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ABSTRACT 

The application of transmission holograms in automotive headlamp systems is a possible new 

field of application for holographic elements. However, it requires the adaptation of 

holograms to light-emitting diodes (LEDs) as reconstruction light sources. This includes the 

consideration of the reconstruction wavefront shape. Therefore, computer-generated 

holograms (CGHs) are designed for different LED wavefront approximations and recorded in 

a photopolymer. Within experiments, the performance of the optimization is analyzed. For 

reconstruction, an automotive-certified LED is used and the reconstructed image is recorded. 

The correlation of the ideal and the real reconstructed image is used as indicator for a 

successful adaptation within the design process. It is shown that there are clear differences 

regarding the improvement of the correlation between the considered wavefront 

approximations. The best results are achieved with a wavefront, determined from an 

interferometric measurement, and with a wavefront with Lambertian characteristic.  

Index Terms -  Holography, Computer-generated holograms, LED, illumination 

1. INTRODUCTION

The application of transmission volume holograms as optical elements in automotive 

illumination systems provides advantages like low axial thickness, light weight and a high 

flexibility regarding the design and the functionalities. Due to multiplexing properties [1], 

holograms can take the function of several optical elements like lenses and apertures. 

Especially computer-generated holograms (CGHs) can be designed in arbitrary ways and are 

versatile usable. However, the design and the recording process limits the range of usable 

illumination light sources. To get the best quality of the reconstructed image, the holograms 

must be illuminated with the wavelength and the wavefront shape of the recording laser. 

Otherwise, the resulting image is blurred and dispersion effects occur (c.f. Ref. [2-4]). 

Therefore, the application in headlamp systems requires the adaptation of CGHs to the 

illumination with typical automotive light sources. These light sources are polychromatic and 

divergent, e.g. phosphor-converted white LEDs with divergence angles of about ±60°. In the 

literature, spectral filters and lenses are used to adapt the light of LEDs to the design 

parameters (c.f. Ref. [5,6]), instead of optimizing the hologram. However, the usage of 

additional optical components reduces the benefits of the application of holograms in 

automotive systems. It has already been shown that dispersion effects can be avoided by 

considering spectral information of the illuminating light source within the design or the 

recording process, e.g. for reflection holograms with RGB-illumination (c.f. Ref. [5,7]) or for 

holographic lenses (cf. Ref. [8]). The specific angular emission of LEDs is not considered so 

far or it is approximated by ideal wavefront descriptions like spherical waves [9,10]. 

Therefore, CGHs should be designed for the specific wavefront shape of an LED. In 

section 2, the computational design process for the optimization of holograms is presented, 
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and the different ways to approximate an LED wavefront are described in section 3. The 

experimental test series and their results are briefly illustrated in section 4. Finally, the results 

and future steps are discussed in section 5.  

 

2. COMPUTATIONAL OPTIMIZATION OF CGHS 

 

The objective of the hologram optimization is the minimization of the difference between the 

desired ideal reconstructed image IZ and the real reconstructed image IR. In other words, the 

images IZ and IR should be as similar as possible. The similarity can be analyzed by 

calculating the correlation coefficient of both images with the pixel positions (𝑘, 𝑙) and the 

mean values of the images 𝐼𝑍̅ and 𝐼𝑅̅, according to 

𝜌 =
∑ ∑ [(𝐼𝑅

𝑘,𝑙−𝐼𝑅̅) (𝐼𝑍
𝑘,𝑙−𝐼𝑍̅)]𝑙𝑘

√[∑ ∑ (𝐼𝑅
𝑘,𝑙−𝐼𝑅̅) ²𝑙𝑘 ] [∑ ∑ (𝐼𝑍

𝑘,𝑙−𝐼𝑍̅) ²𝑙𝑘 ]

  .      (1) 

The value of the coefficient can achieve values between 0 and 1, whereby 0 indicates no 

similarity and 1 indicates identical images. For the analysis of the experiments this means, the 

higher the value of , the smaller is the difference between the images and the better is the 

optimization of the CGH for the illuminating light source.  

A three-step design process is used for the optimization, which is illustrated in Fig. 1. First, a 

basic hologram is designed to generate a specific test pattern. This calculation is performed 

with the iterative Fourier transform algorithm (IFTA) [11] resulting in a phase pattern φB(x,y). 

