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Summary 

Age-related macular degeneration (AMD) represents the most common cause of blindness in 

developed countries. The disease is characterized by the formation of drusen at the macula 

followed by the degeneration of retinal pigment epithelium (RPE) with photoreceptors. 

Aging, smoking and oxidative stress are considered to contribute to AMD risk. In addition, 

genetic findings have revealed that variants in complement component genes such as factor 

H,   factor I and C3 are significantly associated with AMD, indicating that abnormal 

complement activation and innate immunity are also linked to the development of AMD. The 

complement system is a major part of innate immunity and plays an essential role in cellular 

homeostasis, host defense and inflammation. Dysregulated complement function or 

abnormal activation have been implicated in AMD and many other diseases. Although the 

underlying pathogenic mechanism is still unclear, recent genetic studies have reported that a 

polymorphism rs10490924 linked with an indel mutation del443ins54 in the ARMS2 

(age-related maculopathy susceptibility 2) gene is strongly associated with AMD. 

Polymorphism rs10490924 results in replacement of alanine by serine at amino acid position 

69 (A69S), and the associated indel results in ARMS2 transcript instability. However, the 

source of ARMS2, the function of the ARMS2 protein and the biological consequences of the 

polymorphism are poorly understood. Thus, I aimed to characterize the subcellular 

distribution and function of the ARMS2 protein, functional consequences of the AMD 

associated polymorphism in ARMS2, and the effect of complement activation on human RPE. 

This thesis builds on results from a previous study in the department showing ARMS2 

interaction with properdin.  

In the present work, ARMS2 gene- and protein expression were identified in human induced 

pluripotent stem cell-derived microglia (iPS-derived microglia) and human monocytes by PCR 

and laser scanning microscopy, whereas no expression was detected in murine macrophage 

RAW264.7. For the first time, endogenous ARMS2 was localized in the cytoplasm of human 

blood-derived monocytes as determined by fluorescence microscopy and three different 

ARMS2 antibodies. ARMS2 is weakly expressed in monocytes, but synthesis increased upon 

oxidative stress, indicating that ARMS2 is involved in the response to oxidative conditions. To 

confirm its expression, ARMS2 was pulled down from THP-1 cell lysate by 

immunoprecipitation using a newly generated ARMS2 monoclonal antibody and ARMS2 

peptides were identified by mass spectrometry. AMD patients homozygous for the risk 

variant (rs10490924) showed no ARMS2 protein in their blood-derived monocytes, thus 

supporting the instability by the indel variation.  

Recombinant ARMS2 expressed in Pichia pastoris is a glycosylated protein of 17 and 34 kDa 

and forms homodimers. An interaction of ARMS2 with the complement activator protein 

properdin was demonstrated by ELISA and biolayer interferometry, suggesting an activating 

role of ARMS2 in the complement system. The responsible interaction domain in ARMS2 for 

properdin was located to the sequence FFSPAGTQRRF within the C-terminus of ARMS2. 

ARMS2 binds to apoptotic cells via interaction with heparan sulfate, but not via DNA or lipids 

and acts as a complement activator on these surfaces. ARMS2 bound to ARPE-19 cells, 

enhanced complement activation and opsonization for phagocytosis. Recombinantly 
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expressed and purified under the same conditions, the ARMS2 variant A69S, showed a 

similar binding activity to ARMS2, indicating that the indel mutation, not this polymorphism, 

effects protein functions. Oxidative stress, one of the risk factors for AMD, decreased viability 

of   ARPE-19 cells and led to increased complement activation on the surface. Notably, 

activated complement in oxidatively stressed ARPE-19 cells greatly enhanced vascular 

endothelial growth factor (VEGF) secretion, which is associated with the exudative form of 

AMD. Oxidative stress also upregulated intracellular synthesis of complement C3 and FH, but 

the contribution to complement activation is still unclear.  

Taken together, this dissertation identified the endogenous expression and a new function of 

ARMS2. This protein is expected to be involved in the clearance of dying cells by complement 

mediated phagocytosis. Thus, deficiency of ARMS2, as seen with the indel variation, likely 

reduces clearance of dead cells in the retina and enhances drusen formation, the typical 

characteristics of AMD. 
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Zusammenfassung 

Die altersbedingte Makuladegeneration (AMD) ist die häufigste Ursache von Blindheit in den 

Industriestaaten und ist durch die Bildung von Ablagerungen in Form von sognannten Drusen 

an der Makula charakterisiert, sowie der Degeneration des retinalen Pigmentepithels (RPE) 

mit den Photorezeptoren. Alterung, Rauchen und oxidativer Stress erhöhen das Risiko an 

einer AMD-zu erkranken. Gen-Variationen in Komplementkomponenten, wie Faktor H, 

Faktor I und C3 sind signifikant mit dem AMD-Risiko assoziiert sind und zeigen eine 

prominente Rolle von Komplement bei der AMD. Das Komplement-System ist ein wichtiger 

Bestandteil des angeborenen Immunsystems und spielt eine wesentliche Rolle in der 

zellulären Homöostase, Wirtsverteidigung und Entzündung. Dysregulierte 

Komplementfunktionen wurden mit der AMD und vielen anderen Krankheiten in Verbindung 

gebracht. Jüngste genetische Studien haben auch gezeigt, dass ein Polymorphismus im 

ARMS2-Gen eine starke Assoziation mit AMD aufweist. Der Polymorphismus rs10490924 

erzeugt einen Austausch von Alanin durch Serin an Aminosäureposition 69 (A69S) und ist 

gleichzeitig mit einer Indel-Mutation im untranslatierten Bereich von ARMS2 verknüpft. Der 

Polymorphismus rs10490924 mit der Indel Mutation soll zu einer geringeren Stabilität des 

ARMS2-Transkriptes führen. Die in vivo Expression von ARMS2, die Funktion des ARMS2 

Proteins und die Konsequenzen des Polymorphismus sind noch weitestgehend unklar. 

Deshalb war das Ziel meiner Dissertation, die subzelluläre Verteilung des ARMS2-Proteins zu 

bestimmen, die funktionellen Konsequenzen des AMD-assoziierten Polymorphismus in 

ARMS2 zu untersuchen und die Konsequenzen einer Komplementaktivierung auf humanen 

retinalen Pigment Epithelzellen zu charakterisieren. Die Arbeiten schließen an eine 

vorangehende Studie über die Interaktion von ARMS2 mit Properdin in der Abteilung 

Infektionsbiologie an.  

In der vorliegenden Arbeit wird gezeigt, dass ARMS2 in induzierten, pluripotenten humanen 

Stammzell-abgeleiteten Mikroglia-Zellen (iPS-abgeleitete Mikroglia) sowie humanen Blut 

isolierten Monozyten exprimiert wird, während keine Expression in murinen Makrophagen 

RAW264.7 nachweisbar ist. Das endogene ARMS2 wurde im Zytoplasma menschlicher Zellen 

mittels Mikroskopie mit drei verschiedenen ARMS2 Antikörpern detektiert. Die ARMS2 

Proteinlevel sind gering, aber die Synthese von ARMS2 steigt deutlich unter oxidativem 

Stress an, was darauf hinweist, dass ARMS2 als Reaktion auf oxidative Bedingungen aktiviert 

wird. Die ARMS2 Synthese in Monozyten wurde mit Hilfe der Immunpräzipitation und 

Massenspektrometrie von THP-1 Zellen unter Verwendung eines neuen ARMS2 

monoklonalen Antikörper nachgewiesen. Wie erwartet zeigten AMD-Patienten mit der 

homozygoten Risikovariante (rs10490924) kein ARMS2-Protein in ihren Blutmonozyten, was 

damit die Instabilität der ARMS2 RNA durch die indel Mutation bestätigte . 

Rekombinantes ARMS2-Protein ist ein glykosyliertes Protein von 17 und 34 kDa und bildet 

Homodimere aus. Die Interaktion von ARMS2 mit Properdin wurde durch 

Bio-Layer-Interferometrie charakterisiert und bestätigte die Rolle von ARMS2 al Aktivator des 

Komplementsystems. Die verantwortlichen Properdin Bindungsdomäne wurde in ARMS2 in 

der Sequenz FFSPAGTQRRF im C-terminus von ARMS2 lokalisiert. ARMS2 bindet an 

apoptotische Zelle über die Interaktion mit Heparansulfat, aber nicht über DNA oder Lipide, 
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und erhöht die Komplement vermittelte Opsonisierung der Zellen. Die A69S ARMS2 Variante 

wurde ebenfalls rekombinant exprimiert und zeigte eine ähnliche Mobilität und 

Bindungsaktivität wie ARMS2, so dass dieser Polymorphismus alleine ohne die Indelvariation 

die Proteinfunktion vermutlich nicht ändert. Die Wirkung von oxidativem Stress, welches 

einer der Risikofaktoren für AMD ist, verringert die Lebensfähigkeit von ARPE-19-Zellen und 

führt zu einer erhöhten Komplementaktivierung auf der Oberfläche, die durch FH gesteuert 

werden kann. Zusammen erhöhen aktiviertes Komplement und oxidativer Stress deutlich die 

VEGF-Synthese in ARPE-19-Zellen, was die Ausbildung einer exudativen AMD begünstigen 

könnte. Unter oxidativem Stress wird gleichzeitig intrazelluläres Komplement C3 und FH in 

ARPE-19-Zellen hochreguliert dessen Rolle im Prozess der Aktivierung noch unbekannt ist.  

Zusammenfassend zeigt diese Dissertation die endogene Expression von ARMS2 In 

Monozyten und dass dieses Protein vermutlich an der Komplement vermittelten Beseitigung 

von toten Zellen oder Zellmaterial durch Phagozytose beteiligt ist. Das Fehlen von ARMS2 

könnte die Ablagerung von Zellmaterial in Form von Drusen erhöhen, welches ein 

charakteristisches Merkmal der AMD darstellt. 
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1. Introduction 

1.1 The human immune system 

The immune system is a defense system that protects host against foreign microorganisms or 

injury. It consists of numerous biological molecules and immune cells. Disorders of the 

immune system can result in various diseases. In many species, the immune system can be 

classified into an innate and adaptive immune system.  

1.1.1 The innate and adaptive immune system 

Innate immunity is the first line of host defense that is found in all species from primitive 

multicellular organisms to vertebrates [1]. Anatomical barriers, natural antimicrobial 

products, immune cells, pattern recognition receptors (PRRs), cytokines, the coagulation 

system and the complement system are critical innate immunity components in vertebrates 

(Figure 1) [1, 2]. PRRs are proteins located on the cell surface and/or in the cytoplasm that 

recognize a variety of microbial molecules as well as endogenous inflammatory signals 

derived from damaged cells [3]. The pathogens can be sensed via their carbohydrates, 

nucleic acids, peptides, peptidoglycans and fungal glucans by both immune cells such as 

mast cells, natural killer (NK) cells, macrophages, monocytes, dendritic cells (DCs), 

neutrophils, B cells, regulatory T cells and non-immune cells including epithelial cells, 

endothelial cells and fibroblasts. The cytoplasmic PRRs regulate inflammatory and apoptotic 

responses. The recognition of endogenous ligands is involved in the development of a variety 

of chronic inflammatory and autoimmune diseases [1, 3]. Cytokines are a broad of proteins 

including chemokines, interleukins, interferons and tumor necrosis factors produced by 

immune cells and non-immune cells. They act in cell signaling, inflammation and in response 

to infection through different cell surface receptors, subsequently active intracellular 

signaling cascades and regulate cell functions. Immune regulation by cytokines is crucial in 

maintaining immune homeostasis, promoting responses to infection, resolving inflammation, 

and promoting immunological memory. Cytokine responses also drive pathology in many 

immune-mediated diseases [4].  

The innate immune response occurs soon after pathogen exposure. It is carried out by 

phagocytic cells such as neutrophils, macrophages, cytotoxic NK cells, and 

antigen-presenting cells, like DCs. Macrophages and DCs are differentiated from monocytes, 

a subset of circulating white blood cells [5]. Bloodstream monocytes are derived from 

precursors in the bone marrow, and are divided into subsets that differ in size, trafficking and 

innate immune receptor expression, and in their ability to differentiate following stimulation 

with cytokines and/or microbial molecules [6, 7]. Circulating monocytes can leave the 

bloodstream and migrate into tissues during inflammation. They further differentiate into 

macrophages and DCs induced by local growth factors, pro-inflammatory cytokine and 

microbial products. The recruitment of monocytes is essential for an effective control and 

clearance of infections and damaged cells. But recruited monocytes also contribute to the 

pathogenesis of inflammatory and degenerative diseases [8, 9].   
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Figure 1. Overview of human immune system [2]. 

The immune system is a host defense system comprising innate and adaptive immune system. Innate 

immune defenses are rapid and random as well as target specific, while adaptive immunity is 

antigen-specific and requires the recognition of specific "non-self" antigens by antigen presentation 

processing. 

 

In addition to innate immunity, vertebrates have developed adaptive immunity. The adaptive 

response is largely dependent on the capacity of the innate immune system to distinguish 

self from non-self. Adaptive immunity is characterized by its major cellular players including 

B cells and T cells. They are subtypes of lymphocytes. B cells will differentiate into plasma 

cells that can produce and secrete antibodies in response to immune reaction, whereas T 

cells are involved in cell-mediated immunity [10]. T cells perform several distinct functions in 

the host body, such as cytokine secretion, recognition of specific peptide antigen presented 

on DCs or B cells, and providing immune memory of previously encountered pathogens [11, 

12]. 

1.1.2 Neuroimmune system 

In the brain, the blood-brain barrier (BBB) is important for the maintenance of brain 

homeostasis. BBB protects the brain from most pathogens and prevent macromolecules, 

toxins and leukocytes from passing through the barrier to reach the central nervous system 

(CNS) [13]. However, due to high oxygen metabolism in the brain, the production of reactive 

oxygen species (ROS) and pro-inflammatory cytokines may alter barrier structures. The 

increased permeability of the barriers activates glial cells such as microglia. Microglia are 

bone marrow-derived macrophage-like cells that constitute the resident mononuclear 

immune cells of the nervous system [14]. They play important roles in immune surveillance 

and maintaining homeostasis, and act as patrolling cells. Microglia are constantly surveying 

their environment for damaged neurons or infectious agents with extreme sensitivity in 

healthy brain [15]. When a neuronal damage is detected by microglia, they initiate specific 

programs that result in the transformation of ramified microglia into activated microglia. 
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Activated microglia become amoeboid shape and move to injured site and become 

phagocytes, clearing cellular debris by phagocytosis [16]. Blood-brain barrier disruption 

stimulate immediate activation of microglia, switching their behavior from patrolling to 

promoting protection of the damage area [17]. Activated microglia produce cytotoxic 

mediators such as tumor necrosis factor-α (TNF-α), nitric oxide, interleukin-1β (IL-1β), and 

ROS [15]. These mediators are critical for the functions of microglia and their production is 

usually decreased once their task is complete. But in chronic neuroinflammation, extended 

period of microglia activation leads to the overproduction of mediators, which in turn 

damage the brain barriers [15]. When the blood-brain barrier is impaired, peripheral 

immune cells, including monocytes, neutrophils, T cells and B cells, can enter the CNS and 

infiltrate into the injury site. Once infiltrated, the immune cells play a key role in modulating 

the progression of primary brain injury development.  

1.1.3 Activation of the human complement system  

The complement system is a major part of innate immunity to defend against infection and 

to clear altered host cells such as apoptotic particles and cellular debris. Also, it plays a key 

role in host homeostasis, inflammation and modifying the adaptive immune response. 

Complement is composed of soluble proteins, membrane expressed receptors and regulators 

which operate in plasma, in tissues, on cell surfaces, and even within the cells [18]. Local 

production of complement proteins by many types of tissue-resident cells and immune cells 

can enhance the functions of innate and adaptive immunity in health and disease. 

The activation of complement is divided into four steps: initiation of complement activation, 

C3 convertase activation and amplification, C5 convertase activation, and terminal 

complement pathway activation or the assembly of the membrane-attack-complex (MAC, 

also known as terminal complement complex, TCC) [19]. Complement can be initiated by 

three pathways, the alternative pathway (AP) is spontaneously and continuously activated on 

biological surfaces, the classical pathway (CP) is triggered by antigen-antibody interaction 

(immune complexes) and the lectin pathway (LP) is activated by the binding of 

mannan-binding lectin to certain sugars [20]. The central component of complement system 

is C3, the activation of three pathways leads to cleavage of C3 into the functional fragments 

C3a and C3b by C3 convertase. The convertase for the AP is formed by C3b and factor Bb, 

whereas the convertase for the CP and LP is composed of C4b and C2b [20]. Both 

convertases cleave C3 into C3a and C3b. C3b can bind to the cell surface via its own thioester 

bond or interaction with surface molecules that serve as platforms for C3b recruitment. C3b 

binds to C3 convertase to form another complex - C5 convertase which cleaves C5 into a 

potent anaphylatoxin C5a and a bioactive fragment C5b [21]. C5b recruits complement 

components C6, C7, C8 and C9 which polymerize to form the MAC C5b-9. The complex can 

form a pore in the target membrane inducing calcium influx and pathogen lysis. Host cells 

are protected from lysis by expression of CD59, which prevents the insertion of MAC, and by 

clusterin and vitronectin, which bind to C8 and prevent the insertion in the membrane [22, 

23]. The anaphylatoxins, C3a and C5a are constantly released during complement activation. 

