
Cross-Formalism Resource Discovery
in Smart Environments

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von M.Eng. Kobkaew Opasjumruskit

geboren am 07.04.1983 in Bangkok, Thailand

Gutachter

1. Prof. Dr. Birgitta König-Ries
Friedrich-Schiller-Universität Jena, D-07743 Jena

2. Prof. Dr. Martin Welsch
IBM Deutschland Research & Development GmbH, D-71032 Böblingen

3. Prof. Dr. Wolf Zimmermann
Martin-Luther-Universität Halle Wittenberg, D-06120 Halle (Saale)

Tag der öffentlichen Verteidigung: 20 November 2017

Ehrenwörtliche Erklärung

Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät bekannt ist,

• dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder Ergeb-
nisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnung übernom-
men und alle von mir benutzten Hilfsmittel, persönliche Mitteilungen und Quellen
in meiner Arbeit angegeben habe,

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe und
dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Ar-
beiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dis-
sertation stehen,

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere
wissenschaftliche Prüfung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts
haben mich folgende Personen unterstützt:

• Prof. Dr. Birgitta König-Ries

Ich habe die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere Abhandlung
bereits bei einer anderen Hochschule als Dissertation eingereicht: Ja / Nein.

Jena, .

[Kobkaew Opasjumruskit]

Deutsche Zusammenfassung

Das Internet der Dinge (IoT-Internet of Things) kommt heutzutage durch die Medien im-
mer mehr ins Gespräch. In Anbetracht der Fülle von intelligenten Sensoren, die wir derzeit
nutzen, ist kontextbewusstes Computing überall verfügbar und heisst uns also willkom-
men in der Welt von IoT. Allerdings, wenn es Trillionen von Ressourcen gibt, wie kön-
nen wir spontan die eine Ressource, die wir brauchen, bestimmen? Daher ist eine der
Hauptfragen in der Forschung die Auffindung des Geräts und des Dienstes. Der grundle-
gende erste Schritt ist zu untersuchen, wie diese Geräte und Dienste beschrieben wer-
den. Viele standardisierte Web-Service-Beschreibungen werden dazu verwendet, nicht nur
Web-Services, sondern auch die Geräte physisch zu beschreiben. Diese Geräte sind unter
dem Web-Service-Kommunikations-Layer eingekapselt, um sie im Internet verfügbar zu
machen. Web-Service-Beschreibungen mit semantischen Annotationen können dazu ver-
wendet werden, die dynamische Auffindung von Quellen zu automatisieren. Diese Technik
ermöglicht die automatische Erkennung, Konfiguration und Ausführung von Ressourcen
in dynamischen Umgebungen. Wir konzentrieren uns auf die Beschreibungssprache von
Ressourcen, die eine semantische Annotation ermöglicht. Dennoch, es gibt keinen ein-
deutigen standardisierten Formalismus um Ressourcen zu beschreiben. Es ist taktisch von
Vorteil mehrere Beschreibungsformalismen gleichzeitig zu behandeln.

Diese Dissertation stellt eine Technik zur Auffindung der formalismus-übergreifenden Res-
source vor, die den User Kontext und Ressourcen-Kontext verwendet um die Empfehlung
von Ressourcen zu verbessern. Im Gegensatz zu bestehenden Arbeiten ist unsere Tech-
nik auf nicht-IT-versierte Anwender ausgerichtet. Der Auffindungsprozess sollte nicht auf
einen einzelnen Ressourcenbeschreibungsformalismus beschränkt sein. Darüber hinaus
sollte der Matching-Algorithmus benutzersensibel und an die jeweilige Umgebung anpas-
sungsfähig sein, d.h. ausgeführt je nach aktueller Situation des Benutzers, anstatt sich
auf die Keyword-basierte Suche zu beschränken. Der größte Nachteil dieses traditionellen
Ansatzes ist, dass er von der Kompetenz der Anwender abhängt und meistens mehrere Ver-
suche erfordert. Daher haben wir das Ressourcen-Auffindungsmodul auf der Grundlage
existierender Techniken entwickelt, welches entdeckte Ressourcen auflistet, um die Abfra-
gen der Benutzer nach ihren Interessen, Fachwissen und aktuellen Situationen bedienen
zu können. Diese Arbeit erläutert die Implementierungsdetails und zeigt die Auswertung
jedes implementierten Moduls. Wir wollten beweisen, dass die Qualität der Ergebnisse, im
Vergleich zu herkömmlichen Auffindungstechniken, deutlich verbessert werden kann.

Um die Verwendbarkeit der vorgeschlagenen Methode zu demonstrieren, setzen wir sie
in MERCURY ein. MERCURY ist eine Plattform, die Zweierlei ermöglicht, den Un-
ternehmen mit ihren Kunden zu interagieren und den Endbenutzern maßgeschneiderte An-
wendungen zu erstellen. Es bietet eine webbasierte Schnittstelle, um eine Brücke zwischen
den aufblühenden Funktionalitäten, die im IoT verfügbar sind, und den Endbenutzern zu
schlagen. Im Rahmen von MERCURY benötigen die Registrierung, die Zusammenstel-
lung und die Ausführung von Ressourcen eine automatisierte Ressourcenfindung. Da
die Implementierung dieser Arbeit einen eigenständigen (stand-alone) Service darstellen
soll, besteht keine Einschränkung diesen unter der Domäne von MERCURY zu verwen-

v

den. Somit kann das generische Problem der Ressourcenfindung in einer beliebigen IoT-
Anwendung vom Ergebnis dieser Arbeit profitieren.

vi

Acknowledgement

This thesis cannot be completed without the help and support from these people. First, I
want to thank Prof. Dr. Birgitta König-Ries for supervising and supporting me not only
with the thesis but also the projects I have been working on. She is a great and kind
professor, friend, colleague, boss, and mother. I would like to give special thanks to Prof.
Dr. Wolf Zimmermann and Prof. Dr. Martin Welsch for reviewing this thesis.

This thesis is initiated by IBM project under the supervision of Prof. Dr. Martin Welsch
and Dr. Andreas Nauerz. This work cannot be done without the work of Jesus Expósitos.
Even though we did not make it to the end together, but it had been a wonderful time
working with great people like you.

Through all these years in Jena, I could not have made it without my colleagues in Fusion
group, especially Felicitas Löffler and Dr. Friederike Klan who listened to and helped me
through myriad problems. My appreciations also go to all the people whom I met and
exchanged our ideas during conferences, meetings or even on my vacations.

I cannot finish this part without saying thank you to dad and mom, who always believe in
me and support me for everything I want to do. I have dreamed so many dreams, and one
of my dreams is to make you smile. Your smiles have given me all strength to move on
every time I fall. Karn, my only brother, and my inspiration. My life has changed since I
followed you to a math class one day in 1995. Auntie, I appreciate everything you have
done for me. My words are too plain to say thank you to you. Uncle Meechai, even I
cannot see you anymore. I know you can see me from somewhere far away. Rest in peace,
and you will be in our memories forever.

Looking back to the day I decided to do my Ph.D., many thanks to my colleagues and
supervisors at Thomson Reuters Thailand, who understand my dream and supported me
to pursue it. Not forgetting my classmates in Electrical Engineering Department, Chu-
lalongkorn University, and Assoc. Prof. Dr. Ekachai Leelarasamee. I am not good at
showing my appreciation, but I would not have come this far without you all.

Friends, you know what I have been through. We have shared our joy, sadness, and laughter
all these years. Have you warned me about a Ph.D. life? I guess you did. I suffered, I
survived, I struggled, I laughed, and I carry on.

Finally, I want to thank myself for being persistent. I always believe that every action has
a consequence, and every matter has a reason. I started to write a story of Ph.D. life years
ago, and now it is the right time to complete it. After I finish my Ph.D., I will continue
pursuing my researching in informatics career and open a new chapter of my book.

vii

Abstract

Nowadays, the Internet of Things (IoT) is becoming progressively colloquial to media.
Considering the abundance of smart sensors we are currently using, context-aware com-
puting is available everywhere and thus embrace us into the world of IoT. However, when
there are trillions of resources out there, how can we spontaneously specify the resource we
need? Therefore, one of the main research questions is the device and service discovery.
The fundamental step is to study how these devices and services are described. Many stan-
dard web services descriptions are used to describe not only web services but also physical
devices. These devices are encapsulated under the web service communication layer to
make them available on the Internet. Web service descriptions with semantic annotations
can be used to automate dynamic discovery of resources. This technique enables automatic
discovery, configuration, and execution of resources in dynamic environments. Thus, we
focus on the resource description language that allows semantic annotation. Nevertheless,
there is no single standard formalism to describe resources. It is more tactful to handle
multiple description formalisms simultaneously.

This thesis presents a cross-formalism resource discovery technique which utilizes the user
context and resource’s context to improve the recommendation of resources. In contrast to
existing work, our technique is geared towards non-IT-savvy users. The discovery process
should not be restricted to single resource description formalism. Moreover, the matching
algorithm should be user-aware and environmentally adaptive, i.e. depending on the user’s
current situation, rather than limit to keyword-based search. The major drawback of this
traditional approach is that it depends on the users’ expertise and mostly requires several
tries. Hence, we developed the resource discovery module on top of existing techniques,
which will rank discovered resources to serve users’ queries according to their interests,
expertise, and current situations. This thesis explains the implementation detail and shows
the evaluation of each implemented module. We aimed to prove that the quality of the
result is improved significantly compared to conventional discovery techniques.

To demonstrate the usability of the proposed method, we deploy it in MERCURY. MER-
CURY is a platform that allows both businesses to engage with their customers and end
users to create custom-made applications. It offers a web-based interface to bridge the
flourishing functionalities available in the IoT and the end users. Within the context of
MERCURY, registration, assembling, and execution of resources need the automatic re-
source discovery. Since the implementation of this work is designed to be a standalone
service, there is no restriction to use it under the domain of MERCURY. Hence, the generic
problem of resource discovery in any IoT application can benefit from the outcome of this
thesis.

ix

Contents

I. Introduction 1

1. Motivation and Overview 3
Thesis Outline . 5

2. Project Background 7
2.1. Scenarios . 7
2.2. MERCURY Architecture . 9
2.3. Process Flow . 11

2.3.1. Resource Registration and Management 11
2.3.2. Scenario Modeling . 13
2.3.3. Scenario Execution . 14

3. Thesis Requirements 17
3.1. Problem Statement . 17
3.2. Requirements . 18

4. State of the Art 21
4.1. Similar Existing Solutions . 21

4.1.1. IoT tools for expert users . 23
4.1.2. IoT tools supporting non-programming users 25
4.1.3. IoT tools for customizing and sharing workflow 31
4.1.4. Commercial tools . 32

4.2. Resource Middleware . 33
4.3. Resource Description . 36
4.4. Resource Matchers . 37
4.5. Context-aware Resource Discovery . 37

4.5.1. Context Model . 38
4.5.2. Context-aware Applications . 40

II. Solution 43

5. Solution Overview 45
5.1. Resource Discovery . 45

5.1.1. Architecture . 46
5.1.2. Initial Assumptions . 48

5.2. Supported Resource Description Formalisms 48
5.3. Supported Resource Matchers . 51
5.4. Main Components . 54

5.4.1. Context Extractor . 54
5.4.2. Request Constructor . 54
5.4.3. Request Converter . 55
5.4.4. Result Integrator . 55

xi

Contents

6. Context Extraction 57
6.1. Context from User Profile . 57
6.2. Context from Social Sensors . 58

6.2.1. Context Extraction via Twitter API 59
6.2.2. Context Extraction via Facebook API 65

6.3. Context from User Preferences and Contributions 72
6.3.1. User Preferences . 72
6.3.2. Similar Usage . 72

6.4. Usage . 73

7. Request Analysis 75
7.1. Matcher Analysis . 75

7.1.1. OWL-S Matchers . 76
7.1.2. SAWSDL Matchers . 89

7.2. Essential information required for resource matching 103
7.2.1. OWL-S Description . 103
7.2.2. SAWSDL1.1 Description . 105
7.2.3. SAWSDL2.0 Description . 107

8. Request Preparation 109
8.1. Request Constructor . 109

8.1.1. Algorithm . 110
8.2. Request Converter . 116

8.2.1. Modes of Conversion . 116
8.2.2. Conversion Algorithm . 119

9. Result Integration 125
9.1. Existing Techniques for Result Merging 125

9.1.1. Score-based Merging Algorithm 125
9.1.2. Content-based Merging Algorithm 126
9.1.3. Rank-based Merging Algorithm 127

9.2. Merging Algorithm . 128
9.2.1. Initial function . 130
9.2.2. Get combined result function . 132
9.2.3. Get weight function . 135
9.2.4. Check weight change function 138

10.Resource Discovery Integration to MERCURY 141
10.1. Registration . 141

10.1.1. Applying context to the Registration process 144
10.2. Scenario Modeling . 144
10.3. Execution Engine . 146

xii

Contents

III. Evaluation 149

11.Evaluation Overview 151
11.1. Performance measurement . 151
11.2. Request Constructor . 154
11.3. Request Converter . 154
11.4. Result Integrator . 154
11.5. Description Collections . 154
11.6. Resource Matchers . 156

12.Unit Test Results 157
12.1. Evaluation of Request Constructor . 157

12.1.1. Simple Search . 158
12.1.2. Advanced Search . 165
12.1.3. Semantic Search . 171

12.2. Evaluation of Request Converter . 173
12.2.1. SAWSDL to OWL-S Matching Result 173
12.2.2. OWL-S to SAWSDL Matching Result 176

12.3. Evaluation of Result Integrator . 178
12.3.1. Result integration using OWL-S matchers 178
12.3.2. Result integration using SAWSDL matchers 182
12.3.3. Result integration using OWL-S and SAWSDL matchers 186
12.3.4. Tuning up the result integrator 191
12.3.5. Summary of Result Integrator 192

13. Integrated System Evaluation Results 193
13.1. Overall Quality Performance . 193
13.2. Overall Time Consumption . 201
13.3. Resource Discovery in MERCURY . 204

13.3.1. Resource Discovery in Registration 205
13.3.2. Resource Discovery in Scenario Modeling 206

IV. Conclusion 209

14.Summary 211
14.1. Resource Discovery Main Components 211

14.1.1. Context Extractor . 211
14.1.2. Request Analysis . 212
14.1.3. Request Constructor . 212
14.1.4. Request Converter . 213
14.1.5. Resource Matching and Result Integration 214

14.2. Integration with MERCURY . 214

15.Future Plan 217

xiii

Contents

Appendices 231

A. Appendix A 233

B. Appendix B 239
B.1. Matchers directory . 239
B.2. Test Collections . 240

B.2.1. Testing requests and solutions 240

C. Appendix C 269

D. Appendix D - Licenses and Permissions 283

xiv

List of Tables

3.1. Summary of requirements in this thesis. 20

4.1. Comparison of relevant works regarding functionality and usability. . . . 22

5.1. List of resource matchers from S3 Contest in OWL-S and SAWSDL tracks. 51
5.2. Simplified version of SAWSDL sample requests and offers. 53

7.1. OWL-S matchers’ recall rate per query. 77
7.2. OWL-S matchers’ precision rate per query. 78
7.3. OWL-S matchers’ nDCG rate per query. 79
7.4. OWL-S matchers’ average result quality. 80
7.5. First level elements required by OWL-S matchers. 82
7.6. Elements inside Service and Profile nodes required by OWL-S matchers. . 84
7.7. Effect from elements inside Service and Profile nodes on OWL-S matchers

when they are missing, contain blank value or contain wrong value. . . . 85
7.8. Elements inside Atomic Process, Input and Output nodes required by OWL-

S matchers. 87
7.9. Effect from elements inside Input and Output nodes on OWL-S matchers

when they are missing, contain blank value or contain wrong value. . . . 88
7.10. SAWSDL matchers’ recall rate per query. 90
7.11. SAWSDL matchers’ precision rate per query. 91
7.12. SAWSDL matchers’ nDCG rate per query. 92
7.13. SAWSDL matchers’ average result quality. 93
7.14. First level elements required by SAWSDL matchers. 95
7.15. Elements inside Types, Message, Service and PortType nodes required by

SAWSDL matchers. 96
7.16. Effect from elements inside Types node on SAWSDL matchers when they

are missing, contain blank value or contain wrong value. 98
7.17. Effect from elements inside Message:Request and Message:Response nodes

on SAWSDL matchers when they are missing, contain blank value or con-
tain wrong value. 100

7.18. Effect from elements inside PortType node on SAWSDL matchers when
they are missing, contain blank value or contain wrong value. 102

8.1. Main properties in OWL-S, SAWSDL1.1, and SAWSDL2.0 115

10.1. Mapping table of elements from a SAWSDL description file versus tables
and fields in MERCURY’s database. 143

11.1. List of resource matchers and algorithms from S3 Contest used for the
evaluation. 156

12.1. List of keywords used for evaluating the request constructor with the cor-
responding descriptions. 158

xv

List of Tables

12.1. List of keywords used for evaluating the request constructor with the cor-
responding descriptions. 160

12.2. Recall rate from the request constructor per query using simple keywords. 161
12.3. Precision rate from the request constructor per query using simple keywords.162
12.4. F-measure from the request constructor per query using simple keywords. 163
12.5. nDCG from the request constructor per query using simple keywords. . . 164
12.6. Recall rate from the request constructor per query using structured keywords.166
12.7. Precision rate from the request constructor per query using structured key-

words. 167
12.8. F-measure from the request constructor per query using structured keywords.168
12.9. nDCG from the request constructor per query using structured keywords. 169
12.10.Request constructor result comparison between using simple keywords and

structured keywords (advanced search). 170
12.11.Request constructor result comparison between using semantic expansion

and no semantic expansion for simple and advanced searches. 172
12.12.Resource matching result when using converted OWL-S descriptions and

corresponding OWL-S descriptions. 174
12.13.Comparison of quality between OWL-S and SAWSDL matchers. 175
12.14.Resource matching result when using converted SAWSDL descriptions

and corresponding OWL-S descriptions. 177
12.15.Result integrator’s quality from Figure 12.1, 12.2, 12.3, and 12.4 in each

iteration compared to each OWL-S matcher. The results listed as Round
[number] refer to the results from the result integration after each iteration. 181

12.16.Weight value of OWL-S matchers calculated from each iteration. 182
12.17.Result integrator’s quality from Figures 12.5, 12.6, 12.7, and 12.8 in each

iteration compared to each SAWSDL matcher. 184
12.18.Weight value of SAWSDL matchers calculated from each iteration. 185
12.19.Result integrator’s quality from Figures 12.9, 12.10, 12.11, and 12.12 in

each iteration compared to each matcher. 188
12.20.Weight value of multi-type matchers calculated from each iteration. . . . 190

13.1. Sets of matchers used for the integrated system evaluation. 194
13.2. Quality measurement of the resource discovery comparing between using

one, two, four, and six matchers. 195
13.3. Recall rate of the resource discovery comparing between using one, two,

four, and six matchers. 197
13.4. Precision rate of the resource discovery comparing between using one, two,

four, and six matchers. 198
13.5. F-measure of the resource discovery comparing between using one, two,

four, and six matchers. 199
13.6. nDCG of the resource discovery comparing between using one, two, four,

and six matchers. 200
13.7. Comparison of time consumption of the resource discovery between using

one, two, four and six matchers. 202

xvi

List of Tables

14.1. Summary of requirements and their statuses. 216

xvii

List of Figures

2.1. Architecture of MERCURY’s framework [KRONW12]. 9
2.2. Designed GUI of resource registration in MERCURY. 12
2.3. Designed GUI of resource management in MERCURY. 13
2.4. Designed GUI of situation or scenario modeling in MERCURY. 14

4.1. Overview of GUI, SenseWeb [KNLZ07], sensor network, and actual sensors. 23
4.2. Snapshot of Clickscript, an editor tool for Web Mashups [GTW10]. . . . 24
4.3. Actinium’s system architecture [KLD12]. 25
4.4. Snapshot from Sensor Masher, a graphical mashup tool for Linked Open

Sensor [Phu09]. 26
4.5. Screenshots of OPEN’s main-interface (resource-search) (a) pages for in-

cremental/composition programming mode (b-d) [GZI11]. 26
4.6. Overview of COBASEN architecture working together with COMPaaS.

C1 represents the gathering context information from physical devices through
a middleware. C2: the context information is sent to a search engine, which
indexes the context data and store in a database (C3). When a user searches
for a device (S1), the search engine looks for relevance devices (S2). After
the user selects the desirable device, the specification will be sent to the
middleware (S3). The user can subscribe to the device via the middleware
(S4). The communication between devices and the middleware are alter-
nating between S5 and S6 until it is done. Finally, the user gets a report
from the device (S7). 27

4.7. Overview of the OpenIoT Integrated Development Environment (OpenIoT
IDE). 28

4.8. CASCOM works as the Reasoning Engine (RE) block in the IoT architec-
ture [PZCG12]. 29

4.9. Privacy Notification Application for IoT [WC16]. Left: Preferences set-
tings to filter the notification. Right: Privacy notifications. 30

4.10. Screenshots of myExperiment [DRGS09] shows how a scientist (1) finds a
workflow, (2) executes and edits it in Taverna, and (3) uploads a new version. 31

4.11. Screenshots of IFTTT dashboard and workflow [IFT]. (a) Applets collec-
tions. (b) GUI for creating a new applet. (c) Recommendation of applets. 32

4.12. Xively dashboard: (a and b) resources monitoring UI on desktop and mo-
bile device respectively, and (c) rule settings for notification [Xiv]. 33

4.13. Example of CML model [BBH+10]. Ellipses represent object types, while
rectangles express relations or fact types. The Key box annotates all types
defined for each fact type. 38

4.14. Different layers of semantic context interpretation and abstraction [BBH+10]. 39
4.15. Visualization of spatial and temporal context in a home automation appli-

cation [RLS+11]. Left: TV status regarding user’s location and time of the
day. Right: a simplified model for TV status considering only the time of
the day. 40

xix

List of Figures

4.16. Architecture of TRENDY [BPGO13] (DA stands for Directory Agent; SA,
Service Agent; UA, User Agent; GM, Group Member (service); and GL,
Group Leader). 42

5.1. Architecture of resource discovery. 47

6.1. User Model and detailed information provided by Liferay Portal. 58
6.2. Data flow of a social sensor by Twitter. 60
6.3. ’Get recent contacts’ function from Twitter. 61
6.4. ’Get recent places’ function from Twitter. 62
6.5. ’Get a recent place with [another user]’ function from Twitter. 63
6.6. ’Check if the user is near to [a particular location]’ function from Twitter. 64
6.7. Data flow of an authentication process for Facebook API. 66
6.8. Data flow of a social sensor by Facebook. 67
6.9. ’Get recent contacts’ function on Facebook. 68
6.10. ’Get recent places’ function on Facebook. 69
6.11. ’Get a recent place with [another user]’ function on Facebook. 70
6.12. ’Check if the user is near to [a specific location]’ function on Facebook. . 71

7.1. Structure of OWL-S description with essential information for resource
matching process. 104

7.2. Structure of SAWSDL1.1 description with essential information for re-
source matching process. 106

7.3. Structure of SAWSDL2.0 description with essential information for re-
source matching process. 108

8.1. Request constructor diagram. 110
8.2. Request constructor data flow. 111
8.3. Request sampler data flow. 114
8.4. Request converter performs in the description repository (offline mode). . 117
8.5. Request converter performs on demand (online mode). 118
8.6. Request converter class diagram showing data flow of SAWSDL (1.1 on

the left side, and 2.0 on the right side) to OWL-S conversion. 120
8.7. Conversion from SAWSDL1.1 to OWL-S description flow chart. 121
8.8. Request converter class diagram showing data flow of OWL-S to SAWSDL1.1

conversion. 123
8.9. Conversion from OWL-S to SAWSDL1.1 description flow chart. 124

9.1. Example of Borda count method. 128
9.2. Flow chart of the result integrator. 129
9.3. ’init()’ function of the result integrator. 131
9.4. ’getCombinedResult’ function. 133
9.5. ’getScore’ function. 134
9.6. ’getWeight’ function. 136

xx

List of Figures

9.7. ’euclideanDistance’ function to measure the difference between the merged
result and the original results. 137

9.8. ’isWeightStable’ function to check the condition for stopping the iteration. 139

10.1. Registration flow with the resource discovery. 142
10.2. Resource discovery flow in the scenario modeling process. 145
10.3. Connection between the scenario modeling tool and the execution engine. 146
10.4. Resource discovery flow in the scenario execution process. 147

11.1. Definition of returned relevant and irrelevant results. 152

12.1. Recall rate of each OWL-S matcher compared with the result integrator. . 179
12.2. Precision rate of each OWL-S matcher compared with the result integrator. 179
12.3. F-measure of each OWL-S matcher compared with the result integrator. . 180
12.4. nDCG of each OWL-S matcher compared with the result integrator. . . . 180
12.5. Recall rate of each SAWSDL matcher compared with the result integrator. 183
12.6. Precision rate of each SAWSDL matcher compared with the result integrator.183
12.7. F-measure of each SAWSDL matcher compared with the result integrator. 184
12.8. nDCG of each SAWSDL matcher compared with the result integrator. . . 184
12.9. Recall rate of OWL-S and SAWSDL matchers compared with the result

integrator. 187
12.10.Precision rate of OWL-S and SAWSDL matchers compared with the result

integrator. 187
12.11.F-measure of OWL-S and SAWSDL matchers compared with the result

integrator. 187
12.12.nDCG of OWL-S and SAWSDL matchers compared with the result inte-

grator. 188
12.13.Comparison of results from the best performance matcher, poorest per-

formance matcher, average performance of 6 matchers, and the request
integrator running over 42 requests. 192

13.1. Time consumption of the resource discovery when using one, two, four,
and six matchers with varied number of requests. 203

13.2. Summary of the resource discovery roles in MERCURY. 204
13.3. Screenshot of the resource recommendation in MERCURY’s registration

process. 205
13.4. Screenshot of the advanced search in MERCURY’s registration process. . 206
13.5. Screenshot of the resource recommendation in MERCURY’s scenario mod-

eling process with reasons: (a) this item is frequently used,
(b) is semantically equivalent to the selected item,
(c) has compatible input/output to the selected item, and
(d) is previously used in the similar scenario. 207

14.1. Implemented parts of the resource discovery. 212
14.2. Summary of implemented parts in MERCURY. 215

xxi

List of Figures

B.1. Directory structure for resource matchers. 239

xxii

Listings

4.1. Virtual sensor definition example. 35
4.2. Description of a context-aware coffee machine [RLS+11].

Copyright c© 2011, Springer Science+Business Media, LLC, RightsLink
license. 41

5.1. Sample description in OWL-S. 49
5.2. Sample description in SAWSDL1.1 . 50
5.3. Sample description in SAWSDL2.0 . 50

8.1. Example query for simple search using original_boost = 3, and seman-
tic_boost = 1 . 113

8.2. Example query for advanced search with operation_boost value = 3, in-
put_boost = 2, output_boost = 2, original_boost = 3, and semantic_boost =
1 . 113

A.1. Original SAWSDL. 233
A.2. Converted OWL-S from a SAWSDL description. 235
A.3. Original OWL-S. 236
A.4. Converted SAWSDL from an OWL-S description. 238

C.1. Establishing connection service via Twitter API. 269
C.2. Twitter client for retrieving user context. 273
C.3. Establishing connection service via Facebook API. 274
C.4. Facebook client for retrieving user context. 279
C.5. Redirecting service for Facebook API. 281

xxiii

Nomenclature

BPEL Business Process Execution Language for Web Services

GSN Global Sensor Network

IaaS Infrastructure as a Service

IoT Internet of Things

nDCG normalized Discounted Cumulative Gain

OWL-S Web Ontology Language for Web Services

PaaS Platform as a Service

S3 Semantic Service Selection

SaaS Software as a Service

SAWSDL Semantic Annotations for WSDL

SRRs Search Result Records

TopD Top Document

W3C World Wide Web Consortium

WSDL Web Services Definition Language

WSMO Web Service Modeling Ontology

XaaS Everything as a Service

xxv

Part I.

Introduction

1

1
Motivation and Overview

Context-aware pervasive computing has become a prevalent topic over the last decade.
With the upcoming of ubiquitous mobile devices1, which provide heterogeneous sensors
and facilitate Internet access to users, at anytime and anywhere, we are close to realizing
the idea of the "Internet of Things" (IoT) [MF10]. In the IoT world, physical things are
becoming smart web-connected devices. They can create, store, share data, and can be
programmed to make decisions based on given information. In addition to these concepts,
things have become not only remotely controllable but also able to communicate with each
other and able to automatically adapt themselves to the demands of the user. Meanwhile,
the enormous growth of RFID embedded devices enables sensors - from personal health
monitoring such as blood pressure sensing, to logistic monitoring of cargo shipping - to be
accessible as an application of IoT [AIM10]. The usage of IoT is not limited only to propri-
etary and complex solutions, but almost everyone can also experience IoT via customizable
and affordable sensors like Arduino [Ard], Raspberry Pi [Ras] or Ninja Blocks [Nin].

According to the definition of context in informatic computing domain:

Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves. [Dey01]

By measuring the context of users and their preferences, things can be altered or configured
to match the requirements of each user. Let us consider the following example:

Ann decides to be woken up at 6 A.M. and go jogging if it does not rain
in the morning. Otherwise, she prefers to receive an alarm message at
7 A.M. and postpone her jogging schedule to the evening.

1[SGFW10] estimated that there will be 50 billion connected devices by 2020. However, comparing with the
recent figures of IoT devices, this popular claim seems to be over-optimistic. From [Sta], there were 15.41
billion IoT devices in 2015. The number is growing approximately 15% per year, giving that there were
17.68 billion IoT devices in 2016. When the trend keeps continuing, we will reach the estimated number
by 2023, three years later than the estimation.

3

CHAPTER 1. MOTIVATION AND OVERVIEW

To achieve this functionality, a weather report service or a rain sensor needs to be com-
bined with the user’s location sensor. This piece of information can be obtained from, for
example, the user’s calendar, a flight booking service, or any service that provides infor-
mation on her whereabouts. Meanwhile, the change of her jogging schedule should push a
notification to her online calendar so that she will be reminded later via her mobile device.

This simple example already shows the main components of the IoT; sensors (things that
sense the environment, e.g. rain gauges), actuators (things that change the environment,
e.g. an alarm clock), and services (e.g. weather forecast web services). For the sake of
brevity, all three of these will be referred to as resources for the remainder of this thesis.

Major challenges in realizing the IoT arise from its colossal size and ubiquity. One such
challenge is the discovery of appropriate resources. It is not realistic to assume that all
users will be able or willing to manually find a suitable resource among the thousands that
physically surround them or even the billions existing globally. Thus, some support for
resource discovery is needed.

One approach to address this problem is to wrap resources (or collections thereof) as (web)
services (XaaS - Everything as a Service), as suggested by [ZPG13] and [PZCG13], and to
use an approach of automatic resource discovery developed in the semantic web services
community [LpNQP11]. However, there is no unified resource description formalism and
no unified resource matchmaking approach, and it is unlikely that this will change in the
future. This means when a user composes a request using one formalism, an automatic
discovery process will find only resources described in this formalism and will miss all
others, which is not satisfactory. Moreover, an appropriate use of context, e.g. user’s
locale, can significantly improve discovery results, e.g. rain sensors nearby. Hitherto,
no unified framework that allows "injection" of context information into service offers or
requests exists.

The semantically annotated description also enhances the discovery of resources. For in-
stance, when a user is looking for an actuator that receives the date time value to trigger an
alarm, the description of this actuator should be matched with an alarm clock. Hence, all
the actuators that have been described to have the similar functionality should be picked
up and presented to the user.

The usage of resource discovery is not limited only to the recommendation of suitable re-
sources, where a user gets the list of possible resource, then decide as to which resource is
suitable for his needs. Let us consider the case of running scenario, where the user com-
bines multiple resources to work as a new application. When one resource immediately
fails to function, the dynamic resource discovery should automatically find a temporary
replacement. This requires a highly accurate and profound understanding of the behav-
ior and connectivity of the replacing resource. Therefore, the human interaction must be
involved at some point in time, and as soon as possible. The resource discovery process
should notify the user immediately about the failure and should offer a list of replaceable
resources.

4

Thesis Outline

Addressing all these challenges is the main goal that this thesis needs to achieve, and
we also envision that the outcome of the solution might be tremendously helpful for the
realization of IoT.

Thesis Outline

This thesis comprises of four main parts: introduction, solution outline, evaluation, and
conclusion.

The introduction provides the motivation and overview of this thesis, which leads us to
an example scenario, followed by the system requirement for a solution platform, called
MERCURY in chapter 2 "Project Background". Nonetheless, it is important to note that
the primary objective of this thesis is to create an advanced method for resource discovery
in the context of IoT which is but one part of MERCURY. We discuss the usage of this
research via MERCURY throughout this thesis to demonstrate this work in practical ap-
plication, although the proposed technique is not limited only to one particular platform.
Therefore, we state all the challenges and issues which need to be solved in order to re-
alize the resource discovery process in chapter 3 "Thesis requirements". Then we review
the existing works that are either similar to this research, or could be used in this thesis in
chapter 4 "State of the Art". Respectively, we compare them and indicate the gaps that need
to be improved upon, which also reflect the necessity of aforementioned requirements.

In solution part, the overview of the solution is given, where the implementation detail
of each part in the resource discovery is described. Chapter 6 "Context Extraction" pro-
vides the detail of how to retrieve context information for enhancing the automatic resource
discovery. In chapter 7 "Request Analysis", we elaborate on the resource description lan-
guages and matching tools used in this thesis as a proof of concept. We explain how we
interpret users’ query into formatted resource descriptions that are compatible with exist-
ing resource matchers in chapter 8 "Request Preparation". All the results returned from
resource matchers are merged into one list as explained in chapter 9 "Result Integration".
Eventually, the whole solution is applied to MERCURY as elaborated in chapter 10 "Re-
source Discovery Integration to MERCURY".

The quality measurement and the prerequisites for evaluating the resource discovery are
provided in chapter 11 "Evaluation Overview". First, the measurement was done indi-
vidually as depicted in chapter 12 "Unit Test Results". Then the integrated system was
evaluated in chapter 13 "Integrated System Evaluation Results". The application of the
resource discovery in MERCURY is also presented here.

We summarize the result of this thesis and compare it with our initial requirements in chap-
ter 14 "Summary". Finally, we provide the foresight of further improvements in chapter 15
"Future Plan".

5

2
Project Background

This thesis is written in the context of the MERCURY project1. Before exploring deeper
into detail of the main objective of this thesis, it is helpful to first understand the overview
of this project. We aim to develop a platform which offers straightforward, user-centric
integration and management of heterogeneous sensors, devices, and services via a Web-
based interface. To illustrate how this platform can assist end-users maximizing the benefits
of IoT, we analyze example scenarios. From these scenarios, we then formulate the project
requirements. Then, we construct an architecture of MERCURY, where we can realize the
workflow to achieve the given scenario. Finally, we focus on a specific module which leads
to this thesis’ requirements in the following chapter.

2.1 Scenarios

Let us consider the previously introduced scenario:

Ann decides to be woken up at 6 A.M. and go jogging if it does not
rain in the morning. Otherwise, she prefers to receive an alarm
notification at 7 A.M. and postpone her jogging schedule to the
evening.

(Ex. 1)

To realize the scenario, Ann needs to register a rain sensor and an alarm clock to the
platform. Sensors and actuators are connected through gateway components. Thus, they
appear to the service discovery and the execution engine as web services. This way, we
can overcome the issue of heterogeneity of devices. Gateways support bridging sensor
networks to web services, allowing direct access to sensors and actuators. Here, the infras-
tructures like GSN middleware [PZC+12] can be deployed. These infrastructures will be
elaborated on further in Chapter 4.

From MERCURY’s perspective, these sensors and devices appear as web services with
machine-interpretable descriptions. Therefore, physical devices or web services could be

1www.mercury-portals.org

7

CHAPTER 2. PROJECT BACKGROUND

treated similarly, and can be simply referred to as "resources". These resources will be
used as fundamental building blocks to create new custom-made applications later.

Based on [BBM], we envision the interactions between end users and IoT platform as
follows: after the registration of each resource, the resource’s properties should be man-
ageable. A resource management process can be implemented together with the resource
registration process. First;

P1. We need a resource registration and management module.

However, the user may experience some difficulties in sensor discovery. During the regis-
tration process, if there are sensors with the same name appearing simultaneously, this user
may be unable to specify the preferred sensor. The issue can be solved by using technical
information to identify the preferred one, like a serial number. However, this approach is
apparently inconvenient for non-technical users. Thus;

P2. We need a resource discovery module.

Afterwards, Ann can wire sensors or services to meet the desired functionality. Here, a
modeling tool can assist her in combining all sensors and actuators to create a scenario.
When the user completes the scenario, there should be a model translator to convert a
graphical model into an executable script. Therefore;

P3. We need a scenario modeling interface and model translator.

The executable script will be processed by an execution engine which regularly returns
the result from the operation. Besides, the runtime failure should be dealt with, e.g. push a
notification to a user or automatically find a replacement of the missing resource. Conse-
quently;

P4. We need an execution environment.

During the day, Ann may need to check if her rain sensor is still responsive and whether
there would be a thunderstorm for the whole day. She can monitor the on-going process
via a runtime interface. Thereupon;

P5. We need a runtime UI.

Furthermore, each user may have different interests and preferences. We can adapt the
behavior of our platform according to each user’s context. Consider the following sce-
nario:

Ann has connected her online calendar with her email account,
which she provided to MERCURY as a user account information.
She wants to have a rain sensor internally updated according to
the location she put on her calendar. On the other hand, the con-
firmed jogging scenario should be updated to her calendar as
well.

(Ex. 2)

8

2.2. MERCURY ARCHITECTURE

It is possible that the user can register and assign her GPS locator to automatically locate
her whereabouts and then look for a nearby rain sensor. However, if she wants MERCURY
to rely on her calendar, she can assign her calendar as a sensor. The user can register her
calendar without extra effort, since she has already defined it in her user account. Further-
more, if there is no information on her calendar, MERCURY can assume to use her default
address from her user profile as her current location. Then;

P6. We need a user management module and need to extract user context from it.

Based on all these project requirements, we propose a system architecture as described
in the following section.

2.2 MERCURY Architecture [KRONW12]

From a user’s perspective, the essential parts are divided into two categories: the web portal
client side, and the server side as shown in Figure 2.1.

Figure 2.1.: Architecture of MERCURY’s framework [KRONW12].

Let us take a closer look at the web portal client side. A resource management module is
responsible for registration and management of resources. Corresponding to Requirement

9

CHAPTER 2. PROJECT BACKGROUND

P1, this module allows users to register their devices or services to the system and manage
their properties and access rights. Users can choose and combine devices and services
via a scenario modeling tool with respect to P3. When a scenario is complete, a model
translator will translate it into an executable script, while a runtime UI, as required by P5,
is responsible for displaying events and the current status of defined scenarios to the user.

On the server side, it consists of resource discovery2, execution environment, and user
management modules. Following Requirement P2, the resource discovery manages the
service’s description repository. It is also responsible for retrieving a request from the
scenario modeling, the resource management or the execution engine. Then the resource
matcher can use the request to match with the description in the repository.

Meanwhile, requirement P4 demands an execution environment to obtain the script-like
results of the scenario modeling and then to execute them. A user management maintains
user models (such as expertise and preferences), and access rights to devices. Also, it can
provide valuable information, such as user context which could fulfill Requirement P6.

MERCURY offers a service implemented for portal technologies such as WebSphere 3 and
Liferay 4, and a user-interactive part as a standalone application. This portal allows users
to access our framework from any location via any suitable device.

We aim to implement the resource management, the scenario modeling, the runtime UI,
the resource discovery, and the execution environment. For the execution environment, we
implement a model translator which passes the script to an execution engine such as Busi-
ness Process Execution Language for Web Services (BPEL), Business Process Modeling
Notation (BPMN) or Yet Another Workflow Language (YAWL). For the user management,
we use a built-in structure from the Portal. The user context retrieval is needed to be imple-
mented additionally. Nevertheless, this thesis focuses on the resource discovery part. The
outcome can be utilized not only within MERCURY platform, but also in any solution that
deals with the heterogeneity of IoT.

In [OEKR+12], we demonstrated MERCURY. It assists users to accomplish their desired
tasks equipped with environment-adaptive functionalities. That is, depending on the user’s
context, MERCURY can deploy the appropriate resources available at the specific time and
place to perform the assignment. The following process flow exemplifies how end users
can make use of existing resources to create applications and execute them via MERCURY.

2The resource discovery (P2) is the main focus of this thesis. We will discuss more in detail about the
motivation, research questions, and requirement of this component in the upcoming chapter. Later in the
solution part, we will describe the implementation methods.

3http://www-03.ibm.com/software/products/en/websphere-portal-family
4http://www.liferay.com

10

2.3. PROCESS FLOW

2.3 Process Flow

To depict the usage of MERCURY, let us consider the scenario from Ex. 1. To achieve the
scenario, we envision three main steps: Resource Registration and Management, Scenario
Modeling, and Scenario Execution.

Obviously, it is unrealistic to register all relevant resources available via the Internet.
Therefore, an automated resource discovery approach is combined with the conventional
registration process. In the registration process, we can make many subprocesses auto-
matic. First, the nearby resources, like rain sensors, should be discovered (if the current
location of resources and the user are provided). Otherwise, the user has to provide at least
one keyword that describes the functionality of the resource she is looking for, e.g. rain,
weather, meteorology.

During the scenario design, a group of resources can be combined to create a situation
building block, such as ”get weather” or ”set calendar” situations. This situation concept
offers reusability, modularity, and the component is also counted as one type of resource.
An automatic resource discovery is also necessary to help users find suitable building
blocks.

When a scenario ”go jogging” is created and being executed, a placeholder for a weather
sensor might need to be updated according to the user’s location as required in Ex. 2.
If the GPS sensor is not assigned to the scenario, MERCURY should be able to estimate
the whereabouts of the user. Such estimation can be made from a user profile’s data or
other sources of context, social network status updates, for instance. The resource dis-
covery helps to resolve this issue by deriving user’s context and matching with resource
descriptions.

Next, we will elaborate on the definition and detail of each process.

2.3.1. Resource Registration and Management

Web services usually provide human and machine interpretable descriptions. These de-
scriptions can be automatically created in IDE (Interactive Development Environment) so
that they are consumable by a machine. A user can register a resource by providing a direct
URI of the resource’s description (as provided in ProgrammableWeb 5, for example). How-
ever, it is most likely that a keyword(s) will be provided instead of the exact URI. Then,
the basic matching would match the keyword with resources’ names via a registration GUI
as shown in Figure 2.2. Additionally, this keyword-based search can be done semantically
so that the results are not limited to the exact input text. For example, when a user enters
"rain sensor" as a keyword, the resource discovery could also return the resource with the
name "weather forecast".

5www.programmableweb.com

11

CHAPTER 2. PROJECT BACKGROUND

Figure 2.2.: Designed GUI of resource registration in MERCURY.

Furthermore, we can get more accurate results when the user defines keywords for input,
output or operation of a resource. With this particular information, the discovery process
can look into the description detail and match the given keywords with a more refined
algorithm. For instance, from Ex.2, the user might want to use the weather forecast service
instead of a local rain sensor. The weather forecast service she is looking for should receive
location data as an input and weather condition as an output. However, the input location
may have various formats. It could be a latitude-longitude value, postal code, or a city
name. Therefore, the user could also specify the data type in a resource discovery GUI.

After the registration, users can configure the resource name, description, attributes and
privacy properties via the resource management GUI depicted in Figure 2.3. Here, users
can specify which resources they want to share or see resources other users have shared.
All resource properties are stored in MERCURY database. Therefore, any changes in
properties are applied only to MERCURY context.

12

2.3. PROCESS FLOW

Figure 2.3.: Designed GUI of resource management in MERCURY.

2.3.2. Scenario Modeling

The GUI for modeling scenario is shown in Figure 2.4. On the left side, a toolbox palette
displays various possible components: sensors, actuators, web services, operator or pre-
defined groups of components. On the right side, there is a canvas where a user can drag
components from the toolbox palette and drop into it. Then, the user can connect these
components on this canvas. The canvas provides two sides of the operation, if [a condition
on the left canvas] is fulfilled, then activate [an operation on the right canvas]. For example,
if a heart rate sensor senses the heartbeat above 190 bpm, then sends a notification email
to a medical unit and calls for an ambulance. The complete setting is defined as a scenario.
Additionally, parts of a scenario can be saved as a situation for future usage.

2.3.2.1. Situation Design

When a user creates a new situation, the discovery module can assist finding appropriate
resources to add to this situation. For instance, while defining a "Get weather condition"
situation, a user could be looking for a rain sensor in her backyard. She can start selecting
any rain sensors, and the resource discovery will recommend her similar resources which
may be more suitable than the first one. Also, the compatible resources which return the
weather condition as an output or accept weather condition as an input will be recom-
mended. Therefore, the users can continue their situation design without repeating the
manual search.

13

CHAPTER 2. PROJECT BACKGROUND

Figure 2.4.: Designed GUI of situation or scenario modeling in MERCURY.

The created situation is also shareable among other users, and this can ease the scenario
design process. For example, a user can get a recommendation of resources from other
users who have created similar situations.

2.3.2.2. Scenario Design

A new scenario can be created from existing situations or atomic instances. Again, the
discovery module can help finding appropriate situations to be added into the scenario. As
an example, a user defines: if "Get weather condition." then "Set an alarm clock." Hence,
a previously defined situation "Get weather condition." can be used.

Situation templates can be used or modified. For instance, a primary element, "rain sensor",
in the situation "Get weather condition" is replaceable with the "German weather service"
by changing a resource instance.

2.3.3. Scenario Execution

This step allows a user to monitor resources and scenarios while they are being executed.
Even though the user is not observing the process, the execution engine should be able to
handle resource connection failures. When the connection failure is detected, the execution

14

2.3. PROCESS FLOW

engine should alert the user. In the meantime, the automatic discovery process should start
looking for a replacement resource.

Another case for altering the scenario during the runtime is when a placeholder is included
in a scenario. When a user needs the service to adjust automatically according to her
current context, she can utilize the "on-the-fly" resource discovery. For instance, we have
a situation "Detect if there is a weather sensor in my vicinity." The user may select a
placeholder to provide value for a parameter "myLocation" in the situation creation. During
execution, MERCURY will look for a resource that returns location information.

Note that the processes 2.3.1 and 2.3.2 are entirely user-interactive. MERCURY will pro-
pose suitable resources, but it is up to users to decide which one is the most appropriate.
In contrast, it is hardly possible for the process 2.3.3 to wait for users’ interactions because
the decision must be made immediately. In that case, we need to ensure that MERCURY
is capable of automatically finding the best resource.

Even if the resource discovery is highly accurate, it is still doubtful whether the replace-
ment should be completely done without a user approval. Although this issue is beyond
the scope of this thesis, we would like to present the initial solution. We aim at providing a
list of potential resource and push a notification to a user whenever the on-the-fly resource
discovery is required.

Moreover, we can utilize a semantic knowledge to elevate the chance of successful resource
discovery. This semantic technique can be applied during the preparation of a request
message (e.g. appending synonyms) and the matching between the request and resource
descriptions.

Although the entire system’s architecture is presented here, this thesis is focusing on the re-
source discovery module and its connection to other parts within the proposed architecture.
In the next chapter, we conclude the thesis requirements based on the project requirements
described in this chapter.

15

3
Thesis Requirements

According to the project requirements, one major component is the resource discovery
unit. In this chapter, we summarize the problems the resource discovery aims to solve
within each process of MERCURY. Consequently, the thesis requirements are defined.
Thereupon, we design a resource discovery engine, which will be elaborated on in Part II.

3.1 Problem Statement

"The acquisition of knowledge is always of use to the intellect, because it
may thus drive out useless things and retain the good. For nothing can be
loved or hated unless it is first known." — Leonardo da Vinci

To make IoT resources feasible, accessible, and usable, there are IoT search engines like
Thingful [Thi] and Shodan [Sho]. Although such services are available, looking up the ap-
propriate resource among numerous resources in IoT is still tedious and even impossible in
many scenarios (e.g. dynamic allocation of resources at runtime). Therefore, an automatic
resource discovery is needed.

First of all, a registration process must be defined so the system would recognize and un-
derstand the functionality of each resource. Let us consider Ex. 1 again. There, Ann wants
to create a scenario that sets her alarm at six in the morning on days with nice weather
and in the afternoon on the other days. To build this scenario, she needs to register the
required sensors and services with MERCURY. The resource discovery module should
support her in this task. Ann should be able to specify the resource she is looking for by
searching for ”rain sensor” and ”alarm clock” in the registration GUI provided by MER-
CURY. The system should then match her specification against the descriptions of available
sensors/services.

Then we have to answer the following question. What could describe the individual re-
source in the machine-interpretable fashion so that the resource description can be dis-
covered and used automatically? Thus, we need to study how resources are commonly
described. In fact, there are several description formalisms widely in use, and it is less
likely that a single resource would be described in various formalisms. If we look for a

17

CHAPTER 3. THESIS REQUIREMENTS

particular resource based on one single formalism, we may overlook the relevant resource
described in a different formalism. Therefore, the resource discovery should handle more
than one description language, in other words, we need a cross-formalism discovery. More-
over, the crucial information of each resource must be stored so that it could be managed
and matched with a user’s query later.

Next, during the modeling process, MERCURY needs to construct a query to retrieve
resources that fit a scenario. This opens up the opportunity to cultivate context information,
such as geolocation and user preferences, to improve the resource recommendation, as
exemplified in Ex. 2. Considering when the user is looking for a calendar, the highest
potential should be her calendar that is linked to her email address. Thus, we need to
determine which type of context should be taken into account and when they should be
applied to the discovery process. The context information can significantly enhance the
relevance of discovery results.

Lastly, during the execution process, the resource’s failure to connect or operate should
be detected immediately, and the system should offer a user the solution, i.e. replaceable
resources. Considering the scenario created in Ex. 2, when a GPS sensor fails to respond,
as well as when an empty placeholder for a location sensor is detected in the runtime, the
resource discovery should be instantly activated. The resource discovery should suggest
possible sensors which can be used by the execution engine in place of the previous one.
Here, we need to formulate a query from the qualifications of the missing resource to match
with available resources.

Though the outcome of this thesis will be evaluated and deployed on our implemented
platform, the problems this work aims to solve are not restricted to this platform. These
are generic problems faced by every system that uses automatic discovery. Therefore, the
solution from this research can be used for the greater good in the context of IoT.

3.2 Requirements

Based on the problem statement, the requirements need to be fulfilled to construct the
proposing system are summarized below.

