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Abstract 
Due to a higher variety of laser applications, laser manufactures are nowadays pushed 

to build compact and robust devices, which are able to perform in more stringent conditions. 
To achieve such demands, the common assembling techniques using clamping or adhesive 
means have to be replaced by more sophisticated approaches. These should guarantee the 
miniaturization of devices (avoiding clamping methods), and include more robust techniques 
that could offer higher operational thermal range, vacuum compatibility or even being able 
to withstand space radiation (avoiding adhesive techniques). Techniques as the low-stress 
soldering solderjet bumping can minimize the input of thermal energy by the application of 
a precise energy solder reflow through a laser pulse. This allows for the assembly of brittle 
materials as glasses, crystals or ceramics, and guarantees the possibility of components 
miniaturization, even assuring higher and more robust bound strengths. Furthermore, it 
avoids current technologies state of the art constrains as outgassing, and improves its thermal 
and electrical conductivity device’s performances.   

However, in order to develop miniaturized laser devices, small-induced stresses 
produced by soldering techniques as solderjet bumping have to be investigated to guarantee 
that the stress-induced birefringence effects do not alter the device laser emission. To do so, 
a method to simulate induced stresses for a laser crystal packaging technique and the 
consequent study of birefringent effects inside the laser cavities has been developed. The 
method has been implemented by thermo-mechanical simulations by using ANSYS 17.0. 
ANSYS results were later imported into a VirtualLab Fusion software package where 
input/output beams in terms of wavelengths and polarization were analyzed. The outcome 
of the analysis showed no significant difference between the input and output laser beams 
using, as an example, few millimeters size components assembled by solderjet bumping 
technology means.  

A miniaturized diode-pumped solid-state laser designed as part of the Raman Laser 
Spectrometer instrument for the European Space Agency Exomars mission 2020 has been 
assembled and tested according with the mission’s purpose and requirements. Two different 
processes were compared for the laser assembling: one based on adhesives, following 
traditional laser manufacturing processes; another by the solderjet bumping technology. The 
manufactured devices were tested for the processes validation by passing mechanical, 
thermal cycles, radiation and optical functional tests. The comparison analysis showed a 
device improvement in terms of reliability of the optical performances from the assembled 
by adhesive means to the soldered devices.  This made the solderjet bumping technique be 
the final selected candidate to assemble by soldering means the Exomars Flight Module 
(FM) laser that will be send in 2020 direction to Mars, to search for signs of past or present 
life on the red planet. The Exomars miniaturized and soldered laser will be the first fully-
assembled laser by soldering means that travels to space.  
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1 Introduction  

1.1 Motivation 

Miniaturized laser systems e.g. for Raman spectroscopy or laser based fuel ignition 

requires high performance in beam, power, and wavelength stability. In addition, the devices 

used in space or for high temperature applications need to be able to perform in harsh 

environments usually with minimized volume and weight.  The standard precision joining 

technologies of adhesive bonding using polymer-based glues are inadequate due to 

temperature instability, volume change over time, and outgassing. Examples of this can be 

found in the literature, as on the carried out studies for the space laser ALADIN [1], at which 

intensive analysis to avoid outgassing problems and consequent laser-induced contamination 

(LIC) were performed (Fig 1.1); or, on the components stability, to robustly assemble a 

miniaturized diode-pumped solid-state laser (DPSSL) required for the Exomars mission 

(Fig 1.2) [2], [3]. 

 

Fig. 1.1. Left, LIC deposition on the window of the vacuum chamber. Right, detail of a LIC 

deposition [1]. 

Introducing inorganic solder alloys as an alternative joining media allows for an 

improved performance, with higher stability and robustness, wider thermal conductivity 

performance, higher vacuum and radiation compatibility, and longer-term performance. On 

the other hand, soldering introduces a thermo-mechanical impact during joining and a higher 

inherent stress at the joint, which can cause a degradation of laser resonators due to stress-

induced birefringence and deformation of laser components. With the assembling induced 

component birefringence, that ultimately affects the components internal index of refraction, 

the assembled laser crystals could have a variation of the desired optical performances in 
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terms of laser depolarization, increased M2 factor, or even changes on the laser output power, 

which can modify the initial optical performances selected for the designed laser resonator. 

To combine the much better stability and robustness of miniaturized soldered laser 

resonators with a low impact on the alignment and birefringence, solder alloys with low 

impact by thermal reflow using laser technologies were investigated in this work. 

 

Fig. 1.2. Design of the first investigated laser prototypes for the European Space Agency (ESA) 

Exomars project.  The initial laser device was designed and assembled by adhesive means [3]. 

1.2 Objectives of the research  

Starting from an optical design that combines an Yttrium Aluminium Garnet (YAG) 

and a second harmonic generation Beta Barium Borate (BBO), a mechano-optical model 

(analytical basis and Finite Element Method) will be generated to describe the relations 

between areal distribution of mechanical stress introduced from the boundaries of the 

resonator components by the soldering technology and the optical performance of the 

miniaturized resonators.  

→ Objective 1: Create a theoretical model design that relates induced packaging 

stress, induced birefringence and cavity lasers output misbehaviors.        

For the main goal of investigating and optimizing the soldering technology, the joint 

geometries and reflow parameters will be modelled and varied in detail to study the specific 

influence of the laser beam soldering process on the inherent performance of the 

miniaturized laser setup, during their assembly. The model of the laser beam soldering 

process needs in particular to take into account locally introduced inherent joint stress and 
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deformation during thermal reflow of the solder, which is especially important for 

birefringence-based effects in active laser crystals and misalignment of passive beam 

shaping.  

→ Objective 2: Investigate the laser based soldering technique used to assemble 

laser devices, and get the basic knowledge of minimum laser cavities sizes without 

affecting laser output performances (beam depolarization and beam quality). 

Then, soldering techniques will be compared to clamping or adhesive techniques to 

evaluate and prove better performance under highly aggressive environments.  

→ Objective 3: Compare former assembling techniques with new soldering 

assembling techniques. Investigate the use of new laser assembling techniques that 

could work beyond the actual state of the art in terms of robustness. 

As a result, a design and technology guideline is derivated, enabling to transfer the 

results of the specific component investigated to a miniaturized resonator design.   The work 

will involve as an example, the study, modelling, and assembly of a miniaturized frequency 

doubling DPSS laser device, suitable for use e.g. in Raman spectroscopy under specific 

space conditions. 

→ Objective 4: Achieve laser operation of the device assembled by soldering 

techniques, being able to perform in harsh environmental conditions.   

The finally assembled devices will have to pass engineering qualification model tests 

under specific environmental conditions to assess that soldered prototypes can successfully 

operate for the purpose and goals of a required scientific space instrument.  
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2 Background of the study  

2.1 State of the art 

2.1.1 Optical components packaging  

Depending on the designed setup and/or the bonding materials in use, the standard 

joining techniques can be summarized as they are classified on Fig. 2.1,     

 

Fig. 2.1. Different joining standard technologies [4]-[5].  

For the last few decades and although the wide range of possibilities, optical 

manufacturing industries have mainly performed their optical assemblies by using polymeric 

adhesives or different types of clamping methods. These techniques guaranteed low cost 

manufacturing, adequate optical alignment accuracy, and a relatively long-term 

performance. For instance, the use of adhesives provided the benefits of bonding the 

components without an otherwise required pre-treatment, easy integration for 6 degrees of 

freedom (DOF) arrangements, and in general thanks to the adhesives elasticity, a relative 

easy process to join materials with different coefficient of thermal expansion (CTE). On the 

other hand, clamping methods provided a proper solution to robustly assemble complex 3D 

geometries for which the maximum device size and weight was not an important constrain. 

Although these techniques could still be an adequate solution for some optical systems, those 
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who want to guarantee: wider operational and storage temperatures ranges, outgassing free 

on vacuum, high thermal and electrical conductivity, better reliability on space projects 

exposed to space radiation and high vibrational conditions; should look for new joining 

techniques with higher robustness and better alignment features. Today, several soldering 

techniques for optical components can be implemented in order to overcome these 

constrains. The benefits and constrains of the formerly used techniques and the newly 

soldering available technologies for optical components, are compared on Table 2.1. 

Table 2.1. Comparison among gluing, soldering, and clamping technologies for optical elements [6].  

Properties Bonding Clamping 

Gluing Soldering 

Temperature 

stability 

< 120°  (Optical UV glues) < 450° - 

(compensation of different 

components CTE) 

Radiation resistance 

(required for space 

applications) 

-- 

(deterioration of organic 

materials) 

++ + 

Long term stability - 

(deterioration of organic 

materials) 

+ +- 

Transparency ++ - - 

(no transparent) 

- - 

(generally no transparent) 

Conductivity - 

(thermal conductivity 

~0.10-3.0 W/(m K) @25 

°C) 

++ 

(thermal conductivity 

~10-80 W/(m K) @25 

°C) 

+- 

(depends on materials 

used) 
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Stress compensation ++ 

(low shrinkage down to 

0.2%) 

- 

(requires input of 

thermal energy (~ 200 

°C ) to bond 

components) 

- 

(requires force to robustly 

fasten components) 

Low outgassing -- 

(outgassing due to the use 

of organic components- 

e.g. Minimum Total Mass 

Loss ~1 %) 

++ 

(for metals normally 

10-12…10-14 

mbar l/s/cm2 

@450 °C) 

+- 

(depends on the used 

materials. E.g. low 

outgassing peek Total 

Mass Loss 0.31 % ) 

As an example, the formally used technologies would be hardly used in laser devices 

for space applications, because of adhesive outgassing problems that would result in LIC 

and laser-induced damage (LID) [1],[7], or because of the relatively large size and weight 

required for clamping methods [2],[8]. Several other options using soldering techniques for 

optic components are described in the literature. Examples of those are:  

- the Leica Geosystems AG three-dimensional miniaturized optical surface-

mounted devices or “TRIMO”, an automated assembly technique for small 

optical components [9],  

- the Carl Zeiss SMT method and device for connecting an optical element to a 

frame [10], 

- the Osram Opto Semiconductors GmbH arrangement of micro-optical 

components on substrates [11]; 

- the Fraunhofer IOF transmission laser beam soldering technique using thin film 

solder layers [12], 

- and the Fraunhofer IOF laser-based solderjet bumping technique [13]. 

 Each of these different techniques can be used with different materials and/or by 

different preformed shapes to guarantee that the overall result conforms to the requirements 

specified by the end user's needs. Also, each of these techniques use distinct approaches to 
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reflow and finally solder the desired materials and components (Fig. 2.2), for which different 

amount of thermal input of energy is required.  

 

Fig. 2.2. Examples of soldering techniques that can be used to assemble optical components 

classified according to the soldering input of thermal energy to reflow the alloy: CarZeiss SMT 

[10], Solderjet bumping [13], Braeuer et al. [14], TRIMO [9], Kühnelt et al.[11], Datta et al. 

[15], Pick Align [16], Diening et al. [17], Fine Placer [18], and Ficontec [19]. 

In our case study, and considering the advantages showed in Table 2.1, the solderjet 

bumping technique was selected. Moreover, this technique can guarantee solder alloy 

application into complex 3D geometries and low-induced stress onto the components to be 

bound by the application of localized input of thermal energy, in contrast with similar 

techniques mentioned above. A comparison study among techniques used to assemble 

optical crystals (including the solderjet bumping technique) can be found in [8]. 

2.1.2 Solderjet bumping technology 

Solder-joining using metallic solder alloys is an alternative to adhesive bonding. 

Laser-based soldering processes are especially well suited for the joining of optical 

components made of fragile and brittle materials such as glasses, ceramics and crystals, due 

to a localized and minimized input of thermal energy [13]. Different techniques of heating 

solder alloys by laser irradiation are proposed using either the thin film solder layers [12], 

such as Pick&Align resistance soldering technique [16],[20] or the jetting of laser-molten 

solder droplets [13]. Solderjet bumping is a technique adapted from flip chip processing of 

semiconductor devices that also allows for the flux-free and contact-free processing of 



Chapter 2 Background of the study  11 
 

optical components and 3D-packaging. It uses spherical solder preforms of various soft 

solder alloys (e.g. tin-based lead-free solders, low melting indium alloys or high melting 

eutectic gold-tin, gold-silicon or gold-germanium solders) in a diameter range of 40 µm to 

760 µm. The solder spheres are transferred from a reservoir to a placement capillary with a 

conical tip and an inner diameter that is slightly smaller than the diameter of the spheres. 

After positioning the capillary next to the joining geometry using an articulating robot or a 

gantry system, the solder alloy is molten by an infrared laser pulse and jetted out of the 

capillary by applying nitrogen pressure. The jetting of liquid solder volumes provides a very 

good thermal contact of the alloy with the components, and allows for the joining within 

complex 3D-integrated geometries. The bond head of the solderjet bumper integrates solder 

volume feeding, reflow and application of liquid solder droplets in a compact device and 

allows for highly automated and flexible use (see Fig. 2.3). 

 

Fig. 2.3. Schematic drawing of the solderjet bond head able to solder droplets with 6 degrees of 

freedom (DOF). 

However, the formation of a metallic solder joint using components made of non-

metallic materials with solderjet bumping requires a wettable metallization layer applied to 

the components. Such surfaces can be provided by thin film (e.g. physical vapour deposition) 

or thick film (e.g. screen printing of metal pastes) processes. Sputtered three-layer systems 

using titanium adhesion layer, a platinum diffusion barrier, and a noble gold finish 

preventing oxidization and acting as a wetting surface, provide superb conditions for wetting 

of liquid solder droplets (Fig. 2.4).  
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Fig. 2.4. Example of three sputtered layers (Ti/Pt/Au) over the substrate component to later be 

able to create a wettable surface for the solder bump.  

Typical photonic applications of solderjet bumping are described in the literature 

[13]. Sub-micron accuracy in placement of components, direct fiber coupling by soldering 

of polarization maintaining fibers and the hermetic sealing of an endoscopic tip are reported. 

Further examples show the mounting of sensitive micro-optical components such as 

gradient-index lenses [21]. The assembly of a multi-beam deflection array for next-

generation lithography outlines the features of this soldering technique with respect to 

vacuum compatibility and very high component placement accuracy. Silicon-based micro-

structured MEMS devices for the deflection of multiple electron beams are precisely 

attached to ceramic carrier substrates utilizing both mechanical fixation and electrical 

contacting by the solder joint [22]. 

   

Fig. 2.5. Examples of solderjet bumping assemblies.  Left, lens mount geometry soldered with 

solderjet bumping technique [23]. Right, wavelength division multiplexing device for optical 

measurements assembled by similar means [21]. 

2.1.2.1 Fineplacer®  

Although the work in this dissertation is focused on localized and minimized input 

of thermal energy, in some cases a Fineplacer device (Fig 2.6) in combination to solderjet 

bumping technology was used to reflow the pre-applied bumps, as described in chapter 5.2.2. 
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The Fineplacer lambda (Finetech GmbH & Co.) is a technology used to sub-micron position 

and assemble components based on flip-chip reflow soldering.  

 

Fig. 2.6. Fineplacer lambda from Finetech GmbH & Co. It contains two cameras (left and over 

the device) to allow fine adjustments, an operating plate with the pick-up tool and a hot plate; 

and a computer to program temperature profiles [18]. 

The Fineplacer lambda is designed for applications as laser-bar and diode-bonding, 

VCSEL/photodiode bonding or multi-stage assembly of opto-electro-mechanical systems. 

Its interchangeable pick-up tools guarantee the possibility to adapt it to a whole range of 

different applications [18]. The bonding material can be applied by using different methods. 

In our case, the components to be bond which did not need 3D positioning were initially 

bumped by the use of solderjet bumping technology. Later, the bumped components were 

precisely positioned over the substrate components through the pickup tool. Finally, the 

components were thermally reflowed to the alloy melting temperature by the use of the pick-

up tool and hot plate heated surfaces.  

2.2 Bonded components verification tools 

After laser components assembling, the glasses and crystals will firstly need to be 

analysed to guarantee low-induced stress and consequent stress-induced birefringence on 

them. To do so, the real induced stress will be empirically analysed after soldering, by using 

a polarimeter device. Secondly, push and ambient tests will be performed to assess if the 

assembled devices will be capable to experience external loads, since our goals is to robustly 

assemble miniaturized laser devices. 
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2.2.1 Stress measurement  

A polarimeter device is an instrument able to study the induced stress on transparent 

materials by analysing the anisotropy of the velocity of the light when travelling across the 

material, and by calculating the light retardation of different wavelength polarizations 

(Fig. 2.7). This can be explained with,  

Δ =  (2.1) 180°ߣߙ

where Δ is the optical retardation calculated in nm, α the polarization angle and λ the 

wavelength of the used light across the component.  

 

Fig. 2.7. Schematic of Ilis polarimeter functionality [24]. 

This effect can also be explained by the presence of induced stress on a laser crystal, 

for which, the internal refractive index is changed altering consecutively the propagation of 

light. The phase difference of the propagated light through a stress material can be expressed 

as follows,  

Δ = ߣݐߨ2 (݊ଵ − ݊ଶ) (2.2) 

where t is the component thickness. Using the following chapter 2.3.1 equations, this 

can be later transformed into the studied material stresses by using the piezo-optical constant 

tensor ߨ௜௝௞௟, 
ଵߪ) − (ଶߪ = Δߨݐߨ2ߣ௜௝௞௟  (2.3) 
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where (ߪଵ −   ௜௝௞௟ the piezo-optic constant tensorߨ ଶ) is the produced stress, andߪ

expressed on the analysed light propagation direction as will be extensively described on 

chapter 2.3.4.  

2.2.2 Bond strength and applied loads 

As mentioned on previous chapters, one of the main advantages of soldering optical 

components is the possibility of obtaining robust assembled devices able to perform in harsh 

environmental conditions. The robustness-limiting factor for the components assembled by 

the solderjet bumping technique is supposed to be the soldering alloy ultimate tensile 

strength (UTS); as an example 45 MPa for SAC305 alloy. In order to optimize the soldering 

approach by minimizing the induced stress and maximizing the soldering bond strength, the 

bond component strength was studied by push tests analysis before and after ambient tests.  

As an example, the maximum required loads for the Exomars mission payload and 

devices (since it contains a DPSSL) [25], were used to asses if the chosen assembling 

technique can assure enough laser device robustness. 

2.2.2.1 Push tests tools 

After assembling the components, the join strength has been studied by pushing until 

tearing the assembled components apart by using a Zwick Roell Z020 (Fig.2.8).  

 

Fig. 2.8. Schematic of Zwick Roell Z020 [26]. 
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With the tensile ultimate strength of the applied alloy, it was used the following 

formula to estimate, compare, and to prove if the join between components has been 

successfully achieved with the desired bond strength, ܨ = ܣ ∗ ܷܶܵ (2.4) 

where F is the resulting bond strength force in N, A the alloy covered area, and UTS 

the ultimate tensile strength of the alloy used material (45 MPa for SAC305). For small 

optical components similar to 2 mm (YAG or BBO) cube sides, the maximum loads required 

for a space mission such as Exomars would below 1 N [25].  

