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The estimation of spatial signatures and spatial frequencies is crucial for several practical applications such as radar, sonar,
and wireless communications. In this paper, we propose two generalized iterative estimation algorithms to the case in which a
multidimensional (𝑅-D) sensor array is used at the receiver. The first tensor-based algorithm is an 𝑅-D blind spatial signature
estimator that operates in scenarios where the source’s covariance matrix is nondiagonal and unknown. The second tensor-based
algorithm is formulated for the case in which the sources are uncorrelated and exploits the dual-symmetry of the covariance tensor.
Additionally, a new tensor-based formulation is proposed for an 𝐿-shaped array configuration. Simulation results show that our
proposed schemes outperform the state-of-the-art matrix-based and tensor-based techniques.

1. Introduction

High resolution parameter estimation plays a fundamental
role in array signal processing and has practical applications
in radar, sonar, mobile communications, and seismology.
In light of this, several techniques have been developed to
increase the accuracy of the estimated parameters, from
which we may cite the classical Multiple Signal Classifica-
tion (MUSIC) [1] and Estimation of Signal Parameters via
Rotational Invariance Technique (ESPRIT) [2]. However, their
performance can be further improved by exploiting the
multidimensional structure of the data by means of tensor
modeling, which can include several signal dimensions such
as space, time, frequency, and polarization. Tensor decom-
positions have been successfully employed in array signal
processing for parameters estimation since they provide bet-
ter identifiability conditions when compared to conventional
matrix-based methods. Another advantage of tensor-based
methods is the so-called “tensor gain” which manifests itself
with more precise parameter estimates due to the good

noise rejection capability of tensor-based signal processing,
as shown in [3–6].

In regards to tensor-based methods for blind spatial
signatures estimation, the Parallel Factor (PARAFAC) anal-
ysis decomposition [7] is widely applied due to its well-
defined conditions for uniqueness [8]. As seen in [9], an
iterative technique for PARAFAC decomposition such as
Trilinear Alternating Least Squares (TALS) can be applied to
estimate the directions of arrival of the sources. Closed-form
solutions such as the Standard Tensor ESPRIT (STE) [10]
and Closed-Form PARAFAC [11] are also appealing, since
these exploit the multidimensional structure in a noniter-
ative fashion. Recently in [12], an iterative algorithm was
proposed in a manner similar to Independent Component
Analysis (ICA) based on the Orthogonal Procrustes Problem
(OPP) and Khatri-Rao factorization [13] for a PARAFAC
decomposition with dual-symmetry. This solution exploits
the dual-symmetry property of the data tensor and can be
applied in covariance-based array signal processing tech-
niques. The method proposed in [14] is based on the Tucker
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decomposition [15] of a fourth-order covariance tensor and
was elaborated for arrays with arbitrary structures, where
a priori knowledge about the geometry of the sensor array
is not required. However, a limitation of the method in
[14] is the necessity of transmitting the same sequence of
symbols in different time blocks, which results in a loss of
spectral efficiency. The proposed solution is an algorithm for
a multidimensional (𝑅-D) sensor array in which the different
dimensions of the array are exploited, thus dismissing the
need to transmit a repeated sequence as in [14], as will be
detailed later.

In this paper, two tensor-based approaches to the esti-
mation of spatial signatures are presented. By using the
signals received on a 𝑅-D sensor array, covariance tensors
are calculated and solutions for correlated and uncorrelated
sources are presented, respectively. For the former scenario,
in which the source’s covariance structure is nondiagonal
and unknown, the covariance tensor of the received data
is formulated as a Tucker decomposition of order 2𝑅. Such
a formulation yields a generalized Tucker model based 𝑅-
D sensor array processing that deals with arbitrary source
covariance structures. By assuming uncorrelated sources, we
then show that the problem boils down to a PARAFAC
decomposition, from which a method that exploits the dual-
symmetry property of the covariance tensor is derived by
considering the ideas rooted in [12]. For both Tucker and
PARAFAC based models, the blind estimation of the spatial
signatures is achieved by means of an alternating least
squares (ALS) algorithm. The contributions of this paper are
twofold: (i) we propose a covariance-based generalization
of the Tucker decomposition for the blind spatial signature
estimation problem with 𝑅-D sensor arrays and (ii) we
establish a link between dual-symmetry decompositions and
techniques based on covariance-based array signal process-
ing for parameter estimation. The performance of the pro-
posed algorithms is evaluated by Monte Carlo simulations,
corroborating their gains over competing state-of-the-art
matrix-based and tensor-based techniques.