First, the resource discovery should be responsible for creating a request in pre-defined
formats from free-text keywords (R1), so it can be matched with existing descriptions in a
resource discovery repository by semantic resource matchers. Also, the solution should be
user-friendly so that non-IT users will also be able to formulate resource requests.

Since the description that we are looking for could be described in arbitrary formalisms, the
resource discovery should be able to handle different description formalisms (R2). First,
we study the commonly used description formalisms. There are many solutions to make
a matching between the request and resource descriptions in each formalism. Thus, this
thesis does not propose a new resource matcher, but rather use the existing ones. Besides,

18

3.2. REQUIREMENTS

using different types of matchers at once does not only yield a better discovery result, it
also eliminates the aforementioned problems. The resource discovery should be able to
handle multiple description formalisms, and therefore matchers simultaneously (R3).

To support the discovery process, a basic search is needed, for example, it can list the lo-
cal resources visible on the current device, as well as the conventional text-based search
over the description document (R4). However, this alone could be insufficient; the system
should offer an advanced search. That is, the system would consider not only the purely
semantic meaning of the keyword but also the functionality of the keyword (R5). The
example of a semantic search is, when a user is looking for an ambulance service, the am-
bulance can be associated with terms like emergency, road, and vehicle. Thus, the relevant
resources which contain such terms can be included in search results. This semantic search
recently becomes more in use [BS16]. The syntactic search is considering the role of a
given keyword. For instance, whether the keyword should be found as an input, output or
operation description of a resource.

Additionally, the context information can enhance the search results [LdMT+15]. Thus,
the resource discovery should use the context information in addition to the semantic search
process. We need to specify the source of contexts such as the user profile or sensors’
descriptions (R6). When the user context or resource context is available, such as current
location, it should be added to the query in order to improve the search result (R7).

The registered resources’ descriptions should be stored in the system and the system allows
the resource owner or the system administrator to update them later (R8). This functionality
can be realized by a resource management module. It will play a major role in the modeling
tool. Since a newly created scenario is considered as a new resource, its properties would
be used as a resource description so that this scenario can be discovered later on.

In the process of scenario modeling, it is possible that thousands of resources will be avail-
able on the platform. Thus, the recommendation and search for the right resource that
is adaptive to user’s interactions are necessary (R9). When the registered resources and
created scenarios become numerous, users might need to use a search function to find
resources, and a recommendation could offer potential resources to the users. The rec-
ommendation can be based on the users’ history of usage (’frequently used’ resource, for
instance), the compatibility of input/output, and the semantic relevance (e.g. a temperature
sensor is relevant to a weather forecast service).

During runtime processing, the resource discovery can be used for replacing a resource in a
placeholder or used for handling a failure of a resource (R10). For a placeholder item, it is
usable when an actual resource replaces it. The list of suitable resources should be provided
to users so that they can easily make a decision. Moreover, as the runtime failure occurs,
the users can enable the system to automatically repair the failure, but it is recommended
that the users should acknowledge the solution first before it is applied.

Since the resource discovery is involved in all these processes, it is practical to provide the
resource discovery as a standalone service (R11).

19

CHAPTER 3. THESIS REQUIREMENTS

Despite the fact that the resource discovery is designed to operate as a standalone service,
the outcome of the discovery should be presented differently depending on the context of
usage (R12). Thus, the recommendation of resources needs to be customized according to
the purpose of discovery. For example, in the registration process, the detail from resource
descriptions (including service’s invoking protocol) can be reviewed before being added to
the system. While in the modeling process, such technical detail like the invocation pro-
tocol is unimportant. Instead, the operation description, user ratings, and privacy settings
are more informative for users. Lastly, during the execution process, the resource discov-
ery should focus on the input/output compatibility of resources. It should allow a user to
replace the resource with a single action.

In the next chapter, relevant studies and projects are reviewed to compare and emphasize
the importance of these requirements. Other components of the project that can be ful-
filled by existing works are discussed as well. The detailed solution for the requirements
presented in this chapter is elaborated on in Section II. Finally, all requirements are sum-
marized again in Table 3.1.

Requirement

R1 The resource discovery unit should be able to construct a free-text query message
from end users into pre-defined formats.

R2 The resource discovery should be able to interpret different description formalisms.

R3 The resource discovery should handle multiple description formalisms and match-
ers simultaneously.

R4 The discovery process should offer a basic search for resource descriptions.

R5 The discovery process should offer an advanced search considering semantic anno-
tations and syntax of keywords.

R6 The source of user context should be defined.

R7 When user context or resource context is available, they should be applied to the
search query.

R8 The resources’ descriptions should be derived, stored, and made editable by autho-
rized users.

R9 The modeling tool should recommend the potential resources to users by consider-
ing users’ interactions.

R10 During runtime, a placeholder item or a fail-to-respond resource should be sup-
ported by the service discovery.

R11 The resource discovery should operate as a standalone module.

R12 The discovery result should be presented in the registration, scenario modeling, and
execution processes in a way that users can apply the result instantly.

Table 3.1.: Summary of requirements in this thesis.

20

4
State of the Art

In this chapter, the existing works which offer a solution like MERCURY are reviewed and
compared in terms of usability. It may turn out, however, that none of them focuses on
the resource discovery process and sufficiently takes user and environmental context into
account.

Middleware is used as a connection between an application layer and a hardware layer to
hide complications in the device integration. Even so, the heterogeneity issue has never
been adequately addressed. Nevertheless, the prominent middlewares are reviewed so that
we can decide which one can be applied to MERCURY.

Afterwards, the resource descriptions are reviewed. Upon that, representative descriptions
are chosen for implementing a proof-of-concept prototype. Along with commonly used
formalisms, many description matchers have been implemented, and they perform well in
their domain. Therefore, it is more plausible to study and deploy them in this work rather
than create a new resource matcher from scratch.

Finally, we examine solutions which apply user and environmental context into their search
algorithms. Thus, we can summarize the gap of improvement that has not been answered
by any work.

4.1 Similar Existing Solutions

The concept of the Internet of things (IoT) has been around since the 1990s. Since then,
many pieces of research have been conducted to actualize the idea. Nowadays, users can
control smart devices via web-based platforms. Initially, most of the solutions are aimed at
the implementation of platforms for scientists or IT-savvy users. Many attempts have been
made to attract non-programming users with more intuitive GUIs. Furthermore, the created
workflow can be more versatile and enhanced by being shareable and customizable within
the users’ community. The big potential revenue for commercial players lies in mash-up
tools for social networking applications.

Here, we classify existing solutions into four groups: tools for experts, tools for end users,
tools for teams (multiple users), and commercial tools. The comparison between all these
solutions is summarized in Table 4.1.

21

CHAPTER 4. STATE OF THE ART

Projectnam
e

Sensors
R

egisteration
U

I
M

odeling
U

I
R

untim
e

E
xecution

U
I

Supports
non-expertusers

R
em

arks

SenseW
eb

[K
N

L
Z

07]
P

7
3

7

W
eb

M
ashups

[G
ui09]

P
3

3
7

A
ctinium

[K
L

D
12]

P
7

P
7

L
inked

O
pen

Sensor
[L

pH
09]

P
3

?
3

O
PE

N
[G

Z
I11]

P
3

/P
?

3
context-aw

are

C
O

B
A

SE
N

[L
dM

T
+

15]
3

?
?

3
context-aw

are,
sem

antic-based

O
penIoT

[SK
H

+
]

l
3

3
l

sem
antic-based

C
A

SC
O

M
[PV

16]
l

l
7

3
context-aw

are

[W
C

16]
l

7
l

l
context-aw

are

SH
IW

A
[SH

I]
SC

I-B
U

S
l

?
?

scientific
sensors

m
yE

xperim
ent[D

R
G

S09]
?

l
3

?
scientific

sensors

IFT
T

T
[IFT

]
3

/P
3

3
l

E
vrythng

[E
vr]

P
P

3
l

X
ively

[X
iv]

P
P

3
l

L
SM

[L
pN

Q
P11]

l
3

3
7

sem
antic-based

(3
=available,

7=notavailable,
l

=partially
available,P=program

m
ing

required,?
=notm

entioned
in

the
w

ork)

Table
4.1.:C

om
parison

ofrelevantw
orks

regarding
functionality

and
usability.

22

4.1. SIMILAR EXISTING SOLUTIONS

4.1.1. IoT tools for expert users

SenseWeb [KNLZ07], an infrastructure for data sharing, provides a map-based front-end,
called SensorMap [NLZ07], as a visual interface for geocentric datasets. Figure 4.1 depicts
how the integrated system works for SenseWeb. It needs a middleware to cope with the
integration of the sensor network, and no GUI is available. On the other hand, a presen-
tation layer, like SensorMap, can be explicitly implemented and used to explore the data
provided by SenseWeb. Although SenseWeb can handle arbitrary types of sensors, it re-
quires programming skills for registering and managing sensors in the system. Moreover,
the project focuses mainly on scientific projects, especially geological studies.

Copyright c© 2009, IEEE.

Figure 4.1.: Overview of GUI, SenseWeb [KNLZ07], sensor network, and actual sensors.

23

CHAPTER 4. STATE OF THE ART

Web Mashups [Gui09] and Actinium [KLD12] offer a broad range of sensors by assum-
ing that all sensors are wrapped and presented via RESTful API. Web Mashups provides
’Clickscript’, a GUI for connecting sensors and monitoring their values (see Figure 4.2).
However, to use the mash-up functionality, all sensors need to be implemented into specific
interface instances called Sun SPOT. Although a registration of sensors via Sun SPOT is
too complicated for end-users, the mashing up interface is a good example for our scenario
modeling.

In Copyright - Non-Commercial Use Permitted.

Figure 4.2.: Snapshot of Clickscript, an editor tool for Web Mashups [GTW10].

Meanwhile, Actinium requires Javascript knowledge to create an execution script. Despite
the lack of a user-friendly GUI, Actinium provides concepts of "Runtime Container" and
"Scripting Sandbox" (see Figure 4.3). These concepts are similar to the runtime UI and the
execution environment modules of MERCURY.

We can take a lesson from these works concerning using a sensor gateway to reduce the
complexity of device integration.

24

4.1. SIMILAR EXISTING SOLUTIONS

Copyright c© 2012, IEEE.

Figure 4.3.: Actinium’s system architecture [KLD12].

4.1.2. IoT tools supporting non-programming users

Not only that the following works aim towards non-programming users, but they also sup-
port user-defined context sensing applications. Linked Open Sensor [LpH09] attempted to
publish sensor data as linked data to enable dynamic discovery, integration, and querying
of heterogeneous sensors. It provides an intuitive GUI for mashing up a new application,
as shown in Figure 4.4, and claims to already deal with 200,000 sensors.

OPEN [GZI11] supports both professional developers and non-expert users. It provides
expert users programming API (see Figure 4.5), while simple applications can be achieved
via graphical and tangible interfaces for non-programmer users. Additionally, this work
also advocates the use of context-aware applications in collaborative programming envi-
ronments. However, the ability to achieve sophisticated solutions should not be limited
up-front by classification of users, but it should rather be pushed as far as possible by
adequate context adaptive system and UI support.

25

CHAPTER 4. STATE OF THE ART

License: ODC-By v1.0.

Figure 4.4.: Snapshot from Sensor Masher, a graphical mashup tool for Linked Open Sen-
sor [Phu09].

Copyright c© 2010, Springer-Verlag London Limited, RightsLink license.

Figure 4.5.: Screenshots of OPEN’s main-interface (resource-search) (a) pages for incre-
mental/composition programming mode (b-d) [GZI11].

26

4.1. SIMILAR EXISTING SOLUTIONS

COBASEN [LdMT+15] is a software framework includes a context-based search engine
focusing on industrial IoT resources. It also tightly couples with COMPaaS [ATdMH15],
an IoT middleware supporting communication between software and physical devices. The
overview architecture of COBASEN in cooperation with COMPaaS is shown in Figure 4.6.
COBASEN focuses on the resource discovery technique using context information derived
from resources. It does not cope with users’ preferences directly. Moreover, there is no
device mash-up interface or runtime monitoring UI presented in this work yet.

Copyright c© 2015, IEEE.

Figure 4.6.: Overview of COBASEN architecture working together with COMPaaS. C1
represents the gathering context information from physical devices through
a middleware. C2: the context information is sent to a search engine, which
indexes the context data and store in a database (C3). When a user searches for
a device (S1), the search engine looks for relevance devices (S2). After the user
selects the desirable device, the specification will be sent to the middleware
(S3). The user can subscribe to the device via the middleware (S4). The
communication between devices and the middleware are alternating between
S5 and S6 until it is done. Finally, the user gets a report from the device (S7).

27

CHAPTER 4. STATE OF THE ART

OpenIoT [SKH+] presents an open source middleware for IoT. The core of OpenIoT is
the W3C Semantic Sensor Networks (SSN) ontology, which provides a standard model
for representing physical and virtual sensors. It offers a zero-programming application
development environment (see Figure 4.7). Although it requires no programming skill
to use the mash-up tool, it provides not a very intuitive interface for non-IT savvy users.
Moreover, the process of resource registration and discovery is ambiguous.

Copyright c© 2015, Springer International Publishing Switzerland, RightsLink license.

Figure 4.7.: Overview of the OpenIoT Integrated Development Environment (OpenIoT
IDE).

28

4.1. SIMILAR EXISTING SOLUTIONS

CASCOM (Context Aware Sensor Configuration Model) [PV16] proposes a technique to
enhance the IoT resource discovery. As shown in Figure 4.8, CASCOM fits in the Rea-
soning Engine module. It assists users to search for physical devices via GUI. When no
matched resource can be found, CASCOM will compose combinations of resources that
serve user’s requirements. In this way, a resource mash-up can be achieved without human
interaction. However, it does not explicitly mention how physical devices are discovered
for the first time. This could be a task for the lower layer (Context and Semantic Discov-
ery layer). Moreover, CASCOM does not support the existing ontologies and description
languages.

Copyright c© 2016 Elsevier B.V. All rights reserved, RightsLink license.

Figure 4.8.: CASCOM works as the Reasoning Engine (RE) block in the IoT architecture
[PZCG12].

29

CHAPTER 4. STATE OF THE ART

[WC16] proposes a centralized resource discovery system based on EPCglobal1 (Global
Electronic Product Code) [EPC]. By assigning a globally unique ID to every single device,
everything will be automatically registered to the Internet. [WC16] does not provide a
device mash-up solution. It rather focuses on the context-aware resource discovery which
utilizes user context such as current location or user’s interest. Whenever interesting de-
vices are detected or located in accessible range, a user will receive a notification and will
be asked for accessing permission (see prototype screenshot in Figure 4.9).

Copyright c© 2016, IEEE.

Figure 4.9.: Privacy Notification Application for IoT [WC16]. Left: Preferences settings
to filter the notification. Right: Privacy notifications.

1EPCglobal is an initiative by GS1 and GS1 US organizations to develop RFID standards and regulations.

30

4.1. SIMILAR EXISTING SOLUTIONS

4.1.3. IoT tools for customizing and sharing workflow

To facilitate all users in accessing and customizing applications, a shareable workflow
concept has been applied, e.g. in SHIWA [SHI] and myExperiment [DRGS09].

SHIWA supports a creation of workflow from sensors connected via SCI-BUS [SCI] gate-
way. It also presents simulation and analysis interfaces. Although the project aims mainly
for the scientific application, we can learn from this work in the aspect of hardware scala-
bility and interoperability.

myExperiment focuses on sharing workflows as exemplified in Figure 4.10. But it still
lacks a user-friendly modeling tool and provides no detail on how to discover resources.

Copyright c© 2008 Elsevier, RightsLink license.

Figure 4.10.: Screenshots of myExperiment [DRGS09] shows how a scientist (1) finds a
workflow, (2) executes and edits it in Taverna, and (3) uploads a new version.

31

CHAPTER 4. STATE OF THE ART

4.1.4. Commercial tools

In addition to scientific research projects, there are several business solutions, such as
IFTTT [IFT], Evrythng [Evr], Xively [Xiv], and the list keeps going on.

IFTTT (If This Then That) [IFT] presents a concept of mashing up sensors and services in
a very user-friendly fashion. Figure 4.11 depicts the screenshots from IFTTT’s dashboard.
Basic applets (equivalent to scenarios in MERCURY), which are provided by IFTTT’s
developers, are ready to be used by end-users. In the meantime, expert users can create
applets and share them with other users. However, IFTTT does not provide an interface to
monitor the status of activated applets, which is equivalent to the execution UI in MER-
CURY’s requirement.

Figure 4.11.: Screenshots of IFTTT dashboard and workflow [IFT]. (a) Applets collec-
tions. (b) GUI for creating a new applet. (c) Recommendation of applets.

Evrythng [Evr], IoT Platform for Smart Consumer Products, focuses on integrating actual
sensors to the cloud. It can handle arbitrary resources, though requiring programming
and hardware knowledge. Nevertheless, this work does not provide a tool for creating a
scenario. Evrythng is more suitable for monitoring sensor’s values rather than creating an

32

4.2. RESOURCE MIDDLEWARE

application for IoT. However, the information retrieved from sensors can be further utilized
by other platforms to trigger an action.

Similar to Evrythng, Xively [Xiv] (Business Solutions for the Internet of Thing) focuses
on keeping track of real-time sensing information (see Figure 4.12). Nevertheless, it is still
ambiguous how this information can be used as an event trigger.

Figure 4.12.: Xively dashboard: (a and b) resources monitoring UI on desktop and mobile
device respectively, and (c) rule settings for notification [Xiv].

So far, the works mentioned above have not yet described clearly how end users can dis-
cover a particular resource out of the myriad of devices available on the Internet, or how to
integrate such a resource in the system. These questions shall be the principal focus of this
thesis.

4.2 Resource Middleware

The middleware is a software layer or a set of sub-layers interposed between
the technological and the application levels. Its feature of hiding the details of
different technologies is fundamental to exempt the programmer from issues
that are not directly pertinent to her/his focus, which is the development of the
specific application enabled by the IoT infrastructures. [AIM10]

33

CHAPTER 4. STATE OF THE ART

Following the suggestions from [RMJPC16], a middleware should have the following
characteristics: programming abstraction, interoperable, service-based, adaptive, context-
aware, autonomous, and distributed. Many sensor gateways which possess such character-
istics such as Linked Steam Middleware [LpNQP11], CSB-UCC [LD13], SCI-BUS [SCI]
or GSN [PZC+12] can manage the connection between heterogeneous physical devices
and a web-based application.

Linked Steam Middleware (LSM) [LpNQP11] is a platform to integrate IoT sensors with
the Semantic Web. It provides wrappers for collecting and publishing data from IoT re-
sources, a UI for annotating and visualizing data, and SPARQLendpoint for querying data.
LSM also offers Mashup composer and Linked Sensor Explorer. However, the registration
process and SPARQLendpoint are not intuitive for non-IT users.

CSB-UCC (Cloud Services Brokerage for Ubiquitous Cloud Computing) aims to handle
cloud services like IaaS 2 , SaaS 3, and PaaS 4 by acting as a medium between cloud ser-
vices and consumers’ devices. In the meantime, SCI-BUS (SCIentific gateway Based User
Support) is the core buttress for SHIWA. It has cooperated with many scientific projects
such as Swiss Proteomics (Currently merged with LS2 - Life Sciences Switzerland)5 and
German MoSGrid6. Nevertheless, it is still enigmatic as to how to connect actual sensors
to it.

On the other hand, GSN is geared towards the creation of a wrapper for individual hard-
ware, and thus makes them visible over the Internet. GSN servers act as communication
agents between sensor networks and the Internet. A wrapper offered in GSN is a piece of
Java code to acquire data from a particular type of device. It provides an abstraction layer
called "Virtual Sensor" (VS) to filter and process information gained from wrappers. Also,
GSN offers VS manager, Storage, Query Manager, Web Service interface and Access con-
trol. The Virtual Sensor (VS) manager is lying on top of the sensors pool layer. Above the
VS manager is Storage and Query Manager which serve the Web Service interface. Access
Control unit is on top of the architecture.

GSN also comes with a pre-defined VS, BridgeVS, so that users can utilize it without
programming. Furthermore, a new VS processing class can be written for a complicated
data filtering. Listing 4.1 exemplifies the VS definition using Bridge VS class. Apparently,
this VS is both human- and machine-interpretable. For example, a room monitoring sensor
consists of one camera and two temperature sensors. When the room monitoring service
is called upon, it should return a picture in Jpeg format and two temperature values. Thus,
editing or creating a new VS is a trivial task.

2Infrastructure as a Service
3Software as a Service
4Platform as a Service
5https://www.ls2.ch/sections/proteomics
6https://mosgrid.de/community

34

4.2. RESOURCE MIDDLEWARE

�
<virtual−sensor name="room-monitor" priority="10" protected="false" >

<processing−class>
<class−name>gsn.vsensor.BridgeVirtualSensor</class−name>
<output−structure>

<field name="image" type="binary:jpeg" />
<field name="temp" type="int" />

</output−structure>
</processing−class>
<addressing>

<predicate key="geographical">BC143</predicate>
<predicate key="usage">room monitoring</predicate>
<predicate key="latitude">46.5214</predicate>
<predicate key="longitude">6.5676</predicate>

</addressing>
<streams>

<stream name="cam">
<source name="cam" storage−size="1" >

<address wrapper="remote">
<predicate key="geographical">BC143</predicate>
<predicate key="type">Camera</predicate>

</address>
<query>select ∗ from WRAPPER</query>

</source>
<source name="temp1" storage−size="1m" >

<address wrapper="remote">
<predicate key="type">temperature</predicate>
<predicate key="geographical">BC143−N</predicate>

</address>
<query>select AVG(temp1) as T1 from WRAPPER</query>

</source>
<source name="temp2" storage−size="1m" >

<address wrapper="remote">
<predicate key="type">temperature</predicate>
<predicate key="geographical">BC143−S</predicate>

</address>
<query>select AVG(temp2) as T2 from WRAPPER</query>

</source>
<query> select cam.picture as image, temp1.T1 as temperature

from cam, temp1
where temp1.T1 > 30 AND temp1.T1 = temp2.T2

</query>
</stream>

</streams>
</virtual−sensor>
� �

Listing 4.1: Virtual sensor definition example.

35

CHAPTER 4. STATE OF THE ART

4.3 Resource Description

When a hardware is successfully connected via a middleware, it is necessary to provide a
machine-interpretable description for such a resource. [MKP09] demonstrates the concept
to annotate RESTful Services. The result description is used in automatic resource discov-
ery. When a user or an application looks for a resource, a resource request with the desired
capabilities of the resource must be formulated in a predefined format. The resource match-
ing component then compares available resource descriptions with the request, and returns
the resource(s) that match.

First, we consider the most straightforward web service description language, WSDL (Web
Services Definition Language) [CCMW] which is a recommendation from W3C (World
Wide Web Consortium)7.

WSDL is an XML format for describing network services as a set of end-
points operating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described abstractly
and then bound to a concrete network protocol and message format to define
an endpoint8.

From our research perspective, WSDL is the source of information that contains all nec-
essary information, e.g. the service endpoint, address, functionality, input types, and out-
put types. However, WSDL alone is insufficient in terms of semantic resource discovery.
Thus, we need to look further for formalisms offering additional information to enhance
the semantic description discovery process. The potential approaches fall into three broad
categories: ontology-based, lightweight ontology-based, and non-ontological.

a. Ontology-based
OWL-S (Web Ontology Language for Web Services) [MPM+05] and WSMO (Web
Service Modeling Ontology) [RKL+05] fall in this category. These are the oldest and
most mature semantic resource descriptions. However, they are heavyweight and re-
quire significant efforts and skills to create descriptions. This motivated the develop-
ment of languages that fall into the second category.

b. Lightweight Ontology-based
SAWSDL (Semantic Annotations for WSDL) [She07] and WSMOLite [FFST11], for
instance, were created to augment WSDL and WSMO with relatively lightweight se-
mantic annotations using arbitrary ontology languages.

c. Non-ontological
The last category comprises of solutions that are not built on ontologies but use collabo-
rative tagging techniques instead. Popular representatives of this category are tag-based
descriptions like [GCPG12] and [DLY+10]. Although this technique yields a realistic
result since it relies on human decisions, the biggest obstacle is the cold-start problem.

7https://www.w3.org/
8https://www.w3.org/TR/wsdl

36

4.4. RESOURCE MATCHERS

When considering the ontology-based method, it is necessary to understand how resources
are annotated semantically. [TAB09] proposes a technique to semantically annotate web
services. They focus on the annotation of input and output of web services by using graph
structure and chaining algorithm. Though the evaluation was applied to OWL-S descrip-
tions, the approach is not limited to the formalism. In Chapter 5, we will explain more
about the description formalisms used in this thesis.

4.4 Resource Matchers

For each of the description formalisms, several different matchers have been proposed.
They differ on the algorithms and which part of the descriptions they use. [NKK10] reviews
approaches categorized by description languages, which are OWL-S, WSMO, SAWSDL,
and WSDL-S based. They conclude that WSMO based matchers are the most powerful in
terms of performances and their holistic approach. However, in the current state, SAWSDL
and OWL-S based are still the dominant approaches.

Several initiatives have evaluated the different description formalisms and matching algo-
rithms, e.g. Web Service Challenge [KBB+09], Semantic Web Challenge [Har12], and
Semantic Service Selection (S3) Contest [Klu12]. The most relevant to this work is S3
Contest, which evaluates web service matchers for OWL-S and SAWSDL. On the other
hand, Web Service Challenge and Semantic Web Challenge do not publish the partici-
pants’ matchers and their benchmarks. Thus, for the evaluation purpose, matchers which
are reported by the S3 Contest are studied.

In Chapter 5, we investigate the different approaches used by web service matchers. Based
on matchers from S3 Contest, we conclude the essential information in each description
formalism. Then, the matchers that perform well are chosen for the evaluation in Chap-
ter 11.

It is important to note that none of the existing matchers works for more than one formal-
ism. Thus, so far, it is not possible to find a service described using OWL-S when using a
SAWSDL based matcher.

4.5 Context-aware Resource Discovery

A system is context-aware if it uses context to provide relevant information
or services to the user, where relevancy depends on the user’s task. [Dey01]

In MERCURY, we can retrieve such context information from the actual sensors and de-
vices. In Chapter 6, we discuss in detail how we envision the context retrieval from avail-
able sources. We interpret this information and apply to the resource discovery so that the
result would be up-to-the-minute regarding users’ surroundings. First, we need to define
the context model we can apply to our application.

37

CHAPTER 4. STATE OF THE ART

4.5.1. Context Model

There are three prominent context models, namely, object-oriented based, spatial-based
and ontology-based model [BBH+10].

a. Object-oriented based context model is an approach specifically designed for con-
ceptual modeling of databases [HM10]. [HLI04] presents CML (Context Modeling
Language) based on ORM (Object-Relational Mapping). As pointed by [BBH+10],
CML is still immature in the aspect of hierarchical context structure. However, CML’s
strength lies in handling uncertainty and history of context information.

Copyright c© 2009 Elsevier, RightsLink license.

Figure 4.13.: Example of CML model [BBH+10]. Ellipses represent object types, while
rectangles express relations or fact types. The Key box annotates all types
defined for each fact type.

Figure 4.13 depicts the CML model. Note that CML features the ambiguous/alternative
fact type. This property can help us identify the uncertain context information. CML
also supports a high-level context abstraction. It detects a specific situation defined by
logical expressions. For example, a device at location2 (d at l2) is defined to be nearby a
person at location1 (p at l1) when both of them are detected at the same location (l1=l2).

38

4.5. CONTEXT-AWARE RESOURCE DISCOVERY

b. Spatial-based context model refers to location-based context information, which is
one of the three main aspects of context defined by [Dey01]. Places are spatial entities,
and interaction typically requires some vicinity. Spatial context can refer to either a
physical location, like geometric coordinates, or a descriptive location such as room
numbers, network access point ID. The important spatial properties for reasoning are a
position, range, and nearest neighbor.

NEXUS [NM01], and Equator [MDRS05] present spatial-based models. However, the
high-level context abstraction to deal with such situation recognition is not adequately
supported. Moreover, spatial context takes enormous efforts to gather data and keep
them up-to-date.

c. Ontology-based context model has its strength in the expressiveness for logical expres-
sions and availability of reasoners. OWL-DL [HPSVH03] can describe a high abstrac-
tion situation, e.g. a business meeting event. An event is identified as a business meet-
ing when it contains at least two participants who are employees of a company. Plus,
the location for holding the event is a conference room inside the company’s building.
SWRL [HPSB+04] (Semantic Web Rule Language), an extension of OWL-DL, offers
even more expressive logical expressions. However, these ontological-based models
are computationally expensive in reasoning. Therefore, using solely ontological-based
model can lead to a performance issue.

None of these approaches adequately addresses the uncertainty of context information and
the high-level context abstraction. There are many approaches to help estimate the con-
text information from uncertain values. For example, Fuzzy Logic, Probabilistic Logic,
Bayesian Networks, Hidden Markov Models, and Dempster-Shafer Theory, can be used
when we have enough raw data and statistical information to calculate the probabilistic
figures. The high-level context abstraction, as depicted in Figure 4.14, must be interpreted
from the sensor-based context. Such complexity requires an ontological-based model to
analyze the semantic meaning and realize the relationship between entities.

Copyright c© 2009 Elsevier, RightsLink license.

Figure 4.14.: Different layers of semantic context interpretation and abstraction
[BBH+10].

39

CHAPTER 4. STATE OF THE ART

To get the advantages of all context models and eliminate weaknesses of each, hybrid ap-
proaches have been studied and implemented e.g. a fact-based/ontological model like CML
[HLI04], and a loosely coupled markup-based/ontological model like CARE [BMR07].
These approaches can balance between the expressiveness and performance. More impor-
tantly, they also support the uncertainty of context information.

4.5.2. Context-aware Applications

Several approaches aim to include context information in a resource discovery. For exam-
ple, [XZNN10] proposes the context relation model to improve the result of the resource
discovery, and it can work with several description formalisms. However, this work does
need users to explicitly provide the context relevant to the request.

[RLS+11] proposed the context-driven personalized resource discovery model. It focuses
on utilizing context information to match with spatial and temporal information of ser-
vices. This work uses a home automation scenario to demonstrate the model. Figure 4.15
visualizes the usage of the spatial and temporal context of a user to control the status of
television. They also implemented a context-aware description format as exemplified in
Listing 4.2. Although this description allows semantic annotation, the formalism is not yet
commonly used. It should be able to handle the standard formalisms like OWL-S, WSDL,
and WSMO.

Copyright c© 2011, Springer Science+Business Media, LLC, RightsLink license.

Figure 4.15.: Visualization of spatial and temporal context in a home automation applica-
tion [RLS+11]. Left: TV status regarding user’s location and time of the day.
Right: a simplified model for TV status considering only the time of the day.

40

4.5. CONTEXT-AWARE RESOURCE DISCOVERY

�
@Path(’’coffeeMachine’’)
@ContextAwareDevice (’’myCoffeeMachine’’)
@ContextTypes ({@ContextType=’’status’’,

values = ’’http://www.sm4all−project.eu/types.owl\#CoffeeMachineStatus’’})

public interface CoffeeMachine
{

@POST
@Path(’’coffee’’)
@ContextAwareService (name=’’Make_coffee’’,icon=’’coffeeCup .jpg’’)

@Precondition ({@ContextElement(type=’’status’’,value=’’idle’’)} ,
{@ContextElement(type=’’Location’’,value=’’Kitchen’’)})

@Effect ({@ContextElement(type=’’status’’,value=’’in_use’’)})

void makeCoffee(String coffeeType);
...

}
� �
Listing 4.2: Description of a context-aware coffee machine [RLS+11].

Copyright c© 2011, Springer Science+Business Media, LLC,
RightsLink license.

[WJ12] proposes a design to utilize context, which is derived from resources and users
profile, in the resource discovery for IoT. The main focus of [WJ12] is to support uncertain
and temporal context by adopting Dynamic Bayesian networks.

TRENDY [BPGO13] offers a promising solution to adapt user context awareness to the
resource discovery for IoT. Figure 4.16 shows the architecture of TRENDY. A Directory
Agent (DA) stores all services and contextual information such as service descriptions,
location, power consumption, and response time. The selection of GL (Group Leader) and
GM (Group Member) is based on context information, i.e. location. Similar to [RLS+11],
TRENDY’s service discovery does not conform to any standard resource description.

41

CHAPTER 4. STATE OF THE ART

Copyright c© 2013, Springer-Verlag Berlin Heidelberg, RightsLink license.

Figure 4.16.: Architecture of TRENDY [BPGO13] (DA stands for Directory Agent; SA,
Service Agent; UA, User Agent; GM, Group Member (service); and GL,
Group Leader).

Based on the approaches and techniques reviewed in this chapter, we can see that the thesis
requirements mentioned in the previous chapter can close the gap of improvement. Also,
we can use the existing works such as middlewares and resource matchers to complete our
system rather than develop a new one from scratch. In the following part, an overview of
the implemented solution is provided, then follow with the implementation detail of each
component.

42

Part II.

Solution

43

5
Solution Overview

In the previous chapters, we presented the motivation of this thesis, introduced the resource
discovery, and research questions. We reviewed the existing works which tried to solve
similar issues and identified their weak points. In this chapter, we provide an overview of
resource discovery, the architecture, and the principal components. These components are
a context extractor, a request constructor, a request converter, and a result integrator.

The architecture of the resource discovery is introduced in Section 5.1. This architecture
overview leads us to the conclusion as to which parts we need to implement and which
parts we can make use of the existing resources. Also, we discuss description languages
for the proof-of-concept implementation in Section 5.2, Supported Resource Description
Formalisms. Accordingly, corresponding resource matchers will be chosen in Section 5.3,
Supported Resource Matchers. Thus, the essential information required by these matchers
can be determined. Lastly, the overview of each component in the resource discovery is
introduced in Section 5.4, Main Components.

5.1 Resource Discovery

As mentioned in Chapter 2, Project Background, this thesis focuses on the resource dis-
covery. We also pointed out in Chapter 4, State of the Art that the context-adaptive auto-
matic discovery process has not been adequately supported. To provide this support, we
implemented the automated resource discovery, using machine-interpretable resource de-
scriptions and semantic annotations. We need to create a resource request, which contains
the resource characteristics a user is interested in, in a predefined format and feed it to a
matching component. Additionally, user profiles and environmental conditions should be
taken into account to improve the matching result.

However, automatic actions can easily lead to undesired results. Users should be involved
in resolving conflicts, and the resource discovery engine only suggests appropriate re-
sources relevant in any given context. This suggestion helps the user to make decisions
without being overwhelmed by irrelevant resources.

First, we need to receive free-text search keywords from a user and then create a formatted
request to resolve Requirement R1 (the resource discovery unit should be able to construct

45

CHAPTER 5. SOLUTION OVERVIEW

a free-text query message from end users into pre-defined formats). This process can be
completed by the request constructor. In this step, we can include user context into the
request to scope down relevant results. To achieve this, we need to define where the context
should come from (R6, the source of user context should be defined), obtain them using the
context extractor, and applied them to a search query (R7, when user context or resource
context is available, they should be applied to the search query). Moreover, we can use
the semantic annotation to improve the matching process as suggested by [MGMR02] and
[QHC06].

Second, to cope with cross-formalism discovery, the formulated request should be con-
vertible to other formalisms. The request converter handles the conversion between differ-
ent formalisms. This step needs Requirement R2 (the resource discovery should be able
to interpret different description formalisms) as a prerequisite for understanding the sup-
ported formalisms. Only after that, we can achieve Requirement R3 (the resource discovery
should handle multiple description formalisms and matchers simultaneously).

Third, since the existing matchers are not supporting multiple formalisms, we utilize mul-
tiple resource matching engines to ensure the reliability of matching results. This idea
has been supported by many works like meta-search engines reviewed in [LMS+05] and
[Jad12]. Also, an ontology matching solution like [KNL13] utilizes multiple matchers in
order to achieve the better result.

Finally, when multiple matchers process the same request, it is necessary to combine their
results into a single list. The outcome of the discovery should be presented to users de-
pending on the context of use as required by R12 (the discovery result should be presented
in the registration, scenario modeling, and execution processes in a way that users can ap-
ply the result instantly). We demonstrate the usage of the resource discovery by integrating
it to MERCURY in Chapter 10, Resource Discovery Integration to MERCURY.

5.1.1. Architecture

We presented an architecture of the resource discovery in [OEKR+14] as depicted in Figure
5.1. A request is created via the Request UI, which requires resource input, output or
operation keywords from users. It is not necessary to provide all of them, at least one
keyword is needed. If the keywords are given without specification of their functions, they
will be considered as general keywords. A general keyword is meant to be an attribute
value that can appear in any field of each resource description.

The context extractor retrieves user context and appends to the keywords provided by users.
Then, all keywords will be extended with synonyms obtained from a semantic knowledge
base. The keywords would be constructed into a predefined format - either OWL-S or
SAWSDL by the request constructor. Supported formalisms by this work are elaborated
on in Section 5.2.

46

5.1. RESOURCE DISCOVERY

Figure 5.1.: Architecture of resource discovery.

Next, depending on resource matchers selected by a user, the request converter may need
to prepare a message in supplementary formalism. For example, if the constructed format
is SAWSDL, and a resource matcher is OWL-S based, the request converter should create
an OWL-S request. See Section 5.3 for more explanation on the resource matchers we
utilize in this thesis.

Now the request message is ready to be matched with the description in a repository. The
resource description repository contains descriptions from several sources, such as regis-
tered resources in MERCURY, Programmable Web1, or Mashery API Network2. Descrip-
tions in the repository can be retrieved automatically from these sources3. Each resource
matcher will return a different list of matching results. These lists will be merged within
the result integrator, thus producing a final list of recommended resources.

The context extractor, the request constructor, the request converter, and the result integra-
tor are four main components implemented in this work. They will be discussed as a whole
again in Section 5.4.

1www.programmableweb.com/
2support.mashery.com/io-docs
3As the time this dissertation is conducted, there is no archive of descriptions available for download. Thus,

we use an automated script to crawl the web service collections and to extract the description files one by
one.

47

CHAPTER 5. SOLUTION OVERVIEW

5.1.2. Initial Assumptions

In this thesis, we assume that all sensors and actuators are available as web services. This
management of devices via web services can be achieved by a middleware like GSN, as
explained in Chapter 4.

We also assume that the minimum information available for any web service is WSDL
[CCMW] or OWL-S [MPW07] description. WSDL descriptions are necessary for the
invocation of the services. Here, we assume that such description is available for each
resource, but we do not make assumptions about the formalism used. MERCURY gives
users the possibility to add descriptions to previously undescribed resources so that over
time, the assumption that some descriptions are available can be realistic.

Also, the domain of ontology for resources needs to be defined. Because the request that
contains semantically ambiguous descriptions can lead to wrong results. For instance, the
term "book" can be defined as either a collection of sheets of paper bound together con-
taining printed or written material, or an action of reserving something for future use. To
eliminate the ambiguity, we assume that the installation of MERCURY will be supported
by a certain business purpose, such as publishing domain or travel agency. Accordingly,
the resource discovery unit can correctly assign the ontology to a request.

Now, we have noticed that it is necessary to decide on which description formalisms we
will take into account. This enables us to investigate further as to which information is
needed to construct the simplest yet functioning description.

5.2 Supported Resource Description Formalisms

We assume that basic descriptions like WSDL should be provided in our context. Even
so, a WSDL description alone could be insufficient, since it aims mostly for human and
does not contain adequate information for automated resource discovery. The AI (Artificial
Intelligence) community has developed many ontology-based techniques such as OWL-S
[MPW07] to solve these dilemmas. Even so, this is a rather heavyweight approach, which
describes a service’s capabilities in terms of its preconditions and effects, in addition to
the service’s interface. Although the description uses a powerful logic language, it still
requires significant effort to create. Nevertheless, OWL-S is still widely used to describe
and annotate web services. Additionally, WSMO [RKL+05] (Web Service Modeling On-
tology) formalism could be supported in future improvements. For now, we opt to study
OWL-S because of its popularity and availability.

Lightweight semantic resource descriptions like SAWSDL [HS12] (Semantic Annotations
for WSDL) could enhance WSDL descriptions by allowing semantic annotations using
arbitrary ontologies. SAWSDL is a hybrid description that provides both syntactic and
semantic discovery of services. Besides, WSMOLite [FFST11] is developed from WSMO

48

5.2. SUPPORTED RESOURCE DESCRIPTION FORMALISMS

�
<rdf:RDF ...>

...
<service:Service rdf:ID="CITY_WEATHER_SERVICE">

<service:presents rdf:resource="#GET_WEATHER"/> ... </service:Service>
<profile:Profile rdf:ID="GET_WEATHER">

...
<profile:hasInput rdf:resource="#_CITY"/>
<profile:hasOutput rdf:resource="#_WEATHER"/>

</profile:Profile>
<process:Input rdf:ID="_CITY">

<process:parameterType>SUMO.owl#City</process:parameterType>
</process:Input>
<process:Output rdf:ID="_WEATHER">

<process:parameterType>Mid-level-ontology.owl#Weather
</process:parameterType>

</process:Output>
...

</rdf:RDF>
� �
Listing 5.1: Sample description in OWL-S.

to provide a lightweight ontology-based description. However, we choose to use SAWSDL
in our work because it is more mature and there are more resource matchers based on
SAWSDL available.

In addition, non-ontological based formalisms like [GCPG12] and [DLY+10] have no par-
ticular standard and rely totally on human interaction, e.g. tagging. The cold start problem,
in particular, is the main blockage for their matching process.

Since we want to integrate arbitrary resources available over the Internet, we cannot make
any assumptions about the description framework. Therefore, we try to support several
different description formalisms, currently including OWL-S and SAWSDL.

Examples of OWL-S, SAWSDL1.1, and SAWSDL2.0 descriptions are shown in Listings
5.1, 5.2, and 5.3 respectively. We analyze these formalisms in more detail and conclude
which parts of OWL-S and SAWSDL descriptions are necessary for the discovery process
in Section 7.2, Essential information required for resource matching.

49

CHAPTER 5. SOLUTION OVERVIEW

�
<wsdl:definitions ...>

<wsdl:types> <xsd:schema>
<xsd:complexType name="CityType"
sawsdl:modelReference="SUMO.owl#City"/>
<xsd:complexType name="WeatherType"
sawsdl:modelReference="Mid-level-ontology.owl#Weather"/>

</xsd:schema> </wsdl:types>
<wsdl:message name="get_WEATHERRequest">

<wsdl:part name="_CITY" type="CityType"/>
</wsdl:message>
<wsdl:message name="get_WEATHERResponse">

<wsdl:part name="_WEATHER" type="WeatherType"/>
</wsdl:message>
<wsdl:portType name="CityWeatherSoap">

<wsdl:operation name="get_WEATHER">
<wsdl:input message="get_WEATHERRequest"/>
<wsdl:output message="get_WEATHERResponse"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:service name="CityWeatherService">

<wsdl:port name="CityWeatherSoap"> ... </wsdl:port>
</wsdl:service>

</wsdl:definitions>
� �
Listing 5.2: Sample description in SAWSDL1.1

�
<wsdl:description ...>

<wsdl:documentation> ... </wsdl:documentation>
<wsdl:types>

<xs:schema>
<xs:element name="_CITY"
sawsdl:modelReference="SUMO.owl#City"/>
<xs:element name="_WEATHER"
sawsdl:modelReference="Mid-level-ontology.owl#Weather"/>

</xs:schema>
</wsdl:types>
<wsdl:interface name = "CityWeatherSoap" >

<wsdl:operation name="get_WEATHER"
pattern="http://www.w3.org/ns/wsdl/in-out"
style="http://www.w3.org/ns/wsdl/style/iri"
wsdl:safe = "true">

<wsdl:input messageLabel="In" element="_CITY" />
<wsdl:output messageLabel="Out" element="_WEATHER" />

</wsdl:operation>
</wsdl:interface>
<wsdl:binding ...> ... </wsdl:binding>
<wsdl:service name="CityWeatherService"

interface="tns:CityWeatherSoap"> ... </wsdl:service>
</wsdl:description>
� �

Listing 5.3: Sample description in SAWSDL2.0

50

5.3. SUPPORTED RESOURCE MATCHERS

5.3 Supported Resource Matchers

To utilize existing resource descriptions and to perform resource matching, appropriate
requests are needed. These requests should be composed in one of the formal languages.
The crucial information of resource descriptions can be categorized into three groups: input
(information needed for the resource), output (information provided by the resource), and
operation (characteristics of the resource). We assist regular users to create requests in
OWL-S or SAWSDL format and forward them to the resource matcher module.

As introduced in Chapter 4, we collected resource matchers from S3 Contest [Klu12] in
OWL-S and SAWSDL tracks, as shown in Table 5.1. We chose matchers from S3 Contest
because these matchers are provided as plugins which are easy to be deployed/undeployed
and maintained. Moreover, S3 Contest also provides testing benchmarks which are judged
by domain experts. Therefore, we can verify our outcome using such benchmarks.

Formalism Matchers Author(s)

OWL-S

OWLS-MX [KFK05]

OWLS-M0 [KFK05]

OWLS-MX2 [KKF08]

OWLS-MX3 [KK12a]

OWLS-iMatcher [KB08]

OWLS-SLR Lite [MB10]

XSSD [Li13]

SPARQLent [Sbo12]

SeMa2 [MHB+12]

iSeM [KK10]

EMMA [GRRC12]

SAWSDL

SAWSDL-iMatcher [WWWB11]

iSem [KK12b]

SAWSDL-M0 [KKZ09a]

SAWSDL-MX [KKZ09a]

SAWSDL-MX2 [KKZ09b]

XAM4SWS-COV4SWS [SLKS12]

XAM4SWS-LOG4SWS [SLES10]

URBE [PP09]

Table 5.1.: List of resource matchers from S3 Contest in OWL-S and SAWSDL tracks.

Let us investigate SAWSDL-M0 and iSem matchers to see how individual matcher works.
We will see later that each matcher takes different criteria for judging, whether two de-
scriptions are matched or not.

• A SAWSDL-M0 matcher matches a description without considering semantic anno-
tations. Taking an example from Table 5.2, we have a request for a weather service

51

CHAPTER 5. SOLUTION OVERVIEW

which accepts a country and city name as input and produces a weather report as
output. The perfect match for the request would be offer #4 since it has the same
inputs, output and operation descriptions.

• A country name can be defined as a geopolitical entity. modelReference attribute
contains a link to an ontology which explains the relationship between a "geopolitical
entity" and "country". However, when the matcher does not use an ontology-based
algorithm, it will overlook offer #1 even though offer #1 is semantically matched
with the request.

• iSeM Matcher can recognize offers #1 and #2 as relevant resources since it interprets
the semantic annotations in descriptions.

We can see that each matcher requires different information for the matching process.
Moreover, the ranking algorithm could also be different.

• For example, offers #1 and #4 seem to be perfectly matched descriptions. However,
some matchers would prefer offer #4 than offer #1 because offer #4 is matched with-
out semantic knowledge. In contrast, some matchers would perceive no difference
and thus rank them alphabetically. As a result, offer #1 can get a higher rank than
offer #4.

• Offer #2 is missing "city" input, while offer #3 has a mismatching operation de-
scription. If a matcher aims for matching input and output descriptions, it will find
offer #3 more relevant than #2. Contrarily, offer #2 can get a higher rank than offer
#3 when the matcher prioritizes the operation description over the input and output
descriptions.

These are only a few examples from two resource matchers. Other matchers use different
criteria for judging the match and ranking the results. Because of the various approaches,
there is no certain algorithm which yields the best result for every request. Thus, utiliz-
ing different description formalisms and multiple matchers may increase the possibility of
discovering all suitable resources.

So far, the initial assumptions are set, the supported formalisms are specified. We also
provide an overview of resource matchers in Section 7.1, Matcher Analysis. An outcome
of this investigation will help us determine which matchers we can use for the evaluation
and which part of information inside descriptions are required. Next, we can implement
the main components based on this information.

52

5.3. SUPPORTED RESOURCE MATCHERS

Resource Request
<types><schema...>

<inputType name="_COUNTRY"/>
<inputType name="_CITY"/>
<outputType name="_WEATHER"/>

</schema></types>
<operation name="get_WEATHER"/>

Resource Offer #1
<types><schema...>

<inputType name="_GEOPOLITICAL-ENTITY"
modelReference="portal.owl#Geopolitical-Entity"/>

<inputType name="_CITY" modelReference="travel.owl#City"/>
<outputType name="_WEATHER"
modelReference ="Mid-level-ontology.owl#Weather"/>

</schema></types>
<operation name="get_WEATHER"/>

Resource Offer #2
<types><schema...>

<inputType name="_GEOPOLITICAL-ENTITY"
modelReference="portal.owl#Geopolitical-Entity"/>

<outputType name="_WEATHER"
modelReference ="Mid-level-ontology.owl#Weather"/>

</schema></types>
<operation name="get_WEATHER"/>

Resource Offer #3
<types><schema...>

<inputType name="_COUNTRY"
modelReference="portal.owl#Country"/>

<inputType name="_CITY" modelReference="travel.owl#City"/>
<outputType name="_ACCOMMODATION"
modelReference="travel.owl#Accommodation"/>

</schema></types>
<operation name="get_ACCOMMODATION"/>

Resource Offer #4
<types><schema...>

<inputType name="_COUNTRY"
modelReference="portal.owl#Country"/>

<inputType name="_CITY" modelReference="travel.owl#City"/>
<outputType name="_WEATHER"
modelReference ="Mid-level-ontology.owl#Weather"/>

</schema></types>
<operation name="get_WEATHER"/>

Table 5.2.: Simplified version of SAWSDL sample requests and offers.

53

CHAPTER 5. SOLUTION OVERVIEW

5.4 Main Components

The four main building blocks of the resource discovery implemented in this thesis are a
context extractor, a request constructor, a request converter, and a result integrator. The re-
quest constructor creates a standardized description from free-text keywords. Meanwhile,
the context extractor can retrieve user or resource context. Then we can append this data
to the request description.

Each resource may have more than one type of description. However, the users would not
need to specify the standard of description for the resource they are looking for. We thus
cope with all possible (and prominent) matching techniques by converting the request into
various formats using the request converter. The matchers compare the request message
with description files, which are already known by the resource matchers. Finally, the
results returned from each matcher will be merged and sorted again by the result integrator.

5.4.1. Context Extractor

To automate the discovery process and filter down the relevant result, the context of user
and resource should be taken into account. As introduced in Section 4.5, Context-aware
Resource Discovery, we aim to use a hybrid approach of object-oriented-based, spatial-
based and ontology-based context models. The first challenge is how to retrieve such
information explicitly from a user. Then, we need to find out how to apply them to the
resource discovery process.