They play a critical role in supporting inflammation and activation of cells that express 

anaphylatoxin receptors C3aR and C5aR, such as the induction of chemotaxis of microglia, 

naïve T cell activation and the regulation of cytokine expression of monocytes/macrophage 
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[24, 25, 26].  

Apart from C3 convertase, it has been demonstrated that C3 cleavage also occurs within 

human T cells mediated by cathepsin L into C3a and C3b. In resting T cells, this C3a binds to 

the intracellular C3a receptor and thereby mediates T cell activation [27]. It is clear now that 

intracellular C3 activation is ubiquitous in human cells to produce complement components. 

The liver is responsible for the synthesis of plasma complement proteins, but most 

complement components are unlikely to reach the brain due to the BBB. In these 

immune-privileged organs, including the brain and the eye, local production is the main 

source of complement [28]. The local complement functions to clear invading microbes in 

the brain. In age related diseases, such as Alzheimer's disease, abnormal complement 

activation and a local, chronic inflammatory response leads to attraction and activation of 

glial cells. The activated cells produce neurotoxic substances including pro-inflammatory 

cytokines and oxygen radicals which contribute to the disease [29]. Thus, local synthesis of 

complement proteins by glial cells and neurons plays critical roles in pathogen defense and 

neuroinflammation of the brain and the eye. 

 

Figure 2. Activation of the human complement system. 

The complement system is initiated by three pathways, the alternative pathway (AP), the classical 

pathway (CP) and the lectin pathway (LP). AP is permanently activated at low level by hydrolysis of 

C3 into C3(H2O) and induces alternative convertase C3bBb. The CP and LP are triggered by the 

interaction of recognition molecules on a target structure, both induce formation of the classical C3 

convertase C4bC2a. Complement activation leads to opsonization and phagocytosis by C3b deposition, 

bacterial lysis by C5b-9 membrane attack complex, and inflammation by anaphylatoxins C3a and C5a 

release and recruitment of immune cells. 

 

In healthy individuals, the AP is permanently active at low levels to survey for presence of 
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pathogens. The activation also occurs by membrane alterations and by decreased expression 

of complement regulators on the membrane of apoptotic cells [20]. It is constantly 

generated and tightly regulated to eliminate dying cells without further activation of other 

innate or adaptive immunity during normal cellular homeostasis. Healthy host cells are 

resistant to persistent low-grade complement activation and protected against complement 

attack by negative regulation of the AP C3 convertase mediated by decay acceleration factor 

(DAF), complement receptor 1 (CR1), C4b-binding protein, membrane cofactor protein (MCP) 

and factor H. Complement is fully activated in cases of pathogen infection. Once activated, 

complement cascade generates effector compounds that are delivered to the surface. During 

the infection, pathogens are attacked by three complement pathways triggered by 

recognition molecules including C1q, MBL and properdin. The recognition events induce the 

activation of the cascades and generate the CP and AP C3 convertases. The key role of 

complement in pathogen elimination is opsonization, which is characterized by the 

depositions of complement fragments such as C3b, iC3b and C4b on pathogen surfaces. 

Opsonization results in the recognition, phagocytosis and destruction of the pathogens by 

phagocytes which express specific receptors for C3 fragments. Ultimately, it leads to 

activation of the adaptive immune response [21]. The consequence is the elimination of 

pathogens. Furthermore, the complement also plays a major role in clearance of dying cells 

to maintain homeostasis. The inactive fragment of C3, iC3b, interacts with complement 

receptor 3 (CR3) on monocytes, macrophages and DCs and participates in the removal of 

apoptotic cells and induces anti-inflammatory response. C1q, part of the C1q-complex in 

classical pathway, recognizes a various of ligands that expressed on the surface of apoptotic 

cells which allows C3b deposition and inhibits macrophage inflammation [21]. However, 

mutations in the regulators result in deficient complement control and inappropriate 

complement activation products accumulation on host cell surfaces, which leads to 

complement attack and cell damage. Inefficient clearance of apoptotic cells increases debris, 

thus contribute to autoimmune diseases. 

1.1.4 Regulation of complement 

The C3 amplification loop is the center of all three complement pathways (Figure 2). This 

amplification loop is the balance between amplification enhancement and downregulation 

acting on C3 convertase formation. The downregulation cycle generates iC3b as inactive 

product. The complement system contains a couple of inactive components that are linked 

and activated in a cascade manner. Thus, progression of the cascade and the action of the 

effectors need to be strictly controlled at each level by multiple complement regulators and 

inhibitors. Such regulators and inhibitors discriminate between self and non-self surfaces, 

such as cells, tissues and pathogens, operate at every level of the cascade and therefore, are 

central to control complement activation. Lack of complement inhibitor induces alternative 

C3 convertase activation. 

1.1.4.1 Properdin 

During complement activation, the convertases are assembled on target surfaces and initiate 

the complement amplification loop. However, the AP C3 convertase C3bBb is a short-lived 

complex with a half-live time of about 90 s [30]. Therefore, a stabilization of this complex is 
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required to assure efficient activation. Properdin, a plasma component released by various 

cell types, such as activated neutrophils, T cells and monocytes, stabilizes the AP C3 

convertase 5-to-10 fold by association with the convertase more precise [30, 31]. Properdin 

forms cyclic dimers, trimers and tetramers by head-to-tail association of the 53 kDa protein 

[32]. Functional studies demonstrated that the oligomerization is essential for interaction 

with the C3bBb convertase since the oligomerization results in tighter interaction with C3b 

and is required for efficient stabilization of convertase [33]. Properdin binds C3bBb, as well 

as the pro-convertase C3Bb and C3b to activate complement, but the stabilization is most 

effective with C3bBb. Additionally, properdin is able to bind to pathogens, activated or 

damaged (apoptotic and necrotic) host cells to recruit C3b onto the surface and to induce 

the AP activation and phagocytosis [34]. The surface interaction was mediated by GAGs 

(glycosaminoglycans) which are important constituent of the cell membrane. GAGs play a 

critical role in complement regulation and participate in the protection of host tissues from 

complement damage by promoting inactivation of tissue-bound C3b [30]. Thus, properdin is 

not only a stabilizer of the C3 convertase, but also a pattern recognition molecule providing a 

platform for C3 convertase assembly.  

1.1.4.2 Complement factor H 

Accelerated dissociation of the AP C3 convertase and inactivation of C3b are critical steps to 

maintain complement homeostasis and to prevent non-specific damage to self-cellular 

components when complement is activated. If C3b is generated on host cells, it must be 

inactivated by regulatory proteins. To regulate complement activation, several inhibitors, 

primarily against AP, exist in the fluid phase and on host cells. Factor H is a soluble inhibitor 

of the C3 convertase, while membrane cofactor protein (MCP), decay acceleration factor 

(DAF) and complement receptor 1 (CR1) work as membrane inhibitors [19]. FH is an 

abundant (~500 μg/ml) 155 kDa plasma linear protein that belongs to the factor H protein 

family [35]. This glycoprotein is composed of 20 short consensus repeat (SCR) domains and 

regulates the alternative pathway. FH competes with factor B for binding to C3b and induces 

C3bBb complex dissociation and also serves as a cofactor to factor I which degrades C3b to 

inactive iC3b [19]. 

The N-terminal domains of FH, SCR 1-4, bind to C3b and contain the primary complement 

regulatory activity. SCR 1-4 of FH mediates cofactor and decay acceleration activities to 

regulate complement in the fluid phase and on surfaces. Decay-accelerating activity is 

characterized by the dissociation of Bb from the C3 convertase. SCR 19-20 FH harbors a 

second major binding site for C3b (Figure 3). SCR 19 binds to deposited C3b while SCR20 

recognizes the self-surface. Flexible peptide linkers between the SCRs allow the FH protein 

chain to fold back on itself. This enables FH to bind a single C3b molecule with both the N- 

and C-terminus, thereby increasing the avidity of the interaction [35]. Furthermore, two 

binding sites in SCR7 and SCR 19-20 allow FH to recognize negatively charged heparan sulfate 

(HS), malondialdehyde (MDA) and C-reactive protein (CRP) on the membrane [36-39] (Figure 

3). HS is a complex linear sulfated polysaccharide of the GAGs family that is present on host 

cell surface and in the extracellular matrix. HS attaches to particular core proteins to form HS 

proteoglycans which have essential roles in signaling and tissue homeostasis [40]. HS can 

accelerate the rate of conversion of C3b to iC3b by FH and FI, and this conversion is sulfation 
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dependent [41]. CRP is a regulator of innate immune system and exists as pentamer 

composed of 5 identical units in plasma. However, oxidative stress, low pH and bioactive 

lipids from activated or damaged cells can dissociate CRP into its subunits [42, 43]. This 

monomeric form of CRP induces pro-inflammatory responses which are inhibited by FH on 

ARPE-19 cells [44]. This inhibition is due to the interaction between FH and monomeric CRP, 

but not pentameric CRP. FH reduces oxidative stress by increased binding to oxidized 

phospholipids, thus preventing them from inflammatory activities [45]. 

Besides FH, there are FHL-1 (Factor H-like protein 1) and five factor H-related (CFHR) proteins 

that belong to FH protein family. FHL-1 arises from the alternative splicing of the factor H 

gene [46]. It is identical to FH for the first seven SCRs before terminating with a unique four 

amino acid C-terminus (Figure 3). It has been reported that FHL-1 is the main regulatory 

protein in Bruch’s membrane of the retina due to the ability to diffuse across the membrane, 

but full sized glycosylated FH cannot [47]. The factor H/CFHR family also comprises a group 

of highly related proteins that includes five CFHR proteins. The five CFHR genes are located 

downstream of the factor H gene at chromosome 1q32, and each CFHR gene codes for a 

plasma protein containing between five and nine SCRs that are very similar to SCRs in FH. 

Each member of this group binds to the central complement component C3b and regulates 

complement activation. While the functions of the family are not fully understood [48, 49].  

 

Figure 3. Structure of factor H. 

Domains of complement FH and FHL-1. C3 binding sites are highlighted in yellow and GAG binding 

domains in blue. FHL-1 protein is represented below according to their sequence similarity to FH. 

 

1.1.5 Complement-mediated diseases 

The importance of the complement system is reflected in many severe and life-threatening 

complement-mediated diseases. Both deficiency and overactivation of complement system 

are associated with increased susceptibility to infections or non-infectious diseases including 

chronic inflammatory, autoimmune diseases and cancer [21]. For example, impaired 

clearance of apoptotic cells, induced by lack of C1q complement activation due to deficiency 

of C1q, C1r, C1s, or C2 or C4 are associated with systemic lupus erythematosus (SLE) [50]. 

Complement overactivation due to uncontrolled C3 and/or C5 convertase activation is 

associated with or lead to C3 glomerulopathy (C3G), characterized by C3 deposits and 

intra-glomerular inflammation [51]. Furthermore, complement is considered as an immune 

surveillance system because modified self surfaces like on tumor cells activate complement, 

become opsonized and subsequently phagocytosed. However, tumor cells can develop 
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inhibitory mechanisms to block the complement cascade, thus preventing 

complement-mediated cytotoxicity [20]. Recent studies showed that complement activation 

leads to chronic inflammation and an immunosuppressive microenvironment. This induces 

angiogenesis and activates cancer-related signaling pathways. Meanwhile, cancer cells also 

secrete complement proteins that stimulate tumor growth upon activation via direct 

autocrine effect through C3aR and C5aR signaling [52].  

As a complement inhibitor, mutations or single-nucleotide polymorphisms (SNP) in the   

factor H gene that affect the function of the protein lead to an imbalance in complement 

regulation and specific diseases [53]. The major condition associated with the deficiency of 

FH is atypical hemolytic uremic syndrome (aHUS). Atypical HUS is caused by chronic, 

uncontrolled activation of the AP on the surface of endothelial cells in microvesicles and 

leads to renal failure [54]. AHUS-associated mutations are predominantly found in the 

C-terminal SCR19 and 20 of FH, the region responsible for cell surface association of FH and 

for mediating protecting the endothelium from complement damage [35]. One 

polymorphism in FH is also associated with age-related macular degeneration (AMD) and 

substantially enhances the risk to develop AMD [55]. Thus, genetic variations in factor H can 

affect different functions of the protein leading to distinct pathologies.  

1.2 Age-related macular degeneration (AMD) 

1.2.1 Retina 

The human retina is the inner layer of the eye and part of the human brain. It is a high 

organized and specialized neural network where light is converted into electrical impulses. 

The retina is an immune privileged space, composed of layers of neural cells (photoreceptor 

cells, bipolar cells and ganglion cells) and retinal pigment epithelial cells (RPE) (Figure 4) [55]. 

Nutrition is supplied to the retina by ophthalmic arteries which are separated from the retina 

by a basal membrane, so called Bruch’s membrane [56]. Transport across retinal blood 

vessels is controlled by the inner blood-retinal barrier (BRB) which consists of retinal vascular 

endothelium and retinal pigment epithelium tight junctions [57]. The high organized 

monolayer of RPE, has several roles in supporting the metabolically active photoreceptor 

layer. These include light absorption, the phagocytosis of photoreceptor outer segments 

(POS) membranes, controlling ion homeostasis, supplying a variety of nutrients and signaling 

molecules such as vascular endothelial growth factor A (VEGF-A) and maintaining the 

integrity of the outer BRB through tight junctions [58]. Meanwhile, the combination of light 

and oxygen brings oxidative stress to RPE. In addition, the RPE acts as a gateway for 

monocyte trafficking to the retina following direct or distant injury [59]. Thus, the integrity 

and functions of the RPE are essential for the homeostasis in the retina. Posterior to the RPE, 

the Bruch’s membrane forms together with the RPE the outer BRB which prevents the 

entrance of macromolecules and immune cells from the underlying choroid into the 

photoreceptor layer. The choroid contains a dense network of blood vessels which supplies 

oxygen and nutrients to the RPE, outer retina and optic nerve. The choroid consists of 

tissue-resident melanocytes, fibroblasts, macrophages, mast cells and DCs and enables the 

transport of molecules to the metabolically demanding RPE [60]. The conversion of light 
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signal into electrical impulses occurs in light sensory cells (cone and rod photoreceptors) in 

the retina. The cones enable us to distinguish different colors. Rod cells are more sensitive 

than cones, but have little role in color vision. Optimal vision requires a high-functioning 

central retina, in particular the macula [56].  

 

 

 

 

Figure 4. Structure of the human retina [55]. 

The retina is composed of several layers: ganglion cell 

layer, resident retinal microglia, bipolar cells, 

photoreceptor layer, the retinal pigment epithelium, the 

Bruch’ membrane and a choroidal vascular network. 

 

 

The macula is made up of millions of photoreceptor cells and responsible for the visual acuity. 

It is near the center of the human retina [57]. There are fovea and foveola regions within the 

macula containing high density of cone photoreceptors. Thus, the damage of the macula 

results in central vision loss.  

1.2.2 Age-related macular degeneration (AMD) 

Diseases of the retina and choroidal neovascularization such as AMD are the most common 

causes of severe visual loss in developed countries [61]. AMD is a slow, processive and 

degenerative disease and the major cause of central vision loss in elder individuals over 55 

years of age, with as many as 30 million people affected worldwide [62, 63]. AMD is 

associated with the formation of drusen in the retina and subsequent loss of photoreceptors. 

Drusen are visualized as whitish yellow extracellular deposits that accumulated between RPE 

and Bruch’s membrane, or sometimes between RPE and photoreceptors [64]. Many different 

molecules have been identified in drusen, including complement components, 

glycoconjugates, vitronectin, apolipoprotein, and lipids [65]. Macrophages have been 

detected in regressing drusen, suggesting that macrophages are recruited to eliminate the 

AMD lesions. The RPE is a major source of drusen components, and extracellular and 

serum-derived factors are also highly abundant.  

The pathology of AMD is characterized by degeneration involving the outer portion of the 

retina, retinal pigment epithelium, Bruch’s membrane, and less prominently, the 

choriocapillaris. AMD can be distinguished into early, intermediate and advanced forms that 

are associated with marked changes in normal retinal anatomy. Pathological changes during 

early stage AMD involve basal deposits in Bruch’s membrane which cannot be determined by 

clinical evaluation [66]. It often begins slowly and may remain asymptomatic. Patients’ first 
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symptoms are reduced visual acuity, non-specific blurred vision, and later also distorted 

vision. AMD can progress to the advanced form which will lead to central vision loss. 

Clinically, the advanced form can be further categorized as dry (atrophic) or wet (exudative) 

form. In the dry form of this disease, drusen are formed between the RPE and Bruch’s 

membrane, with photoreceptor loss or choriocapillaris attenuation and extensive RPE 

atrophy. Wet AMD shows the presence of choroidal neovascularization extending through 

Bruch’s membrane and the RPE into the subretinal space [56].  

 

 

Figure 5. Overview of AMD pathogenesis [65]. 

Early or intermediate dry AMD is associated with an accumulation of subretinal drusen and microglia, 

and a thickened Bruch’s membrane. Geographic atrophy is the advanced form of dry AMD which is 

characterized by photoreceptor degeneration, while neovascular AMD is characterized by the invasion 

of abnormal choroidal blood vessels and accompanying macrophages in the retina [65]. 

 

1.2.3 Risk factors of AMD 

AMD is a multifactorial disease with demographic, environmental, and genetic risk factors 

contributing to disease development. The pathogenesis is still unclear. Age is the strongest 

risk factor for AMD. Smoking is also a highly significant environmental factor [65]. Over the 

past decade, a large number of studies identified an uncontrolled activation of the 

complement cascade which contributes to the development and progression of AMD. This is 

supported by the fact that complement activation products such as C1q, C3 and C5 were 

identified in drusen [64, 67, 68, 69]. Moreover, the generation of anaphylatoxins C3a and C5a 

promotes leukocytes recruitment and choroidal neovascularization [70]. Genetic analyses 

identified genetic factors involved in AMD [66, 71]. More recently, numerous polymorphisms 

within the factor H gene and their correlation with susceptibility to AMD were described [66]. 

