/E-D\ FRIEDRICH-SCHILLER-
(-~ :8 UNIVERSITAT
7 JENA

Querying Heterogeneous Data in an
In-situ Unified Agile System

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

vorgelegt dem Rat der Fakultit fiir Mathematik und Informatik

der Friedrich-Schiller-Universitit Jena

von M.Sc. Javad Chamanara
geboren am 23.10.1972 in Eilam

Gutachter

1. Prof. Dr. Birgitta Konig-Ries
Friedrich-Schiller-Universitiit Jena, 07743 Jena, Thiiringen, Deutschland

2. Wird vom Fakultiitsrat bekannt gegeben Prof. Dr. H. V. Jagadish
University of Michigan, 48109-2121 Ann Arbor, Michigan, USA

3. Wird vom Fakultiitsrat bekannt gegeben Prof. Dr. Klaus Meyer-Wegener
Friedrich-Alexander-Universitit, 91058 Erlangen, Bayern, Deutschland

Tag der offentlichen Verteidigung: 12. APRIL 2018

Ehrenwortliche Erklarung

Hiermit erklire ich,

* dass mir die Promotionsordnung der Fakultit bekannt ist,

* dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder Ergebnisse
eines Dritten oder eigenen Priifungsarbeiten ohne Kennzeichnung iibernommen und alle
von mir benutzten Hilfsmittel, personliche Mitteilungen und Quellen in meiner Arbeit
angegeben habe,

* dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe und dass
Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir fiir Arbeiten erhal-
ten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

* dass ich die Dissertation noch nicht als Priifungsarbeit fiir eine staatliche oder andere
wissenschaftliche Priifung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts
haben mich folgende Personen unterstiitzt:

¢ Prof. Dr. Birgitta Konig-Ries

Ich habe die gleiche, eine in wesentlichen Teilen dhnliche bzw. eine andere Abhandlung bereits
bei einer anderen Hochschule als Dissertation eingereicht: Ja / Nein.

Jena, den 12. April 2018

[Javad Chamanara]

1o Diana

Deutsche Zusammenfassung

Die Datenheterogenitit wéchst in allen Aspekten viel rasanter als je zuvor. Daten werden auf ver-
schiedene Art und Weise in vielfiltigen Formaten und wechselnden Geschwindigkeiten gespei-
chert. Softwaresysteme, die diese Daten verarbeiten und verwalten, sind zudem inkompatibel,
unvollstindig und vielfiltig. Datenwissenschaftler miissen oft Daten aus heterogenen Quellen
integrieren, um einen Ende-zu-Ende Prozess aufzusetzen und durchfiihren zu konnen, der ihnen
zu neuen Erkenntnissen verhilft. Zum Beispiel kommt es vor, dass Wissenschaftler Sensordaten
aus einer CSV-Datei mit Simulationsergebnissen aus MATLAB-Dateien, Beobachtungsdaten in
Excel-Dateien und Referenzdaten aus einer relationalen Datenbank miteinander kombinieren
miissen. Diese Daten werden von einer Vielzahl von Werkzeugen und unterschiedlichen Perso-
nen fiir verschiedene Zwecke produziert. In der Regel benétigt der Wissenschaftler nicht alle
verfiigbaren Informationen aus den Dateien, jedoch dndert sich die erforderliche Datenauswahl
iiber den Forschungszeitraum. Zudem haben Wissenschaftler oft nur eine begrenzte Anzahl an
Forschungsfragen und neigen daher dazu, gerade so viele Daten zu integrieren, wie nétig sind
um diese Fragen zu beantworten. Thre Analyse umfasst oft wechselnde Anfragen und volatile
Daten in denen sich zum Beispiel die Struktur hiufig veridndert. Aufgrund dieser Gegebenheiten
konnen Wissenschaftler nicht zu Beginn ihrer Forschungstitigkeit entscheiden, welches Daten-
schema, welche Werkzeuge und welche Abliufe sie verwenden. Stattdessen wiirden sie lieber
verschiedene Werkzeuge nutzen, um iterativ Daten zu verbinden und zu integrieren. So kdnnte
ein geeignetes Datenschema nur mit den relevanten Teildaten geformt werden. Dieser Prozess
generiert eine Vielzahl von ad-hoc ETL-Operationen (Extraction-Transformation-Load), die es
erfordern hiufig Daten zu integrieren.

Datenintegration stellt eine vereinheitlichte Sicht durch Verkniipfung von Daten aus verschie-
denen Quellen dar. Sie beschiftigt sich mit Herausforderungen in Bezug auf die Heterogenitét
in der Syntax, Struktur und Semantik von Daten. In heutigen multidisziplindren und kollabo-
rativen Forschungsumgebungen werden Daten funktionionsiibergreifend produziert und konsu-
miert. Mit anderen Worten, zahlreiche Forscher verarbeiten Daten in verschiedenen Disziplinen
um vielfiltige Forschungsumgebungen mit unterschiedlichen Messauflésungen und mehreren
Anfrageprozessoren und Analysewerkzeuge zu bedienen. Diese funktionsiibergreifenden Daten-
operationen sind ein wesentlicher Bestandteil jeder erfolgreichen datenintensiven Forschungs-
aktivitt.

Die zwei klassischen Ansétze in der Datenintegration, die materialisierte und virtuelle Inte-
gration, 16sen nicht die oben beschriebenen Probleme im Datenmanagement und in der Da-
tenverarbeitung. Beide zielen darauf ab Informationen vollstindig zu integrieren. Die Annah-
me hier ist, dass es sich lohnt, erhebliche Anstrengungen in die Bereitstellung von Langzeit-
Informationssystemen zu investieren, die in der Lage sind, eine gro3e Bandbreite an Anfragen
zu beantworten. Weitere Faktoren, die die materialisierte Integration erschweren, sind die unbe-
standige Natur von Forschungsdaten und die oft groBen Datenmengen oder die starren Zugangs-
bestimmungen, die die Datenweitergabe verhindern. Virtuelle Integration ist nicht geeignet, da
hier Optimierungsmoglichkeiten fiir nicht-relationale Datenquellen fehlen.

Die grundlegende Schwierigkeit ist, dass die Daten nicht nur in Syntax, Struktur und Semantik
heterogen sind, sondern auch in der Art und Weise wie auf sie zugegriffen wird. Wahrend sich

vii

Deutsche Zusammenfassung

zum Beispiel bestimmte Daten in funktionsreichen, relationalen Datenbanken befinden, auf die
mittels deklarativer Anfragen zugegriffen wird, werden andere durch MapReduce-Programme
unter Verwendung prozeduraler Berechnungsmodelle verarbeitet. Des Weiteren werden viele
sensorgenerierte Daten in CSV-Dateien verwaltet, ohne dass auf die Verwendung etablierter For-
matierungsstandards und grundlegender Datenmanagement-Funktionen zuriick gegriffen wird.
Sogar verschiedene relationale Datenbanksysteme unterscheiden sich in Syntax, Einhaltung von
SQL-Standards und Funktionsumfang. Wir bezeichnen das als Datenzugriffs-Heterogenitiit.

Datenzugriffs-Heterogenitit bezieht sich auf Unterschiede im Hinblick auf Berechnungsmodelle
(z.B. prozedural, deklarativ), Abfragemdglichkeiten, Syntax und Semantik der durch verschie-
dene Hersteller oder Systeme bereitgestellten Funktionalitidt. Weiterhin schlieit dies auch die
Datentypen und Formate ein, in denen Daten und Abfrageergebnisse zuriick geliefert werden.
Ein kritischer Aspekt der Datenzugriffs-Heterogenitit sind die Unterschiede im Funktionsum-
fang verschiedener Datenquellen. Wihrend einige Datenquellen, wie zum Beispiel relationa-
le, graphbasierte und Array-Datenbanken, als starke Datenquellen klassifiziert werden, haben
schwache Datenquellen, wie zum Beispiel Tabellenkalkulationen kein bewihrtes Datenmana-
gement. Zudem unterstiitzen nicht alle Datenmanagementsysteme die Funktionen, die von den
Anwendern gefordert werden. Daher sollten wir in die Liste der Heterogenitit das Interesse
von Datenwissenschaftlern an Berechnungen mit Rohdaten aufnehmen. Des Weiteren miissen
doménenspezifische Werkzeuge, die Datenwissenschaftler in der Forschung verwenden, ebenso
hinzugefiigt werden, wie eine Vielzahl an Werkzeugen und Sprachen, die benotigt werden, um
Datenanalyse-Aufgaben zu bewiltigen.

In dieser Arbeit identifizieren wir den Bedarf an besseren Werkzeugen, um die Gesamtkosten
iiber den vollstindigen Datenlebenszyklus von Rohdaten zu Forschungserkenntnissen zu mi-
nimieren. Wir argumentieren auflerdem, dass diese Werkzeuge demokratisiert werden sollten
durch quelloffene, interoperable und leicht bedienbare Systeme. Im Gegensatz zu relationalen
Datenbanksystemen, die Funktionen zur Speicherung und Abfrage auf entsprechende Datenmo-
delle bereitstellen, schlagen wir ein agiles Datenabfragesystem vor. Das ist ein ausdrucksstarkes
Datenabruf-System, das nicht an die Datenspeicherung oder darunterliegenden Datenmanage-
mentsysteme mit begrenztem Funktionsumfang gebunden ist. Das Ziel eines solchen Systems
sind schnelle Riickmeldungen fiir Anwender und die Vermeidung der Vervielfiltigung von Da-
ten, wihrend gleichzeitig ein vereinheitlichtes Abfrage-und Berechnungsmodell zur Verfiigung
gestellt wird.

In dieser Arbeit stellen wir QUIS (Query In-Situ) vor. QUIS ist ein agiles Abfragesystem, ausge-
stattet mit einer vereinheitlichten Abfragesprache und einer foderierten Ausfithrungseinheit, die
in der Lage ist Abfragen an Ort und Stelle iiber heterogene Daten auszufiihren. Seine Sprache
erweitert SQL um Funktionalititen wie virtuelle Schemas, heterogene Verkniipfungen und po-
lymorphe Prisentationen der Ergebnisse. QUIS nutzt das Konzept der Abfrage-Virtualisierung,
das auf einem Verbund von Agenten basiert, um eine gegebene Anfrage in einer bestimmten
Sprache in ein Berechnungsmodell zu iiberfiithren, das sich auf den zugewiesenen Datenquel-
len ausfiihren ldsst. Wihrend die verteilte Anfrage-Virtualisierung viel groflere Flexibilitdt und
Unterstiitzung von Heterogenitit ermoglicht als die zentralisierte Virtualisierung von Daten, hat

viii

Deutsche Zusammenfassung

sie jedoch den Nachteil, dass einige Teile der Anfrage nicht immer von den zugewiesenen Da-
tenquellen unterstiitzt werden und dass das Abfragesystem dann als Sicherung agieren muss,
um diese Fille zu komplementieren. QUIS garantiert, dass die Anfragen immer komplett ausge-
fiihrt werden. Wenn die Zielquelle die Anforderungen an die Abfrage nicht erfiillt, identifiziert
QUIS fehlende Funktionalititen und ergénzt diese transparent. QUIS bietet Union- und Join-
Funktionen iiber eine unbegrenzte Liste von heterogenen Datenquellen an. Zusétzlich bietet es
Losungen fiir heterogene Anfrageplanungen und Optimierung an. Zusammengefasst, QUIS zielt
darauf ab, die Datenzugriffs-Heterogenitit durch Virtualisierung, on-the-fly Transformationen
und foderierte Ausfithrungen abzumildern und stellt dabei folgende Neuerungen bereit:

1. In-Situ querying: QUIS transformiert Abfragen in eine Anzahl ausfithrbarer Jobs, die
in der Lage sind auf Rohdaten zuzugreifen und zu verarbeiten ohne sie zunichst in ein
Zwischensystem laden oder duplizieren zu miissen;

2. Agile querying: QUIS ist ein Abfragesystem und keine relationale Datenbank. Es ermog-
licht und fordert hdufige ad-hoc Abfragen mit zeitnahen Riickmeldungen;

3. Heterogeneous data source querying: QUIS ist in der Lage Abfragen, die mehrere he-
terogene Datenquellen beinhalten, sowohl darzustellen als auch auszufiihren; zusitzlich
konnen Operationen wie Join und Union iiber mehrere Datenquellen hinweg umgesetzt
werden;

4. Unified execution: QUIS garantiert Anfragen auszufiihren. Es erkennt fehlende Funktio-
nen, die bendtigt werden, und ergénzt sie, wenn sie nicht durch die zugewiesenen Daten-
quellen unterstiitzt werden;

5. Late-bound virtual schemas: QUIS ermoglicht die Deklaration von virtuellen Schemas,
die gemeinsam mit der Abfrage gesendet werden konnen. Diese Schemas haben einen
dhnlichen Lebenszyklus wie die Abfragen und brauchen daher nicht vorher definiert oder
installiert zu werden; und

6. Remote execution: QUIS Abfragen sind in selbstausfithrende Einheiten kompiliert, die
auf entfernte Datenzentren transferiert werden, um direkt auf den Daten ausgefiihrt wer-
den zu konnen.

Durch eine Anforderungsanalyse identifizieren wir in dieser Dissertation die Problematik und
stellen detailliert da. Weiterhin zeigen wir einen Losungsansatz auf, um die aufgezeigten Anfor-
derungen zu erfiillen. Die Losung umfasst eine foderierte Architektur, die aus drei Hauptteilen
besteht: Abfragedeklaration, Abfragetransformation und Abfrageausfiihrung. Die Abfragedekla-
ration stellt sowohl ein System zur Erstellung von Anfragen bereit, als auch fiir Tokenisierung,
Parsen und Validierung. Aulerdem konvertiert es die Abfragen in ein internes Abfragemodell,
das sich leichter von anderen Komponenten verarbeiten ldsst. Abfragetransformation umfasst al-
le Funktionen, die fiir die Konstruktion von nativen Berechnungsmodellen benotigt werden und
die auf den zugewiesenen Zielquellen ausfiihrbar sind. Abfrageoptimierung wird ebenfalls un-
terstiitzt. Die Abfrageausfithrung zielt darauf ab, aus den transformierten Berechnungsmodellen

ix

Deutsche Zusammenfassung

ausfiihrbare Einheiten zu generieren und deren Ausfithrung auf den Zielquellen zu orchestrie-
ren. Weitere Aufgaben dieser Komponente sind das Sammeln, Formatieren und Anzeigen der
Abfrageergebnisse. Die Darstellung der Ergebnisse kann dabei auch Visualisierungen und den
Austausch von Daten zwischen einzelnen Prozessen umfassen.

Wir stellen eine prototypische Umsetzung zur Verfiigung um zu zeigen, dass die vorgeschlage-
ne Losung praktikabel ist. Obwohl die Implementierung nicht alle Funktionalititen zu gleichen
Teilen abdeckt und vielleicht nicht den optimalen Ansatz darstellt, solche Funktionen zu imple-
mentieren, haben wir den Prototyp intensiv evaluiert, um die Effektivitit und Effizienz nach-
zuweisen. Die Dissertation schlieft mit einer Diskussion und einem Ausblick auf zukiinftige
Arbeiten.

Acknowledgments

I would like to express my special appreciation and thanks to my advisor Prof. Dr. Birgitta
Konig-Ries. She believed in my abilities and provided the financial, administrative, and tech-
nical infrastructure that were required to accomplish this work. She created an atmosphere that
allowed me to frequently obtain her comments and arguments, yet decide independently. I would
also like to thank her for her patience and tolerance regarding academic, social, and cultural va-
rieties. I enjoyed it! My thanks also go to Prof. Dr. H. V. Jagadish and Prof. Dr. Klaus
Meyer-Wegener, who served as external reviewers for my dissertation. I would like to thank
them for the time and effort they devoted to review and evaluate this work.

I appreciate the support I received from Martin Huhmuth and Andreas Ostrowski. They provided
me with the software and hardware support I needed for the evaluations I have done in this
work. Also, I am thankful for the support I received from Jitendra Gaikwad with interviews
and summarization of his work as one of my motivational examples. Additionally, I would like
to express my appreciation to Friederike Klan, Sirko Schindler, Felicitas Loffler, and Alseysed
Algergawy for their help, advice, and comments on papers, and sections of this work. Vahid
Chamanara, my younger brother, helped me with the statistical analysis of the survey results.
Thanks Vahid.

I’m also thankful to all the people that contributed to the advancement of this thesis. I would like
to particularly thank H. V. Jagadish and Barzan Mozafari from the university of Michigan for
giving critical comments and valuable insights. I am grateful for the Mark Schildhauer, Matthew
Jones, and Rob DeLine’s contributions to the design of the language. They were valuable sources
of requirements and features. I am contented and cheerful with the willingness and enthusiasm
of those who volunteered as test subjects for the user study I conducted as a part of this work’s
evaluation.

I’m in dept of gratitude to my parents who, regardless of our geographical distance, continuously
supported and encouraged me wherever they could. Thank you! I dedicate this work to my
daughter Diana, a source of unending joy and love. Although a kid, she has always been smart,
happy, progressing, and sympathetic. She has been wonderfully understanding throughout the
process of developing this dissertation. I deeply enjoy the moments we live together, and wish
her a bright future.

xi

Abstract

Data heterogeneity, in all aspects, is increasing more rapidly than ever. Data is stored using
different forms of representation, with various levels of schema, and at different changing paces.
In addition, the software systems used to manage and process such data are incompatible, in-
complete, and diverse. Data scientists are frequently required to integrate data obtained from
heterogeneous sources in order to conduct an end-to-end process intended to provide insights:
For example, a scientist may need to combine sensor data contained in a CSV file with simu-
lation outputs that are stored in the form of a MATLAB mat-file, an Excel file containing field
observations, and reference data stored in a relational database. Such data can be produced by
different tools and individuals for various purposes. Scientists do not usually require entire sets
of available data; however, the portions of data that they require typically change over the course
of their research. Also, they often have a narrow set of queries that they want to ask and tend to
perform just enough integration according to their research questions only. Their analyses often
involve volatile data (i.e., data and/or its structure change frequently) and exploratory querying.
These factors prevent the scientists from deciding on the data schema, tool set, and processing
pipeline at early stages of their research. Instead, they would use various tools to iteratively
merge and integrate data to build an appropriate schema and select the relevant portions of the
data. This process creates a loop of ad-hoc ETL operations that requires the scientists to fre-
quently perform data integration.

Data integration provides a unified view of data by combining different data sources. It deals
with challenges regarding heterogeneity in the syntax, structure, and semantics of data. In to-
day’s multi-disciplinary and collaborative research environments, data is often produced and
consumed in a cross-functional manner; in other words, multiple researchers operate on data
in different divisions or disciplines in order to satisfy various research requirements, at diverse
measurement resolutions, and using different query processors and analysis tools. These cross-
functional data operations make data integration a crucial component of any successful data
intensive research activity.

The two classical approaches to data integration, i.e., materialized and virtual integration, do not
solve the problem encountered in scientific data management and processing. Both aim to pro-
vide somewhat complete integration of information. The underlying assumption is that it would
be worthwhile to invest significant efforts toward developing a long-term information system
capable of providing answers to a wide range of queries. Additional factors that make material-
ized integration difficult are the volatile nature of research data and the often large volumes of
data and rigid access rights that prevent data transfer. Virtual integration is unsuitable due to the
typical lack of optimization for non-relational sources.

The fundamental difficulty is that data is heterogeneous not only in syntax, structure, and seman-
tics, but also in the way it is accessed and queried. For example, while certain data may reside in
feature-rich RDBMSs accessed by declarative queries, others are processed by MapReduce pro-
grams utilizing a procedural computation model. Furthermore, many sensor-generated datasets
are maintained in CSV files without well-established formatting standards and lack basic data
management features. Even different RDBMS products differ in syntax, conformance to SQL
standards, and features supported. We recognize this as data access heterogeneity.

xiii

Abstract

Data access heterogeneity refers to differences in terms of computational models (e.g., procedu-
ral or declarative), querying capabilities, and syntax and semantics of the capabilities provided
by different vendors or systems; in addition, it includes data types and the formats in which
data and query results are presented. One critical aspect of data access heterogeneity is the
heterogeneous capabilities of data sources: While some data sources, e.g., relational, graph,
and array databases, are classified as strong data sources, weak data sources, e.g., spreadsheets
and files, do not have well-established management systems. Furthermore, not all management
systems feature the capabilities requested by users’ queries. We should add to these levels of
heterogeneity, the interest of data scientists in performing computations over the raw data, the
domain-specific tools that data scientists utilize to conduct research, and the various tools and
languages required to complete a data analysis task.

In this thesis, we identify a need for superior tools to reduce the total cost of ownership associated
with the full data life-cycle, from raw data to insights. We also argue that these tools should be
democratized through the development of open-source, interoperable, and easy-to-use systems.
In contrast to DBMSs that provide mechanisms for storage and querying respective data models,
we propose an agile data query system. An agile query system is an expressive data retrieval
facility that is unbound by the mechanics of data storage or the limitations of the capabilities of
underlying data management systems. The goal of such a system is to provide rapid feedback
and avoid data duplication while simultaneously providing end-users with a unified querying
and computation model.

We introduce QUIS (QUery In-Situ), an agile query system equipped with a unified query lan-
guage and a federated execution engine that is capable of running queries on heterogeneous data
sources in an in-situ manner. Its language extends standard SQL to provide advanced features
such as virtual schemas, heterogeneous joins, and polymorphic result set representation. QUIS
utilizes the concept of query virtualization, which uses a federation of agents to transform a
given input query written in its language to a (set of) computation models that are executable on
the designated data sources. While federative query virtualization offers much greater flexibility
and support for heterogeneity than data virtualization controlled by a central authority, it has the
disadvantage that some aspects of a query may not be supported by the designated data sources
and that the query engine may then have to act as a backup to complement these cases. QUIS
ensures that input queries are always fully satisfied. Therefore, if the target data sources do not
fulfill all of the query requirements, QUIS detects the features that are lacking and complements
them in a transparent manner. QUIS provides union and join capabilities over an unbound list
of heterogeneous data sources; in addition, it offers solutions for heterogeneous query plan-
ning and optimization. In brief, QUIS is intended to mitigate data access heterogeneity through
query virtualization, on-the-fly transformation, and federated execution. It offers the following
contributions:

1. In-Situ querying: QUIS transforms input queries into a set of executable jobs that are
able to access and process raw data, without loading or duplicating it to any intermediate
system/storage;

2. Agile querying: QUIS is a query system, not a DBMS. It allows and encourages frequent
and ad-hoc querying and provides early feedback;

xiv

Abstract

3. Heterogeneous data source querying: QUIS is able to accept and execute queries that
involve data retrieval from multiple and heterogeneous data sources; in addition, it can
transparently perform composition operations such as join and union;

4. Unified Execution: QUIS guarantees the execution of input queries. It detects lacks in
terms of the capabilities requested by input queries and complements them if they are not
supported by the designated data sources;

5. Late-bound virtual schemas: QUIS allows for the declaration of virtual schemas to be
submitted alongside queries. These schemas have life cycles that are similar to those of
the queries and thus do not need to be predefined or pre-installed on data sources; and

6. Remote execution: QUIS queries are compiled to self-contained executable units that can
be shipped to remote data centers when it is necessary to directly execute them on data.

Throughout this dissertation, we identify and elaborate on the problem statement by specifying
a set of requirements; in addition, we offer a solution intended to satisfy them. This solution
proposes a federated architecture that consists of three main components: query declaration,
query transformation, and query execution. Query declaration provides a query authoring tool,
and tokenization, parsing, and validation services. Additionally, it converts the input queries into
a more manageable internal query model that can be used by other components. Query transfor-
mation includes all of the activities required for the construction of native computation models
that can be run on designated target data sources; it also includes query optimization. Query ex-
ecution is intended to build executable units from the transformed computation models as well
as orchestrating their execution on designated data sources. Collecting, reformatting, and repre-
senting query results are also among the responsibilities of this component. The representation
of the results may include visualization or inter-process data transmission.

We provide a proof-of-concept implementation to demonstrate the feasibility of the solution.
Although the implementation does not address all of the solution features equally and may not
represent the optimal approach to implementing such features, we intensively evaluate the sug-
gested implementation in order to prove its effectiveness and efficiency. The dissertation con-
cludes with a discussion and a roadmap for future work.

XV

1.

Contents

Problem Definition 3
Introduction 7
1.1. Motivation & OVerview v it 7
1.2, Usage Scenarios o v ittt e 13

1.2.1. Ecological Niche Modeling Use-Case 13

1.2.2. Sloan Digital Sky Survey Use-Case 15
1.3. Hypothesis and Objectives 15
Background and Related Work 21
2.1. Relational Database Management Systems 22
2.2. Federated Database Management Systems 23
2.3. Polystore Systems e e e 24
24. NoSQLs e 25
2.5. Scientific Databases L 27
2.6. External Databases 28
2.7. Adaptive Query Systemso e 28
2.8. NoDBs e 29
Problem Statement 31
3.1. Functional Requirements 32
3.2. Non-functional Requirements 39
Summary of Part | 43

Approach and Solution 45
Overview of the Solution 49
Query Declaration 55
6.1. Programming Paradigm L oL 56
6.2. Choice of Programming 58
6.3. Choice of Meta-languageand Tools 59
6.4. Related Query Languages 62

6.4.1. SQL e 62
6.4.2. SPARQL e 63
6.43. XQUery e e 65
6.4.4. Cypher e 67
6.4.5. Array-based Query Languages 69
6.4.6. DataModel 71
6.5. QUIS Language Features 73
6.5.1. Declarations 73
6.5.2. Data Retrieval (Querying) 81

Xvii

Contents

7. Query Transformation
7.1. Query Plan Representation
7.2. Query Transformation Techniques
7.2.1. Query to Query Transformation
7.2.2. Query to Operation Transformation
7.23. SchemaDiscovery
7.2.4. Transforming Data Types
7.3. Query Complementing
7.4. Query Optimization e
7.4.1. OptimizationRules
7.4.2. Optimization Effectiveness

8. Query Execution

8.1. The Query ExecutionEngine
8.1.1. Described Syntax Tree (DST) Preparation
8.1.2. AdapterSelection
8.1.3. Query Compilation
8.1.4. JobExecution.

8.2. Adapter Specification L

9. Summary of Part Il
9.1. Realization of the Requirements

lll. Proof of Concept

10.Implementation
10.1. Agent Module
10.1.1. Parsing

10.1.2. Dynamic Compilation
10.2. Data AccessModule

10.3. Client Module

10.3.1. Application Programming Interface (API)
10.3.2. QUIS-Workbench,
10.3.3. R-QUISPackage,
10.4. Special Techniques
10.4.1. Tuple Materialization
10.4.2. Aggregate Computation
10.4.3. Plug-ins e

11.System Evaluation
11.1. Evaluation Methodology,
11.1.1. EvaluationData

11.1.2. Tools

89
90
92
94
95
96
97
97
101
102
105

107
107
109
110
112
113
115

117
118

121

125
125
127
127
129
130
131
131
132
134
134
138
139

xviii

Contents

11.1.3. TestMachines 143

11.2. Measuring Time-to-first-query 143
11.3. Performance on Heterogeneous Data 144
11.4. Scalability Evaluation L ... 148
11.5. User Study e e 149
11.6. Language Expressiveness oo 155

IV. Conclusion and Future Work 157
12.Summary and Conclusions 161
13. Future Work 165
References 169
V. Appendix 185
A. QUIS Grammar 187
B. Expressiveness of QUIS’s Path Expression 191
C. Evaluation Materials for the User Study 195
C.1. User Study Methods 195
C.2. Task Specification e 196
C3. TaskData e 200
C4. Questionnaire v v v e e e e e e e e e e e e e e e 200
CS5. RawData e 203
C.6. Descriptive Statistics 205
C.7. Analytic StatiStiCs i e e e e e 206

Xix

5.1.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

10.1.
10.2.
10.3.

11.1.
11.2.
11.3.
11.4.
11.5.
11.6.
11.7.
11.8.
11.9.
11.10.
11.11.
11.12.
11.13.
11.14.
11.15.
11.16.

List of Figures

The overall QUIS architecture, components, and interactions 53
A sample Annotated Syntax Graph (ASG) with adapters assigned to queries . . 90
Asinglequery ASGo 91
The ASG of two queries that share abinding 93
An example of a complementedquery L. 98
An example of the ASGof ajoinquery 100
An example of the ASG of a complemented joinquery 101
QUIS architectural overview e e 126
A screenshot of the rich client workbench’s main UI 132
A line chart drawn by R-QUIS packageforR 134
The relational model of a dataset used in QUIS heterogeneity evaluation 146
QUIS performance evaluation on heterogeneousdata 146
QUIS’s average performance on heterogeneous data versus the baseline 147
QUIS’s performance results on largedata 149
Comparison chart of the time-on-task indicator 152
Histogram of the time-on-task indicator on the baseline and QUIS 152
Comparison chart of the machine time indicator 152
Histogram of the machine time indicator on the baseline and QUIS 152
Comparison chart of the code complexity indicator 153
Histogram of the code complexity indicator on the baseline and QUIS 153
Comparison chart of the ease of use indicator 153
Histogram of the ease of use indicator on the baseline and QUIS 153
Comparison chart of the usefulness indicator 154
Histogram of the usefulness indicator on the baseline and QUIS 154
Comparison chart of the satisfaction indicator 154
Histogram of the satisfaction indicator on the baseline and QUIS 154

xxi

4.1.

6.1.

7.1.

9.1.
9.2.

11.1.
11.2.
11.3.
11.4.
11.5.
11.6.

B.1.
B.2.

C.1.
C.2.
C.3.
C4.

List of Tables

Level of the satisfaction of requirements by various related systems 44
Query features supported by various query languages. 71
Effectiveness of the optimizationrules 105
Requirement fulfillment by features 119
Overall requirement fulfillmentrates 120
The tools used in QUIS evaluation scenarios. v v v v v v v .. 142
Time-to-first-query observationresult 144
Data source settings for the performance on heterogeneous data experiment . . 145
Descriptive statistics of the survey results 151
User study hypothesis testresults L. 151
Comparison of QUIS’s features with those of the related work 156
QUIS path expression coverage for XPath 192
QUIS path expression coverage for Cypher 193
Survey raw data for the baseline system 203
Survey raw data for the QUIS system 204
Descriptive statistics of the surveydata 205
Descriptive statistics of the survey results 206

xxiii

List of Tables

Thesis Structure

The dissertation consists of four parts: Part I provides an overview of the general area of hetero-
geneous data querying and integration, identifies the motives this dissertation, and formulates
the hypothesis (Chapter 1). Thereafter, it describes the background of the work (Chapter 2) and
provides the problem statement (Chapter 3). Finally, this part defines the specifications and the
boundaries of the problem by identifying a set of requirements. These requirements guide the
solution proposed in Part II.

Part II proposes and describes the main elements of a solution intended to fulfill the require-
ments discussed in Chapter 3. It begins by outlining a solution architecture in Chapter 5. The
architecture introduces three fundamental components: query declaration, transformation, and
execution. Query declaration (Chapter 6) formulates the requirements into a declarative query
language that is unified in syntax, semantics, and execution. Query transformation (Chapter 7)
specifies and explains the techniques used to convert the queries into appropriate computation
models, allowing them to be executed against designated data sources. This chapter also elabo-
rates on the solutions proposed for dealing with queries that access heterogeneous data sources,
query rewriting, and data type consolidation. Chapter 8 then explores how the transformed and
complemented queries might be executed at the end of the pipeline. Query execution is also
responsible for returning the queries’ result sets to the client in the format they requested. The
extent to which the solution satisfies the requirements, in addition to its limitations and achieve-
ments, are summarized in Chapter 9.

Part III is dedicated to the evaluation of the proposed solution. We first present a proof-of-
concept implementation in Chapter 10 and utilize it to illustrate the correctness of the hypothesis.
To prove that the hypothesis holds, we conduct a set of evaluations and discuss their results
in Chapter 11. The evaluations are designed to measure the language’s expressiveness, system
performance on heterogeneous data, scalability when applied to large data, and usability.

Part IV concludes this dissertation. In Chapter 12, we briefly reiterate our assumptions, the
solution we provided, and the results of the evaluation. Thereafter, we bring the dissertation to a
close by reviewing its achievements and the extent to which the hypothesis is satisfied. Finally,
in Chapter 13, we examine a set of important directives for future work.

Part I.

Problem Definition

This part provides an overview of the general area of heterogeneous data querying and integra-
tion, identifies the motives this dissertation, and formulates the hypothesis (Chapter 1). There-
after, it describes the background of the work (Chapter 2) and provides the problem statement
(Chapter 3). Finally, this part defines the specifications and the boundaries of the problem by
identifying a set of requirements. These requirements guide the solution proposed in Part II.

Introduction

In this chapter, we motivate the work conducted in this thesis by describing the gaps and prob-
lems it addresses (Section 1.1). We also demonstrate the work’s relevance by identifying real-
world usage scenarios (Section 1.2). Based on the challenges identified, we derive and formulate
the hypothesis investigated in this dissertation and identify a set of operational objectives, the
achievement of which leads to the fulfillment of the hypothesis (Section 1.3).

1.1 Motivation & Overview

Data scientists work in environments that are characterized by multi-faceted heterogeneity, e.g.,
data and applications. Data can be generated, transferred, stored, and consumed in different
ways. Data processing, querying, and visualization tools usually require scientists to reformat
and/or reload data according to their particular specifications. Additionally, the systems that are
widely used neither support all of the requirements of such scientists nor are compatible with
each other. It is also not an easy task to build a workflow that seamlessly integrates multiple
systems in order to establish a pipe of data that each system can perform a set of operations on.
As Jim Gray mentioned in his last talk [Gra08], the entire discipline of science requires vastly
superior tools for the capture, curation, analysis, and visualization of data.

In this dissertation, we elaborate upon the challenges that data scientists are confronted with
when performing data-intensive researches. Based on these challenges, we define a problem
and specify it in greater detail by identifying a set of requirements. We suggest a solution for
such requirements by proposing a unified query language and an execution engine for such a
language. Furthermore, we implement a proof of concept to demonstrate that the suggested
solution is feasible and practical. Our general intention is to define the specification and the
grammar of a science-oriented language that allows scientists to focus on solving their research
problems instead of dealing with technical issues related to data management, transformation,
and transportation. In the remainder of this section, we elaborate on the terms that are frequently
used in this document, define certain aspects of heterogeneity, and explain the challenges.

According to the IFIP!, data is a representation of facts or ideas in a formalized manner that
is capable of being communicated or manipulated by processes. Based on this definition, data

"http://www.ifip.org/

http://www.ifip.org/

CHAPTER 1. INTRODUCTION

has always functioned as the cornerstone of human advancement in all of the three scientific
discovery paradigms, namely experimental, theoretical, and computational. Nowadays, with
the shift to data-intensive scientific discovery [HTTO09b], data is playing a more important role
than ever and is an integral part of almost any commercial, industrial, or research institute’s
value-adding process.

Data is used to identify patterns, anomalies, or outliers that existed in the past or to predict the
same for the future. It is used to understand the relationships between complex networks of
events, to model or simulate situations in systems, to analyze and reach conclusions regarding
behavior, and for countless applications in various disciplines. The field of life sciences, for
example, utilizes data for species distribution modeling [MOLMEW17]. In high energy physics,
the investigation that proved the existence of the Higgs bosons was only possible as a result
of data-intensive research [dBCF*16]. While policies that regulate the use of data exist, the
processes of generating and applying data using different techniques, at different times, and
for different purposes, are as old as data itself. However, recently, collaborative [TWP16] and
reproducible [VBP™13] sciences have gained attention and traction.

Data science is a response to the fast-paced advancements in processing techniques and tools and
the analysis, interpretation, and application of data. Data science is the process of systematically
extracting insight and understandings from data [Dhal3]: It analyzes data in a methodological
and reproducible manner in order to extract information or derive conclusions. Data science is
characterized by its interdisciplinary nature, as it relies on heterogeneous data, a heavy use of
statistical and mathematical methods, modeling, and hypothesis-testing techniques. By com-
bining aspects of statistics, computer science, applied mathematics, and visualization, the data
science field offers a powerful approach for making discoveries in various domains, e.g., life
sciences [GT12, QEB109], health care [BWB09], and physics [BHS09].

A process in the data science field is comparable to a data-driven workflow in that each step
obtains data from previous steps and/or data sources and performs a set of computations on it.
These steps can be executed by machines, humans, or in a machine/human collaboration. The
term “computation” refers to a broad set of data operations, including cleansing, filtration, ag-
gregation, decomposition, transformation, processing, storing, transferring, and visualization.
Processes may be applied to small amounts of well-formed data or to multiple large datasets
with syntactical and structural differences; they may take anything from milliseconds to multi-
ple days to produce a result. Furthermore, the processes involved may be interdisciplinary or
inter-departmental, meaning that multiple data scientists may be involved, the applicable poli-
cies may differ, and the data-processing tools used may not be compatible. Additionally, such
processes may potentially require multiple machines if no single device has the required storage
or processing power.

Although the term “data scientist” is commonly used to refer to individuals who deal with the
scientific data processing mentioned previously, we use the more general term data worker (Def-
inition 1.1) throughout this document to refer to any individual who deals with data, regardless
of whether his or her work is considered scientific or not. This definition also includes sup-
port and administrative tasks, such as the preparation, transformation, loading, and management

1.1. MOTIVATION & OVERVIEW

of data. Domain scientists, application users, crowd workers, activists, and citizens are also
included [AAAT16].

Definition 1.1: Data Worker An individual who performs a set of computations on data in or-
der to achieve a result. Such computations can be performed for support, administrative, or op-
erational purposes. This term includes data scientists, data researchers, data analysts, business
analysts, statisticians, data miners, predictive modelers, data engineers, computer scientists,
and software developers.

Data workers obtain data from various sources, e.g., sensor logs, simulation outputs, field sur-
veys, and reference data imports. Such data is produced in different ways, by different tools and
people, and for various purposes. One of the earliest, and ongoing, activities that data workers
engage in is the preparation of data for designed analyses. This requires them to conduct data
integration [HROO6]. Although the use of automated methods is preferred in the integration and
analysis of data, data workers are required to utilize multiple tools in order to accomplish their
tasks. Their tool sets usually consist of a combination of programming languages, database man-
agement systems, visualization applications, business intelligence programs, operating systems,
and statistical packages [KM14], e.g., R [R C13], Python, SQL, and Excel [Rex13, KM14]. Data
integration in environments that feature multi-faceted heterogeneity presents its own challenges.
Two of the most important challenges that we discuss in this dissertation are data and system
heterogeneities.

Heterogeneity in data is associated with syntax, structure, and semantics [DHI12]. It is because
data is produced, transmitted, and stored using a wide variety of means, e.g., sensors, instru-
ments, systems, manual collection, simulations, transformations, communication, and storage
devices. In addition, the processes involved are subject to protocols and research constraints and
requirements. These heterogeneity dimensions frequently require that data workers perform a
series of additional steps that are not part of their analysis work; these steps are generally not
considered valuable and are time-consuming, usually challenging, and error-prone. Transform-
ing data to meet the input requirements of a tool or loading data onto a managed database are
examples of these kinds of extra loads. Data heterogeneity is not avoidable; hence, the current
solution is to mitigate it, frequently through the use of data integration.

Data integration is the science and technology of providing a unified view by combining data
from different sources [Len02]. It addresses the three dimensions of heterogeneity in data,
namely syntax, structure, and semantics [LT06]. Data integration is crucial in today’s multi-
disciplinary and collaborative research environments, in which data is produced and consumed
in a cross-functional manner. The term “cross-functional”, in this context, refers to the activities
engaged in, e.g., by multiple researchers in different divisions or disciplines in order to satisfy
various research requirements, using diverse measurement resolutions and various query proces-
sors and analysis tools [HRO06, AAA16]. Data integration can be applied to tasks of various
complexities. For example, it can be applied to trivial task of combining the sensor logs acquired
from a field survey with local meteorological records or to more complex pipeline such as the
Sloan Digital Sky Survey (SDSS) [STGO08].

CHAPTER 1. INTRODUCTION

There are two classical approaches to data integration: materialized and virtual [DHI12]; both
were originally developed with business applications in mind. Materialized data integration
is a process designed to extract, transform, and load data from a set of data sources into a
single unified database, which can be used to answer queries using the unified data. Virtual
integration involves placing a logical access layer on top of a set of data sources in order to
hide data heterogeneity from applications and users without loading data in advance [SL90,
DHI12]. In virtual integration, instead of data, queries are transformed into and executed on the
corresponding data sources. Partial results are integrated by a mediator at the time of query to
construct the input query’s result set.

Both of these integration approaches assume a degree of schema stability. Materialized inte-
gration has a high upfront cost and is not suitable when source data changes frequently, as it
relies on the schema for the validity of the Extract, Transform, and Loads (ETLs). It also suffers
from a range of side effects, including data duplication and version management, the informa-
tion and/or accuracy loss caused by transformation, and storage and network requirements both
during and after the ETLs. Similarly, virtual integration requires the schema of the member data
sources for either global or local view definitions. The processes involved in formulating and
applying ETLs in materialized integration or defining and installing views in virtual integration
add a set of preparatory steps to the actual scientific work that, among their other side effects,
increase the amounts of time required before a data worker can issue the first query.

The traditional integration methods also make it harder to reproduce the results obtained from
the original data, as reproduction requires the same integration systems to be set up. This is
a challenging requirement to satisfy, because, more often than not, data integration procedures
are not captured as part of the data analysis workflow, or it may not even be possible to do
so [ABMLO09]. When it comes to scientific data, however, the data sources are often text files,
Excel spreadsheets, or the proprietary formats used by recording instruments. As such, these
classes of data integration are often not well-suited for scientific work when one considers the
fact that it is not only the scientific data used, but also the query requirements of data workers,
that change frequently.

The fundamental difficulty is that data is heterogeneous not only in syntax, structure, and se-
mantics, but also in the ways in which it is accessed and queried. While certain data that re-
side in feature-rich Relational Database Management Systems (RDBMSs) can be accessed by
declarative queries, others are processed by MapReduce programs, utilizing a procedural com-
putation model [DGO8]]. Furthermore, many sensor-generated datasets are in Comma Separated
Values (CSV) files that lack well-established formatting standards and basic data management
features. Finally, the various RDBMS products differ in syntax, conformance to SQL standards,
and features supported.

We refer to this heterogeneity dimension as data access heterogeneity. Data access heterogene-
ity includes the varieties of data access methods (e.g., procedural or declarative), the available
querying capabilities (e.g., aggregate functions or expressive power), syntax and semantics of
the capabilities provided by different standards, vendors, or systems (e.g., Offset/Limit syntax

10

1.1. MOTIVATION & OVERVIEW

and the semantic differences between PostgreSQL 9.x and MS SQL Server 2012), and the data
types and presentation formats of the query results.

One critical aspect of data access heterogeneity is the heterogeneous capabilities of data sources.
Some data sources, e.g., relational, graph, and arrays, have their own sets of management sys-
tems. Others fall under the so-called weak data sources [TRV98], e.g., CSV and spreadsheets,
and do not have well-established management systems. In addition, not all management systems
support the capabilities requested by users’ queries; for example, the MapReduce programming
model does not support joins and sorting [FT12, YLBT13].

In order to address this challenge, some researchers have proposed the concept of data virtual-
ization [K™15, ABB'12]. Data virtualization abstracts data out of its format and manipulates
it regardless of the manner in which it is stored or structured [KAA16]. By providing a frame-
work for posing queries against raw data, such a system can permit the use of data sources
with heterogeneous capabilities. However, there are additional important aspects of data access
heterogeneity:

* Heterogeneous joins: Joins are one of the most expensive operators in relational systems.
Likewise, when joining data from various sources, one is constrained by source capabil-
ities in terms of choice of join algorithms. For example, consider an inner join query in
which the left side retrieves data from a CSV file and the right side from a relational table:
irrespective of input sizes, due to the lack of indexed access capability in the CSV file, an
indexed nested loop join must have the CSV file as the outer relation and the relational
table as the inner;

* Heterogeneous Query Planning: The heterogeneity of source capabilities can also make
query planning quite challenging: For example, there may be limited access to metadata
such as constraints, data types used, indexes, and statistics. In exploratory or experimental
data analyses in which datasets are volatile and queries are ad-hoc, even calculating simple
statistics can prove expensive and ineffective;

* Heterogeneous representation: Data sources differ in syntax, schema, and type system.
Therefore, the potential type conversions required to unify partial result sets may cause
loss of information or accuracy. Furthermore, the need to determine an appropriate data
type for the reconciled results should be taken into account. Designing systems with
interoperability in mind may require considering support for various serialization formats.
An agile query system should consider early visual feedback, e.g., drawing a histogram of
the values of an attribute; and

e Multiple versions: In data-centric research, data is often versioned for various reasons,
e.g., data cleansing, exploratory aggregations, hypothesis testing, and ensuring the repro-
ducibility of results [SCMMS12]. The data schema may also differ from one version to
another [Rod95, CTMZ08, Zhu03]. The need to support multi-version data sources adds
a degree of complexity to data access in heterogeneous environments.

11

CHAPTER 1. INTRODUCTION

In addition to the data and access heterogeneity dimensions, science projects typically have
special requirements in terms of data management and processing practices. Over the previ-
ous five years, we have supported a number of large-scale collaborative biodiversity and ecol-
ogy projects, including the German Center for Integrative Biodiversity Research Halle, Jena,
Leipzig-iDiv?, the Biodiversity Exploratories®, the Jena Experiment*, and CRC AquaDiva’, in
data management and integration. In these projects, we worked closely with scientists from the
domains of biodiversity and ecology. We also developed data management solutions for these
domains in the scope of the BEXIS® and GFBio’ initiatives. The following summarizes our
findings:

* Data workers are interested in running their computations over raw data [AABT09] not
only to reduce data transformation and duplication efforts but also to retain ownership of
the data. Although this is a good motive for adopting a virtual integration system, running
and maintaining such a system is not cost- or time-efficient for short-term ad-hoc research
activities [HT11];

General-purpose systems such as RDBMSs, although powerful, cannot replace the domain-
specific tools that data workers utilize when conducting research [AAAT16]. One of
the main reasons for this is that the majority of the current state-of-the-art data manage-
ment systems work on data that is loaded into their internal storage or serialized in their
pre-defined formats. For instance, RDBMSs store data in terms of tables and rows, the
majority of NoSQL systems operate on JSON, and XQuery requires XML. Therefore,
researchers often need to export the intermediate results produced in a general-purpose
system back to their specific tools (examples of real case scenarios are provided in (Sec-
tion 1.2). This process causes a series of reverse ETLs; reverse ETLs are usually more
difficult to conduct, as the general-purpose systems may provide little/no support when it
comes to exporting their managed data to the format/structure required by specific tools;

Scientific data-intensive research often involves volatile data (i.e., the data itself and/or
its structure change frequently) and exploratory queries (i.e., queries are run on small
subsets of data). These characteristics limit the efficiency of several RDBMS features,
such as indexing, schema design, and tuning. This class of exploratory work shifts the
data worker’s focus from schema design and database management to agile and interactive
query systems;

According to data volume, storage, and access policies, research centers may prefer to
accept certain processes and apply them on data rather than transferring data [GraO8]. This
is preferred in cloud-based data centers and among communities that manage copyrighted
datasets; and

nttps://www.idiv.de
*http://www.biodiversity-exploratories.de/1/home/

“http://www.the— jena-experiment.de/
Shttp://www.aquadiva.uni-jena.de/
*http://bexis2.uni-jena.de/
Thttp://www.gfbio.org/

12

https://www.idiv.de
http://www.biodiversity-exploratories.de/1/home/
http://www.the-jena-experiment.de/
http://www.aquadiva.uni-jena.de/
http://bexis2.uni-jena.de/
http://www.gfbio.org/

1.2. USAGE SCENARIOS

* The number of languages and tools needed to complete a data analysis task is often pro-
portional to the number of data sources. This makes cross-functional data integration
tasks cumbersome, time-consuming, and less reproducible. In fact, in many cases, the
time spent on the data preparation outweighs that invested in analysis.

Dealing with scientific data has been considered a major barrier to the advancement of science
for decades. In 1993, Bouguettaya and King [BK93] noted that, given the growing need for data
sharing at the time, a priority was the ability to access and manipulate data independently of the
manner in which it is organized and accessed. More than a decade later, Jim Grey suggested that
superior tools be developed in order to support the entire research cycle, including the capture,
curation, analysis, and visualization of data [HTT(09a]. Concurrently, data-querying and process-
ing tools have reached such a degree of inconsistency that, in 2009, a group of database experts
collaboratively concluded that radical changes to data-querying systems are needed [AABT09].
In 2016, the same group stated that coping with increased levels of diversity in data and data
management, as well as addressing the end-to-end data-to-knowledge pipeline, are among the
top five challenges in the database field [AAAT16]. Even today, data-processing tools fail to
adequately cope with requirements and challenges. The lack of complete solutions has led sci-
entists to develop or adopt application-specific solutions [AKD10]; causing software systems to
be typically tightly bound to their respective domains and difficult to adapt to changes [AKD10].

The transient nature of scientific and research data, as well as its high volume and short-time us-
age, make applying a schema and loading it onto conventional systems obsolete. The increasing
use of public and private cloud-based data centers and data repositories has reduced the impact of
data transfer and duplication issues and provides facilities for high-performance data processing.
However, today’s cloud data services are considerably more restricted than traditional database
systems [AABT09]. Easy and agile methods that apply computations to data [HTT09b] would
be of interest and beneficial for all parties involved.

In the remainder of this chapter, we first introduce two real-world use-cases to demonstrate how
deeply heterogeneity influences research and scientific work (Section 1.2). In Section 1.3, we
briefly explain the solution we propose to the challenges identified in the introduction. Based
on the proposed solution, we establish our hypothesis, define our objectives, and explain the
manner in which we test the hypothesis.

1.2 Usage Scenarios

In this section, we present two examples of real-world, multi-source, import-/export-intensive
experiments that demonstrate how data and tool heterogeneity result in unnecessary complexity
and consume a remarkable portion of researchers’ time.

1.2.1. Ecological Niche Modeling Use-Case

Gaikwad et al. conducted a study on the customary medicinal plant species used in Australia in
order to predict the ecological niches of the medicinally important species based on bioclimatic

13

CHAPTER 1. INTRODUCTION

variables [GWR11]. We interviewed the authors and inquired as to how they dealt with their
data. The following is their summary of the steps they took from the data retrieval to the result
presentation:

“We used MaxEnt [PASO6], the ecological niche-modeling program, for the prediction. To feed
the software with appropriate data, we had to obtain data from various sources and transform
them accordingly, as follows:

1. Species data obtained from CMKb: We queried CMKb [GKV1T08] to extract species’
names and their respective medicinal uses, downloaded the data as a CSV file, and then
imported it into an MS Excel sheet for data cleaning.

2. Distributional data obtained from GBIF®: We downloaded the species observation loca-
tions as a CSV file and loaded it into a MySQL database table for cleansing. The dataset
contained multi-million records, therefore, exceeded MS Excel’s capacity. Afterwards, we
exported the cleaned relational data back to a CSV file to feed it to DIVA GIS [HGB'12]
software. We used DIVA to find and eliminate geographically erroneous location records.
We then ported the resulting cleaned distribution data back to MySQL and excluded the
species with fewer than 30 locality records. This reduced the number of species to 414.
Finally, we transformed the distribution records associated with the 414 species data into
a set of CSV files organized in species-specific folders, each for one species.

3. WorldClim data: We downloaded the world climate dataset [HT05]. It is a 2.5 arc-
minutes resolution dataset that contains 19 bioclimatic variables in grid (grd) format. We
used the R system to choose variables with minimum correlation. We then converted the
big grid files into ASCII format using our own program, developed in Delphi.

