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Abstract 

 

The availability of pico- and femtosecond laser pulses, which can be focused to peak intensities in the range 

between 1012  and 1016 W/cm2, allows the investigation of the interaction between atoms or diatomic molecules 

with strong laser fields. It has revealed fascinating phenomena such as above-threshold ionization (ATI) [1], high 

energy above-threshold ionization (HATI) [2], non-sequential ionization (NSDI) [3], high-harmonic generation 

(HHG) [4] and, most recently, frustrated tunnel ionization (FTI) [5]. Today, these characteristic strong-field 

phenomena are the backbone of the burgeoning field of attosecond science. Derived applications presently mature 

to standard techniques in the field of ultrafast atomic and molecular dynamics. Examples are HHG as table-top 

source of coherent extreme ultraviolet radiation with attosecond duration or the application of HATI for the 

characterization of few-cycle laser pulses [6] [7]. Although experimental and theoretical considerations have shown 

that using longer laser wavelength is interesting for applications as well as for fundamental aspects [8], primary 

due to technological limitations, the vast majority of measurements has been performed at laser wavelengths below 

1.0 µm.  

In this thesis, an optic parametric amplification laser source of intense femtosecond laser pulses with short-wave 

infrared (SWIR) and infrared (IR) wavelength is put to operation, characterized and compressed to intense few-

cycle pulses. Further, it is applied to investigate strong-field photoionization (SFI) of atoms and diatomic molecules 

using two different experimental techniques for momentum spectroscopy of laser-induced fragmentation 

processes.  

For SFI of atoms, the velocity map imaging technique is used to measure three-dimensional momentum 

distributions from strong-field photoionization of Xenon by strong SWIR fields with different pulse duration. 

Besides observation of the pulse duration dependence of characteristic features, like the low-energy structures [9], 

which are particularly pronounced in the SWIR, an eye-catching off-axis low-energy feature, called the “fork”, which 

appears close to right angle to the polarization axis of the laser, is investigated in detail [10]. The corresponding 

modeling with an improved version of the semi-classical model [11] [12] [13], demonstrates that on- and off-axis 

low-energy features can be traced to rescattering between the laser-driven photoelectron and the remaining ion. 

They can, thus, be understood on the same footing as HATI [2], where the electron scatters into high energy states. 

SFI of diatomic molecules is investigated using an apparatus for Ion Target Recoil Ion Momentum Spectroscopy 

(ITRIMS) [14] [15]. Besides measuring intensity dependent vector momentum distributions of the protons from SFI 

of the hydrogen molecular ion, 𝐻2
+ (𝐻2

+ → 𝐻+ +𝐻+ + 𝑒−), it is shown that momentum conservation can be used to 

extract the correlated electron momentum from the measured data, although the electron is not detected. The 

capability of having experimental access to the momenta of all fragments, i.e. two protons and one electron, enables 

the analysis of correlated electron-nuclear momentum distributions. Together, with a one-dimensional two-level 

model, this sheds light on correlated electron-nuclear ionization dynamics during SFI of diatomic molecules by 

SWIR fields. 
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Kurzfassung 

 

Die Verfügbarkeit von Laserpulsen mit Pulsdauern im Piko- und Femtosekundenbereich, die auf 

Spitzenintensitäten zwischen 1012  and 1016 W/cm2  fokussiert werden können, hat die Untersuchung der 

Wechselwirkung zwischen Atomen oder zweiatomigen Molekülen mit starken Laserfeldern ermöglicht und führte 

zur Entdeckung faszinierender Phänomene wie Above-Threshold Ionisation (ATI) [1], hoch energetische Above-

Threshold Ionisation (HATI) [2], nichtsequentielle Ionisation (NSDI), die Erzeugung hoher Harmonischer (HHG) [4] 

und, zuletzt, frustrierte Tunnelionisation [5]. Heute sind diese charakteristischen Starkfeldeffekte das Rückgrat des 

der Attosekundenwissenschaft, wo derzeit abgeleitete Anwendungen zu Standardmethoden für die Untersuchung 

extrem schneller atomarer und molekularer Dynamik heranwachsen. Beispiele dafür sind die Erzeugung hoher 

Harmonischer als Laborquelle für kohärenter Strahlung im extrem ultravioletten Wellenlängenbereich sowie als 

Quelle für Attosekundenpulse oder die Anwendung von HATI zur Vermessung von Einzelzyklenlaserpulsen [6] [7]. 

Obwohl experimentelle und theoretische Betrachtungen gezeigt haben, dass die Verwendung längerer 

Laserwellenlänge für Anwendungen und fundamentale Aspekte von Interesse ist, wurde aufgrund technologischer 

Beschränkungen der allergrößte Teil der Messungen bei Laserwellenlängen unterhalb von 1.0 µm durchgeführt.  

In dieser Arbeit wird eine optisch-parametrische Laserquelle intensiver Femtosekundenlaserpulse mit 

Wellenlängen im kurzwelligen Infrarotbereich (SWIR) und Infrarotbereich (IR) in Betrieb genommen, 

charakterisiert und zu Pulsdauern im Einzelzyklenbereich komprimiert. Weiterhin wird diese Quelle verwendet um 

die Starkfeldionisation (SFI) von Atomen und zweiatomigen Molekülen in diesem Wellenlängenbereich zu 

untersuchen. Dazu werden zwei verschiedene Techniken der Impulsspektroskopie lasergetriebener 

Fragmentierung verwendet.  

Zur Untersuchung der SFI von Atomen wird die Velocity-Map-Imaging Technik benutzt um dreidimensionale 

Photoelektronenimpulsverteilungen von Xenon nach Ionisation durch SWIR-Felder bei verschiedenen Pulsdauern 

zu vermessen. Neben der Beobachtung der Pulsdauerabhängigkeit charakteristischer Strukturen, die im SWIR-

Bereich besonders stark hervortreten, z. B. die Low-Energy-Struktur [9], wird eine interessante Struktur mit dem 

Namen „Gabel“, die in nahezu rechtwinkliger Emissionsrichtung zur Laser Polarisation auftritt, im Detail untersucht 

[10]. Die zugehörige Modellierung mit einem verbesserten halbklassischen Modell [11] [12] [13] zeigt, dass auch 

niederenergetische Strukturen auf Rückstreuung zwischen dem lasergetriebenen Elektron und dem verbliebenen 

Ion erklärt werden können. Dies führt den Ursprung der niederenergetischen Strukturen auf dasselbe Konzept 

zurück, das zum Verständnis der HATI Strukturen bei hohen Elektronenenergien verwendet wird. 

Die SFI zweiatomiger Moleküle wird mit Hilfe einer Anlage für Ion Target Recoil Ion Momentum Spectroscopy 

(ITRIMS) untersucht [14] [15]. Neben der intensitätsabhängigen Messung von Vektorimpulsverteilungen der 

Protonen nach SFI des Wasserstoffmolekülions, 𝐻2
+ (𝐻2

+ → 𝐻+ +𝐻+ + 𝑒−), durch SWIR-Felder, wird gezeigt, dass 

Impulserhaltung verwendet werden kann um den korrelierten Elektronenimpuls aus den Messdaten zu 

extrahieren, obwohl das Elektron nicht detektiert wurde. Die experimentelle Verfügbarkeit der Impulse aller 

Fragmente, nämlich von zwei Protonen und eines Elektrons, erlaubt die Analyse korrelierter Elektron-Kern-

Impulsverteilungen. Gemeinsam mit einem eindimensionalen Zweiniveau-Modell können so korrelierte Elektron-

Kern-Ionisationsdynamiken während der SFI zweiatomiger Moleküle beleuchtet werden.   
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1 Motivation and Document Structure  

 

1.1 Motivation 
 

The availability of energetic laser pulses with pulse durations in pico- and femtosecond domain which can be 

focused to peak intensities in the range between  and , enabled the investigation of the interaction 

between strong laser fields and matter since of the end of the 1970s. Since then, the combined experimental and 

theoretical efforts have led to comprehensive investigations of strong-field interactions between atoms and small 

molecules.  
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Figure 1.1: a) Illustration of the semi-classical model of the interaction between a strong-field and an atom  

The characteristic processes of ATI, HATI, NSDI, FTI and HHG are shown see text for details. b) in addition to the molecular 

versions of ATI, HATI, NSDI, FTI and HHG, coupled electron-nuclear dynamics lead to additional phenomena which are 

relevant for ionization and dissociation of diatomic molecules, see text for details.  

 

For atoms this includes classical and quantum mechanical aspects of the characteristic processes like above-

threshold ionization (ATI) [1], high energy above-threshold ionization (HATI) [2], non-sequential ionization (NSDI) 

[3], high-harmonic generation (HHG) [4] and, most recently, frustrated tunnel ionization (FTI) [5]. The underlying 

physics of these phenomena can be intuitively understood within both the semi-classical model (SCM) of strong-

field interactions [11] [12] and its quantum mechanical counterpart [16]. Both are based on the sub-cycle electron 

dynamics in the laser field. The SCM divides the strong-field interaction of atoms in three-steps, which take place 

within one optical cycle, see Figure 1.1 a) for an illustration. In the first step at a time when laser field is strong, 

tunnel ionization of the atom in the continuous wave linearly polarized laser field, see e.g. [17] for a recent review, 

facilitates electron ejection at some starting time with respect to the laser. For the second the step, one neglects the 

influence of the atomic binding potential and calculates the electron trajectory using classical mechanics of an 

electron in the external laser field. Depending on the starting time and the time-dependent shape of the field, there 

are so-called direct trajectories, which leave the vicinity of the ion directly, and trajectories, which lead to a return 

of the field-accelerated electron to the parent ion at some later at the time of return. The return represents the third 
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step of the model. Different electron-ion interactions are responsible for the characteristic strong-field phenomena. 

Elastic electron-ion scattering is responsible HATI [2]. The effect of an inelastic scattering process between electron 

and ion can lead to electronic excitation including excitation to a second and higher order ionization state of the ion, 

which is summarized by NSDI [3]. More recently, the creation of Rydberg states due to electron recapture at the 

return has been observed and named FTI [5]. Radiative recombination between electron and ion is the origin of the 

emission of high-energy photons, which is known as HHG [4].  

Having summarized the rich sub-cycle electron dynamics of atoms in strong fields, we turn now to strong-field 

dynamics of diatomic molecules. The existence of the rotational and vibrational degree of freedom lead to several 

phenomena [18] that are related to strong-field-driven electron-nuclear dynamics. These occur in addition to the 

molecular versions of the electron dynamics of ATI, HATI, NSDI, FTI and HHG, which were discussed along the SCM 

in the previous paragraph. The complexity of molecular strong-field interactions have led to a large number of 

publications on this topic in which keeping the common track of all effects and aspects is not trivial. Figure 1.1 b) 

tries to illustrate important phenomena in a compact way. Among them are:  

 

Alignment of the molecule, i.e. the angle between the molecular axis and the linearly polarized laser is relevant 

from several aspects [19] [20] [21]. Already comparatively weak femtosecond laser fields induce a dipole 

moment that leads to a torque that rotates the molecular axis with respect to the linear polarization, i.e. a 

rotational wave packet is excited. The laser-field-free evolution of this wave packet leads to periodic 

alignment/anti-alignment of the molecular ensemble in the target on the picosecond time scale, which is 

regularly exploited to investigate strong-field interaction with aligned molecules in pump-probe schemes. For 

an initially unaligned ensemble of the target molecules, the orientation dependence of transition dipole moments 

and ionization rates selects portions of the angular distribution that preferably dissociate or ionize. This 

alignment dependence can often be used determine the underlying dynamics taking place, e.g. the kinetic energy 

resolved angular distributions of the fragments can be used to determine and distinguish different ionization 

and dissociation pathways [15] [16] [14].  

The effects of strong-field dissociation, multi-photon dissociation / above-threshold dissociation (ATD) [22], two 

and zero photon dissociation (TPD and ZPD) [23], bond-softening (BS) [24] and bond hardening (BH) [25] are 

related to dissociation of the molecules by strong laser fields, e.g. the reaction 𝐻2
+ → 𝐻+ +𝐻 for the hydrogen 

molecular ion. Several perspectives can be used to understand and explain various aspects and observations of 

strong-field dissociation. Within the vertical transition picture, it is explained in such a way that the molecule is 

excited to a dissociative electronic state by absorbing energy from one or a few photons of the laser field. Due to 

repelling forces among the nuclei that occur in the dissociative electronic state, the nuclei gain kinetic energy by 

rolling down the dissociative potential energy curve, see Figure 1.1 b), such that corresponding kinetic energy 

release (KER) distributions for dissociation develop as depicted in the right part of Figure 1.1 b). Emission of 

one photon on the way out, gives the possibility to jump back to the binding potential energy curve such that the 

already accelerated and now out-going nuclei are decelerated. This effect can explain the observation of net two 

and even zero photon dissociation. All the mentioned effects can be considered such that the strength of the 

external field is taken into account and can explain intensity dependent effects that alter the shape of the KER 

distribution.  
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Coulomb explosion (CE) / Dissociative Ionization (DI) / Charge Resonance Enhanced Ionization (CREI) [26] [27], 

are names for strong-field ionization of the molecule, i.e. for the reaction 𝐻2
+ → 𝐻+ + 𝐻+ + 𝑒−. For this reaction, 

the external field ionizes the molecule and creates two protons and an electron. The protons repel each other on 

the 1/𝑅 Coulomb potential and the electron moves in the combined potential of the protons and the strong field 

such that complex and rich dynamics occur. Similar to dissociation, the nuclei role down the potential and the 

corresponding kinetic energy release (KER) spectra are observed, see Figure 1.1 b). DI points out that the strong-

field might excite the dissociative electronic state prior to ionization such that ionization can occur from there 

and thus from a wider range of internuclear distances, 𝑅 , which leads to changes in the observed KER 

distribution of ionization. So-called CREI addresses the aspect that ionization of, e.g. 𝐻2
+, in a quasi-static field is 

enhanced or suppressed depending on 𝑅 due to the nuclear geometry [26] [28]. 

Molecular frustrated tunnel ionization [29] denotes, similar to atomic FTI, an electron recapture process. 

However, in contrast to atomic FTI, where the laser field drives the electron exactly back to the ion for a 

recapture, the nuclei that repel each after ionization while the electron is driven by the field can lead to the effect 

that one of the nuclei recaptures the electron. In this way, 𝐻+ + 𝐻 pairs with high KER of Coulomb explosion 

ionization can be generated with the charge of dissociation.  

 

Primary due to technological limitations, the vast majority of measurements on strong-field phenomena of atoms 

and diatomic molecules has been performed at laser wavelength below 1.0 µm. Only recent developments in 

femtosecond laser technology enable the investigation of strong-field interactions at longer wavelength 

experimentally [8]. Thereby, experimental and theoretical considerations on the wavelength scaling of strong-field 

interactions [8] have shown that longer laser wavelength is interesting from several perspectives and will be the 

primary focus of this thesis.  

From a more application oriented perspective, increasing the laser wavelength increases the energy of the 

liberated electron during the strong-field interaction. This can be beneficial e.g. for the development of table-top 

extreme-ultraviolet (XUV) and soft-x-ray sources as it increases the energy of the emitted photons in the HHG 

process [30] [31]. At the same time, it has potential for the generation of shorter XUV attosecond pulses. Both can 

then be used in secondary measurements for the investigation of ultrafast dynamics. For the example of molecular 

HATI, higher electron energy is particularly attractive for laser-induced electron diffraction (LIED) [32]. In this 

scheme, the photoelectron signal from elastic scattering between the returning electron and the ion, i.e. the high-

energy part of the photoelectron momentum distribution, is used as laser-driven electron diffraction signal to probe 

the molecular structure in a time-dependent manner. A recent example demonstrated the possibility of following 

bond breaking dynamics in small molecules based on LIED [33].  

From a fundamental perspective, increasing the laser wavelength increases the parameter space of experimental 

investigations and, therefore, represents an experimental testbed for models on strong-field interactions. For 

example, the experimental investigation of strong-field photoionization revealed an unexpected large photoelectron 

yield at low photoelectron energies [9] [34], the so-called low-energy structures (LES). It is particularly pronounced 

if ionization is facilitated by long-wavelength driving fields. More recently, features at very low [35] and even 

around zero energy [36] received attention. The LES structure, its off-axis extension, its sensitivity to the pulse 

duration [10], and how it can be understood within the semi-classical model [37] are topics of this thesis in chapter 

4. In view of fundamental aspects for strong-field photoionization of diatomic molecules, it might be imagined that 
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interesting coupled electron-nuclear dynamics occur as the strong laser field forces the motion of the electron to 

the time scale of the optical cycle. For the combination of a very light molecule, such as the hydrogen molecular ion, 

𝐻2
+, and a long wavelength field where the duration of the optical cycle is comparable to the time scale during which 

significant nuclear motion can take place [38] [39]. Another aspect is that the longer wavelength leads to a slower 

changing strength of the laser field and thus the assumption of static field ionization as the initial ionization 

mechanism in the SCM is better justified. Potentially, then the effect of CREI, i.e. that the ionization rate is sensitive 

to the internuclear distance, is more pronounced and can be better observed as in comparable measurements at 

wavelength below 1.0 µm, where a clear observation of CREI has been disputed [40] or only possible under 

specifically tailored experimental conditions so far [41].  

 

1.2 Document Structure 

 

The document is structured as follows. Chapter 2 “Generation of Intense Few-Cycle Laser Pulses at Short-Wave 

Infrared Wavelength” is about the generation of intense few-cycle laser pulses at short-wave infrared wavelength 

(SWIR) in the range between 1 to 2.5 µm. The source of intense femtosecond laser pulses at SWIR wavelength is put 

to operation and is characterized. Further, techniques to characterize this laser source are presented, namely, 

characterization of the focal spot, characterization of the pulse duration including the spectral phase and a post 

compression technique to generate SWIR few-cycle pulses with up to 1 mJ energy and a pulse duration below 12 fs 

at a center wavelength round 1.8 μm. 

Before we turn to the investigation of strong-field ionization of atoms and diatomic molecules, relevant 

fundamentals of “Momentum Spectroscopy of Laser-Induced Fragmentation Processes” are shortly summarized 

and reviewed in chapter 3. Thereby, the measurement setups, i.e. the velocity map imaging (VMI) setup for the 

measurement of photoelectron momentum distributions (PMDs) and the Jena setup for Ion Target Recoil Ion 

Momentum Spectroscopy (ITRIMS), are introduced. They are used to investigate strong-field photoionization 

chapters 4 and 5.  

In chapter 4 “Off-Axis Low-Energy Structures in Strong-Field Photoionization” (SFI) of atoms is investigated using 

Xenon as target. Measurement of the PMDs enables the observation of features at low electron energies, which are 

typical for SFI of atoms by SWIR fields. An eye catching fork-like feature perpendicular to the laser polarization is 

observed and investigated in greater detail. Comparing PMDs from ionization by long laser pulses, which are several 

optical cycles in duration, with PMDs from ionization by few-cycle fields, illustrates that all details of the observed 

features are susceptible to the time-dependent shape of the field. Comparison of the measurements to theoretical 

results that are obtained by a version of semi-classical model (SCM) of SFI, which takes electron trajectories that 

are substantially longer than one optical cycle as well as details of the electron-ion scattering cross-section into 

account, shows that low-energy features including the newly investigated fork-like feature can be traced to field-

driven rescattering between electron and ion.  

In chapter 5 “Probing Strong-Field Photoionization of a Beam of 𝑯𝟐
+  at Short-Wave Infrared ”, we turn to the 

investigation of diatomic molecules by measuring intensity-dependent vector momentum distributions from laser-

induced fragmentation of an ion beam of 𝐻2
+ molecules. The discussion of details of the measurement documents 

that the Jena ITRIMS setup can be used to perform kinematic complete measurements of SFI of 𝐻2
+ (𝐻2

+ → 𝐻+ +



Motivation and Document Structure 

  12 

𝐻+ + 𝑒−) where not only the momenta of the two protons, but also the momentum of the electron is accessible. 

Further, the investigation considers the intensity dependent of KER spectra and by making use of the electron 

momentum measurement, the so-called joint electron-ion energy distributions are investigated in detail. In order 

to gain insight into the SFI dynamics of diatomic molecules, the measurement results are compared to a one-

dimensional two-level model of SFI of 𝐻2
+ . The comparison with the measurement demonstrates qualitative 

agreement, which seems to be reasonable given the simplicity of the model as it neglects e.g. rotations.  

In chapter 6 Conclusion and Outlook the results of the thesis are concluded and possible future directions are 

mentioned.  
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2 Generation of Intense Few-Cycle Laser Pulses at Short-Wave Infrared 

Wavelength 

 

2.1 Introduction and Outline 
 

 

Figure 2.1: Schematic setup for the generation of intense femtosecond pulses in the infrared 

A Titanium-Sapphire (Ti:Sapphire) based femtosecond chirped pulse amplification (CPA) system produces 

laser pulses with a wavelength around 0.8 μm. These pulses are used to pump a tunable optic parametric 

amplifier (OPA) where a fraction of the pulse energy is converted to the signal and the idler that have center 

wavelengths of 1.1 - 1.6 μm and 1.6 μm - 2.6 μm respectively. The pulse duration of both remains on the order 

of the pulse duration of the pump, i.e. in the regime of a few 10s of femtoseconds. An additional stage for non-

collinear difference frequency generation (NDFG) can be used to further increase the wavelength. Both, the 

OPA output and the NDFG output can be used directly for strong-field experiments. In order to generate few-

cycle pulses in the mid-infrared, the idler of the OPA can be spectrally broadened in a gas-filled hollow-fiber. 

Subsequent bulk compression yields few-cycle pulses with a center wavelength of 1.8 μm.  

 

Since the discovery of strong-field interactions in atoms and molecules [1] and high energy above-threshold 

ionization (HATI) [2], non-sequential ionization (NSDI) [3], high-harmonic generation (HHG) [4], the vast majority 

of measurements and theoretical considerations has been done for laser wavelengths below 1.0 μm. Only recent 

advances in femtosecond optical parametric amplification (OPA) and optical parametric chirped amplification 

(OPCPA) technology enable the investigation of strong-field laser-matter interaction at substantially longer 

wavelength in the short-wavelength infrared (SWIR) range between 1.0 and 4.0 μm.  

Increasing the driving laser wavelength in strong-field laser physics is interesting from several perspectives [8]. 

As mentioned, from a fundamental point of view, it opens an experimentally largely unexplored parameter range 

[9] where interesting dynamics for atoms and molecules can be expected. From a more practical viewpoint, it is, 

e.g., beneficial for the development of table-top extreme ultra-violet (XUV) sources as HHG with long wavelength 

driving lasers gives access to higher photon energies, see e.g. [30]. Simultaneously, longer driving laser wavelength 

increases the bandwidth in the XUV such that it holds potential for the generation of shorter attosecond pulses. For 

new methods for time-resolved imaging of ultrafast dynamics such as laser-induced electron diffraction [32] [33] 

and high-harmonic spectroscopy [42], longer driving lasers are beneficial.  

A popular approach for increasing the driving laser wavelength is the use of traveling-wave OPA technology. A 

schematic of a typical setup is shown in Figure 2.1. The output of a high-energy standard femtosecond Titanium-
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Sapphire (Ti:Sapphire) based chirped pulsed amplification (CPA) system is used as pump laser for an OPA. The OPA 

transfers a part of the available pulse energy around 0.8 µm to the signal and the idler wave with wavelengths 

between 1.0 and 1.6 µm and between 1.6 and 2.4 µm respectively, employing the non-linear optical process of 

difference frequency generation (DFG). The wavelength range between 2.4 and 10 µm becomes accessible with the 

use of an additional stage for non-collinear difference frequency generation (NDFG). The pulse duration remains in 

the femtosecond regime during these wavelength conversions such that both outputs, i.e. DFG-output and NDFG-

output of the OPA, are intense enough to perform strong-field experiments. Few-cycle pulses with a center 

wavelength around 1.8 µm can be generated in an easy way by spectrally broadening the idler from the DFG by non-

linear propagation in a gas-filled hollow fiber [43] in combination with bulk compression [44]. 

In the following section 2.2, the basic concepts of CPA are shortly mentioned and specific features of a CPA system 

that has been used in this thesis are concluded. Principles of OPA operation and results from the implementation 

and characterization of the commercially available OPA system “HE-TOPAS-C” from LIGHT CONVERSIONTM are 

given in chapter 2.3. Also, the suitability of this source for strong-field ionization experiments is demonstrated. In 

chapter 2.4, few-cycle pulses with a center wavelength around 1.8 µm are generated and characterized. A simple 

approach to control the intensity of few-cycle pulses is demonstrated in appendix A1. 

Note that much of the work on the generation of few-cycle pulse has been done in close collaboration with Frank 

Meyer during his master thesis [45]. First ionization experiments with the output of the NDFG stage at a center 

wavelength of 3.4 µm were achieved during the bachelor thesis of Hoang Le. Further we thank, Dr. Bruno E. Schmidt 

as he has been available for advice in construction and operation. 

 

2.2 Chirped Pulse Amplification Laser System 

 

Ti:Sapphire-based laser femtosecond laser technology has seen rapid progress for more than two decades now 

and the generation of intense femtosecond laser pulses with a center wavelength around 0.8 µm has become 

routine. Appropriate laser systems are commercially available from a number of producers. Most recent product 

leaflets advertise average powers up to 100 W. Thereby, these laser are capable of delivering CEP-controlled pulses 

with pulse durations down to 20 fs and pulse energies up to 30 mJ with repetition rates between 1 kHz and a few 

10s of kHz. The key concepts of such systems are the generation of femtosecond pulses in Kerr-lens mode-mocked 

Ti:Sapphire lasers [46] which are then amplified by chirped-pulse amplification (CPA) and recompressed [47] close 

to the initial duration in the fs regime.  

The CPA system at the Non-linear optics laboratory of the Friedrich-Schiller-University Jena, consists of a 

commercially available FEMTOPOWERTM CompactTM Pro HP/HR CEP front end [48]. Initially, it starts with a CEP 

stable Kerr-Lens-Mode-Locked Ti:Sa laser that delivers CEP-controlled [49] sub-10-fs pulses with an energy of a 

few nJ at a repetition rate of about 80 MHz. These pulses are stretched to about 60 ps using a bulk stretcher before 

they are amplified in cryogenically cooled multi-pass amplifier. After 4 passes in the amplifier, a Pockels cell is used 

to reduce the repetition rate to 4 kHz. The rest of the 80-MHz pulse train is dumped. After the Pockels cell, 

transmission through an acousto-optic programmable dispersive filter [50] (Dazzler, FASTLITE), allows controlling 

the amplitude and spectral phase of the laser pulses. It is typically used to control and correct high-order dispersion 

such that the shortest possible pulse duration is reached after compression at the output of the front-end. After the 
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Dazzler, another 5 passes in the amplifier boosts the energy from µJ-level to about 1.1 mJ. Pulse compression is done 

in a transmission-grating based compressor. Altogether, the “FEMTOPOWER” front end delivers CEP-controlled 1-

mJ, 24-fs pulses at a repetition rate of 4 kHz. Typically, 90 % of this CPA’s output is used for strong-field experiments 

directly while 10 % is sent to a secondary CPA that has been manufactured by THALES.  

The “THALES” is an independent CPA by itself, i.e. it has a stretcher and a compressor and two more multi-pass 

amplification stages. Both, stretcher and compressor use reflective gratings. After the stretcher, the repetition rate 

is lowered to 1 kHz using a Pockels Cell. The first amplification stage of the “THALES” has been originally designed 

as a water-cooled two-pass amplifier and the second stage is a cryogenically cooled three-pass amplifier. After 

compression, 10-mJ, 34-fs pulses at a repetition rate of 1 kHz is easily reached in daily operation.  

Installation of an acoustic optical modulator (AOM, Dazzler) and modifying the water-cooled 2 pass amplifier such 

that it becomes a 4 pass amplifier recently, enables more flexibility over the spectral phase and bandwidth of the 

“THALES” output pulses without loss in pulse energy. If the available energy from the pump laser would be fully 

used, even higher energy can be expected. For pulses with very clean spectral phase an increase of the conversion 

efficiency in the HE-TOPAS-C System by a few percent has been observed. Note that the numbers, which are given 

in the next chapter, have been measured without this recent modification of the system. 

 

2.3 An Optical Parametric Amplifier for Frequency Down Conversion 

 

In this section, we introduce details of commercially available HE-TOPAS-C System from the manufacturer LIGHT 

CONVERSION from Vilnius, Lithuania. In 2.3.1 we introduce the three-stage OPA with non-collinear difference 

frequency generation stage (NDFG). Later, in 2.3.2, the output of the “TOPAS” at typical daily operation is 

characterized.  

 

2.3.1 White-light Seeded Three-Stage OPA with NDFG Stage - The HE-TOPAS-C System 

 

The commercially available high-energy traveling-wave optical parametric amplification of white-light continuum 

system (HE-TOPAS-C) is based on optical parametric amplification (OPA). In this non-linear optical process, laser 

beams with three different frequencies are involved. They fulfill energy conservation, i.e. ℏ𝜔𝑃 = ℏ𝜔𝐼 + ℏ𝜔𝑆. Here, 

𝜔𝑃 is the angular frequency of the pump, 𝜔𝐼 is the angular frequency of the idler and 𝜔𝑆 is the angular frequency of 

the signal. They are related to their respective wavelength, 𝜆𝑃, 𝜆𝐼 and 𝜆𝑆. In the case here, 𝜆𝑃 ≈ 0.8 µm. Thus, with 

the OPA process only smaller frequencies or longer wavelengths are accessible with this device. In order to reach 

high efficiency for the energy transfer from the pump beam to the signal and the idler beam, it is necessary to achieve 

momentum conservation or phase matching, i.e. 𝑘⃗ 𝑃 = 𝑘⃗ 𝐼 + 𝑘⃗ 𝑆. Thereby, 𝑘⃗  with the subscripts denote the k-vector of 

pump, signal and idler beam again. The HE-TOPAS-C that is used in this thesis, has been modified such that type II 

phase matching (𝑒𝑃 → 𝑜𝑆 + 𝑒𝐼 ) in the birefringent non-linear Beta Barium Borate crystals (BBO, 𝜃 = 28° ) is 

achieved in close-to collinear geometry for all amplification stages. Close-to collinear geometry minimizes spatio-

temporal distortions in the amplification.  
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Figure 2.2: Schematic of the HE-TOPAS-C 

The incoming pump beam is split into three pump arms. Each of them is equipped with a delay stage, , ,  that can 

be adjusted with stepper motors. These delays are used to control the temporal overlap in the amplifier stages. In the 

bottom left region, white-light continuum generation is used to generate a seed for the subsequent amplification stages 

(WLG+stretcher). The white-light continuum is then stretched in time. Controlling the advent of the pump pulse via  

on a coarse time scale in the pre-amplifier 1 allows to tune the wavelength of the OPA (pre-amplifier 1, BBO 1). The 

additional fine delay, , in the pre-amplifier allows one to control the CEP of the generated idler from the pre-amplifier 

via passive CEP stabilization. Using the idler beam as the seed in all subsequent amplification stages, amplifier 2 

(amplifier 2, BBO 2) and amplifier 3 (amplifier 3, BBO 3) allows, in principle, the generation of an intense CEP-stable 

idler at the output of the OPA. The signal beam from the previous stages is not used for subsequent amplification. 

However, the signal beam from the last amplifier 3 (amplifier 3, BBO 3) is available for experiments and for further 

difference frequency generation between signal and idler in the NDFG stage. The HE-TOPAS-C, is fully software 

controlled such that the adjustment of delays and crystal angles is done fully automatically and changing the output 

wavelength requires pressing a button only. The NDFG stage is not shown here. 

 

A sketch of the HE-TOPAS-C is shown in Figure 2.2. It consist of a white-light generation stage (WLG+stretcher) 

and three OPA stages (pre-amplifier 1, BBO 1; amplifier 2, BBO 2; amplifier 3, BBO 3). The white-light (WL) 

generation stage enables tune ability of the generated signal and the idler beam at the output of the TOPAS. At this 

stage, WL generation in a sapphire plate is used to generate a seed that takes the role of the signal beam in the first 

amplification stage. Propagating the WL through a material with high dispersion before amplification stretches it in 

time and generates a seed where the wavelength changes as a function of time. Thus, changing the relative timing, 

, between the short pump pulse and the stretched WL on a coarse time scale allows tuning the center wavelength 

of the idler from this OPA stage. Amplification of the idler in all subsequent stages increases the energy of the idler, 

but doesn’t change the wavelength. In order to keep the conversion efficiency in all amplification stages high, the 

BBO crystals are rotated such that the phase matching is achieved for the selected wavelength and the relative 

timings,  and , are adjusted such that best temporal overlap is achieved. In the HE-TOPAS-C system, the 

coordinated adjustment of delays and crystal angles is software controlled and fully automated such that changing 

the output wavelength requires pressing a button only.  

 

WLG + stretcher

  

pre-amplifier 1, BBO 1

signalsigsigsigsiggg
  

 

 signal

idleridlerridlerridlerr

amplifier 2, BBO 2

signal

amplifier 3, BBO 3

 

 

idler

idler

aaaaa fffieieeieam llplifififppamplifieamplifp

pump



Generation of Intense Few-Cycle Laser Pulses at Short-Wave Infrared Wavelength 

  17 

Figure 2.3: Schematic of the non-collinear difference frequency generation option in HE-TOPAS-C 

The incoming pump signal and idler beam from the OPA stages are crossed at an angle in a Silver Thiogallate 

(AgGaS2) crystal. Again, a stepper motor is used to control the delay, , between the two pulses. It is adjusted 

such that output signal is maximized. Simultaneously, the angle of the AgGaS2 is adjusted such that phase 

matching is achieved. 

 

In contrast to the standard HE-TOPAS-C setup, the HE-TOPAS-C that is used in this thesis, has been modified such 

that the idler beam from the pre-amplifier 1 stage is amplified in subsequent stages instead of amplifying the signal 

from the first stage. This has the advantage that the idler beam at the output of the HE-TOPAS-C is in principle 

passively CEP stable [51]. Passive CEP stability means that although, the 0.8 μm pump laser has a statistically 

fluctuating CEP, the CEP of the idler from the HE-TOPAS-C is constant while the CEP of the signal fluctuates as the 

pump. The origin of this mechanism lies in the phase relation of the OPA process [51], which is  

and yields . As the pump and the signal in the first amplification stage are generated from the 

same laser pulse (i.e. they are separated by a beam splitter only), both have the same CEP fluctuations. Thus, they 

cancel each other yielding a constant phase for the idler. Further, the idler has a constant CEP at the output of the 

HE-TOPAS-C, which is controlled by the exact timing between pump and signal on a fine scale, i.e. on a sub-cycle 

scale. In order to achieve CEP control at the output of the HE-TOPAS-C, one of the mirrors in the WL beam path has 

been mounted on a piezo actuator. It can move by up to 9.6 μm, which is more than sufficient to change the CEP over 

. The quality of the passive CEP stability of the idler is directly related to the interferometric stability of the beam 

path in the HE-TOPAS-C, which is more than two meters.  

A sketch of the NDFG stage is shown in Figure 2.3. After the three OPA stages, the generated signal and idler beam 

are crossed at a small angle in a Silver Thiogallate (AgGaS2) crystal where the difference frequency is generated. 

Phase matching in the DFG process is achieved via type I ( ) in the birefringent non-linear crystal. The 

wavelength of the NDFG output depends on the wavelength of the signal and the idler beam from the OPA. High 

conversion efficiency is ensured by adjusting the angle of incidence on the AgGaS2 crystal for optimal phase 

matching as well as the delay, , between the signal and the idler beam. Again, all these necessary alignment steps 

are motorized and software controlled. The previously mentioned feature of the passive CEP stable idler from the 

OPA is gone in this stage as the CEP stable idler is mixed again with the signal which has CEP fluctuations. Thus, the 

NDFG output is not CEP stable.  

 

2.3.2 Characterization of the HE-TOPAS-C – Output 

 

Knowing the essential interaction parameters in an experiment is crucial for qualitative and quantitative 

comparisons between experimental and theoretical results in strong-field laser physics. To first order, these 
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parameters are the center wavelength, 𝜆 , the pulse duration, 𝜏 , and the peak intensity, 𝐼0 , in the strong-field 

experiment. In modern measurements, more precise characterization of laser pulse properties such as the precise 

temporal profile or spatio-temporal characteristics are needed. While some of the necessary measurements for the 

determination of interaction parameters are trivial and can most easily done using commercially available devices, 

others require more complex apparatuses that are not commercially available and thus, have to be developed and 

implemented. Here, we present the implementation of pulse characterization used to determine the interaction 

parameters for strong-field interaction experiments at SWIR wavelength in subsequent chapters. Thus, an 

impression of the output of the HE-TOPAS-C in pulse energy, spectrum, focal spot and pulse duration is given 

primarily for the idler range. 

 

Wavelength Dependent Pulse Energy 

 

 

Figure 2.4: Pulse energy at the output of the HE-TOPAS-C as function of wavelength 

The efficiency of the energy transfer from the pump beam to the sum of the signal and the idler beam reaches 

more than 40% (depending on the wavelength) for wavelengths in the signal and idler range between 1 and 

2.5 µm. For the NDFG output, energy is converted from the pump to the NDFG beam with up to 2% efficiency. 

 

Figure 2.4 shows the pulse energy as function of wavelength at the output of the used HE-TOPAS-C after 

installation. It is pumped by 9.5 mJ, 34-fs pulse at 1 kHz from the THALES. The energy of the THALES is set to 9.5 mJ 

by adjusting the pump power in the last cryogenic amplification stage. The demonstrated performance can be 

reached in daily operation if the in-coupling into the HE-TOPAS-C is optimized. The efficiency, i.e. 𝜂𝑂𝑃𝐴 = (𝜖𝑆 +

𝜖𝐼)/𝜖𝑃, of the energy transfer from the pump beam to the signal and the idler beam is wavelength dependent and 

reaches up to 43%. Similarly, 𝜂𝐷𝐹𝐺 = 𝜖𝑁𝐷𝐹𝐺/𝜖𝑃, the energy transfer from the pump to the NDFG beam reaches an 

efficiency of up to 2%. The energy stability of the HE-TOPAS-C output is on the order of 3%. 
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Focal Spot Size 

 

Figure 2.5: Focal Spot Characterization at IR wavelength based on a two-photon 

a) Measurement of the Grey-Level of a standard CCD camera (WinCamD) as a function of incident intensity on a loglog-plot. 

The fit result, which is shown in the top left corner, indicates close to a two-photon process. b) shows a screenshot of the 

WinCamD’s software. The values that are given for 𝑤𝑚𝑒𝑎𝑠  from the program need to be multiplied by √𝑏 in order to account 

for the two-photon response of the detector.  

 

At visible wavelength, characterization of the focal spot can simply be done using a camera. For infrared 

wavelength above 1.1 µm however, the sensitivity of typically Silicon-based CCD sensors drops dramatically. The 

reason for this is that the photon energy at long wavelength drops below the band gap energy of Silicon, which is 

about 1.12 eV (or ~1.1 µm in wavelength) at room temperature. Instead of using Silicon-based CCDs, other detector 

materials such as Indium-Gallium-Arsenid (InGaAs, up to 2.6 µm) or Indium-Antimonid (InSb, 1.0 µm up to 5.5 µm) 

might be used to characterize the focal spot. However, such detectors / cameras are rather expensive and typically 

have large pixel size.  

Alternatively to an expensive detector, a two-photon process on a Silicon-based CCD can be used for the 

characterization of the focal spot. Figure 2.4 b) shows a screenshot of the signal at the focal spot for a center 

wavelength of 1.8 µm on the Silicon-based CCD sensor of a standard WinCamD camera. The spot shape is Gaussian. 

In case of a two-photon process, the peak of the grey level distribution on the camera is expected to follow a power 

law, 𝑦 = 𝑎𝐼𝑏 . In order to verify this relation and to determine 𝑏  for the given CCD sensor, the intensity of the 

attenuated beam has been changed without changing the geometry of the focus in Figure 2.5 a). To this end, the 

technique presented in appendix A1 has been used. As expected, the grey level, 𝑦, follows a line with a slope of 𝑏 ≈

1.90 ± 0.06 on a log-log plot indicating close to a two-photon process. Thus, for a Gaussian laser spot that has the 

waist size, 𝑤0 and the intensity distribution, 𝐼(𝑟) = 𝐼0exp (−2𝑟
2/𝑤0

2), the grey level distribution on the CCD of the 

Silicon-based camera is, 𝑦~[𝐼(𝑟)]𝑏. It is now easy to show that, 𝑤0 = √𝑏𝑤𝑚𝑒𝑎𝑠 ≈ 1.38 ∙ 𝑤𝑚𝑒𝑎𝑠. For the example in b), 

the WinCamD states, 𝑤𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑚𝑒𝑎𝑠
≈ 𝑤ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑚𝑒𝑎𝑠

≈ 43.45 µ𝑚 → 𝑤0 =  59.96 µ𝑚. Although, not shown here, it 

has been tested that 𝑏 does not change significantly if the center wavelength is changed in the idler (1.6 µ𝑚 < 𝜆 <

2.4 µ𝑚 ) range of the TOPAS. For the signal range (1.1 µ𝑚 < 𝜆 < 1.6 µ𝑚 ) however, 𝑏  is expected to become 

wavelength dependent such that it might be necessary to be determine 𝑏 for a few center wavelengths. 
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Temporal Characterization using Frequency-Resolved Optical Gating 

 

Figure 2.6: Setup for dispersion minimized frequency resolved optical gating (SHG-FROG) [45] 

In a), the optical setup of the SHG FROG is shown. The laser pulses are sent into an interferometer that uses 

d-shaped mirrors as beam splitters. After the interferometer, the pulses are focused and overlapped spatially 

and temporally in a SHG crystal. The SHG signal is recorded as a function of the delay, , using a spectrometer 

yielding a so-called FROG-trace that is shown in b). In order to reconstruct the spectral phase and therefore, 

the temporal pulse profile, a commercial retrieval algorithm is used. As a consistency check, the FROG trace 

from the reconstruction is shown in c). The temporal intensity profile of the pulse is shown together with its 

Fourier transform limit (TL) in d). In e), the reconstructed spectrum and spectral phase is shown together 

with an independently measured spectrum as consistency check.  

 

A second-harmonic generation frequency resolved optical gating (SHG-FROG) apparatus [52] has been 

implemented for temporal pulse characterization of the laser pulses in the signal and idler range of the HE-TOPAS-

C [45]. A schematic is shown in Figure 2.6. Attenuated laser pulses come from the top and are sent in to an 

interferometer where the beam is split and combined using d-shaped mirror (BS 1 and BS 2). The delay, , is used 

to introduce a delay between both pulse copies. After combination, both pulses are focused and overlapped spatially 

and temporally at a very small angle in a BBO crystal for second harmonic generation (SHG). The BBO has a thickness 

of 50 μm and is cut for type I phase matching at the angle,  and . Anti-reflection coatings for the 

wavelength range 1.0 μm and 2.4 μm for the fundamental as well as 0.5 μm to 1.0 μm for the second harmonic 

minimize losses. The small thickness of the crystal ensures large phase matching bandwidth such that very short 

pulses in the few-cycle regime can be characterized. After the BBO, the SHG light is sent to a spectrometer where 

the SHG spectrum is recorded stepwise as function of the delay, . From this so-called FROG trace, the spectral phase 

and thus, the complete time-dependent structure can be reconstructed using a phase retrieval algorithm which is 

done by a commercially available software (SWAMP OPTICS). However, due the use of SHG-FROG, an ambiguity in 

the sign of the spectral phase remains. This ambiguity can be solved by comparing the spectral phases of two FROG 

measurements where one has been taken with an additional piece of glass with known dispersion before the FROG 

apparatus. Such an analysis yielded an estimate for the  and a  at a pulse duration 

f = 250 mm
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spectrometer
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of 𝜏𝑝 ≈ 70 fs  (intensity full-width half-maximum) for the idler beam around 1800 nm behind the TOPAS. The 

fourier-limited duration (FTL) in this measurement was 𝜏𝑝𝐹𝑇𝐿 ≈ 20 fs . Compared to 𝜏𝑝𝐹𝑇𝐿  of the pulse, the 

measured GDD and TOD correspond to propagation through roughly 10 mm of fused silica. Assuming that a close-

to FTL is generated by the optic parametric amplification in the last stage of the TOPAS, the measured GDD and TOD 

behind the TOPAS can be attributed to a large extend to the transmission of the idler through dichroic beam 

splitters, which are used to separate signal and idler.  

One might deduce that using reflective beam splitter for the idler could yield a shorter idler pulse directly behind 

the TOPAS. At the same time, transmitting the signal would not stretch much as the signal wavelength is close to the 

zero GDD point of many materials. Alternatively, the dispersion might be compensated using chirped mirrors or 

propagation through materials that introduce positive GDD, e.g. noble gases. However, this approach is typically 

accompanied by the acquisition of higher order phase distortions and particularly positive TOD for typical materials 

in the range of the idler of the TOPAS. A third option might be to change the interaction in the last amplification 

stage of the TOPAS from collinear to slightly non-collinear. In this way, signal and idler can be separated spatially 

behind the crystal. However some pulse-front tilt is introduced onto the beams. 

 

2.4 Hollow-Fiber Compression at Short-Wave Infrared Wavelength 

 

Hollow-Fiber compression has become a standard technique for the generation of few-cycle pulses with up to mJ 

pulse energy at center wavelength around 0.8 µm. Here, Hollow-Fiber compression for a center wavelength around 

1.8 µm is implemented and characterized as in [53]. 

 

2.4.1 Pulse Compression by Non-Linear Propagation in Gas-Filled Hollow Fibers 

 

Due to bandwidth-limitations in the amplification process of ultrashort pulses such as gain narrowing, typical 

Ti:Sapphire based CPA laser systems deliver pulse durations around 25 fs only. However, compared to the optical 

period of 2.7 fs for 0.8 µm, the intensity full-width half-maximum duration (FWHM), 𝜏, is thus, on the order of 10 

optical cycles. In order to reach the few-cycle regime between 1 and 5 optical cycles various schemes that exploit 

various non-linear effects such as, self-phase modulation, self-steepening, four-wave mixing, plasma blue-shifting 

and filamentation have been investigated with the goal to increase the spectral bandwidth [54]. Around 0.8 µm, so-

called hollow-fiber compression [55] [56] is presently the most powerful technique and has become a standard 

setup for the generation of few-cycle pulses [57]. Typically, 0.8 µm-25-fs-pulses with about 1 mJ in energy are 

focused into a roughly 1 m long glass capillary with an inner diameter of about 200 µm. Placing this capillary into a 

chamber where the pressure can be changed from a few mbars up to a few bars and filling it with a noble gas, allows 

one to achieve non-linear pulse propagation inside the gas-filled capillary, which yields significant spectral 

broadening. Collimating the pulses with a spherical mirror after the exit of the hollow-fiber and compensating the 

spectral phase using chirped mirrors [58] in combination with glass-wedges yields few-cycle pulses with a center 

wavelength around 0.8 µm and a few mJ in energy [59].  
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More recently, hollow-fiber compression is used for post-compression of the idler beam from the HE-TOPAS-C 

[53]. Similarly to the standard technique around 0.8 μm, the idler from HE-TOPAS-C is spectrally broadened by non-

linear propagation in an Argon-filled hollow fiber and collimated afterwards. Due to the opposite signs of the second 

order dispersion of self-phase modulation and typical glasses at this wavelength, linear propagation in a bulk 

material after spectral broadening [44] yields sub-2cycle pulses with pulse energies on the mJ level.  

In the next chapter, the implementation of a setup for hollow-fiber compression at 1.8 μm is implemented and 

bulk compression in fused-silica glass is characterized and optimized using the previously introduced SHG-FROG 

setup. 

 

2.4.2 Generation of Sub-2-cycle Pulses at a Wavelength around 1.8 μm 

 

 

Figure 2.7: Hollow-fiber compression at a center wavelength of 1.8 μm [45].  

a) A sketch of the setup. The top row, b), shows the recorded SHG-FROG traces while the thickness of fused 

quartz is increased from 0 mm to 6 mm in steps of 2 mm. Below, in c) the time-dependent intensity 

distribution and phase are shown. Best compression to close-to Fourier-transform limited 2-cycle pulses 

yields about 4 mm of fused silica.  

 

A sketch of the scheme that is used for hollow-fiber compression at a center wavelength of 1.8 μm is shown in 

Figure 2.7. Laser pulses in the idler range of the HE-TOPAS-C with a duration of roughly 70 fs and a center 

wavelength of 1.78 μm are focused into a differentially pump setup for hollow-fiber compression [60] using an f=75 

cm CaF2 lens. The inner diameter of the fiber is 400 μm. Behind the fiber, collimation is done using a spherical silver 

coated mirror with focal length f=1m. Applying about 1.1 Bar of Argon on the pressurized side of the setup yields 

sufficient spectral broadening to achieve sub-12-fs pulses around 1.78 μm with an energy of 0.7 mJ. The spectral 

TOPAS, 
1.4 mJ, 
1.78 μm, 
70 fs

CaF2, f = 75 m55 mm

IR continuum

Ar, ~ 1.0 bar collimation
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phase is characterized using the FROG technique presented previously. Compensation of the spectral phase is 

achieved if thickness of the fused silica plates is adjusted to about 4 mm after collimation.  

