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Abstract
Random approximations for a deterministic optimization problem occur in many
situations. Unknown parameters or probability distributions in real-life decision
problems are replaced with estimates; more and more solution algorithms use
random steps. Moreover, many estimation procedures in statistics are random
optimization problems, which can be supplemented with a deterministic limit
problem.

Confidence sets for solution sets and level sets of a deterministic decision prob-
lems can be derived on the base of suitable uniform concentration-of-measure re-
sults for sequences of random functions. In the present paper approximations with
kernel density estimators are considered and concentration-of-measure results for
these estimators are provided. The results are employed to derive confidence sets
for modes and high density regions of probability distributions. Furthermore,
applications in stochastic programming are investigated. It is shown how the
assertions can be utilized to derive uniform concentration-of-measure results for
chance constraints and functions which are expectations.

1 Introduction

Usually, real-life decision problems are optimization problems which are fraught
with uncertainties. Decision makers estimate the unknown parameters or proba-
bility distributions and solve the problems as they then arise. This is particularly
true for stochastic programming problems, which naturally heavily depend on the
underlying probability distribution. Unfortunately, sometimes small deviations
in the objective functions and/or the constraints of a decision problem can result
in relatively large deviations in the solutions. Hence there is a need for methods
that take into account that the data are uncertain and so are the results.

There are many approaches that try to cope with this challenge. Two major
techniques were developed by Jitka Dupačová and are successfully applied to the
present day, the minimax approach ([33], [24]) and the contamination technique
([4], [5]).
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An approach which is closely related to the minimax approach takes into
account the ‘ambiguity’ of the probability measure and tries to find a decision
which is ‘optimal’ with respect to a suitably chosen set of probability measures,
see e.g. [18], [10].

Useful information is also given by convergence conditions as considered in
[6]. Usually one can directly use convergence results for the estimates involved
and derive convergence properties for solution sets etc. ([23], [17], [28]). However,
one often faces the situation, that the generation of new samples is expensive, if
not impossible. Then quantitative results for a fixed sample size n are asked for.
Quantitative stability results have been provided in terms of distances between
the underlying probability measures or the parameters ([20], [19], [18]).

Another approach uses sets which cover the true solutions or optimal values of
stochastic programming problems with a high probability. Such ‘confidence sets’
for the solutions of the decision problems can be derived if confidence regions
for the unknown objective functions and constraint sets are available ([17], [29]).
Often the functions involved depend on a probability distribution, as they are
expectations of random functions or chance constraints.

Approximations of the probability measure by the empirical measure are con-
sidered in the framework of estimated probability distributions, but also for nu-
merical reasons, above all in the context of Sample Average Approximation ([23],
[14], [2], [32]). For chance constraints, however, it has the disadvantage that
discontinuous functions come into play. If the random variables are known to be
continuously distributed, one can benefit from the smoothing effect of the density
estimators, particularly for numerical reasons.

In the present paper the focus is on approximations of the probability mea-
sure with kernel density estimators. Density estimation with kernels has a long
tradition in statistics and is widely spread. Kernel estimates are well investi-
gated, especially with respect to their convergence properties, cf. [21], [15], [12],
[26], [7]. Parametric density estimation or density estimation with Epi-splines
([22]) are further interesting methods, but will not be considered here. However,
given concentration-of-measure results for these estimators, one can proceed as
in Section 3 of this paper to derive corresponding results.

We are interested in the non-asymptotic point of view, particularly in con-
fidence sets. In parametric statistics confidence sets are usually derived from
statistics with a known distribution. If no such distribution is available one usu-
ally makes do with the asymptotic distribution. Asymptotic confidence sets have
also been considered in stochastic programming ([16], [9], [2]) and in the context
of level sets for kernel density estimators ([11]). Here we pursue another approach.
Exploiting quantified convergence notions for sequences of random functions and
sequences of random sets one can derive so-called universal confidence sets. The
method yields for each sample size n a conservative confidence set, i.e. a set
which covers the true set with a prescribed probability.

The crucial assumptions in the approach are concentration-of-measure prop-
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erties for sequences of random functions. It is the aim of the present paper to
provide corresponding assertions for approximations on the base of density esti-
mators.

The results can not only be applied to problems arising from random ap-
proximations to mathematical, particularly stochastic, programming problems.
Already by Jitka Dupačová and Roger J-B Wets [6] and later on in [28] it was
pointed out that methods originally developed in the framework of stochastic pro-
gramming can also contribute to statistical estimation theory. This holds equally
for kernel density estimators. The investigation of key properties of the density
itself can benefit from the approach investigated in the present paper. Thus it is
possible to derive confidence sets for modes or high density regions.

For the general approach investigated in [29] uniform concentration-of-measure
properties of the form (1) below are required. Unfortunately, to the best of our
knowledge, so far no such result has been proved for kernel density estimators.
We therefore provide a result which can be used to determine confidence sets for
high density regions and modes. Moreover, the uniform confidence bands can
help to judge to what extent ‘desirable’ densities, e.g. normal distributions with
special properties in stochastic programming problems, fit into the confidence
band.

Concentration-of-measure results for integrals of densities have been derived
in [3] under differentiability conditions for the density. We will extend these
assertions and show how they can be exploited for the investigation of functions
which are integrals and particular chance constraints. Note that important risk
measures can be represented as integrals.

The approach which will be considered is usually easy to apply, once the
needed convergence properties have been proved. We provide a short example.

Suppose that we would like to investigate an unknown distribution represented
by a density function f0. Assume that a density estimator fn with the following
property is available:

sup
n∈N

P ( sup
z∈Rm

|fn(z)− f0(z)| ≥ βn,κ) ≤ H(κ). (1)

Here H(κ) denotes a function with the property lim
κ→∞
H(κ) = 0 and (βn,κ)n∈N

denote sequences of positive real numbers with lim
n→∞

βn,κ = 0 for each κ > 0.