4. Ecological niche modeling: We generated the ecological niche models [GZ00] using a
Python script that ran the MaxEnt software on each of the species folders. Each folder
contained the species distribution data, the WorldClim data, and the projected modeling
result in a spreadsheet.

5. Species richness Map: We thresholded the generated model results in the R software and
overlaid them to derive the species richness map [GTK98]. The map was stored both in
ASCII and grid formats.

6. Medicinal Value Map: We calculated the weight for each species based on the number
of its unique medicinal uses and added them to the individual species model, followed by
overlaying all of the weighted models using R software to generate the medicinal value
maps as shown in Figure 5 [GWRI1].

It is worth mentioning that we spent more effort on data preparation, integration, and tool cou-
pling than on the analysis needed to conduct the research.”

The scenario identified above occurs frequently in multi-source and collaborative research en-
vironments. Those who simultaneously participate in different projects are more likely to be
confronted with data and access heterogeneities; hence, a greater number of tools, programming
languages, and ad-hoc developments will be required [Rex13].

8Global Biodiversity Information Facility http://www.gbif.org/

14

http://www.gbif.org/

1.3. HYPOTHESIS AND OBJECTIVES

1.2.2. Sloan Digital Sky Survey Use-Case

The Sloan Digital Sky Survey (SDSS) has created a three-dimensional map of the Universe. It
contains a large set of multi-color images of the sky and spectra of astronomical objects. To
accomplish this goal, SDSS acquires and maintains large multi-dimensional datasets of the sky.
It makes this data available through different mechanisms [APAT16]. Raw and processed image
data are available through the Science Archive Server (SAS)°. The catalogs and derived quan-
tities can be accessed via the Catalog Archive Server (CAS). The server provides interactive'”
and batch!! querying features as well as synchronous and asynchronous modes.

The SDSS also makes this data available to the public by feeding a virtual observatory system.
The virtual observatory integrates both historical and current SDSS data into online reposito-
ries for public access. Because of the differences in the formats, resolutions, update rates, and
the types of data available through the observatory the SDSS must transform the original data.
Transformation is managed by a pipeline of ETL operations that ingests and validates the data
and produces the models and records used in the virtual observatory.

SqlLoader is a tool that was developed to implement the SDSS’s data-loading pipeline [STGOS].
It performs all of the steps required to transform the input raw data into the final designated
relational databases that serve the virtual observatory. SqlLoader utilizes a distributed work-
flow system to orchestrate the required tasks [TSGO4]. Tasks are units of processing that are
associated with the workflow nodes. The workflow itself is modeled as a directed acyclic graph.

SqlLoader has implemented a number of different tasks. One task ingests the binary data stored
in the Flexible Image Transport System (FITS) format that is stored in Linux machines and
converts it into CSV files, while another task transfers the CSV files to staging servers running
on MS Windows for quality control purposes. There are also tasks to insert the final data into
chosen instances of staging and production MS SQL Server databases. Copying staging data
to production databases, merging data from multiple databases, checking data integrity, and
reindexing are also among the tasks handled by SqlLoader.

Using the workflow management system and parallelizing tasks to operate on chunks of data
have remarkably improved the overall performance. However, this pipeline operates in an envi-
ronment that features large amounts of data and significant tool heterogeneity. It ingests different
data formats, e.g., FITS, CSV, Relational data, and ASCII. Also, it deals with various com-
putational environments such as SQL, shell scripts, the Visual Basic programming language,
Microsoft Data Transformation Services, and workflow management systems.

1.3 Hypothesis and Objectives

As established in the overview (Section 1.1), the main problem that we decided to address
throughout this work is mitigating data access heterogeneity for data workers when dealing with

°data.sdss.org/sas/drl3
Yhttp://skyserver.sdss.org
"http://skyserver.sdss.org/casjobs

15

data.sdss.org/sas/dr13
http://skyserver.sdss.org
http://skyserver.sdss.org/casjobs

CHAPTER 1. INTRODUCTION

data. In other words, we seek to develop a solution intended to transform queries, as opposed to
data, in order to address the data access heterogeneity problem. Our goal is to transform a query
written in a user language into one or more queries in the designated data-source languages so
that, upon execution, the result set is as if it was returned by the original query.

For the specific cases in which a relational database is the data source and an object-oriented ap-
plication program is the data target, we have extensive previous experience with object-relational
mappers such as Hibernate [Red] and LINQ [Mic], in which an object-oriented query definition
can be translated to its relational counterpart. Furthermore, federated systems, such as Gar-
lic [HKWY97], as well as polystores, such as [DES™15], have offered solutions intended to
overcome such problems. However, the challenge is to allow data workers functioning in het-
erogeneous environments to process datasets that are stored in different formats and types, at
various levels of management.

We propose the concept of query virtualization, which uses federated agents to transform sub-
mitted queries into native counterparts. These native counterparts are executed in parallel by
agents, considering inter-dependencies, and their results are assembled transparently. Federated
query virtualization permits much greater flexibility and support for heterogeneity than data
virtualization that is controlled by a central authority. This approach is able to deliver a unified
query language and complete execution of the submitted queries that are written in the language.
The unified nature of the language conceals syntax and semantic incompleteness and the incon-
sistencies in the target data sources. Unsurprisingly, it comes with the cost that some parts of a
query may not be supported by the designated data sources. Hence, we add a special agent to
our query engine to act as a backup in order to complement such cases.

Below, we specify the expected outcomes of our work in the form of a hypothesis:

Hypothesis 1 (A Universal Querying System is Feasible and Useful): Consider a dataset that
consists of a set of data containers spread over multiple data sources. In the presence of struc-
tural, representational, and accessibility heterogeneity among the data sources; there is a uni-
form query system that allows a typical data worker to query and manipulate data in-situ. Such
a system:

* provides a unified data retrieval and manipulation mechanism for heterogeneous data that
is independent of data organization (Definition 1.2) and data management;

* is expressive enough to support core features of the most frequently used queries; and

* reduces the time-to-first-query while maintaining reasonable performance on subsequent
queries, is scalable, and is useful in real-world scenarios.

Definition 1.2: Data Organization A data organization refers to the unique combination of
the key characteristics of a data container. This term includes computation model, serialization
format, and presentation model.

16

1.3. HYPOTHESIS AND OBJECTIVES

We test the hypothesis by developing a reference implementation and evaluate it accordingly.
The implementation serves as a proof of concept that demonstrates the feasibility of the solu-
tion. The evaluation proves that the implementation can function in real-world scenarios and
meaningfully improves a set of chosen indicators. We call the reference implementation QUIS
(QUery In-Situ).

QUIS is an agile query system with a unified query language and a federated execution paradigm
that utilizes late-binding schemas to query heterogeneous data sources in-situ and present poly-
morphic results. QUIS is agile, as it provides feedback rapidly. This agility is achieved by two
features: a) QUIS reduces the time-to-query to the time required to write a desired query and
b) the time required to prepare and load data is eliminated or radically mitigated. Its polymor-
phic result set representation allows data workers to rapidly obtain visual feedback and refine
their queries and/or processing. The system’s in-situ feature accesses data in its original format
and source and performs composition operations, e.g., join and union, on heterogeneous data.
QUIS’ unified language allows for authoring queries in a data-source-agnostic manner. All state-
ments, clauses, expressions, and functions available at the language level are guaranteed to be
executable on any data source supported. The language extends SQL by adding virtual schemas,
versioned data querying, heterogeneous joins, and polymorphic result set representation.

QUIS’s federated query engine is responsible for dispatching an input query to the available data
sources, collecting the partial results returned from members, assembling the final result set by
applying composition queries as well as requested representational transformations. The engine
detects and complements the features that may be lacking or inconsistent among the member
data sources. The late-bound schema feature incorporated into the system allows for the defi-
nition of an effective result set schema at the time of query. Utilizing this feature, it is possible
to share a schema between different queries, to change the schema of a query without accessing
the data source, to provide virtual view of data obtained from various sources, and to decou-
ple queries from the mechanics of concrete data types, schemas, formats, and transformation.
The language’s integrated result representation makes it possible to transform query results into
tables, visualizations, or serialization formats such as XML or JSON.

In summary, QUIS has the following core features:

1. In-Situ querying: QUIS transforms input queries into a set of executable units, queries,
or programs that are written in the computation model of the target data source(s). It also
compiles the units, dynamically and on-the-fly, to executable jobs that access and process
the raw data according to a query’s requirements. This eliminates the need to transform
data into a specific format or to add it to a database management system. In-situ querying
not only saves the users’ time by short-circuiting data transformation and loading, it also
eliminates the negative side effects of data duplication. Furthermore, it promotes agile
and frequent querying, a feature which is extremely useful in scientific work;

2. Agile querying: QUIS is a query system, not a database management system. It allows
and encourages frequent and ad hoc querying with early feedback. Specific features, such
as virtual schema definition and query independency from data organization, ensure a

17

CHAPTER 1. INTRODUCTION

great degree of data independency as well as portability. Its declarative syntax, as well as
its similarity to SQL, reduces the learning curve;

. Heterogeneous data source querying: In addition to single-source querying, QUIS is

able to accept and execute compound queries that involve the retrieval of data from mul-
tiple heterogeneous data sources. Furthermore, it can transparently perform composition
operations such as join and union on the partial results returned by individual data sources
in order to assemble the final result set;

. Unified execution: QUIS guarantees the execution of input queries. This means that

whatever capabilities are promised by its language would be accepted and executed by the
system, regardless of the actual capabilities of the underlying data sources. QUIS’ query
engine detects the absence of capabilities requested by input queries and complements
them if they are not supported by the designated data sources;

. Late-bound virtual schemas: QUIS allows for the declaration of virtual schemas that are

submitted alongside queries. These schemas have similar life cycle to those of the queries
and thus do not need to be predefined or pre-installed on the data sources; and

Remote execution: In addition to the unified execution feature, QUIS processes (i.e., sets
of queries) can be transformed into self-contained executable units that can be shipped to
remote data centers and applied directly to data in order to produce the desired results.

We describe these features in Part I, suggest a detailed solution in Part II, and finally implement
and validate our hypothesis in Part III. In essence, our evaluations prove the following:

1.

QUIS reduces the time-to-first-query: By means of a human study, we demonstrate that
QUIS dramatically reduces the initial time-to-first-query. Thus, users are able to start
querying data immediately from the beginning (Section 11.2);

QUIS’s query execution time is reasonable: We demonstrate that the query engine has a
reasonable performance and the reduction in time-to-first-query does not come at the cost
of a dramatic slowdown of the sub-sequent queries (Section 11.3);

. QUIS’s query execution engine is scalable: We empirically demonstrate that the query

engine’s performance scales linearly with the size of the queried datasets and outperforms
baseline systems (Section 11.4);

QUIS uses effective query optimization: We study the effect of various optimization
techniques in terms of facilitating efficient implementation, showing that our rule-based
optimization has a remarkable effect on performance (Section 7.4)'2; and

. QUIS is usable: Supported by a user study, we demonstrate that QUIS is useful, usable,

and satisfactory (Section 11.5). We also compare the language’s expressive power with
that of related work to show that it is able to express user queries (Section 11.6).

12We discuss this subject in Chapter 7 (Query Transformation) in order to situate the evaluation of the optimization
rules close to the explanation thereof.

18

1.3. HYPOTHESIS AND OBJECTIVES

With all of the heterogeneity involved and the inexpensive, rapid, large, and open data accessible
to not only data scientists but also to ordinary or occasional researchers, we foresee a wave of
small- to medium-sized research teams working autonomously on data and publish their results
openly. Thus, there is likely to be a demand for open and free data-querying and processing util-
ities with low upfront installation costs that are able to deal with a wide spectrum of various data
organizations in an agile manner and present the results in an accessible and intuitive manner.

In the remainder of this part we explore the background of this work (Chapter 2) and provide
the problem statement (Chapter 3). The problem statement identifies a set of requirements that
define the boundaries of the problem. These requirements are considered in developing our
suggested solution in Part II. The proposed solution is then implemented and evaluated in Part I11
in order to demonstrate that the hypothesis holds. A discussion and an overview of the limitations
of the solution, as well as possible future work, are presented in Part I'V.

19

Background and Related Work

The objective of this thesis is to develop a solution that provides heterogeneous data querying
in environments that feature limited and/or inconsistent functionality. In order to address related
research areas, we introduce languages, systems, and concepts that overlap with our aim and
enumerate both the capabilities that they provide and those that they lack. This assists us to
establish a foundation for our work, to identify and scope the areas of interest, to formulate our
requirements, and to justify the need for the solution we propose in Part II.

The vast number of database management systems available today is the result of a “no one-
size-fits-all” approach [SCO05]. Diversity in terms of requirements, disciplines, use-cases, data
formats, distribution, scale, and performance has driven multiple development efforts, result-
ing in an array of Database Management Systems (DBMSs) that are specialized in particular
domains.

While major players still prefer to use relational logic, NoSQL systems have been widely adopted
by businesses and academia for big data processing in distributed environments. Scientific
Database Management Systems (SDBMSs) that rely on multi-dimensional arrays as their pri-
mary data model are implemented and adopted in real-case scenarios. In addition, document-
based DBMSs are now commonly used in semi- and/or dynamically structured data manage-
ment use-cases. Heterogeneous database systems have employed the concept of views in order
to address the problem encountered when attempting to answer queries using sources that have
inconsistent query capabilities [Pap16]; Federated Database Management Systems (FDBMSs)
and polystores are examples of such systems.

As our work is highly related to data and access heterogeneities, we discuss a wide spectrum
of related work: We consider RDBMSs, as the basics of data-querying systems, in Section 2.1,
and we discuss the challenges that arise when multiple database systems are involved in data-
processing and analysis tasks. Moreover, we explore how federated database systems (Sec-
tion 2.2) and polystores (Section 2.3) have approached those challenges. We provide background
information on NoSQL systems in Section 2.4 and discuss a number of their features. We in-
troduce array-based database systems in Section 2.5 and highlight their importance in numer-
ical/scientific data processing. In addition, we study the emerging approaches and techniques
intended to deal with data as is, without or with minimum preparation. We investigate the ex-
ternal file attachments and querying techniques that have been added to conventional RDBMSs

21

CHAPTER 2. BACKGROUND AND RELATED WORK

in Section 2.6. Furthermore, we discuss the concepts of adaptive systems, in Section 2.7, and
NoDB, in Section 2.8; these are examples of the recent paradigms that propose mechanisms
intended to adapt databases to queries or even to create databases upon receiving queries.

2.1 Relational Database Management Systems

A DBMS is a (set of) software used to maintain collections of data. Maintaining data involves
a wide range of operations, including transformation, storage, updating, and retrieval. DBMSs
rely on data models; a data model is a set of description and constraint constructs that conceal
and govern storage details.

A Relational Database Management System (RDBMS) is a DBMS that its data model is re-
lational. A relation is a set of unordered n-tuples, each of which has n uniquely identifiable
domains [Cod70]. An instance of a data model that describes a specific dataset is called a
schema. Schemas provide data independence [Cod70], isolating applications from the ways in
which data is structured within an RDBMS, as well as from later changes to those structures.
A schema is described in term of relations and constraints [ABC"76). Data tuples, or records,
are formed according to the specifications of the schema’s relations, while constraints enforce
integrity, uniqueness, and data types.

RDBMSs provide Data Definition Languages (DDLs) for schema manipulation, as well as Data
Manipulation Languages (DMLs) for data querying and manipulation. These languages are usu-
ally high-level declarative non-procedural formalisms that allow users to formulate expected
solutions. Structured Query Language (SQL) was [LCW93], and remains, the most commonly
known and used language for accessing and manipulating data in an RDBMS. It is based upon
relational algebra and tuple relational calculus. Although SQL has been standardized since
1986, various vendors have implemented the standards differently, thus producing various fla-
vors; some of these flavors even violate the declarative nature of the language by offering pro-
cedural constructs. For example, IBM, Oracle, and Microsoft amended SQL PL, PL/SQL, and
T-SQL, respectively, to add controls, conditional commands, and procedures to the language.

The primary difficulty with RDBMSs is that they require input data in relational form and pro-
vide no or very limited support for other data organizations. This requires RDBMS users and
applications to transform data from its original format to its relational equivalent and to transfer
and load it into the target database in order to allow it to be queried thereafter. This task has
proven to be cost- and time-inefficient, error-prone, and repetitive. The need to design a schema
in advance and query only through that schema, as well as enforcing primary and foreign keys,
is often an obstacle to agile research environments characterized by dynamic data and query re-
quirements. A large number of DBMSs intended to either reduce users’ dependency on schemas
or to balance the effort required to create and maintain schemas are merging [JMH16].

22

2.2. Federated Database Management Systems

2.2 Federated Database Management Systems

A conventional federated system consists of a set of possibly heterogeneous database manage-
ment systems that are supervised by a mediator [SL90, FGL ™98, BS08, DFR15]. It is likely that
member databases will have their own query languages [FGL198], capabilities [DFR15], and
optimization preferences [DHO2]. A federated database system acts as a virtual database system
that accepts queries in the language of the mediator’s choice, decomposes them into sub-queries
to be executed by the member databases, integrates the sub-queries’ results into a final result,
and returns the result to the requester. When such a system receives an input query, it gener-
ates a federated query execution plan. The generated execution plan determines which member
databases should execute each sub-query. The sub-queries are then distributed to the designated
members and executed asynchronously. The partial results returned by the members are passed
to a chosen member for integration, where operations such as join, union, and aggregation are
performed. The final query result is returned to the mediator and passed on to the requester.

The mediator provides a unified query language over the virtual database that is built on top of
the member databases of the federation. Utilizing wrappers, input queries written in the media-
tor’s language are transformed into their native counterparts and executed against the designated
member databases.

Garlic [HKWY97] is a middleware designed to integrate data from a broad range of data sources
(referred to as components). The data sources are anticipated to have different query capabili-
ties. This middleware accesses the data sources via wrappers; the wrappers transform the input
queries into their wrapped data sources’ languages or programming interfaces. The middleware
and the wrappers interact via Garlic’s object-oriented data model; hence, the data in the underly-
ing data sources is viewed as objects. The objects are categorized in collections, allowing Garlic
to query them. Garlic has a catalog that records the global schema, the associations between data
sources and wrappers, and any statistics that may be helpful for querying. Upon receiving an
input query, Garlic generates a query plan, optimizes it, and dispatches sub-queries to associated
wrappers. It waits for the sub-results and attempts to assemble them by shipping these partial
results to capable wrappers.

Garlic utilizes a cost-based optimizer [SL90], which relies heavily on statistics, cost of oper-
ations, and the estimated cardinality of the result set. It also has a rule-based optimizer that
optimizes queries in a three-step sequence: single-table access; join operations; and projection,
selection, and ordering. This ordering prevents the optimizer from applying Select-Project-
Join (SPJ) rules, such as push-ahead selection [Cha98], that are utilized to reduce the cardinality
of upper operators. The cost of performing operations by wrappers is not known and should be
set and tuned manually. The wrappers have the responsibility of estimating the input cardinal-
ity, which implies that, in addition to the central catalog, each wrapper should also maintain a
local catalog. Methods of estimating costs and collecting statistics on raw data without actually
touching and parsing the data have remained open. Garlic assumes a common data model that
also expresses the limited capabilities of the remote sources. The mediator rewrites the queries

23

CHAPTER 2. BACKGROUND AND RELATED WORK

using the model and the capabilities that the remote sources are identified to be possessing. This
introduces the well-known containment [JKV06] problem [TRV98].

DISCO is a heterogeneous distributed database system that mitigates the fragile mediator, source
capability, and graceless failure problems [TRV98]. DISCO’s data model is an extension to
ODMG 2.0 [RC95]. It relies on global uniform view definitions shared between the mediators
and data sources for mapping, conflict resolution, and transformation. This approach is usually
adopted when the mediator aims to reconcile semantically similar entities into a unified entity.

In such cases, an input query is forked and tailored to a set of local queries, and the results
thereof are unioned in order to form the final result set. It is expected that the views will be
defined by database administrators (DBAs), who must resolve conflicts among the different
models, schemas, and semantics of the data sources in order to construct uniform semantics for
the mediator schema and to deploy the schemas to the system before the first query can be issued.
DISCO does not support reconciliation functions in its data model; these functions are required
to determine how data values from different sources must be combined. DISCO assumes long-
term schema stability, implying that, when views and mappings are deployed, they will remain
valid for a lengthy period of time, meaning that users can query data and expect that their queries
will be executable on the deployed configuration. DISCO performs partial query evaluation only
if the normal execution of a query fails due to the unavailability of (some of) data sources. The
partial evaluation is based on the availability of nodes in the operator tree; hence, unavailable
sub-trees do not return any results. There is no complementing plan in place.

2.3 Polystore Systems

A polystore is a mediator system that allows integrated querying over multiple databases. It is
much like a federated system, with the exception of views. Polystores facilitate querying over
multiple data models by allowing users to exploit the features of the native query languages
of the target databases. The ideal realization of such a feature results in semantic complete-
ness [DES™15] in that users have access to all of the capabilities of each and every member
database. Queries are written in the native languages of the databases that are intended to exe-
cute them. A set of compositional queries (or execution directives) are also available to move
data from one database to another or to a mediator in order to assemble the final results by
performing the requested combine (e.g., join or union) operations.

Franklin et al. [FHMOS5] discussed the challenges of managing data across loosely connected
heterogeneous data collections, classifying them as search and query capabilities, rule enforce-
ment, lineage tracking, and the management of data and metadata evolution. They introduce
dataspaces as a new abstraction for use in data management. A dataspace models and maintains
a catalog of member data sources and their relationships. It then provides search and query func-
tionality over all of the participating data sources, according to the extent to which those sources
are integrated; more sophisticated functions are provided on more closely integrated dataspaces.
In other words, the operations available to a dataspace are proportional to the level of integration

24

2.4. NOSQLS

of the sources in that space. This characteristic gives dataspaces a navigational nature in that a
user iteratively queries a chosen dataspace using the associated set of functions and identifies a
target group of data items in a more integrated dataspace until he or she reaches the final result.

Dataspaces are intended to accommodate as many data sources as possible. Data sources fall into
different classes of expressive power; hence, identifying and maintaining a set of common and
useful operation would prove to be a significant challenge. This issue results in users having to
constantly verify the correctness, completeness, type matching, and consistency of the semantics
of operations.

BigDAWG [DES™ 15], for example, uses the notion of an information island to refer to a set of
databases that can be queried using a single query language. It then provides a cross-island query
language that accepts a group of individual island queries as its sub-queries. Island-specific
queries are executed on their respective island engines, while the compositions are performed
on the islands identified by the SCOPE command. An island that performs the compositions
requires other sub-queries’ results to be transformed into its data model and transferred to its
designated engine in order to be able to merge the partial results into an integrated one.

Polystores allow users to use the native languages of the member databases; hence, the final
query is a mixture of the components’ query languages and the composition elements of the
polystores. This hinders readability, maintainability, and reusability. Declarative query lan-
guages promise the isolation of syntax from semantics and execution order; however, the seman-
tics of BigDAWG query changes when the composition is switched from one island to another.
This requires users to be aware of the scoping and submission order. In addition, the capabilities
of the engines chosen to perform the composition queries may vary. Therefore, it is the user’s
responsibility to ensure that the capabilities required for each and every query are available.

2.4 NoSAQLs

According to the CAP theorem [GLO02], it is not possible to provide consistency, availability,
and partition tolerance simultaneously. This was the main motivation for the development of a
new generation of DBMSs, known as NoSQL. NoSQL systems loosen consistency in favor of
availability and partition tolerance for distributed, high-throughput, and big data environments.
NoSQL, in general, refers to a category of databases that utilize non-relational mechanisms
for storing data [LealO]. In addition, NoSQL databases attempt to simplify design, encourage
scaling, reduce schema binding, and provide timely processing of big data.

NoSQL systems utilize various data models to provide the best possible consistency while main-
taining high availability and handling network partitioning. Moniruzzaman and Hossain [MH13]
classified NoSQL databases into four categories: wide-column stores, document stores, key-
value stores, and graph databases. For example, Cassandra stores data column-wise [WT12],
MongoDB persists information as documents serialized in JSON [KR13], and Dynamo stores
data as key-value pairs [DHJ*T07]. Neo4] is a graph database with the ability to assign properties
not only to nodes but also to edges [Thel6].

25

CHAPTER 2. BACKGROUND AND RELATED WORK

Column-oriented storage for database tables boosts query performance because it drastically
reduces the amount of data that is necessary to load from disk, thus reducing the overall I/O
footprint. Distributing columns and rows of data over the various nodes of a cluster improves
the performance of the consuming algorithms. This data model is well suited for analytics, data
warehousing, and the processing of big data.

Cassandra, for example, is an open-source, column-oriented database that is able to handle large
amounts of data across a network of servers [LM10]. It is a highly available system with a tun-
able consistency model. Unlike a table in a relational database, different rows in the same table
are allowed to have different set of columns. Apache HBase is another open-source, column-
oriented, distributed NoSQL database [Cat11] that runs on the Apache Hadoop framework. It
provides a method of storing large quantities of sparse data using column-based compression
and storage.

Column stores provide limited querying functionality. Range queries and operations such as
“in” and “and/or” are supported in Cassandra, but the “in” operator can be applied to parti-
tion key columns only. Furthermore, support for inequality operators is bound to the ordering
preservation of the selected partitioner. Although column stores (specifically Cassandra) offer a
SQL-like query language, the provided feature set and execution logic may differ from those of
the standard SQL.

A document database is designed to store semi-structured data in the forms of documents. A
document is often considered to be a self-sufficient textual representation of an entity, possibly
including its satellite entities. Self-sufficiency broadly means that a given document has no
pointers to other documents or that such pointers are opaque to the database management system.
The schema used by each document can vary. Documents are stored as rows (analogous to
relational databases terminology) and are usually serialized as JSON or XML. The majority of
document stores are able to index and query documents’ contents [MH13].

Document stores offer APIs for querying ranges of values and nested documents. They also
accept compositional operations, e.g., “and” and “or”, but lack strong support for aggregation.
The UnQL project' offers a SQL-like syntax for querying JSON, which can be used by a wide
spectrum of document stores.

MongoDB, CouchDB, SimpleDB, and Terrastore are among the open-source, high-performance,
document-oriented DBMSs [Cat11]. They provide different levels of sharding, replication, doc-
ument content indexing, and consistency [Orel0]. For example, while MongoDB demonstrates
strong consistency at the document level, CouchDB provides scalability by reading, potentially
out-of-date, replicas.

Key-value stores are in fact distributed dictionaries [HJ11]. Data is encapsulated in a value and
is addressed by a unique key. Values are isolated from and independent of each other; thus, they
are completely schema free. The schemas and the possible relationships between values should
be handled by the consuming applications. Key-value stores are useful for the rapid recovery

"http://unglspec.org

26

http://unqlspec.org

2.5. SCIENTIFIC DATABASES

of identifiable data, e.g., user information retrieval on large social networks, web session man-
agement, and distributed caching. The APIs of key-value stores largely provide only key-based
operations; hence, abstracting them beneath a query language would be unnecessary. The ma-
jority of querying features are implemented at the application layer. Dynamo, Voldermort, Riak,
Redis, and MemCached are all examples of distributed key/value stores and demonstrate various
levels of consistency, persistence, and key distribution [Cat11, HJ11].

NoSQL databases differ in their data models and the query functionalities they offer. They
provide various CAP trade-offs, as well as different degrees of schema evolution. Although it is
not required, a number of the widely used NoSQL systems provide SQL-like query languages.
This, on one hand, allows users to continue to rely on their SQL experience and to maintain their
distance from these systems’ underlying languages; on the other hand, it provides opportunities
for these systems to optimize the input queries. Systems such as Pig [O108] and Hive [T09]
attempt to draw a declarative querying layer on top of the underlying procedurally programmed
MapReduce [DGO08] that is used in many big data NoSQL stores. A comprehensive feature
comparison of NoSQL systems is conducted in [MH13].

2.5 Scientific Databases

Data is one of the most valuable assets in science, particularly in data-driven science. It is
crucial that data can be retrieved and that preliminary processing can be performed in a timely
manner [EDJ103]. Scientific data poses additional considerations for DBMSs: For example,
Stratos et al. [IAJA11] explain that the structure of arriving scientific data may change on a
daily basis. The attributes of new data may differ from that of the data used previously, and
a scientist may need to navigate it differently. In addition, hierarchical data is natural to some
domains, such as biology [EDJT03]. In many disciplines, scientific data can be modeled in
multi-dimensional arrays. Libkin et al. [LMW96] highlighted the need for such an array-based
scientific query language.

SciDB is a multidimensional array database management system [SBPR11]. In SciDB, an array
is defined by its dimensions and attributes; the dimensions can be either unbounded or bounded.
Each combination of dimension values defines a cell. Cells can hold scalar, composite, user-
defined, or even nested array data values, each of which is called an attribute [Bro10].. In order
to access and process the arrays, SciDB uses Array Query Language (AQL) and Array Func-
tional Language (AFL). AQL is the SciDB’s SQL-like declarative language, which is used for
working with arrays [LMW96, RC13]. Queries written in AQL are compiled into AFL and then
passed through the processing pipeline [SBPR11] for execution. AQL includes a counterpart to
SQL’s DDL, which assists in manipulating the structures of arrays, dimensions, and attributes.
Similarly to RDBMSs, SciDB also requires data to be transformed to its array data model and
loaded to the system before it can be used. This approach suffers from all of the costs and side
effects of ETLs if the original data is not produced as an array from the beginning. Beyond
the similarities between AQL and SQL, the former processes queries, e.g., join dimensions, in a

27

CHAPTER 2. BACKGROUND AND RELATED WORK

remarkably different way. These differences may cause semantic inconsistencies and lead new
adopters to incorrect results/conclusions.

SDS/Q [BWB™14] is an in-situ query processor that operates directly on array-based data such
as HDF5 [FHK ™ 11] and netCDF [Unil5]. It eliminates the need to load data onto systems such
as SciDB and can be integrated into the larger processing pipelines that are usually required
for data analysis. The SDS/Q query execution engine accepts queries in the form of a physical
execution plan, in that the leaf operators scan the designated HDF5 datasets or the generated
indexes and return relational tuples. SDS/Q has neither notion of data or query virtualization
nor heterogeneous querying facilities.

2.6 External Databases

Recently, several open-source and commercial database systems have included the functionality
of querying external data. The concept is that a system can read data directly from external
files and integrate the read data with other parts of the input queries. It is assumed that data is
queried using the same query language used by the system. Nevertheless, current designs do not
support any advanced DBMS functionality. In addition they cannot match the performance of a
conventional DBMS, as they need to continuously parse the externally read data.

Data Vault [IKM12] utilizes SciQL in order to provide an interaction mechanism between a
MonetDB [IGNT12] DBMS and file-based repositories [ZKM13]. It retains data in its origi-
nal format and provides a transparent access and analysis interface to that data using its query
language. Based on the requirements of the incoming query and the metadata of the datasets,
Data Vault builds a sequence of operations in order to perform just-in-time data loading. It can
load the query results into the hosting DBMS allowing them to be submitted to further tradi-
tional queries. Systems such as Pig Latin [OT08], Hive [T*09], and Polybase [D13] have
extended their support to external sources by incorporating data-processing techniques such as
MapReduce.

Systems such as Data Vault and the MySQL CSV storage engine [Cor16] have integrated support
for querying a pre-defined set of external files into a hosting DBMS. However, a modular design
that allows for the registration and integration of new types of data sources is not available. In
addition, when supporting arbitrary files or using additional data sources is admitted, the need
to manage inconsistencies of the underlying management systems arises.

2.7 Adaptive Query Systems

Data scientists are increasingly interested in running their computations over raw data [AABT09]
not only to reduce the amount of effort invested in data transformation and duplication but also
to retain ownership of the data. Such scientists usually tend to store and manage their data in

28

2.8. NODBS

environments they can control. This represents a good motive for adopting a virtual integration
system. However, running and maintaining such a system is not cost- and/or time-efficient when
conducting short-term ad-hoc research activities [HT11]. ViDa [K™15] has demonstrated that
querying heterogeneous raw data sources is feasible.

ViDa utilizes RAW [K™14] to read data in its raw format. It processes queries using adaptive
techniques and just-in-time operators. It generates data access/processing operators on-the-fly
and runs them against the data. Statistics are collected during query execution and utilized to
generate superior plans for repeated queries. Furthermore, positional maps are generated for
text-based data containers such as CSV files. These maps are created and maintained dynami-
cally during query execution to track the positions of data in raw files.

In ViDa, each operator in the query tree reformats the input data according to the requirements
of the upper level operator, primarily because data presentation is an integral part of the sys-
tem. This may result in multiple transformations during the execution of the query plan and
consequently lead to an overall query overhead.

In ViDa, the virtual schemas of the result sets are defined in a manner similar to that of SQL
projections, which implies that the queries are aware of the structure of the underlying data. The
so-called data descriptions also contain connection information. This tightens the queries to the
physical/logical structures of the underlying data.

An important characteristic of virtualization is the level of abstraction created to separate inter-
faces from implementations, e.g., decoupling a query execution engine from the mechanics of
parsing, optimization, and execution. ViDa relies on the capabilities of its plug-ins to transform
input queries into corresponding query trees. However, the plug-ins and/or data sources may
expose inconsistent functionalities or even lack some. For example, ViDa supports aggregate
functions at the language level, but not all of the underlying plug-ins/data sources may support
the aggregate functions. This issue introduces a degree of uncertainty to query execution. In
general scenarios, the non-supported operators are simply omitted from the query plan in the
hope of producing a larger (and consistent) result set.

2.8 NoDBs

Organizing data in schemas and databases requires both time and money, particularly in data-
intensive systems that feature large amounts of input data. Additionally, the data-processing
paradigm is shifting from querying well-structured data (whatever the structure may be) to
querying whatever structure is available. This is in the same direction with the Ailamkai’s
advocate for running queries on raw data and decoupling the query processing from specific
data-storage formats [Aill14].

Although the use of traditional database management systems is growing, the growing need
for tools that are capable of better handling a variety of emerging data has also been recog-
nized [EDJT03]. In scenarios in which data arrives in a variety of forms, it is not practical to

29

CHAPTER 2. BACKGROUND AND RELATED WORK

decide on an up-front physical design and assume that it will prove optimal for all of the vari-
ous versions of the data. Enforcing up-front schemas increases time-to-query and requires users
to load data to a system with the defined schema. This may lead users to opt for file-based
data-processing tools or custom development.

Toannis Alagiannis et al. [ABB'12] have demonstrated how it is possible to avoid the approach
used to load data into traditional databases. They describe a system called NoDB, which pro-
vides the features of traditional DBMSs on raw data files. Their research identifies perfor-
mance bottlenecks that are specific to in-situ processing, namely repeated parsing, tokeniza-
tion overhead, and expensive data type conversion costs. They proposed solutions intended to
overcome these difficulties by, e.g., introducing an adaptive indexing mechanism alongside a
flexible caching structure. Their conclusion regarding supporting these types of data-querying
approaches is in alignment with the main concept of this thesis, which is the development of a
general-purpose query language that runs on specific-purpose query execution systems.

Jagl [BEGT11], as another case, is a declarative scripting language for analyzing large semi-
structured datasets in parallel with the use of Hadoop’s MapReduce [DGO08] framework. Jaql’s
data model is based on JSON. A Jaql script can start without a schema and evolve over time from
a partial to a full-featured schema. Because, like JSON, Jaqgl uses a self-describing data format,
the language is able to obtain metadata about the structure and data types of the underlying data.
Jaql is a file-based solution and assumes that files are serialized in JSON format. The use of
any specific file format means that scientists must engage in data conversion, particularly if they
must load their own data into Jaql or obtain data from it.

In addition to the above-mentioned directives, the scope of this dissertation includes query lan-
guages, specifically the declarative languages. We introduce and discuss related query languages
in Part II (Approach and Solution). The inclusion of these languages is due to the fact that we
also suggest a declarative query language as a component of our solution. Addressing related
query languages closer to the discussion and the proposed solution would facilitate the reader’s
comprehension of this dissertation.

In Chapter 3, we present the problem statement and translate it into a set of requirements. These
requirements not only specify the problem but also clarify its boundaries. Thereafter, in Chap-
ter 4, we present a summary, which includes a traceability matrix, to demonstrate how the studied
related works satisfy these requirements.

30

Problem Statement

In this chapter, we elaborate on the objectives (see Section 1.3) of this thesis by identifying the
functional and cross-cutting requirements of the proposed solution. This process of elaboration
establishes the foundation for the specification, proof of concept, and evaluation of the hypoth-
esis. In addition, the identified requirements serve as a basis for establishing the scope of the
solution proposed in Part II, as well as in the system design and implementation (Part III). The
extent to which these requirements are realized can serve as an indicator of the extent to which
the objectives are achieved; traceability matrices in relevant chapters reflect this fact.

Our assumed target working environment involves a team of data workers who query and pro-
cess heterogeneous data from different sources in order to obtain insights. The team members
are assumed to conduct ad-hoc activities to experimentally and/or interactively decide on the
queries, processing, and portions of data required for their purposes. They may also, either man-
ually or by utilizing a workflow, use various tools to perform required tasks. In experimental
science, data workers may require a small portion of the data that can be well located by means
of a first-round exploration. The effort invested in such exploration is usually less than that of
involved in reshaping data to a predefined schema and loading the data. This is particularly true
when the data volume is much greater than the interested subset and the user has no idea of
whether or when the rest of the data will be required. In addition, we assume that the data work-
ers are not necessarily database experts; they usually decide on the importance of data attributes
only after they have conducted initial explorations.

Many datasets are represented in file-based two or multi-dimensional arrays, e.g., CSV and
NetCDF files. These groups of data are generally processed using specific-purpose tools or are
converted to an equivalent relational or array-based dataset and then processed by SQL or a
similar query language available in the hosting DBMSs. On the one hand, accessing data in-situ
creates a strong dependency on the tools specialized to the file format in question; on the other
hand, porting data to a general-purpose DBMS results in additional costs for data ETLs.

There should be a language that allows data workers to specify their data processes. Such pro-
cesses may include elements for facilitating ETL, querying, analysis, visualization, and trans-
port. The language should be declarative in order to isolate the data workers from the details of
implementation. Having a language with appropriately designed elements that satisfies the data-
processing requirements of various domains is the basic requirement. Such a language should

31

CHAPTER 3. PROBLEM STATEMENT

additionally allow for backward expressibility; i.e., data workers should be able to express all
previous queries using the new language. The language should also be as neutral as possible in
terms of the data formats used and functions offered by the target data sources. The syntax of
such a language should be natural or close to the workers’ daily working experience; in addi-
tion, it should be attractive to a diverse range of user groups, including computer programmers.
Keeping the syntax close to well-known and frequently used syntaxes will minimize the learning
curve and adoption time.

In the following sections, we introduce and specify the functional and non-functional require-
ments that together satisfy the objectives of our hypothesis. With regard to the requirements,
we assume that any given data tuple is completely within a single database on a single machine.
Any data replication is assumed to be concealed behind the corresponding system’s API or query
language. We also assume that the member databases of a federation are autonomous both in
the manner in which they execute the queries shipped to them and how they return the results,
including the tuple presentation.

3.1 Functional Requirements

Data workers use various tools in different stages of their research. In the majority of cases, data
format inconsistency between such tools, lack of features and management functions among
tools, and the need to integrate data from multiple data sources lead data workers to load data
into feature-rich systems and query it from there. The ability to query bare files, e.g., CSVs,
in the same fashion and with the same expressive power as offered by SQL without needing to
first load them onto another system would encourage people to better utilize non-managed data
and obtain results more rapidly. This would prove crucial during the early stages of research in
which queries are exploratory and it is not clear whether data is appropriate for research goals
and, if it is, which portions [AAAT16)].

[Requirement 1 (In-Situ Data Querying)}

The system must minimize the need for data loading and duplicating. The language’s ex-
pressive power must be available for all types of data organizations supported by the system,
regardless of the degree of native management that they require. ETL operations should be
written as part of the data-querying/analysis processes and executed on target data sources
in an as native as possible manner. Alternative plans should also be available should the
systems that hold the data are unable to perform the ETLs.

It is not possible to introduce a predefined set of data organizations to a system and to only
provide the query language on top of them. Data workers deal with different datasets, which are

32

3.1. FUNCTIONAL REQUIREMENTS

stored and formatted differently. In addition, over time, new data organizations are introduced
and the existing ones may be upgraded. Therefore, the expressive power of the query language
should not only be available for the default data organizations but should also be independent of
them. Such independence would allow the system to be extensible in terms of integrating new
data organizations.

[Requirement 2 (Data Organization/Access Extensibility)}

It should be possible to add support for new data organizations to the system at runtime.

Many systems retrieve data as is from sources and apply transformation in memory. For exam-
ple, Spark SQL ingests external data sources into its DataFrames and provides relational opera-
tion on top of the data frames [AXL"15], while MapReduce-based systems, such as Hive [T+09]
and HBase [Whil2], perform the transformations by creating intermediate files (which are, how-
ever, hidden from users). Generating these intermediate files consumes CPU time and disk
space: CPU time is wasted because writing to disks, particularly in Hadoop environments, is
highly IO bound. Disk space is wasted because the intermediate results of a job are not, by
default, available to any other job.

Submitting a query to a federated system should overcome various types of heterogeneities, in-
cluding structural (in terms of data models), representational (in terms of types and constraints),
and accessibility differences (in terms of the expressiveness of query languages and the function-
alities exposed through APIs). Retrieving data from such a federated system highlights the need
to utilize different data access methods, various query languages, or even writing data retrieval
programs. Overcoming the data access heterogeneity problems that exist among data sources
is helpful, as it improves vendor independence, skill transfer, and collaboration. It also allows
programmers and data workers to write more robust, portable, and reproducible processes; an
example thereof would be the ability to write cross-data source joins that retrieve data from data
sources with different levels of expressiveness and management.

[Requirement 3 (Querying Heterogeneous Data Sources)}

The system must be able to conceal structural, representational, and accessibility hetero-
geneities from end users. The system should also transparently execute compound queries
that request data from multiple data sources.

Scientists of need to process and manage their data without being confronted with an excessive
number of IT-related complications [AABT09]. In addition, scientific data management and

33

CHAPTER 3. PROBLEM STATEMENT

processing should be decoupled from vendors, technologies and technical heterogeneity. A uni-
fied data access mechanism that allows data workers to author their processes independently of
the underlying data sources’ expressive powers would provide the required abstraction. Such
unifiedness would provide a set of capabilities that are available on top of each and every data
source. This abstraction would allow users to focus on solving their research problems instead
of dealing with the technical issues associated with the management, transformation, and pro-
cessing of data. Providing such a uniform set of functions at an abstract level would allow
users and client applications to be more ignorant of the various functionalities (not) provided by
different data sources. The formal specifications associated with data processing (e.g., query-
ing or analysis) should be expressive enough to remain unchanged, independent of the target
data organization. Its semantic should also remain independent of the target data organization.
Furthermore, the formal specification should facilitate tool integration by allowing the tools to
delegate the details of data querying to the language. The abstraction could be defined and set at
various levels: syntax, semantics, execution, and presentation.

[Requirement 4 (Unified Syntax)}

The querying facility must be capable to providing a set of data access methods that are
independent of the underlying data organizations (Definition 1.2). The access methods must
also be independent of the capabilities of the data sources and/or database management
systems that govern the data queried.

It is not enough that a unified syntax is used to formulate queries or analyses; there should also
be semantic equivalence. Any language element should convey a clear and constant meaning
that is independent of its local meaning in the target data sources.

[Requirement 5 (Unified Semantics)}

The meanings of query elements and functions should remain the same, regardless of their
native meanings at corresponding data sources, in order to provide a means by which se-
mantic independence can be achieved. Feature incompatibility, naming and data type in-
consistencies, and/or a lack of features in the designated data sources should not affect the
meaning of the constructs of the language.

One of the issues encountered by data workers, especially in collaborative efforts or multi-tool
environments, is that there is no guarantee that all of the functions available in one system will
also be available in another. Even if such functions exist, they may have inconsistent names,

34

3.1. FUNCTIONAL REQUIREMENTS

parameters, and/or data types. To overcome these issues, all of the elements of the proposed
language should be equally executable on all of the data sources.

[Requirement 6 (Unified Execution)]

Given a dataset, the result of executing any query against it must be independent of the data
organization of the data source(s) that manage access to the dataset. This independence
should include data model, data representation, and data source capability.

When a query is executed against data, its result set should not be bound to the physical schema;
instead, the result should be tailored to the needs of the data workers in question or the sub-
sequent processing steps. These needs should be specified and submitted alongside the query,
using the same language. Having the result of a query in a different measurement system, a unit
of measurement, or a resolution other than that of the original data are few cases of applications
of result set schema definition.

[Requirement 7 (Unified Result Presentation)}

Regardless of the original data organization, the schema of the result set should be deter-
mined by user’s requirements. The requirements should be captured by the constructs of
the query language.

A significant part of scientists’ work is dedicated to accessing, visualizing, integrating, and ana-
lyzing data that is possibly obtained from a wide range of heterogeneous sources, e.g., observa-
tions, sensors, databases, files, and/or previous processes. The data usually needs to go through
a series of preparation steps, namely cleansing, data type and/or format conversion, decompo-
sition, and aggregation. In addition to the third-party utilities, data workers tend to develop
specific parts of their work by themselves, and they spend a remarkable portion of their time
retrofitting data into formats that these tools understand [PJR*11]. For example, the subsequent
processing steps in a collaborative workflow may rely on the data created by earlier steps, but,
more often than not, this data needs to be reformatted or transformed in some way. These kinds
of tasks end in a series of ETL operations, usually using third-party utilities.

Providing a facility that allows for the desired ETLs to be specified in the same language that is
used for analysis would not only reduce data workers’ burdens but also render the entire process
of analysis easier to reproduce. Having ETL specification integrated into the language relieves
the users of the need to manually perform data integration tasks and also allows them to avoid

35

CHAPTER 3. PROBLEM STATEMENT

data duplication. Furthermore, it would provide the room required to easily define higher level
conceptual entities and write queries against those entities.

It is worth reminding the reader that research is, by its nature, exploratory; hence, data and anal-
yses change over time. Being able to define the same conceptual schemas over varying physical
data structures [CMZ08, ABML09] would improve resiliency and hence result in greater data
independence. For example, a schema should function equally on both an SQL table and a
spreadsheet, provided that the required data items are available in both. In addition, having
multiple schemas on the same data would provide an extra degree of flexibility to data work-
ers, allowing them to declare analysis-specific schemas without falling into the ETL pipelines
to prepare data for the various analyses. Having such an abstract schema implies the need for a
high-level type of system with a similar degree of data independence.

[Requirement 8 (Virtual Schema Deﬁnition)}

It should be possible to define a desired virtual schema and apply it on the actual data
without the need to alter the original data. The virtual schema must allow for complex
mappings from the data attributes to the virtual attributes; furthermore, it should overcome
the heterogeneity in the data types of various data sources. It should also be possible to
define and apply multiple virtual schemas to a single dataset. In addition, it should be
possible to incorporate a single virtual schema in different queries that potentially access
data from various heterogeneous sources. In other words, virtual schemas should not be
bound by the data organization but instead only to the data attributes that they require from
the datasets.

Virtual schemas are the appropriate mediums for defining data transformations, e.g., when the
physical schema of the original data does not satisfy the requirements of a researcher or an
algorithm. Merging or splitting columns, computing derived values, aggregating, and temporal
resolution alignment are common examples of data transformations that can easily be handled
by virtual schemas.

[Requirement 9 (Easy Transformation)}

It should be possible to easily express data transformations on the data items of the tar-
get data sources. These transformations should be expressed in a formal and reproducible
manner.

36

3.1. FUNCTIONAL REQUIREMENTS

Data conversion, transformation, and aggregation are among the most frequently used opera-
tions. Mathematical functions, string manipulation, conversion of units of measurements, merg-
ing data items, and format conversion, e.g., date/time, are among the common transformations
used by data workers on a daily basis.

[Requirement 10 (Built-in Functions)}

The system should have a set of built-in functions in order to perform popular operations
on data values. Such function may include mathematical, statistical, string manipulation,
date/time and unit of measurement conversion.

Providing a collection of these types of operations, although necessary, is not satisfactory. Dif-
ferent scientific domains require different functions; even individuals may require different set
of functions for various analyses. Allowing new tuple-based and aggregation functions to be

added to the language is a mandatory requirement, as it would allow the system to remain both
domain-agnostic and useful.

[Requirement 11 (Function/Operation Extensibility)}

The system should allow for the development and registration of third party aggregate and
non-aggregate functions. Upon registration, they should be available to the queries. Re-
quirement 6 should remain satisfied after the registration of any function extension.

Data independence [Cod70] in an DBMS is a mechanism to isolate data consumers from the
details of data storage, organization, and retrieval. An application should not become involved
with these issues, as there is no difference in the operations carried out against the data. In our
case, the abstraction defined by a virtual schema should apply to all of the constructs of the

query language; for example, a filtering predicate should operate on the attributes defined by the
query’s virtual schema.

[Requirement 12 (Data Independency)}

Users should remain isolated from changes in data organization and data sources in such

a manner that they issue queries against virtual schemas and obtain results represented in
virtual schemas.

37

CHAPTER 3. PROBLEM STATEMENT

Result sets should also obey the schemas. The attributes presented in a query result set should
have been defined by a virtual schema and not keep track of the original data item(s) that their
value was obtained from. However, the result sets are likely to be presented or communicated
in different ways: For example, one could request a query result to be presented in JSON in
order to feed it into a MongoDB database. The same result set can be serialized in the form of
a CSV file to be used by an R script. In addition, scientific work normally includes visualized
representations of processed data; hence, every effort to develop a general data-processing tool
must also take visualization into account.

[Requirement 13 (Polymorphic Resultset Presentation)}

Query results should be presented in different ways upon request. Such presentation could
take the form of a conventional tabular form for on-screen display, an XML or a JSON for
system interoperability, or a human-oriented visualization, such as a chart.

Based on a similar argument to that used for the extensibility of data organization, the result set
presentations should also be extensible. It is necessary that the system should have a set of built-
in presentation methods; however, it should enable third parties to develop and plug their own
presentation methods into the system. Such presentation methods should be accessible through
the query language.

[Requirement 14 (Resultset Presentation Extensibility)}

Beyond the built-in result set presentation methods, the system should allow for adding new
presentation methods. The newly added methods should be seamlessly accessible via the
queries and produce the intended presentation upon query execution.

The experimental and iterative nature of scientific querying often results in multiple versions of a
particular dataset; for example, a data cleansing process generates a new version of a raw dataset.
An error correction procedure may compensate for measurement device errors and create another
version. These versions may or may not preserve the original format, units of measurement, or
attributes. Hence, the language should provide a version-aware querying mechanism that allows
data workers to freely choose a schema relevant to the version of interest and start querying it.
In addition, Scientific Workflow Management Systems (SWMSs) maintain snapshots of data for
provenance reasons [ABML09].

38

3.2. NON-FUNCTIONAL REQUIREMENTS

[Requirement 15 (Version Aware Querying)]

The system should provide a mechanism for querying data from a specific version of a
designated dataset. A desired (and relevant) virtual schema may be applied to the queried
version.

3.2 Non-functional Requirements

Typically, data is processed in a series of steps, using a range of possibly different tools in a
multi-tool or a workflow environment [LT06]. Such tools generally use different data struc-
tures, meaning that users frequently need to transform data from one form to another. In these
scenarios, the transformations are usually performed by means of the import/export operations
provided by the collaborating tools. In many cases, e.g., workflow systems, users are required to
write transformation programs or introduce additional steps to the flow solely for the purposes
of for data transformation. Making system functionalities and language features available to
external tools would improve tool integration and reduce workflow complexities.

