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Abstract

A new branch-and-bound based algorithm for smooth nonconvex multiobjective
optimization problems with convex constraints is presented. The algorithm computes
an (e, d)-approximation of all globally optimal solutions. We introduce the algorithm
which uses selection rules, discarding and termination tests. The discarding tests
are the most important aspect, as they examine in different ways whether a box can
contain optimal solutions and determine by that the speed and effectiveness of the
algorithm. We present a discarding test which combines techniques from the aBB
method from global scalar-valued optimization with outer approximation techniques
from convex multiobjective optimization and the concept of local upper bounds from
combinatorial multiobjective optimization. We apply the algorithm to several test
instances as well as to an application in Lorentz force velocimetry.

Key Words: Multiobjective Optimization, Nonconvex Optimization, Global Optimization,
Branch-and-Bound Algorithm, aBB-Method
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1 Introduction

For multiobjective optimization problems (MOPs) meanwhile a variety of algorithms exist,
[5, 13, 15, 32]. Such problems appear in engineering or economics each time when various
objective functions have to be minimized simultaneously. In general there is no point which
minimizes all objective functions at the same time and thus one uses another optimality
concept than the one in scalar optimization. However, just like in scalar optimization,
we have to distinguish between local and global optimal solutions. While local solutions
are only optimal in a neighborhood, global solutions have to be optimal on the whole
feasible set. Most algorithms for multiobjective optimization problems aim on finding
local solutions only and are thus only appropriate for convex problems.
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Algorithms for solving (convex) multiobjective optimization problems are highly in-
vestigated, see for an overview for example [11, 22]. Most of these algorithms are based
on scalarization approaches, [13, 15, 17, 34]. In these techniques a new scalar-valued
problem depending on some parameters is formulated and solved by known methods for
scalar-valued optimization problems. With other parameters and more iterations an ap-
proximation of the optimal solution set can be obtained. If we use only local methods to
find optimal solutions of the nonconvex scalar-valued problems we will also get only local
solutions of the original vector-valued problem. If we use a global solver for each choice of
parameters for the scaralized problems then this is a very time consuming and inefficient
approach. Moreover, most scalarizations turn some of the nonconvex objective functions
into constraints, but it is well known that nonconvex constraints are especially difficult to
handle [24]. For instance the weighted sum methods avoids this, but it is also well known
that this is not an appropriate method for nonconvex problems. For that reason the de-
velopment of direct global solvers for MOPs without using scalarizations is important. For
an introduction into global optimization see for example [20].

Many methods for global optimization use stochastic strategies. Common used algo-
rithms are evolutionary algorithms which are trying to find global minima by crossing
and mutating of individuals of a constructed population, i.e. some feasible points of the
optimization problem [8, 9, 16, 42]. It is known that these procedures are able to find a
global minimum in an infinite amount of time, but they do not guarantee to find a good
solution in a finite time. That is the reason why it is of special interest to propose also a
deterministic algorithm.

An approach to find global solutions for MOPs deterministically was introduced by
Jahn, [21]. There the whole search space is discretized and refined into ‘promising’ areas.
But in higher dimensions of the pre-image space, i.e. n > 3, a large number of function
evaluations is required. This is due to the fact that Jahn’s method does not use any
information about derivatives. Another derivative-free algorithm for MOPs was proposed
by Custédio and Madeira in [7] which is based on a direct search approach with a clever
multistart strategy and is also able to find global solutions.

Other global optimization algorithms are based on branch-and-bound methods, for
example [1, 2, 6, 10, 19, 33, 41, 43]. For scalar-valued optimization problems two of the
most well-known algorithms, which use box partitions, are the DIRECT algorithm [23] and
the aBB-method [33]. While the DIRECT algorithm focuses on selecting boxes to have
a good balance between local and global search but can also not guarantee to find good
solutions in finite time [29], the aBB-algorithm uses lower bounds of the global minimum
obtained by minimizing a convex underestimator and improves them until a given accuracy
is reached. Other methods to find lower bounds for global minima use maximal values of the
dual problem, [10], or by using the Lipschitz constant, [28, 44]. The DIRECT algorithm
was also extended to MOPs, see for example [6, 43]. However, in most cases the plain
multiobjective version of the DIRECT algorithm shows bad convergence results and has to
be accelerated by another global or local optimization method. The first branch-and-bound
based algorithm for more than one objective function and with first convergence results
was introduced by Ferndndez and Té6th in [14]. The described procedure is for biobjective
optimization problems. Recently, see [44] and also [36], another algorithm for biobjective
problems was proposed by Zilinskas and Zilinskas. They use the Lipschitz property of the
objective functions and iterative trisections of the search domain which is assumed to be
a box. A possible extension to more general constraints is at least not obvious.



We base our algorithm on a branch-and-bound approach as the one proposed in [14].
However, we give an algorithm for an arbitrary number of objective functions and we
provide new discarding tests based on the concept of convex underestimators from the BB
method [33]. This results in convex MOPs which have to be considered on each subbox.
We give improved lower bounds for them by using approaches from convex multiobjective
optimization combined with a versatile concept from multiobjective optimization. Finally,
we are able to prove that we find an approximation of the set of globally optimal solutions
for the MOPs with predefined quality in finite time. This paper starts with the basics
of multiobjective and global optimization in Section 2. In Section 3, the new algorithm
will be introduced after presenting a typical Branch-and-Bound algorithm for MOPs. In
Section 4 we prove the correctness and termination of the proposed algorithm. Since
we propose the algorithm for boxconstrained problems we will describe the handling of
constraints in Section 5. Numerical results, also for an application problem from Lorentz
force velocimetry, are presented in Section 6. We end with a conclusion and an outlook in
Section 7.

2 Basics of Multiobjective and Global Optimization

In this section we introduce the basic definitions and concepts which we need for the new
algorithm. We study the following MOP:

min f(z) = (f1(2),. .. fm@) T st go(w) <Oforallr=1,...,p (MOP)
zeX

where f;: R — R, j = 1,...,m are twice continuously differentiable functions and
g R* — R, » = 1,...,p are continuously differentiable convex functions. We do not

discuss the case of nonconvex constraints here, as the same difficulties [24] and strategies
as in the scalar-valued case arise and we want to concentrate on the multiobjective aspects
within this paper. We assume that at least one of the objective functions is nonconvex.
The set X? C R" is assumed to be a nonempty boz (also called hyper rectangle), i.e.
X0 ={z € R" | z <z <7} with two points z,7 € R". Thereby we write z < y if z; < y;
foralli =1,....nand x < y if z; < y; for all : = 1,...,n. Moreover, the feasible set
M :={x e X°|g.(x) <0, r=1,...,p} is assumed to be nonempty. For an arbitrary set
A C M we define the image set of A under f by f(A) :={f(z) e R™ |z € A}.

The common optimality concept in multiobjective optimization is efficiency: A point
x* € M is said to be efficient for (M OP) if there does not exist another x € M such that
f(z) < f(z*) and f(x) # f(2*). The set of all efficient points is called efficient set and is
denoted by Xp. We say x' dominates 2* if x', 2% € M, f(z') < f(2?) and f(z') # f(2?).
We can define similar terms in the image space. Let z* € M. A point y* = f(z*) is said
to be nondominated for (MOP) if x* is efficient for (M OP). The set of all nondominated
points is called nondominated set. We say y' dominates y* if y',y* € R™, y* < ¢? and
yt # y?. Moreover, we say y' strictly dominates y? if y',y* € R™ and y' < 3%

The aim of the new algorithm is to find an (g, d)-minimal set A of (MOP), which is
defined next. Let e denote the m-dimensional all-one vector (1,1,...,1)T € R™ and || - ||
denotes the Euclidean norm.

Definition 2.1. Let ¢ > 0 and 6 > 0 be given.