2.2.2.2 Climatic chamber 

Following Exomars mission space requirements [25], a climatic chamber model 

TCH7050 from TIRA Umweltsimulation GmbH was used to test the soldered samples, in 

an eight temperature cycles between -60 °C to +70 °C, with a dwell time >15 minutes and 

with an approximate ramp of 1 °C/min (Fig. 2.9). 

  

Fig. 2.9. Left, temperature profile used to test bonded samples. Right, TCH7050 from TIRA 

Umweltsimulation GmbH [27]. 

The samples were inspected with a microscope after the tests, and the resulting 

bond strength after thermal loads studied again by a push tests analysis.  

2.3 Stress and induced birefringence  

Laser components assembled with solderjet bumping technique can be bonded with 

a small induced stress; however, laser components for miniaturized laser devices requires an 

additional study to guarantee that this small induced stress does not affect the laser crystal 
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resonator configuration with a consequent change on the laser beam emission, as an example. 

For that reason, a deep study on soldering induced stress on laser components had to be 

carried out. In general, a uniaxial stress produced in a body can be described as the result of 

an external applied force per unit per area as, ߪ =  (2.5) ܣܨ

The induced stress produced by soldering laser components with solderjet bumping 

technology is caused by mechanical-stress due to alloy shrinkage during alloy cooling down; 

but mainly by thermal stress due to differences on the materials CTE’s. This last effect is 

expressed by Liu et al. [35] as,  

ߪ =  ΔαΔT (2.6)ܧ

where E is the Young’s Modulus, Δα the differences of the materials CTE’s, and ΔT 

the temperature difference between alloy solidification and room temperature.  

This applied force on a body, produces a body deformation or strain that can be 

calculated through to the Young Modulus and Poisson ratio material properties. Using 

Hooke’s law for an isotropic linear material, the relation between tensile stress (ߪ), 

extensional strain (ߝ) and the Young Modulus (E) can be expressed as [28]-[29], ܧ = ߪ߳
 (2.7) 

To obtain more accurate 3D-geometry approximation, the Hooke’s Law needs to be 

substituted for second rank tensors expression as, 

௜௝ߪ = ܿ௜௝௞௟߳௞௟ (2.8) 

where ߪ௜௝ and ߳௞௟ are the induced vector principal stresses and vector principal 

strains; respectively, and ܿ௜௝௞௟ the elastic stiffness with 81 constants values tensor directly 

related with the Young’s Modulus and Poisson’s ratio (Eq. (2.12)). This four-rank tensor can 

be reduced (even in presence of stress) due to the crystals symmetry, to a second-rank 

matrixes using Voigt notation and Nye’s convention with Table 2.2, 

Table 2.2. From matrix to tensor notation using Voigt notation and Nye’s convention. 

Tensor 

notation 

11 22 33 23,32 31,13 12,21 

Matrix 

notation 

1 2 3 4 5 6 
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Thus, being able to express the above-mentioned tensors for the stress,  

൥ߪଵଵ ଵଶߪ ଶଵߪଵଷߪ ଶଶߪ ଷଵߪଶଷߪ ଷଶߪ ଷଷ൩ߪ → ൭ߪଵ ଺ߪ ଺ߪହߪ ଶߪ ହߪସߪ ସߪ ଷ൱ߪ →
ۈۉ
ۇۈ

ۋی௭௬ߪ௭௫ߪ௫௬ߪ௭ߪ௬ߪ௫ߪ
 (2.9) ۊۋ

and similarly, for the strain,  

൥߳ଵଵ ߳ଵଶ ߳ଵଷ߳ଶଵ ߳ଶଶ ߳ଶଷ߳ଷଵ ߳ଷଶ ߳ଷଷ൩ →
ۈۉ
ۇۈ ߳ଵ 12 ߳଺ 12 ߳ହ12 ߳଺ ߳ଶ 12 ߳ସ12 ߳ହ 12 ߳ସ ߳ଷ ۋی

ۊۋ →
ۈۉ
ۈۈۈ
ۇۈ

߳௫߳௬߳௭12 ߳௫௬12 ߳௭௫12 ߳௭௬ۋی
ۋۋۋ
ۊۋ

 (2.10) 

 reducing the independent components. Being ߪ௜௝ symmetric even with the existence 

of external forces, one can assume that it is also true for the elastic-stiffness constant’s tensor, 

and its symmetry is also maintained with, ܿ௜௝௞௟ = ܿ௜௝௟௞ and ܿ௜௝௞௟ = ௝ܿ௜௞௟, reducing the 

independent components of 81 values tensor to a 36 constant values matrix. Using Nye’s 

notation is possible reduce and write ܿ௜௝௞௟  as, 

ܿ௜௝௞௟ =
ێێۏ
ێێێ
ۍێێ
ܿଵଵଵଵ ܿଵଵଶଶ ܿଵଵଷଷ ܿଵଵଶଷ ܿଵଵଷଵ ܿଵଵଵଶ ܿଵଵଷଶ ܿଵଵଵଷ ܿଵଵଶଵܿଶଶଵଵ ܿଶଶଶଶ ܿଶଶଷଷ ܿଶଶଶଷ ܿଶଶଷଵ ܿଶଶଵଶ ܿଶଶଷଶ ܿଶଶଵଷ ܿଶଶଶଵܿଷଷଵଵ ܿଷଷଶଶ ܿଷଷଷଷ ܿଷଷଶଷ ܿଷଷଷଵ ܿଷଷଵଶ ܿଷଷଷଶ ܿଷଷଵଷ ܿଷଷଶଵܿଶଷଵଵ ܿଶଷଶଶ ܿଶଷଷଷ ܿଶଷଶଷ ܿଶଷଷଵ ܿଶଷଵଶ ܿଶଷଷଶ ܿଶଷଵଷ ܿଶଷଶଵܿଷଵଵଵ ܿଷଵଶଶ ܿଷଵଷଷ ܿଷଵଶଷ ܿଷଵଷଵ ܿଷଵଵଶ ܿଷଵଷଶ ܿଷଵଵଷ ܿଷଵଶଵܿଵଶଵଵ ܿଵଶଶଶ ܿଵଶଷଷ ܿଵଶଶଷ ܿଵଶଷଵ ܿଵଶଵଶ ܿଵଶଷଶ ܿଵଶଵଷ ܿଵଶଶଵܿଷଶଵଵ ܿଷଶଶଶ ܿଷଶଷଷ ܿଷଶଶଷ ܿଷଶଷଵ ܿଷଶଵଶ ܿଷଶଷଶ ܿଷଶଵଷ ܿଷଶଶଵܿଵଷଵଵ ܿଵଷଶଶ ܿଵଷଷଷ ܿଵଷଶଷ ܿଵଷଷଵ ܿଵଷଵଶ ܿଵଷଷଶ ܿଵଷଵଷ ܿଵଷଶଵܿଶଵଵଵ ܿଶଵଶଶ ܿଶଵଷଷ ܿଶଵଶଷ ܿଶଵଷଵ ܿଶଵଵଶ ܿଶଵଷଶ ܿଶଵଵଷ ܿଶଵଶଵۑۑے

ۑۑۑ
ېۑۑ

≡ ۈۈۉ
ଵଵܿۇ ܿଵଶ ܿଵଷ ܿଵସ ܿଵହ ܿଵ଺ܿଶଵ ܿଶଶ ܿଶଷ ܿଶସ ܿଶହ ܿଶ଺ܿଷଵ ܿଷଶ ܿଷଷ ܿଷସ ܿଷହ ܿଷ଺ܿସଵ ܿସଶ ܿସଷ ܿସସ ܿସହ ܿସ଺ܿହଵ ܿହଶ ܿହଷ ܿହସ ܿହହ ܿହ଺ܿ଺ଵ ܿ଺ଶ ܿ଺ଷ ܿ଺ସ ܿ଺ହ ܿ଺଺ۋۋی

ۊ
 

(2.11) 

The inverse of the piezo-optic tensor matrix can be then also expressed in terms of 

Young modules and the Poison ratio. The 36 constant matrix can be differently expressed 

depending on the crystal internal structure. As an example, for the case of isotropic materials 

this expression is written as,  
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ܿିଵ =
ۈۉ
ۈۈۈ
ۈۈۈ
ۇۈۈ

1 ௫ൗܧ ௫௬ݒ− ௫ൗܧ ௫௭ݒ− ௫ൗܧ 0 0 ௬௫ݒ−0 ௬ൗܧ 1 ௬ൗܧ ௬௭ݒ− ௬ൗܧ 0 0 ௭௫ݒ−0 ௭ൗܧ ௭௬ݒ− ௭ൗܧ 1 ௭ൗܧ 0 0 00 0 0 2(1 + ௫ܧ(௫௬ݒ 0 00 0 0 0 2(1 + ௬ܧ(௬௭ݒ 0
0 0 0 0 0 2(1 + ௭ܧ(௫௭ݒ ۋی

ۋۋۋ
ۋۋۋ
ۊۋۋ

 (2.12) 

Where being ܿିଵ symmetric also [30], one can simplify the matrix in terms of the 

Young Modulus and the Poisson’s ratio with the following equivalences because of the 

isotropic behaviour with,  

௬ܧ௬௫ݒ = ௫ܧ௫௬ݒ ௭ܧ௭௫ݒ  = ௫ܧ௫௭ݒ ௭ܧ௬௭ݒ  = ௬ܧ௬௭ݒ  

(2.13) 

reducing, for isotropic materials, this expressions to a three independent constant 

values matrixes, 

ܿିଵ =
ۈۉ
ۇۈ

ܿଵ ܿଶ ܿଶ 0 0 0ܿଶ ܿଵ ܿଶ 0 0 0ܿଶ ܿଶ ܿଵ 0 0 00 0 0 ܿଷ 0 00 0 0 0 ܿଷ 00 0 0 0 0 ܿଷۋی
 (2.14) ۊۋ

with this consideration Eq. (2.8) can be expressed for general materials as,  

ۈۉ
ۇۈ

ۋی௭௬ߪ௭௫ߪ௫௬ߪ௭ߪ௬ߪ௫ߪ
ۈۈۉ=ۊۋ

ଵଵܿۇ ܿଵଶ ܿଵଷ ܿଵସ ܿଵହ ܿଵ଺ܿଶଵ ܿଶଶ ܿଶଷ ܿଶସ ܿଶହ ܿଶ଺ܿଷଵ ܿଷଶ ܿଷଷ ܿଷସ ܿଷହ ܿଷ଺ܿସଵ ܿସଶ ܿସଷ ܿସସ ܿସହ ܿସ଺ܿହଵ ܿହଶ ܿହଷ ܿହସ ܿହହ ܿହ଺ܿ଺ଵ ܿ଺ଶ ܿ଺ଷ ܿ଺ସ ܿ଺ହ ܿ଺଺ۋۋی
ۊ

X

ۈۉ
ۈۈۈ
ۇ ߳௫߳௬߳௭ଵଶ ߳௫௬ଵଶ ߳௭௫ଵଶ ߳௭௬ۋی

ۋۋۋ
ۊ

 (2.15) 

where the independent values of ܿ௜௝௞௟ will depend on the crystal internal structure to 

be studied [28].  
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2.3.1 Stress-induced Birefringence in laser components  

A mechanical stress induced onto a laser crystal simultaneously generates an 

anisotropic density distribution on the component, that creates differences in the material’s 

refractive indices mathematically defined by the indicatrix (represented as an ellipsoid that 

describes the different velocities of light passing through the material) [28],[31]. The effect 

of different light velocities travelling inside a component that creates an optical anisotropy 

is also called birefringence. This effect can be described as changes on the material indicatrix ܤ௜௝ with [32], 

௜௝ܤ = ଴,௜௝ܤ + ௜௝ܤ∆  (2.16) 

with ݅, ݆ = 1,2,3 respectively. The second-rank tensor ܤ଴,௜௝ represents the free-of-

stress indicatrix tensor, and ∆ܤ௜௝ represents the indicatrix changes produced due to induced 

stress, which can also be expressed as, 

௜௝ܤ∆ =  ௞௟ (2.17)ߪ௜௝௞௟ߨ

where ݇, ݈ = 1,2,3, and the Einstein’s summation rule is applied here. The second-

rank tensor ߪ௞௟ represents the induced vector principal stress, and ߨ௜௝௞௟ is the fourth-rank 

piezo-optic constants tensor described for each material. With both Eq. (2.16) and (2.17), 

the indicatrix tensor ܤ௜௝ can be calculated when certain stress ߪ௞௟ is present. Then, the 

dielectric constant tensor ߝ௜௝ can be calculated using the following relation [33], 

௜௝൧ߝൣ =  ௜௝൧ିଵ (2.18)ܤൣ

and the resulting ߝ௜௝ can be used for the subsequent optical simulation on the crystals. 

The relations in Eq. (2.16)-(2.18) hold in any coordinate system. However, it should be 

emphasized that the tensors in each equation must be expressed in the same coordinate when 

being applied. For crystal materials, due to their symmetry properties, it is often easier to 

describe their properties in the crystalline coordinate system, for example, the piezo-optic 

tensor ߨ௜௝௞௟ is usually only given in the bibliography in such systems [28]. Eventually, it is 

convenient to describe the stress ߪ௜௝ with respect to the actual crystal geometry in the lab 

coordinates system; and for the sake of subsequent optical simulation, the dielectric constant ߝ௜௝ needs to be given in the lab coordinate system. To treat the coordinate systems carefully, 

one must firstly define two Cartesian coordinate systems ݔ − ݕ − ᇱݔ and ݖ − ᇱݕ −  ′ݖ



Chapter 2 Background of the study  21 
 

representing the lab and the crystalline coordinate systems respectively, and ൣܽ௜௝൧ as the 

transformation matrix from lab to the crystalline system. Because stress is usually described 

in the lab system with respect to ݖ ,ݕ ,ݔ, while the piezo-optic tensor is often given in the 

crystalline system with respect to ݖ ,′ݕ ,′ݔᇱ. To apply Eq. (2.17), these two quantities must 

be expressed in the same coordinate system. Instead of transforming the fourth-rank piezo-

optic tensor, it was chose to transform the second-rank stress tensor into the crystalline 

system for simplicity. Because of the symmetry property, the stress is often expressed in the 

abbreviated manner, according to Nye’s conventions [28], as ߪ௡, with ݊ = 1, … , 6. To apply 

the 3x3 coordinate transformation matrix, it was first re-write the abbreviated ߪ௡ explicitly 

as ߪ௜௝, and then use the equation below, 

௜௝ᇱߪൣ ൧ = ൣܽ௜௝൧ൣߪ௜௝൧ൣܽ௜௝൧் (2.19) 

to calculate the stress tensor with respect to ݖ ,′ݕ ,′ݔ′, in the crystalline system. The 

coordinate transformation does not change the symmetry property, and the stress tensor ߪ௜௝ᇱ  

can also be abbreviated as ߪ௡ᇱ  according to Nye’s convention. Also, because of to the 

symmetry property of crystals and using Nye’s convention [28], the tensors in Eq. (2.17) can 

be abbreviated and can be rewritten in the crystalline coordinate system with respect to ݖ ,′ݕ ,′ݔ′, as,  

௠ᇱܤ∆ = ௠௡ᇱߨ ௡ᇱߪ  (2.20) 

with ݉, ݊ = 1, … ,6. In practice, the piezo-optic tensor is almost always given in the 

abbreviated manner as a 6x6 matrix in the crystalline system. After performing the 

calculation in Eq. (2.20), ∆ܤ௠ᇱ  can be rewritten in the explicit form as ∆ܤ௜௝ᇱ . 

Next, by using Eq. (2.16) the indicatrix with the influence of stress can be calculated. 

Due to the facts that 1) the tensor ∆ܤ௜௝ᇱ  that is obtained from Eq. (2.20) is given in crystalline 

system; and 2) the free-of-stress indicatrix tensor has a simple diagonal form in the 

crystalline system; performing the calculation of Eq. (2.16) in crystalline system, and that 

gives,  

௜௝ᇱܤ = ଴,௜௝ᇱܤ + ௜௝ᇱܤ∆  (2.21) 

with,  
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଴,௜௝ᇱܤ  = ൜(݊௜ᇱ)ିଶ        ݓℎ݁݊ ݅ = ݁ݏ݈݁                           0݆  (2.22) 

where ݊௜ᇱ is the principal refractive indices of the crystal. Having obtained ܤ௜௝ᇱ  in the 

crystalline coordinate system, it was easy to obtain the dielectric constant tensor ߳௜௝ᇱ  in the 

crystalline system, by directly inverting the matrix ൣܤ௜௝ᇱ ൧ according to Eq. (2.18). However, 

since the values of ∆ܤ௜௝ᇱ  are much smaller than those of ܤ଴,௜௝ᇱ  by magnitudes, a direct matrix 

inversion on ൣܤ௜௝ᇱ ൧ would cause numerical errors. To take the influence of ∆ܤ௜௝ᇱ , which is 

induced by the stress, into a correct consideration, the matrix inversion was performed 

according to [34], as below, 

௜௝ᇱߝൣ ൧ = ଴,௜௝ᇱܤൣ + ௜௝ᇱܤ∆ ൧ିଵ ≈ ଴,௜௝ᇱܤൣ ൧ିଵ − ଴,௜௝ᇱܤൣߟ ൧ିଵൣ∆ܤ௜௝ᇱ ⁄ߟ ൧ൣܤ଴,௜௝ᇱ ൧ (2.23) 

with 

ߟ = 19 ෍ ෍ ௜௝ᇱଷܤ∆
௝ୀଵ

ଷ
௜ୀଵ  

(2.24) 

defined as the average value of the matrix elements in ൣ∆ܤ௜௝ᇱ ൧. Finally, after applying 

Eq. (2.23), it was performed a coordinate transformation back to the lab system and obtain, 

௜௝൧ߝൣ = ൣܽ௜௝൧்ൣߝ௜௝ᇱ ൧ൣܽ௜௝൧ (2.25) 

as the dielectric constant tensor in the lab coordinate system. Up to this point, it is 

demonstrated the practically complete method to relate the stress from the soldering process 

and the dielectric constant tensor that determines the optical properties. This enables further 

analysis of the optical effects that take place in such crystals materials. 

2.3.2 Laser emission 

Light Amplification by Stimulated Emission of Radiation commonly referred as 

LASER, is the defined capacity of interaction between the radiation and mater of some 

materials. This interaction is normally characterized by the exchange of energy between the 

discrete energy states created by an atomic structure and an external source that excites those 

particles, 

ΔΕ = ଶܧ − ଵܧ = ℎݒଶଵ (2.26) 
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where E is defined by two discrete energy levels (also known as E2 convection band, 

and E1 valence band); or by v21 the particles’ frequency needed to excite and change the 

energy level of the electrons, and h the Planck’s constant (Fig. 2.10). The materials able to 

exchange between its energy levels sub-atomic particles for later creating the laser emission 

are usually called semiconductors. In thermal equilibrium, those materials tend to have the 

lower energetic levels filled with free electrons (valence bands), however at a T>0 the 

relative population between valence and conduction bands (ேమேభ) of energy level can be 

described by the Boltzmann equation as, 

ଶܰܰଵ = ݌ݔ݁ ൬−(ܧଶ − ܶ݇(ଵܧ ൰ (2.27) 

Laser materials as Nd:YAG crystals can describe this lasing behaviour as an energy 

exchange by photons absorption (external energy source as could be a pumping diode) and 

later by laser photon emission (relaxation or laser emission) as seen in Fig. 2.10. 