[Requirement 16 (Tool Integration)}

system features should be available as public APIs to be integrated into third party systems
such as SWMSs.

A positive effect of fulfilling such a requirement would be that data-processing tools could be
seamlessly integrated and rely on the capabilities of this language only. In addition, they could
delegate the details of data ETL tasks to it. Furthermore, SWMSs could orchestrate their com-
plex pipelines of data-processing tasks with less effort and fewer internal data transformation
steps.

Although system features would be exposed via the language or the APIs, end users are typically
more comfortable with a workbench that features an easy-to-use Graphical User Interface (GUI).
Such a workbench supports users in organizing their query/analysis scripts, data, and configura-
tion. It also facilitates editing, e.g., by means of syntax highlighting, syntax and semantic error
reporting, and presenting query results.

39

CHAPTER 3. PROBLEM STATEMENT

[Requirement 17 (IDE-based User Interaction)]

The system should be available as a standalone GUI-based desktop system. Users should
be able to author, submit, and execute queries and retrieve results from the underlying data
sources. The system should be developed with operating system (OS) portability in mind,
as individual end-users are assumed to utilize different OSs.

In addition to the above-mentioned requirements, the system should be both easy to use and
useful. Our expectation regarding the usability and usefulness of the system are specified in
Requirements 18 and 19.

[Requirement 18 (Ease of Use)j

1. Ease of Sharing: The system should make it easy for users to share analytical pro-
cesses, and it should be possible to execute shared processes in different environments
with minimal changes. The potential changes required should be related to informa-
tion concerning data source connections, credentials, and/or the physical schema of
the data in question;

2. Non-Disclosure of Sensitive Information: The queries that process data should be
kept separate from the credentials required to access the data;

3. Minimizing Total Cost of Ownership (TCO)“: The TCO of the system should be
low in order to render it attractive to data workers, as they are largely researchers who
struggle to obtain financial resources;

4. Minimizing the Learning Curve: The user-facing features of the system should
follow relevant best practices to reduce learning effort and duration; and

5. Ease of Development: Improving system functionalities, as well as writing pro-
grams using the system, should be straightforward for data workers and program-
mers [AABT09].

‘https://en.wikipedia.org/wiki/Total_cost_of_ownership

40

https://en.wikipedia.org/wiki/Total_cost_of_ownership

3.2. NON-FUNCTIONAL REQUIREMENTS

[Requirement 19 (Usefulness)]

1. Expressiveness: The query interface should be expressive enough to allow for the
authoring and execution of at least the SQL core queries®.

2. Performance: The query execution time of the system must be close to or compara-
ble with that of RDBMSs on the same or similar datasets. In additions, the system’s
user interface should be responsive; and

3. Scalability: The system’s performance should remain linear with the volume of data;
exponential execution time is not acceptable.

“The core queries are defined in Part II.

41

Summary of Part |

Thus far, we have declared our goal as being to mitigate data access heterogeneity through query
virtualization, on-the-fly transformation, and federated execution. In order to achieve this goal,
we formulated a hypothesis in Section 1.3 concerning the existence, feasibility, and usefulness
of a universal query language. By studying existing systems and approaches, as well as road-
maps for the future, we specified and established the boundaries of our hypothesis to the list
of requirements as stated in Chapter 3 (Problem Statement). In this summary, we prioritize the
requirements with reference to the contributions that they make toward achieving our goal. For
this purpose, we first demonstrate how other related works have satisfied these requirements and
then present our prioritized list of requirements.

Traceability Matrix 4.1 shows how the systems studied in Chapter 2 (Background and Related
Work) fulfill the requirements. This information is important because 1) it indicates the gap
between those systems and that which we propose; 2) it provides a basic understanding of which
systems have implemented which requirements better, making it possible to learn from them;
and 3) it can be used to validate the requirements.

The matrix shows that requirements related to heterogeneity are not widely addressed. For
example, the ability to query heterogeneous data sources and support for data organization ex-
tensibility are limited to federation-based systems, while there is even less support for in-situ
data querying. This is due to the fact that the majority of DBMSs operate on a designated data
model and its related calculus. DBMSs usually perform query optimization for the assumed data
model and collect statistics and historic data accordingly.

In Part IT (Approach and Solution), we focus on the requirements that, on the one hand, make
the greatest scientific contributions to this dissertation and, on the other hand, fill the gaps in the
current state-of-the-art in the field of database domains. Supporting multiple data organizations,
querying data in-situ, providing virtual schemas, guaranteeing unified execution even in the
presence of functionality shortage, and polymorphic result set presentation are our top priorities
in terms of requirements. While this prioritized list serves as guidance in identifying the solution
components, it is not the only source, as we also take into accounts all of the other requirements.
However, the architecture of the solution is built around the prioritized requirements.

43

CHAPTER 4. SUMMARY OF PART |

SINGAY
SINdd
Q101SA[0d
TOSON
ddoN

In-Situ Data Querying

Data Organization/Access Extensibility
Querying Heterogeneous Data Sources
Unified Syntax

Unified Semantics

Unified Execution

Unified Result Presentation

Virtual Schema Definition

Easy Transformation

Built-in Functions
Function/Operation Extensibility
Data Independency

Polymorphic Resultset Presentation
Resultset Presentation Extensibility
Version Aware Querying

Tool Integration

IDE-based User Interaction

ANRNRTR IR A NN NENE I NENENENE IR IR 1Y A (e @250

N RN IR ENENENENEENENENENE RS
S ANE S AN ENENENENENEENENENENEN
NN N R S A A AR IRIASNA N
AN RN NN AN NN ENENANANEN A
IR R N S AN AN AN AN ENEN ENENENENEN

Table 4.1.: The related work (see Chapter 2) satisfy the requirements differently. The matrix
shows a general overview in that each column is a representative of many systems in
its category.

44

Part Il.

Approach and Solution

45

This part proposes and describes the main elements of a solution intended to fulfill the require-
ments discussed in Chapter 3. It begins by outlining a solution architecture in Chapter 5. The
architecture introduces three fundamental components: query declaration, transformation, and
execution. Query declaration (Chapter 6) formulates the requirements into a declarative query
language that is unified in syntax, semantics, and execution. Query transformation (Chapter 7)
specifies and explains the techniques used to convert the queries into appropriate computation
models, allowing them to be executed against designated data sources. This chapter also elabo-
rates on the solutions proposed for dealing with queries that access heterogeneous data sources,
query rewriting, and data type consolidation. Chapter 8 then explores how the transformed and
complemented queries might be executed at the end of the pipeline. Query execution is also
responsible for returning the queries’ result sets to the client in the format they requested. The
extent to which the solution satisfies the requirements, in addition to its limitations and achieve-
ments, are summarized in Chapter 9.

47

Overview of the Solution

In Part I, we described a situation in which an input query was defined to retrieve data from
multiple data sources in an in-situ manner. The data sources had different data models, exposed
their own computation models, and were not consistent in terms of the functions and operations
that they provided; indeed, they did not even ensure that they would execute the entire input
query shipped to them.

In this chapter, we illustrate the “big picture” of an ideal solution and then limit it based on
our requirements. We design a high-level architecture and introduce the needed components; in
addition, we specify the roles and responsibilities of the components, as well as the interactions
between them.

Data integration has been extensively studied by scholars attempting to manage data hetero-
geneity. There are two classical approaches to data integration: materialized and virtual integra-
tion [DHI12], both originally developed with business applications in mind. Materialized data
integration is a process designed to extract, transform, and load data from a set of data sources
into a single database in which queries are then answered over the unified data. Virtual inte-
gration features a logical access layer on top of a set of data sources in order to conceal data
heterogeneity from applications and users without loading data in advance [SL90, DHI12]. In
virtual integration, queries, as opposed to data, are transformed and executed on the correspond-
ing data sources. Partial results are integrated by a mediator at query time.

Materialized integration has a high upfront cost and is not suitable when data sources change
frequently. As such, it is often not well-suited for scientific work. On the other hand, most vir-
tual integration work assumes that the data sources are relational databases, or at least support
a relational query interface. The focus of attention is then schema mapping and query transfor-
mation. When it comes to scientific data, however, the data sources are often text files, Excel
spreadsheets, or the proprietary formats used by recording instruments; in consequence, virtual
integration is not possible.

The fundamental difficulty is that data is heterogeneous not only in syntax and structure but
also in the manner in which it is accessed and queried. While certain data may reside in
feature-rich DBMS and can be accessed using declarative queries, other data is processed by
MapReduce programs, utilizing a procedural computation model [DGO08]. Furthermore, many

49

CHAPTER 5. OVERVIEW OF THE SOLUTION

sensor-generated datasets are stored in the form of CSV files that lack well-established format-
ting standards and basic data management features. Finally, different RDBMS products vary in
terms of syntax, conformance to SQL standards, and features supported.

Despite the fact that our problem is different, namely, data access heterogeneity, we seek in-
spiration from the large body of previous work that has been conducted on data integration.
Some researchers have proposed the concept of data virtualization [K* 15, ABB™12] to address
this challenge. By providing a framework that allows queries to be posed against raw data,
such a system could permit the use of data sources with heterogeneous capabilities. However,
there are additional important aspects of data access heterogeneity that should be addressed,
namely heterogeneous joins, heterogeneous query planning, and heterogeneous result represen-
tation [AABT17].

Transforming and importing data into a centralized store does indeed represent one approach to
data integration; however, it is usually not the preferred method. In many circumstances, the
preferred solution is to transform the query against the target unified database to a set of queries
against the component source databases; this is the technique that is primarily used in Federated
Database Systems (FDBSs) [SL90].

The primary challenge with FDBSs is that they are usually designed for static integration envi-
ronments, meaning that the virtual database that is exposed to users is aware of and takes ad-
vantage of bindings, mappings, and available transformations. However, our problem statement
imposes Requirement 3 (Querying Heterogeneous Data Sources) on any potential solution. This
requirement specifies that component databases might have multi-dimensional heterogeneities.
It creates a dynamic and loosely integrated environment in which neither data organization (Defi-
nition 1.2) nor system capabilities remain static for long periods of time. It is worth emphasizing
that we are targeting a research environment that features volatile data and ad hoc queries; hence,
a case-based integration would be a better fit. Furthermore, our solution is required to query data
in-situ (Requirement 1: In-Situ Data Querying) in order to eliminate the need for data duplica-
tion, transformation, and loading. This requirement imposes restrictions on data integration in
that not only must the original (and possibly raw) data be used for querying but the original data
should not be permanently altered for integration purposes.

To overcome these barriers and effectively address data access heterogeneity, we propose the
concept of query virtualization, which uses federated agents to transform submitted queries to
native counterparts. Federative query virtualization permits much greater flexibility and support
for heterogeneity than data virtualization controlled by a central authority. We combine tech-
niques taken from data integration and federated systems to establish the foundation of our query
virtualization solution. We use query transformation techniques to transform data organization-
independent (Definition 1.2) input queries into a set of native queries to be executed against the
designated component data sources of the federation. Compositional queries can then combine
the partial results obtained from the components to shape the final result sets.

Transforming an input query to its native counterpart for execution on a component data source
requires a system to be aware of the capabilities of that engaged component. This information al-
lows the system to generate a query that is executable by the designated component, although the

50

component may only partially fulfill the requirements of the input query. The system may con-
sider complementing the residual work that could not be performed by the target data source. In
many cases, e.g., in CSV files, there are no or only limited querying capability available. Hence,
the system must translate the input query into a set of operations in order to execute the query
and obtain its result. This technique requires that the system is able to synthesize and compile
code on-the-fly. Overall, the system should be capable of complying to the computation models
used by the designated data sources by transforming input queries to either query languages,
operational procedures, or API calls that those data sources accept. The system should compose
a set of specific programs tailored for execution against the target data organizations, compile
them to appropriate executable units, and then run the units on the designated data sources or
data. This approach can be referred to as “database on-the-fly”, as the data access functionality is
dynamically generated based on the data organization and according to the query requirements.

In order to identify the components and their roles and lay a foundation for a solution, we es-
tablish a reference architecture. A reference architecture is required in order to determine the
architecturally important components of the solution and the manner in which they interact with
each other. Each architectural component deals with a subset of the problem and makes it pos-
sible to focus on higher level aspects of the system, e.g., the roles assigned to the components
and the flow of control and data. It also assists in establishing and satisfying the requirements
identified in Chapter 3. Furthermore, we specify a set of design principles and construct the
architectural elements on top them. In the remainder of this chapter, we elaborate on these pre-
requisites in terms of architectural design, study a number of relevant architectures, and finally
propose ours.

Any given query undergoes a series of operations in order to yield its result set. Broadly summa-
rized, the query is transformed into an appropriate computational model, which is then executed
on a set of designated data sources. The possible partial results obtained from each data source
are combined to shape the final result set, which in turn is returned to the requesting agent. This
flow indicates the following three major building blocks:

1. Query Declaration: Authoring the data requirements in terms of queries and parsing the
input queries in order to validate their syntax and semantics are the main duties of query
declaration. Additionally, it may build internal query model such as Abstract Syntax
Trees (ASTs) and submit these models for execution,;

2. Query Transformation: This includes all of the activities required for the construction of a
set of optimized concrete computation models that are tailored to be run on the designated
target data sources; and

3. Query Execution: This process is intended to build executable units from the computa-
tion models, dispatch the units to the data sources and request for execution, collect and
combine the results, and reformat the results according to the query requirements.

There are a multitude of architectural designs for FDBMSs [HMS85, SL90, KK92], heteroge-
neous data systems [NRSW99, CDAO1, KFY*02], query transformation [BDH195, ALW 106,
Ram12], and query shipping [FIK96, Sah02, RBHS04, LPO0S8], each of which are aligned towards

51

CHAPTER 5. OVERVIEW OF THE SOLUTION

particular aspects of the entire problem that we intend to address. The majority of the existing
solutions attempt to solve the problem at hand for a specific domain. By taking advantage of
the existing systems, our reference architecture provides elements intended to address the needs
of the above-mentioned building blocks and satisfy the requirements described in Chapter 3
(Problem Statement). We construct our solution based on the following three main components:

1. An abstract query language that allows for schema and query formulation in a data-
organization-agnostic (in terms of source, format, serialization) manner (Chapter 6). Such
a unified query language is fundamental to the concept of query virtualization that we are
striving towards. Users can write their queries and applications using this query language
and rely on the system to perform the necessary transformations required to evaluate the
specified queries against heterogeneous data sources;

2. A set of data organization-specific adapters that are responsible for transforming and ex-
ecuting queries on their corresponding data sources (Chapter 7). Adapters additionally
participate in query rewriting and complementing; and

3. A query execution engine that orchestrates adapter selection, query rewriting and dis-
patching, and result assembly (Chapter 8). Query execution is constructed on top of the
above-mentioned two end-points, namely the (abstract) query language and the (concrete)
capabilities of the underlying sources accessible via adapters.

Figure 5.1 illustrates our architectural realization of the components identified above. In brief,
the architecture consists of three modules: client, agent, and data access, which are described
in Chapter 10 (Implementation).

Upon starting up, the runtime system is activated. It is responsible for the configuration, registra-
tion, and instantiation of the query execution engine, as well as other components. The system
interacts with its clients via a set of APIs that provide the functionality required to exchange
queries and results. When a set of queries is submitted, the runtime system selects the active
query execution engine, launches it, and then passes the queries to it. A plug-in mechanism
allows for swapping the query engine if needed. The query engine accepts the input queries,
orchestrates their execution, and returns the results. The APIs provide a mechanism for various
types of clients, such as desktop workbenches, third-party tools, and remote services, to interact
with the system.

Definition 5.1: DST A Described Syntax Tree (DST) is an Abstract Syntax Tree (AST) annotated
with metadata, e.g., the data types and constraints that are extracted or inferred from the queries
or the data. A DST is an intermediate representation of its corresponding query; the nodes of a
DST are operators of its associated query. Nodes may be annotated by additional data, such as
cost indicators, allowing optimizer, transformer, and executer to benefit from such information.

During the semantic analysis phase, the parser builds a DST (Definition 5.1) for each query
statement and adds them to the ASG (Definition 5.2). The engine optimizes the queries using
its rule-based optimizer (see Section 7.4) and then, from the pool of registered adapters, selects

52

Web/ Server based 3 Party Integrated Workbench

client Client (defaultclient)
Public API

e ™ Query Execution Engine
O
g | |
(7} - . . -
E L Fallback Tabular Relational o
2t &8 in
5 Tao r - ,]
€| | < New][SPARQL AQL %

l

O J O

New Relational Data CSV Data Array Data

Data
Sources

Figure 5.1.: The overall system architecture, showing the interactions between the client, the
agent, and the data access modules. The client module consists of the dot-patterned
components, while the grid-patterned components are the agent module. All of the
other components shape the data access module.

53

CHAPTER 5. OVERVIEW OF THE SOLUTION

the most suitable adapter for transforming the query into its target computation model. The
adapter selection process is based on a negotiation algorithm (see Section 8.1.2) in that the en-
gine compares the requirements of queries with the capabilities of the adapters. When an adapter
is chosen, the engine determines which parts of each query are executable on its designated data
source.

Adapters accept the DSTs and transform them into their native counterparts to be executed
against the corresponding data sources. The output of such transformation depends on the orga-
nization of the target data: For example, an RDBMS adapter may transform the input query to
a vendor-specific SQL, while a CSV adapter generates a sequence of operations to read, parse,
materialize, and filter the records upon execution.

Definition 5.2: ASG An Annotated Syntax Graph is a directed acyclic graph in which nodes
are DSTs and edges indicate inter-statement dependency.

It is a strongly typed and fully linked representation of the input process. An inter-statement de-
pendency is defined by a data flow, so that if a statement s1 requires data from another statement
82, then sl is dependent upon s2.

When all of the adapters return the transformations, the query execution engine packages them
as jobs, which are the units of execution. It then constructs an execution pipeline per input query
and puts the jobs into the pipeline (see Section 8.1.4). After compiling the jobs, the engine
dispatches them to their corresponding adapters for execution. The dispatching algorithm can
break the ASG down into a set of disjoint sub-graphs for parallel execution. The adapters execute
the jobs on the data sources and return the result sets. The engine then obtains the results and
feeds the dependent queries, allowing them to proceed. The final result of each query would be
ready at the end of the execution of its pipeline. In addition, the engine assembles the final result
sets of heterogeneous queries (see Section 8.1.4.1) to appropriate presentation models [JCET07].

Those query requirements that were not fulfilled by their target adapters are identified and added
to the ASG as complementing DSTs (see Section 7.3). These complementing queries are ex-
ecuted on an adapter specifically designed for this purpose. The engine rewrites the original
queries accordingly in order to eliminate the complemented requirements and marks the com-
plementing query as depending upon the rewritten ones. Knowledge of the query capabilities of
the data sources or adapters is essential for rewriting queries.

In the following chapters in this part, we describe how queries are declared (Chapter 6), trans-
formed (Chapter 7), and executed (Chapter 8). In each chapter, we explain how the relevant
requirements described in Chapter 3 are realized. To do so, we define and classify partial so-
lutions intended to realize the relevant requirements and introduce them as solution features (or
features for short). Every feature is a cross-cut of one or more requirements, meaning that, if the
feature is realized, then all of the associated requirements are assumed to be partially fulfilled. If
all of the features (F..F),) associated with a requirement R; are realized, then the requirement
is assumed to be fulfilled. We infer the satisfaction of the hypothesis from the overall fulfillment
of requirements, and illustrate these dependencies using tractability matrices in Chapter 9.

54

Query Declaration

In Chapter 5 (Overview of the Solution), we proposed a reference architecture that provided the
fundamental building blocks for the three major functions of the system, namely query decla-
ration, transformation, and execution. The objective of this chapter is to introduce and define a
uniform data access mechanism through the development of a query language. The query lan-
guage is intended to provide the expressive power required to access various data organization
(Definition 1.2). We argue that, by abstracting and isolating the language from implementation
and execution semantics, it is possible to develop a single unified declarative language with a
sufficient number of constructs to allow it to transform its sentences to the semantically valid
computational model of any underlying database. This chapter is dedicated to the design of
such a language. We define the components required to declare queries that are able to retrieve,
transform, and manipulate data.

Query declaration must satisfy various requirements: Requirement 3 (Querying Heterogeneous
Data Sources) states that data of interest is heterogeneous and therefore it should be possible to
formulate queries on such data. In addition to the selected data organizations, Requirement 2
(Data Organization/Access Extensibility) requires a mechanism to allow adding support for new
data organizations. Requirement 15 (Version Aware Querying) requires that if data sources
keep track of various versions of data, the query declaration needs to provide facilities to make
designated versions of the data queryable.

Query declaration should provide a syntactically (Requirement 4: Unified Syntax) and seman-
tically (Requirement 5: Unified Semantics) unified means of posing queries on data in such a
manner that the two are not affected by the data’s organization (Requirement 12: Data Inde-
pendency). The query language should allow its users to define the desired view of their raw
data (Requirement 8: Virtual Schema Definition), meaning that the structure of the query results
will be determined by the defined schema and presented in a unified manner (Requirement 7:
Unified Result Presentation). It is worth mentioning that such a unified method of presenting
results should not be interpreted as being restricted to one way only; users should rather have the
option to present results in various ways (Requirement 13: Polymorphic Resultset Presentation),
and those ways must be extensible (Requirement 14: Result set Presentation Extensibility).

Users should be able to transform data of interest to virtual schemas (Requirement 9: Easy
Transformation), allowing them to query the virtual representation of the data. Built-in functions

55

CHAPTER 6. QUERY DECLARATION

(Requirement 10: Built-in Functions) should be integrated into the query language and be easily
accessible for transformation and/or aggregation purposes. These functions should be extensible
(Requirement 11: Function/Operation Extensibility) to make room for both domain-specific
implementations and customization.

We choose to develop a declarative query language as the system’s query-authoring mecha-
nism. This language allows clients to formulate their own data retrieval, transformation, and
manipulation needs and submit them to the system. Since SQL is widely used for complex data
manipulation, at first glance it seems a natural choice for our unified query language. However,
standard SQL does not have the extensibility required to support the diversity of data sources
and type systems that we anticipate. Furthermore, SQL is a large language with many features
that are not of high priority for our use-case. In light of these observations, we have developed
our own unified query language (QUery-In-Situ (QUIS)) [CKR12], which can be considered an
extension to the SQL core.

QUIS expressive power allows its statements to be translated to appropriate counterpart elements
in other languages and systems, e.g., SQL, AQL [LMW96], and SPARQL [HS13]. In cases such
as CSV, TSV and spreadsheets, where no or limited data source functionalities are available, the
language provides enough information to the adapters to enable them to build appropriate native
models required to compute a result set.

In the remainder of the chapter, we explain the general programming paradigm in Section 6.1,
which is followed by a discussion of our choice of programming in Section 6.2 and the tools
selected for writing the language (the meta-language), as well as for lexical and syntactical anal-
ysis, in Section 6.3. Thereafter, in Section 6.4, we consider a number of well-known related
languages. Finally, we introduce the QUIS’s language features, design, and grammar in Sec-
tion 6.5.

6.1 Programming Paradigm

We begin this section by briefly introducing a number of the key concepts of computer pro-
gramming languages that are used throughout of this dissertation. We first present a number
of definitions and then explain the grammar chosen to formulate the language. Thereafter, we
describe the decisions that we made concerning the grammar’s meta-languages, their varieties
and syntaxes, and the lexer and parser generation tools.

A language is a set of valid sentences; sentences are composed of phrases, which in turn are
composed of sub-phrases, which can be broken down into the linguistic building blocks known
as words or, more abstractly, as tokens. A token, which is a vocabulary symbol used in a lan-
guage, can represent a category of symbols such as identifiers and keywords. A programming
language is a notation for writing programs, which are the specifications of a computation or an
algorithm [Aab04]. More generally, a programming language may describe the computations
performed on a particular machine. The machine can be a real one, e.g., an Intel CPU, a soft
machine, e.g., a Java virtual machine, or a query execution engine.

56

6.1. PROGRAMMING PARADIGM

Programming languages usually benefit from a level of abstraction when defining and manipu-
lating data structures or controlling the flow of execution. The theory of computation classifies
languages by the computations they are capable of expressing. The description of a program-
ming language is usually split into the two components of syntax and semantics. The syntax
of a programming language is the set of rules that define the language membership and is con-
cerned with the appearance and structure of programs [Aab04]. The syntax determines whether
a stream of letters (a token) or a stream of tokens (a phrase) is a valid member of the correspond-
ing language. Syntax is contrasted with semantics, as the latter is a set of rules and algorithms
that determine whether a phrase is meaningful it its context. For example, in the Java language,
a local variable should be defined before its first use. Semantic processing generally comes after
syntactic processing, but they can be done concurrently or in an interlacing manner if necessary.

The syntax of a language is formally defined by a grammar, which is usually defined using
a combination of regular expressions and a variation of Backus—Naur Form (BNF) to induc-
tively specify productions and terminal symbols [FWHO08]. Each production has a left-hand
side nonterminal symbol and a right-hand side, which consists of terminals and non-terminals.
The right-hand side specifies how the members of the production can be constructed; in other
words, it determines the valid phrases that a production can produce. The terminals are defined
using regular expressions that describe how input characters should be grouped together to form
tokens. The set of tokens is considered as the alphabet of the grammar [Aab04].

In order to recognize the membership of an input stream to a grammar, the stream should undergo
a chain of steps of lexical, syntactical, and, in some cases, semantic analyses. In a general
scenario, the input stream is fed into a lexical analyzer (also known as lexer or tokenizer) in
order to create, based on the lexical rules of a grammar, a stream of valid tokens out of it. The
token stream is then passed to a syntactic analyzer, a parser, which applies the nonterminal
production rules on the tokens and recognizes the phrases and sentences. The output of the
parser is represented as a syntax tree, also known as parse tree. A syntax tree is a tree in which
input sentences are structured as sub-trees. The name of the sub-tree roots are the corresponding
rule names, while the leaves are the tokens presented in the input and detected during the lexical
analysis. Semantic analysis, also referred to as context-sensitive analysis, is a process used to
analyze the parse tree in order to gather information necessary to validate (and annotate) the
parse tree [Aab04]. It usually includes data type, declaration order, and flow of data and/or
control checking.

Parsers are usually built to match production rules either top-down or bottom-up. A top-down
parser begins with the start symbol of the grammar and uses the productions to generate a string
that matches the input token stream. A bottom-up parser, in contrast, attempts to match the input
with the right-hand side of a production and, when a match is found, replaces the portion of the
matched input with the left-hand side of the production [Aab04].

Both top-down and bottom-up parsers use a variety of approaches and implementations, based
on factors such as performance, memory usage, and the size of backtracking and lookahead!. A

"Lookahead is a mechanism used by parsers to look ahead for (but not consume) a number of tokens in order to
decide upon a viable alternative. The number of tokens the parser can look ahead varies from parser to parser and
affects its performance, flexibility, and the class of grammars it can parse.

57

CHAPTER 6. QUERY DECLARATION

Left to right, Leftmost derivation (LL) parser is able to analyze a subset of context-free languages
in a top-down manner. The first L in the name refers to the fact that it parses the input from left
to right. The second L implies that the parser performs the left-most derivation of the sentence,
hence LL. When parsing a sentence, the parser may need to test different possible alternatives
of productions. In order to test these alternatives, the parser looks at, but does not consume, the
tokens ahead of its current token. Depending on how many lookahead tokens are required for the
parser to recognize the input, it is called LL(k), in which k is the number of tokens that the parser
will look ahead when parsing a sentence. If such a parser exists for a certain grammar and it can
parse sentences of that grammar without backtracking, it is called an LL(k) grammar [RS70].
If there is no limit on the number of look-ahead tokens, the parser is called LL(*) [PF11]. LL
grammars can also be parsed by recursive-descent parsers.

Recursive-descent parsers are a type of top-down parser implementation. They are a collection of
recursive procedures in which each procedure represents one of the productions in the grammar.
Parsing begins at the root of a parse tree and proceeds towards the leaves. When the parser
matches a production, it calls the corresponding procedure to consume the input and call the
sub-rules, including the original production itself if necessary. In recursive-descent parsing,
the structure of the resulting parser program closely mirrors that of the grammar it recognizes.
This parsing technique does not need to backtrack if the grammar is LL(k), for which a positive
integer k exists that allows the parser to decide which production to use by examining only the
next k tokens of the input [Par13].

Because the syntax of a program in a language usually has a nested or tree-like structure, re-
cursion will be at the core of parsing techniques [FWHO8]. One of the most frequently used
recursions is left recursion. Left recursion refers to a situation in which a rule invokes itself at
the start of an alternative. Arithmetic and logic expressions are examples of left recursion. Mod-
eling these kind of expressions in an LL. grammar would require developing a set of sub-rules
intended to eliminate recursion and apply precedence. Choosing an LL parser that accepts left-
recursion as a first class citizen eases the process of designing arithmetic and logic expressions
and makes them more legible and maintainable.

6.2 Choice of Programming

In query languages, the exact procedure of accessing, filtering, materializing, and returning re-
sults is not of interest to query clients. These tasks remain the job of query execution engines
and their associated optimizers, which may differ from one implementation to another. John
W. Lloyd [L1094] believes that declarative programming has made a significant contribution to-
ward improving programmer productivity. He defines a declarative programming as a method
of building the structure and elements of computer programs that expresses the logic of com-
putation without describing its control flow. The benefit of describing a program declaratively
is that the programmer describes the desired result (solution) without having to be concerned
about the details of how to explain the control flow, how to choose an optimized algorithm or

58

6.3. CHOICE OF META-LANGUAGE AND TOOLS

how to avoid side effects? [Han07]. All of these aspects are left up to the language’s implemen-
tation, making make room for dynamic execution planning, optimization, and parallelism. The
greater the extent to which a query language is procedure-ignorant, the easier it is to optimize
and use. Database query languages are among the most well-known and successful declarative
programing languages.

Declarative programs are made up of expressions, not commands. An expression is any valid
sentence in the language that returns a value. The expressions should have referential trans-
parency [Han07], which implies that any expression can be replaced by its return value. This
property allows language implementations to consider expression substitution, memoization,
the elimination of common sub-expression, lazy evaluation, or parallelization.

In addition to referential transparency, a declarative operation should satisfy all of the following
conditions [VRHO04]:

1. It should be independent, which means it does not depend on any execution state outside
of itself. Whenever an operation is called with the same arguments, it returns the same
results, independent of any other computation state;

2. It should be stateless (immutable), which implies it has no internal execution state that is
remembered between calls; and

3. It should be deterministic, which means that it will always give the same results when
given the same arguments.

Roy and Haridi argue that declarative languages should be compositional, in that programs con-
sist of components that can be written individually, tested, and proven correct independently of
other components and of their own past histories (previous calls) [VRHO4].

6.3 Choice of Meta-language and Tools

Despite the enormous number of languages that have been invented, there are relatively few
fundamental language patterns. Token order and token dependency are among the preliminary
expectations of any language designer. There are also some common and reusable elements such
as identifiers, integers, and strings, that can be easily used in any other language. In general, the
patterns can be categorized into the following classes:

Sequence: An ordered list of elements of the language. x y z;

%A function or expression is said to have a side effect if it modifies some state or has an observable interac-
tion with calling functions or the outside world. http://en.wikipedia.org/wiki/Side_effect_
(computer_science)

3Memoization is an optimization technique primarily used to speed up computer programs by storing the results
of expensive function calls and returning the cached result when the same inputs occur again. http://en.
wikipedia.org/wiki/Memoization

59

http://en.wikipedia.org/wiki/Side_effect_(computer_science)
http://en.wikipedia.org/wiki/Side_effect_(computer_science)
http://en.wikipedia.org/wiki/Memoization
http://en.wikipedia.org/wiki/Memoization

CHAPTER 6. QUERY DECLARATION

Choice: Choice of one path among multiple alternatives. z | y | 2;

Token dependency: The presence of one token requires another token to be present too. '(' x y’)’;
and

Nested phrases: self-similar language constructs in which a phrase can have sub- or recursive
phrases. z | (y (z | r))

These patterns are implemented as well-defined grammar rules in Backus—Naur Form (BNF).
BNF formulates rules for specifying alternatives, token references, and rule references. A BNF
rule is a nonterminal that is defined as a sequence of alternatives that are separated by the meta-
symbol |. Each alternative consists of strings of terminals and nonterminals. The left-hand side,
the rule name, is separated from its definition by ::=. Rules are terminated with a ;.

Grammar 6.1 A BNF mini-grammar for a language that accepts simple and block statements
in for loops.

(stat-list) = (statement) ; (stat-list) | (statement);

(statement) ::= (ident) = (expr)
| for (ident) = (expr) to {expr) do (statement)
| (stat-list)
I (empty)

>

Listing 6.1 shows a sample grammar written in BNF: The for, to, and do tokens are terminals,
while the statement and expr are nonterminals. The sequence, choice, token dependency, and
nested phrases patterns are all used in this example.

BNF uses the symbols ((,), |, ::=) for itself, but it does not include quotes around terminal
strings. This prevents these characters from being used in languages. Furthermore, it requires
a special symbol for an empty string. Options and repetitions cannot be directly expressed in
BNF, as they require the use of an intermediate rule or alternative production.

BNF has been extended by the ISO/IEC 14977/ 1996. Extended Backus—Naur Form (EBNF)
allows for the grouping of items by wrapping them in a pair of parentheses. Optional and
repetitive items can be expressed by enclosing them in [] and {}, respectively. EBNF marks the
terminals of the language using quotes, meaning that any character can be defined as a terminal
symbol in the language.

There are tools available that are able to generate a lexer from the lexical specification and a
parser from the BNF or EBNF representation of a grammar. ANTLR 4 is a Variable length
lookahead, Left to right, Leftmost derivation (LL(*)) recursive-descent predictive lexer and
parser generator that allows the same syntax to be used to specify both lexical and syntactical
rules [PF11, Par13]. In ANTLR, a grammar consists of a set of rules that describe the language

60

6.3. CHOICE OF META-LANGUAGE AND TOOLS

syntax. Productions are called rules. Rules starting with a lowercase latter define the syntac-
tic structure (hence, they are called parser rules), while rules starting with an uppercase letter
describe the vocabulary symbols or tokens of the language that constructs the lexical rules.

Like EBNF, the alternatives of a rule in ANTLR are separated by the | operator, and sub-rules
can be grouped together by enclosing them in a pair of parentheses. The optionality of an item
is indicated by item’, Repetition is expressed by item* for zero-or-more, and item™ for one-
or-more. Operator precedence implicitly follows the order of the alternatives in a rule. For
example, if the multiplication alternative is placed before the addition, the parser resolves the
precedence ambiguity in favor of multiplication. In ANTLR, operator association* is by default
from the left to the right, but, when necessary, it can be explicitly declared via (assoc = right)
or {assoc = left) property on the corresponding alternative.

In this dissertation, we use the following methods and materials:

1. An LL(*) grammar. Our proposed language intends to support two dynamic constructs,
namely expressions and functions. Expressions can be nested to any level. Functions can
have an arbitrary number of arguments, in which each of them can be either an expression
or a function. This makes it difficult for the parser to find a distinguishing token by having
a specific finite look-ahead k. Therefore, we decided to utilize an LL(*) grammar;

2. A top-down LL(*) parser. The availability of quality tools for lexer and parser generation,
as well as support, were among the decision factors;

3. The EBNF meta-language and ANTLR extensions to make it easier for us to formulate
closures, repetitions and nesting that we need to author the language grammar.

4. The declarative language paradigm with no procedural feature; in addition, it features
referential transparency, independence, and immutability;

5. ANTLR version 4, which supports LL(*), for lexer and parser generation; and

6. Java language version 8 for the development of semantic analysis and all of the other
system components.

It is worth mentioning that LL parsers have an intrinsic difficulty with First/First conflicts> and
left recursion®. ANTLR assists with the detection and elimination of direct left recursion only.
Indirect left recursion that requires multiple rule traversal and First/First conflict cases are taken
care of during the language design process and are solved individually.

*Qperator associativity: in general, operators of the same priority class are associated from the left to the right, e.g.,
in 3 % 4/2, the multiplication is associated before the division. However, in some cases, such as exponentiation,
the associativity should go from the right to the left, e.g., 23" is calculated as 23") not (2%,

SThe First/First conflict is a type of conflict in which the FIRST sets of two different grammar rules for the same
non-terminal intersect. https://en.wikipedia.org/wiki/LL_parser

®Left recursion is a special case of recursion in which a string is recognized as part of a language by the fact
that it decomposes into a string from that same language (on the left) and a suffix (on the right). https:
//en.wikipedia.org/wiki/Left_recursion

61

https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/Left_recursion
https://en.wikipedia.org/wiki/Left_recursion

CHAPTER 6. QUERY DECLARATION

6.4 Related Query Languages

In this section, we briefly introduce the grammars of a set of well-known query languages.
We have chosen a diverse set of languages in order to obtain insights into other related query
languages and to identify the most useful features. These languages are chosen based on (1) the
query operators they support and (2) the data models that they operate on.

6.4.1. SQL

SQL, Structured Query Language, is a relational data management programming language that
is primarily based on relational algebra and tuple relational calculus [Lib03]. It is known as a
declarative language, but it also includes a number of procedural elements. It was first standard-
ized in 1986 by ANSI, as SQL-86. Different vendors have implemented the standards in various
ways, while there are also a number of vendor-specific extensions to the language.

In a relational system, data is represented as a collection of relations, with each relation being
depicted as a table. Columns are attributes of the entity modeled by the table, while rows repre-
sent individual entities. Certain columns may be designated as the primary key of a table, which
uniquely identifies each and every entity. Additionally, tables may benefit from the referential
integrity constraints represented by foreign keys.

SQL consists of DDL and DML, which are sub-divided into elements such as clauses, expres-
sions, predicates, queries, and statements [EIm00]. While DDL deals with schema creation and
alteration, DML operates on the data for inserting, updating, deleting, and querying [RGO0O].

An operation that references zero or more tables and returns a table is called a query [ISO08]. In
SQL, a query is performed by the declarative SELECT statement [RGO0O0], which by definition
has no persistent effect on the database. The SELECT statement specifies the result set, but
not how to calculate it. The designated SQL-implementation translates the query into a query
plan, based on an optimization algorithm. The optimization may use statistics and heuristics to
generate a more efficient plan that involves using indexes, caching, or query rewriting.

The query statement depicted in Grammar 6.2 starts with an optional set quantifier that accepts
either DISTINCT or ALL options; it determines whether duplicate rows should be eliminated
from the result set. The statement then follows with selectList, which determines the list of
columns to appear in the result set. It forms the query’s projection. The projection can be
generated in different ways: an asterisk specifying all columns, a qualified asterisk specifying
all the columns of a relation, derived columns that are computed during query evaluation, or
explicit column names.

The table expression, which forms the source of the query, indicates the table reference(s) from
which data is to be retrieved. A table reference can be a reference to an ordinary, a derived, or
a joined table. A derived table can be a nested query, a view, or the result of a function call. A
joined table is the result of a join operation that is performed on a set of participating tables. The

62

6.4. RELATED QUERY LANGUAGES

Grammar 6.2 A simplified version of the main components of SQL 2003’s query state-
ment [Lef12].

1: statement ::= SELECT setQuantifier? selectList table Expression

2: setQuantifier ::= DISTINCT | ALL

3. selectList = asterisk | (column | derivedColumn | qualifiedAsterisk)®
4: tableExpression == from where’ groupBy? having? window”

5. from = (table| derivedTable | query| joinedTable)™

6: where ::= WHERE searchCondition

7. groupBy ::= GROUP BY setQuantifier’ groupingElement™t

8: having ::= HAVING searchCondition

where clause provides a search condition for the query to use to eliminate of all the non-matching
records from the result set. The search condition, which is not provided in the grammar, is any
valid expression that is evaluated to a Boolean. The group by clause groups the records that have
common values on the provided grouping elements, e.g., columns. The having clause applies
filtering conditions on the groups, analogous to what the where clause does on rows.

At the time of execution, a query optimizer generates a query plan. The clauses of the query
statement are then processed in the order defined in the query plan: For example, in the T-
SQL used in MS SQL Server 2012, the logical processing order begins with the FROM clause.
The WHERE, GROUP BY, HAVING, and SELECT are processed afterwards [Mic12]. At any
step, the objects used in the previous steps, i.e., results and names, are visible and available,
but not vice versa. PostgreSQL for instance, does not allow projection aliases to be used in
the where clause, because the where clause is executed before the projection. As long as the
provided effects are identical on the database state, conforming implementations are not required
to process the clauses in the same order.

6.4.2. SPARQL

SPARQL [W3C13] is a set of specifications that provides languages and protocols to query
and manipulate RDF [CKO04] graph content on the Web or in an RDF store. SPARQL con-
tains capabilities for querying required and optional graph patterns, along with their conjunc-
tions and disjunctions [HS13]. It also supports aggregation, sub-queries, negation, and creating
values by expressions. Complex queries may include union, optional query parts, and filters.
SPARQL supports SELECT queries, which return variable bindings, ASK queries to impose
Boolean queries, and CONSTRUCT queries by which new RDF graphs can be constructed from
a query result [W3C13]. The results of SPARQL queries can take the form of result sets or
RDF graphs [HS13]; however, in order to exchange these results in machine-readable forms,
SPARQL supports XML, JSON, CSV, and TSV [W3C13].

The select query in SPARQL comprises a select, any number of datasets, a where, and finally
a solution modifier clause, as shown in Grammar 6.3. The query is executed on a set of RDF

63

CHAPTER 6. QUERY DECLARATION

Grammar 6.3 SPARQL query syntax [HS13].

1: selectQuery ::= select dataset™ where solutionM odi fier
select ::= SELECT(DISTINCT | REDUCED)’
g (ASTERISK | selectVariables™)
3: dataset ::= FROM NAMED’ iriRef
4. where := WHERE’ groupGraphPattern
5. solutionModifier ::== group’ having® orderBy’ limitOf fset’
6: selectVariables ::= wariable | ‘(C expression AS variable ©)’
groupGraphPattern = *{’ subSelect | triplesBlock’
E (graphPatternNotTriples *.° triplesBlock®)* *}°
group ::= GROUP BY (builtInCall | functionCall |
8: ‘C expression(AS variable)’)’
| variable)™
9: having := HAVING(expression | builtInCall | functionCall)™
o orderBy ::= ORDER BY ((ASC | DEsc)’ (expression
' | builtInCall | functionCall | variable))™
11: limitOf fset == limit of fset’ | of fset limit’

12: limit == LIMIT INTEGER
13: of fset ::= OFFSET INTEGER

64

6.4. RELATED QUERY LANGUAGES

datasets [HS13] and returns a solution set that matches the imposed where clause conditions. An
RDF dataset comprises one default non-named graph and zero or more named graphs, so that
each named graph is identified by an IRI’.

The select clause, depicted in line 2, identifies the variables that are to appear in the query
results. Specific variables and their bindings are returned when a list of variable names is given.
The list can be provided by an asterisk declaration for all in scope variables, by the explicit
names of existing variables, or by introducing new variables into the solution set. The DIS-
TINCT modifier eliminates duplicate solutions from the solution set, and the REDUCED modi-
fier simply permits them to be eliminated if their cardinality is greater than the cardinality of the
solution set with no DISTINCT or REDUCED modifier.

A SPARQL query may have zero or more dataset clauses, with each adhering to the syntax
depicted in 1ine 3. The query may specify the dataset to be used for matching by using the
FROM or the FROM NAMED clauses to describe the RDF dataset. The effective dataset resulted
from a number of FROM or FROM NAMED clauses will be either a default graph that consists
of a merged RDF of the graphs referred to in the FROM clauses or a set of (IRI/graph) pairs, one
from each FROM NAMED clause.

The where clause, as defined in line 4, provides a triple/graph pattern to match against the
data. It can be composed of conjunctions, filters, operations, and functions. In addition, optional
matching is available, which allows non-existing items to be skipped.

The solution modifier clause, as shown in 1ine 5, is a sequence of optional grouping, having,
ordering, and limit/offset clauses. If the GROUP BY keyword is used, or if there is implicit
grouping due to the use of aggregates in the projection, grouping is performed to divide the
solution set into groups of one or more solutions, with the same overall cardinality. The group
function can consist of any combination of built-in and user-defined functions, expressions, or
variables. The HAVING operator filters the grouped solution sets in the same manner in which
the FILTER operates over ordinary ones.

The order by clause applies a sequence of order comparators to establish the order and the
ordering direction of the solution sequence. The offset construct causes the solutions generated
to start after the specified number of solutions, and the /imit clause places an upper bound on the
number of solutions returned.

6.4.3. XQuery

In contrast to relational data, hierarchical data is usually nested, without any pre-assumptions
concerning depth or breadth. Hierarchical data is usually serialized in XML and JSON. Both
allow for defining various elements’ schemas, attributes, nesting, and sequences. Schemas are
maintained alongside data in order to create standalone self-descriptive documents. Therefore,
a search may access the schema as well as the data.

"IRIs are a generalization of URIs and are fully compatible with URIs and URLS.

65

CHAPTER 6. QUERY DECLARATION

In XML, it is possible to query a document using XQuery [RCDS14], which in turn is con-
structed upon XPath [BBC™10], for expressing and navigating paths. A search over XML data
can reach any level of the document, and the result can contain objects of different types. XQuery
is a functional language; therefore, a value can be calculated by passing the result of one expres-
sion or function into another expression or function. The language consists of expressions.

XQuery operates on XDM, which is the logical structure of the queried XML document. XDM
is generated in a pre-processing step before XQuery is engaged. The pre-processing ends up
building an XDM instance, which is assumed to be an unconstrained sequence of items, in
which an item is either a node or a (atomic) value. XQuery processing consists of two-phase: a
static analysis and a dynamic evaluation. During the static analysis phase, the query is parsed
into an operation tree, its static values are evaluated, and its types are determined and assigned.
Thereafter, during the dynamic evaluation, the values of the expressions are computed.

Grammar 6.4 A simplified version of XQuery’s grammar.

. mainModule ::= prolog expr

2. libraryModule ::= moduleDecl prolog

moduleDecl ::= MODULE NAMESPACE ncName ‘=" stringLiteral
4: expr = exprSingle”

exprSingle = flworExpr | quantifiedExpr | typeswitchExpr
> | if Expr | orExpr

flworExpr = (forClause | letClause)” (WHERE exprSingle)’
° orderByClause? RETURN exprSingle
7. forClause ::= FOR forVar™

forVar == *$ qName typeDeclaration’ (AT ‘$’ gName)®
5 IN exprSingle
9: letClause ::= LETletVar™
10: letVar == ‘$ gName typeDeclaration7 =" exprSingle
11: order ByClause := STABLE’ ORDER BY orderSpect

orderSpec ::= exprSingle(ASCENDING | DESCENDING)’
= (EMPTY (GREATEST | LEAST))’ COLLATION stringLiteral’
13: quantifiedExzpr ::= (SOME | EVERY)? quanti fiedV ar™ SATISFIES exprSingle
14: orExpr = arithmeticExpr | logicExpr | pathExpr

pathExpr = ‘I’ relativePathExpr’ | /I’ relative PathExpr
b | relativePathExpr

As depicted in Grammar 6.4, XQuery is built on two corner stones, namely expressions and
paths. Expressions provide the framework necessary for data type declaration and casting, log-
ical and arithmetic formulation, predicate testing, and recursion. Paths, borrowed from XPath,
establish mechanisms for forward and reverse traversal on axes, as well as predicate and name

66

6.4. RELATED QUERY LANGUAGES

testing on the traversal. XQuery unites these two pillars via FLOWR. FLOWR builds an SQL-
like language over expressions and paths that enables XQuery users to access any element,
attribute, value, and position in an XML document. Users can also filter these elements and sort
the matched result set items. The resulting items can be shaped arbitrarily.

The for clause provides a source for the query. It extracts a sequence of nodes from a bound
path and makes it accessible to the following clauses for further operations. The let clause binds
a sequence to a variable, without iterating over it. It is beneficial for the following clauses, as
they use the bound variable instead of the associated path. The where clause is a conventional
selection mechanism that receives a node, tests a Boolean predicate on it, and then either drops
or passes the node. The nodes passed through the previous operations may be sorted using the
order by clause. The return clause is evaluated once per node. It has the ability to apply
projections, transformations, and formatting on a node and return the newly built one. The
output node does not need to be similar to the input; it even does not need to be formatted in
XML.

6.4.4. Cypher

A graph is a finite set of vertices and edges in which each edge either connects two vertices
or a vertex to itself. A labeled property graph is a graph in which the vertices and edges
contain properties in terms of key-value pairs, vertices can be labeled, and edges are named
and directed [RWE15]. A graph database management system is a DBMS that exposes a
graph data model and provides operations such as create, read, update, and delete against that
data [RWE15].

Neo4] is a transactional schema-less property graph DBMS in which graphs record data in
nodes [Thel6]. The nodes have properties and are connected via relationships, which in turn can
also have properties. Nodes and edges may have different properties. Nodes and relationships in
Neo4J can be grouped by labels in order to restrict queries to a subset of the graphs, as well as
to enable model constraints and indexing rules. Indexes are mappings from properties to nodes
and relationships, which make it easier to find nodes and relationships according to properties.
Querying a graph usually results in a collection of matched sub-graphs. Path expressions are
generalized to pattern expressions. Patterns are able to specify the criteria used to match nodes,
edges, properties, variable length traversals, predicates, and sub-patterns.

Cypher is a declarative graph query language for Neo4] that is intended to make graph querying
simpler. Cypher’s pattern-matching allows it to match sub-graphs, extract information, and/or
modify data. It can create, update, and remove nodes, relationships, and properties. Cypher is
inspired by a number of different approaches and builds upon established practices for expressive
querying. While the majority of the keywords, such as WHERE and ORDER BY are inspired
by SQL [Thel3], pattern-matching borrows the expression approaches used by SPARQL3. A
concise version of the cypher’s query syntax is depicted in Grammar 6.5.

8SPARQL is also a graph based query language but it operates on a different and more specific data model.

67

CHAPTER 6. QUERY DECLARATION

Grammar 6.5 Cypher query grammar version 2.3.7 [The16], based on the Open Cypher EBNF
grammar (http://www.opencypher.org).

1: query == clause™
clause ::= match | unwind | merge | create | set
. | delete | remove | with | return
3: match = OPTIONAL’ MATCH pattern where’
4 pattern = ((variable ‘=")? patternElement)*
5. where ::= WHERE expression
6: with ::= WITH DISTINCT’ returnBody where’
7: return := RETURN DISTINCT’ returnBody
8: returnBody := returnltems order” skip® limit’
9: order := ORDER BY (expression (Asc | Desc)?)*
10: skip ::= SKIP expression
11: limit ::= LIMIT expression
patternElement ::= (nodePattern patternElementChain®)
' | (‘C patternElement “)’)
13: nodePattern = ‘(variable’ nodeLabels’ properties?)
14: patternElementChain := relationshipPattern nodePattern
relationshipPattern =
(leftArrowHead dash relationshipDetail’ dash right ArrowH ead)
15: | (leftArrowHead dash relationshipDetail® dash)
| (dash relationshipDetail’ dash right ArrowHead)
| (dash relationshipDetail” dash)
6 relationshipDetail == ‘[’ variable’ relationshipTypes? rcmgeLiteral?

properties? ‘T

68

http://www.opencypher.org

6.4. RELATED QUERY LANGUAGES

In Cypher, any query is describing a pattern in a graph. Patterns are expressions that return a
collection of paths. So they are able to be evaluated as predicates. Patterns start from implicit
or explicit anchor points, which can be nodes or relationships in the graph. Patterns can be
sub-graphs traversing over nodes and relationships while conforming to restrictions such as path
length and relationship type.