(i) A point T € M is an e-minimal point of (MOP), if there does not exist another
x € M with f(z) < f(z) —ce and f(z) # f(Z) — ce.

(i1) A set A C M is an (g,9)-minimal set of (MOP), if every point of A is an e-minimal
point of (MOP) and if for all y € Xg there is an T € A with ||z — y| < 0.

This definition of e-optimality was introduced in an equivalent version in [27]. A more
general concept for approximate solutions for vector optimization can be found in [18].
Furthermore a slighty different definition of e-optimality is presented in [31], where different
accuracies for the objective functions are allowed.

We use some ideas and concepts of interval arithmetic in our algorithm. For an in-
troduction to interval analysis we refer to [35]. The set of all n-dimensional real boxes
will be denoted by R™. The width of a box X € R"™ is defined as w(X) = ||z — z||.
Interval arithmetic allows to calculate lower bounds of function values on a given box,
see [14, 35]. Another method to calculate lower bounds was proposed for scalar-valued
functions in [33] under the name BB and is based on the concept of convex underesti-
mators. A conver underestimator for a function h: R® — R on a box X = [z,7] € R"
is a convex function h: X — R with ﬁ(x) < h(z) for all x € X. A convex under-
estimator for a twice continuously differentiable function 7 on X can be calculated by
h(x) := ho(x) := h(z)+$(z—2)" (T —x), where a > max{0, — gél)l{l Amin () }. Here, Apin(2)

denotes the smallest eigenvalue of the Hessian Hj(x) of h in z, [33]. The minimum value
of h, over X, which can be calculated by standard techniques from convex optimization,
delivers then a lower bound for the values of h on X. Clearly, if X C X and h, 18 a convex
underestimator of h on X, then h, is also a convex underestimator of A on X. With our
numerical method to calculate h, on X and hs on X C X we always obtain a < «. For
simplicity of the presentation in this work we use only the parameter o which was calculated
for the convex underestimator on the box X = X°. Furthermore if we use the boundaries
Zand 7 of X = [£,7] € X to define another convex underestimator he: R — R on X by
ho(z) == h(zx) + 2(z — x)"(Z — x), we obtain immediately ho(x) > ho(z) for all z € X.
A lower bound for A\y,(x) over X can be calculated easily with the help of interval arith-
metic, see [33]. For that the Matlab toolbox Intlab can efficiently be used [37]. See also [40]
for improved lower bounds. The above proposed and some other methods to obtain lower
bounds for Ay, () are described and tested in [1]. There are also other possibilities for the
calculation of convex underestimators. For example in [1] special convex underestimators
for bilinear, trilinear, fractional, fractional trilinear or univariate concave functions were
defined. Here, we restrict ourselves to the above proposed convex underestimator. The
theoretical results remain true in case the above underestimators are replaced by tighter
ones.

Remark 2.2. [33] For all o > 0 the mazimal pointwise difference between h and he is
a 2 s _« 2
Sw(X)?, i.e. rgggdh(x) — ho(z)] = SW(X)°.

In the next lemma we show that the distance between the minimal value of a convex
underestimator and the other function values of a smooth function A over a box is bounded
by a given € > 0 if the box width is small enough.

Lemma 2.3. Let a box X € R", a twice continuously differentiable nonconvex function
h: R" — R, a conver underestimator h, of h on X and a positive scalar ¢ > 0 be given.
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Moreover let L > 0 be chosen such that L > \/n ‘%h(x)) forall ie{l,...,n} andx € X.
Let X = [#, 7] be a box with X C X and with

L L2
w(X) < =2y S =ik (1)

and define ho: R" = R by ho(z) := h(z ©)+%(2—x)" (T—x) which is a conver underestimator

of h on X. Then for v —rm n he(x) it holds |h(x )—v[ﬁ%forallxef(.

Proof. Note that o # 0 because of h being nonconvex. Let Z be a minimal solutlon of
min, g ho(z), ie. v = ho(Z). With Remark 2.2 it follows k(&) — v| = |h(Z) — ha(Z)] <
%w(f( )2. Now let x,y € X be arbitrarily chosen. By the mean value theorem there exists
Ee{d+(1—-NyeR"|Xe(0,1)} with h(z) — h(y) = V()T (z — y). Together with
the Cauchy-Schwarz inequality we obtain |h(z) — h(y)| < |[VR(E) |||z —yl|. As ||[VA(E)| =

\/ZZ ) 3:): ) <\ 2= L2 — I we get |h(z) — h(y)| < Lw(X) for all 2,y € X. Now

let z € X be arbitrarily chosen. Then it follows for the distance between v and h(z) due
o (1): |h(x) —v| < |h(z) — h(Z)| + |W(&) —v| < Lw(X) + Sw(X)* < 5. O

The constant L in the above lemma can be obtained by using techniques from interval
arithmetic for instance with the help of the Matlab toolbox Intlab [37].

As we are considering vector-valued functions in this work, we use convex underestima-
tors for every component function on its own. Thus we denote the vector-valued convex un-
derestimator for the function f: R™ — R™ with fo: R" = R™, .+ (f1.a(2), ..., fma(®)7T,
where f;, is a convex underestimator of f;, 7 = 1,...,m. Note that we choose for the
convex underestimators for each objective function the same parameter « for simplicity
of the presentation although different ones are of course also possible. Lemma 2.3 can be
easily generalized for the vector-valued case by considering each objective function on its
OWn.

3 The new Branch-And-Bound Based Algorithm

We introduce the algorithm for a clearer presentation first for box-constrained MOPs. The
handling of constraints will be discussed in Section 5. Thus, in the following, we assume
the MOP to be given as

min f(z) = (fi(z),..., fu(@)! st. € X°, (P)

TER™

ie. M = X° Algorithm 1 gives a basic branch-and-bound algorithm as it was already
proposed in [14]:



Algorithm 1
INPUT: X° e R", f € C*(R",R™)
oOuUTPUT: Lg

1: Ly < {XO},ES «— 0

2: while Ly # 0 do

3: Select a box X* from Ly and delete it from Ly Selection rule
4: Bisect X* perpendicularly to a direction of maximum width — X1, X?

5: for (| =1,2 do

6: if X! cannot be discarded then Discarding tests
7: if X! satisfies a termination rule then Termination rule
8: Store X' in Lg

9: else Store X' in Ly

The lists Ly and Lg are the working list and the solution list respectively. A typical
selection rule is the one proposed in [14]:

Selection rule: Select the box X* € Ly with a minimum lower bound of f;.

In our algorithm this lower bound will be calculated by underestimating f, within
the considered box by a convex underestimator. In [14] the lower bound is calculated by
interval arithmetic. Certainly, it is possible to replace f; by any f;, i € {1,...,m} or
by a weighted sum of the objectives or similar. In [14] Ferndndez and Téth use a similar
termination rule to the following, where F': IR™ — IR" is the natural interval extension of
f, a common tool of interval arithmetic, see [35]:

Termination rule: Store X* in Lg if the following condition for given €,6 > 0 holds:
w(X*) <e and w(F(X*)) < 6.

We use a much more elaborated termination procedure which we introduce in Sec-
tion 3.3. Our modified termination rule guarantees the (g, )-optimality of the calculated
approximation set. For the discarding test several criteria have already been proposed
in the literature. A first one is to use information on the monotonicity of the objective
functions. Ferndndez and Téth introduce in [14] a monotonicity test for biobjective opti-
mization problems. A generalization to more than two objective functions can be found
in [39]. Another class of discarding tests compares known objective values, which serve as
upper bounds for the global minima, with lower bounds for the function values over the
subboxes. We will follow this approach. Of course it is possible to combine the discarding
test in order to accelerate the algorithm and use the different advantages of each test. But
in the next sections we focus on the new ideas and test the algorithm only with our new
approach.

