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Abstract. In recent years, Deep Learning (DL) showed new top per-
formances in almost all computer vision tasks that are important for
automotive and robotic applications. In these applications both space
and power are limited resources. Therefore, there is a need to apply
DL approaches on a small and power efficient device, like the NVIDIA
Jetson TX1 with a powerful GPU onboard. In this paper, we analyze
the Jetson’s suitability by benchmarking the run-time of DL operations
in comparison to a high performance GPU. Exemplary, we port a top-
performing DL-based person detector to this platform. We explain the
steps necessary to significantly speed up this approach on the device.

1 Introduction

In recent years, Deep Learning approaches have surpassed the performance of
traditional computer vision methods by far for almost all image processing tasks
that are essential for autonomous cars and mobile service robots. Examples are
object recognition [27], scene understanding [8], person detection [6], and many
more. All these DL approaches need extensive computational resources. Thus,
usually they are processed on high performance GPUs. For neural network train-
ing, indeed, much computation power is indispensable to get the task done in a
reasonable amount of time. Once trained, the deep networks can be applied on
less powerful systems, but still need an adequate GPU to be fast.

Mobile robots have very tight power restrictions to guarantee an appropriate
service accessibility time. Thus, high performance GPUs are typically unsuitable,
since they are known for their high power consumption. Similar restrictions apply
to the size and weight of components for autonomous cars, in order to increase the
passenger compartment and carrying capacity as well as the car’s fuel-efficiency.
Bulky high performance PCs with powerful GPUs contradict this principle.

Luckily, in 2015 NVIDIA presented the Jetson TX1, an embedded system
of the size of a credit card with a GPU onboard, that consumes less then ten
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CPU 4-core ARM Cortex-A57 @ 1.9 GHz

GPU 256-core Maxwell @ 1 GHz

RAM 4 GB LPDDR4 (shared CPU + GPU)

Processing speed 1024 GFLOPS in float16 precision

Communication Gigabit Ethernet, WiFi, Bluetooth, USB

Power consumption < 10 W (peak 15 W in worst case)

Size 50×87 mm

Fig. 1. Basic data of NVIDIA Jetson TX1 platform used for Deep Learning.

watts (see Fig. 1). Therefore, this platform is perfectly suited for application
on autonomous cars or mobile robots. For comparison, on our mobile robotic
rehabilitation assistant [11] and our robotic companion for domestic use [13] we
need two PCs with Intel core-i7 CPUs (i7-4770R, 4 Cores @ 3.2 GHz) to provide
all the robot’s services simultaneously, which together consume more than 170
watts.

In this paper, we show that computational expensive Deep Neural Network
(DNN) computations can be outsourced to a Jetson TX1 with only very lit-
tle communication overhead. Therefore, we show detailed run-time analyses of
typical DL operations on this platform. Exemplary, we choose person detection
as application, which is a central task for both autonomous cars (pedestrian
recognition [4]) and mobile service robots (being aware of persons for keeping
personal space [38], being polite in navigation [37], following a specific person
[11], or identify the current user [7]).

In [6] we presented a DL-based person detector that surpassed the state of the
art on the standard person detection benchmark dataset Caltech [4]. This neural
net has relatively low memory requirements, which makes it a good candidate
for porting it to the Jetson TX1. We will explain the steps necessary to speed up
this approach on a Jetson TX1. Then we will show its application on a mobile
robot, where it significantly outperforms traditional person detectors and other
DL approaches.

2 Related Work

In recent years, low power consuming embedded devices with onboard GPU
have gained increased attraction in a wide range of research fields. Deep neural
networks heavily benefit from parallelization. Thus, they are perfectly suited for
application on such devices.

2.1 Automotive Applications

The Jetson TX1 is widely spread among autonomous car research projects. It
has been used for navigation tasks [32], sensor fusion and probabilistic tracking
[19], semantic road scene segmentation based on dynamic programming [14], and
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DL-based traffic sign recognition [25]. In [36] a DL-based semantic image seg-
mentation is implemented on this embedded platform by applying the smaller
SqueezeNet architecture instead of DL nets, that have many weights, to gain
a speedup. The segmentation performance decreases due to the modifications
but is still sufficient for self-driving cars. In [15] a related technique, called
”distillation”, is used for decreasing the size of a network in order to obtain
computational savings.