We could use the user profile from the portal infrastructure’s user model to obtain basic
information such as address, email, and birthday. Besides, we can create a social sensor
which analyzes the content of each user’s social network statuses. These approaches can
be applied depending on user’s consent. In Chapter 6, Context Extraction, we elaborate on
this module in more detail.

5.4.2. Request Constructor

This component is responsible for constructing free-text keywords into predefined for-
malisms. First, we need to study OWL-S, and SAWSDL (1.1, 2.0) to get the essential part
of the information (see Section 7.2, Essential information required for resource matching).
We conclude that the necessary details are input, output, and operation descriptions.

The final product from this component should have a structure like Listing 5.1 for OWL-S,
5.2 for SAWSDL1.1 or 5.3 for SAWSDL2.0 All these descriptions contain similar spec-
ifications for the same resource. They only differ in syntax and structure. Since OWL-S
is usually more expressive, yet computationally expensive, SAWSDL is more preferable.
Nonetheless, the default formalism should be customizable via configuration settings. In
Section 8.1, Request Constructor, we elaborate on how the constructor creates formatted
descriptions.

54

5.4. MAIN COMPONENTS

5.4.3. Request Converter

Although the request constructor is designed to construct a request in any supported for-
malism, it is more resource-effective to base the construction on a single formalism. Then,
we use the request converter only when necessary. The relationship between formalisms
will be summarized in Section 8.2, Request Converter, as well as the conversion algorithm.

5.4.4. Result Integrator

When we use several resource matchers simultaneously, the result integrator applies weigh-
ing parameters to all matchers. All similarity scores of each web service returned from all
resource matchers will be used to rearrange the ranking result. Once again, the user context
can play a prominent role here, in order to match the relevance of resource recommenda-
tions to the needs of users in each circumstance.

One major challenge for merging two results is a conflict in ranking. For example, the
score of results from matcher "A" is WSA = [0.9, 0.7, 0.93, 0]. Each element in the array
represents the similarity level of each resource compared to the request. And the score
of results from matcher "B" is WSB = [0.65, 1.0, 0.7, 0.1]. Moreover, when matcher
"B" becomes more reliable than matcher "A", the resource discovery should combine the
results corresponding to this fact. The solution to this dilemma will be elaborated on in
Chapter 9, Result Integration.

In the upcoming chapters, each main component will be elaborated on. Then, all the imple-
mented modules are integrated and used in Chapter 10, Resource Discovery Integration to
MERCURY. There, we explain how resource discovery can be used in the context of MER-
CURY. Also, the evaluation results of each module and the integrated system are discussed
in Part III, Evaluation.

55

6
Context Extraction

Since our goal is to create an environment-aware resource discovery, it is important to
detect the user context automatically. When the service discovery engine works together
with MERCURY, we can make use of the user management model supported by Portal’s
infrastructure to cultivate user context. [BDH+09] and [AIM10] discuss the concept and
concrete use cases for deriving semantic presence based on context from sensor-enabled
social networking devices. [NGS+09], [She09], and [ASS+11] also affirm the usefulness
and richness of social sensing. These studies lead us to the utilization of the social network
as a social sensor. Such sensors nowadays offer location tagging, friends tagging, and
timestamp information. We can analyze the neighborhood and companions of a user from
them.

Furthermore, we can keep track of the user’s interests and actions to create a resources
recommendation. The application of this recommendation will be demonstrated again in
Chapter 10, Resource Discovery Integration to MERCURY.

6.1 Context from User Profile

The context information is derivable from a web portal’s user management model as shown
in Figure 6.1, e.g. user address, telephone number, e-mail address. Users can choose to ap-
ply this context information to enhance the resource discovery process. When a user agrees
to apply context information, this information will be appended to the query message.

Furthermore, the user contact model on the portal provides the social network account
information, e.g. facebookSn, skypeSn, twitterSn, where Sn stands for ’serial number’.
Based on this data, we can connect to available social networks and retrieve user context.
In other words, these accounts can be used as social sensors.

Nevertheless, not every piece of information is shareable. The granularity of shareable
user’s detail is highly dependent on individual privacy settings, such as a posted message
is set to be seen by everyone or just a group of people. By default, anyone who knows the
social network id/username of a particular person can see his information. On the other
hand, to restrict the publicity, the owner of the account must consent to the information
sharing.

57

CHAPTER 6. CONTEXT EXTRACTION

Figure 6.1.: User Model and detailed information provided by Liferay Portal.

6.2 Context from Social Sensors

Based on a social network id from the user profile, the context like the recent location or
latest activity of the user can be acquired. Here, we provide two examples1: Twitter and
Facebook. Following the concept of context of IoT in [PZCG14], the derivable contexts
are recent contacts, recent places, the latest place (with a friend) and check if the user is
near to a specific location. To access this personal information, an authentication process is
required. For both social sensors, the context extraction method via Twitter API [Twi] and
Facebook API [Fac] are quite similar. However, they differ in the authentication process.

1The concept and implementation in this chapter are adapted from [Sat14].

58

6.2. CONTEXT FROM SOCIAL SENSORS

6.2.1. Context Extraction via Twitter API

The context extraction via Twitter API is straightforward, and the process flow is shown
in Figure 6.2. Every session of an API call must begin with authentication. Only after the
authentication is successful can the other functions be called.

59

CHAPTER 6. CONTEXT EXTRACTION

Figure
6.2.:D

ata
flow

ofa
socialsensorby

Tw
itter.

60

6.2. CONTEXT FROM SOCIAL SENSORS

i. The authentication process requires only a consumer-id and consumer-secret, which
is one-time generated per application (permanent). A token, which is valid for one
session (temporary), will be returned to the client. A username can be retrieved from
the user contact model.

Accordingly, we can send a request to Twitter API to get recent tweets (posts by the
contacts this user is following) or recent timeline (what this user tweeted).

ii. Recent contacts can be extracted from recent tweets as illustrated in Figure 6.3. The
number of retrieved tweets can be determined, e.g. find contacts who tweeted from
the latest 100 tweets.

Figure 6.3.: ’Get recent contacts’ function from Twitter.

61

CHAPTER 6. CONTEXT EXTRACTION

iii. Recent places are retrieved from the latest timeline. The number and the maximum age
of retrieving statuses are customizable. Nonetheless, the location feature can be turned
off for each tweet. The status that contains no location detail is neglected. Figure 6.4
illustrates the workflow of this function. The geo-coordination returned from Twitter
API comes as a bounding box value. It contains min-Latitude, max-Latitude, min-
Longitude, and max-Longitude values. We assume that the exact position of a user
can be roughly estimated from the center point of the bounding box. The list of recent
places is sorted in chronological order (i.e. the latest place is in the first order).

Figure 6.4.: ’Get recent places’ function from Twitter.

62

6.2. CONTEXT FROM SOCIAL SENSORS

iv. ’A recent place with another user’ can be identified via a ’mention to’ field. We could
see the result only if the user mentioned his friend in his tweet with a location detail.
Similar to the ’get recent places’ function, the recent places are refined from the latest
timeline. But we need an additional criterion, i.e. the user must mention to a specific
user. Figure 6.5 shows the flow chart of the function.

Figure 6.5.: ’Get a recent place with [another user]’ function from Twitter.

63

CHAPTER 6. CONTEXT EXTRACTION

v. To check if the user is near a specific site, the latest place is identified. Also, the
specific location must be provided with the maximum range, defining the acceptable
distance from the reference location. For example, if a user is within 2 km from home
or an airport. The workflow of this function is depicted in Figure 6.6. Again, this
calculation is done using the center point of geo-coordination values. For a precise
outcome, the user should specify the place with a more accurate location. For in-
stance, the name ”crescent moon beach” is preferable to ”paradise island” regarding
the geographic size.

Figure 6.6.: ’Check if the user is near to [a particular location]’ function from Twitter.

64

6.2. CONTEXT FROM SOCIAL SENSORS

It is worth noting that the retrievable context depends on the extent of the API. Thus, there
are still some gaps for improvement, depending on the new features available. The context
extractor for a Twitter script, implemented in Python, can be found in Listing C.1. Also,
the testing script for a client application can be found in Listing C.2.

6.2.2. Context Extraction via Facebook API

The core idea of context extraction is the same for all social sensors. However, Facebook
API does not allow third-party applications to retrieve user information directly. It requires
every user to identify himself via a formal Facebook login process. When the login process
is successful, the API returns a unique token specific to each user to the pre-defined redirect
URL, not to the requester.

Nonetheless, this complication exists only in the authentication step. Afterwards, this pri-
vate token can be used throughout the session.

i. Figure 6.7 depicts the authentication process. First, a third-party application needs to
apply for an application id and application secret (one-time request). The API client
must send this information to verify itself for every session to prevent the abusive
applications to access users’ information. When authentication is successful, a formal
login process via a Web browser is obligatory. If the user is successfully logged in,
the secret code generated from Facebook API will be pushed to the redirect URL.
We could set this redirect URL to our listener server. In the meantime, the client
application is waiting for this secret code from the redirect URL. When the secret
code is ready, the client application will be prompted to send a request for an access
token. Every access token is unique to the acquired secret code.

Thereupon, the main extraction functions, which data flows are exemplified in Figure
6.8, can be called.

ii. To get the current user’s id (whoAmI function), the access token is required by the
Facebook API. This function should be called only once, the return object (user object)
can then be used for the further requests.

65

CHAPTER 6. CONTEXT EXTRACTION

Figure
6.7.:D

ata
flow

ofan
authentication

process
forFacebook

A
PI.

66

6.2. CONTEXT FROM SOCIAL SENSORS

Fi
gu

re
6.

8.
:D

at
a

flo
w

of
a

so
ci

al
se

ns
or

by
Fa

ce
bo

ok
.

67

CHAPTER 6. CONTEXT EXTRACTION

iii. Recent contacts are obtained from the latest status feeds, which can be a feed from
any contacts. Figure 6.9 shows how to get recent contacts from three types of feeds:
1) any feed that has tags of the current user (me) 2) any feed that is directly posted to
the user wall 3) any feed that the user posted on the other’s wall. These interactions
are considered as communication to the recent contacts.

Figure 6.9.: ’Get recent contacts’ function on Facebook.

68

6.2. CONTEXT FROM SOCIAL SENSORS

iv. Recent places are also extracted from the latest status feeds, only if they contain a
location information (see Figure 6.10). The returned object consists of the place’s
name, latitude, and longitude values.

Figure 6.10.: ’Get recent places’ function on Facebook.

69

CHAPTER 6. CONTEXT EXTRACTION

v. A recent place with another user function is a combination of ’get recent contacts’
function and ’get recent places’ functions. Here, the other user’s id is required to filter
the status. The flowchart in Figure 6.11 depicts the whole process.

Figure 6.11.: ’Get a recent place with [another user]’ function on Facebook.

70

6.2. CONTEXT FROM SOCIAL SENSORS

vi. To check if the user is near a specific area, the location of the reference place and the
threshold distance must be provided. The threshold distance defines how far the user’s
current (or latest) location from the reference place is in consideration. Figure 6.12
illustrates the steps to get the result.

Figure 6.12.: ’Check if the user is near to [a specific location]’ function on Facebook.

71

CHAPTER 6. CONTEXT EXTRACTION

The executable script for the context extractor is in Listing C.3. The client script to test the
functions is in Listing C.4. Lastly, the redirect server script is in Listing C.5.

Although Facebook status contains more and more information in every update (e.g. a
user’s mood, activities, food, music), the API still limits the information retrieval to the
simple content. Therefore, when the API enhances their capabilities, we can extract even
more context information from this social sensor.

6.3 Context from User Preferences and Contributions

For the registered resources, we can keep track of their frequency of use, failure occur-
rences, how they are used (e.g. for traveling, working out or shopping scenario), and how
the community feels about them (rating). These preferences for a private resource are local
to the resource owner. On the contrary, a public resource can be rated, and utilized by
multiple users. Thus, its preferences depend on the community.

6.3.1. User Preferences

User preferences can be interpreted from two events: user rating, and frequency of use.

• User rating - this is an explicit preference. It provides a more qualitative value of
how preferable/popular the resource is.

• Frequency of use - this is, in contrast, an implicit preference. It only indicates the
quantitative information about how often this resource is being used. This measure-
ment is suitable when we have no rating from users. However, later, this cannot
differentiate if users actually ’like’ the resource or are just testing it out.

6.3.2. Similar Usage

Similar usage can be considered on two levels, an atomic level and a scenario level. For
example, a rain sensor is identified to be relevant to a weather forecast service because
they share similar functionalities. In contrast, a weather forecast service can be related to
an alarm clock in the sense that they have been used in the same scenario. We can use two
criteria to identify the similarity of usage.

• Tagging is a straightforward approach. Users directly classify resources one by one.
The drawback is that the resource that has never been tagged will not be discovered
(cold-start problem). The automatic tagging can be applied using natural language
processing (NLP), though it is error-prone.

• Semantic Description - we can use an existing description of each resource and ex-
tend it with synonyms or relevant terms. This will increase a chance of finding
relevant resources and avoid a cold-start issue.

72

6.4. USAGE

6.4 Usage

User profiles alone offer static information. We could utilize static context by applying
it to a request or use it as a credential for social sensors. These social sensors can either
be used as resources or as context providers. Behaving as resources, they appear to users
as available sensors in the modeling process. While they act like context providers, they
intrinsically provide extra information to the request in the resource discovery process.

Users’ activities can also provide us context information. We can combine non-verbal con-
text (e.g. rating, usage frequency) with textual information (tagging, semantic description)
to enhance the recommendation of resources.

In the next chapter, we describe how the resource discovery processes free-text keywords
into a machine-readable message. The outcome of Section 6.1, Context from User Profile
and 6.2, Context from Social Sensors can be integrated with the content of the following
chapter, which will simply be referred to as user context.

Finally, we demonstrate how to use the user context from Section 6.3, Context from User
Preferences and Contributions, in Chapter 10, Resource Discovery Integration to MERCURY.

73

7
Request Analysis

To realize Requirement R2 (the resource discovery should be able to interpret different
description formalisms), we study the matchers based on supported formalism we have
chosen in Section 5.2, Supported Resource Description Formalisms.

This chapter starts with an analysis of supported matchers in Section 7.1, Matcher Analysis.
Here, we run matchers over different requests to show that none of these matchers can
perform best in every situation. Hence, we consider utilizing multiple matchers simultane-
ously to get the best result.

We then list the attributes that are necessary for the resource matching process. To resolve
Requirement R3 (the resource discovery should handle multiple description formalisms
and matchers simultaneously), we investigate the connection between each formalism so
that we can translate one formalism to another in Section 7.2, Essential information re-
quired for resource matching.

7.1 Matcher Analysis

From Section 5.3, we decide to utilize the matchers from S3 contest [Klu12] in our work
because of their modularity and availability of benchmarks. First, we demonstrate that
each of them performs differently regarding different requests. Here, we choose two major
tracks; OWL-S and SAWSDL based matchers1. Then, we investigate how they work and
which part of the description is mandatory for them. Additionally, ElasticSearch [Ela],
a prominent text-based search engine, is included to verify that we need ontology-based
matchers rather than the conventional text-based search to get better results.

1SAWSDL based matchers are tested only with SAWSDL1.1. However, we also study how to con-
vert SAWSDL2.0 to SAWSDL1.1 in Section 8.2, Request Converter. Therefore, we assume that any
SAWSDL2.0 description can be converted to SAWSDL1.1, which will then be compatible with these
matchers.

75

CHAPTER 7. REQUEST ANALYSIS

7.1.1. OWL-S Matchers

From OWL-S track, we study the following matchers:

• OWLS-MX TextSim (Cos) [KFK05],

• OWLS-MX3 (Structure) [KK12a],

• OWLS-MX3 (M3) [KK12a],

• OWLS-MX2 (M3) [KK12a],

• OWLS-M0 [KFK05],

• OWLS-SLR Lite [MB10],

• OWLS-iMatcher [KB08],

• XSSD.V1 [Li13],

• SPARQLent [Sbo12],

• SeMa2 [MHB+12],

• iSeM text similarity (Cos, structured) [KK10],

• iSeM text similarity (Cos) [KK10],

• iSeM Structure [KK10],

• iSeM logic-based [KK10],

• iSeM hybrid + PE (SVM aggregation) [KK10],

• iSeM hybrid + PE + approx. (SVM aggregation) [KK10],

• iSeM approx. logic-based [KK10], and

• EMMA [GRRC12].

7.1.1.1. Matchers Performance

Nine matchers are randomly selected and tested with five OWL-S descriptions (also ran-
domly selected). Each OWL-S matcher performs differently2. In terms of recall rate (see
Table 7.1), iSeM text similarity (Cos, structured) seems to perform best. In contrast, when
we consider the precision (see Table 7.2), SeMa2 is averagely better. Also, regarding nDCG
from Table 7.3, there is no best resource matcher for every query.

When we consider the average performance without looking at each query, the average re-
call, precision, and nDCG rates are inconsistent. One matcher that performs best regarding
recall does not have to yield the best nDCG. For example, as summarized in Table 7.4,
iSeM text similarity (Cos, structured) is the best in average recall. SeMa2 is far better than
the rest in average precision and F-measure rates. And iSeM text similarity (Cos) is slightly
better than iSeM text similarity (Cos, structured) and SeMa2 in terms of nDCG.

2We measure the quality of resource matching in this thesis using recall, precision, F-measure and nDCG
rates as described in Section 11.1, Performance measurement.

76

7.1. MATCHER ANALYSIS

Query Q1 Q2 Q3 Q4 Q5 Average

iSeM approx. logic 0.50 0.20 0.00 0.30 1.00 0.40

iSeM logic 0.40 0.20 0.50 0.10 1.00 0.44

iSeM structure 0.40 0.20 0.00 0.30 1.00 0.38

iSeM text (Cos) 0.50 0.80 1.00 0.30 1.00 0.72

iSeM text (Cos, structured) 0.60 0.80 1.00 0.30 1.00 0.74
SeMa2 0.40 0.40 1.00 0.30 1.00 0.62

OWLS-M0 0.40 0.20 0.00 0.10 1.00 0.34

OWLS-MX2 0.30 0.60 1.00 0.30 1.00 0.64

OWLS-MX3 0.30 0.60 1.00 0.30 1.00 0.64

elasticsearch 0.50 0.20 1.00 0.10 1.00 0.56

Table 7.1.: OWL-S matchers’ recall rate per query.

77

CHAPTER 7. REQUEST ANALYSIS

Query Q1 Q2 Q3 Q4 Q5 Average

iSeM approx. logic 0.50 0.20 0.00 0.30 0.20 0.24

iSeM logic 0.40 0.20 0.10 0.10 0.10 0.18

iSeM structure 0.40 0.20 0.00 0.30 0.20 0.22

iSeM text (Cos) 0.50 0.80 0.20 0.30 0.20 0.40

iSeM text (Cos, structured) 0.60 0.80 0.20 0.30 0.20 0.42

SeMa2 0.40 0.40 0.67 1.00 1.00 0.69
OWLS-M0 0.40 0.20 0.00 0.10 0.10 0.16

OWLS-MX2 0.50 0.60 0.20 0.30 0.20 0.36

OWLS-MX3 0.30 0.60 0.20 0.30 0.20 0.32

elasticsearch 0.50 0.20 0.40 0.10 0.50 0.34

Table 7.2.: OWL-S matchers’ precision rate per query.

78

7.1. MATCHER ANALYSIS

Query Q1 Q2 Q3 Q4 Q5 Average

iSeM approx. logic-based 0.51 0.10 0.00 0.39 1.00 0.40

iSeM logic-based 0.52 0.17 0.40 0.20 0.60 0.38

iSeM structure 0.45 0.16 0.00 0.39 1.00 0.40

iSeM text similarity (Cos) 0.62 0.84 0.78 0.41 1.00 0.73
iSeM text similarity (Cos, struc-
tured)

0.61 0.78 0.78 0.41 1.00 0.72

SeMa2 0.55 0.66 0.85 0.41 1.00 0.69

OWLS-M0 0.51 0.17 0.00 0.20 0.60 0.30

OWLS-MX2 (M3) 0.52 0.76 0.85 0.41 1.00 0.71

OWLS-MX3 (M3) 0.52 0.76 0.68 0.33 1.00 0.66

elasticsearch 0.41 0.48 0.64 0.20 1.00 0.55

Table 7.3.: OWL-S matchers’ nDCG rate per query.

79

CHAPTER 7. REQUEST ANALYSIS

Matcher name Recall Precision F-measure nDCG

iSeM approx. logic-based
min 0.00 0.00 0.00 0.00

mean 0.40 0.24 0.27 0.40
max 0.50 1.00 0.50 1.00

iSeM logic-based
min 0.10 0.10 0.10 0.17

mean 0.44 0.18 0.21 0.38
max 0.40 1.00 0.40 0.60

iSeM structure
min 0.00 0.00 0.00 0.00

mean 0.38 0.22 0.25 0.40
max 0.40 1.00 0.40 1.00

iSeM text similarity (Cos)
min 0.20 0.20 0.30 0.41

mean 0.72 0.40 0.45 0.73
max 0.80 1.00 0.80 1.00

iSeM text similarity (Cos,
structured)

min 0.20 0.20 0.30 0.41
mean 0.74 0.42 0.47 0.72
max 0.80 1.00 0.80 1.00

SeMa2
min 0.40 0.40 0.40 0.41

mean 0.62 0.69 0.61 0.70
max 1.00 1.00 1.00 1.00

OWLS-M0
min 0.00 0.00 0.00 0.00

mean 0.34 0.16 0.18 0.30
max 0.40 1.00 0.40 0.60

OWLS-MX2 (M3)
min 0.20 0.20 0.30 0.41

mean 0.64 0.32 0.37 0.71
max 0.60 1.00 0.60 1.00

OWLS-MX3 (M3)
min 0.20 0.20 0.30 0.33

mean 0.64 0.32 0.37 0.66
max 0.60 1.00 0.60 1.00

Table 7.4.: OWL-S matchers’ average result quality.80

7.1. MATCHER ANALYSIS

7.1.1.2. Matchers Requirements

To test which information is used by matchers, first, we change OWL-S descriptions’ file-
names and verify if this change affects the matchers. Then we explore the content of
those description files. In OWL-S description, the first level nodes are; Ontology, Ser-
vice, Profile, Atomic process, Input, Output, WSDL Grounding, and WSDL Atomic Process
Grounding. We examine them by removing each node one by one and check whether the
result is affected. Table 7.5 shows the result of these investigations.

From the initial examination, some matchers return no result or abruptly stop working
during the runtime without any helpful error message. We neglect these matchers in the
further investigation. In this step, we have not considered the quality of the result yet.

We found that none of the OWL-S matchers takes a description’s filename into account.
The Ontology, WSDL Grounding, and WSDL Atomic Process Grounding nodes can be
removed without any consequences.

81

CHAPTER 7. REQUEST ANALYSIS

M
atchernam

e
Filenam

e
C

ontent

Ontology

Service

Profile

Atomic
process

Input

Output

WSDL
Grounding

WSDL Atomic
Process
Grounding

O
W

L
S-M

X
TextSim

(C
os)[K

FK
05]

7
7

3
7

7
7

7
7

7

O
W

L
S-M

X
3

(Structure)[K
K

12a]
7

7
3

7
7

7
7

7
7

O
W

L
S-M

X
3

(M
3)[K

K
12a]

7
7

3
3

7
3

3
7

7

O
W

L
S-M

X
2

(M
3)[K

K
12a]

7
7

3
3

7
3

3
7

7

O
W

L
S-M

0
[K

FK
05]

7
7

3
3

7
3

3
7

7

O
W

L
S-SL

R
L

ite
[M

B
10]

N
otw

orking
O

W
L

S-iM
atcher[K

B
08]

N
otw

orking
X

SSD
.V

1
[L

i13]
N

otw
orking

SPA
R

Q
L

ent[Sbo12]
N

otw
orking

SeM
a2

[M
H

B
+

12]
7

7
7

3
7

3
3

7
7

iSeM
textsim

ilarity
(C

os, structured)
[K

K
10]

7
7

3
3

3
3

3
7

7

iSeM
textsim

ilarity
(C

os)[K
K

10]
7

7
3

3
3

3
3

7
7

iSeM
Structure

[K
K

10]
7

7
3

3
3

3
3

7
7

iSeM
logic-based

[K
K

10]
7

7
3

3
3

3
3

7
7

iSeM
hybrid

+
PE

(SV
M

aggregation)
[K

K
10]

N
otw

orking

iSeM
hybrid

+
PE

+
approx.(SV

M
aggregation)[K

K
10]

N
otw

orking

iSeM
approx.logic-based

[K
K

10]
7

7
3

3
3

3
3

7
7

E
M

M
A

[G
R

R
C

12]
N

otw
orking

3
=this

node
affects

the
results

w
hen

m
issing,

7=this
node

m
akes

no
difference

w
hen

itis
m

issing

Table
7.5.:Firstlevelelem

ents
required

by
O

W
L

-S
m

atchers.

82

7.1. MATCHER ANALYSIS

Next, we examine attributes and child nodes of Service, Profile, Atomic Process, Input and
Output nodes.

• OWL-S Service
This node contains ID attribute, Presents, Described By, and Supports nodes. How-
ever, as shown in Table 7.6, Described By and Supports nodes make no difference for
the matchers when they are missing. Consequently, we examine further in Service’s
ID and Presents nodes.

In addition to the removal of node/attribute, we test using empty values and assigning
wrong values to each node/attribute. This helps us understand if matchers require the
node/attribute only for the syntax validation, or they use the content in the node/at-
tribute for the matching. Table 7.7 shows that Service:ID attribute must exist but the
value can be arbitrary. Meanwhile, Presents node must contain a correct value for
the matching process.

• OWL-S Profile
This node contains ID attribute, Is Presented by, Service Name, Text Description,
Has Input, Has Output, and Has Process nodes. Table 7.6 shows that only Has Input
and Has Output nodes are required by matchers. Also, Table 7.7 further indicates
that the content within Has Input and Has Output nodes are taken into account for
the matching process.

83

CHAPTER 7. REQUEST ANALYSIS

M
atchernam

e
Service

Profile

ID

Presents

Described
By

Supports

ID

Is Presented
by

Service
Name

Text
Description

Has
Input

Has
Output

Has
Process

O
W

L
S-M

X
TextSim

(C
os)

3
7

7
7

7
7

7
7

7
7

7

O
W

L
S-M

X
3

(Structure)
3

7
7

7
7

7
7

7
7

7
7

O
W

L
S-M

X
3

(M
3)

3
3

7
7

7
7

7
7

3
3

7

O
W

L
S-M

X
2

(M
3)

3
3

7
7

7
7

7
7

3
3

7

O
W

L
S-M

0
3

3
7

7
7

7
7

7
3

3
7

SeM
a2

7
7

7
7

7
7

7
7

3
3

7

iSeM
textsim

ilarity
(C

os,
structured)

3
3

7
7

7
7

7
7

3
3

7

iSeM
textsim

ilarity
(C

os)
3

3
7

7
7

7
7

7
3

3
7

iSeM
Structure

3
3

7
7

7
7

7
7

3
3

7

iSeM
logic-based

3
3

7
7

7
7

7
7

3
3

7

iSeM
approx.logic-based

3
3

7
7

7
7

7
7

3
3

7

3
=this

node
affects

the
results

w
hen

m
issing,

7=this
node

m
akes

no
difference

w
hen

itis
m

issing

Table
7.6.:E

lem
ents

inside
Service

and
Profile

nodes
required

by
O

W
L

-S
m

atchers.

84

7.1. MATCHER ANALYSIS

M
at

ch
er

na
m

e
Se

rv
ic

e
Pr

ofi
le

ID
Pr

es
en

ts
:r

es
ou

rc
e

H
as

In
pu

t:r
es

ou
rc

e
H

as
O

ut
pu

t:r
es

ou
rc

e
M

B
W

M
B

W
M

B
W

M
B

W
O

W
L

S-
M

X
Te

xt
Si

m
(C

os
)

3
7

7
7

7
7

7
7

7
7

7
7

O
W

L
S-

M
X

3
(S

tr
uc

tu
re

)
3

7
7

7
7

7
7

7
7

7
7

7

O
W

L
S-

M
X

3
(M

3)
3

7
7

3
3

3
3

3
3

3
3

3

O
W

L
S-

M
X

2
(M

3)
3

7
7

3
3

3
3

3
3

3
3

3

O
W

L
S-

M
0

3
7

7
3

3
3

3
3

3
3

3
3

Se
M

a2
7

7
7

7
7

7
3

3
3

3
3

3

iS
eM

te
xt

si
m

ila
ri

ty
(C

os
,

st
ru

ct
ur

ed
)

3
7

7
3

3
3

3
3

3
3

3
3

iS
eM

te
xt

si
m

ila
ri

ty
(C

os
)

3
7

7
3

3
3

3
3

3
3

3
3

iS
eM

St
ru

ct
ur

e
3

7
7

3
3

3
3

3
3

3
3

3

iS
eM

lo
gi

c-
ba

se
d

3
7

7
3

3
3

3
3

3
3

3
3

iS
eM

ap
pr

ox
.l

og
ic

-b
as

ed
3

7
7

3
3

3
3

3
3

3
3

3

3
=h

as
ef

fe
ct

,7
=h

as
no

ef
fe

ct
M

=m
is

si
ng

no
de

/a
ttr

ib
ut

e,
B

=b
la

nk
va

lu
e,

W
=w

ro
ng

va
lu

e

Ta
bl

e
7.

7.
:E

ff
ec

tf
ro

m
el

em
en

ts
in

si
de

Se
rv

ic
e

an
d

Pr
ofi

le
no

de
s

on
O

W
L

-S
m

at
ch

er
s

w
he

n
th

ey
ar

e
m

is
si

ng
,c

on
ta

in
bl

an
k

va
lu

e
or

co
nt

ai
n

w
ro

ng
va

lu
e.

85

CHAPTER 7. REQUEST ANALYSIS

• OWL-S Atomic Process
Atomic Process node has ID attribute, describes, hasInput, and hasOutput child
nodes. According to Table 7.8, these attribute and child nodes are removable. There-
fore, we can deduce that Atomic Process node is required for a formalism validation,
but contains no meaning.

• OWL-S Input
From Table 7.9, we can conclude that a correct value of attribute ID of Input node is
required. ParameterType node must contain the correct content. However, attribute
ParameterType: DataType can be omitted. The node label is insignificant.

• OWL-S Output
Similar to the OWL-S Input, a correct value of ID attribute, and ParameterType
node’s content are required by most of the matchers, while label node and Parame-
terType:DataType attribute are unnecessary for the matching process.

86

7.1. MATCHER ANALYSIS

M
at

ch
er

na
m

e
A

to
m

ic
Pr

oc
es

s
In

pu
t

O
ut

pu
t

ID

describes

hasInput

hasOutput

ID

paramType

label

ID

paramType

label

O
W

L
S-

M
X

Te
xt

Si
m

(C
os

)
7

7
7

7
7

7
7

7
7

7

O
W

L
S-

M
X

3
(S

tr
uc

tu
re

)
7

7
7

7
7

7
7

7
7

7

O
W

L
S-

M
X

3
(M

3)
7

7
7

7
3

3
7

3
3

7

O
W

L
S-

M
X

2
(M

3)
7

7
7

7
3

3
7

3
3

7

O
W

L
S-

M
0

7
7

7
7

3
3

7
3

3
7

Se
M

a2
7

7
7

7
3

3
7

3
3

7

iS
eM

te
xt

si
m

ila
ri

ty
(C

os
,

st
ru

ct
ur

ed
)

7
7

7
7

3
3

7
3

3
7

iS
eM

te
xt

si
m

ila
ri

ty
(C

os
)

7
7

7
7

3
3

7
3

3
7

iS
eM

St
ru

ct
ur

e
7

7
7

7
3

3
7

3
3

7

iS
eM

lo
gi

c-
ba

se
d

7
7

7
7

3
3

7
3

3
7

iS
eM

ap
pr

ox
.l

og
ic

-b
as

ed
7

7
7

7
3

3
7

3
3

7

3
=t

hi
s

no
de

af
fe

ct
s

th
e

re
su

lts
w

he
n

m
is

si
ng

,7
=t

hi
s

no
de

m
ak

es
no

di
ff

er
en

ce
w

he
n

it
is

m
is

si
ng

Ta
bl

e
7.

8.
:E

le
m

en
ts

in
si

de
A

to
m

ic
Pr

oc
es

s,
In

pu
ta

nd
O

ut
pu

tn
od

es
re

qu
ir

ed
by

O
W

L
-S

m
at

ch
er

s.

87

CHAPTER 7. REQUEST ANALYSIS

M
atchernam

e
Input

O
utput

ID

ParameterType:
DataType

ParameterType
Content

ID

ParameterType:
DataType

ParameterType
Content

M
B

W
M

B
W

B
W

M
B

W
M

B
W

B
W

O
W

L
S-M

X
TextSim

(C
os)

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

O
W

L
S-M

X
3

(Structure)
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7

O
W

L
S-M

X
3

(M
3)

3
3

3
7

7
7

3
3

3
3

3
7

7
7

3
3

O
W

L
S-M

X
2

(M
3)

3
3

3
7

7
7

3
3

3
3

3
7

7
7

3
3

O
W

L
S-M

0
3

3
3

7
7

7
3

3
3

3
3

7
7

7
3

3

SeM
a2

3
3

3
7

7
7

3
3

3
3

3
7

7
7

3
3

iSeM
textsim

ilarity
(C

os,
structured)

3
3

3
7

7
7

3
3

3
3

3
7

7
7

3
3

iSeM
textsim

ilarity
(C

os)
3

3
3

7
7

7
3

3
3

3
3

7
7

7
3

3

iSeM
Structure

3
3

3
7

7
7

3
3

3
3

3
7

7
7

3
3

iSeM
logic-based

3
3

3
7

7
7

3
3

3
3

3
7

7
7

3
3

iSeM
approx.logic-based

3
3

3
7

7
7

3
3

3
3

3
7

7
7

3
3

3
=has

effect,
7=has

no
effect

M
=m

issing
node/attribute,B

=blank
value,W

=w
rong

value

Table
7.9.:E

ffect
from

elem
ents

inside
Input

and
O

utput
nodes

on
O

W
L

-S
m

atchers
w

hen
they

are
m

issing,
contain

blank
value

or
contain

w
rong

value.

88

7.1. MATCHER ANALYSIS

7.1.2. SAWSDL Matchers

From SAWSDL track in S3 Contest, the following matchers are studied:

• iMatcher IOEuclidean [WWWB11],

• iSeM Approx. logic based [KK12b],

• iSeM Hybrid + approx [KK12b],

• iSeM Hybrid [KK12b],

• iSeM structure [KK12b],

• iSeM Logic-based [KK12b],

• iSeM SVM aggregation [KK12b],

• iSeM Text Sim. (Cos) [KK12b],

• iSeM Text Sim. (Cos +Structure) [KK12b],

• SAWSDL-M0 [KKZ09a],

• SAWSDL-MX [KKZ09a],

• SAWSDL-MX2 [KKZ09b],

• XAM4SWS-COV [SLKS12],

• XAM4SWS-LOG [SLES10], and

• URBE [PP09].

7.1.2.1. Matchers Performance

Randomly selected six matchers are tested with five SAWSDL descriptions. The same
trait as OWL-S matchers is also found in SAWSDL matchers. Table 7.10, 7.11, and 7.12
illustrate recall, precision and nDCG rates of each SAWSDL matchers for different queries.

Although iSeM text similarity (Cos, structured) seems to perform best in general, a text-
based search engine (ElasticSearch) or XAM4SWS-LOG matcher can perform better than
it in some cases.

89

CHAPTER 7. REQUEST ANALYSIS

Query Q1 Q2 Q3 Q4 Q5 Average

iSeM approx. logic-based 0.60 0.20 0.00 0.30 1.00 0.42
iSeM logic-based 0.50 0.20 0.00 0.10 0.50 0.26
iSeM text similarity (Cos) 0.60 0.70 1.00 0.30 1.00 0.72
iSeM text similarity (Cos, structured) 0.60 0.70 1.00 0.30 1.00 0.72
TU Darmstadt’s XAM4SWS COV 0.50 0.50 1.00 0.30 1.00 0.66
TU Darmstadt’s XAM4SWS LOG 0.40 0.70 1.00 0.30 1.00 0.68
Elasticsearch 0.40 0.20 1.00 0.10 0.50 0.44

Table 7.10.: SAWSDL matchers’ recall rate per query.

90

7.1. MATCHER ANALYSIS

Query Q1 Q2 Q3 Q4 Q5 Average

iSeM approx. logic-based 0.60 0.20 0.00 0.30 0.20 0.26
iSeM logic-based 0.50 0.20 0.00 0.10 0.10 0.18
iSeM text similarity (Cos) 0.60 0.70 0.30 0.30 0.20 0.42
iSeM text similarity (Cos, structured) 0.60 0.70 0.30 0.30 0.20 0.42
TU Darmstadt’s XAM4SWS COV 0.50 0.50 0.20 0.30 0.20 0.34
TU Darmstadt’s XAM4SWS LOG 0.40 0.70 0.20 0.30 0.20 0.36
Elasticsearch 0.40 0.20 0.50 0.10 0.20 0.28

Table 7.11.: SAWSDL matchers’ precision rate per query.

91

CHAPTER 7. REQUEST ANALYSIS

Query Q1 Q2 Q3 Q4 Q5 Average

iSeM approx. logic-based 0.53 0.10 0.00 0.39 1.00 0.40
iSeM logic-based 0.58 0.17 0.00 0.20 0.60 0.31
iSeM text similarity (Cos) 0.61 0.75 1.00 0.41 1.00 0.75
iSeM text similarity (Cos, structured) 0.61 0.75 1.00 0.41 1.00 0.75
TU Darmstadt’s XAM4SWS COV 0.61 0.73 0.85 0.41 1.00 0.72
TU Darmstadt’s XAM4SWS LOG 0.55 0.82 0.85 0.41 1.00 0.73
Elasticsearch 0.41 0.19 0.58 0.07 0.60 0.37

Table 7.12.: SAWSDL matchers’ nDCG rate per query.

92

7.1. MATCHER ANALYSIS

The result from SAWSDL matchers summarized in Table 7.13 shows that iSeM text simi-
larity (Cos) and iSeM text similarity (Cos, structured) are best perform in every perspective.
However, this does not guarantee to be the best choice for every query.

Matcher name Recall Precision F-measure nDCG

iSeM approx. logic
min 0.00 0.00 0.00 0.00

mean 0.42 0.26 0.29 0.40
max 1.00 0.60 0.60 1.00

iSeM logic
min 0.00 0.00 0.00 0.00

mean 0.26 0.18 0.19 0.31
max 0.50 0.50 0.50 0.60

iSeM text (Cos)
min 0.30 0.20 0.30 0.41

mean 0.72 0.40 0.45 0.75
max 1.00 0.70 0.70 1.00

iSeM text (Cos, structured)
min 0.30 0.20 0.30 0.41

mean 0.72 0.40 0.45 0.75
max 1.00 0.70 0.70 1.00

XAM4SWS COV
min 0.30 0.20 0.30 0.41

mean 0.66 0.34 0.39 0.72
max 1.00 0.50 0.50 1.00

XAM4SWS LOG
min 0.30 0.20 0.30 0.41

mean 0.68 0.36 0.41 0.73
max 1.00 0.70 0.70 1.00

Table 7.13.: SAWSDL matchers’ average result quality.

These results advocate the concept of utilizing several matchers simultaneously, which is
proposed by this thesis.

93

CHAPTER 7. REQUEST ANALYSIS

7.1.2.2. Matchers Requirements

To test what are crucial information for SAWSDL matchers, first, we examine a descrip-
tion’s filename. Matchers which cannot operate properly or returns totally wrong results
will be excluded from the further investigation. As shown in Table 7.14, only iMatcher-
IOEuclidean relies on a filename, not the content of the file.

Within a SAWSDL description, Types, Message, Service, and PortType nodes are con-
sidered for the resource matching (except for the iMatcher-IOEuclidean matcher). Mean-
while, Binding node is not necessary for matchers. In Table 7.15, we examine each attribute
and child node within Types, Message, Service, and PortType nodes.

94

7.1. MATCHER ANALYSIS

M
at

ch
er

na
m

e
Fi

le
na

m
e

C
on

te
nt

R
em

ar
ks

B
in

di
ng

Ty
pe

s
M

es
sa

ge
Se

rv
ic

e
Po

rt
Ty

pe
iM

at
ch

er
IO

E
uc

lid
ea

n
[W

W
W

B
11

]
3

7
7

7
7

7

iS
em

A
pp

ro
x.

lo
gi

c
ba

se
d

[K
K

12
b]

7
7

3
3

3
3

iS
em

H
yb

ri
d

+
ap

pr
ox

[K
K

12
b]

N
ot

W
or

ki
ng

iS
em

H
yb

ri
d

[K
K

12
b]

N
ot

W
or

ki
ng

iS
em

st
ru

ct
ur

e
[K

K
12

b]
7

7
3

3
3

3
W

ro
ng

ra
nk

in
g

re
su

lt
iS

em
L

og
ic

-b
as

ed
[K

K
12

b]
7

7
3

3
3

3

iS
em

SV
M

ag
gr

eg
at

io
n

[K
K

12
b]

N
ot

W
or

ki
ng

iS
em

Te
xt

Si
m

.(
C

os
)[

K
K

12
b]

7
7

3
3

3
3

iS
em

Te
xt

Si
m

.(
C

os
+S

tr
uc

tu
re

)
[K

K
12

b]
7

7
3

3
3

3

SA
W

SD
L

-M
0

[K
K

Z
09

a]
7

7
7

3
3

3
W

ro
ng

ra
nk

in
g

re
su

lt
SA

W
SD

L
-M

X
[K

K
Z

09
a]

7
7

7
3

3
3

W
ro

ng
ra

nk
in

g
re

su
lt

SA
W

SD
L

-M
X

2
[K

K
Z

09
b]

7
7

7
3

3
3

W
ro

ng
ra

nk
in

g
re

su
lt

X
A

M
4S

W
S-

C
O

V
4S

W
S

[S
L

K
S1

2]
7

7
3

3
7

3

X
A

M
4S

W
S-

L
O

G
4S

W
S

[S
L

E
S1

0]
7

7
3

3
7

3

U
R

B
E

[P
P0

9]
N

ot
W

or
ki

ng

3
=t

hi
s

no
de

af
fe

ct
s

th
e

re
su

lts
w

he
n

m
is

si
ng

,7
=t

hi
s

no
de

m
ak

es
no

di
ff

er
en

ce
w

he
n

it
is

m
is

si
ng

Ta
bl

e
7.

14
.:

Fi
rs

tl
ev

el
el

em
en

ts
re

qu
ir

ed
by

SA
W

SD
L

m
at

ch
er

s.

95

CHAPTER 7. REQUEST ANALYSIS

M
atchernam

e
Types

M
essage

Service
PortType

Annotation

Lifting
schema

Input

Output

Request

Response

Name

Port

Name

Operation

iSem
A

pprox.logic
based

7
7

7
3

3
3

7
7

3
3

iSem
L

ogic-based
7

7
3

7
3

3
7

7
3

3

iSem
TextSim

.(C
os)

7
7

3
3

3
3

7
7

3
3

iSem
TextSim

. (C
os

+Structure)
7

7
3

3
3

3
7

7
3

3

X
A

M
4SW

S-C
O

V
4SW

S
7

7
7

7
3

3
7

7
7

3

X
A

M
4SW

S-L
O

G
4SW

S
7

7
7

7
3

3
7

7
7

3

3
=this

node
affects

the
results

w
hen

m
issing,

7=this
node

m
akes

no
difference

w
hen

itis
m

issing

Table
7.15.:E

lem
ents

inside
Types,M

essage,Service
and

PortType
nodes

required
by

SA
W

SD
L

m
atchers.

96

7.1. MATCHER ANALYSIS

• SAWSDL Types
Types node contains Annotation, Lifting Schema, Input, and Output nodes. Annota-
tion and Lifting Schema nodes cause no effect to the matching results when they are
removed. In contrast, the Input and Output nodes are required.

Both Types:Input and Types:Output nodes have Name attribute, ModelRef attribute,
and Sequence child node. ModelRef attribute contains the semantic annotation of
that node.

From Table 7.16, most matchers require Name and ModelRef attributes within Types:Input
and Types:Output nodes for matching. On the other hand, Sequence node can be
omitted.

97

CHAPTER 7. REQUEST ANALYSIS

M
atchernam

e
Types:Input

Types:O
utput

Name

ModelRef

Sequence

Name

ModelRef

Sequence

M
B

W
M

B
W

M
M

B
W

M
B

W
M

iSem
A

pprox.logic
based

7
7

7
7

3
3

7
3

3
3

3
3

3
7

iSem
L

ogic-based
3

3
3

3
3

3
7

3
3

3
3

3
3

7

iSem
TextSim

.(C
os)

3
3

3
3

3
3

7
3

3
3

3
3

3
7

iSem
TextSim

. (C
os

+Structure)
3

3
3

3
3

3
7

3
3

3
3

3
3

7

X
A

M
4SW

S-C
O

V
4SW

S
7

7
7

7
7

7
7

7
7

7
7

7
7

7

X
A

M
4SW

S-L
O

G
4SW

S
7

7
7

7
7

7
7

7
7

7
7

7
7

7

3
=has

effect,
7=has

no
effect

M
=m

issing
node/attribute,B

=blank
value,W

=w
rong

value

Table
7.16.:E

ffectfrom
elem

ents
inside

Types
node

on
SA

W
SD

L
m

atchers
w

hen
they

are
m

issing,contain
blank

value
orcontain

w
rong

value.

98

7.1. MATCHER ANALYSIS

• SAWSDL Message
Message node specifies input and output descriptions. The input description is re-
ferred to as a request, whereas the output description is a response. Table 7.17 pro-
vides more detail in Message:Request and Message:Response nodes. Both nodes
have the same structure. They consist of Name attribute and Part node. Mes-
sage:Part node has two attributes; PartName and PartType. All matchers require
Message:Name and PartType attributes to contain correct information. Whereas
PartName attribute can have an arbitrary value.

99

CHAPTER 7. REQUEST ANALYSIS

M
atchernam

e
M

essage:R
equest

M
essage:R

esponse

Name

Part:
Partname

Part:
Parttype

Name

Part:
Partname

Part:
Parttype

M
B

W
M

B
W

M
B

W
M

B
W

M
B

W
M

B
W

iSem
A

pprox.logic
based

3
3

3
3

7
7

7
7

7
3

3
3

3
7

7
3

3
3

iSem
L

ogic-based
3

3
3

3
7

7
3

3
3

3
3

3
3

7
7

3
3

3

iSem
TextSim

.(C
os)

3
3

3
3

7
7

3
3

3
3

3
3

3
7

7
3

3
3

iSem
TextSim

.(C
os

+Structure)
3

3
3

3
7

7
3

3
3

3
3

3
3

7
7

3
3

3

X
A

M
4SW

S-C
O

V
4SW

S
3

3
3

7
7

7
7

7
7

3
3

3
7

7
7

7
7

7

X
A

M
4SW

S-L
O

G
4SW

S
3

3
3

7
7

7
7

7
7

3
3

3
7

7
7

7
7

7

3
=has

effect,
7=has

no
effect

M
=m

issing
node/attribute,B

=blank
value,W

=w
rong

value

Table
7.17.:E

ffectfrom
elem

ents
inside

M
essage:R

equestand
M

essage:R
esponse

nodes
on

SA
W

SD
L

m
atchers

w
hen

they
are

m
issing,

contain
blank

value
orcontain

w
rong

value.

100

7.1. MATCHER ANALYSIS

• SAWSDL Service
Service node contains Name attribute and Port child node. As shown in Table 7.15,
the attribute and the child node are not used for the matching process. Nevertheless,
as indicated in Table 7.14, Service node must exist in the description.

• SAWSDL PortType
PortType:Name attribute and PortType:Operation node are required by matchers.
As shown in Table 7.18, PortType:Name attribute can either be missing or contain
an arbitrary value, but it cannot be left blank.

PortType: Operation’s name must exist and cannot be empty. While Operation:Input
and Operation:Output nodes must have Message attribute linking to the name of
Message:Request and Message:Response respectively.

101

CHAPTER 7. REQUEST ANALYSIS

M
atchernam

e
PortType:N

am
e

PortType:O
peration

N
am

e
InputM

essage
O

utputM
essage

M
B

W
M

B
W

M
B

W
M

B
W

iSem
A

pprox.logic
based

7
3

7
3

3
7

3
7

7
3

3
3

iSem
L

ogic-based
7

3
7

3
3

7
3

3
3

3
3

3

iSem
TextSim

.(C
os)

7
3

7
3

3
7

3
3

3
3

3
3

iSem
TextSim

.(C
os

+Structure)
7

3
7

3
3

7
3

3
3

3
3

3

X
A

M
4SW

S-C
O

V
4SW

S
7

7
7

7
7

7
3

3
3

3
3

3

X
A

M
4SW

S-L
O

G
4SW

S
7

7
7

7
7

7
3

3
3

3
3

3

3
=has

effect,
7=has

no
effect

M
=m

issing
node/attribute,B

=blank
value,W

=w
rong

value

Table
7.18.:E

ffectfrom
elem

ents
inside

PortType
node

on
SA

W
SD

L
m

atchers
w

hen
they

are
m

issing,contain
blank

value
or

contain
w

rong
value.

102

7.2. ESSENTIAL INFORMATION REQUIRED FOR RESOURCE MATCHING

Now, we can deduce the essential information of resource description from the previous
analysis for the purpose of resource matching.

7.2 Essential information required for resource matching

From the study of resource descriptions and their corresponding matchers, not every field
of resource description is mandatory in the process of resource matching. Some pieces
of information are required to validate the description format, though the contents do not
affect the matching result. Optional information is omissible, and only a few data are
considered in comparison algorithm.

According to our studies in Section 7.1, we came to the conclusion on OWL-S and SAWSDL1.1
description as shown in Figure 7.1 and 7.2. Additionally, we also studied SAWSDL2.0 and
summarized requirements in Figure 7.3. Note that these mapping charts are the result of
matchers’ algorithms. They are not inherent or bound to the description formalisms them-
selves.

In the mapping charts, each box represents a node which connects to a parent node and
children nodes. A leaf node with A means that it can have arbitrary values or be empty,

but the element must exist in all case. B means this attribute cannot be left blank but

can have an arbitrary value. C indicates that a valid content must be provided. D is
equivalent to don’t care, in other words, the element is not considered at all.

7.2.1. OWL-S Description

According to Figure 7.1, the following rules must be applied to an OWL-S description.

• A service node must contain ID and Presents nodes.