A single nucleotide polymorphism (SNP) rs1061170 that results in a coding change of 

tyrosine (Y) to histidine (H) in SCR 7 (amino acid position 402) of FH, increases AMD risk 

dramatically [66]. As a major AMD susceptibility gene, the Y402H polymorphism in factor H 

has been found to alter the protein’s specificity for the binding to GAGs and heparan sulfate 

(HS), but did not affect FH protein expression or complement regulatory function [72-77]. 

The interaction between FH and HS on the Bruch’s membrane is particularly important for 

complement control due to the absence of membrane-bound complement inhibitors on the 

membrane [73]. Detailed analysis of the mechanism revealed that FH H402 variant also binds 
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substantially less to MDA and oxidized phospholipids expressed on RPE compared to normal 

FH protein [37, 78]. The presence of MDA on the surface of RPE cells acts as a binding site for 

FH, to inhibit complement activation and inflammation [77, 78]. Therefore, the Y402H 

polymorphism in the factor H gene contributes to pro-inflammatory cytokine production that 

promote activation of macrophage and microglia [69, 79]. In vivo, the decreased ability of FH 

H402 to localize to Bruch’s membrane can result in impaired regulation of the complement 

AP and the production of pro-inflammatory mediators [40, 69, 73]. FH is also described to 

remove endogenous low-density lipoproteins (LDL) from human Bruch’s membrane [80]. 

Thus, low binding of FH H402 to the oxidized lipids may increase sub-RPE deposit formation 

and accumulation. Recently, FH Y402 was found to contribute to mononuclear phagocytes 

accumulation at the inflammatory site by inhibiting their elimination mediated by CD47. FH 

H402 increased subretinal phagocytes accumulation and limited microglia elimination, 

thereby influences subretinal inflammation in AMD [81]. Patients with early signs of AMD 

and carrying the FH H402 variant differed substantially according their retinal function when 

compared with non-risk carriers [82]. However, the rs1061170 has been identified as the 

major genetic factor for developing AMD in Caucasians though the allele is low in frequent in 

Chinese and Japanese populations [83]. Overall, these observations suggest that the FH risk 

variant H402 results in increased complement activation and reduction in the immune 

antioxidant defense, the retention of activated microglia cells in the retinal space, thereby 

enhancing the local chronic pro-inflammatory status, and contributing to AMD pathology. 

Other genetic variants in the factor H/CFHR gene cluster also modify the AMD risk, including 

a relatively common homozygous deletion of an 84-kb genomic fragment in chromosome 1 

that encompasses CFHR1 and CFHR3 genes [84, 85, 86]. This deletion is protective for AMD. 

CFHR1 and CFHR3 can compete with FH for binding to complement C3. Although CFHR1 

controls the activity of the C5 convertase and membrane insertion of MAC, deficiency of 

CFHR1 and CFHR3 likely enhances local regulation of FH [87]. Recently, a CFHR2 

polymorphism (rs3790414) was suggested as a risk factor for neovascular AMD in a cohort 

[88]. CFHR2 does not compete with factor H, and inhibits the AP C3 convertase and terminal 

complex assembly [89]. In addition, some variants in other complement component genes 

are associated with the risk of AMD, including complement component 2 (C2), C3, factor B 

and factor I genes [67, 68, 90, 91]. 

Microglia activation is associated with retinal degeneration and photoreceptor apoptosis [92]. 

In the normal retina, resident microglia mainly populate the plexiform layer and continuously 

scan their environment, phagocytose cell debris and secrete a variety of supporting factors. 

In cases of abnormal or degenerative processes in RPE, the photoreceptor layer or the 

ganglion cell layer microglia rapidly become activated. Microglia trigger inflammasome 

activation in RPE cells. Resident microglia and/or recruited blood-derived precursors migrate 

to the lesion sites, where they transform into amoeboid phagocytes. These effector cells may 

be protective or determental depending on their immunological phenotype and the local 

cytokine production [93]. 

1.2.3.1 Vascular endothelial growth factor (VEGF) 

In exudative AMD, abnormal blood vessels grow in choriocapillaris through Bruch's 
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membrane (choroidal neovascularization). These new blood vessels are fragile and ultimately 

leading to blood and protein leakage below the macula. VEGF plays a critical role in retinal 

and subretinal/choroidal neovascularization. The VEGF family in humans consists of several 

proteins: VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). VEGF-A is the 

major factor that stimulates vasculogenesis and angiogenesis [94]. This molecule is a 

homo-dimeric glycoprotein which is expressed by all vascularized tissues. There are several 

isoforms of VEGF-A produced from VEGFA gene by alternative splicing, and they show 

various expression patterns with contrasting characteristics [95]. In the eye, VEGF-A is the 

most abundant and an important factor of ocular homeostasis. Inhibition of VEGF confirmed 

that VEGF is the main growth factor in the retina leading to the increased angiogenesis 

within the eyeballs [61]. Angiogenesis is the physiological process that consists of the 

sprouting, migration and remodeling of existing blood vessels and plays important roles in 

many physiological processes [61]. Angiogenesis is regulated by the factors that stimulate 

and inhibit the formation of new blood vessels. Abundant factors are involved in this process, 

including the VEGF-VEGFR system. However, angiogenesis also occurs in several pathological 

conditions like cancer. Under normal conditions, RPE cells secret VEGF to support 

choriocapillaris. During retinal hypoxia, VEGF is also produced by endothelial cells, Müller 

cells, and other ocular tissues and binds to their specific receptors on endothelial cells [60]. 

This in turn leads to neovascularization with subsequent breakdown of the blood-retina 

barrier and macula. 

It has been reported that C3a and C5a can upregulate RPE/choroid production of VEGF [70], 

and the exposure of choroidal endothelial cells to serum also increased VEGF expression [96]. 

VEGF in turn stimulates proliferation of abnormal blood vessels in the retina. These results 

suggest that complement activation may promote an angiogenic effect via VEGF production 

in the retina, thus contribute to the development of AMD.  

Currently, the only therapeutic approach to reduce the risk of progression to the advanced 

atrophic form of AMD is the use of food supplements (vitamin E, vitamin C, zinc, and 

beta-carotene or lutein). Injection of a monoclonal antibody against all forms of VEGF-A into 

the vitreous (jelly-like substance that fills the space back of the eye) has become the 

treatment for patients with active neovascular AMD. For the dry form of AMD, there is no 

therapy available so far [67]. 

1.2.3.2 Oxidative stress 

Cells respond to environmental stressors in various ways including activation of survival 

pathways and programmed cells death [97]. There are many different types of stress and cell 

responses, such as heat shock response, the DNA damage response, the response to toxins 

and oxidative stress. The cells’ essential purposes in response to extracellular stress are 

promoting the survival of cells and recovering from the environmental conditions. The 

survival pathways can be activated by different signals such as growth factor and 

extracellular molecules. However, if the stimulus is unresolved, then cells activate death 

signaling pathways to eliminate damaged cells.  

Cell survival requires appropriate proportions of molecular oxygen and also various 

antioxidants [97]. The human body produces oxygen free radicals and other reactive oxygen 
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species (ROS) as byproducts from numerous physiological and biochemical processes of 

aerobic metabolism. ROS are among the most potent and ubiquitous threats faced by cells. 

ROS include reactive species like superoxide, hydrogen peroxide (H2O2), hydroxyl radical and 

peroxy radical [98]. At the same time, antioxidants, such as glutathione, arginine, citrulline, 

selenium, zinc, vitamin A, vitamin C and vitamin E regulate ROS generation and inhibit the 

oxidation of other molecules. Antioxidants are supported by antioxidant enzymes in 

removing free radicals [97]. Normally, there is an equilibrium between ROS production and 

antioxidant defense system [98]. However, ROS level can be increased dramatically due to 

infection and some environmental stress such as chronic exposure to UV light and toxins. If 

this balance is disturbed, oxidative stress occurs and generates free radicals that attack for 

example neuronal cells and interfere with their activities. Overproduction of free radicals 

cause oxidative damage to a range of biomolecules including lipids, proteins and DNA. 

Sustained stress results in apoptotic or necrotic cell death, eventually leads to many chronic 

diseases, such as atherosclerosis, cancer, diabetics, rheumatoid arthritis, stroke, 

cardiovascular diseases and degenerative diseases, like Alzheimer diseases and Parkinson’s 

diseases [97]. In the eye, there are high-oxygen demands and ocular UV radiation of the 

retina. The disrupted oxygen supply to the retina due to retinal vasculature change with 

aging is a critical factor of oxidative stress. Furthermore, overexposure to blue light induced 

higher ROS production in human corneal epithelial cells, and leads to the structure 

alterations and disruption of BRB in vivo [99, 100]. In particular, RPE damage/dysfunction 

and the generation of the pro-inflammatory MDA by lipid peroxidation of membrane 

phospholipids also leads to RPE susceptible to complement [101, 102, 103]. They are 

thought to contribute to retinal disease. Although the pathogenesis of AMD is still unknown, 

oxidative stress plays a critical role in this disease.  

1.2.3.3 Age-related maculopathy susceptibility 2 (ARMS2) 

A number of additional AMD-associated genetic variants have been reported. Besides the 

factor H/CFHR locus, genetic variations at a second locus on chromosome 10q26 are also 

associated with AMD [104]. Both neovascular AMD and geographic atrophy have similar risk 

allele distribution. Three nearby genes are located in this locus, pleckstrin homology domain 

containing, family A, member 1 (PLEKHA1), age-related maculopathy susceptibility 2 

(ARMS2), and high-temperature requirement factor A1 (HTRA1), all of which, especially the 

latter two genes, are highly associated with AMD [105, 106]. The AMD associated 

polymorphism rs11200638 in the promoter region of HTRA1 results in increased expression 

levels of HTRA1 mRNA and protein in the human retinas [107, 108]. Although the 

upregulated HTRA1 has not been fully verified in AMD, its effects on animal models were 

observed [109]. HTRA1 overexpression induced choroidal neovascularization in mice, 

suggesting HTRA1 is involved in pathogenesis of AMD [110, 111]. The ARMS2 gene exists in 

primates, but is not conserved in other vertebrates. Genetic studies revealed a complex 

insertion-deletion (indel) in the 3’ UTR of ARMS2 as the AMD susceptibility allele (Figure 6) 

[112]. The indel variant deletes the polyadenylation signal and inserts a 54-bp AU-rich 

element known to mediate rapid mRNA turnover, resulting in an unstable ARMS2 transcript 

and protein expression loss in placenta [105]. The indel mutation is also in strong linkage 

disequilibrium (LD) with a non-synonymous single nucleotide polymorphism rs10490924 
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(A69S) in exon1 of the ARMS2 gene [104]. Individuals being homozygous for the risk alleles 

of both factor H and ARMS2 have a ~50-fold increased risk for AMD [113]. However, retinas 

collected from Caucasian subjects, –homozygous or heterozygous carriers of the indel 

variation did not significantly differ in transcript levels of ARMS2 [109, 114]. A polymorphism 

rs2736911 at amino acid position 38 in the ARMS2 gene (R38X) results in a stop signal and 

subsequently a truncated protein which is however considered as a non-risk and protective 

variant [113, 115]. This suggests that the stability of ARMS2 mRNA is regulated via distinct 

mechanisms in the retina and other tissues, and that the loss of gene message due to 

haploinsufficiency is not related to AMD pathogenesis. 

 

Figure 6. Overview of chromosome 10q26 locus and gene structure of ARMS2 with three 

polymorphisms, rs2736911, rs10490924 and the del443ins54. 

Exons are shown as blue boxes and untranslated regions as grey boxes. Polymorphism rs2736911 in 

ARMS2 which leads to a nonsense exchange R38X was reported to be inversely associated with AMD. 

A combinative deletion/insertion (indel) polymorphism has been identified in ARMS2 3’ UTR and 

flanking region. The association of indel with AMD is equal to that of polymorphism rs10490924 

(A69S) since these variants are in strong linkage disequilibrium (modified from G.Wang [115] ).  

 

Kanda et al. reported that the ARMS2 protein localizes to the mitochondrial outer membrane 

when expressed in mammalian cells, indicating that the ARMS2 protein has functions in 

mitochondria, especially as mitochondria are critical for optimal ocular function [116, 117]. 

However, several studies could not confirm the mitochondrial location, instead subcellular 

ARMS2 localization was identified in the cytosol [118, 119, 120]. Recently, silencing of 

ARMS2 expression by siRNA in RPE cells was shown to result in a dramatic decrease in 

phagocytosis of POS (photoreceptor outer segments) [121]. As clearance of POS is one of the 

most important functions of the RPE, absent ARMS2 functions would explain drusen 

formation and development of AMD [57]. However, the exact role of ARMS2 requires further 

investigation. 

1.3 Aim of this study 

AMD is a multifactorial disease and a prevalent cause of vision loss in developed countries. 
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Recent genetic meta-analyses revealed the high association of a polymorphism (rs10490924) 

in the ARMS2 gene with AMD. Preliminary data about ARMS2 protein functions showed an 

involvement of ARMS2 in complement activation. Immobilized ARMS2 interacts specifically 

with the complement activator properdin. This again suggested that an inappropriate 

complement activation is linked to the pathogenesis of AMD. However, at present, the 

expression and the biological functions of ARMS2 in AMD are poorly understood. Therefore, 

this study aimed to investigate the expression and function of ARMS2. Since the complement 

system plays a crucial role in the development of AMD, this study wanted to determine 

complement regulation on the retinal pigment epithelial cells, the most effected cells in AMD 

and responsible for photoreceptor loss. This study specifically aimed to: 

Determine the expression of endogenous ARMS2 in human cells. 

Express and purify recombinant ARMS2. 

Characterize the function of ARMS2. 

Investigate complement regulation on ARPE-19 cells.
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2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and reagents 

All chemicals were obtained from Carl Roth (Karlsruhe, Germany), Merck (Darmstadt, 

Germany) or Sigma-Aldrich (Taufkirchen, Germany) if not mentioned separately.  

Oligo nucleotide primers for PCR (Table 1) were synthesized from Life Technologies 

(Darmstadt, Germany).  

Table 1 

Forward and reverse primer sequences used in PCR. 

 

 

2.1.2 Cells and strains 

Cell experiments were performed using human blood-derived monocytes, human monocytic 

cell line THP-1 (ATCC® TIB-202TM), or human retinal pigment epithelial cell line ARPE-19 

(ATCC® CRL-2302TM). Human microglial cell line iPSdM (induced pluripotent stem 

cell-derived microglial precursor cells) was kindly provided by Prof. Harald Neumann 

(Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany). Retina 

samples were obtained from the Center of Ophthalmology Eye Bank, University of Cologne 

(Cologne, Germany). All research conducted followed the tenets of the Declaration of 

Helsinki. The local ethics committee of the University of Cologne has approved the study 

under No. 14-247 and the Institutional Review Board of the Charité Berlin, Germany under 

study protocol No. EA2/004/2014. 

Escherichia coli DH5α competent cells were purchased from Life Technologies. ARMS2 gene 

was cloned into pPICZαB vector (Life Technologies, Darmstadt, Germany) and transformed in 

Pichia pastoris strain X33 (Life Technologies) by Dr. Sven Micklisch (Department of Infection 

Biology, HKI, Jena, Germany). 

2.1.3 Media and buffers 

RPMI (Roswell Park Memorial Institute medium) 1640, DMEM (Dulbecco’s modified eagle 

medium) and DMEM/F12 (Dulbecco’s modified eagle medium/nutrient mixture F12) used for 
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eukaryotic cells were purchased from Lonza (Verviers, Belgium). Media were supplemented 

with 10% fetal bovine serum (FBS, Gibco, Darmstadt, Germany), 1% L-Glutamine (Lonza) and 

50 µg/ml Gentamicin (Lonza). DPBS (Dulbecco’s phosphate buffered saline) was from Lonza. 

Ficoll-Paque PLUS and Percoll used for blood monocytes isolation were purchased from GE 

Healthcare (Freiburg, Germany). 

Table 2 

Buffers used in this study. 

 

2.1.4 Purified proteins and peptides 

Purified human C3, C3b, C5, FH and properdin proteins were purchased from Complement 

Technology (Tyler Texas, USA). Recombinant ARMS2 and ARMS2 variant S69 proteins were 

expressed and purified from P. pastoris as previously described by Sven et al. [119]. Three 

ARMS2 peptides were synthesized with 95% purity from Jerini Peptides Technologies (JPT, 

Berlin, Germany). Peptide 1 includes amino acid 1 to 40, peptide 2 amino acid 41 to 70 and 

peptide 3 amino acid 71 to 107. In addition, 24 small peptides of ARMS2 C-terminus (each of 

13 amino acids with 10 amino acids overlap) were synthesized and spotted onto a cellulose 

membrane (JPT).  

2.1.5 Antibodies, sera and blood 

The rabbit anti-ARMS2jena antiserum was generated by immunization of rabbit with purified 

recombinant ARMS2 from CovaLab (Cambridge, UK). Generated antiserum was purified with 

HiTrap Protein A HP 1 ml column (GE Healthcare). The mouse anti-ARMS2mAB was generated 

by Dr. Diana Pauly (Institute of Human Genetics, University of Regensburg, Regensburg, 

Germany) via ARMS2 C-terminus peptide 3 as mentioned above. The antibodies used in this 

study were shown in Table 2. Secondary HRP-conjugated antibodies for ELISA or western blot 

were purchased from Dako (Hamburg, Germany) (Table 2). Fluorescent secondary antibodies 

(Table 2) for flow cytometry or laser scanning microscopy were purchased from Life 

Technologies (Darmstadt, Germany). 
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Table 3 

Antibodies used in this study. 