3.1 Upper bounds and lower bounds by convex underestimators

We will generate a stable set Lpyg of objectives values (called provisional nondominated
solutions) representing upper bounds for the global minima for (P). A set N of R™ is
stable if for any y',y? € N either y* £ y? or y* = y? holds. Every time a point ¢ is a new
candidate for Lpyg we check if this point is dominated by any other point of Lpyg. In
this case ¢ will not be included in Lpyg. Otherwise, g will be added to Lpygs and all by ¢
dominated points will be removed. Figure 1 shows an example for Lpyg.

Having this list of upper bounds, a discarding test for a given box X* requires also a
lower bound for the values of f over X*. Let LB C R™ be a set with f(X*) C LB+ R
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Figure 1: Example for Lpyg, m = 2. Figure 2: Upper image set fo(X*)+ R
for m = 2, Lpng and ideal point a of f,.

If LB C (Lpns +R7T)\ Lpns, then the box X* can be discarded, because every point of
f(X*)isin (Lpns +RT) \ Lpys. Hence every point of f(X*) is dominated by one point
of Lpyg. For the set LB we first recall the approach proposed so far in the literature (I)
and then present our new approach which consists of two steps (II) and (III):

(I) proposed in [14]: LB is chosen as the lower bound of a box which contains all values
of f on X* and which is generated by the natural interval extension F' of f on X*,
see [35].

(II) LB is chosen as the ideal point of the convex underestimators of the functions f;
over X*. Recall that the ideal point of a MOP is determined componentwise by
minimizing each function individually, i.e. we choose the point

a € R™ with a; :== min{f;.(z) |z € X"} for j=1,...,m, (2)
and set LB = {a = (a1, ...,a,)}. For an illustration see Figure 2.

(IIT) Find a tighter and not necessarily singleton set LB, i.e. a set LB with f(X*) C
LB + R} and with (LB + R7) \ (f(X*) + R7) as small as possible by using con-
vex underestimators and techniques from convex multiobjective optimization. We
illustrate and discuss this new discarding test in Section 3.2.

We start by shortly discussing the first step of our new approach, i.e. we show that
already a from (II), see (2), delivers a lower bound:

Lemma 3.1. Let f;, be a conver underestimator of f; on X* for j =1,...,m and define
a € R™ by (2). Then a < f(x) for allx € X*, i.e. f(X*)C {a}+ R7.

Proof. Let j € {1,...,m}. Because of f;, being a convex underestimator of f; on X* and
the definition of a; it follows a; < f;.(x) < f;(x) for all x € X*. O

Numerical experiments show that using (I) or (IT) makes no big difference in their out-
come. In some cases the lower bounds by interval arithmetic are better than the ones by
convex underestimators and vice versa. However, (II) has the advantages the maximal
error between the computed lower bound and actual images is bounded, see Remark 2.2
and Lemma 2.3. Moreover it is possible to improve (II) by using the convex underestima-
tors, which is not possible for (I). This is the basic idea of our new discarding test.
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3.2 Improved lower bounds by selected Benson cuts

The tighter bounds will be reached by adding cuts as known from Benson’s outer ap-
proximation algorithm for convex vector optimization problems, see [3, 12] for Benson’s
algorithm. The cuts separate selected points p from the upper image set of the convex un-
derestimators such that the cuts are supporting hyperplanes, see Figures 3a and 3c. This
leads to new sets LB as can be seen in Figure 3b. As one can see, the cut in Figure 3a
would lead to a set LB which does not allow to discard the box, while the cut in Figure 3¢
does. We explain first how to choose the points p such that we can generate cuts as in
Figure 3c before we discuss how to calculate the cuts in more detail.

f2 f2 f2
\ fa(X*) +RT
a P~
i fi
(a) A cut which separates a from (b) A lower bound LB for the sit- (c) A cut which separates p from
fa(X*) +RT. uation in Figure 3a. fa(X*) +RT.

Figure 3: Possible cuts to get a tighter set LB with f(X*) C LB+ R}, m = 2.

We use as points p so called local upper bounds. These are a versatile concept which
is used in different fields of multiobjective optimization. Let a finite and stable list of
function values N” C f(X°) be given. We call points in N also feasible points. Let Z be a
box with f(X°) C int(Z) (where int denotes the interior). The search region S is the set
which contains all points which are not dominated by N, i.e.

S:={zemt(2) |Vae N,q £z} =int(2)\ (|J{a} +RD). (3)

qeEN

This set can be characterized with the help of local upper bounds which are the elements
of the local upper bound set as defined below.

Definition 3.2. [26] Let N be a finite and stable set of feasible points. A list L C 7 is
called a local upper bound set with respect to N if

(i) Vze S dpeLl:z<p,
(i1) Vz € <1nt( )) \SVpeL:z+&£pand
(iii) Vp',p* € L:p' £ p* or p' = p*.
The next lemma gives an equivalent characterization, [26].

Lemma 3.3. [26] A set L is called a local upper bound set with respect to a finite and
stable set of feasible points N if and only if L consists of all points p € Z that satisfy the
following two conditions:



(i) no point of N strictly dominates p and

(ii) for any z € Z such that z > p, 2 # p, there exists Z € N such that z < z, i.e. p is a
mazximal point with property (i).

The following lemma is useful to understand the relations between N and £ and will
be important for our proof of Lemma 3.5. It is due to [25].

Lemma 3.4. Let L be a local upper bound set with respect to a finite and stable set of
feasible points N'. For every z € N and for every j € {1,...,m} there is a p € L with
Z; =pj and zZ, < p, for allr € {1,...,m} \ {j}.

A

Proof. Let z € N C int(Z). As N is a finite set, there exists a neighbourhood of z such
that no other point of N is contained in that neighbourhood. Hence, let v > 0 such that
N,(z) :={z e R™|||z—z| < v} C int(Z) and with N,(2) "N = {z}. Then we obtain for
v small enough N,(2) NS = N,(2) \ ({z} +R}). Now fix a j € {1,...,m} and let (0;)en
be a null sequence with v > §; > 0 for all t € N. Then we consider the sequence (q¢');en
defined componentwise by: ¢} = z; — ; and ¢/ = z, for all r € {1,...,m} \ {j} and for all
t € N. Then lim; ,o, ¢" = Z and ¢* € N,(2) N S for all ¢ € N. Hence with Definition 3.2 (i)
we conclude that there is a local upper bound p' € £ with ¢* < p' for every t € N. Since
L is also a finite set, the sequence (p');en contains a constant subsequence with a (limit)
value p/ € L. For its limit value it holds z < p/. Moreover, for all t € N of the constant
subsequence we have z, = ¢¢ < pt = p/ for all r € {1,...,m} \ {j}. By Lemma 3.3 (i) it
follows z; = ]3? n

As a result of Lemma 3.4, for every 2 € N there exists a local upper bound p € £
with Z < p. In our context the list Lpyg is the list A'. The local upper bound set will
be denoted by Lryp. An algorithm which calculates Lryp w.r.t. Lpyg can be found in
[26]. Figure 4 illustrates the sets Lpyg and Lr75. The values M and M, in Figure 4 are
upper bounds for the values of f; and f in X°, which do not have to be tight bounds and
which can be easily computed for example with interval arithmetic.

f2

Mot e Lpns

X ﬁLUB

— i
M,

Figure 4: Lpyg and Lryp, cf. [26, Fig. 1]

The local upper bounds w.r.t. the set Lpyg are important as we can discard a box X*
if no local upper bound is contained in the set f,(X*) + R



Lemma 3.5. Let a box X* C X° € R" be given and let f;, be a convex underestimator of
fion X* forj=1,...,m. Let Lryp C R™ be the local upper bound set w.r.t. Lpyg. If

Vp € Liur ﬁ¢fa<X*)+RT . (4)
then X* does not contain any efficient point of (P).

