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Abstract

The accurate characterization of synthetic polymer sequences represents a major
challenge in polymer science. In this thesis, we present a computational approach to
sequencing copolymers from mass spectrometry data, which enables the abundances
of all sequences in a measured copolymer sample to be quantified.

The workflow presented in this thesis can be divided into two steps. The first step
in our workflow is transforming mass spectra into copolymer fingerprints.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS) is frequently used for the characterization of copolymer samples. We
present a method for computing copolymer fingerprints from mass spectra of the
copolymer. Our method is based on linear programming and is capable of automat-
ically resolving overlapping isotopes and isobaric ions. Using measured and simu-
lated spectra, we demonstrate that our method is well suited for analyzing complex
copolymer MS spectra.

Peak intensities in MALDI spectra are influenced by mass discrimination, i.e. mass-
and composition-dependent ionization. We demonstrate a computational method
to correct the abundance bias caused by the mass discrimination. We demonstrate
our method using measured co- and homopolymers. First, the method is applied to
homopolymer spectra. Subsequently, the copolymer fingerprint is computed from
copolymer MALDI spectra and the correcting function applied. We find that the
changes in the composition are plausible, indicating that the correction of copolymer
abundances was reasonable. Our computational method may potentially help to
avoid erroneous conclusions when analyzing copolymer MS spectra.

The second step in our workflow is interpreting the computed copolymer fingerprints
using a new copolymerization model.

For many years copolymerization has been studied using mathematical and statis-
tical models. We present new Markov chain models for copolymerization kinetics:
The Bernoulli and Geometric models. They model copolymer synthesis as a random
process and are based on a basic reaction scheme. In contrast to previous Markov
chain approaches to copolymerization, both models take variable chain lengths and
time-dependent monomer probabilities into account and allow the computation of
sequence likelihoods and copolymer fingerprints. We compare both models against
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Monte-Carlo simulations. We find that computing the models is fast and memory
efficient.

Then, we focus on the Geometric copolymerization model with reactivity param-
eters and investigate its practicality. First, several approaches to identify the op-
timal model parameters from observed copolymer fingerprints are evaluated using
Monte-Carlo simulated data. Directly optimizing the parameters is robust against
noise but has impractically long running times. A compromise between robustness
and running time is found by exploiting the relationship between monomer con-
centrations calculated by ordinary differential equations and the Geometric model.
Second, we investigate the applicability of the model to copolymerizations beyond
living polymerization and show that the model is useful for copolymerizations involv-
ing termination and depropagation reactions. We then compute several copolymer
statistics using the Geometric model and compared them to the statistics obtained
by counting in the copolymer chains computed by Monte-Carlo simulations.

Last but not least, we present our software framework COCONUT, which imple-
ments all algorithms presented in this thesis. Our software is freely available and
provides a graphical user interface. COCONUT represents a step towards compre-
hensive computational support in polymer science.



Zusammenfassung

Die Analyse synthetischer Polymersequenzen ist eine grofle Herausforderung in der
Polymerforschung. Diese Dissertation stellt einen neuen computergestiitzten Ansatz
zur Polymersequenzierung vor, welcher die Quantifizierung aller Sequenzen eines
gemessenen Copolymers erméglicht.

Der prisentierte Ansatz kann in zwei Schritte eingeteilt werden. Der erste Schritt
ist die Transformation von Massenspektren zu Copolymer-Fingerprints.

Matrix-assisted Laser Desorption / Ionization Time-of-Flight Massenspektrometrie
(MALDI-TOF MS) ist eine géngige Methode zur Analyse von Copolymeren. Wir
stellen eine neue Method zur Berechnung von Copolymer-Fingerprints aus Copolymer-
Massenspektren vor, die auf Linearer Programmierung basiert und iiberlappende
[sotopenmuster und Isobare aufklédren kann. Anhand gemessener und simulierter
Spektren zeigen wir, dass unsere Methode fiir komplexe Copolymer-Massenspektren
geeignet ist.

Peak-Intensitidten in MALDI Spektren konnen durch differentielle Ionisierung, welche
von der Masse und Zusammensetzung der Ionen abhéngt, beeintréichtigt werden.
Wir stellen eine computergestiitzte Methode zur Korrektur dieser Abweichung vor
und wenden sie zunéchst auf Homopolymerspektren an. Danach berechnen wir
Fingerprints aus Copolymerspektren und wenden darauf die Korrekturfunktion an.
Die errechneten Anderungen weisen auf ein sinnvolle Korrektur hin. Unsere com-
putergestiitzte Korrekturmethode soll zukiinftig helfen, Fehler in der Analyse von
Copolymer-Massenspektren zu vermeiden.

Der zweite Schritt unseres Ansatzes ist die Interpretation der berechneten Copolymer-
Fingerprints mit Hilfe neuer Modelle.

Mathematische und statistische Modelle der Copolymerisierung gibt es seit vielen
Jahren. Wir présentieren neue Modelle fiir die Copolymer Kinetik: Die Bernoulli
und Geometrischen Modelle, welche auf einem einfachen Reaktionsschema basierend
die Copolymersynthese als stochastischen Prozess mit Hilfe von Markovketten mod-
ellieren. Im Gegensatz zu bisherigen Modellansétzen mittels Markovketten model-
lieren beide neuen Modelle variable Langen der Polymerketten sowie zeitabhéngige
Wahrscheinlichkeiten der Monomere und erméglichen die Berechnung von Sequen-
zwahrscheinlichkeiten und Copolymer-Fingerprints. Wir evaluaieren beide Modelle
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mittels Monte-Carlo Simulationen. Die Berechnung der Modelle ist schnell und
benotigt wenig Arbeitsspeicher.

Danach konzentrieren wir uns auf die — geméafl unserer Evaluation — beste Modell-
variante: das Geometrische Copolymerisierungsmodell mit differenziellen Reaktion-
swahrscheinlichkeitsparametern. Zunéchst evaluieren wir mittels Monte-Carlo Sim-
ulationen verschiedene Methoden zur Schiatzung der optimalen Modellparameter aus
gemessenen Copolymer-Fingerprints. Die direkte Optimierung der Parameter ist ro-
bust gegeniiber Rauschen hat jedoch unpraktibel lange Laufzeiten. Wir finden einen
Kompromiss zwischen Robustheit und Laufzeit durch Nutzung der Beziehung zwis-
chen dem Geo-metrischen Modell und mittels Differentialgleichungen berechneter
Monomerkonzentrationen. Danach untersuchen wir die Anwendbarkeit des Modells
auf Copolymerisierungen jenseits von ,,Lebender Polymerisierung” und zeigen, dass
das Modell niitzlich ist fiir Copolymerisierungen die Terminations- und Depropaga-
tionsreaktionen beinhalten. Anschliefend zeigen wir, wie man mit Hilfe des Modells
verschiedene Statisken berechnet und vergleichen diese zu den Werten die wir durch
einfaches Zéahlen in den mit Monte-Carlo Simulationen berechneten Polymerketten
erhalten.

Schlussendlich prasentieren wir unser Softwareframework COCONUT, welches alle
Algorithmen dieser Arbeit beinhaltet. Unsere Software ist frei verfiigbar und stellt
eine graphische Benutzeroberflache bereit. COCONUT ist ein wesentlicher Schritt in
Richtung umfassender informatischer Unterstiitzung der Polymerwissenschaften.
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Preface

This thesis covers most of my research in computational mass spectrometry of syn-
thetic binary copolymers. During this work, I was associated with the bioinformatics
group of Professor Sebastian Bocker at the Friedrich University Jena. My research
was financed by the university’s basic funding, the “Computer Supported Research”
project (Thiiringer Ministerium fiir Bildung, Wissenschaft und Kultur, grant no.
12038-514), the “Coordination of Biological and Chemical IT Research Activities”
project (European 7th Framework Programme, project no. 270371), and others.

As teamwork is the foundation of science, the results presented within this thesis
have been achieved in close cooperation with my supervisor Sebastian Bocker, our
collaborators Ulrich S. Schubert, Sarah Crotty, Markus J. Barthel, and Christian
Pietsch, and last but not least my colleague Kerstin Scheubert.

I started researching this topic while working on my Diploma thesis [24] and after-
wards continued to research computational mass spectrometry of synthetic binary
copolymers, which culminated in this thesis.

The main results of this thesis are presented in chapters 5-7. They tell a continuous
story of our approach to analyzing copolymer mass spectra: from transforming the
spectra into copolymer fingerprints to new models for the copolymerization process
to the resulting software for the end user, 7.e. the experimental chemist.

For chapters 5 and 6, Ulrich S. Schubert, Sebastian Bocker, Sarah Crotty, and I de-
signed the experimental setup. Markus J. Barthel and Christian Pietsch performed
the copolymerizations, Sarah Crotty recorded the mass spectra.

Chapter 5 introduces copolymer fingerprints. Section 5.1 describes how to transform
mass spectra into fingerprints and how to overcome two major issues of this trans-
formation: isobaric and overlapping isotope patterns [25]. Section 5.2 presents an
approach to a well-known issue in mass spectrometry: peaks in (mostly) higher mass
ranges being less pronounced than they theoretically should be [26]. T developed the
linear program to compute the fingerprints and resolve overlapping isotopes, Sebas-
tian Bocker and I developed the solution for the isobars and the abundance correct-
ing method. I implemented the algorithms and performed the computations. Sarah
Crotty and I evaluated the results on experimental data, I evaluated the results on
simulated data.
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Chapter 6 presents new models for copolymerization. Section 6.1 introduces and
evaluates two new models, the Bernoulli and Geometric models, each in two differ-
ent versions, with and without taking reactivity ratios into account [27]. The ba-
sic Bernoulli model (without reactivity ratio parameters) was first described in my
Diploma thesis [24]. Section 6.3 describes how to estimate the model parameters and
explores the limitations of the models for different polymerization types [28]. Sec-
tion 6.4 presents several algorithms to compute useful statistical properties from the
models. At the moment, the results of Section 6.4 are not published, the manuscript
is in preparation. Sebastian Bocker and Kerstin Scheubert developed the basic
Bernoulli model, I developed the three other models and the algorithms for gener-
ating statistics. I implemented the algorithms, performed the computations, and
evaluated the results.

Chapter 7 presents the COCONUT (Copolymer Composition Numbering Tool) pro-
gram. [ designed and implemented the software. COCONUT includes, besides
some preprocessing methods, all of the algorithms presented in chapters 5 and 6.
COCONUT was briefly presented in our first two publications [25, 26]; here it is
discussed in more detail.

Not included in this thesis is the work of Sebastian Bocker, Kerstin Scheubert and
myself in cooperation with H. Martin Biicker, Vlad Dumitrel, and Emil Slusanschi
on Jacobians and Automatic Differentiation for the basic Bernoulli model. The
resulting manuscript is in preparation.

As usual in scientific literature, I will use “we” for the remainder of this thesis. The
reader may choose to interpret this as “the reader and I”, “my colleagues and 1", or
“my collaborators and I”.
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1. Introduction

Polymers are macromolecules composed of monomer repeating units, typically joined
by covalent bonds. Naturally occurring biopolymers like DNA, RNA or proteins are
essential for life and might even precede life as we know it today [32]. They have
been thoroughly studied in biology and its related interdisciplinary research areas
of molecular biology, biochemistry, structural biology and bioinformatics. Recently,
the transition from studying individual objects to characterizing heterogeneous col-
lections of molecules sparked several new -omics’ fields: genomics, proteomics, tran-
scriptomics, etc.

Compared to biopolymers, which have existed for millions of years, the history of
synthetic polymers is rather short; with groundwork in the early 19th century and
first practical results and the beginning of its industrial production in the early 20th
century [87]. Today, polymer materials such as PVC, nylon, polyethylene, or silicone
are essential for a large proportion of modern industrial products. Modern polymer
science knows a wide range of polymer classes and architectures with very diverse
applications, including for example organic batteries [68], self-healing materials [114]
or drug delivery systems [52].

This thesis focuses on linear binary copolymers: non-branching polymer chains with
monomer units from two different monomer species. Synthesizing (co-)polymers is
usually a random process, as generating a fully sequence-controlled polymer is a
challenging task [53, 57, 119]. Generally, the resulting copolymers are distributed
both in terms of chain lengths and monomer sequences, and inferring structure-
property relationships is difficult. Altuntag and Schubert [2] outlined the necessity
of computational support for characterizing (co-)polymers and introduced the term
“polymeromics”. In this thesis, our task is to develop computational methods for
characterizing such heterogeneous collections of copolymer molecules in order to
facilitate the design of optimized and application-specific polymer materials.
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Sequencing copolymers has been named one of the last Holy Grails in polymer
characterization [2]. Just as peptide sequencing contributed to the rise of high-
throughput methods in proteomics [105], copolymer sequencing could speed up the
development of new polymer materials significantly. However, unlike a separated
peptide sample with — ideally — multiple copies of one sequence, a copolymer sample
is a heterogeneous collection of polymer molecules, and thus, sequences. Statistically
speaking, a copolymer sample contains all possible copolymer sequences, although
with infinitesimal probability for the majority of sequences. Therefore, we do not
want to determine just one copolymer sequence, but quantify the abundances of all
sequences contained in the sample.

1.1 Structure of this Thesis

In this thesis, we present a computational approach to sequencing copolymers from
mass spectrometry data, which enables the abundances of all sequences in a mea-
sured copolymer sample to be quantified. This thesis covers our whole workflow
from transforming the spectra into copolymer fingerprints to new models for the
copolymerization process to the resulting software for the end user, i.e. the exper-
imental chemist. This thesis focuses mainly on the computational aspects of the
workflow and results.

In Chapters 2 and 3 we briefly introduce the background and concepts necessary
for understanding this thesis. Chapter 4 describes the used datasets. As this thesis
focuses on the computational aspects, please refer to the corresponding publications
for more information regarding materials, polymerization procedures, or instrumen-
tation [25-27].

Chapter 5 introduces copolymer fingerprints. Section 5.1 describes how to trans-
form mass spectra into fingerprints and how to overcome two major issues of this
transformation: isobaric and overlapping isotope patterns [25]. Section 5.2 presents
an approach to a well-known issue in mass spectrometry: peaks in (mostly) higher
mass ranges being less pronounced than they theoretically should be [26].

Chapter 6 presents new models for copolymerization. Section 6.1 introduces and
evaluates two new models, the Bernoulli and Geometric models, each in two differ-
ent versions — with and without taking reactivity ratios into account [27]. Section 6.3
describes how to estimate the model parameters and explores the limitations of the
models for different polymerization types [28]. Section 6.4 presents several algo-
rithms to compute useful statistical properties from the models.

Chapter 7 briefly presents a software application with a graphical user interface,
which we developed simultaneously with our copolymer sequencing approach: CO-
CONUT (Copolymer Composition Numbering Tool). Finally, in Chapter 8 we con-
clude this thesis, discussing the main results and providing an outlook on further
research questions.



2. Chemical and Computational
Background

In this chapter, we briefly introduce the very basic concepts this thesis is built on.
Readers familiar with the matter at hand may skip to the next chapter, where we
describe the key concepts necessary to understand this work and the current state
of art in computational approaches to analyzing copolymerization.

Here, on the one hand we discuss the experimental background: copolymers and
the instrumental setup. On the other hand, we also discuss the computational back-
ground: concepts in numerical optimization and the measures we used for evaluating
the computational results.

2.1 Copolymers

Polymers are macromolecules composed of monomer repeating units, small molecules
typically joined by covalent bonds. They can be categorized into homopolymers,
containing monomer units from a single monomer type, and copolymers, containing
monomer units from two or more different monomer types. This thesis focuses on
linear binary copolymers: Non-branching polymer chains with monomer units from
two different monomer species. In the following we will refer to the monomer species
as A and B, which can be replaced by arbitrary monomer types. Copolymers can
be classified by the distribution of monomers on the chain (Fig. 2.1), the chemical
classes of the monomers, or the synthesis type.

Polymerization

A polymer synthesis may occur if the following three conditions are met: The
monomers have to be bifunctional (double or triple bonds, aromatic rings or func-
tional groups) to form the polymer chain, the free enthalpy needs to be lower for

3
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Random W
Alternating W
Gradient W
Block W

Figure 2.1 Different types of linear binary copolymers. In random copolymers, the
probability of both monomers is uniformly distributed over the polymer chain length.
In alternating copolymers, the monomers alternate between A and B. In gradient
copolymers, the probability of monomer A gradually decreases with polymer length
in a sigmoid or linear fashion. Block copolymers consist of two (or more) blocks, i.e.
longer sequences of one monomer type.

the polymer than for the monomers to form stable macromolecules, and the reaction
rate has to be sufficiently high.

There are two major types of polymerization reactions, step-growth and living poly-
merization [89]. Step-growth polymerization is a controlled reaction. Naturally
occurring polymers, such as DNA and RNA, are synthesized by a step-growth reac-
tion. But also industrially produced polymers, such as polyethers, polyesters, and
silicones can be synthesized with step-growth polymerization [89]. Such sequence-
controlled polymers are not subject of this work.

Living polymerization is characterized by monomers attaching to the “living” reac-
tive centers at the ends of the polymer chains, to which a free monomer can attach
to in order to become the new reactive center. We can classify living polymerizations
by the types of reactive centers: radical or ionic. Within a (free) radical polymer-
ization, there are three reactions: initiation of the chain, propagation (elongation)
of the chain by adding a monomer, and chain termination [89]. In controlled radical
polymerization, there are additional (de-)activation reactions controlling the speed of
initiation and propagation. lonic (cationic or anionic) reactions usually correspond
to the same basic reaction scheme of initiation, propagation, and termination. In
some cases, it might be reversible or no termination occurs.

Another type of living polymerization is the ring-opening polymerization, which can
be either radical or ionic. In ring-opening polymerizations, the reactive center inter-
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(a) Isoprene (also known (b) Styrene (also known as
as 2-methyl-1,3-butadiene) ethenylbenzene)

Figure 2.2 Structural formulas of the isoprene and styrene monomers.

acts with cyclic monomers, which open their ring system to attach to the polymer
chain.

Polystyrene and Polyisoprene

Polymers of isoprene and styrene are both naturally occurring compounds (Fig. 2.2).
Isoprene was discovered to be the main component of organic rubber in 1860. Styrene
was first isolated in 1839 [87]. However, it was not until 1920, that chemists realized
that the properties of the investigated substances are caused by the compounds
forming long polymer chains [87].

In this thesis, we use data obtained from copolymers of isoprene and styrene. The
copolymers were synthesized by living anionic polymerization, a technique that is
frequently used for polymeryizing other popular monomers such as ethylene oxide,
allyl glycidyl ether, (meth)acrylate, etc. This polymerization technique produces
well-defined polymers with a narrow distribution of polymer lengths, which is re-
quired for mass spectral analysis to ionize all polymer chains. Poly(isoprene styrene)
copolymers have potential applications as porous membranes [83, 84], thin films [76],
or micelles [16].

