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Summary 

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to 

infection. Despite advances in treatment strategies, sepsis remains a major health care burden, 

accounting for 60-80% of lost lives per year in intensive care units (ICU). Current treatments 

mainly aim to contrast the sepsis-induced development of multiple organ failure (MOF) but they 

still lack of specificity. 

Mounting evidence indicates that the liver plays a key role in both the initiation and the 

promotion of MOF during sepsis. Among all liver functions, the hepatic formation and secretion 

of bile is critical to survival and is easily disrupted in septic conditions. Systemic inflammation 

negatively affects these delicate processes, leading to bile accumulation within hepatocytes 

(cholestasis), severely affecting liver functions and contributing to poor outcomes. 

Phosphoinositide-3 kinase  (PI3K) is recognized as a key contributor to inflammatory stress 

responses in both immune and non-immune cells. Previous studies showed that knockout mice 

for PI3K were protected from cholestasis in experimental mouse models of polymicrobial 

sepsis. However, the role of this kinase in liver parenchyma remains unknown. Thus, the 

objective of this study aimed to determine the hepatocyte-specific role of PI3K in the 

pathogenesis of inflammatory-induced cholestasis. 

To elaborate the functional patterns of PI3Kγ, primary hepatocytes derived from PI3K wild-

type (WT), kinase-dead (KD) and knockout (KO) mice were isolated and analyzed ex vivo. In 

parallel, immortalized human (HepG2) and murine (Hepa 1-6) hepatocyte cell lines were used 

for in vitro studies.  

Initial investigations disclosed for the first time that liver parenchymal cells express PI3K. 

Most importantly, both WT primary hepatocytes and cell lines displayed increased 

PI3Kexpression upon exposure to a proinflammatory cytokine mix (CM), suggesting the 

involvement of this enzyme in inflammatory stress responses of liver parenchyma. Furthermore, 

we find that PI3Kregulates the cellular localization of multidrug resistance-associated protein 

2 (Mrp2), thus contributing to the pathogenesis of inflammatory-induced cholestasis. Mrp2 is an 

ABC transporter that is normally expressed at the canalicular membrane of hepatocytes, secreting 

conjugated endogenous and xenobiotic substances and thus representing an important driving 

force in bile formation and flow. However, it is well known that Mrp2 undergoes endocytosis 

processes upon inflammatory stress, strongly contributing to the development of cholestasis. 

Here we find that the kinase activity of PI3K modulates two distinct signaling pathways 
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affecting intracellular localization of Mrp2: i) the PKC/ERM-mediated Mrp2 internalization 

and ii) the cAMP-dependent insertion of endocytosed Mrp2 particles to the canalicular 

membrane. Strikingly, both genetic and pharmacological inhibition of PI3Kγ resulted in 

hepatocyte protection from inflammatory-induced Mrp2 internalization. Furthermore, the lack 

of functional PI3K in primary hepatocytes increased the expression of heme oxygenase-1 (HO-

1), which is known to exert hepatoprotective effects against inflammation-induced oxidative 

stress. 

Overall, our results point out a new cell-type specific role of PI3K in inflammatory-stress 

responses of liver parenchyma. Based on this study, hepatocyte-specific PI3K inhibition may 

represent a novel putative therapeutic strategy for preventing sepsis-induced cholestasis, 

preserving liver organ function of critically ill septic patients and possibly diminishing the 

mortality in the ICU.  
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Zusammenfassung 

Sepsis ist eine lebensbedrohliche, systemische Fehlreaktion des Körpers auf Infektionen. 

Trotz Fortschritte in der Behandlung bleibt die Sepsis eine Herausforderung für das 

Gesundheitswesen und ist für 60-80% der Todesfälle auf Intensivpflegestationen verantwortlich. 

Aktuelle therapeutische Ansätze sind unspezifisch und zielen hauptsächlich auf die Behandlung 

des Sepsis-induzierten multiplen Organversagens (MOV). 

Zunehmende Hinweise deuten auf eine Schlüsselrolle der Leber in der Entstehung und 

Entwicklung des MOV. Zu den essentiellen Leberfunktionen gehört die Produktion und 

Sekretion der Galle. Systemische Entzündungen stören diesen empfindlichen Prozess und führen 

zu einer Ansammlung der Galle in Hepatozyten (Cholestase). Cholestase während der Sepsis 

beeinträchtigt die Funktion der Leber nachhaltig und verschlechtert die Prognose. 

Das Signalprotein Phosphoinositid-3 Kinase γ (PI3Kγ) gilt als wesentlicher Mediator der 

Entzündungsreaktion von Immunzellen sowie Parenchym- und Epithelzellen. Frühere Studien 

zeigen, dass PI3Kγ Knockout Mäuse während einer polymikrobiellen Sepsis vor Cholestase 

geschützt sind. Die genaue Rolle dieser Lipid-Kinase im Parenchym der Leber ist jedoch noch 

unbekannt. Daher ist es das Ziel dieser Studie, die Rolle der PI3Kγ in Hepatozyten während der 

Pathogenese einer entzündungs-induzierten Cholestase zu bestimmen. 

Um die Funktionsmuster von PI3Kγ herauszuarbeiten, wurden primäre Hepatozyten von 

PI3Kγ Wildtyp (WT), Kinase-dead (KDγ) und Knock-out (KOγ) - Mäusen isoliert und ex vivo 

analysiert. Parallel dazu wurden immortalisierte menschliche (HepG2) und murine (Hepa 1-6) 

Hepatozyten-Zelllinien für in vitro Studien verwendet. 

Die Untersuchungen zeigten erstmalig eine PI3Kγ Expression in Zellen des 

Leberparenchyms. In Hepatozyten der Wildtyp-Mäuse und in den Zelllinien wurde eine erhöhte 

PI3Kγ Expression nach Exposition durch einen pro-inflammatorischen Zytokin-Mix beobachtet. 

Dies deutet auf eine Beteiligung des Enzyms bei einer Entzündungsreaktion des 

Leberparenchyms hin. Weitere Ergebnisse zeigen, dass PI3Kγ die zelluläre Lokalisation von 

Multiresistenz-assoziierten Protein 2 (Mrp2) zu regulieren scheint und dadurch an der 

Pathogenese einer entzündungs-induzierten Cholestase beteiligt ist.  

Mrp2 ist ein ABC-Transporter, welcher normalerweise auf der Kanalikulärmembran der 

Hepatozyten exprimiert wird und dort konjugierte, endogene und xenobiotische Substanzen 

sekretiert. Somit ist Mrp2 ein essentieller Bestandteil sowohl bei der Bildung als auch beim 

Transport der Galle. Es ist ferner bekannt, dass Mrp2 bei inflammatorischem Stress 

endozytotischen Prozessen ausgesetzt ist. Hier fanden wir heraus, dass die Aktivität der PI3Kγ 



 

vi 
 

zwei unterschiedliche Signalwege reguliert, welche die intrazelluläre Lokalisation von Mrp2 

beeinflussen: (1) die Mrp2-Internalisierung vermittelt durch PKC/ERM, sowie (2) die cAMP-

abhängige Insertion von endozytotisch aufgenommenen Mrp2-Partikeln in die 

Kanalikulärmembran. Erstaunlicherweise führte sowohl eine pharmakologische als auch eine 

genetische Inhibition von PI3Kγ zur Repression der entzündungs-induzierten Mrp2-

Internalisierung in Hepatozyten. Ferner führte der Mangel an PI3Kγ in primären Hepatozyten zu 

einer Erhöhung der Expression von Hämoxygenase-1 (HO-1), welche einen protektiven Effekt 

auf Hepatozyten bei entzündungs-induziertem oxidativen Stress hat. 

Insgesamt weisen die Ergebnisse dieser Studie auf eine neue zelltypespezifische Rolle von 

PI3Kγ während einer Entzündungsreaktion des Leberparenchyms hin. Die spezifische Inhibition 

von PI3Kγ in Hepatozyten könnte eine neue therapeutische Strategie zur Prävention einer Sepsis-

induzierten Cholestase darstellen. Mit diesem therapeutischen Konzept könnten die 

Leberfunktionen lebensgefährlich erkrankter Sepsispatienten erhalten und deren Mortalität auf 

Intensivpflegestationen reduziert werden. 
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Abbreviations 

ABC    ATP-binding cassette 

2AR    beta 2 adrenergic receptor 

°C    degree Celsius 

cAMP    cyclic adenosine monophosphate 

CLP    cecal ligation and puncture 

CM    cytokine mix 

CREB   cAMP response element binding protein 

ERM    ezrin-radixin-moesin  

fMLP    N-Formyl-Met-Leu-Phe 

FRIL    freeze-fracture replica immunogold labelling 

g    units of times gravity  

GPCR   G protein-coupled receptor 

h    hours 

HO-1    heme oxygenase-1 

ICU    intensive care unit 

IFN   interferon  

IL-1  interleukin-1 

IP    immunoprecipitation  

KD   kinase-dead  

KO    knockout 

LPS    lipopolysaccharides 

    micro 

m    milli 

M    molar 
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min    minutes 

MOF    multiple organ failure 

Mrp2    multidrug resistance-associated protein 2 

PCI    peritoneal contamination and infection 

PDE3B   phosphodiesterase 3B 

PI3K    phosphatidylinositol 3-kinase 

PKA    protein kinase A 

PKC    protein kinase C 

PP-1    protein phosphatase-1 

ROS    reactive oxygen species 

rpm    rounds per minute 

RT    room temperature 

SD    standard deviation 

SDS-PAGE   sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SIRS    systemic inflammatory response syndrome 

TNF  tumor necrosis factor 

v/v    volume per volume 

w/v    weight per volume 

WT    wild-type 
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1. Introduction 

1.1  Sepsis definition and incidence 

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to 

infection. Sepsis remains the primary cause of death from infection despite advances in modern 

medicine, such as vaccines, antibiotics and acute care (Angus and van der Poll 2013). In the 

developing world, sepsis accounts for 60-80% of lost lives per year, affecting more than 6 

million newborns and children annually, with over 100,000 women contracting sepsis in the 

course of pregnancy and childbirth (Kissoon et al. 2011). Strikingly, in all countries where data 

on hospitalizations for sepsis are available, the number of cases has increased steadily in the 

past years (Lagu et al. 2012; La Suarez De Rica et al. 2016; Kaukonen et al. 2014). 

According to the classical definition of sepsis, which was used until one year ago, sepsis 

diagnosis requires the recognition of the systemic inflammatory response syndrome (SIRS), 

which is frequently caused by infection (Stearns-Kurosawa et al. 2011). SIRS is defined by the 

presence of two or more criteria, listed in Table 1, and it may follow a variety of clinical insults, 

including infection, pancreatitis, ischemia, multiple trauma, tissue injury, hemorrhagic shock, 

or immune-mediated organ injury. 

 

Table 1. Criteria for the systemic inflammatory response syndrome (SIRS). 
(Stearns-Kurosawa et al. 2011) 

 

 

 

 

 

 

 

 

 

For a long time, when SIRS occurred with infection, the diagnosis for the patient was sepsis, 

and the severity of the disease depended on its association with organ dysfunction, 

hypoperfusion or hypotension. In particular, patients met the criteria for septic shock when they 

had persistent hypotension and perfusion abnormalities despite adequate fluid resuscitation 

(Levy et al. 2003). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684427/table/T1/
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In early 2016 the Society of Critical Care Medicine and the European Society of Intensive 

Care Medicine convened a task force to address definitions and clinical criteria for sepsis 

(Singer et al. 2016). In effect, since the definitions of sepsis, septic shock, and organ dysfunction 

remained largely unchanged for more than two decades, the need for re-examination reunited 

19 experts in sepsis pathobiology, clinical trials, and epidemiology. These experts pointed out 

the inadequate specificity and sensitivity of the SIRS criteria, and sustained that the multiple 

definitions and terminologies used for sepsis, septic shock, and organ dysfunction led to 

discrepancies in reported incidence and observed mortality. As a conclusion, they agreed that 

sepsis should instead be defined as a life-threatening organ dysfunction caused by a 

dysregulated host response to infection. Choosing this definition, they emphasized the 

importance of organ function preservation, which is critical for patients’ outcome. Presently, 

for clinical operationalization, organ dysfunction is determined by an increase in the Sequential 

(sepsis-related) Organ Failure Assessment (SOFA) score of 2 points or more (which is 

associated with an in-hospital mortality greater than 10%). The definition of septic shock was 

also changed, and is now defined as a subset of sepsis in which particularly profound 

circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality 

than with sepsis alone (greater than 40%). These updated definitions, based on the considerable 

advances made into the pathobiology, management, and epidemiology of sepsis in the past 

years, will help to facilitate earlier recognition and more timely management of patients with 

sepsis or at risk of developing sepsis.  

The reported incidence of sepsis is increasing (Gaieski et al. 2013), likely reflecting aging 

populations with more comorbidities as well as greater recognition. Although the true incidence 

is unknown, conservative estimates indicate that sepsis is a leading cause of mortality and 

critical illness worldwide (Fleischmann et al. 2016; Singer et al. 2016).  

The treatment for septic patients usually consists in i) lowering the amount of infectious 

agents with antibiotics, ii) fluid resuscitation for preventing organ hypoperfusion and iii) 

administration of anticoagulants to avoid coagulation derangements. All of these treatments 

aim to contrast the development of multiple organ failure (MOF) and worsened outcome, but 

they lack specificity (Abraham and Singer 2007). Although novel therapeutic agents have been 

found to improve sepsis, their results still remain limited, associated with side effects and 

continued high mortality (Deans et al. 2005). In addition, there is increasing awareness that 

patients who survive sepsis often have long-term physical, psychological, and cognitive 

disabilities with significant health care and social implications. Thus, there is an urgent need to 
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find novel therapeutic strategies, particularly aimed to preserve organ function of critically ill 

septic patients. 

1.2  The liver role in sepsis 

1.2.1 Liver organ structure and functions 

The liver is increasingly recognized as a key organ in both the initiation and the promotion 

of MOF during sepsis (Yan et al. 2014; Hirata et al. 2001). This organ has indeed major roles 

in the dissemination of infectious pathogens and inactivation of bacterial products, as well as 

in the production and clearance of inflammatory mediators. However, apart from its important 

role in the immunological homeostasis, the liver is responsible for over 200 defined functions, 

such as detoxification, storage, energy production, nutrient conversion, hormonal balance, and 

coagulation (Yan et al. 2014). These important physiological functions make the liver a critical 

organ for host survival following severe injury such as sepsis. Notably, evidence has been 

provided that sepsis-induced liver dysfunction and failure directly contribute to disease 

progression and death (Canabal and Kramer 2008). 

The structure of the liver is characterized by repeated units consisting of a multicellular 

architecture (liver lobule), where 60-80% of the cell population is represented by hepatocytes 

(Bhatia et al. 2014). These cells compose liver parenchyma and are arranged in cords that are 

sandwiched by extracellular matrix (Fig. 1). The space between cords hosts a multitude of 

supporting cell types, such as sinusoidal endothelial cells, Kupffer cells, biliary ductal cells, 

and stellate cells. Due to this particular architectural arrangement and cellular heterogeneity, 

liver cells are continuously exposed to nutrients, hormones, and growth factors, which are 

delivered via the combined blood supply of the portal vein and hepatic artery.  

The structural organization of the liver has profound implications for its immune function 

(Racanelli and Rehermann 2006). Of particular interest, the liver contains the single largest 

population of macrophages (Kupffer cells, KCs), which accounts for 80–90% of the total 

population of fixed tissue macrophages in the body (Sheth and Bankey 2001).  KCs have a 

crucial role both in eliminating bacteria and insoluble waste through phagocytosis and in 

releasing a wide range of products implicated in liver injury. On the other hand, Zhou et al. 

recently provided evidence also supporting the role of hepatocytes as key mediators of innate 

immune responses, since they produce 80–90% of the circulating innate immunity proteins in 

the body, including acute phase proteins, complements, bactericidal proteins and opsonins 

(Zhou et al. 2016).  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374645/figure/F1/
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Figure 1: The multicellular architecture of the liver. (A) The liver possesses a hierarchical 

structure consisting of repeated functional tissue units (liver lobules), in which hepatocytes are 

the main parenchymal cells. Within a lobule, oxygenated blood enters through branches of the 

hepatic artery and portal vein, and flows in specialized sinusoidal vessels towards the central 

vein. The hepatocytes are polarized epithelial cells that interact closely with a number of non-

parenchymal cells types along the sinusoidal tracts of the liver lobule. The bile, which is 

produced and secreted by hepatocytes, flows in the counter direction relative to blood, towards 

the intrahepatic bile duct. (B) Several cellular types and multiscale tissue structures contribute 

to the diverse functional roles of the liver. (Bhatia et al. 2014) 

 

 

However, although the liver has been proposed as an “immunological organ” (Racanelli and 

Rehermann 2006), the primary functions of the liver are not traditionally considered to be 

immunological. Among all liver functions, the hepatic formation of bile is critical to survival 

and is one of the most easily disrupted liver functions (Li and Crawford 2004; Hirata et al. 

2001). Importantly, bile assists fat digestion in the intestine and mediates the disposal of poorly 

water-soluble endogenous compounds and xenobiotics (Stieger and Mahdi 2017). Disturbances 

in these delicate processes may result in a variety of hepatic, intestinal and systemic disorders, 

especially in conditions of septic-induce systemic inflammation. 
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1.2.2 Sepsis-induced liver cholestasis 

Maintenance of the enterohepatic bile acid circulation is vital for several liver and 

gastrointestinal functions including bile flow, solubilization and excretion of cholesterol, 

clearance of toxic molecules, intestinal absorption of lipophilic nutrients, as well as metabolic 

and antimicrobial effects (Halilbasic et al. 2013). In addition, the enterohepatic circulation 

efficiently preserves these precious molecules, since bile acid synthesis from cholesterol 

involves a series of energy-consuming enzymatic steps (Russell 2009). In particular, bile acids 

and bile salts reach the liver from the intestine via the portal vein and are taken up by 

hepatocytes, where they are rapidly and efficiently conjugated to taurine or glycine (Stieger and 

Mahdi 2017). Since bile acids in hepatocytes are mainly present in their conjugated form, they 

must be transported via energy-driven transport systems across the membranes of cells involved 

in the enterohepatic circulation.  

