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Abstract
This work presents the foundations of a new solution technique for the characteristic
initial value problem of colliding plane gravitational waves. It has extensive similarities
to the approach of Alekseev and Griffiths in 2001, but uses the inverse scattering
method with a Riemann-Hilbert problem. This allows for a further transformation to
a continuous Riemann-Hilbert problem with a solution given in terms of an integral
equation for a regular unknown function. Ambiguities in the solution of the initial
Riemann-Hilbert problem lead to the construction of a whole family of exact spacetimes
generalising the proper solution of the initial value problem. Therefore the described
technique also serves as an interesting solution generating method. The procedure
is exemplified by extending the Szekeres class of colliding wave spacetimes with two
additional real parameters. The obtained solution features a limiting case of a new
type of impulsive waves, which are circularly polarised. A semi-analytic approximation
scheme for the solution to the general initial value problem of colliding plane waves is
introduced.

Kurzfassung
Diese Arbeit präsentiert die Grundlagen einer neuen Lösungstechnik für das charakte-
ristische Anfangswertproblem kollidierender ebener Gravitationswellen. Sie weist deut-
liche Ähnlichkeiten zu einem 2001 von Alekseev und Griffiths beschriebenen Verfahren
auf, verwendet jedoch die inverse Streumethode mit einem Riemann-Hilbert-Problem.
Dies erlaubt eine weitere Transformation zu einem stetigen Riemann-Hilbert-Problem,
dessen Lösung in Form einer Integralgleichung für eine reguläre unbekannte Funkti-
on gegeben ist. Mehrdeutigkeiten in der Lösung des anfänglichen Riemann-Hilbert-
Problems führen zur Konstruktion einer ganzen Familie exakter Raumzeiten, welche
die eigentliche Lösung des Anfangswertproblems verallgemeinert. Deshalb kann die
vorgestellte Technik auch als eine interessante Methode zur Lösungserzeugung dienen.
Das Verfahren wird anhand der Erweiterung der Szekeres-Klasse von Wellenkollisions-
raumzeiten demonstriert. Die dadurch erhaltene Lösung beinhaltet als Grenzfall einen
neuen Typ impulsiver Gravitationswellen mit zirkularer Polarisation. Ein halbanaly-
tisches Approximationsschema für die Lösung des charakteristischen Anfangswertpro-
blems kollidierender ebener Gravitationswellen wird vorgestellt.
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1 Introduction

Wege entstehen dadurch, dass man sie geht.

Franz Kafka (1883− 1924)

History and character of gravitational waves

In 1915 Albert Einstein’s general theory of relativity (GR) replaced Newton’s concept
of gravity as an instantaneous force by a dynamical description of the four-dimensional
spacetime [1]. This enables gravitation to be radiated in the form of distortions in
the fabric of spacetime, as Einstein discovered shortly afterwards using a weak field
approximation [2]. In his article he also presented the famous quadrupole formula
describing the energy loss of a system caused by gravitational waves (GWs) to be
proportional to the second time derivative of its quadrupole moment. Ironically, he
stated that the value of this energy loss is practically zero in all conceivable cases. He
has been proven wrong in the second half of the last century not simply due to his
underestimation of technological advance, but also because he could not think of such
compact and fast orbiting objects like binary neutron stars.
However, questions about the properties or even the existence of GWs were far from
being settled at that time. After discussions with Willem de Sitter and Gunnar Nord-
ström, Einstein had to correct his GW calculations in 1918 [3]. He derived three
different types of GWs that were subject to further investigation until Arthur Edding-
ton in 1922 showed that only the purely transversal GWs travel with the speed of light,
whereas he proved the other two types to be mere artefacts of choosing an inapropriate
coordinate system [4]. Some time later, in 1936, Einstein himself together with his stu-
dent Nathan Rosen temporarily came to the conclusion that GWs do not exist. Einstein
altered his opinion after an error was pointed out to him. Subsequently, the question
arose if GWs can indeed carry energy, which was only resolved by Richard Feynmans
‘sticky bead’ argument: A GW causes test bodies to slide along a rigid mount and
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finally heat due to friction, thus energy from the GW must have been deposited into
the system. Ultimately, Peter Bergmann described the transverse and quadrupolar
nature of gravitational radiation by discussing the motion of test bodies [5], cf. figure
1.1.

Figure 1.1: Sketch of one period of oscillation in a system of four test masses caused
by a GW travelling orthogonal to their plane.

In the 1960s the first GW detectors were proposed. Joseph Weber built resonance de-
tectors consisting of heavy aluminium cylinders and claimed to have measured several
GW signals, but his findings could not be reproduced and were seriously questioned
by theoretical arguments. Joseph Taylor and Alan Hulse discovered a binary pulsar in
1974 that featured an energy loss matching the quadrupole formula with astonishing
precision [6], which is regarded as a first indirect measurement of GWs. Recently, after
a long and labourious quest, direct observations of GWs emitted by black hole mergers
were finally achieved by the interferometers of the LIGO cooperation [7], which simul-
taneously confirm the existence of GWs and of black hole binaries with around 30 solar
masses. This discovery marks the beginning of a new era of GW astronomy, wherein
the electromagnetic picture of our universe will be complemented by GWs observations.

Colliding plane gravitational waves

For the discussion of GW observations a linearised version of GR is sufficient. However,
these waves are generated in regions with extraordinary strong gravity where the full
nonlinear theory has to be applied. In this regime the interacting GWs behave very
differently from the better known case of classical (vacuum) electromagnetic waves,
whose undisturbed penetration through each other is a part of everyday experience.
For example, interacting GWs tend to focus each other astigmatically.
This work aims to develop a deeper understanding of the nonlinear effects within the
interaction of GWs. The detection of such effects seems to be completely out of reach
of current instrumentation, but this is precisely the same situation as for Einstein’s
first considerations of GWs. A first step in this venture is surely the model of two
colliding plane GWs, which is the simplest setting to study nonlinear wave interactions
analytically. Therefore, many features of nonlinearity as well as conceptual issues like
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1 Introduction

focussing properties and arising singularities have so far been discussed on the basis of
colliding plane waves [8–12]. A lot of exact solutions have been described along with
generating techniques constructing solutions in the interaction region and deriving the
shape of the incoming waves afterwards (cf. the overview of Jerry Griffiths [9] or [13]).
Isidore Hauser and Frederick Ernst pioneered the search for a method to address the
characteristic initial value problem (IVP) of colliding plane GWs [14–17], which is the
more natural task to calculate the interaction of arbitrarily prescribed initial waves.
They also proved the existence and uniqueness of its solution [18]. George Alekseev
and Griffiths [19, 20] described a more practical procedure for both colliding gravita-
tional and electromagnetic waves leading to integral equations for singular unknown
functions. The present work introduces a treatment of the characteristic IVP featuring
many similarities to this approach, but allowing for an additional transformation to
integral equations for a regular unknown function. It is expected to be better suited
for approximations using spectral methods, but it is still too early to clearly compare
the performance of the two approaches related to this goal.

Analogies to axially symmetric and stationary spacetimes

The major motivation for this work’s new perspective on colliding plane GWs stems
from a strong formal analogy to axially symmetric and stationary spacetimes (ASSS).
This provides the opportunity to benefit from the highly evolved mathematical methods
for ASSS in another, less developed field of research.
ASSS are defined by the existence of one spacelike and one timelike Killing vector field
which commute, whereas a colliding plane GWs spacetime features two commuting
spacelike Killing vector fields. In both cases the gravitational field equations essen-
tially reduce to an Ernst equation, which has elliptic character for ASSS and hyperbolic
character in case of colliding plane GWs. The Ernst equation is a nonlinear partial dif-
ferential equation that fulfils the requirements to be treated with the so-called ‘inverse
scattering method’ (ISM)1, cf. [21] for a general introduction and [22] for ASSS.
In the course of the ISM, the analogies between ASSS and colliding plane GWs remain
but steadily decrease. Firstly, for ASSS the boundary value problem of the elliptic
Ernst equation can be reformulated as a ‘linear problem’ (LP) in the Neugebauer
form containing a spectral parameter λ subtly depending on an actually independent
spectral parameter k, cf. [22]. A formally analogue LP will be used in this work with
some adoptions for the IVP of colliding plane GWs. The ISM proceeds by expressing

1The name stems from the application to the Korteweg-de Vries equation, where it implies the task
of finding a potential fulfilling the Schroedinger equation for given ‘scattering data’.
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the LP solution as a solution of a Riemann-Hilbert problem (RHP), which is still similar
in both cases, but at this level the first considerable differences occur. Most significant
is the incidence of discontinuities in the jump matrix of the RHP for colliding plane
GWs, which were not present in the case of ASSS. Finally, the solution of the RHP is
written in terms of integral equations and a solution of the Ernst equation is inferred.

Dual objectives of the inverse scattering method

In chapter 2 the characteristic IVP of colliding plane GWs is introduced. This work
is devoted to applying the ISM on that IVP, which is the immediate purpose of the
chapters 3 and 4. Adapting a general method of Nikolǎı Vekua [23], the ISM will be
extended by a further transformation from the discontinuous RHP to a continuous
RHP (CRHP) developed in chapter 5. In doing so, two principally different objectives
arise that will be equivalently pursued: The search for analytic solutions for specific
colliding wave spacetimes and an approximation scheme for the general characteristic
IVP.
Due to ambiguities in the RHP caused by its discontinuities, the ISM will indeed turn
out to serve as a tool to generalise existing exact colliding wave spacetimes, which will
be clarified in chapter 6 and exemplified in chapter 7.
Finally a semi-analytic spectral expansion procedure to the integral equations of the
CRHP is designed in chapter 8 in order to solve the general characteristic IVP of
colliding plane GWs for arbitrary initial waves. Regarding this task, the ISM approach
is complementary to the more common finite differencing schemes (cf. e.g. [24]) in
the sense that the solution at a specified point can be calculated with high accuracy
independent of its environment, especially without accumulating errors.

This work is based on the publication [25] written by the author under supervision of
Reinhard Meinel.
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2 The characteristic initial value
problem for colliding plane waves

This work considers purely gravitational plane waves with distinct wavefronts and
arbitrary polarisation colliding in a Minkowski background within the framework of
standard GR.
For an introduction as well as for clarity of sign conventions, the foundations of Ein-
stein’s theory shall be stated. The focus will be laid on the Newman-Penrose compo-
nents of the Weyl tensor describing GWs. Furthermore, the Szekeres line element de-
scribing colliding GWs is introduced and its interpretation for single waves is discussed,
whereby a convenient formula for the ‘wave profile’ Ψ̂4 in Brinkmann coordinates is
derived. The chapter is concluded by considering the partitioning of a colliding wave
spacetime and the formulation of the IVP, where ‘colliding wave conditions’ have to be
fulfilled by the initial values.

2.1 General relativity and gravitational waves

The Riemann curvature tensor is defined in terms of the Christoffel symbols Γabc as
(confer e.g. [26])

Ra
bcd := ∂cΓabd − ∂dΓabc + ΓebdΓaec − ΓebcΓaed (2.1)

The purely covariant curvature tensor Rabcd possesses 20 degrees of freedom. Ten of
them can be recovered in the Ricci tensor Rab := Rc

acb, which is directly linked to the
stress energy tensor Tab describing the matter content of spacetime via the Einstein
equations

Gab := Rab − 1
2Rgab = 8πTab. (2.2)

Therein gab is the metric tensor, R := Ra
a is the Ricci scalar and Gab is called Einstein

tensor. Since this work considers only purely gravitational waves, (2.2) is reduced to
its vacuum version with Tab = 0. Hence the GWs must be described by the remaining
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2.1 General relativity and gravitational waves

10 degrees of freedom from the curvature tensor, which are contained in its trace-free
part, the Weyl tensor

Cabcd = Rabcd + gb[cRd]a − ga[cRd]b + 1
3Rga[cgd]b. (2.3)

Herein the square brackets denote the antisymmetric part. The Weyl tensor can be
nicely reexpressed by scalars in the framework of the Newman-Penrose formalism [27]
(a good introduction can be found in [28], another one using spinors1 in [10]). It
operates with a so-called ‘null tetrad’ consisting of two real null vectors la, na and one
spacelike complex null vector ma as well as its conjugate. They are arranged in a way
that all their scalar products vanish with the exception of

lana = 1, mam̄a = −1, (2.4)

where m̄ denotes the complex conjugate of m. In the Newman-Penrose formalism
complete tensorial equations are decomposed with respect to this null tetrad, the details
can be studied for instance in the books of Griffiths [9] or Sibgatullin [11]. Thereby
the 10 degrees of freedom of the Weyl tensor are converted into the 5 complex scalars

Ψ0 := −Cabcdlamblcmd, Ψ1 := −Cabcdlanblcmd, Ψ2 := −Cabcdlambm̄cnd,

Ψ3 := −Cabcdnalbncm̄d, Ψ4 := −Cabcdnam̄bncm̄d. (2.5)

These quantities may be called the Newman-Penrose components of the Weyl tensor,
but for brevity this work will refer to them as ‘Weyl tensor components’. They are
commonly employed in the relevant literature, since they can be physically interpreted
as [9]

Ψ0 : transverse wave component in the direction of na,

Ψ1 : longitudinal wave component in the direction of na,

Ψ2 : ‘Coulomb component’,

Ψ3 : longitudinal wave component in the direction of la,

Ψ4 : transverse wave component in the direction of la.

Another useful notion for the discussion of GWs is the Petrov classification, which is
based on the concept of so-called ‘repeated principal null directions’. The most com-

1Spinors are elements of an underlying complex two dimensional symplectic vector space, which is
considered to be more fundamental than the tangent space over a Lorentzian manifold.
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2 The characteristic initial value problem for colliding plane waves

prehensive approach to them is via spinors [10,29], where the principal null directions
are simply four vectors associated with the unique spinor representation of the Weyl
tensor. Spinors will not be treated in detail in this work and so for completeness the
quite inconvenient definition of repeated principal null directions from [9] is given:

A null vector ka is a principal null direction of multiplicity 1, 2, 3 or 4 respectively, if
it obeys the equation

k[aCb]cd[ekf ]k
ckd = 0, Cbcd[ekf ]k

ckd = 0, Cbcd[ekf ]k
d = 0 or Cbcdek

d = 0. (2.6)

A spacetime with four different principal null vectors is said to be algebraically general
or of Petov type I. Other spacetimes are algebraically special and called Petrov type II,
III or N respectively, if they feature a principal null direction with multiplicity 2, 3 or
4. A spacetime with two different repeated principal null directions with multiplicity 2
is denoted as Petrov type D. Finally, a conformally flat spacetime with vanishing Weyl
tensor is said to be of Petrov type 0.

If the tetrad vector la is aligned with a principal null direction with multiplicity k, then
the first k Newman-Penrose components of the Weyl tensor vanish. The same holds
for an alignment of na with a principal null direction with multiplicity k for the last k
components of the Weyl tensor [9].

Another interesting feature of the Weyl tensor components Ψi is that under reasonable
assumptions in the far field of an otherwise arbitrary wave travelling in the direction la

they fall off in the sequence of their indices [27]. This is referred to as ‘peeling theorem’,
indicating that the more complicated components peel off one after another until only
a plane wave is left described solely by Ψ4. Only this Weyl tensor component is present
in the linearised theory and causes on test bodies the effects depicted in figure 1.1 and
measured by GW interferometers.

Finally, the only two second order scalar invariants of the Weyl tensor are [11]

I1 := CabcdCabcd, I2 := 1
2εabcdC

abefCcd
ef (2.7)

where εabcd is the totally antisymmetric Levi-Civita pseudotensor2. In vacuum, the Rie-
mann tensor and the Weyl tensor are identical and hence I1 coincides with the Kretsch-
mann scalar RabcdRabcd as well as I2 with the Chern–Pontryagin scalar 1

2εabcdR
abefRcd

ef .
A complex combination of these scalars is easily expressed in terms of the Weyl tensor

2The reader may be reminded of εabcd =
√
−det(gab)eabcd, eabcd = ±1 if (a, b, c, d) is an even/odd

permutation of (1, 2, 3, 4) and eabcd = 0 else.
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2.2 The Szekeres metric for colliding plane waves

components via [30]

I := I1 − iI2 = 16(3Ψ2
2 + Ψ0Ψ4 − 4Ψ1Ψ3). (2.8)

2.2 The Szekeres metric for colliding plane waves

A general colliding plane wave spacetime features two commuting spacelike Killing
vectors ∂x and ∂y [21]. The associated coordinates x and y parametrise the planes of
symmetry and are complemented by two lightlike coordinates u and v. The derivation
of Griffiths [8, 9] using the Newman-Penrose formalism shows that for the case of
colliding plane waves the metric can be assumed to be orthogonal transitive, i.e. the
metric tensor gab can be assumed to have blockdiagonal shape. Like all two-dimensional
metrics the (u, v)-block of gab is conformally flat, which in the coordinates (u, v, x, y)
leads to the Szekeres line element [31]

ds2 = 2e−Mdudv − e−U
(
eV coshWdx2 − 2 sinhWdxdy + e−V coshWdy2

)
. (2.9)

It contains the four real functionsM(u, v), U(u, v), V (u, v) andW (u, v) only depending
on u and v. The ISM will make extensive use of the complex Ernst potential3

E(u, v) := e−V (sechW + i tanhW ) , (2.10)

therefore the line element is rewritten depending directly on the Ernst potential as

ds2 = 2e−Mdudv − e−U
<(E) |dx+ iEdy|2. (2.11)

Herein <(E) denotes the real part of E; =(E) will later be used for the imaginary part.
In the Szekeres coordinates (u, v, x, y) the tetrad is shown by [9] to be representable in
the form

la = e− 1
2Mδua ,

la = e 1
2Mδav ,

na = e− 1
2Mδva,

na = e 1
2Mδau,

ma = (0, 0, ξ3, ξ4) (2.12)

where δab is the Kronecker symbol and the components of ma can be chosen as

ξ3 = 1√
2e 1

2 (U−V )
(
cosh W

2 + i sinh W
2

)
, ξ4 = 1√

2e 1
2 (U+V )

(
sinh W

2 + i cosh W
2

)
.

3The reader may be reminded of sech x = cosh−1 x.
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2 The characteristic initial value problem for colliding plane waves

An alternative but less convenient representation of the components of ma in terms of
the Ernst potential is given by

ξ3 = 1√
2e 1

2U
√
|E|E [<(E)]−1, ξ4 = iE−1ξ3. (2.13)

The ambiguity introduced by the square root in (2.13) does not affect the Newman-
Penrose components of the Weyl tensor Ψi since they are quadratic in ma and m̄a.
They evaluate4 to [9]

Ψ0 = eM |E|
2[<(E)]2E

[
(Evv − UvEv +MvEv)<(E)− E2

v

]
, (2.14)

Ψ2 = eM
4

[
ĒuEv

[<(E)]2 − UuUv
]
, (2.15)

Ψ̄4 = eM |E|
2[<(E)]2E

[
(Euu − UuEu +MuEu)<(E)− E2

u

]
, (2.16)

whereby coordinates (in this case u and v) deployed as lower indices shall denote
partial derivatives throughout this work5. As indicated by equations (2.14)-(2.16), the
interaction region is usually algebraically general (Petrov type I) [9], but in some special
cases it is of Petrov type D, e.g. in the solution of Subrahmanyan Chandrasekhar and
Basilis Xanthopoulos [32].

2.3 Single wave metrics

A (part of a) spacetime with only a single wave present can be described by a line
element of the form (2.9) or respectively (2.11), where all metric functions depend only
on one of the lightlike coordinates u or v. In section 2.6 the incident waves will be
treated with this approach. Using the coordinate transformation

u(u′) =
∫ u′

0
eM(ũ)dũ, du = eMdu′ (2.17)

4In odrer to obtain the presented form of (2.15) it is necessary to look ahead to the field equation
Uuv = UuUv in (2.30).

5The single exception are Kronecker symbols like δau.
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2.3 Single wave metrics

such a single wave line element is converted to the Rosen form6

ds2 = 2du′dv − e−U(u′)
(
eV (u′) coshW (u′)dx2 − 2 sinhW (u′)dxdy (2.18)

+e−V (u′) coshW (u′)dy2
)
.

Hermann Bondi, Felix Pirani and Ivor Robinson discussed that the metric (2.18) indeed
contains a single plane wave [34]. In particular they demonstrated that this metric is
invariant under the same 5-parameter group of motions as an electromagnetic plane
wave travelling in the same direction. Thus a single GW propagates undisturbedly
with the speed of light just like an electromagnetic wave.
A compellingly simple way to express a single plane wave is the Brinkmann form
(given here in the parametrisation of [9] but going back to considerations of H. W.
Brinkmann [35]) of the line element7,

ds2 =
[
(X2 − Y 2)h11(u′) + 2XY h12(u′)

]
du′2 + 2du′dr − dX2 − dY 2. (2.19)

Employing a tetrad adapted to the Brinkmann coordinates (u′, r,X, Y ),

l̂a = δu
′

a , n̂a =
(
[1
2(X2 − Y 2)h11 +XY h12], 1, 0, 0

)
, m̂a = (0, 0, 1√

2 ,−
i√
2), (2.20)

the adapted Weyl tensor components are given by

Ψ̂0 = Ψ̂1 = Ψ̂2 = Ψ̂3 = 0, Ψ̂4 = (h11 + ih12). (2.21)

The component Ψ̂4 is directly linked to the non-trivial part of the line element (2.19)
and therefore usually referred to as ‘the wave profile’. The Brinkmann metric is
equipped with several interesting features:

• For impulsive waves the distribution valued part of Ψ̂4 directly enters the Brink-
mann form of the metric, which nevertheless gives rise to a reasonable curvature
tensor.

• Since the first four Weyl tensor components vanish, a spacetime containing only
a single plane wave is always of Petrov type N.

• The vacuum Einstein equations are automatically fulfilled for an arbitrary wave
6The diagonal case of this form of the metric was first considered in an article by Albert Einstein
and Nathan Rosen [33].

7In the form (2.19) the metric is already specified to purely gravitational waves where the coefficients
in front of X2 and Y 2 in g11 sum up to 0.
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2 The characteristic initial value problem for colliding plane waves

profile Ψ̂4. Therefore two GWs travelling in exactly the same direction can be
simply superposed by adding the wave profiles.

2.4 Transformation from Rosen to Brinkmann metric

Implementing a recipe from the appendix of [36] (alternative descriptions can be found
in [9] and [37]), a transition from the Rosen metric g(R)

ab to the Brinkmann form can be
achieved via the transformation

v = r + 1
2 g

(R)
AB (QA

C)u′ QB
DX

C XD, xA = QA
BX

B (2.22)

with A,B,C,D ∈ {3, 4} as well as x3 := x, x4 := y, X3 := X and X4 := Y . The
matrix QA

B has to fulfil the conditions

g
(R)
AB Q

A
C Q

B
D = δAB (2.23)

g
(R)
AB (QA

C)u′ QB
D = g

(R)
AB Q

A
C (QB

D)u′ (2.24)

which is achieved by

Q3
3 = e 1

2 (U−V )
√

coshW cosP, Q4
3 = e 1

2 (U+V )
√

sechW (cosP sinhW − sinP ),

Q3
4 = −e 1

2 (U−V )
√

coshW sinP, Q4
4 = −e 1

2 (U+V )
√

sechW (cosP + sinP sinhW ).
(2.25)

This solution contains the function

P (u′) := 1
2

∫ u′

0
Vũ(ũ) sinhW (ũ) +Wũ(ũ) sechW (ũ) dũ

= 1
2

∫ u′

0

|E(ũ)|2
<(E(ũ))

(
=(E(ũ))
|E(ũ)|2

)
ũ

dũ
(2.26)

defined by (2.23) and (2.24) only up to an additive constant. According to [36,38], QA
B

is unique up to u′-independent orthogonal transformations, which is not obvious from
the above formula. Via the transformation (2.22), h11 and h12 can be represented in
terms of the metric functions of the Rosen line element:

h11 = h1h3 − h2h4, h12 = h1h4 + h2h3, (2.27)

h1 := 1
2 [sin(2P ) sinhW + cos(2P )] , h2 := 1

2 [cos(2P ) sinhW − sin(2P )] ,

h3 := Uu′Vu′ − 2 tanhWVu′Wu′ − Vu′u′ , h4 := sinhWV 2
u′ − sechW (Vu′u′ − Uu′Wu′).
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2.5 The Ernst equation

Finally, the adapted Weyl tensor component related to the Brinkmann tetrad can be
expressed in terms of the Weyl tensor component related to the Rosen tetrad:

Ψ̂4 = eM−2iP (sechW + i tanhW )Ψ4 = eM−2iP sign(E)Ψ4 (2.28)

Therein sign(E) := E/|E|= ei arg(E) has to be understood as the complex generalisation
of the sign function. The precise transformation formulae (2.25)-(2.28) seem to be
unprecedented in the literature. Amplitude and phase of the wave profile Ψ̂4 are of
course constant along the (infinitely extended) wavefronts u = const, but differ from
Ψ4. However, the case of (constant) linear polarisation

E ∈ R ⇔ W = 0 ⇒ Ψ4 ∈ R, P = 0, Ψ̂4 = eMΨ4 ∈ R, (2.29)

has an invariant meaning since the imaginary parts of both Ψ̂4 and Ψ4 vanish simulta-
neously.