Copolymer Characterization

Polymers can be analyzed with various experimental methods. During the syn-
thesis, monomer consumption can be measured by gas chromatography (GC) [58],
high-performance liquid chromatography (HPLC) [7], 'H nuclear magnetic resonance
(NMR) spectroscopy [49], or size exclusion chromatography (SEC) analysis [77] to
establish kinetic plots [48]. Simultaneous analysis of molar masses and chemical het-
erogeneities can be done with 2D-chromatographic methods such as HPLC (critical
condition)-SEC coupling (2D-LC) [4, 29, 30, 72].

We are primarily interested in the distribution of polymer sequences. One of the
oldest methods to identify the monomer content and parts of the sequence distri-
bution of polymers is pyrolysis-gas chromatography [37, 104]. Modern methods
for structural characterization of polymers are SEC [6, 97], HPLC [98], 'H and 3C
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NMR spectroscopy [35], asymmetrical flow field-flow fractionation [70, 102], and vis-
cosimetry [74]. However, all these methods have in common, that they are unable
to characterize the full distribution of polymer sequences in a sample.

2.1.1 Copolymer Mass Spectrometry

Nowadays, mass spectrometry (MS) is frequently applied to characterize (co-) poly-
mers [63], in particular using soft ionization techniques, such as matriz-assisted laser
desorption/ionization (MALDI) [73] or electrospray ionization (ESI), in conjunction
with time-of-flight (TOF) analyzers (Fig. 2.3).

MS techniques can highlight different features of polymers such as molecular weight
distribution [36], or end-groups [17]. MS is frequently used to determine composi-
tional drift [64], or the average composition [1, 47, 65, 67, 117], which then can be
verified by other techniques, such as NMR.

MS Signal Processing

The output of the detector of a mass spectrometer is an analog signal. An ana-
log/digital converter samples the analog signal at a certain rate and converts it to a
digital signal, that the instrument software translates to a mass spectrum. Different
types of mass spectrometers record different properties of the ions. For example,
a TOF mass spectrometer records the time-of-flight of the ionized particles, which
is roughly the square root of their mass over charge (m/z); thus, the instrument
translates the time dimension of the signal. The result is a raw spectrum (Fig. 2.4):
a list of m/z and intensity pairs. The mass is usually given in atomic mass units (u)
or Dalton (Da), where 1 Da is - of the mass of a *C atom (see below), while the
intensity has no units.

Mass spectrometers are sensitive and small changes in the environment can result
in large changes in the spectrum. For example, the TOF tube might expand or
retract depending on the room temperature. This leads to uncertainties in the m/z
dimension, which can be reduced by calibrating the mass spectrum by measuring a
known standard. The calibration is either external — measuring the standard before
the actual measurement — or internal — spiking the sample with the standard [118].

There may also be uncertainties in the intensity dimension. Noise caused by the
detector can be reduced by smoothing the raw spectrum. Ubiquitous ions may lead
to an amplified intensity in the lower m/z regions, which can be reduced by applying
a baseline correction [5].

A raw mass spectrum is a sampled representation of a continuous signal. For com-
putational processing of a spectrum, it is often necessary to convert it into a list
of signal peaks with their m/z positions and intensities. Peak picking describes
the process of transforming a raw spectrum into a peak list. An extensive range
of methods is available for peak picking [78]. For example, peak positions can be
determined by the weighted average of their datapoints or a wavelet approach [51].
The peak intensities can be determined by the maximum or area-under-curve of the
peaks.
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Figure 2.3 Schematical overview of a typical setup of a mass spectrometer in copoly-
mer mass spectrometry: Ion source (ESI or MALDI), mass analyzer (TOF), and ion
detector. An ESI ion source draws a liquid sample solution through a capillary
tube and applies a high voltage to create charged droplets. Eventually the solution
evaporates from the droplets until only gas phase ions remain. A MALDI ion source
creates gas phase ions by firing a pulsed laser at a target plate with dried crystals of
sample and matrix material. The matrix absorbs the laser energy, is desorbed from
the plate and ionizes the sample. After ionization, the TOF analyzer accelerates the
ions with an electric field and the detector measures their time-of-flight through the
field-free drift region. Because lighter ions have higher velocities and fly faster than
heavier ions, the ions get separated by mass. In a final step, the resulting change
in current at the detector is translated by a computer to a spectrum of mass over
charge (m/z).
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Figure 2.4 Left: Example of a raw copolymer MALDI-TOF mass spectrum with
ubiquitous ions accumulated in the lower mass region. Right: Example of an isotopic
pattern in a copolymer mass spectrum.

Isotopes and Isobars

For neutral atoms, the number of electrons equals the number of protons. How-
ever, the number of neutrons in the nucleus may vary. These variations are called
isotopes. For example, a *C isotope has 6 protons and 7 neutrons. While most
elements have only one known stable isotope, most the primary elements of organic
chemistry — C, H, N, O, P, and S — have more than one naturally occuring isotope
(except phosphorus). The probability of encountering an isotope is determined by
the empirical isotopic distribution or isotopic pattern of each element. The isotopic
distribution of a molecule (Fig. 2.4) is determined by the isotopic distributions of
its atoms.

The monoisotopic mass of an element is its most abundant isotope. In mass spec-
trometry, the corresponding peak is called the monoisotopic peak, subsequent peaks
the +1 peak, +2 peak, etc. The monoisotopic mass of a molecule is the sum of the
monoisotopic masses of its atoms. For large molecules, including polymers, this often
does not correspond to the most abundant peak, since the probability of containing
heavy isotopes increases with the number of atoms per molecule.

Isobars are different molecules, whose monoisotopic masses are so close, that they are
indistinguishable with current mass spectrometers. This is a challenge for copolymer
MS, where certain masses of monomer types A and B may lead to isobaric copoly-
mers. Additionally, the numbers of atoms of isobaric copolymers are most often
too similar to be able to confidently distinguish the isobars based on the isotopic
patterns.

2.1.2 Polymer Characteristics

Biopolymers formed by natural processes, such as DNA or proteins, are typically
monodisperse [14]. That is, all polymers of a sample have the same chain length.
On the other hand, synthetic polymers synthesized by living polymerization are
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usually polydisperse with a wide range of polymer chains [14]. A mass spectrum of
a polymer sample provides the molecular weight distribution (MWD), which can be
used to calculate several key measures.

For homopolymers, the chain length distribution (CLD) corresponds to the MWD.
For copolymers, where generally the mass of monomer A does not equal the mass
of monomer B, we can calculate the CLD by summing up all peaks that correspond
to the same number of monomers. In the literature, several distributions for mod-
eling the CLD can be found: most probable (Schulz-Flory), gamma, Poisson, or
hypergeometric distributions [13, 34, 94]. All these distributions are related. On
the one hand, for large chain lengths the most probable distribution approximates
the gamma distribution, while the gamma and binomial distributions approximate
the Poisson distribution for large chain lengths. On the other hand, the gamma
and Poisson distributions are the limiting cases of the hypergeometric chain length
distribution [94].

The peak molecular mass M, is the most abundant mass in a polymer sample. Let
M; be a molar mass (mass of a substance divided by the amount of substance) and
N; be the number of moles (amount of substance given in mol) of all polymer chains
with molar mass M;. Then the number average molar mass M, is arithmetic mean
over all molar masses:

M, = SN, (2.1)
The weight average molar mass M, is defined as:
My, = 3. Ny M; (2.2)

The degree of polymerization (DP) is the average number of monomeric units in a
macromolecule. For homopolymers with monomer mass M, it is defined as:

M,

DP = —
Mo

(2.3)

The polydispersity index (PDI) is a measure of distribution of the molar masses and
is defined as:

M
PDI = —*© 2.4
i (2.4)

The PDI is related to the variance of the distribution. Monodisperse polymers have
PDI of one, polydisperse polymers have a PDI > 1. In general, the larger the PDI
is, the broader is the MWD.
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2.2 Numerical Optimization

In its most general form, an optimization problem can be expressed by the following
set of (in)equations

minimize fy(z) (2.5)
subject to  fi(z) <b;, i=1,...,m,

where z is the vector of optimization variables, fo : R™ — R is the objective function,
functions f; : R® — R are the constraint functions, and b is a vector of known
coefficients. The goal is to find an optimal vector x*, that minimizes the value of the
objective function while satisfying all constraints. The constraint functions confine
the search space for z* to a feasible region. We implicitely assume, that the feasible
region is not empty. On a side note, optimization problems can of course also be
formulated as maximization problems.

Optimization problems can be classified by the mathematical properties of the ob-
jective and constraint functions. In the following, we briefly give a description of
the optimization types used in this thesis.

Linear Programming

An optimization problem is a linear program (LP), if both the objective function f
and the constraint functions fi,..., f,, are linear, that is if they satisfy

filax + By) = af(z) + Bf(y) (2.6)

for all x,y € R™ and «, 8 € R. For linear programs, we can express Eq. 2.5 in the
canonical form

minimize ¢’ (2.7)
subject to Az <b,

where b is a vector of constants, ¢ a vector of coefficients, and A is a matrix of
coefficients. The feasible region of a linear program is a convex polytype in R",
defined by the intersection of the constraints (Fig. 2.5). If we want to solve the
LP, we need to find a point in the polytope, where the objective function has the
minimal value.

There are two competing approaches to solve an LP: The simplex and interior point
methods, which walk along the edges or interior of the feasible region, respectively.
The simplex method has exponential worst case complexity while the interior point
method is polynomial [81]. However, both methods are fast in practice and modern
LP solvers can easily handle instances with hundreds of variables and thousands of
constraints [11].
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Figure 2.5 An example of an LP with two variables and three constraints. We
see an example level set of the objective function, 7.e. the set of all points with
f(z1,x2) = ¢ for some constant ¢ € R. To find the optimal solution z*, we have to
optimize in the direction indicated by the arrow.

General Purpose Optimization

While LPs can easily solve large optimization problems, they require the objective
and constraints to be linear. But what if one or more of the objective and constraint
functions are non-linear? In general, it is advisable to investigate if the functions
are convex or if the problem can be formulated as a geometric program. Then, we
can apply solvers for convex or geometric programs, respectively.

Unfortunately, most optimization problems are neither convex, geometric, nor lin-
ear [11]. However, the general optimization problem (Eq. 2.5) is surprisingly difficult
to solve. In the recent years, the field of non-linear optimization has attracted many
scientists and produced a large number of different algorithms [79]. The typical
approach in practice is to simply try out a range of these methods on the problem
in question [11].

Usually, non-linear optimizers are classified into local and global optimization [11,
81]. In this work we are primarily interested in finding global optima and we prefer
to classify the optimizers into hillclimbers and evolutionary algorithms. Hillclimbers
start with an arbitrary point and jump into the “correct” direction until they converge
at a local minimum. Traditionally, they are local optimizers. However, hillclimbers
can be used to find global optima, for example by introducing restarts with random
starting points or random jumps [81]. Evolutionary algorithms use a population
of points. The algorithms stochastically transform and then select points based
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on a fitness score determined by the objective function [79]. Usually, evolutionary
algorithms are computationally more demanding than hillclimbers, but are better
suited for finding the global optimum. However, both approaches are not able to
give a guarantee for finding the global optimum.

This work uses the algorithms implemented in the Optimization Algorithm Toolkit!
[15] and Apache Math Commons 3.2 library?.

2.3 Evaluation Criteria

In this section we briefly introduce the different measures used for evaluating the
results in this thesis. In this work, there are two main evaluation types, checking
matrices for similarity and evaluating the likelihood of a model.

Matrix Comparison

To compute the similarity of two matrices M and M’ of size n x m. Let M be the
mean of a matrix M. Then, the Pearson correlation coefficient r is:

i (M = BT)(f; = 3T)

r= = (2.8)
\/2:21] (M;; — M)? EZ(M',J M)?

i=1j=

If we think of the pairs (M;;, M; ;) as Cartesian coordinates, then a correlation
coefficient of » = 1 means all pomts (M, ;, M! ) lie on a line with increasing slope,
r = —1 means all points (M, ;, M] ) lie on a hne with decreasing slope, while r = 0
indicates that there is no linear correlation between M;; and M ;. Unfortunately,
having a perfect coefficient r = 1 does not imply that the matrices are equal. Given
M = M’, then all our points lie on the angle bisecting line, but the coefficient does
not capture the deviation from the angle bisector. Therefore, the Pearson correlation
coefficient is a good measure to determine random errors, but not a linear bias.

[ij

-
Il

Ms

Il
—

To determine both error types, we resort to computing the distance between two
matrices and use the normalized root mean square error (NRMSE). The NRMSE
of the matrices M and M’ is given by

NRMSE(M. M) =100 \/#HM_M/H% 2.9
(M, M) = ‘ max (M) ’ (2.9)

where [|M — M'||5 is the £?-norm of M — M.

"https://sourceforge.net/projects/optalgtoolkit/
’http://commons.apache.org/proper/commons-math/



2.3. Evaluation Criteria 13

Model Likelihood

We are given a large random sample of polymer chains D and a model, that is able to
compute the likelihood of a single polymer chain S € D. Then, we can evaluate the
model by computing the likelihood of the whole dataset D. Let H be the hypothesis,
that D was produced under the given assumptions and parameters of our model in
question. Let P(S|H) be the likelihood of a single S given the hypothesis H. Then,
the likelihood of a dataset D is:

P(D|H) = [[ P(S|H) (2.10)
SeD

Usually, the likelihoods are small and the dataset is large. This calculation is nu-
merically challenging and prone to numerical underflow. To avoid these issues, we
calculate the log likelihood instead by:

logP(D|H) = logP(S|H) (2.11)
SeD

To further evaluate a model, we can compare the log likelihood of the data under
the model to the log likelihood under the null hypothesis Hy. In the null model, all
positions in the polymer chain are independent random variables. For each position
over all chains in the dataset, we determine the frequencies fa and fg of A and B,
respectively. Let P(s;) be the likelihood of monomer ¢ in chain S. Then, the log
likelihood of a dataset, assuming the null model, is:

|S] S|

s if S; = A
log P(D|Ho) = Y "logP(S|Ho) = Y Y logP(s;) = Y _ > log Ja
SeD SeD i=1 SeD i=1 fe, if s, =B
(2.12)
The log likelihood ratio is defined as:
P(D|H
log PlD|H) =logP(D|H) — logP(D|H,) (2.13)

P(D|Hy)

The log likelihood ratio is a “sanity check” for statistical models. If the ratio is below
zero, we dismiss our hypothesis, and accept it, if the ratio is above zero.

Given several models and a dataset, we can compare the models by comparing their
log likelihoods. If we are also interested in comparing against the null hypothesis,
we can use log likelihood ratios.
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3. Computational Approaches to
Copolymerization

In this chapter, we introduce the key concepts necessary for understanding this
work and discuss the current state of art in computational approaches to analyzing
copolymerizations. First, we introduce copolymer fingerprints, a convenient two-
dimensional representation of copolymer mass spectra. Second, we discuss the state
of art in modeling the copolymerization process.

3.1 Copolymer Fingerprints

Copolymer mass spectra can be transformed to copolymer fingerprints [25, 41, 101,
108], which represent the two-dimensional distribution of all copolymer chains. A
copolymer fingerprint shows the abundance of each possible combination of monomer
counts. In this thesis, we focus on copolymer fingerprints of linear binary copolymers.

Wilczek-Vera et al. [109] introduced copolymer fingerprints. Fingerprints provide
information about the copolymer architecture [44, 45], the distribution of block
lengths in block copolymers [109-111, 113], or the reactivity ratio of the consumed
monomers [46]. They have been used to study degradation [47] and MALDI ma-
trix effects [93]. Copolymer fingerprints are related to the bivariate distribution of
monomer ratio and degree of polymerization, which can be used to highlight com-
positional drift [62, 66, 117].

3.1.1 Notation

This work focuses on linear binary copolymers: linear chains of monomer repeat-
ing units from two different monomer species, usually joined by covalent bonds.
Throughout this thesis, we will denote the monomers as A and B. In computer
science terms, our objects of interest are strings over the alphabet ¥ = {A B}.

15
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Figure 3.1 Example of the standard method to compute copolymer fingerprints
using peak heights of the nearest observed peaks demonstrated with a poly(methyl
methacrylate-co-n-butyl acrylate) (PMMA-co-PnBA) copolymer. We immediately
see a major disadvantage: If we estimate the copolymer abundances using the peak
height of the most abundant peak of each isotopic pattern, the overlap of both
patterns leads to a false estimate of MMAg;-nBA;5.

In this work, a copolymer fingerprint is a matrix M, where M, ; holds the abun-
dance of monomer composition A;B;, i.e. all copolymers with ¢ monomers A and j
monomers B.

3.1.2 State of the Art in Computing Fingerprints

In the past, several papers have been published on the straightforward method of
transforming copolymer mass spectra to fingerprints [44-47, 93, 109-111, 113]. The
abundance of each entry in the fingerprint is assigned to the height of some mea-
sured peak, which is closest to the most abundant theoretical isotopic peak of this
copolymer (Fig. 3.1). However, this approach has certain drawbacks: [101, 110]
First, since peak shapes change with increasing mass, abundance of the molecule is
not correlated to the peak height but to the area of the peak. Using peak heights is
only beneficial for very high masses (above the masses reported in this thesis), where
peak resolution becomes poorer. Second, overlapping isotopes of different copoly-
mers may result in imprecise polymer abundance assignments (Fig. 3.1). And third,
isobaric molecules may prohibit entirely to correctly resolve copolymer abundances
(Fig. 3.2) [41].

Strip-Based Regression

Vivé-Truyols et al. [101] presented a regression method to determine copolymer
fingerprints from a single MS measurement. The method fits peak curves to the
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Figure 3.2 In this example, the standard method for computing copolymer finger-
prints can not distinguish between three isobaric molecule candidates with almost
equal monoisotopic masses. This results in several possible distributions of abun-
dances in the copolymer fingerprints.

raw data, and can resolve overlapping isotopes. Because fitting the complete MS
spectrum is computationally expensive, the method truncates the spectrum into
strips. However, this truncation complicates quantification of isotopes on the strip
borders.

MassChrom 2D

All methods mentioned above determine copolymer fingerprints from a single MS
measurement, usually from MALDI-TOF MS data. A long-known issue of MALDI
ionization is the non-linear relationship between MS signals and molecule abun-
dances [42, 82, 85, 86]. Weidner et al.[106—-108] presented MassChrom 2D, a method
to determine copolymer fingerprints using liquid adsorption chromatography at crit-
ical conditions (LACCC) MS measurements. By using intensity information from
chromatography, the authors evade the non-linear relationship between MS sig-
nals and molecule abundances. Fractions are separately analyzed and assembled
in silico to form single copolymer fingerprints. Unfortunately, LACCC-MS is time-
consuming, and critical conditions have to be known for at least one of the polymers.

