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Abstract 
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Abstract 

The architecture of bacterial single-stranded DNA binding proteins has been investigated by 

elucidating the structures of SSBs from Brucella abortus, Proteus mirabilis and Serratia 

marsescens by X-ray crystallographic methods. The structure of the SSB from Escherichia 

coli has been refined to a high resolution.  

                  Two cryo-techniques: (i) repeated-annealing using dried paraffin oil and (ii) cryo-

cooling using PanjellyTM were developed to overcome the problematic bottlenecks arising 

from poorly diffracting crystals and premature crystal decay arising from radiation damage.  

                  The essential structure of SSBs across all species consists of five β-strands and one 

α-helix interspersed by four loops. It is similar to the already described Oligonucleotide/ 

Oligosaccharide Binding (OB) fold. Out of the four loops, two loops involving residues 40 to 

50 and 85 to 100 (E. coli numbering) are always involved in DNA-binding. The core regions 

comprising the entire regular secondary structure is almost identical between the different 

SSBs; the loop regions exhibit variable conformation. These loops are often involved in 

crystal packing giving rise to different combinations of loop-loop interactions. Different SSBs 

show identical head-to-head tetramer formation similar to the situation in human 

mitochondrial SSB. The principal role of the conserved His-55 residue in tetramerisation, as 

earlier demonstrated by biochemical experiments could be rationalised. The conserved Tyr-78 

residue at the dimer-dimer interface may be also essential for tetramer formation. The 

conserved salt bridge between Lys-7 and Glu-80 at the same interface indicates its dominant 

role in stabilising the quaternary structure. Three inter hydrogen-bonded water molecules 

proximal to the ND1 atom of the conserved His-55 could be located in the well-resolved 

crystal structures; these water molecules may be functionally important. The DNA-binding 

aromatic residues (Trp-40, 54, 88, Phe-60) are sequentially, structurally and conformationally 

conserved corroborating their specific role in binding ssDNAs. Three-dimensional structural 

comparison of the homotetrameric SSBs along with other proteins containing the common 

OB-fold revealed that the fold of the monomeric SSB (Gene 32 protein) is more similar to the 

homotetrameric form than to the dimeric (Gene V protein) or heterotrimeric form (human 

replication protein 70). 
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1 Introduction  

Single-stranded DNA binding proteins (SSBs) constitute a class of polypeptides that 

preferentially bind single-stranded DNA (ssDNA) with high affinity and without apparent 

nucleotide sequence specificity. Most organisms, from viruses to vertebrates, encode their 

own SSBs. SSBs play a vital role in the cell by participating in the biological processes of 

DNA replication, recombination and repair (Alberts et al., 1970; Wobbe, 1987; Meyer et al., 

1990). They prevent the formation of secondary structures of ssDNA and/or facilitate the 

actions of enzymes involved in these biological processes, such as DNA polymerase. SSBs 

are essential for the cell, deletion of the ssb gene may cause cell death (Porter et al., 1990).  

1.1 Historical perspective  
 
The studies of DNA-binding proteins date back to the development of DNA-cellulose affinity 

chromatography in the laboratory of Bruce Alberts in the late 1960s (Alberts et al., 1968, 

1970, 1971). This led to the discovery of the gene 32 protein of bacteriophage T4 (Alberts et 

al., 1970), which binds to DNA-cellulose very tightly. 2 M NaCl are required to elute the 

protein from this column. Gene 32 protein also binds strongly, selectively and co-operatively 

to ssDNA (Alberts et al., 1970; Deluis et al., 1972). Shortly thereafter, Alberts and others, 

discovered an analogous protein in infected E. coli cells (Sigal et al., 1972). They named this 

protein the E. coli DNA-unwinding protein because of its ability to unwind (i.e. destabilise) a 

DNA double helix (Sigal et al., 1972).  

The SSBs have been referred to by a number of different names since their discovery in 1970, 

such as DNA-unwinding protein (Molineux et al., 1974; Sigal et al., 1972), DNA-binding 

protein (Mackay et al., 1976; Molineux et al., 1975), DNA-binding protein I (Geider et al., 

1978), DNA-melting protein, DNA-extending protein, and helix-destabilising protein (Alberts 

et al., 1977). None of these names appropriately conveys the basic features of these proteins, 

for example, neither gene 32 nor E. coli SSB protein can unwind native duplex DNA 

(dsDNA) by itself. The name SSB is used most commonly, but this term is still not specific 

enough and tells too little about the functions of these proteins. RNA polymerase, RecA 

protein and lactate dehydrogenase also bind to ssDNA to various extents, but they are not the 

type of proteins which will be discussed here. The name SSB was chosen to reflect the fact 

that SSBs also bind to RNA (Molineux et al., 1975; Ruyechan et al., 1976; Weiner et al., 

1975) but with far less affinity than to DNA.  
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1.2 Single-stranded DNA-binding protein (SSB) classes 

According to the above viewpoint, SSBs can be regarded as one big family of proteins, which 

share common functional and mechanistic features. To date, the known SSB proteins can be 

classified into at least four different classes: the monomeric class, the dimeric class, the 

heterotrimeric class, and the homotetrameric class (Table 1). These classes have little in 

common except their ability to bind to ssDNA (Suck, 1997). Structural information is now 

available for at least one member of each of the four classes of SSB (Table 1). There is no 

sequence homology between the proteins of any two classes. However, within the same class, 

sequence identities between SSBs are significant. 

 
Figure 1. Description of the OB-fold. Five β-strands (numbered arrows) form a closed β-sheet (β-
barrel), capped by an α-helix (cylinder). The loops are shown as ribbons, connecting the structural 
segments and numbered accordingly. Three variable loops (black) contribute residues to the 
oligomer(s) binding site. The picture is adapted from Murzin (1993). 
 
                   Table 1 Structural classes of SSB 

Class SSB PDB‡ entry 
code 

Monomeric  T7 gene 32 
Adenovirus SSB 

1GPC 
1ADT 

Dimeric  Filamentous Pf3 SSB 
Gene 5 protein  

1PSF 
1GVP 

Heteroterimeric  Human cellular SSB (RPA) 1JMC 
Homotetrameric  Human mitochondrial SSB 

E. coli SSB 
Proteus mirabilis SSB 
Serratia marcescens SSB 
Brucella abortus SSB 

3ULL 
This work 
This work 
This work 
This work 

              ‡ PDB: Protein data bank (Berman et al., 2000). 
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At first glance, common structural features are not easily detected if one compares the three-

dimensional structures of SSBs from the four different classes. Indeed, the structures are very 

different. If, however, one looks more closely at the individual domains involved in ssDNA-

binding and compares their topology, a common fold becomes apparent. This fold is known as 

oligonucleotide/oligosaccharide (OB) fold (Murzin, 1993). It is characterised by a five-

stranded Greek Key β-barrel capped on one side by an α-helix (Figure 1). 

1.2.1 Monomeric class  

This includes the bacteriophage T7 gene 32 protein (Shamoo et al., 1995) and the adenovirus 

SSB (AdSSB) (Tucker et al., 1994). 

T7 gene 32 
The T7 gene 32 protein (gp32) is a monomer of 33 kDa that binds ssDNA co-operatively, 

with a binding site size of 8 nucleotides (Giedroc et al., 1987; Prigodich et al., 1984).  

 
Figure 2 Ribbon diagram (prepared using MOLSCRIPT; Kraulis, 1991) of core gp32 (PDB 
code: 1GPC) showing the structure and aromatic residues which are involved in ssDNA-
binding (Shamoo et al., 1995). 
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The structure of the gp32 DNA-binding domain complexed to ssDNA has been determined by 

X-ray crystallography at 2.2 Å resolution and shown to contain a hydrophobic pocket 

composed of five β strands that contact the ssDNA bases and an electropositive cleft that is 

close to the phosphate backbone (Shamoo et al., 1995). In the PDB (Berman et al., 2000) file 

of this structure (PDB code: 1GPC), ssDNA molecules are not included because of their weak 

electron density. A ribbon diagram showing the complete fold of native gp32 and the residues 

involved in ssDNA-binding (Tyr-84, 99, 106, 115, 137, 186, Phe-183) (Shamoo et al., 

1988,1989) as well as the zinc ion is depicted in Figure 2. 

Adenovirus SSB 

The adenovirus 5 protein (Ad5) is made of 529 amino acids (Kruijer et al., 1982). It has been 

shown by limited chymotrypsin digestion that this protein can be divided into two domains 

(Tsernoglou et al., 1985). The N-terminal domain (1-173) contains the nuclear location signal 

(Morin et al., 1989) and is involved in determining the host range (Klessig & Grodzicker, 

1979).  

 
Figure 3 Ribbon diagram (prepared using MOLSCRIPT; Kraulis, 1991) of AdSSB 
(PDB code: 1ADT). The interaction of the C-terminal hook of one molecule, in 
blue, with the adjacent molecule in green shows that the hook passing between two 
helices (Tucker et al., 1994). 

The C-terminal domain (174-529) contains the nucleic acid binding properties. The domain is 

functional in DNA replication in a manner similar to the intact molecule (Tsernoglou et al., 
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1985). Ad5 binds to ssDNA, dsDNA, as well as to RNA in a sequence-dependent manner. 

The crystal structure of the nucleic acid binding domain of this protein has been solved 

(Tucker et al., 1994). The structure (Figure 3) shows that the protein contains a 17 amino acid 

C-terminal extension which hooks onto a second molecule (green), thereby forming an arm. 

Deletion of this C-terminal arm reduces co-operativity in DNA-binding, suggesting a hook-on 

model for co-operativity. 

1.2.2 Dimeric class 

This class includes SSBs from the filamentous phages f1, fd, M13 and Pf3 (Skinner et al., 

1994; Brayer et al., 1983; Folkers et al., 1994; Folmer et al., 1995). The filamentous phages 

f1, fd and M13 are collectively called Ff. These Ff viruses are almost identical in sequence 

and behaviour (Model & Russel, 1988).  

The gene V protein (GVP) encoded by the filamentous bacteriophage Ff has 87 amino 

acids per monomer with a molecular weight of 9.7 kDa. It exists as a dimer in solution, and 

binds specifically to DNA in a highly co-operative manner (Fulford & Model, 1988). The 

complete three-dimensional structure of GVP is known; both its solution (Folkers et al., 1994) 

and crystal (Skinner et al., 1994) structures have been determined. The two aromatic residues, 

Tyr-26 and Phe-73 are involved in DNA binding as indicated by binding experiments of spin-

labelled oligonucleotides to wild type GVP (van Duynhoven, 1992) and also from the analysis 

of structural data (Folkers et al., 1994; Skinner et al., 1994).  

 
Figure 4 Ribbon diagram (prepared using MOLSCRIPT; Kraulis, 1991) 
of the gene V protein dimer structure (PDB code: 1GVP). One monomer 
is shown in green and the other in red (Skinner et al., 1994). 

 
Ff GVP contains a five-stranded antiparallel β-sheet from which three β-hairpins protrude 

(Figure 4). 
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1.2.3 Hetrotrimeric class 

This class is represented by the Replication protein A (RPA), the eukaryotic SSB. RPA is a 

heterotrimer composed of subunits of molecular weight 70, 32 and 14 kDa. The central 250 

amino acids of the large subunit (RPA70) contain two tandem single-stranded DNA-binding 

domains (Bochkarev et al., 1997; Gomes et al., 1995, 1996; Lin et al., 1996). The N-terminal 

region of RPA70 mediates interactions with a variety of cellular proteins including other 

replication proteins and certain transcription factors (Wold, 1997). The C-terminal region of 

RPA70 interacts with RPA32 and is required for assembly of the trimeric complex (Gomes et 

al., 1995, 1996; Lin et al., 1996). The middle subunit of RPA (RPA32) contains an additional 

single-stranded DNA binding domain that is likely to be similar in structure to those present 

in RPA70 (Philipova et al., 1996; Bochkareva et al., 1998).  

A crystal structure of the two DNA-binding domains of RPA70 bound to a single-

stranded octanucleotide at 2.4 Å resolution (Figure 5) has been reported (Bochkarev et al., 

1997). Each domain is composed of an OB fold (Murzin, 1993) and contains a channel that 

binds three nucleotides in the DNA chain. The DNA-binding channels of the two domains are 

oriented so that the ssDNA extends from one domain to the other in roughly a straight line, 

with two nucleotides bridging the space in between.  

 
Figure 5 Ribbon diagram (prepared using MOLSCRIPT; Kraulis, 1991) of 
the RPA70/ ssDNA complex (PDB code: 1JMC). RPA70 is shown in green 
and the ssDNA in grey (Bochkarev et al., 1997). 

 
Both domains interact with the DNA via hydrogen bonds to the bases and the phosphate 

backbone, as well as via stacking interactions between conserved aromatic residues and the 

bases. 
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The complex of the two smaller subunits RPA32 and RPA14 has weak DNA-binding activity 

but the mechanism of DNA binding is unknown. The crystal structure of the proteolytic core 

of RPA32 and RPA14 (Figure 6), which consists of the central two-third of RPA32 (residues 

45-170) and the entire RPA14 subunit, has been solved to 2.5 Å (Bochkarev et al., 1999). The 

structure revealed that RPA14 and the central part of RPA32 are structural homologues. Each 

subunit contains an OB fold domain, which also resembles the DNA-binding domain in 

RPA70 and an N-terminal extension that interacts with the central OB-fold domain and a C-

terminal helix that mediate heterodimerisation via a helix-helix interaction (Figure 6). The 

OB-fold of RPA32, but not that of RPA14, possesses additional similarity (i.e. conservation 

of aromatic residues) to the RPA70, supporting a DNA-binding role for RPA32.  

 
Figure 6 Structure of RPA32/RPA14 (PDB code: 1QUQ). A 
ribbon representation (prepared using MOLSCRIPT; Kraulis, 
1991) of the RPA14 (in red) and RPA32 (in green) (residues 45-
170) is shown (Bochkarev et al., 1999). 

 
1.2.4 Homotetrameric class 

This class includes the human mitochondrial SSB (Curth et al., 1994), bacterial SSB from E. 

coli (Meyer et al., 1990), Serratia marcescens (de Vries et al., 1993), Proteus mirabilis (de 

Vries et al., 1994), and Brucella abortus  (Zhu et al., 1993).  

1.2.4.1 Human mitochondrial SSB (HsmtSSB)  

The HsmtSSB functions as a tetramer. Each tetramer can bind 50-70 nucleotides with high 

affinity. It is also involved in DNA replication, repair and recombination. HsmtSSB exhibits 
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36% sequence identity and 50% similarity to EcoSSB. The crystal structure of HsmtSSB has 

been solved to 2.4 Å resolution (Yang et al., 1997). The tetramer is D2-symmetric and is 

formed by two dimers interacting head-to-head (Figure 7). The OB-fold of individual 

monomeric molecules has one α-helical segment and two β-pleated sheets. The front face of 

the barrel consists of three antiparallel strands and the back face of the barrel consists of four 

antiparallel strands. Between the antiparallel strands, three large β-hairpin loops are formed. 

Some residues in the N and C-terminal segments of the polypeptide chain (residues 1-9, 125-

132) and one of the loop regions (residues 52-60) are disordered. The dimer is stabilised by 

two intermolecular antiparallel strands which are part of a large β-pleated sheet formed by six 

antiparallel strands. His 69 (which is equivalent to His 55 in EcoSSB) has been shown to be 

involved in tetramerisation (Curth et al., 1991). It has also been shown that upon ssDNA 

binding the fluorescence of the exposed Trp-49 and Trp-68 in HsmtSSB protein, which are 

also conserved in EcoSSB, is drastically quenched (Curth et al., 1994). 

 
Figure 7 Ribbon diagram (prepared using MOLSCRIPT; Kraulis, 1991) illustrating the position of the 
four HsmtSSB molecules (PDB code: 3ULL) found in two asymmetric units. Two molecules depicted 
in yellow and blue colour are related by a non-crystallographic pseudo two-fold axis, as are the red 
and green coloured molecules (Yang et al., 1997). 
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1.2.4.2 EcoSSB 

1.2.4.2.1 Function of EcoSSB  

EcoSSB plays a vital role in various aspects of DNA metabolism and as a result, ssb 

mutations are generally pleiotropic (Chase et al., 1986). It is essential for DNA replication 

(Glassberg et al., 1979; Vales et al., 1980; Meyer et al., 1979), some repair mechanisms 

(Vales et al., 1980; Meyer et al., 1979; Whittier et al., 1983) and it also plays a role in 

recombination (Glassberg et al., 1979; Vales et al., 1980; Golub et al., 1983; Whittier et al., 

1981). Estimates of the number of SSB tetramers per E. coli cell range from 1000 to 2000, 

which is more than enough than what stoichiometric binding of SSB to transient ssDNA 

would require at the replication fork (Weiner et al., 1975; Bobst et al., 1985).  

1.2.4.2.1.1 Replication  

SSB is required for DNA replication. In vitro DNA replication systems were established in 

1970s by using ssDNA phage templates (φX174, M13, fd, f1, G4, α3, ST-1 and φK). From 

the beginning, SSB has always been a standard component of assays (Benz et al., 1980; 

Geider et al., 1974; Schekman et al., 1975; Wickner et al., 1974). For a long time, there was 

no direct evidence that SSB was essential in vivo. Even under certain conditions, replication in 

vitro could proceed in the absence of SSB. The essential role of SSB in DNA replication was 

established after the discovery of an EcoSSB mutation (Meyer et al., 1979). Strains carrying a 

mutated EcoSSB gene (ssb-1, ssb-113) were temperature sensitive with respect to DNA 

synthesis in vivo. Their replications were terminated in 1 or 2 minutes at 42.5° C. More direct 

evidence was then accumulated, for instance that the deletion of the ssb gene in E. coli is 

lethal and genomic ssb- strains have to be complemented with a plasmid encoded SSB (Porter 

et al., 1990). 

               There are four basic components of a replication fork (Figure 8): (i) the DNA 

polymerase is required for nascent strand synthesis, (ii) DNA helicase is involved in 

unwinding the parental duplex DNA, (iii) primase is needed to initiate Okazaki fragment 

synthesis, and (iv) SSB is required to coat exposed template ssDNA. 

              The origin of E. coli chromosomal replication (oriC) has been cloned on plasmid and 

used as a substrate to determine the events involved in initiation (Friedberg et al., 1985; Fuller 

et al., 1981). Initiation first requires the binding of DnaA (Fuller et al., 1984). DnaC 

complexes with DnaB and delivers it to the initiation complex (Funnell et al., 1987), with the 

subsequent release of DnaC (Wahle et al., 1989). The initiation complex is stabilised by SSB. 

The template is unwound by the helicase DnaB, DNA primase and DNA gyrase in the 
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presence of SSB (Baker et al., 1986, 1987) in preparation for the priming event (van der Ende 

et al., 1985).  

 
Figure 8 Schematic representation of a replication fork adapted from the website 
(www.accessexcellence.org/AB/GG/collaboration.html).  

 

The Elongation step of DNA replication is followed by the unwinding of the parental DNA. 

The helicase DnaB, unwinds the parental (duplex) DNA by translocating along the lagging 

strand template in the 5’ to 3’ direction (Figure 8). The separated DNA strands behind 

advancing helicase are prevented from the re-annealing by the binding of SSB (LeBowitz & 

McMacken 1986). A fundamental asymmetry is introduced to the enzymatic requirement for 

DNA synthesis at the fork because of the antiparallel nature of the template strands and the 

fact that DNA polymerases synthesize DNA in the 5’ to 3’-direction. Only one strand, the 

leading strand can be made in a continuous fashion. The replication fork appears to require 

highly processive DNA polymerase for the leading strand. Therefore, the DNA polymerase 

requires SSB for its high processivity and may be capable of synthesizing the leading strand 

with a single binding event if SSB is present (McHenery, 1988). 

        The other strand, the lagging strand is synthesized discontinuously, leading to generation 

of ssDNA in small pieces of roughly 2 kb in length (Okazaki fragments). At the lagging 

strand, DNA polymerase cannot initiate DNA synthesis de novo. The ssDNA is coated by 

SSB, primase acts upon this strand to form the RNA-primed sites that are then utilized by the 

lagging-strand polymerase for Okazaki fragment synthesis (Kelman et al., 1998). In E. coli,  

new Okazaki fragment synthesis must be initiated once every 1 or 2 sec. To ensure that the 

primase has already access to the template when and where it is needed, its association with 

the replication fork is mediated by the DNA helicase acting on the lagging strand template to 

unwind the parental duplex in the 5’- to 3’-direction. This mobile complex of helicase and 

primase has been termed a primosome (Kornberg et al., 1992; Marians, 1992). In E. coli, the 

Okazaki  
fragment 
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components of the primosome at the replication fork are still in question. It is clear that the 

primosome must include DnaB, the replication fork helicase (LeBowitz & McMacken, 1986), 

DnaG, the primase (Bouche et al., 1975) and that it requires DnaC for function. It is also 

considered that the primosome contains four other proteins, DnaT, PriA, PriB, and PriC 

(Allen & Kornberg, 1993). The essential prerequisite for the formation of the primosomes is 

the coverage of ssDNA with SSB. 

             In summary, SSB plays a central and varied role in DNA replication: (i) it helps to 

organise and stabilize replication origins, (ii) it enhances helix destabilization by helicases, 

(iii) it prevents re-annealing of the single strands and protects against single-strand nuclease 

digestion, (vi) it ensures the specificity of priming, (v) it is required for primosome assembly, 

(vi) it enhances the fidelity of the DNA polymerase, (vii) it enhances the processivity of the 

polymerase by destabilising secondary structure that could cause polymerase pausing and 

dissociation, and (viii) it may promote binding of the polymerase to the template. 

 1.2.4.2.1.2 Recombination  

DNA strand exchange catalysed by RecA occurs by a number of kinetically distinct phases 

that can be subdivided into at least three experimentally distinguishable steps: (i) presynapsis, 

(ii) synapsis and (iii) branch migration (Figure 9). 

Presynapsis 

The ordered assembly of the RecA protein homologue on ssDNA to produce a nucleoprotein 

complex that is the active species in DNA strand exchange is termed presynapsis. This 

process occurs by either of the two pathways: first, SSB binds to ssDNA (Figure 9, step 1A); 

this is followed by the binding of the RecA and the displacement of SSB to form the 

presynaptic filament (Figure 9, steps 1B and 1C, left panel). In the second pathway, RecA 

binds to the ssDNA substrate, forming an incomplete nucleoprotein filament due to limitations 

imposed by DNA secondary structure (Figure 9, step 1A, right panel). SSB then binds and 

removes the secondary structure and is then displaced by binding of further RecA molecules 

(Figure 9, steps 1B and C). The net result of either of these two pathways is the formation of a 

complete nucleoprotein filament that involves direct contact by the primary DNA-binding site 

of the strand exchange protein and results in the generation of a contiguous secondary DNA-

binding site that is essential for homologous pairing and DNA strand exchange (Mazin et al., 

1996; 1997). SSB affects the binding of RecA protein to ssDNA, greatly stimulating the DNA 

strand exchange process (Kowalczykowski et al., 1987). 
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Figure 9 Kinetic steps of DNA strand exchange. The reaction between circular ssDNA and linear 
dsDNA is shown. The product is a nicked circle and a displaced single strand of DNA. A similar 
reaction scheme may apply to all of the DNA strand exchange proteins discussed but reaction polarity 
is not indicated; the illustration is taken from Kowalczykowski (1987). The steps shown are: 1) 
presynapsis; 2) and 3) synapsis; and 4) DNA heteroduplex extension. The green spheres represent the 
strand exchange protein, and the orange squares represent SSB. 
 

The role of SSB in presynapsis is to dissolve secondary structure in ssDNA, which is 

inhibitory to the formation of the saturated presynaptic complex (Kowalczykowski et al., 

1987). This is consistent with the role of the protein as a helix-destabilising protein and the 

observation that other helix destabilising proteins can substitute for SSB in DNA strand 

exchange in vitro (Muniyappa et al., 1984). 

Synapsis  

Once the presynaptic filament has assembled on ssDNA, synapsis occurs. In this stage of the 

reaction, a dsDNA molecule must be bound to the filament, homologous to the ssDNA within 

the filament located within the dsDNA, and a plectonemic heteroduplex joint formed. The 

efficiency of joint molecule formation is affected by SSB. If SSB is omitted, the displaced 

ssDNA is used by RecA protein to form a second joint molecule with another dsDNA 

molecule. This results in the formation of complex, homology-dependent network of joint 

molecules. In the presence of SSB, RecA protein does not form these networks, since SSB  

prevents re-invasion events by binding to the ssDNA displaced from the joint molecules. In 

addition, the yield of joint molecules is greater (Lavery et al., 1992). However, under reaction  
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conditions where RecA protein is better able to compete with SSB (i.e. in the presence of the 

volume excluding agents polyethylene glycol or polyvinyl alcohol, or when dATP is used as 

cofactor), networks are readily formed (Lavery et al., 1990, 1992).  

Branch migration  

Once the plectonemic joint has formed, the branch migration phase of DNA strand exchange 

commences. During this phase, the nascent, heteroduplex joint is extended until complete 

exchange of single strands of DNA occurs, resulting in a nicked, double-stranded circle. 

Though kinetically distinct, branch migration may not be a mechanistically separate step, but 

rather may represent a continuation of plectonemic joint molecule formation (Riddles et al., 

1985; Kowalczykowski, 1991). 

In summary, SSB acts both at the pre- and post-synaptic steps of DNA strand exchange. 

1.2.4.2.1.3 Repair 

SSB plays a role in the SOS response, methyl-directed mismatch repair and the 

recombinational repair. In UV irradiated recA cells, SSB plays also a role in photorepair with 

the enzyme photolyase (Lerš et al., 1989). There is not much known about its involvement in 

the other repair processes (Meyer et al., 1990). 

   The SOS response to DNA damage in E. coli is mediated through the recA-lexA regulon 

(Little et al., 1982; Walker et al., 1985). Induction of the SOS regulon leads to cleavage of a 

variety of lysogenic phage repressors including λ, P22, 434, and φ80 (Lin et al., 1989). 

Cleavage of these repressors, is stimulated by an active form of RecA protein as an allosteric 

effector (West, 1988). For RecA to promote this cleavage, two cofactors are required: (i) a 

nucleoside triphosphate, and (ii) either an ssDNA or UV-irradiated DNA (Craig et al., 1980; 

1981). In this activation process SSB plays an important role. In vitro SSB stimulates RecA-

mediated (Resnick & Sussman, 1982; Weinstock & McEntee 1981) or RecA441-mediated 

(Moreau et al., 1984) cleavage of the λ repressor. By using the temperature sensitive SSB-113 

mutant, cleavage of λ repressor at low SSB-113 concentrations can be stimulated, but 

becomes inhibitory at higher level (Resnick & Sussman, 1982). Cohen et al. (1983) observed 

that SSB-113 competes more efficiently than SSB with RecA for binding ssDNA. This is 

supported by the observation of Chase et al. (1984) that SSB-113 has higher affinity for 

ssDNA than SSB. The UV sensitivity of ssb mutants has been attributed in part to the failure 

of inducing normal levels of RecA (Baluch et al., 1980; Johnson, 1984), which also supports 

the notion that SSB is involved in the activation of RecA. 
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In vitro methyl-directed mismatch repair has an absolute requirement for SSB (Lahue et al., 

1989; Lu et al., 1986). Three key enzymes in mismatch repair interact functionally with SSB: 

(i) DNA helicase II (the unwinding of the parental DNA by helicase driven by SSB), (ii) 

exonuclease I (exonucleolytic excision of the displaced, error containing strand by 

exonuclease I is stimulated by SSB), and (iii) DNA polymerase III (repair resynthesis of the 

strand over a distance of several thousand nucleotides is effected by DNA polymerase III, 

requiring SSB bound to the template strand). 
Recombination repair  

When the presence of a DNA lesion, such as a pyrimidine dimer prevents reading of the 

template strand by DNA polymerase III, the polymerase may dissociate and reinitiate 

replication at the next Okazaki fragments, leaving a single-strand gap (Roberts et al., 1982; 

Shwartz et al., 1988). This may be repaired through a recombinational event. Recombination 

repair is error free. EcoSSB is required for recombination as discussed in section 1.2.4.2.1.2. 

However, it should be recalled that the ssb mutants are defective in recombination (Ennis et 

al., 1987; Glassberg et al., 1979). This may simply reflect a decreased efficiency of mutant 

SSB interacting with RecA (McEntee, 1980). Therefore, the UV sensitivity of ssb mutants 

may be attributed to three factors involved in recombinational repair: (i) the inability of the 

mutants to induce sufficient levels of RecA protein for enhanced recombination, (ii) a 

decreased efficiency of RecA-SSB interaction during the recombination process itself, leading 

to an accumulation of ssDNA, and (iii) the inability of mutant SSB to adequately protect 

against DNA degradation. 

1.2.4.2.1.4 The C-terminal domain 

Using immobilised SSB, Perrino et al. (1988) demonstrated a direct interaction between SSB 

and several other proteins ranging in size from 14 to 160 kDa. Furthermore, there is 

preliminary evidence for direct interaction of SSB with DNA polymerase (Pol) II (Molineux 

et al., 1974), I (Molineux et al., 1975) and priB (Low et al., 1982). Recently, it has been 

shown by Kelman et al. (1998) that the χ-subunit of Pol III is the major contact between 

holoenzyme and SSB. EcoSSB interacts with exonuclease I via its all four C-termini 

(Genschel et al., 2000). 

        Interaction between SSB and replication proteins extends beyond the E. coli system. A 

physical interaction of two well-characterised SSBs (gp32 and T7 gene 2.5 protein) with their 

respective DNA polymerase subunits has been demonstrated (Cha & Alberts, 1989; Kim et 

al., 1992). The gp32 protein has also been shown to interact with T4 primase (Cha & Alberts, 
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1989). The T7 gene 2.5 protein also interacts with the T7 gene 4 protein which contains both 

helicase and primase activity (Kim & Richardson, 1994). In the eukaryotic system, the human 

RPA interacts with DNA polymerase α (Dornreiter et al., 1992; Kowalczykowski, 2000). 

1.2.4.2.2 Biochemical and biophysical properties of EcoSSB 

EcoSSB consists of 177 amino acid (molecular weight 18.843 kDa) with an isoelectric point 

of 6.0 (Sancar et al., 1981; Chase et al., 1984). The protein forms a homotetramer which is 

very stable over a wide range of solution conditions, even at a protein concentration of 0.03 

µM at 25°C (Weiner et al., 1975; Williams et al., 1983, 1984). The tetramer has a 

sedimentation coefficient of 4.4 to 4.9 S (Williams et al., 1983) and its diffusion coefficient 

has been estimated as 5.6x 10-7 cm2sec-1, corresponding to a Stokes radius of 38 Å (Weiner et 

al., 1975). The ratio of frictional coefficient of tetramer to that of equivalent mass was 

estimated to be around 1.36, indicating that the tetramer is either hydrated or nonspherical or 

some combination of these (Williams et al., 1983). 

1.2.4.2.3 Crystallisation of EcoSSB 

EcoSSB has been the subject of extensive crystallisation efforts. The earlier reports describing 

the crystallisation of the full length of the protein were by Ollis et al. (1983) and Monzingo et 

al. (1983). The asymmetric unit in these crystals contained two native and two proteolytically 

degraded subunits with D2 symmetry. It has been shown that the crystal grew only after 

spontaneous proteolytic cleavage of EcoSSB had occurred (Hilgenfeld et al., 1984).  

Initial X-ray crystallographic studies showed that EcoSSB crystallized in three forms. Form I 

crystals were of monoclinic (Ollis et al., 1983; Monzingo et al., 1983; Hilgenfeld et al., 

1984), Form II of the hexagonal space group P6422 (Ollis et al., 1983) and Form III of the 

space group I222 (Thorn et al., 1994).  

1.2.4.2.4 Structure of EcoSSB 

 The folded structure of the homotetrameric SSB from E. coli was solved by X-ray 

crystallography (Webster et al., 1997; Raghunathan et al., 1997) in space group C2. In both 

structures, the tetramer is comprised of two dimers related by a 2-fold non-crystallographic 

symmetry axis. Similar to HsmtSSB, individual monomers of EcoSSB are composed of a 

small α-helical segment and two β-pleated sheets that form a β-barrel whose front and back 

faces consist of three and four antiparallel strands, respectively. Raghunathan et al. (1997) and 

Webster et al. (1997) reported the EcoSSB structure to 2.9 Å and to 2.5 Å resolution, 

respectively, and recently, Matsumoto et al. (2000) reported the structure to 2.2 Å resolution. 

The Ramachandran plot (Ramachandran & Sasisekharen, 1968) of the Raghunathan-EcoSSB 

and the Matsumoto-EcoSSB structure show 76.6% and 74.2% residues, respectively in the 
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most favourable regions, whereas the Webster-EcoSSB structure shows only 46% residues in 

the most favourable regions (Table 2). In fact, a good quality model would be expected to 

have over 90% in the most favoured regions (Laskowski et al., 1993). 

Table 2 Statistics on EcoSSB structures 

 Webster et al. (1997) Raghunathan et al. (1997) Matsumoto et al. ( 2000) 

Resolution (Å) 2.  5 2.9 2.2 

Overall completeness (%) 91.9 95.0 82.7 

R-factor (%) 25.5 23.0 24.7 

R-free (%) 38.0 29.5 31.2 

Residues distributions in Ramachandran plot † 

Most favourable (%) 46.0 76.6 74.2 

Allowed (%) 44.8 17.2 18.5 

Generously allowed (%) 6.6 6.2 5.3 

Disallowed (%) 2.6 0 2.1 

 † Ramachandran & Sasisekharan, 1968; Laskowski et al., 1993. 

1.2.4.2.5 Interaction between EcoSSB and DNA  

1.2.4.2.5.1 Multiple mode  

One of the primary physical quantities that is needed to characterise a protein-DNA 

interaction is the site size, n, which is the number of nucleotides occluded upon binding the 

protein. For a particular protein-nucleic acid complex, the value of the site size is most often 

found (or assumed) to be independent of solution parameters. However, this is not the case for 

the EcoSSB/ssDNA interaction, which can form several different and distinct binding modes, 

characterised by different site sizes (Lohman et al., 1985; Bujalowski et al., 1986, 1988) 

referred to as (SSB)n, that differ in the number of nucleotides (n) occluded by each bound 

tetramer. The site size of the EcoSSB/ssDNA complex varies between 35±2 and 65±5 

nucleotides per tetramer depending upon the salt concentration, temperature, pH and the 

concentration of protein and nucleic acids (Lohman et al., 1985; Bujalowski et al., 1986, 

1988). The higher site size binding modes are favoured at higher salt concentration (Lohman 

et al., 1985; Bujalowski et al., 1986). The effects of salt concentration are complex, but 

generally reflect a requirement for the uptake of cations in progressing from the lower to the 

higher site size binding modes (Lohman et al., 1985; Bujalowski et al., 1988). However, the 

site size transitions are sensitive to both the cation and anion type and valence, reflecting a 

complex set of ion binding interactions to the SSB, the ssDNA, and the SSB-ssDNA 

complexes (Bujalowski et al., 1988). The presence of divalent cations shifts the binding mode 
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transition so that they occur at much lower salt concentrations. The (SSB)35 to (SSB)56 and 

(SSB)56 to (SSB)65 transitions are affected differently, reflecting the different nature of each 

transition (Bujalowski et al., 1986, 1988). The binding mode transitions are also differentially 

affected by anion type (Bujalowski et al., 1988). At 37°C, a fourth binding mode with a site 

size of 42±2 nucleotides per tetramer is also observed for the SSB-poly(dT) interaction 

(Bujalowski et al., 1986). This mode is also observed with poly(U) and poly(A) at 25°C. A 

progressive compaction of the SSB-poly(dT) complex occurs throughout the transition from 

the (SSB)35 to the (SSB)65 as seen by sedimentation analysis (Bujalowski et al., 1988). 