 

Normal human serum (NHS) was obtained from healthy donors from Department of 

Infection biology, HKI (Jena, Germany). Sera of 5 donors were pooled, aliquoted and stored 

at -80 °C. To inactivate complement, NHS was heated at 56 °C for 30 min (iNHS). 

Wet form of AMD patients’ blood was collected from Berlin by Saskia Jacob and Catharina 

Busch (Department of Ophthalmology, Charité - University hospital Berlin, Berlin, Germany). 

Fresh blood was donated by healthy donors from Department of Infection biology, HKI (Jena, 

Germany).  

2.1.6 Assay kits 

VEGF measurement was performed using human VEGF standard TMB ELISA development kit 

(Peprotech, Hamburg, Germany). Cell viability was quantified using cell cytotoxicity assay kit 

from Abcam (Cambridge, UK). QIAprep spin miniprep kit for plasmid isolation was purchased 

from Qiagen. Invisorb spin DNA extraction kit for DNA purification was from Stratec 

biomedical (Birkenfeld, Germany). 

2.1.7 Equipment and laboratory supplies 

The laser scanning microscope LSM 710 (Carl Zeiss, Jena, Germany) was used to obtain 

images. Flow cytometry was performed by BD LSR II (Becton Dickinson, Heidelberg, 

Germany). Yeast cells were cultivated using a rotary shaker (Innova 44, New Bruinswick 

Scientific, Eppendorf, Germany). Centrifugation of protein, cells and samples was done using 

table top centrifuges from Eppendorf (5424, Hamburg, Germany) or a large-scale centrifuge 
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(3-18KS) from Sigma (Osterode am Harz, Germany). FPLC Äkta system for protein purification 

was from GE Healthcare Life Sciences. ELISA reader used was Safire2 from Tecan (Zürich, 

Switzerland). Vortex Genie 2 (Scientific Industries, Merck, Dresden, Germany) and the 

magnet shaker Unimax 2010 (Heidolph, Merck, Dresden, Germany) were used. Western blot 

membrane was developed in Fusion FX (Vilber, Eberhardzell, Germany). Biolayer 

interferometry was performed by Blitz system from Pall ForteBio (Fremont). Thermomixer 

comfort was used for incubation of reaction tubes (Eppendorf). Round bottom tubes for flow 

cytometry analysis were purchased from BD. High binding ELISA plates were purchased from 

Sarstedt (Nümbrecht, Germany). Cell culture flasks, plates and pipettes were purchased from 

Nunc (Mannheim, Germany) and falcon tubes from Greiner (Frickenhausen, Germany). 

Reaction tubes were purchased from Eppendorf. BD Vacutainer (Sodium Heparin) blood 

collection tubes were purchased from BD.  

2.2 Methods 

2.2.1 Blood monocytes isolation  

Human blood monocytes were isolated with Ficoll-Paque PLUS according to the 

manufacturer’s protocol. Briefly, human fresh blood was drawn and collected using a 

vacutainer containing sodium heparin. 30 ml fresh blood was overlaid carefully on 15 ml 

Ficoll-Paque PLUS and centrifuged at 1,600 rpm without break for 20 min at room 

temperature. After centrifugation, the plasma layer was slowly removed and the white ring 

of PBMCs (peripheral blood mononuclear cells) were collected. PBMCs were washed with 

DPBS and centrifuged at 900 rpm with low acceleration break at room temperature. Then, 

the PBMCs pellet was resuspended in 25 ml of IMDM (1 x Iscove’s modified dulbecco’s 

medium, Gibco) and the suspension was overlaid carefully on top of 25 ml 46% Percoll (23 ml 

of Percoll mixed with 27 ml of IMDM). After centrifugation at 1,600 rpm without break for 20 

min at room temperature, the white ring of monocytes enriched layer was collected and 

washed with DPBS. The pellet was resuspended into 3 ml of DPBS and counted using CASY 

TCC cell counter (OLS OMNI Life Science, Bremen, Germany). 

2.2.2 Cell cultures and oxidative stress induction 

ARPE-19 cells were cultured in DMEM/F12 medium and maintained in a humidified 

atmosphere incubator at 37 °C containing 5% CO2. After 80% - 90% confluency in T75 cm2 

flasks, cells were trypsinized using 0.25%/0.02% (w/v) trypsin/EDTA solution (Biochrom, 

Berlin, Germany) and split in ratio 1:4 in 15 ml warm medium. RAW247.6 cells were 

cultivated in DMEM medium and passaged twice per week using trypsin/EDTA solution. 

THP-1 cells were cultured in RPMI medium in suspension under the same conditions. For the 

induction of cell differentiation, 1 x 106 per ml THP-1 cells were seeded with 20 ng/ml PMA 

(Phorbol 12-myristat 13-acetat, Sigma-Aldrich GmbH, Dreisenhofen) for 24h. For cell viability 

assay or cytokine analysis, ARPE-19 cells were seeded into 24-well plate or 96-well plate at a 

density of 1 x 105 or 4 x 104 cells per well and grown in media for 24 h. For oxidative stress 

induction, stable ARPE-19 cell monolayers were treated with different concentrations of H2O2 

(0.1-2 mM) in serum-free medium for 1 h, after treatment, cells were washed with 

serum-free medium carefully and incubated with serum-free medium, or medium containing 
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NHS/iNHS for 24 h before analysis.  

To induce ARMS2 expression, blood monocytes were isolated from fresh blood and cultured 

in RPMI medium for 2 h until they adhere to the plate surface, and then incubated for 1 h 

with H2O2 (0.001-1 mM) in medium, for another 20 h in normal medium before analysis. 

2.2.3 RNA isolation RT-PCR and polymerase chain reaction (PCR)  

Total RNA was isolated from blood cells using the PAX gene blood RNA kit (QiaGen) according 

to the manufacturer’s instructions. The concentration of RNA was measured by a nanodrop 

spectrophotometer. 20 ng RNA was reverse transcribed into cDNA using QuantiTect® Reverse 

Transcription Kit (QiaGen). 100 ng cDNA was amplified using Phusion PCR Kit (New England 

Biolabs) in 50 µl PCR reaction containing 100 pM of each primer, 0.4 µl of 10 mM dNTPs, 10 

µl 5 x HF Buffer and 0.5 µl Phusion polymerase. Thermocycling conditions for PCR reactions 

were: an initial denaturation step at 98 °C for 1 min, 30 cycles of 30 s at 98 °C, 30 s at 60 °C 

and 30 s at 72 °C, and final extension at 72 °C for 5 min. PCR products were separated by 

agarose gel electrophoresis and analyzed.  

2.2.4 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to determine DNA fragments and plasmid. Samples 

were mixed with 6 x orange DNA loading dye (Thermo fisher, Schwerte, Germany), and then 

separated with 100 bp DNA ladder (NEB) by 1% TAE agarose gel containing 3 μl SYBR® safe 

DNA gel stain (Invitrogen) in TAE running buffer (0.04 M tris-acetate, 1 mM EDTA (Titriplex III), 

pH 8.0). DNA bands were visualized under UV light using gel imaging system (Syngene, 

Cambridge, UK). 

2.2.5 Confocal laser-scanning microscopy 

Monocytes or ARPE-19 cells were seeded onto glass coverslips (Roth) (1 x 105 cells/well) and 

grown for 2 h or 24 h. Cells were fixed in 4% paraformaldehyde (Roth) for 15 min and 

permeabilized in 0.3% Triton X-100 (Roth) for 10 min. After washing, cells were preincubated 

with FcR Blocking Reagent (20 μl per 107 cells, Miltenyi Biotec, Teterow, Germany) for 10 min 

on ice and then incubated with primary antibody (1:200) in DPBS for 1 h, washed three times 

with DPBS, and visualized with Alexa-488 or 647 conjugated secondary antibody (Life 

Technologies) (1:400) for 1 h. 4’, 6’-Diamidino-2-Phenylindole, Dilactate (DAPI, Life 

Technologies) was added (1:1000) for cellular DNA staining. The slides were washed, dried 

and all images were recorded using Zeiss LSM710 confocal microscope equipped with a 63 x 

oil objective. 

2.2.6 Immunoprecipitation 

To pull down endogenous ARMS2 from human cells, immunoprecipitation was performed. 

50 µl Protein G magnetic beads (NEB, New England BioLabs, Frankfurt) were resuspended in 

binding buffer (20 mM sodium phosphate buffer, pH7.0) and incubated with 10 µg 

α-ARMS2mAB antibody for 1 h at 4 °C and washed with DPBS. 1 x 107 THP-1 cells were lysed 

using 1 ml RIPA lysis buffer containing 1 mM PMSF for 30 min on ice and centrifuged at 

12,000 rpm for 10 min at 4 °C. The supernatant was added subsequently to the 

antibody-immobilized beads and incubated on a rotating shaker at 4 °C overnight. Later on, 
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the supernatant was removed and beads were washed three times followed by adding 30 µl 

of elution buffer (0.1 M glycine, pH 2.7). The eluted fraction was collected to proceed to 

SDS-PAGE and western blot analyses. 

2.2.7 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Samples were mixed with 4 x reducing buffer (50 mM Tris-HCl pH 6.8, 1.6% (w/v) SDS, 7% 

(v/v) glycerol, 8 M UREA, 4% (v/v) β-mercaptoethanol, 0.016% (w/v) bromophenol blue, pH 

6.8) and boiled for 10 min at 95 °C or mixed with 4 x non-reducing buffer (50 mM Tris-HCl pH 

6.8, 1.6% (w/v) SDS, 7% (v/v) glycerol, 0.016% (w/v) bromophenol blue). Proteins and 

PageRuler™ prestained protein ladder (Life Technologies) were separated using vertical gel 

electrophoresis chamers (Bio-Rad Laboratories, München, Germany). 4% stacking gels (0.5 M 

Tris-HCl pH 6.8, 1% SDS, acrylamide/bis acrylamide (37.5:1), 100 mg/ml APS (ammonium 

persulfate), 0.1% TEMED (tetramethylethylenediamine) in distilled water) and 10% running 

gels (1.5 M Tris-HCl pH 8.8, 1% SDS, acrylamide/bis acrylamide (37.5:1), 100 mg/ml APS, 0.1% 

TEMED in distilled water) were used. 10 x SDS running buffer stock (30.3 g Tris, 144 g glycine, 

10 g SDS in 1 liter distilled water) was diluted 100 ml into 900 ml distilled water to make 1 x 

running buffer and used. Electrophoresis was done at a constant voltage of 150 V for 1 h 

until the dye front reached the bottom of the gel.  

2.2.8 Silver staining 

After electrophoresis, gels were fixed in fixing buffer (15% (v/v) ethanol, 12% (v/v) acetic acid) 

for 30 min, rinsed for 10 min in washing buffer (15% (v/v) ethanol). After sensitation in buffer 

A (0.2 g/l sodium thiosulfate) for 1 min and washed with distilled water, gels were incubated 

with buffer B (2 g/l silver nitrate) for 20 min. Gels were then washed with distilled water and 

developed in buffer C (0.75 ml/l formaldehyde (37%), 30 g/l sodium carbonate, 10 mg/l 

sodium thiosulfate) until the bands appeared. The reaction was stopped using fixing buffer. 

Gels were incubated with drying buffer (5% (v/v) glycerol, 10% (v/v) ethanol) and dried with 

DryEase® Mini-gel Drying System (Invitrogen). 

2.2.9 Western blot 

After electrophoresis, proteins were transferred onto a 0.22 µm PVDF membrane (GE 

healthcare) in blotting buffer (25 mM Tris pH 8.5, 0.2 M glycine, 20 % methanol) using 

semi-dry transfer method in Trans-Blot® TurboTM Transfer System (Bio-Rad Laboratories). 

Blotting was performed at 12 V for 30 min. After incubation in blocking buffer (TBS-T buffer 

with 3% nonfat dry milk, 1% BSA and 0.1% tween 20) for 1 h at room temperature, 

membranes were incubated with appropriate primary antibody (1:1000 in blocking buffer) 

for 1 h. The membrane was washed three times with TBS-T buffer followed by incubation 

with corresponding secondary antibody (1:2000 in blocking buffer) for 1 h at room 

temperature. After washing, chemiluminescence signals were visualized using 100 μl/cm2 

chemiluminate-HRP PicoDetect (AppliChem, Darmstadt, Germany) by Fusion FX system. 

2.2.10 Cloning and transformation 

The variant A69S DNA was synthesized from Invitrogen. DNA as well as the expression vector 

pPICZαB (Invitrogen) were digested with restriction enzymes EcoR I and Xba I (NEB) for 4 h at 
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37 °C. The digested DNA and vector were purified using Invisorb spin DNA extraction kit, and 

ligated using T4 DNA ligase (NEB) at 20 °C overnight. The ligated vector was transformed into 

competent E. coli cells by heat shock [122]. Positive colonies were analyzed, and the 

sequencing of plasmid was done by Monika von der Heide (Department of Infection Biology, 

HKI, Jena, Germany) using an ABI-Prism 3100 Genetic Analyzer (Applied Biosystems). 

Thereafter, one positive transformant was grown in LB medium at 37 °C overnight and 

plasmid was isolated using QIAprep spin miniprep kit following the manufacturer’s 

instruction. Purified plasmid was linearized with Sac I (NEB) at 37 °C for 4 h and digested 

plasmid was purified as described above. Then, plasmid was transformed into competent P. 

pastoris X33 cells by electroporation according to the manufacturer’s instructions 

(Invitrogen). The transformation reaction was spread on YPD plate containing 100 μg/ml 

zeocin and incubated at 30 °C for 3 days. Grown colonies were picked and tested for desired 

protein expression. 

2.2.11 Recombinant protein expression  

ARMS2 and ARMS2 variant A69S were recombinantly expressed as myc and 6 x 

histidine-tagged proteins according to the manufacturer’s instructions. Briefly, expression 

strains were grown on YPD agar plates supplemented with 100 μg/ml zeocin and incubated 

for 3 days at 30 °C. Using a single colony, inoculated 25 ml of BMGY in a 250 ml baffled flask. 

Cells were grown at 30 °C until culture reached the OD600 = 2-6. Then, cells were harvested 

by centrifugation (4,700 rpm, 10 min, RT) and resuspended in 200 ml BMMY medium. 

Protein expression was done at 30 °C in the shaker incubator and induced by adding 

methanol to a final concentration of 0.5% (v/v) every 12 h. After 3 days, the cell pellet was 

collected and analyzed by SDS-PAGE and western blot. 

2.2.12 Affinity chromatography purification of proteins 

The recombinant ARMS2 A69 and ARMS2 variant S69 proteins were purified by nickel 

chelate affinity chromatography from cell lysates. Briefly, cell pellets were lysed in binding 

buffer (10 mM Na2HPO4, 10 mM NaH2PO4, 10 mM imidazol, 1 M NaCl, 2% NP-40 (v/v), 20% 

glycerol (v/v), pH 7.0) together with glass beads (Roth) by FastPrep® -24 (MP Biomedicals) at 

2 x 50 for 60 s. Protease activity was inhibited by addition of complete EDTA-free protease 

inhibitor (Roche, Mannheim, Germany). After centrifugation (12,000 rpm, 1 h, 4 °C) and 

filtration (22 μm cellulose acetate filter, Sartorius Stedim Biotech, Germany), the supernatant 

of cell extract was loaded to 1 ml HisTrap HP column (GE Healthcare) at 4 °C overnight and 

then washed with 10 column volumes of washing buffer (95% binding buffer combined with 

5% elution buffer). Bound protein was eluted from column using elution buffer (10 mM 

Na2HPO4, 10 mM NaH2PO4, 500 mM imidazol, 500 mM NaCl, pH 7.0). Eluted fractions were 

tested by western blot and then concentrated by 5,000 MWCO centrifugal filter device 

(Sartorius Stedim Biotec, Göttingen, Germany) in storage buffer (10 mM Na2HPO4, 10 mM 

NaH2PO4, 500 mM NaCl, pH 7.0). Protein concentration was measured using a 

spectrophotometer (Nanodrop® ND-1000) and then stored at -20 °C. 

2.2.13 Protein in-gel digestion and mass spectrometric peptide analysis by MALDI-TOF 

The purified recombinant ARMS2 or immunoprecipitated endogenous ARMS2 from THP-1 
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monocytes were separated using SDS-PAGE and stained with coomassie blue (Thermo 

Scientific). The differentially expressed protein bands observed in the polyacrylamide gel 

were excised from the gel and washed repeatedly with distilled water and 50 mM 

NH4HCO3/acetonitrile 1+1 (v/v) for 15 min. The gel pieces were then shrunk in acetonitrile 

and dried down by the vacuum centrifuge. After that the gel pieces were soaked in solution 

containing 10 mM DTT in 50 mM NH4HCO3 for 45 min at 56 °C followed by alkylation by 

treatment with 50 mM iodoacetamide in 50 mM NH4HCO3 for 30 min in dark. After the 

treatment, gel pieces were washed with 50 mM NH4HCO3/acetonitrile. Thereafter the gel 

pieces were treated with trypsin (Promega, Mannheim, Germany) digestion buffer (20 ng/µl 

trypsin in 25 mM NH4HCO3) at 37 °C overnight. The peptides were extracted by adding 

acetonitrile/trifluoroacetic acid 1+1 (v/v) to the gel plugs and incubation for 30 min at room 

temperature. 1 µl peptide digest extracted from the gel piece was premixed with same 

volume of the matrix α-CHCA solution and spotted onto a matrix-assisted laser desorption 

ionization (MALDI) plate. The peptide mass was analyzed using MALDI TOF-mass 

spectrometer (UltrafleXtreme, Bruker Daltonics, Bremen, Germany) in the reflector mode 

with appropriate m/z range and laser intensity. Current NCBInr database using MASCOT 

search with a peptide mass tolerance of 100 ppm was used to search the data generated. 