3.2 Copolymerization Models

Several theoretical models for copolymerization were devised in the past, starting
with Mayo and Lewis and their simple terminal model [59], which describes four
propagation reactions, which append free monomers A and B to chain ends A® and
B* according to the reaction rates kxy, with XY € {A B}:
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A"+ A 2 AAC

A®+ B8, AR (3.1)

B* + A 1%, BA®

B* + B -~ BB*
Computational approaches to such a model can be categorized into three types:
ordinary differential equations, Markov chains, and Monte-Carlo methods.
Ordinary Differential Equations

An ordinary differential equation (ODE) describes the change of one or more vari-
ables, in our case monomer concentrations [A | and [B |, over time. Mayo and Lewis
interpreted their reaction scheme as a set of ODEs, which are characterized by the
reactivity ratios:

kAA

=44 2
" s (3:2)
k
rg = 22 (3.3)
kpa

Using the reactivity ratios, they deduced the copolymer equation, which provides
the theoretical change of composition, i.e. monomer ratio, of the copolymer at any
time point during the synthesis:

A [A(ralA] + [B])
a8 ~ BI(A] + ralB) (34)

This set of ODEs can be solved fast, but does not convey any information on the
chain sequences. Kryven and ledema advanced the ODE approach by applying
population balance equations [50]. They showed the importance of recovering “dis-
tributions in a full form rather than averages, since average values may often be far
from the most frequently occurring ones.” [50, p. 305] They were able to extract
simple sequence patterns, but not the full distribution of sequences.

Markov Models

A Markov chain is a stochastic process, where the next event depends only on
the current and/or previous events. Several types of Markov chains are defined in
literature. For our purposes, the simplest type is sufficient: Formally, a discrete,
homogeneous Markov chain is a sequence of random variables Xy, Xo, ..., X, ...
defined at discrete time points ¢ > 1 on the discrete probability space Q2 with X; :
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Q — R. Let x,y € €0, then the homogeneous property of the Markov chain is defined
as:
Py = x;t) = P(Xi1 = 2| Xe = v) (3.5)

Informally, we can think of the Markov chain as an discrete automaton with the
states 2. At each time point ¢, the automaton randomly switches its state to a
new or the same state. The state transition probability only depends on the current
state.

The transformation of the traditional Mayo-Lewis model to a Markov chain is
straightforward [13]. The transition probabilities can be simply deduced from the
propagation reactions (Eq. 3.1):

R o kaalA®][A]

PO = A = L ATATA + hna AT
. . kag|A®][B]

PIA* = BY) = L TATIA] + hna ATB (36)
C o keaBA

PB" = A = ToABTA + hoa BB

P(Bo N Bo) o kBB[B.HB]

~ kga[B°][A] + kgs[B*][B]

The resulting Markov chain is a simple model of the copolymerization. It can be used
to compute the probability of a single copolymer chain, but not the distribution of all
chains, as it does not take chain lengths nor time-steps without monomer additions
into account.

Monte-Carlo Simulations

Classical probability theory uses probability density functions to describe a random
process. But what about random processes, where the density function is computa-
tionally too expensive or even the true density function is unknown? One approach
are Monte-Carlo simulations, which simply describes the process of repeated ran-
dom sampling. The law of large numbers states that with increasing sample size the
empirical distribution will likely converge to the true distribution.

Monte-Carlo methods can be used to simulate chemical reactions; Gillespie’s al-
gorithm [33] has been frequently used to simulate copolymerizations by randomly
growing copolymer chains [12; 20, 60]. Several times Monte-Carlo simulations have
been evaluated against experimental data [21, 23, 112] and it has been shown that
Gillespie’s algorithm can be used to compute copolymer fingerprints [22, 91, 99, 100].

Monte-Carlo simulations easily allow for more complex reactions schemes than the
simple Mayo-Lewis model, for example by including initiation and termination reac-
tions. However, Monte-Carlo simulations are time- and memory-intensive, in partic-
ular if an accurate representation of the distribution of copolymer chains is desired.
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4. Datasets

In the following, all computations were performed in parallel on a compute cluster
of four 2.4 GHz CPUs with 16 cores each and 6GB RAM per process.

4.1 Experimental Data

We briefly describe the data sets, concentrating on the computational focus of this
thesis and omitting details of the chemical experiments. For more information re-
garding materials, polymerization procedures, or instrumentation please refer to the
corresponding publications [25-27].

P1: (PS-r-Pl)-r-(PS-r-Pl)
AN
o B
11: PS-r-PI 11-2: PS-r-Pl
AN AN
B

Figure 4.1 Schematic representation of the synthesized (PS-7-PI)-r-(PS-r-PI)
copolymer P1. P2 and P3 have the same architecture, but different PS to PI ratios.

4.1.1 (PS-r-Pl)-r-(PS-r-Pl) Copolymers

We synthesized three different random copolymers (Fig. 4.1), each consisting of two
macromers with both a different ratio of styrene and isoprene (Tables 4.1 and 4.2).

21
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I1 I2 I3
pSs PI PS PI PS PI

Percent[%] 80 20 70 30 60 40
Degree of polymerization 19 7 17 11 14 15
Molar mass [g-mol ™' ] 2000 500 1750 750 1500 1000

I1-2 12-2 13-2
PS PI PS PI PS PI

Percent[%] 20 80 30 70 40 60
Degree of polymerization 5 29 7 26 10 22
Molar mass [g-mol™' ] 500 2000 750 1750 1000 1500

Table 4.1 Summary of theoretical values of the first (I1 to I3) and second (I1-2 to
[3-2) macromers.

P1 P2 P3

PS 24 24 24
PI 36 37 37
Molar mass [g - mol ! ] 5,000 5,000 5,000

Table 4.2 Summary of theoretical values of the copolymers P1 to P3.

We measured the first poly(styrene-rand-isoprene) (PS-r-PI) macro-mers (I1 to I3)
and the complete (PS-7-PI)-r-(PS-7-PI) copolymers (P1 to P3).

The first (I1 to I3) and second macromers (11-2 to 13-2) are constituted of a random
copolymer of styrene and isoprene. Theoretical molar masses of 5,000 g mol™*
(2,500 g mol™! for each macromer) were targeted for the copolymers P1 to P3.
Differences between the theoretical and observed values for the DP in particular
for isoprene can be explained by the difficult handling of the monomer, the related
inaccurate added volume and the Ag cluster suppression in the MS spectra. All
copolymers show PDI values lower than 1.1, indicating a living character of the
polymerization.

4.1.2 PS and Pl Homopolymer Mixtures

We synthesized polystyrene (PS) and polyisoprene (PI) homopolymers (Table 4.3).
All homopolymers show PDI values lower than 1.1, indicating a living character
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Figure 4.2 Exemplary MALDI-TOF MS of the PS-2500/PS-5000 homopolymer
mixture.

PS-2500 PS-5000 PI-2500 PI-5000

Degree of polymerization 19 48 29 73
Molar mass [g-mol ' ] 2,000 5,000 2,000 5,000

Table 4.3 Summary of theoretical values for PS and PI homopolymers.

of the polymerization. The M, values of the homopolymers are near their theo-
retical molar masses. Equimolar mixtures of 2,500 g - mol™! and 5,000 g - mol™!
homopolymers were prepared from PI and PS. Each homopolymer MS measurement
was replicated three times (Figure 4.2 and Appendix Figure A.6). Additionally, we
remeasured the copolymers P1 to P3.

4.1.3 Data Processing

MS data were processed using PolyTools 1.0 (Bruker Daltonics) and Data Explorer
4.0 (Applied Biosystems). The averaging of the homopolymer replicates was per-
formed using in house built Groovy scripts. Spectral preprocessing, i.e. centroid-
ing and baseline correction, and all other computations were performed using CO-
CONUT [25].

4.2 Simulated Data

To assess the accuracy of our methods, we need to compare against a known ground
truth. To this end, we use simulated mass spectra to evaluate our method for
computing fingerprints (Section 5.1) and Monte-Carlo simulations to evaluate our
copolymerization models (Chapter 6).
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HA  UB OA o P

1 11.0 9.0 2.4976131963448998 2.3899262596580195 -0.4501784953590977
2 6.0 12.0 2.532897843117028  4.349914949331601  0.40217536504947726
3 80 9.0 3.5328177424903933 2.8424627024892173  0.25925811791731745
4 19.0 13.0 5.192975793306746 4.12753685222484 0.2624095395236721

5 13.0 10.0 5.571620004044149  5.313466676925163 -0.05731275108645284

Table 4.4 Parameters of the simulated fingerprints used for evaluation. The five
bivariate normal distributions were generated with randomly chosen parameters
(means p uniformly drawn from [6,22], variances ¢ uniformly drawn from [2,6],
shape p uniformly drawn from [—0.5,0.5]).

4.2.1 Simulated Mass Spectra

We simulated poly(methyl methacrylate-co-n-butyl acrylate) (PMMA-co-PnBA)
and poly(methyl methacrylate-co-hydroxyethyl methacrylate) (PMMA-co-PHEMA)
spectra as numerous overlapping isotopes and isobaric molecules appear in these
copolymers. Although we can not simulate all aspects of the physical processes of
an MS instrument, we tried to capture several fundamental aspects.

We start by generating a copolymer fingerprint. To this end, we use five bivari-
ate normal distributions with randomly chosen parameters (Table 4.4). Given the
copolymer fingerprint, we iterate over all monomer compositions: We add the ap-
propriate end groups, and simulate the first 12 peaks of the isotope pattern [9],
estimating both intensities and mean peak masses. We disturb each isotope peak by
adding normally distributed noise with mean zero and variance § to the masses, and
multiplying intensities by log-normal distributed random noise with mean zero and
variance o, with the noise parameter o given below. For an isotope peak with mass
m and intensity I, we add a Gaussian function with mean m, variance é, and height
(multiplier) I to the simulated spectrum. To get a raw spectrum, we then sample
the sum of Gaussians at sampling points with mass difference 0.1 Da. Finally, to
simulate detector noise, this sampled (discretized) spectrum is again perturbed using
multiplicative noise following a log-normal distribution with mean zero and variance

g

5.

The PMMA-co-PnBA mass spectra show a large number of overlapping isotope
patterns, whereas the isotope patterns in the PMMA-co-PHEMA spectra have many
possible isobaric molecule candidates. We used five noise levels ¢ with the values
0.0, 0.05, 0.1, 0.2, and 0.5. For each copolymer, all five copolymer fingerprints and
all five noise levels, we simulated five mass spectra; resulting in 250 spectra in total.
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Reaction type LP RLP FRP CRP
Initiation X X X X
Propagation X X X X
Depropagation X

Termination (Recomb. & Disprop.) X X
Initiator Decomposition X
(De-)Activation X

Table 4.5 Overview of the modeled reactions types for the living polymerization
(LP), reversible living polymerization (RLP), free radical polymerization (FRP),
and controlled radical polymerization (CRP).

4.2.2 Monte-Carlo Simulations

Monte-Carlo Reaction Schemes

We performed Monte-Carlo simulations of different polymerization types (Table
4.5): Living polymerization (LP), reversible living polymerization (RLP), free radi-
cal polymerization (FRP), and controlled radical polymerization (CRP). For living
polymerization, the following reaction scheme was used. An active center is do-
nated as X*, and a polymer chain ending with X as ~X, where X can be one of the
monomers A or B, or initiator I. Two types of reactions, initiation and propagation
reactions were modeled:

T+A 24 oas|
N Initiation
I+ B 22 ~B®

A A B2 pe )

kap

~A® + B 42, _B*

kpa

~B® +A =5 ~A°

» Propagation

kep

~B* + B 2% ~B* |

For reversible living polymerization, we use the initiation and propagation reactions
of the living polymerization and additionally model depropagation reactions:
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)

NIA‘ ~I*+ A

~IB* — ~I*+ B

NAA' ~A*+ A _
Depropagation

NAB’ ~A*+ B

NBA' ~B*+ A

~BB* ‘%2, B* 4 B |

For radical polymerization, we use the initiation and propagation reactions of the
living polymerization and additionally model chain termination by recombination
and disproportionation:

~A® 4~ ~Ae Eaay NAAN
~A® 1~ B' ~AB~ ¢ Recombination
~B® + ~ B' ~BB~ )

dp

~AC 4+ ~AC 2 Fia ~A+~A

~A® 4 ~B® SABy kil ~A + ~B ¢ Disproportionation

dp

~B* 4+ ~B* “ZZ ~B + ~B |

For free radical polymerization, we use the initiation and propagation reactions of the
living polymerization, chain termination by recombination and disproportionation,
and the following additional initiation reaction to model a decomposing initiator
complex:

I, LNy I}Decomposition

For controlled radical polymerization, we use the initiation and propagation re-
actions of the living polymerization, chain termination by recombination and dis-
proportionation, and the following additional activation and deactivation reactions,
where Z and L are (de-)activators:
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1Z+L 1417
~AZ + L & ~A® + L7 o Activation
~BZ+L —E ~B*+ L7 |

da
1+1L7 217 4L

k.da . .
~A® + L7 22 A7 + L ¢ Deactivation

da
~B* 4 L7 ~25 ~BZ 4 L |

Monte-Carlo Simulation Parameters

For the Monte-Carlo simulations, we use 10? to 10° polymer chains and 10 repeti-
tions. The simulations are stopped at full conversion of A and B or if the simulated
reaction time reaches 10 seconds. We implemented the Monte-Carlo simulation
software in Java using the conventional Gillespie’s algorithm [33] and computed
fingerprints by calculating a histogram from the simulated chains.

For all datasets of living polymerizations, the reaction rates (table 4.6) were chosen
such that rp = % = r, with the reactivity ratios ra = ﬁz;g, rg = ]Zi%i, and the
ratio of homopropagation rates r = ]’:;%g For Monte-Carlo simulations of the other
polymerization types, the parameters of the dataset with DP,, = 25,r4 = 2.0 for
initiation and propagation reactions were used. The reaction rates of the termina-
tion and depropagation rates k%, k", k% varied over 0, 0.001, 0.01, and 0.1. For
free radical polymerization, a decomposition rate kPF¢ = 10 were used, and for
controlled radical polymerization, activation rates £ = 100 and deactivation rates

k4 = 0.01 were used.

For the evaluation in Section 6.3, different noise levels were simulated by multiplying
the fingerprint abundances by log-normal distributed random noise with mean zero
and variance o, where the noise parameter ¢ has the values 0, 0.05, 0.15, and 0.25.
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Dataset Initial concentration Reaction rates
DP, ra [o [Ao [Blo kan  kas kea kes
3 001 1 1 2 0.0t 1 001 1
3 005 1 1 2 005 1 005 1
3 0.1 1 1 2 0.1 1 0.1 1
3 025 1 1 2 025 1 025 1
3 05 1 1 2 0.5 1 0.5 1
3 07 1 1 2 0.7 1 075 1
3 1 1 1 2 1 1 1 1
3 1.25 1 1 2 1.25 1 125 1
3 1.5 1 1 2 1.5 1 1.5 1
3 1.75 1 1 2 .75 1 1.7 1
3 2 1 1 2 2 1 2 1
25 2 1 10 15 2 1 2 1
45 2 1 20 25 2 1 2 1

Table 4.6 Initial concentrations (in mol-L ') and reaction rates of the Monte-Carlo

simulations of living polymerizations.




5. From Mass Spectra to Copolymer
Fingerprints

In this chapter we introduce copolymer fingerprints.! First, we discuss how to ro-

bustly transfrom mass spectra to fingerprints. Second, we propose a method to
counteract the mass discrimination in MALDI-TOF mass spectra: peaks in (mostly)

higher mass ranges of a spectrum being less pronounced than they theoretically
should be.

5.1 Computing Copolymer Fingerprints

In this section, we propose a method to infer copolymer fingerprints from a sin-
gle MS measurement. Our method uses peak areas instead of peak heights and
can handle overlapping isotopes. We also propose an approach to resolve isobaric
molecules, which is a frequently occurring issue in copolymer MS [41]. To the best
of our knowledge, this has previously been possible only by using complementary
measurements, such as NMR investigations.

We demonstrate the validity of our method using several synthesized copolymers
measured with MALDI time-of-flight (TOF) MS. To evaluate our method’s power
to resolve isotope overlaps and isobaric molecules, we have simulated mass spectra
for different monomers. We evaluate our software to the approach of Vivé-Truyols
et al. [101], which is the most recent for this problem.

5.1.1 Computational Workflow

In the first step of our method, we centroid the spectra, that is, we identify peaks
and their area-under-peak. We do not provide details for this approach, as it has

!In this chapter, parts of the sections 5.1.2, 5.2.1, and 5.2.4 where written in collaboration with
Sarah Crotty. The focus of Sarah Crotty was on the chemical issues while my focus was on the
computational aspects.

29
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been discussed extensively in the literature [116]. For the following steps of our
analysis, we will use the representation of the spectrum as a list of peaks and peak
areas, as this allows us faster processing of the data. To reduce noise, we remove
peaks below a certain threshold. We assume that all molecules in the MALDI
spectrum are single-charged. The mass range is the interval from the smallest mass
to the largest mass of any observed peak, but can be further restricted if required.
Furthermore, we assume that the absolute mass error in the measured spectrum is
at most Ay, < 0.5 m/z; we will call this fixed Ay, the mass accuracy. This implies
that measured peaks can be uniquely assigned to one theoretical peak of an isotopic
pattern. To simplify our presentation, we assume that the mass of initiating and
terminating end-groups plus cationization agent is a constant which is ignored in
our presentation: As a consequence, the mass of a monomer composition A;B; is the
sum of its monomer masses m =i -mp + j - mg.

Different compositions of monomer repeating units A and B can result in copolymers
with similar monoisotopic masses. To this end, we often observe peaks with multiple
potential explanations. We define two monomer compositions as isobaric if the
difference of their monoisotopic masses is less than the mass accuracy. In this case,
peak mass differences of the theoretical isotopic patterns for these two monomer
compositions will usually be smaller than the mass accuracy, too. As the last step of
our method, we present an approach for untangling the isotopic patterns of isobaric
monomer compositions.

However, even if the difference of monoisotopic masses of two monomer compositions
is above the mass accuracy, it is possible that some isotopic peaks of their theoretical
isotopic patterns have mass difference below the mass accuracy. We say that two
isotopic patterns are overlapping, if the difference of at least one peak in both two
isotopic pattern is below mass accuracy.

Our method estimates relative abundances of all possible monomer compositions
A;B; in the MS spectrum. It proceeds in four steps:

1. Generate all candidate isotopic patterns;

2. assign candidate peaks to the MS spectrum;

3. compute the abundances and simultaneously resolve overlapping isotopes;

4. resolve isobaric molecules.