1.2.4.2.5.2 Co-operativity  

Helix destabilising proteins have the general feature of co-operative binding to ssDNA and a 

singly contiguous protein chain has a higher affinity for nucleic acids than does an isolated 

protein. This is also the case for the EcoSSB. Two types of co-operative binding to ssDNA, 

referred to as “limited” and “unlimited” have been observed for EcoSSB (Lohman et al., 

1986, 1988), and these yield complexes with quite different properties in vitro (Lohman et al., 

1986; Bujalowski et al., 1987; Ferrari et al., 1994). The (SSB)65-binding mode displays a 

“limited” type of cooperativity (Overman et al., 1988, 1994; Bujalowski et al., 1987) in which 

SSB clusters appear to be limited to the formation of dimers of SSB tetramers (octamers), 

which are seen as “beads” in electron microscopy (Chrysogelos et al., 1982); long clusters of 

SSB tetramers do not form along ssDNA in this mode (Lohman et al.,1986). In the 

“unlimited” co-operativity mode, which appears to be correlated with the (SSB)35-binding 

mode (Lohman et al., 1986; Ferrari et al., 1994), long clusters of SSB can form (Sigal et al., 

1972; Ruyechan et al., 1975; Lohman et al., 1986), which could be observed in T4 gene 32 

protein binding as well (Alberts et al., 1970). 

1.2.4.2.5.3 DNA-binding domain  

Proteolysis studies (Williams et al., 1983) indicate that the ssDNA-binding site of EcoSSB is 

contained within the first 115 N-terminal amino acids. The N-terminal “core” polypeptides, 

SSB*T and SSB*C, formed by trypsin cleavage after Arg115 or chymotrypsin cleavage after 

Trp135, respectively, also form tetramers. However, these are not as stable as wild-type 

tetramers, suggesting that the C-terminal region facilitates tetramerisation (Williams et al., 

1983). Both SSB*T and SSB*C lower the melting temperature of poly[d(A-T)] more than 

does intact SSB, suggesting that the C terminus modulates the ability of EcoSSB to melt 

duplex DNA. 
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1.2.4.2.5.4 Structure of the EcoSSB-ssDNA complex  

Recently, the crystal structure of the chymotryptic fragment of EcoSSB (SSBc) corresponding 

to the ssDNA binding domain of the protein (residues 1-135) bound to two 35 oligo-

deoxycytidylates (Figure 10) has been determined to 2.8 Å resolution in C2 space group 

(Raghunathan et al., 2000).  Of the 35 nucleotides, 28 nucleotides could be resolved in the 

first dimer and 14 in the second (Figure 8). The PDB file (entry code 1EYG) of this structure 

shows 67% occupancy for each nucleotide with an overall temperature factor of around 70 Å2. 

The Ramachandran plot of this complex structure shows that 77.4% residues are in the most 

favourable region again indicating the low quality of this structure. 

There is not much structural difference between the free and the ssDNA-bound form of the 

EcoSSB (Webster et al., 1997; Raghunathan et al., 1997, 2000; Matsumoto et al., 2000). In 

the crystals of both the apoform and the complex with ssDNA, the loop (residues from 85 –

100: Loop III) participates in crystal packing.  

 
Figure 10 The EcoSSB/ssDNA complex (PDB code: 1EYG), a ribbon diagram (prepared using 
MOLSCRIPT; Kraulis, 1991) of EcoSSB (four subunits are in red, blue, green, and yellow) and the 
ssDNA in grey (Raghunathan et al., 2000). 
 

The Trp fluorescence of SSB is quenched by ~90% upon binding poly(dT) in the (SSB)65 

binding mode (Lohman et al., 1985). In the (SSB)35 mode, however, the Trp fluorescence is 

quenched by only ~50% due to fact that only half of the Trp residues interact with DNA in 

this binding mode (Bujalowski et al., 1989). The role of the Lys residues and the N-terminus 

in ssDNA binding has also been shown by chemical modification (Chen et al., 1998). It was 

observed that the acylation of Lys-43, 62, 73, 87, and the N-terminal NH3-group is greatly 
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reduced in the presence of ssDNA. Other basic residues also interact with ssDNA, either with 

the bases (such as Arg-3) or with the phosphate backbone (Arg-84). 

1.2.4.3 Sequence comparison of bacterial SSBs  

The best alignment of the Serratia marcescens SSB (SmaSSB), Proteus mirabilis SSB 

(PmiSSB) and Brucella abortus SSB (BabSSB) sequences with EcoSSB is shown in Figure 

11. The sequence identities between EcoSSB and SmaSSB, PmiSSB and BabSSB are 89%, 

81% and 54%, respectively. The polypeptides of these SSBs are very similar in size to that of 

EcoSSB, ranging from 168 to 177 amino acids, and show extensive sequence similarities in 

the N-terminal domain (residues 1-115) and only few similarities in the C-terminal regions, 

despite the fact that the six out of the eight C-terminal residues are common to all four 

sequences.  

 
Figure 11 Sequence comparison (prepared using ALSCRIPT; Barton, 1993) of EcoSSB (Sancar et al., 
1981) with SmaSSB (de Vries et al., 1993), PmiSSB (de Vries et al., 1994) and BabSSB (Zhu et al., 
1993). Residues that are highly conserved and identical among various SSBs are shaded. The amino 
acid position 1 in the Eco-, Sma-, Pmi-, BabSSB corresponds to the second position of the open 
reading frame in respective genes. The black numbering shows the sequential order of the residues in 
window. The numbering in red letter indicates the sequence position from EcoSSB (EcoSSB 
numbering). 

 
               Residues of known importance for EcoSSB function and/or DNA-binding, such as 

Trp-40, Trp-54, Phe-60 and Trp-88, are conserved in all of the SSBs, along with a number of 

other residues within the N-terminal domain. In the present study, the structures of EcoSSB 

(1.95 Å) SmaSSB (3.0 Å), PmiSSB (2.5 Å) and BabSSB (1.8 Å) have been solved and will be 

discussed in detail in the Results and Discussions section. 
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1.3 Trends in cryocrystallography 

Among the biggest problems in macromolecular crystallography is the relatively weak 

diffraction power of the crystals and their sensitivity to ionising radiation damage. Diffraction 

can be dramatically improved by cryo-techniques, in which crystals are cooled to cryogenic 

temperature. Many factors contribute to improvements in data quality: obvious benefits are 

reduced thermal vibrations, enhanced signal-to-noise ratio, reduced conformational disorder, 

and in many cases, a higher resolution. Of primary practical importance is the decrease in X-

ray damage to the crystal, permitting a complete data set to be collected from one single 

crystal. In addition, crystal mounting is vastly simplified over conventional capillary 

techniques. These combined improvements lead to enhanced contrast and sharper detail in 

electron density maps, facilitating model building and reducing the total time required for 

structure determination. 

Because biological macromolecular crystals are highly hydrated with aqueous solvent 

contents of roughly 30-70%, to a large extent the problem of cooling involves preventing 

destructive ice formation. Two methods have been generally used. In one, the crystal is 

permeated with a diffusible cryoprotectant such as glycerol or sucrose (reviewed by Garman 

& Schneider, 1997; Rodgers, 1994, 1997) to retard ice nucleation. Determining the initial and 

optimal conventional cryoprotectant concentration is often a process of trial and error. One 

must find suitable conventional cryoprotectant concentrations which stabilize the crystal while 

at the same time combine with the crystallisation reagent to form an amorphous glass. In the 

second method, the liquid surrounding the crystal is replaced with immiscible hydrocarbon oil 

such as Paratone-N (Hope, 1988, 1990) or Paraffin oil (Riboldi-Tunnicliffe & Hilgenfeld, 

1999). If the crystal is cooled rapidly enough, ice does not form and the crystal can be flash-

cooled to a vitreous glass preserving the lattice order.  

                  A further significant improvement was achieved by the introduction of crystal 

flash-annealing (Harp et al., 1998, 1999; Yeh & Hol, 1998; Sauer & Ceska, 1997). In this 

procedure, the cold nitrogen gas stream is briefly diverted from the crystal before the latter is 

allowed to re-cool. After repeating this three times, with the crystal remaining in the cryo-loop 

(in situ annealing) Yeh and Hol (1998) were able to improve the diffraction limit of glycerol 

kinase from 3.6 Å to 2.8 Å. Harp et al. (1998) describe an annealing method where the crystal 

is first flash-cooled and then returned into the cryoprotectant solution which was either 

glycerol or MPD or Paratone-N oil. 

            In a recent communication, from our laboratory, Riboldi-Tunnicliffe and Hilgenfeld 

(1999) described flash-cooling using dried paraffin oil as a non-aqueous cryoprotectant. This 
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approach has been successful in nine out of ten cases in our laboratory, and many encouraging 

reports were received from other laboratories.  

                     A further development of these cryo-techniques will be discussed in detail in the 

Results and Discussion section.  

1.4 Aim of the work 

The aim of this project was to elucidate the structures of bacterial ssDNA binding proteins 

using X-ray crystallographic methods. Development of novel techniques to assist the study 

was integral to this work. Deciphering the detailed architecture of this class of proteins and 

analyses of the factors relevant to the interactions/binding of the ssDNA was a major goal. 
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2 Materials and methods  

2.1 Materials 

2.1.1 Chemicals   

                                   Table 3 Chemical items and their manufacturers 

Chemical items Manufacturers 

PEG 400, 4000  Fluka Chemie AG 

EDTA Merck 

NaN3 Merck 

Na cacodylate Merck 

Paraffin oil Merck 

Silicon fluid 200/1 cS oil Merck 

Ammonium sulphate Merck 

Sodium chloride Merck 

Magnesium sulphate Fluka Chemie AG 

Crystallisation screen Hampton Research 

IzitTM Hampton Research 

β-mercaptoehanol Merck 

MES Merck 

HEPES Merck 

TRIS Merck 

Sodium acetate Merck 

Dioxane Merck 

Bicine Merck 

Dried paraffin oil JenaBioScience 

PanjellyTM JenaBioScience 

2.1.2 Buffers and solutions 

All buffers and solutions were prepared using deionised water at 20°C (Millipore water 

purification system). 

Table 4 Buffer, protein storage, crystallisation solutions and oil 

Oil mixture  50% paraffin and 50% silicon fluid 200/1 cS 

Buffer T Tris pH 7.5 

Protein storage solution A 0.5 M NaCl, 3 mM NaN3, 20 mM Buffer T 

Protein storage solution B 1 M NaCl, 1 mM Na2EDTA, 60% (v/v) glycerol  
20 mM potassium phasphate, pH 7.5 
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Crystallisation solution A 4% (v/v) PEG-400, 40 mM sodium cacodylate, 10 mM 
β-mercaptoethenol, pH 6.5 

Crystallisation solution B 12.5 mM sodium acetate, 30% (v/v) dioxane,100 mM 
sodium cacodylate, pH 6.5 

Crystallisation solution C 3% (w/v) PEG 4000, 5mM magnesium sulphate, 50 
mM MES pH 6.5 

Crystallisation solution D 1.8 M Ammonium sulphate, 25 mM magnesium 
sulphate, 50 mM Tris, pH 8.5 

 

2.1.3 Protein and DNA samples 

Purified EcoSSB, BabSSB, PmiSSB and SmaSSB were kindly provided by the group of PD 

Dr. C. Urbanke (Medizinische Hochschule, Hannover, Germany) and by the group of Prof. 

Dr. W. Wackernagel (Oldenburg University, Oldenburg, Germany).  

          The oligonucleotides ((dT)N; with N = 2, 4, 8, 16, 35) were a generous gift of Dr. Birsch 

Herschfeld (Department of Virology; University of Jena)). The DNA was suspended in 

Protein storage solution A, and dialysed extensively before use. Oligonucleotide 

concentrations were determined spectrophotometrically in Buffer T and 0.5 M NaCl, using the 

following extinction coefficient (per nucleotide): ε260 = 8.6x103 M-1 cm-1 (Urbanke & Schaper 

1990). 

2.1.4. Instruments  

                         Table 5 Instruments and their manufacturers 

Instrument  Manufacturers 

Rotating anode generator FR591 Enraf Nonius  

Detector, MAR345 and MAR30 cm Mar Research  

Cryostat Oxford Cryosystems 

Light microscope Zeiss  

Water purification system Millipore 

pH meter Schott 

Analytical balance Sartorius 

Centrifuge Heräus Instruments 

Spectrophotometer (SLM 8000C) Zeiss 

Gel electrophoresis system Pharmacia 

Indy workstation SGI 

O2 graphics workstation SGI 

Indigo2 graphic workstation SGI 
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2.2 Methods  

2.2.1 Purity determination   

Protein purity is a critical factor in crystallisation experiments: proteins used for 

crystallisation should be as pure as possible and completely homogeneous (McPherson, 1982). 

The purity and homogeneity of SSB was judged visually from SDS polyacrylamide gels 

stained with Coomassie Blue (Lämmli, 1970). 

2.2.2 Crystallisation  

The crystallisation of the protein is a prerequisite for the entire crystallographic work. After 

the purification of DNA and proteins, suitable crystals may be obtained by carefully searching 

for suitable crystallisation condition, which include pH, buffer conditions, precipitants, etc.  

The most common setup to grow protein crystals is the hanging drop technique which is used 

in this work. The technique is based on vapour diffusion of water. A few microlitres of protein 

solution are mixed with about equal amount of reservoir solution containing the precipitants. 

A drop of this mixture is put on a siliconised microscope glass slide which covers the 

depression in a tray. The depression is partly filled with the required precipitant solution 

(reservoir solution approximately 0.5 ml). The chamber is sealed by applying grease to the 

circumference of the depression, before the glass slide is put into place (Figure 12). As the 

protein/precipitant mixture in the drop is less concentrated than the reservoir solution, water 

evaporates from the drop and diffuses into the reservoir. As a result the concentration of both 

protein and precipitant in the drop slowly increases, and crystals may form. 

 
Figure 12 Schematic diagram of a hanging drop setup.  

 

2.2.3 Characterisation of protein crystals  

There are a number of ways to distinguish protein from salt crystals. 

2.2.3.1 Light microscope 

A light microscope is used to detect protein crystals in the small crystallisation drop. 

Sometimes it is difficult to recognise the crystals, especially when they are very small. In this 

case, a light microscope with polarising optics is required to observe birefringence. The 
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following path is a typical setup. Light passes from the light source through the first polarising 

lens then onto the sample and then to the second polarising filter. On many typical 

polarisation setups, the second polarising filter can be rotated while the specimen is stationary. 

Rotating the polarising optics will result in one seeing light, dark, light, dark, as the filter is 

rotated. But if a crystal with birefringent properties (all crystals except cubic ones) is 

positioned in between the two polarising filters, one will observe changing colours as the 

polarising filter is rotated. Specially, when the polarising filters are aligned such that the field 

is dark, a birefringent object (crystal) will glow with colour. This also depends on the size of 

the crystal. 

          Birefringence is one way we can differentiate amorphous precipitate from 

microcrystals in a drop when viewed under a microscope. Precipitate does not have 

birefringent properties while all crystals except cubic ones do have birefringent properties. 

2.2.3.2 Gel analysis 

The second method to verify that crystals are protein crystals is to analyse them by the SDS 

gel electrophoresis (Lämmli, 1970). A number of crystals are harvested and washed 

thoroughly in the crystallisation solution. Then they are dissolved in water and put on a 12.5% 

SDS gel. The gel is stained with Coomassie Blue to probe for protein. If it shows the same 

band as the protein solution used for crystallisation, the crystals are confirmed to be protein 

crystals.  

2.2.3.3 Staining with IzitTM 

An alternative method is to stain the crystal with IzitTM. If the crystal is a protein crystal, it 

turns blue otherwise it stays opaque. This can simply be done by placing 1 µl of IzitTM in the 

sample drop and waiting for 24 hours. IzitTM is a small molecule dye which fills the solvent 

channels in protein crystals and binds with the protein molecules. With the appropriate 

dilution, IzitTM will in fact leave a clear drop with blue crystals. Salt crystals do not possess 

these large solvent channels, thus IzitTM molecules cannot enter the crystal, leaving a clear 

crystal and a blue drop. IzitTM works especially well for small micro-crystals or questionable 

precipitate.  

2.2.4 Structure determination  

2.2.4.1 Diffraction theory  

W. L. Bragg showed that the angles at which diffracted beams emerge from a crystal can be 

computed by treating diffraction as if X-rays were reflected by sets of parallel planes in a 

crystal. This is why each spot in the diffraction pattern is called a reflection. 
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       The most readily apparent sets of planes in a crystalline lattice are those determined by 

the faces of the unit cells (the dimension of the unit cell is designated by six numbers: the 

length of the edges a, b, and c; and three unique angles α, β, and γ). These and all other 

regularly spaced planes that can be drawn through lattice points can be thought as sources of 

diffraction and can be designated by a set of three numbers called lattice indices. Three 

indices h,k,l identify a particular set of equivalent, parallel planes. 

W. L. Bragg showed that a set of parallel planes with index h,k,l and interplaner spacing dh,k,l 

produces a diffracted beam when X-rays of wavelength λ impinge upon the planes at an angle 

θ and are reflected at the same angle, only if θ meets the condition (Figure 13) 

2dh,k,l sinθ = nλ………………………………………………………………………………<1> 

where n is an integer. The geometric construction in Figure 14 demonstrates the conditions 

necessary for producing a strong diffraction ray.  

The path difference (2dh,k,l sinθ) between two rays reflected from the successive planes is 

equal to an integral number of wavelengths of the impinging X-rays. The rays reflected from 

successive planes emerge from the crystal in phase with each other, interfering constructively 

to produce a strong diffracted beam.  

 
Figure 13 Bragg’s Law (adapted from Blundell & Johnson, 1976). 

 
For any other angle of incidence the path difference does not equal an integral multiple of λ 

the waves emerging from successive planes are out of phase, so they interfere destructively, 

and no beam can be observed at that angle. 

Reciprocal lattice and Ewald sphere  
Consider a vector perpendicular to the lattice planes with magnitude equal to 1/dh,k,l. These 

vectors d*
h,k,l drawn from a common origin constitute the reciprocal lattice, a point lattice. 

If we refer the Bragg’s law (equation <1>) 
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It can seen that sinθh,k,l is inversely proportional to dh,k,l, the interplaner spacing. Since sinθh,k,l 

is a measure of the deviation of the diffracted from the direct beam, structures with a large 

dh,k,l will exhibit a narrow diffraction pattern and structures with smaller dh,k,l will show the 

opposite effect. Therefore, the most important property of the reciprocal lattice is that it 

allows a simple visualisation of Bragg’s law. 

 
Figure 14 Line diagram representation of the Ewald construction. 

 

The graphical representation (Figure 14) of Bragg’s law in reciprocal space was proposed by 

P. Ewald in 1921, and is known as Ewald construction.  

It is assumed that the X-ray beam is passing through P along the line BR. A circle is drawn of 

radius 1/λ having its centre P. The circle represents the wavelength of the X-ray in reciprocal 

space. (If the wavelength is λ in real space, it is 1/λ in reciprocal space). The crystal centred at 

P can be physically oriented so that the required reciprocal lattice point can be made to 

intersect with the surface of the Ewald sphere. It is shown that Q (whose indices are h,k,l) is in 

contact with the circle, and the lines RQ and RB are drawn. Because the triangle RBQ is 

inscribed in a semicircle, it is a right angle triangle  

Rearranging the equation gives 

Only when Q is a reciprocal lattice point, the length of the line QR is 1/dh,k,l where h, k, and l 

are the indices of the set of planes represented by Q.  

2 dh,k,l sinθ = λ  
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which is Bragg’s law with n =1. 

We can conclude that whenever the crystal is rotated so that a reciprocal lattice point 

intersects the sphere with radius 1/λ, Bragg’s law is satisfied and a reflection is observed. 

Friedel pairs 
The intensity of a diffracted beam is proportional to the square of its amplitude [I(h,k,l) 

proportional to |F(h,k,l)|2 ], the intensities I(h,k,l) and I(-h,-k,-l) are also equal. The reflections 

(h,k,l) and (-h,-k,-l) are called Friedel or Bijvoet pairs. Their equal intensities give rise to a 

centre of symmetry in the diffraction pattern, even though a centre is not present in the crystal 

structure. The I(h,k,l) = I(-h,-k,-l) equality is usually assumed to be true in crystal structure 

determination. It depends however on the condition that anomalous scattering is absent. 

2.2.4.2 X-ray diffraction data collection  

The main pieces of hardware needed for the collection of X-ray diffraction data are X-ray 

source, monochromators and detector.  

2.2.4.2.1 X-ray sources  

X-rays are electromagnetic radiation with wavelengths of 10-7 – 10-10 m. They can be 

produced either using a generator with sealed tube and fixed target or a more powerful system 

with a rotating anode, the latter being preferred for protein X-ray crystallography. The most 

commonly used radiation source has a wavelength of 1.5418 Å. This is the characteristic Kα 

wavelength emitted by copper. In our laboratory, we use a rotating anode. Modern technology 

has made it possible to generate intense X-rays also from circular particle accelerators. These 

synchrotrons are large, expensive facilities that are mainly used by high-energy physicists. 

The X-ray radiation (which is so useful to the protein crystallographer) is produced as a side 

effect. 

2.2.4.2.1.1 Rotating anode tubes 

In a rotating anode a cathode emits electrons, because the system is under vacuum and it is 

heated. The cathode is at a high negative potential with respect to a rotating cylinder (made of 

copper). With a rotating anode small source widths (0.1-0.2 mm) with high brilliance (number 

of photons/sec/mrad2/mm2/0.1% relative bandwidth) are possible. The advantage over the 

sealed tube is the higher radiation intensity, but disadvantage is that it requires continuous 

pumping to keep the vacuum at the required level. 

2.2.4.2.1.2 Synchrotron 

Synchrotrons are devices for circulating electrically charged particle (electron or positron) at 

nearly the speed of light. The particles are injected into the storage ring directly from a linear 

accelerator or through a booster synchrotron. The ring has diameter of 10 to a few hundred 

meters. The extremely high intensity X-ray radiation from a synchrotron is of great value for 
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collecting data from weakly diffracting crystals. The beam is strong and highly parallel, 

causing smaller but more brilliant spots on the detector. Therefore, with synchrotron radiation 

the resolution is somewhat better and data collection faster than using a rotating anode. 

Another advantage of synchrotron radiation is its tunability. Therefore, for multiple 

anomalous data collection, synchrotron radiation is absolutely necessary. 

2.2.4.2.2 Monochromators 

In the diffraction methods, monochromatic X-rays are used; a narrow wavelength band must 

be selected from the spectrum supplied by the source. The radiation from a tube with a copper 

anode contains the Kα doublet (1.5418 Å), Kβ radiation and Brems-strahlung. The Kβ 

radiation can be attenuated with a nickel filter but not eliminated. Much cleaner radiation can 

be obtained with a monochromator. For X-ray radiation from a tube the monochromator, 

usually is a crystal of graphite. For synchrotron radiation the preferable monochromators are 

made of germanium or silicon because they select a wavelength band two orders of magnitude 

narrower (δλ/λ = 10-4-10-5). Monochromators for synchrotron radiation are of the single or 

double type. Single type monochromators can be either flat or bent. The advantage of the bent 

monochromators is that they focus the divergent beam from the synchrotron, preferably onto 

specimen. Single type monochromators have a disadvantage, if they are tuned to another 

wavelength, the scanning angle of the monochromator changes, which is not the case with 

double monochromator, because the direction of beam is independent of wavelength. 

2.2.4.2.3 Detectors 

The detector is equally important in X-ray data collection. It records the position and the 

intensity of the diffracted beams. Nowadays most widely used detectors are imaging plates 

and charge-coupled devices (CCD). 

2.2.4.2.3.1 Imaging plate 

In our laboratory, we use imaging plates (18, 30 and 345 cm, from Mar Research 

Instruments). Image plates are made by depositing a thin layer of an inorganic storage 

phosphor on a flat base. X-ray photons excite electrons in the material to higher energy levels. 

Part of this energy is emitted as normal fluorescent light in the visible wavelength region. 

However, appreciable amount energy is retained in the material by electrons trapped in colour 

centres; it is dissipated only slowly over a period of several days. This stored energy is 

released on illumination with light. In practical applications a red laser is used for scanning 

the plate and blue light is emitted. The red light is filtered away and the blue light is measured 

with a photo-multiplier. Assuming certain error the light emitted is proportional to the number 
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of photons to which that particular position of the plate was exposed. The pixel size depends 

mainly on the reading system and can be between 100x100 and 200x200 µm2. 

2.2.4.2.3.2 CCD detector 

These detectors have been used as area detectors in crystallographic application since their 

development in the late 1980s. The driving force for the development of these detectors was 

the desire to have a detector, which would allow rapid read-out of the diffraction image 

combined with large reciprocal-space coverage. The CCD detector has become the detector of 

choice for synchrotron applications, and a number of commercial equipment manufactures 

offer CCD detectors in a wide array of configurations which have suitable software for 

collecting diffraction data. In an effort to increase coverage of reciprocal space, detector 

makers have designed cameras using either arrays consisting of multiple copies of CCD chips 

or employing large single-module CCD chips. These chips have X-ray-sensitive phosphor 

surface at the front to convert incident X-ray into a burst of visible-light photons and the 

visible-light is converted into electrons by the photoelectric effect. After completion of the X-

ray exposure, a shutter is closed and the CCD is read out serially, one pixel at a time.  As 

mentioned above that the X-ray is converted into charges, these charges are shifted 

quantitatively onto readout circuit processed by on-chip and then processed by an amplifying 

analog processing circuit and an analog-to-digital converter. 

                                 CCD detectors are significantly faster data collection instruments than 

imaging plates. The most significant differences in speed occur at exposure times less than 5 

minutes or so, and it is this speed advantage which has made CCD-based detectors the best 

suited for synchrotron sources, where exposure times are commonly found on the time scale 

of 10 seconds or less. 

2.2.4.2.4 Preparation of crystals  

To collect X-ray diffraction data from a protein crystal at room temperature, a crystal is 

mounted in thin-walled capillaries of borosilicate glass or quartz.  This is the traditional 

method in macromolecular crystallography. Very often data collection from protein crystal at 

room temperature suffers from radiation damage; in this case, radiation damage prohibits the 

collection of a complete data set from a single crystal. Radiation damage to the crystal can be 

greatly reduced at cryo temperature (100K), which allows collecting even multiple data sets 

from one single crystal. One of the great benefits of cryocrystallography is the possibility of 

the long-term storage of crystals at cryogenic temperature, enabling screening for diffraction 

quality prior to data collection and/or additional data collection at a later date. Not only is this 
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advantageous ‘in house’, but it also allows synchrotron beam time to be used far more 

efficiently.  

In this work, prior to flash-cooling the crystal in cryo-stream, the crystal was transferred with 

a rayon loop (Teng, 1990) from its crystallisation drop into PanjellyTM and subsequently 

annealed using dried paraffin oil. 

2.2.4.2.5 Preparation of dried paraffin oil and PanjellyTM  

The paraffin oil (Highly Liquid Paraffin Oil from Merck) was dried in a rotary vacuum 

centrifuge at 333K for 60 minutes. Afterwards, it was allowed to cool before being stored at 

the same temperature as the crystals (Riboldi-Tunnicliffe & Hilgenfeld, 1999). 

          PanjellyTM is Indian ghee, which is clarified butter. It is obtained by the traditional way 

by purifying fresh cow milk, separating moisture and solids, until a pure golden hued 

transparent liquid containing pure milk fat is obtained. The milk is warmed to around 100°C 

and cooled to room temperature for three to four hours and then the upper layer of the milk is 

collected. The upper layer is the cream of the milk which is then centrifuged for 15 min. The 

centrifuged solid part is warmed to 45°C. The fat is then centrifuged again at 30°C to extract 

the liquid for the use of the cryo purpose. This liquid is free of any foreign materials. It can be 

stored at room temperature without using refrigeration for several years. It is warmed 2 or 3°C 

above room temperature for the use as non-aqueous cryoprotectant. 

2.2.4.2.6 Crystal storage and retrieval 

One of the major advantages of cryocrystallography is the potential for storing and/or 

transporting crystals once they have been flash-cooled. The steps involved in storing a crystal 

that is in a cryo-stream are as follows. The holding magnet is mounted on an adapted 

goniometer head equipped with an attached asymmetric arc and a movable platform (Figure 

15). This arrangement enables the crystal to remain in the same position in the cold stream 

when rotated to point downwards. A small plastic container filled with liquid nitrogen, a 

“cryovial” with an approximately 2 ml capacity is then brought up around the crystal and the 

whole top hat removed into the vial. The vial is then immediately transferred into liquid 

nitrogen to refill. The vials are placed on aluminium canes that accommodate up to five 

samples and have small tabs that hold the loop assemblies in the vials. The base of the loop 

assembly is designed to fit loosely in the vials with a small shank that prevents the loop from 

touching the sides. Notches cut in the top rims of the vials allow them to be filled more 

quickly with liquid nitrogen. The vial placed on an aluminium cane can be then stored in a 

standard liquid nitrogen dewar. The crystal stored in liquid nitrogen dewar can be retrieved for 

data collection in a reverse way as described above.  
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Figure 15 Schematic representation of crystal storage/retrieval. 
 

2.2.4.2.7 Strategy 

The essence of data collection strategy is to collect every unique reflection at least once. If the 

crystal has no symmetry (triclinic) there is no way to achieve 100% completeness from a 

single rotation pass during data collection, no matter what the crystal orientation is. If the 

crystal has symmetry higher than triclinic, it is possible to record reflections which are 

symmetry-equivalent to those in the blind region if the unique axis itself does not lie in it. 

Skewing the symmetry axis by at least θmax (maximum diffraction angle) from the spindle 

direction ensure that there will be no loss of completeness owing to the blind region. 

Table 6 lists the required rotation range for the four crystal classes (SSB crystals) in three 

different point groups in various typical orientations. 

If a monoclinic crystal is mounted along an axis perpendicular to its two-fold axis (the spindle 

axis direction lies in the a, c-plane), the minimum required asymmetric part is 90°. When a 

tetragonal crystal is mounted along an axis to its c-plane, the required rotation range is 45° at 

least, and if it is rotated along to the perpendicular to its two-fold axis (the spindle axis 

direction in the a, b-plane), the required rotation range is at least 90°. Orthorhombic crystals 
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mounted around any of its two fold axes (the spindle axis direction in the a, b-plane or a, c-

plane or b, c-plane), the minimum required rotation range is 90°. 

Table 6 Rotation range for SSB crystals in the different crystal class 

Space group Symmetry 
number† 

Rotation required for native data‡ 

C2 4 180º (b); 90º (ac) 
P43212 96 45º (c ); 90º (ab) 
P42212 94 45º (c ); 90º (ab) 
P21212 18 90º (ab or ac or bc) 

              † Hahn, T. 1995 
              ‡ Dauter, Z.1999 
 
                In general, the required rotation range depends upon the crystal orientation. It is not 

easy to orient the crystal in cryo-loop in desired orientation when X-ray data need to be 

collected at cryo-temperature. Generally, a crystal is oriented in the cryo-loop around an 

arbitrary axis not in the symmetry plane, therefore more than the required minimum rotation is 

needed to be collected. In such a case, the crystal orientation is determined from first 

diffraction image and a STRATEGY program (Ravelli et al., 1997) is used to determine the 

minimum rotation range to acquire maximum completeness. Such a scheme is especially 

useful at the synchrotron for maximising the use of the available beam time.  

2.2.4.3 Data Processing 

After data collection, the next step is to process the X-ray diffraction images. The X-ray 

diffraction data processing proceeds through indexing, pre-refinement of camera parameters 

and crystal orientation, intensity integration, post-refinement and scaling.  

2.2.4.3.1 Autoindexing  

This requires a peak-picking procedure, followed by an analysis of the position of the peaks to 

determine the unit-cell dimensions, Bravais lattice and crystal orientation. The program 

DENZO (Otwinowski & Minor, 1997) has two indexing methods: automatic and interactive. 

The automatic method is applicable in most cases and it is fast and simple. The first step in the 

automatic method is a peak search, which chooses the spots to be used by the autoindexing 

subroutine. This program also has the ability to do the pre-refinement of the camera 

parameters (crystal-to-detector distance, scanning direction relative to oscillation direction, 

detector tilt away from being normal to X-ray beam) and crystal orientation. 

2.2.4.3.2 Intensity integration  

There are two distinct procedures available for determining the integrated intensities: 

summation, integration and profile fitting. Summation integration involves simply adding the 

pixel values for all pixels lying within the area of a spot and then subtracting the estimated 
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background contribution to the same pixels. Profile fitting assumes that the actual spot shape 

or profile is known (in two or three dimensions), and the intensity is derived by finding the 

scale factor which, when applied to the known profile, gives the best fit to the observed spot 

profile.  

       The program DENZO estimates the background value from an average detector signal in 

the neighbourhood of a specific reflection. In order to calculate the diffraction intensity, the 

background pixel values are fitted to a plane and then the background value is determined 

from the plane parameters and is subtracted from the reflection profile. 

2.2.4.3.3 Scaling 

The integrated intensities from any data collection experiment are not all on the same scale, 

because of various systematic differences in the collection procedure. It is the task of the data 

reduction protocol to place all observations on a common scale, to detect and reject outliers 

(reflections for which the measurement has erroneous), and produce a list of I (intensity) and 

σ(I) (standard deviation of intensity).  

        In this work, scaling and merging of different data sets as well as the global refinement 

of crystal parameters is performed by SCALEPACK (Otwinowski & Minor, 1997). During 

the diffraction data reduction, this program determines the relative scale factors between 

measurements and refines the crystal parameters using the entire data set. It allows for 

separate refinement of the orientation of each images, but with the same unit cell value for the 

whole data set. 

2.2.4.3.4 Quality of data 

The quality of the X-ray data is assessed by four different criteria. One of them is the 

symmetry (Rsym) or merging R-factor (equation <2>) that arises from the averaging of 

multiple measurements of reflections of the same (h,k,l) and of symmetry-related reflections. 

The second quantity is the ratio of the recorded intensity and its standard deviation I/σ(I) and 

the third one is the redundancy of the data, i.e. how often a given reflection and/or one of its 

symmetry-related reflections have been observed. The fourth quantity is the completeness of 

the data set overall and in the highest resolution bin.  
Weiss & Hilgenfeld (1997), Weiss (2001) and Diederichs & Karplus (1997) noticed that 

Rmerge is not a good quality indicator of the X-ray data. This is because Rmerge is inherently 

dependent on the redundancy of the data. The more often a given reflection is observed the 

higher Rmerge will be, even though by simple statistical reasoning the average value of the 

measurements become more accurate.  
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Two other R-factors proposed by Weiss & Hilgenfeld (1997) and Weiss (2001), that should be 

better suited to describe the quality of diffraction data, are: the so-called redundancy-

independent merging R-factor (Rr.i.m.) and the precision-indicating merging R-factor (Rp.i.m.). 

Rr.i.m. contains the redundancy N or the multiplicity of the observed reflection and is basically 

the conventional Rmerge made independent of redundancy. Rp.i.m. also contains the redundancy 

N and indicates how precisely the average measurement has been measured.  

The equations for the conventional Rmerge, Rr.i.m. and Rp.i.m.  is given below. 

 

2.2.4.3.5 Calculation of structure factor amplitudes 

The program TRUNCATE (French & Wilson, 1978) is used to convert a file of averaged 

intensities (output from SCALA or SCALEPACK2MTZ) to a file containing mean amplitude 

and the original intensities. If anomalous data is present then F(+), F(-), with the anomalous 

difference, plus I(+) and I(-) are also written out. The amplitudes are put on an approximate 

absolute scale using the scale factor taken from a Wilson plot (Wilson, 1949). 

2.2.4.4 Method of phase determination 
 

 
The determination of the three-dimensional structure of macromolecules using single crystal 

X-ray diffraction techniques requires the measurement of amplitudes and the calculation of 

phases for each diffraction point. Amplitudes |F(h,k,l)| can be directly measured from 

diffracting crystals, phases α(h,k,l) have to be determined indirectly. Thus, methods were 

developed to calculate phases. These methods are multiple isomorphous replacement, 
multiple wavelength anomalous dispersion, molecular replacement and direct methods. 
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2.2.4.4.1 Multiple isomorphous replacement (MIR) 

Isomorphous replacement requires the introduction of atoms of a high atomic number (heavy 

atoms), such as mercury, platinum, uranium, and so forth, into the macromolecule under study 

without disrupting its structure or packing in the crystal. Thus, a perfect isomorphous 

derivative is one in which the only change between it and the native molecule is the 

incorporation of one or more heavy atoms. This is commonly done by soaking crystals of 

native molecules in a solution containing the desired heavy atom. The binding of these atoms 

to functional groups of macromolecules is facilitated by the presence of large solvent channels 

in protein and nucleic acid crystals into which these functional groups protrude. The addition 

of one or two more heavy atoms to a macromolecule introduces differences in the diffraction 

pattern of the derivative relative to that of the native. If this addition is truly isomorphous, 

these differences will represent the contribution from the heavy atoms only; thus, the problem 

of determining atomic positions is initially reduced to locating the position of a few atoms. 

