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Introduction 1 

1 Introduction 

1.1 Ecological relevance of marine phytoplankton 

All photosynthetic, pelagic organisms that live in the aquatic environment and are mainly moved 

by the water currents, are defined as phytoplankton. Phytoplankton comprises organisms of a 

multitude of phyla showing all forms and sizes. It can generally be confined from bacterioplankton 

and zooplankton. While the former consists of all prokaryotic organisms like bacteria and archaea, 

the latter is composed of autotrophic and heterotrophic microorganisms. The global impact of 

phytoplankton first became evident during the oxygenation of the Earth’s atmosphere, which took 

place approximately 2.4 billion years ago (Bekker et al., 2004). By emitting oxygen as a 

photosynthetic byproduct, these organisms created the opportunity for the evolution of life resulting 

in the flora and fauna we know today. 

Although marine unicellular algae make up only 0.2 % of global primary producer biomass (Field 

et al., 1998) they have tremendous impact on marine and terrestrial ecosystems: Via fixation of 

atmospheric CO2 and synthesis of organic compounds they are responsible for approximately 50 % 

of global primary production (Field et al., 1998) and drive the global carbon cycle (Keeling and 

Shertz, 1992). As they provide the organic matter that fuels higher trophic levels, they form the basis 

of the marine food web. Furthermore, they impact global climate not only via fixation of CO2, but 

also indirectly via the emission of compounds that act as cloud condensation nuclei that influence 

the Earth’s albedo (Bates, Charlson and Gammon, 1987; Charlson et al., 1987). 

The characteristics of the ocean are closely linked to phytoplankton physiology. Interestingly, it 

has been found that the proportion of the major elements C:N:P in the marine system is constrained 

to the ratio 106:16:1 (Redfield, 1958). This stoichiometry, called Redfield ratio, characterizes the 

elemental composition of nutrients in the ocean and the one of phytoplankton biomass1. As it is not 

clear, whether this ratio in phytoplankton biomass results from the elemental composition of the 

ocean or vice versa, a reciprocal interaction between organisms and environment is strongly 

suggested (Falkowski, 1994, 2012).  

                                                 
1 (Redfield, 1958) referring to  (Fleming, 1940) 
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Another aspect of this close interaction between chemical and biological environment is the 

‘biological pump’2. Dead phytoplankton cells and other fine particle matter slowly sink into deep 

layers of the ocean. Over time inter alia these deep layers are enriched with organic carbon3 and 

nutrients (Falkowski, Barber and Smetacek, 1998). This dynamic is called the biological pump. 

During upwelling events in spring or summer, when insolation increases and more nutrients enter 

the euphotic zone, this deep sea storage can again be exploited by phytoplankton (Falkowski, 1994). 

Thus, phytoplankton dynamics create biogeochemical cycles, regulate atmospheric CO2 levels via 

deep sea storage and ultimately lead to fossil fuels via sedimentation (Falkowski et al., 1998; 

Falkowski, 2012).  

When conditions for growth become better, mass occurrences of certain phytoplanktonic species 

occur, which are called phytoplankton blooms. Especially well known and studied are harmful algal 

blooms (HABs), or ‘red tides’ (Shilo, 1967; Smayda, 1997a). They can be formed by various 

phytoplanktonic species4, which all share the trait of producing toxic compounds (Smayda, 1997b). 

One prominent example is Paralytic Shellfish Poisoning, which is caused by saxitoxins that are 

excreted by several dinoflagellates, e.g. Alexandrium sp. (Anderson et al., 1990). These toxins are 

accumulated in bivalve mollusks, like mussels, and consumed either directly or indirectly by humans 

with potentially lethal effects (Grattan, Holobaugh and Morris, 2016).  

These HABs are preferentially produced by flagellates, mostly dinoflagellates. Together with 

coccolithophores and diatoms, they represent the three dominant groups of marine eukaryotic 

phytoplankton that largely dominate modern oceans (Falkowski et al., 2004).  

Diatoms 

Diatoms (phylum Bacillariophyta) are dominant, eukaryotic key players in the marine 

phytoplankton and comprise approximately 30 % of all phytoplankton species5. Contrary to 

dinoflagellates, most diatoms are non-toxic, with the exception of several Pseudo-nitzschia species, 

which produce the neurotoxin Domoic acid (Zabaglo et al., 2016). Diatoms are characterized by 

their rigorous silicified cell wall, called a frustule, which is made up of hydrated silicon dioxide and 

organic material (Armbrust et al., 2004). It is hypothesized that frustules evolved to provide diatoms 

                                                 
2 Term used by (Falkowski, 1994, 2012; Falkowski et al., 1998) 
3 (Falkowski et al., 1998) referring to (Volk and Hoffert, 1985) 
4 (Smayda, 1997a) referring to (Sournia, 1995) 
5 (Allen, Vardi and Bowler, 2006) referring to (Falkowski et al., 2004) 
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with an effective mechanical protection against their predators (Hamm et al., 2003). As the frustule 

is rather heavy and diatom cells therefore sink during and after death, diatoms are a vital part of the 

biological pump (Bowler, Vardi and Allen, 2010).  

Diatoms are traditionally divided into centric and pennate diatoms (Kooistra et al., 2007). While 

pennate diatoms exhibit bilateral symmetry, centric diatoms are characterized by radial symmetry. 

It is hypothesized that pennate diatoms form the younger group, which developed from centric 

diatom ancestors (Kooistra et al., 2007). Generally, diatoms are considered the most species-rich 

group of algae with over 200 000 different species (Mann and Droop, 1996). 

Within the phytoplankton, diatoms contribute massively to the primary production. They are 

thought to be responsible for 20 % of the global primary production6 and are globally distributed 

(Guillard and Kilham, 1977). As diatoms prefer nutrient-rich conditions they favorably occur in 

well-mixed coastal and upwelling regions as well as the photic zone in the open ocean (Bowler et 

al., 2010). Interestingly, the open ocean resembles a biological desert most of the time as conditions 

are rather oligotrophic (Ryther, 1969). However, during certain times of the year nutrient-rich 

conditions can be found in the open oceans as well (as summarized in (Ragueneau et al., 2000)).  

The role of diatoms in phytoplankton blooms can be exemplified by the well-studied North Atlantic 

spring bloom. It is generated and dominated by diatoms and initiated by changing abiotic conditions 

(Lochte et al., 1993; Sieracki, Verity and Stoecker, 1993). For example due to mesoscale eddies, 

circular moving water masses that episodically re-enrich the euphotic zone with new nutrients. It has 

been suggested that these eddies trigger diatom productivity and are closely linked to diatom maxima 

found in the open-ocean Northeast Atlantic (Romero et al., 2016). 

Due to the fact that diatoms are superior competitors for nutrients (e.g. nitrate7), they dominate the 

onset of the bloom (Bowler et al., 2010). However, as soon as silicate becomes limited, diatom 

abundance declines and other phytoplanktonic groups, like small dinoflagellates, become abundant. 

Thus, a characteristic species succession is created during the course of the bloom, representing 

biological diversity within phytoplankton. However, biological diversity is not only constituted by 

different species. Just recently it has been found that genetically distinct populations of the diatom 

Thalassiosira gravida co-exist during the North Atlantic spring bloom (Chen and Rynearson, 2016). 

The biological diversity, represented by multiple, genetically distinct populations within single 

                                                 
6 (Bromke et al., 2013) referring to (Falkowski et al., 1998; Field et al., 1998) 
7 (Allen et al., 2006) referring to (Sarthou et al., 2005) 
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species, might present a crucial evolutionary advantage of the diatom genus and might be one reason 

for their global success (Chen and Rynearson, 2016). 

Skeletonema sp. and Thalassiosira sp.  

Among centric diatoms, the genera Skeletonema and Thalassiosira represent well-researched and 

globally distributed taxonomic groups. Both genera comprise dominant bloom formers in the group 

of non-toxic phytoplankton species8 and have been reported to co-occur in the marine environment 

(Paul et al., 2009). Interestingly, both genera are well studied in the context of chemically-mediated 

interactions (see chapter 1.3 and 1.5 for more details).  

The genus Thalassiosira comprises about 100 species in the freshwater and marine environment9. 

The species T. pseudonana became especially popular, as it was the first diatom whose genome was 

fully sequenced  (Armbrust et al., 2004). It is considered an important model organism, as the genetic 

information provides a valuable tools in the investigation of diatom biochemistry. However, by now 

whole-genome sequencing has been reported for a number of phytoplankton species (see (Ianora et 

al., 2011) and included references). Interestingly, T. pseudonana is a highly conserved species, as it 

exhibits low genetical diversity among available strains (Rad-Menéndez et al., 2015). Another 

representative of the genus Thalassiosira is T. weissflogii, a diatom well known for its interaction 

with Skeletonema costatum (Paul et al., 2009).  

Within the genus Skeletonema, S. costatum sensu lato (s.l.) represents a diatom key player that can 

be globally found with exception of the Antarctic Ocean (Kooistra et al., 2008). In 1973, Hasle10 

described a huge morphological diversity within S. costatum (s.l.) and recently, the species concept 

of S. costatum (s.l.) has been revoked (Kooistra et al., 2008). Based on molecular data and diatom 

morphology, S. costatum (s.l.) has been separated into multiple species (Medlin et al., 1991; Zingone 

et al., 2005; Sarno et al., 2005, 2007), inter alia: S. pseudocostatum, S. costatum sensu stricto (s.s.), 

S. grevillea, S. ardens, S. dohrnii, S. grethae, S. japonicum and S. marinoi. As a consequence, the 

identity of previously as S. costatum reported species is questionable (Zingone et al., 2005). 

Therefore, it is very important to refer to strain numbers and if applicable consider re-identification 

of commonly used strains, as performed by Kooistra et al. (Kooistra et al., 2008). For the scope of 

                                                 
8 Skeletonema blooms: see (Kooistra et al., 2008) and references / Thalassiosira blooms: see (Dreux Chappell et al., 

2013) and references 
9 (Dreux Chappell et al., 2013) referring to (Round, Crawford and Mann, 1990) 
10 As referred to by (Kooistra et al., 2008) 
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this thesis, the chemically-mediated interaction between S. costatum and T. weissflogii as reported 

by (Paul et al., 2009) will be of high interest. 

1.2 The nature of chemically-mediated interactions 

In recent years, chemically-mediated interactions came to the fore, as their widespread nature in 

the marine environment became evident. Not only are they important for phytoplanktonic blooms, 

but they can also impact ecosystem structure and function on a very basic level (Borowitzka, 2016). 

Interestingly, physiochemical properties (like nutrients, temperature, light etc.) set the upper limit 

for biomass formation in bloom situations, but are neither sufficient to explain species succession 

and abundance in bloom situations (Smetacek and Cloern, 2008), nor species diversity. Besides 

abiotic factors as nutrient depletion dynamics, biotic factors like grazer or pathogen abundance and 

chemically-mediated interactions need to be taken into account (Ianora et al., 2006; Pohnert, Steinke 

and Tollrian, 2007; Smetacek and Cloern, 2008; Strom, 2008).  

The discipline investigating these chemically-mediated mechanisms is called ‘chemical ecology’. 

It matured from a strong chemical focus on natural product discovery into an integrative science that 

combines chemical and biological aspects to unravel ecological relationships (Hay, 1996). Due to 

increasingly elaborate experimental designs, high-resolution analytical techniques and up-to-date 

data analysis tools, chemical ecology is a rapidly evolving and fast growing discipline (Kubanek et 

al., 2005; Ianora et al., 2006, 2011; Poulson, Sieg and Kubanek, 2009; Sieg, Poulson-Ellestad and 

Kubanek, 2011; Roy et al., 2013; Schwartz et al., 2016). 

As summarized in a number of comprehensive reviews on chemical ecology11, several key life 

processes have been found to be chemically-mediated in the marine environment: inter alia sexual 

mate recognition and location (Gillard et al., 2013), population synchronization (Vardi et al., 2006, 

2007; Vidoudez and Pohnert, 2008; Bidle, 2016), chemical defense in predator-prey interactions 

(Selander et al., 2006), host-pathogen interactions (Amin, Parker and Armbrust, 2012) and 

allelopathic interactions among phytoplankton (Gross, 2003). In the context of this thesis, the focus 

was set on the latter. 

Substances involved in chemically-mediated interactions are generally called semiochemicals 

(Nordlund and Lewis, 1976; Dicke and Sabelis, 1988). However, further terminology is 

                                                 
11Inter alia: (Hay, 1996, 2009; Cembella, 2003; Ianora et al., 2006, 2011; Pohnert et al., 2007; Poulson et al., 2009; 

Pohnert, 2009; Sieg et al., 2011; Roy et al., 2013; Borowitzka, 2016; Schwartz et al., 2016) 
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heterogeneous and depends on the proposed context, as reviewed by (Dicke and Sabelis, 1988). 

Subsequently, a terminology based on the one suggested by (Nordlund and Lewis, 1976) and refined 

by Dicke and Sabelis (Dicke and Sabelis, 1988) will be used12: Semiochemicals are toxins and 

nutrients on the one hand, which have a direct beneficial or detrimental effect on the interaction 

partner and infochemicals on the other hand, which carry a message to the partner to elicit response. 

Among infochemicals, allelochemicals comprise substances that take part in interspecific 

interactions, while pheromones mediate sexual processes or social responses within the same 

species. Furthermore, allelochemicals can be classified according to cost-benefit criteria: 

Kairomones benefit the receiver, but not the emitter, allomones benefit the emitter and synomones 

benefit both receiver and emitter (Dicke and Sabelis, 1988). In general, the origin criterion of 

(Nordlund and Lewis, 1976) has been abandoned, because it neglects the possible importance of 3rd 

party organisms, e.g. via modification or co-production of infochemicals, in chemically-mediated 

interaction (Dicke and Sabelis, 1988). 

When talking about chemically-mediated interactions in the marine environment, it is not only 

important to recognize the terminology, but also the structural conditions in the aqueous medium. 

An enormous challenge in chemically-mediated interactions is its scaling ((Zimmer and Zimmer, 

2008) and references herein). While emitting organisms might be sized in the µm-range, 

communication can occur on a scale of kilometers, like in the example of dimethylsulfide (DMS), 

which originates from phytoplankton and influences various trophic levels up to seabirds (Hay and 

Kubanek, 2002; Pohnert et al., 2007; Nevitt, 2008). Also on a small scale level, pulses of 

dimethylsulphoniopropionate (DMSP) have been documented to attract motile phytoplankton 

species, bacteria and microzooplankton (Seymour et al., 2010). In both cases, the success of 

communication is determined by chemical, physical and biological properties, as reviewed by 

Zimmer and Zimmer (Zimmer and Zimmer, 2008).  

Every emitting organisms needs a receiving organisms that ‘speaks the same language’, meaning 

is able to decipher a signal coded by an infochemical (Pohnert, 2009). Thus, among biological 

properties, the existence of an excretion system in the emitter, suitable biochemical receptors in the 

perceiver and the supply of a biologically active concentration are crucial (Willis, 1985; Borowitzka, 

2016). In the marine environment, infochemicals are transferred via an aqueous medium. In a 

chemical sense, infochemicals must have characteristics that enable transfer and provide sufficient 

                                                 
12 Further references in (Dicke and Sabelis, 1988) 
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stability until the message reaches the receiver (Zimmer and Zimmer, 2008). These substances would 

be expected to be hydrophilic and rather stable (Zimmer and Zimmer, 2008). However, even 

infochemicals with hydrophobic character and low solubility have been documented, as they can be 

suspended and transported by water motion.  

This leads to the third aspect: physical properties (Zimmer and Zimmer, 2008). Due to wind, 

convection or other turbulences, the marine environment is in constant motion. The availability of 

an infochemical thus greatly depends on fluid flow dynamics, as dispersal rates are crucial for both 

motile and non-motile organisms. Recreating these structural conditions in laboratory experiments 

and creating realistic experimental designs is a tremendous challenge in chemical ecology (Zimmer 

and Zimmer, 2008). 

1.3 Allelopathy in phytoplankton communities  

Among chemically-mediated interactions in the phytoplankton, allelopathy is the most studied type 

(Borowitzka, 2016). It has been reported to be closely associated with competition for resources 

(Reigosa, Sánchez-Moreiras and González, 1999; Legrand et al., 2003) and to play an important role 

in maintaining biodiversity and ecosystem functioning13. As previously described, bottom-up 

approaches are not sufficient in explaining species succession and species dominance in the sea, for 

example, the dominance of diatoms in bloom situations (Strom, 2008). In fact, interactions between 

planktonic organisms, like allelopathy need to be considered (Keating, 1977; Gross, 2003; Legrand 

et al., 2003; Fistarol et al., 2004; Prince et al., 2008b; Qiu et al., 2014). 

The term allelopathy was introduced by Molisch (Molisch, 1937) and evolved in the subsequent 

years, with the research field broadening. In 1996, the International Allelopathy Society14 

standardized the definition of allelopathy by stating that allelopathy is either a stimulatory or 

inhibitory interaction between plants and / or plants and their associated micro- and macrofauna. 

This definition applies to both terrestrial and aquatic ecosystem and compounds involved in the 

regulation of the interaction are called allelochemicals.  

A demonstrative example of the impact and importance of allelopathy in phytoplankton ecology is 

given by Keating (Keating, 1977, 1978). Keating’s study connected observations of phytoplankton 

species succession in Linsely Pond with allelopathic effects and documented that excreted 

                                                 
13 (Borowitzka, 2016) referring to the review of (Gross, 2003) 
14 (Legrand et al., 2003) referring to http://allelopathy-society.osupytheas.fr/about/ (January 2017) 

http://allelopathy-society.osupytheas.fr/about/
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allelochemicals of one species affect the succeeding species in a potentially stimulatory way. 

Interestingly, for species that preceded the excreting organisms in species succession, the effect was 

neutral to negative. Thus, allelochemicals strongly regulate species succession. 

In accordance with Keating, Smayda suggested five types of allelopathic interactions in 

phytoplankton: (1) mutually stimulatory, (2) mutually inhibitory, (3) selectively inhibitory, (4) 

selectively stimulatory and (5) neutral interactions (Smayda, 1997a). However, in chemical ecology 

allelopathy often only refers to inhibitory effects between phytoplanktonic organisms (Inderjit and 

Duke, 2003; Legrand et al., 2003; Granéli and Pavia, 2006). Only recently, the whole spectrum of 

allelopathic effects is discussed and brought to attention when allelopathy is reviewed (see (Sieg et 

al., 2011; Roy et al., 2013; Schwartz et al., 2016) in contrast to (Poulson et al., 2009)).  

The outcome of allelopathic interactions is influenced by various factors (Legrand et al., 2003). 

Abiotic factors like light, pH, temperatures, and nutrient status affect allelopathy (Granéli and 

Johansson, 2003; Granéli and Hansen, 2006; Granéli and Salomon, 2010), as well as biotic factors 

like cell physiological state or age (Arzul et al., 1999; Kubanek et al., 2005; Yamasaki et al., 2011), 

associated bacteria (Gross, 2003)15, receiver and emitter population density (Sharp, Underhill and 

Hughes, 1979; Jonsson, Pavia and Toth, 2009; Qiu et al., 2011; Yamasaki et al., 2011), species 

(Keating, 1977, 1978; Fistarol et al., 2004; Kubanek et al., 2005; Yamasaki et al., 2011; Qiu et al., 

2014) and intrastrain variability in allelopathic potency (Alpermann et al., 2009, 2010). Hereby, not 

only the release of the emitting organism is impacted, but also the sensitivity of the receiver, which 

is similarly influenced by biotic and abiotic stress (Fistarol, Legrand and Granéli, 2005). 

To get a better grip on the character of allelopathic interactions and to exemplify the introduced 

principles, subsequently the allelopathic interactions of one toxic dinoflagellates Karenia brevis and 

one non-toxic diatom S. costatum will be presented. Both examples illustrate the complexity of 

chemically-mediated interactions and further demonstrate that allelopathy can have community-

wide consequences. 

Exemplifying allelopathy in the context of K. brevis 

Initially, the interest in allelopathy research was driven by the phenomenon of HABs. As these 

blooms are hazardous for vertebrates, including humans, it was of key interest to understand 

underlying dynamics. One prominent and well-studied example is the red tide dinoflagellate Karenia 

                                                 
15 With reference to (Gross, Wolk and Jüttner, 1991; Gross, Meyer and Schilling, 1996) 
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brevis16. The toxin produced by K. brevis is a polyketide phycotoxin that causes lethal effects in 

vertebrates and is responsible for neurotoxic shellfish poisoning in humans (Flewelling et al., 2005; 

Watkins, 2008; Landsberg, Flewelling and Naar, 2009). Therefore, its toxicology, physiology and 

bloom formation have been intensely studied (Prince et al., 2008b; Vargo, 2009; Brand, Campbell 

and Bresnan, 2012). 

However, in addition to its phycotoxin production, K. brevis was also reported to influence the 

growth of co-occurring phytoplanktonic species via excretion of multiple allelochemicals (Kubanek 

et al., 2005; Prince et al., 2008b, 2010). The impact of these allelochemicals is both species- and 

cell-density dependent and can result in inhibitory and stimulatory growth effects on co-occurring 

phytoplankton species (Kubanek et al., 2005).  

Negative allelopathy on co-occurring species ranges from mild to strong inhibition and has been 

partly reported to be reciprocal (Kubanek et al., 2005; Poulson-Ellestad et al., 2014b). For example, 

the diatoms Asterionellopsis glacialis and S. costatum both experience mild inhibition by K. brevis 

(Kubanek et al., 2005). However, compared to other species, the negative effect on both diatoms 

was less pronounced and only mild inhibition was documented. Interestingly, the sensitivity of co-

occurring species to K. brevis allelopathic shows high variability in some studies (Poulson-Ellestad 

et al., 2014b). Nevertheless it is suggested that resistance to negative allelopathy is connected to the 

evolutionary exposure of co-occurring species to K. brevis (Kubanek et al., 2005; Schwartz et al., 

2016). 

Besides negative allelopathic effects, the cryptophyte Rhodomonas lens has been reported to be 

stimulated by the presence of K. brevis (Kubanek et al., 2005). As this interaction is caused by 

allelochemicals (Kubanek et al., 2005), it is categorized as positive allelopathy. Interestingly, some 

species are completely unaffected by the presence of K. brevis as well (Kubanek et al., 2005). 

The observation of different allelopathic effects all caused by one species illustrates nicely, how 

such species can influence bloom succession in the marine environment. Furthermore, in addition to 

direct allelopathic effects, the response of co-occurring species also impacts species diversity. For 

example, the two diatoms A. glacialis and S. costatum are able to undermine negative allelopathy of 

K. brevis (Prince et al., 2008b). Besides the ability to resist K. brevis allelopathy by themselves as 

                                                 
16 Subsequent summary based on the research and reviews by (Kubanek et al., 2005; Prince et al., 2008b) 
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reported above, these organisms reduce negative allelopathic effects of K. brevis bloom exudates on 

other species as well (Prince et al., 2008b). 

Exemplifying allelopathy in the context of S. costatum 

Considering non-toxic phytoplankton species, allelopathy of the diatom S. costatum has been well 

studied17. Yamasaki et al. demonstrated that allelopathic effects of S. costatum are both species-

specific and cell density dependent (Yamasaki et al., 2011). Furthermore, the allelopathic effect is 

suggested to be time-dependent, as filtrates from cultures in the late stationary phase exhibited 

strongest inhibitory effects. Multiple allelochemicals with both positive and negative effects on the 

growth of co-occurring phytoplankton species were produced (Yamasaki et al., 2011). They 

investigated the allelopathic effect of S. costatum on three diatoms (Asterionellopsis glacialis, 

Thalassiosira sp. and Chaetoceros sp.) and four dinoflagellates (Heterosigma akashiwo, 

Prorocentrum dentatum, Prorocentrum triestinum and Prorocentrum minimum), all co-occurring 

with S. costatum in the fishing port of Hakozaki (Hakata, Bay, Fukuoka, Japan).  

S. costatum can suppress the growth of H. akashiwo and vice versa (Yamasaki et al., 2007). The 

outcome of the observed reciprocal interaction is determined by the fact, which species reaches high 

cell densities first, as it limits the growth of the less abundant partner. Furthermore, Pratt (Pratt, 

1966) documented that while high cell densities of H. akashiwo18 inhibited S. costatum, low cell 

densities had a stimulatory effect on the growth of S. costatum. These effects were suggested to 

explain alternating blooms of S. costatum and H. akashiwo in the field (Pratt, 1966; Shikata et al., 

2008)19 and the observation that inferior species seem to vanish during blooms of the dominant 

species19.  

In 2012, Yamasaki described two chemically stable, low-molecular weight allelochemicals, with 

characteristic ESI-MS fragments of m/z (ratio of mass to charge) 268 and 514, to be involved in 

negative allelopathic effects of S. costatum (Yamasaki et al., 2012). As the negative allelopathic 

effect on H. akashiwo becomes manifested in morphological and lytic effects, the allelochemicals 

were hypothesized to attack cell membranes (Yamasaki et al., 2011). 

                                                 
17 Subsequent summary based on the research and reviews of (Yamasaki et al., 2007) 
18 (Yamasaki et al., 2011) stated that the species Olisthodiscus luteus as specified by (Pratt, 1966) equaled the species 

designation H. akashiwo in their study 
19 (Honjo, Shimouse and Hanaoka, 1978) as referred to by (Yamasaki et al., 2007) 
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On the other hand, stimulatory effects of S. costatum filtrates have been observed as well. 

Interestingly, at certain filtrate concentrations and / or cell density ratios, every investigated species 

also exhibited higher cell yields, compared to their respective control. For example, P. minimum and 

A. glacialis had higher maximum growth rates, cell yields and a shorter lag period before the onset 

of the regular growth phase. The diatom T. rotula experienced a stimulatory growth effect, as seen 

in elevated cell yields. It was hypothesized that these results are closely linked to the observation of 

bloom succession around S. costatum (Yamasaki et al., 2011). 

In 2014, Qiu et al. took it a step further and pointed out that via allelopathy S. costatum has the 

potential to shape interspecific competition. It was documented that S. costatum exhibits inhibitory 

effects on the growth of three flagellate species (Akashiwo saguinea, Chattonella spp., H. akashiwo), 

when grown under non-contact culturing conditions, while Skeletonema itself remained unaffected 

by its partners (Qiu et al., 2014). In tri-algal cultures, it was furthermore observed that S. costatum 

changed the relative proportion of the three flagellates to each other (Qiu et al., 2014). Due to the 

fact that the degree of inhibition was species-specific, each flagellate was inhibited to different 

intensities. The most susceptible species, A. sanguinea and H. akashiwo, were reduced in abundance 

and as a result, the proportion of the least susceptible species C. antiqua increased. Thus, it was 

postulated that negative allelopathy is not only beneficial for the releasing organism but potentially 

also for any species that shows reduced susceptibility (Fistarol et al., 2004; Qiu et al., 2014).  

Similar conclusions were drawn by Yamasaki: Among the three Prorocentrum species 

investigated, P. minimum was most tolerant towards negative allelopathic effects of S. costatum 

(Yamasaki et al., 2011). This has the potential to explain the partial occurrence of mixed blooms of 

S. costatum and P. minimum species in the field and the observation that first P. minimum and after 

that P. dentatum and P. triestinum followed S. costatum in the bloom succession. 

To sum it up, both model organisms clearly depict the complexity, extent, interdependence and 

impact of chemically-mediated interactions in the context of allelopathy.  

Identification of allelochemicals 

The unambiguous identification of allelochemicals is still missing and represents one of the current 

challenges in chemical ecology. However, some studies were able to partially characterize the 

compounds mediating phytoplankton interactions. The subsequent summary is based on the review 

of (Sieg et al., 2011; Borowitzka, 2016). The results suggest a variety of compounds and compound 
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classes to be involved, which can generally be classified as low-molecular weight and high-

molecular weight substances, as proposed by (Tameishi et al., 2009).  

Prince et al. reported multiple, rather polar, low-molecular weight allelochemicals (500 – 1000 Da) 

with aromatic functional groups to mediate the negative allelopathic effect of K. brevis on the diatom 

A. glacialis (Prince et al., 2010). Yamasaki et al. described both inhibitory and stimulatory effects 

of the diatom S. costatum on the raphidophyte H. akashiwo and suggested at least two low-molecular 

weight allelochemicals (m/z 268 and 514) to be involved in the inhibitory effect (Yamasaki et al., 

2012).  

Among high-molecular weight substances, it has been shown that H. akashiwo releases 

polysaccharide protein complexes of >3500 Da with allelopathic effect on the diatoms T. rotula and 

S. costatum (Yamasaki et al., 2009). Furthermore, Alexandrium dinoflagellates exude several stable 

allelochemicals in the range of 5,000-500,000 Da with negative allelopathic effect on Rhodomonas 

salina, which are hypothesized to have amphipathic chemical characteristics (Ma et al., 2009). And 

the interaction between the dinoflagellate Prorocentrum minimum and the diatom S. costatum was 

caused by one or several high molecular weight (> 3,000 Da), polysaccharide-like allelochemicals, 

emitted by P. minimum (Tameishi et al., 2009). 

In summary, the exudation of multiple allelochemicals by an organism seems to be a common 

strategy. Due to the fact that the effect of allelochemicals is strongly species-specific and dependent 

on various biotic and abiotic factors, the release of multiple compounds with potentially synergistic 

effects might be of advantage (Sieg et al., 2011).  

1.4 Prominent methods in allelopathy research  

The fact that only a few allelochemicals have been identified yet proves that the investigation of 

chemically-mediated interactions presents considerable challenges. Firstly, realistic ecological 

assays are needed to reproduce the effects observed in the field and to gain new hypotheses. 

Secondly, adequate and sensitive chemical methods need to be coupled with elaborate data analysis 

tools to identify involved allelochemicals. And thirdly, results and hypotheses obtained in laboratory 

experiments must be validated under natural conditions, e.g. via field experiments. 
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Recreating chemically-mediated interactions 

Several methodologies have been used to investigate allelopathy. In a first step, the allelopathic 

effect needs to be recreated. This can be done in various ways, the most static way is to take either 

medium extracts of a putatively allelopathic active species20 or the medium itself21 and add it to the 

culture of another species to then observe resulting consequences. Medium extract hereby means 

that potential allelochemicals present in the medium of a culture are chemically extracted and thus 

concentrated. However, this approach offers a very punctual and simplified insight in allelopathic 

interactions. By adding the culture medium / extract of one organism to another organism at a certain 

time point in their respective life phases, the static approach simulates only one specific time point 

in an allelopathic interaction. Continuous monitoring of the interaction is difficult due to the 

simulation design.  

In this context, some studies used cell extracts of allelopathic species for the investigation and 

simulation of allelopathy22. However, this method doesn’t appear reasonable for investigating 

chemically-mediated actions, as allelochemicals need to be present in the environment, not the cell 

itself, to be noted by a receiving organism. Thus, simulating allelopathy by adding intracellular 

extracts of an organism to the culture of another organism is a very counterintuitive approach. 

A more elaborate and dynamic way to recreate chemically-mediated interactions is to bring both 

interaction partners into contact with each other and observe the interaction. Several researchers used 

mixed cultures for this purpose, meaning that one organism is directly inoculated into the culture of 

its interaction partner23. (Paul et al., 2009) used a dialysis tube approach, which separated both 

interaction partners in ‘mixed cultures’. In principle, one organism is inoculated into a culture vessel 

and the second organism is inoculated into a dialysis tube. Subsequently, the dialysis tube is 

submerged into the culture similar to a tea bag being introduced into a cup of water. In contrast to 

mixed cultures (sensu stricto), this method reduces any interaction to non-contact chemical 

communication between the organism in the culture vessel and its partner in the dialysis tube. 

However, due to the design of the set-up, this approach enabled sampling of only one of the 

interaction partners, as the dialysis tube was not accessible to sampling. 

                                                 
20 Compare (Prince, Myers and Kubanek, 2008a; Tameishi et al., 2009; Yamasaki et al., 2010) 
21 Compare (Fistarol et al., 2004; Tameishi et al., 2009) 
22 Compare (Freeberg, Marshall and Heyl, 1979) as referred to by (Kubanek et al., 2005) 
23 E.g. (Schmidt and Hansen, 2001; Tillmann, John and Cembella, 2007) 
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Yamasaki and Qiu and further improved this technique by using well-plates and filter membranes, 

which separated interaction partners (Yamasaki et al., 2007; Qiu et al., 2014). Unfortunately, only 

small volumes of cultures can be investigated with this method, which might not be sufficient to 

obtain effectual allelochemicals amounts.  

Therefore in 2013, Paul introduced a further developed co-cultivation approach, as depicted in 

Figure 1 (Paul, 2012; Paul, Mausz and Pohnert, 2013). Opposite to their early dialysis tube set-up, 

this approach is based on co-cultivation chambers: Glass vessels that each consist of two chamber 

halves, which are separated by a semi-permeable hydrophilic membrane filter with a pore size of 

0.22 µm (see 6.2.1 for details). The membrane filter allows free diffusion of potential infochemicals 

and nutrients (as shown by Pau et al. (Paul et al., 2013)), but prevents interspecific contact of diatom 

cells and mixing of bacterial communities associated with the diatoms species.  

Thus, with this cell-contact free approach, it is possible to simplify the complexity of chemically-

mediated interactions, focusing on the interaction between two partners in their respective bacterial 

environment. Another major advantage of the co-cultivation set-up is the accessibility of both 

chamber halves via individual openings, allowing continuous sampling under sterile conditions. The 

volume of each co-cultivation set-up allows sample sizes that are big enough to guarantee a sufficient 

yield of allelochemicals for subsequent investigation. Furthermore, the state of the cultures can be 

monitored at all times during the interaction. This is due to the fact that opposite to static simulations, 

dynamic simulations depict the interaction process as a whole as both interaction partners are in 

constant presence with each other. It might be said, that static simulations are snapshots of the 

interactions, while dynamic simulations represent a movie of the interaction. 

 

Figure 1: Co-cultivation chamber before (a) and after (b) assembly. Scale bar represents 10 cm. Source: (Paul et al., 

2013) with permission of Springer. 
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Investigation of allelochemicals 

In a second step, it is of interest to unravel the underlying mechanisms of chemically-mediated 

interactions, for example by identifying involved allelochemicals.  

A very basic and traditional approach to identify allelochemicals is bioassay-guided fractionation 

(Prince and Pohnert, 2010): In a first step, an active crude extract from the medium of an allelopathic 

organism is obtained and tested for allelopathic activity with the help of a bioassay. Hereby, the 

extract is added to the culture of a competitor, which is then monitored for alterations indicating 

allelopathic effects. In a next step, the extract is further fractionated and each fraction is again tested 

for allelopathic activity. This process is repeated until the crude extract is narrowed down to fractions 

optimally containing pure compounds with allelopathic activity, which then can be identified via 

standard analytical techniques. An example of a bioassay-guided fractionation approach can be 

found in Yamasaki et al. (Yamasaki et al., 2010, 2012). 

This approach has several drawbacks, as reviewed by Prince and Pohnert (Prince and Pohnert, 

2010): on the one hand, the workflow is immensely time-consuming and due to repeated losses 

during fractionation it yields very small quantities of allelochemicals. On the other hand, multiple 

extractions and fractionation steps bear immense risks of losing chemical compounds due to residues 

or degradation. Furthermore, synergistic effects between allelochemicals cannot be displayed by the 

bioassay guided fractionation approach, as concurring allelochemicals might be separated in the 

process and not present in the same fraction during the bioassays. Most importantly, the traditional 

approach doesn’t account for induced mechanisms of allelochemicals excretion, because it is focused 

on the investigation of the medium of one species rather than the interaction process. 

Metabolomic techniques 

A powerful alternative is offered by metabolomic techniques. The metabolome of an organism 

represents the link between genotypes and phenotypes (Fiehn, 2002). Compared to genome, 

transcriptome and proteome, the metabolome offers a uniquely specific description of biochemical 

functions and roles of an organism (Oliver, 1996; Fiehn, 2002). The metabolome of a cell consists 

of various metabolites, which themselves are intermediate products of the cell’s biochemical 

pathways.  

In chemical ecology, metabolomic techniques are commonly used to unravel underlying 

mechanisms of chemically-mediated interactions (Prince and Pohnert, 2010; Sardans, Penuelas and 
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Rivas-Ubach, 2011; Kuhlisch and Pohnert, 2015). Various techniques are applied in the 

metabolomics field (Fiehn, 2002; Shulaev, 2006; Prince and Pohnert, 2010): ‘Targeted 

metabolomics analysis’, ‘metabolite profiling’, ‘metabolic fingerprinting’ and ‘metabolomics’24. 

The choice of technique determines the scope of the investigation and varies with the research 

question. 

While a targeted metabolomics analysis is focused on a small subset of metabolites, e.g. fatty acids 

(Vidoudez and Pohnert, 2011), the general metabolomics approach tries to quantify and identify all 

existing metabolites of a system. Metabolomic fingerprinting is similarly global as it is not targeted 

(Huseby et al., 2012). It doesn’t identify the individual metabolites, but is focused on abstract pattern 

recognition on the basis of unidentified mass spectral tags (MSTs)25. This technique is often used in 

disease research to characterize and recognize diseases via biomarkers and specific metabolomic 

fingerprints (Ellis and Goodacre, 2006; Ellis et al., 2007). 

As defined by Kopka, an MST is unambiguously characterized by molecular mass to charge (m/z) 

ratio, retention index and a full a GC-EI/MS mass spectrum (Kopka, 2006). Depending on the 

context, one might rather refer to ‘MSTs’ than to compounds or metabolites, as one compound might 

be represented by multiple MSTs in a metabolomic investigation. For example, different MSTs can 

result due to varying degrees of derivatization efficiency of compounds with multiple functional 

groups (Gehrke, Nakamoto and Zumwalt, 1969; Kanani and Klapa, 2007). 

Metabolomic profiling offers a compromise of the previously described strategies. It counts as a 

global approach, as it tries to identify as many metabolites as possible (Vidoudez and Pohnert, 2011; 

Mausz, 2014). However, it can be restricted to a selected number of pre-defined metabolites, e.g. 

certain compound classes or metabolites of certain biochemical pathways. Furthermore, 

metabolomic profiling is considered to be semi-quantitative, as it works with relative MST quantities 

rather than with absolute quantities. In most studies, the majority of MSTs remain unidentified.  

Especially popular in marine chemical ecology are targeted metabolomics analysis and 

metabolomic profiling. Vidoudez et al. used a profiling approach in the metabolomic investigation 

of the diatom S. marinoi (Vidoudez and Pohnert, 2011) with the aim to connect metabolomic patterns 

to different growth phases. Furthermore, they performed a targeted metabolomics analysis of 

                                                 
24 Subsequent explanation based on the reviews of (Fiehn, 2002; Shulaev, 2006) 
25 In the following, MS-based techniques are discussed exclusively. Alternative NMR approaches are not yet 

established in the marine, metabolomic-based investigation of interactions. 
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polyunsaturated aldehydes (PUAs) and fatty acids, as these MST classes are hypothesized to be 

involved in intraspecific signaling and programmed cell death (Vardi, 2008), anti-grazing defenses 

(Miralto et al., 1999), allelopathy (Hansen and Eilertsen, 2007; Ribalet et al., 2007) and bacteria-

phytoplankton interactions26 (Ribalet et al., 2008)27 (as reviewed by Poulson et al. (Poulson et al., 

2009).  

The metabolomic profiling protocol of (Vidoudez and Pohnert, 2011), consisting of extraction, 

derivatization and GC/MS analytics, is optimally suited for the investigation of planktonic organisms 

and was used in the scope of this thesis (see chapter 2.5.1 and 6.6 for more details).  

Metabolomic strategies in environmental science 

If metabolomic techniques are used to investigate organism’s interactions with the environment, 

the term environmental metabolomics should be used, as suggested by (Miller, 2007). A major 

challenge in environmental metabolomics is setting a metabolomic baseline to identify metabolomic 

changes connected to certain environmental stimuli (Viant, 2007). Biological variability of 

metabolomic samples demands an appropriate experimental strategy to set the focus on ‘relevant’ 

changes. For example, (Vidoudez and Pohnert, 2011) used a comparative approach in the previously 

described investigation of S. marinoi. This was achieved by comparing samples from different 

growth phases of S. costatum cultures under closely monitored conditions with each other.  

In the context of chemically-mediated interactions, (Paul et al., 2009) used a comparative 

metabolomic approach to investigate the stimulatory effect of the diatom S. costatum and the diatom 

T. weissflogii. By comparing each diatom’s metabolome in an interaction situation with the 

metabolome in a non-interaction situation, the focus was set on interaction-induced metabolomic 

alterations. Again, the cultures were closely monitored and experimental specifics were standardized 

among cultures and samples. In the context of this thesis, the interaction between S. costatum and 

T. weissflogii has a special relevance and will thus be described shortly. 

  

                                                 
26 Controversially discussed by (Paul et al., 2012) 
27 Summary based on the review of (Poulson et al., 2009). See (Caldwell, 2009; Leflaive and Ten-Hage, 2009; Ianora 

and Miralto, 2010; Borowitzka, 2016) for further reviews. 
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1.5 The stimulatory interaction between S. costatum and 

T. weissflogii28 

Paul investigated the stimulatory effect of S. costatum on T. weissflogii cultures (Paul et al., 2009): 

Both diatoms are well-known to researchers of the marine environment, have previously been 

studied and been reported to co-occur. When both diatoms are grown together under non-contact 

conditions, the significantly enhanced growth of T. weissflogii and unaltered growth of S. costatum 

has been documented. These observations have been hypothesized to be caused by positive 

allelopathic interactions between the diatom species. However, underlying mechanisms of the 

observed growth effect were unknown at that time. 

The recreation of the interaction was conducted with the simplified dialysis tube co-cultivation set-

up previously described. The investigation of underlying mechanisms was performed with a 

comparative metabolomic profiling technique. Opposite to traditional approaches, which only 

investigate selected parameters of an interaction, this powerful tool-set allows a global investigation 

of chemically-mediated interactions. The metabolomic approach sets the focus on physiological 

responses of both partners in the interaction.  

The study results confirmed chemical cross-talk between S. costatum and T. weissflogii. It was 

documented that several metabolites were only found in the medium of S. costatum and several only 

in the medium of T. weissflogii. As these metabolites were neither present in the medium of the 

respective partner, nor during the interaction of both organisms with each other it was hypothesized 

that either inhibition of synthesis / excretion, transformation or active uptake by the interaction 

partner occurred. Communication via exuded compounds was strongly suggested. The 

endometabolomic investigations confirmed significant changes in cell physiology due to the 

interaction. Both interaction partners seem to be able to sense the presence of each other. 

The identification of involved compounds remained open. Via UPLC-ESI/MS, compounds were 

only characterized by m/z retention time pairs. However, it was suggested that neither amino acids 

nor extracellular carbohydrates were involved in communication. Several hypotheses for underlying 

mechanisms were presented: allelopathic interactions, heterotrophic interactions, release and 

                                                 
28 Chapter is based on the investigation of Paul et al. (Paul et al., 2009) 
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subsequent uptake of nutrients and involvement of associated bacteria. To get more insight into this 

interaction, further investigations are necessary. 

1.6 Objective 

Astonishingly, the global response of diatoms to their environment is a comparably under 

investigated topic. As previously described, diatoms are of essential importance for marine and 

terrestrial ecosystems, especially in bloom events. It is thus of high interest to unravel underlying 

mechanisms of allelopathic phytoplankton dynamics, particularly in bloom situations. So far, 

research focused on negative allelopathic effects and, if at all, allelochemicals involved in negative 

allelopathic effects were described. However, some positive growth effects were documented and 

discussed in the context of positive allelopathy, for example, the stimulatory interaction between 

S. costatum and T. weissflogii (Paul et al., 2009). 

By choosing an untargeted, comparative GC/TOF-MS - based metabolomic approach with 

continuous monitoring of diatom cultures, this thesis aims at further characterizing diatom 

interactions in the context of allelopathy. The focus is set on the interaction of Skeletonema sp. with 

the co-occurring species T. weissflogii. Compared to previous studies, the identification of 

significant interaction-induced metabolomic responses was advanced by combining elaborate co-

cultivation set-ups with GC/TOF-MS metabolomic profiling techniques. In this context, available 

MS libraries facilitated the identification of significant metabolites. 

Chapter 2 presents the investigation of the interaction between T. weissflogii (RCC76) and 

S. costatum (RCC75), chapter 3 the interaction between T. weissflogii (CCMP1336) and S. marinoi 

(CCMP1332) and chapter 4 the interaction between T. weissflogii (CCMP1336) and S. dohrnii 

(CCMP3373). 

In my thesis, I used both the hypothesis- and the discovery-driven nature of metabolomic 

techniques (Miller, 2007) to: 

• describe cellular responses of each diatom to the presence of a partner (endometabolome) 

• describe interaction-induced alterations in the chemical environment (exometabolome) 

• gain hypotheses about potential infochemicals and release / uptake mechanisms 

(exometabolome) 

•  unravel interaction and communication principles. 
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Furthermore, I tested the hypothesis of involvement of associated bacteria via a medium exchange 

experiment (chapter 2.3), and the potential stimulatory effect of the prominent semiochemical DMSP 

on diatom growth (chapter 2.4). 
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2 Interaction of T. weissflogii with S. costatum 

This chapters aims at further unravelling the stimulatory interaction between the diatoms 

T. weissflogii and S. costatum, as documented by Paul et al. and previously introduced in chapter 1.5 

(Paul et al., 2009).  

Before presenting and discussing the results of the individual experiments, I describe and discuss 

the general approach and individual experimental strategies in chapter 2.1. Subsequently, the 

experimental specifics for the individual investigations are given. Hereby, the principles described 

for the interaction experiment in chapter 2.2 form the basis of the “medium experiment” in chapter 

2.3 and the interaction experiments in chapter 3 and 4 as well.  

Chapter 2.2 investigates the interaction between S. costatum and T. weissflogii. The observed 

growth effect is documented and the focus is set on the metabolomic investigation of the chemical-

interaction. Here, an intracellular and extracellular perspective on metabolomic changes in both 

diatoms is presented, using gas chromatography coupled with time-of-flight mass spectroscopy (GC-

TOF/MS) based metabolomic profiling. Subsequently, the metabolomic alterations are connected to 

the observed growth effects. 

Chapter 2.3 supplements these results by testing the possible influence of the diatom partners’ 

bacterial communities and chemical environments on diatom growth at the onset of the investigation. 

Furthermore, chapter 2.4 tests the hypothesis of dimethylsulphoniopropionate (DMSP) being 

responsible for the stimulatory growth observed in T. weissflogii. 

In chapter 2.5, an interim conclusion on the interaction between T. weissflogii and S. costatum is 

given, merging the insights of the individual experiments. An overall conclusion on all interaction-

investigations and a discussion of metabolite flux between the partners is presented in chapter 5. 

2.1 Study design 

The value of metabolomic investigations is strongly influenced by the way metabolomic data is 

reported. The Metabolomic Standards Initiative (MSI) developed minimal reporting standards to 

guarantee proper sharing, use and re-use of metabolomic data (Fiehn et al., 2007; Fernie et al., 2011). 

Only with an adequate description of inter alia the biological context, chemical analysis and data 

processing, metabolomic data can be sustainably used, correctly interpreted and maximum value can 
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be extracted (Fiehn et al., 2007). This chapter addresses these aspects with additional specifics 

documented in the material and methods part (chapter 6.1 -6.7). 

2.1.1 General approach 

Small scale co-cultivation set-up 

I used an elaborate small scale co-cultivation set-up, introduced by Paul to recreate the interaction 

between S. costatum and T. weissflogii ((Paul et al., 2013), Figure 1). This co-cultivation set-up has 

been previously introduced in chapter 1.4. Specifics about parts, assembly and handling are 

documented in chapter 6.2.  

The eligibility of this set-up for the investigation of chemically-mediated interactions has been 

tested by Paul (Paul et al., 2013): Firstly, the installation of a biocompatible 0.22 µm polyvinylidene 

fluoride (PVDF) filter guarantees the separation of algae and associated bacteria in both chamber 

halves (tested by (Paul et al., 2013), data not shown). Secondly, in investigations of chemically-

mediated interactions the free flux of infochemicals between the partners is essential. Therefore, 

various diffusion assays have been evaluated by Paul, confirming free flux of compounds between 

both chamber halves within the first hours after addition. Hereby, the diffusion of macronutrients 

was investigated via nitrate diffusion, and the diffusion of potential infochemicals via DMSP – a 

highly polar, low molecular weight metabolite – and the less polar heptadienal. The results confirm 

that the set-up is ideally suited for the investigation of chemical mediated interactions and nutrient 

effects.  

However, it must be noted that some compounds (e.g. heptadienal) have been found to be 

potentially adsorbed by the glass or the membrane, resulting in reduced concentrations (Paul et al., 

2013). Furthermore, highly lipophilic substances have not been evaluated (Paul et al., 2013). 

Although it has been shown that high molecular weight substances like Microcystin can diffuse 

through the membrane (Dunker et al., 2017), they are not in the range of the GC-analysis. Thus, in 

the interpretation of experimental results it must be taken into consideration that these substances 

are possibly excluded / reduced in abundance due to experimental design. 

Comparative investigation principles 

The interaction was investigated in a comparative manner: I compared each species in interaction 

with itself in a non-interaction control, not only in the metabolomic analysis (chapter 2.2.3 and 
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2.2.4), but also concerning growth parameters (chapter 2.2.1) and metadata (chapter 2.2.2). Thus, I 

created an adequate baseline, as called for by Viant (Viant, 2007). 

To do so, I introduced a primary set of treatment groups that formed the basis of all co-cultivation 

experiments. The interaction was explored via the co-cultivation group (Figure 2B): Each chamber 

housed both diatom species, one in each chamber half. To provide the non-interaction context, two 

control groups were established: The mono-cultivation group of T. weissflogii (Figure 2A), 

containing T. weissflogii culture in both chamber halves of one chamber set-up, and the mono-

cultivation group of S. costatum (Figure 2C), containing S. costatum culture in both halves. 

However, depending on the experimental design of the individual experiments, I introduced 

additional treatment groups (see chapter 2.1.3 for more information). 

 

Figure 2: Experimental design to investigate the interaction between T. weissflogii and S. costatum in a small-scale 

co-cultivating set-up.  

Each chamber consisted of two chamber halves which were filled with cultures of the same diatom species (A, C) or 

with cultures of two different species (B) to recreate a chemically-mediated interaction. A: Mono-cultivation group with 

T. weissflogii (control; n29 = 3), B: Co-cultivation group, T. weissflogii with S. costatum (investigated interaction; n = 3), 

C: Mono-cultivation group with S. costatum (control; n = 3).  

To ensure maximally possible comparability and to focus on interaction-based effects rather than 

artificially introduced differences in measured parameters, I took the following measures: each 

experiment was based on one stock culture of S. costatum and of T. weissflogii respectively, with 

                                                 
29 “n” refers to the number of replicates (see chapter 6.2.6 for more details) 
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identical pretreatment. All treatment groups were cultured and sampled identically and in a 

randomized manner. Sample treatment, storage and analysis was standardized and randomized at 

least within each sampling day. Data analysis and work-up has been standardized (more details in 

chapter 6). Thus, I precluded the introduction of serial errors and artifacts and minimized biological 

variability among cultures. 

2.1.2 Design: Interaction experiment 

The interaction experiment aims at further elucidating the impact of the chemical interaction 

between S. costatum (RCC75) and T. weissflogii (RCC76) on both partners (Paul et al., 2009). While 

Paul et al. used a rather simple, dialysis-tube based co-cultivation set-up and ultra-performance 

liquid chromatography electrospray mass spectrometry (UPLC-ESI/MS) analysis, I built this 

experiment on the elaborate co-cultivation chamber set-up previously described (Figure 2) and a 

gas chromatography electron ionization time-of-flight mass spectrometry (GC-EI/TOF/MS) analysis 

to gain complementary and more specific insights. Advantages of this approach are discussed in 

chapter 1.4 (discussion of co-cultivation set up) and chapter 2.5 (discussion of metabolomic 

strategy). 

The experiment was conducted over 32 days, starting with stock cultures in exponential growth 

phase, which were diluted with fresh artificial seawater medium (ASW) (v/vSW 1/3) at the onset of 

the experiment. Each of the primary treatment groups contained three chambers, which replicated 

the respective set-up in triplicates (Figure 2). Diatom growth was monitored via chlorophyll a 

fluorescence (chl a) and the physiological state of the cultures via photosystem II efficiency (PSII 

efficiency), a parameter reflecting nutrient stress. Both parameters were measured every 2nd to 4th 

day. On three distinct points of the growth curve (day 16, 26 and 32) I took samples for cell counts 

and metabolomic analysis. I chose the first time point (day 16) to represent the onset of the 

documented growth effect (Paul et al., 2009), the latter points in time to represent early (day 26) and 

late stages of the growth effect (day 32).  

I chose a batch culture approach to recreate the growth dynamics in bloom situations. The three 

growth phases observed in batch cultures – the regular, stationary and declining phase (see chapter 

2.2.1) – recreate the phases observed in blooms. In blooms, the regular growth phase is followed by 

a decline in growth due to nutrient limitation and a final senescence phase ((Gran, 1931; Fogg and 

Thake, 1987) as referred to by (Diekmann et al., 2009)).  
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The number of biological replicates depends on the character of the measured parameter. It was 

mainly determined by the fact, if a measured parameter was specific for the chamber half, or the 

whole chamber (more details in chapter 6.2.6). Generally, I set the focus on biological replication 

with at least three replicates, which was rated most significant by Fernie et al. (Fernie et al., 2011). 

Furthermore, I repeated the interaction experiment of T. weissflogii and S. costatum to confirm the 

robustness of results (results not shown here). 

Chl a fluorescence and PSII efficiency as estimators of biomass and nutrient stress 

As previously described, I conducted continuous monitoring of diatom growth via chla 

fluorescence, as this parameter is a very easy and – compared to cell counts – a much faster way to 

estimate biomass. Chl a fluorescence parameters have been widely used to monitor phytoplankton 

biomass and status. However, data must be interpreted with care and at distinct time points of 

interest, cell counts were taken as reliable and unambiguous representation of biomass.  

Considering chla fluorescence, a correlation between biomass and in vivo fluorescence has been 

reported and the comprehension that chla fluorescence ‘equals’ biomass is wide spread (Kruskopf 

and Flynn, 2006). However, chla fluorescence has been found to be highly variable, for example due 

to species differences, diel changes or nutrient limitation (Kruskopf and Flynn, 2006). Therefore, 

depending on the experimental context, Kruskopf and Flynn strongly challenged the eligibility of 

chla fluorescence – and PSII efficiency – as robust and reliable indicators of biomass and nutrient 

status (Kruskopf and Flynn, 2006).  

In the course of this thesis, these limitations were considered and no inter-species comparisons 

were made (Kruskopf and Flynn, 2006). By using a comparative approach, I set the focus on 

interaction-induced alterations. I used the correlation between chla fluorescence and biomass to 

estimate diatom biomass and draw hypotheses about diatom growth phases, based on chl a 

development over time. Meaning that fast increase of chl a fluorescence indicates the regular growth 

phase, stable chl a fluorescence indicates the stationary growth phase and decline in chl a 

fluorescence indicates the declining phase. However, in consideration of the highly variable nature 

of chla fluorescence, I took cell counts into account to substantiate any biomass related statement, 

e.g. hypotheses about growth phases. If at all, parameters were expressed on cell count basis (e.g. 

endometabolomic alterations). 
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Considering PSII efficiency, Yentsch et al. (Yentsch et al., 2004) strongly advocated the validity 

of interpreting PSII efficiency in batch cultures as an indicator of nutrient stress (Yentsch et al., 

2004). However, this opinion is challenged by Kruskopf and others (Kruskopf and Flynn, 2006). 

These authors reported high species-specific variability in PSII efficiency, as well as uncertainty in 

the interpretation of PSII efficiency due to the influence of environmental factors, like irradiation or 

time of day.  

Nevertheless, Kruskopf et al. suggested the utility of PSII efficiency in single species 

investigations, while strongly advising against using it in mixed communities. Furthermore, Parkhill 

et al. proclaimed PSII efficiency to be a sensitive indicator of nutrient stress during unbalanced 

growth (Parkhill, Maillet and Cullen, 2001). Based on these assessments, I used PSII efficiency as a 

tool in the estimation of nutrient stress. Especially considering that my focus is set on intraspecific 

investigations of PSII efficiency differences – thus fulfilling the single species criterion and 

considering that the investigation was based on batch cultures – fulfilling the criterion of unbalanced 

growth.  

Decreasing values of PSII efficiency indicate nutrient stress conditions and reduced photosynthetic 

rate (Roy and Legendre, 1979; Parkhill et al., 2001). When nutrient storages in the cell are exploited 

and nutrient availability is limited, the synthesis of essential cellular compounds is blocked and as a 

result the cells experience adverse physiological effects ((Parkhill et al., 2001) and references herein) 

– the PSII efficiency declines. However, any interpretation must be made with care, as the correlation 

between PSII efficiency and nutrient stress has been documented to break down if phytoplankton 

becomes acclimated to nutrient stress (Parkhill et al., 2001). In consideration of the rather short 

termed nature of my batch culture experiments, this constraint was considered not applicable. 

Apart from the monitoring character of chla fluorescence and PSII efficiency, I used both 

parameters to screen for interaction-induced alterations / effects in each diatom partner. Based on 

the assumption that all environmental parameters are kept stable (all cultures originated from one 

stock culture, were treated alike and were handled, sampled and stored under equal conditions), 

differences in fluorescence parameters (chla fluorescence and PSII efficiency) within each species 

and sampling point have the power to indicate interaction-induced differences in physiology. 
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Metabolomic analysis 

Analogous to the approach of Paul, I chose a comparative metabolomic profiling analysis, focusing 

on both, the endometabolome and the exometabolome of the interacting organisms (Paul et al., 

2009). The metabolomic strategy is discussed in chapter 2.5. 

Exometabolome 

The exometabolome represents the chemical environment of the diatoms. It comprises all stable 

metabolic substances that were exuded from the organisms and thus present in the culture medium 

at the specific sampling time. The exometabolome was characteristic for the whole chamber (n = 3 

per treatment group)30. It is important to note that a fixed volume of medium was investigated per 

chamber at all three sampling points. The exometabolome was therefore not normalized to cell 

counts, but reflected the chemical environment, as it was shaped by all interaction-induced 

alterations (including altered growth characteristics). Therefore, it was of interest to identify 

metabolites causing differences between mono- and co-cultivation, rather than to create a 

metabolomic inventory of the chemical environments. By defining distinct MST intensity patterns 

among the treatment groups, I identified potential interaction-induced infochemicals and gained 

hypotheses about induced release and / or uptake mechanisms in the course of the interaction. 

Endometabolome 

The endometabolome reflects all metabolites that are present within the cells at a certain time. 

Opposite to the exometabolome, the endometabolome characterized each chamber half by itself. 

This is due to the fact that the filter membrane between the chamber halves separated each chamber 

in two realms. As a consequence, each chamber of the mono-cultivation groups resulted in two 

endometabolomic samples per species (n = 6 for each species in mono-cultivation)31, while the 

chamber of the co-cultivation group resulted in one endometabolomic sample per species (n = 3 for 

each species in co-cultivation)32. I chose this approach, resulting in twice the amount of replicates in 

the mono-cultivation groups, to standardize procedures between the mono- and co-cultivation 

groups, and to maximize the power of the metabolomic investigation. The interdependency between 

                                                 
30 n = 2 on day 26 (see chapter 6.4 for specification) 
31 n = 4 within mono-cultivated T. weissflogii on day 16, n = 5 within mono-cultivated S. costatum on day 16 and 32 

(see chapter 6.4 for details) 
32 See chapter 6.2.6 for more details 
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samples of the mono-cultivation groups was accounted for in the statistical analysis (as discussed in 

chapter 2.5.3). 

Within each experiment, I obtained the endometabolome on the basis of a fixed cell count, as 

suggested by (Vidoudez, 2010). In the interaction experiment between T. weissflogii and S. costatum 

I normalized the endometabolome to a count of 18.7 × 106 cells. The normalization by cell count 

enables the comparability between samples and the interpretation of endometabolomic alterations 

on single cell level. However, inter species comparison is not advised, as Skeletonema sp. and 

Thalassiosira sp. are quite different in cell sizes and thus in biomass per cell count. Thalassiosira 

sp. have been reported to range in size from 2-186 µm (mostly < 80 µm) and S. costatum ranges 

from 2-61 µm33. However, this was not a restriction as I set the focus on interaction-induced 

endometabolomic alterations within each species.  

It must be noted that sample handling during the workflow of the endometabolomic analysis was 

not optimal, as documented in chapter 6.6.3. Nevertheless, the investigation of interaction-induced 

endometabolomic alterations within each sampling day was thought to be meaningful. 

Endometabolomic data can unambiguously be used to draw conclusions about altered physiology 

of an organism, as the metabolome directly represents the phenotype of an organism (Fiehn, 2002). 

Via metabolomic profiling, several snapshot of the metabolism of an organism under different 

conditions are taken and subsequently analyzed for differences ((Poulson-Ellestad et al., 2014a) and 

references herein).  

Data pre-processing 

Data pre-processing was an important step in the metabolomic analysis workflow. After performing 

background noise correction on the raw spectra, I carried out chromatographic peak detection and 

deconvolution. Before quantification of MSTs, all detected peaks were aligned and characterized by 

ion / retention-time pairs. I manually checked the automatic quantification via peak integration and 

corrected if necessary. Furthermore, I tested adjacent peaks for redundancy and eliminated them if 

they turned out to be deconvolution artifacts. 

                                                 
33 Source: „Phyto’pedia – The Phytoplankton Encyclopedia Project“ 

https://www.eoas.ubc.ca/research/phytoplankton/diatoms/centric/skeletonema/s_costatum.html (02.2017) 

https://www.eoas.ubc.ca/research/phytoplankton/diatoms/centric/thalassiosira/thalassiosira_genus.html (02.2017) 

https://www.eoas.ubc.ca/research/phytoplankton/diatoms/centric/skeletonema/s_costatum.html
https://www.eoas.ubc.ca/research/phytoplankton/diatoms/centric/thalassiosira/thalassiosira_genus.html


Interaction of T. weissflogii with S. costatum 29 

To get rid of potential contaminations, I performed a trifold blank subtraction on the integrated 

data. Subsequently, I excluded all MSTs that were present in less than three samples, as well as all 

artificially added substances like ribitol and the RI-mix compounds from the data set. 

Statistical analysis 

I performed the statistical analysis of the metabolomic data on the basis of log10(x+1) transformed 

data and the Bray-Curtis dissimilarity distance measure, using a “Canonical Analysis of Principal 

Coordinates” (CAP), as introduced by (Anderson and Robinson, 2003; Anderson and Willis, 2003a). 

This approach combined a principal coordinate analysis (PCoA) with a canonical discriminant 

analysis (CDA). The strength of this method was the unconstrained exploration of individual and 

group differences between samples based on MST intensities. Furthermore, it allowed for testing of 

specific hypotheses of sample similarities via CDA and revealed potentially masked, but 

ecologically important patterns in unconstrained ordination with the help of a canonical ordination. 

In the latter context, I used the CDA to test different a-priori groups of samples for significant 

differences (as indicated by a p-value ≤ 0.05 in the trace statistics). To evaluate the goodness of fit 

of the defined groups, I considered the misclassification error and the leave-one-out cross validation 

results. A-priori grouping was performed inter alia among treatment groups, sampling days, and 

treatment groups per sampling day, with the aim to explore the influence of various grouping factors.  

After an evaluation of the results subsets of the data (e.g. per species or per day) were analyzed to 

reduce the influence of dominant grouping factors on the analysis, which were not of primary interest 

for the research question. Finally, only significantly different a-priori groups, including treatment as 

a grouping factor, were considered to identify correlating MSTs that caused group differences. 

Depending on the particular analysis, a critical value for the correlation coefficient of the MSTs, 

correlating with group differences (as represented by the canonical axes) was calculated and set to 

guarantee significance. (See chapter 6.7.3 for more details).  

With this strategy, I guaranteed a comprehensive approach to reduce metabolomic complexity and 

focus on a set of relevant MSTs. Furthermore, I used tools like score plots, vector plots, heatmaps 

and boxplots to evaluate the findings visually. 
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Metadata 

In all conducted studies, I collected metadata. Metadata hereby not only comprise ‘data about the 

data’, as defined by Snyder et al. (Snyder et al., 2014), but also parameter describing the state of the 

cultures, as defined by Vidoudez and Mausz (Vidoudez, 2010; Mausz, 2014). While the first are 

documented in the material and method part (chapter 6), the latter will be presented as result of the 

respective study, including chla fluorescence and PSII efficiency, cell counts, nutrient levels, pH and 

bacterial abundance data. 

As stated by Fiehn et al., metadata, which describe the system before and after sampling are 

essential for the correct interpretation of metabolomic data and transfer of findings and knowledge 

(Fiehn et al., 2007). Chl a fluorescence and cell counts were used to connect the metabolomic 

alterations observed in the endo- and exometabolome to alterations in growth. Considering further 

metadata, the first interaction experiment (interaction of T. weissflogii and S. costatum, chapter 2) 

reported PSII efficiency and it was known that diatom cultures were non-axenic. In later experiments 

(chapter 2.3, 3 and 4), the experimental design evolved and included the monitoring of nutrient levels 

(silicate, phosphate, nitrate and nitrite concentrations), bacterial abundance and pH.  

2.1.3 Design: Medium experiments 

The cultures of S. costatum (RCC75) and T. weissflogii (RCC76) used in all investigations 

involving these species were non-axenic. In general, the utilization of axenic diatom cultures has the 

advantage of reducing the investigated interaction system to two distinct parties. However, the 

axenic state poses an artificial stress factor, as bacteria and diatoms naturally co-occur 

interdependently in the ecosystem (Amin et al., 2012). For this reason and due to the fact that non-

axenic cultures were used by Paul for the initial investigation of this particular interaction (Paul et 

al., 2009), I decided to continue the work on this interaction with non-axenic cultures. 

Various interactions ranging from stimulatory to inhibitory are known to exist between bacteria 

and phytoplankton (Cole, 1982; Amin et al., 2012, 2015). And there is evidence for species-specific 

interactions with the potential to influence growth (Grossart and Simon, 2007; Amin et al., 2015; 

Limardo and Worden, 2015). This might be based on a simple non-specific resource swap, where 

bacteria use organic carbon sources exuded by phytoplankton and vice versa supply them with 

remineralized nutrients. Or it might be caused by chemically-mediated interactions.  
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It was also further documented that marine diatoms harbor distinct bacterial communities in their 

natural environment (Schäfer and Abbas, 2002; Grossart et al., 2005). By introducing the bacterial 

communities, which were associated with the diatom partners in the stock cultures, into the co-

cultivation set-up, a third interaction party with the potential to influence diatom growth might have 

been added to the diatom system.  

Therefore, I designed two medium experiments, one for each diatom species respectively, to 

investigate the influence of the initial environment of each partner on the respective other diatom 

partner. More specifically the initial environment comprised (1) the bacterial community of the 

partner, (2) its nutrient depletion status and (3) the non-induced exometabolome of the diatom 

partner at the onset of the experiment. Both experiments were independent and conducted to 

supplement the findings of the interaction experiment.  

Experimental strategy 

 

Figure 3: Experimental design to investigate the influence of the initial environment in the interaction between 

T. weissflogii and S. costatum.  

Co-cultivation group (A) and medium exchange group (B) are visualized schematically. The bacterial communities are 

represented by colored dots. Red characterizing the bacterial community of T. weissflogii, blue the one of S. costatum.  

The principle idea of the experimental strategy will be exemplarily explained for the investigation 

of S. costatum environment on T. weissflogii. In general, I used the co-cultivation and mono-

cultivation group (see primary treatment groups in chapter 2.1.1 (Figure 2A, C) as positive and 
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negative control. Additionally, I introduced a new experimental group: the medium exchange group 

(Figure 3). In the medium exchange group, one chamber half contained the unmodified 

T. weissflogii culture and the other chamber half contained T. weissflogii cells in the spent medium 

of S. costatum culture (see chapter 6.2.3 for details). To maximize comparability and explanatory 

power of the medium exchange group, I designed it to highly resemble the co-cultivation group. The 

only difference was that the interaction partner itself was removed and substituted with diatom cells 

of the same species. Thus, any change in growth of the investigated species (T. weissflogii in this 

example) would be caused by the partner’s initial environment, not by the presence of the partner 

itself.  

By comparing the diatom growth parameters of the medium exchange group with diatom growth 

parameters in the negative and positive control, it was my aim to evaluate the impact of the initial 

environment of the respective partner on both diatom species. See chapter 6.2.7 for experimental 

specifics.  

To recreate the sampling strategy of the co-cultivation group and to guarantee maximally possible 

comparability between all treatment groups, I sampled the unmodified chamber half in the medium 

exchange group. This measure was taken to minimize the impact of variability introduced due to the 

modification process, e.g. via additional stress imposed on the modified cultures or loss of biomass 

during the process. Variability was reflected in slightly altered parameters between the modified and 

unmodified chamber half of the medium exchange group (e.g. chla fluorescence, data not shown). 

However, the sampling strategy counteracted this problem and the variability in growth parameters 

did not alter the main conclusions drawn from the medium experiments. 

2.1.4 Design: Evaluation of DMSP as growth mediator 

To test the hypothesis of DMSP involvement in the interaction effect between T. weissflogii and 

S. costatum, I investigated the influence of DMSP on the growth of both diatom partners.   

DMSP is a phytoplankton-derived metabolite that plays a key role in the marine environment: it 

bears the potential to influence biogeochemistry, the global climate and marine ecology, both 

directly and indirectly, via its degradation products. DMSP and dimethyl sulfide (DMS), as its 

enzymatic cleavage product, play a major role in the global sulphur cycle (Andreae, 1990). By 

diffusing into the atmosphere and forming sulphur aerosols that impact cloud formation, 

dimethylsulfide (DMS) can have an impact on global climate (Bates et al., 1987; Charlson et al., 
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1987). Furthermore, both DMSP and DMS have been found to act as foraging cues between several 

trophic levels (Steinke, Stefels and Stamhuis, 2006; Seymour et al., 2010).The main producers of 

DMSP are phytoplankton species, including some members of diatoms (Stefels, 2000).  

In algae, DMSP acts as osmolyte (Karsten, Wiencke and Kirst, 1991), cryoprotectant (Kirst et al., 

1991), antioxidant (Sunda et al., 2002) and it plays a role in overflow mechanisms, protecting the 

cell of compound and energy excess (Stefels, 2000). For autotrophs, which are not able to produce 

DMSP, taking up and assimilating DMSP constitutes a source of carbon and reduced sulphur (Kiene, 

Linn and Bruton, 2000; Vila-Costa et al., 2006).  

In the context of the interaction between S. costatum and T. weissflogii, only S. costatum is able to 

de-novo synthesize DMSP, while T. weissflogii seems to completely rely on the active uptake of 

externally available DMSP (Spielmeyer, Gebser and Pohnert, 2011; Spielmeyer and Pohnert, 2012). 

The DMSP uptake of T. weissflogii is not only substantial, but also fast. Studies show that 

T. weissflogii is able to take up 60% of externally available DMSP within the first minutes 

(Spielmeyer et al., 2011). Furthermore, DMSP enhances bacterial growth in otherwise unfavorable 

osmotic environments (Chambers et al., 1987; Cosquer et al., 1999).  

In consideration of the DMSP characteristics and the DMSP dynamics in different organisms, I 

designed experiments to test the influence of DMSP on diatom growth. The aim of this investigation 

was to elucidate if DMSP release and uptake between the interaction partners T. weissflogii and 

S. costatum was the underlying principle causing enhanced growth of T. weissflogii in interaction. 

Experimental strategy 

The concentration of dissolved DMSP in seawater is smaller than 2.8 nM over a broad range of 

ocean water types (Kiene and Slezak, 2006). However, in diatom blooms, DMSP concentrations up 

to one order of magnitude higher have been documented (Matrai and Keller, 1993). To investigate 

DMSP influence on the growth of T. weissflogii, I conducted two experiments: One to recreate the 

constant availability of DMSP (100 nM) and one to investigating the influence of timely distinct 

DMSP pulses of different concentrations (100 nM, 1 µM, 2.5 µM) on diatom growth. The DMSP 

concentrations used, resembled relatively high natural concentrations, as they would occur in bloom 

situations or due to spatially higher concentrated DMSP patches. See chapter 6.2.7 for experimental 

specifics. 
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2.2 Interaction experiment with T. weissflogii and 

S. costatum 

2.2.1 Diatom growth in mono- and co-cultivation 

Compared to mono-cultivation, T. weissflogii showed significantly enhanced growth in co-

cultivation with S. costatum (Figure 4). Cell counts were elevated by up to 81 % (day 26) and chl a 

up to 1.4 - fold (day 23) due to the interaction. However, the effects on the growth of S. costatum 

were ambiguous. But I could repeatedly show that the presence of T. weissflogii had significant 

impact on the chl a fluorescence of S. costatum and caused an increase of up to 1.5 - fold (Figure 

4). I was able to reproduce these observed growth effects in the interaction of T. weissflogii and 

S. costatum (data not shown). 

 

I used a linear mixed modeling approach to investigate if there were time-dependent differences 

between co-cultivated and mono-cultivated diatoms of the same species, regarding chl a and cell 

counts. A one-way repeated measures ANOVA was not a suitable approach, because the assumption 

of homoscedasticity on the data was violated due to the inherent characteristic of the experimental 

design. However, this can be dealt with by incorporation into a mixed linear model (Zuur et al., 

2009).  

I proposed four linear mixed models (characteristics described in chapter 6.7.1) and evaluated their 

goodness of fit for each metadata response variable individually. I selected models with the help of 

the Akaike Information Criterion (AIC) on the basis of the restricted maximum likelihood 

estimation. The AIC measures both the fit of the model and the complexity of the model (Zuur et 

al., 2009). The lowest AIC indicated the best fitted model. AIC of succeeding models were compared 

via ANOVA, i.e. if the model with lowest AIC is significantly better than the one with second lowest 

AIC. Only if the improvement was significant, the lower AIC model was chosen as best fitting. 

I validated models visually with the help of standard model validation graphs (as named in (Zuur 

et al., 2009) and documented in Appendix 1 - Appendix 6): (a) residuals versus fitted values to 

verify homogeneity, (b) a histogram of the residuals for normality and (c) residuals versus each 

explanatory variable to check independence. 
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Figure 4: Diatom growth in the interaction experiment of T. weissflogii with S. costatum. 

The line plot shows means of chl a (RFU: relative fluorescence units), bar charts represent average diatom cell counts 

(cells / mL) of T. weissflogii (graph A) and S. costatum (graph B). The treatment groups are indicated by color: mono-

cultivation of S. costatum (blue, control), mono-cultivation of T. weissflogii (green, control) and the co-cultivation of 

each species (red, interaction). Values show as means + SD (n = 3 biological replicates). Notice different scaling of y-

axis. 

Growth of T. weissflogii 

Both, chl a fluorescence (F(13,52)34 = 20.740, P ≤ 0.0001) and cell counts (F(2,8) = 8.731, 

P = 0.0097) developed significantly different over time in co-cultivation, compared to mono-

cultivation (Figure 4A). 

Typically, diatom growth in batch cultures with a limited amount of nutrients present passes 

through several phases. In resemblance to the seven growth phases of bacterial batch cultures 

(Buchanan, 1918), diatom growth was divided into three phases to simplify the matter: regular 

growth phase, stationary phase and declining phase. In theory, the regular growth phase 

corresponded to a growth period comprising four growth phases as described by (Buchanan, 1918): 

initial stationary phase, regular growth phase, logarithmic growth phase and phase of negative 

growth acceleration. For convenience I summarized these phases and categorized them as regular 

growth. Subsequently, the stationary phase was indicated by more or less constant biomass and the 

declining phase by decreasing cell numbers. These growth phases were indicated by chl a 

fluorescence dynamics and substantiated via cell counts.  

                                                 
34 F(numDF, denDF) 
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Chl a fluorescence of mono-cultivated T. weissflogii cultures indicated regular growth until day 14 

and stationary growth until day 28 (indicated by a phase of minor chl a increase). Subsequently, the 

chl a fluorescence rapidly decreased (potentially the declining phase of growth). I hypothesized co-

cultivated T. weissflogii to show regular growth until day 26, followed by a more pronounced decline 

of fluorescence (potentially the declining phase). 

Although only very few data points were available, I used cell counts to substantiate the growth 

phase estimation made by chl a fluorescence. Cell counts of T. weissflogii mono-cultures did not 

substantially increase throughout all three sampling points (Figure 4A). Mean values were around 

3.9×105±4×104 cells / mL throughout all three days with an increase of 18% between day 16 and 32. 

These findings supported the hypothesis of a stationary growth phase between day 14 and 28 via chl 

a fluorescence. Cell counts in co-cultivated T. weissflogii cultures increased by approximately 55% 

between day 16 and 26, thus indicating that the culture was still in a state of increased growth. Again, 

these findings substantiated the indications from chl a fluorescence, which increased until day 26 as 

well. However, while chl a fluorescence rapidly declined from day 26 on, cell counts stayed almost 

stable between day 26 and 32 with an increase of only 4 %. In both cultivation types, maximum cell 

numbers were reached on day 32, with 6.9×105±1.0 × 105 cells / mL in co-cultivation and 

4.4×105±0.4 × 105 cells / mL in mono-cultivation (Figure 4A).  

In the chl a fluorescence growth curves, the regular growth phase lacks the initial stationary phase, 

which would be characterized by slow or even no growth. The dilution of the cultures at the onset 

of the experiments was deliberately chosen in a way to minimize this phase. For the investigation of 

the stimulatory growth effect between T. weissflogii and S. costatum, late regular and stationary 

growth phase were most relevant. Furthermore, sampling points at the onset of each experiment were 

rather scarce, as this period was not the focus of the investigation.  

It seems that biomass was correlating well with chl a fluorescence in the regular and stationary 

growth phase. However, in late stationary phase, chl a fluorescence decline was not coupled to 

immediate decrease in biomass. As previously discussed, chl a fluorescence is also impacted by 

other factors than biomass, e.g. nutrient limitation and extreme alterations in physiological state that 

impact photosynthetic activity (Kruskopf and Flynn, 2006). Thus, the strong decrease in chl a 

fluorescence might reflect severe nutrient limitation and / or the preparation of cell death with 

delayed visibility in cell counts. This interpretation is stressed by the simultaneous drop in PSII 

efficiency (Appendix 21A), indicating reduced photosynthetic performance of T. weissflogii and 
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impairment of cell physiology (Maxwell and Johnson, 2000). At this point the restriction of 

Kruskopf et al. becomes relevant, limiting the explanatory power of chl a fluorescence as biomass 

indicator (Kruskopf and Flynn, 2006).  

The comparison of interaction and non-interaction context revealed the following: Compared to 

mono-cultivation, chl a fluorescence was heightened in co-cultivation between day four and 28, with 

up to 1.4 - fold higher fluorescence on day 23. From day 26 on, the decline of chl a fluorescence of 

T. weissflogii in co-cultivation was steeper than in mono-cultivated cultures. Here, cells in co-

cultivation might have experienced more severe consequences from nutrient limitation due to 

enhanced growth and cell division, resulting in more pronounced decrease in chl a fluorescence and 

ultimately cell death. Cell counts in co-cultivation were higher on all three sampling days. Starting 

with a slight increase on the first day of sampling (15% compared to mono-cultivation), a clear 

increase in cell counts compared to mono-cultivation was visible on the latter two sampling points 

of up to 81% on day 26. 

In summary, co-cultivated T. weissflogii not only reached higher absolute cell counts, but also 

remained in the regular growth phase longer than mono-cultivated cultures. These findings were 

statistically significant and coherent in both chl a fluorescence and cell counts. 

Growth of S. costatum  

Similar to T. weissflogii, chl a fluorescence in co-cultivated S. costatum developed significantly 

different compared to mono-cultivation over time (F(13,52)=31.695, P ≤ 0.0001). However, in cell 

counts there was no statistically significant interaction between day and treatment and no significant 

treatment dependent effect. Neither the mean cell counts between treatments nor the development 

between the treatments over time showed statistically significant differences for S. costatum. 

Both mono- and co-cultivated cultures started from almost the same fluorescence values on day 

three (Figure 4B). Until day 12 the increase of chl a was similar in both groups, representing the 

regular growth phase of the culture. However, further developments in fluorescence were group 

dependent: S. costatum in mono-cultivation reached maximum fluorescence on day 14, with a 

subsequent decrease until day 32. On the other hand, co-cultivated S. costatum showed rather stable 

values of 15638±665 RFU between day 12 and 32 and reached maximum fluorescence on day 21. 

The difference between chl a in mono- and co-cultivation was highest on day 32, with 52 % higher 

values in co-cultivation, compared to mono-cultivation. It seemed that in the time frame of this 
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experiment (until day 32) S. costatum did not enter the declining phase, characterized by sudden and 

strong decrease of chl a fluorescence (Figure 4B). 

Cell numbers of mono- and co-cultivated S. costatum showed a tendency of increase-decline-

dynamic with maximum values on day 26 (Figure 4B). As the increase of cell numbers between day 

16 and 26 was only 8% in mono- and 14% in co-cultivation, the observation that cultures were in 

stationary phase of growth at these points in time was confirmed. In both mono- and co-cultivation, 

a decrease in cell numbers between day 26 and 32 could be observed ( 25% in mono- and  35% in 

co-cultivation). This might indicate the beginning of a declining phase, which however was not 

visible in chl a fluorescence dynamics.  

Compared to mono-cultivation, co-cultivation of S. costatum showed increased cell-counts on all 

days, with up to 27% higher cell numbers on day 26. However, statistically these findings were not 

significant. With exception of the first sampling point, these findings were correlating with higher 

chl a fluorescence in co-cultivation compared to mono-cultivation. 

Again, I observed differences in chl a fluorescence and cell count dynamics. For example on day 

16, where cell counts differed by 21 %, but chl a fluorescence was more or less the same. Again, it 

needs to be stressed that chl a fluorescence is influenced by various parameters beyond biomass (see 

chapter 2.1.2). A fact that substantially complicates its unambiguous interpretation. In the context of 

this study, I mainly used it as an estimator for biomass and indicator for interaction-induced 

alterations in diatoms. 

In summary, while S. costatum showed a significantly higher chl a fluorescence in co-cultivation 

compared to mono-cultivation, differences in cell counts couldn’t be confirmed statistically.  

Nevertheless, these results strongly suggest an interaction-induced response of S. costatum. Further 

interpretation of the interaction-induced alterations are conducted on the basis of metabolomic 

analyses.  
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2.2.2 Metadata 

The metadata were used to monitor the state of the cultures in the interaction experiments 

(appendix, chapter 7.1.4). They were screened for relevant interaction-induced differences. For the 

interaction experiment, only PSII efficiency was measured, which developed differently, depending 

on the diatom species, but was not relevantly influenced by the interaction. No further statistical 

analyses were conducted. The diatom cultures RCC75 and RCC76 were non - axenic. 

 

2.2.3 Exometabolomic investigation 

The CAP showed significant differences in the exometabolomes due to time, treatment and 

treatment per time. In total, 68 MSTs35 were highly correlating with those significant differences. In 

consideration of the influence of treatment on diatom exometabolomes, significant differences were 

found on day 16 and 26. On both days, the exometabolome in co-cultivation and the exometabolomes 

in both mono-cultivations were distinctly different. For the evaluation of potential release / uptake 

dynamics, induced by the interaction, I classified 51 MSTs as relevant. 

I identified 39 MSTs to be potentially involved in interaction-induced release mechanisms. I found 

most of them to be correlating with day 16, bearing the capability to mediate the succeeding growth 

effect observed in the interaction between T. weissflogii and S. costatum as infochemicals. 

Interestingly, some of these candidate MSTs exhibited growth phase dependent regulation and 

indicated a release-uptake mechanism between day 16 and 26. While the chemical identity of most 

MSTs remained unclear, five fatty acids, three carboxylic acids, one carboxylic acid derivative and 

one alkaloid were putatively identified among the candidate MSTs. 

Furthermore, I proposed 12 candidate molecules to be involved in interaction-induced uptake 

mechanisms, transformation or reduced release mechanisms. Among the identified MSTs, one 

carboxylic acid and a terpenoid were correlating with day 16 and an amine and two alkaloids with 

later stages of the interaction. 

The discussion of metabolite flux between the diatom partners is given in chapter 2.6 and 5. 

Subsequently, the focus is set on showing results. 

                                                 
35 Excluding three potential contaminations (#112, #118, #140) and metabolites that exhibited a median of “0” in all 

treatments (#8) 
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Analysis strategy 

In the exometabolomic analysis I chose a dual strategy to investigate sample similarities and to 

identify potential biomarkers. On the one hand, I used an overall CAP analysis (comprising PCoA 

and CDA) throughout all three sampling points to show global effects and dependencies between 

the samples. I used a-priori grouping by day (not used for the identification of highly correlated 

MSTs), treatment and treatment over day in the CDA. On the other hand, I conducted subset analyses 

of each sampling point. By splitting the overall data-set into three subsets, containing the 

exometabolomic data of day 16 (subset I), day 26 (subset II) and day 32 (subset III), I set the focus 

on investigating differences between the treatments, excluding time as factor. Thus, I guaranteed a 

comprehensive screening for relevant biomarkers. 

In order to answer the research questions about interaction specific release and/or uptake of 

potential infochemicals and about potential chemical communication mechanisms between the 

diatom partners, I categorized all identified exometabolomic biomarkers and screened for the 

following abundance patterns:  

(1) Pattern I: MSTs most abundant in the exometabolome in co-cultivation, compared to both 

mono-cultivations 

(2) Pattern II: MSTs least abundant in co-cultivation, but abundant in both mono-cultivations  

(3) Pattern III: MSTs absent in co-cultivation 

In principal, I evaluated the MST intensity in co-cultivation relative to both mono-cultivations 

(representing the negative controls). If an MST was more abundant in co-cultivation than in the 

negative controls (pattern I), this might suggest an interaction-induced release. If an MST was less 

abundant in co-cultivation, compared to both negative controls (pattern II), or if an MST was absent 

in co-cultivations (pattern III), this might suggest an interaction-induced uptake, transformation or 

reduced release. In such a way, prominent intensity patterns were defined on the basis of median 

MST intensities, with the power to answer the research questions.  

This approach was based on the assumption that a reference MST intensity in co-cultivation can be 

calculated as average of the MST intensities found in both mono-cultivations. This reference value 

represents an MST abundance in co-cultivation obtained by mere mixing of exometabolomes of 

S. costatum and T. weissflogii. Accordingly, deviations of an actual MST intensity from this 

reference value, reflected interaction-induced alterations.  
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The reference value can be calculated according to Equation 1. In general, the exometabolome 

refers to a certain unit of volume (e.g. one co-cultivation chamber set-up). As each chamber consists 

of two chamber halves, contributing equal volume parts to the total chamber volume, each half 

shapes 50 % of the exometabolome per chamber. Hence, by taking half of the MST intensity 

measured in each mono-cultivation group, a reference value for the co-cultivation context can be 

calculated. 

Equation 1:  𝐼𝑅𝑒𝑓,𝐶𝑜 =
𝐼𝑀𝑜𝑛𝑜 𝑇𝑊+𝐼𝑀𝑜𝑛𝑜 𝑆𝐶

2
 

 

Reference intensity in co-cultivation (IRef,Co ), MST intensity in mono-cultivation of T. weissflogii (IMono TW) and mono-

cultivation of S. costatum (IMono SC). 

The benchmark intensity was only used to define expectations and to deduce the three clear-cut 

intensity patterns (pattern I-III), described above. An overview over the categorization in the 

heatmaps and the screening process is given in Table 1: It connects the MST groups in the heatmaps 

with the predefined intensity patterns and indicates potential relevance of these groups.  

Table 1: Relationship between MST intensity patterns and heatmap groups. 

Heatmap group Intensity pattern Potential relevance 

A Pattern I Interaction-induced release mechanisms 

B 
Pattern II Interaction-induced uptake mechanisms, 

reduced-release mechanism or transformation Pattern III 

C - Other 

Sc - Potential biomarkers for S. costatum 

Tw - Potential biomarkers for T. weissflogii 
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Data exploration via CAP 

 Overall analysis 

In the exometabolomic analysis of the interaction between T. weissflogii and S. costatum, I obtained 

142 MSTs after data pre-processing of 26 samples. The first explorative data analysis via PCoA 

shows three distinct groups of samples in the PCoA score plot (Appendix 7). One group was solely 

characterized by samples on day 16, whereas the other two groups represented mixtures of samples 

on day 26 and 32. This suggested strong influence of time on diatom exometabolomes. The plot did 

not show distinct sample grouping by treatment. However, it is known that ecologically relevant 

patterns might be masked in the unconstrained score plot (Anderson and Willis, 2003a). Thus, a 

CDA was performed, using a-priori grouping by day, treatment and treatment per day, to test 

different a-priori group hypotheses. The statistical diagnostics for the overall analysis, evaluating 

both the ordination and classification, are given in Table 2. 

In general, the trace statistic confirmed significant differences between the tested a-priori groups. 

The squared canonical correlation (δ1
2) and its corresponding p-value verified a significant 

correlation of observed differences and correlating MSTs with the first canonical axis. The 

misclassification error evaluated the classification success. The lower the error, the more distinct 

were the groups. In case of high misclassification errors, but significant differences between the 

groups, the cross-validation results were considered to identify similarities and dissimilarities 

between single a-priori groups. In general, I considered classification and ordination success in 

combination to evaluate the separation of a-priori groups (more details in chapter 2.5.3 and 6.7.3). 

The CDA of the overall dataset confirmed significant differences in diatom exometabolomes due 

to time (trace statistic: P ≤ 0.0001), as tested via a-priori grouping by day. Furthermore, significant 

differences in exometabolomes were caused by treatments (trace statistic: P ≤ 0.001, Table 2). A-

priori grouping by treatment investigated the influence of treatments on diatom exometabolomes 

independent of time, while a-priori grouping by treatment per day included both time and treatment 

as grouping factors, thus investigating differences between treatments in a time-dependent manner. 

The classification success of the samples in the overall analysis was rather low, as the 

misclassification errors ranged between 11.55 - 42.31 %. In comparison, a-priori grouping by day 

yielded in the lowest misclassification error (11.54 %, Table 2), further confirming that time was a 
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strong grouping factor, forming distinct sample groups. The misclassification errors of a-priori 

grouping by treatment and treatment per day were 42.31 %.  

Table 2: Permutation and cross-validation test results for the CAP analysis of different a-priori groups in the 

exometabolome analysis of the interaction between S. costatum and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

Day 3 3 1.609 

(P ≤ 0.0001) 

0.980 

(P ≤ 0.0001) 
11.54 

Treatment 6 3 1.046 

(P = 0.001) 

0.805 

(P = 0.0002) 
42.31 

Day & treatment 6 9 3.365 

(P ≤ 0.0001) 

0.989 

(P ≤ 0.0001) 
42.31 

Subset I: day 16 

treatment 
2 3 1.214 

(P = 0.0014) 

0.652 

(P = 0.1534) 
33.33 

Subset II: day 26 

treatment 
5 3 1.940 

(P = 0.0234) 

1.000 

(P = 0.003) 
25.00 

Subset III: day 32 

treatment 
2 3 0.458 

(P = 0.5185) 

0.458 

(P = 0.397) 
88.89 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

To get more information about the origin of the high misclassification errors in the overall analysis, 

I interpreted the cross validation results in detail. By checking the reallocation success for every 

single a-priori group in the leave-one-out cross validation procedure, it was my aim to differ between 

well classified sample groups and rather error prone sample groups within each CDA.  

The cross-validation results of a-priori grouping by day proved that day 16 was distinctly different 

from day 26 and 32, as all samples could be 100 % correctly reallocated in the cross validation 

(Appendix 8). Samples from day 26 and 32 showed similarities, as they were misclassified to the 

respective other day with a probability between 12.50 and 22.22 %.  

The a-priori grouping of the exometabolomic dataset by treatment only, without regarding the 

temporal factor, was showing a misclassification error of 42.31 % (Table 2). The cross-validation 

results indicated that the exometabolomes of T. weissflogii and S. costatum were distinctly different 

as they were never wrongly reallocated to the respective other (Appendix 9). However, two out of 

nine exometabolomic samples of mono-cultivated S. costatum were wrongly classified as co-

cultivated samples and four out of nine samples (making up 44 %) of mono-cultivated T. weissflogii 

samples were wrongly identified as co-cultivation samples in the reallocation process. 

Exometabolomic samples of co-cultivation only showed a correct reallocation percentage of 37.5 %. 

Thus, classification by treatment only was rather error prone, as the exometabolome in co-cultivation 
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seemed to share traits with exometabolomes in both mono-cultivations. A clear separation without 

regarding time as a factor was difficult. 

Subsequently, the combination of both time and treatment as classification factors was investigated, 

yielding in a misclassification error of 42.31 % (Table 2). Again, I deducted the nature of 

misclassification and the determination of involved groups by looking closer at the results of the 

cross validation (Appendix 10). As shown before, the exometabolome on day 16 was distinctly 

different from the ones on day 26 and 32. All exometabolomic samples from day 16 could be 

correctly reallocated to this day. These findings were supported by the PCoA score plot (Appendix 

7), showing a clear separation of day 16 from day 26 and 32 by principal coordinate axis 1 in 

multivariate space and by the cross-validation results previously described. Cross-validation 

furthermore showed that samples could be well classified by treatment within day 16. All samples 

of mono-cultivation and two out of three samples from co-cultivation were correctly classified in the 

cross-validation. Samples from co-cultivation showed proximity to samples from mono-cultivated 

S. costatum in multivariate space, indicating similarities between the groups. These similarities were 

supported by the fact that the wrongly reallocated co-cultivation sample on day 16, as mentioned 

above, was misclassified as mono-cultivated S. costatum (Appendix 10). 