Candidate Generation

We first compute theoretical isotopic distributions for all monomer compositions
A;B; with monoisotopic mass within the mass range. We compute the first n peaks
of each isotopic pattern by convolving the elemental isotopic distributions [9].
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Next, we identify isobaric monomer compositions. Consider the monomer composi-
tions A;B; and A;_a;Bj1a; for natural numbers 7, j > 0 and A, Aj > 0. Masses m,
and my of these two monomer compositions are:

mi=1-ma-+J-ms,

(5.1)
mo= (i — Ai) -ma + (j + Aj) - mp

Recall that two monomer compositions are isobaric, if their mass difference is less
than the mass error |m; — ms| < Ap,. Substituting m; and my using Eqn. (5.1) we
infer |Ai-ma — Aj - mg| < Ap. Thus, given Aj > 0, any natural number Ai > 0
with

Aj - —Apn Aj - A
J - mp < Ni < J - me +
ma ma

(5.2)

leads to isobaric monomer compositions A;B; and A;_A;B;a;. This is independent
of the choice of 7,j > 0. To this end, we call any such pair (Ai, Aj) an isobaric
series.

We determine all isobaric series; then, we use the isobaric series to arrange the
monomer compositions (and, hence, the corresponding isotopic patterns) into iso-
baric sets. For each monomer composition A;B; we iterate over all isobaric series
(Ai, Aj). If there is another monomer composition A;_a;Bjia; within the mass
range, these two are grouped into the same isobaric set. Note that an isobaric set
can also contain only a single monomer composition. For each isobaric set, we com-
pute an average isotopic pattern for all theoretical isotopic patterns of the monomer
compositions in the isobaric set; this will be our candidate isotopic patterns. After
computing the abundances for each isobaric series, we will distribute the abundances
over all monomer compositions in each series in the last step.

Template Matching

In this step, we assign the candidate isotopic pattern peaks to the measured peaks
in the experimental MS spectrum. However, measured peaks with a distance less
than A, can lead to ambiguous assignments: These peaks may be caused by over-
lapping raw peaks, or errors during the centroiding. Thus, we assume centroids
with a distance less than A, to originate from one continuous peak area, and merge
them. The mass of a merged peak is the area-weighted average of its component
peak masses. The area of a merged peak is the sum of its components peak areas.
Naturally, we may accidentally merge two peaks, which are actually separate, or sig-
nal with noise peaks. However, the fingerprint estimation in the next step is robust
towards this kind of error and noisy data in general.

Each measured peak is now assigned to zero, one, or several peaks of the candidate
isotopic patterns. We match an isotopic pattern peak to a measured peak if their
distance is less than A,,. Formally, let m; ;, be the mass and I; ,, the intensity of
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the k£ th peak in the isotopic pattern of monomer composition A;B;. Let m; and
I; be the mass and area under curve of the [ th measured peak. Then, the set of
matching peaks is:

St=A(0,4,k) « [my—mi | <An} (5.3)

We define Sy as the set of all unmatched candidate peaks:

So = {(i,7,k) : there is no [ with (i, 7, k) € S;} (5.4)

These sets form a partition of all candidate isotope pattern peaks.

Fingerprint Estimation

We now describe how to estimate copolymer fingerprints. For each monomer compo-
sition A;B; we want to find the matrix of relative abundances M, with 0 < M; ; <1,
which minimizes the distance of its theoretical isotopic pattern to the assigned mea-
sured peaks. Formally, we solve the following optimization problem:

argmmz Z Mij- I — L] + Z M-I ;. (5.5)

( 75 k)GSZ (’i,j,k)ESQ

The first term of Eqn. (5.5) tries to minimize the distance of the measured area under
peak [; to all its matching potentially overlapping candidate peaks, that is, the sum
of polymer abundance times theoretical isotopic intensities M;; - I; ;. The second
term of Eqn. (5.5) considers all candidate isotope peaks that have no matching
measured peak. Since these are not represented in the spectrum, we minimize the
distance of the sum of their intensities times polymer abundance M; ;- I} ;, to a zero

peak area.

The number of free parameters M; ; is determined by the number of possible template

isotopic patterns, which increases quadratic in mass: There are m+1 compositions of

two monomers for a given integer mass m = i-A+7-B [8]. The sum of all compositions
m

with integer mass at most m can be estimated by 3 (k4 1) = ™ m+3 € O(m?).
k=1

We efficiently solve this high-dimensional optimization problem by transforming it

to a Linear Program (LP). We introduce distance coefficients d; for the unmatched

theoretical peaks and a distance coefficient d; for each measured peak. Then, solving

the Linear Program
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min Z d;

l
.. Z M-I +di > 1 Vi (5.6a)
(iajvk)esl
N My L —di <L VI (5.6b)
(Zvjvk)esl
Z M - [z{,j,k +dop >0 (5.6¢)
(ivjvk)es()
D Myl —dy<0 (5.6d)
(Z'vjvk)ESO

estimates the optimal abundances M; ;. We omitted the upper and lower limit
constraints for all coefficients. Constraint equations (5.6a) and (5.6b) correspond
to the first term of Eqn. (5.5), and constraint equations (5.6¢) and (5.6d) to the
second term. In case there are isobaric monomer compositions with M;; > 0, we
will resolve them in the next step.

Resolving Isobaric Molecules

[sobaric monomer compositions have almost identical monoisotopic mass, so there
are competing possible explanations for certain measured peaks. Given any two
isobaric monomer compositions, the differences in isotope abundances of the corre-
sponding theoretical isotopic patterns are usually not significant enough to split the
measured abundances. Therefore, we suggest an alternate approach to split corre-
sponding entries in the copolymer fingerprint M. Obviously, this is not necessary if
there are no isobaric monomer compositions present.

Our task is to split abundances M;; that correspond to more than one monomer
composition, i.e. that belong to isobaric sets with two or more elements. It has been
suggested repeatedly that distributions of polymer abundances follow some common
probability distribution such as Poisson distribution or Schulz-Zimm distribution.
Wilczek-Vera et al. [109] suggested that monomer composition abundances can be
modeled by a suitable bivariate distribution, and also suggested to use Poisson or
Schulz-Zimm distributions as the marginal distributions. To simplify our computa-
tions, we further approximate this using a normal distribution: For example, the
Poisson distribution P(\) with parameter A can be approximated by a normal dis-
tribution A(\, v/A). The joint distribution of two normal distributions is a bivariate
normal distribution. We now use the bivariate normal distribution to split abun-
dances of isobaric sets with more than one monomer composition.

In principle, we may do this splitting by the following procedure:

1. Estimate the mean p = (u1,p2) and covariance matrix 3 of the bivariate
normal distribution F' = N (p,X) of the fingerprint M. In the first iteration,
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Theoretical M, (\HH NMR) M, (COCONUT) M, (COCONUT)

PS PI PS PI PS PI PS PI
In 19 7 17 9 174 8.2 17 8
12 17 11 125 11 13.7 8.3 11 8
I3 14 15 16 13 16.7 8.9 18 9
P1 24 36 21 35 23.6 26.6 25 26
P2 24 37 21 29 21.7 225 22 22
P3 24 37 22 33 23.1 26.0 24 26

Table 5.1 Summary of M,, and M, values.

we consider only those entries of M where the corresponding isobaric set has
cardinality one.

2. Do the following for each isobaric set B of cardinality two or more: Let r be
the sum of abundances of all monomer compositions in B. Now, we distribute
this abundance over all monomer compositions in B:

Fi.J)
R’L’,‘ = ) . 7” (57)
Y Flay)

(z,y)eB

Repeat this until M converges. We found that this approach is often too slow in
practice; to this end, we instead use a general purpose optimizer [80] that combines
both of these steps (estimating the bivariate normal and splitting the abundances)
into one. We leave out the tedious technical details.

5.1.2 Experimental (PS-r-Pl)-r-(PS-r-Pl)

In this section, we demonstrate our method using a (PS-r-PI)-r-(PS-r-PI) copolymer
(Section 4.1.1).

Copolymers were synthesized with two random macromers with different ratios
of styrene and isoprene (Section 4.1.1), analyzed by MALDI-TOF MS (Appendix
Fig. A.1) and the COCONUT software (Appendix Fig. A.2). The estimated copoly-
mer fingerprints (Fig. 5.2) were transformed to distributions of chain sizes and com-
positions (Fig. 5.3) by calculating the isoprene ratios and interpolating them for
each anti-diagonal of fingerprint. They show a compositional drift, indicating a high
conversion rate, since the distribution is not symmetric with respect to the monomer
fractions [66].

Table 5.1 shows the theoretical ratios between styrene and isoprene in the first
macromer and the complete copolymer, the values obtained by *H NMR and the
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Figure 5.1 Left: MALDI-TOF spectrum of the (PS-r-PI) copolymer I1. Right:
Detail of the spectrum overlayed with the estimated theoretical isotopes. We used
six isotopic peaks per pattern to estimate the abundances.

ratios estimated from the copolymer fingerprints (Fig. 5.2). The maximal value
in the fingerprint correlates to the highest intensity in the MS spectrum. It is
thus the maximum of the copolymer distribution, the M, value. We computed the
M, value by taking the average of the marginal distributions of the fingerprints
(Appendix Fig. A.3). The COCONUT and 'H NMR values are slightly lower than
the theoretical values for both monomers, which may be due to some deactivation of
the initiator by impurities in the solvent and also the challenging usage of isoprene.
The M, values of COCONUT and 'H NMR are in a good correlation for the first
macromer and are slightly shifted for the entire copolymers due to Ag™ clusters.
The clusters form when Ag™ is used as cationization agent and thus ion suppression
was used to have less interference with the polymer signal.

We did observe overlapping isotopes in the MS spectra and multiple isobaric distri-
butions in the fingerprint, most likely due to added THF to act as a randomizer.
As shown in Fig. 5.1 overlapping isotopes were resolved. Moreover, for each copoly-
mer, one isobaric distribution was determined by our method, which we confirmed
by comparing both average monomer composition from NMR and COCONUT (Ta-
ble 5.1).

Huijser et al. [45], Staal [90] and Willemse [112] suggested a quick way to provide an
indication of the microstructure from the slope of a line, fitted through the copolymer
fingerprint. In reference to the fingerprints from I1 to I3 (Fig. 5.2), we can observe
straight lines, which correlate to a block like structure. However, we expected a
random copolymer, where the line should go through the origin with a constant
slope. Possibly due to intensity deviations in the high m/z range the origin of the
line could have a slight offset which explains the uncertainty in the microstructure
determination. However, this deviation could also occur during the synthesis where
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Figure 5.2 Copolymer fingerprint of the (PS-r-PI) macromers I1 to 13 (left) and
the final (PS-r-PI)-r-(PS-r-PI) copolymers P1 to P3 (right).
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Figure 5.3 Copolymer composition as a function of degree of polymerization and
the ratio of isoprene of the (PS-r-PI) macromers I1 to I3 (left) and the final (PS-r-

PI)-r-(PS-r-PI) copolymers P1 to P3 (right).
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Figure 5.4 Left: Detail of the simulated MS spectrum of PMMA-co-PnBA showing
overlapping isotopes. The relative molecule abundances estimated by COCONUT
are represented by the centroid intensities. Right: Copolymer fingerprint estimated
from a simulated MS spectrum of a PMMA-co-PHEMA copolymer overlayed with
all isobaric distributions (contours).

THF is considered as randomizer. Nonetheless the P1 to P3 do correlate to block
like structures as was desired.

5.1.3 Simulated PMMA-co-PnBA/PMMA-co-PHEMA
In this section, we evaluate our method using simulated datasets (Section 4.2.1).

First, we analyzed two noise-free spectra of PMMA-co-PnBA and PMMA-co-PHEMA
using COCONUT with intensity threshold 0.05. The abundances of the overlapping
isotopes in PMMA-co-PnBA spectrum were correctly calculated (Fig. 5.4). The
distribution was almost perfectly reconstructed, only isotopes below the intensity
threshold were not considered by our method and, thus, lost (Appendix Fig. A.4).
In the simulated spectrum of PMMA-co-PHEMA (Appendix Fig. A.5), there ex-
ist three neighboring isobaric distributions that may explain the data; from these,
COCONUT chose the correct distribution located in the center of the fingerprint
(Fig. 5.4). Both simulations indicate that our method can reconstruct the true
copolymer distribution, given that the input spectrum is free of noise.

To assess the robustness of our method we use the second simulated dataset with
noise. We stress that for noise parameter o = 0.5, resulting signal-to-noise ratios are
below 50% on average, resulting in very challenging instances for any quantification
method. We also applied the “strip-based regression” (SBR) method [101] to this
simulated dataset. To the best of our knowledge, this is the only freely available
software for this purpose; at the same time, it is the newest approach reported in
the literature and, hence, arguably the most advanced to date.

We evaluated results by calculating the Pearson correlation coefficient of each es-
timated fingerprints against the original fingerprint (Fig. 5.5). For each method,



5.2. Abundance Correction 39

[
S
©
o
S
(&)
S 0.4
@ % 1[e-e COCONUT (nBA)
3 e - COCONUT (HEMA)
002 {/=—m SBR(nBa)
-+ SBR(HEMA)
0-0 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Noise level

Figure 5.5 Median Pearson correlation coefficient for each method and copolymer
dataset, PMMA-co-PnBA and PMMA-co-PHEMA, at five different noise levels.

noise level and dataset, we calculated the median over all coefficients. We find that
for both datasets, our method is capable of reconstructing the correct fingerprint
with very high accuracy (Pearson correlation close to one) for noise parameter up
to 0.2. Only for noise parameter ¢ = 0.5, we observe a significant deviation be-
tween estimated and original fingerprint. We see a similar pattern for the SBR
method, with no significant correlation differences for noise parameter between 0
and 0.2, and a pronounced drop for noise parameter ¢ = 0.5. But SBR reaches
smaller Pearson correlation for both copolymers: for PMMA-co-PnBA correlation
is between 0.89 and 0.93, and for PMMA-co-PHEMA it is between 0.70 and 0.74,
leaving out noise parameter o = 0.5. Examining the fingerprints calculated by SBR
for individual spectra, it appears that SBR cannot redistribute abundances of iso-

baric monomer compositions, what explains the decreased Pearson correlation for
PMMA-co-PHEMA copolymers.

On average, COCONUT required 8.7 seconds per PMMA-co-PnBA spectrum, and
46.0 seconds per PMMA-co-PHEMA spectrum. The difference was caused by the
numerous isobaric isotopes, which had to be resolved in the second dataset. SBR
required an average of 203.2 seconds per spectrum for both datasets.

5.2 Abundance Correction

In the previous Section 5.1, we propose a method to infer copolymer fingerprints
matrix from a single MS measurement. However, the accuracy of the abundances
depends highly on the accuracy of the mass spectral intensities. But the task of
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estimating the entire copolymer fingerprint from MALDI-TOF spectra turns out to
be only semi-quantitative due to the mass and composition-dependent ionization.
The differential ionization leads to mass discrimination, i.e. peaks at certain m/z’s
being less intense than expected. This phenomenon is very pronounced at higher
masses and it is best observed when peaks of the analyte ions span over a wide
mass range [56, 82]. The mass discrimination depends on instrumental parameters
such as the time-lag setting, the laser energy, and the wire-voltage setting [86].
Furthermore, mass discrimination depends on the polydispersity index (PDI) of
the analyte, and the crystal homogeneity [85], as well as the monomer and matrix
polarity [39]. In addition, it may be influenced by other factors, for example the
matrix/salt ratio and matrix/analyte ratio [42], or the matrix solubility [108]. In
consequence, many groups have used hyphenation techniques such as size exclusion
chromatography (SEC), high pressure liquid chromatography (HPLC), 2D-LC, or
ion mobility spectrometry to MS as methods for quantification [75, 95, 98, 108].
However, in our opinion MALDI-MS is a strong competitor, for example solvent-free
MALDI-MS showed significant improvements in reliability and quantitation [96].

In this section, we describe a novel computational method to counteract the differ-
ential mass discrimination and investigate its limits with respect to the PDI. We
demonstrate our new approach using two homopolymer mixtures and, for compari-
son, new MALDI-TOF MS measurements of the copolymers previously reported in
Section 5.1.

First, we very briefly discuss the experimental results. For more information please
refer to the corresponding publications [25, 26]. Second, we discuss in detail the new
computational method: We show how to estimate the molecular weight distribution
(MWD) of a homopolymer mixture, and investigate the limits of this approach with
respect to the PDI. Next, we describe how to estimate an abundance correcting
function from the MWD to counteract the mass discrimination in the homopolymer
spectra. Thereafter, we apply the correction to the homopolymer spectra and de-
scribe a method to correct the copolymer spectra, based on the previously estimated
homopolymer correction parameters.

5.2.1 Polymerization and MALDI-TOF MS

In Section 5.1, we use a (PS-r-PI)-r-(PS-1-PI) random copolymer dataset with two
random macromers with different ratios of styrene and isoprene (Section 4.1.1).
Compared to the previously reported spectra and Mn values, the newly measured
spectra clearly show degradation products, (Appendix Fig. A.8), resulting in lower
Mn values (Table 5.3). The degradation products accumulated in the lower mass
regions of the spectra and have not been taken into account for computing the
copolymer fingerprints (Fig. 5.9). The laser intensities of the MALDI laser where
46% and 49%.

Mixtures of two different molar masses of both homopolymer for PS and PI were
measured at several laser intensities. Laser intensities for PS homopolymers where
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48%, 51%, and 54%, for P1 homopolymers 36%, 45%, and 54%. The intensities in
the MALDI-TOF MS spectra reveal a dependency upon laser intensity and a dis-
crimination of high molar masses particularly at low laser powers. The PS spectra
were expected to show less discrimination of higher masses at the higher laser in-
tensities [56, 86]. We did not observe this, which could be explained by the sample
preparation: the dried droplet method being hindered from a matrix segregation
and a coffee ring effect [31]. PS homopolymers were analyzed with dithranol and
AgTFA whereas DCTB and AgTFA was used for the PI homopolymers to ionize
both homopolymer mixtures. The change in the matrix was necessary, as no spectra
with signals over the whole mass range could be obtained for the PI homopolymers
mixtures when analyzed with dithranol. Both the solvent and cationization agent
remained identical to reduce differences in the co-crystallization. We identified the
baselines for each spectrum by fitting a Loess curve to the signal “valleys”. The base-
lines were subtracted from the spectra. We identified isotope patterns and quantified
the abundances of the oligomers using the average peak heights of the isotopic pat-
terns (Appendix Fig. A.6). To reduce stochastic errors, the resulting peak lists were
averaged over the three replicates for each laser intensity.

