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1. Introduction 

Lasers have influenced every part of human life and revolutionized many scientific and industrial 

sections since T.H. Maiman attained laser light in 1960 [1]. Even though all kinds of lasers share 

several similar principles and features, their specific details, such as power scaling, laser 

performance, cost, size and so on, determine their specific application range. In comparison with 

other types of high power solid-state lasers, fiber lasers are the newest entrants in the laser 

technology arena [2]. In time, fiber lasers have attracted strong attention and experienced rapid 

development especially in the last 20 years due to their numerous advantages such as good thermal 

management owing to a large surface to volume ratio, high power efficiency and stability, capability 

for high average power with superior beam quality, fast turn-on-key operation, low cost and easy 

beam delivery. 

At present, the operation regime of high power fiber lasers, which combines a nanosecond pulse 

width and a multi-kilohertz repetition rate, is a key for many industrial applications [2, 3], 

especially for laser material processing such as micromachining, precision marking, and cutting 

[4]. Many of these processes require high peak power and a diffraction-limited beam quality. The 

high peak power is required to overcome the material processing threshold, while the diffraction 

limited beam quality is required to enhance the level of precision and to extend the laser working 

distance (remote processes).  

Even though significant scaling has been achieved of both the peak power and the average power 

levels with the use of the Yb3+-doped fiber amplifier (YDFA) and the fiber Master Oscillator Power 

Amplifier (MOPA) concept which can provide well controlled pulses without spikes, there still 

exists a huge challenge for further power scaling with preservation of the desired pulsed seed laser 

properties during the amplification process. There exist various unwanted effects which can 

degrade the spectral, temporal, and spatial fidelities of the signal when scaling up the laser peak 

power. First of all, the scaling to higher power with standard fiber amplifiers is limited by parasitic 

nonlinear effects (e.g. Stimulated Raman Scattering (SRS) and Stimulated Brillouin Scattering 

(SBS)) [2~6] due to the small fiber core, which leads to strong light confinement and long 

interaction lengths. The second limitation is the fiber facet damage threshold. In practice, the fiber 

facet damage threshold is proportional to the effective mode diameter and roughly a factor of 2~10 

lower than the bulk damage threshold [7, 8]. Therefore, the scaling to larger effective mode areas 
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is a promising solution to suppress nonlinear effects, to protect the fiber by increasing the material 

damage threshold and to shorten the required fiber length by enhanced absorption when keeping 

the rare earth doping level. However, increasing the effective mode area by increasing the fiber 

core size can severely degrade the fundamental mode (FM) operation and therefore the beam 

quality due to excitation of higher order modes (HOMs). Fibers with core diameters > 15µm are 

typically referred to as large mode area (LMA) fibers [9,10] and require well defined small index 

contrast in order to assure fundamental mode operation. 

Several additional techniques have been adopted to maintain single-mode operation in LMA fibers 

[11-16]. The most common method employs reduction of the core numerical aperture (NA) and 

coiling of the fiber to strip the high order modes [17, 18] due to bend loss. However, homogeneous 

fibers with extremely small NA are difficult to fabricate, while fiber bending induces mode 

distortion and can introduce loss even to the fundamental mode. Other approaches with more 

elaborate fiber designs based on reduced gain and/or increased losses for HOMs are e.g. based on 

leakage channel fibers, chirally coupled cores [19], and photonic crystal fibers (PCF) including 

also large pitch fibers [20]. The latter two have already achieved record high peak powers up to the 

self-focusing limit (about 4 Megawatt) together with near diffraction limited beam quality [21, 22]. 

But they are difficult to manufacture due to the elaborate fiber design in combination with tight 

tolerances and are therefore quite expensive. Additionally, they are more difficult to process (e.g. 

cutting, splicing, tapering, etc.) especially if they employ an air hole structure. 

Consequently, all-solid step-index LMA fibers become an economical and practical option to adopt. 

Several methods have been proposed to scale the peak power while optimizing the beam quality 

with all-solid LMA fibers. Cheng and co-workers [23] have achieved 2.4-MW peak power for 4ns 

pulses at 1064 nm with the use of 200µm core (NA=0.062) Yb-doped fiber amplifiers. They 

optimized the beam quality from M2=25 (uncoiled fiber) to M2=6.5 (properly coiled fiber). Bobkov 

et al. [24] have used a 2.2m long tapered monolithic fiber amplifier with a mode field area of 1000 

µm2 nearby the output. Over 0.7MW peak power was achieved at 1056nm using 20ps chirped 

pulses with a diffraction limited quality (M2 ~ 1.124). All fiber designs discussed above require 

precise refractive index and homogeneity control, because any significant deviation with feature 

sizes larger than the wavelength (e.g. middle dips) will result in severe mode field deformations. 

In the last few years, a new reactive powder sinter technology (REPUSIL) [25~27] has been 

developed that allows to manufacture LMA fibers with high refractive index accuracy and 
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homogeneous dopant distribution. So far, this technology has been mainly applied to multimode 

high power fiber lasers with a continuous wave (CW) power of 4kW [28] or few-moded pulsed 

amplification in short non-tapered rod-type fibers with peak powers up to 360kW [29]. 

The objective of this thesis is to investigate such rod type all-solid Yb3+-doped double clad fibers 

fabricated with the new REPUSIL technology for achieving very high peak power and near 

diffraction limited beam quality. Two main aspects have been considered such as (1) explore rod-

type step-index fibers for power scaling. (2) explore local adiabatic tapers for optimizing the beam 

quality. The investigated high power fibers arrangement is based on a modulator power amplifiers 

setup (master oscillator power amplifier system (MOPA)) with a fiber-coupled semiconductor seed 

laser. 

The dissertation is structured as follows: In the first two chapters (Chapter 2 and Chapter 3), the 

basic theoretical background about pulsed fiber amplifiers and LMA fibers for peak power scaling 

and beam quality improvement is introduced. The basic technologies for fiber component 

preparation and the simulation models for fibers and tapers as used in this thesis are introduced in 

Chapter 4 and Chapter 5, respectively. Chapter 6 is focused on introducing the MOPA system which 

was built to provide the seed laser beam for the main amplifier stage. The main properties of the 

designed Yb3+-doped LMA fiber amplifiers are discussed with experimental results in Chapter 7. 

Finally, the thesis is concluded and a brief outlook is offered. 
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2. Fundamentals of pulsed laser beam amplification in optical fibers 

In this chapter, some basic concepts of pulsed fiber amplifiers are discussed. In the first part, the 

Ytterbium-doped pulsed fiber amplifier is introduced. Ytterbium dopants for laser amplification 

are described in the second part and the properties of amplified laser beams are introduced in the 

third part. Then the Master Oscillator Power Amplifier (MOPA) system consisting of a seed laser 

and the optical fiber amplifier chain to boost the output power is discussed. A thorough 

understanding of the basic aspects of pulsed fiber amplifiers is the basis to optimize later the system 

and fiber design. 

2.1 Pulsed fiber amplifier 

At present, the operation regime of high power fiber laser system which combines a nanosecond 

pulse width and multi-kilohertz repetition rate is a crucial key for many industrial applications [2, 

3], especially for laser material processing such as micromachining, precision marking and cutting. 

The most important properties of this pulsed fiber laser beam are typically high peak power and 

near diffraction-limited beam quality. The high peak power is required to overcome the material 

processing threshold. The near diffraction-limited beam quality is required to enhance the level of 

material processing precision and to extend the laser operation distance.  

Fiber amplifiers are used to amplify the signal power of a (fiber laser) seed signal. A simple pulsed 

fiber amplifier therefore consists of a pulsed seeder, an active fiber, and a pump diode connected 

to the active fiber by a suitable coupler (figure 2.1). The amplifiers adopting doped fibers as active 

gain media and a pulsed laser beam as seed beam are pulsed fiber amplifiers. 

 

Figure 2.1 A simple pulsed fiber amplifier 

As shown in the Figure 2.1, the central section of amplifier is the active fiber which is typically 

doped with rare earth ions such as Yb3+ or Er3+. The active dopants can be pumped with continuous 

wave (CW) pumping or pulsed pumping. The pulsed pumping shows only advantage if the 
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repetition rate is lower than the inverse of the upper state lifetime (lifetime of population in excited 

state) which is a very rare case for fiber amplifiers. The pump laser beam can be injected inside the 

active fiber with forward pumping, backward pumping or bi-directional pumping which can be 

used to optimize the pumping efficiency. The peak power of a laser can be scaled up if the signal 

laser has relatively low repetition rate and short pulse width, provided that the seed power is still 

sufficient to saturate the amplifier. Then only a few pulses can extract the energy stored by active 

dopants and achieve quite high peak power at the output. 

There exist several limitations for pulsed fiber amplifiers to further scale up the peak power and 

pulse energy with such a traditional pulsed fiber amplifier. The nonlinear effects (see chapter 3.1.1) 

[3,6,10] are the dominating limitations for high peak power due to the small active fiber core of a 

standard fiber amplifier which leads to strong light confinement and due to the long interaction 

lengths. The amplified spontaneous emission limits the population inversion for the active fiber 

which decreases the signal gain and leads to noise. The optical damage ultimately limits the peak 

power and can cause permanent damage of the fiber. Finally, the gain saturation effect which is 

discussed in chapter 2.3.1 can badly distort the pulse shape of high energy pulses.  

2.2 Ytterbium dopants for laser amplification 

The active medium which is doped with rare earth ions is the core component of a fiber amplifier 

and a fiber laser. The active dopants in the active medium can absorb the pump light and excite the 

atoms to a metastable level, then the stimulated photon emission is triggered by the seed photons 

which leads to light amplification. The core of an active fiber is usually doped with rare earth ions 

as active medium for fiber amplification. The figure 2.2 shows the rare-earth ions which are 

commonly used as active dopants and their possible lasing wavelength region [10]. 

 

Figure 2.2. Rare earth ions with possible lasing wavelength region [10] 
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Er3+ and Yb3+ ions are the most important active dopants for fiber lasers and amplifiers. The Er3+ 

doped fiber laser has some limitations such as excited state absorption and concentration quenching. 

Therefore, the Er3+-doped fiber laser does not have special advantages for high power fiber 

amplifiers [30,31]. Ytterbium-doped fibers [32,33] have proven superior properties in the high-

power laser technology. They have become the best choice for power scaling due to advantages 

such as low quantum defect and high saturation fluence allowing high pulse energy. Excited state 

absorption and concentration quenching by interionic energy transfer do not occur due to Yb3+ 

simple energy level scheme. Yb3+ belongs to the lanthanides group and the common host media for 

Yb3+ is silica glass.  

 

Figure 2.3 Possible photonic transitions of Yb3+-ions in silica 

The Figure 2.3 shows possible photonic transitions such as absorption and emission of the Yb3+ 

ions in silica as well as a typical energy level system for the ytterbium ions with sub-level Stark 

splitting [33,35]. The Yb3+-ions energy-level structure is quite simple, consisting of a ground state 

2F7/2 with four Stark levels (L0 L1 L2 L3) as well as an excited state 2F5/2 with three Stark levels (U0 

U1 U2). Therefore, there is no excited state absorption at pump or signal wavelength. The photon 

transitions of Yb3+-ions can have several combinations which allow a wide range of pumping 

schemes (roughly from 860nm to 1064 nm) and a broad spectral emission (roughly from 975nm to 

1200 nm) [34]. The bold arrows in absorption and emission parts correspond to pumping and lasing 

schemes, respectively. Generally, most of the excited atoms stay in U0 and the greatest possibility 

of lasing emission will occur from U0 into L1, L2 and L3 for Yb3+-doped fibers. 
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Figure 2.4 Typical emission and absorption cross-sections in ytterbium-doped fibers  

The emission and absorption cross sections of a Yb3+- aluminosilicate fiber is shown in Figure 2.4. 

It should be pointed out that different host glass compositions lead to a variation of the details of 

the emission and absorption cross-sections [36] and the pump wavelength can influence the 

emission cross section somehow. The Yb3+ shows quite broad absorption and emission spectra. 

This means that many wavelength options for pumping and lasing are possible. The quantum defect 

which is the energy difference between pump and laser photons is always small, therefore the 

potential thermal load is low and the optical to optical efficiency can be quite high for the laser 

amplification process. The Yb3+ has a relatively high energy storage capacity due to the long 

metastable state lifetime around 1ms. The Yb3+ doped active fiber has a relatively high saturation 

fluence which makes a high pulse energy and high peak power possible. The Yb3+-doped active 

fiber allows a high doping concentration which can achieve high gain with a short fiber length.  

Yb3+-doped active fibers also have some drawbacks. The emission cross section and the absorption 

cross section of Yb3+-doped fiber is overlapping partially as seen in the figure 2.4. However, the 

fiber amplifier features a low quantum defect when the pump and lasing wavelengths are quite 

close to each other. In Yb3+-doped active fibers, some other co-dopants are used to improve the 

properties of the fiber. For example, Aluminum and Cerium co-dopants can reduce photo-darkening 

effects. Aluminum can also help to increase the rare-earth doping concentrations without quenching 

of the upper-state lifetime. Fluorine helps to decrease the refractive index of the fiber core to 

compensate the refractive index increase due to the Yb3+ dopants. 
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2.3 Amplification of pulsed laser beam 

2.3.1 Rate equations and energy gain 

The rate equations are a powerful tool to theoretically investigate the characteristics of Yb3+-doped 

double clad fiber amplifiers. By solving rate equations, the output performance of fiber amplifiers 

can be analyzed numerically. Energy gain is also an important parameter of a laser amplifier and 

will be explained in the following. 

(1) Rate equations of double clad fiber amplifiers 

The schematic diagram of a double clad fiber amplifier with backward pumping is shown in figure 

2.5. The fiber amplifier adopts a double-clad structure: the doped middle core is the signal 

waveguide, inner cladding is the pump waveguide, while the outer cladding has the lowest 

refractive index to assure light guiding. With this double-clad structure, high pump power can be 

coupled into the multimode inner cladding easily with low brightness pump light due to the large 

inner-clad size and the large pump NA. The absorption (or energy gain) exists only in signal core 

which results in a tremendous brightness enhancement. 

 

Figure 2.5 Illustration of double clad fiber amplifier with backward pumping 

The performance of such a fiber amplifier can be expressed by the following space-dependent and 

time-independent steady rate equations [37, 38]:  

                                        
𝑁2(𝑧)

𝑁
=

𝑃𝑝
−(𝑧)𝛤𝑝𝜎𝑎𝑝

ℎ𝑣𝑝𝐴
+

𝑃𝑠
+(𝑧)𝛤𝑠𝜎𝑎𝑠

ℎ𝑣𝑠𝐴

𝑃𝑝
−(𝑧)𝛤𝑝(𝜎𝑎𝑝+𝜎𝑒𝑝)

ℎ𝑣𝑝𝐴
+

1

𝜏
+

𝑃𝑠
+(𝑧)𝛤𝑠(𝜎𝑎𝑠+𝜎𝑒𝑠)

ℎ𝑣𝑠𝐴

                                  (2.1) 

                                                   N = 𝑁1(𝑧) + 𝑁2(𝑧)                                                                (2.2) 
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                     −
𝑑𝑃𝑝

−(𝑧)

𝑑𝑧
= −𝛤𝑝(𝜎𝑎𝑝𝑁 − (𝜎𝑎𝑝 + 𝜎𝑒𝑝)𝑁2(𝑧))𝑃𝑝

−(𝑧) − 𝛼𝑝𝑃𝑝
−(𝑧)                       (2.3) 

                          
𝑑𝑃𝑠

+
(𝑧)

𝑑𝑧
= 𝛤𝑠((𝜎𝑎𝑠 + 𝜎𝑒𝑠)𝑁2(𝑧) − 𝜎𝑎𝑠𝑁)𝑃𝑠

+
(𝑧) − 𝛼𝑠𝑃𝑠

+
(𝑧)                         (2.4) 

Where N1 and N2 are the population densities of the ground state and the excited state, respectively, 

at the position z. The N is the doping concentration distribution which is assumed to be a constant 

value along the fiber core. 𝑃𝑝
−(𝑧)  are the pump power at the z position in backward direction. 

𝑃𝑠
+(𝑧) is the signal power in forward direction. A is the core area while the 𝐴𝑝𝑢𝑚𝑝𝑐𝑙𝑎𝑑 is the area 

for pump clad.  𝛤𝑝  and 𝛤𝑠  are the pump and signal filling factors. 𝛤𝑝  can be calculated as 

A/𝐴𝑝𝑢𝑚𝑝𝑐𝑙𝑎𝑑  if the pump power is homogeneously distributed in the pump clad. The 𝛤𝑠  value 

depends on the excited modes number and the power distribution. 𝜎𝑎𝑝 (𝜎𝑎𝑠) and 𝜎𝑒𝑝 (𝜎𝑒𝑠) are the 

pump (signal) absorption and emission cross-sections, respectively. The parameter h is the planck 

constant and 𝜏 is the spontaneous lifetime of the excited state. The values of αs and αp represent 

loss coefficients of signal and pump light, respectively.  

The equation 2.1 describes the population density of ground state N1 and excited state N2 at a 

speciefic position z. Equation 2.3 and equation 2.4 express the pump and signal power evolution 

along the fiber length. The initial boundary conditions are needed to solve the rate equations which 

are specified at the beginning and the end of fiber. The following is the boundary setting for a fiber 

amplifier with counter pumping:   

                                                                 𝑃𝑝
−(𝐿) = 𝑃𝑝0                                                           (2.5) 

                                                                 𝑃𝑠
+(0) = 𝑃𝑠0                                                           (2.6) 

Where the L is the fiber length, 𝑃𝑝0 is the initial pump power and 𝑃𝑠0 is the initial seed power. This 

simple model can be used to calculate the gain of a fiber amplifier and estimate the output power. 

The equation 2.3 and equation 2.4 can be modified to get: 

                                         𝑃𝑝
−(𝑧) = Pp0e(ΓpσapN1−ΓpσepN2+𝛼𝑝)(z−L)                                        (2.7) 

                                         𝑃𝑠
+(𝑧) = Ps0e(ΓsσesN2−ΓsσasN1−𝛼𝑠)z                                                (2.8) 

Then, the pump absorption efficiency η (%) from z=L to z=0 (L is the fiber length) can be calculated 
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as  

                          η(%) = 1 −
𝑃𝑃

−(0)

𝑃𝑃
−(L)

= 1 − e−(ΓpσapN1−ΓpσepN2+𝛼𝑝)L = 1 − e−κL                   (2.9) 

Here η corresponds to the percentage of pump power which is absorbed. κ can be used as pump 

absorption coefficient to identify the pump absorption whose unit is 1/m. 