• Service: ID node can have an arbitrary value or can be left blank.

• Service: Presents node must contain an exact value that matches a value in Profile:
ID node, though the content would not affect the matching result. This is due to the
fact that Service: Presents is a pointer to the corresponding Profile.

• Profile node must contain HasInput and HasOutput nodes.

• Profile:HasInput and Profile:HasOutput are indicators for Input and Output nodes.

• Under the Input/Output nodes, ParameterType:Content attribute contains a semantic
annotation which is used by semantic resource matchers.

103

CHAPTER 7. REQUEST ANALYSIS

Figure
7.1.:Structure

ofO
W

L
-S

description
w

ith
essentialinform

ation
forresource

m
atching

process.

104

7.2. ESSENTIAL INFORMATION REQUIRED FOR RESOURCE MATCHING

7.2.2. SAWSDL1.1 Description

On the other hand, as shown in Figure 7.2, a SAWSDL1.1 description requires the follow-
ing rules.

• Service:Port node, PortType:Name attribute, and PortType:Operation:Name attribute
must exist and should not be left blank.

• PortType:Operation:InputMsg and PortType:Operation:OutputMsg nodes must be
presented.

• InputMsg and OutputMsg nodes indicate Message:Request and Message:Response
nodes. The value of these nodes must be correct.

• Request and Response nodes must contain Part:PartType and Part:PartName at-
tributes.

• PartType attribute is a pointer to Types:Input or Types:Output node. It must contain
correct information that similar to Types:Input:Name and Types:Output:Name.

• Message:Request/Response:Part:PartName attribute can have any value, including
a blank value.

• A semantic annotation can be found in an element "ModelReference" under Types:Input
or Types:Output node. These nodes must contain correct information.

105

CHAPTER 7. REQUEST ANALYSIS

Figure
7.2.:Structure

ofSA
W

SD
L

1.1
description

w
ith

essentialinform
ation

forresource
m

atching
process.

106

7.2. ESSENTIAL INFORMATION REQUIRED FOR RESOURCE MATCHING

7.2.3. SAWSDL2.0 Description

A SAWSDL2.0 is similar to SAWSDL1.1, except that PortType becomes Interface and
Message node is integrated under Type node. The structure of SAWSDL2.0 with the level
of necessity for its elements is shown in Figure 7.3.

107

CHAPTER 7. REQUEST ANALYSIS

Figure
7.3.:Structure

ofSA
W

SD
L

2.0
description

w
ith

essentialinform
ation

forresource
m

atching
process.

108

8
Request Preparation

In this chapter, we explain how to change free-text keywords into a formatted request.
By applying the knowledge from Section 7.2, Essential information required for resource
matching, we can realize the request constructor (Section 8.1). Also, by analyzing the
common features of different formalisms, we implemented a converter engine as elaborated
in Section 8.2. This converter can be used either to transform a newly generated description
from Section 8.1 or an existing description into another formalism.

8.1 Request Constructor

Consider Ex.2 scenario: the resource that the user is looking for should accept a city name
as an input, and return weather condition as an output. Optionally, the behavior (opera-
tion description) of the resource can be described as "WeatherService". Consequently, a
request message can be constructed from plain texts. A user can use a search UI as a sim-
ple search by providing free text keywords according to Requirement R4 (the discovery
process should offer a basic search for resource descriptions). The example of keywords
could be ”get weather report” or ”weather service”.

In addition, we provide a UI for users to fill in keywords by functionality. This would re-
solve Requirement R5 (the discovery process should offer an advanced search considering
semantic annotations and syntax of keywords). An advanced search requires keywords in
particular fields, i.e. input, output, and operation description of a resource. For example,
Input: ”city”, Output: ”weather”, and Operation: ”weather service”.

Figure 8.1 shows how the given keywords are used to construct a minimum request based
on example descriptions from a repository. The sampling of descriptions over the reposi-
tory is done via a text-based search API. In addition, context information from Chapter 6,
Context Extraction can be appended to a query in this process.

Moreover, this search API can be used to filter a list of all possible relevant resource de-
scriptions out of the whole repository. Instead of comparing our request with 100,000
descriptions (which would take a thousand times longer than processing 100 descriptions),

109

CHAPTER 8. REQUEST PREPARATION

Figure 8.1.: Request constructor diagram.

it is more realistic to filter down the set of descriptions. Although this constructor can pro-
vide possible resources with semantic query expansion, the ranking algorithm is yet based
on a text-based search, not semantic knowledge. Thus, this work needs to include real
ontology-based search engines (i.e. resource matchers) in the service discovery.

8.1.1. Algorithm

Figure 8.2 depicts the workflow of the request constructor. First, the original keywords
given by a user will be used for sample requests from the repository. For instance, a
keyword ”weather service” is considered to be matched to a resource ”country weather
service” and ”global weather report” in a description repository. These two supposedly
matched descriptions are used further as query messages for ontology-based resource match-
ers.

As suggested by [MGMR02] and [QHC06], semantic terms can further improve the results
of documents matching. The semantic extension can be used when the original keywords
do not suffice to retrieve relevant descriptions. The semantic terms could be derived from
an external Semantic Library API. With the extended terms, we look for samples in the
repository again. We can get a wider range of resources like ”forecast service”.

If there is still no result, this is very unlikely to find such a resource in the repository.
However, a minimal request can be created with the original keywords specified in the
input, output, and operation fields.

110

8.1. REQUEST CONSTRUCTOR

Figure 8.2.: Request constructor data flow.

8.1.1.1. Sampling relevant descriptions

A minimal description is needed by resource matchers as an input (request) for match-
ing with descriptions in a repository (offers). Before constructing the minimal description
from scratch, we observe roughly over the repository for existing descriptions that match
the keywords. However, each keyword has a different priority depending on the source
and functionality of it. In some cases, the keywords do not match with any existing de-

111

CHAPTER 8. REQUEST PREPARATION

scriptions, so broader semantic terms should be included to yield the possibility of return
results.

Figure 8.3 illustrates how each keyword is weighted in a query. When we want to pri-
oritize the original keywords over the semantically extended terms, we can set the origi-
nal_booster value to be higher than the semantic_booster. Nevertheless, for the first try,
we do not include semantic terms yet.

Furthermore, the mode of search, either simple or advanced, also affects how the request
is sampled.

a. A simple search
We simply use an option, ”match all”, to search for every description that the keywords
appear in.

b. An advanced search
If the keywords are from an advanced search, the operation description will be prior-
itized (e.g. giving a boost factor: 3) over an input/output descriptions (e.g. giving a
boost factor: 2). These factors are configurable as boosting value for operational, input
and output keywords. We look for descriptions that contain the given keywords only in
the specified fields.

8.1.1.2. Extending a request with semantic entities

According to the flow in Figure 8.3, when an exact match cannot provide enough samples,
we use semantic terms to retrieve more relevant results. The initial keywords should have
a higher priority than the semantic entities. In the query, this priority is defined as a boost
parameter. The original keywords’ boost factor and semantic entities’ boost factor can
be assigned separately. For example, the terms ”country city weather” are provided by
a user. These key terms will get semantic entities like ”state land municipality condition
atmospheric” which should be less important than the original terms. Therefore, we can
configure the boost factor ”3” to the original keywords, and ”1” for the semantic keywords.

As shown in Listing 8.1, the keywords are only differentiated by their origins. The key-
words are submitted for a simple search, all keywords are treated equally and will be
searched in every field of descriptions.

On the other hand, in an advanced search, the keywords are parsed into three fields: in-
put, output, and operation. As exemplified in Listing 8.2, here, we want to prioritize the
operation field over the input and output fields. Thus, we set the operation_boost value to
3, input_boost and output_boost values to 2. The term ”country” is an original keyword
from the user, and also is defined as an input of the resource. Thus, its boost value is
original_booster × input_boost = 6. The term ”state” is a semantic entity, which be-
haves as an input, so the boost parameter becomes semantic_booster× input_boost = 2.
Since ”weather” is an original keyword, defined as an operation description, then it is set
to original_booster × operation_boost = 9. These keywords will be used to compare
only in three specific fields, as suggested by their names.

112

8.1. REQUEST CONSTRUCTOR

�
{ "query":{

"bool":{"should":[
{"query": "country city weather",

"boost":3},
{"query": "state land municipality condition atmospheric",

"boost":1}
]} },
"sort":{"_score":"desc"}, "size":10

}
� �
Listing 8.1: Example query for simple search using original_boost = 3, and

semantic_boost = 1

�
{ "query":{

"bool":{ "should": [
{inputField: {"boost": 6, "value": "country"}},
{inputField: {"boost": 2, "value": "state"}},
{inputField: {"boost": 2, "value": "land"}},
{inputField: {"boost": 6, "value": "city"}},
{inputField: {"boost": 2, "value": "metropolis"}},
{inputField: {"boost": 2, "value": "municipality"}},
{outputField: {"boost": 6, "value": "weather"}},
{outputField: {"boost": 2, "value": "condition"}},
{outputField: {"boost": 2, "value": "atmospheric"}},
{outputField: {"boost": 2, "value": "phenomenon"}},
{operationField: {"boost": 9, "value": "get"}},
{operationField: {"boost": 3, "value": "return"}},
{operationField: {"boost": 9, "value": "weather"}}}

]}
}, "sort":{"_score":"desc"}, "size":20

}
� �
Listing 8.2: Example query for advanced search with operation_boost value =

3, input_boost = 2, output_boost = 2, original_boost = 3, and
semantic_boost = 1

113

CHAPTER 8. REQUEST PREPARATION

Figure 8.3.: Request sampler data flow.

114

8.1. REQUEST CONSTRUCTOR

8.1.1.3. Creating a minimal description from keywords

When the sampling request with semantic extension is still insufficient, we create a de-
scription from scratch. The minimum requirement is that the operation name, input name,
and output name must be filled in. Table 8.1 demonstrates major properties in supported
formalisms. Note that the input/output type ontology fields are optional but can highly
enhance the description if they are provided.

Property OWL-S SAWSDL1.1 SAWSDL2.0
Operation name RDF >

profile:Profile ID
definitions >
portType:Operation
name

description >
interface:Operation
name

Input name RDF >
process:Input ID

definitions >
message >
part name

description >
interface >
operation >
input element

Input type
ontology

RDF >
process:Input>
parameterType

definitions >
types >
schema >
complexType
modelReference

description >
types >
schema >
element
modelReference

Output name RDF >
process:Output ID

definitions >
message >
part name

description >
interface >
operation >
output element

Output type
ontology

RDF >
process:Output >
parameterType

definitions >
types >
schema >
complexType
modelReference

description >
types >
schema >
element
modelReference

Table 8.1.: Main properties in OWL-S, SAWSDL1.1, and SAWSDL2.0

An operation name is defined as Profile ID in OWL-S. While SAWSDL1.1 refers to the
operation name as portType:name, and interface:name in SAWSDL2.0. An input and an
output name are described in OWL-S as process:InputID and process:OutputID respec-
tively. In contrast, SAWSDL1.1 refers to both input and output in message:part name.
Meanwhile, SAWSDL2.0 separately cites an input name as interface:operation:input ele-
ment, and an output name as interface:operation:output element.

We can extend the description by annotating ontology to each input and output element.
In OWL-S, process:Input/Output:parameterType node indicates the link to a correspond-
ing ontology term, whereas SAWSDL1.1 and SAWSDL2.0 specify an ontology link as
types:schema:element:modelReference. For instance, the term "City" with semantic anno-
tation can be referred to its super classes within an ontology model, such as "Geopolitical
Area" or "Land Area."

115

CHAPTER 8. REQUEST PREPARATION

8.2 Request Converter

As previously mentioned, a resource can be described in any formalism. This thesis covers
OWL-S, SAWSDL1.1, and SAWSDL2.0 to prove our concept. The request constructor
can provide either OWL-S or SAWSDL descriptions. However, it is less likely that one
resource would be described in both OWL-S and SAWSDL formats. If we focus on one
formalism, it is possible that we could miss the resources those are described in another
format. Thus, the request converter is developed to enable the service discovery to use both
types of description formalisms.

[MPW07] summarizes how to map SAWSDL descriptions to OWL-S. In this work, we cre-
ated mapping schemas for OWL-S, SAWSDL1.1, and SAWSDL2.0 as depicted in Figure
7.1, Figure 7.2 and Figure 7.3 respectively. The request converter will look for a mapping
schema and convert a request from an initial formalism to the destination formalism(s).
The destination formalism will be chosen regarding the type of matchers used in the next
process (see Figure 5.1).

Inside SAWSDL1.1 definitions element, a resource can have several ports corresponding
to different binding protocols. Service:Name in SAWSDL1.1 is equivalent to Service:ID
in OWL-S. Each SAWSDL1.1 PortType has ”Operation(s)”, of which name is equivalent
to Profile:ID of OWL-S. However, neither Service:Name nor Operation:Name (as well as
Service:ID and Profile:ID in OWL-S) are considered in the resource matcher reasoning.
Thus, we can assign any value to these fields.

Message:Request:Part:Name, of SAWSDL1.1 is equivalent to OWL-S Input:ID, whereas
Message:Response:Part:Name of SAWSDL1.1 is correspondent to OWL-S Output:ID.
The semantic annotation of inputs and outputs can be mapped from SAWSDL1.1 In-
put:ModelReference and Output:ModelReference to OWL-S Input:ParameterType and Out-
put:ParameterType.

SAWSDL2.0 follows the similar trait of SAWSDL1.1, except that PortType is renamed
to Interface, and Message node is removed. Interface node also contains an Operation.
In contrast to SAWSDL1.1, this Operation node specifies input(s) and output(s) names
directly. Thus, this reduces one step to access the semantic annotation node. The summary
of necessary information and their containers are shown in Table 8.1.

Now we have conversion templates. The next question is when to apply this conversion.
We classify the usage of the request converter into two ways, as we refer to as modes of
conversion.

8.2.1. Modes of Conversion

The conversion process can either operate before the request is made (offline mode) or be
called on demand (online mode). In the first mode, we rely on a single formalism. All de-
scriptions in a repository will be prepared in the same language, and ready to be matched

116

8.2. REQUEST CONVERTER

by matchers specialized in that language. For example, if we choose to use OWL-S match-
ers, we can use the converter to convert all SAWSDL descriptions to OWL-S formalism
before we match them to a query.

Contrarily, when we use multi-type matchers to match a query with different formalisms.
This requires the online conversion. A query will be converted to different formalisms and
be fed to the corresponding matchers.

8.2.1.1. Conversion on the description repository (offline mode)

We can use the request converter to prepare descriptions before the request is made. This
conversion prepares all descriptions in the repository into a single formalism. This offline
conversion is recommended when a certain description formalism is used. For example, if
we aim toward the real-time responsive discovery, it is recommended to use the SAWSDL
formalism.

We can configure our discovery engine to create an initial request in SAWSDL and de-
ploy only SAWSDL based matchers. Therefore, it is more tangible to convert all OWL-S
descriptions into SAWSDL beforehand.

On the other hand, if we aim for using OWL-S based matchers, the request constructor can
be configured to generate an OWL-S request. Also, all the SAWSDL descriptions in the
repository must be converted as depicted in Figure 8.4. This process should be called upon
when a new description is added to a description repository.

Figure 8.4.: Request converter performs in the description repository (offline mode).

117

CHAPTER 8. REQUEST PREPARATION

8.2.1.2. Conversion on demand (online mode)

The offline conversion has disadvantages that it is based on a single formalism and takes
more storage to keep different versions of descriptions. When the discovery settings are
dynamic, e.g. having SAWSDL and OWL-S based matchers running simultaneously, on-
line conversion is needed. For example, the SAWSDL request will be converted to an
OWL-S formalism as shown in Figure 8.5. This approach utilizes the advantage of both
OWL-S and SAWSDL matchers at once.

Figure 8.5.: Request converter performs on demand (online mode).

118

8.2. REQUEST CONVERTER

8.2.2. Conversion Algorithm

The main classes in the converter are reader and writer classes. Each formalism has reader
and writer classes. The reader class is responsible for parsing and extracting essential
information (see Section 7.2, Essential information required for resource matching) from a
description, whereas the writer class is responsible for creating a description in a particular
formalism with mandatory information.

A conversion from OWL-S to SAWSDL requires an OWLreader and a WSDLwriter. On
the other hand, conversion from SAWSDL to OWL-S requires a WSDLreader and an
OWLwriter1.

8.2.2.1. Conversion from SAWSDL to OWL-S

This conversion requires a WSDL1.1 or WSDL2.0 reader class, and an OWL writer class.
Figure 8.6 illustrates these classes and connections between them. The algorithm used for
creating an OWL-S description is depicted in Figure 8.7. The first level of both OWL-
S and SAWSDL is called Service. A description can have more than one service, and
each SAWSDL service can contain several PortTypes. Each SAWSDL PortType provides
information of resource’s input(s) and output(s).

For OWL-S, an input/output message from SAWSDL must be stored in Profile node. While
Process node maintains the semantic annotations of the inputs and outputs (if they are avail-
able in SAWSDL ModelReference attribute). All inputs and outputs from every PortType
and Service from SAWSDL are transferred to the OWL-S description in each iteration.

1The WSDLreader can parse both WSDL and SAWSDL descriptions. Likewise, the OWLreader can parse
OWL and OWL-S descriptions.

119

CHAPTER 8. REQUEST PREPARATION

Figure 8.6.: Request converter class diagram showing data flow of SAWSDL (1.1 on the
left side, and 2.0 on the right side) to OWL-S conversion.

120

8.2. REQUEST CONVERTER

Figure 8.7.: Conversion from SAWSDL1.1 to OWL-S description flow chart.

121

CHAPTER 8. REQUEST PREPARATION

8.2.2.2. Conversion from OWL-S to SAWSDL

This conversion requires an OWL reader class and a WSDL writer class as depicted in
Figure 8.8. When an OWL-S is converted to SAWSDL, as illustrated in Figure 8.9, all
Profiles in every Services are extracted. Inputs and outputs must be inserted to a SAWSDL
Types node. Message nodes contain semantic annotations of the input(s) and output(s).
The OWL-S profiles are equivalent to SAWSDL operations.

After all the profiles are extracted, the SAWSDL PortType will be created from OWL-S
Processes, previously created SAWSDL Operations, and SAWSDL Service:Port attribute.
When all the OWL-S services are read and written to SAWSDL formalism, we will have
SAWSDL descriptions ready for a matching process.

122

8.2. REQUEST CONVERTER

Figure 8.8.: Request converter class diagram showing data flow of OWL-S to SAWSDL1.1
conversion.

123

CHAPTER 8. REQUEST PREPARATION

Figure 8.9.: Conversion from OWL-S to SAWSDL1.1 description flow chart.

124

9
Result Integration

Previously in Chapter 8, we describe our main components for preparing a request for the
resource discovery. The request is propagated to resource matchers. Since using multiple
matchers increases the chance of getting better results, we suppose that our resource dis-
covery would get multiple result sets as well. However, to make use of these results, we
need to combine them in the way that the rank is maintained.

The integration of results is not trivial as the results from matchers can be incongru-
ent. Furthermore, regarding the similarity aggregation methods compared in [KNL13]
and [DMD+03], using homogeneous weights on multiple matchers returns unsatisfactory
results. Each matcher, therefore, should be assigned a different weight depending on its
performance.

This chapter provides an overview of existing techniques for result merging and discusses
their advantages and drawbacks. Then we present a new method more suitable for our
purposes. We aim to resolve the conflict in the ranking between each matcher. Also, the
integrator should be able to reject poor results to improve the quality of the final result.

9.1 Existing Techniques for Result Merging

[LMS+05] and [Jad12] discussed different methods of merging multiple search engines’
results. These techniques can be categorized into three types: score-based, rank-based and
content-based.

9.1.1. Score-based Merging Algorithm

This is the most straightforward technique. Assuming all search engines have comparable
similarity scores, then all results can be merged by linear combination methods discussed
in [RS03], which accumulate each item’s normalized score from all search engines and
reorder them to a final ranked list.

For example, given a similar query to a search engine X and a search engine Y, we get dif-
ferent results from them. X returns a set of results with similarity values appended to each

125

CHAPTER 9. RESULT INTEGRATION

result: [(r1, 0.95), (r2, 0.8), (r3, 0.63), (r4, 0.75), (r5, 0.13)], where the highest similarity
score of X is 1 and irrelevant results get 0 as a similarity score.

In contrast, Y assigns a similarity score to each result from a range 0 to 10. It returns a set
of results for the same query: [(r1, 8.1), (r2, 9.8), (r3, 5.2), (r4, 6.9), (r5, 4.6)].

First, we normalize the similarity scores from Y to make them compatible with the result
of X. Therefore, Y result = [(r1, 0.81), (r2, 0.98), (r3, 0.52), (r4, 0.69), (r5, 0.46)].

Then we sum the score of X’s and Y’s results. Merged result =
[(r1, 1.76), (r2, 1.78), (r3, 1.15), (r4, 1.44), (r5, 0.59)].

Afterwards, we can sort the result in a descending order regarding the accumulated simi-
larity scores and obtain the final result: [r2, r1, r4, r3, r5].

However, this approach does not take into account that different search engines differ in
their reliability. Plus, not every search engine provides similarity scores to clients, as they
tend to use these scores internally. Thus, this does not work well in practice.

9.1.2. Content-based Merging Algorithm

Among the content-based merging algorithms, the approaches like Search Result Records
(SRRs), Top Document (TopD) and their successors are claimed to be the most effective
[LMS+05].

• SRRs are dynamically generated HTML texts containing metadata to be displayed
as search results (snippets). For each document, the similarity between the query
and its title, and the similarity between the query and its snippet are computed. Then
the two similarities are linearly aggregated. The weight of each search engine is
computed based on the Okapi probabilistic model [Rob01].

The Okapi model requires the information of document frequency (df) of each term.
The df of the query term t in each search engine is approximated by the number of
documents containing term t within their titles and snippets.

Finally, the estimated similarity of each result is adjusted by multiplying the relative
deviation of its source search engine’s score to the mean of all the search engine
scores.

• TopD algorithm uses the similarity between a query q and the top-ranked document
(dix) returned from search engine X to estimate a score of the search engine (SX).
This score reflects how good the search engine is on the user query. The highest
ranked document is the most relevant to the user query. Nevertheless, fetching the
top-ranked document from its local server causes some extra network delay to the
merging process. The similarity between query q and di is calculated by using the
sum of the Okapi weight of each query term t.

However, these are rather resource-expensive since they need to download documents for
analysis.

126

9.1. EXISTING TECHNIQUES FOR RESULT MERGING

9.1.3. Rank-based Merging Algorithm

This method is straightforward and versatile. It assigns each item a score corresponding to
the rank in which it appears within each search result. It neglects the original scores from
the search engines, then assigns a new score to each item. This does not require document
analysis, so it saves time and memory consumption. The simplest rank-based method is
to consider the best rank from all search engines directly using voting systems such as
Borda’s Positional method or Borda count [Pac12]. Moreover, when taking the reliability
of search engines into account, we can use an approach like weighted Borda-Fuse.

• Borda’s Positional computes the Lp-Norm of the ranks in different search engines.
That is, with a query q:
Merged rank(q) = Σ(Rank1(q)

p, Rank2(q)
p, · · · , Rankn(q)p)

1
p .

This algorithm has considered the L1-Norm which is the sum of all the ranks in
different search engine result lists.

• Weighted Borda-Fuse algorithm treats each search engine unequally. The merged
results are depending on weights which represent the reliability of each search en-
gine. These weights can be set by the users in their profiles. Thus, the score (vote)
of ith result from j search engine is:
V (ri,j) = wj ∗ (maxX(rj)− i+ 1).

Where wj is the weight of j search engine and rj is the numbers of results rendered
by the search engine j. Retrieved items that appear in more than one search engines
receive the sum of their votes.

• Borda count , a voting-based data fusion method, is simplistic and efficient in terms
of quality and time consumption. In Borda count, each search engine represents a
voter. Each voter ranks a fixed set of candidates according to preference. The top
rank gains the highest score. Consecutive ranks get lower scores. Then, all vote
counts of each candidate will be collected from all electors.

For example, as shown in Figure 9.1, three candidates: A, B, and C are voted by six
electors. B is voted 1st rank three times, voted 2nd rank two times, and voted 3rd

rank once. We assign a score for the first rank as 2 (most important), the second rank
as 1, and the third rank as 0 (least important). Thus, B will get the accumulated score
of: (3× 2) + (2× 1) + (1× 0) = 8.

The item which gets the highest sum of scores becomes the first rank. As a result,
the Borda count should rank the example as B (1st), A (2nd) and C (3rd).

In this work, Borda count is used for assigning scores to each item from resource matchers’
results due to its efficiency and simplicity. Total scores are arranged to provide the final
result and used to calculate a weight value for each resource matcher. This weight value
represents how reliable each resource matcher is for a query. The following section will
elaborate on these technical details.

127

CHAPTER 9. RESULT INTEGRATION

Figure 9.1.: Example of Borda count method.

9.2 Merging Algorithm

We initially treat all the matchers with identical weights and then merge all results all
results into a single list. Following the concept presented by [MGMR02], the merged
result is compared to the original results to calculate weights for each matcher. Then, the
process is iterated until the best quality result is achieved.

The overview of the result integrator flow is depicted in Figure 9.2. When we are interested
in top t results and use n different matchmakers, a matrix with dimension [n × t] is created
from all matchmakers’ results. Each element contains a resource’s unique id and similarity
score assigned by each matchmaker.

128

9.2. MERGING ALGORITHM

Figure 9.2.: Flow chart of the result integrator.

129

CHAPTER 9. RESULT INTEGRATION

Though each matchmaker has a different method to calculate a similarity score, we can
normalize these scores to extract the information about the difference between each rank.
If the similarity score is not available, we can use Borda count technique to predict the
score from ranks.

The flow starts with an initial function to set default values for calculation. These values
are RO (a collection of original result matrices), w (an initial weight used for defining the
reliability level of each matcher), RC (a combined result), and w’ (weight computed from
a distance between RC and RO).

RC relies on the average result from all matchers. However, some matchers return inaccu-
rate results. To eliminate the poor results, we measure a reliability weight of each matcher.
A matcher gets a higher weight when it returns a result that is close to RC . The poorest
result (lowest weight) will be removed from RO. Then, RC will be computed again. The
removal of poor results and recalculation of RC will be repeated multiple times until the
optimum result is obtained.

The condition to stop this iteration is that the matchers’ weights do not change between
consecutive rounds. In other words, when there is no poor matcher left to be eliminated,
the weight in the current round and the previous round are indifferent (or insignificantly
different). Thus, the iteration is terminated and the result RC from this round will be used.

9.2.1. Initial function

In the init() function, shown in Figure 9.3, results from resource matchers are accumulated
into one matrix, RO, with a dimension of [n× t].

For example,

we use three matchers; MA, MB, and MC, and consider four top
ranks of matching results. Given a request rq, the matcher MA
returns a resource α as the first rank, γ as the second rank, δ and
ε as the third and fourth rank respectively. Thus,

RMA(rq) =
[
α γ δ ε

]
,

where the leftmost element represents the highest matched item
and, vice versa, the rightmost element is the least likely similar
item to the request.

The result from the matcher MB produced from the same request
is:
RMB(rq) =

[
β γ α δ

]
.

The result from the matcher MC is:

RMC(rq) =
[
α δ β γ

]
.

(Ex. 3)

130

9.2. MERGING ALGORITHM

Figure 9.3.: ’init()’ function of the result integrator.

We can simply combine RMA, RMB , and RMC together into one matrix, and append a
score to each element. Therefore,

RO(rq) =

rA1 rA2 rA3 rA4

rB1 rB2 rB3 rB4

rC1 rC2 rC3 rC4

,

where an element in the matrix (r) represents a key pair value. A resource ID is a key, and
a matching score is a value. rA1 represents the first rank result from the matcher MA. When

131

CHAPTER 9. RESULT INTEGRATION

rA1 has an ID α, and a score for the first rank item is 1, thus, rA1 = (α, 1). The matching
score is supposedly assigned by each matcher. If a matcher does not provide the score
value, we can compute the score as explained in 9.2.2, get score function.

Accordingly, RO(rq)is

(α, 1) (γ, 1) (δ, 0.63) (ε, 0.5)

(β, 1) (γ, 1) (α, 0.63) (δ, 0.5)

(α, 1) (δ, 1) (β, 0.63) (γ, 0.5)

The initial weights of all matchers are equally distributed, w[n] =

[
1
n

1
n · · · 1

n

]
.

Therefore, for Ex.3, w =
[
1
3

1
3

1
3

]
.

Then we can compute a combined result RC using Borda count (see Subsection 9.2.2 for
more detail). Accordingly, a new weight w’ can be measured from Euclidean difference
between RC and RO (see Subsection 9.2.3 for more detail).

9.2.2. Get combined result function

To combine the ranking result from all matchers meaningfully, we use a Borda count tech-
nique. Figure 9.4 depicts the whole process for this function.

An item in a result array is a key-value pair which consists of a resource ID (in most
cases, this can be represented as URI) of each rank as a key, and a score of that rank as
a value. The score is calculated from a getScore function and will be accumulated if the
same ID appears in other matchers’ results. If a matcher returns less than t items, an empty
key-value pair is used to fill up the missing rank. When all results from all matchers are
processed, the elements in RC will be sorted according to score values and selected only
top t items.

132

9.2. MERGING ALGORITHM

Figure 9.4.: ’getCombinedResult’ function.

133

CHAPTER 9. RESULT INTEGRATION

Get score function

As mentioned earlier, when matching scores are provided by matchers, we can normalize
and use them directly. However, it is most likely that these scores are used internally and
are not provided with the result. In this case, we can calculate these scores using Borda
count technique. Figure 9.5 depicts the flowchart of the getScore function.

Figure 9.5.: ’getScore’ function.

In Borda count, top t ranks from all matchmakers with the same query will be considered.
Each distinctive element will be assigned a score according to the rank so that the element
in the upper rank has the higher score. We use the formula according to the normalized
Discounted Cumulative Gain (nDCG), i.e. 1

log2 #rank ; or 1 where #rank is 1.

Each distinct element’s score will be accumulated. For example, if a resource, α, is ranked
in the first place by MA and MC, while MB ranks the resource α in the 3rd place, the total
score for the resource α is 1+ 1

log2 3
+1. This score value will be multiplied by the weight

value of individual matcher.

score =

n∑
i=1

weight[i]

log2(#rank)
; weight[i] when #rank = 1

�
�

�
�9.1

Next, the total score is sorted in descending order. Then the top t ranks will be added to
the combined result.

From Ex.3;

RMA(rq) =
[
α γ δ ε

]
,

134

9.2. MERGING ALGORITHM

RMB(rq) =
[
β γ α δ

]
,

RMC(rq) =
[
α δ β γ

]
and w =

[
1
3

1
3

1
3

]
.

Every resource gets a score as follows:

• α score = 1
3 · 1 + 1

3 ·
1

log23
+ 1

3 · 1 = 0.88

• β score = 1
3 · 0 + 1

3 · 1 + 1
3 ·

1
log23

= 0.54

• γ score = 1
3 · 1 + 1

3 · 1 + 1
3 ·

1
log24

= 0.83

• δ score = 1
3 ·

1
log23

+ 1
3 ·

1
log24

+ 1
3 · 1 = 0.71

• ε score = 1
3 ·

1
log24

+ 1
3 · 0 + 1

3 · 0 = 0.17

Therefore, the raw result is[
(α, 0.88) (γ, 0.83) (δ, 0.71) (ε, 0.17) (β, 0.54)

]
.

Finally, after sorting the score and choosing only top four ranks,
we get

RC(rq) =
[
(α, 0.88) (γ, 0.83) (δ, 0.71) (β, 0.54)

]
.

(Ex. 4)

9.2.3. Get weight function

The weight value of each resource matcher can indicate the accuracy of its result. We
assume that the majority result is the most accurate result. Thus, we compare the result of
each matcher with the merged result to judge if a matcher returns a good or bad result.

Figure 9.6 illustrates the workflow to get the weight value of each resource matcher. With-
out prior knowledge, the distance between the merged result and the original result are
compared using Euclidean distance measurement. The bigger the difference, the lesser
value the weight will become. In other words, if the merged result is closer or similar to
the result from one matcher, it indicates that this matcher is more reliable than the other.
Consequently, the weight of this matcher should be increased.

This weight measurement is necessary, because when we utilize multiple matchers simulta-
neously, some matchers may yield a very unlikely result. The low-relevance result should

135

CHAPTER 9. RESULT INTEGRATION

Figure 9.6.: ’getWeight’ function.

be detected and removed from the combined result. A matcher is identified as a low-
accuracy matcher when it receives a lower weight. The result from this matcher is then
discarded or deprioritized, and the final result is recalculated.

According to Equation 9.1, weight values for all matchers will be used in the calculation
of scores, resulting in the next round of RC calculation. Given the distance, Ed, between
each matcher’s result and RC , the weight is:

weight[Mn] = 1− Ed[n]
�
�

�
�9.2

Euclidean distance function

We can compare the original result from each matcher RMnto RC and measure the dis-
tance. The Euclidean distance Ed can reflect the reliability of each matcher. First, every
URI item from a single query in RC will be searched in every RM . If the ranks of a par-
ticular item differ from RC to RM , the distance will be increased. Figure 9.7 depicts a

136

9.2. MERGING ALGORITHM

flowchart of the measurement of the Euclidean distance between two arrays, RC to RO.

Note that RO[n] =

RM1

RM2

· · ·

RMn

.

Figure 9.7.: ’euclideanDistance’ function to measure the difference between the merged
result and the original results.

Considering Ex.4: RC(rq) =
[
α γ δ β

]

RMA(rq) =
[
α γ δ ε

]

Applying Equation 9.1 and use the initial weight (13) to compute RC , a score of α from RC

(denoted as s1) is 1
3 , and a score of α from RMA (denoted as s2) is 1

3 . Thus, the distance
is:

d(x) = (s1 − s2)
2; s2 = 0 when the item x does not exist

in the result of that matcher.

�
�

�
�9.3

137

CHAPTER 9. RESULT INTEGRATION

Applying this similar method to all items,

d(α) = (13 · 1−
1
3 · 1)2 = 0,

d(β) = (13 ·
1

log24
− 1

3 · 0)2 = 0.0278,

d(γ) = (13 ·
1

log22
− 1

3 ·
1

log22
)2 = 0, and

d(δ) = (13 ·
1

log23
− 1

3 ·
1

log23
)2 = 0.

(Ex. 5)

Note that we use the initial weight when we compute weights for the first time. According
to the flow in Figure 9.2, the weights are updated in every iteration and used to calculate
the distance too.

Putting these results together, the distance between RC and RMA is:

Ed(RC , RMA) =

√∑t
i=1 di
t

�� ��9.4

Finally, all weights will be normalized by dividing by the sum of weights.

normalized weights[Mx] =
weight[Mx]∑n
i=1weight[i]

; x is the number of matcher.
�� ��9.5

9.2.4. Check weight change function

From here we can re-compute RC and the matcher weight again until they are insignifi-
cantly changed. The result from the best quality round will be chosen. Instead of com-
paring the final result with the predefined solution, we can assume that when the weight
difference between two rounds converges at 0, it indicates the stability of the weight com-
puting and the result of this round supposedly yields the best quality.

The isWeightStable function, shown in Figure 9.8, compares the difference between a pre-
vious weight and a new weight from a new RC . Not all weight will be compared, but only
the maximum weight. The threshold value is configurable. The higher threshold can be
set, but this would decrease the quality of the finalRC , since the iteration could stop before
the best RC is reached.

However, if poor performance matchers are not muted out when the iteration continues,
the quality of the final result would not be much improved. The solution is to remove
the least-weighted matcher from the getCombinedresult calculation. Finally, the criteria
for the removal of matchers must be set, so that there will be some matchers left to be
computed.

138

9.2. MERGING ALGORITHM

Figure 9.8.: ’isWeightStable’ function to check the condition for stopping the iteration.

To stop the elimination of the poor performance matcher, we use statistic figures as a
threshold value. Only the matcher that has a weight lower than;

threshold = mean(weights)× κ× standard variation(weights),
�
�

�
�9.6

and the lowest weight of all will be removed. The value κ can be adjusted according to
the granularity of matcher quality. The higher this value is, the more poor performance
matchers will be accounted to the final result.

When the request constructor, request converter, resource matchers and result integrator
are ready and put together as shown in Figure 5.1, the integration of the resource discovery
is complete. In the following chapter, we show how users can use the resource discovery
module via MERCURY.

139

10
Resource Discovery Integration to

MERCURY

In previous chapters, we explained the implemented modules for the service discovery.
Now we can deploy the resource discovery into MERCURY. As introduced in Chapter 2,
Project Background, we can utilize the discovery function in the registration, scenario
modeling, and execution processes. The core functions of the service discovery are imple-
mented independently from MERCURY to fulfill Requirement R11 (the resource discovery
should operate as a standalone module). However, the presentation of discovery result, as
required by Requirement R12 (the discovery result should be presented in the registration,
scenario modeling, and execution processes in a way that users can apply the result in-
stantly) is specific to the context of MERCURY. The evaluation of this integrated solution
will be presented in Chapter 13, Integrated System Evaluation Results.

10.1 Registration

There are many approaches to register a resource into MERCURY, such as retrieving lo-
cal devices seen on a user’s local machine by calling a script which detects all hardware
drivers. A remote resource can also be registered directly by providing a URL to the
resource description. Moreover, the user can simply search for a resource by free-text
keywords. This work provides two different ways of discovery: a quick search and an
advanced search.

• Quick search - The keywords provided by a user are taken as general keywords
which can appear in any field of description. Meanwhile, a resource matcher is the
default matcher derived from a configuration file.

• Advanced search - Keywords are categorized into specific fields, according to the
necessary information deduced from section 7.2, Essential information required for
resource matching. Additionally, resource matcher(s) can be chosen via a GUI.

The registration can be initiated with a resource discovery, according to the flowchart in
Figure 10.1. If simple keywords are provided, the quick search function will be called.

141

CHAPTER 10. RESOURCE DISCOVERY INTEGRATION TO MERCURY

Figure 10.1.: Registration flow with the resource discovery.

142

10.1. REGISTRATION

On the other hand, the categorized keywords can be submitted to the advanced search
function, together with the list of resource matchers. Then a user will be prompted with a
list of relevant resources. When the user selects a resource, the resource’s description will
be parsed, and the resource’s details will be stored in MERCURY’s database. This allows
us to achieve Requirement R8 (the resources’ descriptions should be derived, stored, and
made editable by authorized users).

Table 10.1 shows the necessary information from a SAWSDL description file required
by MERCURY. A service is stored as a device, a port as a sensor (a device can have
multiple sensors), an operation as an action, whereas input/output messages are stored as
parameters.

Description Table.field Remarks

service.name device.name

service.description device.description

service.url device.url

device.id (1) auto-generated

port.name sensor.sensor.name

sensor.id (2) auto-generated

operation.name action.name

operation.documentation action.annotation

device id action.deviceId from (1)

sensor id action.sensorId from (2)

operation.inputmsg.name parameters.name

operation.inputmsg.type parameters.type

operation.outputmsg.name parameters.name

operation.outputmsg.type parameters.type

operation.msg.modelreference parameters.annotation

parameters.id (3) auto-generated

input parameters id action.inputParameterId from (3)

output parameters id action.outputParameterId from (3)

Table 10.1.: Mapping table of elements from a SAWSDL description file versus tables and
fields in MERCURY’s database.

In the registration process, a user can turn the implicit context feature on/off or provide the
context explicitly. Additionally, both implicit and explicit context, including the original
keywords, are extended with semantic annotations. This increases the chances of finding
more relevant resources.

143

CHAPTER 10. RESOURCE DISCOVERY INTEGRATION TO MERCURY

10.1.1. Applying context to the Registration process

During the registration process, MERCURY can retrieve a user profile and extract a user’s
location as described in Section 6.1, Context from User Profile. The location name (e.g.
city name, country name) will be added to a query message. This query expansion can
improve the resource recommendation.

For a quick search, the user’s location will be simply used to compare with every field of a
description, whereas in an advanced search, the location will be appended to the operation
name. For example, a user looks for an accommodation service, and the user address in his
profile is Germany. The recommended resources should offer a hotel service in Germany
in a higher rank than a hotel service in France.

Not only can a static address from the user profile be utilized, but also the current location
derived from a social sensor (as described in Section 6.2). Furthermore, an online calendar,
for example, can be analyzed to predict users’ interest. For instance, if a user plans on
visiting the USA next week, the recommendation should offer a hotel service in the USA
in a higher rank than a hotel service in Germany.

10.2 Scenario Modeling

Regarding Requirement R9 (the modeling tool should recommend the potential resources
to users by considering users’ interactions), during the modeling or execution process,
the recommendation has to support real-time interaction. Unlike the registration process,
which the completion and accuracy of the result are highly prioritized, the resource recom-
mendation in the scenario modeling searches through the registered resources which must
be done in real time. This recommendation also considers the semantic annotation and
user’s preferences to get the set of recommended resources.

Applying context to the Scenario Modeling process

Since the resources in this process are all registered and have a history of resource usage in
MERCURY, we offer four recommendation modes according to Section 6.3, Context from
User Preferences and Contributions:

• F - Frequently used/ Favorite by rating.

• S - Semantically similar description.

• C - Input/output compatible.

• U - Previously used in similar scenarios.

144

10.2. SCENARIO MODELING

The discovery process starts when a user drops an item onto the modeling canvas, then the
detail of the item will be analyzed and used for the recommendation. As shown in Figure
10.2, the recommendation in mode S and C will call a semantic API to get relevant
terms, and these terms will be used for extending a query for relevant resources. In the
meantime, the recommendation in mode F and U require a history of resources’ usage
for a recommendation. The recommendations from all modes will be accumulated and
presented to the user with explanations why they are being suggested.

F and U recommendations are categorized as object-oriented based context. Mean-

while, ontology knowledge is required to implement S and C . Thus, they are consid-
ered as ontology-based context.

Figure 10.2.: Resource discovery flow in the scenario modeling process.

145

CHAPTER 10. RESOURCE DISCOVERY INTEGRATION TO MERCURY

The user context information from Portal user management is also applied in these pro-
cesses. However, in the scenario modeling and execution processes, there is no GUI to
provide context information explicitly. Therefore, only the implicit context information
can be utilized.

10.3 Execution Engine

The created scenario is translated into an executable script via a scenario translator, as
depicted in Figure 10.3. A graphical representation of a scenario will be validated and
converted into a script. An execution engine then executes the script and control the sen-
sors/actuators/services via middleware.

Figure 10.3.: Connection between the scenario modeling tool and the execution engine.

During the runtime, if any resource in the scenario fails to respond, then an error handler
should offer a solution to a user. From Figure 10.4, the execution engine can check for a
vital signal of each resource by polling them periodically. If a resource does not respond
to the polling request within a period, an error handler will be called up.

The failed resource’s properties will be retrieved from a database, namely, the input(s),
output(s) and operation descriptions. This information will be passed to the resource dis-
covery, thus resolving Requirement R10 (during runtime, a placeholder item or a fail-to-
respond resource should be supported by the service discovery).

146

10.3. EXECUTION ENGINE

Figure 10.4.: Resource discovery flow in the scenario execution process.

147

CHAPTER 10. RESOURCE DISCOVERY INTEGRATION TO MERCURY

Applying context to the Execution process

Similar to the Registration process, the usage of context in the Execution process is based
on the user profile (Section 6.1) and a social sensor (Section 6.2). However, in this process,
we emphasize on the compatibility of the input and output over the operation description.
This is because the replacement of a resource should be instantly made without a redesign-
ing of a scenario.

In this part, we elaborate on the implementation details of the resource discovery and how
to use it in the context of MERCURY. Next, we evaluate each module separately to show
the importance of each element. Then, we evaluate the integrated resource discovery as a
whole.

148

Part III.

Evaluation

149

11
Evaluation Overview

In the preceding part, we provided the fundamental components we need to realize our
goal and the implementation details of each element. To prove that our proposed solution
can improve the resource discovery, we evaluate each component in Chapter 12, Unit Test
Results. This also indicates the part which we can improve upon in future works. We
then evaluate the integrated solution to observe the overall performance in Chapter 13,
Integrated System Evaluation Results.

In this chapter, we describe the measurement methods for qualifying the result from re-
source discovery in Section 11.1. The method and objective of the evaluation for the re-
quest constructor, the request converter, and the result integrator are explained in Section
11.2, 11.3, and 11.4 respectively. Then, we describe the testing corpus we use for our eval-
uation in Section 11.5. A list of resource matchers used in this evaluation is concluded in
Section 11.6.

11.1 Performance measurement

There are two types of relevances that are considered in this evaluation; binary relevance
and graded relevance. For binary relevance, the result will be classified into two categories,
relevant (1) or irrelevant (0). On the other hand, the graded relevance offers a finer granu-
larity of relevance, e.g. strongly relevant (3), relevant (2), fairly relevant (1) and irrelevant
(0). The binary quality measurement is calculated by precision, recall, and F-measure rates.
Meanwhile, to measure the quality of rank, which requires graded relevance, a normalized
Discounted Cumulative Gain (nDCG) is used.

Figure 11.1 illustrates term definitions in a search evaluation. The testing corpus comprises
of relevant and irrelevant documents according to the request. Out of these corpora, all
documents that are supposed to be relevant are returned to a user. Within this retrieved
documents set, a group of relevant documents is defined as "True positive" (tp), while a
group of irrelevant documents is "False positive" (fp). The non-retrieved documents but
truly relevant are "False negative" (fn), whereas the irrelevant documents from this group
are called "True negative" (tn).

151

CHAPTER 11. EVALUATION OVERVIEW

Figure 11.1.: Definition of returned relevant and irrelevant results.

In order to compare the quality of resource matchmaking results, the following measure-
ments are used:

precision =
|{relevantdocuments} ∩ {retrieveddocuments}|

|{retrieveddocuments}|

=
tp

(tp+ fp)

�
�

�
�11.1

recall =
|{relevantdocuments} ∩ {retrieveddocuments}|

|{relevantdocuments}|

=
tp

(tp+ fn)

�
�

�
�11.2

When we consider top ten results, the recall rate can be small if the number of relevant doc-
uments is greater than ten. Therefore, we divide the original recall rate with the maximum
recall number to normalize the value. For example, if there are 29 relevant documents and
9 of them are returned in a top ten list of results, the normalized recall rate will be 9/10
instead of 9/29. On the other hand, when there are five relevant documents, and two of
them appear in a top ten list, the normalized recall will be 2/5 like the originally defined
recall rate.

152

11.1. PERFORMANCE MEASUREMENT

In fact, a high recall rate can be achieved by simply consider more results. In contrast, a
precision rate is more likely to decrease by doing so. Thus, we measure a harmonic mean
between precision and recall rates using F-measure:

F -measure = 2 • (precision • recall)
(precision+ recall)

�� ��11.3

If the normalized recall explained previously is used to calculate the F-measure, we denote
this term as ” normalized F-measure”.

The fallout rate is also common in evaluating search result.

fallout =
fp

(fp+ tn)

�� ��11.4

However, we are looking at the top few number of results. This causes tn to outnumber fp.
Hence, the fallout rate bears no significance and could be negligible.

Then, we need to measure how well the matchers rank their results by using DCG.

DCGP = rel1 +
P∑
i=2

reli
log2i

; reli = the level of relevance of the item in rank i.�� ��11.5

P is the count of observing top rank (for example, P is 20 when we consider top 20 items).
rel, the level of relevance, can have the following values; 3 means strongly relevant, 2 is
relevant, 1 is fairly relevant, and 0 is irrelevant.

Nevertheless, DCG alone is insufficient to compare between different queries (thus, differ-
ent solutions). For this reason, we calculate nDCG (normalized DCG).

nDCGP =
DCGP

IDCGP
; IDCG = ideal DCG.

�� ��11.6

IDCG can be calculated from DCG where all the items are ranked correctly.

153

CHAPTER 11. EVALUATION OVERVIEW

11.2 Request Constructor

Free text keywords are given as an input, and then the request constructor has to find
resembling or create formatted descriptions. However, this process cannot benefit from the
semantic annotation within the description yet. This step is only a preparation to construct
a request message in certain formalisms, e.g. SAWSDL and OWL-S.

In this evaluation, the simple search keywords and advanced (structured) search keywords
are compared to see if the specified field of search can improve the search results. Also,
semantic entities are appended to a query and compared with the query without semantic
entity extension. The evaluation results are shown in Section 12.1, Evaluation of Request
Constructor.

11.3 Request Converter

Randomly selected SAWSDL and OWL-S descriptions for similar services are used as
requests. The SAWSDL descriptions are converted into OWL-S formalism, and vice versa.

Afterwards, the results from the converted SAWSDL are compared with the results from
the original description in SAWSDL to see how well the conversion convey the informa-
tion. The same measurement is applied to OWL-S descriptions, and the evaluation results
are shown in Section 12.2, Evaluation of Request Converter.

11.4 Result Integrator

We do not need to evaluate the service matcher part, since this was successfully done
by efforts like Web Service Challenge, Semantic Web Challenge, and Semantic Service
Selection (S3) Contest. Nevertheless, outcomes from the service matchers are merged by a
result integrator module. Therefore, we focus on evaluating the result integrator concerning
result quality compared to an individual result of a single resource matcher. The evaluation
results are shown in Section 12.3, Evaluation of Result Integrator.

11.5 Description Collections

This thesis adopts service descriptions from S3 Contest since it provides pre-defined solu-
tion sets which are reliable and used to qualify many resource matchers. It also provides
a sample set of service descriptions equally in SAWSDL and OWL-S formalisms which
are widely in use. The total number of descriptions (for each formalism) is 1080. The
S3 contest provides 42 service requests together with the ideal solution for each matching

154

11.5. DESCRIPTION COLLECTIONS

task. These predefined solutions are also provided with both binary and graded evaluating
results.

In Section B.2, we show the expected results for each request we use in the evaluation.
For example, when we use a resource name "shoppingmall_cameraprice" as a request to
search for similar resources using a matcher name "iSeM approx. logic-based", the top ten
relevant results are:

• <rank id=1>pricecamera_Wallmart

• <rank id=2>cameraprice_MyShop

• <rank id=3>camerataxedprice

• <rank id=4>shoppingmall_cameraprice

• <rank id=5>SRcamera

• <rank id=6>grocerystore_teaprice

• <rank id=7>Toyotaprice_service

• <rank id=8>price_CannonCamera

• <rank id=9>KodakDigCamera_price

• <rank id=10>searchRawAddress

We can compare the above results with the expected solution listed in B.2.1.1. The resource
name "shoppingmall_cameraprice" (which is identical to the request) is expected to be
shown on top of the rank because it is highly relevant. Meanwhile, the results in rank 1, 2,
and 5 are expected to appear after the highly relevant results. The result in rank 8, which is
listed in the potentially relevant results, should appear after the highly relevant and relevant
results respectively. Ideally, the other results which are not listed in the expected results
should not appear in the matching result at all.

