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ABSTRACT

Numerous mammals possess whiskers (tactile hairs, also known as vibrissae) to explore their environment. These
complex mechano-sensitive vibrissae are located, e.g. in the snout region (mystacial vibrissae). Because of the
deformation of the vibrissa by contact with objects and obstacles, the animal gets additional information about
the environment. Despite different morphology of animal vibrissae (e.g., cylindrically or conically shaped, pre-
curved, multi-layer structure), these biological tactile hairs are modeled in a mechanical way to develop and analyze
models concerning their bending behavior with a glance to get hints for a technical implementation as a technical
sensor. At first, we investigate the bending behavior of cylindrically shaped and tapered rods which are one-sided
clamped and are under the load of an external force, using the Euler-Bernoulli non-linear bending theory. Then,
a quasi-static sweep of these rods along various obstacle profiles is used for an obstacle profile reconstruction
procedure. While scanning the object, the clamping reactions are determined, which are the only observables
an animal relies on in biology. In plotting these observables and using them in a reconstruction algorithm to
determine the scanned contour, we try to identify special features in dependence on the different geometries of
the rods. The clamping reactions tremendously depend on the form and position of the profile which is shown in
several numerical simulations.

Index Terms— tactile sensor, bio-inspired sensor, animal vibrissa, tapered shape, object contour reconstruction.

1. INTRODUCTION

On the body of mammals a tactile sensory organ with incomparable abilities can be found -– the so-called sinus
hairs. Despite existing differences regarding musculature (see Fig. 1-left) and localization, they are synonymously
also known as vibrissae or whiskers [18]. Depending on their localization on the body [21] they are used for
different tasks like object recognition [6], object discrimination [7, 8] and perception of flow [8, 30] as well as
for social behavior [1, 15]. The hair shaft itself has no receptors along its length [9]. Following the concept of
a biomechatronic system [27], it can be seen as infector and transmission for all tactile stimuli arising along the
shaft. Different studies try to explain this transmission to the mechanoreceptors in the follicle (see Fig. 1-right)
from a mechanical point of view [2, 10, 16, 17].
Therefore, exact descriptions of the geometry as well as material parameters of the hair shaft are necessary. Studies
have shown that the hair shaft is a thin, long and pliable truncated cone with a high aspect ratio of length to diameter
[4, 24, 29]. Especially the tapered structure (see Fig. 2) has an important role for object sensing [12, 26].
This assertion is the starting point of the paper at hand: analytical investigations of the tapered shape on the bend-
ing behavior of artificial sinus hairs for prototypes in context of object sensing – from the mechanical point of view.
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Figure 1. Sinus hairs of mammals: Left – schematic drawing of neighboring follicles [3]; Right - schematic
overview of the basic elements of the follicle-sinus-complex with receptors (blue) [11].

Figure 2. Stitched overview of a carpal sinus hair taken with an OlympusrBX51 system microscope at a magni-
fication of 10x.

In literature, there are several investigations concerning the bending behavior of rods – serving as models for tactile
sensors:

• In early works [5, 14, 23], first (mathematical) models describing large deflections of Euler-Bernoulli rods
were analyzed, without any concern to artificial sensors.

• Further works, focussing the bending behavior of rods in context to animal vibrissae, are [13, 19, 22], but
with a restriction to cylindrical rods.

• A lot of other works focus the dynamical bending behavior of rods, e.g. see [16], more precisely, the
investigation – primary in a numerical way – of the natural frequencies of straight rods.

• First works, analyzing the bending behavior of conically shaped rods in context of bio-inspired sensors are
[17, 20, 28], but they are limited to multi-body systems or finite element models, which shall approximate
the bending behavior of rods (have to be modeled as a continuum in mechanics).

Therefore, we focus on the analytical modeling of conically shaped rods in continuum mechanics. The paper
is arranged as follows: Section 2 presents preliminary studies concerning the static bending behavior of tapered
artificial sensors, whose information is then used for the object contour detection algorithm in Section 3. The paper
ends up with a conclusion and an outlook on future work.