Furthermore, comprehensive similarities between co-cultivation and S. costatum mono-cultivation 

samples within each day became apparent, as respectively three of eight co-cultivation samples were 

wrongly classified as such in the cross-validation (Appendix 10). Vice versa, one out of nine 

samples from mono-cultivated S. costatum were wrongly reallocated to co-cultivation. The 

exometabolome of T. weissflogii did not form a clear class within day 26 and 32, as the 

misclassification error was 100 %. These samples were either wrongly allocated to the co-cultivation 

group (4 out of 6), and / or to the respective other day (3 out of 6). 

Subset analysis per day 

In a second step, I split the overall dataset into three subsets, containing the exometabolomic data 

of day 16 (subset I), day 26 (subset II) and day 32 (subset III) to investigate differences between the 

treatments, removing the influence of time.  

The statistical diagnostics confirmed that there were significant differences between the treatments 

on day 16 (P = 0.0014, misclassification error 33.33 %) and day 26 (P = 0.0234, misclassification 

error 25 %), as the trace statistic was significant (P ≤ 0.05, Table 2). However, on day 32, no 
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significant differences between the treatments were found. The PCoA score plots (Appendix 11) of 

the daywise analysis support the findings on day 16, showing a separation of treatments by a 

combination of principal coordinate axis 1 and 2. Samples from co-cultivation were located on the 

upper left, samples from S. costatum in mono-cultivation on the upper right and samples from 

T. weissflogii in mono-cultivation at the bottom of the PCoA score plot. On day 26, the PCoA score 

plot did not show distinct sample grouping, although the trace statistic suggested significant 

differences.  

Using CDA, the results of the statistical diagnostics were confirmed and very distinct sample 

groups on both day 16 and 26 are visualized in the constrained score plots (Figure 6A, C).  

The classification of samples by treatment on day 16 showed a misclassification error of 33.33 % 

(for m = 3). Looking at the details of the leave-one-chamber-out cross-validation, in average one out 

of three samples was wrongly reallocated due to similarities of the co-cultivation group to both 

mono-cultivation groups (Appendix 12). The CAP on day 26 yielded a misclassification error of 

25 % (for m = 3) 36, resulting solely from wrong reallocations of co-cultivation samples to the group 

of mono-cultivated S. costatum (Appendix 13). All mono-cultivation samples were reallocated 

correctly during cross-validation.  

In summary, data exploration via CAP showed that time was a dominant factor influencing sample 

similarities. Nevertheless, the overall analysis indicated significant differences between treatments. 

Subset analyses for each sampling day confirmed significant differences between the treatments on 

day 16 and day 26, but not on day 32. Therefore I concluded that on day 16 and 26 the 

exometabolome in co-cultivation and the exometabolomes in both mono-cultivations were distinctly 

different. 

Identification of exometabolites correlating with relevant a-priori groups 

Subsequently, I identified MSTs whose abundance was significantly correlating with the separation 

of treatments and treatments per day. Thus, I set the focus on interaction-induced exometabolomic 

alterations. I further investigated a-priori grouping by treatment and treatment per day in the overall 

analysis, as well as the daywise analysis of subset I (day 16) and subset II (day 26). I didn’t consider 

                                                 
36 Only two out of three replicates in the co-cultivation group were available for analysis on day 26. 
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a-priori grouping by day in the overall analysis, as it was not in the primary scope of the investigation 

to unravel mere temporal changes in the exometabolomes. 

The CDA resulted in a constrained score plot and a corresponding loading plot for each analysis. 

The score plot visualizes differences between the a-priori sample groups, while the corresponding 

loading plot visualizes significantly correlating metabolites. For interpretation, the loading plot 

needs to be superimposed on the constrained score plot. Each vector in the loading plot represents 

an MST, which was characterized by the MST ID in red (Figure 5). In general, only significantly 

correlated MSTs with the canonical axis and thus with the separation of a-priori groups were plotted. 

The significance level was adjusted and set for each analysis separately. The direction of an MST 

vector towards a distinct a-priori group indicated a correlation with the respective group. To 

distinctly allocate the MSTs to the sample groups, I created heatmaps to visualize median MST 

intensities over time and treatments. 

Each heatmap was created on the basis of auto scaled medians of each treatment group. Scaling 

adjusts for intensity differences between different MSTs (Van Den Berg et al., 2006). MST 

intensities are given relative to a scaling factor, in the case of auto scaling this is the standard 

deviation of an MST among samples (Van Den Berg et al., 2006). A color code ranging from yellow 

(high intensity) to blue (low intensity) visualizes MST intensities. Due to scaling, conclusions about 

relative MST intensities may only be drawn within one MST, not between different MSTs.  

Additionally I calculated a fold-change and visualized it with a second color code, positive values 

(black) representing x - fold higher abundance of co-cultivation to the respective mono-cultivation, 

negative values (grey) representing x - fold higher abundance of the respective mono-cultivation 

compared to co-cultivation. Within the heatmap, I sorted the MSTs by characteristic abundance 

patterns, to facilitate the evaluation of potential biomarkers and MSTs of interest. For each analysis 

I created and discussed an individual heatmap.   
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Overall analysis 
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Figure 5: Constrained score and loading plots of exometabolomic samples from the overall analysis of the interaction 

between T. weissflogii and S. costatum. 

The constrained score plots (graph A, C) visualize significant differences between the sample groups as found via CDA 

with a-priori groups by treatment (trace statistic P = 0.001, misclassification error of 42.31 % for m = 6, graph A) and 

a-priori groups by treatment per day (trace statistic P = 0.0001, misclassification error of 42.31 % for m = 6, graph C). 

Vectors in the CAP loading plots (graph B, D) represent MSTs, characterized by their ID (red numbers). Only vectors 

with a significant correlation coefficient above the critical value of |r| ≥ 0.4958 (P ≤ 0.01) are plotted. The direction of 

the vectors in 2-dimensional space correlates with exometabolomic sample groupings shown in the score plots of the 

respective analysis.  
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The constrained score plot of the overall analysis with a-priori grouping by treatment in Figure 5A 

shows a gradual separation of treatments via canonical axis 1. Exometabolomic samples from co-

cultivation shared traits of both mono-cultivation exometabolomes, as samples were located between 

samples of T. weissflogii (on the left) and samples of S. costatum in mono-cultivation (on the right), 

as defined by canonical axis 1. Samples from mono-cultivation were furthest apart in multivariate 

space (Figure 5A) and there was no wrong reallocation in the cross-validation process (Appendix 

9) as well.  

The corresponding loading plot (Figure 5B) visualizes MSTs with a Pearson’s correlation 

coefficient |r| ≥ 0.4958 and a highly significant correlation with canonical axis 1 and / or 2 

(P ≤ 0.01). Considering the direction of MST vectors, it became apparent that dehydroabietic acid 

(#135) was correlating with mono-cultivated T. weissflogii, while 2-ethylhexanoic acid (#16), 

putative 2-octanol (#17), palmitoleic acid (#122, #123) and oleic acid (#132) were correlating with 

co-cultivation and the remaining MSTs with mono-cultivated S. costatum. Metabolites were 

considered putatively identified, if their R-Match value was ≤ 800. 

In the context of the overall analysis with a-priori grouping by treatment per day (Figure 5C), the 

constrained score plot depicts two distinct sample groups separated by canonical axis 1, representing 

samples on day 16 (left of the origin) and samples on day 26 and 32 (right of the origin). Within 

these two groups, treatments were gradually separated by canonical axis 2. Samples from mono-

cultivated T. weissflogii were located in quadrant I and IV (above the origin) and samples from 

mono-cultivated S. costatum in quadrant II and III (below the origin, with exception of one sample 

on day 32). Co-cultivation samples were located between the mono-cultivation groups, sharing 

metabolomic traits with both of them, as visualized by proximity of the groups in multivariate space. 

The corresponding loading plot (Figure 5C: |r| ≥ 0.4958, P ≤ 0.01) indicates that the majority of 

MSTs was correlating with samples from day 26 and 32, as they were located in quadrant I and II. 

A clear allocation of metabolites to a-priori groups was difficult, due to the overlap between sample 

groups in the constrained score plot. However, dehydroabietic acid (#135) was characteristic for 

mono-cultivated T. weissflogii, as it was pointing straight upwards. Furthermore, metabolites #85, 

#101, #109, #110, #133 were correlating with mono-cultivation of S. costatum and / or co-

cultivation on day 16, as they were located in quadrant III. 

The overall analysis with a-priori grouping by treatment and treatment per day identified 46 highly 

correlated metabolites (as shown in Figure 5B and D) and gave a rough idea about their correlation 
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with sample groups. To draw more specific conclusions, all metabolites are summarized in a 

heatmap (Table 3) and grouped on the basis of characteristic abundance patterns.  

The first groups comprise metabolites that were highest abundant in co-cultivation on day 16 (group 

A16), day 26 (A26) and day 32 (A32). Group B16 - 32 summarize metabolites that were least 

abundant in co-cultivation compared to both mono-cultivations on day 16 (B16), day 26 (B26) and 

day 32 (B32). Group Sc comprises potential biomarkers for S. costatum, as these metabolites were 

merely abundant in co-cultivation and mono-cultivation Group C1 represents metabolites that were 

time-dependent. The majority of metabolites in this group were only present on day 26 and / or day 

32 and all other metabolites are listed in group C2. 
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Table 3: Heatmap of relative exometabolite intensities for the overall analysis of the interaction between T. weissflogii and S. costatum.  

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging 

from high (yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance 

patterns (separated by black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold 

change of MST abundance in co-cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, 

grey a higher abundance in mono-cultivation. 
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122 117 14.41 2041 
9-Hexadecenoic acid  
(Palmitoleic acid) 

FA   T NA 2 1 -1 NA 0 0 -1 0 - 1.8 - - -5.3 -5.5 

A

16 

123 311.2 14.44 2046 
9-Hexadecenoic acid  

(Palmitoleic acid) 
FA  T -1 2 1 -1 NA 0 0 -1 0 66.5 1.6 - - -8.5 -10.3 

132 129 15.63 2255 
9-Octadecenoic acid  
(Oleic acid) 

FA  T NA 2 1 -1 NA 0 0 -1 0 - 2.0 - - -4.4 -5.7 

44 180 9.06 1294 Unknown U - DT  -2 0 -1 1 0 1 -1 0 1 18.6 1.6 -1.7 -1.5 1.6 -1.8 

85 143.1 11.42 1608 Unknown U - DT  0 3 NA NA NA 0 NA NA NA 9.6 - - - - - 

101 103.1 12.31 1727 Unknown U - DT  1 2 1 NA NA NA NA NA NA 1.3 1.5 - - - - 

109 143.1 13.02 1822 Unknown U - DT  1 2 0 -1 -1 -1 -1 -1 -1 1.7 3.0 1.9 -13.6 1.7 -1.2 

110 143.1 13.09 1831 Unknown U - DT  1 2 1 NA -1 -1 -1 -1 -1 1.8 1.8 - -25.5 1.3 1.7 

133 194.1 16.45 2400 Unknown U - DT  1 2 0 -1 -1 -1 -1 -1 0 1.1 1.5 -1.2 -1.2 1.0 -1.2 

62 168.1 9.86 1401 Unknown U - DT  NA NA NA 0 0 0 2 1 1 - - 2.0 2.0 -1.4 1.1 

A

26 

63 123.1 10.02 1423 Unknown U - DT  NA NA NA -1 0 0 2 1 1 - - 3.8 1.9 -1.2 1.2 

77 237.1 10.78 1523 Unknown U - DT  -1 -1 -1 0 1 1 -1 1 0 -1.6 -3.4 1.6 1.5 7.4 1.5 

92 143.1 11.73 1650 Unknown U - DT  NA NA NA NA 0 -1 1 2 1 - - - 2.6 1.5 1.9 

96 143.1 11.88 1670 Unknown U - DT  NA NA NA NA 0 -1 1 2 0 - - - 13.7 1.6 2.8 

47 117.1 9.18 1311 2-Methylpropanoic anhydride 
CA 

dv. 
  DT  NA NA NA 0 0 1 1 1 1 - - 1.7 -1.9 1.4 1.0 

A

32 
6 142.1 6.88 1004 Unknown U - DT  NA NA NA 0 0 1 1 1 1 - - 1.3 -1.8 1.2 1.1 

13 116.1 7.33 1064 Unknown U - DT  NA NA NA -1 -1 1 1 2 0 - - 2.0 -12.1 1.9 2.2 

21 151.1 7.69 1112 Unknown U - DT  NA NA NA -1 -1 2 0 2 1 - - -1.5 -16.1 2.5 1.7 

Metabolite intensity Fold change 
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39 161.1 8.75 1253 Unknown U - DT  NA NA NA NA -1 1 1 2 0 - - - -30.1 1.5 3.6 

43 161.1 9.02 1290 Unknown U - DT  NA NA NA NA -1 2 1 2 0 - - - -14.4 1.5 3.5 

64 129.1 10.06 1427 Unknown U - DT  NA NA NA -1 0 0 1 2 1 - - 1.9 -2.7 1.9 2.2 

87 143.1 11.53 1622 Unknown U - DT  NA NA NA NA NA NA 1 2 1 - - - - 1.2 2.0 

116 309.1 13.84 1940 

3-Hydroxy-5-
(hydroxymethyl)-2- 

methylisonicotinic acid  

(4-Pyridoxate) 

CA   DT,T 0 NA NA 1 0 NA 2 0 NA - - -6.5 - -2.6 - 

B

16 

135 239.2 16.69 2442 
Abieta-8(14),9(11),12-trien-
18-oic acid  

(Dehydroabietic acid) 

T   DT,T -1 -1 1 -1 -1 2 0 -1 1 -1.3 -42.4 37.0 -19.0 -2.5 -13.1 

1 129 6.69 980 Unknown U - DT  NA NA NA -1 -1 0 2 1 1 - - -3.3 -14.0 -1.2 1.5 

B

26 

95 103.1 11.86 1667 Unknown U - DT  NA NA NA NA NA 0 2 1 1 - - - - -1.6 -1.3 

104 221.1 12.51 1754 
Skel_MEDIA_C196 

(Vidoudez) 
U ? DT  -1 -1 -1 1 -1 0 2 0 0 -1.2 1.4 -4.4 -2.6 -2.0 -1.1 

107 212.1 12.92 1808 
Skel_MEDIA_C205 

(Vidoudez) 
U  DT,T 0 -1 -1 1 -1 -1 2 0 0 -2.2 4.0 -3.4 -1.1 -2.5 1.1 

126 112.1 14.93 2133 Unknown U - DT  NA NA NA NA NA -1 1 1 2 - - - - -1.5 -1.9 

37 146.1 8.60 1233 2,2'-Iminodiethanol A ? DT  NA NA NA NA NA NA 1 1 2 - - - - -1.1 -1.5 

B

32 

11 152.1 7.26 1055 3-Pyridinol Alk   DT  NA NA NA 0 0 0 1 1 1 - - 1.1 -1.5 -1.3 -1.3 

45 184 9.09 1299 

M000000_A136002-101-
xxx_NA_ 

1332,55_TRUE_VAR5_ALK_ 

similar to Lumichrome 

(GOLM) 

Alk  DT  NA NA NA 0 0 1 0 0 2 - - 1.4 -1.7 -1.1 -2.8 

114 110.1 13.71 1918 Unknown U - DT,T 0 -1 NA 1 0 -1 2 0 0 -2.6 - -4.2 1.5 -5.6 -1.1 

115 382.2 13.79 1932 Unknown U - DT,T 0 -1 NA 1 0 -1 2 0 -1 -6.1 - -4.2 1.5 -4.2 1.7 

Sc 127 173.1 14.96 2137 Unknown U - DT,T 0 -1 -1 1 0 -1 2 1 0 -2.7 1.0 -2.0 1.3 -1.6 1.2 

76 184.1 10.76 1521 
Skel_MEDIA_C141 

(Vidoudez) 
U ? DT,T 0 -1 -1 1 0 0 2 0 0 -2.4 1.8 -2.9 1.1 -2.3 1.3 

15 152.1 7.44 1078 4-Pyridinol  Alc   DT  NA NA NA -1 0 1 1 1 1 - - 1.3 -3.0 -1.2 1.2 

C

1 

68 156.1 10.33 1463 2,2'-Bipyridine Alk  DT  NA NA NA -1 -1 1 2 1 0 - - 11.5 -15.7 -1.4 2.1 

5 101.1 6.82 996 Unknown U - DT  NA NA NA -1 -1 2 0 1 1 - - 1.1 -6.7 1.2 -1.6 

82 103 11.26 1587 Unknown U - DT  NA NA NA -1 -1 0 2 1 0 - - 13.9 -7.0 -1.5 2.1 



52   Interaction of T. weissflogii with S. costatum 
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16 201.1 7.46 1081 2-Ethylhexanoic acid CA - T 2 1 0 NA NA NA -1 0 0 -1.1 1.8 - - 2.8 -1.4 

106 295.1 12.83 1796 Terephthalic acid CA  DT  NA NA NA NA NA NA 1 1 2 - - - - 1.0 -1.6 

97 116.1 11.92 1675 Unknown U - DT  NA NA NA NA NA NA 2 1 1 - - - - -1.3 1.0 

102 159.1 12.43 1743 Unknown U - DT  NA NA NA NA NA NA 2 1 1 - - - - -1.1 1.8 

142 103.1 18.64 2785 Unknown U - DT  NA NA NA NA NA NA 2 1 1 - - - - 1.8 1.2 

17 187.1 7.51 1088 2-Octanol Alc ? T 1 1 1 -1 -1 0 -1 0 1 -1.2 1.1 1.3 -9.2 1.7 -1.7 
C

2 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention 

index (RI) and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT) and with a-priori grouping by 

treatment (T). Metabolites were identified via libraries. “?” indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates 

cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic 

acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). 

Vidoudez refers to an MST code given by the in-house library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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Subset analysis per day 

The significant differences between treatments on day 16 and day 26 (Table 2) are visualized in 

the constrained score plots of both days (Figure 6A, C).  

On day 16, the constrained score plot shows a distinct separation of treatments (Figure 6A). 

Canonical axis 1 separated mono-cultivated S. costatum and mono-cultivated T. weissflogii. 

Canonical axis 2 separated samples from co-cultivation from those of mono-cultivation. In general, 

38 metabolites were significantly correlating with the first two canonical axes (|r| > 0.6664, 

P ≤ 0.05). Those metabolites are depicted in a corresponding loading plot (Figure 6B). The majority 

of vectors pointed to the right, presumably characterizing S. costatum in mono-cultivation, and to 

the bottom, presumably characterizing co-cultivation. The vector of MST #38 seemed to be 

important for the characterization of both mono-cultivations.  

Note that the first squared canonical correlation was not significant, indicating that the first 

component (represented by canonical axis 1) alone was not sufficient to significantly differentiate 

the data subset. The inclusion of further discriminating components was needed. Thus, the 

visualization of group differences in the CAP score and loading plot might have been impaired.  

To investigate the role of highly correlated metabolites as potential biomarkers, I visualized the 

intensity patterns of all correlated metabolites37 from the subset analysis of day 16 in a heatmap 

(Table 4). Only metabolites showing median MST intensities unequal to zero in at least one 

treatment are shown (33 of 38 metabolites, excluding #8, #37, #38, #67 and #124). I classified the 

metabolites according to abundance pattern, class and retention index.  

Group A represents metabolites, which were higher abundant in co-cultivation, compared to mono 

cultivation of both diatoms. Group A(1) is furthermore characterized by absence of the metabolites 

in both mono-cultivations, group A(2) by absence in mono-cultivated S. costatum, and metabolites 

in group A(3) by absence in mono-cultivated T. weissflogii. Group B summarizes metabolites that 

are present only in the mono-cultivation of S. costatum, but absent in co-cultivation. Group Sc 

comprises metabolites that were potential biomarkers for S. costatum. 

                                                 
37 Excluding two potential contaminations (diisobutyl phthalate #112 and 3,4-dibutylphthalate #118) 
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Figure 6: Constrained score and loading plots of exometabolomic samples from the daywise subset analysis of the 

interaction between T. weissflogii and S. costatum. 

The constrained score plots (graph A, C) visualize significant differences between the treatments, as confirmed via 

CDA for the subset analysis on day 16 (graph A, B) and day 26 (graph C, D). These differences between treatments 

are highly significant (day 16: trace statistic P = 0.0014, misclassification error of 33.33 % for m = 2, day 26: trace 

statistic P = 0.0234, misclassification error of 25 % for m = 5). Vectors in the CAP loading plots (graph B, D) 

represent metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a significant 

correlation coefficient above the critical value of |r| ≥ 0.6664 (P ≤ 0.05) for day 16 and |r| ≥ 0.7067 (P ≤ 0.05) for day 

32 are plotted. The direction of the vectors in 2-dimensional space correlates with exometabolomic sample groupings 

shown in the score plots of the respective analysis.  
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Table 4: Heatmap of relative exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. costatum on day 16.  

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging 

from high (yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance 

patterns (separated by black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold 

change of MST abundance in co-cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, 

grey a higher abundance in mono-cultivation. 
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50 149.1 9.45 1347 2-Methylbenzoic acid CA ? NA 1 NA - - 

A(1) 

58 113.1 9.68 1377 Unknown U - NA 1 NA - - 

60 103.1 9.82 1395 Unknown U - NA 1 NA - - 

71 145.1 10.50 1486 Unknown U - NA 1 NA - - 

91 143.1 11.66 1640 Unknown U - NA 1 NA - - 

93 117 11.78 1656 Unknown U - NA 1 NA - - 

128 130.1 15.09 2160 Unknown U - NA 1 NA - - 

138 112 17.19 2530 Unknown U - NA 1 NA - - 

51 120.1 9.49 1352 2-Hexylpyridine Alk ? NA 1 0 - 2.5 

A(2) 

111 117 13.22 1848 Myristic acid FA * NA 1 0 - 1.6 

117 117 13.89 1949 Pentadecanoic acid FA * NA 1 0 - 1.9 

122 117 14.41 2041 9-Hexadecenoic acid (Palmitoleic acid) FA  NA 1 0 - 1.8 

132 129 15.63 2255 9-Octadecenoic acid (Oleic acid) FA  NA 1 0 - 2.0 

65 194.1 10.10 1433 Unknown U - NA 1 0 - 3.3 

48 117 9.34 1332 Nonanoic acid FA  0 1 NA 1.9 - 
A(3) 

85 143.1 11.42 1608 Unknown U - 0 1 NA 9.6 - 

33 228.1 8.17 1176 4-Hydroxybutanoic acid CA  -1 1 0 26.9 1.8 

A(4) 40 145.1 8.79 1259 2-Hydroxypentanoic acid CA ? -1 1 0 24.6 1.4 

113 117.1 13.66 1908 Pentadecanoic acid FA ? 0 1 -1 1.6 9.9 

Median MST intensity Fold change 

low -
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2 6 10 high UP DOWN 
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ID 
Model 
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RT RI Name Class Ident 
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123 311.2 14.44 2046 9-Hexadecenoic acid (Palmitoleic acid) FA  -1 1 0 66.5 1.6 

44 180 9.06 1294 Unknown U - -1 1 0 18.6 1.6 

49 151.1 9.42 1343 Unknown U - -1 1 0 9.6 2.7 

109 143.1 13.02 1822 Unknown U - 0 1 -1 1.7 3.0 

41 148.1 8.88 1271 Succinic acid CA  1 NA NA - - B 

114 110.1 13.71 1918 Unknown U - 1 0 NA -2.6 - 

Sc 

115 382.2 13.79 1932 Unknown U - 1 0 NA -6.1 - 

17 187.1 7.51 1088 2-Octanol Alc ? 1 0 -1 -1.2 1.1 

125 335.2 14.56 2066 Skel_MEDIA_C254_FA? (Vidoudez) FA ?? 1 -1 -1 -4.0 1.3 

76 184.1 10.76 1521 Skel_MEDIA_C141 (Vidoudez) U ? 1 0 -1 -2.4 1.8 

107 212.1 12.92 1808 Skel_MEDIA_C205 (Vidoudez) U  1 0 -1 -2.2 4.0 

127 173.1 14.96 2137 Unknown U - 1 -1 -1 -2.7 1.0 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and 

retention index (RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 

700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 

600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol 

(S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the in-house library, GOLM refers to an MST 

code given by distinct libraries of the Golm Metabolome Database.  
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Although in the PCoA score plot (Appendix 11) no distinct grouping is visible on day 26, the CAP 

score plot (Figure 6C) shows very distinct sample groups. Canonical axis 1 alone was sufficient to 

separate all three treatment groups. Canonical axis 2 furthermore separated co-cultivation samples 

from mono-cultivation samples. All samples of mono-cultivated S. costatum were located in 

quadrant I, all co-cultivated samples in quadrant II and all samples from mono-cultivated 

T. weissflogii in quadrant IV. Both the trace statistic (1.940, P = 0.0234) and the first squared 

canonical correlation (1.00, P = 0.003) were significant. 

The CAP loading plot of highly correlated MSTs (|r| > 0.7067, P ≤ 0.05) indicated that nonanoic 

acid (#48), MSTs #88, #89, #90, and #135 (Group Tw38) were correlating with mono-cultivated 

T. weissflogii, as they were located in quadrant IV (Figure 6D). All MST vectors located in quadrant 

I were characteristic for mono-cultivation of S. costatum (#76, #104, #107, #114, #115, 4-pyridoxate 

(#116), groups B & Sc). And as MST #125 was pointing between the groups of mono-cultivated 

S. costatum and co-cultivation, it was characterizing both groups. 

Regarding the heatmap39 (Figure 5), group B represents metabolites that were least abundant in 

co-cultivation compared to both mono-cultivations, indicating possible uptake, transformation or 

downregulation. Group Sc summarizes metabolites that characterize S. costatum mono-cultivation, 

group Tw metabolites that characterize T. weissflogii mono-cultivation. Other metabolites are shown 

in group C. 

                                                 
38 Octyl pentyl phthalate (#140) was not listed, as it probably is a plasticizer and thus a contamination. 
39 Not containing octyl pentyl phtalate (#140) 



58   Interaction of T. weissflogii with S. costatum 

Table 5: Heatmap of exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. costatum on day 26. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging 

from high (yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance 

patterns (separated by black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold 

change of MST abundance in co-cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, 

grey a higher abundance in mono-cultivation. 

ID 
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104 221.1 12.51 1754 Skel_MEDIA_C196 (Vidoudez) U ? 1 -1 0 -4.4 -2.6 
B 

107 212.1 12.92 1808 Skel_MEDIA_C205 (Vidoudez) U  1 -1 -1 -3.4 -1.1 

116 309.1 13.84 1940 
3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinic 

acid (4-Pyridoxate) 
CA  1 0 NA -6.5 - 

Sc 76 184.1 10.76 1521 Skel_MEDIA_C141 (Vidoudez) U ? 1 -1 -1 -2.9 1.1 

114 110.1 13.71 1918 Unknown U - 1 0 -1 -4.2 1.5 

115 382.2 13.79 1932 Unknown U - 1 0 -1 -4.2 1.5 

48 117 9.34 1332 Nonanoic acid FA  -1 0 1 2.4 -4.6 

Tw 

135 239.2 16.69 2442 
Abieta-8(14),9(11),12-trien-18-oic acid  

(Dehydroabietic acid) 
T  -1 -1 1 37.0 -19.0 

88 117.1 11.54 1624 Unknown U - -1 -1 1 1.2 -5.1 

89 117.1 11.59 1631 Unknown U - -1 0 1 2.0 -3.1 

90 117.1 11.63 1637 Unknown U - -1 0 1 3.7 -3.5 

125 335.2 14.56 2066 Skel_MEDIA_C254_FA? (Vidoudez) FA ?? 1 0 -1 -1.1 3.8 C 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and 

retention index (RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 

700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 

600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol 

(S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the in-house library, GOLM refers to an MST 

code given by distinct libraries of the Golm Metabolome Database.
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Screening for interaction specific release and / or uptake of potential infochemicals 

On the basis of observed exometabolomic differences between the treatments and the highly 

correlated metabolites (as presented in the previous subchapters), I drew hypotheses about 

interaction specific release and/or uptake of potential infochemicals. 

In a first step, I screened all heatmaps (Table 3, Table 4 and Table 5) for the defined MST intensity 

patterns, classified as groups A and B40. In a second step, I further evaluated the intensity dynamic 

of each candidate molecule. As the screening process via heatmaps was only based on median values, 

an evaluation via boxplots across treatments and time was conducted to include information about 

variance. Unfortunately, the co-cultivation group on day 26 contained only two biological replicates 

due to sample loss, which weakened the informative value of the boxplots. Nevertheless, trends were 

clearly observable as the interpretation of pattern dynamics was performed on the basis of medians. 

The combination of screening and evaluation resulted in a set of candidate molecules, which were 

further characterized and classified by prominent intensity dynamics over time and treatments, to 

facilitate interpretation. It is important to note that the categorization of MSTs by day was not only 

performed on basis of visual intensity dynamics, but mainly on the significance of correlation, as 

given by the CAP analysis. 

Enhanced abundance of exometabolites in co-cultivation - Pattern I:  

In total, 39 different MSTs matched intensity pattern I, potentially indicating interaction-induced 

release mechanisms (Appendix 14, Appendix 15 and Appendix 16). They all share the trait of 

highest median abundance in co-cultivation, compared to both negative controls on at least one of 

the sampling days. Boxplots visualized the intensity dynamic over time and treatments by depicting 

the relative MST intensities (ribitol normalized) of the respective model ion. 

Day 16 

Most of the MSTs (26 of 39) of pattern I were characteristic for day 16, indicating an interaction-

induced release at the onset of the observed diatom growth effect. They originate from group A16 

in the heatmap of the overall analysis (Table 3) and groups A(1) - A(4) in the heatmap of the daywise 

analysis on day 16 (Table 4). Among these metabolites I classified the intensity development over 

time into three categories: 

                                                 
40 See Table 1 for more details 
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(1) Metabolites with predominance on day 16  

In Figure 7 the intensity of MST #109 is depicted among the sampling days as an example for 

metabolites of pattern I with predominance on day 16. Compared to S. costatum mono-cultivation, 

MST #109 was 1.7 - fold more abundant in co-cultivation and 3 - fold more compared to 

T. weissflogii mono-cultivation on day 16. In total, five unidentified metabolites were allocated to 

this category, as they were all hardly present on day 26 and 32 in comparison to day 16. The intensity 

dynamics of all five metabolites (#85, #91, #101, #109, and #110) over treatments and days is 

summarized in Appendix 14. The metabolites of this category were characteristic for a time point 

at the onset of the observed growth effect. They are potential infochemicals, with the capability to 

mediate the succeeding interaction-induced growth effect.  
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Figure 7: Exemplary MST #109 with interaction-induced release mechanism on day 16 in the interaction between 

T. weissflogii and S. costatum (intensity pattern I).  
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(2) Metabolites with steadily building up or declining intensities 

Metabolite #48 - Nonanoic acid
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Metabolite #133
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Figure 8: Exemplary metabolites #48 and #133 with interaction-induced release mechanism on day 16 and subsequent 

temporal regulation in the interaction between T. weissflogii and S. costatum (intensity pattern I).  

Among the metabolites that exhibit pattern I on day 16 in combination with a distinct temporal 

intensity dynamic, I observed two different trends. The trend of increased MST intensity within each 

treatment group over time was represented by nonanoic acid (#48) and the trend of decreased 

intensity by MST #133 (Figure 8). In addition to nonanoic acid (#48), I also observed the trend of 

time dependent increase of MST intensity within each treatment group for metabolites #44 and 

putative pentadecanoic acid #113 (Appendix 14).  

On the other hand, MST #133 exhibited an inversed temporal dynamic: It was most abundant on 

day 16, with 1.1 -to 1.5 - fold higher abundance in co-cultivation, with decreasing intensity towards 

day 32. A distinct increase / decrease dynamic might indicate growth phase dependent regulation of 

the respective metabolites. 

Furthermore, another striking temporal dynamic, possibly indicating a release-uptake mechanism 

in the diatom interaction, is introduced with the help of MST #133 (Figure 8) and #44 (Figure 9). 
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Metabolite #44
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Figure 9: Exemplary MST #44 with interaction-induced release-uptake mechanism in the interaction between 

T. weissflogii and S. costatum (intensity pattern I on day 16).  

For example: While on day 16 MST #44 was most abundant in co-cultivation compared to both 

mono-cultivations, on day 26 this ratio inversed. MST #44 was 1.5 - to 1.7 - fold more abundant in 

both mono-cultivations on day 26 compared to co-cultivation. This trend is also observed for 

putative 2-hydroxypentanoic acid (#40), putative 2-hexylpyridine (#51), myristic acid (#111), 

pentadecanoic acid (#117), palmitoleic acid (#122, #123), oleic acid (#132) and seven unknown 

metabolites (#58, #60, #65, #71, #93, #128, #138), as depicted in Appendix 14. Among these 

metabolites only #44 and #133 exhibit a clear temporal dynamic. All other candidates presented in 

the appendix show rather unspecific abundance among the sampling days. This might either be 

caused by a time-independent presence of the respective MST in the exometabolomes, or due to 

high variance of the data. 

(3) Metabolites with uncategorized abundance pattern throughout all sampling days. 

In addition to the already categorized metabolites, 4-hydroxybutanoic acid (#33) and the unknown 

MST #49 show neither a distinct temporal increase / decrease dynamic, nor a predominance on day 

16 (Appendix 14). These MSTs are categorized separately and represented by 4-hydroxybutanoic 

acid (#49) in Figure 10. Furthermore, 2-methylbenzoic acid (#50) seems predominant on day 32, 

although no distinct increase / decrease dynamic is observed (Figure 10). 
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Metabolite #49
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Metabolite #50 - 2-Methylbenzoic acid
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Figure 10: Exemplary metabolites #49 and #50 with interaction-induced release mechanism on day 16 in the interaction 

between T. weissflogii and S. costatum (intensity pattern I).  

Day 26 

Out of the 39 candidate molecules, five unidentified MSTs (#62, #63, #77, #92, #96) were 

characteristic for day 26 (Appendix 15). They belong to group A26 in the heatmap of the overall 

analysis (Table 3). In general, these MSTs were hardly present on day 16, but their intensities 

increased over time. Thus, they seem characteristic for the stationary phase of growth, as they were 

most abundant on day 26 and 32 in all groups. 
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Metabolite #77
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Figure 11: Exemplary MSTs #62 and #77 with interaction-induced release mechanism on day 26 as well as on day 26 

and 32 in the interaction between T. weissflogii and S. costatum (intensity pattern I). 
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In summary, I observed two different temporal dynamics among these candidate molecules. MSTs 

#62 and #63 exhibited increased intensity in co-cultivation on day 26, while MSTs #77, #92 and #96 

exhibited increased abundance on day 26 and 32. These temporal dynamics are exemplarily 

visualized in Figure 11. 

Day 32 
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Figure 12: Intensity dynamic of exemplary exometabolites, enhanced in co-cultivation on day 32 (interaction between 

T. weissflogii and S. costatum). 

Considering day 32, the overall analysis yielded eight characteristic MSTs (#6, #13, #21, #39, #43, 

2-methylpropanoic anhydride #47, #64, #87) that were most abundant in co-cultivation, compared 

to both mono-cultivations (Appendix 16). While the majority of MSTs was present on day 26 and 

32, MST #87 was only abundant on day 32. These temporal dynamics are represented by MST #64 

and #87 in Figure 12. Median MST intensities, as visualized in the heatmap (Table 3, group A32), 

were elevated in co-cultivation, but the boxplots of most metabolites on day 32 exhibited high 

variance in the data. 

Reduced abundance of exometabolites in co-cultivation - Pattern II / III:  

In total, 12 MSTs matched intensity patterns (II) and (III). These metabolites are classified as 

groups B16, B26 and B32 in the heatmap of the overall CAP analysis (Table 3) and groups B41 in 

the heatmap of the subset analysis on day 16 and 26 (Table 4, Table 5).  

                                                 
41 Diisobutyl phthalate (#112) was not further discussed, as it was a prominent plasticizer and rated as contaminant. 
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Day 16 

Metabolite #135 - Dehydroabietic acid

D
a

y
 1

6
 S

C
 M

o
n

o

D
a

y
 1

6
 C

o

D
a

y
 1

6
 T

W
 M

o
n

o

D
a

y
 2

6
 S

C
 M

o
n

o

D
a

y
 2

6
 C

o

D
a

y
 2

6
 T

W
 M

o
n

o

D
a

y
 3

2
 S

C
 M

o
n

o

D
a

y
 3

2
 C

o

D
a

y
 3

2
 T

W
 M

o
n

o

N
o

rm
a

liz
e

d
 r

e
la

ti
v
e

 i
n

te
n

s
it
y
 o

f 
th

e
 m

o
d

e
l 
io

n
 (

2
3

9
.2

m
/z

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Day 26 Day 32Day 16

Metabolite #41 - Succinic acid
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Figure 13: Exemplary metabolites #135 and #41 with interaction-induced uptake, transformation or reduced release 

mechanisms on day 16 in the interaction between T. weissflogii and S. costatum (intensity pattern II).  

One carboxylic acid and one terpenoid were characteristic for day 16. Succinic acid (#41) seemed 

to characterize the exometabolomes of both diatom species in mono-cultivation and exhibited 

reduced abundance in co-cultivation on day 16 (Figure 13). Generally, it was present on day 16 and 

26 - showing pattern I on the latter- but not on day 32 and seems relevant for the early stages of the 

interaction.  

The terpenoid dehydroabietic acid (#135) is characteristic for the exometabolome of T. weissflogii, 

as it was most abundant there (Figure 13). On day 16, this MST matched pattern II, but furthermore 

on day 26 and 32 the abundance in co-cultivation was clearly less than expected by the reference 

value. Thus, it might be hypothesized that dehydroabietic acid was either taken up by S. costatum in 

co-cultivation, transformed or that the release by T. weissflogii was reduced. Considering temporal 

dynamics, this MST is not only relevant for day 16, but for later stages of the interaction as well. 

I identified 4-Pyridoxate (#116) via heatmap screening, but an evaluation of the boxplot indicated 

that pattern II / III were not matched on day 16 (Appendix 17). This metabolite was not further 

considered. 
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Day 26 

On day 26, I found five MSTs (#1, #95, #104, #107, and #126) to match pattern II / III. MSTs #104 

and #107 have been previously documented by Vidoudez, as they were found in the exometabolome 

of S. marinoi (Vidoudez, 2010). However, their chemical identity remained unclear. In the 

interaction experiment, both metabolites seemed characteristic for the exometabolome of 

S. costatum, as they were most abundant there (Appendix 17).  

While MSTs #1 and #107 exhibited pattern II only on day 26, MSTs #95, #104 and #126 exhibited 

pattern II on day 26 and 32. These two different dynamics are visualized exemplarily in Figure 14. 

The metabolites with the former dynamic seemed relevant at the onset of the growth effect on day 

26, metabolites of the latter characterized not only the onset of the growth effect, but also the effect 

during the late stationary phase of growth. 
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Metabolite #104 - Skel_MEDIA_C196 (Vidoudez)
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Figure 14: Exemplary metabolites #1 and #104 with interaction-induced uptake, transformation or reduced release 

mechanisms on day 26 as well as day 26 and 32 in the interaction between T. weissflogii and S. costatum (intensity 

pattern II).  
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Day 32 

On day 32, 3-pyridinol (#11), putative 2,2’-iminodiethanol (#37), a metabolite with a pattern 

similar to lumichrome (#45) and the unidentified MST #114 matched intensity patterns (II) and (III) 

(Figure 15).  

Plot 1 Plot 1 Plot 1 

Metabolite #114
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Metabolite #37 - 2,2'-Iminodiethanol
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Metabolite #11 - 3-Pyridinol
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Figure 15: Potential infochemicals with interaction-induced uptake, transformation or reduced release mechanisms on 

day 32 in the interaction between T. weissflogii and S. costatum (intensity pattern II).  

Putative 2,2'-iminodiethanol (#37) was clearly characteristic for day 32 and least abundant in co-

cultivation. It seemed to be highly growth phase dependent and characteristic for the late stationary 

phase. MST #114 exhibited temporal increase of intensity in all groups. However, on day 26 and 32 

the MST intensity in co-cultivation was clearly less than expected by the reference value, which 
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should be an average value of both mono-cultivation intensities. Throughout all three points in time, 

this MST was highest abundant in mono-cultivated S. costatum and thus characteristic for this 

species (Figure 15). 

Furthermore, I found 3-pyridinol (#11) and a metabolite similar to lumichrome (#45) to match 

pattern II and III. Both were not abundant on day 16, but appeared on the exometabolomes on day 

26 and 32 (Figure 15). 

  



Interaction of T. weissflogii with S. costatum 69 

2.2.4 Endometabolomic investigation 

In the interaction between T. weissflogii and S. costatum, the presence of a partner in co-cultivation 

significantly changed the endometabolome in the stationary growth phase (day 26 and 32) in both 

species. In total, 78 MSTs were significantly correlating with these differences in T. weissflogii and 

87 MSTs in S. costatum. To increase clarity, I grouped all relevant metabolites by metabolite classes. 

Note that only a fraction of all MSTs could be identified and thus classified for evaluation. 

Among amino acids, I observed the general trend of upregulation due to the interaction in both 

species during the stationary phase of growth. Furthermore, in T. weissflogii a majority of complex 

sugars were more abundant in co-cultivation on day 32, compared to mono-cultivation. As were the 

majority of identified sugars and sugar derivatives. Amines (represented by cadaverine), carbonic 

acids, fatty acids, alcohols and their respective derivatives, showed the tendency of lower abundance 

in co-cultivation on day 26 and 32, compared to mono-cultivation. 

In S. costatum most alcohols, carboxylic acids and a steroid (#276) were upregulated in co-

cultivation, compared to mono-cultivation. The trend in alcohols and carboxylic acids was opposite 

to the one described for T. weissflogii. Furthermore, the amine putrescine (#127) was upregulated in 

co-cultivation in the late stationary phase.  

I performed the endometabolomic investigations in the manner of descriptive analyses. Their main 

purpose was to qualitatively describe metabolomic alterations within the organisms and to 

potentially support hypotheses drawn from the exometabolomic investigations. 

After data pre-processing of 51 samples from three distinct sampling points, I obtained 285 MSTs 

characterizing the endometabolomes of T. weissflogii and S. costatum in the interaction experiment 

(see experimental design in chapter 2.1.2). The number of replicates per treatment group was six for 

mono-cultivation and three for co-cultivation42.  

It must be noted that sample handling during the workflow of the endometabolomic analysis was 

not optimal, as documented in chapter 6.6.3. Suboptimal randomization might have resulted in 

artificial differences between sampling days. Therefore, the interpretation of time dependent 

endometabolomic alterations need to be made with care. I still considered data very valuable, as I 

set the main focus on relative differences between the treatments within each sampling day. 

                                                 
42 See chapter 2.1.2 and 6.4 for specification 
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Furthermore, irregularities in the derivatization process, which concerned subsets of samples from 

day 26 and 32, might have introduced artificial variability. Freezing and increased exposure to 

elevated temperature might have affected the derivatization chemistry, the compound degradation 

and might have impeded the identification of MSTs. Due to the introduced artificial variability, the 

probability of significant endometabolomic alterations is expected to decrease and existing 

differences might be masked by the artificial variability. However, as I found significant differences 

between the treatment groups, this proves the resilience of the data to the described variability. 

Subsequently, I describe sample similarities and endometabolomic changes.  

Analysis strategy 

I conducted the endometabolomic characterization of the interaction between S. costatum and 

T. weissflogii with a strategy similar to the one used for the exometabolomic analysis. However, the 

analysis strategy differed slightly, as explained in the following paragraphs, due to the experimental 

design.  

Again, I conducted an overall CAP analysis throughout all three sampling points and both species, 

to investigate global effects and dependencies between the samples. Furthermore I analyzed species-

specific data subsets throughout all three points in time, as well as day-specific data subsets per 

species. Thus, I set the focus on endometabolomic changes due to treatment, neglecting the influence 

of species. And on the other hand, I set it on endometabolomic changes within each day, neglecting 

the influence of time and species. As it was the objective of this study to investigate 

endometabolomic changes in S. costatum and T. weissflogii due to the interaction, I always included 

treatment in a-priori groups in the course of the identification of highly correlated metabolites.  

Data exploration via CAP 

The unconstrained PCoA score plot of the overall dataset indicated strong grouping of the samples 

by species affiliation (separation via principal coordinate axis 1) and a gradual separation of samples 

by time (separation via principal coordinate axis 2, Appendix 18). A constrained analysis via CDA 

confirmed that species and time were dominant factors influencing endometabolomic similarities in 

the interaction experiment: A-priori grouping of the overall data set by species (T. weissflogii and 

S. costatum) and by day (sampling days 16, 26 and 32) yielded very low misclassification errors of 

1.96 % (species, Table 6) and 5.882 % (day, Table 6). A permutation test shows statistically 

significant differences between these a-priori groups (trace statistic P ≤ 0.001, Table 6). 
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Table 6: Permutation and cross-validation test results for the overall analysis of different a-priori groups in the 

endometabolome analysis of the interaction between S. costatum and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

Species 10 2 0.906 

(P = 0.0003) 

0.906 

(P ≤ 0.0001) 
1.96 

Day 4 3 0.836 

(P ≤ 0.0001) 

0.812 

(P ≤ 0.0001) 
5.88 

Treatment 11 4 1.640 

(P ≤ 0.0001) 

0.936 

(P ≤ 0.0001) 
15.69 

Day & treatment 12 12 4.916 

(P ≤ 0.0001) 

0.970 

(P ≤ 0.0001) 
11.77 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

To investigate endometabolomic alterations induced by the interaction, I introduced treatment 

(mono-cultivated S. costatum, mono -cultivated T. weissflogii, co-cultivated S. costatum and co-

cultivated T. weissflogii) and treatment per day as a-priori grouping factors in the CAP. The 

permutation test results indicated highly significant differences between treatments and treatments 

per day in the overall analysis (trace statistic P ≤ 0.001, Table 6). Comparing treatment and 

treatment per day as grouping factors, the latter yielded the lower misclassification error (11.77 %, 

Table 6), compared to a classification by treatment throughout all sampling points (15.69 %, Table 

6). 

The overall analysis provided a first exploration of the endometabolomic data. However, the 

investigation of interaction-induced alterations of diatom endometabolomes was performed for each 

species separately. By splitting the overall data set into species-specific subsets, I excluded the strong 

influence of species on the endometabolome from the analysis. This is especially important, as it 

cannot be excluded that artificial differences between the species were introduced by using peak sum 

normalization per sample during data pre-processing (compare discussion in chapter 2.5.3). 

Species-specific subset analysis 

In the context of the species-specific analysis of T. weissflogii and S. costatum, the PCoA score plot 

does not show distinct groups of samples (Appendix 19). However, day and treatment seemed to 

establish a gradual separation: In the case of T. weissflogii, principal coordinate axis 2 (Appendix 

19A) and of S. costatum, principal coordinate axis 1 (Appendix 19B) spanned a gradient of samples 

ranging from day 16 to day 32. Time seemed to be the dominant factor influencing sample grouping. 

Considering treatments, a visible separation was only observed within some days for T. weissflogii, 

but not throughout all points in time. Treatments on day 26 and 32 were separated by principal 
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coordinate axis 1, while on day 16 treatment groups overlapped. For S. costatum no distinct 

separation of treatments was seen in the PCoA score plot. 

These first data explorations were supplemented with a CDA. I tested a-priori grouping by day, 

treatment and treatment per day, indicating highly significant differences between all a-priori groups 

(P ≤ 0.01, Table 7). As the misclassification was lowest for a-priori grouping by day (0 %, Table 

7), I confirmed that time is a dominant grouping factor. Furthermore I tested a-priori grouping by 

treatment and treatment per day. Although these patterns were mostly hidden in unconstraint 

ordination, constrained analyses was able to reveal that in both species there were significant 

differences in the endometabolomes due to treatment. Treatments were significantly different, both 

independent of time, as shown by a-priori grouping by treatment (P ≤ 0.01, Table 7) and dependent 

of time, as shown by a-priori grouping by treatment per day (P ≤ 0.001, Table 7). With 

misclassification errors of 0 % for S. costatum and 0 - 8 % for T. weissflogii, the sample groups were 

distinct. 

Table 7: Permutation and cross-validation test results for the species-specific subset analysis of different a-priori groups 

in the endometabolome analysis of the interaction between S. costatum and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

T. weissflogii: day 6 3 1.736 

(P ≤ 0.0001) 

0.893 

(P ≤ 0.0001) 
0 

T. weissflogii: treatment 7 2 0.772 

(P = 0.0035) 

0.772 

(P = 0.0035) 
8 

T. weissflogii: 

day & treatment 
8 6 3.261 

(P ≤ 0.0001) 

0.978 

(P = 0.0008) 
4 

S. costatum: day 2 3 0.912 

(P ≤ 0.0001) 

0.909 

(P ≤ 0.0001) 
0 

S. costatum: treatment 10 2 0.744 

(P = 0.0079) 

0.744 

(P = 0.0079) 
0 

S. costatum:  

day & treatment 
13 6 3.727 

(P = 0.0003) 

0.989 

(P = 0.0007) 
0 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

Daywise subset analysis per species 

The analysis of daywise subsets per species indicated that treatments were significantly different 

on day 26 and day 32 in both S. costatum and T. weissflogii (trace statistic P ≤ 0.0001, Table 8).  
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Table 8: Permutation and cross-validation test results for the species-specific and daywise subset analysis of different 

a-priori groups in the endometabolome analysis of the interaction between S. costatum and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

T. weissflogii: day 16 5 2 0.994 

(P = 0.3011) 

0.994 

 (P ≤ 0.3011) 
0 

T. weissflogii: day 26 2 2 0.911 

(P ≤ 0.0001) 

0.911 

 (P ≤ 0.0001) 
0 

T. weissflogii: day 32 2 2 0.946 

(P ≤ 0.0001) 

0. 946 

(P ≤ 0.0001) 
0 

S. costatum: day 16 5 2 0.492 

(P = 0.902) 

0.492 

(P = 0.902) 
0 

S. costatum: day 26 3 2 0.608 

(P ≤ 0.0001) 

0. 608 

(P ≤ 0.0001) 
0 

S. costatum: day 32 1 2 0.901 

(P ≤ 0.0001) 

0.901 

(P ≤ 0.0001) 
0 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

These findings were confirmed by the PCoA score plots, which shows distinct sample grouping by 

treatment. For T. weissflogii, these groups were separated by a combination of principal coordinate 

axis 1 and 2 (Appendix 20C, E) and for S. costatum by principal coordinate axis 2 on day 26 and 

axis 1 on day 32 (Appendix 20D, F). Misclassification errors of 0 % confirmed distinct groups of 

samples. Interestingly, on day 16 there was no significant difference between the treatments, as 

visible in the PCoA score plots (Appendix 20A, B) and confirmed by the trace statistic (Table 8).  

Identification of metabolites correlating with relevant a-priori groups  

In analogy with the exometabolomic analysis, I used the CAP to identify metabolites that were 

correlating with the significant differences between the a-priori groups, described above. By 

combining a species-specific approach with a daywise subset analysis, I guaranteed a comprehensive 

analysis of the endometabolome. 

In general, I used the constrained score plots and corresponding loading plots to visualize the 

differences between the a-priori groups and to visualize the correlating metabolites. I considered 

only metabolites that exceeded a certain significance level of correlation with either canonical axis 

1 or canonical axis 2 (P ≤ 0.001 for the species-specific analysis, P ≤ 0.05 for the species-specific 

daywise analysis). However, I fully based further interpretations and identification of potential 

biomarkers on heatmaps, visualizing MST intensities among the sampling days and treatments.  
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T. weissflogii 

The score and loading plots in Figure 16 summarize the results of the species-specific analysis for 

T. weissflogii. I considered both a-priori grouping by treatment (A, B) and treatment per day (C, D). 

In the analysis with a-priori grouping by treatment, the constrained score plot (Figure 16A) shows 

a clear time-independent separation of mono- and co-cultivated T. weissflogii by canonical axis 1. 

In total, eight metabolites were significantly correlated (|r| ≥ 0.6178, P ≤ 0.001) with the separation 

of treatments. As visualized in the loading plot, the majority of metabolites characterized 

T. weissflogii in co-cultivation, while only MST #165 was correlating with mono-cultivation (Figure 

16B). 

In the analysis with a-priori grouping by treatment per day, time was taken into account, when 

considering differences between treatments. The constrained score plot confirmed that the 

endometabolomes in mono- and co-cultivation were substantially different on day 26 and 32, as 

treatment groups within these days were separated by canonical axis 2 (Figure 16C). Treatment 

groups on day 16 overlapped and did not indicate significant differences. I statistically confirmed 

these findings via trace statistics (Table 7). In general, samples from day 32 were distinctly different 

from samples on day 16 and 26, as they were separated by canonical axis 1.  

Moreover, 24 of the 29 highly correlated metabolites (|r| ≥ 0.6177, P ≤ 0.001, Figure 16D) were 

characteristic for day 32, as their respective MST vectors were located in quadrant III and IV. Of 

these samples, the majority pointed towards co-cultivation. The remaining five metabolites 

characterized samples on day 16 and 26. However, a clear affiliation to distinct sample groups was 

not possible in Figure 16. 

I summarized the results of the daywise analysis for T. weissflogii in Figure 17. The constrained 

score plots show a strong separation of mono- and co-cultivation on day 26 (Figure 17A) and day 

32 (Figure 17B) via canonical axis 1. These findings are in agreement with the results of the species-

specific analysis and were confirmed by the permutation test (Table 8). Day 16 was not further 

considered due to lack of significance. All metabolites that were significantly correlating with 

differences between the treatments on day 26 and 32 (|r| ≥ 0.6664, P ≤ 0.05) are visualized in loading 

plots (Figure 17B, D). In total, I identified 42 highly correlated metabolites on day 26 and 30 on day 

32. On both days respectively, the majority of metabolites was characteristic for co-cultivation of 

T. weissflogii. 
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Figure 16: Constrained score and loading plots of endometabolomic samples from T. weissflogii in a species-specific 

subset analysis of the interaction between T. weissflogii and S. costatum. 

The constrained score plots (graph A, C) visualize significant differences between the sample groups as found via CDA 

with a-priori groups by treatment (trace statistic P = 0.0035, misclassification error of 8 % for m = 7, graph A) and a-

priori groups by treatment per day (trace statistic P = 0.0008, misclassification error of 4 % for m = 8, graph C). Vectors 

in the CAP loading plots (graph B, D) represent metabolites, characterized by their ID (red numbers). Only vectors with 

a significant correlation coefficient above the critical value of |r| ≥ 0.6178 (P ≤ 0.001) for a-priori grouping by treatment 

and |r| ≥ 0.6177 (P ≤ 0.001) for a-priori grouping by treatment per day are plotted. The direction of the vectors in 2-

dimensional space correlates with endometabolomic sample groupings shown in the score plots of the respective 

analysis.  
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Figure 17: Constrained score and loading plots of endometabolomic samples from T. weissflogii in a daywise subset 

analysis of the interaction between T. weissflogii and S. costatum. 

The constrained score plots (graph A, C) visualize significant differences between the treatments, as confirmed via CDA 

for the subset analysis on day 26 (graph A, B) and day 32 (graph C, D). These differences between treatments are highly 

significant (trace statistic P ≤ 0.0001, misclassification error of 0 % for m = 2). Vectors in the CAP loading plots (graph 

B, D) represent metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a significant 

correlation coefficient above the critical value of |r| ≥ 0.6664 (P ≤ 0.05) are plotted. The direction of the vectors in 2-

dimensional space correlates with endometabolomic sample groupings shown in the score plots of the respective 

analysis.  
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To sum it up, the score plots of the species-specific and daywise analyses clearly visualize the 

significant differences between the treatments on day 26 and 32. In total 78 MSTs (not counting 

redundant MSTs found in more than one analysis) were significantly correlating with these 

differences. Interestingly, within these days, the majority of metabolites was correlating with the co-

cultivation group. 

All highly correlated MSTs are summarized in a heatmap (Table 9). The affiliation of the MSTs to 

their respective analysis is noted in the heatmap. Metabolites were sorted by class and within class 

by intensity pattern to facilitate the discussions. To interpret the findings, I considered not only the 

intensity pattern, but also the underlying analysis. For example, I only considered MSTs identified 

in the daywise analysis relevant for the separation of treatments within the specific analysis day.  

As previously described, most MSTs showed a strong correlation with the co-cultivation group. 

This was especially true for the group of amino acids. Five amino acids, identified via standards, 

were highly correlating with the separation of treatments. Alanine (#3), valine (#1, #26), leucine 

(#38), isoleucine (#42) and threonine (#43) were more abundant in co-cultivation than in mono-

cultivation in all investigated points in time of the interaction. Amino acid intensities increased from 

day 16 to 32, reaching relative maximum intensities that were up to 8.9 - fold (leucine, day 26) higher 

in co-cultivation, compared to mono-cultivation.  

In general, the identification of metabolites in the class of sugars, complex sugars and their 

respective derivatives via MS libraries was difficult. Although the strategy of MST identification via 

MS libraries was retained, the sugar identities must be interpreted with caution.  

In the class of complex saccharides, the pattern of MST intensities was more complex. I found six 

different complex sugars and one complex sugar derivative to be highly correlated with the 

separation of treatments. Sucrose (#243), gentiobiose (#248, #251), putative maltose (#252) and 

putative lactose (#249) were 1.4 - to 2.2 - fold more abundant in co-cultivation on this day. However, 

trehalose (#250) and galactinol (#258, #265) were characteristic for mono-cultivation, as they were 

1.3 - to 1.8 -fold more abundant on day 32, compared to co-cultivation. In general, the intensities of 

complex sugars increased over time and showed maximum abundance on day 32, with the exception 

of a disaccharide (#283), which was characteristic for mono-cultivation and present at early stages 

of the interaction (day 16 and 26). 

Besides complex saccharides, 13 sugars and sugar derivatives were of relevance for the separation 

of treatments. The majority of them (8 out of 13) were characteristic for co-cultivation on day 26 
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and 32. Interestingly, these metabolites showed highest abundance on day 26 and / or day 32 and 

were merely abundant in mono- and co-cultivation on day 16.  

The daywise analysis revealed that putative arabinofuranose (#97, #99 and #100), glucopyranose 

(#192), putative galactofuranoside deriv. (#105), putative glucuronolactone (#119), xylose (#110) 

and a further unidentified sugar (#281) were significant for the separation of treatments on day 26. 

With the exception of the latter 2, which were characteristic for mono-cultivation on day 26, all 

metabolites were 1.4 - to 1.9 - fold more abundant in co-cultivation on this respective day. Putative 

erythrose (#101), fructose (#148), glucose (#150) and an unknown sugar (#210) were characteristic 

for co-cultivation on day 32, as they were 1.4 - to 14.5 - fold more abundant compared to mono-

cultivation. I identified a sugar acid (#172, putative gluconic acid) to be of relevance for co-

cultivation on both day 26 and 32. It was more abundant compared to the negative control on all 

three sampling points.  

It is important to note that sugar acid #172 and #165 were both putatively identified as gluconic 

acid with the help of metabolite libraries. However, their abundance pattern was opposite, as #165 

was characterizing mono- and #172 was characterizing co-cultivation. This opposing trend in 

abundance might be caused by the fact that either both MSTs origin from the same compound and 

their intensities need to be interpreted additively, or that both MSTs originate from different 

metabolites with individual abundance dynamics. The latter might indicate an imprecision in the 

putative, library based identification.  

Generally, the identification of sugars and sugar derivatives via GC-MS is difficult due to the high 

number of functional groups and the presence of tautomeric forms in solution (Medeiros and 

Simoneit, 2007; Ruiz-Matute et al., 2011). Therefore, either due to tautomerism, e.g. keto-enol 

tautomerism, different silylation states or derivatization side reactions of the multiple functional 

groups compounds can be reflected in various chromatographic peaks and cause a high complexity 

of the chromatogram (Halket and Zaikin, 2003; Medeiros and Simoneit, 2007; Ruiz-Matute et al., 

2011). Due to this high complexity, it is difficult to unambiguously identify sugar and sugar 

derivative peaks and to clearly differ between compounds. Thus, both MSTs were subsequently only 

classified on the compound class level. Furthermore, identification of sugars is often only putative. 

The remaining two metabolites of the sugar and sugar derivative class were correlating with mono-

cultivation of T. weissflogii. An unidentified sugar (#143) and a putative inositol isomer (#189) 
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characterized the mono-cultivation as well. These metabolites shared one trait, they were merely 

abundant on day 32. 

In the remaining classes of metabolites (not considering unknowns), I observed a trend of reduced 

metabolite abundance in co-cultivation. The amine cadaverin (#66) distinguished the treatments on 

day 26, as it was 27.4 - fold more abundant in mono-cultivation on this day. The alcohol 2-dodecanol 

(#83) was found to be relevant on day 26, where it was 6.3 - fold more abundant compared to co-

cultivation, whereas the alcohol derivative 3-chloro-1,2-propanediol (#10, #19) was relevant for the 

separation on day 26 and 32, being more abundant in mono- cultivation both days. Glycerol (#17, 

#37) was responsible for the separation of treatments on day 32, where it was up to 2.0 - fold more 

abundant in mono-cultivation compared to co-cultivation.  

Among highly correlated carboxylic acids, five metabolites were relevant for the separation of 

treatments on day 26. Pyroglutamic acid (#88) and oleic acid (#201) were up to 3.8 - fold more 

abundant in co-cultivation. Putative arachidonic acid (#205, #207), 3-hydroxybutanoic acid (#25) 

and ethyl palmitate (#171) were up to 4.7 - fold more abundant in mono-cultivation and thus 

characterizing mono-cultivation on day 26. Propionic acid (#13) intensity increased until reaching 

maximum values on day 32, with 1.3 - fold higher abundance in mono-cultivation, compared to co-

cultivation. 2,3-Dihydroxypropanoic acid (#49) separated the treatments on day 32, also 

characterizing mono-cultivation due to elevated abundance of 2.3 - fold, compared to co-cultivation. 

For fatty acids and fatty acid derivatives the picture was similar. Most class members clearly 

distinguished mono-cultivation on day 26 and 32, due to higher abundance. Methyl-5,8,11,14,17-

icosapentaenoate (#209) and putative 1,3-dihydroxy-2-propanyl myristate (#219, #222) were more 

abundant in mono-cultivation on day 26 and 32, compared to co-cultivation and their respective 

abundance on day 16. The intensity dynamics of metabolites #209 and #219 over time differed 

between mono- and co-cultivation. In co-cultivation there seemed to be a higher availability of these 

fatty acid derivatives on day 16, with subsequent rapid decline of abundance on day 26 and 32. In 

mono-cultivation on the other hand, both metabolites were merely present on day 16 and their 

abundance increased after regular growth phase to reach maximum values on day 26. Furthermore, 

putative 1,3-dihydroxy-2-propanyl myristate (#180) increased from day 16 and 26 until reaching 

maximum values on day 32, which were 1.3 - fold higher in mono-cultivation, compared to co-

cultivation. I obtained ambiguous results for palmitoleic acid (#176). This metabolite was more 
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abundant on day 16 and 26, than on day 32, but did not show a clear correlation with one of the 

treatments throughout all days.  

In the class of alkaloids, putative 2-(4-methyl-1-piperazinyl)ethanamine (#47) was found by the 

daywise CAP to distinguish mono- and co-cultivation on day 32. This metabolite was 1.4 - fold more 

abundant in mono-cultivation on this day. However, considering the general intensity dynamics, on 

day 16 and 26, this metabolite was higher abundant in co-cultivation on previous days. Furthermore, 

the class of others contained two metabolites. The long chained alcohol 9-eicosen-1-ol (#215) 

characterized day 16 of the interaction, as it was most abundant there. However, it separated 

treatments on day 26, as it was 4.4 - fold more abundant in mono-cultivation on this day, compared 

to co-cultivation. Tocopherol (#274) intensity increased during later stages of the interaction. On 

day 26 and 32 it was 1.8 - to 1.9 - fold more abundant in co-cultivation and thus characteristic for 

this state. 

In total, 24 of the 78 highly correlated MSTs could not be identified and were classified as 

unknowns. However, six MSTs were documented in the GOLM and in-house library (Vidoudez) 

and referred to by their respective library-specific code. With exception of one MST (#81), all 

unknowns were correlating with day 26 and 32, as they were either identified by the daywise 

analysis, or (if identified in the species-specific analysis) most abundant on day 26 and 32. 

Considering these two days, the correlation with treatments was approximately equal numbered: 16 

metabolites were higher abundant in co-cultivation, eight were higher abundant in mono-cultivation. 

MST #40, #129 and #133 are potential biomarkers, for co-cultivated T. weissflogii, as they were 

identified in the  time-independent analysis (a-priori grouping by treatment) and most abundant in 

this group. 
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Table 9: Heatmap of endometabolite intensities for the species-specific and daywise analysis of T. weissflogii in the interaction with S. costatum.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) 

to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) 

and abundance patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance 

in co-cultivation relative to mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in 

mono-cultivation. 
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66 174.1 9.74 1380 1,5-Pentanediamine (Cadaverine) A   26 0 1 1 -1 0 -1 1.6 -27.4 -2.6 

3 116.1 6.80 986 Alanine AA * DT,32 -1 -1 0 0 0 2 1.5 1.5 3.0 

1 103 6.72 975 Valine AA * 32 -1 NA 0 -1 0 2 - -4.6 3.2 

26 144.1 7.95 1139 Valine AA * T,26,32 -1 -1 0 1 0 2 2.1 2.6 3.5 

38 158.1 8.48 1211 Leucine AA * DT,T,26,32 -1 -1 -1 1 0 2 4.4 8.9 7.4 

42 158.1 8.69 1239 Isoleucine AA * DT,T,26,32 -1 0 -1 1 -1 2 3.3 6.8 7.0 

43 117.1 8.71 1242 Threonine AA * T,26,32 -1 -1 0 1 0 1 2.8 1.7 1.7 

44 146.1 8.81 1256 Threonine AA * DT 0 0 1 1 -1 NA 1.8 -1.2 - 

10 116.1 7.30 1052 3-Chloro-1,2-propanediol  Alc dv. ? 26,32 1 0 1 -1 1 NA -2.1 -3.6 - 

83 211.2 10.53 1487 2-Dodecanol Alc  26 -1 0 1 -1 2 -1 2.1 -6.3 -53.5 

17 117 7.59 1092 Glycerol Alc ? 32 -1 -1 1 1 1 0 -1.3 1.1 -1.4 

37 205 8.46 1208 Glycerol Alc  32 1 0 1 -1 0 -1 -1.1 -1.9 -2.0 

19 116.1 7.63 1097 3-Chloro-1,2-propanediol Alc dv.   32 0 0 2 -1 0 -1 -1.1 -2.6 -1.9 

47 171.1 8.90 1268 2-(4-Methyl-1-piperazinyl)ethanamine Alk ? 32 0 1 1 1 -1 -1 1.3 1.1 -1.4 

88 156.1 10.75 1516 5-Oxoproline (pyroglutamic acid) CA  26 -1 0 -1 1 -1 1 2.5 3.8 2.2 

201 117 15.60 2250 9-Octadecenoic acid (oleic acid) CA  26 -1 0 0 2 -1 0 2.0 1.8 1.6 

205 197.1 15.77 2281 
5,8,11,14-Icosatetraenoic acid 

(arachidonic acid) 
CA ? 26 1 0 0 -1 1 -1 -1.5 -2.2 -2.7 

207 197.1 15.84 2293 
5,8,11,14-Icosatetraenoic acid 

(arachidonic acid) 
CA ? 26 1 1 0 -1 0 -1 -1.1 -4.1 -3.0 

25 247.1 7.89 1132 3-Hydroxybutanoic acid CA  26 -1 0 2 0 -1 0 1.5 -3.0 1.6 
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171 101.1 14.22 2009 Ethyl palmitate CA dv.  26 0 0 2 -1 0 -1 -1.1 -4.7 -2.1 

49 189.1 8.99 1280 2,3-Dihydroxypropanoic acid CA  32 -1 1 0 1 0 -1 2.4 1.2 -2.3 

13 233.1 7.39 1065 Propionic acid  CA   DT -1 -1 0 0 2 1 8.9 1.5 -1.3 

176 117 14.42 2042 9-Hexadecenoic acid (Palmitoleic acid) FA  DT 0 1 1 0 -1 NA 1.2 -1.3 - 

180 211.2 14.58 2072 1,3-Dihydroxy-2-propanyl myristate FA dv. ? DT -1 -1 0 0 1 1 1.8 1.2 -1.3 

209 117 15.92 2308 Methyl-5,8,11,14,17-icosapentaenoate FA dv.  32 -1 1 1 0 0 -1 1.3 -1.3 -1.4 

219 129.1 16.37 2385 1,3-Dihydroxy-2-propanyl myristate FA dv.  26,32 -1 0 1 0 0 -1 2.4 -1.5 -10.2 

222 343.3 16.55 2418 1,3-Dihydroxy-2-propanyl myristate FA dv.   26,32 -1 -1 1 -1 1 0 -1.1 -1.8 -1.7 

97 217 11.16 1571 Arabinofuranose S ? 26 0 -1 0 2 0 1 -1.6 1.7 1.4 

99 217 11.23 1580 Arabinofuranose S ? 26 -1 -1 0 2 0 1 -1.2 1.4 1.2 

100 217 11.28 1587 Arabinofuranose S ? DT,26 -1 -1 0 2 0 1 -1.2 1.6 1.2 

105 217 11.46 1611 Galactofuranoside deriv. S dv. ? 26 0 -1 0 1 -1 1 -1.9 1.6 1.4 

119 246.1 12.03 1688 Glucuronolactone S dv. ?? 26 -1 -1 0 1 0 1 1.0 1.7 1.5 

172 292.1 14.26 2014 Gluconic acid  S Acid  26,32 -1 0 -1 1 0 2 1.6 1.9 2.2 

192 117 15.14 2170 Glucopyranose S  26 -1 -1 0 1 1 1 1.1 1.5 -1.1 

110 161.1 11.75 1650 Xylose S  26 0 1 1 -1 0 -1 1.3 -3.7 -3.1 

281 204.1 25.08 3510 
EITTMS_N12C_ATHL_3499.7_1135

EC24_ (GOLM) 
S  26 1 -1 2 -1 0 -1 -1.7 -2.0 -1.5 

101 258.1 11.31 1591 Erythrose S ? 32 1 -1 -1 1 -1 1 -2.9 7.7 14.5 

148 103.1 13.28 1856 Fructose S  32 -1 -1 1 1 0 1 1.3 1.0 1.4 

150 319.2 13.46 1880 Glucose S * 32 -1 -1 -1 0 0 2 -1.0 1.3 2.4 

210 204.1 15.98 2317 
EITTMS_N12C_STUL_2360.7_1135

EC28_G (GOLM) 
S  DT,32 -1 0 -1 0 0 2 4.8 1.9 2.0 

143 117 13.04 1824 
EITTMS_N12C_STUR_1832.7_1135

EC29_ (GOLM) 
S  DT 1 0 1 0 -1 -1 -1.3 -1.1 1.2 

165 333 13.98 1965 Gluconic acid  S Acid  T,32 1 -1 0 -1 1 -1 -1.3 -1.1 -1.3 

189 319.2 15.00 2144 
Skel_Cell_C128_RT14.776 (inositol 

isomer) (Vidoudez) 
S Alc ? DT 2 1 0 -1 -1 -1 -1.3 -1.4 1.2 

283 204.1 25.85 3578 Disaccharide (Vidoudez) CS   26 1 -1 2 0 0 -1 -2.3 -1.9 -1.2 

243 361.2 17.73 2625 Sucrose CS * DT -1 -1 -1 0 0 2 1.3 1.6 1.8 
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248 204 18.21 2710 Gentiobiose  CS  DT,32 -1 -1 -1 0 0 2 -1.0 1.4 2.0 

251 204.1 18.39 2742 Gentiobiose CS  DT,32 -1 0 -1 0 0 2 1.4 1.1 2.2 

252 204.1 18.47 2755 Maltose CS ? DT -1 -1 0 0 1 1 1.7 1.1 1.4 

249 204.1 18.26 2719 Lactose CS ? DT -1 -1 0 0 0 2 1.3 1.3 1.7 

250 361.2 18.32 2729 Trehalose CS * DT,32 NA -1 0 0 2 1 - 1.1 -1.7 

258 204.1 19.05 2846 Galactinol CS dv.  DT -1 -1 0 0 2 0 -1.4 1.1 -1.8 

265 204.1 19.78 2949 Galactinol CS dv.   DT -1 -1 0 0 1 1 1.1 -1.1 -1.3 

215 180.1 16.18 2353 9-Icosen-1-ol  O ?? 26 1 1 0 -1 -1 -1 1.1 -4.8 -1.4 

274 237.1 21.05 3131 Tocopherol O * 26 -1 -1 0 1 0 1 -1.2 1.9 1.8 

81 228.1 10.45 1475 Unknown U - DT 2 1 0 0 -1 -1 -1.4 -1.0 -1.2 

11 117.1 7.31 1054 Unknown U - 26 1 NA NA 2 NA NA - - - 

40 180.1 8.61 1229 Unknown U - T,26 -1 1 -1 1 0 0 3.5 2.5 1.5 

60 217.1 9.49 1347 Unknown U - 26 -1 -1 0 1 0 1 3.3 1.8 1.3 

69 201.1 9.89 1401 
EITTMS_N12C_ATHR_1442.5_1135

EC44_ (GOLM) 
U  26 0 2 -1 1 -1 -1 1.6 2.1 1.2 

103 188.1 11.39 1602 Unknown U - 26 -1 0 -1 1 0 2 1.9 2.8 2.0 

111 117 11.78 1655 Unknown U - 26 -1 2 -1 1 -1 0 2.2 2.3 1.4 

118 215.2 11.99 1683 Unknown U - DT,26 -1 -1 0 1 1 1 3.1 3.2 -1.0 

129 392.2 12.49 1750 Unknown U - DT,T,26,32 0 -1 -1 1 -1 1 -2.5 8.5 7.7 

133 392.2 12.62 1768 Skel_cell_C065 (Vidoudez) U  DT,T,26,32 0 -1 -1 2 -1 1 -2.1 17.0 8.4 

135 302.1 12.76 1786 Skel_cell_C065 (Vidoudez) U  DT,26,32 0 -1 -1 2 -1 0 -1.8 11.6 3.8 

92 263.2 10.92 1538 Unknown U - 26 1 2 0 -1 -1 -1 1.3 -3.3 -2.0 

120 129 12.06 1692 
EITTMS_N12C_ATHR_1704.6_1135

EC44_ (GOLM) 
U ? 26 -1 1 1 -1 1 0 2.4 -2.2 -1.3 

141 386.2 12.97 1814 Unknown U - 26 NA 0 2 0 0 NA - -3.8 - 

208 120.1 15.86 2297 Unknown U - 26 -1 2 1 0 0 -1 4.0 -1.6 -1.5 

259 211.2 19.22 2870 Unknown U - 26 -1 0 1 -1 2 0 2.0 -3.4 -1.8 

132 204.1 12.60 1764 Unknown U - DT -1 -1 0 0 1 1 2.2 -1.1 1.0 

198 117 15.50 2232 Unknown U - DT -1 0 -1 0 1 2 1.7 1.5 1.4 
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229 217.1 16.97 2492 
EITTMS_N12C_ATHR_2761.3_1135

EC44_ (GOLM) 
U ?? DT -1 -1 0 0 0 2 1.6 1.5 1.5 

230 217.1 17.02 2500 Unknown U - DT -1 0 -1 0 0 2 4.5 2.9 1.5 

247 204.1 18.02 2676 Unknown U - DT -1 -1 0 0 1 1 -1.6 -1.6 1.0 

285 204.1 26.98 3677 Unknown U - 32 -2 0 0 0 0 1 53.7 1.1 1.5 

107 137.1 11.66 1639 Unknown U - 32 -1 0 0 0 2 -1 2.2 -1.6 -2.9 

234 103.1 17.30 2551 Skel_Cell_C146 (Vidoudez) U ? 32 0 0 2 -1 0 -1 1.2 -2.6 -1.6 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention 

index (RI) and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by 

treatment (T), as well as daywise subset analysis on day 26 (26) and day 32 (32). Metabolites were identified via libraries. If metabolites were verified with a standard, they 

are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match 

was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), 

derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code 

given by the in-house library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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S. costatum 

The constrained score plots of the species-specific analysis of S. costatum visualize the 

significant differences between a-priori groups. The significance was confirmed via trace 

statistic, which was calculated by permutation (Table 7). Similar to the results found in 

T. weissflogii, a-priori grouping by treatment yielded a clear separation of mono- and co-

cultivation of S. costatum in the score plot (Figure 18A). Seven metabolites were highly 

correlated (|r| ≥ 0.6074, P ≤ 0.001) with the separation of treatments. The corresponding loading 

plot indicated six out of seven metabolites characterizing co-cultivation, while only MST #282 

was correlating with mono-cultivation. 

A-priori grouping by treatment per day identified 40 metabolites highly correlating with the 

separation of groups (|r| ≥ 0.6074, P ≤ 0.001). The score plot (Figure 18C) visualizes a clear 

separation of the sampling days by canonical axis 1. Within day 16 and 32, the treatments were 

distinctly separated from each other by canonical axis 2. On day 26, a separation of treatments 

was gradually established by canonical axis 1, yet the separation was not as distinct. The 

corresponding loading plot (Figure 18D) shows that 37 out of 40 metabolites were correlating 

with sampling day 32. Within this day, four metabolites were very distinctly correlating with co-

cultivation (#49 (2,3-dihydroxypropanoic acid), #68 (glycerol), #130 (pentonic acid) and #172 

(gluconic acid)) and MST #252 (maltose) with mono-cultivation. Furthermore, metabolites #45 

(glycine), #143 and #176 (palmitoleic acid) were pointing towards the direction of co-cultivated 

S. costatum on day 16, and were thus characteristic for this group. The affiliation of the other 

metabolites was evaluated via heatmap. 

The permutation test in the daywise analysis confirmed significant differences between 

treatments on day 26 and 32 (Table 8). These differences are visualized in the constrained score 

plots (Figure 19A, C). For both days, canonical axis 1 was distinctly separating mono- from co-

cultivation. Day 16 was not further considered, due to lack of significance. In general, 26 

metabolites were highly correlating with the separation of treatments on day 26 and 43 

metabolites with the separation on day 32. The majority of them was correlating with the co-

cultivation group, as they were pointing towards the co-cultivation group in the respective 

loading plot (Figure 19B, D).  
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Figure 18: Constrained score and loading plots of endometabolomic samples from S. costatum in a species-specific 

subset analysis of the interaction between T. weissflogii and S. costatum. 

The constrained score plots (graph A, C) visualize significant differences between the sample groups as found via 

CDA with a-priori groups by treatment (trace statistic P = 0.0079, misclassification error of 0 % for m = 10, graph 

A) and a-priori groups by treatment per day (trace statistic P = 0.0003, misclassification error of 0 % for m = 13, 

graph C). Vectors in the CAP loading plots (graph B, D) represent metabolites, characterized by their ID (red 

numbers). Only vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.6074 (P ≤ 0.001) 

for a-priori grouping by treatment and |r| ≥ 0.6074 (P ≤ 0.001) for a-priori grouping by treatment per day are plotted. 

The direction of the vectors in 2-dimensional space correlates with endometabolomic sample groupings shown in 

the score plots of the respective analysis.  
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Figure 19: Constrained score and loading plots of endometabolomic samples from S. costatum in a daywise subset 

analysis of the interaction between T. weissflogii and S. costatum. 

The constrained score plots (graph A, C) visualize significant differences between the treatments, as confirmed via 

CDA for the subset analysis on day 26 (graph A, B) and day 32 (graph C, D). These differences between treatments 

are highly significant (trace statistic P ≤ 0.0001, misclassification error of 0 % for m = 3 (day 26) and m = 1 (day 

32)). Vectors in the CAP loading plots (graph B, D) represent metabolites, characterized by their ID (red numbers, 

pooled per group). Only vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.6664 

(P ≤ 0.05) for day 26 and of |r| ≥ 0.7067 (P ≤ 0.05) for day 32 are plotted. The direction of the vectors in 2-

dimensional space correlates with endometabolomic sample groupings shown in the score plots of the respective 

analysis.  

Considering both analyses together, 87 metabolites were highly correlating with differences in 

treatments and treatment per day. I summarized and visualized these metabolites in a heatmap 

(Table 10). Subsequently, I evaluated the trends of different metabolite classes and introduced 

potential biomarkers.  
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All identified amino acids, with exception of putative alanine (#70), were correlating with co-

cultivation of S. costatum on day 26 and / or 32. They were up to 2.2 - fold more abundant 

(isoleucine, day 26) compared to mono-cultivation. Glycine (#45) for example, was identified by 

the daywise analysis on day 26 and 32, as it was more abundant in co-cultivation. Valine (#26), 

leucine (#38), isoleucine (#42) and threonine (#43) have also been described in the analysis of 

T. weissflogii. The only difference is that these amino acids showed maximum intensities on day 

26 in S. costatum, but on day 32 in T. weissflogii. On the other hand, putative alanine (#70) was 

characterizing mono-cultivation, as it was 1.5 - fold higher abundant on day 26 and 1.9 - fold on 

day 32, compared to co-cultivation.  

The trend in alcohols and carboxylic acids was opposite to the one described for T. weissflogii, 

where both classes were correlating with mono-cultivation. In the analysis of S. costatum, three 

carboxylic acids were identified: On the one hand, 2,3-dihydroxypropanoic acid (#49) 

characterized co-cultivated S. costatum on all three sampling days. It was between 1.3 - to 

1.8 - fold more abundant, compared to mono-cultivation. On the other hand, propionic acid (#13) 

and the carboxylic acid derivative threonic acid-1,4-lactone (#59) were relevant for the separation 

of treatments on day 26 and 32. Both were up to 2.9 - fold higher abundant in co-cultivation 

during later stages of the interaction. Propionic acid (#13) was also found to be highly correlated 

in the analysis of T. weissflogii. However, although propionic acid (#13) showed the same 

temporal increase from day 16 to 32, it was correlating with mono-cultivation in T. weissflogii. 

Another shared metabolite between the analysis of T. weissflogii and S. costatum with similar 

correlation trends in both analyses was 2-dodecanol (#83). While for S. costatum it was 1.7 - to 

1.9 - fold higher correlating with co-cultivation, in T. weissflogii it was 6.3 - to 53.5 -fold higher 

abundant in mono-cultivation. The polyol glycerol (#68, #87) was a potential biomarker for co-

cultivation in S. costatum, as it was more abundant in co-cultivation on all three sampling days 

(up to 1.8 - fold on day 32). Putative 1,3,5-pentanetriol (#72) characterized the endometabolome 

of S. costatum in mono-cultivation on day 32, as it was 2.3 - fold more abundant in mono-

cultivation on this day. 

Three amines were highly correlating with the separation of treatments. Cadaverine (#66) was 

characterizing mono-cultivation, not only in S. costatum, but also in T. weissflogii. However, in 

the analysis of T. weissflogii, cadaverin (#66) was affiliated with day 26, while in the analysis of 

S. costatum it was affiliated with day 32. The same correlation trend was visible for 2-[(2-

chloroethyl)(ethyl)amino]ethanol (#31), an amine derivative, which was 2 - fold more abundant 

in mono-cultivation on day 32. Only putrescine (#127) was characteristic for co-cultivation on 
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day 32. In general the abundance of identified amines increased over time until reaching 

maximum intensities on day 32. 

The temporal dynamic for complex sugars was identical with the one described for 

T. weissflogii. Their respective intensity increased until day 32. In total, eight different complex 

sugars and derivatives have been identified in the analysis of S. costatum. With exception of 

galactinol (#263) and a disaccharide (#283), which characterized co-cultivation, all members of 

this class were more abundant in mono-cultivation on day 32. Although sucrose (#243), 

gentiobiose (#248, #251), trehalose (#250), putative maltose (#252) and galactinol (#263) were 

relevant in the analysis of both diatoms, five metabolites showed opposite affiliations to 

treatment. Only trehalose (#250) was characterizing mono-cultivation on day 32 in both species. 

Considering derivatives of complex saccharides, digalactosylglycerol (#273) and an unidentified 

disaccharide (#282) were characteristic for mono-cultivation. Interestingly, they were abundant 

in similar intensities on all three sampling days, not exhibiting an increase as observed for 

complex saccharides. 

The remaining metabolites of the sugar class (including derivatives) show a complex intensity 

pattern over time and treatments. Within this class, identified metabolites were characterizing 

both treatments in a balanced way. Thirteen of the 16 sugars (including derivatives) were merely 

abundant on day 16, but increased in intensity on day 26 and 32. Two unidentified sugars (#210, 

#281), as well as putative erythritol (#113), galactosylglycerol (#203, #206) and adenosine 

(#245) were more abundant in mono-cultivation on day 32, compared to co-cultivation. On the 

other hand, putative pentonic acid (#130), gluconic acid (#165, #172), hexitol (#145), inositol 

(#175), mannono-(1-4)-lactone (#167), myo-inositol (#183), glucose (#150), hexonic acid 

(#169), a hexose (#190) and galacturonic acid (#160) were more abundant in co-cultivation on 

day 32.  

Interestingly, gluconic acid was highly correlating with the separation of mono- and co-

cultivation independent of time (identified by the CAP with a-priori grouping by treatment). 

Thus, it was considered a biomarker for co-cultivation. Gluconic acid was between 1.4 - and 

2.7 - fold more abundant, compared to mono-cultivation. Putative pentonic acid (#130) and 

galacturonic acid (#160) were relevant for the separation of treatments on day 26, as they were 

up to 1.4 - fold more abundant in co-cultivation. Furthermore, an unidentified sugar (#143) was 

characteristic for mono-cultivation on day 16. I also found sugar #143 in the analysis of 

T. weissflogii, with an identical intensity pattern over time and treatments.  
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Galactosylglycerol (#211) was most abundant on day 16. However, it was found to only be 

relevant for the separation of treatments on day 26. Galactosylglycerol was represented by three 

MSTs (#203, #206 and #211). Their abundance pattern was not homogeneous and no clear 

overall affiliation of galactosylglycerol to one of the treatments could be visualized. Therefore, I 

interpreted each MST individually, under consideration of the possibility that different 

sugarglycerols might by tagged with the name galactosylglycerol, due to difficulties in the 

library-based identification of sugars. 

Among fatty acids, palmitoleic acid (#176) was most abundant on day 16 and 26, at the 

beginning of diatom growth. It was not abundant on day 32. This observation is in agreement 

with the results for palmitoleic acid in T. weissflogii. However, this metabolite could not clearly 

be affiliated with one treatment over time. On day 16, palmitoleic acid was more abundant in 

mono-cultivation and 2.5 - fold more in co-cultivation on day 26. Considering fatty acid 

derivatives, the picture was not as distinct either. 1,3-Dihydroxy-2-propanyl palmitate was 

represented by four MSTs (#180, #219, #222 and #235). While #219 and #235 were more 

abundant in mono-cultivation on day 32, #280 and #222 were more abundant in co-cultivation. 

Thus, it was not possible to unambiguously affiliate the MST 1,3-dihydroxy-2-propanyl 

palmitate to one of the treatments. Furthermore, glycerol (#237) was more abundant in mono-

cultivation, while 2,3-dihydroxypropyl palmitate (#239) was more abundant in co-cultivation on 

day 32.  

In addition to the already described metabolite classes, I identified one alkaloid and two steroids 

in the analysis of S. costatum. 1H-Pyrrole-2-carboxylic acid (#53) was most abundant on day 16. 

However, the difference in abundance between treatments was minor (1.1 - fold). Campesterol 

(#276) was correlating with co-cultivation on day 26 and 32, as it was up to 1.3 - fold more 

abundant (day 26), compared to mono-cultivation. The previously described sterol #275 

(Skel_cell_C178_sterol (Vidoudez, 2010)) characterized mono-cultivated S. costatum on day 32, 

as it was 1.9 - fold more abundant compared to co-cultivation. Generally, this sterol increased in 

abundance during later stages of the interaction with increasing difference between the 

treatments. The identification of metabolites in the class of sterols via MS libraries was difficult, 

as MS spectra can be highly similar. Therefore, the sterol identities must be interpreted with 

caution.  

Among the unknowns, MST #78 and #93 were potential biomarkers for co-cultivated 

S. costatum, as they were identified in the time-independent analysis (a-priori grouping by 

treatment). In general, the vast majority of metabolites was relevant for the separation of 
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treatments on day 26 and 32. However, there was no clear quantitative discrimination towards 

one of the treatments. 

To sum it up, most amino acids, alcohols, carboxylic acids and the steroid campesterol (#276) 

were upregulated in co-cultivation, compared to mono-cultivation. Considering amino acids, 

these observations were in agreement with the observations in T. weissflogii. The trend in 

alcohols and carboxylic acids was opposite to the one described for T. weissflogii. Furthermore, 

the amine putrescine (#127) was upregulated in co-cultivation in the late stationary phase. 

Amines and complex sugars showed the trend of increased abundance in mono-cultivation. The 

temporal dynamic for complex sugars was identical with the one described for T. weissflogii, 

their respective intensity increased until day 32. The remaining metabolites of the sugar class 

(including derivatives) and the fatty acids exhibited a complex intensity pattern over time and 

treatments.  

Interestingly, glycerol (#68, #87), 2,3 - dihydroxypropanoic acid (#40), gluconic acid (#165, 

#172) and the unknown metabolites #78 and #93 were potential biomarkers for co-cultivated 

S. costatum, as they were upregulated in co-cultivation on all three sampling days. 
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Table 10: Heatmap of endometabolite intensities for the species-specific and daywise analysis of S. costatum in the interaction with T. weissflogii. 