The rest of this paper is organized as follows: Section 2
briefly introduces tensor operations and decompositions.The
signal model for an 𝑅-D sensor array is then presented
in Section 3. In Section 4 a novel covariance-based tensor
model for the received data is formulated and our blind
spatial signature estimation algorithms are formulated. In
Section 5 an approach for 𝐿-shaped sensor arrays is proposed.
The computational complexity of the proposed methods is
analyzed in Section 6. In Section 7, the advantages and disad-
vantages of the proposed methods are discussed. Simulation
results are provided in Section 8, and the conclusions are
drawn in Section 9.

Notation. Scalar values are represented by lowercase letters𝑎, vectors by bold lowercase letters a, matrices by bold
uppercase lettersA, and tensors by calligraphic lettersA.The
symbols 𝑇, 𝐻, †, and ∗ represent the transpose, conjugate
transpose, pseudoinverse, and complex conjugate operations,
respectively. diag(a) operator generates a diagonal matrix
from a vector a. The 𝑖th row of A ∈ C𝐼×𝑅 is represented
by A(𝑖, :) ∈ C1×𝑅, while its 𝑟th column is represented by

A(:, 𝑟) ∈ C𝐼×1. vec(A) operator converts A into a vector
a ∈ C𝐼𝑅×1, while unvec𝐼×𝑅(a) converts a into a 𝐼 × 𝑅 matrix.
D𝑖(A) stands for a diagonal matrix constructed from the 𝑖th
row of A. ‖ ⋅ ‖𝐹 stands for the Frobenius norm of a matrix
or tensor. “∘” operator stands for the vector outer product.
The Kronecker product is represented by ⊗. The Khatri-Rao
product between the matrices A ∈ C𝐼×𝑅 and B ∈ C𝐽×𝑅,
represented by ⬦, is defined as

A ⬦ B = [A (:,1) ⊗ B (:,1) , . . . ,A (:,𝑅) ⊗ B (:,𝑅)] . (1)

2. Tensor Preliminaries

In the following, we briefly introduce for convenience the
basics on operations involving tensors and tensor decom-
positions, which refer to [16, 17]. Firstly, we present the
Tucker decomposition. Then, the PARAFAC decomposition
is introduced and issues involving uniqueness are briefly
discussed for both cases, which will be useful later. Then, we
introduce the dual-symmetry property for these decomposi-
tions.The basic material presented in this section is exploited
in later sections in the context of our blind spatial signature
estimation problem.

2.1. Basic Tensor Operations. Let X ∈ C𝐼1×⋅⋅⋅×𝐼𝑁 denote an𝑁th order tensor, (𝑖1, . . . , 𝑖𝑁)th entry of which is denoted by𝑥𝑖1 ,...,𝑖𝑁 . The fibers are the higher-order analogues of matrix
rows and columns.The 𝑛-mode fibers ofX are vectors of size𝐼𝑛 defined by fixing every index but 𝑖𝑛.The 𝑛-mode unfolding
operation, denoted by [X](𝑛), stands for the process of
reordering the elements of X into a matrix by arranging
its 𝑛-mode fibers to be the columns of the resulting matrix.
The 𝑛-mode product between X and a matrix A ∈ C𝐽×𝐼𝑛

along of the 𝑛th mode, denoted byX×𝑛A, is a tensor of size𝐼1 × ⋅ ⋅ ⋅ × 𝐼𝑛−1 × 𝐽 × 𝐼𝑛+1 × ⋅ ⋅ ⋅ × 𝐼𝑁, obtained by taking the
inner product between each 𝑛-mode fiber and the rows of the
matrix A; that is, [16, 17]

Y = X×𝑛A ⇐⇒
[Y](𝑛) = A [X](𝑛) . (2)

2.2. Tucker Decomposition. The Tucker decomposition [15]
represents a tensorX ∈ C𝐼1×⋅⋅⋅×𝐼𝑁 of order𝑁 as a multilinear
transformation of a core tensor G ∈ C𝑅1×⋅⋅⋅×𝑅𝑁 by factor
matrices A(𝑛) = [a(𝑛)1 , a(𝑛)2 , . . . , a(𝑛)𝑅𝑛 ] ∈ C𝐼𝑛×𝑅𝑛 along each
mode 𝑛 = 1, 2, . . . , 𝑁. In scalar form, the 𝑁th order Tucker
decomposition is given by