2. PRELIMINARY STATIC BENDING STUDIES

Starting point is the description of a plane curve (w.l.o.g., in x-y-plane) in natural coordinates – in dependence on
the arc length s, parameterized by the slope angle ϕ(s):
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Figure 3. Illustration of slope angle ϕ and arc lenght s.

dx(s)

ds
= cos

(
ϕ(s)

)
dy(s)

ds
= sin

(
ϕ(s)

)
dϕ(s)

ds
= κ(s) =

Mbz(s)

E Iz(s)


(1)

With a glance to Fig. 3, we are focusing on an one-sided clamped Euler-Bernoulli rod with boundary conditions at
s = 0:

x(0) = 0

y(0) = 0

ϕ(0) = 0

 (2)

Applying a static force load F at s = sF under angle α to the undeformed rod, there are two possibilities of acting:
direction preserving (dp) or angle preserving (ap)1 load, see Fig. 4.
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Figure 4. Load scenarios: direction preserving (left), angle preserving (right).

Then, the corresponding bending moments w.r.t the z-axis are:

Mbzdp(s) =

{
F sin(α)

(
x(sF )− x(s)

)
− F cos(α)

(
y(sF )− y(s)

)
, s ∈ (0, sF )

0 , s ∈ (sF , L)
(3)

Mbzap(s) =

{
F sin

(
β + ϕ(sF )

) (
x(sF )− x(s)

)
− F cos

(
β + ϕ(sF )

) (
y(sF )− y(s)

)
, s ∈ (0, sF )

0 , s ∈ (sF , L)
(4)

Now, we introduce the conicity of the rod, to have a well-defined set of equations (1). Following the remarks on
the conicity in Section 1, we analyze a conically shaped rod with a linear decreasing diameter from base to tip [24].

1In the dp-case, the force has constant x- and y-coordinates in the undeformed and deformed state, whereas in ap-case the force has always
the same angle β to the tangent of the deformed rod.
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For this, we introduce the diameter function

d(s) = d(0)− a d(0)

L
s, s ∈ [0, L] , with a := 1− d(L)

d(0)
, (5)

whereas a is now a design factor:

• a = 0 ⇒ d(L) = d(0), we have a cylindrical shape,

• a < 1 ⇒ d(L) > 0, we have a truncated cone,

• a ≈ 1 ⇒ d(L) ≈ 0, we have a hastate conical rod, see Fig. 5.

L

d

Figure 5. Model of the rod with linearly changing diameter: hastate conical rod (top) and truncated cone (bottom).

Remark 1. It is easy to introduce such a function (5) for an inner diameter if the cone is hollow.

Then, the second moment of area becomes

Iz(s) =
π

64
d(s)4, for s ∈ [0, L]. (6)

Remark 2. For upcoming investigations the following dimensioning is suitable. We introduce the units

[length] := L , [force] :=
E Iz(0)

L2
, [moment] :=

E Iz(0)

L
,

with L as the length, E as Young’s modulus, and Iz(0) as the second moment of area at s = 0 of the rod. Fron
now on, all quantities are represented dimensionless.

Using the units from Remark 2 and (6), there arise the following sets of equations:

direction preserving-case:

for s ∈ [0, sF ]

dx1
ds

= cos
(
ϕ1(s)

)
, x1(0) = 0

dy1
ds

= sin
(
ϕ1(s)

)
, y1(0) = 0

dϕ1

ds
= f

sin(α)
(
x1(sF )− x1(s)

)
− cos(α)

(
y1(sF )− y1(s)

)
(
1− a s

)4 , ϕ1(0) = 0

for s ∈ (sF , 1]

dx2
ds

= cos
(
ϕ2(s)

)
, x2(sF−) = x2(sF+)

dy2
ds

= sin
(
ϕ2(s)