Inequality (1) can immediately be used to derive a universal confidence band
for f0, but, moreover, offers the possibility to obtain confidence sets for level sets,
argmax sets etc. Here we consider the derivation of a confidence area for a level
set M δ := {z ∈ Rm : f0(z) ≥ δ}, δ > 0, of the density function f0. To avoid
additional technical considerations we assume that f0 is upper semicontinuous.
Further assertions are presented in Section 3.

Consider the random sets M δ
n,κ := {z ∈ Rm : fn(z) ≥ δ − βn,κ}, n ∈ N .

If, for a fixed n ∈ N , there is a zn ∈ M δ which does not belong to M δ
n,κ, then
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f0(zn) ≥ δ, but fn(zn) < δ − βn,κ. Hence fn(zn)− f0(zn) < −βn,κ and by (1) the
probability of the event M δ \M δ

n,κ 6= ∅ can be bounded by H(κ). Consequently

sup
n∈N

P (M δ \M δ
n,κ 6= ∅) ≤ H(κ).

In order to derive a confidence set for M δ with a prescribed level 1− η one deter-
mines κ0 such that H(κ0) ≤ η. Then for each sample size n the set M δ

n,κ0
covers

the true level set M δ at least with probability 1−η. Note that no knowledge about
the whole distribution or the asymptotic distribution is needed and a confidence
set for each sample size n can be derived. In fact, for this application we need
only the weaker one-sided assertion sup

n∈N
P ( inf

z∈Rm
(fn(z)− f0(z)) ≤ −βn,κ) ≤ H(κ).

In order to find a meaningful level δ mode estimators can be employed.
The paper is organized as follows: In Section 2 we introduce the kernel density

estimator and provide concentration-of-measure results, especially of the form (1),
under different assumptions. In Section 3 we show how confidence sets for modes
and high density regions can be derived. Furthermore we consider confidence
bands for functions which are integrals with respect to a density and confidence
sets for probabilistic constraints. In Section 4 we provide the proofs for Section
2.

2 Concentration-of-Measure for the Kernel Den-

sity Estimator

Let Z1, Z2, . . . be i.i.d. random vectors on a probability space [Ω,Σ, P ] with val-
ues in Rm. The probability distribution PZ is assumed to have a density f0. We
consider the kernel density estimator of f0 based on Z1, . . . , Zn, n ≥ 1,

fn(z) :=
1

nhn

n∑
i=1

K

(
z − Zi
h

1/m
n

)
.

where K is a kernel and hn > 0 is the bandwidth. Sometimes, in order to make
clear which variables are random, we will use the extended writing

fn(z, ω) =
1

nhn

n∑
i=1

K

(
z − Zi(ω)

h
1/m
n

)
.

The kernel estimators do not have the most general form. Instead of a uniform
bandwidth hn ‘individual’ bandwidths or bandwidth matrices can be used. The
approach can be extended to this case, see [25]. In order not to overload the
presentation with technical details we use uniform bandwidths. Furthermore, for
the same reason, here we will not consider corrections for fn if the support does
not equal Rm.
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Suitable multivariate kernels K are often obtained as products of univariate

kernels K̃: K(u) =
m∏
i=1

K̃(ui), u = (u1, . . . , um)T . Another method uses K(u) =

cKK̃(||u||2) with c−1
K =

∫
Rm

K̃(||u||2)du and the Euclidean norm || . . . ||2.

It is well known from statistics that in order to ensure consistency of the esti-
mators also assumptions on the function f0 have to be imposed ([26]). Naturally,
we also need conditions of that kind. When employing formulas like (1), it is
sometimes useful to consider sup

z∈Z
. . . for a Borel set Z ⊂ Rm instead of sup

z∈Rm
. . .

Then also the assumptions concerning f0 can be restricted to the set Z or a suit-
able neighborhood UZ. || . . . || denotes a suitable vector norm. We will derive
assertions of the form (1) under a differentiability assumption and for Hölder
continuous functions f0.

(V f2-Z) f0 is in C2(UZ) and its partial derivatives of order 1 and 2 are bounded,
especially there exist C3 <∞ such that

∀i, j ∈ {1, . . . ,m} : sup
z∈UZ

∣∣∂2f0(z)
∂zi∂zj

∣∣ ≤ C3.

(V fH-Z) There exist L ≥ 0 and α ∈ (0, 1] such that
∀(t1, t2)T ∈ UZ : |f0(t1)− f0(t2)| ≤ L||t1 − t2||α.

One may argue that the true density is not known. However, often suitable
bounds are available. Furthermore, as we aim at confidence sets, foregoing con-
fidence sets for the bounds can be incorporated. Note that also results which
assume higher order differentiability can be derived. They allow for better con-
vergence rates.

For uniform concentration-of-measure assertions we need the Fourier trans-
form k of the kernel K

k(u) :=

∫
Rm

eiu
T yK(y)dy ∀ u ∈ Rm

and an assumption concerning k.
The following conditions for the kernel K will be considered. (K5) and (K6)
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are used only in connection with (V f2-Z) and (K8) in connection with (V fH-Z).

(K1) K(u) = K(−u) ∀u ∈ Rm,

(K2)

∫
Rm

K(u)du = 1,

(K3) sup
z∈Rm

K(z)− inf
z∈Rm

K(z) =: C1 <∞,

(K4)

∫
Rm
|k(u)| du =: C2 <∞,

(K5)

∫
Rm

uiK(u)du = 0 ∀i = 1, . . . ,m, u = (u1, . . . , um)T ,

(K6)

∫
Rm

uTuK(u)du =: C4 <∞,

(K7)

∫
Rm
|K(u)| du =: C5 <∞,

(K8)

∫
Rm
||u||α|K(u)|du =: µα <∞ where α ∈ (0, 1],

(K9)

∫
Rm

(K(u))2du =: C6 <∞.