Bile acid transporters have different affinities for various bile acid species as well as for 

other endogenous and exogenous compounds which are insufficiently water soluble to be 

excreted into urine (Li and Crawford 2004). Hence, both the expression of bile acid transporters 

and their transport capacity are tightly controlled in order to maintain bile acid homeostasis 

(Halilbasic et al. 2013). Disturbance of this delicate balance may contribute to cholestasis, 

which is a common complication in patients with extrahepatic bacterial infections and sepsis 

(Geier et al. 2006; Li and Crawford 2004; Hirata et al. 2001).  

The pathogenesis of cholestasis which develops during sepsis arises from intrahepatic 

metabolic abnormalities, and is based on disturbance of the intra- and extracellular 

transportation system of bilirubin in hepatocytes (Hirata et al. 2001). Even though little is 

known about the mechanisms of sepsis-associated cholestasis, the common pathophysiological 

denominator is the induction of proinflammatory cytokines and oxidative stress, which are 

potent inhibitors of hepatocellular bile secretion (Geier et al. 2006; Hirata et al. 2001). 

Additionally, cholestatic conditions contribute to several complications, such as hypotension, 

altered glucose and lipid metabolism, increased energy expenditure and renal function 

impairment, thus aggravating the outcome of septic patients (Horvatits et al. 2013).  

About 20% of septic patients develop cholestasis during their stay at the intensive care unit 

(ICU), and hyperbilirubinaemia in critically ill patients is a strong independent risk factor for 

mortality in the ICU (Horvatits et al. 2013; Kramer et al. 2007). However, cholestasis in sepsis 

is generally reversible, since it is usually caused by functional alterations at the hepatocellular 

and/or bile duct level (Geier et al. 2006). For this reason, the molecular mechanisms implicated 
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in the pathogenesis of sepsis-induced cholestasis are currently extensively studied in order to 

identify novel putative therapeutic targets preventing liver dysfunctions. 

1.3  Molecular mechanisms of sepsis-induced liver 

cholestasis 

1.3.1 Inflammatory stress-induced mechanisms of cholestasis 

During systemic inflammation, microbial products induce signaling pathways within 

hepatocytes both directly and through activation of pro-inflammatory cytokines, leading to 

rapid and profound reductions in bile flow (Kosters and Karpen 2010). In particular, the 

expression and function of key hepatobiliary transporters are suppressed in response to 

inflammatory stress.  

It is now well established that transporters involved in bile formation undergo both 

transcriptional and post-translational regulation (Anwer 2014; Halilbasic et al. 2013). The 

transcriptional regulation of hepatocellular transporters is mediated by the nuclear receptor 

superfamily (Halilbasic et al. 2013) and assures long-term adjustments of transporter functions. 

Notably, the genes encoding for bile transporter proteins are negatively regulated by a complex 

interacting network of hepatocyte nuclear factors (HNF1, 3, 4) and nuclear receptors (e.g., FXR, 

PXR, CAR, RAR, LRH-1, SHP, GR), usually activated by bile acid accumulation within 

hepatocytes (Geier et al. 2007). On the contrary, post-translational regulations involve short-

term rapid changes in plasma membrane localization of transporters, allowing for rapid changes 

in bile  formation (Anwer 2014; Crocenzi et al. 2012). This is a tightly regulated process, and 

the signaling mediators involved are being actively characterized (Roma et al. 2008).  

There is compelling evidence in literature that the physiological recycling of membrane 

transporters via vesicle-mediated insertion/internalization from and to the endosomal 

compartment is altered under cholestatic conditions. In particular, under such conditions a shift 

toward retrieval of bile transporter proteins is induced, decreasing their plasma membrane 

expression and consequently impairing the transport of their substrates (Crocenzi et al. 2012). 

This mechanism is schematically shown in Fig. 2. 
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Figure 2: Dynamic localization of canalicular transporters under normal and cholestatic 

conditions. Under physiological conditions (normal hepatocyte), the density of transporters at 

the canalicular membrane domain, responsible for the normal biliary excretion of bile-forming 

solutes such as bile salts (BS-) and organic anions (OA-), is regulated by a vesicle-mediated 

recycling from a subapical compartment (SAC), which serves as a reservoir of transporters 

available on demand. Cholestatic stimuli disrupt this mechanism, leading to a decrease in the 

expression of transporters at the canalicular membrane, with a concomitant increase in SAC. 

This is accompanied by a reduced biliary excretion of their substrates (cholestatic hepatocyte). 

Transporter internalization may be produced either by stimulating the endocytic internalization 

of transporters or by inhibiting their normal exocytic insertion from SAC. Sustained cholestatic 

stimuli could lead to the sorting of endocytosed transporters to lysosomes, followed by 

lysosomal degradation (Crocenzi et al. 2012). 

 

 

Changes in transporter localization are considered as the major pathologic mechanism 

explaining the hepatocyte secretory failure (Crocenzi et al. 2012). A number of signaling 

pathways have been supposed to be involved in the regulation of these short-term changes 

(Geier et al. 2006). 
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1.3.2 The hepatobiliary transport system 

Bile formation depends on proper functioning of the parenchymal hepatobiliary transport 

system (Geier et al. 2006), as illustrated in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The hepatobiliary transport system in hepatocytes. Bile salts are taken up by 

hepatocytes through the basolateral sodium taurocholate cotransporter and organic anion 

transporting proteins. Monovalent bile salts are secreted via the canalicular bile-salt export 

pump, whereas divalent bile salts and anionic conjugates are excreted via the canalicular 

conjugate export pump. The phospholipid export pump facilitates excretion of 

phosphatidylcholine, which forms mixed micelles in bile together with bile salts and 

cholesterol. Cationic drugs are excreted by the multidrug export pump. Basolateral isoforms of 

the multidrug-resistance-associated proteins MRP3 and MRP4 provide an alternative route for 

the elimination of bile salts and non-bile-salt anionic conjugates from hepatocytes into the 

systemic circulation. Abbreviations: AE2, chloride–bicarbonate anion exchanger isoform 2;; 

BS-, bile salts; BSEP, canalicular bile-salt export pump; Cl-, chloride ions; GSH, glutathione, 

HCO3-, bicarbonate ions; MDR1, multidrug export pump; MDR3, phospholipid export pump; 

MRPs, multidrug-resistance-associated proteins; MRP2, canalicular conjugate export pump; 

Na+, sodium ions; NTCP, basolateral sodium taurocholate cotransporter; OA-, anionic anions 

or conjugates; OATPs, organic anion transporting proteins; OC+, cationic drugs; OST, organic 

solute transporter; PC, phosphatidylcholine (Geier et al. 2006). 

 

 

The hepatobiliary transport system is composed of membrane proteins localized either on 

the basolateral/sinusoidal membrane, in communication with blood vessels, or on the 
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apical/canalicular membrane, which faces to bile canaliculi (Geier et al. 2006; Crocenzi et al. 

2012). 

At the level of basolateral membrane, the hepatic uptake of bile acids from sinusoidal blood 

is mediated by two main transporter proteins: i) the high-affinity sodium-dependent bile-salt 

transporter (NTCP) and ii) a family of multispecific organic anion transporters (OATPs) (Geier 

et al. 2006). On the other hand, the sinusoidal membrane also contains efflux pumps, such as 

the multidrug-resistance-associated proteins (MRPs) MRP3 and MRP4. These two proteins are 

normally expressed in hepatocytes at very low levels, but during cholestasis they are 

upregulated and account for reversed bile-acid transport back into the plasma (Geier et al. 

2006). In addition, cholestatic conditions also upregulate the expression of a heterodimeric 

organic solute transporter (OST–OST) for bile acids and sterols.  

At the canalicular level, most of the transporter proteins are ATP-binding cassette (ABC) 

transporters that are either multidrug resistance (MDR) P-glycoproteins (the ABCB subfamily) 

or MRPs (the ABCC subfamily) (Geier et al. 2006). There are several canalicular transport 

systems in both rodents and humans. A bile-salt export pump (BSEP/ABCB11) transports 

monovalent bile acids, whereas a conjugate export pump (MRP2/ABCC2) transports divalent 

bile acids and various other amphipathic conjugates, including bilirubin diglucuronide and 

glutathione. There is also a multidrug export pump (MDR1/ABCB1) for transporting 

amphipathic organic cations (e.g. various drugs), and a phospholipid flippase (MDR3 in 

humans and Mdr2 in rodents) for phosphatidylcholine translocation. Additionally, the chloride–

bicarbonate anion exchanger isoform 2 (AE2) is also present in the canalicular membrane, 

which is a functionally relevant ATP-independent transport system responsible for bicarbonate 

excretion. 

Among all these components of the hepatobiliary transport system, a crucial role during 

cholestasis is played by the multidrug resistance-associated protein 2 (MRP2/Mrp2) (Elferink 

and Paulusma 2015).  
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1.4  The Mrp2 protein 

1.4.1 Mrp2 protein expression and function 

The multidrug resistance-associated protein 2 (Mrp2) is an ABC transporter localized 

exclusively to the apical membrane domain of polarized epithelial cells (Gu and Manautou 

2010; Chai et al. 2015). Specifically, this transporter protein is expressed at the canalicular 

membrane of hepatocytes, the proximal tubule epithelial cells in kidney, and the brush-border 

membrane in small intestine for excreting conjugated organic anions, including bilirubin, bile 

acid divalent conjugates and drugs (Gu and Manautou 2010). The localization of Mrp2 to the 

apical membrane of various polarized cells favors the function of this efflux pump in the 

terminal phase of detoxification, secreting conjugated endogenous and xenobiotic substances 

(Nies and Keppler 2007). Substrates for Mrp2 include a wide range of compounds, such as 

conjugates of lipophilic substances with glutathione, glucuronate, or sulfur containing 

compounds, as exemplified by leukotriene C4, bilirubin glucuronosides, and some steroid 

sulfates (Gu and Manautou 2010). Importantly, Mrp2 can also transport uncharged compounds 

in cotransport with glutathione, thus modulating the pharmacokinetics of many drugs. Hence, 

hepatic Mrp2 is an important driving force in bile formation and flow.  

Deficiency of Mrp2 causes an increased concentration of bilirubin glucuronosides in blood, 

due to basolateral egress in the absence of proper biliary elimination. Accordingly, the absence 

of functional Mrp2 from the canalicular membrane causes conjugated hyperbilirubinemia, as 

observed in the Dubin-Johnson syndrome in humans (Gu and Manautou 2010; Nies and 

Keppler 2007), in GY/TR- EHBR rats (Paulusma et al. 1996) and in Mrp2-/- mice (Chu et al. 

2006). 

Previous studies have shown that within cholestatic livers a substantial fraction of Mrp2 is 

localized in subapical vesicles, thereby largely shutting off canalicular secretion (Elferink and 

Paulusma 2015; Recknagel et al. 2012; Chai et al. 2015). However, the mechanisms by which 

endocytosis of hepatocellular membrane transporters occurs in cholestasis remain poorly 

understood, partly due to their multifactorial nature. At present, this subject is under active 

investigation. 
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1.4.2 Mrp2 protein localization in hepatocytes relies on its interaction with intact 

cytoskeleton 

Proinflammatory conditions and oxidative stress caused by infection have a massive 

influence on the hepatic secretory function, largely due to the retrieval of canalicular membrane 

trasporters, such as Mrp2 (Crocenzi et al. 2012; Roma et al. 2008; Copple et al. 2010; Geier et 

al. 2006). Mostly, plasma membrane localization of transporter proteins requires close 

interactions between the plasma membrane and the underlying cytoskeleton (Crocenzi et al. 

2012). Such interactions involve proteins that cross-link membrane proteins with filaments of 

actin (F-actin). In line with this, canalicular transporter internalization was reported under 

conditions of disruption of the F-actin cytoskeletal integrity by administration of the poison 

phalloidin (Rost et al. 1999).  

The ezrin-radixin-moesin (ERM) family, which consists of tether proteins that act as cross-

linkers between plasma membrane and F-actin, were reported to be involved in anchoring bile 

transporter proteins in their specific location (Roma et al. 2008; Crocenzi et al. 2012). Indeed, 

the interaction with one or more ERM proteins seems essential for the proper localization of 

transporter proteins in general (Crocenzi et al. 2012), and of Mrp2 protein in particular (Elferink 

and Paulusma 2015), in specific membrane domains.  

ERM proteins are not static tether proteins, but possess two states. In the inactive state, when 

the ERM binding domain interacts with its own PSD-95/Drosophila discs large/ZO-1 domain 

(PDZ), the interaction between ERM proteins and other PDZ-containing proteins is prevented. 

Upon phosphorylation, the internal interaction is lost and active ERM proteins can bind to PDZ 

domains of other target proteins (Jiang et al. 2014).  

The expression of individual ERM proteins varies within different tissues (Jiang et al. 2014). 

Interestingly, the most abundantly expressed ERM proteins in hepatocytes are radixin and ezrin 

(Elferink and Paulusma 2015). A broad literature supports the importance of both radixin 

(Kojima et al. 2008; Kikuchi et al. 2002; Sekine et al. 2011) and ezrin (Chai et al. 2015; Elferink 

and Paulusma 2015) functions in regulating hepatic Mrp2 protein localization, both in humans 

and in rodents. Intriguingly, the active phosphorylated status of radixin and ezrin has opposite 

effects in hepatocytes. While phosphorylated radixin (Thr564) associates with Mrp2 at the 

canalicular plasma membrane (Sekine et al. 2011), phospho-ezrin protein (Thr567) is associated 

with a redirection of Mrp2 protein to intracellular vesicles (Chai et al. 2015).  

Given the important roles of these proteins in the regulation of Mrp2 protein localization, 

the phosphorylation status of radixin and ezrin proteins has been increasingly studied in 

experimental models of cholestasis (Anwer 2014; Sekine et al. 2011; Chai et al. 2015). 
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Collectively, these studies elucidated in detail how both inflammatory stress and the consequent 

oxidative stress provoke ERM protein modifications in their phosphorylation state, thus leading 

to Mrp2 internalization. Importantly, these studies showed how the protein kinase C (PKC) 

plays a key role in mediating Mrp2 withdrawal to endocytic compartments. On one hand, PKC 

is responsible for the activation of protein phosphatase-1 (PP-1), which in turn de-

phosphorylates radixin protein (Anwer 2014; Sekine et al. 2011); on the other, PKC directly 

phosphorylates ezrin protein, leading to Mrp2 retrieval into cytosolic compartments (Chai et al. 

2015) (Fig. 4). However, the role of the different PKC isoforms in regulating rapid changes in 

Mrp2 localization still remains to be fully elucidated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Schematic representation of the PKC-mediated regulation of Mrp2 protein 

internalization in hepatocytes. Under cholestatic conditions, the protein kinase C (PKCplays 

an important role in regulating the phosphorylation status of ezrin and radixin tether proteins, 

leading to Mrp2 protein retrieval towards endocytic compartments. On one hand, PKC directly 

phosphorylates ezrin (left side of schematic); on the other, PKC activates the protein 

phosphatase-1 (PP-1), which in turn is responsible for radixin de-phosphorylation (right side of 

schematic). In both ways, PKC activation in cholestatic conditions provokes Mrp2 withdrawal 

from the canalicular membrane of hepatocytes. (Anwer 2014; Sekine et al. 2011; Chai et al. 

2015) 
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1.4.3 cAMP controls Mrp2 protein localization in hepatocytes 

The internalization of Mrp2 in cholestatic conditions, which is mainly mediated by ERM 

proteins, was previously shown to be spontaneously reversed if the cholestatic insult is transient 

(Crocenzi et al. 2012). Initially, this spontaneous recovery was hypothesized to occur by a 

microtubule-dependent re-targeting of the endocytosed transporters to the canalicular 

membrane (Mottino et al. 2005). Based on this, a number of experimental approaches have 

indicated the key role of cyclic AMP (cAMP) in counteracting cholestasis-induced Mrp2 

internalization (Mottino et al. 2002; Park et al. 2014; Schonhoff et al. 2008). For example, it 

has been proven that the initial drop in both bile flow and transport activity of Mrp2 occurring 

in the acute phase of drug-induced cholestasis can be partially prevented by administering 

cAMP as its freely permeable precursor, dibutyryl-cAMP (Mottino et al. 2002; Roelofsen et al. 

1998). More significantly, cAMP extensively shortened the spontaneous restoration to 

normality of bile flow, Mrp2 function, and the localization that spontaneously occurs during 

the recovery phase (Mottino et al. 2002). A similar anti-cholestatic mechanism was afforded by 

silibinin, the active component of the hepatoprotector silymarin, most likely due to its capability 

to inhibit cAMP-degrading phosphodiesterases (Crocenzi et al. 2005).  

The major molecular mechanisms by which cAMP protects hepatocytes from cholestatic 

damage have been partially unraveled by Sánchez Pozzi’s research group, which used a model 

of drug-induced cholestasis in rodents (Zucchetti et al. 2011; Zucchetti et al. 2013). In these 

studies, the mechanism proposed for cAMP-dependent prevention of cholestatic damage 

involves two distinct molecular pathways: i) a protein kinase A (PKA)-dependent and 

microtubule-independent mechanism and ii) the exchange-protein activated by cAMP (Epac)-

mediated microtubule-dependent pathway. 

However, the signaling pathways mediating cAMP-induced Mrp2 translocation in hepatic 

cells still remain unclear, and contradictory results exist (Crocenzi et al. 2012). This could be 

due to the fact that the experimental results obtained rely on the use of chemical inhibitors of 

the signaling molecules studied, which to some extent may possess cross-reactivity. 