Proof. Assume that there is some efficient point z* of (P) with z* € X*. Because of f;,
being a convex underestimator for f; on X* for all j € {1,...,m} all local upper bounds
p € Lryp do also not belong to f(X*) + R7Y. Thus f(z*) £ p for all p € Liyp. From
Definition 3.2 (i) it follows that f(z*) cannot be an element of S. With (3) we conclude
that there exists a point ¢ € Lpyg with ¢ < f(z*). As ¢ is the image of a feasible point
of (P) and as z* is efficient for (P) we obtain f(z*) = ¢ € Lpys. By Lemma 3.4 a local
upper bound p € Lyyp exists with f(z*) < p or p € {f(2*)} + RT. Again, as f;, are
convex underestimators of f; on X* for all j € {1,...,m} we conclude p € {f,(z*)} +R?
which is a contradiction to (4). Thus X* contains no efficient point. ]

Condition (4) can be tested by solving a scalar-valued convex optimization problem for
every p € Lpyp. Instead of solving such an optimization problem for each point p we solve
it for a few points and get immediately the information on how to generate and improve
an outer approximation of f,(X*) + R?. This information can then be used to efficiently
reduce the number of points for which the scalar-valued problem has to be solved. This
corresponds to generating tighter lower bounds for the values of f over a box. Thus let
p € Lryp and let a box X* be given now. We check if p € f,(X*) +R"" holds by solving
the following scalar-valued convex optimization problem:

i ts.t. EX*,7 t > «@ . P7 *
(x,t)néé}wl s.t. x p+te> f (ZU) ( p,X)

A minimal solution of (P, x-) is named (Z,7). If £ < 0, then it holds p € fo(X*) + R™.
Otherwise, if £ > 0, the point p lies outside and can be separated from f,(X*) + R™ with
a supporting hyperplane. This is used for our new discarding test.

The test is applied to a box X* and consists of a finite number of iterations where
an outer approximation of f,(X*) + R7 is determined. The initial outer approximation
is {a} + R7, where a is the ideal point of f, on X*, see (2). Recall that we can discard
the box X* if the following holds: In each iteration a local upper bound p is chosen. The
first step is the comparison of the current outer approximation of f,(X*) + R’ with p by
checking if the inequalities which describe the outer approximation are satisfied. In case
P is not an element of this outer approximation, the next iteration, namely choosing a
next local upper bound, starts. Otherwise we continue with solving (P, x+) to get now the
position of p w.r.t. f,(X*)+R?. The above mentioned cases (£ > 0, { < 0) can occur. We
extend this to three cases to reduce the effort as only e-optimality is the aim for a given
scalar ¢ > 0. Hence we differentiate between the following cases for the minimum value ¢

Of (Pﬁ,X*):

(1) t<0,ie pE fol X*) + R7*: Efficient points in X* are possible. Thus X* cannot be
discarded and we distinguish between the two subcases:

(la) ¢ < —%: Stop the whole discarding test in order to bisect X* later.
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(Ib) —5 < t < 0: Construct a supporting hyperplane to improve the outer approxi-
mation of f,(X*)+ R7 and choose the next local upper bound. Moreover set a
flag that X* cannot be discarded.

(2) £>0,ie. p ¢ fo(X*)+R?T: Construct a supporting hyperplane to improve the outer
approximation of f,(X*) 4 R and choose the next local upper bound.

Only if the last case holds for every local upper bound, the box X* can be discarded, see
Lemma 3.5. Case (1b) is motivated by getting e-optimal points at the end of the algorithm
as we will prove later. To store X* in the solution list, there has to be at least one p where
the case (1b) is fulfilled and no p with (1a).

During the discarding test new supporting hyperplanes are constructed, if £ > —5. The
support vector of such a hyperplane is § := p+te. For calculating a normal vector \* € R™
of the supporting hyperplane a procedure is given in [12], where a scalar-valued linear
optimization problem has to be solved. In difference to this and with help of properties of
duality theory we can also use a Lagrange multiplier A* € R™ to the constraint p + te >
fa(z) to get a normal vector of the supporting hyperplane, as explained in detail in [30].
The following algorithm describes the procedure, where the flag D stands for the decision
to discard a box after the algorithm and the flag B for bisecting the box, respectively.

Algorithm 2 Discarding test

INPUT: X*€R", feC*R",R™), Lpns, Lrup CR™ e >0,a
OuUTPUT: ﬂags D, B, lists ﬁpNs, £LUB
1: Compute for every objective function its convex underestimator on X* and its corre-
sponding minimum z7, update Lpys by f(27) and Lryp =: {p,...,p"}
2: D+ 1, B+ 0
33 fors=1,...,k do
if p® is inside the current outer approximation of f,(X*)+ R’ then
Solve (P, x+) with solution (Z,7)
if t < —5 then
break for-loop
Set flags D <~ 0 and B «+ 1
else if £ < 0 then
10: Update outer approximation of f,(X*) + R and set flag D < 0
11: else Update outer approximation of f,(X*)+ R’}

Actually we could add in line 1 the image of any other point of X for example the
midpoint of the considered box X* to the list Lpyg, because we only have box constraints.
But as we plan to work also with constraints later the feasibility of the pre-images of all
points of Lpyg has to be ensured. Thus we need that Lpys C f(M) C f(XY), which is the
case for our construction in line 1. For more information about the handling of constraints
we refer to Section 5. Note that the condition of line 4 can be checked by evaluating a finite
number of inequalities which are given by the current outer approximation. The following
theorem gives the correctness of this discarding test.

Theorem 3.6. Let a box X* C X° € R" and (P) be given. Let Lryp C R™ be a local
upper bound set w.r.t. Lpns. If X* contains an efficient point of (P), then the output of
Algorithm 2 is D =0, i.e. X* will not be discarded by Algorithm 2.
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Proof. Assume that there is some efficient point z* of (P) with z* € X*. Suppose the
output of Algorithm 2 applied to X* is D = 1. This means that for all local upper bounds
either the conditions in lines 6 and 9 are not satisfied or they are not contained in the
current outer approximation (see line 4). In case the latter occurs the local upper bound
is clearly not in f,(X*) + R'. For the other local upper bounds p € Ly which are not
satisfying lines 6 and 9, but line 4 the optimization problem (P; x+) has also a minimal
value ¢ > 0. Hence it holds for all p € Ly yp that p ¢ fo(X*) + R?T and with Lemma 3.5
we have a contradiction to X* contains an efficient point. ]

All possibilities of the results of the discarding test applied to a box X* in the two-
dimensional case are visualized in Figures ba to 5c.

Ja(X*)+RT fa(X*) + R fa(X*)+RTY
* Lpns
x ELUB
—5€ —se
IP—‘(
(a) Discard box X*. (b) Do not discard box X*, (c) Neither discard box X*, nor bisect
but bisect it. it.

Figure 5: Possible situations during a discarding test applied to box X*.

The list Lpyg is growing during the algorithm. Hence we get better upper bounds
for the nondominated solutions. It is possible that a box X* was not discarded and not
bisected by Algorithm 2 while it could be discarded if we would compare it with the final
list Lpys. Thus we add an additional test to the algorithm after the first while-loop
of executions of Algorithm 2 to detect such boxes and discard them. In that case the
lists Lpns and Ly p are static and will not be updated as in line 1 of Algorithm 2. This
method can be found in Algorithm 3. Additionally, in that procedure we re-use the already
calculated approximation of f,(X*) 4+ R and, what is more, we save the feasible points
# which are a solution of (P, x-) if its corresponding # is between —% and 0. Note that
the case ¢ < —5 is not possible for a box X*, which passed Algorithm 2 with any bisecting
(B = 1). This fact will be shown in Lemma 4.5. The points & with —5 < ¢ < 0 are

collected in the list X and will serve as the possible points of the (g, d)-minimal set .A.