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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31 174.1 8.11 1162 2-[(2-Chloroethyl)(ethyl)amino]ethanol A dv.   32 -1 -1 1 0 2 0 1.3 -1.1 -2.0 

66 174.1 9.74 1380 1,5-Pentanediamine (cadaverine) A  32 0 -1 0 -1 2 -1 -1.2 -1.3 -1.7 

127 174.1 12.43 1742 1,4-Butanediamine (putrescine) A * 32 -1 -1 0 0 0 2 -1.0 1.0 1.7 

26 144.1 7.95 1139 Valine AA * 26,32 1 0 0 1 -1 -1 -1.2 1.6 1.6 

38 158.1 8.48 1211 Leucine AA * 26,32 0 0 0 2 -1 -1 -1.2 2.1 1.5 

42 158.1 8.69 1239 Isoleucine AA * 26,32 0 0 0 2 -1 0 1.0 2.2 1.5 

43 117.1 8.71 1242 Threonine AA * 32 0 -2 1 1 -1 0 -3.9 -1.1 1.5 

45 174.1 8.84 1259 Glycine AA * DT,26,32 1 1 0 0 -1 -1 -1.1 1.1 1.2 

70 174.1 9.93 1405 Alanine AA ? DT,32 NA NA 1 0 1 0 - -1.5 -1.9 

68 205.1 9.84 1394 Glycerol Alc   DT,T,26 
-2 0 0 1 0 1 4.4 1.6 1.9 

72 103.1 10.02 1419 1,3,5-Pentanetriol Alc ? 32 
-1 -1 1 1 1 -1 -1.5 1.2 -2.3 

83 211.2 10.53 1487 2-Dodecanol Alc  DT 
NA NA 0 1 0 1 - 1.9 1.7 

87 248.1 10.69 1509 Glycerol Alc   T,26,32 
-1 0 -1 2 -1 1 1.6 3.0 3.2 

53 240.1 9.26 1316 1H-Pyrrole-2-carboxylic acid Alk ? 32 
1 1 0 -1 -1 -1 -1.1 -1.2 -4.0 

13 233.1 7.39 1065 Propionic acid  CA   32 
-1 NA 0 1 0 1 - 1.2 2.4 

49 189.1 8.99 1280 2,3-Dihydroxypropanoic acid CA  DT,T,26,32 
-1 0 0 1 -1 1 1.3 1.4 1.8 

Median MST intensity Fold change 
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59 247.1 9.47 1344 
3,4-Dihydroxydihydro-2(3H)-furanone 

(Threonic acid-1,4-lactone) 
CA dv.  26,32 -1 -1 0 1 -1 1 -1.2 1.8 2.9 

176 117 14.42 2042 9-Hexadecenoic acid (Palmitoleic acid) FA  DT 
1 0 0 1 NA NA -1.3 2.5 - 

219 129.1 16.37 2385 1,3-Dihydroxy-2-propanyl myristate FA dv.  26 
-1 -2 1 1 1 0 -3.0 -1.2 -1.4 

235 218.1 17.39 2565 1,3-Dihydroxy-2-propanyl palmitate FA dv. ? 26 
-1 NA 1 0 1 1 - -1.8 -1.5 

237 147 17.49 2583 C16:1-Glycerol FA dv.  DT,26 
-1 -1 0 -1 1 1 -1.8 -1.5 -1.2 

180 211.2 14.58 2072 1,3-Dihydroxy-2-propanyl myristate FA dv. ? DT 
-1 -1 0 1 1 1 -1.1 1.7 1.5 

222 343.3 16.55 2418 1,3-Dihydroxy-2-propanyl myristate FA dv.  DT 
-1 -2 0 0 0 1 -3.2 1.1 1.3 

239 371.3 17.56 2596 2,3-Dihydroxypropyl palmitate FA dv.  DT 
-1 NA 0 0 1 1 - -1.3 1.2 

143 117 13.04 1824 
EITTMS_N12C_STUR_1832.7_1135EC29_ 

(GOLM) 
S   

DT 

1 0 1 1 NA NA -2.4 -1.1 - 

211 204 16.01 2324 Galactosylglycerol  S dv.  26 
2 -1 0 -1 0 0 -4.0 -1.8 -1.1 

130 292.1 12.52 1753 Pentonic acid S Acid ?? DT,26,32 
0 -1 1 1 0 1 -5.5 1.4 1.7 

160 217.1 13.74 1923 Galacturonic acid S acid ? 26 
-2 -1 1 1 0 0 2.2 1.2 -1.0 

183 305 14.77 2105 myo-Inositol S Alc * 32 
0 -1 2 0 -1 0 -1.4 -1.3 1.3 

190 204.1 15.07 2157 Hexose (Vidoudez) S  32 
0 0 -1 2 -1 0 1.2 1.8 1.5 

145 205.1 13.14 1837 Hexitol S Alc  26,32 
-1 -1 0 1 0 1 1.2 1.1 1.6 

150 319.2 13.46 1880 Glucose S * DT,26 
-1 -1 0 -1 1 1 -1.1 -1.8 1.3 

165 333 13.98 1965 Gluconic acid  S Acid  T,32 
-1 1 -1 0 -1 1 2.7 1.4 1.7 

172 292.1 14.26 2014 Gluconic acid  S Acid  DT 
-1 -1 0 1 -1 1 -1.0 1.1 2.0 

167 217 14.04 1976 Mannono-(1-4)-lactone S dv.  32 
-1 0 0 0 -1 2 1.6 1.4 2.8 

169 217.1 14.10 1987 Hexonic acid (Vidoudez) S acid ? 32 
-1 -1 0 0 0 2 -1.5 1.6 4.1 

175 318 14.35 2031 Inositol S Alc  32 
0 0 1 1 -2 0 1.1 1.0 1.4 

210 204.1 15.98 2317 
EITTMS_N12C_STUL_2360.7_1135EC28_G 

(GOLM) 
S  

DT 

-1 -1 0 0 2 0 1.5 1.4 -2.9 
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281 204.1 25.08 3510 
EITTMS_N12C_ATHL_3499.7_1135EC24_ 

(GOLM) 
S  

DT,32 

-1 0 -1 -1 2 0 1.7 -1.5 -1.7 

113 205.1 11.87 1666 Erythritol S Alc ? DT 
-1 -1 1 0 1 1 -1.1 -1.6 -1.2 

203 204.1 15.69 2267 Galactosylglycerol  S dv.  DT,32 
-1 -1 0 1 1 0 -1.0 2.7 -2.3 

206 239.2 15.81 2288 Galactosylglycerol  S dv.  DT 
NA NA 0 0 1 1 - 1.3 1.0 

245 236.1 17.82 2641 Adenosine S dv.  DT 
-1 -1 0 -1 2 0 -2.8 -2.0 -1.6 

283 204.1 25.85 3578 Disaccharide (Vidoudez) CS   26 
-1 0 -1 2 0 0 1.5 4.3 -1.4 

243 361.2 17.73 2625 Sucrose CS * DT,32 
-1 -1 0 -1 2 0 -3.0 -2.7 -2.1 

248 204 18.21 2710 Gentiobiose  CS  DT 
-1 -1 0 0 1 1 -1.1 -1.4 -1.1 

251 204.1 18.39 2742 Gentiobiose  CS  DT,26,32 
-1 -1 0 -1 1 1 -1.1 -1.8 -1.2 

250 361.2 18.32 2729 Trehalose CS * DT,32 
-1 -1 0 -1 2 0 -1.9 -4.7 -3.6 

252 204.1 18.47 2755 Maltose CS ? DT 
0 1 -1 NA 2 0 1.4 - -3.9 

263 204.1 19.57 2921 Galactinol  CS dv.  DT 
-2 -1 0 0 1 1 2.1 1.1 1.2 

273 204.1 20.62 3069 Digalactosylglycerol CS dv.  26 
0 -2 1 0 1 -1 -7.0 -2.0 -2.0 

282 204.1 25.26 3526 Diholoside -383 (Vidoudez) CS dv. ? T,26 
0 -1 1 -1 1 0 -3.0 -2.0 -1.8 

275 129.1 22.21 3258 Skel_cell_C178_sterol (Vidoudez) St   32 
-1 -1 1 0 1 -1 1.0 -1.2 -1.9 

276 382.4 22.26 3263 Ergost-5-en-3-ol (Campesterol) St    26 
-1 -1 0 1 0 1 -1.0 1.3 1.1 

114 157.1 11.89 1670 Unknown U - 26 
-1 NA 0 1 0 1 - 1.5 1.2 

115 195.1 11.90 1671 Unknown U - 26 
NA NA 0 1 0 1 - 1.6 1.4 

220 167 16.39 2390 Unknown U - 26 
0 NA 1 1 NA NA - 1.1 - 

107 137.1 11.66 1639 Unknown U - 26,32 
-1 -1 0 1 0 1 -4.2 1.8 1.8 

129 392.2 12.49 1750 Unknown U - 26 
NA NA 1 0 1 0 - -2.9 -1.9 

135 302.1 12.76 1786 Skel_cell_C065 (Vidoudez) U  26 
NA NA 1 0 1 0 - -1.9 -2.4 

233 103.1 17.23 2538 Skel_Cell_C145 (Vidoudez) U ? 26 
0 -1 1 0 2 0 -7.0 -1.9 -2.1 
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234 103.1 17.30 2551 Skel_Cell_C146 (Vidoudez) U ? 26 
0 -1 0 -1 2 0 -3.1 -2.8 -2.2 

28 112.1 8.03 1150 Unknown U - 32 
NA NA NA NA 1 2 - - 1.8 

58 167.1 9.44 1340 Unknown U - 32 
NA NA 1 0 NA 1 - -1.5 - 

61 240.1 9.54 1354 Unknown U - DT 
0 NA NA NA 1 1 - - 1.0 

78 234.1 10.29 1454 Unknown U - T,26,32 
-1 0 -1 1 -1 1 1.4 2.6 3.8 

93 292 10.95 1543 Unknown U - T,26,32 
0 1 -1 1 -1 0 1.8 2.3 2.1 

109 215.2 11.73 1647 Unknown U - DT 
-1 -1 0 0 1 1 1.5 1.1 1.1 

142 294.2 13.01 1819 Unknown U  DT 
NA NA 0 0 1 1 - -1.5 1.1 

168 215.2 14.07 1981 Unknown U - 32 
NA NA 0 1 0 1 - 1.9 1.9 

181 204 14.67 2086 
EITTMS_N12C_ATHR_2988.6_1135EC44_ 

(GOLM) 
U - 

32 

-1 1 -1 1 -1 1 1.4 1.4 1.4 

193 85 15.19 2179 Unknown U - DT 
-1 NA 0 0 1 2 - -1.5 1.5 

230 217.1 17.02 2500 Unknown U - DT 
0 0 -1 -1 1 1 -1.1 -1.5 1.1 

4 204.1 6.83 990 Unknown U - 32 
NA NA 0 NA 2 NA - - - 

71 103.1 9.95 1409 Unknown U - 32 
0 2 0 0 -1 -1 2.3 -2.1 -7.1 

82 155.1 10.47 1479 Unknown U - 32 
-1 -1 0 0 2 1 -2.1 -1.1 -1.4 

246 130.1 17.99 2672 Unknown U - 32 
-1 NA 1 0 2 0 - -1.3 -2.8 

247 204.1 18.02 2676 Unknown U - 32 
0 0 NA NA 2 0 1.3 - -6.2 

122 255.1 12.16 1705 Unknown U - DT 
NA NA 0 1 1 1 - 1.5 -1.3 

261 309.3 19.38 2893 Unknown U - DT 
-1 NA 0 0 1 1 - 1.4 -1.4 

120 129 12.06 1692 
EITTMS_N12C_ATHR_1704.6_1135EC44_ 

(GOLM) 
U ? 

DT,32 

-1 -1 0 0 2 0 -1.0 1.0 -2.2 

224 259.1 16.71 2446 Unknown U - DT 
NA NA 0 0 1 1 - -1.0 -1.4 

229 217.1 16.97 2492 
EITTMS_N12C_ATHR_2761.3_1135EC44_ 

(GOLM) 
U ?? 

DT 

-1 -1 0 0 1 1 1.8 -1.2 -1.1 

259 211.2 19.22 2870 Unknown U - DT 
-1 NA 1 0 1 1 - -1.4 -1.2 
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284 383.3 26.00 3591 Unknown U - DT 
NA NA 0 0 2 0 - -4.0 -7.3 

35 163.1 8.27 1183 MesocosmC066 (Vidoudez) U ? DT,26 
NA NA 0 -1 2 0 - -8.6 -2.1 

86 155.1 10.67 1505 Unknown U - DT,32 
-1 -1 1 -1 1 0 2.8 -2.6 -1.6 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 26 (26) and day 32 (32). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a 

reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match 

smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol 

(S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the in-house library, GOLM refers to an MST code given by 

distinct libraries of the Golm Metabolome Database.  
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2.3 Medium experiments 

The medium experiments confirmed the findings of enhanced growth of T. weissflogii in 

interaction with S. costatum, as documented in the interaction experiment. Maximum cell 

numbers of T. weissflogii were around 50 % higher in co-cultivation, compared to mono-

cultivation. However, the initial environment of S. costatum, without the presence of S. costatum 

cells, did not induce this growth effect. 

With respect to S. costatum growth, the findings were ambiguous, but replicated the findings of 

the interaction experiment. The chl a fluorescence exhibited interaction-induced changes, as was 

observed in the interaction experiment. However, although all treatment groups differed 

statistically significant from each other in their growth parameters, the differences in cell counts 

were considered biologically irrelevant, as they were ≤ 10% between all treatment groups. An 

influence of the initial environment43 of T. weissflogii, as visible in altered chl a fluorescence, 

could not be fully excluded. 

I tested the influence of the initial environment of the interaction partner for each diatom species 

in an individual experiment and recreated by introducing the “medium group” into the 

experimental design (more details in chapter 2.1.3). 

To investigate if diatom growth differed significantly among the treatment groups, I chose a 

linear mixed model approach (more details in chapter 6.7.1). Model graphs, as well as model 

validation graphs can be found in the appendix (Appendix 24 - Appendix 29).  

2.3.1  T. weissflogii medium experiment  

Performing an ANOVA on the fitted model data showed highly significant differences in the 

group-wise development of both chl a (F(28,84) = 7.177, P ≤ 0.0001, Figure 20A) and cell counts 

(F(14,42) = 5.125, P ≤ 0.0001, Figure 20B) over time. Subsequently, the differences confirmed 

by the statistical analyses are described and evaluated in detail. 

The growth dynamic of the negative control (mono-cultivation of T. weissflogii) was similar to 

the observations in the interaction experiment (chapter 2.2.1). The chl a fluorescence indicated 

three different growth phases (Figure 20A): The regular growth phase lasted until day 18, 

followed by a rather stationary phase of growth with a slower fluorescence increase over time 

                                                 
43 Referring to the spent medium of a diatom culture at the onset of the experiment 
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until day 34 and subsequent decline in fluorescence. In mono-cultivation maximum chl a 

fluorescence was reached on day 34 with 15836 ± 1957 RFU.  
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Figure 20: Diatom growth in the medium experiment of T. weissflogii. 

The line plot A shows means of chl a (RFU: relative fluorescence units), plot B represent diatom cell counts 

(cells / mL) of T. weissflogii. The treatment groups are indicated by color: mono-cultivation of T. weissflogii (green, 

negative control), co-cultivation of each species (red, positive control) and the medium group (black, experimental 

group). Values are arithmetic means, error bars indicate standard deviation between biological replicates (n = 3).  

The cell counts in T. weissflogii mono-cultivation were stable between day 18 and 40 with an 

average cell count of 4.2 × 105 ± 0.3 × 105 cells / mL (Figure 20B). This supported the finding 

that between day 18 and 40 the culture was in the stationary phase of growth. Decline in chl a 

fluorescence, as observed from day 34 onwards, was not reflected in cell counts and rather 

represented alterations of cell physiology. 

In co-cultivation, both the chl a fluorescence and the cell counts developed significantly 

different compared to mono-cultivation. These findings were in agreement with the previously 

documented growth effect of T. weissflogii in interaction with S. costatum (chapter 2.2.1, Figure 

4). On day two the chl a fluorescence was similar to the one of mono-cultivated T. weissflogii 

(mono: 1935 ± 65 RFU, co: 1995 ± 173 RFU), as was the fluorescence development until day 

18. But while the mono-cultivated cultures entered into a rather stationary phase of growth from 

day 18 on, in co-cultivation the phase of increased growth was prolonged for seven days, until 

reaching maximum chl a of 16278 ± 475 RFU on day 25. Subsequently the chl a fluorescence 

dropped quickly, reaching a 52 % lower value on day 40 compared to day 34. On day 25, 

fluorescence values in co-cultivation were 31 % higher, compared to co-cultivation. However, 

absolute values of fluorescence that were reached in both cultivation types were similar and 

differed by only 3 %, but the point of maximum fluorescence was shifted by nine days (day 25 

in co-cultivation, day 34 in mono-cultivation). 
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The phase of increased growth in co-cultivation was also reflected in diatom cell counts. While 

cell counts were approximately constant in mono-cultivation from day 18 on, in co-cultivation 

they increased by 69% (day 29 compared to day 18), to reach maximum values of 

7.1 × 105 ± 0.2 × 105 cells / mL on day 29. The maximum cell numbers reached in co-cultivation 

(on day 29) were 51 % higher compared to maximum cell numbers in mono-cultivation (on day 

38). From day 29 on, cell counts in co-cultivation showed a tendency of decrease, but remained 

rather stable with an average value of 6.6 × 105 ± 0.4 × 105 cells / mL between day 29 and 40. 

It was the objective of this experiment to investigate, whether a positive growth effect, as 

observed in co-cultivation compared to mono-cultivation, could be caused by the initial spent 

medium of the partner. Thus the focus of this experiment was to evaluate the growth parameter 

of the medium exchange group and to compare the observations with the positive (co-cultivation) 

and negative control (mono-cultivation). 

In the medium exchange group, the development of both parameters was more similar to the 

negative, than the positive control. In chl a fluorescence the growth phases were identical with 

mono-cultivation, as was the day of maximum fluorescence. Cell counts remained stable, 

showing values of 3.6 × 105 ± 0.4 × 105 cells / mL between day 18 and 40. Furthermore no 

elevated values of chl a fluorescence and cell numbers could be found in the medium exchange 

group, compared to the negative control. On the contrary, absolute values were even lower in the 

medium exchange group, compared to mono-cultivation. This might be due to the fact that initial 

chl a fluorescence was already 29 % lower compared to the average of the other groups.  

It can be summarized that there were distinct differences in the dynamic of chl a fluorescence 

and cell counts between mono- and co-cultivation. Furthermore, the absolute cell numbers were 

significantly higher in co-cultivation, compared to mono-cultivation. These findings were in 

accordance with the documented growth effect in the interaction experiment (see chapter 2.2.1). 

However, among the growth parameters measured in the medium exchange group, there is no 

indication that initial conditions of S. costatum caused enhanced growth in T. weissflogii, as 

could be found in co-cultivation with S. costatum. The cell count data do not reflect any 

stimulatory effect on growth. 

2.3.2  S. costatum medium experiment  

After the investigation of the influence of the initial environment on T. weissflogii, as described 

above, I investigated the influence on S. costatum with an analog strategy. Both the chl a 

(F(18,54) = 2.900, P = 0.0013) and the cell counts (F(4,12) = 3.519, P = 0.0403) developed 

significantly different over time among the cultivation groups of S. costatum.  



100   Interaction of T. weissflogii with S. costatum 

Day

0 5 10 15 20 25 30

C
h
lo

ro
p
h

ll 
a

 f
lu

o
re

s
c
e
n

c
e
 ×

1
0

3
 R

F
U

4

6

8

10

12

14

16

18

20

22

24

Mono S.costatum

Co S.costatum

Medium S.costatum

A

Day

0 15 20 25 30

C
e
lls

 /
 m

L
 ×

1
0

6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Mono S.costatum

Co S.costatum

Medium S.costatum

B

Chlorophyll a fluorescence Cell counts

 

Figure 21: Diatom growth in the medium experiment of S. costatum. 

The line plot A shows means of chl a (RFU: relative fluorescence units), bar plot B represent diatom cell counts 

(cells / mL) of S. costatum. The treatment groups are indicated by color: mono-cultivation of S. costatum (blue, 

negative control), co-cultivation of each species (red, positive control) and the medium group (black, experimental 

group). Values are arithmetic means, error bars indicate standard deviation between biological replicates (n = 3).  

The dynamic of chl a fluorescence in mono and co-cultivated S. costatum was in agreement 

with the findings in the first investigation of the interaction between T. weissflogii and 

S. costatum (chapter 2.2.1). In both groups the chl a fluorescence indicated a phase of regular 

growth until day 12 (Figure 21A). The subsequent fluorescence development was group specific: 

in mono-cultivation this phase was followed by a phase of stationary growth until day 19 and 

subsequent rapid decline in fluorescence. Maximum values of 15111 ± 2376 RFU were reached 

on day 17. On the contrary, the chl a fluorescence in co-cultivation reached its maximum on day 

26 (18034 ± 3953 RFU). The phase of fluorescence increase was prolonged and followed by a 

decline in fluorescence starting day 26.  

The difference between mono- and co-cultivation was not only apparent in the different 

fluorescence dynamics over time, but also in the absolute fluorescence values, which were 19 % 

higher in co-cultivation (day 26), compared to mono-cultivation (day 17). Considering the chl a 

fluorescence per day, the difference between mono- and co-cultivation was highest on day 26, 

with 67 % higher values in co-cultivation. Thus, chl a fluorescence was indicative for an 

interaction-induced alteration. 

I took cell counts at three distinct points in time (Figure 21B). In all cultivation groups 

maximum cell numbers were reached on day 28, as there was a constant increase of cell numbers 

between day 19 and 28 (29 % in mono-cultivation, 25 % in co-cultivation and 50 % in the 

medium exchange group). While the chl a fluorescence indicated a phase of rather stationary 

growth and subsequent decline from day 12 on, cell counts indicated further growth of the 

culture. 
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Comparing the positive and negative control, there were no distinct differences in cell numbers 

between mono- and co-cultivation within each sampling day. Cell numbers in co-cultivation were 

elevated by only 3 % (on day 28) to 7 % (on day 19), compared to mono-cultivation. These 

differences were negligible. Thus, cell counts were not indicative for an interaction-induced 

alteration. 

In summary, co-cultivated S. costatum showed a distinctly different chl a fluorescence over time 

compared to mono-cultivated S. costatum. As previously described in chapter 2.2.1, the 

maximum fluorescence occurred later due to a prolonged phase of relatively stable chl a, opposite 

to decreasing fluorescence in mono-cultivation. Considering cell counts, there were no distinct 

differences between co- and mono-cultivation on the days of sampling. 

To investigate the impact of the initial environment of T. weissflogii on the growth of 

S. costatum, I evaluated the medium exchange group. Between day 3 and 19 the chl a in the 

medium exchange set-ups was higher than the fluorescence in negative (mono-cultivation) and 

positive (co-cultivation) control (Figure 21A).  

Cell counts in the medium exchange group were 15 % lower than those in mono-cultivation and 

21 % lower than those in co-cultivation on day 19 (Figure 21B). On day 26 this group showed 

the highest cell numbers, compared to mono-cultivation (+ 6.4 %) and co-cultivation (+ 2.6 %). 

While on day 28 cell numbers in the medium exchange group showed the lowest values again. 

However, these differences were minor and significant differences in the cell count development 

over time, as indicated by linear mixed modeling, were probably caused by the alternating growth 

dynamic.  

Differences in average cell counts between the groups were statistically significant over time 

(F(2,6) = 7.254, P = 0.0250). However, as these differences were not bigger than 4 % of the 

absolute cell counts (mono-cultivation vs. co-cultivation), I considered the effect not meaningful 

in a biological context. Furthermore, as I found cell count differences to not be indicative for an 

interaction-induced effect, no further comparisons are reasonable. However, as chl a fluorescence 

of the medium exchange group, a parameter indicative of an interaction-induced effect, showed 

traits of both mono- and co-cultivated cultures, an influence of the initial conditions could not be 

fully excluded.  
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2.3.3 Metadata 

I used the metadata to monitor the state of the cultures in the interaction and medium 

experiments (see experimental designs in chapter 2.1.3 and data in appendix, chapter 7.1.4). I 

conducted no further statistical analyses. For the medium experiments, I measured PSII 

efficiency, nutrient levels, pH and bacterial abundance during the interaction. Considering that 

the same diatom strains (RCC75 and RCC76) were used in the interaction and medium 

experiments, and that the experimental approach was highly similar, the results for nutrient 

levels, bacterial abundance and pH can and can be generalized. 

Neither PSII, nor bacterial abundance and pH seemed to be relevantly influenced by the 

interaction. PSII efficiency of the diatoms developed differently, depending on the diatom 

species and the experiment. The diatom cultures were non-axenic and bacterial abundance 

increased over the course of the medium experiments. The pH in the medium during the 

interaction was only measured in the context of the T. weissflogii medium experiment and 

seemed to decrease over time.  

I took nutrient levels to monitor the abiotic environment of the cultures. I observed no striking 

differences between the treatment groups. Except for the decrease-increase dynamic in silicate 

availability, which seemed to differ between S. costatum und T. weissflogii cultures. 
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Figure 22: PSII efficiency of the diatom cultures in the medium experiment of T. weissflogii and S. costatum. 

The figure shows means of PSII efficiency (%) of T. weissflogii (graph A) and S. costatum (graph B) in the context 

of the medium experiments. Mono-cultivation of T. weissflogii is depicted in green (Mono T. weissflogii), mono-

cultivation of S. costatum in blue (Mono S. costatum), both representing negative controls. Each species in co-

cultivation is colored in red (Co T. weissflogii / Co S. costatum), representing the positive controls. The medium 

manipulated groups are depicted in black (Medium T. weissflogii / Medium S. costatum). Error bars indicate 

standard deviation between biological replicates (n = 3).  

Concerning T. weissflogii (Figure 22A), the PSII efficiency was approximately stable in all 

cultivation groups in regular growth phase44 (showing an average value of 41 ± 6 % between day 

two and 23 throughout all groups), with subsequent decline towards 0 % until day 40. Concerning 

S. costatum (Figure 22B), the initial PSII efficiency within all cultures was 47 ± 1 % on day 3. 

From day three on, the PSII efficiency decreased until reaching an efficiency ≤ 8.2 % in all 

groups on day 19. It was striking that after reaching values of 0.6 ± 1.1 % on day 19, the PSII 

efficiency in co-cultivated S. costatum showed a local maximum on day 24 (20.7 ± 13.3 %) and 

26 (25.1 ± 11.8 %), before crashing again. However, in consideration of the standard deviations 

per group per day, the difference in PSII efficiency between the groups within each species 

seemed to be negligible. 

                                                 
44 Regular phase in the S. costatum medium experiment lasted until day 12, regular phase in the T. weissflogii 

medium experiment lasted until day 18 (more details in chapter 2.3).  
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Figure 23: pH of the diatom cultures in the medium experiment of T. weissflogii. 

The figure shows means of pH in the cultures of T. weissflogii in the context of the medium experiments. Mono-

cultivation of T. weissflogii is depicted in green (Mono T. weissflogii), representing negative control. Co-cultivation 

is colored in red (Co T. weissflogii), representing the positive control. The medium manipulated group is depicted 

in black (Medium T. weissflogii). Values for the seawater control are represented in grey. Error bars indicate 

standard deviation between biological replicates (n = 3, medium control: n = 1).  

On day nine, the first measured pH of the T. weissflogii cultures was 8.20 ± 0.05 throughout all 

groups (Figure 23). Compared to the seawater control, showing a pH of 7.70 on day nine, the 

pH was elevated. Between day nine and day 40, the pH steadily decreased in the culture groups 

until reaching a pH of 7.70 ± 0.03 (average throughout all groups) on day 40. In consideration of 

the standard deviations per group per day, the difference in pH between the groups seemed to be 

negligible. The pH in the seawater control remained constant around 7.70 ± 0.03 throughout all 

measured points in time. No pH measurements were available for the S. costatum medium 

experiment.  
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Figure 24: Bacterial abundance in the medium experiment of T. weissflogii with S. costatum. 

The figure shows means of bacterial abundance (cells / mL) in the cultures of T. weissflogii (graph A) and 

S. costatum (graph B) in the context of the medium experiments. Mono-cultivation of T. weissflogii is depicted in 

green (Mono T. weissflogii), mono-cultivation of S. costatum in blue (Mono S. costatum), both representing 

negative controls. Each species in co-cultivation is colored in red (Co T. weissflogii / Co S. costatum), representing 

the positive controls. The medium manipulated groups are depicted in black (Medium T. weissflogii / Medium 

S. costatum). Values for the seawater control are represented in grey. Error bars indicate standard deviation between 

biological replicates (n = 3, medium control: n = 1).  

The diatom cultures of both species were non-axenic. Compared to diatom cells, the bacterial 

cell number was elevated in the order of 309 to 515 - fold in T. weissflogii culture medium 

(calculated per group per day) and in the range of 81 to 107 - fold in S. costatum medium 

(calculated per group on day 26, the only day where both diatom and bacterial cell counts were 

taken simultaneously). 

The bacterial abundance in T. weissflogii cultures started from 76.6 × 106 ± 17.1 × 106 bacterial 

cells / mL (average throughout all groups) on day 2, to reach a maximum of 

208.1 × 106 ± 47.1 × 106 bacterial cells / mL (average throughout all groups) on day 38 (Figure 

24A). In S. costatum cultures, bacterial abundance started from very similar values 

(81.5 × 106 ± 19.8 × 106 bacterial cells / mL, average throughout all groups on day 3) to reach a 

maximum of 201.2 × 106 ± 25.2 × 106 bacterial cells / mL (average throughout all groups) on 

day 26 (Figure 24B).  

In both species’ cultivation chambers the bacterial abundance increased constantly. The 

development and abundance of bacterial cell numbers was similar in both species and all 

treatment groups. In consideration of the standard deviations per group per day, the difference in 

bacterial cell counts between the groups of each species seemed to be negligible.  
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In the medium experiment of T. weissflogii, the medium control showed a substantial amount 

of bacteria as well. Thus, a contamination due to insufficient instrument sterilization or cross-

contamination couldn’t be excluded. However, absolute numbers in the medium control (with 

exception of day 2) were lower than in diatom cultures (only six to 14 % compared to the average 

bacterial abundance in all groups on the respective day). On the contrary, the medium control of 

S. costatum showed no bacterial contamination, except for day 26.  

Nutrient levels 

To monitor the abiotic state of the culture, I measured nitrate, nitrite, phosphate and silicate 

concentrations at distinct points in time of the culture growth curves. The number of sampling 

points was limited by the small culture volumes in the co-cultivation set-up to a maximum of 

four.  

An investigation of different diatom species revealed that average nutrient concentrations, 

reducing the uptake rate of the specific nutrients by 50%, averaged 1.6 µM for nitrate, 1.2 µM 

for phosphate and 3.9 µM for silicate (Sarthou et al., 2005). However, these rates can vary among 

species. Under these conditions, diatoms can only maintain maximum growth rates over a short 

period of time, before the specific growth rate decreases substantially (Sarthou et al., 2005). 

Limitation of nutrients initiates the transition from regular growth to the stationary phase.  

Diatom cultures of both species were depleted of silicate around day 18 for T. weissflogii and 

around day 12 for S. costatum (Appendix 22 and Appendix 23). This coincides with the 

transition into stationary growth phase, as described in the previous chapters. A depletion of 

nitrate was observed between days 23-32. 

The phosphate measurements were ambiguous, as in general the measured phosphate 

concentrations in the samples and medium blanks (with exception of the medium blank in the 

medium experiment of S. costatum) were elevated around roughly 7 - fold compared to the 

adjusted concentrations in the artificial seawater medium used for cultivation. Absolute 

concentrations must therefore be interpreted with care, and rather the general trend over time was 

considered.  

Interestingly, the silicate availability in the medium of cultures containing only the diatom cells 

of the species S. costatum (mono-cultivated S. costatum and medium group in the context of the 

S. costatum medium experiment) increased again at the end of the stationary phase, after reaching 

a minimum at the end of regular growth phase (Appendix 23 B2). Silicate concentration on day 

26 were 3 - fold higher in mono-cultivation (67.02 ± 15.43 µmol / L) and 2.7 - fold higher in the 
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medium exchange group (78.8 ± 4.59 µmol / L), compared to concentrations of the respective 

cultures on day 17.  

The observation of increased silicate availability at the end of stationary phase was not found 

for cultures containing only T. weissflogii cells (mono-cultivated T. weissflogii and medium 

group in the context of the T. weissflogii medium experiment). However, in co-cultivation the 

elevated silicate availability was also observed, but less substantial. Concentrations were only 

around 9.08 ± 0.62 µmol / L (S. costatum medium experiment, (Appendix 23 B2) on day 26 and 

thus merely 13.5 % of the silicate concentrations found in cultures containing only S. costatum. 

Nitrite concentrations increased until reaching a maximum concentration of up to 14 µM (co-

cultivation group in the S. costatum medium experiment on day 17, Appendix 22 B2) in 

stationary phase. Subsequently, nitrite concentrations declined to below the detection limit within 

ten days.  

  



108   Interaction of T. weissflogii with S. costatum 

2.4 Evaluation of DMSP as growth mediator  

I hypothesized that the observed growth effect of T. weissflogii might be caused by a DMSP 

release-uptake dynamic between the diatom partners. This hypothesis was based on the 

observation that only S. costatum is able to de-novo synthesize DMSP, while T. weissflogii seems 

to completely rely on the active uptake of externally available DMSP (Spielmeyer et al., 2011; 

Spielmeyer and Pohnert, 2012).  

To investigate the effect of DMSP as semiochemical in the interaction between T. weissflogii 

and S. costatum, I simulated two modes of action: the availability of distinct DMSP pulses 

(chapter 2.4.1) and the continuous availability of DMSP (chapter 2.4.2). 

DMSP was not able to enhance growth of T. weissflogii cultures. Both, a daily availability of 

DMSP (100 nM) and the addition of distinct DMSP pulses (100 nM, 1 µM, 2.5 µM) during 

stationary and declining phase were not stimulating the growth of T. weissflogii.  

2.4.1 Influence of DMSP pulses on diatom growth 

I tested if DMSP was able to enhance growth of T. weissflogii, as was observed in the interaction 

of T. weissflogii with S. costatum (see chapter 2.2.1).  

I used chl a fluorescence as estimator for diatom growth. Based on this parameter, diatom 

growth was characterized by a regular growth phase (until approximately day 12), a stationary 

phase of growth and a subsequent declining phase (starting around day 27), as can be seen in 

Figure 26A and Figure 25A. As enhanced growth due to the interaction of T. weissflogii with 

S. costatum has been observed to occur after the regular growth phase, this period was the focus 

of the investigation.  

I added pulses of different DMSP concentrations (final concentrations in the cultures: 100 nM, 

1 µM, 2.5 µM) to T. weissflogii cultures at two distinct points in time during stationary phase 

(day 20 and 24) and one during declining phase (day 32). I statistically tested the effect on diatom 

growth via cell counts45 (Figure 26B): A 2-way repeated measures ANOVA indicated that there 

is no significant interaction between cell counts and time among the treatment groups and the 

control.  

                                                 
45 Cell count samples have been counted in two different charges. Charge one comprising day 8, 15, 20, 24, 32 and 

charge two comprising day 27, 30, 34, 36. Due to differences in absolute values caused by count systematics, only 

charge two has been depicted in Figure 25. However, within both charges there are no statistically significant 

interactions between treatment and time (tested via two-way repeated measures ANOVA). 



Interaction of T. weissflogii with S. costatum 109 

This means that DMSP did not significantly influence the growth of T. weissflogii over time. I 

confirmed these statistical findings by a visual evaluation of the chl a fluorescence, indicating no 

relevant differences between the groups (Figure 26A).   
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Figure 25: Influence of multiple DMSP pulses (100 nM, 1 µM, 2.5 µM) on the growth of T. weissflogii (RCC76) 

The line plot (A) shows means of chl a (RFU: relative fluorescence units), the bar charts (B) represent diatom cell 

counts (cells / mL) of T. weissflogii. At three distinct points in time during diatom growth (marked by yellow 

frames), DMSP was added to the cultures, reaching final concentrations in the medium of 100 nM, 1 µM, 2.5 µM 

DMS. The treatment groups are indicated by color: negative control (black), 100 nM DMSP (blue), 1 µM DMSP 

(purple), 2.5 µM DMSP (green). Values are arithmetic means, error bars indicate standard deviation between 

biological replicates (n = 3). 

2.4.2 Influence of continuously available DMSP on diatom growth 

In addition to distinct DMSP pulses, I investigated the influence of a continuously available 

amount of DMSP on the growth of T. weissflogii. Therefore, DMSP was added on a regular basis 

(five out of seven days per week) in concentrations of 100 nM per culture. However, I found no 

differences in diatom growth, as estimated via chl a fluorescence (Figure 26A). I confirmed these 

findings via cell counts. On day 24, cell counts of T. weissflogii (Figure 26B) were not 

significantly different due to the DMSP addition, compared to control (as tested with an unpaired 

Student’s t-test). 
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Figure 26: Influence of continuous DMSP addition on the growth of T. weissflogii (RCC76) 

The line plot (A) shows means of chl a (RFU: relative fluorescence units), the bar charts (B) represent diatom cell 

counts (cells / mL) of T. weissflogii. In a daily manner (approximately five out of seven days per weeks, as indicated 

by yellow frames in graph A), DMSP was added to the diatom cultures to reach final concentrations of 100 nM per 

culture. Black indicates the control group, while white/grey represents the experimental group of continuous DMSP 

addition. Values are arithmetic means, error bars indicate standard deviation between biological replicates (n = 3). 
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2.5 Discussion of the metabolomic strategy 

Metabolomics complement traditional ‘omics’ techniques, such as genomics - sequencing and 

analyzing the totality of genes via molecular genetics - , transcriptomics - investigating the 

collectivity of (m)RNA molecules - and proteomics - analyzing of the totality of protein 

molecules (Kell and Oliver, 2016). They are used to investigate mostly low-molecular weight 

compounds, which are intermediate products of the cell’s biochemical pathways (Fiehn, 2002). 

Via ‘omics’ techniques, researchers try to understand the biology of an organism or a system. 

However, only metabolomic techniques allow a direct functional approach, as the metabolomic 

profile of a cell is directly linked to the biological function (Oliver, 1996; Fiehn, 2002).  

Comparative metabolomic approaches are a common and highly valuable tool in chemical 

ecology (Kuhlisch and Pohnert, 2015), as described in chapter 1.4 (“Metabolomic strategies in 

environmental science”). They have been successfully applied in the investigation of chemically-

mediated interactions in phytoplanktonic organisms. For example in the elucidation of the first 

diatom pheromone diproline of the pennate diatom Seminavis robusta (Gillard et al., 2013), the 

characterization of the interaction between the bacterium Dinoroseobacter shibae and the diatom 

T. pseudonana (Paul et al., 2013) or the interaction between the diatoms S. costatum and 

T. weissflogii (Paul et al., 2009). 

The major advantage of comparative metabolomic approaches is that physiological responses 

of organisms due to ‘disturbances’ are investigated under consideration of their physiological 

responses in an ‘undisturbed’ context. Thus, an adequate metabolomic baseline is created - as 

discussed by Viant - that enables the detection of relevant physiological alterations (Viant, 2007). 

For example in the present interaction investigation, the co-cultivation group (Figure 2B) is 

compared to the mono-cultivation groups (Figure 2A, C). Hereby, the former presents 

disturbance in form of an interaction partner and the latter constitute the metabolomic baseline 

of the specific species.  

In this thesis, I chose a comparative metabolomic profiling analysis via GC-EI/TOF/MS, 

focusing on both the endometabolome and the exometabolome of the interacting organisms. It is 

important to point out that on the one hand, differences in the exometabolome - as defined by the 

collectivity of exuded metabolites in the medium - might point out potential allelochemicals. 

However, on the other hand, differences in the endometabolome refer to physiological changes 

in each species due to the presence of a partner. 
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2.5.1 Metabolomic sampling and extraction protocol 

A suitable sampling, extraction and storage protocol and a standardized work-flow are 

important for the investigation (Fernie et al., 2011). Standardizing GC-MS metabolomics aims 

at eliminating all sources of biases and is thus essential in any investigation (Kanani, 

Chrysanthopoulos and Klapa, 2008). The protocol used for metabolite extraction, derivatization 

and analysis was developed by Vidoudez (Vidoudez, 2010; Vidoudez and Pohnert, 2011). It is 

optimized for the investigation of diatom metabolomes with following outcome: 

1. Sampling and sample treatment minimize the introduction of artificial / serial 

variability and artifacts in samples (randomization, standardized workflow, adequate 

sample quenching, high purity chemicals / solvents / materials) (Vidoudez, 2010). 

2. The chosen extraction mix or the solid phase extraction cartridge covers a maximally 

broad range of compound classes, shows high reproducibility and high balanced 

recovery rate among different classes (Vidoudez, 2010). 

3. The derivatization method guarantees good recovery of compound classes with 

minimal variability and realizes minimal storage time before measurement under high-

throughput conditions (Vidoudez, 2010). The use of the standard ribitol evaluates 

derivatization effects in the context of standardization (Lisec et al., 2006), furthermore 

it can be used for normalization (Vidoudez, 2010). 

4. The GC method enables optimal transfer of liquid samples onto the column, good 

separation of compounds and reduction of artificially introduced variability (choosing 

and changing the liner, adequate temperature program, column choice and split mode). 

(Vidoudez, 2010) 

5. The MS method guarantees high-resolution measurements with optimal performance 

due to regular instrument tuning, calibration and quality controls (see chapter 6.6.4). 

2.5.2 Chemical analysis via GC-TOF/EI/MS  

GC-MS is a widely used approach in metabolomic investigations (Allen et al., 2008; Plaza et 

al., 2010; Vidoudez and Pohnert, 2011; Paul et al., 2012, 2013; Bromke et al., 2013; Mausz and 

Pohnert, 2015). The compounds susceptible to GC analysis are low-molecular weight, medium 

or low polar compounds in ppb-ppm concentrations (Stashenko and Martínez, 2014). To be 

eligible for GC-MS analysis, a compound is required to be volatile enough and thermally stable 

to pass through the GC system - these properties can be modified by chemical derivatization 

(Stashenko and Martínez, 2014). 
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Chemical derivatization 

Chemical derivatization increases volatility, thermal stability and chromatographic mobility of 

polar and unstable compounds (Halket and Zaikin, 2003). Vidoudez suggests the use of a 

combined silylation / methoxymation derivatization and presented a derivatization protocol 

optimized for the investigation of diatom metabolomes (Vidoudez, 2010), which I used in the 

scope of this thesis.  

In the metabolomic context, silylation was used to modify compounds with OH (alcohols, 

phenols, carboxylic acids, oximes, sulfo-acids, phosphorus acids, enols etc.), NH (amines, 

amides and imines etc.) and SH groups (thioles and thiocarboxylic acids etc.) by replacing the 

active H (Halket and Zaikin, 2003). Methoxymation chemically altered aldehyde- and keto-

groups and made them less polar.  

One drawback of chemical derivatization is the potential to introduce artificial variability into 

metabolomic profiles. Chemical derivatization is a complex process as multiple, chemically 

different compound classes are addressed at once. Although the derivatization strategy used has 

been optimized and standardized (Vidoudez, 2010), each compound class shows slightly 

different susceptibility to derivatization biases. Kanani et al. described three categories of 

possible derivatization outcome and / or bias (Kanani and Klapa, 2007):  

1. Metabolites resulting in only one derivative  

2. Metabolites resulting in two oxime-TMS derivatives 

3. Metabolites resulting in multiple derivatives with different silylation degrees. 

The derivatization result depends on the reaction kinetics of different functional groups 

((Kanani and Klapa, 2007) and references herein for more details). Accordingly, metabolites with 

only hydroxyl and / or carboxylic functional groups result in category (1), metabolites with 

additional ketone functional groups result in category (2) and those with amine groups in category 

(3) (Gehrke et al., 1969; Kanani and Klapa, 2007). Additionally, structural alterations due to 

derivatization have been reported, for example the transformation of glutamate-3 TMS into TMS- 

pyroglutamate due to cyclization (Gehrke et al., 1969). In the scope of this thesis, oftentimes I 

observed multiple peaks per compound, potentially tracing back to named derivatization artifacts. 

Another possible explanation for multiple peaks per substance might be an ambiguous 

identification via libraries. Especially, compounds with highly similar MS-spectra, like sugars or 

terpenoids. 

Further potential bias sources like incomplete derivatization or suboptimal derivatization 

parameters were already counteracted by the standardized protocol used in this thesis. The 
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internal standard ribitol was introduced into the experimental protocol inter alia to test for 

silylation success in the workflow (see chapter 2.5.3 “Metabolomic data processing and 

statistics”). 

Choice of method 

One major challenge of metabolomics is the enormous chemical diversity of metabolites that 

needs to be simultaneously covered by adequate analytical techniques. In this context, the 

perfectly suited, ‘ideal’ analytical method is described to be (Theodoridis and Wilson, 2008): 

comprehensive over a wide range of metabolite classes, suitable for complex matrices, a direct 

method without sample preparation, capable of high throughput and unbiased analysis over all 

classes, robust, sensitive, repeatable, reproducible and capable of identifying all detected MSTs. 

However, no such ideal method exists.  

In the metabolomics field, hyphenated techniques like LC-MS and GC-MS as well as NMR are 

the most prominent analytical tools in use (Sardans et al., 2011). Often, these techniques are used 

complementarily to increase the analytical power of an investigation as every analytical method 

by itself has a certain bias (Halket et al., 2005; Sardans et al., 2011): While GC-MS is best suited 

for low-molecular weight metabolites of the primary metabolism (sugars, amino acids, fatty acids 

etc.), LC-MS is better suited to depict a higher range of polar and high-molecular weight 

substances and thus cover the richness of secondary metabolites (Fernie et al., 2011; Sardans et 

al., 2011).  

In contrast, NMR is able to investigate the whole spectrum of polar to unpolar compounds. 

NMR is often considered “the gold standard for structural identification” (Fernie et al., 2011), as 

it is highly reproducible and enables unambiguous identification of compounds based on mere 

physical criteria (Fernie et al., 2011). However, NMR is a rather insensitive method that struggles 

with complex samples and needs comparably high compound concentrations for their 

identification (Sardans et al., 2011). In contrary, MS techniques are known to be highly sensitive 

and robust methods.  

In the context of this thesis, I chose a GC-MS approach for several reasons. Due to the design 

of the experiment, the concentration of potential infochemicals in samples was considered too 

low and the sample matrix too complex for NMR. The objective of this investigation was to 

complement the findings of Paul et al., which were conducted via LC-MS analysis (Paul et al., 

2009). In addition, the GC-MS at hand was equipped with EI (electron impact ionization) and 

both a commercial and an in-house compound library facilitating compound identification. 
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Finally, GC-MS is a robust, well-documented method with optimized protocols for diatom 

metabolomics (Vidoudez, 2010).  

Compound identification 

Silylation not only changes the physico-chemical properties of substances as described above, 

but also enhances the specificity of characteristic compound fragments via EI mass spectrometry 

(Halket and Zaikin, 2003). Generally, the “hard” EI in EI/MS approaches fragments each 

compound into highly specific compound fragments, which can be used to establish compound 

libraries to facilitate compound identification. In metabolomic studies, GC is mostly coupled 

with EI/MS (Stashenko and Martínez, 2014).  

Generally, hyphenated MS techniques like GC-MS are able to separate and identify a wide 

range of compounds. However, they fail to unambiguously identify highly related metabolites or 

exact chemical isomers (Fernie et al., 2011). For compound identification, two approaches are 

common: library based identification and / or standard based identification. The best way to 

identify a compound is based on the comparison with an authentic standard, ideally an 

isotopically labeled internal standard (Fernie et al., 2011). However, the availability of 

commercial standards (both labeled and non-labeled) is limited. In this case, the library based 

compound identification can be a solid alternative, which is routinely used in GC-MS (Stein et 

al., 2007). 

In the course of this thesis, I applied both approaches, with a predominance of library based 

identification (see chapter 6.7.4). In terms of standard based identification, I used non-labeled 

standards (see chapter 6.7.4). In order to increase the reliability of compound identification via 

libraries, I considered three parameters, as previously done (Vidoudez, 2010; Mausz, 2014) and 

recommended (Wagner, Sefkow and Kopka, 2003): Match value, R-Match value and retention 

index (RI). Furthermore, I reported full information about the derivatization chemistry, protocols 

used and system metadata - forming the basis of identification - in chapter 6.6, as strongly 

recommended (Fernie et al., 2011). 

Match and R-Match values were obtained as a validation parameter during library search via 

“The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library46”. 

These parameters characterize the similarity of sample spectrum and library spectrum. While the 

Match value considers all peaks in the sample spectrum, the R-Match disregards all peaks that 

                                                 
46 See chapter 6.7.4 for more details 
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are in the sample spectrum but not in the library spectrum47. However, mass spectral matching is 

not sufficient for unambiguous compound identification (Wagner et al., 2003). In fact, the RI 

(retention index) needs to be considered. The RI is based on a series of n-alkanes and calculated 

as described in chapter 6.7.4. This index aims at improving compound identification by 

characterizing each compound with a standardized RI, which is calculated on the basis of the 

instrument-specific retention time. Thus, an instrument-independent characterization of a 

compound in a simple and reproducible manner is guaranteed (Vandendool and Kratz, 1963). 

In this thesis, I considered structure suggestions if the Match was ≥ 600 and if the retention 

index (RI) provided by the libraries was close to the calculated RI. In some cases, namely when 

the structure suggestions were identical among the three samples with the highest peak intensity 

of the considered metabolite, a Match of ≤ 600 was accepted. Those metabolites were marked 

with “¹” in the heatmaps. Structures were accepted if in addition the R-Match was ≥ 800 and / or 

the substance could be identified via standard (marked with “*”). In that case the RI of the 

standard must be highly similar and the mass spectrum of the standard must show an identical 

fragmentation pattern. If the R-Match is ≤ 800, the structure was accepted with a tag “?” if the 

R-Match is between 700 and 800, with “??” if the R-Match is between 600 and 700 and with 

“???” if the R-Match is ≤ 600). The latter tagged substances were referred to as “putative”, as 

their identity was uncertain due to low R-Match.  

However, in some cases the suggested structure of putatively identified compounds was not 

plausible. For example in chapter 3.2.3, metabolite #205 was putatively identified as 2-

(adamantan-1-yl)ethanol by the MS libraries. As the suggested structure was clearly not a natural 

product, the identification was rejected. Therefore, putatively identified compounds always need 

an additional plausibility check and further confirmation, if they prove to be of interest for the 

research question.  

Nevertheless, the library based structure suggestions are providing a very good evaluation of 

compound nature and class. Therefore, I conducted the discussion of potential infochemicals on 

library based structure suggestions in the scope of this thesis. Thus, a first impression of 

compound nature and relevance was obtained. However, in a next step, I recommend further 

confirmation of relevant compounds and potential infochemicals, especially of those with 

putative structure suggestions. 

                                                 
47 As described in the “NIST 2008 User Guide” inherent in “The NIST Mass Spectral Search Program for the 

NIST/EPA/NIH Mass Spectral Library” 
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2.5.3 Metabolomic data processing and statistics 

Metabolomic investigations usually produce extensive and complex data sets. Simplifying the 

complexity of these data sets is essential in order to gain relevant insights and to facilitate the 

biological interpretation, as commented by Eick et al. (Eick and Pohnert, 2015). Especially, in 

the context of chemically-mediated interactions, it is essential to distinguish relevant 

metabolomic changes from other sources of variability. The choice of a data processing strategy 

is therefore a crucial step in setting the scope of an interaction.  

A common strategy is to use multivariate statistics on the basis of pre-processed data, for 

example the Canonical Analysis of Principal Coordinates (CAP). Before the CAP is discussed, 

the data pre-processing pipeline of this thesis will be outlined. 

Data pre-processing 

The objective of data pre-processing is to clean up raw data, combine raw data from different 

measurements, transform raw data into easy to use data formats and most importantly to extract 

characteristics of every observed MST (Katajamaa and Orešič, 2007), as for example m/z ratio, 

RT, RI and suggestion of structural identity. In this investigation, pre-processing comprised the 

following steps: 

(1) Background-noise subtraction 

In the first step, each sample spectrum was cleaned via background-noise subtraction. In such a 

way, any instrument-inherent background was eliminated. Furthermore, in a later phases of the 

pipeline, the background introduced by the analytical process (e.g. by heptacosa, plasticizers or 

other contaminations) was subtracted from each sample with the help of blank measurements. 

(2) Spectral deconvolution 

Secondly, a feature detection program was used to extract all observed MSTs. With the help of 

AMDIS (automated mass spectral deconvolution and identification system, chapter 6.7.2), peak 

detection and deconvolution analysis was performed. In principle, the program performed a 

deconvolution of spectra by finding ions that display the same intensity profiles and consequently 

associating a representative ion trace with a single compound. In this way, compounds can be 

detected via ion trace dynamics, although they co-elute with more intense compounds or their 

peaks are not visible in the total ion current chromatogram (TIC). AMDIS also offers an initial 

identification of detected compounds by library search. However, these results were treated as 
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preliminary identifications, due to the fact that compound identification was performed manually 

at a later phase of the data processing. 

In brief, AMDIS generated an ion/retention time pair list as input file for MET-IDEA 

(Metabolomics Ion-based Data Extraction Algorithm, V 2.08). Each ion/retention time pair, 

representing an MST, was characteristic of a specific compound (Broeckling et al., 2006), but a 

specific compound could be described by various ions for its retention time.  

(3) Peak alignment, annotation and integration 

I used MET-IDEA to quantify the MSTs via peak area. If AMDIS reported several “model” 

ions per MST, MET-IDEA selected the more abundant of the ions that met a certain set of criteria 

(chapter 6.7.2) for quantification (Broeckling et al., 2006). When AMDIS reported no model ion 

that met the criteria, a value of “1” was reported (Broeckling et al., 2006) and I decided for each 

case to either exclude the “-1”-ion/retention time pair from further analysis or, if available, to 

manually specify a new model ion. For the analysis, MET-IDEA needed a representative file, 

which was chosen according to the highest amount of compounds and targets. I used the retention 

times of the RI-mix for retention time correction, performed for each file individually, on a file-

by-file basis via a calculated fixed value correction (Broeckling et al., 2006).  

As stated by Lei et al., manual intervention in peak integration of complex metabolomics data 

is inevitable (Lei et al., 2012). Thus I manually inspected peak annotation and integration for 

crude mistakes and corrected if necessary. Furthermore, single chromatographic peaks can 

improperly be deconvoluted into two or more peaks (Broeckling et al., 2006; Lu et al., 2008). 

These redundancies were characterized by nearly identical retention times and could be detected 

with the help of a Pearson’s correlation-based redundancy analysis, as offered by MET-IDEA. If 

peaks showed nearly identical retention times and if r-square values were larger than 0.8, they 

were considered artifacts and redundant peaks were diluted.  

Another challenge for deconvolution is the broad range of metabolite concentrations in samples 

(Koek et al., 2011). If the concentration of a metabolite is too high, the quality of mass spectral 

information is impeded due to the fact that some masses in the mass spectrum are out of the linear 

range (Koek et al., 2011). This phenomenon was mostly observed in the interaction experiment 

of T. weissflogii with S. marinoi and S. dohrnii (chapters 3 and 4). Beyond that, it is a general 

problem in complex biological matrices containing both very high and very low metabolite 

concentrations. However, the sample normalization to cell counts aimed at providing comparable 

metabolite concentrations between samples and to thus standardize the impact.  
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In the context of chemically-mediated interactions, it makes sense to deliberately discriminate 

against very high abundant metabolites and to focus on low abundance metabolites, as 

infochemicals are usually present in low concentrations. I pursued this strategy in the scope of 

this thesis. Nevertheless, mass spectral overload poses a problem and might result in loss of 

potentially relevantly regulated metabolites due to inaccurate, relative quantification. Based on 

the hypothesis that potential infochemicals will occur in rather low concentrations and 

considering the fact that it was ensured that ribitol (used for normalization) was never showing 

mass spectral overload, I considered the impact of mass spectral overload to be low and 

acceptable in view of the research focus. 

Furthermore, MET-IDEA used an RT (retention time) calibration algorithm to remove retention 

time shifts between measurements. Thus, comparability of samples from different measurements 

was assured.  

(4) Normalization 

Intracellular metabolomic data was normalized by peak sum. Assuming an equivalent total MST 

signal per sample, this procedure aims at making samples more comparable to each other by 

compensating for variability (Chen et al., 2014). However, an equivalent total MST signal cannot 

be assumed between different species. Therefore, overall analyses of the endometabolomic data 

set need to be interpreted with care, as they manifest normalization-inflicted differences between 

species. However, this restriction was of minor relevance as the focus of this thesis was set on 

the detailed endometabolomic analysis of each species individually. Variability in samples can 

be caused by differences in biomass after cell-count normalization, physiological differences and 

variability from the analytical method itself (Chen et al., 2014).  

Furthermore, the endometabolome was normalized to an experiment- and species-specific cell 

count. Intensity changes in endometabolites directly reflected metabolomic alterations at the 

cellular level.  

Extracellular MST data was normalized sample-wise to the peak area of the external standard 

ribitol (Vidoudez, 2010; Vidoudez and Pohnert, 2011). As the hypothesis of an equivalent total 

MST signal per sample (Chen et al., 2014) was not fulfilled due to species heterogeneity among 

the samples, the normalization to the external standard ribitol was chosen over a peak sum 

normalization. Assuming that variation in external standard can only result from derivatization 

or systematic errors and that different metabolites behaved similar to the external standard, this 

normalization accounted for analytical errors (De Livera et al., 2012; Chen et al., 2014). 

However, ribitol presents some inherent limitations and disadvantages – e.g. it is not well suited 
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to represent the behaviors of non-polar compounds or to evaluate the methoxymation step 

(Vidoudez, 2010). 

Opposite to cell-count normalization, extracellular MST data was previously normalized by 

volume (chapter 6.6.2), not by cell-count. Thus, extracellular MST data represent the chemical 

environment of the interaction set-up independent from actual diatom cell numbers. 

Data analysis 

As a result of data pre-processing, every sample was characterized by a table containing all 

MSTs, characterized via m/z ratio of the respective model ion and the retention time (RT), as 

well as the normalized peak area of each MST. Generally, the peak area profile of a sample’s 

metabolites constitutes its metabolomic profile (Kanani and Klapa, 2007). The peak area hereby 

correlates with MST abundance. 

I used principal coordinate analysis (PCoA), followed by a canonical discriminant analysis 

(CDA), to investigate differences in the endo- and exometabolome of the diatoms, as caused by 

the interaction. This combined analysis was called CAP (“Canonical Analysis of Principal 

Coordinates”). The CAP of metabolomics data offered the following four items (Anderson and 

Willis, 2003a): robust unconstrained ordination, an appropriate constrained analysis by reference 

to a specific hypothesis, a statistical test of the hypothesis and a characterization of metabolites 

responsible for multivariate patterns. 

CDA used the a-priori definition of groups. The misclassification error is a measure for the fit 

of the defined groups and indicates the distinction of the groups in multivariate space (Anderson 

and Willis, 2003a). With the help of the trace statistics and obtaining a p-value by permutation, 

the null hypothesis of “no significant differences in multivariate location among groups” was 

tested (Anderson and Willis, 2003a). The squared canonical correlation (δ1
2) and its 

corresponding p-value represented the proportion of shared variance between each of the 

canonical variates of dependent and independent variables (Sherry and Henson, 2005). In order 

to evaluate the separation of a priori groups, the classification and ordination success had to be 

considered in combination. 

In general, three different kinds of plots were produced: unconstrained score plot, constrained 

score plot and correlation loading plot. To explore individual and group differences of the 

samples, an unconstrained score plot was created, based on the transformed MST intensities. The 

plot was produced with the help of the first two principal coordinate axes from the CAP output 

(Anderson and Willis, 2003a). To reveal potentially masked but ecologically important patterns 
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in unconstrained ordination a canonical ordination was performed. The constrained score plot of 

the CDA used the first two canonical axes produced by CAP (Anderson, 2004). The axes were 

characterized by the squared canonical correlations δ2.  

In order to identify metabolites that are responsible for groupings observed in constrained 

ordination, the correlation of the metabolites with the first two canonical axes was calculated and 

the metabolites were plotted as vectors in a loading plot, superimposing the constrained score 

plot. Correlations of the MSTs with the CAP axes were considered significant if the Pearson’s 

correlation coefficient with canonical axis 1 or canonical axis 2 exceeded a critical value (only 

absolute values were considered). The critical value for the correlation coefficient was calculated 

by performing a 2-tailed t-test with a given significance level and (n2) degrees of freedom (n 

being the number of samples). Only vectors with a correlation coefficient above the critical value 

were plotted. In cases of low critical values and a high number of significant metabolites, a 

predefined number of highest correlated metabolites was chosen. 

As distance measure, I chose the Bray-Curtis distance. The data was transformed by 

standardization via log10(x+1) to reduce the influence of highly abundant metabolites on the 

analysis (Kindt and Coe, 2005). In the context of exometabolomic data, the exometabolome of 

the two chamber-halves per cultivation chamber was pooled and each chamber was treated as 

one biological replicate.  

In the context of endometabolomic data, each chamber-half of each co-cultivation chamber was 

sampled individually and treated as one biological replicate. Taking the co-cultivation set-up as 

an example, each co-cultivation chamber comprised one biological replicate of species A and 

one biological replicate of species B. Accordingly, each mono-cultivation set-up comprised two 

biological replicates of the same species. To account for this inherent dependency of the two 

chamber-halves in one cultivation chamber, I performed the canonical discriminant analysis 

according to a modified function written by Dr. Jens Schumacher48 (function is documented in 

the digital appendix chapter 7.4). 

The modified function follows the original description of Anderson & Willis as presented in the 

Ecological Archives E084-011-A1 (Anderson and Willis, 2003b). However, to obtain p-values 

for the trace statistic and the greatest root statistic δ1
2, the random permutations of group labels 

was restricted to reflect the dependency of the chamber-halves. Furthermore, the 

misclassification error was given as a result of a “leave-one-chamber-out cross validation”. I 

                                                 
48 Institute of Mathematics/Stochastics, Faculty of Mathematics and Computer Science, Friedrich-Schiller-

University Jena 
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manually chose the number of principal coordinate axes (m) used in the canonical analysis in 

agreement with the recommended guidelines (Anderson and Willis, 2003a), resulting in the 

lowest misclassification error of the “leave-one-chamber-out cross validation”.   
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2.6 Interim conclusion 

The interaction between the diatoms S. costatum and T. weissflogii resulted in unambiguously 

enhanced growth of T. weissflogii - as measured in cell counts - of up to 81 % (chapter 2.2.1). I 

could reproduce the stimulatory growth effect reliably in various independent experiments, e.g. 

in the medium experiment (chapter 2.3) and a second interaction experiment (data not shown) 

and could confirm previously documented effects (Paul et al., 2009). Interaction-induced growth 

stimulation of T. weissflogii manifested at the end of the regular growth phase, where stimulated 

cultures showed prolonged regular growth and higher maximum cell yields. In the interaction 

experiment, this effect was documented by cell counts at three different time points (Figure 4). 

These findings were complemented by the medium experiment, in which cell counts were taken 

more regularly and the stimulated growth is depicted in higher resolution (Figure 20). Thus, the 

interaction-induced growth stimulation of T. weissflogii was clearly recognizable.  

Furthermore, I documented significant alterations in S. costatum chl a fluorescence at the 

beginning of the stationary phase due to the interaction (chapter 2.2.1 and 2.3). As these changes 

were not reflected in altered cell counts, they were not thought to indicate biomass alterations 

but rather modifications of the cells’ physiological state (Kruskopf and Flynn, 2006).  

I excluded the involvement of the prominent infochemical DMSP in the stimulatory growth 

effect on T. weissflogii, as hypothesized by Paul et al. (chapter 2.1.4) (Paul et al., 2009). 

Furthermore, among metadata, I observed no relevant interaction-induced alterations, with 

exception of the silicate availability. Diatom cultures were non-axenic, as measured via bacterial 

abundance (chapter 2.2.2 and 7.1.4). However, the medium experiment indicated that the 

bacterial community of the partner diatom is not capable of producing the observed stimulatory 

effect on diatom growth (chapter 2.3). 

To link observed growth to the nutrient status of the cultures, nutrient samples were taken. 

However, in the course of the interaction experiment (chapter 2.2) the nutrient status was not 

recorded. Nevertheless, nutrient measurements were carried out in the medium experiment 

(chapter 2.3) and as the interaction experiment and medium experiment were both conducted 

under highly similar conditions, insights can be generalized for the interaction experiment as 

well. In summary, the transition from regular growth into the stationary phase coincided with 

nutrient limitation, preceding with silicate limitation. Interestingly, I observed an increase in 

silicate availability during the stationary phase in S. costatum mono-culture, but not in 

T. weissflogii mono-culture. I assumed that in the co-cultivation experiment, T. weissflogii is 

exposed to increased silicate availability as well. As no relevant increase of available silicate has 
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been documented in the co-cultivation medium, an increased uptake of silicate by T. weissflogii 

might be suggested (further discussion in chapter 5). 

Interaction-induced metabolomic alterations strongly suggest a chemically-mediated 

interaction 

In the present study, I advanced insights into the interaction specifics. Hereby, the experimental 

design of Paul et al. was improved by combining the elaborate small-scale co-cultivation set up 

with high-resolution GC-EI/MS/TOF analysis - an analytical approach that enabled library-based 

structure suggestions on top of unambiguous characterization of relevant MSTs, as already 

reported (Paul et al., 2009). Furthermore, the co-cultivation set up enabled identical growth 

conditions for all investigated treatment groups. An improvement, compared to the heterogeneity 

in culturing caused by the mixed use of glass vessel and dialysis tube environments (Paul et al., 

2009). With the metabolomics approach, it was clearly possible to link physiological alterations 

- on the metabolomic level - to the presence of an interaction partner and thus confirm previous 

findings (Paul et al., 2009).  

The endometabolomic analysis unraveled significant interaction-induced differences in the 

endometabolomes of T. weissflogii and S. costatum. Interestingly, these alterations only occurred 

from a certain point of the interaction onwards. I investigated the endometabolome on three 

distinct time points during the interaction. Thus, a more dynamic investigation of interaction-

induced metabolomic alterations – compared to Paul et al. – was ensured, another strength of the 

present study. While Paul et al. investigated only one distinct time-point during the late phase of 

the interaction, the presented design offers the opportunity to assess the diatom’s metabolomic 

state at multiple points before and during the observed growth effect.  

The first sampling was done at the transition from regular growth to stationary phase (day 16), 

representing a reference point before the onset of the stimulatory effect. The later sampling points 

have been chosen to capture an early and late stage of the observed growth effect in T. weissflogii. 

The exometabolomic findings suggest that both diatom partners are able to adapt their phenotype 

and thus react to the presence of each other, as interaction-induced alterations of metabolite levels 

in the diatom’s medium were observed. Furthermore, at both latter sampling points, I found 

significant endometabolomic alterations due to the presence of a partner, suggesting that both 

diatoms are able to notice each other. Similarly, it has been reported in the context of negative 

allelopathy that interactions between the microalga K. brevis and competing algae cause 

alterations in algal metabolism, even if only modest growth effects are observed (Poulson-

Ellestad et al., 2014a).  
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The documented physiological alterations during late stages of the interaction between 

T. weissflogii and S. costatum are in agreement with previous observations (Paul et al., 2009). 

However, the findings that co-cultivated T. weissflogii cultures exhibit lower metabolite 

concentrations throughout all MSTs – compared to mono-cultivation – could not be confirmed 

(Paul et al., 2009). In the present study I documented both, increased and decreased metabolite 

concentrations in co-cultivation. One possible reason for observed differences might be the fact 

that different analytical methods were used and that GC-MS and LC-MS cover different ranges 

of the metabolite spectrum. Due to the inherent differences in the hyphenated MS-approaches 

and due to the fact that no RI data was reported by Paul et al., a direct comparison of MSTs 

between these methods was not possible and a comparison of results on a more detailed level 

was precluded. Nevertheless, the general conclusions are in agreement. 

The endometabolomic alterations strongly suggested a compound transfer between the diatom 

partners, responsible for the observed alterations. Other than the endometabolomic alterations, 

which manifested on day 26 and 32, I found significant interaction-induced differences in diatom 

exometabolomes on day 16 and 26. Thus, already before any growth effect is observed, the 

chemical environment in diatom cultures is altered due to the presence of a partner. These 

interaction-induced exometabolomic alterations sustained until day 26, but were not found on 

day 32. The precedence of endometabolomic alterations with exometabolomic alterations 

strengthens the presumption of a chemically-mediated interaction. I hypothesized that the release 

and uptake of chemical compounds between the partners, as documented on day 16 and 26, 

entailed endometabolomic changes, as documented on day 26 and 32. I suggested several 

metabolites and MSTs as potential semiochemicals. 

Metabolite flux hypotheses at the onset of the observed growth effect 

I hypothesized MSTs that were correlating with the onset of the observed growth effect (day 

16) to trigger the observed growth stimulatory effect. On day 16, pattern - I - metabolites strongly 

suggest heightened metabolite exudation as response to the presence of a partner. This effect was 

found for 26 MSTs, nine metabolites were identified. The fatty acids myristic acid (#111), 

pentadecanoic acid (#113, #117), palmitoleic acid (#122, #123), oleic acid (#132) and nonanoic 

acid (#48), as well as the carboxylic acids 4-hydroxybutanoic acid (#33), putative 2-

hydroxypentanoic acid (#40) and putative 2-methylbenzoic acid (#50) and the putative alkaloid 

2-hexylpyridine (#51). Another 15 MSTs49 remained unidentified.  

                                                 
49 #44, #49, #58, #60, #65, #71, #85, #91, #93, #101, #109, #110, #128, #133, #138 
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The fatty acids myristic acid (#111), palmitoleic acid (#122, #123) and oleic acid (#132) have 

been previously found in the cells of T. weissflogii and S. costatum (John et al., 2001), the latter 

being more abundant in T. weissflogii, than in S. costatum (John et al., 2001). 

The metabolomic analysis shows that a substantial amount of these correlating metabolites was 

hypothesized to be involved in a release-uptake mechanism. Namely, putative 2-

hydroxypentanoic acid (#40), putative alkaloid 2-hexylpyridine (#51), myristic acid (#111), 

pentadecanoic acid (#117), palmitoleic acid (#122, #123), oleic acid (#132) and nine MSTs50. 

The observation of increased abundance in co-cultivation on day 16 (pattern I) and subsequent 

reduced abundance on day 26 (pattern II / III) suggested interaction-induced release and 

subsequent uptake of these compounds by the partner.  

Among metabolites exhibiting pattern II / III on day 16, two were of relevance. The carboxylic 

acid succinic acid (#41) was present in the exometabolome of both diatoms during early stages 

of the interaction (day 16 and 26), but completely absent in co-cultivation on day 16. Thus, either 

an increased uptake, transformation or reduced exudation due to the interaction on day 16 were 

suggested. Interestingly, on day 26 succinic acid (#41) was most abundant in co-cultivation – 

exhibiting pattern I – compared to both mono-cultivations. The reverse of intensity patterns (from 

pattern II / III to pattern I) between day 16 and 26, might stress the relevance of succinic acid 

(#41) at the onset of the interaction, potentially mediating the interaction.  

The terpenoid dehydroabietic acid (#135) exhibited reduced abundance in co-cultivation over 

all three sampling days. As dehydroabietic acid was considerably more abundant in mono-

cultivated T. weissflogii and close to absent in the medium of mono-cultivated S. costatum, it was 

thought to originate from T. weissflogii. It was hypothesized to be constantly taken up by 

S. costatum in the interaction. Alternatively, the secretion of dehydroabietic acid by T. weissflogii 

might have been inhibited in the interaction with S. marinoi. As discussed in chapter 5, 

dehydroabietic acid has previously been known from the aquatic environment.  

On day 26, five unidentified metabolites were potentially involved in a reduced release / uptake 

or transformation mechanisms and on day 32, the amine 2,2’-iminodiethanol (#37), the alkaloid 

3-pyridinol (#11), a terpenoid similar to lumichrome (#45) and an unidentified MST #114. This 

dynamic characterized not only the onset of the growth effect, but also the effect during the late 

stationary phase of growth. 

                                                 
50 #44, #58, #60, #65, #71, #93, #128, #133, #138 
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Metabolite flux hypotheses during the phase of pronounced growth effect 

I hypothesized metabolites correlating with the phase of pronounced growth effect, as 

represented by day 26, to be responsible for sustaining the stimulatory growth (chapter 2.2.3). 

On day 26, five MSTs51 were characterized with pattern I. They were all hardly present on day 

16 and more characteristic for later growth phases. Neither MST could be allocated to only one 

of the diatoms, as all MSTs were found in the medium of both mono-cultured diatoms. However, 

in co-cultivation the secretion of these compounds was increased.  

Additionally, five MSTs52 were taken up or metabolized on day 26, including two compounds 

(#104, #107) that have previously been found in the medium of S. marinoi (Vidoudez, 2010; 

Vidoudez and Pohnert, 2011). They predominantly shaped the chemical environment of 

S. costatum, although they were present in the one of T. weissflogii as well. The remaining MSTs 

were more abundant in the medium of T. weissflogii on day 26, therefore it can be hypothesized 

that they were exuded by this diatom and taken up or metabolized by S. costatum. 

Unfortunately, in the exometabolomic analyses, only a small subset of MSTs could be 

identified. Identification was impeded by the very low abundance of relevant MSTs, which 

affected the mass spectral quality and thus goodness of library-spectrum fit. Also, if MSTs 

represented novel compounds, no library-spectra would be available and MSTs would remain 

‘unknown’. Zamboni et al. pointed out that the structure elucidation of MSTs is the biggest 

challenge in metabolomics (Zamboni, Saghatelian and Patti, 2015). Nevertheless, all MSTs were 

unambiguously characterized via m/z, RT and RI.  

Paul et al. hypothesized release-uptake-mechanisms based on the observation of inter alia nine 

further unidentified pattern - II / III - MSTs as well (Paul et al., 2009). Hereby, eight out of nine 

MSTs originated from S. costatum. While Paul et al. observed distinct exometabolomic 

alterations on day 38 – a late stage of the interaction – the present study connects distinct 

exometabolomic changes with early stages of the interaction. No significant interaction-induced 

alterations in the diatom’s exometabolome were found on day 32 (representing the latest 

sampling point). In summary, both studies agree on interaction-induced exometabolomic 

alterations and suggest release-uptake or metabolization mechanisms between the diatoms. The 

fact that both studies differ in the temporal placement of the interaction-induced metabolomic 

alterations might be simply caused by slightly varying experimental specifics and is not thought 

to question the conclusion.  

                                                 
51 #62, #63, #77, #92, #96 
52 #1, #95, #104, #107, #126 
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Discussion of metabolite flux between the diatom partners 

The introduced abundance patterns represent a simplified mean to unravel metabolite flux 

between both diatom partners. Simplification is essential to generate testable hypotheses, 

however at the same time, over-generalization is a major pitfall in metabolomic analyses 

(Zamboni et al., 2015). Therefore, when interpreting exometabolomic findings, some aspects 

need to be taken into consideration.  

The influence of increased biomass on the chemical diatom environment 

Due to the fact that the exometabolome was not normalized to cell counts, cell count differences 

between treatments need to be taken into account in the interpretation of exometabolite patterns. 

I hypothesized pattern - I - metabolites to be increasingly exuded due to the interaction, while I 

hypothesized pattern - II / III - metabolites to be either taken up, reduced in secretion or 

metabolized. However, increased cell counts in co-cultivation weaken the interpretation of 

pattern I - metabolites and strengthen the interpretation of pattern -II / III - metabolites.  

For example, increased MST abundance in co-cultivation (pattern I) is suggested to result from 

interaction-induced, increased exudation. This will be reasonable, if diatom biomass in all 

treatments is comparable. However, increased MST abundance will merely reflect increased 

biomass, if co-cultivation exhibits increased cell counts compared to other treatments. This 

scenario occurred at sampling points 26 and 32, due to stimulated growth of T. weissflogii.  

The opposite is the case for pattern II and III. Both patterns indicate interaction-induced uptake, 

metabolization or reduced exudation of exometabolites. These patterns are characterized by 

reduced MST abundance in co-cultivation. In a context where diatom biomass increases in co-

cultivation, the occurrence of pattern II and III is clearly an opposing trend. Thus, the 

expressiveness of the suggested interpretation for pattern II and III is further strengthened. 

On day 16, cell count differences between mono- and co-cultivation were existent, but 

compared to later sampling points rather small (T. weissflogii +15 %, S. costatum +21 %53). 

Therefore, the reliability of pattern I metabolites is still given. However, on day 26 the 

interpretation of pattern I is more error-prone, as diatom cell counts in co-cultivation were 

substantially increased compared to mono-cultivations. Meaning that pattern I might simply be 

caused by increased biomass. 

                                                 
53 Co-cultivation relative to mono-cultivation 
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Limitations of abundance patterns I, II and III and their impact on hypothesized release-uptake 

mechanisms 

Firstly, the defined patterns (I – III) reflect extreme and clear-cut examples among MST 

abundance patterns. They set a deliberate, artificial threshold and discriminate against less 

distinct marginal cases with a higher error-proneness. Thus, I reduced the complexity of the 

screening process and all metabolites matching the defined intensity patterns of interest were 

considered candidate molecules, potentially driving the interaction. However, although this 

approach enables a high-throughput workflow, it might miss out on potential semiochemicals. 

Secondly, the pattern-based exometabolomic analysis via fingerprinting techniques is blind for 

exometabolomic alterations, which manifest themselves in altered metabolite flux with 

concurrent unaltered absolute metabolite intensities ((Chokkathukalam et al., 2014) and 

references herein). For example, if at the same time a metabolite is increasingly secreted by one 

diatom and increasingly taken up by the other diatom, this dynamic will possibly be reported to 

not be relevantly altered due to the interaction. This is caused by the fact that the multivariate 

statistical analysis as well as the pattern-based analysis of exometabolites are based on absolute 

metabolite levels and are unable to detect metabolite flux alterations.  

Thirdly, patterns II and III should not only be interpreted as increased uptake of an 

exometabolite, but also as a decrease in metabolite secretion due to the interaction or potential 

transformation. All processes result in decreased abundance of a metabolite in the medium of the 

interaction set-up. As a consequence, hypothesized release-uptake mechanisms could possibly 

have alternative explanations as well. For simplification purposes, the possibility of metabolite 

transformation will implicitly be included in the release-uptake nomenclature and not specifically 

mentioned at every occasion. 

To get more insights into the dynamics behind observed exometabolomic alterations and to 

address some of the mentioned limitations, I recommend the labeling of an organism’s 

endometabolome – e.g. via 13C (Chokkathukalam et al., 2014). This labeling approach is termed 

metabolomic flux analysis (Zamboni et al., 2015), or – in the context of exometabolomic analyses 

– metabolic foot printing (Weber et al., 2013) and has been suggested by Paul et al. as well (Paul 

et al., 2009). 

Taking the interaction between S. costatum and T. weissflogii as an example, in the context of 

exometabolomics, this means that a labeled S. costatum culture is brought into interaction with 

an unlabeled T. weissflogii culture. Labeling is achieved by culturing a photosynthetic organism 

like S. costatum using stable-isotope labeled inorganic nutrients. Thus, the endometabolome of 
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the diatom is gradually labeled with a stable-isotope. If only one of the partners is labeled, any 

labeled metabolite found in the medium of the set-up can be clearly assigned to origin from 

S. costatum. Furthermore, if any labeled compounds are found in the endometabolome of 

T. weissflogii, a release-uptake dynamic between both partners is confirmed. By labeling both 

diatom partners subsequently, a comprehensive insight into interaction dynamics can be gained. 

However, considering the long duration of the interaction experiments, keeping up high labeling 

degrees of one diatom’s endometabolome during the course of the investigation can be a 

challenge.  

Involvement of third party organisms in the interaction 

As previously stated, the used diatom cultures were non – axenic. Multiple interactions between 

diatoms and bacteria have been documented, involving chemical signaling ((Cole, 1982; Grossart 

and Simon, 2007; Amin et al., 2012, 2015; Limardo and Worden, 2015), compare chapter 2.1.3). 

It is therefore possible that bacteria, associated to the diatom partner, cause the observed growth 

effect, instead of the diatom partner itself. To test this hypothesis, I conducted two medium 

experiments, clearly stating that the presence of S. costatum is necessary to stimulate the growth 

of T. weissflogii in the interaction (chapter 2.3). Thereby, I answered one of the questions posed 

in the study of Paul et al. (Paul et al., 2009). However, the participation of bacteria as third party 

organisms, e.g. via the modification or degradation of exuded metabolites, cannot be excluded 

(Borowitzka, 2016).  

In the context of the medium experiments (see chapter 2.3) it might be objected that during the 

centrifugation step, aiming at separating diatom cells from the surrounding medium, bacterial 

cells sedimented along with diatom cells. Thus, the modified culture in the medium exchange 

group would be expected to exhibit increased bacterial abundance due to the fact that the bacterial 

community introduced via the medium added to the bacterial community retained alongside the 

diatom cells. However, the comparison of bacterial cell count data between both chamber halves 

of the medium exchange group (data not shown) did not indicate relevant differences at the first 

sampling point after the onset of the experiment. 

To conclude, this subchapter summarized the findings of the interaction-investigation between 

T. weissflogii and S. costatum and discussed several aspects, which need to be taken into account 

during hypotheses-generation. I will present a general conclusion to all interaction experiments 

in chapter 5. 
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3 Interaction of T. weissflogii with S. marinoi 

I based the first interaction experiments on the diatom strains used by Paul et al., which were 

not available in an axenic state (chapter 2.2 - 2.3; (Paul et al., 2009)). However, I aspired axenic 

cultures to reduce the interaction system to the presence of only two diatom partners. Therefore, 

I obtained new axenic strains from the National Center for Marine Algae and Microbiota 

(NCMA). Among multiple axenic T. weissflogii strains – available in the NCMA – I chose the 

one that was reported to be identical with the non-axenic RCC76 strain. As the species concept 

of S. costatum has been revoked, I used axenic strains of S. marinoi and S. dohrnii (formerly 

S. costatum (Sarno et al., 2005)) as substitutes. Both have been collected at sites, which exhibit 

close proximity to the collection site of T. weissflogii54.  

Subsequently, I present the results of the interaction investigation between T. weissflogii and 

S. marinoi as well as between T. weissflogii and S. dohrnii (chapter 4). I designed these 

investigations in the context of an explorative approach to supplement the insights of the 

primarily conducted interaction experiment between T. weissflogii and S. costatum. 

3.1 Experimental design 

I based the interaction experiment between T. weissflogii (CCMP 1336) and S. marinoi (CCMP 

1332) on the experimental design and the general strategy described for the interaction 

experiment with T. weissflogii and S. costatum (more details in chapters 2.1.1 and 2.1.2). 

Experimental specifics are documented in chapter 6.2.7.  

The metabolomic samples in the interaction investigation of T. weissflogii and S. marinoi (as 

well as in the interaction investigation of T. weissflogii and S. dohrnii, chapter 4) were 

normalized to higher cell counts, compared to the previously described interaction (Table 22). 

As a consequence, I observed an overload among a subset of peaks – representing the most 

abundant MSTs –in the corresponding mass spectra. As these MSTs might have been integrated 

via masses that are not in the linear range due to overloading, the quantification might have been 

impaired. Nevertheless, I chose this strategy with the aim to focus on potential infochemicals, 

which usually occur in rather low abundances (discussion in chapter 2.5.3). 

                                                 
54 S. dohrnii (CCMP3373) was isolated from Narragansett Bay, Rhode Island, USA, S. marinoi (CCMP1332) from 

Milford, Conneticut, USA, T. weissflogii from Gardiners Island, Long Island, New York. The former S. costatum 

(RCC76) was of unknown origin, but was reported to form blooms in Narragansett Bay (Borkman and Smayda, 

2009)  
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3.2 Results 

3.2.1 Diatom growth 

Growth of S. marinoi was significantly enhanced due to the interaction with T. weissflogii. 

Compared to the negative control, cell counts in co-cultivation were increased up to 41 % and 

chl a fluorescence up to 31 % (day 42). Considering growth parameters of T. weissflogii, no 

consistent and distinct long-term trend of increase or decrease was observed. Statistically, 

significant differences in chl a fluorescence and cell counts corresponded to rather short term 

variations. 
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Figure 27: Diatom growth in the interaction experiment of T. weissflogii and S. marinoi. 

Graphs A and B show means of chl a (RFU: relative fluorescence units), graphs C and D represent the cell counts 

(cells / mL). The results for S. marinoi are shown on the left, the results for T. weissflogii on the right. The treatment 

groups are indicated by color: mono-cultivation of S. marinoi (blue, control), mono-cultivation of T. weissflogii 

(green, control) and the co-cultivation of each species (red, interaction). Values are arithmetic means, error bars 

indicate standard deviation between biological replicates (mono-cultivation n = 4, co-cultivation n = 4). Notice 

different scaling. 
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Within each species, I used linear mixed models to test for significant differences between 

mono-cultivation und co-cultivation over time. More details on the chosen models, graphs and 

evaluation can be found in the appendix (Appendix 30 - Appendix 35). 

S. marinoi 

Linear mixed modeling showed a statistically significant difference in the development of chl a 

fluorescence (F(16,96) = 4.2354, P ≤ 0.0001) and cell counts (F(16,96) = 4.997, P ≤ 0.0001) in 

treatments over time. 

In general, the growth curve – based on diatom cell counts (Figure 27C) – indicated a phase of 

regular growth until day 24, followed by a phase of stationary growth. While in mono-cultivation 

this phase lasted until the end of the experiment, in co-cultivation a declining phase was observed 

between day 42 and 48.  

Comparing mono- and co-cultivation, I observed a clear trend of elevated cell densities in co-

cultivation between day three and day 42 (Figure 27C). I found the largest difference between 

the treatments on day 42, with 41 % increased cell-counts in co-cultivation. Starting from initial 

cell counts of 2.2 × 105 cells / mL, maximum densities of 4.6 × 106 ± 0.3 × 106 cells / mL were 

reached in mono-cultivation on day 24 and 6.05 × 106 ± 0.6 × 106 cells / mL in co-cultivation on 

day 42. Relative to mono-cultivation, the maximum cell density in co-cultivation was elevated 

by 31 %. In general, the differences in cell counts were established during regular growth phase 

and maintained in stationary phase of growth. 

Chl a fluorescence of S. marinoi exhibited an increase-decrease dynamic over time. Similar to 

the findings in cell counts, fluorescence was increased in co-cultivation, compared to mono-

cultivation (Figure 27A). Starting with 1052 RFU, the fluorescence increased until reaching 

maximum values of 3.5 × 104±1713 RFU in mono-cultivation and 4 × 104±1991 RFU in co-

cultivation on day 27. This corresponded to a 14 % increase in co-cultivation compared to mono-

cultivation on day 27. The difference in chl a fluorescence was largest on day 42, with 31 % 

higher fluorescence in co-cultivation. While chl a fluorescence is hypothesized to correlate to 

diatom biomass until day 27, the subsequent decrease in chl a fluorescence during the stationary 

phase – which was not reflected in cell counts – was thought to be caused by physiological 

alterations in the diatom cells.  

Both chl a fluorescence and cell counts indicated significantly enhanced growth in S. marinoi 

due to the interaction with T. weissflogii. 
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T. weissflogii 

The linear mixed model approach showed a significantly different development of chl a 

fluorescence (F(16,96) = 2.6128, P = 0.002) and cell counts (F(16,96) = 3.5408, P = 0.0001) in 

mono- and co-cultivation over time. However, a visual evaluation of the parameter curves 

(Figure 27B, D) lacks meaningful differences between the treatments. 

Figure 27D depicts the growth curve of T. weissflogii, starting with 3.2 × 104 cells / mL at the 

onset of the experiment. The cultures grew regularly until day 12, before entering a stationary 

phase of growth, which lasted until the end of the experiment. During stationary growth phase, 

average cell numbers of 3.45 × 105 ± 0.3 × 105 cells / mL were reached in mono-cultivation and 

3.42 × 105 ± 0.7 × 105 cells / mL in co-cultivation. 

Comparing mono- and co-cultivated T. weissflogii, the development of cell counts over time 

was very similar. In regular growth phase, the differences between mono- and co-cultivation 

were less than 5 % (co-cultivation relative to mono-cultivation of each day). Between day 15 and 

36, cell numbers were slightly lower in co-cultivation, with a maximum reduction of 17 % on 

day 15 and an average difference of 8.6 ± 5 %. However, cell numbers in co-cultivation slightly 

increased between day 39 and 48 to reach maximum enhancement of 26 % on day 45 and an 

average increase of 13.1 ± 9 %. Over the course of the experiment, the average difference 

between the cell counts of mono- and co-cultivation was 7.9 ± 6 % (relative to mono-cultivation 

throughout all differences). 

Chl a fluorescence started at 700 RFU and subsequently increased until reaching maximum 

values of 28321 ± 3093 RFU in mono-cultivation on day 39 and values of 27606 ± 5554 RFU in 

co-cultivation on day 45 (Figure 27B). The difference between mono- and co-cultivation was 

largest on day six with 25 % higher fluorescence in co-cultivation. However, over the course of 

the experiment the average difference between the treatments (relative to mono-cultivation over 

all differences) was 9.7 ± 7%.  

In general, I found no long-term trend of increase or decrease of chl a fluorescence and cell 

counts in co-cultivation, compared to mono-cultivation. I found statistically significant 

differences between the treatments in the development of both parameters over time. However, 

due to lacking persistency, comparably large standard deviations (error bars in Figure 27B, D) 

and average differences ≤ 10 %, I considered these differences biologically irrelevant.  
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3.2.2 Metadata 

I used the metadata to describe the biotic and abiotic state of the interaction. The PSII efficiency 

of both diatom species showed comparable absolute values and temporal dynamics. All cultures 

experienced nutrient depletion between day 15 and day 24, correlating with the end of regular 

and beginning of stationary growth phase. The bacterial abundance in S. marinoi was less than 

the abundance of diatom cells, while bacterial numbers in T. weissflogii exceeded diatom cell 

counts. In general, I observed no distinct differences between co- and mono-cultivation in 

parameter dynamics over time. 

PSII efficiency 

S. marinoi started with a PSII efficiency of 37 %, while T. weissflogii started with an efficiency 

of 44 %. Within each species, the treatments showed a very similar temporal dynamic and no 

obvious differences between mono- and co-cultivation were observed (Figure 28). In general, 

the PSII efficiency remained almost stable until day 18, exhibiting average values of 34 ± 4 % in 

S. marinoi and 41 ± 4 % in T. weissflogii. Subsequently, the PSII efficiency declined until 

T. weissflogii reached values close to zero around day 39 and S. marinoi reached a local minimum 

on day 42 exhibiting an efficiency ≤ 4 %.  
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Figure 28: PSII efficiency of the diatoms in the interaction experiment of T. weissflogii with S. marinoi. 

The figure shows means of PSII efficiency (%) of S. marinoi (graph A) and T. weissflogii (graph B), comparing 

mono-cultivation in green (Mono T. weissflogii) and blue (Mono S. marinoi) to co-cultivation of the particular 

diatom in red. Error bars indicate standard deviation between biological replicates (mono-cultivation n = 4, co-

cultivation n = 4).  

Bacterial abundance 

The diatom strains T. weissflogii (CCMP1336) and S. marinoi (CCMP1332) were axenic when 

ordered. However, it was not possible to maintain the axenic state and bacteria became present 
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in all diatom cultures (Figure 29). This problem has been reported by other researchers as well 

((Vidoudez and Pohnert, 2011), (Borowitzka, 2016) and references herein). Although axenic 

cultures are desired in the investigation of chemically-mediated interactions, the close association 

between bacteria and diatoms reflects natural conditions (Borowitzka, 2016). 

At the onset of the experiment, bacterial numbers were lower than diatom cell numbers (only 

3 - 42 % of diatom cell counts) in all treatments. While bacterial numbers remained smaller than 

diatom numbers in S. marinoi (with exception of day nine and mono-cultivation on day 30), 

bacterial numbers exceeded diatom numbers up to 32 - fold (day 21) in T. weissflogii.  

In general, bacterial numbers seemed to increase in the middle of the interaction experiment 

(day nine to day 30), reaching maximum numbers of up to 1 × 107 cells / mL (mono-cultivation 

T. weissflogii, day 30) with subsequent decrease towards day 48. 

The medium control exhibited considerable bacterial numbers, indicating a possible 

contamination. However, the medium control group was only represented by one biological 

replicate and as the bacterial numbers sometimes exceeded the ones measured in diatom cultures, 

a specific contamination in the medium control group was suspected. 
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Figure 29: Bacterial abundance in the medium experiment of T. weissflogii with S. marinoi. 

The figure shows means of bacterial abundance (cells / mL) in the cultures of S. marinoi (graph A) and T. weissflogii 

(graph B), comparing mono-cultivation in green (Mono T. weissflogii) and blue (Mono S. marinoi) to co-cultivation 

of the particular diatom in red. Values for the medium control are represented in grey. Error bars indicate standard 

deviation between biological replicates (n = 4, medium control: n = 1).  

Nutrient levels 

In the context of the nutrient analysis, I investigated silicate, nitrate, phosphate and nitrite levels. 

Diatom cultures became depleted of nitrate, phosphate and silicate between day 15 and day 24 

(Figure 30). These points in time were correlating with the end of regular growth phase and the 
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early stationary phase. More specifically, nitrate and phosphate concentration was ≤ 4 µM in all 

treatments on day 24 and silicate concentration was ≤ 6 µM. The nitrite concentrations increased 

until reaching maximum values on day 15, followed by a subsequent decrease towards day 24.  

While I observed no distinct differences in nitrate, phosphate and silicate levels between the 

treatments, nitrite levels were highest in mono-cultivated T. weissflogii (maximum of 9 µM on 

day 15) and lowest in mono-cultivated S. marinoi (maximum of 2 µM on day 15). The nitrite 

concentration in co-cultivation was an average of both mono-cultivations on day 15 (5 µM). 

The nutrient concentrations of the medium control matched the expected values present in the 

artificial seawater medium.  
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Figure 30: Nutrient levels in the medium experiment of T. weissflogii with S. marinoi. 

The figure shows means of nitrate (A), nitrite (B), phosphate (C) and silicate (D) concentration (µM). Mono-

cultivation of T. weissflogii is depicted in green, mono-cultivation of S. marinoi in blue and co-cultivation is colored 

in red. Values for the medium control are represented in grey. Error bars indicate standard deviation between 

biological replicates (n = 4, medium control: n = 1).  
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3.2.3 Exometabolomic investigation 

In summary, significant differences in the exometabolomes of S. marinoi and T. weissflogii due 

to time, treatments and treatment per time were statistically confirmed. A daywise analysis 

indicated that the treatments (mono-cultivation of each species and co-cultivation) significantly 

differed from each other on day 18, 30 and 42. As demonstrated by the misclassification errors, 

exometabolomic differences between the treatments were more distinct during later stages of 

diatom growth. The exometabolome of the co-cultivation group exhibited similar traits as the 

exometabolome of mono-cultivated S. marinoi.  

In general, 66 MSTs were potentially part of interaction-induced release mechanisms. Most of 

these MSTs were correlating with day 42 and thus late stages of the interaction. A multitude of 

metabolite classes were involved and some metabolites were characterized by distinct temporal 

intensity dynamics.  

Among metabolites that were correlating with early stages of the interaction, the following were 

of special relevance: Gluconic acid (#206), gluconic acid 1,5-lactone (#180) and three unknown 

metabolites (#119, #132, #210) were upregulated in co-cultivation during the late regular growth 

phase. Additionally, putative 7-tetradecanol (#103, #104) and MST (#205) were upregulated in 

co-cultivation and might have been released by S. marinoi due to the interaction.  

Metabolites that were upregulated during the stationary phase of growth (day 30) comprised 

inter alia putative 2-(4-methyl-1-piperazinyl)ethanol (#53), hydroquinone (#73), 4-

hydroxybenzaldehyde (#99), putative uridine (#275), putative adenosine (#299, #300), putative 

maltose (#304), uridine (#270), guanosine (#311) and further unknown metabolites. The majority 

of all candidate metabolites with enhanced abundance in co-cultivation was correlating with day 

42, a time point long after the observed interaction-induced growth effect. 

In the context of interaction-induced uptake, transformation or reduced release mechanisms, six 

metabolites were of relevance, including two unknown metabolites (#162, #193), maltotriose 

(#339), 2-phenoxyethanol (#66), galactosylglycerol (#251) and the sterol putative 3,18-

bis(acetyloxy)-14,15-epoxy-pregn-16-en-20-one (#306). It is hypothesized that the sterol #306 

and the unknown MST #193 originated from the exometabolome of S. marinoi. 

The discussion of metabolite flux between the diatom partners will be given in chapter 5.  
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Data exploration via CAP 

Overall Analysis 

I conducted the CAP on the basis of 342 MSTs, which I obtained after data pre-processing of 

35 exometabolomic samples from the interaction of T. weissflogii and S. marinoi. The first 

explorative data analysis indicated a strong influence of time on diatom exometabolomes, as well 

as similarities between the S. marinoi mono-cultivation and co-cultivation group within each 

sampling day. The exometabolomes of T. weissflogii and S. marinoi were distinctly different 

from each other. 

The PCoA score plot (Appendix 36) indicates a gradual separation of samples according to 

sampling days by principal coordinate axis 1 and a tendency of separation between treatments 

via principal coordinate axis 2. In the unconstrained analysis, mono-cultivated S. marinoi and 

mono-cultivated T. weissflogii were clearly separated by principal coordinate axis 2. While 

mono-cultivated T. weissflogii formed a distinct group on day 42 (quadrant III), samples from 

day 30 and 18 were mixed and thus very similar (quadrant II). Samples from mono-cultivated 

S. marinoi were clustered in three distinct sample groups according to the three sampling days, 

separated by principal coordinate axis 1. Co-cultivation samples formed distinct groups 

according to day 18, 30 and 42, but showed close proximity to mono-cultivated S. marinoi within 

each sampling day. While on day 18 and 30 both treatments were separable by a combination of 

axes 1 and 2, on day 42 they formed a homogenous sample group.  

The strong influence of time on diatom exometabolomes was supported by the CDA. Not only 

did the trace statistic confirm significant differences between the exometabolomes on day 18, 30 

and 42 (Table 11), but also did the misclassification error of 0 % confirm a strong classification. 