2.2 Robotic Applications

Embedded platforms like Jetson TK1 and TX1 have been used on mobile robots
for several tasks, such as the rectification of an omnidirectional image [33],
particle-based monte carlo localization [29], SLAM [10], path planning [24], and
speech processing [30]. In [16], sonar images of an underwater robot are classified
by a DL approach on a TX1. They apply a retrained, but structurally unchanged
YOLO detector [27] without further optimization.

In [21] a combination of a less powerful embedded platform on a mobile
robot in combination with a cloud solution is proposed for Deep Learning. The
onboard device processes just shallow neural networks. High accuracy can only
be achieved by sending the computing job to a high performance server. In our
opinion, this is not a feasible solution, since in many real-world environments
WiFi might not be fast and reliable enough for unconstrained robot applications,
as experienced e.g. in medical environments such as rehab clinics [11], in private
apartments of elderly people [13], and in stores [12]. In these cases, the robot
would not be able to provide service tasks that depend on DL-based modules.
But a mobile service robot should be able to fulfill all of its tasks with high
accuracy at any time. Therefore, DL operations should be performed onboard
without the need for a cloud solution.

2.3 Person Detection

Also person detection has been done on a TK1 on a mobile robot. In [31] face
detection is used to locate the user of a telepresence robot. In [2] persons are
detected in 3D point clouds of a Kinect 1. These approaches, however, do not
deploy Deep Learning.

In [1] classical computer vision based person detection approaches are ported
to the Jetson TX1 achieving a huge speedup, up to 20 frames per second (HOG
+ LBP), due to the use of a GPU instead of a CPU. While the speed is very
good, the accuracy is only mediocre.

Deep Learning approaches for person detection have also been ported to
the Jetson TX1. In [40], an AlexNet [18] is retrained to detect skin color as
indication for the presence of persons. This approach is not sufficient to detect
persons robustly.

More often, general object detectors trained on ImageNet are applied. These
include the class ’person’, but are not fine-tuned on this specific task. In [20]
a multi-scale wide residual inception network is applied for object detection on
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the TX1. It can process 16 rescaled frames of size 300×300 per second, but the
detection results for the class ’person’ are only mediocre. The YOLO object
detector [27] is portet to the Jetson TK1 in [26]. It does not fit into the memory
of the TK1. Therefore several strategies to reduce the network size are evaluated.
Since fully connected (FC) layers need more than 80% of network’s memory, the
lack of memory could be handled by splitting the FC layers and processing parts
of them sequentially. Other techniques, like decreasing the network size, degraded
the performance. On the Jetson TK1, they processed 4 rescaled frames of size
448×448 per second. In [42], the YOLO detector was ported to a Jetson TX1
without modifications. They were able to process 12 frames of size 448×448
per second. In [22] the Faster R-CNN [28] approach based on VGG networks
was ported to the Jetson TX1 without modifications. It is reported, that the
detection for 1280×720 images ”is near real-time frame rates”.

All these approaches are relatively good general object detectors. However,
for person detection they perform relatively poor (see Sec. 4.3).

2.4 Our Contribution

Summarized, none of these studies has analyzed the run-time of DL operations
on the Jetson TX1 in detail. Only few of these studies have adapted their baseline
DL approach in terms of computational savings for processing on the embedded
platform. Most approaches take the neural nets as they are. In comparison, we
analyze the run-time of DL operations and show, which additional optimizations
speed up the computation without decreasing accuracy. As baseline, we use a
specialized person detector from our previous work [6].