2.5 The Ernst equation

In this section a novel derivation of the Ernst equation is given using only the Ernst
potential E contained in the metric (2.11). In vacuum, Einstein’s field equation (2.2)
equates the Einstein tensor Gab to zero. A sophisticated combination of its components
yields

0 = 1
3eU−M<(E)−1

[
G44 + |E|2G33 + 2=(E)G34 + 4<(E)eM−UG12

]
= UuUv − Uuv. (2.30)

Employing this leads to the progenitor of the Ernst equation:

0 = 2ieU−M<(E)2

=(E)
[
G44 + E2G33 + 4EeM−UG12

]
(2.31)

= 2EuEv + <(E)(UuEv + UvEu − 2Euv). (2.32)

Using (2.30) and (2.32) to replace Uuv and Euv respectively, G11 = 0 and G22 = 0 can
be easily converted into

<(E)2(2Uuu − U2
u + 2MuUu) = EuĒu, (2.33)

<(E)2(2Uvv − U2
v + 2MvUv) = EvĒv, (2.34)
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2 The characteristic initial value problem for colliding plane waves

In addition, G12 = 0 yields with (2.30)

2<(E)2(2Muv + UuUv) = EuĒv + EvĒu. (2.35)

On the other hand, the derivative of (2.33) with respect to v and the derivative of
(2.34) with respect to u in consideration of (2.30) and (2.32) both yield also equation
(2.35). Therefore (2.35) is redundant and the integrability condition of (2.33) and
(2.34) is automatically fulfilled. All in all the six real equations for the non-vanishing
components G11, G12, G22, G33, G34 and G44 of the Einstein tensor are converted into
the real equation (2.30), the complex Ernst equation (2.32) and the integrable system
(2.33) and (2.34). Their decoupling suggests a solution procedure in the sense that
first U can be determined from (2.30), secondly E can be determined from (2.32) and
finally M is given by (2.33) and (2.34).
Equation (2.30) has the general solution

e−U = f(u) + g(v) (2.36)

containing two arbitrary functions f(u) and g(v). In order for the spacetime to contain
single wave regions where U depends only on a single lightlike coordinate, the choice

f = 1
2 for u ≤ 0, g = 1

2 for v ≤ 0, f ′(0) = 0 = g′(0), (2.37)

is made in accordance with Griffiths [9]. From rewriting (2.33) as

2e−M(eMUu)u = U2
u + |Eu|2

<(E)2 > 0 (2.38)

it follows that U(u, v0) for constant v0 is monotonically increasing and hence f mono-
tonically decreasing for u > 0. Similarly g is monotonically decreasing for v > 0. Using
f and g as coordinates for (u > 0, v > 0), with the help of

Uu = − fu
f + g

, Uv = − gv
f + g

(2.39)

equation (2.32) becomes the hyperbolic Ernst equation

<(E)
(

2Efg + Ef + Eg
f + g

)
= 2EfEg. (2.40)

This is a nonlinear partial differential equation with two variables. Moreover, as will be
shown in section 3.2, a linear problem exists whose integrability condition is equivalent
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2.6 Spacetime regions and boundaries

to (2.40) and thus the ISM is applicable.
Having determined E and U , the functionM can be obtained afterwards by integration
of the field equations (2.33) and (2.34). If the coordinate rescaling freedom u→ u′(u)
is eliminated by making a distinct choice for the shape of f(u) (as will be done in
(2.45)), the whole metric is specified through the knowledge of E. Together with E

also the function E ′ = aE + ib (a, b ∈ R) is a solution to the Ernst equation (2.40).
As the next section will show, it is appropriate to fix this freedom by demanding as
connection to the Minkowski background the normalisation

E(1
2 ,

1
2) = 1. (2.41)

2.6 Spacetime regions and boundaries

As anticipated in section 2.3, it is appropriate to divide a colliding wave spacetime into
four regions [9,39] with the following coordinate dependencies of the metric functions:

I : u < 0, v < 0 : E = 1, M = 0, e−U = 1,
II : u ≥ 0, v < 0 : E(u, 0), M(u, 0) =: MII(u), e−U = 1

2 + f(u),
III : u < 0, v ≥ 0 : E(0, v), M(0, v) =: MIII(v), e−U = 1

2 + g(v),
IV : u ≥ 0, v ≥ 0 : E(u, v), M(u, v), e−U = f(u) + g(v).

(2.42)

Figure 2.1: Identification of the four spacetime regions of colliding GWs adapted from
Griffiths [9], see also [31, 39,40].

This partition is illustrated in figure 2.1. Its physical interpretation is that on a
Minkowski background (I) two plane waves propagate undisturbedly in opposite di-
rections (II and III) until their collision and nonlinear interaction (IV). In this setup
the Minkowski space (I) is bounded by the lightlike fronts u = 0 and v = 0 of the
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2 The characteristic initial value problem for colliding plane waves

two different waves. The intersection of these wave fronts is spanned by two space-
like vectors, which can be made orthogonal to the time direction via a Lorentz boost.
Therefore it is sufficient to consider only head-on collisions as described by the metric
(2.11).
As the general IVP shall be solved in this work, it is necessary to prescribe arbitrary
initial waves and calculate the solution of the Ernst potential in the interaction region
IV. Using the functions f and g as coordinates in region IV, the ‘left wave’ in region
II is specified by the value of E(f, 1

2) on the boundary g = 1
2 (i.e. v = 0, u > 0)

to region IV. This implies automatically knowledge of the derivative Ef (f, 1
2). If in

addition arbitrary initial data for the other partial derivative Eg(f, 1
2) were prescribed,

this would similarly determine a second derivative Efg(f, 1
2) which in general would not

fulfil the Ernst equation (2.40). This phenomenon is a special property of the curve
g = 1

2 (and analogously also of f = 1
2), which is therefore called a ‘characteristic curve’

of the corresponding second order partial differential equation, cf. [41]. Impulses and
shocks can be shown to generically propagate along characteristic curves. In fact, as
Roger Penrose showed [42], it is a well posed problem to find a solution E to the Ernst
equation (2.40) with given initial values E(f, 1

2) and E(1
2 , g). This means that a unique

solution exists at least in a neighbourhood of the boundaries where the initial data is
defined [9].
According to [43] curvature singularities can be classified either as being of scalar or
of non-scalar nature. The existence of a scalar curvature singularity is established if
some scalar curvature invariant (e.g. the Ricci scalar R or the Kretschmann scalar
RabcdRabcd) is shown to become singular on the boundary of a spacetime. In contrast,
there is a non-scalar curvature singularity if all of the (infinitely many) scalar curvature
invariants are regular but at least one component of the Riemann tensor Rabcd with
respect to an orthonormal basis is badly behaved. Throughout each of these curvature
singularities no continuation of the metric is possible.
As anticipated by the sum f + g in the denominator within (2.40) (and discussed in
detail in [9]), the colliding wave spacetime features a generic scalar curvature singularity
at f+g = 0. This is indicated by the solid curved line in figure 2.1). The occurrence of
a singularity can be understood considering the mutual focussing properties of waves
in GR: A gravitational plane wave induces convergence and shear into a congruence
of orthogonal null geodesics [9]. Alternatively, the singularity can be regarded as an
artefact of the unphysical idealisation of perfectly plain wavefronts.
For a large variety of exceptional cases the singularity at f + g = 0 is replaced by a
Killing-Cauchy horizon [9]. Then the metric is extendible throughout f + g = 0, but
the extension is not uniquely defined by initial values in the past of the Killing-Cauchy
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2.7 Colliding wave conditions

horizon. These horizons are conjectured to be unstable [12] and for collinearly polarised
waves this instability has been rigorously proven [44].
The regions II and III are confined by coordinate degeneracies on lightlike hypersur-
faces, which are depicted by dashed lines in figure 2.1. They can be identified with the
points −f = g = 1

2 and f = −g = 1
2 and inherit their singular character [9]. Never-

theless, for the vacuum case considered here the scalar invariants of the Weyl tensor
starting with (2.8) are the only candidates for diverging scalar curvature invariants.
However, no scalar invariant can be a function of Ψ4 or respectively Ψ0 alone, since
this would imply Ψ4 or Ψ0 to be a coordinate invariant scalar itself. But since only Ψ4

or respectively Ψ0 is non-vanishing in the regions II and III, this implies that all in-
variants of the Weyl tensor vanish in these incoming wave regions. Therefore the outer
boundaries of the regions II and III cannot be scalar curvature singularities on their
own. On the other hand Griffiths [9] shows that only a zero set of timelike geodesics
actually ends in the outer boundaries of the regions II and III, whereas they enter
the interaction region and reach f + g = 0 in the general case. Thus the term ‘fold
singularity’ has been established to indicate the special topological character of these
boundaries, which is not visible in the two-dimensional section depicted in figure 2.1.

2.7 Colliding wave conditions

In the last section the spacetime was divided into four different regions and separate
expressions were introduced that describe the metric in these individual parts. In order
to give rise to a reasonable spacetime, the metric functions have to fulfil appropriate
junction conditions on the borders between the regions.
How these junction conditions shall be formulated for GWs was the topic of a long
lasting debate. André Lichnerowicz [45] demanded for general hypersurfaces that co-
ordinates should exist, in which the metric is C1 (continuously differentiable) and
piecewise C2 (two times continuously differentiable with at most a finite number of
exceptional hypersurfaces). This condition works well for non-null hypersurfaces, but
it excludes impulsive waves like the Khan-Penrose solution [40].
Werner Israel [46, 47] reformulated the Lichnerowicz condition by claiming that the
second fundamental form should have at most a finite jump. Such a finite jump leads
to a surface stress energy density. However, for null hypersurfaces as u = 0 and v = 0
linking the regions (2.42), the normal vector has zero norm and so the concept of
the second fundamental form breaks down. Considering only null hyperfurfaces, E.
H. Robson [48] showed that it is appropriate to use the relaxed junction conditions
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2 The characteristic initial value problem for colliding plane waves

of Stephen O’Brien and John Synge [49]. For the lightlike hypersurface u = 0 these
conditions read [9]

gab, g
ij∂ugij, g

iu∂ugij ∈ C0, i, j = 1, 2, 3. (2.43)

Applied to the metric in (2.11), condition (2.43) and its analogue for v = 0 lead to the
demands

u = 0 ∧ v = 0 : E,M ∈ C0, U ∈ C1. (2.44)

Thus it is possible to perform C1-transformations u→ u′(u) and v → v′(v) to arrange

f = 1
2 − (c1u)n1Θ(u), g = 1

2 − (c2v)n2Θ(v), (2.45)

where Θ(·) is the Heaviside step function and c1/2 can be interpreted as magnitudes of
the waves. Alternatively, such C1-transformations could be used to achieveMII(u) = 0
andMIII(v) = 0 in the incoming wave regions. Then f(u) and g(v) were determined by
the field equations (2.33), (2.34) and the junction conditions (2.37) with the Minkowski
background. Also in this case the exponents n1/2 from (2.45) would describe the first or-
der behaviour of f(u) and g(v) because they cannot be changed by C1-transformations.
This work operates with the first alternative, requiring (2.45).
A procedure intending to determine the metric functionM from a solution of the Ernst
equation has to assure that the result is indeed continuous across u = 0 and v = 0.
A condition resulting from the continuity of M at (u = 0+, v ≤ 0) can be derived by
inserting (2.45) into (2.38) and evaluating each term in leading order for u→ 0, which
yields

|Eu|2= 2n1(n1 − 1)cn1
1 u

n1−2 + 2n1c
n1
1 u

n1−1Mu − n2
1c

2n1
1 u2n1−2. (2.46)

Herein already <(E) = 1 was inserted since E(0−, v ≤ 0) = 1 and E ∈ C0. To
fulfil U ∈ C1 at least n1 > 1 is necessary in (2.45). The continuity of M now re-
quires the first term on the right hand side of (2.46) to be the dominant one because
Mu(0+, v ≤ 0) ∼ u−1 would imply a violation of M ∈ C0. Therefore (2.46) should be
read as a description of the Ernst potential’s derivative near the wave front. In doing
so, five different cases can be distinguished depending on the value of n1:

• For 1 < n1 < 2 the divergence of un1−2 leads to an unbounded derivative of
the Ernst potential Eu(0+, v ≤ 0) and so the second derivative Euu(0+, v ≤ 0),
which contributes to Ψ4(0+, v ≤ 0) in (2.16), cannot even be described via a
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2.7 Colliding wave conditions

δ-distribution. Therefore the case 1 < n1 < 2 is usually excluded by demanding8

n1/2 ≥ 2, (2.47)

where already the analogue statement for n2 is incorporated. The index ‘1/2’ is
in this work supposed to denote a statement holding both for index 1 and for
index 2 inserted throughout the entire expression.

• For n1 = 2 the un1−2-term in (2.46) is finite at u = 0+ which yields a finite
value for Eu(0+, v ≤ 0). Since Eu(0−, v ≤ 0) = 0, the second derivative con-
tains a distributional part Euu ∼ δ(u) and so does the Weyl tensor component
Ψ4(0+, v ≤ 0). In this case the wave is said to have an impulsive wavefront.

• For 2 < n1 < 4 the derivative of the Ernst potential Eu(0+, v ≤ 0) is zero at
u = 0, but Euu(0+, v ≤ 0) and hence Ψ4(0+, v ≤ 0) is still unbounded.

• For n1 = 4 the second derivative Euu(0+, v ≤ 0) is finite but different from
Euu(0−, v ≤ 0) = 0. The corresponding jump in Ψ4(u, v ≤ 0) describes a step
wave.

• For n1 > 4 finally Euu(u, v ≤ 0) and Ψ4(u, v ≤ 0) are continuous.

All these properties are directly inherited by the ‘wave profile’ Ψ̂4 via the transformation
(2.28).
Since the characteristic IVP will be treated in the coordinates f and g, equation (2.46)
needs to be rewritten replacing u by f . An analogue expression then exists for Eg.
Keeping only the dominant term on the right hand side, the results are the so-called
‘colliding wave conditions’ first formulated by Hauser and Ernst [14], which within the
normalisation (2.41) have the form

lim
(f,g)→( 1

2 ,
1
2 )

[
(1

2 − f)Ef Ēf
]

= 2k1, lim
(f,g)→( 1

2 ,
1
2 )

[
(1

2 − g)EgĒg
]

= 2k2, (2.48)

with

k1/2 := 1− 1
n1/2

. (2.49)

8In a spacetime with matter 1 < n1 < 2 is linked with an impulsive component of the Ricci tensor
Rab, cf. [9].

21



2 The characteristic initial value problem for colliding plane waves

Relation (2.47) translates to a quite narrow range for k1/2:

1
2 ≤ k1/2 < 1. (2.50)

Equations (2.48) are conditions concerning only the limits of Ef and Eg in the Minkows-
ki point f = g = 1

2 implying the continuity of M at (u = 0, v ≤ 0) and (u ≤ 0, v = 0),
but they are also sufficient to assure the validity of the boundary conditions (2.44)
throughout u = 0 and v = 0, cf. [15]. For example the values of Mv(0±, v ≥ 0) are
determined via (2.34) by v-derivatives of E and U which are continuous across u = 0
and hence Mv is also continuous at the boundary between region III and IV. Since
the continuity of M at u = v = 0 is assured by (2.48), this implies that M is also
continuous across u = 0 for v ≥ 0.
It may be noticed that the colliding wave conditions (2.48) actually demand the deriva-
tives of E at the Minkowski point f = g = 1

2 to feature the inverse root-like divergences
|Ef |∼ (1

2−f)− 1
2 and |Eg|∼ (1

2−g)− 1
2 . Therefore the initial values of the Ernst potential

must have an appropriate root-like behaviour near f = g = 1
2 with an offset given by

E(1
2 ,

1
2) = 1. In the context of the characteristic IVP the colliding wave conditions

are a matter of choosing suitable initial values for E featuring divergent derivatives at
(f = 1

2 , g = 1
2).
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3 Inverse scattering method for
collinear polarisation

The main purpose of this work is to investigate the characteristic IVP described in
chapter 2 via the ISM, which will be explained in detail below. The introduction of the
severely restricted case of collinearly polarised colliding GWs will provide a nice testbed
for this approach. Using the ISM, the general solution for collinear polarisation given
by Hauser and Ernst [14] in terms of integrals via generalized Abel transformations
will be reproduced.

3.1 Scheme of inverse scattering

In the course of the ISM, the nonlinear Ernst equation is expressed as the integrabil-
ity condition of a system of linear partial differential equations, the so-called ‘linear
problem’ (LP). Its solution depends in addition to the variables f and g also on a
complex spectral parameter λ. Furthermore, an appropriate Riemann-Hilbert problem
(RHP) is constructed that is supposed to have the same solution as the LP. However
this approach retains a heuristic element at that point, since the relation between the
solution spaces of the LP and the RHP is not fully clarified within this work.
A Riemann-Hilbert problem can be described as the task to find a complex function
with a prescribed multiplicative jump on a given contour in the extended complex
plane1 of the spectral parameter. For arbitrary polarised GWs, the LP and the RHP
consist of matrix valued equations, but they reduce to scalar ones in the collinear case.
In correspondence with the boundaries of the IVP, the contour of the RHP has to
consist of two specific parts of the real axis (cf. figure 3.4). Using its additive jump on
the contour, the solution of the RHP can be uniquely represented via a Cauchy type
integral. The multiplicative jump equation defining the RHP can then be translated
into integral equations for this additive jump.
All in all the ISM consists of the LP and the RHP and effectively transforms the

1i.e. the Riemann sphere C ∪∞.
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3 Inverse scattering method for collinear polarisation

IVP of a nonlinear partial differential equation into linear integral equations, which is
schematically depicted in figure 3.1. In the case of colliding plane waves however, due
to the colliding wave conditions, the latter have the severe disadvantage of dealing with
a singular unknown function, which can be understood as follows: The mathematical
literature on Riemann-Hilbert problems operates entirely with closed contours. In
order to match with that picture, it is possible to construct a single closed contour
for the RHP by connecting the original contour parts, whereby the jump matrix has
to be set to 1 on the added parts. Regrettably, the singularity in the derivatives of
the Ernst potential demanded by the colliding wave conditions (2.48) leads to a jump
matrix which tends to a finite value different from 1 at the ends of the contour. In
that sense, the jump matrix of the RHP is discontinuous and this in general implies
the RHP solution to diverge at the endpoints of the original contour. Therefore also its
additive jump function diverges and the integral equations determining it are harder
to handle because of the unboundedness of their unknown function.
An interesting possibility to circumvent the issues connected to integral equations for
a singular function is the transformation to a continuous RHP (CRHP), which will be
achieved in this work in chapter 5. The additive jump function determining the CRHP
solution is then given in terms of an integral equation for a regular unknown function,
cf. figure 3.1.

Ernst 
equation

linear 
problem

Riemann-
Hilbert 

problem

integrability 
condition of

solution is also 
solution of

boundaries

Initial values

contour

matrix jump

nonlinear PDE
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of LP

solution 
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of CRHP
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 transfor-
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(i) (iia)
(iib)

(iii)(iv)

Figure 3.1: Scheme of the ISM with additional transformation to a continuous RHP.

The singularities in the RHP solution do not only complicate the RHP integral equa-
tions but also introduce an ambiguity into the RHP solution. Since the singularities
can have two different appearances at each contour part, there are overall four different
basic solutions of the RHP, which can be linearly combined. The transformation to the
CRHP allows for a representation of these basic solutions in terms of the non-singular
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3.2 Linear problem for collinear polarisation

CRHP solutions. Moreover, holomorphicity conditions on the linear combination of
the basic solutions are imposed in order to assure that it solves the LP. By reduction
of these holomorphicity conditions to simple algebraic relations it is shown that they
can in general be fulfilled. Therefore the RHP solutions indeed generate LP solutions,
which in turn imply solutions to the Ernst equation. However, it is not proven that
the ‘right’ solution to the initially posed IVP is among them. Thus at the end of the
described procedure it has to be checked if possible remaining degrees of freedom can
be specified to yield the solution to the original IVP.
In that sense, to presumably solve a specific IVP with given initial data E(f, 1

2) and
E(1

2 , g) via the ISM, the following four steps indicated in figure 3.1 have to be carried
out:

(i) Translating the initial data into the jump matrix by solving a system of ordi-
nary differential equations (ODEs). For special cases an analytical treatment is
possible.

(ii) Solving the Riemann-Hilbert problem, in the general case by expansion of an
additive jump function in Chebyshev polynomials

a) via integral equations for a singular additive jump, which is more challenging

b) via transformation to the CRHP and its integral equation for a regular ad-
ditive jump with better numerical properties

(iii) Evaluating holomorphicity conditions, which assure that the RHP solution fulfils
the LP. These are purely algebraic equations to determine the linear combination
coefficients of the RHP’s four basic solutions.

(iv) Fixing the remaining degrees of freedom to adapt the solution to its initial data,
if possible

The whole process of the ISM shall be illustrated by examining the case of collinearly
polarised GWs. The contour of the collinear case will be directly transferred to the
RHP for GWs with arbitrary polarisation.

3.2 Linear problem for collinear polarisation

As described in section 2.6, within the Newman-Penrose formalism the singular waves in
the spacetime regions II and III are described by the complex Weyl tensor components
Ψ0(v) and Ψ4(u), respectively. For linearly polarized initial waves the phases of these
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3 Inverse scattering method for collinear polarisation

components are constant in region II and III. If these constant phases are even identical,
then the polarisation of the waves is aligned and the metric can be diagonalised in all
four regions simultaneously containing only a real Ernst potential. This very special
setup is called the collision of collinearly polarised GWs.

The LP for this collinear case is to find the function Φ‖LP(f, g;λ) satisfying

Φ‖LP
f = (1 + λ)AΦ‖LP,

Φ‖LP
g = (1 + λ−1)BΦ‖LP,

λ(f, g; k) =
√
k − g
k + f

, (3.1)

where A and B are real functions of f and g whereas k is a complex ‘independent spec-
tral parameter’, which enters the equations through the complex ‘spectral parameter’
λ depending on f , g and k. The partial derivatives ∂f and ∂g are taken with constant
k rather than constant λ. The spectral parameter λ is defined on the Riemann sphere
Cλ := C∪{∞}. The solution Φ‖LP can be thought of either as a function on Cλ or as a
function of k defined on a two-sheeted Riemann surface Ck with branch cut along the
segment [−f, g] of the <(k)-axis, a twofold covering of the Riemann sphere illustrated
in figure 3.2. Like for Cλ, the (two different) points ∞ are both considered to be part
of these sheets. Moreover, the sheet with λ = 1 for k = ∞ shall be called the upper
one and the sheet with λ = −1 for k =∞ the lower one.

Figure 3.2: Illustration of the two-sheeted Riemann surface Ck consisting of an upper
(left) and a lower (right) sheet. At the branch cut [−f, g] bright area is
connected to bright area and dark area to dark area.

Representing the derivatives of λ(f, g; k) as

λf = λ

2(f + g)(λ2 − 1), λg = 1
2λ(f + g)(λ2 − 1), (3.2)
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3.2 Linear problem for collinear polarisation

the integrability condition Φ‖LP
fg = Φ‖LP

gf of the LP (3.1) evaluates to

(1 + λ)Ag + λ2 − 1
2λ(f + g)A = (1 + λ−1)Bf −

λ2 − 1
2λ(f + g)B. (3.3)

This equation has to be fulfilled for all values of k, but since only λ is affected by a
change of k it can simultaneously be conceived as valid for all values of λ. Therefore
the coefficients of each power of λ in (3.3) can be compared separately. In doing so
the terms independent of λ simply yield Ag = Bf , which assures the existence of a
potential ψ(f, g) with

ψf = A, ψg = B. (3.4)

The only other independent equation inferred from (3.3) can then be written as

ψfg + ψf + ψg
2(f + g) = 0. (3.5)

This is indeed the Euler-Poisson-Darboux equation, a linearised version of the Ernst
equation in case of real E, which can be derived from (2.40) by setting

ψ = 1
2 lnE. (3.6)

By (3.1) the LP solution Φ‖LP is only defined up to multiplication with a function of
k. This freedom shall be fixed by demanding the normalisation

Φ‖LP
(

1
2 ,

1
2

)
= 1 ∀k, (3.7)

whereby this work uses the following convention for an arbitrary function F (f, g;λ)
depending on f , g and λ: where F is displayed with 2 arguments as in (3.7), these
should be understood as the values of f and g, but where F is displayed with a single
argument as in (3.8), this should be taken as the value of λ.

It may be observed that the points λ → ±1 are solely approached by k → ∞ in the
corresponding sheet independent of the values of (f, g). Consequently, derivatives λf
and λg from (3.2) vanish in λ = ±1 and thus these points are predestined to gain
insights into the LP and also into the RHP later. Indeed, evaluating the LP (3.1) at
λ = −1 yields Φ‖LP

f (−1) = 0 = Φ‖LP
g (−1), i.e. Φ‖LP(−1) = const ∀(f, g). Since the
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3 Inverse scattering method for collinear polarisation

value of Φ‖LP(1
2 ,

1
2 ;−1) is fixed to 1 by (3.7) this means

Φ‖LP(−1) = 1 ∀(f, g). (3.8)

A corresponding relation will be used to normalise the RHP. On the other hand, eval-
uating (3.1) at λ = 1 leads to

[ln Φ‖LP(−1)]f = 2A = 2ψf , [ln Φ‖LP(−1)]g = 2B = 2ψg. (3.9)

These relations imply together

Φ‖LP(1) = e−2ψ( 1
2 ,

1
2 )e2ψ, (3.10)

where the integration constant has already been determined by (3.7). Considering
(3.6), the LP solution normalised by (3.7) is seen to be linked to an Ernst potential
with the normalisation (2.41) via

E = Φ‖LP(1). (3.11)

Hence the problem of solving the Ernst equation is transformed into the LP in the sense
that if a solution to the normalised LP is obtained, the corresponding solution of the
normalised Ernst equation can be read off from (3.11). On the other hand, the solution
E(f, g) to the IVP is uniquely determined by the initial values E(f, 1

2), E(1
2 , g), and

the functions A and B determining the unique LP solution are given unambiguously
in terms of the Ernst potential by (3.4). Therefore the initial values also induce a
unique solution of the normalised LP, i.e. there is a 1:1 correspondence between IVP
and normalised LP.