Nonetheless, cAMP-stimulated translocation of Mrp2 has been suggested to be mediated by 

phosphatidylinositol 3-kinases (PI3Ks) (Crocenzi et al. 2012; Schonhoff et al. 2008). 
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1.5  Phosphatidylinositol 3-kinases 

1.5.1 The PI3K family 

Phosphatidylinositol 3-kinases (PI3Ks) are members of a unique and conserved family of 

enzymes responsible for the phosphorylation of proteins and lipids. Little is known about the 

protein kinase function of PI3Ks (Thomas et al. 2013), while the lipid kinase activity of these 

enzymes has been extensively studied (Kok et al. 2009; Vanhaesebroeck et al. 2010; Cantley 

2002). PI3Ks are renowned as catalysts that phosphorylate phosphatidyl-inositol lipids at the 

D3 position of the inositol ring (Cantley 2002; Engelman et al. 2006). PI3Ks are usually 

activated in response to cell stimulation by growth factors and hormones, and they contribute 

to many intracellular processes including cell survival, cell proliferation, metabolism, cell 

growth, migration and intracellular trafficking (Braccini et al. 2015; Engelman et al. 2006; 

Hirsch et al. 2007; Beretta et al. 2015). PI3K-produced 3-phosphoinositides regulate 

intracellular processes through the recruitment of signaling proteins at the plasma membrane, 

whereby they become activated (Cantley 2002). 

According to their lipid substrate preferences and to their structural features, PI3K isoforms 

have been divided into three classes (class I, class II and class III) (Engelman et al. 2006; 

Vanhaesebroeck et al. 2010). Although recent studies have pointed to a role of class II and III 

PI3Ks in vesicular trafficking (Franco et al. 2014) and cell growth (Odorizzi et al. 2000), class 

I PI3Ks still represent the best characterized subfamily (Fig. 5). 

Class I PI3Ks, in vivo, primarily convert phosphatidylinositol-4,5-bisphosphate (PIP2) into 

phosphatidylinositol-3,4,5-trisphosphate (PIP3), which interacts with numerous signaling 

proteins with pleckstrin-homology (PH) domains. Thus, PIP3 is known to bring the protein 

serine-threonine kinases Akt (alternatively called protein kinase B, PKB) and phosphoinositide-

dependent kinase 1 (PDK1) into proximity, facilitating Akt phosphorylation on Thr308 by 

PDK1 (Alessi et al. 1996). Subsequently, Akt requires a second mTORC2-dependent 

phosphorylation on Ser473 for becoming activated (Sarbassov et al. 2005). Fully active Akt, in 

turn, phosphorylates and regulates compound proteins, such as tuberous sclerosis complex 

(TSC), glycogen synthase kinase 3 beta (GSK, Rac, bcl-2-antagonist of cell death (BAD), 

p70S6K and forkhead-box-protein O (FOXO), thus triggering multiple intracellular signaling 

cascades (Cantley 2002; Engelman et al. 2006). All these PI3K-induced signaling pathways are 

controlled and limited by protein phosphatases, which degrade PIP3. Of note, Src homology 2 

(SH2)-containing-phosphatases (SHIP1 and SHIP2) and phosphatase and tensin homolog 
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(PTEN) dephosphorylate PIP3 in positions D5 and D3 respectively, thus terminating PI3K 

signaling (Cantley 2002; Laurent et al. 2014). 

All class I PI3Ks are heterodimers of a p110 catalytic subunit and a regulatory subunit. 

Depending on the activation mechanism and the differential association with regulatory 

subunits, class I PI3Ks have been grouped in two subfamilies, class IA and class IB 

(Vanhaesebroeck et al. 1997; Engelman et al. 2006; Vanhaesebroeck et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Class I PI3K family. Four different class I PI3Ks are expressed in mammalian cells. 

Depending on their activation mechanisms, they have been divided into two subtypes: class IA 

PI3Ks (PI3K) are activated mainly by membrane-bound tyrosine kinase receptor (TKRs), 

and class IB PI3K is exclusively activated by G protein-coupled receptors (GPCRs), generally 

of the Gi subtype. Class IA PI3Ks bind to the adaptor subunit p85, which in turn is recruited by 

its phosphotyrosine binding domain to phosphorylated receptors or adaptor proteins like insulin 

receptor substrate (IRS). Class IB PI3K binds to adaptor/regulators like p101 or p84/87 and to 

free G liberated by active GPCRs. All class I PI3Ks phosphorylate PIP2 to produce PIP3, a 

secondary messenger membrane lipid that functions as a docking site to a large number of 

proteins containing the pleckstrin homology (PH) domain. These effectors in turn control 

various cellular responses. (Hirsch et al. 2007) 

 

 

Class IA catalytic subunits (p110, p110 and p110) bind to the p85 type of regulatory 

subunits, containing SH2 domains which are able to bind phosphorylated tyrosine on receptor 

tyrosine kinases (RTKs) (Burke and Williams 2013) and on adapters, such as insulin receptor 

substrate proteins (IRS-1/2) (Hirsch et al. 2007). On the contrary, class IB catalytic subunit 
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(p110) binds two other regulatory subunits, p101 and p84/87, which facilitate the direct 

binding with G subunit of trimeric G proteins. Recently, the p110 isoform of class IA PI3K 

has been found regulated not only by p85 regulatory subunit, but also by binding directly to G 

subunits, thus orchestrating signals from G protein-coupled receptors (GPCRs) as well as from 

RTKs (Ciraolo et al. 2008; Engelman et al. 2006; Vanhaesebroeck et al. 2010; Guillermet-

Guibert et al. 2008).  

The differential tissue distribution of PI3K isoforms is a key factor in the distinct biological 

functions of PI3Ks. For example, p110 and p110 are ubiquitously expressed, and their 

complete genetic inactivation results in embryonic lethality (Bi et al. 1999; Bi et al. 2002), 

suggesting a crucial and non-redundant role for the two enzymes in regulating metabolic and 

house-keeping functions such as cell survival and proliferation. On the contrary, mice deprived 

of p110 or p110 expression are viable and fertile, although they show severely altered 

phenotypes when their immune system is acutely stressed (Ghigo and Hirsch 2008). p110 and 

p110 have indeed a peculiarly restricted tissue distribution, being abundant in white blood cells 

(Ghigo and Hirsch 2008; Kok et al. 2009). Given their expression pattern limited to immune 

cells, p110 and p110 have been initially studied preferentially in models of acute and chronic 

inflammatory diseases, as they have been suggested “partners in crime” in these pathologies 

(Rommel et al. 2007).  

The observation that neutrophil recruitment and dendritic cell movement are attenuated in 

mice lacking a functional p110 subunit demonstrated early on the crucial role of this enzyme 

in promoting inflammation via regulating the in vivo leukocyte migration towards chemokines 

(Hirsch et al. 2000; Del Prete et al. 2004). Inhibition of PI3K was also found to alleviate 

symptoms of rheumatoid arthritis, allergic disease and systemic lupus mouse models, mainly 

due to its involvement in the control of the replenishment of inflammatory cells at sites of 

inflammation (Wymann and Solinas 2013). Nonetheless, a growing body of evidence indicates 

a complex pattern of expression of PI3K, that includes the presence of small amounts of this 

enzyme in tissues other than immune cells, such as heart, smooth muscles, adipose tissue and 

brain (Patrucco et al. 2004; Becattini et al. 2011; Ghigo et al. 2012; Perino et al. 2011; Perino 

et al. 2014; Rückle et al. 2006). Of particular interest, in these compartments where the enzyme 

is less prominently expressedPI3Kwas found as a key mediator of cellular responses to stress 

conditions, mainly induced by inflammation. For this reason, PI3K has gained increasing 

attention in the last years as a promising drug target for the treatment of inflammatory diseases, 
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to the extent that PI3K inhibitor could be optimistically considered as an ‘aspirin of the 21st 

century’ (Rückle et al. 2006). 

1.5.2 PI3K: Kinase-dependent and -independent functions 

The catalytic function of PI3K is well known to mediate a wide variety of biological 

processes, such as inflammation, cardiac remodeling, dendritic cell migration, thrombus 

formation and allergic responses (Costa et al. 2011; Hirsch et al. 2000; Nienaber et al. 2003; 

Del Prete et al. 2004; Hirsch et al. 2001; Wymann and Solinas 2013). However, a new layer of 

complexity in the functions of PI3K has emerged in the past two decades, indicating that this 

protein functions not only as a kinase, but also as a scaffold protein, activating other signaling 

molecules by protein-protein interaction (summarized in Hirsch et al. 2009). Remarkably, 

PI3K enzyme can form a multiprotein complex containing cAMP-degrading 

phosphodiesterases, thus negatively regulating cAMP pools (Patrucco et al. 2004; Ghigo et al. 

2012; Schmidt et al. 2013; Perino et al. 2011). Specifically, it has been well described in 

cardiomyocytes that PI3Kdirectlyinteracts with the phosphodiesterase 3B (PDE3B) isoform, 

thus controlling cAMP-induced heart contractility (Patrucco et al. 2004). Although the specific 

components of the  PI3K-containing complex are yet to be identified, the adaptors p84/87 and 

p101 might directly interact with PDE3B, thus providing a further layer of action that modulates 

both p110-kinase-dependent and -independent functions (Fig. 6) (Hirsch et al. 2009; Voigt et 

al. 2006). 

However, further studies have recently elucidated the involvement of other interactors in 

the PI3K-PDE3B macromolecular complex. In cardiomyocytes, for example, p110 was found 

to act as an A-kinase anchoring protein (AKAP), tethering PDE3B near its activator protein 

kinase A (PKA) (Perino et al. 2011), an effect that is important for the negative feedback 

regulation of cAMP. In addition, different lines of evidence have shown the involvement of Akt 

for PDE3B activation, especially in adipocytes where this phosphodiesterase is highly 

expressed (Degerman et al. 2011; Baragli et al. 2011; Ahmad et al. 2007). Since PI3K catalytic 

function leads to Akt activation, the involvement of PI3K kinase-dependent function for the 

Akt-mediated PDE3B activation has been investigated. Accordingly, a PI3K/Akt-mediated 

activation of PDE3B has been described in the brain (Schmidt et al. 2013; Perino et al. 2014; 

Huang et al. 2015).  
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Figure 6: Kinase-dependent and -independent functions of p110. (a) G protein-coupled 

receptor (GPCR)-dependent p110 activation triggers Akt kinase activation through PIP3 

production. The catalytic activity of p110leads to different intracellular responses, such as 

cardiac remodeling, inflammation, endothelial progenitor cell (EPC) migration and thrombus 

formation. (b) The scaffolding role of p110 in modulating cyclic AMP (cAMP) levels through 

phosphodiesterase 3B (PDE3B) activation. p110 and p84/87 bind to PDE3B in a 

macromolecular complex, in which other members are yet to be identified (as represented by a 

question mark). PDE3B-mediated cAMP degradation causes a decrease in heart contractility. 

(Hirsch et al. 2009) 

 

 

Altogether, these studies underlined that there is a connection between PI3K kinase-

dependent and -independent functions, previously described as distinct signaling pathways. 

However, the interaction partners identified to date provide only a hint of a potentially larger 

set of associations and their functional relevance.  New studies will be essential to help uncover 

additional binding partners of PI3K in health and disease.  
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1.6 Aim of the study 

Sepsis-induced organ damage and failure in critically ill patients is a condition involving 

both infection and inflammation, that nowadays remains associated with high mortality and 

represents a major clinical challenge (La Suarez De Rica et al. 2016; Lagu et al. 2012). Notably, 

the liver is a key organ in the initiation and the promotion of multiple organ failure (MOF) 

during sepsis, playing an active role in the clearance of systemic endotoxins, bacteria and 

vasoactive byproducts (Hirata et al. 2001).  

In the last 20 years, genetic and pharmacologic inhibition of PI3K provided a large body 

of evidence for the involvement of this enzyme in inflammatory reactions (Wymann and 

Solinas 2013). Remarkably, the role of PI3K in sepsis has been proposed in previous studies 

with the lipopolysaccharide endotoxin (LPS), since PI3K-deficient mice developed less LPS-

induced lung injury (Yum et al. 2001). Furthermore, genetic and pharmacologic inhibition of 

PI3K has been demonstrated to prevent MOF and to improve survival in the clinically relevant 

mouse cecal ligation and puncture (CLP) sepsis model (Martin et al. 2010). Interestingly, in 

this particular study the authors found that the lack of PI3K catalytic activity is diminishing 

sepsis-induced liver damage. In 2012, Recknagel et al. found that PI3K-deficient mice were 

protected from liver damage in another polymicrobial sepsis model, the peritoneal 

contamination and infection (PCI). Moreover, in vitro studies with the human HepG2 

hepatocyte cell line revealed that pharmacological inhibition of PI3K suppressed the 

inflammatory-induced loss of pseudovilli and membrane-bound Mrp2, suggesting a critical role 

of PI3K in the control of cytokine-induced cholestasis (Recknagel et al. 2012). 

On the basis of these findings, we hypothesized that PI3K could mediate hepatocyte-

specific inflammatory responses, being involved in the pathogenesis of cholestasis. ex vivo and 

in vitro studies were performed to establish the role of PI3K exclusively within the liver 

parenchyma. In order to inhibit the catalytic activity specifically, the PI3K inhibitor AS605240 

was used (Camps et al. 2005). In addition to this pharmacological approach, primary 

hepatocytes derived from mice lacking or possessing a kinase inactive PI3K protein (Hirsch 

et al. 2000; Patrucco et al. 2004) were used for investigating and distinguishing PI3K kinase-

dependent and -independent functions. This study is aimed to explore the role of PI3K in the 

inflammatory-induced Mrp2 retrieval from the canalicular membrane of hepatocytes. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and reagents  

Table 2: Chemicals and reagents 

PRODUCT SOURCE CAT. NO. 

2-Mercaptoethanol Sigma M6250 

Acetic Acid 100% Roth 6755 

Acrylamide/bisacrylamide mixture 

Rotiphorese® Gel 30 

Roth 3029 

Amersham Hybond P 0.45 PVDF membrane GE Healthcare Life 

Sciences 

10600023 

Ampicillin Roth K029 

AS605240 Alexis Biochemicals ALX-270462 

BLOTTO milk powder Roth T145 

Bovine serum albumin (BSA) pH 7.0 PAA K41-001 

Bromophenol Blue Sigma B0126 

CaCl2 AppliChem, 141221 

Cell Strainer 100m, Individual Package VWR International 10199-658 

Collagen Type I solution from rat tail Sigma C3867-1VL 

D(+)-Glucose anhydrous Applichem A3666 

Dimethylsulfoxide (DMSO), anhydrous, 

≥99.9% 

Sigma 276855 

Dulbecco’s Modified Eagle’s Medium - high 

glucose 

Sigma 6429 

EDTA Applichem A2937 

Ethanol Roth 9065 

Fetal bovine serum (FBS) Sigma F2442 

GammaBind G Sepharose GE Healthcare Life 

Science 

17088501 

Glycine Roth 3187 

H2DCFDA Invitrogen D399 

HCl 37% Roth 4625 
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Hemin Sigma H9039 

HEPES Sigma H3375 

Isoflurane Abbott 03-A878-R6 

KCl Roth 6781 

KH2PO4 Sigma NIST200B 

Leupeptin AppliChem A2183 

Lipopolysaccharides (LPS) from Escherichia 

coli O111:B4 

Sigma L2630 

Liver Digest Medium Gibco 17703-034 

Liver Perfusion Medium Gibco 17701-038 

Methanol Roth 8388 

MgCl2 Roth HN03 

N-Formyl-Met-Leu-Phe (fMLP) Sigma F3506 

N,N,N,N-Tetramethylethylendiamin (TEMED) Applichem A1148 

Na2HPO4 Roth T877 

NaCl Roth 9265 

NaF Millipore 106449 

NP-40 Surfact-Amps™ Detergent Solution Thermo Scientific™ 85124 

Page Ruler™- Prestained Protein Ladder Fermentas SM0671 

Pefablock/AEBSF-Hydrochlorid AppliChem A1421 

Penicillin/Streptomycin (Pen/Strep) Sigma P0781 

Pepstatin A Sigma P5318 

Percoll Sigma GE17-0891-02 

PMSF Sigma 329986 

Protease inhibitor Complete Roche Applied 

Science 

11 836 153 001 

rm IFN Immunotools 12343536 

rm IL-1 Immunotools 12340013 

rm TNF Immunotools 12343014 

Salbutamol Sigma S8260 

SDS solution 20 % pure Applichem A3942 

Sepharose CL4B Sigma 086K1317 

Sodium azide 0.1M solution Sigma 08591 
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Sodium deoxycholate Sigma 302-95-4 

Sodium orthovanadate Sigma S6508 

Tris(hydroxymethyl) aminomethan (Tris) Applichem 131940 

Triton™ X-100 Sigma T8787 

Trypan Blue Biorad 1450021 

Trypsin-EDTA (0.25%), phenol red Thermo Scientific™ 25200056 

Tryptone Sigma T7293 

Tween® 20 SERVA 

Electrophoresis 

37470 

William's medium E Merk Millipore F 1115 

Yeast Extract Sigma 92144 

 

 

2.1.2 Buffers and Solutions 

For plasmid DNA amplification and purification: 

- 5x KCM buffer:  0.5M KCl, 0.15M CaCl2, 0.5M MgCl2. 

- LB medium: 10g/l NaCl, 10g/l tryptone, 5g/l yeast extract, pH 7.0. 

- LB agar: 10g/l NaCl, 10g/l tryptone, 5g/l yeast extract, 20g/l agar, pH 7.0. 

- TE-buffer: 10mM Tris-HCl (pH 7.5), 1mM EDTA. 

 

For preparation of cell lysates: 

- Lysis buffer #1 (for organ lysates and for immunoprecipitation experiments): 

120mmol/L NaCl, 50mmol/L Tris-HCl pH 8, 0.1% Triton X-100, 4% Protease inhibitor 

Complete (Roche), 1mM PMSF 50mM NaF, 1mM sodium orthovanadate, and 10mM 

Na2HPO4. 

- Lysis buffer #2 (RIPA buffer, for cell lysates): 50mM Tris-HCl pH 8, 150mM NaCl, 

1% (v/v) NP-40, 0.5% (v/v) sodium deoxycholate, 0.1% (w/v) SDS, 100μg/ml Pefa-

Block, 1μg/ml pepstatin A, 10μM sodium orthovanadate, 1μg/ml leupeptin. 