 

Fig. 2.10. Left, energy band structure with nearly free carrier approximation [35]. Right, 

Nd:YAG absorption close to 808 nm; normally created by an external pumping source. Energy 

emission around 1064 nm produced by particles recombination [36]. 

2.3.3 Birefringence effects to the laser emission  

High birefringence effects close to the laser beam path inside the optical components 

can cause linear laser beam depolarization loss by decoupling power from p to s light 

polarization or vice versa. Later, this effect would remove the caused new polarization from 
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the original beam path creating a distortion beam shape changing an ideal Gaussian input 

beam M2=1 to a M2 >1 [37].  

In the majority of published articles in the literature, this is just calculated as 

described in [38], and due to induced thermal stress and thermal inhomogeneities because of 

the diode-pumping power. In these cases, the depolarization produced by stress-induced 

birefringence is defined as a fraction of energy lost from p to s light polarization (or vice 

versa) due to light pass through the laser component, and dependent to the radius distance 

from the pumped area. As an example, in the literature [37], this is expressed in terms of 

laser output-power loss for laser systems with an intra-cavity polarizer under the effect of 

light depolarization, and modification of the main laser beam as,  

௜௡ܫ௢௨௧ܫ = 1 −  (2.28) (2ߜ)ଶ݊݅ݏଶ(2߶)݊݅ݏ

where I, is the input and output power;  ߶,  is the angle between the polarizer and the 

principal stress-birefringence axes; and ߜ, is the polarization phase shift of the emerging 

light. ߜ, can be also expressed in terms of the refractive indexes as, 

ߜ = ߣߨ2 Δ݊థ)ܮ − Δ݊௥) (2.29) 

where ݊௥ ݅ݏ the radial refractive index, and Δ݊థ the tangential component. This 

induced phase difference, will result in emerging elliptically polarization of light. These 

equations Eq. (2.28) and Eq. (2.29), are usually just being able to be solved for highly 

symmetric crystal structures, as cubic or isotropic [38]-[39]. 

In our study, it was implemented a more sophisticated method through the 

permeability matrix calculated as explained on chapter 2.3.1, and by using the 

electromagnetic field propagation as will be explained in the following chapter, 2.3.4. 

However, it was avoided the study of stress-induced birefringence consequences on output 

power since, in our simulations, it was assumed an input Gaussian TEM00 beam, and further 

degenerate or higher TEM modes could be also responsible for increased output power [40]. 

In a real case, one should had done an iterative multi-pass analysis for which each beam’s 

resonance would affect and generate previous and new TEM modes, and to later calculate 

the power for each of those; as well as the calculation of gain for the active laser crystals 

and/or SHG induced effects. Since the focus of the study was based on the packaging and 

how to calculate the soldering limits, it was decided to avoid a complete simulation analysis, 

focusing just in beam depolarization ratio. However, interested readers can refer to [41],[42], 
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where this effects are independently calculated for single components analyses with 

VirtualLab Fusion; showing the feasibility of the study.  

For our study, the results will be shown in terms of laser beam depolarization loses, 

as this is the first physical produced effect, and because a full study for a laser cavity that 

contains more than one component would require really powerful and time consuming 

calculations. For that reason, it was used as a boundary conditions, a maximum 

depolarisation ratio and loss of 1% (maximum power loss produced after high transmission 

thin films applied on laser components) , and a beam quality factor up to M2=1.2. 

2.3.4 Electromagnetic field propagation and depolarization 

calculation in stress-induced laser crystals 

Strictly speaking, the stress distribution inside the crystal is in general 

inhomogeneous. Thus, it was used ߝ௜௝(ݔ, ,ݕ  to fully characterize the optical properties of (ݖ

the material. However, in common laser examples, the beam radius is much smaller than the 

dimension of the crystal slab; for that reason it was decided to define the beam path centred 

along the z-axis, as shown in Fig. 2.11. This fact allows us to simplify the analysis by 

considering the inhomogeneity of ߝ௜௝(ݖ) only along the z-axis. Furthermore, the continuous 

inhomogeneity can be numerically approximated as a set of homogeneous layers [43] with 

different dielectric constant tensors ߝ௜௝(௣), with the superscript (݌) as the index of ݌-th layer. 

 

Fig. 2.11. In (a), simulated 2 mm side crystal cube with and internal laser beam represented as a 

red cylinder. The beam has a much smaller size than the dimension of the crystal cube. The 

cross-section marked within the yellow frame is shown in (b), where the inhomogeneity along z-

direction is approximated as layered structures. 
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In the isotropic medium on the left side of the crystal where ݖ ≤  ୧୬, we only needݖ

the transverse field vector components ܧ௫ and ܧ௬ to characterise the electromagnetic field 

[44]. To perform spectrum-of-plane-wave analysis for the general field, it was first calculate 

the angular spectrum of the input field, 

෩ࡱ ௜ୄ௡(ࣄ) = ቈܧ෨௫௜௡(ࣄ)ܧ෨௬௜௡(ࣄ)቉ = ቈℱܧ௫௜௡(࣋)ℱܧ௬௜௡(࣋)቉ (2.30) 

with ࣄ = (݇௫, ݇௬), ࣋ = ,ݔ)  and ℱ denotes a two-dimensional (2D) Fourier ,(ݕ

transform. Then, the input field can be treated as a superposition of plane waves with 

different weights that are determined by the Fourier transform. Next, each plane wave is to 

be propagated through the layered birefringent material. This process can be expressed as, 

(ࣄ)෩௢ୄ௨௧ࡱ = ෩ࡱ(ߢ)ࢀ ௜ୄ௡(ࣄ) (2.31) 

with 

(ࣄ)ࢀ = ቈݐ௫௫(ࣄ) (ࣄ)௬௫ݐ(ࣄ)௫௬ݐ  ቉ (2.32)(ࣄ)௬௬ݐ

as the transmission coefficients matrix. To calculate (ࣄ)ࢀ, it was used the 

numerically stable S-matrix method, and for that purpose, the knowledge on the plane waves 

in each layer is required. Based on the 4 × 4-matrix formulation from Berreman [45], Landry 

et al. developed it to a form that is preferable for numerical calculations [46]. It was adopted 

their method and calculated the plane waves by solving the corresponding eigenvalue 

problem that is described by Eq. (2.30) in [46]. However, unlike the authors of [45]& [46], 

who built up the transfer matrix directly based on the eigen solutions, it was sorted out the 

plane waves according to their energy flowed directions, in order to prepare them for the S-

matrix calculation. For this sorting, it was followed the criteria proposed by Li in Sec. 4.3 of 

[47]. Then the recursive S-matrix formulas can be applied and the well-developed S-matrix 

method is not to be repeated here [48].  Once the transmission coefficients matrix is obtained, 

the output angular spectrum can be obtained by using Eq. (2.30). Performing inverse Fourier 

transform on the output angular spectrum, it was obtained the output field as, 

(ࣄ)࢚࢛ୄ࢕ࡱ = ቈ(ࣄ)࢚࢛࢕࢟ࡱ(ࣄ)࢚࢛࢕࢞ࡱ቉ = ቈऐି૚(ࣄ)࢚࢛࢕࢞ࡱऐି૚(ࣄ)࢚࢛࢕࢟ࡱ቉ (2.33) 

By combining Eq. (2.30), (2.31) and (2.32), it can be written the complete calculation 

flow from input to output field, as 
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(ࣄ)࢚࢛ୄ࢕ࡱ = ൤ऐି૚ ૙૙ ऐି૚൨ ቈ(ࣄ)࢚࢞࢞ (ࣄ)࢚࢞࢟(ࣄ)࢚࢟࢞ ቉(ࣄ)࢚࢟࢟ ቂऐ ૙૙ ऐቃ ቈ(࣋)࢔࢏࢟ࡱ(࣋)࢔࢏࢞ࡱ቉ (2.34) 

Following the sequence in Eq. (2.34), it was implemented a numerical algorithm in 

the physical optics design software VirtualLab Fusion [49], by using its programming 

interface.  

On the other hand, in the cases at which the laser beam would be comparable to the 

laser crystal size, we will have to add to the effect of induced-stress birefringence, the effect 

of high stresses-inhomogeneity onto X and Y directions that would also affect the laser beam 

propagation. In those cases, instead of performing the analysis through a unidimensional 

beam-stress analysis as seen on Fig. 2.11, we could create an array of (݊, ݊) beams and 

repeat the study with a similar analysis by going through Eq. (2.30) to (2.34).  

 

Fig. 2.12. In (a), schematic of small crystal (example 0.3 mm side cube) in comparison with laser 

beam (example of 200 µm diameter laser beam) with a (3,3) matrix studied cases for the light 

beam path propagation. In (b) X-Y plane for the (3,3) matrix example; by doing so one can take 

into account the different stress inhomogeneity’s that will result in laser beam depolarization.  

With this, one can obtain a more realistic approach for small components sizes. 

Although this example (Fig. 2.12) was limited to a (3,3) study, this can easily be expanded 

to a (݊, ݊)  analysis with VirtualLab software, depending to the user’s accuracy needs.   

2.3.5 Simulations softwares 

In order to be able to create a simulation method capable of processing mechano-

optical effects on laser cavities, a two-step analysis starting with the mechanical effects with 

ANSYS 17.0 to later import the stress results onto a VirtualLab Fusion software was created.   
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2.3.5.1 Mechanical analysis by ANSYS 17.0 

ANSYS is a FEM (Finite Element Method) software, which allows to simulate 

physical interactions on different disciplines. Using different physics packages (as structural, 

vibrational, fluid dynamics, heat transfer or electromagnetics) coupled to each other one can 

obtain a better understanding of linear and non-linear dynamics effects on simulated 

processes [50].  ANSYS can import external CAD data or create its own geometries, and as 

well import or create its own material properties.  

 

Fig. 2.13. Example of different ANSYS 17.0 packages available (first row), and example of 

available tools to design the models (second row). 

For the study, the models were created by using ANSYS Design Modeller to later 

couple the designed components and created materials by using a Transient Thermal to a 

Transient Structural analysis. Different physics boxes and engineering tools are shown in 

Fig. 2.13. 

2.3.5.2 Optical analysis by VirtualLab Fusion 

VirtualLab Fusion physical optics software is a customizable tool that helps users to 

solve optical designs by using the different operation tool boxes [49]. Starting from a ray 

tracing to investigate standard geometric optics system performances, passing through 

geometric field tracing, diffractive optics, and to laser resonator designs. For the study, the 

laser resonator toolbox was customized in order to introduce the dielectric permeability 

matrix in terms of stress results, obtained with ANSYS 17.0, and by following the 
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mathematical approach seen on chapter 2.3.1 and 2.3.4. This helped us to obtain laser crystal 

output parameters in terms of laser beam depolarization.  

 

 Fig. 2.14. Example of self-integrated stress module in VirtualLab. A Gaussian wave beam is 

introduced into and inhomogeneous body defined by the dielectric permeability matrix extracted 

from ANSYS.  
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3 Theoretical modelling and testing  

3.1 Theoretical Modelling 

In order to study the stress-induced birefringence produced on the laser materials due 

to packaging, a theoretical mechanical and later optical simulations were coupled thanks to 

the mathematical approaches as seen on chapter 2.3.1. Initial mechanical simulations with 

ANSYS 17.0 had been compared with stress results produced with a Polarimeter. Later, 

stress results had been converted into the dielectric matrix by following the mathematical 

description on chapters 2.3.1 and 2.3.4. Finally, the results were imported to VirtualLab 

Fusion software in order to investigate changes for laser resonator capabilities. Once the 

method to simulate stresses has been confirmed with real stress measurements, it was easy 

to re-run the simulations in order to obtain efficient packaging in terms of the components’ 

geometry, optical performances and bonding robustness.  

 

Fig. 3.1. Established step-by-step design guidelines method to simulate and verify stress-induced 

birefringence due to packaging. Right of the chart, the related used mathematical formulas.  



Chapter 3 Theoretical modelling and testing  31 
 

3.1.1 Initial opto-mechanical stress simulations with ANSYS and 

VirtualLab Fusion    . 

In order to verify our simulations method an initial common DPSSL configuration 

was selected. It was initially chose a plano-plano laser cavity represented by the most well-

known and used laser materials in DPSSL devices; an yttrium aluminium garnet or YAG 

(Y3Al5O12) active crystal, a second harmonic generator (SHG) beta-barium borate (β-

BaB2O4 or BBO), and finally an output dichroic laser mirror made of fused quartz (SiO2). 

The selected soft solder alloy used to join the laser components to an aluminum nitride (AIN) 

baseplate was SnAgCu (SAC) [31].  

 

Fig. 3.2. Schematic representation of the studied DPSSL cavity. A pumping diode at 808 nm, and 

the plano-plano laser cavity represented by the three components; the YAG crystal, the SHG 

BBO and the output mirror. 

The simulations were first performed with a Finite Element Method using 

ANSYS 17.0 software to replicate the crystal packaging procedures and calculate the 

induced stresses. Then, the calculated stress-induced birefringence was converted into the 

dielectric matrix thanks to each component’s piezo-optic tensor, to be finally imported into 

VirtualLab Fusion software to study the packaged components’ lasing capabilities.  

3.1.1.1 Simulations assumptions  

For the sake of simplicity, the optical components were created as independent 2 mm 

side cubes soldered by two 760 µm diameter SAC alloy spheres. They were bonded onto a 

5×5×0.25 mm AIN baseplate with the ANSYS Design Modeler (Fig. 3.3). Later, the 

components’ material properties were defined for each component as seen in Tables 3.1 & 

3.2. In the case of the soldering alloy, instead of doing a complete phase change transition 

from liquid to solid that would increase the complexity of the simulations, some temperature 
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dependent mechanical characteristics were included in the analysis as seen in Table 3.2 and 

Fig.3.4. 

 

Fig. 3.3. An example of the designed geometry used for each laser component. In the case of the 

SHG BBO crystal, it was created by using two different coordinate systems (crystallographic 

and laboratory coordinates system, as explained in chapter 2.3.3). The two different coordinate 

systems were important to be able to define the material orthotropic characteristics (as seen in 

table 1), but also to define the required crystal phase matching angle of 22.8° for SHG needs 

[37]. 

Table 3.1. Main physical properties of laser materials used. 

Laser components YAG[37] Fused quartz  BBO[51] 
Density (Kg/m3) 4560 2200 3850 
Young’s Modulus (Pa) 

 

Shear Modulus 

3.1078E+11 7.25E+10 

 

7.53E+10 (X&Y direction) 

2.67E+10 (Z direction) 

7.80E+09 (XY direction) 

3.18E+10 (ZY&XZ direction) 
Poisson’s Ratio 0.25 0.17 0.186 (XY direction) 

0.268 (YZ&XZ direction) 
Thermal conductivity (W/m°C) 13 1.38 0.08 (X&Y direction) 

0.8 (Z direction) 
Specific Heat (J/Kg°C) 590 740 496 

Table 3.2. Main physical properties of soldering alloy and baseplate used. 

Packaging materials  SAC305 AIN 
Density (Kg/m3) 7380 3260 
Young’s Modulus (Pa) Fig. 4 3.30E+10 
Poisson’s Ratio Fig. 4 0.24 
Thermal conductivity (W/m°C) 58 160 
Specific Heat (J/Kg°C) - 740 
Enthalpy Fig. 4 - 
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Fig. 3.4. Thermally dependent mechanical material properties. In (a) isotropic elasticity, 

Young’s Modulus. In (b), enthalpy for the alloy phase change.  The alloy thermal dependent 

characteristics have been extracted by experimental data from the company Setaram 

Instrumentation (France). 

The SAC alloy enthalpy was calculated for the phase change transition by using the 

following equations, 

ௌܪ = )௦ܥߜ ௦ܶ − ଴ܶ) 

 
௅ܪ (3.1) = ௌܪ + )ோ்ܥߜ ௅ܶ − ௌܶ) 

 
ାܪ (3.2) = ௅ܪ + ܶ)௅ܥߜ − ௅ܶ) 

 
(3.3) 

where ܪௌ is the enthalpy at a solid temperature,  ߜ the SAC305 density, ܥ௦ the heat 

capacity at a solid temperatures, ܪ௅ the enthpaly at a liquid transition phase, ்ܥோ the heat 

capacity at the transition phase, and ܪା ܽ݊݀ ܥ௅ the enthalpy and heat capacity at above 

transition phase temperatures, respectively. Later, a FEM transient thermal analysis was 

coupled to a transient structural analysis in ANSYS to study the cooling-down process from 

the SAC alloy (approximate melting temperature 217 °C) from 230 °C to 22 °C and the 

consequently induced stress on the components assembly.  
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Fig. 3.5. Transient Thermal analysis coupled to a Transient Structural analysis. Parameter set 

helps the ANSYS user to re-run created simulations but by changing input parameter values. 

Finally, with a post processing analysis, the vector principal stresses was extracted 

along the optical beam path inside the laser components in order to study the components 

birefringence and possible lasing misbehavior.   

3.1.1.2 ANSYS thermo-mechanical initial results 

The transient thermal analysis simulated with ANSYS 17.0 showed an almost instant 

cooling-down process in all the three studied materials thanks to the low-stress solderjet 

bumping technique as seen in Fig. 3.6. 

 

Fig. 3.6. Maximum soldering alloy phase change temperature during cooling-down process 

(green), and whole assembly minimum temperature (red). The almost instant cooling-down 

process on the BBO simulation is shown in this figure. FEM simulations carried out for YAG and 

fused quartz showed similar cooling-down ramps. 

Later, the transient thermal analysis results were coupled sub-step by sub-step to a 

static structural analysis where the internal stresses were calculated:  
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Fig. 3.7. In (a) Von-Mises stress calculated in MPa for the BBO FEM analysis. (b) Vector 

principal stresses calculated along the propagation direction of the laser beam in MPa 

(maximum, middle and minimum principal stresses in red, green and blue, respectively). Similar 

results were obtained for the YAG crystal and the fused quartz laser output mirror. 

Then, the vector principal stresses in MPa were extracted for each of the simulations 

following a laser beam propagation path and transformed into changes of the components 

indicatrix matrix thanks to the piezo-optic tensors calculated in the laboratory system using 

the shown equations from  Eq. (2.16) to Eq. (2.20).  