3.3 Riemann-Hilbert problem for collinear polarisation

The RHP connected to the LP (3.1) is to find a function Φ‖(f, g;λ) which is analytic
everywhere in the complex Riemann k-surface except on the contour Γ(k), where it has
a jump described by the equation

k ∈ Γ(k) : Φ‖+ = α(k)Φ‖−. (3.12)

Herein Φ‖+ is the inner (left to the contour) and Φ‖− the outer (right to the contour)
limit of Φ‖. In addition, the freedom of multiplying Φ‖ with a function of f and g is
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3.3 Riemann-Hilbert problem for collinear polarisation

fixed by demanding the normalisation

Φ‖(−1) = 1 ∀f, g. (3.13)

The contour Γ(k) in the k-surface is chosen to consist of a first part Γ(k)
1 directed from

k = −1
2 in the upper sheet through the branch point k = −f to k = −1

2 in the lower
sheet and a second part Γ(k)

2 directed from k = 1
2 in the lower sheet through the branch

point k = g to k = 1
2 in the upper sheet, cf. figure 3.3. By setting k = ±1

2 the contour

Figure 3.3: The two parts Γ(k)
1 and Γ(k)

2 of the contour Γ(k) in the upper (left) and lower
(right) sheet of the two-sheeted Riemann k-surface.

endpoints on the λ-sphere are obtained:

λ1 :=

√√√√ 1
2 + g
1
2 − f

, λ2 :=

√√√√ 1
2 − g
1
2 + f

. (3.14)

They lie on the real axis and satisfy 0 < λ2 < 1 < λ1. The contour Γ on the λ-sphere
is divided into Γ1 corresponding to Γ(k)

1 and Γ2 corresponding to Γ(k)
2 . The first part

Γ1 is directed from λ1 through λ =∞ to −λ1 and the second part Γ2 is directed from
−λ2 through λ = 0 to λ2, cf. figure 3.4.

-f g

Figure 3.4: The two parts Γ1 and Γ2 of the contour Γ in the extended λ-plane.

The contour vanishes for f = 1
2 = g, which suggests Φ‖(1

2 ,
1
2) = const in this limit.

This conjecture will be discussed in detail in section 6.7. With that constant set to 1
by (3.13) the LP normalisation Φ‖(1

2 ,
1
2) = 1 is reproduced.
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3 Inverse scattering method for collinear polarisation

The inner and outer limit Φ‖+ and Φ‖− as well as their reciprocals can be expanded at
λ = 0 above or respectively below the contour into the power series

Φ‖± = a0± + a1±λ+ a2±λ
2 + · · · , (Φ‖±)−1 = b0± + b1±λ+ b2±λ

2 + · · · . (3.15)

Therein the coefficients ai± and bi± are functions of f and g. Recalling (3.2), the
derivative of Φ‖± with respect to g is then given by

(Φ‖±)g = (a0±)g + (a1±)gλ+ · · ·+ (λ2 − 1)
2λ(f + g) (a1± + 2a2±λ+ · · ·) . (3.16)

Since the multiplicative jump α in (3.12) is a function depending only on the inde-
pendent spectral parameter k, (3.12) together with its derivative with respect to g

yields

(Φ‖+)g(Φ‖+)−1 = α(k)(Φ‖−)g(Φ‖+)−1 = (Φ‖−)g(Φ‖−)−1. (3.17)

It follows that the terms Φ‖g(Φ‖)−1 and similarly Φ‖f (Φ‖)−1 exhibit no jump on the
contour Γ(k). Assuming the expansions (3.15) and (3.16) to be valid also on Γ, their
coincidence on Γ due to (3.17) determines the unique series for Φ‖g(Φ‖)−1 in the neigh-
bourhood of λ = 0 to be

Φ‖g(Φ‖)−1 = c−1λ
−1 + c0 + c1λ+ . . . . (3.18)

Within the treatment of the CRHP it will be even shown that there exist solutions of
the RHP fulfilling the holomorphicity conditions:

Φ‖f (Φ‖)−1 is holomorphic in Cλ\{∞},

Φ‖g(Φ‖)−1 is holomorphic in Cλ\{0}.
(3.19)

If (3.19) holds, then (3.18) is indeed the proper Laurent series of Φ‖g(Φ‖)−1 valid
throughout Cλ. This immediately implies that Φ‖g(Φ‖)−1 − c−1λ

−1 is holomorphic ev-
erywhere on the complex sphere and thus a constant due to Liouville’s theorem, i.e.
ci(f, g) = 0 ∀i ≥ 1. Consideration of (3.13) finally leads to c−1 = c0 and hence allows
the representation

Φ‖g(Φ‖)−1 = (1 + λ−1)B, (3.20)

which is equivalent to the second line of the LP in (3.1). An analogous expansion
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3.4 General solution for collinear polarisation

of Φ‖g(Φ‖)−1 at λ = ∞ yields the first line of the LP if the holomorphicity condi-
tions hold. On the other hand, the LP solution due to Φ‖LP

f (Φ‖LP)−1 = U as well as
Φ‖LP
g (Φ‖LP)−1 = V clearly obeys the holomorphicity conditions and so they are both

necessary and sufficient for the RHP solution to also solve the LP. Together with the
consideration of normalisation above, it follows that a solution Φ‖ of the RHP nor-
malised by (3.13) and fulfilling the holomorphicity conditions (3.19) is simultaneously
a solution Φ‖LP

f of a LP of the form (3.1) normalised by (3.7). According to (3.11) a
solution to the Ernst equation is then given by E = Φ‖LP(1) = Φ‖(1).
Within the treatment of the CRHP it will become clear that the RHP in the form (3.12)
with a multiplicative jump features a wider class of solutions which are not all solutions
of the LP. Therefore the holomorphicity conditions are a nontrivial restriction. On the
other hand, this work will not proof that each LP solution which is induced by an IVP
solution is indeed the solution of a RHP. The possibility of this proof will be discussed
in the outlook in section 9.1, but for the time being the attempt to represent the LP
solution via a RHP has to be regarded as a heuristic approach.

3.4 General solution for collinear polarisation

To complete the ISM, the initial values E(f, 1
2) and E(1

2 , g) have to be related to the
jump function α of the RHP. In the collinear case a more direct approach is to link
ψ(f, 1

2) = 1
2 lnE(f, 1

2) and ψ(1
2 , g) = 1

2 lnE(1
2 , g) with the additive jump iµ‖ of the

logarithm of the LP solution. In order to derive this additive jump of ln Φ‖LP at a
given point k on the contour Γ(k)

2 , the second line of the LP (3.1) at f = 1
2 is written

in the form

(
ln Φ‖LP

(
1
2 , g

))
g

= (1 + λ−1)ψg
(

1
2 , g

)
. (3.21)

With the normalisation Φ‖LP(1
2 ,

1
2) = 1 the integration from g′ = 1

2 to g′ = g yields

ln Φ‖LP(1
2 , g) = ψ(1

2 , g)−
∫ 1

2

g

√√√√ k + 1
2

k − g′
ψg′dg′. (3.22)

Therein the root under the integral still has to be calculated with the sign of
[λ(1

2 , g
′; k)]−1. Using k = κ+ iε it can be written as

[λ(1
2 , g
′;κ+ iε)]−1 =

√√√√ κ+ iε+ 1
2

κ+ iε− g′ =

√√√√(κ+ 1
2)(κ− g′) + ε2 − iε(1

2 + g′)
(κ− g′)2 + ε2

.
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3 Inverse scattering method for collinear polarisation

In the upper sheet the continuous extension from ε → +∞ with λ = 1 to ε ↘ 0
(inner side of the contour) yields (κ+ 1

2)/(κ− g′) for g′ < κ and −i(κ+ 1
2)/(g′− κ) for

g′ > κ. The continuous extension from ε → −∞ with λ = 1 to ε ↗ 0 (outer side of
the contour) gives the conjugate limits. Therefore ln Φ‖LP(1

2 , g) has the jump

iµ‖2 := ln Φ‖LP
+ − ln Φ‖LP

− = 2i
√

1
2 + k

∫ 1
2

k
dg′

ψg′(1
2 , g
′)√

g′ − k
(3.23)

along the segment [g, 1
2 ], which is the half of Γ(k)

2 lying in the upper sheet.
Switching to the lower sheet alters the sign of λ as well as the direction of integration
so that the same jump function is obtained. Analogously the additive jump on Γ(k)

1 is
given by

iµ‖1 := ln Φ‖LP
+ − ln Φ‖LP

− = −2i
√

1
2 − k

∫ 1
2

−k
df ′

ψf ′(f ′, 1
2)√

k + f ′
(3.24)

in both sheets. Taking the exponential of (3.23) and (3.24) yields

Φ‖LP
+ = eiµ‖Φ‖LP

− , µ‖ :=

µ
‖
1, λ ∈ Γ1;

µ
‖
2, λ ∈ Γ2.

(3.25)

Since the LP solution obeys this jump equation with multiplicative jump eiµ‖ , the RHP
must necessarily feature the jump

α := eiµ‖ (3.26)

to possibly give rise to LP solutions. This is the desired relation between the initial
values and the RHP jump. By considering equations (3.23)-(3.25) this jump eiµ‖ is
seen to be indeed independent of the coordinates f and g. It was crucial to choose
the contour to be effectively independent of the coordinates f and g to arrive at this
result2.
However, the relation (3.26) does not readily prove the LP solution to be indeed rep-
resentable by a RHP solution, since the holomorphicity of Φ‖LP outside the contour is
not assured. On the other hand, also the solution of the RHP with α given by (3.26)
is not proven to be a LP solution because the holomorphicity conditions (3.19) are not

2E.g. the dependence of Γ(k)
1 on f can be seen to be marginal by replacing it with the contour Γ(k)

1′

on the <(k)-axis directed from k = − 1
2 in the upper sheet through k = −f to k = 1

2 (passing the
branch cut on any side), turning around and going back (passing the branch cut on the same side)
through k = −f to k = − 1

2 in the lower sheet.
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3.4 General solution for collinear polarisation

shown to be fulfilled. It is actually easy to recognise the class of RHP solutions to be
wider than the class of LP solutions by transforming the jump equation equivalently
into

k ∈ Γ(k)
1 : ln Φ‖+ − ln Φ‖− = iµ‖1 + 2πm1i, m1 ∈ Z,

k ∈ Γ(k)
2 : ln Φ‖+ − ln Φ‖− = iµ‖2 + 2πm2i, m2 ∈ Z.

(3.27)

In principle every choice of m1 and m2 leads to a different RHP solution, but as dis-
cussed in section 4.5 it is reasonable to restrict this freedom to the domain
|µ‖1/2 + 2πm1/2|< 2π, yielding in general two possible values for each µ

‖
1/2. The lin-

earity of the RHP allows also for linear combinations of them. Thus in the collinear
case the ambiguity of the RHP solution is a direct consequence of the ambiguity of the
complex logarithm.

For arbitrary polarised GWs only multiplicative jump data can be inferred from the
IVP, leading to similar ambiguities as described above. A special aspect of the ISM in
the collinear case is that an additive jump function connected with the LP solution is
given by (3.23) and (3.24). Therefore a unique RHP solution Φ‖µ defined by

k ∈ Γ(k) : ln Φ‖µ+ − ln Φ‖µ− = µ‖. (3.28)

can be associated with the LP solution: either Φ‖µ = Φ‖LP holds, or no RHP solution
solves the LP. Using this specified additive jump, ln Φ‖µ can be expressed in terms of a
Cauchy type integral on the λ-sphere,

ln Φ‖µ = 1
2π

∫
Γ

( 1
λ′ − λ

− 1
λ′ + 1

)
µ‖(k′)dλ′. (3.29)

The second term under the integral assures the normalisation Φ‖µ(−1) = 1. The effect
of the first term under the integral can be understood by thinking of each partial
contour Γ1/2 to be closed by some line segment lying in a domain where µ‖1/2 can be
analytically continued. Due to Cauchy’s residue theorem, the value of the integral in
(3.29) taken over these closed curves Γ◦1/2 will increase by 2πiµ‖ if λ moves across Γ◦1/2
from its exterior to its interior, which is equivalent to (3.28).

With the help of
( 1
λ′ − 1 −

1
λ′ + 1

)
= −2(k′ + f)

f + g
and dλ′

dk′
= 1

2λ′
f + g

(k′ + f)2 (3.30)
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3 Inverse scattering method for collinear polarisation

the integral in (3.29) evaluated at λ = 1 can be transferred into the k-surface yielding

1
2 ln Φ‖µ(1) = 1

2π

∫ −f
− 1

2

µ
‖
1(k′)dk′√

(k′ − g)(k′ + f)
− 1

2π

∫ 1
2

g

µ
‖
2(k′)dk′√

(k′ − g)(k′ + f)
. (3.31)

Note that on the contour λ is always real with λ′ > 0 in the upper sheet and λ′ < 0
in the lower one. Hence the integrals taken in opposite directions in the two sheets
add up. Finally, if Φ‖µ fulfilled the holomorphicity conditions (3.19), this would imply
1
2 ln Φ‖µ(1) = 1

2 ln Φ‖LP(1) = ψ and thus

ψ = 1
2π

∫ −f
− 1

2

µ
‖
1(k′)dk′√

(k′ − g)(k′ + f)
− 1

2π

∫ 1
2

g

µ
‖
2(k′)dk′√

(k′ − g)(k′ + f)
. (3.32)

However, the validity of the holomorphicity conditions shall not be investigated in
further detail here. Instead it is sufficient to note that the solution proposed by the
ISM, which consists of the equations (3.23), (3.24) and (3.32), is exactly the unique
IVP solution that Isidore Hauser and Frederick Ernst derived via generalised Abel
transformations in [14]. In this sense the heuristic ISM approach indeed leads to the
right IVP solution 1

2 ln Φ‖µ(1) = ψ although not even this directly proves Φ‖LP = Φ‖µ.
For g = 1

2 the second integral in (3.32) vanishes and (3.32) together with (3.24) has
indeed the shape of an Abel transformation between ψ and µ

‖
1. However, since the

colliding wave conditions (2.48) require the divergent behaviour ψf (f, 1
2) ∼ (1

2 − f)− 1
2 ,

generalising considerations were needed. Hauser and Ernst showed that µ‖1 calculated
via (3.24) exists but does not vanish at the contour endpoint k = −1

2 .
In the same article [14] Hauser and Ernst presented a RHP similar to (3.12), where
the independent spectral parameter lies in a simple complex plane. Its solution ΦH is
related to Φ‖µ by

ln Φ‖µ(k) = −(k + f)λΦH(2k) + ψ (3.33)

and it uses the jump functions

g3(σ) = µ
‖
1(σ/2)

2
√

1− σ
, g2(σ) = µ

‖
2(σ/2)

2
√

1 + σ
. (3.34)

Note that the jump functions µ‖1/2 from (3.23) and (3.24) both are defined on the
interval [−1

2 ,
1
2 ], but for given f and g only the values of µ‖1 on Γ(k)

1 and the values of
µ
‖
2 on Γ(k)

2 appear in (3.32). Obviously real initial values ψf (f, 1
2) and ψg(1

2 , g) lead to
real µ‖1/2 and via (3.32) to a real solution ψ.
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4 Inverse scattering method for
arbitrary polarisation

A derivation similar to the axially symmetric and stationary case in [50] leads for
arbitrary polarisation to the general versions of the LP and the RHP. These are for-
mally very similar to the collinear case, but matrix valued. From the initial values in
general only the calculation of multiplicative jump data is possible and this is accom-
plished by solving an ODE. Explicit formulae are derived for the boundary values of
the multiplicative jump matrix, which determine the singular behaviour of the solution
and indicate the character of its ambiguities. At the end of the chapter the integral
equations for the singular additive jump data of the RHP are introduced and discussed.

4.1 Linear problem for arbitrary polarisation

The LP for colliding plane waves of arbitrary polarisation is to find the matrix
ΦLP(f, g;λ) satisfying1

ΦLP
f = UΦLP,

ΦLP
g = V ΦLP,

U =
 A λA

λĀ Ā

 , V =
 B λ−1B

λ−1B̄ B̄

 . (4.1)

Herein A andB are complex functions of f and g and the spectral parameter λ is defined
as before in (3.1). In addition, the freedom of right multiplying a matrix function of k
to the solution, ΦLP → ΦLPC(k), is fixed by demanding the normalisation

ΦLP(1
2 ,

1
2) =

1 −1
1 1

 ∀k. (4.2)

The integrability condition ΦLP
fg = ΦLP

gf of (4.1) leads via comparison of coefficients of

1The matrix U should not be confused with the metric function denoted by the same symbol.
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4 Inverse scattering method for arbitrary polarisation

λ-powers to the three independent equations

Bf − Ag =AB̄ −BĀ, (4.3)

Ag =− AB̄ + AB − A

2(f + g) −
B

2(f + g) , (4.4)

−Bf =BĀ− AB + A

2(f + g) + B

2(f + g) . (4.5)

Addition of (4.4) and (4.5) as well as their complex conjugates yields

Āg − B̄f + Ag −Bf = 0, (4.6)

which assures the existence of a real potential h with

dh = (A+ Ā)df + (B + B̄)dg. (4.7)

This in turn grants the existence of a complex potential E with

dE = Aehdf +Behdg, (4.8)

because the corresponding integrability condition is exactly (4.3). It follows that
d(E + Ē) = deh and the additive constant in h may be chosen to allow for

E + Ē = eh. (4.9)

Combining (4.8) and (4.9) the functions A and B can be represented in terms of E by

A = Ef

E + Ē
, B = Eg

E + Ē
. (4.10)

Inserting these relations in (4.4) or (4.5), respectively, leads to the Ernst equation
(2.40) in both cases. Since the Ernst equation with (4.10) also implies (4.3), the Ernst
equation accompanied by (4.10) is equivalent to the system (4.3)-(4.5) derived from
the integrability condition.

Using the Pauli matrices

σ1 =
0 1

1 0

 , σ3 =
1 0

0 −1

 , (4.11)

the following relations between the matrices U(λ) and V (λ) and their values at −λ
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4.1 Linear problem for arbitrary polarisation

and λ̄ respectively can be stated:

σ3W (−λ)σ3 = W (λ) = σ1W̄ (λ̄)σ1 with W = U, V. (4.12)

Therefore, from a given column vector v(λ) solving the LP the new solution σ3v(−λ)
can be derived because of

∂f (σ3v(−λ)) = σ3U(−λ)v(−λ) = U(λ) (σ3v(−λ)) . (4.13)

Analogously, σ1v̄(λ̄) is another column vector solving the LP. Denoting the components
of v by v1 and v2, the sum Φ1 := v(λ) + σ1v̄(λ̄) can be represented by the single scalar
function ϕLP via

Φ1 =
v1 + v̄2(λ̄)
v2 + v̄1(λ̄)

 =:
ϕLP(λ)
ϕ̄LP(λ̄)

 . (4.14)

This vector can be complemented by the (in general linearly independent) vector
Φ2 := σ3Φ1(−λ) to form the system

ΦLP =
ϕLP(λ) −ϕLP(−λ)
ϕ̄LP(λ̄) ϕ̄LP(−λ̄)

 . (4.15)

It depends only on a single scalar function ϕLP which shall be called ‘scalar solution of
the LP’. The representation (4.15) is consistent with the normalisation (4.2) providing
that

ϕLP(1
2 ,

1
2) = 1 ∀k, (4.16)

and so the matrix solution of the LP and the RHP later on will be assumed to have
this structure (4.15), which will be abbreviated by stating ‘ΦLP is in normal form with
the scalar function ϕLP’.

With the identity (ln detM)x = Tr(MxM
−1), holding for an arbitrary square matrix

M , it is possible to write

(ln det ΦLP)f = Tr(ΦLP
f (ΦLP)−1) = Tr(U) = A+ Ā = Ef + Ēf

E + Ē
= (ln(E + Ē))f

and hence

det ΦLP = (E + Ē)F1(g, k). (4.17)
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4 Inverse scattering method for arbitrary polarisation

Including the analogous statement derived from the calculation of (ln det ΦLP)g yields

det ΦLP = (E + Ē)F (k). (4.18)

On the other hand, the normal form representation (4.15) implies

det ΦLP = ϕ̄LP(λ̄)ϕLP(−λ) + c.c., (4.19)

whereby an adapted version of the ‘+c.c.’-symbol defined by a(λ)+c.c. := a(λ)+ā(λ̄) is
applied throughout this work. Using the normalisation (4.16), relation (4.19) leads to
det ΦLP(1

2 ,
1
2) = 2 ∀k. Finally, a comparison with (4.18), bearing in mind E(1

2 ,
1
2) = 1,

gives
det ΦLP = E + Ē ∀f, g, k. (4.20)

In particular (4.20) states that the determinant of the LP solution is a function de-
pending only on the coordinates f and g.
From (4.20) follows, that a degeneracy of the LP solution in the form (4.15) can only
occur for <(E) = 0, which is supposed to be connected with a singularity of the metric
(2.11). Otherwise the normal form (4.15) is a fundamental system.

4.2 Motivation of the Riemann-Hilbert problem

In order to motivate the design of the RHP, some additional properties of the LP shall
be derived, whereby this work proceeds analogously to [22] and [50].
The (1, 1)-elements of the LP equations (4.1) yield for λ = 1 with (4.10):

ϕLP
f (1) = Ef

E + Ē
(ϕLP(1) + ϕ̄LP(1)), (4.21)

ϕLP
g (1) = Eg

E + Ē
(ϕLP(1) + ϕ̄LP(1)). (4.22)

Summation of (4.21) and its complex conjugate leads to
(
ln<[ϕLP(1)]

)
f

= [ln<(E)]f ,
which integrates to

<[ϕLP(1)] = a(g)<(E), a(g) ∈ R. (4.23)

Thereby (4.21) can be written as ϕLP
f (1) = a(g)Ef , which integrates with the help of

(4.23) to ϕLP(1) = a(g)E+ ib(g) with f -independent functions a(g), b(g) ∈ R. Starting
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4.2 Motivation of the Riemann-Hilbert problem

the analogue procedure with (4.22) reveals that a and b also do not depend on g,

ϕLP(1) = aE + ib, a, b ∈ R. (4.24)

Interestingly, the free parameters a and b in the connection of ϕLP(1) and E are the
same that transform one solution of the Ernst equation (2.40) into another. The
Ernst potential with normalisation E(1

2 ,
1
2) = 1 and the LP solution with normalisation

ϕLP(1
2 ,

1
2) = 1 are connected by

ϕLP(1) = E ∀f, g. (4.25)

Evaluating the (2, 1)-elements of the LP at λ = −1 leads to equations for iϕLP(−1) that
are formally equivalent to (4.21) and (4.22) for ϕLP(1). In analogy to (4.24) follows

iϕLP(−1) = ãE + ib̃, ã, b̃ ∈ R. (4.26)

Inserting the normalisations E(1
2 ,

1
2) = 1 and ϕLP(1

2 ,
1
2) = 1 yields ã = 0 and b̃ = 1 and

hence the anticipation of the RHP normalisation

ϕLP(−1) = 1 ∀f, g. (4.27)

The fact that the matrices U and V have no jump on the contour Γ defined in section
3.3 can be expressed as

ΦLP
f+

[
ΦLP

+

]−1
= ΦLP

f−

[
ΦLP
−

]−1
, ΦLP

g+

[
ΦLP

+

]−1
= ΦLP

g−

[
ΦLP
−

]−1
. (4.28)

Defining the jump matrix JLP :=
[
ΦLP
−

]−1
ΦLP

+ yields with (4.28) the two equations

ΦLP
+ = ΦLP

− J
LP, ΦLP

f+ = ΦLP
f−J

LP (4.29)

holding simultaneously, which implies JLP
f = 0. Together with the analogously deduced

relation JLP
g = 0 it follows that the jump matrix JLP is solely depending on the

independent spectral parameter k.

Moreover, the LP solution ΦLP in the normal form (4.15) obeys the identities

ΦLPσ1
[
ΦLP(−λ)

]−1
= −σ3, ΦLPσ3

[
Φ̄LP(λ̄)

]−1
= σ1. (4.30)

Note that since Γ is a subset of the real axis, reading off the values of ΦLP(−λ) and
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4 Inverse scattering method for arbitrary polarisation

ΦLP(λ̄) for λ ∈ Γ implies changing the side of the contour:

λ ∈ Γ :
[
ΦLP(−λ)

]
±

= ΦLP
∓ (−λ),

[
ΦLP(λ̄)

]
±

= ΦLP
∓ (λ̄) = ΦLP

∓ (λ). (4.31)

Since the expressions in (4.30) are constants, they in particular have no jump on Γ,
which can be expressed as

ΦLP
+ σ1

[
ΦLP
− (−λ)

]−1
= ΦLP

− σ1
[
ΦLP

+ (−λ)
]−1

, ΦLP
+ σ3

[
Φ̄LP
− (λ̄)

]−1
= ΦLP

− σ3
[
Φ̄LP

+ (λ̄)
]−1

.

Inserting JLP =
[
ΦLP
−

]−1
ΦLP

+ , these relations easily lead to the identities

1 = σ1J
LP(−λ)σ1J

LP, 1 = σ3J̄
LPσ3J

LP. (4.32)

With the additional assumption JLP(−λ) = JLP(λ) they imply a shape of JLP analo-
gous to (4.34).