Once the positions of these atoms are accurately determined, they are used to calculate a set of 

phases for data measured from the native crystals. Although theoretically one needs only two 

isomorphous derivatives to determine the three-dimensional structure of biological 

macromolecules, in practice one needs more than two, owing to errors in data measurement 

and scaling and in lack of isomorphism.  

The following vector diagram (Harker construction) illustrates the relationship between native 

and derivative structure. The objective of a phasing experiment is to derive the unknown 

phase of the protein reflection FP and αp (Figure 16a)  

From the experiment, we know only the magnitudes FP and FPH which can be represented in 

the complex plane as a circle of radius FP and FPH, respectively (Figure 16b). If we know both 

the magnitude and the phase of FH we can draw both circle offset by vector FH and obtain two 

solutions for possible values of FP (red arrows). The phase and magnitude of FH can be 

calculated easily if we know the position of a heavy metal. It can be proven that the best phase 

we can obtain from the 2 solutions is the mean between the 2 possibilities. In real cases, FH is 

much shorter than the red vector, and the phase error will be quite large. Therefore in order to 

eliminate the phase ambiguity we can prepare a second derivative and repeat the procedure. 

Provided the heavy atom is not at the same position, we can now obtain a unique solution for 

αp (Figure 16c). We have now, at least in theory, an exact solution for the phase angle of FP. 

The theory is based on two assumptions: (i) ideal isomorphism and (ii) exact heavy atom 

positions, neither of which is perfectly met, for practical and experimental reasons in the first 
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(a) (b) 

 
 

                                       (c ) 

 
Figure 16 Harker construction for protein phase determination (a) A structure factor FPH for the heavy-
atom derivative (green) is the sum of the contributions from the native structure (FP, blue) and the heavy 
atom (FH, red), (b) Vectors from the origin to intersection of the two circles are showing two possibilities 
for the protein phase angle αp (c) Vector from the origin to common intersection of the three circle are 
showing the unique protein phase angle αp. 
 

case and for theoretical reasons in the second. In the picture it means that the phasing circles 

may not intersect in exactly in one spot, and yet another derivative may be necessary to 

improve the quality of the phases. The method is therefore called multiple isomorphous 

replacement. 

2.2.4.4.2 Multiple-wavelength anomalous dispersion (MAD) 

If the protein contains anomalously scattering atoms, the difference in intensity between the 

Bijvoet pairs can be exploited for protein phase angle determination. In the multiple 

wavelength method the wavelength dependence of the anomalous scattering is used. The 

principle of this method is rather old but it was the introduction of the tuneable synchrotron 

radiation sources that made it a technically feasible method for protein structure 

determination. Hendrickson and colleagues (Hendrickson et al., 1988; Krishnamurthy et al., 

1988) were the first to take advantage of this method and to use it for solving the protein 

structure. Of course, the protein should contain an element that gives a sufficiently strong 

anomalous signal. Therefore, the elements in the upper rows of the periodic system are not 
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suitable. Hendrickson showed that the presence of one Selenium (Se) atom (atomic number 

34) in a protein of not more than approximately 150 amino acid residues is sufficient for a 

successful application of MAD (Hendrickson et al., 1990); however, this depends very much 

on the quality of the data. With more Se atoms the size of the protein can, of course, be larger. 

One way to introduce Se into protein is by growing a methionine-auxotroph microorganism in 

a Se-methionine substrate instead of a methionine-containing substrate.  

 
Figure 17 Schematic of experimental values for ∆f’(green) 
and ∆f’’ (red) as a function of X-ray energy. 

 

The wavelengths have to be carefully chosen to optimise the difference in intensity between 

Bijvoet pairs and between the diffraction at the selected wavelengths. The anomalous 

scattering contributes ∆f’ (the real part) and ∆f’’ (the imaginary part). Usually diffraction data 

are collected at three wavelengths (Figure 17).  

(i) First wavelength (λ1) where ∆f’’ has its maximum and where the Bijvoet difference is   

largest (also called the “peak”). 

(ii) Second wavelength (λ2) where ∆f’ has its minimum (also called the “edge”). 
(iii) Third wavelength (λ3 or λ4) (remote from the edge, on the left or right) where ∆f’ and 

∆f’’ are small. 

2.2.4.4.3 Molecular replacement (MR) 

The MR method makes use of a known three-dimensional structure as an appropriate starting 

model to provide phase angles for the observed structure factor amplitudes from the unknown 

structure. When a whole family of homologous structure is available, it is often preferable to 

calculate an “average structure” for use as a starting model. Quite often, if the relative 

positions of the copies are not known, the presence of more than one copy of the unknown 

structure in the asymmetric unit complicates the search. In such a case, the phase 

determination can be facilitated through the use of an oligomeric search model. 
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Placement of the molecule in the target unit cell requires six parameters, 3 rotational and 3 

translational parameters. The six-dimensional search is very time-consuming even with the 

fastest computers; therefore, it is only practical in limited cases (Baldwin, 1980). In 1962, 

Rossmann and Blow showed that the six-dimensional search could be divided into two three-

dimensional searches: rotation search and translation search.  

Rotation search 

The basic principle of the molecular replacement method can be understood by considering 

the Patterson function of a protein crystal structure. Any Patterson function will contain sets 

of peaks representing intramolecular vectors. These are the self-vectors. There will be one set 

for each molecular orientation found in the crystallographic cell. They must all lie within the 

largest intramolecular distance ‘r’ from the origin of the Patterson function. On the other hand 

there are the intermolecular vectors which will tend on the average to be longer than the 

intramolecular ones. These are termed cross-vectors set. The sphere of radius ‘r’ must be 

smaller than the smallest cell dimensions; otherwise overlaps will occur with the origin of the 

next unit cell in Patterson space.  

The next problem is to choose a criterion for the correspondence of the self-vectors at 

different orientations. The classical method of Rossmann and Blow (1962) is to compare the 
value of the product function R where  

For the Patterson P1 and the rotated Patterson P2 within the Patterson volume U. This will 

have a maximum value when the two self-vector sets are equivalently oriented. R (θ1, θ2, θ3) 

is known as the rotation function, where θ1, θ2,and θ3 are Eulerian angles. 

The locked rotation function 

If the cross-rotation function is applied with model molecules to be oriented in an unknown 

crystal structure, several solutions will be found if the crystal structure has crystallographic 

symmetry, and also because of non-crystallographic symmetry operators. The solutions of the 

cross-rotation function are not independent but related through the non-crystallographic 

symmetry. This knowledge can be used as a constraint in the calculation of a “locked” 

rotation function, which is the average of n independent rotation functions and, consequently, 

has an improved peak-to-noise ratio (Tong & Rossmann, 1990). 
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PC-refinement 

Once orientations of molecules are found, these may not be exact. Therefore, these rotation 

function peaks need to be refined before the translation search is attempted. To optimise the 

orientation, Brünger et al. (1990, 1998) have introduced Patterson correlation (PC) refinement 

in the programs X-plor and CNS using the Patterson correlation coefficient as target function. 

It consists of carrying out “Patterson refinements” of a large number of the highest peaks of a 

rotation function. The refinement of the orientation of the search model is performed prior to 

translation searches. The target function for the refinement consists of an effective Patterson 

energy term that is the negated standard linear correlation coefficient between the observed 

and calculated normalised amplitude. 

Translation search 

For the final solution of the MR method, the translation required to overlap one molecule (or 

subunit) onto another in real space must be determined, after it has been oriented in the correct 

way with the rotation function. The known molecule is moved through the asymmetric unit 

and structure factors (Fcalc) are calculated and compared with the observed structure factor 

(Fobs) by calculating an R-factor or the correlation coefficient as a function of the molecular 

position.  

The standard linear correlation coefficient C is  

The advantage of this correlation coefficient over R-factor is that it is independent of scaling. 

The program AMoRe (Automated Molecular Replacement) is a combination of three core 

programs: ROTING for the rotation function, TRAING for the translation function, and 

FITING for the refinement of the results (Navaza, 1994).  

       ROTING is a fast rotating function, defined as the overlap of observed and calculated 

Patterson functions. The Patterson functions are expanded in spherical harmonics. The 

resulting peaks in the rotation function are tested and selected with correlation coefficient 

between calculated and observed structure factor amplitudes.  

     The output of ROTING is the input for the translation function TRAING. The highest 

peaks in the translation function(s) are tested with the correlation coefficient in terms of 
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amplitudes because it is independent of scaling factor. On this basis, acceptable solutions are 

selected. MR solutions are usually followed by rigid-body refinement for the orientation and 

position of the search model in the target unit cell. This is done by using the program FITING. 

The difference with other rigid-body refinement strategies is that FITING presents the search 

model, as an electron density map and not as an atomic model.  

In the present work, all crystal structures of SSBs have been solved by MR method using 

AMoRe. 

2.2.4.5 Electron density and model building 

Refinement (see section 2.2.4.6) is usually unable to correct very large errors in the atomic 

model or to correct for missing part of the structure. The atomic model needs to be corrected 

by visual inspection of difference electron density maps at a suitable graphics workstation. In 

order to improve the quality and resolution of the difference electron density map, the 

observed phases are often replaced or combined with calculated phases as soon as an initial 

atomic model has been built. These combined electron-density maps are then used to improve 

and to refine the atomic model. The inclusion of calculated phase information brings with it 

the danger of biasing the phases towards the current atomic model. This model bias can 

obscure the deletion of errors in atomic models if sufficient experimental phase information is 

unavailable. 

2.2.4.5.1 (Fo-Fc)-map  

A contour map of this Fourier series is called (Fo-Fc)-map. In protein crystallography, the 

average of the difference map is usually set to zero and the density is assigned as positive or 

negative depending on the standard deviation from zero. 

Positive density in the region of the map implies that the contribution of the observed 

intensities (Fos) to ρ are larger than the contribution of the model (Fcs), and thus the unit cell 

(represented by Fos) contains more density in this region than implied by the model 

(represented by Fcs), In other words, the map is telling us that the model should be adjusted to 

increase the electron density in this region by moving atoms towards the region. On the other 

hand, a region of negative density indicates that the model implies more electron density in 

the region than the unit cell actually contains. The region of negative density is telling us to 

move atoms away from this region.  
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2.2.4.5.2 (2Fo-Fc)-map  

This map shows, besides the electron density of the model, the difference between the actual 

structure and the model. The phase angles are those calculated for the model. In this map, the 

model influence is reduced, but not as severely as in the (Fo-Fc)-map. Unless the model 

contains extremely serious errors, this map is everywhere positive and the contour at carefully 

chosen electron density resembles the molecular surface and can be viewed as a superposition 

of an (2Fo-Fc)-map with (Fo-Fc)-map. 

2.2.4.5.3 Omit map 

An important way to overcome phase bias is the use of omit map. An omit is made by 

removing the residues of interest from the model for calculating the phase. In theory, this will 

allow the phase calculated from the rest of the model to phase the area of interest with no bias 

from the model left out. The method takes advantage of the Fourier transform property that 

every point in real space is influenced by every point in reciprocal space, and vice versa. If the 

rest of the model is mostly correct, then the phases calculated for this portion will be closer to 

the true phase and will produce a mostly correct image of the portion left out.  

2.2.4.5.4 SigmaA weighted maps 

The program SIGMAA (Read, 1986) calculates weighted Fourier coefficients either from the 

calculated phase from a (partial) model structure, or by combining phase probabilities from 

isomorphous phases with those from one or more (partial) structures. The calculated SigmaA 

weighted (2mFo-DFc, mFo-DFc) maps are less biased than the 2Fo-Fc and Fo-Fc maps.   

(mFo-DFc)-map  

(2mFo-DFc)-map 

where m is figure of merit and D estimated error in the (partial) structure from the co-

ordinated error (Luzzati, 1952). 

2.2.4.6 Refinement of protein structures 

Approximate model co-ordinates are initially derived from electron density maps which are 

usually calculated either by the MAD, MIR or MR method. The atomic co-ordinates based on 

such model are not very accurate because the maps are of insufficient resolution to show the 

constituent atoms individually and in part because the phases used to calculate the electron 
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densities maps are not very accurate. Even for models derived from the best electron density 

maps the accuracy of the atomic co-ordinates is likely to be no better than about 0.5 Å 

(Jensen, 1985), and localised regions of models derived from average quality maps may suffer 

more serious errors. Such models, however, are still useful in showing the overall features of 

macromolecules and the pattern of chain folding; but to understand much of chemistry of 

these molecules and how they function, more accurate parameters are required.  

       The process of obtaining atomic parameters that are more accurate than those obtained 

from an initial model is referred to as refinement of the crystal structure. It is an iterative 

process of improvement of the quality of the structure model. The position x, y, and z and the 

atomic thermal parameters B derived from each atom, are adjusted so as to improve the 

agreement between the observed structure factor amplitude |Fobs(h,k,l)| and those calculated 

from the structural model |Fcalc(h,k,l)|. 

2.2.4.6.1 Refinement theory 

The refinement techniques in protein X-ray crystallography are based on the principle of least 

squares. The method of least squares is a very powerful method for obtaining the most reliable 

information possible from a set of experimental observations. The measured data set has for 

each reflection (h,k,l) an intensity from which the amplitude of the structure factor |Fobs (h,k,l)| 

can be derived. From the preliminary model, values for the structure factors |Fcalc(h,k,l)| can be 

calculated and in the refinement procedure the values of |Fcalc(h,k,l)| should be brought as 

close as possible to |Fobs(h,k,l)| for all reflections (h,k,l). |Fcalc| can be varied by changing the 

parameters of the model. For some reflections |Fcalc| will be larger than |Fobs| and for others it 

just the other way around. It is assumed that the |Fobs| values are free of systematic errors and 
distributed as a Gaussian error curve around their real values |Freal|, which means that the 

probability P of finding a value |Fobs(h,k,l)| for the reflection (h,k,l) between |Fobs(h,k,l)| and 
|Fobs(h,k,l)|+d|Fobs(h,k,l)| is  

 
σ2 is the variance caused by arbitrary errors in the measurement 

  Normalisation requires  
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 With the assumption that the errors in the |Fobs(h,k,l)| values for different reflections are 

independent of each other, the total probability P for finding certain set of |Fobs(h,k,l)| is  

The problem is that the real values of the F(h,k,l)s are unknown. However, it is assumed that 

these real values can be approximated by the calculated values. The goal is to bring the set of 

|Fcalc|s as close as possible to the |Fobs|s. In the method of least squares this is defined as 

occurring at the maximum value of P. In other words, the optimal set of |Fcalc|s is the one that 

has the highest probability P. A maximum for P is obtained for a minimum of  

This is the principle of least squares. 

2.2.4.5.2 The free R-factor (Rfree) 

Structure determination of macromolecules by crystallography involves fitting atomic models 

to the observed diffraction data. The traditional measurement of the quality of this fit is the R-

value, defined as  

Where (h,k,l) are the indices of the reciprocal lattice points of the crystal, Wh,k,l are weights, k 

is a scale factor, and |Fobs(h,k,l)| and |Fcalc(h,k,l)| are the observed and calculated structure 

factor amplitudes, respectively.  

Despite stereochemical restraints, it is possible to overfit the diffraction data: an incorrect 

model can be refined to low R-values. Therefore a certain fraction of the diffraction data 

should be set aside for cross-validation. For cross-validation with a single test set T the free R 

value is defined as 
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Where the calculated structure factors |Fcalc(h,k,l)| are obtained from a model that was 

constructed and refined against the working set (without the knowledge of the test set). In 

general, Rfree will be higher than R since the test set has been omitted from the refinement 

process (Brünger et al., 1998). 

2.2.4.6.3 The program CNS  

A new software suite Crystallography & NMR System (CNS) has been developed for 

macromolecular structure determination by X-ray crystallography or solution nuclear 

magnetic resonance (NMR) spectroscopy (Brünger et al., 1998). This program allows the user 

to perform operations on data structures, such as structure factors, electron density maps, and 

atomic properties. The power of the CNS language has been demonstrated by the 

implementation of a comprehensive set of crystallographic procedures for phasing, density 

modification, and refinement. User-friendly task-oriented input files are available for nearly 

all aspects of macromolecular structure determination by X-ray crystallography and NMR. In 

this work, all crystal structures of SSBs were refined using CNS protocol. 

          Crystallographic refinement can be formulated as a search for the global minimum of 

the target function (Jack & Levitt, 1978) 

                                      E = Echem + wxrayExray …………………………………………….<19> 

Echem comprises empirical information about chemical interactions. It is a function of all 

atomic positions, describing covalent and non-covalent interactions. Exay describes the 

difference between observed and calculated diffraction data, and wxay is a weight chosen to 

balance the forces arising from each term. 

GENERATE  

This protocol generates the molecular structure by interpreting the co-ordinate file to obtain 

the residue sequence or by explicitly specifying the residue sequence and gives two files as 

output: a PDB file and an MTF file (this contains the molecular topology information which 

describes to covalent topology of the molecules). 

RIGID 

The position and orientation of molecules in the asymmetric unit is optimised using this 

protocol. This is especially necessary for models which have been obtained by the MR 

method. CNS provides the possibility of refinement of several rigid groups. Parts of the 

><
−

=
∑

∑
∈

∈ 18......................................................
),,(

),,(),,(
,, ,,

Th obsh

Tlkh calcobslkh
free lkhFW

lkhFklkhFW
R



Materials and methods 

 46 

molecule that are not specified in any “GROUp” statement remain fixed. The “constraints fix” 

statements have no influence on rigid-body refinement. 

POSITIONAL  

The positional refinement is a conventional refinement which is carried out using the 

conjugate gradient algorithm. 

SIMULATED ANNEALING 

Simulated annealing using torsion angle dynamics is used to improve the model. The use of 

torsion angle dynamics reduces the number of parameters being refined and hence reduces the 

degree of over-fitting of the data. For the initial model with relatively large errors (due to 

manual building or misplaced atoms) a starting temperature of 5000K is recommended, and 

the cooling rate is usually taken as a 50 K step. The simulated annealing refinement task files 

includes energy minimisation both before and after the simulated annealing. 

BREFINEMENT  

This statement optimises individual (restrained) isotropic B-factors. Distinctions between 

backbone and side-chain B-factor are made. B-factor restraints can be set-up as necessary.  

2.2.4.6.4 The program REFMAC  

The program REFMAC is a CCP4 (Collaborative Computational Project, Number 4, 1994) 

supported program (Murshudov et al., 1997, 1999), which is widely used for macromolecular 

crystal structure refinement. This program can carry out rigid body, restrained or unrestrained 

refinement against X-ray data, or idealisation of a macromolecular structure. It minimises the 

co-ordinate parameters to satisfy either a Maximum Likelihood or Least Square residual. 

There are options to use different minimisation methods. It also produces a output file (in 

MTZ format) containing weighted coefficient for SigmaA weighted mFo-DFc and 2mFo-DFc 

maps (see section 2.2.4.5.4). Recently, fast Fourier transformations in individual atomic 

anisotropic refinement has been implemented in this program (Murshudov et al., 1999). The 

anisotropic refinement not only reduces the R-factor and Rfree but also improves the fit to the 

geometric target, indicating that this parameterisation is valuable for improving models 

derived from experimental data.  

2.2.4.6.5 Introduction of water molecules in the structure 

The following criterias were employed in the introduction of water molecules in the structure. 

They should represent density in the residual (Fo-Fc) electron density map above 4σ and have 

density in the (2Fo-Fc) map above 1σ. More importantly they should have chemically 

reasonable distances to potential hydrogen bonds donors/acceptors. The improvement of the 

model was monitored by both the conventional R-factor and the Rfree (Brünger, 1992). 
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2.2.4.7 Validation of the model 

The final models of all structures were validated by the program PROCHECK (Laskowski et 

al., 1993) to check the overall quality of the model using the Ramachandran plot and other 

stereochemical criteria. The errors in the atomic co-ordinates of the molecular model were 

estimated using a Luzzati plot (Luzzati, 1952).  

2.2.4.8 Structure analysis 

The crystal structures of SSBs were compared using the program LSQKAB (The CCP4 Suite, 

1994) or ALIGN (Cohen, 1997). Visual comparisons were made using the program O (Jones 

et al., 1991). Further analysis of the crystal contacts were performed using the program 

CONTACT from the CCP4 Suite (1994). Ribbon diagram of SSBs structures were made 

using the programs MOLSCRIPT (Kraulis, 1991), BOBSCRIPT (Esnouf, 1999) and 

RASTER3D (Merritt & Murphy, 1994). Molscript, Bobscript and Raster3D are the programs 

of choice to draw the three-dimensional models highlighting the secondary structures from the 

Protein co-ordinate files based on information in the input file and to draw a map around the 

desired residues from map files.  

      The molecular surface area buried upon dimer or tetramer formation in various structures 

was calculated using the algorithm of Lee and Richards (1971) as implemented in the program 

NACCESS (Hubbard et al., 1991), taking a probe radius 1.4 Å and the following procedure: 

(i) the molecular surface are of the first dimer/monomer (A) was calculated, (ii) the molecular 

surface area of second dimer/monomer (B) was calculated and added to the first item 

(C=A+B). The sum (C) is the total molecular surface area before burial, (iii) the observed 

molecular surface area of whole tetramer/dimer (D) was calculated. The difference (E) 

between the total area to be buried (D) and the observed molecular surface area (C) is the 

amount of surface area buried upon tetramer/dimer formation (E=D-C).  

Calculation of electrostatic surface potential was done using the program GRASP (Nicholls et 

al., 1991). Protons were attached at appropriate stereochemical positions to perform all atom- 

based calculations. Partial atomic charges were assigned from the AMBER forcefield (Weiner 

et al., 1984). Atomic sizes were calculated using standard radii file from the CHARMM suite 

(Brooks et al., 1983).  
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3 Results and Discussion 

3.1 Cryo-cooling techniques 

The standard method in low-temperature crystallography of biological macromolecules is the 

introduction of an aqueous cryoprotectant solution into the crystal to prevent ice formation. 

This method has generally proven useful but requires a time- and crystal-consuming search 

for a suitable cryoprotectant and occasionally it fails altogether. Even flash-cooling using oil 

is not always successful in every case. 

Although rarely mentioned in the literature, nearly every macromolecular crystallographer 

knows the phenomenon of well-shaped crystals of biological macromolecules diffracting X-

rays only very poorly or not at all. At present, there is no accepted physico-chemical 

explanation for this, although it is probably safe to assume that these crystals must exhibit 

high internal disorder. Therefore, we developed a fast method to ‘rescue’ such crystals by a 

repeated-annealing method using paraffin oil. The other method is rather unconventional. It 

employs a non-aqueous cryoprotectant, which we call PanjellyTM. PanjellyTM is Indian ghee, 

which is clarified butter (see section 2.2.4.2.5). This method seems to work optimally in 

combination with PanjellyTM prior to flash cooling and annealing in a subsequent step. More 

detailed description is given in the subsequent text. 

3.1.1 Repeated-annealing using dried paraffin oil 

Although cryoprotection by dried paraffin oil may pose less stress for protein crystals than 

soaking them in solutions of conventional cryoprotectants, the method does not necessarily 

lead to superior diffraction properties. Therefore, the protocol for repeated crystal annealing 

has been developed using dried paraffin oil. It is shown here that the method is particularly 

useful for crystals that diffract only weakly or not at all in an initial diffraction experiment. 

The method of repeated-annealing is different from the annealing techniques reported by Harp 

et al. (1998, 1999) and Yeh & Hol (1998). In the approach described by Harp et al. (1998, 

1999), a crystal is first preincubated in cryoprotectant solution, then flash-cooled, and then 

again removed from the cryo-stream and transferred back to cryoprotectant solution. The 

crystal is equilibrated in the cryoprotectant solution by allowing it to remain there, at room 

temperature, for at least three minutes, and is then flash-cooled again. The flash-annealing 

method described by Yeh & Hol (1998) utilises the principle of thawing and annealing the 

crystal while on the loop, in a rapid cycle under the cold nitrogen stream (“in situ annealing”). 

A modification of this has been described as “annealing on the loop” (Harp et al., 1999). It 
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involves a variable length of time for warming and does not require multiple rounds of 

warming and flash cooling.  

We have developed an alternative protocol which consists of following steps: (i) no 

cryoprotectant at all is used during initial flash-cooling of the crystal; (ii) only dried paraffin 

oil as cryoprotectant (Riboldi-Tunnicliffe & Hilgenfeld, 1999) is employed after initial flash-

cooling; (iii) cooling and re-cooling of the protein crystal is performed in a repeated cycle; 

(hence the technique is called “repeated-annealing”); (iv) annealing is repeated at the 

temperature at which the crystals were grown. The first step in the protocol is highly 

unconventional, but it has been shown here that it is indeed crucial for ‘healing’ ill-diffracting 

crystals.  

The procedure was applied to poorly diffracting crystals of three different proteins and a 

dramatic improvement of diffraction quality has been seen in all three cases. The approach has 

been also tried with crystals of four other proteins, which diffracted reasonably well from the 

outset; improvements were found minor in these cases.  

The repeated-annealing procedure has been systematically studied using the available crystal 

systems listed in Table A1. All crystals used were grown by the hanging-drop technique, 

under various conditions, ranging from low to high salt concentrations, or from low to high 

molecular-weight polyethylene glycol. Detailed crystallisation conditions are also given in 

Table A1. Crystal sizes were between 0.2 and 0.6 mm in all dimensions. 

The repeated-annealing procedure can be divided into five steps: (a) transfer of the crystal 

from the mother liquor into the cryo-stream; (b) transfer of the cooled crystal from the cryo-

stream into dried oil at room temperature or 4°C; (c) washing off ice or mother liquor from 

the cooled crystal; (d) flash-cooling of the crystal; (e) recording the diffraction pattern. If the 

diffraction quality is not satisfactory, steps (b) to (e) should be repeated. In the following 

section, each step is explained in some detail. 

(a) Transfer of the crystal from the crystallisation drop into the cryo-stream 

The protein crystal should be transferred from the crystallisation drop directly into the cryo-

stream with the help of a rayon loop (Teng, 1990). No dried paraffin oil or any other 

cryoprotectant is used at this stage. If a diffraction pattern were taken at this time, it would 

basically only show a strong ice ring, and perhaps some weak reflections from the protein 

crystal. (The importance of this step is discussed below). 

(b) Transfer of the cooled crystal from the cryo-stream into dried paraffin oil  
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The cooled crystal is transferred directly, and as quickly as possible, from the cryo-stream to 

dried paraffin oil which is placed on a microscope cover slip, either at room temperature or at 

4oC depending on the temperature of crystal growth. 

(c) Washing off the ice or mother liquor from the cooled crystal 

Once a mother liquor-containing crystal is cooled in the cryo-stream, it will form ice around 

the crystal. This is helpful for washing. As the crystal is brought into dried oil at room 

temperature or 4°C, the oil will diffuse onto the surface of the crystal between the ice and the 

crystal. Also, by this time, the ice will melt due to the increase in temperature. Moving the 

crystal in the dried oil helps to wash off the ice and/or water from its surface, and the crystal 

will become transparent. This is due to the refractive index of the crystal being similar to that 

of the oil. If the crystal edges can be recognized, aqueous mother liquor is still adherent to the 

surface and needs to be removed. This is an important prerequisite of successful flash-cooling 

or repeated-annealing of the crystal at 100 K. In addition to opaque appearance under the 

microscope, an indication for residual water or ice on the crystal surface is “jumping” of the 

crystal into the loop due to surface tension. The washing procedure is shown in Figure A1. 

(d) Flash-cooling of the crystal 

Once the crystal is free from mother liquor and/or ice, it should be transferred back to the cold 

stream as quickly as possible. It is sometimes hard to angle the mother liquor-free crystal from 

oil. Holding the loop directly below the center of gravity of the crystal, and moving steadily, 

but quite slowly, may help. Alternatively, two loops can be used to angle the crystal by fixing 

one loop and moving the other. One should attempt to make the oil drop adhering to the 

crystal as small as possible.  

(e) Recording the diffraction pattern  

Once the crystal is transferred to the cryo-stream, it is ready for the X-ray exposure. The 

diffraction pattern can be recorded using the desirable exposure time. However, the exposure 

time of X-ray should be constant throughout the repeated-annealing procedure to judge the 

improvement in diffraction pattern of crystal. If after the first or subsequent cycle of repeated 

annealing procedure; it is not satisfactory, then step (b) to (e) should be repeated. 

Crystals of seven different proteins (or complexes between protein and nucleic acid), 

crystallised under widely different conditions (Table A1), have been subjected to repeated-

annealing in dried paraffin oil. This approach has been compared to one-step flash-cooling in 

oil. Both sets of experiments were started with testing the diffraction properties of the crystals 

at 293 K, prior to the cooling experiments. The results are summarised in Table A2, where the 

diffraction limits and mosaicities after the application of the two cryo-cooling protocols are 
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compared with the same criteria for uncooled crystals. Of the seven crystalline systems tested, 

four exhibited very poor or no diffraction (dmin > 8/6 Å) without cryo-cooling (at 293K ). 

Crystals of CPS-I, grown at 25oC, did not diffract at all at room temperature using CuKα 

radiation. They did diffract to 8.0 Å at the Elettra synchrotron source (XRD Beamline, 

Sincrotrone Trieste, Trieste, Italy). One-step flash-cooling using paraffin oil (Riboldi-

Tunnicliffe & Hilgenfeld, 1999) did not improve the situation. However, after five rounds of 

repeated-annealing of the crystal, it diffracted to 6.0 Å in-house, and to 4.5 Å at the 

synchrotron, and a dataset was collected, with an average mosaicity of 0.7°.  

Crystals of alliinase, grown at 4°C, also failed to show significant diffraction at both room 

temperature and after flash-cooling. A crystal was first transferred from the crystallisation 

drop to the cryo-stream and brought back to room temperature after 5 min, followed by 

washing in dried oil and again transferred to the cryo-stream. The first two rounds of 

repeated-annealing had little effect on diffraction. After the third round, it diffracted to 8 Å, 

and after the fourth round, the diffraction limit showed a dramatic improvement to 3.2 Å 

(using CuKα radiation). A complete dataset was collected, with a mosaicity of about 1.2 o.  

IF2-tRNA crystal (grown at 25°C), showed diffraction only to 6.0 Å at room temperature, 

various conventional cryoprotectants (i.e glycerol, sucrose) were tried, none of them proved to 

be useful for this crystal. After flash-cooling of the crystal using dried paraffin oil, it showed 

weak diffraction to 6.0 Å. After repeated-annealing, the crystal diffracted to 5.0 Å with 

smeared spots in the first round, and to 3.1 Å in the second round at the rotating anode and to 

2.5 Å at the synchrotron. 

Crystals of the Brucella abortus single-stranded DNA-binding protein (BabSSB) were grown 

at 4°C. They diffracted very weakly (dmin> 8 Å) and were found to deteriorate slowly at room 

temperature. After applying the flash-cooling technique with dried paraffin oil as a 

cryoprotectant, the crystals diffracted to 2.5 Å, and a complete dataset was collected from a 

single crystal, with a mosaicity of about 0.4°. After data collection, repeated-annealing of the 

same crystal was tried. It was brought to room temperature and dipped into the paraffin oil 

and again transferred into the cryostream. The crystal diffracted to 2.2 Å on a rotating anode 

generator, but with a mosaicity of about 1.1°. Because of this, we changed the temperature at 

which the ice or mother liquor was washed off the crystal (another crystal), from 20 to 4oC. 

The crystal was brought back from the cryostream to 4oC, dipped into dried oil preincubated 

at this temperature, washed and transferred back into the cryo-stream. It diffracted to 2.2 Å as 

well, but the mosaicity was reduced to 0.3°.  
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An attempt to collect a full dataset at 293 K to 2.7 Å from one crystal of Des-PheB1 insulin in 

complex with phenol  (Berchtold & Hilgenfeld, 1999), which had been grown at 278 K, failed 

because of severe radiation damage within 10 exposures of 15 minutes each (CuKα radiation 

from rotating anode generator). When flash-cooling in paraffin oil was applied, the crystals 

diffracted to 3.0 Å. After four rounds of repeated-annealing with washing of the crystal at 

room temperature, there was still no improvement. However, in the fifth round, the crystal 

diffracted to 2.8 Å in-house and to 2.4 Å at a synchrotron source (Beamline X11, EMBL 

Outstation at DESY, Hamburg), and a complete dataset was collected with mosaicity around 

1.4o. When washing the crystal at 4°C instead of room temperature, the repeated-annealing 

procedure resulted in a diffraction limit of 2.5 Å (CuKα radiation), with a mosaicity of 1.0°. 

The following experiments were carried out in order to examine the effect of repeated-

annealing on better diffracting crystals. The EcoSSB crystal (Webster et al., 1997) diffracted 

at room temperature to 2.8 Å resolution, using CuKα radiation. The repeated annealing 

technique in oil initially resulted in an improved diffraction limit of 2.7 Å, but with a high 

mosaicity of around 1.2°. Since this crystal had been grown at 4°C, we subsequently 

performed the washing step and the repeated-annealing at 4°C instead of 20°C. As a result, 

the crystal diffracted to 2.4 Å and sometimes even to 2.2 Å, and the mosaicity was found to be 

around 0.5°.  

The crystal of green fluorescent protein (GFP), grown at 20°C, diffracted to 2.1 Å at room 

temperature, and its mosaicity was determined as 0.2°. The flash-cooled crystal diffracted to 

2.4 Å, with a mosaicity of about 0.6°. After one round of repeated-annealing, the crystal 

diffracted to 2.2 Å with a mosaicity of about 0.4° (all experiments done using 

CuKα radiation). 

With the exception of GFP, all protein crystals tried in this study showed improved resolution 

limits and mosaicities after several rounds of repeated annealing.  

3.1.2 Flash-cooling using PanjellyTM and single-step annealing with paraffin oil  

This method can be divided in five steps: (a) liquefying the PanjellyTM, (b) transfer of the 

crystal from the mother liquor to PanjellyTM, (c) fishing the crystal from PanjellyTM into the 

cryo-loop and transfer to the cryo-stream, (d) transfer of the crystal from cryo-stream to dried 

paraffin oil, (e) washing off PanjellyTM layer from the crystal and transfer of the crystal to the 

cryo-stream, and (f) recording the diffraction pattern. 

(a) Liquefying the PanjellyTM 

It is a semisolid at room temperature. Therefore, PanjellyTM needs to be liquefied before using 

it for cryo-purpose. This can be done simply taking the some amount of PanjellyTM (enough to 



Results and discussion 

 53 

form a drop of 200 µl) on the microscope slide and warming it using a flame by placing a 

mini-burner underneath the slide. PanjellyTM will melt and become liquid. One should 

carefully warm and watch the PanjellyTM under the microscope such that some solid particles 

remain. In case one could not control the heating and the drop become completely liquefied, 

one can place the microscope slide on aluminium foil (for 60 to 90 seconds as the case may 

be) which is being indirectly cooled by liquid nitrogen. This can perhaps be done by placing 

an aluminium foil over an open Dewar flask containing liquid nitrogen. It is essential that 

PanjellyTM contains some solid particles. These solid particles are helpful in absorbing water 

(mother liquor) from the crystal surface. If one places the crystal in warm PanjellyTM, the 

crystal will get a temperature shock, therefore after warming the PanjellyTM, one should never 

forget to cool it a bit such that it is still semi liquid, and also not as much such that it starts to 

solidify again. 

(b) Transfer of the crystal from the mother liquor to PanjellyTM  

The protein crystal should be transferred into the semiliquid form of PanjellyTM with the help 

of a cryo-loop. The semiliquid PanjellyTM contains small solid particles which easily trap the 

water (mother liquor) from the crystal surface and protect the crystal with a PanjellyTM layer 

from the open environment while it is being transferred to the cryo-stream. 

(c) Fishing the crystal from PanjellyTM into cryo-loop and transfer to cryo-stream 

It is easy to scoop up the crystal with a cryo-loop in PanjellyTM, because PanjellyTM contains 

small solid particles, which reduce the surface tension between the crystal and the cryo-loop. 

Once the crystal is fished into the cryo-loop, it should be transferred as quickly as possible to 

the cryo-stream. 