The match clause allows specifying a search pattern that Cypher will use to match in the graph.
The patterns can be introduced to match all nodes, nodes with a label, nodes having bidirectional
or directed relationships, specific relationship types, calling functions that return patterns, and
variable length relationship paths.

The with clause divides a query into multiple, distinct parts, chaining subsequent query parts and
forwards the results from one to the next [RWE13]. For example, in order to obtain a result set
of aggregated values that are filter by a predicate, one can write a two-part query piped with a
with clause: The first part calculates the aggregations, and the second eliminates non-matching
aggregate values obtained from the first part. The with clause specifies that the first part has to
be finished before Cypher can start on the second part.

Beyond from the pattern-matching functionality provided by the match clause, it is also possible
to filter the result set using the where clause. The where clause is able to apply Boolean operators
and regular expressions on node labels and their properties, as well as on relationship types and
their properties. Multiple uses of single-path patterns is also allowed, in combination with other
filtering conditions, to eliminate any matched sub-graph from the result set.

Each Cypher query ends in a return clause that signals the end of the query and introduces the
data that is returned as the query result. The query result is specified in term of returnltems,
which is a list of expressions, with each evaluated to a solution variable. It is possible to apply
skip, limit, and order by clauses within the refurn clause. In read-only queries, Cypher does
not actually perform the pattern matching until the result is asked for. As with any declarative
language, Cypher can change the order of operators at execution time. Thus, it is possible for
query optimizers to decide on the best execution plan in order to reduce the portion of the graph
that must be visited to compile the solution.

6.4.5. Array-based Query Languages

MonetDB is an open-source column-store database management system [IGNT12]. It targets
analytics over large amounts of data. MonetDB interfaces with its users as a relational DBMS
via its support for the SQL:2003 standard. Although it is designed for read-dominant settings
such as analytics and scientific workload, it can also be positioned in application domains that
feature considerable number of write operations and transactional scenarios. In addition to re-
lational data, MonetDB has built-in support for array data, XML, and RDF. It provides SQL
for querying relational data, XQuery for XML, and SPARQL for RDF querying. MonetDB
utilizes SciQL to allow users to perform all of the SQL DML operations on array data. Mon-
etDB’s querying design paradigm is to keep its interfacing languages as close to SQL as possi-
ble. SciQL [KZIN11] satisfies this MonetDB requirement, as its design enhances the SQL:2003

69

CHAPTER 6. QUERY DECLARATION

framework to incorporate arrays as first class citizens. The language integrates array-related
concepts, such as sets, sequences, and dimensions, into SQL. SciQL also provides a mechanism
for accessing cell values in multi-dimensional arrays.

In SciQL, an array is identified by its dimensions [ZKIN11]. These dimensions can be of a fixed
size or unbounded. Every combination of index values refers to a cell, which can have a scalar
or compound value. Arrays can be used wherever tables are used in SQL, and the SQL iterator
concept is adapted to access cells. There is a deep analogy between the relational table and the
SciQL array; in fact, SciQL is able to switch between the two and consider them as perspectives
on the underlying data.

SciQL’s query model is similar to that of SQL [ZKM1 3]°: Elements are selected based on pred-
icates, joins, and groupings. The projection clause of a SELECT statement produces an array,
which may inherit the dimensions of the query’s source. SciQL supports positional access to ar-
rays while preserving dimension orders; thus, range-based access is also possible. This feature
allows array slicing based on range patterns. The slicing technique is not only used in queries
but also in updating the arrays. Additionally, views are supported, allowing for transposing,
shifting, and creating temporary sub-arrays. SciQL grouping has extended SQL, allowing it to
accept overlapping groups. This is beneficial when applying aggregate functions on neighbor-
hoods, e.g., in image processing. SQL’s windowing feature is supported on arrays and is used to
identify groups based on their dimension relationships. In addition to arrays, SciQL has special
language constructs used to declare matrices, sparse matrices, and time series.

SciDB is a multi-dimensional array database management system [SBPR11] that utilizes AQL.
AQL is an SQL-like declarative language [LMW96, RC13] for working with arrays®. AQL is
based on nested relational calculus with arrays (NRCA) [LMW96] in that operators, such as
join, take one or more arrays as input and return an array as output. Queries written in AQL
are compiled into AFL, their functional equivalent, and are then passed through the rest of
the processing pipeline, which includes optimization and execution. Beyond the similarity of
AQL to SQL, the former processes queries, e.g., joining dimensions, in a remarkably different
manner [SBPR11]. AQL includes a counterpart to SQL’s DDL that assists in defining and
manipulating the structures of arrays, dimensions and attributes.

The studied languages support different feature sets and have various names for similar features.
We generalize the most common query features in Table 6.1 and determine how the above-
mentioned languages address these features.

All of the languages query operators, e.g., selecting and ordering, accept one or more objects
from their corresponding data model, operate on them, and return an object. For example, SQL’s
join operator takes two (or more) tables as input and returns a single table as its output; AQL’s
join function performs the same operator on arrays and returns a single array. Functions, sim-
ilarly to their mathematical concept, are transformations that accept one (or more) data values,
perform the transformation, and return a data value (usually scalar). In contrast, aggregate func-
tions, or aggregates for short, accept a collection of values, apply the cumulative operation on

“We were unable to locate a formal and citable grammar of either SciDB or AQL.

70

6.4. RELATED QUERY LANGUAGES

SQL SPARQL Cypher SciQL

Access Expression v v v v
Source Selection v v v v
Projection v v v v
Selection (Filtering) v v v v
Pattern Matching X 4 4 X
Query Partitioning X X 4 X
Data Transformation v v v 4
Aggregation v v v v
Ordering v v v X
Grouping v v X v
Group Filtering v v v v
Set Quantifying v v X X

X v 4 4

Pagination (Limit/Offset)

Table 6.1.: Query features supported by various query languages.

all of the values of the collection, and finally return a single value. Each of the query languages
supports a set of data types that may affect storage, operations, indexing, and conversion.

Access expressions provide a means by which languages can access data attributes. They have
different levels of expressiveness. For example, SQL access expressions traverse over schema,
table, and Column, while XPath can express variable depth trees, sequences, and cardinal-
ity [BBCT10]. Cypher is able to express sub-graphs, node and edge properties, and loops.
While pattern matching is supported in SPARQL and Cypher, query partitioning is realized only
in Cypher. Standard SQL does not have Limit/Offset operators; however, they are integrated into
various vendor-specific RDBMSs. Some implementations require the query result to be ordered
before the limit/offset is applied. All of these languages, with the exception of Cypher, accept
multiple and/or combined sources. Cypher operates on one graph per query and does not accept
joins and sub-queries as sources.

6.4.6. Data Model

QUIS distinguishes between three data models: input, internal, and output. The input data model
is the one that QUIS accepts as input and is able to operate on. The studied query languages
operate on different data models, e.g., SQL on relational, XQuery on hierarchical data, and
Cypher on graph data. In order to harmonize the different terminologies used by the above-
mentioned models, we provide the following definitions:

Definition 6.1: Data Source A data source is a consistent pair of a data organization (Defini-
tion 1.2) and a data management system. The data management system organizes and stores the
data and provides a level of management over the data.

71

CHAPTER 6. QUERY DECLARATION

A database in a RDBMS or a graph in a graph database are both considered to be conventional
examples of a data source. We additionally consider the file system and the supported data
files as data sources. For example, an OS-managed directory containing a set of CSV files
is considered to be a data source, albeit one with very limited data management facilities. In
addition, well-known file types/formats, such as that of MS Excel, are considered to be data
sources.

Definition 6.2: Data Container A data container is a bound set of data in a data source.

While data sources such as RDBMSs usually manage objects, such as tables and views, other
data sources have similar boundaries around sets of data. We generalize these boundaries as
data containers. For example, a single CSV file, an RDBMS table, or an MS Excel sheet are
considered to be data containers.

Definition 6.3: Data Entity An individual entity in a given data container that has zero or more
attributes and optionally values for those attributes.

A data entity can be, for instance, a record in a database table, an element in an XML document,
anode in a graph, or a line in a CSV file.

Definition 6.4: Data Item The value of an individual attribute of a data entity.

A data item can be scalar or compound. In the simplest cases, a data item is a field value of a
record in a database table, a single cell in an MS Excel sheet, a value in an array, or a property
value on a node of a graph.

While input data can take various forms, we define a query result as a collection of data entities
that share a similar schema. This is QUIS’s internal representation of data, and it is based on the
tuple relational calculus. All of the query operations that access the input data entities have a
task that transforms them into equivalent internal representation, allowing the other operators to
continue working on the internal representation of data. This is similar to the scan operators in
RDBMSs that read the disk-stored rows and materialize them as records. This internal represen-
tation isolates the higher level query operators, e.g., selecting, inserting, updating, and deleting
from the variety of the input data models. In addition, it provides room for adapters tailor entity
scanners for the specific data models that they support.

When QUIS is requested to communicate query results, it, transforms the internal data model into
the requested presentation model based on the query requirements. For example, the presentation
model may be a JSON or XML that is used for tool interoperability, a multi-series chart to be
used for visual representation, or an R data frame to be used for further statistical processing.
This operation is also decoupled from the actual query planning and execution in order to reduce
load on the engine and provide a stream-lined data model for superior query optimization. The
load is reduced because the representational transformations occurs only once, and on the final
query results; hence, there is no need to for instance, transform the tuples and then filter them.
This also improves the query performance, as the query operators are optimized for application
to the internally represented tuples and do not need to consider different presentation varieties.

72

6.5. QUIS LANGUAGE FEATURES

6.5 QUIS Language Features

The main focus of the QUIS system is in-situ (Requirement 1: In-Situ Data Querying) querying
of different data sources (Requirement 3: Querying Heterogeneous Data Sources), provided
that those data sources expose different and inconsistent capabilities. Similarly to SQL, QUIS
should also feature DDL and DML, but it is designed to function as an in-situ language with
an emphasis on data retrieval. The only area of interest in DDL for the purposes of QUIS is the
virtual schema definition (see Feature 3). Therefore, we decided to merge both the DDL and
DML into one language. As listed in grammar segment Grammar 6.6 the QUIS’s query language
consists of two high-level concepts, namely declarations and statements.

Grammar 6.6 QUIS top level language elements in EBNF'?

1: process = declaration® statement™

In QUIS, the term process script, or process for short, refers to a sequence of declarations and
statements that are written in a specific order to serve as the data-processing requirements of
a designated procedure. While statements are the units of execution, declarations are non-
executable contracts used by statements. Statements may include all kinds of data operations,
e.g., querying, manipulating, and deletion, as well as the processing of data by means of applying
functions. They consist of clauses, expressions, and predicates. Clauses are used to decompose
larger language elements into smaller ones, whereas expressions are objects evaluating to a
scalar or a collection of values, and predicates are used in places where a condition is needed.
Both expressions and predicates can use functions and aggregates.

6.5.1. Declarations

A declaration can be a definition of the structure of a data object, the information required
to connect to a data source, or the constraints that govern the visibility of data containers or the
versions of data that are accessible. Declarations are not executable; rather, they act as a contract
between other statements or between the language’s runtime system and its client. We identify
and integrate the following three declaration types into the QUIS language:

6.5.1.1. Connections

In order to obtain data, one must first either connect to a data source or access the data itself.
This step may require various types of information: For example, while accessing a local CSV
file requires a full file path, accessing an Excel sheet also requires the sheet number/name. Con-
necting to an RDBMS or a web service not only requires the server URL and port number but

10The repetition on declaration is for better readability. The complete and accurate grammar is provided in Ap-
pendix A.

73

CHAPTER 6. QUERY DECLARATION

also credentials. In almost all DBMSs, this concept is not considered to be a part of the query
language. The queries of these languages presume that a connection is established and the issued
queries are submitted to the system’s query execution engine via that connection. We decided to
include connection information as part of the language. The main reason behind this choice was
that QUIS is a heterogeneous data-querying system in which queries retrieve/manipulate data
from various data sources. In these scenarios, QUIS query execution engine should know where
to submit individual (sub-)queries. In addition, this feature makes queries more self-descriptive
and reproducible. It also makes it possible to run queries on different data sources by simply
swapping their connections.

,—[Feature 1 (Connection Information Integrated to Language)} \

A connection models the information required to obtain access to data sources. It may con-
tain connection strings, credentials, network-related information, and data source-specific
parameters.

It is worth mentioning that additional or data source-specific configuration parameters may be
required to enable the system to obtain data from underlying sources: The values in a CSV files,
for example, can be comma- or tab-separated, or a file may have an internal or external header
row.

Defining connections independently with their own parameters’ specifications not only makes it
possible to have a uniform interface for data access at the language level but also provides a base
for future extensions. The connection information for new data sources can be easily accom-
modated as a set of parameter/value pairs and recognized by the system and/or the responsible
adapters.

6.5.1.2. Bindings

When a connection to a data source is established, queries may request different versions of
data (Requirement 15: Version Aware Querying). The queries may require data from previous
versions, join different version of a dataset, or reproduce a snapshot of a dataset as it was used
in a research publication [RAvUP16]. QUIS has a versioning scheme at the language level that
permits ordinal- (by version number), temporal- (by version date), and label- (by version name)
based version identification. Users can specify the version of data to be queried: For example,
tools such as DataHub [B™ 14, Ope15], and BEXIS [bex] support internal versioning and provide
access to each version of a specific dataset, as well as information about the available versions.
QUIS queries allow users to request specific versions of the datasets stored in such systems. The
actual versioning implementation may differ from system to system: For example, file-based

74

6.5. QUIS LANGUAGE FEATURES

data sources may employ complete or differential file duplication, while relational databases
may utilize techniques such as version per table, version per view, or version per query.

QUIS supports all of the variants of the versioning schemes mentioned above at the language
level. Bindings additionally set a visibility scope in order to limit queries to accessing only the
declared set of data containers. During query transformation, the chosen adapters translate the
version identifiers to filename patterns so that, during the execution phase, the nominated files
can be accessed. It is possible to share one connection between multiple bindings and to apply
different versioning schemes or version identifiers. Different versions of a single dataset can be
accessed via different schemas, as long as the attributes referred to in the schema are present in
the data.

,—[Feature 2 (Version Aware Data Querying)} |

A binding establishes a relationship between a connection and a specific version of the
bound data. Bindings set a visibility scope that restricts access to the data containers of the
target data source.

A binding is modeled as a triple < Connection, Versioning Scheme, Version Selector >
that establishes a linkage between a connection and a specific version of data that is accessi-
ble via that connection. This link isolates the statements from the connections and allows for
transparent changing of connections and/or data sources. Thus, it would be easy to redirect a
query statement to another version or even to another data source by simply altering its binding
information.

6.5.1.3. Perspectives

The schema of data should be known in advance in order to allow query operators to effectively
operate on that data. The schema may be obtained from a catalog, e.g., as in RDBMSs, from
the data container itself, e.g., in XML, JSON, Avro [SSRT14], or from an external source, e. g.,
MySQL’s external files [Cor16]. These schemas formulate the actual data as it exists in the
underlying containers. In many cases, using the original data schema is not satisfactory: For
instance, it may not satisfy the requirements of a specific analysis task. Furthermore, computing
derived values or reshaping the data, e.g., aggregating, combining, or splitting columns, are
common practices that imply the use of a schema other than the original.

As described in Requirement 8 (Virtual Schema Definition) scientific data analysis requires more
than physical schemas alone, as i) changing the schema causes data transformation and dupli-
cation, ii) the individuals who work with data have different requirements, iii) schemas can

75

CHAPTER 6. QUERY DECLARATION

change/evolve over time [Rod95], and iv) various analysis tasks expect data in a format upon
which they can operate.

QUIS utilizes perspectives to allow users to formally specify the schema of the query results. A
perspective consists of the attributes that are the individual dimensions of the desired query re-
sults. Each attribute defines how it is constructed from the underlying physical data fields; they
also determine the reverse mapping for data persistence scenarios. In addition, attributes capture
data types and constraints either implicitly or explicitly (see Feature 4 for details). Data types
belong to the set of virtual data types defined by the language and are independent of the actual
data sources’ type systems. The values of attributes can be restricted or formatted by applying
constraints on them: For example, a date/time attribute can have short, long, or standard repre-
sentations. All of these variations should be recognized and ingested. Attributes can additionally
be semantically annotated with, e.g., a unit of measurement for automatic transformation.

Perspectives play an important role in query virtualization, as they are defined independently
from the subsequent queries and isolate them from the mechanics of data formatting, transfor-
mation, and type conversion. Perspectives differ from RDBMS views, as they formulate only
projection and transformation, but not selection. Furthermore, perspectives are not materialized.
However, they do support single-parent inheritance and overriding. Attribute overriding is done
via the use of a base name in a derived perspective; hence, the deepest attribute overrides any at-
tribute defined in the ancestor perspectives. Perspectives are sharable among queries, processes,
and people as well.

Feature 3 (Virtual Schema Deﬁnition)}

A perspective is the schema of a query’s result set from a user’s point of view. It consists
of attributes, which are individual dimensions of data.

Perspectives build the end-users’ view of the data, so they can be defined as the schema of the
result sets. Using perspectives, users are able to do the following:

1. Define a schema for their data container of interest, even when the data container has an
intrinsic physical or logical schema. Schema definition takes place at the same time as
query authoring and undergoes the same life cycle, without affecting the original data or
its schema;

2. Define multiple schemas to similar data. This is useful in the following situations:

a) Presentation variety: Different query statements may be required to access the same
data but return the results differently.

b) Versioning variety: Queries access different versions of data, which may have dif-
ferent schemas.

76

6.5. QUIS LANGUAGE FEATURES

¢) Process variety: Different data analysis tasks require data to be formatted according
to their requirements.

3. Define each and every attribute of a schema and allow attributes to be mapped to the actual
data items of the designated data container using logical and arithmetic expressions and
non-/aggregate functions;

4. Determine the data types of and enforce constraints applicable to attributes using an ab-
stract type system that is independent from, but inter-convertible to, the underlying sup-
ported data sources; and

5. Inherit from previously defined or well-known perspectives, as well as overriding inherited
schema attributes.

The attributes of perspectives can be used for any kind of data transformations, e.g., changing
the units of measurement and the precision of data, correcting the measurement of sensor errors,
replacing missing values, or applying domain-specific transformations.

Adding the three declaration types, i.e., connection, binding, and perspective to Algorithm 6.6
results in Algorithm 6.7. The declaration clause allows for the definition of an arbitrary number
of perspectives, connections, and bindings. The grammar also defines the order in which these
elements can appear in a QUIS process.

Grammar 6.7 QUIS declarations’ grammar. For the complete grammar, see Appendix A.

I: process = declaration® statement™

2: declaration ::= perspective® connection™ binding”*

3: perspective = identifier (EXTENDS ID)’ attribute™

4: attribute == samrtId (MAPTO = expression)’ (REVERSEMAP = expression)’

5: connection = identifier adapter dataSource(PARAMETERS = parameter+)?
binding ::= identifier CONNECTION = ID(SCOPE = bindingScope™)’

° (VERSION = versionSelector)’

7. smartld = 1D (: dataType)(:: semanticKey)®)’

As shown in Grammar 6.7, each perspective has a name that is generated by the identifier
rule, can be extended to another perspective, and contains at least one attribute. The name
of each attribute, its optional data type, semantic annotation, and constraints are governed by
the smartld rule. Optional forward and reverse mappings specify how an attribute should be
materialized from/to actual data fields. Missing data types, as well as attribute mappings, are
addressed during the query transformation and execution phases (see Section 7.2.4).

Each connection also has a name and a set of directives that assist the query engine in selecting
an appropriate adapter. The dataSource is the construct used to describe the information re-
quired to access the data source. Additional data source-specific information is encapsulated in
name/value parameters.

77

CHAPTER 6. QUERY DECLARATION

Listing 6.1 displays an exemplary usage of a QUIS script that utilizes the above-mentioned lan-
guage elements. The process begins with a perspective definition (line 1) that has two attributes
mapped to physical fields. Mappings are formulated using transformation expressions. The con-
nection information required to access the data source is defined in dbCnn (1ine 7). In this
example, the data source is a local relational database named soilD B. The binding b1 utilizes
the dbC'nn connection to establish a visibility scope on the campaigns and measurements
containers (1ine 8). It additionally implies that the latest version of the in-scope data should be
used.

Listing 6.1 A sample QUIS process script that defines and uses declarations.

. PERSPECTIVE soil
> A

ATTRIBUTE Temp_Fahrenheit MapTo=1.8+Temp_Celsius+32,
4 // SN: amount of Nitrogen per a volume unit of soil
ATTRIBUTE SN_mg MapTo = SN_g x 1000,
o}
7 CONNECTION dbCnn ADAPTER = DBMS SOURCE_URI = "server:
localhost, db=so0ilDB, user:ul, Password:passl"
s BIND bl CONNECTION =dbCnn SCOPE=campaigns, measurements
VERSION = Latest
v SELECT PERSPECTIVE soil FROM bl.1 INTO resultSet

The query simply retrieves data from the 1.0 data container that resolves to the campaigns
table in the sotlD B database. It then transforms the physical result by applying the soil per-
spective’s attribute mappings and returns the result in resultSet. The details of the querying
features of QUIS are provided in Section 6.5.2.

Changing the data source is as easy as introducing new connections and/or bindings and refer-
encing them in the queries. Listing 6.2 replaces the DBMS connection with a connection to an
Excel spreadsheet, without the need to change the query. After this change, 1.0 and b1.1 point
to the sheetl and sheet2 sheets in the soil Datal.xls Excel file. A similar change is applicable
to the bound perspective.

Listing 6.2 Replacement and redirecting of queries to different data sources.

1 CONNECTION excelCnn ADAPTER=SP SOURCE_URI= "d:\data\
soilDatal.xls"
> BIND bl CONNECTION = excelCnn SCOPE = sheetl, sheet2 VERSION
= Latest
SELECT PERSPECTIVE soil FROM bl.1 INTO resultSet

6.5.1.4. Virtual Type System

The variety of type systems used by different data sources affects both query transformation and
execution. In order to conceal this variety and its potential inconsistencies from the user, we have

78

6.5. QUIS LANGUAGE FEATURES

incorporated a virtual type system into the query language. Such a virtual type system provides
enough metadata to allow transforming data items to and from underlying type systems. In
addition, it facilities inferring types when the underlying system does not expose such metadata
e.g., in a CSV file with a header line that contains only column names. The type system provides
an appropriate mechanism for defining perspectives’ attributes in an abstract form by isolating
them from the implementation and data conversion details. The choice of the programming
language to be used to implement the execution engine may also affect the type system and data
conversion process.

,—[Feature 4 (Virtual Type System)} N

The virtual type system provides an appropriate mechanism for defining perspectives’ at-
tributes in an abstract form by isolating them from the details of implementation and data
conversion.

\. J

QUIS’s virtual type system supports data types such as integer and floating point numbers, sate,
Boolean, and string. These data types are converted or cast to their native counterparts during
query transformation. When the data type of an attribute is not explicitly declared, QUIS’s type
inference utility chooses one based on heuristics. It utilizes various techniques, e.g., the return
type of functions, data type of parameters, and operators applied to the data, to make a workable
guess. If necessary, it touches the data source/container to ask the fields’ data types and infer the
attributes’ types based on those types.

6.5.1.5. Path Expression

A unified path expression is a sequential representation of a pattern, comprised of data entities,
relationships, attributes, expressions, and iterations, that specifies matching criteria to address
a sub-model of a data model. According to the requirement that QUIS must be able to operate
on various data models (see Section 6.4.6), we need to support a uniform path expression that
enables users to express data item accesses in a manner independent of the target data organiza-
tion. For example, if the underlying data model is relational, the path will usually take the form
of schema.table. field. This pattern can be generalized to other tabular data models, e.g., CSV.
However, array databases add the dimension concept to the path expressions. Hierarchical data
such as XML and JSON require variable depth paths, axes, and sequences. Additionally, graphs
may need to match sub-graphs, loop over paths, and access node and edge properties.

Feature 5 (Uniform Access to Data Items)}

The unified access pattern provides a sequential representation for expressing paths and
patterns to access the data items of the supported data models.

79

CHAPTER 6. QUERY DECLARATION

Grammar 6.8 QUIS’s Path Expression Grammar.

1: pathExpression == (path attribute’) | (path’ attribute)
path = (path relation path) | (path relation) | (relation path)

2: | (‘C(label <)’ cardinality’ path ©)°)
| (step) | (relation)
. step = (unnamedEntity | (namedEntity sequenceSelector’)) predicate®
4: attribute = ‘@’ (namedAttribute | ‘*’ | predicate)
relation ::= forward_rel | backward_rel | non_directional_rel
> | bi_directional_rel
6: forward_rel == *->"| (‘=" label <:->") | (‘-*(label ")’ taggedScope ‘->")
7. backward_rel == ‘<-’(label :-* | (label)" taggedScope *-*)*
8: non_directional_rel == (‘=" | label “:=> | (label ") taggedScope “-*)
9: bi_directional_rel == ‘<-"(*>"| label <:->" | (label *:*)" taggedScope “->")
10: taggedScope = (tag (‘I tag)*)’ relationScope
relationScope ::= sequenceSelector predicate | cardinalitySelector predicate
H | sequenceSelector | cardinalitySelector | predicate
12: sequenceSelector ::= ‘(C NUMBER *)’
13: predicate = ‘[’ expression ‘]’
. cardinalitySelector ::= ‘{’(NUMBER’ ‘.’ NUMBER")
| NUMBER | “*’ | “+’ | <2°) ‘}’

QUIS is equipped with a canonic path express at the language level. This facility provides enough
expressive power to define tabular, hierarchical, and graph-based paths. It can be used for both
matching and querying. For instance, one can use this facility to match a sub-graph in a graph
database or to retrieve the value of an attribute.

Access to data items of interest in a chosen data container is expressed by the path Expression
rule, as defined in Grammar 6.8. A pathExpression can be a path that is optionally followed
by an attribute or an attribute alone. In its simplistic form, a path is chain of steps linked
together using relations. However, it can start or end with a relation, or it can be a step or
a relation only. a — b represents step a, which has a directed relationship to step b. Step a
can be a table, an element, or a node in a relational database, an XML document, or a graph
database. The relation may also be interpreted differently by different parsers, query engines, or
adapters.

At each step, it is possible to refer to an entity type, a specific entity, or a set of entities that
satisfy a set of predicates. Predicates can check for the existence of attributes as well as values.
They benefit from the full power of expressions (see Grammar 6.10). QUIS supports four types
of relations: forward, backward, bi-, and non-directional. The forward type can be used to
traverse traditional tabular data; it also represents children and descendant axes in XPath, as

80

6.5. QUIS LANGUAGE FEATURES

well as directed forward relations in graph query languages such as Cypher. The other relation
types serve similar purposes.

Furthermore, relations in QUIS accept cardinality, sequencing, and selection constraints. The
cardinality constraint sets a minimum and/or maximum length of a path, with support for clo-
sures. This is useful in expressing paths of variable length. The sequencing constraint causes
a path to point to a specific element by its position and the predicate allows for testing the
properties of visiting relationships. As an example, in a property graph database of friends, as-
sume relationships means "friendship” and each relationship has a "start_date". Using the above
constructs, QUIS is able to easily express "networks of at most five friends who have been in
relationships for more than three years". A verbose table that demonstrates the expressive power
of QUIS’s path expression is presented in Appendix B. It illustrates QUIS’s coverage of XPath
and Cypher. Expressing path expressions for tabular data is trivial: In its most verbose form,
it takes the form of server — database — table — field. Using the proposed path expression
grammar, it is not only easy to express such tabular paths but also to formulate constraints and
joins. For example, students|@id == 21]@QuserName matches the username for a user with
id = 21, while students[Qid == 21]-[Qid == @studentId] — courses@name expresses a
join on students and courses tables on students.id and courses.studentld fields. The path
also applies a predicate constraint on the students table to match ¢d == 21 only. Finally, it
accesses the name field of the courses.

6.5.2. Data Retrieval (Querying)

QUIS is designed to focus on data retrieval. Hence, it should have a query language expressive
enough to address the most useful features of the related languages, as described in Section 6.4.
QUIS introduces the statement as a language element that may have a persistent effect on data or
that may control an execution procedure. A guery is a sub-class of statement for data retrieval
that does have any persistent (or side) effect on the data.

Feature 6 (Heterogeneous Data Source Querying)}

In conjunction with declarations, QUIS queries are able to retrieve, transform, join, and
present the data obtained from various and heterogeneous data sources.

Based on the query features summarized in Table 6.1, we design our query to realize the fea-
tures expressed in Grammar 6.9. As the Grammar illustrates, a statement (line 2) can ei-
ther retrieve, insert, update, or delete data. QUIS grammar for data querying is defined by the
selectStatement rule (1ine 3).

The minimum query is constructed by a SELECT keyword, followed by the source-selection
clause. Such a query retrieves data from the specified source without performing any operation

81

CHAPTER 6. QUERY DECLARATION

Grammar 6.9 QUIS query grammar.

1:

2:

10:

11:

12:
13:
14:
15:

17:
18:
19:
20:
21:

22:

23:

process = declaration statement™

statement ::= selectStatement | insertStatement | updateStatement
| deleteStatement

selectStatement := SELECT setQualifierClause’ projectionClause’

sourceSelectionClause filterClause’ orderClause’

limitClause’ groupClause’ targetSelectionClause’
projectionClause ::= USING PERSPECTIVE identi fier

| USING INLINE inlineAttribute™
inlineAttribute == expression(As identifier)’
sourceSelectionClause ::= FROM containerRef

containerRef = combinedContainer | singleContainer | variable | staticData

combinedContainer ::= joinedContainer | unionedContainer
unionedContainer ::= containerRef UNION container Re f
joinedContainer ::= containerRef joinDescription containerRef ON joinKeys

joinDescription ::= INNER JOIN | OUTER JOIN | LEFT OUTER JOIN
| RIGHT OUTER JOIN

joinKeys ::= identifier joinOperator identifier

joinOperator == EQ| NOTEQ| GT | GTEQ| LT | LTEQ

filterClause ::= WHERE LPAR expression RPAR

orderClause ::= ORDER BY sortSpecification™

sortSpecification ::= identifier sortOrder nullOrder’

sortOrder = ASC| DESC
nullOrder ::= NULL FIRST | NULL LAST

limitClause ::= LIMIT(SKIP = UNIT)’(TAKE = UNIT)’
groupClause ::= GROUP BY identifier™ (HAVING LPAR expression RPAR)
targetSelectionClause ::= INTO(plot | variable | singleContainer)
plot ::= PLOT identifier HAXIS:’ identifier VAX1S:® identifier™
PLOTTYPE: (plotTypes | STRING)
HLABEL:’ STRING
VLABEL:’ STRING

PLOTLABEL:’ STRING
plotTypes ::= LINE| BAR | SCATTER | PIE | GEO

?

82

6.5. QUIS LANGUAGE FEATURES

on it; the other features are optional. Beyond the minimum query, there is a set of operators
that take over various functionalities. We describe the most important characteristics of these
operators bellow:

6.5.2.1. Source Selection

QUIS queries obtain data from data containers (line 6). Data containers are registered and
managed by adapters and provide access to persisted data in a format known to the respective
adapters. In addition to persistent data containers, QUIS incorporates a special kind of data
container called a variable. A variable is an immutable in-memory container that can be loaded
statically or by query results. It can be used as a normal data container by subsequent queries;
thus, it serves to provide a query chaining/partitioning mechanism. In addition, variables can
play the role of sub-queries and reduce the amount of data actually retrieved when shared among
queries.

Feature 7 (Query Chaining)}

Query chaining is a feature incorporated in QUIS that makes it possible to pass the result
set of a previously executed query to one or more other queries.

A QUIS query is able to access and combine (i.e., join or union) multiple data containers through
declared bindings. Data containers can belong to single/multiple bindings/connections; in addi-
tion, they can be homo/heterogeneous. The combination of variables and other data containers,
in any permutation, is also supported. More specifically, data can be obtained from a) a single
container determined by an associated binding, b) a variable that holds the result set of a pre-
viously executed statement, c) a static data defined inline within the query, and d) a combined
set of two containers of any combination, including other combined containers (1ine 7). In the
case of join, the join type, join keys, and the join operator between any keys are also determined
(1ine 10). The logic of union and join operations is that of relational tuple calculus. However,
in contrast to SQL, which matches the unioned column names to their order, we match by their
case-insensitive names.

6.5.2.2. Projection

The main and recommended vehicle for declaring a projection is to define and apply an ex-
plicit perspective, as specified by the projectionClause in 1ine 3. The projection clause itself
(1ine 4) provides two options for declaring a perspective for a query: 1) an explicit declaration
by referencing an already defined perspective and 2) defining the perspective inline with the

83

CHAPTER 6. QUERY DECLARATION

query. All inheritance and overriding rules apply, and an effective schema is associated with the
query. This shapes the schema of the query’s result set. The attributes of the effective perspective
are visible to the subsequent query features according to the query execution plan. If no explicit
perspective is declared, the query execution engine will infer and assign one by analyzing the
query’s container(s) or the actual data (see Section 7.2.3 (Schema Discovery)).

6.5.2.3. Selection

In QUIS, the selection clause (1ine 14) is designed to remove non-matching objects from the
result set. It is based on predicates that evaluate to true or false. These predicates can be con-
structed from logical, arithmetic, or combined expressions. The use of non-aggregate function
calls is also allowed. In addition to basic mathematical and logical operations, precedence, as-
sociativity, nesting, and call to functions are supported. All of the attributes of the ambient
effective perspective are available to the selection clause. Furthermore, the selection’s predicate
has access to the physical data items of the queried data containers. This cherry-picking tech-
nique assists in filtering data objects by the properties of the actual data that are not part of the
query’s perspective.

6.5.2.4. Ordering

The orderClause (line 15) sorts the query’s result sets. The clause begins with ORDER
BY followed by at least one sort specification, sortSpecification. Each sorting specification
consists of a sort key that refers to an attribute in the query’s schema, a sorting direction, and
the order of NULL values. When more than one sorting specifications are present, the result
set is first sorted by the left-most one, then, for data objects that are equal on that key, the next
specification is applied. The NULL values can be chosen to appear at the top or bottom.

6.5.2.5. Pagination

Pagination is a technique used to truncate the result set and return only one slice of it. It is
included in the grammar as limitClause (1ine 19), but it can accomplish offsetting as well.
The clause makes it possible to optionally skip over a non-negative number of data objects s and
then optionally take a non-negative number of data objects t. Omitting the SKIP means taking
a maximum of ¢ data objects from the beginning and omitting the TAKE means skipping the first
s data objects and returning the remaining. If there is only k > k < t data objects available,
the TAKE clause returns those available & objects.

84

6.5. QUIS LANGUAGE FEATURES

6.5.2.6. Grouping

Similarly to the related languages, the grouping clause (1ine 20) in QUIS’s grammar groups
the result set based on the provided attributes. Only the attributes of the effective perspective
are accessible to the grouping. However, grouping creates another perspective for the result
set, which is applied during query execution. Grouping is usually declared explicitly, but it is
possible for the effective perspective of the query to contain aggregates. The presence of the
aggregates leads the query engine to rewrite the query to an equivalent query with a grouping
clause based on the non-aggregate attributes of the perspective. Groups can be further filtered
by introducing a HAVING predicate. This predicate is as expressive as the selection’s predicate,
but it only has access to the attributes of the generated grouping perspective.

6.5.2.7. Target Selection

The target selection clause targetSelectionClause (1ine 21) specifies how query results
should be delivered to the requester. The requester can be either an end-user or a system. A
tool such as R system [R C13] may require the result in the form of a data frame!!, while an
SWMS may require the result set to be delivered in JSON format. A human user would normally
prefer a tabular presentation or a visualized form, such as a chart.

The target clause can route the result set of the query to different destinations. One common
option is presenting the result set in a tabular form according to its bound perspective. It is
also possible to persist the result set using a specified serialization format. The serialization
format is chosen from the list of formats supported by the registered adapters; JSSON and XML
are supported by default. Persisting the result sets allows queries to read from one or more
data containers and write to another; this way, QUIS can act as a bridge for data transformation
and system integration. Registering new and/or richer adapters provides a greater number of
supported serialization formats to the target selection clause.

Feature 8 (Polymorphic Query Result Presentation (PQRP))}

Query results can be presented to clients in many ways upon request.

In addition to the above-mentioned targets, QUIS presents result sets in visual forms: For exam-
ple, a user can request that a line chart be drawn from a query result set. This feature provides
users with agile feedback and allows them to rephrase their queries in order to achieve the opti-
mal result set.

Uhttp://www.r-tutor.com/r—introduction/data-frame

85

http://www.r-tutor.com/r-introduction/data-frame

CHAPTER 6. QUERY DECLARATION

Feature 9 (Visual Resultset Presentation)}

In QUIS, it is possible to present a query result set in visual form.

As expressed in (1ine 22), plots can draw single or multi-series line, bar, scatter, pie, and
geographical bubble charts. The types, features, and appearance of the charts are controlled by
the parameters declared in respective queries. QUIS’s default chart realization is performed by
its fallback adapter. Therefore, not only are the other adapters not required to realize this feature
but it is also guaranteed that the feature will always be available. The PQRP feature relies on the
overall system’s plug-in architecture; thus, it is a straightforward procedure to replace existing
visualizations or add new ones.

6.5.2.8. Data Processing

QUIS handles data transformation and processing by applying expressions to data objects. It re-
lies on its functions and aggregates, as well as arithmetic and logical operators. While functions
operate on single data values, aggregates are functions that obtain a collection of data values
and return single values. In addition, they are used in conjunction with the grouping opera-
tor. Functions have no side effects'? and are referentially transparent'>. QUIS includes a set of
built-in function packages that can operate on strings, numbers, and date and time, as well as
aggregate functions, such as average, sum, and count. More sophisticated aggregate functions
are grouped into the statistics package. Furthermore, QUIS also supports user-defined functions.
User-defined functions can be developed as function packages and can be imported into the sys-
tem by utilizing its plug-in architecture. It is also possible to override the built-in functions. The
transformations can be declared in perspectives, inline with queries’ projection phrases, or in the
expressions used in the selection and having clauses.

Feature 10 (Data Processing)}

QUIS provides an extensible mechanism for data processing with a comprehensive built-in
set of frequently used functions and aggregates.

The grammar of the expression is listed in Grammar Algorithm 6.10. Beyond the basic arith-
metic and logical operations, such as addition, multiplication, and comparison, its design allows
for both simple and nested function calls, negation, and user-defined functions.

12http ://en.wikipedia.org/wiki/Side_effect_ (computer_science)
Bhttp://en.wikipedia.org/wiki/Referential_transparency_ (computer_science)

86

http://en.wikipedia.org/wiki/Side_effect_(computer_science)
http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)

6.5. QUIS LANGUAGE FEATURES

Grammar 6.10 QUIS’s Expression Grammar.

expression ::= NEGATE expression | expression (MULT | DIV | MOD) expression
| expression (PLUS | MINUS) expression
| expression (AAND | AOR) expression
| expression (EQ | NOTEQ | GT | GTEQ | LT | LTEQ | LIKE) expression
expression IS NoT’(NULL | NUMBER | DATE | ALPHA | EMPTY)

I: | NOT expression

expression (AND | OR) expression

function

| LPAR expression RPAR

| value

| identifier
2. function = (identifier)" identifier LPAR argument* RPAR
3: argument = expression

The recursive nature of an expression is also reflected in its grammar. In the majority of the al-
ternatives the expression is formulated in terms of an operation on one or two other expressions.
For example, a function can accept any number of arguments, which are expressions. This en-
ables functions to accept scalar values, arithmetic or logical expressions, and other function calls
as input. The rules are matched from upper alternatives downwards and from the left to the right
in each alternative. Therefore, negation is designed to have higher precedence in comparison to
multiplication, which is in turn evaluated before division.

Combining all of the requirements, we have designed a grammar that offers a set of uniform and
expressive constructs for providing an abstraction layer over the actual data sources’ capabilities
and the underlying data processing techniques.

87

Query Transformation

Requirement 4 (Unified Syntax) implies that the system must offer its end users a unified query
language. In Chapter 6 (Query Declaration), we described the features, design, and syntax of
such a language. Requirement 5 (Unified Semantics) implies that all of the elements of input
queries must convey a unique meaning, even if the underlying data sources realize them differ-
ently. We satisfy this requirement through the use of query transformation, which is a set of
writing and rewriting techniques that generates from a given input query appropriate computa-
tion models tailored to run on designated data sources.

Query transformation should consider the syntactical and semantic differences between various
data sources. In join and union queries, the sides should be transformed according to their cor-
responding data sources. Additionally, as Requirement 1 (In-Situ Data Querying) demands that
data be queried in-situ, any query transformation effort should consider working on the original
data. Hence, the system must generate the target queries in such a manner that they access the
data without duplicating or loading it onto any intermediate medium. Transient transformations
intended to comply with input query or representation requirements, as well as internal data
integration must be performed in a manner that is transparent to users and client systems.

Although we address Requirement 6 (Unified Execution) in Chapter 8 (Query Execution), it has
an implication for query transformation that we consider here. The implication is that the result
set of an input query should be independent of both the actual data organization as well as the
functions available in the queried data sources.

As explained in Chapter 5 (Overview of the Solution), each input query is first transformed into
its internal representative DST. The DSTs are then passed on to chosen adapters to be trans-
formed into their target counterpart computation models. In this chapter, we first elaborate on
how queries are represented internally in Section 7.1. Thereafter, we explain the transformation
techniques used to build appropriate computational models for the input queries in Section 7.2.
These techniques transform a given input query into either a set of queries in the target data
sources’ languages or, when there is no query language available, into a set of operations on the
target data. Joins can combine these techniques and transform the input queries into a mixed
computation model. Section 7.3 is dedicated to techniques that detect and complement incon-
sistencies between the input queries and the capabilities of the designated data sources. The
proposed algorithms demonstrate that having a data source that satisfies a minimum set of re-
quired capabilities would be sufficient to ensure unified semantics and execution of input queries.

89

CHAPTER 7. QUERY TRANSFORMATION

In Section 7.4 we introduce and evaluate a set of optimization rules to demonstrate how, and to
what extent, the performance of input queries can be improved.

7.1 Query Plan Representation

Input queries undergo multiple processing phases when they are prepared to be transformed
into their target counterparts. At the heart of the preparation process, each submitted query is
validated by a parser and converted into a DST. Having prepared and registered the DSTs in
the process model, the query engine determines which adapters are responsible for transform-
ing each DST and assigns them to the corresponding query nodes in the process model. The
details of the adapter selection mechanism is described in Section 8.1.2; Figure 7.1 depicts the
assignment.

There are four queries, g1 — ¢4, which use three adapters, a1, as, and a,,. While ¢q1 and ¢2
are transformed by a; and as, respectively, a,, is assigned to both the g3 and g4 queries. The
figure also shows a data dependency between queries: g3 depends upon ¢z and g4 upon ¢;. This
dependency indicates that the dependent queries g3 and g4 (partially) obtain their data from the
q2 and g queries.

(Iy ai

ONCRC

Figure 7.1.: A sample instance diagram of an ASG with adapters assigned to queries. ¢ — gy
are the queries. a; and as are the adapters responsible for transforming ¢; and g2,
respectively. a,, is the adapter responsible for q3 and g4. The g4 and g3 queries are
data dependent upon ¢; and g9, respectively.

Assume we have a simple query, as in Listing 7.1 that retrieves from a database a limited number
of student records that match a set of criteria and then sorts them.

90

7.1. QUERY PLAN REPRESENTATION

Listing 7.1 A QUIS query that retrieves a maximum of 10 student records whose last names
contain ‘Ch’ from a database and orders them by the last name.

i PERSPECTIVE student {

2 ATTRIBUTE FirstName:String MapTo: student_Name,
ATTRIBUTE LastName:String MapTo: student_lastName

4 ATTRIBUTE Gender:Integer MapTo: student_gender

2

7 CONNECTION ds ADAPTER=DBMS SOURCE_URI='' PARAMETERS=server:
localhost, database:edu, user:userl, password:passl
s BIND occ CONNECTION=ds SCOPE=Students VERSION=Latest

10 SELECT

11 USING PERSPECTIVE student

» FROM occ.0

3 INTO result

1+ WHERE (str.indexof ('Ch', LastName) >= 0)
5 ORDER BY LastName DESC

1o LIMIT TAKE 10

Figure 7.2 represents the process model of the query depicted in Listing 7.1. In this figure, the
q1 node represents the query itself. The children are the top-level query features such as the
selection, projection, and ordering clauses. The query node is linked to the process model pm.
This linkage is used for building dependency on/from other queries. The nodes representing
query features are described at various transformation phases, mostly during the syntax and
semantic analyses. The type of information gathered varies from feature to feature; for example,
the pagination feature (LIMIT clause) requires the number of records to skip over and/or to take,
while the ordering clause needs a list of (sort key, sort direction, null ordering) tuples.

selection projection
limat e source
order target

Figure 7.2.: A query ¢l is represented as a node in the ASG graph, rooted at pm. The query
features are modeled as nodes associated to the query node ¢1.

During the semantic analysis, queries are examined for their data sources. Each query retrieves
data from one or more data containers and directs its result into a target, which can also be a

91

CHAPTER 7. QUERY TRANSFORMATION

data container. The queries use bindings to access data containers; hence, the semantic analyzer
checks the existence and the correctness of the bindings and their associated connections. If
valid, the bindings are linked to the query nodes in the corresponding DSTs. A pair of queries
that are chained to share a binding is depicted in Listing 7.2. Figure 7.3 illustrates two queries,
q1 and ¢o, that use the bindings b; and b, as their data sources; the binding b is shared between
the two. Bindings provide access to multiple data containers; therefore, g5 is able to retrieve data
from one container and store it in another.

Listing 7.2 Two chained QUIS queries that share a binding to retrieve and store data.

i PERSPECTIVE student/{

2 ATTRIBUTE FirstName:String MapTo: student_Name,
ATTRIBUTE LastName:String MapTo: student_lastName

4 ATTRIBUTE Gender:Integer MapTo: student_gender

CONNECTION ds ADAPTER=DBMS SOURCE_URI='' PARAMETERS=server:
localhost, database:edu, user:userl, password:passl
s BIND bl CONNECTION=ds SCOPE=Students VERSION=Latest

10 CONNECTION csvCnn ADAPTER=CSV SOURCE_URI='/home/data'
PARAMETERS=delimiter:tab, fileExtension:csv,
firstRowIsHeader:true

11 BIND b2 CONNECTION=csvCnn SCOPE=students, searchResult
VERSION=Latest

3 SELECT

1+ USING PERSPECTIVE student
s FROM bl.0

16 INTO b2.0

7 LIMIT SKIP 100 TAKE 1000

19 SELECT

20 USING PERSPECTIVE student

1 FROM b2.0

» INTO b2.1

3 WHERE (str.indexof ('Ch', Last) >= 0)

7.2 Query Transformation Techniques

The role of query transformation is to build an optimized executable version of a given input
query. In RDBMSs, query transformation is mainly employed by an optimizer to rewrite queries

92

7.2. QUERY TRANSFORMATION TECHNIQUES

by
I projection
source | =
selection
ERSONONG
source
target P
IR o] target
< b, -

Figure 7.3.: The ASG of the two queries that share a binding (as in Listing 7.2). ¢; retrieves
data from b; and writes into bo; g2 reads the data written by ¢, filters the data, and
inserts the result into b2. However, g2 operates on different containers for reading
and writing.

in order to reduce their execution time, the number of records touched, or both [Cha98]. In
FDBMSs, there is one phase of transformation that must be performed before optimization can
be even considered. This first phase of query transformation translates the input query to an
equivalent set of queries written in the language of the component databases. In QUIS, the
heterogeneity of the component data sources is broader than is usually than the case in FDBMSs.
QUIS’s data sources can vary from bare CSV files to feature-rich RDBMSs or graph databases
that are equipped with their own query languages.

The broad variety and openness of data sources leads to a multitude of challenges within the
scope of transformation. The first challenge is that the target data sources are likely to use
different query languages, which makes query transformation more complex. Transforming
joins, nested queries, and nested joins introduce even greater complexity. The second challenge
is that not all data sources have query languages; For example, CSV files have no access utility,
Excel files are equipped with APIs, and online data sources are accessible through Web Services
(WSs). This class of weak data sources [TRV98] requires the input query to be transformed into
a set of operations written in a programming language that calls either their APIs or accesses the
data directly. The third challenge is that different data sources demonstrate different levels of
functionality, meaning that a data source may not be able to satisfy a subset of features requested
by a query, while another data source may demonstrate lack of support for another subset.

In the following sections, we elaborate upon these challenges and explain our proposed solu-
tions. We begin by transforming QUIS queries into other query languages in Section 7.2.1. We
explore our approach to the transformation for weak data sources by suggesting appropriate com-
putation models in Section 7.2.2. In Section 7.2.3 we explain the our approach to schemas and
schema discovery. Thereafter, in Section 7.2.4 we describe how data types are handled during
query transformation. Our solution for overcoming functional heterogeneities in the capabilities
of data sources is described in Section 7.3. Finally, in Section 7.4 we introduce our optimization
techniques and discuss their effectiveness.

93

CHAPTER 7. QUERY TRANSFORMATION

7.2.1. Query to Query Transformation

Assume F(L) yields the feature set (or operators) of language L and F'(gq;) is the set of features
of language [required by query q. We define F'(Ls) = {f1, f2, ..., fn} as the features provided
by QUIS’s language. Presuming g is a query in L that requires F'(qs) = {fa, fv, ..., [x} fea-
tures, our goal is to transform query g; to its equivalent in language Lq4. L, provides

F(Lg) = {di,da, ..., d,} features through a selected adapter a € {a1, az, ..., ap}. We want to
have the following:

Vs € Ls,3qqa € Lg 3 qq = ta(gs)

Here, t is the transformation function implemented by adapter a. Because each adapter receives
only that sub-query (DST) which it can transform (see Section 7.3), ¢ is guaranteed to be able
to generate a transformation of ¢; hence, a function ¢ exists. The transformation function does
indeed transform two elements of the source query, namely the features and the order. The
declarative nature of the language relaxes the transformation techniques to preserve the result
set equivalence only. This means that the order of execution remains flexible and can be decided
upon at execution phase. According to Equation (7.1), adapter a is guaranteed to have individual
transformations for the features requested by ¢s; therefore, for each feature f; in query g, there is
a feature transformer ¢,, in adapter a that, when applied, generates the features equivalent g, e

VfiGQSazltai GCLBQdfi :t(ll(fl)

Function ¢,, utilizes the available features of the target language F'(Lg) = {d1,ds,...,dm} to
conduct the transformation. The overall transformation ¢ would be a substitution of the partial
transformations:

qa = to(q) = substitute(f;, to,(fi) | Vfi € F(gs))

The substitution function does not need to preserve the order of the features of the input query.
The feature transformers ¢,, are realized by utilizing templates and data transformation func-
tions. The templates are used to convert the syntax of the input feature(s) to the appropriate
syntax of the target language. Data transformation functions are used for data type consoli-
dation, expression evaluation, and query projection building. For example, for the selection
predicate math.abs(credit) > 2400 AN D math.min(score, udf.score(balance)) > 4, the
selection feature transformer will not only substitute the mathematical functions used but may
also rewrite the expression’s evaluation tree, e.g., in order to simplify or reorder its evaluation.

The query transformer has access to the source query’s DST node, which contains detailed
information concerning the query and each of its features. For example, the transformer can trace
a container identifier to its name in the related binding and then to its connection. In this manner,
it can translate the container’s name to, e.g., a relational table name. Or, as another example,
the transformer tracks an attribute att; referred to by the query’s predicate to its definition in

94

7.2. QUERY TRANSFORMATION TECHNIQUES

perspective p; and obtains its mapping expression exp;. Attribute att; is then substituted with
expi, possibly after the expression itself has been transformed. The aggregate and non-aggregate
functions used in such expressions are also transformed into their native counterparts.