4.3 Riemann-Hilbert problem for arbitrary polarisation

Although the previous section completely anticipated the configuration of the RHP, it
did not fully prove the LP solution ΦLP to be representable by a RHP. The missing
link is the holomorphicity of ΦLP in Cλ\Γ. Therefore the RHP will be presented as a
definition in this section and the matrix version of the holomorphicity conditions (3.19)
will be shown to be necessary and sufficient for the RHP solution to also solve the LP.
In this sense, the RHP for arbitrary polarisation shall be defined as the task to find
the matrix Φ(f, g;λ) analytic in Cλ\Γ and satisfying on Γ the jump equation

Φ+ = Φ−J(k). (4.33)

The jump matrix J(k) has the form

J(k) =
 α(k) β(k)
−β(k) ᾱ(k)

 , β ∈ R, ᾱα + β2 = 1, (4.34)

exhibiting only one complex degree of freedom α. It is sufficient to consider the jump
matrix to be identical in both sheets of the k-surface, which is equivalent to

J(−λ) = J(λ). (4.35)
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4.3 Riemann-Hilbert problem for arbitrary polarisation

On Γ the chosen form (4.34) with (4.35) fulfils the identities2

1 = σ1J(−λ)σ1J, 1 = σ3J̄σ3J. (4.36)

Insertion of J(−λ) = Φ−1
− (−λ)Φ+(−λ) leads to

Φ−(−λ)σ1 = Φ+(−λ)σ1J, (4.37)

which is the RHP jump equation (4.33) for the matrix Φ(−λ)σ1. From (4.37) and
the analogous relation derived from the second equation in (4.36) it is obvious that
Φ(−λ)σ1 and Φ̄(λ̄)σ3 obey the same jump equation (4.33) as Φ. This statement holds
already for row vectors. In the same way as in section 4.1 using column vectors, it
can be deduced that starting from an arbitrary row vector w solving (4.33) a matrix
solution

Φ =
 w − w(−λ)σ1

[w̄(−λ̄)− w̄(−λ̄)σ1]σ3

 =
ϕ(λ) −ϕ(−λ)
ϕ̄(λ̄) ϕ̄(−λ̄)

 (4.38)

to (4.33) can be constructed. This matrix Φ is in normal form with the scalar function
ϕ as introduced in section 4.1 and only such solutions of the RHP shall be considered
from now on. Within the representation (4.15) the jump equation (3.12) is equivalent
to the single scalar jump equation

ϕ+ = αϕ− + βϕ+(−λ). (4.39)

This is a special case of the analogue statement for the CRHP which will be proven at
the end of section 5.7.
A general solution of (4.33) is only determined up to left multiplication with an arbi-
trary matrix M(f, g). Within the class of solutions representable by the normal form
(4.38) this matrix is confined to the diagonal form M = diag(m, m̄), which reduces the
freedom in the solution to multiplication of ϕ with m(f, g). Therefore the RHP (4.33)
with a solution in the normal form (4.38) can be normalised by demanding

ϕ(−1) = 1 ∀f, g. (4.40)

For f = 1
2 = g the contour Γ vanishes and suggests Φ = const, confer the discussion in

section 6.7. Considering (4.40) this reproduces the LP normalisation ϕ(1
2 ,

1
2) = 1.

2Herein J(−λ) is not replaced by J for a better illustration of the transition to the corresponding
CRHP relations in (5.46).
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4 Inverse scattering method for arbitrary polarisation

Since the jump matrix J is only depending on the independent spectral parameter k,
the expressions ΦfΦ−1 and ΦgΦ−1 feature no jump on Γ. As the investigation of the
CRHP will show, there exist solutions Φ of the RHP in normal form (4.38) with a
scalar function ϕ and fulfilling even the holomorphicity conditions

ΦfΦ−1 is holomorphic in Cλ\{∞},

ΦgΦ−1 is holomorphic in Cλ\{0}.
(4.41)

Also in the arbitrary polarised case a power series expansion of ΦgΦ−1 in λ analogue
to (3.18) can be derived, but with matrix valued coefficients. If the holomorphicity
conditions hold, this series has to be cut off after the constant member yielding

ΦgΦ−1 = M−1(f, g)λ−1 +M0(f, g). (4.42)

With the help of

Φ(−1) =
1 −ϕ(1)

1 ϕ̄(1)

 , Φ(1) =
ϕ(1) −1
ϕ̄(1) 1


the evaluation of (4.42) at λ = ±1 yields

M0 −M−1 = Φg(−1)Φ−1(−1) = 1
ϕ(1) + ϕ̄(1)

 ϕg(1) −ϕg(1)
−ϕ̄g(1) ϕ̄g(1)

 , (4.43)

M0 +M−1 = Φg(1)Φ−1(1) = 1
ϕ(1) + ϕ̄(1)

ϕg(1) ϕg(1)
ϕ̄g(1) ϕ̄g(1)

 . (4.44)

Solving this system for M0 and M−1 leads with (4.42) to

ΦgΦ−1 = 1
ϕ(1) + ϕ̄(1)

 ϕg(1) λ−1ϕg(1)
λ−1ϕ̄g(1) ϕ̄g(1)

 , (4.45)

which is the second line of the LP (4.1) with B = ϕg(1)/[ϕ(1) + ϕ̄(1)]. The first line
follows analogously with A = ϕf (1)/[ϕ(1) + ϕ̄(1)]. From the representation (4.10) of
A and B in terms of E the relation ϕ(1) = aE + ib with undetermined a, b ∈ R can
be derived as in section 4.2. Therefore the scalar RHP solution ϕ with ϕ(1

2 ,
1
2) = 1 is

connected to an Ernst potential with normalisation E(1
2 ,

1
2) = 1 by

ϕ(1) = E ∀f, g. (4.46)
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4.4 Calculation of the jump matrix from initial data

In conclusion, a RHP solution Φ in normal form (4.38) with the scalar solution ϕ,
normalised by ϕ(−1) = 1 and fulfilling the holomorphicity conditions (4.41) is simul-
taneously also a solution ΦLP of the LP (4.1) normalised by (4.16). A solution to the
normalised Ernst equation is then given by E = ϕ(1) = ϕLP(1). In the next section
the ISM is completed by relating the initial values E(f, g = 1

2) and E(f = 1
2 , g) to the

jump functions α and β in a way that this Ernst potential inferred by (4.46) indeed
matches the initial data.
For β = 0 the RHP (4.33) reduces to the collinearly polarised case with µ‖ := −i lnα,
Φ‖ := ϕ = ϕ̄(λ̄) and ψ := 1

2 lnE.

4.4 Calculation of the jump matrix from initial data

Since the ISM aims at constructing a RHP which has the same solution as the LP
connected with the IVP, it is necessary to require the RHP’s jump matrix to be
J = JLP =

[
ΦLP
−

]−1
ΦLP

+ . In matrix form this demand reads

 α β

−β ᾱ

 =
ϕLP
− (λ) −ϕLP

+ (−λ)
ϕ̄LP

+ (λ̄) ϕ̄LP
− (−λ̄)

−1ϕLP
+ (λ) −ϕLP

− (−λ)
ϕ̄LP
− (λ̄) ϕ̄LP

+ (−λ̄)

 . (4.47)

and remembering J(−λ) = J(λ) this can be solved for the jump functions:

α = ϕ̄LP
− (λ)ϕLP

+ (−λ) + ϕLP
+ (λ)ϕ̄LP

− (−λ)
ϕ̄LP

+ (λ)ϕLP
+ (−λ) + ϕ̄LP

− (−λ)ϕLP
− (λ) , β = ϕ̄LP

+ (λ)ϕLP
+ (λ)− ϕLP

− (λ)ϕ̄LP
− (λ)

ϕ̄LP
+ (λ)ϕLP

+ (−λ) + ϕ̄LP
− (−λ)ϕLP

− (λ) .

(4.48)

These relations simplify in the points λ = ∞ and λ = 0 where all arguments of ϕLP

coincide. For a given k ∈ [−1
2 ,

1
2 ] it is possible to arrange λ =∞ by f = −k and λ = 0

by g = k. At this stage the additional denominations α1/2 := α|Γ(k)
1/2

and β1/2 := β|Γ(k)
1/2

for the elements of J1/2 := J |Γ(k)
1/2

as well as χLP := ϕ̄LP(λ̄) shall be introduced. Since
∞ ∈ Γ1 and 0 ∈ Γ2, the evaluation of (4.48) at λ =∞ and λ = 0 then yields

α1 = 2χLP
+ (∞)ϕLP

+ (∞)
|ϕLP

+ (∞)|2+|χLP
+ (∞)|2 , β1 = |ϕ

LP
+ (∞)|2−|χLP

+ (∞)|2
|ϕLP

+ (∞)|2+|χLP
+ (∞)|2 , (4.49)

α2 = 2χLP
+ (0)ϕLP

+ (0)
|ϕLP

+ (0)|2+|χLP
+ (0)|2 , β2 = |ϕ

LP
+ (0)|2−|χLP

+ (0)|2
|ϕLP

+ (0)|2+|χLP
+ (0)|2 . (4.50)

In the next step, for a given k ∈ [−1
2 ,

1
2 ] the values of χLP

+ and ϕLP
+ at λ = 0 and

λ =∞ shall be calculated by integration of the LP for the first column (ϕLP, χLP)T of

43



4 Inverse scattering method for arbitrary polarisation

the matrix solution ΦLP in the (f, g)-plane. The starting point of this integration is
conveniently chosen as (1

2 ,
1
2), where the normalisation (4.16) defines ϕLP = 1 = χLP.

As stated above, λ = ∞ is achieved at (−k, 1
2) and λ = 0 at (1

2 , k). Furthermore,
choosing the integration path along g = 1

2 and f = 1
2 respectively leads to two major

simplifications. First of all, the LP can be reduced to a single ODE in both cases, and
secondly only values on the boundaries of the IVP are used. Therefore α1/2 and β1/2

can indeed be calculated from the initial values alone.
For the integration to result in the inner limit at f → −k or respectively g → k, the
point k has to be conceived lying infinitesimally above the real axis in the upper sheet
of the k-surface or, equivalently, infinitesimally below the real axis in the lower sheet
(black region in figure 3.3). There the value of λ is purely imaginary, and its imaginary
part is positive. Therefore it is appropriate to define the positive quantities

λf := −iλ =

√√√√ 1
2 − k
f + k

> 0, λg := i/λ =

√√√√ 1
2 + k

g − k
> 0. (4.51)

Hence the ODEs for the integration procedure described above read

g = 1
2 :

ϕLP
+

χLP
+


f

=
 A iλfA

iλf Ā Ā

ϕLP
+

χLP
+

 (4.52)

f = 1
2 :

ϕLP
+

χLP
+


g

=
 B −iλgB
−iλgB̄ B̄

ϕLP
+

χLP
+

 , (4.53)

where (4.52) shall be integrated from f = 1
2 to f = −k and (4.53) shall be integrated

from g = 1
2 to g = k. The starting value is in both cases (1, 1)T and A for g = 1

2 as
well as B for f = 1

2 are given in terms of the initial values by (4.10). Subsequently
α1/2 and β1/2 are calculated via (4.49) and (4.50), which corresponds to step (i) of the
ISM scheme in figure 3.1.
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4.5 The boundary values of the jump matrix

4.5 The boundary values of the jump matrix

The boundary coefficients Ab, Bb ∈ C of the functions A and B as well as their ampli-
tudes ρ1/2 ∈ R and phases φA, φB ∈ R shall be defined by

Ab := ρ1eiφA := lim
(f,g)→( 1

2 ,
1
2 )

[√
1
2 − fA

]
,

Bb := ρ2eiφB := lim
(f,g)→( 1

2 ,
1
2 )

[√
1
2 − gB

]
.

(4.54)

Considering (4.10), the colliding wave conditions (2.48) can be stated as

ρ1 =
√
k1

2 , ρ2 =
√
k2

2 . (4.55)

From the domain (2.50) of k1/2 follows

1
2 ≤ ρ1/2 < 2− 1

2 . (4.56)

In order to calculate the boundary values J(±λ1) of the jump matrix, the ODE system
(4.52) is examined for k = −1

2 + ε. Substituting f = 1
2 − δ, its leading order in δ is

given byϕLP
+

χLP
+


δ

= −δ− 1
2

 Ab iλfAb

iλf Āb Āb

ϕLP
+

χLP
+

 , f = 1
2 − δ, g = 1

2 , (4.57)

which has to be integrated from δ = 0, where χLP
+ = 1 = ϕLP

+ holds, to δ = ε. For
0 < δ < ε� 1 it is λf � 1 and (4.57) reduces in leading order to

(ϕLP
+ )δ = −i[δ(ε− δ)]− 1

2Abχ
LP
+ , (χLP

+ )δ = −i[δ(ε− δ)]− 1
2 Ābϕ

LP
+ . (4.58)

Substituting s = 2 arcsin(
√
δ/ε) yields

(ϕLP
+ )s = −iAbχ

LP
+ , (χLP

+ )s = −iĀbϕ
LP
+ . (4.59)

which has to be integrated from s = 0, where χLP
+ = 1 = ϕLP

+ , to s = π. The solution
matching these initial conditions is

ϕLP
+

χLP
+

 =
cos(|Ab|s)− iAb

|Ab|
sin(|Ab|s)

cos(|Ab|s)− i|Ab|
Ab

sin(|Ab|s)

 . (4.60)
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4 Inverse scattering method for arbitrary polarisation

Inserting s = π yields ϕLP
+ (∞) and χLP

+ (∞) with a trivial limit for ε → 0. With
|Ab|= ρ1 and argAb = φA the boundary values of the jump functions at ±λ1 are then
given by (4.49):

α1b := α1(k = −1
2) = cos(2πρ1)− i cos(φA) sin(2πρ1), (4.61)

β1b := β1(k = −1
2) = sin(φA) sin(2πρ1). (4.62)

Analogously, the investigation of the other ODE (4.53) for k = 1
2 − ε leads to

α2b := α2(k = 1
2) = cos(2πρ2) + i cos(φB) sin(2πρ2), (4.63)

β2b := β2(k = 1
2) = − sin(φB) sin(2πρ2). (4.64)

With relation (4.56) the range of <(α1b) and <(α2b) is given by

−1 ≤ <(α1/2b) < cos(
√

2π) < 0. (4.65)

The equality in (4.65) is reached for impulsive waves:

α1/2b = −1 ⇔ ρ1/2 = 1
2 ⇔ k1/2 = 1

2 ⇔ n1/2 = 2. (4.66)

A RHP with a Hölder continuous3 jump matrix J has a unique solution under certain
additional conditions [23]. But α1/2b = 1, which would be necessary for a continuous
connection to the jump matrix 1 on a continued contour, is not consistent with the col-
liding wave conditions demanding (4.65). Therefore the RHP associated with the IVP
for colliding plane GWs is discontinuous and thus its solution Φ features singularities,
which will occur in different appearances. In anticipation of the rigorous treatment in
chapter 5 the situation shall be illustrated using the toy model of a RHP with constant
purely multiplicative jump on only one contour, α2 = α2b = e−2πiρ2 , α1 = 1, β = 0.
In a first step it is beneficial to define the fractions

L1 := λ1 + λ

λ1 − λ
, L2 := λ+ λ2

λ− λ2
. (4.67)

They obey the relations

L̄1/2(λ̄) = L1/2(λ) = L−1
1/2(−λ) (4.68)

3A Hölder continuous function f satisfies the Hölder condition |f(x) − f(y)|≤ C|x − y|γ for some
C ∈ R, γ ∈ (0, 1] and all x, y. A matrix is Hölder continuous if all of its components are Hölder
continuous. In particular the root-like function xρ with 0 < ρ < 1 is Hölder continuous.
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which will be used extensively in the remainder of this work. The terms Lρ1/2
1/2 and

L
ρ1/2−1
1/2 as well as their reciprocals feature a branch cut along Γ1/2. They will be used

as functions only in the λ-sheet with real value at λ = 1, where they shall be regarded
as having a jump on the contour Γ1/2. Their inner and outer limits at the contour are

for λ ∈ Γ1,

for λ ∈ Γ2,

(Lρ1
1 )+ = eπiρ1|Lρ1

1 |,
(Lρ2

2 )+ = e−πiρ2|Lρ2
2 |,

(Lρ1
1 )−= e−πiρ1|Lρ1

1 |
(Lρ2

2 )−= eπiρ2|Lρ2
2 |

(4.69)

and analogous for Lρ1/2−1
1/2 . This implies Lρ1/2

1/2 (−λ) = L
−ρ1/2
1/2 . Now for the toy model

RHP with α2 = α2b = e−2πiρ2 , α1 = 1, β = 0 the scalar jump equation (4.39) decouples
with respect to ϕ(λ) and ϕ(−λ). On Γ2 it simply reads ϕ+ = e−2πiρ2ϕ− and features
the set of unnormalised scalar solutions ϕ2n = Lρ2−n

2 with n ∈ Z. For n ≤ 0 they have
at λ = λ2 the singular behaviour ϕ2n ∼ (λ− λ2)−ρ2−n, which shall be expressed in the
remainder of this work by saying that they diverge with divergence exponent ρ2 − n.
The uniqueness of the solution to a CRHP stems from the requirement that it should
not have any poles or zeros. But as the toy model shows, for the discontinuous RHP
the divergences at the contour endpoints are generic. If the requirement of regularity
at the contour endpoints is completely dropped, all ϕ2n are solutions of the toy model
RHP. Also in the general case an infinite series of solutions (not in normal form) can
be generated by multiplying powers of L1 and L2 to a given solution Φ. However, it
seems reasonable to restrict the search to the ‘most regular’ solutions with a divergence
exponent lower than one since only in these cases the scalar solution is representable
via a Cauchy integral over its additive jump.
For the toy model the restriction to divergence exponents lower than one yields the
two independent scalar solutions ϕ20 = Lρ2

2 and ϕ21 = Lρ2−1
2 . The first solution has the

singular behaviour ϕ20 ∼ (λ − λ2)−ρ2 at λ = λ2 and the second one has the singular
behaviour ϕ21 ∼ (λ+ λ2)ρ2−1 at λ = −λ2.
Keeping the restriction of divergence exponents lower than one, also for a more general
Lipschitz continuous4 jump matrix diagonal at ±λ2 the scalar jump equation in a
neighbourhood of λ2 can only be solved by a function having in λ2 either a branch
point with divergence exponent ρ2 or a zero. Analogously, at −λ2 the scalar solution
ϕ must have either a branch point with divergence exponent 1 − ρ2 or a zero. For a
Lipschitz continuous jump matrix diagonal at the endpoints ±λ1 of the other contour
part, the scalar solution ϕ has at λ1 and −λ1 branch points with divergence exponent

4A Lipschitz continuous function f satisfies the Lipschitz condition |f(x) − f(y)|≤ C|x − y| for
some C ∈ R and all x, y. A matrix is Lipschitz continuous if all of its components are Lipschitz
continuous. Each Lipschitz continuous function is also Hölder continuous. In particular the root-
like function xρ with 0 < ρ < 1 is not Lipschitz continuous.
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4 Inverse scattering method for arbitrary polarisation

ρ1 or 1− ρ1 respectively or zeros.
In the general case β1/2 6= 0, the scalar jump equations (4.39) for the contour endpoints
±λ1/2 become coupled and ϕ is expected to diverge at both endpoints of Γ1/2 with the
same divergence exponent ρ1/2 or 1−ρ1/2. In a linear combination of these solutions the
greater divergence exponent ρ1/2 will dominate the behaviour at the contour endpoints.

4.6 RHP integral equations for a singular additive jump
Using its additive jump function µϕ(λ′), ϕ can be expressed as the Cauchy type integral

ϕ(λ) = 1 + 1
2πi

∫
Γ

( 1
λ′ − λ

− 1
λ′ + 1

)
µϕ(λ′)dλ′ (4.70)

with the correct normalisation ϕ(−1) = 1. With the Cauchy principal value
ffl

the
inner and outer limit of the integral

I(λ) = 1
2πi

∫
C

µ(λ′)dλ′
λ′ − λ

(4.71)

over a contour C through λ can, according to the Sokhotski-Plemelji formula (confer
e.g. [23] or [51]), be represented as

I+(λ) = 1
2πi

 
C

µ(λ′)dλ′
λ′ − λ

+ 1
2µ(λ), I−(λ) = 1

2πi

 
C

µ(λ′)dλ′
λ′ − λ

− 1
2µ(λ). (4.72)

Roughly speaking, the jump µ(λ) of the integral I(λ) is equally partitioned to both sides
of the contour if C runs straight through the point λ. Insertion of (4.72) into (4.39)
with the kernel F (λ, λ′) := (λ′−λ)−1− (λ′+ 1)−1 from (4.70) as well as µϕ1/2 := µϕ|Γ1/2

yields the integral equation

1 + 1
2πi

∫
Γ1
F (λ, λ′)µϕ1 (λ′)dλ′ + 1

2πi

 
Γ2

F (λ, λ′)µϕ2 (λ′)dλ′ + 1
2µ

ϕ
2 (λ) =

α

[
1 + 1

2πi

∫
Γ1
F (λ, λ′)µϕ1 (λ′)dλ′ + 1

2πi

 
Γ2

F (λ, λ′)µϕ2 (λ′)dλ′ − 1
2µ

ϕ
2 (λ)

]
(4.73)

+ β

[
1 + 1

2πi

∫
Γ1
F (−λ, λ′)µϕ1 (λ′)dλ′ + 1

2πi

 
Γ2

F (−λ, λ′)µϕ2 (λ′)dλ′ + 1
2µ

ϕ
2 (−λ)

]

for λ ∈ Γ2. A similar relation is obtained for λ ∈ Γ1. For each set of fixed coordinate
values (f, g) these are coupled inhomogeneous linear singular integral equations of the
second kind5. For given jump functions α and β they can in principle be used to

5A singular integral equation contains an improper integral like a principal value; an integral equa-
tion of the second kind contains the unknown function both inside and outside the integral. An
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4.6 RHP integral equations for a singular additive jump

determine the additive jump µϕ which via the Cauchy integral (4.70) yields the scalar
RHP solution ϕ. This corresponds to step (iia) in figure 3.1.
These integral equations may be solved analytically for some special cases, in general
they can be evaluated by an expansion in Chebyshev polynomials. But due to the
expected inverse root-like divergences of the scalar solution ϕ at the contour endpoints
discussed in section 4.5, also its additive jumps µϕ have to diverge, e.g. at λ = ±λ2 like
µϕ2 ∼ (λ ∓ λ2)−ρ2 . Therefore the integral equations of the RHP have to be evaluated
for singular unknown functions.
The integral over Γ2 is caused by the inverse root-like behaviour of µϕ2 to diverge
for λ→ ±λ2, which makes it difficult to evaluate the integral equation at the contour
endpoints. A naive ansatz for an expansion of µϕ2 may include the terms a(λ−λ2)−ρ2 and
b(λ+λ2)−ρ2 , but a precise approximation of the coefficients a and b seems challenging.
Inaccuracies in a and b may on the other hand have a strong influence on the scalar
solution ϕ. Moreover, the consideration of the toy model in section 4.5 showed that
the solution of the integral equation is not unique, which might complicate the task of
approximately solving (4.73).
Nevertheless, Shahmorad and Ahdiaghdam presented an expansion scheme for singular
integral equations with divergent expansion functions built up of Chebyshev polyno-
mials of several kinds with astonishing accuracy [52], see also [53]. An application
of such methods on the RHP’s integral equation (4.73) is an interesting direction of
further investigations, but they have to be considerably adapted to match the case of
two different contours.
This work will proceed with a transformation to the CRHP, which is necessary to
prove the existence of RHP solutions fulfilling the holomorphcity conditions (4.41) and
to fully understand their properties. This will lead to an integral equation for the
continuous additive jump function of the scalar CRHP solution, which has to be solved
in step (iib) of the solution scheme in figure 3.1. This integral equation appears to be
better suited at least for a naive numerical approximation.

inhomogeneous integral equation has terms which do not contain the unknown function.
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5 Transformation to a continuous
Riemann-Hilbert problem

The transformation to a continuous Riemann-Hilbert problem is inspired by a recipe
described by Vekua in [23], where a jump matrix discontinuity is removed through
multiplication with an appropriate branch cut perpendicular to the contour. The RHP
described in section 4.3 features four discontinuities at the endpoints of the partial
contours Γ1/2. Transformations are introduced which simultaneously remove the two
discontinuities at the endpoints of a single partial contour in two different ways based
on the two functions Lρ1/2

1/2 and Lρ1/2−1
1/2 . Thereby iterated transformations lead to four

different CRHP which are conjectured to completely classify the ambiguity of the RHP.
In addition, two other types of transformation are needed to reach the CRHP. The three
basic transformations will be first introduced in a generic manner and secondly their
role in the sequence of transformations leading to the CRHP is illustrated. Subse-
quently the full transformation consisting of these basic transformations is assembled
and its properties are studied.