12



Algorithm 3 Discarding test with static lists Lpys, Lrup

INPUT: X* e R", f € CZ(Rn’Rm)’ Lpns, Lrup = {pl, . ,pk} CR™e>0,a
OUTPUT: list X, flag D
1: if there is no current outer approximation of f,(X*) + R7 calculated yet then
2: Calculate ideal point a of f, and initialize {a} + R} as an outer approximation of
fo(X7) + RY
3: D1, X+ 0
4: for s=1,...,k do
5: if p® is inside the current outer approximation of f,(X*) 4+ R’ then
Solve (P, x+) with solution (Z,7)
Update outer approximation of f,(X*)+ R7
if { <0then X + X U7 and set flag D « 0

Theorem 3.7. Let a box X* C X° € R" and (P) be given. Let Liyp C R™ be a local
upper bound set w.r.t. Lpns. If X* contains an efficient point of (P), then the output of
Algorithm 2 is D =0, i.e. X* will not be discarded by Algorithm 3.

Proof. The proof is analogue to the proof of Theorem 3.6. m

3.3 The Complete Algorithm

Having now the new discarding test we can present the complete algorithm together with
the new termination procedure. The whole algorithm for (P) is the following:
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Algorithm 4 Algorithm to find an (e, d)-set of (P)

INPUT: X° e R", f € C3(R",R™),e > 0,5 >0
OUTPUT: .A, ES,3,£PNS,»CLUB

1 Ly {X"}, Lg1 0, Lso+ 0, Ls3+ 0,A« 0, Lpns < 0, Lryp <+ 0
2: Calculate o such that f;, is a convex underestimator of f; on X% j=1,...,m
3: while Ly # 0 do
4: Select a box X* from Ly and delete it from Ly
5: Bisect X* perpendicularly to a direction of maximum width — X! X?
6: for / =1,2do
7: Apply Algorithm 2 to X'
8: if B =1 then Store X! in Ly
9: else if D = 0 then Store X' in Lg;
10: else Discard X'
11: while Lg; # () do
12: Select a box X* from Lg; and delete it from Lg;
13: Apply Algorithm 3 to X*
14: if D =0 then Store X* in Lg>
15: else Discard X*
16: while Lg2 # () do
17: Select a box X* from Lgo and delete it from Lg 2
18: Apply Algorithm 3 to X* and obtain X
19: if D =1 then Discard X*
20: else if D =0 and w(X*) < ¢ then
21: {z'). . 2F} X
22: for s=1,...,k do
23: if f(x*) < p for at least one p € L yp or w(X*) < \/g then
24: A— AU {z*}
25: Store X* in Lg3 afterwards
26: if D =0 and no point of X was stored in A then
27: Bisect X* perpendicularly to a direction of maximum width — X!, X?
28: Store X' and X? in Lg2
29: A<+ AU {I e XY ‘ f(x) € EpNs}

The algorithm consists of three while-loops. The list Lg;, ¢t = 1,2, 3 is the solution list
of the t-th while-loop and becomes the working list for the next loop if t = 1,2. The first
loop from line 3 handles the basic discarding test, which was explained before in detail. It
generates the list Lpyg until this lists is near to the nondominated set in dependence to
e. All boxes X from Lg; have the following properties:

3p € Lrup :p € fu(X) +RY (5)
g
VpELLUB :p—§6¢fa(X)+RT (6)

The first property is true, because if all local upper bounds would be outside of f,(X)+
R?, then the box X would be discarded, see Lemma 3.5 for the proof. If the second property
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does not hold for X, this box would not have been stored in the solution list Lg;, because
line 6 of Algorithm 2 would be satisfied and X would be bisected into its subboxes.

With the second and third while-loop of the algorithm we do not loose these char-
acteristics (5) and (6). The second loop only checks whether some boxes from Lg; can
be discarded by the final lists Lpys and L. In the third loop we check for every box
X € Lgo if w(X) is less than or equal to ¢ for a predefined 6 > 0. If the box X is not
small enough we bisect it and apply the discarding test to both subboxes. But if w(X) < §
we add those elements of X', which images are less than or equal to a local upper bound,
to the set A. Furthermore if w(X) is bounded by /£ (usually smaller than §) we add all
elements of X to A. Note that X # 0 if and only if D = 1. Moreover the pre-images of the
points of the final list Lpyg are also added to A at the end of the algorithm. Summarized
we have

A:={r e X?| f(x) € Lpns}
EIﬁeELUB Jt <0:
U U reX* (z,t) is a minimal solution of (P, x+) :
X*€Ls,2 (W(X*)<dand Fp e Liyp: f(x) <p) or w(X*) < /2

«

Note that the union is not a disjoint union. The fact that A is an (e, )-minimal set of
(P), will be shown in Section 4.2.

4 Convergence Results

In this section we show the correctness and finiteness of Algorithm 4.

4.1 Termination

To show the termination of the algorithm we have to verify that each while-loop of Algo-
rithm 4 is finite. We start with showing the termination of the first while-loop.

Lemma 4.1. The first while-loop (line 3-10) of Algorithm 4 terminates.

Proof. Assume the first while-loop does not terminate. Hence there must be an infinite
sequence of boxes X° C X! C ... € X*¥ C ... which were not discarded, but bisected after
applying Algorithm 2 on each box. Hence every box X* will be stored in £y and bisected in
another iteration, where the box X**! is one of the two obtained subboxes. Obviously the
boxwidth decreases among the sequence of boxes, i.e. w(X*) > w(X**1) for every k € N
and converges to 0 (because we divide the boxes perpendicular to a side with maximal
width). Now we define dxo like in (1). Lets choose the first box X* with w(X*) < dxo.
From Lemma 2.3 for every objective function it follows for all z € X* : | f;(x) — a;] < § for
all j=1,...,mor

f(@) € ({a} +RY) N ({a+ e} — RY). (7)

Now consider the minima of each convex underestimator. Choose an arbitrary &/ €
argmin{f;.(z) | * € X*} for every j = 1,...,m. The images of the points #; under the
original function, i.e. f(Z7), are potential points of the list Lpyg, see line 1 of Algorithm 2,
and clearly satisfy (7) as well. Lets choose one of these and denote it with ¢. This point
will be added to Lpyg if there is no other point from the current list £pys dominating q.
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Because of the assumption that X k will be bisected, there must be a local upper bound
p with the solution (,%) of (P, x#) where ¢ is less than —£. Now we want to check for
each local upper bound if this is possible. If we show that for any local upper bound p

we have that the solution of (Pﬁ i) is never less than —5, we can thus conclude that the

assumption is wrong and X* will not be bisected.

First consider all local upper bounds which do not belong to {a} + R7'. Hence let
p € Liwp\ ({a} +R7), ie. thereis an u € {1,...,m} with p, < a,. The condition in line
4 of Algorithm 2 is is not satisfied and (P; y#) Wlll not be solved.

Next we consider those p € Liyp with p € LN ({a} +R7T), in case there are any,
and distinguish two cases: The first one is:

|pu—au|:]5u—au§%foroneue{l,...,m}. (8)

Problem (Pﬁ’ ) is solved and has a solution (Z, ). Then it holds p, +1 > fu.(Z) > a,.