 

For SDS-PAGE and immunoblotting: 

- 5x Laemmli buffer (SDS-PAGE sample buffer): 6% SDS,  25% β-mercaptoethanol, 

32% (v/v) Glycerol, 16% 0.5M Tris-HCl pH 6.8,  a spatula tip of bromphenol blue. 

- Separation gel buffer: 2M Tris-HCl pH 8.8. 
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- Stacking gel buffer: 0.5M Tris-HCl pH 6.8. 

- 10x Running buffer: 2M glycine, 0.25M Tris, 35mM SDS. 

- 10x TBS-Tween (TBS-T): 100mM Tris-HCl pH 7.6, 1M NaCl, 1% (v/v) Tween 20. 

- Transfer buffer for immunoblotting: 48mM Tris, 39mM Glycin, 0.037% (v/v) SDS, 

15% Methanol. 

- Blocking solution: 1% BSA in 1x TBS-T. 

- Primary antibody solution: 1x TBS-T containing 1% BSA, primary antibody (diluted 

as listed in table 4), 0.05% NaN3. 

- Secondary antibody solution: 1x TBS-T containing 5% BLOTTO milk powder and 

secondary antibody diluted 1:10000. 

- Stripping solution: 62.5mM Tris-HCl pH 6.7, 2% SDS, 0.7% β-mercaptoethanol. 

 

For cell culture, stimulations and transient transfections:  

- 10x Phosphate Buffered Saline (PBS): 1.37M NaCl, 27mM KCl, 100mM Na2HPO4, 

18mM KH2PO4, pH 7.4-7.5 (with HCl). 

- 2x HBS solution: 280mM NaCl, 10mM KCl, 1.5mM Na2HPO4, 12mM D-Glucose, 

50mM HEPES. NaOH was used to bring the solution to pH 7.05. 

- Heme stock solution: solved in 0.2 M NaOH, pH 7.4 (with sterile 0.2M HCl). 

 

For ROS detection: 

- HEPES-CaCl2 solution: 10mM HEPES pH 7.5, 100mM CaCl2. 

 

For primary hepatocyte isolation: 

- Collagen solution: 0.02N Acetic Acid, 1.2% Collagen Type I solution from rat tail. 
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2.1.3 Kits 

Table 3: Kits 

PRODUCT SOURCE CAT. NO. 

cAMP Enzymeimmunoassay BiotrakTM (EIA) System GE Healthcare RPN225 

cAMP GloAssayKit Promega PRV1501 

   

First strand cDNA synthesis kit Thermo Scientific™ K1612 

Maxima SYBR Green/ROX qPCR Master Mix (2X) Thermo Scientific™ K0221 

NucleoBond PC 500 Macherey-Nagel 740574 

RNeasy® Mini Kit Qiagen 74104 

Western Lightning® Plus-ECL, ECL Substrate PerkinElmer NEL105001EA 

 

2.1.4 Antibodies 

Table 4: Primary antibodies 

ANTIBODY CAT. NO. SOURCE DILUTION TECHNIQUE TYPE (IgG) 

Phospho-Akt 

(Ser473) 

9271 Cell Signaling 

Technology, 

Danvers, MA 

1:1000 WB Rabbit 

Akt (pan) 9272 Cell Signaling 

Technology, 

Danvers, MA 

1:1000 WB Rabbit 

Phospho-CREB 

(Ser133) 
9198 Cell Signaling 

Technology, 

Danvers, MA 

1:1000 WB Rabbit 

Anti-β-Actin A5316 Sigma Aldrich, 

Steinheim, DE 

1:5000 WB Mouse 

Phospho-Ezrin 

(Thr567)/Radixin 

(Thr564)/Moesin 

(Thr558) 

3141 Cell Signaling 

Technology, 

Danvers, MA 

1:1000 WB Rabbit 

Ezrin 32759 Santa Cruz 

Biotechnology, 

Santa Cruz, CA 

1:500 WB Mouse 

Radixin C4G7 Cell Signaling 

Technology, 

Danvers, MA 

1:1000 WB Rabbit 

Anti-Heme 

Oxygenase 1 

137749 Abcam, 

Cambridge, UK 

1:1000 WB Rabbit 

PKCα Antibody 

(C-20) 

208 Santa Cruz 

Biotechnology, 

Santa Cruz, CA 

1:200 WB Rabbit 
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PDE3B  Kind gift from  

E. Hirsch 

(University of 

Torino, Italy) 

1:100 WB Rabbit 

Anti-his-p110 γ clone 641 Homemade 1:100 IP (human cells) Mouse 

N-term-p110 γ -

GST 

 Kind gift from  

E. Hirsch 
(University of 

Torino, Italy) 

1:100 IP (mouse cells) Mouse 

Anti-p110γ, H1 

(Hybridoma 

supernatant) 

 Homemade 1:1000 WB Mouse 

Mrp2 20766 Santa Cruz 

Biotechnology, 

Santa Cruz, CA 

1:50 FRIL Rabbit 

CD11b Antigen 

FITC 

11-0112-

41 

Thermo 

Scientific 

eBioscience™ 

1:20 FACS Mouse 

 

 

Secondary horseradish peroxidase (HRP)-labelled antibodies (anti-rabbit and anti-mouse) 

were obtained from KPL and used at a concentration of 0.1μg/ml for Western Blot detection. 

 

 

2.1.5 Primers for qPCR 

Table 5: qPCR primer sequences 

 

 

 

 

 

GENE PRIMER SEQUENCE IN 5´ TO 3´-DIRECTION AMPLICON (bp) 

Hmox-1 fwd CATTGAGCTGTTTGAGGAGC 113 

Hmox-1 rev CAGTATCTTGCACCAGGCTA 113 

Actb fwd GCTCTTTTCCAGCCTTCCTT 92 

Actb rev CGGATGTCAACGTCACACTT 92 
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2.1.6 Cell lines 

 

Table 6: Eukaryotic cell lines 

CELL LINE ORIGIN CULTIVATION MEDIUM 

HEK293 Human Embryonic Kidney 293 cells DMEM, supplemented with 10% 

heat-inactivated FBS and 1% 

Pen/Strep 

HepG2 Human hepatoblastoma cells, derived from 

the liver tissue of a 15-year-old Caucasian 

American male with a well-differentiated 

hepatocellular carcinoma 

DMEM, supplemented with 10% 

heat-inactivated FBS and 1% 

Pen/Strep 

Hepa 1-6 Mouse hepatoma cells, derived from 

BW7756 tumour in a C57L mouse 

DMEM, supplemented with 10% 

heat-inactivated FBS and 1% 

Pen/Strep 

BV2 Mouse microglial cells, expressing a v-

raf/v-myc oncogene carrying retrovirus (J2) 

DMEM, supplemented with 10% 

heat-inactivated FBS and 1% 

Pen/Strep 

 

2.1.7 Bacteria and DNA plasmids 

For amplifying DNA plasmids, the bacterial strain Escherichia coli XL-1-Blue was used.  

 

 

Table 7: DNA plasmids 

VECTOR CONSTRUCT PROTEIN EXPRESSED SOURCE 

pcDNA3.1 Human p110γ-Myc E. Hirsch (University of Torino, 

Italy) 

pcDNA3.1 Human Ezrin-Myc H. Morrison (University of Jena, 

Germany) 

pcDNA3.1 Human Radixin-Flag H. Morrison (University of Jena, 

Germany) 

 

 

 

2.1.8 Animals 

PI3Kγ knockout (KOᵧ) and PI3Kγ kinase-dead (KDᵧ) mice, lacking or possessing a kinase 

inactive PI3Kγ protein respectively, were obtained (Hirsch et al. 2000; Patrucco et al. 2004). 

Mice were bred on C57BL/6J background for more than 10 generations and C57BL/6J wild-
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type mice were used as controls. Mice were group housed, provided free access to standard 

chow and water in a controlled facility and maintained with 12h light and dark cycles. Ambient 

temperature was 29±1°C during the whole experimental period. Experiments were approved by 

the committee of the Thuringian State Government on Animal Research. 

2.2 Methods 

2.2.1 Plasmid DNA amplification and purification 

For E.coli transformation, the KCM method was performed (Chung et al. 1989). Briefly, 

20μl 5x KCM buffer, 80μl ddH2O and 1μg of plasmid DNA were mixed on ice. Then, 100μl of 

competent bacteria cells (stored at -80°C) were added and incubated on ice for 40min. 

Following another incubation step at room temperature (RT) for 10min, 1ml of LB medium 

was added and incubated at 37°C for 1h shaking (225 rpm). Afterwards, 50μl of this mixture 

were plated on LB agar containing the antibiotic ampicillin (Amp). LB agar plates were 

incubated at 37°C overnight, and the next day a single colony was inoculated in 100ml LB 

medium (+Amp) for the selection of resistant bacteria cells expressing the desired DNA 

plasmid. Bacteria were grown at 37°C shaking (225 rpm) overnight.  

For purification of plasmid DNA, the kit NucleoBond PC 500 was used following 

manufacturer’s instructions. The DNA pellet was washed with 70% ethanol, dried and resolved 

in an appropriate volume of TE-buffer. DNA concentration and purity were determined by 

absorbance measurements at 260 nm and 280 nm. 

2.2.2 Cell transient transfections 

HEK293 cells were plated in 100mm Petri dishes at low density (1 million of cells/dish) 

and transfected 8h later with the indicated plasmids using the calcium phosphate technique. 

Briefly, a DNA-containing mix was prepared (for each plate 450μl H20, 50μl 2.5M CaCl2, 5-

10μg DNA) and slowly dropped into a 2x HBS solution (for each plate 500μl) while aerating 

the mix using a 2ml pipet. Following 20min incubation at room temperature, the final mix was 

dropped throughout the plate and gently mixed before being placed back to the incubator. 16h 

after transfection, cells were carefully washed with PBS and lysed as described below. 

2.2.3 Primary hepatocyte isolation and culture 

The protocol used for primary hepatocyte isolation was a two-step collagenase perfusion 

procedure. This protocol was a modified version of previously described protocols (Braccini et 

al. 2015; Gonçalves et al. 2007). 
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i. Collagen coating 

Plates were coated with collagen solution (prepared as described in 2.1.2) the day before 

primary hepatocyte isolation. Plates were incubated overnight (O.N.) at 37°C and, on the 

following day, they were washed once in 1x PBS solution and dried completely under sterile 

laminar flow hood. 

ii. Animal preparation and liver perfusions 

Animals were anesthetized and killed by isoflurane overdose (5% volume). After 

irreversible cardiovascular dysfunction evidence (heart rate < 30 bpm), the mouse peritoneal 

cavity was opened. The gastric system was moved to the right and both the portal vein and the 

inferior vena cava were exposed. Subsequently, the portal vein was cannulated with a 27G 

needle and the inferior vena cava was cut to allow blood efflux. A Masterflex peristaltic pump 

was used to perfuse the mouse at a speed of 3 ml/min, firstly with a saline solution (Liver 

Perfusion Medium, 30ml/mouse) and then with a collagenase-containing medium (Liver Digest 

Medium, 30ml/mouse). During this perfusion step, a back pressure was created every 30sec by 

blocking the inferior vena cava with tweezers for few seconds, causing liver inflation. Both 

perfusion media were pre-warmed at 37°C in order to avoid cold-induced hepatocyte stress. 

iii. Primary hepatocyte isolation from perfused livers 

At the end of the perfusion procedure, the liver was quickly excised, the gallbladder was 

removed and the entire organ was placed in a 100mm Petri dish with collagenase containing 

medium (10ml of Liver Perfusion Medium, pre-warmed at 37°C). Under sterile laminar flow 

hood, a mechanical disruption of liver capsule lobes was performed, and hepatocytes were 

released in the medium. Following 10min incubation at 37°C, the digested liver suspension was 

filtered through a 100μm cell strainer, and collagenase digestion was stopped by adding 30ml 

of Williams’ E complete medium (10% FCS, 1% Pen/Strep). After 1min centrifugation at a 

speed of 800g RT, the supernatant medium was removed and cell pellets were washed with 

18ml Williams’ E complete medium. Subsequently, cell viability was assessed by Trypan blue 

staining (dye exclusion test) and, if a viability percentage >85% was achieved, cell suspension 

was applied over Percoll solution-containing falcons (for each organ, 15ml Percoll solution was 

split in 3x 15ml falcons). This step allowed the separation of viable cells from dead ones.  

Following vigorous mixing, cells were centrifuged 20min 700g RT. Cell pellets of viable 

hepatocytes were washed with Williams’ Medium E complete medium and centrifuged for 

10min 200g.  
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iv. Cell staining to evaluate the purity of the primary culture 

To verify primary hepatocyte isolation purity, cells were stained for the myeloid cell marker 

CD11b and fluorescence-activated cell scanning (FACS) analysis was performed (Fig. 7). BV2 

cells were used as positive controls, while Hepa 1-6 cells were used as negative controls. 

 

                           Unstained       Stained 

 

Primary hepatocytes 

 

 

                         

 

BV2 cells  

 

                       

   

  

 

Hepa 1-6  

 

 

 

 

Figure 7: FACS analysis showed the absence of immune cells in primary hepatocyte 

cultures. Representative flow cytometry analysis of FITC-conjugated CD11b, performed in 

order to assess the purity of primary hepatocyte isolation. BV2 and Hepa 1-6 cells were used 

as positive and negative controls, respectively.  
 

 

Briefly, cells where detached and pelleted by centrifugation. Cell pellets where washed once 

in 1x PBS solution containing 5% FCS and then re-suspended in the same solution (staining 
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solution). Cells were incubated with FITC-CD11b antibody for 30min at 4°C in the dark 

(shaking). Subsequently, cell populations were washed once in 1x PBS solution containing 5% 

FCS and maintained at 4°C before FACS analysis. The intensity of the fluorochrome-

conjugated antibody was measured by flow cytometry using a FACSCalibur and Cell QuestTM 

software (Becton-Dickinson, Heidelberg, Germany). A minimum of 10000 events was 

collected. 

v. Hepatocytes plating 

Freshly isolated hepatocytes were plated onto collagen-coated plates and cultured in 

Williams’ E complete medium. 3h later, cells were washed vigorously with 1x PBS and cultured 

in Williams’ E complete medium overnight. On the following day, the culture medium was 

changed and hepatocytes were stimulated as indicated. 

2.2.4 Cell stimulations 

All cells were seeded the day before the stimulation time into 6-well plates (at a density of 

300000 cells pro well) or into 12-well plates (at a density of 150000 cells pro well). Cells were 

maintained in their cultivation medium (see Table 5) at 37°C in an environment with 5% CO2 

overnight. On the following day, cells were washed once in 1x PBS solution and cell medium 

was replaced with a serum-depleted medium 4h prior to the stimulation. For primary hepatocyte 

stimulations, cells were starved only for 2h in serum-depleted medium.  

Cells were stimulated with fMLP, salbutamol or cytokine mix (CM) for the indicated time 

points and freezed in liquid nitrogen. For heme-TNFstimulations, primary hepatocytes were 

first exposed to heme (5M, 1h) in 1x PBS solution without serum, in order to avoid potential 

heme scavenging by serum proteins. Subsequently, cells were challenged in complete 

Williams’ E medium with mouse recombinant TNF (50ng/ml, 8h).  

The PI3K specific inhibitor AS605240 (AS) was applied on cells 1h before and together 

with stimuli, at a final concentration of 500nM. Plates where stored at -80°C and lysed on the 

same day of SDS-PAGE/immunoblotting assays. 
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2.2.5 SDS PAGE and immunoblotting  

Protein expression and phosphorylation were analyzed by western blotting and 

immunodetection. Cells or organs were lysed and the proteins extracted were separated by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).    

i. Protein preparation for Western blot analysis 

For total liver lysates preparation, livers were rapidly excised, frozen, pestled in liquid 

nitrogen and homogenized in ice-cold lysis buffer 1% Triton (lysis buffer #1, described in 

2.1.2). Protein extraction from cells was performed in ice-cold RIPA buffer instead (lysis buffer 

#2, described in 2.1.2). After 30min incubation on ice, lysates were centrifuged at 10,000g for 

15min at 4°C, supernatants were transferred into new tubes and mixed with 5x Laemmli's 

buffer. Samples were denatured by heating at 95°C for 5min and directly used or stored at -

20°C until their usage for SDS-PAGE.  

ii. Co-immunoprecipitation (coIP) assays 

Samples for immunoprecipitation experiments (IP) were lysed in ice-cold lysis buffer 1% 

Triton (lysis buffer #1, described in 2.1.2). After 30min incubation on ice, lysates were 

centrifuged at 3000g for 15min at 4°C and supernatants were pre-cleared by rocking for 30min 

at 4°C with 30l of 1:1 slurry Sepharose beads. Pre-cleared extracts were then incubated with 

15l of 1:1 slurry of G-Sepharose beads and 1g of antibody/mg of protein overnight at 4°C 

with rocking. On the following day, immunocomplexes bound to protein G-Sepharose beads 

were washed four times in ice-cold lysis buffer 1% Triton, dried using a hamilton syringe and 

mixed with 1x Laemmli's buffer. Samples were denatured by heating at 95°C for 5min and 

directly subjected to SDS/PAGE.  

iii. Immunoblotting 

For immunoblotting, proteins were separated by reducing SDS 7.5% or 10% 

polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride membranes 

(PVDF) using a Trans-Blot® SD semi-dry machine (Bio-Rad, 10V. 1gel: 60min; 2gels: 90min). 

After protein transfer, PVDF membranes were blocked in 1x TBST 3% BSA solution for 1h at 

room temperature, blots were washed and incubated with the respective primary antibodies 

(O.N., 4°C). Detection was achieved using peroxidase-coupled secondary antibodies (1h, RT). 