3 Speed up a Deep Learning based Person Detector on
the Jetson TX1

3.1 Baseline Multi-Scale CNN Person Detector

For detecting persons at different scales, we build on our previous work [6] that
set a new top mark on the most popular Caltech pedestrian detection bench-
mark. It uses a resolution pyramid in combination with three Convolutional
Neural Networks (CNNs). Due to the use of multiple CNNs at different scales,
the learned features are specific for the respective resolutions the particular
CNNs are applied to, which improves the performance significantly. The net-
work topologies used in the different stages are similar with the exemplary stage
displayed in Fig. 2. The networks take raw pixels as input and predict whether
the image patch shows a person or not. The networks were designed with a real-
time application and an embedded device in mind. Thus, the largest net (Fig. 2)
has relatively few weights (4M) to fit into the memory of a Jetson TX1, even
when applied to a full-size image. More modern architectures known for their
good performance on ImageNet would not fulfill this requirement. Additionally,
the net is not overly deep and wide to avoid needless computations (see Fig. 2).
In [6], the design choices are described in detail.
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Fig. 2. CNN topology for detecting persons. The neural network consists of five convo-
lutional layers with ReLU activation [23], three max-pooling layers, two fully connected
layers with ReLU activation, and a softmax output layer. Dropout [34] is used for reg-
ularization.

The three CNNs were trained on a large and versatile dataset composed of 22
datasets from pedestrian detection and person re-identification domains. It con-
tains cropped images showing persons (100,107 samples) and 628,636 non-person
samples. The negative class includes random crops from non-person objects, typ-
ical false detections, and (on purpose) badly aligned crops showing only parts
of persons. In this paper, we use the trained weights of [6]. Since the training
dataset is versatile and generic, we do not need to retrain on a scenario specific
dataset.

After the networks were trained, fully connected layers were converted to
convolutional layers to be able to process images of any size without the need
to shift a sliding window to several locations. Fig. 3 shows the processing chain
of the application phase. Each of the CNNs calculates output maps for multiple
scales of the resolution pyramid. When these classifications have been done, the

3 CNNs 

on each 

scale 

Resolution 

pyramid 

Non-maximum 

suppression 

by 3D pooling 

Fig. 3. Baseline approach [6]. Processing chain in the application phase. To create the
resolution pyramid, the input image is scaled such that it is exactly halved in size
after seven scales. Thus, each of the three CNNs has to process seven scales. The near
scale CNN (red box) additionally processes smaller scales to detect larger persons.
Exemplary network outputs are shown. High neural activations (shown in red) suggest
that persons are present in that region of the image. The classification results are
stacked and non-maximum suppression implemented as 3D pooling is applied to find
the best fitting positions and scales for all persons in the scene.
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full output pyramid can be constructed. Then, a 3D non-maximum suppression
(NMS) is applied to find persons in the scene and at the best fitting scale.
For NMS, we implemented an approximation of the mean-shift algorithm as 3D
pooling. For algorithmic details we refer to [6].

For implementation, we used Keras [3] and Theano [35]. The network training
was performed on a single NVIDIA GTX Titan X GPU in float32 precision.

3.2 Performance Analysis

The application phase on a NVIDIA GTX Titan X GPU took 0.231 seconds on
average per image of size 640 × 480 if persons of a height of at least 80 pixels
should be detected (reported in [6]). Persons, that are partly out of the image
were not considered so far.

Hence, we extended this approach to also detect persons in front of the robot
or pedestrians crossing the street in front of a car, where only the upper body
is visible. This was achieved by zero padding the image below its bottom. The
image size and, thus, also the computation time doubled. We also increased the
maximum distance at which persons are detected. Therefore, the detector now
searches for persons of height 75 – 927 pixels on 26 scales.

When applied on the Jetson TX1, the run-time increased by a factor of 18 to
8.4 seconds. In this paper, we explain how to significantly speedup this DL-based
detection approach by optimizing it for application on the NVIDIA Jetson TX1
without a loss in accuracy.

To figure out, what caused the significant slowdown, we first analyzed the
run-time of DL operations on the Jetson TX1 in comparison to the high perfor-
mance Titan X GPU (see Sec. 4.1). Convolutions, that account for 90% of the
computations, are up to 11 times slower on the Jetson platform. Although, this
explains most of the observed slowdown, the overall slowdown factor is still a
lot higher. Therefore, we searched for additional slowdown factors that should
be eliminated.