2.2.14 In vitro binding assays 

Flow cytometry was done using a BD LSRII flow cytometer (BD Biosciences) and data were 

analyzed using the FACSDiva and FlowJo software (Tree Star). Incubation and washing steps 

were performed in DPBS supplemented with 1% BSA. For the binding to heparan, 1 million 

heparan beads were suspended in 200 µl DPBS and incubated with 1 µg protein for 1 h at 

4 °C, beads were centrifuged for 5 min at 8,000 rpm and washed with DPBS. Then, the beads 

were incubated with polyclonal antiserum α-ARMS2Jena (1:200) in DPBS for 1 h at 4 °C. After 

washing, Alexa 647 conjugated-goat anti-rabbit (Life Technologies) (1:400) were added to the 

beads and incubated for 1 h at 4 °C. The beads were washed and resuspend in 1 ml DPBS to 

measure the fluorescence. 

To investigate the binding of proteins to ARPE-19 cells, cells were typsinized and 1 million 

cells were incubated with protein for 1 h at 4 °C. After washing, primary antibody (1:200) 

was added followed by Alexa conjugated secondary antibody (1:400) incubation for 1 h at 

4 °C to detect bound protein.  

2.2.15 C3b deposition 

The complement alternative pathway activation assay was performed by incubation of   

ARPE-19 cells with NHS in AP MgEGTA buffer (20 mM HEPES, 144 mM NaCl, 7 mM MgCl2, 10 

mM EGTA, pH 7.4) at 37 °C for 30 min. C3b deposition was determined by flow cytometry 

using rabbit anti-C3d antibody (1:200) for 1 h at 4 °C and secondary Alexa 647-conjugated 

goat anti-rabbit antibody (1:400) for 1 h at 4 °C. The influence of ARMS2 or FH on C3b 

deposition was evaluated after preincubation of cells with each protein.  

2.2.16 Enzyme-linked immunosorbent assay (ELISA)  

High binding microtiter plate was immobilized with 5 μg/ml desired proteins in DPBS at 4 °C 

overnight. After washing unbound protein and blocking with DPBS containing 1% BSA for 1 h 
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at 37 °C, different dilutions of bound ligand was added to wells for 1 h. The plate was 

sequentially washed and incubated with appropriated primary antibody (1:1000 in DPBS), 

followed by the incubation of corresponding HRP-conjugated secondary antibody (1:2000 in 

DPBS) for 1 h. The reaction was developed with TMB substrate reagent (BioTrend 

Chemikalien, Cologne, Germany) and the absorbance was measured at 450 nm using ELISA 

reader. Experiments were performed in triplicate.  

To investigate VEGF secretion, ARPE-19 cells were treated with H2O2 (0.1-2 mM) for 1 h 

followed by exposure to serum-free medium or medium containing NHS/iNHS for 24 h. The 

conditioned medium was collected, centrifuged at 1,000 rpm for 5 min to remove detached 

cells. ELISA analysis was performed from the supernatants for VEGF production using the 

commercial kit (PeproTech) according to the manufacturer’s instructions. Briefly, 

supernatants were added to 0.5 μg/ml immobilized capture antibody in order to catch the 

cytokine. Bound VEGF was detected by 0.125 μg/ml detection antibody and subsequently 

with 0.05 μg/ml streptavidin-HRP. The absorbance was measured at 450 nm using ELISA 

reader. Experiments were performed in triplicate. 

2.2.17 Bio-layer interferometry 

To measure the interaction affinity between properdin and ARMS2, biolayer interferometry 

was performed. Purified human properdin was preincubated with 2 mM 

sulfo-N-hydroxysuccinimide long chain-biotin (Pierce) dissolved in distilled water for 30 min 

at 37 °C. Excess non-reacted biotin was removed by size exclusion chromatography using 

desalting columns (Pierce). The interferometry experiment was started with a 30 s baseline 

step. The biotinylated properdin then was immobilized on streptavidin (SA)-coated biosensor 

tips for 180 s, various concentrations of ARMS2 were used in the association step. 

Association and dissociation phases were recorded for 240 s and 240 s, respectively. All 

sensor traces were analyzed as a global set of multiple dissociation curves. Reference sensor 

trace was used to correct for nonspecific binding. 

2.2.18 Pepspots peptide arrays on cellulose membrane 

To localize the binding domain in ARMS2 which mediates the interaction with properdin, 24 

ARMS2 peptides of 13 amino acids with 10 amino acids overlap were synthesized and bound 

onto a cellulose membrane by the C-terminus and have an acetylated N-terminus. Purified 

properdin was labelled with red fluorescent Alexa Fluor 647 using the molecular probes 

Alexa Fluor® labelling kit (Life Technologies). The membrane was blocked in blocking buffer 

(1 % BSA and 3 % nonfat dry milk in DPBS) for 1 h and incubated with 5 μg Alexa Fluor 

647-conjugated properdin at 4 °C overnight. After washing three times, the fluorescent 

signals were excited using Fusion FX system under standard APC/Cy5® filters. Incubated 

membrane which can be used again was washed three times with TBS-T buffer for 10 min 

and regenerated following the manufacturer’s protocol. After washing with methanol twice, 

the membrane was air dried and kept at -20 °C. 

2.2.19 Cell viability assay 

To determine the susceptibility of ARPE-19 cells to serum-free media, NHS, iNHS or H2O2, cell 
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viability was quantified 24 h after the treatment using cell cytotoxicity assay kit (colorimetric). 

ARPE-19 cells (4 x 104/well) were seeded into a 96-well microtiter plate and cultivated in 

medium for 24 h at 37 °C to reach a confluent monolayer. After the treatment, cells were 

washed and cultivated in serum-free medium or medium containing NHS/iNHS. Then 1/5 

volume of cytotoxicity assay solution was added into each well and incubated in a 37 °C 

incubator protecting from light for 3 h. For control experiments, cells were cultivated in 

normal medium. Absorbance at 570 nm and 605 nm was measured by ELISA reader. The 

ratio of OD570 to OD605 was used to determine the cell viability in each well. Experiments 

were performed in triplicate.  

2.2.20 Statistics 

Data are presented as mean ± SD where indicated. Comparison of two conditions was 

performed with Student’s two tailed t-test using GraphPad Prism 5. Differences with p<0.05 

were considered significant, and statistical significance is shown as*, p<0.05; **, p<0.01; ***, 

p<0.001.
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3. Results 

3.1 Human monocytes and iPS-derived microglia express ARMS2 

3.1.1 Detection of ARMS2 transcripts in human monocytes and iPS-derived microglia  

Choroidal monocytes/macrophages infiltrate the human retinal space in both early and late 

AMD [123, 124]. However, the contribution of these cells in drusen pathogenesis or 

progression is still unknown. As ARMS2 expression was previously described in the retina, 

placenta and whole blood [105, 109, 114], we asked whether monocytes express ARMS2. 

First, we analyzed ARMS2 expression in human monocytic cell line THP-1. Briefly, RNA was 

exacted from cells, and transcribed into cDNA. Using ARMS2 primers, a specific PCR amplicon 

was generated from uninduced or PMA-induced (400 ng, 24 h) THP-1 cells as well as human 

blood-derived primary monocytes (Figure 7). DNA sequencing was done with the support of 

Monika von der Heide (Department of Infection Biology, HKI) and subsequent sequence 

analysis confirmed ARMS2 amplification. Thus, ARMS2 gene transcription was confirmed in 

human THP-1 and blood-derived monocytes. 

The retina contains at least three types of immune cells: microglia, perivascular macrophages 

and dendritic cells (DCs) [57]. Microglia have several important functions in immune 

surveillance and neuronal homeostasis, they are capable to communicate with other glial 

cells and neurons, which regulate their activation status and their capacity for phagocytosis 

of cellular debris [11]. We asked whether microglia, the resident immune cells of the brain 

and the retina, express the ARMS2 gene. Human microglia are unavailable as cells line so far, 

nor can they be extracted from tissue. Thus, we used induced human pluripotent stem cell 

derived microglia (iPSdM), which were kindly provided by Prof. Dr. Harald Neumann (Institute 

of Reconstructive Neurobiology, University of Bonn, Bonn, Germany). Using the same specific 

primers as before, ARMS2 was also amplified from cDNA isolated from both unstimulated 

and LPS-stimulated (5 ng/ml, 24 h) iPSdM. In contrast, macrophages of murine origin lacked 

any ARMS2 signal (Figure 7).  
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Figure 7. Analysis of ARMS2 gene expression in various monocytes.  

ARMS2 is expressed in human monocytes and microglia, but not in RAW 264.7 cells. RNA was 

extracted from uninduced or PMA-induced THP-1 monocytes, unstimulated or LPS-stimulated iPSdM, 

blood-derived human monocytes and murine macrophages RAW 264.7 cells, transferred into cDNA 

and analysis of ARMS2 transcripts were investigated by PCR using specific primers and agarose gel 

electrophoresis (RNA isolation and PCR were done with the support of Monika von der Heide from 

Department of Infection Biology). 

 

3.1.2 ARMS2 protein is expressed in human monocytes and iPS-derived microglia 

To verify ARMS2 protein presence in human cells, laser scanning microscopy (LSM) was 

performed using α-ARMS2Jena antiserum. After fixation and permeabilization, uninduced or 

PMA-induced THP-1 monocytes and unstimulated or LPS-stimulated iPSdM were stained for 

ARMS2 and assayed by LSM (Figure 8A). ARMS2 was observed in these cells but not in 

RAW264.7 (Figure 8A). In addition, primary monocytes were isolated from fresh blood and 

ARMS2 protein was detected in a similar experiment. ARMS2 signals were also captured in 

the cytoplasm of blood monocytes (Figure 8B). Taken together, ARMS2 is transcribed and 

expressed in human monocytes and iPSdM. 

3.1.3 ARMS2 expression is enhanced under oxidative stress 

Oxidative stress is linked to many chronic inflammatory diseases, especially AMD [102]. As 

the ARMS2 signal in monocytes was very weak, we asked whether ARMS2 expression is 

regulated under oxidative stress. Therefore, human blood monocytes were isolated from 

fresh blood and 1 x 106 cells were exposed to H2O2 (0.1-1 mM) in serum-free medium for 1 h. 

After careful washing with medium, monocytes were incubated in complete medium 

overnight. Then cells were lysed in RIPA buffer and the lysates were investigated for ARMS2 

expression by western blot analysis using α-ARMS2Jena antiserum. Endogenous ARMS2 was 

detected as about 13 and 26 kDa protein bands, indicating a monomeric and homo-dimeric 

form of ARMS2 (Figure 9). Interestingly, ARMS2 expression was detected upon weak 

oxidative stress but not in untreated cells. The ARMS2 signals increased with higher 

concentrations of H2O2 (Figure 9, lane 5). 
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Figure 8. ARMS2 protein expression in human monocytes and microglia.  

(A) ARMS2 is expressed in both uninduced or PMA-induced THP-1 monocytes, and unstimulated or 

LPS-stimulated iPSdM, but not in RAW264.7 cells. Cells were permeabilized, stained and visualized 

by LSM using α-ARMS2Jena antiserum (red). (B) ARMS2 is present in blood-derived human monocytes. 

Cells were isolated from fresh blood of three different donors and stained using α-ARMS2Jena 

antiserum (red). DAPI was used to stain the nuclei (blue). (Scale bar, 10 μm). 
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Figure 9. Blood – derived monocytes express ARMS2 upon oxidative stress.  

The ARMS2 signals appeared in two protein bands of about 13 and 26 kDa upon cell treatment with 

H2O2. Monocytes were isolated from fresh blood and incubated with H2O2 (0.001-1 mM) in serum-free 

medium for 1 h. Cells were incubated for another 20 h in normal medium, then lysed in lysis buffer and 

detected by western blot analysis using α-ARMS2Jena antiserum. Purified recombinant ARMS2 was 

separated in lane 1 for comparison. Densitometric analysis of 13 kDa bands is shown in the graph 

below.   

3.1.4 Identification of endogenous ARMS2 in human THP-1 monocytes 

Having shown that ARMS2 was expressed in human monocytes, we next aimed to confirm 

endogenous ARMS2 protein expression by immunoprecipitation combined with mass 

spectrometry. A monoclonal antibody α-ARMS2mAB was generated in collaboration with     

Dr. Diana Pauly (Department of Ophthalmology, University Hospital Regensburg, Regensburg, 

Germany). The monoclonal α-ARMS2mAB antibody detected endogenous ARMS2 with higher 

intensity than the polyclonal α-ARMS2Jena antiserum as seen by parallel staining of THP-1 

cells with the antibodies and detection by microscopy (Figure 10A). To pull down ARMS2 

from    THP-1 monocytes, α-ARMS2mAB was bound to protein G magnetic beads. 1 x 107 

THP-1 cells were lysed by RIPA lysis buffer containing 10 mM PMSF and subsequently 

centrifuged. The antibody-coupled beads were incubated in the cell lysate overnight at 4 °C, 

washed and antibody bound proteins were eluted from the beads. After separation via 
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SDS-PAGE and staining with coomassie blue, single bands were excised from the gel 

(indicated by black bars in Figure 10B-10D) according to the size of recombinant ARMS2 

bands. The peptides were extracted from the gel pieces and analyzed using MALDI TOF-mass 

spectrometry. Five independent experiments were performed and the defined peptides were 

summarized in Table 2. The analysis revealed that endogenous ARMS2 peptides were 

precipitated from the cell lysate of THP-1 cells.  

 

Figure 10. Identification of endogenous ARMS2 in THP-1 monocytes.  

(A) The monoclonal α-ARMS2mAB antibody detected endogenous ARMS2 with higher intensity than 

the α-ARMS2Jena antiserum. THP-1 monocytes were permeabilized and stained with either 

α-ARMS2mAB or α-ARMS2Jena of ARMS2 (red). DAPI stained the nuclei (blue). (Scale bar, 10 μm). (B) 

+ (C) ARMS2 immunoprecipitation from THP-1 (1×10
7
) cell lysate. α-ARMS2mAB was immobilized to 

beads, and incubated with cell lysate. Eluted proteins were separated by SDS-PAGE, stained with 

coomassie blue and single bands (indicated by black bars) were excised and investigated by mass 

spectrometry. (D) ARMS2 immunoprecipitation from deglycosylated THP-1 cell lysate. 1×10
7 
THP-1 

cells were lysed and incubated with N-Glycosidase F (PNGase F, Roche) for 3 h at 37 °C before 

incubation with antibody-coupled beads. Eluted proteins were separated by SDS-PAGE, stained with 

Heavy  
chain 

Heavy  
chain 

Heavy  
chain 
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coomassie blue and single bands were excised and investigated by mass spectrometry. 

Table 4 

Identified endogenous ARMS2 peptides from five immunoprecipitations. 

 

 

3.2 AMD associated polymorphism rs10490924 in ARMS2 

3.2.1 ARMS2 haplotype analysis in AMD patients 

The ARMS2 risk variant is defined by the polymorphism rs10490924, which is linked to an 

indel mutation (del443ins54) in the 3’ untranslated region of the ARMS2 gene. The 

polymorphism rs10490924 leads to an amino acid exchange at position 69, while the ARMS2 

indel mutation is considered to lead to ARMS2 mRNA instability. In addition, the 

polymorphism rs2736911, which generates a stop codon at amino acid position 38, is 

associated with AMD in a Chinese group but not in the Caucasian population. The 

polymorphism rs10490924 in ARMS2 gene is highly associated with both forms of AMD 

leading to geographic atrophy or neo-vascularization. To find out whether rs10490924 in 

combination with the indel mutation leads to ARMS2 protein deficiency, 56 patients with 

neovascular AMD were screened for the ARMS2 polymorphisms in collaboration with Prof. Dr. 

Antonia Joussen (Charité-University hospital Berlin, Berlin). Blood samples were collected 

from the patients and genomic DNA was isolated. Two different PCR reactions were 

performed to determine the polymorphisms rs2736911, rs10490924 and del443ins54 in 

ARMS2 gene. According to the polymorphisms, different groups of genotypes were defined 

(homozygous without rs10490924 and del443ins54 (type I/I), heterozygous for rs10490924 

and del443ins54 (type I/II), homozygous for rs10490924 and del443ins54 (type II/II), 

heterozygous for polymorphism rs2736911 (type I/III or II/III) and homozygous for rs2736911 

(type III/III) (Figure 11A). 4 patients of the cohort did not carry the ARMS2 polymorphism 

rs2736911, rs10490924 or del443ins54 (7%), 24 patients were heterozygous for rs10490924 
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and del443ins54 (43%) and 12 patients were homozygous for rs10490924 and del443ins54 

(21%). 15 patients (27%) were heterozygous for rs2736911 (I/III or II/III). Notably, no 

haplotypes of rs10490924 plus rs10490924 and del443ins54 were identified, and only 1 

patient presented homozygous for rs2736911 (type III/III, 2%) (Figure 11B). 