(d) Transfer of the crystal from the cryo-stream into dried paraffin oil  

The PanjellyTM layer can be removed by bringing the cooled crystal back from the cryo-

stream and washing it in the dried paraffin oil. If this step is omitted, the crystal will show 

good diffraction to high resolution, but a ring appears at 4 Å (Figure 18a). This ring does not 

obstruct the high-resolution spots during data collection, but during data processing, the 

resolution shell around 4 Å will be incomplete. The PanjellyTM ring is due to the PanjellyTM 

layer. Unlike the PanjellyTM ring, the ice ring at 3.6 Å may sometimes hinder the collection of 

needful reflection data beyond the ring, when flash-cooling is not properly performed by 

complete removable of the excess mother liquor. 

(e) Washing off the PanjellyTM layer from the crystal and transfer of the crystal to the 

cryo-stream 
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The PanjellyTM layer is removed by washing the crystal in dried paraffin oil with the help of a 

cryo-loop (Figure 18b). Sometimes, this treatment improves the diffraction and mosaicity of 

the crystal. To remove the PanjellyTM layer from the crystal is easier than removing water 

from the crystal surface because water tends to adhere to the loop due to surface tension while 

the PanjellyTM layer doesn’t show this behaviour. The crystal should be fished with the cryo-

loop and transferred to the cryo-stream again. 

(a) (b) 

  
Figure 18 Diffraction pattern of BabSSB crystal (a) after flash-cooling using PanjellyTM and partial 
removal of mother liquor, (b) after treatment with dried paraffin oil. 
 

(f) Recording the diffraction pattern  

In this step, by varying the exposure times, one can check the diffraction pattern to see the 

maximum diffraction limits of the protein crystals. 

                      The above-described method utilises the complete removal of water from the 

crystal surface than reported previously but in a more sophisticated way, which reduces any 

mechanical damage during the washing procedure. 

The crystals of nine different proteins have been subjected to flash-cooling in PanjellyTM and 

subsequent single-step annealing in dried paraffin oil. This approach has been compared to 

flash-cooling/repeated-annealing in oil. The results are summarised in Table A3 where the 

diffraction limits and mosaicity are compared between the two cryo-cooling protocols. 

A GFP crystal was used as a test case and to optimise the technique. The crystal was 

transferred into PanjellyTM and moved through it until its solid particles trapped the mother 

liquor from the crystal and then transferred to cryo-stream. The crystal diffracted to 1.6 Å, 

which was much better than the diffraction (2.2 Å) achieved by using repeated-annealing. 
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Afterwards, the insulin-mutant and alliinase crystals have been tried, which diffracted only on 

using the repeated-annealing technique as described in the section 3.1.1. Other conventional 

cryoprotectants had failed to improve the situation. These two crystals were flash-cooled 

successfully using PanjellyTM and diffracted to a higher diffraction limit (Table A3). 

This approach has been applied to several other protein crystals and an improvement of 

diffraction properties was observed in all cases (Table A3). Therefore, for the present work, 

PanjellyTM was selected as the best cryoprotectant for SSB crystals.  

There are three main advantages of the use of PanjellyTM over conventional cryoprotectants: 

(i) it improves the diffracting limits of the protein crystals, (ii) it saves time and crystals, and 

(iii) it is easy to use.  

Due to the simplicity of this method, it is arguably that it could be tried as first choice 

in cryocrystallography, since it does not require the growth or soaking of crystals in solvent 

that could disturb the packing by diffusing into the crystal. 

It is not exactly clear, why protein crystals have tendency to diffract to higher resolution limit 

when treated with PanjellyTM rather than any other cryoprotectant. However, it can be 

speculated that the PanjellyTM ring (ring at 4 Å) has some role in bringing the crystal lattice in 

the optimal orientation and/or removing all water from the crystal surface.  

3.2 Proteolyis of SSBs  

Crystallisation studies of EcoSSB (Ollis et al., 1983) have shown that two of the four 

polypeptide chains in the tetramer have to be truncated at their C-termini by an unidentified 

proteolytic activity to obtain diffraction quality crystals. Truncated EcoSSB was prepared by 

introduction of a stop codon after the codon for amino acid number 152 by our collaborator. 

For crystallisation purposes, the protein solution was mixed with the intact polypeptide chains 

containing protein solution in a 1:1 ratio (Webster et al., 1997). The gel of the EcoSSB 

protein solution and of a dissolved crystal is shown in Figure 19. The PmiSSB, BabSSB and  

SmaSSB were purified as intact polypeptide chains. The PmiSSB protein solution showed one 

band similar to intact EcoSSB and two bands around 14.5 kDa in the SDS gel. Similar bands 

were observed from the dissolved crystals of PmiSSB. Therefore, it can be concluded that 

there are three different species in the PmiSSB crystals, the intact polypeptide chain and 

polypeptide chains truncated by approximately 25 and 40 residues, respectively (Figure 19). 

The BabSSB protein solution also shows two bands similar to those found in EcoSSB. 

However, in contrast to EcoSSB protein crystals, the crystals of BabSSB show only a single 

18 kDa band in the SDS gel (Figure 20). This is probably due to only one kind of species 

involved in the crystallisation process. The SmaSSB protein also showed a single band that 
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corresponds to molecular weight 18 kDa and no proteolysis was observed during the 

crystallisation process of this protein (Figure 21). 

 

kDa  
94 
67 
43 
 
30 
 
20 
 
 
14  

 
   a      b       c        d       e 
Figure 19 SDS-PAGE of SSBs (EcoSSB, PmiSSB) solution and of 
dissolved crystals. Protein was stained with Coomassie Blue, Lane (a) 
molecular weight marker (b) EcoSSB solution (c) dissolved crystals of 
EcoSSB (d) PmiSSB solution (e) dissolved crystals of PmiSSB. 
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Figure 20 SDS-PAGE of BabSSB solution and of 
dissolved crystals. Protein was stained with 
Coomassie Blue, Lane (a) molecular weight 
marker (b) BabSSB solution (c) dissolved crystals 
of BabSSB. 

Figure 21 SDS-PAGE of SmaSSB solution and 
of dissolved crystals. Protein was stained with 
Coomassie Blue, Lane (a) molecular weight 
marker (b) SmaSSB solution (c) dissolved crystals 
of SmaSSB. 

 

From the above observations, it appears that C-terminal truncation may not be a requirement 

for crystallisation of bacterial SSBs (i.e. BabSSB, SmaSSB). 

3.3 Crystal structure of EcoSSB  

3.3.1 Crystallisation of selenomethionine (SeMet) EcoSSB 

In co-operation with the group of PD Dr. Claus Urbanke at the Medizinische Hochschule in 

Hannover, an engineered variant of EcoSSB has been produced, in which the four methionine 
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residues in the sequence have been substituted for SeMet, by using an auxotrophic expression 

system in which the bacteria are grown in a SeMet medium. Despite the protein yields being 

considerably lower than for the native system, the production was successful. The substitution 

of selenium was confirmed by mass spectroscopy.  

Crystals of the SeMet variant of EcoSSB were obtained by equilibrating a 5 mg/ml solution of 

the protein against a reservoir containing 4% (v/v) PEG 400, 40 mM sodium cacodylate and 

10 mM β-mercaptoethenol at pH 6.5 (Figure 22). The crystallisation conditions are similar to 

the ones of native EcoSSB (Webster et al., 1997). 

 
Figure 22 Monoclinic crystal of SeMet-EcoSSB 

 
3.3.2 MAD and native data collection  
The crystals were flash-cooled as described in section 3.1.2. The native dataset was collected 

at the European Molecular Biology Laboratory Outstation using the Deutsches Elektronen 

Synchrotron (EMBL/DESY), Hamburg beam line BW7A (λ = 1.00 Å). A MAD dataset from 

a SeMet crystal was collected at three different wavelengths, near or at the K absorption edge 

of selenium at the X-ray diffraction beam line ELETTRA (Trieste). Wavelengths were 

selected on the basis of an x-ray fluorescence spectrum of the crystal; λ1 (0.9840 Å), low- 

energy remote, λ2 (0.9796 Å), edge; λ3 (0.9793 Å), peak; λ4 (0.9537 Å), high-energy remote. 

All X-ray data were recorded at 100 K on Mar Research image plate scanner. Data processing 

was performed with DENZO and integrated intensities were scaled and merged by using 

SCALEPACK (Otwinowski & Minor 1997). Data collection statistics for the MAD datasets 

are summarised in Table 7 and for native dataset in Table 8. 

3.3.3 Refinement of the Webster-EcoSSB structure to high resolution  

          The refinement was carried out against 95% of the measured data. The remaining 5%, 

which were randomly excluded from the full dataset, were used for cross-validation by 

calculating the free R-factor (R-free) to follow the progress of refinement (Brünger, 1992). 
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The same set of reference reflections was used throughout the refinement. The reference set 

was also excluded from the calculation of the electron density maps. 

                  The starting model for the refinement was the room temperature structure (Webster 

et al., 1997), which contains four molecules in the asymmetric unit. Loops (residues 23-27, 

40-50, 85 -100) were removed from each monomer before refinement. The volume of the unit 

cell decreased by 2% upon cooling to 100K and some cycles of rigid body refinement at 3.5 Å 

resolution were required to ensure an accurate repositioning of the four molecules in the 

asymmetric unit. The refinement was performed with CNS (Brünger et al., 1998). In this 

program, bond distances and angles were restrained using the standard values suggested by 

Engh & Huber (1991). The refinement procedure included simulated annealing, B-factor and 

conjugate gradient energy minimisation against maximum likelihood targets as implemented 

in the program CNS (Brünger et al., 1998). After each step, 3Fo-2Fc and Fo-Fc electron density 

maps were calculated and the model was visualised and rebuilt using the program O (Jones et 

al., 1991). The rebuilding proceeded by systematically checking all the electron density peaks 

greater than 4σ in the Fo-Fc Fourier maps and building the missing residues which were 

removed during beginning of refinement; the sigma cut-off was gradually lowered during the 

refinement. Loops were built completely in electron density for the B- and D-monomer and 

partially for the A- and C-monomer. 

3.3.4 Quality of EcoSSB model  

The refined structure of EcoSSB (Rfree 27.1% and R-factor 24.9%) consists of 3186 non-

hydrogen atoms (monomer A: residues 1-24, 28-38, 50-89, 95-104, 106-113; monomer B: 

residues 2-112; monomer C: residues 2-22, 28-112; monomer D: residues 2-112) and 104 

water molecules. The complete statistics of the EcoSSB model are shown in Table 9. The 

superposition of the Cα atoms (85-97 atoms) between monomers gave root mean square 

deviations (r.m.s.d.) varying between 0.29 and 0.70 Å (Table A4). The r.m.s.d. values from 

ideal bond length and bond angles for the whole tetramer are 0.006 Å and 1.29º, respectively. 

The Ramachandran plot shows that 94.9% of the residues are found in the most 

favoured regions and 4.5% in the additionally allowed regions (Figure 23). Ala-44 of the B-

monomer and the D-monomer (belong to Loop II) fall in the generously allowed and 

disallowed region, respectively, although these two residues are well defined in the electron 

density map. A Luzatti plot gives an estimated error on the co-ordinates of 0.3 Å (Luzzati, 

1952). The model was also checked using an anomalous difference Fourier map.  
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Table 7 MAD data statistics 
 Low-energy remote Edge Peak High-energy remote All Merged  
Wavelength 0.9840 0.9796 0.9793 0.9537  
Completeness (%) 98.4 98.2 98.2 98.6 98.8 
Mosaicity 0.59 0.59 0.58 0.59 0.58 
Resolution 2.16  2.16 2.16 2.16 2.16 
I/σ (higher resolution bin) 2.21 3.36 2.76 2.22 2.36 
Unique reflections 29425 29360 29367 29486 29546 
Rejected reflections 264 273 438 270 171 
Rmerge (%) 4.4 4.4 4.5 4.5 5.7 
Rrim (%) 5.3 5.3 5.4 5.4 6.0 
Rpim (%) 2.9 3.0 3.0 3.0 1.7 
 

Table 8 Native data statistics 

 EcoSSB_dataset1 BabSSB_dataset1 BabSSB_dataset2 PmiSSB_dataset1 SmaSSB_dataset1 SmaSSB_dataset2 
X-ray source DESY, BW7B Rotating anode ELETTRA ELETTRA Rotating anode ESRF, BM14 
Wavelength (Å) 1.000 1.54 1.000 1.000 1.54 0.9765 
Space group  C2 P43212 P43212 P21212 P42212 P42212 
Unit cell (Å, °) a=104.4, b=60.5, 

c=96.75 β=112.5º 
a=b=113.3, 
c=52.2 

a=b=113.3, 
c=52.2 

a=146.7, b=153.2, 
c=61.0 

a=b=111.25, 
c=141.76 

a=b=111.25, 
c=141.76 

Molecules/a.u.† 4 2 2 8 5 5 
Resolution (Å) 100-1.9 100-2.5 100-1.78 100-2.5 100-3.5 100-2.8 

Total reflections 395571 53985 103985 354872 114844 193700 
Unique reflections 51359 12109 31807 48035 46617 22631 
Mosaicity 0.6 0.4 0.3 0.4 0.4 0.4 
Completeness (%) 96.5 98.3 95.3 98.9 97.9 99.5 
I/σ (higher resolution bin) 2.2 10.9 3.9 2.1 2.1 2.9 
Rmerge (%) 4.8 6.7 5.5 7.4 19.0 8.7 
Rrim (%) 6.1 3.5 6.5 8.1 21.1 9.3 
Rpim (%) 2.3 7.6 2.5 3.5 9.5 4.3 
† a.u. asymmetric unit 

Table 9 Refinement statistics of SSBs 
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 EcoSSB BabSSB PmiSSB SmaSSB 
Resolution range (Å) 100-1.95 100-1.8 100-2.5 100-3.0 
R-factor (%) 24.9 25.1 24.4 26.5 
Rfree (%) 27.1 26.2 29.3 29.8 
Number of protein atoms 3186 1482 5908 3636 
Number of water atoms 104 113 137 8 
Main chain average B-factor (Å2) 44.8 37.7 54.0 54.3 
Side chain average B-factor (Å2) 42.5 38.0 49.2 48.9 
Water average B-factor (Å2) 43.6 45.1 49.7 33.0 
r.m.s deviation from ideal values‡  
Bond length (Å) 0.006 0.005 0.007 0.01 
Bond angle (º) 1.29 1.35 1.36 1.51 
Residues distribution in Ramachandran plot † 
Most favourable (%) 94.4 95.1 92.9 87.8 
Allowed (%) 5.6 4.9 7.1 11.4 
‡ Engh & Huber, 1991. 
† Ramachandran & Sasisekharan, 1968; Laskowski et al., 1993.
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Figure 23 Ramachandran plot for EcoSSB, created by PROCHECK (Laskowski 
et al., 1993). Glycine and proline residues are denoted by triangles and all other 
residues by squares. The different demarcated regions are labelled as A, B, L, -
most favoured regions; a, b, l, p, -allowed; and -a, -b, -l, -p,  -generously allowed. 

 
The anomalous map was created using the observed anomalous differences and the phases 

from the model. To calculate the anomalous difference of selenium, the MAD dataset (Table 

7) was used. The anomalous difference Fourier map showed 15 peaks greater than 3.5σ which 

correspond to selenium atoms of selenomethionine, indicating the correctness of the structure. 

3.3.5 Comparison with the Webster-, Raghunathan- and Matsumoto-EcoSSB model   

The present EcoSSB model was compared to the Webster-, Raghunathan- and Matsumoto- 

EcoSSB model and the resulting r.m.s.d. values based on Cα atoms were 3.4 Å, 1.0 Å and 1.9 

Å, respectively. The significant r.m.s.d. to the Webster- and Matsumoto-EcoSSB model is due 

to a registration error starting at residue Ser-92 in each monomer. The structures reported by 

Webster et al. (1997) and Raghunathan et al. (1997) did not report the identification of the C-

termini; however, Matsumoto et al. (2000) claimed to resolve the termini to 2.2 Å and 

illustrated the identification of C-termini (upto residue Gln-140), which have different 

conformation in all four monomers. The proposed model is inconsistent with our structure 

factors. Even the detailed analysis of vis-à-vis their and our model or structure factors 

(extracted from the PDB) did not substantiate this finding. If the structures are compared, the 
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present model shows 96% in the most favourable region of the Ramachandran plot, whereas 

74% of the Raghunathan and Matsumoto EcoSSB model and only 43% of Webster EcoSSB 

model are in the most favourable region of Ramachandran plot. Therefore, it can be concluded 

that quality-wise, the present model is much better than the other three structures. Hence, the 

present EcoSSB model will be discussed in detail and considered as a reference model for 

comparison with other SSB structures. 

3.3.6 Overall structure of EcoSSB  

Structure of EcoSSB monomer and dimer  

The N-terminal domain (residues 1 to 112) (Figure 24) of each monomer consists of six β-

strands and a small helix which is connected by a third and fourth β-strand, whereas the C-

terminal domain (from residue 112) is disordered. The core of the monomer structure is 

hydrophobic in nature. There are two extended loops which form β-hairpins. Density for Loop 

II (residues 40-50) and Loop III (residues 85–100) were well defined in three subunits (A-, B- 

and D-monomers) but these parts were poorly defined in the C-monomer.  

 
Figure 24 Ribbon diagram of the EcoSSB B-monomer showing (ball-and-stick) the aromatic residues 
involved in DNA-binding. 
  
The ssb-3 mutant, a Gly-15 to Asp mutation, renders the cell extremely sensitive to UV 

(Schmellik-Sandage et al., 1990). In the model of the EcoSSB structure, the backbone of Gly-

15 is only 3.6 Å from the side chain of an essential Trp-54 residue that is one of the key 

determinants of ssDNA-binding.  
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The mutation would produce a striking clash with the Trp (Webster et al., 1997). Recently, the 

EcoSSB-DNA complex structure was published and it was shown that the Gly-15 is within 

3.5 Å of the phosphate backbone of DNA (Ragunathan et al., 2000), therefore the mutation to 

Asp may also sterically hinder ssDNA-binding. 

EcoSSB dimer 

The monomer-monomer interface consists primarily of main chain hydrogen bonds involving 

two intermolecular antiparallel β-strands (residues 5-11). A large β-pleated sheet is formed 

with six antiparallel strands. In a front view, the shape of the large β-pleated sheet is flat 

(Figure 25); the shape appears like an arch in a side view. The total surface area buried upon 

dimer formation is 2180 Å2. The two monomers in the dimer are related by a 2-fold axis. This 

conformation is probably beneficial to the formation of the homotetramer. 
 

 
Figure 25 Ribbon diagram of an EcoSSB CD-dimer. Residue His-55 involved in tetramerisation, is 
shown as ball-and-stick model for both monomers. 
 
His-55 has been shown to be involved in tetramerisation. Although substituting His-55 with 

phenylalanine or isoleucine does not alter the properties of protein, substituting with a 

tyrosine or lysine causes the tetramer to dissociate into monomers or dimers (Curth et al., 

1991). Another residue (which may also be involved in the tetramer destabilisation) is Tyr-78. 
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When substituted by Arg, EcoSSB forms dimers (Ute Curth personal communication). This 

can be understood in the light of the present structure. 

His-55 of a monomer is involved in hydrogen bonding contacts with the main chain of Leu-

34, the side chain of Thr-36 within the same monomer and water W31 (Figure 26). The water 

molecule forms a hydrogen bonding contact with other two water molecules (W45 and W21), 

which are involved in an extensive hydrogen-bonding network. These water molecules 

continue the hydrogen bonding network and mediate the contacts between His-55 and Glu-53, 

Trp-54, Thr-99, Tyr-97 from the same monomer as well as Thr-85, Thr-99, Tyr-97 from the 

other monomer. The hydrogen bond network of water molecules and residues involved in 

contacts is shown in Figure 26 and hydrogen bond distances are listed in Table 10. 

His-55 is tightly enclosed in a hydrophobic environment. Therefore destabilisation of the 

monomer-monomer interface by substitution with the bulkier tyrosine side chain could result 

from increased steric hindrance and/or changes in the nature of contact surfaces.  

Tyr-78 is involved in hydrogen bonding contacts with the side chain of Gln-110 and Glu-80 

within the same monomer. This residue is situated in the hydrophobic pocket, which consists 

of Leu-10, Val-11 and Val-101. In this case, destabilisation of the dimer-dimer interface by 

substitution with Arg could result from a direct clash with the equipositioned Arg side chain 

of the adjacent monomer. Therefore, there is a chance of a conformation change occurring 

(i.e. tetramer to dimer). 

 
Figure 26 Schematic diagram of the hydrogen-bonding network at the monomer-monomer interface 
of the EcoSSB. 
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Table 10 Hydrogen-bonding distances between various donor-acceptors atoms as shown in 
Figure 26 

Donor Acceptor H-bond distance (Å) 
His-A55-N Leu-A34-O 2.73 
Leu-A34-N His-A55-O 2.87 

His-A55-NE2 Thr-A36-OG1 2.88 
His-A55-ND1 Wat-W31-O 2.84 
Wat-W21-O Wat-W31-O 2.81 
Wat-W21-O Wat-W80-O 3.50 
Wat-W21-O Glu-A53-OE1 2.47 
Wat-W21-O Trp-A54-O 3.03 

Thr-B85-OG1 Wat-W21-O 2.76 
Wat-W45-O Wat-W80-O 2.90 
Wat-W70-O Wat-W80-O 2.58 
Wat-W70-O Trp-A54-O 2.90 
Wat-W78-O Wat-W80-O 2.46 
Wat-W80-O Trp-A54-O 2.76 

Thr-B85-OG1 Wat-W80-O 3.48 
Arg-A56-N Wat-W45-O 3.01 
Wat-W45-O Thr-A99-O 2.97 
Wat-W78-O Thr-A99-O 2.91 
Wat-W7-O Wat-W78-O 2.92 
Wat-W45-O Wat-78-O 2.91 
Thr-A99-N Wat-W7-O 2.96 

Thr-B99-OG1 Wat-W7-O 2.89 
Wat-W7-O Wat-W30-O 2.68 
Wat-W18-O Wat-W30-O 2.82 
Wat-W30-O Tyr-A97-O 2.69 
Wat-W30-O Tyr-B97-O 2.61 

Thr-A99-OG1 Wat-W18-O 2.80 
Thr-B99-N Wat-W18-O 2.91 

 

Architecture of the EcoSSB tetramer 

EcoSSB is known to form tetramers in solution (William et al., 1984). Two different types of 

tetramers are possible. Which of the two possible tetramers configurations observed in the 

crystal reflects the configuration of SSB tetramer in solution? Figure 27a shows a tetramer of 

type I, which consists of two dimers sharing a non-crystallographic interface formed by two 

Loop II (residues 85-100) contacts, while Figure 27b shows a type II tetramer consisting of 

two dimers facing each other. 

In a type I tetramer, two dimers come together in an offset tail-to-tail arrangement. One Loop 

III per dimer is involved in forming the parallel dimer-dimer interface and interacting with 

Loop II from the other dimer. The Loop III mediated dimer-dimer interface extends over a 

surface area of about 700 Å2. This tetramer configuration is seen in the asymmetric unit of the 

crystal.  

In a type II tetramer, the six-stranded β-sheet mediated tetramer, two dimers with a non-

crystallographic two-fold axis, form a head-to-head tetramer with D2 symmetry. This tetramer 
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configuration has been also reported for HsmtSSB (Yang et al., 1997). The amount of contact 

surface between dimers (1843 Å2) is greater than that observed for the type I teramer 

configuration. The structure make-up of the interface is different. Contacts involve mainly 

residue side chain rather than main chain atoms.  

The interface is mixed in its physico-chemical composition with a very limited hydrophobic 

core surrounded by a network of hydrogen bonded tyrosine, glutamic acid, lysin, glutamine, 

and valine residues (Lys-7, Tyr-78, Glu-80, Val-5, Gln-110). Lys-7 and Glu-80 form a salt 

bridge, a feature also observed in the HsmtSSB structure (Yang et al., 1997). It is more likely 

that this configuration of tetramers represents the EcoSSB tetramer in solution.  

(a) (b) 

  
Figure 27 Ribbon diagram of two types of the EcoSSB tetramers (a) Type I tetramer (Loop III 
mediated) (b) Type II tetramer (six stranded β-sheet mediated). 
 

Residues involved in DNA-binding  

Chemical modification studies suggested that lysine and tryptophan residues are important for 

ssDNA-binding, whereas surface arginine and tyrosine residues do not seem to play a major 

role (Chase et al., 1983; Anderson et al., 1975). The implication of tryptophan residues is 

consistent with the high degree of SSB tryptophan fluorescence quenching upon binding of 

ssDNA (Lohman et al., 1985; Overmann et al., 1988; Anderson et al., 1975; Bandyopadhyay 

et al., 1987). There are four tyrosine and four tryptophan residues per SSB monomer (Sancar 

et al., 1981), however, as most often is the case, the fluorescence emission spectrum of the 

protein shows contributions only from tryptophan (Bandyopadhyay et al., 1987). 

Spectroscopic evidence suggests that both Trp-40 and Trp-54 are involved in stacking 

interactions with the nucleic acids bases (Khamis et al., 1987). However, the possibility that 

mutations at these residues may also decrease the stability of SSB tetramers in a manner 

similar to the ssb-1 mutation at residue His-55 has not been addressed. UV-crosslinking of 

EcoSSB to oligonucleotides, e.g. (dT)8, has been observed to occur almost exclusively at 
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phenylalanine-60 (Merrill et al., 1984). Recently, the structure of the EcoSSB-DNA complex 

has been solved which gives a detailed insight about the residues which are involved in DNA-

binding (Raghunathan et al., 2000). It confirms that the residues described above are involved 

in DNA-binding.  

3.3.7 Crystal Packing of the EcoSSB structure  

The EcoSSB crystals contain four monomers in the C2 asymmetric unit (Figure 27). The four 

monomers (A-, B-, C-, and D-monomer) are related by non-crystallographic symmetry (NCS). 

A superposition of any two monomers in the asymmetric unit gives r.m.s.d. values from 0.29 

to 0.70 Å on the basis of Cα pairs (85-97 atoms) (Table A4). The largest difference for main 

chain atoms (> 1.3 Å) is confined to the regions of Loop I (residues 23-27) and Loop II 

(residues 40-50) in each monomer. This large discrepancy may be a consequence of the 

different crystalline environment. Loop II of the D-monomer is in close proximity to Loop I 

of the C-monomer (Figure 28, 53a). Interestingly, Loop III (residues 85-100) shows high B-

factors as does Loop I and II (Figure A2); however, there is little structural difference among 

the monomers in this area. Loop III from the B-monomer and the C-monomer is involved in 

the dimer-dimer interface of the Type I-tetramer (Figure 27a, 53b). Loop II of the B-monomer 

is in crystal contact with Loop III of the D-monomer (Figure 53c). Detail intermolecular 

hydrogen-bonding contacts are given in Table A14. 

In the other parts of the chain the magnitude of deviation is roughly what is expected from the 

estimated co-ordinate errors and the structural difference between the four independent 

monomers in the asymmetric unit should be regarded as only negligible. 
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(a) (b) (c) 

   

Figure 28 Crystal packing of the EcoSSB, each monomer shown in different colour. The unit cell is shown in black. (a) View along the crystallographic z-axis, 
(b) view along the crystallographic y-axis (c) view along the crystallographic x-axis.  
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3.4 Crystal structure of BabSSB 

3.4.1 Crystallisation of BabSSB  

Crystallisation trials were conducted using the hanging-drop technique at a temperature of  

4ºC. An initial search for crystallisation conditions was undertaken using sparse matrix 

sampling (Jancarik & Kim, 1991). Crystals were obtained within two days using Crystal 

screen I (Hampton Research) solutions containing sodium acetate and sodium cacodylate. At 

this stage, crystallisation conditions were optimised in order to improve the size of the crystals 

by decreasing the concentration of sodium acetate and using the additive screen I (Hampton 

Research). Slightly bigger (0.2x0.1x0.1 mm3) crystals were obtained in the presence of 

dioxane in hanging drop. However, a high number (~100) of crystals were obtained in the 

drop. In order to control the nucleation, vapour-diffusion experiments were set-up applying a 

0.3 ml oil layer (Oil mixture, Table 4) above the reservoir solution (Chayen et al., 1997). Such 

optimised crystallisation conditions were defined as 0.1 M sodium cacodylate, 12.5 mM 

sodium acetate pH 6.5 and 30% (v/v) dioxane in the presence of 17 mg/ml BabSSB in Protein 

storage solution B (Table 4). Under these conditions, three to four crystals were observed in 

each drop within 1 week. The crystals (Figure 29) were rod shaped and reached 1 mm in 

length and 0.25x0.25 mm2 in cross section. Analysis by polyacrylamide gel electrophoresis of 

the protein from washed and dissolved crystals indicates that BabSSB crystallised as intact 

protein (Figure 20). 

 
Figure 29 Tetragonal crystal of BabSSB. 

 

3.4.2 Native data collection  

For the collection of diffraction data at 100K, a BabSSB crystal was treated with dried 

paraffin oil as cryoprotectant. The crystal diffracted to 2.5 Å resolution on our rotating anode. 

To improve the diffraction quality, the crystal was treated with PanjellyTM before flash-

cooling. The crystal diffracted to a maximum resolution 1.78 Å at a wavelength of 1.0 Å on 

the X-ray diffraction beam line at the ELETTRA synchrotron in Trieste, Italy. A complete 

dataset was collected using a Mar 18 cm image plate. All diffraction images were processed 
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using the HKL suite of programs (Otwinowski & Minor 1997) to yield a scaled set of 

diffraction intensities (Table 8). Analysis of the diffraction images showed that the crystals 

were tetragonal, belonging to space group P43212 with unit cell dimensions a = b = 113.13 Å, 

c = 52.10 Å. A Wilson plot (Wilson, 1949) gave an estimate of the overall B-factor of 33 Å2. 

3.4.3 Structure determination of BabSSB  

The structure of BabSSB was determined by the method of molecular replacement using the 

program AMoRe (Navaza, 1994) with a search model based on the 1.95 Å resolution EcoSSB 

structure. Since from packing consideration (Matthews, 1968) the content of one asymmetric 

unit of BabSSB crystals was assumed to be two intact molecules, one monomer of the 

EcoSSB structure was used as a search model. BabSSB_dataset1 (Table 8) was used for 

molecular replacement. Data in the range 10-4 Å were used in the rotation function search.   A 

list of 50 rotation function peaks was obtained using a Patterson cut-off radius of 30 Å with 

the top peak having the correlation coefficient of 0.118. The translation function gave two 

non-symmetric solutions with correlation coefficients of 0.156 and 0.257, respectively. 

During the data collection there was some ambiguity regarding the space group assignment 

for BabSSB crystals. In order to resolve this problem, the translation function search and 

rigid-body refinement were performed separately for space groups P41212 and P43212. The 

correlation coefficient for the latter space group was significantly higher, and remained so, 

after rigid-body minimisation using the program AMoRe (0.191 and 0.44, respectively), 

indicating that P43212 was the correct space group. The molecular replacement solution was 

checked using the program O (Jones et al., 1991) for good packing contacts before proceeding 

to refinement. The summary of the molecular replacement solution of BabSSB structure is 

given in Table 11. 

Table 11 The molecular replacement procedure for BabSSB 
Resolution range  10.0 - 4.0 Å 
 
Rotation & Translation function (1st Monomer)  
 
Best solution  α =36.75°   β = 140.86° γ = 77.46° 

tx = 0.1915 ty = 0.1867  tz = 0.1875 
 
Correlation coefficient 0.156 
R-factor  55.0% 
 
Rotation & Translation function (2ndMonomer)  
 
Best solution  α = 2.70°   β = 56.94°  γ = 326.68° 

tx = 0.5926 ty = 0.6968  tz =0.3885 
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Correlation coefficient  0.257 
R-factor                         51.8% 
 
Refinement of combined solution: 
 
Monomer1:  α = 31.87°  β = 138.09° γ = 73.72° 

tx = 0.1891 ty = 0.1868  tz = 0.1864 
                         
Monomer2:     α = 6.59°  β = 55.37°   γ = 324.88° 

tx= 0.5960  ty= 0.6939  tz = 0.3909 
 
Correlation coefficient  0.440 
R-factor                         45.3% 
 

3.4.4 Refinement and model building of BabSSB structure 

The molecular replacement solution was subjected to rigid-body refinement using CNS 

(Brünger et al., 1998) utilising the BabSSB_dataset1 (Table 8) between 20-3 Å. This resulted 

in an R-factor 45.6%. For 5% of the reflections against which the model was not refined, the 

Rfree was 46.8%. The first round of positional and temperature factor refinement lowered the 

R-factor to 40% and the Rfree to 41.8%. At this stage, SigmaA-weighted maps were calculated 

using the program SIGMAA (Read, 1986) and careful examination of the maps allowed 

corrections to be made to the model. There was no density for the residues 40-50 and 85-100 

in each monomer in the initial maps. Therefore, these residues were removed and the 

crystallographic refinement was continued against the high resolution data (BabSSB_dataset2, 

Table 8) using the maximum likelihood program REFMAC (Murshudov et al., 1997) coupled 

to ARP (Lamzin & Wilson 1997). After each round of refinement the 2Fo-Fc and Fo-Fc map 

were calculated and the model was checked using the program O (Jones et al., 1991) in order 

to build missing residues. All waters were deleted from the PDB file before the start of a new 

refinement. After 23 cycles of refinement, the R-factor was 25.7% and the Rfree 28.3%. 

Various refinement protocols, including unrestrained REFMAC/ARP refinement, were used 

in order to localise the region 40-50 in chain B and 85-100 in chain A and chain B and few 

missing side chains. In the later stages, the model was refined in CNS including a bulk-solvent 

correction. The refinement protocol included the positional, B-factor and slowcool refinement. 

The model was inspected in the 3Fo-2Fc and Fo-Fc maps; all missing side chains were built. 

However, the regions 40-50 in chain B and 85-100 in both chains could not be localised in the 

density, suggesting that they are disordered. The final R-factor and Rfree are 25.1% and 26.2%, 

respectively for all data within the range of 100-1.8 Å resolution. The refinement statistics are 

summarised in Table 9.  
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3.4.5 Quality of BabSSB model 

 
Figure 30 Ramachandran plot for BabSSB, created by PROCHECK (Laskowski et 
al., 1993). Glycine and proline residues are denoted by triangles and all other 
residues by squares. The different demarcated regions are labelled as A, B, L, -
most favoured regions; a, b, l, p, -allowed; and -a, -b, -l, -p,  -generously allowed. 

 
The structure was refined to an R-factor of 25.1% for 29478 reflections. The Rfree calculated 

for the set of 1262 reflections was 26.2 %. The model consists of two chains and has 1482 

non-hydrogen atoms and 113 water molecules. Residues 1 and 2 as well as all residues 

beyond 115 are disordered. 

The superposition of the 88 Cα atoms between monomers gave a r.m.s.d. value of 0.26 Å. The 

average B-factor of the main chain and side chain atoms is 37.7 and 38.0 Å2, respectively. In 

the final model, 95.1% of the residues are located within the most favourable regions and 

4.9% in the allowed region of the Ramachandran plot (Figure 30). A Luzatti plot gave an 

estimated error of the co-ordinates of 0.28 Å (Luzatti, 1952). 
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3.4.6 Comparison between the BabSSB and EcoSSB model 

In contrast to the EcoSSB crystals, the asymmetric unit of BabSSB crystals contains two 

monomers. However, both proteins form homotetramer (Figure 30). The final model of 

BabSSB includes 189 residues in two polypeptide chains of BabSSB. Loop III (residues 85-

100, EcoSSB numbering; Figure 11) in both monomers and Loop II (residues 40-50) in one 

monomer are ill defined. Therefore these loops were excluded from all structural comparison. 

The C-terminal domain (last 60 residues) is also disordered as in the EcoSSB structure. 

    The fold of the polypeptide chain in BabSSB is similar to that found in the EcoSSB. The 

BabSSB structure was compared with EcoSSB using the LSQKAB program of CCP4 suite of 

programs (Collaborative Computational Project, Number 4, 1994).  

   When 355 Cα atoms of all residues of one tetramer, including all those involved in regular 

secondary structure are superimposed, an r.m.s.d. of 1.63 Å between BabSSB and EcoSSB is 

observed. The superimposed structures of BabSSB and EcoSSB are shown in Figure 31. A 

high r.m.s.d. can be observed in the region of Loop I (residues 22-28), Loop II (residues 40-

50), a helix (residues 60-70) and a Loop IV (residues 103-107). When EcoSSB monomers 

were compared to each other, it was found that there is also some structural differences in the 

region of Loop I, II, III and IV (Figure 47). However, there is very little structural difference 

in the helix region. In the case of BabSSB, the helix region shows a high r.m.s.d. value (when 

compared to EcoSSB) due to the insertion of one residue between residue 62 and 63 (EcoSSB 

numbering) in the BabSSB structure.  