To visualize protein bands, PVDF membranes were subjected to enhanced chemiluminescence 

reaction (Western Lightning® Plus-ECL, ECL Substrate). 
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iv. Chemiluminescence detection and densitometric analysis of Western Blots 

The chemiluminescence of protein bands was acquired using the LAS 4000 imaging device 

(Fujifilm) and images were captured with the LAS software. Band signal quantification was 

performed using the Fujifilm Multi Gauge software. For these quantifications, the background 

intensities were subtracted from the values of the different bands. The resulting intensities were 

normalized to loading control (actin) and indicated as arbitrary units (AU). 

2.2.6 ROS measurements 

Cellular ROS levels were measured in cells with a technique that detects fluorescence 

intensity derived from the conversion of the non-fluorescent 2’,7’ –dichlorofluorescin diacetate 

molecule (DCFDA) to its oxidized fluorescent form 2’, 7’ –dichlorofluorescein (DCF). The 

fluorescence generated is directly proportional to the amount of oxidized DCFDA to DCF. 

Briefly, primary hepatocytes were seeded on collagen-coated 96-well plates at a density of 

30000 cells pro well. On the following day, cells were incubated 30min at 37°C with the 

DCFDA molecule (5M in the HEPES-CaCl2 buffer, prepared as described in 2.1.2). After 

three washes in the HEPES-CaCl2 buffer, 200l of HEPES-CaCl2 were distributed in each well 

and fluorescence was measured with the TECAN infinite 200 plate reader (excitation = 

485nm, emission= 535 nm). 

2.2.7 RNA isolation, cDNA synthesis and quantitative real time PCR 

Briefly, total RNA was extracted from hepatocyte samples using RNeasy® Mini Kit, 

following the manufacturer’s instructions. The concentration of isolated RNA was determined 

using a UV-VIS spectrophotometer (Thermo Scientific). First strand cDNA was then 

synthesized from 400ng of sample RNA using the M-MLV reverse transcriptase, according to 

the kit protocol (Thermo Scientific). Subsequently, quantitative real time PCR was performed 

with standard procedures, using TaqMan chemistry on an Applied Biosystems ABI 7300 

instrument. Primers and probes were designed according to the Universal Probe Library system 

(Roche) (Table 4). Gene expression levels were analyzed using the 2-ΔΔCt relative 

quantification method, using actin as endogenous control for normalization. 
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2.2.8 cAMP measurements 

Livers were excised from mice and directly frozen in liquid nitrogen. The intracellular 

content of cAMP in liver lysates was detected with cAMP Biotrak competitive enzyme 

immunoassay system (GE Healthcare) according to the manufacturer’s instructions.  

For measuring cAMP levels in primary hepatocytes, cells were seeded at a density of 10000 

cells per well in 96-well collagen-coated clear-bottom plates, and cAMP was detected with 

cAMP GloAssayKit (Promega), following the manufacturer’s protocol. 

2.2.9 Electron Microscopy (FRIL, Scanning Electron Microscopy, Ultrathin Sections) 

Freeze-fracture replica immunogold labelling (FRIL) of multidrug resistance-associated 

protein 2 (Mrp2) was performed as previously described (Recknagel et al. 2012). 

To assess if this technique worked with a different Mrp2 antibody, we first tested the 

protocol with the same cell line used in Recknagel et al. (HepG2 cells). 

 

 

 

 

 

 

 

 

 

 

Figure 8: Stimulation of HepG2 cells with pro-inflammatory cytokines triggers 

internalization of Mrp2 transporter proteins. Cells were stimulated with a cytokine mix 

(CM, striped box) composed of TNF- (50ng/ml), IL-1 (10ng/ml), IFN- (10ng/ml), and LPS 

(100ng/ml) for 6h, and analyzed with FRIL technique. The graph shows a quantification of the 

number of Mrp2 particles (counted on electron microscopy images, data not shown) normalized 

to the protoplasmic fracture face area. Values of one experiment are presented as boxplots 

illustrating medians within boxes from first quartile (25th percentile) to the third quartile (75th 

percentile) and whiskers ranging from the 10th to the 90th percentiles (extreme values are 

marked outside). n = 24–28 fields of interest per treatment. ***p < 0.001, determined by Mann–

Whitney U test. 
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Since we were able to reproduce the results of Recknagel et al. in human cells (Fig. 8), FRIL 

of Mrp2 was performed in murine cells. Briefly, Hepa 1-6 and mouse primary hepatocytes were 

seeded in 100mm Petri dish and cultivated as previously described until they reached 

confluence. Subsequently, cells were treated 6h with a cytokine mix (CM) comprising TNF- 

(50ng/ml), IL-1 (10ng/ml), IFN- (10ng/ml), and LPS (100ng/ml). Untreated cells and cells 

stimulated with AS605240 inhibitor served as controls. At the end of the treatment, cells were 

scraped from the culture dish, centrifuged at 15g for 5min and frozen. FRIL was performed 

using overnight incubation with a rabbit polyclonal anti-MRP2 primary antibody (1:50), 

followed by incubation with a gold-conjugated (10nm of gold) goat anti-rabbit IgG secondary 

antibody (1:50, British Biocell International) for 1h (Westermann et al. 2005). Images were 

taken as digital pictures on an EM902A transmission electron microscope (Carl Zeiss) using a 

1k FastScan CCD camera (TVIPS), and gold particles were counted.  

2.2.10 Statistical analysis 

Prism (GraphPad) and Sigma Plot software were used for statistical analysis. P values were 

calculated by using one way analysis of variance (ANOVA), and data were displayed as means 

± SD. Data from FRIL experiments are presented as boxplots illustrating medians within boxes 

from first quartile (25th percentile) to the third quartile (75th percentile) and whiskers ranging 

from the 10th to the 90th percentiles (extreme values are marked outside).  

When Shapiro-Wilk normality test failed, the nonparametric Kruskal–Wallis one-way 

analysis of variance on ranks was used. Post hoc comparisons were made with the Tukey or the 

Dunn's methods, as indicated. p<0.05 was considered significant (*), p< 0.01 was considered 

very significant (**), and p< 0.001 was considered extremely significant (***). 
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3. Results 

3.1 PI3K is induced in liver parenchyma upon inflammatory 

stress conditions 

The PI3K enzyme is abundantly expressed in immune cells, and for this reason its role in 

acute and chronic inflammatory diseases has been extensively studied in the past 20 years 

(Rückle et al. 2006; Costa et al. 2011). Nonetheless, recent studies have pointed out that PI3K 

protein is also expressed in cells other than immune cells (Becattini et al. 2011; Patrucco et al. 

2004; Perino et al. 2014). As a matter of fact, PI3K plays important roles in the parenchyma 

response to inflammatory stress, even if at low expression level (Becattini et al. 2011; 

Ndongson-Dongmo et al. 2015).  

In order to assess whether PI3K protein is expressed within liver parenchyma, livers from 

wild-type (WT) mice were excised, perfused and analyzed via immunoblotting. Perfused livers 

derived from two types of PI3K mutant mice were also analyzed: i) mice carrying a targeted 

mutation in the PI3K gene, causing loss of lipid kinase activity (KD), and ii) PI3K-deficient 

mice (KO). 

 

    A       B 

 

 

 

 

 

 

 

Figure 9: PI3Kprotein is expressed in liver parenchyma. (A) Representative western blot 

(10% SDS-Page) of PI3K protein expression in PBS-perfused livers derived from wild-type 

(WT), PI3K kinase-dead (KDand PI3K knockout (KOmice. (B) Representative western 

blot (10% SDS-Page) of immunoprecipitated PI3K in primary hepatocytes derived from WT, 

KDand KOmice. IP indicates immunoprecipitation. The western blots shown are normalized 

on -actin, and are representative of three independent experiments. 

 

 

As shown in Fig. 9A, PI3Kprotein was present in lysates obtained from liver parenchyma 

of WT and KDmice, while it was not detected in KO liver lysates. However, liver tissue is 

not only composed by parenchymal cells (hepatocytes), but also by other cell types of the liver 
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stroma (Kholodenko and Yarygin 2017). To test whether PI3K is solely expressed in 

parenchymal cells, primary hepatocytes were isolated from WT, KD and KO mice. Although 

the amount of protein was too low to be detected in total cell lysates, PI3Kprotein was found 

in immunoprecipitated (IP) lysates derived from WT and KD primary hepatocyte, but not in 

KO parenchyma (Fig. 9B). 

Low PI3K protein expression levels in tissues other than immune cells have already been 

previously shown in heart parenchyma, adipose tissue and brain (Becattini et al. 2011; Ghigo 

et al. 2012; Patrucco et al. 2004; Perino et al. 2011). In particular, PI3K in these tissues plays 

an important role in stress-induced conditions, such as inflammation or metabolic 

derangements. Consequently, we decided to investigate whether low level of PI3K might be 

involved in the adaption of liver parenchyma to inflammatory stress. 

 

A        B             C 

 

 

 

 

 

 

Figure 10: Inflammatory cytokines enhance PI3Kprotein expression in hepatocytes. (A) 

Representative western blot (10% SDS-Page) of immunoprecipitated PI3K in primary 

hepatocytes derived from wild-type (WT) mice stimulated with a cytokine mix (CM) composed 

of TNF- (50ng/ml), IL-1 (10ng/ml), IFN- (10ng/ml), and LPS (100ng/ml) for 6h. (B and C) 

Representative western blots (10% SDS-Page) of immunoprecipitated PI3K in HepG2 (B) and 

Hepa 1-6 (C) cell lines, stimulated with CM for 6h. IP indicates immunoprecipitation. The 

western blots shown are normalized on -actin and are representative of three independent 

experiments. 

 

 

Inflammatory stress was induced in vitro via stimulating WT-derived primary hepatocytes 

for 6 hours with a cytokine mix (CM, composed of TNF-, IL-1, IFN- and LPS). 

Subsequently, PI3Kprotein amount was assessed via immunoprecipitation (IP) and 

immunoblotting. This particular CM treatment was shown in previous studies to recapitulate 

the in vivo physiologic and metabolic hepatic adaptations to inflammatory stress, representing 
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a reliable in vitro model for our study (Recknagel et al. 2012; Ceppi et al. 1996). Indeed, 

PI3Kprotein levels increased upon CM treatment of primary hepatocytes, as shown in Fig. 

10A. Similar results were obtained using two immortalized hepatocyte cell lines, of human 

hepatoblastoma (HepG2, Fig. 10B) or murine hepatoma (Hepa 1-6, Fig. 10C) origin. 

Immunoprecipitated extracts of HepG2 and Hepa1-6 cells also displayed an increased 

PI3Kprotein expression following CM treatment (Fig. 10 B and C).  

Together, both in primary cells as well as in cell lines the expression of PI3K was enhanced 

upon cytokine stimulation, suggesting that this enzyme is involved in the inflammatory stress-

induced response of hepatocytes. 
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3.2 Inflammatory stress response of hepatocytes is orchestrated 

by the PI3K catalytic function  

3.2.1 PI3K kinase activity controls Mrp2 bile transporter protein localization upon 

inflammatory stress 

Under inflammatory conditions, hepatocytes adjust the expression and function of 

basolateral and canalicular hepatobiliary transporters, and this possibly leads to intrahepatic 

cholestasis (Crocenzi et al. 2012). In particular, cholestatic conditions are usually accompanied 

by altered bile secretory failure due to endocytic internalization of key transporters involved in 

bile formation (Roma et al. 2008). The involvement of PI3Kin the regulation of bile 

transporters localization has recently emerged in the study of Recknagel et al.. In this study the 

freeze-fracture replica immunolabelling technique (FRIL) has been used to localize the 

resistance-associated protein 2 (Mrp2) upon inflammatory stress. As a result, pharmacological 

inhibition of PI3K in the human HepG2 cell line upon stimulation with cytokines resulted in 

a partial block in the retrieval of Mrp2 particles from the canalicular membrane, suggesting that 

the catalytic activity of PI3K controls Mrp2 localization (Recknagel et al. 2012). 

To proof the validity of these data in murine cells, we used the FRIL technique to assay Mrp2 

localization in inflamed mouse hepatocytes.  

At first, Hepa 1-6 cells were stimulated with cytokine mix (CM) as previously described, 

and the amount of Mrp2 particles on the hepatocyte plasma membrane was measured upon 

PI3K-selective pharmacological inhibition with the AS605240 compound. Electron 

microscopy images in Fig. 11A show that cytokine treatment halved the amount of Mrp2 

particles on the plasma membrane, while PI3K inhibition blocked the internalization of these 

particles. In contrast to HepG2 cells (Recknagel et al. 2012), the quantification of Mrp2 

localized on the plasma membrane indicates that a complete rescue of cytokine-induced Mrp2 

internalization was obtained in cells treated with the AS605240 inhibitor, as compared to CM-

treated cells (Fig. 11B). This observation revealed the important role of the catalytic activity of 

PI3Kin the control of Mrp2 localization in mouse hepatocytes, as compared to human 

parenchyma (HepG2 cells, Recknagel et al. 2012).  
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Figure 11: Stimulation of Hepa 1-6 cells with pro-inflammatory cytokines triggers 

internalization of Mrp2 transporter proteins via PI3K signaling. (A) Representative 

electron micrographs of freeze-fracture-immunolabelled Mrp2 transporters in the plasma 

membrane of Hepa 1-6 cells. Cells were treated with the specific PI3K inhibitor AS605240 

(AS, 500nM, green box) prior to stimulation with a cytokine mix (CM, striped boxes) composed 

of TNF- (50ng/ml), IL-1 (10ng/ml), IFN- (10ng/ml), and LPS (100ng/ml) for 6h. Untreated 

and CM stimulated cells were used as controls. (B) Quantification of the number of Mrp2 

particles (black dots in (A)) normalized to the protoplasmic fracture face area.  Values of three 

independent experiments are presented as boxplots illustrating medians within boxes from first 

quartile (25th percentile) to the third quartile (75th percentile) and whiskers ranging from the 

10th to the 90th percentiles (extreme values are marked outside). Scale bars: 100nm. n = 10-13 

fields of interest per treatment. ***p < 0.001, determined by one-way ANOVA Kruskal-Wallis 

with Dunn’s multiple comparison post hoc test. 
 

 

In order to assess the relevance of PI3K kinase-dependent function in a more physiological 

in vitro model, we performed FRIL on mouse-derived primary hepatocytes. Using FRIL 

technique, both pharmacological and genetic PI3K inhibition was used to analyze the role of 

the signaling protein in Mrp2 localization upon cytokine treatment (CM). 

As shown in the electron microscopy images in Fig. 12A, WT-derived hepatocytes treated 

with CM displayed a reduced amount of Mrp2 particles on the plasma membrane to the same 

extent as we previously observed in HepG2 and Hepa 1-6 cells. Moreover, PI3K-specific 

inhibition with the AS605240 compound completely rescued the number of Mrp2 particles on 

the hepatocytes membrane upon inflammatory stress, consolidating our previous data obtained 

with the immortalized Hepa 1-6 cell line. Afterwards, we asked if genetic inhibition of PI3K 

also results in a protection from Mrp2 internalization caused by inflammatory stress, and FRIL 

technique was performed on hepatocytes isolated from mutant mice for PI3K (KD and KO).  
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Figure 12: Inflammatory-induced Mrp2 internalization is mediated by PI3K activity in 

primary murine hepatocytes. (A) Representative electron micrographs of freeze-fracture-

immunolabeled Mrp2 transporters in the plasma membrane of primary hepatocytes derived 

from wild-type (WT), PI3K kinase-dead (KDand PI3K knockout (KOmice. Cells were 

stimulated with a cytokine mix (CM, striped boxes) composed of TNF- (50ng/ml), IL-1 

(10ng/ml), IFN- (10ng/ml), and LPS (100ng/ml) for 6h. WT cells were also subjected to PI3K 

pharmacological inhibition with the AS605240 compound (AS, 500nM) prior to stimulation. 

Untreated cells were used as controls. (B) Quantification of the number of Mrp2 particles (black 

dots in (A)) normalized to the protoplasmic fracture face area.  Values of 3-4 independent 

experiments are presented as boxplots illustrating medians within boxes from the first quartile 

(25th percentile) to the third quartile (75th percentile) and whiskers ranging from the 10th to 

the 90th percentiles (extreme values are marked outside). Scale bars: 100 nm. n = 23-25 fields 

of interest per treatment. ***p < 0.001, determined by one-way ANOVA Kruskal-Wallis 

followed by Dunn’s multiple comparison post hoc test. 
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In contrast to WT-derived isolated cells, KD and KOprimary hepatocytes were not 

susceptible to Mrp2 internalization upon CM treatment (Fig. 12A).  

The number of Mrp2 particles was counted in electron microscopy pictures of mouse-

derived hepatocytes and quantified, as shown in Fig. 12B. Collectively, these results indicate 

that PI3K kinase activity has a key role in regulating the localization of Mrp2 bile transporter 

protein within hepatocytes. 

3.2.2 The inhibition of PI3K kinase activity affects inflammatory stress responses in 

hepatocytes 

The kinase activity of PI3Ks is responsible for the phosphorylation of phosphatidyl-inositol 

lipids at the D3 position of the inositol ring, allowing for signaling  proteins  with  pleckstrin-

homology  (PH)  domains  to accumulate  at  sites of  PI3K  activation  by  directly  binding  to 

PI(3,4,5)P3 (Cantley 2002). Most importantly, the association of the protein serine-threonine 

kinase Akt with PI(3,4,5)P3 at the plasma membrane brings this protein into proximity with the 

phosphoinositide-dependent  kinase  1  (PDK1), facilitating Akt phosphorylation by PDK1 

(Alessi et al. 1996). As a result, the Akt phosphorylation status provides a reliable readout for 

the catalytic activity of PI3K.  

To test whether the kinase activity of the PI3Kisoform is involved in the hepatocyte 

response to inflammatory stress, we subjected primary WT hepatocytes to a short stimulation 

with cytokines (CM) and evaluated Akt phosphorylation via immunoblotting.  

As shown in Fig. 13, the increase in Akt phosphorylation induced by CM treatment was 

partially abolished when cells were treated with PI3K specific inhibitor (AS605240). Given 

that the CM we used is composed of cytokines which bind to different receptors and that many 

intracellular pathways are simultaneously triggered, we suggest that the CM induced Akt 

phosphorylation might be partially mediated by PI3K isoforms other than .  