)
, y2(sF−) = y2(sF+)

dϕ2

ds
= 0 , ϕ2(sF−) = ϕ2(sF+)

(7)

©2017 - TU Ilmenau 4



System (7) forms a 2-point boundary-value problem with two unknown quantities x1(sF ) and y1(sF ).

angle preserving-case:

for s ∈ [0, sF ]

dx1
ds

= cos
(
ϕ1(s)

)
, x1(0) = 0

dy1
ds

= sin
(
ϕ1(s)

)
, y1(0) = 0

dϕ1

ds
=f

sin
(
β + ϕ1(sF )

) (
x1(sF )− x1(s)

)
− cos

(
β + ϕ1(sF )

) (
y1(sF )− y1(s)

)
(
1− a s

)4
, ϕ1(0) = 0

for s ∈ (sF , 1]

dx2
ds

= cos
(
ϕ2(s)

)
, x2(sF−) = x2(sF+)

dy2
ds

= sin
(
ϕ2(s)

)
, y2(sF−) = y2(sF+)

dϕ2

ds
=0 , ϕ2(sF−) = ϕ2(sF+)

(8)

System (8) forms a 2-point boundary-value problem with three unknown quantities x1(sF ), y1(sF ) and ϕ1(sF ).
The systems (7) and (8) are now solved numerically using shooting methods to determine the unknown quantities.
Elaborate parameter studies are performed to determine the bending behavior of the rod in dependence on several
parameters, e.g. load f , point of application sF , diameter ratio d(1)

d(0) . Exemplarily, the influence of the load f on
the bending behavior is shown in Fig. 6.

x

y

dp-case ap-case

f1 = 1 f2 = 2 f3 = 3 f4 = 4 f5 = 5

Figure 6. Deformed conically shaped rods (dp- and ap-case) in dependence on load f (using: a = 0.3, sF = 7/8
and α, β = 3/2π)

The larger the load, the larger the deflection of the rod, more distinct in the ap-case than the in the dp-one. The
dependence on the tapering ratio is shown in Fig. 7. Here, we plot the tip displacement of the rod after applying
several loads in dependence on the tapering ratio d(1)

d(0) .
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Figure 7. Tip displacement c (using Euklidean norm) of the initial and deformed state of a rod in dependence on
d(1)/d(0) for the dp-case (left) and the ap-one (right).

The smaller this ratio, the larger is the tip displacement – in both cases, whereas the dp-case is more related to
application in form of object contour detection, which is addressed to the next section.

3. OBJECT CONTOUR DETECTION

After the preliminary studies in Section 2 where the applied force ~F or f , resp., is known, we now switch to
an important application of sinus hair-like tactile sensors: object contour detection. For this, we proceed with a
modeling section before presenting numerical investigations of the sensing behavior in dependence on the tapering
ratio.

3.1. Modeling

Let us consider an one-sided clamped Euler-Bernoulli rod as a mechanical model for object contour/shape detec-
tion, as depicted in Fig. 8.

x

y

s = s1
ϕ(s1) = α

s = 1

s = 0

~F

Figure 8. Deformed sinus hair during object sensing.

Let us state the following assertion and assumptions:
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• The considered object is assumed to be rigid, has a plane boundary
(
ξ(α), η(α)

)
, represented by a strictly

convex function and is parameterized by its slope angle α ∈
(
− π

2 ,
π
2

)
.

• The artificial sinus hair/rod is moved from the right to left along a horizontal straight line, i.e., we have a
moving clamping support2 at y = 0 in negative x-direction.

• The translational velocitiy is nearly zero, i.e., we can consider the problem quasi-statically.

• Due to a contact of the rod to the object, the arising bending of the sinus hair takes place, w.l.o.g., in the
x-y-plane.

• The deformation of the rod is linear elastically due to Hooke’s law of elasticity.

• The contact (between rod and object at s1) is assumed to be ideal, i.e., the arising contact force is perpendic-
ular to the profile tangent. Furtheron, we do not take any frictional effects into account.