5.1 The extended Riemann-Hilbert problem

In a first step, the RHP is generalised into the extended RHP (ERHP)

Φ+ = Φ−G (5.1)

with the slightly modified ‘generalised jump matrix’

G =
 α γ + β

γ − β ᾱ

 , γ, β ∈ R. (5.2)

This matrix shall be defined on the whole real λ-axis, which serves as the contour of
the ERHP denoted by Γ<. This is indeed the most obvious way to connect Γ1 and
Γ2 to a closed contour on the λ-sphere. The corresponding contour on the k-surface
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5.1 The extended Riemann-Hilbert problem

consists of the real axis outside the branch cut [−f, g] in both sheets. Furthermore,
the generalised jump matrix G shall be featuring the properties

detG = αᾱ + β2 − γ2 = 1, α(−λ) = α, β(−λ) = β, γ(−λ) = −γ. (5.3)

In contrast to the RHP jump matrix J(k), the ERHP jump matrix G will acquire
a dependence on the coordinates f and g in the course of the transformation to the
CRHP. For γ 6= 0 the ERHP jump matrix G is neither unitary nor symmetric in λ

any more. For clarity of notation, the ERHP is treated without normalisation. Out
of the resulting scalar RHP solution ϕ the Ernst potential E = ϕ(1)/ϕ(−1) with the
right normalisation (2.41) can be easily derived afterwards. The ERHP jump matrix
induced by the RHP jump matrix J is denoted as

GJ :=

J, λ ∈ Γ;

1 else.
(5.4)

As in [23] it is necessary to demand the jump matrix J of the initial RHP to be Lipschitz
continuous at the endpoints of Γ. Thus for later reference it can be stated

lim
λ→λ1/2

(λ− λ1/2)x(J − J(λ1/2)) = 0 for |x|< 1. (5.5)

Moreover, for technical reasons the derivation of the CRHP given in this work is re-
stricted to non-impulsive waves by demanding

1
2 < ρ1/2 < 2− 1

2 (5.6)

and hence excluding the case ρ1 = 1
2 ∨ ρ2 = 1

2 , where L
ρ1/2
1/2 and L

ρ1/2−1
1/2 become the

inverse of each other.
In the following sections transformations like G → G′ will be described by expressing
the new jump functions α′, β′ and γ′ in terms of the old ones. It can be easily checked
that the relations (5.3) remain valid in all cases. The effect of the transformations
leading to the CRHP are illustrated by means of an example in figure 5.1.
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5 Transformation to a continuous Riemann-Hilbert problem

5.2 Rotation transformation

A rotation transformation, which converts (5.1) to Φ′+ = Φ′−G′, shall be defined by

Φ′ = ΦRδ, G′ = R−1
δ GRδ, Rδ =

 cos δ i sin δ
i sin δ cos δ

 . (5.7)

The normal form of Φ is preserved and the scalar solution as well as the Ernst potential
E := ϕ(1) transform as

ϕ′ = cos δϕ− i sin δϕ(−λ), E ′ = cos δE − i sin δ. (5.8)

Note that if ϕ was normalised by ϕ(−1) = 1, then a normalised scalar solution of the
transformed ERHP and the corresponding Ernst potential are given by

ϕ′′ = cos δϕ− i sin δϕ(−λ)
cos δ − i sin δE , E ′′ = cos δE − i sin δ

cos δ − i sin δE (5.9)

This is the Ernst potential contained in a metric of the form (2.11) after a clockwise
rotation of the x-y-plane by an angle δ,x′′

y′′

 =
cos δ − sin δ

sin δ cos δ

x
y

 . (5.10)

Secondly, E ′′ from (5.9) is exactly the result of a so-called ‘Ehlers transformation’
E ′′ = E/(1− i tan δE) with subsequent normalisation in virtue of (2.41), cf. e.g. [9].
The jump functions transform under (5.7) as

=(α′) = cos(2δ)=(α) + sin(2δ)β,

β′ = − sin(2δ)=(α) + cos(2δ)β,

<(α′) = <(α),

γ′ = γ.
(5.11)

Starting with the induced ERHP jump matrix GJ , the boundary values (4.61)-(4.64)
of the RHP jump functions transform under the rotation transformation (5.7) to

α′1b = cos(2πρ1)− i cos(φA + 2δ) sin(2πρ1), β′1b = sin(φA + 2δ) sin(2πρ1), (5.12)

α′2b = cos(2πρ2) + i cos(φB + 2δ) sin(2πρ2), β′2b = − sin(φB + 2δ) sin(2πρ2). (5.13)

Thus the clockwise coordinate rotation in the x-y-plane by an angle δ corresponds to
a counterclockwise rotation of Ab and Bb in the complex plane by an angle 2δ. If
the initial values imply φA − φB = nπ, n ∈ R, then the RHP jump matrix can be
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5.3 Singularity transformation

diagonalized at all four contour endpoints simultaneously, which leads to tremendous
simplifications in the transition to the CRHP. We will call this case ‘initially collinearly
polarised GWs’.

By convention the rotation matrices Rδ1 and Rδ2 for the diagonalisation of the matrices
J1/2b := J1(λ1/2) shall be chosen with

δ1 := (π − φA)/2, δ2 := (π − φB)/2. (5.14)

Applying these transformations yields respectively

G′|±(λ1+0)=
e2πiρ1 0

0 e−2πiρ1

 or G′|±(λ2−0)=
e−2πiρ2 0

0 e2πiρ2

 . (5.15)

From now on the freedom of rotating the x-y-plane shall be used to choose coordinates
in which the jump matrix is initially diagonal at ±λ2 (cf. figure 5.1 (a)), i.e.

GJ |±(λ2−0)= diag(e−2πiρ2 , e2πiρ2). (5.16)

This is equivalent to setting φB = π.

5.3 Singularity transformation

A singularity transformation, which converts (5.1) to Φ̃+ = Φ̃−G̃, shall be defined by

Φ̃ = ΦSK1/2, G̃K = (SK1/2−)−1GSK1/2+. (5.17)

Herein K is an index which takes the values ‘e’ and ‘o’ designating the two possibilities
of using either an ‘even’ or an ‘odd’ singularity transformation matrix,

Se
1/2 :=

L1−ρ1/2
1/2 0

0 L
ρ1/2−1
1/2

 or So
1/2 :=

L1−ρ1/2
1/2 0

0 L
ρ1/2
1/2

 . (5.18)

The even transformation preserves the normal form of the ERHP solution, whereas
in the odd case ΦSo

1/2 is not in normal form. This property can be restored in the
following way: As will be explicated in section (5.7), also in the context of the ERHP
Φ(−λ)σ1 solves the same jump equation as Φ. Therefore, using also the freedom of
adding solutions and left multiplying matrices independent of λ, from ΦSo

1/2 another
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5 Transformation to a continuous Riemann-Hilbert problem

solution

Φ̃o := ΦSo
1/2 − σ3Φ(−λ)So

1/2(−λ)σ1 (5.19)

to the jump equation with jump matrix G̃o can be constructed. It is indeed in normal
form with the scalar function

ϕ̃o = L
ρ1/2
1/2 (1 + L1/2)ϕ. (5.20)

Note that if the odd transformation had been defined by the alternative matrix

So∗
1 := diag(L−ρ1

1 , Lρ1−1
1 ) = L−1

1 So
1 (5.21)

instead of So
1 , then the linear combination in (5.19) would lead to exactly the same

solution Φ̃o in normal form with ϕ̃o from (5.20).
Evaluation of the inner and outer limits of SK1/2 similar to (4.69) leads to the following
transformation of the off-diagonal elements of the jump matrix:

γ̃K + β̃K = εK1/2|L1/2|x
K
1/2(γ + β),

γ̃K − β̃K = εK1/2|L1/2|−x
K
1/2(γ − β),

(5.22)

Therein εK1/2 := sign(detSK1/2) is just a sign which is 1 in the even case, εe
1/2 = 1,

whereas for the odd case holds εo
1/2|Γ1/2= −1 and εo

1/2|Γ</Γ1/2= 1.
The exponents

xe
1/2 := 2ρ1/2 − 2, and xo

1/2 := 2ρ1/2 − 1 (5.23)

due to (5.6) lie in the ranges

−1 < xe
1/2 < 0, 0 < xo

1/2 < 1. (5.24)

Solved for the individual jump functions, the singularity transformation reads

γ̃K = εK1/2
1
2
[
(|L1/2|x

K
1/2+|L1/2|−x

K
1/2)γ + (|L1/2|x

K
1/2−|L1/2|−x

K
1/2)β

]
,

β̃K = εK1/2
1
2
[
(|L1/2|x

K
1/2−|L1/2|−x

K
1/2)γ + (|L1/2|x

K
1/2+|L1/2|−x

K
1/2)β

]
,

α̃K =

e∓2πiρ1/2α, λ ∈ Γ1/2;

α else;
(‘-’ associated with index ‘1’).

(5.25)
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5.3 Singularity transformation

Considering (5.5), due to |xK1/2|< 1 the application of the singularity transformation to
a ERHP jump matrix GJ diagonal at ±λ2 yields (cf. figure 5.1 (b)):

G̃K
J := (SK2−)−1GJS

K
2+, G̃K

J (±λ2) = 1. (5.26)

The jump matrix G̃K
J is Hölder continuous at ±λ2, but not necessarily Lipschitz con-

tinuous, whereas at ±λ1 the jump matrix is still Lipschitz continuous. However, since
γ̃K 6= 0 the transformed jump matrix G̃K

J is no longer unitary and so another type of
transformation is necessary to restore the unitarity at least at the endpoints ±λ1 of the
other contour. Thereafter the jump matrix may be diagonalised at ±λ1 by a rotation
transformation and made continuous by a singularity transformation with SK1 .
The matrices Se

2 and So
2 can be generalised to the class

Sn2 :=
L1−ρ2

2 0
0 Lρ2−n

2

 , n ∈ Z (5.27)

of transformation matrices which remove the jump of α in a jump matrix GJ diagonal
at ±λ2. However, for the general transformation with Sn2 the exponent xK2 in (5.25) has
to be replaced by xn2 := 2ρ2− 1− n. Furthermore |xn2 |< 1, which is necessary to get at
±λ2 convergent functions γ̃K and β̃K from Lipschitz continuous initial jump functions
γ and β, is equivalent to n ∈ {0, 1}. Hence there are no transformation matrices in the
class (5.27) which are linearly independent of Se

2 and So
2 and lead to G̃K

J (±λ2) = 1 for
Lipschitz continuous initial jump matrices J .
Upon this result the matrices Se

1/2 and So
1/2 are conjectured to be the only in principle

different transformations removing the discontinuities at a pair of contour endpoints
and leading to G̃K

J (±λ2) = 1 for Lipschitz continuous initial jump matrices J . The
case is different for restricted conditions on the initial jump matrix. For example in the
collinear case β = 0 = γ, transformations Sn2 with arbitrary n lead to G̃K

J (±λ2) = 1.
However, as discussed at the end of section 4.5, also in this case only solutions with a
divergence exponents lower than one are desirable which seems to restrict the class of
permitted transformations again to Se

1/2 and So
1/2.
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5 Transformation to a continuous Riemann-Hilbert problem

5.4 Unitarisation transformation

A unitarisation transformation converting (5.1) to Φ̂+ = Φ̂−Ĝ shall be defined by

Φ̂ = ΦUK , Ĝ = (UK
− )−1GUK

+ , UK :=
wKΛK 0

0 (wKΛK)−1

 , (5.28)

where the constituents of the unitarisation matrix UK are defined as1

wK :=
(
sign

[
ΛK(λ1)

])−1
, ΛK :=


λ+λKU
λ−λ̄KU

, =(λ) > 0;
λ+λ̄KU
λ−λKU

, =(λ) < 0.
(5.29)

The phase factor wK is constant in each half-sphere and compensates the phase of ΛK

in the contour endpoints ±λ1. Similar to L1/2, the functions wK and ΛK obey

w̄K(λ̄) = wK(λ) = 1/wK(−λ), Λ̄K(λ̄) = ΛK(λ) = 1/ΛK(−λ). (5.30)

Under the action of the unitarisation transformation the normal form of the solution
matrix is maintained. The jump functions are mapped to

γ̂ = 1
2

[
(|ΛK |−2+|ΛK |2)γ + (|ΛK |−2−|ΛK |2)β

]
,

β̂ = 1
2

[
(|ΛK |2−|ΛK |−2)γ + (|ΛK |−2+|ΛK |2)β

]
,

α̂ = (wK+ )2 sign2(ΛK
+ )α. (5.31)

The free parameter λKU in (5.29) shall be chosen so that

|ΛK(λ1)|2= (L2(λ1))x
K
2 (5.32)

holds, and so the unitarisation transformation applied after the singularity transfor-
mation with SK2 exactly reverts the effect of SK2 on the off-diagonal matrix elements
displayed in (5.22) at the points ±λ1. Therefore the unitarisation transformation ap-
plied after removing the discontinuities of GJ at ±λ2 by G̃K

J = (SK2−)−1GJS
K
2+ yields

(cf. figure 5.1 (c)):

ĜK
J := (UK

− )−1G̃K
J U

K
+ , ĜK

J |±(λ1−0)= 1, ĜK
J |±(λ1+0)= J(±λ1). (5.33)

Hence the unitarisation transformation reproduces the initial settings at ±λ1 with
ĜK
J still Lipschitz continuous at these points. Furthermore ĜK

J 6= 1 results almost
1The reader may be reminded that sign(a) := ei arg(a) has to be understood as the complex general-
isation of the sign function.
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5.5 The full transformation formula

everywhere on Γ< and so the matrix solution Φ̂ is no longer described by a sin-
gle expression for both sides of the contour. Finally by choosing =(λKU ) > 0 it
can be assured that ΛK has neither zeros nor poles. A possible choice for λKU with
|ΛK(λ1)|2= (L2(λ1))x

K
2 and =(λKU ) > 0 is

λe
U = −λ2 + i

√√√√(λ1 + λ2)2(λ1 − λ2)−xe
2 − (λ1 − λ2)2(λ1 + λ2)−xe

2

(λ1 + λ2)−xe
2 − (λ1 − λ2)−xe

2
, (5.34)

λo
U = +λ2 + i

√√√√(λ1 + λ2)2(λ1 − λ2)xo
2 − (λ1 − λ2)2(λ1 + λ2)xo

2

(λ1 + λ2)xo
2 − (λ1 − λ2)xo

2
. (5.35)

5.5 The full transformation formula

The jump matrix ĜK
J made unitary again at ±λ1 in (5.33) can now be diagonalised by

the rotation transformation (cf. figure 5.1 (d))

G′J
K := R−1

δ1 Ĝ
K
J Rδ1 . G′J

K |±(λ1−0)= 1, G′
K
J |±(λ1+0)=

e2πiρ1 0
0 e−2πiρ1

 . (5.36)

Finally, the discontinuities at ±λ1 are removed by the singularity transformation

GIK
c := (SI2−)−1G′J

K
SI2+, GIK

c (±λ1) = 1, GIK
c Hölder continuous on Γ< (5.37)

analogous to the procedure at ±λ2, cf. figure 5.1 (e). In summary, all the subsequent
transformations lead to the CRHP

ΩIK
+ = ΩIK

− GIK
c , (5.38)

which is obtained from the ERHP (5.1) by applying the combined transformation

ΩIK := ΦSK2 UKRδ1S
I
1 , (5.39)

GIK
c := (SI1−)−1R−1

δ1 (UK
− )−1(SK2−)−1GJS

K
2+U

K
+ Rδ1S

I
1+. (5.40)

The jump matrix GIK
c of the CRHP depends in contrast to GJ on the coordinates f and

g. This is an interesting similarity to the treatment of Alekseev and Griffiths [20], where
the non-analytic behaviour of the solution at the wavefronts is handled by ‘dynamical’
monodromy data and generalised integral evolution equations.
In fact (5.39) and (5.40) describe four different CRHPs for the index values
IK ∈ {ee, eo, oe, oo} which give rise to four independent RHP solutions. Furthermore,
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5 Transformation to a continuous Riemann-Hilbert problem

in the solution ΩIK the normal form is temporarily lost. It will be newly established
by constructing a fundamental matrix ΘIK of the CRHP in normal form in section 5.7.
Out of ΘIK the four independent RHP solutions will be constructed in section 5.8.
To illustrate the subsequent transformations of the jump matrix from GJ to GIK

c , an
example including two even singularity transformations is given in figure 5.1 starting
with the arbitrary choice

αJ =


1
2(e 9iπ

10 − i
5)[1− cos(πλ1/λ)], λ ∈ Γ1;

1
5e 4iπ

5 [4− cos(πλ/λ2)], λ ∈ Γ2;

1 else;

(5.41)

βJ = 1− αJ ᾱJ , (5.42)

γJ = 0. (5.43)

It is adapted to the demand that the initial jump matrix GJ is diagonal at ±λ2 (cf.
figure 5.1 (a)), which is in general achieved by the choice of the coordinates x and
y. This example demonstrates that the full transformation in (5.40) indeed leads to a
continuous jump matrix. On the other hand it also shows that the price to pay for this
continuity is a root-like behaviour of =(α), β and γ near the contour endpoints ±λ1/2

with infinitely steep slopes.

5.6 The degree of the solution row vectors

In order to discuss the properties of the CRHP solution ΩIK , a point λp shall be fixed
on the imaginary axis of the λ-sphere (one may think of λp = i). Further a λp-regular
function shall be defined as a function which is only allowed to have poles or respectively
zeros in λp and the degree of a λp-regular function f(λ) shall be defined as

degree of f(λ) :=


n, f(λ) has pole of order n in λp;

0, 0 6= f(λp) 6=∞;

−n, f(λ) has zero of order n in λp.

The degree of a Matrix shall be defined as the maximum of the degrees of its ele-
ments. According to [23] (where a finite closed contour with λp = ∞ is discussed),
for a two-dimensional CRHP there exists a fundamental matrix ΩIK = (ΩIK

1 ; ΩIK
2 )

characterized by the λp-regular and linearly independent solution row vectors ΩIK
1 and

ΩIK
2 having minimal degree κ1 and κ2, respectively. From this fundamental matrix all
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5.6 The degree of the solution row vectors

Figure 5.1: Visualisation of the transformation of the jump functions <(α) (blue), =(α)
(orange), β (green) and γ (red) contained in the jump matrices GJ (a),
G̃e
J = (Se2−)−1GJS

e
2+ (b), Ĝe

J = (U e
−)−1G̃e

JU
e
+ (c), G′eJ = R−1

δ1 Ĝ
e
JRδ1 (d) and

Gee
c = (Se1−)−1G′eJS

e
1+ (e). The final continuous jump matrix Gee

c features a
rather steep root-like behaviour at the contour endpoints ±λ1/2.
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5 Transformation to a continuous Riemann-Hilbert problem

solution vectors can be constructed as linear combinations (as the case may be with
coefficients depending on λ) of ΩIK

1 and ΩIK
2 . It is shown in [23] to have the following

two properties:

det ΩIK 6= 0 ∀λ 6= λp, (5.44)

0 < (λ− λp)κ1+κ2 det ΩIK(λp) <∞. (5.45)

Thus in this work’s nomenclature det ΩIK is λp-regular with degree κD = κ1 + κ2.
Furthermore, due to detGIK

c = 1 the determinant of the CRHP solution, det ΩIK , is
continuous across the contour Γ<. This can be recognised to imply the holomorphicity
of det ΩIK near Γ< by the following consideration:

Lemma 1. Be R a simply connected open subset of the complex sphere Cλ which is
divided by a contour ΓR into two open parts R+ and R− not containing ΓR. If a function
ω is holomorphic in R+ and R− as well as continuous in R+∪ΓR and R−∪ΓR whereby
its values on ΓR from each side coincide, then ω is holomorphic in R.

Proof. Holomorphicity is equivalent to the statement
that every contractable line integral vanishes. The
contour C of each integral I =

∫
C ω(λ)dλ across ΓR

can be partitioned into a contour C+ lying in R+ and
a contour C− lying in R− by simultaneously adding
and subtracting the section of ΓR enclosed by C. The
contours C+ and C− are in turn limits of sequences of
curves C+

a or respectively C−a which lie entirely in R+

or respectively R−. Because of the holomorphicity of
ω, the integrals over C+

a and C−a vanish and due to
the continuity of ω this also holds for the integrals
over C+ and C− as well as finally for I.

Figure 5.2: Partitioning of
the curve C.

Therefore det ΩIK is holomorphic in Cλ \ {λp}, due to (5.44) without even having
zeros in that domain. Either det ΩIK or (det ΩIK)−1 is then holomorphic on the entire
λ-sphere Cλ and thus constant due to Liouville’s theorem (and so in fact both det ΩIK

and (det ΩIK)−1 are constant). In consequence κD = 0 = κ1 + κ2 holds for the degree
of the determinant.

60



5.7 The fundamental matrix of the continuous Riemann-Hilbert problem

5.7 The fundamental matrix of the CRHP

Using (5.2) and (5.3) it follows that the CRHP jump matrix GIK
c fulfils the same

identities on Γ< as the RHP jump matrix J on Γ in (4.36):

1 = σ1G
IK
c (−λ)σ1G

IK
c , 1 = σ3Ḡ

IK
c σ3G

IK
c . (5.46)

Inserting the jump equation (5.38) in the forms GIK
c (−λ) = (ΩIK

− )−1(−λ)ΩIK
+ (−λ) and

ḠIK
c = (Ω̄IK

− )−1(λ̄)Ω̄IK
+ (λ̄) shows that ΩIK(−λ)σ1 and Ω̄IK(λ̄)σ3 fulfil the same jump

equation (5.38) as ΩIK , but the zeros or respectively poles of these new solutions lie in
−λp = λ̄p. Again this statement holds already for row vectors. Involving the fraction

Lp := λp + λ

λp − λ
, L̄p(λ̄) = L−1

p (λ) = Lp(−λ) (5.47)

it is possible to construct the λp-regular solutions Lκ1
p w(−λ)σ1 and Lκ1

p w̄(λ̄)σ1 with the
same degree from a given solution row vector w. Assuming w = (w1, w2) to have the
minimal degree κ1, another λp-regular solution row vector ΘIK

1 := w − Lκ1
p w(−λ)σ1

with degree κ1 can be constructed. Within the subtraction no new zeros can arise
because w has already minimal degree. The components of ΘIK

1 can be represented
via a scalar function ϑIK defined by

ΘIK
1 =

(
w1 − Lκ1

p w2(−λ), w2 − Lκ1
p w1(−λ)

)
=:
(
ϑIK ,−Lκ1

p ϑ
IK(−λ)

)
(5.48)

From defining the matrix

ΘIK :=
 ΘIK

1

Lκ1
p Θ̄IK

1 (λ̄)σ3

 =
 ϑIK −Lκ1

p ϑ
IK(−λ)

Lκ1
p ϑ̄

IK(λ̄) ϑ̄IK(−λ̄)

 (5.49)

and calculating
det ΘIK(0) = |ϑIK+ (0)|2+|ϑIK− (0)|2 6= 0 (5.50)

it can be seen that ΘIK
1 and Lκ1

p Θ̄IK
1 (λ̄)σ3 are both linearly independent λp-regular

solution row vectors with degree κ1. Thus κ1 = κ2 holds, but since κ1 + κ2 = 0 this
results in κ1 = κ2 = 0, which means that the row vectors constituting the fundamental
matrix feature neither zeros nor poles. However, the scalar function ϑIK still may have
zeros in points different from 0 and ∞. One such fundamental matrix of the CRHP is

61



5 Transformation to a continuous Riemann-Hilbert problem

indeed ΘIK and it can be written in normal form with the scalar solution ϑIK :

ΘIK =
 ϑIK −ϑIK(−λ)
ϑ̄IK(λ̄) ϑ̄IK(−λ̄)

 . (5.51)

According to [23], the solution to a RHP with Hölder continuous jump matrix is contin-
uous in both of the closed domains separated by the contour, which are considered to
include the contour itself. Furthermore, all solutions to the CRHP can be represented
as linear combinations of the columns of the fundamental matrix [23], so the solution
(5.51) to the CRHP is unique up to left multiplication of a matrix independent of λ or
respectively the multiplication of ϑIK with a function independent of λ if the normal
form shall be conserved.
For the normal form matrix ΘIK the jump equation ΘIK

+ = ΘIK
− GIK

c is equivalent to
the single scalar jump equation

ϑIK+ = αcϑ
IK
− + (βc − γc)ϑIK+ (−λ). (5.52)

resulting from its (1, 1)-element. Recalling (5.3) the other matrix elements

(1, 2) : −ϑIK− (−λ) = ᾱcϑ
IK
+ (−λ) + (γc + βc)ϑIK− ,

(2, 1) : ϑ̄IK− (λ̄) = αcϑ̄
IK
+ (λ̄) + (γc − βc)ϑ̄IK− (−λ̄),

(2, 2) : ϑ̄IK+ (−λ̄) = ᾱcϑ̄
IK
− (−λ̄) + (γc + βc)ϑ̄IK+ (λ̄),

reduce to (5.52) via the identities

(1, 1) = (2, 2)(−λ̄) = [(1, 2)(−λ) + (γc − βc)(1, 2)] /ᾱ

=
[
(2, 1)(λ̄) + (γc − βc)(2, 1)(−λ̄)

]
/ᾱ.

By setting γc = 0 this consideration yields also the equivalence of the original RHP
jump equation (4.33) to the scalar jump equation (4.39).

5.8 The normal form solutions of the RHP

Now the transformation (5.39) to the CRHP shall be gradually reverted, where the
normal form of the matrix solution must be ensured in each step. In the ‘even’ case
the first partial inverse transformation Θ′eK := ΘeK(Se

1)−1 directly yields a matrix in
normal form with

ϑ′
eK = Lρ1−1

1 ϑeK . (5.53)
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5.8 The normal form solutions of the Riemann-Hilbert problem

In the ‘odd’ case, analogous to the discussion in section 5.3, the linear combination
Θ′oK := ΘoK(So

1)−1− σ3ΘoK(−λ)(So
1)−1(−λ)σ1 is in normal form with the scalar func-

tion
ϑ′

oK = Lρ1−1
1 (1 + L1)ϑoK (5.54)

The second partial inverse transformation Θ̂IK = Θ′IKR−1
δ1 yields directly a matrix

Θ̂IK in normal form with

ϑ̂IK = cos δ1ϑ
′IK + i sin δ1ϑ

′IK(−λ). (5.55)

Likewise the inverse transformation Θ̃IK = Θ̂IK(UK)−1 yields a matrix Θ̃IK in normal
form with

ϑ̃IK = (wKΛK)−1ϑ̂IK . (5.56)

At last, the inverse transformation with (SK2 )−1 is treated analogously to the inverse
transformation with (SI1)−1 above. A solution ΦIK to the initial RHP is obtained which
is in normal form with one of the scalar functions

ϕIe = Lρ2−1
2 ϑ̃Ie or ϕIo = Lρ2−1

2 (1 + L2)ϑ̃Io. (5.57)

In summary, via the CRHP the four matrix solutions Φee, Φoe, Φeo and Φoo are obtained
in normal form with the scalar functions given in terms of the CRHP solutions ϑIK as

ϕee = Lρ2−1
2 (weΛe)−1

[
cos δ1L

ρ1−1
1 ϑee + i sin δ1L

1−ρ1
1 ϑee(−λ)

]
,

ϕoe = Lρ2−1
2 (weΛe)−1

[
cos δ1L

ρ1−1
1 (1 + L1)ϑoe + i sin δ1L

1−ρ1
1 (1 + L−1

1 )ϑoe(−λ)
]
,

ϕeo = Lρ2−1
2 (1 + L2)(woΛo)−1

[
cos δ1L

ρ1−1
1 ϑeo + i sin δ1L

1−ρ1
1 ϑeo(−λ)

]
, (5.58)

ϕoo = Lρ2−1
2 (1 + L2)(woΛo)−1

·
[
cos δ1L

ρ1−1
1 (1 + L1)ϑoo + i sin δ1L

1−ρ1
1 (1 + L−1

1 )ϑoo(−λ)
]
.