𝑥𝑖1 ,𝑖2,...,𝑖𝑁 = 𝑅1∑
𝑟1=1

𝑅2∑
𝑟2=1

⋅ ⋅ ⋅ 𝑅𝑁∑
𝑟𝑁=1

𝑔𝑟1 ,𝑟2 ,...,𝑟𝑁𝑎(1)𝑖1 ,𝑟1𝑎(2)𝑖2 ,𝑟2 ⋅ ⋅ ⋅ 𝑎(𝑁)𝑖𝑁,𝑟𝑁 , (3)

where 𝑎(𝑛)𝑖𝑛 ,𝑟𝑛 is (𝑖𝑛, 𝑟𝑛)th entry of the 𝑛th mode factor matrix
A(𝑛) ∈ C𝐼𝑛×𝑅𝑛 and 𝑔𝑟1 ,𝑟2,...,𝑟𝑁 is (𝑟1, . . . , 𝑟𝑁)th entry of the core
tensor G ∈ C𝑅1×⋅⋅⋅×𝑅𝑁 . Using 𝑛-mode product notation, the
Tucker decomposition can be written as

X = G×1A(1)×2A(2) ⋅ ⋅ ⋅ ×𝑁A(𝑁), (4)
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which admits the following factorization in terms of the
factor matrices and core tensor:[X](𝑛)

= A(𝑛) [G](𝑛) (A(𝑁) ⊗ ⋅ ⋅ ⋅A(𝑛+1) ⊗ A(𝑛−1) ⊗ ⋅ ⋅ ⋅A(1))𝑇 . (5)

In general, the Tucker decomposition is not unique; that
is, there are infinite solutions for A(𝑛), 𝑛 = 1, . . . , 𝑁, and G
that yield the same reconstructed version of the data tensor
X. However, in special cases where several elements of the
core tensor are constrained to be equal to zero, that is, if
the core tensor has some sparsity, the number of solutions
may be finite, and the associated factor matrices and core
tensor become unique up to trivial permutations and scaling
ambiguities [18]. The Tucker based methods presented in
Sections 4.2 and 5.1 belong to a special category where unique
solutions exist.

2.3. PARAFAC Decomposition. The PARAFAC decomposi-
tion [7] expresses a tensorX ∈ C𝐼1×⋅⋅⋅×𝐼𝑁 as a sum of 𝑅 rank-
one tensors; that is,

X = 𝑅∑
𝑟=1

a(1)𝑟 ∘ a(2)𝑟 ∘ ⋅ ⋅ ⋅ ∘ a(𝑁)𝑟 , (6)

where 𝑅 is the number of factors, also known as the rank of
the decomposition, and is defined as the minimum number
of rank-one tensors that yieldX exactly.

The𝑁th order PARAFAC decomposition (6) can be seen
as a special case of the Tucker decomposition (4) with a core
tensor G = I𝑁,𝑅 and 𝑅𝑛 = 𝑅 for 𝑛 = 1, . . . , 𝑁. The
elements of the 𝑁th order identity tensor I𝑁,𝑅 are equal to
one when all indices are equal and zero elsewhere. Using the𝑛-mode product notation, the PARAFAC decomposition can
be written as

X = I𝑁,𝑅×1A(1)×2A(2) ⋅ ⋅ ⋅ ×𝑁A(𝑁), (7)

while the 𝑛-mode unfolding ofX can be expressed as

[X](𝑛) = A(𝑛) (A(𝑁) ⬦ ⋅ ⋅ ⋅A(𝑛+1) ⬦ A(𝑛−1) ⬦ ⋅ ⋅ ⋅A(1))𝑇 . (8)

The𝑁th order PARAFAC decomposition is unique up to
permutation and scaling ambiguities affecting the columns of
factors matrices A(𝑛) ∈ C𝐼𝑛×𝑅, 𝑛 = 1, . . . , 𝑁, if the following
sufficient condition is satisfied [19]:

𝑁∑
𝑛=1

𝜅A(𝑛) ≥ 2𝑅 + 𝑁 − 1, (9)

where 𝜅A(𝑛) denotes the Kruskal-rank of A(𝑛), defined as the
maximumvalue𝜅 such that any subset of𝜅 columns is linearly
independent [20].