• The strict convexity of the profile results in the existing of only one contact point at each position of the
sinus hair.

3.2. Step 1: Generation of Observables

This step can be skipped if we replace it with an experimental setup and measurements. But, obviously, we will
get no analytical insight, therefore, we try to handle this step in an analytical way. The general task here is to
determine the clamping reactions for a reconstruction – the quantities an animal solely relies on in nature.
Once again, the starting point is system (1) with diameter (5) and second moment of area (6). The bending moment
arises from Fig. 8:

mbz(s) =


f [(η(α)− y(s)) sin(α) + (ξ(α)− x(s)) cos(α)] , s ∈ (0, s1)

0 , s ∈ (s1, 1)

(9)

Before solving the arising equations, we have to point out, that there exist two contact scenarios of the rod with the
object, see Fig. 9:

• Phase A: rod tip contact with the object – no information about ϕ(s1) = ϕ(1), only s1 = 1;

• Phase B: tangentially contact of the rod with the object at s1 < 1 with ϕ(s1) = α.

Figure 9. Phases during object sensing (grey - Phase B, and black - Phase A) [25].

Using the dimensioning procedure of Section 2, there arise two systems – not depending on the kind of the pre-
served quantity, here, depending on the contact phase.

2Although we know that there is a certain elasticity at the support of the sinus hair, we assume a clamping for the first investigations. The
elasticity is addressed to further studies.
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Remark 3. Due to the fact, that s1 is unknown, but this is the only point defining the set of equations in Phase B,
we introduce a new parameter for the rod length in this case:

s = τ s1 (10)

This will lead to the following two sets of 2-point boundary-value problems with unknown quantities:

• Phase B
dx(τ)
dτ = s1 cos

(
ϕ(τ)

)
dy(τ)
dτ = s1 sin

(
ϕ(τ)

)
dϕ(τ)
dτ = s1 κ(τ)

κ(τ) =


f

[(
η(α)−y(τ)

)
sin(α)+

(
ξ(α)−x(τ)

)
cos(α)

]
(
1−a1s1τ

)4 , for τ ∈ [0, 1]

0, for τ ∈
(

1, 1
s1

]


(11)

with boundary conditions

y(0) = 0 ϕ(1) = α x(1) = ξ(α)
ϕ(0) = π

2 y(1) = η(α)

}
(12)

• Phase A (with s1 = 1)

dx(τ)
dτ = cos

(
ϕ(τ)

)
dy(τ)
dτ = sin

(
ϕ(τ)

)
dϕ(τ)
dτ = κ(τ)

κ(τ) =
f

[(
η(α)−y(τ)

)
sin(α)+

(
ξ(α)−x(τ)

)
cos(α)

]
(
1−a1τ

)4


(13)

with boundary conditions
y(0) = 0 x(1) = ξ(α)
ϕ(0) = π

2 y(1) = η(α)

}
(14)

In applying shooting methods to these systems, we are able to determine the unknown quantities f and s1.

Remark 4. As in Section 1, the animal solely relies on the information of the mechanoreceptor cells in the follicle-
sinus complex. Hence, we have to determine the clamping reactions for a reconstruction, although we have
determined s1.

Following up, we get the clamping reactions:

fAx = −f sin(α) , fAy = f cos(α) , mAz = −mbz(0+) .

If we now move the base support by an increment ∆x0 to the right, i.e., we are changing the actual position x0
(or changing the consideration to the slope angle α) the complete calculation starts again (a loop), which results in
functions:

fAx = fAx(x0) , fAy = fAy(x0) , mAz = mAz(x0)

Exemplarily, Fig. 10 presents the clamping reactions while scanning a convex profile x 7→ g(x) = x2 + 0.3 with
an artifical vibrissa using various tapering ratios. Having a closer look to the subfigures of Fig. 10, one can observe
two facts:

• At first, no information about the profile contour can be extracted from the clamping reactions, but

• for smaller tapering ratios d(1)
d(0) , i.e., higher desgin factors a, remind (5), all clamping reactions can be

decreased – up to limits of measurements.