                                                 κ(m−1) = ΓpσapN1 − ΓpσepN2 + 𝛼𝑝                                   (2.10) 

The signal gain coefficient g in units of dB/m for the fiber amplifier can be calculated as 

                                  g =
10

𝐿
log10

𝑃𝑠
+(L)

𝑃𝑠
+(0)

=
10

𝑙𝑛10
(ΓsσesN2 − ΓsσasN1 − 𝛼𝑠)                          (2.11)                                   

(2) Energy gain  

In a laser amplifier, the amplification is a process to boost up the optical power at the signal 

wavelength while the gain is the ability of an amplifier to increase the optical power. The gain is 

an important characterization parameter to quantify the strength of an amplification process which 

can be expressed in a logarithm scale, especially for large gain. The unit for this logarithmic gain 

G is decibels (dB): 

                                                           G = 10 log10
Pout

Pin
                                                         (2.12) 

The value of Pout is the output power after the amplification and the Pin is the input signal power at 

the beginning. The gain G normally depends on the pump absorption and the capability of energy 

storage of the active fiber. The stored energy Estored in a fiber amplifier can be given by [39]:     

                                                      Estored = ℎ𝑣𝑠A ∫ 𝑁2(𝑧)𝑑𝑧
𝐿

0
                                             (2.13) 

Here n2(z) is the population density in excited state at different positions z along the fiber amplifier. 

L is the fiber length. A is the doped area. hvs is the signal photon energy. The saturation energy is 

the optical short pulse energy when the gain is decreased to the 1/e-value of the initial small signal 

gain, especially in the case of a short pulse duration whose pulse duration is shorter than the upper 

state lifetime. For a fiber amplifier, the saturation energy Esat [39] can be estimated by 
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                                                      Esat = Psat ∙ τ =
Aℎ𝑣𝑠

𝛤𝑠(σes+σas)
                                               (2.14) 

in which, σes and σas are the emission and absorption cross sections of the signal, respectively. Psat 

is the saturation power. τ is the upper state lifetime. 𝛤𝑠 is the signal filling factor for the active 

dopant. Saturation energy is an important parameter that determines the maximum pulse energy 

which is extracted from the stored energy in gain medium. The extractable energy Eext is useful to 

estimate the difference between the stored energy Estored and the bleach energy Ebleach. The bleach 

energy is the required energy to bleach the signal reabsorption in a fiber (case of gain G = 0dB). 

The extractable energy can be given by [39]: 

                   Eext =  Estored − Ebleach = ℎ𝑣𝑠A ∫ 𝑛2(𝑧)𝑑𝑧 −
𝐿

0
𝜎𝑎𝑠𝑁𝛤𝑠𝐿Esat                           (2.15) 

The equation 3.15 shows that the extractable energy Eext is limited by the saturation energy Esat. 

However, the extraction of high energy from a fiber amplifier always requires that the fiber 

amplifier operates beyond the saturation energy. This leads to a pulse-shape distortion for a pulsed 

fiber amplifier (see figure 2.6). The leading edge of the pulse depletes the inversion and achieves a 

high gain, while the trailing edge of the pulse does not get enough inversion to deplete and cannot 

get the same high gain as the leading edge. Hence, the leading edge experiences a higher gain than 

the trailing edge of the pulses in the pulsed fiber amplifier. For example, a rectangular seed pulse 

shape will be distorted and will show a very sharp peak in the leading edge region [40,41] as shown 

in figure 2.6.  

 

Figure 2.6 Distortion of pulse shape (Blue line: initial pulse shape. Red line: distorted pulse 

shape) 

If the pulse energy is beyond the saturation energy, the gain of the fiber amplifier will generally 
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decrease to a saturation gain value Gsat given as: 

                                                                   Gsat~
G

e
(

EP
Esat

)
                                                       (2.16) 

in which the Ep is the pulse energy and Esat is the pulse saturation energy. G is the normal gain and 

Gsat is the saturation gain of the pulsed fiber amplifier. Due to the energy storage capacity, an 

Ytterbium-doped pulsed fiber amplifier can achieve a relative high energy extraction. 

2.3.2 Peak power and beam quality 

The following properties of the laser pulse are very important to characterize the operation regime 

of a fiber amplifier.  

(1) Peak power 

Pulsed fiber amplifiers are different from continuous wave (CW) amplifiers. The optical power 

appears typically in periodical pulses with a certain repetition rate. The pulse shape may vary. In a 

simple case, the pulses may be described as rectangle shape (see figure 2.7).  

 

Figure 2.7 Pulsed laser beam signal with rectangle pulse shape 

T is the period time and τ is the pulse duration time. If a regular repeating optical pulse with the 

constant time period T is considered, then the value of repetition rate f is 1/T. For a pulsed fiber 

laser, the average power and the peak power are two important parameters. The average power Pave 

is the rate of energy flow which is averaged over one full period T:  

                                                               𝑃𝑎𝑣𝑒 =
𝐸

𝑇
= 𝐸𝑓                                                         (2.17) 

Here, E is the pulse energy in one period T. Peak power is the maximum optical power of a pulse. 

If the pulse format is a perfect rectangle shape, then the theoretical peak power value is  
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                                                               𝑃𝑝𝑒𝑎𝑘 =
𝐸

𝜏
                                                                 (2.18)  

In combination with the equation 2.17 and the equation 2.18, the following definition can be 

achieved:  

                                                        𝑃𝑝𝑒𝑎𝑘 ∗ 𝜏 =  𝑃𝑎𝑣𝑒 ∗ 𝑇                                                      (2.19) 

If the equation 2.19 is rearranged, a new quantity Duty Cycle (DC) can be defined. 

                                                        𝐷𝐶 ≡
𝜏

𝑇
=

𝑃𝑎𝑣𝑒

𝑃𝑝𝑒𝑎𝑘
                                                              (2.20) 

The Duty Cycle is the fraction of the time when the pulse is active. The Duty Cycle is related with 

the pulse peak power Ppeak and the average output power Pave (see equation 2.20) which ultimately 

influences the signal strength and the required power supply capacity.  The peak power can be 

expressed by Duty Cycle which is shown as follows: 

                                               𝑃𝑝𝑒𝑎𝑘 =
𝑃𝑎𝑣𝑒

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒
=  

𝑃𝑎𝑣𝑒∗𝑇

𝜏
=

𝑃𝑎𝑣𝑒

𝜏∗𝑓
                                         (2.21) 

Equation 2.21 shows that the peak power of pulses can be scaled up for the same average output 

power (Pave) level in case of shorter pulse duration t and smaller repetition rate f.  

(2) Beam quality  

For fiber lasers and amplifiers, the beam quality is defined by comparison with the ideal diffraction-

limited Gaussian beam at the same wavelength. The propagation of a Gaussian beam in a 

homogeneous medium or in vacuum is show in Figure 2.8.  

 

Figure 2.8 The propagation of a Gaussian beam  
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The complex electric field amplitude of a Gaussian beam in vacuum can be described as follows 

[42,43]: 

                    E(r, z) = 𝐸0
𝑤0

𝑤(𝑧)
exp (−

𝑟2

𝑤(𝑧)2)𝑒𝑥𝑝 (−𝑖 [𝑘𝑧 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑧

𝑧𝑅
+

𝑘𝑟2

2𝑅(𝑧)
])                   (2.22) 

                               w(z) = 𝑤0√1 + (𝑧/𝑧𝑅)2                                                       (2.23) 

                                𝑧𝑅 =
𝜋𝑤0

2

𝜆
                                                                                (2.24) 

in which w(z) is the beam radius variation along the propagation direction z. The beam radius w(z) 

of the Gaussian shape beam is the transverse beam axis value where the optical intensity drops to 

1/e2 and the electric field strength drops to 1/e (37%). zR is the Rayleigh length. The laser beam has 

two important parameters. The first parameter is the beam waist w0. The beam waist w0 of a 

Gaussian beam is the beam radius at the focus (here z=0) where the beam radius is the smallest (or 

where the intensity on axis is the highest). The second parameter is the beam far-field divergence 

angle which represents the level of expansion of the laser beam from the beam waist. As shown in 

Figure 2.8, the beam expands with a certain divergence angle when it propagates far away from the 

beam waist.  

The beam quality of a laser beam is characterized by the M2 parameter which is normally defined 

as the ratio between the measured beam parameter product (BPP, product of the beam radius and 

the far-field beam divergence) and the ideal Gaussian beam BPP for the same wavelength. If the 

divergence angle θ, the wavelength λ and the beam waist w0 are known for a specific laser beam, 

then the M2 factor can be described as [44]: 

                                                              M2 =
πθw0

2λ
                                                                (2.25) 

The M2 parameter is very helpful to quantify the degree of deviation of a laser beam from an ideal 

Gaussian beam. If only the single fundamental mode exists in a step-index fiber, the beam profile 

is nearly Gaussian shape and the corresponding M2 value is nearly 1. If many higher order modes 

exist in a fiber beam, the M2 value will be larger than 1. This means that for good beam quality 

higher order modes (HOMs) have to be avoided.  

It is important to realize why a diffraction-limited single-mode laser beam is so important for fiber 

lasers and amplifiers. Generally, several reasons exist: First, a better beam quality means a possible 
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smallest beam spot size so that this light is much easier to couple into a delivery fiber, especially 

into a single-mode fiber. Second, a laser beam with good beam quality provides a smaller beam 

spot size on a working piece providing a better precision for material processing. Third, a laser 

beam with good beam quality allows a longer working range between the laser source and work 

piece due to possible beam with small divergence angle (figure 2.9). Fourth, a good beam quality 

laser beam has good spatial coherence which is important in some special applications, such as 

laser microscopy or laser interferometers. Fifth, excitation of HOMs can influence and distort the 

pulse shape for ultra-short pulsed fiber lasers. Therefore, a laser beam which is close to a 

diffraction-limited Gaussian beam is typically the best choice for many practical applications. 

 

Figure 2.9 Different working range L1 and L2 with different divergence angle θ1 and θ2 

The principle for beam quality determination is based on a fitting procedure with the measured the 

beam profile (i.e. beam diameter) at different positions for a given laser beam [45]. Since the laser 

beam typically does not have a clear edge, the laser beam diameter at different positions can be 

determined with several kinds of methods such as D4σ, knife-edge and full-width at half-maximum 

(FWHM). After several sample points (at least 10 samples) of the laser beam at different positions 

are measured within the near field and the far field region, the curve is fitted to show the real beam 

profile due to the measured sample data. Then the beam parameters which include the beam waist 

diameter, location of the beam waist and far field divergence angle of the laser beam can be known. 

For non-radially symmetric laser beams, two sets of beam parameters in X and Y axial directions 

are required. Finally, the beam quality (M2 value) of laser beam can be derived with equation 2.25. 
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2.4 Master oscillator power amplifier (MOPA) system 

The concept of a MOPA refers to an amplifier chain system which includes a seed laser and several 

optical amplifier stages to boost the output laser power (see figure 2.10) [2]. The master oscillator 

fiber amplifier is one special example for a MOPA where the amplifiers are fiber-based. The typical 

MOPA system is schematically shown in Fig 2.10. 

 

Figure 2.10 Illustration of MOPA with an amplifier chain 

Normally a low power laser is adopted as the seed in the MOPA system. Diode lasers are often used 

as seed laser for a pulsed fiber based MOPA system to provide flexible options for pulse formation 

and to optimize the spectral properties.  

With the use of the fiber-based MOPA system, one can easily combine several fiber amplifiers as 

an amplifier chain to boost the output power. The significant advantage of the MOPA system is the 

staging gain. This design can employ different gain active fibers for different amplifier stages which 

can help to optimize the efficiency, minimize the non-linear effect and mitigate the Amplified 

Stimulated Emission (ASE) effect. Not all optical components must sustain the highest power 

levels which decreases the requirements for the optical components. 

There are also some challenges with the use of fiber-based MOPA systems. The system is quite 

sensitive to back-reflections which can easily destroy the system. More components to avoid 

backwards travelling laser lights (e.g. isolators) increase the loss and the cost of the system. Due to 

the small core size of the fiber, it is easy to cause various kinds of nonlinear effects (see chapter 

3.1.1) which make it difficult to achieve high peak power and to modify the optical spectrum.  

In this research work, a three-stage MOPA system is investigated which is discussed in chapter 6. 

The two pre-amplifier stages boost the pulsed seed laser up to the limits of a standard single mode 

fiber amplifier according to the SRS limits which is discussed in chapter 3. Then the third amplifier 

stage is used to scale up the peak power to several hundred kilowatts level with use of a large mode 

area fiber. 
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3. Peak power scaling and beam quality improvement with Large 

Mode Area (LMA) fibers 

Generally, the power scaling up of standard fiber amplifiers is limited by parasitic nonlinear effects 

due to the small fiber core diameter which leads to strong light confinement and long interaction 

lengths. Therefore, scaling up the fiber effective mode area is a promising solution to suppress the 

non-linear effect and to shorten the fiber length when keeping the rare earth doping level. In the 

following the main physical limitations affecting peak power scaling and beam quality 

improvement are identified. The concepts of using LMA fibers for peak power scaling and beam 

quality improvement are discussed in detail. The concepts of adiabatic taper and confined doping 

to improve the beam quality are specially introduced.  

3.1 Physical limitations of pulse amplification 

This section provides an overview of the physical limitations which must be considered to design 

the active LMA fiber to scale up the peak power and keep the beam quality for a pulsed LMA fiber 

amplifier. The key physical limitations such as non-linear effects, damage threshold and amplified 

spontaneous emission (ASE), are discussed.  

3.1.1 Non-linear effects 

Nonlinear effects are the dominant limitation for the performance of pulsed fiber amplifiers and 

lasers. This situation is the direct result of the strong confinement in the small guiding core and the 

long interaction length of fibers. Non-linear effects, i.e. optical phenomena involving a nonlinear 

response of the optical medium to intense laser radiation, are varied and can be summarized as 

follows [6,43]: 

                                 P(t) = ε0𝜒(1)𝐸(𝑡) + ε0𝜒(2)𝐸2(𝑡) + ε0𝜒(3)𝐸3(𝑡) + ⋯                          (3.1) 

The polarization density P(t) represents the power series of the medium under the influence of the 

applied electric field E(t). ε0 is the electric permittivity of free space. The coefficients χ(n) are the 

nth-order susceptibilities of the medium. χ(1) is the linear susceptibility of the medium. χ(2) is the 

second susceptibility of the medium which relates to effects such as frequency doubling, difference 

frequency generation and parametric amplification. These quadratic effects require a non-

centrosymmetric medium which is typically not applicable in optical fibers based on silica glass. 

χ(3) is the cubic component in the field and gives rise to some parametric nonlinear effects such as 
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Kerr effect, Stimulated Raman Scattering (SRS), Stimulated Brillouin Scattering (SBS), self-

focusing, self-phase modulation, cross-phase modulation and four-wave mixing [6,43]. The non-

linear effects, especially the cubic nonlinearity, have a strong effect for high power fiber lasers and 

amplifiers. 

(1) Stimulated Raman scattering (SRS)  

Stimulated Raman scattering (SRS) is an important inelastic nonlinear scattering process which 

can transfer a fraction of power from one wavelength region to a longer wavelength region. It can 

be described as the interaction between the laser beam and laser-induced vibrations associated with 

intramolecular bonds [47~49]. SRS is usually the dominant nonlinear effect for pulsed fiber 

amplifiers operating in the nanosecond region. The SRS effect was discovered by Raman in 1928 

[47]. For high power fiber amplifiers, the SRS effect can transfer most of the laser power to longer 

wavelengths, decreasing the efficiency and introducing new spectral components that are not 

supported by the optical system. The threshold power PSRS of SRS is described as follows [48]: 

                                          𝑃𝑆𝑅𝑆 =
𝐶𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑒𝑓𝑓

𝑔𝑅𝐿𝑒𝑓𝑓
=

𝜋𝐶𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

4𝑔𝑅
∙

𝑀𝐹𝐷2

𝐿𝑒𝑓𝑓
                                        (3.2) 

Where gR is the Raman gain coefficient which is typically in order of 10-13m/W for silica glass. 

Cdirection is a constant value which depends on the propagation direction of the Stokes power, i.e. 

Cdirection is 16 for forward SRS and 20 for backward SRS. Leff is the effective length of the fiber. Aeff 

is the effective mode area of the fiber and MFD is the effective mode field diameter of fiber. 

(2) Stimulated Brillouin scattering (SBS) 

Stimulated Brillouin scattering (SBS) is another inelastic nonlinear scattering process that 

exchanges energy between incident photons and acoustic phonons in the glass lattice [6,50,51]. 

SBS is normally encountered in amplifiers and lasers with narrow band signals. The threshold 

power PSBS for SBS is shown as follows [6]: 

                                                           𝑃𝑆𝐵𝑆 =
21𝜋

4𝑔𝐵
∙

𝑀𝐹𝐷2

𝐿𝑒𝑓𝑓
                                                         (3.3) 

where gB is Brillouin gain coefficient which is typically in order of 5×10-11m/W for silica glass. 

The SBS threshold power increases significantly for broad-band signals. 
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(3) Self-focusing 

Self-focusing is an important non-linear effect which is induced by the change of the material 

refractive index under high optical intensity. The medium whose refractive index is modified acts 

as a focusing lens [7,52,53]. The laser light will be focused on the axis with decreasing beam area 

and increasing intensity. This phenomenon typically continues until the medium damage interrupts 

this process. Such effect occurs when the optical power is higher than the critical power Pself [52]:  

                                                            𝑃𝑠𝑒𝑙𝑓 =
1.8362∗𝜆2

4𝜋𝑛0𝑛2
                                                           (3.4) 

Where n0 is the refractive index of the core material, n2 is the nonlinear index and λ is the 

wavelength. Interestingly, self-focusing does not depend on the modefield and can therefore not be 

overcome by the fiber design. For silica fibers, the critical peak power of a pulsed laser due to the 

self-fousing is approximately 4MW around 1000nm wavelength.    

3.1.2 Laser induced damage 

The typical laser induced damage mechanism for continuous-wave lasers is chemical degradation 

of the active fiber which can cause severe damage of the fiber end-facet, when the material is 

overheated. For nanosecond pulses, the dielectric breakdown is the main reason [8,54~56]. The 

thermal effects also might occur for high pulse repetition rates. 

Laser induced damage can happen not only on a bulk piece of the material, but also on the material 

surface. Normally the laser induced damage threshold for a material surface is lower than for the 

bulk material due to the high electric fields at the interface. Also, the material surface has usually 

more microscopic defects and impurities than bulk material. Tiny defects and impurities can reduce 

the laser induced facet damage threshold considerably. In order to increase the laser induced facet 

damage threshold and to protect the fiber amplifier, several methods can be considered: 1) Use an 

endcap to enlarge the beam size and decrease the power density at the interface [57,58]. 2) Well-

cleaved end facet or well-polished end facet. 3) Avoiding dust on the fiber facet. 

Regarding dielectric breakdown due to the high peak power density, many investigations have been 

done to estimate laser induced damage threshold in different pulse duration regimes [8,56]. For 

normal short pulse duration τ between about 0.01ns and 10ns, the laser induced damage threshold 

expressed as peak power density PDpeak is proportional to τ-1/2 MFD-1 where the τ is the pulse 
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duration and MFD is the effective mode field diameter [8]. Then the maximum peak power Pmax 

below the dielectric breakdown for pulsed fiber lasers and amplifiers has a relationship with MFD 

and pulse duration according to:  

                                                             𝑃𝑚𝑎𝑥 ∝
𝑀𝐹𝐷

√𝜏
                                                                 (3.5) 

 

Figure 3.1 Laser induced damage threshold with different pulse durations and spot diameters at 

1064nm wavelength for fused silica (b is mode field diameter) [8]  

The figure 3.1 shows the critical energy density as a function of the pulse duration and spot diameter 

for fused silica.  
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3.1.3 Other limitations 

(1) Amplified spontaneous emission (ASE) 

In a fiber amplifier, the ions in excited states can spontaneously decay to the ground states or to 

some intermediate energy levels, releasing photons in random direction. A part of these photos can 

be captured by the fiber core and can propagate along the fiber in both directions. When the active 

fiber is pumped, the spontaneous emission light can be significantly amplified due to similar gain 

as the real signal [59]. This process is called amplified spontaneous emission (ASE).  