It is defined, that the size of the reconstructed image must be equal for an arbitrary 

reconstruction wavelength, differing from the recording wavelength of 532nm. This is 

realized by using a wavelength-dependent scaling factor for the image template (for details 

see Ref. [12]). 

The following design step is influenced by the recording process. There are different options 

to record a CGH into a material, e.g. two- or multi-photon processes [13] or displaying of the 

holographic information with a spatial light modulator (SLM) [14,15]. The latter is used for 

recording the holograms presented in this paper. In general, a hologram can be recorded in 

one step using a SLM, as the two-dimensional phase information from the IFTA is displayed 

by a two-dimensional device. However, it can be necessary to build up the hologram in a 

multi-step process, e.g. if several viewpoints of the object are desired [16,17]. The local 

optimization of the holograms, as presented in this paper, requires also a multi-step process, 

in which the hologram is build up as a matrix of several subholograms. This provides the 

possibility to adapt each subhologram to the local wavefront information [18]. Therefore, the 

phase pattern φB(x,y) is replicated to get a matrix of M × N subholograms in step two. The 

correct visual appearance of the test pattern requires the superposition of all reconstructed 

images at the same local position on a screen and, hence, an individual modification of each 

subhologram. This modification is comparable to the addition of the phase information of a 

lens φL(x,y), whose focal length is corresponding to the distance between the hologram and 

the screen. However, the reconstruction wavelength must be considered again to avoid a 

blurred reconstructed image (for details, see Ref. [12]). The holographic phase information 

φS(x,y) resulting from the second design step generates the best reconstructed image when it is 

illuminated with a plane wave. The adaption to an arbitrary wave is realized in step three. 

Therefore, the conjugate phase information φR(x,y) of the local wavefront is added to the 

subholograms (for details, see Ref. [18]). At the end of the three-step process, M × N 

subholograms φH(x,y) are designed for an arbitrary wavelength and wavefront. The advantage 

is that there are no restrictions regarding the wavefront shape in the computational design, if 

the 2-modulated phase is adequately sampled. However, an important aspect is the similarity 

between the assumed and the real wavefront information of the reconstruction light source. 
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Deviations of these waves lead to a deterioration of the visual appearance of the reconstructed 

image. In the next section, LED wavefront approximations are presented, which have been 

used for hologram optimizations.  

 

 
 

Figure 1: Schematic flowcharts of the design process. (a) the three-steps procedure in general, including the 

calculation of the basic hologram, the generation of the hologram matrix and the consideration of the local 

reconstruction wavefront; (b) same procedure as in (a) regarding the resulting phase pattern of each step. 

 

 

3. APPROXIMATIONS OF LED WAVEFRONTS 

 

There are two options to describe the emission of an LED in general. The first is the 

approximation as a spherical wave, due to the small chip dimensions and the highly divergent 

emission. Using the parabolic approximation, the phase of a spherical wave can be described 

as 

𝜑𝑆𝑊(𝑥, 𝑦, 𝑧) = 𝑎𝑟𝑔 {𝑒𝑥𝑝 [−
𝑖𝜋

𝜆𝑧0
(𝑥0 + 𝑥)2 + (𝑦0 + 𝑦)²]},    (2) 

with λ as wavelength, i as imaginary unit number, (x,y,z) are coordinates of the observation 

plane and (x0, y0, z0) are coordinates of the wave’s source plane. However, the light emitting 

surface of an LED is not infinitesimally small. It is assumed, that the consideration of the 

surface dimension leads to better results. According to Huygens’ principle [2], the LED 

wavefront can be constructed by superimposing a number of spherical waves, that are emitted 

from different local positions on the LED chip. This is a well-known approach to construct 

wavefronts [9,19]. The simplest mathematical formulation of Huygens’ principle is the 

summation of G × H spherical waves according to  

𝜑𝐻𝑃(𝑥, 𝑦, 𝑧) = 𝑎𝑟𝑔 ∑ ∑ 𝑒𝑥𝑝 [−
𝑖𝜋

𝜆𝑧0
(𝑥𝑔ℎ + 𝑥)

2
+ (𝑦𝑔ℎ + 𝑦)²]𝐻

ℎ=1
𝐺
𝑔=1     (3) 

  

Another formulation that has been established, is the Rayleigh-Sommerfeld approximation 

(RS). This describes the diffraction of waves at an aperture by superposing spherical waves 
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located in the aperture plane. In this paper, the convolution-based formulation of the RS 

approximation is used according to [20] 

𝜑𝑅𝑆(𝑥, 𝑦, 𝑧) = 𝑎𝑟𝑔[ℱ−1{ℱ{𝑈(𝑥0, 𝑦0, 𝑧0)}ℱ{𝐻(𝑥, 𝑦, 𝑧)}}]    (4) 

with   ℱ{𝐻(𝑥, 𝑦, 𝑧)} = exp [i2𝜋√
1

𝜆²
− 𝑓𝑥

2 − 𝑓𝑦
2 ]  . 