Throughout this work, special attention is given to dual-
symmetric tensors. The PARAFAC decomposition of a given
tensor X ∈ C𝐼1×⋅⋅⋅×𝐼2𝑁 of order 2𝑁 is said to have dual-
symmetry if defined as follows:

X = I2𝑁,𝑅×1A(1)×2A(2) ⋅ ⋅ ⋅ ×𝑁A(𝑁)×𝑁+1A(1)∗
×𝑁+2A(2)∗ ⋅ ⋅ ⋅ ×2𝑁A(𝑁)∗ . (10)

Note that this definition also applies to Tucker decomposition
by simply replacing the identity tensorI2𝑁,𝑅 by an arbitrary
core tensorG of order 2𝑁.

3. Signal Model

We consider𝐾 snapshots originating from the superposition
of 𝑀 far-field narrowband signal sources sampled by a 𝑅-
dimensional sensor array of size𝑁1×𝑁2×⋅ ⋅ ⋅×𝑁𝑅, where𝑁𝑟
is the size of the 𝑟th array dimension, 𝑟 = 1, . . . , 𝑅.Thematrix
X ∈ C𝑁×𝐾 collects the samples received by the sensor array,
which can be factored as [10]

X = (A(1) ⬦ A(2) ⋅ ⋅ ⋅ ⬦ A(𝑅)) S + V, (11)

where

(i) A = A(1) ⬦ A(2) ⋅ ⋅ ⋅ ⬦ A(𝑅) ∈ C𝑁×𝑀 is the spatial
signature matrix of the 𝑅-D array for 𝑟 = 1, . . . , 𝑅 and𝑁 = ∏𝑅𝑟=1𝑁𝑟;

(ii) A(𝑟) = [a(𝑟)1 , . . . , a(𝑟)𝑀 ] ∈ C𝑁𝑟×𝑀 is the spatial signature
matrix of the 𝑟th dimension;

(iii) a(𝑟)𝑚 = [1 𝑒𝑗⋅𝜇(𝑟)𝑚 𝑒𝑗⋅2𝜇(𝑟)𝑚 ⋅ ⋅ ⋅ 𝑒𝑗⋅(𝑁𝑟−1)𝜇(𝑟)𝑚 ]𝑇 ∈ C𝑁𝑟×1 is
the array response in the 𝑟th dimension to the 𝑚th
planar wavefront (𝑚 = 1, . . . ,𝑀) which is function of
the spatial frequency 𝜇(𝑟)𝑚 ;

(iv) S = [s(1), . . . , s(𝐾)] ∈ C𝑀×𝐾 is the matrix containing
the signal transmitted by the sources;

(v) V = [k(1), . . . , k(𝐾)] ∈ C𝑁×𝐾 is the additive white
Gaussian noise (assumed uncorrelated to the source
signals).

From (11), the sample covariance matrix R̂ ∈ C𝑁×𝑁 of the
signals received at the sensor array is given by

R̂ ≜ 1𝐾XX𝐻 ≈ ARsA
𝐻 + 𝜎2V I

≈ (A(1) ⬦ ⋅ ⋅ ⋅ ⬦ A(𝑅))Rs (A(1) ⬦ ⋅ ⋅ ⋅ ⬦ A(𝑅))𝐻
+ 𝜎2V I,

(12)

where Rs = (1/𝐾)SS𝐻 is the sample covariance matrix of the
source signals and 𝜎2V is the noise variance.
4. Tensor-Based Methods for Blind Spatial

Signature Estimation

In this section, we propose two iterative algorithms to
solve the blind spatial signature estimation problem in 𝑅-D
sensor arrays. Initially, a novel multidimensional structure is
formulated from the covariance matrix of the received data.
Then, an alternating least squares- (ALS-) based algorithm for
a Tucker decomposition of order 2𝑁 is proposed. Finally, we
derive a link between the method in [12] and a covariance-
based blind spatial signature estimation problem.
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4.1. Novel Covariance Tensor. With the intention of exploiting
the multidimensional structure of the received signal, the
noiseless sample covariance matrix (12), given by Ro = R̂ −𝜎2V I ∈ C𝑁×𝑁, is interpreted as a multimode unfolding of the
noiseless covariance tensor Ro ∈ C𝑁1×𝑁2×⋅⋅⋅×𝑁𝑅×𝑁1×𝑁2×⋅⋅⋅×𝑁𝑅

of order 2𝑁, defined as

Ro = Rs×1A(1)×2A(2) ⋅ ⋅ ⋅ ×𝑅A(𝑅)×𝑅+1A(1)∗
×𝑅+2A(2)∗ ⋅ ⋅ ⋅ ×2𝑅A(𝑅)∗ , (13)

where Rs is the source covariance tensor, which has 2𝑅
dimensions, each of size 𝑀. Note that this tensor is dual-
symmetric; that is, the factor matrix related to (𝑅 + 𝑟)th
dimension is equal to A(𝑟)