3.1.1.3 Piezo-optic tensor and crystal orientation 

Following the mathematical steps defined in chapter 2.3.1 and 2.3.4, and in order to 

obtain ߝ௜௝, the induced stresses ߪ௞௟ calculated along the laser beam by ANSYS had been 

transformed from the laboratory coordinate systems, to the crystal orientation system ߪ௡ᇱ . In 

the case of the YAG crystal, usually grown by the Czochralski method (Fig. 3.8), and also 

cut along the [111] direction, it was used the same transformations as in Q. Lü et. al. [32], 

where ܽ௜௝ from Eq. (2.19) can be expressed as, 

ൣܽ௜௝൧௒஺ீ = 1√6 ቎√3 0 − √3−1 2 −1√2 √2 √2 ቏ 
(3.4) 

where in this case, it was assumed that ݔ′ and ݕ′ are perpendicular to the slab faces. 

In the case of the BBO with crystal grown and cut along the [001] direction, the resulted 

stress matrix had to be just rotated 22.8 ° along the Y axis (Fig. 3.8) in order to accomplish 

the SHG phase matching. Doing so, ܽ௜௝ from Eq. (2.19) is represented by,  
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ൣܽ௜௝൧஻஻ை = ൥ܿݏ݋ ߠ 0 − ݊݅ݏ 0ߠ 1 ݊݅ݏ0 ߠ 0 ݏ݋ܿ ߠ ൩ 
(3.5) 

where θ = 22.8 °. In the case of fused quartz, being an isotropic and amorphous 

material no transformation was required. 

 

Fig. 3.8. Coordinates transformations needed to move the coordinates from the laboratory to the 

crystal coordinate system. In (a) crystal structure of cubic YAG. ݖ ,′ݕ ,′ݔ′, coordinates in the 

crystallographic structure and ݖ ,ݕ ,ݔ, in the laboratory system [32]. In (b), crystal structure of 

BBO. ݖ ,′ݕ ,′ݔ′, coordinates in the crystallographic structure and ݖ ,ݕ ,ݔ, in the laboratory 

system [52]. 

Once the stresses had been transformed into the crystalline coordinate system, 

abbreviated as ߪ௡ᇱ , it was just needed to know the piezo-optical constant tensors ߨ௠௡ᇱ  to be 

able to apply Eq. (2.20). Being the YAG a cubic m3m crystal, the BBO a trigonal 3ത݉ crystal, 

and the fused quartz an isotropic material, and due to the crystal symmetry and Nye’s 

convention the fourth-rank tensors expressed with 81 independent values can be reduced 

into a 36 independent values matrix [28], in our case we can express the piezo-optic tensors 

as, 
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ሾߨ௠௡ᇱ ሿ௒஺ீ,௠ଷ௠ =    
ێێۏ
ۍێێ
ᇱଵଵߨ ᇱଵଶߨ ᇱଵଶߨ 0 0 ᇱଵଶߨ0 ᇱଵଵߨ ᇱଵଶߨ 0 0 ᇱଵଶߨ0 ᇱଵଶߨ ᇱଵଵߨ 0 0 00 0 0 ᇱସସߨ 0 00 0 0 0 ᇱସସߨ 00 0 0 0 0 ۑۑےᇱସସߨ

    ېۑۑ
(3.6) 

ሾߨ௠௡ᇱ ሿ஻஻ை,ଷഥ௠ =  
ێێۏ
ێێێ
ଵଵ′ߨۍ ଵଶ′ߨ ଵଷ′ߨ ଵସ′ߨ 0 ଵଶ′ߨ0 ଵଵ′ߨ ଵଷ′ߨ ଵସ′ߨ− 0 ଷଵ′ߨ0 ଷଵ′ߨ ଷଷ′ߨ 0 0 ସଵ′ߨ0 ସଵ′ߨ− 0 ସସ′ߨ 0 00 0 0 0 ସସ′ߨ ସଵ0′ߨ2 0 0 0 ଵସ′ߨ ۑۑےଵଶ′ߨ−ଵଵ′ߨ

ۑۑۑ
ې
 

(3.7) 

ሾߨ௠௡ᇱ ሿி௨௦௘ௗ ௤௨௔௥௧௭,ூ௦௢௧௥௢௣௜௖ =
ێێۏ
ێێێ
ଵଵ′ߨۍ ଵଶ′ߨ ଵଶ′ߨ 0 0 ଵଶ′ߨ0 ଵଵ′ߨ ଵଶ′ߨ 0 0 ଵଶ′ߨ0 ଵଶ′ߨ ଵଵ′ߨ 0 0 00 0 0 ସସ′ߨ 0 00 0 0 0 ସସ′ߨ 00 0 0 0 0 ۑۑےସସ′ߨ

ۑۑۑ
ې
 

(3.8) 

Table 3.3. Piezo-optic constants for the crystals in the crystallographic orientation [53] as expressed in 

Eq. (2.20). 

 YAG BBO Fused quartz 

 ૚૚(m2/N) -1.21E-13 -1.70E-12 2.03E-13′࣊

 ૚૛ (m2/N) 5.08E-14 -1.35E-12 3.18E-12′࣊

 - ૚૜ (m2/N) - 1.75E-12′࣊

 - ૚૝ (m2/N) - -2.00E-12′࣊

 - ૜૚ (m2/N) - -1.60E-12′࣊

 - ૝૚ (m2/N) - -2.03E-12′࣊

 - ૜૜ (m2/N) - 3.7E-12′࣊

 ૝૝ (m2/N) -5.38E-13 -26.30E-12 -2.98E-12′࣊

 

Afterwards, the full indicatrix tensor with consideration of stress was calculated, 

according to Eq. (2.20). That requires the knowledge the free-of-stress refractive indices, as 

defined in Eq. (2.21). For YAG crystal, its refractive index is defined as [54], 

݊ଶ = 1 + ଶߣଶߣ2.293 − 0.1095ଶ + ଶߣଶߣ3.705 − 17.825ଶ 
(3.9) 
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for the BBO crystal, its ordinary and extra-ordinary refractive indices are defined as 

[52], 

݊௢ଶ = 2.7405 + ଶߣ0.0184 − 0.0179 −  ଶ (3.10)ߣ0.0155

݊௘ଶ = 2.3730 + ଶߣ0.0128 − 0.0156 −  ଶ (3.11)ߣ0.0044

and for the fused silica [55], 

݊ଶ = 1 + ଶߣଶߣ0.6962 − 0.0684ଶ + ଶߣଶߣ0.4079 − 0.1162ଶ + ଶߣଶߣ0.8975 − 9.896ଶ 
(3.12) 

where ߣ is the wavelength given in micrometers. With all the information above, it 

was easy to obtain ߝ௜௝, which will be used to analyze the stress induced effects on the laser 

beam in the next section. 

3.1.1.4 FEM stress results imported in VirtualLab 

In contemplation of laser crystal lasing investigation, several cases per input 

wavelength and crystal conditions were evaluated as described in Table 3.4.  

Table 3.4. Studied laser resonator cavity produced beams and stress crystal conditions. The diode-pumping 

emission wavelength of 808 nm was avoided for being granted between both extreme 532 nm and 1064 nm 

laser cavity wavelengths.   

Laser cavity beam Crystal condition (YAG/BBO/Fused quartz) 

1. Gaussian @1064 nm from YAG emission, 50 

µm waist radius, Ey-polarization  

2. Gaussian @532 nm produced by BBO SHG, 

50 µm waist radius, Ex -polarization 

a. Ideal case: without stress 

b. Real case: with actual applied stress 

c. Comparing case: with increased stress 

(10x) by design 

Starting with the YAG crystal, and Ey-polarized input Gaussian at 1064 nm in front 

of the crystal, the output field behind the crystal under the three different crystal conditions 

can be seen in Fig. 3.9. 
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Fig. 3.9. Amplitude of the transmitted field behind the YAG crystal, with Ey-polarized Gaussian 

at 1064 nm as the input. Column (a) ideal case without stress; column (b) with actual solderjet 

bumping packaging induced stress; column (c) with 10× increased stress. Upper row 

corresponds to the Ex-component and lower row the Ey-component. 

Although the input field in front of the YAG crystal is linearly polarized along the y-

direction, due to the possible polarization crosstalk that happens when light is refracted at 

the crystal surface, it was obtained a non-zero |ܧ௫| in the output field, even in the case 

without stress-induced birefringence, as shown in column (a) of Fig. 3.9. Comparing column 

(b) with column (a), the actual solderjet bumping packaging induced stress shows almost no 

influence on the output field; while if the stress values are increased to 10 times as the actual 

ones by design, |ܧ௫| in column (c) shows a slight difference in its central part. Obviously, 

the change in the central part of |ܧ௫| is caused by the stress-induced birefringence, while its 

major profile remains as in column (a), which corresponds to the free-of-stress case. 

Switching to the case with Ex-polarized input Gaussian at 532 nm as input, it was obtained 

the output field as in Fig. 3.10. 
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Fig. 3.10. Amplitude of the transmitted field behind the YAG crystal, with Ex-polarized Gaussian 

at 532 nm as the input. Column (a) ideal case without stress; column (b) with actual solderjet 

bumping induced stress; column (c) with 10× increased stress. Upper row corresponds to the Ex-

component and lower row the Ey-component. 

In column (a) of Fig. 3.10 in which no stress is present, one can also see a non-zero หܧ௬ห, although the input field is linearly polarized along x-direction. Nevertheless, in 

comparison to column (a) of Fig. 3.9, the strength of polarization crosstalk for the beam 

@532 nm in the free-of-stress case is smaller. Therefore, the effects of stress-induced 

birefringence can be clearly seen in column (b) and (c). Especially in column (c), when the 

stress values are increased to 10 times of the actual ones, the induced birefringence is so 

strong that the distribution of หܧ௬ห is very different from that in column (a), which 

corresponds to the free-of-stress case. Following to this, in a similar manner, it was 

investigated the BBO crystal. Starting with the Ey-polarized input Gaussian at 1064 nm as 

the input. In our experiment, the BBO crystal is cut at the angle ߠ = 22.8° and used in the o + o ⇒ e configuration for SHG. According to the geometry sketched in Fig. 3.11(b), an 

ordinary wave in the BBO crystal should be linearly polarized along y-direction, while an 

extra-ordinary wave polarized along x-direction. Therefore, it is defined the polarizations of 

both beams @1064 and 532 nm as in Table. 3.4. 
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Fig. 3.11. Amplitude of the transmitted field behind the BBO crystal, with Ey-polarized Gaussian 

at 1064 nm as the input. Column (a) ideal case without stress; column (b) with actual stress; 

column (c) with 10× increased stress. The upper row corresponds to the Ex-component and 

lower row the Ey-component. 

Unlike the case of YAG crystal, which is naturally isotropic, the BBO crystal is 

uniaxial anisotropic. Thus, the distribution of |ܧ௫| in Fig. 3.11 shows a lateral shift, because 

polarization along x-direction corresponds to the extra-ordinary wave according to the 

geometry described in Fig. 3.11(b). When the Ex-polarized Gaussian at 532 nm was used as 

the input, it is obtained the output field as seen in Fig.3.12. 

 

Fig. 3.12. Amplitude of the transmitted field behind the BBO crystal, with Ex-polarized Gaussian 

at 532 nm as the input. Column (a) ideal case without stress; column (b) with actual studied 

stress; column (c) with 10× increased stress. Upper row corresponds to the Ex-component and 

lower row the Ey-component. 

When measuring the center of |ܧ௫| distribution in Fig. 3.12, it gave the values of 

111 µm in our simulation, this lateral shift corresponds to a walk-off angle of 3.18°, which 

is in good agreement with the literature [56]. 
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If the case of BBO (Fig. 3.11 and 3.12) is compared with that of YAG (Fig. 3.9 and 

3.10), it is not hard to see that the strength of polarization crosstalk in BBO is much stronger 

than that in YAG, because BBO is naturally anisotropic. As a result, even when the stress 

values are increased by design, only slight changes are visible in column (c) in Fig. 3.11 and 

3.12.  For the fused quartz analysis, the results were similar to the above seen results for Ey 

and Ex, with respect to 532 nm and 1064 nm wavelengths for the different stress analyzed 

cases. The above method used to investigate stress-induced birefringence produced in this 

case by the solderjet bumping technique for laser crystals packaging showed an almost 

negligible effect on the laser crystal capabilities for the materials and geometries used. The 

results showed a small-induced stress effect along the laser beam direction that did not 

compromise the output laser beams. 

3.2 Initial soldering tests 

In order to prove the previously mentioned mechano-optical simulations and to study 

the material real cases, similar to the simulated materials had been assembled by solderjet 

bumping technique means. Later, the stress has been measured with an Illis GmbH 

polarimeter to compare and verify simulated results.  

3.2.1 Material soldering parametrization 

Solderjet bumping technology is a technique able to assemble optical components 

through a low-stress soldering process by applying solder droplets onto brittle materials that 

have previously been metallized by sputtering techniques. These materials (crystals or 

glasses) have normally little or no evidence of possible plastic deformation when an external 

strength is applied, causing internal material structure fracture. The solderjet bumping 

technique can adjust the input-energy produced by the IR laser reflow needed to melt the 

soldering alloy, to finally bond the desired component materials. Thus, the laser energy (mJ) 

can be adjusted by varying the laser current (A) and laser pulse (ms). In order to adjust the 

energy to each of the component’s materials a DoE has to be carried out. For our study, it is 

used a Design-Expert® Software Version 10 and a Face Centred Cubic Central Composite 

Design [57]. Different input energies mJ (A,ms) have to be contrasted with the responses 

given by the different materials (damage on material and bump melted diameter). Each 

material will have different response to damage (brittle strength and surface quality 
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dependent) and melted bump diameter (heat transfer coefficient dependent), according to its 

thermo-mechanical properties. After assessing the correct energy for each optical material 

and substrate, the energies had to be cross-correlated between the optical components and 

base materials to obtain a correct fit. For the study, it was created DoE for BBO, YAG and 

FS optic materials that had to be bonded to AIN and KOVAR substrate materials, as seen on 

the table below. Different solder droplet bumps sizes of SAC305 were also investigated for 

each of the materials.  

Table 3.5. Optic materials and substrate materials studied with different soldering applied sizes.  

 Materials Bump diameter (µm) 

Optic Material YAG 300, 400, 760 

BBO 100, 300, 400, 760 

FS 300, 400, 760 

Substrate materials  AIN 300, 400, 760 

KOVAR 300, 400, 760 

 

In the case of the BBO material and because it is extremely sensible to applied 

external forces (in our case also due to an improper polishing quality), an initial 100 µm 

diameter bump patches were applied (with a low bump reflow energy) on the material 

surfaces to work as a bond surface between these patches and the substrate where the BBO 

has to be bound. In the first place, this helped to protect the component’s surface and, 

secondly, it provided a better wettability area in which higher diameter bumps, applied with 

higher laser reflow energy were used to bound the laser crystal to the desired substrate 

material without damaging the components’ internal structure (Fig. 3.13). 
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Fig. 3.13. Left, poor surface BBO quality after polishing. Right, applied 100 µm bump diameter 

patch made of 60 bumps after component metallization. On the second image, one can also 

easily seen how the presence of scratches on the component could finally lead to internal 

superficial component cracks after soldering.   

3.2.1.1 Soldering response  

The material’s response to different laser energy applied bumps was assessed through 

bump melted size on surfaces (Fig. 3.14 and 3.15), damage on optic materials (Fig. 3.16 & 

3.17), and finally force needed to shear the melted bumped alloy (Fig. 3.18). The shear force 

was the ultimate prove of good wettability of bumps over materials, plus a good way to 

assess if the chosen energies for the optic materials were also in agreement with the energy 

needed to bond them to the substrate materials. The bump shear tests were performed with 

a Delvotec 5600 Pull-/Shear tester from F&S BONDTEC (Austria). 

Table 3.6. Example of performed tests using different in-put factors, and with the subsequent analysed 

response.  

  Factor 1 Factor 2 Response 1 Response 2 Response 3 

Run 
A:laser current 

(A) 

B:pulse width 

(ms) 
Damage Diameter (µm) 

Shear Test 

F(cN) 

 

Bump melted diameter: The desired droplet melted diameter is normally defined and 

approximated by Fraunhofer IOF experience by the formula, 

1.25 ∗ ݀௕ < d < 1.75*݀௕ (3.13) 

where ݀௕ is the original bump diameter and d the melted bump diameter after 

soldering reflow [58] (Fig. 3.14).  
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Fig. 3.14. Example of different melted diameter 400 µm bumps on a YAG sample. First bump 

left, with a response diameter of 409 µm applied with a laser current of 50 A, and with a pulse 

width of 2 ms (~ 100 mJ).  Second bump middle, 803 µm diameter applied with a laser 62.5 A 

and 5 ms (~ 350 mJ). Third bump right, 786 µm diameter applied with a laser 62.5 A and 3.5 ms 

(~ 200 mJ).  

With the minimum and maximum diameter considerations (Eq. (3.13)), it was easy 

to obtain an approximate desired input laser energy (in terms of laser pulse width and laser 

current), that would result onto desired melted bump diameter, represented on Fig.3.15 as 

the green area, located in the centre of the graphic.  

 

Fig. 3.15. Graphic results of input-factor energy in terms of laser current and pulse width, 

contrasted with bump melted diameter (bluish area 1.25 ∗ ݀௕  < d, red area d > 1.5*݀௕). 

Example of results of 400 µm bumps applied on YAG. 
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Damage: The damage occurred due too much laser energy applied on the components 

surfaces. The damage was identified by four different possible responses: (1) no presence of 

damage; (2) material abrasion; (3) crack; (4) major crack (Fig. 3.16).  

 

Fig. 3.16. Example of examined damage on BBO. (1) No presence of damage; (2) material 

abrasion; (3) crack; (4) major crack. 

With this, it was find a desired response to the input laser energy factors (pulse width 

and laser current) in the same way as seen in Fig. 3.17 without damaging the material’s inner 

surface.  

 

Fig. 3.17. Graphic results of input-factor energy (in terms of laser current and pulse width) 

contrasted with created crystal damage (bluish area no damage, red area major crack and 

desirable area in green). Example of results of 100 µm bumps applied on BBO.  

Shear force: the needed force to shear the melted bump applied on the surfaces is empirically 

approximated by Fraunhofer experience [58] by, 

௠௔௫ܨ = ߬ ∗ 4ߨ ∗ ݀ଶ (3.14) 

Design-Expert® Software
Factor Coding: Actual
Damage (Fac)

Design Points
4

1

X1 = A: laser current
X2 = B: pulse width

1500 1800 2100 2400 2700 3000
0.4

0.5

0.6

0.7

0.8
Damage (Fac)

A: laser current (mA)

B:
 p

ul
se

 w
id

th
 (m

s)

1

2

3

4

3 3

10 2

3 2 3



Chapter 3 Theoretical modelling and testing  47 
 

where ߬ is the alloy material yield strength (45 MPa for SAC305), and d the bump 

melted diameter. This last formula can give us an idea about the approximated desired 

bonding conditions and the correct alloy wettability expected for an already melted bump 

diameter.  