In these equations, (fx, fy) are the spatial frequency coordinates in the Fourier Domain, ℱ is the 

operator of the Fourier transform and ℱ−1 the operator of the inverse Fourier transform.  

The presented approaches allow the consideration of the LED dimension, which is generally 

provided by LED manufacturers. However, these approaches are limited with regard to effects 

of optical or material properties of phosphor-converted white light LEDs or diodes with 

integrated lenses.  To consider these effects, an interferometry-based approach was developed 

to measure the emitted wavefronts of LEDs [18]. Therefore, a Mach-Zehnder interferometer 

is used to generate a spherical reference wave that interferes with the unmodified sample 

wave of the LED. A phase retrieval approach is used to extract the LED phase information 

from two phase-shifted interference images by a combination of different methods like the 

Gram-Schmidt orthonormalization method [21], the continuous wavelet transform [22] and 

the successive over-relaxation method [23]. For details about the wavefront reconstruction 

from several measurements see Ref. [18].  

This interferometry-based approach provides the possibility to measure a wavefront “as is”, 

including any influences from the chip, the package, materials or optical components. 

However, the approach shows a high metrological and computational effort. In addition, the 

interferometer setup leads to restrictions regarding the measurable wavefront region. The path 

lengths are 205mm. This limits the measuring to an angular region of ±0.8°. The region can 

be extended by rotating the LED, which leads to an angular region of ±2°, which corresponds 

to the size of a hologram of 13.75 x 13.75mm² (11x11 subholograms). However, this requires 

the recording and processing of 56 interference images [18]. In consequence, the measuring of 

typical emission angles of ±60° would take several weeks with the current approach.  

An alternative approach to get the wavefront information of large angular regions might be 

the derivation from available photometric data. Manufacturer provide luminous intensity 

distribution curves (LDCs) for LEDs, which describe the envelope of all emitted light rays. 

Regarding the theory of the normal 

congruence between rays and 

waves, the wavefronts could be 

derived from ray files or from the 

luminous intensity distribution. 

Within the experiments presented 

in this paper, an automotive-

certified LED (Luxeon F, Philips) 

is used, which has a Lambertian 

emission characteristic as shown in 

Fig. 2. The LDC has been fitted 

and used for additional wavefront 

approximation. 

In the next section, the 

experimental test series to examine 

the effectiveness of the hologram 

optimization for the presented 

wavefront approximations are 

presented.  

Figure 2: Luminous intensity distribution curve (LDC)  

of the Luxeon LED in polar coordinates.  

The distribution shows a Lambertian emission characteristic. 
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4. EXPERIMENTAL TEST SERIES AND RESULTS 

 

The optimization of transmission holograms for LED illumination has been investigated 

within two test series. Therefore, holograms are designed for the different wavefront 

approximations and recorded into a photopolymer with the SLM-based exposure process. For 

the analysis of the reconstructions, the holograms are designed to generate the test pattern that 

is shown in Fig. 3. Within the test series, the holograms are illuminated at reference angle and 

the reconstructed image is projected on a semitransparent screen in the distance of 300mm 

behind the hologram. This image is recorded with a luminance camera, which is positioned on 

the optical axis 350mm behind the screen, as shown in Fig. 3. The recorded pictures are used 

to calculate the correlation coefficient according to Eq. 1. 

 

In the first experimental series, the influence of the different wavefront approximations is 

analyzed for the wavelength 532nm, 590nm and 620nm. Four holograms are designed for the 

approximations spherical wave (Eq. 2), RS (Eq. 4), Huygens (Eq. 3) and for the measured 

wave. These holograms are illuminated with the Luxeon LED, that is filtered by appropriate 

color filters. In addition, one hologram is designed for a plane wave at 532nm and is 

reconstructed with a collimated laser diode at this wavelength. This ideal reconstruction 

condition is assumed to result in the maximum experimentally achievable value for the 

correlation coefficient, which is =0.8631±0.0066. 