Considering the time-independent influence of treatment on exometabolomic dissimilarities, 

significant differences were found throughout all three sampling days (trace statistic: 

P = 0.0001). However, the misclassification error was highest with a-priori grouping by 

treatment (34.29 %, Table 11). This misclassification error was caused by the previously 

observed strong similarities between co-cultivation and S. marinoi mono-cultivation, as 

confirmed by the cross validation results (Appendix 37).  

If I considered time in addition to treatment (a-priori grouping by treatment per day), the 

classification was more successful (misclassification error 8.57 %). In the cross validation 

process (Appendix 38), treatments formed very distinct groups on day 30 and 42 with a 

reallocation success of 100 %. On day 18, T. weissflogii mono-cultivation and co-cultivation 

were very distinct groups as well. The misclassification error of 8.57 % was caused by mono-
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cultivated S. marinoi, as three out of four samples were wrongly reallocated to co-cultivation on 

day 18 and 30. 

In general, the overall analysis indicated that treatments significantly influence diatom 

exometabolomes. However, if I considered time as a factor as well, these differences were 

stronger during later stages of the interaction (day 38 and 42). For the identification of relevant 

exometabolites, both a-priori grouping by treatment and treatment per day was considered. To 

annihilate the strong influence of time in the CAP analysis, I performed subset analyses within 

each sampling day.  

Table 11: Permutation and cross-validation test results for the CAP analysis of different a-priori groups in the 

exometabolome analysis of the interaction between S. marinoi and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

Day 3 3 1.808 

(P = 0.0001) 

0.971 

(P = 0.0001) 
0 

Treatment 3 3 0.808 

(P = 0.0001) 

0.808 

(P = 0.0001) 
34.29 

Day & treatment 4 9 3.713 

(P = 0.0001) 

0.990 

(P = 0.0001) 
8.57 

Subset I: day 18 

treatment 
5 3 1.396 

(P = 0.035) 

0.987 

(P = 0.0005) 
33.33 

Subset II: day 30 

treatment 
2 3 1.308 

(P = 0.0001) 

0.994 

(P = 0.0001) 
0 

Subset III: day 42 

treatment 
1 1 0.921 

(P = 0.0002) 

0.921 

(P = 0.0002) 
8.33 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

Subset analysis per day 

The statistical diagnostics confirm significant differences between the treatments during all 

three sampling days (Table 11). As misclassification errors were lowest on day 30 and 42, the 

exometabolomic differences between the treatments were more distinct on later phases of diatom 

growth. These findings are also visible in the PCoA score plot (Appendix 40) and in agreement 

with the results of the overall analysis. 

The unconstrained analysis showed clear grouping of the treatments on day 30 and 42. On day 

30, principal coordinate axis 1 separated T. weissflogii mono-cultivation and axis 2 separated 

S. marinoi mono-cultivation from co-cultivation (Appendix 40B). However, as axis 1 explained 

68.72 % of the data variance and axis 2 only 12.26 %, previous findings were confirmed as the 

exometabolomes of mono-cultivated S. marinoi and co-cultivated species shared common traits 

and exhibited close proximity in multivariate space. On day 42, principal coordinate axis 1 was 

sufficient to separate the three treatments (Appendix 40C). Again, co-cultivation and S. marinoi 
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mono-cultivation exhibited close proximity in multivariate space. On day 18, these two 

treatments were inseparable by principal coordinate axis 1 and 2. However, T. weissflogii mono-

cultivation was distinctly separated by principal coordinate axis 1 (Appendix 40A). 

Identification of exometabolites correlating with relevant a-priori groups 

Overall Analysis 

In the overall analysis, I further investigated a-priori grouping by treatment and treatment per 

day. The constrained score plot of the CDA with a-priori grouping by treatment (Figure 31A) 

shows the separation of mono-cultivated T. weissflogii from the other treatments by canonical 

axis 1. S. marinoi mono-cultivation and co-cultivation samples shared close proximity and were 

located in quadrant III and IV. As the eigenvalue of canonical axis 2 was very low (value of 

0.023), the separation of samples by this axis did not exhibit strong explanatory power compared 

to axis 1. 

The corresponding loading plot (Figure 31B) indicates that the majority of highly correlated 

MSTs (|r| ≥ 0.6100, P ≤ 0.0001) were characteristic for S. marinoi mono-cultivation and / or co-

cultivation, as they were located in quadrant III and IV. A clear affiliation of MST vectors to 

treatment groups was difficult, as co-cultivation and S. marinoi mono-cultivation samples did not 

form distinct groups in the score plot (Figure 31A). However, I speculated that 7 - tetradecanol 

(#103 and #104) was characteristic for co-cultivation. An evaluation of the heatmap (Table 12) 

clarified that 7 - tetradecanol was indeed most abundant in co-cultivation on day 18. MSTs #137 

and #334 were characteristic for mono-cultivated T. weissflogii. 

The constrained score plot of the CDA with a-priori grouping by treatment per day (Figure 

31C) exhibits a pattern highly similar to the one described for the unconstrained analysis via 

PCoA. The majority of MST vectors in the corresponding loading plot (Figure 31D) was located 

in quadrant III and IV. Same applies to samples from co-cultivation and S. marinoi mono-

cultivation on day 30 and 42. Thus, the majority of MST vectors was highly correlating with 

named samples.  

Out of the remaining metabolites, MST #137 characterized mono-cultivated T. weissflogii, 

confirming the findings of the analysis with a-priori grouping by treatment. In general, only 

MSTs are depicted in the loading plot that exceeded a Pearson’s correlation coefficient of 

|r| ≥ 0.6100 and exhibited a significance P ≤ 0.0001. 
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Canonical Axis 1 (Eigenvalue 0.995)
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Figure 31: Constrained score and loading plots of exometabolomic samples from the overall analysis of the 

interaction between T. weissflogii and S. marinoi. 

The constrained score plots (graph A, C) visualize significant differences between the sample groups as found via 

CDA with a-priori groups by treatment (trace statistic P = 0.0001, misclassification error of 34.29 % for m = 3, graph 

A) and a-priori groups by treatment per day (trace statistic P = 0.0001, misclassification error of 8.57 % for m = 4, 

graph C). Vectors in the CAP loading plots (graph B, D) represent metabolites, characterized by their ID (red 

numbers). Only vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.6100 (P ≤ 0.0001) 

are plotted. The direction of the vectors in 2-dimensional space correlates with exometabolomic sample groupings 

shown in the score plots of the respective analysis.  

In the corresponding heatmap (Table 12), Group A comprises metabolites that were most 

abundant in co-cultivation on day 18 (A18), day 30 (A30) or day 42 (A42). Group B summarizes 

metabolites that were least abundant in co-cultivation, compared to both mono-cultivations on 

day 18 (B18) and day 30 (B30).  
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In Appendix 39, I clustered potential biomarkers for S. marinoi in group Sm(1) (characteristic 

for day 30 and 42) and Sm(2) (characteristic for day 42), as they demonstrated highest abundance 

in the S. marinoi mono-cultivation group compared to the other treatment groups. I observed that 

MST intensities were more similar between S. marinoi mono-cultivation and co-cultivation than 

between each of the groups and T. weissflogii mono-cultivation. Thus, the similarities in the 

exometabolomes of S. marinoi mono-cultivation and co-cultivation were further strengthened. 

Potential biomarkers for T. weissflogii are represented by groups Tw(1)-(3). MST #137 in group 

Tw(1) was most abundant on day 18, metabolites in group Tw(2) were characteristic for day 30 

and / or day 42 and those in group Tw(3) for day 42. 
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Table 12: Heatmap (part I) of exometabolite intensities for the overall analysis of the interaction between T. weissflogii and S. marinoi. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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103 187.1 9.89 1522 7-Tetradecanol Alc ¹ T 0 2 0 NA NA NA 2 0 -1 2.6 8.5 - - -4.1 282.9 

A 

18 

104 189.1 9.92 1526 7-Tetradecanol Alc ¹ T 0 1 0 NA NA NA 2 0 -1 3.0 8.4 - - -3.5 29.9 

119 217.1 10.46 1598 Unknown S  DT -1 -1 NA NA -1 NA 2 1 0 1.9 - - - -1.2 2.8 

206 321.2 13.44 2020 Gluconic acid 
S 

acid 
?¹ DT -1 -1 -1 1 1 -1 1 1 0 1.6 2.1 -1.1 3.1 1.0 3.2 

180 319.2 12.61 1881 Gluconic acid 1,5-lactone  S dv.  DT -1 -1 NA NA -1 NA 2 1 0 2.5 - - - -1.2 2.0 
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210 351.2 13.63 2055 Unknown U - DT -1 -1 -1 0 0 -1 2 1 0 3.0 2.1 -1.4 3.5 -1.3 2.5 

73 239.1 8.85 1385 Hydroquinone Alc   DT NA NA NA 0 1 0 2 1 0 - - 1.2 2.5 -1.3 2.0 

A 

30 

99 223.1 9.67 1493 4-Hydroxybenzaldehyde Alc  DT -1 -1 -1 0 0 0 2 1 0 -1.3 -1.1 1.0 1.7 -1.9 3.0 

53 113.1 8.00 1272 
2-(4-Methyl-1-

piperazinyl)ethanol 
Alk ? DT NA NA NA 0 0 NA 2 1 0 - - 1.2 - -1.4 3.2 

304 447.3 17.19 2674 Maltose S ??¹ DT,T 0 -1 -1 1 1 -1 1 1 -1 -1.5 2.3 1.2 7.1 -1.0 2.5 

270 217.1 16.08 2481 Uridine S dv.  DT -1 -1 NA 0 0 NA 1 2 0 -1.4 - 1.2 - 1.1 5.9 

275 145.1 16.22 2505 Uridine S dv. ??¹ DT NA NA NA 0 0 NA 2 1 -1 - - 1.0 - -1.5 23.0 

299 159.1 16.98 2638 Adenosine S dv. ? DT 0 -1 NA 0 1 -1 0 2 0 -1.8 - 1.4 5.0 2.0 2.4 

300 236.1 17.05 2649 Adenosine S dv.  DT -1 -1 -1 1 1 NA 1 1 -1 -7.5 1.1 1.1 - -1.0 937.5 

311 245.1 17.65 2755 Guanosine S dv.  DT -1 -1 -1 1 1 NA 1 1 0 -1.0 4.2 1.0 - 1.1 3.2 

59 292.1 8.22 1301 Unknown U - DT 0 NA NA 0 1 NA 1 2 0 - - 1.2 - 1.6 4.3 

241 300.1 14.88 2272 Unknown U - DT -1 NA -1 0 0 NA 0 2 1 - - 1.8 - 3.0 2.1 

260 287.2 15.59 2396 Unknown U - DT -1 -1 -1 0 1 0 1 1 1 -1.2 1.2 2.3 1.9 1.1 1.1 

Metabolite intensity Fold change 
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265 202.1 15.89 2449 Unknown U - DT NA NA -1 0 1 0 1 1 0 - - 1.2 2.3 -1.2 1.6 

278 217.1 16.29 2517 Unknown U - DT NA NA NA NA 0 NA 2 1 0 - - - - -1.3 4.6 

291 331.2 16.76 2599 Unknown U - DT NA NA NA 0 0 NA 2 1 0 - - 1.0 - -1.1 2.0 

330 204.1 19.19 3000 Unknown U - DT -1 -1 -1 0 0 -1 2 1 1 -1.6 -1.3 1.0 2.0 -1.2 1.4 

2 102.1 5.33 919 2-Aminoethanol A ? DT NA NA NA NA NA NA 1 2 0 - - - - 1.3 3.5 

A 

42 

27 152.1 6.60 1088 4-Pyridinol Alk ?¹ DT NA NA NA NA NA NA 1 2 1 - - - - 1.2 1.5 

69 240.1 8.68 1362 
6-Amino-2(1H)-

pyrimidinone (Cytosine) 
Alk  DT NA NA NA NA NA NA 2 2 0 - - - - 1.1 4.2 

141 170.1 11.31 1710 

6-Hydroxy-1,3-dimethyl-

2,4(1H,3H)-

pyrimidinedione 

Alk ??¹ DT NA NA NA NA NA NA 1 2 1 - - - - 1.7 1.8 

3 152.1 5.36 923 2-Pyridinol  Alk   DT NA NA NA NA NA NA 1 2 0 - - - - 1.2 2.7 

118 313.2 10.42 1592 Unknown S ? DT,T 0 0 NA 1 1 -1 1 1 0 -1.2 - -1.0 4.1 1.3 2.6 

127 205.1 10.86 1650 Unknown S  DT NA NA NA NA NA NA 1 2 0 - - - - 2.6 3.2 

184 319.2 12.72 1896 Galactose S * DT -1 -1 -1 0 0 -1 1 2 0 -3.4 -3.2 -1.2 2.3 1.3 3.8 

302 361.2 17.14 2666 Maltose? S ??¹ DT -1 NA NA NA NA NA 1 2 0 - - - - 1.4 5.7 

308 361.2 17.55 2737 Maltose S  DT -1 -1 -1 0 0 -1 2 2 0 -1.4 -1.0 -1.3 85.7 1.0 4.6 

145 138.1 11.50 1735 Xylitol S alc  DT NA NA NA NA NA NA 1 2 0 - - - - 1.4 3.7 

263 217.1 15.79 2431 Uridine S dv. ? DT NA -1 0 NA 0 0 0 2 1 - -2.7 - -1.0 2.4 1.5 

301 204.1 17.09 2656 Adenosine S dv.  DT 0 0 -1 NA NA NA 2 2 0 -1.4 1.6 - - 1.0 4.5 

8 184.1 5.66 963 Unknown U - DT NA NA NA NA -1 NA 1 2 0 - - - - 1.2 2.6 

35 188.1 6.88 1124 Unknown U - DT NA NA NA NA NA NA 2 2 0 - - - - 1.0 5.0 

44 166.1 7.51 1207 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.1 1.5 

49 231.1 7.81 1247 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.1 1.4 

72 213.1 8.75 1372 Unknown U - DT NA NA NA NA NA NA 1 2 0 - - - - 1.3 7.7 

81 199.1 9.13 1422 Unknown U - DT NA NA NA 2 0 NA 1 1 -1 - - -1.9 - 1.4 5.9 

88 205.1 9.29 1443 Unknown U - DT -1 NA NA NA -1 NA 1 2 0 - - - - 1.4 2.8 

90 143.1 9.37 1453 Unknown U - DT NA NA NA NA NA NA 1 2 0 - - - - 1.2 2.5 
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108 117.1 10.01 1538 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.3 1.1 

110 274.2 10.10 1550 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.0 1.3 

138 170.1 11.20 1696 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.7 1.7 

140 387.2 11.30 1708 Unknown U - DT NA NA NA 1 1 NA 1 1 NA - - -1.2 - 1.7 - 

168 143.1 12.22 1830 Unknown U - DT NA NA NA NA NA NA 1 2 0 - - - - 1.6 6.6 

170 143.1 12.28 1839 Unknown U - DT NA NA NA NA NA NA 1 2 0 - - - - 1.6 12.9 

177 191.1 12.53 1872 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.6 1.6 

179 166.1 12.57 1877 Unknown U - DT -1 NA NA 2 1 -1 0 0 0 - - -1.4 31.6 1.0 1.8 

187 387.2 12.82 1912 Unknown U - DT NA NA NA 2 1 NA 0 1 NA - - -2.2 - 2.1 - 

214 132 13.89 2099 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.3 2.0 

240 361.2 14.85 2267 Unknown U - DT NA NA NA NA NA NA 1 2 1 - - - - 1.5 1.2 

271 447.3 16.12 2488 Unknown U - DT,T 0 0 -2 1 0 -1 1 1 0 -1.1 2.1 -1.2 2.3 1.1 1.7 

273 459.3 16.18 2499 Unknown U - DT 0 -1 -1 0 -1 NA 1 1 1 -12.0 -4.9 -2.4 - 1.1 1.1 

283 179.1 16.51 2556 Unknown U - DT NA NA NA NA NA NA 1 2 0 - - - - 1.2 2.9 

288 277.1 16.67 2585 Unknown U - DT -1 -1 NA 0 -1 NA 1 2 0 3.4 - -3.5 - 1.5 2.9 

298 380.2 16.96 2634 Unknown U - DT -1 NA NA 0 -1 NA 1 2 0 - - -3.5 - 1.4 8.8 

305 399.1 17.20 2677 Unknown U - DT NA NA NA NA NA NA NA 2 1 - - - - - 1.7 

331 558.2 19.33 3023 Unknown U - DT NA NA NA 0 0 NA 1 2 0 - - -1.3 - 1.1 8.8 

139 186.1 11.26 1703 
4-Methyl-2,6-bis(2-

methyl-2-propanyl)phenol 
Alc ??¹ DT -1 NA NA 0 0 NA 2 1 0 - - -1.6 - -1.4 2.1 

B 

18 

11 148.1 5.88 992 
2-Oxopropanoic acid  

(Pyruvic acid) 
CA  DT 0 NA NA NA NA NA 1 1 1 - - - - -1.0 1.2 

339 204.1 24.29 3520 Maltotriose CS  DT -1 -1 -1 0 0 -1 2 1 0 

-2.6 

E+07 

-5.2 

E+06 
-1.1 2.5 -1.2 6.4 

114 235.1 10.33 1580 Pentofuranose S  DT -1 NA NA 1 0 NA 2 1 0 - - -1.2 - -1.2 1.9 

289 230.1 16.71 2591 Inosine S dv.  DT -1 NA NA 1 0 NA 2 1 -1 - - -1.6 - -1.3 5.8 
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306 327.2 17.23 2681 

Pregn-16-en-20-one, 3,18-

bis(acetyloxy)-14,15-

epoxy- 

ST ??¹ DT,T 0 NA NA 2 0 NA 1 0 NA - - -1.8 - -1.7 - 

150 221.1 11.68 1759 
Skel_MEDIA_C196 

(Vidoudez) 
U  DT NA NA -1 -1 -1 0 2 1 1 - - -1.4 -3.6 -1.2 1.1 

162 223.1 12.05 1808 Unknown U - DT -1 -1 -1 1 1 0 1 1 0 -4.9 -1.3 -1.1 2.3 -1.2 1.4 

193 327.2 13.04 1951 Unknown U - DT,T -1 NA NA 2 1 NA 1 1 NA - - -1.5 - -1.2 - 

198 146.1 13.15 1970 Unknown U - DT -1 NA NA 1 0 NA 2 1 -1 - - -2.2 - -1.5 16.2 

216 470.3 13.98 2116 Unknown U - DT -1 NA NA 0 0 NA 2 1 -1 - - -1.5 - -1.3 40.9 

297 171.1 16.93 2630 Unknown U - DT 0 NA NA 1 0 NA 2 1 -1 - - -2.1 - -2.3 130.8 

66 151.1 8.54 1343 2-Phenoxyethanol  Alc   DT NA NA NA 0 NA NA 2 1 0 - - - - -1.2 1.9 B 

30 251 204.1 15.29 2343 Galactosylglycerol  S dv.   DT -1 -1 -1 0 -1 0 1 1 2 1.3 -1.2 -1.1 -1.1 -1.1 -1.3 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT) and with a-priori grouping by treatment (T). Metabolites 

were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed match between 

600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid 

(Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown 

(U). Vidoudez refers to an MST code given by the in-house library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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Subset analysis per day 

The constrained analysis within each sampling day resulted in a clear separation of the three 

treatments on day 18, 30 and 42 in the constrained score plots (Figure 32). The corresponding 

loading plots depicts metabolites that were highly correlating with the separation of treatments 

(day 18 and 42: |r| ≥ 0.8233, P ≤ 0.001; day 30: |r| ≥ 0.8470, P ≤ 0.001). In general, the majority 

of vectors was correlating with co-cultivation and S. marinoi mono-cultivation. 

On day 18, the separation of treatments was established by canonical axis 1 (Figure 32A). 

Furthermore, canonical axis 2 established a gradual separation between co-cultivation and mono-

cultivation of S. marinoi. Both treatments exhibited close proximity in multivariate space. The 

corresponding loading plot (Figure 32B) indicates that the clear majority of metabolites was 

correlating with co-cultivation and mono-cultivation of S. marinoi. 7-Tetradecanol (#103) 

characterized co-cultivation on day 18 and metabolites #39 (3-hydroxy-3-methylbutanoic acid), 

#136, #137 and #263 (uridine) were correlating with mono-cultivated T. weissflogii. 

On day 30, the relationship of canonical axis 1 and 2 with the separation of treatments in the 

constrained score plot (Figure 32C) was identical with the one on day 18. Furthermore, a distinct 

instead of a gradual separation of mono-cultivated S. marinoi (quadrant IV) and co-cultivation 

(III) was visible. In the corresponding loading plot (Figure 32D), only MST #334 was correlating 

with T. weissflogii on day 30. The allocation of metabolites to S. marinoi mono-cultivation and 

co-cultivation was difficult via loading plot and was performed on the basis of a heatmap. 

On day 42, canonical axis 1 was sufficient to separate the treatments (Figure 32E). 

Interestingly, all highly correlated metabolites were characteristic for co-cultivation and mono-

cultivated S. marinoi. Both the samples of these groups, as well as all MST vectors in the 

corresponding loading plot were located on the right side of the origin (Figure 32F).  
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Figure 32: Constrained score and loading plots of exometabolomic samples from the daywise subset analysis of the 

interaction between T. weissflogii and S. marinoi. 

The constrained score plots (graph A, C, E) visualize significant differences between the treatments, as confirmed 

via CDA for the subset analysis on day 18 (graph A, B), day 30 (graph C, D) and day 42 (graph E, F). These 

differences between treatments are highly significant (Table 11). Vectors in the CAP loading plots (graph B, D, F) 

represent metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a significant 

correlation coefficient above the critical value of |r| ≥ 0.8233 (P ≤ 0.001) for day 18 and 42 and |r| ≥ 0.8470 

(P ≤ 0.001) for day 30 are plotted. The direction of the vectors in 2-dimensional space correlates with 

exometabolomic sample groupings shown in the score plots of the respective analysis. 
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To further unravel the affiliation of correlated metabolites with distinct a-priori groups, I created 

heatmaps for the subset analysis of each day, visualizing intensity dynamics of all highly 

correlated MTs over treatments and time. The complete heatmaps55 are depicted in the appendix 

(day 18: Appendix 41, day 30: Appendix 42 and day 42: Appendix 43). I conducted a 

classification according to the following intensity patterns: group A summarizes metabolites that 

exhibited highest abundance in co-cultivation on the respective day. Group Sm summarizes 

potential biomarkers for S. marinoi and group Tw comprises potential biomarkers for 

T. weissflogii. As only groups A of the daywise subset analysis were relevant in the screening for 

interaction specific release and / or uptake of potential infochemicals, I additionally summarized 

them in Table 13.  

The daywise subset analysis indicated eight MSTs that were characteristic for the co-cultivation 

group, as they were highest abundant in co-cultivation compared to both mono-cultivations 

(Table 13). The co-cultivation group was characterized by 7-tetradecanol (#103) and an 

unknown MST (#132) on day 18, by adenosine (#300), guanosine (#311) and MST #208 on day 

30, as well as by phenylalanine (#111), gluconic acid (#206) and an unknown sugar (#118) on 

day 42. 

 

                                                 
55 Metabolites #30 (dodecamethylpentasiloxane), #159 (terephtalic acid) and #280 (diphenyl phthalate) were 

excluded, as they were considered potential contaminations 
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Table 13: Partial Heatmap of relative exometabolite intensities for the daywise subset analysis of the interaction between T. weissflogii and S. marinoi. 

Only metabolites are depicted that contain metabolites with highest abundance in co-cultivation on the respective day. Medians of MST intensities, normalized to the external standard 

ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low intensities (blue). White indicates the absence of 

the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by black lines), class and RI. Only metabolites significantly correlating 

with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to mono-cultivations is given and coded with a second 

color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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103 187.1 9.89 1522 7-Tetradecanol Alc ¹ 0 1 -1 2.6 8.5 
A (Day 18) 

132 187.1 11.03 1672 Unknown U - 0 1 NA 1.2 - 

300 236.1 17.05 2649 Adenosine S dv.   1 1 NA 1.1 - 

A (Day 30) 311 245.1 17.65 2755 Guanosine S dv.  1 1 NA 1.0 - 

208 221.1 13.55 2040 Unknown U - 0 1 NA 1.2 - 

111 120.1 10.14 1555 Phenylalanine AA   0 1 NA 1.4 - 

A (Day 42) 118 313.2 10.42 1592 Unknown S ? 0 1 -1 1.3 2.6 

206 321.2 13.44 2020 Gluconic acid S acid ?¹ 1 1 -1 1.0 3.2 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and retention index 

(RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed 

match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol 

(Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others 

(O), unknown (U). Vidoudez refers to an MST code given by the in-house library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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Screening for interaction specific release and / or uptake of potential infochemicals 

On the basis of observed exometabolomic differences between the treatments and the highly 

correlated metabolites (as presented in the previous subchapters), hypotheses about interaction 

specific release and/or uptake of potential infochemicals were drawn. The underlying principle 

used in the screening process is explained in chapter 2.2.3. Three prominent abundance patterns 

aimed at unraveling potential interaction-induced release / uptake processes.  

It is important to note that the categorization of MSTs by day was not only performed on basis 

of visual intensity dynamics, but mainly on the significance of correlation, as given by the CAP 

analysis.  

Enhanced abundance of exometabolites in co-cultivation - Pattern I: 

During the screening process, 66 MSTs were identified in the overall and subset analyses of the 

exometabolomic investigation as potential candidate molecules matching pattern I. They were 

all characterized by enhanced abundance in co-cultivation, relative to both mono-cultivation 

groups. Thus, potentially indicating interaction-induced release mechanisms. While only eight 

of them were correlating with day 18 and 17 with day 30, the majority (41) of the identified 

MSTs were correlating with day 42 and thus late stages of the interaction. The MSTs originated 

from groups A18, A30 and A42 of the overall analysis and group A(Day18), A(Day30) and 

A(Day42) of the daywise subset analyses (Table 12, Table 13).  

A comprehensive summary of the temporal intensity dynamic of all metabolites of pattern I is 

visualized via boxplots in the appendix (Appendix 44 - Appendix 46). Subsequently, only 

representative metabolites, segmented by day, will be shown to highlight prominent intensity 

dynamics. 

Day 18 

The intensity dynamics of MSTs correlating with day 18 were classified in three categories: 

(1) MSTs with distinct temporal increase / decrease dynamics 

Among metabolites with distinct temporal dynamics, a time dependent increase dynamic within 

each treatment group in combination with enhanced abundance in co-cultivation on day 18 was 

observed for putative gluconic acid (#206), MST #132 and #210 (Figure 33). 
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Metabolite #132
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Figure 33: Exemplary metabolite #132 with interaction-induced release mechanism on day 18 and distinct temporal 

regulation, in the interaction between T. weissflogii and S. marinoi (intensity pattern I). 

(2) MSTs correlated with day 18, but predominant on day 42 

Secondly, gluconic acid 1,5-lactone (#180) and the unknown MST #119 matched pattern I on 

day 18, but were predominant on day 42 (Figure 34). Although these metabolites might play a 

role as potential infochemicals mediating the interaction, their relevance was estimated to be low 

due to their very low relative abundance on day 18. 

Metabolite #180 - Gluconic acid 1,5-lactone 
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Figure 34: Exemplary MST #180 with interaction-induced release mechanism on day 18 but predominance on day 

42 in the interaction between T. weissflogii and S. marinoi (intensity pattern I).  

  



154   Interaction of T. weissflogii with S. marinoi 

(3) MSTs with predominance in S. marinoi 

Forming the 3rd category, putative 7-tetradecanol (#103, #104) and MST (#205) were 

characteristic for S. marinoi, as they were most abundant in S. marinoi mono- and co-cultivation 

and almost absent in T. weissflogii mono-cultivation (Figure 35). As they matched pattern I on 

day 18, they might be released by S. marinoi due to the interaction. 

Metabolite #205
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Figure 35: Exemplary MST #205 with interaction-induced release mechanism on day 18 and potential origin from 

S. marinoi in the interaction between T. weissflogii and S. marinoi (intensity pattern I).  

Day 30 

Most of the metabolites that exhibited pattern I on day 30 were characterized by a distinct 

temporal increase dynamic, as visualized with the help of MST #260 (Figure 36). In total, 15 

exometabolites were temporally regulated. Of those metabolites, hydroquinone (#73), 4-

hydroxybenzaldehyde (#99), putative uridine (#275), putative adenosine (#299, #300), putative 

maltose (#304) and three unknown metabolites (#265, #291, #330) exhibited pattern I on day 30 

only. On the other hand, uridine (#270), guanosine (#311) and four unknown MSTs (#59, #208, 

#241, #260) showed pattern I on day 30 and 42. 
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Metabolite #260
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Figure 36: Exemplary MST #260 with interaction-induced release on day 30 and distinct temporal regulation 

mechanism, in the interaction between T. weissflogii and S. marinoi (intensity pattern I).  

The remaining two metabolites, putative 2-(4-methyl-1-piperazinyl)ethanol (#53) and MST 

#278, were not only characterized by increased metabolite abundance in co-cultivation, relative 

to mono-cultivation on day 30, but also by absence on day 18 and intensity maxima on day 42 

(Figure 37). Thus, these metabolites were characteristic for the stationary phase of growth. 

Metabolite #53 - 2-(4-Methyl-1-piperazinyl)ethanol
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Figure 37: Exemplary MST #53 with interaction-induced release mechanism on day 30 in the interaction between 

T. weissflogii and S. marinoi (intensity pattern I).  
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Day 42 

The majority of all candidate metabolites with enhanced abundance in co-cultivation was 

correlating with day 42. In general three characteristic intensity dynamics were observed: 

(1) Metabolites with predominance on day 42 

(2) Metabolites with distinct temporal increase / decrease dynamics  

(3) Metabolites with rather unspecific abundance on all sampling days. 

A typical temporal dynamic of an MST with predominance on day 42 is visualized in Figure 

38 via putative 4-pyridinol (#27). Besides putative 2-aminoethanol (#2), 2-pyridinol (#3), 

putative 4-pyridinol (#27), cytosine (#69), putative 6-hydroxy-1,3-dimethyl-2,4(1H,3H)-

pyrimidinedione (#141), xylitol (#145), adenosine (#301) and putative maltose (#302), another 

ten unknown metabolites56 followed this trend. 

Metabolite #27 - 4-Pyridinol
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Figure 38: Exemplary MST #27 with interaction-induced release mechanism on day 42 and predominance on this 

day in the interaction between T. weissflogii and S. marinoi (intensity pattern I).  

Among metabolites with a distinct temporal dynamic, phenylalanine (#111), galactose (#184), 

putative gluconic acid (#206), putative uridine (#263), maltose (#308) and five unknown 

metabolites57 exhibited a distinct temporal increase dynamic, as visualized in Figure 39. 

Furthermore, MST #179 was also temporally regulated, although there was no clear trend visible. 

                                                 
56 Metabolites #8, #35, #44, #49, #72, #90, #108, #110, #127, #138, #168, #170, #177, #214, #240, #283, #298, 

#305 
57 Metabolites #118, #271, #273, #288, #331 
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Metabolite #179
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Metabolite #206 - Gluconic acid
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Figure 39: Exemplary MST #206 and #179 with interaction-induced release mechanism on day 42 and distinct 

temporal regulation in the interaction between T. weissflogii and S. marinoi (intensity pattern I).  

Thirdly, metabolites #81, #88, #140 and #187 were characterized by pattern I on day 42, but 

exhibited rather unspecific abundance on day 30 and 42 without distinct increase / decrease 

dynamics (Figure 40). 

Metabolite #81
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Figure 40: Exemplary MST #81 with interaction-induced release mechanism on day 42 in the interaction between 

T. weissflogii and S. marinoi (intensity pattern I). 

Reduced abundance of exometabolites in co-cultivation - Pattern II / III:  

The second major trend revealed in the screening process for potential infochemicals in the 

interaction between S. marinoi and T. weissflogii are MSTs with reduced abundance of 

exometabolites in co-cultivation. In summary, 14 exometabolites were characterized by pattern 

II or pattern III on at least one sampling day. They were classified as group B in the overall CAP 

analysis (Table 12). 
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An evaluation of the candidate metabolites matching pattern III in the heatmap via boxplots 

indicated that eight MSTs did indeed show abundance in co-cultivation, which was not apparent 

if the median was used in the heatmaps (Appendix 47)58. As, strictly speaking, these metabolites 

did not fit pattern III, they were subsequently excluded. 

Day 18 

Four of the remaining six MST candidates were correlating with day 18. Maltotriose (#339) and 

MST #162 were present in the exometabolomes of S. marinoi and T. weissflogii and increased in 

intensity to reach maximum values in the stationary phase of growth (day 30 and 42). On day 18, 

these metabolites matched pattern II, exhibiting lowest concentrations in co-cultivation (Figure 

41). 

Metabolite #339 - Maltotriose
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Metabolite #162
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Figure 41: Potential infochemical with interaction-induced uptake, transformation or reduced release mechanisms 

on day 18 in the interaction between T. weissflogii and S. marinoi (intensity pattern II). 

The sterol 3,18-bis(acetyloxy)-14,15-epoxy-)-pregn-16-en-20-one (#306, putatively identified), 

as well as MST #193 presented themselves as very interesting candidate molecules, matching 

pattern II / III (Figure 42). Both were characteristic for the exometabolome of S. marinoi, as they 

were completely absent in mono-cultivated T. weissflogii and exhibited pattern III on day 18.  

MST #193 showed highest abundance in the stationary phase of growth (day 30 and 42) and 

was present at comparably low concentrations on day 18. On the contrary, the sterol #306 

exhibited similar intensities in S. marinoi mono-cultivation throughout all three sampling days. 

In general, both metabolites potentially originated from S. marinoi and were involved in an 

interaction-induced uptake, transformation or reduced release mechanism on day 18. The very 

                                                 
58 Metabolites #11, #114, #139, #150, #198, #216, #289, #297 
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clear intensity pattern on day 18, as well as over treatments and time stressed the importance of 

both metabolites as potential infochemical, involved in mediating the interaction at the onset of 

the observed growth effect. 

Metabolite #306
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Metabolite #193
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Pregn-16-en-20-one, 3,18-bis(acetyloxy)-14,15-epoxy-

 

Figure 42: Exemplary metabolites #193 and #306 with interaction-induced uptake, transformation or reduced 

release mechanisms on day 18 in the interaction between T. weissflogii and S. marinoi (intensity pattern III). 

Day 30 and 42 

Galactosylglycerol (#251) matched intensity pattern II on day 30 and 42 and exhibited a 

temporal increase dynamic within each treatment group (Figure 43). Accordingly, this 

metabolite shaped the exometabolomes of the diatom cultures during late diatom growth stages 

and was potentially involved in uptake, transformation or reduced release mechanisms on day 30 

and 42. Glycolipids play a fundamental role in plants, eukaryotic algae and cyanobacteria. They 

occur in the membrane of chloroplasts. are important signal and regulatory molecules and were 

found to exhibit antiviral, antifungal and antitumor properties ((Da Costa et al., 2016) and 

references herein, (Harwood and Guschina, 2009)). 

2-Phenoxyethanol (#66) matched pattern III on day 30 and was predominant on day 42 (Figure 

43). However, this metabolite showed rather large variance on day 30 and was only present in 

mono-cultivated S. marinoi on this day, while it was characteristic for both species on day 42. 

Therefore, the meaning of this metabolite as interaction-induced infochemical was rated rather 

low. 
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Metabolite #66 - 2-Phenoxyethanol 

D
a
y
 1

8
 S

M
 M

o
n
o

D
a
y
 1

8
 C

o

D
a
y
 1

8
 T

W
 M

o
n
o

D
a
y
 3

0
 S

M
 M

o
n
o

D
a
y
 3

0
 C

o

D
a
y
 3

0
 T

W
 M

o
n
o

D
a
y
 4

2
 S

M
 M

o
n
o

D
a
y
 4

2
 C

o

D
a
y
 4

2
 T

W
 M

o
n
o

N
o
rm

a
liz

e
d
 r

e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d
e
l 
io

n
 (

1
5
1
.1

 m
/z

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Metabolite #251 - Galactosylglycerol 
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Figure 43: Exemplary MST #66 and #251 with interaction-induced uptake, transformation or reduced release 

mechanisms on day 30 and 42 in the interaction between T. weissflogii and S. marinoi (intensity pattern II / III). 
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3.2.4 Endometabolomic investigation  

In the interaction between T. weissflogii and S. marinoi, the presence of the interaction partner 

induced significant endometabolomic changes. This concerned day 30 in T. weissflogii and day 

18 and 42 in S. marinoi. Generally, 224 MSTs were highly correlating with significant 

differences between a-priori groups in T. weissflogii and 172 MSTs in S. marinoi. 

I rated the influence of the interaction on T. weissflogii endometabolomes weaker than the one 

on S. marinoi, as the influence of time. Similar to the interaction of T. weissflogii and S. costatum, 

species affiliation was strongly shaping diatom endometabolomes.  

In summary, the endometabolomic changes of T. weissflogii, induced by the interaction with 

S. marinoi, were mainly apparent in the downregulation of many metabolite classes on day 30. 

Amino acids were most abundant on day 18 and relevantly downregulated on day 18 and 30. I 

observed a similar pattern in complex sugars, which were generally downregulated in co-

cultivation on day 18 and 30. Fatty acids and their derivatives characterized the stationary growth 

phase (day 30 and 42) and shared the tendency of downregulation in co-cultivation on day 30. 

With exception of few metabolites, the same observation holds for amines, alcohols, alkaloids, 

sugars, complex sugars, sterols and the hydrocarbon 14-heptacosanone (#358). Among 

carboxylic acids, I observed a trend of upregulation in co-cultivation on day 18 with subsequent 

downregulation on day 30 and 42. 

Generally, the interaction-induced regulation of the endometabolome of S. marinoi seemed 

more complex than the one of T. weissflogii. I observed no consistent comprehensive trend, but 

a trend of upregulation in co-cultivation, which was not specific for a single sampling day and 

not observed in T. weissflogii. Alcohols, carboxylic acids, fatty acids, sugars, complex sugars 

and their derivatives did not exhibit clear trends. In the class of sugars and derivatives, the picture 

was rather complex. Amino acids were most abundant on day 18, fatty acids on day 30 and 42 

and complex sugars characterized only day 42. 

Interestingly, sterols exhibited a very distinct regulation pattern of upregulation in co-cultivation 

on day 18 and downregulation on day 42. Among amines and their derivatives, the regulation of 

putrescine (#173) was oppositional to the one observed in T. weissflogii, as it was upregulated 

on day 18 and 30. Also oppositional was the regulation of 1H-pyrrole-2-carboxylic acid (#82), 

which was upregulated on day 18 as well.  
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I performed the endometabolomic investigations in the manner of descriptive analyses. Their 

main purpose was to qualitatively describe metabolomic alterations within the organisms and to 

potentially support hypotheses drawn from the exometabolomic investigations. 

In the endometabolomic investigation of the interaction between T. weissflogii and S. marinoi, 

I analyzed 71 samples resulting in 403 MSTs. After the onset of the interaction experiment, I 

took endometabolomic samples on days 18, 30 and 42. I performed the analysis as described in 

the interaction of T. weissflogii and S. costatum (chapter 2.1.2). The endometabolome of 

T. weissflogii was normalized to a count of 1.9 × 107 diatom cells, the endometabolome of 

S. marinoi to a count of 5 × 107 diatom cells (see chapter 6.6.2).  

Data exploration via CAP 

The unconstrained score plot of the PCoA visualizes clear separation of samples by species via 

principal coordinate axis 1 and a gradual separation of S. marinoi samples by time via principal 

coordinate axis 2 (Appendix 48). T. weissflogii samples formed a rather homogenous group, 

without temporal gradient. The CDA confirmed the very strong influence of species and time on 

diatom endometabolomes, as the trace statistic for the corresponding a-priori groups was highly 

significant and the misclassification error amounted to 0 % (P ≤ 0.0001, Table 14).  

Furthermore, the overall analysis indicated significant differences in diatom endometabolomes 

due to treatment, as the trace statistic for a-priori grouping by treatment and treatment per day 

was highly significant (P ≤ 0.0001, Table 14). To further unravel these interaction-induced 

changes, I performed subset analyses. 

Table 14: Permutation and cross-validation test results for the overall analysis of different a-priori groups in the 

endometabolome analysis of the interaction between S. marinoi and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

Species 1 2 0.974 

(P ≤ 0.0001) 

0.974 

(P ≤ 0.0001) 
0 

Day 11 3 1.721 

(P ≤ 0.0001) 

0.921 

(P ≤ 0.0001) 
0 

Treatment 9 4 1.660 

(P ≤ 0.0001) 

0.993 

(P ≤ 0.0001) 
16.90 

Day & treatment 11 12 5.425 

(P ≤ 0.0001) 

0.995 

(P ≤ 0.0001) 
12.68 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 
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Species-specific subset analysis 

The species-specific subset analyses confirmed the findings of the overall PCoA. Generally, 

time had a stronger influence on endometabolomic alterations in S. marinoi, compared to 

T. weissflogii.  

The PCoA score plot of S. marinoi shows a clear separation of the three sampling days via 

principal coordinate axis 1 (Appendix 49B). However, within each sampling day no distinct 

grouping by treatment was observed. In the context of T. weissflogii, samples from day 18 formed 

a homogenous group in quadrant I without distinct demarcation according to treatments 

(Appendix 49A). Samples from day 30 and 42 were represented by a rather widespread group, 

which was mainly located in quadrant II and III. Interestingly, co-cultivation samples on day 30 

were distinctly different, as they were located in quadrant IV. 

Again, I confirmed the strong influence of time with the CDA via highly significant trace 

statistic and misclassification errors of 0 % in both species (P ≤ 0.0001, Table 15). Considering 

interaction-induced endometabolomic alterations, I found significant differences due to treatment 

in S. marinoi endometabolomes. Both, a-priori grouping by treatment and treatment per day 

yielded significant trace statistics, as well as misclassification errors of 5.56 % (P ≤ 0.01, Table 

15).  

On the other hand, the endometabolomes of T. weissflogii only exhibited significant differences 

due to treatment if time was regarded as factor (a-priori grouping by treatment per day, 

P ≤ 0.0001, Table 15). In a time-independent approach, via a-priori grouping by treatment, I 

didn’t find treatments to be significantly different in T. weissflogii. Thus, compared to S. marinoi, 

I graded the influence of the interaction on T. weissflogii endometabolomes weaker. 

To get more insights into interaction-induced endometabolomic alterations and to further 

specify the origin of these significant differences, I analyzed daywise subsets per species. 
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Table 15: Permutation and cross-validation test results for the species-specific subset analysis of different a-priori 

groups in the endometabolome analysis of the interaction between S. marinoi and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

T. weissflogii: day 4 3 1.723 

(P ≤ 0.0001) 

0.910 

(P ≤ 0.0001) 
0 

T. weissflogii: treatment 13 2 0.467 

(P = 0.3808) 

0.467 

(P = 0.3808) 
8.57 

T. weissflogii: 

day & treatment 
13 6 3.293 

(P ≤ 0.0001) 

0.983 

(P = 0.0001) 
5.71 

S. marinoi: day 1 3 0.941 

(P ≤ 0.0001) 

0.941 

(P ≤ 0.0001) 
0 

S. marinoi: treatment 9 2 0.606 

(P = 0.0073) 

0.606 

(P = 0.0073) 
5.56 

S. marinoi:  

day & treatment 
9 6 2.971 

(P ≤ 0.0001) 

0.989 

(P ≤ 0.0001) 
5.56 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

Daywise subset analysis per species 

The daywise analysis via CDA indicated that interaction-induced differences in the 

endometabolomes were significant on day 30 for T. weissflogii and on day 18 and 42 for 

S. marinoi. On those days, the trace statistic was significant (P ≤ 0.029) and the classification 

according to treatments was very strong, as could be shown with a misclassification error of 0 % 

(Table 16). However, these differences remained hidden in the PCoA score plots (Appendix 

50). I observed no clear separation of mono- and co-cultivation samples. 

Table 16: Permutation and cross-validation test results for the species-specific and daywise subset analysis of 

different a-priori groups in the endometabolome analysis of the interaction between S. marinoi and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

T. weissflogii: day 18 5 2 0.747 

(P = 0.1494) 

0.747 

(P = 0.1494) 
0 

T. weissflogii: day 30 3 2 0.869 

(P ≤ 0.0001) 

0.869 

(P ≤ 0.0001) 
0 

T. weissflogii: day 42 8 2 0.459 

(P = 0.9586) 

0.459 

(P = 0.9586) 
8.33 

S. marinoi: day 18 5 2 0.873 

(P = 0.0294) 

0.873 

(P = 0.0294) 
0 

S. marinoi: day 30 6 2 0.881 

(P = 0.1182) 

0.881 

(P = 0.1182) 
0 

S. marinoi: day 42 5 2 0.929 

(P ≤ 0.0001) 

0.929 

(P ≤ 0.0001) 
0 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 
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Identification of metabolites correlating with relevant a-priori groups  

I conducted the identification of metabolites correlating with interaction-induced 

endometabolomic alterations on the basis of the species-specific analyses (T. weissflogii: a-priori 

grouping by treatment per day, S. marinoi: a-priori grouping by treatment and treatment per day) 

and the daywise analyses (T. weissflogii: day 30, S. marinoi: day 18 and 42), which showed 

significant differences.  

T. weissflogii 

The constrained score plot visualizes the significant differences between a-priori grouping by 

treatment per day in T. weissflogii (Figure 44A), as they were already described in the species-

specific subset analysis (Table 15). All three sampling days formed distinct groups: Samples 

from day 18 were located in quadrant III and IV and were separated by canonical axis 1 from the 

other two sampling days. Samples from day 42 were located in quadrant II and samples from day 

30 in quadrant I. While no separation of mono- and co-cultivation samples was visible within 

day 18 and 42, the treatments were clearly separated by canonical axis 2 during sampling day 30. 
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Figure 44: Constrained score and loading plot of endometabolomic samples from T. weissflogii in a species-specific 

subset analysis of the interaction between T. weissflogii and S. marinoi. 

The constrained score plot visualizes significant differences between the sample groups as found via CDA with a-

priori groups by treatment per day (trace statistic P ≤ 0.0001, misclassification error of 5.71 % for m = 13, graph A). 

Vectors in the CAP loading plot (graph B) represent metabolites, characterized by their ID (red numbers). Only 

vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.6100 (P ≤ 0.0001) are plotted. The 

direction of the vectors in 2-dimensional space correlates with endometabolomic sample groupings shown in the 

score plots of the respective analysis.  
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The loading plot depicts 122 MSTs that were highly correlating with the separation of a-priori 

groups (|r| ≥ 0.6100, P ≤ 0.0001; Figure 44B). I performed further categorization of the MST 

vectors via heatmap (Table 17, Appendix 51). 

The constrained score plot of the daywise analysis of day 30 shows a clear separation of mono- 

and co-cultivated samples by canonical axis 1 (Figure 45A). In total, 11 metabolites were 

significantly correlating with the endometabolome of T. weissflogii in co-cultivation on day 30, 

comprising gulonic acid (#228, #230), galactono-1,4-lactone (#231), myo-inositol (#242, #254), 

an unknown endometabolite already described within S. marinoi cells 

(Skel_Cell_C128_RT14.776 (#265-268), (Vidoudez, 2010)) and two unknown metabolites. 

Furthermore, 135 metabolites59 were correlating with the endometabolome in mono-cultivation 

on this day (|r| ≥ 0.6021, P ≤ 0.05; Figure 45B).  
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Figure 45: Constrained score and loading plots of endometabolomic samples from T. weissflogii in a daywise subset 

analysis on day 30 of the interaction between T. weissflogii and S. marinoi. 

The constrained score plot (graph A) visualizes significant differences between the treatments, as confirmed via 

CDA for the subset analysis on day 30. These differences between treatments are highly significant (trace statistic 

P ≤ 0.0001, misclassification error of 0 % for m = 3). Vectors in the CAP loading plot (graph B) represent 

metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a significant correlation 

coefficient above the critical value of |r| ≥ 0.6021 (P ≤ 0.05) are plotted. The direction of the vectors in 2-dimensional 

space correlates with endometabolomic sample groupings shown in the score plots of the respective analysis.  

                                                 
59 #4, #12-15, #17, #18, #25, #28, #30, #31, #37-40, #43, #45, #49, #53, #54, #58, #62, #65, #66, #67, #71, #76-

79, #90, #92, #101-104, #108, #112, #117, #119, #126, #128-131, #134, #138, #147, #150, #151, #159, #165, #167-

169, #173, #176, #178-180, #182, #187, #195, #200, #201, #204, #215, #221, #222, #224, #232, #237, #241, #243, 

#245, #248, #263, #273, #276-278, #287, #288, #292, #293, #295, #296, #298-300, #302, #303, #307, #308, #310, 

#312, #313, #316-318, #320-323, #238, #331-333, #335-339, #343, #347, #350, #352, #354, #356, #358, #359, 

#363, #367, #369 
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To gain a better understanding of the character and association of relevant MSTs to the 

investigated a-priori groups, I summarized all highly correlated metabolites in a heatmap (Table 

17). To facilitate the interpretation, the heatmap was categorized by metabolite classes and 

ordered by intensity patterns within each class. It is important to point out that all metabolites 

identified by the daywise analyses were mainly considered relevant for the separation of 

treatments within the respective day of the analysis. I summarized all MSTs of unknown identity 

in Appendix 51. 

Interestingly, a multitude of the correlated metabolites was characterized by rather small 

intensity differences between mono- and co-cultivation within each sampling day. By only 

considering metabolites that exhibited intensity differences ≥ 30 %60, the focus was set on 

relevant changes in endometabolite levels. Only the metabolites complying with this criterion 

were considered relevantly up- or downregulated in co-cultivation. Furthermore, the overall 

abundance dynamic of each MST was taken into consideration and especially those points in 

time with high MST abundance, relative to other time points, were considered relevant and 

evaluated in the context of interaction-induced regulation. Subsequently, I describe only relevant 

up- or downregulations. 

Among amines, putrescine (#173) was downregulated in co-cultivation on day 18 and 30 before 

reaching equal levels in both treatments on day 42. Generally, the amount of putrescine (#173) 

within each cell increased over time. Putative urea (#56) exhibited a similar temporal trend. 

However, on day 18, putative urea was 2.4 - fold upregulated in co-cultivation. Similar to 

putrescine, urea levels were equal in both treatments on day 42. 1H-pyrrole-2-carboxylic acid 

(#82) was downregulated on day 30 and exhibited approximately equal MST intensities among 

mono- and co-cultivation on day 18 and 42. While the three amine candidates were most 

abundant on either day 18 or day 42, they shared the common trait of absence in co-cultivation 

on day 30. 

In total, seven amino acids and two amino acid derivatives were correlating with the separation 

of treatments in T. weissflogii. With the exception of threonine (#67), all metabolites of this class 

were most abundant on day 18 and downregulated in co-cultivation, with up to 35.6 - fold61 

higher values in mono-cultivation on day 18 and 30. While valine (#12, #49), alanine (#13, #14), 

serine (#59), isoleucine (#66), proline (#69), glycine (#72), pyroglutamic acid (#123) and N-

acetylglutamic acid (#126) followed this trend, threonine (#67) was only abundant on day 30. 

                                                 
60 as identified via fold–changes |x |≥ 1.3 
61 N-acetylglutamic acid (#126) on day 30 
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Furthermore, this metabolite was highly characteristic for mono-cultivated T. weissflogii, as it 

was downregulated in co-cultivation until under the detection limit of the method. 

Considering the class of alcohols, I putatively identified three metabolites. On the one hand, 

glycerol (#20) was upregulated in co-cultivation on day 18 and 42. On the other hand, 1,2,3-

butanetriol (#40) and 1,12-dodecanediol (#169) were downregulated until under the detection 

limit of the method on day 30 and were thus responsible for the separation of treatments on this 

day. While 1,12-dodecanediol (#169) exhibited a trend of significant downregulation throughout 

all three sampling days, 1,2,3-butanetriol (#40) was standing out on day 30 only and showed 

similar intensity levels among co- and mono-cultivation on the remaining days. 

Interestingly, among the class of alkaloids all three candidates showed a tendency of 

downregulation in co-cultivation throughout all sampling days. However, the intensity deviations 

on day 18 and 42 were smaller than the determined 30 %. Putative 3-pyridinol (#4), putative 6-

methyl-3-pyridinol (#38, #39) and lumichrome (#79) were identified in the daywise analysis on 

day 30 and were thus responsible for the separation of treatments on this day. 

Relevant changes in the carboxylic acid class concerned glycolic acid (#11) and 3-hydroxy-3-

methylbutanoic acid (#47), which were upregulated in co-cultivation on day 18, putative 3-

hydroxybutanoic acid62 (#17), which was downregulated on all sampling days – with up to 

23 - fold higher values in mono-cultivation – and benzoic acid (#57), which was downregulated 

on day 42. Considering the temporal dynamic of carboxylic acids, putative 3-hydroxybutanoic 

acid (#17) and 3-hydroxy-2-methylpropanoic acid (#29) were characteristic for the stationary 

growth phase, while the remaining carboxylic acids were almost absent on day 30 in both 

treatments and rather characterizing regular growth phase and late stationary growth phase. 

Interestingly, all metabolites affiliated with the class of fatty acids and their derivatives were 

downregulated in co-cultivation on day 30. With exception of stearic acid (#277) and oleic acid 

(#273), which were 1.6 - to 2.3 - fold upregulated on day 18, all remaining fatty acids and 

derivatives were present at approximately equal intensities among both treatments on day 18 and 

42, as indicated by intensity differences smaller than 30 %. In summary, this class comprised 

four saturated fatty acids – myristic acid (#200, #201), stearic acid (#277), pentadecanoic acid 

                                                 
62 The putative structure suggestions for MST #10 and MST #17 need to be interpreted with caution. The succession 

of both MSTs’ RI is not in agreement with the succession of the RIs of their suggested structures hexanoic acid and 

3-hydroxybutanoic acid. Thus, compound identification is considered preliminary, as the structure suggestions don’t 

fit accurately. Further validation is needed. Nevertheless, both compounds appear to be carboxylic acids and 

suggested compound names are given as lead reference point. 
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(#224) and palmitic acid (#245), three unsaturated fatty acids – oleic acid (#273), putative linoleic 

acid (#274) and putative arachidonic acid (#278, #303) as well as ten fatty acid derivatives.  

Within hydrocarbons and derivatives, only 14-heptacosanone (#358) exhibited significant 

downregulation in co-cultivation on day 30. In general, the abundance of this endometabolite 

increased over time and was characteristic for the stationary phase of growth in mono-cultivated 

T. weissflogii. 

Most of the identified endometabolites belonged to the class of sugars and their derivatives, like 

sugar acids and sugar alcohols. With a focus on intensity differences of ≥ 30 % between the 

treatments, the following metabolites were considered relevantly regulated: erythronic acid 

(#132) was downregulated in co-cultivation on day 18 and 30 and glucuronic acid (#221, #244) 

throughout all three sampling days. Both sugar acids were characteristic for the regular growth 

phase, as they decreased in intensity during later growth stages. Galactinol (#254, #257, and 

#364) was downregulated on day 18 and 30 as well, but characteristic for the stationary phase, 

as its intensity increased in mono-cultivation over time.  

On day 30, the majority of sugars and derivatives were downregulated (with up to 7.4 - fold 

higher intensities in mono-cultivation for 2-keto-gluconic acid (#180)). This applied to three 

sugars – a pentofuranose (#147), a hexofuranose (#195) and a putative inositol isomer (#272), 

the sugar derivatives putative uridine (#300) as well as three sugar acids – glyceric acid (#78), 

threonic acid (#128, #131) and putative gluconic acid (#241), two sugar acid derivatives – 2-

keto-gluconic acid (#180) and gulono-1,4-lactone (#232) and the sugar alcohol ononitol (#237). 

Considering upregulation in co-cultivation on day 30, gulonic acid (#228, #230) and myo-inositol 

(#242, #254) were of relevance, as they were up to 2.7 - fold upregulated.  

Interestingly, two MSTs were identified as galactono-1,4-lactone, exhibiting oppositional 

regulations: On day 30 MST #231 was upregulate on day 30 and MST #215 was downregulated 

in co-cultivation. As due to many isomers and very similar MS spectra sugars and their 

derivatives are impossible to be unambiguously identified via MS libraries, it might be possible 

that one of the MSTs represented an isomer of galactono-1,4-lactone. 

In the class of complex sugars, five MSTs were characteristic for the regular growth phase, as 

they were highest abundant on day 18. However, only a putative trisaccharide (#311) was 

downregulated in co-cultivation with 1.5 –fold higher intensities in mono-cultivation, while all 

other candidates exhibited only minor intensity differences between the treatments. Another six 

MSTs were relevantly downregulated in co-cultivation on day 30, including two disaccharides 

(#394, #397), 4-O-hexopyranosylhexose (#395), melibiose (#398) and putative 
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digalactosylglycerol (#378, #385). Considering metabolites that were characteristic for day 42, 

only maltotriose (#401) was meaningfully upregulated in co-cultivation. A general trend of 

reduced abundance of complex sugars and their derivatives in co-cultivation became apparent. 

The identified sterols were characteristic for the stationary phase of growth. While sterol 

abundances were approximately equal on day 18 and 42, three sterols63 were meaningfully 

downregulated in co-cultivation on day 30: 24-Oxocholest-5-en-3-yl acetate (#371), campesterol 

(#383) and putative ergosta-5,24-dien-3-yl acetate (#360, #369). Among the terpenes, phytol 

(#263) was characteristic for early stages of the diatom growth and downregulated in co-

cultivation on day 30, with 5.7 - fold higher intensities in mono-cultivation.  

In total, 119 unknown MSTs could not be chemically characterized. They were sorted by 

prominent intensity patterns and documented in Appendix 51. Interestingly, MST #104 

characterized day 30 of the interaction and exhibited 43 - fold higher intensities in mono-

cultivation on this day. However, this unknown MST was the only one with quite a strong 

treatment-dependent regulation. All other unknown MSTs are not further discussed. 

 

                                                 
63MS spectra were very similar. Although the strategy of MST identification via MS libraries was retained, the 

sterol identities must be interpreted with caution. 
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Table 17: Heatmap of endometabolite intensities categorized by MST classes for the species-specific and daywise analysis of T. weissflogii in the interaction with S. marinoi.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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82 240.1 8.38 1324 1H-Pyrrole-2-carboxylic acid A   DT 1 1 0 NA -1 -1 1.1 - -1.1 

56 139.1 7.38 1190 Urea A ? DT -1 -1 0 NA 1 1 2.4 - 1.0 

173 174.1 11.58 1747 1,4-Butanediamine (Putrescine) A  * 30 0 -1 0 NA 1 1 -1.7 - 1.0 

12 146.1 5.93 999 Valine AA * DT,30 2 0 0 NA -1 -1 -2.3 - 1.8 

14 116.1 6.05 1014 Alanine AA * DT,30 2 1 0 NA 0 0 -1.8 - 1.2 

49 144.1 7.12 1156 Valine AA  DT,30 2 1 -1 -1 -1 -1 -1.5 -4.3 1.9 

59 116.1 7.54 1212 Serine AA * DT 2 0 NA NA NA NA -10.1 - - 

66 158.1 7.86 1254 Isoleucine AA * DT,30 1 1 0 -1 -1 0 -1.2 -17.4 2.3 

69 142.1 7.91 1261 Proline AA  DT 2 0 NA NA 0 0 -2.0 - 1.1 

72 174.1 8.01 1274 Glycine AA  30 1 1 0 -2 0 0 -1.4 -10.9 -1.1 

123 156.1 9.88 1522 
5-Hydroxy-3,4-dihydro-2H-pyrrole-2-carboxylic 

acid (Pyroglutamic acid) 
AA dv.  DT 2 1 0 -1 -1 0 -1.3 -3.4 1.3 

126 174.1 9.97 1533 N-Acetylglutamic acid AA dv.  30 1 1 0 -1 -1 0 1.0 -35.6 2.0 

13 116.1 5.98 1005 Alanine AA * 30 1 0 1 NA 0 0 -1.8 - -1.3 

67 146.1 7.88 1257 Threonine AA * 30 NA NA 2 NA NA NA - - - 

20 103.1 6.31 1049 Glycerol Alc ? DT -1 -1 1 1 0 1 2.4 -1.2 1.4 

40 210.1 6.90 1127 1,2,3-Butanetriol Alc ? 30 0 0 1 NA 0 0 1.0 - 1.3 

169 133.1 11.39 1721 1,12-Dodecanediol  Alc ?? 30 1 0 1 NA 0 -1 -1.9 - -3.8 

4 152.1 5.35 922 3-Pyridinol Alk ? 30 0 0 0 NA 1 1 1.2 - -1.0 

38 166.1 6.85 1121 6-Methyl-3-pyridinol Alk ?? 30 1 0 1 -2 0 0 -1.1 -3.9 -1.2 

Median MST intensity Fold change 

low -
10 

-
6 
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2 

2 6 10 high UP DOWN 
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39 166.1 6.86 1121 6-Methyl-3-pyridinol Alk ?? 30 0 0 1 -2 1 0 -1.1 -3.9 -1.2 

79 184 8.24 1305 
7,8-Dimethylbenzo[g]pteridine-2,4(1H,3H)-

dione (Lumichrome) 
Alk   30 1 1 0 NA 0 0 1.0 - -1.1 

10 173.1 5.72 971 Hexanoic acid62 CA ? DT 1 1 NA NA 1 0 1.2 - -1.1 

11 177.1 5.77 978 2-Hydroxyethanoic acid (Glycolic acid) CA  DT 1 1 NA NA 0 0 1.3 - -1.1 

47 247.1 7.07 1149 3-Hydroxy-3-methylbutanoic acid CA  DT 1 2 0 -1 0 -1 1.3 -1.4 -1.5 

57 179.1 7.47 1203 Benzoic acid CA  DT 1 1 NA NA 1 0 1.0 - -1.4 

17 117 6.15 1027 3-Hydroxybutanoic acid62 CA ? 30 0 0 1 -2 1 0 -1.1 -23.0 -1.3 

29 233.1 6.59 1086 3-Hydroxy-2-methylpropanoic acid CA   DT -1 -1 1 1 0 1 1.7 -1.0 1.1 

200 126.1 12.34 1847 Myristic acid FA    DT,30 1 1 0 NA 0 0 1.1 - -1.1 

218 143.1 12.91 1922 Methyl palmitate FA dv.  DT 1 1 0 -1 0 -1 1.1 -1.3 -1.0 

279 239.2 14.96 2288 2-Hydroxyethyl palmitate FA dv. ?? DT 0 0 1 1 -1 -1 1.2 1.1 1.2 

277 117 14.90 2277 Octadecanoic acid (Stearic acid) FA  30 -1 1 1 NA 1 0 2.3 - -1.1 

273 339.3 14.76 2252 9-Octadecenoic acid (Oleic acid) FA  30 0 1 1 -1 0 -1 1.6 -15.1 -1.0 

274 105.1 14.78 2256 Octadecadienoic acid (Linoleic acid) FA ?? DT -1 -1 1 0 0 1 -1.3 -1.4 1.2 

278 197.1 14.94 2284 
5,8,11,14-Icosatetraenoic acid (Arachidonic 

acid) 
FA ? 30 0 0 1 -2 1 0 -1.2 -30.3 -1.1 

287 116 15.24 2336 2,3-Dihydroxypropyl palmitate FA dv. ?? 30 0 0 2 -1 -1 -1 1.0 -2.4 1.1 

296 129.1 15.57 2394 1,3-Dihydroxy-2-propanyl myristate FA dv.  DT,30 0 0 1 -2 1 1 1.0 -4.1 -1.1 

298 343.3 15.75 2425 2,3-Dihydroxypropyl myristate FA dv.  30 -1 0 1 -1 1 0 1.2 -2.7 -1.2 

303 108.1 15.94 2458 
5,8,11,14-Icosatetraenoic acid (Arachidonic 

acid) 
FA ? 30 -1 -1 1 -1 1 1 -1.1 -2.7 1.1 

307 105.1 16.13 2492 Methyl-4,7,10,13,16,19-docosahexaenoate FA dv.  30 0 0 0 -2 1 1 1.1 -3.0 -1.0 

308 357.3 16.28 2517 2,3-Dihydroxypropyl pentadecanoate FA dv. ? 30 -1 -1 2 -1 1 0 1.1 -3.1 -1.1 

317 218.1 16.61 2575 
1,3-Dihydroxy-2-propanyl palmitate (2-

Palmitoylglycerol) 
FA dv.  30 0 0 1 -2 0 0 -1.0 -3.7 -1.1 

320 369.3 16.70 2591 C16:1-glycerol ? FA dv.  30 -1 -1 2 -1 0 0 1.1 -2.9 -1.0 
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321 129.1 16.73 2596 C16:1-glycerol ? FA dv.  DT,30 -1 -1 1 -1 1 1 1.1 -1.8 -1.1 

322 367.3 16.73 2597 C16:1-glycerol ? FA dv.  30 0 0 2 -1 0 0 1.1 -3.7 -1.2 

224 117 13.03 1939 Pentadecanoic acid FA  DT,30 0 0 0 NA 1 1 -1.2 - -1.1 

245 117 13.68 2025 Palmitic acid FA * DT,30 0 0 0 NA 1 1 1.2 - -1.1 

201 117 12.36 1850 Myristic acid FA  * DT,30 0 0 -1 NA 1 1 1.1 - -1.1 

158 195.1 11.05 1677 Unknown (potentially C17:1)  FA dv. ? DT NA NA NA NA 1 1 - - -1.1 

199 123.1 12.31 1842 2-Methyl-7-octadecyne HC ? DT 1 2 -1 0 -1 -1 1.2 1.1 -1.1 

210 123.1 12.61 1882 1,19-Icosadiene HC ? DT 1 1 -1 0 -1 -1 1.1 1.3 -1.2 

358 211.2 18.35 2871 14-Heptacosanone HC dv.  30 0 0 1 -2 1 1 1.2 -5.6 1.0 

128 292.1 10.03 1541 2,3,4-Trihydroxybutanoic acid (Threonic acid) S acid   DT,30 1 1 0 -1 -1 0 -1.0 -3.5 1.1 

132 140 10.20 1564 2,3,4-Trihydroxybutanoic acid (Erythronic acid) S acid  DT 2 1 -1 NA -1 0 -1.4 - 2.9 

139 217 10.45 1597 Arabinofuranose S  DT 1 1 -1 0 0 -1 -1.1 1.4 -1.1 

145 218 10.63 1621 Pentofuranose S  DT 1 1 -1 -1 0 0 -1.1 -1.3 -1.1 

221 333.1 12.96 1929 Glucuronic acid S acid  DT,30 2 1 0 -1 -1 -1 -1.4 -3.9 -1.4 

244 217.1 13.63 2018 Glucuronic acid S acid ? DT 1 1 -1 -1 0 0 -1.1 -1.3 -1.2 

109 205.1 9.29 1443 Erythrose S ? DT -1 -1 1 1 0 1 1.2 1.1 1.1 

228 103 13.17 1957 Hexonic acid (Gulonic acid) S acid  30 -1 -1 0 2 0 0 -1.1 1.5 1.0 

230 345 13.20 1961 Hexonic acid (Gulonic acid) S acid  30 0 0 0 2 -1 0 -1.0 2.7 1.3 

231 217 13.22 1963 
5-(1,2-Dihydroxyethyl)-3,4-dihydroxydihydro-

2(3H)-furanone (Galactono-1,4-lactone) 

S acid 

dv. 
 30 -1 -1 -1 2 0 1 1.0 1.6 1.1 

242 319 13.55 2007 myo-Inositol S alc  30 -1 0 0 2 0 0 1.2 1.5 1.1 

254 191 13.98 2116 myo-Inositol S alc * DT,30 -1 -1 0 2 0 0 1.2 2.0 1.1 

78 189.1 8.22 1302 2,3-Dihydroxypropanoic acid (Glyceric acid) S acid  30 -1 -1 2 -1 0 0 1.0 -5.8 1.0 

131 292.1 10.15 1558 2,3,4-Trihydroxybutanoic acid (Threonic acid) S acid  30 0 0 2 -1 0 0 1.0 -3.1 1.0 

147 212 10.66 1624 Pentofuranose S  30 -1 0 1 -1 1 0 1.3 -3.6 -1.3 

180 292.1 11.78 1773 2-Keto-gluconic acid  
S acid 

dv. 
 30 0 -1 2 -1 0 0 -1.2 -7.4 1.1 

195 117 12.20 1828 Hexofuranose S  30 0 0 2 -1 -1 0 1.1 -1.5 1.2 
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215 217.1 12.79 1906 
5-(1,2-Dihydroxyethyl)-3,4-dihydroxydihydro-

2(3H)-furanone (Galactono-1,4-lactone) 

S acid 

dv. 
 DT,30 0 0 0 -2 1 1 -1.3 -6.1 -1.1 

217 217.1 12.88 1918 Galactofuranose S  DT -1 -1 1 1 0 0 -1.3 -1.2 -1.2 

229 432.9 13.18 1959 Hexonic acid (Gulonic acid) S acid  DT 0 0 1 1 -1 -1 1.0 -1.1 -1.0 

232 114.1 13.25 1968 Gulono-1,4-lactone 
S acid 

dv. 
? 30 0 0 1 NA 0 1 1.1 - 1.2 

237 217.1 13.38 1985 
6-Methoxy-1,2,3,4,5-cyclohexanepentol 

(Ononitol) 
S alc  DT,30 -1 -1 1 0 1 0 -1.1 -1.3 -1.1 

241 333.1 13.49 1999 Gluconic acid  S acid ? 30 0 -1 2 -1 0 -1 -1.5 -2.4 -1.2 

272 305.1 14.72 2245 Inositol isomer S ? DT -1 -1 2 1 0 0 1.1 -1.5 1.2 

300 217.1 15.79 2433 Uridine S dv. ? 30 0 0 2 -1 0 0 -1.1 -4.8 -1.2 

354 191.1 18.13 2836 Galactinol S dv. ? DT,30 0 -1 0 NA 1 1 -1.1 - -1.1 

357 204.1 18.32 2867 Galactinol S dv.  DT -1 -1 1 -1 1 1 -1.9 -2.1 -1.0 

364 204.1 18.99 2971 Galactinol S dv.  DT -1 -1 1 0 1 1 -2.2 -1.8 -1.0 

118 155.1 9.61 1486 Erythro-pentopyranose S ? DT 0 0 NA NA 1 1 1.2 - 1.1 

207 307.2 12.52 1871 Galactose S * DT 0 0 -1 -1 1 1 1.1 1.0 1.0 

311 217.1 16.33 2527 Trisaccharide (Vidoudez) CS ? DT 2 1 -1 -1 0 0 -1.5 -2.0 -1.0 

340 360.9 17.53 2736 Maltose CS  DT 1 1 -1 -1 0 -1 -1.0 1.1 -1.2 

393 381.3 23.57 3461 Disaccharide (Vidoudez) CS ? 30 1 1 0 -1 -1 -1 -1.2 -3.3 -1.0 

400 361.2 24.85 3569 Maltotriose CS  DT 1 1 -1 -1 -1 -1 1.1 1.1 -1.0 

402 361.2 25.70 3640 Maltotriose CS  DT 1 1 -1 -1 0 -1 1.1 -3.0 -1.3 

394 204.1 23.66 3469 Disaccharide (Vidoudez) CS  30 1 -1 1 -1 0 0 -1.7 -2.8 -1.0 

397 204.1 24.35 3527 Disaccharide (Vidoudez) CS  30 1 0 1 -2 0 0 -1.3 -4.1 1.0 

378 204.1 19.79 3097 Digalactosylglycerol ? (Vidoudez) CS dv.  30 -1 -1 1 -1 1 1 -3.6 -3.2 1.0 

385 204.1 21.69 3304 Digalactosylglycerol ? (Vidoudez) CS dv. ? 30 0 NA 2 NA NA 0 - - - 

395 204.1 23.84 3484 4-O-Hexopyranosylhexose CS  30 0 -1 1 NA 1 1 -1.5 - 1.2 

398 204.1 24.48 3538 
6-O-α-D-Galactopyranosyl-β-D-glucopyranose 

(Melibiose) 
CS  DT NA NA 1 0 0 1 - -1.7 1.2 

338 204.1 17.43 2718 Maltose CS  DT,30 0 -1 -1 -1 1 1 -1.6 -3.8 -1.2 
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339 204.1 17.43 2719 Maltose CS  DT,30 0 -1 -1 -1 1 1 -1.6 -3.8 -1.2 

401 217.1 25.68 3638 Maltotriose CS  DT 0 NA NA NA 1 2 - - 1.4 

330 361.2 17.04 2650 Sucrose CS ? DT 1 0 -1 -2 1 1 -1.1 -3.0 1.0 

391 361.2 22.95 3410 Melezitose CS ? DT 1 1 -1 -1 1 1 -1.1 -4.8 1.1 

382 107.1 20.99 3245 Skel_cell_C178_sterol (Vidoudez) St   DT -1 -1 0 1 0 1 1.1 1.2 1.1 

371 382.4 19.29 3018 24-Oxocholest-5-en-3-yl acetate St  DT -1 -1 1 0 1 1 1.1 -1.3 -1.0 

383 343.3 21.04 3250 Ergost-5-en-3-ol (Campesterol) St  DT,30 -1 -1 1 0 1 1 -1.3 -1.8 -1.1 

386 129.1 21.84 3316 Stigmasta-5,24(28)-dien-3-ol (Fucosterol ) St  DT -1 -1 1 0 1 1 1.2 -1.2 1.1 

387 386.3 22.02 3331 
M000000_A337005-101-

xxx_NA_3358,28_PRED_VAR5_ALK_NA 
St  DT -1 -1 1 1 0 0 1.1 -1.1 1.1 

360 145.1 18.44 2885 Ergosta-5,24-dien-3-yl acetate St ? DT 0 0 0 -2 1 1 1.2 -1.8 -1.1 

369 204.1 19.14 2995 Ergosta-5,24-dien-3-yl acetate St   30 0 1 1 -1 -1 -1 1.5 -2.1 1.0 

263 143.1 14.48 2203 
3,7,11,15-Tetramethyl-2-hexadecen-1-ol 

(Phytol) 
T   DT,30 1 1 0 -1 -1 -1 1.0 -5.7 1.2 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 18 (18), day 30 (30) and day 42 (42). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” 

indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with 

a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons 

(HC), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the in-house library, GOLM 

refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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S. marinoi 

The constrained score plots of the species specific analysis of S. marinoi visualize the separation 

of samples with a-priori grouping by treatment (Figure 46A) and treatment per day (Figure 

46C). In the analysis with a-priori grouping by treatment, canonical axis 1 separated the 

treatments gradually from each other. The corresponding loading plot depicts the three 

significantly correlated metabolites (|r| ≥ 0.6028, P ≤ 0.0001; Figure 46B). MST #85 

(Skel_MEDIA_C097), which was also found in the medium of S. marinoi and identified via the 

in-house library described mono-cultivated S. marinoi. Metabolites #372 and #373 described co-

cultivated S. marinoi. 

In the analysis with a-priori grouping by treatment per day, the clear separation of sampling 

days is visualized in the CAP score plot (Figure 46C). Within the sampling days, only day 18 

exhibited a separation of treatments, the separation of treatments within day 42, as shown in the 

daywise analysis, was not visible in the 2D score plot. With regard to the highly correlated 

metabolites, a clear assignment to the a-priori groups was difficult, as the loading plot was very 

crowded (|r| ≥ 0.6028, P ≤ 0.0001; Figure 46D).  

The constrained score plots of the daywise analyses stressed the significant differences between 

the treatments on day 18 and 42, as mono- and co-cultivation samples were distinctly separated 

by canonical axis 1 (Figure 47A, C). The corresponding loading plots reveal the affiliation of 

the correlated metabolites to the treatment groups (|r| ≥ 0.5760, P ≤ 0.05; Figure 47B, D). I 

performed further classification of all highly correlated metabolites via heatmap (Table 18, 

Appendix 52). 
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Figure 46: Constrained score and loading plots of endometabolomic samples from S. marinoi in a species-specific 

subset analysis of the interaction between T. weissflogii and S. marinoi. 

The constrained score plots (graph A, C) visualize significant differences between the sample groups as found via 

CDA with a-priori groups by treatment (trace statistic P = 0.0073, misclassification error of 5.56 % for m = 9, graph 

A) and a-priori groups by treatment per day (trace statistic P ≤ 0.0001, misclassification error of 5.56 % for m = 9, 

graph C). Vectors in the CAP loading plots (graph B, D) represent metabolites, characterized by their ID (red 

numbers). Only vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.6028 (P ≤ 0.0001) 

are plotted. The direction of the vectors in 2-dimensional space correlates with endometabolomic sample groupings 

shown in the score plots of the respective analysis.  
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Figure 47: Constrained score and loading plots of endometabolomic samples from S. marinoi in a daywise subset 

analysis of the interaction between T. weissflogii and S. marinoi. 

The constrained score plots (graph A, C) visualize significant differences between the treatments, as confirmed via 

CDA for the subset analysis on day 18 (graph A, B) and day 42 (graph C, D). These differences between treatments 

are significant (trace statistic P = 0.0294, misclassification error of 0 % for m = 5 (day 18) and P ≤ 0.0001, 

misclassification error of 0 % for m = 5 (day 42)). Vectors in the CAP loading plots (graph B, D) represent 

metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a significant correlation 

coefficient above the critical value of |r| ≥ 0.5760 (P ≤ 0.05) are plotted. The direction of the vectors in 2-dimensional 

space correlates with endometabolomic sample groupings shown in the score plots of the respective analysis.  
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I conducted the evaluation of endometabolomic regulations via heatmap (Table 18, Appendix 

52) as described for T. weissflogii.  

Among amines, five candidates were highly correlating with the separation of treatments: 2-[(2-

Chloroethyl)(ethyl)amino]ethanol (#27, #52) and urea (#55, #56) were downregulated in co-

cultivation on day 30 and 42 of the stationary growth phase, as intensities were 1.3 - to 1.9 - fold 

higher in mono-cultivation. Similar to the findings in T. weissflogii, 1H-pyrrole-2-carboxylic 

acid (#82) was most abundant on day 18. In T. weissflogii, equal levels of this metabolite were 

documented in both treatments on day 18. However, in S. marinoi this MST was 1.5 - fold 

upregulated in co-cultivation. Furthermore, the regulation of putrescine (#173) was oppositional 

to the one observed in T. weissflogii: Instead of a downregulation as in T. weissflogii an 

upregulation of this amine in co-cultivation of S. marinoi was observed on day 18 and 30. 

In total, six amino acids and two amino acid derivatives were significantly regulated in 

S. marinoi due to the interaction. As already described for T. weissflogii, all identified class 

members – with the exception of threonine (#67) – were most abundant on day 18 and thus 

characteristic for this day. Generally, serine (#59), proline (#69), pyroglutamic acid (#123) and 

N-acetylglutamic acid (#126) were upregulated in co-cultivation up to 2.8 - fold on all three 

sampling days. Furthermore, valine (#12, #49) was downregulated on day 18 and 30. However, 

although threonine (#68) and glycine (#72) were most abundant on day 18 as well, they were 

relevant for the separation of treatments on day 42, where they were clearly upregulated 

(threonine) or downregulated (glycine) in co-cultivation. 

Among relevant alcohols, phenol (#7) and glycerol (#60, #61) were most abundant on day 18, 

while 1,2,3-butanetriol (#41) characterized day 30. Glycerol (#60, #61) was 1.4 - to 1.5 - fold 

more abundant in mono-cultivation on day 18 and 1,2,3- butanetriol (#41) was up to 8.4 - fold 

upregulated in co-cultivation on all three sampling days, thus characterizing S. marinoi in co-

cultivation. 

In both species, the alkaloid 3-pyridinol (#4) was correlating with the separation of treatments. 

However, while in T. weissflogii no meaningful regulation was observed, in S. marinoi this 

alkaloid was characteristic for day 42. On this day, it was downregulated in co-cultivation, with 

1.5 - fold higher intensities in mono-cultivation. During earlier points of the stationary growth 

phase an upregulation in co-cultivation between 1.4 - and 2.2 - fold was found. 

Considering carboxylic acids, putative hexanoic acid (#10), benzoic acid (#57) and glycolic 

acid (#11) were characteristic for day 18. However, only glycolic acid (#11) exhibited significant 

downregulation in co-cultivation. 3-Hydroxy-3-methylbutanoic acid (#47) and 3-hydroxy-2-
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methylpropanoic acid (#29) were most abundant on day 30 and 42 and upregulated up to 

38.5 - fold in co-cultivation. The abundance of citric acid (#192) increased during stationary 

phase. However, the abundance was only influenced by treatments on day 18, where an 

upregulation of 2.7 - fold in co-cultivation became apparent. 

In the class of fatty acids, six fatty acids and eight fatty acid derivatives were identified. 

However, considering the relevance of each MST over time as indicated by temporal peaks in 

abundance, only nine metabolites were significantly regulated. Putative linoleic acid (#274) and 

putative 2-hydroxyethyl palmitate (#279) were upregulated on day 30. Considering day 42, 

putative 2,3-dihydroxypropyl palmitate (#287) was downregulated and putative C16:1-glycerol 

(#321) as well as stearic acid (#277) were up to 2.5 - fold upregulated on day 42. Note that 

putative C16:1-glycerol was represented by three MSTs (#320, #321, and #322). However, all of 

them showed the same trend in regulation. Both, 2,4-octadecadienoic acid (#239) and oleic acid 

(#273) were upregulated throughout all three sampling days, the latter up to 86 - fold. On the 

other hand, methyl-5,8,11,14,17-icosapentaenoate (#281) and methyl-4,7,10,13,16,19-

docosahexaenoate (#307) were downregulated in co-cultivation on day 42, with up to 4.4 - fold 

higher intensities in mono-cultivation. Generally, fatty acids and their derivatives were 

characteristic for later stages of regular growth (day 30 and 42).  

Among hydrocarbons, only 14-heptacosanone (#358) was regulated due to the interaction. 

Similar to the findings in T. weissflogii, this metabolite was downregulated in co-cultivation 

during stationary phase of growth (day 42). 

In total, 28 identified MSTs made up the class of sugars and derivatives. The sugar acids 

threonic acid (#128), erythronic acid (#132), glucuronic acid (#221), the derivative gluconic acid-

1,5-lactone (#208) and the sugar putative ribose (#160) were most abundant on day 18 and 

exhibited a clear tendency of upregulation throughout all three sampling days (up to 2.2 - fold in 

gluconic acid-1,5-lactone (#208) on day 42). Within this category, only sugar #140 (putative 

erythrose) and galactosylglycerol (#289) were downregulated in co-cultivation on day 18.  

All remaining sugars and derivatives were characteristic for day 30 and 42. While on day 30 

only sugar #109 (putative erythrose) was meaningfully upregulated in co-cultivation and 

arabinofuranose (#141) meaningfully downregulated, day 42 exhibited a significant regulation 

of this class. Besides the metabolites that were significantly upregulated throughout all three 

sampling days, arabinofuranose (#139, #141), 2-keto-gluconic acid (#180), sugar #109 (putative 

erythrose) and glyceric acid (#78) were upregulated and galactose (#207), myo-inositol (#242, 

#253) and a putative inositol isomer (#272) were downregulated on day 42. 
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Compared to T. weissflogii, more identified sugars and derivatives characterized day 18 in 

S. marinoi and were consistently upregulated in co-cultivation. While in T. weissflogii this 

metabolite class was strongly regulated on day 30 and rarely characteristic for day 42, the 

opposite was the case for S. marinoi. Here, sugars and derivatives were rather unspecific for 

treatments on day 30 and strongly regulated due to the interaction on day 42.  

With exception of one putative disaccharide (#368), which was 128 - fold upregulated in co-

cultivation on day 18, all complex saccharides were characteristic for later stages of the stationary 

growth phase (day 30 and 42). However, only three complex saccharides were significantly 

regulated: putative melezitose (#391) was upregulated throughout all three sampling days, a 

putative trisaccharide (#311) was downregulated on day 30, with 11.1 - fold higher intensities in 

mono-cultivation, and lactose (#346) was 1.4 - fold upregulated on day 42. 

Interestingly, sterols exhibited a very distinct regulation pattern. Generally, sterols were most 

abundant on day 42, compared to the other sampling days. While most sterols were significantly 

upregulated in co-cultivation, relative to mono-cultivation on day 18, they were downregulated 

in co-cultivation on day 42. This regulation exceeded the threshold of 30 % for ergosta-5,24-

dien-3-yl acetate (#365, #369 on day 18), ergosta-5,22-dien-3-yl acetate (#370), the further 

unidentified sterol “skel_cell_C178_sterol” (#375, (Vidoudez, 2010)), all of which were 

identified in the daywise analysis of day 18. Furthermore, campesterol (#383 on day 42), which 

was relevant for the separation of treatments on day 42, as well as fucosterol (#386 on day 18) 

and the sterol #387 (on day 42). 

In the class of terpenes, I identified only phytol (#263). Although this metabolite was most 

abundant on day 18, it was meaningfully upregulated in co-cultivation on day 30 and 42. All 

unknown metabolites are summarized in Appendix 52.  

Interestingly, three unknown metabolites were very strongly connected to the separation of 

treatments. Metabolites #372, #373 and #85 were strongly upregulated in co-cultivation on all 

three sampling days. The former were most abundant in the regular growth phase. MST #372 

was only abundant in co-cultivation on day 18 and MST #373 was 113.2 - fold upregulated in 

co-cultivation on this day. MST #85, which was characterized via in-house library as 

Skel_MEDIA_C097 (Vidoudez, 2010) characterized all three sampling points equally. The other 

unknown metabolites are not further discussed.  
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Table 18: Heatmap of endometabolite intensities categorized by MST classes for the species-specific and daywise analysis of S. marinoi in the interaction with T. weissflogii.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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27 174.1 6.52 1077 2-[(2-Chloroethyl)(ethyl)amino]ethanol A   DT,42 1 1 0 -1 -1 -1 -1.1 -1.4 -1.9 

82 240.1 8.38 1324 1H-Pyrrole-2-carboxylic acid A  DT 1 2 0 -1 -1 -1 1.5 -1.3 -1.7 

173 174.1 11.58 1747 1,4-Butanediamine (Putrescine) A  * DT,18 1 2 0 0 -1 -1 1.7 1.3 1.0 

52 174.1 7.21 1169 2-[(2-Chloroethyl)(ethyl)amino]ethanol A  42 0 0 1 0 0 -2 -1.1 -1.2 -1.4 

55 189.1 7.36 1188 Urea A  DT -1 -1 1 1 0 0 -1.0 -1.3 1.1 

56 139.1 7.38 1190 Urea A ? DT -1 -1 0 -1 2 1 1.6 -1.4 -1.6 

59 116.1 7.54 1212 Serine AA * DT 1 2 -1 0 NA 0 1.5 2.0 - 

69 142.1 7.91 1261 Proline AA  DT 1 2 -1 -1 -1 -1 1.7 1.1 1.5 

123 156.1 9.88 1522 
5-Hydroxy-3,4-dihydro-2H-pyrrole-2-carboxylic acid 

(Pyroglutamic acid) 
AA dv.  DT,42 1 2 -1 0 -1 0 1.4 1.4 2.1 

126 174.1 9.97 1533 N-Acetylglutamic acid AA dv.  DT,42 0 2 0 0 -1 -1 2.1 1.3 2.8 

12 146.1 5.93 999 Valine AA * DT,18 1 0 0 0 NA NA -1.8 -1.2 - 

49 144.1 7.12 1156 Valine AA  DT 1 1 0 0 -1 -1 -1.2 -1.3 1.3 

66 158.1 7.86 1254 Isoleucine AA * DT 1 1 0 0 -1 -1 -1.1 -1.3 1.7 

68 117.1 7.88 1257 Threonine AA * DT,42 1 1 0 0 -2 -1 -1.1 -1.1 21.2 

72 174.1 8.01 1274 Glycine AA  DT 1 1 0 0 -1 -1 -1.1 -1.1 -1.3 

67 146.1 7.88 1257 Threonine AA * DT NA NA 1 1 NA 0 - 1.0 - 

7 151.1 5.54 947 Phenol Alc   DT,42 1 1 0 0 0 -2 1.1 -1.2 -2.5 

60 205 7.67 1229 Glycerol Alc  DT 2 1 NA NA NA -1 -1.5 - - 

61 129 7.67 1230 Glycerol Alc  DT 2 1 NA NA NA 0 -1.4 - - 

Median MST intensity Fold change 
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10 
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Interaction of T. weissflogii with S. marinoi 183 

ID 
Model 

ion 
RT RI Name 

C
la

ss
 

Id
en

t 

A
n

a
ly

si
s 

Median  

(Co: n=4, Mono: n=8) 

Fold  

(Co relative to Mono) 

Day 18 Day 30 Day 42 

D
a

y
 1

8
 

D
a

y
 3

0
 

D
a

y
 4

2
 

S
M

 M
o

n
o

 

S
M

 C
o

 

S
M

 M
o

n
o

 

S
M

 C
o

 

S
M

 M
o

n
o

 

S
M

 C
o

 

41 117 6.93 1130 1,2,3-Butanetriol Alc   18,42 -1 0 0 2 -1 0 2.5 3.0 8.4 

4 152.1 5.35 922 3-Pyridinol Alk ? DT,18 -1 0 -1 0 2 1 2.2 1.4 -1.5 

10 173.1 5.72 971 Hexanoic acid CA ? DT 1 1 NA NA 1 0 1.2 - -1.7 

57 179.1 7.47 1203 Benzoic acid CA  DT 1 1 NA NA NA -1 1.0 - - 

11 177.1 5.77 978 2-Hydroxyethanoic acid (Glycolic acid) CA  DT,18 2 1 NA NA NA -1 -1.8 - - 

47 247.1 7.07 1149 3-Hydroxy-3-methylbutanoic acid CA  42 0 0 1 1 -2 0 -1.3 1.2 9.3 

29 233.1 6.59 1086 3-Hydroxy-2-methylpropanoic acid CA  42 -1 -1 0 0 -1 2 1.5 3.2 38.5 

192 273.1 12.13 1819 Citric acid CA   DT -1 -1 0 0 1 1 2.7 -1.0 -1.0 

218 143.1 12.91 1922 Methyl palmitate FA dv.  DT,42 1 1 -1 -1 0 -1 -1.1 -1.5 -2.4 

274 105.1 14.78 2256 Octadecadienoic acid (Linoleic acid) FA ?? DT NA NA 0 1 1 1 - 2.0 -1.0 

279 239.2 14.96 2288 2-Hydroxyethyl palmitate FA dv. ?? DT -1 -1 1 2 0 -1 1.1 1.3 -1.3 

298 343.3 15.75 2425 2,3-Dihydroxypropyl myristate FA dv.  DT 0 0 1 1 -1 -1 1.0 1.0 -1.1 

308 357.3 16.28 2517 2,3-Dihydroxypropyl pentadecanoate FA dv. ? DT -1 0 1 1 -1 -1 1.3 1.0 -1.0 

320 369.3 16.70 2591 C16:1-glycerol ? FA dv.  DT -1 -1 1 1 -1 -1 1.1 -1.0 1.1 

287 116 15.24 2336 2,3-Dihydroxypropyl palmitate FA dv. ?? 18 NA -1 1 1 0 0 - -1.1 -1.3 

321 129.1 16.73 2596 C16:1-glycerol ? FA dv.  DT -1 -1 1 1 0 1 6.0 -1.1 1.3 

322 367.3 16.73 2597 C16:1-glycerol ? FA dv.  DT -1 -1 1 1 0 0 1.0 -1.0 1.1 

245 117 13.68 2025 Palmitic acid FA * DT,42 NA NA NA NA 1 1 - - 1.2 

239 234.2 13.45 1994 2,4-Octadecadienoic acid FA ? DT 0 1 -1 -1 0 1 1.1 1.4 1.2 

273 339.3 14.76 2252 9-Octadecenoic acid (Oleic acid) FA  42 0 1 -1 -1 0 1 1.2 86.0 2.1 

277 117 14.90 2277 Octadecanoic acid (Stearic acid) FA  42 NA NA NA NA 0 2 - - 2.5 

224 117 13.03 1939 Pentadecanoic acid FA  DT NA NA NA NA 1 1 - - -1.1 

281 117 15.06 2304 Methyl-5,8,11,14,17-icosapentaenoate  FA dv.  18,42 0 -1 0 0 2 0 -2.4 -1.2 -4.4 

307 105.1 16.13 2492 Methyl-4,7,10,13,16,19-docosahexaenoate FA dv.   DT -1 -1 -1 0 2 1 -3.4 1.4 -1.6 

199 123.1 12.31 1842 2-Methyl-7-octadecyne HC ? DT 1 1 0 -1 0 -1 -1.1 -1.5 -3.7 

210 123.1 12.61 1882 1,19-Icosadiene HC ? DT,42 1 1 0 -1 0 -1 -1.1 -1.4 -3.5 
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358 211.2 18.35 2871 14-Heptacosanone HC dv.   DT,42 -1 -1 1 0 1 0 1.4 -1.1 -1.7 

128 292.1 10.03 1541 2,3,4-Trihydroxybutanoic acid (Threonic acid) S acid  DT 1 1 0 0 -1 -1 1.0 1.0 1.4 

132 140 10.20 1564 2,3,4-Trihydroxybutanoic acid (Erythronic acid) S acid  18 -1 2 -1 0 -1 0 1.9 1.9 1.5 

160 205.1 11.10 1682 Ribose S ? DT,18 0 2 0 0 -1 -1 1.6 1.3 1.1 

208 319.2 12.55 1874 
3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-

pyran-2-one (Gluconic acid-1,5-lactone) 
S dv.  DT,42 1 1 -1 1 -1 0 1.0 2.0 2.2 

221 333.1 12.96 1929 Glucuronic acid S acid  DT 1 1 0 0 -1 -1 1.3 1.3 2.0 

259 204.1 14.27 2166 Methyl-β-D-galactopyranoside S dv.  DT 1 1 0 0 -1 -1 1.1 -1.2 1.3 

314 204.1 16.52 2560 Gulose S  DT 1 1 0 0 -1 -1 1.0 -1.2 -1.0 

140 258.1 10.49 1602 Erythrose S ? 18 1 0 -1 -1 2 0 -1.4 -1.0 -1.6 

229 432.9 13.18 1959 Hexonic acid (Gulonic acid) S acid  DT 1 1 0 0 -1 -1 -1.1 1.2 1.2 

230 345 13.20 1961 Hexonic acid (Gulonic acid) S acid  DT 1 1 0 0 -1 -1 -1.1 -1.0 1.3 

231 217 13.22 1963 
5-(1,2-Dihydroxyethyl)-3,4-dihydroxydihydro-

2(3H)-furanone (Galactono-1,4-lactone) 
S  DT 1 1 0 0 -1 -1 -1.1 1.0 1.1 

249 205 13.86 2095 Methyl-β-D-galactopyranoside S dv.  DT 1 1 0 0 -1 -1 -1.0 -1.0 -1.0 

289 204.1 15.30 2347 
2,3-Dihydroxypropyl galactopyranoside 

(Galactosylglycerol) 
S dv.  DT 1 0 1 0 -1 -1 -1.3 -1.1 -1.1 

131 292.1 10.15 1558 2,3,4-Trihydroxybutanoic acid (Threonic acid) S acid  DT -1 0 1 1 -1 -1 1.2 -1.1 -1.0 

139 217 10.45 1597 Arabinofuranose S  DT -1 -1 1 1 0 1 1.1 -1.2 1.4 

141 217.1 10.51 1605 Arabinofuranose S  DT -1 NA 1 0 0 1 - -1.4 1.5 

180 292.1 11.78 1773 2-Keto-gluconic acid  
S acid 

dv. 
 DT -1 0 1 1 -1 0 1.3 -1.1 1.4 

212 319.2 12.70 1894 Glucose S  DT -1 -1 1 1 1 0 1.0 -1.0 -1.1 

109 205.1 9.29 1443 Erythrose S ? 18,42 -1 -1 0 1 -1 1 1.6 1.6 2.4 

78 189.1 8.22 1302 2,3-Dihydroxypropanoic acid (Glyceric acid) S acid  18,42 -1 0 1 1 -1 1 1.5 -1.1 1.8 

156 103.1 10.98 1667 Xylose  S ? DT 1 0 NA NA 1 1 -1.3 - 1.1 
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215 217.1 12.79 1906 
5-(1,2-Dihydroxyethyl)-3,4-dihydroxydihydro-

2(3H)-furanone (Galactono-1,4-lactone) 

S acid 

dv. 
 DT,42 NA NA NA -1 1 1 - - 1.2 

207 307.2 12.52 1871 Galactose S * DT,42 -1 -1 0 0 2 0 1.1 -1.2 -1.7 

216 319.2 12.84 1913 Glucose S * DT -1 -1 1 0 1 0 1.0 -1.1 -1.2 

217 217.1 12.88 1918 Galactofuranose S  DT -1 -1 0 0 1 1 -1.1 -1.1 -1.2 

242 319 13.55 2007 myo-Inositol S alc  DT,18 -1 -1 0 0 2 0 1.3 -1.1 -2.0 

253 107.1 13.97 2114 myo-Inositol  S alc  18 0 -1 0 -1 2 -1 -1.3 -1.2 -2.0 

272 305.1 14.72 2245 Inositol isomer S ? 42 0 2 0 -1 1 -1 1.5 -1.1 -2.0 

368 383.3 19.12 2992 Disaccharide -383 (Vidoudez) CS ? 18 -1 2 NA -1 0 1 128.0 - 3.0 

340 360.9 17.53 2736 Maltose CS  DT -1 -1 1 1 0 0 1.2 -1.0 1.1 

400 361.20 24.85 3569 Maltotriose CS  DT -1 -1 1 1 1 0 1.5 -1.0 -1.2 

311 217.1 16.33 2527 Trisaccharide (Vidoudez) CS ? DT NA NA 0 -1 1 1 - -11.1 1.1 

346 204.1 17.79 2782 Lactose CS ? DT NA NA 0 0 1 1 - 1.2 1.4 

391 361.2 22.95 3410 Melezitose CS ? DT 0 0 NA -1 1 1 1.9 - 1.3 

365 296.3 19.01 2974 Ergosta-5,24-dien-3-yl acetate St ? 18 -2 -1 0 1 1 0 12.5 1.6 -1.3 

369 204.1 19.14 2995 Ergosta-5,24-dien-3-yl acetate St  18 NA 0 -1 0 1 1 - 3.0 -1.2 

370 380.3 19.24 3011 Ergosta-5,22-dien-3-yl acetate St  18 -1 0 0 0 2 0 1.5 1.2 -2.6 

375 211.2 19.59 3066 Skel_cell_C178_sterol St ?? 18 -2 0 1 1 1 -1 5.2 -1.1 -2.7 

383 343.3 21.04 3250 Ergost-5-en-3-ol (Campesterol) St  42 0 0 0 -1 2 -1 1.1 -1.1 -1.6 

386 129.1 21.84 3316 Stigmasta-5,24(28)-dien-3-ol (Fucosterol ) St  DT,42 -1 -1 0 0 1 1 1.7 1.1 -1.2 

387 386.3 22.02 3331 

M000000_A337005-101-

xxx_NA_3358,28_PRED_VAR5_ALK_NA 

(GOLM) 

St   DT,42 -1 -1 0 0 2 0 1.2 1.1 -1.5 

263 143.1 14.48 2203 3,7,11,15-Tetramethyl-2-hexadecen-1-ol (Phytol) T   DT,18 1 1 0 0 -1 -1 -1.2 1.4 1.4 
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In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 18 (18), day 30 (30) and day 42 (42). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” 

indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with 

a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons 

(HC), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the in-house library, GOLM 

refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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3.3 Interim Conclusion 

Due to the interaction with T. weissflogii, the growth of S. marinoi was significantly enhanced 

up to 41 % percent, as measured via cell counts. This effect manifested in the phase of regular 

growth due to increased growth rate of S. marinoi and continued to prevail in the stationary phase 

of growth as well. Compared to the interaction of T. weissflogii and S. costatum, the stimulatory 

effect was less pronounced.  