Typically, the ASE is an unwanted phenomenon. The ASE can deplete the energy which is stored 

in the excited ions and can limit the extractable energy for signal generation. Especially for pulsed 

fiber amplifiers with low repetition rate, the ASE can degrade the pulse energy and pulse contrast, 

and can decrease the pump efficiency. Especially for fiber amplifiers, the ASE can also provide a 

broadband noise to the amplified signal [60]. 

Furthermore, the ASE can propagate in forward and backward direction. Especially the backward 

propagation ASE can be harmful for components in an amplifier system and can even be dangerous 

for the whole MOPA system. As the ASE is in general an unavoidable amplifier noise, some 

methods can be applied to minimize it.  For example, (1) Spectral filtering devices can selectively 

transmit or reflect (or absorb) the light with different wavelengths in the optical path. Therefore, 

the ASE in different wavelengths compared to the signal light can be effectively filtered out by 

spectral filtering devices.  (2) Temporal filtering devices can be used to control the spatial direction 

of a laser light and to “clean up” the ASE. For example, an Acousto-optic Modulator (AOM) gate 

based on the acousto-optic effect can periodically transmit or diffract the light with certain 

frequencies. For a pulsed fiber amplifier, the ASE among pulse intervals can be effectively filtered 

out by such an AOM gate.  

(2) Photodarkening (PD) 

Photodarkening is a phenomenon where the transmission losses due to induced absorption increase 

with time [61]. The mechanism of photodarkening is due to the formation of color centers with 

holes or electrons due to missing atoms in a fiber glass network structure [62]. The color centers 

are a damage which can absorb the pump and the signal light. Therefore, the power conversion 

efficiency of a fiber amplifier is reduced and excess heat is generated in the fiber. Due to 
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photodarkening, the Yb3+-doped active fibers can suffer severe transmission losses in the 1μm 

spectral range. The photodarkening effect is more obvious when the fiber has a high Yb3+-doping 

concentration and ion clusters are formed.  

Several methods have been proposed to avoid photodarkening in a Yb3+-doped fiber. It has been 

shown that heating of the fiber [63] or the irradiation of the fiber with ultraviolet light [64] can help 

to reverse the photodarkening effect. The Yb3+-doped active fiber which has been co-doped with 

aluminum and phosphorus shows a photodarkening effect at a much lower level [65]. Also the co-

doping with cerium can help to prevent photodarkening in Yb3+-doped active fibers [66]. The figure 

3.2 shows the mechanism of Ce3+-ions for reduction of photodarkening which is attributed to their 

different valence states to trap the holes(h-) and electrons(e-). 

 

Figure 3.2 Schematic diagram of photo darkening inhibition in Yb3+ and Al3+ doped fibers with 

the use of Ce3+ co-doping (* means the excitation state of the Yb3+ ion, PD-CC+ means a hole-

related photo darkening color center) [66]. 

 (3) Thermal effect 

Even though fibers have an excellent performance to dissipate heat due to their large surface to 

volume ratio, a fiber can also be burned because of overheating, especially for high power 

applications. The best experimental results with high optical-to-optical conversion efficiency for 

Yb3+-doped fiber lasers achieved 1.36kW continuous-wave output power with 83% slope 

efficiency [67]. Some amount of power at least will therefore be converted into heat, e.g. due to the 

quantum defect. Many scientific researchers have reviewed the thermal limits for power scaling of 

fiber lasers in detail [68~70]. In order to improve the heat dissipation in fiber lasers and amplifiers, 

cooling concepts, such as use of a metal holder, water cooling and fan cooling, can be adopted to 

efficiently remove excess heat from the fiber and to decrease the temperature of fiber.  
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3.2 Concepts for large mode area (LMA) fibers 

Typically, fibers with a core diameter larger than 15μm are called large mode area (LMA) fibers 

[10] while fibers with core diameters > 50µm are typically referred to as very large mode area 

fibers (VLMA) [9]. For high power fiber amplification, the LMA fiber amplifier can effectively 

decrease nonlinear effects and can increase the damage threshold due to the reduction of the local 

power intensity (see chapter 3.1.2). The magnitude of signal distortions which is induced by 

nonlinear effects significantly decreases when compared to a standard single mode fiber amplifier 

with small core radius. For a double-clad fiber amplifier (see chapter 2.3.1) which has different 

waveguide structures for signal and pump laser light, the large core design also means a possibility 

of high average output power (or high peak power) and an optimization of the cladding pump 

absorption. The LMA fibers with a certain doping level allow the adoption of a relative short fiber 

length and provides also a higher energy storage capacity. At the same time, the short fiber design 

is helpful to suppress non-linear effects. 

However, increasing the fiber core can also severely degrade the fundamental mode (FM) operation 

due to excitation of higher order modes (HOMs) which are the guided transverse modes of a multi-

mode fiber except the FM itself. A straightforward method to design a single or few-modes fiber 

amplifier is to decrease the Numerical Aperture (NA) as part of the V parameter equation 3.6 and 

mode number M equation 3.7 as follows:  

                                    𝑉 =
2𝜋

𝜆
𝑟𝑐𝑜𝑟𝑒 𝑁𝐴 =

2𝜋

𝜆
𝑟𝑐𝑜𝑟𝑒√𝑛𝑐𝑜𝑟𝑒

2 − 𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔
2                                    (3.6) 

                                   𝑀 ≈  
𝑉2

2
= 2(

𝜋𝑟𝑐𝑜𝑟𝑒

𝜆
)2(𝑛𝑐𝑜𝑟𝑒

2 − 𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔
2 )                                             (3.7) 

where rcore is the core radius, λ is the wavelength, and ncore and ncladding are the refractive indices of 

the core and cladding, respectively. The equation 3.7 can approximately estimate the supported 

number of modes M of a step-index fiber. A step-index fiber supports only the FM if the V 

parameter is smaller than 2.405. A LMA fiber with a large core radius value increases the V 

parameter proportionally to the core radius. Therefore, the number of modes M which can be 

supported in fiber, seriously increases with larger core radius fiber (see equation 3.7). The reduction 

of the core NA value, which means decreasing the refractive index difference between core and 

cladding for step index LMA fiber, can reduce the V parameter and achieve a single mode operation 

in a LMA fiber. However, there are several technological limitations for reducing the core NA: 1) 
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The precision of the refraction index control is practically limited to a value in the order of 5·10-4 

depending on the employed fiber technology [71,72]. Therefore, it is quite difficult to fabricate a 

fiber with NA values smaller than 0.06 [73]. 2) With the standard chemical vapor deposition 

methods, it is difficult to keep the refractive index of LMA fiber homogeneous with small core NA. 

3) A fiber with very small NA is very sensitive to environmental disturbance such as fiber bending 

and flaws. The guidance of the fiber may be so weak that the loss of the fiber can significantly 

increase.  

Several special techniques [74~89] have been proposed to maintain single-mode operation in LMA 

fibers while scaling up the output power based on reduced gain and/or increased losses for HOMs. 

Some of these important solutions are listed in the following section.  

(1) Coiled multimode step-index fiber 

For fibers with a limited number of HOMs, the HOMs may be stripped (i.e. coupled out of the core 

and possibly absorbed) by coiling the fiber and making use of the different modal bending loss [17]. 

Generally, the bending loss of the FM is smaller than that of HOMs. An optimum coiling radius 

can be chosen which provides high loss for HOM while keeping the loss of FM at a low level. 

However, fiber bending also induces mode distortions to the FM [18]. 

(2) Gain-guided index anti-guided fiber (GG IAG) 

A gain-guided index anti-guided fiber is an optical fiber whose refractive index of the core is lower 

than that of the surrounding cladding [74]. Such kind of fiber cannot support the conventional 

index-guided modes, because the total internal reflection effect at the core–cladding interface will 

not occur and power can severely leak out of the fiber core. Only some small trapping can occur 

by grazing angle reflection. In principle, for the GG IAG fiber proposed first by A.E.Siegman [74], 

the loss of the fundamental mode light which leaks out of the core into the cladding, can be 

compensated by the amplification of the signal with a very large gain in the fiber core. Therefore, 

the fiber core size can be enlarged to over 100μm while still allowing single-mode operation.  

Single-mode laser action with near Gaussian beam quality (M2:1.2~1.5) in a Nd3+-doped phosphate 

glass GG IAG fiber with 200um core diameter has been already demonstrated [11]. However, the 

GG IAG fiber has poor pump efficiency due to the large leaking loss of the pump light in the core. 

For side-coupling of the pump light, it is difficult to couple the pump light into the pump cladding 
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as well as inside the core due to the negative refractive index profile. For end-coupling of the pump 

light, the pump light will propagate out of the core, since there is no guiding effect for the pump 

light in the fiber core. 

 

Figure 3.3 Refractive index profile of a GG IAG fiber 

(3) Chirally coupled core fiber (CCC) 

A CCC fiber [14,19] has a straight central core while one or several helical satellite cores with high 

loss wrap around the central core (see figure 3.4). The principle of a CCC fiber is to selectively 

couple the HOMs from fiber core into the satellite cores (or cladding) with high attenuation there, 

while maintaining the FM with a practically negligible loss by selecting suitable side-helix 

parameters. Therefore, the FM can propagate inside the central core while the HOMs suffer high 

losses by modal coupling and bend loss. Consequently, robust single-mode output in such CCC 

fiber with large core size can be realized. 

 

Figure 3.4 Structure of a CCC fiber [14] 

(4) Photonic crystal fibers (PCF) 

A PCF is a micro-structured fiber type with a center core which can be solid, liquid or gaseous, and 

a periodic array of structures in the cladding to confine the light. Different guiding mechanisms are 

possible, including effective index guiding (Figure 3.5) and Photonic Bandgap Guiding (PBG). The 

geometrical structure of a PCF employing effective index guiding can allow a flexible control of 
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the effective cladding index and can achieve a core NA such as 0.02 which permits FM propagation 

even in LMA fibers. The pump light can also be confined in the pump cladding with a dense hollow 

channel array (air clad) around the pump cladding region..  

 

Figure 3.5 Cross section of rod type PCF [75] 

Such PCF types achieved already record high peak powers up to the self-focusing limit (4 

Megawatt) together with near diffraction limited beam quality [21,75]. But PCFs are difficult to 

manufacture due to the elaborate fiber design in combination with tight tolerances and therefore 

they are quite expensive. Additionally, they are more difficult to process (e.g. cutting, splicing, 

tapering, etc.) especially if they employ an air hole structure. 

(5) Large pitch fiber (LPF) 

 

Figure 3.6 Cross section of LPF [76] 

Large pitch fiber is a fiber type concept for single-mode operation by exploiting the delocalization 

concept [76,77]. The principle of the LPF is the delocalization of HOMs with use of a photonic 

structure which consists of a few hexagonally arranged air holes and large hole-to-hole distances 

[77]. The delocalization of HOMs in LPF helps to intrinsically improve the seed coupling, to get a 

preferred gain effect, and finally to achieve a robust single-mode operation in LMA fiber lasers and 
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amplifiers. The LPF has an excellent scalability by varying the hole-to-hole distance due to its non-

resonant approach. Therefore, the delocalization effect of HOMs is maintained while the structure 

as well as the modal shape are scaled appropriately. 

 (6) Leakage channel fiber (LCF) 

Leakage channel fibers make use of leakage channels between a few holes (leakage channels) 

around a solid core [20,78]. All modes in a LCF suffer a loss due to destruction of total internal 

reflection (TIR) induced by the holes, but a proper arrangement and design of the leakage channel 

(hollow holes) can achieve that the FM has low and negligible loss while the other HOMs suffer 

high losses. Even though the LCF is similar to the PCF, the LCF lacks of the repeated periodic 

structure and is therefore different from the concept of the PCF [20].   

 

Figure 3.7 Cross section of LCF [20] 

3.3 Concepts to improve the beam quality relevant for this work 

3.3.1 Adiabatic taper 

Step-index LMA fibers may support many HOMs to propagate together with the FM which badly 

degrades the achievable beam quality. It is known that the seed launching condition in fibers and 

in high power fiber amplifiers can decide how many HOMs are excited [90,91]. Therefore, 

optimization of the seed launching condition can help to achieve quasi single-mode performance 

with LMA fibers for high power amplification. An elegant proposal to solve the delicate mode 

launching problem is to use an adiabatic taper [92] to launch the FM in a multimode fiber as shown 

in figure 3.8. The LMA is tapered down at one end to ideally single-mode dimension. Then the 

taper waist in single mode region is directly spliced to a single mode fiber which is used to deliver 

the seed light. The single mode seed light is coupled from the delivery single mode fiber to the 
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LMA fiber with use of a local adiabatic short taper. Then the FM can smoothly evolve and expand 

without exciting other HOMs. The essence of this approach is utilizing of the local adiabatic short 

taper to provide a monolithic signal path and selectively excite the fundamental mode in a highly 

multimode fiber [86].  

 

Figure 3.8 Seed coupling with adiabatic taper 

Bobkov et al. [24] have adopted a 2.2m long tapered monolithic fiber amplifier and achieved over 

0.7MW peak power in the quasi-single-mode regime using 20ps chirped pulses. This kind of long 

tapers are produced during the fiber drawing process with variation of the fiber drawing condition. 

However, it is difficult to produce such kind of long tapers with a LMA fiber. The LMA fiber with 

large outer diameter cannot be coiled or bended and the produced LMA fiber length is limited by 

the space of the fiber drawing tower which is normally shorter than 3m. Therefore, there is not 

enough space to produce long tapered LMA fibers. It is also difficult to precisely control the fiber 

drawing condition to achieve the long tapers with homogeneous shape and smooth geometry 

variation. The adiabatic taper shown in figure 3.8 is a local short taper which is normally shorter 

than 8cm due to the limitation of tapering device (i.e. Vytran GPX 3200 splicing system) and is 

much easier to handle and produce.  

 

Figure 3.9 Schematic graphic of local short taper transition [93] 
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A taper can be called adiabatic if the taper geometry varies slowly enough everywhere that the 

power coupling between FM and the other HOMs can be neglected when propagating along the 

taper [93,94]. One important criteria to judge if the taper is adiabatic or not is the length scale 

criterion which is shown as follows [93]. According to the figure 3.9, the local taper length scale 

(ztaper) at different taper position z can be given:  

                                                          𝑍𝑡𝑎𝑝𝑒𝑟(𝑧) =
𝜌(𝑧)

𝑡𝑎𝑛𝛺(𝑧)
                                                        (3.8) 

Where the Ω(z) is the local taper angle and ρ(z) is the local fiber core radius at different positions 

z along the taper. The beat length (zbeat) is the local coupling length between FM and the other 

HOMs, 

                                                       𝑍𝑏𝑒𝑎𝑡(𝑧) =
2𝜋

𝛽𝐹𝑀(𝑧)−𝛽𝐻𝑂𝑀(𝑧)
                                               (3.9) 

Where the βFM (z) and βHOM(z) are local propagation constants of the FM and the other HOMs at 

different taper position z according to the local taper geometry. Theoretically, if no power coupling 

happens between FM and HOMs along the taper, the beat length (Zbeat) between FM and the other 

HOMs should be smaller than the local taper length scale (Ztaper) at different taper position z along 

the taper length  

                                                         𝑍𝑏𝑒𝑎𝑡(𝑧) < 𝑍𝑡𝑎𝑝𝑒𝑟(𝑧)                                                    (3.10) 

By calculation of equations (3.8), (3.9) and (3.10), the allowed local taper angle is given as:  

                                              |
𝑑𝜌(𝑧)

𝑑𝑧
| = 𝑡𝑎𝑛𝛺(𝑧) <

𝜌(𝑧)(𝛽𝐹𝑀(𝑧)−𝛽𝐻𝑂𝑀(𝑧))

2𝜋
                               (3.11) 

If the condition 3.11 is satisfied, the taper will have a small local angle and the taper length is long 

enough to have negligible loss of the FM. In this case, the diameter of the taper varies so slowly 

that power coupling along the taper transition length is avoided. 

3.3.2 Confined doping 

Confined doping is a method by employing a special radial gain profile to discriminate the gain of 

different modes. By this way, the active dopants are distributed in part of the fiber core in order to 

provide a good overlap with the desired fundamental mode but a significantly lower overlap with 

undesired modes. In general, the FM profile has the largest overlap ratio with the active dopant 
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profile while the HOMs have a small overlap. Then the FM can have a large gain while the gain of 

HOMs is suppressed to improve the beam quality of the signal. A detailed calculation and analysis 

is shown in chapter 8. 

Recently confining the active ion doping area has attracted much attention to favor the FM by 

preferential gain [95~101]. In particular, the LMA fiber can have a radially controlled distribution 

of the active ion concentration and possibly of the refractive index profile with the use of REPSUL 

technology which overcomes the limitation of the traditional doped fiber manufacturing 

technologies. 

 

Figure3.11 Refractive index profile of confined doping fiber with partially doped core 

The normal step-index LMA fiber can support the FM and many other HOMs. The mode profile of 

the FM features a nearly Gaussian profile with the highest amplitude in the center and a gradually 

decaying field along the fiber radius. At the same time, the amplitude profile of other HOMs can 

be divided into two cases: First, the amplitude peak of some HOMs (i.e. LP11, LP21, et al) is on 

the edge and not in the center. Second, some HOMs (i.e. LP02, LP03, et al) amplitude peak is in 

the center, but they have one or more sub-peaks outside the center which can distract power from 

the center. Therefore, confining the active dopants within the smaller part in the center of the fiber 

core can lead to modal discrimination, i.e. the FM has a better overlap with the gain region than the 

other HOMs. Consequently, the FM dominates the output power and the beam quality is improved. 

This technology is normally called confined doping or gain-filtering method. 

Up to now, several groups have done theoretical investigations for the spatial distribution of the 

dopants in LMA fibers [95~99]. Mali Gong et al [99] have built up a numerical model to study the 

transverse mode competition under various conditions for confined doped fibers. Based on the 

numerical algorithm, individual transverse mode power distributions of output are simulated which 

demonstrate that the partially doped active LMA fiber can really suppress the HOM gain. John R. 
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Marciante et al [100] have also done numerical simulations with up to 100-μm-diameter core fibers. 

The results show that gain filtering is quite robust and can provide 99% of the output power in the 

fundamental mode output. The authors also find that most of the output power can be in the FM 

even with poor seed launch. 