5.2.2 Molecular Weight Distribution

We suggest to apply an abundance correcting function f to mitigate mass discrimi-
nation effects. However, since the mass discrimination is an undetermined function,
we propose a data-driven approach to estimate the correction parameters. To this
end, we need to estimate the MWD of the homopolymer mixtures. Textbooks in
polymer science [71] state that MWD of a homopolymer can be characterized by the
Gamma distribution:

Gamma(a, f) = %xa_le_ﬁx

(5.8)
The two dimensionless parameters can be transformed into parameters with dimen-
sions of M,, and My, i.e. g/mol. The parameter change is o = DD—E,: and f = a —1,
where DP, and DP,, are proportional to M, and M,,, respectively. The resulting
is known as the Schulz-Zimm distribution. Thus, given a mixture of homopolymers,
the MWD can be described by a mixture of Gamma distributions. However, our
goal is an estimation technique which is insensitive to small departures from the
idealized assumptions. We use the symbols N(zg,0) to indicate a Gaussian curve
with variance o, centered at xy. It is universally accepted that, given a mixture dis-
tribution with well separated modes, estimating a mixture of normal (i.e. Gaussian)

distributions is more robust than a mixture of Gamma distributions.

The question is, what is the error in the normal approximation to the Gamma
distribution? We are interested in the cumulative distribution function (cdf), i.e. the
integral. The upper and lower integration limits are usually —oo and x, respectively.
But in our case there is no need for negative numbers and thus integration limits
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are 0 and x. Let F(x) be the error between the cdf of the Gamma distribution
Gamma(a, 3) and ®(z) the cdf of the normal distribution N (3, g5). The Gamma
distribution is the sum of « exponential distributions. The central limit theorem
tells us, the sum of any independent and identically distributed random variables
converges in distribution to a normal distribution as the number of random variables
approaches infinity. Thus, in general, the error in the approximation is decreasing,
as a grows large. More specifically, according to the findings by Shevtsova [88], that
the maximal error between both cdfs is:

0.3328(p + 0.42903
sup |F(z) — B(x)] < 2352800 )

Sup < o (5.9)

Inserting o = \/75 and the third absolute moment p =

distribution yields:

a(a+1)(a+2)

53 of the Gamma

2 0429
sup |F(z) — ®(x)| < 0.3328(« + +—=+3) (5.10)

zeR \/5

Since this a rather pessimistic upper limit, we also calculated the actual maximal
error numerically by computing the maximum of |F(x) — ®(z)| as a function of
a. Figure 5.6 shows both error estimates as functions of the PDI M . In the
following, we briefly recall the well-known relationship between PDI and the Gamma
distribution. Let [E be the expected value of the distribution of masses M. Then,
the variance is:

=E(M?) —E(M)? = M, - M,, — M2 (5.11)
Thus, the PDI is:
M, o? o? 1
= t+l="—F1==+1 5.12
M, M121 + MZ + o + ( )

Using the numerically calculated error in the normal approximation to the Gamma
distribution (Fig. 5.6), we determined the limitations of this approach. The error
is less than 4% for PDI < 1.1, which is satisfied by the homopolymers we used.
Also, the error is less than 10% for PDI < 1.56, and less than 16% for PDI < 2.
Therefore, a normal approximation is applicable to most living polymerizations and
the MWD of a mixture of such homopolymers can be described by a mixture of
normal distributions > w; N (p;, 0;), with scaling factor w, mean p and variance o

for each homopolymerl in the mixture. We estimated the MWD of the PS and PI
homopolymers mixtures for all laser intensities using least squares nonlinear regres-
sion. Formally, let I be homopolymers in the mixture, and K the indices of the
observed abundances Y in the MS spectra. As usual, we assume that the observed
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Figure 5.6 Numerically determined error in the normal approximation to the
gamma distribution and its theoretical upper limit on a logarithmic scale as a func-

tion of the PDI.

abundances are normalized to one. The regression minimizes for each laser intensity
J the squared error:

SEj = |wi7jN(uZ-, 07;) — Y;H; (513)

5.2.3 Abundance Correcting Function

In the previous section, we described how to estimate the MWD of the homopolymer
mixtures using normal mixture distributions. In the following, we describe how to
compute the abundance correcting function from the MWDs. Supposing that there
were no mass discrimination effects, the areas under the curve of all homopoly-
mers of each mixture should be equal, because the homopolymers in the mixtures
are equimolar and the relationship between intensity and abundance is linear in ho-
mopolymers [103]. Thus, the ideal theoretical MWDs can be estimated by equalizing
the areas of homopolymers with a normalizing factor. Let I be the homopolymers
in the mixture, J the laser intensities. The theoretical MWD is

Zci,jwi,jN(,ui,ai) y (514)

el

with j € J and the normalizing factors ¢; ;. We calculate the normalizing factor
by taking the ratio of the largest area in the mixture to the area of the current
homopolymer i € I, such that:

Ig}g;cfwa,jN(ua, o)

fwiJN(:uia ai)

(5.15)

Ci:j =
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Figure 5.7 Measured (left) and corrected (right) peak lists of PS, with the estimated
MWDs of PS-2500 and PS-4200.

The mass discrimination is an unknown function. Other important parameters, such
as matrix/analyte and matrix/salt ratios, were supposed to be constant throughout
our experiments. Thus, the observed mass discrimination depends on the laser
intensity and mass. However, in principle, other parameters, such as matrix/analyte
and matrix/salt ratios can be included by conducting more experiments with varying
ratios.

To correct for the mass discrimination effects, the correcting function f(m, 1) (which
takes different values as the mass m and laser intensity [ change), can be calculated
by dividing the ideal theoretical MWD by the observed MWD. We collected the
sample points in the intervals u; + k”’ for each component and laser intensity with
the sample interval width 1 < k < 3 which is automatically chosen with an hill
climbing optimization to minimize the distance of area ratios to 1. We estimated
the abundance correcting functions fpg(m, 1) and fpr(m,() for PS and PI by fitting
a Thin Plate Spline (TPS) to the sample points (Appendix Fig. A.7) [10]. TPS is a
standard technique for interpolating data with more than one dimension. It is able
to provide a good fit to the sample points and avoids the oscillation problems that
occur when interpolating using polynomials.

5.2.4 Abundance Correction

After calculating the correcting function, we apply it to the homopolymer spectra
of PS and PI (Fig. 5.7 and Fig. 5.8, respectively). The areas under the curve of
the homopolymers are now nearly equal (Table 5.2, Fig. 5.7 and Fig. 5.8, right).
This indicates, that the spectra could be corrected for the contributions of both
investigated parameters (mass and laser intensity) to the mass discrimination, which
favored the low masses and underestimated the abundances of the higher masses.

Before correction the PS homopolymers show a slight mass discrimination for PS-
4200, which is less pronounced at higher laser powers, which could be due to “hot
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Figure 5.8 Measured (left) and corrected (right) peaks lists of PI, with the esti-

mated MWDs of PI-2500 and PI-5000.

Laser Int. PS-4200/PS-2500 Laser Int. PI-4200/PI1-2500
(%] Uncorrected Corrected (%] Uncorrected Corrected
48 0.1731 1.0634 36 0.0446 1.0594
51 0.2146 1.0006 45 0.0161 0.9474
54 0.2179 1.0542 54 0.0419 1.0484

Table 5.2 Ratios of the area under curve (AUC) of the MWDs of the homopolymers
in the PS and PI mixtures before and after correction. With no mass discrimina-
tion, both AUCs should be equal and the ratio one, because the homopolymers are

equimolar.
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spots” of the analyte on the MALDI target plate. (Fig 5.7, left) As for the PI mix-
tures, the measured spectra show a strong mass discrimination even with DCTB as
matrix. (Fig. 5.8, left) At first sight, this result may seem not in line with the re-
sults obtained by Yalcin and Schriemer [115]. In fact they used a copper salt with a
different matrix and they measured less discrimination. However, at a second sight,
the many changes in the ionization of the mixtures would affect significantly the in-
tensity and, thus, the copolymer evaluations [54]. Nonetheless, a correction for the
mass discrimination effects depending on mass and laser intensity was achieved with
the PI mixtures, despite the strong mass discrimination favoring the low masses.
Strong mass discrimination is more challenging for the estimation of the correcting
function. Besides this, our approach is mainly limited by the mass spectrometer:
The larger the mass range, the more peak intensities at higher mass might be sup-
pressed or discriminated. [14] In case the signals are discriminated to the point
of being indistinguishable from the noise, additional experiments like blanking out
lower masses (i.e. suppressing intensities of lower masses) or fractionation could be
performed.

Mass discrimination favoring low masses over high masses is a known effect in poly-
mer MS and has been studied carefully for homopolymers [39, 42, 43, 85, 86]. Al-
though the mass discrimination in copolymers has been experimentally observed,
there is, to the best of our knowledge, no comprehensive theory of the mass discrim-
ination phenomenon in copolymer MS. In the following, we assume that mass and
monomer frequency are the predominant analyte factors for the copolymer ioniza-
tion properties. In contrast, we assume that sequence plays only a subordinate role.
We also assume that the influence of the three-dimensional structure is negligible,
because this work focuses on linear polymers.

To account for the influence of the monomer frequency to the mass discrimination in
copolymers, we indicate with #PS and #P1I the copolymer composition (number
of PS and PI monomer repeating units, respectively) and we propose to apply the
correction in the simplest way, as a weighted sum according to their fraction of
monomers in the chain:

B #PS : fps(m, l) + #PI : fp[(m, l)
N #PS + #PI

f(m,1) (5.16)

Applying the correction resulted in higher average numbers of PS and PI (Table 5.3).
Instead of a compact circular shape, the distribution now shows a narrow oval shape
(Fig. 5.9). However, the upper parts are “lost”; as higher mass peaks dropped below
the noise threshold and the distribution is less smooth due to the increased influence
of the noise in the higher mass regions. The narrow shape is typical for living
polymerizations [46], which is also supported by the PDI values of less than 1.1.
Fitting a line through the most abundant oligomers before and after correction
results in a straight line off center for both, which hints at the desired random-like
structure [44].
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Figure 5.9 Measured (left) and corrected (right) copolymer fingerprints of P1 to
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P3. The overlaid contour lines on the left side represent the intensity correcting
function, i.e. the correcting factor for each monomer combination of the fingerprint.
Dashed lines represent the average compositions computed by fitting a line through
the most abundant fingerprint entries.
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M,, (Uncorrected) M,, (Corrected)
PS PI g-mol! PS PI g-mol!

P1 159 252 3,533 18.0 26.5 3,838
P2 173 222 3,472 17.9 225 3,561
P3 171 247 3,623 18.3 25.3 3,787

Table 5.3 M, values computed from the copolymer fingerprints of P1 to P3

However, due to the sharp slope of the correcting function for larger numbers of PI
units, the measured copolymers are less affected in the PI dimension than the non-
degraded copolymers would be. Also, there is the possible issue of underestimating
PI even after correcting the abundances, due to the differences between copolymer
and homopolymer MALDI matrix, which was necessary to obtain decent PI mass
spectra due to the high mass discrimination in the homopolymer mixtures. The
experimental setup for homo- and copolymers should be kept as similar as possi-
ble, because we assumed the mass discrimination affects them similarly. Generally,
a new measurement of homopolymers and re-computation of the correcting func-
tion should be performed before major changes such as a change in monomers or
MALDI matrixes. Also, as the instrument laser and detector degrade over time,
homopolymer measurements should be repeated regularly.



6. New Copolymerization Models

In this chapter we present new models for copolymerization. First, we introduce
and evaluate two models, the Bernoulli and Geometric model, each in two different
versions, with and without taking reactivity ratios into account. Second, we describe
how to estimate the model parameters and explore the model limitations with re-
spect to different polymerization types. And third, we present several algorithms to
compute useful statistical properties from the models.

6.1 The Bernoulli and Geometric Copolymerization
Models

Copolymerization is a random process, where two or more monomer species are
mixed to form polymer chains. In the past, several approaches to model copoly-
merization were proposed. The well-known terminal model by Mayo and Lewis
describes four propagation reactions and is determined by the reactivity ratios of
the monomers [59]. There are three different computational approaches to such a
basic reaction scheme and each approach has certain disadvantages. The reaction
scheme can be modeled as a set of ordinary differential equations (ODE), a discrete
Markov chain or simulated with Monte-Carlo methods.

In this section, we propose two new Markov chain models for copolymerization
kinetics, the Bernoulli and the Geometric model, based on a simple reaction scheme.
Different to Mayo and Lewis [59], our model allows for variable chain lengths and
time-dependent monomer probabilities. The accuracy of Monte-Carlo simulations
depends on the number of simulated chains, the simulated distribution converges to
the true distribution with an increasing number. This makes accurate computations
time- and memory-intensive. In contrast to Monte-Carlo simulations, our models are
exact and fast. We implement a simple copolymerization scheme using ODEs and
Monte-Carlo simulations. We verify the Monte-Carlo simulations with the ODE

49
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system. We evaluate our models against the fingerprints and copolymer chains
computed by Monte-Carlo.

6.1.1 Bernoulli Model
Chain Lengths

Consider the synthesis of a single polymer chain. We divide the continuous reaction
time into 7' discrete time steps, which we call synthesis steps. At each step, there
are two mutually exclusive events: Adding a monomer or not. This random process
is equivalent to conducting a series of T" Bernoulli trials for every polymer chain and
recording the chain lengths, i.e. how many monomers were added. Thus, the chain
lengths are binomially distributed with parameters 7', the number of trials, and p,,,
the probability of adding a monomer.

Fingerprint Model

We extend the model to describe copolymer fingerprints. At each of the T discrete
synthesis steps, three mutually exclusive events are possible: adding monomer A,
monomer B, or nothing. However, in general, the ratio of A to B changes during
the synthesis, therefore the probabilities of adding A or B change. We define the
monomer probability parameters pa(t) and pg(t), with pa(t) + ps(t) = 1 for all 1 <
t <T. pa and pg are vectors of length 7', describing the probability of encountering
a monomer A or B at each synthesis step.

We model copolymerization as an inhomogeneous Markov chain and call this basic
model the Bernoulli model (Fig. 6.1). We describe a copolymer fingerprint as a
matrix M of size n X m, in which entry M,; gives the relative abundance of a
copolymer with @ monomers of type A and b monomers of type B. The states of
the Markov chain correspond to the fingerprint entries. The transition probabilities
correspond to the three possible events, append A, B, or nothing. The transition
probability from state M, to M,y is the probability of adding a monomer py,
times the probability of encountering an A at synthesis step t:

P(Map = Mat1p;t) = par - palt) (6.1)

Analogously, the transition probability from M,; to M, is the probability of
adding a monomer times the probability of encountering a B:

P(Map — Mapi15t) = par - pa(t) (6.2)

The transition probability for staying in state M,; is the probability of adding
nothing:
]P)(Ma,b — Ma,b; t) =1- Pr (63)

All other transition probabilities are zero.
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The starting distribution M (0) is a matrix of zeros, except for Myo(0) = 1. This
means that before starting the synthesis all chains have zero monomer repeating
units A and B. To conform to standard Markov chain notation, let M be a row
vector. Let P be the matriz of transition probabilities. Starting with M(0), the
copolymer fingerprint at synthesis step ¢ is:

M(t) = M(t —1) - P(t) (6.4)

We are interested in the fingerprint after the completed synthesis, that is the fin-
gerprint at the last synthesis step M (7). The transition matrix P is sparse, thus
Eqn. 6.4 can be simplified for a > 0 and b > 0 to:

Map(t) = par - pa(t) - Ma_1p(t — 1)
+  puope(t)  Mapa(t—1) (6.5)
+ (1 —par) - Map(t—1)

If a =0 or b= 0, one needs to delete from Eqn. 6.5 the first or second term,
respectively. In each synthesis step 1 <t < T we compute n x m fingerprint entries
in constant time for each entry. Because n < T and m < T, the worst case running
time is O(T®). Tt is not necessary to save the fingerprints for each synthesis step as
M (t) only depends on M (t — 1), therefore the memory requirement is O(T?).

Reactivity Ratios

So far, our model has not taken reactivity ratios into account. The probability of a
reaction equals the probability of adding a certain monomer times the probability of
encountering that monomer. However, the reactivity ratios are known to influence
the copolymerization process. For example, if monomer A has a strong affinity for
monomer B, a weak affinity for A, and monomer B has the reverse affinity, then the
result will be an alternating copolymer. To this end, we define a new model, the
Bernoulli model with reactivity parameters (Fig. 6.1).

We define the reactivity parameters paa, pas, Pea, and pgg, which describe the
probabilities of the reactions between the four possible pairings of chain ends and
monomers. To be able to distinguish between chains ends, we use two fingerprints:
M*A, the distribution of chains ending with A, and M, the distribution of chains
ending with B. We are interested in the fingerprint after the final synthesis step 7.
The final fingerprint can be calculated by adding the final distributions of chains
ending with A and B:

M(T) = MA(T) + M®(T) (6.6)

We define the transition probabilities for the four possible reactions of chain ends
and monomers. For X € {A, B}, the transition probabilities for adding A are:

]P)(M(i(,b — M;\H,b;t) = D - Cx - Pxa - PA(t) (6.7)
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Figure 6.1 All possible transitions of the Bernoulli model without (left) and with
(right) reactivity parameters for copolymer chain lengths < 2. For example, the
transition from the initiator state | to the state Mﬁo (copolymer chains having one
A-monomer and ending in A) corresponds to adding an A.

Analogously, the transition probabilities for adding B are:

P(Mg, = Mgy 1;t) = par - ex - pxe - pa(t) (6.8)

An important property of Markov chains is that the rows of the transition matrix
sum to one. Introducing the reactivity parameters violated this property, therefore
we use normalization coefficients ca and cg in the equations 6.7 and 6.8. The
normalization coefficients are defined as:

1

c g
X pxa - Pa(t) + pxs - pe(t)

(6.9)

Because empty chains end neither with A nor with B, we define the initiator state
[. The transition probabilities to start a chain are:

P(l — Mﬁoét) P - pa(t) (6.10)

P(l— Mgy;t) = pur - pe(t)
The transition probabilities of the non-state-changing transitions are not affected
by the reactivity parameters and are analogous to Eqn. 6.3. All other transition
probabilities are zero. By applying the transition probabilities (equations 6.7, 6.8)
and the normalization coefficients (Eqn. 6.9), the fingerprint M” can be calculated
for a > 0 and b > 0 by:
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M2 (t) = pucapaapa(t) - Moy, (t —1)
+  pumcapeapa(t) - MaB_Lb(t -1) (6.11)
+ (1= par) - M2t —1)

Analogously, fingerprint M is:

M2,(t) = pucapaeps(t) - Moy, 1 (t — 1)
+  pucepeeps(t) - Mf,b_l(t -1) (6.12)
+ (1 —pur) - M2, (t —1)

If a = 0 or b = 0, the appropriate terms can be deleted from equations 6.11 and 6.12.
For a = 1,0 = 0 or b = 1,a = 0 equations 6.11 and 6.12 change according to
Eqn. 6.10.