(K2) and (K3) imply that Efn(z) =
∫

ω∈Ω

fn(z, ω)dP (ω) =
∫
Rm

K(z − y)f0(y)dy

exists.

Firstly, we present a uniform concentration-of-measure assertion. It is the
base for the derivation of confidence sets for high density regions and modes.
First investigations of the uniform case in the univariate setting can be found in
[8].

Theorem 1 (Uniform Concentration-of-Measure)
Let the conditions (K1) - (K4) be satisfied.

(i) If additionally the assumptions (Vf2-Z), (K5), and (K6) are fulfilled, the
inequality

sup
n∈N

P (sup
z∈Z
|fn(z)− f0(z)| ≥ κ√

nhn
+ C2

(2π)m
√
nhn

+ 1
2
C3C4h

2/m
n ) ≤ 2e

−2κ2

C1
2

holds.

(ii) If additionally the assumptions (VfH-Z) and (K8) are fulfilled, the inequal-
ity

sup
n∈N

P (sup
z∈Z
|fn(z)− f0(z)| ≥ κ√

nhn
+ C2

(2π)m
√
nhn

+ Lµαh
α/m
n ) ≤ 2e

−2κ2

C1
2

holds.
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Consequently, in order to derive useful sequences (βn,κ)n∈N , κ > 0, the as-
sumptions

(B1) lim
n→∞

hn = 0 and

(B2) lim
n→∞

nh2
n =∞

have to be imposed.

Sometimes also a ‘pointwise’ version of Theorem 1 can be useful. Then we do
not need the second summand in the formulas for βnκ, see Section 4.

Theorem 2 (Pointwise Concentration-of-Measure)
Let the conditions (K1), (K2), and (K3) be satisfied.

(i) If additionally the assumptions (Vf2-{z}), (K5), and (K6) are fulfilled, the
inequality

sup
n∈N

P (|fn(z)− f0(z)| ≥ κ√
nhn

+ 1
2
C3C4h

2/m
n ) ≤ 2e

−2κ2

C1
2

holds.

(ii) If additionally the assumptions (VfH-{z}) and (K8) are fulfilled, the in-

equality sup
n∈N

P (|fn(z)− f0(z)| ≥ κ√
nhn

+ Lµαh
α/m
n ) ≤ 2e

−2κ2

C1
2

holds.

Now integrals of densities over a bounded Borel set T will be considered. For
M ⊂ Rm the set UhM is defined by UhM := {y ∈ Rm : inf

x∈M
||x− y|| < h}. ŪhM

means its closure. We will assume that UhnZ ⊂ UZ and UhnT ⊂ UT whenever
these conditions are needed. Otherwise the assertions have to be adjusted, which
is usually possible. λ denotes the Lebesgue measure.

Theorem 3 (Concentration-of-Measure of Integrals)
Let the conditions (K1), (K2), (K7), and (K9) be satisfied.

(i) If additionally the assumptions (Vf2-T ) and (K6) are fulfilled, the inequality

sup
n∈N

P (
∫
T
|fn(z)− f0(z)| dz ≥ βn,κ) ≤ e

−κ
2C2

5 (2)

with βn,κ = κ√
n

+ 1√
nhn

√
λ(UhnT )C6 + 1

2
C3C4h

2/m
n

holds.

(ii) If additionally the assumptions (VfH-T ) and (K8) are fulfilled, the inequal-
ity (2) holds with

βn,κ = κ√
n

+ 1√
nhn

√
λ(UhnT )C6 + Lµαh

α/m
n λ(T ).
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3 Applications

3.1 Confidence Sets for High Density Regions and Modes

Given a uniform concentration-of-measure result of the form (1), a high density
region can be derived immediately as shown in the introduction. However, the
obtained approximation may have a complicated shape. Further approximations
by a superset of a simpler form, e.g. via a parametric function, can be helpful
([25]).

Moreover, there is also another possibility, which uses a quantified one-sided
version of Kuratowski-Painlevé-convergence in probability of sequences of ran-
dom sets. Abbreviating we will speak of the KP-approach. Because a level set
can be described by inequality constraints, the results about the approximation
of constraint sets in [29] can be employed. Generally speaking, the approach
works as follows. One determines the set under consideration for the approxi-
mate problem and adds a suitable ball to each point. Thus it remains to find
a formula for the radius of the balls. The determination of the radius requires
some knowledge about the true problem. For instance, when considering high
density regions, a bound for the growth of the density near the boundary of the
high density region is utilized.

Firstly, we quote a result from [29] in a specialized form. Let g0|Rm → R1 be
a function which is lower semicontinuous in all points z ∈ Rm, and define

Γ0 := {z : g0(z) ≤ 0}.

Γ0 is assumed to be non-empty. The function g0 is approximated by a sequence
(gn)n∈N of functions gn|Rm ⊗ Ω → R1 which are (Bm ⊗ Σ,B1)-measurable. Br
denotes the σ-field of Borel sets of Rr. Furthermore, we assume that the functions
gn(·, ω) are lower semicontinuous for almost all ω ∈ Ω.

Eventually, the approximate constraint set Γn is defined by

Γn(ω) := {z ∈ Rm : gn(z, ω) ≤ 0}.

Under our assumptions Γn is a closed-valued measurable multifunction.
The crucial condition in the next theorem is condition (CO1). Here the results

of the foregoing section can be exploited. Condition (CO2) is a quantified ‘inner
point condition’. Let, for a given ε > 0, CI(ε) := Γ0 \ Uε(Rm \ Γ0). The
requirement Γ0 ⊂ ŪεCI(ε) is needed since we allow for rather general sets Γ0.
For convex sets the condition can be considerably simplified.