 

2.5 Conclusion and Outlook 

 

In summary, a commercially available 1-kHz-10-mJ-35-fs Ti:Sapphire-based multi-pass chirped pulse 

amplification system (“Thales”) is used to pump a high pulse energy traveling wave optic parametric amplifier 

(“TOPAS”) to generate energetic femtosecond laser pulses with tunable wavelength in the short-wave infrared and 

infrared spectral range. Further, hollow-fiber compression can be used to generate few-cycle pulses around 1.78 

µm with an energy of 0.7 mJ. The output of the presented setups has been characterized and is regularly operated 

to study strong-field laser-matter interaction in this thesis. The setup presented is similar to many setups that are 

used to investigate strong-field laser-matter interaction around the world.  

Presently developing and maturing technologies, which are expected to become relevant for strong-field laser-

matter interaction in the future, are high average-power fiber lasers with wavelength in the near infrared and short-

wave infrared spectral range as well as high average-power optic-parametric chirped pulse amplification. Also the 

combination of both is expected to play a vital role. Both technologies have the potential to shift the average-power 

from several ten Watts (for Ti:Sapphire-based lasers) to hundreds of Watts, which will enable investigation and 

application of strong-field laser-matter interaction at higher repetition rate.  
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3 Momentum Spectroscopy of Laser-Induced Fragmentation Processes 

 

3.1 Introduction and Outline 

 

Recent experimental and theoretical progress in understanding of atomic and molecular reactions would not have 

been possible without the availability of instrumentation for their analysis. Very significant advances in this field 

date back to the 1980’s when the group around Prof. Horst Schmidt-Böcking at the University Frankfurt started the 

development of Cold-Target Recoil Ion Momentum Spectroscopy (COLTRIMS) [61] [62]. In COLTRIMS, the 

simultaneous measurement of full three-dimensional vector momenta of not only one, but ideally all fragments, i.e. 

electrons, ions, and in an ideal world even neutrals, that result from the interaction between a projectile or laser 

beam and a target jet, allows for the experimental analysis of complex reaction kinematics. The measurement 

principle relies on the use of static electric and magnetic fields to guide the charged fragments from the interaction 

zone to position- and time-sensitive detectors [63] [64]. As neutrals do not react to electric and magnetic fields, 

typically only charged fragments can be measured. Together with knowledge of the fragment mass, fragment charge 

and calibrated spectrometer fields; the measurement of impact time and impact position at the detectors is the basis 

for calculating fragment vector momenta,  𝑙
′, of each fragment. Repeating this many times (many initial particles of 

the same initial state), yields momentum differential cross-sections or rates, which can be used to infer reaction 

dynamics.  

The COLTRIMS principle is so flexible that it has become a technique that has spread out over many fields in 

physics and chemistry. Many variants and/or simplifications of it, i.e. COLTRIMS-like fragment momentum 

spectrometers, are presently operated to measure momentum differential cross-sections of various kind of 

reactions around the world. As targets, cold jets of atoms, molecules, ions, clusters and nanoparticles are used. For 

the projectile, beams of electrons, ions, and photons of all kinds are applied. In view of this thesis, 𝑋𝑒 atoms and 𝐻2
+ 

ions are targets and photons in the form of intense femtosecond laser fields are the chosen projectiles to investigate 

ionization dynamics in intense laser fields with short-wave infrared wavelength. 

The measurements in this work have been done using two variants of COLTRIMS-like fragment momentum 

spectrometers. A Velocity-Map Imaging Spectrometer (VMI) [65] [66] is applied to measure photoelectron 

momentum distributions (PMD) after strong-field photoionization of Xenon, see chapter 3.5. Details of the 

apparatus are shortly introduced in subsections 3.3 and 4.2. An Ion Target Recoil Ion Momentum Spectroscopy 

(ITRIMS) setup is used for the analysis of strong-field photoionization of 𝐻2
+, in chapter 5. Both setups have been 

implemented, are regularly operated and are continuously improved at Friedrich-Schiller University and 

Helmholtz-Institute Jena. For further details, one might consult references, [67] [68] [45] for the VMIS and [14] [21] 

[69] [70] for the ITRIMS.  
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3.2 Kinematics in Setups for Momentum Spectroscopy of Laser-Induced Fragmentation 

Processes 
 

Before we turn to details of the used VMI and ITRIMS setups, kinematics of the laser-induced fragmentation 

processes are summarized in this section. We begin by recalling the standard interpretation of measurement data 

in 3.2.1 and the semi-classical picture on laser-matter interaction in 3.2.2. Finally classical mechanics of laser-

induced fragmentation is summarized in order to recall conservation laws that are relevant for the employed 

experimental setups. 

 

3.2.1 Determination of Fragment Momenta – Microscopic and Macroscopic Domain 

 

a) b)
spectrometer
fields  

 

Figure 3.1: Determination of Fragment Momenta

a) Illustrates the microscopic time domain from a few tens of femtosecond before until few tens of femtoseconds 

after the laser-induced fragmentation process. The fragmentation creates  fragments that have the fragment 

momenta . In the macroscopic domain, b), fragments emerge from the reaction volume (focal volume) with 

some momentum . Electric and magnetic spectrometer fields guide them to the detector where measurement 

of impact position and time-of-flight (TOF) is the basis to calculate . Both domains are connected due to 

momentum conservation. b) is an adaption from [71] 

 

Independent of the details of the used experimental apparatus (COLTRIMS, ITRIMS, VMIS, etc.), momentum 

spectroscopy of laser-induced fragmentation processes relies on measurement of impact position and time of 

ideally all fragments. Thereby, the times and positions measured are macroscopically later and larger (nano- and 

microseconds; centimeters and meters) than the times and positions that are relevant for the quantum mechanical 

dynamics of the fragmentation (atto- and femtoseconds; pico- and nanometers). Using such a scenario to infer 

information on the microscopic quantum mechanical dynamics relies on dividing the full interaction, i.e. laser field 

and spectrometer fields, into a microscopic time domain of the laser-induced fragmentation and a macroscopic time 

domain during which the fragments are guided by external electric and magnetic spectrometer fields until they hit 

a detector, see Figure 3.1 [72] [73] [71].  

The microscopic domain ranges from a few femtoseconds before until a few tens of femtoseconds after the laser 

field has passed. During this time, external spectrometer fields are typically neglected as they are much weaker than 

the typical strength of the reaction forces, e.g. the laser field or Coulomb fields among the fragments. Motions that 

occur during microscopic time domain are negligibly small (atto- and femtoseconds; pico- and nanometers) 
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compared to the relevant position and time scales in the macroscopic time domain e.g. size of the reaction volume 

(laser focus, micrometers) or the dimension of the spectrometer (centimeters and meters). Thus, the microscopic 

times and positions can be neglected for the dynamics on the scale of the macroscopic time domain during which 

the fragments travel e.g. from the reaction volume until they hit a detector after some time-of-flight (TOF). Both 

domains are connected as momenta gained in the one or the other domain are conserved and are not negligible 

from the one or the other perspective.  

This connection uses the picture that the 𝑙th fragment with fragment mass 𝑚𝑙  and fragment charge  𝑙  emerges 

from the reaction volume with some fragment momentum  

 𝑙
′ =  𝑙 +  0𝑙 =  𝑙 +  0𝑚𝑙. (3.1) 

, see Figure 3.1. The contribution,  0𝑙 =  0𝑚𝑙, is the 𝑙th momentum fraction of the initial momentum of the target 

particle 𝑷0 = 𝑀 0. The mass of the initial particle is 𝑀 = ∑ 𝑚𝑙𝑙 . The exact trajectory to the detector during TOF 

from the position of the fragmentation  0  (in the interaction volume) depends on the type of the experimental 

apparatus. It is sensitive to  𝑙 , 𝑚𝑙 ,  0 and of course, to the shape and size of electric and magnetic spectrometer 

fields. In order to determine  𝑙
′ from measured macroscopic impact times and positions,  𝑙 , 𝑦𝑙 and    𝑙 , one uses 

classical mechanics of charged particles in the spectrometer fields. For each spectrometer, VMI, ITRIMS, COLTRIMS, 

etc., appropriate calibration techniques as well as coincidence filtering techniques are used in order to ensure 

precise and reliable determination of  𝑙
′. Combining this measurement of  𝑙

′ with precise knowledge, control or well 

justified assumptions on the distribution of initial velocities    respectively on   𝑚𝑙  in the target, allows to 

separate the momentum gained due laser-induced fragmentation  𝑙  from the measured sum  𝑙
′ =  𝑙 +  0𝑚𝑙 . 

Typically, the motion due to  0𝑚𝑙  can be transformed away and fragment momenta  𝑙  due to laser-induced 

breakup respectively their distributions are then given within the center of momentum frame of the initial particle 

which has the momentum, 𝑷0 = 𝑀 0. 

Typical measurement results that are then compared to models on the fragmentation process are momentum 

differential cross-sections or rates for fragmentation channels of interest. In other words, the measurements 

provide distributions or spectra, i.e. number of events as function of final fragment momenta  𝑙 or quantities that 

can be calculated from it. Examples are photoelectron momentum distributions (PMDs) or kinetic energy release 

spectra (KER spectra). In most cases, modeling of the laser-induced fragmentation processes is typically concerned 

with the microscopic domain only. In order to compare to experimental results, theoretical results should be given 

as function of asymptotic momenta, i.e. when 𝑡 → ∞.  

 

3.2.2 Semi-Classical Picture on Light-Matter Interaction and Definition of the Laser Field 

 

It is well known that a rigorous description of light-matter interaction requires quantum electro dynamics. For 

the wavelength/photon energy range (0.5 - 2.5 µm; 2.5 - 0.5 eV;0.092 - 0.018 a.u.) that are relevant here however, 

the photon densities are comparatively high already at low intensities. Thus, it is reasonable and common to use 

the semi-classical picture of the light matter interaction where the light field is treated classically based on 

Maxwell’s equation and the atoms and molecules of the target are treated quantum mechanically [74]. A 
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consequence of this approximation is that there are - strictly speaking - no photons involved in the interaction as 

the classical description of the light field doesn’t support this concept. Further, as the typical gas phase targets 

contain only a few particles, the effects of the target on the light field respectively on its propagation, i.e. absorption, 

dispersion, and so on are neglected.  

Within the semi-classical picture of light matter interaction, the laser field is governed by Maxwell’s equation and 

can be expressed as 𝑬( , 𝑡) = −∇𝜑( , 𝑡) − 𝜕𝑡𝑨( , 𝑡)  and 𝑩( , 𝑡) = ∇ × 𝑨( , 𝑡) , using the scalar 𝜑( , 𝑡)  and the 

vector potential 𝑨( , 𝑡) [74]. Atomic units are used unless stated otherwise. In the Coulomb gauge, ∇𝑨( , 𝑡) = 0, one 

sets 𝜑( , 𝑡) = 0, such that 𝑨( , 𝑡) full-fills the wave equation, i.e. ∇2𝑨( , 𝑡) − 𝜕2𝑨( , 𝑡)/𝑐2𝜕𝑡2 = 0. The solution can 

be expressed as 𝑨( , 𝑡) = −𝐴0( , 𝑡)𝜺sin (𝒌 − 𝜔𝑡 + 𝜉(𝑡)) using the amplitude 𝐴0(𝑡), and the vector, 𝜺, of the linear 

polarization. The wave vector is 𝒌 = 𝜔 𝑧/𝑐, where 𝜔 denotes the angular frequency, and 𝜉(𝑡) an in general time-

dependent phase that is related to the time-dependent evolution of the phase of the pulse such as e.g. chirp. The 

polarization vector and the wave vector satisfy, 𝒌𝜺 = 0, for transversal waves. For 𝜉(𝑡) = const, the corresponding 

electric field is 𝑬( , 𝑡) = 𝐸0( , 𝑡)𝜺cos (𝒌 − 𝜔𝑡). It has an amplitude of 𝐸0( , 𝑡) = 𝜔𝐴0( , 𝑡), which is approximately 

|𝒌| = 𝜔/𝑐  times larger than the related magnetic field, 𝑩( , 𝑡) = 𝐸0( , 𝑡)𝜔
−1(𝒌 × 𝜺) cos(𝒌 − 𝜔𝑡) . 𝑩( , 𝑡)  is 

approximately hundred times smaller due to scaling of it’s amplitude with 1/𝑐 and thus, only 𝑬( , 𝑡) is taken into 

account. 

Independent of the exact temporal evolution of 𝑬( , 𝑡), a short laser pulse must be a traveling wave that has no 

direct-current components, i.e. no components with zero frequency. Thus, it fulfills ∫ 𝑬( , 𝑡′)𝑑𝑡′
∞

−∞
= 0 and hence, 

the vector potential satisfies, −𝑨( , 𝑡 = ∞) + 𝑨( , 𝑡 = ∞) = const, which is consistent with choosing, const ≡ 0. As 

typical target particles (atoms, ions, molecules) are a lot smaller than the wavelength of the laser, the spatial 

dependence of the vector potential is dropped, which leads to 𝑨( , 𝑡) = 𝑨(𝑡), and similarly 𝑬( , 𝑡) = 𝑬(𝑡). The time-

independent, real amplitudes are approximately related by 𝐴0 ≅ − 𝐸0/𝜔.  

 

3.2.3 Classical Mechanics of a Two-Particle Breakup in a Laser Field 

 

As one shall see later, the field of strong-field laser-matter interaction uses classical mechanics of charged particles 

in external electromagnetic fields to a large extend for interpretation and also for modeling and simulation of the 

fragmentation dynamics with the goal to maximize insight and to develop simple and intuitive models about the 

interaction [11] [12]. Here, we use classical mechanics to illustrate and summarize relevant conservation laws and 

approximations that are employed in experimental setups for momentum spectroscopy of laser-induced 

fragmentation processes. The illustrative consideration is done for a two particle breakup in an external field. More 

complex breakups, e.g. three or multiple particle breakups might be considered as a series of two-body breakups 

and could be discussed on a similar basis. Clearly this makes the problem more complex. Here we focus on the 

example of a two-body fragmentation. Atomic units are used unless stated otherwise. 

The Lagrangian, 𝐿 =  − 𝑈 of two particles of masses, 𝑚1, 𝑚2, and charges  1,  2, that interact via the potential, 𝑈, 

in the time-dependent external laser field 𝑬(𝑡) with the vector potential 𝑨(𝑡) is  
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𝐿(𝒓1, 𝒓2, 𝒓̇1, 𝒓̇2, 𝑡) =
1

2
𝑚1𝒓̇1

2 +
1

2
𝑚2𝒓̇2

2 +  1𝒓̇1𝑨(𝑡) +  2𝒓̇2𝑨(𝑡) − 𝑈(𝑡, |𝒓1 − 𝒓2|). (3.2) 

The positions and velocities of the two particles are 𝒓1, 𝒓2, 𝒓̇1, 𝒓̇2,   is the kinetic energy, the expression  1𝒓̇1𝑨(𝑡) +

 2𝒓̇2𝑨(𝑡) is the potential energy of the charged particles in the laser field and 𝑈(𝑡, |𝒓1 − 𝒓2|) is the potential of 

forces, which act among the fragments. The potential, 𝑈(𝑡, |𝒓1 − 𝒓2|), has been made explicitly time dependent in 

order to emphasize that for the classical description used here, the internal forces might start to act among the 

fragments starting from a certain breakup time, 𝑡 > 𝑡𝑏 , while they might be neglected before 𝑡 < 𝑡𝑏 , i.e. 𝑈(𝑡 <

𝑡𝑏, |𝒓1 − 𝒓2|) ≈ 0, during the time when the particles are considered as a single particle. As one shall see later, 

calculation of time-dependent probabilities for this transition together with probabilities for initial conditions at 𝑡𝑏 

are subject to quantum mechanical models of the fragmentation process, e.g. tunnel ionization. Further, 𝑈  is 

assumed to depend on the distance between both particles, 𝑟 = |𝒓| = |𝒓1 − 𝒓2|, only. The field is modeled as a 

classical field as discussed in the previous section. 

Introducing the relative coordinate, 𝒓 = 𝒓1 − 𝒓2 , and center-of-mass coordinate 𝑿𝑐𝑚 = (𝑚1𝒓1 +𝑚2𝒓2)/(𝑚1 +

𝑚2) together with the total mass 𝑀 = 𝑚1 +𝑚2  leads to the back transformations, 𝒓1 = 𝑿𝑐𝑚 + 𝒓𝑚2/𝑀 and 𝒓2 =

𝑿𝑐𝑚 − 𝒓𝑚1/𝑀 with the corresponding velocities, 𝒓̇1 = 𝑿̇𝑐𝑚 + 𝒓̇𝑚2/𝑀 and 𝒓̇2 = 𝑿̇𝑐𝑚 − 𝒓̇𝑚1/𝑀. Plugging those into 

(3.2) and introducing the reduced mass, 𝜇 = 𝑚1𝑚2/𝑀 = 𝑚1𝑚2/(𝑚1 +𝑚2), as well as the total charge  =  1 +  2 

yields 

𝐿(𝒓,  , 𝒓̇,  ̇, 𝑡) =
1

2
𝑀𝑿̇𝒄𝒎

𝟐 2
+  𝑿̇𝑐𝑚𝑨(𝑡) +

1

2
𝜇𝒓̇2 + ( 1

𝜇

𝑚1

−  2
𝜇

𝑚2

) 𝒓̇𝑨(𝑡) − 𝑈(𝑡, |𝒓|). (3.3) 

In (3.2), the relative motion, i.e. the motion along 𝒓 is separated from the center of mass motion along 𝑿̇𝑐𝑚.  

By application of the Euler-Lagrange equation, i.e. 𝑑(𝜕𝐿/𝜕𝒒̇𝑗)/𝑑𝑡 − (𝜕𝐿/𝜕𝒒𝑗) = 0, of the second kind together 

with −𝑑𝑨(𝑡)/𝑑𝑡 = 𝑬(𝑡) one arrives at the equation of motion, 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑿̇𝑐𝑚

−
𝜕𝐿

𝜕𝑿̇𝑐𝑚

=
𝑑

𝑑𝑡
(𝑀𝑿̇𝑐𝑚 +  𝑨(𝑡)) = 0 → 𝑀𝑿̈𝑐𝑚 = − 

𝑑

𝑑𝑡
𝑨(𝑡) =  𝑬(𝑡), (3.4) 

for the center-of-mass coordinate 𝑿𝑐𝑚. It reveals that the canonical momentum 𝑪(𝑡) = 𝑀𝑿̇𝑐𝑚 +  𝑨(𝑡) is conserved 

for all times.  

Integrating (3.4) over the time interval between 𝑡1  and 𝑡2  yields 𝑀𝑿̇𝑐𝑚 =  [𝑨(𝑡2) − 𝑨(𝑡1)]. Choosing 𝑡1 = −∞ 

and 𝑡2 = +∞  and combining this with the fact that the electric field is a traveling wave, i.e. the field fulfills 

∫ 𝑬(𝑡′)𝑑𝑡′
∞

−∞
= 0 which leads to 𝑨(∞) − 𝑨(−∞) = const, illustrates that the laser field doesn’t change the initial 

momentum of the center-of-mass motion, i.e. 𝑷0 = 𝑀𝑿̇𝑐𝑚(𝑡 = −∞) = 𝑀𝑿̇𝑐𝑚(𝑡 = ∞) = 𝑀 0  is a constant. 

Consequently, a kinematic complete measurement, i.e. a measurement where the momenta of all 𝑙 fragments are 

measured fulfills the condition, 

∑ 𝑙
′ =  0∑𝑚𝑙 = 𝑀 0. (3.5) 
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As examples for a kinematic complete measurements, we mention single ionization of atomic hydrogen or any other 

atom, i.e. 𝐻 → 𝐻+ + 𝑒−  where the momenta  𝐻+
′  and  𝑒−

′  are measured, or dissociation of 𝐻2
+ , i.e. 𝐻2

+ → 𝐻+ + 𝐻 

where  𝐻+
′  and  𝐻

′  are measured. 

As indicated, the property (3.5) of the laser-induced fragmentation is not limited to two-body fragmentation but 

is also valid for multiple particle fragmentation. It is regularly exploited in measurements in several ways.  

i) A kinematic complete measurement can be used to characterize the distribution of initial velocities  0 

respectively initial momenta 𝑀 0 in the target. The idea is realized in section 5.2.1 where a kinematic complete 

measurement of dissociation of 𝐻2
+ is used to determine the initial momentum spread of the ion beam target 

in the ITRIMS setup.  

ii) The second aspect is relevant if the initial momentum spread in the target is well controlled and known, i.e. if 

𝑀 0 ≈ 0 or 𝑀 0 ≈ const are justified approximations. This is the case for a cold target which is, e.g., produced 

using supersonic gas expansion techniques in a typical COLTRIMS apparatus. For an ITRIMS setup this is only 

possible if the velocity and the collimation of the ion beam target is very well controlled [14] [21] [15] [75]. 

a) One can use the knowledge of 𝑀 0 = const  or 𝑀 0 ≈ 0  as condition for coincidence filtering in 

kinematic complete measurements. This approach is able to reduce false coincidences [14] [21] [15] 

[75] and is used to increase the signal to noise ratio in measurements dramatically.  

b) Further, if 𝑀 0 = const  is well known and combined with a kinematic complete experiment, the 

achieved momentum resolution is limited by the precision of the measurement of impact time and 

impact position together with the spectrometer geometry only. It is then not or only weakly blurred by 

the fact that the measured momentum distributions are a convolution between the distribution of  𝑙 

(the momentum gained during laser-induced fragmentation) and the distribution of initial momenta in 

the target  0𝑙 =  0𝑚𝑙, remember  𝑙
′ =  𝑙 +  0𝑙 =  𝑙 +  0𝑚𝑙, i.e. equation (3.1). 

c) One can use ii) to reduce the number of measured fragments as writing (3.5) for a two-body 

fragmentation illustrates. Consider,  1
′ +  2

′ =  1 +𝑚1 0 +  2 +𝑚2 0 = (𝑚1 +𝑚2) 0 = 𝑀 0 if 𝑀 0 

is known, e.g. 𝑀 0 ≈ 0, one can write,  1 = − 2. Thus, measuring  𝐻+ for e.g. the reaction 𝐻 → 𝐻+ +

𝑒−  is sufficient and  𝑒−  can be inferred. Measuring the heavy fragment, i.e. the so-called recoil ion 

(remember the name Cold Target Recoil Ion Momentum Spectroscopy), instead of the electron is 

beneficial for the achieved momentum resolution as its smaller velocity leads to larger TOF on the order 

of microseconds instead of nanoseconds for the electron. In addition, it is simpler to distinguish desired 

signals from signals that stem from ionization of the background gas because the produced target ion 

has typically a specific  /𝑚  ratio in contrast to electrons which cannot be distinguished. Another 

example are COLTRIMS measurements where neutral fragments that are typically not detected are 

involved, e.g. 𝐻2 → 𝐻+ +𝐻. The momentum of 𝐻+ is measured and the momentum of 𝐻 is inferred. The 

scheme can also be applied to more complex situations, e.g. ionization of 𝐻2
+ → 𝐻+ +𝐻+ + 𝑒− where 

one measures the momenta of the two protons,  1  and  2  and uses  1 +  2 = − 𝑒  to infer the 

momentum of the electron  𝑒. This idea is used in section 5.2.1. 
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After this discussion on consequences of the conservation law (3.5) and their relevance for typical experimental 

setups, we turn to the equation of motion for the relative coordinate 𝒓 next. Application of the Euler-Lagrange 

equation for this coordinate yields,  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝒓̇
−
𝜕𝐿

𝜕𝒓
=

𝑑

𝑑𝑡
(𝜇𝒓̇ + ( 1

𝜇

𝑚1
−  2

𝜇

𝑚2
)𝑨(𝑡)) = −

𝜕

𝜕𝒓
𝑈(𝑡, |𝒓|) 

→ 𝜇𝒓̈ = −
𝜕

𝜕𝒓
𝑈(𝑡, |𝒓|) − ( 1

𝜇

𝑚1
−  2

𝜇

𝑚2
)
𝑑

𝑑𝑡
𝑨(𝑡) 

→ 𝜇𝒓̈ = −
𝜕

𝜕𝒓
𝑈(𝑡, |𝒓|) + ( 1

𝜇

𝑚1
−  2

𝜇

𝑚2
)𝑬(𝑡). 

(3.6) 

The first line in (3.6) illustrates that the quantity (𝜇𝒓̇ + ( 1𝜇/𝑚1 −  2𝜇/𝑚2)𝑨(𝑡)) is affected by internal forces such 

as Coulomb forces or dissociative forces that occur among the fragments. They are represented by the term 

−𝜕𝑈(𝑡, |𝒓|)/𝜕𝒓. However, if these forces are small for the relevant values of |𝒓|, e.g. for large distances, they can be 

neglected, −𝜕𝑈(|𝒓|)/𝜕𝒓 ≈ 0. In this case, 𝒄(𝑡) = (𝜇𝒓̇ + ( 1𝜇/𝑚1 −  2𝜇/𝑚2)𝑨(𝑡)) is conserved.  

Next one can integrate between two times 𝑡1  and 𝑡2  and finds 𝜇𝒓̇ = ( 1𝜇/𝑚1 −  2𝜇/𝑚2)[𝑨(𝑡2) − 𝑨(𝑡1)] + 𝜇𝒓̇0 . 

𝜇𝒓̇0 = 𝜇(𝒓̇10 − 𝒓̇20) is the initial relative momentum at the time 𝑡1. Identifying 𝑡1 with the time of the breakup 𝑡1 =

𝑡𝑏  in the laser field and 𝑡2 = +∞  with the time of the measurement at the detector when 𝑨(∞) = 0  yields an 

approximation (because −𝜕𝑈(𝑡, |𝒓|)/𝜕𝒓 ≈ 0 is used) for the relative momentum that is measured 𝜇𝒓̇ = −( 1𝜇/

𝑚1 −  2𝜇/𝑚2)𝑨(𝑡𝑏) + 𝜇𝒓̇0. If one uses the back transformations 𝒓̇ = (𝒓̇1 − 𝑿̇𝑐𝑚)𝑀/𝑚2 and (−𝒓̇2 + 𝑿̇𝑐𝑚)𝑀/𝑚1 = 𝒓̇ 

approximate expressions for the asymptotic momenta of the two fragments are found,  

𝑚1𝒓̇1(∞) = −𝑨(𝑡𝑏) ( 1
𝑚2

𝑀
−  2

𝑚1

𝑀
) +

𝑚1𝑚2

𝑀
𝒓̇0 +𝑚1𝑿̇𝑐𝑚(∞) 

𝑚2𝒓̇2(∞) = +𝑨(𝑡𝑏) ( 1
𝑚2

𝑀
−  2

𝑚1

𝑀
) −

𝑚1𝑚2

𝑀
𝒓̇0 +𝑚2𝑿̇𝑐𝑚(∞). 

(3.7) 

Performing a short consistency check by summing 𝑚1𝒓̇1(∞) +𝑚2𝒓̇2(∞) = 𝑚1𝑿̇𝑐𝑚(∞) + 𝑚2𝑿̇𝑐𝑚(∞) =

𝑀𝑿̇𝑐𝑚(∞) = 𝑀 0 illustrates again that the laser field doesn’t change initial momentum.  

Let us investigate (3.6) and (3.7) for a few examples in detail next. 

i) For ionization of atomic Hydrogen, i.e. 𝐻 → 𝐻+ + 𝑒−  (𝑀 = 1837 , = 0,𝑚𝐻+ = 1836 ,   𝐻+ = +1 ,  𝑒− = −1 , 

𝑚𝑒− = 1 ) with the assumption, 𝒓̇0 ≈ 0 . One finds,  𝐻+ = 𝑚1𝒓̇1(∞) = −𝑨(𝑡𝑏) + 1836𝑿̇𝑐𝑚(∞)  and  𝑒 =

𝑚2𝒓̇2(∞) = 𝑨(𝑡𝑏) + 1 ̇(∞). Comparing the corresponding kinetic energies for a cold target, i.e. 𝑿̇𝑐𝑚(∞) =

 0 ≈ 0  and typical values for the field strength, 𝐸0 ≈ 0.1  ( 𝐼 ≈ 3.5 1014 W/cm2 ), respectively the vector 

potential 𝐴0 ≅ − 𝐸0/𝜔 ≈ 1.75  at a center wavelength of 𝜆 = 800 nm → 𝜔 = 0.057  gives  𝐻+ = 𝐴0
2/2𝑚𝐻 ≅

 𝐸0
2/2𝑚𝐻𝜔

2 = (0.1/0.057)2/2 ∙ 1836 ≈ 10−3 a. u. ≈ 0.01 eV  and  𝑒 = 𝐴0
2/2 ≅  𝐸0

2/2𝜔2 = (0.1/0.057)2/2 ≈

1.54 a. u. ≈ 41 eV. Comparing the numbers shows that the kinetic energy of the ion is approximately 1/𝑚𝐻 ≈

1/2000 smaller. It reflects that the electron has an a lot smaller TOF until it hits the detector. 

ii) Considering dissociation of 𝐻2
+ , i.e. 𝐻2

+ → 𝐻+ + 𝐻  (𝑀 = 3673 , = 1,𝑚𝐻+ = 1836 ,  𝐻+ = +1 ,  𝐻 = 0 , 𝑚𝐻 =

1837 ) using the same scheme reveals an interesting aspect, for 𝑿̇𝑐𝑚(∞)  =  0 ≈ 0  respectively after 

transformation to the center-of-momentum frame, it gives  𝐻+ = −𝑨(𝑡𝑏)(1836/3673) ≈ −𝑨(𝑡𝑏)/2 and  𝐻 =

+𝑨(𝑡𝑏)(1836/3673) ≈ +𝑨(𝑡𝑏)/2. This momentum kick occurs in addition to the momentum kick from the 
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internal dissociative forces. Compared to them, it is small for 800 nm but it is expected to become relevant if 

dissociation takes place in a very long wavelength field.  

iii) As it is relevant in chapter 5, ionization of 𝐻2
+ , i.e. 𝐻2

+ → 𝐻+ + 𝐻+ + 𝑒−  (𝑀 = 3673, = 1,𝑚𝐻+1 = 𝑚𝐻+2 =

1836 ,   𝐻+1 =  𝐻+2 = +1 ,  𝑒 = −1 , 𝑚𝑒 = 1) is studied as second example. It is the prototype of multiple 

breakup and the effect of internal potential can be studied. Again,  ̇(∞) =  0 = 0 is used. First, separation of 

the electron from the two protons gives,  𝑒 = −𝑨(𝑡𝑏)(−3672/3673 − 2 ∙ 1/3673) ≈ +𝑨(𝑡𝑏)  and  2 =

+𝑨(𝑡𝑏)(−3672/3673 − 2 ∙ 1/3673) ≈ −𝑨(𝑡𝑏). For this breakup,  𝑒 can be inferred  𝑒 = −( 1 +  2) from the 

two proton momenta,  1  and  2 . Because of the sudden removal of the electron, the two protons start to 

separate at the same time. It can again be analyzed within the frame of (3.6). Both particles have the same 

charge,  1 =  2 = +1 and mass 𝑚1 = 𝑚2 = 1836 and the total mass is 𝑀 = 3672. Consequently, the factor in 

front of 𝑑𝑨(𝑡𝑏)/𝑑𝑡 is zero, i.e. ( 1𝜇/𝑚1 −  2𝜇/𝑚2) = 0 (𝜇 = 𝑚𝐻+/2, now). Thus, no momentum kick from the 

field occurs for the breakup of the protons. The situation would be different if both heavy fragments, would 

not have the same mass e.g. for 𝐻𝐷+. Among the protons, only the term −𝜕𝑈(𝑡, |𝒓|)/𝜕𝒓 ≈ −1/|𝒓| occurs in the 

equation of motion in (3.6). With 𝒓 being the distance of the two protons one has the equation of motion, 𝜇𝒓̈ =

−1/|𝒓|2, now. The energy 𝑊 is conserved such that, 𝑊(𝑡𝑏) =  (𝑡𝑏) + 𝑈(𝑡𝑏) =  (∞) + 𝑈(∞) = 𝑊(∞) can be 

used to calculate the asymptotic relative momentum at the detector when 𝒓(∞) → ∞. It is 𝑊(𝑡𝑏) = 𝜇𝒓̇2/2 +

1/|𝒓| → 𝒓̇(∞) = ±√2𝑊(𝑡𝑏)/𝜇 from which follows 𝜇𝒓̇(∞)2/2 = 𝑊(𝑡𝑏). An estimate for the total energy at 𝑡𝑏 is 

𝑊(𝑡𝑏) = 𝜇𝒓̇0
2/2 + 1/|𝒓(𝑡𝑏)| . Assuming 𝜇𝒓̇0

2/2 ≈ 0 , one can estimate the distance, |𝒓(𝑡𝑏)|,  based on the 

measured momenta of both protons  1 and  2 by equating, ( 1 −  2)
2/2𝑚𝐻+ = 𝑚𝐻+𝒓̇(∞)2/2 = 𝜇𝒓̇(∞)2/2 ≈

1/|𝒓(𝑡𝑏)|. The initial condition for the angular momentum has been assumed to be zero. 

iv) Expressions (3.7) further reveal that the effect of the initial momentum on the measured momentum depends 

on the fragment mass, i.e. 𝑚1𝒓̇1(∞)~𝑚1𝑿̇𝑐𝑚(∞) = 𝑚1 0 and 𝑚2𝒓̇2(∞)~𝑚2𝑿̇𝑐𝑚(∞) = 𝑚2 0. This connection 

allows to estimate the effect of an initial momentum spread, e.g. due to the target temperature, on the final 

momentum resolution in dependence of the fragment mass. Modeling the initial momentum/velocity 

distribution in the target as an ideal gas by assuming a Maxwell-Boltzmann distribution yields a spread of 𝜎 =

√𝑘𝐵𝜏/𝑀 for initial velocities in the target. For e.g. Xenon (Xe) atoms with a mass 𝑀 ≈ 131 ∙ 1.660 10−27 kg =

2.38 105 a. u.  and initial charge  = 0  at room temperature 𝜏 = 300 𝐾  this is |𝑣𝜎| =

√1.38 ∙  10−23  ∙ 300/(131 ∙ 1.660 ∙ 10−27) ≈ 138 m/s ≈ 10−4 a. u. . Thus, Xe+  ions after the breakup would 

have a final momentum of  𝑋𝑒+ ≈ 𝑨(𝑡𝑏) + 𝑀|𝑣𝜎| 𝒓 ≈ 𝑨(𝑡𝑏) + 15 𝒓. Thereby, 15 𝒓 points into every direction 

and follow the Maxwell-Boltzmann distribution. The electrons however, would have  𝑒− ≈ −𝑨(𝑡𝑏) + 10−4  𝒓. 

Comparing the initial momentum to the momentum kick from field for the mentioned typical values of 𝐸0 =

0.1  and |𝑨(𝑡𝑏)| ≈ 1.75  at 800  nm shows that the effect of the initial velocity is small for the electron but 

dominant for the ion. In other words, the momentum kick from the laser field is a small change of the 

momentum of the ion on top of the wide initial momentum distribution. But for the electron, it is a big change 

on a narrow initial distribution. Consequently, measuring the ion requires cooling or a kinematic complete 

experiment while the electron momentum distribution can be measured with high precision without such 

efforts. This is the reason why a VMIS can be operated without cold target if photoelectron momentum 

distributions are measured.  
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Equation (3.7) also establishes a connection between the measured fragment momenta and the vector potential 

at the time of the breakup in the field. Thus, measured momentum distributions contain within some approximation 

information on the time-dependent shape of the electric field. This aspect is regularly used in COLTRIMS-like 

momentum spectrometer to characterize or estimate properties of the electric field, see e.g. the [76] [77] [78]. 

The detailed discussion of classical mechanics of a two-particle breakup dynamics inside a laser field revealed and 

illustrated several aspects that are regularly employed in measurements on momentum spectroscopy of laser-

induced fragmentation processes. Next, central points which are relevant for this thesis are summarized. 

 

3.2.4 Conclusion of Kinematics in Laser-Induced Fragmentation Setups 

 

The review of classical mechanics of a two-particle breakup in a laser field in detail revealed several aspects which 

are exploited in the later chapters. This list summarizes the most relevant ones. 

 A measurement where the momenta of all fragments are measured (kinematic complete measurement) 

can be used to characterize the momentum spread or temperature of the target. An example for this is 

the reaction 𝐻2
+ → 𝐻+ + 𝐻 where  𝐻+ and  𝐻 are measured. Momentum conservation states that  𝐻 +

 𝐻+ = (𝑚𝐻 +𝑚𝐻+) 0 with  0 being the initial velocity of the target particle before fragmentation. This 

aspect is exploited in 5.2.1 to determine the momentum spread of the ion beam target.  

 If the momentum spread of the target is well characterized, then this information can be used to infer 

the momentum of a fragment which is actually not detected, e.g. for 𝐻2
+ → 𝐻+ +𝐻+ + 𝑒−  one can 

measure  1,  2 and infer  𝑒 exploiting momentum conservation  1 +  2 = − 𝑒. This is used in section 

5.2.1.  

 For a breakup with one heavy, e.g. a proton, and one light fragment, e.g. an electron, the light fragment 

takes most of the energy from the kick of the laser. 

 The measured fragment momenta contain information about the interaction potential, 𝑈(𝑡, |𝒓|), which 

is present among the fragments. If the interaction potential is known, information on fragmentation 

coordinates can be extracted. 

 For the measurement of photoelectron momenta, the initial momentum spread due to e.g. the target 

temperature is negligibly small compared to the energy which is gained from the laser-induced breakup. 

Having summarized, we turn to the details of the fragment momentum spectrometers which are used for our 

measurements. In the next subsections, details of the Velocity-Map Imaging Spectrometer (VMIS) which has been 

used to measure photoelectron momentum distributions (PMDs) after strong-field ionization of Xenon are 

summarized. Afterwards, we turn to a short introduction on the setup for Ion Target Recoil Ion Momentum 

Spectroscopy (ITRIMS).  

 

  



Momentum Spectroscopy of Laser-Induced Fragmentation Processes 

  33 

3.3 Velocity-Map-Imaging Spectrometer 

 

The Velocity-Map-Imaging (VMI) spectrometer setup which is used in this thesis, is introduced by comparing it to 

recent trends in the field VMI spectrometer development. Details of the measurement procedures which are used 

acquire photoelectron momentum distributions (PMDs) are given later together with experimental results in 

chapter 3.5 where the off-axis low-energy structure in strong-field photoionization is investigated experimentally 

and theoretically.  

 

 

Figure 3.2: Sketch of the used velocity map imaging (VMI) spectrometer (VMIs) 

Chief components are coded in color. Distances are given in mm. The chief components, electrostatic lens system, 

drift tube and detections of a VMI spectrometer are marked by the colors, i.e. electrostatic lens system (blue), 

drift tube (green) and detection system (orange). The electrostatic lens system consists of three electrodes, 

repeller (R), extractor (E) and ground (G) here and is used to accelerate charged particles from the red-marked 

interaction volume towards the detector. Thereby, particles with the same velocity are focused such that they 

reach the detector at the same time-of light and position. The whole apparatus is part of a vacuum chamber 

which the laser beam enters and exits through windows. Typically, the apparatus is implemented as a rotational 

symmetric object with the dotted horizontal line being the axis of rotational symmetry. The laser propagates into 

the drawing plane. The illustration is similar to [67] [45]. 

 

Velocity-Map-Imaging spectrometers (VMIs) are a very flexible method to measure three-dimensional momentum 

distributions (differential fragmentation rates) of photoions and photoelectrons [65] [66]. The spectrometer relies 

on using an electrostatic lens system to project charged particles that emerge from an interaction region onto the 

same position on a two-dimensional detector, if they have the same momentum. Afterwards an Abel inversion is 

applied in order to retrieve the three-dimensional momentum distribution from the measured two-dimensional 

projection. Due to the necessity of Abel inversion rotational symmetry is required for the applicability of the 

method. Thus, it has been limited to linear polarization in its original version due to the lack measurement or 

discrimination of the TOF.  Combination with position- and time-sensitive detectors as well as high-voltage 

switching technology enable TOF measurement. Thus, modern VMIs have matured to coincidence momentum 

spectroscopy machines very similar to COLTRIMS, [79] [80]. Without time-sensitive detector, it is possible to extend 

VMI to light with arbitrary polarization state using tomographic reconstruction methods [81] [82].  
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A sketch of the used VMIs is shown in Figure 3.2 [45] [67]. The design is pretty simple and very similar to the 

original design [65]. An electrostatic lens system accelerates charged particles from the red-marked interaction 

volume towards the detector where a combination of a micro-channel plate and phosphor screen assembly converts 

the electron signal to fluorescence light whose intensity distribution is then observed by a camera. The intensity of 

the fluorescence is proportional to the number of charged particles that impact on the detector. The ionizing laser 

is linearly polarized with its axis aligned such that it lies in the plane of the paper and parallel to the detector surface. 

Rotational symmetry is fulfilled around this axis. Thus, algorithms for Abel inversion, e.g. [66], can be used to 

retrieve three-dimensional photoelectron momentum distributions (PMDs) from the measured projections. Cooling 

of the gas target is not necessary as the initial electron momentum is negligibly small compare to the momenta 

gained from the laser-induced breakup, see section 3.2.3. 

In order to ensure detection of fluorescence signal with low noise and high-dynamic range, the images are 

recorded using a (12-bit) camera from “QImaging” which is equipped with a proper lens system that images the 

phosphor screen onto the camera chip. Depending on the sign of the repeller voltage, projections of the momentum 

distribution of photoelectrons or photo ions can be measured. Measurements are taken in the way that the laser is 

continuously producing, e.g. electrons, in the interaction volume at the repetition rate of the laser while the camera 

is recording the intensity profile with an exposure time that is very long compared to the repetition rate of the laser, 

i.e. several seconds up to half an hour. Combination of several acquisitions with different exposure times to a high-

dynamic range image is used to increase the dynamic range in the measurement. In this way, even faint structures 

such as rescattered electrons can be detected. Details of the procedure can be found here [68] [45]. 

Under optimal imaging conditions for photoelectrons, energies up to 80 eV are detectable at the energy resolution, 

which is better than ≈ 1% over the entire energy range. This is achieved for a repeller voltage of 𝑉𝑅 = 10 kV and a 

ratio of 0.805 for the ration between repeller and extractor, 𝑉𝐸/𝑉𝑅 = 0.805, while 𝑉𝐺  is set to 𝑉𝐺 = 0. The highest 

detectable electron energy is limited by the size of the detector of 40 mm in diameter and the maximum applicable 

repeller voltage. Applying a lower 𝑉𝑅  and scaling the extractor voltage accordingly allows to observe a smaller 

energy range with improved energy resolution much like zooming into the PMD.  

The spectrometer function, 𝐸 = 𝑎 ∙ 𝑉𝑅 ∙ 𝑟
2 ∙  (eV/kV mm2), connects the electron energy with the position of the 

detector. Thereby, 𝑟 = √ 𝑑
2 + 𝑦𝑑

2, is measured from the center of the phosphor screen. The energy calibration 

factor, 𝑎, has been found to be 𝑎𝑡ℎ = 0.02068 from theoretical simulation of the electron trajectories [67]. However, 

an experimental determination of 𝑎  which uses the equal spacing of the energy position of above-threshold 

ionization peaks generated by 400 nm laser pulses yields 𝑎𝑒𝑥𝑝 = 0.01713. This calibration of the energy has to be 

repeated if another repeller voltage is used. The experimentally determined factor is used to convert the detector 

positions into velocity and momentum or electron energy respectively. 

Several examples for the measured PMDs using described mentioned VMIS can be found in chapter 5 where an 

off-axis low-energy structures in above-threshold photoionization are investigated experimentally and 

theoretically.  
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3.4 Ion Target Recoil Ion Momentum Spectroscopy (ITRIMS) 

 

Next, the Ion Target Recoil Ion Momentum Spectroscopy (ITRIMS) setup, which is used to investigate strong-field 

photoionization of  in chapter 5 is introduced by comparing it to a standard COLTRIMS setup first in section 3.4.1. 

Properties of the ITRIMS, which is operated in Jena, are summarized as an overview in 3.4.2. Details of measurement 

procedures and relevant experimental effects are detailed in chapter 5 where experimental and theoretical results 

of strong-field photoionization of  by strong infrared laser fields are presented.  

 

3.4.1 Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) and Ion Target Recoil Ion Momentum 

Spectroscopy (ITRIMS) 

 

Figure 3.3: Comparison of a setup for standard “COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS)” [62] with the 

setup for “Ion Target Recoil Ion Momentum Spectroscopy (ITRIMS)” used here.  

 

A comparison between a standard COLTRIMS setup and the Ion Target Recoil Ion Momentum Spectrometer 

(ITRIMS) used in the measurement in this work is shown Figure 3.3. In COLTRIMS, a neutral gas-phase target with 

small initial momentum spread (cold) is placed inside a spectrometer where electric and magnetic fields are used 

to steer charged fragments from the interaction with the laser towards position- and time-sensitive detectors, 

typically so-called delay-line detectors (DLD-detectors). Measuring the fragment’s impact time and position at the 

DLD-detectors, together with knowing the spectrometer properties (geometry, distances) and the spectrometer 

settings (field strengths), allows back calculation of the vector momenta at a time shortly after the interaction with 

the laser pulse when the fragment is located in the focal region of the laser. Thereby, the small initial momentum 

spread of the target is very beneficial as it allows one to use the assumption of zero initial momentum in many cases. 

As neutral fragments don’t react to electric and magnetic fields only the momenta of the charged fragments are 

measured in most cases.  

The ITRIMS setup uses the same principle as COLTRIMS. However, a beam atomic or molecular ions with an 

initial kinetic energy of several keV, , is used as the target. Having an energetic ion beam instead 

of cold neutrals changes a few aspects of the setup. (i) The high initial beam velocity enables detection of neutral 

fragments, which can typically not be detected in COLTRIMS. (ii) The ion beam density is on the order of  to  

less dense than a typical cold gas target, which makes measurements with good statistics challenging. (iii) A 
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combination of (i) and (ii) causes significant issues for the detection of electrons in coincidence with the heavy 

fragments, i.e. ions and neutrals. (iv) As compared to the COLTRIMS cold jet, the initial velocity of the ion beam 

target of the ITRIMS, typically leads to a larger initial momentum spread. It leads to a blurring of experimental 

results, if the momentum of one of the fragments is inferred based on momentum conservation.  

Presently a few implementations of ITRIMS world-wide combine the ultra-fast intense laser pulse technology with 

recoil ion momentum spectroscopy. An overview over existing experimental techniques and setups is given in [21] 

[70]. Besides contributions from the group of Gerhard G. Paulus from Jena, main groups contributing in this field 

recently are from Kansas State University around Itzik Ben-Itzhak and from Frankfurt around Reinhard Dörner. 

Particularly, noteworthy is the setup used in the Dörner group recently [83]. In this setup, also the momentum of 

the electron after strong-field ionization of a beam of 𝐻2
+ molecules has been detected in coincidence with the two 

proton fragments.  

 

3.4.2 Ion Target Recoil Ion Momentum Spectroscopy (ITRIMS) in Jena 

 

A sketch of the ITRIMS setup is shown Figure 3.4. The grey cylindrical tube in the center of the figure which 

contains several colored elements with labels as small letters (a-o) represents the ultra-high (𝑃 < 10−9 mbar) 

vacuum chamber. Starting from the ion source, (a) to (m) label components that are responsible for creating a well 

collimated beam of atomic or molecular ions, which crosses the laser beam at angle of 90 degrees in the interaction 

region between the blue plates with the labels (m) and (n). The microchannel-plate delay-line detection system can 

be found further to the right at the label (o). Elements outside the tube with (1) to (7) illustrate the optical 

components of the setup.  

Creation of atomic or molecular ions is done using electron impact ionization in an electric discharge within a 

Duoplasmatron ion source (a). This source facilitates creation, extraction and acceleration to kinetic energy of 

several keV. Afterwards an Einzel lens (b) (arrangement of static electric fields) and a deflector (c) collimate and 

steer the ion beam through the chamber. The differential pumping stage (d) separates the section for ion generation 

with higher pressure from the region with lower pressure in the rest of the apparatus. Another set of a deflectors 

(e) and an Einel lenses (f) guide the beam through a Wien filter (g). It enables the selection of a desired  /𝑚-ratio 

such that measurements with different isotopologues, e.g. 𝐻2
+ and 𝐷2

+, are possible. At the same time, the Wien filter 

acts as a filter for the velocity of the ion beam. Afterwards, the Einzel lens (h) and deflectors (i)-(k) steer the beam 

through apertures with an adjustable size, (l) and (m), which are used to limit the initial momentum spread of the 

beam along its transversal direction, and are thus, important for the achieved momentum resolution. The 

interaction region lies inside an ion spectrometer (n). Together with an additional transversal static electric fields, 

it ensures separation fragments with different charge and mass in time and space on the position and time- sensitive 

detector (o). A faraday cup shortly before the detector prevents the detector from being illuminated by the ion beam 

directly, see Figure 3.4 b) also.  

The optical setup facilitates controlling of the intensity using a motorized half-wave plate (1) (appendix A1), a 

germanium plate that acts as reflective polarizer (2) and a high-contrast transmittive polarizer (3). The high-

contrast polarizer ensures that the direction of the linear polarization in the target remains constant while rotating 

the half-wave plate controls the intensity. The laser beam enters the chamber through a vacuum window after 
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focusing with an off-axis parabola, (4), and exits it through a second vacuum window and after the interaction with 

the ion beam. At the exit, beam splitter (5) sends one fraction to a photo diode (7), which provides the trigger for 

detecting of the time-of-flight signals, that the basis for reconstruction of the fragment the. The other fraction of the 

laser beam hits the head of a every single-shot energy meter (6). It delivers a value for the energy of every single 

laser shot, , which is save together with all other measured data. Together with characterization of the focal spot 

and pulse duration the values is used to tag the pulse energy respectively the peak intensity for every single laser 

shot. 