 

Fig. 3.18. Example of sheared 300 µm diameter SAC305 bumps over protecting BBO patches. 

The expected shear force using the Eq. (3.13) for 300 µm SAC bumps would be between 490 to 

650 cN . (a) Too much energy (~210 mJ) created a slot on the melted profile, resulting as a low 

response to the shear tests with a result force of 277 cN. (b) Correct energy assessment 

(~150 mJ) showed a good shear force profile, and resulting shear energy force of 512 cN. (c)  

With insufficient energy (~120 mJ), the bump was totally peeled from the BBO patch; no strong 

bonds between applied SAC305 bumps were created. The resulting shear force to remove the 

applied bump on this last case was 90 cN. The shear tests were performed with a Delvotec 5600 

Pull-/Shear tester from F&S BONDTEC (Austria).  

Results: with the previously shown input factors and output responses, it was assessed the 

required laser energy application (in terms of laser pulse width and laser current), in order 

to obtain a correct adhesion and wettability of the bumps (SAC305 alloy) to bond the 

selected optical and substrate materials. The desirability graphic was the result of the 

correlation between good bump wetted diameter (in terms of laser reflow I(A) and 

Pulse(ms)) following Eq. (3.13), and the study of low damage (in terms of laser reflow I(A) 

and Pulse(ms)). As an example, the desirability graphic of 400 µm bumps applied on YAG 

is shown in Fig 3.19.  
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Fig. 3.19. Final YAG soldering energy desirability in terms of Laser current (A) and laser 

Pulse (ms) using 400 µm soldering bumps.  

After obtaining the desirability graphic for each of the combinations, it was selected 

the best candidates by analysing the shear force results and Eq. (3.14). With this, it was 

possible to finally obtain a table with the desirable energy needed to bond the optical to the 

substrate materials for each one of the possible combinations and bump sizes as seen on 

Table 3.7.  

Table 3.7. Finally selected used laser energy to bond optical and substrate materials with respect to the laser 

current and laser pulse needed to melt the soldering alloy.  

 300 µm bump 400 µm bump 760 µm bump 

Current 
(A) 

Pulse 
(ms) 

Energy 
(mJ) 

Current 
(A) 

Pulse 
(ms) 

Energy 
(mJ) 

Current 
(A) 

Pulse 
(ms) 

Energy 
(mJ) 

BBO - 
AIN 

5.1 5.25 150 56 5.5 205 63 10 389 

BBO -
KOVAR 

5.1 5.25 150 56 5.5 205 63 10 389 

YAG - 
AIN 

5.6 7 217 68.75 3.5 210 92 7.7 398 

YAG -
KOVAR 

5.6 7 217 68.75 3.5 210 92 7.7 398 
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FS –AIN 5.6 7 217 60 5 232 92 8 441 

FS – 
KOVAR 

5.6 7 217 57 5 211 92 8 441 

3.2.2 Comparison of simulated and measured stress   

Once the soldering assembling energies for each of these materials were found, the 

next step was to verify whether simulated stresses were comparable with real created 

stresses. For our purpose, 2 mm four side polished cubes and 5×5×1 mm AIN baseplates, as 

described in chapter 3.1 were manufactured. Later, the components where metallized with 

Ti/Pl/Au to be finally bonded using SAC305 alloy, and by the assessed solderjet bumping 

energies described on the Table 3.7.  

 

Fig. 3.20. Detail of manufactured AIN (back) and KOVAR (front) baseplates and laser 

components with the same configuration as shown on Fig. 3.2 (YAG-BBO-FS). Left, components 

before metallization and soldering processes. Right, soldered components to baseplates.  

Stress simulations with ANSYS (calculated as explained on chapter 3.1.1.2) showed 

results with a maximum stress of 0.004 MPa and a minimum close to 0 MPa for YAG crystal 

due to the soldering process as seen in Fig. 3.21. For the real tests with crystal YAG, the 

components manufacturing processes produced much higher stresses on the crystal edges. 

This made impossible to asses any difference on crystal internal birefringence due to the 

packaging procedures. Since no real difference was found between the components before 

and after soldering, it was considered that solderjet bumping will not create a difference on 

the components laser capabilities due to the components packaging for YAG components 

with a cube side similar to 2 mm size.  
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Fig. 3.21. Comparison between simulated stresses and real measured stresses after components 

assemble. In (a) simulated YAG. In (b) YAG stress due to manufacturing procedures (crystal 

cutting and polishing). In (c) similar stress as in (b) but after soldering.  

In the case of the SHG-BBO, and due to the high material birefringence when cut in 

a 22.8° used to obtain second phase matching, was impossible to determine internal stresses 

by the use of a polarimeter machine. To overcome this problem, a c-cut BBO (0° in respect 

of the optical axis) was used to determine if our packaging technique was in agreement with 

our simulations. Although the results as seen in Fig. 3.22 (b) are still showing fringes 

produced by material birefringence (probably because cutting angle tolerances) some stress 

could be identified close to the soldering areas. As it can be seen in Fig. 3.22, both simulated 

and created stresses have just a small superficial stress, far from the beam path, and both 

seem to be in agreement.  

       

Fig. 3.22. Comparison between simulated stresses and real measured stresses after components 

assemble for BBO. In (a) simulated BBO. In (b) assembled by solderjet means BBO.   

For the final case of the fused silica cubes, thanks to easier manufacturing processes 

and no internal material-birefringence problems, the results were easier to analyse. Both 

cases show a similar induced-stress pattern, with almost no stress influence on the middle of 

the crystal (approximate laser beam area), and showed a close to 1 MPa stress near the 

soldered areas.  



Chapter 3 Theoretical modelling and testing  51 
 

     

Fig. 3.23. Comparison between simulated stresses and real measured stresses after components 

assemble. In (a) simulated FS cubes. In (b) resulting stresses measured with a polarimeter.    

After comparing the components simulations with the real assembled crystals, it is 

seen how despite the used simplifications (avoiding complete liquid-to-solid phase change 

simulation), and being working close to the minimum analysable stress by the polarimeter 

(0.1 MPa), both simulations and measured stresses seem to be in agreement. The centre area 

of the crystals seems to be almost free of stress produced by the soldering procedures (below 

the minimum analysable by the polarimeter <0.1 MPa), and similar stresses are being seen 

on the crystal’s sides close to the soldering areas.  

This comparison study between the produced stresses created by the bonding alloy 

on simulated cases by ANSYS 17.0 and by the measured stresses using a polarimeter device 

for the real assembled components, show that our initial simulation results are in agreement 

with the real applied stress. Proving also that the created method is valid for subsequent laser 

analysis with VirtualLab Fusion software. By proving so, it had been also demonstrated that 

laser cavities with such a laser crystal geometries could be assembled by the use of the 

solderjet bumping technique without affecting the laser emission. In the following chapter, 

we will try to assess the better approach to even reduce the applied stresses by varying the 

bump used sizes, the soldering position, and by analysing the minimum optical component 

size that can be bonded without affecting the subsequent laser emission.  
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4 Devices miniaturization  

After using the theoretical model to understand and analyse stresses in laser crystal 

packing processes, and after comparing the simulated results with real assembled results, the 

following step was to assess and optimize the minimum components’ possible sizes that 

could still guarantee low induced stresses but high robustness. For this study, FS cubes were 

used, since it is a common and easily to work-with material compared to the other previously 

mentioned laser materials, as BBO and YAG. 

4.1 Soldering optimization for device miniaturization tests 

To better understand the technology limits in terms of miniaturization, different 

combination of crystal sizes and soldering approaches were studied. The main goal was to 

find the limit of device miniaturization, guaranteeing low stress-induced birefringence near 

the laser beam path, as well as maintaining high join robustness to guarantee device 

operation in harsh environmental conditions. To do so, different component size cases were 

studied as seen on Fig. 4.1 and described on Table 4.1. 

  

Fig. 4.1.  In the picture, different sizes of manufactured FS cubes are displayed; biggest at the 

back row with measuring 2 mm side cubes, in the middle row, cubes manufactured measuring 

1 mm side cubes and the smallest in the front row, measuring 0.3 mm side cubes. Left, cubes and 

AIN base-plate before metallization. Right, after the metallization of components with Ti/Pt/Au 

layers needed for further soldering tests. 
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Table 4.1. Different studied combinations of crystal and SAC305 alloy bump sizes used to solder the 

components. Each configuration was tried with different amount of solder bumps, depending on the crystal 

available area.  

              Crystal size 
Bump size 

FS 0.3 mm  side cube FS 1 mm side cube FS 2 mm side cube 

300 µm diameter 2 bumps. 1x side 2 bumps. 1x side  

4 bumps. 2x side 

4 bumps. 2x side 

6 bumps. 3x side 

400 µm diameter 2 bumps. 1x side 2 bumps. 1x side  

4 bumps. 2x side 

2 bumps. 1x side  

4 bumps. 2x side  

6 bumps. 3x side 

760 µm diameter 2 bumps. 1x side 2 bumps. 1x side 2 bumps. 1x side 

 

Similarly, these different configurations were simulated by ANSYS 17.0 in order to 

verify if the results matched the real stress soldered samples.  

 

Fig. 4.2.  Different simulated geometries as seen on Table 4.1. In (a) a 300 µm side cube 

soldered to a base plate with two soldering bumps of 300 µm diameter (before laser reflow). In 

(b) a 1 mm side cube soldered to a base plate with four soldering bumps of 400 µm diameter 

(before laser reflow). In (c) a 2 mm side cube soldered to a base plate with two soldering bumps 

of 700 µm diameter (before laser reflow). 

4.2 Optimization soldering results  

For the analytical study, it has been used ANSYS 17.0. A transient thermal 

simulation using the alloy enthalpy for SAC305 (as seen in chapter 3.1.1) was implemented 

to analyse the alloy solidification (thermal range from 230 °C to 22 °C) onto the laser crystal. 

Later, the same simulated examples showed on Fig. 4.2 were assembled as seen in Fig 4.3, 

by soldering the components as described on Table 4.1; to be later measured using a 

polarimeter Illis GmbH [59]. 



Chapter 4 Devices miniaturization  54 
 

   

Fig. 4.3. Different sizes of manufactured and soldered FS cubes. Left image, different soldered 

cube sizes (2 mm, 1 mm and 0.3 mm sided cubes) soldered with different soldering alloy 

diameter sizes (760, 400 and 300 µm). Image onto the right, different 2 mm side cubes soldered 

with different amount and size of soldering bump’s. 

Simulated stresses following the laser beam path are shown on the Fig. 4.4, for all 

the described cases on Table 1. This stress-result along the laser beam path was to be later 

used on the VirtualLab Fusion lasing simulations.  

 

Fig. 4.4. Average stress (MPa) on the laser optical path simulated, for each component geometry 

as seen on Table 4.1. 

On the other hand, simulated stress results (left column in Fig. 4.5) were contrasted 

to real measured stress results (right column in Fig. 4.5). 
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Fig. 4.5. In (a) minimum stress on optical path for a 1 mm side cube soldered with two 300 µm 

solderjet bumps. In (b) similar soldered case measured with a polarimeter, stress value not 

measurable for being below the minimum detectable value (maximum detected stress is outside 

the FS component) (a). In (c)&(d) higher measurable stress on a 2 mm side cube soldered with 

two 760 µm bumps; both simulated and real-measured cases show similar stress with almost 

1 MPa close to the soldered areas. 

The stress measurement for components below 1 mm size was difficult to be analysed 

due to the minimum size (millimetres range) and resolution (0.1 MPa) of the polarimeter 

device. However, after seeing how the results of the real-soldered cases with cube sizes of 

2 mm and 1 mm are close to the simulated measurements, it was assumed that this would 

also be the case for smaller cube sizes. The induced-stress along the laser beam path in the 

centre of the cube was difficult to be measured in most cases, since it was below the 

minimum detectable stress in the polarimeter device (<0.1 MPa).  However, as we could see 

in Fig. 4.5, the stress distribution near the soldered areas was similar for both the simulated 

and real soldered cases.   

Later, in order to investigate the laser effects produced by the stress-induced 

birefringence, the results extracted from ANSYS have been analysed by VirtualLab Fusion 

software, where several cases for the input wavelength per fused silica component condition 

were evaluated as seen in Table 4.2.  
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Table 4.2. Studied laser produced beams and stress crystal conditions. 
Laser cavity beam Component condition (FS cubes) 

1. Gaussian @1064 nm emission, 50 µm waist 
radius, Ey-polarization  
 

a. Ideal case: without stress 
b. Comparing case: with (0.2x) stress by 

design 
c. Real case: with actual applied stress 
d. Comparing case: with increased stress 

(5x) by design 
 

Introducing an input Ey-polarized Gaussian beam at 1064 nm (as it is a common 

wavelength for laser cavities with Nd:YAG crystals [60]), the output laser beam was studied 

in terms of laser depolarization. Taking into account one of the results with higher induced 

stress (that has also been measured with the polarimeter device as seen in Fig. 4.5), as it is 

the 1 mm side FS cube soldered with 760 µm bumps, it was obtained results for the beam 

depolarization ratio as seen on Fig. 4.6.  

 

Fig. 4.6. Amplitude of the transmitted field behind the FS component, with Ey-polarized 

Gaussian at 1064 nm as the input. Column (a) ideal case without stress; column (b) with 0.2× 

applied stress (c) with actual solderjet bumping packaging induced stress; column (d) with 5× 

increased stress. Upper row corresponds to the Ey-component and lower row the Ex-component. 

In Fig. 4.6 one can see a non-zero output field for the case without of stress; this 

response is due to the result of a crosstalk effect caused by reflection of light at the 

component surface. Comparing column cases (a) with no stress, and (b)-(c) & (d) with 

applied stress, one can see a beam mode change in the Ex-component; however this effect 

seems to introduce a maximum depolarization ratio below 0.001 % for each one of the 

studied cases. On the other hand, the simulations were implemented with some applied 
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simplifications, as it is, using a unidimensional beam stress [31] along the middle of the laser 

beam path; this could be effective for the cases at which the laser beam is much smaller than 

the beam cube size. In those cases at which the beam size is in the same order of magnitude 

as the laser component size one has to make sure, it is also taken into account stresses on the 

cube sides where higher stress is present, as seen in Fig. 4.5. In this study, and in order to 

avoid stress-effects produced on the sides of the 300 µm side cubes, where the stress has a 

higher inhomogeneous behaviour, the beam depolarization ratio was calculated for which 

the maximum stress was similar to 0.5 MPa; in those cases the beam depolarization ratio 

was about 0.1%, also insignificant for most of laser applications. In a similar way the output 

beam profile did not change significantly from the initial Gaussian beam, as it is possible to 

be seen on the first row of Fig. 4.6. The results for all the soldered and simulated cases as 

described in Table 4.1, showed for all the assembled components only a small-induced stress 

effect produced by the solderjet bumping laser-crystal packaging technique, not overpassing 

a beam depolarization ratio over the 1% and a beam quality factor M2>1.2. 

4.3 Push and climatic tests results 

After proving how solderjet bumping created only a low induced stress on the 

miniaturized and bonded components, the next step was to test if those assembled different 

cube sizes could withstand the required high loads, as they are need it for example, in some 

space laser applications  [61]. Considering the low mass, and the different materials of the 

assembled components, one can use Eq. (2.6) and the common force equation, 

ߪ = ܨ ΔαΔT (2.6)ܧ = ݉ ∗ ܽ (4.1) 

to compare in magnitude the difference between the thermal (non-operational 

temperatures) and the mechanical loads (acceleration, vibration ,etc.). For the case of the 

Exomars mission as and e.g. [25], and taking into the consideration, a mechanical 

acceleration of 1500 g, the mass of a 2 mm side cube of FS (~2*10-5 gr), and the Eq. (4.1), 

in contrast with the non-operational thermal gradient between -60 °C to +70 °C using 

Eq. (2.6); one can notice that thermal loads could be several-hundred times higher than the 

mechanical loads. Being the thermal loads much harsh and as they are the mechanical loads, 

it is evaluated on the next chapters if this soldering bonds can survive this demanding 

requirements by performing thermal cycles. For the sake of comparison, it was contrasted 
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the bond strength for samples that did not passed thermal cycles in respect for those that had 

previously been cycled by performing push tests on them.  

4.3.1  Initial not cycled push tests  

For the analysis, it was contrasted a theoretical bond strength calculated taking into 

account melted bump covered area for the different initial bumps sizes (300 µm, 400 µm and 

760 µm) by using alloy maximum yield strength (45 MPa for SAC305) [58]; comparing it 

later with the real force required to tear apart the soldered components. The push test on 

soldered components were performed with a Zwick Roell GmbH Z020. The comparison 

between theoretical force and measured force on soldered samples can be seen in Fig. 4.7.  

 

Fig. 4.7. The measurement of bonding strength between SAC305 alloy and fused silica cubes 

soldered on AIN baseplate using solderjet technique (red bars). This result follows similar trend 

with the theoretical bonding strength calculation using Eq. 2.4 (blue bars). 

The results show in most of the cases a similar trend for which we can relate the 

amount of the used alloy with the resulting final bond strength. For those cases for which the 

results are not comparable (as an example the 2 mm cube (4) bumps of 300 µm and the 1mm 

cube (2) bumps 760 µm), the cause could be differences on final bump covered area (bump 
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misplacement) or even defects on components edges that leaded to component rupture 

though the FS glass.  

This results, in contrast with the beam depolarization ratio results, could help users 

to select which would be the component size and required strength for the needed 

application. For the case of the 300 µm sided cubes, it was impossible to perform the test 

due to the available tools of the Zwick Roell GmbH Z020 to push the components, also in 

the range of some millimetres. 

4.3.2 Climatic chamber test 

In order to prove if the assembled components can withstand loads similar to the ones 

required for space applications, as in the case of Exomars mission [25], an environmental-

thermal test was performed.  It was used a climatic chamber model TCH7050 from TIRA 

Umweltsimulation GmbH to test the soldered samples in a eight temperature cycles between 

-60 °C to +70 °C, with a dwell time >15 minutes and with an approximate ramp of 1 °C/min 

(Fig. 4.8). 

 

Fig. 4.8.  Thermal cycles reproducing the minimum and maximum non-operational required 

temperatures for Exomars Mission.  

Due to the different material CTE, the different thermal loads could create higher von 

Misses stressed on the material joins, compromising the final bond strength or even 

damaging internally the laser components. To assess if any change on the bond strength was 
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produced, further push tests in similar soldered components as shown in in Fig.4.7 were 

repeated after performing the thermal cycles as seen in Fig. 4.8. 

4.3.3 Push test after thermal cycles  

Push test for the same assembled geometries were repeated as in chapter 4.3.1 after 

previously mentioned thermal cycles between -60 °C to +70 °C as shown in Fig. 4.8. The 

results showed a chart as seen in Fig. 4.9. 

 

Fig. 4.9. The measurement of bonding strength between SAC305 alloy and fused silica cubes 

soldered on AIN baseplate using solderjet technique (red bars) after climatic cycles as shown in 

previous chapter 4.3.2. This result follows similar trend with the theoretical bonding strength 

calculation using Eq. 2.4 (blue bars). 