3.3 Optimizing the Detector for Processing on a Jetson TX1

Our analyzes have shown, that copy operations between CPU and GPU cre-
ated a large overhead. Although, the Jetson’s CPU and GPU share the same
memory, making copy operations dispensable, the DL frameworks were not able
to make use of this fact. To avoid unnecessary copy operations, we made sure,
that everything is processed on the GPU, including non-DL operations such as
construction of the image pyramid and postprocessing. Then, we optimized the
computation graph in the Theano framework [35] by removing redundancy and
by specifying exact shapes, which means, that all image and succeeding tensor
sizes are set beforehand of processing. We can do this since the camera frame
size will not change. These optimizations, that do not change any results, reduce
the run-time by approximately 66%.

The run-time benchmarks of DL operations (see Fig. 4, Sec. 4.1) confirm,
that float16 precision instead of float32 precision speeds up the computation
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significantly. We therefore checked, if using float16 precision instead of float32
precision changes the results significantly. The only part of the CNN that is
extremely sensitive to a lower floating point precision is the gradient during
backprobagation. During training float16 precision would significantly worsen
the results and, thus, cannot be applied. In the application phase we observed,
that the accuracy of the classifier does not change. None of the linear operations
(Fig. 4 (a) – (c), (e) – (l)) are sensitive to precision. However, the outputs
after the softmax operation loose floating point precision due to the exponential
operation. That means, that non-maximum suppression (NMS) becomes hard,
if not impossible, since positions near the optimal location of a detected person
get equal scores. Therefore, operations after softmax need special treatment. We
used the network’s linear output before the softmax exponential operation for
NMS. Using this trick, we observed only minor differences to the float32 version,
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Slowdown factor
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Slowdown factor
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Slowdown factor
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Fig. 4. Slowdown of typical Deep Learning operations on Jetson TX1 in comparison to
GTX Titan X GPU. Absolute time measured in milliseconds is shown behind each bar.
Times are averaged over 50 runs. (a) – (e) operations on 1000×1000 matrices, (f) – (j)
valid convolutions on a 3-channel 320×240 image using 200 filters and a batch size of 1,
(k) 2×2 max pooling on the same image size using stride 2×2, no padding and a batch
size of 1, (l) 3×7×3 3D max pooling for non-maximum suppression on the same image
size using stride 1×1×1, no padding and batch size 1.
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while the accuracy did not change. Using float16 precision instead of float32
precision reduced the remaining run-time by approximately 25%.

To further speed up the computation, we introduced a ground plane con-
straint. By assuming that all persons must stand on the ground and by utilizing
the extrinsic camera parameters, the image pyramid can be significantly reduced
[17]. Since the relative position of the camera to the robot does not change over
time, we can set all image sizes and succeeding tensor sizes beforehand. Again,
when done properly, the accuracy does not decrease. Using this ground plane
assumption, the remaining run-time was reduced by approximately 75%.

4 Experiments

4.1 Benchmarking Deep Learning on the Jetson TX1

To figure out, which DL operations mainly caused the significant slowdown on
the Jetson TX1 in comparison to the high performance Titan X GPU, we first
analyzed their run-time (Fig. 4).

Most critical are convolutions and rarely used and thus less optimized oper-
ations such as 3D pooling. Convolutions are significantly slower on the Jetson
platform with a slowdown factor of up to 11. In our network, as in most other
modern CNNs too, more than 90% of the computations are convolutions. This
explains most of the observed slowdown. Fig. 4 also shows, that for large ma-
trix and tensor sizes in common neural networks, all operations using float16
precision are faster than equivalent float32 precision operations.

4.2 Gained speedup

Tab. 1 shows the run-time for different stages of optimization. By optimizing the
detector for processing on the Jetson TX1, we were able to speed up the run-time
by a factor of 15 considering both preprocessing and DNN output computation
(619.7 ms vs. 9,321.3 ms). At the same time, the accuracy did not decrease.