Concerning the growth of T. weissflogii, I observed statistically significant but biologically 

negligible fluctuations of increased and decreased growth. As differences between mono- and 

co-cultivation were minor, I assumed the growth dynamic of T. weissflogii to lack any signs of 

relevant, interaction-induced alterations.  

Among metadata, I documented no relevant interaction-induced alterations. Bacterial 

abundance data indicated the presence of bacteria, from the onset of the experiment. Meaning 

that the axenic state of the diatom cultures could not be maintained during the interaction. 

Interestingly, while in the interaction between T. weissflogii and S. costatum I documented 

increased silicate concentrations, in S. costatum cultures due to senescence no such observation 

was made in the present interaction. 

In the context of metabolomic analyses, I based the choice of metabolomic sampling points on 

the same criteria described in chapter 2.6. The interaction of T. weissflogii and S. marinoi resulted 

in significant alterations in the metabolism of each diatom partner. These results resemble the 

ones for the interaction between T. weissflogii and S. costatum (chapter 2). I suggest that both 

diatom partners were able to sense and react to the presence of each other, as endometabolomic 

changes were found to be significant on day 18 and 42 within S. marinoi and on day 30 within 

T. weissflogii.  

However, the extent of endometabolomic alterations was less distinctive compared to the 

interaction of T. weissflogii and S. costatum, as a multitude of the correlating metabolites was 

characterized by rather small intensity differences between mono- and co-cultivation. This 

observation might be connected to the fact that the growth stimulation was lesser in size as well. 

Furthermore, I graded the phenotypic response of T. weissflogii weaker, compared to the one of 

S. marinoi.  

The exometabolomic analysis revealed significant, interaction-induced alterations on all three 

sampling days, suggesting an ongoing metabolite flux between the interaction partners. 

Interestingly, S. marinoi had a stronger impact on shaping the chemical environment in the 
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interaction, compared to T. weissflogii. This might be influenced by either different metabolite 

secretion rates (per cell) or by differences in cell counts between the species. In the present 

investigation, cell counts of S. marinoi were between 7 - to 17 - fold higher in co-cultivation, 

than cell counts of T. weissflogii. Thus, it seems reasonable that S. marinoi had a comparably 

higher impact on the chemical environment during the interaction. In comparison, cell counts of 

S. costatum were only 1.5 - to 3 - fold higher than T. weissflogii cell counts in co-cultivation (see 

interaction investigation in chapter 2.2).  

I suggested eight metabolites to be regulated by reduced release, transformation or increased 

uptake mechanisms between S. marinoi and T. weissflogii. Hereby, the sterol 3,18-

bis(acetyloxy)-14,15-epoxy-)-pregn-16-en-20-one (#306, putatively identified), as well as the 

MST #193 presented themselves as very interesting candidate semiochemicals on day 18, as they 

exhibited a clear cut intensity pattern. Both were characteristic for the exometabolome of 

S. marinoi, completely absent in co-cultivation on day 18 and thus suggested to be involved in 

an interaction-induced uptake by T. weissflogii, transformation or reduced release mechanism on 

day 18. Furthermore, maltotriose (#339) and MST #162 are suggested to be involved in uptake 

mechanisms on day 18, as well as galactosylglycerol (#251) on day 30 and 42.  

As discussed in chapter 2.6, the interpretation of pattern I metabolites – which potentially reflect 

interaction-induced increase in secretion – will become difficult and error-prone if cell count 

differences among treatment groups are observed. In the present investigation, I documented 

species-specific differences in cell-counts between the treatments over all sampling days64. 

Nevertheless, a speculative interpretation of the patterns on days 18 and 30 will be given and 

pattern I metabolites correlating with day 40 were omitted due to differences in cell counts 

between treatments of approximately 40 %. 

On day 18, I found the secretion of eight MSTs to be enhanced due to the interaction: putative 

gluconic acid (#206), gluconic acid 1,5-lactone (#180) and putative 7-tetradecanol (#103, #104), 

as well as the MSTs #119, #132, #205 and #210. Hereby, putative gluconic acid (#206) and the 

MSTs #132 and #205 were predominantly found in the medium of S. marinoi cultures, possibly 

suggesting increased secretion by S. marinoi due to the interaction.  

On day 30, I hypothesized 17 metabolites to be secreted in higher amounts due to the interaction 

as they matched pattern I, including putative 2-(4-methyl-1-piperazinyl)ethanol (#53), 

hydroquinone (#73), 4-hydroxybenzaldehyde (#99), putative uridine (#275, #270), putative 

adenosine (#299, #300), guanosine (#311), putative maltose (#304) as well as the MSTs #59, 

                                                 
64 ≤ 20 % on day 18, ≤ 25 % on day 30 and up to 41 % on day 42 
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#208, #241, #260, #265, #278, #291 and #330. Hereby, I suggested putative 2-(4-methyl-1-

piperazinyl)ethanol (#53), the nucleosides putative uridine (#275, #270) and putative adenosine 

(#299, #300) as well as the MSTs #59, #208, #278, #29 and #241 to be excreted by S. marinoi, 

as they were hardly present in the medium of mono-cultivated T. weissflogii culture.  

As growth stimulation occurred in S. marinoi, metabolite flux from T. weissflogii to S. marinoi 

might be expected as well. This lack of observable metabolite flux might be interpreted in several 

ways. For example, it might be possible that other factors than transfer of metabolites between 

the partners are responsible for the observed growth stimulation, e.g. nutrient effects, which 

cannot be depicted by the metabolomics approach. Or that the metabolomic profiling approach 

is simply blind towards certain metabolite flux dynamics, as discussed in chapter 2.6. 

Nevertheless, the present study clearly suggests a chemically-mediated interaction between both 

diatom partners.  

In conclusion, I documented increased growth of S. marinoi in the presence of the diatom 

T. weissflogii. Metabolomic analyses revealed significantly altered cell physiology in both 

diatoms due to the interaction, as well as potential metabolite flux between the partners. 

Interestingly, the chemical environment of the diatoms was predominantly shaped by S. marinoi. 

Furthermore, I introduced two candidate semiochemicals, which are hypothesized to be secreted 

by S. marinoi and taken up or transformed by T. weissflogii. 
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4 Interaction of T. weissflogii with S. dohrnii 

4.1 Experimental design  

The experimental design of the interaction investigation of T. weissflogii and S. dohrnii 

resembled the one described in chapter 3. The investigation was used to further supplement 

previous findings. However, the cultures used for this interaction experiment were very 

susceptible to disturbances and were observed to repeatedly collapse during several pre-treatment 

attempts. Therefore, the robustness of the experiment was thought to be reduced. Nevertheless, 

value was created from the principal and metabolomic insights gained and the experimental 

conclusions will be subsequently described. The associated data is provided in the appendix 

(chapter 7.3). 

4.2 Interim conclusion 

In the interaction between S. dohrnii and T. weissflogii, I observed no meaningful interaction-

induced growth effect for S. dohrnii (chapter 7.3.1). Considering growth parameters of 

T. weissflogii, the chl a fluorescence in co-cultivation was enhanced up to 17 % during the 

stationary phase of growth. However, I found no significant interaction-induced alterations of 

cell counts between the treatments. Compared to the interaction of S. costatum with 

T. weissflogii, the impact of the interaction between S. dohrnii and T. weissflogii on diatom 

growth parameters seemed weaker and more ambiguous, if present at all. 

I used the metadata to monitor the interaction (chapter 7.3.2). Among PSII efficiency, no distinct 

differences were found between mono- and co-cultivated cultures within each species. Generally, 

the bacterial contamination in diatom cultures was minor, as bacterial cell counts only made up 

a fraction of diatom cell counts in both species. Furthermore, bacterial abundance decreased after 

the onset of the experiment. The diatom cultures were depleted of phosphate and silicate on day 

11 or 15 and of nitrate on day 27. Interestingly, mono-cultivated cultures of S. dohrnii exhibited 

increased silicate availability on day 35. Apart from this observation, the metadata did not show 

distinct and meaningful differences among parameter dynamics due to the interaction. 

The ambiguously observed growth effect was accompanied by minor phenotypical responses 

(chapter 7.3.4). A significant, interaction-induced alteration of the diatoms’ endometabolomes 

was only observed on day 35 in T. weissflogii and on day 15 for S. dohrnii. Furthermore, it 

became apparent that compared to the other interactions, only a relatively small amount of 
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identified endometabolites exceeded the 30 % threshold. Especially in the context of the 

S. dohrnii endometabolomics, interaction-induced alterations seemed less distinct than the ones 

for S. costatum and S. marinoi. 

Significant exometabolomic alterations due to the interaction between T. weissflogii and 

S. dohrnii suggested ongoing metabolite flux between the partners (chapter 7.3.3). As shown by 

the misclassification errors, interaction-induced exometabolomic differences were most distinct 

during early stages of diatom growth. Similar to the observation made in chapter 3.3, the chemical 

environment of the interaction was mainly shaped by S. dohrnii.  

In total, 11 MSTs were potentially part of interaction-induced release mechanisms. Most of 

these MSTs were correlating with day 35 and thus late stages of the interaction. With exception 

of putatively identified 2-hydroxyhexanedioic acid (#94, related to day 27) and 4-(2-

hydroxyethyl)phenol (#77, related to day 35), all metabolites were of unknown identity. 

Interestingly, MST #219 showed enhanced abundance in co-cultivation throughout all sampling 

days. It might be hypothesized that this MST is increasingly released by S. dohrnii in an ongoing 

manner due to the interaction with T. weissflogii. In the context of interaction-induced uptake, 

transformation or reduced release mechanisms, nine MSTs were of relevance, all of unknown 

identity.  

To conclude, the interaction between S. dohrnii and T. weissflogii is – if at all – weakly 

pronounced, with slightly enhanced chl a fluorescence in T. weissflogii. As I found no meaningful 

differences in cell counts, the diatom interaction was categorized as a neutral interaction, causing 

no distinct growth stimulation or inhibition. Even though they were only marginally pronounced, 

endometabolomic alterations were documented at isolated sampling points, suggesting that the 

diatom partners were able to sense and react to the presence of each other at some points. 

Significant interaction-induced exometabolomic alterations suggest a metabolite flux between 

the diatom partners. Unfortunately, only few MSTs could be identified. 
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5 Concluding Discussion 

In the scope of this thesis, I metabolomically investigated diatoms in three different interaction 

situations with the aim to advance our understanding of chemically-mediated interactions in 

phytoplanktonic organisms. Hereby, the metabolomic design guaranteed a direct assessment of 

interaction-induced phenotypical alterations (Fiehn, 2002) and the valuation of metabolite flux65 

between the partners. Generally, I set the focus on exometabolomic surveys with 

endometabolomic analyses supporting the investigations. The comparative nature of the 

approach gave room for simplification of the data sets to reduce the complexity of metabolomic 

investigations. Although limitations are inherent to every methodological approach (as discussed 

in chapter 2.5), the combination of elaborate and well-established techniques maximized the 

comprehensiveness of this investigation. 

Experimental design 

A previous study already introduced a co-culturing metabolomics approach and served as a 

basis for the method development presented here (Paul et al., 2009). I realized several 

improvements of the experimental. Firstly, I designed the interaction investigation in a dynamic 

way, investigating several time points before and during the observed growth effects. Secondly, 

the use of a GC-EI/TOF/MS analytical approach advanced the chemical identification of 

metabolomic alterations within the cell and in the chemical environment. Thirdly, an elaborate 

co-cultivation set-up replaced the simple dialysis tube-based approach to recreate chemical 

mediated interactions (Paul et al., 2013). Thus, I fundamentally increased the comparability of 

treatment groups within the experimental design (see chapter 2.1.1). Fourthly, I investigated the 

hypotheses of bacterial involvement and the impact of the prominent infochemical DMSP. Both 

factors were found to be incapable of stimulating the growth of T. weissflogii. Additionally, I 

broadened the scope of the investigation by substituting S. costatum in the interaction experiment 

with two closely related Skeletonema species, S. dohrnii and S. marinoi.  

Although the explorative nature of the chosen metabolomic approach yielded in fertile insights, 

it also raised several questions, which will be subsequently discussed.  

                                                 
65 As assessed via metabolite abundance patterns (chapter 2.2.3) 
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Ecological facilitation 

One common trait of all three interactions was the observation of neutral to positive effects on 

diatom growth in interaction situations. Interestingly, I observed no distinct negative effects on 

diatom growth even though negative effects might be expected due to nutrient or interference 

competition (Reigosa et al., 1999; Legrand et al., 2003; Granéli and Hansen, 2006; Poulson-

Ellestad et al., 2014a). 

The observed growth stimulation strongly indicates ecological facilitation between the diatom 

partners (Stachowicz, 2001; Bruno, Stachowicz and Bertness, 2003). Facilitation is an ecological 

concept that comprises mutualistic interactions, where both partners benefit and commensalistic 

relationship, where one partner benefits and the other remains unaffected. Although positive 

interactions have the power to shape communities with a similar impact as negative interactions 

do, they are still rarely reported in current literature ((Stachowicz, 2001; Bruno et al., 2003) and 

references herein).  

The investigated interactions are commensalistic in the case of T. weissflogii and S. costatum, 

as it is characterized by growth stimulation of T. weissflogii. As well as in the case of the 

interaction between T. weissflogii and S. marinoi, which results in growth stimulation of 

S. marinoi. As the interaction between T. weissflogii and S. dohrnii didn’t cause any relevant 

alteration in diatom growth, it is considered neutral in an ecological sense. Although the outcome 

of the interaction experiments differed in respect to the extent of growth stimulation and the 

impacted species, all interactions were characterized by significantly altered chemical 

environments and distinct physiological alterations in the diatom partners. 

In the marine environment, facilitation has previously been documented: The growth of the 

dinoflagellate Alexandrium fundyense is stimulated by the presence of native bacteria (Ferrier, 

Martin and Rooney-Varga, 2002) and marine cyanobacteria are known to stimulate the growth 

of other cyanobacteria and green algae (Lopes and Vasconcelos, 2011; Roy et al., 2013). 

Furthermore, mutualistic relationships between marine bacteria and phytoplankton have been 

reported, which are based for example on the exchange of fixed carbon and iron (Amin et al., 

2009; Sieg et al., 2011) or vitamin B12 and vitamin B1 (Croft et al., 2005; Wagner-Döbler et al., 

2010; Grant et al., 2014). 

Ecological facilitation can have many faces ((Bruno et al., 2003) and references herein). 

Generally, the outcome of ecological facilitation is highly dynamic and varies with the biotic and 

abiotic environment (Bronstein, 1994): It is inter alia dependent on size, age and abundance of 

the participants, resource availability and the presence of 3rd party interaction partners. As a 
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consequence, the outcome of interactions ranges on a continuous scale from beneficial to 

antagonistic (Bronstein, 1994). A phenomenon also observed in the context of Skeletonema spp., 

as described in chapter 1.3 and demonstrated in the interaction experiments of this thesis. 

Simply by growing, organisms alter their environment and thereby potentially create conditions 

favorable to other organisms (Stachowicz, 2001). However, why would naturally co-existing 

organisms, potentially competing for light, nutrients and light, indulge in a facilitative 

interaction?  

By nature, co-existence comes with certain costs. Facilitation might be especially effective in 

face of environmental stress, when groups of organisms are better able to withstand than 

individual organisms do by themselves (Stachowicz, 2001). Here, the benefits of all positive or 

facilitative interactions need to be higher than costs (Stachowicz, 2001). In the context of marine 

ecology of microalgae, such stress could be for instance caused by nutrient limitation or 

predation. Facilitation might occur when organisms intermingle and modify the habitat in a way 

that makes it more favorable for another organism, e.g. by exuding compounds / nutrients that 

can be capitalized by another species (Stachowicz, 2001) and help them survive in otherwise 

unfavorable conditions.  

Interestingly, the occurrence of a positive effect in the investigated diatom interactions (see 

chapter 2 and 3) coincides with the beginning of the stationary phase of growth, where nutrients 

become limited and environmental conditions more and more unfavorable. Thus, an incentive 

for the development of facilitative relationships is given. The phenomenon of ecological 

facilitation might be explained by three principles: (1) altered nutrient conditions, (2) 

heterotrophic interactions or (3) allelopathic interactions with their partner. All of which are 

caused by the presence of a partner organism and have the potential to cause the observed 

endometabolomic alterations in the diatoms. 

Nutrient conditions 

Alterations in nutrient conditions due to the presence of a partner can be discussed via two 

exemplary scenarios. Firstly, if a strong nutrient competitor is pooled with a weak nutrient 

competitor, the presence of the weaker partner might result in a surplus of available nutrients 

(compared to the mere presence of strong competitors), which might lead to enhanced growth 

and physiological alterations in the stronger partner. In order to differ between weak and strong 

competitors, nutrient uptake rates, which were reported to be species-specific (Harrison, Parslow 

and Conway, 1989; Sarthou et al., 2005) and the capability to indulge in ‘luxury’ consumption 

of nutrients (e.g. phosphorus) can be used. The latter means that under optimal-growth 
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conditions, nutrients are depleted from the medium and stored within the cells (Dyhrman, 2016). 

However, in this scenario the weaker partner would be expected to suffer from a lack of available 

nutrients and exhibit signs of decreased growth, assuming that nutrient needs will not change and 

nutrient availability is limited. Observations that were not in agreement with my findings. 

Secondly, the liberation of nutrients by one partner and subsequent use by the other partner is 

possible, which results in stimulated growth. Interestingly, in two out of three interaction 

experiments (chapters 2.6 and 4.2), increased silicate availability in the medium of mono-

cultivated Skeletonema sp. cells was observed (compared to the co-cultivation set-up), suggesting 

either a release of silicate by the diatom species or the release of silicate due to bacterial 

remineralization of dead diatom’s frustules due to senescence (Roubeix, Becquevort and 

Lancelot, 2008; Diekmann et al., 2009; Vidoudez, 2010).  

The described re-availability of silicate in cultures has also been documented for T. weissflogii 

in a bloom simulation experiment (Diekmann et al., 2009). Thus, it does not seem to be a species-

specific phenomenon. The fact that silicate re-availability in the interaction experiment was only 

observed in Skeletonema mono-cultures, but not in T. weissflogii mono-cultures might have two 

reasons. Firstly, it might be hypothesized that senescence in both diatoms – and thus re-

availability of silicate – proceeds at different rates. This might be supported by the fact that 

S. costatum cell counts decrease between day 26 and 32 while cell counts of T. weissflogii remain 

rather stable (chapter 2.2.1). Secondly, under the assumption of similar remineralization rates in 

both cultures, it might be hypothesized that the reuptake of silicate is faster in T. weissflogii 

cultures.  

As silicate availability is known to crucially influence diatom growth rates and is an essential 

constituent of diatom frustules (Coombs et al., 1967; Diekmann et al., 2009), altered silicate re-

availability due to the presence of a partner might be responsible for the observed growth effect. 

However, as only one of the two interactions exhibited a stimulatory effect, these findings suggest 

that underlying principles might be more complex than mere exchange of silicate, but may 

include the latter. 

Heterotrophic interaction 

Interaction-induced exometabolomic alterations strongly suggest the transfer of organic 

molecules between the partners. This might take place in the context of heterotrophic or 

allelopathic interactions. Heterotrophic interactions are mediated by primary metabolites 

(nutrition), which are used as an energy source in the trophic context. Allelopathic interactions 
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are mediated by secondary metabolites (infochemicals), which carry a message to the partner to 

elicit response (see chapter 1.2, (Nordlund and Lewis, 1976; Dicke and Sabelis, 1988)). 

The differentiation between nutritionally and infochemically-mediated effects is one 

fundamental challenge in the field of allelopathy research. On the one hand, healthy cells are 

known to exude a multitude of organic compounds, possibly as a mechanism of extracellular 

storage in phytoplankton (Fogg, Nalewajko and Watt, 1965; Hellebust, 1965; Fogg, 1977; Sharp, 

1977; Aaronson, 1978; Myklestad, 1995; Barofsky, Vidoudez and Pohnert, 2009; Shniukova and 

Zolotareva, 2015): For example, carbohydrates, carbonic acids, amino acids, vitamins, fatty 

acids, sugars and other primary metabolites. Those primary metabolites present additional energy 

sources and can be taken up and metabolized in the context of heterotrophy (Metting and Pyne, 

1986). On the other hand, several secondary metabolites, which might represent growth 

regulators in the context of allelopathy, rather than energy sources are produced by algae (Hay, 

1996; Ianora et al., 2006).  

Without knowing the identity of the substance, including potential modifications by third party 

organisms and the mode of action in the receiving organism, no clear distinction of mechanisms 

can be achieved (Borowitzka, 2016). A labeling experiment, as discussed in chapter 2.6 can be 

used to trace the origin and metabolomic path of substances of interest. Thus, underlying 

mechanisms can be unraveled. 

Heterotrophic activity in algae is mostly connected to life in dark environments, as it sustains 

phytoplankton growth under adverse living conditions with very low irradiation, e.g. under ice 

in polar regions ((Morales-Sanchez et al., 2015) and references herein). Under those conditions, 

some microalgae can activate a heterotrophic metabolism instead of forming dormancy stages 

((Tuchman et al., 2006) and references herein). Additionally, heterotrophic or mixotrophic66 

uptake of organic compounds is prominent in eutrophic waters with high organic compound 

concentrations ((Burkholder, Glibert and Skelton, 2008) and (Borowitzka, 2016) with references 

herein). 

In the pelagic environment, heterotrophy was proposed to be less common as hydrodynamics 

and scaling between organisms might impair the exchange of organic compounds ((Coughlan, 

1977) and references herein). However, in 1972 the concept of the phycosphere was coined (Bell, 

1983). Despite relatively dominant hydrodynamics, cells are able to establish high compound 

concentrations within a diffusive boundary layer that surrounds each cell, which is called 

                                                 
66 meaning the simultaneous utilization of heterotrophic and autotrophic mechanisms, to acquire organic 

compounds 
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phycosphere (Amin et al., 2012). Thus, cells are able to defy hydrodynamics to a certain extent 

and establish compound concentrations for effective exchange between partners. This is 

especially the case in bloom situations with close proximity and density of organisms. 

Carboxylic acids, saturated fatty acids and multiple other classes of organic compounds are 

involved in heterotrophy among phytoplanktonic organisms ((Tuchman et al., 2006) and 

references herein). Furthermore, phytoplanktonic organisms are able to use dissolved organic 

nitrate (DON) to satisfy their N-needs, a capability that was long believed to be held by bacteria 

only (Bronk et al., 2006). Raven summarized that “amino acids, urea, purines, pyrimidines and 

glycine betaine, and, possibly, peptides and proteins” can be taken up by algae ((Raven and 

Giordano, 2016) and references herein). In the context of algae and bacteria, a mechanism has 

been documented where algae and bacteria share DON: Here, enzymatic properties at the alga’s 

surface clip nitrogen compounds in a way that the N-property is available for the alga and the C-

backbone for bacteria (Palenik and Morel, 1990; Bronk et al., 2006). Additionally, the exchange 

of vitamins B1 and B12 between microalgae and bacteria (Croft et al., 2005; Wagner-Döbler et 

al., 2010; Grant et al., 2014) and the exchange of DMSP between microalgae (see discussion in 

chapter 2.1.4 and 2.4) is relevant in the context of heterotrophy as well. 

Concerning the connectedness of heterotrophy and growth stimulation, Coughlan stated “if an 

alga can utilize an organic compound present in the medium then the growth characteristics of 

this alga in batch culture might be expected to be changed compared with a control with no 

substrate” (Coughlan, 1977). Among interaction-induced exometabolomic alterations, several 

primary metabolites have been found to be of relevance. Thus, the involvement of heterotrophy 

in the interactions between T. weissflogii and Skeletonema sp. is possible, although the 

involvement of DMSP as organic nutrient can be excluded.  

The exometabolomic investigations yielded several identified compounds, which might 

establish heterotrophic relationships between the diatom partners. Especially, if nutrients become 

limited. In general, I set the focus of the metabolomic analysis on identifying already known 

chemical substances via library hits.  

In the interaction of T. weissflogii and S. costatum67, among others four fatty acids (myristic 

acid #111, pentadecanoic acid #117, palmitoleic acid #122/#123 and oleic acid #132), as well as 

a carboxylic acid (putative 2-hydroxypentanoic acid #40) were potentially involved in release-

uptake mechanisms between day 16 and 26 (early phase of the interaction). Furthermore, the 

carboxylic acid succinic acid (#41) might be taken up, metabolized or released in a reduced way 

                                                 
67 Chapter 2.2.3 
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due to the interaction. Interestingly, succinic acid was present in the exometabolomes of both 

diatoms grown in mono-cultures, but completely absent in co-cultivation on day 16, indicating 

uptake metabolization or reduced release. In addition, the carboxylic acids 4-hydroxybutanoic 

acid (#33) and putative 2-methylbenzoic acid (#50) as well as the fatty acid nonanoic acid (#48) 

were upregulated in co-cultivation on day 16. 

As for the case of palmitoleic acid (#176, chapter 2.2.4), the endometabolomic analysis 

confirmed that this metabolite is found in the endometabolome of both diatoms and is 

characteristic for early stages of the growth phase as it is most abundant on day 16 and 26 of the 

interaction. Palmitoleic acid is a common fatty acid in diatoms (Volkman, 1986). Interestingly, 

in the endometabolome of S. costatum palmitoleic acid is less abundant in co-cultivation on day 

16 and in the endometabolome of T. weissflogii it is more abundant in co-cultivation on this day, 

compared to mono-cultivation. As the exometabolomic availability in the interaction context is 

increased on day 16, it can be hypothesized that this is caused by the exudation of palmitoleic 

acid by T. weissflogii, resulting from increased endometabolomic availability. 

Vice versa, on day 26 (stationary phase of growth) palmitoleic acid is more abundant in the 

endometabolome of S. costatum and less abundant in T. weissflogii on this day, both relative to 

mono-cultivation. Here, increased demand in T. weissflogii might be balanced out by increased 

uptake from the medium, which is reflected by low abundance of palmitoleic acid in the 

exometabolome in the interaction set-up on day 26, compared to both mono-cultivations. One 

reason for the fact that the hypothesized palmitoleic acid uptake is not reflected in an increased 

abundance in the T. weissflogii endometabolome might be a high turn-over rate. Generally, 

palmitoleic acid is a common fatty acid constituent of diatoms, which has been documented for 

Skeletonema sp. and Thalassiosira sp. (Pratt, 1966; Prartono, Kawaroe and Katili, 2013; Stonik 

and Stonik, 2015). 

In the interaction of T. weissflogii and S. marinoi, maltotriose (#339, day 18) and 

galactosylglycerol (#251, day 30 and 42) might be taken up, metabolized or released in a reduced 

way due to the interaction, as their abundance was decreased in the interaction context. On the 

other hand, on day 18 (in the early stage of the interaction) the abundance of the sugar acid 

putative gluconic acid (#206), its derivative gluconic acid 1,5-lactone (#180) and the alcohol 

putative 7-tetradecanol (#103, #104) were enhanced in the interaction context. The latter was 

potentially secreted by S. marinoi during the interaction. On day 30, the presence of the alcohol 

4-hydroxybenzahldeyde (#99), the sugar putative maltose (#304) and the nucleosides guanosine 

(#311), putative uridine (#275, #270) and putative adenosine (#299, #300) were enhanced due to 
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the interaction. The last two were potentially excreted by S. marinoi, as they were hardly present 

in the exometabolome of T. weissflogii cultures in mono-cultivation.  

In the interaction of T. weissflogii and S. dohrnii, putative 2-hydroxhexanedioic acid (#94) 

showed enhanced abundance on day 27.  

Generally, the abundance of the presented exometabolites in the culture medium can be used to 

not only draw hypotheses about release / uptake mechanisms, but also about the regulation of 

intracellular metabolite pathways, which account for the observed exometabolomic alterations. 

Those intracellular regulations can partly be assessed via the endometabolomic analysis. 

However, in this thesis I consciously set the focus to not investigate metabolomic pathways, as 

the used metabolomic technique is not optimized for intracellular flux analyses. I rather used the 

endometabolomic analysis as a snapshot tool to characterize the endometabolomic state. To 

extract more information about metabolite flux within the cell, I advise a metabolite flux analysis 

with 13C-labeling (see discussion later on and in chapter 2.6). 

Allelopathic interactions 

The allelopathic potential of diatoms has been widely reported (Sharp et al., 1979; Borowitzka, 

2016). In the case of S. costatum, both negative as well as positive allelopathic effects towards a 

multitude of organisms have been documented and the involvement of various allelochemicals 

has been assumed (compare chapter 1.3, (Yamasaki et al., 2007, 2011, 2012; Qiu et al., 2014))68. 

In contrast to heterotrophic effects, allelopathic effects are mediated via secondary metabolites 

(Legrand et al., 2003; Borowitzka, 2016).  

I presented principles of allelopathic investigations in chapter 1.3, including: the types of 

allelopathic interactions, factors influencing the outcome of allelopathic interactions and the 

allelopathic potential of Skeletonema spp.. Under the assumption of allelopathy and in 

consideration of the different interaction outcomes, possible explanations could be species-

specific differences in allelopathic potential between the Skeletonema strains (Keating, 1977, 

1978; Fistarol et al., 2004; Kubanek et al., 2005; Yamasaki et al., 2011), intrastrain variability 

between the used T. weissflogii strains (Alpermann et al., 2009, 2010), or variations in receiver 

and emitter population density (Sharp et al., 1979; Jonsson et al., 2009; Yamasaki et al., 2011; 

Qiu et al., 2014). Furthermore, the susceptibility of the receiver might be influenced by its 

physiological state (Fistarol et al., 2005; Ianora et al., 2006).  

                                                 
68 A comprehensive description and discussion of the allelopathy concept is given in chapter 1.3. 
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In the context of allelopathy between Thalassiosira sp. and Skeletonema sp., the impact of 

different initial cell count ratios, as well as the impact of time on the allelopathic effect has 

previously been tested (Yamasaki et al., 2011). Interestingly, the growth of T. rotula cultures, as 

measured via maximum chl a fluorescence, was stimulated by S. costatum. However, with 

increased ratios of initial S. costatum / T. rotula concentrations, the extent of the stimulatory 

effect on T. rotula decreased and an initial lag phase appeared. Thus, variance in the outcome of 

observed stimulatory effects might result from initial cell count ratios of both diatom partners. 

From an evolutionary perspective the explanation of negative allelopathy is far easier than the 

explanation of positive allelopathy: it is hypothesized that allelopathic potency presents a 

competitive advantage to the emitting organism (Legrand et al., 2003). This mechanism is 

referred to as interference competition and is well known from terrestrial ecosystems (Wink, 

2003): by emitting allelochemicals, microalgae could reduce competition in their close vicinity 

and thus gain benefit for survival and / or reproductive fitness. While interference competition is 

a common explanation used in the context of negative allelopathic effects in the marine 

environment, it struggles with the explanation of positive allelopathic effects. Especially, if a 

targeted communication is assumed. 

Generally, Lewis et al. strongly questioned the concept of targeted chemical interactions based 

on the nature of aqueous environments and proposed the production of allelochemicals in the 

context of interference competition as an evolutionary unstable concept (Lewis, 1986). This was 

mainly due to the fact that metabolomic costs for allelochemical production are rather high and 

that both spatial associations between organisms as well as organisms and their released 

allelochemicals is often not given in aqueous environments; furthermore transmission of 

compounds in water is a very inefficient process due to velocity and distance (Lewis, 1986; 

Martin, 2003; Arrieta, Barreira and Tuval, 2015). As a consequence, targeted communication 

based on allelochemicals was proposed to be an ecological unstable concept. 

Nevertheless, Lewis interpreted the findings of Keating as clear evidence for allelopathy in field 

conditions (Keating, 1977, 1978). To explain this phenomenon, an alternative explanation was 

suggested - the allelochemicals-signal hypothesis (Lewis, 1986): Generally, allelochemicals 

might be used as environmental cues by the receiving organisms, which enable them to align 

their life cycles to the environmental conditions. In this hypothesis, the significance of 

allelochemicals is completely determined by the receiving organism, from emitter perspective 

they are mere exudates. This hypothesis harmonizes with the understanding that ecological 

facilitation often results from natural, potentially untargeted modification of the environment by 

growing organisms (Stachowicz, 2001).  
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Among interaction-induced exometabolomic alterations, in this study I identified several 

secondary metabolites, strongly suggesting an allelopathic interaction. The subsequent 

discussion is mainly based on identified metabolites. Unfortunately, I could identify only a 

fraction of metabolites, but numerous unknown MSTs bear the potential to mediate the 

interaction as well. I described and classified all MSTs in the respective chapters and interim 

conclusions (chapters 2.2.3 and 2.6, 3.2.3 and 3.3, 4.2 and appendix chapter 7.3.3), but they will 

not be further addressed at this point.  

In the interaction of T. weissflogii and S. costatum, the putative alkaloid 2-hexylpyridine (#51) 

might be involved in release-uptake mechanisms at the onset of the interaction. 2-Hexylpyridine 

has previously been isolated from bacteria and in previous investigations showed inhibitory 

activity towards microorganisms (Salih and Çelikbıçak, 2012). However, its role in the marine 

environment is still to be determined and no negative effect as such was documented in the 

investigated diatom interaction. Furthermore, the terpenoid dehydroabietic acid (#135) exhibited 

reduced abundance in co-cultivation on all three sampling days with clearest characteristic during 

early stages of the interaction. I suggest this terpenoid to originate from T. weissflogii and either 

its exudation by T. weissflogii was reduced, or it was continuously taken up by S. costatum or 

transformed over the course of the interaction.  

Dehydroabietic acid (#135) has been intensely studied as conifer biomarker and is known for 

its antibacterial and antifungal activity (Vargas et al., 1999; Savluchinske-Feio et al., 2006; 

González, 2015; Costa et al., 2016). Just recently, dehydroabietic acid was proposed to be an 

allelochemical in the aquatic environment as well, as it is produced and released by several 

cyanobacteria strains and exhibits antibacterial properties (Costa et al., 2016). The compound 

was not reported to have antialgal activity, as tested via Chlorella vulgaris (Costa et al., 2016). 

In the interaction between T. weissflogii and S. marinoi69, I hypothesized the sterol70 #306 to be 

either taken up by T. weissflogii, metabolized or less exuded by S. marinoi due to the interaction 

on day 18. Sterols are part of the diatoms’ cell membranes and determine its stability and 

permeability (Stonik and Stonik, 2015). It has been proposed that the concentrations of sterols in 

the cell membranes influence and signal transduction and membrane permeability (Dufourc, 

2008). Thus, the reduced release of sterols, as hypothesized for S. marinoi, might directly result 

in an altered membrane permeability and thus modify the biological activity of S. marinoi and 

indirectly shape the allelochemistry between the interaction partners. 

                                                 
69 Chapter 3.2.3 
70 Putative 3,18-bis(acetyloxy)-14,15-epoxy-)-pregn-16-en-20-one 
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Furthermore, sterols are involved in cellular defense mechanisms against oxygen and are 

precursors for hormones and bioactive secondary metabolites ((Fabris et al., 2014) with reference 

to (Dufourc, 2008; Galea and Brown, 2009)). In diatoms, sterols containing C27-C29 backbones 

are most abundant (Rampen et al., 2010). In plants, steroids in general are known for their 

essential role as hormones. In this context, growth-promoting compounds have been reported, 

e.g. brassinosteroids from rape pollen, which have the potential to promote growth of other plants 

(Mitchell et al., 1970; Bishop and Koncz, 2002). Considering the hypothesis that the uptake of 

sterol #306 by T. weissflogii is increased, it might be possible that sterol #306 conveys a growth 

promoting message. 

In addition, MST #205 was increasingly exuded on day 18 and putative 2-(4-methyl-1-

piperazinyl)ethanol (#53) and hydroquinone (#73) on day 30. Hereby, metabolite #53 was 

potentially excreted by S. marinoi. While putative 2-(4-methyl-1-piperazinyl)ethanol (#53) is an 

unknown natural product, hydroquinone derivatives have been widely reported to occur in marine 

sponges and are known for their antitumor, antibacterial and antiviral activity (Wright, Rueth and 

Cross, 1991; Nguyen et al., 2016). Furthermore, the allelopathic potential of hydroquinone 

towards diatoms has been reported as growth, photosynthesis and the physiological state of 

diatoms is negatively affected (Yang et al., 2013). Thus, hydroquinone has been proposed as 

algaecide to control marine microalgae (Yang et al., 2013).  

Interestingly however, in the interaction between T. weissflogii and S. marinoi, I documented 

no negative impact on diatom growth. As previously described, the allelopathic effect depends 

on a multitude of factors and one allelochemical may convey both positive and negative messages 

to its receiver, depending on the circumstances. Therefore in a next step, the impact of the 

potential allelochemicals in the context of the interaction between T. weissflogii and S. marinoi 

must be further investigated. 

In the interaction of T. weissflogii and S. dohrnii71 I documented no relevant growth effect. 

Nevertheless, I suspected 4-(2-hydroxyethyl)phenol (#77) to be involved in interaction-induced 

release mechanisms on day 35. Phenolic compounds are known to be involved in stress 

responses, as they can protect cells from reactive oxygen species (Bentes et al., 2011; Rico et al., 

2013) and various phenolic compounds have been found in diatoms like Phaeodactylum 

tricornutum (Rico et al., 2013). However, the role of this compound in the interaction is unclear.  

Although further analyses are needed to understand the meaning and biological role of the 

proposed metabolites, I excluded the involvement of the prominent infochemical DMSP in the 

                                                 
71 Chapter 4.2 
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stimulatory growth effect on T. weissflogii. Also I could show that the bacterial community of 

the partner diatom is not capable of producing the observed stimulatory effect on diatom growth. 
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Summary and outlook  

In the context of this thesis it was my aim to unravel underlying principles of allelopathic 

phytoplankton dynamics with a focus on the interactions between Thalassiosira sp. and 

Skeletonema sp., both dominant bloom formers in the phytoplankton (Kooistra et al., 2008; Dreux 

Chappell et al., 2013). Chemically-mediated interactions impact ecosystem structure and 

functionality on a very basic level as they are involved in a number of key life processes 

(Borowitzka, 2016). Among chemically-mediated interactions in the phytoplankton, allelopathy 

is the most studied type (Borowitzka, 2016). However, underlying mechanisms of those 

interactions are still to be fully clarified.  

Diatoms are of essential importance for marine and terrestrial ecosystems: They impact the 

global carbon cycle (Keeling and Shertz, 1992; Field et al., 1998), global climate (Bates et al., 

1987; Charlson et al., 1987) and form the basis of the marine food web. To understand these 

fundamental and global ecosystem dynamics, it is of great interest to investigate underlying 

principles and dynamics in phytoplankton communities.  

This thesis focuses on the poorly understood positive allelopathy in phytoplankton.  

The outcome of the investigated interactions indicates ecological facilitation between 

Thalassiosira sp. and Skeletonema sp.. Interestingly, I observed only positive to neutral effects 

on diatom growth, but no negative or inhibitory effects. The interaction effect hereby differed 

among the Skeletonema species: S. costatum or S. marinoi and T. weissflogii interacted in a 

commensalistic way, while I considered the interaction between S. dohrnii and T. weissflogii to 

be ecologically neutral.  

Picking up findings of Paul et al. on the positive allelopathy in the interaction between 

T. weissflogii and S. costatum (Paul et al., 2009), a GC-EI/TOF/MS analytical approach 

advanced the identification of metabolomic alterations within the diatom cells and in their 

environment. I used an elaborate co-cultivation set-up to manipulate the interaction and to 

monitor chemically-mediated interactions in a standardized experimental design. By broadening 

the scope of the interaction and introducing three different Skeletonema species into the 

interaction investigation, it was possible to investigate three interactions clearly showing traits 

of ecological facilitation. 

 In the interaction of T. weissflogii and S. costatum, T. weissflogii showed significantly 

enhanced growth in co-cultivation. Cell counts were elevated by up to 81 % (day 26) 
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and chlorophyll a up to 39 % (day 23) due to the interaction. The effects on the growth 

of S. costatum were ambiguous.  

 In the interaction between T. weissflogii and S. marinoi, growth of S. marinoi was 

significantly enhanced due to the interaction with T. weissflogii. Compared to the 

negative control, cell counts in co-cultivation were increased up to 41 % and 

chlorophyll a fluorescence up to 31 % (day 42). Considering growth parameters of 

T. weissflogii, I observed no consistent and distinct long-term trend of increase or 

decrease. 

 In the interaction between T. weissflogii and S. dohrnii, no meaningful interaction-

induced growth effect was observed for S. dohrnii. Considering growth parameters of 

T. weissflogii, the chlorophyll a fluorescence in co-cultivation was enhanced up to 

17 % during the stationary phase of growth. However, I found no significant 

interaction-induced alterations of cell counts between the treatments.  

Each interaction was characterized by significant endometabolomic alterations within the 

interaction partners. Independent of the type of interaction, diatom partners are able to sense the 

presence of each other, as indicated by a significantly altered intracellular metabolome.  

In all three interactions, the exometabolomic analyses strongly suggest a metabolite transfer 

between the interaction partners. As both primary and secondary metabolites were involved, I 

discussed allelopathy and heterotrophy as underlying principles and broadened the initial 

hypothesis of allelopathy. In the context of both theories, I introduced a set of highly interesting 

metabolites and potential allelochemicals. Furthermore, in this thesis I proposed hypotheses 

about release / uptake mechanisms and interaction-induced alterations of the chemical 

environment described (compare chapter 5).  

In the context of allelopathy 

In the interaction of T. weissflogii and S. costatum72, the putative alkaloid 2-hexylpyridine (#51) 

might be involved in release-uptake mechanism at the onset of the interaction. Release-uptake 

mechanisms refer to dynamics where one interaction partner releases metabolites, which are 

subsequently taken up by the other partner. Furthermore, the terpenoid dehydroabietic acid 

(#135) exhibited reduced abundance in co-cultivation on all three sampling days with clearest 

characteristics during early stages of the interaction. I thought this terpenoid to originate from 

                                                 
72 Chapter 2.2.3 



Summary and outlook 207 

T. weissflogii and either its exudation by T. weissflogii was reduced, or it was continuously 

taken up by S. costatum or transformed over the course of the interaction.  

In early stages of the interaction between T. weissflogii and S. marinoi73, I hypothesized a 

sterol74 #306 to be either taken up by T. weissflogii, metabolized or less exuded by S. marinoi 

due to the interaction. In addition, MST #205 was increasingly exuded during early stages as 

well and putative 2-(4-methyl-1-piperazinyl)ethanol (#53) and hydroquinone (#73) during later 

stages. Hereby, metabolite #53 was potentially excreted by S. marinoi. 

In the interaction of T. weissflogii and S. dohrnii75 I suspect 4-(2-hydroxyethyl)phenol (#77) to 

be involved in interaction-induced release mechanisms during later stages of the interaction. 

In the context of heterotrophic interactions 

In the interaction of T. weissflogii and S. costatum, among others four fatty acids (myristic acid 

#111, pentadecanoic acid #117, palmitoleic acid #122/#123 and oleic acid #132) as well as a 

carboxylic acid (putative 2-hydroxypentanoic acid #40) were potentially involved in release-

uptake mechanisms during early stages of the interaction. Furthermore, the carboxylic acid 

succinic acid (#41) might be taken up, metabolized or its release might be reduced due to the 

interaction. In addition, the carboxylic acids 4-hydroxybutanoic acid (#33) and putative 2-

methylbenzoic acid (#50), as well as the fatty acid nonanoic acid (#48) were upregulated in co-

cultivation during early stages of the interaction. 

In the interaction of T. weissflogii and S. marinoi, maltotriose (#339) and galactosylglycerol 

(#251) might be taken up, metabolized or their release might be reduced due to the interaction, 

as their abundance was decreased in the interaction context. On the other hand, the abundance of 

the sugar acid putative gluconic acid (#206), its derivative gluconic acid 1,5-lactone (#180) and 

the alcohol putative 7-tetradecanol (#103, #104) were enhanced in the interaction context. The 

latter was potentially secreted by S. marinoi during the interaction. In the stationary phase, the 

presence of the alcohol 4-hydroxybenzahldeyde (#99), the sugar putative maltose (#304) as well 

as the nucleosides guanosine (#311), putative uridine (#275, #270) and putative adenosine (#299, 

#300) were enhanced due to the interaction. The last two were potentially excreted by S. marinoi 

as they were hardly present in the exometabolome of T. weissflogii cultures in mono-cultivation.  

                                                 
73 Chapter 3.2.3 
74 Putative 3,18-bis(acetyloxy)-14,15-epoxy-)-pregn-16-en-20-one, numbers refer to entries in respective data 

tables (here Table 12) 
75 Chapter 4.2 
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In the interaction of T. weissflogii and S. dohrnii, putative 2-hydroxhexanedioic acid (#94) 

showed enhanced abundance in co-cultivation during the stationary phase of growth. Significant 

exometabolomic alterations due to the interaction between T. weissflogii and S. dohrnii 

suggested ongoing metabolite flux between the partners. Interaction-induced exometabolomic 

differences were most distinct during early stages of diatom growth. Unfortunately, only few 

MSTs could be identified. 

Although further analyses are needed to understand the meaning and biological role of the 

proposed metabolites, I could present a clear picture of interaction-induced regulation of 

metabolites and proposed potential transfer dynamics between the interaction partners. 

Furthermore, I excluded the involvement of the prominent infochemical DMSP in the stimulatory 

growth effect on T. weissflogii. Also I showed that the associated bacterial community of the 

partner diatom is not capable of producing the observed stimulatory effect on diatom growth. 

While the results of this thesis help to better understand and characterize interactions between 

Thalassiosira sp. and Skeletonema sp., I advise further supplementary investigations:  

First of all, the preliminary identified metabolites need to be verified via co-injection of standard 

substances. Secondly, to test the hypotheses of heterotrophy and allelopathy, the biological 

activity of the identified allelochemicals needs to be tested, as well as the heterotrophic potential 

of the identified primary metabolites. As a starting point, I recommend small-scale growth 

experiments, e.g. in well-plates or small culture flasks. By adding the identified fatty acids, 

carboxylic acids, sugars and their derivatives, alcohols and nucleosides in the context of a feeding 

experiment as well as the secondary metabolites in the context of an allelochemical experiment, 

their impact on diatom growth can be assessed. Using the insights of these experiments, candidate 

molecules should be submitted to further analyses for unambiguous identification.  

To get more clarity on underlying principles and to further pursue the proposed hypotheses of 

uptake and release mechanisms, a 13C labeling approach via metabolite flux analyses is strongly 

advised (see discussion in chapter 2.6). The subsequent labeling of both interaction partners 

allows to gain comprehensive insights into the interaction dynamic and the metabolite flux in the 

interaction. With the help of this method it is possible to trace the metabolite origin, uptake and 

even metabolization by the interaction partner. Another advantage is that this approach also 

allows the assessment of synergies between several metabolites and is open to both hypotheses: 

allelopathy and heterotrophic interactions.   

In a next step, these insights need to be introduced into more complex experimental set-ups, 

which allow the verification in an ecological context. Not only considering larger scale 
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experiments like micro- or mesocosms, but also ecologically more complex scenarios like 

tripartite communities. Thus, after elucidating the chemical mediators between organisms, their 

relevance can be evaluated under different ecological scenarios.  
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Zusammenfassung und Ausblick 

Im Kontext der vorliegenden Dissertation war es mein Ziel, die zu Grunde liegenden Prinzipien 

allelopathischer Dynamiken in phytoplanktonischen Lebensgemeinschaften aufzuklären. Der 

Fokus lag hierbei auf den Interaktionen zwischen Thalassiosira und Skeletonema Spezies, 

welche dominante Phytoplankton-Blüten bilden können (Kooistra et al., 2008; Dreux Chappell 

et al., 2013). Chemisch mediierte Interaktionen beeinflussen die Struktur und Funktionalität von 

Ökosystemen auf einer basalen Ebene, da sie einer Vielzahl von essentiellen biologischen 

Prozessen zu Grunde liegen (Borowitzka, 2016). Unter den chemisch mediierten Interaktionen 

wurde Allelopathie am meisten untersucht (Borowitzka, 2016), jedoch sind die zu Grunde 

liegenden Mechanismen noch immer nicht vollständig aufgeklärt. 

Diatomeen sind für marine und terrestrische Ökosysteme von essentieller Bedeutung. Sie 

beeinflussen den globalen Kohlenstoffzyklus (Keeling and Shertz, 1992; Field et al., 1998), das 

globale Klima (Bates et al., 1987; Charlson et al., 1987) und stellen weiterhin die Basis des 

marinen Nahrungsnetzes dar. Um diese fundamentalen und globalen Dynamiken innerhalb des 

Ökosystems zu verstehen, ist es wichtig, die Dynamiken und Prinzipien innerhalb von 

phytoplanktonischen Lebensgemeinschaften zu untersuchen. Die vorliegende Arbeit fokussierte 

sich auf die bisher noch wenig untersuchte positive Allelopathie im Phytoplankton. 

Zwischen Thalassiosira und Skeletonema Spezies zeichnet sich das Bild ökologischer 

Erleichterung76. Interessanterweise habe ich entlang der untersuchten Interaktionen keine 

negativen oder inhibitorischen Effekte beobachtet, sondern ausschließlich stimulierende bis 

neutrale Einflüsse. Die Ausprägung des Interaktionseffekts variierte unter den Skeletonema 

Spezies: S. costatum, S. marinoi und T. weissflogii interagierten kommensalistisch, während die 

Interaktion zwischen S. dohrnii und T. weissflogii ökologisch neutral verlief.  

Aufbauend auf den Ergebnissen von Paul et al. zur positiven Allelopathie in der Interaktion 

zwischen T. weissflogii und S. costatum (Paul et al., 2009), habe ich einen GC-EI/TOF/MS-

basierten analytischen Ansatz gewählt, um die Identifizierung von metabolomischen 

Änderungen innerhalb der Diatomeenzellen und innerhalb ihrer Umwelt voranzutreiben. Ein 

innovatives Co-Kultivierungssystem ermöglichte die Manipulation der Interaktion und die 

Untersuchung von chemisch mediierten Interaktionen mit Hilfe eines standardisierten 

experimentellen Designs. Da ich den Umfang der Untersuchung auf drei verschiedene 

                                                 
76 Übersetzung von „ecological facilitation“ 
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Skeletonema Arten erweitert habe, konnte ich drei Interaktionen dokumentieren, die alle klare 

Anzeichen ökologischer Erleichterung aufwiesen. 

 In der Interaktion zwischen T. weissflogii und S. costatum zeigte T. weissflogii 

signifikant gesteigertes Wachstum in Co-Kultivierung. Auf Grund der Interaktion 

waren die Zellzahlen bis zu 81 % (Tag 26) und die Chlorophyll a Fluoreszenz bis zu 

39 % (Tag 23) erhöht. Der Einfluss auf das Wachstum von S. costatum war nicht 

eindeutig. 

 In der Interaktion zwischen T. weissflogii und S. marinoi war das Wachstum von 

S. marinoi durch die Anwesenheit von T. weissflogii signifikant gesteigert. Im 

Vergleich zur Negativkontrolle waren die Zellzahlen in Co-Kultivierung bis zu 41 % 

und die Chlorophyll a Fluoreszenz um bis zu 31 % (Tag 42) erhöht. Entlang der 

Wachstumsparameter von T weissflogii konnte ich  keinen beständigen und 

eindeutigen Langzeittrend feststellen, der auf Zunahme oder Abnahme des Wachstums 

hindeutete. 

 In der Interaktion zwischen T. weissflogii und S. dohrnii habe ich bei S. dohrnii keinen 

aussagekräftigen und durch die Interaktion verursachten Wachstumseffekt beobachtet. 

Unter Betrachtung der Wachstumsparameter von T. weissflogii, habe ich eine 

Steigerung der Chlorophyll a Fluoreszenz während der stationären Wachstumsphase 

um bis zu 17 % dokumentiert. Jedoch habe ich keine signifikanten Unterschiede in den 

Zellzahlen festgestellt.  

Jede Interaktion wurde durch signifikante endometabolomische Änderungen innerhalb beider 

Interaktionspartner charakterisiert. Unabhängig vom Interaktionstyp sind beide Diatomeen 

Partner in der Lage, die Präsenz des anderen zu fühlen, wie durch die signifikanten Änderungen 

des intrazellulären Metaboloms belegt wurde. 

In allen drei Interaktionen wiesen die exometabolomischen Analysen stark auf einen 

Metabolitentransfer zwischen den Interaktionspartnern hin. Da sowohl Primär-, als auch 

Sekundärmetabolite involviert waren, habe ich Allelopathie und Heterotrophie als zu Grunde 

liegende Mechanismen diskutiert und so die initiale Hypothese der Allelopathy erweitert. Im 

Kontext beider Theorien, stelle ich eine Auswahl sehr interessanter Metabolite und potentieller 

Allelochemikalien vor. Weiterhin schlage ich Hypothesen zu Freisetzungs- / Aufnahme-

Mechanismen vor und beschreibe interaktionsbedingte Veränderungen der chemischen Umwelt 

(vergleiche Kapitel 5). 
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Im Kontext der Allelopathie 

In der Interaktion zwischen T. weissflogii und S. costatum77 war der putativ identifizierte 

Alkaloid 2-Hexylpyridin (#51) zu Beginn der Interaktion möglicherweise in 

Freisetzungs- / Aufnahme-Mechanismen involviert. Freisetzungs- / Aufnahme-Mechanismen 

beschreiben Dynamiken, in denen ein Interaktionspartner Metabolite freisetzt, welche im 

Anschluss daran vom entsprechenden Partner aufgenommen werden. Die terpenoide Verbindung 

Abieta-8(14),9(11),12-trien-18-säure (#135) kam in Co-Kultivierung an allen drei 

Beprobungstagen in reduzierter Häufigkeit vor. Die Reduktion war hierbei in frühen Stadien der 

Interaktion am prägnantesten. Ich vermute, dass dieser Metabolit von T. weissflogii stammt und 

entweder die Freisetzung des Metabolites reduziert wird, die Aufnahme durch S. costatum 

gesteigert ist oder eine Transformation stattfindet. 

Für die frühen Phasen der Interaktion zwischen T. weissflogii und S. marinoi78 stelle ich die 

Hypothese auf, dass der Sterol Metabolit79 #306 entweder von T. weissflogii aufgenommen, 

metabolisiert oder in reduzierter Menge von S. marinoi freigesetzt wurde. Darüber hinaus wird 

der Metabolit #205 ebenfalls zu Beginn der Interaktion vermehrt freigesetzt und 2-(4-Methyl-1-

piperazinyl)ethanol (#53, putativ identifiziert) und Hydrochinon (#73) zu späteren Zeitpunkten. 

Dabei stammt der Metabolit #53 potentiell von S. marinoi. 

In späten Phasen der Interaktion zwischen T. weissflogii und S. dohrnii80 vermute ich, dass 4-

(2-Hydroxyethyl)phenol (#77) in einen interaktionsinduzierten Freisetzungs-Mechanismus 

involviert war.  

Im Kontext der Heterotrophie 

In frühen Phasen der Interaktion zwischen T. weissflogii und S. costatum waren unter anderem 

vier Fettsäuren (Myristinsäure #111, Pentadecansäure #117, 9-Hexadecensäure #122/#123 und 

9-Octadecensäure #132), sowie eine Carbonsäure (2-Hydroxypentansäure #40 putativ 

identifiziert) potentiell in Freisetzungs- / Aufnahme-Mechanismen involviert. Außerdem ist es 

möglich, dass die Carbonsäure Bernsteinsäure (#41) im Kontext der Interaktion aufgenommen, 

metabolisiert oder in verminderter Menge freigesetzt wurde. Darüber hinaus waren die 

Carbonsäuren 4-Hydroxybutansäure (#33) und putativ identifizierte 2-Methylbenzoesäure (#50) 

                                                 
77 Kapitel 2.2.3 
78 Kapitel 3.2.3 
79 Putativ 3,18-bis(acetyloxy)-14,15-epoxy-)-pregn-16-en-20-one, die Zahlen verweisen auf die entsprechenden 

Datentabellen (hier Table 12) 
80 Kapitel 4.2 



Zusammenfassung und Ausblick 213 

wie auch die Fettsäure Nonansäure (#48) während frühen Phasen der Interaktion in Co-

Kultivierung hochreguliert. 

In der Interaktion zwischen T. weissflogii und S. marinoi ist es möglich, dass Maltotriose (#339) 

und Galactosylglycerol (#251) im Kontext der Interaktion aufgenommen, metabolisiert oder in 

verminderter Menge freigesetzt wurden, da ihr Vorkommen im Interaktionskontext vermindert 

war. Auf der anderen Seite war die Abundanz der Zuckersäure Gluconsäure (#206), des Derivates 

Glucono-1,5-lactone (#180) und des putativ identifizierten Alkohols 7-Tetradecanol (#103, 

#104) im Interaktionskontext gesteigert. Letzt-genannter Metabolit wird während der Interaktion 

potenziell von S. marinoi freigesetzt. In der stationären Wachstumsphase war das Vorkommen 

des Alkohols 4-Hydroxybenzaldehyd (#99), des putativ identifizierten Zuckers Maltose (#304) 

sowie der Nukleoside Guanosin (#311), Uridin (#275, #270, putativ identifiziert) und Adenosin 

(#299, #300, putativ identifiziert) während der Interaktion gesteigert. Die beiden Letztgenannten 

wurden potenziell von S. marinoi freigesetzt, da sie im Exometabolom von T. weissflogii 

Kulturen kaum präsent waren. 

In der Interaktion zwischen T. weissflogii und S. dohrnii war die Abundanz von putativ 

identifizierter 2-Hydroxyhexandisäure (#94) in Co-Kultivierung in der stationären 

Wachstumsphase gesteigert. Signifikante exometabolomische Änderungen, welche durch die 

Interaktion zwischen T. weissflogii und S. dohrnii verursacht wurden, legen einen 

kontinuierlichen Metabolitenaustausch zwischen den Interaktionspartnern nahe. 

Interaktionsinduzierte Unterschiede im Exometabolom traten am stärksten ausgeprägt während 

frühen Wachstumsphasen auf. Leider konnten nur wenige Metabolite identifiziert werden. 

Auch wenn weitere Analysen notwendig sind, um die Bedeutung und biologische Relevanz der 

vorgestellten Metabolite vollständig aufzuklären, konnte ich doch ein klares Bild der 

interaktions-induziert regulierten Substanzen zeichnen und potenzielle Transferdynamiken 

zwischen den Interaktionspartnern vorschlagen. Weiterhin konnte ich die Beteiligung der 

prominenten Infochemikalie DMSP an dem stimulierenden Wachstumseffekt von T. weissflogii 

ausschließen. Außerdem habe ich gezeigt, dass die assoziierte bakterielle Lebensgemeinschaft 

der jeweiligen Partner-Diatomee nicht fähig ist, den beobachteten stimulierenden 

Wachstumseffekt bei Diatomeen zu reproduzieren. 

Die Ergebnisse dieser Arbeit tragen dazu bei, die Interaktionen zwischen Thalassiosira und 

Skeletonema Spezies besser zu verstehen und zu charakterisieren. Ich empfehle darüber hinaus 

folgende weiterführende Untersuchungen: 
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In einem ersten Schritt müssen die vorläufig identifizierten Metabolite via Co-Injektion von 

Standardsubstanzen final identifiziert werden. Im Anschluss daran soll die biologische Aktivität 

der identifizierten Allelochemikalien, sowie das heterotrophische Potenzial der identifizierten 

Primärmetabolite getestet werden. Hierbei empfehle ich, mit Modellversuchen im kleinen 

Maßstab anzufangen, z.B. in Well-Platten oder kleinvolumigen Kulturflaschen. Der Einfluss der 

Subtanzen auf das Wachstum von Diatomeen kann im Kontext von verschiedenen Experimenten 

getestet werden: die identifizierten Fettsäuren, Carbonsäuren, Zucker und entsprechenden 

Derivate, Alkohole und Nukleoside können im Kontext eines Heterotrophieexperiments getestet 

werden und der Einfluss der Sekundärmetabolite in einem Allelopathieexperiment. Aufbauend 

auf den Ergebnissen dieser Experimente, sollten Kandidatenmetabolite weiteren Analysen 

unterzogen werden, um die Struktur final aufzuklären. 

Um Klarheit über die zu Grunde liegenden Prinzipien zu erlangen und um die vorgestellten 

Hypothesen von Freisetzung und Aufnahme der Metaboliten weiter zu verfolgen, schlage ich ein 

13C basiertes Labeling-Experiment im Kontext einer Flux-Analyse vor (weitere Informationen in 

der Diskussion in Kapitel 2.6). Die nacheinander folgende Markierung beider Interaktionspartner 

erlaubt es hierbei, umfassende Einblicke in die Interaktionsdynamik und den Metabolitenfluss 

während der Interaktion zu gewinnen. Mit Hilfe dieser Methode ist es möglich, den Ursprung, 

die Aufnahme und sogar die Metabolisierung von Metaboliten durch die Interaktionspartner 

nachzuverfolgen. Ein weiterer Vorteil dieses Verfahren ist, dass Synergieeffekte zwischen 

verschiedenen Metaboliten untersucht werden können und dass die Untersuchung beider 

Hypothesen möglich ist: Allelopathie und Heterotrophie. 

In einem nächsten Schritt, müssen alle gewonnenen Erkenntnisse in ein komplexeres 

experimentelles Design überführt werden, welches eine Verifizierung im ökologischen Kontext 

gewährleistet. Dabei sollte nicht nur die Skalierung vergrößert werden, z.B. in Mikro- oder 

Mesokosmos Experimenten, sondern auch ökologisch komplexere Szenarios untersucht werden, 

z.B. Interaktionen in Lebensgemeinschaften mit mehr als zwei Organismen. Auf diese Weise 

kann die Relevanz der zuvor final identifizierten chemischen Substanzen in verschiedenen 

ökologischen Szenarien evaluiert werden. 
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6 Material and methods 

6.1 Algae 

6.1.1 Strains 

Non-axenic strains of Skeletonema costatum (RCC75) and Thalassiosira weissflogii (RCC76, 

strain synonym CCMP1336) were obtained from Roscoff Culture Collection, Roscoff, France. 

T. weissflogii (CCMP1336) was isolated from Gardiners Island, Long Island, New York USA. 

Axenic strains of Skeletonema marinoi (CCMP1332), Skeletonema dohrnii (CCMP 3373) and 

Thalassiosira weissflogii (CCMP1336) were obtained from The National Center for Marine 

Algae and Microbiota, East Boothbay, Maine, USA. S. marinoi (CCMP1332) was isolated from 

Milford, Conneticut USA. S. dohrnii (CCMP3373) was isolated from Narragansett Bay, Station 

2, Rhode Island USA. 

Axenic state of the purchased algae has been tested by The National Center for Marine Algae 

and Microbiota before shipment.  

6.1.2 Medium 

All strains have been cultured in artificial seawater medium, prepared similarly to the 

descriptions by Maier and Calenberg (Maier and Calenberg, 1994). Nutrient concentrations were 

246 µmol/L silicate, 11 µmol/L phosphate and 621 µmol/L nitrate. The artificial seawater 

medium was HEPES buffered with a pH of 7.8. It was stored in Nalgene® Polypropylene 1 L 

bottles and autoclaved at a sterilization temperature of 121 °C with a sterilization time of 15 min 

(end temperature 80 °C) before use. 

Seawater medium for axenic cultures (up to a culture volume of max. 400 mL) has additionally 

been 0.20 µm sterile filtered (Filtropur S 0.2; Sarstedt, Nümbrecht, Germany) before addition. 

6.1.3 Cultivation Parameters of Algal Stock 

Stock cultures of all strains were grown in 40 mL sterile cell culture flasks (Sarstedt, 

Nümbrecht, Germany). They were cultivated with five replicates per species. Cultures were 

stored on an orbital shaker (75 rpm) under a 14/10 hours light/dark cycle in a climate chamber at 

15 °C. The light intensity was approximately 55 µmol photons s1m2 provided from the top by 

Osram Lumilux® Cool White 15 W lamps.  
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For maintenance, cultures were inoculated into sterile filtered fresh medium (v/vSW 1/1) once a 

month. All cultures were constantly held under sterile conditions. Culture vessels were only 

opened under a vertical flow sterile bench (BDK, Germany). Handling of cultures followed 

standard sterile techniques.  

6.2 Co-cultivation 

6.2.1 Chamber parts 

The co-cultivation set-up as subsequently presented was developed and previously described by 

Carsten Paul (Paul, 2012; Paul et al., 2013).  

A co-cultivation set-up consists of two chamber-halves, separated by a 0.22 µm hydrophilic 

PVDF membrane filter (Durapore®, Merck Millipore, Cork, Ireland). Each chamber-half was 

built from commercially available Duran flasks (VWR, Dresden, Germany), modified by a glass 

blower to possess a 100 mm flat edge opening and an additional opening with a 29 mm neck. 

When assembled, both chamber-halves frame the semi-permeable membrane, where in one of 

the halves an O-ring made out of silicone (201-0159, VWR, Dresden, Germany) guarantees the 

proper fit and alignment with the second half. A metal holding clamp (201-0192, VWR, Dresden, 

Germany) upon a layer of parafilm are used to fit both chamber-halves together and to prevent 

leaking. Upright storage of the assembled co-cultivation set-up on a cork ring ensures stability 

even on an orbital shaker. The openings for sampling are covered with cellulose stoppers and 

aluminum foil (both sterilized). 

6.2.2 Chamber preparation and maintenance 

While handling any parts of the co-cultivation system (details in 4.2.1), it is mandatory to wear 

clean gloves to avoid contamination of the parts. Before assembly, co-cultivation glass chambers 

and O-rings were cleaned in a laboratory dish washer twice without the presence of rinsing agents 

or any other contaminated glass ware. Metal holding clamps were cleaned with deionized water 

and dried before use. To ensure sterility, all parts necessary for the co-cultivation chamber 

assembly (with exception of parafilm) were autoclaved individually at a sterilization temperature 

of 121 °C with a sterilization time of 20 minutes and a dry time of ten minutes (end temperature 

120 °C) before use under a vertical flow sterile bench. 
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6.2.3 Culture preparation 

Before the onset of an experiment, stock cultures were inoculated into fresh artificial seawater 

medium (v/vSW 1/3). To increase the culture volume and to keep the cultures in regular growth 

phase, cultures were repeatedly diluted (at least four times). Depending on culture viability, 

dilution steps were performed every four to ten days with dilution ratios of 1/1 to 1/3 (v/vSW) to 

final culture volumes of up to 2 L in sterile cell culture flasks (Sarstedt, Nümbrecht, Germany). 

Volumes bigger than 400 mL were grown in sterilized Erlenmeyer flasks (500 mL, 1 L and 2 L) 

and sealed with autoclaved cellulose stoppers (VWR, Dresden, Germany) and sterilized 

aluminum foil. All solids were autoclaved at 121 °C for 15 min and cooled down to 80 °C before 

opening of the autoclave. 

Investigation of the interaction between T. weissflogii and Skeletonema sp. 

At the onset of the experiment (day 0), each chamber-half was filled with 400 mL freshly 

inoculated culture under sterile conditions. In the interaction of T. weissflogii with S. costatum 

(chapter 2.2) and S. marinoi (chapter 3) inoculation cultures were diluted 1/3 (v/vSW), in the 

interaction with S. dohrnii (chapter 4) 1.5/2.5 (v/vSW). 

Investigation of initial co-cultivation conditions on T. weissflogii and S. costatum (medium 

experiment) 

In the investigation of initial co-cultivation conditions (see medium experiment chapter 2.3) on 

T. weissflogii and S. costatum, a new experimental group was introduced: the medium exchange 

group (see experimental design in chapter 2.1.3). This group needed a medium manipulation of 

the species under investigation, before the inoculation of the co-cultivation chambers at day 0. 

Subsequently the medium manipulation is exemplarily explained for the investigation of 

T. weissflogii: 

 All cultures in use, originated from a pooled culture stock for S. costatum and T. weissflogii. 

The manipulated T. weissflogii culture was obtained, by combining the cell equivalent of 200 mL 

of T. weissflogii stock culture with the medium equivalent of 200 mL of S. costatum stock culture 

per chamber half. The medium equivalent was received by filtrating 200 mL of undiluted 

S. costatum stock-culture a GF/C filter (Whatman, Kent, UK) under reduced vacuum 

(≈700 mBar). For the cell equivalent, 200 mL of undiluted T. weissflogii stock culture were 

centrifuged at 15000 rcf for ten minutes. After decanting the supernatant medium, the retained 

T. weissflogii cells were immediately washed with fresh artificial seawater medium and the 

centrifugation-washing step was repeated (this procedure was performed twice). The last 
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centrifugation of the T. weissflogii cells was followed by resuspension of the cells in 200 mL 

S. costatum medium equivalent, resulting in a manipulated T. weissflogii culture. All steps were 

performed under sterile conditions. 

At the onset of the experiments (day 0), both the medium manipulated and unaltered cultures 

were diluted with artificial seawater medium in a ratio 1/1 (v/vSW). Each chamber-half was then 

filled with 400 mL freshly inoculated culture under sterile conditions.  

6.2.4 Co-cultivation parameters 

Cultures were stored on an orbital shaker (75 rpm) under a 14/10 hours light/dark cycle in a 

climate chamber at 15 °C. The light intensity was approximately 35 µmol photons s1m2 provided 

from the top by Osram Lumilux® Cool White 15 W lamps.  

6.2.5 Sampling procedure 

Before sampling, co-cultivation set-ups were gently, manually shaken to ensure thorough 

mixing of the cultures. Subsequently, regular sampling was performed under a vertical sterile 

bench and with standard sterile technique. The total sample volume was collected in sterile 

Falcon tubes or sterile Erlenmeyer bottles (depending on total sample volume and nature of the 

samples), before subsamples were taken for metabolomic and metadata analysis. To ensure 

maximum comparability, the sampling procedure was standardized and performed at the same 

time of the day within each experiment.  

6.2.6 Biological replication in co-cultivation  

The experimental designs for each conducted experiment are described in chapter 2.1, 3.1 and 

4.1. Within each experimental group, three co-cultivation chambers were used as interaction 

replicates (4 co-cultivation chambers in the investigation of T. weissflogii and S. marinoi, chapter 

3). The seawater control group was represented by one replicate, with exception of the 

investigation of T. weissflogii and S. costatum, in which no seawater control group was 

introduced. 

The definition of one biological replicate differed among the investigated parameters. In 

general, each chamber half of each co-cultivation set-up was sampled and measured individually. 

With exception of nutrient analysis, pH and exometabolomic samples, for which volumes were 

pooled before measurement. 

In the investigation of cell-based parameters (chl a, PSII efficiency, cell counts, bacterial 

abundance, endometabolome etc.), which were specific for each chamber half, one chamber of 
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the mono-cultivation groups was equivalent to one biological replicate (n = 3/4): Both chamber 

halves were sampled and measured individually, but for the analysis average values were used. 

In the co-cultivation group one chamber contained one biological replicate of S. costatum and 

one biological replicate of T. weissflogii. Thus, per species, one chamber half was considered one 

biological replicate with a total of three biological replicates for each species in co-cultivation 

(n = 3/4).  

In the investigation of medium-based parameters (pH, nutrients, exometabolome etc.), the 

samples of both chamber halves were pooled and considered one biological replicate in both 

mono- and co-cultivation. Thus each experimental group contained three (4) biological 

replicates. 

6.2.7 Experimental specifics 

Interaction experiment between T. weissflogii and S. costatum  

See chapter 2.1.2 for details. 

In the endometabolome analysis of the interaction between T. weissflogii and S. costatum 

(chapter 2), two replicates of the mono-cultivation treatment of T. weissflogii were missing on 

day 16 and one mono-cultivation replicate of S. costatum was missing on day 32. There were just 

two exometabolomic replicates of the co-cultivation treatment available on day 26 due to the loss 

of a sample in the work-up process. 

Medium experiment within the context of the interaction between T. weissflogii with 

S. costatum (chapter 2.3) 

The investigation of T. weissflogii was conducted over 40 days, with three chamber replicates 

per treatment group. To monitor the growth and state of diatom cultures, chl a and PSII efficiency 

samples were taken every 2nd/3rd day (no sampling has been conducted between day two and 9), 

as well as cell counts starting from day 18. To measure bacterial abundance in the cultures, flow 

cytometry samples were taken once a week. Samples for nutrient analysis and pH measurements 

were taken at distinct time points of the growth curve. 

The investigation of S. costatum was conducted over 28 days. Chl a and PSII efficiency were 

measured approximately every 2nd to 3rd day. Flow cytometry samples, to measure bacterial 

abundance, were taken on day 3, day 12 and day 26 after the onset of the experiment. Nutrient 

samples were collected weekly. On three distinct time points of the growth curve (days 19, 26 

and 28) cell counts were taken. 
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The definition of biological replicates within the measured parameters was performed as 

described for the interaction experiment (see chapter 2.1.2 “Metadata”). In the context of the 

medium exchange group, only the not manipulated chamber half was considered for all cell-

based parameters (resulting in n = 3), as this group was designed to recreate the co-cultivation 

group, sampling was performed accordingly. 

Interaction experiment between T. weissflogii with S. marinoi (chapter 3)  

In addition to the primary set of treatment groups described in chapter 2.1.1, a medium control 

was introduced, containing one co-cultivation chamber filled with artificial seawater medium. 

Thus, the experimental design consisted of four treatment groups: T. weissflogii mono-

cultivation, S. marinoi mono-cultivation, co-cultivation and medium control. Except for the 

medium control group (n = 1), all treatment groups contained four chambers, replicating the 

respective set-up. 

The experiment was conducted over 48 days. Chl a fluorescence, PSII efficiency and cell count 

samples were taken every 3rd day to monitor the growth and physiological state of the cultures. 

Approximately once a week, the bacterial abundance in the culture medium was determined. 

Furthermore, nutritional analyses were conducted weekly for the first four weeks of the 

experiment and metabolomic samples were taken on three distinct points during the diatom 

growth, on day 18, day 30 and day 42. 

Due to sample loss during filtration, the T. weissflogii mono-cultivation group on day 30 

comprised only seven biological replicates (instead of 8) in the endometabolomic analysis and 

three biological replicates (instead of 4) in the exometabolomic analysis. The medium control 

group was represented by one sample. As a consequence, the data analysis workflow differed in 

one step: to get rid of potential contaminations, within each sampling day the integrated data of 

the medium control group were trifold subtracted from each sample (see chapter 6.7.3). 

Interaction experiment between T. weissflogii with S. dohrnii (chapter 4)  

The approach was similar to the one described for the interaction between T. weissflogii and 

S. marinoi (see above), with the difference that all treatment groups, except the medium control 

group, contained three chamber replicates. 

The experiment was conducted over 35 days. Chl a fluorescence, PSII efficiency and cell count 

samples were taken approximately every 2nd - 3rd day to monitor the growth and physiological 

state of the cultures. Approximately once a week, the bacterial abundance in the culture medium 
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was determined. Furthermore, nutritional analyses81 were conducted and metabolomic samples 

were taken at three distinct points of the diatom growth curve, on day 15, day 27 and day 35. 

Due to sample loss during filtration, the S. dohrnii mono-cultivation group on day 35 comprised 

only five biological replicates (instead of 6) in the endometabolomic. The medium control group 

was represented by one sample. The integrated data of the medium control group were trifold 

subtracted from each sample.  

6.3 Evaluation of DMSP as growth mediator 

6.3.1 Cultivation parameters 

Before the onset of an experiment, stock cultures of T. weissflogii (RCC76) were inoculated 

into fresh artificial seawater medium. To increase the culture volume and to keep the cultures in 

regular growth phase, cultures were repeatedly diluted (v/vSW 1/1). At the onset of the experiment 

(day 0), cultures were inoculated into sterile cell culture flasks (v/vSW 1/1), resulting in a total 

culture volume of 80 mL for the investigation of the influence of a continuous  DMSP availability 

and 40 mL for the investigation of the influence of DMSP pulses.  

Cultures were stored on an orbital shaker (75 rpm) under a 14/10 hours light/dark cycle in a 

climate chamber at 15 °C. The light intensity was approximately 35 µmol photons s1m2 provided 

from the top by Osram Lumilux® Cool White 15 W lamps.  

6.3.2 Chemicals 

DMSP * HCl, synthesized by Kathleen Thume, was diluted in artificial seawater medium, to 

create DMSP stock solutions of 100 µM, 0.5 mM, 1.25 mM. The stock solutions were 

subsequently 0.20 µm sterile filtered and stored at – 80 °C until further use. To reach final 

concentrations of 100 nM, 0.5 µM and 1.25 µM in the culture medium, 40 µL (80 µL) of the 

respective DMSP stock solution were added to 40 mL (80 mL) of diatom culture under sterile 

conditions. 

6.3.3 DMSP addition to T. weissflogii culture 

Investigation of the influence of continuous DMSP availability: Sterile DMSP solution was 

added to each culture in a daily manner (five out of seven days per week). 

                                                 
81 No nutrient levels were available for the co-cultivation group on day 4 
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Investigation of the influence of DMSP pulses of different concentrations: Sterile DMSP 

solution was added to every culture on day 20, 24 and 32 after inoculation, to reach final 

concentrations of 200 nM, 1 µM and 2.5 µM in the diatom cultures. 

Control groups were established by adding sterile artificial seawater medium in a volume analog 

to the addition of respective DMSP solutions. 

6.3.4 Experimental specifics 

Both experiments in the context of the interaction between T. weissflogii with S. costatum 

(chapter 2.4) have been conducted over 36 days, starting with freshly diluted cultures (v/vSW 1/1). 

Chl a and PSII efficiency were measured every 2nd to 3rd day to estimate diatom growth and 

fitness. Additionally cell counts were taken at distinct points in time during the experiment.  

For the continuous DMSP availability experiment, two experimental groups were established: 

a control group and a DMSP group. Each comprised triplicates of 80 mL cultures. In a daily 

manner (five out of seven days per week), sterile DMSP solution was added to each culture of 

the DMSP group to reach final concentrations of 100 nM per culture. In the control group, an 

equivalent volume of artificial seawater was added instead of DMSP.  

For the investigation of DMSP pulses, four treatment groups were established. One control 

group, analog to the one described above and three groups to which different DMSP 

concentrations were added on day 20, 24 and 32 after inoculation, to reach final concentrations 

in the cultures of 100 nM, 1 µM and 2.5 µM. Each group comprised triplicates of 80 mL cultures.  

6.4 Sampling 

Depending on the design of the experiment, samples were taken in regular intervals (for more 

details see chapter 2.1 and 6.2.7). Samples for cell counts, chl a and photosystem II activity were 

taken every 2nd to 4th day, bacterial count samples for flow cytometry measurements were taken 

approximately once a week and nutrient analysis as well as metabolomics samples (comprising 

endo- and exometabolomic samples) were taken at distinct points of the growth curve.  
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Table 19: Sampling strategy per chamber-half for co-cultivation experiments 

 Volume Vessel Storage Protocol 

Chl a/PSII 

efficiency 
1 mL Eppendorf Tube (1.5 mL) 

Immediate 

measurement 

Chapter 6.5.1, 

6.5.2 

Cell count 1 mL Eppendorf Tube (1.5 mL) 
Storage in the dark at 

room temperature 
Chapter 6.5.3 

Flow cytometry 1 mL Eppendorf Tube (1.5 mL) Storage at -80 °C Chapter 6.5.4 

pH 10 mL Falcon Tube (15 mL) 
Immediate 

measurement 
 

Nutritional 

analysis 
20 mL Falcon Tube (50 mL) Storage at -20 °C Chapter 6.5.4 

Metabolomic 

samples 
80

82
 mL 

Sterile Erlenmeyer flask 

(100 mL) 
Storage at -80 °C Chapter 6.6 

 

6.5 Metadata acquisition 

6.5.1 Chlorophyll a fluorescence 

Chl a was measured using a Mithras LB 940 plate reader. 96-multiwell plates were prepared by 

adding 200 µL of each well-mixed culture per well. Plates were then measured row by row with 

an excitation filter of 430 nm (lamp energy 15000 mcd) and an emission filter of 665 nm. To 

ensure comparability and validity, measurements were performed directly after sampling, at the 

same time of day with three to five technical replicates and two analytical replicates. If a seawater 

control was available in the experimental design, chl a values were corrected by subtraction of 

the seawater control values. If no seawater control was available, fluorescence was corrected by 

subtracting blank values of the plate. Chl a was measured per chamber half, average values per 

chamber were used in the mono-cultivation groups. 

6.5.2 Photosystem II activity measurements 

Photosystem II activity can be calculated according to the formula 
(𝐹𝑚−𝐹0 )

𝐹𝑚
 as described in (Roy 

and Legendre, 1979). Both the initial fluorescence (F0) and the maximum fluorescence (Fm) were 

obtained using the same plates as prepared for chl a. Measurements of both parameters were 

conducted as described for chl a in chapter 6.5.1. However, the following steps were modified: 

                                                 
82 75 mL in the interaction of T. weissflogii and S. costatum 
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Before F0 measurements the prepared plates were stored in the dark at 15 °C for 30 minutes and 

shaken in the instruments for 60 seconds. Subsequently, Fm measurements were conducted after 

adding 15 µL of aqueous 3’-(3,4-dichlorphenyl)-1’,1’-dimethylurea (71.7 µM; Sigma-Aldrich, 

Munich, Germany) per well and shaking the plate in the instrument for 180 seconds. PSII 

efficiency were considered zero if they showed negative values. If a seawater control was 

available in the experimental design, F0 and Fm values were corrected by subtraction of the 

seawater control values. If no seawater control was available, values were corrected by 

subtracting blank values of the plate. PSII efficiency was measured per chamber half, average 

values per chamber were used in the mono-cultivation groups. 

6.5.3 Cell counts 

Samples were immediately fixed by addition of one drop of acidic lugol solution per Eppendorf 

tube. Lugol solution is prepared by dissolving 20 g of KI (Sigma-Aldrich, Steinheim, Germany) 

in 200 mL deionized water and adding 10 g of crystalline I2 (VWR, Leuven, Belgium). 

Afterwards, 20 mL of glacial acetic acid (Sigma-Aldrich, Steinheim, Germany) were added. 

Before storage in the dark, the solution was filtered and routinely checked for precipitation 

((Throndsen, 1978) as stated in (Guillard and Sieracki, 2005)). Samples can then be stored in the 

dark until counting. 

Cell counts were obtained with an upright microscope (DM2000, Leica, Heerbrugg, 

Switzerland) using a Fuchs-Rosenthal haemocytometer. At least 400 cells were counted for each 

sample. Cell counting was performed by two undergraduate students, which were employed as 

student assistants in this context. 

6.5.4 pH  

For each chamber half 5 mL of the culture was taken and pooled in a 15 mL FALCON Tube 

under sterile conditions. Directly after sampling, the pH was measured in three analytical 

replicates with a HI 1131 electrode (Roth) attached to a C830 pH meter (Consort, Turnhout, 

Belgium).The pH meter was calibrated with standard solutions of pH 7.0 and pH 4.00 (Roth), 

each time before use. 

6.5.5 Flow cytometry measurements 

Sample workup and storage 

Samples were immediately fixed by addition of 20 µL per 1 mL sample of a 25 % 

glutaraldehyde solution (electron microscopy grade, Sigma Aldrich, Munich, Germany) to reach 
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a final concentration of 0.5 % per sample. The samples were then thoroughly vortexed and stored 

in the dark at 4 °C for 30 minutes before being cryopreserved with liquid nitrogen and stored at 

80 °C until further analysis. 

Sample preparation 

The sample preparation was performed according to a protocol used by Michaela Mauß (Mausz, 

2014), which was adapted from (Marie et al., 1999; Brussaard, 2004). To thaw, samples were put 

in a water bath at 35 °C for five minutes. If necessary (especially with non-axenic cultures or in 

later growth phases), samples were subsequently diluted up to 50 - fold in sterile (0.20 µm) 

filtered TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0). For staining, a SYBR® Gold 

Nucleic Acid Gel Stain (10000 - fold concentrated in DMSO; life technology, Eugene, OR, USA) 

was diluted 1:100 (v/v) in sterile filtered TE buffer (storage of the diluted dye in the dark at 20 °C 

possible). For sample staining, 5 µL of the diluted SYBR® Gold stock solution were added to 

500 µL sample volume resulting in a final dilution of 1:10000 (v/v) of the commercial SYBR® 

Gold stain. Subsequently, the samples were stored for ten minutes at 80 °C in the dark (drying 

oven) to intensify staining. In between the steps, samples were thoroughly vortexed. Samples 

were measured immediately after staining. 

Sample measurement 

For measurements, 100 µL of stained and diluted samples together with 100 µL calibration 

standard and 300 µL sterile filtered TE buffer were carefully mixed in flow cytometry tubes 

(Rotilabo®; Carl Roth, Karlsruhe, Germany). Samples were prepared in duplicates. To eliminate 

unwanted signals from the bacterial count measurements, blanks consisting of stained, sterile 

filtered TE buffer were measured in duplicates within each batch (consisting of max. 32 samples) 

and subtracted from the samples.  

Samples were measured with a medium flow rate of 30 µL/min over 60 seconds. The calibration 

standard beads were identified at 575 nm and calibrated at 525 nm. The bacterial population was 

identified and quantified at 525 nm, as 525 nm was also used as discriminator. Detector voltages 

were set according to Table 20. 
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Table 20: Detector settings for flow cytometry sample measurements (parameters modified from protocols of 

Michaela Mausz) 

Sensor Type 
Wavelength 

(nm) 

Sample 

measurement 

Calibration 

standard 

Volts Gain Volts Gain 

FS 
Photodiode 

 550 1 1000 2 

SS  1000 7.5 850 5 

FL1 

Photo-

multiplier tubes 

(PMTs) 

525 370 1 350 1 

FL2 575 500 1 337 1 

FL3 620 390 1 300 1 

FL4 675 400 1 450 1 

FL5 755 500 1 577 1 

AUX 

(auxiliary 

parameter) 

  300 1 300 1 

Calibration standard 

For calibration, diluted Fluoresbrite™ Plain YG 1.0 µm Mikron Microspheres (latex; 

Polysciences, Warrington, PA, USA) with final concentration of approximately 1000 beads/µL 

in sterile filtered ultrapure water were used. This so called calibration standard was considered 

stable for up to two weeks, when stored at 4 °C in the dark. To determine absolute bead counts 

of the calibration standard, the diluted Fluoresbrite™ Plain YG bead solution itself was calibrated 

with the help of CountBright™ absolute counting beads (7 µm diameter; life technologies, 

Eugene, OR, USA). This absolute count calibration of the calibration standard was performed 

after every 2nd to 4th sample batch, by thoroughly mixing 100 µL Fluoresbrite™ Plain YG 

calibration beads together with 100 µL CountBright™ absolute counting beads and 300 µL 

sterile filtered TE buffer in flow cytometry tubes. Calibration measurements were performed at 

least in triplicates immediately after mixing.  

The calibration samples were measured with a low flow rate of 10 µL/min over 60 seconds. 

Both the calibration standard beads and absolute counting beads were identified and calibrated 

at 575 nm. 525 nm were used as discriminator. Detector voltages were set according to Table 

20. 



Material and methods 227 

Quality Control 

Quality control measurements were performed daily with the help of Flow-Check™ 

Fluorespheres (Beckman Coulter, Galway, Ireland).  

6.5.6 Nutritional analysis 

For each chamber half 20 mL of the culture was taken and sterile-filtered. For each chamber; 

the aliquots of the two chamber halves were pooled in a 50 mL FALCON Tube under sterile 

conditions. Subsequently samples were stored in the dark at 20 °C until shipment. The GEOMAR 

(Frank Malien, Chemical Oceanography, Kiel, Germany) was commissioned to do nutritional 

analyses. Samples were sent in a frozen state and cooled with cool-packs during delivery. 

Measurements were performed in analytical triplicates. 

Methods for the analysis of nitrite, nitrate and dissolved inorganic silicate can be found in 

(Hansen and Koroleff, 2007). Determination of nitrite was conducted as described in chapter 

10.2.8, p.177-178). The method is based on the proposal of (Shinn, 1941) and adapted for 

seawater by (Bendschneider and Robinson, 1952). Nitrate concentrations are determined as 

described in chapter 10.2.9, p.180-182 and silicate concentrations as described in chapter 10.2.11, 

p-193-194. Ortho-phosphate is measured according to a method of the firm BRAN + LUEBBE 

(now SEAL Analytical, Norderstedt, Germany) (SEAL-Analytical, 2002). In principle this 

method follows the method of (Murphy and Riley, 1958) and is based on the 

spectrophotometrical quantification of a blue phosphor-molybdenum complex.  