 

Figure 11. ARMS2 genotypes in a cohort of 56 AMD patients. 

The ARMS2 polymorphisms rs2736911, rs10490924 and indel in a cohort of 56 patients with 

neovascular AMD. (A) + (B) In this cohort, 4 AMD patients did not carry the risk variants (I/I), 24 

patients were heterozygous for rs10490924 and indel (I/II) and 12 patients were homozygous for 

rs10490924 and indel (II/II). 15 patients were heterozygous for rs2736911 and only one patient was 

homozygous for rs2736911. (C) Sequencing reports of the different variants from patients 1 to 9. (D) 

Transcription of ARMS2 is indicated. cDNA was generated from isolated DNA of blood cells of AMD 

patients and ARMS2 was amplified. ARMS2 sequence was confirmed by sequencing. (RNA isolation, 

PCR and sequencing were done with the support of Monika von der Heide from Department of 

Infection Biology). 

 

3.2.2 Monocytes derived from AMD patients with the ARMS2 risk haplotype lack the 

ARMS2 protein 

The risk variant (polymorphism rs10490924 with indel) was described to result in ARMS2 

deficiency in human placenta [104]. Having determined the ARMS2 genotype in 56 AMD 
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patients, the ARMS2 expression level in monocytes of selected patients was determined. 

Therefore, monocytes from patients carrying specific ARMS2 haplotypes were isolated and 

stained with α-ARMS2Jena antiserum to look for the presence of ARMS2 by microscopy. 

Genotypes were compared as follows: type I/I harbors two non-risk alleles of ARMS2, type 

I/II has one ARMS2 risk allele (rs10490924 with del443ins54) and one non-risk allele, and 

type III has two alleles of the ARMS2 risk variants (rs10490924 with del443ins54). The 

ARMS2 protein was identified in the cytoplasm of monocytes containing one or two alleles of 

the ARMS2 non-risk variant (i.e., type I/I or I/II). In contrast, monocytes derived from the 

patients with two risk alleles (II/II) showed no ARMS2 protein staining. Also, monocytes 

derived from a single patient who is homozygous with an ARMS2 stop mutation (rs2736911, 

genotype III/III) lacked the ARMS2 signal (Figure 12). These findings demonstrate an ARMS2 

deficiency in homozygous carriers of the risk haplotype. 

 

Figure 12. Detection of ARMS2 protein in monocytes from AMD patients. 

ARMS2 is present in monocytes with one or two copies of the non-risk ARMS2 variant (red), but is 

absent in cells with the homozygous rs10490924 (II/II) or rs2736991 (III/III) risk alleles. Monocytes 

were isolated from blood monocytes derived from wet AMD patients. Fluorescence staining of ARMS2 

in monocytes was performed using α-ARMS2Jena antiserum. DAPI was used to stain the nuclei (blue). 

(Scale bar, 10 μm).  

 

3.3 Characterization of ARMS2 

3.3.1 Expression and purification of recombinant ARMS2 

In order to investigate the biological functions of ARMS2, the protein was recombinantly 

expressed as a histidine-tagged protein using P. pastoris expression system. The expression 
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vector pPICZαB contained codon usage optimized full length cDNA of the ARMS2 gene 

coupled to a myc and 6 x histidine coding tag for purification as described [119]. Moreover, 

an Asp-Asp-Asp-Asp-Lys protease cleavage sequence was inserted to cut off the tag (Figure 

13). Recombinant protein expression levels were analyzed by western blot using anti-penta 

histidine antibody at different time points (Figure 14A). As the protein was not detected in 

the supernatant of yeast cells, cell pellets were collected and lysed in binding buffer after 3 

days. Purification of the protein was performed using nickel chelate chromatography. 

Recombinant ARMS2 protein was bound to a nickel column overnight at 4 °C, after washing, 

protein was eluted. Detection of the ARMS2 protein in the elute fractions (fraction E2 and E3) 

by western blot (Figure 14B) confirmed efficient protein purification.   

 

Figure 13. Codon optimized ARMS2 cDNA was cloned into the pPICZαB expression vector. 

Map and features of pPICZαB expression vector. ARMS2 gene was cloned into the pPICZαB 

expression vector and expressed in the P. pastoris expression system. The optimized ARMS2 cDNA 

contained a protease cleavage site (grey), a myc tag (blue) and 6 x histidine tag (green) for purification. 
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Figure 14. Recombinant ARMS2 expression and purification.    

(A) Analysis of recombinant ARMS2 expression in P. pastoris over time by western blot analysis. 

ARMS2 expression showed highest level (lane 6) after 3 days. After 3 days of expression in P. pastoris, 

cell pellets were collected and lysed in binding buffer for protein purification. (B) After purification, 

the protein is detected in the elutes (lanes 2, 3 and 4) but not in wash fractions (lane 9). Recombinant 

ARMS2 protein was coupled to the HisTrap HP column. Several elute and wash fractions were 

obtained, separated by SDS-PAGE and analyzed by western blotting using anti-penta histidine 

antibody.  

3.3.2 ARMS2 forms homodimers 

Interestingly, separated ARMS2 by SDS-PAGE under non-reducing conditions appeared as a 

34 kDa band, but 17 and 34 kDa under reducing conditions when detected with either 

anti-penta histidine antibody or α-ARMS2Jena (Figure 15A). This result suggested that ARMS2 

forms homodimers. To characterize the protein bands in more detail, recombinant ARMS2 

was again separated by SDS-PAGE and stained with coomassie blue. Protein bands were 

excised from the gel, digested with trypsin into peptides and analyzed by mass spectrometry 

(MS). The MS revealed that all peptides derived from the 17 and 34 kDa bands covered 

regions of ARMS2 (more than 90%) (Figure 16, Table 3). These results confirmed that ARMS2 

was present in both the 17 and 34 kDa bands and thus likely forms homodimers. Next, we 

tested whether the multiple bands reflected differently glycosylated bands of ARMS2. To this 

end, the recombinant protein was incubated with PNGase F for 3 h at 37 °C. After digestion, 

ARMS2 was identified as 15 and 30 kDa bands (Figure 15B) and ARMS2 was confirmed by 

mass spectrometry (Table 4). Also after the treatment of ARMS2 with Enterokinase to cleave 

off the histidine tag from ARMS2, the protein appeared as 17 and 30 kDa bands (Figure 14B). 

Taken together, recombinant ARMS2 was found to form homodimers and becomes 

glycosylated in P. pastoris. 

 

Figure 15. Recombinant ARMS2 forms homodimers and is glycosylated.  

(A) Under reducing conditions, ARMS2 showed mobilities of 17 and 34 kDa (lane 1 and 2). While 
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ARMS2 appeared as 34 kDa when separated using non-reducing conditions (lane 3), likely 

representing an ARMS2 homodimer. ARMS2 was separated under reducing or non-reducing conditions 

by SDS-PAGE and detected by western blot using α-ARMS2Jena. (B) Recombinant histidine-tagged 

ARMS2 was incubated with enzymes to remove glycosylation (lane 5) or the complete histidine tag 

(lane 7) from the protein and treated proteins were separated by SDS-PAGE and detected by western 

blot using α-ARMS2Jena (black arrows to the left indicate the homodimer and monomer of ARMS2). 

 

 

Figure 16. MS analysis of ARMS2 peptides from purified protein. 

MALDI-TOF mass spectra of peptides from recombinant ARMS2. Purified ARMS2 was separated 

using SDS-PAGE and stained with coomassie blue. The protein was in-gel digested by trypsin and 

extracted from the gel. All generated peptides from 2 bands were analyzed by mass spectrometry.  

 

3.3.3 ARMS2 - properdin interactions 

We showed that ARMS2 binds to the only one complement activator properdin [119]. To 

confirm ARMS2-properdin interaction, ARMS2 (5 μg/ml) was immobilized on a microtiter 

plate overnight at 4 °C and increasing amounts of properdin were added for 1 h. After 

washing, bound properdin was identified using goat anti-properdin (1:1000). Properdin 

bound to ARMS2 and this binding was dose-dependent (Figure 17A). To further confirm and 

characterize the specificity of the ARMS2-properdin interaction, the interaction affinity was 

investigated by biolayer interferometry using the Blitz system. Biotinylated properdin (20 

μg/ml) was immobilized on the biosensors and the real-time binding of various dilutions of 

ARMS2 were determined. In this set up, the equilibrium dissociation constant of ARMS2 

bound to immobilized properdin is KD= 0.5 ± 0.07 x 10-6 M. Dissociation kinetics are shown in 

Figure 17B. 

Oxidants can damage DNA and lipids [97]. As ARMS2 is upregulated in monocytes upon 

oxidative stress, we asked if ARMS2 plays a role in protecting cells against oxidative stress. 

Therefore, the interaction between ARMS2 and human DNA or LDL (low density lipoprotein) 

was tested. DNA and LDL (5 μg/ml) were immobilized onto the surface of a microtiter plate 

overnight at 4 °C and ARMS2 (200 nM) was added. Bound ARMS2 protein was detected by 

ELISA using α-ARMS2Jena. ARMS2 did not bind to DNA or LDL (Figure 17C, 17D). 



  Results 

37 

 

Table 5 

Identified ARMS2 peptides from purified protein bands. 
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Table 6  

Identified ARMS2 peptides from deglycosylated ARMS2 protein bands. 
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3.3.4 The ARMS2 C-terminus mediates interaction with properdin 

Having shown the strong interaction between ARMS2 and properdin, the binding domain in 

ARMS2 which interacts with properdin was investigated in detail. Three ARMS2 peptides 

encompassing all amino acids of ARMS2 were synthesized.  Peptide 3 but not peptide 1 or 2 

of ARMS2 showed binding to properdin (Figure 18A). Since peptide 3 which represents the 

C-terminus of ARMS2 revealed binding to properdin, this peptide was analyzed in more 

detail. To this end, 24 peptides (each of 13 amino acids with 10 amino acids overlap) 

covering the ARMS2 C-terminus were spotted onto a cellulose membrane. These solid 

phase-bound peptides were used for binding studies directly on the membrane. The 

membrane was blocked in blocking buffer (1% BSA and 3% nonfat milk in TBS-T buffer) for 1 

h, then incubated with Alexa Fluor 647-conjugated properdin (5 μg) overnight at 4°C. Later 

on, after washing for three times, the fluorescent signals were captured with 635 laser lines 

by Fusion FX system (Figure 18B). The interaction domain for properdin was located to spots 

8-10 which represented the amino acids 80-90 (FFSPAGTQRRF) of ARMS2. All other peptides 

showed little or no binding signal. 

 3.3.5 ARMS2 binds to human ARPE-19 cells and heparan sulfate 

To further study the role of ARMS2, binding of ARMS2 to cell surfaces was determined in 

vitro. APRE-19 cells were grown until a monolayer was formed and then detached by 

trypsin/EDTA. Recombinant ARMS2 (1 μg) was incubated with the cells for 1 h on ice. After 

washing, bound proteins were detected by flow cytometry using α-ARMS2Jena antiserum. 

ARMS2 bound to ARPE-19 cells (Figure 19A). To identify the cellular ARMS2 ligand, surface 

binding to exposed glycosaminoglycans (GAGs) was assayed and ARMS2 binding was 

analyzed to heparan coated beads. ARMS2 (1 μg) was added to beads (1 million) and binding 

of ARMS2 was followed with α-ARMS2Jena antiserum. ARMS2 specifically bound to heparan 

sulfate (Figure 19B), in contrast to a control protein with a histidine-tag. 
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Figure 17. ARMS2 interacts with complement activator properdin but does not bind to LDL 

or DNA. 

(A) ARMS2 binds to immobilized properdin. Error bars represent mean ± SD of 3 independent 

experiments performed in triplicate. *, p<0.05. (B) Dissociation constant of the interaction between 

ARMS2 and properdin is KD= 0.5 ± 0.07 x 10
-6

 M determined by biolayer interferometry. (C) + (D) 

ARMS2 does not interact with LDL or DNA. In contrast, FH binds to LDL, FHR4B and properdin bind 

to DNA. Error bars represent mean ± SD of 3 independent experiments performed in triplicate. 
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Figure 18. ARMS2 binding to properdin. 

ARMS2 binds via its C-terminus to properdin. (A) ARMS2 peptide 3 (aa 71-107) but not peptide 1 (aa 

1-40) or 2 (aa 41-70), binds to properdin. Properdin binding was evaluated to three peptides of ARMS2 

immobilized on the ELISA plate. Bars represent mean ± SD of 3 independent experiments performed 

in triplicate. *, p<0.05 (B) Pepspot analysis of properdin binding to ARMS2. The interaction domain of 

ARMS2 to properdin is located to spots 8-10 representing ARMS2 aa 80-90. ARMS2 overlapping 

peptide were spotted to a membrane and incubated with properdin. The dark spots indicate properdin 

binding. The properdin binding region in the ARMS2 sequence is underlined. Upper blot: properdin 

binding. Lower blot: control development of the membrane with 488 laser lines.  
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Figure 19. ARMS2 binds to heparan sulfate as well as human ARPE-19 cells.  

(A) ARMS2 (red) binds to ARPE-19 cells. Background binding of the antibody to the cells is shown in 

grey. (B) ARMS2 (red) binds to heparan coated beads. Histidine-tagged FH fragment (blue) did not 

bind to the beads, confirming specificity of ARMS2 binding. 

 

3.3.6 Cloning and transformation of ARMS2 variant A69S plasmid 

The ARMS2 risk polymorphism rs10490924 (A69S) is linked to an indel mutation which leads 

to the instability of ARMS2 mRNA. However, it is still unclear whether the A69S 

polymorphism alone affects the ARMS2 protein functions. In order to investigate whether 

the amino acid exchange modulates the function of ARMS2, recombinant ARMS2 variant S69 

protein was expressed. Initially, the cDNA with the polymorphism A69S was synthesized and 

inserted into expression vector pPICZαB. The plasmid was transformed and amplified in E. 

coli DH5α cells. Colonies were identified by plasmid isolation, restriction enzyme digestion 

and agarose electrophoresis. Each colony contained the inserted cDNA as determined by the 

presence of a ~470 bp fragment after digestion (Figure 20A) and sequenced by Monika von 

der Heide (Department of Infection Biology, HKI). A positive transformant was grown in LB 

medium overnight and the plasmid was subsequently isolated from the cells. The purified 

plasmid was linearized and transformed into competent P. pastoris X33 cells by 

electroporation. Grown colonies were tested for ARMS2 S69 protein expression and the 

positive colony was utilized for further large-scale protein expression (lane 4, Figure 20B).  

3.3.7 Expression and purification of recombinant ARMS2 variant A69S protein 

Similar to the wild type ARMS2 A69 protein, the recombinant ARMS2 S69 protein was 

expressed as a histidine fusion protein in P. pastoris. Four ARMS2 S69 expression colonies 

were grown in culture medium, lysed and ARMS2 protein levels were detected by western 

blot analysis (Figure 20C). The ARMS2 S69 was present in all 4 colonies and detected as 17 

kDa band. The ARMS2 protein was purified from the cells following the same procedure as 

described above for the wild type ARMS2 protein. The elution fraction E3 showed the 

ARMS2 S69 protein as 16 and 17 kDa protein bands (Figure 20D). 
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Figure 20. ARMS2 variant S69 expression and purification. 

(A) Analysis of ARMS2 variant A69S gene in E. coli. ARMS2 variant A69S gene was cloned into 

pPICZαB vector and transformed into E. coli cells. Plasmids were isolated from five transformed 

colonies and ARMS2 inserts were identified by agarose gel electrophoresis. (B) ARMS2 protein is 

identified as 17 kDa protein band by western blot analysis. Grown colonies were evaluated for ARMS2 

S69 protein expression. (C) ARMS2 S69 proteins expression in P. pastoris. Recombinant ARMS2 S69 

protein was expressed in P. pastoris for 3 days and the extracts of the cells were detected by western 

blot analysis with anti-penta histidine. (D) Purified ARMS2 S69 protein and recombinant ARMS2 wild 

type A69 protein show similar mobility in western blot analysis.  
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3.3.8 Comparison of ARMS2 and ARMS2 A69S proteins 

To analyze potential functional changes of the ARMS2 A69S variant, we compared ARMS2 

S69 with wild type ARMS2 A69 according their expression and function. Recombinant ARMS2 

S69 showed similar mobilities as ARMS2 A69 of 17 and 34 kDa under reducing conditions in 

silver staining gel (Figure 21A), which indicated dimerization of also ARMS2 S69 protein. Next, 

we proceeded to evaluate the binding of the ARMS2 variant to properdin by ELISA and 

biolayer interferometry. Therefore, ARMS2 A69 and S69 (each 5 μg/ml) were coated on a 

microtiter plate and properdin (200 nM) was added. Bound protein was detected with 

anti-properdin (1:2000). ARMS2 S69 also showed an interaction with properdin and the 

real-time interaction affinity constant was KD=0.7 x 10-7 M as measured by biolayer 

interferometry (Figure 21B, 21C). Moreover, ARMS2 S69 also bound to ARPE-19 cells and 

heparan coated beads (Figure 21D, 21E). Taken together, ARMS2 A69 and S69 showed similar 

expression profiles, dimerization, stability and binding activities. 