The measurement principle for determination of fragment momenta is illustrated in Figure 3.4 b). Strong-field 

fragmentation of  is used as an example but also other target species can be used in a similar manner. The ion 

has an initial velocity parallel to the z-axis of the coordinate system and travels from the left to the right. The focused 

laser beam comes from the top and goes to the bottom. It crosses the ion beam at the position where the purple 

ellipse with the two red circles are drawn. The purple ellipse with the two red circles is representative for the 

constituents of the  molecule, i.e. one electron, (e) (purple ellipse) which is shared by two protons (p) (red 

circles). Depending on whether the laser ionizes or dissociates it, the molecule breaks up into an electron and two 

protons, , with the momenta, ,  and  or into a hydrogen atom and a proton, 

 with momenta, , . Due to the intensity distribution in the volume, both reactions occur simultaneously 

during the experiment and thus, the particles and momenta of both reaction channels are detected. 

 

 

Figure 3.4: ITRIMS setup and illustration of momentum detection scheme for the case of ionization 

a) ITRIMS setup. Letters label elements of the ion beam apparatus while numbers label the optical components of the setup, 

see text for the details. a - Duoplasmatron ion source, b – Einzel lens I, c- deflectors I, d – differential pumping stage, e - 

deflectors II, f –Einzel lens II, g – Wien filter, h - Einzel lens III, i to k - deflectors III, l - aperture I, m – aperture II, n – ion 

spectrometer, o – detector, p –trigger-diode, 1 - -plate, 2- -plate, 3-High-contrast polarizer, 4-Off-axis parabola f=15 cm, 

5 – beam splitter,6 – energy meter b) Detection scheme. The ion beam comes from the left an crosses the laser beam at an 

angle of 90 degrees. Due to the initial velocity of the ion beam, the fragments form the laser-ion interaction continue to fly 

towards the position and time-sensitive delay-line detector. Created photo electrons, however are too fast which is related to 

large deflections angles. Thus, they are not detected. (e) – electron, (p) – protons, F-cup – faraday cup to block direct exposure 

of the detector by the ion beam. 

 

Figure 3.4 b) is drawn for the example of ionization. The protons hit the detector at the positions,  and  

after the time-of-flights,  and , after the laser has triggered the measurement by arriving at the trigger diode 

at the time . Measurement of the corresponding quantities for dissociation is done analogues. The measured 

a) b)b)



Momentum Spectroscopy of Laser-Induced Fragmentation Processes 

  38 

quantities,  and  as well as  and , are the basis for the backcalculation of the momenta at the end 

of the laser pulse, [21] [70] [69]. In contrast to the heavy fragments such as protons, atoms or ions, free electrons 

with the momentum, , which result from the interaction between ion beam and the strong laser are too fast to hit 

the detector and cannot be detected in this setup. In addition, it is challenging to distinguish electrons from 

ionization of the background gas from ionization of the ion target due to the low density of the ion beam, see [83].  

Data acquisition uses an 8-bit analog to digital converters (ADC) from “RoentDek”, Frankfurt which is read out 

and controlled by a personal computer using the software “Cobold” (“RoentDek”). The whole MCP-DLD system 

including fast ADC electronics achieves a spatial resolution of better than 100 μm and a temporal resolution of better 

than 100 ps for the measurement of impact position and TOF (RoentDek). “Cobold” is used during the measurement 

for optimization as well as for saving the raw data after some preliminary filtering. Calculation of the three-

dimensional momenta from the measurement of positions TOFs as well as the application of coincidence conditions 

to filter the data from noise or for specific events is done using “MATLAB” after exporting the raw data from 

“Cobold”, see [21] [70] [69].  

The final result of the measurement are two lists of triples, , of  identified valid ionization and  

dissociation events, . Each of the triples contains momenta of the two protons,  for ionization 

respectively of a -atom and a proton, , for dissociation as well as the corresponding value of the peak 

intensity, , which got calculated using the tagged laser energy together with characterization of the focal spot and 

pulse duration. All momenta are given within the center of momentum frame of all dissociation events. The linearly 

polarized laser is aligned parallel to the x-axis of the coordinate system. Calculation of one or more dimensional 

distributions and spectra using MATLAB enable the analysis of differential ionization or dissociation rates.  

An example of projected two-dimensional distribution of ionization and dissociation events is shown in Figure 

3.5. In the plot, a histogram of ionization and dissociation events is shown together as a projection in the plane of 

the linear polarization.  

 

p

pH

pp

dissociationionization

 

Figure 3.5: Illustration of typical measurement result for fragmentation of  by a strong laser field 

The figure shows a two-dimensional histogram of events after strong-field fragmentation of a  ion beam target. A 

projection into the -plane, i.e. in the plane of the linear polarization of the laser, is shown. The polarization of the laser 

is parallel to  . Ionization events have large momenta, i.e. larger kinetic energy realease (KER) than dissociation events. 

Thus, they are found in the outer region of this plot while dissociation events are found in the inner region.  
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To summarize, COLTRIMS allows to perform momentum spectroscopy of charge fragments (neutrals are not 

detected) including electron and ions which result from laser-induced fragmentation processes starting from cold 

neutral gas jet targets with high density. The ITRIMS setup enables investigation of strong-field laser-matter 

interaction starting from ion targets. Due to the initial velocity of the ion beam, detecting electrons in coincidence 

with ions is challenging and typically not done. However, the initial velocity of the ion beam enables detection of the 

neutral fragments, which is typically not the case in COLTRIMS setups. Both measurement setups, ITRIMS and 

COLTRIMS, are complementary techniques. 

 

3.5 Conclusion and Outlook 

 

In this chapter, we have discussed momentum spectroscopy of laser-induced fragmentation processes by 

reviewing classical kinematics in setups for momentum spectroscopy of laser-induced fragmentation processes 

first. The consideration could reveal several aspects which are relevant for the experimental setups of the Velocity-

Map-Imaging (VMI) spectrometer and for the Ion Target Recoil Ion Momentum Spectroscopy (ITRIMS). Both setups 

are used to investigate strong-field photoionization atoms and ion in the following chapters.  

For future work on the VMI and the ITRIMS setups in Jena, presently a VMI spectrometer which enables the 

measurement of higher photoelectron energies is under construction. The ITRIMS setups is routinely operated with 

atomic or molecular ions as targets, some approaches for, e.g. reduction of the measurement time in section 5.2.3 of 

chapter 5.  
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4 Off-Axis Low-Energy Structures in Strong-Field Photoionization 

 

4.1 Introduction and Outline 

 

Since the observation that an atom exposed to intense fields can absorb more energy than necessary for ionization 

above the single photon threshold [1], i.e. so-called above-threshold ionization (ATI) in 1979, experimental and 

theoretical work has revealed several remarkable features of strong-field photoionization (SFI) of atoms. Without 

the aspiration of giving a complete list, early examples are the observation of ponderomotive effects [84] and the 

discovery of the plateau at high photoelectron energies [2]. More recent examples are frustrated tunneling 

ionization [5], carpet-like patterns in the photoelectron momentum distribution (PMD) close to right angle to the 

polarization [85]. For comparatively long wavelength, the so-called low-energy structures (LES) [9] [34] and 

spiderlike interference features, which are interpreted as holograms [86] [87] [88], as well as features at very low 

[89] and even practically at zero kinetic photoelectron energy [35] caught the attention of researchers. Also, 

applications of SFI have matured over the past almost 40 years, e.g. a stereographic analysis of the PMD at high 

photoelectron energy emitted in narrow cone around the polarization axis of the linearly polarized laser is regularly 

used for single-shot measurement of carrier-envelope phase (CEP) and pulse duration of few-cycle laser pulses. If 

SFI is done using laser fields with short-wave infrared (SWIR) wavelength, the analysis of the PMDs at high 

photoelectron energies can be used to extract electron-ion scattering potentials for atoms [90] using so-called laser-

induced electron diffraction (LIED) [32]. Application of LIED to SFI of small, aligned molecules recently 

demonstrated time-resolved imaging of bond-breaking dynamics in small molecules [33]. 

Here, we investigate SFI by SWIR fields into states with low electron momentum parallel to the linear polarization 

of the laser field. To this end, the velocity map imaging (VMI) technique is used to measure photoelectron 

momentum distributions (PMDs) from strong-field photoionization of Xenon by laser fields with durations of many 

and few optical cycles. The measurement setup and procedures are introduced in subsection 4.2. Typical features 

of the PMD and observations from the measurement are summarized in subsection 4.3. In subsection 4.4, we 

introduce the implementation of the semi-classical model of strong-field photoionization. The results of the 

simulation are compared to experimental observations qualitatively in subsection 4.5. Subsection 4.6 summarizes 

the results of the experimental and theoretical work of the chapter. 

 

4.2 Measurement of Photoelectron Momentum Distributions 

 

Figure 4.1 provides a sketch the experimental setup including the beam path for the laser and the vacuum 

apparatus, which contains the VMI spectrometer. Given peak intensities are based on the measurements of pulse 

duration, focal spot and on measurements of the pulse energy using an energy meter. The estimation accounts for 

additional losses that occur due to the transmission of the entrance window. For the FROG measurements, the 

amount of dispersion in the beam path to the FROG and the VMI are made equal.  
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Projections of the PMDs are measured and processed as detailed in [45]. In short, for each setting of laser 

parameters, a high-dynamic range image is recorded, background subtraction is done and the inversion algorithm 

[91] is applied. The inset, (a) to (d) in Figure 4.1, illustrate the data processing after recording of the high-dynamic 

range image. An example of a final measurement result is shown by the greyscale image in (d). It is a cut through 

the  plane of the three-dimensional PMD. The linear polarization of the laser is oriented as indicated in the 

inset. Typically, the logarithm of the PMD is shown. 

 

 

Figure 4.1: Sketch of the experimental setup which is used to measure PMDs 

The laser beam comes from the hollow-fiber setup. The front-surface reflection from an optional wedge is used 

to attenuate the beam in order to allow pulse characterization using a home-built FROG setup. Controlling the 

pressure inside the hollow fiber and adjusting the dispersion by adding/removing glass plates from the beam 

path allows one to measure PMDs with different pulse duration. The - plate in combination with the Ge-plate 

(acts as polarizer) allows to change the peak intensity without changing the focal volume by changing the pulse 

energy in the target. Focusing with a focal length of  cm leads to peak intensities up to a few . 

The second optional wedge is used to characterize the focal spot using the Si-based CCD. The inset of images, (a)-

(d), illustrate the data processing. The arrow in (d), which is an example of a final experimental result, indicates 

the orientation of the linear polarization. It represents a cut through the PMD [45]. 
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4.3 Photoelectron Momentum Distributions from Strong-Field Ionization 

 

4.3.1 Typical Features 

 

ATI ‚rings‘ 

′2𝑈𝑝′

′10𝑈𝑝′

′2𝑈𝑝′

′0.1𝑈𝑝′

′0.1𝑈𝑝′

 

Figure 4.2: Comparison of PMDs from strong-field ionization of Xenon from long pulses of different wavelength  

The wavelength is 1.8 µm shown in (a) and 0.8 µm in (b) [45]. As typical, the logarithm of the photoelectron yield 

is shown. The distributions exhibit significant differences, particularly different spectral features are more or 

less pronounced depending on the laser parameters. The circles mark momenta of characteristic energies, i.e. 

the 𝑝 = √2 ∙ 2𝑈𝑝 (dashed circles) in (a) and 𝑝 = √2 ∙ 10𝑈𝑝 dot-dashed circle in (b) only. A short survey of the 

marked spectral features is given in text.  

 

As Figure 4.2 illustrates, PMDs from strong-field ionization are very beautiful complex patterns, which contain a 

huge number of spectral features. Most of the features are sensitive to laser parameters, such as the pulse duration, 

intensity and wavelength and the target species [92] [93]. Figure 4.2 displays measured data at a wavelength of 0.8 

µm and 1.8 µm. The target gas is Xenon, the peak intensity is 𝐼 ≈ 8 ∙ 1013 W/cm2, linear polarization has been used 

in both cases. Several characteristic spectral features are marked. 

Such momentum distributions can be reproduced by direct numerical integration of the time-dependent 

Schrödinger equation (TDSE) within a single active electron approximation using modern computers, e.g. [92] [93]. 

However, this typically requires a meaningful single active electron potential and thus, naturally excludes multi-

electron effects that might play a role. In addition, such calculations, particularly in all three spatial dimensions and 

potentially for laser fields with arbitrary polarization state, became possible only recently, and are computationally 

very demanding. Further, direct integration of TDSE delivers insight into the interaction mechanism only if 

meaningful observables are evaluated during the calculation and are analyzed later. In that sense, numerical 

integration of the TDSE can be viewed as a numerical experiment. Alternatively to the direct TDSE approach, several 

more analytical theories have been developed to describe strong-field ionization. Examples are the simple man’s 

model [11], [94] [12] or its quantum mechanical version, the strong-field approximation [95] [96]. Although these 

models employ several approximations and might yield worse agreement than solving the TDSE, they have been 

invaluable particularly in the early days of the field. They are able to reproduce characteristic features and provide 
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detailed insight into the interaction as the ingredients are electron orbits, which have an intuitive interpretation. 

Based on these orbits, characteristic features in the PMDs can be identified and assigned to characteristic processes 

that take place during strong-field ionization. An overview of these spectral features is given next.  

First, the rings in Figure 4.2 mark the classical cut-off of electrons with momenta of up to 𝑝𝑚𝑎𝑥 𝑑𝑖𝑟𝑒𝑐𝑡
=

√2 ∙ 2𝑈𝑝 (dashed line in a) and b)), 𝑝𝑚𝑎𝑥 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑐𝑎𝑡𝑡𝑒𝑟
= √2 ∙ 0.09 𝑈𝑝  (dotted line in a) and b)) and 

𝑝𝑚𝑎𝑥 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟
= √2 ∙ 10𝑈𝑝 (dashed-dotted line in b) only). 𝑝𝑚𝑎𝑥 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟

 is marked in b) but not marked in a) as 

this momentum is too high to be measured with the used VMI apparatus for the longer wavelength. These features 

are connected to the highest electron energy of three different classes of electron trajectories: i) direct trajectories, 

ii) forward scattered trajectories and iii) backward scattered trajectories. Direct trajectories leave the vicinity of the 

ion without being driven close to it at some time later in the field. As is shown later, according to the classical model, 

they can reach energies up to 2𝑈𝑝. The other two classes are driven close to the ion by the field and thus, scatter 

elastically with it. This changes the electron’s direction of escape and allows a range of momenta from relatively low 

to very high, i.e. 𝑝𝑚𝑎𝑥 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠𝑐𝑎𝑡𝑡𝑒𝑟
= √2 ∙ 0.09 𝑈𝑝  and  𝑝𝑚𝑎𝑥 𝑏𝑎𝑐𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟

= √2 ∙ 10𝑈𝑝  depending on the scattering 

direction. 

First evidence of elastic scattering effects in SFI have been observed at high energies [2], which is typically referred 

to the high-energy plateau. It appears parallel to the laser polarization and is marked in Figure 4.2 b). However, as 

recently found and discussed later, scattering does not only occur in backward direction but in principle in any 

direction. Thereby, forward scattering is a somewhat special case as it can lead to relatively low final electron 

energies and to peaked features in the PMD due to a bunching mechanism as will be shown later. These low-energy 

structures (LES) are marked in a) and b). They are particularly prominent if long laser wavelength is used. The LES 

effect has attracted a lot attention since the availability of long-wavelength laser sources [9] [34] [97] [98] [99]. An 

off-axis extension of these features is marked by “Fork” in (a) and will be discussed in detail below [10].  

Second, there are these ring structures that are particularly prominent in Figure 4.2 (b). They are marked with 

“ATI-rings” and are a clear signature of quantum effects in strong-field ionization, which is one of the first features 

that was observed in strong-field ionization [1]. They are peaks in the photoelectron yield at energies that are 

separated by one photon energy. The structure is also present in a). However, it is washed out as the photon energy 

is almost smaller than the energy resolution of the VMI apparatus for this wavelength. Phenomenologically, these 

peaks could be viewed as the multi-photon version of Einstein’s photoelectric effect where energy of the photo 

electron is simply, 𝐸𝑃ℎ = 𝐼𝑝 − 𝑛 ∙ 𝜔ℏ, with 𝐼𝑝 being the ionization potential of the target, and 𝑛 being the number of 

absorbed photons. From the perspective of quantum orbits/electron trajectories, the peaks occur due to the 

interference of electron trajectories which start at different times during the laser field. The feature, which is 

marked by the interference carpet [85], is closely linked to this explanation slightly modified for electron emission 

with zero longitudinal momentum. 

Third, there are the spider structures in a), which are particularly prominent for long wavelength [100] [101]. 

Similar to the “ATI-rings” the explanation for these features lies in an interferences effect of electron bursts that are 

emitted at different times during the laser pulse and go along different electron orbits. Sometimes, they are 

interpreted as holograms between direct electron trajectories, which leave the vicinity of the ion without scattering, 

and rescattered electron trajectories, which come close to the ion and scatter before they reach the detector.  
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4.3.2 Momentum Distributions at a Few Wavelength from Xenon 

 

 

Figure 4.3: Logarithm of PMDs of Xenon from long pulses with different center wavelength. 

Laser pulses from the signal and the idler beam of the TOPAS have been used [45]. The peak in each of the 

measurement is 𝐼 ≈ 5 ∙ 1013 W/cm2. Interesting is the fork-like structure which occurs close to right angle to the 

polarization axis. It becomes more prominent the longer the laser wavelength.   

 

Figure 4.3 shows PMDs from SFI of Xenon in the signal and idler range of the TOPAS for intensities around 𝐼 ≈ 5 ∙

1013 W/cm2  and linear polarization. As the detection range of VMI is limited to energies below 80 eV, only the 

energy region of direct electrons is observed. Increasing the wavelength leads to higher photoelectron energies and 

thus to a wider PMD. This is expected from the scaling of the 2𝑈𝑝 cut-off with wavelength, 𝑈𝑝~𝐼𝜆
2. In addition, the 

longer the wavelength, the worse the visibility of ATI peaks becomes. The observation can be attributed to the fact 

that the separation of ATI peaks is proportional to the laser frequency. Thus, the visibility of ATI peaks decreases 

for increasing wavelength until they are completely washed out by the limited momentum resolution of the VMI 

spectrometer. An eye catching feature are these prominent prongs of a fork-like structure, which appear close to 

right angle to the laser polarization axis of the laser. They are the more pronounced, the longer the wavelength 

becomes and even contain interesting interference features if the momentum resolution of the spectrometer is 

sufficient to resolve them, see e.g. the 1.8µm or the 2.0 µm measurement. These features are similar to the ATI peaks 

less visible the longer the wavelength. 

Similar fork-like structures have has also been observed in an experiment where meta stable Xenon (𝐼𝑃 = 3.8) is 

ionized by a 7µm-laser pulses from an infrared free-electron laser [100] at significantly lower intensity of 𝐼 ≈ 5 ∙

1011 W/cm2. The major experimental and theoretical results of this work are summarized in Figure 4.4. The overall 

shape is found to be very similar to the observations, which were made in the PMDs from the table-top experiment 

in Figure 4.3 where the intensity is high enough to allow the use of Xenon atoms in the ground state (𝐼𝑃 = 12.13) as 

the target. The performed TDSE and coulomb-corrected strong-field approximation [102] [103] simulations also 

shown in Figure 4.4 reproduce the measurement including the off-axis features. 

Altogether, Figure 4.3 and Figure 4.4 brought an interesting off-axis fork-like structure to our attention, which 

exists over a wide range of parameters in SFI by SWIR fields and is reproduced by direct integration of the TDSE 

and the coulomb-corrected strong-field approximation.  
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Figure 4.4: PMDs from metastable Xenon ionized by 7 µm laser at a peak intensity of 𝐼 ≈ 5 ∙ 1011 W/cm2 

This figure is taken from the original publication by [100]. The experimental and theoretical results in this work 

revealed a very similar structure close to right angle to the polarization axis. However, in this experiment laser 

pulses from an infrared free-electron have been used. These lasers can have very long wavelength but typically have 

a lot longer pulse duration than the table-top measurements presented here. 

 

4.3.3 Momentum Distributions from a Long Pulse and Few-Cycle Pulse from Xenon 

 

Here we compare PMDs from SFI of Xenon produced by a laser field with many-cycle duration with the PMD 

produced by a few-cycle pulse.  

Figure 4.5 shows the logarithm of the PMD from strong-field ionization for Xenon generated by a 75-fs pulse and 

a 12-fs pulse at a center wavelength of 1.8 µm. The peak intensity is 𝐼 ≈ 8 ∙ 1013 W/cm2 for both cases. Previously 

discussed features that are particularly prominent are labeled in a) again. The color bar is clipped on the high-yield 

side in b) and d) in order to emphasize the three pronged structure that appears at close to a right angle to the 

polarization axis. Almost all features of the PMD are washed out if ionization is caused by the few-cycle pulse, 

reminiscent of the ATI peaks, the spider structure is a lot less pronounced and the fork changes from a prong to a 

to a smooth distribution. Thus, the fork-like structure is almost certainly due to rescattering electron orbits that 

travel for long times in the laser field and which are naturally not supported by a few-cycle laser pulse. 

Figure 4.6 e) and f) shows simulations of strong-field photoionization of the experiment by Dejan Milosevic [10] 

for parameters that are representative for the experimental conditions. These simulations use the so-called 

improved strong-field approximation (iSFA) [104]. It is the quantum mechanical formulation of SCM of strong-field 

ionization. In contrast to standard strong-field approximation (SFA), not only direct quantum obits are taken into 

account but also scattered quantum orbits are used. Figure 4.5 e) is calculated for an infinitely extended 

monochromatic plane wave (CW) while Figure 4.5 f) is for a finite pulse of five optical cycles total duration (11 

fsFWHM) with a cos2 envelope and averaged over the carrier-envelope phase. Focal averaging is taken into account 

in the simulation. The fork feature is qualitatively clearly reproduced for the cw pulse and reducing the pulse 

duration washes it out as observed in the measurement.  
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Figure 4.5: Measured and simulated logarithm of PMDs from strong-field ionization of Xenon 

For the long pulse a)-b), e) and the short pulse c)-d), f). The center wavelength is 1.8 µm. In a), several feature which are 

characteristic for long wavelength are marked. The color bar in (b) is clipped on the high-count rate side in order to 

emphasize the fork-like structure close to right angle to the laser polarization. This structure is strongly smeared out in 

c) and d), where the short pulse is used. Peak intensity in the experiment a)-d) is 𝐼 ≈ 8 ∙ 1013 W/cm2 compared to ≈ 5 ∙

1013 W/cm2  for the simulations in e) and f). The simulation is volume averaged and uses the improved strong-field 

approximations theory (iSFA) with both direct and rescattered electrons. As in the experiment, the fork structure is 

washed out [10]. 

 

A more detailed investigation of the influence of the pulse duration based on the experimental data is shown 

Figure 4.6 where the photoelectron spectrum for an emission direction of ±1° around the laser polarization axis 

and electron energies up to 50 eV (roughly 2𝑈𝑝, 𝑈𝑝 = 24 eV) is compared for ionization by a long and a short pulse 

in Figure 4.6 a). The spectrum has been generated from the measured PMDs. The vertical shift is artificially in order 

to improve visibility. For both cases, long pulse and short pulse, the LES peaks at energies below roughly 0.09 𝑈𝑝 

(2.16 eV) are visible. For the few-cycle pulse, the first-order LES peak moves towards smaller energy, which is 

consistent with a recently published experimental and theoretical study of the pulse duration dependence of the 

LES [99]. In addition, the height of the peak at very low energy (<1 eV) is suppressed. Figure 4.6 b) compares the 

electron yield as function of emission angle for a fixed electron momentum of 𝑝 = 0.75 au. The polarization axis of 

the laser is points towards 180° here. While a regular modulation of the electron yield as function of the emission 

angle is observed for the long pulse, this modulation is suppressed for the case of the few-cycle pulse.  

 

e) f)
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Figure 4.6: Details of the comparison between PMDs from ionization with a long pulse and few-cycle pulse 

a) Photoelectron spectrum parallel to the laser polarization axis [45]. b) Angular distribution of photoelectrons with 

an energy of 𝑝 = 0.75 [45]. 

 

4.4 Semi-classical Model of Strong-Field Ionization 

 

Altogether, the previous chapter on measurements of PMDs from SFI by an SWIR and IR laser fields revealed an 

off-axis low-energy structure that is more pronounced the longer the wavelength. Similar features have been 

previously observed in ionization experiments with even longer driving lasers from an IR free-electron laser. For 

this experimental parameters, the feature has been reproduced by direct integration of the TDSE and coulomb 

corrected SFA theory. For the experimental parameters here, simulations based on improved SFA theory 

qualitatively reproduced the off-axis LES as well it’s previously unobserved sensitivity to the pulse duration of the 

used laser pulse. Particularly, it was found that off-axis LES structure is supported by improved SFA (iSFA) theory, 

which takes into account direct and rescattered electron trajectories. Motivated by the fact that the iSFA is basically 

the quantum mechanical version of the semi-classical model (SCM) on strong-field ionization, here we aim to trace 

the origin of the off-axis LES and its sensitivity to the pulse duration to rescattered electron trajectories within SCM. 

To this end, the SCM will be augmented by rescattering at multiple returns. Further, details of the elastic scattering 

cross-section are taken into account. As demonstrated, the improved SCM supports on- and off-axis low energy as 

well as on- and off-axis high energy features in the PMD including their susceptibility to the pulse duration. Further, 

it allows to trace the common origin of the features to rescattering dynamics between the field-driven photoelectron 

and the parent ion.  

 

4.4.1 Overview 

 

The semi-classical model (SCM) [11] [12] has been extremely influential and become one of the backbones in the 

field strong-field interactions and attosecond science. It described SFI as three step process: (i) tunneling ionization 

in quasi-static field; (ii) propagation and thereby acceleration of classical electron trajectories in the laser field; (iii) 

an electron-ion interaction if trajectories lead back into the range of the potential. The most prominent options for 
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the interaction at (iii) are: a) recombination to the ground state, which leads to the emission of high harmonics 

(HHG); b) an inelastic collision between electron an ion that causes a knock-out of a second or several electrons 

known as non-sequential ionization (NSDI); c) elastic scattering between electron and ion that is responsible for 

the generation of low- and high-energy on- and off- axis electron momenta as will be demonstrated.  

Here, we construct the PMD, 𝑊( ), i.e. the probability for finding an electron with momentum,  , after ionization 

of an atom by the field, 𝑬(𝑡), along the lines of the SCM. The approach that we use for this purpose is similar to what 

has been done in refs. [13] [105]. However, the model here goes in slightly different direction, particularly in the 

method of how a weight is put onto the contribution of rescattered trajectories, which have a long travel time. 

Specifically, the PMD, 𝑊( ), is composed of the weighted contributions from direct and scattered trajectories that 

lead to the final momentum  , i.e. 𝑊( ) =  𝑊𝑑𝑖𝑟( ) +𝑊𝑠𝑐( ). Each of the contributions, is the sum of ionization 

weights, 𝑊𝑖𝑜𝑛(𝑡𝑠
𝑘), from 𝑘 starting times, 𝑡𝑠

𝑘, in the laser field that lead to the same final momentum,  . For the direct 

contribution, i.e. for the contribution of trajectories that do not rescatter, this means 𝑊𝑑𝑖𝑟( ) = ∑ 𝑊𝑖𝑜𝑛
𝑘 (𝑡𝑠

𝑘,  )𝑘 . The 

procedure is slightly more complex for scattered contribution, 𝑊𝑠𝑐( ). Each trajectory with the starting time, 𝑡𝑠
𝑖 , has 

the possibility to return at 𝑗 return times, 𝑡𝑟
𝑗
. Thus, one has to sum the contributions from each combinations of 

starting times, 𝑡𝑠
𝑖 , and return times, 𝑡𝑟

𝑗
, which lead to the final momentum,  , i.e. 𝑊𝑠𝑐( ) = ∑ 𝑊𝑖𝑜𝑛

𝑖𝑗
(𝑡𝑠

𝑖 , 𝑡𝑟
𝑗
,  )𝑖𝑗 . As it is 

shown below, each of the contributions, 𝑊𝑖𝑜𝑛
𝑘 (𝑡𝑠

𝑘,  ), and 𝑊𝑖𝑜𝑛
𝑖𝑗
(𝑡𝑠

𝑖 , 𝑡𝑟
𝑗
,  ) are thereby modeled in the form of a product 

where each factor represents an aspect of the interaction.  

A central aspect of our construction of the PMD is to establish the connecting between the ionization time, 𝑡𝑠, and 

the final momentum  . For the direct contributions, this can be approximately done by neglecting the influence of 

the binding potential and finding the trajectory by integrating Newton’s equation of a free electron in the laser field. 

For scattered trajectories, the influence of the binding potential is taken into account by deflecting the potential-

free trajectories into an angle, 𝜃 , upon return at some time after 𝑡𝑠  with the return velocity 𝑣𝑟 . Details of the 

potential, e.g. its shape, are then incorporated using a scattering cross-sections that weights the deflection angle, 𝜃, 

independence of, 𝑣𝑟 . Thereby, we account for proper normalization of the relative weights of earlier and later 

returns.  

In order to provide and discuss the details of the model, we start by direct and scattered electron trajectories in 

section 4.4.2. The contribution of direct trajectories to the PMD, 𝑊𝑑𝑖𝑟( ),  is constructed in section 4.4.3. The 

construction of the contribution from rescattering, 𝑊𝑠𝑐( ), is detailed in 4.4.4. The results of the model calculations 

are illustrated and analyzed in section 4.4.5. A comparison between the model and the measurement is presented 

in section 4.5. The results of the chapter are summarized in section 4.6.  

 

4.4.2 Direct and Rescattered Trajectories in the Laser Field 

 

Newton’s equation of motion for a classical electron, in a linearly polarized field, 𝑬(𝑡) = 𝐸(𝑡)  , with the vector 

potential, 𝑨(𝑡) = 𝐴(𝑡)  = −∫ 𝐸(𝑡′)𝑑𝑡′
𝑡

−∞
  , is 𝒓̈(𝑡) = −𝑬(𝑡) . Atomic units are used unless stated otherwise. 

Integrating it from the starting time, 𝑡𝑠, until 𝑡, yields  
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𝒓̇(𝑡, 𝑡𝑠) = 𝒗(𝑡, 𝑡𝑠, 𝑣⊥) = 𝑨(𝑡) − 𝑨(𝑡𝑠) + 𝒗0 = 𝑨(𝑡) − 𝑨(𝑡𝑠) + 𝒗⊥. (4.1) 

The initial velocity, 𝒗0, is decomposed into components parallel and perpendicular to the linear polarization of the 

ionizing laser field, 𝒗0 = 𝑣∥ ∥ + 𝑣⊥ ⊥. As it is typical for tunneling, 𝑣∥ = 0, is used in (4.1). A second integration leads 

to the position 

𝒓(𝑡, 𝑡𝑠) = 𝜶(𝑡) − 𝜶(𝑡𝑠) + (𝑡 − 𝑡𝑠)(𝒗⊥ − 𝑨(𝑡𝑠)). (4.2) 

Thereby, it is assumed that the trajectory starts at the position of the ion that is placed at the origin, 𝒓0 = 0. The 

influence of the ionic potential has been ignored completely. Also, the motion of the ion in the field is neglected as 

it is small, see equation (3.7). The quantity, 𝜶(𝑡), denotes the integral over the vector potential, 𝜶(𝑡) = ∫ 𝑨(𝑡′)𝑑𝑡′
𝑡

−∞
 

[106].  

Scattering is included if equation (4.2) leads back close the potential of the ion at some return time, 𝑡𝑟
𝑗
> 𝑡𝑠. For 

such a return, the trajectory has to fulfill the condition of return, 

𝒓(𝑡𝑟
𝑗
, 𝑡𝑠, 𝒗⊥ = 0) ≈ 0. (4.3) 

For linear polarization, 𝒗⊥ = 0 has to be used as this is the only possibility to fulfill (4.3) strictly a linearly polarized 

field. A graphical solution of (4.3) can be formulated by the condition, 𝜶(𝑡𝑟
𝑗
) = 𝜶(𝑡𝑠) + (𝑡𝑟

𝑗
− 𝑡𝑠)𝑨(𝑡𝑠) = 𝜶(𝑡𝑠) +

(𝑡𝑟
𝑗
− 𝑡𝑠)𝜕𝜶 𝜕𝑡⁄ |𝑡𝑠 , [107] [108]. This formulation reflects that a return can be found by searching for times where 

the tangent on 𝜶(𝑡𝑠) intersects with 𝜶(𝑡𝑟
𝑗
) itself. As 𝜶(𝑡)~𝑬(𝑡) for a plane wave field, the graphical procedure can 

be applied to 𝑬(𝑡) directly. Due to the periodicity of a typical laser field, it is possible to find several return times, 

𝑡𝑟
𝑗
, for a given starting time, 𝑡𝑠. Therefore, the index 𝑗 is used to indicate the order of the return.  

Upon return, the trajectories have spent the travel time, 𝑡𝑡
𝑗
= 𝑡𝑟

𝑗
− 𝑡𝑠, in the field and got accelerated to the return 

velocity 

𝒗𝑟(𝑡𝑟
𝑗
, 𝑡𝑠) = 𝑨(𝑡𝑟

𝑗
) − 𝑨(𝑡𝑠). (4.4) 

At this time, the interaction with the ion is included in the form of elastic electron-ion scattering by assuming a 

deflection into the angle theta, 𝜃 , while the |𝒗𝒓(𝑡𝑟
𝑗
, 𝑡𝑠)|  is assumed to be unchanged. Thus, the velocity after 

scattering can be found by modifying the initial condition in (4.1), 

𝒗𝑠𝑐(𝑡, 𝜃, 𝑡𝑟
𝑗
, 𝑡𝑠) = 𝑨(𝑡) − 𝑨(𝑡𝑟

𝑗
) + 𝒗𝑟(𝑡𝑟

𝑗
, 𝑡𝑠)[cos(𝜃)  𝑧 + sin(𝜃)   ]. (4.5) 

Using equation (4.5) means assuming an instantaneous deflection into the scattering angle, 𝜃. The scattering is 

limited to the plane of the linearly polarized laser field, which is appropriate as the measured PMDs from the VMI 

spectrometer represent a cut through the three-dimensional PMD.  

The asymptotic velocity of a trajectory, 𝒗𝑠𝑐
𝑓
(𝜃, 𝑣𝑟(𝑡𝑟

𝑗
, 𝑡𝑠), 𝑡𝑟

𝑗
, 𝑡𝑠), that started at 𝑡𝑠, returned at 𝑡𝑟

𝑗
 with the velocity, 

𝑣𝑟(𝑡𝑟
𝑗
, 𝑡𝑠) and scattered into the angle 𝜃 is 
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𝒗𝑠𝑐
𝑓
(𝜃, 𝑣𝑟(𝑡𝑟

𝑗
, 𝑡𝑠), 𝑡𝑟

𝑗
, 𝑡𝑠) = 𝒗𝑠𝑐

𝑓
(𝜃, 𝑡𝑟

𝑗
, 𝑡𝑠) = −𝑨(𝑡𝑟

𝑗
) + 𝒗𝑟(𝑡𝑟

𝑗
, 𝑡𝑠)[cos(𝜃)  𝑧 + sin(𝜃)   ]. (4.6) 

It can be found from equation (4.5) by letting 𝑡 go to infinity, 𝑡 → ∞. In this limit, the property of a traveling wave 

∫ 𝑬(𝑡′)
∞

−∞
𝑑𝑡′ = 0 (it has no direct current component) is used by applying 𝑨(𝑡 → ∞) = 0. Inspecting equation (4.6) 

shortly reveals that each scattered trajectory is a circle, which is shifted by the vector potential at the time of return 

in the PMD, see e.g. [105]. Trajectories that do not fulfill the condition of return, i.e. equation (4.3), do not come close 

to the ion and thus, do not scatter. These trajectories are classified as direct trajectories and have the asymptotic 

velocity,  

𝒗𝑑𝑖𝑟
𝑓 (𝑡𝑠, 𝒗⊥) = −𝑨(𝑡𝑠) + 𝒗⊥. (4.7) 

(4.7) follows from applying, 𝑨(𝑡 → ∞) = 0, to (4.1), i.e. 𝒗(𝑡 → ∞, 𝑡𝑠, 𝑣⊥) = 𝒗𝑑𝑖𝑟
𝑓
(𝑡𝑠, 𝑣⊥). 

Equations (4.1) to (4.7) establish a connection between an electron trajectory that is released at the time 𝑡𝑠 and 

it’s asymptotic velocity the detector, 𝒗𝑓, for a given field, 𝑬(𝑡). Depending on whether, 𝑡𝑠, leads to fulfillment of the 

condition of return, i.e. (4.3), for some return times, 𝑡𝑟
𝑗
>𝑡𝑠, of the order 𝑗, 𝒗𝑓 is either calculated using the method 

for a direct trajectory, 𝒗𝑑𝑖𝑟
𝑓 (𝑡𝑠, 𝒗⊥)  in (4.7) or a scattered trajectory, 𝒗𝑠𝑐

𝑓
(𝜃, 𝑣𝑟(𝑡𝑟

𝑗
, 𝑡𝑠), 𝑡𝑟

𝑗
, 𝑡𝑠)  in (4.6). For direct 

trajectories, this is a simple relation that depends on the vector potential at the starting time, 𝑨(𝑡𝑠), and an initial 

perpendicular velocity, 𝒗⊥. For scattered trajectories, the relation is more complex. A single starting time, 𝑡𝑠, can 

lead to 𝑗 return times, 𝑡𝑟
𝑗
, where scattering into an angle, 𝜃, takes place with the return velocity, 𝒗𝑟(𝑡𝑟

𝑗
, 𝑡𝑠). Scattering 

causes an instantaneous deflection such that the asymptotic velocity is affected by the vector potential at 𝑡𝑠 and 𝑡𝑟
𝑗
. 

It is therefore extremely sensitive to the time-dependent shape of the field on time-scale below one optical period. 

The previous analysis of classical electron trajectories in the laser field does not predict the photoelectron 

momentum distribution, 𝑊( ) respectively 𝑊(𝒗), so far. Equations (4.1) to (4.7) only establish the connection 

between the starting times, 𝑡𝑠, and the asymptotic velocity, 𝒗
𝑓

, either on a direct path, 𝒗𝑑𝑖𝑟
𝑓

, or on a scattered path, 

𝒗𝑠𝑐
𝑓

.  

Next, probabilities for each of the paths are constructed along the lines of the previous discussion. Both 

constructions are finally used to calculate PMDs as the sum, 𝑊(𝒗) =  𝑊𝑑𝑖𝑟(𝒗) +𝑊𝑠𝑐(𝒗), which is compared to 

experimental data on a qualitative level later. 

 

4.4.3 Construction of the PMD Contribution from Direct Trajectories 

 

The final velocity of a direct trajectory, 𝒗𝑑𝑖𝑟
𝑓 (𝑡𝑠, 𝑣⊥), depends on the starting time, 𝑡𝑠, via the vector potential, 𝑨(𝑡𝑠), 

and on the initial perpendicular velocity, 𝒗⊥. Thus, the weight of the direct contribution at the final velocity, 𝑊𝑑𝑖𝑟(𝒗), 

is found by summing over the ionization probabilities from all combinations of starting times, 𝑡𝑠
𝑘 , and initial 

perpendicular velocities 𝑣⊥
𝑘, which lead to the same final velocity according to (4.7),  

𝑊𝑑𝑖𝑟(𝒗) = ∑ 𝑊𝑖𝑜𝑛(𝑡𝑠
𝑘, 𝒗 = −𝑨(𝑡𝑠

𝑘) + 𝑣⊥
𝑘)𝑘 = ∑ 𝑊𝑖𝑜𝑛(𝑡𝑠

𝑘, 𝑣⊥
𝑘)𝑘 = ∑ 𝑊𝑖𝑜𝑛(𝑡𝑠

𝑘)𝑊𝑖𝑜𝑛(𝑣⊥
𝑘)𝑘 . (4.8) 
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The ionization probability, 𝑊𝑖𝑜𝑛(𝑡𝑠
𝑘), is modeled using typical formulas for tunnel ionization rates, 𝛤(𝑬(𝑡𝑠

𝑘)), in a 

quasi-static strong electric field, 𝑬(𝑡𝑠
𝑘). A common expression is, 

𝛤(|𝑬(𝑡𝑠
𝑘)|) = 𝛤(𝑡𝑠

𝑘)

=
|𝐶𝑛𝑙|

2 (𝑙,𝑚)2

(2𝜅)|𝑚||𝑚|!
(

2𝜅2

|𝑬(𝑡𝑠
𝑘)|

)

2𝐵
𝜅
−|𝑚|−1

exp(−
2𝜅3

3|𝑬(𝑡𝑠
𝑘)|

) exp(−𝛽
2𝐵

𝜅2
|𝑬(𝑡𝑠

𝑘)|

𝜅3
). 

(4.9) 

The constants, 𝐶𝑛𝑙 ,  (𝑙,𝑚), |𝑚|, 𝐵 and 𝜅 = √2|𝐼𝑃| in equation (4.9) are specific for the atomic target and can be 

found in Table 4.1. For example, 𝐼𝑃 denotes the ionization potential of the target atom. The first three factors come 

from the well-known Ammosov-Delone-Krainov (ADK) formula [109] and the fourth factor accounts for an 

empirically obtained correction to this ionization rate. It is used if the quasi-static field strength, 𝐸(𝑡𝑠
𝑘) = |𝑬(𝑡𝑠

𝑘)|, is 

close to the over-barrier field strength,  𝐶 = 𝜅4/8|2𝑍 − 𝜅(𝑚 + 1)| [110] [111] and is specific for the atomic target, 

too. To calculate 𝑊𝑖𝑜𝑛(𝑡𝑠
𝑘) based on equation (4.9) depletion of the ground state, 

𝑊𝑖𝑜𝑛(𝑡𝑠
𝑘) = 𝛤(𝑡𝑠

𝑘) exp(−∫ 𝛤(𝑡′)𝑑𝑡′
𝑡𝑠
𝑘

−∞

), (4.10) 

is taken into account. It reflects that the probability or population to find the electron in the bound ground state 

decreases with the rate 𝛤(𝑡𝑠
𝑘). Thereby, the total probability of the bound part, 𝑃(𝑡), and the ionized part, 𝐶(𝑡), is 

one, i.e. 𝐶(𝑡) + 𝑃(𝑡) = 1. Equation (4.10) follows from solving the rate equation, 𝑑𝑃(𝑡)/𝑑𝑡 = − 𝛤(𝑡)𝑃(𝑡). 

Further, there is a chance for tunneling out with an initial perpendicular velocity, i.e. 𝑊𝑖𝑜𝑛(𝑣⊥
𝑘), in (4.8). It is 

modeled using the expression,  

𝑊𝑖𝑜𝑛(𝑣⊥
𝑘) =

4𝜋𝜅

|𝑬(𝑡𝑠
𝑘)|

exp(−
𝜅[𝑣⊥

𝑘]2

|𝑬(𝑡𝑠
𝑘)|

). (4.11) 

Such Gaussian shaped extension of the weight with chance for tunneling with an initial perpendicular velocity is 

well known [109] and has been proven to yield reasonable agreement with experimental data [112][113] [114] 

[115].  

Equations (4.8) to (4.11) allow to calculate the PMD from direct ionization, 𝑊𝑑𝑖𝑟(𝒗), for a given field 𝑬(𝑡). An 

illustrative example for starting times from a single half-cycle in an infinitely long laser field (plane wave) is 

discussed in subsection 4.4.5. A formalism to calculate the PMD from scattered trajectories is discussed next. 

 

4.4.4 Construction of the PMD Contribution from Scattered Trajectories 

 

The final contribution of scattered trajectories is the sum of all trajectories with the starting time, 𝑡𝑠
𝑖 , and the return 

time, 𝑡𝑟
𝑗
, which scatter with the return velocity, 𝒗𝑟(𝑡𝑟

𝑗
, 𝑡𝑠

𝑖) = 𝒗𝑟
𝑗𝑖

, into the angle, 𝜃, and lead to the final velocity, 𝒗, at 

the detector calculated according to equation (4.6),  

𝑊𝑠𝑐(𝒗) = ∑ 𝑊𝑖𝑗𝜃(𝜃, 𝑣𝑟
𝑖𝑗
, 𝑡𝑟
𝑗
, 𝑡𝑠

𝑖 , 𝒗𝑠𝑐
𝑓
)𝑖𝑗 = ∑ 𝑊𝑖𝑜𝑛(𝑡𝑠

𝑖)𝑊𝑡𝑟𝑎𝑣𝑒𝑙(𝑡𝑟
𝑗
, 𝑡𝑠

𝑖)𝜎(𝑣𝑟
𝑖𝑗
, 𝜃)𝑙𝑗𝑘 . (4.12) 
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Next, the probability of the individual summands is constructed as a product along the lines of the trajectories which 

were discussed in section 4.4.2. 

The first factor in equation (4.12), 𝑊𝑖𝑜𝑛(𝑡𝑠
𝑖), is the probability for tunnel ionization in a quasi-static field. It is the 

same as for direct trajectories, i.e. equation (4.9), but used with the initial velocity set to 𝑣⊥ = 0  as this is a 

prerequisite for a scattered trajectory in a linearly polarized field. The electron would miss the ion otherwise. The 

second factor,  

𝑊𝑡𝑟(𝑡𝑟
𝑗
, 𝑡𝑠

𝑖) = (𝑡𝑟
𝑗
− 𝑡𝑠

𝑖)−𝜉 = (𝑡𝑟
𝑗
− 𝑡𝑠

𝑖)−3/2, (4.13) 

lowers the contribution of returns with longer travel time, 𝑡𝑡
𝑗
= 𝑡𝑟

𝑗
− 𝑡𝑠

𝑖 . This is motivated by the idea that ionization 

from each 𝑡𝑠
𝑖  creates a spatially confined three-dimensional electron wave packet in the continuum, which is 

subsequently steered by the field. As an electron wave packet in the continuum spreads in space, this causes a 

lowered electron density and thus, a lower probability for returns that have a longer traveling time, 𝑡𝑡
𝑗
. Choosing 

𝜉 = 3/2 mimics the combination of two-aspects: (i) three-dimensional spreading of the released electron wave-

packet (this would yield 𝜉 = 3) while it travels from 𝑡𝑠
𝑖  to 𝑡𝑟

𝑗
 in the continuum and (ii) Coulomb-focusing that 

contracts the wave-packet in due to the attraction of the nearby ion [116].  

Last but not least, there is the differential cross-section for elastic scattering, 𝜎(𝑣𝑟
𝑖𝑗
, 𝜃), of the scattering potential 

in equation (4.12). To model the scattering of a noble gas ion, a screened potential of the form, 𝑉(𝑟) = −𝑍𝑒−𝜇𝑟/𝑟, 

with the cross-section,  

𝜎(𝜃, 𝑣𝑟
𝑖𝑗
) = (2𝑍)2 [𝜇2 + 4[𝑣𝑟

𝑖𝑗
]
2
sin2(𝜃/2)]

2

⁄ , (4.14) 

is used here. Choosing this form is mainly motivated by the desire to be able to have an analytical expression. The 

parameters, 𝑍 and 𝜇, are specific to the noble gas and are given in Table 4.1. They have been found by fitting 𝑉(𝑟) 

to more complex model potentials [110]. Instead of using this type of the potential, one might use numerically 

calculated scattering cross-sections, which are expected to give a lot better agreement between theory and 

experiment. It has been shown that high-energy part of the PMDs from strong-field ionization can be used to extract 

elastic differential scattering cross-section of the target ion from the measured PMD, see e.g. [117]. This so-called 

laser-induced electron diffraction (LIED) scheme has been used to probe several structures and dynamics of rare 

gas atoms [118], and molecules [32] [105] [119] [120]. Very recently, following even bond breaking dynamics in 

small molecules has been demonstrated [33]. 

An important aspect of the construction, (4.12), in the context here is the weight between scattering contributions 

that belong to the same starting time, 𝑡𝑠
𝑖 , but have several return orders 𝑡𝑟

𝑗
. Here, the normalization, 𝑊𝑖𝑜𝑛(𝑡𝑠

𝑖) =

∫ ∫ 𝑊𝑖𝑗𝜃𝑗
𝑑𝑗𝑑𝜃

𝜃
, is used in order to ensure appropriate weight for returns of different orders. It accounts for the 

fact that a later return with lower return velocity (high cross-section but lower return probability due to wave 

packet spreading) might be preferred, compared to an earlier return with high return velocity (low cross-section 

but higher return probability due to wave packet spreading). This schmes seems to be appropriate to weight the 

probability of different return orders in a reasonable way, but it might underestimates the direct contribution 
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compared to the scattered contribution as the mentioned wave packet spreading would lead to direct contribution 

from  even if  leads to a return.  

 

4.4.5 Illustration of the Model - PMDs from a Single Half-Cycle 

 

Figure 4.7: Classical trajectories in the laser field and ionization probability.  

a) shows the position, , of five trajectories with starting times before and after the peak of the field around . The 

wavelength of the driving field in the example is  (  a.u.) and has an intensity of  

( ). The green trajectory starts before the peak. It thus, never returns to the position of the ion at  and 

yields a direct trajectory. All others (purple, yellow, orange and blue) belong to scattered trajectories with one or multiple 

returns at the return times as indicated by the dots. b) shows the time-dependent velocities of the example in a). All 

trajectories start with zero velocity but have been shifted vertically for better visibility. The return velocities, i.e. , at the 

return times are indicated by the dots. c) shows the ionization probability,  for Xenon as the target. Only the half-cycle 

that peaks around  is considered. The area under the curve indicates which starting times lead to direct and scattered 

trajectories. The numbered lines (1-4, yellow and orange) illustrate the graphical method for finding the return times. They 

are the tangent on  that intersect   at the return time indicated by the dots.  