When applying the measurement explained in Section 11.1 to this example, the precision
rate is 0.5 (only five results out of the top 10 are relevant). For the recall rate, if there are
25 actual relevant documents, the recall rate is 5/25 regardless of the number of top ranks
considered. However, we are considering top 10 results, the normalized recall rate is 5/25

10/25 ,
where 10/25 is the ideal recall rate from top 10 results.

Mostly, the recall and precision rates do not differ much between each matcher when we
consider the results at top 10 or 20 ranks. However, the ranking algorithms of each matcher
make the matching quality significantly different. From the previous example, although the
highly relevant results are listed in top ten, it appears in the fourth rank instead of the first
rank. Even worse, the irrelevant results like ranks 6 and 7 are listed in a higher rank than the
potentially relevant results. This dilemma can be resolved when we use multiple matchers.

155

CHAPTER 11. EVALUATION OVERVIEW

11.6 Resource Matchers

As mentioned in Section 7.1, we studied semantic resource matchers from the S3 Contest.
The matchers that are working, as listed in Table 11.1, are used in the evaluation.

Formalism Matchers

OWL-S

iSeM approx. logic [KK10]

iSeM logic [KK10]

iSeM structure [KK10]

iSeM text (Cos) [KK10]

iSeM text (Cos, structured) [KK10]

SeMa2 [MHB+12]

OWLS-M0 [KFK05]

OWLS-MX2 [KKF08]

OWLS-MX3 (M3) [KK12a]

OWLS-MX3 (Structure) [KK12a]

SAWSDL

iSeM approx. logic-based [KK12b]

iSeM logic-based [KK12b]

iSeM text similarity (Cos) [KK12b]

iSeM text similarity (Cos, structured) [KK12b]

iSeM SVM aggregation [KK12b]

SAWSDL-M0 [KKZ09a]

SAWSDL-MX [KKZ09a]

SAWSDL-MX2 [KKZ09b]

XAM4SWS-LOG4 [SLES10]

XAM4SWS-COV [SLKS12]

Table 11.1.: List of resource matchers and algorithms from S3 Contest used for the evalu-
ation.

Finally, all the components are assembled and evaluated together to check the overall per-
formance in Chapter 13, Integrated System Evaluation Results.

156

12
Unit Test Results

In this chapter, we provide the evaluation results of the individual building blocks in our
solution. In Section 12.1 we evaluate the request constructor and demonstrate that con-
structed requests are not only compatible with resource matchers, but they also contain
sufficient data for a matching process.

Next, we evaluate the request converter in Section 12.2. The converted descriptions are
fed to resource matchers, using an actual description in the destination formalism as the
baseline. Our goal is to translate a description from one formalism (e.g. SAWSDL) to
another formalism (e.g. OWL-S) without degrading the matching result’s quality.

We use the resource matchers listed in Table 11.1 in these evaluations. The returned results
from all matchers are merged using the result integrator. Then, we evaluate the result
integrator in Section 12.3 comparing to an individual resource matcher.

12.1 Evaluation of Request Constructor

As presented in Section 8.1, the request constructor samples similar existing descriptions or
formulates a minimal request from free text keywords. First, we evaluate the simple search
which compares all keywords in description files regardless of the position of words. If the
sampling method cannot return any relevant description, a minimal request will be created.
The settings and results of the basic search evaluation are described in 12.1.1.

In an advanced search, the user can specify the functionality of each keyword, i.e. opera-
tion, input or output. We show in 12.1.2 how the separation of the simple keywords into
three categories can help us to gain more accurate results.

Additionally, we expand the query messages with semantic terms to retrieve more relevant
results. In 12.1.3, we evaluate how well the semantic terms can improve the query results.

We compute the recall, precision, F-measure, and nDCG values at top ten ranks from the
returned result. Note that the recall rate can be higher when we consider more ranks, such
as top 20 or top 50 results. In fact, the precision rate usually increases inversely to the
recall rate. In this module, we are interested only if the constructed request can fulfill the
requirements of resource matchers, compared to the existing formatted request. Thus, only
the top ten results of the evaluation will be observed.

157

CHAPTER 12. UNIT TEST RESULTS

12.1.1. Simple Search

To measure the quality of the constructed request, we imitate 30 descriptions (chosen ran-
domly) from the test collections out of the 42 descriptions with pre-defined solutions. The
simple plain text keywords we used to construct each request message are listed in Table
12.1, column "Simple Keywords".

Table 12.1.: List of keywords used for evaluating the request constructor with the corre-
sponding descriptions.

Corresponding
description ID Simple Keywords Structured Keywords

Input Output Operation
d1.1 camera price camera price camera price
d1.2 shoppingmall camera shoppingmall

camera
- shoppingmall

cameracamera price
d1.3 shoppingmall camera

price
shoppingmall
camera

price shoppingmall
camera

book price
d2.1 book price book price -
d2.2 novel price novel price -
d2.3 get novel price novel price get novel price
d3.1 door door - get door

open door d3.2 open door - door get open door

citycountry hotel

d4.1 hotel - hotel get hotel
d4.2 city hotel city hotel get hotel
d4.3 city country hotel country city hotel get hotel
d4.4 region hotel region hotel -
d4.5 accomodation city city accommodation -
d5.1 pill - pill -

fall down pill d5.2 fall down pill - pill fall down pill

Grocery Store
Food Service

d6.1 food - food get food
d6.2 grocerystore food grocerystore food get food
d6.3 shop food shop food get food
d6.4 grocerystore grocerystore food -
d7.1 researcher address researcher address get address
d7.2 employee information

address
employee information find address

Researcher
address

d7.3 scientist university
address

scientist univer-
sity

address address

hospital
investigating

d8.1 hospital hospital - investigating
d8.2 hospital investigating hospital investigating get investigating
d8.3 hospital diagnose hospital diagnose -
d8.4 medical checkup medical checkup -
d8.5 medical biopsy medical biopsy biopsy
d9.1 film title title film -
d9.2 comedy film comedy get comedy film
d9.3 media title title mediacomedy film

d9.4 comedy movie - comedy movie get movie

surfing destination
d10.1 surf beach surfing beach
d10.2 sufing destination surfing destination get destination
d10.3 surfing location surfing location get location
d11.1 price cola cola - get price

maxprice cola d11.2 max price cola cola max price -

get Altitude
Above Sea Level
Of Location

d12.1 long lat altitude lat long altitude get altitude
d12.2 lat long height lat long height
d12.3 elevation coordinates coordinates - get elevation

Continued on next page

158

12.1. EVALUATION OF REQUEST CONSTRUCTOR

Table 12.1 – continued from previous page
Corresponding

description ID Simple Keywords Structured Keywords
Input Output Operation

d12.4 altitude of location location - get altitude
d13.1 convert mile to km mile km convert
d13.2 length converter length unit length unit converter

mile To
Kilometer
Converter d13.3 convert mi to km mi km convert

d14.1 get publication - - get publication
d14.2 get publication by

number
publication
number

publication get publication
by number

d14.3 publishing number number publishing -

publication-
number
publication

d14.4 publication number number publication -
d15.1 sunset sunrise time - sunset sunrise

time
get time

d15.2 sunset sunrise time
location

location sunset sunrise
time

get time

d15.3 day night location location day night -

get Sunset
Sunrise Time
Of Location

d15.4 coordinates dusk dawn
times

coordinates dusk dawn get times

d16.1 dvdplayer price dvdplayer price get price
d16.2 dvdplayer mp3player

price
dvd mp3 player price -dvdplayer

mp3player
price d16.3 dvd mp3player price dvd mp3 player price get price

d17.1 distance between cities cities distance get distance
between cities

d17.2 get distance cities cities distance get distance
get Distance
Between Cities
Worldwide d17.3 location distance location - location distance

d18.1 geographical map - map get geographic
mapgeographical-

region map d18.2 geographical region
map

geographical
region

map -

d19.1 get car price car price get car price
car price d19.2 auto price - price get auto price

title videomedia
d20.1 title video media title video get video
d20.2 get video media title title video get media
d20.3 get video media by title title video media -

d21.1
skilledoccupation
country country

skilled
occupation get occupation

countrycountry skilled
occupation d21.2 country profession country profession -

d22.1 coffee whiskey price coffee whiskey - get price
d22.2 recommended coffee

whiskey price
recommended
coffee whiskey

- get price

d22.3 irishcoffee price irishcoffee price -

Recommended
Price Coffee
Whiskey

d22.4 price suggested coffee
whiskey

coffee whiskey price suggested price
coffee

d23.1 bicycle price bicycle price get price
d23.2 car price car price get price
d23.3 auto price - price get auto price

1person bicycle
car price

d23.4 bicycle person price bicycle person price -

novel author

d24.1 book author book - get author
d24.2 get novel author novel author get author
d24.3 story author story author -
d24.4 book title writer book title writer -
d25.1 preparedfood preparedfood - -
d25.2 prepared food price prepared food price get food price

prepared food
price

d25.3 processed food price processed food - get price

Continued on next page

159

CHAPTER 12. UNIT TEST RESULTS

Table 12.1 – continued from previous page
Corresponding

description ID Simple Keywords Structured Keywords
Input Output Operation

d26.1 scholarship - scholarship -

d26.2 find government schol-
arship

government
degree

scholarship get scholarshipgovernment
degree
scholarship d26.3 government degree

funding
government
degree

fund get funding

d27.1 city location city location get locationget Location
Of City State d27.2 city state location city state location get location

d28.1 get weather city city weather get weather
d28.2 geopolitical entity

weather
geopolitical
entity

weather get weatherGeopolitical-
entity Weather
Process d28.3 geopolitical entity

weather process
geopolitical
entity

weather process get weather

d29.1 lock door - door get lock door
lock door d29.2 close door - close door get close door

d30.1 government missile
funding

missile govern-
ment

funding find funding

d30.2 government weapon
funding

government weapon funding -Government
Missile
Funding d30.3 weapon funding - weapon funding get funding

Table 12.1.: List of keywords used for evaluating the request constructor with the corre-
sponding descriptions.

The constructed requests created from these keywords are compared with the correspond-
ing description (see solutions in B.2.1). For instance, when we look for a service "book
price" (denoted as d2), keywords like, "book price" (denoted as d2.1), "novel price" (d2.2),
or "get novel price" (d2.3) can be used to construct a minimal request that is then fed to
resource matchers.

By using the given keywords to search in a resource description repository, we measure
the recall, precision, F-measure, and nDCG rates as shown in Table 12.2, 12.3, 12.4, and
12.5 respectively. From these results, the simple search performs differently with different
queries. For example, with a corresponding description d13, the simple search achieves 1.0
recall rate from all three combinations of keywords. On the other hand, for a description
d15, the simple search can achieve 0.75 average recall rate, while the minimum value is
0.5, and the maximum value is 1.

Although the simple search yields acceptable recall rate on average, the precision rate is
unsatisfactory. Thus, we improve the quality of the request constructor by introducing the
search with structured keywords (or "advanced search").

160

12.1. EVALUATION OF REQUEST CONSTRUCTOR

Recall Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean 0.23 0.60 1.00 0.30 0.50 0.40 0.17 0.20 0.53 0.10
max 0.40 1.00 1.00 0.90 1.00 0.90 0.50 0.70 1.00 0.30

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.00 0.33 1.00 0.00 0.50 0.50 0.20 0.00 0.00 0.00

mean 0.25 0.50 1.00 0.33 0.75 0.60 0.30 0.20 0.40 0.03
max 0.50 0.67 1.00 0.70 1.00 0.80 0.40 0.40 0.80 0.10

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.30 0.10 0.30 0.00 0.00 0.00 0.40 0.00 1.00 0.00

mean 0.35 0.28 0.65 0.18 0.20 0.33 0.45 0.00 1.00 0.17
max 0.40 0.60 0.90 0.60 0.60 1.00 0.50 0.00 1.00 0.50

Table 12.2.: Recall rate from the request constructor per query using simple keywords.

161

CHAPTER 12. UNIT TEST RESULTS

Precision Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean 0.23 0.60 0.35 0.30 0.50 0.40 0.17 0.20 0.53 0.10
max 0.40 1.00 0.50 0.90 1.00 0.90 0.50 0.70 1.00 0.30

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.00 0.10 0.10 0.00 0.20 0.50 0.20 0.00 0.00 0.00

mean 0.25 0.15 0.10 0.33 0.30 0.60 0.30 0.20 0.40 0.03
max 0.50 0.20 0.10 0.70 0.40 0.80 0.40 0.40 0.80 0.10

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.30 0.10 0.30 0.00 0.00 0.00 0.40 0.00 0.20 0.00

mean 0.35 0.28 0.65 0.18 0.20 0.33 0.45 0.00 0.20 0.17
max 0.40 0.60 0.90 0.60 0.60 1.00 0.50 0.00 0.20 0.50

Table 12.3.: Precision rate from the request constructor per query using simple keywords.

162

12.1. EVALUATION OF REQUEST CONSTRUCTOR

F-measure Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean 0.23 0.60 0.50 0.30 0.50 0.40 0.17 0.20 0.53 0.10
max 0.40 1.00 0.67 0.90 1.00 0.90 0.50 0.70 1.00 0.30

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.00 0.15 0.18 0.00 0.29 0.50 0.20 0.00 0.00 0.00

mean 0.25 0.23 0.18 0.33 0.43 0.60 0.30 0.20 0.40 0.03
max 0.50 0.31 0.18 0.70 0.57 0.80 0.40 0.40 0.80 0.10

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.30 0.10 0.30 0.00 0.00 0.00 0.40 0.00 0.33 0.00

mean 0.35 0.28 0.65 0.18 0.20 0.33 0.45 0.00 0.33 0.17
max 0.40 0.60 0.90 0.60 0.60 1.00 0.50 0.00 0.33 0.50

Table 12.4.: F-measure from the request constructor per query using simple keywords.

163

CHAPTER 12. UNIT TEST RESULTS

nDCG Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean 0.20 0.38 0.53 0.15 0.50 0.30 0.20 0.13 0.41 0.09
max 0.33 0.66 0.58 0.45 1.00 0.66 0.60 0.43 0.75 0.27

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.00 0.19 1.00 0.00 0.67 0.50 0.27 0.00 0.00 0.00

mean 0.30 0.37 1.00 0.22 0.83 0.66 0.33 0.23 0.34 0.02
max 0.59 0.54 1.00 0.45 0.97 0.77 0.39 0.46 0.69 0.07

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.16 0.06 0.18 0.00 0.00 0.00 0.18 0.00 0.80 0.00

mean 0.18 0.23 0.53 0.08 0.14 0.24 0.24 0.00 0.83 0.10
max 0.20 0.63 0.68 0.23 0.41 0.72 0.30 0.00 0.85 0.29

Table 12.5.: nDCG from the request constructor per query using simple keywords.

164

12.1. EVALUATION OF REQUEST CONSTRUCTOR

12.1.2. Advanced Search

A user can specify the keywords by their functionality, these are called "structured key-
words". We provide three basic types of keywords, operation, input, and output descrip-
tions. Applying the same evaluation environment as the simple search, the advanced search
is evaluated. We extend the simple keywords in Table 12.1 by putting them into three
different categories as shown beside each set of simple keywords. For example, to gain
resources corresponding to a description named "book price" (d2), the term "book price"
(d2.1) is separated to an input "book" and an output "price".

The recall, precision, F-measure, and nDCG rates measured from the advanced search are
shown in Table 12.6, 12.7, 12.8, and 12.9 respectively. On average, an advanced search
yields better result quality than a simple search. Some exceptions, such as query d5 ("pill"),
has better recall, precision, and nDCG when we use the simple search. This is because the
actual relevant results of this query are two, but only one of these results contain the term
"pill" in an output field. Therefore, the simple search can detect the keyword in both of the
descriptions files, while the advanced search returns only one of them. On the other hand,
if a description contains the word "pill" but has no relevance to the targeted description,
the simple search could perform worse than the advanced search.

165

CHAPTER 12. UNIT TEST RESULTS

Recall Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.60 0.50 1.00 0.50 0.50 0.20 0.60 0.30 1.00 0.30
mean 0.80 0.70 1.00 0.88 0.50 0.50 0.77 0.54 1.00 0.67
max 0.90 0.80 1.00 1.00 0.50 0.80 0.90 0.70 1.00 1.00

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.90 0.33 1.00 0.40 0.50 1.00 0.40 0.40 0.80 1.00

mean 0.95 0.42 1.00 0.62 0.50 1.00 0.45 0.65 0.85 1.00
max 1.00 0.67 1.00 0.80 0.50 1.00 0.56 0.90 0.90 1.00

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.90 0.30 0.80 0.20 0.00 0.50 0.30 0.80 1.00 0.70

mean 0.95 0.83 0.93 0.58 0.50 0.83 0.35 0.93 1.00 0.80
max 1.00 1.00 1.00 0.90 1.00 1.00 0.40 1.00 1.00 0.90

Table 12.6.: Recall rate from the request constructor per query using structured keywords.

166

12.1. EVALUATION OF REQUEST CONSTRUCTOR

Precision Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.60 0.50 0.20 0.50 0.17 0.20 0.60 0.30 1.00 0.30
mean 0.80 0.70 0.20 0.88 0.33 0.50 0.77 0.54 1.00 0.67
max 0.90 0.80 0.20 1.00 0.50 0.80 0.90 0.70 1.00 1.00

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.90 0.10 0.10 0.40 0.20 1.00 0.40 0.40 0.80 1.00

mean 0.95 0.13 0.13 0.63 0.20 1.00 0.45 0.65 0.85 1.00
max 1.00 0.20 0.20 0.80 0.20 1.00 0.56 0.90 0.90 1.00

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.90 0.30 0.80 0.20 0.00 0.50 0.30 0.80 0.20 0.70

mean 0.95 0.83 0.93 0.58 0.50 0.83 0.35 0.93 0.20 0.80
max 1.00 1.00 1.00 0.90 1.00 1.00 0.40 1.00 0.20 0.90

Table 12.7.: Precision rate from the request constructor per query using structured key-
words.

167

CHAPTER 12. UNIT TEST RESULTS

F-measure Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.60 0.50 0.33 0.50 0.25 0.20 0.60 0.30 1.00 0.30
mean 0.80 0.70 0.33 0.88 0.38 0.50 0.77 0.54 1.00 0.67
max 0.90 0.80 0.33 1.00 0.50 0.80 0.90 0.70 1.00 1.00

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.90 0.15 0.18 0.40 0.29 1.00 0.40 0.40 0.80 1.00

mean 0.95 0.19 0.23 0.62 0.29 1.00 0.45 0.65 0.85 1.00
max 1.00 0.31 0.33 0.80 0.29 1.00 0.56 0.90 0.90 1.00

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.90 0.30 0.80 0.20 0.00 0.50 0.30 0.80 0.33 0.70

mean 0.95 0.83 0.93 0.58 0.50 0.83 0.35 0.93 0.33 0.80
max 1.00 1.00 1.00 0.90 1.00 1.00 0.40 1.00 0.33 0.90

Table 12.8.: F-measure from the request constructor per query using structured keywords.

168

12.1. EVALUATION OF REQUEST CONSTRUCTOR

nDCG Query ID
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

min 0.70 0.19 0.58 0.44 0.60 0.14 0.56 0.10 0.83 0.09
mean 0.79 0.33 0.69 0.63 0.60 0.46 0.60 0.49 0.84 0.32
max 0.84 0.40 0.80 0.81 0.60 0.73 0.66 0.80 0.87 0.51

d11 d12 d13 d14 d15 d16 d17 d18 d19 d20
min 0.77 0.30 0.43 0.28 0.17 0.77 0.32 0.62 0.42 0.91

mean 0.80 0.36 0.81 0.51 0.52 0.80 0.37 0.76 0.49 0.93
max 0.83 0.38 1.00 0.71 0.67 0.81 0.39 0.91 0.57 0.95

d21 d22 d23 d24 d25 d26 d27 d28 d29 d30
min 0.63 0.21 0.31 0.12 0.00 0.51 0.13 0.51 0.85 0.65

mean 0.74 0.78 0.45 0.38 0.34 0.74 0.30 0.77 0.93 0.74
max 0.85 1.00 0.58 0.77 0.78 0.91 0.47 0.92 1.00 0.85

Table 12.9.: nDCG from the request constructor per query using structured keywords.

169

CHAPTER 12. UNIT TEST RESULTS

To summarize, the simple and advanced searches are compared in Table 12.10. The result
shows that using the structured keywords via an advanced search can significantly improve
the overall quality of results. This happens because the simple search looks for the key-
words without any specification of the position within the description. When we use the
simple search to find keywords that contain common terms, there is a high tendency that
we will get a low precision result. In contrast, the advanced search focuses on the function
of each keyword. Therefore, if these query terms do not appear in the specified fields, we
simply neglect that description.

Keywords type Recall Precision F-measure nDCG

Simple
min 0.00 0.00 0.00 0.00

mean 0.39 0.29 0.31 0.32
max 1.00 1.00 1.00 1.00

Structured
min 0.00 0.00 0.00 0.00

mean 0.74 0.65 0.66 0.60
max 1.00 1.00 1.00 1.00

Table 12.10.: Request constructor result comparison between using simple keywords and
structured keywords (advanced search).

170

12.1. EVALUATION OF REQUEST CONSTRUCTOR

12.1.3. Semantic Search

Besides using the advanced search, we also enhance the request message with semantic
terms. For this evaluation, we retrieve semantic terms from Watson KMI semantic API 1,
and Altervista Thesaurus API 2. We expect the semantic extension to increase the recall
rate in the simple search.

We use the simple and structured keywords from Table 12.1 to retrieve the semantic terms.
For example, the search with the keyword "book" can get extended terms like:

- publication, record, collection

- script, play script, composition, dramatic works

- reserve, hold, request, schedule, register.3

The keyword "price", for instance, has the semantic terms like cost, value, worth.

As summarized in Table 12.11, the search result from simple keywords yields better recall,
precision, and nDCG when we apply semantic entities. Contrarily, semantic entities are
not very helpful when using an advanced search. The extended semantic terms could
have introduced more irrelevant results, thus increasing the recall rate but decreasing the
precision. Therefore, semantic expansion should be provided for the simple search. On the
other hand, when using the structured keywords, the semantic expansion can be excluded.

Note that this evaluation results are from the minimal request constructed from a plain
text search. If we compare this result to those from full described OWL-S and SAWSDL
descriptions, the result presented here can be inferior.

1http://watson.kmi.open.ac.uk/API/entity/keyword/?q=[keyword]
2http://thesaurus.altervista.org/thesaurus/v1
3The term "book" can be misleading, referring to the action of reserving.

171

CHAPTER 12. UNIT TEST RESULTS

Keywords type Recall Precision F-measure nDCG

Simple keywords,
no semantic

min 0.00 0.00 0.00 0.00
mean 0.39 0.29 0.31 0.32
max 1.00 1.00 1.00 1.00

Simple keywords,
with semantic

min 0.00 0.00 0.00 0.00
mean 0.68 0.59 0.61 0.57
max 1.00 1.00 1.00 1.00

Structured keywords,
no semantic

min 0.00 0.00 0.00 0.00
mean 0.74 0.65 0.66 0.60
max 1.00 1.00 1.00 1.00

Structured keywords,
with semantic

min 0.10 0.10 0.10 0.06
mean 0.74 0.65 0.66 0.59
max 1.00 1.00 1.00 1.00

Table 12.11.: Request constructor result comparison between using semantic expansion
and no semantic expansion for simple and advanced searches.

172

12.2. EVALUATION OF REQUEST CONVERTER

12.2 Evaluation of Request Converter

The request converter elaborated in Section 8.2 transforms a description from an existing
description in another format, not from plain text keywords. This converter is needed when
searching over different description formalisms simultaneously.

The request converter is evaluated by converting existing descriptions into another formal-
ism. Afterwards, the original and the converted descriptions are fed to semantic resource
matchers, and the results of matching will be compared to each other. We convert 42 OWL-
S descriptions (listed in Appendix B.2.1) to SAWSDL and vice versa. These resource
descriptions are available in both OWL-S and SAWSDL formats so that the conversion
results can be compared.

First, we test the conversion from SAWSDL to OWL-S. We expect a marginal difference
in matching result’s quality between converted OWL-S and original OWL-S descriptions
which describe the same resource. Likewise, descriptions in OWL-S are converted into
SAWSDL formalism and compared with original SAWSDL descriptions.

12.2.1. SAWSDL to OWL-S Matching Result

The examples of a source SAWSDL description and a converted OWL-S description can
be found in Listing A.1 and A.2 respectively. 42 converted OWL-S and the corresponding
OWL-S descriptions are fed to the semantic matchers which are:

- (MO1) iSeM logic-based [KK10],

- (MO2) iSeM approx. logic-based [KK10],

- (MO3) iSeM structure [KK10],

- (MO4) iSeM text similarity (Cos) [KK10],

- (MO5) iSeM text similarity (Cos, structured) [KK10],

- (MO6) SeMa2 [MHB+12],

- (MO7) OWLS-M0 [KFK05],

- (MO8) OWLS-MX2 (M3) [KKF08], and

- (MO9) OWLS-MX3 (M3) [KK12a].

Results shown in Table 12.12 indicate that the converted descriptions have lower quality
than the corresponding descriptions. The summary of the evaluation is discussed as fol-
lows:

1. The converted descriptions tend to perform worse than the corresponding descrip-
tions. This shows that the original SAWSDL description might not be as complete
as the corresponding OWL-S description.

173

CHAPTER 12. UNIT TEST RESULTS

Matcher Recall Precision F-measure nDCG
converted original converted original converted original converted original

MO1 0.58 0.62 0.58 0.61 0.58 0.61 0.52 0.57
MO2 0.09 0.09 0.09 0.09 0.09 0.09 0.05 0.05
MO3 0.57 0.57 0.55 0.55 0.56 0.56 0.43 0.43
MO4 0.65 0.80 0.61 0.74 0.62 0.75 0.60 0.74
MO5 0.62 0.73 0.58 0.67 0.59 0.68 0.57 0.68
MO6 0.68 0.76 0.66 0.74 0.67 0.74 0.66 0.72
MO7 0.61 0.66 0.61 0.65 0.61 0.65 0.56 0.64
MO8 0.66 0.79 0.62 0.73 0.63 0.74 0.62 0.75
MO9 0.66 0.79 0.62 0.73 0.63 0.74 0.63 0.76

Min 0.09 0.09 0.09 0.09 0.09 0.09 0.05 0.05
Mean 0.57 0.65 0.55 0.61 0.55 0.62 0.51 0.59
Max 0.68 0.80 0.66 0.74 0.67 0.75 0.99 0.76

Table 12.12.: Resource matching result when using converted OWL-S descriptions and
corresponding OWL-S descriptions.

2. We found that the SAWSDL descriptions and OWL-S descriptions that are used to
describe the same resource do not contain the same amount of information. For
example, a service name "get Altitude Above Sea Level of Location" is defined in

174

12.2. EVALUATION OF REQUEST CONVERTER

Formalism Recall Precision F-measure nDCG
OWL-S @10 0.6465 0.6109 0.6183 0.5921
OWL-S @20 0.6065 0.5533 0.5630 0.6164
SAWSDL @10 0.4756 0.4487 0.4536 0.4238
SAWSDL @20 0.4175 0.4021 0.4062 0.4212

Table 12.13.: Comparison of quality between OWL-S and SAWSDL matchers.

SAWSDL with "coordinates" as an input, while it is defined in OWL-S with "lati-
tude" and "longitude" as inputs.

3. We also examine the quality of results between the top 10 ranks and top 20 ranks
as shown in Table 12.13. We consider using the top 10 ranks because this offers
higher recall, precision, and F-measure rates. Although the top 20 ranking performs
marginally better in terms of ranking, the top 10 ranking is still more practical to
handle.

4. We compare the results from SAWSDL and OWL-S matchers using the same 42
requests. Table 12.13 shows that, on average, the OWLS matchers can produce a
better quality of results. Therefore, when we compare converted OWL-S and con-
verted SAWSDL descriptions, it is very likely that the result from using OWL-S
descriptions with OWL-S resource matchers can outperform SAWSDL descriptions.

175

CHAPTER 12. UNIT TEST RESULTS

12.2.2. OWL-S to SAWSDL Matching Result

Here, we convert 42 OWL-S descriptions (as listed Appendix B.2.1) into SAWSDL. Like
the previous evaluation, we compare the search results from the converted descriptions and
the corresponding descriptions. The converted SAWSDL and the corresponding SAWSDL
descriptions are fed to the following semantic matchers:

- (MS1) iSeM logic-based [KK12b],

- (MS2) iSeM approx. logic-based.xml [KK12b],

- (MS3) iSeM text similarity (Cos) [KK12b],

- (MS4) iSeM text similarity (Cos, structured) [KK12b],

- (MS5) SAWSDL-MX TextSim (eJAC) [KKZ09a], and

- (MS6) XAM4SWS-LOG [SLES10].

The examples of OWL-S description and SAWSDL description converted from it can be
found in Appendix A, Listing A.3 and A.4 respectively. The evaluation result is shown
in Table 12.14. The result qualities of converted descriptions and their corresponding de-
scriptions are slightly different. Nevertheless, the converted descriptions provide a better
ranking.

1. The converted SAWSDL descriptions provide worse results than the OWL-S origins.
This is because of the intrinsic performance of matchers described previously in
Table 12.13.

2. The converted SAWSDL descriptions yield slightly worse results than their corre-
sponding SAWSDL descriptions. The declination in quality happens because the
converter cannot transfer all substantial information from OWL-S to SAWSDL for-
malism. However, when we look back at the result from 12.2.1, we can see that these
original descriptions are not identical, thus, causing the nonequivalent in the result.

3. According to the result and the conclusion we made in 12.2.1, we consider using the
top 10 ranks.

There is no significant difference between original SAWSDL descriptions and the con-
verted descriptions. However, the converted OWL-S descriptions yield worse matching
results than the corresponding OWL-S descriptions. This is due to three factors. First is
the intrinsic performance of the matchers of each formalism. The second is the fact that
the original OWL-S and SAWSDL descriptions that are used to describe the same resource
contain different amount of information. Lastly, there is information loss during the con-
version, which indicates that the request conversion still has a gap for improvement.

176

12.2. EVALUATION OF REQUEST CONVERTER

Matcher Recall Precision F-measure nDCG
converted original converted original converted original converted original

MS1 0.62 0.64 0.62 0.64 0.62 0.64 0.56 0.58
MS2 0.12 0.12 0.12 0.12 0.12 0.12 0.07 0.07
MS3 0.64 0.61 0.63 0.55 0.63 0.56 0.60 0.55
MS4 0.64 0.66 0.63 0.61 0.63 0.62 0.59 0.60
MS5 0.13 0.12 0.13 0.10 0.13 0.10 0.09 0.08
MS6 0.59 0.71 0.57 0.68 0.58 0.68 0.54 0.66

Min 0.12 0.12 0.12 0.10 0.07 0.10 0.12 0.07
Mean 0.45 0.48 0.45 0.45 0.41 0.45 0.45 0.42
Max 0.63 0.71 0.63 0.68 0.60 0.68 0.66 0.66

Table 12.14.: Resource matching result when using converted SAWSDL descriptions and
corresponding OWL-S descriptions.

177

CHAPTER 12. UNIT TEST RESULTS

12.3 Evaluation of Result Integrator

The result integrator accumulates results from multiple matchers and repeatedly readjusts
the result until it obtains the best result. The quality of the result from each iteration is
compared with individual service matchers.

As mentioned in 9.2.4, Check weight change function, we need to set a threshold value
to find the exit loop condition. If this threshold value is too high, the iteration will end
before we can get the best result. If the threshold value is too low, the iteration condition
might never be met, causing an infinite loop. According to Equation 9.6, threshold =
mean × κ × standard variation, the threshold value is calculated from the mean, the
variance of matchers’ weights and the κ variable, which is set to 0.2 in this evaluation.

We use 42 descriptions from the test collections in B.2.1. For the sake of brevity, we
provide (randomly selected) 30 solutions out of 42. The complete solutions can be found
in [Klu12]. Similar to the previous evaluations, we use the resource matchers from Table
11.1.

We simulate the situation when an offline conversion is used. In this case, we assume
that all descriptions are available (or prepared) in one single formalism, either OWL-S
or SAWSDL. Randomly selected 9 OWL-S matchers consume 42 OWL-S requests and
produce the list of matched resources out of 1080 descriptions. Likewise, 6 SAWSDL
matchers (randomly selected) process 42 SAWSDL requests (the same resources as OWL-
S) and find the matched resources from 1080 descriptions.

Additionally, we simulate the situation when an online conversion is applied. This means
our resources can be described in one formalism or another. Thus, we simulate a setting
where we use both OWL-S and SAWSDL based matchers to match over different descrip-
tion formalisms. The results from each type of matchers should be different because all
resources are described in one or another formalism. The result integrator handles com-
bining the results from different formalisms.

12.3.1. Result integration using OWL-S matchers

OWL-S matchers used in this evaluation are:

• (MO1) iSeM approx. logic-based [KK10]

• (MO2) iSeM logic-based [KK10]

• (MO3) iSeM text similarity (Cos) [KK10]

• (MO4) iSeM text similarity (Cos, structured) [KK10]

• (MO5) OWLS-MX TextSim (Cos) [KFK05]

178

12.3. EVALUATION OF RESULT INTEGRATOR

• (MO6) OWLS-M0 [KFK05]

• (MO7) OWLS-MX2 (M3) [KK12a]

• (MO8) OWLS-MX3 (M3) [KK12a]

• (MO9) OWLS-MX3 (Structure) [KK12a].

After running 9 OWL-S matchers over the 42 requests, average recall, precision, F-measure,
and nDCG rates at top 10 ranks from every OWL-S matchers are shown in Figure 12.1,
12.2, 12.3, and 12.4 respectively.

Figure 12.1.: Recall rate of each OWL-S matcher compared with the result integrator.

Figure 12.2.: Precision rate of each OWL-S matcher compared with the result integrator.

179

CHAPTER 12. UNIT TEST RESULTS

Figure 12.3.: F-measure of each OWL-S matcher compared with the result integrator.

Figure 12.4.: nDCG of each OWL-S matcher compared with the result integrator.

180

12.3. EVALUATION OF RESULT INTEGRATOR

OWL-S matchers Recall Precision F-measure nDCG
MO1 0.3962 0.3506 0.3568 0.2191
MO2 0.5995 0.5368 0.5465 0.3400
MO3 0.8561 0.7424 0.7615 0.4846
MO4 0.7948 0.6818 0.7006 0.4578
MO5 0.8506 0.7381 0.7566 0.4736
MO6 0.2564 0.2251 0.2315 0.1789
MO7 0.6067 0.4935 0.5124 0.3418
MO8 0.7777 0.6645 0.6834 0.4441
MO9 0.3182 0.2814 0.2881 0.1835
Average 0.6062 0.5238 0.5375 0.3470
Round1 0.7996 0.6861 0.7051 0.4842
Round2 0.8234 0.7100 0.7289 0.4790
Round3 0.8448 0.7316 0.7505 0.4904
Round4 0.8426 0.7294 0.7483 0.4895
Round5 0.8491 0.7359 0.7548 0.4907
Round6 0.8537 0.7403 0.7592 0.4877
Round7 0.8537 0.7403 0.7592 0.4882

Table 12.15.: Result integrator’s quality from Figure 12.1, 12.2, 12.3, and 12.4 in each
iteration compared to each OWL-S matcher. The results listed as Round
[number] refer to the results from the result integration after each iteration.

1. Table 12.15 summarizes the quality from each matcher and the result integrator. The
final result from the seventh round, has higher nDCG rate than the best performance
matcher, MO3. On the other hand, the best performance matcher yields slightly
better recall, precision, and F-measure rates than the final result. The number of the
selected round for the final result is not always seven. This number depends on the
request, matchers’ results, and the threshold value.

2. The weight measurement in Table 12.16 shows that matchers’ weights became stable
after the seventh round. Thus, the iteration stopped in the seventh round, which
supposedly provides the best result.

3. Moreover, the nDCG of the fifth round is marginally better than the seventh round.
We can increase the threshold level to force the result integrator to stop earlier. Nev-
ertheless, we see no significant difference in these figures. Therefore, the result from
the seventh round is plausible and acceptable as the best result.

4. When we look closely into the weights comparison, we can see that MO1 performs
marginally better than MO9. However, MO1 was removed from the calculation be-
fore MO9. The reason is that the result integrator also considers the threshold condi-
tion while considering the poorest performance matcher. When the threshold is set
to a lower value, the sequence of dropping matcher will change as well.

5. In this experiment, five matchers (MO1, MO2, MO6, MO7, and MO9) were dropped
out after some iterations due to their poor performances. The decision to remove
which matcher in each iteration is based on the performance of that matcher on each
request. Therefore, there is no matcher that can always be abandoned or included.

181

CHAPTER 12. UNIT TEST RESULTS

Weight of
matcher in round

1 2 3 4 5 6 7 8

MO1 0.111 0.102 0.000 0.000 0.000 0.000 0.000 0.000
MO2 0.111 0.118 0.126 0.134 0.000 0.000 0.000 0.000
MO3 0.111 0.146 0.165 0.189 0.218 0.265 0.271 0.272
MO4 0.111 0.138 0.155 0.176 0.204 0.244 0.247 0.247
MO5 0.111 0.140 0.159 0.181 0.208 0.253 0.251 0.251
MO6 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MO7 0.111 0.120 0.131 0.148 0.172 0.000 0.000 0.000
MO8 0.111 0.135 0.151 0.172 0.198 0.237 0.230 0.230
MO9 0.111 0.101 0.113 0.000 0.000 0.000 0.000 0.000

Table 12.16.: Weight value of OWL-S matchers calculated from each iteration.

12.3.2. Result integration using SAWSDL matchers

SAWSDL matchers used in this evaluation are:

• (MS1) iSem Approx. logic based [KK12b],

• (MS2) iSem Logic-based [KK12b],

• (MS3) iSem Text Sim. (Cos) [KK12b],

• (MS4) iSem Text Sim. (Cos +Structure) [KK12b],

• (MS5) XAM4SWS-COV [SLKS12], and

• (MS6) XAM4SWS-LOG [SLES10].

182

12.3. EVALUATION OF RESULT INTEGRATOR

Using 6 SAWSDL matchers matching over the 42 requests, we measure average recall,
precision, F-measure, and nDCG rates (at top ten ranks) as shown in Figure 12.5, 12.6,
12.7, and 12.8 respectively.

Figure 12.5.: Recall rate of each SAWSDL matcher compared with the result integrator.

Figure 12.6.: Precision rate of each SAWSDL matcher compared with the result integrator.

1. Table 12.17 summarizes the quality of result from each matcher and the result inte-
grator. The condition to stop the iteration is met in the sixth round. The result yields
better recall rate than the best result from MS6 matcher. However, the precision,
F-measure, and nDCG rates are slightly lower than the best matcher. This could
happen when all the matchers return different results which are not consistent with
each other.

2. The weights of all matchers are calculated and shown in Table 12.18. In this exper-
iment, the criteria to select the round that the weights become stable is met in the
sixth round.

3. Two poor performance matchers (MS1 and MS2) are dropped out.

183

CHAPTER 12. UNIT TEST RESULTS

Figure 12.7.: F-measure of each SAWSDL matcher compared with the result integrator.

Figure 12.8.: nDCG of each SAWSDL matcher compared with the result integrator.

SAWSDL matchers Recall Precision F-measure nDCG
MS1 0.3806 0.3355 0.3414 0.1966
MS2 0.5641 0.5130 0.5202 0.3119
MS3 0.7620 0.6602 0.6760 0.4481
MS4 0.7620 0.6602 0.6760 0.4481
MS5 0.7586 0.6645 0.6789 0.4438
MS6 0.7719 0.6818 0.6951 0.4648
Average 0.6665 0.5859 0.5979 0.3856
Round1 0.7149 0.6212 0.6354 0.4451
Round2 0.7627 0.6688 0.6831 0.4589
Round3 0.7793 0.6797 0.6951 0.4553
Round4 0.7771 0.6775 0.6930 0.4560
Round5 0.7771 0.6775 0.6930 0.4565
Round6 0.7771 0.6775 0.6930 0.4565

Table 12.17.: Result integrator’s quality from Figures 12.5, 12.6, 12.7, and 12.8 in each
iteration compared to each SAWSDL matcher.

184

12.3. EVALUATION OF RESULT INTEGRATOR

Weight of
matcher in round

1 2 3 4 5 6 7

MS1 0.167 0.000 0.000 0.000 0.000 0.000 0.000
MS2 0.167 0.178 0.000 0.000 0.000 0.000 0.000
MS3 0.167 0.211 0.262 0.266 0.268 0.268 0.268
MS4 0.167 0.211 0.262 0.266 0.268 0.268 0.268
MS5 0.167 0.198 0.237 0.233 0.232 0.231 0.231
MS6 0.167 0.201 0.240 0.234 0.233 0.233 0.233

Table 12.18.: Weight value of SAWSDL matchers calculated from each iteration.

185

CHAPTER 12. UNIT TEST RESULTS

12.3.3. Result integration using OWL-S and SAWSDL matchers

The result integration can cope with different formalism-based matchers. In order to eval-
uate this functionality, we separate resource descriptions in a repository into two groups.
The first group contains only OWL-S descriptions, and the second contains only SAWSDL
descriptions. OWL-S and SAWSDL matchers used in this evaluation are chosen randomly:

• (M1) OWLS-iSeM text similarity (Cos) [KK10],

• (M2) OWLS-iSeM text similarity (Cos, structured) [KK10],

• (M3) OWLS-iSeM approx. logic-based [KK10],

• (M4) OWLS-iSeM logic-based [KK10],

• (M5) OWLS-SeMa2 [MHB+12],

• (M6) OWLS-M0 [KFK05],

• (M7) OWLS-MX2 (M3) [KKF08],

• (M8) OWLS-MX3 (M3) [KK12a],

• (M9) XAM4SWS-LOG4SWS [SLES10],

• (M10) SAWSDL-iSeM approx. logic-based [KK12b],

• (M11) SAWSDL-iSeM logic-based [KK12b],

• (M12) SAWSDL-iSeM text similarity (Cos) [KK12b],

• (M13) SAWSDL-iSeM text similarity (Cos, structured) [KK12b], and

• (M14) SAWSDL-MX TextSim (eJAC) [KKZ09a].

Using these matchers to match 42 requests (in both OWL-S and SAWSDL formalisms)
with 540 SAWSDLS and 540 OWL-S descriptions (randomly separated from 1080 de-
scriptions), average recall, precision, F-measure, and nDCG rates from every matchers are
shown in Figure 12.9, 12.10, 12.11, and 12.12 respectively.

186

12.3. EVALUATION OF RESULT INTEGRATOR

Figure 12.9.: Recall rate of OWL-S and SAWSDL matchers compared with the result inte-
grator.

Figure 12.10.: Precision rate of OWL-S and SAWSDL matchers compared with the result
integrator.

Figure 12.11.: F-measure of OWL-S and SAWSDL matchers compared with the result in-
tegrator.

187

CHAPTER 12. UNIT TEST RESULTS

Figure 12.12.: nDCG of OWL-S and SAWSDL matchers compared with the result integra-
tor.

Matchers Recall Precision F-measure nDCG
M1 0.7086 0.6558 0.6653 0.3739
M2 0.6120 0.5693 0.5771 0.3395
M3 0.0260 0.0260 0.0260 0.0094
M4 0.5025 0.4870 0.4897 0.2662
M5 0.6854 0.6407 0.6479 0.3923
M6 0.4582 0.4524 0.4536 0.2251
M7 0.7235 0.6710 0.6803 0.3872
M8 0.7127 0.6602 0.6695 0.3783
M9 0.7822 0.6883 0.7026 0.4822
M10 0.0433 0.0433 0.0433 0.0117
M11 0.4865 0.4610 0.4654 0.2703
M12 0.4752 0.4069 0.4191 0.2770
M13 0.4746 0.4221 0.4306 0.2731
M14 0.0750 0.0498 0.0540 0.0181
Average 0.4833 0.4453 0.4518 0.2646
Round1 0.7820 0.6710 0.6902 0.4440
Round2 0.7972 0.6861 0.7053 0.4605
Round3 0.8015 0.6905 0.7097 0.4373
Round4 0.8039 0.6926 0.7119 0.4379
Round5 0.8082 0.6970 0.7163 0.4446
Round6 0.8082 0.6970 0.7163 0.4404
Round7 0.8082 0.6970 0.7163 0.4392

Table 12.19.: Result integrator’s quality from Figures 12.9, 12.10, 12.11, and 12.12 in each
iteration compared to each matcher.

188

12.3. EVALUATION OF RESULT INTEGRATOR

1. As summarized in Table 12.19, we found that the integrated result yields better re-
call, precision, and F-measure rates than the best matcher, M9, which is a SAWSDL
based matcher. This is because some returned relevant resources are described in
OWL-S language.

2. In contrast, the nDCG rate of our method cannot achieve the best quality. OWL-S
matchers and SAWSDL matchers have different methods of ranking their results, but
we treat them equally. Therefore, the ranking of integrated results might be biased
by the majority of matchers.

3. The weights of all matchers are calculated and shown in Table 12.20. The criteria to
select the round that weights become stable is met in the seventh round. Again, the
number of the selected round can be changed, depending on the evaluation settings.

4. Four poor performance matchers (M3, M5, M10, and M14) are dropped. Two of
them are OWL-S based matchers, and the other two are SAWSDL based matchers.
Matchers M3, M10, and M14 perform critically poorer than others. Matcher M5 is
removed first, even though it performs better than many matchers. This happens be-
cause M5 returns the most distinguishing result that is inconsistent with the majority
of matchers.

189

CHAPTER 12. UNIT TEST RESULTS

Weight of
matcher in round

1 2 3 4 5 6 7 8

M1 0.071 0.093 0.100 0.108 0.116 0.117 0.117 0.117
M2 0.071 0.089 0.096 0.103 0.111 0.111 0.111 0.111
M3 0.071 0.063 0.066 0.071 0.000 0.000 0.000 0.000
M4 0.071 0.085 0.090 0.097 0.104 0.101 0.101 0.101
M5 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M6 0.071 0.076 0.081 0.086 0.093 0.093 0.093 0.093
M7 0.071 0.095 0.103 0.111 0.120 0.121 0.121 0.121
M8 0.071 0.093 0.101 0.109 0.118 0.118 0.119 0.119
M9 0.071 0.070 0.073 0.078 0.083 0.084 0.084 0.083
M10 0.071 0.061 0.064 0.000 0.000 0.000 0.000 0.000
M11 0.071 0.071 0.073 0.078 0.082 0.082 0.082 0.082
M12 0.071 0.073 0.076 0.080 0.086 0.087 0.087 0.087
M13 0.071 0.073 0.076 0.080 0.086 0.087 0.087 0.087
M14 0.071 0.059 0.000 0.000 0.000 0.000 0.000 0.000

Table 12.20.: Weight value of multi-type matchers calculated from each iteration.

190

12.3. EVALUATION OF RESULT INTEGRATOR

12.3.4. Tuning up the result integrator

From the previous results, we demonstrate that the result integrator can capture good results
and combine them into a single list. Additionally, in the circumstance that resources are
described in one formalism or another formalism, not both, we can retrieve better results
than the best performance matcher. The algorithm we use in the result integrator is not
dependent on the description formalism. Thus, it can be applied to any other description
languages.

There are some factors we can adjust to get a better performance such as the number of
considering ranks, the threshold value for removing matchers, and the minimum number
of matchers. These values should be tuned to fit the requirements. For example, if we
increase the number of ranks from 10 to 20, the recall rate would increase. However, the
precision rate would drop in exchange. The threshold value can be very small to ensure
the best final result, but it could take longer processing time. Moreover, if the minimum
number of matchers is too high, we might end up unable to remove any matchers even
though they perform poorly.

Previously, we evaluated the result integrator using 14 matchers. We run the evaluation
with a different number of matchers to check if the result integrator is still able to detect
the best result.

We apply 42 requests from B.2.1 to 6 matchers, which are:

- (M1) OWLS-iSeM text similarity (Cos),

- (M7) OWLS-MX2 (M3),

- (M8) OWLS-MX3 (M3),

- (M9) SAWSDL-XAM4SWS-LOG,

- (M13) SAWSDL-iSeM text similarity (Cos, structured), and

- (M14) SAWSDL-SAWSDL-MX TextSim (eJAC).

The summarized result in Figure 12.13 shows that the result integrator can imitate the best
result. However, the recall, precision, and the F-measure rates are slightly worse than the
result from the best matcher. The cross-formalism result integrator cannot perform well
enough when using few matchers. Therefore, the more matchers we include, the better
result we gain. Nevertheless, when we compare our solution to the average performance,
the result is very satisfactory.

191

CHAPTER 12. UNIT TEST RESULTS

Figure 12.13.: Comparison of results from the best performance matcher, poorest perfor-
mance matcher, average performance of 6 matchers, and the request inte-
grator running over 42 requests.

12.3.5. Summary of Result Integrator

Looking back at the OWL-S matching result in Table 12.15, our approach boosted the
overall quality from the average matchers by more than 40%. However, the result of our
approach cannot always overcome the best matcher’s result. When comparing to the best
matcher, the recall, precision, and F-measure decrease by less than 0.3%, while nDCG
increases by 0.7% This trade-off is acceptable since the decrease in quality is insignificant.

A SAWSDL matching result in Table 12.17 shows that results from our approach are more
relevant than the average matchers by more than 15%. Comparing to the best matcher,
the recall rate improves by 0.7%, while the precision decreases by 0.6%, and the nDCG is
worse by 2%.

One distinctive feature of the result integrator is the ability to handle results from multiple
formalisms. The merged result outperforms the best matcher when all resources are not
commonly described in one formalism, which is more likely to happen in a real-world
scenario.

We are confident that the result integrator can yield as good a result as the best matcher
on each request. The drawback of this result integrator is that it requires more than one
good matcher to perform well. If there is only one good matcher and the other matchers
perform poorly but consistent with each other, our result integrator will trust the majority
results and thus produce a wrong result. However, we believe that this marginal decrease
in quality is negligible, especially when we have no ground truth to compare with.

192

13
Integrated System Evaluation Results

When we connect the request construction, the request converter, the resource matchers,
and the result integrator as explained in Chapter 5, Solution Overview, we will have a
complete resource discovery engine.

We focus on the quality of the discovered resources list, e.g. how many relevant results
are returned and how they are ranked. Also, the time performance is a major concern. We
discuss what can be the blockage of the process and how to improve it. Finally, we place
the resource discovery into the context of MERCURY and demonstrate how MERCURY’s
users could benefit from this work.