The running time and memory requirements change by a constant factor, therefore
the worst case running time is still O(T?) and memory is O(T?).

6.1.2 Geometric Model

Chain Length

The Bernoulli model we introduced above used T discrete synthesis steps to add
monomers A, B or nothing. Adding a monomer or not is a Bernoulli trial and the
resulting chain lengths are binomially distributed. However, in practice, polymer
lengths often show a long-tailed distribution, which is usually modeled by a gamma
distribution [13, 92, 109]. Here, we modify our discrete model for a long-tailed chain
length distribution. The discrete equivalent to the continuous gamma distribution is
the negative binomial distribution. A random variable following a negative binomial
distribution with parameters T and p equals the sum of T" independent geometrically
distributed random variables with parameter 1—p. To this end, we model the discrete
steps using the geometric distribution.

Consider the synthesis of a single polymer chain. In each synthesis step, the number
of monomers, which are added to the chain, is random. The probability of adding &
monomers follows a geometric distribution with parameter p., the “stop” probability:

p(k) = (1= po)*pe (6.13)

We call this the Geometric model.
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Figure 6.2 All possible transitions of the Geometric model without (left) and with
(right) reactivity parameters for copolymer chain lengths < 2. For example, the
transition from the initiator state I to the state MQO (copolymer chains having
two A-monomers and ending in A) corresponds to adding the sequence AA. Note
that there are transitions, which correspond to multiple events. For example, the
transition of I to M2A71 corresponds to adding the two sequences BAA and ABA.

Fingerprint Model

In the following, we describe the Geometric model (Fig. 6.2). Due the geometrically
distributed number of monomers to add in each synthesis step, the number of pos-
sible transitions increases compared to the Bernoulli model. Given ¢ > 0 and j > 0,
the transition probability from M, ; to any state with equal or higher numbers of A
and B is the number of combinations with ¢ monomers of type A and j monomers
of type B times the probability of adding ¢ + 7 monomers times the probabilities of
encountering ¢ monomers of type A and j monomers of type B:

P(Map — Motiprjit) = ( j]) “pa(i+ ) - pa(t) - pe(t)’ (6.14)

To save computation time, the number of combinations (’J;j ) can be calculated using
Pascal’s triangle. As with the Bernoulli model, the memory requirements are O(7T?).
However, the running time increases to O(T°), because we need to iterate over all
possible ¢ and j.

Reactivity Ratios

Analogous to the Bernoulli model, we define a Geometric model with reacitivity
parameters (Fig. 6.2). We use the reactivity parameters paa, pas, Psa, and pgg to
model the reactivity ratios, the initiator state |, and two fingerprints M and M®
to describe the distributions of chains ending with A or B, respectively.
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In contrast to the Bernoulli model, the Geometric model is able to add more than
one monomer per synthesis step. We need to determine the reactivity parameters
for all possible combinations of added A and B. Consider one synthesis step of
the Markov chain: We say that we start in a state X € {I, A, B}, if the last added
monomer of all previous steps was nothing, A, or B, respectively. We stop in state
Y € {A,B}, if the last added monomer of this or any previous step is an A or B,
respectively. To this end, we introduce the matrix RXY. Rfl(\b( is the probability of
starting in state X, adding ¢ monomers A, b monomers B, and ending in state Y.
We define R*Y as:

Ry = R\, pan+ Ry2,, - pea
XB XA XB (6.15)

Ry = Rgy_1-pas+ Ry, 1 - DeB
To compute RXY for each possible combination of X and Y, we need to know the
initial values. If no monomer is added, we start and end in the same state:

Ryp = 1
XY (6.16)
If we start in the initiator state | and add one monomer, it is independent of the
reactivity parameters:

Rfy= 1
R'é _ (6.17)

0,1 =
Analogously to the Bernoulli model with reactivity parameters, the rows of the
transition matrix need to sum to one. We therefore define normalization coefficients
and normalize the transition probabilities for all transitions which add the same
number of monomers:

1

> (Hah+ af)  palt) - pe(t)”
a+b=

ex(k) = (6.18)

We now combine equations 6.15 to 6.18 to specify the transition probabilities for
the Geometric model. For X € {A,B}:

P(MY, = My ipeit) = ex(i+ ) - RY - pa(i+ 4) - pa(t)’ - pe(t)’ (6.19)

The transition probabilities from the initiator state | to any other state are given
by:

P(l — MY;t) = (i + j) - B - pa(i +5) - palt)’ - pa(t)’ (6.20)
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The transition probability to not start a chain and stay in state | is:

P(l — 1) = pa(0) (6.21)

We are interested in the fingerprint after the final synthesis step 7. Analogous to
the Bernoulli model, the final fingerprint can be calculated by adding the final dis-
tributions MA(T) and M®(t). Compared to the Geometric model without reactivity
parameters, the running time and memory requirements change by a constant factor,
therefore the worst case running time is still O(7°) and memory is O(T?).

6.1.3 Polymer Chain Likelihood

The Bernoulli and Geometric models described above compute the copolymer finger-
prints, the distribution of all chains over the numbers of monomer repeating units.
However, an additional interesting question is: What is the likelihood of a single
copolymer chain under a given model?

To compute the likelihood of a single chain, we only consider transitions which may
lead to the chain in question and transitions which do not add a monomer, i.e.
non-state-changing transitions. All other transition probabilities are zero. After
progressing T synthesis steps, the likelihood of the chain is the probability of the
last reachable state.

For example, let us compute the likelihood of the chain “ABB”. In addition to
the non-state-changing transitions, the Bernoulli model would allow My, — M, o,
Mo — M., and My, — M;s. The likelihood of “ABB” is the probability of the
state M; 2. The likelihood under the Bernoulli model with reactivity parameters
and the Geometric models can be computed analogously.

6.1.4 Parameter Estimation

The Bernoulli and Geometric models fully characterize the distribution of copoly-
mer chains. Unfortunately, the true underlying distribution of copolymer chains is
unknown, therefore we want to evaluate our results by comparing them to Monte-
Carlo simulations. However, Monte-Carlo simulated chains are random samples.
But the larger the sample size is, the closer the empirical distribution is to the true
distribution and the better we can use the sample to the evaluate our models.

The accuracy of Monte-Carlo simulations strongly depend on the number of simu-
lated chains (Fig. 6.3, left). We choose several instances with low degree of polymer-
ization DP, = 3 and different reactivity ratios ra, rg and homopropagation ratios
r. Please note that for all datasets ra = % =r. For ry = 1.0, we compute 10
fingerprints M with 10% to 10° chains and compare them to the fingerprint M;osar,
which we compute using all 10 - E?:z 10° = 11,111,000 chains (Fig. 6.3, right). For
comparison we use the normalized root mean square error N RMSE (M, Mypar)-
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Figure 6.3 Left: Comparison of the distribution of chain lengths computed by
the Monte-Carlo simulations with 10? vs. 10° chains at reactivity ratio r4 = 1.0.
Right: Normalized root mean square error (NRSME) of the fingerprints computed
by Monte-Carlo simulations with different numbers of chains compared to the finger-
print computed from all chains produced by all Monte-Carlo simulations at reactivity
ratio r4 = 1.0.

The error decays with the number of chains. The lowest mean errors are ~ 2% and
~ 0.5% using 10° and 10° chains, respectively. We observe that the error for 10°
is still significantly above zero. Thus, if not stated otherwise, we use 10° chains for
Monte-Carlo simulations in the following.

For completeness, we evaluate the Monte-Carlo simulations by comparing the sim-
ulated concentrations to the concentrations computed by solving the ordinary dif-
ferential equation model of the living copolymerization (Appendix Fig. A.9). The
concentration curves are identical to the eye, strongly supporting the validity of the
Monte-Carlo simulations.

We now compare the Bernoulli and Geometric models to the Monte-Carlo simula-
tions. The reactivity parameters can be calculated from the reactivity ratios. For
X,Y € {A, B}, the reactivity parameters are:

Exy
= 6.22
Pxy kxa + kxs (6:22)

Unfortunately, the other model parameters cannot be calculated intuitively from
the Monte-Carlo simulation parameters. In principle, it is possible to estimate the
parameters by fitting the model fingerprint to the Monte-Carlo fingerprint. However,
to minimize the influence of the fitting algorithms, we apply a two-step estimation
process.
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Figure 6.4 Comparison of the distribution of chain lengths computed by the Monte-
Carlo simulations with 74 = 0.01 (left) and r4 = 2.0 (right) vs. the length distribu-
tions computed by the Bernoulli and Geometric models.

First, we estimate the number of synthesis steps and the probability of adding
monomers. According to the Bernoulli and Geometric model, the chain lengths
follow a binomial or negative binomial distribution, respectively.

We fit a binomial and a negative binomial probability mass function (pmf) to each
copolymer length distribution (Fig. 6.4 and Appendix Fig. A.10). The length distri-
butions become broader with increasing reactivity ratios ra. The broader the distri-
bution, the better it is approximated by a negative binomial pmf, and the worse by
a binomial pmf. However, for narrow distributions (ra =< 0.1, which corresponds
to a standard deviation o < 2.8), we do not observe such a clear distinction: The
mode of the distribution is better approximated by the binomial pmf. In contrast,
the negative binomial pmf is better able to fit the long tail of the distribution.

Second, we estimate the monomer probabilities pp and pg. Because we defined
pa + pg = 1, estimating pp is sufficient. We divide the reaction time of the Monte-
Carlo simulation into intervals. The number of intervals equals the number of syn-
thesis steps T'. We choose the left and right interval limits, such that the change
in concentration is the same for each interval (Fig. 6.5 and Appendix Fig. A.11).

We calculate the mean concentrations [A](¢) and [B](¢) for each interval 1 <¢ < T.
Then, the monomer probabilities pa(t) can be calculated as:

[AI(®)
Alt) = —— 6.23
o [AI() + [B](?) 029

Please note that the parameter estimation using the concentrations from Monte-
Carlo simulations is for evaluation purposes only. When applying the models to
experimental data, the parameters can be estimated by fitting the computed finger-
print to the observed fingerprint.
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Figure 6.5 Left: Concentration of monomers [A] and [B] during the Monte-Carlo
simulation with 74 = 2.0. We divided the time into discrete synthesis steps and
determined the average concentrations [A] and [B]. Right: Monomer probabilities
pa and pg for each synthesis step calculated from the average concentrations.

6.1.5 Model Evaluation

Determining the model parameters allows us to compare the fingerprints computed
by our models to the Monte-Carlo fingerprints (Fig. 6.6 and (Appendix Fig. A.12)).
Additionally, we can compute the NRMSE of the Monte-Carlo fingerprints vs. the
model fingerprints (Fig. 6.7, left).

Evidently, the reactivity parameters are crucial to model copolymerization. They
determine the location and size of the distribution of abundances in the fingerprint.
Both the Bernoulli and Geometric model fingerprints without the reactivity parame-
ters have a significantly larger deviation than the models with reactivity parameters
to the Monte-Carlo fingerprints, except for the instances with 74 = 1.0. This is to be

expected because in our setup this corresponds to reactivity parameters of pxy = 1.0
for all A, B € {AB}.

Overall, the Geometric model provides a better fit than the Bernoulli model for all
fingerprints computed with ro > 0.5: The shapes of the distributions match closely
and the deviations to the Monte-Carlo fingerprints are the lowest. For fingerprints
computed with ra < 0.5, we observe the reverse: The Bernoulli model provides a
better fit than the Geometric model for narrow distributions.

The Bernoulli and Geometric models are not only able to compute fingerprints, but
also the likelihood of a single copolymer chain. Monte-Carlo simulations produce a
large random sample of copolymer chains. This allows us to compute and compare
the log likelihoods of the sampled data under the different models (Fig. 6.7, right)
to further evaluate the models. A model that has a higher likelihood is “closer” to
the sample.
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Figure 6.6 Copolymer fingerprint computed by the Monte-Carlo simulation with
ra = 2.0 (filled contours) compared to the fingerprints computed by the statisti-
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Figure 6.7 Left: Normalized root mean square error (NRMSE) of the copolymer
fingerprints computed by Monte-Carlo simulations compared to the fingerprints com-
puted by the statistical models. Right: Log likelihoods of the polymer chains pro-
duced by the Monte-Carlo simulations under the Bernoulli and Geometric models
with and without reactivity parameters (RP). Note that the minimal and maximal
log likelihoods are so close to the means, that the error bars are indiscernible.
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Figure 6.8 Comparison of the running time (left) and memory (right) measurements
of the Monte-Carlo simulations using Gillespie’s algorithm with 102 to 10° chains and
the Bernoulli (B) and Geometric (G) models with and without reactivity parameters

(RP).

Except for ra = 1.0, the log likelihood under the models without reactivity parame-
ters are in all cases lower than their counterparts using reactivity parameters. This
is consistent with the fingerprint comparisons. However, contrary to the fingerprint
comparisons, the Geometric model has the best log likelihood for all instances.

The running time and memory requirements of a Monte-Carlo simulation increase
with the number of simulated chains and for good accuracy the number should be
high. The running time and memory of the Bernoulli and Geometric models are
determined by the number of synthesis steps. Compared to the theoretical time
complexity of O(T3) for the Bernoulli model, the Geometric model has a higher
theoretical time complexity of O(T”). We measured running time (excluding I/O
operations) and memory of the Monte-Carlo simulations with 10? to 10° chains and
of our models (Fig. 6.8).

Computing the Bernoulli model is the fastest. As expected, the measured running
time of the Geometric model is higher. However, computing the fingerprints with the
Geometric model is still 11.8 and 788.5 times faster than the Monte-Carlo simulations
with 10° and 10° chains, respectively. The reactivity parameters have no substantial
impact on the running time. Both models require significantly less memory than
the Monte-Carlo simulations. The additional matrices required for the reactivity
parameters increase the memory consumption only slightly.

6.2 Independence of the Model Parameter Order

In the previous Section 6.1, we introduced a copolymerization model with several
variants similar to a discrete Markov-chain, that append monomers in each synthesis
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Figure 6.9 Normalized root mean square errors of the fingerprints for all permu-
tations m(pa) compared to the fingerprint of the original pa computed with the
Bernoulli (left) and Geometric model (right). The Kendall Tau distance is the num-
ber of pairwise disagreements between two permutations.

(time) step with Bernoulli or geometrically distributed probability. Here, we will
investigate if they are order-independent.

In the following, let the matrix M of size n x m be a copolymer fingerprint, in
which entry M, gives the relative abundance of a copolymer with @ monomers of
type A and b monomers of type B. Let T" be the number of synthesis steps. Let
py be the probability of encountering a monomer, and let p4 be a vector of size T'
with the probabilities that the encountered monomer is an A for each synthesis step
1 <t <T. Let pg(t), the probability of encountering a monomer B be defined as

pe(t) =1 —pa().

Let 7(x) be a permutation of some vector x. Let M7™ be the resulting fingerprint
of our model with input 7(pa). We define a model to be order-independent if the
resulting fingerprints are the same for any permutation of pa, that is M = M™ for
any .

We do a simple experiment to investigate the order-independence of our models. For
both models, we compute a fingerprint with parameters pa = [0,0.1,0.2,0.4,0.5] ,
py = 0.5 and varying reactivity ratios. Subsequently, for all permutations 7(pa) we
compute a fingerprint and calculate the normalized root mean square error (NRMSE)
in comparison to the first fingerprint (Fig. 6.9).

The distance between two fingerprints increases with the distance between pa and
m(pa). However, as the reactivity ratios approach one, the distance between the
fingerprints decreases. In this experimental instance, we see that the models are
order-independent if the reactivity ratios are one.

To verify that the models are order-independent for reactivity ratios of one, we
investigate the model variants without reactivity parameters. For the Bernoulli
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model without reactivity parameters, an entry M, in the fingerprint M at synthesis
step t fora > 0,0 >0,and 1 <t < T is given by:

Map(t) = par-pa(t) - Ma—1p(t — 1)
+  puope(t)  Mapai(t—1) (6.24)
+ (1 —par) - Map(t —1)

For the Geometric model without reactivity parameters, we first have to derive
a closed form for M,;. Let pg(k) be the geometrically distributed probability of
adding k£ monomers in one synthesis step. The probability of adding ¢ monomers A
and j monomers B to a copolymer chain is given for a > 0,0 > 0,and 1 <t < T as:

PO = M) = () Pl ) a0 ety (629
We define flajb as:
b
= <a+b_; 9) Pola+b—i—j) (6.26)

Now we apply Eq. 6.25 and Eq. 6.26 to find a closed form expression for a fingerprint
entry Mg p:

a b
Mo p(t) = £ palt) ™ pe () - My (t — 1) (6.27)
0

=0 j=

Now that we are given the equations for computing an entry in the fingerprint
at a specific synthesis step for both models without reactivity parameters, we can
show that an inversion of neighboring values in pa does not change the resulting
fingerprint.

Lemma 1. Given the Bernoulli model without reactivity parameters and a permu-
tation m(pa) that swaps pa(t) with pa(t — 1), then My,(t) = MJ,(t) holds for all
a>0,b>0,,and2 <t <T.

Proof. Inserting M,;(t — 1) into the recursive equation 6.24 yields:
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Map(t) = p?w pa(t) - palt —1) - My—2p(t —2)
+ Par - pe(t) - pe(t —1) - Map ot — 2)
+  paopa(®) pe(t—1) - My_1p-1(t — 2)
+  pyope(t) palt —1) - Mo_1pa(t —2)
+ Py (1= par) - pa(t) - Ma—1(t — 2) (6.28)
+ par - (L =par) -palt —1) - Mo_14(t —2)
+ pu - (1= par) - pe(t) - Map-1(t —2)
+ pv-(I—pum) pe(t—1) Map1(t —2)
+ (1= pu)? - May(t —2)

We replace pa(t — 1) with 7(pa)(t), pa(t) with m(pa)(t — 1), pg(t — 1) with w(pg)(t),
and pg(t) with 7(pg)(t — 1):

May(t) = pig-m(a)(®) - w(pa)(t = 1) - My_op(t —2)
+  pympe)(t) - w(pe)(t — 1) - Moy o(t —2)
+ phm(pa) () - mpe)(t = 1) - Ma—ypa(t —2)
+ pam(pe) () - w(pa)(t = 1) - Ma—ypa(t —2)
+ pyv - (L —=par) - 7(pa)(t) - Ma—1p(t —2) (6.29)
+  par - (1 —par) - m(pa)(t — 1) - My_1(t —2)
+ par - (1 —par) - m(pe)(t) - Map—1(t —2)
+  pu - (T —pu) m(p)(t — 1) Mapa(t —2)
+ (1 —pum)® - Myt —2)

We simplify the equation to:

Map(t) = par-7m(pa)(t) - Ma_1p(t — 1)
+ oy () (t) - Map—1(t —1) (6.30)
+ (1 —par) - Mop(t —1)

Which can be further simplified to:

M, p(t) = Mz, (t) (6.31)
m
Lemma 2. Given the Geometric model without reactivity parameters and a permu-

tation m(pa) that swaps pa(t) with pa(t — 1), then Mqp(t) = MJ,(t) holds for all
a>0,0>0,and2<t<T.
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Proof Sketch. Inserting M, ;(t — 1) into the recursive equation 6.27 yields:

Z Z £ -pe(t)"™

j (6.32)
> feipalt — 1% pg(t — 1771 My (t - 2)

Writing the terms of the sums explicitly yields a large equation of the following form:

M, (1) :f&’(l))pA(t)aPB(t)b
+ f&’pr(t)aPB(t)bfl (fg,’éMo,o(t —2)+ f(?,’fps(t)Mm(t —2))
+ fopa(t)* ' pe(t)” (fou Moo(t —2) + flgpa(t) Mig(t — 2))
+ A pe ()" (fou Moo(t — 2) + filopa(t)Myo(t — 2)
+foipe(t) Moy (t — 2) + fiypa(t)pe(t) M (t — 2))
+ ...