 

Having explained the constructions of the direct and the rescattered contribution to the PMD in sections 4.4.3 and 

4.4.4, we turn to illustrate the model using example calculations here. To this end, the results of the model are 

illustrated by considering the ionization from a single laser half-cycle in an infinitely long pulse. The analysis is 

similar to what has been done in references [16] [108] [121]. Considering ionization from a single laser half-cycle 

in an infinitely long pulse allows to perform some of the necessary numerical analysis analytically. Thus, scaling 

laws with experimental parameters of notable features in the PMDs can be given. Thereby, the major interest lies 

on the formation of on- and off-axis low-energy structures that have been investigated in recent experimental [9] 

[122] [10] [99] and theoretical work [98] [123] [124] [108]. It will be shown that these features can be well 

reproduced and understood by the constructions of the PMD that follows from the SCM  as presented in section 

4.4.2, 4.4.3 and 4.4.4. The analysis demonstrates that rescattering is the origin of the features and puts them on the 

same basis as the high-energy plateau [2] [16]. 

The field is chosen as an infinitely long plane wave with linear polarization along the z-axis of the laboratory frame. 

Thus, the PMD is calculated in the plane of the linear polarization, i.e. the -plane. The field has the amplitude , 

the frequency, , and the optical period,  and reads, 

1
2

34
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𝐸(𝑡) = 𝐸0cos(𝜔𝑡). (4.15) 

Integrating two times yields, the vector potential is 𝐴(𝑡) = −𝐸0 𝜔⁄ sin(𝜔𝑡) = −𝐴0sin(𝜔𝑡) and it’s integral 𝛼(𝑡) =

𝐸0 𝜔2⁄ cos(𝜔𝑡) = 𝛼0cos(𝜔𝑡). Using (4.1) and (4.2), one finds the position, 𝑟(𝑡, 𝑡𝑠), and the velocity, 𝑣(𝑡, 𝑡𝑠), for a 

given starting time, 𝑡𝑠, and for initial perpendicular velocity 𝑣⊥ = 0, 

𝑟(𝑡, 𝑡𝑠) =
𝐸0
𝜔2

cos(𝜔𝑡) −
𝐸0
𝜔2

cos(𝜔𝑡𝑠) + (𝑡 − 𝑡𝑠)
𝐸0
𝜔
sin(𝜔𝑡𝑠) 

𝑣(𝑡, 𝑡𝑠) = −
𝐸0
𝜔
sin(𝜔𝑡) +

𝐸0
𝜔
sin(𝜔𝑡𝑠) = 𝑣𝑜𝑠𝑐(𝑡) + 𝑣𝑑𝑟𝑖𝑓𝑡(𝑡𝑠). 

(4.16) 

Equations (4.16) are illustrated in Figure 4.7 for a few examples with starting times close to the peak of the laser 

field around 𝑡 ≈ 0. Inspection of (4.16) and Figure 4.7 reveals that the electron follows the oscillation of the field 

overlapped with a linear drift motion at constant speed, i.e. 𝑣(𝑡, 𝑡𝑠) = 𝑣𝑜𝑠𝑐(𝑡) + 𝑣𝑑𝑟𝑖𝑓𝑡(𝑡𝑠). The constant speed is 

sensitive to the starting time, 𝑡𝑠, in its magnitude and direction.  

The position and the velocity terms scale with the field strength and the frequency of the driving laser. The 

amplitude of the velocity is, 𝐴0 = 𝐸0 𝜔⁄ , and the excursion of the trajectory is 𝛼0 = 𝐸0 𝜔2⁄ . For the chosen example 

of 𝜆 = 1780 nm  (𝜔 = 0.026  a.u.) and an intensity of 𝐼0 = 8 × 1013 W/cm2  (𝐸0 = 0.048 a. u. ) this yields, 𝐴0 =

1.86 a. u. and 𝛼0 = 72.87. Comparing these numbers to typical values for the energy and the position of valence 

electrons in a noble gas atom of 𝐼𝑝 ≈ 0.5 a. u. and 𝑎0 ≈ 1 a. u (the Bohr radius) illustrates that the kinetic energy in 

the field,  𝑜𝑠𝑐 = 0.5𝐴0
2 ≈ 1.74 is of comparable size to the binding energy while the distance is a lot larger than the 

typical size of an atom, i.e. 𝛼0 ≫ 𝑎0. Both aspects, (i) large distance between electron and ion with (ii) high kinetic 

energy give arguments for neglecting the influence of binding potential on the trajectory for most of the time at least 

in a first order model. However, the trajectories shown in Figure 4.7 also reveal situations, i.e. the returns, where 

the electron trajectory approaches the ion with some velocity that can reach a whole range, 𝑣𝑟 = 0…𝑣𝑚𝑎𝑥  of 

velocities.  

 

4.4.5.1 Direct Contribution to the Photoelectron Momentum Distribution 

 

The ionization probability, 𝑊𝑖𝑜𝑛(𝑡), for trajectories with starting times from a single optical half-cycle around 𝑡 ≈

0 is shown in Figure 4.7 c). Only starting times before the peak of the field lead to direct trajectories, which have 

final velocities in negative z-direction, 𝒗𝑑𝑖𝑟
𝑓

< 0. It reflects that for the SCM only times, 𝑡𝑠 < 0, with asymptotic 

velocities, 𝒗𝑑𝑖𝑟
𝑓

 ∝ −𝑨(𝑡𝑠) are classified as direct trajectories and thus, contribute to the PMD while trajectories from 

𝑡𝑠 > 0 always lead to scattered trajectories and are consequently omitted in the discussion of the direct ones. The 

region, 𝒗𝑑𝑖𝑟
𝑓

> 0 in Figure 4.8 would be filled if trajectories from the next half-cycle are allowed. Including them 

would lead to a distribution that is simply symmetric around the 𝒗𝑧
𝑓
= 0 axis as is obvious from specifying equation 

(4.7) for the field in (4.15),  
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 (4.17) 

 

 

Figure 4.8: Illustration of the direct contribution to the PMD for starting times from a single half-cycle.  

The logarithm of the photoelectron yield, , is shown in a) as function of the final velocities parallel ( -direction, ) 

and perpendicular ( -direction, ) to the field in a colored 2D plot. The black arrow top left indicates the direction of the 

linear polarization. The short red line at the bottom marks the position of  which is the highest velocity that a 

direct trajectory could reach. Also shown are wedges (orange and blue) that illustrate the cuts through the PMD for electron 

emission within a certain solid angle. The three rings (orange) indicate a velocity region around . Projections of 

the PMD along the axis of the coordinate system are shown in b). Energy spectra for electron emission along the cuts as 

indicated by the wedges in a) are given in c). Angular distributions, i.e. the probability for electron emission with the velocity, 

 into the angle, , are shown on a linear scale in d) and a log scale in e). The blue line in d) and e) shows 

, i.e. the velocity integrated angular distribution and the orange line shows the same but for a velocity range 

around , that is indicated in a), see the legend in the figure. The region with positive velocities, , is empty as 

starting times from a single half-cycle of the laser field are considered only. It would be filled if direct trajectories from a full 

optical are allowed.  

 

Introducing the ponderomotive potential next,  

 (4.18) 

as a scaling quantity, yields the maximum kinetic energy of direct trajectories . However, the 

probability at these high energies is very small (strictly speaking zero) according to (4.10). This is a consequence of 

the SCM. Trajectories with the highest energy occur for starting times, , i.e. for ionization times where 

 and thus  is zero. Consequently, one does not expect to observe direct trajectories at these 

energies if one strictly follows the semi-classical model. However, quantum mechanical considerations allow these 

+/-3°

+/-3°+/-3°
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trajectories such that one can mitigate the previous statement by expecting only a small contribution to the PMD 

from these trajectories.  

The projection of the PMD perpendicular to the direction of the ionizing laser field, 𝑊(𝒗𝑑𝑖𝑟
𝑓

), resembles a Gaussian 

distribution. This is expected as each 𝑡𝑠 with the field strength, 𝐸(𝑡𝑠), contributes with a Gaussian probability to the 

final, i.e. 𝑊𝑖𝑜𝑛(𝑣⊥
𝑘) ∝ exp(− [𝑣⊥

𝑘]2 𝜎2⁄ ). Thereby, the width of the Gaussian scales with the field strength at the 

ionization times, i.e. 𝜎2 ∝ |𝑬(𝑡𝑠
𝑘)|. Thus, ionization times close to the peak of the field yield a wider distribution into 

the direction of the perpendicular velocity. However, these trajectories have lower velocity parallel to the field such 

that the width decreases with higher, 𝑣𝑧, see Figure 4.8. 

 

4.4.5.2 Scattered Contribution to the Photoelectron Momentum Distribution 

 

Now we turn to the PMD of scattered trajectories. First, one has to find return times, 𝑡𝑟
𝑗
, by solving the condition 

of return, (4.3), for the chosen field (4.15), i.e. solutions of  

𝑧(𝑡𝑟
𝑗
, 𝑡𝑠) =

𝐸0
𝜔2

cos(𝜔𝑡𝑟
𝑗
) −

𝐸0
𝜔2

cos(𝜔𝑡𝑠) +
𝐸0
𝜔2

𝜔(𝑡𝑟
𝑗
− 𝑡𝑠)sin(𝜔𝑡) = 0 

→ [cos(𝜔𝑡𝑟
𝑗
) − cos(𝜔𝑡𝑠) + 𝜔(𝑡𝑟

𝑗
− 𝑡𝑠)sin(𝜔𝑡𝑠)] = 0 

(4.19) 

need to be found. Introducing, the travel time, 𝑡𝑡
𝑗
= 𝑡𝑟

𝑗
− 𝑡𝑠  [108], with the corresponding travel phase, 𝜏𝑡

𝑗
=

𝜔(𝑡𝑟
𝑗
− 𝑡𝑠), and expressing, 𝑡𝑟

𝑗
= 𝜔𝑡𝑟

𝑗
= 𝜏𝑡

𝑗
+𝜔𝑡𝑠, yields  

cos(𝜏𝑡
𝑗
+𝜔𝑡𝑠) − cos(𝜔𝑡𝑠) + 𝜏𝑡

𝑗
sin(𝜔𝑡𝑠) = 0. (4.20) 

Rewriting, using trigonometric functions, cos(𝑎 + 𝑏) = cos(𝑎) cos(𝑏) − sin (𝑎)sin (𝑏), [45] one has 

cos(𝜏𝑡
𝑗
)cos(𝜔𝑡𝑠) − sin(𝜏𝑡

𝑗
)sin(𝜔𝑡𝑠) − cos(𝜔𝑡𝑠) + 𝜏𝑡

𝑗
sin(𝜔𝑡𝑠) = 0. (4.21) 

Dividing by cos(𝜔𝑡𝑠) yields after rearrangement,  

cos(𝜏𝑡
𝑗
)cos(𝜔𝑡𝑠) − cos(𝜔𝑡𝑠) − sin(𝜏𝑡

𝑗
)sin(𝜔𝑡𝑠) + 𝜏𝑡

𝑗
sin(𝜔𝑡𝑠) = 0 

→ tan(𝜔𝑡𝑠) =
cos(𝜏𝑡

𝑗
) − 1

(sin(𝜏𝑡
𝑗
) − 𝜏𝑡

𝑗
)
→ 𝑡𝑠 =

1

𝜔
arctan [

cos(𝜏𝑡
𝑗
) − 1

(sin(𝜏𝑡
𝑗
) − 𝜏𝑡

𝑗
)
]. 

(4.22) 

This expression gives the starting time for a given travel time. The relation is shown in Figure 4.9 a) for return times, 

i.e. 𝑡𝑟
𝑗
= 𝑡𝑡

𝑗
+ 𝑡𝑠, between a quarter of an optical cycle 0.25   up to 3  . The smaller the starting time is, the later the 

return times can be and the more return orders, i.e. 𝑗s, exist.  
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Figure 4.9: Illustration of rescattering dynamics in a plane-wave field for starting times from a single half-cycle.  

a) shows the relation between the return time, , and the starting time, , for return times in the interval, . 

This leads to starting times in the range . Different return orders i.e. first return , … , are indicated 

by the colors (blue, orange, yellow, purple, green). The color code is used in all plots a)-d). If  is close to the peak of the 

field, i.e. , several return orders exist. b) shows return velocity, , (solid colored line) and final velocities for 

backward, , (dotted colored lines) and forward scattering,  (dashed colored lines). The corresponding 

energies are shown in units of the ponderomotive potential, . Forward scattering energies, , have been 

multiplied by three for better visibility of the curve. d) shows the angle integrated scattering probability, i.e. 

, as function of return order. The field and the vector potential are shown for reference as indicated in the 

legend of each of the panels.  

 

Having established the connection between  and  equations (4.4) and (4.5) can be used to calculate the return 

velocity, , and the velocity after scattering into an angle, , see Figure 4.9 b). Therefrom, one can 

give the corresponding energies, , and  that are shown in Figure 4.9 c). It is possible to do 

further analytical analysis [108] however, the expressions become rather lengthy such that this is not repeated here.  

We continue numerically and focus on some aspects. Depending on the return time (and thus starting time), the 

trajectory approaches the parent ion with high velocity from both sides, i.e. in positive or negative -direction see 

Figure 4.9 b). In dependence of the deflection angle, , in the scattering process different final velocities are reached. 

For example, backscattering, , reverses the sign of  and creates a situation where the field driven motion 

after scattering leads to an acceleration as the reversed  (i.e. the velocity after scattering) and the vector potential 

 point into the same direction. In the consequence, backscattering trajectories of a given set of  and  can 

reach final velocities in the full range between  in the example, see Figure 4.9 b). 

Forward scattering,  however, does not change the sign of the incoming velocity which leads to a deceleration 

by the subsequent field-driven motion as  points into the opposite direction. Thus, final velocities in a 
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smaller range between 𝒗𝑠𝑐
𝑓
(𝜃 = 0, 𝑡𝑟

𝑗
, 𝑡𝑠) ≈ 0…  2 a. u.  are reached only. In this sense, low energy for forward 

scattering trajectories as well as high energy for backscattering are a result of the mapping between 𝑡𝑠 and 𝑡𝑟
𝑗
 with 

the corresponding vector potentials at both times. Consequently, scattering is governed and can be controlled by 

the sub-cycle shape of field. Thereby, it is clear that the model used here, neglects the influence of the binding 

potential on the trajectory. It takes it only into account via deflection into the angle 𝜃 which might be questionable 

particularly for low energy returns. Naturally, the acceleration and deceleration mechanism for forward- and 

backscattering is reflected in the energies shown Figure 4.9 c). The return energy has a maximum at 

max ( 𝑟(𝑡𝑟
1, 𝑡𝑠)) = 3.17 𝑈𝑝  and is reached for 𝑡𝑠 ≈ 0.05   with the first order return at 𝑡𝑟

1 ≈ 0.7 . Returns with 

higher order have lower highest energy that oscillates in dependence of the order of the return. Zero energy occurs 

for travel times 𝑡𝑡 = 𝑛  and once between full cycles if the return order is larger than one. The last of these 

trajectories are marked by the red dots on the 𝑡𝑟-axis in Figure 4.9 c) and Figure 4.9 b). They are responsible for the 

soft recollisions that are discussed in greater detail in section 4.4.5.3.  

The backscattering energy follows roughly the curve of the  𝑟(𝑡𝑟
𝑗
, 𝑡𝑠) but at higher energies with a maximum 

around  (𝜃 = 𝜋, 𝑡𝑟
𝑗
, 𝑡𝑠) = 10.0 𝑈𝑝  followed by the maxima of the higher return orders which lie in the region 

between 6 𝑈𝑝  and 9 𝑈𝑝 . The combination of all the high-order back scattering returns leads to the formation of 

smooth cut-offs in this momentum region of the PMD. Thereby, the whole energy range between 0 and 10.0 𝑈𝑝 is 

accessed. Forward scattering reaches a smaller energy range between  (𝜃 = 0, 𝑡𝑟
𝑗
, 𝑡𝑠) ≈ 0…2.0 𝑈𝑝. Note that the 

curve in Figure 4.9 c) has been multiplied by three in order to improve the visibility. Particularly, high order returns 

lead to rather small energies around ≈ 0.1 𝑈𝑝 and below. These energies are well in the energy range which can be 

addressed by the contribution from direct trajectories, too. 

To impart an impression on the probability for each of the 𝑡𝑟
𝑗

 and 𝑡𝑠
𝑖 , an analysis of the integrated scattering 

probability 𝑊𝑠𝑐(𝑡𝑟
𝑗
) = ∫𝑊𝑖𝑜𝑛(𝑡𝑠

𝑖)𝑊𝑡𝑟𝑎𝑣𝑒𝑙(𝑡𝑟
𝑗
, 𝑡𝑠

𝑖)𝜎(𝑣𝑟
𝑖𝑗
, 𝜃)𝑑𝜃  as a function of  𝑡𝑟

𝑗
 is shown in Figure 4.9 d). The 

combination of the ionization probability for a starting time, 𝑊𝑖𝑜𝑛(𝑡𝑠
𝑖)~ exp(−1/3|𝑬(𝑡𝑠

𝑘)|) , the punishment for 

longer travel times, 𝑊𝑡𝑟𝑎𝑣𝑒𝑙(𝑡𝑟
𝑗
, 𝑡𝑠

𝑖)~(𝑡𝑟
𝑗
− 𝑡𝑠

𝑖)−𝜉 , and particularly the velocity dependence of the elastic scattering 

cross-section, 𝜎(𝜃, 𝑣𝑟
𝑖𝑗
)~[𝜇2 + 4𝑣𝑟

2sin2(𝜃/2)]−2 , leads to a strongly peaked shape of 𝑊𝑠𝑐(𝑡𝑟
𝑗
) . Interestingly, the 

probability of returns with longer travel time can clearly compete and even exceed the probability for some of the 

earlier returns. The origin of the effect is two-fold, on the one hand, the ionization probability, 𝑊𝑖𝑜𝑛(𝑡𝑠
𝑖) , for 

trajectories with longer travel time is higher as these start close to the peak of the field. Additionally, and more 

importantly, 𝜎(𝜃, 𝑣𝑟
𝑖𝑗
), becomes very large for, 𝑣𝑟

𝑖𝑗
≈ 0, such that combination of both can beat the punishment for 

a longer travel time 𝑊𝑡𝑟𝑎𝑣𝑒𝑙(𝑡𝑟
𝑗
, 𝑡𝑠

𝑖). 

The scattered contribution to the PMD from a single laser cycle is shown in Figure 4.10. Contributions from 

different return orders as well as the highest velocities, i.e. the angular cut-offs, from different orders of the returns 

are investigated. Each return order contributes a velocity distribution that is reminiscent of a droplet, see Figure 

4.10 d)-h) for the individual contributions. Figure 4.10 a) shows the total result over the full momentum region 

while Figure 4.10 b) is zoomed into the low momentum region. The returns of odd order (𝑗 = 1,3,5) yield wide 

distributions that have momenta at positive 𝑣𝑧 > 0 as well as negative 𝑣𝑧 < 0. For these trajectories, a final velocity 

of 𝑣𝑧 > 0  is related to close-to forward scattering. The deceleration by the field after scattering causes these 
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trajectories to bunch in the final velocity such that they yield a velocity region with comparatively high yield at low 

velocities, see Figure 4.10 d), f) and h). Increasing scattering angle has decreasing scattering cross-section, 

, thus these trajectories have lower yield. In addition, the stronger the acceleration 

after scattering is, i.e. the closer the trajectories come to backscattering, the more spread out are the final velocities 

in the region  and the lower is the yield. The PMDs from returns of even order ( ) have similar shape 

but access the region  only. The magnitude of the return velocity for close-to forward scattering of these 

trajectories are not higher than the corresponding deceleration by the field after scattering. Thus, forward 

scattering cannot reach the  region. Close-to backscattering from returns of even order returns yields similar 

contributions as back scattering from odd returns.  

 

 

Figure 4.10: Scattered contribution to the PMD from a single half-cycle resolved for each return order 

a) shows the logarithm of the photoelectron yield, , of all return orders. b) is a section of a) with smaller velocity. c) 

is the same as a) but with colored solid lines (blue , orange , yellow , purple , green ) that mark 

the highest velocities, i.e. the cut-offs, that can be reached by the corresponding order. These lines are given in b), too. In d)-

h), the contribution of each order with the corresponding cut-offs is illustrated in a different plot.  

 

For both even and odd return orders, returns with close to zero return velocity lead to distinct features. First, 

these trajectories have high probability as the scattering cross-section is large. Second, the final velocity is mostly 

independent of the scattering angle such that the yield from these trajectories is strongly bunched in the final PMD 

and causes confined velocity regions with particularly high yield, see Figure 4.10 a) and b) where the confined 

regions are encircled in read. The peaks in  stem from the odd return orders and the peak at even lower 

velocity exactly at zero comes from the even return orders. These velocity regions with particularly high yield are 

known as the low-energy structure which have observed experimentally [9] [122] with their off-axis extension [10] 

and have been investigated theoretically [98] [123] [124] [108]. Within the semi-classical model used here, they 
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can be understood by two aspects: (i) a very high cross-section for trajectories that return with low velocity and by 

(ii) the deceleration due to the field driven motion after scattering of forward scattering trajectories which leads to 

a bunching in the final PMD. Along the lines of the SCM, the structures occur already if the trajectories are calculated 

taking into account the laser field only and by incorporating the influence of the binding potential via deflection at 

the scattering event. Thus, the low energy features can be understood and explained on the same footing as high 

energy features in the PMD such as e.g. the plateau [2]. Due to the strong link to the field, it is expected the low-

energy trajectories are at least similarly sensitive to the sub-cycle shape of the laser field and can thus, be controlled 

by it [123] similarly to e.g. [125]. 

Besides the low-energy features, the angular cut-offs of each of the returns can be clearly identified in the 

calculated final PMD from rescattering, Figure 4.10 a), b) and c). The cut-offs manifest as sharp jumps of the 

probability, see Figure 4.10 a) and b) in combination with Figure 4.10 c) where the angular cut-offs are overlapped 

with the PMD from Figure 4.10 a). In addition to these jumps, inspecting the contributions from individual return 

orders, Figure 4.10 d)-h), shows very similar structures that cannot be related to the angular cut-offs directly. These 

features are not removed if the contributions from individual returns are combined to the full contribution from 

rescattering, see Figure 4.10 a), b) and c) where they are present, too. They are a result of the normalization, i.e. 

𝑊𝑖𝑜𝑛(𝑡𝑠
𝑖) = ∬𝑊𝑖𝑗𝜃𝑑𝑗𝑑𝜃, that adjusts the weight of the different returns. It reflects that a trajectory that has several 

return orders distributes it’s probability among all possible returns. Thus, the probability which is shifted to one of 

the next returns, causes a lowered yield at velocities which could have been reached if scattering would have 

happened at the previous return. This redistribution of probability among multiple returns leads to the sharp 

features that are very pronounced in Figure 4.10 d). 

Similarly to the PMD from direct electrons, the PMD of the scattered contribution is further analyzed in Figure 

4.11. Projections of the scattered contribution to the PMD parallel and perpendicular to the polarization axis of the 

laser are shown in Figure 4.11 b). In both projections, the position of the classical cut-offs as well as the discussed 

low-energy structures can be identified as sharp peaks. The angle dependent yield in Figure 4.11 c) integrated for 

all velocities drops for increasing angle dramatically and has a sharp jump in the direction close to right angle to the 

polarization axis of the laser field. If only the angular distribution in a certain velocity range is considered, several 

peaks occur in the region close to right angle to the polarization axis. These are related to the position of the angular 

cut-offs of the different return orders as well as to additional cut-offs which occur due to the normalization which 

is used to weight the probabilities with returns of different order.  

Energy spectra for emission into different solid angles are shown in a semi logarithmic plot in Figure 4.11 d). 

Emission into 𝑣𝑧 > 0 as well as 𝑣𝑧 < 0 shows sharp peak in the yield at the position of the cut-offs of the different 

return orders. In the spectrum that is emitted perpendicular to the polarization axis, the angular cut-offs as well as 

the additional cut-offs lead to a modulation of the energy-dependent yield. Considering the spectrum at smaller 

energies only, as in Figure 4.11 e), allows to identify the sharp low-energy peaks in the spectrum that is emitted into 

the 𝑣𝑧 > 0 direction.  
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Figure 4.11: Analysis of the scattered contribution to the PMD from a single half-cycle 

a) shows the logarithm of the photoelectron yield, , as function of the final velocity components parallel, , and 

perpendicular, , to the direction of the polarization of the laser field, which is indicated by the black arrow top left. The 

intensity in the calculations has been . In b), the projections of the PMD on each of the axis are given. c) 

illustrates the angular distribution as function of emission angle, , once integrated over the full momentum range (blue 

solid line) and integrated over a certain momentum region around  as given in the legend. Both, the angle  

(black solid lines) and the momentum region of interest, , (orange ring that is centered around zero velocity) are 

indicated in a). The wedges with different colors in a) show the angle regions for that the energy spectra are shown in d) in 

a wide range from zero energy up to 11  and e) in a narrow energy range below . 

 

The previous analysis and discussion of the calculated scattered contribution PMD illustrates that the semi-

classical model supports high-energy as well as on- and off-axis low energy features rescattering features. These 

low-energy features have been observed in on-axis photoelectron spectra [9] [122] [99] and off-axis PMDs [10] as 

well as in theoretical work [98] [123] [124] [108]. The presented semi-classical results do not allow for the inference 

between different electron trajectories. Thus, the interference structures between direct and scattered 

contributions to the PMD, which that are termed Spider in Figure 4.2, are not supported by the SCM used here. Next, 

we turn to a detailed analytical investigation of the soft-recollisions and the corresponding low-energy features. 
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4.4.5.3 Soft-Recollision and Low-Energy Structure  

 

Here, the cut-off positions of the soft-recollision trajectories, which are responsible for the on-axis low-energy 

structure, are derived for the plane-wave field (4.15). Our consideration further confirms that the low-energy 

structures are supported by the SCM. The analysis is done along the lines of [108].  

 

 

Figure 4.12: Illustration of the graphical method to solve the condition of return for soft-recollisions 

a) shows the graphical method which is used to identify soft-recollision returns. Soft-recollisions as described by equations 

(4.23) to (4.29) are found when the tangent on  crosses with  in such a way that also the slopes are the same at 

both points, , see the lines,  for two examples. The angle  is used to read-off this condition in a 

suitable way from the figure. Vertical lines indicate the resulting for the approximate solutions in equation (4.27). Dashed 

lines belong to odd  and deliver the soft-recollisions. Dotted lines belong to even k and are unwanted. b) Illustrates (4.27) 

with the corresponding solutions. Dashed and dotted lines are used as in a). c) shows the scattering cross-section as function 

of scattering angle for three different momenta. For small scattering momenta, the cross-section becomes more and more 

isotropic. d) shows the PMD from Figure 4.11 in small velocity range. The low-energy peeks are the encircled very narrow 

regions with very high yield. 

 

We start by considering the graphical solution of the condition of return that reads for the cosine-field in (4.15), 

 (4.23) 

A soft-recollision is found if the return velocity is zero in addition, i.e.  
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𝑣(𝑡𝑟
𝑗
, 𝑡𝑠) = −

𝐸0
𝜔
sin(𝜔𝑡𝑟

𝑗
) +

𝐸0
𝜔
sin(𝜔𝑡𝑠) = 0 → −sin(𝜔𝑡𝑟

𝑗
) + sin(𝜔𝑡𝑠) = 0, (4.24) 

which transfers to  

𝜕𝛼

𝜕𝑡
|
𝑡𝑟
𝑗
=
𝜕𝛼

𝜕𝑡
|
𝑡𝑠

, (4.25) 

for the graphical method. This is illustrated in the sketch Figure 4.12. Equation (4.25) can be used in (4.23) in order 

to obtain a second version of (4.23) that takes the condition of zero return velocity, i.e. (4.24), into account. All 

together one has,  

𝛼(𝑡𝑟
𝑗
) = 𝛼(𝑡𝑠) + (𝑡𝑟

𝑗
− 𝑡𝑠)

𝜕𝛼

𝜕𝑡
|
𝑡𝑠

 

𝛼(𝑡𝑠) = 𝛼(𝑡𝑟
𝑗
) − (𝑡𝑟

𝑗
− 𝑡𝑠)

𝜕𝛼

𝜕𝑡
|
𝑡𝑟
𝑗
. 

(4.26) 

Graphically, this means that a soft-recollision is found if the tangent on 𝛼(𝑡𝑠), i.e. (𝑡𝑟
𝑗
− 𝑡𝑠)𝜕𝛼/𝜕𝑡|𝑡𝑠 , intersects 𝛼(𝑡) 

at a point 𝑡𝑟
𝑗
 where 𝛼(𝑡𝑟

𝑗
) has the same slope. Or in other words, following the tangent on 𝛼(𝑡𝑠) and going forward 

in time must yield the same line as starting at 𝛼(𝑡𝑟
𝑗
) and following the tangent backward in time. Due to symmetry 

reasons, this is achieved for return times, 𝑡𝑟
𝑗
= (1 + 𝑘/2) − 𝑡𝑠 with 𝑛 = 1,2, … being a natural number. Thereby, 𝑡𝑠 

has been limited to the interval, 𝑡𝑠 = 0…0.25  , see Figure 4.12 a). Higher order soft-recollision, i.e. higher 𝑛, shift 

the corresponding 𝑡𝑠 closer to 0 where the peak of the field is located. 

From the inspection of Figure 4.12 a) one can introduce the angle 𝜂 in order to find an alternative formulation of 

equation (4.26),  

tan(𝜂) =
2𝛼(𝑡𝑠)

(1 +
𝑛
2
) − 2𝑡𝑠

= |
𝜕𝛼

𝜕𝑡
|
𝑡𝑠

| →
2
𝐸0
𝜔2 cos(𝜔𝑡)

(1 +
𝑛
2
) − 2𝑡𝑠

= −
𝐸0
𝜔
sin(𝜔𝑡) 

→
cos(𝜔𝑡)

(1 +
𝑛
2
)𝜋 − 𝜔𝑡𝑠

= sin(𝜔𝑡) →  |cot (𝜔𝑡𝑠)| = (1 +
𝑘

2
)𝜋 − 𝑡𝑠𝜔. 

(4.27) 

Using the approximation for small angles, |cot (𝜔𝑡𝑠)| ≈ 1/𝜔𝑡𝑠, in equation (4.27) one reads 0 = (1 + 𝑘/2)𝜋𝜔𝑡𝑠 −

(𝑡𝑠𝜔)
2. It can be solved using a Taylor expansion in first order, 0 = −1 + (1 + 𝑘/2)𝜋𝜔𝑡𝑠, the solutions are 

𝑡𝑠𝜔 =
1

(1 + 𝑘/2)𝜋
=

2

(2 + 𝑘)𝜋
 (4.28) 

with the corresponding the return times, 𝑡𝑟
𝑗
= (2 + 𝑘)𝜋/𝜔 − 2/𝜋(2 + 𝑘)𝜔. The found solutions, Figure 4.12 a) and 

b) show that equation (4.28) does not only include the soft-recollsions (odd 𝑘) but also yields the points where the 

slope has the same value but different sign between two soft-recollisions (even 𝑘 ). Thus, one can give the 

approximate combinations of starting phase, 𝜔𝑡𝑠, that lead to a soft-recollsion by taking only odd 𝑘 = 2𝑚 + 1 into 

account, 

𝛿𝑚 =
2

(2𝑚 + 3)𝜋
,𝑚 = 0,1,2, …, (4.29) 
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with corresponding return times, 𝑡𝑟
𝑗
= (3 + 2𝑚)𝜋/𝜔 − 2/𝜋(3 + 2𝑚)𝜔, and starting times, 𝑡𝑠 = 2/𝜋(2𝑚 + 3)𝜔. 

Using equation (4.6) yields the final velocities, 𝑣𝑓 = 𝐸0sin(𝜔𝑡𝑠)/𝜔 ≈ 2𝐸0/𝜋(2𝑚 + 3)𝜔  (small angle 

approximation) which lead to the corresponding energies, 

 𝑚 =
1

2

𝐸0
2

𝜔2

4

𝜋2(2𝑚 + 3)2
=

8𝑈𝑝
𝜋2(2𝑚 + 3)2

, 𝑚 = 0,1,2, …, (4.30) 

, which are  𝑚 ≈ 0.090 𝑈𝑝, 0.032 𝑈𝑝, 0.017 𝑈𝑝, …  or not using (4.30) and solving (4.27) numerically,  𝑚 =

0.0944 𝑈𝑝, 0.0330 𝑈𝑝, 0.0167 𝑈𝑝. This result coincides with [37] as well as with [98] [123]. 

The effect of the soft-recollision in the PMD are momentum regions around momenta of 𝑝𝑧 ≈ 2𝐸0/𝜋(2𝑚 + 3)𝜔 

parallel to the polarization of the laser field that are narrow in the velocity perpendicular to the field. The regions 

for 𝑚 = 0 and 𝑚 = 2 are encircled Figure 4.12 d). Clearly, very narrow low-energy peaks at the expected positions 

are found. It is expected that the soft-recollision effect will be smeared out if pulsed laser fields and averaging over 

the in the focus is applied to the model. These low-energy narrow regions can be very well understood by 

considering the angular dependence of the scattering cross-section for different velocities as shown in Figure 4.12 

c). For small return velocity, 𝑣𝑟
𝑖𝑗

, as it is the case for soft-recollision, scattering is more and more isotropic which 

leads to the low-energy peaks in the PMD. The shift of the peaks away from zero momentum parallel to the laser 

field is a consequence of the fact that the motion after scattering adds a small kick as 𝑨(𝑡𝑟
𝑗
) is not zero. 

The previous discussion illustrates that the SCM supports low-energy scattering features in the PMD [37] on the 

same footing as high-energy features [2] [16]. Both phenomena are strongly field-driven dynamics that and are 

governed by time-dependent evolution of the electric field on the time-scale of a few optical cycles and below. Thus, 

both features in the PMD are expected to be sensitive to reduction of the pulse duration to a few optical cycles and 

to tailoring the sub-cycle shape of the field using .e.g the carrier-envelope phase or multi-color fields. For high-

energy features, the CEP sensitivity is well explored [126] and applied for the characterization of few-cycle pulses 

[77] with center wavelengths around 800 nm. For low-energy features similar opportunities are presently under 

investigation [10] [127].  

 

4.5 Comparison between Semi-classical Model and Experimental Data 

 

4.5.1 Details of the Numerical Implementation and an Example 

 

After the discussion of the SCM in section 4.4, we turn to details of the numerical simulations that are compared 

to experimental observations later in section 4.5. The simulations use a linearly polarized field, account for the 

depletion of the ground state and are averaged over the three-dimensional intensity distribution in the focal volume 

as discussed in appendix A1.2. 

The field has the frequency, 𝜔, peak field strength, 𝐸0, and is expressed as product of the envelope, 𝑓(𝑡), and a 

carrier wave, 

𝑬(𝑡) = 𝐸0𝑓(𝑡) cos(𝜔𝑡 + 𝜙)  . (4. 31) 
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Thereby, , denotes the time and  is the carrier-envelope phase. A typical envelope of the laser pulse, , would, 

e.g., be a Fourier-transform-limited Gaussian, i.e. , where  denotes the full-width half-

maximum pulse duration of the intensity, . However, this envelope is not very 

convenient for numerical calculations as ensuring  with sufficient accuracy requires to calculate 

over a long time interval. Instead, it is common to use a -shape envelope although it does not represent a 

physical field of a traveling wave. A convenient form is [106], 

 (4.32) 

Here,  and  are natural numbers that influence the field as illustrated Figure 4.13. One should notice, that, 

, except on the interval, . This limits the necessity of the calculation the interval where the field 

is defined. Subsequently, conservation laws are used to calculate the asymptotic limit, . Figure 4.13 illustrates 

 which starts with a turn-on ramp of length, , is followed by a flat part of length, , until a turn-off with -

ramp goes back to zero. Although, this seems to be a very artificial and arbitrarily chosen shape of the field, it is 

useful to investigate the interaction in the long pulse limit as a number of optical cycles have the same amplitude. 

Also, varying, , allows to study effects which stem from subsequent cycles [106].  

 

 

Figure 4.13: The laser field which is used to model strong-field ionization 

For the illustrative example, a wavelength of  for the carrier wave is shown. Choosing  allows 

investigating of the long pulse limit at reduced time interval for the numerical integration, see (a). (b) Choosing, , yields 

a field that is very similar to that of a Gaussian envelope with appropriate pulse duration. Also, the influence of the carrier-

envelope phase is reproduced correctly. (c) is a comparison of the envelopes and (d) shows the relation between the intensity 

FWHM pulse duration of a Gaussian and the parameter, . 

 

Further, setting, , and choosing , , yields a field and intensity profile which is very similar to a Gaussian 

envelope as the comparison performed in Figure 4.13 (c) shows. Thereby, the integer number, , is used to match 

the intensity FWHM duration  of the Gaussian envelope as shown in , Figure 4.13 (d). The pulse duration can 

be changed in steps of, , i.e. in steps of the period of the carrier-wave. The constants that are used to model the 

Xenon target properties are given in Table 4.1. Adjusting the constants allows to investigate the influence of the 

target gas on the final PMD on a qualitative level.  
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Atom  (eV)       (a.u.)    

Xe 12.13 1 1 2.72 1 9.0 2.46 54 3.604 3/2 

 

Table 4.1 Parameters for the tunnel ionization rate of Xenon in the semi-classical model. 

[128][110][129][130][131][132][133]. Values that are given in italic, are reasonable estimates.  

 

The simulations account for the three-dimensional intensity distribution in the focus as given in appendix A1.2. 

Therefore, the yield, , at the end of the laser pulse, , as function of intensity, , is first 

calculated by integrating (4.10) for different intensities. Multiplying  with the frequency of intensities as they 

are present in the focal volume, , a curve that measures the fraction which a single intensity contributes to the 

intensity averaged result .  

 

 

Figure 4.14: Example of a simulated PMD 

a) shows the simulated PMD for a peak intensity, , and an -cycle pulse with a center wavelength 

of . The calculation is averaged over the intensity distribution in the focal volume as well as over the CEP. In b), 

the projection on each of the coordinate axis are given and c) shows the angular dependence of the photoelectron yield for a 

certain momentum range in a semi-logarithmic plot. d) and e) are photoelectron spectra that were extracted from a) for 

electron emission around a narrow angle parallel to the polarization of the laser. d) shows the spectrum over the entire energy 

range using semi-logarithmic plot. e) is a zoom into the low energy region but a linear scale is used. High-energy rescattering 

forms the characteristic plateau in d) and low-energy rescattering is responsible for the pronounced low-energy peaks in e). 

At intermediate momenta, the angular dependence, c), is structured due the scattering from multiple return orders with 

intermediate energies. 

 

+/-3°
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Figure 4.14 illustrates a typical results of the simulation. The figure is organized very similarly to Figure 4.10 and 

Figure 4.9. The characteristic features discussed in the previous section survive averaging over the intensity 

distribution in the focal volume and can clearly be identified. These are direct ionization with quickly decaying yield 

for increasing energy in the region, |𝑣| < √4𝑈𝑝 (discussed in 4.4.5.1 ) and a rescattered contribution (discussed in 

4.4.5.2) that is spread over a larger momentum range with a broader angular distribution and has thus lower 

probability. The rescattered contribution exhibits several characteristic features. (i) At low energy, the peaks, seen 

in Figure 4.14 e) slightly below ~ 0.1𝑈𝑝  are the low-energy structure [9] [34]. (ii) At intermediate energies a 

particularly pronounced angular dependence [10] [108], named “Fork” is observed, see Figure 4.14 c). (iii) The 

plateau in above-threshold ionization, [2] [16] is found in the high-energy range. Besides demonstrating that the 

characteristic features survive averaging over the intensity distribution in the focus, Figure 4.14 illustrates that 

intensity averaging shifts the energy position of the features to lower energies if the energy is measured in units of 

the pondermotive potential calculated for the peak intensity in the focal volume. It reflects that that the peak 

intensity contributes with very small volume only. In addition, averaging over the intensity distribution in the focus 

smoothes the appearance of the features (i)-(iii). 

 

4.5.2 Influence of the Pulse Duration on the PMD 

 

The influence of the pulse duration in experiment and theory is compared in Figure 4.15. The used parameters, 

peak intensity, pulse duration, three-dimensional focal spot in the calculation match the experimental conditions 

within the error bars of their experimental determination. A visual comparison shows a reasonable match, i.e. the 

overall shape with a cigar-like region with high yield at momenta below |𝑝 | < 0.3 is reproduced. Outside this 

region, one finds a quickly dropping yield with a wider angular spread in both theory and experiment. For the long 

pulse measurement and simulation, Figure 4.15 a)-d), the scattered contribution yields a Fork-like structure 

(labeled with fork in Figure 4.15 a) and c)) at small momenta, |𝑝𝑥| (parallel to the laser polarization). Also, the low-

energy structure can be found in both theory and simulation. Reducing the pulse duration in Figure 4.15 e)-f) 

changes the measured PMD and the simulated PMD similarly on a qualitative level, the fork structure is washed out 

and the low-energy peaks move to smaller momenta. For both cases, i.e. long pulse and short pulse, the simulation 

is not reproducing the spider-like (Figure 4.15 a)) features as the interference between electrons from different 

trajectories is neglected by the SCM.  

 



Off-Axis Low-Energy Structures in Strong-Field Photoionization 

  68 

 

Figure 4.15: Comparison between measured and modeled PMD 

a) - d) show the measured, a) and b), and calculated, c) and d), logarithm of the PMD from ionization with the long laser pulse 

for a peak intensity of, , with a center wavelength of . Previously mentioned features are 

labeled, i.e. LES, fork and spider in a). The pulse duration in the experiment has been 75 fs (intensity full-width half-maximum) 

such that  is used in the calculation. The color scale in b) and d) is clipped in order to emphasize the fork-like structure 

marked in a). Measured, e)-f), and simulated, g)-h), logarithm of the PMD for ionization by a few-cycle pulse with a duration 

of 11 fs (intensity full-width half-maximum) for the same center wavelength and peak intensity are shown.  has been 

used in the calculation, which yields slightly shorter pulse duration of 9 fs (intensity full-width half-maximum) in the 

simulation. In addition to the characteristic features that are labeled a), the momentum region where direct electrons are 

found is encircled in c). The spider-structures are absent in the simulations as the SCM is not able to explain them. They are 

not of interest for the focus here.

 

A conspicuous difference between the measurement and the simulation is the width of the cigar-like region with 

high yield in the center of the PMD in Figure 4.15 c), d), g) and h). In this region, ionization of the direct contribution 

is dominant and gives obviously a too wide distribution along the  axis. It is clear that this can be cured by 

adjusting the pre factor,  in equation (4.11) as it has been done in [13]. Choosing e.g. 

would give a narrower spread of the direct ionization along the -axis in Figure 4.15 that fits the experimental data 

better. A starting point to justify this ad-hoc adjustment is given by considering the fact that the SCM neglects the 

influence of the Coulomb potential on the electron wave packet for direct electrons. The Coulomb potential would 

contract the wave packet of direct electrons to a narrower distribution while it is accelerated away by the laser field 

causing so-called Coulomb focusing [134].  
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A more detailed comparison of the angular dependence of the photoelectron yield for a momentum of  is 

done in Figure 4.16. Changing the pulse duration influences the angular distribution at this momentum, i.e. the 

three-pronged fork-structure for the long pulse is washed out for the short pulse in measurement and simulation, 

see the figure caption for details.  

 

 

Figure 4.16: Comparison of the Fork between measurement and simulation 

a) illustrates the angle  and the momentum  at which the angular dependence of the photoelectron yields is 

compared in b) for measurement, long pulse (black) and short pulse measurement (red), and simulation in c) and d) as 

indicated. The fork is more pronounced for the long pulse in both measurement and simulation. Shortening the pulse to few-

cycle duration, affects the angular distribution, i.e. the pronounced peaks are washed out. 

 

In Figure 4.17, the influence of the pulse duration on the position of the LES peak in the photoelectron spectra 

parallel to the polarization axis is illustrated. It has been found experimentally that the position shifts to lower 

energy if the pulse duration is reduced to a few optical cycles [45], Figure 4.17 a). This could be confirmed by the 

simulations based on the SCM as implemented here, see Figure 4.17 b) and c). A detailed experimental and 

theoretical investigation of this effects has been done by others in [99] where Figure 4.17 d) is taken from. As the 

definition of the laser field used in [127] differs from the definition of the field used here, i.e. in (4. 31) / (4.32), the 

pulse duration of the data from [127] has been converted such that it matches the field definition in equation (4. 

31) / (4.32). The position of the LES peak position as function of pulse duration after conversion is shown in Figure 

4.17 e). Error bars from the experimental results in Figure 4.17 d) have been omitted. Also, theoretical results from 

[127] that were obtained based on the soft-recollision model have been converted. Thus, the dependence in Figure 

4.17 e) contains measured data and simulated data from two models. Thereby, the pulse duration is given in units 

of  that matches the definition in equations (4. 31) and (4.32) with . Figure 4.13 d) can be used to convert to 

the intensity full-width half-maximum pulse duration.  

Figure 4.17 e) shows a very good match between the theoretical results obtained with the SCM as implemented 

here. Given the fact that theoretical results from soft-recollision model in [127] were “shifted down by 15% to match 

the experiment”, the agreement achieved with the SCM here is even superior. The origin of this mismatch between 
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experimental data and the soft-recollision model in [127] can have several reasons. It is part of the discussion in 

[127].  

 

 

Figure 4.17: Comparison of the low-energy peak position as function of pulse duration  

In a), measured photoelectron spectra parallel to the polarization of the laser field for the long and the short pulse are shown. 

These experimental results were obtained in Xenon for  at the peak of the field. The curves have been separated 

along the y-axis in order to improve visibility. The rescattered high-energy photoelectrons above 50 eV are missing as they 

were not detected in the measurement. The position of the LES peak (marked by LES) changes if the pulse is shortened. b) 

and c) show the results of the simulation that is averaged over the focal volume and the CEP. d) is taken from [99] where the 

position of the LES peak as function of the pulse duration has been investigated in detail. Dots with error bars are experimental 

results obtained in Krypton for  (green) and  (orange) and Argon for  (red circles). Black 

triangles are the results of the classical simulation [123]. The lines are results from an analytical model based on the soft-

recollision [99]. e) shows the data from [99] and simulated data from SCM model as implemented here. Thereby, the pulse 

duration of data from [99] has been converted to match the definition of the field here. 

 

The agreement between experimental data and the SCM simulations, which is confirmed in Figure 4.15, Figure 

4.16 and Figure 4.17, supports the statement that SCM reproduces low-energy features on a qualitative level 

reasonably well. In addition, it shows that the low-energy features are strongly governed by the laser field. The LES 

peak position is independent of the atomic target and if measured in units of the pondermotive potential  

independent of the used wavelength and intensity of the used laser. With that, we continue to trace the observed 

changes in the PMD to the field-governed trajectories. 
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4.5.3 Tracing the Influence of the Pulse Duration to the Trajectory 

 

The previous chapter illustrates the qualitative agreement between experimental data and the SCM. Major 

features of the PMD, e.g. the LES peaks, the high-energy plateau and the “Fork” are reproduced and behave as one 

would expect from the SCM if the pulse duration is reduced. At the same time, it is obvious that the SCM 

oversimplifies some aspects. E.g. the experimentally observed “Spider” structure is absent in the theory due the 

neglected interferences between different electron orbits. Further, the direct contribution to the PMD yields a too 

wide distribution in the direction perpendicular to the polarization of the linearly polarized field which might be 

due to neglecting the influence of the binding potential on the direct trajectories. Despite these mismatches, the SCM 

is well suited for gaining insight into the interaction as its basis on classical trajectories in the field allows an easy 

and straightforward interpretation.  

 

 

Figure 4.18: Tracing the influence of the pulse duration to the trajectories 

a) and d) show the field around the peak of the envelope of the long pulse and the short pulse for two different CEPs. b) (long 

pulse) and c) (short pulse) are two-dimensional histograms of the return velocity and travel time. While the long pulse allows 

high-order returns, i.e. long travel times, to significantly contribute to rescattered contribution of the PMD, this is naturally 

not supported by the short pulse. Thus, the two-dimensional histogram in e) exhibits a higher yield for short travel times and 

lowered yield at longer travel time. The argument is further supported by e) and f) where the histogram of the travel time is 

shown. For the long pulse in c), also long travel times contribute while only short travel times contribute in f).  