13.1 Overall Quality Performance

As previously shown in Section 7.1, Matcher Analysis, the quality of the result depends on
matchers’ performance on each query. This evaluation randomly selects one, two, four and
six SAWSDL matchers to be evaluated. The settings for matchers are shown in Table 13.1.
Similar to the evaluation settings in Table 12.1, 188 keywords with 30 target descriptions
are used in this evaluation.

193

CHAPTER 13. INTEGRATED SYSTEM EVALUATION RESULTS

Settings Matchers

1 Matcher

M1 - (OWL-S) iSeM logic-based
M2 - (OWL-S) iSeM approx. logic-based
M3 - (OWL-S) iSeM text similarity (Cos)
M4 - (OWL-S) iSeM text similarity (Cos, structured)
M5 - OWLS-MX2 (M3)
M6 - OWLS-M0
M7 - (SAWSDL)iSeM logic-based
M8 - (SAWSDL)iSeM approx. logic-based
M9 - (SAWSDL)iSeM text similarity (Cos)
M10 - (SAWSDL)iSeM text similarity (Cos, structured)
M11 - (SAWSDL)iSeM structure
M12 - SAWSDL-MX TextSim (eJAC)
M7+M12
M1+M4
M9+M2
M5+M12
M8+M10

2 Matchers

M2+M5

4 Matchers

M7+M8+M9+M10
M2+M3+M4+M5
M2+M5+M9+M12
M3+M6+M7+M10
M7+M8+M9+M10+M11+M12
M1+M4+M3+M2+M6+M5
M1+M3+M5+M10+M8+M12

6 Matchers

M4+M5+M6+M7+M9+M10

Table 13.1.: Sets of matchers used for the integrated system evaluation.

Table 13.2 shows that the average recall, precision, F-measure, and nDCG rates improve
with the increasing number of matchers. The minimum recall, precision, F-measure, and
nDCG rates from using four matchers are less than those from using two matchers. This
happens due to the chance of getting poor performance matchers in four matchers being
higher than two matchers. We depend on the results of the majority of matchers, without
any prior knowledge of matchers or expected results. Thus, including more matchers can
become useful when most of the matchers are reliable.

Note that the result from one matcher presented here is not equivalent to the result from a
resource matcher alone. In the resource discovery, we have the request converter to create a
request from plain text keywords, while resource matchers accept only a formatted request.

194

13.1. OVERALL QUALITY PERFORMANCE

Number of matchers 1 2 4 6

Recall
min 0.2292 0.3021 0.2813 0.3047
mean 0.6512 0.6900 0.7096 0.7501
max 0.9438 0.9438 0.9625 0.9813

Precision
min 0.0583 0.0778 0.0701 0.0868
mean 0.5930 0.6200 0.6467 0.6767
max 0.9438 0.9438 0.9625 0.9813

F-measure
min 0.1015 0.1367 0.1183 0.1486
mean 0.6037 0.6322 0.6590 0.6902
max 0.9438 0.9438 0.9625 0.9813

nDCG
min 0.2400 0.2822 0.2235 0.2444
mean 0.5006 0.5350 0.5482 0.5844
max 0.7384 0.7631 0.7540 0.7870

Table 13.2.: Quality measurement of the resource discovery comparing between using one,
two, four, and six matchers.

195

CHAPTER 13. INTEGRATED SYSTEM EVALUATION RESULTS

Recall, precision, F-measure, and nDCG rates for each query are shown in Table 13.3, 13.4,
13.5, and 13.6 respectively. We group the queries for each target descriptions into 30 sets.
Each set is referred to as "Q" following with the number of the corresponding description.
For example, the description for a resource "camera price" should be discovered by using
keywords d1.1, d1.2, and d1.3 (refer to Table 12.1). In total, three simple queries and three
structured queries are grouped and referred to as "Q1".

Although the average performance is satisfactory, when we consider the result per query,
we can see that the multiple matchers solution still fails in some cases. For example, with
request Q29, one matcher performs better than using multiple matchers. This happens
when a few matchers yield the correct result. In this extreme case, less than half of matchers
return the right answer. Moreover, there are two relevant results for this query, so the
recall rate can only be 0, 0.5 or 1. Any combination of multiple matchers cannot give the
correct answer because it seems like an incorrect solution to the integrator. This indicates
the weakness of this approach when the majority of matchers return incorrect results, the
result integrator still trusts them.

When using six matchers, it is possible that the best performance matcher can be removed
or suppressed because the other matchers return the same incorrect result. Nevertheless, as
illustrated in Table 13.2, the multiple matchers can averagely perform better than the single
matcher approach. As previously discussed, we do not know which matcher can perform
best in each circumstance. Therefore, using multiple matchers technique can increase the
chance of getting a better result.

Remarks: the context extraction from Chapter 6 has not been evaluated in this work yet.
This part shall be evaluated in the future work since we need to find the outcome of this
evaluation first. Then we can use this work as a baseline for further improvements using
context information.

196

13.1. OVERALL QUALITY PERFORMANCE

#Matchers Query ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 0.57 0.75 0.52 0.77 0.40 0.61 0.78 0.77 0.93 0.61
2 0.73 0.90 0.63 0.81 0.44 0.64 0.76 0.76 0.94 0.68
4 0.78 0.94 0.63 0.87 0.44 0.73 0.86 0.84 0.93 0.67
6 0.82 0.96 0.75 0.90 0.50 0.74 0.91 0.85 0.95 0.68

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
1 0.45 0.28 0.46 0.72 0.23 0.79 0.53 0.35 0.86 0.85
2 0.53 0.34 0.64 0.75 0.30 0.88 0.54 0.50 0.86 0.88
4 0.56 0.49 0.46 0.81 0.28 0.85 0.58 0.46 0.89 0.89
6 0.67 0.46 0.63 0.85 0.30 0.90 0.58 0.49 0.93 0.91

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
1 0.91 0.62 0.94 0.66 0.68 0.90 0.43 0.64 0.69 0.83
2 0.92 0.59 0.94 0.66 0.64 0.91 0.42 0.65 0.63 0.84
4 0.96 0.56 0.96 0.71 0.72 0.88 0.51 0.73 0.53 0.80
6 0.96 0.57 0.98 0.73 0.81 0.90 0.56 0.76 0.63 0.83

Table 13.3.: Recall rate of the resource discovery comparing between using one, two, four,
and six matchers.

197

CHAPTER 13. INTEGRATED SYSTEM EVALUATION RESULTS

#Matchers Query ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 0.57 0.75 0.13 0.77 0.18 0.61 0.78 0.77 0.93 0.61
2 0.73 0.90 0.17 0.81 0.15 0.64 0.76 0.76 0.94 0.68
4 0.78 0.94 0.16 0.87 0.13 0.73 0.86 0.84 0.93 0.67
6 0.83 0.96 0.19 0.90 0.18 0.74 0.91 0.85 0.95 0.68

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
1 0.45 0.19 0.06 0.72 0.09 0.79 0.53 0.35 0.86 0.85
2 0.53 0.19 0.08 0.75 0.12 0.88 0.54 0.50 0.86 0.88
4 0.56 0.32 0.07 0.81 0.11 0.85 0.58 0.46 0.89 0.89
6 0.67 0.33 0.09 0.85 0.12 0.90 0.58 0.49 0.93 0.91

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
1 0.91 0.62 0.94 0.66 0.68 0.90 0.43 0.64 0.18 0.83
2 0.92 0.59 0.94 0.66 0.64 0.91 0.42 0.65 0.16 0.84
4 0.96 0.56 0.96 0.71 0.72 0.88 0.51 0.73 0.14 0.80
6 0.96 0.57 0.98 0.73 0.81 0.90 0.56 0.76 0.16 0.83

Table 13.4.: Precision rate of the resource discovery comparing between using one, two,
four, and six matchers.

198

13.1. OVERALL QUALITY PERFORMANCE

#Matchers Query ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 0.57 0.75 0.21 0.77 0.22 0.61 0.78 0.77 0.93 0.61
2 0.73 0.90 0.27 0.81 0.20 0.64 0.76 0.76 0.94 0.66
4 0.78 0.94 0.26 0.87 0.19 0.73 0.86 0.84 0.93 0.67
6 0.83 0.96 0.30 0.90 0.24 0.74 0.91 0.85 0.95 0.68

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
1 0.45 0.21 0.10 0.72 0.13 0.79 0.53 0.35 0.86 0.85
2 0.53 0.22 0.14 0.75 0.17 0.88 0.54 0.50 0.86 0.88
4 0.56 0.36 0.12 0.81 0.16 0.85 0.58 0.46 0.89 0.89
6 0.67 0.36 0.15 0.85 0.17 0.90 0.58 0.49 0.93 0.91

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
1 0.91 0.62 0.94 0.66 0.68 0.90 0.43 0.64 0.28 0.83
2 0.92 0.59 0.94 0.66 0.64 0.91 0.42 0.65 0.26 0.84
4 0.96 0.56 0.96 0.71 0.72 0.88 0.51 0.73 0.22 0.80
6 0.96 0.57 0.98 0.73 0.81 0.90 0.56 0.76 0.25 0.83

Table 13.5.: F-measure of the resource discovery comparing between using one, two, four,
and six matchers.

199

CHAPTER 13. INTEGRATED SYSTEM EVALUATION RESULTS

#Matchers Query ID
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 0.45 0.43 0.38 0.49 0.39 0.49 0.60 0.56 0.74 0.43
2 0.62 0.54 0.43 0.54 0.35 0.49 0.61 0.58 0.76 0.49
4 0.64 0.58 0.40 0.58 0.27 0.59 0.71 0.61 0.75 0.51
6 0.69 0.60 0.44 0.58 0.30 0.62 0.74 0.61 0.79 0.53

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
1 0.41 0.26 0.44 0.62 0.24 0.61 0.47 0.33 0.59 0.64
2 0.46 0.30 0.52 0.68 0.28 0.68 0.51 0.48 0.59 0.68
4 0.48 0.43 0.36 0.75 0.22 0.72 0.55 0.41 0.62 0.69
6 0.58 0.41 0.56 0.77 0.24 0.79 0.54 0.42 0.66 0.76

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
1 0.66 0.56 0.56 0.43 0.48 0.72 0.35 0.56 0.45 0.70
2 0.65 0.52 0.58 0.41 0.51 0.72 0.39 0.55 0.43 0.70
4 0.70 0.52 0.57 0.47 0.57 0.70 0.44 0.63 0.31 0.67
6 0.73 0.52 0.61 0.48 0.64 0.71 0.45 0.69 0.40 0.69

Table 13.6.: nDCG of the resource discovery comparing between using one, two, four, and
six matchers.

200

13.2. OVERALL TIME CONSUMPTION

13.2 Overall Time Consumption

In practice, the quality of result alone might not suffice. We demonstrated that the more
matchers are involved, the better result we gain. However, many good performance match-
ers take a long time to process the request. They could take several minutes, and this is
impractical when we want to have an on-the-go recommendation. Hence, we conduct the
overall time consumption evaluation to verify what could be our optimal solution.

This evaluation was made on a machine with Intel Core i5-2520M CPU 2.5 GHz and 8
GB RAM, Windows 7 64-bit OS. Note that the performance can still be tuned up with a
dedicated server with more powerful capacities. We use the same test settings as in Section
13.1, comparing between using a single matcher, two matchers, four matchers, and six
matchers. The matchers settings and the keywords used for testing can be found in Table
13.1 and Table 12.1 respectively.

The overall time consumption of the resource discovery is shown in Table 13.7. The request
preparation spends the most time in the HTTP request to the Semantic search API. Since
the HTTP request for each query term can be done simultaneously, we use a multi-thread
process for calling the semantic search function. This multi-threading can drastically im-
prove the time consumption in waiting for the server response. Although the number of
requests directly affect the time spent on the semantic search, a number of matchers does
not affect the time performance in this part.

All the resource matchers need to parse all descriptions as a preparation for a matching
process. The main parameter that affects this process is the number of descriptions in the
repository, whereas the number of matchers and requests are irrelevant to the time spent on
this process.

The most time-consuming process is the matching process. Since we use the multi-threading
process in this step, the time consumption depends on the slowest matcher. It is not always
the case, but the tendency is that the more matchers involved in the process, the longer
processing time it takes. Therefore, depending on the user requirement, whether we need
a faster or more accurate solution, this decides how many matchers should be used.

Finally, results from all matchers are merged by the result integrator. The more matchers
are involved, the longer time is needed for the merging process because of the amount of
processing data. Nevertheless, we can neglect the difference in this part because most of
the processing time has been spent in the matching process.

This time processing result in running matchers can be compared with V-Doc [QHC06],
which deals directly with the ontology matching. V-Doc was evaluated on Intel Pentium4,
2.4 GHz, 512 M memory, Windows XP. It takes 7 minutes to complete 51 requests. To
compare this figure with our approach, we alter the number of requests to see how the
total processing time changes. We measure the total time used to process one request, five
requests and ten requests by one matcher (1MM/1Q, 1MM/5Q, 1MM/10Q), two requests

201

CHAPTER 13. INTEGRATED SYSTEM EVALUATION RESULTS

Processing
time (sec)

#Matchers
1 2 4 6

Request Preparation 0.67 0.75 0.68 0.97
Read TestCollection 0.01 0.01 0.01 0.01
Run Matcher 13.12 36.82 64.67 81.66
Merge Ranks 0.10 0.11 0.15 0.18
Total 13.89 37.69 65.51 82.82

Table 13.7.: Comparison of time consumption of the resource discovery between using
one, two, four and six matchers.

and five requests by two matchers (2MM/2Q, 2MM/5Q), ten requests by four matchers
(4MM/10Q), and ten requests by six matchers (6MM/10Q).

From Figure 13.1, we can see that the number of requests has a minor influence on the total
processing time compared to the number of matchers. The resource matchers have a lot of
head cost to read all the descriptions in a description repository before matching, making
little difference whether we submit one query or fifty queries in one process.

If 51 requests are made at once, the processing time for one matcher should not be more
than 20 seconds. On the other hand, if we submit one request at a time, it can take up to
11.8 minutes. These processing times can even be longer when using multiple matchers
in exchange for higher quality results. Moreover, compared to an approach that considers
synonyms from WordNet running with the same settings, it takes up to four hours[QHC06].
We cannot compare the quality of these works to our results directly because the evalua-
tions were done on different datasets. However, this shows the trend that the ontology-
based matching usually takes minutes to complete, not to mention the semantic extension.

Currently, our approach provides satisfactory results in terms of quality. However, the time
performance should be improved and we cannot rely solely on the ontology-based match-

202

13.2. OVERALL TIME CONSUMPTION

Figure 13.1.: Time consumption of the resource discovery when using one, two, four, and
six matchers with varied number of requests.

ing. In the future work, we might need to consider a hybrid approach with a compromised
quality of results. Nevertheless, the current approach is ready to be deployed within the
context of MERCURY.

203

CHAPTER 13. INTEGRATED SYSTEM EVALUATION RESULTS

13.3 Resource Discovery in MERCURY

For a modularity and reusability required by Requirement R11, the completed resource
discovery was implemented as a standalone web service. According to a workflow in
MERCURY in Figure 13.2, there are three use cases of resource discovery, i.e. the regis-
tration, the scenario modeling, and the scenario execution processes. Hence, a GUI should
be designed to assist a user as required by Requirement R12 (the discovery result should
be presented in the registration, scenario modeling, and execution processes in a way that
users can apply the result instantly).

Figure 13.2.: Summary of the resource discovery roles in MERCURY.

This evaluation presents two graphical interfaces, the resource discovery in registration and
scenario modeling processes. Since the execution GUI is still under development, this part
of the evaluation will be enlisted in the future work. All units are deployed as individual
portlets on Liferay Portal. While the resource discovery unit runs as a Java-based web
application (tested on Apache Tomcat 7 and 8.5).

204

13.3. RESOURCE DISCOVERY IN MERCURY

13.3.1. Resource Discovery in Registration

In the registration GUI, users can:

a. view local resources,

b. directly register a resource using its URI, or

c. search for a resource by free text keywords.

By default, a basic search mode is presented as depicted in Figure 13.3. The return result,
which is a list of resource IDs, is presented to a user intuitively and waits to be added
further.

Figure 13.3.: Screenshot of the resource recommendation in MERCURY’s registration pro-
cess.

Additionally, an advanced search is accessible under an input box, as depicted in Figure
13.4. By providing separate keywords, a user can get more accurate search results. At
this step, the user’s current location can be implicitly appended to the query as explained
in Section 6.1, Context from User Profile, and Section 6.2, Context from Social Sensors.
With the same concept, other contexts can be applied in the same fashion. However, such
an automatic context retrieval should be transparent and approved by the owner of the
context.

205

CHAPTER 13. INTEGRATED SYSTEM EVALUATION RESULTS

Figure 13.4.: Screenshot of the advanced search in MERCURY’s registration process.

13.3.2. Resource Discovery in Scenario Modeling

To help a user find resources in the scenario modeling, more context should be involved.
Previously, we considered mostly static context. Here, with user interactions, we can uti-
lize more of dynamic context. In the current stage, the context presented in Section 6.3,
Context from User Preferences and Contributions, is used to determine the most frequently
used item and the item that has been used together in similar scenarios (see Figure 13.5(a)
and (d)). These recommendations can be fine-tuned by using the global preferences (rec-
ommendations from other users) or personal preferences (from the current user).

Moreover, the semantic descriptions are also used to determine the semantically similar
item, and the input/output ontology will be used to find compatible items as exemplified in
Figure 13.5 (b) and (c). These recommendations rely on users’ interactions and how well
resources are described. In a cold start, we can utilize the user’s location information to
retrieve a list of nearby resources.

206

13.3. RESOURCE DISCOVERY IN MERCURY

Figure 13.5.: Screenshot of the resource recommendation in MERCURY’s scenario mod-
eling process with reasons: (a) this item is frequently used,
(b) is semantically equivalent to the selected item,
(c) has compatible input/output to the selected item, and
(d) is previously used in the similar scenario.

207

Part IV.

Conclusion

209

14
Summary

This thesis is initiated as a part of a project called MERCURY which is motivated by the
urge of using IoT in everyday life. We implemented the core components as portlets since
we envision the multi-purpose advantage of the portal-based application. Nevertheless,
some components are also available as standalone services, such as the scenario modeling,
the execution engine, and the resource discovery. We have reviewed the existing and related
works in Chapter 4, State of the Art. The studies show that even though there are several
attempts to realize the same goal as MERCURY, there is still a lack of either a user-friendly
UI or a support of resource discovery. Therefore, we developed a context-adaptive resource
discovery to fill in the gap.

This thesis focuses on the implementation and evaluation of the resource discovery, espe-
cially in the dynamic environment, where resources are described in arbitrary formalisms.
Moreover, the availability of semantic annotations within a resource description allows us
to enhance the discovery process. Additionally, due to the abundance of smart sensors we
carry around these days, user context derived from them becomes more up-to-date and thus
more useful.

In this chapter, we summarize all main components in the resource discovery and the re-
quirements they have achieved. Finally, we orchestrate all components into a standalone
service and integrate them into MERCURY.

14.1 Resource Discovery Main Components

We present the main components developed in this thesis - the context extractor, the request
constructor, the request converter, and the result integrator - in Part II. According to the
proposed architecture in Chapter 5, Solution Overview, all the components are assembled
and identified with requirements they have achieved as shown in Figure 14.1.

14.1.1. Context Extractor

To resolve Requirement R6 (the source of user context should be defined), we define the
source of context in this work and how we retrieve it. We utilize the context from Sec-
tion 6.1, Context from User Profile, and 6.2, Context from Social Sensors. These contexts

211

CHAPTER 14. SUMMARY

Figure 14.1.: Implemented parts of the resource discovery.

are applied to the resource discovery process while preparing the request in the resource
registering, scenario modeling and scenario executing processes in MERCURY. Thus, Re-
quirement R7 (when user context or resource context is available, they should be applied
to the search query) is resolved. The context from 6.3, Context from User Preferences and
Contributions, is also applied to the scenario modeling process.

14.1.2. Request Analysis

To create a usable description, the necessary information for each formalism has been de-
fined in Chapter 7, Request Analysis. We studied the OWL-S and SAWSDL based match-
ers to find a pattern they have in common for resource matching. We deduced the essential
information, which are; input, output, and operation descriptions of each resource, and ap-
plied this knowledge to the construction and conversion of a request in Chapter 8, Request
Preparation. This analysis also realizes Requirement R2 (the resource discovery should
be able to interpret different description formalisms).

14.1.3. Request Constructor

The request constructor is implemented to create a formatted description from the free-text
keyword(s), which is consumable by the matchers. Thus, Requirement R1 (the resource

212

14.1. RESOURCE DISCOVERY MAIN COMPONENTS

discovery unit should be able to construct a free-text query message from end users into
pre-defined formats) is fulfilled here. We offer a basic search (Requirement R4) and an
advanced search (Requirement R5) to users.

The basic search looks for the given term in every part of descriptions, regardless of the
objective of that part. The advanced search, on the other hand, separates the keyword into
three categories; input, output, and operation descriptions. This specific search also allows
us to utilize the semantic annotation of keywords and enhance the search result.

The evaluation outcome from the request constructor is very satisfactory. This result is
crucial since the output from this step is used further in the rest of the work. Also, the
concept of structured keywords is presented as an advanced search.

It is worth noting that when a user inputs simple keywords, the semantic extension can
improve the quality of search. In contrast, using structured keywords obtains the best
recall, precision, F-measure, and nDCG when no semantic terms are available. This is
because the advanced search is designed to explore in the particular fields. Adding more
semantic keywords can widen the scope of the search result, thus lessening the accuracy.
Therefore, a semantic query expansion is applied according to the type of input keywords.

14.1.4. Request Converter

At this point, we can create a minimal description, either in OWL-S or SAWSDL for-
malism. We need the request converter to create a description in another formalism from
the mapping model presented in Section 7.2, Essential information required for resource
matching, to serve Requirement R3 (the resource discovery should handle multiple de-
scription formalisms and matchers simultaneously).

As of now, our solution supports the conversion from OWL-S/OWL to SAWSDL/WSDL1.1,
SAWSDL/WSDL1.1 to OWL-S/OWL and SAWSDL/WSDL2.0 to OWL-S/OWL. We im-
plemented the OWL-S/OWL to SAWSDL/WSDL2.0 conversion, but it has not yet been
evaluated because the resource matchers used in this research do not support WSDL2.0.

For the mode of conversion, an offline mode requires the conversion when a new descrip-
tion is added to the description repository. On the other hand, an online mode needs the
conversion every time a request is made.

The converted descriptions yield slightly worse results than the corresponding descrip-
tions. We conclude that the quality of results drops because the original descriptions are
not equivalent to the corresponding descriptions and there could be some information loss
during the conversion. Moreover, according to the evaluation results of the resource match-
ers, OWL-S matchers perform better than SAWSDL matchers. Thus, this indicates that
OWL-S descriptions averagely yield better results. Nonetheless, OWL-S based matchers
usually consume a lot more processing time and power than SAWSDL based matchers.

213

CHAPTER 14. SUMMARY

14.1.5. Resource Matching and Result Integration

As demonstrated in Section 7.1, Matcher Analysis, we learned that no single matcher could
perform best in every circumstance. To maximize the quality of results, we decided to
utilize multiple matchers. Hence, we need a result integrator to consolidate the different
results from different matchers.

The more matchers involved in the discovery, the higher the quality of results would be.
However, the higher accuracy of the final result is a trade-off with the time performance.
Therefore, an optimum number of matchers must be determined. The evaluation results
show that the proposed method can yield the best result from the best-performed matcher.
Moreover, it drastically outperforms the average result from all matchers.

In Part III, we presented the evaluation method and results. The request constructor, the
request converter, resource matchers and the result integrator were evaluated separately so
that we can measure their qualities. Then we integrated them and evaluated to measure the
overall performance to find the gap of improvement.

14.2 Integration with MERCURY

According to MERCURY architecture presented in Chapter 2, we have implemented most
of it, as shown in Figure 14.2. The resource discovery operates as a standalone web service
as required by Requirement R11. This enables the modularity and reusability of the search
engine. When deploying the resource discovery to MERCURY, it can be easily applied
to the resource registration, scenario modeling and scenario execution modules. Only the
GUI designs are needed in the implementation of each part.

On top of the usage of the resource discovery service, the infrastructure of portal tech-
nology allows us to make use of the user and environmental context. This work aims to
exploit three types of context, the spatial-based, ontology-based and object-oriented based
context.

• The user management within the portal and the social sensors explained in Chapter 6,
Context Extraction, provides spatial-based context. This spatial information can be
appended to a query message in the request constructing process.

• The ontology-based context is applicable when the descriptions contain semantic
annotation, which is used in the resource matching process.

• The object-oriented context can be retrieved from users’ interactions within MER-
CURY. This is applied to the scenario modeling process. The recommendation is
determined upon the resource that a user selected.

The resource discovery can be used within MERCURY in the following processes;

214

14.2. INTEGRATION WITH MERCURY

Figure 14.2.: Summary of implemented parts in MERCURY.

• The registration of resources (resolving Requirement R8)

• The scenario modeling from registered resources (resolving Requirement R9)

• The scenario execution (resolving Requirement R10).

The implicit context can be derived from the Portal’s user management model, social sen-
sors or the history of usage. Such information must be approved by a user before it can be
applied. The explicit context can also be provided as free-text keywords.

Finally, the result of the resource discovery is presented as a resource recommendation
throughout the MERCURY workflow and thus fulfills Requirement R12. All requirements
are summarized again in Table 14.1.

215

CHAPTER 14. SUMMARY

Requirement Description Status

P1 We need a resource registration and management module. Completed

P2 We need a resource discovery module. Completed

R1 The resource discovery unit should be able to construct a
free-text query message from end users into pre-defined
formats.

Completed

R2 The resource discovery should be able to interpret different
description formalisms.

Completed

R3 The resource discovery should handle multiple description
formalisms and matchers simultaneously.

Completed

R4 The discovery process should offer a basic search for re-
source descriptions.

Completed

R5 The discovery process should offer an advanced search
considering semantic annotations and syntax of keywords.

Completed

R6 The source of user context should be defined. Completed

R7 When user context or resource context is available, they
should be applied to the search query.

Completed

R8 The resources’ descriptions should be derived, stored, and
made editable by authorized users.

Completed

R11 The resource discovery should operate as a standalone
module.

Completed

R12 The discovery result should be presented in the registra-
tion, scenario modeling, and execution processes in a way
that users can apply the result instantly.

Completed

P3 We need a scenario modeling interface and model transla-
tor.

Completed

R9 The modeling tool should recommend the potential re-
sources to users by considering users’ interactions.

Completed

P4 We need an execution environment. On-going

R10 During runtime, a placeholder item or a fail-to-respond
resource should be supported by the service discovery.

Completed

P5 We need a runtime UI. Future Work

P6 We need a user management module and need to extract
user context from it.

Completed

Table 14.1.: Summary of requirements and their statuses.

216

15
Future Plan

In this thesis, we use two major description formalisms, OWL-S and SAWSDL as a proof
of concept. There are more formalisms, such as WADL (Web Application Description
Language), WSMO (Web Service Modeling Ontology) or tagged-based formalisms, like
[GCPG12] and [DLY+10], which can be supported by the resource discovery. Also, due
to the emergence of Big data and cloud services, structural descriptions in JSON and XML
formats are being considered to be included in our future work.

Although the context extraction is defined and implemented in this thesis, the evaluation of
quality improvement has not been conducted yet. The extracted context can be evaluated
using the outcome of this thesis as a baseline. Furthermore, we can enhance the quality of
the discovery result by coping with the dynamic context detected by sensors. For instance,
a GPS sensor can be used instead of the location from the user model for a more precise
result. The context of social networking other than Facebook and Twitter can also be used.
Currently, we deal with only explicit context, e.g. tagged location, friends, and timestamps
of each user’s status. By utilizing a deep learning technology, we can make the sentimental
analysis from the textual content of the user’s status/message. Additionally, we could
analyze the attached images to obtain context information.

The evaluation part of the resource discovery in the execution process is still pending for
the completion of the execution engine, but it could be evaluated shortly. So far, the re-
sources we have connected to MERCURY are mainly web services and Arduino1 sensors.
For the scalability issue, a sensor gateway or generic middleware could be a solution for
MERCURY.

One important issue of the current approach is the time performance. Although our pro-
posed technique provides a satisfactory quality of resource discovery, the processing time
is not yet practical for a real-time recommendation. Each resource matcher can be adjusted
to perform faster, but this has to be done manually. Therefore, we are still looking for a
more sustainable solution in order to improve the time performance.

We have a vision that the developed concept of resource discovery is not limited to MER-
CURY, but can demonstrate an enhancement of IoT domain applications. Each developed

1https://www.arduino.cc/

217

CHAPTER 15. FUTURE PLAN

module can be reused separately in any other application involving ontology matching,
search result merging, sensors/actuators discovery, resource recommendation, resource de-
scription conversion and users’ context derivation via IoT.

In the big picture, MERCURY, assisted with the resource discovery, can become a powerful
tool to maintain the resiliency of an execution of scenario, to ease the process of a scenario
modeling, and to be adaptive to users’ environment beyond the heterogeneous description
formalisms.

From a business point of view, companies can utilize MERCURY to attract their cus-
tomers, and thus increase their revenues. For individuals, MERCURY can offer an easy
way to create an application to improve one’s lifestyle. And finally, this platform offers a
collaborative sensors and services development where everyone can contribute to.

218

List of scientific publications

1. Kobkaew Opasjumruskit, Birgitta König-Ries, and Jesús Expósito. Dynamic Strate-
gies for Query Constructing and Rank Merging from Multiple Search Engines. In
Service Oriented and Cloud Computing, volume 9306 of LNCS, chapter 10. Springer,
2015

2. Kobkaew Opasjumruskit, Jesús Expósito, Birgitta König-Ries, Andreas Nauerz, and
Martin Welsch. Service Discovery with Personal Awareness in Smart Environments.
In Creating Personal, Social, and Urban Awareness through Pervasive Computing.,
pages 86–107. IGI Global, 2014

3. Kobkaew Opasjumruskit, Jesús Expósito, Birgitta König-Ries, Andreas Nauerz, and
Martin Welsch. MERCURY: User Centric Device and Service Processing : Demo
paper. In 19th International In workshop on Personalization and Recommendation
on the Web and Beyond held at Mensch and Computer, Konstanz, Germany, sep 2012

4. Birgitta König-Ries, Kobkaew Opasjumruskit, Andreas Nauerz, and Martin Welsch.
MERCURY : User Centric Device & Service Processing. In MKWI 2012, Braun-
schweig, Germany, February 2012

5. Kobkaew Opasjumruskit. Towards Leveraging Semantic Web Service Technology
for Personalized, Adaptive Automatic Ubiquitous Sensors Discovery in Context of
the Internet of Things. University Halle-Wittenberg Institute of Computer Science,
page 48

219

References

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things:
A survey. Computer Networks, 54(15):2787 – 2805, 2010.

[Ard] Arduino. https://www.arduino.cc/. Accessed: 2017-08-06.

[ASS+11] Raian Ali, Carlos Solis, Mazeiar Salehie, Inah Omoronyia, Bashar Nu-
seibeh, and Walid Maalej. Social Sensing: When Users Become Monitors.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE ’11,
pages 476–479, New York, NY, USA, 2011. ACM.

[ATdMH15] Leonardo Albernaz Amaral, Ramão Tiago Tiburski, Everton de Matos, and
Fabiano Hessel. Cooperative Middleware Platform As a Service for Internet
of Things Applications. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC ’15, pages 488–493, New York, NY, USA,
2015. ACM.

[BBH+10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,
Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A Survey of
Context Modelling and Reasoning Techniques. Pervasive Mobile Comput-
ing, 6(2):161–180, April 2010.

[BBM] Martin Bauer, Mathieu Boussard, and Stefan Meissner. Interactions.

[BDH+09] John G. Breslin, Stefan Decker, Manfred Hauswirth, Gearoid Hynes,
Danh Le Phuoc, Alexandre Passant, Axel Polleres, Cornelius Rabsch, and
Vinny Reynolds. Integrating Social Networks and Sensor Networks. In Pro-
ceedings on the W3C Workshop on the Future of Social Networking, 2009.

[BMR07] Claudio Bettini, Dario Maggiorini, and Daniele Riboni. Distributed Context
Monitoring for the Adaptation of Continuous Services. World Wide Web,
10(4):503–528, 2007.

[BPGO13] Talal Ashraf Butt, Iain Phillips, Lin Guan, and George Oikonomou. Adap-
tive and Context-Aware Service Discovery for the Internet of Things. In
Sergey Balandin, Sergey Andreev, and Yevgeni Koucheryavy, editors, In-
ternet of Things, Smart Spaces, and Next Generation Networking, volume
8121 of Lecture Notes in Computer Science, pages 36–47. Springer Berlin
Heidelberg, 2013.

[BS16] P. Barnaghi and A. Sheth. On Searching the Internet of Things: Require-
ments and Challenges. IEEE Intelligent Systems, 31(6):71–75, Nov 2016.

[CCMW] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL). http://www.
w3.org/TR/wsdl. Accessed: 2017-08-05.

221

https://www.arduino.cc/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

References

[Dey01] Anind K. Dey. Understanding and Using Context. Personal Ubiquitous
Computing, 5(1):4–7, January 2001.

[DLY+10] Zhaoyun Ding, Deng Lei, Jia Yan, Zhou Bin, and An Lun. A Web Service
Discovery Method Based on Tag. In Complex, Intelligent and Software
Intensive Systems (CISIS), 2010 International Conference on, pages 404–
408, Feb 2010.

[DMD+03] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and
Alon Halevy. Learning to Match Ontologies on the Semantic Web. The
VLDB Journal, 12(4):303–319, November 2003.

[DRGS09] David De Roure, Carole Goble, and Robert Stevens. The Design and Reali-
sation of the myExperiment Virtual Research Environment for Social Shar-
ing of Workflows. Future Generation Computer Systems, 25(5):561–567,
May 2009.

[Ela] Elasticsearch: Search & Analyze Data in Real Time. https://www.
elastic.co/products/elasticsearch. Accessed: 2017-08-05.

[EPC] EPCglobal | GS1. https://www.gs1.org/epcglobal. Accessed:
2017-08-06.

[Evr] EVRYTHNG IoT Platform for Smart Consumer Products. http://www.
evrythng.com. Accessed: 2017-07-31.

[Fac] Graph API : facebook for developers. https://developers.
facebook.com/docs/graph-api. Accessed: 2017-08-05.

[FFST11] Dieter Fensel, FedericoMichele Facca, Elena Simperl, and Ioan Toma.
Lightweight Semantic Web Service Descriptions. In Semantic Web Services,
pages 279–295. Springer Berlin Heidelberg, 2011.

[GCPG12] Maciej Gawinecki, Giacomo Cabri, Marcin Paprzycki, and Maria Ganzha.
Evaluation of Structured Collaborative Tagging for Web Service Matchmak-
ing. In Brian Blake, Liliana Cabral, Birgitta König-Ries, Ulrich Küster,
and David Martin, editors, Semantic Web Services, pages 173–189. Springer
Berlin Heidelberg, 2012.

[GRRC12] José María García, David Ruiz, and Antonio Ruiz-Cortés. Improving se-
mantic web services discovery using sparql-based repository filtering. Web
Semantics: Science, Services and Agents on the World Wide Web, 17:12–24,
Dec 2012.

[GTW10] Dominique Guinard, Vlad Trifa, and Erik Wilde. Architecting a Mashable
Open World Wide Web of Things. Technical report, Institute for Pervasive
Computing ETH Zurich, SAP Research CEC Zurich, School of Information
UC Berkeley, 2010.

222

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.gs1.org/epcglobal
http://www.evrythng.com
http://www.evrythng.com
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api

References

[Gui09] Dominique Guinard. Towards the web of things: Web mashups for embed-
ded devices. In In MEM 2009 in Proceedings of WWW 2009. ACM, 2009.

[GZI11] Bin Guo, Daqing Zhang, and Michita Imai. Toward a Cooperative Program-
ming Framework for Context-aware Applications. Personal Ubiquitous
Computing, 15(3):221–233, March 2011.

[Har12] A. & Maynard D. Harth. Semantic Web Challenge. http://
challenge.semanticweb.org, 2012. Accessed: 2017-08-05.

[HLI04] K. Henricksen, S. Livingstone, and J. Indulska. Towards a hybrid approach
to context modeling, reasoning and interoperation. In J. Indulska and D. De
Roure, editors, Proceedings of the First International Workshop on Ad-
vanced Context Modelling, Reasoning and Management, pages 54–61. The
University of Southampton, September 2004. ISBN: 85432 813 0.

[HM10] T. Halpin and T. Morgan. Information Modeling and Relational Databases.
The Morgan Kaufmann Series in Data Management Systems. Elsevier Sci-
ence, 2010.

[HPSB+04] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A semantic web rule language combining
OWL and RuleML, 2004.

[HPSVH03] Ian Horrocks, Peter F Patel-Schneider, and Frank Van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language. Web
semantics: science, services and agents on the World Wide Web, 1(1):7–26,
2003.

[HS12] G.C. Hobold and F. Siqueira. Discovery of Semantic Web Services Com-
positions Based on SAWSDL Annotations. In Web Services (ICWS), 2012
IEEE 19th International Conference on, pages 280–287, June 2012.

[IFT] IFTTT - Make your work flow. https://ifttt.com. Accessed: 2017-
07-31.

[Jad12] Hossein Jadidoleslamy. Search Result Merging and Ranking Strategies in
Meta-Search Engines: A Survey. International Journal of Computer Sci-
ence Issues, 2012.

[KB08] Christoph Kiefer and Abraham Bernstein. The Creation and Evaluation
of iSPARQL Strategies for Matchmaking. In Sean Bechhofer, Manfred
Hauswirth, Jörg Hoffmann, and Manolis Koubarakis, editors, The Semantic
Web: Research and Applications, volume 5021 of Lecture Notes in Com-
puter Science, pages 463–477. Springer Berlin Heidelberg, 2008.

[KBB+09] S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise. WSC-2009: A
Quality of Service-Oriented Web Services Challenge. In 2009 IEEE Confer-
ence on Commerce and Enterprise Computing, pages 487–490, July 2009.

223

http://challenge.semanticweb.org
http://challenge.semanticweb.org
https://ifttt.com

References

[KFK05] Matthias Klusch, Benedikt Fries, and Mahboob Khalid. OWLS-MX: Hy-
brid owl-s service matchmaking. In Proceedings of 1st International AAAI
Fall Symposium on Agents and the Semantic Web, 2005.

[KK10] M. Klusch and P. Kapahnke. isem: Approximated reasoning for adaptive
hybrid selection of semantic services. In Semantic Computing (ICSC), 2010
IEEE Fourth International Conference on, pages 184–191, Sept 2010.

[KK12a] Matthias Klusch and Patrick Kapahnke. Adaptive signature-based seman-
tic selection of services with OWLS-MX3. Multiagent and Grid Systems,
8(1):69–82, 2012.

[KK12b] Matthias Klusch and Patrick Kapahnke. The iSeM matchmaker: A flexible
approach for adaptive hybrid semantic service selection . Web Semantics:
Science, Services and Agents on the World Wide Web, 15:1 – 14, 2012.

[KKF08] M. Klusch, P. Kapahnke, and B. Fries. Hybrid Semantic Web Service Re-
trieval: A Case Study with OWLS-MX. In Semantic Computing, 2008 IEEE
International Conference on, pages 323–330, Aug 2008.

[KKZ09a] Matthias Klusch, Patrick Kapahnke, and Ingo Zinnikus. Hybrid Adaptive
Web Service Selection with SAWSDL-MX and WSDL-Analyzer. In Pro-
ceedings of the 6th European Semantic Web Conference on The Semantic
Web: Research and Applications, ESWC 2009 Heraklion, pages 550–564,
Berlin, Heidelberg, 2009. Springer-Verlag.

[KKZ09b] Matthias Klusch, Patrick Kapahnke, and Ingo Zinnikus. SAWSDL-MX2: A
Machine-Learning Approach for Integrating Semantic Web Service Match-
making Variants. In Ernesto Damiani, Rong Chang, and Jia Zhang, editors,
2009 IEEE International Conference on Web Services. IEEE International
Conference on Web Services (ICWS-2009), 7th, July 6-10, Los Angeles„ CA,
USA, pages 335–342. IEEE Press, 2009.

[KLD12] M. Kovatsch, M. Lanter, and S. Duquennoy. Actinium: A RESTful runtime
container for scriptable Internet of Things applications. In Internet of Things
(IOT), 2012 3rd International Conference on the, pages 135–142, Oct 2012.

[Klu12] M. Klusch. Semantic Service Selection (S3) contest. http://www-ags.
dfki.uni-sb.de/~klusch/s3/index.html, 2012. Accessed:
2017-08-05.

[KNL13] Mohammad Mehdi Keikha, Mohammad Ali Nematbakhsh, and
Behrouz Tork Ladani. Structural Weights in Ontology Matching.
CoRR, abs/1311.3800, 2013.

[KNLZ07] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. SenseWeb: An Infras-
tructure for Shared Sensing. IEEE MultiMedia, 14(4):8–13, October 2007.

224

http://www-ags.dfki.uni-sb.de/~klusch/s3/index.html
http://www-ags.dfki.uni-sb.de/~klusch/s3/index.html

References

[KRONW12] Birgitta König-Ries, Kobkaew Opasjumruskit, Andreas Nauerz, and Martin
Welsch. MERCURY : User Centric Device & Service Processing. In MKWI
2012, Braunschweig, Germany, February 2012.

[LD13] Richard K. Lomotey and Ralph Deters. CSB-UCC: Cloud Services Bro-
kerage for Ubiquitous Cloud Computing. In Proceedings of the Fifth In-
ternational Conference on Management of Emergent Digital EcoSystems,
MEDES ’13, pages 100–107, New York, NY, USA, 2013. ACM.

[LdMT+15] W. T. Lunardi, E. de Matos, R. Tiburski, L. A. Amaral, S. Marczak, and
F. Hessel. Context-based search engine for industrial IoT: Discovery, search,
selection, and usage of devices. In 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), pages 1–8, Sept 2015.

[Li13] Jing Li. A Fast Semantic Web Services Matchmaker for OWL-S Services.
Journal of Networks, 8(5), 2013.

[LMS+05] Yiyao Lu, Weiyi Meng, Liangcai Shu, Clement Yu, and King-Lup Liu. Eval-
uation of Result Merging Strategies for Metasearch Engines. In AnneH.H.
Ngu, Masaru Kitsuregawa, ErichJ. Neuhold, Jen-Yao Chung, and QuanZ.
Sheng, editors, Web Information Systems Engineering WISE 2005, volume
3806 of Lecture Notes in Computer Science, pages 53–66. Springer Berlin
Heidelberg, 2005.

[LpH09] Danh Le-phuoc and Manfred Hauswirth. Linked open data in sensor data
mashups, 2009.

[LpNQP11] Danh Le-phuoc, Hoan Nguyen, Mau Quoc, and Josiane Xavier Parreira. The
Linked Sensor Middleware - Connecting the real world and the Semantic
Web, 2011.

[MB10] Georgios Meditskos and N. Bassiliades. Structural and Role-Oriented Web
Service Discovery with Taxonomies in OWL-S. Knowledge and Data En-
gineering, IEEE Transactions on, 22(2):278–290, Feb 2010.

[MDRS05] Ian Millard, David De Roure, and Nigel Shadbolt. Contextually Aware In-
formation Delivery in Pervasive Computing Environments, pages 189–197.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[MF10] Friedemann Mattern and Christian Floerkemeier. From the Internet of Com-
puters to the Internet of Things. In Kai Sachs, Ilia Petrov, and Pablo Guer-
rero, editors, From Active Data Management to Event-based Systems and
More, chapter From the Internet of Computers to the Internet of Things,
pages 242–259. Springer-Verlag, Berlin, Heidelberg, 2010.

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity Flood-
ing: A Versatile Graph Matching Algorithm and Its Application to Schema

225

References

Matching. In Proceedings of the 18th International Conference on Data
Engineering, ICDE ’02, pages 117–, Washington, DC, USA, 2002. IEEE
Computer Society.

[MHB+12] N. Masuch, B. Hirsch, M. Burkhardt, A. Heßler, and S. Albayrak. SeMa2:
A Hybrid Semantic Service Matching Approach. In Brian Blake, Liliana
Cabral, Birgitta König-Ries, Ulrich Küster, and David Martin, editors, Se-
mantic Web Services, pages 35–47. Springer Berlin Heidelberg, 2012.

[MKP09] Maria Maleshkova, Jacek Kopecký, and Carlos Pedrinaci. Adapting
SAWSDL for Semantic Annotations of RESTful Services. In Proceed-
ings of the Confederated International Workshops and Posters on On the
Move to Meaningful Internet Systems: ADI, CAMS, EI2N, ISDE, IWSSA,
MONET, OnToContent, ODIS, ORM, OTM Academy, SWWS, SEMELS, Be-
yond SAWSDL, and COMBEK 2009, OTM ’09, pages 917–926, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[MPM+05] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew
McDermott, Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou,
Monika Solanki, Naveen Srinivasan, and Katia Sycara. Bringing Semantics
to Web Services: The OWL-S Approach. In Jorge Cardoso and Amit Sheth,
editors, Semantic Web Services and Web Process Composition, volume 3387
of Lecture Notes in Computer Science, pages 26–42. Springer Berlin Hei-
delberg, 2005.

[MPW07] David Martin, Massimo Paolucci, and Matthias Wagner. Bringing Semantic
Annotations to Web Services: OWL-S from the SAWSDL Perspective. In
Proceedings of the 6th International The Semantic Web and 2Nd Asian Con-
ference on Asian Semantic Web Conference, ISWC’07/ASWC’07, pages
340–352, Berlin, Heidelberg, 2007. Springer-Verlag.

[NGS+09] Meenakshi Nagarajan, Karthik Gomadam, Amit P. Sheth, Ajith Ranabahu,
Raghava Mutharaju, and Ashutosh Jadhav. Spatio-Temporal-Thematic
Analysis of Citizen Sensor Data: Challenges and Experiences, pages 539–
553. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Nin] Ninja Blocks. https://ninjablocks.com/. Accessed: 2017-08-06.

[NKK10] Le Duy Ngan, M. Kirchberg, and R. Kanagasabai. Review of Semantic Web
Service Discovery Methods. In Services (SERVICES-1), 2010 6th World
Congress on, pages 176–177, July 2010.

[NLZ07] Suman Nath, Jie Liu, and Feng Zhao. SensorMap for Wide-Area Sensor
Webs. IEEE Computer, 40:90–93, January 2007.

[NM01] Daniela Nicklas and Bernhard Mitschang. The NEXUS Augmented World
Model: An Extensible Approach for Mobile, Spatially Aware Applications.
In OOIS, 2001.

226

https://ninjablocks.com/

References

[OEKR+12] Kobkaew Opasjumruskit, Jesús Expósito, Birgitta König-Ries, Andreas
Nauerz, and Martin Welsch. MERCURY: User Centric Device and Service
Processing : Demo paper. In 19th International In workshop on Personal-
ization and Recommendation on the Web and Beyond held at Mensch and
Computer, Konstanz, Germany, sep 2012.

[OEKR+14] Kobkaew Opasjumruskit, Jesús Expósito, Birgitta König-Ries, Andreas
Nauerz, and Martin Welsch. Service Discovery with Personal Awareness
in Smart Environments. In Creating Personal, Social, and Urban Aware-
ness through Pervasive Computing., pages 86–107. IGI Global, 2014.

[OKRE15] Kobkaew Opasjumruskit, Birgitta König-Ries, and Jesús Expósito. Dy-
namic Strategies for Query Constructing and Rank Merging from Multiple
Search Engines. In Service Oriented and Cloud Computing, volume 9306
of LNCS, chapter 10. Springer, 2015.

[Opa] Kobkaew Opasjumruskit. Towards Leveraging Semantic Web Service Tech-
nology for Personalized, Adaptive Automatic Ubiquitous Sensors Discov-
ery in Context of the Internet of Things. University Halle-Wittenberg Insti-
tute of Computer Science, page 48.

[Pac12] Eric Pacuit. Voting Methods. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Winter 2012 edition, 2012.

[Phu09] Danh Le Phuoc. SensorMasher - publishing and building mashup of sensor
data. In 5th International Conference on Semantic Systems, Graz, Austria,
September 2-4, 2009. Proceedings, 2009.

[PP09] Pierluigi Plebani and Barbara Pernici. URBE: Web Service Retrieval Based
on Similarity Evaluation. IEEE Transactions on Knowledge and Data En-
gineering, 21(11):1629–1642, 2009.

[PV16] Charith Perera and Athanasios V. Vasilakos. A Knowledge-based Resource
Discovery for Internet of Things. Knowledge-Based Systems, 109(C):122–
136, October 2016.

[PZC+12] Charith Perera, Arkady Zaslavsky, Peter Christen, Ali Salehi, and Dim-
itrios Georgakopoulos. Connecting Mobile Things to Global Sensor Net-
work Middleware Using System-generated Wrappers. In Proceedings of
the Eleventh ACM International Workshop on Data Engineering for Wire-
less and Mobile Access, MobiDE ’12, pages 23–30, New York, NY, USA,
2012. ACM.

[PZCG12] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. CA4IOT: Context Awareness for Internet of Things. In Pro-
ceedings of the 2012 IEEE International Conference on Green Computing
and Communications, GREENCOM ’12, pages 775–782, Washington, DC,
USA, 2012. IEEE Computer Society.

227

References

[PZCG13] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Sensing as a Service Model for Smart Cities Supported by
Internet of Things. CoRR, abs/1307.8198, 2013.

[PZCG14] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context
Aware Computing for The Internet of Things: A Survey. IEEE Commu-
nications Surveys Tutorials, 16(1):414–454, First 2014.

[QHC06] Yuzhong Qu, Wei Hu, and Gong Cheng. Constructing Virtual Documents
for Ontology Matching. In Proceedings of the 15th International Confer-
ence on World Wide Web, WWW ’06, pages 23–31, New York, NY, USA,
2006. ACM.

[Ras] Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. https://
www.raspberrypi.org/. Accessed: 2017-08-06.

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Di-
eter Fensel. Web Service Modeling Ontology. Applied Ontology, 1(1):77–
106, January 2005.

[RLS+11] Katharina Rasch, Fei Li, Sanjin Sehic, Rassul Ayani, and Schahram Dustdar.
Context-driven personalized service discovery in pervasive environments.
World Wide Web, 14(4):295–319, 2011.