The solution of the four scalar jump equations (5.52) and the construction of these
RHP solutions is subsumed in step (iib) of the solution scheme in figure 3.1.

63



6 Holomorphicity conditions for
solutions of the linear problem

In this chapter a LP solution ΦLP is constructed out of the four independent RHP
solutions in (5.58). Via a rather technical investigation of the terms in ΦLP

f (ΦLP)−1 and
ΦLP
g (ΦLP)−1 its holomorphicity conditions are shown to reduce to two purely algebraic

relations. They can in general be fulfilled and even seem to be not fully determining for
ΦLP, which may lead to the generation of a class of solutions. At the end of the chapter
partially rather heuristic considerations of the limits f → 1

2 and g → 1
2 are presented

including interesting conjectures for the evaluation of the colliding wave conditions for
the Ernst potential inferred from ΦLP.

6.1 Construction of the solution to the linear problem

As investigated in section 4.3, the remaining freedom in an unnormalised RHP solution
in normal form with ϕ consists in the multiplication of ϕ with a function of f and g.
Therefore the most general ansatz for a LP solution is the linear combination of the
four RHP solutions (5.58), which can be expressed on matrix and scalar level as

ΦLP = Φoo + diag(p, p̄)Φeo + diag(q, q̄)Φoe + diag(r, r̄)Φee, (6.1)

ϕLP = ϕoo + pϕeo + qϕoe + rϕee. (6.2)

A fourth coefficient would be redundant since the solution will be subject to a subse-
quent normalisation. With this solution the LP matrices can be represented as

U = ΦLP
f (ΦLP)−1, V = ΦLP

g (ΦLP)−1. (6.3)

The ϕ-coefficients p, q and r are functions of the coordinates f and g and have to be
arranged to make U holomorphic in Cλ\{∞} and V holomorphic in Cλ\{0}. These
are the generic holomorphicity conditions (4.41), which will be specified now for the
ansatz (6.1). A preliminary investigation of det ΦLP will be useful before the direct
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6.2 Holomorphicity condition for det ΦLP at λ2

consideration of U and V .

In section 4.1 the LP solution was shown to feature det ΦLP = E + Ē and so the
determinant has to be independent of λ. On the other hand, the determinant det ΦLP

is composed of the four independent RHP solutions ϕIK in (5.58) and thus, due to the
absence of poles in the four CRHP solutions ϑIK , the determinant det ΦLP can only
inherit the poles at ±λ1/2 from L±1

1/2. Since detGJ = 1, the determinant det ΦLP has
no jump on the contour Γ< and is hence, according to Lemma 1, holomorphic up to
the contour endpoints ±λ1/2. Since det ΦLP(−λ) = det ΦLP because of the normal form
(cf. (4.19)), for det ΦLP to be independent of λ it is sufficient to assure that det ΦLP

has no isolated singularities at λ1/2.

6.2 Holomorphicity condition for det ΦLP at λ2

In order to derive a first necessary condition for the ϕ-coefficients from the λ-independence
of det ΦLP, after insertion of (5.58) the constituents of ϕLP regular in λ2 are collected
in the two functions

ψe
2 := (weΛe)−1{cos δ1L

ρ1−1
1

[
(1 + L1)ϑoe + q−1rϑee

]
+ i sin δ1L

1−ρ1
1

[
(1 + L−1

1 )ϑoe(−λ) + q−1rϑee(−λ)
]
}, (6.4)

ψo
2 := (woΛo)−1{cos δ1L

ρ1−1
1 [(1 + L1)ϑoo + pϑeo]

+ i sin δ1L
1−ρ1
1

[
(1 + L−1

1 )ϑoo(−λ) + pϑeo(−λ)
]
}. (6.5)

Using these expressions the scalar LP solution can be represented as

ϕLP(λ) = Lρ2−1
2 [(1 + L2)ψo

2 + qψe
2] . (6.6)

Considering (5.53) and (5.54), the functions ψK2 can be regarded as scalar solutions of
the ERHP with the jump matrix G̃K

J := (SK2−)−1GJS
K
2+ obtained after the first singular-

ity transformation which removed the discontinuity at ±λ2. Because of G̃K
J (±λ2) = 1

these scalar solutions have no jump at ±λ2:

ψK2+(±λ2) = ψK2−(±λ2). (6.7)
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6 Holomorphicity conditions for solutions of the linear problem

Inserting (6.6) and remembering the properties (4.68) of L1/2, the part of det ΦLP

proportional to L2 can be identified by1

det ΦLP = ϕ̄LP(λ̄)ϕLP(−λ) + c.c. =
(
ψ̄o

2(λ̄) [ψo
2(−λ) + qψe

2(−λ)] + c.c.
)
L2 +R, (6.8)

where R is the remainder consisting of a term proportional to L−1
2 and a term inde-

pendent of L2. Due to (6.7) the prefactor in front of L2 in (6.8) has a unique value at
λ = λ2 and its vanishing at this point is equivalent to

(κ2 + κ̄2)|ψo
2(λ2)|2= 0, κ2 := (ψo

2(λ2))−1 [ψo
2(−λ2) + qψe

2(−λ2)] . (6.9)

If (6.9) holds, then (λ−λ2) det ΦLP is zero at λ = λ2, which excludes a pole of det ΦLP

at λ2 as well as an essential singularity. Therefore det ΦLP is regular at λ2. If on the
other hand (6.9) does not hold, then det ΦLP has a pole of first order in λ2 and because
of its symmetry also in −λ2. Hence (6.9) is equivalent to the holomorphicity of det ΦLP

at ±λ2 and a necessary condition for the coefficients p, q and r to obtain a LP solution
from the linear combination (6.1).

6.3 Holomorphicity condition for det ΦLP at λ1

The derivation of a holomorphicity condition for det ΦLP at λ1 is similar to the proce-
dure above, though a bit more involved since the dependency of det ΦLP on L1 is more
complicated than its dependency on L2. At first it is beneficial to introduce for the
prefactors of the scalar solutions ϕIK the notation

He := Lρ2−1
2 (weΛe)−1, Ho := Lρ2−1

2 (1 + L2)(woΛo)−1. (6.10)

Due to the definitions and the properties of wI and ΛI described in section 5.4,
wK(λ1)ΛK(λ1) has the following values:

we(λ1)Λe(λ1) = Lρ2−1
12 ,

wo(λ1)Λo(λ1) = L
ρ2− 1

2
12 ,

with L12 := L1(λ2) = L2(λ1) = λ1 + λ2

λ1 − λ2
. (6.11)

This yields for He and Ho at ±λ1:

He(−λ1) = 1 = He(λ1), Ho(−λ1) = L
−1/2
12 + L

1/2
12 = Ho(λ1). (6.12)

1The reader may be reminded of this work’s convention a(λ) + c.c. := a(λ) + ā(λ̄).
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6.3 Holomorphicity condition for det ΦLP at λ1

In particular He and Ho have no jump at ±λ1. Moreover, these functions obey
H̄K(λ̄) = HK because the corresponding relations hold already for wK, ΛK and L2.
The constituents of ϕLP regular in ±λ1 (with indices p and m abbreviating ‘plus’ and
‘minus’) can be collected in the four functions2

ψe
1p := Hoϑeo + r

p
Heϑee,

ψo
1p := Hoϑoo + qHeϑoe,

ψe
1m := Hoϑeo(−λ) + r

p
Heϑee(−λ),

ψo
1m := Hoϑoo(−λ) + qHeϑoe(−λ).

(6.13)

With these functions the scalar LP solution ϕLP from (6.2) can be expressed as

ϕLP(λ) = cos δ1L
ρ1−1
1 (1 + L1)ψo

1p + i sin δ1L
1−ρ1
1 (1 + L−1

1 )ψo
1m

+ p
[
cos δ1L

ρ1−1
1 ψe

1p + i sin δ1L
1−ρ1
1 ψe

1m

]
. (6.14)

Because of GIK
c (±λ1) = 1 the scalar CRHP solution ϑIK has no jump in ±λ1 and thus

evaluating (6.13) at ±λ1 using (6.12) leads to

ψK1p+(±λ1) = ψK1p−(±λ1) = ψK1m+(∓λ1) = ψK1m−(∓λ1). (6.15)

Unlike the situation at λ2, during the calculation of det ΦLP out of (6.14) terms pro-
portional to various powers of L1 occur, but only the terms with L2ρ1

1 and L1 could
potentially lead to an isolated singularity because they have an exponent greater or
equal to one. The prefactor (i sin δ1 cos δ1ψ̄

o
1p(λ̄)ψo

1m(−λ) + c.c.) in front of L2ρ1
1 in

det ΦLP can be converted in the following way:

i sin δ1 cos δ1ψ̄
o
1p(λ̄)ψo

1m(−λ) + c.c. (6.16)

= i sin δ1 cos δ1
[
Hoϑ̄oo(λ̄) + q̄Heϑ̄oe(λ̄)

]
[Ho(−λ)ϑoo + qHe(−λ)ϑoe] + c.c.

= i sin δ1 cos δ1
[
qHe(−λ)Hoϑoeϑ̄oo(λ̄) + q̄HeHo(−λ)ϑ̄oe(λ̄)ϑoo

]
+ c.c.

= i sin δ1 cos δ1 [He(−λ)Ho −HeHo(−λ)]
[
qϑoeϑ̄oo(λ̄) + c.c.

]
In the last line the term

[He(−λ)Ho −HeHo(−λ)] = (1 + L2)weΛe(woΛo)−1 + (1 + L−1
2 )(weΛe)−1woΛo

is zero at λ1 because of (6.12). Due to the regular definitions of wK, ΛK and L2 at λ1

this is at least a (linear) simple zero at both sides of the contour (i.e. from both sides
of the contour an analytical continuation in a neighbourhood of λ1 exists and these

2Note that due to the λ-dependence of HK the relation ψK1p(λ) = ψK1m(−λ) does not hold in general.
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6 Holomorphicity conditions for solutions of the linear problem

analytical continuations have at least simple zeros in λ1). Therefore the L2ρ1
1 -term does

not contribute to
[
(λ− λ1) det ΦLP

]
λ=λ1

.
The coefficient in front of L1 reads:

cos2 δ1ψ̄
o
1p(λ̄)

(
ψo

1p(−λ) + pψe
1p(−λ)

)
+ sin2 δ1ψ

o
1m(−λ)

(
ψ̄o

1m(λ̄) + p̄ψ̄e
1m(λ̄)

)
+ c.c.

Considering (6.15) it has a definite value at the point λ1 whose vanishing is equivalent
to

(κ1 + κ̄1)|ψo
1p(λ1)|2= 0, κ1 := (ψo

1p(λ1))−1
[
ψo

1p(−λ1) + pψe
1p(−λ1)

]
. (6.17)

If and only if this relation holds, then (λ − λ1) det ΦLP is zero at λ1. Using the same
argument than above at λ2, equation (6.17) is equivalent to the holomorphicity of
det ΦLP at ±λ1 and a necessary condition for the coefficients p, q and r to obtain a
LP solution from the linear combination (6.1). Both (6.9) and (6.17) together are
equivalent to the holomorphicity of det ΦLP throughout Cλ and hence to the statement
that det ΦLP is independent of λ.

6.4 Construction of the LP matrices U and V

Assuming that (6.9) and (6.17) are fulfilled and hence det ΦLP is independent of λ, it
is useful to express the LP matrix U defined by (6.3) through

detΦLPU =
 ϕLP

f −ϕLP
f (−λ)

ϕ̄LP
f (λ̄) ϕ̄LP

f (−λ̄)

ϕ̄LP(−λ̄) ϕLP(−λ)
−ϕ̄LP(λ̄) ϕLP


=
 ϕLP

f ϕ̄LP(−λ̄) + ϕLP
f (−λ)ϕ̄LP(λ̄) ϕLP

f ϕLP(−λ)− ϕLP
f (−λ)ϕLP

ϕ̄LP
f (λ̄)ϕ̄LP(−λ̄)− ϕ̄LP

f (−λ̄)ϕ̄LP(λ̄) ϕ̄LP
f (λ̄)ϕLP(−λ) + ϕ̄LP

f (−λ̄)ϕLP

 (6.18)

and V through an analogous expression. As discussed in section 4.3, since GJ is only
a function of k the LP matrices U and V calculated via (6.3) have no jump on Γ<.
Like the determinant det ΦLP they can only inherit poles of L±1

1/2 at ±λ1/2. In addition,
considering the formulae for λf and λg in (3.2), a pole in U can arise at λ =∞ and a
pole in V can arise at λ = 0. In consequence, U and V are holomorphic in Cλ\{∞}
and Cλ\{0} respectively, as required by the holomorphicity conditions (4.41), if and
only if the ϕLP-coefficients p, q and r can be arranged so that isolated singularities at
±λ1/2 are prevented.
Due to the symmetries of (6.18) it is again sufficient to investigate only the points λ1/2.
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6.5 Holomorphicity condition for the LP matrices at λ2

Furthermore, thanks to U22 = Ū11(λ̄) and U21 = Ū12(λ̄) only the matrix elements U11

and U12 as well as analogously V11 and V12 have to be considered. Another very useful
circumstance is that using the formulae for λf and λg in (3.2) the derivatives of L1/2

can be expressed by

L1f = − λλ1

f + g
L1, L2f = − λλ2

f + g
L2, (6.19)

L1g = − 1
λλ1(f + g)L1, L2g = − 1

λλ2(f + g)L2. (6.20)

Therefore at λ1/2 the exponents of L1/2 and hence also the divergent behaviour of
powers of L1/2 is preserved under the coordinate derivatives, although the positions
±λ1/2 of these singularities do depend on f and g. This is an artefact of the discussion
on the λ-sphere, whereas on the k-surface the positions k = ±1

2 are fixed.

6.5 Holomorphicity condition for the LP matrices at λ2

Since the restriction to λ = λ2 is solely enforced by setting k = 1
2 , inserting λ = λ2

and taking coordinate derivatives commutes, e.g. ψK2f |λ=±λ2= [ψK2 (±λ2)]f =: ψK2f (±λ2).
Hence from (6.7) follow the analogous relations for the derivatives of ψK2 (±λ2):

ψK2f+(±λ2) = ψK2f−(±λ2), ψK2g+(±λ2) = ψK2g−(±λ2). (6.21)

The prefactor in front of L2 in (det ΦLP)U12 = ϕLP
f ϕLP(−λ)− ϕLP

f (−λ)ϕLP reads
(
ψo

2f − ρ2
λλ2

f + g
ψo

2

)
[ψo

2(−λ) + qψe
2(−λ)]

− ψo
2

(
[ψo

2(−λ) + qψe
2(−λ)]f − (1− ρ2) λλ2

f + g
[ψo

2(−λ) + qψe
2(−λ)]

)

Using the definition (6.9) of κ2, the vanishing of this expression at λ2 is easily seen to
be equivalent to (

κ2f + (2ρ2 − 1) λ2
2

f + g
κ2

)
(ψo

2(λ2))2 = 0. (6.22)

For ψo
2(λ2) 6= 0 this leads together with the analogous calculation for (det ΦLP)V12 to

the following two differential equations holding for k = 1
2 and arbitrary (f, g):

(ln κ2)f = (1− 2ρ2) λ2
2

f + g
, (ln κ2)g = (1− 2ρ2) λ−2

2
f + g

. (6.23)

69



6 Holomorphicity conditions for solutions of the linear problem

The system is integrable and has the solution

κ2 = iC2

(
(1

2 + f)(1
2 − g)

f + g

)2ρ2−1

, C2 ∈ C (6.24)

where (6.9) yields even C2 ∈ R. The exceptional solution ψo
2(λ2) = 0 ∀(f, g) to (6.22)

will be discussed in section 6.7.

The prefactor in front of L2 in (det ΦLP)U11 = ϕLP
f ϕ̄LP(−λ̄) + ϕLP

f (−λ)ϕ̄LP(λ̄) is
(
ψo

2f − ρ2
λλ2

f + g
ψo

2

) [
ψ̄o

2(−λ̄) + q̄ψ̄e
2(−λ̄)

]
+ ψ̄o

2(λ̄)
(

[ψo
2(−λ) + qψe

2(−λ)]f − (1− ρ2) λλ2

f + g
[ψo

2(−λ) + qψe
2(−λ)]

)

and its vanishing at λ2 is equivalent to[
κ2f + (2ρ2 − 1) λ2

2
f + g

κ2 + (κ2 + κ̄2)
(
ψo

2f (λ2)
ψo

2(λ2) − ρ2
λ2

2
f + g

)]
|ψo

2(λ2)|2= 0. (6.25)

This equation is automatically fulfilled if (6.9) and (6.22) hold. The same applies to
the prefactor in front of L2 in (det ΦLP)V11.

6.6 Holomorphicity condition for the LP matrices at λ1

Due to (6.19) and (6.20), the expressions (det ΦLP)U11 and (det ΦLP)U12 feature powers
of L1 with the same variety of exponents as det ΦLP. Again only the terms containing
L2ρ1

1 and L1 could lead to isolated singularities at λ1. It will be shown that due to the
regular behaviour of the functions HK defined in (6.10) with HK(−λ1) = HK(λ1) and
its derivatives, the coefficients of L2ρ1

1 all contain at least simple zeros on both sides of
the contour. Since under this condition such terms are bounded by Cλ1(λ−λ1)2ρ1−1 at
λ = λ1 for some Cλ1 , it can be concluded that they cannot lead to isolated singularities
at λ1. At first the prefactor in front of L2ρ1

1 in (det ΦLP)U11 shall be considered, which
takes the form

sin 2δ1

2i

[
ψo

1pf ψ̄
o
1m(−λ̄)− ψo

1mf (−λ)ψ̄o
1p(λ̄)− ρ2

λλ2

f + g

(
ψ̄o

1p(λ̄)ψo
1m(−λ)− c.c.

)]
.

Herein the last term inside the square brackets is proportional to (6.16) and can there-
fore not lead to isolated singularities as discussed above. Inserting (6.13) the first and
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6.6 Holomorphicity condition for the LP matrices at λ1

the second term together admit of the following conversion:

1
2i sin 2δ1

[
ψo

1pf ψ̄
o
1m(−λ̄)− ψo

1mf (−λ)ψ̄o
1p(λ̄)

]
= 1

2i sin 2δ1
[
(Hoϑoo + qHeϑoe)f

(
Ho(−λ)ϑ̄oo(λ̄) + q̄He(−λ)ϑ̄oe(λ̄)

)
− (Ho(−λ)ϑoo + qHe(−λ)ϑoe)f

(
Hoϑ̄oo(λ̄) + q̄Heϑ̄oe(λ̄)

)]
= 1

2i sin 2δ1

[
(HoHe(−λ)−Ho(−λ)He)

(
ϑoo
f q̄ϑ̄

oe(λ̄)− (qϑoe)f ϑ̄oo(λ̄)
)

(6.26)

+
(
Ho
fH

o(−λ)−Ho
f (−λ)Ho

)
ϑooϑ̄oo(λ̄) +

(
He
fH

e(−λ)−He
f (−λ)He

)
|q|2ϑoeϑ̄oe(λ̄)

+
(
Ho
fH

e(−λ)−Ho
f (−λ)He

)
ϑooq̄ϑ̄oe(λ̄) +

(
He
fH

o(−λ)−He
f (−λ)Ho

)
qϑoeϑ̄oo(λ̄)

]

A thorough study of the definitions of the quantities contained in the functions HK and
HK
f reveals that for f < 1

2 they can be analytically continued in a neighbourhood of
k = −1

2 from both sides of the contour. Furthermore, from HK(λ1) = HK(−λ1) ∀(f, g)
derived in section 6.3 follows HK

f (λ1) = HK
f (−λ1). Therefore, taking also into account

the regularity of HK and HK
f at ±λ1, all the brackets containing HK(±λ) and HK

f (±λ)
on the right hand side of (6.26) have at least a simple zero at λ1 from both sides of the
contour. Thus the terms in (6.26) do not yield isolated singularities at λ1.

An analogous treatment of the prefactor in front of L2ρ1
1 in (det ΦLP)U12 results in the

expression

i
2 sin 2δ1

[
(HoHe(−λ)−Ho(−λ)He)

(
ϑoo
f qϑ

oe − (qϑoe)ϑoo
)

(6.27)

+
(
Ho
fH

o(−λ)−Ho
f (−λ)Ho

)
ϑooϑoo +

(
He
fH

e(−λ)−He
f (−λ)He

)
|q|2ϑoeϑoe

+
(
Ho
fH

e(−λ)−Ho
f (−λ)He +He

fH
o(−λ)−He

f (−λ)Ho
)
qϑoeϑoo

]
.

Again all the brackets containing HK(±λ) and HK(±λ)f in (6.27) have at least a
simple zero at λ1 from both sides of the contour and therefore these terms do not
yield isolated singularities at λ1 for f < 1

2 . In summary, the terms containing L2ρ1
1 in

(det ΦLP)U12 and (det ΦLP)U11 do not give rise to isolated singularities in case of f < 1
2

and the same result is obtained for (det ΦLP)V12 and (det ΦLP)V11 in case of g < 1
2 . The

study of the limits f → 1
2 and g → 1

2 is more involved and will be discussed in section
6.7.

The evaluation of the prefactors in front of L1 in the LP matrix elements is similar to
the investigation in section 6.5, but additionally the relation (6.15) between ψK1p(±λ1)
and ψK1m(±λ1) as well as its derivatives have to be used. This yields the analogous
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6 Holomorphicity conditions for solutions of the linear problem

holomorphicity conditions for (det ΦLP)U12 and (det ΦLP)U11,(
κ1f + (2ρ1 − 1) λ2

1
f + g

κ1

)
(ψo

1p(λ1))2 = 0, (6.28)[
κ1f + (2ρ1 − 1) λ2

1
f + g

κ1 + (κ1 + κ̄1)
(
ψo

1pf (λ1)
ψo

1p(λ1) − ρ1
λ2

1
f + g

)]
|ψo

1p(λ1)|2 = 0 (6.29)

and corresponding relations for (det ΦLP)V12 and (det ΦLP)V11. Again, (6.29) is auto-
matically fulfilled if (6.17) and (6.28) hold.

Equation (6.28) has a solution analogous to (6.24), wherein also the condition (6.17)
inferred from the holomorphicity of the determinant confines κ1 to be purely imaginary.
With real constants C1 and C2, the full system of holomorphicity conditions can be
stated as

κ2 = iC2

(
(1

2 + f)(1
2 − g)

f + g

)2ρ2−1

=: iC2L
2ρ2−1
02 , C2 ∈ R,

κ1 = iC1

(
(1

2 − f)(1
2 + g)

f + g

)2ρ1−1

=: iC1L
2ρ1−1
01 , C1 ∈ R.

(6.30)

These relations assure that the combined holomorphicity conditions at λ2, (6.9), (6.22)
and (6.25) as well as their V -counterparts, and the combined holomorphicity condi-
tions at λ1, (6.17), (6.28) and (6.29) as well as their V -counterparts respectively are
fulfilled. However, at this stage there are also the exceptional solutions ψo

2(λ2) = 0 for
the combined holomorphicity conditions at λ2 and ψo

1p(λ1) = 0 for the combined holo-
morphicity conditions at λ1. They will be excluded on a heuristic level by an argument
in section 6.7.

In order to determine the LP solution from the linear combination of the RHP solutions,
the equations (6.30) have to be solved, which represents step (iii) of the solution scheme
in figure 3.1. The convenience of these two purely algebraic relations is essential for
the performance of the whole ISM: it would not have been very beneficial for solving
the IVP of the Ernst equation if the ISM had led to an equally challenging system of
holomorphicity conditions.

Another aspect of the solution procedure becoming evident in (6.30) is that these are
two equations for the three ϕLP-coefficients p, q and r. Therefore a function of f and g
may be left free to choose in the scalar LP solution ϕLP and thus the ISM may serve as
a solution generating technique, which will be confirmed in chapter 7. However, from
the above discussion it is not clear that the ‘right’ LP solution uniquely associated with
the IVP definitely lies in the class of solutions generated via the ISM.
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6.7 Behaviour of the Riemann-Hilbert problem solution for g→ 1
2 and f→ 1

2

6.7 Behaviour of the RHP solution for g→ 1
2 and f→ 1

2

The last section is devoted to a study of the RHP and its solutions near the wave fronts,
i.e. in the limits f → 1

2 , which implies λ1 → ∞ and L1 → 1, as well as g → 1
2 , which

implies λ2 → 0 and L2 → 1. In particular it collects interesting considerations concern-
ing these limits, which cannot be formulated as rigorous statements within the scope
of this work. Again, the discussion benefits a lot from consulting the transformation
to the CRHP.
For g → 1

2 the contour part Γ2 contracts symmetrically around the point λ = 0. At
first it shall be investigated if the limit of the ERHP solution for g → 1

2 is indeed the
solution for the ERHP with

GJ1 :=

J, λ ∈ Γ1;

1 else.
(6.31)

i.e. for the ERHP formulated as if the contour part Γ2 never had existed.
Note that the ERHP jump matrix GJ converges pointwise to GJ1 only for λ 6= 0,
whereas its limit at λ = 0 is the boundary value of the jump matrix,

lim
g→ 1

2

GJ(0) = J2b = diag(e−2πiρ2 , e2πiρ2). (6.32)

On the other hand, the singularity transformation matrices SK2 defined in (5.18) con-
verge pointwise to 1 for λ 6= 0 and at λ = 0 their (f, g)-independent values read

SK2+(0) = diag(eπiρ2 , e−πiρ2), SK2−(0) = diag(e−πiρ2 , eπiρ2). (6.33)

Therefore the ERHP jump matrix G̃K
J := (SK2−)−1GJS

K
2+ after the first singularity

transformation converges pointwise to GJ1 . Because of limg→ 1
2
UK = 1 throughout Γ<,

the corresponding CRHP matrix converges also to the CRHP matrix obtained from
GJ1 via rotation transformation and the second singularity transformation,

lim
g→ 1

2

GIK
c = (SI1−)−1R−1

δ1 GJ1Rδ1S
I
1+. (6.34)

Similarly, also the pointwise convergence

lim
f→ 1

2

GIK
c = R−1

δ1 (SK2−)−1GJ2S
K
2+Rδ1 , GJ2 :=

J, λ ∈ Γ2;

1 else.
(6.35)
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6 Holomorphicity conditions for solutions of the linear problem

can be established. In particular these limiting values are independent of the values
of K and I respectively, which means that the corresponding pairs of solutions are
reunited for g = 1

2 and f = 1
2 respectively. A numerical analysis suggests even the

uniform convergence of GIK
c for f → 1

2 and for g → 1
2 .