Table 1. Runtime of optimized detector on Jetson TX1

Detector FloatX Inp. scaling [ms] Detection [ms]

Reference [6] float32 930.1 ± 2.8 8,391.2 ± 15.3

Optimizations
No overhead & float16 float16 46.1 ± 3.2 2,103.2 ± 5.9
+ Ground plane float16 32.1± 0.3 587.6± 1.8

The steps described in Sec. 3.3 to reduce the run-time on an embedded
platform are not specific for this detector, but can be applied to other Deep
Learning approaches, too. Thus, we recommend to always check if the run-time
can be reduced by:
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– processing as much operations as possible on the GPU instead of the CPU
to avoid overhead of copy operations,

– removing redundancies from the computation graph,
– specifying exact shapes to make all tensor sizes static,
– using float16 instead of float32 precision if accuracy does not drop,
– using assumptions to avoid needless computations.

4.3 Benchmarking the Person Detector on a Mobile Robot

We evaluated the person detector ported to this low power consuming small
board on our mobile robot. Therefore, the Jetson TX1 was coupled to the
main computer using its network interface, while data were exchanged using
the robotics middleware MIRA [5]. In sum, data conversion, synchronization
and communication for data transfer took only 3.36 ms per frame.

Tab. 2 shows the detection results on a recorded dataset [39].

Table 2. Detection performance of Computer Vision (CV) and Deep Learning (DL)
approaches in a robotic application measured by miss rate (MR) for different false
positives per image (FPPI). Additionally, the average number of frames that could be
processed per second on a Jetson TX1 is reported.

Approach Type MR@0.1 FPPI MR@0.01FPPI Frame rate

YOLO [27] DL 0.386 0.918 12 [42]

Faster R-CNN [28] DL 0.321 0.734 2–3 [22]

Part-based HOG [9] CV 0.273 0.603 1.5–2

Proposed [6] DL 0.115 0.287 1.6

The proposed multi-scale detector based on [6] clearly outperforms the other
approaches in accuracy. The other Deep Learning detectors (YOLO, Faster R-
CNN) perform relatively poor in comparison. Their performance is in the prox-
imity of the best classical approaches. This was also observed by Zhang et al. [41]
on the Caltech dataset. In their extensive analysis, they found, that a Region
Proposal Network ”specially tailored for pedestrian detection achieves competi-
tive results as a stand-alone pedestrian detector. But surprisingly, the accuracy
is degraded after feeding these proposals into the Fast R-CNN classifier.” One
reason is, that small objects are not detected appropriately. We observed the
same in our experiments. The second reason is the presence of unseen hard neg-
ative examples that trick most detectors to false detections. This issue can only
be solved by training on a dataset including these difficulties, as we did in our
previous work for the baseline CNN [6].

If a higher processing speed is desired, the detection can be divided and
distributed onto multiple Jetson TX1. Four of these devices would still require
less power than a single PC with a powerful CPU and would also require less
space.

in: Int. WS CAPRI at Joint Conf. on Neural Networks (IJCNN), Anchorage, USA, 2017



5 Conclusion

The small and low power consuming NVIDIA Jetson TX1 platform with a pow-
erful GPU onboard makes it possible to apply top performing Deep Learning
approaches on an autonomous car or a mobile robot. Thus, all DL solutions can
be processed onboard. Exemplary, we showed how to port a DL-based person de-
tector to this platform. Furthermore, we showed how to speed up the detector’s
run-time by factor 15. The result is a top performing DL-based person detector
fast enough to replace the currently used CPU-based classical computer-vision-
based detector on our robot. Our benchmark of typical DL operations will help
other researches to estimate the run-time of Deep Learning approaches when
applied on a Jetson TX1. Additionally, we have presented a list of generally ap-
plicable optimizations to speedup the computation on that device. In the quali-
tative evaluation on a robotic person detection benchmark dataset, the proposed
detector clearly outperforms the state of the art including the popular DL-based
object detectors YOLO and Faster R-CNN.
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