Furthermore, we use the following denotations. B is the set of sequences of
positive numbers that converge monotonously to zero. H denotes the set of func-
tions H|R1

+ → R1
+ with lim

κ→∞
H(κ) = 0. Λ is the set of functions λ̃|R1 → R1

which are right-continuous, non-decreasing, non-constant, and have the property
λ̃(0) = 0. By the superscript −1 we denote their inverses: λ̃−1(y) := inf{x ∈ R1 :
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λ̃(x) ≥ y}.

Proposition. Assume that the following conditions are satisfied:

(CO1) There exist a function H ∈ H and for all κ > 0 a sequence
(βn,κ)n∈N ∈ B such that
sup
n∈N

P{ω : sup
z∈Γ0

(gn(z, ω)− g0(z)) ≥ βn,κ} ≤ H(κ).

(CO2) There exist an ε̃ > 0 and a function µc ∈ Λ such that for all 0 < ε ≤ ε̃
Γ0 ⊂ ŪεCI(ε) and ∀z ∈ CI(ε) : g0(z) ≤ −µc(ε).

Then for all κ > 0 and β
(oc)
n,κ = µ−1

c (2βn,κ) the relation

sup
n∈N

P{ω : β
(oc)
n,κ ≤ 2ε̃ and Γ0 \ Uβ(oc)

n,κ
Γn(ω) 6= ∅} ≤ H(κ)

holds.

The condition β
(oc)
n,κ ≤ 2ε̃ is no restriction. It is only used to indicate that

arbitrary large values for β
(oc)
n,κ do not make sense.

The lemma is an example of a so-called outer approximation, which yields
confidence sets with a confidence level 1−η as follows. Let κ0 such thatH(κ0) ≤ η.
Then, for each n ∈ N , U

β
(oc)
n,κ0

Γn(ω) is a confidence set for Γ0 with confidence level

1− η.
In order to judge the quality of these approximations, inner approximations

([29]) or subset approximations could be employed. However, inner approxima-
tions need not provide subsets. Fortunately, often similarly to the example in the
introduction subset approximations can be derived.

High density regions are upper level sets. Hence we are interested in sets

Γ̃0 := {z ∈ Rm : f0(z) ≥ δ}

for a suitable δ > 0. Furthermore, let

Γ̃n := {z ∈ Rm : fn(z) ≥ δ}.

Theorem 4 below provides an example of an assertion which may be derived
combining the above proposition with Theorem 1. Many important densities are
unimodal, i.e. they have one local maximum point only. Univariate unimodal
densities are quasiconcave, consequently the upper level sets are convex and Γ̃0 ⊂
ŪεCI(ε) is satisfied. We provide a result which exploits part (i) of Theorem 1.
Part (ii) yields a corresponding result.

Theorem 4 (High Density Regions - KP-Approach)
Let the assumptions of Theorem 1(i) be satisfied and assume that f0 is upper semi-
continuous and quasiconcave. Furthermore, suppose that the following condition
is fulfilled:
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(CO2-u) There exist an ε̃ > 0 and a function µc ∈ Λ such that for all 0 < ε ≤ ε̃
∀z ∈ CI(ε) : f0(z) ≥ δ + µc(ε).

Then for all κ > 0 and β
(oc)
n,κ = µ−1

c (2 κ√
nhn

+ 2 C2

(2π)m
√
nhn

+ C3C4h
2/m
n ) the relation

sup
n∈N

P{ω : β
(oc)
n,κ ≤ 2ε̃ and Γ̃0 \ Uβ(oc)

n,κ
Γ̃n(ω) 6= ∅} ≤ 2e

−κ2
2C1

2

holds.

Estimates for modes, i.e. local maxima of a density, have been considered for
a long time, see e.g. [31] and the references quoted there. As mentioned, often
modes are unique which means that we have a single-valued solution of a maxi-
mization problem. Sometimes single-valuedness is imposed via an ‘identifiability’
condition.Thus we can use a result about a so-called inner Kuratowski-Painlevé-
approximation of solution sets. Inner approximations, in general, can be derived
under weaker conditions than outer approximations. If the sets under consider-
ation are single-valued, inner approximations are also outer approximations. In
terms of the solution sets
Ψn(ω) := {z ∈ Rm : fn(z, ω) ≥ fn(z̃, ω) ∀z̃ ∈ Rm}, n ∈ N, and
Ψ0 := {z ∈ Rm : f0(z) ≥ f0(z̃) ∀z̃ ∈ Rm}
this means that

sup
n∈N

P{ω : Ψn(ω) \ Uβn,κΨ0 6= ∅} ≤ H(κ)

implies
sup
n∈N

P{ω : Ψ0 \ Uβn,κΨn(ω) 6= ∅} ≤ H(κ).

Usually mode estimation problems do not take constraints into account. There-
fore we will provide two assertions for the solution of an unconstrained optimiza-
tion problem. One result, which belongs to the context of Kuratowski-Painlevé-
approximations, needs a growth condition for the objective function. The re-
laxation version, which is similar to the example in the introduction, can cope
without any knowledge about the true function. The first assertion could be de-
rived from the more general results for minimization problems in [29]. Because
we do not consider constraints, the optimization problem is much easier and we
provide the simple direct proof. Note that modes which are not single-valued or
maxima of constrained optimization of a density can be treated using the results
of [29]. Sufficient conditions for assumption (V f) below are provided by Theorem
1.

Theorem 5 (Mode - KP-Approach)
Assume that the following assumptions are satisfied:

(Vf) There exist a function H ∈ H and to all κ > 0 a sequence
(βn,κ)n∈N ∈ B such that
sup
n∈N

P{ω : sup
z∈Rm

|fn(z, ω)− f0(z)| ≥ βn,κ} ≤ H(κ).
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(G) There exists a function µ ∈ Λ such that for all ε > 0
∀ z /∈ UεΨ0 : f0(z) ≤ Φ0 − µ(ε).