Hence § > p, — a, > —t, which leads to t > —5. The second case is that there is some

p € Lrvp N ({a} +RY) with
|]3j_aj‘:]3j—aj>%forallje{l,...,m} (9)

or equivalently p € {a+ e} +int(R7). It follows for every j € {1,...,m}: a];—i—g < p;, but

we know there is a point ¢, see above, which is a feasible image of f on X*, a candidate
for Lpns and belongs to the set ({a} +R7) N ({a + Se} — RY). Define
o {q’ ,if there is a ¢/ € Lpys with ¢ < ¢

q ,otherwise.

and thus y € Lpns. Now we obtain by considering each component of a,y and p y; < ¢; <
aj+5 < p;forall j =1,...,m. Hence y strictly dominates p, which is a contradiction to
Lemma 3.3 (i). Thus the existence of a local upper bound in {a + e} + int(R7) is not
possible. i

Clearly, it is not possible for X* that it satisfies the conditions for bisection. Hence
the assumed infinite sequence of subboxes does not exist. Accordingly to this the first
while-loop will terminate. O

Lemma 4.2. The second while-loop (line 11-15) of Algorithm 4 terminates.

Proof. The termination of the second while-loop is clear, because it has exactly |Lg |
iterations. O

Lemma 4.3. The third while-loop (line 16-28) of Algorithm 4 terminates.

Proof. Assume the third while-loop does not terminate. Hence there must be an infinite
sequence of boxes X' C ... € X* C ... with X! € Lg, after the second loop, which
were not discarded, but bisected after applying Algorithm 3 on each box. Hence every
box X* will be stored in Lg2 and bisected in another iteration, where the box X**1 is
one of the two obtained subboxes. Obviously the boxwidth decreases among the sequence
of boxes, i.e. w(X*) > w(X* 1) for every k € N and converges to 0 (because we divide

the boxes perpendicular to a side with maximal width). Lets choose the first box X* with
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w(X*) < min{s, V=) For X k we have D = 0, otherwise it will be discarded. Therefore the
conditions in lines 20 and 23 of Algorithm 4 are satisfied and X* will be stored in Lg3. This

contradicts the assumption that X k will be bisected. Hence the assumed infinite sequence
of subboxes does not exist. Accordingly to this the third while-loop will terminate. O]

With these lemmas we obtain that the whole algorithm terminates.

4.2 Correctness

First we state that all efficient points = of (P) are contained in the union of boxes from
the final list Lg3:

Lemma 4.4. Let Lg3 be the output of Algorithm 4 for arbitrary €,0 > 0 and let Lg; and
Lso be the lists after the first and the second while-loop, respectively. Then

Proof. This is a direct consequence of Theorems 3.6 and 3.7 and the way the lists are
constructed. [

The next two lemmas show the in Section 3.2 on page 12 mentioned fact that in Algo-
rithm 3 the case ¢ < —£ is not possible in the second and third while-loop of Algorithm 4.

Lemma 4.5. Let X € IR™ be chosen from the working list Lg1 during the second while-
loop of Algorithm 4 and hence be an input for Algorithm 3. If (P; x) is solved for any
P € Liyp within Algorithm 3 we obtain a solution (&,t) with t > —%.

Proof. Let p € Lryp be inside the current outer approximation of f,(X) + R} and (z,1)
the solution of (P x). Assume now ¢ < —=5. In particular by fo(7) < p+ te < p we obtain
P € fo(X) +R7T. Because of X € Lg; this box was not discarded in the first while-loop
of Algorithm 4, i.e. D = 0 and B = 0. For the next steps we consider X during the first
while-loop where Algorithm 2 is executed. Let £’ 5 be the set of local upper bounds at
this time. Then it holds

Vp' € Lyg: (Py, x) was solved with solution (2',t') = ¢ > —g. (10)

Now we distinguish two cases: The first case is p € L ;5. Because of p € f,(X) + R7
the problem (P, x) was solved. As (Z,1) is feasible for (Pp, x) with < —£ this contradicts
(10).

The second case is p ¢ L5, i.e. p was added to the set of local upper bounds after
considering X in the first while-loop. Then there exists a p* € £}, 5 with p < p* and
p # p*. This fact can be easily seen by induction over a generating algorithm of a local
upper bound set, for example Algorithm 3 in [26]. Because of p € fo(X) + R it also
holds p* € fo(X) + R and the optimization problem (P, x) was solved in Algorithm 2.
Then (7, 1) is also feasible for (P, x), because f.(%) < p+te < p* + te, which contradicts
(10). O

Lemma 4.6. Let X € IR™ be chosen from the working list in Lgo during the third while-
loop of Algorithm 4 and hence be an input for Algorithm 3. If (P; x) is solved for any
P € Liyp within Algorithm 3 we obtain a solution (Z,t) with t > —%.
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Proof. Let p € Lyp be inside the current outer approximation of f,(X) 4+ R and (, t)
the solution of (P, x). Assume now ¢ < —5. In particular by f(Z) < p+te < p we obtain
P € fo(X) +RT. Note that the set Lryp is fixed after the first loop.

Because of Lemma 4.5 X was not considered in the second while-loop, i.e. X ¢ Lgo
after line 15. But here exists a box X* with X C X*, which has been considered and
not discarded in this loop. Let f* be the componentwise convex underestimator of f on
X* = [zt z7] e fi (x) = f(x)—§(z"—2)"(z" —z) forallz € X*,j = 1,...,m, which is
clearly less than f, on X, i.e. fi(z) < fo(x) forallz € X. Because of p € fo(X)+RT it also
holds p € fx(X*) 4+ R7 and the optimization problem (P x-) was solved in Algorithm 3.
Let (2*,t*) be a solution of (F; x-). Because of Lemma 4.5 we have t* > —5. Since
X C X*and f,(Z) > fi(z) the pair (Z,t) is also feasible for (P; x~), which contradicts the
minimality of (z*,¢*). O

Algorithm 4 calculates based on the list L7 and thus on the list Lpyg a tube, which
contains all nondominated points of (P) and has width €/2. We prove this in Theorem 4.8.
Thereby the tube is defined as follows:

T = (Upeeron ) —BE)\ (Uperyy, {7 3¢} — mt(RY)) (11)

An illustration of such a tube T is shown in Figure 6. Recall that Z was defined as a box
with f(X?) Cint(2).

fa
€ N b »CPNS
57
4 x Lrup
o7
<
: S

Figure 6: §—tube T m = 2.

The tube T contains all points from £pyg which will be shown in the next lemma.

Lemma 4.7. Let L;yp be the local upper bound set w.r.t. Lpys. Let T be defined as in
(11) Then EPNS g T.

Proof. Because of Lemma 3.4 there exists for every point ¢ € Lpyg a point p? € Lryp
with ¢ € {p?} —R7T. If ¢ would belong to a set {p — Se} —int(RY}') for any p € L g, then
it would hold for every j € {1,...,m} : ¢; < p; — 5§ < p;. But this contradicts Lemma 3.3
(1) Thus EPNS Q T. ]

Theorem 4.8. Let Ly be the local upper bound set w.r.t. Lpys with Lpys from Algo-
rithm 4 and let T' be defined as in (11). Let T be an efficient point of (P). Then f(z) € T,
i.e. the nondominated set of (P) is a subset of T'.
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Proof. Let & € X, i.e. an efficient point of (P). We assume that f(z) ¢ T. There are
two possibilities: First, f(z) lies above T, i.e. f(z) € Z\ (T — RT). By f(z) ¢ T —RT
it holds for all p € Lryp : f(Z) £ p. In particular f(z) ¢ S, otherwise we have a
contradiction to Definition 3.2 (i). Using the definition of S, see (3), it follows that there
exists a point ¢ € Lpyg with ¢ < f(z). Since ¢ is an image of a feasible point and z is
efficient ¢ = f(z) holds. But f(z) ¢ T which contradicts ¢ € Lpys C T. The other case
is f(z) € (T'—R7})\T. Hence there is a local upper bound p € Lryp with f(Z) < p— Ze,
which leads to the chain of inequalities: f, (T ) < f(z) < p— 5e. By Lemma 4.4 there is
some box X € Lg; with Z € X and thus p — § € f,(X) + R7. This is a contradiction to

(6). Therefore f(z) € T. O

Remark 4.9. As a consequence of Theorem 4.8 we also have f(X°) C T + R7, i.e.
XY N (R™\ (T +R7)) =0, which means that no image of a feasible point of (P) lies
below T'. This is due to the fact that the ordering cone R is a pointed closed convex cone
and f(X°) is a compact set, and thus external stability holds, compare with [38, Theorem

3.2.9].