 

In Figure 4.18, the SCM simulations are used to trace the changes in the PMD to the time-dependent shape of the 

laser field. Therefore, the fields for the long pulse and the short pulse are compared in Figure 4.18 a) and d). Two-

dimensional histogram of the travel time and the return velocity are shown in b) and c) for the long pulse and the 

short pulse, respectively. They reflect that the long pulse naturally supports longer travel times while for the short 

pulse only short travel times contribute to rescattering, see c) and f) also. In addition, the shape of the field alters 
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the timing and thus influences the momentum distribution of the rescattered contribution directly as the vector 

potential at two times is relevant for the final momentum, i.e. 𝑨(𝑡𝑠) and  𝑨(𝑡𝑟
𝑗
) as, 𝒗𝑠𝑐

𝑓
(𝜃, 𝑡𝑟

𝑗
, 𝑡𝑠) = −𝑨(𝑡𝑟

𝑗
) + [𝑨(𝑡𝑟

𝑗
) −

𝑨(𝑡𝑠)][cos(𝜃)  𝑧 + sin(𝜃)   ], is involved for these trajectories. Reducing the duration of the laser field to a few 

optical cycles, changes the combinations of 𝑨(𝑡𝑠) and 𝑨(𝑡𝑟
𝑗
) that contribute. The sharp peaks in Figure 4.18 c) are 

related to the soft recollisions where the return velocities is very low such that the model pics these rescattered 

trajectories with high probability. Comparing to Figure 4.18 f) for the few-cycle field, these trajectories are heavily 

suppressed as the few-cycle does not support these trajectories. Again, the reason lies in the accessible combination 

of starting and return times which are governed by the shape of the field. 

Particularly, Figure 4.18 b) and e) are interesting from another point of view. The presented histograms illustrate 

the probability for returning with some return velocity at some travel time after the starting time. From this, regions 

with high |𝒗𝑟| = |𝑨(𝑡𝑟
𝑗
) − 𝑨(𝑡𝑠)| are limited to a short time interval around 𝑡𝑡

𝑗
~0.6 . Employing so-called laser-

induced electron diffraction (LIED), in a few-cycle field with controlled, carrier-envelope phase, it is imaginable that 

reading of the photoelectron yield at different final energies can gives access to the scattering cross-section over a 

time-span which is longer than one optical cycle. Further, one might envision pump-probe measurements where a 

short pump pulse starts some molecular stretching dynamics and LIED in CEP controlled few-cycle probe pules is 

used to follow the stretching dynamics over an extended range of pump-probe delays. 

 

4.6 Conclusion and Outlook 

 

In conclusion, the velocity-map imaging (VMI) technique has been used to compare three-dimensional 

photoelectron momentum distributions (PMDs) from strong-field photoionization of Xenon by short-wavelength 

infrared (SWIR) laser fields. Besides enabling the experimental observation of several features in the PMDs that are 

characteristic for this wavelength range e.g. spider-like holograms and low-energy structures, the measurements 

motivated the experimental and theoretical investigation of a pronounced fork-like structure, the so-called off-axis 

low-energy structure (off-axis LES). It appears close to right angle to the field’s linear polarization. Comparing 

measurements with many- and few-cycle fields, demonstrated strong susceptibility of the fork and other features 

to the pulse duration of the ionizing laser pulse.  

The performed semi-classical simulations show that on- and off-axis LES features are supported by the semi-

classical model of strong-field ionization (SCM) and that they can be traced to electron trajectories which scatter off 

the atom before they reach the electron detector. To this end, the SCM got augmented by: (i) Rescattering 

trajectories which are substantially longer than one optical cycle. (ii) A scattering cross-section that depends on the 

scattering angle as well as on the scattering velocity and (iii) by a proper method to normalize the weight between 

returns of different optical cycles (return order) which takes the angle- and velocity dependence of the scattering 

cross-section into account.  

During the analysis, it has been pointed out that the velocity- and angle-dependence of the scattering cross-section 

leads to the situation that trajectories with long travel times and low return velocity (i.e. the “soft-recollisions”) can 

have higher yield than trajectories with shorter travel time but higher return velocity (i.e. the “hard recollsions”). 

The contributions from electron trajectories of this kind lead to on- and off-axis low-energy features in the PMD that 
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are particularly prominent for strong-field photoionization by infrared fields. Simulations for the few-cycle field 

could show that the experimentally observed changes in the PMD occur as the few-cycle field does naturally not 

support the these trajectories with long travel times. Altogether, these findings put the low-energy features in 

above-threshold ionization onto the same footing as e.g. high-energy features such as the plateau.  

For future work, it might be interesting to control the shape of the laser field with sub-cycle resolution by e.g. 

using the CEP in few-cycle pulses. Besides more detailed insight into low-energy scattering phenomena, 

investigation of the CEP dependence might lead to approaches for CEP measurement of few-cycle short-wavelength 

infrared (SWIR) fields similar to as it is done based on with high-energy rescattered electrons at shorter wavelength 

of the ionizing laser [135] [7]. Working towards sub-cycle control of the laser field can also be beneficial for laser-

induced electron diffraction where it can be used to tailor the time-dependent velocity distribution of the returning 

electrons in such a way that laser-induced electron diffraction signals over an extended or tailored time window 

could be measured. Further, one might envision the use of laser-induced electron diffraction in CEP-controlled few-

cycle fields to follow molecular dynamics over an extended time interval using pump-probe schemes. 
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5 Probing Strong-Field Photoionization of a Beam of 𝑯𝟐
+ at Short-Wave 

Infrared Wavelength 

 

5.1 Introduction and Outline 

 

The interest in strong-field photofragmentation of small diatomic molecules has been stimulated by the discovery 

of new phenomena in strong-field ionization of atoms such as above-threshold ionization (ATI) [1] in 1979. Due to 

the additional rotational and vibrational degrees of freedom, photo fragmentation of diatomic molecules leads to 

several additional phenomena [136] [18] [137], for which the hydrogen molecular ion, 𝐻2
+, and it’s isotopologues, 

𝐷2
+, as the simplest diatomic molecule serve as the benchmark systems.  

The interaction of 𝐻2
+ with a strong laser field can lead to multiphoton/strong-field dissociation (𝐻2

+ → 𝐻 +𝐻+) 

and ionization (𝐻2
+ → 𝐻+ +𝐻+ + 𝑒−). For each fragmentation channel, several phenomena have been observed and 

are investigated using steadily improving measurement techniques as well as the expanding range of accessible 

experimental parameters in laser intensity, wavelength and pulse duration. To name a few examples for each of the 

channels, without having the aspiration of giving a complete list, dissociation is related to the phenomena of bond-

softening [24], bond-hardening/vibrational trapping [138], zero-photon dissociation [139], laser-induced 

alignment [140] and above threshold detachment [141] [21]. For ionization, enhanced ionization, Coulomb 

explosion [142] and frustrated tunnel ionization are of relevance. More recently, coupling between electronic and 

nuclear dynamics particularly for ionization is catching the interest of investigations [143] [75] [39] [144], as well 

studies where the sub-cycle shape of the laser field is used to control the fragmentation exploiting, e.g. the carrier-

envelope phase [145] [15] or the relative phase between two-color fields [146].  

As mentioned, measurement techniques on strong-field fragmentation of 𝐻2
+ have become more differential and 

“cleaner” over time. In order to structure them, the method of 𝐻2
+ preparation can be used. In the early days, , strong-

field photoionization of 𝐻2 has been used to create 𝐻2
+ as a transient species during the same laser pulse that probes 

the dynamics in 𝐻2
+. Typical measurement quantities have been photoelectron or ion energy spectra. It is clear that 

this method of 𝐻2
+ preparation and variants of it ( e.g. pump-probe schemes), require some modeling on the creation 

of 𝐻2
+ from 𝐻2 in order to have a hand on initial conditions for the interaction between 𝐻2

+ and the field. However, 

this is typically not trivial as strong-field photoionization (SFI) of 𝐻2
+ from 𝐻2 creates a coherent vibrational wave 

packet in the 𝐻2
+ ion, which will not have dephased when the interaction between the field and 𝐻2

+ starts only atto- 

and femtoseconds later. Therefore, interpretation of experimental results that use this scheme can be difficult.  

Nowadays, modern Ion Target Recoil Ion Momentum Spectroscopy (ITRIMS) setups [14] [15] [83], see chapter 

3.4.1, use coincidence imaging techniques to measure three-dimensional vector momenta of all fragments from 

strong-field fragmentation of an ion beam of 𝐻2
+  molecules. This means, for dissociation 𝐻2

+ → 𝐻 +𝐻+ , the 

momenta of the proton,  𝐻+ , and the hydrogen atom,   𝐻, are measured. For ionization 𝐻2
+ → 𝐻+ + 𝐻+ + 𝑒−, the 

proton momenta,  1 and   2, and the electron momentum,  𝑒, can be measured [83]. In these ITRIMS setups, 𝐻2
+ is 

typically created by electron impact ionization of 𝐻2 in an ion source. Afterwards, it travels for several microseconds 

from the ion source to the region where it interacts with the laser. Thus, the initial distribution of vibrational states 

can well be approximated by an incoherent sum where the population follows a Franck-Condon distribution of an 
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electronic transition from 𝐻2 to 𝐻2
+. This removes the necessity of modeling the initial step of 𝐻2

+ creation by the 

laser, but it is on cost of experimental complexity as handling of a low density ion beam is necessary. 

Independent whether an ion beam has been used or not, the vast majority of existing experimental studies have 

been done at laser wavelength in the visible and near-infrared spectral range below 1 µm. With recent advances in 

laser technology, measurements at infrared wavelength are now possible. Despite curiosity and experimental 

availability, investigating fragmentation dynamics of 𝐻2
+ using strong infrared fields is motivated by the idea that a 

strong external laser field forces the motion of the electron to the optical cycle. If the optical period is long enough 

such that the nuclei can significantly move during one cycle, interesting phenomena of coupled electron nuclear 

dynamics might be expected for dissociation and ionization.  

Here, the Jena ITRIMS setup is used together with the output of the optic parametric amplifier to study intensity-

dependent strong-field fragmentation of an 𝐻2
+  ion beam target by a laser field with short-wave infrared 

wavelength. The measurement contains intensity tagged vector momentum data of events of the two fragmentation 

channels, dissociation 𝐻2
+ → 𝐻 +𝐻+, and ionization, 𝐻2

+ → 𝐻+ +𝐻+ + 𝑒−. However, the discussion of data analysis 

as well as modeling of the interaction focuses on the ionization channel.  

In section 5.2, details on the measurement setup are shortly reviewed together with improvements, which have 

been realized during this thesis. Specifically noteworthy is section 5.2.1 where the possibility to extract the 

momentum of the photoelectron  𝑒  from the measurement of the two proton momenta,  1  and   2 , using 

momentum conservation is demonstrated. It opens the opportunity to gain insight into correlated electron nuclear 

dynamics by investigation of  𝑒  in dependence of the correlated proton momenta. With the aim of keeping the 

modeling simple while the fundamental dynamics are captured, a one-dimensional two-level model on strong-field 

photoionization of 𝐻2
+ is proposed in section 5.3. It considers the nuclear dynamics by coupling of two electronic 

levels in the time-dependent external field and takes ionization into account using sets of quasi-static ionization 

rates, which are sensitive to the internuclear distance, 𝑅, and the instantaneous field strength, |𝐸|. As natural for a 

one-dimensional model, rotations are neglected. Two versions of the model, which use different sets of ionization 

rates, are compared to the measurement results in section 5.4. The results of the investigation are concluded in 5.5.  

 

5.2 Intensity Dependent Ionization of a Beam of 𝑯𝟐
+  at Short-Wave Infrared 

Wavelength 

 

The measurement combines the output of the femtosecond OPA, see section 2.3, with the ITRIMS setup that has 

been presented in chapter 3.4. More details on the ITRIMS are documented in [21] [70] [69]. The next chapters focus 

on implemented improvements and measurement procedures which have been realized here. Further, some 

experimental effects that are relevant for interpretation of the measured data are addressed. 

In order to remind the reader, Figure 5.1 shows a combination of two previous figures from section 3.4. A sketch 

of the ITRIMS setup is shown in Figure 5.1 a) and an example of the measurement result on strong-field 

fragmentation of 𝐻2
+ can be found in Figure 5.1 b). As mentioned, the result of the measurement are two lists of 

triples, { 1,  2, 𝐼0}𝑖 , of 𝑖  identified valid ionization and 𝑘  dissociation events, { 𝐻+ ,  𝐻, 𝐼0}𝑘 . Each contains the 

momenta of the two heavy fragments, i.e. protons,  1,  2  for ionization, and  𝐻+ ,  𝐻 , for dissociation and 

corresponding value of the peak intensity of the laser, 𝐼0. The opportunity of automated scanning and tagging of the 
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peak intensity has been added to the ITRIMS setup during this thesis. Details of the realization are presented in 

5.2.2.  
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Figure 5.1: Reminder of ITRIMS principle and the typical measurement results 

a) shows fragment detection scheme in the ITRIMS. The ion beam comes from the left and crosses the laser beam at an angle 

of 90°. Due to the initial velocity of the ion beam, the fragments continue to fly towards the position and time-sensitive delay-

line detector where the measurement of impact time and position is the basis for determination of the fragment momenta. 

Longitudinal and transversal static electric fields that are not drawn, separate the fragments in space and time on the detector. 

Created photoelectrons are not detected. The symbols illustrate fragments, (e) – electron, (p) – protons and parts of the 

ITRIMS setup. b) illustrates experimental results of strong-field fragmentation of a beam of  ions. A two-dimensional 

histogram projected into the plane of the linear polarization of the laser is shown. The polarization of the laser is parallel to 

. Ionization events have larger proton momenta than dissociation events and are found in the outer region of this plot while 

dissociation events are found in the inner region.  

 

Binning of the individual events to one or more dimensional distributions and spectra using MATLAB enables the 

analysis of differential rates on fragmentation channels (here ionization or dissociation) of interest. An example for 

such a result is given in Figure 5.1 b). A two-dimensional momentum distribution after strong-field fragmentation 

of  projected into the plane of the linear laser polarization is shown. The plot contains data on dissociation 

(encircled green, lower momenta) and ionization (encircled red, larger momenta). Events from all peak intensities 

are taken into account or in other words, it is integrated over the distribution of peak intensities which have been 

present over the time of the measurement. The linearly polarized laser is aligned parallel to the x-axis of the 

coordinate system.  

The fact that dissociation events are found at lower momenta reflects that their kinetic energy release (KER) is 

smaller compared to the KER of ionization. The KER distribution of ionization, i.e. the yield as function of 

 following the derivation in 3.2.3 is analyzed in detail and compared to simulations in section 5.4. 

The angle, , in Figure 5.1 denotes the angle between the orientation of the linear polarization of the laser and the 

vector  (for ionization) respectively,  (for dissociation). 

The overlaid arrows and symbols in Figure 5.1 b) are exemplary for one specific dissociation and one specific 

ionization event within the histogram. They illustrate that all events are given within the center of momentum frame 

of all dissociation events, i.e. all momenta are given relative to  with 

 using the notation of chapter 3.2.3. Using this reference, leads to the fact that the sum 

momentum  of an individual ionization event is shifted with respect to  as it is indicated by the white 

arrows. This shift can be used to infer the corresponding electron momentum as momentum conservation yields, 
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 1 +  2 = − 𝑒 , as discussed in 3.2.3. However, the precision of this method depends on the initial momentum 

spread of the incoming 𝐻2
+ molecules of the ion beam target. This spread can be characterized using the dissociation 

data of 𝐻2
+. To that end, one employs that laser-induced fragmentation does not change the total momentum if the 

momenta of all fragments are measured, i.e.  0 =  𝐻+ +  𝐻 where  0 is the initial momentum of an individual 𝐻2
+ 

molecule. Thus, analysis of the measured distribution of  0 =  𝐻+ +  𝐻  can be used to characterize the initial 

momentum spread of the ion beam target. Details of the procedure are given in section 5.2.1. 

In section 5.2.3 several experimental effects, i.e. the event rate, focal volume effects and the saturation intensity, 

chirp, carrier-envelope phase, and the distribution of initial vibrational states, which are relevant for interpretation 

and analysis of the experimental results are addressed. 

 

5.2.1 Measuring the Electron Momentum without Detecting It 

 

Kinematic complete measurements, i.e. measurements where the momenta of all fragments are measured in 

coincidence, yield deep insight into laser-induced fragmentation dynamics and are thus highly desirable. While such 

measurements are regularly done for laser-induced fragmentation of neutral targets using COLTRIMS (measuring 

the electron and the corresponding recoil ion), they are less common for laser-induced fragmentation of ion targets 

in ITRIMS setups. For the case of the prototype reaction of SFI of a beam of 𝐻2
+ ions i.e. for 𝐻2

+ → 𝐻+ + 𝐻+ + 𝑒− 

(measurement of the two proton momenta,  1,  2  and the electron momentum,  𝑒 ), only one realization of a 

kinematic complete measurement [75] [83] exists. Major reasons for this limited number of realizations are the 

necessity of detecting a three-particle coincidence, experimental complexity (ion beam handling, electron detector, 

ion detector), low density of the ion target (signal to noise for the electron measurement) and the initial momentum 

spread of the ion beam target (high temperature) which is comparable to the typical size of the momentum kick 

that is acquired by the electron for the typical laser wavelength of 800 nm [83].  

Here we demonstrate an experimental method to measure the electron momentum without detecting it. To that 

end, we use momentum conservation,  1 +  2 = − 𝑒, to infer  𝑒 from the measurement of  1 +  2. Not detecting 

the electron significantly reduces experimental complexity, but is at the cost of resolution for the electron 

momentum as  𝑒 obtained by this method is blurred by the initial momentum distribution of the target. Therefore, 

the method becomes particularly successful if laser fields with infrared wavelength are used as is demonstrated.  

As said, inferring  𝑒  from the measured  1 +  2  is blurred by the initial momentum distribution of the target 

beam. In order to characterize the effect of this blurring, we employ that laser-induced dissociation of 𝐻2
+ fulfills 

momentum conservation  0 =  𝐻 +  𝐻+  as discussed in chapter 3.2.3. It means that the measured sum momentum 

of the two dissociation fragments is equal to the initial momentum of the 𝐻2
+ molecule before the interaction with 

the laser. Making histograms of the measured  0 along each coordinate axis, 𝐷𝑥( 0𝑥), 𝐷 ( 0 ), 𝐷𝑧( 0𝑧), in the laser 

frame of reference (linear polarization a long the  -axis ) yields the plot in Figure 5.2 a). Fitting normal distributions 

to each gives an estimate for width as the standard deviation along each direction. They are, ∆𝑝𝑥 = 𝜎𝑥 ≈ 0.53 a. u. , 

∆𝑝 = 𝜎 ≈ 0.43 a. u., and ∆𝑝𝑧 = 𝜎𝑧 ≈ 0.43 a. u.. Altogether, ∆𝑝𝑟 = (𝜎𝑥
2 + 𝜎 

2 + 𝜎𝑧
2)

1/2
≈ 0.79 a. u. is the spread in an 

arbitrary direction. The related energy uncertainty is ∆𝑝𝑟
2/2 ≈ 0.31 a. u. = 8.2 eV. This experimentally determined 

spread of  0 compares well to estimates that are based on the velocity of the ion beam and on the size of collimating 

apertures together with the size of the laser spot, see [21] [70] [69]. Typical values for the initial spread in 
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COLTRIMS under ideal conditions are on the order  to  depending on the target atom 

and the orientation of the supersonic gas expansion.  

 

 

Figure 5.2: Measuring the momentum of the electron without detecting it 

a) shows the distribution of the sum momentum of dissociation events projected along different directions within the laser 

frame of reference. The direction of the linearly polarized laser is along the x-axis here. b) shows the same as in a) but for 

ionization events of this measurement. c) and d) show the intensity dependence of the photo electron spectra within a narrow 

cone around the polarization axis of the of two different measurements, c) for a 1.8μm-50-fs laser and d) for 0.8μm-35-fs 

laser. The color bar is the logarithm of the normalized spectrum for each intensity. White dots are the energy at which the 

normalized spectra drop below . The white line is a smoothing of these points based on a moving average. For c), this 

line increases with intensity for low intensities until it saturates starting around the saturation intensity 0.35 . For 

d), the interpretation of the data is not as clear as due to the shorter wavelength, the energy due to the kick from the laser is 

not much larger than initial momentum spread of the ion beam. However, it seems as saturation is still visible. 

 

Comparing the determined  to expectations on the magnitude of the electron momentum in SFI, , for 

typical field strength of  shows that the measurement is strongly blurred by the initial distribution if 

ionization by a 800 nm laser is considered. For this case, one has 

 for a direct electron. The situation becomes better if 1800 nm are used i.e. . 

The behavior is illustrated by the distribution of ionization events for a measurement at 1800 nm in Figure 5.2 b) 

where the momentum distribution parallel to polarization reaches approximately this width. The corresponding 

intensity dependence of the inferred electron energy spectra based on this method are shown for 1800 nm in  Figure 

5.2 c) and for 800 nm in Figure 5.2 d). The 1800 nm data shows the expected behavior of increasing width of the 

electron energy spectrum for increasing intensity. The interpretation of the intensity-dependent electron spectra 

of the 800 nm measurement is less clear, see the figure caption for details.  

Altogether, if the ionizing laser has a sufficiently long wavelength, i.e. if the transferred momentum kick to the 

electron is large enough, measuring the sum momentum of both protons yields access to momentum of the 

a) b)

c) d)Ionization 1800 nm Ionization 800 nm
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photoelectron without detecting it. The photoelectron momentum distribution, which is obtained in this way, is 

blurred with the initial momentum spread of the ion beam, which decreases the momentum resolution for the 

electron momentum.  

 

5.2.2 Automated Scanning and Tagging of the Pulse Energy during the Measurement 

 

 

Figure 5.3: Illustration of pulse energy control and pulse energy tagging 

a) Temporal evolution of the measured signal from the energy meter while the pulse energy is looped and tagged. b) Example 

of the histogram of pulse energies at the end of a measurement. All laser shots (blue curve); Shots with ionization events (red 

curve) and dissociation events (yellow curve), sum of ionization and dissociation events (purple curve). Note that the curve 

for all laser shots is divided by 1000 in order to show all curves on the same scale. c) Events per laser shot for ionization, 

dissociation and the sum of both. Experimental parameters in the shown example are wavelength, pulse 

duration .  

 

The measurement setup has been augmented by tagging and automated scanning of the pulse energy. To this end, 

the method of controlling the pulse energy without changing the focal spot or pulse duration as presented in 

attachment A1 is used .The pulse energy of every single laser shot is saved together with other measurement signals 

which enables subsequent binning and filtering of the measurement results according to the peak intensity of the 

laser pulse using the measured properties of the focal spot and pulse duration. Here we turn to the details of the 

implementation. 

Tagging of the pulse energy is achieved by digitization of the output voltage of an every-single laser shot pulse 

energy meter. A calibration measurement connects the digitized voltage signal with the pulse energy in the target, 

see section 3.4, respectively Figure 5.3 a) for the optical setup. Scanning of the peak intensity is realized using a 

motorized and computer controlled mount to rotate a half wave plate in front of a combination of reflective and 

transmissive polarizers. Motor control over the time of the measurement is done using a MATLAB software in which 

a list of motor positions together with a resting time for the corresponding position is defined. During the 

measurement, the motor loops over this list sequentially and thus, the peak intensity changes continuously while it 

is tagged and recorded automated. 

The scheme described here has two advantages. i) Continuously looping over the full range of available intensities 

at a frequency of several minutes while the full measurement time is on the order of hours and days ensures that 

the measured data contains the full range of peak intensities independent whether the measurement is stopped in 

case of a failure. ii) In addition, drifts, e.g. of the ion beam current or the energy of the laser, which would affect one 

a) b) c)b)b)b)a) c)c)
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part of the measurement more significant than others if a single intensity sweep is done are avoided by repeatedly 

sweeping intensity. Further, having the option to adjust the resting time at some intensities, gives the opportunity 

to achieve a more homogenous distribution of counts over the full intensity range by spending more measurement 

time at lower intensities where the yield is lower. In this way, the measured differential rates that are obtained at 

different intensities can be compared with similar statistics. 

However, following an arbitrary path with the peak intensity over the measurement time, yields an 

inhomogeneous distribution of laser shots at the end of the measurement, see Figure 5.3 b). In order to have access 

to the number of events per laser shot (event rate) as shown in Figure 5.3 c), it is necessary to renormalize the 

number of events within an intensity bin by dividing it through the number of laser shots that have been taken at 

this intensity position. The resulting event rate of ionization and dissociation increase with increasing peak 

intensity. While the event rate of dissociation is very steep and then increases slowly, ionization has a high slope 

over a large intensity range. It can even overtake the dissociation rate. In the region of highest intensity, both curves 

have almost equal slope. The observed intensity dependence of the event rate is not only governed by the intrinsic 

intensity dependence of the probability for ionization or dissociation of 𝐻2
+, but it is also influenced by effects that 

originate from the fact that the experiment averages of the intensity distribution within the focal volume [147]. This 

focal volume effect will be analyzed in detail in the next section.  

Altogether, a method for automated scanning and tagging of the peak intensity in the measurement has been 

demonstrated. It is used to investigate the intensity dependence of strong-field photoionization of 𝐻2
+ at infrared 

laser wavelength.  

 

5.2.3 Relevant Experimental Effects in Detail 

 

The typical parameters to characterize the laser field in strong-field laser-matter interactions are the peak 

intensity, 𝐼0, the intensity full-width half-maximum pulse duration, 𝜏, and it’s central wavelength, 𝜆. However, it is 

well known that measurements are affected by several second order effects such as the focal volume , saturation 

intensity, chirp of the laser pulse, it’s carrier-envelope phase and the distribution of initially populated vibrational 

states see, e.g. [21]. Here, some important effects and experimental limits are addressed as these are relevant for 

analysis and interpretation of the measurements. 

 

Event Rate 

The event rate, 𝜖, is the number of detected coincidence events per unit of measurement time. Due to limits in 

measurement time, it sets limits on the available statistics of the measurement. Here its dependencies on several 

variables is investigated. Thereby, the goal is to identify the most limiting variable and to provide approaches for 

increasing the event rate for future work. Thereby, theoretical expectations are compared to observations made 

during the measurements. 

𝜖 is proportional to the number of particles that overlap with the laser beam per laser shot, 𝑁𝑠ℎ𝑜𝑡, to the laser’s 

repetition rate, 𝑓𝑟𝑒𝑝, to the intrinsic probability of the investigated process, 𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠, and to the detection probability, 

𝐷. 𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠 is related to the cross-section of the investigated process and depends on the experimental conditions 

such as the laser’s peak intensity, wavelength or pulse duration. 𝑁𝑠ℎ𝑜𝑡 can be decomposed into two more factors, 
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which are the focal volume, 𝑉𝑓𝑜𝑐 , that overlaps with the ion beam, and 𝜌, which is the homogenous density of the ion 

beam. Thus, altogether, the event rate is proportional to, 𝜖 ∝ 𝜌 ∙ 𝑉𝑓𝑜𝑐 ∙ 𝐷 ∙ 𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠 ∙ 𝑓𝑟𝑒𝑝.  

A major limit for ITRIMS measurements comes from 𝜌 of the target. An analysis of limits can be found in [21]. Here 

we estimate it for typical conditions in the measurement using 𝜌 = 𝐶√𝑚𝑖𝑜𝑛/𝐴𝐵 √2𝐵𝑘𝑖𝑛. Assuming an ion current 

of 𝐶 = 10 nA, a cross-sectional area of 𝐴𝐵 = 0.1 mm2 and an ion beam energy of 𝐵𝑘𝑖𝑛 = 9 keV and for 𝐻2
+ with  =

𝑒 (𝑒, being the elementary charge) and 𝑚𝑖𝑜𝑛 being the mass of 𝐻2
+, one finds, 𝜌 = 6 ∙ 104 particles/cm3. Increasing 

this number is primarily limited by the current, which is available from the ion source. Other effects such as space 

charge issues, which would influence the measured momentum due to the repelling Coulomb forces between 

different particles play a minor role and are not a limit at ion densities below 𝜌 < 107 particles/cm3. A density on 

the order of 𝜌 < 105 particles/cm3 in the Jena ITRIMS setup is several orders of magnitude smaller than densities 

that are available for neutral targets such as gas cells (𝜌 ≈ 1017 particles/cm3 and more), or cold supersonic gas 

jets 𝜌 < 1011  particles/cm3  as in a COLTRIMS. Thus, ITRIMS experiment are hard to realize and are very time 

consuming compared to e.g. COLTRIMS or VMI measurements.  

The influence of 𝑉𝑓𝑜𝑐 on the event rate is estimated next [147]. The volume within a Gaussian laser focus of spot 

size, 𝑤𝐹 , peak intensity, 𝐼0, and Rayleigh range, 𝑧𝑟𝐹 = 𝜋𝑤𝐹
2/𝜆, which overlaps with a cuboid of edge length, 𝑧𝑟𝐹, is 

approximately 𝑉2(𝐼0, 𝐼𝑠𝑎𝑡) ≈ 𝜋𝑤𝐹
2𝑧𝑟𝐹ln (𝐼0/𝐼) . The ion beam crosses the laser beam perpendicular to the laser’s 

propagation direction and is assumed to have a cuboid shape. Using the volume function, 𝑉2(𝐼0, 𝐼𝑠𝑎𝑡) , one can 

calculate the volume within the focus where the intensity is higher than a certain saturation intensity, 𝐼𝑠𝑎𝑡, below 

the peak intensity, 𝐼0. For typical conditions, which are sufficient to reach 𝐼0 ≈ 1015 W/cm2 using the present setup, 

i.e. 𝑤𝐹 = 0.024 mm, 𝑧𝑟𝐹 = 1 mm, 𝜆 = 1800 nm, this gives 𝑉2(𝐼0/𝐼𝑠𝑎𝑡 = 100) ≈ 4.2 ∙ 10−6 cm3. Together with the ion 

beam density, one finds that 𝑁𝑠ℎ𝑜𝑡 = 𝑉𝑓𝑜𝑐 ∙ 𝜌 = 4.2 ∙ 10−6 cm3  ∙ 6 ∙ 104 cm−3 ≈ 0.2  particles are hit by the laser 

beam per laser shot at an intensity higher than 𝐼𝑠𝑎𝑡 ≈ 1013 W/cm2 . Lowering 𝐼0  by a factor of 10 lowers 𝑁𝑠ℎ𝑜𝑡 

roughly by a factor of 2, i.e. 𝑁𝑠ℎ𝑜𝑡 ≈ 0.1.  

Next, we have the coincidence detection probability, 𝐷. The probability for detecting a single particle with a typical 

microchannel-plate (MCP) delay-line detector is on the order of 0.3 due to the limited open area ratio of the MCP. 

Thus, for a two-particle coincidence 𝐷 is 𝐷 = 0.32 = 0.09. In order to keep the estimate simple, it is assumed that 

𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠(𝐼 > 𝐼𝑠𝑎𝑡) ≈ 1. Altogether, one finds 𝜖~0.018 ∙ 𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠 per laser shot which leads to 𝜖 ≈ 18 Hz at a repetition 

rate of 1 kHz if an ion beam current of 𝐶 = 10 nA is achieved in the target area. In many cases, 𝐶 = 1 nA is more 

realistic, thus 𝜖 ≈ 2 Hz or 𝜖~0.002𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠 per laser shot is feasible. Thus, if 105 coincidence events are desired, a 

typical measurement time is on the order of several hours up to days.  

The estimation of the event rate compares well to the experimentally observed values shown in Figure 5.3 c). This 

low number for the event rate illustrates that ITRIMS measurements using current kHz laser technology with good 

statistics is more challenging compared to typical COLTRIMS or VMI measurements. The measurement times 

become very long and are on the order of hours and days up to weeks depending on the requirements of the 

statistics. During this time, stable operation of the laser and the ion beam is required. Further, the processes, which 

can be investigated are required to have an intrinsic probability, which is close to one, 𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠 ≈ 1, as lowering this 

factor, would lengthen the measurement times even further. This fact sets limits on the parameter range that can 

be investigated within a reasonable amount of time as, for example, lowering the intensity or shortening the pulse 

duration can dramatically reduce 𝑃𝑃𝑟𝑜𝑧𝑒𝑠𝑠. 
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Obvious approaches to improve this situation are: (i) Increasing the ion beam density, (ii) increasing the volume 

where the laser overlaps with the ion beam (on both side, ion beam and laser beam) or (iii) increasing the average 

power of the laser (higher repetition rate at the same pulse energy). (i) Might be achieved by using an ion source 

that delivers higher current or by the use of a source that delivers ion bunches that are synchronized with the 

repetition rate of the laser. (ii) Is a more gentle, less elaborate approach but is on cost of peak intensity if the average 

power of the laser is not increased. Still, it might be employed for intensity scans by shifting the focal position with 

respect to the position of ion beam, using the so-called z-scan method, [147]. (iii) Requires progress in femtosecond 

laser technology, which are currently underway. 

 

Focal Volume Effect and Saturation Intensities 

It is well known that measurements of strong-field processes are affected by the intensity distribution in the focus 

of the laser beam. Thereby, the so-called saturation intensity, 𝐼𝑠𝑎𝑡, which is the intensity above which the probability 

for a certain strong-field process is 1, plays a central role. Here, the intensity dependence of an ITRIMS measurement 

is used to determine 𝐼𝑠𝑎𝑡  for ionization and dissociation of 𝐻2
+  by 𝜆 = 1800 nm , 𝜏 = 48 fs pulses. Thereby, we 

illustrate the focal volume effect.  

We start by considering the time- and space-dependent intensity distribution, 𝐼( , 𝑦, 𝑧, 𝑡) = 𝐼0𝑓(𝑡)𝑔( , 𝑦, 𝑧). Here, 

𝐼0 is the peak intensity, 𝑓(𝑡), the time-dependent electric field, 𝑔( , 𝑦, 𝑧) is the spatial intensity distribution in the 

focal spot. Modeling 𝑓(𝑡) by a temporal Gaussian and further modeling 𝑔( , 𝑦, 𝑧) using the approximation of an ideal 

Gaussian laser spot, one can give the peak intensity, 𝐼0 = 1.88𝜀/𝜋𝜏𝑤𝐹
2 as function of the pulse energy, 𝜀, the pulse 

duration, 𝜏, and the waist, 𝑤𝐹 , of the focal spot, see attachment A1. Last but not least, the Rayleigh range, 𝑧𝑟𝐹 =

𝜋𝑤𝐹
2/𝜆 , is needed to determine 𝑔( , 𝑦, 𝑧)  precisely. Using the radial coordinate, 𝑟 = √ 2 + 𝑦2 , the three-

dimensional Gaussian intensity distribution in the focus is, 𝑔(𝑟, 𝑧) = 𝐼0[𝑤𝐹/𝑤(𝑧)]
2 exp(−2𝑟2/𝑤𝐹

2)  with 𝑤(𝑧) =

𝑤𝐹√1 + (𝑧/𝑧𝑟𝐹)
2. This spatial distribution is crossed with the volume of the ion beam, 𝑏( , 𝑦, 𝑧), which we assume 

to be a cuboid of homogenous density as in the previous consideration on the event rate. The cuboid is infinitely 

long along the direction of the ion beam, i.e. the 𝑦-axis, and of limited size for the other two directions, 𝑑𝑧 ≈ 𝑑𝑥 ≈

450 µm. Experimentally, the extension along the  - and the 𝑧-direction is controlled by the opening of the adjustable 

apertures labeled with (m) in Figure 3.4.  

Having defined a geometry of the ion beam, one can now use a Monte-Carlo method to calculate the volume, 

𝑉𝐼>𝐼𝑠𝑎𝑡(𝐼0, 𝐼𝑠𝑎𝑡), which overlaps with the laser beam, 𝑔(𝑟, 𝑧), and has an intensity, 𝐼, which is higher than 𝐼𝑠𝑎𝑡 for a 

given peak intensity 𝐼0 . Scanning 𝐼0  in the Monte-Carlo calculation yields the dots in Figure 5.4. Comparing the 

Monte-Carlo result to an analytical expression for volume functions [147] shows that the intensity dependence of 

the Monte-Carlo result fits extremely well to the analytical expression for a thin target that has a thickness of 𝑑𝑧 ≈

0, is located at 𝑧 = 0, and is not limited along the other dimensions, 

𝑉𝐼>𝐼𝑠𝑎𝑡(𝐼0, 𝐼𝑠𝑎𝑡) =
1

2
𝜋𝑤𝐹

2 log (
𝐼0
𝐼𝑠𝑎𝑡

) →  𝑓(𝐼0) = 𝑎 log (
𝐼0
𝐼𝑠𝑎𝑡

), (5.1) 

see Figure 5.4 a). Therefore, it is justified to use equation (5.1) as analytical expression for the target volume with 

an intensity which is higher than 𝐼𝑠𝑎𝑡. Recalling the ratio between the waist of the spot, 𝑑𝑥/𝑤𝐹 ≈ 19, this might not 

be surprising. However, it was worth to in view of the fact that the ratio between the experimental Rayleigh range, 

𝑧𝑟𝐹 ≈ 1 mm, and the size of the target is 𝑑𝑧/𝑧𝑟𝐹 ≈ 0.46 only.  
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Figure 5.4: Intensity Dependence of the Event Rate due to Volume Effect 

a) shows a comparison between volume functions within different approximation of the target geometry from [147] in 

comparison to a Monte Carlo simulation, see text for details. b) illustrates the fit of (5.1) to the measured sum of ionization 

and dissociation events per laser shot. c) Fraction of ionization events per laser shot as function of intensity.  

 

The observation of a very flat intensity dependence for the event rate of dissociation almost over the whole 

intensity range suggests that even the lowest peak intensity in the measurement, Figure 5.3 c), might be close to or 

even higher than the saturation intensity for dissociation, . Further assuming that  allows one 

to fit a function with the form of equation (5.1) to the measured intensity dependence of the sum of ionization and 

dissociation events per laser shot. Taking the sum of ionization and dissociation events is justified by the idea that 

dissociation saturates before ionization and thus, the ionization volume must only be added to the dissociation 

volume. The result of the fit is shown in Figure 5.4 b) together with the experimental data. The determined value 

based on the fit is  for the data in the example measurement ( , pulse 

duration ). 

The saturation intensity of the ionization process, , can be estimated using the observation that ionization 

overtakes dissociation until both event rates grow with very similar slope in Figure 5.1 c). Plotting the fraction of 

ionization, i.e. the ionization yield curve divided by the sum of the dissociation and the ionization in Figure 5.4 c), 

shows an almost constant ionization fraction for high peak intensity while at low peak intensity a steep increase of 

the ionization faction is observed. The behavior can be understood by considering that the volume of ionization and 

dissociation grow evenly, once the peak intensity is higher than the saturation intensity of both processes. This 

statement can be checked by calculating the derivative of (5.1), i.e. , which is independent of . 

Identification of the crossing between the tangent of the steep increase of the ionization fraction and it’s constant 

region gives an estimate for the saturation intensity .  

I the peak intensity is higher than the saturation intensity, differential momentum distributions of ionization or 

dissociation are expected to be less sensitive to changes of peak intensity.  

 

Chirp 

The characterization of the idler beam from the TOPAS in chapter 2 shows that it exhibits a negative GDD of several 

hundreds of  and positive TOD of several hundreds of  depending on the exact wavelength. This is only 

partially compensated by the propagation through air and the beam path through the optical elements into the 

a) b) c)))a) b)b)b) ))c)
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interaction region of the ion beam apparatus. Thus, the measurements are done with slightly chirped pulses, which 

have a longer duration than their Fourier-transform limit. The given values for the pulse duration, 𝜏 (intensity full-

width half-maximum), are the result of second-harmonic generation autocorrelation (SHG-AC) measurements 

performed at the same distance in air and with the same optical elements in the beam path as the laser takes to 

reach the interaction region of the ion beam. Thus, the given values for 𝜏, include the effects of the residual GDD and 

TOD but the exact frequency dependent spectral phase of the pulse is not specified.  

Later on, the measurements are compared to theoretical results which use a cos2-envelope. The duration of the 

cos2-envelope is adjusted such that the corresponding intensity full-width half-maximum duration matches the 

measured ones. Thus, theory accounts for the stretched envelope due to the chirp but not for the time-dependent 

frequency sweep during the pulse which is present in the experiment. The influence of the frequency sweep is 

expected to play a minor role for the comparison between measurements and theoretical results as well as for the 

interpretation. 

 

Carrier-Envelope Phase 

The measured data is not influenced by the carrier-envelope phase (CEP) of the laser pulses as laser pulses with 

random CEP have been used in the measurement.  

 

Initial Population of Vibrational States 

Alternatively to using an ion beam source, many measurements on strong-field interaction of 𝐻2
+ have been done 

using COLTRIMS and starting from neutral 𝐻2 in a supersonic gas jet. In such experiments, 𝐻2
+ is created from 𝐻2 by 

laser induced photoionization which is typically realized using an additional pump pulse to create 𝐻2
+ from 𝐻2. The 

pump comes shortly before the probe laser pulse and ionizes 𝐻2 such that 𝐻2
+ is available in the target at the time 

the main pulse arrives, see e.g. for a recent example [41].  

A major difference to these schemes and the measurement data here is the initial preparation of the 𝐻2
+ target. 

Creation of 𝐻2
+ using laser-induced ionization of 𝐻2 causes an electronic transition from 𝐻2 to 𝐻2

+ which yields a 

coherent sum of vibrational states, i.e. a vibrational wave packet that follows coherent dynamics on the Born-

Oppenheimer (BO) potential energy curve of 𝐻2
+. The exact details of the initial shape and the on-going dynamics 

are sensitive to the laser parameters of the pump pulse, e.g. wavelength, intensity, pulse duration. If now, the probe 

pulse is used for dissociation (𝐻2
+ → 𝐻+ + 𝐻) or ionization of 𝐻2

+ (𝐻2
+ → 𝐻+ +𝐻+ + 𝑒−), only very short times later, 

i.e. before the nuclear wave packet has dephased, the experimental result contains signatures related to the 

temporal delay between the creation of 𝐻2
+ from 𝐻2. Thus, comparison of experimental data to theoretical results 

relies on some modelling or assumptions of this first step including a modeling of the subsequent dynamics. It makes 

the interpretation of results more complex.  

Complementary to this scheme, in the ITRIMS one starts with a beam of 𝐻2
+ that is created by electron impact 

ionization in a discharge plasma. Due to the long time-of flight between ion source and the interaction with the laser 

of several micro-seconds, the 𝐻2
+ molecules in the target will have a large spread in time-of flight compared to the 

vibrational period of the molecule. Thus, the initial population of vibrational states in the ion beam experiment can 

be treated as an incoherent sum of vibrational states, [21]. The initial population can well be described by a vertical 

transitions from the vibrational ground state of 𝐻2  based on the Frank-Condon principle, see Figure 5.5 a) for 

illustration. The distribution along the internuclear distance, 𝑅 , on the BO potential of 𝐻2
+  is the result of the 
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incoherent sum of the Franck-Condon distribution. A measurement and comparison to theoretical results of the 

distribution of vibrational states after electron impact ionization has been done [148] and is shown in Figure 5.5 b). 

This distribution is used to average the theoretical results over the vibrational state in order to enable a comparison 

to the experimental data.  

 

 

Figure 5.5: Distribution of initially populated vibrational states 

a) illustrates how electron impact ionization in the ion source excites  to . Releasing an electron from the vibrational 

ground state (yellow curve) on the Born-Oppenheimer potential of  (dark blue) excites  to . Thereby, an initial 

distribution of vibrational states, which is well approximated by a Franck-Condon distribution is formed. b) shows theoretical 

and experimental distributions of vibrational states after electron impact ionization taken from the given reference. The 

experimental curve is used to compare to theoretical results later on. 

 

With the previous discussion of the event rate, focal volume and saturation intensity, chirp, carrier-envelope phase 

and the initial population of vibrational states important second-order experimental effects have been clarified. 

Particularly the information on chirp, pulse duration, and the intensity distribution in the focal volume as well as 

the initial population of vibrational states is relevant for the modeling of the strong-field interaction and should be 

taken into account by simulations. 

 

5.3 A One-dimensional Two-Level Model on Strong-field Photoionization of  
 

With the aim of keeping the modeling simple while the fundamental dynamics are captured, we propose a one-

dimensional two-level model on strong-field photoionization of  here. The results of the simulations are 

compared to the experimental data in chapter 5.4 on a qualitative level. As the modeling has several steps and 

combines several ideas, we start by giving an overview on it using the structure chart in Figure 5.6. More detailed 

explanations can be found in the subsequent sections 5.3.1, 5.3.2 and 5.3.3.  

The calculations of the model start from an Eigenstate,  with  being the  electronic 

Eigenstate and  being the nuclear Eigenstate with quantum number . The symbols,  and  denote the time 

and the internuclear distance, see the top green box in the structure chart in Figure 5.6. As illustrated by the purple 

a) b)) b
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box in Figure 5.6, from the initial Eigenstate, the dynamics of the bound electronic states due to the interaction with 

the external laser field, 𝐸(𝑡) , with pulse duration, 𝜏 , and field strength, 𝐸0 , are modeled by solving the time-

dependent Schrödinger equation (TDSE) numerically using the split-step method [149]. Thereby, see the cyan box 

in Figure 5.6, only the 1𝑠𝜎𝑔 and the 2𝑝𝜎𝑢 electronic Eigenstate, i.e. 𝜓(𝒓, 𝑅, 𝑡) ≈ 𝜒𝑔(𝑅, 𝑡)𝜑𝑔 + 𝜒𝑢(𝑅, 𝑡)𝜑𝑢, are taken 

into account. 

Ionization is incorporated by damping the bound wave function after each step, Δ𝑡, of the split-step algorithm, 

using quasi-static ionization rates, Γ𝑔,𝑢(𝑅, |𝐸(𝑡)|) (one for each electronic state), see Figure 5.6. Applying absorbing 

boundaries after each Δ𝑡 next, avoids reflections of the wave functions on the edges of the numerical grid along 𝑅. 

Accumulation of the damping (top orange box, Figure 5.6) due to ionization for every time step yields a 𝑅- and 𝑡-

dependent population of the molecule’s ionized state, 𝑃𝑖𝑜𝑛(𝑅, 𝑡) , while accumulation of the damping due to 

absorbing boundaries (lower orange box, Figure 5.6) is viewed as time-dependent dissociation probability, 𝑃𝑑𝑖𝑠(𝑡). 

Calculation of 𝑊(𝑅, 𝑡) = 𝑑𝑃𝑖𝑜𝑛(𝑅, 𝑡)/𝑑𝑡  represents an ionization rate which is characteristic for the laser 

parameters 𝜏 and 𝐸0 as well as for the initial vibrational state, 𝜈. It is the basis for the Monte-Carlo methods which 

are used to calculate the corresponding KER spectra and joint electron-nuclear energy distributions (JEDs), see 

Figure 5.6 the green box at the bottom. This calculation is repeated for several initial vibrational states, and peak 

field strength, see the blue arrow in Figure 5.6. In order to be able to compare to the measurement later on, the 

calculation results from the different field strength and initial vibrational states are averaged over the distribution 

of field strength in the focal volume as well as over the distribution of the vibrational states taking into account the 

ionization probability at the end of the pulse, see Figure 5.6 red arrow and box. 

The calculations of the model start from an Eigenstate, 𝜓(𝒓, 𝑅, 𝑡) ≈ 𝜒𝑔
𝜈(𝑅, 𝑡)𝜑𝑔 with 𝜑𝑔 being the 1𝑠𝜎𝑔 electronic 

Eigenstate and 𝜒𝑔
𝜈(𝑅, 𝑡) being the nuclear Eigenstate with quantum number 𝜈. The symbols, 𝑅 and 𝑡 denote the time 

and the internuclear distance, see the top green box in the structure chart in Figure 5.6. As illustrated by purple box 

in Figure 5.6, from the initial Eigenstate, the dynamics of the bound electronic states due to the interaction with the 

external laser field, 𝐸(𝑡), with pulse duration, 𝜏, and field strength, 𝐸0, are modeled by solving the time-dependent 

Schrödinger equation (TDSE) numerically using the split-step method [149]. Thereby, see cyan box in Figure 5.6,  

only the 1𝑠𝜎𝑔 and the 2𝑝𝜎𝑢 electronic Eigenstate, i.e. 𝜓(𝒓, 𝑅, 𝑡) ≈ 𝜒𝑔(𝑅, 𝑡)𝜑𝑔 + 𝜒𝑢(𝑅, 𝑡)𝜑𝑢, are taken into account. 

Ionization is incorporated by damping the bound wave function after each step, Δ𝑡, of the split-step algorithm, using 

quasi-static ionization rates, Γ𝑔,𝑢(𝑅, |𝐸(𝑡)|)  (one for each electronic state), see Figure 5.6. Applying absorbing 

boundaries after each Δ𝑡 next, avoids reflections of the wave functions on the edges of the numerical grid along, 𝑅. 

Accumulation of the damping (top orange box, Figure 5.6) due to ionization for every time step yields a 𝑅- and 𝑡-

dependent population of the molecule’s ionized state, 𝑃𝑖𝑜𝑛(𝑅, 𝑡)  while accumulation of the damping due to 

absorbing boundaries (lower orange box, Figure 5.6) is viewed as time-dependent dissociation probability, 𝑃𝑑𝑖𝑠(𝑡). 

Calculation of 𝑊(𝑅, 𝑡) = 𝑑𝑃𝑖𝑜𝑛(𝑅, 𝑡)/𝑑𝑡  represents an ionization rate which is characteristic for the laser 

parameters 𝜏 and 𝐸0 as well as for the initial vibrational state, 𝜈. It is the basis for the Monte-Carlo methods which 

are used to calculate the corresponding KER spectra and joint electron-nuclear energy distributions (JEDs), see 

Figure 5.6 bottom green box. This calculation is repeated for several initial vibrational states, and peak field 

strength, see the blue arrow in Figure 5.6. In order to be able to compare to the measurement later on, the calculation 

results from the different field strength and initial vibrational states are averaged over the distribution of field 
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strength in the focal volume as well as over the distribution of the vibrational states taking into account the 

ionization probability at the end of the pulse, see Figure 5.6 red arrow and box. 

With that overview we turn to more detailed explanations and illustrations of each step.  