∗

, and 𝑁𝑟 = 𝑁𝑅+𝑟 (𝑟 = 1, . . . , 𝑅).
The 𝑚th frontal slice ofRs is a diagonal matrix whose main
diagonal is given by the𝑚th column of the covariance matrix
Rs. For instance, considering 𝑅 = 2 for the sake of notation,
the following expression satisfies the relationship previously
cited:

Rs (:,:,𝑚,𝑚) = diag (Rs (:,𝑚)) 𝑚 = 1, . . . ,𝑀, (14)

where the matrix Rs(:, :, 𝑚,𝑚) ∈ C𝑀×𝑀 denotes the 𝑚th
frontal slice of the covariance tensor Rs obtained by fixing
its last two modes. The tensor Ro follows a dual-symmetric
Tucker decomposition of order 2𝑅 with factor matrices A(𝑟)

and A(𝑟)
∗ , 𝑟 = 1, . . . , 𝑅, and core tensorRs.

Considering the case in which the sources are uncorre-
lated and have unitary variance, we can rewrite (13) as

Ro = I2𝑅,𝑀×1A(1)×2A(2) ⋅ ⋅ ⋅ ×𝑅A(𝑅)×𝑅+1A(1)∗
×𝑅+2A(2)∗ ⋅ ⋅ ⋅ ×2𝑅A(𝑅)∗ , (15)

whereI2𝑅,𝑀 is the identity tensor of order 2𝑅 in which each
dimension has size𝑀. In this case, the covariance tensorRo
follows a dual-symmetric PARAFAC decomposition of order2𝑅.

In general, the Tucker decomposition does not impose
restrictions on the core tensor structure, which makes this
model more flexible. In the context of this paper, this
characteristic reflects an arbitrary and unknown structure for
the source’s covariance Rs which can also be estimated from
(13). In contrast, the PARAFAC decomposition (15) denotes
a particular case of the Tucker decomposition when the
sources’ signals are uncorrelated and the source covariance
matrix is perfectly known (i.e., diagonal). In practice, thismay
not hold.

4.2. ALS-Tucker Algorithm. Our goal is to blindly estimate
the spatial signature matrices A(𝑟) and A(𝑟)

∗ , (𝑟 = 1, . . . , 𝑅)
which refer to the different dimensions of the sensor array
from the covariance tensor Ro. For the sake of simplicity,
from this point on, we consider A(𝑅+𝑟) = A(𝑟)

∗

. In matrix-
based notation, the Tucker decomposition (13) allows the
following factorization in terms of its factormatrices and core
tensor in accordance with (5):

[Ro](𝑟) = A(𝑟)Δ(𝑟), (16)

where

Δ
(𝑟) = [Rs](𝑟)
⋅ (A(2𝑅) ⊗ ⋅ ⋅ ⋅ ⊗ A(𝑟+1) ⊗ A(𝑟−1) ⊗ ⋅ ⋅ ⋅ ⊗ A(1))𝑇 , (17)

while [Ro](𝑟) and [Rs](𝑟), 𝑟 = 1, . . . , 2𝑅, denote the 𝑛-mode
unfolding of the covariance tensor Ro and the core tensor
Rs, respectively.

From the matrix unfoldings of Ro, an ALS based algo-
rithm is formulated to estimate the desired factor matri-
ces. An estimate of the spatial signature matrix Â(𝑟) (𝑟 =1, . . . , 2𝑅), associated with the 𝑟th dimension of the covari-
ance tensor, is obtained by solving the following least squares
(LS) problem:

Â(𝑟) = argmin
A(𝑟)

󵄩󵄩󵄩󵄩󵄩[Ro](𝑟) − A(𝑟)Δ(𝑟)󵄩󵄩󵄩󵄩󵄩2𝐹 , (18)

whose analytic solution is given by

Â(𝑟) = [Ro](𝑟) (Δ(𝑟))† . (19)