[RMJPC16] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. Middleware
for Internet of Things: A Survey. IEEE Internet of Things Journal, 3(1):70–
95, Feb 2016.

[Rob01] Stephen E. Robertson. Evaluation in Information Retrieval. In Proceed-
ings of the Third European Summer-School on Lectures on Information
Retrieval-Revised Lectures, ESSIR ’00, pages 81–92, London, UK, UK,
2001. Springer-Verlag.

[RS03] M. Elena Renda and Umberto Straccia. Web Metasearch: Rank vs. Score
Based Rank Aggregation Methods. In Proceedings of the 2003 ACM Sym-
posium on Applied Computing, SAC ’03, pages 841–846, New York, NY,
USA, 2003. ACM.

[Sat14] Florian Sattler. Social media context analysis for automatic semantic ser-
vice discovery. Bachelor thesis, Friedrich Schiller University of Jena, De-
partment of Mathematics and Computer Science, September 2014.

[Sbo12] Marco Luca Sbodio. SPARQLent: A SPARQL Based Intelligent Agent
Performing Service Matchmaking. In Brian Blake, Liliana Cabral, Birgitta
König-Ries, Ulrich Küster, and David Martin, editors, Semantic Web Ser-
vices, pages 83–105. Springer Berlin Heidelberg, 2012.

228

https://www.raspberrypi.org/
https://www.raspberrypi.org/

References

[SCI] SCIentific gateway Based User Support. http://www.sci-bus.eu/.
Accessed: 2017-08-05.

[SGFW10] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelfflé,
editors. Vision and Challenges for Realising the Internet of Things. Publi-
cations Office of the European Union, Luxembourg, 2010.

[She07] Amit Sheth. Beyond SAWSDL: A Game Plan for Broader Adoption of
Semantic Web Services, 2007.

[She09] A. Sheth. Citizen Sensing, Social Signals, and Enriching Human Experi-
ence. IEEE Internet Computing, 13(4):87–92, July 2009.

[SHI] SHIWA Simulation Platform. http://www.shiwa-workflow.eu.
Accessed: 2017-07-28.

[Sho] Shodan: the world’s first search engine for internet-connected devices.
https://www.shodan.io/. Accessed: 2017-08-06.

[SKH+] John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-
Paul Calbimonte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman,
Arkady Zaslavsky, Ivana Podnar Žarko, Lea Skorin-Kapov, and Rein-
hard Herzog. OpenIoT: Open Source Internet-of-Things in the Cloud,
bookTitle=Interoperability and Open-Source Solutions for the Internet of
Things: International Workshop, FP7 OpenIoT Project, Held in Conjunc-
tion with SoftCOM 2014, Split, Croatia, September 18, 2014, Invited Pa-
pers, year=2015, publisher=vSpringer International Publishing, pages 13–
25. Cham.

[SLES10] S. Schulte, U. Lampe, Julian Eckert, and R. Steinmetz. LOG4SWS.KOM:
Self-Adapting Semantic Web Service Discovery for SAWSDL. In Services
(SERVICES-1), 2010 6th World Congress on, pages 511–518, July 2010.

[SLKS12] Stefan Schulte, Ulrich Lampe, Matthias Klusch, and Ralf Steinmetz.
COV4SWS.KOM: Information Quality-Aware Matchmaking for Semantic
Services. In Elena Simperl, Philipp Cimiano, Axel Polleres, Oscar Corcho,
and Valentina Presutti, editors, The Semantic Web: Research and Applica-
tions, volume 7295 of Lecture Notes in Computer Science, pages 499–513.
Springer Berlin Heidelberg, 2012.

[Sta] Statista - Number of IoT connected devices worldwide from 2015
to 2025. https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/. Accessed:
2017-07-31.

[TAB09] Hassina Nacer Talantikite, Djamil Aissani, and Nacer Boudjlida. Semantic
annotations for web services discovery and composition. Computer Stan-
dards & Interfaces, 31(6):1108 – 1117, 2009.

229

http://www.sci-bus.eu/
http://www.shiwa-workflow.eu
https://www.shodan.io/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

References

[Thi] Thingful: A Search Engine for the Internet of Things. https://
thingful.net/. Accessed: 2017-08-06.

[Twi] REST APIs | Twitter Developers. https://dev.twitter.com/
rest/public. Accessed: 2017-08-05.

[WC16] E. Wang and R. Chow. What can I do here? IoT service discovery in smart
cities. In 2016 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops), pages 1–6, March 2016.

[WJ12] Qiang Wei and Zhi Jin. Service Discovery for Internet of Things: a context-
awareness perspective. In Proceedings of the Fourth Asia-Pacific Sympo-
sium on Internetware, Internetware 2012, QingDao, China, October 30-31,
2012, pages 25:1–25:6, 2012.

[WWWB11] Dengping Wei, Ting Wang, Ji Wang, and Abraham Bernstein. SAWSDL-
iMatcher: A Customizable and Effective Semantic Web Service Match-
maker. Web Semantics, 9(4):402–417, December 2011.

[Xiv] IoT Platform for Connected Devices. https://www.xively.com. Ac-
cessed: 2017-07-31.

[XZNN10] Hua Xiao, Ying Zou, J. Ng, and L. Nigul. An Approach for Context-Aware
Service Discovery and Recommendation. In Web Services (ICWS), 2010
IEEE International Conference on, pages 163–170, July 2010.

[ZPG13] Arkady B. Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. Sens-
ing as a Service and Big Data. CoRR, abs/1301.0159, 2013.

230

https://thingful.net/
https://thingful.net/
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public
https://www.xively.com

Appendices

231

A
Appendix A

Listing A.1: Original SAWSDL.�
1 <wsdl:definitions name="CityWeather"
2 targetNamespace="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather"
3 xmlns="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather"
4 xmlns:apachesoap="http://xml.apache.org/xml-soap"
5 xmlns:impl="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather-impl"
6 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
7 xmlns:tns="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather"
8 xmlns:sawsdl="http://www.w3.org/ns/sawsdl"
9 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

10 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
11 xmlns:intf="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather"
12 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
13 <wsdl:types>
14 <xsd:schema version="OWLS2WSDL Wed Sep 22 14:33:46 CEST 2010"
15 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
16 <xsd:annotation>
17 <xsd:documentation source="Translation (OWL2XSD-ComplexType)
18 of http://127.0.0.1/ontology/SUMO.owl#City"/>
19 <xsd:documentation source="Translation (OWL2XSD-ComplexType)
20 of http://127.0.0.1/ontology/Mid-level-ontology.owl#Weather"/>
21 </xsd:annotation>
22 <xsd:element name="Weather"
23 sawsdl:liftingSchemaMapping="http://127.0.0.1/services/

liftingSchemaMappings/
city_weatherfront_service_Weather_liftingSchemaMapping.xslt"
type="WeatherType"/>

24 <xsd:element name="City"
25 sawsdl:liftingSchemaMapping="http://127.0.0.1/services/

liftingSchemaMappings/
city_weatherfront_service_City_liftingSchemaMapping.xslt" type=
"CityType"/>

26 <xsd:complexType name="TemperatureMeasure"
27 sawsdl:modelReference="http://127.0.0.1/ontology/SUMO.owl#

TemperatureMeasure">
28 <xsd:sequence>
29 <xsd:element name="lessThanOrEqualTo"
30 type="xsd:anyURI"/>
31 <xsd:element name="lessThan" type="xsd:anyURI"/>
32 <xsd:element name="greaterThanOrEqualTo"
33 type="xsd:anyURI"/>
34 <xsd:element name="ReciprocalFn" type="xsd:anyURI"/>
35 <xsd:element name="greaterThan" type="xsd:anyURI"/>
36 <xsd:element name="RoundFn" type="xsd:anyURI"/>
37 <xsd:element name="MagnitudeFn" type="xsd:anyURI"/>
38 </xsd:sequence>

233

APPENDIX A. APPENDIX A

39 </xsd:complexType>
40 <xsd:complexType name="CityType"
41 sawsdl:modelReference="http://127.0.0.1/ontology/SUMO.owl#City">
42 <xsd:sequence>
43 <xsd:element name="capitalCity" type="GeopoliticalArea"/>
44 <xsd:element name="cityAddress" type="Address"/>
45 <xsd:element name="subRegion" type="Region"/>
46 <xsd:element name="climateTypeInArea" type="ClimateZone"/>
47 <xsd:element name="financialAsset" type="Object"/>
48 <xsd:element name="leader" type="Human"/>
49 <xsd:element name="economyType" type="EconomicAttribute"/>
50 <xsd:element name="editor" type="Text"/>
51 <xsd:element name="authors" type="Text"/>
52 <xsd:element name="WealthFn" type="CurrencyMeasure"/>
53 <xsd:element name="PropertyFn" type="Set"/>
54 <xsd:element name="ExecutiveBranchFn" type="Organization"/>
55 <xsd:element name="customer" type="Corporation"/>
56 <xsd:element name="governmentType" type="FormOfGovernment"/>
57 <xsd:element name="leaderPosition" type="Position"/>
58 <xsd:element name="fiscalYearPeriod" type="TimeInterval"/>
59 <xsd:element name="JudiciaryFn" type="JudicialOrganization"/>
60 <xsd:element name="dependentGeopoliticalArea" type="

GeopoliticalArea"/>
61 <xsd:element name="totalGDP" type="CurrencyMeasure"/>
62 <xsd:element name="CitizenryFn" type="GroupOfPeople"/>
63 <xsd:element name="GovernmentFn" type="Government"/>
64 <xsd:element name="currencyType" type="CurrencyMeasure"/>
65 <xsd:element name="legalSystemType" type="LegalSystemAttribute"

/>
66 <xsd:element name="primaryGeopoliticalSubdivision" type="

GeopoliticalArea"/>
67 <xsd:element name="LegislatureFn" type="LegislativeOrganization"

/>
68 <xsd:element name="industryOfArea" type="Physical"/>
69 </xsd:sequence>
70 </xsd:complexType>
71 <xsd:complexType name="WeatherType"
72 sawsdl:modelReference="http://127.0.0.1/ontology/Mid-level-ontology.

owl#Weather">
73 <xsd:sequence>
74 <xsd:element name="subProcess" type="Process"/>
75 <xsd:element name="frequency" type="TimeDuration"/>
76 <xsd:element name="realization" type="Proposition"/>
77 <xsd:element name="result" type="Entity"/>
78 <xsd:element name="causesSubclass" type="Process"/>
79 <xsd:element name="inhibits" type="Process"/>
80 <xsd:element name="hasSkill" type="Agent"/>
81 <xsd:element name="precondition" type="Process"/>
82 <xsd:element name="causes" type="Process"/>
83 <xsd:element name="direction" type="DirectionalAttribute"/>
84 <xsd:element name="destination" type="Entity"/>
85 <xsd:element name="origin" type="Object"/>
86 <xsd:element name="targetInAttack" type="Object"/>
87 <xsd:element name="prevents" type="Process"/>
88 <xsd:element name="path" type="Object"/>
89 </xsd:sequence>
90 </xsd:complexType>
91 </xsd:schema>
92 </wsdl:types>
93 <wsdl:message name="get_WEATHERRequest">
94 <wsdl:part name="_CITY" type="CityType">
95 </wsdl:part>

234

96 </wsdl:message>
97 <wsdl:message name="get_WEATHERResponse">
98 <wsdl:part name="_WEATHER" type="WeatherType">
99 </wsdl:part>

100 </wsdl:message>
101 <wsdl:portType name="CityWeatherSoap">
102 <wsdl:operation name="get_WEATHER">
103 <wsdl:input message="get_WEATHERRequest">
104 </wsdl:input>
105 <wsdl:output message="get_WEATHERResponse">
106 </wsdl:output>
107 </wsdl:operation>
108 </wsdl:portType>
109 <wsdl:binding name="CityWeatherSoapBinding" type="CityWeatherSoap">
110 <wsdlsoap:binding style="rpc"
111 transport="http://schemas.xmlsoap.org/soap/http"/>
112 <wsdl:operation name="get_WEATHER">
113 <wsdlsoap:operation soapAction=""/>
114 <wsdl:input>
115 <wsdlsoap:body use="encoded"
116 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
117 namespace="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather"/>
118 </wsdl:input>
119 <wsdl:output>
120 <wsdlsoap:body use="encoded"
121 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
122 namespace="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather"/>
123 </wsdl:output>
124 </wsdl:operation>
125 </wsdl:binding>
126 <wsdl:service name="CityWeatherService">
127 <wsdl:port name="CityWeatherSoap" binding="CityWeatherSoapBinding">
128 <wsdlsoap:address
129 location="http://127.0.0.1/services/sawsdl_wsdl11/CityWeather"/>
130 </wsdl:port>
131 </wsdl:service>
132 </wsdl:definitions>� �

Listing A.1: Original SAWSDL.

Listing A.2: Converted OWL-S from a SAWSDL description.�
1
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:base="http://127.0.0.1/converted/1.1/city_weather_service.owls"
4 xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
5 xmlns:owl="http://www.w3.org/2002/07/owl#"
6 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
7 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
8 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
9 xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#">

10 <service:Service rdf:ID="CityWeatherService">
11 <service:presents rdf:resource="#PROFILE0"/>
12 <service:describedBy rdf:resource="#PROCESS0"/>
13 </service:Service>
14 <profile:Profile rdf:ID="PROFILE0">
15 <profile:hasInput rdf:resource="#CityType"/>
16 <profile:hasOutput rdf:resource="#WeatherType"/>
17 </profile:Profile>
18 <process:AtomicProcess rdf:ID="PROCESS0">
19 <service:describes rdf:resource="#CityWeatherService"/>
20 <process:hasInput rdf:resource="#CityType"/>

235

APPENDIX A. APPENDIX A

21 <process:hasOutput rdf:resource="#WeatherType"/>
22 </process:AtomicProcess>
23 <process:Input rdf:ID="CityType">
24 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">
25 http://minerva.inf-bb.uni-jena.de/mercury/webservices/ontology/SUMO.owl

#City
26 </process:parameterType>
27 <rdfs:label/>
28 </process:Input>
29 <process:Output rdf:ID="WeatherType">
30 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">
31 http://minerva.inf-bb.uni-jena.de/mercury/webservices/ontology/Mid-

level-ontology.owl#Weather
32 </process:parameterType>
33 <rdfs:label/>
34 </process:Output>
35 </rdf:RDF>� �

Listing A.2: Converted OWL-S from a SAWSDL description.

Listing A.3: Original OWL-S.�
1 <rdf:RDF xmlns:owl = "http://www.w3.org/2002/07/owl#"
2 xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
3 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:service = "http://www.daml.org/services/owl-s/1.1/Service.owl#"
5 xmlns:process = "http://www.daml.org/services/owl-s/1.1/Process.owl#"
6 xmlns:profile = "http://www.daml.org/services/owl-s/1.1/Profile.owl#"
7 xmlns:grounding = "http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
8 xml:base = "http://127.0.0.1/services/1.1/city_weather_service.owls">
9 <owl:Ontology rdf:about="">

10 <owl:imports rdf:resource="http://127.0.0.1/ontology/Service.owl" />
11 <owl:imports rdf:resource="http://127.0.0.1/ontology/Process.owl" />
12 <owl:imports rdf:resource="http://127.0.0.1/ontology/Profile.owl" />
13 <owl:imports rdf:resource="http://127.0.0.1/ontology/Grounding.owl" />
14 <owl:imports rdf:resource="http://127.0.0.1/ontology/SUMO.owl" />
15 <owl:imports rdf:resource="http://127.0.0.1/ontology/Mid-level-ontology

.owl" />
16 </owl:Ontology>
17 <service:Service rdf:ID="CITY_WEATHER_SERVICE">
18 <service:presents rdf:resource="#CITY_WEATHER_PROFILE"/>
19 <service:describedBy rdf:resource="#CITY_WEATHER_PROCESS"/>
20 <service:supports rdf:resource="#CITY_WEATHER_GROUNDING"/>
21 </service:Service>
22 <profile:Profile rdf:ID="CITY_WEATHER_PROFILE">
23 <service:isPresentedBy rdf:resource="#CITY_WEATHER_SERVICE"/>
24 <profile:serviceName xml:lang="en">CityWeatherService</profile:

serviceName>
25 <profile:textDescription xml:lang="en">
26 This service returns current weather of a given city.
27 </profile:textDescription>
28 <profile:hasInput rdf:resource="#_CITY"/>
29 <profile:hasOutput rdf:resource="#_WEATHER"/>
30 <profile:has_process rdf:resource="CITY_WEATHER_PROCESS" />
31 </profile:Profile>
32 <!--<process:ProcessModel rdf:ID="CITY_WEATHER_PROCESS_MODEL">
33 <service:describes rdf:resource="#CITY_WEATHER_SERVICE"/>
34 <process:hasProcess rdf:resource="#CITY_WEATHER_PROCESS"/>
35 </process:ProcessModel>-->
36 <process:AtomicProcess rdf:ID="CITY_WEATHER_PROCESS">

236

37 <service:describes rdf:resource="#CITY_WEATHER_SERVICE"/>
38 <process:hasInput rdf:resource="#_CITY"/>
39 <process:hasOutput rdf:resource="#_WEATHER"/>
40 </process:AtomicProcess>
41 <process:Input rdf:ID="_CITY">
42 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">
43 http://127.0.0.1/ontology/SUMO.owl#City
44 </process:parameterType>
45 <rdfs:label/>
46 </process:Input>
47 <process:Output rdf:ID="_WEATHER">
48 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">
49 http://127.0.0.1/ontology/Mid-level-ontology.owl#Weather
50 </process:parameterType>
51 <rdfs:label/>
52 </process:Output>
53 <grounding:WsdlGrounding rdf:ID="CITY_WEATHER_GROUNDING">
54 <service:supportedBy rdf:resource="#CITY_WEATHER_SERVICE"/>
55 <grounding:hasAtomicProcessGrounding>
56 <grounding:WsdlAtomicProcessGrounding rdf:ID="

CITY_WEATHER_AtomicProcessGrounding"/>
57 </grounding:hasAtomicProcessGrounding>
58 </grounding:WsdlGrounding>
59 <grounding:WsdlAtomicProcessGrounding rdf:about="#

CITY_WEATHER_AtomicProcessGrounding">
60 <grounding:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#

anyURI">
61 http://127.0.0.1/wsdl/CityWeather.wsdl
62 </grounding:wsdlDocument>
63 <grounding:owlsProcess rdf:resource="#CITY_WEATHER_PROCESS"/>
64 <grounding:wsdlOperation>
65 <grounding:WsdlOperationRef>
66 <grounding:operation
67 rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
68 http://127.0.0.1/wsdl/CityWeather#get_WEATHER
69 </grounding:operation>
70 <grounding:portType
71 rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
72 http://127.0.0.1/wsdl/CityWeather#CityWeatherSoap
73 </grounding:portType>
74 </grounding:WsdlOperationRef>
75 </grounding:wsdlOperation>
76 <grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
77 http://127.0.0.1/wsdl/CityWeather#get_WEATHERRequest
78 </grounding:wsdlInputMessage>
79 <grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI">
80 http://127.0.0.1/wsdl/CityWeather#get_WEATHERResponse
81 </grounding:wsdlOutputMessage>
82 <grounding:wsdlInput>
83 <grounding:WsdlInputMessageMap>
84 <grounding:owlsParameter rdf:resource="#_CITY"/>
85 <grounding:wsdlMessagePart
86 rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
87 http://127.0.0.1/wsdl/CityWeather#_CITY</grounding:wsdlMessagePart

>
88 <grounding:xsltTransformationString>
89 None (XSL)
90 </grounding:xsltTransformationString>

237

APPENDIX A. APPENDIX A

91 </grounding:WsdlInputMessageMap>
92 </grounding:wsdlInput>
93 <grounding:wsdlOutput>
94 <grounding:WsdlOutputMessageMap>
95 <grounding:owlsParameter rdf:resource="#_WEATHER"/>
96 <grounding:wsdlMessagePart
97 rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
98 http://127.0.0.1/wsdl/CityWeather#_WEATHER
99 </grounding:wsdlMessagePart>

100 <grounding:xsltTransformationString>
101 None (XSL)
102 </grounding:xsltTransformationString>
103 </grounding:WsdlOutputMessageMap>
104 </grounding:wsdlOutput>
105 </grounding:WsdlAtomicProcessGrounding>
106 </rdf:RDF>� �

Listing A.3: Original OWL-S.

Listing A.4: Converted SAWSDL from an OWL-S description.�
1 <wsdl:definitions name="city_weather_service"
2 targetNamespace="http://127.0.0.1/services/sawsdl_wsdl11/

city_weather_service"
3 xmlns="http://127.0.0.1/services/sawsdl_wsdl11/city_weather_service"
4 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
5 xmlns:sawsdl="http://www.w3.org/ns/sawsdl"
6 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
7 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/">
8 <wsdl:types>
9 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

10 <xsd:element name="_CITY"
11 sawsdl:modelReference="http://minerva.inf-bb.uni-jena.de/mercury/

webservices/ontology/SUMO.owl#City"/>
12 <xsd:element name="_WEATHER"
13 sawsdl:modelReference="http://minerva.inf-bb.uni-jena.de/mercury/

webservices/ontology/Mid-level-ontology.owl#Weather"/>
14 </xsd:schema>
15 </wsdl:types>
16 <wsdl:message name="CITY_WEATHER_PROFILE_output">
17 <wsdl:part name="output0" type="_WEATHER">
18 </wsdl:part>
19 </wsdl:message>
20 <wsdl:message name="CITY_WEATHER_PROFILE_input">
21 <wsdl:part name="input0" type="_CITY">
22 </wsdl:part>
23 </wsdl:message>
24 <wsdl:portType name="CITY_WEATHER_PROCESS">
25 <wsdl:operation name="CITY_WEATHER_PROFILE">
26 <wsdl:input message="CITY_WEATHER_PROFILE_input">
27 </wsdl:input>
28 <wsdl:output message="CITY_WEATHER_PROFILE_output">
29 </wsdl:output>
30 </wsdl:operation>
31 </wsdl:portType>
32 <wsdl:service name="CITY_WEATHER_SERVICE">
33 <wsdl:port name="CITY_WEATHER_PROCESS">
34 </wsdl:port>
35 </wsdl:service>
36 </wsdl:definitions>� �

Listing A.4: Converted SAWSDL from an OWL-S description.

238

B
Appendix B

B.1 Matchers directory

In order to add or remove matchers flexibly, the matchers must be placed in a specific hi-
erarchy as illustrated in Figure B.1. The plugin and descriptionCollections folders should
retain the subdirectory structure. While the plugin, descriptionCollections and results fold-
ers themselves are renamable or removable to different directories, but their location must
be specified in a config.properties file.

Figure B.1.: Directory structure for resource matchers.

239

APPENDIX B. APPENDIX B

B.2 Test Collections

This thesis adopts resource descriptions from S3 Contest. It provides a sample set of re-
source descriptions equally in SAWSDL and OWL-S formalisms which are widely in use.
The total number of descriptions (for each formalism) is 1080. Out of 1080 descriptions,
there are 42 resource descriptions which are provided with the ideal solution for each
matching task. These predefined solutions also provide both binary and graded evaluat-
ing results. To clarify the evaluation method, the solutions of the requests used for the
evaluation are listed here.

B.2.1. Testing requests and solutions

The solution for each request is given in a binary value and graded value. For a binary
solution of each request, when a description has value 1, this identifies that the description
is relevant to the request. If a description has value 0, or doesn’t appear in the solution, this
means the description is not relevant to the request.

On the other hand, the graded value solution yields more meaningful results. There are four
types of graded value, 3 indicates a highly relevant description, 2 is a relevant description, 1
is a potentially relevant description, and 0 (or not present) means an irrelevant description.

Out of 1080 descriptions, there are 42 descriptions with predefined solutions.

1. shoppingmall_cameraprice

2. book_price

3. open_door

4. citycountry_hotel

5. fall_down_pill

6. grocerystore_food

7. researcher-in-academia_address

8. title_comedyfilm

9. surfing_destination

10. hospital_investigating

11. maxprice_cola

12. getAltitudeAboveSeaLevelOfLocation

13. mileToKilometerConverter

14. publication-number_publication

15. getSunsetSunriseTimeOfLocation

16. dvdplayermp3player_price

17. getDistanceBetweenCitiesWorldwide

18. geographical-region_map

19. car_price

20. title_videomedia

21. country_skilledoccupation

22. recommendedprice_coffeewhiskey

23. 1personbicyclecar_price

24. novel_author

25. preparedfood_price

26. governmentdegree_scholarship

27. getLocationOfCityState

28. geopolitical-entity_weatherprocess

240

B.2. TEST COLLECTIONS

29. lock_door

30. governmentmissile_funding

31. userscience-fiction-novel_price

32. bookpersoncreditcardaccount

33. surfinghiking_destination

34. surfingorganization_destination

35. university_lecturer-in-academia

36. bookpersoncreditcardaccount_price

37. EBookOrder1

38. getLocationOfUSCity

39. geocodeUSAddress

40. getMapOfUSAddress

41. getZipcodeForUSCity

42. getLocationOfUSZipcode

All the descriptions and solutions can be found in [Klu12]. For clarification, we provide
the first 30 requests from 42 descriptions, which are randomly chosen for evaluations.

B.2.1.1. Solutions for shoppingmall_cameraprice

This request is expected to have the following matching results:

Highly relevant results

• shoppingmall_cameraprice

• shoppingmall_purchaseableitemprice

• shoppingmall_calendar-datepricecamera

Relevant results

• SRcamera

• pricecamera_Wallmart

• cameraprice_MyShop

• shoppingmall_slrprice

• PhillipDigCamera_price

• shoppingmall_compactprice

• mercantileorganization_slrprice

• shoppingmall_pricedigitalanalog

• shoppingmall_compact-taxedprice

• mercantileorganization_compact-price

• shoppingmall_analogprice-calendar-date

• shoppingmall_price-cellphone-with-camera

• shoppingmall_digital-slrprice-calendar-date

• shoppingmall_price-purchaseable-item-range

Potentially relevant results

• CCP

• retailstore_slrprice

• price_CannonCamera

• retailstore_slrtaxedprice

241

APPENDIX B. APPENDIX B

• retailstore_compactprice

• user_price_ShoppingStatus

• shoppingmall_maxpricedigital-video

• digitalstandardpriceprice_MediaMarkt

B.2.1.2. Solutions for book_price

This request is expected to have the following matching results:

Highly relevant results

• BookPrice

• book_price

• book_authorprice

• book_reviewprice

• monograph_price

• printedmaterial_price

• book_taxedpriceprice

• book_Cheapestprice

• book_pricereviewbook

• book_authorprice_Novel

• bookpersonOptional_price

Relevant results

• novel_price

• userbook_price

• novel_authorprice

• author_bookprice

• book_taxedprice

• novelperson_price

• bookperson_price

• encyclopedia_price

• author_publicationprice

• short-story_authorprice

• book_pricesizebook-type

• book_recommendedprice

• romanticnovel_authorprice

• sciencefictionbookuser_price

• sciencefictionbook_authorprice

• science-fiction-novel_priceauthor

• book_recommended-priceindollar

• objectpersoncredit-account_price

• science-fiction-novel_authorprice

• bookperson-creditcard-account_price

• monograph_recommended-priceineuro

• book_recommended-price_Registered-User

• printed-material-person-creditcard-account_
price

Potentially relevant results

• book_author

• DeoSFN_price

• book_authortext

• SFNovelReview

• monographperson

• author_novelprice

• author_monographprice

• book_author_EncSS

242

B.2. TEST COLLECTIONS

• novel_authorbook-type

• book_authorbook-type

• novel_authortaxedprice

• SFNRecommendedPrice

• novel_authormaxprice

• author_booktaxedprice

• fantansynoveluser_price

• userRomanticnovel_price

• sciencefictionbook_author

• short-story_authormaxprice

• author_monographmaxprice

• short-story_authorbook-type

• short-story_authortaxedprice

• sciencefictionbook_publisher

• book__ShoppingCartservice

• romanticnovel_authormaxprice

• userscience-fiction-novel_price

• author_sciencefictionbookprice

• romanticnovel_authorbook-type

• novel_authorrecommendedprice

• romanticnovel_authortaxedprice

• author_bookrecommendedprice

• userscience-fiction-novel_Relprice

• sciencefictionbook_authormaxprice

• sciencefictionbook_authorbook-type

• userscience-fiction-novel_price_Best

• science-fiction-novel_authormaxprice

• sciencefictionbook_authortaxedprice

• short-story_authorrecommendedprice

• science-fiction-novel_authortaxedprice

• science-fiction-novel_authorbook-type

• Tizonbook_recommendedpriceindollar

• romanticnovel_author-recommendedprice

• sciencefictionbook_author-recommended-
price

• bookpersoncreditcard-account_taxedfree-
price

• science-fiction-novel_author-recommended-
price

• bookpersoncreditcard-account_recommended-
price

B.2.1.3. Solutions for open_door

This request is expected to have the following matching results:

Highly relevant results

• open_door

Relevant results

• unlock_door

B.2.1.4. Solutions for citycountry_hotel

This request is expected to have the following matching results:

Highly relevant results

243

APPENDIX B. APPENDIX B

• city_hotel

• countrycity_hotel

• citycountry_hotel

• city_accommodation

• countrycity_sportshotel

• postal-address city_hotel

• time-measure countrycity_hotel

• time-measure geopolitical-entity city-hotel

Relevant results

• village_hotel

• country_hotel

• countryvillage_hotel

• durationcountrycity_hotel

• citycountry_accommodation

• durationgeopolitical-entitycity_hotel

• geographical-region_bed-and-breakfast

• duration-geopolitical-entity-city_
accommodation

Potentially relevant results

• city_luxuryhotel

• towncountry_hotel

• _hotel_Worldwide

• city_hotel_Saarland

• city_bedandbreakfast

• countrycity_luxuryhotel

• geopolitical-entity_hotel

• countrycapital-city_hotel

• __luxuryhotel_Heidelburg

• geographical-region_hotel

• city_hotel_Germanservice

• citycountry_destinationhotel

• countrycity_luxuryhotel_Gel

• geopolitical-entity_luxuryhotel

• geographical-region_luxuryhotel

• geographical-region_hotel_XYZ

• geopolitical-entity_accommodation

• citycountryduration__HotelReserve

• geographical-region_accomodation

• geopolitical-entity_bedandbreakfast

• geopolitical-entity
recorded-video-activity-hotel

• duration-geopolitical-entity-city-bed-and-
breakfast

• time-measure-geopolitical-entity-city-
accommodation

B.2.1.5. Solutions for fall_down_pill

This request is expected to have the following matching results:

244

B.2. TEST COLLECTIONS

Highly relevant results

• fall_down_pill

Relevant results

• flip_down_slider

B.2.1.6. Solutions for grocerystore_food

This request is expected to have the following matching results:

Highly relevant results

• grocerystore_food

• retailstore_foodquality

• retailstore_foodquantity

• grocerystore_foodquantity

• mercantileorganization_food

Relevant results

• retailstore_apple

• store_preparedfood

• grocerystore_teaprice

• retailstore_preparedfood

• retailstore_butterquantity

• grocerystore_butterselling

• grocerystore_preparedfood

• grocerystore_butterquantity

• retailstore_sandwichquantity

• grocerystore_flourdoughbutter

• Available_preparedfoodquantity

• retailstore_breadorbiscuitquantity

• Required_preparedfoodquantity

• _food_HEBgroceryCompservice

• retailstore_preparedfoodquantity

• grocerystore_preparedfoodprice

• grocerystore_sandwichquantity

• grocerystore_breadorbiscuitquantity

• grocerystore_preparedfoodquantity

• food_maxpricequantity_Aldiservice

• store_preparedfood_Merchantservice

• grocerystore_fodder_AnimalFoodservice

Potentially relevant results

• drugstore_tea • food_maxpricequantity • wholesalestore_preparedfood

B.2.1.7. Solutions for researcher-in-academia_address

This request is expected to have the following matching results:

Highly relevant results

245

APPENDIX B. APPENDIX B

• person_address

• employee_address

• academic_address

• researcher_address

• researcher_address_HOM2

• educational-employee_address

• professor-in-academia_address

• researcher-in-academia_address

• researcher-in-academia_address_ZOO

• researcher-in-academia_address_TREE

Relevant results

• academic_postal-address

• researcher_postal-address

• employee_postal-address

• researcher_abstract-information

• employee_postal-address_XYZ

• educational-employee_postal-address

• research-assistant-in-academia_address

• researcher-in-academia_abstract-information

• researcher-in-academia_
publication-reference-postal-address

• researcher-in-academia_
publication-reference-postal-address

Potentially relevant results

• university_researcher

• visiting-researcher_address

• reader-in-academia_address

• research-fellow-in-academia_
publication-reference

B.2.1.8. Solutions for title_comedyfilm

This request is expected to have the following matching results:

Highly relevant results

• title_film

• title_media

• title_comedyfilm

• title_filmpricequality

• title_mediapricequality

• title_filmmaxpricequality

• title_filmtaxedpricequality

• title_mediamaxpricequality

• title_comedyfilmpricequality

• title_filmtaxfreepricequality

• title_mediataxedpricequality

• title_comedyfilm_BFservice

• title_mediataxfreepricequality

• title_comedyfilm_Megaservice

• title_comedyfilmmaxpricequality

• title_comedyfilmtaxedpricequality

• title_filmrecommendedpricequality

• title_comedyfilmtaxfreepricequality

• title_mediarecommendedpricequality

• title_comedyfilmrecommendedpricequality

246

B.2. TEST COLLECTIONS

Relevant results

• title_vhsdvd

• title_filmP2P

• title_actionfilm

• title_videomedia

• title_lowcomedyfilm

• title_videomediaMM

• title_filmActionComedy

• title_highcomedyfilmreport

• title_actionfilmpricequality

• title_videomediapricequality

• title_obtainablevideomedia

• title_actionfilmmaxpricequality

• title_actionfilmtaxfreepricequality

• title_actionfilmtaxedpricequality

• title_sciencefictionfilmpricequality

• title_videomediataxedpricequality

• title_videomediataxfreepricequality

• title_videomediamaxpricequality

• linguisticexpression_videomedia

• title_sciencefictionfilmmaxpricequality

• title_videomediarecommendedprice

• title_sciencefictionfilmtaxedpricequality

• title_sciencefictionfilmtaxfreepricequality

• title_actionfilmrecommendedpricequality

• title_videomediarecommendedpricequality

• title_sciencefictionfilmrecommendedprice-
quality

Potentially relevant results

• title_vhs

• filmDiscovery

• filmHighlyRated

• comedyfilmfantacyfilm

• comedyfilmactionfilm

• filmvideomediaDiscoveryChannel

B.2.1.9. Solutions for surfing_destination

This request is expected to have the following matching results:

Highly relevant results

• surfing_destination

• sports_destination

• activity_destination

• surfing_destination_SOH

• surfing_destination_AUS

• surfing_destination_Always

Relevant results

• activity_city

• sports_town

• activity_town

• surfing_beach

247

APPENDIX B. APPENDIX B

• sports_beach

• activity_beach

• activity_ruralarea

• activity_farmland

• surfing_ruralarea

• surfinghiking_city

• hikingsurfing_city

• sports_ruralarea

• surfing_farmland

• surfinghiking_town

• activity_urbanarea

• sports_nationalpark

• activity_nationalpark

• surfing_nationalpark

• surfinghiking_ruralarea

• surfinghiking_city_SF

• surfinghiking_destination

• activity_familydestination

• surfinghiking_nationalpark

• surfinghiking_destination_PF

• sportslegal-agent_destination

• surfinghiking_destination_DFG

• surfinghiking_destination_PDS

• surfinggeneric-agent_destination

Potentially relevant results

• surfingorganization_city

• countrycity_sportshotel

• surfinggeneric-agent_city

• __destination_MyOffice

• countrycity_luxuryhotel_Gel

• personcountrycity_sportshotel

• legal-agentsurfing_destination

• surfingorganization_destination

• sportsorganization_destination

• generic-agentsports_destination

• surfingorganizationperson_destination

• surfingorganization_destination_SOD

• surfingorganization_destination_Best

• surfingorganization_destination_SAAR

• generic-agentsports_destination_Sports

• learning-centred-organizationsurfing-
destination

B.2.1.10. Solutions for hospital_investigating

This request is expected to have the following matching results:

Highly relevant results

• hospital_IIPsummary

• hospital_investigating

• hospital_investigatingaddress

• careorganization_investigating

• hospital_postal-addressinvestigating

248

B.2. TEST COLLECTIONS

Relevant results

• HDP

• HDP2

• CAD_medical

• hospital_biopsy

• hospital_experimenting

• careorganization_biopsy

• hospital_diagnosticprocess

• medicalclinic_investigating

• organization_experimenting

• _investigating_Saarservice

• organization_diagnosticprocess

• careorganization_experimenting

• hospital_diagnosticprocesscost

• _diagnosticprocessorganization

• questionhospital_diagnosticprocess

• careorganization_diagnosticprocess

• organization_diagnosticprocesscost

• hospital_diagnosticprocess_MedDiag

• hospital_diagnosticprocesstimeinterval

• hospital_diagnosticprocesstimeduration

• organization_experimentingtimeduration

• hospital_diagnosticprocesstimemeasure

• careorganization_diagnosticprocesstimeinterval

• careorganization_diagnosticprocesstimeduration

• careorganization_diagnosticprocesstimemeasure

Potentially relevant results

• hospital_predicting

• medicalclinic_biopsy

• medicalclinic_predicting

• medicalclinic_experimenting

• careorganization_predicting

• medicalclinic_investigating_Med

• medicalclinic_diagnosticprocess

• medicalclinic_diagnosticprocesstimeinterval

• medicalclinic_diagnosticprocesstimeduration

• medicalclinic_diagnosticprocesstimemeasure

B.2.1.11. Solutions for maxprice_cola

This request is expected to have the following matching results:

Highly relevant results

• maxprice_cola

• price_cola_Guddu

• qualitymaxprice_cola

• maxprice_cola_Best

• untangibleobjects_cola

Relevant results

249

APPENDIX B. APPENDIX B

• taxfreeprice_cola

• maxprice_drinks

• maxprice_liquid

• price_cola_Hallo

• price_cola_Hallo2

• maxprice_beercola

• maxprice_colabreadorbiscuit

• maxprice_colabreadorbiscuit_Both

Potentially relevant results

• maxprice_colabeer

• food_maxpricequantity_Aldi

• price_irishcoffeemixerycola

• maxprice_whiskeycolabeer

• food_maxpricequantity

B.2.1.12. Solutions for getAltitudeAboveSeaLevelOfLocation

This request is expected to have the following matching results:

Highly relevant results

• getAltitudeOfLocation

• getElevationFromLocation

• getAltitudeAboveSeaLevelOfLocation

B.2.1.13. Solutions for mileToKilometerConverter

This request is expected to have the following matching results:

Highly relevant results

• mileToKilometerConverter

B.2.1.14. Solutions for publication-number_publication

This request is expected to have the following matching results:

Highly relevant results

• isbn_publication

• publication-number_book_Portal

• publication-number_publicationauthor

• AcademicBookNumberOrISBNSearch

• publication-number_currencypublication

Relevant results

250

B.2. TEST COLLECTIONS

• isbn_book

• isbn_bookauthor

• isbn_publication

• publication-number_book

• isbn_publicationpublisher

• AcademicBookNumberSearch

• publication-number_edited-book

• publication-number_bookauthor

• academic-item-number_publication

• publication-number_bookauthorpublisher

• academic-item-number_publicationauthor

Potentially relevant results

• isbn_publicationauthor

• academic-item-number_book

• academic-item-number_bookauthor

B.2.1.15. Solutions for getSunsetSunriseTimeOfLocation

This request is expected to have the following matching results:

Highly relevant results

• getSunsetAndSunriseTime

• getSunsetSunriseTwilightTime

• getSunsetSunriseTimeOfLocation

Relevant results

• calculateSunriseTime

B.2.1.16. Solutions for dvdplayermp3player_price

This request is expected to have the following matching results:

Highly relevant results

• dvdplayermp3player_price

• dvdplayermp3player_price_R

• dvdplayermp3player_price_MD

• mp3playerdvdplayer_priceshipping

• dvdplayermp3player_pricemessage

Relevant results

• mediaplayer_price

• electricdevice_price

• mp3player_maxprice

• dvdplayermp3player_Recprice

• mp3playerportabledvdplayer_price

• dvdplayermp3player_RecpriceEuro

• mp3playerdvdplayer_Recpriceshipping

• dvdplayermp3player_Recpricemessage

• mp3playerdvdplayer_recommendedprice

• mp3playerdvdplayer_Recpriceshipping_US

251

APPENDIX B. APPENDIX B

Potentially relevant results

• dvdplayer_maxprice

• dvdplayer_taxedprice

• mp3player_taxedprice

• mediaplayer_maxprice

• mediaplayer_taxedprice

• cdplayermp3player_price

• user_price_ShoppingStatus

• mediaplayer_recommendedpriceineuro

• mp3playercdplayermicrowaveoven_price

• mp3playerportabledvdplayer-recommended-
pricequality

• portabledvdplayermp3player-recommended-
pricetaxedprice

B.2.1.17. Solutions for getDistanceBetweenCitiesWorldwide

This request is expected to have the following matching results:

Highly relevant results

• getDistanceBetweenCitiesWorldwide

Relevant results

• getDistanceBetweenPlaces • getDistanceBetweenLocations

Potentially relevant results

• citycity_map

• country_map

• _mapGerman

• citycity_arrowfigure

• uszipcode_distance

• locationlocation_map

• usPostalCode_distance

• calculateDistanceInMiles

• locationlocation_arrowfigure

• locationlocation_map_SRI

• addressDistanceCalculator

• geographical-region_map

• geographical-region_map_Gorg

• geographical-region_mapToBerlin

• geographical-region_mapFromFrankfurt

• calculateDistanceUsingSphericalGeometry

• calculatorDistanceSphericalLawOfCosines

B.2.1.18. Solutions for geographical-region_map

This request is expected to have the following matching results:

Highly relevant results

252

B.2. TEST COLLECTIONS

• locationlocation_map

• geographical-region_map

• locationlocation_map_SRI

• geographical-region_map_Gorg

Relevant results

• citycity_map • geographical-region_mapFromFrankfurt

Potentially relevant results

• country_map

• _Francemap

• _mapGerman

• staticMapsDisplay

• citycity_arrowfigure

• _mapFrankfurtBerlin

• googleStaticMapsAPI

• locationlocation_icon

• objectsMappingService

• geographical-region_map

• locationlocation_arrow-
figure

• geographical-region_map-
To-Berlin

B.2.1.19. Solutions for car_price

This request is expected to have the following matching results:

Highly relevant results

• car_price

• auto_price

• vehicle_price

• auto_yearprice

• machine_price

• car_pricecolor

• lenthu_rentcar

• car_yearprice

• car_pricereport

• auto_pricecolor

• car_pricequality

• autocycle_price

• autobicycle_price

• car_taxedpriceprice

Relevant results

• Toyotaprice

• car_priceauto

• RedFerrariprice

• cheapcar_price

• fastcar_yearprice

• fastcar_pricecolor

• 3wheeledcar_price

• 4wheeledcar_price

• fastcar_pricereport

• expensivecar_price

• cheapcar_yearprice

• cheapcar_pricecolor

• car_taxedpricereport

• cheapcar_pricereport

253

APPENDIX B. APPENDIX B

• 3WheeledAudiCarprice

• 4wheeledcaryear_price

• 3wheeledcaryear_price

• 3WheeledOpelCarPrice

• expensivecar_yearprice

• 4wheeledcar_yearprice

• car_recommendedprice

• expensivecar_pricecolor

• auto1personbicycle_price

• 4wheeledcarbicycle_price

• amount-of-moneycar_price

• 4wheeledcaryear_pricereport

• auto_recommendedpricecolor

• car_recommendedpriceineuro

• car_recommendedpriceindollar

• auto2personbicycle_taxedprice

• amount-of-money cheapcar_price

• 1personbicycle 4wheeledcar_price

• amount-of-money 4wheeledcar_price

• amount-of-money 3wheeledcar_price

• amount-of-money expensivecar_price

Potentially relevant results

• carcycle_price

• carbicycle_price

• bicyclecar_price

• bicycleauto_price

• autocycle_taxedprice

• autobicycle_taxedprice

• bicyclecar_priceyear

• carbicycle_taxedprice

• electricdevice_price

• autobicycle_maxprice

• car2personbicycle_price

• fastcar_taxedpricereport

• cyclecar_pricetaxedprice

• 1personbicyclecar_price

• auto2personbicycle_price

• fastcar_recommendedprice

• cycle1personbicycle_price

• bicycle4wheeledcar_price

• cheapcar_taxedpricereport

• cheapcar2personbicycle_price

• carbicycle_recommendedprice

• cheapcar1personbicycle_price

• autocycle_recommendedprice

• autobicycle_recommendedprice

• fastcar_recommendedpricecolor

• cyclecar_recommendedpriceineuro

• 4wheeledcar2personbicycle_price

• 2personbicycle4wheeledcar_price

• cheapcar2personbicycle_maxprice

• 4wheeledcar1personbicycle_price

• caryear_recommendedpriceineuro

• cheapcar1personbicycle_maxprice

• cheapcar_recommendedpricecolor

• 4wheeledcar2personbicycle_maxprice

• 3wheeledcaryear_recommendedprice

• 1personbicyclecar_price_Kohlservice

254

B.2. TEST COLLECTIONS

• Renaultyear_recommendedpriceineuro

• expensivecar_recommendedpricecolor

• 4wheeledcar1personbicycle_maxprice

• 1personbicyclecar_price_TheBestservice

• amount-of-money-cheapcar_recommendedprice

• amount-of-money-4wheeledcar_ recommended-
price

• amount-of-money-3wheeledcar_ recommended-
price

• amount-of-money-expensivecar_ recommended-
price

B.2.1.20. Solutions for title_videomedia

This request is expected to have the following matching results:

Highly relevant results

• title_media

• title_videomedia

• title_mediapricequality

• title_filmmaxpricequality

• title_mediamaxpricequality

• title_videomediapricequality

• title_mediataxedpricequality

• title_mediataxfreepricequality

• title_videomediamaxpricequality

• linguisticexpression_videomedia

• title_videomediataxedpricequality

• title_videomediataxfreepricequality

• title_videomediarecommendedprice

• title_videomediarecommendedpricequality

Relevant results

• title_vhs

• title_vhsdvd

• title_videomediaMM

• title_highcomedyfilmreport

• title_obtainablevideomedia

• title_actionfilmtaxfreepricequality

• title_sciencefictionfilmpricequality

• title_comedyfilmtaxfreepricequality

• title_sciencefictionfilmmaxpricequality

• title_actionfilmrecommendedpricequality

Potentially relevant results

• title_film

• title_filmP2P

• title_actionfilm

• title_comedyfilm

• videomediaBBC

• videomediaSaturn

• title_lowcomedyfilm

• videomediaSmithLee

255

APPENDIX B. APPENDIX B

• title_filmpricequality

• title_comedyfilm_BF

• title_filmActionComedy

• title_comedyfilm_Mega

• title_filmtaxedpricequality

• title_filmtaxfreepricequality

• title_actionfilmpricequality

• title_actionfilmmaxpricequality

• title_comedyfilmmaxpricequality

• title_comedyfilmtaxedpricequality

• filmvideomediaDiscoveryChannel

• title_filmrecommendedpricequality

• title_mediarecommendedpricequality

• title_sciencefictionfilmtaxedpricequality

• title_sciencefictionfilmtaxfreepricequality

• title_comedyfilmrecommendedpricequality

• title_sciencefictionfilmrecommendedpricequality

B.2.1.21. Solutions for country_organizationskilledoccupation

This request is expected to have the following matching results:

Highly relevant results

• -country_skilledoccupation

• -citycountry_skilled-occupation

• country_skilled-occupation_jobs

• country_company-skilled-occupation

• geopolitical-entity_skilled-occupation

• country_corporation-skilled-occupation

• country_organization-skilled-occupation

• country_skilled-occupation-timeduration

• country_skilled-occupation-timemeasure

• country_skilled-occupation-time-duration_Job

• geopolitical-entity_company-skilled-
occupation

• geopolitical-entity_skilled-occupation-
company

• geopolitical-entity_organization-skilled-
occupation

• geographical-region_company-skilled-
occupation

• geopolitical-entity_corporation-skilled-
occupation

• geopolitical-entity_skilled-occupation-
timeduration

• geopolitical-entity_skilled-occupation-
timemeasure

• geographical-region_corporation-skilled-
occupation

• geographical-region_organization-skilled-
occupation

• geographical-region_organization-skilled-
occupation_Job

• DJob

Relevant results

256

B.2. TEST COLLECTIONS

• country_profession

• country_sportsposition

• country_occupationaltrade

• country_companyprofession

• geopolitical-entity_profession

• country_corporationprofession

• country_organizationprofession

• country_professiontimeduration

• country_professiontimemeasure

• country_professionfulltimeposition

• country_professionparttimeposition

• country_companyoccupationaltrade

• geopolitical-entity_occupationaltrade

• country_organizationoccupationaltrade

• country_corporationoccupationaltrade

• geopolitical-entity_companyprofession

• country_occupationaltradetimeduration

• country_occupationaltradetimemeasure

• country_skilledoccupationfulltimeposition

• geopolitical-entity_corporationprofession

• geographical-region_companyprofession

• country_occupationaltrade-fulltime-position

• geopolitical-entity_organization-profession

• geopolitical-entity_profession-timeduration

• country_skilledoccupation-parttime-position

• geopolitical-entity_profession-timemeasure

• country_occupationaltrade-parttime-position

• geographical-region_corporation-profession

• geopolitical-entity_profession-fulltime-
position

• geographical-region_organization-profession

• geopolitical-entity_profession-parttime-
position

• geopolitical-entity_company-occupational-
trade

• municipal-unit_skilled-occupation-fulltime-
position

• country_skilled-occupation-parttime-
position_Job

• geopolitical-entity_corporation-occupational-
trade

• municipal-unit_skilled-occupation-parttime-
position

• geographical-region_company-occupational-
trade

• geopolitical-entity_organization-occupational-
trade

• geopolitical-entity_occupational-trade-time-
measure

• geopolitical-entity_occupational-trade-time-
duration

• geographical-region_corporation-occupational-
trade

• geographical-region_organization-occupational-
trade

• geopolitical-entity_occupationaltrade-
fulltime-position

• geopolitical-entity_skilledoccupation-
parttime-position

• geopolitical-entity_occupationaltrade-
parttime-position

Potentially relevant results

257

APPENDIX B. APPENDIX B

• country_deacon

• company_profession

• medicaldoctor_UNO

• city_skilledoccupation

• skilledoccupation_BMW

• bankeraddress_CityBank

• company_skilledoccupation

• profit-organization_profession

• companycountry_skilled-occupation

• profit-organization_skilled-occupation

• government-organization_profession

• municipal-unit_profession-timeduration

• municipal-unit_profession-timemeasure

• municipal-unit_profession-fulltimeposition

• municipal-unit_profession-parttimeposition

• public-companycountry_skilled-occupation

• government-organization_skilled-occupation

• municipal-unit_skilledoccupation-timeduration

• municipal-unit_skilledoccupation-timemeasure

• municipal-unit_occupationaltrade-timeduration

• municipal-unit_occupationaltrade-fulltimeposition

• municipal-unit_occupationaltrade-parttimeposition

B.2.1.22. Solutions for recommendedprice_coffeewhiskey

This request is expected to have the following matching results:

Highly relevant results

• price_whiskeycoffee

• price_coffeewhiskey

• maxprice_coffeewhiskey

• price_coffeewhiskeyquality

• price_whiskeycoffee_Ziko

• taxfreeprice_whiskeycoffee

• price_coffeewhiskey_Thebest

• price_coffeewhiskeytimemeasure

• recommendedprice_coffeewhiskey

• hotelrecommendedprice_coffeewhiskey

• price_coffeewhiskey-quality-time-position

• recommendedprice_coffee-whiskey_Best

• recommendedpriceineuro_coffee-whiskey

• recommendedpriceindollar_whiskey-coffee

• recommendedprice_coffee-whiskey-
symbolic-string

• recommendedprice_content-bearing-object-
whiskey-coffee

• recommendedprice_coffee-whiskey-
symbolic-string-quality

• recommendedprice_coffee-with-whiskey-
content-bearing-object

Relevant results

258

B.2. TEST COLLECTIONS

• price_drinks

• taxfreeprice_cola

• maxprice_drinks_Hot

• recommendedprice_irishcoffeetasting

Potentially relevant results

• coffee_maxprice

• coffee_taxedprice

• maxprice_drinks

• price_coffeewithwhiskey

• food_recommendedprice

• coffee_recommendedprice

• maxprice_whiskeycolabeer

• price_irishcoffeemixerycola

• recommendedprice_irishcoffee

• preparedfood_recommendedprice

B.2.1.23. Solutions for 1personbicyclecar_price

This request is expected to have the following matching results:

Highly relevant results

• carcycle_price

• carbicycle_price

• bicyclecar_price

• bicycleauto_price

• autobicycle_price

• bicyclecar_priceyear

• 1personbicyclecar_price

• cyclecar_pricetaxedprice

• auto1personbicycle_price

• 1personbicyclecar_price_Kohl

• 1personbicyclecar_price_TheBest

Relevant results

• vehicle_price

• car_pricecolor

• cheapcar_price

• _RedFerrariprice

• fastcar_yearprice

• 4wheeledcar_price

• autocycle_maxprice

• cheapcar_pricecolor

• carbicycle_taxedprice

• autobicycle_maxprice

• 4wheeledcar_yearprice

• _3WheeledOpelCarPrice

• 4wheeledcarbicycle_price

• bicycle4wheeledcar_price

• carbicycle_recommendedprice

• cheapcar1personbicycle_price

• autobicycle_recommendedprice

• 1personbicycle4wheeledcar_price

• 4wheeledcar1personbicycle_price

• cyclecar_recommendedpriceineuro

259

APPENDIX B. APPENDIX B

Potentially relevant results

• car_price

• Toyotaprice

• auto_price

• lenthu_rentcar

• car_priceauto

• car_yearprice

• auto_yearprice

• machine_price

• autocycle_price

• car_pricereport

• auto_pricecolor

• car_pricequality

• fastcar_pricecolor

• 3wheeledcar_price

• expensivecar_price

• car_taxedpricereport

• cheapcar_yearprice

• car_taxedpriceprice

• autocycle_taxedprice

• cheapcar_pricereport

• autobicycle_taxedprice

• expensivecar_pricecolor

• car_recommendedprice

• 4wheeledcaryear_price

• 3wheeledcaryear_price

• car2personbicycle_price

• expensivecar_yearprice

• _3WheeledAudiCarprice

• auto2personbicycle_price

• amount-of-moneycar_price

• cheapcar_taxedpricereport

• fastcar_recommendedprice

• 4wheeledcaryear_pricereport

• auto2personbicycle_maxprice

• auto_recommendedpricecolor

• car_recommendedpriceindollar

• cheapcar2personbicycle_price

• autocycle_recommendedprice

• car_recommendedpriceineuro

• auto2personbicycle_taxedprice

• fastcar_recommendedpricecolor

• objectpersoncreditaccount_price

• amount-of-moneycheapcar_price

• 4wheeledcar2personbicycle_price

• 2personbicycle4wheeledcar_price

• amount-of-moneycar_pricecompany

• cheapcar_recommendedpricecolor

• cheapcar2personbicycle_maxprice

• caryear_recommendedpriceineuro

• cheapcar1personbicycle_maxprice

• amount-of-money4wheeledcar_price

• amount-of-money3wheeledcar_price

• amount-of-moneyexpensivecar_price

• 4wheeledcar2personbicycle_maxprice

• 4wheeledcar1personbicycle_maxprice

• expensivecar_recommendedpricecolor

• auto2personbicycle_recommendedprice

• amount-of-moneycheapcar_recommended-
price

• amount-of-money3wheeledcar_recommended-
price

• amount-of-money4wheeledcar_recommended-
price

• amount-of-moneyexpensivecar_recommended-
price

260

B.2. TEST COLLECTIONS

B.2.1.24. Solutions for novel_author

This request is expected to have the following matching results:

Highly relevant results

• novel_author

• book_author

• book_authortext

• novel_authortime

• novel_authorprice

• publication_author

• novel_authorgenre

• book_authorprice

• monograph_author

• book_authorbook-type

• novel_authorbook-type

• book_author_EncSS

• novel_authormaxprice

• novel_person_Writer

• novel_author_MyOnto

• novel_userreviewauthor

• novel_authortaxedprice

• novel_authorcommitting

• book_authorprice_Novel

• novel_author_BookOntoservice

• novel_authorrecommendedprice

Relevant results

• isbn_bookauthor

• romanticnovel_authorprice

• romanticnovel_authorbook-type

• romanticnovel_authormaxprice

• romanticnovel_authortaxedprice

• publication-number_bookauthor

• science-fiction-novel_authorprice

• science-fiction-novel_priceauthor

• sfnovel_authorauthor_BookOnto

• academic-item-number_bookauthor

• sciencefictionbook_authormaxprice

• sciencefictionbook_authortaxedprice

• science-fiction-novel_authortaxedprice

• sciencefictionnovel_author_MyOnto

• science-fiction-novel_authorbook-type

• romanticnovel_authorrecommended-price

• science-fiction-novel_author-recommended-
price

Potentially relevant results

• SFNovelReview

• book_publisher

• novel_publisher

• short-story_author

261

APPENDIX B. APPENDIX B

• author_novelprice

• encyclopedia_author

• publication_publisher

• monograph_publisher

• short-story_authorprice

• isbn_publicationauthor

• ScienceFNovelReview

• author_noveltaxedprice

• book_person_Publisher

• romanticnovel_publisher

• sciencefictionbook_author

• short-story_authormaxprice

• short-story_authorbook-type

• book_readerreviewperson

• sciencefictionbook_publisher

• short-story_authortaxedprice

• science-fiction-novel_publisher

• encyclopedia_authorbook-type

• sciencefictionbook_authorprice

• author_novelrecommendedprice

• sciencefictionbook_authorbook-type

• publication-number_publicationauthor

• short-story_authorrecommendedprice

• science-fiction-novel_authormaxprice

• publication-number_bookauthor-publisher

• academic-item-number_publication-author

• sciencefictionbook_author-recommended-
price

B.2.1.25. Solutions for preparedfood_price

This request is expected to have the following matching results:

Highly relevant results

• MerkelD

• MarkoPS

• preparedfood_price

• preparedfood_priceday

• food_pricequantity_Aldi

• food_price_AnimalFood

• food_pricephysical-quantity_Aldi

• preparedfood_taxedpriceindollarprice

Relevant results

• Ben

• ZAD

• MAK

• SPD-Grune

• food_price

• food_maxpricequantity

• preparedfood_GSprice

• preparedfood_maxprice

• preparedfood_taxedprice

• food_recommendedprice

262

B.2. TEST COLLECTIONS

• preparedfood_taxfreeprice

• preparedfood_SpainishTax

• food_taxedpricequantity_Aldi

• food_taxfreepricequantity_Aldi

• preparedfood_recommendedprice

• food_maxpricephysical-quantity_Aldi

• food_taxedpricephysical-quantity_Aldi

• food_taxfreepricephysical-quantity_Aldi

Potentially relevant results

• coffee_maxprice

• price_Fish

• butter_maxprice

• butter_taxedprice

• coffee_taxedprice

• sandwich_maxprice

• coffeesandwich_price

• preparedfood_USTax

• grocerystore_teaprice

• sandwich_taxedprice

• tea_recommendedprice

• meat_pricequantity_Aldi

• butter_recommendedprice

• coffee_recommendedprice

• user_price_ShoppingStatus

• food_maxpricequantity_Aldi

• sandwich_recommendedprice

• grocerystore_preparedfoodprice

• meat_pricephysical-quantity_Aldi

• breadorbiscuit_recPricetaxedpriceineuro

B.2.1.26. Solutions for degreegovernment_scholarship

This request is expected to have the following matching results:

Highly relevant results

• awardgovernment_funding

• degreegovernment_funding

• governmentaward_scholarship

• governmentdegree_scholarship

• degreegovernment_scholarship

• governmentdegree_scholarshipquantity

• governmentdegree_scholarship_TheBest

• degreegovernmentorganization_scholarship

Relevant results

• government_scholarship

• government_funding_Missile

• award_funding_GermanGov

• government_funding_ForPhD

• degree_funding_GermanGov

• nationalgovernment_scholarship

263

APPENDIX B. APPENDIX B

• award_scholarship_GermanGov

• degree_scholarship_GermanGov

• government_scholarshiporganization

• governmentorganization_scholarship

• award_fundingduration_GermanGov

• degree_fundingduration_GermanGov

• academic-degreegovernment_funding

• award_scholarshipduration_SwissGov

• academic-degree_funding_GermanGov

• nationalgovernment_scholarshipquantity

• degreenationalgovernment_scholarship

• award_scholarshipduration_GermanGov

• degree_scholarshipduration_GermanGov

• academic-degreegovernment_scholarship

• academic-degree_scholarship_GermanGov

• nationalgovernment_scholarship quantity du-
ration

• academic-degree_fundingduration_GermanGov

• academic-degreegovernment-organization_funding

• academic-degree_scholarship-duration-
GermanGov

• nationalgovernment_physical-quantity-
scholarship-landarea

Potentially relevant results

• government_lending

• government_welfare

• citygovernment_lending

• governmentdegree_welfare

• nationalgovernment_lending

• degreegovernment_lending

• award_lending_GermanGov

• degree_lending_GermanGov

• governmentdegree_givingback

• degreegovernment_unilateralgiving

• award_lending-duration_GermanGov

• degree_lendingduration_GermanGov

• academic-degree-government_lending

• academic-degree_lending_GermanGov

• academic-degree-government_unilateralgiving

• academic-degree_lendingduration_GermanGov

• academic-degree-government-organization-
lending

• academic-degree-government-organization-
unilateral-giving

B.2.1.27. Solutions for getLocationOfCityState

This request is expected to have the following matching results:

Highly relevant results

• getLocationOfCityState

Relevant results

264

B.2. TEST COLLECTIONS

• city_state_ZipCodes

• checkAndLookupAddress

• getCoordinatesOfAddress

• getLocationOfCityWorldwide

Potentially relevant results

• addressGeocoder

• getPlaceOfAddress

• queryParserLocation

• googleGeocodingAPI

• real-time_geocoding

• getATMLocationsInCity

• getLocationOfAddress

• gazetteerLookupLocation

• findPlaceNamePostalCode

• getZipCodesWithinCityState

• getLocationOfAddressWorldwide

• getLocationOfAddressYahooMaps

• real-time_geocodingStreetAddress

B.2.1.28. Solutions for geopolitical-entity_weatherprocess

This request is expected to have the following matching results:

Highly relevant results

• geopolitical-entity_weatherprocess

• geographical-region_weatherprocess

• geographical-region_weatherprocess_GRW

Relevant results

• icing_German

• warmfront_Italy

• country_lightning

• country_warmfront

• country_weatherfront

• municipal-unit_drought

• country_weatherseason

• country_weathersystem

• country_weatherprocess

• municipal-unit_warmfront

• weatherprocess_German

• geopolitical-entity_drought

• geopolitical-entity_lightning

• municipal-unit_weatherfront

• geopolitical-entity_warmfront

• geographical-region_drought

• geographical-region_lightning

• municipal-unit_weathersystem

• municipal-unit_weatherseason

• municipal-unit_weatherprocess

• geopolitical-entity_weatherfront

• geographical-region_warmfront

• geographical-region_weatherfront

265

APPENDIX B. APPENDIX B

• geopolitical-entity_weathersystem

• geopolitical-entity_weatherseason

• geographical-region_weatherfront

• geopolitical-entity_weatherprocess

• geographical-region_weatherseason

• geopolitical-entity_weatherseasonproposition

• geopolitical-entity_weatherseasontimeposition

Potentially relevant results

• country_drought

• city_weathersystem

• municipal-unit_lightning

• geopolitical-entity_internalchange

B.2.1.29. Solutions for government_funding_Missileservice

This request is expected to have the following matching results:

Highly relevant results

• missile-government_giving

• government-missile_funding

• government_funding_Missile

• projectile-government_funding

• missile-government_giving-range

• missile-government_funding-range

• missile-government_giving_Borrow

• government-missile-weapon_funding

• government-missile-weapon_funding

• government-missile_funding_Reliable

• missile-government-organization_funding

• missile-government-organization_giving-
range

• missile-government-organization_funding-
range

• government-organization-selfpowered-
device_funding

Relevant results

• missile_funding_Pak

• missile_funding_India

• missile_financing_US

• missile_funding_Asian

• missile_funding_NKorea

• missile_financing_China

• missile_financing_Russian

• government-weapon_funding

• government-missile_financing

• weapon-missile_funding_Iraq

• government_funding_ABomb

• government_funding_BallMissile

• missile-government_financing-range

• national-government-weapon_funding

• ballisticmissile-government_giving-range

• ballisticmissile-government_funding-range

266

B.2. TEST COLLECTIONS

• ballisticmissile-government_lending-range

• ballisticmissile-government_financing-range

• missile-government organization_financing-
range

• ballisticmissile-government-organization_giving-
range

• ballisticmissile-government-organization_funding-
range

• ballisticmissile-government-organization_financing-
range

Potentially relevant results

• missile-government_lending-range

• missile-government
organization_lending-range

• government-organization-missile_unilateral-
giving

• ballisticmissile-government-organization_lending-
range

B.2.1.30. Solutions for lock_door

This request is expected to have the following matching results:

Highly relevant results

• lock_door

Relevant results

• close_door

267

C
Appendix C

Listing C.1: Establishing connection service via Twitter API.�
1 import pprint
2 import logging
3 logging.basicConfig(level=logging.DEBUG)
4 logging.getLogger(’spyne.protocol.xml’).setLevel(logging.DEBUG)
5 logging.getLogger(’sqlalchemy.engine.base.Engine’).setLevel(logging.DEBUG)
6
7 from spyne.application import Application
8 from spyne.decorator import rpc
9 from spyne.error import InternalError

10 from spyne.model.complex import ComplexModel
11 from spyne.model.complex import Iterable
12 from spyne.model.fault import Fault
13 from spyne.model.primitive import Float
14 from spyne.model.primitive import Mandatory
15 from spyne.model.primitive import Unicode
16 from spyne.model.primitive import DateTime
17 from spyne.protocol.soap import Soap11
18 from spyne.server.wsgi import WsgiApplication
19 from spyne.service import ServiceBase
20 import base64
21
22 #from urllib import urlopen
23 import urllib2
24 import json
25 from datetime import datetime
26
27 from sqlalchemy import create_engine
28 from sqlalchemy.orm import sessionmaker
29 db = create_engine(’sqlite:///:memory:’)
30 Session = sessionmaker(bind=db)
31 auth_token = ""
32
33 def twRequest(ctx,path,parameters=""):
34 global auth_token
35 headers = {’Authorization’:’Bearer ’+auth_token}
36 data = None
37 request = urllib2.Request("https://api.twitter.com/1.1/"+path+"?"+

parameters,headers=headers,data=data)
38 response = urllib2.urlopen(request).read()
39 return_value = json.loads(response)
40 return return_value
41
42 def twCreateDate(dateTimeString):
43 #Wed Aug 29 17:12:58 +0000 2012
44 return datetime.strptime(dateTimeString,’%a %b %d %H:%M:%S +0000 %Y’)

269

APPENDIX C. APPENDIX C

45
46 class Person(ComplexModel):
47 name = Unicode
48 fb_id = Unicode
49 tw_id = Unicode
50 def __hash__(self):
51 if self.fb_id == None:
52 has = int(self.tw_id)
53 if self.tw_id == None:
54 has = int(self.fb_id)
55 return has
56 def __eq__(self, other):
57 if isinstance(other, Person):
58 if self.fb_id == None:
59 if self.tw_id == other.tw_id:
60 return True
61 if self.tw_id == None:
62 if self.fb_id == other.fb_id:
63 return True
64 else:
65 return False
66
67 class Range(Float):
68 unit = Unicode
69
70 from math import sin,pow,cos,atan,sqrt,pi
71 class Coordinate(ComplexModel):
72 longitude = Mandatory.Float
73 latitude = Mandatory.Float
74 def distance(ctx, self, other):
75 if isinstance(other, Coordinate):
76 logging.debug(self)
77 logging.debug(other)
78 l = (self.longitude-other.longitude)/2*pi/180
79 t = 1/298.257223563
80 a = 6378.137
81 F = (self.latitude+other.latitude)/2*pi/180
82 G = (self.latitude-other.latitude)/2*pi/180
83 logging.debug(F)
84 logging.debug(G)
85 S = pow(sin(G),2)*pow(cos(l),2)+pow(cos(F),2)*pow(sin(l),2)
86 C = pow(cos(G),2)*pow(cos(l),2)+pow(sin(F),2)*pow(sin(l),2)
87 logging.debug(S)
88 logging.debug(C)
89 w = atan(sqrt(S/C))
90 D = 2*w*a
91 if w==0:
92 R=0
93 else:
94 R = sqrt(S*C)/w
95 H1 = (3*R-1)/(2*C)
96 if S==0:
97 H2 = 0
98 else:
99 H2 = (3*R+1)/(2*S)

100 s = D * (1+t*H1*pow(sin(F),2)*pow(cos(G),2)-t*H2*pow(cos(F),2)*pow(
sin(G),2))

101 logging.debug("Distance is %s km"%str(s))
102 return s
103 else:
104 raise "Wrong Type"
105

270

106 class Place(ComplexModel):
107 name = Mandatory.Unicode
108 coordinate = Coordinate
109
110 pp = pprint.PrettyPrinter()
111 class TwitterService(ServiceBase):
112 @rpc(Mandatory.Unicode,_returns=bool)
113 def initSession(ctx,token):
114 global auth_token
115
116 consumer = ’4o6gv9DFGMDmPbtnEh5PsSv3M’
117 consumer_secret = ’PVjvFONKvtQfDsgkDeSHbYStENllCH4cJXdChgMvRXtvdguW6k’
118 bearer_token = consumer + ’:’ + consumer_secret
119 base64_bearer_token = base64.b64encode(bearer_token)
120
121 headers = {’Authorization’:’Basic ’+base64_bearer_token,
122 ’Content-Type’ : ’application/x-www-form-urlencoded;charset=UTF-8’}
123 data = ’grant_type=client_credentials’
124 request = urllib2.Request(’https://api.twitter.com/oauth2/token’,

headers=headers,data=data)
125 response = urllib2.urlopen(request).read()
126 data = json.loads(response)
127 logging.debug(data)
128 if ’access_token’ in data:
129 if data[’token_type’] == ’bearer’:
130 auth_token = data[’access_token’]
131 return True
132 return False
133 @rpc(_returns=Unicode)
134 def getAuthToken(ctx):
135 global auth_token
136 return auth_token
137 @rpc(str,DateTime,_returns=Iterable(Person))
138 def recentContacts(ctx,username,d):
139 path = ’search/tweets.json’
140 r = twRequest(ctx,path,"q="+username+"&count=200")
141 persons = set()
142 for item in r[’statuses’] :
143 p= Person()
144 p.name = item[’user’][’name’]
145 p.tw_id = str(item[’user’][’id’])
146 persons.add(p)
147 return persons
148 @rpc(str,DateTime,_returns=Iterable(Place))
149 def recentPlaces(ctx,username,d):
150 path = ’statuses/user_timeline.json’
151 r = twRequest(ctx,path,"screen_name="+username+"&count=200")
152 places = set()
153 for item in r:
154 if (item.has_key(’created_at’)):
155 stamp = twCreateDate(item[’created_at’])
156 if (d != None):
157 if stamp<d:
158 break
159 if item[’place’]!=None:
160 place = Place()
161 place.name = item[’place’][’name’]
162 place.coordinate = Coordinate()
163 latitude = 0
164 counter = 0
165 longitude = 0
166 for i in item[’place’][’bounding_box’][’coordinates’][0]:

271

APPENDIX C. APPENDIX C

167 longitude = longitude + i[0]
168 latitude = latitude + i[1]
169 counter = counter + 1
170 place.coordinate.longitude = longitude/counter
171 place.coordinate.latitude = latitude/counter
172 places.add(place)
173 return places
174 @rpc(str,str,DateTime,_returns=Iterable(Place))
175 def recentPlacesWith(ctx,firstPerson,otherPerson,d):
176 path = ’statuses/user_timeline.json’
177 r = twRequest(ctx,path,"screen_name="+firstPerson+"&count=200")
178 places = set()
179 for item in r:
180 if (item.has_key(’created_at’)):
181 stamp = twCreateDate(item[’created_at’])
182 if (d != None):
183 if stamp<d:
184 break
185 found = False
186 if item[’entities’]!=None:
187 if item[’entities’][’user_mentions’]!=None:
188 for i in item[’entities’][’user_mentions’]:
189 p = Person()
190 p.name = i[’name’]
191 #p.tw_id = i[’id’]
192 if (p.name!=otherPerson):
193 found = True
194 if item[’place’]!=None and found == True:
195 place = Place()
196 place.name = item[’place’][’name’]
197 place.coordinate = Coordinate()
198 latitude = 0
199 counter = 0
200 longitude = 0
201 for i in item[’place’][’bounding_box’][’coordinates’][0]:
202 longitude = longitude + i[0]
203 latitude = latitude + i[1]
204 counter = counter + 1
205 place.coordinate.longitude = longitude/counter
206 place.coordinate.latitude = latitude/counter
207 places.add(place)
208 return places
209 @rpc(str,Coordinate,Range,DateTime,_returns=bool)
210 def isNear(ctx,username,coordinate,range,d):
211 path = ’statuses/user_timeline.json’
212 r = twRequest(ctx,path,"screen_name="+username+"&count=2")
213 places = set()
214 for item in r:
215 if (item.has_key(’created_at’)):
216 stamp = twCreateDate(item[’created_at’])
217 if (d != None):
218 if stamp<d:
219 break
220 if item[’place’]!=None:
221 place = Place()
222 place.name = item[’place’][’name’]
223 place.coordinate = Coordinate()
224 latitude = 0
225 counter = 0
226 longitude = 0
227 for i in item[’place’][’bounding_box’][’coordinates’][0]:
228 longitude = longitude + i[0]

272

229 latitude = latitude + i[1]
230 counter = counter + 1
231 place.coordinate.longitude = longitude/counter
232 place.coordinate.latitude = latitude/counter
233 distance = place.coordinate.distance(place.coordinate,coordinate)
234 print "distance:",distance
235 if (distance<=range):
236 return True
237 return False
238
239 class UserDefinedContext(object):
240 def __init__(self):
241 self.session = Session()
242 def _on_method_call(ctx):
243 ctx.udc = UserDefinedContext()
244 def _on_method_context_closed(ctx):
245 if ctx.udc is not None:
246 ctx.udc.session.commit()
247 ctx.udc.session.close()
248
249 class GatewayApplication(Application):
250 def __init__(self,services,tns,name=None,in_protocol=None,out_protocol=

None):
251 super(GatewayApplication,self).__init__(services,tns,name,in_protocol,

out_protocol)
252 self.event_manager.add_listener(’method_call’,_on_method_call)
253 self.event_manager.add_listener(’method_context_closed’,

_on_method_context_closed)
254 def call_wrapper(self, ctx):
255 try:
256 return ctx.service_class.call_wrapper(ctx)
257 except Fault, e:
258 logging.error(e)
259 raise
260 except Exception, e:
261 logging.exception(e)
262 raise InternalError(e)
263
264 from wsgiref.simple_server import make_server
265 from spyne.protocol.http import HttpRpc
266 if __name__==’__main__’:
267 app = GatewayApplication([TwitterService], ’social.sensor.mercury.http’,
268 in_protocol=Soap11(),
269 out_protocol=Soap11())
270
271 wsgi_app = WsgiApplication(app)
272
273 server = make_server(’127.0.0.1’,7788,wsgi_app)
274 # Create a server listening on port 7788
275 print "listening to http://127.0.0.1:7788"
276 print "wsdl is at: http://localhost:7788/?wsdl"
277
278 server.serve_forever()� �

Listing C.1: Establishing connection service via Twitter API.

Listing C.2: Twitter client for retrieving user context.�
1 import logging
2 logging.basicConfig(level=logging.INFO)
3 logging.getLogger(’suds.client’).setLevel(logging.DEBUG)
4 from suds.client import Client

273

APPENDIX C. APPENDIX C

5 import sys
6 import random
7
8 client = Client(’http://localhost:7788/?wsdl’)
9 #The client port is corresponding to Server port

10 logging.debug(client)
11
12 #Init Session w/ FB Auth
13 result = client.service.initSession()
14 assert result == True
15
16 username = sys.argv[1]
17 username2 = sys.argv[2]
18
19 #Choose a random person from recent contacts
20 result = client.service.recentContacts(username)
21 person = result[0][random.randint(0,len(result[0])-1)]
22 logging.debug(person)
23
24 #Get your own recently visited places
25 result = client.service.recentPlaces(username)
26
27 #Where have you been with yourself? Same as above...
28 result2 = client.service.recentPlacesWith(username,username2)
29 place = result[0][0]
30
31 #Are you within 1km to one of these places? Rounding calibration <100m
32 result = client.service.isNear(username,place.coordinate,0.1)
33
34 #Have you been within 200km to the center of Germany?
35 coordinate = client.factory.create(’Coordinate’)
36 coordinate.longitude = 9
37 coordinate.latitude = 51
38 result = client.service.isNear(username,coordinate,200)� �

Listing C.2: Twitter client for retrieving user context.

Listing C.3: Establishing connection service via Facebook API.�
1 import pprint
2 import logging
3 import urllib
4 import urlparse
5 logging.basicConfig(level=logging.DEBUG)
6 logging.getLogger(’spyne.protocol.xml’).setLevel(logging.DEBUG)
7 logging.getLogger(’sqlalchemy.engine.base.Engine’).setLevel(logging.DEBUG)
8
9 from spyne.application import Application

10 from spyne.decorator import rpc
11 from spyne.error import InternalError
12 from spyne.model.complex import ComplexModel
13 from spyne.model.complex import Iterable
14 from spyne.model.fault import Fault
15 from spyne.model.primitive import Float
16 from spyne.model.primitive import Mandatory
17 from spyne.model.primitive import Unicode
18 from spyne.model.primitive import DateTime
19 from spyne.protocol.soap import Soap11
20 from spyne.server.wsgi import WsgiApplication
21 from spyne.service import ServiceBase
22
23 from urllib import urlopen

274

24 import json
25 from datetime import datetime, timedelta
26
27 from sqlalchemy import create_engine
28 from sqlalchemy.orm import sessionmaker
29 db = create_engine(’sqlite:///:memory:’)
30 Session = sessionmaker(bind=db)
31
32 auth_token = ""
33
34 def fbRequest(ctx,path,parameters=""):
35 global auth_token
36 response = urlopen("https://graph.facebook.com/v2.6/"+path+"?

access_token="+auth_token+parameters)
37 data = json.loads(response.read())
38 return data
39
40 def fbCreateDate(dateTimeString):
41 #2012-09-27T08:38:16+0000
42 return datetime.strptime(dateTimeString,’%Y-%m-%dT%H:%M:%S+0000’)
43
44 class Person(ComplexModel):
45 name = Unicode
46 fb_id = Unicode
47 tw_id = Unicode
48 def __hash__(self):
49 if self.fb_id == None:
50 has = int(self.tw_id)
51 if self.tw_id == None:
52 has = int(self.fb_id)
53 return has
54 def __eq__(self, other):
55 if isinstance(other, Person):
56 if self.fb_id == None:
57 if self.tw_id == other.tw_id:
58 return True
59 if self.tw_id == None:
60 if self.fb_id == other.fb_id:
61 return True
62 else:
63 return False
64
65 class Range(Float):
66 unit = Unicode
67
68 from math import sin,pow,cos,atan,sqrt,pi
69 class Coordinate(ComplexModel):
70 longitude = Mandatory.Float
71 latitude = Mandatory.Float
72 def distance(ctx, self, other):
73 if isinstance(other, Coordinate):
74 logging.debug(self)
75 logging.debug(other)
76 if ((self.longitude==other.longitude) & (self.latitude==other.

latitude)):
77 return 0
78 l = (self.longitude-other.longitude)/2*pi/180
79 t = 1/298.257223563
80 a = 6378.137
81 F = (self.latitude+other.latitude)/2*pi/180
82 G = (self.latitude-other.latitude)/2*pi/180
83 S = pow(sin(G),2)*pow(cos(l),2)+pow(cos(F),2)*pow(sin(l),2)

275

APPENDIX C. APPENDIX C

84 C = pow(cos(G),2)*pow(cos(l),2)+pow(sin(F),2)*pow(sin(l),2)
85 w = atan(sqrt(S/C))
86 D = 2*w*a
87 R = sqrt(S*C)/w
88 H1 = (3*R-1)/(2*C)
89 H2 = (3*R+1)/(2*S)
90 s = D * (1+t*H1*pow(sin(F),2)*pow(cos(G),2)-t*H2*pow(cos(F),2)*pow

(sin(G),2))
91 logging.debug("Distance is %s km"%str(s))
92 return s
93 else:
94 raise "Wrong Type"
95
96 class Place(ComplexModel):
97 name = Mandatory.Unicode
98 coordinate = Coordinate
99

100 pp = pprint.PrettyPrinter()
101 class FacebookService(ServiceBase):
102 @rpc(Unicode,_returns=bool)
103 def initSession(ctx,token):
104 global auth_token
105 auth_token = token
106 path = "me"
107 r = fbRequest(ctx,path,"")
108 logging.debug(r)
109 if r.has_key(’id’):
110 return True
111 return False
112 @rpc(_returns=Unicode)
113 def getAuthToken(ctx):
114 global auth_token
115 return auth_token
116 @rpc(_returns=Person)
117 def whoami(ctx):
118 path = "me"
119 r = fbRequest(ctx,path,"")
120 logging.debug(r)
121 person = Person()
122 person.name = r[’name’]
123 person.fb_id = r[’id’]
124 logging.debug(person)
125 return person
126 @rpc(Person,DateTime,_returns=Iterable(Person))
127 def recentContacts(ctx,person,d):
128 path = str(person.fb_id)+"/feed"
129 r = fbRequest(ctx,path,"&fields=story_tags,updated_time,to,from&limit

=10")
130 persons = set()
131 for item in r[’data’]:
132 # Get recent contacts from all time
133 if (item.has_key(’story_tags’)):
134 tags = item[’story_tags’]
135 for tag in tags:
136 if (item.has_key(’type’)):
137 if (tag[’type’]==’user’):
138 person = Person()
139 person.name = tag[’name’]
140 person.fb_id = tag[’id’]
141 persons.add(person)
142 if (item.has_key(’to’)):
143 i = item[’to’][’data’][0]

276

144 person = Person()
145 person.name = i[’name’]
146 person.fb_id = i[’id’]
147 persons.add(person)
148 if (item.has_key(’from’)):
149 i = item[’from’]
150 person = Person()
151 person.name = i[’name’]
152 person.fb_id = i[’id’]
153 persons.add(person)
154 return persons
155 @rpc(Person,DateTime,_returns=Iterable(Place))
156 def recentPlaces(ctx,person,d):
157 path = str(person.fb_id)+"/feed"
158 r = fbRequest(ctx,path,"&fields=updated_time,place&limit=10")
159 logging.debug(pp.pformat(r))
160 places = set()
161 for item in r[’data’]:
162 if (item.has_key(’updated_time’)):
163 stamp = fbCreateDate(item[’updated_time’])
164 if (d != None):
165 if stamp<d-timedelta(days=4):
166 break
167 if (item.has_key(’place’)):
168 i = item[’place’]
169 place = Place()
170 place.name = i[’name’]
171 place.coordinate = Coordinate()
172 place.coordinate.latitude = i[’location’][’latitude’]
173 place.coordinate.longitude =i[’location’][’longitude’]
174 places.add(place)
175 return places
176 @rpc(Person,Person,DateTime,_returns=Iterable(Place))
177 def recentPlacesWith(ctx,firstPerson,otherPerson,d):
178 path = str(firstPerson.fb_id)+"/feed"
179 r = fbRequest(ctx,path,"&fields=story_tags,updated_time,to,from,place

&limit=10")
180 logging.debug(pp.pformat(r))
181 places = set()
182 for item in r[’data’]:
183 # Get recent contacts from all time
184 found = False
185 if (item.has_key(’story_tags’)):
186 tags = item[’story_tags’]
187 for tag in tags:
188 if (tag.has_key(’type’)):
189 if (tag[’type’]==’user’):
190 person = Person()
191 person.name = tag[’name’]
192 person.fb_id = tag[’id’]
193 if (person==otherPerson):
194 found = True
195 if (found == False and item.has_key(’to’)):
196 i = item[’to’][’data’]
197 person = Person()
198 person.name = i[0][’name’]
199 person.fb_id = i[0][’id’]
200 if (person==otherPerson):
201 found = True
202 if (found == False and item.has_key(’from’)):
203 i = item[’from’]
204 person = Person()

277

APPENDIX C. APPENDIX C

205 person.name = i[’name’]
206 person.fb_id = i[’id’]
207 if (person==otherPerson):
208 found = True
209 if (item.has_key(’place’) and found == True):
210 i = item[’place’]
211 place = Place()
212 place.name = i[’name’]
213 place.coordinate = Coordinate()
214 place.coordinate.latitude = i[’location’][’latitude’]
215 place.coordinate.longitude =i[’location’][’longitude’]
216 places.add(place)
217 return places
218 @rpc(Person,Coordinate,Range,DateTime,_returns=bool)
219 def isNear(ctx,person,coordinate,range,d):
220 path = person.fb_id+"/feed"
221 r = fbRequest(ctx,path,"&fields=updated_time,place&limit=10")
222 logging.debug(pp.pformat(r))
223 for item in r[’data’]:
224 if (item.has_key(’updated_time’)):
225 stamp = fbCreateDate(item[’updated_time’])
226 if (d != None):
227 if stamp<d-timedelta(days=4):
228 break
229 if (item.has_key(’place’)):
230 i = item[’place’]
231 place = Place()
232 place.name = i[’name’]
233 place.coordinate = Coordinate()
234 place.coordinate.latitude = i[’location’][’latitude’]
235 place.coordinate.longitude =i[’location’][’longitude’]
236 distance = place.coordinate.distance(place.coordinate,

coordinate)
237 if (distance<=range):
238 return True
239 return False
240 @rpc(Person,DateTime,_returns=Place)
241 def getUserAddress(ctx,person,d):
242 place = Place()
243 path = person.fb_id
244 r = fbRequest(ctx,path,"&fields=location")
245 if (r.has_key(’location’)):
246 locid = r[’location’][’id’]
247 path = locid
248 l = fbRequest(ctx,path,"&fields=location")
249 if (l.has_key(’location’)):
250 loc = l[’location’]
251 place.name = loc[’city’]+’,’+loc[’country’]
252 place.coordinate = Coordinate()
253 place.coordinate.latitude = loc[’latitude’]
254 place.coordinate.longitude = loc[’longitude’]
255 return place
256
257 class UserDefinedContext(object):
258 def __init__(self):
259 self.session = Session()
260 def _on_method_call(ctx):
261 ctx.udc = UserDefinedContext()
262 def _on_method_context_closed(ctx):
263 if ctx.udc is not None:
264 ctx.udc.session.commit()
265 ctx.udc.session.close()

278

266
267 class GatewayApplication(Application):
268 def __init__(self,services,tns,name=None,in_protocol=None,out_protocol=

None):
269 super(GatewayApplication,self).__init__(services,tns,name,in_protocol

,out_protocol)
270 self.event_manager.add_listener(’method_call’,_on_method_call)
271 self.event_manager.add_listener(’method_context_closed’,

_on_method_context_closed)
272 def call_wrapper(self, ctx):
273 try:
274 return ctx.service_class.call_wrapper(ctx)
275 except Fault as e:
276 logging.error(e)
277 raise
278 except Exception as e:
279 logging.exception(e)
280 raise InternalError(e)
281
282
283 from wsgiref.simple_server import make_server
284 from spyne.protocol.http import HttpRpc
285 if __name__==’__main__’:
286 app = GatewayApplication([FacebookService], ’social.sensor.mercury.fb’,
287 in_protocol=Soap11(),
288 out_protocol=Soap11()
289)
290
291 wsgi_app = WsgiApplication(app)
292
293 server = make_server(’127.0.0.1’,7789,wsgi_app)
294
295 print("listening to http://127.0.0.1:7789")
296 print("wsdl is at: http://localhost:7789/?wsdl")
297
298 server.serve_forever()� �

Listing C.3: Establishing connection service via Facebook API.

Listing C.4: Facebook client for retrieving user context.�
1 import logging
2 logging.basicConfig(level=logging.INFO)
3 logging.getLogger(’suds.client’).setLevel(logging.DEBUG)
4 from suds.client import Client
5 import sys
6 import random
7 import urllib
8 import urlparse
9 import webbrowser

10 import warnings
11 import os
12 import time
13
14 client = Client(’http://localhost:7789/?wsdl’)
15 logging.debug(client)
16
17 class FBOAuth(object):
18 # Parameters of your app and the id of the profile you want to mess with

.
19 APP_ID = ’174216792758017’
20 APP_SECRET = ’a533d83ffe9cb79cddc5e9bb8ccfa2aa’

279

APPENDIX C. APPENDIX C

21 SECRET_CODE = None
22 ACCESS_TOKEN = None
23 REDIRECT_URI = ’http://localhost:7790/’
24 def authorize(self):
25 warnings.filterwarnings(’ignore’, category=DeprecationWarning)
26 savout = os.dup(1)
27 os.close(1)
28 os.open(os.devnull, os.O_RDWR)
29 try:
30 webbrowser.open(’https://graph.facebook.com/oauth/authorize?’+

urllib.urlencode(
31 {’client_id’:self.APP_ID,
32 ’redirect_uri’:self.REDIRECT_URI,
33 ’scope’:’public_profile,user_friends,user_location

,user_posts’}))
34
35 finally:
36 os.dup2(savout, 1)
37
38 def access_token(self):
39 if not self.SECRET_CODE:
40 self.authorize()
41 while True:
42 time.sleep(0.5)
43 self.SECRET_CODE = urllib.urlopen(self.REDIRECT_URI+"?request=

secret").read()
44 if self.SECRET_CODE == "None": #the return type is string....
45 pass
46 else:
47 break
48 print self.SECRET_CODE
49
50 args = {’redirect_uri’: self.REDIRECT_URI,
51 ’client_id’ : self.APP_ID,
52 ’client_secret’:self.APP_SECRET,
53 ’code’:self.SECRET_CODE,}
54
55 response = urllib.urlopen("https://graph.facebook.com/oauth/

access_token?" + urllib.urlencode(args)).read()
56 response = urlparse.parse_qs(response)
57 token = response[’access_token’][0]
58 return token
59
60 if __name__ == ’__main__’:
61 #Init Session w/ FB Auth
62 fb = FBOAuth()
63 fb.SECRET_CODE = None
64 token = fb.access_token()
65 result = client.service.initSession(token)
66 assert result == True
67 me = client.service.whoami()
68
69 #Choose a random person from recent contacts
70 result = client.service.recentContacts(me)
71 person = result[0][random.randint(0,len(result[0])-1)]
72 logging.debug(person)
73
74 #Get your own recently visited places
75 result = client.service.recentPlaces(me)
76
77 #Is the location in the status close to your current living city?

Rounding calibration <100m

280

78 place = client.service.getUserAddress(me)
79 result = client.service.isNear(me,place.coordinate,0.01)
80
81 #Are you within 200km to the center of Germany?
82 coordinate = client.factory.create(’Coordinate’)
83 coordinate.longitude = 9
84 coordinate.latitude = 51
85 result = client.service.isNear(me,coordinate,200)� �

Listing C.4: Facebook client for retrieving user context.

Listing C.5: Redirecting service for Facebook API.�
1 import BaseHTTPServer
2 import time
3 import sys
4
5
6 HOST_NAME = ’localhost’
7 PORT_NUMBER = 7790
8 REDIRECTIONS = {"/facebook/": "http://facebook.com/"}
9 LAST_RESORT = "http://facebook.com/"

10 SECRET_CODE = None
11
12 class RedirectHandler(BaseHTTPServer.BaseHTTPRequestHandler):
13 def do_HEAD(s):
14 s.send_response(301)
15 s.send_header("Location", REDIRECTIONS.get(s.path, LAST_RESORT))
16 s.end_headers()
17 def do_GET(s):
18 global SECRET_CODE
19 params = s.path.split("/?")[1].split("&")
20 for param in params:
21 key = param.split("=")[0]
22 val = param.split("=")[1]
23 if key=="code":
24 s.do_HEAD()
25 SECRET_CODE = val
26 elif key=="request":
27 if val=="secret":
28 s.send_response(200)
29 s.send_header(’Content-type’,’text/html’)
30 s.end_headers()
31 # Send the html message
32 s.wfile.write(SECRET_CODE)
33 SECRET_CODE=None
34 return
35
36 if __name__ == ’__main__’:
37 server_class = BaseHTTPServer.HTTPServer
38 httpd = server_class((HOST_NAME, PORT_NUMBER), RedirectHandler)
39 print time.asctime(), "Server Starts - %s:%s" % (HOST_NAME, PORT_NUMBER)
40 try:
41 httpd.serve_forever()
42 except KeyboardInterrupt:
43 pass
44 httpd.server_close()
45 print time.asctime(), "Server Stops - %s:%s" % (HOST_NAME, PORT_NUMBER)� �

Listing C.5: Redirecting service for Facebook API.

281

D
Appendix D - Licenses and Permissions

• In Copyright - Non-Commercial Use Permitted
http://rightsstatements.org/page/InC-NC/1.0/

• Open Data Commons Attribution License (ODC-By) v1.0
https://opendatacommons.org/licenses/by/1.0/

• License Number: 4157670887545
Licensed Content Publisher: Springer
Licensed Content Title: Toward a cooperative programming framework for context-
aware applications
Licensed Content Author: Bin Guo
Type of Use: Thesis/Dissertation
Portion: Figures/tables/illustrations
Original figure numbers: Figure 4

• License Number: 4157690951493
Licensed Content Publisher: Elsevier
Licensed Content Title: The design and realisation of the Experimentmy Virtual
Research Environment for social sharing of workflows
Licensed Content Author: David De Roure,Carole Goble,Robert Stevens
Type of Use: reuse in a thesis/dissertation
Portion: figures/tables/illustrations
Original figure numbers: Figure 1

• License Number: 4160211006307
Licensed Content Publisher: Elsevier
Licensed Content Title: A survey of context modelling and reasoning techniques
Licensed Content Author: Claudio Bettini,Oliver Brdiczka,Karen Henricksen,Jadwiga
Indulska,Daniela Nicklas,Anand Ranganathan,Daniele Riboni
Type of Use: reuse in a thesis/dissertation
Portion: figures/tables/illustrations
Original figure numbers: Figure 1

283

http://rightsstatements.org/page/InC-NC/1.0/
https://opendatacommons.org/licenses/by/1.0/

APPENDIX D. APPENDIX D - LICENSES AND PERMISSIONS

• License Number: 4160211287322
Licensed Content Publisher: Elsevier
Licensed Content Title: A survey of context modelling and reasoning techniques
Licensed Content Author: Claudio Bettini,Oliver Brdiczka,Karen Henricksen,Jadwiga
Indulska,Daniela Nicklas,Anand Ranganathan,Daniele Riboni
Type of Use: reuse in a thesis/dissertation
Portion: figures/tables/illustrations
Original figure numbers: Figure 2

• License Number: 4160220133428
Licensed Content Publisher: Springer
Licensed Content Title: Context-driven personalized service discovery in pervasive
environments
Licensed Content Author: Katharina Rasch
Type of Use: Thesis/Dissertation
Portion: Figures/tables/illustrations
Original figure numbers: Figures 1, 6

• License Number: 4160221149121
Licensed Content Publisher: Springer
Licensed Content Title: Adaptive and Context-Aware Service Discovery for the In-
ternet of Things
Licensed Content Author: Talal Ashraf Butt
Type of Use: Thesis/Dissertation
Portion: Figures/tables/illustrations
Original figure numbers: Figure 1

• License Number: 4163330385414
Licensed Content Publisher: Springer
Licensed Content Title: OpenIoT: Open Source Internet-of-Things in the Cloud
Licensed Content Author: John Soldatos
Type of Use: Thesis/Dissertation
Portion: Figures/tables/illustrations
Original figure numbers: Figure 4

• License Number: 4163560138337
Licensed Content Publisher: Elsevier
Licensed Content Title: A knowledge-based resource discovery for Internet of Things
Licensed Content Author: Charith Perera,Athanasios V. Vasilakos
Type of Use: reuse in a thesis/dissertation
Portion: figures/tables/illustrations
Original figure numbers: Figure 1

284

Curriculum Vitae

Personal Data

Name, Address Kobkaew Opasjumruskit
Ernst-Abbe-Platz 5
07743 Jena

kobkaew.opasjumruskit@uni-jena.de
http://fusion.cs.uni-jena.de/fusion/members/
kobkaew-opasjumruskit/

Nationality thai
Marital status single
Birth date 7 April 1983
Birth place Bangkok, Thailand

Education

Apr 2007 Master’s Degree in Electrical Engineering, Chulalongkorn University,
Bangkok, Thailand

Apr 2005 Bachelor’s Degree in Electrical Engineering, Chulalongkorn University,
Bangkok, Thailand

Work Experience

Since Sep 2011 Ph.D.candidate and researcher at Heinz-Nixdorf Endowed Chair
for Distributed Information Systems, Department of Mathemat-
ics and Computer Science - Friedrich Schiller University of Jena

Oct 2009 - Aug 2011 Software Engineer, Thomson Reuters Software, Thailand
May 2008 - Oct 2009 Embedded Software Engineer, COD Co., Ltd., Thailand
May 2007 - Apr 2008 Junior Software Engineer, ASK Media Co., Ltd., Thailand

285

kobkaew.opasjumruskit@uni-jena.de
http://fusion.cs.uni-jena.de/fusion/members/kobkaew-opasjumruskit/
http://fusion.cs.uni-jena.de/fusion/members/kobkaew-opasjumruskit/

	Introduction
	Motivation and Overview
	Thesis Outline

	Project Background
	Scenarios
	MERCURY Architecture
	Process Flow
	Resource Registration and Management
	Scenario Modeling
	Scenario Execution

	Thesis Requirements
	Problem Statement
	Requirements

	State of the Art
	Similar Existing Solutions
	IoT tools for expert users
	IoT tools supporting non-programming users
	IoT tools for customizing and sharing workflow
	Commercial tools

	Resource Middleware
	Resource Description
	Resource Matchers
	Context-aware Resource Discovery
	Context Model
	Context-aware Applications

	Solution
	Solution Overview
	Resource Discovery
	Architecture
	Initial Assumptions

	Supported Resource Description Formalisms
	Supported Resource Matchers
	Main Components
	Context Extractor
	Request Constructor
	Request Converter
	Result Integrator

	Context Extraction
	Context from User Profile
	Context from Social Sensors
	Context Extraction via Twitter API
	Context Extraction via Facebook API

	Context from User Preferences and Contributions
	User Preferences
	Similar Usage

	Usage

	Request Analysis
	Matcher Analysis
	OWL-S Matchers
	SAWSDL Matchers

	Essential information required for resource matching
	OWL-S Description
	SAWSDL1.1 Description
	SAWSDL2.0 Description

	Request Preparation
	Request Constructor
	Algorithm

	Request Converter
	Modes of Conversion
	Conversion Algorithm

	Result Integration
	Existing Techniques for Result Merging
	Score-based Merging Algorithm
	Content-based Merging Algorithm
	Rank-based Merging Algorithm

	Merging Algorithm
	Initial function
	Get combined result function
	Get weight function
	Check weight change function

	Resource Discovery Integration to MERCURY
	Registration
	Applying context to the Registration process

	Scenario Modeling
	Execution Engine

	Evaluation
	Evaluation Overview
	Performance measurement
	Request Constructor
	Request Converter
	Result Integrator
	Description Collections
	Resource Matchers

	Unit Test Results
	Evaluation of Request Constructor
	Simple Search
	Advanced Search
	Semantic Search

	Evaluation of Request Converter
	SAWSDL to OWL-S Matching Result
	OWL-S to SAWSDL Matching Result

	Evaluation of Result Integrator
	Result integration using OWL-S matchers
	Result integration using SAWSDL matchers
	Result integration using OWL-S and SAWSDL matchers
	Tuning up the result integrator
	Summary of Result Integrator

	Integrated System Evaluation Results
	Overall Quality Performance
	Overall Time Consumption
	Resource Discovery in MERCURY
	Resource Discovery in Registration
	Resource Discovery in Scenario Modeling

	Conclusion
	Summary
	Resource Discovery Main Components
	Context Extractor
	Request Analysis
	Request Constructor
	Request Converter
	Resource Matching and Result Integration

	Integration with MERCURY

	Future Plan

	Appendices
	Appendix A
	Appendix B
	Matchers directory
	Test Collections
	Testing requests and solutions

	Appendix C
	Appendix D - Licenses and Permissions