Although there are many promising numerical calculation results which show that the confined 

doping can really help to discriminate the gain between FM and HOMs, very few papers have 

shown the successful usage of this gain filtering method in an experiment. Up to now, the largest 

core diameter used in an experiment is 41 μm with an actively doped area diameter of 27μm. The 

output beam quality M2 is improved to a value around 1.27 [101]. The difficulty for this confined 

doping method is to find a suitable material to match the refractive indices between the active 

region and the passive region.   



32 
 

4. Technologies for fiber component preparation 

In this chapter, the technologies which have been used to fabricate the designed LMA fibers and 

tapered amplifiers are introduced. The powder sinter technology (REPUSIL) can provide LMA 

fibers with very homogeneous dopant distribution and refractive index profile which is essential 

for this research. The stack-and-draw method which is employed to produce the fibers is also briefly 

introduced. Then the preparation of the tapered fiber amplifier is discussed.  

4.1 Powder sinter technology (REPUSIL) 

In the past decades and even today, a combination of Modified Chemical Vapor Deposition 

(MCVD) and solution doping [102,103] has been the standard method to produce rare-earth-doped 

active fibers.  This kind of preparation method has several drawbacks. First, the deposition process 

efficiency is not very high. Second, the geometrical size and the refractive index homogeneity of 

the preform is limited. Third, the refractive index of the preform has a deep dip in the preform 

center due to the required collapsing process, especially when using Germanium and Phosphorus 

as co-dopants. 

 

Figure 4.1 Homogeneous refractive index profile of a fiber which is made by REPUSIL method 

In recent years, a new technique named reactive powder sinter technology (REPUSIL) which was 

developed by the IPHT and Heraeus Quarzglas to overcome the MCVD limitations. The most 

obvious feature of this REPUSIL method is its excellent material homogeneity (i.e. homogeneous 

refractive index profile and homogeneous dopants distribution) and less defects including bubbles 

and crystal parts. These characteristics make it possible to produce very large core fibers with good 

homogeneity and small numerical aperture (NA) which is very important for the production and 
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application of fiber lasers and amplifiers [25~27]. Up to now, the largest active rods achieve a 

diameter of 30mm, an order of magnitude larger than other typical MCVD core diameters in a 

preform. 

Several steps are needed to prepare the doped rods with the REPUSIL method [25~27]. First, the 

defined amounts of the doping solution according the desired rod components are prepared and 

mixed into a silica suspension. The liquid suspension is stirred to make sure that all particles are 

mixed homogeneous. Second, the liquid suspension is dehydrated until the solid particles are all 

precipitated. This powder granulate normally is white and loosely structured (figure 4.2). Third, 

the power is compressed into a rod shape. Forth, the compressed rod is put inside a silica tube and 

purified to remove impurities. Finally, the rod is vitrified by a sintering technology at temperatures 

of up to 2200 °C. 

 

Figure 4.2 The process of producing preform with REPUSIL [25]: powder granulate, compressed 

rod, vitrification process and final rods. 

4.2 Preform and LMA fiber fabrication 

For the preform preparation, the Yb3+ doped active core rod and other passive inner cladding rods 

are prepared by the REPUSIL technology. Therefore, all desired doping elements (for example: 

Yb2O3, Al2O3, Ce2O3) for the active core rod are mixed with pure silica nano-particles to achieve a 

LMA fiber with a very homogeneous dopant distribution and a uniform refractive index profile 

[104,105]. Yb2O3 is the active dopant for amplifying the laser light, Al2O3 enhances the solubility 

of Yb3+ ions and helps to achieve a homogeneous Yb3+ dopant distribution by avoiding Yb3+ 

clusters and Ce2O3 is added to suppress the photo darkening effects. 

The passive inner cladding rods, which are made of Al3+-doped silica material can increase the 

refractive index of the inner cladding (Figure 4.3). By this way the core NA can be decreased to 

limit the number of HOMs. In addition, the pump NA of the inner cladding increases, which means 

that the acceptance angle for pump light also increases. This makes the pump coupling easier and 
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paves the way for increasing the pump power. The control of the refractive index of the inner 

cladding by using Al3+-doped silica material enables the optimization of the core NA and pump 

NA at the same time. This is a new degree of freedom in the fiber design that is provided by the 

REPUSIL method. Figure 4.3 shows the comparison of the refractive index profile between fibers 

with pure silica cladding and Al3+-doped cladding. The refractive index (RI) of the fiber core is 

quite high for highly Yb3+-doped active fibers. For normal active fibers with silica cladding, the 

core NA is then large which leads to multi-mode operation. Also the pump cladding NA is small 

which leads to a low pump coupling efficiency. Therefore, the Al3+-doped inner cladding is used 

to replace the pure silica cladding and to elevate the RI of the inner cladding to compensate the 

high refractive index of fiber core. This index-adjusted inner cladding method can decrease the 

core NA and increase the pump (inner) cladding NA at the same time. 

 

Figure 4.3 Comparison of refractive index structure for fibers with pure silica cladding (left) and 

Al3+-doped cladding made by REPUSIL (right) 

After finishing the preparation of the REPUSIL rods, they are stacked in a hexagonal shape as 

shown in figure 4.4. The active core rod is surrounded by passive inner cladding rods and all rods 

are over-cladded by a silica tube to form the initial preform package. The hexagonal shape of the 

inner cladding which stems from the rod stacking method is useful to facilitate good pump 

absorption. This initial preform package is collapsed to a solid rod without air holes inside. This 

solid rod is then over-cladded again with another tube (i.e. pure silica tube or fluorine doped silica 

tube) to extend the dimensions of the outer cladding and to obtain a straight fiber rod of the desired 
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geometry after the fiber final drawing. Fibers were made at the in-house fiber draw tower in IPHT 

with a temperature of approximately 2000 °C [104]. 

 

Figure 4.4 Stack-and-draw method: Preform preparation by stacking rods of core and inner pump 

cladding rods into a fluorine doped silica tube and drawing into a fiber. 

4.3 Tapered fiber amplifier setup 

Figure 4.5 shows a schematic tapered LMA double clad fiber amplifier. The seed light is delivered 

by a standard single mode fiber in which only the FM is propagating. The local adiabatic taper is 

directly spliced to a SM standard fiber for seed coupling. The local adiabatic taper provides a 

monolithic signal path and selectively excites the fundamental mode in a highly multimoded fiber. 

The LMA fiber adopts a double clad structure which allows high pump power with low brightness 

and high signal power with high brightness due to the different waveguide shapes of pump and 

signal light. 
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Figure 4.5 Tapered fiber amplifier setup with double clad fibers structure 

The tapering of fiber can be performed by flame, filament heating, discharge arc, CO2 laser or fiber 

furnace for drawing tower tapers. The filament heating is mainly adopted to produce short local 

adiabatic tapers for this research work. As is shown in figure 4.6, the fiber is held by two fiber 

holders which are fixed on two translation stages. Both translation stages can move forward and 

backward. A filament is used to heat the fiber to its softening temperature. During the tapering 

process, one translation stage moves with fast speed while the other one moves with constant low 

speed.  

 

Figure 4.6 Schematic of the tapering process 

In this research work, the rod fiber with large mode area was tapered down at one end to ideally 

single-mode dimension using a Vytran GPX 3200 splicing system (see figure 4.7) and was directly 

spliced to a standard single mode passive fiber (core diameter = 10µm, NA = 0.08, polarization-

maintaining). While the number of guided modes in the rod fiber is rather large, the taper ratio can 

be chosen to lower the core diameter down to the single-mode limit of V=2.405. 
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Figure 4.7 Tapering process with the use of a Vytran GPX 3200 employing a graphite filament 

for heat introduction. 
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5. Simulation models 

In this chapter, several simulation models for large mode area (LMA) active fibers and adiabatic 

tapers are presented. First, the LMA fiber amplifier simulation with rate equations is introduced 

which can provide an estimation of the experimental results concerning power amplification. 

Second, a mode solver is introduced to calculate all guided modes of a LMA fiber core. Third, the 

adiabatic taper calculation according to the theory introduced in chapter 3 is described which results 

in a limitation boundary for an adiabatic taper. Forth, the calculation for a confined doped fiber is 

introduced which is based on the mode overlap coefficient calculation. The optimum doping radius 

and the tolerance for refractive index mismatch between active and passive regions of the fiber core 

can be estimated by this method. All simulations and calculations are done with simulation models 

which are scripted in MATLAB software. 

5.1 Fiber amplifier simulation with rate equations 

A model based on the rate equations is employed to simulate the expected performance of fiber 

amplifiers [37,38]. In this numerical calculation, the following assumptions are considered: (1) 

Only the ground state and the excited state of atoms are considered. (2) The pump power is assumed 

to be homogenously distributed over the cross section of the pump core. (3) The amplified 

spontaneous emission (ASE) and the non-linear effects are ignored.  

 

Figure 5.1 Example of a simulation of fiber amplifier properties as used in chapter 7.2.2 
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The model can be expressed by the space-dependent and time-independent steady rate equations 

which have been already discussed in chapter 2.3.1. The illustration of a double-clad fiber amplifier 

with backward pumping and the boundary conditions are also shown in chapter 2.3.1. The rate 

equations can be numerically solved with suitable fiber physical parameters and boundary 

conditions according to the practical fiber amplifier. Here the MATLAB function named bvp4c (a 

typical function to solve ordinary differential equations with two points boundary value) is used to 

solve the rate equations. This model provides information on the position dependent pump and 

signal power along an amplifier fiber and the relative number of excited atoms in the active core. 

In figure 5.1 an example is shown for a fiber amplifier with backward pumping and the fiber 

parameters are explained in chapter 7.2.2. Such model experiments provide information for 

optimized amplifier length and expected signal powers. 

5.2 Mode solver for large mode area (LMA) fibers 

A mode solver is used to calculate the electromagnetic eigenmodes and propagation constants of 

LMA fibers. In order to realize the LMA fiber with high peak power and good beam quality, it is 

necessary to investigate the specific mode transmission properties of the fiber. This mode solver is 

the foundation to investigate modal discrimination by differentiating the gain (or loss) between the 

fundamental mode and the other higher order modes to improve the beam quality.  

 

Figure 5.2 Three-layer structure of the LMA fiber model 
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In particular, a step index double clad fiber with three layers is considered whose geometry 

structure and refractive index profile are sketched in figure 5.2. In this model, it is assumed that the 

z axis is the propagation direction and the electromagnetic field has six field components ψ which 

are Er Eθ Ez Hr Hθ Hz. According to the waveguide theory, the transverse field components have 

the relationship as follows [106~108]:  

                                                  𝐸𝑟 =
𝑖𝛽

𝜔2𝜇𝜀−𝛽2
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𝜕
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The field components Ez and Hz satisfy the following equations:  

                                                       ∇𝑡
2𝐸𝑧 + (𝜔2𝜇𝜀 − 𝛽2)𝐸𝑧 = 0                                              (5.5) 

                                               ∇𝑡
2𝐻𝑧 + (𝜔2𝜇𝜀 − 𝛽2)𝐻𝑧 = 0                                              (5.6) 

By applying appropriate boundary conditions and solving the equations, all numerical solutions 

can be found for all transverse modes supported by the fiber. Here a matrix method is adopted to 

solve the wave equations and calculate the mode characteristics in LMA fibers [106,107]. The time 

average of the power flow is given by [108] 

        𝑃 = 𝐼 ∙ 𝐴 = 𝑆𝑧 ∙ 𝐴 = 0.5𝑅𝑒{𝐸 × 𝐻∗ ∙ 𝑧̂} ∙ 𝐴 =
1

4
𝑅𝑒{∫ ∫ [𝐸𝑟𝐻𝜃

∗ − 𝐸𝜃𝐻𝑟
∗]𝑟𝑑𝜃𝑑𝑟

2𝜋

0

𝑟

0
}       (5.7) 

Where Sz is the z-component of the Poynting vector, A is the area of the fiber cross section. The 

effective mode area is an important concept in fiber optics. Transverse modes have smooth profiles 

on the fiber cross section. The effective mode area Aeff [109] and the corresponding effective 

diameter deff can be derived using equations 5.8 and equation 5.9: 

                                                           𝐴𝑒𝑓𝑓 =
(∫ 𝐼𝑑𝐴)2

∫ 𝐼2𝑑𝐴
=

(∫|𝐸|2𝑑𝐴)2

∫|𝐸|4𝑑𝐴
                                           (5.8) 

                                                     𝑑𝑒𝑓𝑓 = 2√
𝐴𝑒𝑓𝑓

𝜋
                                                            (5.9) 
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5.3 Adiabatic taper calculation 

One of the central intentions of this research work is the use of a local adiabatic taper to preserve 

near-diffraction limited beam quality. Therefore, the following model is employed to provide 

guidelines to design short and low loss adiabatic local tapers [86,110] according to the theory 

introduced in chapter 3.3.1. It is known that a taper is approximately adiabatic when the local taper 

angle is small enough along the taper. Then the power coupling between FM and HOMs is 

negligible as the FM propagates along the taper. Normally the real taper shape is not perfect linear 

shape. In order to calculate the local taper angle, the taper is separated into small length segments 

as shown in figure 5.3, each piece can be treated separately as a short cylindrical fiber. Then the 

local taper angle can be derived from the taper shape. This model is believed to be similar with the 

real taper when the number of mesh pieces is large enough.  

 

Figure 5.3 Illustration of a taper model 

The modes solver can be used to calculate the modes of every short cylindrical fiber. According to 

the length scale criterion (equation 5.10) [93,111], the critical angle at the local position with 

different core radius of the taper can be calculated. Then the adiabatic region boundary according 

to critical angle with different core radius can be identified with equation 5.10: 

                             tanΩ(𝑟𝑐𝑜𝑟𝑒) =  
𝑟𝑐𝑜𝑟𝑒∙∆𝑛(𝑟𝑐𝑜𝑟𝑒)

𝜆
=

𝑟𝑐𝑜𝑟𝑒∙(𝑛𝐹𝑀(𝑟𝑐𝑜𝑟𝑒)−𝑛𝐻𝑂𝑀(𝑟𝑐𝑜𝑟𝑒))

𝜆
                (5.10) 

where Ω is the local critical taper angle, rcore is the core radius of the local fiber piece. λ is the 

wavelength, and the ∆n(rcore) is the effective refractive index difference between FM and HOMs at 

different taper position with different core radius rcore.  
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5.4 Confined doping calculation with the overlap coefficient 

The principle of confined doped fiber is to partially dope the LMA fiber core and get a preferred 

gain for FM (see figure 5.4). The corresponding model employs the mode solver (discussed in 

chapter 5.2) and the theory of overlap coefficient calculation [84,97,112] to find the optimum 

doping radius and the tolerances for refractive index mismatch between active and passive regions 

of the fiber core.  

 

Figure 5.4 Illustration of overlap between modes and active region 

The overlap coefficient ηmn between different modes (LPmn) and the active Yb3+-doped region can 

be calculated with the equation 5.11:  

                                𝜂𝑚𝑛 =  
∬ 𝐼𝑚𝑛𝑑𝐴𝑎𝑐𝑡𝑖𝑣𝑒

∬ 𝐼𝑚𝑛𝑑𝐴𝑎𝑙𝑙 
=

∫ ∫ 𝐼𝑚𝑛𝑑𝑟𝑑𝜑
2𝜋

0
𝑟𝑎𝑐𝑡𝑖𝑣𝑒

0

∫ ∫ 𝐼𝑚𝑛𝑑𝑟𝑑𝜑
2𝜋

0
𝑟𝑎𝑙𝑙

0

                                  (5.11) 

In which, ηmn is the overlap coefficient between mode LPmn and the active region in the fiber core. 

Imn is the intensity distribution of mode LPmn. Aactive means the active area of the fiber core center, 

while the Aall is the whole fiber cross section area. The ractive means the radius of the active area of 

the fiber core and the rall is the radius of the fiber outer-cladding. Once the active doping radius in 

fiber core center is determined, the overlap coefficient between the Yb3+-distribution profile and 

the mode profile can be calculated. The optimum doping profile ratio can be found by achieving a 

high overlap value for the FM while keeping the overlap with HOM profiles small. Then, the FM 

can get high gain while the gain for the other HOMs is suppressed.   
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6. MOPA system setup and characterization 

In order to test the designed LMA fiber, a three-stages MOPA system was built. In this chapter, the 

setup of all stages in the MOPA system is discussed and the amplified laser beams in first and 

second amplifier stage are characterized in detail. 

6.1 MOPA system overview 

In order to test the designed LMA fiber, a three-stages ns-pulse fiber master oscillator power 

amplifier (MOPA) system was built. It features a directly modulated seed diode to choose the pulse 

shape and the repetition rate independently. The gain of a single amplifier is typically limited to 

around 30dB. It is easier and more flexible to combine several fiber amplifiers together as an 

amplifier chain instead of developing a single amplifier with very high gain (e.g. 60dB). In case of 

several stages, not all components are exposed to very high beam intensities which reduces the 

power requirements especially for the first stage.  

The schematic diagram of the complete MOPA system is shown in figure 6.1. In this system, a 

directly modulated semiconductor laser is used as the master oscillator which provides the initial 

seed signal. Pulsed operation is obtained by means of an external electronically controlled 

modulator. The two pre-amplifier stages are all-fiber structures. All passive and active fibers used 

in these two pre-amplifiers are based on polarization-maintaining (PM) single-mode fibers which 

can maintain a near diffraction limited beam quality. All components are connected with PM fusion 

splices. Several isolators are included to avoid backward propagation of laser light e.g. due to 

reflections. Several monitors are placed at different positions in the MOPA system to monitor the 

working condition of the system. An acousto-optic modulator (AOM) gate is inserted between the 

second and the third stage to protect the two pre-amplifiers against the possible external back-

reflections of the laser beam. The AOM gate is a device which utilizes the acousto-optic effect to 

deflect a laser beam within a very short time when a pulse passes by. The rise-time and gate width 

of the AOM gate are important parameters to modulate the optical pulses travelling through the 

AOM gate. 
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Figure 6.1 A sketch of the complete MOPA system 
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6.2 Pre-amplifier stages and the amplified laser beam 

(1) The initial semiconductor seed laser 

The initial semiconductor laser provides the initial seed laser pulse with a wavelength of 1030nm 

and allows adjustment of the pulse duration (1ns to 100ns) and the repetition rate (1kHz to 1MHz) 

in a flexible way. Even though various pulse formats are available, a combination with 2ns pulse 

duration and 20kHz repetition rate is mainly used. The pulse width of 2ns is the shortest pulse width 

with full pulse power which can be achieved by the semiconductor laser. Normally the repetition 

rate of the amplifier should be larger than the inverse of the upper state lifetime. If the lifetime of 

Yb3+-population in excited state is assumed to be 1ms, the repetition rate of amplifier should be 

larger than 1kHz. The repetition rate of 20kHz is the lowest value to scale up the peak power and 

to supply enough seed power at the same time. 

 

Figure 6.2 (a) Spectrum of the semiconductor seed laser with different pulse formats. (b) The 

measured pulse shape with different pulse widths. 

The figure 6.2 shows the typical spectrum of different pulse formats and the pulse shape of different 

pulse widths of the laser which is measured using a spectrum analyzer and an oscilloscope, 

respectively. The center wavelength is 1030.3nm. The peak power of the pulse (2ns 20kHz) from 

the semiconductor laser is 1.32W. 