Although a comparison between the theoretical and real experienced forces to tear 

apart the components could in some cases not be equivalent, Fig. 4.9 did not show neither a 

clear decrease of bond strength force on the assembled components. In some cases more and 

in some other less force was needed; as it happened also on Fig. 4.7. This effect was probably 

produced by slight differences on the bump placement among the components to be 

assembled (FS cube and AIN base), or defects on the soldered FS cube edges.  
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Moreover, the applied thermal cycles could also influence the generated internal 

component birefringence, affecting subsequently the laser emission. To check if this effect 

was produced, the internal stress was measured before and after thermal cycles. In most 

cases, the stress showed a progression as seen on Fig. 4.10. 

     

Fig. 4.10. Measured stress in MPa on a 1 mm cube sample soldered with two 400 µm bump 

before (a) and after (b) thermal cycles. A stress-relaxation process is visible by comparing (a) 

and (b). 

In most of the cases, the results showed a relaxation on the component birefringence 

after the thermal cycles. By Fraunhofer experience [6], a stress-relaxation process is usually 

produced following the days and even weeks after components assemble. For that reason, it 

was not possible to attest if this birefringence-relaxation was a natural time-related process, 

or also due to the thermal cycles applied on the components. In any case, the initial 

birefringence produced due to the packaging technique did not strongly affect the laser 

emission as seen in Fig. 4.6, and even less, the lower measured internal birefringence after 

thermally cycling the components.  

4.4 Optimization results and conclusions  

A simulation method as described in [31] has been followed, and the components 

soldering results had been contrasted with polarimeter stress measurements in order to 

investigate the optimization and miniaturization of laser components packaged with solderjet 

bumping technique. The objective was to draw a distinction for cases at which the resulting 

beam depolarization and M2 reached values higher than 1% and 1.2; respectively. Solderjet 

bumping technique showed much better results than the maximum expected results in all 

analysed cases. In the study, it was simulated and soldered components down to 300 µm 
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cube sizes, without strongly affecting the laser emission and with a resulting bonding 

strength that complies approximately with theoretical values. These results, attest solderjet 

bumping as a reliable technique able to assemble components down to the laser beam size 

(as in the case of fibers) without strongly effecting the laser beam emission.  

The study has been implemented by the use of FS material for the sake of simplicity. 

However, it can be used for any other laser materials by adjusting the simulations with 

corresponding material properties [61]; easily found in [53].  

Taking into account the mass of each of this FS cube sizes and considering as an 

example loads similar to the ones described for the Exomars European Space Agency (ESA) 

mission [25], each component would need to withstand  a maximum of 0.3 N to resist 

mission mechanical loads (calculated using Eq. (4.1), and by the loads as described in [61]). 

However, as we have seen on Fig. 4.7 and Fig. 4.9, most of the cases could handle a forces 

similar to 5 N, far-over the mission demands. Thus, solderjet bumping technique seems to 

be a reliable technique to assemble robust miniaturized laser devices without strongly 

affecting the emission in terms of beam quality and depolarization ratio.  
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5 Case study and design guidelines 

5.1 Exomars laser  

After seeing the capabilities of the low-stress soldering technique called solderjet 

bumping and its promising qualities in terms of low-stress packaging, which can robustly 

bond laser components under an almost residual stress. It will be shown in this chapter, how 

it was used the solderjet bumping technique to assemble a DPSSL device, which required to 

be designed and assembled with the best possible benefits in terms of miniaturization and 

robustness. Following the established engineering design guidelines (Fig. 5.1) for the 

described methods, a miniaturized DPSSL was assembled for the Exomars ESA 2020 

project, according to its optical and space mission requirements [61]. 

 

Fig. 5.1. Engineering guidelines. The figure shows the step by step established process used for this 

chapter dissertation, which can be applied by interested readers to assemble similar laser devices 

required for operating in harsh environmental conditions. 

5.1.1 Laser device background 

The 2020 European Space Agency Exomars mission will be the first Martian research 

project that comprises the combining capabilities of driving across the planet, drilling up to 

two meters below the surface and having a stationary surface science platform [62]. The 

main research purposes of the rover mission will be to search for signs of past and present 

life on the planet; characterize in depth water/geochemical structures; and investigate the 

planet subsurface to better understands the planet’s crust evolution [63]. The Exomars 

instrument suite includes the Raman Laser Spectrometer (RLS) instrument [64] covering a 

spectral shift from 150-3800 cm-1 with a spectral resolution of 6 cm-1 below 2000 cm-1 [65]. 
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The RLS can be divided in three main embodiments: the Instrument Control and Excitation 

Unit (ICEU), that includes a miniaturized and compact DPSSL that generates 532.1 nm 

stable green light required to excite the crushed samples and produce the Raman effect 

scattered light [3]; the spectrometer unit (SPU), based on single transmission holographic 

grating; and the internal Optical Head (iOH), that brings the laser light from the ICEU onto 

the Martian sample and the scattered filtered and isolated Raman signal back to the SPU 

(Fig. 5.2).  

 

Fig. 5.2. RLS, spectrometer unit (SPU), instrument control excitation unit (ICEU) and the 

internal Optical Head (iOH) configuration on Exomars functional diagram of the Martian 

Rover [63]. 

The excitation source of the Raman Laser Spectrometer instrument has to be a highly 

stable, narrowband laser working at 532 nm [66], with the following technical requirements 

[67]:  

- continuous emission at 532 +/-1 nm with wavelength stability <±0.05 nm and with a 

Full Width at Half Maximum (FWHM ) stability of <0.03 nm during 20 min time, 

- optical output power range between 20-35 mW with a stability of 5%, noise level 

less than 1.5%, 

- operational temperature from 15-45 °C.  

To ensure the success of the mission, the laser source has a cold redundant design 

with two independent laser resonators. The design has to be implemented under additional 
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physical constraints, such as low weight (similar to 50 g), small size (around 7 cm3) and high 

efficiency (30 mW @ 532 nm with less than 2 W electrical consumption) [67]. Some of the 

previous requirements, or combinations of them, are not easily achieved by common DPSSL 

assembling techniques as adhesive or mechanical clamping methods [6]. 

5.1.2 Laser characteristics and requirements 

The Exomars Raman Laser and the technology used for the assembly will have to 

pass the ESA qualification standards before the final flight model (FM) can be assembled 

[68]. Several solid state lasers have already been used in space missions [69]-[70]; however 

due to the laser characteristics and mission purposes, the requirements and performed tests 

on the devices must be adjusted to the specific mission needs; for the Exomars mission 

devices these are [25]:  

- working capacity of 2000 hours with 8000 on/off cycles,  

- withstand space radiations as high as an ionizing dose of 20 krad and a proton flux 

of 5.4*1010 MeV*p/cm2 from three different radiation sources: solar energetic 

particles during the journey, back-scattered and secondary radiation at Mars surface, 

and neutron and photon fluxes emitted from the Exomars Rover,  

- thermal non-operational range between -60 °C to +70 °C and operational range 

between +15 °C to +45 °C,  

- ultra-high cleanliness; outgassing total mass loss (TML)< 0.1% and collected volatile 

condensable materials (CVCM)< 0.01%, 

- heavy vibration and shock (Table 5.1) similar to the conditions expected for the laser 

during the mission launch, cruise, landing and operational time on the planet’s 

surface. 
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Table 5.1: Vibrations tests loads for the Exomars Engineering Qualification Model (EQM) lasers tests. 

Sine 5 Hz 1 g / 1g In-plane / out-

plane 
30 Hz 20 g /25 g 

100 Hz 20 g / 25 g 

Random 20 Hz to 40 Hz +6 dB/OCT In-plane / out 

plane during 120 s 

 

 

40 to 450 Hz 0.16 

450 to 2000 Hz -6 dB/OCT 

grms 11 

Shock 100 Hz 25 g Performed per 

axis  
200 Hz 1500 g 

10000 Hz 1500 g 

 

In order to validate the devices’ capabilities under the environmental conditions 

summarized above, the assembled laser devices will have to withstand functional laser 

performance (to verify technical requirements), mechanical, thermal cycling, and radiation 

environmental tests [68]. 

5.1.3 Exomars’ laser design  

Different options have been studied in order to achieve the technical and optical 

requirements summarized on the previous chapter. Different laser components could 

guarantee better optical performances in terms of narrow wavelength emission but, for 

instance, lower thermal dissipation or radiation resistance. The different components tried 

by experimental analysis for the designed laser are summarized on the graphic below.   
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Fig. 5.3. Different laser components studied to be used for the Exomars laser and correspondent 

wavelength emission. The components’ diagram is organized as they are mounted in the laser, 

following the light direction. 

The finally selected components used for the Exomars resonator laser cavity that 

provided a functional device able to perform with the required optical performances were 

(Fig. 5.4): a CW (continuous-wave) q-mount diode pumping emitting at 808 nm. Later, a 

micro-lens (Fast axis collimator or FAC) was used to obtain a high energy density on the 

first millimetre of the laser active media. The active medium was finally selected to be a 

ceramic Nd(1%):YAG with HT808 nm and HR1064 nm (High Transmission and High 

Reflection; respectively), and a second side with HT1064 nm and HR532, because of a 

narrower linewidth emission and because it provides a better thermal conductivity [71]. 

Followed by a SHG crystal BBO (HT1064&532 nm coatings in both sides), because it 

showed a better doubling efficiency, being less sensitive to temperature changes, and being 

known to have higher radiation resistance levels than its competitors [72]. And a final output 

mirror made of fused silica and HR1064 nm and HT532 nm coatings.  
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Fig. 5.4. Left, design of assembled DPSSL by soldering means. The total amount of solder alloy 

used to assemble the Martian laser was 0.012 g of SAC305 and 0.006 g of Au80Sn20. The optical 

components (emitting laser diode and laser active medium crystals) which have heat dissipation 

factors were assembled over copper pads bonded on an aluminium base plate (orange pads under 

the components). Other optical components (lenses, mirrors, and crystals) were integrated onto 

KOVAR pads pre-assembled on an aluminium nitride (AIN) base plate for CTE mismatch reasons 

(grey pads under the components). Right, laser-housing design assembled by soldering 

technology. (1) Pumping diodes. (2) FAC. (3) Active crystal. (4) SHG. (5) Output laser cavity 

mirror. (6) Folding mirror. (7) Lambda half and polarization combiner cube. (8) folding mirror in 

front of (10) power feedback photodiode. (9) Pinhole-mirror in front of the autofocus 

photodiode (11). (12) Mini-AVIM output fiber connector bringing the light to the Martian sample.  

Later, other optical components were added to the laser device’s design in order to 

bring both laser beams from both laser channels to the same output fiber and finally to the 

Martian samples that have to be analysed. The components needed were: a fold mirror to 

turn the laser beam 90°; true-zero order λ/2 (quartz), to turn the laser beam polarization, and 

to be able to combine both beams by using a polarizer cube; a double polarization beam 

splitter, to turn the laser beam once more while allowing  a 5% of light pass to a power 

feedback control photodiode (in charge of guaranteeing a constant laser output power) 

[67]&[72];  and a pinhole-mirror element, used to let both coaxial beam arrive to the output 

fiber and to reflect the back scattered light from the sample to an autofocus photodiode in 

charge of adjusting the focused light onto the Martian sample.  

5.2 Assembly methods 

Laser manufacturers typically use polymeric adhesives or different mechanical 

clamping methods for their optical assemblies. In the case of the miniaturized DPSS laser 

for a Martian mission and due to the stringent mission’s requirements, different assembly 
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approaches have been studied and compared. Mechanical clamping methods were avoided 

in this case since the mission requirements demand for a small size and low weight device, 

whereas mechanical clamping normally represents heavier and bulkier instruments [6]. The 

first approach used was based on adhesives, and after the first long-term stability problems 

were found, a low-stress soldering technique was assessed and finally implemented. In both 

cases, FEM analyses were performed; the study included static (acceleration and thermo-

elastic) and dynamic (vibration and shock) loads as described on section 5.1.2.  

5.2.1 Adhesive based procedures  

Because of the small size of the laser resonator, its waist and the induced thermal 

lens, the designed laser resonator showed to be highly sensitive to components 

misalignments (~ 10 arcseconds). In addition to optical stability, other requirements were 

prescribed for the pre-selected adhesives, including low outgassing rates, withstanding 

temperatures from -70 ºC to +125 ºC, small shrinkage and high rigidity to resist thermal 

shock and harsh vibration conditions. A preliminary list of adhesives included standard 

low-viscosity adhesives with controlled UV curing processes (Vitralit 7041, Masterbond 

UV22, Loxeal UV 30-30, DELO KATIOBOND 4594, Noa88) as well as space qualified 

adhesives with low outgassing values, and commonly longer curing times (Epotekm 353, 

Masterbond EP21TDCHT-LO). Among these adhesives, two different ones were finally 

chose: Masterbond UV22 and Masterbond EP21TDCHT-LO (Fig. 5.5) as the best 

candidates for the DPSS laser. A comparison of both adhesives is shown in Table 5.2. 

        

Figure 5.5. Left, design of assembled DPSSL by adhesive based procedures. The total amount of 

adhesive used to assemble the Martian laser was 0.031 g of UV22 (green colour) and 0.021 g of 

EP21TDCHT-LO (red colour). Right, design of the laser housing screwed and sealed by adhesive 

means.  
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Table 5.2. Strengths and weaknesses of the chosen adhesives for the Exomars laser assembly (data from 

Masterbond products datasheets). 

 Strengths Weaknesses 

UV22 Fast curing (5-10 seconds) 

Tensile strength 31 MPa 

High shrinkage (<2 %) 

EP21TDCHT-LO Passes NASA low 

outgassing specifications 

Small shrinkage (<0.5%)  

Slow curing (2-3 days) 

Tensile strength 17 MPa 

 

5.2.1.1  FEM analysis for the adhesive based assemblies 

FEM simulations were carried out previous of devices manufacturing in order to 

verify if these prototypes could withstand Exomars mission requirements (as seen in 

section 5.1.2). Initial thermal analyses for non-operational mission requirements 

regarding temperatures were performed showing von Mises stresses of ~34.4 MPa in the 

adhesive patches between the optical elements and the AIN baseplate (Fig. 5.6). The 

stresses showed negative margins of safety (in the range of -0.1 to -0.8). Since the 

negative margins of safety had strong dependence on the adhesive simulation, it was 

considered to verify these results after the laser assembly, and during the validation 

thermal cycling by functional laser performance tests [73].  

Modal analyses showed a first, second and third eigenfrequencies of 4418 Hz, 

4867 Hz and 6791 Hz, therefore fulfilling the requirement that the assembly first 

eigenfrequency should be over 140 Hz [74]. The sine and random vibration frequency 

ranges were under the first resonance frequency, so no amplification was expected in 

none of the assembled parts. Quasi-static analysis on the three axes did not show 

irreversible deformation between the optical components and the AIN substrate. Finally, 

100-1500 g shock in the z-direction was simulated; no relevant stresses that could 

generate irreversible deformation on the optical laser were detected.  
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Fig. 5.6. Von Mises stresses (Pa) produced during non-operational thermal analysis between the 

AIN baseplate and the optical resonator laser cavity components. 

5.2.2 Low-stress soldering based procedures 

Solderjet bumping technology is a low-stress, long-term stable and organic-free 

soldering technique patented by PacTech GmbH and Fraunhofer IOF [75]. The 

technology is based on the application of small spherical, liquid droplets of solder alloy 

jetted by a pressurized nitrogen capillary. Being the solderjet bumps made with a small 

diameter (ranging from 40 µm to 760 µm) and melted by a very precise infrared laser 

pulse, just a small thermal stress is induced on the optical components during reflow and 

soldering. The use of metallic alloys on glass, crystal or ceramic optical components 

requires a polished (in order to have higher strength against thermomechanical stresses) 

and wettable surface on the areas to be bonded. A thin film sputtered three-layer system 

is used in order to avoid the presence of oxides and to guarantee the metallic adhesion 

on the optical components. It comprises a titanium adhesion layer, a platinum diffusion 

barrier and a noble gold finish that prevents oxidation and acts as a wetting surface [12]. 

The three layer (Ti/Pt/Au) system was applied with a DC Magnetron sputtering technique 

with a total thickness close to 0.5 µm (Annex 1). Solderjet bumping technology offers 

the possibility to work with various solders (Au80Sn20, Sn63Pb37, Ag97Si3, etc.), 

however, based on Fraunhofer’s experience [12], the materials to be assembled, and 

space conformity, Au80Sn20 and Sn96.5Ag3Cu0.5 (SAC305) were the ones selected to 

be used on the miniaturized Martian laser (Fig. 5.4).  

In optics assemblies the liquid solder-jetted bumps are usually applied at the 

interface between the two components to be joined, allowing for 3D arrangements; 

however, solderjet bumps can also be used to pre-solder a surface that later can be 

reflowed by other techniques. This last approach is normally used when the component 
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just needs a rough alignment and/or better thermal contact for heat dissipation. For the 

Exomars laser, both different assembling processes were used, depending on each 

component’s alignment and heat dissipation needs:  

a) Laser resonator components assembled by Fineplacer means 

For heat dissipative elements with rough alignment needs, the most suitable 

process implemented was Flip Chip Assembly on a Fine Placer (as described on section 

2.1.2.1). The process also required Ti/Pt/Au metallization on the components to be 

bonded; then, bumps made of Au80Sn20 alloy were applied by solderjet bumping 

technology on the optical components. Finally, by using Fine Placer technology 

(Fig. 5.7), both components were soldered by applying a 2-12 N force (depending on 

masses, wetting surfaces and materials to be soldered), and by reflowing the assembly 

up to the alloy melting point 280 °C. The number of applied bumps onto the optical 

crystals represented a homogeneous thickness of approximate 5 µm of Au80Sn20 under 

the components after being melt. In the case of the laser components, only the active-

medium crystals were directly assembled onto the DCB by this means. However, the 

same technology was also implemented to preassemble the SHG and output mirror 

element to a sub-mount that could better fit in a conical gap (allowing for tip and tilt 

alignment), as is explained on the following subsection “b2)”. 

 

Fig. 5.7. Left, temperature reflow ramp used to solder the active-medium crystal laser component 

to the DCB substrate with the fine placer. Right, KOVAR Pads and laser active medium crystals 

soldered on the AIN substrate by a Fine Placer technology.  
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Fig. 5.8. Left, simulated stress created during active-medium crystal assemble. Right, real stress 

generated during active-medium crystal assemble. Both images show a maximum stress approx. 