Instrument 

Samples were measured with two instruments, depending on instrument availability. The first 

instrument is a 5-channel continuous flow analyzer for shipboard use self-designed by the 

GEOMAR and described in chapter 10.3.1 of (Hansen and Koroleff, 2007). The other instrument 

is a QuAAtro continuous segmented flow analyzer (Seal Analytical, Norderstedt, Germany). 

Within one experiment the same instrument was used and samples were shipped together to 

maintain maximum comparability.  
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6.6 Metabolomic analysis 

The metabolomics analysis (as described in this chapter) was conducted based on the protocols 

and methods developed by Charles Vidoudez (Vidoudez, 2010; Vidoudez and Pohnert, 2011). 

6.6.1 Chemicals and consumables 

Solvents 

If not otherwise stated, the following solvents were used in the context of metabolomics:  

 acetone (analytical reagent grade; Fisher Chemical, Leicestershire, UK), 

 chloroform (HiPerSolv CHROMANORM for HPLC; VWR, Leuven, Belgium),  

 ethanol (LiChrosolv® gradient grade for liquid chromatography; Merck, Darmstadt, 

Germany), 

 methanol (CHROMASOLV® Plus, for HPLC; Sigma-Aldrich, Steinheim, Germany),  

 n-hexane (SupraSolv® for gas chromatography; Merck, Darmstadt, Germany), 

 pyridine(CHROMASOLV®Plus for HPLC, ≥ 99.9 %; Sigma-Aldrich, Steinheim, 

Germany), 

 tetrahydrofuran (HiPerSolv CHROMANORM for HPLC; VWR, Leuven, Belgium), 

 water (CHROMASOLV®Plus for HPLC; Sigma-Aldrich, Steinheim, Germany). 

N-hexane and pyridine were stored with a molecular sieve (4 Å, 0.4 nm, type 514; Carl Roth, 

Karlsruhe, Germany). 

Materials 

In the context of metabolomics, all pipettes, tips and centrifuge tubes (1.5 mL) used were from 

Eppendorf (Eppendorf, Hamburg, Germany). For sample processing and analysis, two kinds of 

1.5 mL glass vials were used. On the one hand 1.5 mL glass vials (N9, flat) sealable with screw 

caps containing silicone-PTFE septa (N9, 1 mm thickness) and combinable with glass inserts 

(wide opening, 0.2 mL, 6×31 mm) and metal springs were used (all from Macherey-Nagel, 

Düren, Germany). On the other hand 1.5 mL glass vials (Wicom, Heppenheim, Germany) 

sealable with screw caps containing PTFE-butyl-PTFE septa (1.3 mm thickness; VWR, Dresden, 

Germany) and combinable with glass inserts (tight opening; Wicom, Heppenheim, Germany) 

and metal springs were used. Extracellular metabolite samples were stored in 4 mL glass vials 

(N13, flat; Macherey-Nagel, Düren, Germany) sealable with screw caps containing butyl-PTFE 

Septa (VWR, Dresden, Germany). In order to avoid contaminations all materials and chemicals 

were only handled with gloves and used in a very clean environment. Within one experiment, the 

same kinds of materials were used for all samples to obtain maximum comparability. 
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Retention Index Mix 

The retention index (RI) mix contained six n-alkanes dissolved in hexane in concentrations of 

1 mM and 0.5 mM (Table 21). A stock of each n-alkane dissolved in hexane (10 mM and 5 mM) 

was stored in 4 mL glass vials at 20 °C. To obtain the RI-mix 100 µL of each n-alkane stock 

solution were mixed in a 4 mL glass vial and filled up with hexane to reach a final volume of 

1 mL. The RI-mix was stored at 20 °C. Within each experiment, the same RI-Mix aliquot was 

used for all samples to ensure maximum comparability.  

Table 21: Chemical compounds of the RI-mix 

n-alkane 
Stock 

concentration 

RI-mix 

concentration 

decane (≥ 99 %; Sigma-Aldrich, Steinheim, Germany) 10 mM 1 mM 

dotriacontane (97 %; Sigma-Aldrich, Steinheim, Germany) 10 mM 1 mM 

hexatriacontane (98 %; Sigma-Aldrich, Steinheim, Germany) 5 mM 0.5 mM 

nonadecane (purum ≥ 99 %; Fluka, Steinheim, Germany) 10 mM 1 mM 

octacosane (purum ≥ 98 %; Fluka, Steinheim, Germany) 10 mM 1 mM 

pentadecane (purum ≥ 98 %; Fluka, Steinheim, Germany) 10 mM 1 mM 

External standard: 

A stock of ribitol (˃ 99 %; Sigma-Aldrich, Steinheim, Germany) dissolved in water (40 mM) 

was stored in 4 mL glass vials at 20 °C. Before use, the stock solution was diluted 1:10 (v/v) in 

1.5 mL glass vials to reach a final concentration of 4 mM ribitol in water. Within each experiment 

the same ribitol aliquot was used. 

Extraction mix:  

The extraction mix was freshly prepared before each extraction of intracellular metabolites. It 

contained a mix of methanol:ethanol:chloroform in a ratio of 2:6:2 (v/v/v). 

Agilent Test 

For quality assessment and as analytical reference material, the Agilent Test (DB-5ms; Agilent 

Technologies, Santa Clara, CA, USA) was injected into the GC-EI/TOF/MS system before and 

after each sample batch. The Agilent Test stock contains the following substances: n-tetradecane, 

n-tridecane, 1-undecanol, 1,6-hexanediol, 2-ethylhexanoic acid, 4-chlorophenol, 

dicyclohexylamine, 1-methylnaphtalene solved in hexane/acetone (1:1, v/v) in mass 
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concentrations of 0.001 mg/mL. Before use, the Agilent test stock was diluted 1:10 (v/v) in 

hexane/acetone (1:1, v/v). 

6.6.2 Protocol for metabolomic sample preparation and storage  

The protocol for metabolomic sample extraction and preparation is based on the standard 

operating procedure (SOP) of Charles Vidoudez (Vidoudez, 2010; Vidoudez and Pohnert, 2011) 

and contains minor changes. The procedures were performed as follows: 

Intracellular metabolite sample preparation 

Extraction protocol 

After randomized sampling of 80 mL culture volume (75 mL in the analysis of the interaction 

between S. costatum and T. weissflogii, chapter 2) per chamber-half, the samples were extracted 

by concentrating diatom cells on a GF/C filter (Whatman, Kent, UK) under vacuum 

(≈700 mBar). The filter was not allowed to run completely dry, thus avoiding stress reactions of 

the cell before extraction. The flow-through was collected by pooling the volumes of each two 

halves of the same co-cultivation chamber for further analysis of extracellular metabolites. The 

extracellular metabolite samples were temporarily stored in 500 mL glass vessels (Schott, Mainz, 

Germany) until further preparation.  

Immediately after cell concentration, the filter was transferred to a 25 mL glass beaker, in which 

the cells on the GF/C filter were re-suspended in 1 mL of ice-cold extraction mix and transferred 

in an Eppendorf centrifuge tube. After vortexing (≥ 10 sec) 5 µL of ribitol solution (4 mM) were 

added to each sample. Samples were temporarily stored on ice until the extraction was completed 

for all samples, before storage at 80 °C until further analysis. 

Sample preparation protocol 

Sample randomization was carried out within each sampling day. Samples were unfrozen at 

room temperature and thoroughly vortexed. In order to ensure maximum comparability of the 

metabolomic profiles, all extraction volumes were normalized to a certain diatom cell count. The 

cell count was uniform within each species within each experiment (see Table 22 for more 

details). The equivalent amount of cells was transferred from the unfrozen samples in a new 

Eppendorf tube. Subsequently, 100 µL of extraction mix were added, samples were placed in an 

ultrasound bath for ten minutes and centrifuged at 29000 rcf at 4 °C for 15 minutes. The 

supernatant was then transferred into 1.5 mL glass vials (sealable with PTFE-butyl-PTFE septa) 

and evaporated to dryness under vacuum. The evaporation was conducted by lowering the 
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pressure (starting at 500 mBar) by 100 mBar per hour to avoid boiling of the samples. Pressure 

reduction steps were adjusted if needed, depending on the used solvent’s boiling point. The 

exsiccator was vented with argon. 

Table 22: Overview over cell counts used for the endometabolomic normalization of T. weissflogii and Skeletonema 

sp. in the interaction experiments. 

Interaction experiment Chapter 

Cell counts used for the 

endometabolomic normalization within 

T. weissflogii Skeletonema sp. 

T. weissflogii (RCC76) - 

S. costatum (RCC75) 
2 18.7 × 106 cells 18.7 × 106 cells 

T. weissflogii (CCMP 1336) - 

S. marinoi (CCMP 1332) 
3 1.9 × 107 cells 5 × 107 cells 

T. weissflogii (CCMP 1336) - 

S. dohrnii (CCMP 3373) 
4 3 × 107 cells 5 × 107 cells 

Extracellular metabolite sample preparation 

Extraction protocol 

Extracellular metabolite samples were collected as previously described (see chapter 6.6.2 

“Intracellular metabolite sample preparation”). In the interaction between T. weissflogii and 

S. marinoi (chapter 3), as well as T. weissflogii and S. dohrnii (chapter 4), the samples were 

0.20 µm sterile filtered before solid phase extraction. Subsequently, EASY cartridges 

(3 mL / 200 mg, CHROMABOND®; Macherey-Nagel, Düren, Germany) were prepared by 

washing each cartridge successively with 4 mL methanol and 4 mL water. Cartridges were then 

connected with a Teflon® tubing on the input side of the cartridge to build a Teflon®-tubing-

EASY-cartridge filtration unit. The Teflon® tubing end of the unit was put into the extracellular 

metabolite sample whereas the output end of the cartridge was connected to a vacuum pump. 

Samples were passed through the cartridge drop by drop at a vacuum of approximately 800 mBar. 

Subsequently, cartridges were washed with 4 mL of water and air dried while being connected 

to the vacuum pump under maximum vacuum. Gravity-based elution of metabolites into a 4 mL 

glass vials was performed by adding 2 mL of methanol followed by 2 mL of methanol:THF 1:1 

(v/v). For the exometabolomic investigation of the interaction between S. costatum and 

T. weissflogii (chapter 2), 2 mL of ethanol:THF 1:1 (v/v) were used instead, during the last 

elution step. After addition of 5 µL ribitol external standard, the glass vials were closed and 

stored at 80 °C until further use. 
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Sample preparation protocol 

Sample preparation was randomized. Samples were unfrozen at room temperature. 1.5 mL of 

the sample was transferred into a 1.5 mL glass vial and evaporated to dryness under vacuum. The 

evaporation was conducted by lowering the pressure (starting at 500 mBar) by 100 mBar per 

hour to avoid boiling of the samples. Vacuum was held at ≈0 mBar for at least 2 hours. Pressure 

reduction steps were adjusted if needed. The exsikkator was vented with argon. 

6.6.3 Derivatization 

Derivatization comprised a methoxymation and a silylation step with sample batches of 

maximum 20 samples. The derivatization was conducted according to protocols developed by 

Charles Vidoudez (Vidoudez, 2010; Vidoudez and Pohnert, 2011).  

Methoxymation 

The dryness of methoxyamine hydrochloride (Sigma Aldrich, Steinheim, Germany) was 

ensured by storage under vacuum for at least six hours and subsequent venting with argon before 

derivatization. Afterwards, 20 mg of methoxyamine hydrochloride were dissolved in 1mL of 

pyridine in a 4 mL glass vial and sonicated for five minutes until complete dissolution. For each 

sample, 50 µL of this methoxymation solution were added to a maximum of 20 dry samples. 

Samples were vortexed for 2 minutes before they were incubated at 60 °C in a heat block for one 

hour. This was followed by another incubation period of nine to 14 hours at room temperature. 

Within one experiment the time of the incubation period at room temperature was the same to 

ensure maximum comparability.  

Silylation 

40 µL of RI mix were injected into a new 1 mL vial of MSTFA (N-Methyl-N-

trimethylsilyltrifluoro acetamide; Macherey-Nagel, Düren, Germany) with a glass syringe 

(50 µL; Hamilton, Bonaduz, Switzerland). The glass syringe was cleaned with hexane after each 

sample batch. After thoroughly vortexing the MSTFA vial, 50 µL of silylation solution per 

sample were added with a glass syringe (500 µL, Hamilton, Bonaduz, Switzerland). The glass 

syringe was carefully cleaned with acetone after each sample batch. Samples were incubated at 

40 °C for one hour before they were transferred into glass inserts and analyzed immediately. 
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Remark 

In the endometabolomic investigation of the interaction between S. costatum and T. weissflogii 

(chapter 2), the derivatization process of the samples varied. The samples were measured in three 

batches. Batch one comprised all samples from day 16 in randomized order, whereas batch two 

and three contained all samples from day 26 and 32. Due to instrument issues, sample set two 

was frozen for 24 hours after the methoxymation step, before continuing the derivatization. 

Furthermore sample set three was exposed to elevated temperatures (60 °C for 12 h) in the 

silylation step. 

6.6.4 GC-MS measurements 

Hardware and software specifications 

GC-EI/TOF/MS measurements were conducted based on methods developed by Vidoudez 

(Vidoudez, 2010). Sample batches of maximum 20 samples, randomized within each sampling 

day per experiment, were measured with a Micromass® GCT Premier™ (Waters, Manchester, 

UK) orthogonal acceleration time-of-flight mass spectrometer (MS) coupled to an Agilent 6890 

(Agilent Technologies, Santa Clara, CA, USA) gas chromatograph (GC) with autosampler (7683 

series, Agilent Technologies, Santa Clara, CA, USA).  

GCT settings were typically applied according to Table 23. 

Table 23: General GCT settings 

GC Inlet Settings 

GC re-entrant 280 °C 

Reference reservoir 50 °C 

Reference re-entrant 150 °C 

MS Source Settings 

Source temperature 250 °C 

Electron energy 70 eV 

Trap current 196 µA 

Ion repeller 1.2 

MS DRE Settings 

High sensitivity Activated 

z-focus 40 V 

z-lens steering 0 V 

Gain drop monitoring Activated 



234   Material and methods 

MS TDC Settings 

Trigger threshold 300 mV 

Signal threshold 20 mV 

Threshold 1 to 50 

Inhibit Push Activated 

Inhibit value 4 

Centroiding parameters 
Centroid threshold 1, Min points 5,  

Np multiplier 0.7 

Low mass cut-off 45 Da 

 

The column used was a DB-5MS+DG Durabond column (Agilent Technologies, Santa Clara, 

CA, USA), with a length of 30 m (plus up to 10 m Duroguard precolumn), a diameter of 0.25 nm 

and a film of 0.25 µm. The column was non-polar, containing a phenyl arylene polymer 

equivalent to a (5 %-phenyl)-methylpolysiloxane.  

Before each batch of 20 samples a new glass liner (4×6.3×78.5 mm inner Ø × outer Ø × length; 

Agilent, Waldbronn, Germany) was inserted. Liners were deactivated, equipped with glasswool 

(INNO-Sil) and conditioned by CS Chromatographie Service, Langerwehe, Germany. 

 Automatic injections were conducted with a 10 µL syringe (Agilent Technologies, Santa Clara, 

CA, USA). Chromatograms and spectra were visualized and analyzed in MassLynx (V4.1; 

Waters, Milford, MA, USA). 

Tuning and calibration of instrument 

The GCT is capable of exact mass measurements due to an internal lock mass correction with 

heptacosa (Heptacosafluorotributylamine, analytical standard for mass spectrometry; Fluka, 

Steinheim, Germany). For optimal performance the instrument was tuned before the 

measurement of each experiment to reach highest possible resolution at 501.97 m/z (Table 24).  

Table 24: GCT Tuning settings 

Tuning Settings 

Scan Time 0.9 s 

Inter scan delay 0.1 s 

Mass range 50-615 m/z 
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To obtain exact mass measurements, the GCT was calibrated with heptacosa as reference before 

each sample batch to reach mean residual values of RMS ≤ 104 amu over the mass range 45-

700 m/z.  

Quality Control: 

Solvent controls (for each experiment) where measured to identify potential contaminations. By 

injecting air into the GCT, blank measurements were conducted to identify system-related 

contaminations. Agilent test measurements were performed to evaluate the quality and state of 

liner and column. 

GC method parameters 

The carrier gas helium was delivered with a constant flow of 1 mL/min. The injection volume 

of the syringe was 1 µL. The parameters of the methods used are described in the following: 

Metabolomic method: 

Unless stated otherwise, the following method was used to measure intracellular and 

extracellular metabolite samples. 

The injector temperature was set to 300 °C with a split ratio of 10. Oven temperature ramps 

started with an initial temperature of 60 °C for one minute, then temperature increased with a 

rate of 15 °C/min to a final temperature of 310 °C that was then held for ten minutes. 

Before injection, the syringe was washed with both ethyl acetate (or acetone) and heptane three 

times and once with the sample itself. Before injection the sample was pumped up and down six 

times (sampling offset of 6 mm). After injection the six washing steps with both ethyl acetate 

and heptane followed. 

Agilent method: 

The Agilent method was used to measure the Agilent test reference material for quality control 

purposes. 

The injector temperature was 250 °C with a split ratio of 1. Oven temperature ramps started 

with an initial temperature of 80 °C, then temperature increased first with a rate of 8 °C/min to a 

temperature of 119 °C and in a second step with a rate of 40 °C/min to a final temperature of 

320 °C which was then held for 2.5 minutes 



236   Material and methods 

Before injection, the syringe was washed with both ethyl acetate and heptane three times and 

once with the sample itself. Before injection the sample was pumped up and down three times 

(sampling offset of 2 mm). After injection, the three washing steps with both ethyl acetate and 

heptane followed. 

MS Method 

Mass spectra were acquired in positive ion mode with electron impact ionization. Data were 

acquired in centroid mode.  

Metabolomic method: 

Data was acquired with a scan rate of 5 scans/second (scan time of 0.19 s and inter scan delay 

of 0.01 s) over 28 minutes within a mass range of 35 to 1000 m/z. 

Agilent method: 

Data was acquired with a scan rate of 2 scans/sec (scan time of 0.49 s and inter scan delay of 

0.01 s) over 20 minutes within a mass range of 50 to 600 m/z.  

6.7 Data analysis 

6.7.1 Metadata analysis  

To test for significance among the visible differences in chl a fluorescence and cell counts 

between mono- and co-cultivation of both species over time, a linear mixed modeling approach 

was chosen. R (R Development Core Team, 2008) was utilized through the graphical user 

interface RStudio. Here, linear mixed effect modeling was performed using the package nlme 

(Pinheiro et al., 2015) . The following packages: AICcmodavg (Mazerolle, 2015), car (Fox and 

Weisberg, 2011), ggplot2 (Wickham, 2009) and plyr (Wickham, 2011) were also used for the 

analysis.  

Four different models were proposed using the lme function (package nlme). All models 

proposed were random intercept models. Each model was built with a fixed term, treating day as 

factor, and a random term. The fixed term reflected the influence of day, group and the interaction 

of day and group on the response variable. The random term accounted for the repeated measures 

design, by treating the chambers (each repeatedly sampled) as random factor. This basic model 

was represented by model 1. Furthermore, to account for heterogeneity, different weighing 
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functions were additionally introduced in model 1 (see models 2-4), using the constant variance 

function structure (VarIdent) in the weights argument.  

Model 1: representing the standard random intercept model used as basis for all further models.  

Model 1 <- lme(variable ~ Group*Day, random=~1|fChamber, data=data, method="REML")
83

 

Model 2: additionally accounts for heterogeneity among days by introducing a varIdent 

variance structure  

Model 2 <- lme(variable ~ Group*Day,random=~1|fChamber, data=data, 

weights=varIdent(form=~1|Day),method="REML")83 

Model 3: additionally accounts for heterogeneity among groups by introducing a varIdent 

variance structure  

Model 3 <- lme(variable ~ Group*Day,random=~1|fChamber, data= data, 

weights=varIdent(form=~1|Group),method="REML")83 

Model 4: additionally accounts for heterogeneity among groups and days by introducing a 

varIdent variance structure  

Model 4 <- lme(variable ~ Group*Day,random=~1|fChamber, data=data, 

weights=varComb(varIdent(form=~1|Group), varIdent(form=~1|Day)),method="REML") 

Model 4b: identical with model 4, but the number of iterations was specified for model 

convergence 

Model 4b <- lme(variable ~ Group*Day,random=~1|fChamber, data=data, control=ctrl, 

weights=varComb(varIdent(form=~1|Group), varIdent(form=~1|Day)),method="REML") 

ctrl <- lmeControl(maxIter=100, msMaxIter = 100, msMaxEval = 400) 

Data analysis specifics 

In the interaction experiment of T. weissflogii with S. costatum (chapter 2.2.1), model 4 showed 

the best fit for modeling chl a fluorescence of both species and cell counts of T. weissflogii, while 

model 1 was best suited to model cell counts of S. costatum. 

In the medium experiments (chapter 2.3) chl a fluorescence was modeled via linear mixed model 

4 and cell counts via linear mixed model 3 in the T. weissflogii medium experiment and model 2 

in the S. costatum medium experiment 

                                                 
83 R code used 
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Linear mixed model 2 was best fitted to model chl a fluorescence in the interaction of 

T. weissflogii and S. marinoi (chapter 3), while cell counts were modeled with model 3. 

In the interaction between T. weissflogii and S. dohrnii (chapter 4) linear mixed model 4 was 

used to test for significant differences between mono-cultivation and co-cultivation over time, 

with regard to cell counts in both diatom species. Chl a fluorescence in S. dohrnii was modeled 

with linear mixed model 4 as well and chl a fluorescence in T. weissflogii with model 4b. 

6.7.2 Metabolomic data processing 

Data processing as described in this chapter was based on protocols used by Charles Vidoudez 

and Michaela Mausz (Vidoudez, 2010; Vidoudez and Pohnert, 2011; Mausz, 2014). It comprised 

the following steps: 

(1) Background-noise subtraction 

In a first step background-noise correction was performed on all samples with the CODA 

algorithm (MCQ Index = 0.8; smoothing window = 3 points) in MassLynx V4.1. Subtracted 

chromatograms were then converted into NetCDF files with DataBridge.  
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(2) Spectral deconvolution 

With the help of AMDIS (automated mass spectral deconvolution and identification system, V 

2.71) peak detection and deconvolution analysis was performed using the simple analysis mode 

(Table 25).  

Table 25: Analysis settings of AMDIS 

Identification of Compounds 

Minimum match factor 30 

Multiple identifications per compound activated 

Instrument Settings 

Low m/z and high m/z Auto 

Threshold Off 

Scan direction None 

Instrument type Quadrupole 

Deconvolution 

Component width 12 

Omitted ions (m/z) 147, 176, 193, 207, 219 

Adjacent peak subtraction Two 

Resolution Low 

Sensitivity Medium 

Shape requirement Low 

Library 

Target compounds library GOLMWITHRI 

QA/QC 

Column bleed Activated (207 m/z) 

(3) Peak alignment, annotation and integration  

MET-IDEA (Metabolomics Ion-based Data Extraction Algorithm, V 2.08) was used to quantify 

the ion/retention time pairs and thus specific compounds via peak area by using a certain set of 

criteria (Table 26).  
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Table 26: Analysis settings of MET-IDEA 

Chromatography 

Chromatography GC 

Average peak width 0.08 

Minimum peak width 0.5 × average peak width 

Maximum peak width 2 × average peak width 

Peak start/stop slope 1.5 

Adjusted retention time accuracy 0.25 × average peak width 

Peak overload factor 0.9 

Mass spec 

Mass spectrometers TOF 

Mass accuracy 0.1 

Mass range (+/-) 0.3 

AMDIS 

Exclude ion list 71,97,147,193,281,341,415 

Lower mass limit 100 

Ions per component 1 

 

To align the spectra, the option “Calibrate RT” was chosen, when setting up the MET-IDEA 

job. Data output contained the peak areas of each MST per sample in form of a tab-delimited text 

file. 

6.7.3 Metabolomic data analysis 

Data analysis as described in this chapter was conducted and arranged as needed. It was 

comprised of the following parts:  

(1) General data pre-treatment 

The MET-IDEA data output was further processed in Excel 2013 (Microsoft, Redmont, WA, 

USA). In a first step, all originally detected and manually corrected metabolites were given a 

substance number (A1, A2, A3,…). Secondly, all peaks were deleted that are (a) identified as 

redundant peaks, via redundancy analysis (Chapter 6.7.2), (b) part of the RI-mix, (c) ribitol, (d) 

contain the value “1”, or (e) were abundant in less than three samples. The remaining metabolites 

were given a new coherent substance ID (1,2,3,…). This ID was also used for characterization 

of the metabolites in all subsequent analyses. 
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To eliminate contaminants from the data set, the blank average (specific for each sampling day) 

was subtracted three times from each sample84. Resulting negative peak areas were substituted 

by zero. For the analysis in chapter 2 solvent blanks were used, for the analysis in chapter 3 and 

4 the seawater control was considered as the blank. 

Intracellular metabolite data was normalized by peak sum. Within one sample each metabolite’s 

peak-area was divided by the overall peak sum of that sample. Extracellular metabolite data was 

normalized sample-wise to the peak area of the external standard ribitol.  

(2) Canonical Analysis of Principal Coordinates 

Principal coordinate analysis (PCoA), followed by a canonical discriminant analysis (CDA) was 

used to investigate differences in the endo- and exometabolome of the diatoms, as caused by the 

interaction. This combined analysis is termed CAP (“Canonical Analysis of Principal 

Coordinates”) (Anderson and Robinson, 2003; Anderson and Willis, 2003a; Anderson, 2004). 

Compare chapter 2.5.3 for a detailed discussion. 

Analysis of exometabolomic data 

Exometabolomic data was analyzed with the program CAP12.exe85 (Anderson and Robinson, 

2003; Anderson and Willis, 2003a; Anderson, 2004), using the parameters listed in Table 27. 

Table 27: Analysis parameters for CAP12.exe 

CAP12 

Transformation Log10(x+1) 

Standardization None 

Distance measure Bray-Curtis dissimilarity 

Type of analysis Discriminant analysis 

Let the computer program choose m 

Note: m is the number of principal coordinate axes to be used in the canonical 

analysis 

Yes 

Do you wish to output the principal coordinate axes? Yes 

How many axes do you want in the output? 999 (meaning all) 

Do you wish to test by permutation? Yes 

Type the number of random permutations for the test 9999 

Type an integer to be used as the seed for the random permutations 12 

                                                 
84 The peak area corresponding to ribitol was excluded from any subtraction, as ribitol was also added to medium 

blanks 
85 http://www.esapubs.org/archive/ecol/E084/011/suppl-1.htm 
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As the exometabolome of the two chamber-halves per cultivation chamber was pooled, each 

chamber was treated as one biological replicate in the context of exometabolomic data. Results 

of the CAP were visualized with the help of Sigma Plot (Version 11.0, Systat Software, San Jose, 

CA, USA).  

Analysis of endometabolomic data 

The analysis of endometabolomic data was performed combining the software CAP12.exe with 

R run in RStudio, using the packages lattice (Sarkar, 2008), MASS (Venables and Riplex, 2002), 

permute (Simpson, 2015) and vegan (Oksanen et al., 2015). The data was transformed by 

applying log10(x+1) to reduce the influence of highly abundant metabolites on the analysis (Kindt 

and Coe, 2005). The number of principal coordinate axes (m) used in the canonical analysis, was 

chosen manually in agreement with the recommended guidelines (Anderson and Willis, 2003a), 

resulting in the lowest misclassification error of the “leave-one-chamber-out cross validation”.  

In the analysis, each chamber-half of each co-cultivation chamber was sampled individually and 

treated as one biological replicate. To account for this inherent dependency of the two chamber-

halves in one cultivation chamber, the canonical discriminant analysis was performed according 

to a modified function written by Dr. Jens Schumacher86 (function is documented in the digital 

appendix chapter 7.4). For plotting, the results calculated by CAP12.exe concerning the principal 

coordinate axes, canonical axes and the correlations of the canonical axes with original variables 

were used. The permutation test, as well as the “leave-one-chamber-out cross validation” was 

performed in R. The integer used as the seed for the random permutations in R was “13”.  

(3) Creation of heatmaps 

Heatmaps of certain data subsets were created from the autoscaled median of normalized MST 

intensities. Metabolites with a median of zero in all considered samples were deleted. To 

highlight abundance patterns of metabolites, a color code of blue (low abundance) to yellow 

(high abundance) was applied.  

The fold change of MSTs was given on the basis of MST medians87 and coded with a second 

color code. Black indicates an upregulation of MST intensity in co-cultivation relative to mono-

cultivation. If a metabolite was 10 - fold upregulated, it was 10 – times more abundant in co-

cultivation (MST intensity = 10) compared to mono-cultivation (MST intensity = 1). Grey 

                                                 
86 Institute of Mathematics/Stochastics, Faculty of Mathematics and Computer Science, Friedrich-Schiller-

University Jena 
87 Not autoscaled 
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indicated a downregulation of exometabolites in co-cultivation relative to mono-cultivation of 

both diatoms. If a metabolite was -10 - fold downregulated, it was 10 – times more abundant in 

mono-cultivation (MST intensity = 10) compared to co-cultivation (MST intensity = 1). 

Each MST was characterized by ID (being unique for each exo- and endometabolomic analysis 

within each interaction), model ion, retention time (RT) and retention index (RI). MSTs were 

identified via libraries (for more information see chapter 6.7.4) and marked accordingly (chapter 

6.7.4).  

The following class abbreviations were used: amino acid (AA), amine (A), alcohol (Alc), 

alkaloid (Alk), carboxylic acid (CA), derivatives of a certain class (dv.), fatty acid (FA), sugar 

(S), sugar acid (S acid), sugar alcohol (S alc), sterol (St), terpene (T), others (O). Addition of 

“Vidoudez” in the metabolite name refers to an MST code from the in-house library, “GOLM” 

refers to an MST code given by distinct libraries of the Golm Metabolome Database (for more 

information see chapter 6.7.4). The cultivation types, referred to as treatments, were abbreviated 

as Mono (mono-cultivation) and Co (co-cultivation). Concerning fold-changes, “-“indicates the 

absence of the MST in mono-cultivation, “0” indicated the absence in co-cultivation.  

6.7.4 Metabolite identification 

Relevant metabolites were identified via “The Mass Spectral Search Program for the 

NIST/EPA/NIH Mass Spectral Library” (Version 2.0 d)88. The following libraries were 

implemented for structure identification, as suggested in (Vidoudez, 2010; Mausz, 2014): 

  

                                                 
88 Software by S. Stein, Y. Mirokhin, D. Tchekhovskoi, and G. Mallard. Built 26.04.2005  
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Table 28: MS libraries 

Name Version Specifics URL / Reference 

NIST Mass Spectral 

and Retention Index 

Libraries 

2005 

Main EI MS library, 

Replicate EI MS Library, 

Retention Index Library 

 

http://www.nist.gov/srd/nist1a.cfm 

The Golm 

Metabolome 

Database 

2004-03-01 
t_msri_id (GOLM) 

q_msri_id (MPI) 

http://csbdb.mpimp-golm.mpg.de/ 

csbdb/gmd/msri/gmd_msri.html, 

(Wagner et al., 2003) 

2011-11-21 
GMD_20111121_VAR5

_Alk_MSP (GMD) 

http://gmd.mpimp-

golm.mpg.de/download/ 

Metabo In-house library (Vidoudez) (Vidoudez, 2010) 

 

Structure suggestions were considered if the Match was ≥ 600 and if the retention index (RI) 

provided by the libraries was close to the substance’s RI. In some cases, a Match of ≤ 600 was 

accepted, when the structure suggestions were identical among the three samples with the highest 

peak intensity of the considered metabolite. Those metabolites were marked with “¹” in the 

heatmaps. 

Structures were accepted if additionally the R-Match was ≥ 800 and / or the substance could be 

identified via standard (marked with “*”). In that case the RI of the standard must be highly 

similar and the mass spectrum of the standard must show an identical fragmentation pattern. If 

the R-Match is ≤ 800, the structure was accepted with a tag “?” if the R-Match is between 700 

and 800, with “??” if the R-Match is between 600 and 700 and with “???” if the R-Match is 

≤ 600). Those tagged substances were referred to as “putative”. 

Retention Index 

The retention index for programmed temperature gas chromatography was calculated via Excel 

2013 (Microsoft, Redmont, USA) according to the following equation (Vandendool and Kratz, 

1963). 

𝑅𝐼 = 100 𝑖 
𝑋 − 𝑀(𝑛)

𝑀(𝑛+𝑖) − 𝑀(𝑛)
+ 100 𝑛 

The alkanes framing the unknown substance were characterized by the retention time M(n), for 

the first eluting alkane, and M(n+1) for the later eluting alkane. n being the number of C-atoms of 

http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/gmd_msri.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/gmd_msri.html
http://gmd.mpimp-golm.mpg.de/download/
http://gmd.mpimp-golm.mpg.de/download/


Material and methods 245 

the shorter alkane chain, and i being the C-atom difference to the longer alkane chain. X 

represents the retention time of the unknown substance. For substances eluting at a retention time 

before the first eluting alkane and after the last eluting alkane, the two alkanes with the closest 

retention times to the respective substances were defined as the framing alkanes. 

Standards 

To identify substances with the help of chemical standards, measurements of Michaela Mauß, 

as documented in (Mausz, 2014) and Carsten Paul (Paul et al., 2013) were used for structure 

verification. Furthermore standards, dissolved, dried and derivatized by Matthias Hirth, were 

used for measurements at the GC-EI/TOF/MS. 

Carsten Paul measured 17 amino acids at the GC-EI/TOF/MS with the standard temperature 

program of the metabolomics method. He used 25 µL of 4 mM standard solution, evaporated 

them to dryness and derivatized them as described in chapter 6.6.3. All samples, except for valine, 

measured in split 10 mode, were measured in split 5 mode. 

The standards of Matthias Hirth were dissolved in water, methanol, water/methanol (3:1 v/v) or 

chloroform. 100 nM dissolved substance were evaporated to dryness and derivatized. He used 

protocols as described in chapter 6.6.3. I then performed measurements at the GC-EI/TOF/MS 

using the metabolomics method.
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7 Digital Appendix 

7.1 Appendix: Interaction of T. weissflogii with 

S. costatum 

7.1.1 Diatom growth 

T. weissflogii 

 

Appendix 1: Linear mixed model of chl a (A, RU: relative units) and cell counts (B, cells / mL) of T. weissflogii in 

interaction with S. costatum 

The graph shows the linear mixed model 4. Mean values (n = 3) are shown as dot plot, error bars represent the 

standard deviation. The line chart shows the model fit, with colored areas representing the confidence interval (95%). 

Mono-cultivation of T. weissflogii is depicted in green, co-cultivation is shown in red. 
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Appendix 2: Model validation graphs for the linear mixed model of the chl a for 

T. weissflogii in the interaction with S. costatum 

Appendix 3: Model validation graphs for the linear mixed model of the cell counts for 

T. weissflogii in the interaction with S. costatum 

(A) Histogram of residuals for check of normality, (B) residuals versus group (C: mono-cultivation, Bx: co-cultivation) as explanatory variable , (C) residuals versus day as 

explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals. 
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S. costatum 

 

Appendix 4: Linear mixed model of chl a (A, RU: relative units) and cell counts (B, cells / mL) of S. costatum in 

interaction with T. weissflogii 

The graph shows the linear mixed model 4 (chl a) and model 1 (cell counts). Mean values (n = 3) are shown as dot 

plot, error bars represent the standard deviation. The line chart shows the model fit, with colored areas representing 

the confidence interval (95%). Mono-cultivation of S. costatum is depicted in blue, co-cultivation is shown in red. 
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Appendix 5: Model validation graphs for the linear mixed model of the chl a for 

S. costatum in interaction with T. weissflogii 

Appendix 6: Model validation graphs for the linear mixed model of the cell counts for 

S. costatum in interaction with T. weissflogii 

 

(A) Histogram of residuals for check of normality, (B) residuals versus group (A: mono-cultivation, By: co-cultivation) as explanatory variable , (C) residuals versus day as 

explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals.  
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7.1.2 Exometabolomic investigation 

Overall analysis via CAP 
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Appendix 7: PCoA score plot of exometabolomic samples from an overall analysis of the interaction between 

T. weissflogii and S. costatum.  

The plot is based on metabolites obtained from mono-cultivated S. costatum (blue), mono-cultivated T. weissflogii 

(green) and co-cultivation of both diatoms (red) on day 16 (●), day 26 (▼) and day 32 (■).  

 

Appendix 8: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

exometabolomic data of the interaction between S. costatum and T. weissflogii with a-priori grouping by day. 

 Day16 Day26 Day32 Total %correct 

Day16 9 0 0 9 100 

Day26 0 7 1 8 87.5 

Day32 0 2 7 9 77.78 

Misclassification error: 11.54 % 

Mono SC: mono-cultivated S. costatum, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Appendix 9: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

exometabolomic data of the interaction between S. costatum and T. weissflogii with a-priori grouping by treatment  

 Mono SC Co Mono TW Total %correct 

Mono SC 7 2 0 9 77.78 

Co 3 3 2 8 37.5 

Mono TW 0 4 5 9 55.56 

Misclassification error: 42.31 % 

Mono SC: mono-cultivated S. costatum, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 

 

Appendix 10: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

exometabolomic data of the interaction between S. costatum and T. weissflogii with a-priori grouping by day and 

treatment 

 
Day16 Day26 Day32 

Total %correct Mono 

SC 
Co 

Mono 

TW 

Mono 

SC 
Co 

Mono 

TW 

Mono 

SC 
Co 

Mono 

TW 

Day16 

Mono SC 3 0 0 0 0 0 0 0 0 3 100 

Co 1 2 0 0 0 0 0 0 0 3 66.67 

Mono TW 0 0 3 0 0 0 0 0 0 3 100 

Day26 

Mono SC 0 0 0 2 1 0 0 0 0 3 66.67 

Co 0 0 0 1 1 0 0 0 0 2 50 

Mono TW 0 0 0 0 2 0 0 1 0 3 0 

Day32 

Mono SC 0 0 0 1 0 0 2 0 0 3 66.67 

Co 0 0 0 0 0 0 1 2 0 3 66.67 

Mono TW 0 0 0 0 0 2 0 1 0 3 0 

Misclassification error: 42.31 % 

Mono SC: mono-cultivated S. costatum, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Daywise analysis via CAP 
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Appendix 11: PCoA score plot of exometabolomic samples from a daywise subset analysis of the interaction 

between T. weissflogii and S. costatum on day 16, 26 and 32.  

The plots are based on metabolites obtained from mono-cultivated S. costatum (blue), mono-cultivated T. weissflogii 

(green) and co-cultivation of both diatoms (red) on day 16 (graph A), day 26 (graph B) and day 32 (graph C).  

 

Appendix 12: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

daily subsets of exometabolomic data characterizing the interaction between S. costatum and T. weissflogii on day 

16 with a-priori grouping by treatment. 

 Mono SC Co Mono TW Total %correct 

Mono SC 2 1 0 3 66.67 

Co 1 2 0 3 66.67 

Mono TW 0 1 2 3 66.67 

Misclassification error: 33.33 % 

Mono SC: mono-cultivated S. costatum, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Appendix 13: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

daily subsets of exometabolomic data characterizing the interaction between S. costatum and T. weissflogii on day 

26 with a-priori grouping by treatment. 

 Mono SC Co Mono TW Total %correct 

Mono SC 3 0 0 3 100 

Co 2 0 0 2 0 

Mono TW 0 0 3 3 100 

Misclassification error: 25 % 

Mono SC: mono-cultivated S. costatum, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Screening for interaction specific release and/or uptake of potential infochemicals 

Appendix 14: Intensity dynamic of exometabolites, enhanced in co-cultivation on day 16 in the interaction between 

T. weissflogii and S. costatum.  

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  
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Metabolite #40 - 2-Hydroxypentanoic acid
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Metabolite #48 - Nonanoic acid
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Metabolite #51 - 2-Hexylpyridine
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Metabolite #58
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Metabolite #71
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Appendix 14 continued 

Metabolite #93
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Metabolite #111 - Myristic acid
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Metabolite #113 - Pentadecanoic acid
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Metabolite #122
9-Hexadecenoic acid (Palmitoleic acid)
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Metabolite #123
9-Hexadecenoic acid (Palmitoleic acid)
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Metabolite #128
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Metabolite #117 - Pentadecanoic acid
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Metabolite #132
9-Octadecenoic acid (Oleic acid)
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Metabolite #101
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Metabolite #109
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Appendix 14 continued  
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Appendix 15: Intensity dynamic of exometabolites, enhanced in co-cultivation on day 26 in the interaction between 

T. weissflogii and S. costatum.  

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion. 
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Appendix 16: Intensity dynamic of exometabolites, enhanced in co-cultivation on day 32 in the interaction between 

T. weissflogii and S. costatum.  

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion. 

 
Metabolite #6

D
a
y
 1

6
 S

C
 M

o
n

o

D
a
y
 1

6
 C

o

D
a
y
 1

6
 T

W
 M

o
n

o

D
a
y
 2

6
 S

C
 M

o
n

o

D
a
y
 2

6
 C

o

D
a
y
 2

6
 T

W
 M

o
n

o

D
a
y
 3

2
 S

C
 M

o
n

o

D
a
y
 3

2
 C

o

D
a
y
 3

2
 T

W
 M

o
n

o

N
o
rm

a
liz

e
d

 r
e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d

e
l 
io

n
 (

1
4
2

.1
m

/z
)

0

2

4

6

8

10

12

Metabolite #21

D
a
y
 1

6
 S

C
 M

o
n

o

D
a
y
 1

6
 C

o

D
a
y
 1

6
 T

W
 M

o
n

o

D
a
y
 2

6
 S

C
 M

o
n

o

D
a
y
 2

6
 C

o

D
a
y
 2

6
 T

W
 M

o
n

o

D
a
y
 3

2
 S

C
 M

o
n

o

D
a
y
 3

2
 C

o

D
a
y
 3

2
 T

W
 M

o
n

o

N
o
rm

a
liz

e
d

 r
e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d

e
l 
io

n
 (

1
5
1

.1
m

/z
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Metabolite #39

D
a
y
 1

6
 S

C
 M

o
n

o

D
a
y
 1

6
 C

o

D
a
y
 1

6
 T

W
 M

o
n

o

D
a
y
 2

6
 S

C
 M

o
n

o

D
a
y
 2

6
 C

o

D
a
y
 2

6
 T

W
 M

o
n

o

D
a
y
 3

2
 S

C
 M

o
n

o

D
a
y
 3

2
 C

o

D
a
y
 3

2
 T

W
 M

o
n

o

N
o
rm

a
liz

e
d

 r
e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d

e
l 
io

n
 (

1
6
1

.1
m

/z
)

0

1

2

3

4

5

6

Metabolite #43

D
a
y
 1

6
 S

C
 M

o
n

o

D
a
y
 1

6
 C

o

D
a
y
 1

6
 T

W
 M

o
n

o

D
a
y
 2

6
 S

C
 M

o
n

o

D
a
y
 2

6
 C

o

D
a
y
 2

6
 T

W
 M

o
n

o

D
a
y
 3

2
 S

C
 M

o
n

o

D
a
y
 3

2
 C

o

D
a
y
 3

2
 T

W
 M

o
n

o

N
o
rm

a
liz

e
d

 r
e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d

e
l 
io

n
 (

1
6
1

.1
m

/z
)

0

1

2

3

4

5

6

7

Metabolite #13

D
a
y
 1

6
 S

C
 M

o
n

o

D
a
y
 1

6
 C

o

D
a
y
 1

6
 T

W
 M

o
n

o

D
a
y
 2

6
 S

C
 M

o
n

o

D
a
y
 2

6
 C

o

D
a
y
 2

6
 T

W
 M

o
n

o

D
a
y
 3

2
 S

C
 M

o
n

o

D
a
y
 3

2
 C

o

D
a
y
 3

2
 T

W
 M

o
n

o

N
o
rm

a
liz

e
d

 r
e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d

e
l 
io

n
 (

1
1
6

.1
m

/z
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Day 26 Day 32Day 16 Day 26 Day 32Day 16 Day 26 Day 32Day 16

Day 26 Day 32Day 16 Day 26 Day 32Day 16

Metabolite #47 - 2-Methylpropanoic anhydride
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Appendix 17: Intensity dynamic of exometabolites, reduced in co-cultivation in the interaction between 

T. weissflogii and S. costatum.  

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  
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Metabolite #135 - Dehydroabietic acid
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Metabolite #104 - Skel_MEDIA_C196 (Vidoudez)
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Metabolite #107 - Skel_MEDIA_C205 (Vidoudez)
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Metabolite #45
similar to Lumichrome  (GOLM)
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Metabolite #41 - Succinic acid
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Metabolite #37 - 2,2'-Iminodiethanol
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7.1.3 Endometabolomic investigation 

Overall analysis via CAP 

Principal Coordinate Axis 1 (61.71%)
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Appendix 18: PCoA score plot of endometabolomic samples from an overall analysis of the interaction between 

T. weissflogii and S. costatum.  

The plot is based on metabolites obtained from S. costatum (blue) and T. weissflogii (green) on day 16 (●), day 26 

(▼) and day 32 (■). Samples from mono-cultivation are represented by filled symbols, samples from co-cultivation 

by empty symbols. 

Species-specific analysis via CAP 

Principal Coordinate Axis 1 (32.03%)
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Appendix 19: PCoA score plot of endometabolomic samples from a species-specific subset analysis of the 

interaction between T. weissflogii and S. costatum.  
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The plots are based on metabolites obtained from mono-cultivated (green) and co-cultivated (red) T. weissflogii 

(graph A) and mono-cultivated (blue) and co-cultivated (red) S. costatum (graph B) on day 16 (●), day 26 (▼) and 

day 32 (■). The analysis was performed for each species individually. 

Daywise and species-specific analysis via CAP 

Principal Coordinate Axis 1 (37.04%)
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Appendix 20: PCoA score plot of endometabolomic samples from a species-specific subset analysis of the 

interaction between T. weissflogii and S. costatum on day 16, 26 and 32.  

The plots are based on metabolites obtained from mono-cultivated (green) and co-cultivated (red) T. weissflogii 

(graph A, C, E) and mono-cultivated (blue) and co-cultivated (red) S. costatum (graph B, D, F) on day 16 (●, graph 

A, B), day 26 (●, graph C, D) and day 32 (●, graph E, F). The analysis was performed for each species and day 

individually. 
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7.1.4 Metadata 

Metadata interaction experiment 
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Appendix 21: PSII efficiency of the diatoms in the interaction experiment of T. weissflogii with S. costatum. 

The graph shows means of PSII efficiency (%) of T. weissflogii (graph A) and S. costatum (graph B), comparing 

mono-cultivation in green (Mono T. weissflogii) and blue (Mono S. costatum) to co-cultivation of the particular 

diatom in red. Values show as means + SD (n = 3).  

I estimated the physiological state and nutrient status of the cultures via PSII efficiency. All 

treatment groups in both species started with an average PSII efficiency of 49 ± 5 % on day 2. 

While the PSII efficiency of both cultivation types in T. weissflogii decreased constantly until 

reaching a value of 7 to 8 % on day 32 (Appendix 21A), the PSII efficiency of S. costatum 

remained almost stable during the regular growth phase89 (with an average value of 43 ± 6 % 

between day two and 16), before subsequent decrease (Appendix 21B). 

The different development of PSII efficiency over time seemed to be more prominent between 

the species, than between the treatments within each species. The species-specific nature of PSII 

efficiency has been documented (Roy and Legendre, 1979; Kruskopf and Flynn, 2006). No 

further statistical tests were performed, PSII efficiency was used for general monitoring of the 

culture states (see discussion in chapter 2.1.2). 

                                                 
89 Regular growth until day 12 in S. costatum cultures (more details in chapter 2.2.1). 
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Metadata medium experiment 
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Appendix 22: Nitrate and nitrite levels in the medium experiment of T. weissflogii with S. costatum. 

The figure shows means of nitrate (graphs A) and nitrite (graphs B) concentration (µM) in the cultures of 

T. weissflogii (graphs 1) and S. costatum (graphs 2) in the context of the medium experiments. Mono-cultivation of 

T. weissflogii is depicted in green (Mono T. weissflogii), mono-cultivation of S. costatum in blue (Mono 

S. costatum), both representing negative controls. Each species in co-cultivation is colored in red (Co 

T. weissflogii / Co S. costatum), representing the positive controls. The medium manipulated groups are depicted in 

black (Medium T. weissflogii / Medium S. costatum). Values for the medium control are represented in grey. Error 

bars indicate standard deviation between biological replicates (n = 3, medium control: n = 1).  
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Phosphate

Day

0 5 10 15 20 25 30 35 40 45

C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
m

o
l 
/ 

L
)

0

10

20

30

40

50

60

70

80

90

A1

Phosphate

Day

0 5 10 15 20 25 30 35 40 45

C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
m

o
l 
/ 

L
)

0

10

20

30

40

50

60

70

80

90

A2

Silicate

Day

0 5 10 15 20 25 30 35 40 45

C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
m

o
l 
/ 

L
)

0

50

100

150

200

250

300

Mono T.weissflogii

Co T.weissflogii

Medium T.weissflogii

Medium control

B1

Silicate

Day

0 5 10 15 20 25 30 35 40 45

C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
m

o
l 
/ 

L
)

0

50

100

150

200

250

300

Mono S.costatum

Co S.costatum

Medium S.costatum

Medium control

B2

 

Appendix 23: Phosphate and silicate levels in the medium experiment of T. weissflogii with S. costatum. 

The figure shows means of nitrate (graphs A) and nitrite (graphs B) concentration (µM) in the cultures of 

T. weissflogii (graphs 1) and S. costatum (graphs 2) in the context of the medium experiments. Mono-cultivation of 

T. weissflogii is depicted in green (Mono T. weissflogii), mono-cultivation of S. costatum in blue (Mono 

S. costatum), both representing negative controls. Each species in co-cultivation is colored in red (Co 

T. weissflogii / Co S. costatum), representing the positive controls. The medium manipulated groups are depicted in 

black (Medium T. weissflogii / Medium S. costatum). Values for the medium control are represented in grey. Error 

bars indicate standard deviation between biological replicates (n = 3, medium control: n = 1).  
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7.1.5 Influence of the initial environment of the interaction partner on diatom 

growth parameters 

T. weissflogii medium experiment 

 

Appendix 24: Linear mixed model of chl a (A, RU: relative units) and cell counts (B, cells / mL) of T. weissflogii 

in the medium experiment. 

The graph shows the linear mixed model 4 for chl a fluorescence and model 3 for cell counts. Mean values (n = 3) 

are shown as dot plot, error bars represent the standard deviation. The line chart shows the model fit, with colored 

areas representing the confidence interval (95%). Mono-cultivation of T. weissflogii is depicted in green, co-

cultivation is shown in red and the medium group is represented in black.
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Appendix 25: Model validation graphs for the linear mixed model of the chl a for 

T. weissflogii in the medium experiment 

Appendix 26: Model validation graphs for the linear mixed model of the cell counts for 

T. weissflogii in the medium experiment 

 

(A) Histogram of residuals for check of normality, (B) residuals versus group (A: mono-cultivation, By: co-cultivation, Cx: medium group) as explanatory variable , (C) residuals 

versus day as explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals. 
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S. costatum medium experiment 

 

Appendix 27: Linear mixed model of chl a (A, RU: relative units) and cell counts (B, cells / mL) of S. costatum in 

the medium experiment. 

The graph shows the linear mixed model 4 (chl a) and model 2 (cell counts). Mean values (n = 3) are shown as dot 

plot, error bars represent the standard deviation. The line chart shows the model fit, with colored areas representing 

the confidence interval (95%). Mono-cultivation of S. costatum is depicted in blue, co-cultivation is shown in red 

and the medium group is represented in black.
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Appendix 28: Model validation graphs for the linear mixed model of the chl a for 

S. costatum in the medium experiment 

Appendix 29: Model validation graphs for the linear mixed model of the cell counts for 

S. costatum in the medium experiment 

 

(A) Histogram of residuals for check of normality, (B) residuals versus group (A: mono-cultivation, By: co-cultivation, Cx: medium group) as explanatory variable , (C) residuals 

versus day as explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals. 



Digital Appendix 291 

7.2 Appendix: Interaction of T. weissflogii with 

S. marinoi 

7.2.1 Diatom growth 

T. weissflogii 

 

Appendix 30: Linear mixed model of chl a (A, RFU: relative fluorescence units) and cell counts (B, cells / mL) of 

T. weissflogii in interaction with S. marinoi. 

The graph shows the linear mixed model 2 (chl a) and 3 (cell counts). Mean values (n = 4) are shown as dot plot, 

error bars represent the standard deviation. The line chart shows the model fit, with colored areas representing the 

confidence interval (95%). Mono-cultivation of T. weissflogii is depicted in green, co-cultivation is shown in red. 
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Appendix 31: Model validation graphs for the linear mixed model of the chl a for 

T. weissflogii in interaction with S. marinoi. 

Appendix 32: Model validation graphs for the linear mixed model of the cell counts for 

T. weissflogii in interaction with S. marinoi. 

 

(A) Histogram of residuals for check of normality, (B) residuals versus group (A: mono-cultivation, By: co-cultivation) as explanatory variable , (C) residuals versus day as 

explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals. 
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S. marinoi 

 

Appendix 33: Linear mixed model of chl a (A, RU: relative units) and cell counts (B, cells / mL) of S. marinoi in 

interaction with T. weissflogii. 

The graph shows the linear mixed model 2 (chl a) and 3 (cell counts). Mean values (n = 4) are shown as dot plot, 

error bars represent the standard deviation. The line chart shows the model fit, with colored areas representing the 

confidence interval (95%). Mono-cultivation of S. marinoi is depicted in blue, co-cultivation is shown in red. 
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Appendix 34: Model validation graphs for the linear mixed model of the chl a for 

S. marinoi in interaction with T. weissflogii. 

Appendix 35: Model validation graphs for the linear mixed model of the cell counts for 

S. marinoi in interaction with T. weissflogii. 

 

(A) Histogram of residuals for check of normality, (B) residuals versus group (C: mono-cultivation, Bx: co-cultivation) as explanatory variable , (C) residuals versus day as 

explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals.  
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7.2.2 Exometabolomic investigation 

Overall analysis via CAP 

Principal Coordinate Axis 1 (39.32%)
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Appendix 36: PCoA score plot of exometabolomic samples from an overall analysis of the interaction between 

T. weissflogii and S. marinoi.  

The plot is based on metabolites obtained from mono-cultivated S. marinoi (blue), mono-cultivated T. weissflogii 

(green) and co-cultivation of both diatoms (red) on day 18 (●), day 30 (▼) and day 42 (■). 

 

Appendix 37: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

exometabolomic data of the interaction between S. marinoi and T. weissflogii with a-priori grouping by treatment 

 Mono TW Co Mono SM Total %correct 

Mono TW 10 1 0 11 90.909 

Co 0 8 4 12 66.667 

Mono SM 0 6 5 11 45.455 

Misclassification error: 34.29 % 

Mono SM: mono-cultivated S. marinoi, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Appendix 38: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

exometabolomic data of the interaction between S. marinoi and T. weissflogii with a-priori grouping by day and 

treatment 

 
Day18 Day30 Day42 

Total %correct Mono 

TW 
Co 

Mono 

SM 

Mono 

TW 
Co 

Mono 

SM 

Mono 

TW 
Co 

Mono 

SM 

Day18 

Mono TW 4 0 0 0 0 0 0 0 0 4 100 

Co 0 4 0 0 0 0 0 0 0 4 100 

Mono SM 0 2 1 0 1 0 0 0 0 4 25 

Day30 

Mono TW 0 0 0 3 0 0 0 0 0 3 100 

Co 0 0 0 0 4 0 0 0 0 4 100 

Mono SM 0 0 0 0 0 4 0 0 0 4 100 

Day42 

Mono TW 0 0 0 0 0 0 4 0 0 4 100 

Co 0 0 0 0 0 0 0 4 0 4 100 

Mono SM 0 0 0 0 0 0 0 0 4 4 100 

Misclassification error: 8.57 % 

Mono SM: mono-cultivated S. marinoi, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Appendix 39: Heatmap (part II) of exometabolite intensities for the overall analysis of the interaction between T. weissflogii and S. marinoi. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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68 103.1 8.60 1352 
2-(4-Methyl-1,3-thiazol-5-

yl)ethanol (Sulfurol) 
Alk   DT NA NA NA NA NA NA 2 0 0 - - - - -3.5 1.1 

Sm 

(1) 

284 334.2 16.53 2560 

5-Ethyl-5-phenyl-2,5-

dihydro-4,6-

pyrimidinediol (Liskantin) 

Alk ???¹ DT -1 -1 NA 1 1 NA 2 1 -1 -3.8 - -1.5 - -1.6 18.3 

143 303.2 11.37 1718 Suberic acid CA ? DT -1 -1 NA 0 0 NA 2 1 -1 -1.8 - -1.6 - -1.8 5.3 

280 225.1 16.38 2533 Diphenyl phthalate 
CA 

dv. 
 DT -1 -1 -1 0 0 -1 2 1 -1 -1.9 8.5 -1.7 18.8 -1.7 18.1 

336 259.2 22.95 3409 Melezitose CS ? DT -1 -1 -1 0 0 NA 2 1 -1 -2.2 17.8 -1.6 - -1.7 101.6 

134 103.1 11.11 1683 Ribose S  DT NA NA NA 1 0 NA 2 1 -1 - - -1.9 - -1.1 538.4 

335 368.4 20.18 3157 Cholesterol S ??¹ DT 0 0 NA 1 -1 NA 2 1 -1 -1.4 - 
-

12.2 
- -1.6 19.7 

130 250.1 10.95 1662 2-Deoxypentonic acid 
S 

acid 
? DT,T 1 0 -1 1 1 -1 1 1 -1 -1.3 4.5 -1.3 4.0 -1.0 2.5 

309 204.1 17.57 2740 Galactosylglycerol S dv.  DT -1 -1 -1 0 0 NA 2 2 0 -1.0 2.5 -1.4 - -1.1 5.6 

40 186.1 7.14 1158 Unknown U - DT -1 -1 NA 1 0 -1 2 1 0 -4.4 - -1.8 13.3 -1.6 3.3 

57 196.1 8.16 1294 
Skel_MEDIA_C086 

(Vidoudez) 
U ? DT 0 -1 -1 1 0 -1 2 1 -1 -1.2 1.7 -1.8 2.4 -1.7 3.2 

65 199.1 8.49 1337 
Skel_MEDIA_C097 

(Vidoudez) 
U  DT 0 -1 -1 1 0 -1 2 1 -1 -1.4 2.8 -1.9 3.9 -1.6 3.2 

82 127.1 9.14 1422 Unknown U - DT NA NA NA 2 0 NA 1 1 0 - - -2.2 - -1.6 3.5 

83 174.1 9.15 1425 Unknown U - DT NA NA NA 1 0 NA 2 1 0 - - -2.1 - -1.6 4.0 

87 187.2 9.26 1439 Unknown U - DT,T 1 0 -1 2 0 -1 1 0 -1 -1.8 3.8 -1.7 6.5 -1.2 2.8 

Metabolite intensity Fold change 

low -
10 

-
6 

-
2 

2 6 10 high UP DOWN 
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92 188.1 9.44 1463 Unknown U - DT,T 0 -1 NA 2 1 NA 1 1 -1 -3.1 - -1.4 - -1.1 3.0 

95 231.1 9.50 1471 
Skel_MEDIA_C127 

(Vidoudez) 
U  DT,T 0 -1 -1 1 1 NA 1 0 -1 -1.6 3.3 -1.5 - -1.4 2.4 

96 157.1 9.53 1474 Unknown U - DT -1 -1 NA 1 0 -1 1 1 0 -10.9 - -1.5 3.9 -1.1 3.9 

105 184.1 9.95 1530 
Skel_MEDIA_C141 

(Vidoudez) 
U  DT 0 -1 -1 1 0 -1 2 1 -1 -1.6 3.4 -1.7 4.8 -1.7 4.6 

107 122.1 9.99 1536 Unknown U - DT 0 -1 -1 1 0 -1 2 1 0 -1.7 2.1 -2.0 2.9 -1.6 2.2 

123 284.1 10.60 1616 Unknown U - DT -1 -1 -1 1 0 0 2 1 0 -1.1 6.1 -1.4 1.4 -1.3 1.7 

157 277.1 11.88 1786 Unknown U - DT -1 -1 NA 1 0 NA 2 1 0 -5.8 - -3.3 - -1.8 2.3 

161 253.1 12.02 1804 
Skel_MEDIA_C205 

(Vidoudez) 
U  DT 0 -1 -1 1 0 -1 2 1 -1 -1.4 4.1 -1.8 5.4 -1.8 4.9 

164 211.1 12.10 1814 Unknown U - DT 0 -1 -1 1 0 -1 2 1 -1 -1.6 3.5 -1.6 4.4 -1.7 2.8 

166 157.1 12.15 1820 
Skel_MEDIA_C215 

(Vidoudez) 
U ? DT 0 -1 -1 1 0 -1 2 1 0 -1.4 1.6 -1.5 48.9 -1.4 2.6 

169 263.2 12.25 1834 Unknown U - DT,T 0 0 NA 2 0 NA 1 0 -1 -2.1 - -2.7 - -1.7 13.6 

171 353.2 12.34 1845 Unknown U - DT -1 -1 NA 0 0 -1 2 1 0 -2.3 - -1.2 17.0 -1.3 3.0 

172 197.1 12.41 1856 Unknown U - DT,T -1 -1 -1 2 1 -1 1 0 -1 -1.6 3.9 -1.4 19.7 -1.2 3.2 

174 197.1 12.46 1862 Unknown U - DT,T -1 -1 -1 1 0 -1 1 1 0 -1.3 3.9 -1.3 4.4 -1.2 2.6 

175 241.1 12.49 1866 Unknown U - DT,T 0 0 -1 2 0 -1 0 0 -1 -2.2 89.3 -2.6 101.9 -1.3 3.2 

186 153.1 12.79 1908 Unknown U - DT,T 0 -1 -1 2 0 -1 1 0 -1 -1.8 11.1 -2.0 9.6 -1.6 6.2 

188 324.2 12.86 1919 Unknown U - DT,T 0 -1 -1 1 0 NA 2 1 NA -1.7 52.8 -1.5 - -1.4 - 

189 382.2 12.88 1923 Unknown U - DT -1 -1 -1 1 0 -1 2 1 -1 -1.9 3.3 -2.5 25.6 -1.9 25.0 

190 382.2 12.96 1936 Unknown U - DT -1 -1 -1 1 0 -1 2 1 -1 -1.7 3.1 -2.6 24.4 -1.9 23.6 

194 199.1 13.08 1957 Unknown U - DT,T -1 -1 -1 1 1 -1 1 1 -1 -2.2 3.0 -1.6 6.3 -1.3 5.0 

197 382.2 13.13 1966 Unknown U - DT -1 -1 -1 0 0 -1 2 1 -1 -1.7 3.5 -2.6 8.3 -2.1 18.2 

199 197.1 13.18 1975 Unknown U - DT,T 0 -1 -1 2 0 -1 1 0 -1 -1.9 7.1 -2.1 5.1 -1.8 3.5 

203 351.2 13.34 2003 Unknown U - DT -1 -1 -1 0 0 -1 2 1 0 -1.3 1.1 -1.5 1.8 -1.4 2.2 

204 156.1 13.36 2007 Unknown U - DT,T NA NA NA 2 1 NA 1 0 0 - - -1.7 - -1.3 3.1 

211 238.1 13.80 2084 Unknown U - DT,T 0 -1 NA 2 1 NA 1 0 -1 -4.6 - -1.8 - -1.6 30.8 

239 146.1 14.81 2260 Unknown U - DT,T 0 -1 -1 1 0 NA 1 1 -1 -2.0 3.2 -2.0 - -1.3 4.7 
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245 351.2 15.14 2316 Unknown U - DT NA NA NA 0 0 -1 2 1 0 - - -1.4 4.6 -1.2 3.1 

255 487.3 15.42 2366 Unknown U - DT NA NA NA 1 0 NA 2 1 -1 - - -2.2 - -1.3 16.2 

256 261.1 15.45 2371 Unknown U - DT 0 -1 -1 1 0 NA 2 1 -1 -4.9 7.6 -1.8 - -1.5 4.5 

257 149.1 15.47 2374 Unknown U - DT NA NA NA 0 0 NA 2 1 -1 - - -1.5 - -1.7 99.7 

258 174.1 15.53 2385 Unknown U - DT,T 0 -1 -1 2 0 NA 1 1 -1 -2.1 16.0 -2.4 - -1.2 8.4 

259 199.1 15.55 2388 Unknown U - DT -1 -1 -1 1 0 -1 2 1 -1 -2.3 7.9 -1.8 21.0 -1.5 20.9 

268 185.1 15.98 2463 Unknown U - DT -1 -1 NA 0 0 NA 2 1 -1 -6.4 - -2.0 - -2.1 14.7 

269 287.2 16.03 2473 Unknown U - DT -1 NA NA 1 1 NA 2 1 NA - - -1.2 - -1.4 - 

274 254.2 16.20 2502 Unknown U - DT -1 -1 NA 1 0 -1 2 1 -1 -2.1 - -1.6 6.1 -1.4 12.1 

276 411.2 16.24 2509 

M000000_A275005-101-

xxx_NA_2736,09_PRED_ 

VAR5_ALK_NA 

(GOLM) 

U - DT -1 -1 -1 0 0 -1 2 1 -1 -2.0 159.1 -1.7 24.1 -1.9 21.7 

282 148.1 16.47 2550 Unknown U - DT,T -1 NA NA 2 1 NA 1 0 -1 - - -1.7 - -1.6 640.8 

292 202.1 16.81 2609 Unknown U - DT NA NA NA 1 0 NA 2 0 -1 - - -2.8 - -2.3 43.3 

318 261.1 18.01 2816 Unknown U - DT -1 -1 -1 0 0 -1 2 1 -1 -1.9 2.0 -1.6 23.4 -1.9 8.5 

323 204.1 18.35 2868 Unknown U - DT 0 -1 NA 0 0 NA 2 1 0 -2.7 - -1.3 - -1.3 4.4 

325 204.1 18.50 2892 Unknown U - DT -1 -1 NA 0 0 NA 2 1 0 -5.8 - -1.4 - -1.3 5.9 

25 170.1 6.57 1083 Norleucine AA ?¹ DT NA NA NA NA NA NA 2 1 0 - - - - -1.2 2.3 

Sm 

(2) 

6 151.1 5.55 948 Phenol Alc  DT NA NA NA NA NA NA 2 1 0 - - - - -1.4 2.4 

13 142.1 5.99 1006 4-Methoxy-1-butanol Alc ? DT NA NA NA NA NA NA 2 1 0 - - - - -2.4 2.3 

68 103.1 8.60 1352 
2-(4-Methyl-1,3-thiazol-5-

yl)ethanol (Sulfurol) 
Alk  DT NA NA NA NA NA NA 2 0 0 - - - - -3.5 1.1 

32 113.1 6.80 1114 Succinic acid CA ??¹ DT NA NA NA NA NA NA 2 2 0 - - - - -1.0 19.2 

89 217.1 9.35 1451 Pentofuranose S ?¹ DT NA NA NA NA NA NA 2 1 0 - - - - -1.2 4.2 

115 217.1 10.35 1583 Arabinofuranose S  DT NA NA NA NA NA NA 2 2 0 - - - - -1.2 3.0 

121 217.1 10.52 1605 Arabinofuranose S  DT NA NA NA NA NA NA 2 1 0 - - - - -1.3 2.0 

125 217 10.66 1624 Ribofuranose S ? DT NA NA NA NA NA NA 2 2 0 - - - - -1.1 2.3 

163 204.1 12.08 1812 Glucopyranose S  DT NA NA NA NA NA NA 2 1 1 - - - - -1.2 1.4 
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183 204.1 12.69 1892 Mannose S  DT NA NA NA NA NA NA 2 2 1 - - - - -1.1 1.9 

200 204.1 13.20 1978 Glucose S  DT NA NA NA NA NA NA 2 1 1 - - - - -1.1 1.8 

307 204.1 17.48 2725 Maltose S ?? DT 0 -1 -1 NA NA NA 2 2 0 -1.9 4.2 - - -1.1 3.3 

129 217.1 10.92 1659 2-Deoxypentonic acid 
S 

acid 
 DT NA NA NA NA NA NA 2 1 0 - - - - -1.3 3.0 

41 230.2 7.18 1164 Unknown U - DT NA NA NA NA NA NA 2 1 0 - - - - -1.5 2.2 

45 183.1 7.55 1213 Unknown U - DT NA NA NA NA NA NA 2 1 1 - - - - -1.2 1.3 

76 217.1 9.00 1404 Unknown U - DT NA NA NA NA NA NA 2 2 0 - - - - -1.2 4.3 

98 155.1 9.61 1485 Unknown U - DT NA NA NA NA NA NA 2 2 0 - - - - -1.1 2.0 

102 155.1 9.80 1510 Unknown U - DT NA NA NA NA NA NA 2 2 0 - - - - -1.0 11.7 

135 127.1 11.15 1688 Unknown U - DT NA NA NA NA NA NA 2 2 0 - - - - -1.2 2.6 

146 141.1 11.57 1744 Unknown U - DT NA NA NA NA NA NA 2 1 0 - - - - -1.4 2.8 

147 273.1 11.59 1747 Unknown U - DT NA NA NA NA NA NA 2 1 1 - - - - -1.3 1.4 

185 204.1 12.77 1904 Unknown U - DT NA NA NA NA NA NA 2 1 0 - - - - -1.2 2.0 

207 231 13.50 2032 Unknown U - DT NA NA NA NA NA NA 2 2 0 - - - - -1.1 2.2 

279 217.1 16.33 2524 Unknown U - DT -1 -1 -1 NA NA NA 2 1 0 -3.4 5.5 - - -1.3 3.1 

315 204.1 17.79 2779 Unknown U - DT NA NA NA NA NA NA 2 2 0 - - - - -1.1 2.2 

322 295.1 18.31 2862 Unknown U - DT NA NA NA NA NA NA 2 1 1 - - - - -1.3 1.3 

324 133 18.39 2875 Unknown U - DT NA NA NA NA NA NA 2 1 1 - - - - -1.1 1.1 

326 132 18.62 2912 Unknown U - DT NA NA NA NA NA NA 2 1 0 - - - - -2.1 1.8 

329 221.1 19.07 2983 Unknown U - DT NA NA NA NA NA NA 2 1 0 - - - - -1.3 2.6 

137 143.1 11.19 1694 Unknown U - DT,T -1 0 2 NA 0 0 -1 0 0 13.4 -2.2 - -2.0 4.6 -1.1 
Tw 

(1) 

333 204.1 19.83 3101 Digalactosylglycerol  
CS 
dv. 

  DT -1 -1 -1 -1 0 1 1 1 2 4.3 -2.6 2.2 -2.4 1.2 -1.3 

Tw 

(2) 

213 204.1 13.88 2097 Unknown U - DT NA -1 0 -1 -1 1 1 1 2 - -3.1 1.8 -4.8 1.0 -1.7 

217 293.2 14.00 2119 Unknown U - DT -1 -1 -1 -1 1 1 -1 1 2 1.7 -1.5 2.4 -1.0 3.3 -1.2 

226 377.2 14.33 2176 Unknown U - DT NA NA NA -1 -1 0 1 1 2 - - 1.2 -2.7 1.1 -1.2 

334 124.1 19.93 3117 Unknown U - T NA -1 0 NA 0 2 NA 0 2 - -23.6 - -2.4 - -1.9 
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26 129 6.59 1086 2-Ethylhexanoic acid CA   DT NA NA NA NA NA NA 1 1 2 - - - - 1.0 -1.6 
Tw 

(3) 
63 186.1 8.40 1325 Unknown U - DT NA NA NA NA NA NA 1 1 2 - - - - 1.0 -1.3 

128 223.1 10.89 1655 Unknown U - DT NA NA NA NA NA NA 1 1 2 - - - - 1.3 -1.3 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT) and with a-priori grouping by treatment (T). Metabolites 

were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed match between 

600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid 

(Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown 

(U). Vidoudez refers to an MST code given by the in-house library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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Daywise analysis via CAP 
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Appendix 40: PCoA score plot of exometabolomic samples from a daywise subset analysis of the interaction 

between T. weissflogii and S. marinoi on day 18, 30 and 42.  

The plots are based on metabolites obtained from mono-cultivated S. marinoi (blue), mono-cultivated T. weissflogii 

(green) and co-cultivation of both diatoms (red) on day 18 (graph A), day 30 (graph B) and day 42 (graph C).  
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Appendix 41: Heatmap of exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. marinoi on day 18. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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103 187.1 9.89 1522 7-Tetradecanol Alc ¹ 0 1 -1 2.6 8.5 
A 

132 187.1 11.03 1672 Unknown U - 0 1 NA 1.2 - 

47 155.1 7.70 1232 Glycerol Alc   1 1 NA -1.0 - 

Sm 

284 334.2 16.53 2560 5-Ethyl-5-phenyl-2,5-dihydro-4,6-pyrimidinediol (Liskantin) Alk ???¹ 1 0 NA -3.8 - 

133 261.1 11.06 1677 2-Hydroxyhexanedioic acid CA ?¹ 1 1 -1 -1.0 5.7 

143 303.2 11.37 1718 Suberic acid CA ? 1 0 NA -1.8 - 

130 250.1 10.95 1662 2-Deoxypentonic acid S acid ? 1 0 -1 -1.3 4.5 

40 186.1 7.14 1158 Unknown U - 1 0 NA -4.4 - 

57 196.1 8.16 1294 Skel_MEDIA_C086 (Vidoudez) U ? 1 0 -1 -1.2 1.7 

65 199.1 8.49 1337 Skel_MEDIA_C097 (Vidoudez) U  1 0 -1 -1.4 2.8 

87 187.2 9.26 1439 Unknown U - 1 0 -1 -1.8 3.8 

92 188.1 9.44 1463 Unknown U - 1 0 NA -3.1 - 

95 231.1 9.50 1471 Skel_MEDIA_C127 (Vidoudez) U  1 0 -1 -1.6 3.3 

105 184.1 9.95 1530 Skel_MEDIA_C141 (Vidoudez) U  1 0 -1 -1.6 3.4 

161 253.1 12.02 1804 Skel_MEDIA_C205 (Vidoudez) U  1 0 -1 -1.4 4.1 

164 211.1 12.10 1814 Unknown U - 1 0 -1 -1.6 3.5 

169 263.2 12.25 1834 Unknown U - 1 0 NA -2.1 - 

172 197.1 12.41 1856 Unknown U - 1 0 -1 -1.6 3.9 

175 241.1 12.49 1866 Unknown U - 1 0 -1 -2.2 89.3 

Metabolite intensity Fold change 

low -
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ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=4) 
Fold  

(Co relative to:) 

G
ro

u
p

 

Day 18 Day 18 

S
M

 M
o

n
o
 

C
o

  

T
W

 M
o

n
o

 

S
M

 M
o

n
o
 

T
W

 M
o

n
o

 

186 153.1 12.79 1908 Unknown U - 1 0 -1 -1.8 11.1 

188 324.2 12.86 1919 Unknown U - 1 0 -1 -1.7 52.8 

189 382.2 12.88 1923 Unknown U - 1 0 -1 -1.9 3.3 

190 382.2 12.96 1936 Unknown U - 1 0 -1 -1.7 3.1 

194 199.1 13.08 1957 Unknown U - 1 0 -1 -2.2 3.0 

197 382.2 13.13 1966 Unknown U - 1 0 -1 -1.7 3.5 

199 197.1 13.18 1975 Unknown U - 1 0 -1 -1.9 7.1 

211 238.1 13.80 2084 Unknown U - 1 0 NA -4.6 - 

258 174.1 15.53 2385 Unknown U - 1 0 -1 -2.1 16.0 

259 199.1 15.55 2388 Unknown U - 1 0 -1 -2.3 7.9 

268 185.1 15.98 2463 Unknown U - 1 0 NA -6.4 - 

276 411.2 16.24 2509 
M000000_A275005-101-

xxx_NA_2736,09_PRED_VAR5_ALK_NA (GOLM) 
U - 1 0 -1 -2.0 159.1 

313 171.1 17.75 2773 Unknown U - 1 0 NA -1.7 - 

323 204.1 18.35 2868 Unknown U - 1 0 NA -2.7 - 

327 171.1 18.64 2915 Unknown U - 1 0 -1 -2.3 9.5 

39 247.1 7.06 1148 3-Hydroxy-3-methylbutanoic acid CA   NA 0 1 - -2.1 

Tw 
263 217.1 15.79 2431 Uridine S dv. ? NA 0 1 - -2.7 

136 279.2 11.15 1689 
M000000_A170005-101-

xxx_NA_1682,68_PRED_VAR5_ALK_NA (GOLM) 
U ? NA 0 1 - -2.5 

137 143.1 11.19 1694 Unknown U - -1 0 1 13.4 -2.2 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and retention index 

(RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed 

match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol 

(Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others 

(O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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Appendix 42: Heatmap of exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. marinoi on day 30. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  

 

ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=3/4) 
Fold (Co 

relative to:) 
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Day 30 Day 30 

S
M
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o
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o
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W
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n
o

 

300 236.1 17.05 2649 Adenosine S dv.   1 1 NA 1.1 - 

A 311 245.1 17.65 2755 Guanosine S dv.  1 1 NA 1.0 - 

208 221.1 13.55 2040 Unknown U - 0 1 NA 1.2 - 

284 334.2 16.53 2560 5-Ethyl-5-phenyl-2,5-dihydro-4,6-pyrimidinediol (Liskantin) Alk ???¹ 1 0 NA -1.5 - 

Sm 

133 261.1 11.06 1677 2-Hydroxyhexanedioic acid CA ?¹ 1 0 NA -1.2 - 

143 303.2 11.37 1718 Suberic acid CA ? 1 0 NA -1.6 - 

341 361.2 24.90 3571 Maltotriose CS  1 0 -1 -1.3 3.7 

130 250.1 10.95 1662 2-Deoxypentonic acid 
S 

acid 
? 1 0 -1 -1.3 4.0 

206 321.2 13.44 2020 Gluconic acid 
S 

acid 
?¹ 1 0 -1 -1.1 3.1 

289 230.1 16.71 2591 Inosine S dv.  1 0 NA -1.6 - 

306 327.2 17.23 2681 Pregn-16-en-20-one, 3,18-bis(acetyloxy)-14,15-epoxy-,  ST ??¹ 1 0 NA -1.8 - 

40 186.1 7.14 1158 Unknown U - 1 0 -1 -1.8 13.3 

64 196.1 8.45 1331 Unknown U - 1 0 NA -1.4 - 

65 199.1 8.49 1337 Skel_MEDIA_C097 (Vidoudez) U  1 0 -1 -1.9 3.9 

87 187.2 9.26 1439 Unknown U - 1 0 -1 -1.7 6.5 

92 188.1 9.44 1463 Unknown U - 1 0 NA -1.4 - 

95 231.1 9.50 1471 Skel_MEDIA_C127 (Vidoudez) U  1 0 NA -1.5 - 

Metabolite intensity Fold change 
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2 6 10 high UP DOWN 
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ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=3/4) 
Fold (Co 

relative to:) 
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ro

u
p

 

Day 30 Day 30 
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o
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o
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o
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o

n
o
 

T
W
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o

 

105 184.1 9.95 1530 Skel_MEDIA_C141 (Vidoudez) U  1 0 -1 -1.7 4.8 

161 253.1 12.02 1804 Skel_MEDIA_C205 (Vidoudez) U  1 0 -1 -1.8 5.4 

164 211.1 12.10 1814 Unknown U - 1 0 -1 -1.6 4.4 

166 157.1 12.15 1820 Skel_MEDIA_C215 (Vidoudez) U ? 1 0 -1 -1.5 48.9 

171 353.2 12.34 1845 Unknown U - 1 0 -1 -1.2 17.0 

172 197.1 12.41 1856 Unknown U - 1 0 -1 -1.4 19.7 

174 197.1 12.46 1862 Unknown U - 1 0 -1 -1.3 4.4 

186 153.1 12.79 1908 Unknown U - 1 0 -1 -2.0 9.6 

188 324.2 12.86 1919 Unknown U - 1 0 NA -1.5 - 

189 382.2 12.88 1923 Unknown U - 1 0 -1 -2.5 25.6 

190 382.2 12.96 1936 Unknown U - 1 0 -1 -2.6 24.4 

193 327.2 13.04 1951 Unknown U - 1 0 NA -1.5 - 

194 199.1 13.08 1957 Unknown U - 1 0 -1 -1.6 6.3 

199 197.1 13.18 1975 Unknown U - 1 0 -1 -2.1 5.1 

203 351.2 13.34 2003 Unknown U - 1 0 -1 -1.5 1.8 

204 156.1 13.36 2007 Unknown U - 1 0 NA -1.7 - 

210 351.2 13.63 2055 Unknown U - 1 0 -1 -1.4 3.5 

211 238.1 13.80 2084 Unknown U - 1 0 NA -1.8 - 

216 470.3 13.98 2116 Unknown U - 1 0 NA -1.5 - 

259 199.1 15.55 2388 Unknown U - 1 0 -1 -1.8 21.0 

271 447.3 16.12 2488 Unknown U - 1 0 -1 -1.2 2.3 

274 254.2 16.20 2502 Unknown U - 1 0 -1 -1.6 6.1 

276 411.2 16.24 2509 
M000000_A275005-101-

xxx_NA_2736,09_PRED_VAR5_ALK_NA (GOLM) 
U - 1 0 -1 -1.7 24.1 

282 148.1 16.47 2550 Unknown U - 1 0 NA -1.7 - 

292 202.1 16.81 2609 Unknown U - 1 0 NA -2.8 - 

297 171.1 16.93 2630 Unknown U - 1 0 NA -2.1 - 
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ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=3/4) 
Fold (Co 

relative to:) 

G
ro

u
p

 

Day 30 Day 30 

S
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n
o
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o
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o
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o

n
o
 

T
W
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n
o

 

313 171.1 17.75 2773 Unknown U - 1 0 NA -1.4 - 

318 261.1 18.01 2816 Unknown U - 1 0 -1 -1.6 23.4 

323 204.1 18.35 2868 Unknown U - 1 0 NA -1.3 - 

325 204.1 18.50 2892 Unknown U - 1 0 NA -1.4 - 

327 171.1 18.64 2915 Unknown U - 1 0 NA -2.0 - 

334 124.1 19.93 3117 Unknown U - NA 0 1 - -2.4 Tw 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and retention index 

(RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed 

match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol 

(Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others 

(O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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Appendix 43: Heatmap of exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. marinoi on day 42. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  

 

ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=4) 
Fold (Co 

relative to:) 
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Day 42 Day 42 

S
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n
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o

 

S
M
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o

n
o
 

T
W
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o

n
o

 

111 120.1 10.14 1555 Phenylalanine AA   0 1 NA 1.4 - 

A 118 313.2 10.42 1592 Unknown S ? 0 1 -1 1.3 2.6 

206 321.2 13.44 2020 Gluconic acid S acid ?¹ 1 1 -1 1.0 3.2 

23 117.1 6.50 1073 Leucine AA ?¹ 1 0 -1 -1.5 5.3 

Sm 

25 170.1 6.57 1083 Norleucine AA ?¹ 1 0 -1 -1.2 2.3 

6 151.1 5.55 948 Phenol Alc  1 0 -1 -1.4 2.4 

51 160.1 7.85 1253 Glycerol Alc ?¹ 1 0 -1 -1.1 6.5 

66 151.1 8.54 1343 2-Phenoxyethanol  Alc  1 0 -1 -1.2 1.9 

86 103.1 9.24 1436 1,3,5-Pentanetriol Alc ??¹ 1 0 -1 -1.5 11.1 

99 223.1 9.67 1493 4-Hydroxybenzaldehyde Alc  1 0 -1 -1.9 3.0 

103 187.1 9.89 1522 7-Tetradecanol Alc ¹ 1 0 -1 -4.1 282.9 

139 186.1 11.26 1703 4-Methyl-2,6-bis(2-methyl-2-propanyl)phenol Alc ??¹ 1 0 -1 -1.4 2.1 

53 113.1 8.00 1272 2-(4-Methyl-1-piperazinyl)ethanol Alk ? 1 0 -1 -1.4 3.2 

17 165.1 6.31 1049 Oxalic acid CA ?¹ 1 0 -1 -1.2 1.5 

32 113.1 6.80 1114 Succinic acid CA ??¹ 1 1 -1 -1.0 19.2 

133 261.1 11.06 1677 2-Hydroxyhexanedioic acid CA ?¹ 1 0 -1 -1.5 9.9 

143 303.2 11.37 1718 Suberic acid CA ? 1 0 -1 -1.8 5.3 

30 282.1 6.73 1105 Dodecamethylpentasiloxane O  1 0 NA -1.3 - 

115 217.1 10.35 1583 Arabinofuranose S  1 0 -1 -1.2 3.0 

Metabolite intensity Fold change 
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ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=4) 
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116 284.1 10.37 1586 Arabinofuranose S  1 0 -1 -1.6 4.9 

119 217.1 10.46 1598 Unknown S  1 0 -1 -1.2 2.8 

125 217 10.66 1624 Ribofuranose S ? 1 0 -1 -1.1 2.3 

134 103.1 11.11 1683 Ribose S  1 0 -1 -1.1 538.4 

129 217.1 10.92 1659 2-Deoxypentonic acid S acid  1 0 -1 -1.3 3.0 

130 250.1 10.95 1662 2-Deoxypentonic acid S acid ? 1 1 -1 -1.0 2.5 

180 319.2 12.61 1881 Gluconic acid 1,5-lactone  S dv.  1 0 -1 -1.2 2.0 

9 143.1 5.67 965 Unknown U - 1 0 -1 -1.3 8.9 

15 240 6.12 1023 Unknown U - 1 0 -1 -1.7 12.7 

40 186.1 7.14 1158 Unknown U - 1 0 -1 -1.6 3.3 

57 196.1 8.16 1294 Skel_MEDIA_C086 (Vidoudez) U ? 1 0 -1 -1.7 3.2 

65 199.1 8.49 1337 Skel_MEDIA_C097 (Vidoudez) U  1 0 -1 -1.6 3.2 

70 142.1 8.69 1364 Unknown U - 1 0 NA -1.6 - 

82 127.1 9.14 1422 Unknown U - 1 0 -1 -1.6 3.5 

87 187.2 9.26 1439 Unknown U - 1 0 -1 -1.2 2.8 

92 188.1 9.44 1463 Unknown U - 1 0 -1 -1.1 3.0 

95 231.1 9.50 1471 Skel_MEDIA_C127 (Vidoudez) U  1 0 -1 -1.4 2.4 

96 157.1 9.53 1474 Unknown U - 1 1 -1 -1.1 3.9 

105 184.1 9.95 1530 Skel_MEDIA_C141 (Vidoudez) U  1 0 -1 -1.7 4.6 

107 122.1 9.99 1536 Unknown U - 1 0 -1 -1.6 2.2 

131 247.1 11.00 1668 Unknown U - 1 0 -1 -1.4 4.9 

132 187.1 11.03 1672 Unknown U - 1 0 -1 -1.1 39.0 

157 277.1 11.88 1786 Unknown U - 1 0 -1 -1.8 2.3 

161 253.1 12.02 1804 Skel_MEDIA_C205 (Vidoudez) U  1 0 -1 -1.8 4.9 

164 211.1 12.10 1814 Unknown U - 1 0 -1 -1.7 2.8 

166 157.1 12.15 1820 Skel_MEDIA_C215 (Vidoudez) U ? 1 0 -1 -1.4 2.6 

169 263.2 12.25 1834 Unknown U - 1 0 -1 -1.7 13.6 
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ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=4) 
Fold (Co 

relative to:) 

G
ro

u
p

 

Day 42 Day 42 
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n
o
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W
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171 353.2 12.34 1845 Unknown U - 1 0 -1 -1.3 3.0 

172 197.1 12.41 1856 Unknown U - 1 0 -1 -1.2 3.2 

174 197.1 12.46 1862 Unknown U - 1 0 -1 -1.2 2.6 

175 241.1 12.49 1866 Unknown U - 1 0 -1 -1.3 3.2 

186 153.1 12.79 1908 Unknown U - 1 0 -1 -1.6 6.2 

188 324.2 12.86 1919 Unknown U - 1 0 NA -1.4 - 

189 382.2 12.88 1923 Unknown U - 1 0 -1 -1.9 25.0 

190 382.2 12.96 1936 Unknown U - 1 0 -1 -1.9 23.6 

191 323.2 12.98 1941 Unknown U - 1 0 -1 -1.2 5.1 

193 327.2 13.04 1951 Unknown U - 1 0 NA -1.2 - 

194 199.1 13.08 1957 Unknown U - 1 0 -1 -1.3 5.0 

197 382.2 13.13 1966 Unknown U - 1 0 -1 -2.1 18.2 

198 146.1 13.15 1970 Unknown U - 1 0 -1 -1.5 16.2 

199 197.1 13.18 1975 Unknown U - 1 0 -1 -1.8 3.5 

203 351.2 13.34 2003 Unknown U - 1 0 -1 -1.4 2.2 

204 156.1 13.36 2007 Unknown U - 1 0 -1 -1.3 3.1 

207 231 13.50 2032 Unknown U - 1 0 -1 -1.1 2.2 

211 238.1 13.80 2084 Unknown U - 1 0 -1 -1.6 30.8 

216 470.3 13.98 2116 Unknown U - 1 0 -1 -1.3 40.9 

239 146.1 14.81 2260 Unknown U - 1 0 -1 -1.3 4.7 

242 171.1 14.96 2285 Unknown U - 1 0 NA -1.7 - 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and retention index 

(RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed 

match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol 

(Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others 

(O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database
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Screening for interaction specific release and/or uptake of potential infochemicals 

 

Appendix 44: Intensity dynamic of exometabolites, enhanced in co-cultivation on day 18 in the interaction between 

T. weissflogii and S. marinoi. 

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  

Metabolite #103 - 7-Tetradecanol
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Metabolite #104 - 7-Tetradecanol
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Metabolite #180 - Gluconic acid 1,5-lactone 
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Appendix 45: Intensity dynamic of exometabolites, enhanced in co-cultivation on day 30 in the interaction between 

T. weissflogii and S. marinoi. 

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  

Metabolite #53 - 2-(4-Methyl-1-piperazinyl)ethanol
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Metabolite #99 - 4-Hydroxybenzaldehyde
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Metabolite #270 - Uridine
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Appendix 45 continued 

Metabolite #299 - Adenosine
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Metabolite #311 - Guanosin
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Metabolite #300 - Adenosine
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Appendix 46: Intensity dynamic of exometabolites, enhanced in co-cultivation on day 42 in the interaction between 

T. weissflogii and S. marinoi. 

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  

Metabolite #2 - 2-Aminoethanol
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Metabolite #69 - Cytosine
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Metabolite #111 - Phenylalanine
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Metabolite #138
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Metabolite #141 - 6-Hydroxy-1,3-dimethyl-
2,4(1H,3H)-pyrimidinedione
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Metabolite #145 - Xylitol
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Metabolite #170
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Plot 1 Plot 1 

Metabolite #177
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Appendix 46 continued 

Metabolite #184 - Galactose
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Metabolite #301 - Adenosine
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Appendix 47: Intensity dynamic of exometabolites excluded in the screening process for exometabolites, which 

were reduced in co-cultivation in the interaction between T. weissflogii and S. marinoi and matched pattern III. 

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  

Metabolite #11 - Pyruvic acid
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Metabolite #150 - Skel_MEDIA_C196 (Vidoudez)
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Metabolite #114 - Pentofuranose
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7.2.3 Endometabolomic investigation 

Overall analysis via CAP 

Principal Coordinate Axis 1 (41.34%)
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Appendix 48: PCoA score plot of endometabolomic samples from an overall analysis of the interaction between 

T. weissflogii and S. marinoi.  

The plot is based on metabolites obtained from S. marinoi (blue) and T. weissflogii (green) on day 18 (●), day 30 

(▼) and day 42 (■). Samples from mono-cultivation are represented by filled symbols, samples from co-cultivation 

by empty symbols. 

Species-specific analysis via CAP 

Principal Coordinate Axis 1 (55.36%)
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Appendix 49: PCoA score plot of endometabolomic samples from a species-specific subset analysis of the 

interaction between T. weissflogii and S. marinoi.  

The plots are based on metabolites obtained from mono-cultivated (green) and co-cultivated (red) T. weissflogii 

(graph A) and mono-cultivated (blue) and co-cultivated (red) S. marinoi (graph B) on day 18 (●), day 30 (▼) and 

day 42 (■). The analysis was performed for each species individually. 



320   Digital Appendix 

Daywise and species-specific analysis via CAP 
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Appendix 50: PCoA score plot of endometabolomic samples from a species-specific subset analysis of the 

interaction between T. weissflogii and S. marinoi on day 18, 30 and 42.  