The first assertion yields the claim for a reconstruction algorithm.
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Figure 10. Clamping reactions fAx (top left), fAy (top right), moment mAz (bottom) during object sensing using
a parabola profile g(x) = x2 + 0.3 for different vibrissa tapering ratios.

3.3. Step 2: Contour Reconstruction

Now, we have the following quantities at hand:

• the clamping reactions from Step 1 or measured in experiments, and

• the base position x0.

Using these quantities, we are able to determine

f =

√
fAx

2 + fAy
2 and α = arctan

(
−fAx
fAy

)
which were used in the previous sets of equations.
The main idea now is, contrary to Step 1 in solving a boundary-value problem with unknowns, to solve an initial-
value problem. This is possible, since the bending moment is fully known using a positive cut applying method of
sections, see Fig. 11:

mbz(s) = −mAz + fAy

(
x(s)− x0

)
− fAx y(s) . (15)

The initial-value problem – to be solved until mbz = 0 – is now:

dx(s)

ds
= cos

(
ϕ(s)

)
, x(0) = x0

dy(s)

ds
= sin

(
ϕ(s)

)
, y(0) = 0

dϕ(s)

ds
= κ(s) = −mAz + fAy

(
x(s)− x0

)
− fAx y(s) , ϕ(0) =

π

2


(16)
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Figure 11. Applying method of sections to determine the bending moment.

3.4. Numerical Simulation

Here, we sense an object with a profile boundary mentioned before g(x) = x2 + 0.3, using several tapering ratios,
see Fig. 12.
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Figure 12. Deformed vibrissae while scanning the profile boundary g(x) = x2 + 0.3 using several tapering ratios
dal(1)/dal(0) (red - contacting in Phase B, blue - contacting in Phase A).
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To judge the quality of reconstruction we introduce a reconstruction error between actual point of the profile
contour and the reconstructed one, according to [25]:

error =

√(
x(s1)− ξ(α)

)2
+
(
y(s1)− η(α)

)2
.

For our simulation results, we get the error displayed in Fig. 13.
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Figure 13. Reconstruction error in numerical simulations.

For larger tapering ratios we get higher reconstruction error, but the errors for the used tapering ratios are of order
10−6.

4. CONCLUSIONS & OUTLOOK

Bionic researches of sensors and actuators persue the objective to use the advantages and properties of the nat-
ural vibrissa for technical innovations. For this, a detailed knowledge about the bending behavior is essential.
This paper was devoted to the analytical investigation of sinus hair-like tactile sensors using Euler-Bernoulli rods
which exhibit a conical shape. The investigations were inspired by the natural geometrical shape of the biological
paradigm. Most papers in literature focused on cylindrically shaped rods for object contour detection or use ap-
proximation models as multi-body and/or finite element ones. Therefore, we investigated the bending behavior of
a one-sided clamped cylindrical sinus hair that was then extended to a conical shape (here, we focused on a linearly
decreasing diameter from tip to base). Based on the models, the corresponding differential equations were derived.
The static bending behavior depending on different geometry parameters was analyzed and discussed. The simu-
lation results showed a strong impact of the conicity of a sinus hair on the bending behavior in comparison with
cylindrical ones. Then, a model to simulate the object scanning by using a technical sinus hair was expanded to
a conical geometry. In this context, the observables and the relative error for the reconstructed profile were cal-
culated and analyzed. At this point, observables are the support reactions at the clamp, which could be measured
in experiments. The results showed that a conical geometry has a large impact on the generated observables. In
contrast, the relative error of the reconstructed profile is hardly changed.

Future work shall encompass

• investigations of the bending behavior with respect to other conical shapes: exponentially changing diameter,
hollow profiles;

• incorporation of friction during contact;

• extending the sensing model to a rotational movement of the vibrissa instead of a translational movement of
the support, which is then more realistic to nature.
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