100 MPa on the crystal base, and around just 2 MPa around the laser propagation beam.  

As we can see in Fig. 5.8, the use of the Fineplacer technology as a final bonding 

process to assemble the YAG medium to the substrate, produced a much higher internal 

birefringence, as in similar assembled YAG components on chapter 3.2. It was however 

decided to proceed with the Fineplacer, because the designed process to assemble the whole 

laser, required to assemble the YAG element previous to the pumping diode by the use of a 

higher melting alloy; in this case, Au80Sn20. On the other hand, and since the YAG was 

assembled prior of the laser resonator alignment, this induced stress did not affect the laser 

resonator configuration by overpassing the imposed requirements of maximum 

depolarization loss of 1%, as it will be shown in chapter 5.2.2.2. 

b) Laser components directly soldered into the resonator by Solderjet means 

Active laser resonator components and other optical elements with six DOF 

alignment needs were assembled on KOVAR pads to avoid CTE mismatch. The 

components were positioned above the KOVAR pads (with a minimum gap to allow 3D 

movement but minimizing displacement by soldering shrinkage) and pre-aligned with a 

vacuum gripper moved by an hexapod (F-206 Physik Instrumente GmbH) with a ±2.5 ° 

angular travel range in all 3 rotational DOF and a resolution of 0.0001 °. Finally, different 

bumps of SAC305 alloy were applied to bond the components. A correct solderjet 

technology laser parametrization was performed in each of the different laser material 

components as explained in chapter 3.2.1 in order to apply the necessary amount of 

energy on the bonds without damaging the optical components but also guaranteeing 

enough robustness at the joints [12], [76]-[77].  

In the case of the laser resonator components (the SHG and the out-put mirror), the 

different elements were pre-soldered on a fused-silica half-sphere by the use of fine-placer 
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procedures, for later being soldered into a KOVAR-ring pad as seen on Fig. 5.4. This 

procedure was followed in order to provide three rotational degrees of freedom and to 

guarantee and homogeneous an equally spaced distance between the components and the 

contact area where to be soldered.   

b.1) Theoretical approach for soldering laser resonator components:  

Laser resonator components (in this case the SHG and the output-mirror) had been 

pre-assembled first into a fused quartz sub-assembly platform in order to later be precisely 

soldered to the KOVAR pads. The purpose was to allow both components enough alignment 

freedom (3DOF), guaranteeing also an equal distributed spacing between the sub-mount and 

the KOVAR ring pad to avoid components misalignment due to soldering shrinkage. 

Moreover, soldering the components onto a half-sphere sub-mount helped to minimize 

stress-induced birefringence effects after the components alignment and their soldering onto 

the DCB. The better fitting spherical geometry and KOVAR ring pad used for our purpose 

was studied in [78], where a theoretical friction analysis was carried out. 

 

Fig. 5.9. Contact point forces distributed for a case of a ball-in-socket. In our case, a fused quart 

half-sphere into a KOVAR ring pad geometry. Here, N is the normal force at contact point, F the 

frictional force, θ the angle contact point, and μ is the coefficient of friction between to surfaces at 

the joining area.  [78]. 

In equilibrium conditions, the sum of forces produced during the alignment and 

soldering can be expressed as,  

Σܨ௫ = ߠ݊݅ݏܰ− + ߠݏ݋ܿܰߤ = ߠ݊ܽݐ (5.1) 0 =  (5.2) ߤ 

with the resulting frictional force,  

௥ܨ = ܰߤ =  (5.3) ߠ݊ܽݐܰ
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for which it can be infer,  

 

Fig. 5.10. Theoretical relation between sphere-sub-mount diameter and frictional force during 

soldering [78].  

In addition to the above-mentioned studies, a theoretical angular misalignment study 

was carried out to identify the best possible geometry to minimize the laser components 

misalignment during soldering. This was followed under the assumption that solderjet 

bumping technology will always induce a small misalignment due to the kinetic energy of 

the bump adjoining both components, and because of the alloy shrinkage.  

 

Fig. 5.11. Misalignment study depending on the sphere sub-mount radius r, and KOVAR ring pad 

hole radius l [78]. 

This movement can be explained mathematically with,  

ߠ = ଵି݊݅ݏ ቀ௟௥ቁ, ݈௕ଵ = గ௥ఏଵ଼଴° (5.4) 

assuming an arbitrary component misalignment by the soldering reaction forces, ݈௕ଶ = ݈௕ଵ +  (5.5) ݔ
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௜ߠ  = ݈௕ଶ180°݈ߨ = (݈௕ଵ + ݈ߨ°180(ݔ  

(5.6) 

and to obtain that the difference in angle, ߠௗ௜௙௙ = ௜ߠ −  (5.7) ߠ

Thus, the misalignment produced by external forces during solderjet bumping 

assembly on these components will have an effect on the different possible geometries as,  

 

Fig. 5.12. Misalignment relation produced by an equal distributed force on different sub-mount 

geometries [78]. 

Following the above-mentioned theoretical studies, it was decided to mount the laser 

resonator components into 8 mm sub-mount fused silica spheres to allow them tip and tilt 

alignment, but guaranteeing minimal spacing between the component sub-mount and conical 

KOVAR-pad area where they will be mounted.  

b.2) Laser resonator components with 3DOF needs soldering procedures:  

b.2.1) Output mirror preassembly 

The laser out-put mirror made of fused silica was preassembled to the 8 mm diameter 

fused silica sub-mount using the FinePlacer technology. First, the sub-mount and the mirror 

were metallized with Ti/Pt/Au layers. Later, a 200 µm AuSn alloy was applied to the sub-

mount to later assemble both components by using the FinePlacer technology (Fig. 5.13). 
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Fig. 5.13. 2x2x4 mm output mirror before and after being assembled onto an 8 mm radius FS sub-

mount.   

The induced-simulated and created-real stresses on the out-put mirror after 

assembling appears to be below 0.1 MPa across the laser beam propagation (Fig. 5.14), 

showing almost no influence on the laser profile beam shape nor on its depolarization effects, 

as was discussed on section 3.1.1.4. However, as happened in the case of the YAG, also 

assembled by a Fineplacer hotplate, it is seen on Fig. 5.14 how the maximum created stress 

(around 1.7 MPa) inside the crystal, is superior to similar components directly assembled by 

the use of solderjet, as seen in chapter 3.2. On the other hand, being this stress far from the 

laser beam path, it did not affect the final laser emission; thus the assembling procedure 

remained by the use of AuSn alloy and the Fineplacer technology.  

  

Fig. 5.14. Induced stress on soldered FS output mirrors. 

b.2.2) SHG crystal preassembly 

In the case of the SHG, due to the high fragility of the components, another approach 

was used. Instead of using FinePlacer technology, the crystal was pre-assembled to the sub-

mount by the use of solderjet technology, since it induced less stress on the components to 

be soldered; and reduced the final internal damage on the components. In order to guarantee 

a robust join between both components but also to minimize the thermal damage on the 

crystal, an initial array of 100 µm diameter SAC305 bumps (60 bumps per side) was applied 
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at first on the crystal surface, to later use adjoining 300 µm SAC305 between the SHG and 

the fused silica sub-mount.  

  

Fig. 5.15. Left, 1) SHG crystal pre-soldered with an array of 60 µm SAC305 bumps 2), the energy 

used to place each one of the bumps was approximately (using a laser 2220 mA current and 

0.425 ms pulse width) 5.9 mJ. Right, 300 µm SAC305 bumps 3) to solder the SHG 1) to the fused 

quartz sub-mount 4), the energy used for mounting both components was approximately 150 mJ 

(using a laser 5100 mA current and 5.25 ms pulse width).  

  

Fig. 5.16. Left, detail of 100 µm SAC305 alloy applied on SHG surface to prevent further damage. 

Right, mounted SHG crystal onto the spherical fused silica sub-mount.  

In the case of the SHG, because it is a highly birefringence uniaxial crystal cut out of 

the z-optical axis, it was impossible to analyse the induced stress with the Illis polarimeter 

device; however mechanic simulations performed by ANSYS 17.0 show a maximum of 

0.5 MPa stress along the laser beam path.  

The mechanical simulations seen on Fig. 5.17 were performed with a unique step for 

the application of one set of one-hundred twenty bumps of 100 µm diameter and another set 

of six 300 µm diameter SAC.  This is the reason why the simulated stress on the SHG lateral 

surfaces seems to be in the order of 50 MPa, however, in the real case, the time relaxation 

between bumps, made the assembly of the components possible without creating internal 

damage on them.  
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Fig. 5.17. Left, ANSYS stress simulations on the SHG component. Right, detail of small-induced 

superficial damage created on the SHG crystal. The damage was produced due to defects of the 

polished SHG crystal surface. 

b.3) Laser cavity Alignment and soldering procedures 

Grippers for the SHG and output-power laser cavity mirror had shared the same 

design to allow for simultaneous placement of these two components. The SHG and output-

laser mirror were fed to the laser DCB from a bottom-side position allowing access for the 

solderjet placement capillary. The gripper design comprised a flexure hinge that decreased 

restraints induced by movement of the Hexapod. Gripper arms made from brass provided a 

high mechanical stiffness during adjustment and soldering. The components were retained 

by application of vacuum through a precisely manufactured tip made of Macor®.  

The gripper was transnationally decoupled from the movements of the Hexapod by 

means of an air-bearing. A moving plate on the air-bearing contained a distortion lock 

allowing for self-centring of the components inside the KOVAR ring pad.  

 

Fig. 5.18. Air bearing gripper used to mount BBO and laser output mirror.  

A traverse component above the moving stages of the Hexapods was used to hold the 

DCB substrate during alignment and soldering.  
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Fig. 5.19. Left, two hexapods allowed for the correct alignment of the SHG and output mirror due 

to the air-bearing grippers. Allowing for a self-centring procedure of the components that have to 

be soldered on the on the DCB hold by the traverse component (orange).  Right, detail of the 

output mirror and SHG positioning into the DCB.  

  

Fig. 5.20. Left, Cross section of soldered component. Right, solderjet bump SAC305 applied from 

the DCB rear side pad. The mechanical strength provided by this 760 µm bumps proved to 

withstand shear forces as high as 60 N [78]. (1) laser component, and (2) 8 mm half-sphere fused 

quartz substrate allowing 3DOF inside the KOVAR ring pad (4). (3) Applied 760 µm SAC305 

solderjet bump through the (4) small conical feeding geometry under the KOVAR ring pad. 

5.2.2.1 VirtualLab Fusion soldered Exomars laser results  

Following the assembling procedures described on the previous chapter 5.2.2, and by 

using the VirtualLab Fusion steps as in chapter 3.1.1.4, several crystal cases per input 

wavelength were evaluated as described in Table 5.3 in order to investigate the effects 

produced on the Exomars resonator laser crystal emission due to the soldering of the laser 

components (Fig 5.21). 
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Fig. 5.21.Exomars laser resonator configuration as designed with a FAC, active crystal, a SHG 

and a FS output mirror.  

Table 5.3. Studied laser resonator cavity produced beams and stress crystal conditions. The diode-pumping 

emission wavelength of 808 nm was avoided for being granted between both extreme 532 nm and 1064 nm 

laser cavity wavelengths.   

Laser cavity beam Crystal condition (Active-media/SHG/Fused 

quartz) 

1. Gaussian @1064 nm from active-medium 

crystal emission, 50 µm waist radius, Ey-

polarization  

2. Gaussian @532 nm produced by SHG, 50 

µm waist radius, Ex -polarization 

a. Ideal case: without stress 

b. Real case: with actual applied stress 

c. Comparing case: with increased stress 

(10x) by design 

 

Starting with the active-medium crystal, as it is stablished by design on Fig.5.21 and 

by using the simulated induced stress on the component as shown in Fig. 5.8; it is possible 

to compare Ey-polarized input Gaussian at 1064 nm in front of the crystal and the output 

field behind the crystal under the three different crystal conditions (Fig. 5.22). 
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Fig. 5.22. Amplitude of the transmitted field behind the active-medium crystal, with Ey-polarized 

Gaussian at 1064 nm as the input. Column (a) ideal case without stress; column (b) with actual 

solderjet bumping packaging induced stress; column (c) with 10× increased stress. Upper row 

corresponds to the Ex-component and lower row the Ey-component. 

Again, after introducing a linearly polarized input field along the y-direction, a 

crosstalk effect produced by the reflection of light at the crystal surface shows a non-zero 

output field on |ܧ௫| for the case with no applied stress, as seen in column (a) on Fig. 5.22. 

Comparing column (a) with no stress, to the applied stress in columns (b) and (c), we can 

appreciate a beam depolarization factor of 0.7 % in (b) and 7% for the case of 10x stress in 

(c). This stronger stress-effect (although still below 1 % on the actual stress case), is mainly 

produced by the soldering procedure by a Fineplacer hotplate with AuSn alloy instead of 

using SAC305. 

 Later, the SHG was investigated following similar steps to those described on 

chapter 3.1.1.4, and using the ANSYS results as shown in Fig. 5.17. Starting with the Ey-

polarized input Gaussian at 1064 nm the results are shown in Fig. 5.23. 
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Fig. 5.23. Amplitude of the transmitted field behind the SHG crystal, with Ey-polarized Gaussian 

at 1064 nm as the input. Column (a) ideal case without stress; column (b) with actual stress; 

column (c) with 10× increased stress. The upper row corresponds to the Ex-component and lower 

row the Ey-component. 

As on chapter 3.1.1.4, it is also seen here, a lateral shift or a walk-off effect produced 

for being the SHG crystal a uniaxial anisotropic material. When the Ex-polarized Gaussian 

at 532 nm was used as the input, the output field was obtained as can be seen in Fig. 5.24. 

 

Fig. 5.24. Amplitude of the transmitted field behind the SHG crystal, with Ex-polarized Gaussian 

at 532 nm as the input. Column (a) ideal case without stress; column (b) with actual studied 

stress; column (c) with 10× increased stress. Upper row corresponds to the Ex-component and 

lower row the Ey-component. 

In the SHG crystal case, and due to the inherent material’s high birefringence, the 

three studied cases for 532 nm and 1064 nm show no influence related to the applied stress. 

On the three columns (a), (b) and (c), on both Fig. 5.23 and Fig. 5.24, similar depolarization 
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effect is shown with a depolarization value around 0.5% produced by the material’s internal 

birefringence.  Finally, considering the FS output mirror with HR1064 nm and HT532 at the 

first surface, only the 532 nm study case was necessary.  

 

Fig. 5.25. Amplitude of the transmitted field behind the FS output mirror, with Ex-polarized 

Gaussian at 532 nm as the input. Column (a) ideal case without stress; column (b) with actual 

studied stress; column (c) with 10× increased stress. Upper row corresponds to the Ex-component 

and lower row the Ey-component. 

For the final case of FS output mirror with a with Ex-polarized Gaussian at 532 nm 

as the input using the ANSYS results as seen on Fig. 5.14, we obtained a depolarization 

effect for the actual stress (column (b) in Fig.5.24) of around 0.1%, and for the case of 10x 

stress (column (c) in Fig.5.24) of 1%. Both cases also appeared to be non-relevant for the 

laser’s optical requirements. 

Taking into account that the produced effects would be added one after another inside 

the laser cavity, it may have occurred that the final depolarization effect overpassed the 1% 

on the overall laser resonator emission; affecting the required 532 nm emission needed for 

the mission’s purpose. However, due to the components’ assembling procedure, for which 

each component had been preassembled onto a substrate, (active-medium crystal soldered 

to the DCB pads, and SHG crystal and FS output mirror soldered to a FS substrate to 

guarantee tip/tilt alignment, as described on chapter 5.2.2), this depolarization effects would 

have been reduced since the final laser resonating cavity is achieved after the components’ 

pre-assembly. For that reason, during the assembly of the Exomars laser cavity, no major 
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depolarization effect nor effects on the output beam shape were reported. The Exomars laser 

beam shape obtained achieved a Gaussian fit of 95.44% as seen in Fig. 5.26. 

 

Fig. 5.26. Although high stress had been applied on the laser components, the Exomars green 

beam spot is still fitting a Gaussian beam. Beam measured 30 cm from laser resonator end mirror.  

With this, it is demonstrated that solderjet bumping technology can assemble a laser 

cavity such as the Exomars’ with no stress produced effects on the laser emission. Even 

more, the amount of SAC305 and AuSn employed as a bonding alloy used for the optical 

components, will guarantee that the assembled laser cavities can withstand the mission 

demands [25] described on chapter 5.1.2. 

5.2.2.2 FEM structural analysis for the low-stress technology 

assemblies  

The non-operational temperature loads showed a von Mises maximum stresses 

of 120 MPa (Fig. 5.27) in the boundary regions of the soldered areas (yield strength of 

Au80Sn20 is 275 MPa, yield strength of SAC305 is 45 MPa), however the joining areas 

stayed commonly under the 30 MPa as an average, especially those laser resonator 

optical components for which the SAC305 solder was applied (Fig. 5.27). The 

conclusion, thus, is that during non-operational thermal cycling, no relevant stresses that 

could lead to irreversible deformation are detected. 

The modal analysis showed a first, second and third eigenfrequencies of 

10089 Hz, 12882 Hz and 12182 Hz respectively. Thus, the soldered assembled devices 

also fulfilled the modal first frequency requirement. The increase in the first 

eigenfrecuency is mostly due to design modifications of the laser structure itself from 

the adhesive based to the soldered devices. Sine and random analysis did not show any 

irreversible deformation; no eigenfrequencies into the 0-2000 Hz were expected. Due to 

the low weight of the components, the stress due to shock load showed to be very low 
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(less than 10 MPa on the laser housing, around 2 MPa on the soldered areas and <1 MPa 

on the laser resonator components), hence, no plastic strain and irreversible deformation 

it is expected [79] to occur due to shock load on a range between 100-1500 g. 

 

   

Fig. 5.27. First row, Von Mises stress shown on the soldered areas by means of SAC305. Below, 

assembly magnified deformation in millimetres due to temperature difference during laser 

operation (+15 °C to +45 °C). 

5.2.2.3 Power loss due to components metallization 

Laser crystal emission, produced by internal laser cavity oscillation is mostly 

achieved due to the use of the proper coatings (high-reflective HR and anti-reflective 

AR) applied on the laser’s components. The coating quality is a key factor to obtain high 

oscillation inside the cavity that allows achieving a final high conversion efficiency and 

out-put power. The evaporated dielectric films [80] on components are usually applied 
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by evaporation and condensation of materials inside a vacuum chamber [37], following 

similar procedures to the ones used to create wettable surfaces (Ti/Pt/Au layers) on the 

components to be soldered. It has been noticed that Exomars lasers built following gluing 

procedures had higher out-put power in average than the ones obtained by soldering 

means. However, a comparative study is difficult to be completed, since not a relevant 

statistical number of devices has been assembled, and also because the SHG tends to 

create unstable non-linear cavities with different out-put power. Nevertheless, the 

maximum obtained out-put power by the laser assembled using adhesive means was 

around 800 mW @532 nm (@3,5 A) when for the same wavelength and current, the case 

of the soldered devices had a maximum out-put power around 500 mW (during 

alignment). This made us consider the fact that even creating complex masking tools for 

the components’ metallization (Ti/Pt/Au layers), some deterioration of the original 

coatings or even some Ti/Pt/Au layer leakage occurred on the their optical surfaces.  