(2) The first amplifier stage 

The first amplifier uses the double path design which makes use of a Fiber Bragg Grating (FBG) 

to reflect the amplified laser beam back into the active fiber. Therefore, the laser beam is amplified 

twice by the active fiber and the amplifier efficiency is increased. One 75cm long Nufern 
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polarization maintaining Yb3+-doped single mode active fiber (fiber type: Nufern PM-YSF-HI) is 

chosen to amplify the laser beam. 

 

Figure 6.3 Setup of the first amplifier stage 

 

Figure 6.4 Characterization of the first amplifier (a) Emission spectrum. (b) Pulse shape. (c) 

Average output power (Output 1 of figure 6.3) at different power of pump1. 

Figure 6.4 shows the characterization of the first amplifier with different pump powers under the 

2ns 20kHz pulse format. The diagram 6.4(a) shows that part of the emission of the seed laser is 

filtered out and the spectrum becomes much more narrow with lower pump levels (compared to 
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figure 6.2(a)). The spectra become broader when increasing the pump power because of the 

nonlinear optical broadening. The pulse shape is slightly distorted due to the amplification 

saturation. In order to keep the output power as high as possible, the power of pump1 was chosen 

to be 70mW for all subsequent experiments. The average output power after the circulator (Output 

1 of figure 6.3) is 1mW with 10W peak power. 

(3) The second amplifier stage 

The second amplifier stage uses a normal one loop amplifier structure which is shown in figure 6.5. 

The active fiber for the second amplifier stage uses a 5m length active fiber (fiber type: Nufern 

PM-YDF-10/125) whose core diameter is 10µm. The pump light is counter-propagating at a 

wavelength of 915nm.  

 

Figure 6.5 Setup of the second amplifier stage 

When the output power increases with increasing power level of pump2, the spectral broadening 

increases significantly (see figure 6.6(a)). The average output power (before the AOM gate) is 

470mW with a pump power of 4W of pump2, while the overall gain of the second amplifier is 

roughly 24dB. 
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Figure 6.6 Characterization of the second amplifier (a) Emission spectrum. (b) Pulse shape. (c) 

Average output power with different power of pump2 (before AOM gate). 

(4) Filtering of laser signal after second amplifier stage  

An AOM gate is inserted between the second amplifier and main (third) amplifier stage which can 

filter out unwanted emission (e.g. ASE) between the pulses and which has a very high isolation for 

time-delayed back-reflections to protect two pre-amplifier stages. One coupler is also adopted to 

monitor the working situation of the pre-amplifier stages. The table 6.1 shows the output average 

and peak power after the AOM gate which seeds of the main amplifier stage.  

Pump1 Pump2 Average output power Peak power 

70mW 4W 138mW 3kW 

Table 6.1 The amplified laser light after the 2nd amplifier stage (Output 2 in figure 6.5) 



49 
 

 

Figure 6.7 Properties of the amplified laser light after the 2nd amplifier stage  

The characterization of this seed light for the main amplifier stage is shown in figure 6.7. The SRS 

effect is obvious around 1080nm wavelength. The average output power is 138mW with 3kW peak 

power (Output2 in figure 6.5) corresponding to 70mW pump1 power and 4W pump2 power. The 

difference between the main signal peak and the first Stokes peak is approximately 10dB with 

70mW pump1 power. An almost diffraction-limited Gaussian beam with M2~1.06 for the laser 

beam is measured. This amplified laser beam is the seed laser beam for the main(third) amplifier 

stage to scale up the peak power with the specially designed LMA rod-type fiber. 

6.3 Main (third) amplifier stage setup based rod type fiber 

The third stage in the MOPA system is the main stage to test the specially prepared rod-type fibers 

with 976nm wavelength counter pumping. The main sketch of the main amplifier is shown in figure 

6.8. Here two different methods for seed coupling have been applied, one reference setup with a 

non-tapered rod fiber and one setup with the tapered rod fiber are illustrated in figure 6.8.  

(a) For a non-tapered rod fiber, the free space coupling is adopted (Figure 6.8(a)). The seed laser 

beam from the two pre-amplifier stages is collimated by an aspheric lens with 7.5mm focus length. 

A Faraday isolator is inserted between the coupling lenses to avoid back-reflection laser light and 

to protect the pre-amplifiers. One long wave pass filter is placed in front of the focus lens to reflect 

the residual pump light outside while it is transparent to the signal light. The collimated laser beam 

is focused by the lens to the rod type fiber end. All these components are mounted and aligned in 

an aluminum box (seed box). The seed box is fixed on a platform of a translation stage which has 

six degrees of freedom to precisely couple the seed light into the rod fiber. Both end facets of the 
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rod fiber were angle-polished to avoid back reflections. The measured result, especially for beam 

quality (M2 value), depends strongly on such seed coupling condition. 

(b) For tapered rod fibers, the taper is directly spliced to the single-mode standard fiber (core 

diameter 10µm and core NA 0.08) and connected to the MOPA system with the purpose of 

providing a monolithic signal path and adiabatic excitation the fundamental mode in rod-type 

amplifiers (Figure 6.8(b)). The end facet of the tapered fiber was angle-polished to avoid back 

reflections. The fiber was placed on one aluminum holder, the taper and splice regions were 

embedded in index-matched acrylate to strip out the residual pump light from cladding. 

 

Figure 6.8 The third amplifier stage. (a) Free space coupling with rod type fiber. (b) Monolithic 

coupling with fusion splice and local adiabatic taper. 

In the following, several important concepts for main amplifier stage are introduced.  

(1) Free space coupling analysis  

Free space coupling using a lens pair is the straightforward method to couple the laser beam 

between fibers with different mode field diameters. In order to find out the suitable lens 

combination to optimize the coupling efficiency, a theoretical calculation and analysis is necessary. 

As is shown in figure 6.9, a laser beam with radius w1 is collimated by lens1 and re-focused by 

lens2 into the laser spot with radius w2. 
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Figure 6.9 Illustration of free space coupling 

Normally, a well collimated Gaussian beam with a sufficiently large waist diameter has the 

following approximate relationship [43]: 

                                                  
𝑓1

𝑓2
=

𝑤1

𝑤2
=

𝑁𝐴2

𝑁𝐴1
                                                 (6.1) 

Where the f1 and f2 are the focus lengths of the lens pair, NA1 and NA2 are the numerical apertures 

for the two fibers, w1 and w2 are the effective mode radii (waist radius of Gaussian beam).   

(2) Pump configuration 

The pump configuration is backward pumping which is provided by four combined laser diodes at 

976nm. The pump light is delivered with the pigtail fiber of a pump module. Here a single pump 

module with 105μm core diameter (NA=0.16) and a multi pump module with 200μm core diameter 

(NA=0.22) are used to choose from for different rod type fibers. Finally, the pump light is coupled 

into the pump cladding of the rod fiber with the use of a lens pair with two identical aspheric lenses. 

The lenses, the wavelength separator and the holder of the pump delivery fiber are all fixed in a 

one cage system and mounted on a plate of a translation stage with three free degrees of freedom 

to adjust. This can be used to align the laser beam and to efficiently couple the pump laser beam. 

The power of pump3 versus the current is shown in figure 6.10 and the parameters for these two 

different pump modules are shown in table 6.2. 
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Figure 6.10 Pump power versus current of pump3 in the third amplifier stage 

 
Maximum 

power 

Delivery fiber 

core diameter 

Delivery fiber 

core NA 

Brightness   (W 

rad−2 μm−2) 

Single pump module 50W 105μm 0.16 0.071 

Multi pump module 102W 200μm 0.22 0.021 

Table 6.2 Parameters of the single pump module and multi pump module 

(3) Measurement system 

The measurement setup for the analysis of the output of the main amplifier stage is shown in lower 

right part of figure 6.8. A wavelength separator is inserted between the two identical aspheric lenses 

where the laser beams are collimated. The pump laser light at 976nm can pass through the separator 

while the amplified signal laser beam at 1030nm is reflected outside at a certain angle. Two glass 

plates are adopted to couple out 4% of the signal laser beam. One 4% laser beam is used to measure 

the spectrum and pulse shape while the other is used to measure the beam quality (M2 value). The 

signal power in the main path is measured by a thermal power detector.  
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7. Rod type fibers characterization and beam quality improvement 

In this chapter, the characterization of the designed and prepared large mode area (LMA) fibers is 

presented and the local adiabatic tapers are experimentally demonstrated to improve the beam 

quality. The essence of the local adiabatic taper approach is to provide a monolithic signal path and 

selectively excite the fundamental mode in a highly multimode fiber. The design of the LMA fibers 

and adiabatic tapers is based on the models developed in chapter 5. Many Yb3+-doped LMA fibers 

samples with different processing were tested in this research work, but only some of them which 

provided good and stable performance are presented here. In the last section, the optimized active 

core radius ratio and the tolerance of refractive index mismatch for confined doping fiber is 

analyzed.  

7.1 Design aspects of rod type fiber amplifiers 

In order to achieve reasonable rod fiber parameters such as mode field diameter, core NA, Yb3+-

doping concentration and fulfill the purpose of this research work, the design aspects of rod type 

fiber are discussed in the following.  

(1) Core numerical aperture (NA) of rod fiber and the mode field diameter of taper waist 

In order to achieve the maximum signal power coupling without higher order modes (HOMs) 

excitation using a local short adiabatic taper of a tapered rod fiber which is directly spliced inside 

the MOPA system with a seed delivery fiber (core diameter 10µm, core NA 0.08 and outer clad 

diameter 125µm), mode matching at the splice between the seed delivery fiber and the taper waist 

should be satisfied and the taper waist should be single mode to prevent HOMs excitation. The 

mode field diameter (MFD) is an important parameter to characterize the transverse extent of a 

laser beam and the mode matching between two fibers. The MFD of a step index single mode fiber 

can be estimated using Marcuse’s equation [113] as shown in equation 7.1: 

                                           𝑀𝐹𝐷 ≈ D ∙ (0.65 +
1.619

(
𝜋D𝑁𝐴

𝜆
)1.5

+
2.879

(
𝜋D𝑁𝐴

𝜆
)6

)                                       (7.1) 

The D is the fiber core diameter and the NA is the fiber core numerical aperture. The λ is the 

wavelength. Figure 7.1 shows the MFD as a function of fiber core diameter with different core NA. 

The MFD of the seed delivery fiber is 11µm with 10µm core diameter and 0.08 core NA. If the 

core NA of rod type fiber is too large e.g. NA=0.1, the taper waist of tapered rod fiber will operate 
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in the multi-mode region when it is tapered down to seed delivery fiber dimension. Then the HOMs 

can be excited at the splice. If the core NA of rod type fiber is too small e.g. NA=0.4, the MFD of 

the taper waist will be quite large and extend into the pump cladding, compared with the seed 

delivery fiber. Then the MFD of taper waist and the seed delivery fiber cannot match very well. 

The V parameter (see equation 3.6) of the taper waist should be below 2.405 to support only 

fundamental mode (FM). Due to the mode matching between seed delivery fiber and taper waist of 

rod fiber, the core NA of the rod type fiber should be around 0.08 and the MFD of the taper waist 

should be around 11µm to match the seed delivery fiber.  

 

Figure 7.1 Mode field diameter for different core diameters D and core NA 

(2) Pump beam product (Pump clad NA and the pump clad diameter) 

In order to increase the pump coupling efficiency, the pump clad NA (NApump) and the pump clad 

diameter (Dpump) should be large enough to accept the pump brightness of the pump module. 

Normally the brightness B of pump can be estimated with the pump power Ppump, beam radius w 

and the divergence angle θ shown in equation 7.2: 

                                                                  B =
𝑃𝑝𝑢𝑚𝑝

𝜋𝑤2𝜋𝜃2                                                            (7.2) 

For the designed rod-type fiber, the pump power is coupled into the fiber with free space coupling. 

The pump cladding of the rod type fiber should accept the pump brightness of the pump module. 
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Therefore, the pump beam product (NApump· Dpump) of the designed rod-type fiber should be slightly 

higher than the pump beam product of the pump module. The pump product of two different pump 

modules is discussed in chapter 6.3 are 16.8 and 44 (unit: μm), respectively. 

(3) Clad absorption and rod fiber length 

One of the most important aspects for the rod fiber design is to achieve sufficient clad absorption 

based on Yb3+-doping concentration, core to clad ratio and the fiber length. As is known, the core 

absorption αcore coefficient of a Al3+-doped silica active fiber with 1000ppm Yb3+-concentration 

has an experimental value of 480dB/m at 976nm pump wavelength (unsaturated absorption). Then 

the clad absorption αpumpclad can be estimated from the core absorption αcore as shown in equation 

7.3: 

                                                 𝛼𝑝𝑢𝑚𝑝𝑐𝑙𝑎𝑑 = (
𝑟𝑐𝑜𝑟𝑒

𝑟𝑝𝑢𝑚𝑝𝑐𝑙𝑎𝑑
)2𝛼𝑐𝑜𝑟𝑒                                               (7.3) 

Where rcore is core radius and rpumpclad is the pump clad radius of the rod fiber. At first, the target 

value of clad absorption is 25dB in case of unsaturated pump clad absorption by considering the 

gain of peak power amplified from 3kW to 1MW. The clad absorption based on the first non-

tapered rod type fiber discussed in chapter 7.2.2 (56µm/460µm core/inner cladding diameter, 

0.6mol% (or 6000ppm) Yb3+-concentration and 0.6m fiber length) is theoretically 25.6dB with 

equation 7.3. But the actual experiment value for clad absorption is much lower (8.6dB with the 

highest output power 28W) due to the helix modes and saturation effects. Therefore, the theoretical 

clad absorption of the designed fiber should be higher than 25dB (the base line for fiber design) 

according to the Yb3+-doping concentration, core to clad ratio and the fiber length. Normally the 

fiber length of a rod type fiber should be shorter than 1m which would be easy to handle, and the 

fiber length should not be too short (e.g. 0.1m) to get enough pump absorption.  

(4) Mode field diameter (MFD) of rod fiber 

In order to estimate the required MFD of the rod fiber, the critical power threshold (discussed in 

chapter 3.1) is plotted in figure 7.2 as a function of the MFD where it is assumed that the effective 

fiber length is 0.2m, the pulse width is 2ns and the wavelength is 1030nm. The spectral broadening 

effect (figure 7.2) in dashed green line only influence the spectrum property and is not critical for 

nanosecond fiber amplifier. The black dashed line shows the power scaling is limited to 500kW 
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according to the damage threshold and 1MW according to the SRS limit of the fiber with a MFD 

of 40µm. And an end cap for fiber can be used to enhance the damage threshold. The critical power 

due to the self-fousing is approximately 4MW (see discussion in chapter 3.1). 

 

Figure 7.2 Critical power limited as a function of MFD 

(5) Outer diameter of rod fiber 

In order to match the seed delivery fiber in terms of MFD, core and clad, the outer diameter of the 

rod type fiber should be extended to a large size according to the core to outer clad ratio. Because 

the taper waist of tapered rod fiber should have a similar outer diameter with the seed delivery fiber 

(outer clad diameter 125µm) to get a good splice for seed coupling. For example, the core diameter 

of the first rod type fiber discussed in chapter 7.2.2 has a 56µm core diameter, the outer diameter 

of rod type fiber should be 700µm due to the ratio 1: 12.5 between core diameter and the fiber outer 

diameter. The preform for rod-type fiber is obtained by a second over-cladding process to increase 

the outer cladding dimensions. 

7.2 Fully doped rod-type fiber with high Al3+-concentration (999c)  

7.2.1 Parameters of rod type fiber  

This rod-type double-clad fiber (fiber code: 999c) has a 56µm core, a 460µm inner cladding (see 

figure 7.3) which were measured using a microscope. The shape of the core and the inner cladding 
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is hexagonal due to the stacking method of the REPUSIL preform rods which can help to improve 

the pump power absorption during the amplification process. The outer clad which is made from 

an F300 silica tube has a double D-shape, which however is not relevant for the optical function. 

The large diameter is 1250µm and the small diameter is 990µm. According to the calculation, the 

effective mode area diameter of FM of the core is 40µm.  

The active core of the rod fiber has a doping concentration of 0.6mol% Yb2O3 and 7mol% Al2O3. 

The Yb3+ is the active dopant to amplify the laser light. The Al3+-dopant is used to increase the 

solubility of Ytterbium and to suppress the photo-darkening effect. The passive inner cladding 

contains an Al2O3-concentration of 9mol%. The Al3+ in the passive inner cladding is used to elevate 

the refractive index of the inner cladding which can decrease the core NA and increase the pump 

inner-clad NA at the same time. The small core NA can suppress the HOMs number which can be 

excited in fiber core during the amplification while the bigger inner clad NA can help to increase 

the pump light coupling efficiency.  

 

Figure 7.3. Cross-section of LMA fiber.  

A thin fiber with an outer clad diameter of 120µm was drawn from the same preform of this rod 

type fiber for characterization purposes. The refractive index was measured with a commercial 

York S14 refractive index profiler. The refractive index profile of the 120µm thin fiber (figure 7.4) 

shows that the REPUSIL process delivers a homogenous step index profile with a core NA of 0.15 

and a pump NA of 0.23. The rounded shape of the core refractive index profile is a result of the 

limited spatial resolution of the index profiler S14 and due to a certain amount of dopant diffusion 

during fiber drawing. The rod-type fiber which is produced from the same preform of thin fiber 

should have a similar refractive index profile and the same core/clad NA value.  
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Figure 7.4 Refractive index profile of the 120µm outer diameter thin fiber.  

The rod-type fiber core diameter is 56µm with a 40µm mode field diameter (MFD). The fiber core 

NA is 0.15 which is relatively high according to the targeted core numerical aperture (NA) of 

approximately 0.08. Even though this fiber is not perfect, it can be tapered to the right MFD, close 

to the value of the seed fiber. Therefore, our investigation and experiments begin with this fiber. 

After drawing the LMA fiber, the fiber parameters, such as fiber geometry parameters, refractive 

index profile, are characterized first. Then the fiber is carefully checked for defects and bubbles 

inside the fiber which are marked. Finally, the fiber is cut into several pieces as the fiber samples. 

Normally the fiber sample pieces should not contain detectable bubbles or defects. 

7.2.2 Characterization of the non-tapered reference fiber 

(1) Fiber sample parameters 

As is shown in figure 7.5, the non-tapered reference fiber sample has a length of 60cm. One end 

facet of fiber (pump coupling) is polished with 8 degrees angle while the other side of fiber (seed 

coupling) is polished with 4 degrees. The pump with multi pump module (200µm core diameter 

and 0.22 core NA) is used to supply the pump power for fiber amplifier. The pump product of the 

rod fiber (460µm pump clad diameter and 0.23 pump clad NA) is 105.8 which is higher than the 

pump product of pump delivery fiber with the value of 44. Therefore, the pump clad of rod fiber 

can accept the pump brightness of the multi pump module. A pair of lenses with 7.5mm and 40mm 

focal length is used to couple the seed light while a pair of lenses with 30mm and 30mm focal 

length is used to couple the pump light inside the rod fiber with free space coupling method.  
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Figure 7.5 Schematic of non-tapered reference fiber 

(2) Experiment results 

The slope efficiency was characterized first (figure 7.6) and the output power is plotted vs. the 

absorbed pump power. This absorbed pump power was estimated based on assumed 90% pump 

coupling efficiency and the measured residual pump power from the non-tapered amplifier. The 

slope of the non-tapered amplifier displays a slope efficiency of 83% vs. the absorbed pump power. 