The plots are based on metabolites obtained from mono-cultivated (green) and co-cultivated (red) T. weissflogii 

(graph A, C, E) and mono-cultivated (blue) and co-cultivated (red) S. marinoi (graph B, D, F) on day 18 (●, graph 

A, B), day 30 (●, graph C, D) and day 42 (●, graph E, F). The analysis was performed for each species and day 

individually. 
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Identification of metabolites correlating with relevant a-priori groups  

T. weissflogii 

Appendix 51: Heatmap of unknown endometabolite intensities for the species-specific and daywise analysis of T. weissflogii in interaction with S. marinoi.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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18 228.1 6.20 1034 Unknown U - 30 0 1 0 NA 0 0 1.4 - 1.2 

30 152.1 6.62 1090 Unknown U - DT,30 1 1 -1 NA 1 0 1.1 - -1.2 

31 113.1 6.67 1096 Unknown U - 30 0 2 -1 NA 0 0 2.1 - -1.4 

33 169 6.76 1109 Unknown U - DT 1 1 NA NA NA NA 1.1 - - 

43 126.1 6.96 1135 Unknown U - 30 0 2 0 NA 0 0 2.9 - -1.2 

46 169.1 7.02 1143 Unknown U - DT 1 2 NA NA NA NA 1.8 - - 

62 299.1 7.73 1236 Unknown U - 30 1 1 1 NA 0 0 1.2 - -1.1 

71 113.9 7.99 1272 Skel_Cell_C021 (Vidoudez) U ? 30 1 1 0 NA 0 0 1.2 - -1.0 

75 221.1 8.12 1288 Unknown U - DT 1 2 NA NA NA NA 1.7 - - 

76 196.1 8.16 1294 Unknown U - DT,30 1 1 0 -1 -1 -1 1.1 -1.8 -1.1 

103 156.1 9.12 1421 Unknown U - 30 0 2 0 -1 0 0 1.4 -1.4 -1.1 

108 123.1 9.26 1440 Unknown U - 30 1 1 0 NA 0 0 1.1 - -1.4 

134 206.2 10.28 1574 Unknown U - DT,30 1 1 0 -1 -1 -1 1.1 -9.5 1.1 

165 198.1 11.27 1706 Unknown U - DT,30 1 1 1 -1 -1 -1 1.1 -17.6 1.1 

182 175.1 11.85 1782 Unknown U - DT,30 0 1 0 NA 0 0 1.2 - -1.1 
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183 372.2 11.88 1785 Unknown U - DT 1 1 0 -1 0 -1 1.0 -1.6 -1.1 

193 386.2 12.15 1822 Unknown U - DT 1 1 0 -1 -1 -1 1.0 -1.4 -1.2 

205 123.1 12.48 1865 Skel_cell_C074 (Vidoudez) U  DT 1 1 -1 0 -1 -1 1.2 1.3 -1.1 

285 180.1 15.16 2323 Unknown U - DT 1 1 0 -1 -1 -1 1.1 -1.5 1.3 

293 384.2 15.47 2376 Unknown U - 30 0 1 0 -2 0 -1 1.3 -2.5 -1.2 

331 397.4 17.07 2656 Unknown U - DT,30 1 1 1 -1 -1 -1 1.1 -3.8 -1.2 

333 159.1 17.18 2674 Unknown U - 30 0 1 1 -1 -1 -1 1.2 -1.9 -1.2 

334 221.1 17.19 2677 Unknown U - DT 1 1 NA NA 0 0 1.0 - -1.1 

361 309.3 18.49 2893 Unknown U - DT 0 2 0 -1 -1 -1 1.7 -4.2 1.0 

367 323.3 19.11 2990 Unknown U - 30 0 2 0 -1 -1 -1 1.8 -2.7 -1.0 

377 333.3 19.74 3089 Unknown U - DT 1 2 0 -1 -1 -1 1.5 -6.7 1.1 

15 186.1 6.11 1023 Unknown U - DT,30 2 1 0 NA -1 -1 -1.9 - -2.3 

22 156 6.37 1057 Unknown U - DT 1 1 NA NA 0 -1 -1.0 - -2.2 

35 146.1 6.80 1113 Unknown U - DT 2 1 -1 NA -1 0 -1.7 - 108.4 

37 172.1 6.82 1117 Unknown U - DT,30 2 0 0 -1 0 -1 -2.5 -117.8 -1.5 

53 112.1 7.25 1173 Unknown U - DT,30 1 1 0 NA NA NA -1.1 - - 

88 159.1 8.60 1352 Unknown U - DT 2 1 NA NA NA NA -1.4 - - 

175 169 11.64 1754 Unknown U - DT 2 1 NA NA NA NA -1.4 - - 

176 302.2 11.66 1757 Unknown U - DT,30 1 1 0 -1 -1 -1 -1.1 -7.8 -1.0 

178 133.1 11.73 1766 Unknown U - 30 1 1 0 -2 0 0 -1.2 -36.3 -1.2 

209 307.2 12.57 1878 Unknown U - DT 2 1 -1 -1 0 0 -1.3 -1.1 1.1 

260 221.1 14.32 2175 Unknown U - DT 1 0 NA NA 0 1 -1.2 - 1.3 

290 180.1 15.35 2355 Unknown U - DT 1 1 0 -1 -1 0 -1.0 -6.8 1.1 

309 217.1 16.29 2520 Unknown U - DT 2 1 -1 -1 0 0 -1.4 -1.3 1.0 

310 221.1 16.31 2522 Unknown U - DT,30 1 1 0 NA 0 0 -1.1 - -1.2 

84 127 8.44 1330 Unknown U - DT,30 0 0 0 2 -1 -1 1.2 5.1 1.9 

85 199.1 8.48 1337 Skel_MEDIA_C097 (Vidoudez) U  DT -1 -1 0 1 1 1 1.1 1.1 1.0 

265 265.1 14.52 2211 Skel_Cell_C128_RT14.776 (Vidoudez) U ? DT,30 -1 -1 1 2 -1 0 -1.3 1.3 1.1 



Digital Appendix 323 

ID 
Model 

ion 
RT RI Name 

C
la

ss
 

Id
en

t 

A
n

a
ly

si
s 

Median  

(Co: n=4, Mono: n=7/8) 

Fold  

(Co relative to Mono) 

Day 18 Day 30 Day 42 

D
a

y
 1

8
 

D
a

y
 3

0
 

D
a

y
 4

2
 

T
W

 M
o

n
o

 

T
W

 C
o

 

T
W

 M
o

n
o

 

T
W

 C
o

 

T
W

 M
o

n
o

 

T
W

 C
o

 

266 304.9 14.54 2214 Skel_Cell_C128_RT14.776 (Vidoudez) U ?? 30 -1 0 0 2 -1 0 1.1 1.6 1.2 

267 319.9 14.54 2214 Skel_Cell_C128_RT14.776 (Vidoudez) U ? 30 -1 0 0 2 -1 0 1.0 1.3 1.1 

268 265 14.56 2217 Skel_Cell_C128_RT14.776 (Vidoudez) U ? DT,30 -1 -1 1 2 -1 0 -1.4 1.3 1.1 

284 170.1 15.14 2319 Unknown U - 30 0 1 0 1 -1 -1 1.3 1.4 1.0 

54 234.1 7.27 1176 
EITTMS_N12C_ATHR_1480.5_1135EC44_ 

(GOLM) 
U ? 30 -1 -1 2 -1 0 0 -1.3 -5.2 -1.0 

65 248.1 7.81 1248 Unknown U - 30 -1 -1 2 -1 0 0 -1.5 -6.4 -1.0 

92 228.1 8.76 1373 Unknown U - 30 0 0 2 NA 0 0 1.8 - -1.3 

102 201.1 9.10 1419 
EITTMS_N12C_ATHR_1442.5_1135EC44_ 

(GOLM) 
U ? 30 0 -1 2 -1 0 0 -1.2 -1.7 -1.0 

104 228.1 9.14 1424 Unknown U - 30 0 1 1 -1 0 -1 1.4 -43.0 -1.5 

119 228.1 9.67 1494 Unknown U - 30 0 0 1 -2 0 0 1.1 -4.1 1.0 

222 210.1 12.99 1933 Unknown U - 30 0 0 2 NA 0 0 -1.3 - -1.7 

288 146.1 15.26 2340 Unknown U - 30 -1 0 2 0 -1 -1 1.2 -1.4 -1.0 

292 204.1 15.44 2372 Unknown U - 30 0 0 1 -2 0 1 1.2 -2.0 1.3 

295 141.1 15.54 2388 Unknown U - 30 -1 0 2 -1 0 0 1.1 -2.0 -1.1 

316 113.1 16.59 2571 Unknown U - 30 -1 0 2 0 0 -1 1.2 -2.2 -1.1 

318 365.2 16.63 2579 Skel_Cell_C145 (Vidoudez) U ? 30 -1 -1 1 -1 1 1 -1.1 -3.1 -1.1 

323 371.3 16.78 2605 Unknown U - 30 0 0 2 -1 0 0 1.1 -7.0 -1.1 

328 159.1 16.99 2641 Unknown U - 30 0 1 1 -2 0 0 1.3 -3.7 -1.1 

335 186.1 17.22 2681 Unknown U - 30 0 0 2 -1 0 0 1.1 -1.5 1.0 

343 113.1 17.65 2757 Unknown U - 30 0 0 2 -1 -1 -1 1.2 -2.7 -1.0 

384 309.2 21.18 3261 

M000000_A329005-101-

xxx_NA_3284,76_PRED_VAR5_ALK_NA 

(GOLM) 

U  30 -1 -1 2 -1 1 0 -1.4 -3.6 -1.2 

392 145.1 23.52 3457 Unknown U - 30 0 0 1 NA 0 0 -1.0 - -1.1 

403 129.1 26.49 3706 Unknown U - 30 0 0 2 -2 0 0 -1.1 -8.6 -1.1 

142 224.1 10.55 1610 Unknown U - DT -1 -1 1 0 1 0 1.0 -1.1 -1.0 

198 157.1 12.28 1839 Unknown U - DT -2 -1 1 0 1 1 1.4 -1.3 -1.1 
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366 382.4 19.05 2981 Unknown U - DT -1 -1 1 0 1 1 -1.0 -1.3 -1.0 

3 110 5.33 919 Unknown U - DT -1 -1 0 -1 1 2 1.3 -3.2 1.4 

25 152.1 6.44 1066 Unknown U - DT,30 -1 0 NA NA 1 1 2.9 - 1.1 

90 240.1 8.67 1362 Unknown U - DT,30 0 0 0 NA 1 1 -1.0 - 1.0 

129 103.1 10.05 1543 Unknown U - DT,30 0 0 0 -2 1 1 1.2 -9.9 1.2 

133 157 10.23 1568 Unknown U - DT -2 -1 0 0 1 1 1.4 -1.0 1.1 

138 255.1 10.41 1592 Unknown U - DT,30 -1 0 0 NA 1 1 1.9 - 1.1 

151 157.1 10.80 1643 Unknown U - DT,30 0 0 -1 NA 1 1 1.2 - 1.1 

152 257.1 10.81 1645 Unknown U - DT -1 0 -1 NA 1 1 1.8 - 1.2 

291 167 15.41 2366 Unknown U - DT 0 1 NA NA 1 1 1.1 - 1.1 

299 255.2 15.77 2429 Unknown U - DT,30 -1 -1 0 NA 1 1 1.1 - 1.2 

324 283.3 16.83 2614 

M000000_A260006-101-

xxx_NA_2604,01_TRUE_VAR5_ALK_D26048

2 (GOLM) 

U ? DT NA NA NA NA 1 1 - - 1.0 

16 225.1 6.13 1025 Unknown U - DT -1 NA NA NA 2 1 - - -1.4 

77 215.1 8.20 1299 Unknown U - DT,30 -1 0 0 NA 1 1 1.4 - -1.2 

87 258.1 8.58 1349 Unknown U - DT 0 0 0 -1 2 1 1.0 -1.4 -1.2 

99 217.1 9.00 1405 Unknown U - DT 0 0 NA NA 1 1 1.0 - -1.2 

111 217.1 9.35 1452 Unknown U - DT 0 0 NA NA 1 1 1.1 - -1.1 

120 245.1 9.69 1496 Unknown U - DT NA NA NA NA 2 1 - - -1.5 

155 271.1 10.94 1662 Unknown U - DT NA NA NA NA 1 1 - - -1.0 

179 217.1 11.75 1769 
EITTMS_N12C_ATHR_1770.9_1135EC25_ 

(GOLM) 
U  DT,30 0 0 0 -1 1 1 -1.2 -4.8 -1.1 

187 342.1 11.99 1801 Unknown U - DT,30 0 0 0 -1 2 1 -1.1 -8.9 -1.7 

269 167 14.60 2225 Unknown U - DT NA NA NA NA 1 1 - - -1.1 

270 148.1 14.62 2228 Unknown U - DT NA NA NA NA 2 1 - - -1.6 
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329 204.1 17.02 2647 

M000000_A266012-101-

xxx_NA_2659,18_PRED_VAR5_ALK_Unkno

wn#sst-cgl-122 (GOLM) 

U  DT 0 -1 0 -1 1 1 -1.7 -2.5 -1.2 

347 311.3 17.82 2787 

M000000_A278013-101-

xxx_NA_2788,69_TRUE_VAR5_ALK_D27893

1 (GOLM) 

U ? DT,30 -1 NA 0 NA 1 1 - - -1.0 

150 333.1 10.76 1638 Unknown U - 30 1 1 1 -2 0 0 1.0 -9.0 1.1 

167 204.1 11.33 1713 Unknown U - 30 0 1 0 -2 0 1 1.1 -7.4 1.2 

168 303.2 11.37 1719 Unknown U - 30 0 0 1 NA 1 0 1.3 - -1.0 

243 309.2 13.58 2011 Unknown U - 30 0 1 0 -2 0 0 1.2 -22.6 -1.1 

336 195.1 17.23 2684 Unknown U - 30 0 0 1 NA 0 0 1.1 - -1.1 

359 129.1 18.41 2881 Unknown U - 30 1 1 1 -2 0 -1 1.0 -8.8 -1.4 

45 228.1 7.01 1141 Unknown U - 30 1 1 1 -2 0 0 -1.0 -4.2 -1.1 

117 174.1 9.59 1483 Unknown U - 30 1 0 1 NA 0 0 -1.7 - -1.1 

130 227.1 10.11 1551 Unknown U - 30 0 0 1 NA 0 0 -1.3 - -1.0 

159 217.1 11.06 1678 Unknown U - 30 1 -1 0 -2 0 1 -2.0 -2.7 1.1 

204 205.1 12.45 1861 Unknown U - 30 1 0 1 -2 1 0 -1.2 -3.6 -1.1 

312 221.1 16.37 2534 Unknown U - 30 1 1 0 -2 0 0 -1.1 -3.3 1.0 

350 423.4 17.98 2813 Unknown U - 30 1 0 1 -2 0 0 -1.3 -4.1 -1.3 

352 425.4 18.07 2827 Unknown U - 30 1 0 1 -2 0 0 -1.2 -6.0 -1.1 

356 103.1 18.20 2848 Unknown U - 30 1 0 1 -2 0 0 -1.1 -5.9 -1.2 

28 116.1 6.55 1081 Unknown U - 30 -1 -1 1 -1 1 1 1.1 -1.9 1.0 

112 185.1 9.40 1457 Unknown U - 30 -1 0 0 NA 1 1 1.3 - 1.1 

58 166.1 7.52 1209 Unknown U - 30 0 0 0 -2 1 1 -1.0 -5.0 -1.2 

101 188.1 9.08 1416 Unknown U - 30 0 0 1 -2 1 0 -1.1 -10.8 -1.4 

248 197.1 13.82 2089 Unknown U - 30 0 0 1 -2 1 0 -1.0 -8.7 -1.2 

276 141.1 14.88 2273 Unknown U - 30 -1 -1 1 -1 1 1 1.2 -1.9 -1.2 

302 239.2 15.84 2441 Unknown U - 30 -1 -1 1 -1 1 0 1.1 -1.8 -1.2 
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313 103.1 16.44 2546 Skel_Cell_C145 (Vidoudez) U ? 30 -1 -1 1 -1 1 1 -1.6 -27.3 -1.2 

332 204.1 17.13 2666 Unknown U - 30 0 -1 0 -1 1 1 -1.0 -2.2 -1.1 

337 204.1 17.34 2702 Unknown U - 30 0 0 1 -2 1 0 -1.1 -4.5 -1.1 

363 211.2 18.93 2962 Unknown U - 30 -1 -1 1 -1 1 1 1.1 -4.6 -1.0 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 18 (18), day 30 (30) and day 42 (42). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” 

indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with 

a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons 

(HC), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM 

refers to an MST code given by distinct libraries of the Golm Metabolome Database.  

  



Digital Appendix 327 

S. marinoi 

Appendix 52: Heatmap of unknown endometabolite intensities for the species-specific and daywise analysis of S. marinoi in interaction with T. weissflogii.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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9 221.1 5.60 955 Unknown U - DT 1 2 0 -1 -1 0 1.3 -1.5 6.9 

22 156 6.37 1057 Unknown U - DT 1 1 NA NA NA NA 1.0 - - 

37 172.1 6.82 1117 Unknown U - DT 1 1 -1 -1 -1 -1 1.2 1.0 -1.3 

45 228.1 7.01 1141 Unknown U - 42 0 1 0 1 -2 0 1.2 1.2 2.2 

63 121.1 7.76 1241 Unknown U - DT 1 1 0 0 -1 -1 1.1 -1.1 -1.4 

75 221.1 8.12 1288 Unknown U - DT 1 1 NA NA NA NA 1.0 - - 

103 156.1 9.12 1421 Unknown U - DT 1 1 -1 -1 0 -1 1.1 1.5 -2.4 

125 183.1 9.93 1528 Unknown U - 42 0 1 0 0 0 -2 1.2 -1.1 -1.8 

134 206.2 10.28 1574 Unknown U - DT 1 1 -1 -1 0 0 1.1 1.3 1.0 

168 303.2 11.37 1719 Unknown U - 42 0 1 -2 0 -1 1 1.4 3.4 2.1 

183 372.2 11.88 1785 Unknown U - 18 0 2 -1 0 0 0 1.7 1.4 1.0 

187 342.1 11.99 1801 Unknown U - DT 1 2 NA -1 NA NA 1.7 - - 

189 174.1 12.04 1807 Unknown U - DT 1 1 -1 0 -1 -1 1.0 1.6 1.5 

276 141.1 14.88 2273 Unknown U - DT 1 1 0 0 -2 -1 1.1 1.1 1.3 

283 204.1 15.12 2315 Unknown U - 42 0 1 0 1 0 -2 1.1 1.0 -1.5 

285 180.1 15.16 2323 Unknown U - DT 1 1 0 -1 NA -1 1.1 -4.0 - 

291 167 15.41 2366 Unknown U - DT,18 0 1 NA NA 0 1 1.2 - 1.4 

293 384.2 15.47 2376 Unknown U - DT 1 1 0 0 -1 -1 1.3 -1.3 1.0 

Median MST intensity Fold change 

low -

10 

-
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2 
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301 361.2 15.82 2438 Unknown U - 18 0 2 0 -1 -1 1 3.1 -1.7 3.8 

310 221.1 16.31 2522 Unknown U - DT 1 1 NA NA NA NA 1.2 - - 

334 221.1 17.19 2677 Unknown U - DT 1 1 NA NA NA -1 1.0 - - 

366 382.4 19.05 2981 Unknown U - 18 -1 2 -1 0 1 -1 2.8 1.1 -1.9 

367 323.3 19.11 2990 Unknown U - 18 0 2 0 0 NA 0 7.2 1.6 - 

372 129.1 19.43 3040 Unknown U - T,18 NA 1 NA NA 0 1 - - 2.3 

373 382.3 19.44 3042 Unknown U - T,18,42 -1 2 -1 -1 0 0 113.2 5.5 5.4 

374 331.3 19.56 3061 Unknown U - DT,18 1 2 NA -1 -1 0 1.6 - 2.1 

376 335.3 19.69 3080 Unknown U - 18 0 2 0 0 -1 -1 3.3 1.2 1.7 

377 333.3 19.74 3089 Unknown U - 18 NA 2 -1 -1 0 1 - 3.1 1.9 

15 186.1 6.11 1023 Unknown U - DT,18,42 2 0 0 0 -1 -1 -1.7 -1.4 4.7 

35 146.1 6.80 1113 Unknown U - DT,18,42 1 1 0 0 -2 -1 -1.3 1.0 2.4 

101 188.1 9.08 1416 Unknown U - DT 1 1 NA NA NA 0 -1.0 - - 

142 224.1 10.55 1610 Unknown U - DT,42 1 1 0 0 -1 -1 -1.2 -1.2 -1.4 

205 123.1 12.48 1865 Skel_cell_C074 (Vidoudez) U  DT,42 1 1 -1 -1 0 -1 -1.1 -1.4 -3.7 

236 156.1 13.36 1981 Unknown U - DT 1 1 0 0 -1 -1 -1.2 -1.0 -1.0 

238 156.1 13.43 1991 Unknown U - DT 1 1 0 0 -1 -1 -1.2 -1.1 1.2 

250 217 13.86 2095 Unknown U - 42 1 1 1 -1 0 -2 -1.0 -1.3 -1.7 

264 156.1 14.50 2206 Unknown U - DT,18 2 1 0 0 -1 -1 -1.3 1.2 2.1 

288 146.1 15.26 2340 Unknown U - DT 1 1 0 0 0 -1 -1.1 1.1 -1.4 

290 180.1 15.35 2355 Unknown U - DT,42 1 1 0 -1 0 -1 -1.0 -1.3 -2.8 

306 370.2 16.06 2480 Unknown U - DT 2 1 0 0 -1 -1 -1.3 -1.2 -1.0 

336 195.1 17.23 2684 Unknown U - DT 1 1 0 0 NA -1 -1.0 1.3 - 

19 102.1 6.22 1037 Unknown U - 42 NA NA 1 1 NA 1 - 1.5 - 

51 117 7.17 1163 Unknown U - 42 -1 -1 1 2 -1 0 1.1 1.5 2.7 

135 220.1 10.29 1576 Unknown U - 18 NA 1 1 1 NA NA - 1.1 - 

150 333.1 10.76 1638 Unknown U - 18 -1 0 0 2 -1 0 2.8 1.6 1.8 

234 288.1 13.32 1976 Unknown U - DT,42 NA -1 1 1 NA 0 - 1.0 - 
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275 236.2 14.85 2269 Unknown U - DT -1 -1 0 2 0 0 1.3 1.6 -1.3 

348 236.1 17.84 2791 Unknown U - DT NA -1 1 1 0 0 - 1.1 1.4 

54 234.1 7.27 1176 
EITTMS_N12C_ATHR_1480.5_1135EC44_ 

(GOLM) 
U ? 42 -1 -1 1 0 -1 1 -2.3 -1.4 4.0 

65 248.1 7.81 1248 Unknown U - 42 -1 -1 1 1 -1 1 1.0 -1.4 6.0 

117 174.1 9.59 1483 Unknown U - 42 0 0 1 1 -2 0 1.1 -1.1 5.1 

323 371.3 16.78 2605 Unknown U - DT 0 -1 2 1 -1 0 -2.4 -1.3 8.6 

379 237.1 20.00 3130 Unknown U - 42 -1 0 1 1 1 -1 1.2 -1.0 -1.3 

21 158.1 6.33 1052 Unknown U - 42 NA NA NA NA NA 2 - - - 

62 299.1 7.73 1236 Unknown U - 42 NA NA NA NA NA 2 - - - 

81 217.1 8.36 1320 Unknown U - 18 NA 0 -1 1 0 1 - 4.0 1.5 

90 240.1 8.67 1362 Unknown U - DT -1 0 NA -1 1 1 5.8 - 1.4 

93 160.1 8.78 1376 Unknown U - 42 NA NA NA NA NA 2 - - - 

110 172.1 9.32 1447 Unknown U - DT NA -1 0 -1 1 2 - -4.0 1.6 

153 204.1 10.90 1657 Unknown U - DT -1 -1 0 0 0 1 1.5 -1.1 1.4 

166 345.1 11.31 1711 Unknown U - 18 -1 0 0 0 -1 1 1.5 1.0 1.7 

174 375.1 11.61 1750 Unknown U - 42 -1 0 0 0 NA 2 1.1 1.1 - 

193 386.2 12.15 1822 Unknown U - 18,42 -1 1 0 0 -1 1 1.9 1.2 4.3 

243 309.2 13.58 2011 Unknown U - DT -1 0 NA NA 1 1 15.5 - 1.1 

256 992.9 14.11 2140 Unknown U - 42 0 0 1 0 NA 1 -1.1 -1.3 - 

294 167 15.52 2384 Unknown U - 42 NA NA NA NA NA 2 - - - 

299 255.2 15.77 2429 Unknown U - DT,42 NA NA NA -1 1 2 - - 1.5 

302 239.2 15.84 2441 Unknown U - DT 0 0 -1 0 1 2 1.2 6.4 1.5 

309 217.1 16.29 2520 Unknown U - DT NA -1 0 0 1 1 - 1.4 1.2 

345 319.2 17.76 2777 Unknown U - DT NA NA 0 0 1 1 - -1.0 1.1 

25 152.1 6.44 1066 Unknown U - DT NA NA NA -1 2 1 - - -1.6 

30 152.1 6.62 1090 Unknown U - DT 0 0 -1 -1 1 1 1.4 2.4 -1.0 

58 166.1 7.52 1209 Unknown U - 42 NA -1 0 0 1 0 - -1.3 -1.5 

76 196.1 8.16 1294 Unknown U - 42 0 0 0 0 2 -1 -1.0 -1.0 -2.2 
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84 127 8.44 1330 Unknown U - 18 0 -1 0 0 2 -1 -1.3 -1.3 -2.3 

85 199.1 8.48 1337 Skel_MEDIA_C097 (Vidoudez) U  T,42 1 0 1 0 1 -2 -1.2 -1.1 -1.9 

119 228.1 9.67 1494 Unknown U - 42 -1 1 0 0 1 -1 1.7 1.1 -3.5 

198 157.1 12.28 1839 Unknown U - DT -1 -1 1 1 1 0 -1.6 -1.0 -1.2 

214 236.2 12.78 1904 Unknown U - 42 0 -1 0 0 2 -1 -1.2 -1.2 -2.9 

219 205.1 12.92 1924 Unknown U - DT -1 -1 1 0 1 0 1.0 -1.1 -1.2 

246 211.2 13.72 2029 Unknown U - DT -1 -1 0 1 1 0 1.4 1.2 -1.5 

260 221.1 14.32 2175 Unknown U - DT 1 0 NA NA 1 1 -1.1 - -1.1 

344 204.1 17.76 2776 Unknown U - DT,42 -1 -1 1 1 1 0 2.7 -1.0 -2.1 

359 129.1 18.41 2881 Unknown U - DT -1 0 0 0 1 1 2.1 -1.0 -1.0 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 18 (18), day 30 (30) and day 42 (42). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” 

indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with 

a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons 

(HC), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM 

refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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7.3 Appendix: Interaction of T. weissflogii with 

S. dohrnii 

Variations and distinctive features of the current investigation that differed from the previously 

described design are described in chapter 6.2.7.  

7.3.1 Diatom growth 
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Appendix 53: Diatom growth in the interaction experiment of T. weissflogii and S. dohrnii. 

Graphs A and B show means of chl a (RFU: relative fluorescence units), graphs C and D represent the cell counts 

(cells / mL). The results for S. dohrnii are shown on the left, the results for T. weissflogii on the right. The treatment 

groups are indicated by color: mono-cultivation of S. dohrnii (blue, control), mono-cultivation of T. weissflogii 

(green, control) and the co-cultivation of each species (red, interaction). Values are arithmetic means, error bars 

indicate standard deviation between biological replicates (n =3). Notice different scaling. 

To test for significance among the visible differences in chl a fluorescence and cell counts 

between mono- and co-cultivation of both species over time, a linear mixed modeling approach 

was chosen (see chapter 6.7.1 for more details). More details for the chosen models, graphs and 

evaluation can be found in chapter 7.3.5 (Appendix 74 - Appendix 79). 
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Skeletonema dohrnii 

Linear mixed modeling showed a statistically significant difference in the development of cell 

counts in treatments over time (F(10,40) = 4.475, P = 0.0003), but no significant differences in 

chl a fluorescence (F(10,40) = 1.7792, P = 0.0965).  

The growth curves based on chl a fluorescence and cell counts indicated a phase of regular 

growth between day 4 and 25 (Appendix 53A, C), starting with average cell counts of 

5.1 × 105 ± 0.6 × 105 in S. dohrnii cultures. While subsequently the chl a fluorescence declined, 

the cell counts remained relatively stable around absolute cell counts of 2.6 × 106 ± 0.3 × 106 

between day 27 and 35. Thus, the experimental time frame only depicted the regular as well as 

part of the stationary phase of growth. However, as chl a fluorescence declined drastically after 

day 32, a transition into the declining phase around day 35 was assumed. 

In general, the growth curve – based on cell counts – had an unsteady progression with local 

fluctuations (Appendix 53C). This was probably caused by counting inaccuracies among 

different batches that were counted with temporal delay. However, as the treatments within each 

sampling day were always counted in the same batch, those fluctuations only concerned the 

absolute trend over time and not the cell count differences between the treatments within each 

sampling point. Thus, the general trend of the curve might be impaired, but the investigation of 

relative difference between the treatments over time was still valid. 

Comparing mono- and co-cultivated S. dohrnii, the development of both growth parameters 

over time was very similar. However, linear mixed modeling indicated significant different 

development of cell counts in both treatments. It was observed that between day 4 and 32, cell 

counts in co-cultivation showed a trend of decrease up to 28 % (day 20) compared to mono-

cultivation (Appendix 53C). However, already on day 4, cell counts in co-cultivation were 

reduced by 14 % compared to mono-cultivation and on eight out of 11 sampling days, these 

differences were smaller than 15 % relative to mono-cultivation. Thus, cell count differences 

were considered minor over the course of the experiment and rather characteristic for isolated 

sampling days than for a temporal trend. The only increase of cell counts in co-cultivation was 

observed on day 35, with maximum cell counts of 2.7 × 106 ± 0.9 × 105 in mono-cultivation and 

3.1 × 106 ± 2.9 × 105 in co-cultivation. On this day, cell counts were heightened by 15 % in co-

cultivation relative to mono-cultivation. 

Chl a fluorescence in co-cultivation (Appendix 53) also showed a very similar trend of reduced 

values compared to mono-cultivation. On day 4, chl a fluorescence was already reduced in co-

cultivation with values of 3783 ± 114 RFU and 5108 ± 250 RFU in mono-cultivation. Similar to 
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cell counts, the chl a fluorescence in co-cultivation only exhibited higher values on day 35. This 

observation was caused by a stronger decline of fluorescence in mono-cultivation between day 

32 and 35, compared to co-cultivation, not by an increase of fluorescence relative to previous 

sampling points. 

As both, lower chl a fluorescence and cell counts, already became manifested on day 4 the 

observation of reduced growth parameter values in co-cultivation was not interpreted as an 

interaction-induced effect, but rather as the result of slightly different culture states at the onset 

of the experiment. In general, no meaningful differences between the treatments were found in 

both growth parameters. The growth of S. dohrnii appeared to not be influenced by the presence 

of T. weissflogii. 

Thalassiosira weissflogii 

Findings for statistical significance in T. weissflogii were vice versa. While cell counts did not 

show statistically significant differences (F(10,40) = 0.648, P = 0.7636), the chl a fluorescence 

indicated highly significant differences between mono- and co-cultivation (F(10,40) = 8.269, 

P ≤ 0.0001).  

Considering growth dynamics, both chl a fluorescence and cell counts indicated a regular 

growth phase until day 15. Subsequently, cell counts indicated the stationary phase of growth, 

while chl a fluorescence further inclined until day 32. The declining phase was not depicted in 

this experiment, but was assumed to be initiated by declining chl a fluorescence after day 32. At 

the onset of the experiment, cell numbers and chl a fluorescence were very similar in both 

treatments with 1.8 × 105 ± 0.7 × 104 (4382 ± 118 RFU) in mono-cultivation and 

2.0 × 105 ± 0.2 × 105 (5349 ± 859 RFU) in co-cultivation. Maximum chl a fluorescence was 

reached on day 32 and maximum cell counts on day 35 with values of 5.7 × 105 ± 0.3 × 105 

(28044 ± 291 RFU) in mono-cultivation and 6.1 × 105 ± 0.2 × 105 (30667 ± 2482 RFU) co-

cultivation. Generally, the growth curve based on T. weissflogii cell counts showed similar local 

fluctuations as described for S. dohrnii. 

Comparing the treatments, the statistically significant differences in chl a fluorescence between 

the treatments could be explained by enhanced fluorescence in co-cultivation relative to mono-

cultivation between day 23 and 35 (Appendix 53B). On average, chl a fluorescence in co-

cultivation was enhanced around 11 % during this time, with maximum increase in co-cultivation 

by 17 % on day 27. No statistically significant differences were found among cell counts. 
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In summary, the chl a fluorescence in co-cultivated T. weissflogii cultures was enhanced up to 

17 % during the stationary phase of growth. These findings were statistically significant. 

However, no significant differences between the treatments were found among the cell numbers.  

7.3.2 Metadata 

PSII efficiency 

The PSII efficiency of both species was around 45 % in mono-cultivated cultures and around 

41 % in co-cultivated cultures on day 5. In case of S. dohrnii cultures, PSII efficiency decreased 

slowly until reaching minimum values of 0 % (in mono-cultivation) and 12 % (in co-cultivation) 

on day 32 (Appendix 54). The PSII efficiency of T. weissflogii cultures remained almost constant 

until day 15, with subsequent drastic decline until values of 0 on day 32. In both species, a minor 

increase of PSII efficiency was observed between day 32 and 35 of the experiment.  

In general, the PSII efficiency dynamic over time was very similar between mono- and co-

cultivation within each species. No distinct differences were observed. 
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Appendix 54: PSII efficiency of the diatoms in the interaction experiment of T. weissflogii with S. dohrnii. 

The figure shows means of PSII efficiency (%) of S. dohrnii (graph A) and T. weissflogii (graph B), comparing 

mono-cultivation in green (Mono T. weissflogii) and blue (Mono S. dohrnii) to co-cultivation of the particular 

diatom in red. Error bars indicate standard deviation between biological replicates (mono-cultivation n = 3, co-

cultivation n = 3).  

Bacterial abundance 

The cultures of both T. weissflogii and S. dohrnii were ordered axenically, but could not be 

maintained in the axenic state. A similar problem was described for the investigation of 

T. weissflogii and S. marinoi (chapter 3.2.2). Generally, bacterial numbers were highest on the 

beginning of the interaction experiment and subsequently declined until reaching values of 0 on 
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day 25 (Appendix 55). Interestingly, the bacterial abundance in mono-cultivations of both 

species showed increased bacterial abundance on day 35, relative to day 25. 

For T. weissflogii cultures, bacterial numbers were highest on day four of the interaction 

experiment with average values of 4.4 × 104 bacterial cells / mL. Relative to diatom cell numbers, 

bacterial abundance made up around 28 % in mono-cultivation and 17 % in co-cultivation. From 

day 11 on, bacterial abundance reached relative values of ≤ 2.5 % compared to diatom cells. 

The bacterial abundance in S. dohrnii cultures was highest on day 32 in S. dohrnii mono-

cultivation with 3.4 × 104 bacterial cells / mL and 2.1 × 104 bacterial cells / mL in co-cultivation 

on day 7. These absolute values made up 2 % – relative to diatom cells in co-cultivation – and 

1 % – relative to diatom cells in mono-cultivation. The medium control exhibited bacterial 

contaminations on day seven and day 18, indicating possible contaminations on these days.  
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Appendix 55: Bacterial abundance in the medium experiment of T. weissflogii with S. dohrnii. 

The figure shows means of bacterial abundance (cells / mL) in the cultures of S. dohrnii (graph A) and T. weissflogii 

(graph B), comparing mono-cultivation in green (Mono T. weissflogii) and blue (Mono S. dohrnii) to co-cultivation 

of the particular diatom in red. Values for the medium control are represented in grey. Error bars indicate standard 

deviation between biological replicates (n = 3, medium control: n = 1).  

Nutrient levels 

The temporal dynamic of nutrient levels showed a very similar trend as the one observed in the 

interaction experiment of T. weissflogii and S. marinoi (chapter 3.2.2). Diatom cultures were 

depleted of nitrate on day 27 and of phosphate and silicate on day 11 after the onset of the 

experiment (Appendix 56). This corresponded to nitrate concentrations of ≤ 1.5 µM on day 27, 

phosphate concentrations of ≤ 4.5 µM on day 11 and silicate concentrations of ≤ 7 µM on day 

15. No distinct differences between the treatments were found in nitrate and silicate levels. 

Phosphate levels of the co-cultivation group were approximately average values of both mono-

cultivation groups. Interestingly, mono-cultivated S. dohrnii cultures were characterized by an 
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increase of available silicate in the medium on day 35 (50 µM). This increase was not found in 

the other treatment groups. 

The nitrite concentrations increased until reaching maximum values on day 15 (2-5 µM) and 

subsequently declined. Nitrite levels differed between the treatments. They were highest in 

mono-cultivated T. weissflogii cultures (5 µM on day 15) and lowest in mono-cultivated 

S. dohrnii cultures (2 µM on day 15). The nitrite concentration in co-cultivation cultures was in 

the middle of both mono-cultivation cultures (3 µM on day 15). 

Considering the medium control, nutrient levels matched the expected values present in the 

artificial seawater. However, phosphate levels were slightly elevated up to 15 µmol/L compared 

to the expected 11 µmol/L present in artificial seawater medium.  
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Appendix 56: Nutrient levels in the medium experiment of T. weissflogii with S. dohrnii. 

The figure shows means of nitrate (A), nitrite (B), phosphate (C) and silicate (D) concentration (µM). Mono-

cultivation of T. weissflogii is depicted in green, mono-cultivation of S. dohrnii in blue and co-cultivation is colored 

in red. Values for the medium control are represented in grey. Error bars indicate standard deviation between 

biological replicates (n = 3, medium control: n = 1).   
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7.3.3 Exometabolomic investigation 

Data exploration via CAP 

Overall Analysis 

The investigation of the interaction between T. weissflogii and S. dohrnii was based on a CAP 

with 286 MSTs, determined after pre-processing of 27 exometabolomic samples. Similar to the 

results found for the interaction of T. weissflogii and S. marinoi (chapter 3.2.3), the first 

explorative data analysis indicated distinct differences between the exometabolomes of 

T. weissflogii and S. marinoi, as well as exometabolomic similarities between samples of mono-

cultivated S. dohrnii and samples from co-cultivation and an influence of time on treatment-

specific exometabolomes.  

The PCoA score plot (Appendix 80) visualizes a clear separation of exometabolomic samples 

from mono-cultivated T. weissflogii and S. dohrnii by principal coordinate axis 1. Samples from 

co-cultivation were located in close proximity to samples from mono-cultivated S. dohrnii, but 

generally in between samples from both mono-cultivations, indicating shared characteristics with 

both mono-cultivations.  

Additionally, within each treatment a gradual separation of exometabolomic samples by time 

was realized by both principal coordinate axes. Interestingly, within co-cultivation all three 

sampling points were forming distinct groups. In both mono-cultivations on the other hand, 

samples from day 15 seemed distinctly different from samples from day 35, whereas samples 

from day 27 didn’t seem to be distinctly different from the other sampling days. In mono-

cultivated S. dohrnii, samples from day 27 resembled samples from day 35 and in mono-

cultivated T. weissflogii samples from day 27 seemed to share traits of both, day 15 and 35. 

If each sampling point was considered by itself, within day 15 and day 27 respectively, a clear 

separation of all three treatments was observed by principal coordinate axis 1. Whereas within 

day 35, co-cultivation samples and samples from mono-cultivated S. dohrnii cultures could not 

be distinctly separated from each other. Generally, the PCoA indicated strongest separation of 

treatments on day 15. 

These tendencies found in the unconstrained analysis were further investigated via CDA, which 

confirmed significant influence of time, treatment and a combination of both parameters on 

exometabolomic samples (trace statistic P = 0.0001, Appendix 57). According to the 

misclassification error of 7.41 %, treatment represented the strongest classification, compared to 
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time (11.11 %) and treatment per day (18.52 %). The cross validation results revealed that the 

misclassification relating to treatment was caused by time-comprehensive similarities between 

mono-cultivated S. dohrnii and co-cultivation, as investigated by a-priori grouping by treatment 

(Appendix 81), and a rather unspecific character of exometabolomic samples from day 27, as 

investigated by a-priori grouping by treatment per day (Appendix 82). 

In summary,  the classification according to treatments was more successful than the 

classification including time. Thus, in this interaction experiment the influence of treatment was 

bigger than the influence of time. Nevertheless, for the identification of relevant exometabolites, 

both a-priori grouping by treatment and treatment per day were considered. 

Appendix 57: Permutation and cross-validation test results for the CAP analysis of different a-priori groups in the 

exometabolome analysis of the interaction between S. dohrnii and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

Day 8 3 1.743 

(P = 0.0001) 

0.942 

(P = 0.0001) 
11.11 

Treatment 8 3 1.503 

(P = 0.0001) 

0.951 

(P = 0.0001) 
7.41 

Day & treatment 9 9 5.370 

(P = 0.0001) 

0.996 

(P = 0.0001) 
18.52 

Subset I: day 15 

treatment 
2 3 1.782 

(P = 0.002) 

0.999 

(P = 0.0006) 
0 

Subset II: day 27 

treatment 
3 3 1.187 

(P = 0.0307) 

0.953 

(P = 0.0088) 
22.22 

Subset III: day 35 

treatment 
3 3 1.382 

(P = 0.0207) 

0.987 

(P = 0.0029) 
22.22 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

Subset analysis per day 

The classification success by treatment is also represented in the score plots of the unconstrained 

principal coordinate analysis per day (Appendix 83). Although on day 27 samples from co-

cultivation and S. dohrnii mono-cultivation shared close proximity, treatments were clearly 

separable on day 15 and 35. The daywise CDA confirmed significant differences between the 

treatments within all three sampling days. The misclassification error was lowest on day 15 

(0 %), indicating the best classification (Appendix 57). On day 27 and 35, differences between 

the treatments were also significant, but misclassification errors were 22.22 % (Appendix 57). 

Thus, the findings of the overall analysis were supported. 
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Identification of exometabolites correlating with relevant a-priori groups 

Overall Analysis 

For the identification of relevant exometabolites, both analyses a-priori grouping by treatment 

and treatment per day were considered. The constrained score plot of the CAP with a-priori 

grouping by treatment showed a clear separation of mono-cultivated T. weissflogii samples 

(located in quadrant I and II) from the other treatments by canonical axis 1 (Appendix 58A). Co-

cultivation samples (mainly quadrant III) and samples from mono-cultivated S. dohrnii (quadrant 

IV) are separated from each other by canonical axis 2. 

The corresponding loading plot pictures highly correlated metabolites (|r| ≥ 0.6786, P ≤ 0.0001), 

which were all located in quadrant III and IV (Appendix 58B). Thus, these metabolites 

characterized mono-cultivated S. dohrnii and samples from co-cultivation. The heatmap 

(Appendix 59) confirms that all those metabolites were most abundant in samples of co-

cultivation and mono-cultivated S. dohrnii, and least abundant in mono-cultivated T. weissflogii.  

The score plot of a-priori grouping by treatment per day (Appendix 58C) supports the findings 

of the unconstrained score plot of the PCoA (Appendix 80 and Appendix 83). While canonical 

axis 1 separated the treatments from each other, canonical axis 2 separated samples by sampling 

day. Overall, samples from mono-cultivated T. weissflogii were distinctly different from samples 

of mono-cultivated S. dohrnii. Again, the exometabolome in co-cultivation seemed similar to the 

exometabolome of mono-cultivated S. dohrnii, as samples share close proximity. Furthermore, 

the CDA revealed distinct differences between the treatments within each sampling day.  

The time-wise separation of samples was strongest for mono-cultivated T. weissflogii, followed 

by the co-cultivation group. Samples from mono-cultivated S. dohrnii shared close proximity on 

all three sampling days. Nevertheless, although samples from day 27 and 35 were hardly 

distinguishable from each other, samples from day 15 formed a distinct group. According to the 

constrained score plot, the separation of treatments was strongest on day 15, supporting the 

implications of the trace statistics and misclassification errors (Appendix 57). 

The corresponding loading plot shows that all of the highly correlated metabolites (|r| ≥ 0.6786, 

P ≤ 0.0001) characterized the exometabolome in co-cultivation and the exometabolome of mono-

cultivated S. dohrnii (Appendix 58D). Furthermore, it became evident that these metabolites 

mostly characterized day 27 and 35 of these treatments, as MST vectors were mainly located in 

quadrant IV. This finding was further supported by the heatmap, which indicates highest 
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abundance of highly correlated metabolites in said treatments on later stages of the interaction 

(Appendix 59). 
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Appendix 58: Constrained score and loading plots of exometabolomic samples from the overall analysis of the 

interaction between T. weissflogii and S. dohrnii. 

The constrained score plots (graph A, C) visualize significant differences between the sample groups as found via 

CDA with a-priori groups by treatment (trace statistic P = 0.0001, misclassification error of 7.41 % for m = 8, graph 

A) and a-priori groups by treatment per day (trace statistic P = 0.0001, misclassification error of 18.52 % for m = 9, 

graph C). Vectors in the CAP loading plots (graph B, D) represent metabolites, characterized by their ID (red 

numbers). Only vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.8983 (P ≤ 0.001) 

are plotted. The direction of the vectors in 2-dimensional space correlates with exometabolomic sample groupings 

shown in the score plots of the respective analysis.  
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All highly correlated metabolites of the overall analysis are summarized in a heatmap90 

(Appendix 59). Group A comprises metabolites that were most abundant in co-cultivation on 

day 15 (A15), day 27 (A27) or day 35 (A35). Group B summarizes metabolites that were least 

abundant in co-cultivation, compared to both mono-cultivations on day 15 (B15). And potential 

biomarkers for S. dohrnii are clustered in group Sd. 

                                                 
90 MST #218 (diphenyl phthalate) was excluded, as it was considered potential contaminations 
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Appendix 59: Heatmap of exometabolite intensities for the overall analysis of the interaction between T. weissflogii and S. dohrnii. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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268 273.2 19.20 2998 Galactinol CS dv. ? DT,T 1 0 -1 1 0 NA 2 0 -1 -2.3 13.3 -2.5 - -2.1 6.1 

241 174.1 9.66 1493 
4-

Hydroxybenzaldehyde 
O  DT -1 -1 -1 1 0 0 2 1 0 -1.8 1.5 -1.5 1.6 -1.2 2.5 

56 231.1 11.10 1682 Ribose S ? DT,T 1 0 NA 2 1 NA 0 0 NA -2.6 - -1.8 - -1.1 - 

198 317.2 16.09 2482 Uridine S dv.  DT,T 0 -1 NA 1 0 NA 2 0 -1 -3.5 - -2.0 - -1.8 7.7 

220 247.2 16.87 2617 Adenosine S dv.  DT,T 0 -1 -1 1 0 -1 2 1 -1 -3.6 3.2 -2.2 54.9 -1.5 15.0 

253 171.1 17.77 2773 Guanosine S dv.  DT,T 0 -1 NA 1 0 -1 2 0 NA -4.0 - -2.3 88.4 -3.0 - 

63 223.1 11.85 1781 

3-(2-Hydroxyethyl)-

2,2,4-trimethyl-3-

cyclohexene-1-

carbaldehyde 

T ? DT,T 0 -1 -1 1 0 -1 2 1 -1 -2.2 4.8 -1.6 5.1 -1.4 5.2 

24 183.1 9.99 1536 Unknown U - DT,T 0 -1 -1 1 0 -1 2 1 -1 -1.9 7.2 -2.0 4.1 -1.6 5.3 

39 197.1 10.59 1615 Unknown U - DT,T 1 0 -2 1 0 -1 1 1 -1 -1.6 3.3 -1.3 1.9 -1.2 2.4 

53 187.2 8.47 1336 
Skel_MEDIA_C097 

(Vidoudez) 
U  DT,T 0 -1 -1 1 0 -1 2 1 -1 -1.9 3.3 -1.7 3.7 -1.6 3.2 
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60 196.1 11.28 1706 Unknown U - DT,T 0 -1 -1 2 0 -1 1 1 -1 -3.2 4.6 -1.6 3.1 -1.0 4.3 

66 184.1 12.02 1803 
Skel_MEDIA_C205 

(Vidoudez) 
U  DT,T 0 -1 -1 1 0 -1 2 1 -1 -2.5 9.1 -1.9 16.6 -1.6 10.5 

67 184.1 12.09 1813 Unknown U - DT,T 0 -1 -1 1 0 NA 1 0 -1 -2.7 13.6 -1.7 - -1.4 11.4 

69 122.1 12.12 1817 Unknown U - DT 0 -1 NA 2 0 NA 1 1 -1 -10.0 - -3.4 - -1.3 3.7 

71 179.1 8.29 1312 Unknown U - DT,T 1 -1 NA 2 1 -1 1 0 -1 -2.7 - -1.7 5.6 -1.3 3.1 

84 284.1 12.14 1820 
Skel_MEDIA_C215 

(Vidoudez) 
U ? DT 0 -1 NA 1 0 -1 2 1 -1 -6.0 - -1.5 5.4 -1.4 3.9 

92 247.1 8.16 1295 
Skel_MEDIA_C086 

(Vidoudez) 
U ? DT 0 -1 -1 2 0 -1 1 1 -1 -1.6 4.0 -2.1 3.5 -1.2 3.7 

96 226.1 9.48 1469 
Skel_MEDIA_C127 

(Vidoudez) 
U  DT,T 0 -1 NA 2 0 -1 1 1 -1 -2.6 - -1.7 6.4 -1.3 7.2 

100 285.2 12.21 1829 Unknown U - DT,T 1 0 NA 2 0 NA 1 0 NA -3.0 - -2.4 - -1.4 - 

114 253.1 9.96 1532 
Skel_MEDIA_C141 

(Vidoudez) 
U  DT,T 0 0 -1 2 0 -1 1 1 -1 -1.7 9.4 -1.8 12.9 -1.1 9.5 

117 253.1 12.24 1833 Unknown U - DT,T 1 0 -1 2 0 -1 1 0 NA -3.1 732.3 -1.8 110.2 -1.7 - 

120 211.1 12.40 1854 Unknown U - DT,T 1 0 -1 2 0 NA 1 0 -1 -2.5 21.9 -1.7 - -1.2 62.3 

121 238.1 12.44 1859 Unknown U - DT 0 -1 NA 1 0 NA 2 1 -1 -3.8 - -2.4 - -1.8 11.8 

122 157.1 12.50 1867 Unknown U - DT,T 0 -1 NA 1 0 NA 2 1 -1 -10.1 - -2.3 - -1.4 11.9 

124 155.1 12.70 1894 Unknown U - T 1 0 NA 2 1 -1 0 0 NA -3.7 - -2.0 78.5 -1.3 - 

125 263.2 12.79 1906 Unknown U - DT 0 -1 NA 1 0 -1 2 1 -1 -16.6 - -1.6 11.0 -1.5 4.9 

128 167.1 12.85 1917 Unknown U - DT,T 0 -1 -1 1 0 NA 1 1 -1 -1.8 43.2 -1.5 - -1.3 105.8 

130 161.1 12.88 1923 Unknown U - DT,T 0 -1 -1 2 0 -1 1 1 -1 -2.4 5.3 -2.9 36.8 -1.3 11.8 

133 271.1 12.93 1931 Unknown U - DT,T 0 -1 NA 1 0 -1 2 0 -1 -3.1 - -3.1 3.8 -3.0 2.2 

136 156.1 12.96 1936 Unknown U - DT,T 0 -1 -1 2 0 -1 1 1 -1 -2.3 5.1 -2.9 23.0 -1.3 11.8 

138 153.1 13.08 1957 Unknown U - DT 0 -1 -1 2 1 -1 1 0 0 -1.5 2.2 -1.2 2.8 -1.1 1.4 

139 324.2 13.13 1966 Unknown U - DT,T 0 -1 -1 1 0 -1 2 1 -1 -2.2 6.0 -1.8 9.8 -1.5 8.7 

140 382.2 13.21 1979 Unknown U - DT 0 -1 -1 1 0 -1 2 1 -1 -3.3 13.4 -1.3 17.2 -1.6 5.4 

141 248.1 13.33 2001 Unknown U - DT 0 -1 -1 1 0 -1 2 1 0 -2.6 1.6 -1.7 2.5 -1.5 2.2 
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142 382.2 13.37 2007 Unknown U - DT 0 -1 -1 1 0 -1 2 1 -1 -1.8 2.9 -2.3 22.8 -1.7 2.8 

145 199.1 13.44 2020 Unknown U - DT 0 -1 NA 1 0 -1 2 1 -1 -3.2 - -2.1 9.8 -1.8 4.5 

148 382.2 13.54 2037 Unknown U - DT,T 0 -1 NA 1 0 NA 2 0 NA -6.0 - -3.1 - -2.8 - 

150 323.2 14.48 2201 Unknown U - DT 0 -1 NA 1 0 -1 2 0 -1 -3.4 - -1.9 61.5 -2.1 9.9 

154 156.1 14.96 2284 Unknown U - DT,T 0 -1 NA 1 0 NA 2 1 -1 -3.7 - -1.7 - -1.6 8.9 

156 156.1 15.07 2303 Unknown U - DT 0 -1 -1 1 0 NA 2 1 0 -3.4 2.2 -2.0 - -1.5 2.7 

158 167.1 15.24 2333 Unknown U - DT,T 1 -1 -1 1 0 -1 1 0 -1 -4.7 1.3 -1.9 3.2 -1.4 2.7 

174 467.2 15.33 2349 Unknown U - DT NA NA NA 1 0 NA 2 1 -1 - - -1.3 - -1.1 20.8 

180 146.1 7.44 1200 Unknown U - DT,T 1 0 -1 2 1 -1 0 0 NA -1.7 8.1 -1.7 19.7 -1.3 - 

183 171.1 15.37 2355 Unknown U - DT,T 1 -1 NA 1 0 NA 1 1 NA -3.2 - -1.7 - -1.5 - 

186 171.1 15.53 2384 Unknown U - DT,T 1 0 NA 1 1 -1 1 0 -1 -1.9 - -1.3 41.8 -1.1 8.6 

189 287.2 15.56 2389 Unknown U - DT,T 0 -1 -1 0 0 -1 2 1 -1 -2.5 11.8 -1.4 83.7 -1.6 14.0 

191 188.1 15.59 2395 Unknown U - DT,T 0 -1 NA 1 0 -1 1 1 -1 -3.0 - -1.8 20.2 -1.2 4.7 

192 159.1 15.61 2397 Unknown U - DT,T 1 0 -1 0 0 -1 2 0 -1 -3.3 14.4 -2.2 13.5 -2.7 8.2 

195 173.1 15.75 2423 Unknown U - DT,T 0 -1 NA 1 0 NA 1 1 NA -8.0 - -1.7 - -1.1 - 

196 199.1 15.90 2448 Unknown U - DT,T 0 -1 NA 1 0 -1 2 1 -1 -2.5 - -1.7 327.1 -1.4 19.4 

197 467.3 15.98 2462 Unknown U - DT,T 0 -1 NA 1 0 NA 2 0 -1 -3.3 - -2.4 - -2.1 150.5 

202 225.2 16.15 2492 Unknown U - DT 0 -1 -1 1 0 -1 2 1 -1 -2.5 23.7 -1.8 7.0 -1.5 11.4 

206 211.1 16.21 2502 Unknown U - DT,T 0 -1 NA 0 0 -1 2 1 -1 -2.2 - -1.5 34.5 -1.8 10.0 

208 185.1 16.25 2510 Unknown U - DT 0 -1 -1 0 0 -1 2 1 -1 -2.9 15.2 -1.8 160.3 -2.0 27.7 

210 217.1 9.77 1507 Unknown U - DT -1 -1 NA 1 0 0 1 1 0 -42.3 - -1.6 1.3 -1.1 2.7 

211 317.2 16.35 2526 Unknown U - DT,T 0 -1 NA 1 0 NA 2 1 -1 -6.3 - -1.9 - -1.8 25.3 

213 254.2 16.45 2544 Unknown U - DT,T 0 -1 NA 1 0 NA 2 1 -1 -6.8 - -2.1 - -1.3 74.7 

214 411.2 16.49 2551 Unknown U - DT,T 0 -1 NA 1 0 NA 2 1 NA -2.5 - -2.0 - -1.3 - 

217 145.1 16.74 2595 Unknown U - T 0 -1 NA 2 0 -1 1 0 -1 -4.8 - -2.2 83.3 -1.7 11.3 

221 148.1 16.92 2626 Unknown U - DT 0 -1 NA 1 -1 NA 2 1 NA -24.6 - -6.7 - -1.9 - 

226 230.1 16.94 2630 Unknown U - DT,T 0 -1 NA 1 0 NA 2 0 -1 -3.1 - -2.3 - -2.3 50.5 
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230 230 9.91 1526 
Skel_MEDIA_C141 

(Vidoudez) 
U  DT,T 0 0 -1 2 0 -1 1 1 -1 -1.7 9.5 -1.8 12.9 -1.1 9.5 

232 171.1 17.24 2681 Unknown U - DT,T 1 0 -1 1 0 -1 1 1 -1 -3.1 42.8 -1.8 42.7 -1.4 23.8 

242 357.2 17.26 2686 Unknown U - DT,T 1 -1 NA 1 0 NA 2 0 -1 -4.5 - -1.9 - -3.2 24.3 

243 311.2 17.64 2751 Unknown U - DT 0 -1 -1 1 0 -1 2 0 -1 -6.6 3.3 -2.8 52.9 -2.5 8.4 

252 301.2 17.67 2756 Unknown U - DT 0 -1 NA 1 0 NA 2 0 -1 -5.1 - -3.1 - -3.2 136.5 

256 171.1 17.82 2782 Unknown U - DT,T 0 -1 NA 1 0 NA 2 0 -1 -2.6 - -2.1 - -2.7 25.3 

258 273.2 17.87 2792 Unknown U - DT,T 0 -1 NA 1 0 NA 2 0 -1 -2.7 - -2.1 - -2.7 12.1 

259 273.2 18.06 2821 Unknown U - DT 0 -1 NA 1 0 NA 2 0 NA -9.3 - -3.7 - -2.8 - 

261 171.1 18.14 2834 Unknown U - DT 0 -1 -1 1 0 NA 2 0 -1 -3.3 8.3 -2.7 - -3.1 26.6 

262 261.1 18.44 2880 Unknown U - DT,T 0 -1 NA 1 0 NA 2 0 -1 -2.9 - -2.3 - -2.2 27.7 

265 273.1 18.67 2916 Unknown U - DT 0 -1 NA 0 0 NA 2 0 NA -6.3 - -2.6 - -3.9 - 

267 171.1 18.73 2926 Unknown U - DT,T 0 -1 NA 1 0 NA 2 0 -1 -2.6 - -2.2 - -2.8 10.6 

273 204.1 9.60 1485 Unknown U - DT 0 -1 -1 1 1 -1 2 0 -1 -1.5 4.4 -1.0 8.7 -2.0 7.8 

279 368.3 20.21 3156 Unknown U - T 1 0 -1 2 0 NA 1 0 -1 -4.1 9.6E+16 -5.0 - -2.4 38.1 

281 259.2 21.18 3257 Unknown U - DT,T 0 -1 -1 1 0 NA 2 1 -1 -3.4 18.9 -2.6 - -1.6 13.9 

282 259.2 22.40 3360 Unknown U - DT,T 0 -1 NA 1 0 NA 1 1 -1 -4.0 - -2.0 - -1.6 562.0 

283 259.2 22.98 3408 Unknown U - DT,T 1 -1 NA 1 0 NA 1 0 NA -3.9 - -1.9 - -1.8 - 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT) and with a-priori grouping by treatment (T). Metabolites 

were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed match between 

600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid 

(Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown 

(U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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Subset analysis per day 

The constrained score plots of the daywise analyses visualize the significant differences 

between the treatments within each sampling day (Appendix 60A, C, E). As previously 

described, similarities between exometabolomic samples of co-cultivated diatoms and mono-

cultivated S. dohrnii were obvious, as samples share proximity in multivariate space on all three 

sampling days. Supporting the findings of the overall analysis, treatments were best separated on 

day 15, with increasing similarities of co-cultivation and mono-cultivation of S. dohrnii towards 

day 35. The corresponding loading plots visualize highly correlated metabolites (|r| ≥ 0.8983, 

P ≤ 0.001) that mainly characterize the co-cultivation group and mono-cultivated S. dohrnii 

(Appendix 60B, D, F). 

I summarized all highly correlated metabolites of the daywise analyses in heatmaps91, depicted 

in the supplements in chapter 7.3.6 (day 15: Appendix 84, day 27: Appendix 85 and day 35: 

Appendix 86). Metabolites were classified by characteristic intensity patterns, as described in 

the previous interactions (chapter 2.2.3 and 3.2.3). However, except for MST #85, which was 

part of group A of the analysis on day 35, as it was most abundant in co-cultivation, all highly 

correlated metabolites were classified as potential biomarkers for S. dohrnii. In comparison with 

mono-cultivation of T. weissflogii, they were much more abundant in mono-cultivated S. dohrnii 

and thus characteristic for the exometabolome of S. dohrnii. Accordingly, only one MST of the 

daywise subset analysis was considered relevant for the interaction. 

                                                 
91 MST #218 (diphenyl phthalate), #249 and #263 (siloxanes) were excluded, as they were considered potential 

contaminations 
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Appendix 60: Constrained score and loading plots of exometabolomic samples from the daywise subset analysis of 

the interaction between T. weissflogii and S. dohrnii. 

The constrained score plots (graph A, C, E) visualize significant differences between the treatments, as confirmed 

via CDA for the subset analysis on day 15 (graph A, B), day 27 (graph C, D) and day 35 (graph E, F). These 

differences between treatments are highly significant (Appendix 57). Vectors in the CAP loading plots (graph B, 

D, F) represent metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a 

significant correlation coefficient above the critical value of |r| ≥ 0.8983 (P ≤ 0.001) are plotted. The direction of the 

vectors in 2-dimensional space correlates with exometabolomic sample groupings shown in the score plots of the 

respective analysis. 
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Screening for interaction specific release and/or uptake of potential infochemicals 

Along the lines of the screening process explained in chapter 2.2.3, I used only prominent 

abundance patterns (pattern I, II and III) in the screening process.  

Enhanced abundance of exometabolites in co-cultivation - Pattern I:  

In total, 11 MSTs matched pattern I, with ten being identified in the overall analysis and one in 

the subset analyses (day 35) of the exometabolomic investigation. All of them shared the trait of 

enhanced abundance in co-cultivation, compared to both mono-cultivations. Interestingly, only 

one MST exhibited pattern I throughout all three sampling days. MST #219 showed 1.7 - fold 

higher abundance in co-cultivation on day 15, 1.4 - fold on day 27 and 1.2 - fold on day 35. As 

MST #219 was only present in S. dohrnii mono-cultivation but not in mono-cultivation of 

T. weissflogii, it was assumed characteristic for the exometabolome of S. dohrnii (Appendix 61). 

I hypothesized that the increased release of this MST by S. dohrnii is interaction-induced. 

Metabolite 219
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Appendix 61: Potential infochemical with interaction-induced release mechanism throughout all sampling days in 

the interaction between T. weissflogii and S. dohrnii (intensity pattern I).  

Day 15 

The remaining ten metabolites showed enhanced abundance in co-cultivation on specific 

sampling days. MST #144 exhibited relevance for day 15 and 35. It showed enhanced abundance 

in co-cultivation on both days. However, pattern I was more dominant on day 15 as the MST 

abundance in co-cultivation was 1.4 - fold higher on day 15 compared to 1.1 - fold higher 

abundance on day 35 (relative to S. dohrnii mono-cultivation, Appendix 62). Furthermore, it 

seemed more characteristic for the exometabolome of S. dohrnii than the exometabolome of 

T. weissflogii, as it was more abundant in the former. 
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Day 27 

Putative 2-hydroxyhexanedioic acid (#94) showed pattern I on day 27 and thus suggested an 

interaction-induced release on this day. On day 27, it was 1.5 - fold higher abundant in co-

cultivation, compared to S. dohrnii mono-cultivation (Appendix 62). However, as the variance 

of intensities in mono-cultivation of S. dohrnii was comparably high on this day, interpretation 

of this metabolite as potential biomarker for co-cultivation must be made with care.  

The unknown MST #212 was characteristic for later stages of the interaction, as it was only 

present on day 27 and 35. On both sampling days it exhibited pattern I with between 

1.1 – 1.5 - fold enhanced abundance in co-cultivation (Appendix 62). Thus, it might indicate 

late, interaction-induced release mechanisms. 

Metabolite 94 - 2-Hydroxyhexanedioic acid 

D
a
y 1

5
    T

W
 M

o
n
o

D
a
y 1

5
     C

o

D
a
y 1

5
     S

D
 M

o
n
o

D
a
y 2

7
     T

W
 M

o
n
o

D
a
y 2

7
     C

o

D
a
y 2

7
     S

D
 M

o
n
o

D
a
y 3

5
     T

W
 M

o
n
o

D
a
y 3

5
     C

o

D
a
y 3

5
     S

D
 M

o
n
o

N
o
rm

a
liz

e
d
 r

e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d
e
l 
io

n
 (

1
2
9
.1

m
/z

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Metabolite 212

D
a
y 1

5
    T

W
 M

o
n
o

D
a
y 1

5
     C

o

D
a
y 1

5
     S

D
 M

o
n
o

D
a
y 2

7
     T

W
 M

o
n
o

D
a
y 2

7
     C

o

D
a
y 2

7
     S

D
 M

o
n
o

D
a
y 3

5
     T

W
 M

o
n
o

D
a
y 3

5
     C

o

D
a
y 3

5
     S

D
 M

o
n
o

N
o
rm

a
liz

e
d
 r

e
la

ti
v
e
 i
n
te

n
s
it
y
 o

f 
th

e
 m

o
d
e
l 
io

n
 (

4
5
9
.3

m
/z

)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Day 27 Day 35Day 15

Metabolite 144
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Appendix 62: Exemplary metabolites #94, #144 and #212 with interaction-induced release mechanism on specific 

sampling days in the interaction between T. weissflogii and S. dohrnii (intensity pattern I).  

Day 35 

The metabolites #77, #85, #89, #91, #123, #131 and #166 were all correlating with sample 

differences on day 35. They shared the trait of highest abundance in co-cultivation on this 

respective day. Except for putative 4-(2-hydroxyethyl)phenol (#77), the identity of the remaining 

metabolites remained unclear. The intensity dynamics of these metabolites were classified by 

two categories: 

(1) Metabolites with temporal increase dynamic  

(2) Metabolites characteristic for distinct sampling days 

Considering the first category, putative 4-(2-hydroxyethyl)phenol (#77, Appendix 63) as well 

as the metabolites #123 and #131 (Appendix 87) showed a temporal increase of abundance in 

all three treatments respectively. Furthermore, on day 35 the abundance in co-cultivation 

exceeded the reference value (Equation 1), resulting in pattern I. As these metabolites were only 

remotely abundant in mono-cultivated T. weissflogii, they were considered characteristic for the 
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exometabolome of S. dohrnii. Furthermore, metabolite #91 (Appendix 63) and #166 (Appendix 

87) showed the same temporal increase dynamic as previously described. 

Within category (2), arabinofuranose #85 (Appendix 63) and MST #89 (Appendix 87) were 

found to be mainly abundant on day 35, exhibiting enhanced abundance in co-cultivation on this 

day.  

Metabolite 77 - 4-(2-Hydroxyethyl)phenol
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Metabolite 85 - Arabinofuranose
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Appendix 63: Exemplary metabolites #77, #91 and #85 with interaction-induced release mechanism on day 35 and 

distinct temporal regulation in the interaction between T. weissflogii and S. dohrnii (intensity pattern I). 

Reduced abundance of exometabolites in co-cultivation - Pattern II / III:  

In the context of pattern II / III, I identified 12 metabolites in the overall CAP analysis of the 

interaction and summarized them in group B15 of the heatmap (Appendix 59). An evaluation of 

the candidate metabolites matching pattern III in the heatmap via boxplots indicated that three 

MSTs92 did indeed show abundance in co-cultivation on the respective day of relevance, which 

was only masked by the median in the heatmap (Appendix 59). As, strictly speaking, these 

metabolites did not fit pattern III, they were subsequently excluded and visualized in Appendix 

88. The intensity dynamics across treatments and sampling days of the remaining metabolites are 

summarized in Appendix 89 and are exemplarily visualized below. 

Among the remaining nine metabolites, all matched pattern II or pattern III on day 15, indicating 

potential uptake, transformation or reduced release mechanisms at the onset of the interaction. 

Generally, all of them seemed to characterize the exometabolome of S. dohrnii, as they were 

more abundant in S. dohrnii mono-cultivation than in T. weissflogii mono-cultivation. 

Metabolites #68, #104, #151, #203, #234, #244, #246 and #266 shared a temporal increase 

dynamic. I exemplarily depicted MST #234, representing this group of metabolites (Appendix 

64). 

                                                 
92 Metabolites #115, #160, #172 
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On the other hand, MST #245 exhibited a different temporal dynamic. Again, this MST was 

characteristic for the exometabolome of S. dohrnii. But between day 15 and 35 the abundance 

remained relatively stable in S. dohrnii mono-cultivation and no distinct temporal increase was 

visible. Interestingly, this MST was present in the exometabolome of co-cultivated cultures only 

from day 27 on (Appendix 64), exhibiting pattern III on day 15. The identity of all nine 

metabolites remained unclear. 

Metabolite 234
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Appendix 64: Exemplary metabolites #234 and #245 with interaction-induced uptake, transformation or reduced 

release mechanisms on day 15 in the interaction between T. weissflogii and S. dohrnii (intensity pattern II / III). 
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7.3.4 Endometabolomic investigation 

After data pre-processing of 53 samples, I obtained 426 metabolites characterizing the 

endometabolomes on day 15, day 27 and day 35. I performed the analysis strategy as described 

in the interaction of T. weissflogii and S. costatum (chapter 2.1.2). The endometabolome of 

T. weissflogii was normalized to a count of 3 × 107 diatom cells, the endometabolome of 

S. dohrnii to a count of 5 × 107 diatom cells.  

The metabolomic samples in the interaction investigation of T. weissflogii and S. dohrnii were 

normalized to higher cell counts, compared to the investigation of T. weissflogii and S. costatum 

(Table 22). I discussed possible impacts in chapter 2.5.3. 

Data exploration via CAP 

A PCoA indicated that time and species affiliation were strong factors influencing the diatom 

endometabolomes. The unconstrained PCoA score plot (Appendix 90) visualizes the separation 

of species via principal coordinate axis 1 and a gradual separation by time via principal 

coordinate axis 2. Within each species, samples from day 15 seemed distinctly different from 

samples of day 27 and 35 as they were forming clear groups in quadrant I (T. weissflogii) and IV 

(S. dohrnii). A constrained analysis via CDA confirmed that species and day were the strongest 

factors influencing sample dissimilarities. The trace statistic indicated that endometabolomes 

were significantly different between diatom species and sampling days (P ≤ 0.0001, Appendix 

65) and the misclassification errors of 0 % for a-priori grouping by species and day indicated a 

perfect classification of samples. 

The investigation of interaction-induced endometabolomic alterations was conducted via a-

priori grouping by treatment and treatment per day in a CAP. The trace statistic indicated highly 

significant differences between treatments and treatments per day. The classification of samples 

was better, if time was additionally considered besides treatment (misclassification error of 

16.98 %) instead of treatment alone (28.30 %, Appendix 65). 
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Appendix 65: Permutation and cross-validation test results for the overall analysis of different a-priori groups in 

the endometabolome analysis of the interaction between S. dohrnii and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

Species 1 2 0.921 

(P ≤ 0.0001) 

0.921 

(P ≤ 0.0001) 
0 

Day 6 3 1.840 

(P ≤ 0.0001) 

0.967 

(P ≤ 0.0001) 
0 

Treatment 10 4 1.217 

(P = 0.0003) 

0.989 

(P ≤ 0.0001) 
28.30 

Day & treatment 10 12 5.300 

(P ≤0.0001) 

0.998 

(P ≤ 0.0001) 
16.98 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

To eliminate the strong influence of species and day in the CAP, I performed subset analyses 

within each species and additionally within each species and each sampling day. 

Species-specific subset analysis 

The unconstrained PCoA score plot of the subset analysis of T. weissflogii indicates a strong 

influence of time on sample similarities as a clear separation of sampling days by both principal 

coordinate axis 1 and 2 was apparent (Appendix 91A). Samples of day 15 were located in 

quadrant I and II, samples from day 27 mainly in quadrant IV and from day 35 mainly in quadrant 

III. No clear separation of treatments, neither within each sampling day nor throughout all days, 

was visible in the 2D score plot.  

The constrained analysis via CDA confirmed both, highly significant differences in diatom 

endometabolomes due to time and among treatments per day (P ≤ 0.0001, Appendix 66). 

However, the classification success by sampling day was higher (misclassification error 0 %, 

Appendix 66), compared to treatment per day (misclassification error 3.70 %, Appendix 66). 

There were no significant differences between treatments independent of time (Appendix 66).  

In the subset analysis of S. dohrnii, I found similar results. The unconstrained score plot of the 

PCoA indicated a separation of samples via principal coordinate axis 1, although samples on day 

27 and 35 shared close proximity. The strong influence of time on sample similarities was 

confirmed via CDA, indicating significant differences between sampling days (P ≤ 0.0001) and 

a misclassification error of 0 % (Appendix 66). Although no clear separation of treatments was 

visible in the PCoA score plot (Appendix 91), the CDA indicated significant differences between 

treatments per day (P = 0.0001, misclassification error 7.69 %, Appendix 66). As with the subset 

analysis of T. weissflogii, no significant differences were found among time-independent 

treatments.  
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Generally, the species-specific subset analysis revealed time and treatment per day as strong 

grouping factors, significantly influencing sample dissimilarities. 

Appendix 66: Permutation and cross-validation test results for the species-specific subset analysis of different a-

priori groups in the endometabolome analysis of the interaction between S. dohrnii and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

T. weissflogii: day 3 3 1.826 

(P ≤ 0.0001) 

0.976 

(P ≤ 0.0001) 
0 

T. weissflogii: treatment 11 2 0.623 

(P = 0.0903) 

0.623 

(P = 0.0903) 
3.70 

T. weissflogii: 

day & treatment 
12 6 3.499 

(P ≤ 0.0001) 

0.995 

(P ≤ 0.0001) 
3.70 

S. dohrnii: day 3 3 1.891 

(P ≤ 0.0001) 

0.992 

(P ≤ 0.0001) 
0 

S. dohrnii: treatment 8 2 0.300 

(P = 0.6002) 

0.300 

(P = 0.6002) 
15.39 

S. dohrnii:  

day & treatment 
6 6 3.004 

(P = 0.0001) 

0.998 

(P = 0.0002) 
7.69 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 

Daywise subset analysis per species 

The daywise subset analysis per species revealed that treatments were significantly different on 

day 35 in T. weissflogii and on day 15 in S. dohrnii (Appendix 67). Although no distinct sample 

grouping by treatment was observed in the unconstrained PCoA score plots (Appendix 92), the 

separation of treatments by canonical axis 1 becomes apparent in the constrained score plots 

(Appendix 69, Appendix 72). Within the remaining sampling days per species, no significant 

endometabolomic differences between the treatments were obtained. 

Appendix 67: Permutation and cross-validation test results for the species-specific and daywise subset analysis of 

different a-priori groups in the endometabolome analysis of the interaction between S. dohrnii and T. weissflogii 

A-priori grouping by m Groups Trace statistic δ1
2 

Misclassification 

error (%) 

T. weissflogii: day 15 7 2 0.978 

(P = 0.3983) 

0.978 

(P = 0.3983) 
0 

T. weissflogii: day 27 4 2 0.703 

(P = 0.4045) 

0.703 

(P = 0.4045) 
0 

T. weissflogii: day 35 6 2 0.980 

(P ≤ 0.0001) 

0.980 

(P ≤ 0.0001) 
0 

S. dohrnii: day 15 5 2 0.976 

(P ≤ 0.0001) 

0.976 

(P ≤ 0.0001) 
11.11 

S. dohrnii: day 27 3 2 0.783 

(P = 0.1022) 

0.783 

(P = 0.1022) 
11.11 

S. dohrnii: day 35 4 2 0.841 

(P = 0.0982) 

0.841 

(P = 0.0982) 
0 

δ1
2 being the first squared canonical correlation. m represents the number of PCoA axes included in the CAP. 
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Identification of metabolites correlating with relevant a-priori groups  

T. weissflogii 

The score and loading plot of the constrained analysis (Appendix 68) summarize the results of 

the species-specific CDA analysis for T. weissflogii. As already indicated by the trace statistic 

(Appendix 66), sample separation in the constrained score plot (Appendix 68A) was influenced 

by time and treatment, as shown by a-priori grouping by treatment per day. All samples of day 

15 are located in quadrant IV, those of day 27 in quadrant I and of day 35 in quadrant II. Within 

day 35, canonical axis 2 separates the treatments from each other, forming gradual sample groups 

with overlap of samples from mono- and co-cultivation. Within day 27 a distinct separation by 

canonical axis 2 is visible. And within day 15 no clear separation of samples is apparent. 

According to findings of the CAP trace statistic, only the differences between treatments on day 

35 were statistically significant (as shown in the daywise analysis). 

Canonical Axis 1 (Eigenvalue 0.997)
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Appendix 68: Constrained score and loading plots of endometabolomic samples from T. weissflogii in a species-

specific subset analysis of the interaction between T. weissflogii and S. dohrnii. 

The constrained score plot visualizes significant differences between the sample groups as found via CDA with a-

priori groups by treatment per day (trace statistic P ≤ 0.0001, misclassification error of 3.70 % for m = 12, graph A). 

Vectors in the CAP loading plot (graph B) represent metabolites, characterized by their ID (red numbers). Only 

vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.6786 (P ≤ 0.0001) are plotted. The 

direction of the vectors in 2-dimensional space correlates with endometabolomic sample groupings shown in the 

score plot.  

The corresponding loading plot visualizes 135 highly correlated MSTs (|r| ≥ 0.6786, P ≤ 0.0001, 

Appendix 68B). A multitude of those metabolites were correlating with sampling day 15 and 35, 

as they point towards the location of respective sample groups in the corresponding score plot 
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(Appendix 68 A). While less metabolites were characteristic for day 27, some indicate shared 

relevance for day 27 and 35 as well as day 15 and 27. 

The results of the daywise subset analysis per species are summarized in Appendix 67. The 

score plot (Appendix 69A) visualizes distinct differences between the treatments on day 35, as 

already indicated via significant trace statistic (Appendix 67). The corresponding loading plot 

shows all highly correlated metabolites (of |r| ≥ 0.6664, P ≤ 0.05, Appendix 69B), with the 

majority of vectors characterizing mono-cultivated T. weissflogii. 
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Appendix 69: Constrained score and loading plots of endometabolomic samples from T. weissflogii in a daywise 

subset analysis on day 35 of the interaction between T. weissflogii and S. dohrnii. 

The constrained score plot (graph A) visualizes significant differences between the treatments, as confirmed via 

CDA for the subset analysis on day 35. These differences between treatments are highly significant (trace statistic 

P ≤ 0.0001, misclassification error of 0 % for m = 6). Vectors in the CAP loading plot (graph B) represent 

metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a significant correlation 

coefficient above the critical value of |r| ≥ 0.6664 (P ≤ 0.05) are plotted. The direction of the vectors in 2-dimensional 

space correlates with endometabolomic sample groupings shown in the score plot.  

In total, I summarized 162 highly correlated metabolites93 of the CAP analysis of T. weissflogii 

endometabolomes (as previously described) in a heatmap (Appendix 70). To facilitate the 

interpretation, I categorized the heatmap by metabolite classes and within each class by MST ID. 

It is important to know that I considered all metabolites identified by the daywise analyses 

relevant for the separation of treatments within the respective day of the analysis. I summarized 

all metabolites of unknown identity in Appendix 93. 

                                                 
93 Excluding dodecamethylpentasiloxane (#34 and #38) and n – dotriacontane (#380), as they represent potential 

contaminations and relicts of the RI-mix. 
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As described in the analysis of the interaction between T. weissflogii and S. marinoi (chapter 

3.2.4), I only considered metabolites relevantly up- or downregulated in co-cultivation, if 

intensity differences exceeded 30 %94. Thus, I set the focus on relevant changes in 

endometabolite levels. Subsequently, I discuss the highly correlated metabolites by compound 

class.  

Amines seemed to characterize day 35 of the interaction, as they showed highest abundance on 

this sampling day. On this day, urea (#55) and putrescine (#91) were up to 1.6 - fold more 

abundant in co-cultivation. Furthermore, putrescine was 1.3 - fold upregulated on day 15 as well. 

On the other hand, putative hypotaurine (#138) was 2.2 - fold more abundant in co-cultivation 

on day 15, but downregulated on day 35 with 2.2 - fold higher intensities in mono-cultivation. 

Interestingly, on day 27, all identified amines were between 1.6 - and 7.2 - fold more abundant 

in mono-cultivation.  

I identified three amino acids, all of them characterizing day 15 as they were most abundant on 

this day. While on day 15 no relevant differences in MST levels were detected, day 27 was shaped 

by strong downregulation of amino acids. Valine (#14) was 5 - fold, isoleucine (#33) 10.7 - fold 

more abundant in mono-cultivation and proline (#68) was completely absent in co-cultivation. 

On day 35, valine and isoleucine (#33, #36) were up to 7.1 - fold upregulated in co-cultivation. 

Note that isoleucine is also represented by MST #36, which shows a different regulation than tag 

#33 on day 27, being 1.6 - fold upregulated compared to mono-cultivation. 

Among alcohols, the picture was more diverse. While 1,3 - propanediol (#8) and 

3 - methylphenol (#31) were more present in early stages of the interaction, putative glycerol 

(#22) and putative cycloheptadecanol (#270) were most abundant on day 27. The class of 

alcohols is characterized by an upregulation of putative cycloheptadecanol and 1,3 - propanediol 

in co-cultivation on day 27 and the absence of 3 - methylphenol on day 35, otherwise MST levels 

were indifferent among treatments. 

I identified two carboxylic acids. 3 - Hydroxypropanoic acid (#27, #28) was abundant on all 

three sampling days, with a tendency of upregulation in co-cultivation on day 15 and 35 (up to 

1.6 - fold) and downregulation on day 27 (4.7 - fold higher abundance in mono-cultivation), 

whereas citric acid (#187) was most abundant on day 35 of the interaction. However, citric acid 

was only relevantly regulated on day 15, with lower abundance in co-cultivation, compared to 

1.6 - fold higher values in mono-cultivation. Interestingly, citric acid was absent in the 

endometabolome of S. dohrnii on day 27. The carboxylic acid derivative 2,3-dihydroxypropyl 

                                                 
94 as identified via fold changes |x|≥1.3 
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myristate (#295) shows increasing abundance over time, with reduced abundance in co-

cultivation on day 27 and 35.  

The majority of MSTs within the class of complex sugars and their derivatives were most 

abundant on day 15. On this day, only two putative trisaccharides (#310, #384) were 1.3 - fold 

upregulated. Melibiose (#351), melezitose (#399) and the derivative galactinol (#355, #363) were 

most abundant on day 27 and up to 1.8 - fold upregulated in co-cultivation on this day. 

Furthermore, one disaccharide (#413) was among the relevantly regulated complex sugars, as it 

was most abundant on day 15, with similar MST levels in both treatments, but showed reduced 

abundance in co-cultivation on day 27 and 35. All other intensity differences between treatments 

did not exceed the 30 % threshold. 

Fatty acids and derivatives seemed to be only negligibly affected by treatment. Metabolite levels 

were very similar in mono- and co-cultivation. However, putative stearic acid (#272) and the 

derivative putative ethyl icosapentaenoate (#317) were downregulated in co-cultivation on day 

35. Furthermore, linolenic acid (#228) was 1.5 - fold more abundant in mono-cultivation on day 

27. While linoleic acid was characteristic for day 15, the other two metabolites characterized day 

27 and 35 of the interaction. 

Most identified sugars were characteristic for early stages of the interaction (day 15 and 27), as 

they showed highest abundance on these days. The only exceptions were myo-inositol (#230, 

#241, and #242) and erythrose (#136), which were most abundant during later growth phases 

(day 27 and 35). Among sugars, only five metabolites were relevantly regulated: pentafuranose 

#140 was downregulated in co-cultivation on day 15, putative pentofuranose #135 on day 27, 

putative ribofuranose (#141) was downregulated on day 27 with 18.5 - fold higher abundance in 

mono-cultivation, galactofuranose (#222) was downregulated on day 27 and 35, erythrose (#136) 

was downregulated in co-cultivation throughout all three sampling points and the MST #241, 

representing myo-inositol, was 1.5 - fold upregulated on day 27.  

Sugar acids exhibited a trend of downregulation in co-cultivation on day 27 and 35 and did not 

show any relevant intensity differences between the treatments on day 15. All of them were either 

characteristic for day 15 or day 35. The only relevantly upregulated sugar acid was gluconic acid 

(#221), which was 1.5 - fold upregulated on day 27. Among the three identified sugar alcohols, 

only (1r,2r,3r,4r,5r,6r)-1,2,3,4,5,6-cyclohexanehexol (#260) was relevantly upregulated, as it 

was 1.4 - fold more abundant in co-cultivation on day 27. Interestingly, the derivative putative 

uridine (#297) was most abundant on day 15 and 1.5 - fold upregulated in co-cultivation. 
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The sterols were generally characterizing later stages of the interaction, as they were most 

abundant on day 27 and 35. It is striking that on day 27 all identified sterols, ergosta-5,24-dien-

3-yl acetate (#366), putative (3β,20R,24R)-stigmast-5-en-3-yl acetate (#376), campesterol 

(#386) and fucosterol (#392), were relevantly upregulated in co-cultivation. Furthermore, 

ergosta-5,24-dien-3-yl acetate (#366) was upregulated on day 15. Ergosta-5,24-dien-3-yl acetate 

(#366) was identified in the daywise subset analysis on day 35 but did not show any altered 

metabolite levels due to the treatments on this day.  

Among terpenes, only phytol was identified. It was most abundant on day 15, with a 1.3 - fold 

upregulation in co-cultivation). However, on day 27 phytol was downregulated in co-cultivation 

with 1.7 - fold higher abundance in mono-cultivation. One hydrocarbon 3-octadecyne (#203) was 

identified, but did not exhibit any relevant treatment-dependent regulation. The alkaloid 2-

pyridinol (#4), which characterized later stages of diatom growth, was 1.3 - fold upregulated in 

co-cultivation on day 27, compared to mono-cultivation, but did not show relevant regulation 

otherwise. 

In the class of “others”, 14-heptacosanone (#356) characterized late stages of the interaction 

and was downregulated in co-cultivation on day 27 and 35 with up to 1.9 - fold higher abundance 

in mono-cultivation. Tocopherol (#379) was 1.5 - fold more abundant in mono-cultivation on 

day 35 and also characteristic for this day. Tocopherol quinone (#388) on the other hand was 

most abundant on day 15, but not relevantly regulated on this day. However, on day 27 and 35 it 

was more abundant in co-cultivation (2.1 - fold on day 35). 2-Hexadecyloxirane (#195) and 

hexadecanal (#199) were characteristic for day 15, but only relevantly downregulated in co-

cultivation on day 27. 

In total, 98 of the 162 metabolites could not be identified and remained unknown. However, 

seven MSTs were documented in the GOLM and six in the in-house library (Vidoudez). No 

overall trend of these metabolites was observed. 
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Appendix 70: Heatmap of endometabolite intensities categorized by MST classes for the species-specific and daywise analysis of T. weissflogii in interaction with S. dohrnii.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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32 174.1 6.51 1077 2-[(2-Chloroethyl)(ethyl)amino]ethanol A  DT 0 0 -1 -1 1 1 -1.1 -2.2 1.2 

55 189.1 7.34 1187 Urea A  DT -1 0 -1 -1 1 2 1.1 -1.6 1.6 

91 174.1 8.87 1388 1,4-Butanediamine (Putrescine) A  DT 0 0 -1 -1 1 2 1.3 -7.2 1.4 

138 188.1 10.53 1607 2-Aminoethanesulfinic acid (Hypotaurine) A ? DT 0 0 -1 -1 2 0 2.2 -4.1 -2.2 

14 146.1 5.90 996 Valine AA * DT 1 1 -1 -1 -1 0 -1.2 -5.0 2.7 

33 188.1 6.56 1084 Isoleucine AA  DT 1 1 -1 -1 -1 0 1.1 -10.7 1.6 

36 146.1 6.78 1112 Isoleucine AA  35 1 1 -1 0 -1 1 -1.1 1.6 7.1 

68 142.1 7.90 1260 Proline AA * DT 1 1 -1 NA 0 0 -1.0 - -1.2 

8 130.1 5.50 943 1,3-Propanediol Alc  DT 0 1 0 1 NA NA 1.2 1.5 - 

22 103.1 6.28 1046 Glycerol Alc ? 35 -1 -1 1 1 0 -1 1.2 -1.0 -1.8 

31 165.1 6.50 1075 3-Methylphenol Alc  DT 1 1 NA NA 0 NA -1.2 - - 

270 236.2 14.86 2269 Cycloheptadecanol Alc ?? DT -1 -1 0 2 0 0 -1.0 2.2 -1.0 

4 152.1 5.34 922 2-Pyridinol  Alk  35 -1 -1 0 1 1 0 1.1 1.3 -1.2 

27 200.1 6.40 1062 3-Hydroxypropanoic acid CA  DT 1 1 0 -1 -1 -1 -1.1 -4.7 1.1 

28 177.1 6.41 1063 3-Hydroxypropanoic acid CA  35 -1 0 1 1 -1 1 1.5 1.1 1.6 

187 273.1 12.11 1817 Citric acid CA  DT 0 -1 NA NA 1 1 -1.6 - -1.1 
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295 343.3 15.75 2424 2,3-Dihydroxypropyl myristate CA dv.  35 -1 -1 1 -1 1 0 -1.1 -1.7 -1.4 

310 217.1 16.27 2516 Trisaccharide (Vidoudez) CS ? DT 1 2 -1 -1 0 0 1.3 1.2 1.1 

311 217.1 16.31 2522 Trisaccharide (Vidoudez) CS ? DT 1 1 -1 NA 0 0 1.1 - 1.1 

346 361.2 17.69 2763 Maltose CS * DT 1 1 -1 -1 0 0 1.1 1.1 -1.2 

351 204.1 18.07 2827 Melibiose CS  DT 0 0 1 2 -1 -1 1.1 1.3 1.0 

384 217.1 20.80 3230 Trisaccharide (Vidoudez) CS ? DT 1 2 NA NA NA NA 1.3 - - 

399 361.2 22.61 3382 Melezitose  CS ?? DT NA NA 0 2 0 0 - 1.8 1.3 

413 217.1 24.34 3527 Disaccharide (Vidoudez) CS  DT 1 1 0 0 -1 NA 1.1 -1.3 - 

416 173.1 24.72 3559 Maltotriose CS  DT 1 1 0 1 -1 -1 1.1 1.2 1.9 

417 361.2 24.75 3561 Maltotriose CS  DT 1 1 -1 -1 -1 0 1.1 1.2 1.1 

422 273.1 25.59 3632 Maltotriose CS  DT 1 1 NA NA 0 0 1.1 - 1.1 

355 204.1 18.29 2862 Galactinol CS dv.  DT -1 -1 0 1 1 1 1.0 1.8 1.0 

363 204.1 18.95 2965 Galactinol CS dv.  DT -1 -1 0 1 1 1 1.1 1.7 1.1 

272 199.1 14.92 2280 Octadecanoic acid (Stearic acid) FA ? DT -1 -1 0 -1 2 1 1.0 -1.1 -1.3 

228 107.1 13.47 2027 Linolenic acid FA  * DT 1 1 0 -1 0 -1 -1.1 -1.5 -1.1 

168 143.1 11.49 1734 Methyl myristate FA dv.  DT 0 0 NA NA 1 1 -1.1 - -1.1 

207 236.2 12.78 1906 Methyl (11E)-11-hexadecenoate FA dv.  DT 0 0 -1 -1 1 1 -1.0 -1.2 -1.0 

262 180.1 14.59 2222 Methyl-5,8,11,14,17-icosapentaenoate FA dv. ? DT 2 1 -1 -1 -1 -1 -1.2 1.2 -1.2 

317 113.1 16.59 2572 Ethyl icosapentaenoate FA dv. ?? DT -1 -1 1 1 1 0 -1.2 1.1 -1.3 

203 123.1 12.61 1882 3-Octadecyne HC ? DT 1 1 0 -1 -1 -1 1.1 -1.2 1.1 

195 123.1 12.31 1842 2-Hexadecyloxirane O  DT 1 1 0 -1 -1 -1 1.1 -1.5 -1.0 

199 123.1 12.47 1865 Hexadecanal O ? DT 1 1 0 -1 -1 -1 1.0 -1.3 1.1 

356 211.2 18.35 2871 14-Heptacosanone O  DT 0 0 -1 -1 2 1 1.0 -1.9 -1.3 
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379 237.1 20.00 3129 Tocopherol O * DT,35 -1 -1 1 0 1 0 -1.0 -1.2 -1.5 

388 574.5 21.18 3261 

2-(3-Hydroxy-3,7,11,15-

tetramethylhexadecyl)-3,5,6-trimethyl-1,4-

benzenediol (Tocopherol quinone) 

O ? DT 1 1 -1 -1 -1 0 1.2 1.4 2.1 

101 205.1 9.25 1439 Threose S ? DT -1 -1 0 1 1 0 1.1 1.2 -1.1 

103 217.1 9.32 1448 Pentofuranose (Vidoudez) S ? DT 1 1 NA NA 0 0 -1.1 - -1.0 

119 217.1 9.79 1510 Arabinofuranose S  DT 1 1 NA NA 0 0 1.1 - 1.0 

134 218 10.32 1580 Pentofuranose (Vidoudez) S  DT 1 1 -1 NA 0 0 -1.1 - 1.2 

135 218 10.42 1593 Pentofuranose (Vidoudez) S ? DT 1 1 -1 -1 0 0 -1.1 -1.3 1.2 

136 258.1 10.47 1600 Erythrose S ? 35 -1 -1 1 0 1 0 -1.4 -1.5 -1.3 

140 243.1 10.61 1618 Pentofuranose (Vidoudez) S  DT 1 1 NA NA 0 0 -1.3 - 1.1 

141 218 10.62 1620 Ribofuranose S ? DT 1 1 0 -1 0 0 -1.0 -18.5 1.1 

156 157.1 11.05 1676 Arabinopyranose S ? DT 0 0 1 1 -1 -1 -1.0 1.0 1.2 

205 204.1 12.70 1895 Glucose S  DT 1 0 1 1 -1 -1 -1.2 -1.1 1.0 

209 319.2 12.82 1913 Galactose S  DT 0 0 -1 -1 1 1 1.0 1.1 -1.2 

222 215.2 13.24 1987 Galactofuranose S  35 1 1 1 -1 -1 -1 1.0 -2.3 -1.3 

230 204 13.54 2039 myo-Inositol S  DT -1 -1 1 1 0 1 -1.2 -1.0 1.1 

241 144.1 13.94 2109 myo-Inositol S * DT -1 -1 0 2 0 0 -1.2 1.5 1.0 

242 191 13.97 2114 myo-Inositol S * DT -1 -1 1 1 0 1 -1.1 1.1 1.1 

125 103.1 10.02 1541 3-Deoxypentonic acid S Acid ?? DT 1 1 -1 -1 0 0 -1.0 -1.3 -1.0 

127 249.1 10.11 1552 Eryhronic acid  S Acid  DT 0 0 -1 -2 1 0 1.1 -2.6 -1.4 

181 276.1 11.88 1786 Fructosonic acid S Acid ?? DT,35 -1 -1 0 -1 2 1 1.1 -1.5 -1.4 

213 333.1 12.94 1936 Glucuronic acid S Acid  DT 1 1 -1 -2 0 0 1.1 -2.9 -1.1 

221 217 13.21 1981 Gluconic acid S Acid  DT -1 -1 0 2 0 0 -1.1 1.5 1.0 
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121 248.1 9.88 1522 Threitol S Alc ? DT 1 1 0 -1 -1 -1 1.0 -1.1 1.1 

167 217 11.44 1729 Xylitol S Alc  DT 1 1 NA NA NA NA 1.1 - - 

260 318.9 14.53 2211 
(1r,2r,3r,4r,5r,6r)-1,2,3,4,5,6-

Cyclohexanehexol 
S Alc ? DT -1 -1 0 2 0 0 -1.1 1.4 1.0 

297 217.1 15.80 2433 Uridine S dv. ? DT 1 2 NA NA 0 0 1.5 - -1.2 

366 380.4 19.25 3012 Ergosta-5,24-dien-3-yl acetate St  35 -1 0 -1 1 0 1 1.3 1.4 1.2 

376 396.4 19.88 3112 (3β,20R,24R)-Stigmast-5-en-3-yl acetate St ? 35 -1 -1 -1 0 1 1 1.2 1.5 1.3 

386 382.4 21.04 3250 Ergost-5-en-3-ol (Campesterol) St  DT -1 -1 0 1 1 1 -1.1 1.3 -1.0 

392 129.1 21.83 3316 Stigmasta-5,24(28)-dien-3-ol (Fucosterol) St  DT -1 -1 0 1 1 1 1.0 1.4 -1.0 

258 143.1 14.48 2203 Phytol T  DT 1 2 0 -1 -1 -1 1.3 -1.7 -1.2 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 27 (27) and day 35 (35). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a 

reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match 

smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons (HC), 

sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to 

an MST code given by distinct libraries of the Golm Metabolome Database.  
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S. dohrnii 

The trace statistic revealed significant endometabolomic differences in S. dohrnii among 

sampling days and treatments per day. The constrained score plot visualizes a clear separation of 

sampling days, as samples from day 15 were located in quadrant I and II, samples from day 27 

in quadrant IV and from day 35 in quadrant III (Appendix 71A). Within each sampling day, 

treatments shared close proximity in multivariate space. Only within day 27 a gradual separation 

of treatments by canonical axis 1 is visible. The corresponding loading plot depicts 195 highly 

correlated metabolites (|r| ≥ 0.6888, P ≤ 0.0001, Appendix 71B). The majority of these 

metabolites characterized day 15 of the interaction. Similarly as described for T. weissflogii, the 

direction of the vectors indicates a correlation with sample groups visible in the corresponding 

score plot. To further evaluate characteristic metabolites, I created a heatmap (Appendix 73). 
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Appendix 71: Constrained score and loading plots of endometabolomic samples from S. dohrnii in a species-

specific subset analysis of the interaction between T. weissflogii and S. dohrnii. 