In the combined limit f, g → 1
2 , the CRHP jump matrix converges pointwise to 1, which

trivially corresponds to the ERHP with GJ = 1. The unique scalar solution without
zeros and poles to this ERHP is ϕ(1

2 ,
1
2) = const, where the constant is set to 1 in case of

a RHP normalised by ϕ(−1) = 1. This coincides with the normalisation ϕLP(1
2 ,

1
2) = 1

of the LP. If it could be shown that the pointwise convergence of the CRHP jump
matrix to a Hölder continuous limit GIK∗

c implies the pointwise convergence of the
CRHP solution to the solution of the CRHP with GIK∗

c , then the right normalisation
of LP solutions obtained from RHP solutions would be proven. Regrettably, to the
knowledge of the author no such statement exists.

However, other evidence for the regularity of the RHP solution at f → 1
2 and g → 1

2

stems from an approximate solution for f ≈ 1
2 and g ≈ 1

2 , which is motivated in the
following way:

For g = 1
2 − ε, ε� 1 the contour in the k-surface contracts to the twofold covering of

[1
2 − ε,

1
2 ]. On this interval the difference3 ||J(k)−J2b||∞ between the jump matrix and

its constant boundary value is bounded due to the Lipschitz continuity of J(k). In the
limit g → 1

2 the deviation ||J(k)− J2b||∞ goes to zero.

On the other hand, exact solutions of the ERHP with the constant jump matrix
GJ = J2b on Γ2 and vanished contour Γ1 (i.e. f = 1

2 and GJ |Γ<\Γ2= 1) can be
obtained. The two independent solutions with a divergence exponent lower than one
have the (unnormalised) scalar solutions

ϕ20 = Lρ2
2 , ϕ21 = Lρ2−1

2 (6.36)

introduced in section 4.5. This fits perfectly to the representation (6.6) of the linear
combination ϕLP, which also contains only terms proportional to Lρ2

2 and Lρ2−1
2 .

Similarly, the ERHP with constant jump matrix GJ = J1b on the other contour Γ1

and vanished Γ2 (i.e. g = 1
2 and GJ |Γ<\Γ1= 1) is exactly solved by the scalar solutions

ϕ′10 = Lρ1
1 and ϕ′11 = Lρ1−1

1 in an x-y-frame where J1b is diagonal. For this work’s
standard frame where J2b is diagonal, a rotation transformation of ϕ′10 and ϕ′11 with

3The expression ||J(k)−J2b||∞:= supk∈[ 1
2−ε,

1
2 ]|J(k)−J2b| denotes the uniform norm on the interval

[ 1
2 − ε,

1
2 ].
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6.7 Behaviour of the Riemann-Hilbert problem solution for g→ 1
2 and f→ 1

2

R−δ1 yields the (unnormalised) solutions

ϕ10 = Lρ1
1 + i tan δ1L

−ρ1
1 , ϕ11 = Lρ1−1

1 + i tan δ1L
1−ρ1
1 . (6.37)

In a further step it can be observed that the value of the linear combination
ϕ2 := ϕ20 +a2(f, g)ϕ21 solving the scalar jump equation for constant jump functions on
Γ2 goes to the λ-independent value 1 +a2(f, g) on the other contour part Γ1 in both of
the limits f → 1

2 or g → 1
2 . A corresponding statement holds for ϕ1 := ϕ10+a1(f, g)ϕ11.

Hence the scalar solution of a RHP with constant jump matrices on both contour parts
Γ1/2 is expected to be approximated by the product ϕ1ϕ2 for f ≈ 1

2 and g ≈ 1
2 . In

conclusion, the scalar solution of a general RHP is conjectured to behave for f ≈ 1
2

and g ≈ 1
2 like the approximate solution

ϕ∗ = ϕ1ϕ2 = (Lρ2
2 + a2L

ρ2−1
2 )

[
(Lρ1

1 + a1L
1−ρ1
1 ) + i tan δ1(L−ρ1

1 + a1L
ρ1−1
1 )

]
(6.38)

based on the two assumptions:

• solutions are expected to converge to constant jump solutions for f, g → 1
2 ,

• scalar solutions are expected to factorise into two solutions solving the scalar
jump equation on each partial contour separately for f, g → 1

2 .

In the double limit f, g → 1
2 the approximation ϕ∗ has indeed the λ-independent

value (1 + a2)(1 + a1)(1 + i tan δ1) and thus an approximate LP solution with the right
normalisation is obtained by ϕ∗LP = ϕ∗/ϕ∗(−1).
Finally, it is especially instructive to evaluate the colliding wave conditions (2.48) for
ϕ∗. Using the Ernst potential E∗ = ϕ∗(1)/ϕ∗(−1) corresponding to the normalised
RHP solution, the first condition yields

1
2 lim
g→ 1

2

[√
1
2 − gE

∗
g (1

2 , g)
]

= −ρ2 +
a2(1

2 ,
1
2)

1 + a2(1
2 ,

1
2) . (6.39)

Remembering φB = π arranged by the choice of x and y made at the end of section
(5.2), this matches the definition (4.54) of ρ2 only for a2(1

2 ,
1
2) = 0. Evaluation of the

second colliding wave condition is most easily done in coordinates diagonalising J1b

and leads similarly to a1(1
2 ,

1
2) = 0. This suggests that for scalar solutions giving rise

to Ernst potentials matching the colliding wave conditions, the approximation (6.38)
can be refined to

ϕ(f ≈ 1
2 , g ≈

1
2) ≈ ϕ∗∗ = Lρ2

2 (Lρ1
1 + i tan δ1L

−ρ1
1 ). (6.40)
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6 Holomorphicity conditions for solutions of the linear problem

In this sense the colliding wave conditions seem to require the terms with divergence
exponents ρ1/2 in ϕ to be dominant in the limit f, g → 1

2 . Considering the represen-
tation (6.6) of the scalar LP solution, ϕLP approaches ϕ∗∗ for [ψo

2 + qψe
2]f= 1

2 ,g=
1
2

= 0.
This can be seen to be equivalent to

qϑoe + rϑee

ϑoo + pϑeo

∣∣∣∣∣
f= 1

2 ,g=
1
2

= 1. (6.41)

Analogously the colliding wave condition for Ef (1
2 ,

1
2) seems to imply

pϑeo + rϑee

ϑoo + qϑoe

∣∣∣∣∣
f= 1

2 ,g=
1
2

= 1. (6.42)

Equations (6.41) and (6.42) are supposed to be conditions for the remnant degrees of
freedom in the coefficients p, q and r which assure that the colliding wave conditions
hold and thus a proper colliding wave spacetime is generated. These are only two
(constant) conditions, whereas the discussion at the end of the last section implied
that a functional degree of freedom could be left undetermined by the holomorphicity
conditions (6.30). Therefore, a whole class of spacetimes may result from the ISM and
the Ernst potential matching the initial data may have to be identified within this
class, which is the last step (iv) of the solution scheme in figure 3.1.
Moreover, the exceptional solution ψo

1/2(λ1/2) = 0 to the holomorphicity conditions
would eliminate the terms with divergence exponent ρ1/2 in ϕLP for all f and g and
hence should be excluded on the basis of this discussion.
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7 Example: Generalisation of the
Szekeres class of solutions

In order to exemplify the solution generation technique embedded in the described
inverse scattering procedure, the generalisation of the Szekeres class of collinearly po-
larised colliding wave spacetimes [31] is studied. This class is a unification of the
first exact colliding plane wave solutions including the one of K. A. Khan and Roger
Penrose [40] and a step wave solution found even earlier by George Szekeres [39].

The treatment of the Szekeres class of solutions with the ISM leads to a generalised
family of colliding wave spacetimes. The initial waves can be regarded as having a
specific chirality and the metric functions as well as derived quantities feature inter-
esting structures depending on the relation of the initial waves’ chiralities. Moreover,
this class of solutions features a limit of what could be called ‘circularly polarised im-
pulsive waves’. Finally, the singularity at f + g = 0 is shown to be a scalar curvature
singularity.

7.1 General solution of the linear problem

Remarkably, the Szekeres class of collinearly polarised vacuum solutions also corre-
sponds to a very easy solution in terms of the ISM. Using the abbreviation

L1/2p := L1/2(1) = L−1
1/2(−1), (7.1)

the Ernst potential of the Szekeres class reads ESz = L2ρ1
1p L

2ρ2
2p with the exponents ρ1/2

varying in the range (4.56) prescribed by the colliding wave conditions. This ESz can
be regarded as the associated Ernst potential of a RHP with scalar solution

ϕSz = Lρ1
1 L

ρ2
2 . (7.2)
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7 Example: Generalisation of the Szekeres class of solutions

The piecewise constant jump matrix of the associated matrix solution ΦSz is given by

J =
α 0

0 ᾱ

 with α =


e−2πiρ2 on Γ2,

e2πiρ1 on Γ1,

1 else.

(7.3)

Since it is diagonal everywhere on Γ<, the corresponding spacetime in particular lies in
the class of initially collinearly polarised GWs and it follows that Rδ1 = 1. Furthermore,
there is actually no need for the unitarisation transformation with UK . However, in
order to illustrate the ISM procedure, the derivation presented here will make use of
the full transformation formula (5.40) maintaining also the transformation with UK .
This leads to the CRHP jump matrix

GIK
c = diag(αK , ᾱK), αK = (wK+ )2 sign2(ΛK

+ ) (7.4)

and the scalar CRHP solutions ϑIK = wKΛK . Via inverse transformation the four
different scalar RHP solutions

ϕee = Lρ1−1
1 Lρ2−1

2 , ϕoe = Lρ1−1
1 Lρ2−1

2 (1 + L1), (7.5)

ϕeo = Lρ1−1
1 Lρ2−1

2 (1 + L2), ϕoo = Lρ1−1
1 Lρ2−1

2 (1 + L1)(1 + L2). (7.6)

are obtained. The holomorphicity conditions imposed on the linear combination
ϕLP = ϕoo + pϕeo + qϕoe + rϕee to satisfy the corresponding LP read

κ2 = (ψo
2(λ2))−1 [ψo

2(−λ2) + qψe
2(−λ2)] != iC2L

2ρ2−1
02 , (7.7)

κ1 = (ψo
1p(λ1))−1

[
ψo

1p(−λ1) + pψe
1p(−λ1)

] != iC1L
2ρ1−1
01 (7.8)

with C1/2 ∈ R, L01/2 defined in (6.30) and

ψe
2 = Lρ1−1

1 [(1 + L1) + r/q] , ψo
2 = Lρ1−1

1 [(1 + L1) + p] , (7.9)

ψe
1p = Lρ2−1

2 [(1 + L2) + r/p] , ψo
1p = Lρ2−1

2 [(1 + L2) + q] . (7.10)

Using the identity 1 +L1L2−L12(L1 +L2) = 0, they can be solved for p and q to give
the LP solution

ϕLP = Lρ1
1 L

ρ2
2

[
1− L2

12 + L2
12

(
1 + iC1L

2ρ1−1
01 L2ρ2−2

12 L−1
1

) (
1 + iC2L

2ρ2−1
02 L2ρ1−2

12 L−1
2

)]
.

(7.11)
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7.2 Metric functions

The corresponding Ernst potential E = ϕLP(1)/ϕLP(−1) obeys the Ernst equation and
the colliding wave conditions without further restrictions. Since L01/2 → 0 and L12 → 1
in the double limit f, g → 1

2 , this can be regarded as corresponding to the fact that
ϕLP has the right limiting behaviour ϕLP(f ≈ 1

2 , g ≈
1
2) = Lρ1

1 L
ρ2
2 suggested by (6.40).

For this class of solutions the third functional degree of freedom not determined by
the two holomorphicity conditions turns out to be an overall factor in ϕ, which has
already been omitted in (7.11) due to its insignificance for the physical Ernst potential.
Nevertheless, the two scalar real parameters C1/2 remain, in terms of which (7.11) is
a generalisation of the Szekeres class (7.2). The scalar RHP solution ϕSz = Lρ1

1 L
ρ2
2

corresponding to the original Szekeres class is reproduced for C1 = 0 = C2. The
special cases C2 = 0 and C1 = 0 correspond to the ‘unilateral’ generalised Szekeres
classes

ϕLP
1 = Lρ1−1

1 Lρ2
2 (L1 + iC1L

2ρ1−1
01 L2ρ2

12 ),

ϕLP
2 = Lρ1

1 L
ρ2−1
2 (L2 + iC2L

2ρ2−1
02 L2ρ1

12 ).
(7.12)

Note that also for the limiting case ρ1/2 = 1
2 of impulsive waves, which had been

excluded in the derivation of the CRHP, the expression (7.11) leads to a solution of
the Ernst equation fulfilling the colliding wave conditions.

7.2 Metric functions

From (7.11) the Ernst potential E = ϕLP(1)/ϕLP(−1) of the generalised Szekeres class
is determined to be

E = L2ρ1
1p L

2ρ2
2p

1− L2
12 + L2

12

(
1 + iC1L

2ρ1−1
01 L2ρ2−2

12 L−1
1p

) (
1 + iC2L

2ρ2−1
02 L2ρ1−2

12 L−1
2p

)
1− L2

12 + L2
12

(
1 + iC1L

2ρ1−1
01 L2ρ2−2

12 L1p
) (

1 + iC2L
2ρ2−1
02 L2ρ1−2

12 L2p
) .

For C1/2 6= 0 the Ernst potential is complex and hence the Szekeres class of collinearly
polarised colliding waves is expanded to general polarisation. Via the field equations
(2.33) and (2.34) the last metric function e−M can be determined as

e−M = fugv
c1c2n1n2

√
f + g

L
−2ρ2

1
01 L

−2ρ2
2

02 L−4ρ1ρ2
12

[(
1 + C1C2L

2ρ1−1
01 L2ρ2−1

02 L2ρ1+2ρ2−2
12

)2

+
(
C2L

2ρ2−1
02 L2ρ1

12 − C1L
2ρ1−1
01 L2ρ2

12

)2
]

= fugv
c1c2n1n2

√
f + g

L
−2ρ2

1
01 L

−2ρ2
2

02 L−4ρ1ρ2
12 |ϕr(0)|2 (7.13)
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7 Example: Generalisation of the Szekeres class of solutions

with the prefactor-reduced LP solution ϕr := L−ρ1
1 L−ρ2

2 ϕLP.
Of considerable interest is the limit of the metric functions at the singularity f+g = 0,
because it is rather oppositional to their behaviour in the special case of the Szekeres
class. Setting ε := f + g > 0 yields for ε → 0 the limiting behaviours L1/2p ∼ ε−1,
L01/2 ∼ ε−1 and L12 ∼ ε−1. Using the definitions (2.45) of f(u) and g(v), the limiting
behaviour of the metric functions for ε→ 0 can be expressed by

E ∼ −i2−2S, S := 24ρ1(1
2 − f)3−2ρ1−2ρ2C−1

1 + 24ρ2(1
2 + f)3−2ρ1−2ρ2C−1

2 ,

e−M ∼ 2−8ρ1ρ2(1
2 − f)−2ρ1(ρ1+2ρ2−2)(1

2 + f)−2ρ2(ρ2+2ρ1−2)D2ε(ρ1+ρ2− 1
2 )(2ρ1+2ρ2−3), (7.14)

D := 24ρ2(1
2 − f)2(ρ1+ρ2−1)C1 − 24ρ1(1

2 + f)2(ρ1+ρ2−1)C2.

In contrast to the divergence ESz = L2ρ1
1p L

2ρ2
2p ∼ ε−2(ρ1+ρ2) of the Szekeres class Ernst

potential, in the general case C1/2 6= 0 the Ernst potential converges for all values of
ρ1/2 to a purely imaginary value at the singularity f + g = 0. However, this also leads
to a coordinate degeneracy in the metric (2.11). For opposite signs of C1 and C2 this
limit E|ε=0 has a zero at S = 0, which can be explained by an investigation of the
initial waves described by the Ernst potential’s boundary values

E(f, 1
2) = L2ρ1

1p
1 + iC1L

2ρ1−1
01 L−1

1p

1 + iC1L
2ρ1−1
01 L1p

, E(1
2 , g) = L2ρ2

2p
1 + iC2L

2ρ2−1
02 L−1

2p

1 + iC2L
2ρ2−1
02 L2p

, (7.15)

which are illustrated in figure 7.1. They feature the root-like behaviour at f = g = 1
2

demanded by the colliding wave conditions (2.48). In addition their monotonic phase
change of ±π

2 from the real value at f = g = 1
2 to the purely imaginary value at ε = 0

indicates a considerable change of the polarisation angle along the incident waves. The
examination of the wave profiles in section 7.4 confirms that the initial waves of the
generalised Szekeres class can be regarded as having a definite chirality given by the
sign of C1 or C2, respectively.
In (7.15), the expression for E(f, 1

2) depends only on C1 as well as E(1
2 , g) depends

only on C2. Thus the unilateral generalisations (7.12) of the Szekeres class describe
the collision of an initial wave from the original Szekeres class and a generalised one.
Moreover a change in the sign of C1 or C2 is equivalent to the complex conjugation of
E(f, 1

2) or E(1
2 , g), respectively. These two properties are also inherited by the incident

wave profiles Ψ̂4 and Ψ̂0 constructed out of the boundary values of E via (2.14) and
(2.16) as well as (2.28) and an equivalent transformation formula for Ψ̂0. Therefore the
sign of C1/2 defines the chirality of the corresponding initial wave. Taking into account
the initial waves’ opposite directions of propagation, the case of opposite signs of C1
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7.2 Metric functions

and C2 depicted in figure 7.1 can be referred to as ‘equal chirality’ of the initial waves.
The zero in E|ε=0 is then seen to occur only for this case of incoming waves with equal
chirality since this case also implies opposite signs of =[E(f, 1

2)] and =[E(1
2 , g)].

Figure 7.1: Top: The absolute value of the Ernst potential E in region IV viewed from
two perspectives for c1/2 = 1, ρ1 = 55

100 , ρ2 = 6
10 , C1 = 1

5 , C2 = −1
6 featuring

a zero at S = 0 on f + g = 0 and a bump inside region IV. Bottom: The
boundary values of the Ernst potential describing initial waves with equal
chirality.

Figure 7.1 also shows a bump of the Ernst potential inside region IV for initial waves
with equal chirality, which does not occur for the case sign(C1C2) = 1 of incoming
waves with opposite chirality.

In the limit ε→ 0 in (7.14), the metric function e−M behaves like ε(ρ1+ρ2− 1
2 )(2ρ1+2ρ2−3).

Therein the first factor of the exponent of ε is always positive in the allowed range
1
2 ≤ ρ1/2 < 2− 1

2 , whereas for the second factor the relation −1 ≤ 2ρ1 + 2ρ2 − 3 < 0
holds. Therefore e−M diverges at f +g = 0 in the general case, though for the Szekeres
class it features the limiting behaviour

e−MSz ∼ 2−8ρ1ρ2(1
2 − f)−2ρ1(ρ1+2ρ2)(1

2 + f)−2ρ2(ρ2+2ρ1)ε−
1
2 +2(ρ1+ρ2)2
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7 Example: Generalisation of the Szekeres class of solutions

and thus vanishes at f + g = 0. In the general case C1/2 6= 0 the reciprocal eM goes
to zero at f + g = 0 with the exception of a pole at D = 0 for initial waves with
opposite chirality, as can be studied in figure 7.2. This pole occurs for all values of ρ1/2

permitted by the range (4.56).

Figure 7.2: The metric functionM in region IV viewed from two perspectives for c1/2 =
1, n1 = 5, n2 = 6, C1 = 1

5 , C2 = 2
5 featuring a pole at D = 0 on f + g = 0.

7.3 Weyl tensor components

Evaluating the formulae (2.14)-(2.16), the Weyl tensor components with respect to the
Szekeres tetrad (2.12) can be represented as

Ψ0 = eMg2
v

sign [ϕ−1
r (1)ϕ−1

r (−1)ϕ2
r(0)]

2(f + g)2ϕ̄r(0) P0, (7.16)

Ψ2 = eMfugv
sign [ϕ2

r(0)]
4(f + g)2ϕ̄r(0)P2, (7.17)

Ψ̄4 = eMf 2
u

sign [ϕ−1
r (1)ϕ−1

r (−1)ϕ−2
r (0)]

2(f + g)2ϕr(0) P̄4, (7.18)

using the expressions

P0 := F0(ρ1, ρ2) + C1C2L
2ρ1−1
01 L2ρ2−1

02 L2ρ1+2ρ2−2
12 F0(ρ1 − 1, ρ2 − 1) (7.19)

− iC1L
2ρ1−1
01 L2ρ2

12 F0(ρ1 − 1, ρ2) + iC2L
2ρ2−1
02 L2ρ1

12 F0(ρ1, ρ2 − 1),

P4 := F4(ρ1, ρ2) + C1C2L
2ρ1−1
01 L2ρ2−1

02 L2ρ1+2ρ2−2
12 F4(ρ1 − 1, ρ2 − 1) (7.20)

− iC1L
2ρ1−1
01 L2ρ2

12 F4(ρ1 − 1, ρ2) + iC2L
2ρ2−1
02 L2ρ1

12 F4(ρ1, ρ2 − 1),

P2 := F2(ρ1, ρ2) + C1C2L
2ρ1−1
01 L2ρ2−1

02 L2ρ1+2ρ2−2
12 F2(ρ1 − 1, ρ2 − 1) (7.21)

+ iC1L
2ρ1−1
01 L2ρ2

12 F2(ρ1 − 1, ρ2)− iC2L
2ρ2−1
02 L2ρ1

12 F2(ρ1, ρ2 − 1),
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7.3 Weyl tensor components

F0(a, b) := 4(aλ−1
1 + bλ−1

2 )3 − aλ−3
1 − bλ−3

2 , (7.22)

F4(a, b) := 4(aλ1 + bλ2)3 − aλ3
1 − bλ3

2, (7.23)

F2(a, b) := 4abλ−1
1 λ−1

2 (λ1 − λ2)2 + 4(a+ b)2 − 1. (7.24)

Only Ψ4 is non-vanishing for the left initial wave in region II and Ψ0 is the only non-
vanishing Weyl tensor component for the right wave in region III. The occurrence of
the Coulomb component Ψ2 in the interaction region is a direct manifestation of the
nonlinearity of the wave interaction. With the abbreviations

R1 := iC1

(
1− 2f
1 + 2f

)2ρ1−1

, R2 := iC2

(
1− 2g
1 + 2g

)2ρ2−1

(7.25)

as well as the boundary values of e−M ,

e−M
∣∣∣
f= 1

2
= (1

2 + f)2ρ2
1−

1
2 (1−R2

1), e−M
∣∣∣
g= 1

2
= (1

2 + g)2ρ2
2−

1
2 (1−R2

2), (7.26)

the incoming waves can be described by

Ψ0|f= 1
2

= 1
2c

2
2n

2
2
(1

2 − g)4ρ2
2−3/2(2ρ2 − 1) [ρ2(1 + 2ρ2) +R2(3− 5ρ2 + 2ρ2

2)]
(1

2 + g)2ρ2
2+3/2(1 +R2)3 sign [(1 + 2g)(1−R2)2 + 8R2]

, (7.27)

Ψ̄4

∣∣∣
g= 1

2
= 1

2c
2
1n

2
1
(1

2 − f)4ρ2
1−3/2(2ρ1 − 1) [ρ1(1 + 2ρ1) +R1(3− 5ρ1 + 2ρ2

1)]
(1

2 + f)2ρ2
1+3/2(1 +R1)3 sign [(1 + 2f)(1−R1)2 + 8R1]

. (7.28)

From the boundary values of the Ernst potential these expressions inherit the properties
to depend only on one of the constants C1/2 and to become their conjugates via change
of the sign of this constant.
Near the wave front f = 1

2 of the left wave holds for the boundary value Ψ4|g= 1
2
of the

Weyl tensor component

f ≈ 1
2 : Ψ4|g= 1

2
∼ 1

2c
2
1n

2
1ρ1(4ρ2

1 − 1)(1
2 − f)−3/2+4ρ2

1 , (7.29)

which is the same asymptotical behaviour as for the Szekeres class. As anticipated
by the discussion at the end of section 2.7, for 1

2 ≤ ρ1 <
√

3/8, i.e. 2 ≤ n1 < 4, the
incoming Weyl tensor component Ψ4|g= 1

2
is unbounded at the wave front f = 1

2 ; for√
3/8 ≤ ρ1 <

√
1/2 (i.e. 4 ≤ n1) it is bounded.

At the fold singularity f = −1
2 the Weyl tensor component diverges as

f ≈ −1
2 : Ψ4|g= 1

2
∼ ic2

1n
2
1
3− 11ρ1 + 12ρ2

1 − 4ρ3
1

2C2
1 sign(C1) (1

2 + f)−3/2−2(1−ρ1)2
. (7.30)
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7 Example: Generalisation of the Szekeres class of solutions

with purely imaginary coefficient, whereas the Szekeres class has the stronger diver-
gence behaviour

f ≈ −1
2 : Ψ4|g= 1

2
∼ 1

2c
2
1n

2
1ρ1(4ρ2

1 − 1)(1
2 + f)−3/2−2ρ2

1 . (7.31)

That divergence of Ψ4 is a strong hint for the existence of a non-scalar curvature
singularity at the boundary f = −1

2 , v < 0 of region II. This singularity character has
already been confirmed for the Szekeres class [54].