The highest output power reached 28W under 61W of coupled pump power, corresponding to a 

peak power of 544kW and a pulse energy of 1.4mJ. The single-pass gain based on average output 

power of this non-tapered rod fiber amplifier is 23dB. The launched pump power is the pump power 

before the focus lens which couples the laser light inside the fiber.  

 

Figure 7.6 Average output power versus the absorbed pump power 

The peak power is an important parameter for fiber amplifier, but one cannot easily measure the 

peak power. Therefore, the following strategy is developed to calculate the peak power based on 

the relationship between the peak power of pulses and the pulse energy: (1) measure the pulse shape 

and pulse peak value Peakpulse (unit: V) by photodetector several times (for example: 10 times) and 

get an average pulse shape. (2) integrate the pulse shape to get the pulse area Areapulse (unit: V∙ns) 

and find out the peak power Peakpulse (unit: V). (3) calculate the average single pulse energy Epulse 
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(unit: nJ or W∙ns) by averaging the output power Paverage (unit: W) and the repetition rate f (unit: 

Hz). (4) then calculate the peak power Ppeak (unit:W) according to the equation 7.4 which contains 

all discussed parameters above.  

                𝑃𝑝𝑒𝑎𝑘(𝑊) =  𝐸𝑝𝑢𝑙𝑠𝑒(𝑛𝐽) ∗  
𝑃𝑒𝑎𝑘𝑝𝑢𝑙𝑠𝑒(𝑉)

𝐴𝑟𝑒𝑎𝑝𝑢𝑙𝑠𝑒(𝑉∙𝑛𝑠)
=

𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑊)

𝑓(𝐻𝑧)
∗  

𝑃𝑒𝑎𝑘𝑝𝑢𝑙𝑠𝑒(𝑉)

𝐴𝑟𝑒𝑎𝑝𝑢𝑙𝑠𝑒(𝑉∙𝑛𝑠)
               (7.4) 

The figure 7.7 shows the direct efficiency, the overall efficiency, and the pump absorption 

efficiency which are defined as follows. The direct efficiency is the signal power divided by the 

absorbed pump light. The overall efficiency is the signal power divided by the launched total pump 

power. The direct efficiency means the ratio of absorbed pump power which can converse to the 

signal power, while the overall efficiency is based on the total pump power which supports the 

amplification process. Both, the direct efficiency and the overall efficiency are increasing with the 

increasing launched pump power. The direct and overall efficiencies under 67W launched pump 

power were 54% and 42% respectively. The absorption of pump power drops from 85% to 78%. 

The clad absorption at 976nm based on the pump absorption efficiency in figure 7.7 varies between 

21dB/m and 15dB/m which is lower than the theoretical calculation value of 40dB/m because of 

the pump power saturation and the pump modes with low core overlap. 

 

Figure 7.7 Direct efficiency, overall efficiency and pump absorption efficiency as a function of 

the launched pump power. 

As the launched pump power and amplified signal power increase, the temperature of the rod fiber 

end facet increases at approximately 1K/W pump power which is measured by a thermal cameral. 

The heat accumulation mainly comes from the quantum defect.  
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Figure 7.8 Optical spectrum of seed and amplified light 

 

Figure 7.9 Comparison of the normalized linear spectra between seed and amplified light 

The normalized spectrum of the amplified signal is shown in Figure 7.8. The stimulated Raman 

scattering (SRS) effect is observed around 1080nm wavelength where is the first Stokes peak. For 

the seed, the difference between the main signal peak and the SRS is less than 10dB difference. For 

the amplified signal with 544kW peak power, the difference between the main signal peak and the 

SRS peak is 18dB. The SRS effect is suppressed in the main amplifier due to the large MFD and 

short fiber length. During the amplification process, the gain of the signal wavelength (1030nm) is 

much larger than the gain of the laser light in Stokes peak (1080nm). The Raman gain value is very 

small and close to zero. The comparison of normalized spectrum in linear scale is shown in Figure 

7.9. Roughly 41% of the power are in the seed spectrum and 6% of the power for the amplified 

laser beam are in the SRS region around 1080nm. 
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The normalized pulse shape of the amplified laser light is shown in Figure 7.10. Normally only a 

small portion of the output laser beam is coupled out, then the pulse shape is measured after it is 

attenuated to a safe power level. The saturation energy (see equation 3.14) of this type fiber (999c) 

is 0.242mJ at a wavelength of 1030nm theoretically. The pulse with 544kW peak power has a pulse 

energy of 1.4mJ which is much higher than the saturation energy. Therefore, the fiber amplifier is 

saturated as the pulse is amplified further. The saturation effect dominates the pulse shape, the 

leading edge of the pulse consumes the stored energy very quickly, while the tail edge cannot obtain 

the same gain. As a result, the pulse shape is distorted with a very sharp rise at the leading edge.  

 

Figure 7.10 Pulse shape of amplified light with 544kW peak power 

 

Figure 7.11 Beam pattern of the output light with 28W output power (544kW peak power). 

Finally, the characterization of the beam quality was performed using a Spiricon M2-200s 

automated M2 laser beam propagation analyzer. The measured beam quality (M2 value) strongly 
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depends on the exact seed coupling condition for free space coupling. All measured results shown 

here are optimized values obtained by careful adjustment of the seed coupling. The figure 7.11 

shows the beam pattern at the output power of 28W (corresponding to 544kW peak power) under 

67W launched pump power which is highly multimoded with an M2 value of 10.8 (x axis) and 11.4 

(y axis).  

 

Figure 7.12 Measured beam quality for the non-tapered amplifier 

The beam quality (M2 value) of the amplified laser beam varies from 6 to 12 for different output 

powers (figure 7.12). At low output power, the beam quality is around 10. Some part of seed power 

is leaked into the pump cladding. The seed light in the fiber core is strongly absorbed and the seed 

light in the pump clad has a small loss which disturbs the beam quality measurement results. The 

seed light in fiber core can be absorbed and re-emitted again due to signal reabsorption which can 

also influence the beam quality. Above the amplifier threshold, the M2 value decreases and achieves 

the best result of around 6 at 4W output power. In this power range, the FM and the HOMs can get 

similar gain due to the similar overlap factor with the active core. The beam quality (M2 value) 

becomes worse again when further increasing the output power. The spatial hole burning effect 

appears and the gain shape in fiber active core is distorted due to the saturation effect. The excited 

atoms in the center region of fiber core are highly consumed by the FM, while the remaining excited 

atoms on the edge of fiber core provide higher gain for some HOMs, thereby spoiling the beam 

quality.  
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Despite the efforts in optimizing the seed coupling alignment, the best result of beam quality (M2 

value) at the highest output peal power (544kW) was between 10 to 12. The free space coupling of 

the seed laser light is not mode selective enough (i.e. HOMs are always excited with a certain 

percentage) which leads to this highly multi-HOMs operation in rod fiber amplifier.  

7.2.3 Beam quality improvement with a tapered rod type fiber amplifier 

7.2.3.1 Characterization of tapered rod fiber  

(1) Adiabatic taper design and estimation 

The coupling calculation of the fundamental mode to the next three higher order modes according 

to the adiabatic taper length criterion (equation 5.10) is shown in figure 7.13(a) which is also the 

boundary limitation of the taper angle according to different taper local diameters. Especially the 

coupling between LP01 and LP02 by conservation of azimuthal symmetry and the coupling 

between LP01 and LP11 through a broken azimuthal symmetry are calculated. The region below 

the curve of LP01 vs LP11 corresponds to the adiabatic region. The local real taper angle should 

always be contained in the adiabatic region. 

 

Figure 7.13 (a) Adiabatic region due to theoretical coupling calculation. (b) Theoretical 

calculation for different taper shape (999c) 

The Figure 7.13(b) shows the theoretical calculation for different taper shapes of the local adiabatic 

taper. The minimum taper length for adiabatic shape is 5.7mm whose local taper angle satisfies the 

minimum critical adiabatic angle everywhere along the taper. If the taper shape is exponential shape, 

the minimum taper length is 5.8mm. The linear shape means the taper shape is linear and follows 
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the smallest taper local angle in adiabatic region. The minimum taper length for linear shape is 

19.0mm. Normally it is good to have a local taper length longer than 19mm which has a safe margin 

for taper to keep the adiabatic property. 

(2) Identification of local short taper  

In order to maintain the diffraction limited beam quality while scale up the peak power, the rod-

type fiber is tapered down to the single-mode region for seed coupling. The local adiabatic taper 

provides a monolithic signal path and should improve the beam quality significantly.  

 

Figure 7.14. (a) Measurement of the outer taper radius as a function of the taper length. (b) Core 

taper angle as function of the core radius, including the adiabatic taper length scale criterion for 

coupling of the fundamental mode to the next three higher order modes. 

Figure 7.14(a) shows the measured outer taper diameter against the taper length. On the whole, the 

taper shape is smooth. In order to check if the taper satisfies the adiabatic criterion or not, the 

angular profiles between the experimentally realized fiber taper and the adiabatic thresholds are 

compared. As shown in figure 7.14(b), the core taper angle is plotted as a function of the core radius. 

The black line is derived from the real taper shape (figure 7.14(a)), assuming that core diameter 

and outer taper diameter change proportionally. The other colored graph shows the adiabatic limit 

for coupling of the fundamental mode to the next three higher order modes according to the 

adiabatic taper length criterion. The experimentally realized taper angle is always smaller than the 

adiabatic threshold which means the taper shape should be smooth enough that the FM profile can 
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smoothly evolve inside the taper core, and no power coupling happens between FM and HOMs in 

theory. However, potential diffusion and bend effects are not considered here.  

(3) Splice between taper and standard single mode fiber 

 

Figure 7.15. Splice between standard SM fiber (left) and the fiber taper waist (right). 

The seed power is delivered by a standard SM fiber (10/125μm) which only guides the FM. The 

seed delivering fiber is directly spliced to the taper waist for seed coupling. The advantage of this 

technology is to provide a monolithic signal path for robust working environments. The splice point 

between the standard single mode fiber and the tapered fiber waist is shown in figure 7.15. The 

picture shows that the taper waist is a little smaller than the SM fiber. According to figure 7.23(b), 

the taper waist has a core diameter of 10μm and a core NA of 0.07 due to the diffusion. Then the 

V parameter of the taper waist is 2.14 (below 2.405) which is in single mode region. Figure 7.15 

shows that the core diameter of taper waist is smaller than that of the seed delivery fiber. There are 

two reasons for this small core diameter of taper waist: 1. The rod fiber is tapered down to a smaller 

value than seed delivery fiber which brings it to single mode operation without HOMs due to the 

large core NA. 2. The diffusion phenomenon (figure 7.23) discussed in chapter 7.2.3.3 leads to a 

larger core diameter compared with the estimated core value of the taper waist. Therefore, it is 

good for mode matching if the fiber is tapered down to a smaller value. 

(4) Schematic of tapered fiber amplifier 

 

Figure 7.16 Schematic of the tapered rod fiber 999c 

As is shown in figure 7.16, the non-tapered fiber sample which is discussed in section 7.1.1 is 

tapered down on the left side. The length of this tapered fiber sample is 51cm which includes a 5cm 
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taper length and a 46cm rod length. Several centimeters of fiber length are lost when preparing the 

taper on the rod fiber, therefore the tapered fiber is shorter than the original rod fiber. At the taper 

waist position, the core diameter is 6.35μm, the pump core diameter is 54μm, and the outer diameter 

is 143μm. The end facet of this tapered fiber (for pump coupling) is polished with an 8 degrees 

angle to avoid back reflections at the output facet. The pump with multi pump module (200µm core 

diameter and 0.22 core NA) is used to supply the pump power for the fiber amplifier. A pair of 

lenses with 30mm focus length each is used to couple the pump beam inside the rod fiber with free 

space coupling method. 

(5) Near field and far field characterization 

After splicing the taper with the standard SM fiber, the beam profile is measured in the near field 

and in the far field. The mean value of the beam pattern diameter calculated with 4σ method is 

52μm according to the near field measurement. The divergence angle according to the far field 

measurement is 0.062rad. Notice that the wavelength of reference laser beam here is 1060nm. Then 

the BPP and the M2 value can be estimated using the following equations to be 4.  

                                    𝐵𝑃𝑃 = (0,052𝑚𝑚/2) ∗  62𝑚𝑟𝑎𝑑 = 1.6𝑚𝑚 𝑚𝑟𝑎𝑑                          (7.5) 

                                                     𝑀2 = 𝜋 ∗ 𝐵𝑃𝑃/1,060𝜇𝑚 = 4                                           (7.6) 

7.2.3.2 Results of tapered rod fiber amplifier 

The ability of peak power scaling of the tapered fiber amplifier is tested first (see figure 7.17). The 

pump power was estimated based on a 90% pump coupling efficiency. The residual pump power 

cannot be directly measured. Therefore, it was estimated according to the analysis from the non-

tapered amplifier assuming a constant absorption coefficient along the fiber. The tapered amplifier 

shows a slope efficiency of 60% vs. the absorbed pump power. The highest output power reached 

10.3W under 44W of launched pump power, corresponding to a peak power of 230kW and a pulse 

energy of 0.5mJ which is still higher than the saturation energy of 0.242mJ. The efficiency of the 

tapered amplifier appears to be slightly lower, compared with the non-tapered fiber amplifier. 

However, the amplifier has not yet established a clear linear slope.  
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Figure 7.17 Average output power versus the absorbed pump power 

As shown in figure 7.18, the direct and overall efficiencies under 44W launched pump power were 

32% and 23% respectively. The estimated absorption of pump power drops from 81% to 73%. The 

fiber end face is burned already with lower pump power and at lower output power level compared 

with the non-tapered fiber amplifier. This is not very surprising, because the effective mode area 

of laser beam is smaller due to the improved beam quality which will be shown later. The power 

density is therefore higher and the fiber facet damage threshold is reached at a lower power level. 

 

Figure 7.18 Direct efficiency, overall efficiency and pump absorption efficiency as a function of 

the launched pump power. 
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Figure 7.19 Optical spectrum of seed and amplified light 

The spectrum of the amplified signal is shown in Figure 7.19. Compared to the seed spectrum, the 

difference between the main signal peak and the 1st Stokes peak is increasing. The SRS effect is 

suppressed in the main amplifier, but is still obvious. The comparison of the normalized spectrum 

in linear scale is shown in Figure 7.20. Roughly 41% of the power for seed spectrum and 22% of 

the power for amplified spectrum with 230kW peak power are in 1st Stokes region around 1080nm. 

 

Figure 7.20 Comparison of the normalized linear spectra between seed and amplified light 

The beam pattern at the highest output power (230kW) is shown in figure 7.21 with the 

corresponding beam quality (M2 value) 3.2/3.5. The beam pattern is distorted due a few the excited 

HOMs.  
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Figure 7.21 Beam pattern of the output light with 10.4W output power (230kW peak power) 

In order to compare the results of the non-tapered and tapered fiber amplifiers, the beam quality 

(M2 value) is plotted versus the average output power in Figure 7.22. The optimized beam quality 

of the non-tapered amplifier is between 6 and 12 and quite power dependent. The M2 values for the 

tapered rod are between 2.5 to 4 with much higher stability compared to the free space coupling to 

the non-tapered fiber. For similar average output power of about 10W, the beam quality improves 

from values near 10 to approximately 3.5. The improvement of the beam quality depends critically 

on the suppression of coupling to HOMs and therefore on the quality of the taper and the splice to 

the seed fiber.  

 

Figure 7.22 Measured beam quality for tapered fiber amplifier and non-tapered fiber amplifier 
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7.2.3.3 Investigation of dopants diffusion  

Even though the beam quality is improved to 2.5 to 4 with use of a local adiabatic taper, the beam 

quality is still far away from the target value (M2 ≦ 1.5). Some investigations have been done to 

find out the reasons behind. All theoretical calculation and estimation so far do not consider the 

possible change of the NA and the fiber core geometry (other than the direct taper reduction). For 

clarification, the following measurements were performed.  

The Yb3+-distribution of the taper waist was compared to that of the non-tapered rod (blue curve in 

figure 7.23(a), dimensions scaled down by taper ratio). It is clearly visible that the Yb2O3-

distribution after the heat treatment (red curve in figure 7.23(a)) is characterized by strong diffusion. 

This is also indicated by the fact of that the core NA decreases from the initial value of 0.15 to 0.07, 

while the core radius is in the range of 10µm and larger than expected from the taper ratio (7µm). 

By excessive heating during the tapering, the fiber core can even vanish completely in the worst 

case.  

 

Figure 7.23 (a) Comparison of dopant concentration, blue line is the rod (dimensions scaled down 

by taper ratio) and red line is the taper waist. (b) Refractive index profile of the taper waist 

showing a reduced core NA 

It is assumed that the main reason for the improvement of beam quality with the use of taper 

significantly depends on the quality of taper producing and the seed coupling with the splice. There 

always exists a certain amount of dopant diffusion during tapering process which can change the 

fiber properties. But the dopant diffusion can be effectively mitigated by optimizing the fiber design 

which is discussed in the following with a new designed LMA fiber.  
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7.3 Fully doped rod-type fiber with optimized fiber design (854b) 

7.3.1 Improvement of fiber design and parameters of rod type fiber 

(1) Theoretical calculation and improvement of fiber design 

In order to mitigate the influence of diffusion according to the investigation of the fiber 999c, 

several improvements are made for a newly designed fiber which includes (1) Reduction of the 

Al3+-content in the core and the inner clad to decrease the diffusion effect. (2) Reduction of the 

glass transition temperature of the outer clad to reduce the tapering process temperature. (3) 

Reduction of the core NA to that of the seed fiber to reduce the number of HOMs and allow mode 

matching and single-mode taper waist at the splice.  

 

Figure 7.24 New fiber design: stacking geometry of the preform and refractive index profile of 

the drawn fiber. 

The refractive index profile of the fiber is shown in figure 7.24. The Al3+-content in the fiber 

components is the main factor which induces the diffusion during the tapering and splicing process. 

Because the Al3+ is a glass modifier in glass components, it dominates the dopants distribution and 

the homogeneity of glass. The reduction of the Al3+-content can increase the transition temperature 

of the fiber core and inner cladding to suppress the diffusion of dopants. Therefore, the active core 

and the passive inner cladding rods adopt a lower Al3+ content compared with the fiber used in 

chapter 7.2. The outer tube glass uses F520 silica glass (Heraeus) which contains fluorine. The 
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F520 tube has a relatively low melting temperature which can help to decrease the process 

temperature during the tapering and the splice process to mitigate the diffusion phenomenon. The 

stacking profile of the preform is shown in figure 7.24. The central rod is active (Yb3+-doped) 

which serves as fiber core. The two layers of passive rods will serve as the fiber inner cladding for 

the pump coupling. Two tubes with the same material F520 are used to over-clad the rods packing 

and serve as outer clad for fiber. The rods are stacked in a hexagonal shape and the core to clad 

diameter ratio is 1:4.3. On the basis of the composition of the fiber material, the estimated core NA 

is 0.095 while the estimated pump core NA is 0.196. Finally, the preform package is drawn to the 

desired fiber size. 