To explore the specific function of PI3K in the control of inflammation-induced Mrp2 

internalization we next investigated candidate signaling pathways known to affect Mrp2 

localization. 
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Figure 13: PI3K kinase activity is involved in the response of hepatocytes to pro-

inflammatory stress. Representative western blots (10% SDS-Page) and densitometric 

quantification of Akt phosphorylation (P-Akt, on Ser473) and total Akt protein levels in primary 

hepatocytes isolated from wild-type (WT) mice. Cells were stimulated with a cytokine mix 

(CM, striped bars) composed of TNF- (50ng/ml), IL-1 (10ng/ml), IFN- (10ng/ml), and LPS 

(100ng/ml) for 10min, and subjected to PI3K pharmacological inhibition with the AS605240 

compound (AS, 500nM, green bars) prior to stimulation. Untreated and CM-stimulated cells 

were used as controls. P-Akt/Akt ratios were normalized to -actin. Values represent mean ± 

SD of three independent experiments. **p < 0.01, ***p < 0.001, determined by one-way 

ANOVA followed by Tukey’s multiple comparison post hoc test. 
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3.3  PI3K kinase activity controls both the internalization 

and the insertion of Mrp2 bile transporter protein 

Mrp2 bile transporter protein localization within hepatocytes is tightly regulated (Elferink 

and Paulusma 2015; Chai et al. 2015). Under cholestatic conditions, such as inflammatory 

stress, the physiological recycling of these membrane transporters via vesicle-mediated 

insertion and internalization from/to the endosomal compartment is altered. In particular, 

inflammatory stress induces a shift towards retrieval of Mrp2 transporter proteins, decreasing 

their presence on plasma membrane and consequently provoking cholestasis via impairing the 

transport of their substrates (Crocenzi et al. 2012). PKC and cAMP, as described in paragraphs 

1.4.2 and 1.4.3, are key players in the regulation of Mrp2 protein localization under cholestatic 

conditions (Fig. 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Schematic representation of the molecular pathways regulating multidrug 

resistance-associated protein 2 (Mrp2) localization. Cholestatic stimuli induce the retrieval 

of bile transporter proteins on the canalicular membrane of hepatocytes into endosomal 

compartments. On the left side, the internalization towards endocytic compartments is 

represented, which mainly involves the activity of protein kinase C (PKC on Mrp2-connected 

cytoskeleton. On the right side, the mechanism of regulating the insertion of Mrp2 particles on 

the canalicular membrane is illustrated, largely controlled by cyclic AMP (cAMP) intracellular 

levels. (Anwer 2014; Crocenzi et al. 2012) 

 



 

44 
 

In the light of these considerations, we hypothesized that PI3K kinase activity can be 

involved in two Mrp2-related signaling mechanisms: i) its internalization towards endocytic 

compartments or ii) its insertion in the plasma membrane. Thus, these two distinct pathways 

were examined. 

3.3.1 PI3K kinase activity controls Mrp2 protein internalization via ERM proteins 

The localization of bile transporter proteins at the canalicular membrane of hepatocytes is 

heavily dependent on close interactions between the plasma membrane and the underlying 

cytoskeleton (Roma et al. 2008; Crocenzi et al. 2012; Sekine et al. 2011). These interactions 

involve proteins that cross-link membrane proteins, such as Mrp2, with actin filaments (F-

actin). Notably, the ezrin/radixin/moesin (ERM) protein family is a well-known mediator of 

tethering proteins which anchors integral membrane proteins to F-actin (Roma et al. 2008). 

Previous studies have pointed out the key role of ERM proteins in controlling Mrp2 localization 

in hepatocytes and its distinct dependence on the ERM C-terminal phosphorylation status 

(Anwer 2014).  

Since the phosphorylation status of ERM proteins (P-ERM) determines the expression of 

Mrp2 protein at the plasma membrane, we investigated the P-ERM pattern in primary 

hepatocytes lacking functional PI3K protein compared to WT parenchymal cells.  

Intriguingly, primary hepatocytes isolated from KDand KOmice displayed a reduced 

amount of P-ERM, thus suggesting the involvement of the PI3K catalytic function in 

controlling hepatocytic P-ERM status (Fig. 15A). In addition, a similar pattern of ERM 

phosphorylation was observed when hepatocytes derived from KDand KOmice were 

subjected to the pro-inflammatory CM treatment (Fig. 15B). Hence, the PI3K kinase activity 

in hepatocytes seems to control, either directly or indirectly, the phosphorylation status of the 

ERM proteins, both in basal conditions and upon inflammatory stress.  

Among the proteins participating in the ERM complex, ezrin and radixin are abundantly 

expressed within hepatocytes (Chai et al. 2015; Sekine et al. 2011). To find a link between 

PI3K and the phosphorylation of specific ERM proteins, PI3K protein was initially 

overexpressed in HEK293 cells, either with ezrin or with radixin protein. As a result, PI3K 

and ezrin could be coimmunoprecipitated in HEK293 transfected cells (Fig. 16, left panel) 

while no traces of radixin protein could be detected in PI3K immunoprecipitates (Fig. 16, right 

panel).  
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These data suggest that PI3K controls Mrp2 protein localization in the plasma membrane 

by regulating the phosphorylation of ERM complex via direct interaction with ezrin. 
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Figure 15: PI3K kinase activity in primary hepatocytes controls the phosphorylation 

status of ERM proteins. (A) Representative western blots (7.5% SDS-Page) and densitometric 

quantification of ezrin/radixin/moesin phosphorylation (Phospho-Ezrin (Thr567)/Radixin 

(Thr564)/Moesin (Thr558), P-ERM) and total ezrin protein levels in primary hepatocytes 

isolated from wild-type (WT), PI3K kinase-dead (KDand PI3K knockout (KOmice. 

Values represent mean ± SD of four independent experiments (n = 4 mice/genotype). *p < 0.05, 

**p < 0.01, determined by one-way ANOVA followed by Tukey’s multiple comparison post 

hoc test. (B) Representative western blots (7.5% SDS-Page) and densitometric quantification 

of ERM phosphorylation and total ezrin protein levels in primary hepatocytes isolated from 

WT, KDand KOmice. Cells were stimulated with a cytokine mix (CM) composed of TNF-

 (50ng/ml), IL-1 (10ng/ml), IFN- (10ng/ml), and LPS (100ng/ml) for 6h. Values represent 

mean ± SD of four independent experiments (n = 4 mice/genotype). *p < 0.05, ***p < 0.001, 

determined by one-way ANOVA Kruskal-Wallis followed by Dunn’s multiple comparison post 

hoc test. P-ERM/Ezrin ratios in (A) and (B) were normalized to actin.  
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Figure 16: PI3K interacts with ezrin but not with radixin protein. Representative western 

blots (10% SDS-Page) of PI3K immunoprecipitates (IP) from HEK293 cells transfected with 

PI3Kradixin and ezrin constructs (all of human origin). Ezrin protein coimmunoprecipitated 

with PI3K (left panels), while radixin protein did not precipitate together with PI3K protein 

(right panel). HEK293 non-transfected cells (NT) were used as controls. Western blots of three 

independent coimmunoprecipitation experiments are shown. 

 

 

Phosphorylation of ezrin protein negatively correlates with the amount of Mrp2 protein 

localized at the plasma membrane (Chai et al. 2015; Nakano et al. 2009). In particular, a recent 

study has described that in human hepatocytes the phosphorylation of Thr567 in ezrin by protein 

kinase C alpha (PKC reduced Mrp2 membrane expression (Chai et al. 2015). Thus, we 

hypothesized that the effect we observed in mutant KD and KO hepatocytes on ERM complex 

phosphorylation might be mediated by PI3K-mediated control of the activity of PKC.  

The association of PI3K and PKC has already been characterized in activated neutrophils 

(Lehmann et al. 2009). Notably, in this study the protein kinase activity of PI3K on PKC was 

reported as a key regulator of reactive oxygen species (ROS) production upon neutrophil 

stimulation with the bacterial peptide N-formylmethionyl-leucyl-phenylalanine (fMLP). Based 

on these reports, we asked whether in hepatocytes PI3K could regulate ERM tether proteins 

activity through the direct interaction with PKC, which in turn could phosphorylate ezrin and 

cause Mrp2 protein internalization. 

As expected, PI3K and PKC could be coimmunoprecipitated in primary hepatocytes (Fig. 

17A) as well as in HepG2 and Hepa 1-6 cell lines (Fig. 17B). Furthermore, we observed that 

the interaction between the two proteins was higher when hepatocytes were stimulated with the 
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bacterial peptide fMLP (Fig.17 A and B). These data confirm results previously shown in 

neutrophils (Lehmann et al. 2009). 

 

 A                       B  

 

 

 

Figure 17: The PI3K-PKC interaction in hepatocytes is enhanced upon stimulation with 

bacterial-derived chemotactic factor fMLP. (A and B) Representative western blots (7.5% 

SDS-Page) of PI3K immunoprecipitates (IP) from primary hepatocytes isolated from wild-

type mice (A) and from HepG2 or Hepa 1-6 cells lines (B). Cells were stimulated with N-

Formylmethionyl-Leucyl-Phenylalanine (fMLP, 10M) for 10min, and unstimulated cells were 

used as controls. PKCprotein coimmunoprecipitated with PI3K, and the amount of PI3K-

PKC complexes increased upon fMLP treatment. Western blots of three independent 

coimmunoprecipitation experiments are shown. 

 

 

fMLP is a bacterial product best known as a prototype activator of neutrophils and 

neutrophil chemotactic activity (Hirsch et al. 2000; Sato et al. 2013) but expression of the 

receptor for fMLP (FPR) has been also found in hepatocytes (McCoy et al. 1995). Since FPR 

has been characterized as a G protein-coupled receptor that involves PI3K in its signaling 

responses, we asked whether in hepatocytes fMLP stimulation requires the catalytic activity of 

PI3K. For this purpose, we subjected primary hepatocytes to a short stimulation with fMLP 

and evaluated the amount of Akt phosphorylation as readout for the catalytic activity of PI3K.  
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Figure 18: Genetic or pharmacological inhibition of PI3K kinase activity in primary 

hepatocytes affects fMLP-induced Akt phosphorylation. (A) Representative western blots 

(10% SDS-Page) and densitometric quantification of Akt phosphorylation (P-Akt, on Ser473) 

and total Akt protein levels in primary hepatocytes isolated from wild-type (WT), PI3K kinase-

dead (KDand PI3K knockout (KOmice. Cells were stimulated with N-Formylmethionyl-

Leucyl-Phenylalanine (fMLP, 10M, striped bars) for 10min, and unstimulated cells were used 

as controls. Values represent mean ± SD of four independent experiments (n = 4 

mice/genotype). **p < 0.01, ***p < 0.001, determined by one-way ANOVA followed by 

Tukey’s multiple comparison post hoc test. (B) Representative western blots (10% SDS-Page) 

and densitometric quantification of Akt phosphorylation (P-Akt, on Ser473) and total Akt 

protein levels in primary hepatocytes isolated from wild-type (WT). Cells were stimulated with 

fMLP (10M, striped bars) for 10min, and subjected to PI3K pharmacological inhibition with 

the AS605240 compound (AS, 500nM, green bar) prior to stimulation. Unstimulated cells were 

used as controls. Values represent mean ± SD of three independent experiments. **p < 0.01, 

determined by one-way ANOVA Kruskal Wallis followed by Dunn’s multiple comparison post 

hoc test. P-Akt/Akt ratios were all normalized to -actin. 

 

 

Strikingly, fMLP stimulation significantly increased the amount of P-Akt, but this effect 

was completely abolished by either genetic (Fig. 18A) or pharmacological (Fig. 18B) 

suppression of PI3K. Analogous effects were also obtained when hepatocyte cell lines were 

subjected to fMLP treatment in combination with PI3K specific inhibitor (AS605240), as it is 

shown in Fig. 19A and B.   
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Figure 19: Pharmacological inhibition of PI3K kinase activity in hepatocyte cell lines 

blocks fMLP-induced Akt phosphorylation. (A and B) Representative western blots (10% 

SDS-Page) and densitometric quantification of Akt phosphorylation (P-Akt, on Ser473) and 

total Akt protein levels in HepG2 (A) and Hepa 1-6 (B) cells. Cells were stimulated with N-

Formylmethionyl-Leucyl-Phenylalanine (fMLP, 10M, striped bars) for 10min, and subjected 

to PI3K pharmacological inhibition with the AS605240 compound (AS, 500nM, green bar) 

prior to stimulation. Unstimulated cells were used as controls. Values represent mean ± SD of 

three independent experiments. ***p < 0.001, determined by one-way ANOVA followed by 

Tukey’s multiple comparison post hoc test. P-Akt/Akt ratios were all normalized to -actin. 
 

 

Altogether, our results suggest that the PI3K kinase activity plays an important role within 

hepatocytes in regulating the inflammatory-induced retrieval of Mrp2 protein from plasma 

membrane.  
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3.3.2 cAMP-dependent transport of Mrp2 particles to the canalicular membrane of 

hepatocytes is regulated by both PI3K kinase-dependent and independent functions 

Mrp2 protein retrieval from the canalicular membrane of hepatocytes can be counteracted 

by increased intracellular levels of cyclic AMP (cAMP) (Zucchetti et al. 2011; Schonhoff et al. 

2016). Although little is known about the signaling pathways involved, several studies have 

previously shown that cAMP favors Mrp2 translocation to the canalicular membrane, leading 

to a protective biliary excretion (Roma et al. 2008). Given that PI3K has already been found 

to negatively modulate cAMP pools in different cell types, acting as a scaffold protein and 

recruiting cAMP-degrading enzymes (Patrucco et al. 2004; Ghigo et al. 2012), we asked if in 

the liver the amount of intracellular cAMP could be mediated by PI3K as well.  

Both cAMP levels as well as the amount of phosphorylated cAMP response element binding 

protein (P-CREB) were assessed within primary hepatocytes isolated from WT, KDand 

KOmice.  

Unexpectedly, increased amounts of cAMP and P-CREB were detected not only in 

KOparenchyma, but also in hepatocytes derived from KD mice, where the scaffold function 

of PI3K should be preserved (Fig. 20A and B). Remarkably, KD-derived hepatocytes 

exhibited intermediate cAMP and P-CREB levels as compared to WT and KO cells (Fig. 20A 

and B). Furthermore, even upon cytokine treatment (CM), KD-derived hepatocytes maintained 

cAMP levels midway between WT and KO cells (Fig. 20C).  

These data suggest that the kinase-dependent function of PI3K may be involved in the 

control of cAMP production. Despite the fact that the modulation of intracellular cAMP by 

PI3K is normally attributed to its kinase-independent function, previous studies have 

demonstrated that the catalytic activity of PI3Kcan regulate cAMP pools as well (Huang et 

al. 2015; Perino et al. 2014). 
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Figure 20: PI3K kinase function regulates cAMP intracellular levels in liver 

parenchyma. (A) Measurement of cAMP levels in primary hepatocytes derived from wild-

type (WT), PI3K kinase-dead (KDand PI3K knockout (KOmice (n = 4-5 

mice/genotype). cAMP was measured in basal conditions. Values represent mean ± SD of three 

independent experiments. **p < 0.01, ***p < 0.001, determined by one-way ANOVA followed 

by Tukey’s multiple comparison post hoc test. (B) Representative western blot (10% SDS-

Page) and densitometric quantification of CREB phosphorylation (P-CREB, on Ser133), 

normalized on -actin protein amount, in primary hepatocytes derived from WT, KDand 

KOmice (n = 4 mice/genotype). Values represent mean ± SD of four independent 

experiments. *p < 0.05, **p < 0.01, ***p < 0.001, determined by one-way ANOVA followed 

by Tukey’s multiple comparison post hoc test. (C) Measurement of cAMP levels in primary 

hepatocytes derived from WT, KDand KOmice upon stimulation with a cytokine mix (CM) 

composed of TNF- (50ng/ml), IL-1 (10ng/ml), IFN- (10ng/ml), and LPS (100ng/ml) for 6h. 

Values represent mean ± SD of three independent experiments. *p < 0.05, ***p < 0.001, 

determined by one-way ANOVA Kruskal Wallis followed by Dunn’s multiple comparison post 

hoc test.  

 

 

To assess whether PI3K could act as a cAMP regulator in hepatocytes, the interaction 

between PI3Kand PDE3B was verified through immunoprecipitation experiments. PDE3B 

could coimmunoprecipitate with PI3Kin primary hepatocytes isolated from WT and KD 

mice, while no traces of PDE3B could be detected in extracts derived from KO mice (Fig. 

21A). In agreement with these data on primary hepatocytes, PDE3B protein could be detected 

in PI3Kimmunoprecipitates of HepG2 and Hepa 1-6 cell lines as well (Fig. 21B). 
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Figure 21: PI3Kinteracts with PDE3B in hepatocytes. (A and B) Representative western 

blots (10% SDS-Page) of PI3K immunoprecipitates (IP) from primary hepatocytes derived 

from wild-type (WT), PI3K kinase-dead (KDand PI3K knockout (KOmice (A) as well 

as from HepG2 or Hepa 1-6 cells lines (B). PDE3B protein coimmunoprecipitates with PI3K 

in both primary cells and hepatocyte cell lines extracts. Western blots of three independent 

coimmunoprecipitation experiments are shown. 