 

Fig. 5.28. Comparison between optical transmissions (from 500 nm to 1100 nm) before and after 

components’ metallization with Ti/Pt/Au. The comparison was made using a UV-VIS-NIR 

Spectrophotometer Lambda 950 Perkin Elmer.  The attached graphic shows the comparison 

between three SHG dummy components similar to the one used on the Exomars laser with 

dimensions of 2X2X3 mm, and a real SHG component later soldered to one of the Exomars 

lasers. The light transmission curves of the dummies and the real SHG is different because the 

real components had AR coating for 532 and 1064 nm.  
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In average, the light transmission loss for the analysed components (dummy SHG, 

SHG, dummy active-medium crystal, real active-medium crystal, dummy out-put mirror and 

output mirror) was around 6% (Fig. 5.28), effect that could be the reason for the power loss 

due to the light oscillation by several passes through the components surfaces. Since for our 

purpose the laser did not require more than an operational output power of 30 mW, and the 

working capacity studied trough a burn-in tests seems not to be compromised, this was not 

considered a project bottleneck; however, it is to be studied for future improvements.  

 

Fig. 5.29. Designed and manufactured devices to metallize only the surfaces required for 

soldering. After the components’ metallization no Ti/Pt/Au layers were seen on the optical 

surfaces through a visual inspection with a microscope.  

5.3 Performed environmental tests on adhesive and soldered 
devices 

After assembling the laser devices by adhesive and low-stress soldering based 

procedures, functional tests before, during and after environmental tests were carried out to 

assure that laser’s performances were endured. Laser power and wavelength, being both 

crucial parameters for the Raman spectroscopy analysis, had to be guaranteed. Thus, power 

stability, FWHM and linewidth shifting were constantly checked during tests on devices 

assembled by both technologies (Fig. 5.4 & 5.5). Measurement data of input current versus 

output laser power were analysed at different temperatures between +15 °C and +45 °C. Any 

change during and after environmental tests might indicate a laser resonator or on any of the 

other passive components misalignments, leading to a laser power drop. Power stability and 

noise tests at constant temperature were also performed. Stability studies included laser peak 

wavelength and linewidth emission measurements over 20 min periods (time needed for the 

analysis of samples on the Martian surface) at a constant temperature [66].  
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Fig. 5.30. Test set-up diagram for the laser functional tests.  

As for the environmental tests, both the adhesive based and soldered lasers were 

subject to vibration (random and sine) and shock tests under standard conditions of pressure 

and temperature. Cycles of non-operational thermal conditions were conducted in a 

temperature range between -60 ºC and +70 ºC, with a maximum gradient of 5 ºC/min and 

with a dwell time of 150 min at the maximum and minimum temperatures after the fulfilment 

of the stabilization criteria. 

Last, radiation resistance tests were performed both on the optical components and 

onto the assembled devices [81].  Although it is true that some optical components (as fused 

silica, second-harmonic generation crystals), and other laser devices passed similar gamma 

and proton radiation tests [82]-[83], it is difficult to analyse how this effects can change the 

emission of a particular laser resonator,  as is the case for the present Exomars laser. The 

tests were performed with a conservative 20 krad TID (Total Ionizing Dose) gamma 

radiation and 10 MeV proton with a frequency of 2.4*1010 p/cm2 (Table 5.4 & Table 5.5) 

[84]. The ion radiation was applied by a Co-60 source housed in an AEXL Theratron 780 in 

four different steps with an absorbed homogeneity dose better than 5% as shown in 

Table 5.4.  
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Table 5.4. Ion radiation steps applied at the assembled Exomars lasers (measured in rad(si), radiation 

absorbed relative to silicon).  

Step Step dose  

(krad(Si)) 

Accumulated dose 

 (krads(Si)) 

1 5 5 

2 5 10 

3 5 15 

4 5 20 

 

The maximum calculated proton radiation that the laser devices will have to 

withstand is calculated to be 5.4*1010 10 MeV p/cm2. These tests were performed at 

Radiation Effects Facility (RADEF), Accelerator laboratory of the University of Jyväskylä 

(Finland). The doses were applied in five different radiation fluencies as shown in Table 5.5.  

Table 5.5. Proton radiation steps applied at the assembled Exomars lasers. 

Step Step fluence 

(10 MeV p/cm2) 

Accumulated fluence 

(10 MeV p/cm2) 

01 ~5.0*108 ~5.0*108 

02 ~2.0*109 ~2.5*109 

03 ~2.5*109 ~5.0*109 

04 ~2.0*1010 ~2.5*1010 

05 ~3.0*1010 ~5.4*1010 

5.4 Results and conclusions 

The assembled miniaturized laser on the AIN substrate by means of adhesive 

processes (seen in Fig. 5.5) finally weighted 4.1 g, with a designed laser housing of 47.5 g, 

which represented a total weight of 51.6 g. The laser volume assembled on the AIN by design 

was 2.4 cm3; with a laser housing total volume of 6.5 cm3. On the other hand, the solder-

miniaturized laser on the AIN substrate weighted 3.1 g (as seen in Fig. 5.4); its laser housing 
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was designed with a weight of 42.4 g, which represented a total device weight of 45.5 g. The 

assembled laser on the AIN substrate had an approximate volume of 2.4 cm3; and a total 

laser volume of 4.7 cm3, including the laser housing. Design changes due to assembling 

procedures demands created differences on the final weight and sizes for the assembled 

devices; however, both techniques passed the Exomars mission approximate requirements 

of 7 cm3 and 50 g. 

The devices assembled with both procedures also passed initial functional laser 

performance tests right after the components had been assembled. Giving results as; device 

efficiency below the 1.5 W of electrical consumption (pumping diode laser current <0.85 A) 

with an output power of 30 mW (@532 nm), power stability better than 5%, power signal 

noise under the 1.5% required, central wavelength stability below the 50 pm, and a linewidth 

below the 30 pm. Fig. 5.31 shows an example of results on the functional performance test 

of one of the lasers assembled by adhesive means. 

 

Fig. 5.31. Examples of results seen on one prototype assembled by adhesive means. First image 

left (a), input current versus output power of the green laser, different measures were taken on 

the same device to verify laser emission repetitively; second image on the right (b), an output 

power stability better than 5 %. Last image below (c), centre wavelength and linewidth stability 

over 20 min at constant temperature. 
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Although no damages were identified after the vibrational and shock tests on 

adhesive based miniaturized green lasers, a constant degradation on the output power was 

observed during thermal non-operational and functional thermal on/off laser cycles. After 

the thermal tests, the results on functional optical performance tests showed that the output 

power stability deviation overpassed the maximum of 5% permitted; also the laser emission 

changed to a deteriorated spectrum with secondary competitive peaks (Fig. 5.32).  

It was also noticed that laser cavities that did not pass environmental tests had 

gradually misaligned along the few weeks that followed the laser’s assembly. Changes due 

to post-curing adhesive and aging processes in these laser cavities have been calculated to 

be between ~10-30 arcsec: enough to achieve a loss of the optical performances in such 

sensitive laser cavities [66]. This unreliable behaviour made the adhesive assembled 

prototypes not valid for the Martian space mission. Moreover, the assembled adhesive based 

prototypes and also independent optical components passed ion radiation tests; no major 

degradation was observed on the devices. Nevertheless, these lasers did not overcome the 

conservative proton radiation performed tests. It is believed, however, that since the lasers 

will be screened by the rover shell, the actual proton radiation rates will be significantly 

lower (~5.0*108 MeV p/cm2 total), enabling a correct laser operation during the Exomars 

mission.  
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Fig. 5.32.  Left, example of power instabilities encountered after thermal cycles on adhesive 

assembled lasers. Right, appeared competitive peaks after adhesive based devices thermal 

cycles. 

Thermal non-operational, functional thermal-cycles, mechanical and ion radiation 

tests on the soldered miniaturized green lasers were performed as described above with no 

damages noticed during visual inspection of the samples. There were no important changes 

in the stability of the main optical parameters (linewidth, wavelength, and peak level) or 

output power degradation of the tested samples before and after mentioned above 

environmental tests. However, the soldered devices did not either overcome proton radiation 

tests due to laser power drop during the radiation steps; probably caused by the darkening of 

the laser crystal [85]-[86]. The proton radiation tests are arranged to be repeated using 

significant lower doses (~5.0*108 MeV*p/cm2). 

The environmental tests and functional characterization showed an improvement in 

terms of laser stability and aging for soldered lasers in comparison to adhesive based lasers. 

Exomars Raman laser adhesive based prototypes showed a constant degradation after 

thermal cycles and also after periods of scarce weeks’ time due to adhesive post-curing 

processes, leading to misalignment of the laser resonator cavities and final laser failure. On 
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the other hand, the laser cavity components alignment remained stable in the devices 

assembled with the solderjet technology. This proves that soldering the optical components 

solves the issues that adhesives introduced to the Exomars laser’s performances.  

 

Fig. 5.33.  Exomars EQM assembled laser by solderjet bumping technology emitting at 532 nm 

after SHG. 
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6 Conclusions and outlook  

As exposed in the introduction of this dissertation, the main disadvantage of soldering 

optical components when compared to common adhesive technologies is the stress induced 

onto the components. This effect could inevitably lead to a decreased laser beam quality 

(M2>1), to a beam depolarization ratio, and even cause an impaired output power. On the 

other hand, laser devices are nowadays required for several applications in which their 

robustness needs are hardly reached by gluing technologies. These unsolved difficulties 

drove our attention and led us consider evaluating the effects of a low-stress soldering 

technology called solderjet bumping, for which a theoretical investigation on stress-induced 

birefringence produced by the soldering packaging process was implemented and here 

described for the first time. 

In order to design this analysis, a theoretical modelling case study that included 2 mm 

cube side laser components was considered. Using those geometries and materials, different 

sets of thermo-mechanical simulations by ANSYS 17.0 were performed with the final stress 

results being converted into dielectric permeability matrix through the use of a detailed 

mathematical approach. With those results, and by applying a self-made written code into 

VirtualLab Fusion software, the different consequent effects on laser cavities produced by 

stress-induced birefringence due to components’ packaging in terms of beam depolarization 

and beam quality were studied. As a result, the first study cases proved that the solderjet 

bumping technology only produces a residual effect on the devices, barely affecting laser 

components with a few millimetres body sizes. This theoretical demonstration not only 

provided the solution to overcome the stated Objective 1 (create a theoretical model design 

that relates induced packaging stress, induced birefringence and cavity lasers output 

misbehaviors) at this thesis work, but also created a new package module in VirtualLab 

Fusion software that will help any other user to study and improve their optical packagings. 

By adjusting the different parameters included in the simulations, such as material data, 

crystal morphology and tensorial expressions, other readers can use the created method not 

just to investigate the laser crystal packagings, but also for heat dissipation removal on laser 

crystal’s, simplifying the present mathematical methods found in the literature ([32]-[39]).         

Later on, the decision to optimize the study by decreasing the size of the laser 

components while guaranteeing robust enough joints to withstand harsh environments was 
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taken. For this, the limiting factors of the technology were studied to understand the ratio 

between the minimum components sizes and maximum beam size, at which the laser beam 

is not affected and the devices can withstand external loads produced by harsh environmental 

conditions. As a result, it was concluded that the use of solderjet bumping technology made 

it possible to build miniaturized laser devices on the size ranges of the laser beam emission 

without affecting the lasing capabilities with a depolarization ratio below 0.1 %. With this, 

the thesis’s Objective 2 (investigate the laser based soldering technique used to assemble 

laser devices, and get the basic knowledge of minimum laser cavities size without affecting 

laser output performances) was achieved. Moreover, these miniaturized components proved 

to withstand loads similar to the required for space missions such us the Exomars ESA 2020 

mission. 

The above explained results and the consequent achievement of Objectives 1&2 

proved that solderjet bumping technology overpassed the requirements of the current state 

of the art, showing that the initially assumed main disadvantage of induced stress and 

consequent birefringence is not a constrain to assemble miniaturized laser cavities. It was 

shown how solderjet bumping could be applied just by using a localized and minimized 

induced thermal energy without affecting consecutively the components’ laser emission.  

After assessing the components’ size limitations, solderjet bumping technology was 

used to assemble a DPSSL meant for a space mission, for which robustness was a key 

limiting factor not reachable by adhesive means. Moreover, the devices miniaturization was 

a constrain for clamping methods. The methods chosen to align and robustly solder the brittle 

materials and sensitive laser resonator cavities designed have been tested and demonstrated 

along the present dissertation, and have been proved to work under the optical and technical 

requirements established by the ESA mission’s needs.  

  The devices assembled by the use of solderjet technology have been proved to pass 

Engineering Qualification Model (EQM) tests, and in better conditions than similar devices 

assembled by adhesive means. Finally, the EQM devices were installed into the Martian 

scientific platform of the rover RLS and into ICEU Martian unit, where they were able to 

properly measure Raman spectra from simulated Martian samples (Fig. 6.1). With this, the 

Objective 3 (investigate the use of new laser assembling techniques that could work beyond 

the actual state of the art in terms of robustness. And compare former assembling techniques 

with new soldering assembling techniques) was achieved. Once more, solderjet bumping 

technology proved to work beyond the current state of the art of previously used 

technologies. 
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Fig. 6.1. EQM DPSSL assembled by solderjet means mounted on Exomars scientific body 

(ICEU) fully operating and measuring Raman spectra [87]. 

After passing the EQM tests, several FM laser devices have been assembled 

(Fig. 6.2) and are in process to be tested to finally select the one that will be launched on the 

long journey to the red planet. In the literature, there is no report of any fully soldered and 

miniaturized DPSSL device able to withstand similar environmental level condition 

requirements; or soldered and assembled laser device previously sent to the space. The last 

Objective 4 (achieve laser device operation assembled with soldering techniques, being 

able to perform in harsh environmental conditions), was finally accomplished after a 

stringent process to evaluate the best laser design and assembling procedures. The final laser 

design and the used technologies were also successfully qualified under the EQM tests 

campaign. This points the solderjet bumping technology as a qualified technology for other 

ESA space missions. 

  

Fig. 6.2. Finished miniaturized FM DPSS-laser assembled by solderjet technology means and 

ready to be delivered to ESA. 
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Once the final laser is installed onto the final Martian Exomars rover, and launched 

to Mars in 2020, the scientific goal of the miniaturized frequency doubled DPSSL assembled 

using solderjet bumping technology will be to help searching for signs of past and present 

life on the fourth planet from the sun in the solar system (Fig. 6.3) [3],[88]-[89]. 

 

Fig. 6.3. Schematic of the designed Exomars Rover at which the final FM laser will be installed 

[90] and launched direction to Mars in 2020. 

The work developed in this thesis can be used to improve laser packaging and 

assembling techniques by following the steps and the design guidelines showed on the 

dissertation previous chapters. The mathematical theoretical demonstrations can be used for 

any other laser manufacturing applied technique, including laser components heat-removal 

during laser operation. Moreover, interested readers that want to use other soldering 

techniques to assemble miniaturized laser devices should consider the minimum exposed 

size boundary conditions in terms of maximum reached stress to avoid altering the optical 

device-requested characteristics of the laser operation.   

The Exomars Laser Spectrometer is a project funded by Ministerio de Economía y 

Competitividad (MINECO), Spain, and supervised and followed by Instituto Nacional de 

Tecnología Aeroespacial (INTA), Spain. The activities related to the dissertation chapter 5 

were partially performed under a contract with Monocrom s.l, Spain, which was at the same 

time contacted by INTA, under the Exomars project Spanish funding. The rest of the 

dissertation activities were funded by the Fraunhofer Institute for Applied Optics and 

Precision Engineering IOF, and by the Friedrich-Schiller-University of Jena, Germany.
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Nomenclature 

 

Symbols 
Symbol Full expression Unit 
A area m2 ܤ௜௝ indicatrix   
C stress-optic coefficient  Pa ܥௌ,௅ heat capacity (solid, liquid) J ܿ௜௝௞௟ elastic stiffness tensor  Pa 
d diameter µm 
E Young modulus Pa ܧ௫,௬,௭ electric field V m-1 
F force N 
g acceleration m s-1 
h Plank constant  J s 
H enthalpy J kg-1 
k Boltzmann constant J K-1 
l length mm 
n refractive index  
N normal force N 
M2 beam quality factor  
p parallel polarization of light  
R radius mm 
s perpendicular polarization of light  
t thickness mm 
T temperature K 
UTS ultimate tensile strength  MPa 
α CTE difference K−1 
δ density  kg/m³ Δ optical retardation nm 
 dielectric permittivity F m-1 ߝ௜௝ dielectric constant (tensor) F m-1 ߳ extensional strain m ߳௞௟ extensional strain (tensor) m 
λ wavelength  nm 
μ friction  
 Poisson’s ratio - 
21 frequency  Hz ߨ௜௝௞௟ piezo-optic tensor  m2 N-1 
 mechanical stress N m-2 ߪ௜௝ mechanical stress (tensor) N m-2 ߬ yield strength MPa 
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Abbreviations 

AIN Aluminum Nitride   
AR Anti-Reflective   
BBO Barium BOrate  
CAD Computer-Aided Design  
CVCM Collected Volatile Condensable Materials  
CTE Coefficient of Thermal Expansion   
CW Continous-Wave  
DCB Direct Copper Bonding  
DoE Design Of Experiments  
DOF Degrees Of Freedom   
DPSSL Diode-Pumped Solid-State Laser  
ESA European Space Agency  
EQM Engineering Qualification Model  
FAC Fast Axis Collimator  
FEM Finite Element Method  
FM Flight Model  
FS Fused Silica  
FWHM Full Width at Half Maximum  
GdVO4 Gadolinium Vanadate  
iOH Internal Optical Head  
HR High Reflection  
HT High Transmission   
IR Infrared Radiation  
ICEU  Instrument Control and Excitation Unit  
KGW Potassium-Gadolinium Tungstate  
KTP Potassium titanyl phosphate (KTiOPO4)  
LBO Lithium triborate (LiB3O5)  
LIC Laser-Induced Contamination  
LID Laser-Induced Damage  
MEMS MicroElectroMechanical Systems  
NASA National Aeronautics and Space Administration  
Nd Neodymium   
NIR Near Infrared   
RADEF Radiation Effects Facility  
RLS Raman Laser Spectrometer  
SAC305 Sn96.5%, Ag3%, Cu0.5%  
SHG Second Harmonic Generator   
SPU Spectrometer Unit  
TEM00 Transverse mode of ElectroMagnetic radiation lowest 

order or fundamental, equal to a Gaussian beam 
 

TML Total Mass Loss  
TID Total Ionizing Dose  
UTS Ultimate Tensile Strength   
UV Ultraviolet  
VCSEL Vertical-Cavity Surface-Emitting Laser  
VIS Visible   
YAG Yttrium Aluminum Garnet  
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Prefixes 

Symbol Prefix 10n 
   
G Giga 109 
M Mega 106 
k Kilo 103 
   
m Milli 10-3 
µ Micro 10-6 
n Nano 10-9 
p Pico 10-12 
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