2D projections
are natural and easy to comprehend and as such impose little
mental overhead for the user. We have discussed tasks on
medium dimensional point clouds that can be supported by
our flow line approach such as dimension inference, detecting
outliers, locating data points at the boundaries of clusters and
at the interface between clusters. Experiments on synthetic
and real data sets indicate that sclow plots can indeed be help-
ful for these tasks. Future work should also explore different
approaches for visualizing flow lines, e.g., by showing only ag-
gregations of flow lines or even more abstract, inferred features
like voids, dents or outliers that probably can be represented
by abstract symbols. Also, our flow line technique is not bound
to be used in conjunction with scatter plot matrices. Another
avenue for future research is combining projection techniques
like multi-dimensional scaling, principal component analysis
with the projection of flow lines.
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