The constrained score plot (graph A) visualizes significant differences between the sample groups as found via CDA 

with a-priori groups by treatment per day (trace statistic P ≤ 0.0001, misclassification error of 7.69 % for m = 9, 

graph A). Vectors in the CAP loading plot (graph B) represent metabolites, characterized by their ID (red numbers). 

Only vectors with a significant correlation coefficient above the critical value of |r| ≥ 0.6888 (P ≤ 0.0001) are plotted. 

The direction of the vectors in 2-dimensional space correlates with endometabolomic sample groupings shown in 

the score plots of the respective analysis.  

As indicated by the permutation test of the daywise analysis of S. dohrnii, treatments were 

significantly different on day 15. The constrained score plot shows a clear separation of 

treatments by canonical axis 1 (Appendix 72A). In total, 14 metabolites were highly correlating 

with this separation (|r| ≥ 0.6664, P ≤ 0.05, Appendix 72B). While nine characterized the 

endometabolome of S. dohrnii in co-cultivation, five characterized the mono-cultivation state. 
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Canonical Axis 1 (Eigenvalue 0.988)
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Appendix 72: Constrained score and loading plots of endometabolomic samples from S. dohrnii in a daywise subset 

analysis (day 15) of the interaction between T. weissflogii and S. dohrnii. 

The constrained score plot (graph A) visualizes significant differences between the treatments, as confirmed via 

CDA for the subset analysis on day 15. These differences between treatments are significant (trace statistic 

P ≤ 0.0001, misclassification error of 11.11 % for m = 5). Vectors in the CAP loading plot (graph B) represent 

metabolites, characterized by their ID (red numbers, pooled per group). Only vectors with a significant correlation 

coefficient above the critical value of |r| ≥ 0.6664 (P ≤ 0.05) are plotted. The direction of the vectors in 2-dimensional 

space correlates with endometabolomic sample groupings shown in the score plots of the respective analysis.  

Generally, 201 metabolites95 were identified by the CAP with a-priori grouping by treatment 

per day in the species-specific analysis and with a-priori grouping by treatment in the daywise 

analysis on day 15. Those metabolites were correlating with the significant differences between 

sample groups and characterized endometabolomic alterations among the a-priori groups in the 

respective analysis. Subsequently, the trends of different metabolite classes and interesting 

metabolites as apparent in the heatmap (Appendix 73) will be introduced. All metabolites of 

unknown identity are summarized in Appendix 94. Similarly as described for T. weissflogii, 

metabolites were only considered relevantly up- or downregulated in co-cultivation, if intensity 

differences exceeded 30 %. 

In the class of amines, only urea (#55) showed relevant differences in metabolite levels among 

treatments. As described for S. dohrnii, the metabolite abundance increased between day 15 and 

day 35. While on day 27 urea was less abundant in co-cultivation, on day 35 I observed a 

1.6 - fold upregulation in co-cultivation, relative to mono-cultivation. 

Within identified amino acids, alanine (#16), isoleucine (#33) and proline (#68) characterized 

day 15, as they showed highest abundance here. This is in agreement with the observations in 

                                                 
95 Excluding dodecamethylpentasiloxane (#34 and #38), as it represents potential contaminations 



Digital Appendix 367 

T. weissflogii. On this day, no relevant interaction-induced regulation was observed. However, 

on later days, differences in metabolite levels due to treatments exceeded 30 %: Isoleucine was 

up to 2.6 - fold upregulated in co-cultivation on day 27 and 35. Alanine was 1.8 - fold 

upregulated in co-cultivation on day 27 and downregulated on day 35 with 1.4 - fold higher 

abundance in mono-cultivation. Proline was downregulated to the point of absence in co-

cultivation on day 27. Nevertheless, these differences in metabolite levels concerned days that 

were not characterized by highest abundance of the respective metabolites (compared to other 

points in time). Interestingly, putative norleucine (#24) was only present on day 27 and was 

1.4 - fold more abundant in co-cultivation, compared to mono-cultivation. 

In total nine MSTs were identified as alcohols. However, only five different metabolites were 

obtained after library search. Most of the alcoholic MSTs were most abundant on day 15, 

characterizing early stages of the interaction. On this day, only glycerol (#62) was relevantly 

downregulated in co-cultivation. Interestingly, putative glycerol was also represented by MSTs 

#22, #23 and #42, all of which were not relevantly altered by the interaction. Furthermore, 3-

chloro-1,2-propanediol (#37) exhibited 1.3 - fold upregulation in co-cultivation on day 27 and 

downregulation on day 35 of the interaction. Please note that the intensity of this MST decreased 

from day 15 on. 

The alkaloid 1H-pyrrole-2-carboxylic acid (#72, #77) was most abundant on day 15 and 

decreased in abundance during later stages of the interaction. However, on day 35 this alkaloid 

was downregulated in co-cultivation with up to 2.3 - fold higher abundance in mono-cultivation. 

The putative alkaloid derivative 2,6-diphenyl-1,7-dihydrodipyrrolo[2,3-b:3',2'-e]pyridine (#359) 

characterized day 27 of the interaction, but showed no interaction-induced regulation on this day. 

On day 35, this metabolite was downregulated in co-cultivation. 

Among carboxylic acids, acetic acid (#13) was strongly downregulated in co-cultivation 

throughout all three sampling days. Benzoic acid (#58) was only present in mono-cultivation on 

day 15 and characterized this treatment on day 15, as it was absent in co-cultivation. The 

abundance of citric acid (#187) increased over time, as also observed in T. weissflogii. While at 

the onset of the interaction it was less abundant in co-cultivation, on day 35 citric acid was 

1.9 - fold upregulated in co-cultivation. Threonic acid-1,4-lactone (#83, #84) and putative 

3 - hydroxybutanoic acid (#19) were most abundant on day 15 but did not show interaction-

induced alterations in abundance on this day. Subsequently both metabolites decreased in 

intensity. 
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With complex sugars and their derivatives I observed a trend of increased abundance in the 

diatom endometabolomes during later stages of the interaction. Most identified MSTs showed 

highest abundance on day 27 and 35, with exception of two putative trisaccharides (#311, #384), 

and a disaccharide (#413), which were most abundant on day 15. However, only few MSTs 

showed relevant differences in intensities among treatments: Gentobiose (#341) and maltotriose 

(#416, #417) were downregulated in co-cultivation on day 27. Putative melezitose (#399) was 

1.4 - fold upregulated on day 27 and downregulated on day 35. Furthermore, a putative 

trisaccharide (#384) was characteristic for day 15, as it was only present on this day and 1.4 - fold 

upregulated in co-cultivation. Galactinol (#355) was 1.6 - fold higher abundant in co-cultivation 

on day 15, but showed lowest abundance on this sampling day, if compared to day 27 and 35. 

Furthermore, galactinol was also represented by MST #342, which did not show relevant 

differences of MST levels between treatments. 

The biggest class of identified metabolites was the one of sugars and their derivatives. This class 

was characterized by two general trends: on the one hand most MSTs characterized the onset of 

the interaction, as they were most abundant in the endometabolomes on day 15 and on the other 

hand, if a relevant regulation was observed, in the majority of cases, this regulation became 

manifested in an upregulation of the respective MST in co-cultivation. Interestingly, putative 

threose (#101), glucose (#205) as well as the sugar acids glucuronic acid (#213) and putative 

gulonic acid (#220) were upregulated in co-cultivation on all three sampling days. Considering 

metabolites that characterized day 15: putative pentofuranose (#103) and arabinofuranose (#119) 

were 1.3 - fold upregulated on this day. Interestingly, only the sugar derivative ononitol (#226) 

was downregulated in co-cultivation on day 15 and characteristic for this sampling day. Among 

metabolites that characterized day 35, putative pentofuranoses (#134, #135), as well as glucose 

(#205) and putative galactofuranose (#211) were upregulated in co-cultivation.  

Looking at fatty acids and their derivatives, a diverse picture was observed. No general time 

dependent trend in abundance of fatty acids was visible, but each sampling day was characterized 

by some of the highly correlated and identified metabolites. Most fatty acids (and derivatives) 

that characterized day 15 did not show relevant differences in MST intensity levels among 

treatments on this day. However, 2,3-dihydroxypropyl palmitate (#324) was downregulated in 

co-cultivation on day 15 with 1.4 - fold higher values in mono-cultivation. Although this 

metabolite was less abundant on day 27 and 35, an upregulation in co-cultivation of up to 

2.6 - fold became apparent on both days. Putative stearic acid (#272) and octadecadienoic acid 

(#232) characterized day 27 of the interaction. Both were 1.4 - fold upregulated on this day. 

Stearic acid was also represented by MST #271, which did not exhibit any relevant interaction-
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induced regulation. Considering metabolites that characterized day 35, only putative 

N - hydroxytetradecanamide (#235) was relevantly downregulated (1.8 - fold) in co-cultivation. 

All other MSTs within this metabolite class did not exhibit relevant interaction-induced 

regulations on the sampling day they characterized. 

The regulation of highly correlated terpenes seemed unaffected by the interaction and more 

characterized by time than by treatment. A similar trend was observed for sterols. However, 

putative 24-oxocholest-5-en-3-yl acetate (#367) was 1.5 - fold upregulated in co-cultivation on 

day 15 and only abundant on this day. Furthermore, putative (3β,20R,24R)-stigmast-5-en-3-yl 

acetate (#376) was 1.3 - fold upregulated in co-cultivation on day 15 and downregulated on day 

27. Opposite to sterol #367, this sterol characterized later stages of the interaction, as it was most 

abundant on day 27 and 35. While in T. weissflogii sterols exhibited a trend of upregulation in 

co-cultivation during later stages of the interaction, in S. dohrnii sterols characterized day 15 but 

were subsequently downregulated in co-cultivation (by trend). 

The potential hydrocarbon 3-octadecyne (#203) was most abundant on day 15 but showed 

relevant interaction-induced differences in abundance only on day 27 (upregulation) and day 35 

(downregulation in co-cultivation). Furthermore, five MSTs were listed in the class of ‘others’. 

Putative 3-phenyl-1-cyclohexen-1-ol (#160) was most abundant on day 35 and 1.8 - fold 

upregulated in co-cultivation on this day. All other metabolites in the class ‘others’ did not show 

interaction-induced alterations in MST levels on the days of their highest abundance. 

Among the unknowns, MST #268 was of interest, as it was 7 - fold upregulated on day 27 of 

the interaction and characteristic for the early stages of the interaction. Furthermore, MST #360 

was only abundant on day 15, characterizing the onset of the interaction and downregulated in 

co-cultivation with 15.5 - fold higher abundance in mono-cultivation. Unfortunately, the identity 

of both metabolites remained unclear. 
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Appendix 73: Heatmap of endometabolite intensities categorized by MST classes for the species-specific and daywise analysis of S. dohrnii in interaction with T. weissflogii.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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44 103.1 6.98 1138 
(E,2S)-N-methoxy-2,3-bis(hydroxy)propan-1-

imine 
A  DT 1.3 1.3 NA NA NA NA 1.0 - - 

48 103.1 7.12 1157 
(E,2S)-N-methoxy-2,3-bis(hydroxy)propan-1-

imine 
A  DT 1.1 1.4 NA NA NA NA 1.2 - - 

55 189.1 7.34 1187 Urea A  DT -1.1 -1.1 0.3 -0.1 0.4 1.5 -1.1 -1.3 1.6 

16 116.1 5.97 1005 Alanine AA * DT 1.1 1.4 -0.9 -0.3 -0.4 -0.8 1.1 1.8 -1.4 

24 158.1 6.33 1052 Norleucine AA ?? DT NA NA 0.9 1.6 NA NA - 1.4 - 

33 188.1 6.56 1084 Isoleucine AA  DT 1.1 1.3 -0.6 0.1 -1.1 -0.8 1.1 2.0 2.6 

68 142.1 7.90 1260 Proline AA * DT 1.3 1.3 -0.6 NA NA NA -1.0 - - 

9 151.1 5.53 947 Phenol Alc  DT 1.2 1.3 -0.6 -0.2 -0.8 -0.9 1.0 1.2 -1.0 

10 199.1 5.56 950 Phenol Alc  DT NA NA 1.4 1.2 NA NA - -1.1 - 

22 103.1 6.28 1046 Glycerol Alc ? DT 1.0 1.2 NA NA -0.1 0.1 1.1 - 1.1 

23 165.1 6.30 1048 Glycerol Alc ? DT 1.1 1.5 NA NA NA NA 1.2 - - 

31 165.1 6.50 1075 3-Methylphenol Alc  DT 1.2 1.4 NA NA NA NA 1.1 - - 

37 116.1 6.81 1116 3-Chloro-1,2-propanediol Alc  DT 0.9 1.2 -0.2 0.3 -0.9 -1.3 1.1 1.3 -1.5 

42 103.1 6.91 1129 Glycerol Alc ? DT 1.3 1.3 NA NA NA NA 1.0 - - 

62 117 7.64 1226 Glycerol Alc  15 1.6 -0.1 0.2 0.5 -1.1 -0.9 -1.5 1.1 1.1 

Median MST intensity Fold change 
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-
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137 342.2 10.53 1608 1,2,3-Benzenetriol Alc  DT 0.4 0.6 NA NA 0.9 0.7 1.1 - -1.1 

72 240.1 8.04 1278 1H-Pyrrole-2-carboxylic acid Alk  DT 1.2 1.1 0.1 -0.2 -1.1 -1.0 -1.0 -1.2 1.7 

77 240.1 8.37 1322 1H-Pyrrole-2-carboxylic acid Alk  DT 1.4 1.2 -0.6 -0.7 -0.7 -0.5 -1.1 -1.8 2.3 

359 309.3 18.49 2892 
2,6-Diphenyl-1,7-dihydrodipyrrolo[2,3-b:3',2'-

e]pyridine 
Alk dv. ? DT -0.6 -0.8 1.2 1.4 -0.4 -0.7 -1.2 1.1 -1.4 

12 173.1 5.71 970 Hexanoic acid CA ? DT NA NA 1.5 1.1 NA NA - -1.2 - 

13 177.1 5.74 975 Acetic acid CA  15 0.6 -0.4 0.8 NA 1.1 -0.8 -1.9 - -4.0 

19 117 6.12 1025 3-Hydroxybutanoic acid CA ? DT 1.0 1.1 0.1 0.1 -1.4 -0.9 1.0 -1.0 2.2 

58 179.1 7.47 1203 Benzoic acid CA  DT,15 2.0 NA NA NA NA NA - - - 

83 148.1 8.60 1353 Threonic acid-1,4-lactone CA  DT 1.4 1.1 NA NA -0.6 NA -1.2 - - 

84 103.1 8.63 1357 Threonic acid-1,4-lactone CA  DT 0.8 1.2 NA NA 0.0 0.3 1.2 - 1.2 

187 273.1 12.11 1817 Citric acid CA  15 -0.7 -0.7 -0.1 NA 0.6 1.7 -1.7 - 1.9 

311 217.1 16.31 2522 Trisaccharide (Vidoudez) CS ? DT 0.6 0.8 NA NA 0.6 0.6 1.1 - 1.0 

330 361.2 17.02 2647 Maltose CS  DT -1.2 -1.1 1.0 1.1 0.0 0.1 2.5 1.0 1.1 

341 361.1 17.50 2731 Gentobiose CS  DT -1.0 -1.1 0.1 -0.3 0.8 1.4 -1.1 -1.3 1.2 

346 361.2 17.69 2763 Maltose CS * DT -1.1 -1.2 0.3 0.0 0.7 1.3 -1.1 -1.1 1.2 

373 204.1 19.76 3092 Melibiose CS  DT -1.3 -1.1 1.1 0.9 0.3 0.1 1.0 -1.0 -1.0 

384 217.1 20.80 3230 Trisaccharide (Vidoudez) CS ? DT 0.9 1.6 NA NA NA NA 1.4 - - 

399 361.2 22.61 3382 Melezitose  CS ?? DT NA NA 0.7 1.4 0.3 -0.1 - 1.4 -1.3 

401 361.2 22.88 3404 Melezitose  CS  DT NA NA 1.1 1.0 0.3 -0.1 - -1.1 -1.3 

413 217.1 24.34 3527 Disaccharide (Vidoudez) CS  DT 1.1 1.5 NA NA NA NA 1.2 - - 

416 173.1 24.72 3559 Maltotriose CS  DT NA NA 1.5 1.0 NA NA - -1.3 - 

417 361.2 24.75 3561 Maltotriose CS  DT -1.1 -1.2 0.7 -0.2 0.9 0.8 -1.2 -1.6 -1.0 

342 204.1 17.54 2738 Galactinol CS dv.  DT -1.2 -1.1 1.2 0.9 0.2 0.1 1.2 -1.1 -1.1 
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355 204.1 18.29 2862 Galactinol CS dv.  DT -1.5 -1.0 0.4 0.8 0.5 0.8 1.6 1.2 1.1 

232 309.2 13.58 2047 Octadecadienoic acid  FA  DT -0.3 0.0 0.8 1.5 -1.0 -1.0 1.4 1.4 2.6 

264 108.1 14.66 2234 
(9Z,12Z,15Z)-9,12,15-Octadecatrienoic acid 

(Linolenic acid) 
FA * DT -1.1 -1.3 0.3 0.6 1.1 0.5 -1.2 1.1 -1.2 

271 117 14.90 2277 Octadecanoic acid (Stearic acid) FA  DT -0.2 0.0 NA NA 1.2 1.1 1.2 - -1.0 

272 199.1 14.92 2280 Octadecanoic acid (Stearic acid) FA ? DT -0.8 -0.6 0.7 1.7 -0.6 -0.3 1.2 1.4 1.2 

168 143.1 11.49 1734 Methyl myristate FA dv.  DT 0.2 0.4 NA NA 1.1 0.7 1.1 - -1.2 

212 143.1 12.91 1929 Methyl palmitate FA dv.  DT 0.7 0.9 -1.1 NA 0.6 0.2 1.1 - -1.3 

235 211.2 13.72 2071 N-Hydroxytetradecanamide FA dv. ?? DT -1.0 -1.1 0.4 0.6 1.5 -0.3 -1.1 1.1 -1.8 

261 212.2 14.59 2222 Palmitamide FA dv.  DT 1.4 1.1 NA NA -0.6 -0.5 -1.2 - 2.3 

262 180.1 14.59 2222 Methyl-5,8,11,14,17-icosapentaenoate FA dv. ? DT 1.1 1.4 -0.8 -0.4 -0.6 -0.8 1.1 2.0 -1.3 

307 105.1 16.14 2493 Methyl-4,7,10,13,16,19-docosahexaenoate FA dv.  DT -1.4 -1.1 0.5 0.3 1.0 0.6 1.1 -1.0 -1.1 

318 129.1 16.61 2574 1,3-Dihydroxy-2-propanyl palmitate FA dv. ? DT 1.2 1.1 NA 0.2 NA NA -1.0 - - 

324 371.3 16.78 2605 2,3-Dihydroxypropyl palmitate FA dv.  DT 1.6 0.8 -0.8 -0.2 -0.8 -0.7 -1.4 2.6 1.3 

426 129.1 27.23 3770 

2-[(Trimethylsilyl)oxy]-1,3-propanediyl 

ditetradecanoate (Glycerine-1,3-dimyristate, 2-O-

trimethylsilyl-) 

FA dv. ??¹ DT NA NA 1.1 1.4 NA NA - 1.2 - 

203 123.1 12.61 1882 3-Octadecyne HC ? DT 1.2 1.3 -0.8 -0.4 -0.3 -0.9 1.0 1.3 -1.4 

98 156.1 9.13 1422 Naphthalene, 1,6-dimethyl- O ¹ DT 1.3 1.2 -0.4 -0.4 -0.7 -1.0 -1.1 -1.0 -1.9 

160 246.1 11.19 1695 3-Phenyl-1-cyclohexen-1-ol O ? DT 0.3 0.4 NA NA 0.2 1.4 1.0 - 1.8 

195 123.1 12.31 1842 2-Hexadecyloxirane O  DT 1.5 1.0 -0.8 -0.4 -0.6 -0.8 -1.1 1.3 -1.2 

199 123.1 12.47 1865 Hexadecanal O ? DT 1.3 1.2 -0.8 -0.3 -0.5 -0.9 -1.0 1.3 -1.3 
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388 574.5 21.18 3261 

2-(3-Hydroxy-3,7,11,15-tetramethylhexadecyl)-

3,5,6-trimethyl-1,4-benzenediol (Tocopherol 

quinone) 

O ? DT -0.1 -0.7 1.4 1.1 -0.4 -1.2 -1.2 -1.1 -1.3 

101 205.1 9.25 1439 Threose S ? DT 0.6 1.3 -1.4 -0.4 -0.7 0.7 1.3 15.6 2.6 

103 217.1 9.32 1448 Pentofuranose (Vidoudez) S ? DT 1.1 1.5 NA NA NA NA 1.3 - - 

119 217.1 9.79 1510 Arabinofuranose S  DT 1.0 1.5 NA NA NA NA 1.3 - - 

134 218 10.32 1580 Pentofuranose (Vidoudez) S  DT 0.4 0.5 NA NA 0.6 1.1 1.1 - 1.3 

135 218 10.42 1593 Pentofuranose (Vidoudez) S ? DT -0.1 0.0 NA NA 1.0 1.2 1.0 - 1.1 

140 243.1 10.61 1618 Pentofuranose (Vidoudez) S  DT 0.0 0.1 NA NA 1.3 0.8 1.1 - -1.2 

141 218 10.62 1620 Ribofuranose S ? DT 0.0 -0.1 NA NA 1.2 1.1 -1.1 - -1.0 

157 217.1 11.05 1677 Ribose S  DT 1.1 1.4 NA NA -0.5 -0.3 1.1 - 1.4 

205 204.1 12.70 1895 Glucose S  DT -0.7 -0.7 -0.5 -0.5 0.9 1.6 1.0 1.0 1.3 

211 217.1 12.86 1920 Galactofuranose S ? DT 0.2 0.3 NA NA 0.7 1.3 1.0 - 1.3 

215 204.1 13.01 1946 Gulose S  DT 1.0 1.4 -0.1 -0.5 -0.9 -1.0 1.1 -1.2 -1.0 

230 204 13.54 2039 myo-Inositol S  DT -1.0 -1.1 0.0 -0.2 1.4 0.8 -1.0 -1.1 -1.2 

231 117 13.56 2043 Inositol S  DT -0.1 0.1 0.9 1.3 NA NA 1.2 1.2 - 

239 204 13.85 2094 Glucopyranose S  DT 0.9 1.1 0.1 0.1 -1.3 -1.0 1.1 -1.0 1.2 

248 319.2 14.19 2153 myo-Inositol S  DT 0.1 -0.2 -1.0 -1.1 1.4 0.8 -1.2 -1.1 -1.2 

125 103.1 10.02 1541 3-Deoxypentonic acid S Acid ?? DT 1.1 1.4 NA NA NA NA 1.2 - - 

127 249.1 10.11 1552 Erythronic acid  S Acid  DT 1.5 1.1 NA NA NA NA -1.2 - - 

128 217.1 10.13 1554 Threonic acid S Acid  DT 1.3 1.3 NA NA NA NA -1.0 - - 

181 276.1 11.88 1786 Fructosonic acid S Acid ?? DT -0.2 -0.3 -1.0 -0.9 1.1 1.3 -1.1 1.2 1.1 

213 333.1 12.94 1936 Glucuronic acid S Acid  DT 0.8 1.5 -0.7 0.0 -1.3 -0.3 1.3 1.6 2.4 

219 157.1 13.15 1971 Gulonic acid S Acid  DT 1.0 1.4 -0.6 NA -0.5 -0.3 1.2 - 1.5 
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220 432.9 13.17 1975 Gulonic acid S Acid ? 15 -0.4 1.3 -0.7 0.8 -1.4 0.4 1.3 1.3 1.4 

223 217.1 13.28 1993 Hexonic acid S Acid  DT 1.3 1.0 NA NA -0.4 0.2 -1.1 - 2.0 

218 319.2 13.09 1961 Gluconic acid-1,5-lactone  
S Acid 

dv. 
 DT 1.1 1.4 -0.3 -0.5 -1.0 -0.6 1.1 -1.3 1.9 

121 248.1 9.88 1522 Threitol S Alc ? DT 1.4 0.9 -0.3 -0.1 -1.3 -0.6 -1.1 1.1 1.5 

167 217 11.44 1729 Xylitol S Alc  DT 1.2 1.3 NA NA NA NA 1.1 - - 

226 217.1 13.39 2013 4-O-Methyl-myo-inositol (Ononitol) S dv.  DT 1.5 0.9 NA NA NA 0.0 -1.4 - - 

251 204.1 14.26 2165 1-Methyl-β-D-galactopyranoside S dv.  DT 0.7 1.4 0.1 0.1 -1.2 -1.1 1.2 1.0 1.1 

297 217.1 15.80 2433 Uridine S dv. ? DT 1.0 1.5 NA NA NA NA 1.3 - - 

327 204.1 16.86 2619 Adenosine S dv. ? DT -1.2 -1.2 1.2 0.8 0.2 0.2 -1.0 -1.2 -1.0 

367 382.4 19.29 3018 24-Oxocholest-5-en-3-yl acetate St ? DT,15 0.9 1.6 NA NA NA NA 1.5 - - 

376 396.4 19.88 3112 (3β,20R,24R)-Stigmast-5-en-3-yl acetate St ? 15 -1.4 -0.6 0.6 -0.5 1.2 0.6 1.3 -1.3 -1.1 

385 129.1 20.99 3246 (3β)-Stigmast-5-en-3-ol St  DT -1.2 -1.0 0.2 -0.1 1.3 0.9 1.1 -1.1 -1.1 

386 382.4 21.04 3250 Ergost-5-en-3-ol (Campesterol) St  DT,15 -1.5 -0.7 0.2 0.0 1.1 0.9 1.4 -1.0 -1.1 

393 386.3 22.02 3332 Stigmasta-5,24(28)-dien-3-ol (Fucosterol) St  DT -1.3 -1.1 1.2 0.2 0.8 0.1 1.1 -1.2 -1.2 

193 111.1 12.26 1836 (2E)-3,7,11,15-Tetramethyl-2-hexadecene T  DT -0.3 NA 1.4 1.1 NA NA - -1.2 - 

238 108.1 13.79 2083 
(1E,3Z,6E,10E)-14-Isopropyl-3,7,11-trimethyl-

1,3,6,10-cyclotetradecatetraene (Cembrene) 
T ? DT 1.2 1.4 -0.9 -0.7 -0.5 -0.5 1.0 1.1 -1.0 

247 126.1 14.15 2145 3,7,11,15-Tetramethyl-2-hexadecen-1-ol (Phytol) T  DT 1.2 1.3 -0.7 -0.5 -0.4 NA 1.1 1.5 - 

258 143.1 14.48 2203 Phytol T  DT 1.0 1.1 -0.4 0.4 -1.4 -0.8 1.0 1.3 1.4 

259 111 14.49 2206 Phytol T  DT 1.5 0.8 -0.4 0.1 -1.2 -0.8 -1.2 1.2 1.2 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 15 (15), 27 (27) and day 35 (35). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” 

indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with 
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a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons 

(HC), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM 

refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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7.3.5 Supplements: Diatom growth 

T. weissflogii 

 

Appendix 74: Linear mixed model of chl a (A, RFU: relative fluorescence units) and cell counts (B, cells / mL) of 

T. weissflogii in interaction with S. dohrnii. 

The graph shows the linear mixed model 4 (cell counts) and model 4b (chl a). Mean values (n = 3) are shown as dot 

plot, error bars represent the standard deviation. The line chart shows the model fit, with colored areas representing 

the confidence interval (95%). Mono-cultivation of T. weissflogii is depicted in green, co-cultivation is shown in 

red.
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Appendix 75: Model validation graphs for the linear mixed model of the chl a for 

T. weissflogii in interaction with S. dohrnii. 

Appendix 76: Model validation graphs for the linear mixed model of the cell counts for 

T. weissflogii in interaction with S. dohrnii. 

 

(A) Histogram of residuals for check of normality, (B) residuals versus group (A: mono-cultivation, By: co-cultivation) as explanatory variable, (C) residuals versus day as 

explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals. 
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S. dohrnii 

 

Appendix 77: Linear mixed model of chl a (A, RU: relative units) and cell counts (B, cells / mL) of S. dohrnii in 

interaction with T. weissflogii. 

The graph shows the linear mixed model 4. Mean values (n = 3) are shown as dot plot, error bars represent the 

standard deviation. The line chart shows the model fit, with colored areas representing the confidence interval (95%). 

Mono-cultivation of S. dohrnii is depicted in blue, co-cultivation is shown in red.
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Appendix 78: Model validation graphs for the linear mixed model of the chl a for 

S. dohrnii in interaction with T. weissflogii. 

Appendix 79: Model validation graphs for the linear mixed model of the cell counts for 

S. dohrnii in interaction with T. weissflogii. 

 

(A) Histogram of residuals for check of normality, (B) residuals versus group (C: mono-cultivation, Bx: co-cultivation) as explanatory variable , (C) residuals versus day as 

explanatory variable, (D) standardized residuals versus fitted values of the model to verify homogeneity of variances among residuals.  
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7.3.6 Supplements: Exometabolomic investigation 

Overall analysis via CAP 
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Appendix 80: PCoA score plot of exometabolomic samples from an overall analysis of the interaction between 

T. weissflogii and S. dohrnii.  

The plot is based on metabolites obtained from mono-cultivated S. dohrnii (blue), mono-cultivated T. weissflogii 

(green) and co-cultivation of both diatoms (red) on day 15 (●), day 27 (▼) and day 35 (■). 

 

Appendix 81: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

exometabolomic data of the interaction between S. dohrnii and T. weissflogii with a-priori grouping by treatment 

 Mono TW Co Mono SD Total %correct 

Mono TW 9 0 0 9 100 

Co 0 7 2 9 77.778 

Mono SD 0 0 9 9 100 

Misclassification error: 7.41 % 

Mono SD: mono-cultivated S. dohrnii, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Appendix 82: Cross validation results (leave-one-out allocation of observations to groups) for the analysis of the 

exometabolomic data of the interaction between S. dohrnii and T. weissflogii with a-priori grouping by day and 

treatment 

 
Day15 Day27 Day35 

Total %correct Mono 

TW 
Co 

Mono 

SD 

Mono 

TW 
Co 

Mono 

SD 

Mono 

TW 
Co 

Mono 

SD 

Day15 

Mono TW 3 0 0 0 0 0 0 0 0 3 100 

Co 0 3 0 0 0 0 0 0 0 3 100 

Mono SD 0 0 3 0 1 0 0 0 0 3 100 

Day27 

Mono TW 2 0 0 0 0 1 0 0 0 3 0 

Co 0 0 0 0 3 0 0 0 0 3 100 

Mono SD 0 0 0 0 1 1 0 1 0 3 33.333 

Day35 

Mono TW 0 0 0 0 0 0 3 0 0 3 100 

Co 0 0 0 0 0 0 0 3 0 3 100 

Mono SD 0 0 0 0 0 0 0 0 3 3 100 

Misclassification error: 18.52 % 

Mono SD: mono-cultivated S. dohrnii, Mono TW: mono-cultivated T. weissflogii, Co: co-cultivated diatoms, 

Total: total number of samples, %correct: percentage of correctly allocated samples to their respective group. 

Number of samples correctly allocated to their group are highlighted in green, wrong allocations are highlighted in 

grey. 
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Daywise analysis via CAP 

Principal Coordinate Axis 1 (67.45%)
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Appendix 83: PCoA score plot of exometabolomic samples from a daywise subset analysis of the interaction 

between T. weissflogii and S. dohrnii on day 15, 27 and 35.  

The plots are based on metabolites obtained from mono-cultivated S. dohrnii (blue), mono-cultivated T. weissflogii 

(green) and co-cultivation of both diatoms (red) on day 15 (graph A), day 27 (graph B) and day 35 (graph C). 
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Appendix 84: Heatmap of exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. dohrnii on day 15. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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77 179.1 10.29 1576 4-(2-Hydroxyethyl)phenol Alc ? 1 0 -1 -1.4 2.3 

Sd 

101 303.2 11.37 1718 1,12-Dodecanedio Alc ?? 1 0 -1 -2.1 5.0 

4 175 5.65 964 Methyl 3-hydroxybutanoate CA ? 1 0 NA -2.9 - 

53 187.2 9.24 1438 2-Hydroxy-3-methylbutanoic acid CA ?? 1 0 -1 -3.1 4.9 

92 247.1 10.99 1668 2-Hydroxypentanedioic acid CA ?¹ 1 0 NA -3.5 - 

180 146.1 14.82 2260 Octadecanoic acid CA * 1 0 -1 -3.5 2.4 

71 179.1 10.06 1546 4-Hydroxybenzoic acid methylester CA dv.  1 0 -1 -2.1 38.7 

241 174.1 17.21 2677 Maltose CS ?? 1 0 NA -2.7 - 

273 204.1 19.20 2998 Galactinol CS dv. ? 1 0 -1 -2.3 13.3 

61 223.1 9.66 1493 4-Hydroxybenzaldehyde O  1 0 -1 -1.8 1.5 

96 226.1 11.10 1682 Ribose S ? 1 0 NA -2.6 - 

102 357.2 11.48 1732 Xylitol S  1 0 -1 -1.7 3.3 

209 221.1 16.07 2478 Uridine S dv.  1 1 -1 -1.0 1.6 

210 217.1 16.09 2482 Uridine S dv.  1 0 NA -3.5 - 

114 253.1 11.85 1781 
3-(2-Hydroxyethyl)-2,2,4-trimethyl-3-cyclohexene-1-

carbaldehyde 
T ? 1 0 -1 -2.2 4.8 

24 183.1 7.44 1200 Unknown U - 1 0 -1 -1.7 8.1 
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ID 
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37 196.1 8.16 1295 Skel_MEDIA_C086 (Vidoudez) U ? 1 0 -1 -1.6 4.0 

39 197.1 8.29 1312 Unknown U - 1 0 NA -2.7 - 

42 199.1 8.47 1336 Skel_MEDIA_C097 (Vidoudez) U  1 0 -1 -1.9 3.3 

56 231.1 9.48 1469 Skel_MEDIA_C127 (Vidoudez) U  1 0 NA -2.6 - 

66 184.1 9.91 1526 Skel_MEDIA_C141 (Vidoudez) U  1 0 -1 -1.7 9.5 

67 184.1 9.96 1532 Skel_MEDIA_C141 (Vidoudez) U  1 0 -1 -1.7 9.4 

69 122.1 9.99 1536 Unknown U - 1 0 -1 -1.9 7.2 

72 171.1 10.11 1552 Unknown U - 1 0 NA -2.0 - 

79 226.1 10.38 1587 Unknown U - 1 0 NA -1.4 - 

84 284.1 10.59 1615 Unknown U - 1 0 -1 -1.6 3.3 

91 250.1 10.95 1662 Unknown U - 1 0 -1 -1.7 2.3 

117 253.1 12.02 1803 Skel_MEDIA_C205 (Vidoudez) U  1 0 -1 -2.5 9.1 

120 211.1 12.09 1813 Unknown U - 1 0 -1 -2.7 13.6 

123 250.2 12.19 1826 Unknown U - 1 0 -1 -1.7 8.7 

124 155.1 12.21 1829 Unknown U - 1 0 NA -3.0 - 

125 263.2 12.24 1833 Unknown U - 1 0 -1 -3.1 732.3 

128 167.1 12.40 1854 Unknown U - 1 0 -1 -2.5 21.9 

130 161.1 12.44 1859 Unknown U - 1 0 NA -3.8 - 

131 197.1 12.46 1861 Unknown U - 1 0 -1 -1.9 18.1 

136 156.1 12.70 1894 Unknown U - 1 0 NA -3.7 - 

139 324.2 12.85 1917 Unknown U - 1 0 -1 -1.8 43.2 

140 382.2 12.88 1923 Unknown U - 1 0 -1 -2.4 5.3 

141 248.1 12.93 1931 Unknown U - 1 0 NA -3.1 - 
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142 382.2 12.96 1936 Unknown U - 1 0 -1 -2.3 5.1 

145 199.1 13.08 1957 Unknown U - 1 0 -1 -1.5 2.2 

148 382.2 13.13 1966 Unknown U - 1 0 -1 -2.2 6.0 

150 323.2 13.21 1979 Unknown U - 1 0 -1 -3.3 13.4 

154 156.1 13.37 2007 Unknown U - 1 0 -1 -1.8 2.9 

156 156.1 13.44 2020 Unknown U - 1 0 NA -3.2 - 

192 159.1 15.37 2355 Unknown U - 1 0 NA -3.2 - 

195 173.1 15.53 2384 Unknown U - 1 0 NA -1.9 - 

196 199.1 15.56 2389 Unknown U - 1 0 -1 -2.5 11.8 

197 467.3 15.59 2395 Unknown U - 1 0 NA -3.0 - 

198 317.2 15.61 2397 Unknown U - 1 0 -1 -3.3 14.4 

208 185.1 15.98 2462 Unknown U - 1 0 NA -3.3 - 

211 317.2 16.15 2492 Unknown U - 1 0 -1 -2.5 23.7 

213 254.2 16.21 2502 Unknown U - 1 0 NA -2.2 - 

214 411.2 16.25 2510 Unknown U - 1 0 -1 -2.9 15.2 

221 148.1 16.49 2551 Unknown U - 1 0 NA -2.5 - 

232 171.1 16.94 2630 Unknown U - 1 0 NA -3.1 - 

242 357.2 17.24 2681 Unknown U - 1 0 -1 -3.1 42.8 

243 311.2 17.26 2686 Unknown U - 1 0 NA -4.5 - 

256 171.1 17.77 2773 Unknown U - 1 0 NA -4.0 - 

258 273.2 17.82 2782 Unknown U - 1 0 NA -2.6 - 

259 273.2 17.87 2792 Unknown U - 1 0 NA -2.7 - 

260 357.2 17.90 2795 Unknown U - 1 0 NA -5.6 - 
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262 261.1 18.14 2834 Unknown U - 1 0 -1 -3.3 8.3 

265 273.1 18.44 2880 Unknown U - 1 0 NA -2.9 - 

268 273.2 18.73 2926 Unknown U - 1 0 NA -2.6 - 

282 259.2 22.40 3360 Unknown U - 1 0 NA -4.0 - 

283 259.2 22.98 3408 Unknown U - 1 0 NA -3.9 - 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and retention index 

(RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed 

match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol 

(Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others 

(O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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Appendix 85: Heatmap of exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. dohrnii on day 27. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  
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77 179.1 10.29 1576 4-(2-Hydroxyethyl)phenol Alc ? 1 0 -1 -1.4 3.4 

Sd 

101 303.2 11.37 1718 1,12-Dodecanediol Alc ?? 1 0 -1 -1.7 6.2 

71 179.1 10.06 1546 4-Hydroxybenzoic acid methylester CA dv.  1 0 NA -1.5 - 

241 174.1 17.21 2677 Maltose CS ?? 1 0 NA -1.9 - 

96 226.1 11.10 1682 Ribose S ? 1 0 NA -1.8 - 

230 230 16.87 2617 Adenosine S dv.  1 0 -1 -2.2 54.9 

114 253.1 11.85 1781 
3-(2-Hydroxyethyl)-2,2,4-trimethyl-3-cyclohexene-1-

carbaldehyde 
T ? 1 0 -1 -1.6 5.1 

24 183.1 7.44 1200 Unknown U - 1 0 -1 -1.7 19.7 

39 197.1 8.29 1312 Unknown U - 1 0 -1 -1.7 5.6 

42 199.1 8.47 1336 Skel_MEDIA_C097 (Vidoudez) U  1 0 -1 -1.7 3.7 

56 231.1 9.48 1469 Skel_MEDIA_C127 (Vidoudez) U  1 0 -1 -1.7 6.4 

66 184.1 9.91 1526 Skel_MEDIA_C141 (Vidoudez) U  1 0 -1 -1.8 12.9 

67 184.1 9.96 1532 Skel_MEDIA_C141 (Vidoudez) U  1 0 -1 -1.8 12.9 

69 122.1 9.99 1536 Unknown U - 1 0 -1 -2.0 4.1 

84 284.1 10.59 1615 Unknown U - 1 0 -1 -1.3 1.9 

117 253.1 12.02 1803 Skel_MEDIA_C205 (Vidoudez) U  1 0 -1 -1.9 16.6 
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120 211.1 12.09 1813 Unknown U - 1 0 NA -1.7 - 

122 157.1 12.14 1820 Skel_MEDIA_C215 (Vidoudez) U ? 1 0 -1 -1.5 5.4 

123 250.2 12.19 1826 Unknown U - 1 0 -1 -1.5 6.6 

124 155.1 12.21 1829 Unknown U - 1 0 NA -2.4 - 

125 263.2 12.24 1833 Unknown U - 1 0 -1 -1.8 110.2 

128 167.1 12.40 1854 Unknown U - 1 0 NA -1.7 - 

131 197.1 12.46 1861 Unknown U - 1 0 -1 -1.3 7.4 

138 153.1 12.79 1906 Unknown U - 1 0 -1 -1.6 11.0 

139 324.2 12.85 1917 Unknown U - 1 0 NA -1.5 - 

142 382.2 12.96 1936 Unknown U - 1 0 -1 -2.9 23.0 

148 382.2 13.13 1966 Unknown U - 1 0 -1 -1.8 9.8 

150 323.2 13.21 1979 Unknown U - 1 0 -1 -1.3 17.2 

153 351.2 13.33 2001 Unknown U - 1 0 -1 -1.7 2.5 

160 170.1 13.63 2054 Unknown U - 1 0 -1 -1.4 4.2 

172 260.2 14.29 2169 Unknown U - 1 0 -1 -1.4 7.2 

174 467.2 14.48 2201 Unknown U - 1 0 -1 -1.9 61.5 

184 221.1 15.02 2295 Unknown U - 1 0 -1 -1.6 4.3 

192 159.1 15.37 2355 Unknown U - 1 0 NA -1.7 - 

196 199.1 15.56 2389 Unknown U - 1 0 -1 -1.4 83.7 

198 317.2 15.61 2397 Unknown U - 1 0 -1 -2.2 13.5 

206 211.1 15.90 2448 Unknown U - 1 0 -1 -1.7 327.1 

207 117.1 15.95 2457 Unknown U - 1 0 NA -1.6 - 

208 185.1 15.98 2462 Unknown U - 1 0 NA -2.4 - 

213 254.2 16.21 2502 Unknown U - 1 0 -1 -1.5 34.5 

214 411.2 16.25 2510 Unknown U - 1 0 -1 -1.8 160.3 

217 145.1 16.35 2526 Unknown U - 1 0 NA -1.9 - 

220 247.2 16.45 2544 Unknown U - 1 0 NA -2.1 - 

232 171.1 16.94 2630 Unknown U - 1 0 NA -2.3 - 

244 173.1 17.31 2694 Unknown U - 1 0 NA -2.1 - 

245 164.1 17.35 2701 Unknown U - 1 0 NA -1.2 - 
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256 171.1 17.77 2773 Unknown U - 1 0 -1 -2.3 88.4 

258 273.2 17.82 2782 Unknown U - 1 0 NA -2.1 - 

259 273.2 17.87 2792 Unknown U - 1 0 NA -2.1 - 

265 273.1 18.44 2880 Unknown U - 1 0 NA -2.3 - 

268 273.2 18.73 2926 Unknown U - 1 0 NA -2.2 - 

283 259.2 22.98 3408 Unknown U - 1 0 NA -1.9 - 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and retention index 

(RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed 

match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol 

(Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others 

(O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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Appendix 86: Heatmap of exometabolite intensities for the subset analysis of the interaction between T. weissflogii and S. dohrnii on day 35. 

Medians of MST intensities, normalized to the external standard ribitol (per sample) and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high 

(yellow) to low intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to abundance patterns (separated by 

black lines), class and RI. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-

cultivation relative to mono-cultivations is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation.  

 

ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=3) 
Fold  

(Co relative to:) 
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Day 35 Day 35 
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o
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o
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W
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o

n
o

 

S
D

 M
o

n
o
 

T
W

 M
o

n
o

 

85 217 10.63 1621 Arabinofuranose S  1 1 -1 1.0 3.7 A 

101 303.2 11.37 1718 1,12-Dodecanediol Alc ?? 1 0 -1 -1.5 5.2 

Sd 

53 187.2 9.24 1438 2-Hydroxy-3-methylbutanoic acid CA ?? 1 0 -1 -1.5 3.2 

92 247.1 10.99 1668 2-Hydroxypentanedioic acid CA ?¹ 1 0 -1 -1.6 8.8 

94 129.1 11.06 1677 2-Hydroxyhexanedioic acid  CA ? 1 0 NA -1.1 - 

71 179.1 10.06 1546 4-Hydroxybenzoic acid methylester CA dv.  1 0 -1 -1.3 150.2 

218 225.1 16.39 2534 Diphenyl phthalate CA dv.  1 0 -1 -2.0 31.4 

215 217.1 16.28 2515 Maltose CS ?? 1 0 -1 -1.7 18.3 

239 217.1 17.09 2655 Sucrose  CS  1 0 -1 -1.3 220.2 

241 174.1 17.21 2677 Maltose CS ?? 1 0 NA -1.4 - 

250 361.2 17.54 2733 Maltose CS  1 0 -1 -1.9 6.7 

251 204.1 17.57 2739 Lactose CS  1 0 -1 -1.4 9.3 

257 204.1 17.79 2777 Maltose CS ?? 1 0 NA -1.2 - 

284 204.1 24.27 3516 Maltotriose CS  1 0 -1 -1.3 6.0 

285 217.1 24.84 3564 Maltotriose CS  1 0 -1 -2.4 11.3 

273 204.1 19.20 2998 Galactinol CS dv. ? 1 0 -1 -2.1 6.1 

78 217 10.33 1581 Arabinofuranose S  1 1 -1 -1.0 4.1 

81 217 10.43 1595 Arabinofuranose S  1 0 -1 -1.2 4.1 

83 217.1 10.49 1602 Arabinofuranose S  1 0 -1 -1.2 6.6 

96 226.1 11.10 1682 Ribose S ? 1 1 NA -1.1 - 
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ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=3) 
Fold  

(Co relative to:) 

G
ro
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p

 

Day 35 Day 35 

S
D

 M
o

n
o
 

C
o

  

T
W

 M
o

n
o

 

S
D

 M
o

n
o
 

T
W

 M
o

n
o

 

135 319.2 12.59 1879 Gluconic acid-1,5-lactone  S acid dv.  1 0 -1 -1.3 4.5 

210 217.1 16.09 2482 Uridine S dv.  1 0 -1 -1.8 7.7 

230 230 16.87 2617 Adenosine S dv.  1 0 -1 -1.5 15.0 

114 253.1 11.85 1781 3-(2-Hydroxyethyl)-2,2,4-trimethyl-3-cyclohexene-1-carbaldehyde T ? 1 0 -1 -1.4 5.2 

24 183.1 7.44 1200 Unknown U - 1 0 NA -1.3 - 

39 197.1 8.29 1312 Unknown U - 1 0 -1 -1.3 3.1 

42 199.1 8.47 1336 Skel_MEDIA_C097 (Vidoudez) U  1 0 -1 -1.6 3.2 

56 231.1 9.48 1469 Skel_MEDIA_C127 (Vidoudez) U  1 0 -1 -1.3 7.2 

66 184.1 9.91 1526 Skel_MEDIA_C141 (Vidoudez) U  1 1 -1 -1.1 9.5 

67 184.1 9.96 1532 Skel_MEDIA_C141 (Vidoudez) U  1 1 -1 -1.1 9.5 

97 129.1 11.15 1689 Unknown U - 1 0 NA -1.7 - 

100 285.2 11.28 1706 Unknown U - 1 1 -1 -1.0 4.3 

115 129.1 11.90 1788 Unknown U - 1 0 -1 -1.2 17.4 

117 253.1 12.02 1803 Skel_MEDIA_C205 (Vidoudez) U  1 0 -1 -1.6 10.5 

120 211.1 12.09 1813 Unknown U - 1 0 -1 -1.4 11.4 

122 157.1 12.14 1820 Skel_MEDIA_C215 (Vidoudez) U ? 1 0 -1 -1.4 3.9 

124 155.1 12.21 1829 Unknown U - 1 0 NA -1.4 - 

125 263.2 12.24 1833 Unknown U - 1 0 NA -1.7 - 

128 167.1 12.40 1854 Unknown U - 1 0 -1 -1.2 62.3 

130 161.1 12.44 1859 Unknown U - 1 0 -1 -1.8 11.8 

133 271.1 12.50 1867 Unknown U - 1 0 -1 -1.4 11.9 

138 153.1 12.79 1906 Unknown U - 1 0 -1 -1.5 4.9 

139 324.2 12.85 1917 Unknown U - 1 0 -1 -1.3 105.8 

140 382.2 12.88 1923 Unknown U - 1 0 -1 -1.3 11.8 

142 382.2 12.96 1936 Unknown U - 1 0 -1 -1.3 11.8 

146 129.1 13.10 1961 Unknown U - 1 0 NA -2.0 - 

148 382.2 13.13 1966 Unknown U - 1 0 -1 -1.5 8.7 

160 170.1 13.63 2054 Unknown U - 1 0 -1 -1.4 3.4 
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ID 
Model 

ion 
RT RI Name Class Ident 

Median (n=3) 
Fold  

(Co relative to:) 

G
ro

u
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Day 35 Day 35 

S
D

 M
o

n
o
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o

n
o

 

S
D
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o

n
o
 

T
W
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o
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183 171.1 14.96 2284 Unknown U - 1 0 -1 -1.6 8.9 

191 188.1 15.33 2349 Unknown U - 1 1 -1 -1.1 20.8 

192 159.1 15.37 2355 Unknown U - 1 0 NA -1.5 - 

196 199.1 15.56 2389 Unknown U - 1 0 -1 -1.6 14.0 

197 467.3 15.59 2395 Unknown U - 1 0 -1 -1.2 4.7 

202 225.2 15.75 2423 Unknown U - 1 0 NA -1.1 - 

206 211.1 15.90 2448 Unknown U - 1 0 -1 -1.4 19.4 

208 185.1 15.98 2462 Unknown U - 1 0 -1 -2.1 150.5 

211 317.2 16.15 2492 Unknown U - 1 0 -1 -1.5 11.4 

213 254.2 16.21 2502 Unknown U - 1 0 -1 -1.8 10.0 

214 411.2 16.25 2510 Unknown U - 1 0 -1 -2.0 27.7 

216 217.1 16.33 2522 Unknown U - 1 0 NA -1.8 - 

217 145.1 16.35 2526 Unknown U - 1 0 -1 -1.8 25.3 

220 247.2 16.45 2544 Unknown U - 1 0 -1 -1.3 74.7 

221 148.1 16.49 2551 Unknown U - 1 0 NA -1.3 - 

238 371.2 17.07 2652 Unknown U - 1 0 -1 -1.3 6.2 

242 357.2 17.24 2681 Unknown U - 1 0 -1 -1.4 23.8 

245 164.1 17.35 2701 Unknown U - 1 0 NA -2.0 - 

246 171.1 17.41 2712 Unknown U - 1 0 -1 -1.5 90.9 

264 204.1 18.35 2867 Unknown U - 1 0 -1 -1.3 5.7 

265 273.1 18.44 2880 Unknown U - 1 0 -1 -2.2 27.7 

266 204.1 18.51 2892 Unknown U - 1 0 -1 -1.6 5.3 

270 204.1 18.94 2958 Unknown U - 1 0 -1 -1.3 51.7 

280 217.1 21.13 3253 Unknown U - 1 0 -1 -1.1 16.0 

281 259.2 21.18 3257 Unknown U - 1 0 -1 -1.6 13.9 

282 259.2 22.40 3360 Unknown U - 1 0 -1 -1.6 562.0 

283 259.2 22.98 3408 Unknown U - 1 0 NA -1.8 - 
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In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT) and retention index 

(RI). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” indicates a reversed match between 700 and 800, “??” a reversed 

match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with a match smaller than 600. Class abbreviations: Amine (A), alcohol 

(Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others 

(O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM refers to an MST code given by distinct libraries of the Golm Metabolome Database.  
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Screening for interaction specific release and/or uptake of potential infochemicals 

Appendix 87: Intensity dynamic of exometabolites, enhanced (pattern I) in co-cultivation in the interaction between 

T. weissflogii and S. dohrnii. 

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  
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Metabolite 94 - 2-Hydroxyhexanedioic acid 
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Metabolite 77 - 4-(2-Hydroxyethyl)phenol
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Metabolite 85 - Arabinofuranose
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Appendix 88: Intensity dynamic of exometabolites excluded in the screening process for exometabolites, which 

were reduced in co-cultivation in the interaction between T. weissflogii and S. dohrnii and matched pattern III. 

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  
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Appendix 89: Intensity dynamic of exometabolites, reduced (pattern II / III) in co-cultivation in the interaction 

between T. weissflogii and S. dohrnii. 

Boxplots visualized intensity dynamics over time and treatments via relative MST intensities (ribitol normalized) of 

the respective model ion.  
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7.3.7 Supplements: Endometabolomic investigation 

Overall analysis via CAP 

Principal Coordinate Axis 1 (51.45%)
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Appendix 90: PCoA score plot of endometabolomic samples from an overall analysis of the interaction between 

T. weissflogii and S. dohrnii.  

The plot is based on metabolites obtained from S. dohrnii (blue) and T. weissflogii (green) on day 15 (●), day 27 

(▼) and day 35 (■). Samples from mono-cultivation are represented by filled symbols, samples from co-cultivation 

by empty symbols. 

Species-specific analysis via CAP 
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Appendix 91: PCoA score plot of endometabolomic samples from a species-specific subset analysis of the 

interaction between T. weissflogii and S. dohrnii.  
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The plots are based on metabolites obtained from mono-cultivated (green) and co-cultivated (red) T. weissflogii 

(graph A) and mono-cultivated (blue) and co-cultivated (red) S. dohrnii (graph B) on day 15 (●), day 27 (▼) and 

day 35 (■). The analysis was performed for each species individually. 

Daywise and species-specific analysis via CAP 
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Appendix 92: PCoA score plot of endometabolomic samples from a species-specific subset analysis of the 

interaction between T. weissflogii and S. dohrnii on day 15, 27 and 35.  

The plots are based on metabolites obtained from mono-cultivated (green) and co-cultivated (red) T. weissflogii 

(graph A, C, E) and mono-cultivated (blue) and co-cultivated (red) S. dohrnii (graph B, D, F) on day 15 (●, graph 

A, B), day 27 (●, graph C, D) and day 35 (●, graph E, F). The analysis was performed for each species and day 

individually.   
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Identification of metabolites correlating with relevant a-priori groups  

T. weissflogii 

Appendix 93: Heatmap of unknown endometabolite intensities for the species-specific and daywise analysis of T. weissflogii in interaction with S. dohrnii.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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65 117 7.79 1246 Unknown U - DT 1 1 NA NA 0 0 1.1 - 1.7 

70 217.1 7.95 1267 Unknown U - DT 1 1 NA NA 0 -1 -1.0 - -2.6 

85 217.1 8.68 1363 
EITTMS_N12C_ATHR_1770.9_1135EC25_ 

(GOLM) 
U ? DT 1 1 NA NA -1 -1 -1.2 - -1.3 

86 218.1 8.71 1367 Unknown U - DT 1 1 NA NA 0 0 1.1 - 1.1 
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EITTMS_N12C_ATHR_1456.1_1135EC44_ 

(GOLM) 
U ? DT 1 1 -1 -2 0 0 1.0 -4.9 1.1 

92 148.1 8.90 1392 Unknown U - DT 0 1 NA NA 1 1 1.4 - -1.2 
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94 259.1 8.98 1403 Unknown U - DT 0 0 0 2 -1 -1 -1.0 1.8 1.2 
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102 318.2 9.30 1445 Unknown U - DT 1 1 NA NA NA NA -1.1 - - 

109 157.1 9.49 1470 
EITTMS_N12C_ATHR_1480.5_1135EC44_ 

(GOLM) 
U  DT 0 0 1 2 -1 -1 1.0 1.2 1.2 

110 123.1 9.51 1473 Unknown U - DT 1 1 -1 -1 0 -1 1.2 -1.0 -1.6 

112 231.1 9.57 1481 Unknown U - DT -1 -1 1 1 0 0 -1.1 1.1 1.1 

116 228.1 9.68 1496 Unknown U - 35 -1 0 1 0 1 -1 1.4 -1.6 -1.8 

122 198.1 9.92 1527 Unknown U - 35 -1 0 -1 0 0 2 1.3 1.7 1.6 

124 157 9.99 1536 Unknown U - DT -1 -1 1 1 -1 0 -1.1 1.2 1.3 
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131 157 10.22 1566 Unknown U - DT -1 -1 1 1 0 0 1.0 1.1 1.0 

132 243.2 10.25 1571 Unknown U - DT 1 1 NA NA NA NA 1.2 - - 

145 235.1 10.75 1637 Unknown U - DT 1 2 0 NA NA NA 1.5 - - 

146 129.1 10.78 1640 Unknown U - DT 1 1 NA NA -1 -1 1.1 - -2.9 

147 257.1 10.80 1644 Unknown U - DT 1 1 NA NA NA NA -1.1 - - 

154 159.1 11.01 1671 Unknown U - DT -1 -1 1 1 0 0 -1.1 1.1 1.2 

166 318.2 11.41 1724 Unknown U - DT 1 1 NA NA NA NA -1.0 - - 

169 217.1 11.53 1740 Unknown U - DT 1 1 NA NA 0 0 -1.0 - -1.5 

173 392.2 11.68 1759 Skel_cell_C065 (Vidoudez) U  DT,35 -1 -1 0 -1 2 1 -1.2 -1.7 -1.4 

174 238.1 11.69 1761 Unknown U - DT 1 2 NA NA NA NA 1.7 - - 

175 331.2 11.72 1765 Unknown U - DT 1 1 NA NA 0 0 -1.2 - 1.1 

179 392.2 11.81 1777 Skel_cell_C065 (Vidoudez) U  DT,35 -1 -1 0 -1 2 1 -1.1 -1.8 -1.4 

183 392.2 11.95 1795 Skel_cell_C065 (Vidoudez) U  DT,35 -1 -1 0 -1 2 1 -1.1 -1.5 -1.5 

184 276.1 11.99 1801 Unknown U - DT,35 -1 -1 0 -1 2 1 -1.0 -1.8 -1.5 

185 253.1 12.02 1804 Skel_MEDIA_C205 (Vidoudez) U  DT,35 -1 0 -1 -1 1 2 1.2 1.1 1.2 
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189 342.2 12.17 1824 Unknown U - DT 0 1 NA NA 1 1 1.4 - 1.3 
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(GOLM) 
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192 372.2 12.25 1835 Unknown U - DT -1 0 -1 0 2 1 1.3 2.1 -1.3 

194 157.1 12.27 1838 Skel_MEDIA_C215 (Vidoudez) U  DT -1 -1 0 1 1 1 1.2 1.6 1.0 

198 205.1 12.44 1860 Unknown U - DT -1 -1 -1 0 2 1 -1.2 1.1 -1.2 

200 205.1 12.49 1867 Unknown U - DT,35 -1 -1 -1 -1 2 1 -1.1 -1.4 -1.6 
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206 205.1 12.75 1902 Unknown U - DT,35 -1 -1 0 0 2 1 -1.4 -1.1 -1.5 

233 217.1 13.63 2054 Unknown U - DT 2 1 0 -1 -1 -1 -1.2 -1.7 -1.0 

246 173.1 14.12 2142 Unknown U - DT 0 0 -1 -1 1 1 1.2 -1.4 1.2 

249 255.2 14.22 2157 Unknown U - 35 1 1 0 0 0 -2 1.1 -1.1 -1.4 

250 221.1 14.23 2160 Unknown U - 35 -1 -1 -1 0 1 2 -1.1 1.3 1.2 

252 967 14.29 2170 Unknown U - DT 0 0 -1 NA 1 1 -1.2 - 1.2 

255 225.2 14.36 2182 Unknown U - DT -1 -1 0 2 0 0 -1.3 2.3 -1.0 

257 669 14.42 2193 Unknown U - DT,35 0 0 NA NA 1 2 -1.2 - 1.5 

263 167 14.61 2226 Unknown U  DT 1 1 NA NA NA NA -1.0 - - 

276 155.1 15.06 2304 Unknown U - DT 0 0 0 NA 1 1 -1.0 - -1.2 

284 180.1 15.36 2357 Unknown U - DT 1 1 -1 -1 0 0 -1.1 -5.1 -1.1 

289 167 15.52 2386 Unknown U - DT NA NA NA NA 2 NA - - - 

291 342.2 15.60 2399 Unknown U - DT -1 -1 0 0 1 1 -1.0 1.2 -1.1 

292 111 15.63 2403 Unknown U - DT -1 -1 0 1 1 1 1.2 1.1 -1.1 

294 111 15.73 2421 Unknown U - DT -1 -1 1 2 0 0 1.2 1.2 1.0 

300 105.1 15.90 2451 Unknown U - DT -1 -1 0 2 0 0 -1.1 1.6 -1.2 

301 259.1 15.94 2459 Unknown U - DT -1 -1 0 1 0 1 1.1 1.4 1.1 

304 187.2 16.04 2475 Unknown U - DT -1 0 1 1 NA NA 2.0 1.2 - 

308 353.3 16.17 2498 Unknown U - DT -1 -1 1 2 -1 -1 -1.3 1.5 -1.4 

323 369.3 16.75 2600 Unknown U - 35 0 0 2 0 -1 -1 1.1 -1.7 -1.5 

334 159.1 17.18 2674 Unknown U - DT 1 2 0 -1 -1 -1 1.3 -1.2 -1.1 

340 204.1 17.40 2714 Unknown U - 35 -1 0 0 2 -1 0 1.2 1.6 1.3 
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349 311.3 17.82 2787 

M000000_A278013-101-

xxx_NA_2788,69_TRUE_VAR5_ALK_D278

931 (GOLM) 

U ? DT 1 2 NA NA 0 NA 1.5 - - 

352 191.1 18.11 2834 

M000000_A294006-101-

xxx_NA_2939,93_PRED_VAR5_ALK_NA 

(GOLM) 

U ? DT -1 -1 0 2 0 0 1.0 1.6 1.0 

357 129.1 18.41 2881 Unknown U - 35 1 1 1 -1 0 -1 1.2 -2.6 -2.4 

364 296.3 19.01 2975 Unknown U - 35 -1 -1 -1 0 0 2 1.2 1.4 1.2 

368 625.5 19.40 3036 Unknown U - 35 -1 0 0 -1 NA 2 20.8 -7.8 - 

369 275.2 19.47 3047 Unknown U - DT -1 -1 0 1 1 1 1.0 1.1 -1.2 

370 293.3 19.50 3051 Unknown U - DT 0 0 -1 -1 1 2 1.2 -2.1 1.4 

381 468.4 20.52 3206 Unknown U - DT -1 -1 -1 0 1 1 1.4 1.6 -1.1 

387 217.1 21.05 3250 Unknown U - DT 1 2 NA NA NA NA 1.3 - - 

394 237.1 22.07 3336 Unknown U - DT 1 1 -1 0 -1 -1 -1.4 3.0 2.3 

403 145.1 23.57 3462 Unknown U - 35 0 0 1 1 -1 -1 -1.0 1.0 -2.0 

415 217.1 24.60 3549 Unknown U - DT 2 0 NA NA NA NA -4.1 - - 

419 588.4 24.99 3582 Unknown U - DT 1 2 -1 NA 0 0 1.3 - -1.2 

423 129.1 26.48 3707 Unknown U - DT,35 -1 -1 0 0 2 1 -1.4 -1.2 -1.5 

424 145.1 26.68 3724 Unknown U - 35 -1 0 1 NA 2 NA 1.3 - - 

425 595.5 27.20 3767 Unknown U - 35 0 -1 1 1 1 -1 -1.2 1.1 -1.6 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 15 (15), 27 (27) and day 35 (35). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” 

indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with 

a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons 



404   Digital Appendix 

(HC), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM 

refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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S.dohrnii 

Appendix 94: Heatmap of unknown endometabolite intensities for the species-specific and daywise analysis of S. dohrnii in interaction with T. weissflogii.  

Medians of MST intensities, normalized to peak sum per sample and subsequently metabolite-wise auto scaled, are represented by a color code ranging from high (yellow) to low 

intensities (blue). White indicates the absence of the respective MST after data pre-processing. Metabolites are sorted according to classes (separated by black lines) and abundance 

patterns. Only metabolites significantly correlating with the separation of treatments and treatment per day are shown. The fold change of MST abundance in co-cultivation relative to 

mono-cultivation is given and coded with a second color code. Black indicates a higher abundance in co-cultivation, grey a higher abundance in mono-cultivation. 
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1 148.1 5.20 904 Unknown U - DT,15 0.8 1.7 NA NA NA NA 1.6 - - 

2 102.1 5.25 910 Unknown U - DT 1.1 1.3 -0.4 -0.2 -0.7 -1.2 1.1 1.1 -1.7 

21 102.1 6.20 1035 Unknown U - DT 1.5 1.0 -0.8 -0.1 -0.8 -0.7 -1.2 1.9 1.1 

39 166.1 6.85 1121 Unknown U - DT 1.3 1.0 -0.6 -1.0 0.3 NA -1.2 
-

14.9 
- 

41 174.1 6.89 1127 Unknown U - DT 0.9 1.4 -0.2 0.1 NA NA 1.2 1.3 - 

43 126.1 6.95 1135 Unknown U - DT 1.1 1.4 NA NA NA NA 1.2 - - 

49 227.1 7.15 1161 Unknown U - DT NA NA 1.2 1.3 NA NA - 1.1 - 

53 234.1 7.25 1174 Unknown U - DT 1.4 1.0 -0.4 -0.3 -1.0 -0.8 -1.2 1.1 1.6 

56 217.1 7.41 1195 Unknown U - DT 1.2 1.4 NA NA NA NA 1.1 - - 

57 103.1 7.43 1198 MesocosmC066 (Vidoudez) U ? DT 1.2 1.4 NA NA NA NA 1.1 - - 

60 166.1 7.53 1211 Unknown U - DT 1.5 1.1 NA NA NA NA -1.2 - - 

67 117.1 7.87 1256 Unknown U - DT 1.1 1.5 NA -0.5 NA NA 1.2 - - 

69 180.1 7.94 1265 Unknown U - DT 1.8 0.6 NA NA NA NA -1.9 - - 

70 217.1 7.95 1267 Unknown U - DT 1.3 0.9 NA NA NA 0.3 -1.2 - - 

Median MST intensity Fold change 

low -

10 

-
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-

2 
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73 126.1 8.06 1281 Unknown U - DT 1.4 1.2 NA NA NA NA -1.1 - - 

74 306.2 8.07 1282 Skel_Cell_C021 (Vidoudez) U ? DT 0.9 1.2 -1.0 NA -0.2 0.4 1.2 - 1.5 

75 196.1 8.16 1294 Unknown U - DT 0.7 0.9 -1.2 NA 0.8 0.2 1.1 - -1.4 

79 199.1 8.48 1336 Skel_MEDIA_C097 (Vidoudez) U  DT 1.1 1.1 0.0 -0.1 -1.5 -0.6 -1.0 -1.0 1.6 

80 111.1 8.50 1339 Skel_MEDIA_C097 (Vidoudez) U  15 -1.5 0.0 0.6 1.3 -0.7 0.4 1.6 1.1 1.3 

85 217.1 8.68 1363 
EITTMS_N12C_ATHR_1770.9_1135EC25_ 

(GOLM) 
U ? DT 1.2 1.4 NA NA NA NA 1.1 - - 

86 218.1 8.71 1367 Unknown U - DT 0.5 0.1 NA NA 0.6 1.2 -1.3 - 1.4 

89 243.1 8.81 1380 
EITTMS_N12C_ATHR_1456.1_1135EC44_ 

(GOLM) 
U ? DT 1.1 1.5 NA NA NA NA 1.2 - - 

92 148.1 8.90 1392 Unknown U - DT 1.4 1.2 NA NA NA NA -1.1 - - 

93 217.1 8.96 1400 Unknown U - DT 1.0 1.5 NA NA NA NA 1.3 - - 

95 129.1 9.00 1405 Unknown U - DT 0.2 1.9 NA NA NA NA 3.2 - - 

96 240.1 9.03 1409 Unknown U - DT -0.4 -0.8 -0.5 -0.9 1.1 1.4 -1.2 -1.2 1.1 

97 201.1 9.07 1415 
EITTMS_N12C_ATHR_1442.5_1135EC44_ 

(GOLM) 
U ? DT 1.2 1.0 -0.6 -0.7 -1.3 0.3 -1.0 -1.0 1.5 

99 103.1 9.21 1433 Unknown U - DT 0.8 1.7 NA NA NA NA 1.6 - - 

100 217.1 9.23 1436 Unknown U - DT 1.1 1.5 NA NA NA NA 1.2 - - 

102 318.2 9.30 1445 Unknown U - DT 1.4 1.0 -0.7 0.0 NA NA -1.2 4.3 - 

104 253.1 9.35 1452 Unknown U - DT NA NA 1.1 1.4 NA NA - 1.2 - 

105 103.1 9.38 1455 
EITTMS_N12C_ATHR_1479.3_1135EC44_ 

(GOLM) 
U  DT 1.2 1.3 NA NA NA NA 1.1 - - 

106 318.2 9.43 1463 Unknown U - DT 1.2 1.3 NA NA NA NA 1.0 - - 

110 123.1 9.51 1473 Unknown U - DT 1.2 1.3 -0.7 -0.7 -0.6 -0.5 1.0 -1.1 1.2 

114 228.1 9.64 1490 Unknown U - DT 1.6 0.8 -0.6 -0.8 -0.4 -0.6 -1.4 -1.3 -1.3 
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115 245.1 9.67 1494 Unknown U - DT 0.0 0.0 NA NA 1.1 1.2 -1.0 - 1.0 

116 228.1 9.68 1496 Unknown U - DT 1.5 1.0 -0.9 -0.7 -0.5 -0.3 -1.1 1.1 1.1 

117 197.1 9.74 1504 Unknown U - DT 1.2 1.4 -0.6 -0.9 -0.6 -0.5 1.1 -1.8 1.0 

118 335.2 9.77 1507 Unknown U - DT -0.4 -0.2 NA NA 1.2 1.3 1.3 - 1.0 

122 198.1 9.92 1527 Unknown U - DT 1.3 1.0 -0.9 NA -0.2 -0.1 -1.1 - 1.1 

124 157 9.99 1536 Unknown U - 15 -0.5 -0.3 1.7 NA 0.4 -0.1 1.4 - -1.5 

130 166.1 10.19 1563 Unknown U - DT 1.4 1.1 NA NA NA -0.6 -1.2 - - 

132 243.2 10.25 1571 Unknown U - DT 1.3 1.3 NA NA NA NA 1.0 - - 

145 235.1 10.75 1637 Unknown U - DT 1.3 1.2 NA NA NA NA -1.1 - - 

146 129.1 10.78 1640 Unknown U - DT 1.1 1.5 NA NA NA NA 1.2 - - 

147 257.1 10.80 1644 Unknown U - DT 0.8 1.7 NA NA NA NA 1.7 - - 

150 226.1 10.89 1655 Unknown U - DT 0.2 0.1 NA NA 1.0 1.0 -1.1 - 1.0 

151 217.1 10.90 1657 Unknown U - DT 1.2 1.4 NA NA NA NA 1.1 - - 

153 217.1 10.95 1664 Unknown U - DT 1.4 1.2 NA NA -0.5 -0.5 -1.1 - -1.3 

166 318.2 11.41 1724 Unknown U - DT 1.1 1.4 NA NA NA NA 1.2 - - 

169 217.1 11.53 1740 Unknown U - DT 1.1 1.5 NA NA NA NA 1.2 - - 

171 318.2 11.61 1750 Unknown U - DT 0.9 1.6 NA NA NA NA 1.4 - - 

173 392.2 11.68 1759 Skel_cell_C065 (Vidoudez) U  DT -0.3 -0.2 -0.9 -0.8 0.4 1.8 1.0 1.2 1.8 

175 331.2 11.72 1765 Unknown U - DT -0.3 0.1 NA NA 1.0 1.3 1.6 - 1.1 

178 143.1 11.78 1772 Unknown U - DT 0.1 0.4 NA NA 1.2 0.8 1.2 - -1.2 

179 392.2 11.81 1777 Skel_cell_C065 (Vidoudez) U  DT -0.5 -0.2 -1.0 -0.8 0.9 1.5 1.2 1.3 1.3 

183 392.2 11.95 1795 Skel_cell_C065 (Vidoudez) U  DT -0.4 -0.2 -1.0 -0.9 1.0 1.5 1.2 1.3 1.2 

184 276.1 11.99 1801 Unknown U - DT -0.3 -0.5 -0.9 -0.8 1.2 1.4 -1.3 1.1 1.1 



408   Digital Appendix 

ID 
Model 

ion 
RT RI Name Class Ident Analysis 

Median  

(Co: n=3, Mono: n=5/6) 

Fold  

(Co relative to 

Mono) 

Day 15 Day 27 Day 35 

D
a

y
 1

5
 

D
a

y
 2

7
 

D
a

y
 3

5
 

M
o

n
o

 

C
o

 

M
o

n
o

 

C
o

 

M
o

n
o

 

C
o

 

190 218.1 12.19 1828 
EITTMS_N12C_STUR_1832.7_1135EC29_ 

(GOLM) 
U  DT 0.0 -0.1 -1.0 -1.1 1.5 0.6 -1.1 -1.3 -1.4 

191 347.2 12.23 1832 Unknown U - DT 0.5 0.3 NA NA 1.4 0.2 -1.1 - -1.8 

200 205.1 12.49 1867 Unknown U - DT -0.3 -0.2 NA NA 1.0 1.4 1.2 - 1.2 

202 307.2 12.55 1875 Unknown U - DT -0.8 -0.8 -0.5 -0.4 1.2 1.3 1.0 1.2 1.0 

214 215.2 12.98 1941 Unknown U - DT 1.5 0.8 -0.4 0.0 -1.1 -0.9 -1.3 1.4 1.5 

225 156.1 13.36 2007 Unknown U - DT 1.2 1.3 -0.4 -1.2 -0.4 -0.5 1.0 -1.6 -1.0 

227 156.1 13.43 2020 Unknown U - DT 1.2 1.3 -0.4 -1.1 -0.7 -0.3 1.0 -1.5 1.2 

236 217.1 13.74 2074 Unknown U - DT 1.2 1.4 NA NA -0.6 -0.6 1.1 - 2.5 

237 133.1 13.75 2076 Unknown U - DT 1.2 1.4 NA NA NA NA 1.1 - - 

244 311.2 14.04 2127 Unknown U - DT -0.5 -0.4 0.9 1.6 NA NA 1.4 1.4 - 

246 173.1 14.12 2142 Unknown U - DT -1.1 -1.2 0.8 0.3 1.2 0.0 -1.0 -1.1 -1.4 

257 669 14.42 2193 Unknown U - DT -0.3 -0.4 NA NA 1.4 1.0 -1.0 - -1.2 

263 167 14.61 2226 Unknown U  DT 1.3 1.3 NA NA NA NA -1.0 - - 

268 323.3 14.82 2262 Unknown U - DT 0.9 1.0 -0.7 0.8 NA NA 1.0 7.0 - 

283 370.2 15.30 2347 Unknown U - DT 1.0 1.1 0.1 0.2 NA -1.1 1.0 1.0 - 

284 180.1 15.36 2357 Unknown U - DT 1.3 1.2 -0.6 -0.3 -0.8 -0.9 -1.0 1.2 -1.1 

285 211.2 15.38 2360 Unknown U - DT 1.0 1.5 NA NA -0.3 NA 1.3 - - 

288 384.3 15.48 2378 Unknown U - DT 0.3 0.7 0.8 0.7 -1.2 -1.3 1.2 -1.0 -1.1 

292 111 15.63 2403 Unknown U - DT NA NA 1.3 1.3 NA NA - -1.0 - 

294 111 15.73 2421 Unknown U - DT -0.6 NA 0.9 1.6 NA NA - 1.5 - 

296 255.2 15.77 2429 Unknown U - DT -1.0 -1.3 0.1 0.0 1.3 0.8 -1.2 -1.0 -1.1 

299 370.2 15.85 2443 Unknown U - DT 1.2 1.2 -0.2 -0.2 NA NA -1.0 -1.0 - 

304 187.2 16.04 2475 Unknown U - DT,15 -0.4 NA 1.4 1.1 NA NA - -1.2 - 
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305 370.2 16.06 2480 Unknown U - DT 1.1 1.1 -0.2 0.3 -1.2 -1.1 1.0 1.5 8.2 

316 149 16.57 2567 Unknown U - 15 0.3 1.7 NA NA NA 0.3 2.2 - - 

333 195.1 17.13 2666 Unknown U - DT 1.1 1.4 NA NA NA NA 1.2 - - 

336 195.1 17.23 2684 Unknown U - DT 1.5 1.0 NA NA NA NA -1.3 - - 

340 204.1 17.40 2714 Unknown U - DT -1.2 -0.9 1.4 0.9 -0.1 0.0 1.4 -1.2 1.0 

344 175.1 17.62 2752 Unknown U - DT 1.4 1.2 NA NA NA NA -1.1 - - 

348 361.2 17.77 2777 Unknown U - DT -1.1 -1.1 1.1 1.1 0.0 0.1 -2.6 1.0 1.1 

349 311.3 17.82 2787 

M000000_A278013-101-

xxx_NA_2788,69_TRUE_VAR5_ALK_D278931 

(GOLM) 

U ? DT 1.6 1.0 NA NA NA NA -1.4 - - 

352 191.1 18.11 2834 

M000000_A294006-101-

xxx_NA_2939,93_PRED_VAR5_ALK_NA 

(GOLM) 

U ? DT -1.3 -1.2 0.3 0.7 1.2 0.3 1.0 1.1 -1.3 

354 103.1 18.20 2848 Skel_Cell_C145 (Vidoudez) U ? DT 1.1 1.5 NA NA NA NA 1.2 - - 

357 129.1 18.41 2881 Unknown U - DT 1.2 1.4 NA NA NA NA 1.1 - - 

360 113.1 18.63 2915 Unknown U - DT 2.0 -0.3 NA NA NA NA -15.5 - - 

371 227.2 19.58 3064 Unknown U - DT -0.4 -0.5 1.2 1.3 -0.9 -0.7 -1.2 1.0 1.7 

372 126.1 19.70 3082 Unknown U - DT 1.2 1.4 NA NA NA NA 1.1 - - 

375 337.3 19.81 3099 Unknown U - DT -0.2 -0.5 0.8 1.6 -0.7 -1.0 -1.4 1.4 -1.6 

381 468.4 20.52 3206 Unknown U - DT,15 -0.8 0.2 -0.7 -0.7 1.8 0.3 2.2 1.0 -1.8 

383 143.1 20.78 3228 Unknown U - DT -0.1 0.0 NA NA 1.5 0.7 1.1 - -1.5 

387 217.1 21.05 3250 Unknown U - DT 0.6 1.8 NA NA NA NA 2.0 - - 

389 143.1 21.44 3284 Unknown U - DT -0.4 0.4 NA NA 1.3 0.9 2.0 - -1.2 

409 217.1 23.95 3494 Unknown U - DT 0.8 1.7 NA NA NA NA 1.7 - - 

415 217.1 24.60 3549 Unknown U - DT 0.8 1.6 NA NA NA NA 1.5 - - 
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419 588.4 24.99 3582 Unknown U - DT 1.6 0.9 NA NA NA NA -1.5 - - 

In case derivatized molecules are detected, the table entry lists their putative parent compounds. Each MST is characterized by ID, model ion, retention time (RT), retention index (RI) 

and its underlying CAP analysis. CAP analyses comprised the overall analysis with a-priori grouping by treatment and day (DT), with a-priori grouping by treatment (T), as well as 

daywise subset analysis on day 15 (15), 27 (27) and day 35 (35). Metabolites were identified via libraries. If metabolites were verified with a standard, they are marked with *. “?” 

indicates a reversed match between 700 and 800, “??” a reversed match between 600 and 700 and “???” indicates cases where the reversed match was ≤ 600. “¹” tags metabolites with 

a match smaller than 600. Class abbreviations: Amine (A), alcohol (Alc), alkaloid (Alk), carboxylic acid (CA), complex sugar (CS), derivatives of a certain class (dv.), hydrocarbons 

(HC), sugar (S), sugar alcohol (S Alc), sugar acid (S Acid), sterol (St), terpene (T), others (O), unknown (U). Vidoudez refers to an MST code given by the inhouse library, GOLM 

refers to an MST code given by distinct libraries of the Golm Metabolome Database. 
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7.4 Appendix: Modified CAP function for R 

my.CAP <- function(y,group, m=2, trace=T) 

### Canonical analysis of principal coordinates 

### author: Jens Schumacher 

### date: 11.11.2015 

### following the original description from  

### Anderson&Willis: Ecological archives E084-011-A1   

   

{ 

### number of observations 

  N <- nrow(y) 

### principal coordinate analysis 

  if (!is.factor(group)) {group <- as.factor(group)} 

 

### distance matrix   

require(vegan) 

  D <- as.matrix(vegdist(y)) 

### modified distance matrix 

  A <- as.matrix(-D^2/2) 

### centering according to formula (A.1) 

  rowmeans <- matrix(rowMeans(A), nrow(A), ncol(A)) 

  colmeans <- matrix(colMeans(A), nrow(A), ncol(A), byrow=T) 

  G <- A-rowmeans-colmeans+mean(A) 

### eigenanalysis 

  temp <- eigen(G) 

  Q <- temp$vectors 

  lambda <- temp$values 

if (trace==T) 

{ 

cat("Principal Coordinate Axes (unconstrained)\n") 

cat("        Axes\n") 

cat("Sample      ") 

for (i in 1:m)  cat(i,"              ") 

cat("\n") 

for( i in 1:N) 

{ 

  cat(format(i,width=3),"  ") 

  for (j in 1:m) cat(format(Q[i,j]*sqrt(lambda[j]),width=13,nsmall=10),"  ") 

  cat("\n") 

} 

} 
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### canonical analysis 

  X <- model.matrix(~group-1) 

  require(MASS) 

  H <- X %*% ginv(t(X)%*% X) %*% t(X) 

  Qm <-] 

  temp <- eigen(t(Qm) %*% H %*% Qm) 

  delta2 <- temp$values 

  U <- temp$vectors 

  Q.star <- Qm %*% U 

 Q[,1:m 

  Q.star.rescaled <-  Q.star* matrix(sqrt(delta2),byrow=T,N,m)    

if (trace==T) 

  { 

cat("---------------------------\n") 

cat("Results: CANONICAL ANALYSIS\n") 

cat("---------------------------\n\n") 

cat(" Eigenvalues (Correlations)\n") 

for (i in 1:m) cat(sqrt(delta2[i]), "   ") 

cat("\n\n") 

 

cat(" Squared correlations)\n") 

for (i in 1:m) cat(delta2[i], "   ") 

cat("\n\n") 

 

cat("Canonical Axes (constrained)\n") 

cat("        Axes\n") 

cat("Sample      ") 

for (i in 1:m)  cat(i,"              ") 

cat("\n") 

for( i in 1:N) 

{ 

  cat(format(i,width=3),"  ") 

  for (j in 1:m) cat(format(Q.star.rescaled[i,j],width=13,nsmall=10),"  ") 

  cat("\n") 

} 

} 

### what results should be kept? 

list(trace.stat=sum(delta2), delta2.stat=delta2[1]) 

} 
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my.CAP.perm <- function(y,group,m=2, chamber,chamberlabels, perm.anz=9999, seed=13) 

{ 

  ### function for constrained permutation 

  permute.labels <- function(chamberlabels) 

  { 

    index <- sample(1:nrow(chamberlabels)) 

    t(apply(chamberlabels[index,],1,sample)) 

  } 

   

  ### CAP for original data 

 # y <- y[order(chamber)] 

 #  group <- group[order(chamber)] 

   

  temp <- my.CAP(y,group,m, trace=F) 

  trace.stat.obs <- temp$trace.stat 

  delta2.stat.obs <- temp$delta2.stat 

   

  ### CAP for permuted data sets 

  set.seed(seed) 

  trace.stat <- rep(0, perm.anz) 

  delta2.stat <- rep(0, perm.anz) 

  for (i in 1:perm.anz) 

  { 

    if (i %% 100 ==0) print(i) 

     

    ### randomly shuffle group labels 

    chamberlabels <- permute.labels(chamberlabels) 

    group.perm <-vector(length = length(group)) 

 

     

    freq <- table(chamber) 

    for (j in 1:length(unique(chamber))) 

      { 

      group.perm[chamber==unique(chamber)[j]] <- sample(chamberlabels[j,],freq[j]) 

 

    } 

    group.perm <- factor(group.perm) 

    temp <- my.CAP(y,group.perm,m, trace=F) 

    trace.stat[i]<- temp$trace.stat 

    delta2.stat[i] <- temp$delta2.stat 

  } 
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  cat("-------------------------------------------\n") 

  cat(" Results:  PERMUTATION TEST\n") 

  cat("-------------------------------------------\n\n") 

   

  cat("  tr(Q_m'HQ_m) = ",    trace.stat.obs, " P = ",sum(trace.stat>trace.stat.obs)/(perm.anz+1),"\n") 

  cat("  delta_1^2    = ",    delta2.stat.obs, " P = ",sum(delta2.stat>delta2.stat.obs)/(perm.anz+1),"\n") 

  cat("-------------------------------------------\n\n") 

   

  cat("  No. of permutations used    = ",perm.anz, "\n") 

  cat("  Integer for the random seed = ", seed,"\n") 

   

  list(trace.stat, delta2.stat) 

} 

 

 

### function to classify new observation   

classify <- function(ynew, y, group, m) 

{ 

  N <- nrow(y) 

  D <- as.matrix(vegdist(y)) 

  A <- as.matrix(-D^2/2) 

  rowmeans <- matrix(rowMeans(A), nrow(A), ncol(A)) 

  colmeans <- matrix(colMeans(A), nrow(A), ncol(A), byrow=T) 

  G <- A-rowmeans-colmeans+mean(A) 

  Q <- eigen(G)$vectors 

  lambda <- eigen(G)$values 

   

  X <- model.matrix(~as.factor(group)) 

  require(MASS) 

  H <- X %*% ginv(t(X)%*% X) %*% t(X) 

  Qm <- Q[,1:m] 

  test2 <- eigen(t(Qm) %*% H %*% Qm) 

  delta2 <- test2$values 

  U <- test2$vectors 

  Q.star <- Qm %*% U 

  Q.star.rescaled <-  Q.star* matrix(sqrt(delta2),byrow=T,N,m)  

  ### centroids for groups 

  centroids <- matrix(0,length(unique(group)),m) 

  for (i in 1:m) 

   {  

    centroids[,i] <- tapply(Q.star.rescaled[,i], group, mean) 

   } 
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  Dnew <- as.matrix(vegdist(rbind(y,ynew))) 

  gnew <- rep(0,N) 

   

  for (i in 1:N) 

  { 

    gnew[i] <- -1/2*(Dnew[N+1,i]^2-mean(D[i,]^2)-mean(Dnew[N+1,-(N+1)]^2)+mean(D^2)) 

  } 

  qnew <- rep(0,m) 

  for (i in 1:m) 

    qnew[i] <- sum(gnew * Q[,i])/lambda[i] 

   

  qnew.star <- t(qnew) %*% U 

  qnew.star.rescaled <- qnew.star * sqrt(delta2)  

   

   

  dist.to.centroids <- as.matrix(dist(rbind(qnew.star.rescaled,centroids)))[1,-1] 

  levels(group)[as.numeric(which.min(dist.to.centroids))] 

}   ### end classify 

 

 

my.CAP.cv <- function(y,group,m=2, chamber) 

{ 

   

  ### leave-one-chamber-out cross validation 

  group <- factor(group) 

  group.cv <- group 

  for (i in 1:length(unique(chamber))) 

  { 

    y.minus <- y[-(chamber==unique(chamber)[i]),] 

    group.minus <- group[-(chamber==unique(chamber)[i])] 

    ynew <- y[(chamber==unique(chamber)[i]),] 

    index <- (chamber==unique(chamber)[i])*(1:nrow(y)) 

    index <- index[index>0] 

    for (j in 1:nrow(ynew)) 

    { 

      group.cv[index[j]] <- classify(ynew = ynew[j,],y=y.minus,group.minus, m=m) 

    } 

  } 

  cat("------------------------------------------------\n") 

  cat("Results cross validation (leave one chamber out)\n") 

  cat("------------------------------------------------\n\n") 
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  cat("         Classified into\n") 

  cat("         Group        %correct\n") 

  cat("Original\n") 

  result <- table(group,group.cv) 

  row.names(result) <- paste("Group",levels(group)) 

  print(cbind(result,diag(result)/rowSums(result)*100)) 

   

  cat("-------\n") 

  cat("Total correct = ", sum(diag(result)),"/",sum(result)," = ",sum(diag(result))/sum(result)*100, "%\n") 

  cat("Misclassification error = ", 100-sum(diag(result))/sum(result)*100, "%\n") 

} 

 

 

my.CAP.loo <- function(y,group,m=2, chamber) 

{ 

  ### leave-one-out cross validation 

  group <- factor(group) 

  group.cv <- group 

  for (i in 1:nrow(y)) 

  { 

    y.minus <- y[-i,] 

    group.minus <- group[-i] 

    ynew <- y[i,] 

    group.cv[i] <- classify(ynew = ynew,y=y.minus,group.minus, m=m) 

     

  } 

  cat("------------------------------------------------\n") 

  cat("Results cross validation (leave one out)\n") 

  cat("------------------------------------------------\n\n") 

   

  cat("         Classified into\n") 

  cat("         Group        %correct\n") 

  cat("Original\n") 

  result <- table(group,group.cv) 

  row.names(result) <- paste("Group",levels(group)) 

  print(cbind(result,diag(result)/rowSums(result)*100)) 

   

  cat("-------\n") 

  cat("Total correct = ", sum(diag(result)),"/",sum(result)," = ",sum(diag(result))/sum(result)*100, "%\n") 

  cat("Misclassification error = ", 100-sum(diag(result))/sum(result)*100, "%\n") 

} 