The results have already been presented in [18] and show that the measured wave 

approximation leads to the best values for the correlation coefficient for all wavelengths, close 

to the values of the spherical wave approximation. The RS and the Huygens approximation 

lead to clearly lower values. For 532nm, the results are illustrated in Fig. 4. The values of the 

correlation coefficient for the different wavefront approximations are MW=0.7663±0.0059 for 

the measured wave, SW=0.7649±0.0074 for 5the spherical wave, HP=0.7082±0.0046 for the 

Huygens approximation and RS=0.5930±0.0018 for the RS approximation. The uncertainties 

result from mismatching of the reconstructed and the ideal image of ±2 pixels in x- and y-

direction.  

The results show, on the one hand, that neither the spherical wave nor the measured wave can 

be identified as the better one for the LED description. However, the repetition of these tests 

implies the same tendencies for the approximations for all three wavelengths [18,24]. On the 

 

Figure 3: Schematic image of the experimental setup. The hologram is 

reconstructed by one of the laser diodes or the LED, which is positioned 

205mm in front of the hologram. The reconstructed image should comply 

with the test pattern and is projected on. 
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other hand, the results show that the spherical wave description leads to better results than the 

RS and the Huygens approximation. This is an unexpected effect, because the latter were 

assumed to describe the LED in a more realistic way.  

 

However, the analysis of the wavefront curvatures show, that the RS- and the Huygens 

approximation have weaker curvatures compared to the spherical and the measured wave. The 

supposed cause is the negligence of effects like reflection and scattering in the phosphor of 

the Luxeon LED, which is assumed to lead to the Lambertian emission characteristic as 

shown in Fig. 2. In consequence, the appropriateness of a Lambertian characteristic to 

describe the Luxeon LED is examined in test series two. Therefore, three holograms are 

designed for the spherical wave and the Lambertian characteristic for the wavelengths 532nm, 

590nm and 620nm and the holograms are illuminated again with the filtered LED. For the 

spherical wave, the values are SW=0.6636±0.0087 for 532nm, SW=0.6715±0.0059 for 

590nm and SW=0.6432±0.0062 for 620nm, as presented in Fig. 5.  

The results show for all wavelengths higher coefficient values for the Lambertian 

characteristic, which reaches LC=0.6653±0.0080 at 532nm, LC=0.6868±0.0075 at 590nm 

and LC=0.6588±0.0061 at 620nm. Regarding the wavefront curvatures, a Lambertian wave 

shows a stronger curvature than a spherical wave. Thus, the results are reasonable, but must 

be verified in an outstanding repetition of this test series.  

The difference of the absolute values for the spherical wave in test series two compared to test 

series one is supposed to be caused by straylight in the experiments. This has no influence on 

the comparison of the deviations between the spherical and the Lambertian wave, however, a 

comparison with results of the first test series is not feasible. 

 

 

 

 

spherical wave            RS            Huygens  measured wave 

Figure 4: Correlation coefficient for the reconstructed images of the holograms 

optimized with different wavefront approximations at 532nm (RS=Rayleigh-

Sommerfeld, HP=Huygens’ principle, SW=spherical wave and MW=measured wave). 

Additionally, the coefficient for the ideal reconstruction is plotted (design and 

reconstruction with a plane wave at 532nm). 
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5. SUMMARY AND OUTLOOK 

 

The optimization of transmission holograms for LED illumination has been investigated 

within two test series and the appropriateness of wavefront approximation for LEDs has been 

analyzed. Therefore, holograms were designed for five different wavefront approximations 

and the correlation between the ideal and the experimentally reconstructed images of the 

holograms was calculated.  

 

It has been shown, that the approximation by an ideal spherical wave leads to higher values 

than the RS and the Huygens approximation. Furthermore, the measured wave and the 

Lambertian approximation lead to higher values compared to the spherical wave. The 

differences between the latter three approaches are not very high, but the tendency for an 

increase of the correlation coefficient for the measured wave and the Lambertian 

approximation has been shown for all considered wavelengths. However, further test series 

including greater divergence angles of the waves are necessary to clearly identify the most 

appropriate approximation. It is assumed, that differences between the approaches become 

clearer for emission angles larger than the currently measurable angular section of about ±2 

degree. In addition, further experiments should address the validity of the normal congruence 

theory for LEDs.  
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