Then for all κ > 0 and β
(m)
n,κ = µ−1(2βn,κ) the relation

sup
n∈N

P{ω : Ψn(ω) \ U
β
(m)
n,κ

Ψ0 6= ∅} ≤ H(κ)

holds. If Ψn, n ∈ N, and Ψ0 are single-valued, also
sup
n∈N

P{ω : Ψ0 \ Uβ(m)
n,κ

Ψn(ω) 6= ∅} ≤ H(κ)

is fulfilled.

Proof of Theorem 5. Assume that there are an n ∈ N , a κ > 0 and an
ω ∈ Ω such that Ψn(ω) \ U

β
(m)
n,κ

Ψ0 6= ∅. Hence there is a zn(ω) ∈ Ψn(ω)

which does not belong to U
β
(m)
n,κ

Ψ0. According to (G), for z0 ∈ Ψ0 we obtain

f0(zn) ≤ Φ0 − µ(β
(m)
n,κ ) ≤ Φ0 − 2βn,κ = f0(z0) − 2βn,κ. Furthermore, we have

fn(z0) ≤ fn(zn). Consequently f0(zn) − fn(zn) ≤ f0(z0) − fn(z0) − 2βn,κ and
either fn(zn) ≥ f0(zn) + βn,κ or fn(z0) ≤ f0(z0) − βn,κ. In both cases ω belongs
to the set {ω̃ : sup

z∈Rm
|fn(z, ω̃)− f0(z)| ≥ βn,κ} and (V f) can be exploited. �

Now we turn to the relaxation approach. Let Φ0 denote the maximal value
of the true density and Φn the maximal value of the density estimator. The
following theorem can be used to derive a confidence set for the mode (a = 1) or
a confidence set for a high density region. In comparison to the example in the
introduction, the level is not fixed, but related to the value of the mode.

Theorem 6 (Relaxation)
Assume that condition (Vf) is satisfied. Then for all κ > 0, a ∈ (0, 1],
ΨR,a
n,κ (ω) := {z ∈ Rm : fn(z, ω) ≥ aΦn(ω)− (1 + a)βn,κ}, and

Ψa
0 := {z ∈ Rm : f0(z) ≥ aΦ0} the relation

sup
n∈N

P{ω : Ψa
0 \ΨR,a

n,κ (ω) 6= ∅} ≤ 2H(κ)

holds.

Proof. Assume that there are an n ∈ N , a κ > 0 and an ω ∈ Ω such that Ψa
0 \

ΨR,a
n,κ (ω) 6= ∅. Hence there is a z0(ω) ∈ Ψa

0 which does not belong to ΨR,a
n,κ (ω). This

implies fn(z0(ω)) < aΦn(ω)− (1 + a)βn,κ. Let zn(ω) be such that fn(zn(ω), ω) =
Φn(ω). Consequently, because of f0(z0) ≥ aΦ0 ≥ af0(zn) and fn(z0) < afn(zn)−
(1 + a)βn,κ, we have fn(z0)− f0(z0) < afn(zn)− af0(zn)− (1 + a)βn,κ and we can
conclude as in the proof to the foregoing theorem. �

3.2 Functions which are Expectations with Respect to a
Density

Objective functions in stochastic programming problems are often expectations
of random functions. Important risk measures like Average Value-at-Risk fit into
this framework.
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In this section we consider decision problems with a decision variable x ∈ Rp

and objective or constraint functions of the form

h0(x) =

∫
Rm

ϕ(x, z)f0(z)dz = Eϕ(x, Z)

where Z is a random variable with values in Rm and probability distribution PZ ,
which has a density f0. ϕ is supposed to be Borel measurable and continuous in
each x for almost all z. The discontinuity set D(x) = {z : ϕ(·, z) is discontinuous
in x} can vary with x.

Furthermore, we assume that to each x ∈ Rp there is a neighborhood Uε̂{x}
such that E sup

x̃∈Uε̂{x}
|ϕ(x̃, Z)| exists. ε̂ can depend on x.

We assume that the function ϕ is known and the density is approximated by
the considered density kernel estimator fn. Hence we have

hn(x) =

∫
Rm

ϕ(x, z)fn(z)dz.

We aim at conditions of the form

sup
n∈N

P (sup
x∈M
|hn(x)− h0(x)| ≥ βn,κ) ≤ H(κ)

where M denotes a Borel subset of Rp. As the functions ϕ and f0 usually have
different properties for different subsets of the support of f0, it can be useful
to consider a partition {A1, . . . , Ak} of Rm. This partition may be refined with
increasing n, similar to the ‘pointwise approach’ in [30]. The following inequality
can be used:

sup
x∈M
|hn(x)− h0(x)| = sup

x∈M
|
k∑
i=1

∫
Ai

ϕ(x, z)(fn(z)− f0(z))dz|

≤ sup
x∈M

k∑
i=1

[sup
z∈Ai
|ϕ(x, z)|

k∑
i=1

∫
Ai

|fn(z)− f0(z)|dz].

Hence the results of Theorem 3 for
∫
Ai

|fn(z)− f0(z)|dz can be utilized. Because

the Lebesgue measure comes into play, usually a bounded support of the density
is needed. In real-life situations this assumption is often satisfied.

Now we consider probabilistic constraints. Let J be a finite index set and

Γ̂0 := {x ∈ Rp : PZ{z : γ̂j(x, z) ≤ 0} ≥ ηj, j ∈ J}, 0 < ηj < 1.

γ̂j|Rp × Rm → R1, j ∈ J, are measurable functions such that γ̂j(·, z) is lower
semicontinuous for PZ-almost all z. For sake of simplicity we confine to individual

12



chance constraints. Joint chance constraints can be treated in a similar way. In
order to exploit the proposition we can use gn(x) = max

j∈J
ĝjn(x), n ∈ N ∪ {0}.