Next we want to show the (g, §)-minimality of the output set A. Recall that the set X
is calculated individually for every considered subbox X* in Algorithm 3, line 8. Allx € X
can be possible e-minimal points of (P). In Algorithm 4 line 23 two conditions are checked
and we will prove in the next lemmas that for those x € A e-minimality indeed holds.

Lemma 4.10. Every subbox X € IR"™ of X°, which is not discarded in the third while-loop
of Algorithm 4 and with w(X) < \/g contains a point T which 1s e-minimal.

Proof. Set 6 := /= and let X C X° be a box with w(X) < 4. With Remark 2.2 we know
that for arbitrary x € X and all j = 1,...,m holds: f;(x) — fja(x) = |fi(z) — fia(z)| <

Sw(X)? < §-£ = <. By f, being a convex underestimator of f (componentwise) we obtain

fia(z) < fi(z) < fia(z) + E for every j € {1,...,m} and all z € X (12)

which is equivalent to f(z) € ({fa(z) + Ze} —int(R7)) N ({fa(z)} +RT). The box X
was not discarded in the thlrd while-loop. Hence Algorithm 3 applied to X has to obtain
the output D = 0 and a list X # (), see line 8 of Algorithm 3. Now consider an 7 € X,
which was calculated in line 6 of Algorithm 3 w.r.t. the corresponding local upper bound
p* € Lyp. Note that for the solution (Z,1) of (P, x) we have —% < <0, for —£ <1 see
Lemma 4.6. Suppose now there is an & € X° with f(2) < f(Z) —ee and f(2) # f(T) — e,
which is equivalent to f(2) € {f(Z)} — {ee} — (R} \ {0,}). Hence with the above shown
property (12) we conclude

1(@) € {7(@)} = {ee} — (RE\{0n})
C (({7a@ + e} —mt®D)) 0 ({(fa(®) +RY)) — o} — BT\ {0)
- {fa(j) - ge} — int(R'), (13)

which is equivalent to f(2) < fo(7) — 5.

Because of (7,%) being a feasible point of (P,s x) we have p +te > fo(%). Since this

and ¢ < 0 we obtain f,(Z) < p*. With (13) it follows f(#) < p* — £ and thus f(%) is not
in T'+ R?, which contradicts Remark 4.9 that no feasible 1mage is below T'. Hence T is
e-minimal. O
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Lemma 4.11. Let A be the set generated by Algorithm 4. Then T € A is an e-minimal
point of (P).

Proof. Let & be an arbitrary element of A. If Z is added in line 29 to A, the point f(Z) is
an element of Lpyg and thus by Lemma 3.4 there is a local upper bound p € L;yp with
f(z) < p. Now suppose there is an 2 € X with f(2) < f(Z) — ee and f(2) # f(Z) — ee.
With f(Z) < p we obtain f(Z) < p — ce and hence f(z) ¢ T, but below 7. But that
contradicts Remark 4.9 that no feasible image is below T'.

If 7 is added in line 24,  belongs to a box X* with w(X*) < § which was not discarded
in the third while-loop and thereby & € X. Hence there is a local upper bound p € L;yp
with (Z,7) is a solution of (P, x+) and —§ < ¢ <0, for —£ < { see Lemma 4.6. As the first
condition in line 23 of Algorithm 4 is satisfied we have f(z) < p for a local upper bound
p € Lryg. With the same argumentation as at the beginning of this proof we can show
that x is e-minimal.

If the first condition in line 23 is not satisfied, but the second one, i.e w(X*) < \/g , we
have to show that each x € X is e-minimal. For this we refer to the proof of Lemma 4.10,
because the points in X of X* with w(X™) < \/g are exactly those points, which are the
e-minimal points from Lemma 4.10. O

Theorem 4.12. Let A be the set generated by Algorithm 4. Then A is an (g,0)-minimal
set of (P).

Proof. With Lemma 4.11 we know that A contains only e-minimal points.

Now let y € Xg be an efficient solution of (P). With Lemma 4.4 we know that a box
Y containing y can not be discarded in any while-loop. Thus, choose now a box Y € Lg3
with y € Y. This box exists because the algorithm terminates, see Lemmas 4.1 to 4.3.
Because of the procedure before storing Y to Lg3 in line 24 of Algorithm 4 there will be
an z € X CY added to the set A. Moreover w(Y) < ¢ and thus ||z — y|| < 0. O

5 Handling of constraints

In the following we explain which difficulties arise, if we are considering MOPs like (M OP)
with convex inequalities described by ¢,: R — R, r = 1,...,p. The first issue is the
handling of the list Lpyg. As we explained after Algorithm 2, every point of Lpyg has to
be an image of a feasible point of (M OP). This feasibility is already ensured by choosing
the images of a solution of the minimization of the convex underestimator over the feasible
set M*:={x e X*|g(z) <0,}.

The new discarding test can be easily applied to convex constraints by replacing X°
by M, which is the feasible set given by convex constraints, and X* by M* in every
optimization problem which has to be solved. In particular that is the case when the ideal
point of a convex underestimator is determined and for solving (Pj, x+). However, this may
result in an infeasible set M*. In case the feasible set is empty we can discard the box.
Numerically it might be difficult to verify that the feasible set is indeed empty. A fast and
efficient sufficient condition was proposed in [14] and uses interval arithmetic to obtain
lower and upper bounds of g., » = 1,...,p. For dealing with nonconvex constraints and
finding feasible points for such optimization problems we refer to [24]. Furthermore in [10]
an approach is presented which uses the solution of the dual problem to identify infeasible
boxes.
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6 Numerical Results

In this section we illustrate our algorithm on some test instances from the literature. We
also solve an application problem which arises in engineering in the context of Lorentz
force velocimetry.

6.1 Test instances

First we compare the cases (II) and (III) from the beginning of Section 3.1. Recall that (II)
uses the ideal point of the convex underestimators to obtain lower bounds and compares
them with Lpyg only. Case (III) was the idea of the new discarding test. For a better

comparability we restrict our algorithm to the first while-loop with a termination rule
w(X!) < 6.

Test instance 6.1. This test instance is based on [16] and is scalable in n € N.

n 2
1 —exp —Z<ZE‘@—\/%;) —2 2
flz) = ! 9 with X© = L e R
1 — exp —Z(xﬂr%ﬁ) —2/ \2

=1

For the number of iterations, the calculation time ¢ and the number of boxes in the
solution list Lg, we obtain the results presented in Table 1.

case (II) only ideal point case (III) new discarding test
n | # iterations t[s] |Ls| | # iterations t[s] |Ls|
1 41 3.5970 34 41 4.1928 34
2 456 39.4317 262 359 38.1401 210
3 6283 626.7255 3434 3055 364.1089 1268
4 78965 1.0014e+04 42540 20966 2.9587e+03 7644

Table 1: Results for Test instance 6.1 with § = 0.1.

The pictures in Figure 7 show the results in the image space for n = 3. The image set
is represented by some image points in grey which are obtained by a discretization of the
feasible set X°. The black points are the images of the midpoints of the boxes of the list
Ls.

It can be seen that we can decrease the number of iterations with the new procedure,
which is clear, because calculating the ideal point by minimizing convex underestimators is
also a part of our developed discarding test (III). Additionally for n > 2 the new procedure
is faster while we have to solve more optimization problems on each subbox. In the case
n = 3 the approximation of the nondominated set is much tighter as can be seen from the
Figure 7. In the other cases for n we obtained similar results.