The residue His-55 of EcoSSB is also conserved in BabSSB and in other SSBs (Figure 11). 

Corresponding to EcoSSB, His-55 also plays an important role in BabSSB structure to 

stabilise the tetramer. In this structure, His-55 is involved in hydrogen bonding contact with 

the main chain of Ile-34 and side chain of Thr-36 of the same monomer and with water W11. 

This water is in contact with another two waters (W33 and W72) which are involved in 

hydrogen bonding contacts with the main chain of Ser-56 and Lys-100 (in case of W33) and 

the main chain of Trp-54 as well as the side chain of Glu-53 (in case of W72). It can be seen 

that positions, orientations and contacts of these waters are very similar in both structures. 

However, in contrast to EcoSSB, these waters do not continue the hydrogen-bonding network 

at the monomer-monomer interface.  

As described above (section 3.3.6), Tyr-78 is involved in stabilisation of the dimer-dimer 

interface of EcoSSB tetramer. This residue is also conserved in BabSSB (Figure 11). Similar 

to EcoSSB, Tyr-78 also plays an important role at the dimer-dimer interface. 
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Figure 31 Superposed Cα trace of the BabSSB and EcoSSB tetramers. 
        
  Four salt bridges exist at the dimer-dimer interface; two of them are symmetrical (Lys- 

A7:Glu- B81 and Lys-B7:Glu- A81). Lys-A7 makes three salt bridges, one with Glu-B81 and 

two with Glu-B110. 

                            Table 12 Salt bridges in the BabSSB structure 

Donor  Acceptor Salt bridge (Å ) 
Lys-A7-NZ Glu-B81-OE1    2.91   
Lys-A7-NZ Glu-B110-OE1 3.22   
Lys-A7-NZ Glu-B110-OE2 3.19   
Lys-B7-NZ Glu-A81-OE2 3.18   
Lys-A49-NZ Glu-B62-OE1 3.18   
Lys-A49-NZ Asp-B27-OD1 2.49   
Arg-A108-NH2 Glu-A38-OE1 3.33   
Arg-B108-NH2 Glu-B38-OE1 3.55   
Arg-B22-NH2 Glu-A47-OE1 3.40   

 
This is not the case with Lys-B7, which makes only one salt bridge with Glu-A81, as 

indicated by its different orientation in the electron density. There are a total of 9 salt bridges 

in this structure: they are listed in Table 12. 

         Gly-15 of EcoSSB is also conserved in BabSSB (Figure 11) and its mutation to Asp 

accordingly modulates the ssDNA-binding properties. 

3.4.7 Crystal packing of the BabSSB structure 

The BabSSB crystals belong to the space group P43212. In this space group, the unit cell 

contains eight asymmetric units; hence there are eight symmetry operators (Table A13). The 

asymmetric unit of BabSSB crystals contains two independent monomers. These two 

molecules are related by non-crystallographic symmetry: a rotation by 90.3º followed by a 

translation 26 Å along the rotation axis. A superimposition of the two independent monomers 
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in the asymmetric unit gives an r.m.s.d. of 0.26 Å using 88 Cα atom pairs. In contrast to the 

EcoSSB monomers, BabSSB monomers show very little structural difference between two 

monomers including all loops.  

BabSSB is probably also biologically active as a tetramer. It can be seen in the crystal packing 

that even though the BabSSB is a dimer in the asymmetric unit, it forms a crystallographic 

tetramer. In Figure 32, the A-monomer is coloured in red and B-monomer in green. Each 

monomer of BabSSB forms a dimer with its symmetry mate. The AA-dimer (A’) and BB-

dimer (B’) are shown in red and green, respectively in Figure 32. These dimers are arranged 

in two specific ways. The first pattern is A’B’B’A’ and the second is B’A’A’B’. A’B’ forms a 

head-to-head tetramer where as B’B’ or A’A’ forms a tail-to-tail tetramer.  

Tail-to-tail tetramers are arranged in such a way that their Loops III (modelled using the 

EcoSSB structure) come together (Figure 32). In the tail-to-tail arrangement, the tips of Loop 

III from the B’-dimer clash with the adjacent symmetry related B’-dimer and the distance 

between their centres of mass is 53.5 Å. However, this is not the case with the Loops III of the 

A’-dimer. The distance between the A’-dimer and its symmetry related A’-dimer from their 

centre of mass is 70.5 Å and its loop is in very close contact with the Loop III of the adjacent 

B-monomer. Therefore it can be suggested that the Loop III is flexible in this area, which is 

supported by the high B-factor of Loop III in EcoSSB (Figure A2). Due to the high flexibility 

of the Loop III, in the BabSSB structure, it is completely disordered (Figure 32).  

Loop II (residues 40-50) is disordered in the B-monomer. It has a different crystalline 

environment than Loop II from A-monomer. It clashes with tip of the Loop I (residues 24-27) 

of symmetry mates of A-monomer (Figure 32). This indicates that Loop II of B-monomer is 

also mobile and hence it is disordered in the structure. 

The ordered Loop II of the A-monomer and its symmetry mates are arranged in such way that 

they do not clash but interact via salt bridges. One of the salt bridges is between Lys-49 of this 

loop and Asp-27 of an adjacent symmetry mate of the B-monomer (Figure 53h). The area 

where Loops II of A-monomer and its symmetry mates are packed shows a relatively large 

empty space (Figure 32). The tip of the Loop IV (residues 105 –108) of the B-monomer is in 

close contact with the tip of Loop II of the A-monomer. Loop I interacts with its symmetry 

mates and also forms a few crystal contacts with Loop II (Table A15). The packing 

interactions involve mostly salt bridges or hydrogen bonds. Intermolecular hydrogen bonds 

are made mainly either between the protein atoms or protein atoms and water molecules 

(Table A15).  
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(a) (b) 

  
Figure 32 Crystal packing of BabSSB. The A- monomer is shown in red and the B-monomer in 
green, Loop III is disordered in both monomers, and is shown by a dotted line. Loop II of the B-
monomer is also disorder and shown as dotted line in blue. (a) View along the crystallographic x-
axis, (b) view along the crystallographic z-axis. 
 
3.4.8 Model of BabSSB-ssDNA complex  

The crystal structure of BabSSB-ssDNA complex has not been solved yet, therefore a 

theoretical model of this complex need to be built and examined. On the basis of the crystal 

structure of the EcoSSB-ssDNA complex (Ragunathan et al., 2000), it can be proposed that 

BabSSB should also bind to ssDNA in a similar manner as EcoSSB binds to ssDNA. 

However some minor changes can be expected in the crystal structure of BabSSB-DNA 

complex. The model of BabSSB-ssDNA complex was prepared by superimposing the 

EcoSSB-DNA complex onto the BabSSB tetramer structure (Figure 33). When 428 Cα atoms 

of the tetramer are superimposed, an r.m.s.d. of 2.3 Å is obtained (for 295 Cα -positions of the 

tetramer excluding loops and helices, the r.m.s.d. value is 1.2 Å) between the BabSSB and the 

EcoSSB-ssDNA complex structure. As already mentioned in the Introduction section, most 

conserved aromatic residues and charged residues are involved in the ssDNA-binding. Those 

residues are also conserved in the BabSSB (i.e. Trp-40, Trp-54, Tyr-71, Arg-21, Phe-60; 

BabSSB numbering; Figure 51). They are involved in ssDNA-binding as can be corroborated 

from the theoretical model. Apart from these residues, there are a few more residues (Ser-37, 

Glu-38, Asp-50, Thr-52, Ser-56, Asn-63, Gln-70, Glu-101, Gln-105, Lys-106, Glu-110 and 

Asp-115; BabSSB numbering) in BabSSB, which are proximal to the ssDNA backbone, 

suggesting an involvement in DNA-binding. It is interesting to note, that Gln-105 and Lys-

106 are not conserved in EcoSSB (Figure 51) and the residues at this place in EcoSSB are not 
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at all involved in ssDNA-binding. From this observation it can be explained, why there is an 

insertion of one residue between 104 and 105 (EcoSSB numbering, Figure 11) in BabSSB. 

 
Figure 33 Theoretical model of the BabSSB-ssDNA complex. The Cα trace indicated by the dotted 
line shows that these parts are disordered in the structure. The colour convention is similar as for 
Figure 32. The non-conserved residues (Gln-105 and Lys-106) involved in the ssDNA-binding from 
each monomer are shown as ball-and-stick model. 
 
These two residues (Gln-105 and Lys-106) belong to the Loop IV, which in BabSSB shows 

significant deviation compared to Loop IV of EcoSSB (Figure 47). This is probably due to the 

involvement of the loop in the BabSSB structure in ssDNA-binding. 
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3.5 Crystal structure of PmiSSB 

3.5.1 Crystallisation of PmiSSB-(dT)2 

Crystallisation trials were conducted using the hanging-drop technique at 25ºC. An initial 

search for crystallisation conditions was undertaken by using sparse matrix sampling (Jancarik 

& Kim, 1991). Crystals were obtained after five weeks in Crystal screen NATRIX HR2-116 

(Hampton Research) solutions containing magnesium sulphate, MES and PEG4000. The 

crystallisation conditions were optimised in order to improve the size of crystals by decreasing 

the percentage of PEG4000. The optimised crystallisation conditions were found to be 5 mM 

magnesium sulphate, 50 mM MES pH 6.5 and 3% (w/v) PEG4000 at 16.5 mg/ml PmiSSB 

and 0.356 mM (dT)2 (1:1 ratio) in Protein storage solution A (Table 4). Under these 

conditions, only three or four bigger crystals were observed in each drop after six weeks. The 

crystals were of rectangular shape and reached a size of 0.5x0.3x0.3 mm3 (Figure 34) 

Analysis by polyacrylamide gel electrophoresis of the protein from washed and dissolved 

crystals indicates that crystallised PmiSSB-(dT)2 was partially cleaved (Figure 19).  

 
Figure 34 Orthorhombic crystal of PmiSSB-(dT)2. 

 

3.5.2. Native data collection  

Crystals of PmiSSB were prepared for data collection at 100 K using PanjellyTM. The crystal 

diffracted to 2.5 Å at the X-ray diffraction beamline, ELETTRA, Trieste. Data were collected 

at a wavelength of 1.0 Å using a Mar 30 cm imaging plate and processed using the HKL 

program package (Otwinowski & Minor, 1997), which yielded a scaled set of diffraction 

intensities (Table 8) with 98.9% completeness and an Rmerge of 7.4%. The analysis of the 
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diffraction images showed that the crystals were orthorhombic, belonging to space group 

P21212 with unit cell dimensions a= 146.77 Å, b = 153.32 Å, c = 60.96 Å. 

3.5.3 Structure determination of PmiSSB  

The program AMoRe (Navaja, 1994) was used for molecular replacement. Reflections with F0 

> 2σ were used throughout the molecular replacement stage. Initial trials to solve the PmiSSB 

structure by molecular replacement were conducted using monomeric EcoSSB as a search 

model. This failed to give a prominent solution, as was the case with a dimeric EcoSSB 

model. This is not surprising since a monomeric/dimeric search model constitutes only a 

fraction of the scattering matter in the asymmetric unit. The tetrameric model of EcoSSB was 

employed successfully as a search model.  

The PmiSSB_dataset1 (Table 8) was used during the molecular replacement procedure. Data 

in the region 10-4 Å were used for the rotation function and in the range 8-4 Å for the 

translation function. Using a Patterson cut-off radius of 35 Å, a list of 10 rotation function 

peaks was obtained, with the top peak having a correlation coefficient of 0.183. The 

translation function was calculated for all 10 rotation function peaks. The best solution 

obtained had a correlation coefficient of 0.196. Furthermore a second translation function 

search was carried out by fixing the first solution which yielded a solution with a correlation 

coefficient of 0.393. After performing rigid body refinement using the program AMoRe 

(Navaja, 1994) for two solutions, the correlation coefficient was 0.46. These two solutions 

were related by a 65.87° rotation along the z-axis, thereby indicating that the asymmetric unit 

contains two tetramers (solvent content of 49.4%). A summary of the molecular replacement 

solution is given in Table 13. 

Table 13 The molecular replacement procedure for PmiSSB  
Resolution range  10.0 - 4.0 Å 
 
Rotation & Translation function (1st Tetramer)  
 
Best solution  α = 37.49°   β = 80.84°   γ  = 204.01° 

tx = 0.2369  ty = 0.4175  tz =0.1173 
 
Correlation coefficient  0.196 
R-factor  53.6% 
 
Rotation & Translation function (2nd Tetramer)  
 
Best solution  α = 104.80°   β = 80.64°    γ = 204.58° 

tx = 0.5747   ty = 0.3220  tz = 0.1599 
 
Correlation coefficient  0.393 
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R-factor                         48.4% 
 
Refinement of combined solution: 
 
Tetramer 1:  α = 37.61°   β = 80.52°   γ = 203.67° 

tx = 0.2371 ty = 0.4169  tz = 0.1172 
 
Tetramer 2:     α = 103.40°   β = 80.52°    γ = 204.13° 

tx = 0.5752   ty = 0.3222   tz = 0.1612 
 
Correlation coefficient  0.46 
R-factor                         46.2% 

 
3.5.4 Refinement and model building of PmiSSB structure 

The output model from AMoRe was subjected to rigid body refinement using CNS (Brünger, 

et al., 1998) using the PmiSSB_dataset1 (Table 8) in the resolution range 100-3.0 Å. A 

random set containing 4% of the total data was excluded from the refinement, and the 

agreement between calculated and observed structure factors corresponding to these 

reflections (Rfree) was used to monitor the course of the refinement (Brünger, 1992). The 

crystallographic free R-factor (Rfree) was 40.4%. Data were then used in the refinement in the 

resolution range 100-2.5 Å. First, a round of positional and temperature factor refinement was 

performed which lowered the R-factor to 29.3% and the Rfree to 34.4%. At this stage, sigmaA-

weighted maps were calculated using the program SIGMAA (Read, 1986) and careful 

examination of the maps allowed corrections to be incorporated into the model. There was 

only weak density for the Loop I (residues 23-27), Loop II (residues 40-50) and Loop III 

(residues 85-100) in each monomer in the initial maps. Therefore, these residues from the 

loops region were removed from the model. Alternating cycles of manual rebuilding, 

conventional positional refinement and simulated annealing, using the slowcool protocol as 

implement in CNS (Brünger et al., 1998), allowed some of the missing residues to be placed 

in the density. 

 3.5.5 Quality of PmiSSB model  

The refined model of PmiSSB has an R-factor 24.4% for 46031 reflections to 2.5 Å 

resolution (no low-resolution and sigma cut-off was applied). The Rfree calculated using 1946 

reflections omitted from the refinement, is 29.3%. The model contains eight monomers and 

has 5908 non-hydrogen atoms plus 137 water molecules. The electron density is well defined 

for each chain. Loop I (residues 23-27) of the B-, C-, F- and G-monomer, the Loop II 

(residues 40-50) of all except the H-monomer as well as Loop III (residues 85-100) of the A-, 

C-, D-, and H-monomer show weak electron density. Only Loop I of the F-monomer, Loop II 
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of A-monomer and Loop III of the H-monomer could be partially build in the density and 

were included in the final model. The structure quality assessment together with relevant 

crystallographic statistics is reported in Table 9. Among 646 non-glycine and non-proline 

residues in the eight monomers in the asymmetric unit, the number of residues lying in the 

most favoured and additionally allowed region in the Ramachandran plot is 600 (92.9%) and 

46 (7.1%), respectively (Figure 35). A Luzatti plot yields an estimated error on the 

coordinates of 0.4 Å (Luzzati, 1952). 

 

 
Figure 35 Ramachandran plot for PmiSSB, created by PROCHECK (Laskowski et 
al., 1993). Glycine and proline residues are denoted by triangles and all other 
residues by squares. The different demarcated regions are labelled as A, B, L, -
most favoured regions; a, b, l, p, -allowed; and -a, -b, -l, -p,  -generously allowed. 

           

3.5.6 Comparison between the PmiSSB and EcoSSB model  

Despite of the high sequence identity (81%) between EcoSSB and PmiSSB, both SSBs were 

crystallised in different space groups. PmiSSB belongs to space group P21212 and contains 

two tetramers in the asymmetric unit (Figure 36), whereas EcoSSB belongs to space group C2 

and contains only one tetramer in the asymmetric unit (Figure 27). The fold of the polypeptide 

chain in PmiSSB is similar to that found in the EcoSSB. Each tetramer of PmiSSB was 

compared with the EcoSSB tetramer. When 369 Cα atoms of each tetramer, including all 

those, which are involved in regular secondary structure elements, are superimposed with 

tetrameric EcoSSB, a r.m.s.d. value of 1.4 Å for the first tetramer and 1.2 Å for the second 
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tetramer (Figure 37) of PmiSSB is obtained. In the r.m.s.d. calculation Loop II (residues 40-

50) was not included since this part is only available in the H-monomer of PmiSSB. Loop III 

(residues 85-100) of all monomers of PmiSSB tetramer shows only a small r.m.s.d. to  Loop 

III of EcoSSB. Significant differences are found near the first β-strand (residues 12-39) and 

the helix region (residues 65-74) in each monomer of PmiSSB. In this region the A-, B-, C-, 

D-monomer of PmiSSB, show higher r.m.s.d. values than the E-, F-, G-, and H-monomer to 

the corresponding structure of EcoSSB. 

 

 
Figure 36 Ribbon representation of the two tetramers of PmiSSB drawn using MOLSCRIPT (Kraulis, 
1991). The first and last four subunits of PmiSSB are shown in red and green, respectively. The view 
is along the z-axis. 
     
In both structures (EcoSSB and PmiSSB), the polypeptide chains show no secondary 

structures beyond residue 112. The conserved residue His-55 plays a similar role in the 

PmiSSB as in EcoSSB. In each monomer of this structure, His-55 is also involved in 

hydrogen bonding with the main chain of Leu-34 and side chain of Thr-36 of the same 

monomer and a water molecule. The water mediates hydrogen bonding to two other water 

molecules. One of these two waters is in contact with the main chain of Arg-56 and Thr-99 of 

the same monomer and the other forms hydrogen bonds with the side chain of Glu-53 (same 

monomer) and Thr-85 (adjacent monomer). 
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Figure 37 Superposition of the Cα atoms of EcoSSB-ABCD (red line) PmiSSB-ABCD (green line), 
and PmiSSB-EFGH tetramer (blue line) drawn using MOLSCRIPT (Kraulis, 1991). 
 

In contrast to EcoSSB, these water molecules do not continue the hydrogen-bonding network. 

Probably due to the limited resolution of the PmiSSB structure, not all water molecules were 

detected. It is interesting to note that the orientation and position of these three waters in each 

monomer of PmiSSB are same as in EcoSSB. Tyr-78 and Gly-15 of PmiSSB also plays 

similar role as in EcoSSB. 

There are total 21 salt bridges in this structure. Lys-7 and Glu-80 are involved in the 

formation of salt bridges in each monomer. Lys-7 is involved in salt bridge formation with 

Glu-80 of both the same and the adjacent monomer at the dimer-dimer interface.  

3.5.7 The dithymidene (dT)2 electron density 

When the PmiSSB model was completely refined, electron density was inspected near the 

aromatic residues which are generally involved in ssDNA-binding. Density for the nucleotides 

appeared near the aromatic residues Trp-88, where Loop III was completely built. This Loop 

is ordered only in the B-, C-, F- and G-monomers. However, the density of the nucleotides 

was too weak to refine the dinucleotide molecules. Therefore this part of the model was not 

included in the structure. The density was confirmed by the theoretical model of 

PmiSSB/ssDNA complex. The theoretical model was prepared for PmiSSB in a similar way 

as the BabSSB-ssDNA model. This part of the electron density is arranged in a specific way. 

In Figure 38, Trp-88 and Lys-87 of the G- and F-monomer are shown. The side chains of the 

two Trp-88 are tilted towards the electron density of the dinucleotides, showing an 
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involvement in the nucleotide binding while Lys-87 points to the opposite direction. The 

residues of PmiSSB which are involved in ssDNA-binding are sequentially and structurally 

conserved, therefore it can be suggested that PmiSSB might bind ssDNA in a similar manner 

as EcoSSB binds to ssDNA. 

 

 
Figure 38 Ball-and-stick model of Trp-88 and Lys-87 from G-monomer and symmetry mate of F-
monomer with (Fo-Fc)-map at 1.5 σ for the nucleotides. 
 

3.5.8 Crystal packing of the PmiSSB structure  

There are eight monomers of PmiSSB in the asymmetric unit. These eight monomers are 

essentially of the same structure. The r.m.s.d. between any two monomers varies from 0.21 to 

0.47 Å for the 83-98 Cα pairs (Table A4). The first four monomers (A-, B-, C-, and D-

monomer) form one tetramer (ABCD-tetramer) and the last four monomers (E-, F-, G-, and 

H-monomer) comprise another tetramer (EFGH-tetramer). These two tetramers are related by 

a 65.87° rotation along the z-axis. The r.m.s.d. between the two tetramers is 0.55 Å for 339 Cα 

pairs, and 0.33 Å for 256 Cα pairs (when loop parts were excluded in the r.m.s.d. calculation). 

This difference in the r.m.s.d. values indicates that there is some variation in the loop regions. 

It is probably due to crystal packing effects. The ABCD-tetramer is surrounded by three 

EFGH-tetramers in the crystal packing (in the xy-plane); similarly a EFGH-tetramer is 

surrounded by three ABCD-tetramers (Figure 39). Therefore there are three main contact 
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regions for each tetramer: (i) the first contact region shows the involvement of the helix (Tyr-

70) of the D-monomer with the fifth β-strand (Met-111) of the E-monomer and vice versa. (ii) 

The second, between the helix (Glu-69, Arg-72) of the C-monomer and the fifth β-strand 

(Met-111, Leu-112) of the G-monomer and (iii) the third, between the helix (Glu-65) of the C-

monomer and the end part of the second β-strand (Ser-39) of F-monomer. 

The involvement of Loop I, II and III in crystal packing for each tetramer of PmiSSB (53d, e, 

f) is similar as found in the crystal packing of EcoSSB tetramer (Figure 28).  
 
(a) (b) 

 
 

(c)  

 

 
 
 
 
 
Figure 39 Crystal packing of the PmiSSB. The 
ABCD-tetramer is shown in red and the EFGH-
tetramer in green. The unit cell is shown in 
black. (a) View along the crystallographic z-axis, 
(b) view along the crystallographic y-axis  (c) 
view along the crystallographic x-axis. 
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3.6 Crystal structure of SmaSSB 

3.6.1 Crystallisation of SmaSSB 

The protein solution was made up to a concentration of 12.2 mg/ml in Protein storage solution 

B (Table 4). Initial crystallisation trials employing the hanging-drop vapour diffusion method 

were performed using Hampton crystal NATRIX screen at 4ºC. Each well of a Sarstedt tissue-

culture plate contained 500 µl precipitant buffer and 4 µl of a 1:1 mixture of protein and 

precipitant buffer hanging on a siliconised coverslip. Within three days, micro crystals 

appeared along with few big crystals in the NATRIX screen solution number 45 (0.025 M 

Magnesium sulphate, 0.05 M Tris HCl pH 8.5 and 1.8 M Ammonium sulphate). These bigger 

crystals exhibited two or three strong diffraction spots, indicating that they were salt crystals. 

The tray was brought to room temperature for mounting the crystal and later it was placed 

again at 4ºC. One week later, when the drops were checked again, no more micro crystals was 

present and the salt crystals were dissolved. Protein crystals appeared in the drop in 

bipyramidal form and continued to grow. The optimal size (0.2x0.2x0.2 mm3) was reached in 

20 days.  

          The crystals were reproduced (Figure 40) by simply keeping the crystallisation tray, 

first at 4°C and let the micro crystals and salt crystals grow for one day and then transferring it 

to room temperature. When the micro crystals were dissolved, the tray was placed again at 

4°C.  

 
Figure 40 Tetragonal crystals of SmaSSB. 

 
3.6.2 Native data collection  

The bipyramidal crystals of SmaSSB were sensitive to temperature. For cryoprotection, the 

crystal was transferred into PanjellyTM at 4°C which was placed on a microscope cover slip. 

The slip was brought to the mounting station from 4°C. The crystal was fished with a cryo-
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loop and transferred to the cryo-stream. The first diffraction pattern was achieved using a 10 

minutes exposure at a rotating anode. The spots extended only to 6.5 Å resolution. The cooled 

crystal was brought into dried paraffin oil for washing and was then again transferred into the 

cryo-stream. At the same exposure, the crystal diffracted to 4.5 Å and with 1 hour exposure to 

3.6 Å. A complete dataset was then collected from the crystal in two days on our rotating 

anode. After finishing the data collection, the crystal was stored in liquid nitrogen for the use 

at a synchrotron source.  

The data were integrated, reduced and scaled using the programs DENZO and SCALEPACK 

(Otwinowski & Minor, 1997). The analysis of diffraction pattern showed that the crystals 

belong to a tetragonal space group with unit cell dimensions of a=b=111.25 Å, and c=141.76 

Å.  

A complete dataset was collected at BM14 beamline ESRF (Grenoble) from the same cryo-

cooled crystal. There, the crystal diffracted to 2.8 Å. The statistics of the data collection are 

given in Table 8. 

3.6.3 Structure determination of SmaSSB  

The structure of SmaSSB was determined by molecular replacement using the program 

AMoRe (Navaza, 1994) as implemented in the CCP4 program package with a search model 

based on the 1.95 Å resolution EcoSSB structure. The initial estimation of the solvent content 

indicated that six molecules were present in the asymmetric unit with a fractional solvent 

content of 39% (Vm = 2.0 Å3/Da). Therefore, a single dimer of the tetrameric EcoSSB structure 

was used as a search model. The SmaSSB_dataset1 (Table 8) was used during the molecular 

replacement. Data in the range 10-4 Å were exploited for the rotation function. Using a 

Patterson cut-off radius of 41 Å, a list of 31 rotation function peaks was obtained, with the top 

peak having a correlation coefficient of 0.159. Translation searches were conducted separately 

with 8-4 Å data for the first dimer in the space groups P42212, P41212, and P43212. The 

correlation coefficient for the first space group was significantly higher than for the other two 

(0.256, 0.189 and 0.18, respectively), which established P42212 as the correct space group. 

Fixing the first solution, and searching for a second translation vector resulted in a correlation 

coefficient of 0.399 and an R-factor of 47.8%. Afterwards the first and the second solutions 

were fixed to search for the presumed third dimer. This yielded a correlation coefficient of 

0.48 and an R-factor of 43.8%. The Eulerian angles for the first two solutions were the same, 

while the third solution was related by 35.5° along the z-axis. However, rigid-body refinement 

did not improve the correlation coefficient and R-factor (0.382 and 47.4%, respectively). The 

packing of the models from these solutions were checked using the program O (Jones et al., 
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1991). No significant steric clashes between the first two dimers was observed, also they were 

found to assemble into a tetramer in exactly the same way as the EcoSSB tetramer. The third 

solution also formed a tetramer. However, in this tetramer, each monomer was overlaid by 

another monomer. This position was carefully checked and it was found that this tetramer is 

placed on the crystallographic two-fold axis; therefore only a single monomer was required in 

the third solution to form a tetramer. This means that asymmetric unit of SmaSSB crystals 

contains five molecules only (solvent content 49%, Vm=2.4 Å3/Da). This was the reason, why 

rigid-body refinement couldn’t improve the correlation coefficient and the R-factor. A 

summary of the molecular replacement solution of the SmaSSB structure in the correct space 

group is given in Table 14. 

 
Table 14 The molecular replacement procedure for SmaSSB  
Resolution range  8.0 - 4.0 Å 
 
Rotation & Translation function (1st Dimer)  
 
Best solution  α = 72.62°   β = 90.00°   γ  = 312.77° 

tx = 0.2123   ty = 0.3147  tz =0.1631 
 
Correlation coefficient  0.256 
R-factor  51.2% 
 
Rotation & Translation function (2nd Dimer)  
 
Best solution  α = 72.62°   β = 90.00°   γ  = 312.77° 

tx = 0.7193  ty = 0.4549  tz = 0.1617 
 
Correlation coefficient  0.399 
R-factor                         47.8% 
 
Rotation & Translation function (3rd Dimer)  
 
Best solution  
 α = 42.73°   β = 88.25°   γ = 312.43° 

tx = 0.9093 ty = 0.9207  tz = 0.9931 
Correlation coefficient  0.48 
R-factor                         43.8% 
Refinement of combined solution: 
Dimer 1:  α = 75.16°   β = 89.17°   γ = 313.45° 

tx = 0.2133 ty = 0.3143  tz = 0.1634 
Dimer 2:     α = 75.79°   β = 89.27°    γ = 312.37° 

tx = 0.7220  ty = 0.4547   tz = 0.1614 
Dimer 3:     α = 40.25°   β = 87.21°    γ = 311.82° 

tx = 0.9096   ty = 0.9201   tz = 0.9918 
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Correlation coefficient   0.382 
R-factor                         47.4% 
 
3.6.4 Refinement and model building of SmaSSB structure 

Initial refinement was carried out against data in the range 100-3.6 Å, with 728 (6.7%) of the 

reflections used for cross-validation (Brünger, 1992). The properly oriented model was 

subjected to rigid body refinement using CNS (Brünger et al., 1998) which led to a reasonable 

improvement in R-factor (36.6%) and Rfree (43.2%). After inspection of the 3Fo-2Fc and Fo-Fc 

maps at this point Loop I (residues 22-28), Loop II (residues 40-50) and Loop III (residues 85-

100) were deleted from the model, because they were out of electron density. The model 

which included five molecules, then underwent several rounds of a standard refinement 

protocol with restrained non-crystallographic symmetry (NCS). Each round consisted of 

Powell minimisation, simulated annealing from 3000K, and individual temperature-factor 

refinement. Each round of refinement was followed by model building using O (Jones et al., 

1991). At the point, at which the R-factor and Rfree fell below 28.2% and 32.5%, respectively. 

Loop I was rebuilt in D- and E-monomers and non-conserved residues were mutated in the 

density.  

When synchrotron data became available, the structure was refined to 3.0 Å in a similar 

manner as with the low resolution dataset. At this resolution, Loop III was built in the A-, B-, 

D-, and E-monomers and Loop I was built in the A-monomer. In the final round of 

refinement, the R-factor and Rfree dropped to 26.7% and 29.8%, respectively. 

3.6.5 Quality of SmaSSB model  

The refined model contains 3637 non-hydrogen protein atoms and eight ordered water 

molecules, accounting for 496 residues in the five independent molecules of SmaSSB in the 

asymmetric unit (Table 9). It gives an R-factor of 26.7% for 17347 unique reflections in the 

range 100-3.0 Å. Loop II in each monomer and Loop I of B-, and C-monomer could not be 

seen in the electron density and were not included in the model. There were few surface 

residues whose side chains could not be traced because of their poor electron density, 

therefore, these side chain were also not included in the model.  

The r.m.s.d. for ideal stereochemistry are 0.009 Å for bond lengths, and 1.52° for bond angles. 

The average positional error is estimated to be 0.5 Å from a Luzzati plot (Luzzati 1952). 

Among 402 non-glycine and non-proline residues in the five molecules in the asymmetric 

unit, the numbers of residues lying in the most favoured, additionally allowed, and generously 

allowed in the Ramachandran plot are 353 (87.8%), 46 (11.4%), and three (0.7%), 

respectively (Figure 41). For all molecules, the average B-factors are 54.5 Å2 for 496 main-
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chain atoms and 55.6 Å2 for 437 side-chain atoms. The B-factors for the eight solvent 

molecules range from 15 to 52.7 Å2, with the average being 33.6 Å2. 

 
Figure 41 Ramachandran plot for SmaSSB, created by PROCHECK (Laskowski et 
al., 1993). Glycine and proline residues are denoted by triangles and all other 
residues by squares. The different demarcated regions are labelled as A, B, L, -most 
favoured regions; a, b, l, p, -allowed; and -a, -b, -l, -p,  -generously allowed. 

 

3.6.6 Comparison between the SmaSSB and EcoSSB model 

The SmaSSB shows high sequence identity (89%) with EcoSSB. In the N-terminal domain of 

SmaSSB, there are only seven residues at positions 48, 51, 70, 82, 84, 89 and 101 (EcoSSB 

numbering) that are different in EcoSSB, whereas eleven residues are different in the C-

terminal domain. Despite the high conservation, SmaSSB has been crystallised in a different 

space group (P42212). Another striking difference is that the asymmetric unit of SmaSSB 

crystals contains five independent molecules (1.25 tetramers); where as the asymmetric unit 

of EcoSSB contains four molecules (1 tetramer).  
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Figure 42 Cα trace of non-crystallographic and crystallographic tetramers of SmaSSB. 
 

The overall fold of the polypeptide chain in SmaSSB is similar to that found in EcoSSB. The 

C-terminal domain (last 60 residues) of SmaSSB is also disordered as in the EcoSSB 

structure. In the SmaSSB model, four monomers out of five form an NCS-tetramer similar to 

EcoSSB. The fifth monomer forms a second tetramer with its crystallographic symmetry 

mates (Figure 42). The packing arrangement of this tetramer is specific in a way, which will 

be discussed in the next section. This one crystallographic tetramer interacts with four other 

NCS-tetramer via Loop I (Figure 42); consequently there are two crystallographic tetramers 

and eight NCS-tetramers in the unit cell. Here, our interest is to compare the NCS-tetramer 

and the crystallographic tetramer of SmaSSB with the EcoSSB-tetramer in order to see the 

differences, as this is likely due to a packing effect. When 371 Cα atoms of the NCS-tetramer 

and 394 Cα atoms of crystallographic tetramer of SmaSSB are superimposed, an r.m.s.d of 1.4 

Å between the NCS tetramer of SmaSSB and the EcoSSB tetramer is observed. The r.m.s.d. 

between the crystallographic tetramer of SmaSSB and EcoSSB tetramer is 2.3 Å. After 

neglecting all loops, 275 Cα atoms of each tetramer of SmaSSB were compared separately 

with the EcoSSB tetramer, an average displacement of 1.0 Å for the NCS-tetramer and 1.5 Å 

for the crystallographic tetramer of SmaSSB is observed. Therefore, it is obvious that these 

two tetramers are different. They have a different crystallographic environment and their 
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loops have different conformations. To investigate this further, each of the five monomers of 

SmaSSB was compared with the individual monomers of EcoSSB (A-, B-, C-, and D-

monomers) using the program ALIGN (Cohen, 1997). The average of the four r.m.s.d. values 

obtained on comparison of a single SmaSSB monomer with each of the four EcoSSB 

tetramers was taken to avoid r.m.s.d. bias arising from single comparison. To compare, the 

structural change of each monomer of SmaSSB, the r.m.s.d. value is plotted against the 

residue number (residues 2-112) for every monomer (Figure 43).  

 
Figure 43 A plot of r.m.s.d. (Å) for the Cα atoms in the SmaSSB monomers. 

 

In the graph, the r.m.s.d. plot (Figure 43) of the A-, B-, C-, D-, and E-monomers is shown in 

black, red, green, blue and cyan, respectively. Arrows denote the loop areas. Loop II (residues 

40-50) is disordered in SmaSSB; therefore, it was not included in the r.m.s.d. calculation. The 

A-, B-, and C-monomers show very little variation near Loop III and Loop IV including the 

core of the monomer. However, these monomers show significant difference near Loop I, and 

just before and after Loop II. Relatively large structural differences are found near Loop I and 

Loop III of the D-, and E-monomers (Figure 43 and Figure 44). These structural changes in 

the loop regions might be due to the arrangement of the fifth molecule in the asymmetric unit. 

They share Loop III in the tail-to-tail interface. This will be discussed in more detail in the 

next section. 
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Figure 44 Superposition of the Cα traces of the NCS EcoSSB-tetramer (red), the NCS SmaSSB-
tetramer  (green) and the crystallographic SmaSSB tetramer (blue), drawn using MOLSCRIPT 
(Kraulis, 1991). 
 