 

single initial Eigenstate, 𝜓 𝒓, 𝑅, 𝑡 = 0 = 𝜑𝑔𝜒𝑔
𝜈 𝑅, 𝑡 = 0
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corresponding, 1𝑠𝜎𝑔, Born-Oppenheimer potential, 𝑈𝑔 𝑅
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Figure 5.6: Structure chart of the one-dimensional two-level model on strong-field photoionization of 𝐻2
+, see text for details. 

 

5.3.1 Time-Dependent Coupling of Born-Oppenheimer Potentials in 𝑯𝟐
+ augmented for Ionization 

 

The one-dimensional two-level model on 𝐻2
+ strong-field photoionization of 𝐻2

+ neglects rotations and uses the 

approximation of linearly polarized laser field that is parallel to the nuclear axis. The total wave function, 𝜓(𝒓, 𝑅, 𝑡), 

is approximated using the 1𝑠𝜎𝑔  and the 2𝑝𝜎𝑢  electronic wave functions, 𝜑𝑔(𝑅; 𝒓)  and 𝜑𝑢(𝑅; 𝒓) , i.e. 𝜓(𝒓, 𝑅, 𝑡) ≈

𝜒𝑔(𝑅, 𝑡)𝜑𝑔 + 𝜒𝑢(𝑅, 𝑡)𝜑𝑢. Having the electronic problem solved, one applies the BO approximation and arrives at the 

corresponding field-free BO potentials, 𝑈𝑔(𝑅)  and 𝑈𝑢(𝑅),  on which the nuclear wave functions, 𝜒𝑔(𝑅, 𝑡)  and 

𝜒𝑢(𝑅, 𝑡), evolve, see Figure 5.7 a) for an illustration. As demonstrated in attachment A4.2, the two potentials are 

coupled by the external field. The coupled two-level TDSE of 𝐻2
+ in the external laser field, 𝐸(𝑡), reads,  

𝑖
𝑑

𝑑𝑡
[
𝜒𝑔(𝑅, 𝑡)

𝜒𝑢(𝑅, 𝑡)
] = [

 𝑁 + 𝑈𝑔(𝑅) 𝐸(𝑡)𝑑𝑔𝑢(𝑅)

𝐸(𝑡)𝑑𝑔𝑢(𝑅)  𝑁 + 𝑈𝑢(𝑅)
] [
𝜒𝑔(𝑅, 𝑡)

𝜒𝑢(𝑅, 𝑡)
]. (5.2) 
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 is the operator for the nuclear kinetic energy and  is the reduced 

mass for a diatomic molecule.  is the proton mass and  is the -dependent dipole strength of 

 transition. In all simulations, tabulated values for  and  [150] as well as for  [151] 

[152] are used. 

 

 

Figure 5.7: Time evolution on two coupled BO curves and ionization signal in external time-dependent field.  

a) Illustrates the coupling of the BO curves and ionization based on a quasi-static rate in an external field. At each time step, a 

“copy” of the nuclear wave function from the other BO potential is added to the field free propagation on the corresponding 

BO potentials. The blue line is the BO potential of the  electronic state. The red line is the same but for the  potential. 

The black line is the , potential, which is relevant when the molecule has been ionized, i.e. the electron is freed. The solid 

and dashed line in yellow respectively purple illustrate nuclear wave functions,  respectively  at an 

earlier (solid) and a later time (dashed). Coupling of the states where the electron is bound is illustrated by the yellow and 

the purple arrows. Ionization, i.e. the transition to the  potential by the quasi-static rate is illustrated by the black arrows. 

b) and c) show the time-dependent evolution of  respectively  in the external field in a two-dimensional 

plot. The field in the calculation,  in a.u. , is shown for reference. It got multiplied by 15 and shifted by 10 a. u. in order to 

allow for a convenient visibility in the plot. The shown example includes the effect of ionization using the method as explained 

in the next chapter. The quantity, , which is representative for the - and - dependent population of the ionic state 

calculated within this method is shown in d).  

 

Before we continue, we illustrate how the external field couples the two BO potential curves in a time-dependent 

manner by formally integrating (5.2), 

 

 
(5.3) 

The nuclear wave function on each of the BO curves is written in form of two summands. The first is representative 

for the field-free time evolution on the respective BO potential. The second summand can be understood as kind of 

a “copy” of the nuclear wave function from the other BO curve which is “created”. The strength of the generated 

“copy” is proportional to the strength of the electric field, , and the transition dipole matrix element, , as 

well as to the complex amplitude of the wave function on this curve. As the -dependent wave function is complex 

valued, the contributions from the “copy” interfere with the part of the wave function which is already on the 

respective BO potential. Thus, the coupling can lead to an enhancement (constructive interference) or suppression 

(destructive interference) of the probabilities on each of the curves,  or . Figure 5.7 illustrates 

a) b) c) d)d)b)b) c))))))
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the coupling scheme of the two bound electronic states. After this excursion to illustrate the coupling mechanism 

between the two electronic levels, we return to continuing with the details of the model. 

Numerical integration of (5.2) using the split-step method [149] as presented in attachment A4 allows one to 

calculate time-dependent dynamics of 𝐻2
+ on the 1𝑠𝜎𝑔 and the 2𝑝𝜎𝑢 electronic states. In each of these states, the 

electron is bound at both or one of the two protons. In order to incorporate ionization (𝐻2
+ → 𝐻+ + 𝐻+ + 𝑒−), which 

is a transition to the 1/𝑅-potential Figure 5.7 a), quasi-static field ionization rates, 𝛤𝑔(𝑅, |𝐸|) and 𝛤𝑢(𝑅, |𝐸|), for each 

of states are used. This is done in the following way. If 𝜒𝑔(𝑅, 𝑡 + Δ𝑡) and 𝜒𝑢(𝑅, 𝑡 + Δ𝑡) denote the wave functions on 

each BO potential after each round of the split-step method in A4 with the time-step Δ𝑡, then,  

𝜒𝑔
′ (𝑅, 𝑡 + Δ𝑡) = 𝜒𝑔(𝑅, 𝑡 + Δ𝑡)exp (−Δ𝑡𝛤𝑔(𝑅, |𝐸(𝑡)|)/2) 

𝜒𝑢
′ (𝑅, 𝑡 + Δ𝑡) = 𝜒𝑢(𝑅, 𝑡 + Δ𝑡)exp (−Δ𝑡𝛤𝑢(𝑅, |𝐸(𝑡)|)/2), 

(5.4) 

are calculated as the new wave functions which are then used in the subsequent time step of the split-step method. 

This is done before the absorbing boundaries are applied, see attachment A4 for further details.  

The effect of this method for incorporating ionization is very similar to the use of the quasi-static field ionization 

rate for atoms that has been described in section 4.4.3. However, it is augmented for each 𝑅 here. In section 4.4.3, 

the population of the ground state, 𝑃(𝑡), follows the differential equation, 𝑑𝑃(𝑡)/𝑑𝑡 = −𝛤(|𝐸(𝑡)|)𝑃(𝑡). It’s solution 

is analytically known, 𝑃(𝑡) = 𝑃0exp (−∫ 𝛤(|𝐸(𝑡′)|)𝑑𝑡′
𝑡

−∞
) with 𝑃0 being the initial population. Comparing this to the 

effect of (5.4) on the 𝑅-dependent propabilities 𝑃𝑔(𝑅, 𝑡 + Δ𝑡) = |𝜒𝑔(𝑅, 𝑡 + Δ𝑡)|
2

and on 𝑃𝑢(𝑅, 𝑡 + Δ𝑡) = |𝜒𝑢(𝑅, 𝑡 +

Δ𝑡)|2 shows that (5.4) is equal to approximating the integral in the exponential of 𝑃(𝑡),  

𝑃𝑔,𝑢
′ (𝑅, 𝑡 + Δ𝑡) = |𝜒𝑔,𝑢

′ (𝑅, 𝑡 + Δ𝑡)|
2
= |𝜒𝑔,𝑖(𝑅, 𝑡 + Δ𝑡)|

2
exp(−∫ 𝛤𝑔,𝑢(𝑅, |𝐸(𝑡)|)𝑑𝑡

′
𝑡+Δ𝑡

𝑡

) 

𝑃𝑔,𝑢
′ (𝑅, 𝑡 + Δ𝑡) ≈ |𝜒𝑔(𝑅, 𝑡 + Δ𝑡)|

2
exp (−Δ𝑡𝛤𝑔(𝑅, |𝐸(𝑡)|)). 

(5.5) 

This means that (5.4) introduces a loss of probability in the bound states to a quasi-static field ionization channel. 

Back coupling from ionization to bound states as among the 𝑔- and the  -state is not supported by this scheme. The 

fact that (5.4) is done only after (and not somehow in between) every loop of the normal split-step method is 

expected to introduce some numerical error, which is accepted for small enough Δ𝑡. 

The time- and 𝑅-dependent population in the field ionization channel from the 𝑃𝑔𝑖𝑜𝑛(𝑅, 𝑡) and 𝑃𝑢𝑖𝑜𝑛(𝑅, 𝑡) from 

each BO potential is then accumulated by calculating  

𝑃𝑔𝑖𝑜𝑛(𝑅, 𝑡 + Δ𝑡) = 𝑃𝑔𝑖𝑜𝑛(𝑅, 𝑡) + (|𝜒𝑔(𝑅, 𝑡 + Δ𝑡)|
2
− |𝜒𝑔

′ (𝑅, 𝑡 + Δ𝑡)|
2
) 

𝑃𝑢𝑖𝑜𝑛(𝑅, 𝑡 + Δ𝑡) = 𝑃𝑢𝑖𝑜𝑛(𝑅, 𝑡) + (|𝜒𝑢(𝑅, 𝑡 + Δ𝑡)|2 − |𝜒𝑢
′ (𝑅, 𝑡 + Δ𝑡)|2). 

(5.6) 

The second summand on the right hand side leads to summation of the lost probability from each of the bound 

states. It ensures numerical stability and conservation of the norms. The full population of the ionized state of 𝐻2
+ is 

then the sum of the population from both channels 

𝑃𝑖𝑜𝑛(𝑅, 𝑡) = 𝑃𝑔𝑖𝑜𝑛(𝑅, 𝑡) + 𝑃𝑢𝑖𝑜𝑛(𝑅, 𝑡). (5.7) 

Figure 5.7 d) shows an example for the time-evolution of this quantity. It is clear that summation of the 𝑅-dependent 

probabilities in (5.7) does not support interference phenomena.  

The recorded 𝑃𝑖𝑜𝑛(𝑅, 𝑡) from this calculation can further be used to calculate a time- and 𝑅-dependent transition 

rate, 
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 (5.8)

It gives the information at which time and at which  during the laser pulse the transition from one of the bound 

electronic states to the ionized state, i.e. to the  potential of , occurs. 

With equations (5.2) to (5.8), one has a one-dimensional two-level model on strong-field photoionization of . 

The model uses two BO potentials, which are time-dependently coupled by the external laser field to calculate the 

nuclear dynamics on the  and the  electronic state. Ionization, i.e. the transition of the nuclear wave packet 

to the -potential, is incorporated at each time-step using -resolved and field-strength dependent quasi-static 

field ionization rates,  and . The result of a single calculation where the molecule is initially 

in some vibration state, , interacts with a laser field, , of peak field strength, , pulse duration,  ,and center 

frequency , (see (4. 31) and (4.32)) are time- and -dependent populations,  of the ionized state of . 

From  a transition rate, , can be calculated. It gives information on the question, at which time 

and  the transition from one of the bound electronic states to the ionized state of  occurs. Next we use the 

reflection principle to connect the -dependent dynamics with measured kinetic energy release distributions. 

 

5.3.2 Connecting to Kinetic Energy Release using the Reflection Principle 

 

 

Figure 5.8: Reflection principle and one-dimensional two-level model  

The two-level model is used to model the dynamics on the - and the  electronic states. Ionization based on the quasi-

static ionization rates as explained in 5.3.1, yields -dependent population of the ionized state. The reflection principle, 

, can be used to convert from to the measured kinetic energy release spectra.  

 

The one-dimensional two-level model on strong-field photoionization of  yields time- and -dependent 

population, , as well a corresponding transition rate, , to the ionized state of the 

molecule ( -potential) for a given initial vibrational state, , and laser parameters (peak field strength, , pulse 

duration,  ,and center frequency ).  

Next, the reflection principle [153] is used to connect the -dependent quantities to measured quantities such as 

kinetic energy release (KER) spectra and joint nuclear-electron energy distributions (JEDs). The reflection principle 

is illustrated in Figure 5.8. The idea behind it is that a sudden ionization, i.e. a transition from - or the -

potential to the -potential (or to any other dissociative potential) generates two protons which repel each other. 

Kinetic
Energy

Yield
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Due to the repulsion among the protons, the fragments gain kinetic energy which is measured as kinetic energy 

release (KER) at infinite distance 𝑅 → ∞, as illustrated in Figure 5.8.  

In order to calculate KER spectra for a given set of initial vibrational states and laser parameters, we take the 𝑅-

dependent population of the ionized state at the end of the simulation, i.e. 𝑃𝑖𝑜𝑛(𝑅, 𝑡𝑒𝑛𝑑), when the laser-field’s 

amplitude is 𝐸(𝑡𝑒𝑛𝑑) = 0, and use that the KER of a single transition to the ionized state (1/𝑅 potential) at the 

position, 𝑅, is approximately, 

𝐸𝐾𝐸𝑅 ≈
1

𝑅
. (5.9) 

The assumption of a vertical transitions means that one assumes that the nuclei don’t move when the electron is 

ejected. The corresponding measured quantity is 𝐸𝐾𝐸𝑅 = ( 1 −  2)
2/2𝑚𝐻+  where  1  and  2  are two measured 

proton momenta from strong-field ionization of 𝐻2
+ in a ITRIMS.  

A KER spectrum is then calculated from 𝑃𝑖𝑜𝑛(𝑅, 𝑡𝑒𝑛𝑑), using a Monte-Carlo approach, i.e. 𝑘 events with ionization 

distances, 𝑅𝑘, are distributed such that their histogram follows 𝑃𝑖𝑜𝑛(𝑅, 𝑡𝑒𝑛𝑑). Using a Monte-Carlo approach from 

here on is convenient as it allows to bin and calculate the calculation results in various ways. Equation (5.9) allows 

to convert each 𝑅𝑘 to 𝐸𝐾𝐸𝑅𝑘. Binning them onto a KER-axis and yields the KER spectrum 

𝑊𝑖𝑜𝑛𝐾𝐸𝑅(𝐸𝐾𝐸𝑅) =∑𝑊𝑖𝑜𝑛 (𝐸𝐾𝐸𝑅𝑘 =
1

𝑅𝑘
, 𝑡𝑒𝑛𝑑)

𝑘

. (5.10) 

Using (5.9) to approximate the measured KER distribution means that ionization by a quasi-static field is assumed 

to create two protons which move on the 1/𝑅-potential in Figure 5.8. Thereby, zero initial momentum is assumed. 

The preceding dynamics on the bound states is only taken into account as it alters |𝜒𝑔(𝑅, 𝑡)|
2

 and |𝜒𝑢(𝑅, 𝑡)|
2 as it 

was described in the previous section. An analysis of the momentum space representation of 𝜒𝑔(𝑅, 𝑡) and 𝜒𝑢(𝑅, 𝑡) 

wave functions during the calculations showed that this approximation is reasonable [154]. 

Now we turn to the method of calculating joint nuclear-electron energy distributions (JEDs) based on 𝑊𝑖𝑜𝑛(𝑅, 𝑡). 

Under JED we understand, a two-dimensional distribution/count rate, i.e. 𝑊𝑖𝑜𝑛𝐽𝐸𝐷(𝐸𝐾𝐸𝑅, 𝐸𝑒). On the one axis, one 

has KER, 𝐸𝐾𝐸𝑅 , of the nuclei and on the other axis, one has the electron energy, 𝐸𝑒 , while the count rate/the 

distribution is given as color code, see Figure 5.9 a) for an example. In order to connect, 𝑊𝑖𝑜𝑛(𝑅, 𝑡)  and 

𝑊𝑖𝑜𝑛𝐽𝐸𝐷(𝐸𝐾𝐸𝑅 , 𝐸𝑒), we assume that the transition to the 1/𝑅-potential by field ionization in a quasi-static field at the 

time, 𝑡𝑠, leads to a sudden creation of a pair of protons and a free electron. While the relative motion of the protons 

leads to the asymptotic KER in (5.9), the asymptotic electron velocity is approximately,  

𝒗𝑑𝑖𝑟(𝑡𝑠) = −𝑨(𝑡𝑠) (5.11) 

and thus, the sum momentum of the protons is  1 +  2 = −  = +𝑨(𝑡𝑠), see chapter 3.2.  

It is clear that using (5.11) for the asymptotic electron velocity means that we neglect the Coulomb interaction 

between the electron and the protons. Therefore, rescattering or recapture processes are not supported by this 

model. In order to generate the desired 2D distributions, a Monte-Carlo approach is used again. Therefore, 𝑘 events 

are distributed with ionization times, 𝑡𝑠𝑘, and corresponding ionization distances, 𝑅𝑘, in such a way that their 2D 

histogram follows 𝑊𝑖𝑜𝑛(𝑅, 𝑡). Calculation of 𝐸𝐾𝐸𝑅𝑘 and 𝐸𝑒𝑘 based on (5.10) and (5.11) for each of the events and 

subsequent calculation of the yields the JED as,  

𝑊𝑖𝑜𝑛𝐽𝐸𝐷(𝐸𝐾𝐸𝑅, 𝐸𝑒) =∑𝑊𝑖𝑜𝑛 (𝐸𝐾𝐸𝑅𝑘 =
1

𝑅𝑘
, 𝐸𝑒𝑘 = 𝒗𝑑𝑖𝑟

2 (𝑡𝑠𝑘)/2)

𝑘

. (5.12) 
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One can also use this distribution to generate the KER spectrum in (5.10) by integrating along the electron energy 

axis, i.e.  

 (5.13) 

Further, one can calculate the mean of the photoelectron energy for each bin along the KER axis, i.e.  

 (5.14) 

It is representative for the KER-dependent width of the electron energy spectrum. Also, one can analyze e.g. KER 

spectra for different electron energies.  

 

a) b)

Oben: not vib avg, nu3= wvl=2000nm, E0=0.17 (ca. 1e15), 68 fs
Unten v avg, Ipeak=1e15, wvl=2000nm, 68 fs

a)

d) e)

) c)

)d) e) f)f)

no intensity averaging

intensity averaged

 

Figure 5.9: Illustration of simulated joint nuclear-electron energy distributions (JEDs) 

a) Calculated JED based on the described model,  b) logarithm of the JED in a). c) 

KER spectrum and KER-dependent mean of the electron energy for the calculation shown in a) and b). d), e) and f) show the 

same plots as a), b) and c) but after averaging over the intensity distribution in the focal volume and the initial distribution of 

vibrational states. 

 

With (5.9) to (5.14) and the model from section 5.3.1, one has a method to calculate KER spectra and JED for a 

given set of initial vibrational state, , and laser parameters. Last but not least, the calculations must be averaged 

over the initial population of vibrational states and the distribution of field strengths, , in the focal volume. The 

focal volume is characterized by the spatial peak intensity , the Rayleigh range,  and the geometry of the ion 

beam target, see 5.2 and attachment A1. Therefore, the calculations for a pulse duration, , and center frequency, , 

are repeated for up to 400  on an equally spaced grid and for 13 vibrational states. Calculation of 

, is the probability with which the corresponding KER spectrum occurs. It is the 

basis for calculating focal volume averaged and vibrational state averaged KER spectra and JEDs for different spatial 
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peak intensities, 𝐼0 . Thereby, we follow the scheme in [147]. The analytical expression for a thin 2D target as 

characterized in 5.2.3 is the basis for the averaging the calculation over the distribution of peak field strength in the 

target, see also attachment A1.2. In Figure 5.9, we compare single-intensity single-vibrational state JED a) to c) with 

a calculation that is averaged over the focal volume as well as over the vibrational states d) to f), see the figure 

caption for details. An immediate observation is that the averaged results are more smeared out. Further, the 

contribution of the higher lying vibrational states, which ionize at lower field strength than 𝜈 = 3, lead to a narrower 

JED and a shoulder at lower KER. The focal volume averaged calculations are compared to the experimental data in 

chapter 5.4.  

 

5.3.3 Quasi-Static Ionization Rates 

 

The previous sections introduced a one-dimensional two-level model for strong-field photoionization of 𝐻2
+. The 

model combines the dissociative nuclear dynamics based on the coupling of the two-electronic levels (1𝑠𝜎𝑔, 2𝑝𝜎𝑢) 

by an external laser field 𝐸(𝑡) . Ionization is incorporated using quasi-static ionization rates, 𝛤𝑔(𝑅, |𝐸(𝑡)|)  and 

𝛤𝑢(𝑅, |𝐸(𝑡)|). Having the two aspects of dissociative nuclear dynamics and ionization separated in the model, one 

can test the influence of different sets of ionization rates on the result of the calculation and compare different 

versions to experimental data on a qualitative level later. Here, the two sets of ionization rates which are tested are 

illustrated.  

 

Target |𝐼𝑃| (eV) 𝐵 𝑙 𝐶𝑛𝑙 𝑚 𝛽 

𝐻2
+ − 𝑔 𝐼𝑔(𝑅) = 𝑈𝑔(𝑅) − 1/𝑅 2 0 2.87 0 0 

𝐻2
+ −   𝐼𝑢(𝑅) = 𝑈𝑢(𝑅) − 1/𝑅 2 0 2.87 0 0 

 (𝑙,𝑚) = (−1)(|𝑚|−𝑚)/2√
(2𝑙 + 1)(𝑙 + |𝑚|)!

2(𝑙 − |𝑚|)!
 

Table 5.1 Parameters used in the ADK-inspired 𝑅-dependent ionization rate of 𝐻2
+.  

𝑅-dependent ionization rates for different electronic levels in 𝐻2
+ , are obtained by modifying the atomic 

ionization rate with an 𝑅-dependent ionization potential for each of the states.  

 

The first set of rates is inspired by the atomic ionization rate (ADK rate)  in (4.9). We repeat the expression here 

for completeness,  

𝛤(|𝐸(𝑡)|) =
|𝐶𝑛𝑙|

2 (𝑙,𝑚)2

(2𝜅)|𝑚||𝑚|!
(
2𝜅2

|𝐸(𝑡)|
)

2𝐵
𝜅
−|𝑚|−1

exp (−
2𝜅3

3|𝐸(𝑡)|
) exp(−𝛽

2𝐵

𝜅2
|𝑬(𝑡𝑠

𝑘)|

𝜅3
). (5.15) 

The molecular character of 𝐻2
+ is taken into account by making the electron’s binding energy, 𝐼𝑃, which occurs in 

(5.15) via 𝜅 = √2|𝐼𝑃|, sensitive to 𝑅, i.e. 𝛤(|𝐸(𝑡)|) → 𝛤(𝜅(𝐼𝑃(𝑅)), |𝐸(𝑡)|) → 𝛤(𝑅, |𝐸(𝑡)|). For this purpose, the 𝑅-

dependent electronic binding energies, i.e. 𝐼𝑔(𝑅) = 𝑈𝑔(𝑅) − 1/𝑅 and 𝐼𝑢(𝑅) = 𝑈𝑢(𝑅) − 1/𝑅 are used for each of the 

states. In the end one has a set of two 𝑅-dependent ionization rates, 𝛤𝑔
𝐴(𝑅, |𝐸(𝑡)|) and 𝛤𝑢

𝐴(𝑅, |𝐸(𝑡)|), one for each 
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electronic state. For the other parameters in (5.15), the values in Table 5.1 are taken independent of . This set of 

- and -dependent rates is abbreviated with atom-like ionization rates (A-rate) from here on.  

 

a)

c))

b)

Figure 5.10: Illustration of the ionization rate of Plummer and McCann reproduced by a fit. 

a) shows the central figure [28]. The subgraphs show the mentioned real part of the quasi-energy for different strength of the 

external field in a)(a) for the  (lower set) and the  (upper set). a)(b) and a)(c) show the corresponding imaginary 

parts which are the ionization rate, . b) and c) illustrate the fit which is used in the two-level calculations for the same 

field strength as in [28].  

 

The second set of rates is based on an exact three-dimensional calculation of field ionization rates of  in a static 

external field [155] [28] [156]. These calculations use complex energy eigenvalues (so-called quasi-energies), 

, to define the state of  in a static external field strength  for various s. The real 

part, , of the quasi-energies is the energy of the bound part of the wave function. Its energetic position is 

shifted depending on , see Figure 5.10 a)(a) for illustration. The imaginary part, , of the quasi-energy is the 

ionization rate of the system in a static field of strength , see Figure 5.10 a)(b) for  and Figure 5.10 a)(c) for 

the  state. The corresponding Eigenfunctions are the electronic wave function of  under the effect of the 

static external field. In order to have appropriate rates,  and , which are based on this exact 

calculations, a two-dimensional along  and  inter- and extrapolation is done. Thereby, the values for the atomic- 

and separated atom limit from [156] are used for s that lie outside the available -range in [28]. For field strengths, 

which lie outside the available range of  values, an extrapolation of the rates is done. Figure 5.10 b) and c) 

demonstrate that the used fit matches the exact calculations at the available sample points. This set of - and -

dependent ionization rates is abbreviated with Plummer-McCann ionization rates (PM-rate) from here on.  
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The atom-like rates and the PM-rates as function of  and  are qualitatively compared based on 2D plots in 

Figure 5.11. The first observation is that the atom-like rate is a lot higher particularly for high field strength, see 

Figure 5.11 a) and c). But apart from that, it seems as the shape of the rates for ionization from 1s  is rather similar. 

The major qualitative difference between both sets of rates is found in the modulation along the -direction for 

ionization from the  state. While the atom-like rate, see Figure 5.11 b), is a rather smooth and flat surface as 

function of  and , the corresponding PM-rate, see Figure 5.11 d), has several maxima and minima along the  

for fixed field strength. The number of maxima and their position changes with the field strength.  

 

a) b) c) d)

Figure 5.11: Comparison of the atom-like (atom-like rate) ionization rate with the exact ionization rate (PM-rate). 

a) shows the logarithm of the atom-like rate as function of  and  for ionization from  electronic state. b) shows the 

same as a) but for ionization from the  electronic state. c) and d) show the same as a) and b) but for the PM-rate. 

 

Altogether, we have illustrated two sets of - and -dependent ionization rates here. One, the so-called atom-

like rate, is an ad hoc modification of the atomic ionization rate which takes into account the -dependence of the 

electron’s binding energy. The other, the so-called PM-rate, is based on an exact numerical calculation of the 

ionization rate of  in a static external field of strength , which has been an inter- and extrapolated to cover the 

needed range of values along  and . The major qualitative difference between both sets of rates is that the PM-

rate exhibits -dependent modulations for ionization from  state which are not found in the atom-like -rate for 

ionization from the same state. 

 

5.4 Comparison between Two-Level Model and Experimental Data 
 

The previous section introduced a 1D two-level model on strong-field photoionization of . It combines 

dissociative nuclear dynamics on the - and the -electronic levels with static ionization rates,  

and , which are sensitive to the internuclear distance, , and the strength of the electric field, . 

Thereby, two sets of different ionization rates can be tested in the model. The first set is an atom-like rate, 

 and  (atom-like rate). The second set of rates  and  (PM 

rates) is based on an exact calculation of the ionization rate of  in a static external field. In this chapter, the results 

of the two versions of the 1D two-level model are compared to experimental data. All presented calculations are 

averaged over the initial distribution of vibrational states as well as over the intensity distribution in the focal 

volume as close as possible to the conditions in the measurement. For the whole comparison, measured data for 

ionization of  by ,  with peak intensitites up to  is shown.  
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5.4.1 Intensity Dependence of Kinetic Energy Release Spectra 

 

Here we compare the measured intensity dependence of the KER spectrum parallel to the polarization axis of the 

laser to results from the 1D two-level model calculations with the two different sets of ionization rates.  

For the plot of the experimental data in Figure 5.12 a), ionization events where the angle between the polarization 

axis and the vector  1 −  2 is smaller than 𝜗 ± 20° have been selected, see Figure 5.1 b) for an illustration of the 

geometry. Afterwards, the selected events are binned into a 2D histogram, 𝑌(𝐸𝐾𝐸𝑅 , 𝐼0), with 𝐸𝐾𝐸𝑅 = ( 1 −  2)
2/

2𝑚𝐻+ , on the one axis and the tagged peak intensity, 𝐼0, on the other axis. Removing the monotonous increase of the 

yield for increasing 𝐼0 by normalizing the 2D histogram within each 𝐼0 bin (along each row in Figure 5.12), reveals 

intensity-dependent shape of the KER spectrum as shown in Figure 5.12 a). Corresponding cuts of the normalized 

KER spectra are shown in Figure 5.12 b). Note that spectra for different 𝐼0 are shifted along the y-axis by 0.5 in order 

to improve readability in this plot. Together with the data points, also a smooth of the measured data is shown. One 

can use the approximate conversion between internuclear distance, 𝑅, and KER, i.e. 𝑅 ≈ 1/𝐸𝐾𝐸𝑅, to investigate the 

measured distribution as function of 𝑅 instead of as function of KER. The corresponding 𝑅-dependent distributions 

of the lines in Figure 5.12 b) for different 𝐼0 are shown in Figure 5.12 c).  

Inspection of Figure 5.12 a) and Figure 5.12 b) shows that the KER spectrum changes for increasing peak intensity. 

The overall trend is that higher peak intensity shifts the KER spectrum to larger KERs. At low intensities, 𝐼0 ≈ 0.2 ×

1015 W/cm2, the KER spectrum peaks around 𝐸𝐾𝐸𝑅 ≈ 3.5 eV and has a shoulder around 𝐸𝐾𝐸𝑅 ≈ 5 eV. Increasing to 

𝐼0 ≈ 0.4 × 1015 W/cm2, leads to two peaks of almost equal height at 3.5 and 5 eV. Further increasing 𝐼0 allows the 

peak at 5 eV to take over the highest yield while the peak at 3.5 eV gradually develops into a shoulder with smaller 

yield.  

Observing the 𝑅-dependent distributions shows that higher peak intensity leads to ionization at smaller distances. 

The peaks in the KER spectrum lead to the formation of corresponding peaks in the approximate ionization 

distances. For small 𝐼0 ≈ 0.2 × 1015 W/cm2 ionization most likely occurs around 𝑅 ≈ 10 a. u.. Increasing 𝐼0 leads to 

ionization at smaller 𝑅s a and to formation of a double peak structure where ionization peaks around 𝑅 ≈ 6 and 8.  

Comparing the measured data to calculated results from the two-level model in Figure 5.12 d)-i) reveals 

qualitative agreement with the measurement. Higher 𝐼0 leads to ionization with higher KER, which corresponds to 

ionization at smaller distances. Investigation of Figure 5.12 d)-f) shows that use of the atom-like set of ionization 

rates does not lead to a peaked structure in the KER or the R distribution as observed in the experiment. However, 

the use of the PM-rates Figure 5.12 g)-i) support the observation of the peaks. Even the transition from a single peak 

at low KER to a double peak and to a single peak at high KER for increasing 𝐼0 is reproduced by this calculation. 

However, the position of the maxima in Figure 5.12 g)-i) are at too small in KER too large in 𝑅, respectivel . Despite 

this noticed discrepancies, the agreement between measured data and the simple 1D two-level model with PM rate 

is reasonable on a qualitative level particularly in view of the model’s simplicity. The model reproduces the trends 

of the intensity dependence as well as the changes of the peaks in the KER spectra. Both are observed in the 

measurement.  
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a) b) c)

d) e) f)

g) h) i)

measurement

sim atom-like

sim pm-rate

 

Figure 5.12: Intensity dependent KER spectra  for ionization of  by an infrared laser pulse ( , ). 

a) - c) illustrate the measured KER spectrum as function of the peak intensity of the laser pulse. Note that the 2D histogram 

in a) has been normalized along each line with constant intensity in order to emphasize the shape of the KER spectrum. b) 

shows corresponding lineouts which are integrated within  around the given values for  in the inset. 

The dots are the data points while the line is a smooth of the data. An approximate conversion of the smooths from KER to  

using  and taking into account the Jacobian allows to investigate the distributions as function of  as is shown in 

c). d)-f) show the same as a)-c), but calculated within the two-level model using the atom-like ionization rate. g)-i) shows the 

same as d)-f) but the PM rates have been used in the calculation. 
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The reason for the mentioned discrepancies can be attributed to several simplifications and imperfections in the 

model : i) The set of PM-rates from [28] has only been published up to a field strength of |𝐸| ≈ 0.08 a. u. 

corresponding to 𝐼 ≈ 0.2 × 1015 W/cm2 . This is only a fifth of the intensity range that is covered by the 

measurement. The extrapolation used is likely to be erroneous for high field strength. In order to improve this 

situation one might try to calculate ionization rates at higher field strength based on [157]. ii) The two-level model 

neglects molecular rotations. Therewith, effects of dynamic alignment as well as the effects that stem from the 

orientation dependence of the coupling efficiency between 1𝑠𝜎𝑔 - and the 2𝑝𝜎𝑢 -electronic levels are neglected. 

Further, the dependence of the ionization rate on the angle between the molecular axis and the direction of the 

linear polarization, 𝜗, [156] is completely neglected in the model while the measurement is integrated over some 

range of 𝜗 . iii) Limiting the model to two electronic states might oversimplify the nuclear dynamics before 

ionization. iv) Using the reflection principle in the model together with the assumption of zero initial velocity on the 

1/𝑅-potential to connect between the 𝑅-dependent ionization and the final KER might cause discrepancies as well 

as neglecting the possibility of interferences between ionization from the different two electronic states. 

Despite the discrepancies, the demonstrated qualitative agreement between the measurements allows for 

explanation and interpretation of the observations along the lines of the model 1D two-level model. We start with 

the observation that higher peak intensity leads to higher KERs. Increasing the intensity at constant pulse duration 

leads to a faster increase of the field strength during the pulse envelope. Due to the limited speed of the nuclear 

stretching dynamics, a rapidly increasing pulse envelope allows ionization at smaller 𝑅 s which leads to the 

observation of higher KERs. In turn, this means that ionization at large 𝑅s is depleted and thus, the signal from low 

KER such that altogether, the high intensity KER spectrum is shifted to higher KERs compared to the low intensity 

KER spectrum. This behavior is supported by the measurement and by both versions of the model.  

The peaked features in the KER spectra are reproduced by the model, only if the calculation uses an ionization 

rate that supports these peaks such as PM-rates. From this, one can conclude that the peaked features do not stem 

from the initial distribution of the vibrational states or nuclear dynamics before ionization. However, they are 

related to the intrinsic property of the field ionization rate of 𝐻2
+ from the 2𝑝𝜎𝑢 electronic state, which is that it is 

enhanced for certain combinations of the external field strength |𝐸| and internuclear distance 𝑅 . This has been 

shown by numerically exact calculations of the ionization rate of 𝐻2
+ in a quasi-static field in ref. [28] which were 

also used for the model calculations presented here. However, as the simulations show [28], the exact positions and 

number of enhanced peaks in KER (or R) is not fixed, but is sensitive to the applied peak intensity as both theory 

and measurement demonstrate, see Figure 5.12 and Figure 5.10. Further, the positions, strength and width of the 

enhanced peaks is sensitive to the molecular alignment. Fundamentally, the peaks originate from the three-

dimensional shape of the electron density and the corresponding outgoing electron density flux which adjusts in 

the combined potential of the protons and an the external field to complex shapes, see [28] for details.  

Altogether, one can understand strong-field photoionization of 𝐻2
+ at infrared wavelength along the lines of the 

1D two-level model with PM-rates. In the beginning of the laser pulse, the external field couples, time-dependently, 

the 1𝑠𝜎𝑔  and the 2𝑝𝜎𝑢  electronic states. The coupling leads to stretching nuclear dynamics such that the wave 

function is spread over a wide range of 𝑅s where the 1𝑠𝜎𝑔 and the 2𝑝𝜎𝑢 electronic state are populated. The shape 

of the stretched nuclear wave function is sensitive to the initial vibrational state, and the time-dependent shape of 

the external field which characterized by parameters such as the intensity, wavelength, pulse duration. After and 
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during the stretching, the molecule is ionized in the quasi-static, but oscillating, field predominantly from the 2𝑝𝜎𝑢 

electronic state. For the protons, ionization means that they repel each other on the 1/𝑅-potential such that their 

relative motion leads to a gain in energy, which is then observed as the final KER. Observed peaks in the KER spectra 

originate from intrinsic property of the ionization rate of 𝐻2
+ in a static external field. The observability and exact 

position in the KER spectrum is sensitive to the details of the stretching nuclear dynamics. 

 

5.4.2 Observations in Joint Nuclear-Electron Energy Distributions  

 

In order to gain further insight into the ionization dynamics the 1D two-level model is tested by comparing the 

measured and calculated joint nuclear-electronic energy distributions (JED) in Figure 5.13. As explained earlier in 

section 5.2.1, the electron energy of the experimental JED is based on the electron momentum,   , which is inferred 

from the measured proton momenta employing momentum conservation,   = −(  +  𝟐). Figure 5.13 a) shows a 

2D histogram with electron energy, 𝐸𝑒 , on one axis and the kinetic energy release, 𝐸𝐾𝐸𝑅 , on the other axis. The 

colorcode shows the logarithm with base 10 of the 𝐸𝐾𝐸𝑅- and 𝐸𝑒-dependent yield, i.e. log10(𝑊𝑖𝑜𝑛𝐽𝐸𝐷(𝐸𝐾𝐸𝑅, 𝐸𝑒)).  

For the plot, ionization events with a peak intensity in the range between 0.5 and 1 × 1015 W/cm2 , have been 

selected. The mean intensity of all shots is ≈ 0.76 × 1015 W/cm2. The distributions at lower and higher intensities 

are similar. For the electron energy, events from all electron emission angles are taken into account, while the 

calculation of electron energy uses the momentum component that is parallel to the linear polarization of the laser 

only, i.e. the 𝑧-axis such that 𝐸𝑒 = 0.5𝑝𝑒𝑧
2. The observed JED in Figure 5.13 a) is a smooth distribution with the 

highest yield at the lowest electron energies. The KER spectrum exhibits the double peak feature as discussed earlier 

and shown as blue line in Figure 5.13 b) for reference. Interesting is the observation that the yield of photoelectrons 

at high energies oscillates with the kinetic energy of the nuclei, see the JED in Figure 5.13 a). The energetic width of 

the photoelectron spectrum measured by the mean of the electron energy, 𝑀𝑖𝑜𝑛𝐸 
(𝐸𝐾𝐸𝑅) , see equation (5.14), 

behaves similarly. This observation is emphasized by the orange curve in Figure 5.13 b) where 𝑀𝑖𝑜𝑛𝐸 
(𝐸𝐾𝐸𝑅), is 

plotted as  function of 𝐸𝐾𝐸𝑅. It clearly oscillates as function of 𝐸𝐾𝐸𝑅. Thereby, the maxima of the KER spectrum are 

found very close to the position of the minima of the mean electron energy and vice versa.  

Comparing the experimental plots to calculated JEDs for two different versions of the 1D two-level that are shown 

in Figure 5.13 c)-d) yields better qualitative agreement for the version that used the PM rates. While the atom-like 

rates neither reproduce the observed structures in the JED nor in 𝑀𝑖𝑜𝑛𝐸 , see Figure 5.13 c) and d), the version with 

the PM rates shows faint features that can be related to experimental observations on a qualitative level. 

Particularly, 𝑊𝑖𝑜𝑛𝐽𝐸𝐷(𝐸𝐾𝐸𝑅, 𝐸𝑒)  is structured and 𝑀𝑖𝑜𝑛𝐸  shows modulations, whose minima are found near the 

positions of the maxima in the KER spectrum. In contrast, the atom-like version exhibits a smooth JED and the 

modulations in 𝑀𝑖𝑜𝑛𝐸 
(𝐸𝐾𝐸𝑅)  are missing. Additional to this qualitative agreement, however, the JEDs of both 

versions are found to be too narrow in energy. For the version with the PM rate it is likely that the discrepancies 

originate from the non-perfect ionization rate, which was published only in a smaller parameter range than 

necessary for the model calculation. Further, the model calculations neglect rotation and also angular dependencies 

of the coupling strength between the electronic levels as well of the |𝐸| and 𝑅-dependent ionization rate.  
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a) b)

c) d)

e) f)

measurement

sim atom-like

sim PM-rate

 

Figure 5.13 Joint nuclear-electron energy distrbution from ionization of  by 65-fs-2000nm laser pulse.  

a) shows the logarithm of the measured JED as a two-dimensional histogram. In b), the corresponding KER spectrum (blue) 

and the mean of the photoelectron energy spectrum is shown. This quantity is a measure for the width of the photoelectron 

energy spectrum. c) and d) show the corresponding plots of the simulation which uses the atom-like ionization rate. e) and f) 

shows the same as c) and d) but for the version of the model that uses PM rate. 

 

An explanation for the observed modulations of the KER dependent photoelectron spectra can be given along the 

lines of the 1D two-level model with the PM rate where qualitative agreement between simulation and 

measurement has been demonstrated. As said, the leading edge of the pulse stretches the wave function along , 

where it creates a wide distribution. Then ionization in the quasi-static field facilitates electron ejection. As the 
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ionization rate is enhanced for certain 𝑅s, ionization at the 𝑅𝑠 with enhancement takes place at effectively lower 

field strength. Thus, the photoelectrons that are ejected at these 𝑅𝑠  reach lower energies as the photoelectron 

spectrum of direct electrons scales with 𝑈𝑃 = 𝐸0
2/(4𝜔29 where 𝐸0 is the field strength of the laser at ionization and 

𝜔 its frequency. All these arguments proceed from 𝑅 to KER as discussed before such that finally, modulations in 

the JED and KER-dependent mean of the photoelectron energy occur as observed in Figure 5.13 a) and b) as well as 

in the 1D, two-level PM-rate model calculations in Figure 5.13 e) and f). Thereby, the minima of 𝑀𝑖𝑜𝑛𝐸 
(𝐸𝐾𝐸𝑅) 

coincide with maxima in the KER spectrum as a large ionization rate leads to high yield but lower electron energy 

as one would expect from this mechanism.  

 

5.5 Conclusion and Outlook 

 

In this chapter, strong-field photoionization of a beam of 𝐻2
+  by an short-wave infrared laser field has been 

investigated. During the discussion of the measurement, it has been demonstrated that the initial momentum 

distribution of the ion beam target in the Jena ITRIMS setup is narrow enough to infer the electron momentum from 

the measurement of the proton momenta using momentum conservation. However, it should be noted that the 

initial momentum spread blurs the inferred electron momentum distribution approximately with a Gaussian 

function which has a width of ∆𝑝𝑟 ≈ 0.79 . Further, equipping the Jena ITRIMS setup with the opportunity for 

automated scanning and tagging of the peak intensity enables detailed investigation of the intensity dependence of 

different processes. As an example for intensity tagging, the saturation intensity of dissociation and ionization of 

𝐻2
+  by 1800 nm-50-fs laser pulses have been determined to be 𝐼𝑠𝑎𝑡𝐷𝑖𝑠𝑠 ≈ 0.07 × 1015 W/cm2  and 𝐼𝑠𝑎𝑡𝐼𝑜𝑛 ≈ 3.5 ×

1014 W/cm2. Thereby, it has been demonstrated that the geometry of the ion target in the ITRIMS setup is well 

approximated by an ultrathin, two-dimensional target, that is infinitely extended perpendicular to the direction of 

laser polarization, but ultrathin along the propagation direction. 

Next we have introduced a one-dimensional two-level model for strong-field photoionization of 𝐻2
+. It aims on 

gaining intuitive insight into the relevant physics of the ionization dynamics. To this end, the 1𝑠𝜎𝑔- and the 2𝑝𝜎𝑢-

electronic levels are coupled by the external field to describe the nuclear stretching dynamics. During the stretching, 

ionization is embedded in the model using quasi-static ionization rates, 𝛤𝑔(𝑅, |𝐸(𝑡)|)  and 𝛤𝑢(𝑅, |𝐸(𝑡)|) . The 

implemented ionization rates from both levels are sensitive to the internuclear distance, 𝑅, and the strength of the 

electric field, |𝐸(𝑡)|. Further, two different sets of ionization rates, i.e. an atom-like set of rates 𝛤𝑔
𝐴(𝑅, |𝐸(𝑡)|) and 

𝛤𝑢
𝐴(𝑅, |𝐸(𝑡)|) (atom-like rate) and a fit to an exact calculation of static field ionization rates from 𝐻2

+ 𝛤𝑔
𝑃𝑀(𝑅, |𝐸(𝑡)|) 

and 𝛤𝑢
𝑃𝑀(𝑅, |𝐸(𝑡)|)  (PM rate), have been introduced. All calculations are averaged over the distribution of 

intensities in the focal volume and over the initial distribution of the vibrational states of the target.  

Next, the measured intensity dependence of the kinetic energy release spectra (KER) for 2000 nm-65-fs pulses is 

compared with the two versions of the model. The comparison shows that both versions support the experimentally 

observed trend that higher intensity leads to KER spectra at higher energy which is related to ionization at smaller 

internuclear distance 𝑅. However, the experimentally observed peak structures in the measured KER spectra are 

qualitatively reproduced only if the exact ionization rate, i.e. the PM-rate with it’s 𝑅-dependent enhancements, is 

used. This demonstrates that intrinsic properties of the static ionization rate can be seen in the measurement and 
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simulations if the nuclear dynamics before ionization leads to population of a wide range of internuclear distances. 

Continuing the comparison for joint nuclear-electronic energy distributions (JEDs) demonstrates that the simple 

model with PM-rate reproduces the observation of modulations of the mean of the electron energy whose minima 

approximately overlap with the maxima of the yield in the KER spectrum. Along the lines of the model one can 

understand this behavior in such a way that ionization with high yield effectively takes place at lower field strength 

which then leads to narrower electron energy distribution as ionization at lower field strengths causes less 

acceleration of the electron by the field. 

The experimental and theoretical efforts lead to the following mechanism for strong-field photoionization of 𝐻2
+ 

at infrared wavelength. In the beginning of the laser pulse, the external field time-dependently couples the 1𝑠𝜎𝑔 and 

the 2𝑝𝜎𝑢 electronic states. The coupling leads to stretching nuclear dynamics which populates a wide range of 𝑅s. 

During the stretching, the molecule is ionized by the quasi-static but oscillating field predominantly from the 2𝑝𝜎𝑢 

electronic state. Ionization creates two protons which repel each other on the 1/𝑅-potential and thus, gain kinetic 

energy that is then observed as the final KER distribution. Observed maxima in the KER spectra originate from 

modulations of the 𝑅-dependent ionization rate of 𝐻2
+ in a static external field. These peaks in the ionization rate 

propagate from 𝑅 to KER and lead to maxima in the observed KER spectrum. The maxima in the KER spectrum are 

correlated with a lower electron energy in the JED as ionization around the enhancements of the rate effectively 

takes place at lower field strength.  

The present investigation is an example of coupled electron nuclear dynamics which are driven by strong infrared 

fields. The cycle duration of the external field forces the electron motion on a time-scale during which the light nuclei 

of the 𝐻2
+ molecule can significantly adjust their positions. An interesting question to be addressed in the future 

might be whether the sub-cycle nuclear dynamics are relevant or whether the nuclear dynamics on the timescale of 

the envelope of the field are important. To this end, one might consider a measurement and theoretical investigation 

with different pulse durations. Possibly, ionization could be caused by intense infrared few-cycle fields at a 

wavelength around 1.8 µm ideally with control or tagging of the fields carrier-envelope phase. A first step towards 

such an investigation has been taken with the realization of the few-cycle laser source in chapter 2.  

In view of coupled electron nuclear dynamics, it would also be interesting to push the measurement further 

towards even longer wavelength. As preliminary simulations based on the presented model for strong-field 

photoionization of 𝐻2
+ show, this will give the nuclei even more time to move during the optical cycle such that 

interesting dynamics can be expected.  

Regarding the relevance of the observed dynamics for other molecules, one should have in mind that 𝐻2
+ is the 

simplest molecule but also the lightest and thus, the one with the fastest nuclear dynamics. In order to test whether 

the observed dynamics are relevant for heavier molecules, one might consider an investigation which compares 

ionization of 𝐻2
+ and 𝐷2

+, e.g. using similar experimental conditions as in the measurement here. 
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6 Conclusion and Outlook 

 

This thesis describes the implementation and operation of a source of intense femtosecond laser pulses in the 

short-wave infrared (SWIR) spectral domain that has been used to investigate the interaction between atoms and 

diatomic molecules, specifically the strong-field photoionization (SFI) of 𝑋𝑒 and of an ion beam of 𝐻2
+ molecules. 

Both interactions have also been investigated using theoretical models that are both simple enough to allow 

intuitive understanding while fundamental underlying time-dependent mechanisms of the interaction are 

captured. 

In chapter 2, a description of how the source has been put to operation and has been characterized. 

Implementation of frequency-resolved optical frequency resolved optical gating enabled the measurement of the 

pulse duration and characterization of spectral phase. The use of the hollow-fiber compression technique allowed 

the generation of passively carrier-envelope phase stable few-cycle pulses with a pulse duration close to two optical 

cycles and an energy of >0.7 mJ in short-wave infrared spectral domain around 1.8 µm at a repetition rate of 1 kHz. 

The source is suited to investigate strong-field laser-matter interaction directly as detailed in the thesis here or to 

be used as driver for applications of strong-field processes, such as the generation of femtosecond extreme 

ultraviolet radiation possibly into the water window via the high-harmonic generation process.  