With the 1-function (or indicator function), the set M j(x) = {z ∈ Rm :
γ̂j(x, z) ≤ 0}, and

ĝj0(x) = ηj − E1Mj(x)(Z) = ηj −
∫

Mj(x)

f0(z)dz

the set Γ̂0 can also be written in the form Γ̂0 = {x ∈ Rp : ĝj0(x) ≤ 0, j ∈ J}.
Approximating PZ with a density estimator fn we obtain

ĝjn(x, ω) = ηj −
∫
Rm

1Mj(x)(z)fn(z)dz = ηj −
∫

Mj(x)

fn(z)dz.

We could employ the foregoing considerations. However, often it is advanta-
geous to exploit the following inequality.

Scheffe’s identity: For two densities f and g defined on Rm one has

sup
B̃∈Bm

|
∫
B̃

f(z)dz −
∫
B̃

g(z)dz| = 1

2

∫
Rm

|f(z)− g(z)|dz

 .

Thus we immediately obtain for a Borel set M ⊂ Rp

∀j ∈ J : sup
x∈M
|ĝj0(x)− ĝjn(x, ω)| ≤ 1

2

∫
Rm

|f0(z)− fn(z)|dz.

Hence, under the assumptions of Theorem 3

P (ω : max
j∈J

sup
x∈M
|gj0(x)− gjn(x, ω)| ≥ 2βn,κ) ≤ H(κ)

with βn,κ and H as given in Theorem 3.

4 Proofs for Section 2

An important tool for our investigations is the bounded differences (or McDi-
armid’s) inequality in the multivariate form. For the readers convenience we
quote this inequality. For a proof see for instance [13] or [1].

Bounded Differences Inequality. Let Z1, . . . , Zn be i.i.d. random vectors
with values in Rm and g|Rm → R1 a measurable function.

13



If ∀i = 1, . . . , n
sup

z1,...,zn,z′i

|g(z1, . . . , zi−1, zi, zi+1, . . . , zn)− g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ ci

then

P (g(Z1, . . . , Zn)− Eg(Z1, . . . , Zn) ≥ t) ≤ exp(− 2t2

n∑
i=1

c2
i

).

The difference |Efn(z)− f0(z)| plays a role in the uniform setting and in the
L1 setting as well. Hence we start with the investigation of this term. We have
to distinguish whether (V f2-Z) or (V fH-Z) is satisfied.

Lemma 1. Let (K1), (K2), (K5), (K6), and (V f2-Z) be satisfied. Then for a
kernel estimator fn with bandwidth hn and kernel K the inequality

sup
z∈Z
|Efn(z)− f0(z)| ≤ C3C4

2
h2/m
n

holds.

Proof of Lemma 1. We have Efn(z) = 1
hn

∫
Rm

K( z−y
h
1/m
n

)f0(y)dy. Hence

Efn(z) − f0(z) =
∫
Rm K(z − y)f0(y)dy − f0(z). Now we take into account that

K(u) = K(−u), change variables z − y = u, and exploit further properties of K:

Efn(z)− f0(z) =

∫
Rm

K(u)f0(z + h1/m
n u)du− f0(z).

Because of
∫
Rm K(u)du = 1 we have

∫
Rm K(u)f0(z)du− f0(z) = 0 and hence

Efn(z)− f0(z) =

∫
Rm

K(u)(f0(z + h1/m
n u)− f0(z))du.

The Taylor expansion of f0 yields

f0(z + h1/m
n u) = f0(z) + h1/m

n uTf ′0(z) +
1

2
h2/m
n uTH0(ζz,u)u

where f ′0(z) denotes the gradient, H0 denotes the Hessian of f0, and ζz,u ∈ [z, z+

uh
1/m
n ]. Consequently

Efn(z)− f0(z) =

∫
Rm

K(u)(h1/m
n uTf ′0(z) +

1

2
h2/m
n uTH0(ζz,u)udu.

Because of
∫
Rm

uiK(u)du = 0 we obtain |Efn(z)− f0(z)| ≤ 1
2
C3C4h

2/m
n . �
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Since 1
2
C3C4h

2/m
n does not depend on z, we immediately obtain the following

corollary.

Corollary. Under the assumptions of Lemma 1 the inequalities

sup
z∈Z
|Efn(z)− f0(z)| ≤ 1

2
C3C4h

2/m
n and∫

T
|Efn(z)− f0(z)| dz ≤ 1

2
C3C4h

2/m
n λ(T )

hold.

If we only impose the Hölder condition (V fH-Z) we obtain Lemma 2.

Lemma 2. Let (K1), (K2), (K8), and (VfH-Z) be satisfied. Then for a kernel
estimator fn with bandwidth hn und kernel K the inequality

|Efn(z)− f0(z)| ≤ Lµαhα/mn

holds.

Proof of Lemma 2. We start as in the proof of Lemma 1. Instead of exploiting
the Taylor expansion we proceed as follows:
|Efn(z)− f0(z)| ≤

∫
Rm |K(u)|L||h1/m

n u||αdu = Lµαh
α/m
n . �

Lemma 2 yields the following corollary.

Corollary. Under the assumptions of Lemma 2 the inequalities

sup
z∈Z
|Efn(z)− f0(z)| ≤ Lµαh

α/m
n and∫

T
|Efn(z)− f0(z)| dz ≤ Lµαh

α/m
n λ(T )

hold.

Proof of Theorem 1.
We proceed as follows. Obviously, sup

z∈Z
|fn(z)− f0(z)| ≤ T1n + T2n + T3n where

T1n :=

∣∣∣∣sup
z∈Z
|fn(z)− f0(z)| − E

[
sup
z∈Z
|fn(z)− f0(z)|

]∣∣∣∣ ,
T2n := E

[
sup
z∈Z
|fn(z)− Efn(z)|

]
,

T3n := sup
z∈Z
|Efn(z)− f0(z)| .
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T3n was considered in the foregoing corollaries. In the next step we investigate
the random part T1n.