The final transformed query ¢, is embedded in a job that acts as an execution context for the
query. The job consists of the operations required to establish a connection to the designated
data source, to execute the transformed query, to format the result set, and to handle errors. This
job is then submitted, as a unit of execution, to the Query Execution Engine (QEE) for further
processing, compilation, and execution.

7.2.2. Query to Operation Transformation

Weak data sources are those that generally lack data management and/or access capabilities.
Usually, they do no feature a declarative language that can be used to query their managed data.
They also suffer from a lack of feature-rich or standardized APIs. In cases such as CSV and
JSON, the data is provided as is, and it is the responsibility of users or tools to access and query
it. The remote data behind WSs can also fall into this category.

Assume O(ds) = {01, 02, ..., 0, } yields the set of operations available in a non-declarative data
source ds. Each operation o; is an atomic unit of work to be performed on the data; it can be
a row scan, a value parse, or a string manipulation operation. The ds data source is said to be
weak regarding query ¢s, if 3 ¢s € Ls, 3 ta(gs) = (0. Additionally, O(ds) = () is considerable.
We want to transform query ¢, to its equivalent sequence of operations in Oy through adapter
a. We declare the following:

Vgs € Ls, 3p 3 p = ta(qs)

Here, ¢ is the transformation function implemented by adapter a. It builds a procedure p that is
result-equivalent to query ¢s, so that p = (01,09, ..,0r | 0; € O(ds)) is an ordered sequence
of operations in the ds data source. Transformer ¢ consists of individual transformations for the
features requested by the query. Therefore:

vfiGQSazltai eaapfi:tai(fi)

In which ¢, is a function that transforms the input feature f; to a procedure py, using the oper-
ations available in Og,. The overall transformation ¢ would be a second-level sequence of the
procedures generated for each feature:

P =talg) = sequence(ta,(f:) | Vf: € F(3s))
p = ta(q) = sequence(py,)

95

CHAPTER 7. QUERY TRANSFORMATION

Once again, the sequencing function sequence does not need to preserve the order of features in
the input query; rather it decides on the order of the procedures based on the overall optimization
rules and the adapter’s preferences.

7.2.3. Schema Discovery

Each query must have a perspective that shapes its result set. Perspectives can be declared in
various ways. We use schema discovery to identify, consolidate, and assign a perspective to
a query. QUIS’s schema-discovery process checks the following sources in order to identify a
perspective:

1. Explicit perspectives: Each query can declare its perspective. Such an explicit perspective
should have been defined in advance. The benefit of explicit perspective declaration is its
potential reusability among other queries;

2. Inline perspectives: If a perspective is not designed or intended for reuse, it can be declared
alongside the containing query as part of the query’s projection clause. Inline attributes
cannot declare explicit data types; the data types are inferred from the expressions that the
inline attributes are built upon. However, an inline perspective attribute is able to reuse an
attribute from an already existing explicit perspective;

3. Implicit perspectives: When a query operates on the result set of another query without al-
tering its schema, it can implicitly inherit its perspective. This scenario is mostly designed
for query chaining that applies a series of different selections, paging, and/or sorting; and

4. Inferred perspectives: If a query does not declare or inherit a perspective, the schema of its
underlying data container will be assumed. This scenario is used in agile queries that do
not require ETL operations, as well as for schema extraction when the actual data schema
is unknown to the user.

When the perspective(s) of a query are identified, we apply any of the following cases to derive
an effective perspective for the query. Consolidation occurs in the following cases:

1. Perspective inheritance: In QUIS, perspectives can inherit from each other using the
single-parent inheritance paradigm. Therefore, if a perspective child has extended an-
other perspective parent, we build a union of their attributes;

2. Attribute overriding: If a child perspective declares an attribute with a name that is present
in one of its descendants, we override the attribute in favor of the child. Overriding,
maintains the forward and reverse mappings as well as the data type of the child and
removes the inherited counterparts; and

3. Perspective merging: In case of compositional queries, e.g., join and union, we merge the
attributes of the sides into a new perspective. Name conflicts will be solved by prefixing
the attributes’ names.

96

7.3. QUERY COMPLEMENTING

The consolidated perspective is assigned to the query as its effective (runtime) schema. The
result set of the query is structured with reference to the effective schema. The schema-discovery
process begins with the parsing, but it can be deferred to the transformation phase if it needs to
be performed by accessing the data source’s actual schema.

7.2.4. Transforming Data Types

At the end of the semantic analysis, each query is bound to a perspective, either explicit or
implicit. As shown in Grammar 6.7 each attribute has a virtual data type that can be declared
explicitly or inferred from the query’s underlying data source. QUIS supports Boolean, byte, in-
teger, long, real, date, and string data types. When data types are not explicitly declared, QUIS
attempts to infer them from their context: It first looks up the schema of underlying data; there-
after, it attempts to extract the type from the expressions that the attribute is used in. QUIS also
examines the aggregate and non-aggregate function parameters and return types, as well as the
arithmetic and logic operators that are applied to the attributes. In any case, the attributes’ data
types must be known during the transformation phase. This is because the transformers need to
build casting and/or converting transformations from virtual data types to concrete counterparts,
in addition to reformatting query results in order to comply with the original query’s data types.

Each adapter is required to provide a two-way mapping table that translates each of the virtual
data types to its corresponding concrete type. If an adapter supports more than one dialect,
it should provide a table for each of the dialects. The tables additionally indicate whether a
conversion method or a casting should be applied. This adapter- (and dialect-) specific table is
used by the data type transformer sub-routine to apply the appropriate templates and/or functions
onto the referenced data items of the target query as well as its projection operator.

7.3 Query Complementing

One of our fundamental goals was to address the problem of data access heterogeneity. Data
sources vary in their capabilities, which contribute to data access heterogeneity. The capabilities
of interest may not be equally available on all data sources; for example, selection is not available
via spreadsheet system APIs, sorting is not an out-of-the-box feature of MapReduce systems,
and the domain-specific aggregates used in scientific research may not be of interest for general
purpose tools and hence may not be available. Our core solution for dealing with heterogeneity
was federation. In addition, because of our focus on in-situ querying, we shifted from database-
centric solutions to data-querying systems. In order to address functional heterogeneity and
maintain our language’s unifiedness, we incorporate query complementing.

Query complementing is a technique used to transparently detect and compensate for the fea-
tures that a chosen adapter may lack when executing a given query. It consists of two phases,
namely capability negotiation and query rewriting. Capability negotiation enumerates all of the
capabilities announced by the available adapters and matches them against the requirements of

97

CHAPTER 7. QUERY TRANSFORMATION

@ o
® ©©
o @ as

Figure 7.4.: The query ¢ is not fully satisfied by the capabilities of its associated adapter, a;.
Hence, a complementing query is built. The right-hand side figure depicts the ASG
after complementing is performed, in that g is broken into g, and gy to be executed
on the original adapter a; and the fallback adapter ay, respectively. The comple-
menting query gy depends upon the rewritten version of the original query, g,.

the input query in order to nominate an adapter that provides the best possible coverage (see Sec-
tion 8.1.2). The query rewriter breaks the input query down into a partial query that can be run
on the selected adapter plus into another complementing query comprised of the rest of the input
query that can be run on a special adapter, namely the fallback adapter. The query rewriter addi-
tionally binds these two together so that their sequential execution produces the expected result
set of the original input query.

Figure 7.4 depicts a query ¢ that has been chosen (by the adapter selection algorithm) to be
executed on adapter a;. Assume that ¢ requires features R = { f1, fo, f3, f4} but a; only exposes
capabilities C' = { f1, f4}; therefore, the query must be complemented. This results the fallback
adapter being engaged to accept R \ C' = { fa, f3} features and to leave only RN C' = {f1, f4}
to a1. The right-hand side of the figure shows that g is broken down into g, and ¢ in order to be
executed on the original adapter a; and the fallback adapter a r, respectively. The directed-arrow
from gy towards ¢, indicates that the complementing query ¢, depends upon g,.

,—[Feature 11 (Query Complementing)} N

If there are mismatches between the query requirements and the capabilities of the winning
adapter, the query transformer rewrites the original query to whatever the chosen adapter is
able to perform and introduces a complementing query to be executed internally.

The query complementing technique is shown in Algorithm 7.1. The chosen adapter adapter
accepts R N C' query features only; hence, the algorithm builds a partial DST dst, for the

98

7.3. QUERY COMPLEMENTING

features that it supports (1ine 8). The algorithm additionally builds a new DST dst; on the
fallback adapter fallback to fulfill the missing R \ C query features (1line 9). The build
function accepts a set of query features and builds a DST out of it. The dsty DST is declared
to be dependent upon dst,. This dependency directs the execution engine to first run dst, and
to pass its result to dst y. The result set of the original input query is then obtained by executing
the dst f DST.

Algorithm 7.1 Query Complementing

Input: An input sub-/query in the form of a D.ST node and an adapter adapter.

Output: Two complementing queries dst, and dsty that together satisfy the requirements of
dst.

1: function COMPLEMENT(dst, adapter)
2 R < enumerateRequirements(dst)
3 C <+ enumerateCapabilities(adapter)
4 if (R\ C =0) then
5: return dst
6 end if

7 fallback < fallbackAdapter()

8 dstq < build(RN C)

9: dsty < build(R \ C)

10: processModel.add(dst,)

11: processModel.addDependency(dst s, dst,)
12: return dst

13: end function

It is worth mentioning that, during later steps of the execution flow, the adapter and fallback
adapters transform their built queries dst, and dst; into their relevant computation models.
For example, the chosen adapter may transform dst, into a relational query, while the fallback
adapter generates an imperative function to satisfy the operators delegated to it. The rewritten
and newly generated queries are added to the process model alongside the dependency.

One of the scenarios in which query complementing is very helpful is in queries that perform
join operations on heterogeneous data sources. It is a common case that none of the data sources
of the sides of the join operation ingest and operate on the data obtained from the other side. In
addition, due to the diversity in terms of the capabilities of data sources, we may often be limited
in the choice of join algorithms available to us. Our solution is to use the query complementing
technique to rewrite such heterogeneous joins and develop a basic join algorithm that can per-
form adequately even with data sources that have limited capabilities and then to potentially add
more efficient join methods where data sources can support them.

QUIS compares both sides of joins to determine whether they are accessing heterogeneous data
sources. If this proves to be the case, it breaks the original query down into a left-deep join
tree in which the leaf nodes are the data access nodes and all of the upper level nodes are the

99

CHAPTER 7. QUERY TRANSFORMATION

Figure 7.5.: The query q is a join of two heterogeneous data sources; each should be transformed
and executed by its associated adapter, a; and as, respectively. The query is rewrit-
ten as two standalone side queries, ¢; and ¢, plus a composition query join that
performs the join on the results of the two side queries.

joins. It then transforms the leaf nodes into standalone queries tailored to retrieve data from their
corresponding data sources. The engine also creates a compositional query for each join node
in the tree, meaning that the composition query accepts the result sets of the two sides, performs
the requested join operation, and bubbles the result up the tree.

Figure 7.5 shows a query ¢ that performs a join operation on two heterogeneous data sources.
The adapter selection algorithm has assigned two adapters a; and as to it, meaning that each data
source will be accessed via one of the adapters. Assume that none of the assigned adapters have
capabilities required for the requested join operation: The QEE activates the complementing
algorithm to i) rewrite the original query into two sub-queries that each access one of the data
sources via the assigned adapters and ii) to factor out the join operation and substitute it with a
complementing query to be run on the fallback adapter. The resulting process model shows that
the join’s left-hand side ¢; will be executed on ay, the join’s right-hand side ¢, will be executed
on ag, and the join query utilizes ay for execution. The directed arrows from join towards g
and ¢, indicate that the complementing query join depends upon ¢; and ¢, and therefore waits
for their result sets to be ready before performing its job.

The standalone side queries undergo the same query-complementing phase and may be further
break down accordingly. Figure 7.6 shows a query ¢ that is similar to that featured in Figure 7.5.
However, in addition to the join operation, g uses a sorting operator on both of the data sources,
which is a feature that none of the assigned adapters have matching capabilities for. The QEE
rewrites the query as described in the example provided in Figure 7.5. As the preparing algorithm
recursively attempts to detect and complement the lacking features, it recognizes the lack of
sorting operation on both sides. It therefore initiates a second round of query complementing,
this time once for ¢; and once for g,. In plain text, ¢;, and g,, sort the result sets of ¢; and
gr, respectively. They feed the sorted partial results into the join, which in turn performs the
requested join operation and yields the final result set. The resulting process model shows the

100

7.4. QUERY OPTIMIZATION

Figure 7.6.: The query ¢ is a join of two heterogeneous data sources; each should be transformed
and executed by its associated adapter, a1 and as, respectively. The query is rewrit-
ten as two standalone side queries ¢; and g, plus a joining query, join. However,
the nominated adapters do not satisfy the capabilities required by the side queries;
hence, two complementing queries g;, and ¢, are constructed for the sides. The
right-hand side figure depicts the ASG after the joining and complementing have
been performed.

join’s left-hand side q;.., g, and join are assigned to the fallback adapter ay for execution. The
dependencies also control the execution and result set flow.

Using this technique, QUIS is able to run join queries on any combination of RDBMS, Excel
sheets, CSV files, and previously fetched result sets. Homogeneous joins are easier to manage,
as both their sides use the same data source or adapter. The query engine does not split the sides;
instead, the entire join clause is shipped to the designated adapter for transformation.

7.4 Query Optimization

In the preceding sections, utilizing transformation techniques, we demonstrated how we can
effectively manage data access heterogeneity through query virtualization. The result is a system
in which users are able to include data from remote data sources in complex queries with very
little work. However, such a system will not be used if it demonstrates poor performance. In
this section, we describe how QUIS satisfies this requirement. The systemic challenge is query
optimization over heterogeneous data sources that often demonstrate unpredictable performance
and possess unknown statistics [DES™15].

QUIS is intended to support exploratory research in environments that feature volatile data, in
which very limited auxiliary data is available to the engine; therefore, query optimization must
often be performed in a zero-knowledge environment. This absence of cost and size information
limits us to rule-based optimizations; we use the federated structure of the system to address this
dilemma. Query planning can be performed at three levels, namely the query engine, the adapter,

101

CHAPTER 7. QUERY TRANSFORMATION

and the data source. While the query engine uses rule-based optimizations, the adapters and data
sources may perform cost-based re-optimizations to the extent that they have access to auxiliary
data for their sub-queries. For example, an RDBMS data source obviously performs its own
(traditional) optimization before executing a query shipped to it [Cha98]. More interestingly,
adapters can optimize queries by utilizing the cost factors measured at the time transformation,
e.g., file size, record size, or historical and/or statistical data.

7.4.1. Optimization Rules

Assuming that a query ¢ operates on a data container D so that | D| is the cardinality of D, Ap is
the set of attributes of D, A,p = {ala € ¢(D)} is the set of attributes of D requested by ¢, and
X (Agp) = {ala € g,(D)} is the set of attributes of D requested by operator X of query q. X
is either one of the projection(r), selection(o), join(<), grouping(€2), or ordering(O) operators.
We define f;p = |Aqp|/ |Ap]| as the fraction of the attributes of D retrieved by ¢ and selectivity
ratio sy p to be the selectivity% normalized to 0 < s,p < 1.

7.4.1.1. Selective Materialization

If the projection clause of a query statement requests a subset of the attributes of a dataset, the
query plan loads only the union of the attributes declared by the projection, selection, join, or-
dering, and grouping clauses. Assuming A,p C Ap, the query plan materializes A,p attributes
only.

This improves the query performance by a factor proportional to (1 — f,p) * | D|. It also reduces
the memory footprint by the same factor, as it avoids materializing unnecessary attributes. In
column-based data stores, this rule prevents the query executer from touching non-requested
columns. These savings have a greater impact while processing file-based data containers, where
obtaining a tuple includes expensive operations such as file reading, string parsing, tokenization,
type conversion, and object materialization.

7.4.1.2. Lazy Materialization

Lazy materialization is a technique that is applicable to queries that have a WHERE clause. This
rule causes the optimizer to derive the attributes referred to by the WHERE clause’s predicate
and rewrite the query in such a fashion that, at the time of execution, only those attributes
are materialized. In other words, assuming A.rs = 0(Ayp), the query plan tests the query’s
predicate on A.s¢ only. It materializes the rest of the attributes, {A,p \ Acsr}, only if the
test passed; otherwise, the [{A,p \ Acsy}] attributes of the examined record are left untouched.
Other rules, such as selective materialization (Section 7.4.1.1), can then be applied. The total
performance gain would be proportional to (1 — (|Aers|/|Agp])) * (1 — sqp) * | D|.

102

7.4. QUERY OPTIMIZATION

7.4.1.3. Push-Ahead Selection

In an inner join, if a selection is present and its predicate refers to the attributes of the schema of
the join’s outer side only, it is possible to evaluate the predicate using the loaded outer records in
order to generate a more efficient query plan [AK98]. Therefore, in R >3 S, iff 0(Ay(rss)) C
Ap holds, then instead of o(R < S), o(R) < S is computed [AK98]. This avoids the need
to access the records of S for those records of R that the predicate evaluates to false. The total
reduction in the query execution cost would be: ((1— fqr)*(1—sqr)*|R|)+((1—s4r)*| R|*|S]).
The first part of the formula is similar to performance gain obtained by the application of the lazy
materialization rule (Section 7.4.1.2). The second part of the formula is obtained by skipping
the inner relation for the outer records with the failed predicate. As selection, if present, must be
performed in any case, pushing it ahead of the join operation does not increase the query cost; it
only changes the order of execution.

7.4.1.4. Eager Join Key Materialization

If a query contains a join R b S, it is possible to evaluate the join condition first. This requires
materializing A; =< (Ag(rwg)) attributes only, which is JoinKey(R) U JoinKey(S), ex-
cluding those attributes already materialized for the WHERE clause by other rules. If the join
condition fails, the right-hand side record can be safely ignored, and (depending on the join
type) no resulting record needs to be materialized. The total performance gain of this rule is
(1= f) * (1 = sq(Reas)) * [R > S], in which f = [A;|/(|A4r| + [Ags]). Instead of union, + is
used to indicate that R and S have no join key in common. If present, the push-ahead selection
rule (Section 7.4.1.3) may apply before this rule in order to reduce the cardinality of the sides.

7.4.1.5. Running Aggregate Computation

Aggregate functions use the running mechanism aggn+1 = f(aggn,value,i1) to calculate
values. Instead of requiring and waiting for all of the inputs to arrive, they simply compute
the next running values on the data items as they arrive and maintain an internal state of the
computation performed. The state is then updated upon the arrival of new input items. At any
given time, the state object will hold the correct value. For example, the running version of the
average function can be formulated as avg,+1 = (avgp*n+value,+1)/(n+1). Implementation
of the state object can be done using either (avg, and n) or (sum,, and n). This technique
relieves the aggregate functions of the need to keep track of all input records and reduces the
memory footprint dramatically, especially for large datasets and multi-aggregate queries.

7.4.1.6. Join Ordering

Joins are associative and commutative [Cha98], which gives us the liberty to reorder them. A
proper join order can dramatically affect the overall performance of a query. In non-DBMS

103

CHAPTER 7. QUERY TRANSFORMATION

data sources, specifically in file-based data sources, there is no easy way to calculate query
cost, as it heavily relies on the estimation of the number of tuples passing through the query
operations. A raw estimation of the number of tuples can be obtained by dividing the file
size by the tuple size. A realistic estimation of the tuple size can be obtained from the tuple
schema. Thus, the file size divided by the schema size yields an estimation of the number of
tuples, which can be used to decide whether to retain or swap the join order. In heterogeneous
file-based joins, it is better to have the larger data container in the inner side in order to re-
duce the number of file open and/or file seek operations. If a swap is required but is not
performed, the cost would be max(n, m) * (cost(min(file open, file seek))); otherwise it
reduces to min(n, m) x (cost(min(file open, file seek))). Thus, the total gain is proportional
to max(n,m) — min(n, m), hence to abs(n — m).

7.4.1.7. Weighted Short-Circuit Evaluation

The conventional minimal expression evaluation method evaluates functions and/or operators
from left to right, considering precedence, and returns the evaluation result as early as it is
determined. By assigning a cost factor to functions and operators and building a weighted eval-
uation tree, it is possible to calculate the cost of each evaluation path and evaluate the cheaper
paths earlier. This improves the overall performance of expression evaluation by determin-
ing the expression’s value through evaluating the cheapest paths. For example, in expression
(f1 A f2) 5 cost(f1) > cost(f2), the conventional evaluation would call the f1 first and, if
necessary, f2 thereafter. Building the weighted evaluation tree allows the f2 to be called first
in order to reduce the overall expression evaluation cost. The weight of each function/operation
is proportional to its required CPU time and is preserved as part of its metadata; adapters can
override the weights if needed. QUIS uses an experimental weighting scheme to measure the
effectiveness of this rule.

7.4.1.8. Right Outer Join Equivalence

Right outer joins are transformed to their left outer join counterparts [RG00] by swapping the
left and right data containers. For example, (A RIGHT OUTER JOIN B) can be transformed
to its equivalent (B LEFT OUTER JOIN A).

This is not a standalone optimization, but it makes it possible to apply other rules. For exam-
ple, when swapped, the optimizer checks the application of the push-ahead selection rule (Sec-
tion 7.4.1.3), eager join key materialization (Section 7.4.1.4), and join ordering (Section 7.4.1.6)
in order to further optimize the query.

7.4.1.9. Result set Bubbling

RDBMSs execute optimized query plan that are represented as an operation tree. The execution
begins with the leaves, which access data (records and/or indexes) and pass the resulting relations

104

7.4. QUERY OPTIMIZATION

to their corresponding upper operation nodes in the tree. As operations accept zero or more
relations and return a single relation, a set of temporary relations are built during the query
execution process in order to retain the intermediate results. Query optimizers attempt to reduce
this cost by maximizing the utilization of the pipelined evaluation [RG00].

QUIS also, constructs a pipeline representation of the query tree. However, it uses the result
set schema to build and compile tailored concrete operators on-the-fly in order to minimize the
need for inter-operator data transformation and/or temporary memory allocation. It also builds
a tuple structure based on the effective perspective of the input query. These dynamically built
operators are executed at runtime against the data source(s) and build and materialize matching
tuples. Therefore, all of the operators are able to operate on a single result set that bubbles
through the operation tree. The result set is eventually populated. This mitigates the need to
maintain multiple intermediate relations and perform merging at upper level nodes. The rule
does not apply in some cases, e.g., when both ordering and limiting clauses are present.

7.4.2. Optimization Effectiveness

In order to gauge the effectiveness of our optimization rules, we conducted a set of comparative
experiments, switching on and off the rules and measuring the elapsed times (for more details,
see Chapter 11). The queries were executed on the FNO and SMV datasets (see Section 11.1.1).
Table 7.1 summarizes the results.

Rule Average | Maximum
Selective Materialization 47% 70%
Lazy Materialization 14% 29%
Push Ahead Selection 26% 51%
Eager Join Key Materialization 22% 43%
Weighted Short-Circuit Evaluation 18% 18%

Table 7.1.: Effectiveness of the optimization rules. The values indicate the performance gained
by enabling the rules.

The selective materialization rule improved the query time by an average of 47% at different pro-
jection ratios and up to a maximum of 70% at a projection ratio of 5%. The lazy materialization
rule resulted in a 14% performance gain on average when the selection predicate accessed 2.5%
of the dataset’s attributes. Its greatest improvement was 29%, which was obtained at 0% selectiv-
ity. Enabling the push-ahead selection rule on the SM'V dataset with a projection ratio of 20% re-
sulted in an average performance gain of 26%. The greatest impact, of approximately 51%, was
obtained at a selectivity of 0%. The impact of the eager join key materialization rule was 22%
on average and 43% at maximum. Its overall behavior was similar to that of the push-ahead se-
lection rule, as join keys performed similarly to pushed ahead attributes. Applying the weighted
short-circuit evaluation rule on a query with a predicate (f1(z) A f2(x)) 2 w(f1) = 5w(f2)
boosted performance by approximately 18% at all selectivity levels.

105

Query Execution

Query execution, although focused on the execution of input queries, manages all aspects of
queries’ life-cycles. The life-cycle begins by parsing the input queries, continues with building
the DSTs, selecting adapters, complementing the queries if needed, and finishes by executing
the queries and returning the result sets to the client in an appropriate format. These tasks are
managed and orchestrated by a Query Execution Engine (QEE).

In brief, the QEE first compiles a given input query to a DST (Section 8.1.1) and then selects
the appropriate adapter(s) responsible for the transformation and execution of the DST (Sec-
tion 8.1.2). Query complementing (see Section 7.3) is also performed in this step. When the
DST is transformed, its transformed computation model(s) is compiled to the executed jobs
(Section 8.1.3). The executed jobs are submitted to the adapters for execution, and their results
are formatted according to the input query requirements (Section 8.1.4).

Although the QEE realizes the workflow, not all of the steps involved are necessarily parts of
the QEE. For example, adapters, as an important part of QUIS in that they provide the majority
of the transformation and execution services, are not part of the engine. However, they are
integrated, and interact, with the engine. We explain the specification of adapters in Section 8.2.
Furthermore, complementing and compositional queries are executed on the fallback adapter.

8.1 The Query Execution Engine

As the depiction of our system architecture in Figure 5.1 shows, the QEE is activated by the
runtime system upon the submission of one or more queries by a client through the APIs. The
QEE’s workflow is defined in Algorithm 8.1: It consists of four classes of tasks, namely prepa-
ration, transformation, compilation, and execution. Among these classes, we discussed DST
construction and transformation in Chapter 7. We detail the other classes in this section, after
describing the execution flow algorithm.

Lines 3 to 6 of Figure 5.1 list the preparation tasks: The input process, which consists of all
of the submitted queries, is parsed and converted into a set of Described Syntax Trees (DSTs)
(Definition 5.1). These DSTs are added as the nodes of an ASG Annotated Syntax Graph (ASG)
(Definition 5.2). The ASG acts as the intermediary contract between the language, the QEE, and

107

CHAPTER 8. QUERY EXECUTION

Algorithm 8.1 Query Execution Flow

Input: A set of input queries queries.
Output: The result sets of queries, maximum one result per query.

1: processModel < newASG()
2: function EXECUTE(queries)

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

D A

for query € queries do
dst < parse(q)
prepare(dst)
end for
for dst € processModel do
optimize(dst)
dst.trans formation < trans form(dst, dst.adapter)
end for
compile(processModel)
assignGeneration(processModel)
for dst € processModel.generations.ordered(ASC) do
parallel dst.result <— dst.job.execute()
end for
for dst € processModel do
if isRoot(dst) then
return present(dst.result)
end if
end for

21: end function

108

8.1. THE QUERY EXECUTION ENGINE

the adapters. The parser detects data flow between queries and creates inter-query dependency
links among the DSTs in the ASG. This dependency information is used during transformation
and execution. The preparation routine (see Section 8.1.1) selects a (set of) adapter(s) that best
fit the query requirements (see Section 8.1.2), decomposes the DSTs of each of the queries, and
determines whether complementing is required (see Section 7.3).

In the transformation block (1ines 7 — 10), the QEE calls on the optimizer to apply the relevant
optimization rules to each of the DSTs (see Section 7.4). It then ships the optimized queries
to the designated adapters and requests them to transform the queries into their corresponding
native computation models (see Chapter 7 (Query Transformation)).

The end of the transformation signals the QEE to begin the compilation process (1ines 11—12).
Compilation is the process of wrapping the transformed queries into a set of execution units, i.e.,
jobs, and actually compiling them on-the-fly into machine-executable code. The compiled jobs
are assigned a generation index proportional to their dependency depth in the ASG. Further
details concerning these two steps are provided in Section 8.1.3.

The execution block (lines 13 — 20) performs the final two steps: executing the jobs and
presenting the result sets to the requesting clients in the specified format (see Section 8.1.4).
As shown in line 13, the QEE selects all of the jobs associated with a generation index at each
iteration, starting from generation zero and moving upwards. It then calls for the execution of all
of the selected jobs in parallel. The result set of each query comes back in the form of QUIS’s data
model (see Section 6.4.6), which is converted to the presentation format requested by the input
query. Converting the result sets into presentation formats is the task of the present() function
line 18. It can convert the result set to a table, a chart, or an XML or JSON (see Section 8.1.4.1).

8.1.1. DST Preparation

While we outlined the parsing and preparation activities in Chapter 5 (Overview of the Solution),
we describe them in greater detail in this section. Query preparation begins with parsing. Parsing
follows the three stages of lexical, syntactical, and semantical analyses. Lexical and syntactical
analyses are traditional parsing processes that, in our solution, result in a process model that is
formulated as an ASG. The semantic analysis revisits the ASG to discover the declared schemas
(see Section 7.2.3), resolve data types (see Section 7.2.4), and validate bindings against their
corresponding connections. These activities enhance the DSTs’ metadata, which is used in the
following stages.

When the semantic analysis has been performed and the DSTs are adequately annotated, the
query preparation, which is listed in Algorithm 8.2, begins. This algorithm has two roles: it
selects appropriate adapters to transform and execute each of the DSTs and complements query
requirements that were not fulfilled by the chosen adapters.

The main block of the preparation algorithm (1ines 7 — 12) selects an adapter that best serves
the requirements of the given input query dst (see Algorithm 8.3). However, it is not guaranteed

109

CHAPTER 8. QUERY EXECUTION

Algorithm 8.2 Query Preparation
Input: The dst of an input query query.
Output: An adapter to serve the query as well as a complementing query in required.

function PREPARE(dst)

1:

2 if isComposite(dst) then

3 | + prepare(dst.left)

4: r < prepare(dst.right)

5: dst < compose(l, r, dst)

6 else

7 dst.adapter < select Adapter(dst)

8 R < enumerateRequirements(dst)
9: C < enumerateCapabilities(dst.adapter)
10: if (R\ C # () then
11: dst < complement(dst, adapter)
12: end if
13: end if

14: processModel.add(dst)
15: end function

that the selected adapter will fulfill all of the requirements of the input query dst. Therefore,
the algorithm enumerates both the adapter’s capabilities and the query requirements in terms of
query features (see Section 6.5) and computes their differences. If the difference is not an empty
set, the algorithm complements the query by assigning the difference (the features not supported
by the adapter) to the fallback adapter (see Section 7.3).

If the input query is a composite query that consists of joins or unions, the algorithm recursively
decomposes it into its components, prepares the components individually, and recomposes the
prepared versions (lines 2 — 5). The recursive nature of the algorithm allows it to traverse
multi-side joins, select the appropriate adapters for each side, and complement the sides if the
assigned adapters have shortcomings in terms of capabilities. The compose function, which
fuses the component queries after preparation, may use the complementing technique to perform
the composition operation (join/union) if none of the component adapters are capable of handling
it. The final prepared DSTs are registered in the process model (ASG) for subsequent operations.

8.1.2. Adapter Selection

Adapters differ in the capabilities that they provide as well as their execution costs. Assume
F is the set of all supported query features, a given query g with requirements R, € I’ =
{r1,r2,...,r}, and a set of available adapters A = {aq,aq, ..., ar}. Each adapter a; has the
capability set C; € F = {¢;1, ¢ia, ..., Cimp }. The execution of each capability c;; on adapter

a; costs w;;. Our goal is to select the adapter with the minimum cost mi;ll cost(q,a) in that
ac

110

8.1. THE QUERY EXECUTION ENGINE

cost(q, a) is the total cost of executing query ¢ on adapter a plus the cost of executing the lacking
features, those features that adapter a can not execute, on the fallback adapter, if necessary.
Setting higher costs on the fallback adapter encourages more feature-rich and faster data source-
specific adapters. The fallback adapter reposts unbound (very high) costs on concrete data access
operators in order to avoid replacing the actual adapters. We have designed an adapter selection
algorithm that follows the above-mentioned specification; it is illustrated in Algorithm 8.3.

Algorithm 8.3 Adapter Selection

Input: The DST (Described Syntax Tree) of a query.

Output: Adapter that best satisfies the requirements of the DST. If DST accesses more than
one data source, the algorithm may select more than one adapters.

1: function SELECTADAPTERS(dst)

2 fallback < fallbackAdapter()

3 costs[] « oo

4 R + enumerate Requirements(dst)

5: for dataSource € dst.Datasources do

6 for adapter € catalog do

7 C < enumerateCapabilities(adapter)
8

9

D+ R\C

: S+ RNC
10: ct < cost(S, adapter) + cost(D, fallback)
11: if ct < costs[dataSource] then
12: costs|dataSource] < ct
13: selected Adapters|dataSource| < adapter
14: end if
15: end for
16: end for
17: return selected Adapters

18: end function

Upon receiving the DST node of a (sub-)query, the algorithm enumerates its requirements
(1ine 4). It then enumerates the capabilities of each registered adapter (1ine 7) and calculates
the total execution cost (1ine 10) of running the query on each adapter. The algorithm selects
the adapter with the lowest overall execution cost. The execution cost is computed by adding the
cost of running RN C query features on the chosen adapter to the cost of the remaining features,
R\ C, on the fallback adapter. The cost function cost(C,a;) = Z‘jc;'l wij e € CNC € F
sums up the costs of all ¢; features of the C' as reported by adapter a;.

The required information for the enumerate Requirements function is obtained from the query’s
DST node. The enumerateCapabilities function accesses the capabilities that are exposed by
the adapter; this is a service that all of the adapters must provide (see Section 8.2). The gran-
ularity of the capabilities is flexible and can be adjusted by the query engine. In our proof of

111

CHAPTER 8. QUERY EXECUTION

concept implementation, we set them at the feature level, as listed in Section 6.5 (QUIS Lan-
guage Features). It is possible that the algorithm may return more than one adapter if the query
contains heterogeneous data sources.

Feature 12 (Capability Negotiation)}

The system is be able to detect a target data source’s partial inability to run a given query
and select the adapter that can execute it with the lowest overall cost.

8.1.3. Query Compilation

The QEE run jobs as units of execution, in which each job represents a transformed version
of a DST. Jobs must be created before execution; furthermore, they must be executable on
their designated data source and native to the computation model. We compile queries to create
jobs. Query compilation, as shown in Algorithm 8.4, is straight-forward: It first wraps the
transformations of all the queries into a set of job sources (lines 2 — 5) and then compiles
all the job sources to executable jobs, on-the-fly and all at once (1ine 6). Each job obtains its
executable code from the executable units generated by the compiler (1ine 8).

The ASG contains inter-query dependencies that are either imposed by the chained queries or the
results of query complementing and/or composition. The assignGeneration function traverses

Algorithm 8.4 Query Compilation
Input: The process model with all its D.ST nodes.
Output: The compiled and executable jobs for each query in the process model.

1: function COMPILE(process M odel)

2 for dst € processModel do

3 dst.job.source < applyTemplate(dst.transformation)
4 compilationUnit.add(dst.job.source)

5: end for

6 executableUnits <— compiler.compile(compilationUnit)
7 for dst € processModel do

8 dst.job.executable < executableUnits|dst.job.source]
9 dst.job.generation < assignGeneration(dst)
10: end for
11: end function

the ASG to detect the dependencies of the current dst. When found, it assigns a generation index
that is equal to the dst’s longest dependency depth. The generation index of the DSTs with no

112

8.1. THE QUERY EXECUTION ENGINE

dependencies is set to zero. For composite queries with multiple data sources, the generation
index is set to the maximum of the generation indexes of the component queries.

Using this technique, the first generation consists of those (partial-)queries that have no depen-
dencies (except for their own data sources). The next generations can consist of queries that have
JOINs, UNIONSs, or complementing queries. The number of generations depends upon various
factors, e.g., depth of JOINs and the adapters’ abilities to address the input queries. The latter
affects query complementing.

Feature 13 (Dynamic Query Compilation)}

The system wraps the transformed queries into executable units and compiles them on-the-
fly to create independent and self-sufficient jobs..

8.1.4. Job Execution

The overall flow of executing compiled jobs is illustrated in Algorithm 8.1, lines 13— 15. As the
first step, the QEE categorizes the jobs for parallel execution. To do so, it sorts all of the DSTs
in ascending order based on their generation index and selects them iteratively. During each
iteration, the QEE selects a subset of DSTs that have the same generation index. The generation
assignment (which is accomplished during query compilation) ensures that any given job is
executed only when all of its containers are ready. The QEE then concurrently ships the selected
jobs to their corresponding adapters for parallel execution. Serial execution is also possible if
insufficient computational resources are available. In such a case, the jobs are put into a single
queue and are shipped sequentially to the corresponding adapters.

Upon receiving the jobs, the designated adapter executes them against the data source. Each
job carries its raw transformation, as well as the DST and the relevant parts of the input query.
This provides the adapter and/or the underlying data source with the information required for
potential further optimization. Complementing queries are shipped to the fallback adapter using
a similar job shipping procedure; thus, the executor does not need to distinguish between the
fallback adapter and the others. Complementing and composition queries are always dependent
upon other queries; hence, they are scheduled for the second or later generations. This ensures
that their containers are ready by the time of execution. By executing jobs in generations, the
QEE eventually builds the query results, which are later presented to the query clients.

8.1.4.1. Query Result Presentation

The result set of each query is returned in the form of QUIS’s data model (see Section 6.4.6). In
summary, the data model is a bag of potentially duplicate tuples. Each tuple consists of a list

113

CHAPTER 8. QUERY EXECUTION

of values. The values obtain their definitions from the attributes of the effective perspective that
is associated with the query’s projection. These result sets should be presented to the clients
who requested them; however, clients may request alternative representations. QUIS provides a
mechanism that allows the query authors to declare how each query result should be presented.
We call this mechanism Polymorphic Query Result Presentation (PQORP).

PQRP is responsible for determining the declared presentation method from the query, applying
it to the result set in order to build the requested presentation, and delivering it to the client. The
supported presentation methods are included in the target selection clause of QUIS’s grammar
(see Section 6.5.2.7 (Target Selection)). We explain them in greater detail bellow:

1. Tabular query result presentation: The query result is arranged in a bag of rows in such
a fashion that each row represents a single data entity. For each row, the output displays
a set of columns, with each representing one of the attributes of the query’s effective
perspective. This method of presentation is similar to the result rendering in traditional
IDEs of RDBMSs, e.g., those of MS SQL Server, Oracle, PostgreSQL, and MySQL;

2. Serialized query result presentation: In many cases, data workers need to transform and
then transfer data to other tools for further processing and/or analysis. In these situations,
the target of the query can be set to one of the supported serialization formats. By default,
QUIS supports XML and JSON serialization; however, adapters could optionally register
new methods. It is also possible to exploit this feature to transfer data between various
data sources. For example, it is possible to query data from a spreadsheet and directly
submit it to a table in an RDBMS;

3. Visual query result presentation: Query results can be visualized in order to provide supe-
rior insight into the data. QUIS allows for different types of visualizations to be declared as
the targets of queries. In these cases, the result sets are directed to the chosen visualization
instead of being presented or persisted. For example, it is possible to draw a line chart that
depicts a country’s population in different years by introducing the year and population
attributes of the query’s result set to the charting clause. Bar, pie, and scatter charts are
also supported; and

4. Client query result presentation: If a presentation is requested by a third-party client sys-
tem that interacts with the system’s APIs, e.g., the R—-QUIS package for R, the required
presentation methods are not handled by the language; they are instead delegated to the
client, allowing to perform its own transformations (see Figure 5.1 in Chapter 5 (Overview
of the Solution)). In such a case, the QEE assigns the result set to the variable nominated
by the INTO clause of the input query in order to make it accessible to the client.

We have designed the QEE to perform PQRP after the result sets are materialized. This de-
sign decision 1) reduces the load on the target adapters and/or their underlying data sources,
2) centralizes the presentation concept, logic, and implementation in one location, 3) isolates
the query operators from the presentation requirements, and 4) ensures that the PQRP feature is
always available. In our design, the fallback adapter is equipped with a special component that
is intended to handle PQRP.

114

8.2. ADAPTER SPECIFICATION

8.2 Adapter Specification

Input queries operate on various data sources and demand different capabilities. Capabilities are
available through adapters; each adapter supports query execution on one or more data sources.
Similar data sources are categorized as dialects. Therefore, adapters may support multiple di-
alects.

Adapters play two important roles: They are responsible for query transformation (see Chap-
ter 7) and query execution (addressing in the current chapter). In order to realize these two roles,
adapters must have the following elements:

1. In order to satisfy the input query requirements, adapters should provide transformations
capabilities for each query feature to ensure that a given input query can be transformed
to its equivalent in the target computation model. However, the query complementing
technique allows the adapters to provide less than full capabilities. At minimum, each
adapter must expose capabilities for reading and writing records from and to its underlying
source; the rest is managed by the complementing algorithm and the fallback adapter;

2. The adapter selection algorithm (Algorithm 8.3) enumerates the capabilities of adapters
to identify the best match for the query requirements. Hence, the adapters are required to
expose the capabilities that they support alongside their execution costs. In its simplest
case, this takes the form of a list of supported capabilities, each of which has an asso-
ciated execution cost index. This information is also used during query complementing
(see Section 7.3); and

3. Input queries utilize virtual data types (see Section 6.5.1.4), which may differ from the
actual adapter’s data types. For this reason, the query transformation process includes a
step that performs type resolution (see Section 7.2.4). Therefore, each adapter is required
to provide forward/reverse data-type mapping information in order for the type resolution
to operate.

All of the functionalities of the selected adapters are used in the execution pipeline that is or-
chestrated by the QEE. The complementing process and existence of the fallback adapter is
transparent to all of the adapters. In addition, the existence of each adapter is transparent to
the other. The cost of development of adapters highly depends upon the complexity of the un-
derlying data and the management level available to handle such data. Furthermore, the cost
of executing similar capabilities differs from adapter to adapter due to various factors, e.g., ac-
cess methods, type conversion, data entity parsing, tokenization, and the level of optimization
available to a data source.

The query engine is equipped with a built-in adapter called fallback that is capable of performing
all of the query operators. By design, the fallback adapter is prevented from performing actual
data access. The reason for this is that the record read/write operations are data organization-
dependent; hence, each adapter must provide specific implementation for its own supported data
sources. The fallback adapter applies its query operators on the read and loaded records obtained
from the target adapters. It is by design an in-memory adapter, but implementations can store
the in-transit records in persistent media if necessary, e.g., for big data processing.

115

Summary of Part |l

In this part we detailed our solution with regard to its unified query language. The solution has
been established on top of a unified query language that was transformed to the native computa-
tion models of target data sources with the help of a set of adapters. The generated computation
models were compiled into executable units of work and then executed under the supervision of
the execution engine. All of the background activities, such as query validation, runtime schema
declaration and discovery, data type consolidation, capability negotiation, and query comple-
menting, are performed in a transparent manner. The solution also provides a built-in set of
aggregation and non-aggregate functions with support for user-defined functions. The solution
suggests visualized query results and plugs them into the language design as first-class citizens.
Overall, the proposed solution provides a late schema-binding and agile querying environment
characterized by consistent capability exposure for different data organizations.

However, the proposed solution has own limitations: First and foremost, it is not a full-fledged
application. It is instead a specification for a data-organization-ignorant, no DBMS, agile, uni-
fied, and federated querying system. To demonstrate that such a solution is feasible, we provide
in Part III a reference implementation as a proof of concept.

Second, we designed the perspective concept to allow for two-way attribute mappings. While
the forward mappings are used for data retrieval, the reverse ones are meant for data persistence.
However, we did not detail the data manipulation aspects of the language. The rationale for not
doing so was a) to keep the scope of this work under control and b) to stay focused on the concept
of an agile querying system. The latter was a result of the motivation of this work, namely to
propose a solution for volatile data and ad-hoc querying in research environments that feature
high levels of data and tool heterogeneity.

Another limitation is that, while the requirements ask for a declarative language, our design is
not completely satisfactory in terms of those requirements. As explained in Section 7.4 (Query
Optimization), our aggregate computation technique utilizes a running method that implicitly
maintains a state object. Although this state object does not cause any side-effects, it should be
carefully implemented to avoid any possible rule violation.

117

CHAPTER 9. SUMMARY OF PART II

9.1 Realization of the Requirements

In this section, we explore the extent to which the solution satisfies the requirements identified
previously. Table 9.1 illustrates the traceability between the features and the requirements; for
each feature, F3, its corresponding row, displays two pieces of information: a) whether F; should
contribute to the realization of any of the requirements R, and b), if so, whether the feature does
so. These pieces of information are indicated by plain and circled checkmarks, respectively.

Table 9.2 summarizes the overall extent to which the requirements were satisfied. Although nei-
ther the requirements nor the features are of equal weight and complexity, a simple average of the
requirements’ satisfaction rates indicates a satisfaction level of approximately 92%. This means
that the features adequately satisfy the requirements and thus the scope of the problem. With the
exception of Requirement 15 (Version Aware Querying)!, all of the requirements experienced
a fulfillment level of greater than 80%. This fact indicates that the solution has satisfactorily
addressed the problem statement’s scope.

Implementation-specific requirements such as Requirement 16 (Tool Integration) and Require-
ment 17 (IDE-based User Interaction) are realized in Chapter 10 (Implementation). Usability-
related requirements, e.g., Requirement 18 (Ease of Use) and Requirement 19 (Usefulness) are
discussed in Chapter 11 (System Evaluation).

"We intentionally reduced the priority of this requirement, due to time limitations. However, a partial implementa-
tion is provided.

118

9.1. REALIZATION OF THE REQUIREMENTS

~ =~ ”® ”®~ ”®x ”®X ~®Xx ”®»x ”®A ® X ”®X ”® ~ X
—_ \] W N~ (9, (@)Y ~ (o] NeJ —_ —_ — —_ — —
;_-‘o . .. -m- 9 :_.‘ .[9 S):) :l‘; EJ.]
T $PSSSS§5Fzr iz
2 5 2 = 3 3 3 g < £ 8 &8 Z 2 g
E o % 2 & 2 2 B 9 T g2 2 5 E 2
O ® & wv w m W w g 5 g 2 g & 3
E 5 - g & x & 5 B o+ S & 5 <= »
E 2 £ 2 2 &8 2 8 o4 g O % 5 o %
© 8 g B § £ = 82 &8 8 % &£ & g 8
= =g = = =g e = = = (=% = 3 ¢
2 S 9 8 3 o % 9 £ @ 5 8 O
< B G - g & g 7 3 2 g 8 ¢
= ¥ 3 c¢ £ 57 8% £ B §
& 5 g = 2 B s & 2 <
e B = 9 o = S oom B
2 g s 5 B o P o 0
es! [@« % 8
z B g e 3
o = = 2.
5 W = 2 g
2 < = =
2 g g 3
g< 2]
F1: Connection Information
Integrated to Language | @) ¢ ¢ @ % %)
F2: Version Aware Data
Querying O Y O O © % %)
F3: Virtual Schema
Definition YV © © © © O O Y Y 00D DO
F4: Virtual Type System v ¢ O ¢ © O O O O O O
F5: Uniform Access to
Data Items “w v v ¢ « v v O O Vv
F6: Heterogeneous Data
Source Querying %) © ¥ © O O) v
F7: Query Chaining O O v O O O O v O %
F8: Polymorphic Resultset
Presentation v © O O % v O
F9: Visual Resultset
Presentation v O O @ %) v @
F10: Data Processing Vv O O O O O v O O &
F11: Query Complementing v O O O © %)
F12: Capability Negotiation O @ %) %
F13: Dynamic Query
Compilation Vv ¢ O) v ¢ O ¢ O v

Table 9.1.: Traceability matrix demonstrating the extent to which the requirements are fulfilled

by the solution’s features. A checked cell indicates that the feature (corresponding
row) is relevant to the requirement (in the corresponding column) and must satisfy
it. A circle-check-marked cell indicates that the feature is relevant and contributes to
the fulfillment of the requirement. A blank cell shows that the feature is not related
to the corresponding requirement.

119

CHAPTER 9. SUMMARY OF PART II

Surkrand) ere@ mIS-uy 1Y

ANTIQISUA)XH $S900Vy/uoneziue3iO ele(7y
$901n0g e1R(J snoouadoraay Jurkiond) ¢y
Xeyukg payrun Hy

SOTJUBWIAS PayTu[) Gy

UONNOAXH PayIun 9y

UONBIUISAIJ NS payIun LY

uonIuYa(BWAYDS [enMIA QY
uoneuLojsuel], eie(q Aseq 6y

suonoung ur-jmg 0y

Anmqrsuarxyg uonerado uonound 1Ty
Kouspuadopuy 1R 1Y

uoneIuasald 19s1nsay orgdiowA[0g €1y
AIQISUAIXF UOTRIUISAI] 19SS H 1Y
Surk1an() aremy UOISIOA ST

Expected

Features 8 10 10 11 10 12 7 5 7 6 6 10 4 3 4
Contributed

Features 7 9 8 11 10 11 6 5 7 6 6 9 4 3 2
Overall

Satisfaction | 88 90 80 100 100 92 86 100 100 100 100 90 100 100 50

Table 9.2.: Requirement satisfaction matrix that expresses to what extent each feature fulfills its
related requirements. The expected row indicates the number of features that have
to contribute to each of the requirements. The contributed row is the number of
features that contribute to each requirement. And the overall satisfaction row is the
requirements’ satisfaction rate computed as percentage of contributed features versus
expected ones.

120

Part lll.

Proof of Concept

121

In Chapter 1 (Introduction) we suggested a hypothesis, then in Chapter 3 (Problem Statement)
scoped its boundaries. Also, we proposed a solution for the stated problem in Part I (Approach
and Solution). We dedicate this part to the evaluation of the proposed solution. We first present
a proof-of-concept implementation in Chapter 10 and utilize it to illustrate the correctness of the
hypothesis. To prove that the hypothesis holds, we conduct a set of evaluations and discuss their
results in Chapter 11. The evaluations are designed to measure the language’s expressiveness,
system performance on heterogeneous data, scalability when applied to large data, and usability.

123

Implementation

In this chapter, we explore the implementation of QUIS’s components. QUIS was developed
as a proof of concept and a test bed for evaluating the hypothesis [CKRJ17]. The overall ar-
chitecture of the system was presented in Chapter 5 (Overview of the Solution). Based on the
architectural overview depicted in Figure 5.1, we explain the implementation techniques used in
QUIS’s components. Based on the tasks they are designed to perform, we divide the architectural
components into three modules.

The agent module, as described in Section 10.1, receives input queries from the APIL. It is re-
sponsible for parsing, validating, model construction, adapter selection, execution coordination,
and result set assembly. The data access module, which we elaborated on in Section 10.2, has
two fundamental functions: query transformation and query execution (see Chapters 7 and 8
for definition and features). Both of these functions are handled by adapters. Therefore, this
module, in addition to the main functions, provides a plug-in mechanism for managing adapter
registration, discovery, and engagement. The fallback adapter is also within the data access
module. In Section 10.3, we explain how the client module makes the query language accessible
to other tools and systems. This module accepts user queries, passes them to the agent module,
and presents users with the query results, as well as diagnostic and instrumentation information.
It fulfills its requirements by exposing a set of well-defined APIs that any client can use to sub-
mit queries and receive result sets. The clients can interact with end-users or act as brokers that
communicate queries and data between systems. In addition, in Section 10.4, we describe the
implementation techniques used for tuple materialization, data type consolidation, perspective
construction, aggregate computation, and adapter and user-defined function registration.

10.1 Agent Module

The agent module is comprised of the runtime system, a collection of Query Execution Engines
(QEEs), and the language parser. These components receive an execution request from a client,
compile the solution to the request, and deliver the results. A client request is a set of queries
that are submitted alongside related declarations.