(2) Parameters of rod type fiber (854b) 

This rod-type double-clad fiber (fiber code: 854b) has a 45µm core, a 200µm inner cladding, and 

a 785µm outer diameter (see figure 7.25). The shape of the core and the inner cladding is hexagonal, 

because the preform of fiber is stacked in hexagonal shape with Repusil rods. This hexagonal shape 

can also help to improve the pump power absorption by suppressing helical pump modes. 

According to the calculation, the diameter of the effective mode area due to FM is 34µm. The 

theoretical power scaling (figure 7.2) is limited to 400kW according to the damage threshold and 

to 700kW according to the SRS limit of the fiber with a MFD of 34µm. An end cap for the fiber 

can be used to enhance the damage threshold. 

 

Figure 7.25. Cross-section of the LMA fiber.  
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Figure 7.26 (a) End face of etched rod fiber. (b) Refractive index profile of the rod fiber. 

The active core of the rod fiber contains 0.25mol% Yb2O3 and 2.5mol% Al2O3 and the passive 

inner cladding contains 3mol% Al2O3. The Al3+ dopants can help to elevate the refractive index of 

the inner cladding to decrease the core NA, because the Yb3+ concentration in the active core 

increases the refractive index of the core significantly. Compared to the fiber used in chapter 7.2, 

the Al3+ content is much lower and the Yb3+ also is relatively low, because the Al3+-dopants 

dominate the solubility of the Yb3+-ions. Even though this fiber has a lower Yb3+-concentration, 

the unsaturated clad absorption at 976nm is 61dB/m in theory due to the high core to clad ratio. In 

order to measure the refractive index profile (figure 7.26(b)) using the index profilometer 

(Interfiber Analysis IFA-100 technology), the rod fiber is etched to 400µm outer diameter. The 

result shows that the fiber made by REPUSIL achieved a very homogenous step index profile with 

a core NA of 0.09 and a pump NA of 0.19.  

7.3.2 Characterization of non-tapered reference fiber amplifier 

(1) Fiber sample parameters 

 

Figure 7.27 Schematic of rod fiber 854b 

As is shown in figure 7.27, the non-tapered rod reference fiber has a length of 62cm. One end facet 

of the fiber (pump coupling) is polished with a 7 degrees angle while the other side of the fiber 
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(seed coupling) is polished at 4 degrees. The pump with single pump module (105µm core diameter 

and 0.16 core NA) is used to supply the pump power for the fiber amplifier. A pair of lenses with 

7.5mm and 25mm focal length is used to couple the seed light while a pair of lenses with 25mm 

and 30mm focal length is used to couple the pump light inside the rod fiber with the free space 

coupling method. 

(2) Experiment results 

The slope efficiency was characterized first (Figure 7.28) and the output power and the peak power 

is plotted vs. the absorbed pump power. The absorbed pump power was estimated based on a 90% 

pump coupling efficiency and the measured residual pump power. The maximum output average 

power with this rod-type fiber is 13.8W with 30W launched pump power which is corresponding 

to a gain of 20dB based on average output power. The measured slope efficiency is 72% with 

respect to the absorbed pump power. The peak power of the pulses increases with increasing 

average output power. The highest peak power achieved with this rod-type fiber is 210kW with 

0.69mJ pulse energy. The saturation energy of this type fiber is 0.175mJ at a wavelength of 1030nm 

theoretically which is much lower than the highest achieved pulse energy with this non-tapered 

fiber amplifier. 

 

Figure 7.28 Average output power versus the absorbed pump power 

The figure 7.29 shows the direct efficiency, the overall efficiency and the pump absorption 

efficiency. The absorption of the pump power drops from 88% to 82% due to the absorption 

saturation. Both, the direct efficiency and the overall efficiency are increasing with the increasing 
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pump power. The highest values are achieved with 30W of launched pump power and reached 56% 

and 46%, respectively. The clad absorption at 976nm based on the pump absorption efficiency in 

figure 7.29 varies between 28dB/m and 17dB/m which is lower than the theoretical calculation 

value of 61dB/m because of the pump saturation and the pump modes with low core overlap. This 

fiber gets much better beam quality (see figure 7.34) and the effective mode field area is much 

smaller, therefore the power density is much higher and the material damage threshold is reached 

at a lower peak power level.  

 

Figure 7.29 Direct efficiency, overall efficiency and pump absorption efficiency as a function of 

the launched pump power. 

 

Figure 7.30 Optical spectrum of seed and amplified light 
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Figure 7.31 Comparison of the normalized linear spectra between seed and amplified light 

The spectrum of the seed and amplified signal is shown in Figure 7.30. Compared to the seed, the 

SRS peak is diminished and suppressed during the amplification process with the highest output 

peak power. For the seed, the difference between the main signal peak and the SRS peak is less 

than 10dB. For the amplified laser beam with 210kW peak power, the difference between the main 

signal peak and the SRS peak is 20dB. The comparison of the normalized spectrum between seed 

and amplified signal in linear scale is shown in Figure 7.31. Roughly 41% power for seed spectrum 

and 6% power for amplified laser beam with 210kW peak power are in SRS region around 1080nm. 

At last the beam quality was measured by Spiricon M2-200s automated M2 laser beam propagation 

analyzer. The figure 7.32 shows the beam pattern of the output power with 13.8W and 210kW peak 

power under 30W launched pump power which is multi-mode with an M2 value of 3.7(x axis) and 

3.4 (y axis). 

 

Figure 7.32 Beam pattern of the output light with 13.8W output power (210kW peak power). 
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Figure 7.33 Measured beam quality for non-tapered reference fiber amplifier 

The M2 value varied from 3.1 to almost 4.5 when the output power increased from 0.5W to 13.8W 

(figure 7.33). The base line for this reference rod fiber is much lower than that for the fiber 999c 

due to a smaller core diameter and an optimized smaller core NA. Due to signal reabsorption, the 

beam quality is quite bad (M2 near 10) without pump power. After applying pump power, the 

amplifier becomes transparent and the beam quality is improved. 

7.3.3 Beam quality improvement with tapered rod type fiber amplifier 

7.3.3.1 Characterization of the tapered amplifier  

(1) Investigation of diffusion  

In order to check if this fiber still exhibits significant diffusion, the refractive index (IR) of the 

down taper is measured (see figure 7.34) using Interfiber Analysis IFA-100 technology. When 

comparing this down taper IR profile with the IR profile of the rod fiber which is scaled down with 

taper ratio, there is little difference between them which means that the diffusion phenomenon is 

mitigated. 
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Figure 7.34 Refractive index profile of the down-taper and rod fiber  

(2) Adiabatic taper design and estimation of properties 

Figure 7.35(a) shows the calculated coupling condition of the fundamental mode to the next three 

higher order modes according to the adiabatic taper length criterion which is also the boundary 

limitation of the taper angle according to different taper local core diameter. The regions below the 

curve of LP01 vs LP11 are the adiabatic regions and the local real taper angle should not exceed 

the adiabatic limitation boundary.  

 

Figure 7.35 (a) Adiabatic region due to theoretical coupling calculation. (b) Theoretical 

calculation for different taper shape (854b) 
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Figure 7.35(b) shows the theoretical calculation of local core diameter for different taper shapes of 

this type fiber. The minimum taper length for linear shape is 13mm which is shorter than that of 

fiber discussed in figure 7.13 due to the smaller core NA and the smaller initial fiber core diameter. 

(3) Characterization of local adiabatic taper  

One piece of fiber with 72cm length was tapered down to the single-mode region. The tapering 

process was optimized. Figure 7.36(a) shows the measured taper diameter against the taper length.  

 

Figure 7.36 (a) Scanned taper length and outer diameter (b) Comparison of angular profiles 

between the experimentally realized fiber taper and the adiabatic thresholds 

As is shown in figure 7.36(b), the black line is derived from the real taper shape, assuming the core 

diameter changes proportionally to the outer diameter. The experimentally realized taper angle is 

always smaller than the adiabatic threshold which means the taper shape should be smooth enough 

that the FM profile can smoothly evolve inside the taper core, and no power coupling happens 

between FM and HOMs in theory.  

(4) Splice between seed delivery fiber and taper waist 

 

Figure 7.37 Splice point between standard SM fiber (left) and the fiber taper waist (right). 
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The seed beam is delivered by a standard single-mode fiber which only propagates the FM. The 

seed delivering fiber is directly spliced to the taper waist for seed coupling to provide a robust 

monolithic signal path even in harsh working environments.  

(5) Schematic of tapered rod fiber  

 

Figure 7.38 Schematic of the tapered rod fiber 854b 

As is shown in figure 7.38, the rod fiber length is 67cm and the taper region length is 5cm for the 

tapered amplifier sample. At the taper waist, the laser core diameter is 9um, the pump core diameter 

is 38µm and the outer diameter is 157um. The end facet of this tapered fiber is polished at 7 degrees 

to avoid back-reflections of the laser beam. The pump with single pump module (105µm core 

diameter and 0.16 core NA) is used to supply the pump power for the fiber amplifier. A pair of 

lenses with 25mm and 30mm focal length is used to couple the pump light into the rod fiber with 

free space coupling method. 

(6) Near field and far field characterization 

The beam pattern (near field measurement) and divergence angle (far field measurement) of the 

laser beam is checked after the taper is spliced to the standard SM fiber. The mean diameter of the 

beam pattern which is calculated with the 4σ method according to the near field measurement is 

32.2μm. The divergence angle of the laser beam which propagates in the tapered fiber is also 

checked with far field measurement. The divergence angle according to the far field measurement 

is 0.043rad for the laser beam at laser wavelength 1060nm. Then the BPP and the M2 value can be 

calculated and the beam quality can be obtained which is estimated to be 1.36. 

                                           𝐵𝑃𝑃 = (
0,0322𝑚𝑚

2
) ∗  43𝑚𝑟𝑎𝑑 = 0.693𝑚𝑚 𝑚𝑟𝑎𝑑                    (7.7) 

                                              𝑀2 = 𝜋 ∗ 𝐵𝑃𝑃/1,060𝜇𝑚 = 1.36                                        (7.8) 
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7.3.3.2 Results of tapered rod-type amplifier 

The slope efficiency was characterized according to figure 7.39. In order to provide a better 

performance comparison, the output power is plotted vs. the absorbed pump power. This pump 

power was estimated based on a 90% pump coupling efficiency, the residual pump power is 

estimated according to a constant absorption coefficient along the fiber which is obtained from the 

non-tapered fiber amplifier. The slope of the tapered amplifier displays a slope efficiency of 70% 

vs. the absorbed pump power. The highest output power reached 8.38W under 20W of launched 

pump power, corresponding to a peak power of 140kW and a pulse energy of 0.42mJ. The 

efficiency of the tapered amplifier is similar to that of the non-tapered fiber amplifier. 

 

Figure 7.39 Average output power versus the absorbed pump power 

 

Figure 7.40 Direct efficiency, overall efficiency and pump absorption efficiency as a function of 

the launched pump power. 
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As is shown in figure 7.40, the direct and overall efficiency under 20W launched pump power was 

49% and 42%, respectively. The estimated absorption of pump power drops from 89% to 86%. 

 

Figure 7.41 Optical spectrum of seed and amplified light 

The spectrum of the amplified signal is shown in Figure 7.41 and compared to the seed spectrum. 

The seed spectrum already contains a significant first Stokes peak at 1080nm due to stimulated 

Raman scattering (SRS). Interestingly, this peak is suppressed in the tapered rod amplifier up to 

140kW of peak power. This indicates that the laser gain strongly favors the 1030nm emission and 

drops sharply towards 1100nm. The comparison of the normalized spectrum in linear scale is 

shown in Figure 7.42. Roughly 41% power for seed spectrum and 14% power for amplified laser 

beam with 140kW peak power are in SRS region around 1080nm. 

 

Figure 7.42 Comparison of the normalized linear spectra between seed and amplified light 
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The following experiments concentrated on the characterization of the beam quality improvement 

due to the local taper using a Spiricon M2-200s automated M2 laser beam propagation analyzer. 

The pattern of beam spot at the highest output power (140kW) is shown in figure 7.43. The 

corresponding beam quality (M2 value) is 1.6/1.7 in x/y axis. The beam pattern is quite similar to 

a Gaussian shape.  

 

Figure 7.43 Beam pattern of the output beam with 8.38W output power (140kW peak power) 

 

Figure 7.44 Measured beam quality for the non-tapered and the tapered fiber amplifier 

The beam quality M2 is plotted versus the average output power in Figure 7.44. The non-tapered 

rod amplifier serves again as a reference, even though the beam quality is very sensitive to the free 

space seed coupling conditions and therefore not very stable. All M2 results presented here are 
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based on a carefully optimized coupling adjustment. The optimized beam quality of the non-tapered 

amplifier is between 3.1 and 4.5. The M2 values for the tapered rod amplifier are between 1.3 to 

1.7, but with much higher stability compared to the free space coupling to the non-tapered fiber. 

For a similar average output power of about 8W, the beam quality improves from values near 4 to 

1.6/1.7. Even though the peak power is not scaled up to the megawatt level, the beam quality is 

good enough and quite stable with local adiabatic taper. The peak power scaling is limited by break 

down of the fiber end-face due to the material facet damage limit.  

7.3.4 Peak power scaling of tapered rod-type fiber amplifier with endcap 

7.3.4.1 Characterization of the endcap 

In order to enhance the damage threshold and scale up the peak power of the tapered fiber amplifier 

as is discussed in chapter 7.3.3, an endcap is adopted to protect the fiber facet from facet damage. 

An endcap is a core-less pieces which is attached to fiber end tip in order to reduce the laser light 

intensity by expanding the laser beam [114]. The endcap is a useful method to enhance the laser 

damage threshold limit and to scale up the peak power. The choice of material for endcap is 

essential which at least should have a higher damage threshold than the doped fiber. A pure silica 

glass piece is the simplest choice due to the high melting temperature. A fusion splice is the most 

common way to attach an end cap to the fiber with low loss. The endcap length should be short 

enough, otherwise the laser beam can be blocked on the edge along the endcap. Limpert [115] has 

pointed out a simple equation to estimate the maximum endcap length, which can approximately 

expand the mode field to 3/4 of the end cap diameter:  

                                                               𝐿𝑚𝑎𝑥 =
𝑑𝑒𝑛𝑑𝑐𝑎𝑝

2𝑛𝑒𝑛𝑑𝑐𝑎𝑝𝑁𝐴𝑐𝑜𝑟𝑒
                                             (7.9)  

where dendcap is the endcap diameter of and nendcap is the endcap refractive index. NAcore is the 

numerical aperture of fiber core. Lmax is the maximum length of the endcap. 

The endcap material here uses F300 silica rod with 1000μm outer diameter. According the equation 

7.9, the maximum length of an endcap is 3.8mm. The F300 silica rod was spliced to the tapered 

fiber amplifier (see figure 7.45), then was angle cleaved to avoid back-reflections into the MOPA 

system. Only a short 2mm long piece of F300 silica rod is left on the fiber amplifier as the endcap. 

Finally, the endcap is cleaved at an angle of 5.8 degrees. Because several parts of the rod type fiber 
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where used for several trials (cleaving on fiber end) of making the endcap, a tapered fiber amplifier 

with 50cm length (45cm rod and 5cm taper) was left for further investigations.  

 

Figure 7.45 Endcap of tapered fiber amplifier: left side is the fiber amplifier and the right side is 

the endcap material (F300 with 1000μm outer diameter) 

7.3.4.2 Results of tapered rod-type fiber amplifier with an endcap 

The slope efficiency was characterized first which is shown in Figure 7.46. The absorbed pump 

power was estimated based on a 90% pump coupling efficiency, the residual pump power is 

estimated according to a constant absorption coefficient along the fiber, which is taken from the 

non-tapered fiber amplifier. The slope efficiency of this 50cm length tapered amplifier displays a 

value of 62% vs. the absorbed pump power. The highest output power reached 15.54W under 

39.5W of launched pump power, corresponding to a peak power of 375kW and a pulse energy of 

0.78mJ. The efficiency of this tapered amplifier with endcap is a little lower than the performance 

of the tapered fiber amplifier discussed in chapter 7.3.3, because the fiber length is 22cm shorter. 

In order to achieve the same output power, this shorter length fiber amplifier needs more pump 

power to get enough gain to compensate the reduced pump absorption efficiency. Because of the 

endcap, the peak power is significantly scaled up to 375kW which is 2.7 times higher than the 

achieved peak power of 140kW with the tapered fiber sample without endcap (see chapter 7.3.3). 
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Figure 7.46 Average output power versus the absorbed pump power 

Figure 7.47 shows the direct efficiency, the overall efficiency and the pump absorption efficiency. 

The absorption of the pump power drops from 86% to 74%. Both, the direct efficiency and the 

overall efficiency are increasing with the increasing pump power. The highest values with 39.5W 

of launched pump power are 53% and 39%, respectively.  

 

Figure 7.47 Direct efficiency, overall efficiency and pump absorption efficiency as a function of 

the launched pump power. 



88 
 

 

Figure 7.48 Optical spectrum of seed and amplified light 

 

Figure 7.49 Comparison of the normalized linear spectra between seed and amplified light 

The spectra of the amplified signals with 375kW peak power is shown in Figure 7.48 and is 

compared to the seed spectrum. The seed spectrum already contains a significant first Stokes peak 

at 1080nm due to stimulated Raman scattering (SRS). This SRS peak is efficiently suppressed in 

the tapered rod amplifier up to 375kW of peak power which indicates that the Raman gain is still 

very small while the laser gain strongly favors the 1030nm emission. The spectrum around 1030nm 

becomes broader than seed spectrum which is due to the non-linear broadening effect. The 

comparison of the normalized spectrum of seed light and amplified light in linear scale is shown in 

Figure 7.49. Roughly 41% power of seed spectrum and 12% power of amplified laser beam with 

375kW peak power are in SRS region around 1080nm. 
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Figure 7.50 Beam pattern of the output light with 15.5W output power (375kW peak power) 

The pattern of the beam spot at the highest output power with 15.5W average output power and 

375kW peak power is shown in figure 7.50. The corresponding beam quality (M2 value) is 

1.58/1.64 in x/y axis which is nearly diffraction limited. 

 

Figure 7.51 Measured beam quality for non-tapered reference fiber amplifier, tapered fiber 

amplifier and tapered fiber amplifier with endcap 

The beam quality M2 is plotted versus the average output power in Figure 7.51. The non-tapered 

rod amplifier and the tapered fiber amplifier without endcap serve as a reference. For this tapered 

fiber amplifier with endcap, the M2 values are between 1.3 to 1.7 in the nearly diffraction limited 
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region which is in a similar range as the tapered fiber amplifier without endcap (chapter 7.3.3). For 

similar average output power of about 14W, the beam quality is improved from values near 4 with 

non-tapered fiber to 1.6 with tapered fiber.  