 

3.4 Complement activation on ARPE-19 cells 

3.4.1 Oxidative stress sensitizes cells to NHS 

To determine cell death under increasing concentrations of oxidative stress or NHS, the cell 

viability was assayed by cell titer blue assay. By measuring visible light absorbance upon 

reduction of resazurin to resorufin, the metabolic activity of the cells was evaluated 24 h 

after treatment. ARPE-19 cell monolayers were treated with different concentrations of H2O2 

(0.1-2mM) for 1 h. Subsequently, cells were washed in medium and incubated in serum-free 

medium or NHS (1% - 20%) before analysis. The absorptions at 570 nm and 605 nm were 

measured and the ratio change was set directly proportional to the number of living cells. 

The cell viability was significantly decreased in the presence of H2O2 (p≤0.01) (Figure 22A). 

The impact of NHS on ARPE-19 cells was determined by the same methods. Low dilution 

(less than 20%) of serum showed a high level of cell viability (more than 70%) suggesting 

mild toxicity to the cells. Heat inactivation of NHS (iNHS) significantly attenuated the injury 

induced by complement activity (Figure 22B). However, treatment of cells with H2O2 together 

with NHS significantly reduced cell viability (***, p<0.001) (Figure 22C). Thus, exposure of 

oxidative stress and NHS to cells impairs cell survival.  

3.4.2 Cell surface bound ARMS2 enhances complement activation  

As complement is involved in the pathogenesis of AMD, and properdin is the only known 

complement activator, we consequently asked if ARMS2 plays a role in complement 

activation. ARMS2 (5 μg/ml) was attached to ARPE-19 cells, incubated in NHS (20%) for 30 

min at 37 °C and surface C3b was stained using rabbit anti-C3d (1:400) by flow cytometry. 

ARMS2 enhanced C3b opsonization of ARPE-19 cells (Figure 23B), confirming complement 

activation via ARMS2 on the cell surface. 
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Figure 21. Comparison of ARMS2 A69 and S69 variants.       

(A) ARMS2 S69 has a similar mobility like wild type ARMS2 A69 as determined by silver staining. (B) 

ARMS2 S69 and A69 showed similar binding to properdin. ARMS2 S69 and A69 were immobilized 

onto the surface of a microtiter plate and purified human properdin (200 nM) was added. Bars represent 

mean ± SD of 3 independent experiments performed in triplicate. (C) The interaction affinity constant 

of ARMS2 S69 to properdin was 0.7 x 10
-7

 M as measured by biolayer interferometry. (D) + (E) Both 

ARMS2 S69 and A69 bound to ARPE-19 cells and heparan beads. ARMS2 S69 and A69 (each of 1 μg) 

were incubated with ARPE-19 cells or heparan beads, and bound ARMS2 proteins were detected by 

flow cytometry using α-ARMS2Jena antiserum. The experiments in D and E were performed under 

identical conditions for side-by-side comparison. 
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Figure 22. Cell viability assay. 

(A) Cell viability was substantially decreased upon exposure to H2O2 (0.5 – 2mM). ARPE-19 cells were 

treated with varying doses of H2O2 for 1 h and incubated in serum-free medium for 24h. Cell viability 

was measured to quantify cell death. (B) In 50 % NHS, cell viability also decreased, suggesting mild 

toxicity of low levels of NHS (less than 20 %) to cells. (C) Treatment of cells with H2O2 together with 

NHS significantly reduced cell viability. Bars represent mean ± SD of 3 independent experiments 

performed in triplicate. Stars indicate significance to control (***, p<0.001). 

 

3.4.3 Oxidative stress promotes complement activation which is controlled by FH 

Next, we asked whether oxidative stress affects the ability of ARPE-19 cells to regulate 

complement activation after exposure to NHS as source of complement. C3b deposition was 

followed by flow cytometry. Exposure of the cells to NHS (20%) for 1 h caused C3b deposition 

on the cell surfaces and C3b deposition increased when cells were treated with H2O2 (1 mM) 

prior to exposure to NHS (20%) (Figure 23A).  

FH is one of the most abundant plasma proteins and a major regulator of complement 

activation. An important regulatory activity of FH is its decay acceleration activity of the C3 

convertase, thereby promoting the dissociation of factor Bb from C3b. We asked whether FH 

regulates complement on oxidatively stressed cell surfaces. Stressed cells with H2O2 (1 mM) 
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were incubated with FH (20 μg/ml) followed by exposure to NHS (20%) and C3b deposition 

was measured by flow cytometry. Addition of FH to NHS reduced surface C3b levels after 

oxidative stress (Figure 24B). In contrast, FH did not modulate complement activation on 

untreated cells (Figure 24A).  

 

Figure 23. Oxidative stress and ARMS2 enhance complement activation on cell surfaces in 

serum.   

(A) Cells which were treated with H2O2 showed a higher level of C3b deposition than untreated cells. 

ARPE-19 cells were treated with H2O2 (1 mM) for 1 h to induce oxidative stress followed by 

incubation with NHS (20%) for 1 h at 37 °C. Surface bound C3b was detected by flow cytometry. (B) 

C3b deposition on ARMS2 coated ARPE-19 cells increased upon incubation in 20% NHS. ARPE-19 

cells were incubated with ARMS2 (5 μg/ml) for 1 h followed by incubation with NHS for 30 min at 

37 °C. Surface bound C3b was detected by flow cytometry.   

 

Figure 24. FH blocks C3b deposition on oxidatively stressed ARPE-19 cells. 

(A) FH (20 μg/ml) controlled complement activation on stressed cell surface. Cells were treated with 

H2O2 (1 mM) for 1 h and incubated with FH (20 μg/ml) and NHS (20%) for 1 h at 37 °C. (B) FH      

(20 μg/ml) did not inhibit C3b deposition on control cells. Cells were incubated with FH (20 μg/ml) 

and NHS (20%) for 1 h at 37 °C. Surface bound C3b was detected by flow cytometry. 
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3.4.4 Oxidative stress and complement activation induces VEGF secretion in ARPE-19 cells 

The wet form of AMD is characterized by choroidal neovascularization, which affects the 

macula, leading to photoreceptor damage and central vision loss [56]. Since uncontrolled 

VEGF contributes to AMD, and the RPE layer has been identified as an important site of VEGF 

production, we asked which stimulation of RPE might initiate the expression of VEGF. As the 

retina is one of the highest oxygen-consuming tissues in human body, I determined the effect 

of oxidative stress and complement activation on VEGF secretion. Following treatment with 

increasing concentrations of H2O2 or NHS of ARPE-19 cells, VEGF levels were measured in the 

supernatants of the cells by ELISA after 24 h. The analysis revealed a small increase by 0.5 

mM H2O2 or 10% NHS when applied individually to the cells (Figure 25A). However, 

co-stimulation of 1 mM H2O2 combined with NHS resulted in a 3-fold increase in VEGF 

release (Figure 25A, 25B). Furthermore, high amounts of oxidative stress (1-2 mM) alone also 

resulted in slight VEGF production (Figure 25C). To understand whether the release of VEGF 

is mediated by complement activation, the cells were incubated with 5 μg/ml ARMS2 for 1 h 

before adding 10% NHS. ELISA analysis showed significant increased VEGF levels by 2-fold in 

treated cells compared to untreated cells (Figure 25D). Exposing the cells to inactive NHS did 

not cause any further increase of VEGF release (Figure 25D). These results demonstrated that 

complement activation on ARPE-19 cells induces VEGF secretion by more than 3-fold which 

in turn might disrupt the function of the cells.  

3.4.5 Detection of intracellular complement components expression in ARPE-19 cells 

A typical hallmark of AMD is the accumulation of drusen on the basal membrane in the 

retina [64]. The protein composition of drusen includes apolipoproteins and many 

complement proteins. However, the source of the proteins in drusen is still unclear. Previous 

report showed that FH and C3 are present in the human retina [28]. We asked whether FH 

expression is regulated in ARPE-19 cells and whether enhanced complement activation by 

oxidative stress has an effect on FH production. Therefore, ARPE-19 cells were treated as 

described above and lysed and samples were separated in 10% SDS gels. Western blot 

membranes were labelled with goat anti-FH or mouse anti-β actin and corresponding 

secondary antibodies. FH is expressed in RPE as demonstrated by the appearance of a ~155 

kDa band, in contrast to the FH splicing protein FHL-1 which was not detected (Figure 26). 

When cells were treated with H2O2, FH protein levels increased. Mobilities of purified FH and 

FHL-1 proteins are shown (Figure 26).  
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Figure 25. Oxidative stress and complement increase VEGF secretion in ARPE-19 cell. 

(A) + (B) +(C) H2O2 (0.5 mM) or NHS (10%) alone added to the cells slightly increased VEGF 

secretion in ARPE-19 cells. In contrast, addition of both induced higher VEGF levels. ARPE-19 cells 

were treated with oxidative stress or NHS and the supernatants were analyzed by ELISA after 24 h for 

VEGF production. (D) Complement activation induces VEGF release from ARPE-19 cells which is 

enhanced by ARMS2. The cells were incubated with 5 μg/ml ARMS2 for 1 h before adding 10% NHS. 

Bars represent mean ± SD of 3 independent experiments performed in triplicate. Stars on top indicate 

significant differences to control (*p<0.05, ** <0.01, ***p<0.001). 
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Figure 26. Intracellular FH is upregulated upon oxidative stress in ARPE-19 cells. 

FH was detected in the ARPE-19 cell lysates using FH antiserum. ARPE-19 cells were treated with 

H2O2 (0.5 and 2 mM) for 1 h and analyzed 24 h after treatment by western blot analysis.  

 

To identify whether ARPE-19 cells also express complement C3, cells were lysed and C3 

expression was assayed by western blot using C3 antiserum. Similarly, human retina tissue 

was homogenized, lysed and centrifuged at 500 g to remove cell debris. The supernatant was 

used for further detection. The tissue and cell samples were separated by SDS-PAGE under 

non-reducing conditions. C3 was identified as a ~114 kDa α and ~75 kDa β chains in the 

human retina and ARPE-19 cells (Figure 27A). These data confirm C3 expression in the 

human retina and RPE cells. In addition, upon oxidative stress, C3 synthesis was upregulated 

in ARPE-19 cells. In parallel, intracellular cleavage of C3 was observed in ARPE-19 cells. The 

C3 cleavage product C3b increased in response to exposure of the cells to 0.5 mM oxidative 

stress as seen by the appearance of the C3 α’ band. C3 chains are indicated on the right 

(Figure 27B).  

In contrast to C3, no specific bands were detected in extracts from the human retina or in 

ARPE-19 cells using C5 antiserum in western blot analysis. Thus, C5 is very low expressed or 

not present in the human retina (Figure 28).  
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Figure 27. C3 expression in human retina and ARPE-19 cells. 

(A) The human retina and ARPE-19 cells express C3. The tissue and cells were lysed and samples were 

separated by SDS-PAGE. Intracellular C3 was detected by western blot using C3 antiserum. (B) 

Intracellular C3 is upregulated and cleaved within 24 h after exposure of ARPE-19 cells to oxidative 

stress. Cells were treated with H2O2 for 1 h and incubated in serum-free medium for 24 h. Beta-actin 

staining serves as loading control. 

 

 

Figure 28. C5 staining of ARPE-19 cells.  

C5 is absent in retina tissue and ARPE-19 cells. The human retina and ARPE-19 cells were lysed and 

separated by SDS-PAGE. Intracellular C5 was analyzed using goat anti-C5 antiserum. Beta-actin 

staining serves as loading control in ARPE-19 cells. 

 

Overall, human retina and RPE cells express complement FH and C3, but not C5. The 

expression of FH and C3 was regulated upon oxidative stress. C3 was cleaved intracellularly 

into C3a and C3b in response to oxidative stress.
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4. Discussion 

Age-related macular degeneration (AMD) is a degenerative disorder of the central retina and 

the leading cause of blindness in developed countries. AMD is classified as dry (atrophic) 

form or wet (exudative) form. The dry form is characterized by drusen formation on the 

macula, degeneration of the RPE and photoreceptor death. The more severe wet form is 

characterized by the presence of choroidal neovascularization [56]. The underlying 

pathogenesis of this disease is still unknown, but a few risk factors have been identified. The 

most consistent risk factors are aging and smoking [63]. A number of findings also suggest 

that oxidative stress plays an important role in the development of AMD [125]. Additionally, 

the complement system has been considered to contribute to AMD risk since several 

complement components are observed in drusen [64, 68]. More recently, genetic studies 

have repeatedly shown a strong association of a polymorphism in the complement factor H 

gene, encoding an inhibitor of the complement alternative pathway activation, with the 

advanced form of AMD [126, 127, 128]. A second major independent susceptibility factor is 

identified for both dry and wet AMD with a polymorphism in ARMS2, located at 

chromosome 10q26 [129]. So far, the influence of ARMS2 risk variants, the expression of this 

gene and the mechanism of how the ARMS2 polymorphism contributes to the development 

of AMD are poorly understood. Therefore, the aim of this study was to investigate whether 

ARMS2 is biologically involved in AMD and whether it also affects complement regulation. To 

this end, the work presented here shows the identification of endogenous ARMS2, the 

function of recombinant ARMS2 and how complement activation is regulated on ARPE-19 

cells. 

4.1 Human iPS-derived microglia and monocytes express ARMS2 

Although there is growing genetic evidence indicating that ARMS2 variants are strongly 

associated with AMD, to date, the ARMS2 protein expression has not been fully elucidated. 

Prior studies have demonstrated the ARMS2 gene only exists in primates, which is consistent 

with macula evolution [130]. Thus, it is important to get insights into ARMS2 expression and 

protein distribution to shed some light on its biological function. In our study, we identified 

both ARMS2 transcripts and proteins in human microglia derived from induced pluripotent 

stem cells (iPS-derived microglia) and human monocytes using PCR and LSM microscopy, 

respectively (Figure 7, 8). The expression results are in agreement with ARMS2 expression in 

microglia and monocytes in the human retina [120]. Kanda et al. reported that ARMS2 mRNA 

can be detected in human retina and ARPE-19 cells, and moreover, exogenous ARMS2 

protein which is expressed in transfected mammalian cells localizes in the mitochondrial 

outer membrane [116]. However, the subcellular localization of exogenous ARMS2 in 

transfected cells is disputed since others have described endogenous ARMS2 to be 

distributed in the cytosol, while another group found ARMS2 in the mitochondria of 

photoreceptors [105, 119]. The absence of ARMS2 transcripts and protein in murine 

macrophages RAW 264.7 confirmed the specificity of our results as ARMS2 is expressed only 

in humans and higher primates (Figure 8B). Most of the endogenous ARMS2 was localized in 

the cytoplasm of human monocytes as shown by different ARMS2 antibodies, including a 
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newly generated monoclonal antibody to the ARMS2 C-terminus (Figure 10A), two different 

polyclonal antisera to recombinant ARMS2, and a purchased ARMS2 antiserum (data not 

shown). ARMS2 showed a similar distribution with all different antibodies used recognizing 

distinct epitopes (Figure 10A), confirming ARMS2 presence in the cytoplasm. The different 

ARMS2 subcellular distribution from each study might be attributed to the differences of 

fixation and permeabilization of the cells for detection of normal or overexpressed ARMS2. 

Another possibility is that the regulation of ARMS2 expression and transport are largely 

dependent on distinct types of cells and tissues or that a trigger is necessary for expression 

of ARMS2.   

Current theories imply that age-related diseases are associated with accumulation of 

damaged proteins and DNA induced by ROS imbalance [131]. Therefore, we hypothesized 

that an oxidative microenvironment may stimulate ARMS2 production in monocytes. Indeed, 

upon oxidative stress with increased amounts of H2O2 (0.1-1 mM), monocytes elevate 

ARMS2 expression as detected by western blot analysis using polyclonal antiserum. The 

induction is prominent starting with 0.1 mM H2O2 by densitometry of western blot bands 

(Figure 9). These increased ARMS2 expression levels confirm that oxidative stress enhances 

ARMS2 production in monocytes. Upregulation of ARMS2 upon oxidative stress as it is 

observed implies that ARMS2 plays a role in oxidative stress response in AMD development. 

To confirm the detected signals are specific from ARMS2, ARMS2 was pulled down from 

THP-1 cell lysate using immunoprecipitation combined with mass spectrometry by 

immobilizing monoclonal ARMS2 antibodies to a column. Several ARMS2 peptides were 

identified from digested extracts, thus demonstrating for the first time the presence of the 

ARMS2 protein in human monocytes. Five independent precipitation experiments revealed 

almost complete coverage of the ARMS2 protein (Table 2). From this we concluded that 

ARMS2 is present in low concentration without stimulation. In conclusion, ARMS2 is 

expressed in human microglia and monocytes, and the protein is predominantly found in the 

cytoplasm of cells. ARMS2 protein levels increased upon oxidative stress in monocytes. 

4.2 AMD patients carrying the ARMS2 risk haplotype lack the ARMS2 

protein in monocytes 

The AMD associated variants at 10q26 overlap PLEKHA1, HTRA1 and ARMS2 genes. All of 

these genes have a plausible biological relationship to AMD [129, 132, 133]. An increased 

level of HTRA1 is suggested to play a role in the pathogenesis of AMD [132]. Currently, a 

single-nucleotide polymorphism represented by polymorphism rs10490924 linked with an 

indel mutation del443ins54 in the ARMS2 gene shows higher association with AMD than the 

other two genes [105]. Polymorphism rs10490924 generates a replacement of alanine by 

serine in the protein at position 69 (A69S), making it a susceptible candidate. In addition, the 

indel mutation at the 3’ UTR which is thought to destabilize mRNA is in strong linkage 

disequilibrium (LD) with A69S. The indel affects ARMS2 mRNA stability, subsequently 

resulting in lower ARMS2 transcripts and protein levels as previously demonstrated in 

ARMS2 genotyped placenta [105]. Another polymorphism rs2736911 (R38X), which is more 

frequent in individuals from the Chinese population, results in a premature stop codon at 
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position 38 and correlates with a truncated version of ARMS2 transcripts due to mRNA decay 

or no transcripts [134]. As the polymorphism rs10490924 plus indel increase the risk for 

AMD, suggested that AMD patients carrying the risk haplotype show ARMS2 protein 

deficiency in blood-derived monocytes. To assess the impact of variants on ARMS2 protein 

expression level, patients with the wet form of AMD were genotyped according the presence 

of rs10490924 plus indel and rs2736911. In total, out of 56 AMD patients who were 

sequenced for ARMS2 polymorphisms, 52 patients harbored ARMS2 gene modifications 

(either A69S plus indel or R38X), 4 patients did not carry ARMS2 polymorphisms (Figure 11). 