 

We have previously demonstrated in neurons that PI3K, by recruiting the phosphodiesterase 

3B isoform (PDE3B), expresses ability to phosphorylate and activate PDE3B in an Akt-

dependent manner, thus leading to increased cAMP degradation (Perino et al. 2014). Thus, we 

speculate that the kinase function of PI3Kmay regulate the activity of PDE3B through Akt 

activation. Given that hepatocytic cAMP levels are regulated by hormones which signal via the 

β2 adrenergic receptor (2AR), such as glucagon and adrenaline (Zucchetti et al. 2011), we 

analyzed the effects of salbutamol (a 2AR agonist) on the Gi-PI3K-Akt axis. Indeed, 

compelling evidence indicates that β2AR conducts a duet of signaling including both Gs and 

Gi proteins, the latter reshaping the spatiotemporal pattern of the Gs signaling via a PI3K/Akt-

mediated negative control of cAMP production (Xiao 2001). Consistent with the activation of 

PI3K downstream GPCRs, salbutamol stimulation greatly increased the amount of Akt 

phosphorylation in WT primary hepatocytes, and this effect was completely abolished by 

pharmacological inhibition of PI3K with AS605240 (Fig. 22A). Analogous effects were also 

obtained when hepatocyte cell lines were subjected to salbutamol treatment in combination with 

AS605240, as it is shown in Fig. 22B and C.  
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Figure 22: Pharmacological inhibition of PI3K kinase activity in hepatocytes counteracts 

the Akt phosphorylation induced by the2AR signaling pathway. (A - C) Representative 

western blot (10% SDS-Page) and densitometric quantification of Akt phosphorylation (P-Akt, 

on Ser473) and total Akt protein levels in primary hepatocytes derived from wild-type (WT) 

mice (A), HepG2 (B) and Hepa 1-6 (C) cells. Hepatocytes were stimulated with salbutamol 

(Salb, 50M, striped bars) for 10min, and subjected to PI3K pharmacological inhibition with 

the AS605240 compound (AS, 500nM, green bars) prior to stimulation. Unstimulated cells 

were used as controls. P-Akt/Akt ratios were all normalized to -actin. Values represent mean 

± SD of 3-6 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, determined by one-

way ANOVA followed by Tukey’s multiple comparison post hoc test.  
 

 

Collectively, our results suggest an important role of PI3K in modulating cAMP pools in 

hepatocytes through its catalytic function, regulating the Mrp2 protein insertion at the 

canalicular membrane.  
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3.4  PI3K inhibition increases the expression of HO-1 

protein in liver parenchyma via enhancing ROS production  

Previous reports have shown that increased cAMP levels induce the expression of heme 

oxygenase-1 (HO-1), which is known to protect against inflammation-induced oxidative stress 

(Rensing et al. 2004; Larsen et al. 2010). Given the high amount of cAMP observed in 

hepatocytes derived from KO hepatocytes, we next asked whether PI3K might influence the 

expression of HO-1 protein, possibly affecting ROS-mediated liver damage. 
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Figure 23: Primary hepatocytes lacking PI3K kinase activity display enhanced HO-1 

protein expression and ROS production. (A) Representative western blot (10% SDS-Page) 

and densitometric quantification of heme oxygenase-1 (HO-1) in primary hepatocytes derived 

from wild-type (WT), PI3K kinase-dead (KDand PI3K knockout (KOmice (n = 4 

mice/genotype). HO-1 protein amount was normalized on -actin. (B) DCFDA assay for ROS 

production was performed on primary hepatocytes isolated from WT, KDand KOmice (n = 

4 mice/genotype). Values represent mean ± SD of four independent experiments. *p < 0.05, 

***p < 0.001, determined by one-way ANOVA Kruskal Wallis followed by Dunn’s multiple 

comparison post hoc test.  

 

 

Consistent with the high cAMP levels shown in Fig. 20, HO-1 protein expression was found 

elevated in KD and KO primary hepatocytes, as compared to WT controls (Fig. 23A). 

However, the amount of ROS production was not only lower in KD and KO parenchyma, but  

was even higher as compared to WT controls, albeit the HO-1 higher expression (Fig. 23B). 
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Considering that in this work and in a previous study (Recknagel et al. 2012) the lack of PI3K 

in hepatocytes results in an overall protection from liver damage, we hypothesize that at the 

given dose the increased ROS production in KD and KO parenchyma have hormetic effects 

(Wetzker and Rubio 2012; Ludovico and Burhans 2014). Beneficial effects of low doses of 

ROS on vitality parameters has been described in a variety of cellular and organismic systems 

(Ristow 2014).  

Hence, we next asked whether the preconditioning effect of ROS could enhance the 

resistance against future inflammatory oxidant stress and promote the initiation of tissue repair 

processes. For this purpose, hepatocytes derived from WT, KD and KOmice were exposed 

in vitro to heme and TNF, a treatment which is normally inducing large amount of intracellular 

free radicals in hepatocytes (Larsen et al. 2010). Afterwards, the amount of HO-1 protein was 

tested, as an indicator of tissue repair processes.  
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Figure 24: Hmox-1 gene transcription and HO-1 protein translation are regulated by 

PI3K kinase activity upon oxidative stress. (A) mRNA expression levels of Hmox-1 in 

primary hepatocytes derived from wild-type (WT), PI3K kinase-dead (KDand PI3K 

knockout (KOmice (n = 4 mice/genotype), normalized on the mRNA expression of the 

housekeeping gene Actb. (B) Representative western blots (10% SDS-Page) and densitometric 

quantification of heme oxygenase-1 (HO-1) in primary hepatocytes derived from WT, KDand 

KOmice (n = 4 mice/genotype), normalized on the -actin protein amount. Cells in (A) and 

(B) were subjected to oxidative stress using heme (5M) for 1h following TNF stimulation 

(50ng/ml) for 8h (Heme-TNF, striped bars). Values represent mean ± SD of four independent 

experiments. Heme-TNF-stimulated cells were compared to their unstimulated controls. *p < 

0.05, **p < 0.01, ***p < 0.001, determined by one-way ANOVA followed by Tukey’s multiple 

comparison post hoc test.  
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Remarkably, KD and KO hepatocytes displayed both increased transcription of HO-1 

(Hmox-1 gene mRNA, Fig. 24A) and translation of HO-1 protein (Fig. 24B) in response to 

heme-TNF stimulation, as compared to WT controls. Together, these data suggest that the 

inhibition of PI3K protects hepatocytes from stress-induced dysfunctions via ROS-mediated 

hormetic mechanisms. 
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4. Discussion  

PI3K has been extensively studied in leukocytes, where it is abundantly expressed and 

involved in both innate and adaptive immune responses (Rückle et al. 2006; Barberis and Hirsch 

2008; Hirsch et al. 2000). In this study, we established PI3K as an important regulator of the 

liver parenchymal response to inflammatory stress, opening a new field of investigation for this 

signaling protein. Here, for the first time, we report that PI3K is expressed in the liver organ 

and in hepatocytes specifically, albeit in low amounts. This discovery is supported by the 

growing body of evidence implicating PI3K in regulating stress responses in tissues other than 

immune cells, such as cardiomyocytes (Patrucco et al. 2004), adipocytes (Becattini et al. 2011), 

endothelial cells (Huang et al. 2016) and neurons (Perino et al. 2014). Strikingly, in this study 

we observed that PI3K protein expression increased upon in vitro stimulations with cytokines, 

both in isolated primary hepatocytes and in HepG2 and Hepa 1-6 cell lines. This strongly 

indicates that PI3K mediates intracellular responses of hepatocytes upon inflammatory stress. 

PI3K has been recently found involved in the development of inflammatory-induced liver 

failure using mouse models of polymicrobial sepsis (Martin et al. 2010; Recknagel et al. 2012). 

In particular, upon cecal ligation and puncture procedure (CLP), PI3K-/- mice displayed 

reduced levels of alanine transaminase (ALT) and aspartate transaminase (AST) in the blood, 

as compared to WT mice. Although these liver-specific enzymes are released by necrotic 

hepatocytes and are normally associated with hepatocyte injury, the amounts of ALT and AST 

within the blood is not considered as a reliable indicator of hepatic failure itself (Bhatia et al. 

2014). Bile formation is instead one of the most important functions of the liver that is 

compromised during hepatic failure. This complex process involves a huge flux of solutes 

through the hepatocytes and its dysregulation results in cholestasis, leading to very severe liver 

damage caused by a build-up of pressure and cell lysis due to bile salts accumulation. One of 

the main pathomechanisms of cholestasis, already established many decades ago, is the 

withdrawal of bile transporter proteins from the canalicular membrane and the concomitant 

upregulation of other transporters in the basolateral membrane (Elferink and Paulusma 2015; 

Paulusma et al. 2000; Scheffer et al. 2002). This prevents excessive pressure formation and 

damage, allowing for reverse transport of solutes back into the blood. Our research group 

recently discovered that PI3Kis implicated in the pathogenesis of sepsis-induced cholestasis 

in the experimental mouse model of peritoneal contamination and infection (PCI) (Recknagel 

et al. 2012). In the present study we unraveled the molecular mechanisms involved.  
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Our results highlight the importance of PI3K inhibition in protecting hepatocytes from 

cytokine-induced Mrp2 retrieval form the canalicular membrane, which has been previously 

identified as a common feature of sepsis-induced cholestasis (Elferink and Paulusma 2015). 

Cholestatic conditions usually occur early in the onset of sepsis, despite increased cardiac 

output and hepatic perfusion (Wang et al. 1995). Thus, the hepatocellular dysfunction in sepsis 

must be associated with the release of proinflammatory cytokines primarily. Therefore, we 

designed for our studies an in vitro model that mimics the physiologic inflammatory 

environment where we induced hepatocyte cholestasis with a mixture of cytokines. 

Mrp2 protein is responsible for mediating the hepatocyte secretion of various amphiphilic 

anionic compound as well as glutathione conjugates, which are chief determinants of the so-

called bile salt-independent fractions of the bile flow (Elferink and Paulusma 2015). 

Accordingly, mutations in the MRP2 gene in humans result in the autosomal recessive Dubin-

Johnson syndrome (DJS), which is a rare disease characterized by a mild conjugated 

hyperbilirubinemia caused by the impaired hepatobiliary transport system of non-bile salt 

organic anions across the canalicular membrane (Nies and Keppler 2007; Gu and Manautou 

2010). Similarly, the functional absence of Mrp2 in knockout mice is characterized by increased 

accumulation of bilirubin and its conjugated glucuronides within serum and urine, due to a 

reduction of Mrp2-dependent biliary secretion (Chai et al. 2015). Upon cholestatic conditions, 

Mrp2 undergo withdrawal processes, being stored in subapical vesicles underneath the plasma 

membrane (Paulusma et al. 2000). For evaluating the localization of Mrp2 in hepatocytes, we 

took advantage of freeze-fracture replica immunogold labeling (FRIL), which is a technique 

that provides valuable information on the ultrastructural architecture of the plasma membrane. 

Importantly, immunogold labeling via FRIL technique allows the detection of Mrp2 protein 

particles exclusively localized within the plasma membrane, and discounts those particles 

internalized in subapical vesicles. FRIL thus consents a more reliable estimation of the number 

of Mrp2 within the plasma membrane as compared to other procedures based on 

immunostainings or plasma membrane fractionation methods, which are limited by the non-

specificity of commercially available Mrp2 antibodies. 

 In agreement with previous results obtained on human HepG2 cells (Recknagel et al. 2012), 

pharmacological inhibition of PI3K enzymatic activity, using the small molecule AS605240 

(AS) in murine Hepa 1-6 cells, confirmed the importance of PI3K kinase activity in controlling 

the Mrp2 internalization induced by proinflammatory cytokines. Consistently, this observation 

is supported by the effects of specific PI3K inhibitor, which completely blocked the 

inflammatory-induced Mrp2 particles retrieval in primary hepatocytes derived from WT mice. 
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Furthermore, genetic inactivation of PI3K catalytic subunit, as well as genetic deprivation of 

the entire PI3K protein, mimicked the results obtained with the chemical inhibitor. These 

results importantly suggest a new potential clinical application for PI3K inhibitors in 

protecting from cholestatic damage. 

To study in details the role of PI3K kinase activity upon inflammatory stress, a cytokine 

mix (CM) was applied on WT-derived primary hepatocytes in combination with AS for a short 

time, and Akt phosphorylation was tested as a readout. However, due to the use of a mixture of 

cytokines that simultaneously activates various receptors and downstream signaling pathways, 

we could not observe a complete block of Akt phosphorylation by using AS inhibitor. 

Presumably, upon CM treatment other PI3K isoforms are activated at the same time, and the 

inhibition of PI3K alone is not sufficient to fully abrogate Akt phosphorylation. For example, 

other PI3K isoforms like p110 and p110 might be also involved in a variety of intracellular 

responses to inflammatory cytokines (Tsukamoto et al. 2008; Hawkins and Stephens 2015). 

Our data indicate that the kinase activity of PI3K is crucial in restricted signaling responses 

to a single G protein-coupled receptorsuch as the fMLP receptor (FPR). FPR downstream 

signaling has been characterized in neutrophils, and its activation by the bacterial cell wall-

derived chemotactic peptide fMLP triggers multiple intracellular signaling pathways, including 

a rapid stimulation of PI3K(Hirsch et al. 2000). In contrast to the effects of cytokine mix, 

fMLP short-time stimulations in hepatocytes induced Akt phosphorylation that was exclusively 

dependent on PI3K kinase activity, since the fMLP-induced P-Akt signal was completely 

abrogated by both genetic and pharmacologic inhibition of PI3K catalytic function.  

Among the intracellular reactions triggered by fMLP, the PI3K-mediated activation of 

PKC seems to play an important role for the neutrophils’ defense against pathogen infections 

(Lehmann et al. 2009; Bertram and Ley 2011). Furthermore, a large body of evidence supports 

the involvement of PKC in the pathogenesis of cholestasis within hepatocytes (Wimmer et al. 

2008; Pérez et al. 2006; Anwer 2014; Crocenzi et al. 2008). Importantly, here we show that 

PI3K and PKC interact in hepatocytes, especially following fMLP stimulation. Thus, we 

speculate that the kinase activity of PI3K may be important for PKC activation, although it 

still remains unclear whether the lipid or the protein kinase function of PI3K is activating 

PKC (Lehmann et al. 2009). 

Initial studies using broad-spectrum pharmacologic activators and inhibitors of PKCs 

suggested that stimulation of PKCs causes cholestasis (Anwer 2004). However, PKCs are 

implicated in both choleretic and cholestatic effects, and it is recently becoming evident that 
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these opposing effects may be mediated by different PKC isoforms (Anwer 2014). Our 

observation that PKC in hepatocytes immunoprecipitates with PI3K suggests the 

contribution of this specific PKC isoform in the PI3K-mediated cholestatic effects. PKCs have 

been found involved in mediating the activity of two members of the ezrin/radixin/moesin 

(ERM) protein family: radixin and ezrin. Radixin is the dominant ERM protein in hepatocytes, 

and its co-localization with Mrp2 at the canalicular membrane is disrupted in conditions of 

cholestasis (Sekine et al. 2011; Kojima et al. 2008). Accordingly, knockdown and knockout of 

radixin in rodents lead to a reduction in membrane Mrp2 (Kikuchi et al. 2002; Wang et al. 

2006). However, ezrin protein has also been detected at the canalicular membrane of human 

hepatocytes (Clapéron et al. 2013; Chai et al. 2015). Importantly, ezrin knockdown mice 

develop severe intrahepatic cholestasis, characterized by intrahepatic bile acid accumulation 

without developmental defects of bile duct morphology or infiltration of inflammatory cells 

(Hatano et al. 2015). Furthermore, studies in Caco2 cells, rat intestine tissue and cholestatic 

livers indicate that ezrin controls Mrp2 expression and function (Yang et al. 2007; Nakano et 

al. 2009; Chai et al. 2015).  

Interestingly, studies to date suggest that both the dephosphorylation of radixin by PKC-

mediated activation of PP-1 (Kojima et al. 2008; Sekine et al. 2011) and the direct PKC-induced 

phosphorylation of ezrin (Chai et al. 2015; Nakano et al. 2009) lead to Mrp2 retrieval from the 

plasma membrane (Fig. 4). Given the impact that the ERM phosphorylation status has on Mrp2 

localization, we analyzed via western blot WT-derived primary hepatocytes treated with CM 

using P-ERM antibody. However, P-ERM pattern of CM-treated hepatocytes did not differ 

from controls, probably due to the failure of the antibody used in distinguishing between P-

ezrin and P-radixin, localized at the same molecular weight. Nonetheless, primary hepatocytes 

derived from PI3K mutant mice showed a considerable decrease in P-ERM, both in basal 

conditions and upon proinflammatory stimulation. These results point out a major role of 

PI3Kin controlling the phosphorylation of one of the ERM proteins. Strikingly, our 

immunoprecipitation experiments show that ezrin but not radixin is directly interacting with 

PI3K, strongly suggesting that a PI3K/PKC/ezrin signaling pathway may control Mrp2 

protein internalization process (Fig. 25). 
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Figure 25: Schematic representation of the PI3K-mediated regulation of Mrp2 protein 

internalization in hepatocytes. Under inflammatory conditions, ezrin tether protein undergoes 

a protein kinase C alpha (PKC-dependent phosphorylation, and this leads to Mrp2 protein 

retrieval towards endocytic compartments. This mechanism is controlled by the kinase activity 

of PI3K, which mediates PKC activity. 

 

 

The cholestatic-induced internalization of bile transporter proteins is normally counteracted 

by a boost of cAMP levels, which redistributes transporters to the canalicular membrane in 

order to avoid irreversible consequences of sustained internalization, such as accelerated 

protein degradation (Crocenzi et al. 2012). Our finding that PI3K controls cAMP hepatocytic 

pools, thus promoting Mrp2 canalicular localization, is in line with previous reports where the 

scaffold function of this PI3K has been identified as crucial for regulating cAMP levels (Hirsch 

et al. 2009). Nonetheless, in our study emerged the important role of the sole PI3Kcatalytic 

activity in contrast to its kinase-independent function, responsible for the activation of cAMP-

degrading phosphodiesterases. We found that cAMP levels in hepatocytes derived from KD 

mice are significantly higher than WT controls both in normal conditions and upon 

inflammatory stress, strongly suggesting an involvement of PI3K kinase activity in the 

regulation of cAMP level. Accordingly, hepatocyte treatment with PI3Kinhibitor blocked the 

Akt phosphorylation induced by salbutamol, which is a 2-adrenergic receptor agonist that 
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negatively modulates cAMP pools through a Gi/PI3K/Akt signaling pathway (Xiao 2001). 