3.6.8 Crystal packing of the SmaSSB structure  

There are five copies of the SmaSSB molecules in the P42212 asymmetric unit, which is 

unusual for bacterial SSBs, since most of the bacterial SSB proteins have been crystallised in 

a different space group and contain an even number of molecules in the asymmetric unit. (i.e 

BabSSB, EcoSSB and PmiSSB contain two, four and eight molecules, respectively in their 

asymmetric units). Among the five monomers, three monomers (A-, B- and C-monomers) are 

essentially identical and the other two monomers (D- and E-monomers) are different only in 

their Loop III regions. The r.m.s.d. between SmaSSB monomers based on Cα pairs (75-100 

atoms) range from 0.22 to 0.40 Å (Table A4). However, for Loop III (residues 85 – 100) of 

the D- and E-monomers compared pairwise to the A-, B-, and C-monomers, the r.m.s.d. 

values range from 0.80 to 6.08 Å, whereas inter-comparison among the A-, B- and C-

monomer in this region gave r.m.s.d. values varying only from 0.20 to 0.98 Å.  

The different conformation of the D- and E-monomers are due to crystal packing. Within the 

asymmetric unit, the D-monomer belongs to a non-crystallographic tetramer whereas the E-

monomer belongs to a crystallographic tetramer (Figure 42). The E-monomer forms a 

crystallographic tetramer with its symmetry mates at the centre and each corner of the unit 

cell involving the 2-fold and 42-axis, and the NCS tetramers are arranged in the unit cell 

about the 21 axis (Figure 45, 46). The interface between the A- and E-monomers involves 
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contacts between Loops III (Figure 53f). Similar contacts can be found between B- and D-

monomers. Loop I of the A-monomer interacts with Loop I of its symmetry mates (Figure 

53g). The E-monomer is involved in intermolecular contacts in its crystallographic tetramer. 

The C-monomer is not at all involved in crystal contacts. The intermolecular hydrogen 

bonding contacts of SmaSSB are listed in the Table A17. 

(a) (b) 

 

  
Figure 45 Crystal packing of SmaSSB. A-, B-, C-, D-, and E-monomers are shown in red, green, yellow, 
blue and brown, respectively. (a) View along the crystallographic z-axis, (b) view along the 
crystallographic y-axis. 
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(a) (b) (c) 

 
 

 

Figure 46 Crystal packing of the crystallographic and the non-crystallographic SmaSSB tetramer along the z-axis.  
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3.7 Crystallisation of EcoSSB-d(T)35  

d(T)35 was prepared at 0.377 mM concentration in the Protein storage solution A (Table 4). 

EcoSSB protein was dialysed against Protein storage solution A (Table 4). The dialysed 

protein was then concentrated by centrifugation until an approximate protein concentration of 

7.5 mg/ml (0.377 mM) was achieved. A stock solution was prepared for use by mixing equal 

volumes of EcoSSB and the d(T)35 solution. The stock solution was used for the 

crystallisation trials.  

An initial screen for crystallisation conditions were carried out using the Ammonium sulphate 

screen (Hampton Research) using the hanging-drop method. A single thin plate type crystal 

appeared after three months in the condition 0.8 M Ammonium sulphate and 0.1 M HEPES 

pH 7.0. To optimise the crystallisation condition, the crystallisation tray was setup at different 

ammonium sulphate concentrations (0.375 - 0.7 M) keeping the same buffer. One 

crystallisation drop was made using 2 µl of EcoSSB-d(T)35 complex, 2 µl of a 100 mM 

spermidine solution. After five days, the reservoir was replaced by 60% ammonium sulphate, 

20 mM MES pH 6.5 and 3 mM NaN3. Crystals grown using these condition had a square like 

morphology and grew to approximately 0.25x0.25x0.15 mm3 in six months.  

To verify that the crystals contained both DNA and protein, a number of them were harvested 

and washed thoroughly in Protein storage solution A before they were dissolved in water and 

subjected to a 6% native polyacrylamide gel electrophoresis. The gel was stained with 

ethidium bromide to test for the presence of DNA and then with Coomassie Blue to probe for 

protein (data not shown). A coincident band for protein and DNA and the comparison of this 

band with the native protein and DNA controls showed the species to be of a higher molecular 

weight than either native EcoSSB or the DNA. 

Crystal preparation and data collection from EcoSSB-d(T)35 crystal  

The crystal was transferred into PanjellyTM and then transferred to the cryo-stream in the cryo-

loop. After a few minutes, the crystal was brought into paraffin oil to wash the PanjellyTM 

layer from the crystal and again cryo-cooled in the cryo-stream.  

The suitability for diffraction of the crystal was checked using a Cu-Kα rotating anode. The 

first diffraction pattern of the crystal showed long streaks. When the crystal was rotated by 

90°, the diffraction pattern showed separated spots, distributed in a hexagonal pattern. The 

first diffraction image, in which the long streaks were recorded, raised the suspicion that one 

of the axes of the unit cell must be extremely long. To resolve the long streak, it was 

mandatory to collect the diffraction data at a synchrotron. To resolve the long streaks, the 
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CCD detector was moved back to 750 mm at the X13 beamline (newly built beam line of IMB 

Jena at DESY, Hamburg). 360 images were recorded, using 0.5° rotation per image to a 

resolution 10 Å. Another 90 images were collected to a resolution 6 Å, from the same crystal 

from that area where diffraction pattern showed separated spots (1° rotation per image).   

Unit cell determination and data processing of EcoSSB-d(T)35 data  

To determine the space group and the unit cell parameters, the program DENZO was frist 

used, since this program offers two indexing methods: automatic and interactive. All possible 

ways were tried to index the EcoSSB-d(T)35 diffraction images, but all attempts to determine 

the unit cell parameters and space group failed. Finally, the XDS program (Kabsch, 1988) was 

tried to index diffraction images.  

To index the EcoSSB-d(T)35 diffraction images by XDS, the first twenty and last twenty 

frames were used. The analysis of the diffraction images showed that the crystals were of unit 

cell dimensions a= b=74.55 Å, c = 356.41 Å and γ = 120° and space group possibly hexagonal 

(P6x or P6x22) or trigonal (P3x, P3x21, or P3x12). Due to poor reproducibility of the crystals 

and the practical difficulties involved in further analysis of the diffraction data, subsequent 

attempts for structure solution were abandoned. 
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3.8 Overall comparison between SSBs 
 
3.8.1 Common axis 

Dimensions of one SSB-tetramer of a=104.4 Å, b=60.5 Å, and c=96.5 Å resulted in the 

observation that all crystals exhibits at least one axis of a unit cell of 55±5 Å or a multiple of 

this value (Table 15).  

Table 15 SSB crystal forms 
SSB Space 

group 
Number of 
molecules† 

Unit cell parametres Vm (Å3/Da) 
a (Å) b (Å) c (Å) β (º) 

EcoSSB C2 4 104.4 60.5 96.5 112.5 2.3 

BabSSB P43212 2 113.3 113.3 52.2 90 2.6 

PmiSSB P21212 8 146.7 153.2 61.0 90 2.4 

SmaSSB P42212 5 111.3 111.3 141.8 90 2.4 

HsmtSSB P41212 2 51.8 51.8 184.2 90 2.3 

† Per asymmetric unit.  Vm is the crystal packing density (Matthews, 1968). 
The unit cell dimension of 55±5 Å or a multiple of this value is shown in bold. 
 
3.8.2 Comparison of SSB monomers 
The structures were superimposed by aligning their β-sheet segments using the program 

ALIGN (Cohen, 1997). The resulting diagram is presented in Figure 47. R.m.s.d. values 

between monomers of different SSBs are listed in Table A4. Comparison of individual loops 

of SSBs will be discussed in section 3.8.6. 

 
Figure 47 Superposition of 21 monomers of SSBs.  
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3.8.2.1 N-terminus (first 10 residues) 

The first two or three residues are disordered in EcoSSB, BabSSB, PmiSSB and SmaSSB; 

whereas the first 10 residues are disordered in HsmtSSB. In the bacterial SSBs this segment 

exhibits a β-strand structure. In EcoSSB, the Cα trace is almost identical to SmaSSB, but 

different from BabSSB and PmiSSB. These differences could be due to the packing effects. 

3.8.2.2 C-terminus 

The C-terminal domain is disordered in the bacterial SSB structures; the polypeptide chain 

could not be traced beyond residues 112 (bacterial SSBs, EcoSSB numbering). However, the 

ultimate 10 residues of the last 60 residues in bacterial SSBs of the intact chain can have a 

regular secondary structure (perhaps α-helical) (Meyer & Laine, 1990), since there are a high 

proportion of negatively charged side chains in this segment. The other 50 residues of the 

bacterial SSBs contain a high percentage of glycine and/or proline residues (Figure 11), and 

would probably exhibit no secondary structure. This region is thought to modulate the 

strength of DNA binding, possibly by distancing the highly negatively charged C-terminal end 

from the DNA binding domain. The acidic tail has been suggested to be important in the 

interaction of SSBs with various replication proteins (i.e. DNA polymerase, exonuclease I) 

and is not essential for DNA binding (Kelman et al, 1998; Genschel et al., 2000). 

Interestingly, it has been shown that removal of this negatively charged C-terminal region 

leads to an enhanced affinity of the resulting truncated EcoSSB protein for ssDNA (Williams 

et al., 1983). 

3.8.2.3 Helix (Residues 61 to70) 

The helix of SSB is one of the components of OB-fold (Figure 1). It is capped between the 

third and fourth β-strand. In the alignment of the 3D structures, the helix of EcoSSB shows 

little difference with that of PmiSSB and SmaSSB, but a larger deviation from that of BabSSB 

and HsmtSSB due to a single residue insertion (residues between 62 and 63, EcoSSB 

numbering) at the beginning of the helix. The helix may have important bearing on the 

ssDNA binding activity of the SSBs, since Phe-60 (equivalent to Phe-74 of HsmtSSB), the 

Ncap residue has been implicated by crosslinking experiment (Merrill et al., 1984) and 

mutational experiments (Casas-Finate et al., 1987; Bayer et al., 1989). 

3.8.2.4 Protein core 

The core of the SSBs of each monomer consists of residues 4 to 20 (β-strand I), 30-37 (β-

strand II), 51-60 (β-strand III), 61-70 (α-helix), 74-84 (β-strand V) and 109-112 (β-strand V’) 

(EcoSSB numbering). There are number of hydrophobic residues (mainly Val, Ile, Leu and 

Ala) which may be crucial for the formation of the fold (Table A12). The overall fold (OB-
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fold) of the SSBs is conserved (Figure 48). Only two residues (Trp-54, Phe-60) of the core are 

involved in ssDNA-binding, otherwise most of the residues involved in the ssDNA-binding 

are found on the surface of the protein. It is interesting to note that all residues in each 

structure, which are involved in the formation of the monomer-monomer and the dimer-dimer 

interface, belong to the main body of the protein. 

 
Figure 48 Superposition of the Cα atom traces from the SSBs core. 

 

3.8.3 Interface 
3.8.3.1 Monomer-monomer interface 
Monomer-monomer interface in SSBs is formed, mediated by the β-sheet (Figure 25). This 

dimer consists of two antiparallel β-sheets from two SSB monomers. At least a few residues 

from each β-strands are buried upon dimer formation (Table A11). The monomer-monomer 

interface primarily consists of main chain hydrogen bonds involving residues 5-11 (EcoSSB 

numbering) of strand I in both monomers. The average surface area buried upon dimer 

formation for bacterial SSBs is 2013 Å2, whereas for HsmtSSB, it is 2777 Å2 (Table A10). 

The buried surface area of HsmtSSB is significant; this is because it contains higher number 

of bulkier residues than the bacterial SSBs which are buried upon dimer formation (Table 

A11). His-55 (EcoSSB) is an important residue at this interface, which is conserved in other 

bacterial SSBs and it is equivalent to His-69 of HsmtSSB. The role of this residue in 

tetramerisation is described in detail in section 3.3.6.   
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3.8.3.2 Dimer-dimer interface 

The make up of the dimer-dimer interface of SSBs is different than that of the monomer-

monomer interface. However, there are some common residues in SSBs which are involved in 

both interfaces. These residues are mainly found on β-strand 1 (i.e Gly-4, Val-5, Lys-7, Ile-9 

and Val-11; EcoSSB numbering). They exhibit a larger buried surface area upon dimer 

formation than tetramer formation (Table A7 and Table A8). Other than these residues (from 

β-strand 1), there are few residues which are involved in the formation of dimer–dimer 

interface from the β-strand IV and β-strand V. Participating residues from β-strand IV in the 

interface are shown in Figure 49 for each SSB structure. 

 
Figure 49 Partial view of the tetramer interface of SSBs embedding residues (e.g. Tyr-78) from β-
strand IV.   
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(a) A-monomer of EcoSSB (b) B-monomer of EcoSSB (c) C-monomer of EcoSSB 

   
(d) D-monomer of EcoSSB (e) A-monomer of BabSSB (f) B-monomer of BabSSB 

   
(g) A-monomer of PmiSSB (h) B-monomer of PmiSSB (i) C-monomer of PmiSSB 

   
(j) D-monomer of PmiSSB (k) E-monomer of PmiSSB (l) F-monomer of PmiSSB 
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(m) G-monomer of PmiSSB (n) H-monomer of PmiSSB (o) A-monomer of SmaSSB 

   
(p) B-monomer of SmaSSB (q) C-monomer of SmaSSB (r) D-monomer of SmaSSB 

   
(s) E-monomer of SmaSSB (t) A-monomer of HsmtSSB (u) B-monomer of HsmtSSB 

  

 
 

Figure 50 (a-u) The electrostatic 
surface potential of the residues 
constituting the interfacial region 
of the SSBs; for more residue 
detail please refer to Table A8. 
The backbone trace of each 
monomer is shown in green. The 
diagrams were made using the 
program GRASP (Nicholls et 
al., 1991). Figures (v) and (w) 
shows the interfacial residues for 
EcoSSB and HsmtSSB, respec-
tively in the same orientation. 

(v) A-monomer of EcoSSB (w) A-monomer of HsmtSSB  
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Among these residues, Tyr-78 is important for the dimer-dimer interface stabilisation. This 

residue is also conserved in other bacterial SSB as well as in HsmtSSB. The importance of 

this residue is described in detail in section 3.3.6. The distance between the residues at this 

dimer-dimer interface (which is shown in Figure 49) is tabulated in the Table A9. Buried 

surface area upon the tetramer formation in HsmtSSB (2300 Å2) is larger than in the bacterial 

SSBs (1890 Å2). The interface is reinforced by a network of hydrogen bonded tyrosine, 

glutamic acid, lysine, and glutamine residues [Lys-7, Gln-76, Tyr-78, Glu-80, Gln-110 

(EcoSSB numbering)]. Lys-7 and Glu-80 form a salt bridge, which is conserved in all SSBs. 

In light of the similarities between various SSBs one would have expected similar electrostatic 

potential properties on the interfacial surfaces across different species. However, a look at 

Figure 50 suggests that there are substantial variations. For example, in HsmtSSB, the 

interfacial surface is mostly positively charged, however, it is strikingly opposite for BabSSB. 

Even within the bacterial SSBs there are noticeable distinctions; these are also perceptible 

across non-crystallographic monomers from the same species. For instance, the distribution of 

the highly-negatively charged regions of the B-monomer from BabSSB, is rather disperse 

when compared to its A-monomer. This is true for almost all the non-crystallographic 

monomers from the SSBs. Considering the fact that the residues are mostly conserved in the 

bacterial SSBs (Figure 11), it appears that the placement of the side chains (Figure 51) are a 

major cause of altering the surface electrostatic properties.  
 

 
Figure 51 A part of the Figure 11, was reproduced to indicate the residues that have different side 
chain conformations for the conserved regions of polypeptide chains in at least one of the SSBs 
(indicated by a box). The numbering scheme is according to BabSSB numbering. 
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3.8.4 Comparison of tetramers 
The r.m.s.d. values on the basis of Cα pairs of crystallographic and non-crystallographic 

tetramers of different SSBs were calculated in three ways: (i)  either including all residues 

which are involved in secondary structure formation, (ii) excluding the loops regions and (iii) 

excluding all loop regions except Loop III (Table A5).  

The r.m.s.d. value varies from 0.54 Å (between two non-crystallographic tetramers of 

PmiSSB) to 3.34 Å (between crystallographic tetramer of SmaSSB and HsmtSSB) when the 

whole length of the polypeptide chains were used for the calculations. In general the 

HsmtSSB exhibits more variation in fold when compared to bacterial SSBs. Among the 

bacterial SSBs, the crystallographic tetramer of SmaSSB is dissimilar; this is due to 

substantial variation of the polypeptide segments in the loop regions, mostly in Loop III 

(Figure 52) 

On excluding all loops from the calculations above, the r.m.s.d. values among various pairs 

were reduced considerably [ranging from 0.33 Å (between two non-crystallographic  

tetramers of PmiSSB) to 2.19 Å (between the crystallographic tetramer of BabSSB and 

HsmtSSB)]. This is quite natural since the loop regions of proteins are known to be more 

variable than the core.  

 
Figure 52 Superposition of SSB-tetramers. 

 

As Loop III is known to be directly involved in ssDNA-binding, it is of interest to discern 

how conserved the conformation of this loop is?  A third pair of r.m.s.d. values were 

calculated for this purpose excluding all loops except Loop III. The results (Table A5) suggest 
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that the conformation of the loop is not quite preserved. Possibly the distortion in 

conformation is induced by intermolecular contacts in crystal lattice. It can also be suggested 

that the flexibility of this loop is an attribute the protein uses to bind the ssDNA in vivo 

optimally. This is highlighted by the fact that this loop region is completely disordered in 

BabSSB. 

3.8.5 Conservation of water molecules in SSB structures 

In order to speculate on the role of the conserve water molecules in SSB structures, the non-

crystallographic EcoSSB tetramer, the crystallographic BabSSB and two non-cystallographic 

PmiSSB tetramers were compared; they contain 104, 226 and 90 water molecules, 

respectively.  

Two other SSB structures (SmaSSB and HsmtSSB) were not considered in this regard, 

because of the limited resolution of these structures. 
The conservation of water molecules was calculated from the following criteria: First, the 

tetramers (BabSSB, PmiSSB) were superimposed onto the EcoSSB tetramer after a pair-wise 

alignment of the Cα atoms as described above. The structurally equipositioned water 

molecules were identified as those being closer than a cut-off radius of 1.0 Å. The results 

from this alignment of water molecules in the different SSB structures using cut-off radius of 

1.0 Å are listed in Table A6. 

It is interesting to note that the conserved water molecules in these structures belong to the 

core of the protein. Water molecules near Asn-6, Thr-36, Glu-53, His-55, Arg-56 and Tyr-97 

(EcoSSB numbering) are conserved almost in all monomers of each SSB tetramer (Table A6). 

These water-bound residues are found at the monomer-monomer interface in each SSB 

tetramer. His-55 is well known for its role in the tetramerisation of EcoSSB, and this residue 

is important in the other bacterial SSBs as well for the same purpose. Therefore it is likely that 

water molecules which are at the hydrogen bond distance from these residues, play a crucial 

role in the stabilisation of momomer-monomer interface in SSBs structures.  Three inter 

hydrogen-bonded water molecules (W31, W21 and W45, example from EcoSSB (Figure 26)) 

proximal to the ND1 atom of the conserved His-55 could be located in the well-resolved 

crystal structures. 

The analysis in general showed that a large fraction of the water molecules although not 

conserved across all SSBs introduced during the refinement of the model could be regarded as 

structural, in the sense that they are important for the folding and the function of the protein.  

3.8.6 Comparison of crystal packing of SSBs 
Although the overall structure of bacterial SSBs is much the same to that of HsmtSSB, there 

are some significant differences between these structures, which can be ascribed to the 
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different intermolecular contact resulting from the different crystal packing of these 

structures: EcoSSB in C2 monoclinic space group, BabSSB, SmaSSB and HsmtSSB in 

tetragonal space group and PmiSSB in orthorhombic space group (Table 15). These SSBs 

exhibits different number of molecules in the asymmetric unit, however the packing density is 

similar in each case (Table 15).  

                          The crystal packing details of each SSB show an identical head-to-head 

tetramer formation across different species, suggesting their conservation in prokaryotes; a 

comparison revealed a similar arrangement in human mitochondrial SSB.  A tail-to-tail 

tetramer is not common in these SSBs (i.e. HsmtSSB, BabSSB), indicating that the head-to-

head tetramer may be the biological entity (Figure 28, 32, 39, and 46). 

        Despite the SSB structures being rich in β-strands, mostly the loops are involved in 

crystal packing. In each SSB structure high temperature factors for the loop regions (Figure 

A2, A3, and A4) can be observed. 

                               Table 16 Nomenclature of loops 

 Bacterial SSB 
(EcoSSB numbering) 

HsmtSSB 

Loop I Residues 23 to 27 Residues 31 to 37 

Loop II Residues 40 to 50 Residues 50 to 60 

Loop III  Residues 85 to 100 Residues 95 to 110 

Loop IV Residues 103-108 Not present 

 

Loop I of HsmtSSB shows high r.m.s.d. between its own monomers. However, the loop in 

bacterial SSBs shows only small structural difference among their own monomers. The fold 

of this loop in EcoSSB is similar to that of BabSSB and SmaSSB but different from the 

HsmtSSB and PmiSSB (Figure 47). 

Residues in Loop II exhibit the greatest difference in the backbone conformations (Figure 47). 

This loop is not visible in HsmtSSB and is disordered in the bacterial SSBs (A-monomer of 

EcoSSB, the B-monomer of BabSSB, and all monomers except the H-monomer of PmiSSB 

and all monomers of SmaSSB).  

Loop III is the most important and the longest loop in the tetrameric SSBs. It is involved in 

ssDNA-binding and in the formation of tail-to-tail tetramer in bacterial SSBs. This loop of any 

EcoSSB monomer is similar to its other monomers. All monomers of PmiSSB, and three  
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(a) EcoSSB LoopI-II ; 121 (b) EcoSSB LoopIII-III; 358 

  
(c) EcoSSB LoopII-III; 170 (d) PmiSSB LoopIII-III; 370 

  
(e) PmiSSB LoopI-II; 158 (f) SmaSSB LoopIII-III; 300 

  
(g) SmaSSB LoopI-I; 153 (h) BabSSB LoopI-II; 142 
Figure 53 Diagram showing hydrogen-bonding interactions between various loop regions in 
bacterial SSBs. The buried surface area (Å2) associated with loop-interaction is shown in bold 
in Figure sub-legend. Further details involving hydrogen-bonding contacts are given in Table 
A14-A17. 
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monomers (A-, B-, and C-monomers) of the SmaSSB, this loop is similar to any EcoSSB 

monomer. The loop in HsmtSSB and two monomers (D- and E-monomers) of the SmaSSB 

are different. 

Between EcoSSB, PmiSSB and SmaSSB, Loop IV shows very little structural differences, 

however, it deviates significantly in the case of BabSSB, because of the insertion of a single 

residue between 104 and 105 (EcoSSB numbering) (Figure 47).  

The structural deviations in loops in each monomer of the different structures are probably 

due to the difference in crystal contacts. In the EcoSSB, BabSSB and PmiSSB structure, Loop 

I of one monomer packs against Loop II of the other monomer, however the type of contacts 

are different in these three structures (Figure 53a, h, e); whereas in the HsmtSSB, Loop I of 

one monomer is in association with the β-strand III of the other monomer and this loop of one 

monomer interacts with its symmetry mate in SmaSSB (Figure 53g). 

Loop III of the EcoSSB, PmiSSB and SmaSSB is profoundly involved in the crystal contact. 

It interacts with Loop III and II of another monomer (Figure 53 (b-f)). Gln-91 is located at the 

tip of Loop III forms a hydrogen bond with Asn-31 located at the β-strand III in all three 

SSBs structures. As mentioned above, this loop is completely disordered in the BabSSB. In 

contrast, it shows only few crystal contacts via salt bridges in the HsmtSSB structure (Arg-

B16:Glu-B95; Arg-A22:Asp-B105). 

Loop IV is not involved in any crystal contact in the bacterial SSBs (except in BabSSB), and 

this loop is absent in the HsmtSSB. The loop of BabSSB interacts with the base of Loop II via 

salt bridges (Glu-A38:Arg-A108; Glu-B38:Arg-B108).  

Since BabSSB and HsmtSSB contain two and SmaSSB contains five monomers in their 

asymmetric units, crystal contacts between the β-strands of both monomer of the BabSSB, 

and HsmtSSB and the fifth monomer of SmaSSB upon tetramer formation are observed 

(Table A15, A18 and A17, respectively).  

                           It appears that different non-covalent forces that steer crystal growth 

and kinetics are different in SSBs due to which they crystallise in different space group. A 

large part of the SSB sequences are similar in amino acid and fold (especially the core 

regions). The loop regions in the SSBs are quite variable and most of them form crystal 

contacts which are involved in different packing arrangements. Loop III especially, forms 

major crystal contacts (Table A14-A17) and this region in SSBs is highly conserved 

(sequentially, Figure 11). 
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          An easy way to estimate variations in non-covalent forces that arise due to differences 

in the placements of the polar and non-polar residues in the three dimensional protein 

molecule may be obtained by measuring the hydrophobic moment of the structure. The 

concept first proposed by Eisenberg et al. (1984) can be explained as follows: 

 Hydrophobic moment µ is the vector sum of the individual hydrophobicities (Kyte & Doolite, 

1982). Hydrophobicity is treated as a vector or a quantity with both magnitude and direction. 

If all side chains are hydrophobic, then the vectors cancel, and the hydrophobic moment is 

low. If one side is hydrophilic, as in an amphipathic helix, its vectors are negative in 

magnitude, and reinforce the positive hydrophobic vectors on the opposite side. A high 

hydrophobic moment therefore indicates considerable heterogeneity of the protein milieu and 

various thermodynamic processes that the protein molecule takes part in should be 

substantially influenced by the differential interplay of the resultant non-covalent forces.   

The calculation of the hydrophobic moment of various SSB tetramers was done using all the 

co-ordinates, and repeated, removing all the loop regions. The results are listed in Table 17. 

As we have seen in earlier sections, the core region of these SSBs is conserved with minor 

differences; however, they exhibit significant hydrophobic moments. The differences in the 

moment magnitudes between various pairs of tetramers are also considerable indicating that 

even though the amino acid positions in the sequence are conserved, the side-chain orientation 

is sometimes different (Figure 51). Since a majority of the side-chain atoms make up the 

protein surface which form packing contacts, it is obvious their variations cause differences in 

surface properties resulting in differences in protein-protein interaction and the resultant 

crystal packing.  
                                                     Table 17 Hydrophobic moment of SSBs 

 1µ  2µ  
EcoSSB-ABCD 6.2 4.9 
BabSSB-AABB 2.4 0.4 
PmiSSB-ABCD 9.9 4.9 
PmiSSB-EFGH 8.2 5.3 
SmaSSB-ABCD 6.1 4.9 
SmaSSB-EEEE 0.5 0.5 
HsmtSSB-ABAB 8.7 3.3 

                                                        µ Hydrophobic moment 
                                                        1 core of the protein and including loop regions 
                                                        2 core of the protein 
                                                        The tetrameric SSB is indicated along with the chain ids (separated by a       
                                                        hyphen). Repetition of the same chain id indicates that the tetramer was 
                                                        formed using symmetry related molecules. 

 
 This was again confirmed using calculations of the electrostatic surface potential of 

each SSB tetramer. As evident from Figure 54, there are indeed wide variations in the  
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(a) EcoSSB-ABCD (b) BabSSB-AABB 

  
(c) PmiSSB-ABCD (d) PmiSSB-EFGH 

  
(e) SmaSSB-ABCD (f) SmaSSB-EEEE 
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Figure 54 The electrostatic surface potential of the 
residues of SSB tetramers are shown; the diagrams 
were made using the program GRASP (Nicholls et 
al., 1991). The tetrameric SSB is indicated along 
with the chain ids (separated by a hyphen). 
Repetition of the same chain id indicates that the 
tetramer was formed using symmetry related 
molecules. 

(g) HsmtSSB-ABAB  
 

distribution of the charges on the surfaces in a very heterogeneous manner. Although a major 

part of the tetramer appears blue, indicating a positive potential, the white to red patches are 

widely distributed indicating negative potential. It is logical that the resultant forces arising 

out of the interplay between the force vectors originating from these varied surfaces would 

differ both in magnitude and direction steering different crystallogenesis processes which 

would crystallise proteins in distinct space groups. It is also instructive to note that 

electrostatic surface potential of the human mitochondrial SSB is significantly different from 

the bacterial SSBs (Figure 54g); the surface is almost totally covered by a positive potential. 

The highly negatively charged groove regions are also inconspicuous. 

3.9 Global comparison of OB-fold containing proteins 

As described in Introduction, SSBs contain a common fold, which is known as OB-fold. 

There are other proteins which also contain this fold. These are DNA-binding proteins, tRNA 

synthetases, Pertusis toxin, heat labile enterotoxins, Verotoxin-1, staphylococcal nuclease and 

Pyrophosphate phosphohydrolase. These proteins bind to either DNA or sugar.  

In Figure 55, it is shown how these proteins are related to each other on the basis of r.m.s.d. of 

their Cα trace. The r.m.s.d. value for each pair for these proteins (using monomeric models) 

was calculated (Table A19) using the program SARF2 (Alexandrov et al., 1995), and the 

dendogram (Figure 55) was then drawn based on the r.m.s.d. values obtained by the program 

CLUSTER. 
It is interesting to note that the homotetrameric SSBs form a cluster (A), with the r.m.s.d. 

values varying between 0.8 and 1.7 Å (Table A19). The monomeric class of SSBs forms a 

distinct cluster (B) from the homotetrameric SSBs. The maximum r.m.s.d. value between  
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                         1.9 Å                       Transcription factor I  (1AH9) 
                                                       Pyrophosphate phosphohydrolase (2PRD) 
 
              2.4 Å  
                       2.1 Å      C              Gene V Protein (1GVP) 
                                                      Major cold shock protein (1MJC) 
 
   2.9 Å  
                                   2.3 Å   B              Adenovirus SSB (1ADT) 
                                                                      Gene 32 protein (1SRO) 
                         2.4 Å  
                                                     Staphylococcal nuclease (1SNC) 
             2.8 Å  
 
                                           2.4 Å              Rho protein (1A62) 
                                                                Ribosomal protein S1 (1SRO) 
                       2.7 Å 
 
                                                                1.7 Å                       BabSSB (This work) 
                                                                    A                       HsmtSSB (3ULL) 
                                                       1.9 Å  
 
                                                                           0.8 Å                       EcoSSB (This work) 
                                                                                                          SmaSSB (This work) 
                                                                 1.3 Å  
                                                                                               PmiSSB (This work) 
                                              2.5 Å  
                                                                                     Heat-labile Enterotoxin (1LT5) 
                                                     2.0 Å  
                                                                                     Heat-labile Enterotoxin type II  (1TII) 
                                 2.7 Å  
  
                                                               Pertussis toxin (1BCP) 
 
 
   3.1 Å  
                         2.3 Å  D                Holliday junction binding protein RuvA (1HJP) 
                                                     RPA70 complexed with ssDNA (1JMC) 
             2.4 Å  
   2.8 Å                                  Aminoacyl-tRNA synthase (1KRS) 
 
                                                      Lysyl-tRNA synthase (1LYL) 
                       2.0 Å  
                                                      Staphylococcal Entertoxin (2QIL) 
              2.7 Å  
                                           Staphylococcal Entertoxin B (3SEB) 
 
Figure 55 Dendrogram of the OB fold containing proteins. The cluster analysis was performed using 
hierarchical complete linkage algorithm (Johnson & Wichern, 1996; as implemented in program 
CLUSTER, written by Dr. Debnath Pal, IMB Jena). PDB codes of the respective proteins are given in 
parenthesis and few representative clusters of SSBs are shown in italics bold letters. 
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these two clusters is 2.8 Å. Dimeric SSBs (GVP) form a cluster (C) comprising the Major  

cold shock protein which shows a deviation from the monomeric and the homotetrameric 

SSB. Heterotrimeric SSB (RPA70) is more closely related to the Holliday junction binding 

protein RuvA, tRNA synthase and Staphylococcal Entertoxin than to other SSB classes. 

The fold relationship in various proteins can arise in two different ways: (i) the proteins have 

a common ancestor (sometimes referred to as homologous fold or as members of the same 

super family), or (ii) the proteins has converged into a common fold and have no common 

evolutionary history (‘analogous’ fold relationship or just a fold relationship) (Russell et al., 

1998).  It appears that SSBs may have originated from a common ancestor; this is because the 

fold seems to be highly conserved.  

It can be suggested that the precise folding of these SSBs may be a primary requirement for 

function. From Figure 55, one can see that all the homotetrameric SSBs have clustered in a 

single region (cluster A), although not all of them have very good pair wise sequence identity 

(30% to 89%). 

When the overall sequence similarity among polypeptide sequences is not large enough, 

proper juxtaposition of residues at important functional sites is essential for its activity. The 

SSBs seem to satisfy all these requirements (Prasad & Chiu, 1987). It has earlier been 

suggested that heterotrimeric eukaryotic RPA (PDB code: 1JMC) and homotetrameric SSBs 

are derived from a common heterotetrameric ancestor protein by gene duplication, merging 

and reshuffling (Suck et al., 1997). However, as can be seen from Figure 55, they have quite 

substantial variation in the fold and are more related to Holliday junction binding protein 

RuvA (PDB code: 1HJP). The inference from the figure supports the contention that the 

proposition is rather speculative (Suck, 1997). The homotetrameric SSBs seem to share some 

structural similarity with heat-labile enterotoxins notwithstanding their distinct features. The 

enterotoxins functions by binding sugars on the cell surface, one can use the result obtained 

here as a clue to investigate whether SSBs too have other functions; however, it appears 

unlikely that they share a common ancestor. 
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4 Summary 

The architecture of bacterial single-stranded DNA binding proteins has been investigated by 

elucidating the structures of SSBs from Brucella abortus, Proteus mirabilis, Serratia 

marsescens by X-ray crystallographic methods. The structure of the SSB from Escherichia 

coli has been refined to a high resolution.  

                  Two cryo-techniques: (i) repeated-annealing using dried paraffin oil and (ii) cryo-

cooling using PanjellyTM were developed to overcome the problematic bottlenecks arising 

from poorly diffracting crystals and premature crystal decay arising from radiation damage.  