Lemma 3. Let the condition (K3) be satisfied.Then for a kernel estimator fn
with bandwidth hn and kernel K the following inequality holds:

∀κ > 0 : P

(∣∣∣∣sup
z∈Z
|fn(z)− f0(z)| − E

[
sup
z∈Z
|fn(z)− f0(z)|

]∣∣∣∣ ≥ κ√
nhn

)
≤ 2e

− 2κ2

C1
2 .

Proof of Lemma 3. Let g(z1, ..., zn) := sup
z∈Z

∣∣∣f̃n(z, z1, ..., zn)− f0(z)
∣∣∣ where

f̃n(z, z1, ..., zn) := 1
nhn

n∑
i=1

K
(
z−zi
h
1/m
n

)
.

Then we have

supz1,...,zn∧z′i∈A |g(z1, ..., zn)− g(z1, ..., z
′
i, ..., zn)|

= supz1,...,zn∧z′i∈Rm
∣∣∣supz∈Z

∣∣∣f̃n(z, z1, ..., zn)− f0(z)
∣∣∣− supz∈Z

∣∣∣f̃n(z, z1, ..., z
′
i, ..., zn)− f0(z)

∣∣∣∣∣∣
≤ supz1,...,zn∧z′i∈Rm supz∈Z

∣∣∣f̃n(z, z1, ..., zi, ..., zn)− f̃n(z, z1, ..., z
′
i, ..., zn)

∣∣∣
= supz1,...,zn∧z′i∈Rm supz∈Z | 1

nhn

(
K( z−z1

h
1/m
n

) + ...+K( z−zi
h
1/m
n

) + ...+K( z−zn
h
1/m
n

)
)

− 1
nhn

(
K( z−z1

h
1/m
n

) + ...+K(
z−z′i
h
1/m
n

) + ...+K( z−zn
h
1/m
n

)
)
|

= supz1,...,zn∧z′i∈Rm supz∈Z

∣∣∣ 1
nhn

(K( z−zi
h
1/m
n

)−K(
z−z′i
h
1/m
n

))
∣∣∣ .

According to (K3) we obtain∣∣∣∣K(
z − zi
h

1/m
n

)−K(
z − z′i
h

1/m
n

)

∣∣∣∣ ≤ C1.

Consequently the assumption of the bounded differences inequality is satisfied
with ci := 1

nhn
C1, i = 1,...n, and we have

∀ t > 0 : P (|g(Z1, ..., Zn)− Eg(Z1, ..., Zn)| ≥ t) ≤ 2e
− 2t2nh2n

C1
2 and

∀ κ > 0 : P (|g(Z1, ..., Zn)− Eg(Z1, ..., Zn)| ≥ κ√
nhn

) ≤ 2e
−2 κ2

C1
2 . �

For the investigation of the term T2n we use the Fourier transform k of the kernel
K, see Section 2. Furthermore, we need the Fourier transform of f0 :

φ(u) :=

∫
Rm

eiu
T yf0(y)dy ∀ u ∈ Rm.

Lemma 4. Let (K2), (K4), and (K7) be satisfied. Then for a kernel estimator
fn with bandwidth hn and kernel K the following inequality holds

E
[
sup
z∈Z
|fn(z)− Efn(z)|

]
≤ C2

(2π)m
√
nhn

.
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Proof of Lemma 4. Because of (K7) we have
∫
Rm |k(u)|du < ∞. Hence we can

employ the inversion formula and obtain K(u) := ( 1
2π

)m
∫
Rm e

−iuT yk(y)dy ∀ u ∈
Rm. Consequently fn can be rewritten in the following form:

fn(z) =
1

nhn

n∑
l=1

(
(

1

2π
)m
∫
Rm

e
−i

(
z−Zl
h
1/m
n

)T
y
k(y)dy

)

=
1

nhn

n∑
l=1

(
(

1

2π
)mhn

∫
Rm

e−i(z−Zl)
Tuk(h1/m

n u)du

)

= (
1

2π
)m
∫
Rm

e−iz
Tuk(h1/m

n u)

(
1

n

n∑
l=1

eiZ
T
l u

)
du

With φn(u) := 1
n

∑n
l=1 e

iZTl u ∀ u ∈ Rm we have

fn(z) = (
1

2π
)m
∫
Rm

e−iz
Tuk(h1/m

n u)φn(u)du ∀ z ∈ Z.

Because of Jensen’s inequality we obtain

E2

[
sup
z∈Z
|fn(z)− Efn(z)|

]
≤ E

[
sup
z∈Z
|fn(z)− Efn(z)|2

]
.

Now we use the Fourier transform and employ Fubini’s theorem:

E
[
supz∈Z |fn(z)− Efn(z)|2

]
= E

[
supz∈Z

∣∣∣( 1
2π

)m
∫
Rm e

−iuT zk(h
1/m
n u)φn(u)du− E

[
( 1

2π
)m
∫
Rm e

−iuT zk(h
1/m
n u)φn(u)du

]∣∣∣2]
= E

[
supz∈Z

∣∣∣( 1
2π

)m
∫
Rm e

−iuT zk(h
1/m
n u)φn(u)du− ( 1

2π
)m
∫
Rm e

−iuT zk(h
1/m
n u)Eφn(u)du

∣∣∣2]
= E

[
supz∈Z

∣∣∣( 1
2π

)m
∫
Rm e

−iuT zk(h
1/m
n u)(φn(u)− Eφn(u))du

∣∣∣2] .
With

∣∣∣e−iuT z∣∣∣ = 1 we can conclude that

E
[
sup
z∈Z
|fn(z)− Efn(z)|2

]
≤ E

[∣∣∣∣( 1

2π
)m
∫
Rm

∣∣k(h1/m
n u)

∣∣ |φn(u)− Eφn(u)| du
∣∣∣∣2
]
.