As discussed in Section 4.1, the Tucker decomposition
does not impose restrictions on the structure of the core
tensor and its estimation becomes necessary. Let Rs be an
unknown matrix of arbitrary structure. The following LS
problem is formulated from the vectorization of the sample
covariance matrix R̂:

vec (R̂s) = argmin
Rs

󵄩󵄩󵄩󵄩󵄩vec (R̂) − (A∗ ⊗ A) vec (Rs)󵄩󵄩󵄩󵄩󵄩2𝐹 , (20)

from which an estimate of R̂s can be obtained as

vec (R̂s) = (A∗ ⊗ A)† vec (R̂) , (21)

where A = A(1) ⬦ A(2) ⋅ ⋅ ⋅ ⬦ A(𝑅) ∈ C𝑁×𝑀.
Since (19) and (21) are nonlinear functions of the param-

eters to be estimated, the blind spatial signature estimation
problem can be solved using a classical ALS iterative solution
[21, 22]. The basic idea of the algorithm is to estimate one
factor matrix at each step while the others remain fixed
at the values obtained in previous steps. This procedure
is repeated until convergence. The proposed generalized
ALS-Tucker algorithm for 𝑅-D sensor arrays is summarized
in Algorithm 1.

In this approach the factor matrices are treated as inde-
pendent variables; that is, the dual-symmetry property of
the covariance tensor is not exploited. In this case, a final
estimate of the spatial signature matrix associated with the𝑟th dimension of the array is given by

Â(𝑟)final = Â(𝑟) + Â(𝑅+𝑟)
∗

2 . (22)

4.3. ALS-ProKRaft Algorithm. In this section, a link is
established between the ALS-ProKRaft algorithm proposed
initially in [12] and blind spatial signature estimation in
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(1) Initialize Â(𝑟) ∈ C𝑁𝑟×𝑀 for 𝑟 = 2, . . . , 2𝑅 and the core
tensor R̂s randomly.

(2) for 𝑟 = 1, . . . , 2𝑅 do
According to (19), obtain an estimate for the matrix Â(𝑟):
Â(𝑟) = [R](𝑟)(Δ(𝑟))†.
Note. The matrix Δ(𝑟), described in (17), is updated
by fixing Â(𝑟) calculated previously.

end
(3) According to (21), obtain an estimate for R̂s:

vec(R̂s) = (A∗ ⊗ A)†vec(R̂);
R̂s = unvec𝑀×𝑀(vec(R̂s)).

(4) Using (14), reconstruct the core tensor R̂s from R̂s.
(5) Repeat Steps (2)–(4) until convergence.

Algorithm 1: Summary of the ALS-Tucker algorithm.

array signal processing. The main idea behind this algorithm
is to exploit the dual-symmetry property of the PARAFAC
decomposition described in (15). Next, the ALS-ProKRaft
algorithm is formulated in the context of this work. A more
detailed description of the method can be found in the
original reference.

The multimode unfolding of the PARAFAC decomposi-
tion in (15) can be rewritten as

Rmm = (A(1) ⬦ ⋅ ⋅ ⋅ ⬦ A(𝑅)) (A(1) ⬦ ⋅ ⋅ ⋅ ⬦ A(𝑅))𝐻 , (23)

which assumes the following factorization:

Rmm = R1/2mm ⋅ (R1/2mm)𝐻 , (24)

where R1/2mm ∈ C𝑁×𝑀 can be obtained from the singular value
decomposition of Rmm given by

Rmm = U ⋅ Σ ⋅ V𝐻, (25)

obeying the following structure:

R1/2mm = U[𝑀] ⋅ Σ[𝑀] ⋅ T𝐻 = (A(1) ⬦ ⋅ ⋅ ⋅ ⬦ A(𝑅)) , (26)

where U[𝑀] ∈ C𝑁×𝑀 is formed by the first 𝑀 columns of U
and Σ[𝑀] ∈ C𝑀×𝑀 is a diagonal matrix which contains the𝑀
dominant singular values of Rmm. The matrix T represents a
unitary rotation factor.

Equation (26) describes an orthogonal Procrustes prob-
lem (OPP) [23], in which T is a transformation matrix that
mapsU[𝑀] ⋅ Σ[𝑀] to (A(1) ⬦ ⋅ ⋅ ⋅ ⬦A(𝑅)) such thatU[𝑀] ⋅ Σ[𝑀] ⋅
T𝐻 = (A(1)⬦⋅ ⋅ ⋅⬦A(𝑅)). An efficient estimate forT is obtained
minimizing the Frobenius norm of the residual error:

argmin
T

󵄩󵄩󵄩󵄩󵄩U[𝑀] ⋅ Σ[𝑀] ⋅ T𝐻 − (A(1) ⬦ ⋅ ⋅ ⋅ ⬦ A(𝑅))󵄩󵄩󵄩󵄩󵄩𝐹 . (27)