In chapter 4, SFI of 𝑋𝑒  has been investigated [10]. To this end, the velocity-map imaging technique has been 

applied to measure three-dimensional photoelectron momentum distributions (PMDs) from SFI of 𝑋𝑒. Besides the 

observation of low-energy features that are typical for SFI of atoms by SWIR and IR fields, the measurements 

revealed an interesting prominent fork-like structure at close to a right angle to the polarization axis of the laser. 

Comparing measurements where ionization is caused by long pulses with measurements where ionization is caused 

by few-cycle pulses revealed a strong dependence on the pulse duration for the fork as well as other typical features 

of the PMD. The measurements were compared to theoretical expectations of an improved version of the semi-

classical model (SCM) of atomic SFI, which models the ionization dynamics of atoms using quasi-static field 

ionization rates, electron trajectories in the laser field and elastic rescattering between electron and ion. It is shown 

that the SCM reproduces low-energy features including the fork and their observed susceptibility to pulse duration, 

if it is augmented by rescattering trajectories that are substantially longer than one optical cycle. Further, it has 

been shown here that the modeling of the elastic electron-ion rescattering must take the angle and energy 

dependence of the differential scattering cross-section into account in order to reproduce low energy features. This 

finding puts low energy features in SFI of atoms by SWIR fields on the same footing as, e.g. the high-energy plateau 

in the PMD. Further, it shows that, similar to high-energy features, low energy features in the PMD are governed by 

the time-dependent shape of the laser field. 

In chapter 5, SFI of diatomic molecules by SWIR fields has been investigated, specifically ionization of an ion beam 

of 𝐻2
+ molecules [158]. To this end, the Jena ion-target recoil-ion momentum spectroscopy setup (ITRIMS) for three-

dimensional (3D) coincidence momentum imaging has been used together with the source of intense femtosecond 

SWIR fields to measure the intensity-dependent 3D vector-momentum distribution of both fragmentation channels 

of 𝐻2
+ , i.e. dissociation (𝐻2

+ → 𝐻+ +𝐻,  𝐻+ ,  𝐻 ,) and ionization (𝐻2
+ → 𝐻+ +𝐻+ + 𝑒−,  1,  2,  𝑒 ). For the data 

analysis, we have concentrated on the ionization channel. The measurement demonstrates that for ionization by 
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SWIR fields, the initial momentum spread of the ion beam target is narrow enough and the measurement resolution 

is high enough to infer the electron momentum,  𝑒, although only the two protons with momenta,  1,  2, have been 

detected. To this end, one uses momentum conservation in laser-induced fragmentation, i.e. − 𝑒 =  1 +  2. The 

trick gives access to all fragment momenta,   1,  2,  𝑒  and enables the analysis of joint electron-nuclear energy 

distributions (JEDs), which are of particular interest for the investigation of coupled electron nuclear dynamics.  

Turning to the results of laser-induced fragmentation of the 𝐻2
+ measurement, which have been analyzed in detail, 

the intensity dependence of the kinetic energy release spectra (KER) shows a peaked shaped, which moves for 

increasing intensity to higher KER. Using the approximate conversion from KER to the internuclear distance, 𝑅, of 

ionization, i.e. 𝐸𝐾𝐸𝑅 ≈ 1/𝑅, this observation means that ionization as function of 𝑅 is peaked and that ionization at 

higher intensity leads to ionization at smaller distance 𝑅. The second observation is found in the JEDs. They show 

that the width of the photoelectron spectrum is modulated as function of KER. Thereby, higher yields in the KER 

spectrum are correlated with a narrower photoelectron spectrum.  

The 𝐻2
+  measurements were compared to expectation from a one-dimensional two-level model on the SFI of 𝐻2

+. 

It uses time-dependent coupling of the 1𝑠𝜎𝑔 and 2𝑝𝜎𝑢 electronic states in 𝐻2
+ by the external laser field to model the 

dissociative dynamics of the nuclei. Ionization from both states is incorporated using quasi-static field ionization 

rates that are sensitive to the inter-nuclear distance, 𝑅 , and the instantaneous field strength, |𝐸|. The electron 

momentum is inferred from the connection between ionization and the instantaneous vector potential at the time 

of ionization, i.e. 𝑝𝑒(𝑡𝑖) ≈ +𝐴(𝑡𝑠). Comparing the measurement and the model based on the intensity dependence 

of the KER spectrum and the JEDs demonstrates reasonable qualitative agreement. Thus, one can conclude that SFI 

of diatomic molecules by SWIR fields proceeds by the following coupled nuclear electron dynamics: Coupling of 

electronic states in the beginning of the laser field induces a nuclear stretching motion, which leads to the population 

of a wide range of internuclear distances. From there, ionization by the quasi-static, but oscillating, field of 

increasing strength facilitates electron ejection which suddenly creates two protons who gain kinetic energy on 

their way to the detector as they repel each other. The simultaneously freed electron is driven away by the ionizing 

laser field. As the quasi-static ionization has the property of being enhanced / suppressed for some internuclear 

distances, signatures of these enhancements can be found as modulation in the kinetic energy release spectra. For 

the electron, an enhancement of the ionization rate leads to ionization at effectively lower field strength such that 

the photoelectron spectrum is narrower for regions where the ionization rate is enhanced. The observed dynamics 

are an example of coupled electronic and nuclear motions in a molecule which is driven by the external field.  

For future directions, the development of single-shot carrier-envelope phase measurement based on strong-field 

ionization at short-wave infrared fields might enable the investigation of strong-field ionization of atoms and 

fragmentation dynamics of molecules in few-cycle, short-wave infrared fields as function of the carrier-envelope 

phase. Having this opportunity might be used to address the question of whether the discussed stretching dynamics 

of the nuclei before ionization of 𝐻2
+ take place on the time scale of the envelope, i.e. a few tens of femtoseconds, or 

whether they are fast enough to be sensitive to the carrier-envelope phase and can, thus be controlled on a few fs 

time scale.  
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Appendix 

 

A1 Intensity Control for High-Power Few-Cycle Pulses 

 

Since the early days of strong-field physics [1] [159] [160] [4], it is well known that typical measurements average 

over the inhomogeneous intensity distribution in a focused laser beam [161]. Thus, directly comparing 

measurements and theoretical results makes it either necessary to disentangle these averaging effects in 

measurements, see e.g. ref. [147], or to take the averaging into account for theoretical simulation. Similarly, if the 

intensity dependence is investigated by a measurement and compared to simulations, the experimental strategy for 

controlling the intensity should be taken into account by the simulations or disentangling techniques need to be 

applied in the measurement.  

As the laser pulses in strong-field laser physics, often exploit non-linear optical processes to generate the desired 

laser pulses, controlling the peak intensity, 𝐼0 , in a continuous and structured way over a large range without 

changing other parameters such as the pulse duration, 𝜏, or the geometry of the focus is a non-trivial task. Further, 

the typically large bandwidths and high powers even in the collimated beams present additional challenges.  

In the following sections, an experimental method for controlling the peak intensity of high-power few-cycle 

pulses in a structured way in a relatively simple and cheap experimental setup is presented. It is used in the second 

measurement of this thesis, chapter 5, where an intensity dependent measurement on strong-field fragmentation 

of the hydrogen molecular ion is done.  

Before we turn to details of the setup for intensity control, equations that describe the intensity distribution 

around the focal spot within the 𝑀2 -model of laser beams is given in section A1.1. From this, one can get an 

impression on options for changing the peak intensity within a given interaction volume, 𝑉𝑖𝑛𝑡( , 𝑦, 𝑧), where the 

target atoms or molecules are distributed with constant density, 𝜚( , 𝑦, 𝑧) = 𝜚0. Afterwards, the setup is introduced 

in section A1.3. 

 

A1.1 Intensity Distribution around the Focal Spot in the 𝑴𝟐-Model 

 

The intensity distribution of laser beam which is focused by a lens or a mirror with the focal length, 𝑓, has the 

intensity distribution, 

𝐼(𝑟, 𝑧) = 𝐼0 [
𝑤0𝐹𝑜𝑐𝑢𝑠

𝑤𝐹𝑜𝑐𝑢𝑠(𝑧)
]
2

exp(
−2𝑟2

𝑤𝐹𝑜𝑐𝑢𝑠
2(𝑧)

). (A.1) 

Here, the laser pulse propagates along the z-axis and 𝑟 = √ 2 + 𝑦2  is the radial coordinate in cylindrical 

coordinates. The quantity, 𝑤0𝐹𝑜𝑐𝑢𝑠
 is the radius of the focal spot which depends on 𝑓, the wavelength, 𝜆, and on the 

radius of the collimated beam at the position of the lens, 𝑤𝐿𝑒𝑛𝑠, 

𝑤0𝐹𝑜𝑐𝑢𝑠
=

𝑓𝑀2𝜆

𝜋𝑤𝐿𝑒𝑛𝑠
. (A.2) 
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The number 𝑀2 is the beam quality parameter which is slightly larger than 1 one for typical lasers with good beam 

quality. Behind the lens, the radius of the beam, 𝑤𝐹𝑜𝑐𝑢𝑠(𝑧), behaves as,  

𝑤𝐹𝑜𝑐𝑢𝑠(𝑧) = 𝑤0𝐹𝑜𝑐𝑢𝑠
√1 + (𝑧/𝑧𝑟𝐹𝑜𝑐𝑢𝑠)

2
. (A.3) 

The quantity, 𝑧𝑟𝐹𝑜𝑐𝑢𝑠 = 𝜋𝑤0𝐹𝑜𝑐𝑢𝑠
2/𝑀2𝜆, is the Raleigh range of the beam. The radius of curvature of the wave front, 

𝑅𝐹𝑜𝑐𝑢𝑠(𝑧), is 

𝑅𝐹𝑜𝑐𝑢𝑠(𝑧) = 𝑧 [1 +
𝑧𝑟𝐹𝑜𝑐𝑢𝑠

𝑧
]
2

. (A.4) 

Last but not least, the peak intensity, 𝐼0, of the beam of an ideal Gaussian pulse with the duration, 𝜏, and pulse energy, 

𝜀 is [162]  

𝐼0 =
1.88

𝜋

𝜖

𝜏 𝑤0𝐹𝑜𝑐𝑢𝑠
2
. (A.5) 

Strictly speaking, equations (A.1) to (A.5) are limited to a monochromatic approximation such that when working 

with broad, more precise considerations should be done. Further, if measurements with stable carrier-envelope 

phase (CEP) or CEP sensitive processes are investigated, it might necessary to consider the electric field distribution 

in the focus. Independent of the previous remarks, equations (A.1) to (A.5) shows not only that for a measurement, 

several options to change the peak intensity exist but also demonstrates that the shape and the extension of the 

interaction volume, 𝑉𝑖𝑛𝑡( , 𝑦, 𝑧) , plays a role. Consequently, different methods for varying the intensity, cause 

convolutions of the experimental observables with the intensity distribution of various kinds and complexity [163]. 

For example, if one has a thin target, where 𝑉𝑖𝑛𝑡 is approximately restricted to the  𝑦-plane at fixed 𝑧 = 𝑧𝑇, moving 

the position of the lens with respect to 𝑧𝑇  allows to change the highest intensity in the volume, 𝐼𝑚𝑎𝑥 =

max (𝐼( , 𝑦, 𝑧 = 𝑧𝑇)). However, in such an approach not only 𝐼𝑚𝑎𝑥 is changed but also the overlap between the target 

and laser beam is changed, which influences the convolution between the intensity distribution in the focal volume 

and experimental observables. 

The method to change the intensity here, relies on controlling rather the pulse energy, 𝜖 , while the overlap 

between laser beam and target volume is not changed. For such a scenario, the frequency of intensities in the focal 

volume in dependence of the peak intensity is discussed in the next chapter for different target geometries.  

 

 

A1.2 Frequency of Intensities in the Focal Volume for Different Target Geometries 

 

In order to illustrate the frequency of intensities in the focal volume as function of peak intensity for different 

target geometries, we start by using a Monte-Carlo simulation. Such an approach is fast, relatively simple, flexible 

and robust. The idea is to generate 𝑖 uniformly distributed “particles” within a given interaction region, 𝑉𝑖𝑛𝑡( , 𝑦, 𝑧) 

where the density of target atoms or molecules is assumed to be constant. Afterwards, equations (A.1) to (A.5) are 

used to calculate 𝐼𝑖 , for each of the “particles” at the position  𝑖 , 𝑦𝑖 , 𝑧𝑖, for a given geometry of the focal spot, which 

is characterized by, the peak intensity, 𝐼0, the spot size,  𝑤0𝐹𝑜𝑐𝑢𝑠
 and the Rayleigh range, 𝑧𝑟𝐹𝑜𝑐𝑢𝑠, From this ensemble, 

𝐼𝑖 , a histogram is calculated.  
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Figure A.1 Illustration of volume averaging. 

(a) the frequency of intensities within the focal volume for two values of the peak intensity 𝐼0 . Different target 

geometries are compared (thin target – dotted and thick target - line). The comparison is done for two intensities. (b) 

Frequency of intensities and the intensity dependent ion yield as an example how volume effects influence the 

distribution of intensities that contribute to the observables in a measurement. The red curve illustrates that the 

intensity with the highest frequency is not the peak intensity.  

 

Different interaction volumina, 𝑉𝑖𝑛𝑡( , 𝑦, 𝑧), are compared in Figure A.1. It  shows the results of such a calculation. 

The first geometry is a thin target where the distribution of target particles has constant density in a narrow range 

around, −0.1𝑧𝑟𝐹𝑜𝑐𝑢𝑠 < 𝑧 < 0.1𝑧𝑟𝐹𝑜𝑐𝑢𝑠. Such an assumption is realistic for e.g. an ion or molecular beam target with 

a limited extension along the propagation direction of the laser, 𝑧. The second case shows a thick target geometry. 

Here, the target particles are assumed to be uniformly distributed in the range, −1𝑧𝑟𝐹𝑜𝑐𝑢𝑠 < 𝑧 < 1𝑧𝑟𝐹𝑜𝑐𝑢𝑠. This is 

realistic for an extended target if e.g. the whole vacuum chamber is filled with the target particles. For both cases, 

the histogram is compared for the two different values  of the peak intensity. One can see that increasing the peak 

intensity, 𝐼0 , not only increases the frequency of high intensities but also increases the frequency of lower 

intensities. This in turn. changes the weight of the different intensities for the experimental observables. These 

effects need to be taken into account if e.g. intensity dependent measurements are compared to theoretical 

calculations.  

In Figure A.1 (b) illustrate the volume averaging effects at the example of strong-field photoionization of Xenon 

by 3-cycle, 1780-nm pulses. The measurement is a convolution between the ionization probability, of Xenon as 

function of intensity, 𝑌𝑋𝑒(𝐼), see the blue curve Figure A.1, and the volume of the corresponding intensity in the 

target, see the green dotted curve Figure A.1. With which frequency different intensities contribute to the final 

measurement result is given by the red curve. As a consequence, the dominating intensity contribution in this 

measurement would be significantly lower than the peak intensity. It illustrated the influence of focal volume.  
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A1.3 Setup for Intensity Control of High-Power Few-Cycle Pulses 

 

Here we present an experimental setup which allows to control the pulse energy of high-power broadband few-

cycle pulses without changing the geometry of the focal spot.  

The setup is shown in Figure A.2. The laser beam comes from the left, is transmitted through a -plate and 

reflected off a broadband Brewster polarizer. Changing the projection on the s-polarization of the Brewster plate’s 

front surface by changing the angle of the -plate with respect to the incoming linear polarization allows to 

control the pulse energy behind the plate as the plate primarily reflects s polarization. A thin transmitting polarizer 

with high contrast over a broad bandwidth, ensures to maintain a linear polarization state after the setup by 

absorbing the residual p-component.  

The operation principle of the setup is very similar to a Brewster polarizer or thin-film polarizer. However, instead 

of using the transmission for experiment, the reflection is used to minimize the amount of transmitting optics in the 

beam path. A few options exist for choosing this Brewster plate. One option is very similar to a thin film polarizer. 

A glass substrate with a polarization selective coating might be used. In this case, however, it is necessary to design 

this coating with respect to the spectral phase after the reflection. In addition, if a transmitting substrate is used, 

one needs to suppress the reflections from the back surface of the plate. This can e.g. be done using an anti-reflection 

coating by designing the Brewster plate with a small wedge.  

 

 

Figure A.2 Illustration of an arrangement for reflective intensity control of high-power few-cycle pulses 

The linearly polarized laser beam is coming from the left. A plate is used to control the ratio between s 

& p polarization on the surface of the broadband Brewster plate. The angle of incidence on the plate, , is 

chosen close to Brewster’s angle for the center wavelength of the beam. Thus, the reflectivity can be 

controlled by adjusting the angle of the plate which changes the ratio between s & p polarization on the 

plate. The thin, absorptive broadband polarizer is used suppress any p-polarization after the Brewster plate. 

This is necessary in order to keep the polarization state after this setup independent of the angle of the 

plate. 

 

The option, which we use here is a thick, absorbing or partly absorbing material with relatively high reflectivity. 

If the material is chosen appropriately, no special coating is required. It turns out that materials can be found which 

have properties in terms of bandwidth and reflectivity particularly for wavelength in the range of the HE-TOPAS-C. 

In order to find appropriate materials for the Brewster plate, the Fresnel equations can be used to calculate the 

reflection coefficients for s-polarization, , and p-polarization, , at different angle of incidence of, , and in 

dependence of the wavelength. Thereby, the assumption of equal permeability, , are used to calculate the 

reflection coefficients for s-polarization, , and p-polarization, , at different angle of incidence of, , and in 

broadband Brewster plate

linear 
polarizationtiontion
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high contrast
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linear 
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dependence of the wavelength. The result of such a calculation in dependence of the wavelength for an optimized 

angle of incidence is shown in Figure A.3. Particularly, Germanium (Ge) shows a high and flat reflectivity curve at a 

reasonable contrast between s- and p-component for an angle of incidence of 𝜗 = 80°. The contrast, 𝑟𝑠/𝑟𝑠, is better 

than 2-3 % for wavelength higher than 0.6 µm. Thus it is particularly well suited for wavelength that are higher than 

that. The Zinc selenide (ZnSe) plate has already high contrast for shorter wavelength in the visual spectral range 

such that it is suitable for few-cycle pulses in the visible and near-infrared spectral range. However, the reflectivity 

is less. Both materials are standard optical materials and thus, available from many vendors. 

 

 

Figure A.3 Reflectivity and contrast of Brewster plates for intensity control 

In (a), the calculated reflectivity of a polished Germanium (Ge) surface and a polished zinc selenide (ZnSe) 

surface as function of wavelength is shown for different incident polarization states. The contrast, 𝑐 = 𝑅𝑝/𝑅𝑠 

between the reflectivity of the p- and the s-component is shown in (b). The angle of incidence, 𝜗, has been 

optimized for a reasonable compromise between reflectivity, contrast and size. 

 

Figure A.3 also demonstrates the necessity of cleaning the polarization with a high-contrast polarizer after the 

Brewster plate. If the 𝜆/2-plate is adjusted such that only little energy is transmitted through the setup, most of the 

energy before the Brewster plate is rotated onto its p-plane. Although the reflection for p-polarization is small 

compared to the reflection of s-polarization, due the large amplitude going in p, p and s components can have similar 

amplitude behind the Brewster plate. Thus, the direction of the linear polarization is changed. Potentially, even 

elliptically polarized light might be produced. Cleaning the polarization state using the high-contrast polarizer 

ensures that the effect of rotated polarization is suppressed.  
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A2 Theoretical Description of the Hydrogen Molecular Ion 

 

In this chapter, the theoretical description of the hydrogen molecular ion, 𝐻2
+ , is reviewed starting from the 

Hamiltonian of the system. The derivations follows [74] and uses similar notation. We introduce the coordinate 

system and the Hamiltonian in A2.1; apply the Born-Oppenheimer approximation in A2.2 and use the method of 

linear combination of atomic orbitals to illustrate an approximation of the electronic and nuclear Eigenstates in 

A2.3. Last but not least we discuss the effect of a static external field in A2.4.  

 

A2.1 Introduction of the Coordinate System and the Hamiltonian 

 

 

Figure A. 4 The coordinate system 𝐻2
+ 

 

Neglecting rotations and translations of the molecule and going directly to it’s center of mass frame, the 

Hamiltonian of system consists of the kinetic energy of the electron,  𝑒 , and the nuclei,  𝑁, as well as of the total 

potential energies, 𝑉 = 𝑉𝑒𝑁 + 𝑉𝑁. The potential energies occur due to Coulombic interactions between the electron 

and nuclei, 𝑉𝑒𝑁, both nuclei,  𝑉𝑁. The terms are [164], 
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(A.6) 

. Thereby, the conversion from SI-units to atomic units is implemented using, 𝑚𝑒 =  ℏ = 1/4𝜋𝜖0 =  𝑒 = 1. The 

symbols denote, 𝑚𝑒  the electron mass, ℏ being reduced Planck’s constant,  𝑒  the elementary charge, Coulomb’s 

constant, 1/4𝜋𝜖0, 𝑀𝐴denotes the mass of nucleus 𝐴, 𝑀𝐵 the mass of nucleus 𝐵. Both masses are equal to the proton 
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mass 𝑀 = 𝑀𝐴 = 𝑀𝐵 = 𝑚𝑝 ≈ 1836 ∙ 𝑚𝑒. The and charges of the nuclei are,  𝐴 𝑒 =  𝐵 𝑒 =  𝑒 = 1, for protons. The 

quantities, 𝜇 and  𝑚𝑒𝑟 are the reduced masses of the electron and the protons. Thereby, it is now common to use 

𝑚𝑒𝑟 ≈ 𝑚𝑒. The position vectors are, 𝒓 to the electron and  𝑨 and  𝑩 to both protons such that  =  𝐴 −  𝐵 stands 

for the relative vector between the nuclei with the length 𝑅. The full Hamiltonian, 𝐻, of the 𝐻2
+ molecular ion within 

the center of mass frame in atomic units is then,  

𝐻( , 𝒓) =  𝑒 + 𝑉𝑒𝑁 +  𝑁 + 𝑉𝑁 = −
1

2
∇𝒓

2 −
1

|𝒓𝑨|
−

1

|𝒓𝑩|
−

1

2𝜇
∇ 

2 +
1

| |
 (A.7) 

, with 𝒓𝑨 = 𝒓 +  /2 and 𝒓𝑩 = 𝒓 −  /2. We chose the coordinate system is such that the direction of the  -vector is 

fixed in space and points along the 𝑧-axis. The nuclear geometry is then purely characterized by the scalar 𝑅. 

Thus, the time-independent Schrödinger equation (TISE) in full electronic and nuclear coordinates is 

𝐻(𝑅, 𝒓)𝜓(𝑅, 𝒓) = 𝐸̃𝜓(𝑅, 𝒓) (A.8) 

with 𝐸̃ being an Eigen energy of the system to the Eigen function 𝜓(𝑅, 𝒓). In order to construct a solution to this 

problem, the TISE for the electronic Hamiltonian, 𝐻𝑒 =  𝑒 + 𝑉𝑒𝑁 at fixed internuclear distance, 𝑅, is considered first, 

i.e. 

𝐻𝑒(𝑅; 𝒓)𝜑(𝑅; 𝒓) = [ 𝑒 + 𝑉𝑒𝑁]𝜑(𝑅; 𝒓) = 𝐸𝑒(𝑅)𝜑(𝑅; 𝒓). (A.9) 

Equation (A.9) reflects that one searches an Eigen energy for the electron, 𝐸𝑒𝑛(𝑅), together with the corresponding 

electronic Eigen function 𝜑(𝑅; 𝒓) for a fixed nuclear geometry, which is fully characterized by the distance 𝑅. It is 

clear that for a fixed distance, 𝑅, a set of electronic Eigen energies, 𝐸𝑒𝑛(𝑅), and, corresponding Eigen functions, 

𝜑𝑛(𝑅; 𝒓), exists. Thereby, the 𝜑𝑛(𝑅; 𝒓) form a complete electronic Basis set. Thus, it can be used to describe any 

electronic wave function using a proper superposition of these Eigen functions, 𝜑𝑎𝑟𝑏(𝑅; 𝒓) = ∑ 𝑐𝑛𝜑𝑛(𝑅; 𝒓)𝑛 . 

Thereby, the electronic energy can always be calculated using the energy expectation value, 𝐸𝑒(𝑅) =

∫𝑑𝒓 𝜑𝑎𝑟𝑏
∗(𝑅; 𝒓)𝐻𝑒𝜑𝑎𝑟𝑏(𝑅; 𝒓) /|𝜑𝑎𝑟𝑏(𝑅; 𝒓)|

2.  

Next, 𝜑𝑛(𝑅; 𝒓) with the energy, 𝐸𝑒𝑛(𝑅), is used in the Ansatz, 

𝜓(𝑅, 𝒓) =∑ 𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)
𝑛

, (A.10) 

for the full Eigenfunction, 𝜓(𝑅, 𝒓). This means that one searches for a solution to the full problem, that  is product 

of electronic Eigen functions 𝜑𝑛(𝑅; 𝒓) which depend parametrically on the nuclear coordinate 𝑅 and corresponding 

nuclear functions 𝜒𝑛(𝑅). The nuclear wave function is thereby dedicated to the corresponding electronic state. One 

might state that the 𝜒𝑛(𝑅) plays the role of a complex valued 𝑅 −dependent weight. Using this Ansatz in the full 

TISE yields the following calculation  

𝐻(𝑅, 𝒓) [∑ 𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)
𝑛

] = 𝐸̃ [∑ 𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)
𝑛

], (A.11) 

with 𝐻(𝑅, 𝒓) = 𝐻𝑒 +𝐻𝑁 =  𝑒 + 𝑉𝑒𝑁 +  𝑁 + 𝑉𝑁  being the full Hamiltonian. Plugging in and considering only one 

electronic level yields  

∑ [ 𝑒 + 𝑉𝑒𝑁 +  𝑁 + 𝑉𝑁][𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)]
𝑛

=∑ ( 𝑒[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)] + 𝑉𝑒𝑁(𝒓)[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)] +  𝑁[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)]
𝑛

+ 𝑉𝑁(𝑅)[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)]) = 𝐸̃[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)]. 

(A.12) 

Using the electronic solution (A.9) and that 𝑉𝑁 depends on the nuclear coordinates only, simplifies this to 
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∑ 𝐸𝑒(𝑅)
𝑛

∙ 𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅) +∑ 𝑉𝑁(𝑅) ∙ 𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)
𝑛

+∑  𝑁[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)]
𝑛

= 𝐸̃[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)]. 

(A.13) 

Inserting the derivatives and applying the product rule exemplary for one summand in the last term of the left hand 

side (l.h.s.) yields, 

 𝑁[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)] =  −
1

2𝜇
{∇𝑅[(∇𝑅𝜑𝑛(𝑅; 𝒓))𝜒(𝑅) + 𝜑𝑛(𝑅; 𝒓)(∇𝑅𝜒(𝑅))]} 

= −
1

2𝜇
[(∇𝑅

2𝜑𝑛(𝑅; 𝒓)) 𝜒𝑛(𝑅) + 2(∇𝑅𝜑𝑛(𝑅; 𝒓))(∇𝑅𝜒𝑛(𝑅)) + 𝜑𝑛(𝑅; 𝒓) (∇𝑅
2𝜒𝑛(𝑅))], 

(A.14) 

such that the full problem reads, 

𝐻(𝑅, 𝒓)[𝜑(𝑅; 𝒓)𝜒(𝑅)]

=∑ {𝐸𝑒𝑛(𝑅) + 𝑉𝑁(𝑅)}[𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)]
𝑛

+∑ {−
1

2𝜇
[(∇𝑅

2𝜑𝑛(𝑅; 𝒓)) 𝜒𝑛(𝑅) + 2(∇𝑅𝜑𝑛(𝑅; 𝒓))(∇𝑅𝜒𝑛(𝑅))
𝑛

+ 𝜑𝑛(𝑅; 𝒓) (∇𝑅
2𝜒𝑛(𝑅))]} 

= 𝐸̃[𝜑(𝑅; 𝒓)𝜒(𝑅)]. 

(A.15) 

So far, the result (A.15) is exact and equivalent to the full TISE in (A.8). However, by using (A.10) and (A.9) in (A.8) 

one imagines that the solution to (A.8) has a structure where the 𝜑𝑛(𝑅; 𝒓)s depend only parametrically on the 

nuclear coordinate.  

 

A2.2 Application of the Born-Oppenheimer Approximation 

 

In the next step, the Born-Oppenheimer (BO) approximation is applied by neglecting the first two terms in (A.15). 

These terms contain derivatives of the electron wave-function 𝜑(𝑅; 𝒓) with respect to the nuclear coordinates, i.e. 

∇𝑅
2𝜑(𝑅; 𝒓) and ∇𝑅𝜑(𝑅; 𝒓). This is justified as the motion of the nuclei is due their higher mass orders of magnitude 

slower compared to the motion of the electron. Also the change of 𝜑𝑛(𝑅; 𝒓) with respect to a change of the nuclear 

coordinate is assumed to be small. Thus, these terms can be neglected in many relevant situations. Neglecting them 

yields an approximate expression for the full time-independent problem,  

𝐻(𝑅, 𝒓)[𝜑(𝑅; 𝒓)𝜒(𝑅)] ≈∑ 𝜑𝑛(𝑅; 𝒓) {𝐸𝑒𝑛(𝑅) + 𝑉𝑁(𝑅) −
1

2𝜇
[(∇𝑅

2𝜒𝑛(𝑅))]} [𝜒𝑛(𝑅)]
𝑛

 

∑ 𝜑𝑛(𝑅; 𝒓){𝐸𝑒𝑛(𝑅) + 𝑉𝑁(𝑅) +  𝑁}[𝜒𝑛(𝑅)]
𝑛

≈ 𝐸̃ [∑ 𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)
𝑛

]. 

(A.16) 

Thereby, the terms have been written in suggestive order [165]. By multiplication of the whole equation with 

𝜑𝑛
∗(𝑅; 𝒓)  and integrating over electronic coordinates, 𝒓 , yields the TISE for nuclear problem on the 𝑛 th BO-

potential, 𝑈𝑛(𝑅) = 𝐸𝑒𝑛(𝑅) + 𝑉𝑁(𝑅),  

{𝐸𝑒𝑛(𝑅) + 𝑉𝑁(𝑅) +  𝑁}𝜒𝑛(𝑅) = {𝑈𝑛(𝑅) +  𝑁}𝜒𝑛(𝑅) = 𝐸̃𝜒𝑛(𝑅). (A.17) 

Thereby, one uses the orthogonality of the electronic problem, i.e. that ∫𝜑𝑚
∗(𝑅; 𝒓)𝜑𝑛(𝑅; 𝒓) 𝑑𝒓 = 0  for 𝑛 ≠ 𝑚 . 

Equation (A.17) is the TISE for the internuclear distance 𝑅 in an effective potential, i.e. the Born-Oppenheimer (BO-
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potential), 𝑈𝑛(𝑅), if the electron is in the 𝑛th Eigenstate. Thereby, 𝑈𝑛(𝑅), contains the electron-nuclei as well as 

electron-electron forces via 𝐸𝑒𝑛(𝑅) as well as nuclei-nuclei forces, 𝑉𝑁(𝑅).  

Similar to the electronic TISE, again a complete basis set of Eigen functions, 𝜒𝑛𝜈(𝑅) that solves (A.17) with Eigen 

energies, 𝐸̃𝑛𝜈 can be found for each electronic Eigenstate 𝑛. If 𝑈𝑛(𝑅) has a local minimum a stable chemical bond 

with localized Eigen functions and corresponding Eigen energies that are called vibrational levels can be formed. If 

𝑈𝑛(𝑅) has no local minimum, the problem in (A.17) does not support bound states. Thus, no stable chemical bond 

occurs and the molecule would dissociate, i.e. the internuclear distance, increases but the electron still remains in a 

bound state.  

Similarly to the electronic states, one might use these Eigen functions 𝜒𝑛𝜈(𝑅) to describe an arbitrary nuclear 

wave function on the 𝑛 th electronic potential via superposition, 𝜒𝑛𝑎𝑟𝑏(𝑅) = ∑ 𝑔𝑛𝜈𝜒𝑛𝜈(𝑅)𝑛𝜈 . If the molecule, 

however, populates several electronic states the full wave function reads, 𝜓(𝑅, 𝒓) = ∑ 𝜑𝑛(𝑅; 𝒓)𝜒𝑛(𝑅)𝑛 =

∑ 𝜑1(𝑅; 𝒓)𝜒1(𝑅) + 𝜑2(𝑅; 𝒓)𝜒2(𝑅) + ⋯𝑛 , and several 𝑈𝑛(𝑅) play a role, such that (A.17) becomes several BO TISEs. 

Altogether, the previous consideration yields the following procedure and physical picture to find an approximate 

Eigen function, 𝜓(𝑅, 𝒓), with the Eigen energy, 𝐸̃, of the total system. One, (i) needs to solve the electronic TISE, i.e. 

(A.9), with 𝑅 being fixed but a parameter for the electronic problem. This yields an effective electronic potential, 

which the electron produces for the nuclei, 𝐸𝑒𝑛(𝑅). This potential changes if one choses another Eigen state of the 

electron. It is this energy, 𝐸𝑒𝑛(𝑅), which measures the binding energy of the electron if the two nuclei are at the 

fixed position, 𝑅. (ii) Second, using the found 𝐸𝑒𝑛(𝑅) together with 𝑉𝑁(𝑅) by combining them to the BO potential 

𝑈𝑛(𝑅) yields a second TISE for the nuclear Eigen function, 𝜒𝑛𝜈(𝑅), and the total energy Eigen energy 𝐸̃, i.e (A.17). A 

full Eigenstate is then, 𝜓(𝑅, 𝒓) =  𝜑𝑛(𝑅; 𝒓)𝜒𝑛𝜈(𝑅) and has the Eigen energy, 𝐸̃𝑛𝜈. It is the electronic potential which 

mediates forces between electron and nuclei. For a general situation, the molecule is not necessarily in one 

electronic state, such that (A.17) represents a system of equations.  

The BO-approximation is central for arriving at this physical picture. It allows to separate the electronic and the 

nuclear problem. This is very powerful and yields very good results in many situation. But it fails under certain 

circumstances which are shortly mentioned here. It might be necessary to improve the BO-approximations in 

situations where: (i) The electronic presence of probability is –somewhat unclear-, i.e. in regions where several 

electronic wave functions yield similar or even the same energy but have different electronic wave functions 

(degeneracy). In this case, the electronic potential is not well defined and can thus, be more sensitive to changes of 

the nuclear geometry. (ii) In situations where the relative motion of the nuclei is substantial, e.g. in high-energy 

atom-molecule collisions. (iii) Last but not least, it is clear that the BO approximation might yield unreasonable 

results when the electron is slow/moves on the same time scale as the nucle i. Under such circumstances, it is 

unreasonable to neglect the second derivatives in (A.15)  

Next, electronic and nuclear Eigen states are obtained within the method of linear combination of atomic orbitals 

in order to familiarize with the physical picture. 
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A2.3 Using Linear Combination of Atomic Orbitals to Illustrate the Approximate Electronic an Nuclear 

Eigenstate within the Born-Oppenheimer Approximation of 𝑯𝟐
+ 

 

In order to familiarize with the previously introduced concepts, of electronic wave function, nuclear wave 

function, Born-Oppenheimer (BO) potential and BO Schrödinger equation, a full solution to the TISE of 𝐻2
+  is 

reviewed here. Therefore, the method of linear combination of atomic orbitals (LC) is used as it allows to perform 

many calculations in an analytical manner. The consideration follow refs [74] [166] [165].  

As stated before, one starts at (A.9) by solving the electronic problem for fixed inter nuclear distance 𝑅, i.e. one 

needs to solve 𝐻𝑒(𝑅; 𝒓)𝜑(𝑅; 𝒓) = 𝐸𝑒(𝑅)𝜑(𝑅; 𝒓). Within the LC method, one uses a superposition of two hydrogen 

1s wave functions, which are separated by the internuclear distance, 𝑅. Each wave function of the hydrogen atom 

has the form, 𝛼1𝑠(𝑟) = 𝜋−1/2exp (−𝑟̃)  with 𝑟̃ = √ 2 + 𝑦2 + 𝑧2  being the radius in spherical coordinates. As the 

molecule’s internuclear axis is kept fixed along the 𝑧-direction, cylindrical coordinates are appropriate to give an 

approximate expression for the 𝑅-dependent electronic Eigen functions. One is the gerade electronic LC wave 

function, 𝜑𝑔𝐿𝐶(𝑅; 𝜌, 𝑧), 

𝜑𝑔𝐿𝐶(𝑅; 𝒓) =
1

√2
[𝛼1𝑠(𝒓𝐴) + 𝛼1𝑠(𝒓𝐵)] 

𝜑𝑔𝐿𝐶(𝑅;  , 𝑦, 𝑧) =
1

√2𝜋
[𝑒−√𝑥

 +  +(𝑧+𝑅/2) + 𝑒−√𝑥
 +  +(𝑧−𝑅/2) ] 

𝜑𝑔𝐿𝐶(𝑅; 𝜌, 𝑧) =
1

√2𝜋
[𝑒−√𝜌

 +(𝑧+𝑅/2) + 𝑒−√𝜌
 +(𝑧−𝑅/2)]. 

(A.18) 

The other is the ungerade electronic wave function, 𝜑𝑢𝐿𝐶(𝑅; 𝜌, 𝑧), 

𝜑𝑢𝐿𝐶(𝑅; 𝒓) =
1

√2
[𝛼1𝑠(𝒓𝐵) − 𝛼1𝑠(𝒓𝐴)] 

𝜑𝑢𝐿𝐶(𝑅;  , 𝑦, 𝑧) =
1

√2𝜋
[𝑒−√𝑥

 +  +(𝑧−𝑅/2) − 𝑒−√𝑥
 +  +(𝑧+𝑅/2) ] 

𝜑𝑢𝐿𝐶(𝑅; 𝜌, 𝑧) =
1

√2𝜋
[𝑒−√𝜌

 +(𝑧−𝑅/2) − 𝑒−√𝜌
 +(𝑧+𝑅/2)]. 

(A.19) 

These two functions are assumed to be reasonable approximate expression for the two lowest electronic Eigen 

energy states. In Figure A.5, two-dimensional cuts through the electron density of |𝜑𝑔𝐿𝐶(𝑅; 𝜌, 𝑧)|
2

 and 

|𝜑𝑢𝐿𝐶(𝑅; 𝜌, 𝑧)|
2 are shown. For the gerade case, electron density occurs between the nuclei while for the ungerade 

case, no electron density can be found between the nuclei. This leads to the formation of the molecular bond in the 

first case but not in the second.  
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Figure A.5 Electron density of the gerade and the ungerade electronic wave function for 𝐻2
+ obtained within the LC method 

a) shows a cut through the electron density, |𝜑𝑔𝐿𝐶(𝑅 = 2;  , 𝑦 = 0, 𝑧)|
2

, of the gerade electronic wave function obtained within 

the LC method. Significant electron density is found within the nuclei such that a molecular bond is formed. b) shows a cut 

through the electron density, |𝜑𝑢𝐿𝐶(𝑅 = 2;  , 𝑦 = 0, 𝑧)|2. In this case, the electron density between the two nuclei is zero and 

thus, no molecular bond is formed.  

 

The 𝑅-dependence is illustrated in Figure A.6. There, cuts through the real part of both states are shown together 

with the fixed nuclear potential along the 𝑧  -coordinate of the system for some 𝑅 . By scanning 𝑅 , each of the 

electronic Eigen states, 𝜑𝑔𝐿𝐶(𝑅; 𝜌, 𝑧) and 𝜑𝑢𝐿𝐶(𝑅; 𝜌, 𝑧) produces an the 𝑅-dependent electronic Eigen energy curve, 

𝐸𝑒𝑔𝐿𝐶(𝑅) and 𝐸𝑒𝑢𝐿𝐶(𝑅). Without going into detail further, but following the calculation [74]. Calculating 𝐸𝑒𝑔𝐿𝐶(𝑅) 

and 𝐸𝑒𝑢𝐿𝐶(𝑅) analytically yields the following expressions for electronic Eigen energy curves, 

𝐸𝑒𝑔,𝑢𝐿𝐶(𝑅) = −
1

𝑅
−
1

2
+
1

𝑅

(1 + 𝑅)𝑒−2𝑅 ± (1 − 2𝑅2/3)𝑒−𝑅

1 ± (1 + 𝑅 + 𝑅2/3)𝑒−𝑅
. (A. 20) 

The corresponding Born-Oppenheimer potential, 𝑈(𝑅), is then, 𝑈𝑔,𝑢𝐿𝐶(𝑅) = 𝐸𝑒𝑔,𝑢𝐿𝐶(𝑅) + 1/𝑅, 

𝑈𝑔,𝑢𝐿𝐶(𝑅) = −
1

2
+
1

𝑅

(1 + 𝑅)𝑒−2𝑅 ± (1 − 2𝑅2/3)𝑒−𝑅

1 ± (1 + 𝑅 + 𝑅2/3)𝑒−𝑅
 (A. 21) 

. Both are curves are shown in Figure A.6. e). 𝑈𝑔𝐿𝐶(𝑅), has a minimum close to 𝑅𝑒𝑞𝐿𝐶 ≈ 5/2 while the BO potential, 

𝑈𝑢𝐿𝐶(𝑅), is a monotonically decreasing function. Thus, a stable chemical bond with several bound vibrational states 

exist on the 𝑈𝑔𝐿𝐶(𝑅) curve only. This has been as expected from the distribution of the electron density in Figure 

A.5. Figure A.6 f) illustrates the electronic Eigen energy curves, 𝐸𝑒𝑔(𝑅)  and 𝐸𝑒𝑢(𝑅)  from a numerically exact 

solution, of the electronic problem together with the resulting BO potentials, 𝑈𝑔(𝑅) and 𝑈𝑢(𝑅), and the probability 

of nuclear wave function, |𝜒(𝑅)|2 which was obtained by numerical solution the TISE on 𝑈𝑔(𝑅).  
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Figure A.6 Linear combination of atomic orbitals to find an approximate ground state wave function for  

a)-d) illustrate the cuts through the gerade and the ungerade electronic wave-function for different inter nuclear distances 

within the LCAO method. e) shows the electronic energies  and  as function of  obtained based on the LC 

electronic wave functions as well as the nuclear potential . Adding  and  gives the Born-

Oppenheimer (BO) potentials,  and  the LCAO approximation which are shown in addition. Also shown is 

 of the nuclear groundstate eigen function  if the BO potential is approximated using a second order 

Taylor series around the equilibrium distance, . f) shows the same curves as e) but with the electronic eigen 

energy curves from a numerically exact solution of the electronic problem,  and . The vibrational ground 

state, , has been found by solving the TISE on  numerically. 

 

In order to find an approximate expression for the vibrational wave function, , the analysis is continued 

by approximating  using a Taylor series up to quadratic order around , i.e. 

. As  is close to a minimum, the first derivative is zero. Using 

MATLAB’s symbolic functions tool box one finds  and  such 

that the approximated BO potential is 

 (A.22) 

Finding the nuclear ground state wave function means to solve, 

 (A.23) 

which is the BO-TISE for the nuclear part of the wave function, i.e. (A.17). First, the constant part is split of using 

. Introducing, , yields the nuclear TISE, which has the form as a harmonic 

oscillator, 

 (A.24) 

a) c)

b) d) f)

e)

f)f)

e)

d)

c)

d)d)b)

a)

)b)
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. It’s Eigen energies are,  

𝐸𝜈 = 𝜅𝐿𝐶 (𝜈 +
1

2
) =

𝑘𝐿𝐶

√𝜇
(𝜈 +

1

2
)    𝜈 = 0,1,2, …   . (A. 25) 

The corresponding wave function of the nuclear ground state is a Gaussian centered around 𝑅0, i.e.  

𝜒𝑔0𝐿𝐶(𝑅) = (
𝜇𝜅𝐿𝐶
𝜋

)
1/4

𝑒−
1
2
𝜇𝜅𝐿𝐶(𝑅−𝑅 𝑞𝐿𝐶)

 
= (

√𝜇𝑘𝐿𝐶
𝜋

)

1/4

𝑒−
1
2√

𝜇𝑘𝐿𝐶(𝑅−𝑅 𝑞𝐿𝐶)
 
. (A.26) 

The full electronic and nuclear wave function of the vibrational and electronic ground state within the 

approximation from above reads, 𝜓𝑔1𝐿𝐶(𝑅, 𝒓) = 𝜑𝑔𝐿𝐶(𝑅; 𝒓)𝜒𝑔1𝐿𝐶(𝑅), i.e. 

𝜓𝑔1𝐿𝐶(𝑅, 𝜌, 𝑧) = (
√𝜇𝑘𝐿𝐶
𝜋

)

1/4

𝑒−
√𝜇𝑘𝐿𝐶

2
(𝑅−𝑅𝑞𝐿𝐶)

 1

√2𝜋
[𝑒−√𝜌

 +(𝑧−𝑅/2) + 𝑒−√𝜌
 +(𝑧+𝑅/2) ]. (A.27) 

From 𝜓(𝑅, 𝜌, 𝑧), one might see that the nuclear wave function kind of weights the contribution of the 𝑅-dependent 

electronic wave functions.  

The vibrational ground state adds about energy 𝐸𝜈 0 = 0.001 𝑎.  . = 0.0272 eV to the approximate total energy of 

the system, i.e.  

𝐸̃𝑛𝜈𝐿𝐶 = 𝐸𝜈𝐿𝐶 + 𝐸𝑒𝑞𝑅𝐿𝐶 ≈ −0.5658 a. u. ≈ 15.40 eV. (A.28) 

The total energy, 𝐸̃𝑛𝜈𝐿𝐶 , is the energy that is approximately needed in order to separate all three particles, i.e. to go 

from a stable 𝐻2
+ molecular ion in its vibrational ground state to two protons and a free electron, 𝐻2

+ → 𝑝+ + 𝑝+ +

𝑒−. The energy that is needed in order to separate a hydrogen atom from the 𝐻2
+ molecule, i.e. to dissociate it, 𝐻2

+ →

𝐻 + 𝑝+, is  

𝐷𝜈𝐿𝐶 = 𝐸̃𝑛𝜈𝐿𝐶 − 𝐸𝑒𝑔𝐿𝐶(𝑅 → ∞) = −0.5658 −
1

2
≈ 0.0658 a. u. ≈  1.79 eV. (A.29) 

In Figure A.6 f), this result is compared with a calculation that uses the exact BO potential of the real 𝐻2
+ molecule. 

First, the LC result yields wrong equilibrium distance, i.e. 𝑅𝑒𝑞𝐿𝐶 ≈ 5/2  compared to 𝑅𝑒𝑞𝑢 = 2 . Second, the 

dissocation energy, 𝐷𝐿𝐶 = 1.77 eV, is smaller compared to 𝐷 = 2.79 eV. The shape of the LC nuclear wave function 

is a lot wider compared to the exact ground state nuclear wave function. As the consideration illustrates, these 

differences originate from constructing the molecular electronic wave function, 𝜑(𝑅; 𝒓), as superposition of exact 

atomic wave functions. This procedure causes an erroneous probability of presence for the electron and in turn, 

causes an erroneous electronic potential, 𝐸𝑒(𝑅) . Finally it leads to a slightly wrong BO potential, 𝑈(𝑅) , which 

establishes an erroneous nuclear wave function. For comparisons of experimental and theoretical data one should 

use the exact BO potential instead of the LC results 

Reviewing the LC method in combination with approximating BO potential by a quadratic function around the 

equilibrium distance is very useful to illustrate the physical picture of a chemical bond. Phenomenologically, the 

chemical bond might be summarized as follows. An electron around two protons has a probability of presence which 

is described by the electronic wave function, 𝜑(𝑅; 𝒓). It forms an electronic potential, 𝐸𝑒(𝑅), such that the two 

protons can be bound together although their positive charges without the electron would repel each other. For 𝐻2
+ 

this is only possible if the electronic wave function, 𝜑(𝑅; 𝒓), is in the ground state as the BO potential, i.e. 𝐸𝑒(𝑅) +

1/𝑅, has a minimum in this case. From this perspective, it seems to be reasonable that modifying 𝜑(𝑅; 𝒓) by e.g. 

applying a static external field yields a modified 𝐸𝑒(𝑅) and thus a changed 𝑈(𝑅), which in turn yields an effect on 

the nuclear wave function, 𝜒(𝑅), such that e.g. the equilibrium distance is changed. Changing the nuclear wave 

function reacts back on the electronic wave function as the electron wave function rearranges due to the new 



Appendix 

  127 

position of the nuclei. Now, imagine a quasi-static but rapidly oscillating field where the  follows the field 

almost instantaneously, very rich effects on the nuclear wave function, , can be expected. 

The effect of an external field on the electronic states and thus on the BO potential is illustrated in the next section.  

 

A2.4 Two-Level Perturbation Theory Applied to  in Static External Electric Field 

 

 

Figure A. 7 Influence of a static electric field on the electronic wave function within the perturbation theory 

a), b), d) and e) illustrate a cut through the  and the  electronic wave functions in a static external 

field obtained based on the field-free LCAO solutions and within perturbation theory of a two-level system. The wave 

functions are shifted in energy such that their baseline match the energy Eigen values,  and  as calculated based 

on (A.33). For weak fields and small distances, i.e. a) and b), the cut resembles the mixing of the field-free wave function. For 

the strong field case, d) and e), the -state lies energetically above the barrier and would thus ionize very quickly. The 

electronic ground state, however, is still bound but could tunnel through the potential barrier similarly to the situation in an 

atom. c) and f) shows the resulting BO potentials in the field. The -state is bend up while the -state is bend down. Increasing 

the field strength, increases the strength of the bending,  

 

Here, the electronic problem of  within a static external electric field is solved, using a two-level model and first 

order perturbation theory as detailed in A3. Although it is generally not necessary, the field-free solution to the 

electronic problem are assumed to be the LC wave functions as used in A2.3. In this way, the analysis can be done 

with analytical expression to a large extend and is useful for illustrations and for getting insight. However, for the 

comparisons to experimental data always use the exact electronic Eigen energies, i.e.  and .  