For an integrable real-valued function (u, ω)→ z̃(u, ω) =: z(u), u ∈ Rm, we have
because of Minkowski’s integral inequality

E
[
(

∫
Rm

z(u)du)2

]
= E

[
(

∫
Rm

z(u)du)(

∫
Rm

z(v)dv)

]
≤

(∫
Rm

E
1
2 [z2(u)]du

)2

.
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Hence with z(u) =
∣∣∣k(h

1/m
n u)

∣∣∣ |φn(u)− Eφn(u)| we obtain

E
1
2

[
sup
z∈Z
|fn(z)− Efn(z)|2

]
≤ (

1

2π
)m
∫
Rm

E
1
2

[∣∣k(h1/m
n u)

∣∣2 |φn(u)− Eφn(u)|2
]
du.

Furthermore

E 1
2

[∣∣∣k(h
1/m
n u)

∣∣∣2 |φn(u)− Eφn(u)|2
]

=
∣∣∣k(h

1/m
n u)

∣∣∣ E 1
2

[
|φn(u)− Eφn(u)|2

]
=
∣∣∣k(h

1/m
n u)

∣∣∣ √var(φn(u)),

where var (φn(u)) = 1
n2

∑n
k=1 var

(
eiu

TZk

)
= 1

n
var
(
eiu

TZ1

)
≤ 1

n
.

Summarizing,

E
[
sup
z∈Z
|fn(z)− Efn(z)|

]
≤ E

1
2

[
sup
z∈Z
|fn(z)− Efn(z)|2

]
≤ (

1

2π
)m
∫
Rm

∣∣k(h1/m
n u)

∣∣√var(φn(u))du

≤ (
1

2π
)m

1√
n

∫
Rm

∣∣k(h1/m
n u)

∣∣ du
= (

1

2π
)m

1√
n

1

hn

∫
Rm
|k(y)| dy.

With the assumption (K4) the inequality

E
[
sup
z∈Z
|fn(z)− Efn(z)|

]
≤ C2

(2π)m
√
nhn

.

follows. �

From the triangle inequality, Lemma 3, and Lemma 4 we have

supn∈N P (supz∈Z |fn(z)− f0(z)| ≥ βn,κ) ≤ supn∈N P (T1n + T2n + T3n ≥ βn,κ).

≤ supn∈N P
(
T1n + C2

(2π)m
√
nhn

+ T3n ≥ βn,κ

)
= supn∈N P

(
|supz∈Z |fn(z)− f0(z)| − E [supz∈Z |fn(z)− f0(z)|]| ≥ κ√

nhn

)
≤ 2e

−2κ2

C1
2 .

Inserting the special forms of T3n from the corollaries we obtain the assertion of
Theorem 1. �
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Proof of Theorem 2.
We start with the following inequality for a fixed z ∈ Rm.

|fn(z)− f0(z)| ≤ |fn(z)− Efn(z)|+ |Efn(z)− f0(z)| .

Now the bounded differences inequality is applied to g(z1, . . . , zn) = f̃n(z, z1, . . . , zn)
where f̃n is defined as in the proof of Lemma 3. We obtain similarly as in the
first part of the proof to Theorem 1

P

(
|fn(z)− Efn(z)| ≥ κ√

nhn

)
≤ 2e

−2 κ
2

C2
1 .

For the second term in the above inequality we use Lemma 1 or Lemma 2. �

Proof of Theorem 3.
We start with the triangle inequality in the following form:∫

T
|fn(z)− f0(z)| dz ≤ U1n + U2n + U3n where

U1n :=

∣∣∣∣∣∣
∫
T

|fn(z)− f0(z)| dz − E

∫
T

|fn(z)− f0(z)| dz

∣∣∣∣∣∣ ,
U2n := E

∫
T

|fn(z)− Efn(z)| dz

 ,
U3n :=

∫
T

|Efn(z)− f0(z)| dz.

Firstly we investigate the random part U1n. In the bounded differences inequal-
ity we use g(z1, . . . , zn) =

∫
T
|f̃n(z, z1, . . . , zn)− f0(z)|dz with f̃n as in the proof of

Theorem 1 and obtain:
|g(z1, . . . , zi, . . . , zn)− g(z1, . . . , z

′
i, . . . , zn)| ≤ 1

n

∫
T
|K(z − zi)−K(z − z′i)|dz.

Hence, with ci = 2
n
C5, the bounded differences inequality yields

P

(∣∣∣∣∫
T
|fn(z)− f0(z)| dz − E

∫
T
|fn(z)− f0(z)| dz

∣∣∣∣ ≥ t

)
≤ e

−nt2

2C2
5 and

P

(∣∣∣∣∫
T
|fn(z)− f0(z)| dz − E

∫
T
|fn(z)− f0(z)| dz

∣∣∣∣ ≥ κ√
n

)
≤ e

−κ2

2C2
5 .

Now we can proceed as in the second part of the proof to Theorem 9.5 in [3], i.e.,
we take into account that

E
∫
T

|fn(z)− Efn(z)|dz = E
∫
T

|fn(z)−
∫
Rm

K(z − y)f0(y)dy|dz,
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use Fubini’s theorem, employ E|X| ≤
√

E(X2) for a random variable X, and
utilize finally the Cauchy Schwarz inequality and Young’s inequality. We obtain

E
∫
T

|fn(z)− Efn(z)|dz ≤ 1√
nhn

√
λ(UhnT )C6.

It remains to apply the corollaries for U3n. �

Acknowledgement. The authors would like to thank Klaus Ziegler for valuable
discussions about the topic.

References

[1] Bartlett, Peter (2006). “ Proof of the bounded differences inequality.”
www.cs.berkeley.edu/ bartlett/.../bdddiff.pdf

[2] Bayraksan, Guzin, and David P. Morton, 2011. “A sequential sampling pro-
cedure for stochastic programming.” Operations Research 59:898–913.
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