This problem can be solved using a change of basis from the
singular value decomposition of the matrix

(A(1) ⬦ ⋅ ⋅ ⋅ ⬦ A(𝑅))𝐻 ⋅ U[𝑀] ⋅ Σ[𝑀] = U𝑃 ⋅ Σ𝑃 ⋅ V𝐻𝑃 , (28)

which leads to the following solution [23]:

T̂ = U𝑃 ⋅ V𝐻𝑃 . (29)

From (26) and (29), an ALS-based iterative algorithm
is formulated to estimate the spatial signature matrices
from the PARAFAC decomposition (15). Firstly, individual
estimates for each factor matrix Â(𝑟), 𝑟 = 1, . . . , 𝑅, are
obtained by applying the multidimensional LS Khatri-Rao
factorization (LS-KRF) algorithm on the composite spatial
signature matrix Â = Â(1) ⬦ Â(2) ⋅ ⋅ ⋅ ⬦ Â(𝑅). Then, the
matrix T̂ is obtained from (29). For more details and access
to the pseudocode of this algorithm, we refer the interested
reader to [12]. The ALS-ProKRaft algorithm for blind spatial
signature estimation in 𝑅-D sensor arrays is summarized
in Algorithm 2.

Note that when compared with conventional ALS-based
PARAFAC solutions [21] formulated from the unfolding
matrices (8), the ALS-ProKRaft algorithm becomes preferred
since only half of the factors matrices needs to be estimated
by exploiting the dual-symmetry property of the covariance
tensor. This generally leads to a fast convergence rate of the
algorithm.

5. Spatial Signature Estimation in 𝐿-Shaped
Sensor Arrays

In this section, the blind spatial signature estimation problem
is formulated for 𝐿-shaped array configuration. Considering
that the receiver array is divided into smaller subarrays, the
Tucker decomposition of a fourth-order tensor is formulated
from the sample cross-correlationmatrix of the data received
by the different subarrays. From this multidimensional
structure the proposed generalized ALS-Tucker algorithm
previously presented in Section 4.2 can be used to estimate
the source’s spatial signatures.

5.1. Cross-Correlation Tensor for L-Shaped Sensor Arrays.
In this approach, we consider an 𝐿-shaped sensor array
equipped with 𝑁1 + 𝑁2 − 1 sensors positioned in the 𝑥-𝑧
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𝑖 = 0; Initialize T̂(𝑖=0) = I𝑀.
(1) According to (25), obtain U[𝑀] and Σ[𝑀] from the SVD

of the multimode unfolding matrix Rmm.
(2) 𝑖 = 𝑖 + 1;
(3) According to (26), obtain estimates for Â(𝑟)

(𝑖)
for 𝑟 = 1, . . . , 𝑅

by applying the multidimensional LS-KRF algorithm on
U[𝑀] ⋅ Σ[𝑀] ⋅ T̂𝐻(𝑖−1).

(4) According to (29), compute the SVD for the matrix(Â(1)
(𝑖)

⬦ ⋅ ⋅ ⋅ ⬦ Â(𝑅)
(𝑖)

)𝐻 ⋅ U[𝑀] ⋅ Σ[𝑀] = U𝑃 ⋅ Σ𝑃 ⋅ V𝐻𝑃
and obtain T̂(𝑖) = U𝑃 ⋅ V𝐻𝑃 .

(5) Repeat Steps (2)–(4) until convergence.
Algorithm 2: Summary of the ALS-ProKRaft algorithm.
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Figure 1: L-shaped array configurationwith𝑁1+𝑁2−1 sensors.The
distance between the sensors in the 𝑧-axis is 𝑑(1) while the distance
between the sensors in the 𝑥-axis is 𝑑(2). The 𝑚th wavefront has
elevation and azimuth angles equal to 𝛼𝑚 and 𝛽𝑚, respectively.
plane, as illustrated in Figure 1. Each linear array contains𝑁1 and 𝑁2 sensors equally spaced at distances 𝑑(1) and 𝑑(2),
respectively. We consider that each linear array is divided
into 𝑃 and 𝑊 smaller subarrays, respectively. Each subarray
contains𝑁(sub)1 = 𝑁1−𝑃+1 and𝑁(sub)2 = 𝑁2−𝑊+1 sensors.
The signal received at the 𝑝th subarray, for 𝑝 = 1, . . . , 𝑃, is
given by