Upon starting the agent, the runtime system is activated. Having received a client request, the
API requests that the runtime system assign a QEE to the request. This dynamic QEE assign-
ment makes it possible for each client request to run in isolation on its own QEE. In addition,

125

CHAPTER 10. IMPLEMENTATION

Web/ Server based 3" Party Integrated Workbench
client Client (default client)
Public API
e = Query Execution Engine
g I I
(7 - 5 , ,
E L Fallback Tabular Relational 5
£l 83 u
S 13g . , 5
4 < New | SPARQL AQL
wn
o @
2 O J &
a3
0 New Relational Data CSV Data Array Data

Figure 10.1.: The overall system architecture, showing the interactions between the client, the
agent, and the data access modules. The client module consists of the dot-patterned
components; the grid-patterned components are the agent module. All of the other
components shape the data access module.

126

10.1. AGENT MODULE

requests may be run on different cores, CPUs, or machines to allow for concurrent request pro-
cessing. QUIS was developed with a built-in QEE, but third parties can develop and register
more advanced ones (see Section 10.4.3). QUIS’s plug-in mechanism allows the default QEE to
be replaced with a user-provided one.

When a QEE is selected, the runtime system activates the engine and forwards the client request
to it. The QEE parses, validates, and builds an ASG for the input queries. It then selects the
adapters that will be used to transform and execute each and every query. In the following
sections, we explain the elements and the features of the agent module.

10.1.1. Parsing

Language recognition in QUIS follows the general parsing workflow: It starts with lexical analy-
sis, which is used to tokenize the input; continues with syntactical parsing , which recognizes the
input token stream and builds parse trees; and ends with semantic analysis in order to perform
type checking, language binding, and dependency detection.

We use ANTLR 4 [Par13] as the language recognizer. It generates both the lexical and syntac-
tical analyzers, as well as the extension points that are used to plug a semantic analyzer into
the flow. ANTLR 4’s parser generator embeds two types of event subscription hooks (namely
listener and visitor) into the generated parser. A hook is a proxy method that, when triggered,
can call a designated function to accomplish the actual task. These hooks can be easily used to
integrate the parser into a larger ambient application.

ANTLR generates listener hooks for entry to and exit from each rule, as well as rule alternates.
QUIS, as the ambient application, subscribes to the designated entry/exit hooks to perform its
logic. These hooked functions are then automatically activated during parsing. We have hooks
for input validation, DST and ASG construction, declaration checking, query-chain checking,
perspective building, and completing of missing elements.

In order to create the final ASG and to perform cross-statement validations, we needed to tra-
verse the ASG multiple times. For this purpose, we utilized ANTLR’s visitation hooks. We
developed additional visitor methods for traversing the parse tree and triggering the visitation
points. Our semantic analysis relies heavily on this selective visitation to build DSTs, infer
effective perspectives, and determine inter-query dependencies.

10.1.2. Dynamic Compilation

As mentioned in Section 8.1.3 (Query Compilation), QUIS compiles queries into executable
jobs. This is done for two reasons: First, some data sources utilize imperative computational
models; for example, CSV files are processed by running operations on them, MapReduce re-
quires jobs in terms of Java classes and libraries, and web services require their web APIs to

127

CHAPTER 10. IMPLEMENTATION

be called via HTTP requests. Additionally, complementing and compositional queries are exe-
cuted by the fallback adapter, which also uses an imperative computation model. Second, due to
significant differences in the syntaxes and connection methods of declarative data sources, we
decided to wrap any transformed query into an executable package in order to conceal potential
complexities from both the default and other QEEs. This technique provides an additional side
benefit: The jobs are standalone and fully self-contained packages that can be shipped to remote
systems for execution, archived for later use, or preserved with research results for reproduction
purposes. The jobs’ source codes are generated in Java.

The dynamic code compilation (also referred to as just-in-time code compilation) component
consists of two services: code generation and code compilation. The code generation service, in
association with designated adapters, generates partial Java source codes for each query feature.
It also generates wrapper classes for non-imperative transformations, e.g., perspectives. The
service has a set of predefined templates for each query feature, which adapters can (and are
encouraged to) override. We use the Rythm Templating Engine! as our templating engine, due
to its simplicity and performance. The templates are populated and instantiated according to
the query features’ requirements, as modeled in their respective DST nodes. The instantiated
templates are then assembled to generate a set of valid Java classes that are equivalent to the
incoming DST. We generate two classes for each query, with an entity class that represents the
query’s effective perspective and a driver class that performs the requested query operations on
the data source and then populates and return a bag of entity instances. In the case of grouping,
we may generate an additional intermediate entity class. However, if a perspective is reused in
multiple queries, we also reuse its corresponding entity class. This service assists in creating the
best matching and ensuring the most concrete data access and processing operations possible. It
not only reduces the need to have a pre-built database to query data but also improves querying
performance.

When code generation has been performed for all of the DSTs, we compile the jobs’ source
codes using Java’s JDK compiler utility. We place all of the source codes into a single compi-
lation unit and compile them in one pass on-the-fly. Having a single compilation unit reduces
the compilation time and avoids errors caused by dependencies between the generated classes
(which arise from data dependencies between the queries).

It is possible to cache the generated source and/or the compiled jobs and attach them to the
queries for later use. Currently, we cache the jobs for a single live session; hence, re-running
the queries will bypass the code generation and compilation phases. The cashing techniques
can be extended to persist the compiled jobs alongside with the process script file for long-term
archival, backward compatibility, remote execution, and reproducibility.

"http://rythmengine.org/

128

http://rythmengine.org/

10.2. DATA ACCESS MODULE

10.2 Data Access Module

The main role of the data access module is to provide the base classes and interfaces that adapters
must implement in order to be able to interact with the QEE. The following are the functions
each adapter must implement:

1. Metadata: An expose function reports the module’s metadata. It features a tree data
structure that indicates which features of the query language are supported and displays
their estimated costs of execution. The tree also contains information concerning the
supported aggregate and non-aggregate functions. The actual schema of a queried data
container is also retrieved and reported;

2. 1/O: This function provides the actual implementation of the tuple scan and insert opera-
tors. The scan operator reads one record from a designated data source, tokenizes it into
values, and converts the values into appropriate data types according to the query require-
ments. The output is a list of objects, with each representing a value of a field of the data
source record. The insert operator performs the reverse operation: It serializes the input
list of objects to the underlying data source in its native format;

3. Querying: For each exposed query feature, the adapter implements its corresponding im-
plementation in term of a parametric template. The template is later instantiated during the
transformation process. However, the adapters can provide alternative implementations;

4. Transformation: A transform function receives a DST, applies its templates to each
query feature that exists in that DST, and instantiates assembles the templates. The as-
sembly process yields a set of Java source classes. The entity class forms tuples (see Sec-
tion 10.4.1), while the driver class executes the query features; and

5. Execution: An execute function receives the compiled driver class, the job, triggers its
entry point, and collects the results returned. It sends the result set to the QEE to be
used in subsequent queries or presented to the requesting client. The execution follows
the pipeline of operations assembled by the transformer. The flow begins with scanning
and materializing the tuples, applying perspective’s attributes’ mappings, and then calling
query operators in the order determined by the optimizer.

Adapters that do not implement the full language’s query features are called weak adapters.
Weak adapters need to be supported by the query complementing technique (see Section 7.3)
to be able to fulfill all of the input query requirements. In addition, they usually demonstrate
slower performance and potentially retrieve more data. We utilize a fallback adapter to take over
the features that a weak adapter does not support. Such a fallback adapter must be complete
in order to allow the engine to support all of the query features and must be sound in order to
return correct results when complementing for the features that a weak adapter lacks. We have
implemented such a fallback adapter and plugged it in to the query complementing; however, it
could be replaced by third-party fallback adapters. The fallback adapter does not have 1/O op-
erators but implements all of other above-mentioned required functionality. It uses a templating

129

CHAPTER 10. IMPLEMENTATION

technique that tailors the complemented query features to operate on memory-loaded datasets.
Its expose function intentionally reports a high execution cost, resulting in the adapter selection
algorithm (see Section 8.1.2) preferring to choose from among the registered adapters.

In addition to its main role, the data access module manages adapters’ life cycles. For example,
it provides facilities for registering adapters, adding new function packages to existing adapters,
and updating the system catalog. The adapter selection algorithm relies on the system catalog
and the metadata provided through each module’s expose function.

Each adapter is compiled and bundled in a single Java jar package. The registration procedure
simply copies the package to a designated directory and updates the catalog. Each adapter can
be accompanied with a set of satellite function packages. Function packages override/customize
the transformation and/or execution of the aggregate and non-aggregate functions provided by
the language. Overrides can be associated with a specific dialect or can be applied to all of the
supported dialects of the designated adapter.

Queries usually retrieve data from persistent containers and deliver it to variable containers.
Variable containers are used for result set presentation, query chaining, or consumption by
clients. However, queries may retrieve data from and write data to persistent containers si-
multaneously. For example, a query could retrieve data from an RDBMS table, apply filtering
and projection on it, and write the result set to a CSV file. In this and in similar cases where
the input and output containers of a query are both persistent, we bypass the memory by short-
circuiting the input to the output container. Furthermore, the input and output containers may be
bound to data sources that are managed by different adapters; for this purpose, we utilize Java
8’s steaming feature. We create a reading stream on the input container and plug it into the out-
put. Meanwhile, we perform all of the necessary operations, e.g., projection or selection, on the
tuples while they are in transit. The writing operator may apply another set of tuple formation
according to the query’s perspective.

This technique not only eliminates the need to load the input tuples into memory but also in-
creases the degree of parallelism in multi-core environments. This technique particularly demon-
strates its value in low-memory systems, big data querying, or workflow management systems.
It is, however, not applicable in the presence of sorting or aggregation. We detect these cases
and transparently fallback to the normal execution path.

10.3 Client Module

In order to access QUIS’s functionality from any client, we have developed an API that exposes
a set of service points. These service points can be consumed by a client to interact with QUIS.
In a normal scenario, a client submits a set of queries for execution, obtains the results, and
presents the result sets. A client can interact with end users or other applications. It can be a
desktop workbench such as QUIS-Workbench; an external tool, such as R-QUIS, that enables R
users to interact with QUIS; or a server application that opens QUIS’s APIs to remote users via,
e.g., a web interface.

130

10.3. CLIENT MODULE

We have developed three open-source clients?: A GUI-based workbench (QUIS-WRC), a command-
line interface, (QUIS-CLI) and an R package (R-QUIS). All of these clients use the provided API

to interact with the QEE. In the following section, we explain the technical details of the client
module’s components.

10.3.1. Application Programming Interface (API)

The API is the access point to the system functions. It is a set of Java classes and interfaces that
provides three type of functions: information, execution, and presentation.

1. Information functions report on the system version, executed queries diagnostics and logs,
and performance metrics such as execution time and result set size;

2. Execution functions accept queries in various formats, e.g., files, strings, and command-
line arguments and execute them; and

3. Presentation functions are designed to transform query results into formats that are con-
sumable/requested by clients. For example, R-QUIS requires query results in R’s data
frame format.

Our default QEE is bound to one active client request at a time and keeps track of its state. We
do not share agents between various clients’ requests. This allows us to support isolated agent
instances for each request in the client’s process space. Using this isolation level, clients are able
to submit multiple requests in parallel and interact with their users utilizing, e.g., MDI® or TDI*
Uls.

10.3.2. QUIS-Workbench

We have two default workbenches®, QUIS-WRC and QUIS-CLI. Both of these workbenches
utilize the APIs in a similar manner. However, they differ in the way they interact with users, as
well as in degree of parallel execution.

QUIS-WRC is a rich-client workbench that provides a multi-tab graphical environment. Users
can load or type in queries in different tabs and request their execution. In QUIS-WRC, queries
are organized in files and files in projects; however, the workbench only contains one active
project at a time. Projects are loaded to and managed in the project explorer, as shown in
Figure 10.2 (pane A). The qguery editor (pane B) is a multi-tab area that allows multiple query
editors to be opened simultaneously and runs them in parallel. Each editor tab provides code-
editing features such as syntax highlighting, undo, redo, and copy and paste, among others.

2Source: https://github.com/javadch
*http://en.wikipedia.org/wiki/Multiple_document_interface
*http://en.wikipedia.org/wiki/Tabbed_document_interface
Shttp://fusion.cs.uni-jena.de/javad/quis/

131

https://github.com/javadch
http://en.wikipedia.org/wiki/Multiple_document_interface
http://en.wikipedia.org/wiki/Tabbed_document_interface
http://fusion.cs.uni-jena.de/javad/quis/

CHAPTER 10. IMPLEMENTATION

QIS Workbench 040 - a x
File Edit Project Tools Window Help —
B-SE0 X RB o-c-| - |d® 1Mof12eM T Aavay Log) Evouta) i’ [

Project 28 x 1-CSVaar 4-Plotsxqt
examples
configs.
data
processes
£ O-testaqt
Bl 1-CSVaxgt
£l 2-Excelxgt

>
1 PERSPECTIVE m1
2(

b 4-Pltsat
1 5 Weather:xat

15 6 Heteroxat

5 7-dbmssat

i Defects qt

15 JonedContainer.xat
i Paperaat

1 SingleContainerct
) sudentot

2 sudentzoxat

12 volume_data xat
Bt

Results
Activty Log | ver1 | var2 | plot1 | plot2 | plot3” vard | plot | plots

longitude latitude elevation 6 temperature =

542072553 5868955.99 302.03412073490813 7279525 %3 005
5420725.47 5863956.19 302.4278215223097 7279526 130 005
5420725.28 5868955.99 302.06692913385825 7279530

£
5420725.23 5863957.19 301.73884514435696 7279531 116.60000000000001 0.051
5420725.17 5868957.4) 302.4278215223097 7279532 112 0.051
5420724.73 5868959.37 297.112860862388¢ 7279592 7.0 0.039
5420725.48 5868960.11 215.48556430446195 7279550 1202 0.051

5420722.02 5868962.01 301.3779527559055 7279557
5420723.64 5868963.61 299,0485564304462 7279565
5420723.56 5868964.01 206.751968503937 7279568
5420724.55 5868963.77 215.61679790026244 7279570
5420723.38 5868964.62 200.6391076115485 7279573 805 0.0¢5
5420723.41 5868964.61 297.01443569553805 7279574 98.60000000000001 0.053
5420723.37 586396481 206.2598425196850¢ 7279575 1040 0.051

662
116.60000000000001 0.043
752

716 0.038

®eed= Page: 1 of 143

B oupt |

Figure 10.2.: The three main panes of the rich-client workbench: A: Project explorer. B: Query
editor. C: Results viewer. The overlay chart depicts the visual representation of a
query result. However, it also appears on its own tab in the results viewer pane.

Furthermore, each query editor has its own result viewer (pane C), in which each query result is
shown individually in a tab. A summary of execution results is also presented. Query results can
be visualized in the form of single or multi-series bar, line, scatter, or pie charts. An exemplary
line chart that illustrates mean daily temperature over a time interval is shown as an overlay in
Figure 10.2.

QUIS-CLI is a terminal-based client for QUIS that accepts queries in files and also persists the
results in files. It can be integrated into the host operating systems’ shell scripting, as well as
other tools and workflow systems. It is possible to trigger QUIS-CLI with a customized JVM
configuration, e.g., to allocate heap memory in advance for operating on large datasets. For
example, java -xmx128g -jar workbench.cli.jar demo.xqt directs the JVM to allocate as much
as 128GB of memory for QUIS-CLI to run the demo . xgt query file. When set, QUIS-CLI can
report execution information to the terminal and/or write it to log files.

10.3.3. R-QUIS Package

R-QUIS is an R package that offers the full functionality of QUIS to R users®. Users can write
queries inline with R scripts or in separate .xgt files. The package exposes a set of functions
that allow R users to formulate their data access requirements in QUIS’s query language and

®http://fusion.cs.uni-jena.de/javad/quis/latest/rquis/

132

http://fusion.cs.uni-jena.de/javad/quis/latest/rquis/

10.3. CLIENT MODULE

obtain the result sets as R data frames. Additional functions for obtaining result set schemas and
accessing the results of previously executed queries are also available. Listing 10.1 showcases
the package’s functionality. The actual queries are not shown, in the interests of brevity.

Listing 10.1 Computing daily average temperature using the RQUIS package from winthin R.

1 library (RQUIS)

2 library (ggplot2)

3 engine <- quis.getEngine ()

4 file <- "' /quis/r/examples/dailyTemp.xgt''

5 qguis.loadProcess (engine, file)

6 quis.runProcess (engine)

7 data <- quis.getVariable(engine, "~ "meanDailyTemp'"')

8 schema <- quis.getVariableSchema (engine, ~ meanDailyTemp'"')

9 ggplot (data, aes(dayindex, meantemp)) geom_line () xlab(~'")
ylab (® "Mean Temperature C°'') ggtitle(’ 2014 Average

Daily Temperature at SFO'')

The script queries a CSV dataset that contains hourly meteorological data and computes a daily
mean. The R script first obtains an API handle called engine (1ine 3). It then loads the query file
into the engine (1ine 5) and runs it. The getVariable(engine, variable) function populates
the data frame, data, that is used by the plot function ggplot to draw the requested chart, as
shown in Figure 10.3.

Each variable points to a result set that is associated with a perspective. R users can obtain the
perspective of any result set by calling the getVariableSchema(engine, variable) function,
which returns a data frame that presents the basic properties of the perspective’s attributes, e.g.,
name, datatype, and size.

R-QUIS mitigates the need to use different packages for querying heterogeneous data and pro-
vides users with a unified data querying syntax. More importantly, it does not require the data
to be loaded before processing. Instead, it performs all of the query operators, such as filtering,
grouping, and limiting, in-situ and only loads the result set. This makes R-QUIS up to 30%
faster than R while also maintaining a lower memory footprint. It is also possible to join data
between various data sources.

In addition, we have built a Docker image’ with all of the software and settings required for easy
deployment. When instantiated on a Docker machine, it runs a web-based RStudio server that
has R-QUIS loaded and operational. The image can be pulled by issuing a docker pull javadch
/rquis command.

"https://hub.docker.com/r/javadch/rquis/

133

https://hub.docker.com/r/javadch/rquis/

CHAPTER 10. IMPLEMENTATION

2014 Average Daily Temperature at SFO

N
|

| %]

Mean Temperature C*
._—I_.

Figure 10.3.: The average daily temperature at SFO airport in 2014.

10.4 Special Techniques

In this section, we explain the techniques that we have used to implement interesting features,
e.g., tuple materialization, data type consolidation, perspective construction, aggregate compu-
tation, and adapter and user-defined function registration. These features are not explained as
elements of the three main components; however, they illustrate how in-situ querying and on-
the-fly job compilation affect the core elements of a heterogeneous database or query system.

10.4.1. Tuple Materialization

Listing 10.2 illustrates a query that uses a perspective resultSchema for its projection clause.
The perspective consists of a set of attributes each of which is mapped to the relevant fields of
the underlying container via mapping expressions. The actual data source behind the container
is determined by the ds connection (1ine 5) and the occ binding (1ine 6). The query’s virtual
schema is known during the transformation phase; therefore the projection attributes and the
mapping expressions are accessible to the transformation functions. In order to apply declared
mappings, we extract the schema of the underlying container, the physical schema. Using both
the virtual and physical schemas we generate a Java entity class that implements the attributes of
the virtual schema as transformation functions of the fields of the physical schema. The entity
class has a set of populate methods that accept an input record of the physical schema’s for-
mat. These methods populate the entity’s attributes by applying the virtual schema’s respective

134

10.4. SPECIAL TECHNIQUES

transformations on the incoming records. Thereafter, they release the physical record to preserve
memory. This technique is referred to as tuple materialization.

Materialization performance is influenced by sequential or direct access to the fields and the
need for data type conversion. A data source may only provide sequential access to the fields;
for instance, a line in a CSV file represents a single record, meaning that its fields cannot be
accessed randomly. In these cases, we materialize the attributes in such an order that minimizes
the number of passes over the input record. Sequential access may impose prerequisites, such
as parsing and tokenization. Currently, we tokenize the entire line, even when not all of the
fields are required by the query. However, there exist approaches that can detect the shortest
continuous sub-string that contains all the required fields. In addition, maintaining position
indexes/maps can improve overall performance, but adds additional complexity when building
the and updating the index.

Listing 10.2 A sample QUIS query for studying tuple materialization. The query obtains 100
rows from the data source. It uses the projection defined by the resultSchema perspective.

1 PERSPECTIVE resultSchema/(
2 ATTRIBUTE Name:String MapTo = scientificname,
ATTRIBUTE observedIn:Integer MapTo str.toInteger (year)

’
4}
CONNECTION dss ADAPTER=CSV SOURCE_URI='data/' PARAMETERS=
fileExtension:csv, firstRowlIsHeader:true
¢ BIND occ CONNECTION=dss SCOPE=0Occurrences VERSION=Latest

s SELECT

v USING PERSPECTIVE resultSchema
1o FROM occ.0 INTO dataPage

11 WHERE (observedIn > 2005)

» LIMIT TAKE 100

In QUIS, tuples are materialized in multiple steps, according to the generated query plan. For
example, during the first step, only the attributes needed to evaluate the selection’s predicate
are materialized. If a join operation is present, then the attributes used as join key are popu-
lated. Finally, if selection and/or join operations pass, the attributes of the projection clause are
materialized. Therefore, if the input record is rejected at any step, the system saves the compu-
tation and space that would be required to perform the redundant next steps. At each step, the
system avoids materializing the already populated attributes. This multi-staged entity popula-
tion reduces the overall query response time in proportion to cardinality (see Section 7.4 (Query
Optimization)).

If the type system of the input record does not match the virtual schema’s type system or when
the input record does not have any associated type information, a type conversion must be per-
formed. These actions are provisioned during the transformation and are performed during the

135

CHAPTER 10. IMPLEMENTATION

execution phases. Each adapter has enough information about its underlying data sources to
decide on the appropriate conversion. Listing 10.3 shows the Java entity generated according to
the perspective defined in Listing 10.2. It owns two public fields, name and observedin, which
represent the attributes Name and ObservedIn, respectively.

The tuple is materialized in two phases: The first phase is handled in the class’ constructor,
which receives a tokenized input record and uses it to populate observedin. As shown in
line 9, a token representing the year field is obtained, converted to an integer, and assigned
to the observedin attribute. The row is also kept for potential further population phases. The
second population phase is performed in the populate() method. However, it is the driver class
(see Listing 10.4) that determines whether this phase should be executed. Its decision is based
on the validity of previous population phases and satisfaction of the selection’s predicate.

Listing 10.3 The dynamically generated entity representing the perspective defined in List-
ing 10.2.

1 public class Stmt_1_Entity {
2 public String name;
3 public int observedin;
4 public boolean isValid = true;
5 private String[] row;
6
7 public Stmt_1_Entity (String[] row){
8 try {
9 observedin = (int)((xqt.adapters.builtin.functions.String.toInteger(String.value Of(
row([1]))));
10 } catch (Exception ex) {
11 isValid = false;
12 }
13 if(isValid){
14 this.row = row;
15 }
16 }
17
18 public Stmt_1_Entity populate(){
19 try {
20 name = (String.valueOf(row[0]));
21 } catch (Exception ex) {
22 LoggerHelper.logDebug("Object Stmt_1_FEntity failed to
populate. Reason:" + ex.getMessage());
23 isValid = false;
24)
25 row = null;
26 return this;
27 }
28 '}

136

10.4. SPECIAL TECHNIQUES

Listing 10.4 is the Java equivalent of the generated query plan. It reads the input data, in this
case a CSV file, record by record, bypassing the header and commented lines. Starting with the
tokenization process, each record is passed through a pipeline of operations.

Listing 10.4 The dynamically generated query plan for the SELECT statement, as declared
in Listing 10.2.

1

O J o U b W N

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

public class Stmt_1_Reader implements DataReader<Stmt_1_Entity, Object, Object> {

BufferedReader reader;
BufferedWriter writer;

String columnDelimiter=", ";
String quoteMarker = "\"";
String typeDelimiter = " : ";
String unitDelimiter = " : : ";
String commentIndicator = " #";
String missingValue = "NA";
String source = " ";

String target ="";

boolean bypassFirstRow = false;
boolean trimTokens = true;
LineParser lineParser = new DefaultLineParser();

public List<Stmt_1_Entity> read(List<Object> sourcel, List<Object> source2) throws
FileNotFoundException, IOException {
lineParser.setQuoteMarker(quoteMarker);
lineParser.setDilimiter(columnDelimiter);
lineParser.setTrimTokens(trimTokens);
reader = new BufferedReader(new FileReader(new File(source)));
if(this.bypassFirstRow){
reader.readLine();
}
List<Stmt_1_Entity> result =
reader.lines()
filter(p —> !p.trim().startsWith(commentIndicator))
.map(p —> lineParser.split(p))
.map(p —> new Stmt_1_Entity(p))
filter(p —> (p.isValid == true) && (((p.observedin) > (2005))))
Jimit(100)
.map(p —> p.populate())
filter(p —> p.isValid)
.collect(Collectors.toList());
return result;

The pipeline represents the generated and optimized query plan. The driver calls for the first
population phase in 1ine 28 and then checks the entity’s validity status, as well as the query’s
where clause, in 1ine 29. Because the query declares a nimiT clause, the optimizer defers the

137

CHAPTER 10. IMPLEMENTATION

second population phase until the limit is applied (1ine 30). This dramatically reduces the time
required to populate the entities that do not appear in the result set. In other words, it minimally
populates the first 100 entities that satisfy the predicate and then fully populates only those.

Because each entity class is generated according to its particular concrete schema, we do not
need to utilize general purpose materialization or scanning operators. Instead, we dynamically
build the exact operators required to retrieve the records of interest and produce the necessary
entities. As mentioned previously, we even insert applicable optimization rules into the materi-
alization logic. Therefore, both classes are highly optimized for the purpose.

We have additionally fine-tuned the Java classes to eliminate unnecessary function calls. For
instance, we generate the entity attributes as Java public fields and omit the getter and setter
access methods around the fields. This saves a large number of function calls and also reduces
heap usage. In a query that requests 10 attributes on data container with a million records, this
technique saves at least 10 million set and get operations per query execution. This technique
is similar to Java’s getter/setter in-lining. We implemented it internally, as neither the Java
compilers nor the JVMs guarantee that it will be performed in a deterministic manner.

10.4.2. Aggregate Computation

Conventional RDBMSs emit the aggregate calculation for each group of records only when the
execution engine processes the last record in the table [SC05]. Streaming applications continue
indefinitely, and there is no notion of “end of table”; hence, they cannot use this technique. In
streaming systems, aggregates are computed over a window of stream or accumulated as stream
continues. As presented in Section 7.4 (Query Optimization), we use a combination of both
techniques to calculate the aggregates.

We execute each query as a series of operations that are chained together in a pipeline. The
pipeline builds a stream that has as its input the records of the queried data source and as its
output the solution to the query. We build this stream using Java 8’s streaming features and apply
the query operators using the Java’s lambdas. An exemplary pipeline is provided in Listing 10.4.

We transform each aggregate function to a Java class with a state object and a lambda function
that updates the state. The state object holds all of the information required to yield, the most re-
cent value of the aggregate upon request. The update logic is encapsulated in the move function.
We maintain one aggregate object per group of records. The groups are built upon the unique
combination of the grouping keys declared by the input query. Each time the aggregate is called,
its move method receives the new value from the stream and updates the state. At the end of the
stream, the aggregate value is ready to be consumed.

This technique allows the QEE to reduce memory usage to an amount that is proportional to the
size of the state object and to ensure that it remains independent from the size of the queried
data. Furthermore, the aggregates are non-blocking and do not need the stream to be finished to
yield their results; the results are available after each and every update.

138

10.4. SPECIAL TECHNIQUES

10.4.3. Plug-ins

A plug-in is a component with a specified set of related functionalities that is injected into a host
application at runtime. It usually implements an interface. If more than one implementation for
a specific interface is available, the injection mechanism can select one based on parameters,
configuration files, or other metadata. The implementation component can be a single class or
a complete JAR package. The plug-in management has a simple design that follows a basic
Inversion of Control (IoC) design pattern. QUIS utilizes plug-ins in the following scenarios:

1. Query Execution Engines: It is possible to replace the default QEE or have multiple
query engines run side by side for various workloads. The current implementation sup-
ports configuration-based manual engine selection. The selected query engine is injected
into the runtime system at startup and responds to input queries according to its isolation
level, as described in Section 10.1;

2. Adapters: Each adapter is a realized as a set of Java classes bundled in a JAR. The entry
point of the adapter implements the pataadapter interface, which requires the adapter to
implement the methods detailed in Section 10.2. When the QEE selects an adapter to run
a query, it asks the plug-in manager to load the adapter. The plug-in manager queries
the adapter catalog file to locate the requested adapter’s JAR file and load it, if found.
It then uses Java reflection to find the entry point and instantiates the plug-in using IoC
techniques. Finally, it returns the instantiated object to the engine; and

3. Function Packages: All of the aggregate and non-aggregate functions defined by the
language have their own default implementations. Adapter developers, however, can cus-
tomize the default implementations according to the capabilities of their underlying data
sources. Multi-dialect adapters may provide different implementations of each of their
supported dialects. Custom implementations are bundled into a JAR file and shipped
alongside the adapter package. The bundles are registered within the adapters. The query
transformation process utilizes the adapter-/dialect-specific implementation of the func-
tions whenever necessary.

In addition to the above-mentioned implementation notes, we also assumed the following con-
straints: 1) The built-in functions skip NULL input values; 2) the input data submitted to the
statements and functions, as well as the result sets are immutable; 3) logical expressions use
effective Boolean value (early-out) evaluation pattern; 4) multiple aggregate calls per attribute
in a single expression are valid and possible-however, aggregate functions can not be nested in
each other or in other functions; and 5) aggregate functions accept only one parameter, which is
either a reference to an attribute of the incoming data record or a non-aggregate function call.

Expressions containing aggregate functions may have non-aggregate sub-expressions; how-
ever, the sub-expressions can not use the attributes of the incoming records. For example,
a : count(x) + math.sqrt(100) is a valid expression while b : count(x) + math.log(y) is
not. The reason for this is that the aggregation part needs the entire input stream, which makes it

139

CHAPTER 10. IMPLEMENTATION

impossible to pass the y to the math.log() function. In these scenarios, the non-aggregate part
is applied to the result of the aggregation at the end of computation.

If the effective perspective of a statement contains aggregate and non-aggregate attributes, the
non-aggregate ones build an implicit GROUP BY clause. The GROUP BY will include all of the
attributes that have not participated in the aggregate functions. It is worth noting that WHERE
clauses are executed before GROUP BY; hence, they do not have access to the aggregated at-
tributes.

140

System Evaluation

In this chapter, we evaluate the overall performance of the system from a variety of different
perspectives. We first explain, in Section 11.1, the evaluation methodology, including the objec-
tives, the experiments designed and conducted, the testing environment, and the data. Thereafter,
we elaborate on the individual evaluations.

In Section 11.2, we measure the time-on-task of a group of test subjects performing an assigned
task on QUIS and a tool set of their choice. We observe the time-to-first-query (see Defini-
tion 11.1). Thereafter, we demonstrate that the improvement in time-to-first-query does not
come at the cost of reduced performance of query execution. We explain QUIS’s performance
on heterogeneous data in Section 11.3 and evaluate its performance at scale in Section 11.4.

In order to evaluate the system from the users’ perspective, we report on the results of a user
study that we conducted in Section 11.5. The study required the test subjects to perform a spe-
cific task on QUIS and a baseline system and then provide their rankings of both systems using a
questionnaire. The study measures different aspects of system usability indicators in a realistic
daily work scenario. We define and observe six indicators: time-on-task, execution time, code
complexity, ease of use, usefulness, and satisfaction. While the first three are accurately measur-
able, the later three take the form of user opinions, which we analyze in order to derive insights
from. Because this was a detailed evaluation that generated a large set of supporting documents,
the most important materials are provided in Appendix C. Finally, in Section 11.6, we compare
the features of our language to that of SQL and the other languages studied (see Section 6.4) in
order to illustrate the language’s expressiveness.

Definition 11.1: Time-to-first-query is the total up-front preparation time required before the
first query can be issued. It includes cleansing, transforming, and loading data to the designated
query systems.

11.1 Evaluation Methodology

We evaluate different aspects of the system. For each, we design and conduct one or more
experiments. Each experiment may have its own method, input data, or tool set. However, in
this section, we introduce the commonalities.

141

CHAPTER 11. SYSTEM EVALUATION

11.1.1. Evaluation Data

Species Medicinal Value (SMV) Dataset: The SMV dataset is the equivalent of the Ecological
Niche Modeling use-case (Section 1.2.1 (Ecological Niche Modeling Use-Case)). It is stored
in a number of different sources. This dataset contains all of the data attributes and records
concerning species, medicinal uses, and species location observation data. The SMV’s dataset
schema consists of a species table with a one-to-many relationship to a locations table and
a many-to-many relationship to a symptoms table via a medicinalUses table. Each species
can be observed at many locations. Symptoms can be treated by many species, and each species
can treat multiple symptoms. The medicinal uses refer to the symptoms that the species can
treat.

Fungi Occurrences (FNO) Dataset: Fungi Occurrences is a dataset of observations of fungi
occurrences recorded between 1600 and 2015. It consists of 42 data attributes (including sci-
entific name, taxonomic classification, observation time, location, and metadata concerning the
recording time, individuals involved, and rights). The dataset is a composite of many other
datasets created by north European and American institutions merged and maintained by the
GBIF [GBI15a]. We chose two versions of the dataset (i) FNO-SML, which consists of 10M
records in a 5GB CSV file [GBI15b] and (ii) FNO-BIG, which consists of 651 million records in
a single 280GB CSV file [GBI16].

11.1.2. Tools

Table 11.1 shows a summary of the tools we used in the different experiments. We chose an
RDBMS and the R! system as our comparison baselines in order to demonstrate that QUIS per-
formance is comparable to well-known systems. RDBMSs are used in almost every domain and
have state-of-the-art performance, while R is widely used in scientific data analysis activities.

Tool Version | Purpose of Use

PostgreSQL 944 To execute SQL queries

RStudio Desktop 0.99.484 | To interact with R via GUI

R [R C13] 322 To execute R scripts

DBI [CENT14] 0.3.1 To interact with RDBMSs from R
RPostgreSQL [CENT12] 0.4 DBI implementation for PostgreSQL
QUIS-Workbench [Chal5] | 0.5.0 To execute QUIS queries in via GUI
R-QUIS [CYV] 0.5.0 To execute QUIS queries from R

Table 11.1.: The tools used in QUIS evaluation scenarios.

"http://www.r-project.org/

142

http://www.r-project.org/

11.2. MEASURING TIME-TO-FIRST-QUERY

11.1.3. Test Machines

We used the following hardware and software to run the experiments:

SMALL-MACHINE: Intel i7-2620M/ 2.70GHz/ 2 cores/ 64 bits, Storage: 250GB SSD Seq. R/'W
rate: 550/520 MB/s, Memory: 16GB, Java: 1.8, JVM Xmx: 8GB.

BIG-MACHINE: 16 cores/ 64 bits, Storage: 1TB NAS, Memory: 128GB, Java: 1.8, JVM Xmx:
128GB.

We performed the experiments on both machines. In order to isolate the results from the out-
of-control factors such as network latency, bandwidth, and stability, we mainly reported the
results obtained using the SMALL-MACHINE configuration. However, the results obtained from
BIG-MACHINE confirm the system behavior demonstrated on SMALL-MACHINE. In all of the ex-
periments that involve time measurements, we repeat each query five times, with an intervening
buffer flush, and report the average.

11.2 Measuring Time-to-first-query

The amount of incoming data is massive, and loading and preparing it for the first use may take
a remarkable length of time, while the validity or relevance of the data is unknown. In such
an uncertain situation, a user may prefer to determine whether the currently available data is of
any interest, and it should be necessary to determine this in a manner that is fairly rapid when
compared to the usual prepare, load, and tune procedure.

To better understand the costs associated with data preparation, we worked with a group of sub-
jects with various skills, i.e., data scientists from the BEXIS project, the authors of the species
niche modeling use-case, and master students enrolled in a research data management course.
The subjects were from different backgrounds, including bio-informatics, geo-informatics, com-
puter science, biology, and ecology. Each subject was provided with sufficient training to be able
to perform similar tasks comfortably before being assigned the task. We categorized the sub-
jects into three groups: (SG1), (SG2), and (SG3). We asked the subjects, independently of the
other groups, to create and load a full relational dataset from the SMV dataset (Section 11.1.1).
They were free to use the tool sets of their choice. We executed a set of test queries against the
resulting databases to determine the correctness of the setup databases.

For each group, we separately report the time required to complete each of the three prepara-
tory tasks: (T1) extracting, cleaning, and transforming the source data, (T2) creating the target
database schema, and (T3) importing the source data (from all of the data sources) into the tar-
get database (the time required to prepare the subjects and the computing environment is not
included in the measurements reported below.). Task T1 was performed by the subjects with the
assistance of tools, T2 was almost entirely completed by the subjects, and T3 was performed by
an automated script specified by the subjects.

143

CHAPTER 11. SYSTEM EVALUATION

QUIS, in comparison, requires none of these steps. However, it does require the establishment of
connections to these data sources and the establishment of corresponding bindings. We recorded
the time taken by each of our subjects to complete the three tasks as well as the QUIS ones and
report their averages per group in Table 11.2.

Task SG1 | SG2 | SG3 | Average
T1 45 56 37 46
T2 10 14 12 12
T3 1 1 1 1
Total ETL 56 71 50 59
Connection | 1.5 1.5 1 1.5
Binding 1 1 1 1
Total QUIS 25 | 25 2 2.5

Table 11.2.: Time-to-first-query observation result (minutes). SG is the subject group and T is
the task. Values indicate the average time spent by a subject group on a task. Each
group had two members. The measurements are rounded up to half a minute.

The results clearly indicate that the time-to-first query poses a serious burden on scientists.
SMV is a relatively small dataset (it has less than one million rows) with only 3 data sources.
Even in this scenario, QUIS reduced the time-to-first-query by a factor of 30; with larger, more
heterogeneous data sets, we expect QUIS to excel by an even greater margin. However, it is
worth mentioning that the cleaning task that the subjects completed during the data preparation
phase assisted them later while querying and consuming data. QUIS, on the other hand, while
it allows for fast startup, requires data workers to perform data cleaning during later steps, i.e.,
concurrently with the process of querying data. This is a part of QUIS’s design paradigm as an
agile querying system. The rationale behind this is the exploratory nature of the task at hand
and the dynamic structure of the data. The assumption is that the data worker will search for the
appropriate data in a large and changing dataset.

11.3 Performance on Heterogeneous Data

In Section 11.2, we observed that the in situ nature of QUIS’s design provides great savings in
terms of time-to-first-query. Next, we show that the reduction in time-to-first-query does not
come at the cost of an unreasonable increase in query execution time (see Definition 11.2). The
crucial issue that we need to study is the performance penalty paid for query execution by QUIS,
given that there is no time spent on data preparation. Thus, the main goals of our performance
experiments are as follows: (i) to determine whether QUIS has a reasonable execution time and
(ii) to observe how it scales when querying large datasets (Section 11.4).

Definition 11.2: Query execution time Refers to the user-observed (wall-clock) elapsed time
from when the user submits a query to the moment that the client application presents the last
record of the query result to the user.

144

11.3. PERFORMANCE ON HETEROGENEOUS DATA

The goal of this experiment is to study the system’s performance when querying heterogeneous
datasets. We measure the cumulative time required to run a sequence of queries on QUIS and
compare it with that of a set of chosen competitors. We designed experiment Exp. 1 to run the
ecological niche modeling use-case (Section 1.2.1) on the SMV dataset. It performs the following
steps:

1. For each species that has been observed in more than 30 locations and has at least one
medicinal use, select the species’ name and the number of symptoms it treats; and

2. Select 8% of the resulting records, where § is the selectivity parameter. Use the longitude
field to enforce the desired selectivity.

The experiment consisted of a set of scenarios, Exp. 1.0-Exp. 1.3. We designed each scenario
to execute the task on a different organization of the dataset. The data organizations are shown
in Table 11.3. The scenarios allowed us to study the impact of both individual data sources
and heterogeneity on QUIS’s performance. We use the heterogeneity index (HI) to indicate the
diversity of the data sources involved in a query. More specifically, HI is the number of distinct
data sources involved in a given query.

Scenario | HI | Data Sources
Baseline | 1 | DBMS

Exp. 1.0 1 | CSV

Exp. 1.1 2 | CSV, DBMS

Exp. 1.2 2 | CSV, Excel

Exp. 1.3 3 | CSV, Excel, DBMS

Table 11.3.: Data source settings for the performance on heterogeneous data experiment.

In addition, w designed a baseline scenario for comparison purpose. To run the baseline scenario,
we transformed and imported the experiment’s dataset into an appropriate relational model in
the chosen RDBMS (see Section 11.1.2). We also created primary and foreign keys, as well as
indexes. The relational schema used in this baseline scenario is shown in Figure 11.1.

We executed the baseline query with 0%, 10%, 30%, 50%, 70%, 90%, and 100% selectivity,
fetched the resulting records, and measured the execution time. The zero selectivity level was
used to capture the constant overhead of the query, e.g., for warm up, index scans, logging, and
security checks; the 100% selectivity level was used to exclude the performance gain achieved
through indexing. We wrote the QUIS equivalent of the baseline query, ran it on the scenarios,
and measured the query execution time. Figure 11.2 shows the query execution times of the
baseline and all of the scenarios in Exp. 1.

The Baseline chart depicts the linear response time of the baseline for different selectivities.
Exp. 1.0’s scenario shows a higher initial query time but outperforms the baseline on selectivi-
ties above 20%. Exp. 1.2 starts at a higher offset, having a similar trendline as that of Exp. 1.0,
and passes the baseline at selectivities of 55% and higher. The main factor that causes a longer

145

CHAPTER 11. SYSTEM EVALUATION

Locations = Species B
scolumns: Obzerved At | wCOILINAN:
Speciesld -bigint N 1|*PK Speciesld :bigint
Longitude :real * Hame varchar{200}
Latitude :real
|
Treats
|N
Symptoms | Hedicinal Uses B
wcolumn: Treated By | “column::
*PK Id :bigint 1 N Symptomid :bigint
* Name :varchar{100} Speciesid -bigint

Figure 11.1.: The relational model of the SMV dataset prepared for the baseline. Each species
can be observed at many locations. Symptoms can be treated by many species and
each species can treat multiple symptoms. The medicinal uses are the symptoms
the each species can treat.

Baseline — —Exp 1.0 +weeeee Exp 1.1l =----- Expl2 ---Exp13

16000
14000
12000
10000
8000
6000
4000

2000

Query Execution Time {milliseconds)

0 10 30 50 70 90 100
Selectivity (%)

Figure 11.2.: QUIS performance evaluation on heterogeneous data. Here, Exp. 1.2 shows
QUIS’s performance on the original data, whereas Exp. 1.0, Exp. 1.1, and
Exp. 1.3 denote QUIS query execution times for different data source combina-
tions. The baseline is the performance on PostgreSQL.

146

11.3. PERFORMANCE ON HETEROGENEOUS DATA

——Baseline - Diff(Mean, Baseline) - --Exp 1.Avg
12000

10000
8000
6000
4000

2000

Query Execution Time {milliseconds)

Selectivity (%)

Figure 11.3.: QUIS’s average performance versus the baseline. Here, Exp. 1. Avg is the average
QUIS performance for all scenarios. The baseline is the PostgreSQL performance,
and Diff(Mean, Baseline) is the difference between the two.

initial query time for lower selectivities is the fact that QUIS does not use indexing; hence, it
needs to touch a subset of the columns for all records to be able to evaluate the WHERE clause
predicates (and join keys if they are present in the query).

The QUIS scenarios Exp. 1.1 and Exp. 1.3, which involved access to the relational database,
showed a steady performance, with a similar trend to that of the baseline. However, they were
slower than the baseline by an average of 5.75 seconds. This is the penalty that QUIS pays for
supporting join operations on heterogeneous data sources.

The Exp. 1.Avg chart in Figure 11.3 shows QUIS’s average performance for all of the Exp. 1’s
scenarios. It is an indicator of QUIS’s performance when applied to heterogeneous data. Al-
though the chart scales linearly alongside the baseline, it keeps a distance from the baseline.
However, as shown by the Diff(Mean, Baseline) chart, it decreases for larger selectivities.

As expected, QUIS had a higher query surcharge, i.e., the query time at selectivity 0% divided
by the query time at selectivity 100%. This is because the QUIS engine creates a dynamic
operator tree per query statement and compiles it on the fly. This process has a constant cost
that depends upon the number and complexity of statements, schema, and capabilities exposed
by the corresponding adapters, but is independent of the data.

For selectivities greater than 10%, the best, the average, and the worst query processing times
for QUIS were respectively 10%, 47%, and 105% slower than their baseline counterparts. We
omitted selectivities below 10% in order to isolate the impact of the constant time needed by
QUIS dynamic code compilation. QUIS’s best overall run was two times faster than the baseline,

147

CHAPTER 11. SYSTEM EVALUATION

while its worst run was seven times slower. During the repetition of the measurements, we found
that baseline times had negligible deviation. In comparison, QUIS showed an average of 23%
deviation between its fastest and slowest runs per scenario.

We additionally compared QUIS’s performance with a non-relational query system, ViDa [K™15].
ViDa uses RAW [K ™ 14] for querying raw data. We reproduced the data and the queries of the
RAW experiment? and ran them on similar hardware, namely BIG-MACHINE. In addition, we
used two storage configurations to observe the network effect.

On average, running the reproduced query on QUIS for all selectivity levels took 151 seconds
on a local SSD and 226 seconds on a networked RAID system. RAW reported a 170-second
response time. The RAW experiment used memory-mapped files to improve performance by
allocating more memory. Disabling this feature caused the query to be approximately three
times slower. QUIS uses a bound memory mapping that sets an upper limit of 2GB to the
mapped portion of the designated file and uses buffering techniques to process the mapped data.

11.4 Scalability Evaluation

In addition to evaluating QUIS’s ability to query heterogeneous data, we studied its scalability
under datasets with a larger numbers of records and attributes. Here, we compared QUIS with
R and DBI (see Section 11.1.2). The SMV dataset, though heterogeneous, was not large enough
for this purpose; thus, we ran our scalability experiment on FNO, a larger dataset from the same
environmental science use-case. While certain scientific datasets are massive in size (e.g., in
astrophysics), other scientific datasets are often reported to be relatively small [Rex13]. This
is consistent with the datasets that we have observed in our collaborations with Biodiversity
Exploratories [Bio]. Thus, we ran this experiment on the FNO-SML dataset. However, we proved
the system behavior on the larger variant, FNO-BIG.

We use the dataset to compute the temporal distribution of the frequency of occurrences of
globally observed fungi on a yearly basis. This is a basic practice in environmental science that
illustrates the fungi’s histogram. We designed and ran experiment Exp. 2 to perform the above-
mentioned task. Preparing the data required for such a task required counting the number of
occurrences per fungus per year and ordering the results for each fungus by year.

We divided the experiment into three scenarios: Exp. 2. Baseline, Exp. 2.R, and Exp. 2. QUIS.
The Exp. 2. QUIS scenario was conducted in two settings, one in which the workbench was used
and one in which the R-QUIS package from inside R was used. While the Exp. 2.Baseline
used a relational counterpart of the dataset, we kept the FNO dataset in its original form for the
Exp. 2.QUIS and Exp. 2.R scenarios.

2We asked the authors of ViDa to access their system/data to conduct a comparison to QUIS. Unfortunately neither
the system nor the data could be shared at the time of our request, but they advised us that running the RAW
queries as explained in [K* 14] on a regenerated version of their data would represent a fair comparison.

148

11.5. USER STUDY

For the baseline, we used PostgreSQL’s batch insert utility to load the dataset into a table. In
addition, we added indexes on all of the attributes used in filtering, ordering, and group by
clauses, namely year, scientificName, and decimalLatitude. We used the year attribute
as our selectivity parameter. Since the year attribute was originally of the string type, we added
an integer equivalent of the year (named intYear) to the table (and also built an index on it)
to improve efficiency. Loading the data and indexing it took 763 and 305 seconds, respectively.
Unfortunately, the standard R functions used to load a CSV file took too long to respond, so we
omitted them from the final results.

e DBl (Baseline) ==<R-QUIS ++-++QUIS

)
35 300
c
S

250)
m - an - =
& "-———-—
v B

200 B
£ .

-

h Illl‘...l'.l..l...llll
E 150 _—
=)
S
g 100
=
L
& 50
[
5

0

0 10 30 i, » . .

Selectivity (%)

Figure 11.4.: QUIS’s performance results when applied to large data. Here, DBI is the baseline,
QUIS is the QUIS’s query execution times run from its default workbench, and
R-QUIS is the R package that utilizes QUIS to access data.

The results are depicted in Figure 11.4. The figure shows that the performance of QUIS’s query
execution engine remains fairly constant over all the selectivity levels, both when called from its
own workbench (the chart labeled QUIS) or from within R (the chart labeled R-QUIS). However,
R-QUIS pays an extra cost to transform the query results into R data frames and it is thus slower.
At 30% selectivity, all of the scenarios approach the neighborhood of 100 seconds and diverge
thereafter. Our inspection revealed that this is the point at which the PostgreSQL query planner
switches from an index scan to a table scan. This is also the point at which QUIS starts to
outperform the DBI.

11.5 User Study

In the previous sections of the evaluation chapter, we showed that our QUIS proof of concept im-
plementation is functional, demonstrates adequate performance, and is scalable. In this section,

149

CHAPTER 11. SYSTEM EVALUATION

through the analysis of the results of a user study, we show that QUIS is usable and useful in real-
world application scenarios. To do so, we conducted a user study, in which a group of subjects
were assigned a task (see Appendix C.2 (Task Specification)) to perform on both the baseline
system and on QUIS. The task required working with heterogeneous data, joining, aggregation,
and transformation (see Appendix C.3 (Task Data)). Our goal was to prove that QUIS’s perfor-
mance on a defined set of indicators is meaningfully superior to that of the baseline. To clarify
the scope of the study and provide a basis for statistical analysis, we defined six indicators and
set the data-obtaining methods for all of them. The indicators are time-on-task, machine time,
code complexity, ease of use, usefulness, and satisfaction. The subjects were randomly chosen
to begin with either the baseline or QUIS. The definitions of the indicators and the procedures
are described in detail in Appendix C.1 (User Study Methods).

For each indicator I;, we designed a null hypothesis HO; : Zp, # T, — [y, = [ic;> in Which
b, and c are the baseline and the introduced change, respectively. The hypothesis declares that
having different sample means does not imply a meaningful difference in the population mean.
In other words, each H0; claims that the change introduced does not meaningfully improve I;.
Our desired result would be that the study rejects these hypotheses.

We designed a questionnaire intended to collect the subjects’ responses to a set of questions
designed to gauge the six indicators (see Appendix C.4 (Questionnaire)). We called for volunteer
participation using different channels, e.g., R user groups, project members, colleagues, friends,
and the faculty’s students. In total, we received 32 task results, which included the scripts and
the answer sheets. Our subjects were highly diverse in many dimensions, e.g., nationality, field
of study, age, and gender. Among the participants, 62% were male and 38% were female,
ranging between 24 and 38 years of age. More than 55% were German. The rest were from
various countries including China, Iran, Russia, South Korea, and Ukraine. The study was
conducted in a prepared laboratory. However, eight subjects managed to finish the assignment
remotely. About 88% were master’s students, while the other 22% were either PhD students or
PhD holders.