For illustrating the whole procedure with all three while-loops we choose € = 0.05 and
0 = 0.1. The plots in Figures 8a and 8b are showing the partitioning of the feasible set
after the second and third while-loop. Medium grey boxes are those which have been
discarded in the first while-loop. The light grey boxes were discarded after the second
while-loop. The dark grey boxes were not discarded after the second and third while-loop
respectively. In Figure 8b there are additionally black points which are the points from
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interval arithmetic.

Figure 7: Test instance 6.1 with n = 3,6 = 0.1

the approximation set 4. Furthermore the new light grey boxes compared to Figure 8a
were discarded within the third while-loop. Figure 8c shows the image space of the test
function. The black points are the images of the approximation set A. Additionally in
Figure 8d the obtained $-tube is shown.

The results of the next test instance show that our new algorithm is also able to find
global solutions in case there are also only locally optimal solutions.

Test instance 6.2. This test instance was proposed in [8]:

f(x) = 1 |
2 (2 expl— () - Dexpl-(35297)

0.1 1

0/)"\1
and 71 € [0.1,1]. But this test instance has also locally efficient points with &5 ~ 0.6 and
7 €1]0.1,1].

with X0 = [( € R% The globally efficient points are (I1,%o) with Ty ~ 0.2

Figure 9 shows the results of our algorithm on this test instance. Obviously the global
solutions can be found next to some few e-minimal points with z; ~ 0.1. For example a
weighted sum approach with a local optimization solver as SQP may be able to find the
local solutions only.

The next test instance has three objective functions. Moreover we added a convex
constraint g.

Test instance 6.3. This test instance without the convex constraint was introduced in
[42]:

0.5(2% + 23)? + sin(z} + 22)

o) = | Lot et g5 | i xo = (33, (5)| e

2;21 — L.lexp(—2] — 73)

Ty =Ty~

and in addition g(x) = x? + 23 — 4.
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(a) Partition of the feasible set after second (b) Partition of the feasible set after third while-
while-loop, 66 discarded boxes. loop, 151 discarded boxes, 279 points in A.
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(d) Image space, images of the (¢, §)-minimal set
A and §-tube.
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(c) Image space and images of the (g, §)-minimal
set A.
Figure 8: Test instance 6.1 with n = 2,6 = 0.05 and 6 = 0.1

207
|
15|
&10
5|
0 ‘ ‘ . .
0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X1 1(x)
(a) Partition of the feasible set after third (b) Image space and images of the (e, §)-minimal
set A.

while-loop, 2039 discarded boxes, 648 points in
A.
Figure 9: Test instance 6.2 with ¢ = 0.01 and § = 0.01
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Figure 10 shows the results of this test instance. Additionally to the meanings of grey
shades in the former graphical results the white boxes are boxes, which were discarded
because of infeasibility. In this example no box was discarded in the second while-loop.
Moreover we can see in Figures 10b and 10c that our algorithm is also able to find non-
connected areas of efficient or nondominated points.

Yo So
-1 -1
2 -2
-3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x1 x1
(a) Partition of the feasible set after second (b) Partition of the feasible set after third
while-loop, 108 discarded boxes. while-loop, 315 discarded boxes, 360 points in

A.

1

2(x) 00 1(x) o 2(x)

(c) Image space and images of the (&, 0)-minimal set A in different perspectives.

Figure 10: Test instance 6.3 with ¢ = 0.1 and 6 = 0.1

6.2 Application in Lorentz force velocimetry

We have also applied our algorithm to a problem which arises in the optimization of a
measurement technique known as Lorentz force velocimetry (LFV). In LFV the aim is to
measure for example the velocity of fluids. The technique is based on measurements of
the Lorentz force that occurs due to the flow of a conductive fluid under the influence of
a variable magnetic field. For generating a measurement system in our problem setting n
dipoles have to be arranged around a cylinder with an electric conductive fluid. We assume
that the dipoles are placed at equidistant positions r¢ = (0,cos~;,siny;)?, i = 1,...,n
around the cylinder and aim on finding the optimal magnetic orientation. We assume
that all dipole moments have the same magnitude m. The orientation of an individual
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dipole 7 is then represented in terms of polar and azimuthal angles 6, and ¢;, where ; is
splitted into the two angles 3; and the fixed ~;. Thus the magnetic moment vector m® is
m'(6;, B;) = (mcos0;, msin 0; cos(; + 7;), msin 0; sin(3; + 7;)).

The first objective is to maximize the absolute value of the axial force component as
in [4]. Since the dipoles are on a circle of radius H in the plane x = 0 the force can be
analytically expressed. The self-interaction term for a dipole ¢ and the mutual interaction
term between dipoles ¢ and j are

457 voRYuim?

Fy(53;,0;) = : iy
(8. 03) 4096 1287 H7

45  voR*pgm?

Fn(Bi, 81, 0i,05) = 1631~ ~1aseir 1L0(5 + 14 cos(y; — ;) cos 0; cos 0

+ sin 6; sin 0;(49 cos(y; — v; — Bi — B;) + 35 cos(B; — ;)

+25 cos(y; — v+ Bi — ﬁj) + 105 cos(v; — v — Bi + ﬁj)

+35cos(B; + B;) +49cos(vi — v + Bi + B))]

respectively. For the resulting interaction force we obtain

[355 + 25 cos(26;) + 266 cos(24;) sin* §;] and

Fo(8,0) =Y Fu(Bi,6:) + > Ful(B:, 85, 6:,0;).
=1

1<j

The constants are the velocity of the fluid v, the electric conductivity o, the radius of
the cylinder R and the vacuum permeability po = 47 - 10~ "Vs/Am.

The second objective is a minimization of the interaction potential energy between the
dipoles. The reason for that is that arrangements with a high interaction potential energy
are more difficult to realize. The vector r; ; represents the vector between the positions of
both dipoles: r;; = r/ — 7. The function is the sum of all energies between every pair of
dipoles:

V(B,0) =) EO g Prma(8i, B)my (85, B7) — 3(ma(0:, Birag)(my (8, B;)rg).

- 47T|Ti,j|5

1<j

To reduce the dimension of the decision space we fix §; = 7 for all « = 1,...n. Thus
and because of symmetry of the arrangements the feasible set of interesting angles [ is
given by

X0 = [(=5, = =)
All constant coefficients are set to 1 and we scale the objective functions with -0.1 (to switch
from maximization to minimization) and 100, respectively, to obtain different accuracies
for both objective functions.

The following plot in Figure 11a shows the image space after executing the algorithm
with e = § = 0.5 for three dipoles. Figure 11b is one result after using a weighted sum ap-
proach with a standard SQP solver for the scalarized problems. The black points connected
by thin black lines are the solutions of minimizing a weighted sum of the objectives and are
also used as the next starting point for the next weighted sum. Obviously this approach
was able to find local solutions first and only after some iterations some of the global so-
lutions. Moreover the lower right part of the nondominated set was not found. We tried
different starting points, but never obtained an approximation of the whole nondominated
set.

..., M| € R"
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Figure 11: Graphical results for 3 dipoles on a circle around a cylinder.

7 Conclusions

We have combined the ideas of convex underestimators with techniques from convex mul-
tiobjective optimization and the idea of local upper bounds from general multiobjective
optimization to obtain an efficient discarding test. Numerical experiments show that we
get good results even while we have chosen large values for € and 0. That is due to the fact
that our estimations in some proofs are quite rough. The current implementation does not
use other, more simple, discarding tests as already proposed in the literature. By using
also those tests further time savings are expected. An example for that are monotonicity
tests as proposed in [14]. In [44] also interesting bounds based on Lipschitz constants are
derived and it would be of interest to explore possible combinations. Also the handling
of nonconvex constraints should be considered further. But the same difficulties as for
scalar valued global optimization algorithms will arise. These difficulties are for instance
discussed in [24].
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