+ f§£ ( o Moot —2) + -+ f2 pr(t —1)%pg(t —1)° —92)

v

6.33)

If we now expand this equation, we see that for every term of the form pa(t) pB( &
pa(t — 1)"pe(t — 1)° there is a corresponding term pa(t)"ps(t)°pa(t — 1)%pg(t)”® and
we change equation 6.32 to:

a b
)= D L palt = 1) pe(t = 1)
:0 ”:‘; (6.34)
D Fipa®) " pe(t) - My (t - 2)
k=0 1=0

We replace pa(t — 1) with m(pa)(t), pa(t) with 7(pa)(t — 1), ps(t — 1) with 7 (pe)(?),
and pg(t) with m(pg)(t — 1):

| Fi (6.35)

We simplify the equation to:
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My (t) = M, (t) (6.36)

O

For the models without reactivity parameters, we know from Lemma 1 and 2 that
no inversion of neighboring values in pa changes the resulting fingerprint. Any
permutation of a vector can be constructed by a sequence of inversions of neighbor-
ing elements. Therefore, for the Bernoulli and Geometric model without reactivity

parameters, all permutations of a probability vector pa have the same resulting
fingerprint.

6.3 Exploring the Limits of the Geometric Copoly-
merization Model

In this section, we focus on the Geometric model with reactivity parameters (Sec-
tion 6.1). We show that determining the model parameters from copolymer finger-
prints is a challenging optimization problem. First, several methods are presented
to increase the accuracy of the results and to decrease the running times. Sev-
eral general purpose optimization algorithms and the robustness of the proposed
methods against measurement noise are evaluated. Second, the accuracy of the
Geometric model is evaluated using different copolymerization types beyond living
polymerization: Reversible living polymerization, controlled radical polymerization,
and free radical polymerization. The evaluation uses fingerprints and copolymer
chains computed by Monte-Carlo simulations.

6.3.1 Objective Function

In the following, let the matrix M of size n x m be a copolymer fingerprint, in which
entry M, gives the relative abundance of a copolymer with a monomers of type A
and b monomers of type B. Let f(pa, paa,Pas; Pea,Pes) = M be the fingerprint-
generating function, which uses the Geometric model with reactivity parameters to
compute a fingerprint M¢. The model parameters are the monomer probability p,,,
the reactivity probabilities paa, pas, Pea, P, and probability vector py of size T,
which describes the probability of encountering an A-monomer for each synthesis
step 1 <t < T. The probability of encountering a B-monomer is implicitly given,
because pa(t)+pg(t) = 1. The monomer probability py, and the number of synthesis
steps T can be easily computed from the copolymer length distribution.

Formally, the problem to solve is finding the parameters paa, pas, Pea, Peg, and
the vector pa, which minimize the distance of the computed fingerprint M¢ to an
observed fingerprint M°. This corresponds to optimizing the following objective
function:

argmin || f(pa, paa, Pag, PBA, PBB) — M°|[3 (6.37)

PA>PAA;PAB>PBA,PBB
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The objective function computes the difference between the computed and observed
fingerprints according to Eq. 6.37. We use general purpose optimizers to identify
the best parameters. The optimizers use different strategies and the running times
vary greatly, in the small examples given in this work between 0.5 and 19 hours
(Appendix Fig. A.13 to A.15). Generally, the optimization is challenging and its
computation is time-demanding. First, the question needs to be answered: What
are the main reasons for the long running time?

In Section 6.1, we introduced four variants of a discrete Markov chain copolymeriza-
tion model. The models use either reactivity probabilities or not, and the number of
added monomers per synthesis step either follows a Bernoulli or geometric distribu-
tion. A model is defined to be order-independent if the resulting fingerprints are the
same for any permutation of its parameter pa. The models are order-independent
if the reactivity ratios are one (Section 6.2). Since there are T'! possible permuta-
tions, this results in 7! global optima. But for reactivity ratios of one, the ratios of
monomers never change. As a consequence, pa is constant and there is exactly one
global optimum. However, for reactivity ratios near one, the objective values of all
permutations are very similar. This is challenging for the optimization algorithms
and certainly contributes to the long running time of the optimization.

Another contributing factor is the size T of the vector pa, resulting in a T-dimensional
search space. T' can be computed from the observed copolymer length distribution.
The length distribution of the Geometric model is a negative binomial distribu-
tion with the parameters T and pj;. In each of the T steps, the number of added
monomers is geometrically distributed. Considering usual copolymer lengths, 7' can
be expected to be between 10 and 100. Optimizing ~ 100 variables simultaneously
with a general purpose optimizer is a challenging task and certainly contributes to
the long running time of the optimization.

6.3.2 Parameter Space Reduction

The two main challenges for the optimization algorithms are the very similar objec-
tive values for reactivity ratios near one and — more importantly — the large search
space defined by the length of the model parameter vector p4. We focus on the
second challenge and propose two approaches to change the fingerprint-generating
function in order to speed up the optimization.

The first approach is to optimize only a fraction of the T values in pa (25% in this
work), and linearly interpolate all other values in between. Furthermore, we restrict
the search space by forcing pa to be either increasing or decreasing. To this end, a
decreasing pa is defined as:

pa(t) = p(t) - pa(t — 1)
pall) = p(1) (039
And an increasing pp as:
Pa(t) = palt = 1) +p(t) - (1 — pa(t — 1)) (6.39)
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The second approach is to exploit the relationship between pa and monomer con-
centrations. We define 7" time intervals, such that the change in concentration is

— —

the same for each interval. Subsequently, the mean concentrations [A](f) and [B](¢)
are calculated for each interval 1 < ¢ < T. Then, the probability vector pa(t) can
be calculated as:

Al(t
at) = — A0 (6.40)
[Al(t) + [B](?)
There is also a relationship between the reaction rates and the reactivity model
parameters. For X, Y € {A, B}, the reactivity parameters are:

kXY

=2t 6.41
kxa + kxs ( )

Pxy

The second approach uses both relationships: First, an ODE system using the living
copolymerization reaction scheme is solved. Second, the reactivity parameters are
computed from the reaction rates and pa from the concentration gradient. Then,
the fingerprint M€ can be computed using the Geometric model. This allows us to
optimize the ODE parameters (reaction rates and initial concentrations) according
to Eqn. 6.37. Thus, the dimension of the search space is constant and independent
of T.

6.3.3 Parameter Optimization

In the following, we compare three fingerprint-generating functions: Directly op-
timizing pa (Direct), interpolating pa (Spline), and optimizing the ODE parame-
ters (ODE), with the Spline and ODE approaches as described above. All of the
three functions use the Geometric model with reactivity parameters to compute
the copolymer fingerprint. The transformation from the model parameters to the
copolymer fingerprint is highly non-linear. To the best of our knowledge, no special
purpose solvers exist for such a function. Therefore, we have to resort to general
purpose optimization algorithms. We use the algorithms implemented in the Op-
timization Algorithm Toolkit! [15] and Apache Math Commons 3.2 library? with
their default parameters. The algorithms use different strategies to find the best
model parameters and do not require computing gradients. The performance of the
optimizers is application-specific and depends on the selected fingerprint-generating
function.

We choose several instances with low degree of polymerization DFP, = 3 and three
different reactivity ratios ra, rg and homopropagation ratios r. Please note that for
all datasets ra = % = r. First, we choose the reactivity ratio ra = 2.0, for which
the Geometric model can provide a good fit. Second, we choose ra = 0.01, since
this results in a copolymer with binomial-like length distribution (in contrast to a
more common Schulz-Zimm-like distribution), which should be more challenging for

"https://sourceforge.net/projects/optalgtoolkit/
’http://commons.apache.org/proper/commons-math/
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Abbrv. Algorithm #Ranks
1st 2nd 3rd

< CLI Cloning, Information Gain, Aging [18] 4 5 7

& PC Probabilistic Crowding [61] 6 5

R RTS Restricted Tournament Selection [40] 6 6 4

9 CMAES Covariance Matrix Adaptation Evolution Strategy [38] 3 6 7

s, DC Deterministic Crowding [55] 3 8

“? GEO Generalized Extremal Optimization [19] 10 2 4

- GA Genetic Algorithm [3] 5 9 2

8 CGEO Generalized Extremal Optimization [19)] 8 0 8
MHC Mutation Hill Climber [69] 3 7 6

Table 6.1 Overview of the top three optimization algorithms for each fingerprint-
generating function, selected based on Appendix Fig. A.13 to A.15. We ranked
the results of the algorithms for each dataset based on the log likelihood ratios and
counted the ranks.

the Geometric model. Third, we choose ra = 1.0. This results in constant monomer
concentrations and, thus, the optimal pa is also constant. That means the optimum
lies on the parameter space limits when using the spline fingerprint-generating func-
tion, which should be a challenging task for the optimizers. Furthermore, we also
select two instances with r4 = 2.0 and higher degrees of polymerization DP, = 25
and D P, = 45, which are copolymer lengths to be expected in practice.

First, we choose the top three algorithms with highest log likelihood ratio for each
fingerprint-generating function (Table 6.1). To this end, all algorithms are evaluated
on the DP, = 3,ra = 2.0 dataset without noise (Appendix Fig. A.13 to A.15) and
the log likelihood ratios of the results are calculated. Additionally to comparing
the log likelihoods, the ratio also acts as a “sanity check” for the model parameter-
izations. The ratio compares the likelihoods to the likelihood of a null hypothesis.
The null hypothesis assumes, all positions are independent random variables. If the
log likelihood ratio is below zero, the null model has a higher likelihood and the
parameterization should be dismissed.

After selecting the top three algorithms for each fingerprint-generating function, we
evaluate the robustness of the chosen algorithms. We run the top three algorithms
for each function on the other dataset with increasing simulated noise. The highest
noise level with 0 = 0.25 results in strongly perturbed data (Fig. 6.10 and Appendix
Fig. A.16 to A.18). For each resulting parameterization, we rank the top three
algorithms by their log likelihood ratio and count the ranks for all instances (Table
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Figure 6.10 Filled contours: Copolymer fingerprints of DP, = 25 computed by
Monte-Carlo simulations with no (left) and high applied noise (right). Contours:
Fingerprints computed by the Geometric model using the best parameters com-
puted by the optimization algorithms for each of the fingerprint-generating functions

(direct, spline, and ODE).
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Figure 6.11 Log likelihood ratios of the results computed by the optimization
algorithms as a function of noise. The ratios are averaged over all three algorithms
for each fingerprint-generating function (direct, spline, ODE). The higher the ratios,
the better the observed data is “explained” by the identified model parameterizations.
If the ratio is below zero, the null model achieves a higher likelihood than the
Geometric model with the given parameterization.

6.1). No algorithm outperforms its rivals. Therefore, in the following, we use all
chosen algorithms.

To compare the three approaches (direct, spline, and ODE), we average the log
likelihood ratios over all three algorithms for each fingerprint-generating function.
Fig. 6.11 shows the averaged log likelihood ratios as a function of the noise level.
There are two different behaviors for ro = 0.01 and the rest of the instances. For
ra = 0.01 there is a significant decrease with increasing noise and only the ODE
function is able to produce a good parameterization. For the Schulz-Zimm like
copolymers with 74 > 0.01, the behavior of the log likelihood ratios of the ODE and
direct function is not significantly different. However, for the ODE function, the
range between minimum and maximum log likelihood ratio is larger and the ratio
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Figure 6.12 Running times until convergence of the optimizations averaged over
all datasets with degree of polymerization DP, = 3, 25, and 45 for each fingerprint-
generating function (direct, spline, ODE).

decreases more with increasing noise. Thus, using the ODE function is less robust
against noise than the direct method. Unexpectedly, the optimizers using the spline
function fail on all instances and result in ratios below zero in almost all cases.

Then, we average the running times until convergence for each fingerprint-generating
function for each degree of polymerization DP, = 3, 25, and 45 (Fig. 6.12). As the
running times largely depend on the selected optimization algorithms, the compar-
ison of running times between the fingerprint-generating functions should be taken
with a grain of salt. That means, using different optimizers may shift the numbers,
but we can still infer general trends from Fig. 6.12.

The running times until convergence of the optimizers using the direct and ODE
functions behave as expected. The running time using the direct function increases
with the degree of polymerization, because the size of pa increases. Thus, the number
of parameters increases, the main reason for the long running time. In contrast, the
ODE function always has the same number of parameters and therefore the running
time is independent of the degree of polymerization. Different from our expectations,
the using the spline function results in even higher running times than using the
direct function, despite optimizing only a fraction of the pa parameter values and
using the generally fast optimizers CMAES and GEO (Appendix Fig. A.13 to A.15).

The optimization converges fastest using the ODE fingerprint-generating function.
Now we further investigate its robustness. We run the top-three algorithms on four
times on the DP, = 25, r4 = 2.0 dataset and record the normalized scores of
the best solutions over time (Fig. 6.13). We computed log likelihood ratios and
normalized scores for the final solutions (Table 6.2). The normalized score is the
objective function value (Eqn. 6.37) of a final solution divided by the objective
function value of its starting point. Thus, the score is 1.0 if the optimization failed
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Figure 6.13 Normalized scores of the best solutions as a function of running time of
four repeated runs for each top-three algorithm for the ODE fingerprint-generating
function. The normalized score is the objective function value (Eqn. 6.37) of the
current best solution divided by the objective function value of its starting point.

Algorithm Normalized Score Log likelihood ratio
Mean Standard dev. Mean Standard dev.
- GEO 0.26  0.009 4.99-10°  3.49-10*
l GA 0.23  0.002 4.86-10°  8.63¢-10*
MHC 0.23  0.050 421-10°  7.67e-10*
2 GEO 0.4 0.011 1.54-10°  2.63-10*
‘ﬁ GA 0.39  0.006 —4.28-10° 4.07-10°
® MHC 0.40  0.014 —4.11-10* 2.07-10°

Table 6.2 Mean and standard deviation of the final solutions of the top three
optimization algorithms for the ODE fingerprint-generating function (selected based
on Appendix Fig. A.15) for no (¢ = 0) and high noise (¢ = 0.25).
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Figure 6.14 Filled contours: Copolymer fingerprints of the Monte-Carlo simulations
of controlled radical polymerization (CRP, left), free radical polymerization (FRP,
center), and reversible living polymerization (RLP, right) with the highest used
termination and propagation reaction rates of 0.1. Contours: Fingerprints computed
by the model with the best parameters resulting from the optimizations using the
ODE fingerprint-generating function.

to improve the solution, and it approaches 0 if the solution matches the observed
data perfectly.

For no noise we obtain good results. The scores and likelihood ratios are quite close
with a low standard deviation. However, for high noise we obtain higher scores and
lower log likelihood ratios. Additionally, the solutions of two of the three optimizers
show for high noise a high standard deviation of log likelihood ratios and are unable
to find an acceptable solution on average. Thus, we conclude that while the ODE
fingerprint-generating function is fast and robust to some extend, it still shows to
be a difficult objective function for the general purpose optimizers and optimization
runs should be repeated several times.

6.3.4 Beyond Living Polymerization

Here, we investigate copolymerizations beyond a simple living polymerization. We
select the DP,, = 25, ra = 2.0 instance and repeatedly run Monte-Carlo simulations
with increasing termination and depropagation rates. For radical polymerizations,
long and short length chains appear as a result of the termination by recombination
and disproportionation, respectively. For free radical polymerization, the chosen
decomposition rate of the initiator leads to lower average lengths. For reversible
living polymerization, low length chains are appearing because of the depropagation
reactions (Fig. 6.14 and Appendix Fig. A.19 to A.21).

We select the ODE method to identify the optimal model parameters. Fig. 6.15
shows the log likelihoods and log likelihood ratios averaged over the top three algo-
rithms for the ODE method as a function of termination and depropagation reaction
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Figure 6.15 Log likelihoods (left) and log likelihood ratios (right) of the results from
the optimizations using the ODE fingerprint-generating function for the controlled
radical polymerization (CRP), free radical polymerization (FRP), and reversible
living polymerization (RLP) as a function of termination and depropagation rates.

rates. The radical and reversible living polymerizations show different behaviors.
For radical polymerization, the log likelihood is almost constant, but the ratio in-
creases significantly. For reversible living polymerization, the likelihood increases
significantly, but the ratio increases less.

Different from our expectations, the log likelihood ratios of all three copolymeriza-
tion types increase with increasing termination and depropagation rates, due to a
decreasing likelihood of the null model. We find that the Geometric model can be
applied for systems involving termination and depropagation reactions, even though
it was designed for living copolymerization.
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6.4 Computing Copolymer Statistics

In this section, we focus on the Geometric model with reactivity parameters (Sec-
tion 6.1). We show how the model may be used to compute interesting properties
of the copolymer. We give three examples — the average sequence, dimer ratios and
block length distributions — and compare them against Monte-Carlo simulations.

6.4.1 Average Sequence

In Section 6.1 we showed how to compute copolymer fingerprints using our model. A
copolymer fingerprint represents a two-dimensional distribution of the abundances
of each possible combination of monomer counts. However, it does not show the se-
quences of the polymer chains. Here, we show how to compute the average copolymer
chain sequence from our model. Let S be the average sequence and p(gk = X) the
probability of observing monomer X € {A,B} at position k in the average sequence

S.

Let us recall the definition of the transition probability P(M, — M)\, ;;t) (Eqn.
6.19) as

P(MJy = MY yiyeit) = ex(i+ §) - RY -pa(i+37) - pa(t) - ps(t), (6.42)

where RXY (Eqn. 6.15) is the matrix

Ré@ = Rﬁm “Paa + RE_BU, * DBA A
RXB _ RXA RXB (6 3)
ab = Ltgp_1PAB T 15, 1 - PBB;

pa(k) is the probability of adding & monomers, pa(t), pg(t) the monomer probabili-
ties, pxY the reactivity parameters and cx a normalization factor.