Furthermore, our immunoprecipitation experiments in both primary hepatocytes and cell lines 

show that in liver parenchyma PI3K interacts with PDE3B, as it was previously shown in other 

cell compartments such as heart and brain (Patrucco et al. 2004; Perino et al. 2014). Given that 

PDE3B activity has been already found controlled by Akt in other cell types (Kitamura et al. 

1999; Sahu 2011; Ahmad et al. 2000), we speculate that PI3K catalytic activity in hepatocytes 

negatively controls cAMP level via an Akt/PDE3B signaling pathway.   

Experimental strategies aimed to increase cAMP in hepatocytes through cAMP analogues 

or PDE inhibitors were successful in protecting from cholestatic damage, especially due to an 

increased Mrp2 protein insertion at the canalicular membrane of hepatocytes (Roelofsen et al. 

1998; Mottino et al. 2002; Crocenzi et al. 2005). Although the molecular mechanisms by which 

cAMP translocates Mrp2 to the plasma membrane remain incompletely understood, reports to 

date indicate that this process is mostly controlled by vesicle trafficking along microtubules 

(Marinelli et al. 2005). For example, Schonhoff et al. have recently elucidated how cAMP 

mediates microtubule-dependent membrane insertion of Mrp2 via activating the p38 MAPK 

(Schonhoff et al. 2016). Of note, another recent study revealed Rab11 as a crucial protein 

involved in the cAMP-mediated reinsertion of Mrp2 at the canalicular membrane of 

hepatocytes from recycling endosomes (Park et al. 2014). Additionally, an in vitro study 

revealed a novel mechanism involving the interaction of members of the ERM family with the 

N terminus of Epac, which is a direct effector of cAMP (Gloerich et al. 2010). In particular, 

ERM protein activation increases binding to Epac1 and results in a clustered localization of 

Epac1 at the plasma membrane. Thus, an involvement of cAMP/Epac signaling in the 

inflammatory-induced cytoskeleton reorganization of hepatocytes affecting Mrp2 canalicular 

localization cannot be excluded. 

On the other hand, independently from microtubule trafficking, an alternative route of 

cAMP-stimulated exocytic insertion is represented by the protein kinase A (PKA). This path 

has been investigated in rat hepatocyte couples, where the glucagon-induced increase of cAMP 

has been shown to require PKA activation for preventing drug-induced canalicular secretory 

dysfunction (Zucchetti et al. 2011). Interestingly, in this study the authors demonstrated that 

the salbutamol effect is PKA-independent, but instead depends on Epac/MEK and microtubule. 

These findings highlight the complexity of the mechanisms beneath the potential anti-

cholestatic properties of glucagon and adrenaline hormones at the hepatic level. 

In the early phase, sepsis is characterized by high concentrations of circulating 

catecholamines, which boost the initial inflammatory response (Rittirsch et al. 2008). In the 
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liver, adrenaline predominantly increases cAMP levels by means of the β2 adrenergic receptor 

(β2AR) (Morgan et al. 1983). β2AR signaling activity and localization at the cell surface are 

tightly controlled by G protein-coupled serine/threonine kinases (GRKs), which normally 

phosphorylate agonist-occupied GPCRs and cause their desensitization (Penela et al. 2003). 

GRK2 is the most extensively characterized member of GRKs, and its kinase activity on β2AR 

provokes receptor uncoupling from G proteins and clathrin-mediated endocytosis of β2AR via 

β-arrestin proteins binding. Of note, ezrin has been identified as a novel non-GPCR substrate 

of GRK2 (Cant and Pitcher 2005), suggesting a possible function for GRK2 linking β2AR 

activation with hepatocyte reorganization of the actin cytoskeleton following cholestatic insult. 

Furthermore, the interaction of GRK2 with PI3K has been previously shown to facilitate PI3K 

recruitment to the membrane upon agonist stimulation, thus contributing to receptor 

endocytosis and desensitization (Naga Prasad et al. 2002). Hence, given that our results proved 

that PI3Kisinvolved downstream β2AR in hepatocytes, we do not exclude the participation 

of GRK2 in the PI3K-dependent regulation of ezrin-mediated Mrp2 localization in liver 

parenchyma. 

In light of the results obtained, we propose that in inflammatory stress conditions kinase-

dependent functions of PI3K regulate both Mrp2 retrieval and insertion on the plasma 

membrane (Fig. 26) via defined effects on ezrin- and cAMP-mediated control of Mrp2 

localization. 

Apart from this short-term regulation of Mrp2 localization, via PKC and/or cAMP 

signaling, in the current study we enlighten the involvement of PI3Kin other long-term 

adaptive responses to infection that hepatocytes exploit to prevent liver failure. Notably, an 

evolutionary host defense strategy defined as “tolerance to infection”, first discovered in plants 

and secondarily in animals, has been described to limit disease severity irrespective to pathogen 

load (Soares et al. 2014). In contrast to the “resistance to infection” defense strategy, mainly 

consisting in pathogen clearance by innate and adaptive immune systems, disease tolerance 

does not exert direct effects on pathogens. Instead, the functional outputs of host parenchymal 

cells are sustained under stress conditions by this “tolerance” strategy, preventing irreversible 

tissue damage and the consequent compromised host viability (Soares et al. 2017). 
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Figure 26: Schematic representation of PI3K-mediated regulation of Mrp2 protein 

localization. In inflammatory stress conditions, PI3K controls the localization of the Mrp2 

bile transporter protein. On the left side of the scheme it is suggested how PI3K kinase activity 

regulates Mrp2 internalization via PKC-mediated ezrin phosphorylation. On the right side of 

the scheme we hypothesize how the insertion of Mrp2 particles on the canalicular membrane is 

controlled by PI3K-mediated regulation of cAMP intracellular levels. 

 

 

Among the host genes conferring tolerance to infection, the stress-responsive enzyme heme 

oxygenase-1 (HO-1) has been recognized as essential for limiting inflammation and preventing 

cell death, especially in the liver (Gozzelino et al. 2010; Larsen et al. 2010). HO-1 acts as the 

rate-limiting enzyme in the breakdown of heme (Fe protoportphyrin IX, FePPIX) into 

equimolar amounts of biliverdin, iron and carbon monoxide (Tenhunen et al. 1968). 

Importantly, the induction of HO-1 expression in response to microbial infection suppresses the 

development of severe sepsis in mice (Chung et al. 2008). The safe-guarding function of HO-1 

acts irrespective of pathogen load, relying on the cytoprotective effect of HO-1 against excess 

free heme produced by infection-induced hemolysis. In particular, the cytotoxic effects of free 

heme mainly depend on a pro-oxidant activity (Gozzelino et al. 2010), driven by the divalent 

Fe atom contained within the heme protoporphyrin IX ring that can promote the production of 

free radicals via Fenton chemistry (Wardman and Candeias 1996). 

Strikingly, our results show that the lack of PI3K activity increases the amount of HO-1 

within hepatocytes, being potentially protective from heme-induced liver damage. Induction of 
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HO-1 exerts hepatoprotective effects primarily by attenuating Kupffer cell inflammatory 

response (Devey et al. 2009). However, HO-1 induction using tin protoporphyrin has been also 

shown to protect hepatocytes from cell death in experimental sepsis in vivo and in vitro via 

induction of autophagy (Carchman et al. 2011). Given that autophagy is negatively regulated 

by the PI3K/Akt-mediated phosphorylation of the mechanistic target of rapamycin complex 1 

(mTORC1) (Zhao et al. 2015), we cannot exclude that the increased HO-1 levels found in PI3K 

mutant mice elicit hepatocellular protection via increasing autophagy. The observation that 

autophagy activation protects against cholestasis-induced hepatic injury (Gao et al. 2014) 

additionally supports this hypothesis, although further investigations would still be needed.  

Remarkably, it has been recently demonstrated that the HO-1 induction by Hemoglobin-

Glutamer 200 (HbG200) attenuates hepatocellular cholestasis in ischemia-reperfused (I/R) rat 

livers (Donner et al. 2013). Interestingly, in this study it was observed that HbG200-induced 

HO-1 increase in pericentral hepatocytes largely reverted the I/R-induced downregulation of 

Mrp2. Given that the lack of PI3K activity results in an increase of HO-1 expression, 

therapeutic interventions inhibiting the hepatocytic PI3K catalytic activity may improve 

hepatobiliary function and merits further investigations. 

Our data point out the role of PI3K enzymatic activity in the negative regulation of 

hepatocytic cAMP pools. In light of previous studies where increased intracellular cAMP levels 

induced HO-1 via a protein kinase A (PKA)-dependent pathway (Immenschuh et al. 1998; 

Rensing et al. 2004), PI3K kinase function possibly controls HO-1 expression via regulating 

cAMP hepatocytic amounts. Besides the induction of HO-1 by cAMP, we hypothesize that the 

increased HO-1 expression we observed in PI3K mutant hepatocytes can be caused by 

oxidative stress. A large body of evidence indicating oxidative stress as the main cause of HO-

1 increase (Ryter and Choi 2005; Gozzelino et al. 2010). These data indeed support our 

discovery that reactive oxygen species (ROS) production is slightly elevated in KD and KO-

derived parenchymal cells. However, the fact that hepatocytes lacking PI3K display protection 

from cholestasis excludes that the level of intracellular ROS is noxious. Notably, several studies 

have provided evidence that oxidative stress occurs in cholestatic conditions, even though the 

source of ROS appears to be primarily inflammatory cells that accumulate in the liver at early 

stages of disease (Copple et al. 2010; Roma and Sanchez Pozzi 2008). In particular, reactive 

oxygen species have been found to induce endocytic internalization of canalicular transporters, 

especially Mrp2 (Sekine et al. 2006; Sekine et al. 2011). Given that we observed a block of the 

inflammatory-induced Mrp2 internalization in PI3K mutant hepatocytes, we speculate that the 
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dose of ROS in KD and KO liver parenchyma is not sufficiently high to provoke cholestatic 

damage. 

Stress-dependent adaptive responses display pronounced dose dependency. In many cases, 

the low doses of potentially harmful environmental factor, such as ROS, eventually cause 

beneficial effects. This dose-dependent phenomenon, characterized on one hand by low dose-

induced damage prevention and on the other hand by harmful effects at higher does, has been 

defined as “hormesis” and it has been well characterized in the past ten years (Calabrese 2008; 

Wetzker and Rubio 2012). Considering this, ROS, which in high amounts have detrimental 

effects, at low doses can be rather beneficial by activating signaling molecules that promote 

health (Ristow 2014). Since the amount of ROS produced in PI3K mutant hepatocytes are not 

adequately high to cause the detrimental effect of Mrp2 retrieval from the canalicular 

membrane, we hypothesize that parenchymal liver cells lacking functional PI3K may be 

protected from inflammatory/oxidative stress-induced damage because of preconditioning by 

ROS low doses. Consistently, KD and KO-isolated primary hepatocytes, when exposed to 

heme and TNF-induced oxidative stress, showed a pronounced HO-1 response as compared 

to WT controls, both at transcriptional and at translational level. 

In hepatocytes the most important sources of ROS are mitochondria, for two important 

reasons: i) every liver cell contains hundreds of mitochondria and ii) mitochondrial electron 

transport can easily be disturbed (Copple et al. 2010). Remarkably, intrinsic cAMP production 

and PKA activation have been detected in liver mitochondria, where they are proposed to 

regulate respiration thus adjusting mitochondrial bioenergetics to different metabolic situations 

(Acin-Perez et al. 2009). In cardiomyocytes, for example, both the ischemic and the glucose 

deprivation-induced activation of PKA increase the phosphorylation of cytochrome c oxidase 

subunits, leading to inhibition of mitochondrial respiration and consequent ROS increase 

(Ferretti et al. 2012). Given that hypoglycemia is frequently observed in septic patients and that 

hepatocytes possess large amounts of mitochondria, a possible regulation of the mitochondrial 

cAMP-mediated ROS production by PI3K cannot be excluded. Even though our 

measurements of ROS using the DCFDA assay did not allow us to define the source of oxidative 

species, we observed that the increased ROS in PI3K mutant hepatocytes triggered beneficial 

long-term adaptive responses conferring disease tolerance.  

The inflammatory-induced oxidative stress imposed on liver parenchyma, which potentially 

leads to cholestasis, is mainly counteracted by the adaptive cellular response regulated by the 

evolutionarily conserved nuclear factor-erythroid 2-related factor 2 (Nrf2) (Hayes and 

Dinkova-Kostova 2014; Soares et al. 2014). Activation of Nrf2 has been demonstrated to 
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provide tissue damage control and disease tolerance in mouse models of Salmonella (Nairz et 

al. 2013), Staphylococcus aureus (Athale et al. 2012) and polymicrobial infections 

(Thimmulappa et al. 2006; Kolls 2006), and it has been also found to modulate host resistance 

mechanisms in many other inflammation-associated diseases (Kim et al. 2010). Nrf2 is a 

member of the cap'n'collar (CNC) basic-region leucine zipper transcription factor family, and 

it is considered one of the major protagonists in the host protective mechanisms preventing 

parenchymal cells from dysfunctions and necrosis (Soares et al. 2014). Of particular interest, 

within the liver these protective mechanisms enforce tissue damage control and disease 

tolerance to systemic infections presumably via the expression of Nrf2 regulated effector genes, 

such as the HO-1-encoding Hmox-1 gene. Accordingly, KD and KO hepatocytes exhibited 

increased Hmox-1 gene expression both in basal and in oxidative stress conditions. Therefore, 

the increase of Hmox-1 gene transcription observed in PI3K mutant hepatocytes, index of 

augmented Nrf2 activity, can most likely be attributed to ROS.  

Nrf2 is renowned as a redox-sensitive transcription factor, which accumulates in the nucleus 

under stress conditions, enhancing antioxidant and cytoprotective genes (Soares and Ribeiro 

2015). It is thus not surprising that the basal activity of Nrf2, as well as the magnitude of its 

activation in response to stress, are tightly controlled. Under normal homeostatic conditions, 

Nrf2 is maintained at low level by constant ubiquitinylation and proteasomal degradation. 

However, the presence of oxidants inhibits Nrf2 constitutive degradation, thereby enabling Nrf2 

protein accumulation. The prevailing view is that the E3 ubiquitin ligase substrate adaptor 

Kelch-like ECH-associated protein (Keap1) is the dominant regulator of Nrf2. Keap1 binds 

Nrf2 in normal unstressed conditions, promoting its ubiquitination and proteasomal 

degradation, but ROS exposure causes cysteine modifications which inhibit Keap1 function and 

promote Nrf2 stability and activity (Suzuki and Yamamoto 2015). Nonetheless, a growing body 

of evidence is recently supporting the importance of glycogen synthase kinase-3 (GSK-3) as an 

Nrf2 repressor (Hayes and Dinkova-Kostova 2014; Cuadrado 2015; Salazar et al. 2006). 

Importantly, PI3K/Akt signaling pathway has been already described to control the activity of 

GSK-3 (Hayes and Dinkova-Kostova 2014; Sivaramakrishnan and Devaraj 2010), thus 

suggesting a possible involvement of PI3K in modulating the GSK-3-mediated repression of 

Nrf2 activity. 
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5. Conclusions and Outlook 

This study reveals an important role of PI3K in the response of liver parenchyma to 

inflammatory stress. For the first time, here we show that PI3K is expressed in hepatocytes 

and is involved in the cellular response to inflammatory stress. Our ex vivo and in vitro data 

demonstrate that both pharmacological and genetic inhibition of PI3Kprevents from 

inflammatory-induced Mrp2 internalization, thus protecting hepatocytes from cholestatic 

damage. At the same time, the lack of functional PI3K upregulates HO-1 in liver parenchyma, 

exerting long-term hepatoprotective effects. 

However, further investigations are still required for studying the role that hepatocytic 

PI3K plays in vivo upon inflammatory stress. Although previous studies showed that PI3K 

inhibition improves the secretory function of hepatocytes in rodent models of peritonitis 

(Martin et al. 2010; Recknagel et al. 2012), a large body of literature shows that PI3K plays a 

crucial role within the immune system in protecting the host from infection (Costa et al. 2011; 

Hirsch et al. 2000; Rückle et al. 2006). Therefore, PI3K inhibition in the whole body in septic 

conditions on one hand has hepatoprotective effects, but on the other hand causes an 

immunocompromised state, being detrimental to the host in terms of survival. Thus, strategies 

aimed to target PI3K specifically in liver parenchyma would prevent sepsis-induced hepatic 

failure without affecting the immune system.  

In light of these considerations, the generation of hepatocyte-specific conditional knockout 

mice for PI3K would help discriminating the function that this enzyme has in liver parenchyma 

as opposed to its role within the immune system. These mice could be obtained using the 

Cre/lox system strategy, by breeding two transgenic mouse lines: i) mice having the PI3K gene 

flanked by loxP regions and ii) mice having the Cre enzyme expressed under albumin promoter. 

These two transgenic mouse lines are already available in our animal facility, and will be breed 

after approval by the local ethics committee. Mice obtained from this breeding would lack 

PI3K in hepatocytes exclusively, thus representing a valuable model for studying the 

involvement of this kinase in the pathogenesis of sepsis-induced cholestasis. 

Alternatively, a pharmacological strategy aimed to deliver PI3K inhibitors specifically in 

mouse liver parenchymal cells may also be taken into account. For example, our research group 

was recently successful in delivering small molecules to hepatocytes using highly specific 

nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties 

coupled to biodegradable polymers (Press et al. 2014). Therefore, the efficacy of the 
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hepatocyte-specific delivery of PI3K inhibitors with these nanoparticles could be assessed in 

vivo as a preclinical study. 

Despite the current study is limited by the lack of an in vivo proof of anti-cholestatic effects 

of PI3K inhibition in septic conditions, our results enrich the current knowledge on the 

molecular pathology in inflammatory-induced cholestasis. Furthermore, given that the liver is 

a key player in the sepsis-induced MOF syndrome, our findings may help finding novel putative 

therapeutic strategies for treating the liver secretory failure caused by infection. 
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