                  The essential structure of SSBs across all species consists of five β-strands, one α-

helix interspersed by four loops. It is similar to the already described Oligonucleotide/ 

Oligosaccharide Binding (OB) fold. Out of the four loops, two loops involving residues 40 to 

50 and 85 to 100 (E. coli numbering) are always involved in DNA-binding. The core regions 

comprising the entire regular secondary structure is almost identical between the different 

SSBs; the loop regions exhibit variable conformation. These loops are often involved in 

crystal packing giving rise to different combinations of loop-loop interactions. Different SSBs 

show identical head-to-head tetramer formation similar to the situation in human 

mitochondrial SSB. The principal role of the conserved His-55 residue in tetramerisation, as 

earlier demonstrated by biochemical experiments could be rationalised. The conserved Tyr-78 

residue at the dimer-dimer interface may be also essential for tetramer formation. The 

conserved salt bridge between Lys-7 and Glu-80 at the same interface indicates its dominant 

role in stabilising the quaternary structure. Three inter hydrogen-bonded water molecules 

proximal to the ND1 atom of the conserved His-55 could be located in the well-resolved 

crystal structures; these water molecules may be functionally important. The DNA-binding 

aromatic residues (Trp-40, 54, 88, Phe-60) are sequentially, structurally and conformationally 

conserved corroborating their specific role in binding ssDNAs. Three-dimensional structural 

comparison of the homotetrameric SSBs along with other proteins containing the common 

OB-fold revealed that the fold of the monomeric SSB (Gene 32 protein) is more similar to the 

homotetrameric form than to the dimeric (Gene V protein) or heterotrimeric form (human 

replication protein 70). 
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6 Appendix 
 
6.1 Cryo-cooling of protein crystals 
 
Table A1 Protein crystals used to study the effects of repeated-annealing in dried paraffin oil 
Protein Crystallisation condition Solvent content (%) Space group Unit cell MW/ AU Vm (Å3/Da) 
EcoSSB 4% (v/v) PEG 400, 

10 mM β-mercapto ethenol, 
40 mM Na cacodylate, pH 6.5 

46 C2  a=104.40 Å 
b=62.46 Å 
c=96.70 Å 
β=112.67° 

 64  2.27 

BabSSB 12.5 mM Na acetate,  
0.1 M Na cacodylate, pH 6.0 

53 P43212 a=113.33 Å 
c=52.26 Å 

 32  2.62 

CPS-1 6% (v/v) PEG 15 K, 
0.1 M Na cacodylete, 
0.1 M KCl, 0.1 M NH4Cl 
0.01 M MnCl2 , pH 6.1 

47 P32 a=176.90 Å 
c=331.60 Å 
γ=120° 

1280  2.34 

Alliinase Data not provided 35 C222 a=55.7 Å 
b=97.7 Å 
c=153.3 Å 

 55  1.90 

IF2-tRNA 2M (NH4)2SO4, 
100mM HEPES/KOH  
3 mM MgCl2 

50 I222/I212121 a=74.7 Å 
b=116.2 Å 
c=227.9 Å 

100 2.50 

Des-PheB1-Insulin 
(phenol complex) 

0.75 M (NH4)2SO4, 
20 mM Zn acetate, 
120 mM NaCl, 3 mM NaN3, 
0.1% (v/v) Phenol, pH 8.0 

37  R3 a=79.0 Å 
c=72.5 Å 
γ=120° 

 23  1.96 

Green fluorescent 
protein (GFP) 

2.1 M (NH4)2SO4, 
100 mM Tris, pH 8.5 

53 P6122 a=87.30 Å 
c=129.54 Å 
γ=120° 

27  2.64 

MW/AU is the total molecular weight of protein per asymmetric unit. Vm is the crystal packing density (Matthews, 1968).  
CSP-1, Alliinase, Insulin, GFP and IF2-tRNA crystals were kindly provided by Astrid Rau, Bartholomeus Küttner, Dr. Ursula Schell, Dr. Gottfried Palm  
and Prof. Udo Heinemann, respectively. 
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Table A2 Comparison of diffraction properties of crystals of seven different proteins at 293 K, after flash-cooling and after repeated-annealing in 
dried paraffin oil  
 
 Data at 293K Data after flash-cooling using oil Data after repeated-annealing 

Protein 
name 

Number of 
crystals tested 

Resolution  
(Å) 

Mosaicity  
(°) 

Number of 
crystals tested  

Resolution  
(Å) 

Mosaicity  
(°) 

Number of 
crystals tested  

Resolution  
       (Å) 

Mosaicity  
(°) 

EcoSSB 10 2.8 0.4 – 0.5 4 2.5 0.6-0.8 3 2.4 0.5-0.55 
BabSSB 5 >8.0 n.d. 5 2.5 0.3-0.4 6 2.2 0.3-0.4 
CPS-1 8 8.0 n.d. 5 >8.0 n.d. 2 4.5 0.7 
Alliinase 5 >8.0 n.d. 5 >8.0 n.d. 2 3.2 1.2 
IF2-tRNA 4 4.5 n.d 2 >4.5 n.d 2 2.5 - 
DesPheB1 
insulin 

8 2.7 n.d.*) 2 3.0 1.4-1.7 3 2.5 1.0-0.9 

GFP 4 2.1 0.2 –0.3 3 2.4 0.6-0.8 2 2.2 0.4-0.5 
*) Collection of more than a small fraction of the data was impossible owing to severe radiation damage. n.d.: not determined 
 
Table A3 Comparison of diffraction properties of crystals of nine different proteins after flash-cooling using dried paraffin oil and in PanjellyTM  

Protein Dried paraffin oil PanjellyTM 
Resolution at 100K (Å) Mosaicity (°) Resolution at 100K(Å) Mosaicity (°) 

GFP 2.40 0.40 1.60 0.60 
Alliinase 3.20 1.20 2.70 0.90 

DesPheB1 insulin 2.50 1.00 2.50 0.80 
Mip-mutant >8.00 n.d. 2.50 0.70 

EcoSSB 2.20 0.60 1.80 0.60 
BabSSB 2.20 0.30 1.78 0.30 
PmiSSB 3.50 1.30 2.50 0.40 
SmaSSB >8.00 n.d. 2.70 0.70 

HcV-protease >8.00 n.d. 3.00 0.40 
n.d.: not determine 
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Figure A1 Washing procedure of protein crystal in dried paraffin oil. 

 
 
 
 
 
 
 
 
 
 
 

 Push the crystal with cryo-loop into oil 

 On doing so, crystal expels the water 
drops (mother liquor) behind. 

 Crystal is devoid of water. 
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6.2 Comparison of SSB’s monomers/tetramer 
 
Table A4 R.m.s. deviations between monomers of SSBs. (see footnotes)  
 
 A_eco B_eco C_eco D_eco A_bab B_bab A_pmi B_pmi C_pmi D_pmi E_pmi F_pmi G_pmi H_pmi A_sma B_sma C_sma D_sma E_sma A_hsm B_hsm 
A_eco  0.70 0.64 0.40 0.76 0.79 0.71 0.72 0.62 0.70 0.64 0.68 0.68 0.68 0.58 0.64 0.64 0.70 0.69 1.25 1.46 
B_eco 87  0.29 0.39 0.98 0.64 0.61 0.38 0.56 0.64 0.58 0.40 0.52 0.84 0.45 0.43 0.39 0.28 1.25 1.38 1.25 
C_eco 88 97  0.30 0.89 0.63 0.52 0.43 0.52 0.47 0.42 0.42 0.45 1.33 0.42 0.42 0.42 0.37 0.40 1.31 1.21 
D_eco 85 94 91  0.70 0.78 0.65 0.58 0.52 0.48 0.48 0.59 0.60 0.95 0.47 0.37 0.42 0.34 0.50 1.32 1.48 
A_bab 79 92 86 83  0.26 0.79 0.54 0.76 0.74 0.66 0.77 0.67 0.47 0.59 0.56 0.54 0.65 0.58 1.40 1.34 
B_bab 79 77 76 83 88  0.83 0.59 0.80 0.83 0.69 0.81 0.75 0.64 0.61 0.60 0.53 0.53 0.54 1.30 1.17 
A_pmi 87 86 84 94 86 84  0.28 0.52 0.29 0.32 0.28 0.43 0.40 0.48 0.60 0.46 0.42 0.43 1.49 1.57 
B_pmi 87 89 94 97 78 77 82  0.43 0.31 0.30 0.28 0.35 0.28 0.64 0.55 0.46 0.98 1.45 1.14 1.24 
C_pmi 88 92 93 94 81 81 85 93  0.53 0.46 0.35 0.23 0.47 0.57 0.49 0.41 0.45 1.53 0.99 1.43 
D_pmi 87 92 86 91 86 85 89 83 88  0.21 0.33 0.48 0.34 0.39 0.44 0.47 0.42 0.41 1.33 1.50 
E_pmi 87 89 85 92 84 82 92 84 85 86  0.30 0.47 0.29 0.42 0.39 0.41 0.46 0.44 1.44 1.48 
F_pmi 87 92 94 99 85 84 83 94 91 87 83  0.37 0.27 0.45 0.38 0.41 0.36 1.43 1.19 1.19 
G_pmi 89 94 93 97 80 81 83 94 91 89 87 98  0.41 0.52 0.49 0.52 1.02 1.51 1.18 1.27 
H_pmi 86 95 102 104 73 77 93 79 83 86 83 81 83  0.72 0.72 0.50 0.54 0.52 1.09 1.16 
A_sma 84 95 91 98 76 75 85 94 91 85 85 90 92 95  0.30 0.32 0.24 0.31 1.47 1.32 
B_sma 89 95 95 96 77 76 88 94 90 86 84 90 92 95 94  0.22 0.25 0.35 1.18 1.26 
C_sma 81 81 85 86 77 75 81 84 75 83 83 82 81 81 78 77  0.22 0.24 1.07 1.09 
D_sma 79 76 78 77 77 73 78 91 74 80 81 77 91 79 82 77 75  0.40 1.45 1.51 
E_sma 78 97 77 83 75 74 78 97 94 79 79 97 97 78 85 80 75 100  1.53 1.98 
A_hsm 84 87 87 88 86 83 93 85 81 86 89 85 85 86 90 85 79 88 91  0.60 
B_hsm 87 87 87 95 85 80 92 89 90 88 88 87 88 85 89 89 78 88 93 89  
 
The first capital letter denotes the chain id. of the monomer and last three letters denote the name of the SSB, respectively (eco: EcoSSB, bab: BabSSB, pmi: 
PmiSSB, sma: SmaSSB, hsm: HsmtSSB). The upper triangle and the lower triangle in the above matrix show the r.m.s. deviation and the number of Cα pair used 
for alignment respectively. The lowest and highest r.m.s. difference are shown in the bold letters. 
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Table A5 R.m.s. deviations between SSB-tetramers (see footnotes) 
 
 EcoSSB-ABCD BabSSB-AABB PmiSSB-ABCD PmiSSB-EFGH SmaSSB-ABCD SmaSSB-EEEE HsmtSSB-ABAB 
EcoSSB-ABCD  1.63      

0.99  
- 

1.42                   
1.35  
1.30   

1.36                    
1.17  
1.15  

1.45                    
1.06  
1.27  

2.27                   
1.46 
2.17 

2.52                    
1.63 
1.91 

BabSSB-AABB 355                     
256 
- 

 2.00                 
1.94  
- 

1.87                    
1.76  
- 

2.00                    
1.66  
- 

2.48                  
2.07 
- 

2.43                   
2.19 
- 

PmiSSB-ABCD 369                     
256 
306 

339                     
256 
- 

 0.54                   
0.33  
0.36  

1.11                   
0.48  
0.68  

1.62                   
0.46 
1.57 

2.28                    
1.37 
1.74 

PmiSSB-EFGH 379                     
256 
311 

340                     
256 
- 

383                      
256 
306 

 1.24                    
0.42  
0.96 

1.85                   
0.57 
1.79 

2.57                    
1.29 
1.67 

SmaSSB-ABCD 370                     
256 
303 

336                     
256 
- 

363                      
256 
294 

372                      
256 
310 

 1.49                  
0.54 
1.45 

2.56                    
1.36 
1.78 

SmaSSB-EEEE 392                    
256 
315 

340                     
256 
- 

361                      
256 
306 

386                     
256 
298 

384                     
256 
308 

 3.34                   
1.42 
1.93 

HsmtSSB-ABAB 369                     
256 
308 

298                     
256 
- 

365                      
256 
304 

375                     
256 
304 

358                     
256 
305 

384                     
256 
312 

 

 
The tetrameric SSB is indicated along with the chain ids (separated by a hyphen). Repetition of the same chain id indicates that the tetramer was formed using 
symmetry related molecules. In the lower triangular matrix, each cell contains three values. The first (top) value indicates the maximum number of Cα pairs used 
that could be built in the electron density maps for the polypeptide chains. The second (middle value) indicates the same number when the co-ordinates from all 
loop regions are excluded. The third (bottom value) indicates also the same number but when the co-ordinates from all loop regions except Loop III are excluded. 
The bottom value is not calculated for the BabSSB tetramer because Loop III is disorder in this structure hence indicated by hyphen. The corresponding r.m.s. 
difference values for the two different cases are indicated in the upper triangular matrix at equivalent positions. 
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6.3 Analysis of water molecules of SSBs 
 
Table A6 Conserved water molecules, their b-factors and their r.m.s. deviations 
 

EcoSSB-ABCD BabSSB-AABB PmiSSB-ABCD PmiSSB-EFGH 
Water 
molecules 

B-factor 
(Å2) 

H-bonding Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) 
Atom involved         Distance(Å) 

W11 26.6 Thr-C36-OG1 
Asn-D6-OD1 
Wat-W81-O 
Wat-W86-O 

2.56 
3.17 
2.74 
3.01 

W4 26.0 0.27 - - - W58 35.7 0.54 

W16 28.7 His-C55-ND1 
Wat-W2-O 
Wat-W10-O 

2.88 
2.75 
2.87 

W11 40.3 0.62 W23 32.8 0.48 W40 41.7 0.66 

W5 28.8 Thr-A36-OG1 
Asn-B6-OD 
Wat-W57-O 

2.75 
3.11 
2.80 

#W39 34.7 0.62 W86 52.6 0.71 W74 48.5 0.91 

W3 30.6 Thr-D36-OG1 
Asn-C6-OD 
Wat-W17-O 
Wat-W61-O 

2.68 
3.14 
2.82 
2.71 

#W4 26.0 0.36 W9 35.8 0.94 W4 37.5 0.66 

W6 30.8 His-B55-ND1 
Wat-W20-O 
Wat-W74-O 

3.02 
2.80 
2.85 

W15 39.1 0.74 W70 54.5 0.76 W73 49.3 0.33 

W31 30.8 His-A55-ND1 
Wat-W21-O 
Wat-W45-O 

2.84 
2.81 
2.58 

#W15 39.1 0.40 W67 56.5 0.89 W2 29.7 0.32 

W42 31.1 His-D55-ND1 
Wat-W52-O 
Wat-W63-O 

2.83 
2.75 
2.69 

#W11 40.3 0.09 W7 32.6 0.30 W1 28.7 0.31 

W36 33.2 Thr-B36-OG1 
Asn-A6-ND2 

2.61 
3.25 

- - - W24 33.8 0.48 W55 31.6 0.83 

W54 33.7 Arg-C56-NH2 
Thr-C99-N 
Thr-D99-OG1 
Wat-W19-O 
Wat-W25-O 

3.02 
2.88 
2.67 
3.38 
2.70 

- - - W3 38.8 0.99 - - - 

W4 34.8 Tyr-D97-N 3.15 - - - W75 40.4 0.78 - - - 
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EcoSSB-ABCD BabSSB-AABB PmiSSB-ABCD PmiSSB-EFGH 
Water 
molecules 

B-factor 
(Å2) 

H-bonding Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) 
Atom involved         Distance(Å) 
Wat-W26-O 2.95 

W29 35.2 Glu-D53-OE1 
Trp-D54-N 

2.59 
3.03 

#W40 38.4 0.56 - - - - - - 

             
W10 35.3 Arg-C56-N 

Thr-C99-O 
Wat-W16-O 

2.82 
2.96 
2.87 

W33 46.0 0.49 W31 40.4 0.78 W13 32.0 0.87 

W37 35.8 Asn-B104-N 
Gln-B82-NE2 
Wat-W43-O 

2.99 
3.15 
3.05 

W48 41.7 1.01 - - - - - - 

W25 36.3 Tyr-C97-O 
Tyr-D97-O 
Wat-W19-O 
Wat-W54-O 

2.54 
2.76 
2.67 
2.70 

- - - - - - W76 46.3 0.57 

W18 36.3 Thr-A99-OG1 
Thr-B99-N 
Wat-W30-O 

2.80 
2.91 
2.82 

- - - - - - W88 48.2 0.31 

W14 36.5 Glu-C53-OE1 
Trp-C54-N 
Wat-W101-O 

2.93 
3.02 
2.70 

W40 38.4 0.80 - - - - - - 

W75 36.8 Arg-B56-N 
Lys-C87-O 

2.80 
2.94 

- - - W29 51.2 0.60 - - - 

W17 37.0 Gln-D51-O 
Wat-W3-O 
Wat-W88-O 

2.77 
2.82 
2.76 

#W74 49.5 0.33 - - - - - - 

W45 37.2 Thr-A99-O 
Arg-A56-N 
Wat-W31-O 
Wat-W77-O 
Wat-W79-O 

2.97 
3.01 
2.58 
2.91 
2.90 

#W52 50.3 0.81 - - - W27 41.1 0.62 

W40 37.3 B6-Asn-N 2.99 W51- 45.3 0.04 - - - - - - 
W9 37.6 Arg-A96-NH2 

Tyr-B97-N 
Wat-W38-O 

2.65 
3.14 
2.91 

- - - - - - W8 42.0 0.42 

W32 37.7 Asn-C6-N 2.97 W16 35.4 0.85 - - - W32 38.8 0.83 
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EcoSSB-ABCD BabSSB-AABB PmiSSB-ABCD PmiSSB-EFGH 
Water 
molecules 

B-factor 
(Å2) 

H-bonding Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) 
Atom involved         Distance(Å) 
Wat-W103-O 
Wat-W61-O 

2.33 
3.09 

W2 38.9 Glu-C53-OE1 
Trp-C54-O 
Thr-D85-OG1 
Wat-W16-O 

2.56 
3.00 
2.63 
2.75 

W72 49.9 0.75 W30 45.2 0.13 W48 40.3 0.24 

W52 38.9 Arg-D56-N 
Thr-D91-O 
Wat-W42-O 

2.81 
3.04 
2.75 

#W33 46.0 0.35 W33 57.8 0.78 W25 44.7 0.37 

W35 39.6 Glu-C80-OE1 
Tyr-C78-OH 

2.59 
2.76 

- - - W11 37.7 0.67 W38 36.9 0.82 

W76 40.0 Lys-87-O 
Gln-B82-OE1 
Leu-B83-O 
Wat-W62-O 

2.94 
3.07 
2.62 
2.68 

W55 48.8 0.98 - - - - - - 

W20 41.0 Glu-B53-OE1 
Thr-A85-OG1 
Trp-B54-O 
Wat-W6-O 
Wat-W15-O 

2.56 
2.79 
2.77 
2.80 
3.48 

- - - W65 44.5 0.78 - - - 

W21 41.7 Glu-A53-OE1 
Trp-A54-O 
Thr-B85-OG1 
Wat-W31-O 
W79-Wat-O 

2.47 
3.03 
2.76 
2.81 
3.50 

- - - W71 41.4 0.90 W18 49.1 0.75 

W57 42.0 Gln-A51-O 
Wat-W5-O 
Wat-W62-O 

2.99 
2.80 
2.97 

#W87 51.3 0.85 - - - - - - 

W64 42.1 Thr-33C-N 
Asn-C16-O 

2.82 
2.91 

W20 35.1 0.93 - - - - - - 

W63 43.9 Glu-D53-OE1 
Thr-C85-OG1 
Trp-D54-O 
Wat-W42-O 

2.54 
2.56 
3.07 
2.69 

#W72 49.9 0.20 - - - W35 38.1 0.57 

W60 45.5 Asn-A6-N 2.90 #W51 45.3 0.68 - - - - - - 
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EcoSSB-ABCD BabSSB-AABB PmiSSB-ABCD PmiSSB-EFGH 
Water 
molecules 

B-factor 
(Å2) 

H-bonding Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) Equivalent water 
molecules 

B-factor 
(Å2) 

d† (Å) 
Atom involved         Distance(Å) 

W55 45.5 Val-A57-O 
Asn-C31-OD1 

2.77 
3.15 

W82 47.5 0.90 - - - - - - 

W86 46.0 Lys-D87-N 
Gln-C51-O 
Wat-W11-O 
Wat-W97-O 

2.89 
2.63 
3.01 
2.73 

W74 49.5 0.50 - - - W84 60.8 0.83 

W53 46.2 Asn-D31-OD1 
Ile-D32-O 
Val-D57-O 

2.95 
3.21 
3.07 

#W82 47.5 0.55 - - - - - - 

W74 47.5 Thr-B85-O 
Arg-B56-N 
Thr-B99-O 
Wat-W6-O 

2.86 
2.80 
2.97 
2.85 

W52 50.3 0.93 W34 45.3 0.544 W62 45.8 0.37 

W91 50.5 Thr-D52-N 
Asn-D13-OD1 
Gln-D91-NE2 

2.82 
2.78 
2.68 

- - - - - - W85 47.6 0.86 

W71 53.6 Gln-D76-OE1 2.56 #W23 39.6 0.80 - - - - - - 
W102 54.4 Lys-B87-O 

Asn-B13-OD1 
2.95 
2.87 

- - - W61 53.1 0.56 - - - 

W38 55.4 Tyr-A97-N  
Wat-W9-O 
Wat-W59-O 

3.58 
2.91 
2.48 

- - - - - - W39 59.5 1.00 

W104 56.5 Trp-C54-O 
Asn-D6-N 
W81-Wat-O 

2.89 
2.71 
3.43 

#W16 35.4 0.89 - - - - - - 

† Distance between two structurally equivalent waters.. 
# symmetry mates. 

The tetrameric SSB is indicated along with the chain ids (separated by a hyphen). Repetition of the same chain id indicates that the tetramer was formed using 
symmetry related molecules.  
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6.4 Interface of SSBs 

Table A7 Dimer-dimer interfaces of SSB-tetramers and their extent of burial 
 
Dimer-dimer interface Buried surface area (Å2) 
Dimer (AB)-dimer(CD) interface of EcoSSB 1843 
Dimer (A#A)-dimer(B#B) interface of BabSSB 1972 
Dimer (AB)-dimer(CD) interface of PmiSSB 1885 
Dimer (EF)-dimer(GH) interface of PmiSSB 1936 
Dimer (AB)-dimer(CD) interface of SmaSSB 1873 
Dimer (E#E)-dimer(#E#E) interface of SmaSSB 1830 
Dimer (AB)-dimer(#A#B) interface of HsmtSSB 2299 
# Symmetry mate. 

The capital letter in parenthesis indicates the chain id. of the monomer used to build the dimer. 
 
Table A8 Buried surface area of individual residues in each monomer upon tetramer 
formation 

EcoSSB 

Residues Buried surface area (Å2) 
 A-monomer B-monomer C-monomer D-monomer 
Ser-2  21 17  17 
Arg-3    10   
Gly-4 19 21 23 19 
Val-5  53 56 48 51 
Lys-7  38 42 44  36 
Ile-9  36 35 37 39 
Val-11  20 24 25 24 
Gln-76  40 35 39 36 
Tyr-78  47 59 60 48 
Glu-80  23 26 26 28 
Gly-106  5   25 6  21 
Gln-110  57 79 79 70 
Leu-112  60 61 64 62 

BabSSB 

 A-monomer #A-monomer B-monomer #B-monomer 
Gly-3 45 45 51 51 
Ser-4  21 21 17 17 
Val-5  47 47 47 47 
Lys-7  55 55 50 50 
Ile-9  35 35 33 33 
Val-11  24 24 24 24 
Lys-77  35 35 37 37 
Tyr-79  42 42 44 44 
Glu-81  17 17 13 13 
Arg-108   14. 14 
Glu-110  28 28 16 16 
Gln-112  47 47 41 41 
Met-113  15 15 16 16 
Leu-114  79 79 77 77 

PmiSSB-ABCD 

 A-monomer B-monomer C-monomer D-monomer  
Ala-1  30    
Arg-3  9 12 16 9. 
Gly-4  10 17 17 18 

continued.. 
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 A-monomer B-monomer C-monomer D-monomer  
Val-5  38 36 37 37 
Lys-7  43 46 47 43 
Ile-9  34 35 42 33 
Ile-11  41 41 43 41 
Gln-76  41 29 31 32 
Tyr-78  51 53 50 52 
Glu-80  21 17 19 18 
Gln-110  73 63 77 66 
Leu-112  76 71 44 42 

PmiSSB-EFGH 

 E-monomer F-monomer G-monomer H-monomer  
Ala-1  49    
Ser-2  41    
Arg-3  11 19 11 15 
Gly-4  10 20 20 18 
Val-5  40 37 34 36 
Lys-7  45 44 45 47 
Ile-9  33 36 34 34 
Ile-11  43 41 37 37 
Gln-76  37 35 29 36 
Tyr-78  51 49 51 51 
Glu-80  20 22 19 20 
Gln-110  63 64 83 68 
Leu-112  64 70 42 69 

SmaSSB-ABCD 

 A-monomer B-monomer C-monomerr D-monomer  
Ser-2  15 15 8 18 
Arg-3  45     
Gly-4  10 19 19 20 
Val-5  41 40 38 38 
Lys-7  50 50 51 51 
Ile-9  33 34 34 33 
Val-11  25 25 26 28 
Gln-76  34 22 34 36 
Tyr-78  63 62 62 62 
Glu-80  21 20 19 21 
Gln-110  74 74 89 77 
Leu-112  63  62 66 64 

SmaSSB-EEEE 

 E-monomer #E-monomer #E-monomer #E-monomer  
Ser-2  16 16 16 16 
Arg-3  2  2 2 2 
Gly-4  16 16 16 16 
Val-5  39 39 39 39 
Lys-7  50 50 50 50 
Ile-9  35 35 35 35 
Val-11  27 27 27 27 
Gln-76  34 34 34 34 
Tyr-78  61 61 61 61 
Glu-80  19 19 19 19 
Gln-110  81 81 81 81 
Leu-112  68  68 68 68 

HsmtSSB 

 A-monomer B-monomer #A-monomer #B-monomer 

continued... 
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 A-monomer B-monomer #A-monomer #B-monomer 
Arg-12  68 119 68 119 
Leu-14  40 29 40 29 
Arg-16  45 59 45 59 
His-18  27 16 27 16 
Leu-20  39 31  39 31  
Arg-91  45 42  45 42  
Tyr-93  33 42 33 42 
Glu-95  17 31 17 31 
Asp-119  1 21 1 21 
Asn-120 2  18 2  18 
Ile-121  83 92 83 92 
Ile-122  23 16  23 16  
Phe-123  63 60 63 60 
Leu-124  33 1  33 1  
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Table A9 Distance between the side chain oxygen atoms from the residues pointing towards each other from two monomers at the dimer-dimer 

interface (shown in Figure 49) 
 

EcoSSB BabSSB PmiSSB SmaSSB HsmtSSB 
Atom1 d† (Å) Atom2 Atom1 d† (Å) Atom2 Atom1 d† (Å) Atom2 Atom1 d† (Å) Atom2 Atom1 d† (Å) Atom2 
Gln-A76-OE1 4.4 Gln-D76- OE1 Lys-A77-OE1 10.9 Lys-D77-OE1 Gln-A76-OE1 5.9 Gln-D76- OE1 Gln-A76-OE1 5.4 Gln-D76- OE1 Arg-A91-NH1 11.6 Arg-#B91-NH1 
Tyr-A78- OH 7.6 Tyr-D78- OH Tyr-A79-OH 9.0 Tyr-D79-OH Tyr-A78- OH 7.2 Tyr-D78- OH Tyr-A78- OH 7.1 Tyr-D78- OH Tyr-A93-OH 4.8 Tyr-#B93-OH 
Glu-A80-OE2 12.1 Glu-D80- OE2 Glu-A81-OE2 11.6 Glu-D81-OE2 Glu-A80-OE2 14.3 Glu-D80- OE2 Glu-A80-OE2 14.1 Glu-D80- OE2 Glu-A95-OE2 9.5 Glu-#B95-OE2 
Glu-A80-OE1 4.8 Glu-C80-OE1 Glu-A81-OE1 5.2 Glu-#A81-OE1 Glu-A80-OE1 3.5 Glu-C80-OE1 Glu-A80-OE1 6.0 Glu-C80-OE1 Glu-A95-OE1 7.3 Glu-#A95-OE2 
Glu-B80-OE1 4.4 Glu-D80-OE1 Glu-D81-OE1 5.2 Glu-#D81-OE1 Glu-B80-OE1 3.8 Glu-D80-OE1 Glu-B80-OE1 5.9 Glu-D80-OE1 Glu-#B95-OE1 9.4 Glu-B95-OE1 
Gln-B76-OE1 4.5 Gln-C76-OE1 Lys-#A77-OE1 10.9 Lys-#D77-OE1 Gln-B76-OE1 5.6 Gln-C76-OE1 Gln-B76-OE1 5.2 Gln-C76-OE1 Arg-B91-OE1 11.6 Arg-#A91-OE1 
Tyr-B78-OH 6.6 Tyr-C78-OH Tyr-#A79-OH 9.0 Tyr-#D79-OH Tyr-B78-OH 7.2 Tyr-C78-OH Tyr-B78-OH 7.5 Tyr-C78-OH Tyr-B93-OH 4.8 Tyr-#A93-OH 
Glu-B80-OE2 10.3 Glu-C80-OE2 Glu-#A81-OE2 11.6 Glu-#D81-OE2 Glu-B80-OE2 14.2 Glu-C80-OE2 Glu-B80-OE2 11.9 Glu-C80-OE2 Glu-B95-OE2 9.5 Glu-#A95-OE2 
 
† Atom1-atom2 distance 
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Table A10 Monomer-monomer interface of SSB-dimers and their extent burial 
 

Monomer-monomer interface Buried surface area (Å2) 
Monomer (A)-monomer (B) interface of EcoSSB 2207 
Monomer (C)-monomer (D) interface of EcoSSB 2180 
Monomer (A)-monomer (#A) interface of BabSSB 1766 
Monomer (B)-monomer (#B) interface of BabSSB 1846 
Monomer (A)-monomer (B) interface of PmiSSB 2114 
Monomer (C)-monomer (D) interface of PmiSSB 1894 
Monomer (E)-monomer (F) interface of PmiSSB 2136 
Monomer (G)-monomer (H) interface of PmiSSB 2097 
Monomer (A)-monomer (B) interface of SmaSSB 2178 
Monomer (C)-monomer (D) interface of SmaSSB 1844 
Monomer (E)-monomer (#E) interface of SmaSSB 1880 
Monomer (A)-monomer (B) interface of HsmtSSB 2777 

                  # symmetry mate. 
                  The capital letter in parenthesis indicates the chain id. of the monomer. 

 
Table A11 Buried surface area of individual residues in each monomer upon dimer formation 
 

EcoSSB 
Residues Buried surface area (Å2) 
 AB-dimer CD-dimer 
 A-monomer B-monomer C-monomer D-monomer 
Ala-1 62    
Ser-2 25 44  55 
Ala-3 49 49 60 50 
Gly-4 35 33 40 38 
Val-5 78 75 76 76 
Asn-6 41 46 44 43 
Lys-7 45 50 52 47 
Val-8 19 21 21 18 
Ile-9 66 60 59 67 
Leu-10 16 17 17 20 
Val-11 48 47 47 47 
Thr-36 34 34 33 33 
Ser-37 45 43 45 44 
Glu-38 69 63 46 36 
Ser-39  40 17  
Gln-51 15 20  16 
Glu-53 67 81 70 70 
His-55 30 30 30 30 
Arg-56 16  32 39 
Gln-82  33 28 28 
Leu-83 82 82 82 86 
Arg-84 79 29 27 104 
Thr-85 26 25 47 43 
ASP-95 17 13 15 13 
Arg-96 66 30 63 67 
Tyr-97 09 41 18 11 
Thr-99 44 44 42 42 

continued... 



Appendix 

142 

BabSSB 
 

Residues Buried surface area (Å2) 
 A#A-dimer B#B-dimer 
 A-monomer #A-monomer B-monomer #B-monomer 
Gly-3 33 33 36 36 
Ser-4 75 75 71 71 
Val-5 73 73 74 74 
Asn-6 55 55 44 44 
Lys-7 51 51 52 52 
Val-8 24 24 23 23 
Ile-9 64 64 66 66 
Leu-10 15 15 16 16 
Val-11 51 51 52 52 
Thr-36 30 30 29 29 
Ser-37 19 19 19 19 
Glu-38 46 46 38 38 
Arg-51 02 02 55 55 
Glu-53 80 80 47 47 
His-55 27 27 28 28 
Lys-77 21 21 20 20 
Leu-84 83 83 83 83 
Gln-85 12 12 52 52 
Thr-86 31 31   
Ala-100 35 35 44 44 
Gln-105   18 18 
Arg-108 30 30 33 33 

PmiSSB 
 AB-dimer CD-dimer 
 A-monomer B-monomer C-monomer D-monomer 
Ala-1 19    
Ser-2 32    
Arg-3 130 119 99 55 
Gly-4 31 38 36 42 
Val-5 81 79 80 79 
Asn-6 44 46 44 42 
Lys-7 54 52 51 54 
Val-8 22 23 22 21 
Ile-9 66 64 64 65 
Leu-10 16 19 17 18 
Ile-11 50 53 52 48 
Thr-36 31 31 26 31 
Ser-37 36 51 40 38 
Glu-38 44 40  39 
Ser-39 24 28   
Glu-50 21 12   
Glu-53 68 65 63 69 
His-55 32 32 34 29 
Arg-56    26 
Gln-82 36 35 34  
Leu-83 88 81 87 88 
Gln-84 13 17 12 23 
Thr-85 26 24 25 27 

continued... 
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Thr-99 45 49 47 45 
PmiSSB 

Residues Buried surface area (Å2) 
 EF-dimer GH-dimer 
 E-monomer F-monomer G-monomer H-monomer 
Ala-1 16    
Ser-2 35    
Arg-3 121 10 113 60 
Gly-4 30 36 35 35 
Val-5 81 83 82 84 
Asn-6 43 43 42 45 
Lys-7 54 54 54 52 
Val-8 20 22 18 21 
Ile-9 65 64 63 66 
Leu-10 17 19 19 17 
Ile-11 48 50 53 52 
Thr-36 32 30 28 27 
Ser-37 44 37 38 46 
Glu-38 37 51 37 42 
Ser-39  31 05 33 
Glu-53 71 60 69 65 
His-55 30 34 29 30 
Gln-76 26 37 06 07 
Gln-82 30 33 33 34 
Leu-83 84 86 87 86 
Gln-84 43 23 33 23 
Thr-85 24 25 26 24 
Tyr-97 08 08 23 13 
Thr-99 45 47 48 45 

SmaSSB 
 AB-dimer CD-dimer 
 A-monomer B-monomer C-monomer D-monomer 
Ala-1  63   
Ser-2 61 33 82 64 
Arg-3 101 50 44 51 
Gly-4 29 34 35 33 
Val-5 74 74 76 75 
Asn-6 49 51 49 48 
Lys-7 51 51 51 51 
Val-8 20 21 20 22 
Ile-9 62 62 63 62 
Leu-10 15 14 16 16 
Val-11 48 48 47 47 
Thr-36 33 32 33 34 
Ser-37 42 44 43 40 
Glu-38 50 27 32 32 
Ser-39 46 17 24 27 
Glu-53 69 68 76 64 
His-55 30 32 32 33 
Leu-83 80 83 80 83 
Gln-84 16 20 11 26 
Thr-85 22 25 28 32 

continued..
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Asp-95 12 15   
Arg-96 60 65   
Tyr-97 30 25   
Thr-99 40 39 44 40 

SmaSSB 
Residues Buried surface area (Å2) 
 E#E-dimer  
 E-monomer #E-monomer   
Ala-1 65 65   
Ser-2 25 25   
Ala-3 52 52   
Gly-4 35 35   
Val-5 74 74   
Asn-6 48 48   
Lys-7 50 50   
Val-8 21 21   
Ile-9 62 62   
Leu-10 16 16   
Val-11 47 47   
Thr-36 32 32   
Ser-37 44 44   
Glu-38 28 28   
Ser-39 46 46   
Glu-53 74 74   
His-55 29 29   
Leu-83 82 82   
Gln-83 14 14   
Thr-85 37 37   
Arg-96 11 11   

HsmtSSB 
Residues Buried surface area (Å2) 
 AB-dimer  
 A-monomer B-monomer   
Leu-10 03 58   
Glu-11 64 84   
Arg-12 46 27   
Ser-13 90 57   
Leu-14 89 95   
Asn-15 57 47   
Arg-16 43 38   
Val-17 25 27   
His-18 77 78   
Leu-19 17 22   
Leu-20 46 49   
Arg-22 26 30   
Thr-45 30 21   
Asn-46 79 17   
Glu-47 28 52   
Gln-64 14    
Lys-65 31    
Thr-67 39 46   
Trp-68 19 19   

continued..
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His-69 38 35   
Arg-91 47 63   
Lys-97 20 51   
Ile-98 71 55   
Asp-99 02 27   
Tyr-100 82 94   
Arg-110 76 34   
Arg-111 95 111   
Ala-113 47 51   

 
6.5 Hydrophobic residues of SSBs 
 
Table A12 Hydrophobic residues belonging to the SSBs core (see footnotes) 
EcoSSB BabSSB PmiSSB SmaSSB HsmtSSB 
Val-5 Val-5 Val-5 Val-5 Leu-14 
Val-8 Val-8 Val-8 Val-8 Val-17 
Ile-9 Ile-9 Ile-9 Ile-9  
Leu-10 Leu-10 Leu-10 Leu-10 Leu-19 
Val-11 Val-11 Ile-11 Val-11 Leu-20 
Leu-14 Leu-14 Leu-14 Leu-14 Val-23 
 Ala-16    
Val-20 Ile-20 Ile-20 Val-20 Leu-29 
Ala-30 Ala-30 Ala-30 Ala-30  
Ile-32 Leu-32 Leu-32 Ile-32 Phe-41 
Leu-34 Ile-34 Leu-34 Leu-34 Leu-43 
Ala-35 Ala-35 Ala-35 Ala-35 Ala-44 
Trp-54 Trp-54 Trp-54 Trp-54 Trp-68 
Val-57 Val-57 Val-57 Val-57 Ile-71 
Val-58 Val-58 Val-58 Val-58  
Leu-59 Ile-59 Ile-59 Leu-59 Val-73 
Phe-60 Phe-60 Phe-60 Phe-60 Phe-74 
Leu-63 Leu-64 Leu-63 Leu-63 Leu-78 
Ala-64 Ala-65 Ala-64 Ala-64  
Val-66 Val-67 Ile-66 Val-66 Val-81 
Ala-67 Ala-68 Ala-67 Ala-67 Ala-82 
Tyr-70 Tyr-71 Tyr-70 Tyr-70 Tyr-85 
Leu-71 Leu-72 Leu-71 Leu-71 Val-86 
Val-77 Val-78 Val-77 Val-77 Ile-92 
Tyr-78 Tyr-79 Tyr-78 Tyr-78 Tyr-93 
Ile-79 Ile-80 Ile-79 Ile-79 Leu-94 
 Ala-83    
Leu-83 Leu-84 Leu-83 Leu-83 Ile-98 
Val-101 Ile-102 Val-101 Ile-101  
Val-102 Val-103 Val-102 Val-102 Ile-116 
Val-103 Leu-104 Val-103 Val-103 Ile-117 
    Ala-118 
Met-109 Leu-111 Met-109 Met-109  
    Ile-121 
Met-111 Met-113 Met-111 Met-111 Ile-122 
Leu-112 Leu-114 Leu-112 Leu-112 Phe-123 
    Leu-124 
Residues in the same row are in structurally equivalent position in the protein. A blank indicates that 
there are no structurally equivalent residues. 
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6.6 Symmetry operators and crystals contacts of SSBs 

 
Table A13 Symmetry operators (see footnotes) 
 

EcoSSB  (C2) 
Alphabatical 
numbering  Symmetry operator 

a 1: -X, Y, -Z 
b 2: X+1/2, Y+1/2, Z 
c 3: -X+1/2, Y+1/2, -Z 
d 4: X, Y, Z 

BabSSB (P43212) 
e 1: -Y+1/2, X+1/2, Z+3/4 
f 2: -X, -Y, Z+1/2 
g 3: Y+1/2, -X+1/2, Z+1/4 
h 4: Y, X, -Z 
i 5: X+1/2, -Y+1/2, -Z+1/4 
j 6: -Y, -X, -Z+1/2 
k 7: -X+1/2, Y+1/2, -Z+3/4 
d 8: X, Y, Z 

PmiSSB (P21212) 
l 1: X+1/2, -Y+1/2, -Z 

m 2: -X+1/2, Y+1/2, -Z 
n 3: -X, -Y, Z 
d 4: X, Y, Z 

SmaSSB (P42212) 
o 1: -X, -Y, Z 
p 2: -Y+1/2, X+1/2, Z+1/2 
q 3: Y+1/2, -X+1/2, Z+1/2 
r 4: -X+1/2, Y+1/2, -Z+1/2 
s 5: X+1/2, -Y+1/2, -Z+1/2 
h 6: Y, X, -Z 
t 7: -Y, -X, -Z 
d 8: X, Y, Z 

HsmtSSB (P41212) 
u 1: -X, -Y, Z+1/2 
v 2: -Y+1/2, X+1/2, Z+1/4 
w 3: Y+1/2, -X+1/2, Z+3/4 
x 4: -X+1/2, Y+1/2, -Z+1/4 
y 5: X+1/2, -Y+1/2, -Z+3/4 
h 6: Y, X, -Z 
z 7: -Y, -X, -Z+1/2 
d 8: X, Y, Z 

The alphabetical numbering of symmetry operators is used in Table A14,  
A15, A16, A17, A18. 
  