To compute the probability of adding monomer X at position k in synthesis step

t, we need to identify all transitions P(M), — My,,,,:;t) with a +b < k and

a+i+b+j >k, which add X to position k. We define RXV:%* with Z € {A, B} as
the matrix RXY where from Rﬁ;zk with a +b = k to R;(Lsz only the transition
from Z to Z is allowed.

We define the probability of observing monomer Z at position k as

a+b<k,a+i+b+j>k

p(Sk =2) =p(IS| > k)x> > > ex(i+5) R #"p(i+7) pa(t) pe(t),

t X)Ye{AB} (a,b),(3,5)

where p(|S| > k) is the survival function of the negative binomial distribution.
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Figure 6.16 Comparison of the average sequences for the controlled radical poly-
merization (CRP), free radical polymerization (FRP), and reversible living polymer-
ization (RLP) computed by Monte-Carlo (MC, dotted lines) and our model with the

best parameters (dashed lines). A corresponds to p(Sy = A) and B to p(Sy = B)
with £ being the position.

We computed the average sequences for the three datasets from Sec. 6.3.4 and
compared them to the average sequences computed by counting and normalizing
the A and B frequencies for every position in all chains obtained by Monte-Carlo
simulations (Fig. 6.16). We find that mostly the model agrees with the Monte-
Carlo simulations. However, on some positions the model over- or underestimates
the probabilities. This shows that estimating the parameter models from copolymer
fingerprints is a difficult optimization problem.

6.4.2 Dimer Ratios

From the sequence probabilities we can compute the fraction of dimers in the se-
quence. The probability of observing a specific consecutive pair of monomers at a
specific position k& depends on the probability of observing the first monomer, the
probability that the sequence is longer than k£ and the probability that the first
monomer binds to the second. We define the dimer probability as

15]-1

PRy = Z p(Sk = X) - p(IS| > k) - pxv,
k=1

where X,Y € {A,B} are the monomers, pxy is the reactivity probability, S is the
average sequence and S; the monomer at position k£ in the average sequence. We
normalize the probabilities to obtain the dimer ratio:

D
DPxy

Dyy = ————5-
PQA + PQB
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Figure 6.17 Comparison of the dimer probabilities for the controlled radical poly-
merization (CRP), free radical polymerization (FRP), and reversible living polymer-
ization (RLP) predicted by Monte-Carlo (MC, dotted lines) and our model with the
best parameters (dashed lines).

We computed the dimer ratios for the three copolymerization types as described
above and compare it to the dimer ratios we obtained from counting all dimers in
the copolymer chains computed by Monte-Carlo simulations (Fig. 6.17).

For FRP we observe that the fractions of AA and AB computed from Monte-Carlo
simulations and the model differ significantly. This shows that the parameters of
the model have been identified with insufficient accuracy, which is amplified by the
fact that the model has many degrees of freedom. Many small numerical errors will
then amount to large errors when accumulating model values to the four dimer frac-
tions. This shows that the fitting the model to the observed fingerprint is a difficult
optimization problem and in this case we most likely misidentified the reactivity
parameters.

For CRP and RLP we see a significantly closer agreement between the dimer ratios
computed from the Monte-Carlo simulations and the model. The fraction of AB is
larger than the fraction of AA and the fraction of BA is larger than the fraction of
BB. Thus, the copolymer sequences tend to be an alternating sequence of A and B.
However the sequences are not strictly alternating, since the fraction of AA and BB
is not zero. This agrees with the initial Monte-Carlo parameters.

6.4.3 Block Length Distribution

From the sequence probabilities we can compute the block length distribution in the
sequence. We define the block probability as the probability of observing a specific
consecutive block of monomers X of length [ as:

IS| i+

Bx(l) =) ] p(S=X)

i=1 k=i
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Figure 6.18 Comparison of the block length distributions for the controlled radi-
cal polymerization (CRP), free radical polymerization (FRP), and reversible living
polymerization (RLP) predicted by Monte-Carlo (MC, dotted lines) and our model
with the best parameters (dashed lines).

We computed the block length distributions for the three copolymerization types as
described above and then normalize the Bx over all lengths [. We compared the
results to the distributions we obtained from counting all blocks in the copolymer
chains computed by Monte-Carlo simulations (Fig. 6.18).

There is a close agreement between the block length distributions computed from
the Monte-Carlo simulations and the model for all three copolymerization types.
The block length distributions show a sharp peak at length one, which suggests that
the copolymer sequences tend to be a alternating sequences of A and B. This agrees
with the initial Monte-Carlo parameters and the dimer ratios.
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7. COCONUT - The Copolymer
Composition Numbering Tool

We integrated the algorithms discussed in this work into the open source software
COCONUT 2.0 (Copolymer composition numbering tool).! [25] COCONUT 2.0
combines the algorithms with a user-friendly interface. The supported file formats
include, amongst others, the open standards mzML and mzXML for mass spectra
and the Open Document as well as the Excel format for copolymer fingerprints.
Graphics can be exported as bitmaps, JPEG, or vector graphics.

7.1 Architecture

COCONUT 2.0 is implemented in Groovy and Java and runs on the JVM platform.
The software is separated into a core library? and a graphical user interface. Both
components are freely and openly available.

The core library includes all algorithms described in this thesis. It provides a
common interface for the optimization algorithms of the Optimization Algorithm
Toolkit? [15] and Apache Math Commons 3.2 library?, that accepts any objective
function as a Groovy closure, i.e. a function and the values of its free variables. The
core library also includes in-/output routines for all supported file formats, and a
custom visualization module using the Java 2D API for plotting spectra, copolymer
fingerprints and other graphs. The visualization module is able to plot raw mass
spectra with tens-of-thousands of data points as well as 2-dimensional density plots
for the fingerprints.

'http://www.bio.informatik.uni-jena.de/software/coconut

’https://bio.informatik.uni-jena.de/git/summary/?r+ms/polymer/polymer-library.
git

3https://sourceforge.net/projects/optalgtoolkit/

“http://commons.apache.org/proper/commons-math/
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Figure 7.1 The model-view-controller (MVC) concept.

On top of the core library is a graphical user interface, realized as a plugin-framework
based on the simple model-view-controller (MVC) scheme (Fig. 7.1). We determined
several, sometimes conflicting, design goals for the interface. On the one hand it
should be flexible, extensible and modular, on the other hand it should guide the
user in his workflow, be easy to extend, and avoid too much overhead such as
complex XML plugin configuration or unnecessary features such as loading modules
at runtime or from a remote server.

There are two key features that help achieving our design goals. First, the CO-
CONUT 2.0 framework detects and displays the specifically annotated plugins by
simply iterating all classes in the package. The currently implemented plugins cor-
respond to the three components described in Section 7.2. The three plugins and
their layout are designed to guide the user workflow. Second, the framework achieves
modularity and simplicity while adhering to the MVC concept of central controllers
by two conventions (Fig. 7.2). First, every plugin defines its own actions, but all
actions have the same parent class, which manages interactions with the view. Sec-
ond, objects receiving the action results are singletons and the result distribution is
managed by a central distributor which discovers and caches all receiving objects.

7.2 Components and User Interface

COCONUT 2.0 has three components realized as plugins: copolymer fingerprints,
abundance correction, and copolymer statistics (Fig. 7.3). The three components
are displayed as separate tabs in the main window. In the following, we briefly
describe each component.

The core of the copolymer fingerprint component is formed by algorithms for calcu-
lating isotopic patterns, computing copolymer fingerprints and resolving isobaric
species. It is distributed with the free open source linear program (LP) solver
Ip_solve® for computing the fingerprints. Our software also supports the efficient
commercial Gurobi LP solver (Gurobi Optimization, Inc., Houston, USA). CO-
CONUT 2.0 automatically detects and uses a Gurobi installation by searching for the

Shttp://sourceforge.net/projects/lpsolve/
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Figure 7.2 Sequence diagram of an action in the COCONUT 2.0 framework. The
abstract parent class "CoconutAction” manages the interaction with the view el-
ements. After computing a result, the action calls the "ActionResultDistributor”,
which discovers and caches all receiving singleton objects that implement the re-
quested interface "MylInterface” by iterating all classes in the package. It then builds
a proxy object with Groovy map coercion, and returns the proxy. To distribute the
results, the action calls the proxy, which simply calls all receiving objects.

Gurobi JAR archive in the Java library path. Furthermore we included algorithms
for spectral preprocessing (peak smoothing, centroiding and baseline correction)
based on the routines implemented in the open source MS framework MzMine 2 [78].
The abundance correction component contains algorithms for estimating molecu-
lar weight distributions and the abundance correcting functions from homopolymer
spectra, as well as for applying the correcting function to the copolymer fingerprint.
The copolymer statistics component contains algorithms for estimating the copoly-
mer length distribution, fitting a polymerization model to the copolymer fingerprint,
and computing copolymer statistics with the parameterized model.



84 7. COCONUT - The Copolymer Composition Numbering Tool

copom.mnggrpnm-ﬁ Abundance Correction[gg] | Copolymer statistics g (7} copolymer FingerprintsfEH] | Abundance correctionfog] | copolymer statistics| (7}
- mmm O 205 O Ry
\_j SmavtR i = 1 I u lymer mass 5 A 1
0@ oifepaseine I- @~ EEO0 8LL 4ok = 1 s l A4 L 1
| hl T 01 g *Centroided spectrum| L - 50 |
res - *Estimated isotopes I l i =9 ‘ﬂl I 798 7 l
g o II o8- : :‘—J FL &8 = 8 :
F?-"-'-'-" > 1 ML s | E s 1l
.. [ i 1
Rhreshelde o 01 i) gg £ | 1 | 1 H s 8 a2 .
5 5
pord Pl H H 5 [T -
Bvaxmt &, 17 [ Ny 50 H ! o o g
0@ Peak areas 2 1 L 4o 1
J O Peakintensities n . ni 1 ] == =5 =5
i H 1 1 miz mrz 1
Ieesse- l: || Bf Bnput mateix I-'---------=-'=-_----------=--l
o ; 11 1
~—
1%0 2000 20 3000 = o0
1 = I A H
T e T T ES E H
fﬂn{------iwhwwvwaﬁrh----------------- 1 i
2 1
IMnnom‘rA () Iﬂ [le] : : 0- s0- 1
|
I onon| IV:. ] o a8 . os g
End gr 10Ag N M 1
o6 o5
s0] 2 5 ® \ 1
1) i . £
08 1 1° e s} s o 1
Rvanced options o] 1 ‘ 1
:@ Rosoh sobars || as e wl|l ® ol
hootopes [ [ || B Hl 1
1 8 wi - § 10] .
o —" . il . .
o =g | | oy | g 1
§hne o a2 | I | 5k h % b & T B & 3 % H & 1
phee w05 11 C5H8 CsHe 1
10 11 1
i ! .
1 . [ | 1 |}
o 1] 1
L g g e ey e e | |
(a) Copolymer fingerprints (b) Abundance correction
X COCONUT
copolymer FingerprintsEFF] | Abundance correctionfz] | copolymer statistics [ o
1
1 ] n 1
1 o N Polymer lengths | [l
1 1 model
imodel | Il
1 il s :
1 1
os
1 8 oe 1
1 S .
1 02 || 3 os 1
1 2
1 ¢ :
1
1 0z i
i k
I 0.
o B H B b e |
1 polymer length 1
T T e i 1.'&""“‘.---.----"-"
]
© Geometric model | |
B O 8eBouii model 1 (Haesm | (1 1
1 Iy o 1
A 1
1 o Il ® = » |
Jhnalyses |' w] 1
! @) @ M o o
LI Model | status \.I ol :
os
: 2 Geometric | Fit.. |[m] |: o s H
[ o e o
1 .I o 1
1 1 ol |
1 1 5 5
1 ] ] o
1 1 o 1
F Iy O N O 1
1 :I 1
| P T T T TR T R TR T T T

(c) Copolymer statistics

Figure 7.3 Overview of the user interface and workflow of a typical analysis: a)
Copolymer fingerprints: i. Import of either a centroided or a raw MS spectrum. ii.
Optional spectral pre-processing by smoothing raw peaks and baseline correction.
iii. Centroiding of raw spectra by estimating the area under the curve of the detected
peaks. iv. Copolymer fingerprint computation with optional automatic resolving of
isobaric fingerprints. b) Abundance correction: i. Computation of the correcting
functions from homopolymer spectra. ii. Applying the correcting functions to the
fingerprint. ¢) Copolymer statistics: i. Estimating the copolymer length distribu-
tion from the fingerprint. ii. Starting a long-running model fitting and statistics
computation. iii. Final resulting copolymer statistics.




8. Conclusions

Mass spectrometry has become an indispensable tool for analyzing copolymers. In
this thesis, we present a computational approach to sequencing copolymers from
mass spectrometry data, which enables the abundances of all sequences in a mea-
sured copolymer sample to be quantified.

The workflow presented in this thesis can be divided into two steps.The first step in
our workflow is transforming mass spectra into copolymer fingerprints.

Copolymer spectra are highly complex and contain numerous peaks. Frequently
occurring challenges include isobaric species, overlapping isotopes, background noise
and peak shape perturbations. We have presented a robust algorithm to estimate
copolymer fingerprints of linear binary copolymers from any type of MS spectra.
Our approach is based on linear programming. We demonstrated it using several
synthesized copolymers. In addition, we have evaluated our software on simulated
datasets. Our method is swift and accurate for the simulated spectra. We argue
that it is well suited for complex copolymer spectra, as we strove to incorporate
their characteristic features in the simulated spectra.

Mass- and composition-dependent ionization — or mass discrimination — is a ma-
jor challenge in computing copolymer fingerprints, especially with MALDI MS. We
described an experimental protocol and a program to correct the measured abun-
dances. Because our method uses a Gaussian approximation to the Gamma distri-
bution to compute the molecular weight distributions (MWDs), it is applicable to
narrowly distributed homopolymers up to PDI values of around 2. Approximating
the MWDs is more robust using Gaussians, but if the need arises, in the future
broader homopolymers could be analyzed by using Gamma distributions.

Crucial to advancing MALDI MS from a semi-quantitative to a quantitative tech-
nique for copolymers is a carefully planned experimental setup with the best possible
matching conditions for homo- and copolymers. Most importantly, the MS instru-
ment needs to be able to detect both homo- and copolymer signals over the whole
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investigated mass and laser intensity ranges. Acquiring such data is challenging;
the homopolymer spectra in this thesis did not perfectly conform to these stringent
requirements. We invite all interested scientists to further evaluate our abundance-
correcting method.

The second step in our workflow is interpreting the computed copolymer fingerprints
using a new copolymerization model.

We introduced two new Markov chain models, the Bernoulli and Geometric models.
The major differences to classical copolymer Markov chains based on the terminal
model by Mayo and Lewis [59] are the variable number of added monomers per
time step and the time-dependent monomer probabilities. The number of added
monomers follows a Bernoulli or geometric distribution, respectively. The reactivity
ratio has a major influence on synthesized copolymers and likewise the reactivity
parameters of the models play a decisive role.

In our setup, the Geometric model is able to provide a good fit to the fingerprints
of broad polymer distributions, while the fit of the Bernoulli model is particularly
good to the mode but less good to the long tail of narrow polymer distributions.
However, we observe that the likelihood of the copolymer chain sequences is always
higher under the Geometric model. This shows that long chains play a major role
in characterizing the distribution of copolymer chains.

Our models require less memory than Monte-Carlo simulations. The Bernoulli model
is always significantly faster than Monte-Carlo simulations. The Geometric model
is slower than the Bernoulli model, but still significantly faster (1-3 magnitudes)
than Monte-Carlo for a high number of simulated chains, which is necessary for
accurate Monte-Carlo simulations. Also, computing our models can be parallelized
for multiple cores in a straightforward way, computing different rows of the matrices
in parallel.

However, the main advantage of our models over Monte-Carlo simulations is that
they do not produce just a random sample, but characterize the complete distri-
bution of copolymer chains. Our computations are exact and deterministic. In
particular, we can calculate the exact likelihood of any polymer chain. Although
the Geometric model was more accurate in our setup, the Bernoulli model is a good
characterization for copolymer distributions without a long tail and in general can
be used as a rapid first estimate.

We then concentrated on the most accurate variant, the Geometric model with
reactivity parameters.

First, the problem to solve was to find the optimal model parameters from observed
data. To this end, three fingerprint-generating functions were compared, which all
use the model to compute the fingerprint at the end, but differ in the number of
parameters. General-purpose optimizers were used to find the optimal parameters
for each function. Fitting the parameters using the model directly is the most
robust method for copolymers with a Schulz-Zimm-like chain length distribution,
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but has impractical running time. A simple approach to decrease the parameter
search space using splines fails both in accuracy and in decreasing the running time.
By exploiting the relationship between monomer concentration and the Geometric
model, we find a compromise between running time and robustness against noise. For
copolymers with a binomial-like chain length distribution, this approach performs
best. For Schulz-Zimm-like copolymers, this method is slightly less robust against
noise than the direct approach, requiring good input data. However, the running
time is significantly shorter. More importantly, it is independent of the degree
of polymerization and, therefore, can be used for long-chained copolymers. We
recommend to use this method in practice.

On the theoretical side, the question whether the objective function is convex and
smooth remains open. Additionally, the optimization is difficult and the question
remains if different objective functions could make the optimization more robust.
Another approach could be helping the optimization by taking more experimental
parameters into account. Also of interest would be extending the current model to
block copolymers in a two — or more — step process, with additional intermediate
fingerprints for each synthesized block.

Second, we investigated polymerizations beyond living polymerization: controlled
and free radical polymerization, and reversible living polymerization. We show that
the Geometric model can be useful for copolymerization involving termination and
depropagation reactions. It is yet to determine whether the model can be improved
further by including termination and depropragation probabilities.

The usefulness of the model for copolymerizations beyond living polymerization is
important, since these reaction systems are widely used in practice. Furthermore,
termination and propagation reactions often occur accidentally in living polymer-
izations.

We then computed several copolymer statistics using the Geometric model and com-
pared them to the statistics obtained by counting in the copolymer chains computed
by Monte-Carlo simulations. The model agrees mostly with the Monte-Carlo simu-
lations. However, there are some differences, which show that the model parameter
estimation is a difficult optimization problem.

Last but not least we briefly discussed our software framework COCONUT, which
implements all algorithms discussed in this thesis. COCONUT is freely available for
polymer scientists to investigate synthesized linear binary copolymers for designing
smart polymers. Our software fulfills chemists’ demand for computational support
in an efficient manner.
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