7.4 Summary of rod-type fiber amplifiers 

The fiber parameters and the main experimental results of the designed LMA fiber amplifiers are 

summarized in table 7.1. 

Fiber code Fiber 999c Fiber 854b 

Core diameter  56μm  45μm 

Mode field 

diameter(MFD) 
40μm 34μm 

Al3+ 

concentration 
High (7mol% in core) Low (2.5mol% in core) 

Outer cladding F300 (pure silica) F520 (Fluorine-doped silica) 

Temperature of 

tapering 

process 

High  Low 

Diffusion 

problem 
Serious  Almost no diffusion 

With or without 

taper 
Non-tapered Tapered fiber Non-tapered Tapered fiber 

Tapered fiber 

with endcap 

Seed coupling 
Free space 

coupling 
Splice 

Free space 

coupling 
Splice Splice 

Stability vs. 

seed coupling 
Not stable Stable Not stable Stable Stable 

End surface Polished  Polished  Polished Polished Endcap 

Average power 

(W) 
28.0 10.3 13.8 8.4 15.5 

Peak power 

(kW) 
544 230 210 140 375 

Beam quality 

(M2) 
6~12 2.5~4.0 3.1~4.5 1.3~1.7 1.3~1.7 

Table 7.1 Summary of rod type fiber amplifiers 
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Above all, LMA fibers can efficiently scale up the peak power by increasing the mode field area 

and decreasing the laser power density. The use of a local short adiabatic tapers provides a robust 

seed coupling for fiber amplifiers compared to free space coupling, while maintaining the near 

diffraction limited beam quality by preferentially exciting the fundamental mode in a LMA step-

index fiber amplifier. The dopant diffusion during the tapering process is successfully suppressed 

using an optimized fiber design (lower Al3+-doping concentration in the core and inner cladding, 

and lower tapering process temperature with optimized outer cladding material). The use of an 

endcap can protect the fiber end facet and help to scale up the peak power of fiber amplifier. The 

peak power was scaled up to 375 kW with a near diffraction limited beam quality (M2: 1.3~1.7). 

In summary, we have demonstrated a new type of REPUSIL-based rod amplifiers in the ns pulse 

regime with local short adiabatic tapers allowing high peak power in combination with near 

diffraction limited beam quality in a robust monolithic seed coupling setup.  
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8. Outlook: Confined doping for beam quality improvement 

(1) Confined doping fiber parameter discussion 

Beyond the use of a tapered seed coupling in a rod fiber amplifier, the REPUSIL method would 

also provide an option to prepare a confined doping amplifier core in a simple way. By this way a 

further improvement of amplification efficiency with diffraction limited beam quality could be 

expected. Therefore, as a method, a fiber design with such a confined doping is shortly discussed. 

Confined doping means the fiber core is only partially doped with active dopants to favor a 

particular mode in the amplification. In particular, the FM can get preferred gain due to the higher 

overlap coefficient between LP01 mode profile and active doping region. 

 

Figure 8.1 Illustration of the overlap between modes and the active region 

 

Figure 8.2 Refractive index profile of confine doped fiber for calculation 

In the following we assume a core with a radius rcore where only a region with radius ractive is actively 

doped (figure 8.2). The design will be optimized for the seed delivery fibers as used in this work. 

The fiber core diameter is taken to be 56µm which approximately has a mode field diameter of 40 
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µm. This provides a peak power scaling potential up to 1MW with the use of endcaps (see figure 

7.2). The fiber core NA is set to 0.08, which enables good mode matching to the seed delivery fiber 

and a single-mode operation at the taper waist. The refractive index of core and pump (inner) 

cladding are n1 and n2, respectively. 

(2) Optimization of actively doped radius of the fiber core 

In order to discriminate the gain (or mode overlap coefficient) between FM and HOMs, the 

optimized radius ratio between active core region radius and the total core radius should be 

investigated. The Radius ratio is the active core region radius ractive divided by the total core radius 

rcore. Figure 8.3 shows the overlap coefficient difference between the FM and the HOMs as a 

function of the radius ratio between the active core region and the fiber core. The overlap coefficient 

difference is calculated by subtracting the highest overlap coefficient value of HOMs from the 

overlap coefficient value of FM. The overlap coefficient of modes is calculated according to the 

equation 5.11. The optimized radius ratio between active region and the total fiber core is 0.68. 

This value corresponds to the best discrimination between the FM and the HOMs based on a high 

overlap and high modal gain for the FM and significantly smaller values for the other HOMs. 

 

Figure 8.3 Investigation of the optimized radius ratio for the active (Yb3+-doped) core region 

The overlap coefficient between modes and the active core region is compared for the fully doped 

case and the confined doped case, respectively (see figure 8.4). The blue curve shows that the 

overlap coefficients for all modes are quite similar and approximate equal to 1 for fully doped fiber. 
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The red curve shows the overlap coefficients for different modes of confined doped core for the 

optimum radius ratio of 0.68 from Fig. 8.3. The overlap coefficient of FM is 0.835 while the overlap 

coefficients of the other HOMs are smaller than 0.658 with the radius ratio of 0.68. The gray curve 

corresponds to a stacked preform design with a radius ratio of 0.61 which represents a practical 

design with rods of uniform size as discussed in the next section. 

 

Figure 8.4 Overlap coefficients between guided modes and the active core region  

(3) Preform preparation by stacking rods 

Figure 8.5 shows the stacked preform for a confined doped fiber. The red rods will form the active 

core region, the yellow rods the passive core region, and the green rods the inner cladding region. 

All stacking rods of the preform are assumed to be of uniform size (diameter and length) which is 

typical for fiber preform produced by REPUSIL technology. The ratio between the active region 

and the total core area is 7:19 and therefore the ratio between the active region radius and the core 

radius is 0.61 due to the uniform size of stacking preform rods and limitation of choosing radius 

ratio. According to the calculation result in figure 8.4, the overlap coefficient of the FM is 0.75 

while the overlap coefficients of the other HOMs are smaller than 0.61 with the radius ratio of 0.61. 

The FM still obtains the preferred gain and the gain of the HOMs is suppressed.  
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Figure 8.5 Preform preparation by stacking rods (red rods are for the active core, yellow rods are 

for the passive core, and green rods are for the inner cladding) 
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9. Conclusion 

Large mode area (LMA) all-solid Yb3+-doped double-clad fibers provide an economical and 

practical solution to mitigate the severe nonlinear effects while scaling up the peak power by mode 

area scaling. However, LMA step-index fibers also bear some problems such as bad beam quality 

in case of highly multi-moded excitation. The purpose of this research work incorporates three 

important parts: 1. achieve a monolithic signal path and robust fiber amplifier with an all-solid fiber. 

2. explore an LMA step index fiber for peak power scaling. 3. explore a local short adiabatic taper 

to maintain the near diffraction limited beam quality. The aim is to achieve a high peak power with 

near diffraction limited beam quality and low Stimulated Raman Scattering (SRS) effect.  

All fibers in this research work were prepared by the powder sintered technology (REPUSIL) which 

was developed by the IPHT and Heraeus Quarzglas and allows simple refractive index adjustment 

of the inner cladding and very homogeneous refractive index distributions. All designed LMA 

fibers were tested in a three-stage ns-pulsed fiber master oscillator power amplifier (MOPA) system. 

The two pre-amplifier stages provide the amplified seed signal with 3kW peak power and 138mW 

average power with 2ns pulse and a repetition rate of 20kHz which reaches the limitation of 

standard single mode amplifiers due to the SRS effect. The third stage is the main stage to test the 

designed LMA fibers to scale up the peak power and to maintain the good beam quality. 

First experiments were performed with double-clad rod-type fibers with a core diameter of 56µm 

and an outer diameter of 1mm. A rod-type Yb-doped fiber was characterized before and after 

tapering the seed input section. While the non-tapered fiber amplifier was operated up to a peak 

power of 544kW and 1.4mJ pulse energy, the tapered amplifier reached 230kW and 0.5mJ. The 

limiting effect was damage to the output facet. The slope efficiency of non-tapered amplifier is 83% 

with respect to the absorbed pump light and slightly lower for the tapered amplifier. For comparable 

average powers of 10W, the taper improves the beam quality from M2 values of about 10 to 3.5, 

while the monolithic seed coupling significantly improves the beam stability. It was observed that 

the dopants diffuse during the tapering process because of high temperature, possibly providing 

further sources for coupling to higher order modes. The amplifiers show that the SRS Stokes peak 

is suppressed up to peak powers of 544kW by preferential laser gain at the 1030nm seed wavelength, 

indicating further peak power scaling potential.  
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The second experiments were performed with optimized fibers with a core/clad diameter of 

45µm/200µm and a core/clad numerical aperture of 0.09/0.19 which reduce the Al3+ content to 

mitigate the diffusion problem by lower glass melting temperature of the outer clad to decrease the 

tapering process temperature and reduce the core NA. While the non-tapered fiber amplifier was 

operated up to a peak power of 210kW, the tapered amplifier reached 140kW. Both fiber amplifiers 

show relatively low SRS levels and no remarkable photo-darkening. The optimized beam quality 

of the non-tapered amplifier is between 3.1 and 4.5 and quite power dependent. The M2 values for 

the tapered rod are between 1.3 and 1.7 with much higher stability compared to the free space 

coupling of the non-tapered fiber. For similar average output powers of about 8W, the beam quality 

improves from values near 4 to approximately 1.6 which is close to a diffraction limited beam. An 

endcap was adopted for the tapered fiber amplifier. Because of an endcap the peak power is scaled 

up to 375kW in the nearly diffraction limited region with low SRS level. 

For future work, the following improvements are envisioned: 1. Improve the beam quality by 

optimizing the tapering process and by the use of confined doped fibers according to the 

theoretically analysis in chapter 8. 2. A picosecond (ps) seed laser source could be considered to 

shorten the pulse width from nanosecond (ns) level to picosecond (ps) level which can help to scale 

up the peak power by increasing the laser induced damage threshold. 

Finally, we can conclude that the new type of REPUSIL-based robust rod amplifier with index-

adjusted inner cladding and local adiabatic tapers is successfully demonstrated. LMA fibers can 

efficiently scale up the peak power by increasing the mode field area and decreasing the laser power 

density. LMA short fibers provide an efficient solution to mitigate the nonlinear effects, especially 

the SRS effect for nanosecond pulsed amplifiers. The use of local short adiabatic tapers provides a 

robust seed coupling for fiber amplifiers compared to free space coupling, while maintaining the 

nearly diffraction limited beam quality by preferentially exciting the fundamental mode in LMA 

step-index fiber amplifiers. The dopant diffusion during the tapering process is successfully 

suppressed, resulting in a good beam quality. The peak power has been scaled up to 375 kW with 

good beam quality by adopting an endcap at the output of the tapered fiber amplifier.   
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A. Zusammenfassung 

„All-solid“ Yb3+-dotierte double-clad LMA-Fasern stellen eine sowohl ökonomische als auch 

praktische Lösung dar um die starken nichtlinearen Effekte bei der Leistungsskalierung mittels 

Vergrößerung des Modenfelds abzuschwächen. Dennoch zeigen LMA-Stufenindexfasern einige 

Probleme wie zum Beispiel die geringe Strahlqualität im Fall einer multimodalen Anregung. Das 

Ziel dieser wissenschaftlichen Arbeit beinhaltet drei wichtige Teile: 1. Realisierung eines 

monolithischen Signalweges und eines stabilen Faserverstärkers mittels einer „all-solid“ Faser; 2. 

Untersuchung einer LMA-Stufenindexfaser zur Spitzenleistungsskalierung; 3. Untersuchung eines 

lokalen adiabatischen Tapers zur Erhaltung einer nahezu beugungsbegrenzten Strahlqualität. Das 

gemeinsame Ziel ist es dabei, eine hohe Spitzenleistung mit nahezu beugungsbegrenzter 

Strahlqualität und niedriger stimulierte Ramanstreuung (SRS) zu erreichen. 

Alle Fasern in dieser Forschungsarbeit wurden mit Hilfe der reaktiven Pulver Sinter-Technologie 

(REPUSIL) hergestellt, ein Verfahren welches in Zusammenarbeit von IPHT Jena und Heraeus 

Quarzglas entwickelt wurde und sowohl einfache Brechungsindexanpassungen des inneren 

Claddings als auch sehr homogene Brechzahlverteilungen erlaubt. Alle hergestellten LMA-Fasern 

wurden in einem dreistufigen Nanosekunden-gepulsten Faser-Masteroszillator-

Leistungsverstärkersystem (MOPA) getestet. Die zwei Vorverstärkerstufen liefern das verstärkte 

Seedsignal mit 3 kW Spitzenleistung und 138 mW mittlerer Leistung mit 2 ns Pulsdauer und einer 

Repetitionsrate von 20 kHz, welche die Grenze von üblichen monomodalen Verstärkern aufgrund 

der SRS erreicht. Die dritte Stufe ist die Hauptstufe um die hergestellten LMA-Fasern hinsichtlich 

der Skalierung der Spitzenleistung und der Erhaltung der Strahlqualität zu testen. 

Erste Experimente wurden an „Double-clad rod-type“ Fasern mit einem Kerndurchmesser von 

56 µm und einem Faserdurchmesser von 1 mm durchgeführt. Eine „rod-type“ Yb-dotierte Faser 

wurde vor und nach dem Tapern der Eingangsseite charakterisiert. Während der ungetaperte 

Faserverstärker bis zu einer Spitzenleistung von 544 kW bei 1.4 mJ Pulsenergie betrieben werden 

konnte, erreichte der getaperte Verstärker 230 kW und 0.5 mJ. Der limitierende Faktor hierbei war 

die Zerstörung der ausgangsseitigen Faserendfläche. Der Wirkungsgrad bezüglich der absorbierten 

Pumpleistung liegt bei 83% für den ungetaperten Verstärker und etwas geringer für den getaperten 

Verstärker. Bei vergleichbaren mittleren Leistungen von 10 W verbessert der Taper die 

Strahlqualität M2=10 auf M2=3.5, wobei die monolithische Seed-Einkopplung zusätzlich auch die 

Strahlstabilität erheblich verbessert. Es wurde beobachtet, dass die Dotanden aufgrund der hohen 
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Temperatur während des Taper-Prozesses ausdiffundieren, was möglicherweise zu einer Kopplung 

zu Moden höherer Ordnung führen kann. Die Verstärker zeigen, dass das SRS Stokessignal bis zu 

einer Spitzenleistung von 540 kW mittels bevorzugter Laserverstärkung bei 1030 nm Seed-

Wellenlänge unterdrückt werden kann, was auf weiteres Potenzial ind der Skalierung der 

Spitzenleistung hindeutet. 

Die zweiten Experimente wurden mit optimierten Fasern mit einem Kern/Mantel-Durchmesser von 

45µm/200µm und einer Kern/Mantel-NA von 0.09/0.19 durchgeführt. In diesen Fasern wurde der 

Al3+-Gehalt verringert um das Diffusionsproblem aufgrund der niedrigeren 

Glasübergangstemperatur des äußeren Claddings abzuschwächen, die Temperatur beim 

Taperprozess zu verringern und die NA des Kerns abzusenken. Während der ungetaperte 

Faserverstärker bis zu einer Spitzenleistung von 210 kW betrieben werden konnte, erreichte der 

getaperte Verstärker 140 kW. Beide Faserverstärker zeigen relativ geringe SRS Signale und kein 

nennenswertes Photodarkening. Die optimierte Strahlqualität der ungetaperten „rod-type“ Fasern 

liegt zwischen M2=3.1 und 4.5 und ist sehr leistungsabhängig. Die M2-Werte der getaperten „rod-

type“ Faser liegen zwischen 1.3 und 1.7 und zeigen eine sehr viel besser Stabilität im Vergleich 

zur Freistrahlkopplung der ungetaperten Faser. Für eine vergleichbare mittlere Ausgangsleistung 

von circa 8 W verbessert sich die Strahlqualität von M2=4 auf ungefähr 1.6, was einen nahezu 

beugungsbegrenzten Strahl darstellt. Für den getaperten Faserverstärker wurde eine Endkappe 

verwendet. Aufgrund der Endkappe konnte die Spitzenleistung auf 375 kW, nahezu 

beugungsbegrenzt und mit niedrigem SRS Signal, skaliert werden. 

Für zukünftige Arbeiten werden folgenden Verbesserungen angestrebt: (1). Verbesserung der 

Strahlqualität durch Optimierung des Taperprozesses und durch die Verwendung von „Confined 

doping“ Fasern entsprechend den theoretischen Überlegungen aus Kapitel 8. (2). Um die Pulsdauer 

von Nanosekunden auf Pikosekunden zu verkürzen könnte eine Pikosekunden Seed-Laserquelle in 

Betracht gezogen werden, wodurch eine Hochskalierung der Spitzenleistung durch Erhöhung der 

Laser-induzierten Zerstörschwelle möglich wäre. 

Schlussendlich können wir zusammenfassen, dass die neuartigen REPUSIL-basierten „rod-

type“ Faserverstärker mit Brechungsindex-angepasstem inneren Cladding und lokalen 

adiabatischen Tapern erfolgreich demonstriert werden konnten. Die Spitzenleistung kann mit Hilfe 

von LMA-Fasern auf effiziente Weise durch Vergrößerung des Modenfelddurchmessers und die 
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damit verbundene Verringerung der Laserleistungsdichte hochskaliert werden. Kurze LMA-Fasern 

stellen eine effiziente Lösung zur Verringerung nichtlinearer Effekte, insbesondere SRS für 

Nanosekunden-gepulste Verstärker, dar. Im Vergleich zur Freistrahleinkopplung ermöglicht die 

Verwendung kurzer lokaler adiabatischer Taper eine stabile Seed-Lasereinkopplung für 

Faserverstärker bei gleichzeitiger Erhaltung der nahezu beugungsbegrenzten Strahlqualität mittels 

bevorzugter Anregung des Grundmodes in LMA-Stufenindex-Faserverstärkern. Die Diffusion der 

Dotanden während des Taperprozesses wurde erfolgreich unterdrückt, was zu einer guten 

Strahlqualität führte. Durch die Verwendung einer Endkappe an der ausgangsseitigen Endfläche 

der Faser konnte die Spitzenleistung auf 375 kW mit guter Strahlqualität hochskaliert werden. 
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C. Abbreviations 

YDFA:         Yb3+-doped fiber amplifier 

MOPA:         Master Oscillator Power Amplifier 

SRS:             Stimulated Raman Scattering  

SBS:             Stimulated Brillouin Scattering  

FM:              fundamental mode 

HOMs:         higher order modes 

LMA:           large mode area  

MFD:           mode field diameter 

NA:              numerical aperture  

PCF:            photonic crystal fiber 

CCC:           Chirally coupled core fiber 

REPUSIL:   reactive powder sinter technology 

CW:             continue wave 

MW:            megawatt 

ASE:            amplified spontaneous emission 

BPP:            beam parameter product 

PD:              Photodarkening 

MCVD:       Modified Chemical Vapor Deposition 

ns:               nanosecond 

ps:               picosecond 
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