Upon completion of the survey, we collected the answer sheets and prepared the raw data accord-
ing to the requirements of the corresponding indicators. The resulting tables for both scenarios
are presented in Appendix C.5 (Raw Data). We chose to use the t-test method, as we wanted to
decide on the population mean based on the sample mean. Based on the fact that our subjects
were identical in both evaluation scenarios, we had to use the paired samples t-test method. This
method requires the data to expose a normal distribution. As our sample size n = 32 < 50,
we used the Shapiro-Wilk [SW65] techniques to test the normality. The test results, as shown
in Table 11.4, indicate that all of the significances (the sigs, column), are greater than 0.05 thus
pass the test.

Table 11.5 shows the analysis of the null-hypotheses tests in that the t-values and their signifi-
cances are computed for () — R. The analysis clearly shows that QUIS has driven a meaningful
change to the baseline on all of the indicators, with the exception of ease of use (EU). In the
following paragraphs, we briefly explain the survey results.

150

11.5. USER STUDY

X X o v Sigsw
49.563 | 50.000 | 7.075 | 50.060 | 0.055
37.125 | 40.000 | 7.183 | 51.597 | 0.060
15.406 | 15.500 | 1.932 3.733 | 0.062
12.750 | 12.500 | 3.750 | 14.065 | 0.069

3.935 3.935 | 0.427 0.183 | 0.072
3.318 | 3.386 | 0.342 | 0.117 | 0.067
-0.464 | -0.500 | 0913 0.833 | 0.341
-0.223 | -0.214 | 0944 | 0.891 | 0.514
-0.224 | -0.083 | 1.202 1.446 | 0.135
0411 0417 | 1.127 1.271 | 0.055
0.568 0.667 | 0.849 0.720 | 0.132
0.151 0.500 | 1.013 1.026 | 0.067

Indicator

Time-on-task (TT)

Machine Time (MT)

Code Complexity (CC)

Ease of Use (EU)

Usefulness (UF)

Satisfaction (SF)

0| m|o| || =|o| =0l =0 8

Table 11.4.: Descriptive statistics of the survey results. sc: evaluation scenario, X: mean, X:
median, o: standard deviation, v: variance, and sigs,: the Shapiro-Wilk normality
test’s significance. The sigg, value is above 0.05 for all the indicators, which means
they pass the normality test required by the paired samples t-test.

Hypothesis | t-value | t-sig | HO result Xq-Xg | boost%
HOrr -6.934 | 0.000 Rejected | -12.438 25
HOyt -3.790 | 0.001 Rejected | -2.656 17
HOcc -7.186 | 0.000 Rejected | -0.617 16
HOgy -2.022 | 0.052 Holds 0.241 51
HOyr 2.165 | 0.038 Rejected 0.635 283
HOgr -2.247 | 0.032 Rejected | -0.417 -73

Table 11.5.: User study hypothesis test results for t(31). t-sig: P(T<=t) t-significance (two-
tailed). The t-values and their significances are computed for) — R.

Time-on-Task (TT): The t-test rejects HOpr with a t-sig of zero, as shown in Table 11.5.
This conveys the message that the time-on-task indicator has certainly been improved. The
majority of the subjects used the total planned TT allocated quota of 45 minutes to accomplish
the baseline scenario. They could exceed the quota by an additional five minutes. However,
on average they spent 25% less time when using QUIS, which decreased the baseline mean of
49.6 minutes by more than 12 minutes. The subjects’ time-on-task chart in Figure 11.5 clearly
depicts the difference. In addition, the histogram in Figure 11.6 shows that not only does QUIS
have more values around its mean but that it also shifted the mean towards the left.

Machine Time (MT): The t-test rejects HOyr with a t-sig of 0.001. This means that QUIS
executes queries more rapidly than the baseline. Table 11.5 shows an average of a 17% per-
formance boost on the machine time. However, it is worth mentioning that QUIS, as depicted
in Figure 11.8, has a near uniform distribution of frequencies over a wider span. This fact

151

CHAPTER 11. SYSTEM EVALUATION

,,,,,,,,,,,,,,,,,,,,,,,,,,,, TT per Subject T Histogram
20
Ee: z
z g 10
E a E- mR
k. = 0 =q
= 10 20 30 40 S0 GO
——F —.—(Time on Task (min)

Figure 11.5.: comparison chart of the time-on- Figure 11.6.: Histogram of the time-on-task in-
task indicator per subject. dicator on the baseline and QUIS.

is also reflected by the fluctuating line chart in Figure 11.7 and the larger standard deviation
shown in Table 11.4. As we ran the subjects’ tasks on a reference machine, this behavior can
be attributed to our implementation techniques, especially on-the-fly compilation, schema and
object caching, and also Java’s garbage collection. This indicates that QUIS’s query execution
engine and implementation of adapters are not sufficiently mature to remain within a well-bound
response time. The baseline, however, demonstrates superior stability here.

MT per Subject

MT Histogram

= S

mQ
3 10 1z 14 16 18 20 22
Machine time (sec)

[
Q

=
(=]

Freque ncy

=]

Machine Time (sec)

Figure 11.7.: Comparison chart of the machine Figure 11.8.: Histogram of the machine time
time indicator per subject. indicator on the baseline and
QUIS.

Code Complexity (CC): The t-test rejects HOqc with a t-sig of zero. The code complexity
in the baseline is not only on average higher than that of QUIS but also fluctuates more (see Fig-
ure 11.9). This is because the subjects were required to use multiple packages to perform joins
and aggregates, and access the different data sources; in addition, they had to use at least two lan-
guages, R and SQL, in order to complete the task. The histogram chart depicted in Figure 11.10
confirms this fluctuation. While the majority of the occurrences were between 3.0 and 4.0 for
QUIS, the baseline’s code complexity indexes were distributed over the 3.0 — 4.6 range, with a
lower frequency per point. Overall, QUIS reduced code complexity by 16%.

Ease of Use (EU): The t-test does not reject HOgy, and it holds with a marginal t-sig value
of 0.052. The observed difference between the sample means (0.241) is not convincing enough
to claim a difference in terms of population means. Although both the systems show a very
close mean per subject, as shown in Figure 11.11, QUIS has a more uniform histogram, which
indicates the subjects’ uncertainty about its usefulness (see Figure 11.12). The baseline has

152

11.5. USER STUDY

CCpersubject CC Histogram
s |
R 10
: ‘ ' [
£ g mR
H £
5 “ o EQ
El """"""""""""""""""""" PR R W W W W W B B e B
R - =T T]
——— —— Code Complexity

Figure 11.9.: Comparison chart of the code Figure 11.10.: Histogram of the code complex-
complexity indicator per subject. ity indicator on the baseline and
QUIS.

a slightly more normal histogram. Interestingly, QUIS’s mean is slightly greater than of the
baseline. This indicates that an effort to improve the EU would likely result in it passing the test.

In general, tests that measure human behavior have lower confidence. We can refer to many
factors that may have contributed to this result; For example, embedding QUIS’s SQL-like syntax
in R negatively affects ease of use. Although we conducted the study using a native R package,
R-QUIS, and attempted to minimize the mixture of languages, it is likely the major factor that
weakened the results. Additionally, providing richer documentation during the study and from
inside the IDEs could improve ease of use. Furthermore, more accurate and to-the-point error
messages, as well as code completion features, are needed.

Mean EU per Subject

EU Histogram

[
=]

Mean Ease of Use

Frequency
=
=] =]
| |
=)

Ease of Use

Figure 11.11.: Comparison chart of the ease of Figure 11.12.: Histogram of the ease of use
use indicator per subject. indicator on the baseline and
QUIS.

Usefulness (UF): The t-test rejects HOyr with a t-sig of 0.038. This is an excellent indicator
that the subjects felt that QUIS was useful. Indeed, QUIS dramatically improved this indicator.
Not only are its mean and median greater that of the baseline but it also obtained a positive mean
(0.411), while the baseline suffered from a negative value of —0.244 for usefulness.

Despite its proven improvement, QUIS’s per-subject mean responses, shown in Figure 11.13,
reflect the fluctuations in the subjects’ opinions. This pattern is also reflected in the histogram
shown in Figure 11.14. The histogram shows two condensed areas around 0 and 2 that although
both positive show a degree of fragmentation among the subjects. One possible reason for this
dual peak histogram can be driven from the assumption that those who voted near zero were
mostly the subjects who were satisfied with R and who used conventional single data source

153

CHAPTER 11. SYSTEM EVALUATION

analyses. These categories of data workers frequently prepare their data in advance, possibly
using different systems, and perform their analyses on integrated data sets using tools such
as R. The other category of the subjects saw QUIS as being more useful due to its ability to
obtain and query data from multiple data sources simultaneously and on-the-fly. This class of
data workers usually obtains raw data and tend to do Extract, Transform, Load, and Analyze
(ETL-A) operations in an exploratory manner. QUIS represents a better fit for these kinds of
usage scenarios.

M UF Subject .
,,,,,,,,,,,,,,,,, ean UF per subjec UF Hlstogram

[
(=]

Frequency
=
Q =]
||
el

(X
e
[=]
[
%}

Mean Usefulness

N g ze=q Usefulness

Figure 11.13.: Comparison chart of the useful- Figure 11.14.: Histogram of the usefulness in-
ness indicator per subject. dicator on the baseline and
QUIS.

Satisfaction (SF): Despite the rejection of the HOgr null hypothesis by the t-test with a t-sig
of 0.032, QUIS’s mean difference to the baseline is —0.417. This means that QUIS negatively
affected the satisfaction indicator relative to the baseline. Therefore, we confirm that QUIS
failed on the satisfaction indicator. Figure 11.15 conveys the overall fluctuating pattern of the
subjects’ responses. However, it illustrates that QUIS should have a lower mean. Table 11.4
shows that QUIS and the baseline have a close median but a remarkable mean difference. This
mean difference is most likely rooted in the long tail of the {—2..0} responses, as depicted in the
satisfaction histogram of Figure 11.16. Despite this rejection, QUIS has obtained a satisfaction
mean of 0.151, which we consider a step forward for an infant system implemented as a proof
of concept.

SF Histogram

[
=]

Mean Satsfaction
Freque ncy
=
(=] =]
|
| |
=)

[
[t
[=]
[
ra

ST S B - Satisfaction

Figure 11.15.: Comparison chart of the satis- Figure 11.16.: Histogram of the satisfaction
faction indicator per subject. indicator on the baseline and
QUIS.

Overall, we found out that, while the measured indicators (TT, MT, and CC) illustrated a clear
boost, the observed ones (EU, UF, and SF) communicated mixed results. For example, UF shows
a dramatic increase in QUIS’s usefulness. However, the EU and SF convey the message that

154

11.6. LANGUAGE EXPRESSIVENESS

the subjects did not think that QUIS was easier to use than the baseline and that they were not
satisfied with it. Considering that they had only a brief introduction to QUIS and that the tool
itself was a proof of concept with technical, UI, and documentation issues, we consider the
survey findings to be in support of our solution.

11.6 Language Expressiveness

In Table 11.6, we compare the features of the QUIS’s language with their counterparts in the lan-
guages studied in Section 6.4. The languages previously discussed provides a solid foundation
for the comparison and indicate the expressiveness of QUIS’s language. The feature compari-
son is performed at the language level. Therefore, the level of conformance may differ from
implementation to implementation.

It is worth mentioning that some of QUIS’s language constructs, such as perspectives and bind-
ings, are QUIS-specific concepts that have no counterparts in other languages. These features,
while useful, are not part of the comparison.

The projection feature supports explicit, implicit, and inline perspectives. Implicit projections
can be inferred form either previous queries or the underlying data sources. One of the main
contributions of this feature is the ability to extract and construct a complete projection from
external sources. Although SQL and SciQL are marked as supporting implicit projection con-
struction, they only accomplish this using their own data sets, namely table and arrays.

The selection feature has access to perspective attributes as well as physical fields of the under-
lying data containers. This allows QUIS to filter queried records based on variables that are not
intended to appear in result sets. At the same time, QUIS fully supports projection aliases in the
selection predicates, a feature that some RDBMSs, e.g., PostgreSQL, do not support.

QUIS allows a data worker to declare and use heterogeneous data sources, a feature no other
system can match. In addition, it supports query chaining, meaning that the result of a query
can be fed into one or more following queries. On top of its data source selection features,
QUIS supports all types of joins over any combination of heterogeneous data. QUIS not only
retrieves data from heterogeneous sources but is also able to persist query results into different
data sources and, on request, in various formats. It can also visualize the results. Furthermore, it
integrates this feature into the language, and thus makes it always available to the end-user. It is
also noteworthy that SPARQL and Cypher, although they operate on their own respective data
models, return query results in a tabular form. They may construct compound cell values for the
matched elements with multiple attributes.

Last, but not least, QUIS is equipped with a path expression language that enables it to uniformly
express tabular, hierarchical, and graph paths and patterns. The paths can traverse in any valid
direction, have cardinality, and include conditions and sequences, touch elements, attributes, and
relations, as relation properties. It is also possible to express sub-trees, sub-graphs, and cycles.

155

CHAPTER 11. SYSTEM EVALUATION

QUIS SQL SPARQL Cypher SciQL

PROJECTION

Implicit from the data v v v X v

Implicit from other queries v v v X v

Explicit projection v v v v v

Use of expressions v v v v v

Use of aggregates v v v * v

Use of multi-aggregates v v v * v
SELECTION

Use of expressions v v v v v

Access to the projection’s aliases v * X X X
DATA SOURCE

Heterogeneous data querying v X X X X

Chained query results 4 X X X X

Sub-queries X v v v v

Homogeneous joins v v v * v

Heterogeneous joins v X X X X
QUERY TARGET

Tabular result set 4 4 4 v v

Hierarchical result set X X X X X

Graph result set X X X X X

Homogeneous persistence v v v v v

Heterogeneous persistence 4 X X X X

Visualized result set v X X X X
RESULT SET PAGING

Skip on objects v * v v v

Take objects v * v v
ORDERING

NULL ordering v 4 X X v

Table 11.6.: Comparison of QUIS’s features with those of the related work. Only the important
features that are supported in different ways are shown. % indicates partial support
or implementation variety.

156

Part IV.

Conclusion and Future Work

157

This part concludes this dissertation. In Chapter 12, we briefly reiterate our assumptions, the
solution we provided, and the results of the evaluation. Thereafter, we bring the dissertation to a
close by reviewing its achievements and the extent to which the hypothesis is satisfied. Finally,
in Chapter 13, we examine a set of important directives for future work.

159

Summary and Conclusions

We explained, and with the aid of a deep literature review, demonstrated that scientific data is
stored using different representations, with various levels of schema, and changes at different
rates. In addition, we illustrated that the software systems used to manage and process such data
are incompatible, incomplete, and diverse. We also established that data workers often have to
integrate data from heterogeneous sources in order to conduct the end-to-end processes that are
required to obtain meaningful results. Their usual patterns of dealing with data differ from those
of business applications. Scientists usually do not need an entire set of available data; rather,
their portions of data that they require change over the course of their research. This exploratory
nature prevents scientists from deciding on data schemas, tool sets, and pipelines during early
stages of their research. They usually need to perform data integration not only to prepare data
for planned analyses but also to enable various tools to function together in pipelines or work-
flows. However, as discussed, the two classical approaches to data integration, i.e., materialized
and virtual integration, do not solve these scientific data management and processing problems.

We identified the concept of data access heterogeneity as an important root-cause of the data
integration problem. This term refers to diversity in terms of the computational models (e.g.,
procedural and declarative), querying capabilities, syntaxes, and semantics of the capabilities
provided by different vendors or systems, data types, and presentation formats of query results.
Therefore, assuming data workers (Definition 1.1) to be the principal stakeholders, in Chapter 3
(Problem Statement) we formulated and established boundaries for the problem. Supported by
numerous studies, we argued that this is a multi-dimensional problem that is rooted in hetero-
geneity in data organizations (Definition 1.2), as well as in data management systems. Further-
more, we observed that these heterogeneities are still in the diverging phase and will continue for
at least the following decade. Based on this reality, we offered a solution that embraces data and
system heterogeneities. Our suggested solution draws an abstraction layer on top of a chosen
heterogeneous environment in order to provide an integrated and unified data access mecha-
nism. The term “unified” guarantees that syntax, semantics, and execution of input queries
remains identical throughout the heterogeneous environment. To address various requirements,
we divided the solution into three components: declaration, transformation, and execution. We
designed a declarative language intended to provide an expressive interface for data workers to
define and declare their data retrieval, processing, and persistence requirements independently
of underlying data organization, data sources, and the various capabilities of such sources. In
order to guarantee the execution of queries written in our suggested unified language, we also

161

CHAPTER 12. SUMMARY AND CONCLUSIONS

specified a unified execution mechanism. This execution mechanism promises to fully execute
all of the language’s constructs, regardless of the capabilities of the underlying concrete data
management systems. Between these two components, we introduced a query transformation
component, the main role of which is to transform user queries written in our unified language
into a set of appropriate computational models that the execution component can seamlessly
execute. These components are orchestrated by a query execution engine. They jointly provide
important features, such as in-situ querying, heterogeneous joins, query complementing, and
polymorphic result presentation.

We implemented QUIS to prove the feasibility of the suggested solution. QUIS is an agile query
system that is equipped with a unified query language and a federated execution engine that
is able to run queries on heterogeneous data source in an in-situ manner. Its language extends
standard SQL to provide advanced features, such as virtual schemas, heterogeneous joins, and
polymorphic result set presentation. QUIS provides union and join capabilities over an unbound
list of heterogeneous data sources. In addition, it offers solutions for heterogeneous query plan-
ning and optimization.

This proof-of-concept implementation greatly satisfied this thesis’ hypothesis that a universal
querying system would prove both feasible and useful. The hypothesis identified the following
three objectives:

* To provide a unified data retrieval and manipulation mechanism on heterogeneous data
that is independent of data organization and data management;

* The provided mechanism should be expressive enough to support the core features of the
most frequently used queries; and

* The mechanism should reduce the time-to-first-query while maintaining reasonable per-
formance for subsequent queries, be scalable, and be useful in real-world scenarios.

Unified data retrieval was achieved, as discussed in Section 6.5 (QUIS Language Features)
and summarized in Chapter 9 (Summary of Part II). We conducted a series of experiments
and surveys intended to demonstrate that the performance (Section 11.2: Measuring Time-to-
first-query) and (Section 11.3: Performance on Heterogeneous Data), scalability (Section 11.4:
Scalability Evaluation), and usefulness (Section 11.5: User Study) requirements were satis-
fied. The expressiveness of the suggested language was examined in Section 11.6 (Language
Expressiveness).

In the course of this thesis, we realized the features required by the solution, satisfying the re-
quirements and thus the objectives. Furthermore, we introduced a handful of novel algorithms
and techniques that not only fulfill our requirements and ensure unified query execution but can
also be generalized and used in other systems. For example, our query complementing algo-
rithm detects capability mismatches between an input query and a designated data source. The
difference is then complemented by an automatic and transparent mechanism, allowing the sys-
tem to fully execute any input query. It also enables the adapters to provide various levels of

162

support for the query language and to evolve over time. An interesting capability of our so-
lution is its dynamic query compilation, packaging, and execution. While the transformation
component generates a concrete counterpart of each and every input query, the execution com-
ponent groups them together based on their data dependencies and compiles them on-the-fly
into standalone jobs. These jobs are shipped to the execution engine and can be easily triggered
to launch and run. These techniques eventually led to the concept of OFF-DBMS (on-the-fly
federated DBMS). Meanwhile, these techniques produced two other remarkable benefits: First,
jobs can be shipped to remote data. This yields an unmatched performance gain for big data,
data repositories, data centers, and wherever access to data is restricted. Second, the jobs can
be maintained alongside research findings for reproducibility. Considering the engine’s small
footprint, its open-source and free licensing scheme, and its self-contained nature, it would be
easy to maintain the jobs (and the engine) as part of the publication of research.

Among our optimization rules, the weighted short-circuit evaluation (see Section 7.4.1.7) takes
into account the cost of executing each node in a query’s predicate evaluation tree and executes
the cheapest path. This is a remarkable performance improvement that can be generalized and
utilized by other DBMSs. Additionally, under some circumstances, it could also be used in the
compilers of imperative languages.

One of the heterogeneity dimensions of various systems is the manner in which each system
expresses access to data. Our universal path expression grammar (see Section 6.5.1.5) relieves
its users from the need to be bound to data persistence and serialization variety. They are able
to freely express access to tabular, hierarchical, and graph data using a single unified syntax and
leave the complexity of understanding and mapping them to the actual data to QUIS’s transfor-
mation component.

QUIS’s perspectives and the polymorphic result presentation technique decouple data workers’
processes from the mechanics of data organization. A perspective creates a late-bound virtual
schema that is appropriate for the logical flow of the process and conceals the actual underlying
data source, data types, formats, and units of measurement. At the other end, the result set is also
presented in the structure and form requested by the data worker. The data structure complies
with the bound effective perspective; moreover, it can be presented in either tabular or visual
forms. Furthermore, the data can be serialized to formats that are consumable by external tools.

163

Future Work

The goal of this thesis was to demonstrate the feasibility of a unified execution system in order
to illustrate the benefits and the potential of a heterogeneous agile querying system that operates
on a mixed federation of data sources with multi-dimensional heterogeneity. Achieving this goal
required us to consider a large number of different research issues and involved the application
and adoption of a wide range of techniques. We decided to focus on the core elements of
our suggested solution and provided a proof of concept with enough evidence to indicate its
feasibility and usability. This assisted us to remain within the defined scope of the developed
hypothesis. We expect that the contributions of this thesis can be extended and improved in
several directions. In the rest of this chapter, we briefly identify possible future directions.

Cost-based query optimization: In Section 7.4, we introduced our rule-based optimiza-
tions and justified our approach to building a zero-knowledge query optimizer. However, cost-
based query optimization has it merits [Cha98]. The challenge with cost-based optimization is
applying it in heterogeneous data environments, in which the structure of data is not known to
the optimizer in advance [ACPS96]. In QUIS, cost-based query optimization can be done at the
language and/or adapter level.

Adapters have knowledge of their own managed data organizations and are the best places in
which to perform data-source-specific optimizations. Based on each designated data organiza-
tion, adapters may use different techniques to compute query costs. The cost functions could
require a query engine to generate and maintain metadata and statistics. For example, improv-
ing access to a CSV file may rely on maintaining individual or clustered mapping to the field
positions [ABB"12].

Moreover, other types of cost functions that better describe a specific data organization or es-
timate cost using indirect indicators are emerging. Adaptive partitioning [OKA*17] observes
data access patterns and dynamically decides to partition the data, and indexes the partitions it-
eratively. In contrast to conventional optimization techniques that rely on cardinality estimation
based on pre-computation, progressive optimization suggests gradual and concurrent (to query
execution) cost estimation and adjustment [EKMRO06]. However, the frequency and the cost of
such re-optimizations remain high. Indirect cost estimation offers a cheaper re-optimization.
For example, it is possible to use performance metrics to build a model for rapid estimation
during the query execution of in-memory databases [ZPF16]. Adapters, as well as QEEs can
incorporate these kinds of cost functions.

165

CHAPTER 13. FUTURE WORK

Visualization recommendation: Visualization is an important component of the presenta-
tion and communication of scientific research [War12]. Selecting an appropriate form of visual-
ization is as important as the information that will be communicated via the chosen visualization.
The search space required to find and select an appropriate visualization grows with the amount
of data and the increasing variety of visualization techniques [CEH09]. Therefore, offering
assistance in choosing proper visualization would represent a value-added service for scientific
data exploration tools. Recommendation systems have been integrated in many domains for
some time now [KKR10, KR14]. Data science could reap real benefits from such recommen-
dation systems. Providing visualizations of data in a (semi-)automatic fashion based on the
characteristics of the data and queries, as well as historical information and user feedback, could
meaningfully improve the usability and satisfaction of any data analysis system [KOKR15].

Vartak et al. [VHS T 17] classified the factors that a system that provides visualization recom-
mendations should possess: Such a system should consider data characteristics, the intended
task or insight, semantics and domain knowledge, visual ease of understanding, and user pref-
erences and competencies. Many of these factors can be, to a great extent, extracted from data
and queries. The implicit and/or explicit user responses to previous visualizations can be ac-
cumulated and used to offer superior recommendations. Furthermore, semantics and domain
knowledge can be acquired by the integration of general purpose and domain-specific ontolo-
gies [GSGCO8]. However, visualization recommendation is not an easy task, particularly in the
presence of user-centric factors such as usability, scalability, quality, and causality [Che05].

Deep complementing: A number of possible improvements and extensions to our proposed
approach refer to the query complementing concept introduced in Section 7.3. As explained pre-
viously, although it can theoretically traverse the input query to its stem level, the query comple-
menting process currently operates only at the level of the input query feature. In other words,
the transformation component negotiates the features with the adapters and determines whether
they support the entire feature as a unit. Although this mechanism is good enough for most
scenarios, a dynamic and fine-grained query complementing algorithm capable of transforming
sub-features or even elements such as functions and operators would enhance the overall perfor-
mance of a system on weak data sources as well as on weak adapters. One such improvement
could be to decompose the predicates to their conjunctives and evaluate which segments could
be pushed to the data source.

Schema mapping: We perform a linear expression-based schema mapping between the at-
tributes of perspectives and their counterparts in underlying data sources. Although our path
expression is able to express hierarchical and graph-shaped paths and patterns, the schema-
mapping techniques utilize it only partially. This represents an extension point to the language
that could enable it to express hierarchical and networked data. Incorporating this extension
would allow data scientists to easily target XML, JSON, and social data. It would also open
the door for life science disciplines to express molecules, proteins, and chemical formulas.
Furthermore, effective schema-mapping techniques, either in the form of complete [MMP ™11,

166

BKCS10, GJSD09] or partial mappings [KOKS15], could be incorporated into QUIS’s perspec-
tive declaration to assist data scientists to (semi-)automatically describe their data.

Query shipping and remote execution: We were able to transform input queries and
compile them on-the-fly to build a set of natively and independently executable jobs. The jobs
are serialized to IO, storage, or networks. We did this primarily for performance reasons, but
these techniques could be used in many other scenarios. For example, a job can be persisted
with the data or the results as a matter of proof or for purposes of reproducibility [VBP13].

The availability of clouds and data centers empowers Jim Gray’s recommendation [SB09] that
processes be sent to data. This, in turn, implies that all process aspects should be transferred
to the data, including authorization and configuration information. One useful application of
QUIS’s jobs is that they can be shipped to data centers for remote execution. As the jobs are
standalone, self-contained, stateless execution units that run on JVM, dispatching them to data
centers should be trivial. However, jobs may be designed to work in a flow. Therefore, inter-job
communication and the orchestration of execution of jobs in a distributed environment could
represent an interesting topic of research in data processing and in distributed software develop-
ment. Security concerns should be added to the complexity of such an ecosystem.

Real-world application: It would be desirable to deploy our approach in a real-world sys-
tem to not only evaluate it but also to obtain real-world user scenarios and expand upon and/or
improve the language and the related components. As we demonstrated in Chapter 11 (System
Evaluation), QUIS is fast, scalable, and competitive. Therefore, plugging it into one or more
widely used system would not only facilitate the above-mentioned goals but also reduce users’
burdens. Embedding QUIS in an RDBMS, e.g., PostgreSQL, or a data processing framework,
e.g., Apache Flink [CKE™15] to empower them to access heterogeneous data would be an ap-
propriate test for validating QUIS and determining whether it could generate additional benefits.

167

[AAAT16]

[Aab04]

[AABT09]

[AABT17]

[ABB112]

[ABCt76]

[ABMLO09]

[ACPS96]

References

Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska,
Philip A. Bernstein, Michael J. Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai
Doan, Michael J. Franklin, Johannes Gehrke, Laura M. Haas, Alon Y. Halevy,
Joseph M. Hellerstein, Yannis E. Ioannidis, H. V. Jagadish, Donald Kossmann,
Samuel Madden, Sharad Mehrotra, Tova Milo, Jeffrey F. Naughton, Raghu
Ramakrishnan, Volker Markl, Christopher Olston, Beng Chin Ooi, Christo-
pher Ré, Dan Suciu, Michael Stonebraker, Todd Walter, and Jennifer Widom.
The Beckman Report on Database Research. Communications of the ACM,
59(2):92-99, February 2016. url = http://doi.acm.org/10.1145/2845915.

Anthony A Aaby. Introduction to programming languages. Walla Walla Col-
lege, draft version 0.9 edition, July 2004.

Rakesh Agrawal, Anastasia Ailamaki, Philip A. Bernstein, Eric A. Brewer,
Michael J. Carey, Surajit Chaudhuri, Anhai Doan, Daniela Florescu, Michael J.
Franklin, Hector Garcia-Molina, Johannes Gehrke, Le Gruenwald, Laura M.
Haas, Alon Y. Halevy, Joseph M. Hellerstein, Yannis E. loannidis, Hank F.
Korth, Donald Kossmann, Samuel Madden, Roger Magoulas, Beng Chin Ooi,
Tim O’Reilly, Raghu Ramakrishnan, Sunita Sarawagi, Michael Stonebraker,
Alexander S. Szalay, and Gerhard Weikum. The Claremont Report on Database
Research. Commun. ACM, 52(6):56-65, 2009.

Serge Abiteboul, Marcelo Arenas, Pablo Barcel6, Meghyn Bienvenu, Diego
Calvanese, Claire David, Richard Hull, Eyke Hiillermeier, Benny Kimelfeld,
Leonid Libkin, et al. Research Directions for Principles of Data Management
(Dagstuhl Perspectives Workshop 16151). arXiv preprint arXiv:1701.09007,
2017.

Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anas-
tasia Ailamaki. NoDB in action: adaptive query processing on raw data. Pro-
ceedings of the VLDB Endowment, 5(12):1942-1945, 2012.

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P.
Eswaran, Jim N Gray, Patricia P. Griffiths, W Frank King, Raymond A. Lo-
rie, Paul R. McJones, James W. Mehl, et al. System R: relational approach
to database management. ACM Transactions on Database Systems (TODS),
1(2):97-137, 1976.

Manish Kumar Anand, Shawn Bowers, Timothy Mcphillips, and Bertram
Ludéscher. Exploring scientific workflow provenance using hybrid queries over
nested data and lineage graphs. In International Conference on Scientific and
Statistical Database Management, pages 237-254. Springer, 2009.

S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query
Caching and Optimization in Distributed Mediator Systems. SIGMOD Rec.,
25(2):137-146, June 1996.

169

References

[Ail14]

[AK98]

[AKD10]

[ALWT06]

[APAT16]

[AXL*15]

[BT14]

[BBC*10]

[BDH"95]

[BEGH11]

Anastasia Ailamaki. Running with Scissors: Fast Queries on Just-In-Time
Databases. 30th IEEE International Conference on Data Enginreeing, April
2014.

Jose Luis Ambite and Craig A Knoblock. Flexible and Scalable Query Planning
in Distributed and Heterogeneous Environments. In AIPS, pages 3—10, 1998.

Anastasia Ailamaki, Verena Kantere, and Debabrata Dash. Managing Scientific
Data. Communications of the ACM, 53(6):68-78, 2010.

Rafi Ahmed, Allison Lee, Andrew Witkowski, Dinesh Das, Hong Su, Mo-
hamed Zait, and Thierry Cruanes. Cost-based Query Transformation in Ora-

cle. In Proceedings of the 32Nd International Conference on Very Large Data
Bases, VLDB ’06, pages 1026-1036. VLDB Endowment, 2006.

Franco D Albareti, Carlos Allende Prieto, Andres Almeida, Friedrich Anders,
Scott Anderson, Brett H Andrews, Alfonso Aragon-Salamanca, Maria Argudo-
Fernandez, Eric Armengaud, Eric Aubourg, et al. The Thirteenth Data Release
of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-1V
Survey Mapping Nearby Galaxies at Apache Point Observatory. arXiv preprint
arXiv:1608.02013, 2016.

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Gh-
odsi, et al. Spark SQL: Relational data processing in Spark. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
pages 1383-1394. ACM, 2015.

Anant Bhardwaj et al. DataHub: Collaborative Data Science & Dataset Version
Management at Scale. arXiv, 2014.

Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Ferndndez, Michael
Kay, Jonathan Robie, and Jérdme Siméon. XML Path Language (XPath) 2.0
(Second Edition). W3C Recommendation, World Wide Web Consortium, De-
cember 2010.

Peter Buneman, Susan B Davidson, Kyle Hart, Chris Overton, and Limsoon
Wong. A Data Transformation System for Biological Data Sources. In 21/st
Conference on Very Large Data Bases, pages 158—169, Zuerich, Switzerland,
1995.

Kevin Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohammed
Eltabakh, Carl-Christian Kanne, Fatma Ozcan, and Eugene Shekita. Jaql: A
Scripting Language for Large Scale Semistructured Data Analysis. In Proceed-
ings of the 37th International Conference on VLDB, volume 4 of Proceedings
of the VLDB Endowment, pages 1272—-1283, Seattle, USA, 2011. VLDB En-
dowment.

170

References

[bex]

[BHSO09]

[Bio]

[BK93]

[BKCS10]

[Bro10]

[BS08]

[BWBO09]

[BWB*14]

[Catl1]

[CDAO1]

[CEHT09]

BExIS++, Biodiversity Exploratory Information System. http://fusion.cs.uni-
jena.de/bexis. Accessed: 2015-10-11.

Gordon Bell, Tony Hey, and Alex Szalay. Beyond the Data Deluge. Science,
323(5919):1297-1298, 2009.

Biodiversity Exploratories. Exploratories for Large-Scale and Long-Term
Functional Biodiversity Research. http://www.biodiversity-exploratories.de.
German Research Foundation (DFG) Priority Programm No. 1374.

Athman Bouguettaya and Roger King. Large Multidatabases: Issues and Di-
rections. In Proceedings of the IFIP WG 2.6 Database Semantics Conference
on Interoperable Database Systems (DS-5), pages 55-68, Amsterdam, The
Netherlands, The Netherlands, 1993. North-Holland Publishing Co.

Shawn Bowers, Jay Kudo, Huiping Cao, and Mark P Schildhauer. ObsDB:
A System for Uniformly Storing and Querying Heterogeneous Observational
Data. In IEEE 6th International Conference on e-Science, pages 261-268.
IEEE, 2010.

Paul G. Brown. Overview of sciDB: Large Scale Array Storage, Processing and
Analysis. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD 10, pages 963-968, New York, NY, USA,
2010. ACM.

Stefan Berger and Michael Schrefl. From Federated Databases to a Federated
Data Warehouse System. In Proceedings of the 41st Annual ICSS, pages 394—
394, 2008.

Iain E Buchan, John M Winn, and Christopher M Bishop. A Unified Modeling
Approach to Data-Intensive Healthcare, 2009.

Spyros Blanas, Kesheng Wu, Surendra Byna, Bin Dong, and Arie Shoshani.
Parallel Data Analysis Directly on Scientific File Formats. In ACM SIGMOD
ICMD, pages 385-396, 2014.

Rick Cattell. Scalable SQL and NoSQL Data Stores. ACM Sigmod Record,
39(4):12-27, 2011.

Silvana Castano and Valeria De Antonellis. Global Viewing of Heteroge-

neous Data Sources. IEEE Transactions on Knowledge and Data Engineering,
13(2):277-297, 2001.

Min Chen, David Ebert, Hans Hagen, Robert S Laramee, Robert Van Liere,
Kwan-Liu Ma, William Ribarsky, Gerik Scheuermann, and Deborah Silver.
Data, Information, and Knowledge in Visualization. IEEE Computer Graphics
and Applications, 29(1), 2009.

171

References

[CENT12]

[CENT14]

[Cha98]

[Chal5]

[Che05]

[CKO04]

[CKE*15]

[CKR12]

[CKRIJ17]

[CMZ08]

[Cod70]

[Corl6]

[CTMZ08]

Joe Conway, Dirk Eddelbuettel, Tomoaki Nishiyama, Sameer (during 2008)
Kumar Prayaga, and Neil Tiffin. R Interface to the PostgreSQL Database Sys-
tem. http://cran.r-project.org/web/packages/RPostgreSQL/index.html, January
2012. 0.4 edition.

Joe Conway, Dirk Eddelbuettel, Tomoaki Nishiyama, Sameer Kumar Prayaga,
and Neil Tiffin. DBI: R Database Interface, 2014. 0.3.1 edition.

Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems.
In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, PODS 98, pages 34-43, New York,
NY, USA, 1998. ACM.

Javad Chamanara. QUIS Workbench, the Default Workbench for QUIS.
https://github.com/javadch/SciQuest/tree/0.3.0, 2015. Accessed: 2015-11-10.

Chaomei Chen. Top 10 Unsolved Information Visualization Problems. IEEE
computer graphics and applications, 25(4):12—-16, 2005.

Jeremy Carroll and Graham Klyne. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C recommendation, W3C, February 2004.
http://www.w3.0rg/TR/2004/REC-rdf-concepts-20040210/.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache Flink: Stream and Batch Processing in
a Single Engine. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 36(4), 2015.

Javad Chamanara and Birgitta Konig-Ries. SciQL: a Query Language for
Unified Scientific Data Processing and Management. In PIKM, pages 17-24.
ACM, 2012.

Javad Chamanara, Birgitta Konig-Ries, and H. V. Jagadish. QUIS: In-situ Het-
erogeneous Data Source Querying. Proc. VLDB Endow., 10(12):1877-1880,
August 2017.

Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful Database Schema
Evolution: the PRISM Workbench, 2008.

Edgar F Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377-387, 1970.

Oracle Corporation. The MySQL's CSV Storage Engine.
https://dev.mysql.com/doc/refman/5.7/en, 2016. Accessed: 2016-04-13.

Carlo A. Curino, Letizia Tanca, Hyun J. Moon, and Carlo Zaniolo. Schema
Evolution in Wikipedia: Toward a Web Information System Benchmark. In
ICEIS, 2008.

172

References

[CYV] Javad Chamanara, Clayton Yochum, and Ellis Valentiner. R-QUIS: The R
Package for QUIS. https://github.com/javadch/RQt/releases/tag/0.1.0. Ac-
cessed: 2015-11-11.

[DT13] David J. DeWitt et al. Split Query Processing in Polybase. In ICMD, pages
1255-1266, 2013.

[dBCFT16] Jorge de Blas, Marco Ciuchini, Enrico Franco, Diptimoy Ghosh, Satoshi
Mishima, Maurizio Pierini, Laura Reina, and Luca Silvestrini. Global Bayesian
Analysis of the Higgs-Boson Couplings. Nuclear and Particle Physics Pro-
ceedings, 273:834-840, 2016.

[DES™15] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan
Zdonik. The BigDAWG Polystore System. ACM Sigmod Record, 44(2):11—
16, 2015.

[DFR15] Akon Dey, Alan Fekete, and Uwe Rohm. Scalable Distributed Transactions
Across Heterogeneous Stores. In ICDE, pages 125-136, 2015.

[DGO8] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. ACM, 51:107-113, 2008.

[DHO2] Amol Deshpande and Joseph M Hellerstein. Decoupled Query Optimization
for Federated Database Systems. In Proceedings of 18th International Confer-
ence on Data Engineering, pages 716-727. IEEE, 2002.

[Dhal3] Vasant Dhar. Data Science and Prediction. Commun. ACM, 56(12):64-73,
December 2013.

[DHI12] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.
Elsevier, 2012.

[DHJ*07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-Value
Store. ACM SIGOPS operating systems review, 41(6):205-220, 2007.

[EDJT03] Barbara Eckman, Kerry Deutsch, Marta Janer, Zoé Lacroix, and Louiga
y q

Raschid. A Query Language to Support Scientific Discovery. In Proceedings of

the Bioinformatics Conference, pages 388-390. IEEE Computer Society, 2003.

[EKMRO6] Stephan Ewen, Holger Kache, Volker Markl, and Vijayshankar Raman. Pro-
gressive Query Optimization for Federated Queries, pages 847-864. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[EIm00] Ramez Elmasri. Fundamentals of Database Systems. Adison-Wesley, 2000.

173

References

[FT12]

[FGL198]

[FHK " 11]

[FHMOS]

[FIK96]

[FWHO08]

[GBI15a]

[GBI15b]

[GBI16]

[GISDO09]

[GKVT108]

[GLO2]

[Gra08]

Pedro Ferrera et al. Tuple MapReduce: Beyond Classic MapReduce. In ICDM,
pages 260-269, 2012.

Peter Fankhauser, Georges Gardarin, Moricio Lopez,] Munoz, and Anthony
Tomasic. Experiences in Federated Databases: From IRO-DB to MIRO-Web.
In VLDB, pages 655-658, 1998.

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robin-
son. An Overview of the HDF5 Technology Suite and Its Applications. In
EDBT/ICDT, pages 3647, 2011.

Michael Franklin, Alon Halevy, and David Maier. From Databases to Datas-
paces: a New Abstraction for Information Management. ACM SIGMOD
Record, 34(4):27-33, 2005.

Michael J. Franklin, Bjorn Thér Jénsson, and Donald Kossmann. Performance
Tradeoffs for Client-server Query Processing. In Proceedings of the Inter-
national Conference on Management of Data, SIGMOD 96, pages 149-160,
New York, NY, USA, 1996. ACM.

Daniel P Friedman, Mitchell Wand, and Christopher Thomas Haynes. Essen-
tials of Programming Languages. MIT press, third edition, 2008.

GBIF. Global Biodiversity Information Facility (GBIF). http://www.gbif.org/,
2015. Accessed: 2015-10-22.

GBIFE. Global Fungi Occurrences Dataset, September 2015. DOI:
10.15468/d1.31e67x.

GBIFE. Global Fungi Occurrences Dataset, March 2016. DOI:
10.15468/d1.4uc5ad.

Jirgen Gores, Thomas Jorg, Boris Stumm, and Stefan Dessloch. GEM: A
Generic Visualization and Editing Facility for Heterogeneous Metadata. CSRD,
24(3):119-135, 2009.

Jitendra Gaikwad, Varun Khanna, Subramanyam Vemulpad, Joanne Jamie, Jim
Kohen, and Shoba Ranganathan. CMKb: a Web-Based Prototype for Inte-
grating Australian Aboriginal Customary Medicinal Plant Knowledge. BMC
bioinformatics, 9(Suppl 12):S25, 2008.

Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Con-
sistent, Available, Partition-tolerant Web Services. SIGACT News, 33(2):51—
59, June 2002.

Jim Gray. Technical Perspective: The Polaris Tableau System. Communica-
tions of the ACM, 51(11):74-74, 2008.

174

References

[GSGCO8]

[GT12]

[GTK98]

[GWRI11]

[GZ00]

[H'05]

[HT11]

[Han07]

[HGB*12]

[HI11]

[HKWYO97]

[HM85]

[HROO06]

Owen Gilson, Nuno Silva, Phil W Grant, and Min Chen. From Web Data to Vi-
sualization via Ontology Mapping. In Computer Graphics Forum, volume 27,
pages 959-966. Wiley Online Library, 2008.

Casey S Greene and Olga G Troyanskaya. Data-Driven View of Disease Biol-
ogy. PLoS Computational Biology, 8(12):¢1002816, 2012.

Antoine Guisan, Jean-Paul Theurillat, and Felix Kienast. Predicting the Po-
tential Distribution of Plant Species in an Alpine Environment. Journal of
Vegetation Science, 9(1):65-74, 1998.

Jitendra Gaikwad, Peter D Wilson, and Shoba Ranganathan. Ecological Niche
Modeling of Customary Medicinal Plant Species used by Australian Aborig-
ines to identify Species-rich and Culturally Valuable Areas for Conservation.
Ecological Modelling, 222(18):3437-3443, 2011.

Antoine Guisan and Niklaus E Zimmermann. Predictive Habitat Distribution
Models in Ecology. Ecological Modelling, 135(2):147-186, 2000.

Robert J Hijmans et al. Very High Resolution Interpolated Climate Surfaces for
Global Land Areas. International Journal of Climatology, 25(15):1965-1978,
2005.

Bill Howe et al. Database-as-a-Service for Long-Tail Science. In Scientific and
Statistical Database Management, SSDBM, pages 480489, 2011.

Michael Hanus. Multi-paradigm Declarative Languages. In /CLP, volume
4670 of Lecture Notes in Computer Science, pages 45-75. Springer, 2007.

RJ Hijmans, L Guarino, C Bussink, P Mathur, M Cruz, I Barrentes, and E Ro-
jas. DIVA-GIS 5.0. A Geographic Information System for the Analysis of
Species Distribution Data. Versdo, 7:476-486, 2012.

Robin Hecht and Stefan Jablonski. NoSQL Evaluation: A Use-case Oriented
Survey. In Cloud and Service Computing (CSC), 2011 International Confer-
ence on, pages 336-341. IEEE, 2011.

Laura Haas, Donald Kossmann, Edward Wimmers, and Jun Yang. Optimizing
Queries Across Diverse Data Sources. In 23rd VLDB International Conference,
pages 276-285, 1997.

Dennis Heimbigner and Dennis McLeod. A Federated Architecture for In-
formation Management. ACM Transactions on Information Systems (TOIS),
3(3):253-278, 1985.

Alon Halevy, Anand Rajaraman, and Joann Ordille. Data Integration: the
Teenage Years. In In Proceedings of the 32nd international conference on
very large data bases, pages 9-16. VLDB Endowment, 2006.

175

References

[HS13]

[HTTO09a]

[HTTO9b]

[TAJA11]

[IGNT12]

[IKM12]

[ISO08]

[JCET07]

[JKVO06]

[JMH16]

[KT14]

[KT15]

Steven Harris and Andy Seaborne. SPARQL 1.1 Query Language. Technical
report, W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-
20130321/.

A.J.G. Hey, S. Tansley, and K.M. Tolle. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research Redmond, WA, 2009.

Tony Hey, Stewart Tansley, and Kristin M Tolle. Jim Gray on eScience: a
Transformed Scientific Method, 2009.

Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki.
Here are my Data Files. Here are my Queries. Where are my Results? In
CIDR, pages 57-68, 2011.

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullen-
der, Martin Kersten, et al. MonetDB: Two Decades of Research in Column-
Oriented Database Architectures. A Quarterly Bulletin of the IEEE Computer
Society Technical Committee on Database Engineering, 35(1):40-45, 2012.

Milena Ivanova, Martin Kersten, and Stefan Manegold. Data Vaults: a Symbio-
sis between Database Technology and Scientific File Repositories. In SSDM,
pages 485-494, 2012.

ISO. Information Technology — Database Languages — SQL — Part 1:
Framework (SQL/Framework). International Organization for Standardization
ISO/IEC 9075-1:2008, July 2008. concepts: p:13, definition of query.

HYV Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao
Li, Arnab Nandi, and Cong Yu. Making Database Systems Usable. In Proceed-
ings of the International Conference on Management of data, pages 13-24.
ACM, 2007.

T. S. Jayram, Phokion G. Kolaitis, and Erik Vee. The Containment Problem
for Real Conjunctive Queries with Inequalities. In Proceedings of the Twenty-
fifth SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS *06, pages 80-89, New York, NY, USA, 2006. ACM.

Shrainik Jain, Dominik Moritz, and Bill Howe. High Variety Cloud Databases.
In 32nd International Conference on Data Engineering Workshops (ICDEW),
pages 12-19. IEEE, 2016.

Manos Karpathiotakis et al. Adaptive Query Processing on RAW Data. In 40th
VLDB, 2014.

Manos Karpathiotakis et al. Just-In-Time Data Virtualization: Lightweight
Data Management with ViDa. In 7th CIDR, 2015.

176

References

[KAA16]

[KFY102]

[KK92]

[KKR10]

[KM14]

[KOKR15]

[KOKS15]

[KR13]

[KR14]

[KZIN11]

[L106]

Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki. Fast
Queries over Heterogeneous Data through Engine Customization. Proceedings
of the VLDB Endowment, 9(12):972-983, 2016.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim, Jimmy Lin, Gregory Mar-
ton, Alton Jerome McFarland, and Baris Temelkuran. Omnibase: Uniform
Access to Heterogeneous Data for Question Answering. In Natural Language
Processing and Information Systems, pages 230-234. Springer, 2002.

Magdi N Kamel and Nabil N Kamel. Federated Database Management System:
Requirements, Issues and Solutions. Computer Communications, 15(4):270—
278, 1992.

Friederike Klan and Birgitta Kénig-Ries. Enabling Trust-Aware Semantic Web
Service Selection a Flexible and Personalized Approach. In Proceedings of
the 12th International Conference on Information Integration and Web-based
Applications and Services, iiWAS 10, pages 83-90, New York, NY, USA,
2010. ACM.

John King and Roger Magoulas. Data Science Salary Survey: Tools, Trends,
What Pays (and What Doesn’t) for Data Professionals. Sebastopol: O’Reilly,
112014.

Pawandeep Kaur, Michael Owonibi, and Birgitta Konig-Ries. Towards Visual-
ization Recommendation-A Semi-Automated Domain-Specific Learning Ap-
proach. In GvD, pages 30-35, 2015.

Verena Kantere, George Orfanoudakis, Anastasios Kementsietsidis, and Timos
Sellis. Query Relaxation Across Heterogeneous Data Sources. In 24th ACM,
CIKM, pages 473-482, 2015.

Karamjit Kaur and Rinkle Rani. Modeling and Querying Data in NoSQL
Databases. In International Conference on Big Data, pages 1-7. IEEE, 2013.

Friederike Klan and Birgitta Konig Ries. Recommending Judgment Targets
for Rating Provision. In International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), volume 2, pages 327-334.
IEEE/WIC/ACM, 2014.

M. Kersten, Y. Zhang, M. Ivanova, and N. Nes. SciQL, a Query Language for
Science Applications. In Proceedings of the EDBT/ICDT Workshop on Array
Databases, AD 11, pages 1-12, New York, NY, USA, 2011. ACM.

Bertram Ludischer et al. Managing Scientific Data: From Data Integration to
Scientific Workflows. Geological Society of America Special Papers, 397:109—
129, 2006.

177

References

[LCWOI3]

[LealO]

[Lef12]

[Len02]

[Lib03]

[L1094]

[LM10]

[LMWO6]

[LPO8]

[MH13]

[Mic]

[Mic12]

[MMP*11]

Hongjun Lu, Hock Chuan Chan, and Kwok Kee Wei. A Survey on Usage of
SQL. SIGMOD Rec., 22(4):60-65, December 1993.

Neal Leavitt. Will NoSQL Databases Live up to Their Promise? Computer,
43(2), 2010.

Jonathan Leffler. BNF Grammar for ISO/IEC 9075-2:2003 - Database Lan-
guage SQL (SQL-2003) SQL/Foundation. http://savage.net.au/SQL/sql-2003-
2.bnf.html, June 2012.

Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In 275t SIG-
MOD symp. on Principles of database systems, pages 233-246, 2002.

Leonid Libkin. Expressive Power of SQL. Theoretical Computer Science,
296(3):379-404, 2003.

John W Lloyd. Practical Advantages of Declarative Programming. In
Joint Conference on Declarative Programming, GULP-PRODE, volume 94,
page 94, 1994.

Avinash Lakshman and Prashant Malik. Cassandra: a Decentralized Structured
Storage System. ACM SIGOPS Operating Systems Review, 44(2):35-40, 2010.

Leonid Libkin, Rona Machlin, and Limsoon Wong. A Query Language for
Multidimensional Arrays: Design, Implementation, and Optimization Tech-
niques. In Proceedings of the International Conference on Management of
Data, volume 25, 2 of ACM SIGMOD Record, pages 228-239, New York, NY,
USA, June 4-6 1996. ACM Press.

Hua-Ming Liao and Guo-Shun Pei. Cache-Based Aggregate Query Shipping:
An Efficient Scheme of Distributed OLAP Query Processing. Journal of Com-
puter Science and Technology, 23(6):905-915, 2008.

ABM Moniruzzaman and Syed Akhter Hossain. NoSQL Database: New Era
of Databases for Big Data Analytics-Classification, Characteristics and Com-
parison. arXiv preprint arXiv:1307.0191, 2013.