Adding a static electric field of the strength, , adds  

a) b)

d) e) f)

c)

))
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𝑉𝐹( , 𝒓,  ) =  ( 𝐴 𝑨 +  𝐵 𝑩 − 𝒓)   (A.30) 

to the Hamiltonian of the field free problem (A.7). Using the simplifications,  𝐴 =  𝐵 and  𝐴 = − /2 = − 𝐵, as 𝐻2
+ 

is a diatomic molecule yields,  

𝐻( , 𝒓,  ) = −
1

2𝜇
∇ 

2 +
1

| |
−
1

2
∇𝒓

2 −
1

|𝒓𝑨|
−

1

|𝒓𝑩|
+ 𝒓  

𝐻( , 𝒓,  ) =  𝑁 + 𝑉𝑁 +  𝑒 + 𝑉𝑒𝑁 + 𝑉𝑒𝐹 = 𝐻𝑁 + 𝐻𝑒
0 + 𝑉𝑒𝐹 = 𝐻𝑁 +𝐻𝑒

0 +𝐻𝑒
′ . 

(A.31) 

Working along the lines of the BO-approximation by considering the electronic problem with fixed nuclei and 

applying perturbation theory for the influence of the static field yields the Schrödinger equation,  

𝐻𝑒(𝑅; 𝒓,  )𝜑(𝑅; 𝒓,  ) = (𝐻𝑒
0 +𝐻𝑒

′ )𝜑(𝑅; 𝒓,  ) = 𝐸𝑒(𝑅,  )𝜑(𝑅; 𝒓,  ). (A.32) 

Here   takes the role of the perturbation, 𝜆, in A3. Continuing within the two-level LC model by assuming that the 

field-free solution of the unperturbed system are given by the LC wave functions 𝜑𝑔𝐿𝐶(𝑅; 𝒓) and 𝜑𝑢𝐿𝐶(𝑅; 𝒓) in (A.18) 

and (A.19) yields the exact solution for the two-level Eigen energies in the field,  

𝐸𝑒±𝐿𝐶(𝑅,  ) =
1

2
(𝐸𝑒𝑔𝐿𝐶(𝑅) + 𝐸𝑒𝑢𝐿𝐶(𝑅)) ±

1

2
√(𝐸𝑒𝑔𝐿𝐶(𝑅) − 𝐸𝑒𝑢𝐿𝐶(𝑅))

2

+ 4 2|⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩|
2. (A.33) 

Thereby, the expression for the perturbed energies in (A.49) has been applied with 𝐻11 = ⟨𝑔𝐿𝐶|𝐻𝑒
0 + 𝐻𝑒

′ |𝑔𝐿𝐶⟩ =

𝐸𝑒𝑔𝐿𝐶(𝑅)  and 𝐻22 = ⟨ 𝐿𝐶|𝐻𝑒
0 + 𝐻𝑒

′ | 𝐿𝐶⟩ = 𝐸𝑒𝑢𝐿𝐶(𝑅)  because, ⟨𝑔𝐿𝐶|𝐻𝑒
′ |𝑔𝐿𝐶⟩ = ⟨ 𝐿𝐶|𝐻𝑒

′ | 𝐿𝐶⟩ = ⟨𝑔𝐿𝐶|𝒓|𝑔𝐿𝐶⟩ =

⟨ 𝐿𝐶|𝒓| 𝐿𝐶⟩ = 0 and 𝐻12 = ⟨𝑔𝐿𝐶|𝐻𝑒
0 +𝐻𝑒

′ | 𝐿𝐶⟩ = ⟨𝑔𝐿𝐶|𝐻𝑒
0| 𝐿𝐶⟩ +  ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩ =  ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩. The new Eigen 

states of 𝐻2
+ in the field are found by evaluating, 

→ 𝜁 =
1

2
atan (−2

 |⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩|

𝐸𝑒𝑔𝐿𝐶(𝑅) − 𝐸𝑒𝑢𝐿𝐶(𝑅)
) (A.34) 

and using it in the expressions,  

𝜑−𝐿𝐶(𝑅; 𝒓,  ) = cos 𝜁 𝜑𝑔𝐿𝐶(𝑅; 𝒓) + sin 𝜁𝜑𝑢𝐿𝐶(𝑅; 𝒓) 

𝜑+𝐿𝐶(𝑅; 𝒓,  ) = −sin 𝜁 𝜑𝑔𝐿𝐶(𝑅; 𝒓) + cos 𝜁 𝜑𝑢𝐿𝐶(𝑅; 𝒓). 

(A.35) 

. It is common to approximate further the transition dipole matrix element, 𝑑(𝑅) = ⟨𝑔|𝒓| ⟩, of 𝐻2
+ [167] [151]  

𝑑𝐿𝐶(𝑅) = ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩ ≈
𝑅

2
(

1

√1 − (𝑒−𝑅(1 + 𝑅 + 𝑅2/3))2
). (A.36) 

With (A.33) to (A.35) one has exact expressions for the electronic Eigen energy and wave function of a two-level 

model of 𝐻2
+ in an external field with the LC approximation using the field-free Eigen functions as basis set.  

Figure A. 7 illustrates the influence of the static laser field on the electronic wave function together with the field’s 

effect on the BO potential. The shown curves have been calculated using (A.33) with potentials as given in the 
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caption. Our consideration shows that the field leads to a changed electronic wave function, which leads to a 

modification of the 𝑅 −dependent electronic energy curves. Thereby, the 𝜑−𝐿𝐶-state, i.e. the electronic ground state 

in the field causes a BO potential, which favors an increase of the inter nuclear distance, 𝑅. It can thus, induce a 

stretching motion for the nuclei as the binding region is widened due to the static external field. In addition, a 

tunneling barrier is formed. If the electron is, however, in the first excited electronic state in the field, i.e. in the 

𝜑+𝐿𝐶-state, the corresponding BO potential curve bends up. If the field is strong enough, the corresponding BO 

potential forms a minimum towards which the nuclear wave function might be pushed such that 𝑅  might be 

reduced, see Figure A. 7 f).  

The analysis of the electronic wave functions can be continued by considering several limiting cases that are 

discussed in A3. For small 𝑅, 𝐸𝑒𝑢𝐿𝐶(𝑅) − 𝐸𝑒𝑔𝐿𝐶(𝑅), is large such that the approximation of a non-degenerate system 

can be used. Using (A.53) yields approximate wave functions, 

𝜑−𝐿𝐶(𝑅; 𝒓,  ) ≈ 𝜑𝑔𝐿𝐶(𝑅; 𝒓) − 
 ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩

∆𝐸𝑒𝑢𝑔𝐿𝐶(𝑅)
𝜑𝑢𝐿𝐶(𝑅; 𝒓) 

𝜑+𝐿𝐶(𝑅; 𝒓,  ) ≈ 𝜑𝑢𝐿𝐶(𝑅; 𝒓) + 
 ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩

∆𝐸𝑒𝑢𝑔𝐿𝐶(𝑅)
𝜑𝑔𝐿𝐶(𝑅; 𝒓) 

(A.37) 

, with ∆𝐸𝑒𝑢𝑔𝐿𝐶(𝑅) =  𝐸𝑒𝑢𝐿𝐶(𝑅) − 𝐸𝑒𝑔𝐿𝐶(𝑅). The energy correction in first order perturbation theory is zero. Thus, 

first non-zero energy corrections are quadratic in the field, i.e.  

𝐸𝑒−(𝑅,  ) ≈ 𝐸𝑒𝑔𝐿𝐶(𝑅) → 𝐸𝑒−(𝑅,  ) ≈ 𝐸𝑒𝑔𝐿𝐶(𝑅) −
( ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩)

2

∆𝐸𝑒𝑢𝑔𝐿𝐶(𝑅)
 

𝐸𝑒+(𝑅,  ) ≈ 𝐸𝑒𝑢𝐿𝐶(𝑅) → 𝐸𝑒+(𝑅,  ) ≈ 𝐸𝑒𝑢𝐿𝐶(𝑅) +
( ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩)

2

∆𝐸𝑒𝑢𝑔𝐿𝐶(𝑅)
. 

(A.38) 

 

The system is degenerate for large distances as, 𝐸𝑒𝑢𝐿𝐶(𝑅) ≈ 𝐸𝑒𝑔𝐿𝐶(𝑅) ≈ −1/2, such that the energies of |+⟩ and 

|– ⟩ are approximately,  

𝐸𝑒±(𝑅,  ) = −
1

2
±  |⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩|, (A.39) 

and the corresponding states in the field are  

𝜑−𝐿𝐶(𝑅; 𝒓,  ) ≈
1

√2
(𝜑𝑔𝐿𝐶(𝑅; 𝒓) − 𝜑𝑢𝐿𝐶(𝑅; 𝒓)) 

𝜑+𝐿𝐶(𝑅; 𝒓,  ) ≈
1

√2
(𝜑𝑔𝐿𝐶(𝑅; 𝒓) + 𝜑𝑢𝐿𝐶(𝑅; 𝒓)). 

(A.40) 

A compromise between non-degenerate system and strictly degenerate system might be given using (A.56). It yields 

for the energies at intermediate 𝑅 where the electronic system is nearly degenerate,  

𝐸𝑒−𝐿𝐶(𝑅,  ) ≈ 𝐸𝑒𝑔𝐿𝐶(𝑅) −  ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩ 

𝐸𝑒+𝐿𝐶(𝑅,  ) ≈ 𝐸𝑒𝑢𝐿𝐶(𝑅) +  ⟨𝑔𝐿𝐶|𝒓| 𝐿𝐶⟩. 
(A.41) 

As the Eigen functions in the field, one might use expressions (A.19) in this case, too.  
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Figure A.8 Influence of approximate expressions for electronic Eigen energies in the field and on the BO potential

Various approximations to calculate the BO curves in the field within the LC method are compared. Altogether, the 

approximate curves in comparison behave as expected. In addition, more realistic BO curves in the field, i.e.  and 

 are shown. They have been calculated based on the exact field free BO curves,  and , in combination with 

(A.35) where the LC transition dipole matrix element has been used. 

 

We compare the influence on the BO potential of the approximate expressions for the Electronic eigen energy 

curves in the field obtained within the LC method in Figure A.8. Altogether, the difference between the exact 

solution, (A.33), and the approximate expressions, (A.38), (A.39) and (A.41), as function of  behave as expected. At 

small , (A.38) fits extremely well and better than (A.39) and (A.41). At large , however, it does not reproduce the 

behavior of the exact solution. In this region, (A.39) fits the exact solution extremely well. The compromise between 

the cases of (A.38) and (A.39), i.e. (A.41) the solution for a nearly degenerate system, matches the exact solution 

reasonably well over a large range of . However, the match is not perfect particularly close to the equilibrium 

distance .  

Besides this comparison of different expressions for the BO potential within the LC method Figure A.8 contains a 

more realistic BO curve in the laser field, i.e.  and . For these curves, the exact field free BO 

potentials,  and , have been used together with LC transition dipole matrix element,  to calculate 

the BO curves in the field using (A.36). It is this model of the electronic structure of  that is used to describe the 

ionization dynamics, which are compare to the measurement results in chapter 5. For the transition dipole moment 

at small s around the equilibrium distance we used more exact calculations, see chapter 5.3.  

Independent on the details of the used approximations for the BO potential or the coupling in the field, one might 

draw the following picture of the interaction between  and a static external electric field . The external field 

changes the probability of presence of the electron (expressed by finding the new Eigenstates in the field as 

superposition of the field-free Eigenstates). This affects the BO potential curves to which the nuclear wave function 

reacts.   
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A3 Perturbation Theory of Two-Level Systems 

 

Here we summarize central results of two-level perturbation theory in order to have them at hand for the one-

dimensional two-level model of strong-field photoionization of 𝐻2
+. The considerations follows [168].  

 

A3.1 Time-Independent Perturbation Theory 

 

After the previous review of the 𝐻2
+ molecule within the LC approximation, perturbation theory of a two-level 

system is reviewed here. The results of the calculations here are the more general basis for the calculations in the 

previous chapter.  

Consider a two-level system with the perturbation free Hamiltonian, 𝐻0, that has the two eigenstates, |1⟩ and |2⟩ 

with corresponding eigenfunctions, 𝜓1  and 𝜓2 , and the Eigen energies, 𝐸1  and, 𝐸2 . Introducing the perturbation, 

𝜆𝐻′, of strength 𝜆 one hopes that the superposition,  

𝜓 = 𝑎1𝜓1 + 𝑎2𝜓2 = 𝑎1|1⟩ + 𝑎2|2⟩ = |𝜓⟩, (A.42) 

solves the problem  

𝐻|𝜓⟩ = [𝐻0 + 𝜆𝐻′]|𝜓⟩ = 𝐸|𝜓⟩. (A.43) 

Thereby, |𝜓⟩ is Eigen state of the perturbed system with the corresponding Eigen energy, 𝐸. Using the Ansatz (A.42) 

in (A.43) yields 

𝑎1(𝐻 − 𝐸)|1⟩ + 𝑎2(𝐻 − 𝐸)|2⟩ = 0. (A.44) 

Multiplication of once with ⟨1| and once with ⟨2| gives  

⟨1|𝑎1(𝐻 − 𝐸)|1⟩ + ⟨1|𝑎2(𝐻 − 𝐸)|2⟩ = 0 

⟨2|𝑎1(𝐻 − 𝐸)|1⟩ + ⟨2|𝑎2(𝐻 − 𝐸)|2⟩ = 0. 
(A.45) 

By employing ⟨1|2⟩ = ⟨2|1⟩ = 0 and ⟨1|1⟩ = ⟨2|2⟩ = 1 and denoting, 𝐻12 = ⟨1|𝐻|2⟩ one arrives at  

→ 𝑎1⟨1|𝐻|1⟩ − 𝑎1𝐸 ⟨1|1⟩ + 𝑎2⟨1|𝐻|2⟩ − 𝐸⟨1|2⟩ = 0 

→ 𝑎1⟨2|𝐻|1⟩ − 𝑎1𝐸 ⟨2|1⟩ + 𝑎2⟨2|𝐻|2⟩ − 𝑎2𝐸⟨2|2⟩ = 0. 
(A.46) 

This is a system of equations for the coefficients, 

𝑎1(𝐻11 − 𝐸) + 𝑎2𝐻12 = 0 

𝑎1𝐻21 + 𝑎2(𝐻22 − 𝐸) = 0. 
(A.47) 

The Eigen values are found by searching for roots of the determinant of the matrix, 

|
𝐻11 − 𝐸 𝐻12

𝐻21 𝐻22 − 𝐸
| = 0 

→ (𝐻11 − 𝐸)(𝐻22 − 𝐸) − 𝐻12𝐻21 = 𝐸2 − 𝐸(𝐻11 + 𝐻22) + 𝐻11𝐻22 − 𝐻12𝐻21 = 0. 

(A.48) 

The solutions are, 

𝐸± =
1

2
(𝐻11 +𝐻22) ± √(

𝐻11 + 𝐻22

2
)
2

− 𝐻11𝐻22 + 𝐻12𝐻21 

𝐸± =
1

2
(𝐻11 +𝐻22) ±

1

2
√(𝐻11 − 𝐻22)

2 + 4𝐻12𝐻21 

𝐻12 = 𝐻21
∗ → 𝐻12𝐻21 = |𝐻12|

2 

(A.49) 
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𝐸± =
1

2
(𝐻11 + 𝐻22) ±

1

2
√(𝐻11 − 𝐻22)

2 + 4|𝐻12|
2. 

With this, one has expressions for the perturbed Eigen energies, 𝐸+ and 𝐸−. 

Next, expressions for the corresponding perturbed Eigen states, |+⟩ = 𝑎1|1⟩ + 𝑎2|2⟩ and |– ⟩ = 𝑏1|1⟩ + 𝑏2|2⟩ need 

to be found. Expressing the coefficients in the form of sine- and cosine-like functions, following [168], 

|−⟩ = cos 𝜁 |1⟩ +  sin 𝜁|2⟩ 

|+⟩ = − sin 𝜁 |1⟩ + cos 𝜁|2⟩. 
(A.50) 

It ensures that they are orthonormal as, ⟨−|+⟩ = − sin 𝜁 cos 𝜁 + cos 𝜁 sin 𝜁 = 0  and ⟨+|+⟩ = cos2(𝜁) ⟨1|1⟩ +

sin2(𝜁) ⟨2|2⟩ = 1 = ⟨−|−⟩. The perturbed Eigenstates are then found by setting up the matrices   and  −1  and 

constructing the matrix equation, 

(
𝐸− 0
0 𝐸+

) =  −1𝑯 = (
cos 𝜁 sin 𝜁
− sin 𝜁 cos 𝜁

) (
𝐻11 𝐻12

𝐻21 𝐻22
) (

cos 𝜁 − sin 𝜁
sin 𝜁 cos 𝜁

) = (
𝑎 𝑏
𝑐 𝑑

) 

𝑎 = 𝐻11cos
2𝜁 + 𝐻22sin

2𝜁 + 2𝐻12 cos 𝜁 sin 𝜁 

𝑏 = 𝐻12(cos
2𝜁 − sin2𝜁) + (𝐻22 − 𝐻11) cos 𝜁 sin 𝜁 

𝑐 = 𝐻12(cos
2𝜁 − sin2𝜁) + (𝐻22 −𝐻11) cos 𝜁 sin 𝜁 

𝑑 = 𝐻22cos
2𝜁 + 𝐻11sin

2𝜁 − 2𝐻12 cos 𝜁 sin 𝜁. 

(A.51) 

Solving 𝑏 = 𝑐 = 0 yields,  

𝐻12(cos
2𝜁 − sin2𝜁) + (𝐻22 − 𝐻11) cos 𝜁 sin 𝜁 = 0 

→
𝐻22

(𝐻22 − 𝐻11)
=

−cos 𝜁 sin 𝜁

cos2𝜁 − sin2𝜁
= −

1

2
tan(2𝜁) → −

2𝐻22

(𝐻22 − 𝐻11)
= tan(2𝜁) 

→ 𝜁 =
1

2
atan (−

2𝐻12

𝐻22 − 𝐻11
). 

(A.52) 

For a non-degenerate system, where the energy difference, 𝐸2 − 𝐸1, is large, the term 2𝐻12/(𝐻22 − 𝐻11) becomes 

small such that one approximates,  tan(2𝜁) ≈ 2𝜁 → 𝜁 ≈ −𝐻22/(𝐻22 −𝐻11) . Thus, using cos 𝜁 ≈ 1  and sin 𝜁 ≈ 𝜁 , 

yields,  

|−⟩ ≈ |1⟩ − 
|𝐻12|

𝐻22 −𝐻11

|2⟩ 

|+⟩ ≈ |2⟩ + 
|𝐻12|

𝐻22 −𝐻11

|1⟩. 

(A.53) 

And the new states are dominated by old states but mixed with a contribution from the other state that is inversely 

proportional to the energy difference. Thereby, the energies remain approximately unchanged, 𝐸− ≈ 𝐸1 and 𝐸+ ≈

𝐸2 for Hamiltonian perturbing which fulfills, ⟨2|𝐻′|2⟩ = ⟨1|𝐻′|1⟩ = 0. The first non-zero correction to the energy in 

this case occurs if the second order correction is considered. It is [168] 

𝐸− ≈ 𝐸1 −
|𝐻12|

2

𝐸2 − 𝐸1
 

𝐸+ ≈ 𝐸2 +
|𝐻12|

2

𝐸2 − 𝐸1
. 

(A.54) 

The second order correction to the wave function can be found e.g. in ref. [168]. 

For a degenerate system where 𝐻22 − 𝐻11 ≈ 0, i.e. 𝐸1 ≈ 𝐸2  one has tan(2𝜁) → −∞ such that 𝜁 = −𝜋/4 and the 

perturbed Eigen states are a complete mixture of the unperturbed states 

|−⟩ =
1

√2
(|1⟩ − |2⟩) (A.55) 
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|+⟩ =
1

√2
(|1⟩ + |2⟩ ). 

In this case, the corrected energies are  

𝐸± =
1

2
(𝐻11 + 𝐻22) ± 𝐻12. (A.56) 

As 𝐻22 ≈ 𝐻11 one might write, 𝐸± = 𝐻11 ± 𝐻12.  

One might consider the case of a nearly degenerate system where the approximation (𝐻11 − 𝐻22)
2 ≈ 0, is used 

instead of 𝐻22 − 𝐻11 ≈ 0. Using 𝐻11 +𝐻22 ≈ 2𝐻11 ≈ 2𝐻22 but accounting for the difference between 𝐻11 and 𝐻22 

yields, 

𝐸11− = 𝐻11 −𝐻12 

𝐸22+ = 𝐻22 + 𝐻12. 
(A.57) 

A reasonable approximation for the wave functions in this case is to as it avoids the divergence in (A.54). It 

represents an equal mix of the states without perturbation. This approximation might be used if one seeks an 

approximate expression for a compromise between the two limiting cases.  

 

A3.2 Time-Dependent Perturbation Theory 

 

Time-dependent first-order perturbation theory is shortly reviewed here and later specified for a two-level 

system [168]. One starts at the time-dependent Schrödinger equation (TDSE),  

𝑖
𝜕

𝜕𝑡
𝜓(𝑡) = 𝐻(𝑡)𝜓(𝑡) = 𝑖

𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝐻(𝑡)|𝜓(𝑡)⟩, (A.58) 

with the explicitly time-dependent Hamiltonian, 𝐻(𝑡) = 𝐻0 + 𝐻′(𝑡). It consist of a time-independent part, 𝐻0, and 

the time-dependent perturbation, 𝐻′(𝑡) , of strength 𝜆 , i.e. 𝐻′(𝑡) = 𝜆𝐻′′(𝑡) . The wave function, 𝜓(𝑡)  can be 

expressed as superposition of a chosen complete set of orthonormal Eigen states of the unperturbed Hamiltonian 

𝐻0,  

|𝜓(𝑡)⟩ = 𝜓(𝑡) =∑ 𝑎𝑛(𝑡)𝜓𝑛(𝒓)
𝑛

=∑ 𝑎𝑛(𝑡)|𝑛⟩
𝑛

, (A.59) 

where the coefficients, 𝑎𝑛(𝑡), are time-dependent while the wave functions, 𝜓𝑛(𝒓), respectively the states |𝑛⟩ are 

time-independent. Thereby, ∑ |𝑎𝑛(𝑡)|
2 = 1𝑛  ensures the normalization of 𝜓(𝑡). Using,  in the TDSE yields,  

𝑖∑
𝜕

𝜕𝑡
[𝑎𝑛(𝑡)|𝑛⟩]

𝑛
= 𝑖∑

𝜕

𝜕𝑡
𝑎𝑛(𝑡)|𝑛⟩

𝑛
= [𝐻0 +𝐻′(𝑡)]∑ 𝑎𝑛(𝑡)|𝑛⟩

𝑛
 

𝑖
𝜕

𝜕𝑡
∑ 𝑎𝑛(𝑡)|𝑛⟩

𝑛
=∑ 𝐻0𝑎𝑛(𝑡)|𝑛⟩

𝑛
+∑ 𝐻′(𝑡)𝑎𝑛(𝑡)|𝑛⟩

𝑛
 

(A.60) 

, and multiplication with ⟨𝑚| brings in matrix form, 

𝑖⟨𝑚|
𝜕

𝜕𝑡
∑ 𝑎𝑛(𝑡)|𝑛⟩

𝑛
= ⟨𝑚|∑ 𝐻0𝑎𝑛(𝑡)|𝑛⟩

𝑛
+ ⟨𝑚|∑ 𝐻′(𝑡)𝑎𝑛(𝑡)|𝑛⟩

𝑛
 

𝑖
𝜕

𝜕𝑡
∑ 𝑎𝑛(𝑡)⟨𝑚|𝑛⟩

𝑛
=∑ 𝑎𝑛(𝑡)⟨𝑚|𝐻

0 |𝑛⟩
𝑛

+∑ 𝑎𝑛(𝑡)⟨𝑚|𝐻
′(𝑡)|𝑛⟩

𝑛
 

𝑖∑ 𝑆𝑚𝑛

𝑑

𝑑𝑡
𝑎𝑛(𝑡)

𝑛
=∑ 𝑎𝑛(𝑡)𝐻𝑚𝑛

0

𝑛
+∑ 𝑎𝑛(𝑡)𝐻𝑚𝑛

′ (𝑡)
𝑛

 

(A.61) 
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, where the abbreviations, 𝑆𝑚𝑛 = ⟨𝑚|𝑛⟩ = ∫𝜓𝑚
∗ (𝒓)𝜓𝑛(𝒓)𝑑𝒓 is called the overlap integral (reff tannor), and 𝐻𝑚𝑛

0 =

⟨𝑚|𝐻0 |𝑛⟩ = ∫𝜓𝑚
∗ (𝒓)[𝐻0𝜓𝑛(𝒓)]𝑑𝒓 and 𝐻𝑚𝑛

′ (𝑡) = ⟨𝑚|𝐻′ (𝑡)|𝑛⟩ = ∫𝜓𝑚
∗ (𝒓)[𝐻′ (𝑡)𝜓𝑛(𝒓)]𝑑𝒓 are matrix elements as 

the interpretation of (A.61) as matrix equation illustrates,  

𝑖
𝑑

𝑑𝑡
∑ 𝑎𝑛(𝑡)𝑆𝑚𝑛

𝑛
=∑ 𝑎𝑛(𝑡)𝐻𝑚𝑛

0

𝑛
+∑ 𝑎𝑛(𝑡)𝐻𝑚𝑛

′ (𝑡)
𝑛

 

→ 𝑖 [
𝑆11 𝑆12 …
𝑆21 𝑆22 …
⋮ ⋮ ⋱

] [
𝑎1̇
𝑎2̇
⋮
] = [

𝐻11
0 𝐻12

0 …

𝐻21
0 𝐻22

0 …
⋮ ⋮ ⋱

] [
𝑎1
𝑎2
⋮
] + [

𝐻11
′ (𝑡) 𝐻12

′ (𝑡) …

𝐻21
′ (𝑡) 𝐻22

′ (𝑡) …
⋮ ⋮ ⋱

] [
𝑎1
𝑎2
⋮
] 

→ 𝑖 [
𝑆11𝑎1̇ + 𝑆12𝑎2̇ +⋯
𝑆21𝑎1̇ + 𝑆22𝑎2̇ +⋯

⋮
] = [

𝐻11
0 𝑎1 +𝐻12

0 𝑎2 +⋯

𝐻21
0 𝑎1 +𝐻22

0 𝑎2 +⋯
⋮

] + [
𝐻11
′ (𝑡)𝑎1 + 𝐻12

′ (𝑡)𝑎2 +⋯

𝐻21
′ (𝑡)𝑎1 + 𝐻22

′ (𝑡)𝑎2 +⋯
⋮

] 

(A.62) 

. Using that 𝑆𝑚𝑛 = 0  and 𝐻𝑚𝑛
0 = 0  for 𝑚 ≠ 𝑛  as the chosen complete basis set is orthonormal and in addition, 

plugging in that the basis is are Eigen functions of 𝐻0 that fulfill, 𝐻𝑛𝑛
0 = 𝐸𝑛, yields 

𝑖
𝑑

𝑑𝑡
[
𝑎1
𝑎2
⋮
] = [

𝐸1𝑎1
𝐸2𝑎2
⋮

] + [
𝐻11
′ (𝑡)𝑎1 +𝐻12

′ (𝑡)𝑎2 +⋯

𝐻21
′ (𝑡)𝑎1 +𝐻22

′ (𝑡)𝑎2 +⋯
⋮

] 

𝑖
𝑑

𝑑𝑡
[
𝑎1
𝑎2
⋮
] = [

[𝐸1 +𝐻11
′ (𝑡)] 𝐻12

′ (𝑡) …

𝐻21
′ (𝑡) [𝐸2 + 𝐻22

′ (𝑡)] …
⋮ ⋮ ⋱

] [
𝑎1
𝑎2
⋮
]. 

(A. 63) 

This result is further simplified by approximating the system with two levels and considering a perturbation which 

fulfills, 𝐻𝑛𝑛
′ (𝑡) = 0. Using both, one arrives at the matrix equation that is appropriate to describe the interaction of 

a two-level model, e.g. 𝐻2
+, in a time-dependent external field, 

𝑖
𝑑

𝑑𝑡
[
𝑎1
𝑎2
] = [

𝐻11
0 𝐻12

′

𝐻21
′ 𝐻22

0 ] [
𝑎1
𝑎2
]. (A.64) 

Equation (A.64) represents a system of a linear differential equations for the time-dependent coefficients, 𝑎1 and 

𝑎2.  

Solving (A. 63) and (A.64) respectively is appropriate to describe two-level dynamics such as Rabi cycling of a 

two-level atom in an external laser field. Thereby, the chosen Eigenstates depend the spatial coordinate, 𝒓, of the 

electron only. The system is then fully characterized by 𝜓(𝑡) = 𝑎1(𝑡)𝜓1(𝒓) + 𝑎2(𝑡)𝜓2(𝒓) where it is stressed again 

that 𝜓1(𝒓) and 𝜓2(𝒓) are time-independent Eigenstates of the perturbation free problem. For molecular dynamics, 

however, 𝜓(𝑡), depends on the electronic and the nuclear coordinates, i.e. 𝜓(𝑡, 𝒓, 𝑅). It makes the problem a bit more 

complicated but does not change much on the principle. The TDSE reads, 

𝑖
𝜕

𝜕𝑡
|𝜓(𝑡, 𝒓, 𝑅)⟩ = 𝑖

𝜕

𝜕𝑡
∑ |𝜑𝑛(𝑅; 𝒓)⟩|𝜒𝑛(𝑅, 𝑡)⟩

𝑛
= 𝐻(𝑡)∑ |𝜑𝑛(𝑅; 𝒓)⟩|𝜒𝑛(𝑅, 𝑡)⟩

𝑛
= 𝐻(𝑡)|𝜓(𝑡, 𝒓, 𝑅)⟩, (A.65) 

where the time dependence is written suggestively into the nuclear part of the wave function, 𝜒𝑛(𝑅, 𝑡) . The 

electronic Eigenstates, |𝜑𝑛(𝑅; 𝒓)⟩ = |𝑛⟩, are used as the basis for the electronic problem and are time-independent 

similar to simpler case before. Multiplication from the left with another electronic Eigenstate, ⟨𝜑𝑚
∗ (𝑅; 𝒓)| = ⟨𝑚|, 

yields, 

𝑖⟨𝑚|
𝜕

𝜕𝑡
∑ |𝜑𝑛(𝑅; 𝒓)⟩|𝜒𝑛(𝑅, 𝑡)⟩

𝑛
= ⟨𝑚|𝐻(𝑡)∑ |𝑛⟩|𝜒𝑛(𝑅, 𝑡)⟩

𝑛
 

𝑖∑ ⟨𝑚|𝑛⟩
𝑑

𝑑𝑡
|𝜒𝑛(𝑅, 𝑡)⟩

𝑛
= ⟨𝑚|𝐻(𝑡)∑ |𝑛⟩|𝜒𝑛(𝑅, 𝑡)⟩

𝑛
 

𝑖∑ 𝑆𝑚𝑛
𝑛

𝑑

𝑑𝑡
|𝜒𝑚(𝑅, 𝑡)⟩ =∑ 𝐻𝑚𝑛(𝑡)

𝑛
|𝜒𝑛(𝑅, 𝑡)⟩ =∑ [𝐻𝑚𝑛

0 + 𝐻𝑚𝑛
′ (𝑡)]

𝑛
|𝜒𝑛(𝑅, 𝑡)⟩. 

(A.66) 
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Next one uses that the electronic basis set is orthogonal, i.e. ⟨𝑚|𝑛⟩ = 0 = 𝐻𝑚𝑛
0  for 𝑚 ≠ 𝑛, and plugs in that 𝐻𝑛𝑛

0 (𝑅) =

𝐸𝑒𝑛(𝑅) yields the electronic Eigen energy curve, 𝐸𝑒𝑛(𝑅). Further, the perturbation is assumed to fulfill, 𝐻𝑚𝑛
′ (𝑡) = 0 

for 𝑚 = 𝑛. One arrives at the TDSE for the nuclei where several BO-potential curves, 𝑈𝑛, are coupled by the time-

dependent perturbation, 𝐻12
′ (𝑅, 𝑡) 

𝑖
𝑑

𝑑𝑡
[
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
⋮

] = [
𝐻11
0 (𝑅) 𝐻12

′ (𝑅, 𝑡) …

𝐻21
′ (𝑅, 𝑡) 𝐻22

0 (𝑅) …
⋮ ⋮ ⋱

] [
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
⋮

] 

𝑖
𝑑

𝑑𝑡
[
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
⋮

] = [
 𝑁 + 𝐸𝑒2(𝑅) + 𝑉𝑁(𝑅) 𝐻12

′ (𝑅, 𝑡) …

𝐻21
′ (𝑅, 𝑡)  𝑁 + 𝐸𝑒2(𝑅) + 𝑉𝑁(𝑅) …
⋮ ⋮ ⋱

] [
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
⋮

] 

𝑖
𝑑

𝑑𝑡
[
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
⋮

] = [
 𝑁 + 𝑈1(𝑅) 𝐻12

′ (𝑅, 𝑡) …

𝐻21
′ (𝑅, 𝑡)  𝑁 + 𝑈2(𝑅) …
⋮ ⋮ ⋱

] [
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
⋮

]. 

(A.67) 

The operator,  𝑁, stands for the kinetic energy of the nuclei,  𝑁 = ∇𝑅
2/2𝜇, with 𝜇 being the effective mass of the 

nuclei. For a two-level system, this simplifies to 

𝑖
𝑑

𝑑𝑡
[
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
] = [

 𝑁 + 𝑈1(𝑅) 𝐻12
′ (𝑅, 𝑡)

𝐻12
′ (𝑅, 𝑡)  𝑁 + 𝑈2(𝑅)

] [
𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
]. (A.68) 

(A.68) is formally integrated in order to illustrate the effect of coupling the nuclear wave functions on two BO 

potentials, i.e. 

𝜒1(𝑅, 𝑡1) = −𝑖∫ [ 𝑁 + 𝑈1(𝑅)]𝜒1(𝑅, 𝑡′)𝑑𝑡′
𝑡1

𝑡0

− 𝑖∫ 𝐻12
′ (𝑅, 𝑡′)𝜒2(𝑅, 𝑡′)𝑑𝑡′

𝑡1

𝑡0

 

𝜒2(𝑅, 𝑡1) = −𝑖 ∫ 𝐻12
′ (𝑅, 𝑡′)𝜒1(𝑅, 𝑡

′)𝑑𝑡′
𝑡1

𝑡0

− 𝑖∫ [ 𝑁 + 𝑈2(𝑅)]𝜒2(𝑅, 𝑡
′)𝑑𝑡′

𝑡1

𝑡0

. 

(A. 69) 

Specifying the coupling as dipole interaction, 𝐻12
′ (𝑅, 𝑡) = 𝐻21

′ (𝑅, 𝑡) = 𝐸(𝑡)𝑑12(𝑅) , with the field, 𝐸(𝑡)  and the 

transition dipole matrix element, 𝑑12(𝑅), yields 

𝜒1(𝑅, 𝑡1) = −𝑖∫ [ 𝑁 + 𝑈1(𝑅)]𝜒1(𝑅, 𝑡′)𝑑𝑡′
𝑡1

𝑡0

− 𝑖∫ 𝐸(𝑡′)𝑑12(𝑅)𝜒2(𝑅, 𝑡′)𝑑𝑡′
𝑡1

𝑡0

 

𝜒2(𝑅, 𝑡1) = −𝑖 ∫ [ 𝑁 + 𝑈2(𝑅)]𝜒2(𝑅, 𝑡
′)𝑑𝑡′

𝑡1

𝑡0

− 𝑖∫ 𝐸(𝑡′)𝑑12(𝑅)𝜒1(𝑅, 𝑡
′)𝑑𝑡′

𝑡1

𝑡0

. 

(A.70) 

The nuclear wave function on each of the BO curves consist of a summand which is representative for the field 

free evolution of the nuclear wave function on the respective BO potential, i.e. the first summand in (A.70). In 

addition, there is a second summand which can be understood as a copy of the nuclear wave function on the other 

BO curve. The strength of the generated copy is proportional to the strength of the electric field, 𝐸(𝑡), and the 

transition dipole matrix element, 𝑑12(𝑅). Further it scales with the complex amplitude of the wave function on the 

other surface. Due the complexity of 𝜒1(𝑅, 𝑡′) and 𝜒2(𝑅, 𝑡′), the contribution from the copy can interfere with the 

part of the wave function which is already on the respective BO potential. Thus, the coupling can lead to an 

enhancement (constructive interference) or suppression (destructive interference) of the probabilities on each of 

the curves, |𝜒1(𝑅, 𝑡′)|
2 or |𝜒2(𝑅, 𝑡′)|

2.  
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A4 Split-Step Method for Numerical Solution of the Time-Dependent Schrödinger 

Equation  

 

Here we shortly review the split-step for numerical solution of the time-dependent Schrödinger equation (TDSE). 

It is introduced following the description in [166] in A4.1. Afterwards, it is demonstrated how it is applied to the 

coupling of several BO-potentials in A4.2.  

 

 

A4.1 The Split-Step Method for Numerically Solving the TDSE 

 

The split-step method [149] [166] is used for numerical solution of the time-dependent Schrödinger equation on 

a grid. For the time-evolution of the wave function, 𝜓( , 𝑡), on a single time- and space dependent potential, 𝑉( , 𝑡), 

reads 

𝑖
𝜕

𝜕𝑡
𝜓( , 𝑡) = 𝐻( , 𝑡)𝜓( , 𝑡) = [

1

2𝑚
∇2 + 𝑉( , 𝑡)] 𝜓( , 𝑡) 

𝑖
𝜕

𝜕𝑡
𝜓( , 𝑡) = [

𝑝2

2𝑚
+ 𝑉( , 𝑡)] 𝜓( , 𝑡) = [ + 𝑉( , 𝑡)]𝜓( , 𝑡). 

(A.71) 

It has the formal solution,  

𝜓( , 𝑡) = 𝑒−𝑖𝐻(𝑥,𝑡)𝑡𝜓( , 𝑡 = 0). (A.72) 

 𝜓( , 𝑡) as well as the potential 𝑉( , 𝑡) are represented on a spatial grid with 𝑁 points between the starting point, 

 𝑏 , and the endpoint,  𝑒 . Thus, the  -step width is, ∆ = ( 𝑒 −  𝑏)/𝑁 , which leads to the discretization in 

momentum space, ∆𝑝 = 2𝜋/∆ 𝑁, and a momentum range between −𝑝𝑚 = −𝜋/∆  and 𝑝𝑚 = +𝜋/∆ .  

Using the symmetrized split step algorithm, the wave function at the time, 𝑡 + ∆𝑡, is approximated by numerical 

calculation, 

𝜓( , 𝑡 + ∆𝑡) ≈ 𝑒−𝑖𝑉(𝑥,𝑡)∆𝑡/2𝑖   [𝑒−𝑖𝑇∆𝑡   [𝑒−𝑖𝑉(𝑥,𝑡)∆𝑡/2𝜓( , 𝑡)]] (A.73) 

, starting from the innermost brackets. Thereby,     stands for the fast-fourier-transform operation, which is a 

numerical method to calculate the discrete Fourier transformation. It’s inverse operation is denoted by 𝑖   . The 

Fourier transformation connects the wave function in real space representation, 𝜓( , 𝑡), with its momentum space 

𝜓(𝑝, 𝑡) , i.e. 𝜓(𝑝, 𝑡) = [∫𝜓( , 𝑡)exp (−𝑖𝑝 )𝑑 ]/√2𝜋. Repeating the full operation until, 𝑡𝑘 = 𝑘∆𝑡 , yields the wave 

function on the  -grid and 𝑝-grid at every time, 𝑡𝑘 between the starting time, 𝑡0 and an end time, 𝑡𝑒𝑛𝑑 . In Fourier 

space, the momentum propagator is  = 𝑝2/2𝑚 with 𝑚 being the mass of the particle.  

At every time-step, observables of interest such as the probability distribution |𝜓( , 𝑡)|2 or expectation values of, 

e.g. the position operator  𝑒𝑥𝑝(𝑡) = ∫𝜓∗( , 𝑡) 𝜓( , 𝑡)𝑑  or the momentum operator, 𝑝𝑒𝑥𝑝(𝑡) =

∫𝜓∗(𝑝, 𝑡)𝑝𝜓(𝑝, 𝑡)𝑑𝑝, can be calculated and saved for later analysis and interpretation of the numerical results. 

Similarly, it is possible to calculate projections, 𝑐(𝑡) , onto e.g. an Eigenstate of interest using 𝑐𝑛(𝑡) =

∫𝜓𝑛
∗( )𝜓( , 𝑡)𝑑 . In the example, 𝜓𝑛( ), denotes e.g. an Eigenstate of e.g. the time-independent Hamiltonian. This 

enables to evaluate time-dependent population, 𝑃𝑛(𝑡) = |𝑐𝑛(𝑡)|
2, of the 𝑛th Eigenstate of the system. An important 

observable that  is used to check the reasonability of the calculation is the norm wave function 𝑛(𝑡). The norm of 
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the wave function on the grid is 𝑛𝑔𝑟𝑖𝑑(𝑡) = ∫𝜓∗( , 𝑡)𝜓( , 𝑡)𝑑 . It should be 𝑛(𝑡) = 1 over the whole calculation 

unless there are understandable and justified reasons why it is not. 

An imaginary boundary is applied in the region around the boundaries of the  -grid. This avoids that parts of the 

wave function that are reflected from the boundaries of the grid perturb the calculation. The boundary, 𝑉𝑖𝑚( ), has 

cos2 -shape and reads, 𝑉𝑖𝑚( ) ~ − 10𝑖cos2( [𝜋/2 𝑤][ −  𝑏/𝑒 +  𝑤])  for  <  𝑏 +  𝑤;   >  𝑒 −  𝑤  and 1 

otherwise. Thereby,  𝑤 is an adjustable width, which is chosen appropriately. The imaginary boundary is used in 

the following way. After propagating 𝜓( , 𝑡)  using (A.73), one calculates, 𝜓′( , 𝑡 + ∆𝑡) =

exp[−1𝑖∆𝑡𝑉𝑖𝑚( )]  𝜓( , 𝑡 + ∆𝑡), at every time step ∆𝑡. The next propagation step is done using 𝜓′( , 𝑡 + ∆𝑡). It is 

clear that this procedure, causes a loss of probability at every time step. This lost probability has the norm, 

𝑛𝑖𝑚(∆𝑡) = |𝜓( , 𝑡 + ∆𝑡)|2 − |𝜓′( , 𝑡 + ∆𝑡)|2. The time-dependent evolution of the absorbed norm is then 𝑛𝑖𝑚(𝑡) =

∑𝑛𝑖𝑚(∆𝑡). With absorbing boundaries, not 𝑛(𝑡) = 1 needs to be constant but, 𝑛′(𝑡) = 𝑛(𝑡) + 𝑛𝑖𝑚(𝑡) = 1. A similar 

approach for checking the norm can be used if other loss channels such as ionization are included. However, it is 

important to have a comprehensive understanding of these loss channels. 

In order to check the convergence and stability of the numerical solution, it is common to repeat the calculation 

several times using different sizes,  𝑒 −  𝑏 and number of points, 𝑁, on the grid and different sizes of the time step 

∆𝑡. If reducing the number of grid points does not change the result of the calculation anymore, the numerical result 

can be accepted as having converged.  

 

A4.2 The Split-Step Method for Coupled Potentials 

 

Having shortly reviewed the split-step method for time-evolution of the wave function, 𝜓( , 𝑡) on a single time- 

and space dependent potential, 𝑉( , 𝑡), the method is extended to the case where several such potentials, 𝑉𝑙( , 𝑡), 

are coupled. Such a scheme is needed if e.g. several electronic levels of a molecule are coupled by an external laser 

field as it is e.g. the case for a two-level model of 𝐻2
+ in chapter 5.3. The consideration is done specifically for a two-

level model here. However, it is straightforward to extend it to more levels.  

In order to illustrate the idea of the scheme, the TDSE of a two-level system in matrix, i.e., (A.64) is considered first 

[153] [166], 

𝑖
𝑑

𝑑𝑡
[
𝑎1
𝑎2
] = [

𝐻11 𝐻12

𝐻21 𝐻22
] [
𝑎1
𝑎2
] → 𝑖

𝑑

𝑑𝑡
[
𝑎1
𝑎2
] = [

𝐻11
0 𝐻12

′

𝐻21
′ 𝐻22

0 ] [
𝑎1
𝑎2
] → 𝑖

𝑑

𝑑𝑡
 𝑨(𝑡) = 𝑯(𝑡)𝑨(𝑡) 

→  𝑨(𝑡) = exp (−𝑖∫ 𝑯(𝑡′)𝑑𝑡′
𝑡

𝑡0

)𝑨(𝑡0). 

(A.74) 

For a numerical solution of this problem one writes,  

→  𝑨(𝑡 + ∆𝑡) = exp(−𝑖𝑯(𝑡)∆𝑡)𝑨(𝑡0) = exp (−𝑖 [
 + 𝑉11 𝑉12
𝑉21  + 𝑉22

] ∆𝑡)𝑨(𝑡0). (A.75) 

Where the expression, exp(−𝑖𝑯(𝑡)∆𝑡), represents the matrix exponential which is the first term in a so-called 

Magnus expansion. Although it is not necessary, one has renamed, 𝐻11
0 =   + 𝑉11 , being the time-independent 

Hamiltonian and 𝑉21(𝑡) = 𝑉21 as well as 𝑉12(𝑡) = 𝑉12 being the time-dependent perturbation that couples the states 

1 and 2 within first order time-dependent perturbation theory. The introduced error due to using only the first 
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order in the Magnus expansion is sufficiently small if ∆𝑡 is sufficiently small, see [166]. Next one splits, the matrix 

exponential similarly to (A.73).  

→  𝑨(𝑡 + ∆𝑡)

= exp (−𝑖 [
𝑉11 𝑉12
𝑉21 𝑉22

]
∆𝑡

2
) 𝑖   [exp (−𝑖 [

 0
0  

] ∆𝑡)]    [exp (−𝑖 [
𝑉11 𝑉12
𝑉21 𝑉22

]
∆𝑡

2
)𝑨(𝑡0)]. 

(A.76) 

The used algorithm would be the same as in (A.73), however, the part of the propagation step which is done in real 

space, i.e. exp (−𝑖𝑉( , 𝑡)∆𝑡/2)𝜓( , 𝑡), has become a matrix exponential now, i.e. exp(−𝑖 ∆𝑡/2), with   being not 

necessarily a diagonal matrix. For the relevant cases there is a transformation,  , which transforms   to a diagonal 

matrix,  =  −   , of which the matrix exponential can be calculated by, 

→  exp(−𝑖 ∆𝑡/2) = (
exp(−𝑖𝑑1∆𝑡/2) 0

0 exp(−𝑖𝑑2∆𝑡/2)
), (A.77) 

, with 𝑑1 and 𝑑2 being the entries of  . Thus, the operation (A.76) can be done in the following way, 

→  𝑨(𝑡 + ∆𝑡) =  exp (−𝑖 
∆𝑡

2
) − 𝑖   [exp(−𝑖 ∆𝑡)   [ exp (−𝑖 

∆𝑡

2
) − 𝑨(𝑡0)]]. (A.78) 

This result is not limited to two levels and can be used for any diagonalizable matrix,  . However, it means that one 

need to calculate the transformation   at every time step. As demonstrated in A3 and in [153] [166], the 

transformation and the diagonal matrix can be calculated analytically exact for a two-level system which makes the 

calculation particularly robust and fast for the case of a two-level system.  

Similarly to the extension of the simple two-level problem to the coupling of several BO-potentials in (A. 63), the 

scheme can be extended to include the dependence on the nuclear coordinate by making the transformation,  =

 (𝑅), as well as the diagonal matrix  =  (𝑅) 𝑅-dependent, i.e.  

[
𝜒1(𝑅, 𝑡 + ∆𝑡)

𝜒2(𝑅, 𝑡 + ∆𝑡)
] = 

exp (−𝑖 (𝑅)
∆𝑡

2
) −1(𝑅) × 𝑖   [exp(−𝑖 ∆𝑡)   [ (𝑅)exp (−𝑖 (𝑅)∆𝑡

∆𝑡

2
) −1(𝑅) [

𝜒1(𝑅, 𝑡)

𝜒2(𝑅, 𝑡)
]]], 

(A.79) 

written explicitly for two-levels here. As written here, the scheme is appropriate to solve the TDSE on several 

electronic levels. Extending it to more than two BO-potentials is straight forward, however,   and   are not 

analytically exact available anymore and must be found by numerical means.  

Mentioned strategies to check the convergence and reasonability of the numerical results remain the same as for 

the propagation on a single electronic state. One varies the temporal and spatial grid until the result of the 

calculation does not change anymore. Thereby, the calculation is continued for a time-interval after the laser pulse 

is over until all observables have converged. 
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