These data revealed a correlation of the functional consequences of ARMS2 risk allele with 

AMD. However, a large number of patient samples will be necessary to study the effects of 

the polymorphism in ARMS2. 

ARMS2 protein expression was analyzed in their isolated blood monocytes by LSM 

microscopy. There were significant differences in expression levels among the ARMS2 

haplotypes. In fact, ARMS2 was detected in monocytes of AMD patients with non-risk alleles 

or one risk allele, but not in monocytes of homozygous carriers of the A69S risk genotype or 

the one patient we identified with the stop mutation (R38X). This is in agreement with 

previous findings that the indel decreases ARMS2 protein in monocytes and microglia of the 

human retina section. Previous reports by Fritsche et al. also reported the ARMS2 protein 

deficiency in placenta cells derived from the homozygous carriers of the risk haplotype [104]. 

Thus, the indel influences ARMS2 protein levels in vivo and in vitro. Theoretically, the R38X 

variation leads to a premature stop in protein synthesis, so that a truncated ARMS2 protein 

or no protein at all is produced. Interestingly, the R38X and A69S variants were not found on 

the same haplotype as described in a previous work by Minor et al. [105], nor from our 

cohort (104 AMD patients and 7 controls). A single AMD patient was observed homozygous 

of ARMS2 R38X in our cohort, who also showed no expression of ARMS2 in monocytes 

(Figure 12). Apparently, both polymorphisms rs10490924 and rs2736911 lead to ARMS2 

protein deficiency. However, the genetic association of rs2736911 (R38X) with AMD is 

considered to be weak because previous studies reported that rs2736911 was not 

statistically significant in AMD patients [105, 135]. The R38X allele is associated with normal 

HTRA1 expression which is protective for AMD [136]. It is still unclear why this variant is 

found more in Asia than Europe or North America and whether it plays a more prominent 

role in China. Nevertheless, it is necessary to understand the biological consequences of 

R38X and A69S for the etiology of AMD. In conclusion, monocytes derived from AMD 

patients homozygous of the ARMS2 risk haplotype lack the ARMS2 protein. 

4.3 ARMS2 interacts with complement activator properdin and heparan 

sulfate  

ARMS2 interacts with complement activator properdin and heparan sulfate, which mediates 

the binding of ARMS2 to apoptotic cells [119]. The interaction of ARMS2 with properdin 

describes the first biological function of ARMS2. In order to better understand the function 

of ARMS2, we expressed ARMS2 in Pichia pastoris using optimized conditions and purified 

the recombinant protein by affinity chromatography. The interaction with properdin was 
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confirmed by ELISA and further characterized by measuring real time interaction using 

biolayer interferometry. Recombinant ARMS2 is a glycosylated protein which forms 

homodimers as identified by western blot analysis and mass spectrometry (Figure 15, 16, 

Table 3, 4). Deglycosylation of recombinant ARMS2 did not affect binding activities of ARMS2 

to heparan sulfate or properdin (data not shown). The interaction affinity between ARMS2 

and immobilized properdin was 500 nM. The ARMS2 binding motif was located to the 

sequence FFSPAGTQRRF within the C-terminus of ARMS2 using PepSpots arrays (Figure 18B). 

This motif is likely surface exposed and thus accessible for ligand binding indicated by the 

protein structure prediction (yellow structure, Figure 29). Specificity of interaction is 

demonstrated by no significant interaction of ARMS2 with DNA or LDL (Figure 17C,17D). Thus, 

ARMS2 likely acts as an enhancer of complement opsonization on apoptotic cells in 

recruiting the activator properdin (Figure 30).   

On the genetic level, polymorphism rs10490924 and indel are in strong linkage 

disequilibrium so it was unclear which polymorphism is the biologically relevant one to AMD. 

To clarify this, ARMS2 S69 without the indel variation was recombinantly expressed in P. 

pastoris and purified under the same conditions as ARMS2 A69 (Figure 20). In general, the 

function of ARMS2 S69 was similar to that of ARMS2 A69 as it bound to properdin, heparan 

sulfate and ARPE-19 cells (Figure 21). The amino acid exchange did not affect the protein’s 

mobility and activities. These results demonstrate that A69S does not change ARMS2 

biological functions in vitro. Thus, the amino acid exchange at position 69 most likely is not 

the relevant functional variation associated with AMD. The indel variation in the ARMS2 

gene was previously described to lead to unstable ARMS2 mRNA. As we saw no ARMS2 

expression in monocytes from patients with this variation, the indel variation is most likely 

the AMD relevant modification. However, the introduction of R38X, which leads to a 

truncated ARMS2, does not confer risk of AMD. There may be additional events within the 

polymorphism R38X that occur to protect the disorder. Hence, ARMS2 interacts with 

properdin via its C-terminus and binds to the cell surface via heparan sulfate. 

 

RLYPGPMVTEAEGKGGPEMASLSSSVVPVSFISTLRESVLDPGVGGEGASDKQRSKLSLSHSMI

PAAKIHTELCLPAFFSPAGTQRRFQQPQHHLTLSIIHTAAR 

Figure 29. Hypothetical three-dimensional structure of the ARMS2 molecule. 

The structure was calculated by RaptorX and modified using Chimera 1.11.2. Ribbons are shown in 

white and helical structures in green. Beta sheets are marked in blue and disulfide bond in red. The 

interaction domain with properdin FFSPAGTQRRF is shown in yellow. The ARMS2 amino acid 
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sequence is shown below.  

 

 

Although it can be confirmed from current findings that there is a causal relationship 

between dysregulated complement activation and the development of AMD, the role of 

complement activation in late forms of AMD remains unclear. In this regard, the role of 

ARMS2 in complement activation was analyzed. We previously showed that ARMS2 binds to 

modified human RPE cell line, ARPE-19 cells or apoptotic T cells, but not to primary RPE or 

naïve T cells [119]. On this basis, this study confirmed that surface-bound ARMS2 serves as 

an anchor for properdin, thus enhancing C3b opsonization on ARPE-19 cell surfaces (Figure 

19, 23). This surface regulatory ability of ARMS2 enhances opsonization, but also needs 

regulation to prevent unwanted over-activation of complement. The complement system 

plays a role in the clearance of dying cells through opsonization and the promotion of 

phagocytosis. Thus, deposition of C3b recruited by ARMS2 on the modified surface assists 

the removal of debris by human phagocytes. No effect on complement activation in fluid 

phase by ARMS2 insures that the cascade is restricted to the surface and prevents unwanted 

inflammation. Therefore, ARMS2 deficiency likely enhances accumulation of cell debris, 

which results in abnormal complement activation (Figure 30). Altogether, ARMS2 is a surface 

acting protein that increases C3b deposition via properdin, which enhances the opsonization 

and phagocytosis of dying cells by phagocytes.  

 

Figure 30. Complement activation on RPE cell surfaces. 

Surface-bound ARMS2 enhances C3b opsonization via interaction with properdin. Complement 

activation increases VEGF secretion of ARPE-19 cells. 
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4.4 Oxidative stress promotes complement activation and VEGF 

secretion in ARPE-19 cells 

Oxidative stress on RPE cells is an important risk factor in AMD [125]. The RPE layer is a 

monolayer of epithelial cells that forms the outer layer of the retina and performs multiple 

functions [57]. So far, the initial events that trigger immune complement activation in RPE 

cells remains unclear. Determining the effects of oxidative stress on ARPE-19 cells showed 

that ARPE-19 cells are very susceptible to oxidative stress-mediated cytolysis in a 

dose-dependent manner (Figure 22A). The cells suffered even more when, in addition to 

oxidative stress, complement was activated on their surface. This is demonstrated by 

increased C3b deposition on the cell surface, and dramatically reduced viability of the 

ARPE-19 cell monolayer (Figure 22C, 23A). Exposure of ARPE-19 cells to NHS alone resulted 

in weak cytolysis, and less damage of the cells (Figure 22B). This is likely due to complement 

regulators like CD46 on the cell surface [137]. When cells are challenged by oxidative stress, 

the surface remodels accelerate C3b opsonization, which mediates clearance of dying cells 

by phagocytosis. Likewise, the upregulation of ARMS2 in monocytes upon oxidative stress 

activates complement on the surface. Thus, high oxidative stress in the retina as detected in 

AMD patients leads to complement activation and enhanced stress on the RPE.  

Once activated, the alternative pathway of complement amplifies very fast on foreign 

surfaces like microbes and on modified self surfaces like apoptotic cells. Human cells and 

tissues are protected from complement injury by membrane bound and fluid phase 

regulators [19]. FH is an essential complement regulator that plays a critical role in the 

homeostasis of the complement system in protecting host cells and tissues [55]. The 

contribution of FH to complement inhibition is more evident on cells treated with H2O2, as 

determined by a relative increase in the ability of FH to control C3 deposition on the stressed 

cell surface (Figure 24). This is explained by the enhanced binding of FH to oxidatively 

damaged cells (Data not shown). Oxidative stress modifies the lipid structures. FH exhibits 

increased affinity for oxidized phospholipids than native ones, thus preventing their 

inflammatory activity [138, 139]. Polymorphism in the factor H gene is strongly associated 

with the risk of developing AMD. The disease-associated polymorphism corresponds to a 

tyrosine/histidine exchange at amino acid position 402. Functional analysis has 

demonstrated that the Y402H protein product shows reduced binding to LDL conjugated 

with malondialdehyde (MDA) or malondialdehyde-acetaldehyde (MAA), thus exhibiting a 

significantly increased level of complement activation and inflammation [37, 42]. Oxidative 

stress on ARPE-19 cells creates cell damage and a surface for complement activation which is 

controlled by FH (Figure 23). Since the FH variant H402 is less effective in complement 

inhibition and oxidative stress protection on surfaces, it results in more activation of 

complement on the surface of stressed cells as compared to the FH variant Y402, which may 

contribute to AMD risk (Figure 30). RPE cells express other complement regulators like CD46 

[137], and it is unclear why the retina is the specific site of complement injury carrying FH 

polymorphism. One possible explanation is that the retina has to neutralize a high amount of 

oxidative stress, so the regulation is largely relying on FH for protection. In contrast, oxidative 
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stress was also described to reduce the interaction of FH to the cell surface [102]. It may also 

be possible that FH interacts with the oxidatively stressed cells through additional domains 

which would affect the efficiency of binding.  

In addition to cell damage, the activation of complement represents an additional stress on 

the cells and results in enhanced VEGF secretion. VEGF subsequently induces blood vessel 

formation. Oxidative stress alone (2 mM) induced a 1-fold upregulation of VEGF (Figure 25C) 

as well as activated complement when cells were exposed to 5-20% NHS (Figure 25B, 25D). 

Oxidative stress together with complement activation, on the other hand, increased VEGF 

release by ~3 fold (Figure 25B, 25C). Likewise, surface-bound ARMS2 strongly induces VEGF 

secretion via complement activation but not ARMS2 alone. That activated complement 

fragments mediate VEGF production is confirmed by suppressed C3b deposition and VEGF 

secretion upon heat-inactivation of complement (Figure 25D). However, C3a, C3b and C5a as 

priming agents did not significantly induce VEGF release, nor did complement inhibitors such 

as FH and eculizumab block VEGF secretion after incubation for 24h (Data not shown), 

indicating that more complex conditions lead to VEGF production Recently it has been 

described that C3a and C5a individually (8h) or together (3d) induce VEGF in RPE cells in vitro 

[69, 140]. The incubation time varies in different studies and which further components 

participate are still unclear. Therefore, it is unlikely that the individual complement activation 

products provide sufficient signals to trigger VEGF secretion. The findings demonstrate that 

complement activation is involved in immune surveillance but also plays a role in 

angiogenesis. Oxidative stress together with NHS sensitizes ARPE-19 cells which is 

documented by enhanced C3b deposition and VEGF secretion. FH is a strong negative 

regulator of complement activation on damaged cell surfaces. Thus, the dysfunction of the 

RPE in AMD is likely not only due to the cytotoxicity mediated by oxidative stress and 

complement activation, but also related to cellular components and an abnormal VEGF 

secretion which is reported to disrupt the epithelial tight junctions of the retinal blood 

barrier. 

  

Figure 31. Factor H modulates complement activation on stressed cell surfaces.  

Oxidative stress enhances complement activation on surfaces which is inhibited by FH. 
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A number of complement proteins were found in the deposits (drusen) in the retina [66, 67, 

69]. However, the source of complement components in the retina is not completely clear. In 

this study local synthesis of complement C3, but not C5 is observed in ARPE-19 cells and in 

the human retina (Figure 27, 28). External complement proteins could be excluded as cells 

were serum starved prior to oxidative stress treatment for 24 h before analysis. Interestingly, 

upon oxidative stress (0.1-2 mM H2O2), intracellular C3 expression is upregulated and C3 

activation occurs intracellularly to generate C3a and C3b, in contrast to C5 which was not 

found in ARPE-19 cells (Figure 27, 28). Recently, intracellular C3 and C5 were described in T 

cells. Local C3 activation within T cells is processed by T cell-expressed protease cathepsin L 

[27]. C3b is then released and involved in immune response by T cells. If and how C3b from 

ARPE-19 cells changes the immune response of ARPE-19 cells will be studied next. 

Unexpectedly, C5a receptor (C5aR) is present on the surface of ARPE-19 cells (data not 

shown) even though human ARPE-19 cells lack C5. It indicates that RPE cells may be in 

contact with bioactive C5a and have the capacity to react on terminal complement activation. 

Incubation of primary RPE cells with NHS resulted in upregulation of C5aR, but not C3aR 

[141]. Thus, C5aR might recognize extracellular complement activation and trigger further 

inflammatory reactions. Also activated C3a and C3b might interact with their corresponding 

receptors to initiate the downstream pathway intracellularly. We propose that intracellular 

activation is cell or tissue specific.  

Local FH expression in APRE-19 cells is elevated in response to oxidative stress (0.5 and 2 mM 

H2O2) as detected by western blot analysis (Figure 26). This phenomenon can be relevant 

when oxidative stress and enhanced C3b generation needs to be controlled on the RPE cells 

and to promote protection in this pro-inflammatory microenvironment. Normally human 

plasma is not present in the retina, which would explain why the retinal cells produce FH. 

Although FH is abundant in NHS, serum-derived extracellular FH is no longer able to provide 

sufficient inhibition on the stressed cell surface (Figure 24B). It has been reported that FHL-1 

is the predominant regulatory protein in human retina rather than FH [47]. However, in this 

study FHL-1 was not detected in ARPE-19 cells upon oxidative stress by western blot analysis 

(Figure 26). This suggests that FHL-1, composed out of 7 SCR domains and thus smaller in 

size than FH, passively diffuses through Bruch’s membrane from the choroid to function as 

regulator. Thus, the source of FHL-1 needs to be further investigated and intracellular 

complement activation should be followed regarding complement activation and regulation 

in AMD. 

Taken together, the results show an intracellular pathway of C3 activation and FH generation 

triggered by oxidative stress in ARPE-19 cells which might function during the process of 

AMD. In addition, changes in complement proteins may have specific local effects, such as 

impairment of complement activation control at RPE. The mechanism links complement 

activation and RPE damage, and may contribute to the disease. Thus, both extracellular and 

intracellular complement activation are involved in AMD, although the identification of their 

distinct functions need to be unraveled in the future.
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Conclusion 

In summary, this study identified endogenous ARMS2 expression in human iPS-derived 

microglia and blood-derived monocytes, which is localized in the cytoplasm of cells. 

Recombinant ARMS2 binds properdin, highlighting the function of ARMS2 as an activator of 

the complement alternative pathway on the surface to which ARMS2 binds (such as modified, 

damaged or apoptotic cells). The amino acid exchange from A to S at position 69 in ARMS2 

does not influence ARMS2 expression at the protein level or change its biological functions. 

Therefore, the indel mutation which is in strong LD with the polymorphism coding S69 and 

which causes unstable ARMS2 mRNA is expected to be the contributing factor in AMD. 

Indeed, AMD patients with ARMS2 risk alleles show ARMS2 protein deficiency. ARMS2 

deficiency impairs opsonization and phagocytosis of dying cells. The data also show that an 

oxidative microenvironment triggered complement activation, and triggered VEGF secretion 

in ARPE-19 cells. An inefficient control by FH during complement over-activation was 

described to contribute to the development of AMD. RPE cells locally contribute to 

complement activation and regulation as they produced intracellular complement 

components including C3 and FH. This study links hallmark events of AMD pathogenesis 

including ARMS2 variants, complement activation, oxidative stress, RPE damage and VEGF. 

However, the trigger for VEGF production, the difference between serum-derived and 

intracellular complement components, specifically in regulation of complement and 

inflammation, which contributes to AMD, need to be further characterized.
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