Microsoft ~ Corporation. LINQ: Language-Integrated Query.
http://msdn.microsoft.com/en-us/library/bb397926.aspx. Accessed: 2015-9-
14.

Microsoft. MS SQL Server 2012 SELECT (Transact SQL).
http://msdn.microsoft.com/en-us/library/ms189499.aspx, 2012. Visited
Nov. 2013.

Bruno Marnette, Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, Do-
natello Santoro, et al. ++Spicy: an Open-Source Tool for Second-Generation
Schema Mapping and Data Exchange. Clio, 19:21, 2011.

178

References

[MOLMEW17]

[NRSW99]

[0108]

[OKA'17]

[Opel5]

[Orel0]

[Papl6]

[Parl3]
[PAS06]

[PF11]

[PIRT11]

[QEBT09]

Alejandra Mordn-Ordéiiez, José J Lahoz-Monfort, Jane Elith, and Brendan A
Wintle. Evaluating 318 Continental-Scale Species Distribution Models Over a
60-year Prediction Horizon: What Factors Influence the Reliability of Predic-
tions? Global Ecology and Biogeography, 26(3):371-384, 2017.

LHRMB Niswonger, M Tork Roth, PM Schwarz, and EL Wimmers. Trans-
forming Heterogeneous Data with Database Middleware: Beyond Integration.
Data Engineering, 31, 1999.

Christopher Olston et al. Pig Latin: A Not-so-Foreign Language for Data Pro-
cessing. In ICMD, pages 1099-1110, 2008.

Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis, Manos Athanas-
soulis, and Anastasia Ailamaki. Slalom: Coasting Through Raw Data via
Adaptive Partitioning and Indexing. Proceedings of the VLDB Endowment,
10(10):1106-1117, 2017.

Open Knowledge Foundation. DataHub. http://datahub.io, 10 2015. Accessed:
2015-10-13.

Kai Orend. Analysis and Classification of NoSQL Databases and Evaluation

of their Ability to Replace an Object-Relational Persistence Layer. page 100,
2010.

Yannis Papakonstantinou. Polystore Query Rewriting: The Challenges of Va-
riety. In EDBT/ICDT Workshops, 2016.

Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.

Steven J Phillips, Robert P Anderson, and Robert E Schapire. Maximum En-
tropy Modeling of Species Geographic Distributions. Ecological Modelling,
190(3):231-259, 2006.

Terence Parr and Kathleen Fisher. LL (*): the Foundation of the ANTLR Parser
Generator. In ACM SIGPLAN Notices, volume 46, pages 425-436, New York,
NY, USA, June 2011. ACM.

Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu Huang,
Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh, Stephen Beard,
Taewook Oh, Matthew Zoufaly, David Walker, and David I. August. A Survey
of the Practice of Computational Science. In ACM, editor, SC ’11 State of the
Practice Reports, pages 19:1-19:12, pub-ACM:adr, 2011. ACM Press.

Xiaohong Qiu, Jaliya Ekanayake, Scott Beason, Thilina Gunarathne, Geoffrey
Fox, Roger Barga, and Dennis Gannon. Cloud Technologies for Bioinformatics
Applications. In Proceedings of the 2Nd Workshop on Many-Task Computing
on Grids and Supercomputers, MTAGS °09, pages 6:1-6:10, New York, NY,
USA, 2009. ACM.

179

References

[R C13]

[Ram12]

[RAVUP16]

[RBHS04]

[RCI5]

[RC13]

[RCDS14]

[Red]
[Rex13]

[RGOO]

[Rod95]

[RS70]

[RWE13]

[RWEI15]

[Sah02]

R Core Team. R: A Language and Environment for Statistical Computing.
http://www.R-project.org/, 2013. Accessed: 2015-9-25.

Prakash Ramanan. Rewriting XPath Queries Using Materialized XPath Views.
Computer and System Sciences, 78(4):1006-1025, July 2012.

Andreas Rauber, Ari Asmi, Dieter van Uytvanck, and Stefan Proll. Identifica-
tion of Reproducible Subsets for Data Citation, Sharing and Re-Use. Bulletin
of IEEE Technical Committee on Digital Libraries, Special Issue on Data Ci-
tation, 2016.

Christopher Re, Jim Brinkley, Kevin Hinshaw, and Dan Suciu. Distributed
XQuery. In Workshop on Information Integration on the Web, pages 116-121,
2004.

Louiqa Raschid and Ya-Hui Chang. Interoperable Query Processing from Ob-
ject to Relational Schemas Based on a Parameterized Canonical Representa-
tion. International Journal of Cooperative Information Systems, 4(01):81-120,
1995.

Florin Rusu and Yu Cheng. A Survey on Array Storage, Query Languages, and
Systems. arXiv preprint arXiv:1302.0103, 2013.

Jonathan Robie, Don Chamberlin, Michael Dyck, and John Snelson. XQuery
3.0: An XML Query Language. Recommendation, W3C, 2014.

Redhat. Hibernate ORM. http://hibernate.org/. Accessed: 2015-11-01.
Karl Rexer. 2013 Data Miner Survey. www.RexerAnalytics.com, 2013.

Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw Hill, 2nd edition, 2000.

John F Roddick. A Survey of Schema Versioning Issues for Database Systems.
Information and Software Technology, 37(7):383-393, 1995.

Daniel J Rosenkrantz and Richard Edwin Stearns. Properties of Deterministic
Top-Down Grammars. Information and Control, 17(3):226-256, 1970.

Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly
Media, 2013.

Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases: New Oppor-
tunities for Connected Data. O’Reilly Media, Inc., 2015.

Arnaud Sahuguet. ubQL: A Distributed Query Language to Program Dis-
tributed Query Systems, January 01 2002.

180

References

[SBO9] A.S. Szalay and J.A. Blakeley. Gray’s Laws: Database-Centric Computing in
Science. The fourth paradigm: data-intensive scientific discovery, pages 5—11,
20009.

[SBPR11] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. The Ar-
chitecture of SciDB. In 23rd International Conference on SSDBM, pages 1-16,
2011.

[SCO5] Michael Stonebraker and Ugur Cetintemel. " one size fits all": an idea whose
time has come and gone. In Data Engineering, 2005. ICDE 2005. Proceedings.
21st International Conference on, pages 2—11. IEEE, 2005.

[SCMMS12] Adam Seering, Philippe Cudre-Mauroux, Samuel Madden, and Michael Stone-
braker. Efficient Versioning for Scientific Array Databases. In ICDE, pages
1013-1024, 2012.

[SL90] Amit P. Sheth and James A. Larson. Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases. ACM, 22(3):183—
236, 1990.

[SSRT14] Ken Smith, Len Seligman, Arnon Rosenthal, Chris Kurcz, Mary Greer, Cather-
ine Macheret, Michael Sexton, and Adric Eckstein. Big Metadata: The Need
for Principled Metadata Management in Big Data Ecosystems. In Proceedings
of Workshop on Data analytics in the Cloud, pages 1-4. ACM, 2014.

[STGO8] Alex Szalay, Ani R. Thakar, and Jim Gray. The sqlLoader Data-Loading
Pipeline. Computing in Science & Engineering, 10(1):38-48, 2008.

[SW65] Samuel Sanford Shapiro and Martin B Wilk. An Analysis of Variance Test for
Normality. Biometrika, 52(3/4):591-611, 1965.

[TT09] Ashish Thusoo et al. Hive: a Warehousing Solution Over a Map-Reduce
Framework. VLDB, 2(2):1626-1629, 2009.

[Thel3] The Neo4] Team. The Neo4J Manual. Neo Technology, v1.9.5 edition,
September 2013.

[Thel16] The Neo4] Team. The Neo4J Manual. Neo Technology, v2.3.7 edition, August
2016.

[TRV98] Anthony Tomasic, Louiga Raschid, and Patrick Valduriez. Scaling Access to
Heterogeneous Data Sources with DISCO. [EEE Transactions on Knowledge
and Data Engineering, 10(5):808—-823, 1998.

[TSG04] A Thakar, Alexander S Szalay, and Jim Gray. From FITS to SQL-Loading
and Publishing the SDSS Data. In Astronomical Data Analysis Software and
Systems (ADASS) XIII, volume 314, page 38, 2004.

181

References

[TWP16]

[Unil5]

[VBP'13]

[VHS17]

[VRHO04]

[W3C13]
[Warl2]
[Whil2]

[WT12]

[YLBT13]

[Zhu03]

[ZKIN11]

[ZKM13]

Masashi Tanaka, Guan Wang, and Yannis P Pitsiladis. Advancing Sports
and Exercise Genomics: Moving from Hypothesis-Driven Single Study Ap-
proaches to Large Multi-Omics Collaborative Science. Physiological ge-
nomics, pages physiolgenomics—00009, 2016.

Unidata. Network Common Data Form (NetCDF).
http://www.unidata.ucar.edu/software/netcdf/, 3 2015. Version 4.5.5, Ac-
cessed: 2015-10-12.

Nicole A Vasilevsky, Matthew H Brush, Holly Paddock, Laura Ponting, Shree-
joy J Tripathy, Gregory M LaRocca, and Melissa A Haendel. On the Re-
producibility of Science: Unique Identification of Research Resources in the
Biomedical Literature. PeerJ, 1:e148, 2013.

Manasi Vartak, Silu Huang, Tarique Siddiqui, Samuel Madden, and Aditya
Parameswaran. Towards Visualization Recommendation Systems. ACM SIG-
MOD Record, 45(4):34-39, 2017.

Peter Van-Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT press, 2004.

W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C, 2013.
Colin Ware. Information Visualization: Perception for Design. Elsevier, 2012.
Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

Guoxi Wang and Jianfeng Tang. The NoSQL Principles and Basic Application
of Cassandra Model. In International Conference on Computer Science and
Service System (CSSS), pages 1332-1335. IEEE, 2012.

Jiangtao Yin, Yong Liao, Mario Baldi, Lixin Gao, and Antonio Nucci. Effi-
cient Analytics on Ordered Datasets Using MapReduce. In Proceedings of the
22nd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC, pages 125-126, 2013.

Ningning Zhu. Data Versioning Systems. Technical report, Computer Science
Dept. State University of New York at Stony Brook, April 11 2003.

Ying Zhang, Martin Kersten, Milena Ivanova, and Niels Nes. SciQL: Bridging
the Gap Between Science and Relational DBMS. In Proceedings of the 15th
Symposium on International Database Engineering and Applications, IDEAS
"11, pages 124-133, New York, NY, USA, 2011. ACM.

Ying Zhang, M. L. Kersten, and S. Manegold. SciQL: Array Data Processing
Inside an RDBMS. In ICMD, pages 1049-1052, 2013.

182

References

[ZPF16] Steffen Zeuch, Holger Pirk, and Johann-Christoph Freytag. Non-Invasive Pro-
gressive Optimization for In-Memory Databases. Proceedings of the VLDB
Endowment, 9(14):1659-1670, 2016.

183

Part V.

Appendix

185

A

QUIS Grammar

187

APPENDIX A. QUIS GRAMMAR

Grammar A.1 QUIS Grammar - (Statements)

1:

2:

10:

11:

12:
13:
14:
15:

17:
18:
19:
20:
21:

22:

23:

process = declaration statement™

statement ::= selectStatement | insertStatement | updateStatement
| deleteStatement

selectStatement := SELECT setQualifierClause’ projectionClause’

sourceSelectionClause filterClause’ orderClause’

limitClause’ groupClause’ targetSelectionClause’
projectionClause ::= USING PERSPECTIVE identi fier

| USING INLINE inlineAttribute™
inlineAttribute == expression(As identifier)’
sourceSelectionClause ::= FROM containerRef

containerRef = combinedContainer | singleContainer | variable | staticData

combinedContainer ::= joinedContainer | unionedContainer
unionedContainer ::= containerRef UNION container Re f
joinedContainer ::= containerRef joinDescription containerRef ON joinKeys

joinDescription ::= INNER JOIN | OUTER JOIN | LEFT OUTER JOIN
| RIGHT OUTER JOIN

joinKeys ::= identifier joinOperator identifier

joinOperator == EQ| NOTEQ| GT | GTEQ| LT | LTEQ

filterClause ::= WHERE LPAR expression RPAR

orderClause ::= ORDER BY sortSpecification™

sortSpecification ::= identifier sortOrder nullOrder’

sortOrder = ASC| DESC
nullOrder ::= NULL FIRST | NULL LAST

limitClause ::= LIMIT(SKIP = UNIT)’(TAKE = UNIT)’
groupClause ::= GROUP BY identifier™ (HAVING LPAR expression RPAR)
targetSelectionClause ::= INTO(plot | variable | singleContainer)
plot ::= PLOT identifier HAXIS:’ identifier VAX1S:® identifier™
PLOTTYPE: (plotTypes | STRING)
HLABEL:’ STRING
VLABEL:’ STRING

PLOTLABEL:’ STRING
plotTypes ::= LINE| BAR | SCATTER | PIE | GEO

?

188

Grammar A.1 QUIS Grammar - (Declarations and Expressions)

Eal

o

declaration ::= perspective® connection™ binding”*
perspective = identifier (EXTENDS ID)’ attribute™
attribute = samrtld (MAPTO = expression)’ (REVERSEMAP = expression)’
connection = identifier adapter dataSource(PARAMETERS = parameter+)?
binding ::= identifier CONNECTION = ID(SCOPE = bindingScope™)’
(VERSION = versionSelector)’
smartld == ID (: dataType)(:: semanticKey)’)’
expression ::= NEGATE expression | expression (MULT | DIV | MOD) expression

| expression (PLUS | MINUS) expression
| expression (AAND | AOR) expression
| expression (EQ | NOTEQ | GT | GTEQ | LT | LTEQ | LIKE) expression
| expression IS Nor’(NULL | NUMBER | DATE | ALPHA | EMPTY)
| NOT expression
| expression (AND | OR) expression
| function
| LPAR expression RPAR
| value
| identifier
function == (identifier)" identifier LPAR argument* RPAR
argument = expression

189

APPENDIX A. QUIS GRAMMAR

Grammar A.1 QUIS Grammar - (Path Expressions)

1:

pathExpression == (path attribute’) | (path’ attribute)
path ::= (path relation path) | (path relation) | (relation path)

2: | (‘C(label <)’ cardinality” path ©)°)
| (step) | (relation)

3: step = (unnamedEntity | (namedEntity sequenceSelector’)) predicate®
4 attribute == ‘@’ (namedAttribute | “*’ | predicate)

relation ::= forward_rel | backward_rel | non_directional_rel
> | bi_directional_rel
6: forward_rel == *->"| (‘=" label <:->") | (‘-*(label ")’ taggedScope ‘->")
7. backward_rel = ‘<-’(label :-* | (label)" taggedScope *-*)*
8: non_directional_rel = “->(‘-" | label *:-* | (label ‘)" taggedScope *-*)
9: bi_directional_rel == ‘<-"(*>"| label <:->" | (label *:*)’ taggedScope “->")
10: taggedScope = (tag (‘I tag)*)’ relationScope

relationScope ::= sequenceSelector predicate | cardinalitySelector predicate
H | sequenceSelector | cardinalitySelector | predicate
12: sequenceSelector ::= ‘(C NUMBER *)’
13: predicate = ‘[expression ‘]|’
» cardinalitySelector == *{’(NUMBER’ ‘.. NUMBER’)

| NUMBER | “** | “+7 | ‘7))

190

Expressiveness of QUIS’s Path
Expression

191

APPENDIX B. EXPRESSIVENESS OF QUIS’S PATH EXPRESSION

XPath QUIS Description

/ / root

. . current

/@name /@name Selects the name attribute of the current node

@name @name Selects “name” attribute

@* @* Matches any attribute

Ja/ble/ @ /g bc@* selects all the attributes for all ¢ elements in
the path: root/a/b/c.

Ja/b/c/@name /g bc@name _selects the name attributes for all ¢ elements
in the path: root/a/b/c

Ja/lb J—a-{*}-b Selects all. b elements having any distance to
an a, starting from the root
Selects all b elements having any distance to

a//b a-{*}-b an a. a can be anywhere. Also can be written
asa-{..}-b

/la a Selects all a elements no matter where

<a (x:a) Namespace or label for a. QUIS supports
labels on relations, too, e.g., a-(x:)-b

*[@name] a[@name] All elements with “name” attribute

e a<-CHILD-x All the x elements that are direct children of

a

a[@name="Tom"’]

a(@name="“Tom”)-

Decedents of the Tom’s maximum three

/10..3] CHILD{..3}->x-{*}-)

//b[@livesAbroad] | >b(@livesAbroad) levels ancestors that live abroad

Zt(j)(:i/[_l] J@title store-book(1) @title The title of the first book in the bookstore
The title of the first book in the bookstore.

store/book[1]/title | store—book(1)-title Title is an element. Sequence applies before
relation

. . Relation of one or more level deep. Title is
store/+title store-{ +}-title

an element.

store/[0..1]title

store-{ ?}-title

Relation of maximum depth of one

store/-
books|title="“t1"]

store—books(title="“t1’")

Title is an element which its text is evaluated
by the predicate

store/-
books[@title="“t1"’"]

store—books(@title="t1")

Title is an attribute which its value is
evaluated by the predicate

author[@first-
name][3]

author[@first-name][3]

Applying multiple predicates on an element

Table B.1.: QUIS path expression coverage for XPath

192

Cypher QUIS Description
(a)->(b) ash A directed relation of length 1 from node a to
node b
A relation between a and b with one node in
(a)->()->(b) a-{2}->b between
a->b->() a->b-> The path ends in a relation
(a)—>(b)—>(c)->(a) a->b->c->a Cycles
(a)—>(b)<—(c) a->b<-c A sub-tree rooted in b

(a)-[:RELTYPE]->(b)

a-RELTYPE->b

Direct relation from a to b of type
RELTYPE

(a)-[r:TYPE1,TYPE2]-
>(b)

a-r:TYPE1ITYPE2->b

Direct relation from a to b of type TY PE1
or TY PE?2 so that the matched relations are
named r

(a)-[*2]-(a)-[*3..5]->(b)-
>(b)

a-{.2}-a-{3..5)}->b->b

A loop of maximum length 2 over a followed
by a chain of 3-5 nodes to b and then
followed by a direct loop over b

(a:User)—>(b) User:a->b Setting a qualifier for the an element
(a:Person name:“Alice”) Person:a(@name = Elements of type Person that their name
)) “Alice”) attribute has the value of “Alice”

(a:Person name:“Alice”
)-[:ACTEDIN]-
(m:Movie)

Person:a (@name
=“Alice”)-ACTEDIN->
Movie:m

All the movies Alice acted in

(a:Person name:“Alice”

)-

[:ACTEDIN({year>2015}]-

(m:Movie)

Person:a (@name
=“Alice”)-
ACTEDIN(@year>2015)-
>

Movie:m

All the movies Alice acted in after year 2015

Not available

a->(r:{2..5}b->c)->d

Sub pattern repetition and identification.
After visiting an a, the sub pattern named r
will be matched 2 to 5 times, then a tailing d
is expected.

(-[{disabled:TRUE}]->()

-(disabled)->

All the forward relations that have an
attribute named “disabled”

(h1:Hydrogen)-[BIND]-
>(0:0Oxygen)-[BIND]-
>(h2:Hydrogen)

Hyrogen:h1-BIND-
Oxygen:o-BIND-
Hyrogen:h2

H20 formula

Table B.2.: QUIS path expression coverage for Cypher

193

Evaluation Materials for the User Study

C.1 User Study Methods

The goal of the user study is to measure a set of indicators on a baseline system as well as on
QUIS and to test whether QUIS has made a meaningful improvement to any of those indicators.
Based on its popularity among data scientists, we chose the R system as the baseline, meaning
that it is the representative of the current situation. We then introduce QUIS as an alternative to
the baseline in order to be able to measure the effectiveness of the introduced change. To de-
termine whether the observed changes are meaningful, we design and perform a paired-samples
t-test. In short, a t-test is an inferential statistics that checks if two means are reliably different
from each other and if any differences can be generalized from the samples to the population.
A paired t-test is used to compare two population means in which there are two samples; the
observations made in one sample can be paired with observations from the other.

The chosen indicators are as following:

1. Time-on-task (TT): The total human time spent on the assigned task, from the beginning
to the presentation of the results. This is mainly the coding time. It is measured in minutes
by the subject, using a wall clock;

2. Machine time (MT): The execution time observed by end-user to perform the task and
present the result by running the subject’s submitted code on a reference machine. It is
measured in seconds;

3. Code complexity (CC): The average number of tokens used per line of code, no matter
which and how many languages are used;

4. Ease of use (EU): Also known as usability, it is the degree to which software can be
used by specific consumers. This value is obtained using the survey results and statistical
techniques. More specifically, it is the mean value of the answers of each subject to
questions 1-7 in the usability section of the survey questionnaire (see Appendix C.4);

5. Usefulness (UF): Indicates to what extent and how well the system addresses the users’
use-cases. For each subject, it is the mean value of the answers to questions 8-13 in the
usability section of the survey questionnaire (see Appendix C.4); and

195

APPENDIX C. EVALUATION MATERIALS FOR THE USER STUDY

6. Satisfaction (SF): This is an indicator that shows to what extent a user enjoys using the
system. For each subject, it is the mean value of the answers to questions 14-19 in the
usability questions section of the survey’s questionnaire (see Appendix C.4).

For each indicator I;, we design a null hypothesis HO0; : Zp, # Tc;, — [y, = [i¢;» in Which
b, and c are the baseline and the introduced change, respectively. The hypothesis declares that
having different sample means does not lead to a meaningful difference in the population mean.
In other words, each H0; claims that the change introduced does not meaningfully improve I;.
Our desired outcome would be that the study rejects these hypotheses.

In order to perform the data analysis task (see Appendix C.2), we chose a group of volunteer
subjects from the iDiv' and BExIS? projects, as well as students from the FUSION?® chair. We
chose subjects based on their willingness to participate, provided that they are generally familiar
with data processing tools as well as R and SQL. The subjects chosen vary in multiple dimen-
sions, including culture, nationality, level of education, field of study, and gender. Each subject
performed the given task in two runs: one on the baseline and another on QUIS. Therefore, the
samples are paired. In order to eliminate the bias effect of learning from the first run, we ran-
domly divided the subjects into two groups, G, and Gy,. While the members of G, began with
the QUIS run, the G, members were asked to start with the baseline run. In order to maintain
pair independency, we ensured that the subjects a) were not aware of the test beforehand and b)
did not exchange relevant information during the test runs. In both runs, we observed/measured
the indicators and collected answers to the questionnaire. We use the outcome of the two runs
to prove that the change is meaningful and can be generalized.

C.2 Task Specification of the User Study

"https://www.idiv.de/en.html
http://bexis2.uni-jena.de/
*http://fusion.cs.uni-jena.de

196

https://www.idiv.de/en.html
http://bexis2.uni-jena.de/
http://fusion.cs.uni-jena.de

Dear survey participant, Subject ID:

Thank you for taking part in this survey. Please read this document carefully and follow the instructions provided.

You are given a task to be performed in two scenarios. During (and following the completion of) the evaluation, you will be asked to
answer some questions. Please perform the task, record the requested information, and return the results. Use the subject
identifier (Subject ID) assigned to you on all of the material (see Section 4) that you return.

Please record current time in (hh:mm) format:

1. Task Specification

You are given a dataset (see Section 7) that contains meteorological data, the airports that the meteorological stations were located
at, and the geographical locations of the airports. You are required to perform the following task on the dataset and record the
requested measures:

Compute the max, min, and average temperature per airport over the full time span of the records. For each station join the
computed variables with the respective airport’s name and location. Return the result set as a CSV as explained in Section 5. Be

aware that some records may have missing values.

The following is an example of the expected result:

stationid,code,name, latitude, longitude,elevation,max_temperature,min_temperature,avg_temperature
1,DSM,DES MOINES,41.53395,-93.65311,294.0,4,37.8,-26.7,10.756333926981313
2,DBQ,DUBUQUE,42.39835,-90.70914,329.0,5,33.3,-34.4,8.67134 7375750598

3,I0W,IOWA CITY,41.63939,-91.54454,204.0,7,36.7,-31.1,10.12492741971506

2. Task Runs

You are required to run the task in two configurations. Both of the runs should be performed in the R system, but you will be
required to utilize a different set of R packages from each run. The runs are named “Baseline” and “QUIS”.

\\\

1. Baseline run: Develop an R solution that generates the requested output using the provided dataset. You are free to use
any R standard command, as well as packages found on CRAN. Do not use the RQUIS package for this run.

2. QUIS run: Develop an R solution that generates the requested output using the given dataset. All the data access aspects of
the task must utilize the RQUIS package. Additionally, you are allowed to utilize other R packages.

For each run, there is a moderator that can help you in overcoming technical issues or explaining the task, if required. However,
they do not guide you towards any solution.

A short QUIS tutorial® and a tool setup document are available online”.

3. Time Allocation

1. Developing a solution for each run should take no longer than 45 minutes

2. Before starting each run, record its starting time in (hh:mm) format in the following table. Record the moment you
started reading the task specification.

3. After finishing each run, record its finish time in (hh:mm) format in the following table. Use the timestamp recorded in
your latest log files or tool output.
You will need to copy this information to the survey form later.

5. Record the start and finish times, regardless of whether the task was executed successfully or not. If you made multiple
attempts, record the overall end-to-end duration.

! http://fusion.cs.uni-jena.de/javad/quis/latest/docs/QUIS_Tutorial.pptx
? http://fusion.cs.uni-jena.de/javad/quis/latest/docs/ToolsSetup.pdf

Start Time

Finish Time

Baseline Run

QUIS Run

4. Task Results

When you are done, you will be given a survey form. The survey form (the questionnaire) can be downloaded from

http://fusion.cs.uni-jena.de/javad/eval/. It is provided in both MS Word and PDF formats.

Please first transfer the task runs’ start/finish times to the survey form and then answer the questions carefully. Return the

following items to the moderators or zip and send them to this email address:

javad.chamanara@uni-jena.de

1. This task sheet

2. The completed survey form

3. For the baseline run:
a. The script file. Please name the file as <Subject ID>.r.R
b. The result set file. Please name the file as <Subject ID>.r.csv

4. Forthe QUIS run:

a. The script file. Please name the file as <Subject ID>.quis.R
b. The result set file. Please name the file as <Subject ID>.quis.csv

5. Measurement of the Success

The task consists of many steps; five among them are of particular interest. The following table explains these steps and their
contributions to this final success. Using this table, you can calculate your success as a percentage between 0 and 100 and enter it to
the table. Later, you will be asked to enter these success rates on the survey form.

Step Percentage e | QUIS
Obtaining weather data and calculating the aggregates requested 20%
Obtaining airport information 15%
Obtaining airports’ locations 15%
Putting all of the data together and creating the result set in R 30%
Writing the result set to a CSV file 20%

6. Result Format

The result sets of the both runs must be stored in individual CSV files. The header record of the CSV file is as follows:

Column Name Data Type Description
stationID Integer The identifier of the station
code String The 3 letter international identifier of the airport
name String The name of the airport
latitude Double The airport’s latitude
longitude Double The airport’s longitude
Elevation Double The airport’s elevation
max_temperature Double Maximum temperature at the station with stationID
min_temperature Double Minimum temperature at the station with stationID
avg_temperature Double Average temperature at the station with stationID

e All the column names are case-insensitive.

e Data types are guidelines only. You can use other data types if needed.

7. Task Data

The dataset that you are going to use is a collection of three related data sources that contain information about environmental
data measured by a range of stations spread over a set of airports. As you can see, each data source is stored and accessed

differently.

Weather Records: 5 years of 1-hour resolution weather records collected from the meteorological station at
approximately 200 different airports. Each record contains temperature (°C), humidity (%), wind speed (m/s),
timestamp (date/time), and the station identifier. All data items are measured in SI. This data is stored in a remote
PostgreSQL database table named “airportsweatherdata”. The table schema is as follows:

Table 1: All the column names are in lower case

Column Name Data Type Description
stationed Integer The identifier of the station
date character varying The timestamp of the record
temperature Double
dew Double
humidity Double
windspeed Double

In order to connect to the database, use the following information:
i Host: bx2train.inf-bb.uni-jena.de

ii. Port: 5432

iii. User: postgres

iv. Password: 1

V. Database: quisEval

Vi. Table: airportsweatherdata

Airport Information: A list of airports containing ids, codes, and names. The airport information is stored in a
comma separated CSV file named airports.csv. The first line of the file is the column names. http://fusion.cs.uni-
jena.de/javad/eval/data/airports.csv

Airport Location: An MS Excel file that contains the geographical locations of the airports. It contains one record
per airport, so that each record consists of the station id, latitude (°), longitude (°), and elevation (m). The file
name is airportLocations.xlsx and the location data is stored in a sheet named “locations”. It is the first sheet of
the MS Excel workbook. http://fusion.cs.uni-jena.de/javad/eval/data/airportLocations.xlsx

8. Auxiliary Resources

There are a number of R and QUIS examples available at the following URLs:

R scripts to obtain data from a PostgreSQL: http://fusion.cs.uni-jena.de/javad/eval/PostgreSQLSample.R
QUIS examples to be used within the workbench: http://fusion.cs.uni-jena.de/javad/quis/latest/examples.zip

9. QUIS Querying Hints

Please keep in mind that QUIS and its R package, RQUIS, are prototypes implemented as a proof of concept of a work that is
currently under development. As such, they may not support all expected scenarios, fail unexpectedly, or present technical error

messages. The following is a list of hints that may help you in successfully accomplishing the task:

MS Excel returns integer data as float when queried via its APIs. The “stationed” in the Excel file needs to be declared as
“Real” so that QUIS is able to use it in join operations. You can do this by either of the following ways:

o
o

Declare an inline schema inside your QUIS queries and set the data type of “stationed” as Real.

Enhance the Excel sheet headers with required data type. QUIS can parse <columnName>:<datatype> pattern
(e.g., stationed:Real) in headers. If you do so for one column, do so for all.

Define an external header file and declare the column names and their data types there. Use a comma separated
list of <columnName>:<datatype>. The header file name is
<ExcalFileName>.<ExcelFileExtension>.<SheetName>.hdr

There are some reserved words (e.g., class, long, integer, and char) that you cannot use to name the columns. If used, QUIS

will attempt to add a “gs_’

”

" prefix to them and run the query. Usually, no problems results, but, if they do, consider

changing the column names.

When joining data, duplicate columns names should be prefixed with an “R_". If you join the result of a join to another data
that contains same names, it is possible to have more than one identical column name that starts with “R_".

APPENDIX C. EVALUATION MATERIALS FOR THE USER STUDY

C.3 User Study’s Task Data

The working dataset is composed of the following data containers:

1. Weather records: 5 years of 1-minute resolution weather records collected from the
meteorological stations at 100 of the country’s airports. Each record contains temperature
data concerning (°C), humidity (%), wind speed (m/s) and direction (degree), timestamp
(date/time), and the station identifier, which is the three-letter airport code. This data is
stored in a remote PostgreSQL database named AirportsWeatherData. All data
items are measured in SI;

2. Airport Information: A complete list of all of the airports’ names published by IATA*.
It provides the code and name of each airport, in addition to the cities and the countries in
which they are located. The airport information is stored in a comma-separated CSV file,
in which the first line contains the column names; and

3. Airport location: An MS Excel file that contains the geographical locations of the air-
ports. It contains one record per airport, with each record consisting of the airport code,
longitude (°), latitude (°), and elevation (m).

C.4 User Study’s Questionnaire

*http://www.iata.org

200

http://www.iata.org

PPOST-STUDY USABILITY SURVEY

1. Task Execution

Subject ID:

Over the course of this survey, you have performed a data analysis task using two different tool families. Please provide
information on your work below. If you are not sure or do not want to answer, please mark the "N/A" option.

R QUIS

Task Completion

N/A N/A

1. In which order did you run the task?
(enter 1 for the tool you used first, and 2 for the other tool)

2. How many languages/tools/packages did you use to accomplish the
task?
(count of all the tools, languages, and packages used in the task implementation)

3. TaskStart Time
(Copy the task start time from the task sheet. use the hh:mm format)

4. Task Finish Time
(Copy the task finishing time from the task sheet. use the hh:mm format)

5. How long did you work on the task?
(task finish time - task start time in minutes)

6. How long did the execution of the task take on your machine?
(seconds)

7. To what extent were you able to complete the task?
(a percentage between 0 and 100, use the task specification Section 6 as
guideline)

8. How often did you use external help to accomplish the task?

(0 for no use, 5 for using external help for each and every line of the code)

2. Expertise Questions

Your Answer

1. Which operating system do you regularly use?
(e.g., Linux, Windows, Mac. Choose one)

2. Which operating system did do you run the task on?
(e.g., Linux, Windows, Mac. Choose one)

3. How many languages/tools do you usually use to accomplish similar tasks?
(1, 2-4, 5-8, more)

4. How many programming languages do you know?
(Only those languages that you actually use)

5. How proficient are you in SQL or other query languages (like SPARQL)?
(never used before, beginner, intermediate, expert)

6. How proficient are you in R?
(never used before, beginner, intermediate, expert)

7. What programming language did you typically use to analyze data in the past year?

8. What size datasets did you typically analyze in the past year?
(number of records: 1-10K, 10-100K, 100K-10M, 10M-100M, more)

9. How often in the past year have you participated in data analysis tasks?
(weekly, monthly, a few times, once)

3. Demography Questions

Current education Level (If you are a student):

Age: (Bachelor, Diploma, Master, Ph.D., Post Doc.)

Highest level of education attained:
(Bachelor, Diploma, Master, Ph.D., Post Doc.)

Gender: Field of Study:

Current job title (If you are working):

Fluency in English

Country of Origin: (Intermediate, Advanced, Native)

Does your job involve data analysis?
(Everyday, Few hours a week, Few hours a month, Few hours a year,
No use)

Subject ID:

4. Usability Questions

Please rate the following statements in regard to your personal experience with the task. Circle the item (-2, -1, 0, 1, 2) that
best fits your judgment of the statement’s quality.

Possible ratings range from "strongly disagree" (SD) over neutral to "strongly agree" (SA). Please keep in mind that the
distances between any two consecutive items are considered equal.

If you do not want to rate a particular statement, please mark the "N/A" option on its relevant row.

R UIs
Survey Item Q
sD | | sa | n~/a ||| sp | sa | N/A

Ease of Use

1. Icould easily use the system. -2 -1 0 1 2 -2 -1 0 1 2

2. 1could easily integrate data from heterogeneous P) 9 a 2 2) 0 2 2
sources.

3. lcould easily aggregate data. -2 -1 0 1 2 -2 -1 0 1 2

4. |could easily load and work with big datasets. -2 1|0 1 2 -2 -1 0 1 2

5. Itrequired the feAwest steps possible to accomplish what 5 4 0 a > 5 4 0 1 >
| wanted to do with the system.

6. |think both occasional and regular users would like the P a 9 a 2 2) 0 2 2
system.

7. It was easy to write SQL-like queries from inside the R P al @ a 2 2) @ 2 2
system.

Usefulness

8. Using the system increases_my productivity on the job. 2 1 0 1 2 2 1 0 1 2
(1t helped me do things more quickly)

9. UsiAng the system enhances my_effe_ctiven_ess on the job. 2 10 1 2 2 1 0 1 2
(Using the system helped me to do things in the right way)

10. TheAsystem makes the things | wanted to accomplish, P 2o a 2 P 4 0 2 2
easier to get done.

11. The system covers all my data access requirements. -2 1|0 1 2 -2 -1 0 1 2

12. The system covers all the aggregate and non-aggregate P 4 0 a 2 P 4 0 2 2
functions | needed.

13. The system is useful to me. -2 1|0 1 2 -2 -1 0 1 2

Satisfaction

14. The system is fast and responsive on different sizes of P) 9 a 2 2) @ 2 2
data.

15. The syste_m is fast and responsive on different P) 9 a 2 2) @ 2 2
combinations of data sources.

16. Comparing to my usual work, the system reduces the
number of languages/tools | need to accomplish my -2 -1 0 1 2 -2 -1 0 1 2
tasks.

17. 1 would use the system in other analysis tasks as well. -2 -1 0 1 2 -2 -1 0 1 2

18. | would recommend the system to a friend. -2 -1 0 1 2 -2 -1 0 1 2

19. | am satisfied with the system. -2 -1 0 1 2 -2 -1 0 1 2

C.5. RAW DATA

C.5 User Study’s Raw Data

Measurements

CcC
3.3

3.6
3.81
3.8
4.1

4.5

4.1

3.84
4.31
3.43
3.64
4.3

4.41
4.22
4.5

3.2

4.5

4.45
3.9
3.62
3.81
3.97
4.48
3.81
4.11
3.83
4.4

4.21
3.3

3.06
3.3

4.1

MT

17
18
16
10
15
17
12
14
16
15
13
14
13
15
15
16
15
16
18
15
15
13
16
14
18
16
14
17
17
18
18
17

50
45

48

40
50
48

29
60
48

40

50
48
55

56
50
55

56
48

40
55

40
60
50
60
55
55
60
50
45

45

45

50

Satisfaction

-2

1

1

0|0

-2

1

1
2

-110] 0

1

-2

-1

1

-1{0(0

1

-1
-1

1

-2

-1

-110]10]0

-1{ 0

-1

1

1

-1

-2

-1

-2
-1

-110

-1{0]0

1

-110

1

-1

-2
1
-1

-22(0]0]0]0

1
1
-2
-1

-2(0]0]0
-1
2

-1

1

-110

Usability Questions
Usefulness

-1

-2
-1

2

-2
-1

0
-2
-1
1
-1
1
-1

-2

-2

20| O

-1

20 0] 0

1

-2
-1

2

-2
-1

1
-2
-1

-1
1
-1

2|2
-2

1

-1
-2

0|0
-1
-1

1

0[O0

-2

-2
-1

-1
-2

-1
-1
-1
1
-2

-2
1

-1

-1

-1
1
-2

-2
-1

-1
-2

-1
-2
-1
1
-2

;110

-2
1

-2

-1

-2

-2

0j|0fO

-1/0]0]0

-2
-2

-2

-1{0]0

-2

-2

-2

-1{0]0

-1
-2
-1

-1{0]0

-2

0

-1

-2
2
-1
2

-2
-2

-2
-1

-2

-2

-2
-1

-1
-2
-1
-1
-2

1

Ease of Use
Q1/Q2|Q3(Q4(Q5|Q6|Q7((Q1|Q2|Q3|Q4[(Q5|Q6/Ql|Q2(Q3|Q4|Q5|Q6ff TT

0

1
-1
-2
-2

-2
-2

-2
-2

-2

10| O

-1

10| O

-:1{0]J]0]0fO0

-2
-1

-1
1

-1 O

-2

0

-2
-2

-2
-1

-11]0JJO0OjJO0jJO[O]O]O

-110)J0]0

-2
-2

-1
-1
-1
-1

-11 0

-2

-2
-1

1
-1
-1

1
-1 2

-2
-2

-2
-2
-1
-2

-1
-2
-1
-1

-1101]0
-1
-2

-2
-1

-110

-1
-1

-1{0]J0]J0OJJO]O

-1
-2

-2

-1
-1

-1(0

-1
-2
-1
-1
-1

-2

-2
-1

-1/0]0]0

-1101]0

1

1

-1 0

-2
-2

-2

211

1

1
-1

-110] 0

-1
-1
-1
-2
-1

-1 0

-1

-2
-1
-1

-1

1

-2

1
-2
-2
-2

0

1
-1
-2

-2
-2

1
-2

1

-1
-1

-1{0[0]0]O0

-1{0(|0

-1

00
-2

-2
-2
1

0
-1

-2
-2
0
-2

0[O0

-110

-1
-1

0[O0
-1

0[O0

-110]10]0

-1

0o[f0|0]O

Subject

S1

S2

S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21

S22
S23

S24
525
S26
S27
528
529
S30
S31

S32

Survey raw data for the baseline system

Table C.1.:

203

APPENDIX C. EVALUATION MATERIALS FOR THE USER STUDY

Measurements

CcC
2.50
2.64
2.93
3.04
3.17
3.12
3.16
3.44
3.21
3.25
3.27
3.11
3.36
3.36
3.37
3.40
3.45
3.45
3.46
3.52
3.55
3.56
3.57
3.62
3.78
3.78
3.80
3.80
3.45
3.64
2.78
2.65

MT

12
10
13
10

22

15

12
17
11
16
13
13

10
14
13
17
14
10
12
18
19
10
10

16

15
18

23
40

30
25
40

45

45

30
20
35
45

30
40

40

30
40

45

40

50
50
40

35
40

35
40

40

40

30
35
35
35
40

Satisfaction

-2

-2
-1
-1

-1
1
-1
1

-2

-1

1
0

-2

-2
-1
-1

-1
1
-1

-2

-1

1

1
-2

-2
-1
-1

-1

-1

0j]0f|O

-1{0|0

-1

1

-110]0]0

1
-2

-2
-1
-1

-1

-110

-1

00

1

-1

-1

00

1

0O

-2
-2

-2
-1
-1

-1
-1
-1
2

1

-:110] 0

-2

1

1

-2
-2

-2
-1
-1

-1
-2
-1

2

-1

-110
0[0fO
2

-2

O[f0f0]J0O]JO0O]|O

1

Usability Questions
Usefulness

2
-2

-2
2
2

2
2
2

1
-1
1

2
-2

-2

2
2

1
-1

1
1

oOfofOfO]oO

-2

-2

-1

2

-2(0]0

0[0|O
0[0|0O
1
-1

-1

1

-2

-2

-1

-2

1
2

-210
-2

1

-2

-2

-1

-2

-2 0]0]0]O0

-1{0)J]0]J0|O0fO]O

-2

-2
-2

-110[0]O0]OfO]O

-2

-2

1
1

1
-1

0|0
2

1
1

-2
-2
-1
-2

0|0

ojo0foO

-2
-2

-1

ojofojojojo

Ease of Use

Q1/Q2({Q3/Q4|Q5|Q6|Q7]Q1/Q2|Q3|Q4|Q5[/Q6(Q1|Q2|Q3|Q4[Q5(Q6(TT

1
-2

-1
-1
-1

-1
-1
1
-2
-1
-1

2201 0]J0]0[O0(O

-1

2
1
1

20l 0] 0

-1

0
1

-110) 0|0

-110

-2
1

-2
-1
-1

-1
-1

-2
-1

-1
-1

2

1
-2
-1

1
1

0

-2
1

-2
-1
-1

-1
-1

-1
-1

-2
-1

-110] 0

-1
-1

111
-2

-2
-1
-1

-1
-1

-1
-1

-1{0]0
-2
-1

1
-1

-1
-2

-2 0

-2
-1
-1

-1
-1

-1
-1
-1
-1
-1

-1{0]J0]J0]O

-1 0

ojo0fo

-1

ojofo

-2
-2

-2
-2
-1

-1
-1

-1
-1
-1
-2
-1

-1

0|0fO0O|JO]|O]O

111
-2
-2

-2
-2
-1
0

0
-1

0
-2
-1
-2
-1

0O
00

0[0(O

-1

ojof0jJOfO]|O]|O
ofojojojojofo

0[O0|O

Subject

S1

S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
518
S19
S20
S21
S22
S23
S24
S25
526
S27
528
S29
S30
S31
S32

Table C.2.: Survey raw data for the QUIS system

204

C.6. DESCRIPTIVE STATISTICS

C.6 Descriptive Statistics of the User Study Results

Descriptive statistics of the survey data
Subjects R Q
T | Mt [cc| eu | ur | se || 1T | mt [cc | eu | ur | sk
sl 50.00 17.00 3.30 1.00 -0.50 0.00{f 23.00 12.00 2.50 0.86 1.67 0.83
s2 45.00 18.00 3.60 0.29 0.17 -0.17(f 40.00 10.00 2.64 043 0.17 -0.17
s3 48.00 16.00 3.81 043 -2.00 1.50(f 30.00 13.00 293 0.71 2.00 1.33
s4 40.00 10.00 3.80 -0.14 0.00 0.67{ 25.00 10.00 3.04 -0.29 1.67 0.50
s5 50.00 15.00 4.10 -1.86 -0.17 0.83| 40.00 8.00 3.17 -1.57 133 -0.33
s6 48.00 17.00 450 -1.14 2.00 0.33(45.00 22.00 3.12 -0.86 -2.00 -2.00
s7 29.00 12.00 4.10 1.00 2.00 2.00{f 45.00 800 316 143 117 1.67
s8 60.00 14.00 3.84 -2.00 -2.00 -2.00{f 30.00 15.00 3.44 -1.86 -2.00 -2.00
s9 48.00 16.00 431 -1.43 -133 1.00(20.00 8.00 3.21 -1.29 1.33 -1.00
s10 40.00 15.00 343 -0.14 0.00 -0.33((35.00 12.00 3.25 -1.00 1.33 -1.00
s11 50.00 13.00 3.64 -0.14 -0.17 -0.17| 45.00 17.00 3.27 0.00 -0.17 0.17
s12 48.00 14.00 430 -1.00 -2.00 1.00{(f 30.00 11.00 3.11 -0.86 1.33 -1.00
s13 55.00 13.00 4.41 -1.14 -0.67 1.00| 40.00 16.00 3.36 -1.00 0.00 -0.33
s14 56.00 15.00 4.22 0.71 1.00 -0.83| 40.00 13.00 3.36 1.00 1.33 -1.00
s15 50.00 15.00 4.50 -1.43 -1.33 -0.17(f 30.00 13.00 3.37 -1.14 2.00 1.00
s16 55.00 16.00 3.20 -1.57 -0.17 0.00{(f 40.00 8.00 340 -1.14 1.17 1.00
s17 56.00 15.00 4.50 -0.57 -1.33 0.50| 45.00 10.00 3.45 -0.71 1.00 1.67
s18 48.00 16.00 445 -143 100 1.67(40.00 14.00 345 -1.71 0.00 0.67
s19 40.00 18.00 390 -0.43 -2.00 1.83{ 50.00 13.00 3.46 -1.00 -1.33 1.00
s20 55.00 15.00 3.62 -0.57 0.00 1.67|(50.00 17.00 3.52 -0.14 -0.67 -1.00
s21 40.00 15.00 3.81 -0.86 0.33 1.00(f 40.00 14.00 3.55 -0.29 -0.33 -0.33
s22 60.00 13.00 397 143 150 1.00{f 35.00 10.00 3.56 1.86 -0.50 0.67
s23 50.00 16.00 4.48 -1.71 -1.00 -0.17| 40.00 12.00 3.57 0.71 0.33 0.50
s24 60.00 14.00 3.81 -1.00 -2.00 -0.33|f 35.00 18.00 3.62 0.57 0.50 0.33
s25 55.00 18.00 4.11 -0.29 0.00 0.67]| 40.00 19.00 3.78 -0.57 -0.50 1.50
s26 55.00 16.00 3.83 -0.43 -0.67 0.50| 40.00 10.00 3.78 -1.00 -0.67 -1.33
s27 60.00 14.00 4.40 -0.14 -1.67 0.33| 40.00 10.00 3.80 0.00 -0.83 1.00
s28 50.00 17.00 4.21 -0.14 133 1.50(30.00 8.00 3.80 0.00 1.83 0.67
s29 45,00 17.00 3.30 129 0.67 1.00{ 35.00 16.00 3.45 0.14 133 0.67
s30 45.00 18.00 3.06 -0.29 1.00 1.00{ 35.00 8.00 3.64 0.57 1.00 0.00
s31 45.00 18.00 3.30 -0.57 0.67 0.67]{ 35.00 15.00 2.78 0.43 -0.33 0.67
s32 50.00 17.00 4.10 -0.57 0.17 0.67|f 40.00 18.00 2.65 0.57 0.00 0.50
Mean 49.563 15.406 3.935 -0.464 -0.224 0.568|37.125 12.750 3.318 -0.223 0.411 0.151
Median 50.000 15.500 3.935 -0.500 -0.083 0.667|/40.000 12.500 3.386 -0.214 0.417 0.500
SD 7.075 1.932 0.427 0.913 1.202 0.849| 7.183 3.750 0.342 0.944 1.127 1.013
Var 50.060 3.733 0.183 0.833 1.446 0.720|(51.597 14.065 0.117 0.891 1.271 1.026
Table C.3.: Descriptive statistics of the survey data

205

C.7 Analytic Statistics of the User Study Results

APPENDIX C. EVALUATION MATERIALS FOR THE USER STUDY

Table C.4 summarizes the analytics of the user study. It includes the survey result for each indi-
cator as well as their normality test, significance, null hypothesis test result, and the difference
of the means.

I | sc X X o v sigsy | t-Stat P HO Xq-XR
T g a5 | 0000 | 7.3 | 51597 |00 | 534 | 0:000 | Rejected | -12.45
13750 | 13500 | 5750 | 14065 | 0069 | 750 | 0-001 | Regsctea | -2.66
o0 g TE | 586 032 [0117 0067|198 | 000 | Rejactea | .62
g 02 021 [0ga | omr osta] 02 | 0052 | Helds | 0.2
UF g _8:425? _8:%; }?(2)3 }:;471? 8:(1)2 2.165 | 0.038 | Rejected | 0.64
SF Q[OTST [0500 | Tor3 [T [067] 227 | %092 | Rejectea | -0.42
Table C.4.: Descriptive statistics of the survey results. I: indicator, sc: evaluation scenario, X:

mean, X: median, o: standard deviation, v: variance, and sigg;: Shapiro-Wilk nor-
mality test’s significance, t-Stat: t-statistic, P: P(T<=t) t-significance (two-tailed),
HO: Null hypothesis result, Xg-Xg: Mean difference between QUIS and the baseline.

206

	Problem Definition
	Introduction
	Motivation & Overview
	Usage Scenarios
	Ecological Niche Modeling Use-Case
	Sloan Digital Sky Survey Use-Case

	Hypothesis and Objectives

	Background and Related Work
	Relational Database Management Systems
	Federated Database Management Systems
	Polystore Systems
	NoSQLs
	Scientific Databases
	External Databases
	Adaptive Query Systems
	NoDBs

	Problem Statement
	Functional Requirements
	Non-functional Requirements

	Summary of Part I

	Approach and Solution
	Overview of the Solution
	Query Declaration
	Programming Paradigm
	Choice of Programming
	Choice of Meta-language and Tools
	Related Query Languages
	SQL
	SPARQL
	XQuery
	Cypher
	Array-based Query Languages
	Data Model

	QUIS Language Features
	Declarations
	Data Retrieval (Querying)

	Query Transformation
	Query Plan Representation
	Query Transformation Techniques
	Query to Query Transformation
	Query to Operation Transformation
	Schema Discovery
	Transforming Data Types

	Query Complementing
	Query Optimization
	Optimization Rules
	Optimization Effectiveness

	Query Execution
	The Query Execution Engine
	DST Preparation
	Adapter Selection
	Query Compilation
	Job Execution

	Adapter Specification

	Summary of Part II
	Realization of the Requirements

	Proof of Concept
	Implementation
	Agent Module
	Parsing
	Dynamic Compilation

	Data Access Module
	Client Module
	Application Programming Interface (API)
	QUIS-Workbench
	R-QUIS Package

	Special Techniques
	Tuple Materialization
	Aggregate Computation
	Plug-ins

	System Evaluation
	Evaluation Methodology
	Evaluation Data
	Tools
	Test Machines

	Measuring Time-to-first-query
	Performance on Heterogeneous Data
	Scalability Evaluation
	User Study
	Language Expressiveness

	Conclusion and Future Work
	Summary and Conclusions
	Future Work
	References

	Appendix
	QUIS Grammar
	Expressiveness of QUIS's Path Expression
	Evaluation Materials for the User Study
	User Study Methods
	Task Specification
	Task Data
	Questionnaire
	Raw Data
	Descriptive Statistics
	Analytic Statistics