7.4 Wave profiles and the limit of circularly polarised
impulsive waves

The wave profile, i.e. the Weyl tensor component Ψ̂4 with respect to the Brinkmann
tetrad (2.20), can be calculated via the relation (2.28). This transformation’s effect is
illustrated by plotting the factor Ψ̂4/Ψ4 = eM−2iP sign(E) in figure 7.3 for a bounded
wavefront with n1 = 5. The absolute value of this factor is simply eM given by the
reciprocal of (7.26), whereas the phase depending on P is only given in terms of the
integral (2.26). As figure 7.3 shows, this phase change within the transformation to Ψ̂4

is only significant near the fold singularity f = −1
2 and only for medium values of C1.

Figure 7.3: Amplitude |Ψ̂4/Ψ4| and phase arg(Ψ̂4/Ψ4) of the transformation factor be-
tween Ψ4 and the wave profile Ψ̂4 for n1 = 5 and c1 = 1.

As anticipated in section (7.2), the wave profiles displayed in figure 7.4 feature a mono-
tonic change of their phase angle from 0 at the wave front f = 1

2 (i.e. u = 0) to 2π at
the fold singularity f = −1

2 (i.e. u = 1 for c1 = 1). Therefore a distinct chirality can
indeed be assigned to them.
A particular interesting feature of the wave profiles of the generalised Szekeres class is
their shape for large values of C1/2. As illustrated in figure 7.4, Ψ4|g= 1

2
compactifies into
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7.4 Wave profiles and the limit of circularly polarised impulsive waves

a pulse at the wave front f = 1
2 (i.e. u = 0) for increasing C1 featuring a full revolution

of the polarisation angle during that pulse. Note that the ‘wave strength’ c1 (cf. (2.45))
has been fixed to 1 in figure 7.4, but can be easily modified to adjust the height of the
pulse. In consequence, this generalised class of solution can provide analytical formulae
for a new type of impulsive waves, which shall be called ‘circularly polarised impulsive
waves’. However, some attention may have to be paid to the remnant divergence of
Ψ4|g= 1

2
at the fold singularity f = −1

2 (i.e. u = 1 for c1 = 1). Qualitatively, the
Weyl tensor component Ψ4 has the same limit as Ψ̂4 for large values of C1/2, but the
convergence to impulsive waves is slower.

Figure 7.4: Absolute value and polarisation angle of the initial wave profile Ψ4|g= 1
2
for

n1 = 5 and c1 = 1 approximating a circularly polarised pulsed wave for
increasing C1.

Due to M(1
2 ,

1
2) = 0, the behaviour of the wave profile Ψ̂4 at the wave front f = 1

2 is
identical to that of Ψ4 in (7.29). Despite its small value for medium values of u in the
limit of circularly polarised impulsive waves, at the fold singularity f = −1

2 the wave
profile still diverges as

f ≈ −1
2 : Ψ̂4

∣∣∣
g= 1

2
∼ c2

1n
2
1
3− 11ρ1 + 12ρ2

1 − 4ρ3
1

2C4
1 sign(C1) (1

2 + f)−1−4(1−ρ1)2
. (7.32)

The Szekeres class exhibits the stronger divergence behaviour

f ≈ −1
2 : Ψ̂4

∣∣∣
g= 1

2
∼ 1

2c
2
1n

2
1ρ1(4ρ2

1 − 1)(1
2 + f)−1−4ρ2

1 . (7.33)
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7 Example: Generalisation of the Szekeres class of solutions

7.5 The character of the singularity at f + g = 0

To clarify the character of the singularity at f + g = 0, the complex scalar curvature
invariant (2.8) of the Weyl tensor for the generalised Szekeres class is computed to

I = 16[3Ψ2
2 + Ψ0Ψ4] = c2

1c
2
2n

2
1n

2
2L

4ρ2
1

01 L
4ρ2

2
02 L

8ρ1ρ2
12

(f + g)3ϕ6
r(∞) (3P 2

2 + 4P0P4). (7.34)

At ε = f + g → 0 it diverges for C1/2 6= 0 as

I ∼ c2
1c

2
2n

2
1n

2
2216ρ1ρ2(1

2 − f)8ρ1(ρ1+ρ2−1)(1
2 + f)8ρ2(ρ1+ρ2−1)D−4PIε

−3−4(ρ1+ρ2−1)2
, (7.35)

PI := 3
[
1− 4(ρ1 + ρ2 − 1)2

]2
+ 4

[
4(ρ1 + ρ2 − 1)3 − ρ1 − ρ2 + 1

]2
. (7.36)

Therefore the boundary f + g = 0 of region IV is a scalar curvature singularity as it
is for the Szekeres class. Nevertheless, the divergence is weaker than for the Szekeres
class where the curvature invariant behaves like

ISz ∼ c2
1c

2
2n

2
1n

2
2216ρ1ρ2(1

2 − f)8ρ1(ρ1+ρ2)(1
2 + f)8ρ2(ρ1+ρ2)PISzε

−3−4(ρ1+ρ2)2
, (7.37)

PISz :=
[
1− 4(ρ1 + ρ2)2

]2 [
3 + 4(ρ1 + ρ2)2

]
.

In case of initial waves with opposite chirality, there is a complicated pole structure at
D = 0 on top of the divergence behaviour at the boundary f + g = 0. From the study
of <(I) and =(I) in figure 7.5 this structure can be seen to resemble a higher order
pole of a complex function. The exact position of that pole is determined by the ratio
of C1 and C2.

Figure 7.5: Real and imaginary part of the scalar invariant I of the Weyl tensor in
region IV for c1/2 = 1, n1 = 5, n2 = 6, C1 = 1, C2 = 6

5 featuring a structure
resembling a higher order pole of a complex function at D = 0 on f+g = 0.
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8 Approximation scheme for the
continuous RHP

The goal of this chapter is to provide the basic tools for a numerical implementation of
the developed ISM solution procedure via spectral expansion of an integral form of the
CRHP’s scalar jump equation. A suitable set of functions to approximate the additive
jump µIK of the scalar CRHP solution ϑIK is derived and their Cauchy integrals are
given analytically. Therewith a proper system of algebraic equations is developed to
determine the coefficients of the expansion functions.
The implementation of the full numerical approximation is beyond the scope of this
work. For a proof of principle of a numerical solution along these lines, a simple
approximation scheme using a collocation method is presented in this chapter and
applied to the toy model of two instead of four regions with separate ansatz for µIK .

8.1 CRHP integral equation for a regular additive jump

The scalar CRHP solution ϑIK can be expressed by its additive jump function µIK via

ϑIK(λ) = cIKϑ + 1
2πi

∫
Γ<

µIK(λ′)dλ′
λ′ − λ

. (8.1)

Since the normalisation of ϑIK was not fixed, it is only determined up to multiplication
with an overall factor. In the following, ϑIK = 1 shall be chosen as a normalisation,
but it may be noted that problems could arise for cIKϑ ≈ 0.
Inserting (8.1) in the scalar jump equation (5.52) of the CRHP leads, similarly to the
derivation in section 4.6, to the integral form of the jump equation

(αc + βc − γc − 1)cIKϑ = (1− αc)
1

2πi

 
Γ<

µIK(λ′)dλ′
λ′ − λ

+ (γc − βc)
1

2πi

 
Γ<

µIK(λ′)dλ′
λ′ + λ

+ 1
2(αc + 1)µIK + 1

2(γc − βc)µIK(−λ). (8.2)

The additive jump µIK is continuous because the scalar CRHP solution has a continu-
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8 Approximation scheme for the continuous Riemann-Hilbert problem

ous extension on the contour Γ< from both sides. Therefore (8.2) is an inhomogeneous
linear singular integral equation of the second kind for a continuous unknown func-
tion. However, µIK will in general inherit the root-like behaviour of the jump matrix
components near ±λ1/2. Nevertheless, the Cauchy integrals in (8.2) over the root-like
parts of µIK are still regular.

As described in section 5.3, the second singularity transformationGIK
c := (SI2−)−1G′J

KSI2+

introduces terms ∼ |λ±λ1|1−|x
I
1| into the jump functions βc and γc at both sides of the

points ±λ1. Similarly the first singularity transformation G̃K
J := (SK2−)−1GJS

K
2+ intro-

duces terms ∼ |λ±λ2|1−|x
K
2 | into the jump functions β̃ and γ̃ at the ends ±(λ2−0) of the

contour part Γ2, but not on ±(λ2 + 0) outside Γ2 since GJ [±(λ2 + 0)] = 1. The CRHP
jump functions βc and γc and, due to the rotation transformation G′J

K := R−1
δ1 Ĝ

K
J Rδ1

also <(αc), inherit this root-like behaviour on ±(λ2−0), as can be seen in the example
in figure 5.1. On the other hand, a root-like behaviour of µIK at ±(λ2 − 0) implies
root-like behaviours of ϑIK at these contour ends. They are expected to have an an-
alytic continuation in the punctured neighbourhood of ±λ2 which has also a root-like
behaviour on ±(λ2 + 0). Hence the ansatz for the additive jump function µIK has to
contain terms accounting for the root-like behaviour at both sides of the points ±λ1/2.
Depending on K, the values of the exponents 1− |xK1/2| lie in the ranges

0 < 1− |xe
1/2| = 2%1/2 − 1 <

√
2− 1 < 1

2 , (8.3)
1
2 < 2−

√
2 < 1− |xo

1/2| = 2− 2%1/2 < 1. (8.4)

Moreover, different spectral expansions for the following four sections of the contour
have to be used:

µIK =



µIK1 on Γ1,

µIK2 on Γ2,

µIK3 on Γ3 := [λ2, λ1],

µIK4 on Γ4 := [−λ1,−λ2].

(8.5)

In this sense (8.2) has to be regarded as a coupled system for the partial jump functions
µIKi . In the expansion of each µIKi , Ni functions adapted to the corresponding interval
shall be used. The details of the expansion are exemplified focussing on µIK2 , which shall
be represented by the N2 functions (λ2−λ)1−|xK2 |, (λ2 +λ)1−|xK2 | and λj, j = 0...N2−3:

µIK2 = a2(λ2 − λ)1−|xK2 | + b2(λ2 + λ)1−|xK2 | +
N2−3∑
j=0

c2,jλ
j. (8.6)
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8.2 System of equations for the approximation

For λ ∈ R the integrals of the components of µIK2 can be calculated as

I2j :=
 

Γ2

λ′j

λ′ − λ
dλ′ =

j∑
k=1

λ2 − (−λ2)k
k

λj−k + λj ln
∣∣∣∣∣λ2 − λ
λ2 + λ

∣∣∣∣∣ ,
I2m :=

 
Γ2

(λ2 − λ′)r
λ′ − λ

dλ′ = <
[

(2λ2)r+1

(r + 1)(λ2 − λ) 2F1

(
1, r + 1; r + 2; 2λ2

λ2 − λ

)]
, (8.7)

I2p :=
 

Γ2

(λ2 + λ′)r
λ′ − λ

dλ′ = −I2m(−λ),

where 2F1 is the hypergeometric function and the appropriate value of I2m is obtained
by setting r = 1 − |xK2 |. The integral I2m has the limit −(2λ2)j/j at λ2 and behaves
at −λ2 like

λ ≈ −λ2 : I2m ∼ (2λ2)r ln|λ+ λ2|+(2λ2)r[ln(2λ2) +Hr], (8.8)

where Hr is the harmonic number with index r which can be defined as

Hr := −
∞∑
k=1

(
r

k

)
(−1)k
k

. (8.9)

The expressions (8.7) shall be inserted into the integral equation (8.2) to turn it into an
algebraic equation for the coefficients of the partial jumps µIKi , which can be evaluated
for selected values of λ. This treatment is called a ‘collocation method’ and leads to
a linear system of equations for the coefficients of the µIKi . The implementation of
a more sophisticated method is beyond the scope of this work, but highly accurate
results are expected following the methods proposed in e.g. [52,53].

8.2 System of equations for the approximation

The integral I2j diverges logarithmically at both contour endpoints ±λ2 and I2m di-
verges logarithmically at −λ2. This is however just an artefact of the reduction of the
integral domain to Γ2 in (8.7). If µIK is ensured to be exactly continuous, the Cauchy
integrals in (8.2) will not diverge. This means that the logarithmically divergent part
of the integral equation (8.2) is automatically fulfilled for continuous µIK . Hence it is
appropriate at each of the four contour endpoints ±λ1/2 to require the two conditions:

1. continuity of µIK ,

2. validity of the non-divergent part of the integral jump equation (8.2).
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Since the expansions of the partial jumps µIKi consists of Ni functions, for each contour
section Γi another Ni − 2 equations are needed to determine the Ni coefficients ai, bi,
ci,j, (j = 0 . . . Ni− 3). Therefore additionally the integral jump equation is required to
be exactly valid on the Ni − 2 inner points of a Ni-point Lobatto lattice1 on Γi. For
Γ2 these points are

λ2,k := λ2 cos
(

πk

N2 − 1

)
, k = 1 . . . N2 − 2. (8.10)

They are more dense towards the contour endpoints, making them well adapted for
the polynomial expansion.
In summary, the approximation scheme uses N := ∑4

i=1Ni equations consisting of

• 4 continuity conditions of µIK at the contour endpoints ±λ1/2,

• 4 non-divergent parts of the integral jump equation (8.2) at ±λ1/2,

• N − 8 times the integral jump equation (8.2) evaluated at the inner points of the
Lobatto lattices,

to determine the coefficients of the N functions:

• 8 root functions ±λ1/2 accounting for root-like behaviour at ±λ1/2

• N − 8 monomials adapted to the corresponding contour.

Since cIKϑ was set to one, this linear system of equations in general has a unique solution.
The monomials may be replaced by Chebychev polynomials to make the elements of
its coefficient matrix have the same order of magnitude, but this also complicates the
expressions for the analytic integrals.
The approximation scheme outlined above yields an approach to the solution of the
CRHP for fixed coordinates (f, g) and a specific choice of I and K. To obtain the value
of the Ernst potential on the surface (f = f0, g = g0) in the spacetime, the additive
jumps µIK of all four solutions ϑIK have to be calculated. Using the values ϑIK(±λ1/2)
the holomorphicity conditions (6.30) have to be evaluated for the coefficients p, q and
r determining the scalar LP solution ϕLP. Finally, the values of ϑIK taken at λ = ±1
together with these coefficients yield the Ernst potential E = ϕLP(1)/ϕLP(−1). In
particular, the Cauchy integral (8.1) for ϑIK has to be calculated only for the points
±λ1/2 and ±1.

1An n-point Lobatto lattice contains the n extremal points of the Chebychev polynomial of order
n− 1 on a given interval, which includes both endpoints of the interval.
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8.3 Toy model with two contour sections

8.3 Toy model with two contour sections
This chapter is concluded by demonstrating the numeric approximation scheme for a
toy model with only the two contour sections Γ2 and Γ<\Γ2. For this purpose, the jump
functions αee

c , βee
c and γee

c on Γ2 are taken from the example at the end of section 5.5 (cf.
figure 5.1) and continued with αee

c = const, γee
c ∼ 1/λ and βee

c =
√

1− αee
c ᾱ

ee
c + (γee

c )2

on Γ< \ Γ2, cf. figure 8.1.

Figure 8.1: Jump functions of the toy model, which is identical with the example in
section 5.5 on Γ2.

In figure 8.2 the additive jump function on Γ2 calculated as described in section 8.2
with N2 = 20 is shown. Additionally, in the right panel of figure 8.2 the approximation
is realised without the root-like terms so that µee is composed only of monomials. The
oscillations occurring in this case demonstrate the necessity of the root-like terms in
the ansatz (8.6) for µee. When the approximated jump function µee is inserted into the
integral jump equation (8.2), the error between the supporting points is of order 10−5

or respectively 10−2 without root-like terms.

Figure 8.2: Additive jump function of the toy model on Γ2 for N2 = 20 approximated
with the ansatz (8.6) (left) and without the root-like terms (right).

This toy model already covers all principal issues of the numeric approach and thus no
further difficulties are expected in the treatment of the full CRHP.
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9 Conclusions

Using the ISM and the subsequent transformation to a CRHP, within this work a
solution procedure for the characteristic IVP of colliding plane waves was derived.
Originally the intention of the ISM was the heuristic search for exact solutions to
nonlinear differential equations, whose validity is checked afterwards. Also for axially
symmetric and stationary spacetimes the ISM was mostly used in that sense to generate
specific solutions without mathematical rigour. In a general solution procedure for the
IVP of colliding waves, however, a deeper understanding of the involved mathematical
problems is desirable. This work was at least partially able to meet that demand by
establishing the following statements:

1. The IVP solution is uniquely associated with a LP solution.

2. A RHP whose solution is supposed to also solve the LP must necessarily have
the jump matrix derived from the initial values of the Ernst potential via (4.52)
and (4.53).

3. The linear combination of the four RHP solutions Φee, Φoe, Φeo and Φoo describes
the general solution of the RHP for a given jump matrix if the conjecture in
section 5.3 holds. It stated that Se

1/2 and So
1/2 are the only in principle different

transformations removing the discontinuities at a pair of contour endpoints and
leading to G̃K

J (±λ2) = 1 for Lipschitz continuous initial jump matrices J .

4. A RHP solution is also a LP solution if and only if it fulfils the holomorphicity
conditions (4.41), which are in turn equivalent to the algebraic relations (6.30).

5. This form (6.30) shows that the holomorphicity conditions can in general be
fulfilled, and thus the RHP gives indeed rise to LP solutions, which in turn lead
to solutions of the Ernst equation. However, it is not rigorously proven that the
right solution of the IVP is among them.

6. Based on the conjecture on the asymptotic form ϕ(f ≈ 1
2 , g ≈

1
2) ≈ ϕ∗∗ given

in (6.40), LP solutions represented by normalised RHP solutions are expected
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to automatically have the right LP normalisation. If that conjecture holds, the
colliding wave conditions are equivalent to the relations (6.41) and (6.42) for the
coefficients p, q and r of ϕLP.

Deployed as an algorithm for a special IVP, the crucial problem within the presented
ISM scheme consists of the solution of the integral form (8.2) of the scalar CRHP jump
equation. In contrast to this, the derivation of the jump matrix from the initial data
via the ODEs (4.52) and (4.53) is easily done with high numerical accuracy, if not
analytically. Although the jump matrix can only be approximated in case of generic
initial data, the transformation to the CRHP only depending on its exactly known
boundary values J1/2b is given analytically by (5.39) and (5.40). The holomorphicity
conditions (6.30) adapting the RHP solution to the LP are just algebraic equations
and finally remnant degrees of freedom have to be fixed by a simple comparison with
the initial data.

In special cases where a fully analytic treatment is possible, the fourfold ambiguity
contained in the solution to the discontinuous RHP and the possible remnant func-
tional degree of freedom in the LP solution lead to the construction of families of exact
solutions. In this sense the described procedure serves also as a solution generating
technique which generalises existing colliding wave solutions and leads to insights into
the structure of colliding plane waves. This was demonstrated by the generalisation of
the collinearly polarised Szekeres class of colliding wave spacetimes to a class with gen-
eral polarisation. A distinct notion of chirality could be associated to the initial waves
and interesting features of the metric functions were associated to colliding waves of
either equal or opposite chirality. A scalar curvature singularity in the interaction re-
gion has been identified for the generalised Szekeres class and evidence for a non-scalar
curvature singularity at the ‘fold singularity’ has been given. Moreover, a transfor-
mation to Weyl tensor components with respect to a tetrad adapted to Brinkmann
coordinates, the so-called wave profiles, was achieved. Via the study of their shapes an
interesting limiting case with circularly polarised impulsive waves has been discovered.

Finally, a semi-analytic approximation scheme was designed implementing a collocation
method. Based on approximation functions with analytically given Cauchy integrals,
the integral form of the scalar CRHP jump equation was transformed into a system of
algebraic equations. A toy model showed this approximation scheme to be functional
and confirmed the considerations on the root-like behaviour of the additive jump func-
tion at the contour endpoints.
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9 Conclusions

9.1 Outlook

This work’s novel approach to colliding plane waves prepares the ground for various
promising directions of further research. The most important ones are:

• Implementing an approximation scheme for the full IVP: The author’s
primary goal of adjacent investigations is to accomplish the spectral expansion of
the CRHP outlined in chapter 8 and extend it into a full approximation scheme
for the general characteristic IVP of colliding plane GWs. This enables a study
of the properties of colliding waves under systematic variation of the initial data.
The physical interpretation of the obtained spacetimes shall be considerably ex-
panded. Of special methodical interest would also be the comparison with fi-
nite differencing schemes to reveal the complementarity of the two approaches.
Possibly also other expansion functions will turn out to yield an even better
performance in the approximation of the CRHP solution.

• Investigating the limit of circularly polarised impulsive waves: It seems
to be highly worthwhile to explicitly calculate the limit of circularly polarised
impulsive waves discovered in section 7.4. This should easily result in the explo-
ration of the physical properties of this new concept of GWs.

• Including impulsive waves in the ISM scheme: The case ρ1 = 1
2 or ρ2 = 1

2

of impulsive waves was excluded in the derivation of the CRHP. It implies that
the exponent xe

1/2 := 2ρ1/2 − 2 associated with even transformations would take
the value 1, which means that it is not ensured to yield a Hölder continuous jump
matrix when applied to an initially Lipschitz continuous jump matrix.

On the other hand, for an impulsive wave in region II or III the boundary value of
the RHP jump matrix on the corresponding contour takes the value J1b = −1 or
J2b = −1, respectively. This property is invariant under rotation transformation
and unitarisation transformation and hence these types of transformation can be
used to set the derivatives of the jump functions β and γ instead of their values
to zero at ±λi. After appropriate preparation, the discontinuities in the ERHP
are expected to be removable by the alternative singularity transformations Se

i

and (Se
i )−1 instead of Se

i and So
i . The inverse transformation leads directly (i.e.

without the linear combinations that were necessary to restore the normal form
after odd singularity transformations) to the construction of four RHP solutions
out of the CRHP solutions. Therewith the derivation of the holomorphicity con-
ditions has to be reassessed carefully for a spacetime with at least one impulsive
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9.1 Outlook

wave, but a simplification compared to the non-impulsive case is expected.

• Generalising other known colliding wave solutions: This work’s approach
allows for the generalisation of other known colliding wave solutions by simply
recalculating them within the ISM scheme. Another promising candidate for
gaining analytic results by this procedure is the Nutku-Halil spacetime describing
the collision of impulsive waves with non-aligned polarisation. It is extensively
discussed in [55] and can be represented by the Ernst potential

ENH =
1 + e−iαN

√
(1

2 + f)(1
2 − g) + eiαN

√
(1

2 − f)(1
2 + g)

1− e−iαN
√

(1
2 + f)(1

2 − g)− eiαN
√

(1
2 − f)(1

2 + g)
. (9.1)

Evaluation of the ODEs (4.52) and (4.53) yields the constant jump matrix J = −1
on Γ independent of the phase parameter αN. The corresponding RHP has the
four independent scalar solutions ϕ1 = L

1
2
1L

1
2
2 , ϕ2 = L

1
2
1L
− 1

2
2 , ϕ3 = L

− 1
2

1 L
1
2
2 and

ϕ4 = L
− 1

2
1 L

− 1
2

2 . A relation to the generalised Szekeres class evaluated for ρ1/2 → 1
2

is expected.

• Increasing the rigorousness of the ISM: In the case of the Korteweg-de Vries
equation a rigorous derivation of the ISM solution procedure was possible, cf. [56].
It guaranteed that the solution given in terms of the Gelfand-Levitan-Marchenko
integral equation solves every IVP. In the case of colliding plane GWs, a thorough
investigation of the analyticity properties of the LP solution could lead to similar
results. The author expects that it is possible to show the LP solution to be
holomorphic up to the jump on Γ, which would imply that each solution of the
LP is also a RHP solution. Together with the generality of the derived RHP
solutions, depending on the validity of the conjecture on the uniqueness of the
discontinuity removing transformations Se

1/2 and So
1/2, this would imply that the

LP solution associated with the IVP is among the RHP solutions.

• Reconsidering the RHP integral equations: Maybe a more compact version
of the procedure can be derived reconsidering the singular integral equations for
the initial RHP again via an ansatz for the scalar RHP solution’s additive jumps
µϕ including terms with the right divergence exponents ρ1/2 and 1 − ρ1/2. If
an analytic evaluation of conditions for the LP’s holomorphicity similar to those
developed in chapter 6 can be used to exactly determine the singular part of µϕ,
then the singular integral equations in section 4.6 might be decomposed into an
automatically fulfilled singular part and a regular part ready for a simple spectral
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9 Conclusions

approximation. On the other hand the implementation of approximation schemes
adapted to unbounded unknown functions is also very promising.

• Investigating initially collinearly polarised GWs: Massive simplifications
in the described solution procedure occur for the case of initially collinearly po-
larised GWs introduced in section 5.2, where the boundary values J1/2b of the
jump matrix can be diagonalised simultaneously. Then neither a unitarisation
transformation nor a rotation transformation is necessary for the transition to the
CRHP. Interestingly, each general colliding wave spacetime can be represented
as limit of a family of initially collinearly polarised colliding wave spacetimes.

• Including electromagnetic waves: The starting point for the presented ISM
scheme were the vacuum Einstein equations. A transition to the electrovacuum
Einstein-Maxwell equations, which could also include electromagnetic contribu-
tions to the colliding waves, could build on extensive previous work for axially
symmetric and stationary spacetimes as well as some results already obtained for
the case of colliding waves. To reflect the Einstein-Maxwell equations, a second
Ernst potential is introduced and the Ernst equation is replaced by a coupled
system of nonlinear partial differential equations for these two Ernst potentials.
The LP and the RHP are generalised by equations for 3×3 matrices with proper-
ties very similar to those discussed in this work, for example the RHP is expected
to have the same contour.

In addition it would round off the ISM treatment of the IVP for colliding plane GWs to
clarify the physical implications of the restriction to Lipschitz continuous RHP jump
matrices.
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