 
 
 
 
 
 
 



Appendix 

147 

 
Table A14 Intermolecular hydrogen-bonding contacts of EcoSSB 
 

Acceptor Donor H-bond distance(Å) Symmetry mates* 
Glu-A69-O Wat-W79-O 2.71 a 

Arg-A72-NE LeuA112-O 2.92 a 
Arg-A72-NH1 Met-A111-O 2.84 a 
Asn-B31-OD1 Gln-C91-OE1 2.77 b 
Asn-B31-OD1 GlnC91-NE2 2.40 b 
Asn-B31-ND2 Gln-C91-OE1 2.57 b 

Gly-B46-O GlnD91-OE1 3.19 b 
Glu-B47-OE1 Arg-D86-NH1 2.82 b 
Glu-B47-OE1 Arg-D86-NH2 3.21 b 
Glu-B47-OE2 Arg-D86-NH2 2.85 b 
Lys-B49-NZ Glu-D19-OE2 3.43 b 
Ser-B68-OG Arg-C72-NH2 3.42 c 
Ser-B68-OG Arg-C72-NE 2.74 c 
Ser-B68-O Arg-C72-NH2 3.18 c 

Arg-B72-NH2 Glu-C69-O 3.33 c 
Arg-B84-NH1 Gln-C91-O 2.57 b 
Arg-B84-NH2 Gln-C91-O 3.01 b 
Arg-B86-NH1 Thr-C89-O 2.93 b 
Arg-B86-NH2 Gln-C91-NE2 3.43 b 

Lys-B87-O Thr-C89-N 3.08 b 
Lys-B87-O Wat-W102-O 2.95 b 
Lys-B87-O Thr-C89-OG1 3.43 b 
Thr-B89-N Lys-C87-O 3.05 b 

Thr-B89-OG1 Lys-C87-O 3.48 b 
Thr-B89-OG1 Wat-W76-O 3.36 b 

Thr-B89-O Arg-C86-NH1 3.02 b 
Gln-B91-OE1 Asn-C31-OD1 2.52 b 
Gln-B91-OE1 Asn-C31-ND2 2.60 b 
Gln-B91-NE2 Asn-C31-ND2 3.42 b 

Gln-B91-O Arg-C84-NH1 2.84 b 
Gln-B91-O Arg-C84-NH2 2.61 b 
Gly-B93-N Arg-C84-NH2 3.51 b 

Glu-B100-OE2 Gln-C91-NE2 2.97 b 
Arg-C3-NH2 Wat-W1-O 3.27 a 
Ala-C44-O Asn-D25-OD1 2.95 a 
AlaC44-O Asn-D25-N 3.13 a 

Glu-C50-OE1 Lys-D87-NZ 3.38 a 
Lys-C87-N Wat-W12-O 2.66 b 

Thr-C89-OG1 Wat-W34-O 2.68 b 
Wat-W27-O Wat-W65-O 3.19 b 

* See Table A13. 
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Table A15 Intermolecular hydrogen-bonding contacts of BabSSB 
 

Acceptor Donor H-bond distance (Å) Symmetry mates* 
Val-A5-N Val-A11-O 2.90 h 
Val-A5-O Val-A11-N 3.00 h 
Val-A5-O Val-A11-O 3.51 h 
Lys-A7-N Ile-A9-O 3.02 h 
Lys-A7-O Ile-A9-N 2.84 h 
Lys-A7-O Ile-A9-O 3.38 h 
Val-B5-N Val-B11-O 2.84 h 
Val-B5-O Val-B11-O 3.40 h 
Val-B5-O Val-B11-N 2.97 h 
Lys-B7-N Ile-B9-O 2.93 h 
Lys-B7-O Ile-B9-N 2.81 h 
Lys-B7-O Ile-B9-O 3.34 h 

Asp-A50-O Gly-B26-N 3.53 e,g 
Thr-A52-N Asn-B24-O 2.75 e 
Gly-A3-O Lys-A77-NZ 3.21 h 
Gly-B3-O Lys-B77-NZ 3.01 h 

Ser-A4-OG Ser-A37-N 2.96 h 
Ser-A4-OG Ser-A37-O 3.17 h 
Ser-B4-OG Ser-B37-N 2.93 h 
Ser-B4-OG Ser-B37-O 2.91 h 
Ser-A4-O Gln-B112-OE1 3.39 h 
Ser-A4-N Gln-B112-OE1 3.20 h 
Ser-B4-N Gln-A112-OE1 3.27 h 
Ser-B4-O Gln-A112-OE1 3.35 h 
Gly-B3-N Gln-A112-OE1 2.60 h 

Trp-A40-NE1 Ser-B25-O 3.04 e 
Glu-A53-OE1 Thr-A86-N 2.93 h 
Glu-A53-OE2 Thr-A86-N 3.37 h 

Ala-A68-O Lys-A73-NZ 3.13 h 
Glu-A69-O Lys-A73-NZ 2.85 h 
Leu-A72-O Lys-A73-NZ 2.85 h 
Lys-A7-NZ Glu-B81-OE2 2.91 h 
Lys-A7-NZ Glu-B110-OE1 3.22 h 
Lys-A7-NZ Glu-B110-OE2 3.19 h 
Lys-B7-NZ Glu-A81-OE1 2.50 h 
Lys-B7-NZ Glu-A81-OE2 3.18 h 
Lys-B7-NZ Glu-A110-OE1 3.31 h 

Glu-A38-OE1 Arg-A108-NH1 2.57 h 
Glu-A38-OE1 Arg-A108-NH2 3.33 h 
Glu-B38-OE2 Arg-B108-NH1 2.62 h 
Glu-B38-OE2 Arg-B108-NH2 3.55 h 
Glu-A47-OE1 Arg-B22-NH2 3.40 e,g 
Lys-A49-NZ Asp-B27-OD1 2.49 e 
Lys-A49-NZ Glu-B62-OE1 3.18 e 
Lys-A49-NZ Glu-B62-OE2 2.66 e 

Glu-A53-OE1 Thr-A86-OG1 2.53 h 
Glu-A53-OE2 Thr-A86-OG1 3.33 h 
Trp-A54-NE1 Asn-B24-OD1 2.93 e 
Arg-B51-NH1 Gln-B85-OE1 3.15 h 

Wat-W9-O Tyr-A71-O 2.77 h 
Wat-W12-O Gln-A70-O 3.44 h 
Wat-W17-O Leu-B23-O 2.89 e 
Wat-W17-O Asn-B24-O 3.47 e,g 
Wat-W29-O Ser-B37-O 3.53 h 
Wat-W44-O Pro-A18-O 2.63 h 
Wat-W46-O Leu-B23-O 3.55 e 
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Acceptor Donor H-bond distance (Å) Symmetry mates* 
Wat-W46-O Asn-B24-N 3.54 e,g 
Wat-W46-O Arg-B22-O 3.15 e,g 
Wat-W54-O Gly-B3-N 3.35 h 
Wat-W80-O Ser-A4-O 3.45 h 
Wat-W94-O Gln-A70-O 2.59 h 

Wat-W100-O Ser-A4-N 3.39 h 
Wat-W107-O Ser-A4-O 3.34 h 
Wat-W110-O Ser-B37-O 2.68 h 
Wat-W113-O Glu-B38-N 3.56 h 
Wat-W113-O Ser-B39-N 3.51 h 
Wat-W80-O Ser-A4-OG 3.43 h 

Wat-W100-O Ser-A4-OG 2.83 h 
Wat-W37-O Ser-A4-OG 3.27 h 
Wat-W4-O Asn-A6-ND2 3.29 h 
Wat-W39-O Asn-B6-ND2 3.39 h 
Wat-W96-O Glu-A47-OE1 2.97 e 
Wat-W96-O Glu-A47-OE2 2.73 e 
Wat-W91-O Arg-A51-NE 2.77 e 
Wat-W91-O Arg-A51-NH2 3.14 e 
Wat-W55-O Arg-B51-NH2 3.19 h 
Wat-W97-O Gln-A85-NE2 3.14 h 
Wat-W40-O Thr-A86-OG1 3.11 h 
Wat-W65-O Glu-A110-OE1 3.20 h 
Wat-W65-O Glu-A110-OE2 3.14 h 

Wat-W110-O Gln-A112-OE1 3.07 h 
Wat-W113-O Ser-B37-OG 2.86 h 
Wat-W113-O Ser-B39-OG 2.83 h 
Wat-W46-O Asn-B24-OD1 2.80 e 
Wat-W69-O Glu-B62-OE2 2.83 e 
Wat-W5-O Wat-W31-O 2.97 h 
Wat-W9-O Wat-W10-O 2.67 h 
Wat-W16-O Wat-W107-O 2.80 h 
Wat-W17-O Wat-W58-O 2.79 e 
Wat-W29-O Wat-W39-O 3.06 h 
Wat-W35-O Wat-W82-O 2.65 h 
Wat-W53-O Wat-W82-O 3.46 h 

* See Table A13. 
 
 
Table A16 Intermolecular hydrogen-bonding contacts of PmiSSB 

Acceptor Donor H-bond distance (Å) Symmetry mates* 
Arg-A3-NE Tyr-G22-OH 3.28 l 

Arg-A3-NH1 Tyr-G22-OH 3.13 l 
Arg-A3-NH2 Tyr-G22-OH 2.76 l 
Arg-A3-NH2 Glu-G65-OE2 2.43 l 
Met-A48-N Ile-E20-O 3.09 n 

Arg-B3-NH2 Gly-E68-O 2.66 n 
Asn-B31-OD1 Gln-C91-NE2 3.09 d 
Ser-B39-OG Glu-G65-OE2 3.28 l 

Gln-B84-NE2 Gln-C91-O 3.19 d 
Lys-B87-N Gln-C89-OE1 2.74 d 
Lys-B87-O Gln-C89-N 3.17 d 
Gln-B89-N Lys-C87-O 2.99 d 

Gln-B89-OE1 Lys-C87-N 2.93 d 
Gln-B89-O Arg-C86-NH1 3.37 d 
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Acceptor Donor H-bond distance (Å) Symmetry mates* 
Gln-B91-N Arg-C86-NH1 3.24 d 

Gln-B91-OE1 Asn-C31-ND2 3.29 d 
Gln-B91-NE2 Asn-C31-OD1 2.90 d 
Gln-B91-NE2 Glu-C100-OE2 3.29 d 

Gln-B91-O Gln-C84-OE1 3.54 d 
Gln-B91-O Gln-C84-NE2 3.34 d 

Glu-B100-OE1 Gln-C91-OE1 2.86 d 
Glu-B100-OE2 Gln-C91-OE1 3.25 d 
Glu-C65-OE1 Ser-F39-OG 3.41 l 
Glu-C65-OE2 Ser-F39-OG 2.58 l 

Glu-C69-N Ala-E1-O 3.54 l 
Glu-C69-OE1 Met-G111-N 2.86 l 
Arg-C72-NH2 Leu-G112-O 3.53 l 
Arg-C72-NH2 Gly-G113-O 3.24 l 
Met-C111-N Glu-G69-OE1 3.05 l 
Leu-C112-O Arg-G72-NH1 3.59 l 
Gly-C113-O Arg-G72-NE 3.55 l 
Gly-C113-O Arg-G72-NH1 3.33 l 
Gly-C113-O Arg-G72-NH2 3.23 l 
Ile-D20-O Met-H48-N 3.01 n 
Tyr-D22-N Gly-H46-O 2.80 n 
Gly-D68-O Arg-G3-NH2 3.23 n 

Tyr-D70-OH Met-E111-N 3.02 n 
Met-D109-O Wat-W51-O 3.18 n 
Met-D111-N Tyr-E70-OH 3.21 n 

Ile-E20-O Met-A48-N 3.09 n 
Arg-F21-NH2 Gln-G91-OE1 3.41 d 
Asn-F31-OD1 Gln-G91-NE2 2.96 d 
Gln-F84-OE1 Gln-G91-O 3.22 d 
Arg-F86-NE Gln-G91-N 3.44 d 
Arg-F86-NE Gln-G89-O 3.24 d 
Lys-F87-N Gln-G89-OE1 2.71 d 
Lys-F87-O Gln-G89-N 3.11 d 
Gln-F89-N Lys-G87-O 3.09 d 

Gln-F89-OE1 Lys-G87-N 2.71 d 
Gln-F89-O Arg-G86-NH1 3.27 d 

Gln-F91-OE1 Glu-G100-OE2 3.46 d 
Gln-F91-OE1 Asn-G31-OD1 2.67 d 
Gln-F91-OE1 Asn-G31-ND2 3.51 d 

Gln-F91-O Gln-G84-NE2 2.84 d 
Glu-F100-OE2 Gln-G91-NE2 3.09 d 

Tyr-G70-O Wat-W41-O 2.72 d 
Gln-G91-O Wat-W79-O 3.41 d 
Ala-H69-O Arg-H72-NH2 3.28 n 

Arg-H72-NE Wat-W26-O 3.34 n 
Arg-H72-NH1 Wat-W26-O 2.65 n 
Arg-H72-NH1 Wat-W42-O 2.68 n 
Arg-H72-NH2 Wat-W42-O 2.88 n 
Wat-W26-O Wat-W46-O 2.77 n 

* See Table A13. 
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Table A17 Intermolecular hydrogen-bonding contacts of SmaSSB 
 

Acceptor Donor H-bond distance (Å) Symmetry mates* 
Asn-A25-O Ala-A28-O 2.69 h 
Asn-A25-O Ala-A28-N 2.71 h 
Asn-A25-O Gly-A61-N 3.09 h 

Asn-A31-OD1 Gln-E91-OE1 3.49 r 
Asn-A31-OD1 Gln-E91-NE2 3.08 r 
Asn-A31-ND2 Gln-E91-OE1 3.43 r 
Gln-A84-OE1 Gln-E91-O 2.82 r 

Lys-A87-N Gln-E89-OE1 3.43 r 
Lys-A87-O Gln-E89-N 2.66 r 

Gln-A89-OE1 Arg-E86-NH2 3.23 r 
Gln-A89-NE2 Lys-E87-O 3.20 r 

Gln-A91-O Arg-E21-NH1 3.45 r 
Glu-A100-OE1 Gln-E91-NE2 3.57 r 
Glu-A100-OE2 Gln-E91-NE2 2.68 r 
Asn-B31-OD1 Gln-D91-NE2 2.55 r 
Asn-B31-ND2 Gln-D91-NE2 3.13 r 
Gln-B84-NE2 Gln-D91-O 2.63 r 
Gln-B84-NE2 Gly-D93-N 3.35 r 
Arg-B86-NH1 Gln-D91-OE1 3.16 r 

Lys-B87-N Gln-D89-OE1 2.76 r 
Lys-B87-O Gln-D89-N 3.16 r 

Gln-B89-NE2 Ala-D87-O 3.03 r 
Glu-B100-OE1 Gln-D91-OE1 2.80 r 
Glu-B100-OE2 Gln-D91-OE1 2.90 r 

Ala-E1-O Ser-E39-N 3.04 t 
Ala-E1-N Ser-E39-O 2.45 t 
Ser-E2-O Gln-E110-OE1 3.34 o 
Arg-E3-N Ser-E37-O 2.85 t 
Arg-E3-O Ser-E37-N 2.94 t 
Gly-E4-N Gln-E110-NE2 2.70 o 
Gly-E4-O Gln-E110-OE1 3.49 o 
Val-E5-N Val-E11-O 2.89 t 
Val-E5-O Ile-E9-O 3.37 t 
Val-E5-O Val-E11-N 2.96 t 

Asn-E6-ND2 His-E55-NE2 3.43 t 
Lys-E7-N Ile-E9-O 2.94 t 

Lys-E7-NZ Glu-E80-OE1 2.79 o 
Lys-E7-NZ Glu-E80-OE2 2.86 o 
Lys-E7-NZ Tyr-E78-OH 3.21 o 
Lys-E7-O Ile-E9-N 2.75 t 
Lys-E7-O Ile-E9-O 3.30 t 

Glu-E53-OE1 Thr-E85-OG1 3.26 t 
Glu-E53-OE1 Thr-E85-N 2.30 t 
Glu-E53-OE1 Thr-E85-O 3.41 t 
Thr-E99-OG1 Wat-W4-O 2.71 t 

* See Table A13. 
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Table A18 Intermolecular hydrogen-bonding contacts of HsmtSSB 
Acceptor Donor H-bond distance(Å) Symmetry mates* 

Arg-A12-NH1 Ile-A122-N 3.47 z 
Arg-A12-NH1 Wat-A131-O 3.08 z 
Arg-A12-NH1 Ile-A122-O 3.42 z 
Arg-A12-NH2 Ile-A122-O 3.33 z 
His-A18-ND1 Wat-B130-O 2.84 z 
Arg-A22-NH1 Asp-B105-O 3.29 x 
Arg-A22-NH2 Asp-B105-O 2.97 x 
Gln-A25-NE2 Glu-B33-OE2 3.20 x 
Gln-A25-NE2 Glu-B33-OE1 3.17 x 
Arg-A30-NH2 Ser-A63-OG 3.53 x 

Glu-A33-O Thr-B66-OG1 3.44 x 
Gly-A34-N Trp-B68-NE1 3.58 x 
Gly-A34-O Trp-B68-NE1 3.60 x 

Ser-A42-OG Glu-B33-OE1 3.00 x 
Trp-A68-NE1 Glu-B33-O 3.27 x 
Trp-A68-NE1 Gly-B34-N 3.24 x 
Asp-A80-OD2 Tyr-B83-OH 3.24 d 
Gln-A84-OE1 Leu-B29-O 3.08 d 
Tyr-A85-OH Arg-B79-NE 2.93 d 
Tyr-A85-OH Asp-B80-OD1 2.66 d 
Lys-A88-O Met-B104-N 2.79 x 

Lys-A88-NZ Gly-B101-O 3.29 x 
Lys-A88-NZ Gln-B112-OE1 2.79 x 
Gly-A89-O Met-B104-O 2.98 x 

Arg-A91-NH1 Ile-B122-O 3.07 z 
Tyr-A93-OH Wat-B130-O 2.75 z 
Ile-A122-O Wat-B135-O 3.36 z 
Ile-A122-O Arg-B91-NH2 3.00 z 

Leu-A124-O Wat-B135-O 2.97 z 
Leu-A124-O Arg-B91-NH2 3.54 z 
Wat-A128-O Wat-B140-O 3.49 x 
Wat-A141-O Asp-B119-OD1 3.09 z 
Wat-A141-O Asp-B119-OD2 3.46 z 

Arg-B12-NH1 Asn-B120-O 2.87 z 
Arg-B12-NH2 Asn-B120-O 3.37 z 
Arg-B12-NH2 Asp-B119-OD1 2.68 z 
Arg-B12-NH2 Asn-B120-N 2.65 z 
Arg-B16-NH1 Glu-B95-OE2 3.09 z 
Arg-B16-NH1 His-B18-NE2 3.43 z 
Arg-B16-NH2 Glu-B95-OE1 2.75 z 
Arg-B16-NH2 Glu-B95-OE2 2.80 z 
Lys-B35-NZ Glu-B102-OE1 3.16 x 

* See Table A13 
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6.7 B-factor plots of SSBs 

 
Figure A2 B-factor plot of EcoSSB, BabSSB and HsmtSSB monomers. The average B-factors for the 
main-chain and side-chain atoms of each residue are plotted against the residue number. Gaps in the 
plot indicate residues missing in the model. The last four residues of each monomer of HsmtSSB are 
not shown in the plot.  
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Figure A3 B-factor plot of PmiSSB monomers. The average B-factors for the main-chain and side-
chain atoms of each residue are plotted against the residue number. Gaps in the plot indicate residues 
missing in the model. 
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Figure A4 B-factor plot of SmaSSB monomers. The average B-factors for the main-chain and side-
chain atoms of each residue are plotted against the residue number. Gaps in the plot indicate residues 
missing in the model. 
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Table A19  Comparison of OB-fold containing proteins (see footnotes) 
PDB    Å (Cα pair)  PDB PDB        Å (Cα pair)  PDB PDB      Å (Cα pair)  PDB PDB        Å (Cα pair)  PDB 
1A62 2.59(34) 1ADT 1BAB-A 2.58(72) 1BCP 1GPC 2.43(35) 1SNC 1LT5-D 2.49(66) 1PMI-H 
1A62 2.57(46) 1AH9 1BAB-A 1.36(83) 1ECO-A 1GPC 2.52(32) 1SRO 1LT5-D 2.38(65) 1SMA-A 
1A62 2.77(56) 1BAB-A 1BAB-A 2.68(57) 1GPC 1GPC 2.79(51) 1TII-D 1LT5-D 2.71(52) 1SNC 
1A62 2.74(54) 1BCP 1BAB-A 2.54(52) 1GVP 1GPC 2.78(33) 2PRD 1LT5-D 2.72(47) 1SRO 
1A62 2.39(58) 1ECO-A 1BAB-A 2.25(57) 1HJP 1GPC 2.71(39) 2QIL-A 1LT5-D 1.99(87) 1TII-D 
1A62 2.68(42) 1GPC 1BAB-A 2.43(80) 1JMC-A 1GPC 2.66(45) 3SEB 1LT5-D 2.81(40) 2PRD 
1A62 2.82(40) 1GVP 1BAB-A 2.70(70) 1KRS 1GPC 2.55(60) 3ULL-A 1LT5-D 2.85(61) 2QIL-A 
1A62 2.42(53) 1HJP 1BAB-A 2.33(69) 1LT5-D 1GVP 2.58(38) 1HJP 1LT5-D 2.32(57) 3SEB 
1A62 2.47(60) 1JMC-A 1BAB-A 2.34(67) 1LYL-A 1GVP 2.71(58) 1JMC-A 1LT5-D 2.45(72) 3ULL-A 
1A62 2.65(50) 1KRS 1BAB-A 2.47(55) 1MJC 1GVP 3.03(34) 1KRS 1LYL-A 2.93(63) 1MJC 
1A62 2.72(52) 1LT5-D 1BAB-A 1.72(92) 1PMI-H 1GVP 2.48(46) 1LT5-D 1LYL-A 2.31(77) 1PMI-H 
1A62 2.82(55) 1LYL-A 1BAB-A 1.90(87) 1SMA-A 1GVP 2.50(45) 1LYL-A 1LYL-A 2.04(76) 1SMA-A 
1A62 2.37(57) 1MJC 1BAB-A 2.47(52) 1SNC 1GVP 2.14(45) 1MJC 1LYL-A 2.91(55) 1SNC 
1A62 2.44(55) 1PMI-H 1BAB-A 2.57(54) 1SRO 1GVP 2.63(55) 1PMI-H 1LYL-A 2.63(60) 1SRO 
1A62 2.61(56) 1SMA-A 1BAB-A 2.42(63) 1TII-D 1GVP 2.64(50) 1SMA-A 1LYL-A 2.70(65) 1TII-D 
1A62 2.86(39) 1SNC 1BAB-A 2.44(51) 2PRD 1GVP 2.66(41) 1SNC 1LYL-A 2.50(53) 2PRD 
1A62 2.42(56) 1SRO 1BAB-A 2.18(67) 2QIL-A 1GVP 2.89(40) 1SRO 1LYL-A 2.08(62) 2QIL-A 
1A62 2.53(47) 1TII-D 1BAB-A 2.65(59) 3SEB 1GVP 2.60(45) 1TII-D 1LYL-A 2.72(65) 3SEB 
1A62 2.56(49) 2PRD 1BAB-A 1.80(85) 3ULL-A 1GVP 2.41(37) 2PRD 1LYL-A 2.14(75) 3ULL-A 
1A62 2.66(53) 2QIL-A 1BCP 2.53(72) 1ECO-A 1GVP 2.14(50) 2QIL-A 1MJC 2.68(57) 1PMI-H 
1A62 2.72(51) 3SEB 1BCP 2.98(54) 1GPC 1GVP 2.62(44) 3SEB 1MJC 2.66(56) 1SMA-A 
1A62 2.56(55) 3ULL-A 1BCP 2.35(51) 1GVP 1GVP 2.63(54) 3ULL-A 1MJC 2.22(49) 1SNC 
1ADT 2.76(28) 1AH9 1BCP 2.40(59) 1HJP 1HJP 2.35(57) 1JMC-A 1MJC 2.84(63) 1SRO 
1ADT 2.55(31) 1BAB-A 1BCP 2.54(70) 1JMC-A 1HJP 2.44(56) 1KRS 1MJC 2.84(48) 1TII-D 
1ADT 2.60(47) 1BCP 1BCP 2.38(72) 1KRS 1HJP 2.66(53) 1LT5-D 1MJC 2.35(59) 2PRD 
1ADT 2.28(30) 1ECO-A 1BCP 2.37(79) 1LT5-D 1HJP 2.72(53) 1LYL-A 1MJC 2.68(56) 2QIL-A 
1ADT 2.34(36) 1GPC 1BCP 2.24(72) 1LYL-A 1HJP 2.59(49) 1MJC 1MJC 2.15(43) 3SEB 
1ADT 2.81(27) 1GVP 1BCP 2.62(51) 1MJC 1HJP 2.15(60) 1PMI-H 1MJC 2.39(56) 3ULL-A 
1ADT 2.87(43) 1HJP 1BCP 2.34(67) 1PMI-H 1HJP 1.86(60) 1SMA-A 1PMI-H 1.34(100) 1SMA-A 
1ADT 2.75(35) 1JMC-A 1BCP 2.24(69) 1SMA-A 1HJP 2.85(57) 1SNC 1PMI-H 2.79(57) 1SNC 
1ADT 2.53(31) 1KRS 1BCP 2.44(53) 1SNC 1HJP 2.70(56) 1SRO 1PMI-H 2.75(55) 1SRO 
1ADT 2.57(32) 1LT5-D 1BCP 2.66(55) 1SRO 1HJP 2.31(53) 1TII-D 1PMI-H 2.52(62) 1TII-D 
1ADT 2.12(41) 1LYL-A 1BCP 2.45(77) 1TII-D 1HJP 2.65(55) 2PRD 1PMI-H 2.56(51) 2PRD 
1ADT 2.27(25) 1MJC 1BCP 2.54(42) 2PRD 1HJP 2.26(67) 2QIL-A 1PMI-H 2.13(61) 2QIL-A 
1ADT 2.72(29) 1PMI-H 1BCP 2.68(61) 2QIL-A 1HJP 2.75(54) 3SEB 1PMI-H 2.79(56) 3SEB 
1ADT 2.75(32) 1SMA-A 1BCP 2.43(67) 3SEB 1HJP 2.25(62) 3ULL-A 1PMI-H 1.41(91) 3ULL-A 
1ADT 2.37(34) 1SNC 1BCP 2.31(78) 3ULL-A 1JMC-A 2.37(63) 1KRS 1SMA-A 2.73(57) 1SNC 
1ADT 2.83(30) 1SRO 1ECO-A 2.57(54) 1GPC 1JMC-A  2.18(66) 1LT5-D 1SMA-A 2.62(59) 1SRO 
1ADT 2.78(38) 1TII-D 1ECO-A 2.78(53) 1GVP 1JMC-A  2.33(91) 1LYL-A 1SMA-A 2.52(64) 1TII-D 
1ADT 2.85(36) 2PRD 1ECO-A 2.14(58) 1HJP 1JMC-A  2.49(58) 1MJC 1SMA-A 2.47(53) 2PRD 
1ADT 2.40(35) 2QIL-A 1ECO-A 2.26(78) 1JMC-A 1JMC-A  2.66(79) 1PMI-H 1SMA-A 1.99(61) 2QIL-A 
1ADT 2.86(37) 3SEB 1ECO-A 2.52(66) 1KRS 1JMC-A  2.34(76) 1SMA-A 1SMA-A 2.66(61) 3SEB 
1ADT 2.36(34) 3ULL-A 1ECO-A 2.35(69) 1LT5-D 1JMC-A  2.81(49) 1SNC 1SMA-A 1.86(92) 3ULL-A 
1AH9 2.45(50) 1BAB-A 1ECO-A 1.55(73) 1LYL-A 1JMC-A  2.64(54) 1SRO 1SNC 2.61(52) 1SRO 
1AH9 2.81(50) 1BCP 1ECO-A 2.65(56) 1MJC 1JMC-A  2.52(63) 1TII-D 1SNC 2.37(52) 1TII-D 
1AH9 2.59(45) 1ECO-A 1ECO-A 1.24(90) 1PMI-H 1JMC-A  2.58(55) 2PRD 1SNC 2.90(41) 2PRD 
1AH9 2.62(36) 1GPC 1ECO-A 1.50(89) 1SMA-A 1JMC-A  2.42(68) 2QIL-A 1SNC 2.75(47) 2QIL-A 
1AH9 2.44(33) 1GVP 1ECO-A 2.76(57) 1SNC 1JMC-A  2.82(56) 3SEB 1SNC 2.57(53) 3SEB 
1AH9 2.62(50) 1HJP 1ECO-A 2.66(62) 1SRO 1JMC-A  2.36(75) 3ULL-A 1SNC 2.53(58) 3ULL-A 
1AH9 2.60(50) 1JMC-A 1ECO-A 2.50(61) 1TII-D 1KRS 2.69(69) 1LT5-D 1SRO 2.74(47) 1TII-D 
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1AH9 2.72(52) 1KRS 1ECO-A 2.55(54) 2PRD 1KRS 2.77(66) 1LYL-A 1SRO 2.51(54) 2PRD 
1AH9 2.37(42) 1LT5-D 1ECO-A 2.17(63) 2QIL-A 1KRS 2.71(50) 1MJC 1SRO 2.65(54) 2QIL-A 
1AH9 2.77(51) 1LYL-A 1ECO-A 2.72(62) 3SEB 1KRS 2.39(69) 1PMI-H 1SRO 2.59(57) 3SEB 
1AH9 2.47(53) 1MJC 1ECO-A 2.03(88) 3ULL-A 1KRS 2.50(72) 1SMA-A 1SRO 2.80(57) 3ULL-A 
1AH9 2.51(44) 1PMI-H 1GPC 2.42(56) 1GVP 1KRS 2.88(53) 1SNC 1TII-D 2.80(41) 2PRD 
1AH9 2.48(50) 1SMA-A 1GPC 2.77(33) 1HJP 1KRS 2.83(49) 1SRO 1TII-D 2.34(55) 2QIL-A 
1AH9 2.40(42) 1SNC 1GPC 2.44(66) 1JMC-A 1KRS 2.04(66) 1TII-D 1TII-D 3.00(59) 3SEB 
1AH9 2.46(56) 1SRO 1GPC 2.63(44) 1KRS 1KRS 2.68(45) 2PRD 1TII-D 2.51(71) 3ULL-A 
1AH9 2.62(46) 1TII-D 1GPC 2.66(52) 1LT5-D 1KRS 2.86(63) 2QIL-A 2PRD 2.45(58) 2QIL-A 
1AH9 1.91(46) 2PRD 1GPC 2.34(34) 1LYL-A 1KRS 2.62(66) 3SEB 2PRD 2.87(46) 3SEB 
1AH9 2.30(50) 2QIL-A 1GPC 2.55(35) 1MJC 1KRS 2.32(68) 3ULL-A 2PRD 2.65(47) 3ULL-A 
1AH9 2.67(41) 3SEB 1GPC 2.78(57) 1PMI-H 1LT5- D 2.40(63) 1LYL-A 2QIL-A 2.19(151) 3SEB 
1AH9 2.57(58) 3ULL-A 1GPC 2.50(46) 1SMA-A 1LT5- D 2.77(47) 1MJC 2QIL-A 2.58(68) 3ULL-A 
 
Each row of each highlighted column shows the comparison between two proteins. The  Cα  r.m.s.d 
and the number atoms pairs used for calculation are given in between two PDB code.  1ECO, 1BAB, 
1PMI, and 1SMA are signed as hypothetical PDB codes for the EcoSSB, BabSSB, PmiSSB and 
SmaSSB structure, respectively. PDB code and chain id separated by a hyphen, indicates that the chain 
id containing monomer is used for the r.m.s.d. calculations and with no chain id indicates that the 
protein is a monomer.  
 
6.8 Structure factor and co-ordinate files of SSBs  
    The following files can be found on the attached CD:   
   
 Co-ordinate   Structure factor 
E_coli_SSB.pdb E_coli_SSB.hkl 
B_abortus_SSB.pdb B_abortus_SSB.hkl 
P_mirabilis_SSB.pdb P_mirabilis_SSB.hkl 
S_ marcescens_SSB.pdb S_ marcescens_SSB.hkl 
 
The PDB files contain the refined co-ordinates of the various SSBs in standard Brookhaven PDB 
format, and the HKL files contain the Miller indices, the structure factor amplitudes and standard 
deviations in the format (3I4,2F8.2). 
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