X(1)𝑝 = A(1)s D𝑝 (Φ(1)) S + V(1)𝑝 ∈ C
𝑁(sub)1 ×𝐾, (30)

and the signal received at the 𝑤th subarray, 𝑤 = 1, . . . ,𝑊, is
given by

X(2)𝑤 = A(2)s D𝑤 (Φ(2)) S + V(2)𝑤 ∈ C
𝑁(sub)2 ×𝐾, (31)

where

(i) A(𝑟)s ∈ C𝑁
(sub)
𝑟 ×𝑀 is the spatial signature matrix of the

first subarray (or reference subarray) for the 𝑟th array
dimension, 𝑟 = 1, 2;

(ii) D𝑝(Φ(1)) and D𝑤(Φ(2)) are diagonal matrices whose
main diagonal is given by the 𝑝th and 𝑤th row of the
matricesΦ(1) ∈ C𝑃×𝑀 andΦ(2) ∈ C𝑊×𝑀, respectively.

The rows of Φ(1) and Φ(2) capture the delays suffered by the
signals impinging the 𝑝th and 𝑤th subarrays with respect
to the reference subarray, which are defined based on the
following spatial frequencies:

𝜇(1)𝑚 = 2𝜋 ⋅ 𝑑(1) ⋅ cos𝛼𝑚𝜆 ,
𝜇(2)𝑚 = 2𝜋 ⋅ 𝑑(2) ⋅ sin𝛼𝑚 ⋅ cos𝛽𝑚𝜆 ,

(32)

where 𝛼𝑚 and 𝛽𝑚 are the azimuth and elevation angles of the𝑚th source, respectively.
From (30) and (31), let us introduce the following

extended data matrices:

X(1) = [X(1)1 , . . . ,X(1)𝑃 ]𝑇 ∈ C
𝑁(sub)1 𝑃×𝐾,

X(2) = [X(2)1 , . . . ,X(2)𝑊 ]𝑇 ∈ C
𝑁(sub)2 𝑊×𝐾, (33)

or, more compactly,

X(𝑟) = (Φ(𝑟) ⬦ A(𝑟)s ) S + V(𝑟), 𝑟 = 1, 2. (34)

In contrast with (12), in this approach we shall work with
the following sample cross-correlation matrix:

R̂ = (Φ(1) ⬦ A(1)s )Rs (Φ(2) ⬦ A(2)s )𝐻 + 𝜎2V I. (35)

As mentioned in Section 4.1, we can see that the noiseless
term in (35) denotes a multimode unfolding of the following
cross-correlation tensor of size𝑁(sub)1 × 𝑃 × 𝑁(sub)2 × 𝑊:

Ro = Rs×1A(1)s ×2Φ(1)×3A(2)∗s ×4Φ(2)∗ , (36)
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where Rs ∈ C𝑀×𝑀×𝑀×𝑀. In this modeling, the tensor Ro
follows a fourth-order Tucker decomposition. By analogy
with (4), we deduce the following correspondences:

(𝐼1, 𝐼2, 𝐼3, 𝐼4) ←→ (𝑁(sub)1 , 𝑃,𝑁(sub)2 ,𝑊)
(𝑅1, 𝑅2, 𝑅3, 𝑅4) ←→ 𝑀
(G,A(1),A(2),A(3),A(4))

←→ (Rs,A(1)s ,Φ(1),A(2)∗s ,Φ(2)∗) .
(37)

The spatial signatures of the sources can be estimated
from (36) by using the proposed generalized ALS-Tucker
algorithm. Note that, in this case, the ALS-Tucker algorithm
is simplified to a fourth-order tensor input.

For all the previously proposed algorithms, the final
estimates for the spatial signaturematrices are obtainedwhen
the convergence is declared. A usually adopted criterion for
convergence is defined as |𝑒(𝑖) − 𝑒(𝑖−1)| ≤ 10−6, where 𝑒(𝑖)
denotes the residual error of the 𝑖th iteration, defined as

𝑒(𝑖) = 󵄩󵄩󵄩󵄩󵄩R − R̂(𝑖)
󵄩󵄩󵄩󵄩󵄩2𝐹 , (38)

whereR = Ro+V is a noisy version ofR,V is an additive
complex-valued white Gaussian noise tensor, and R̂(𝑖) is the
covariance tensor reconstructed from the estimated factor
matrices and core tensor. Since the ALS-ProKRaft algorithm
exploits the dual-symmetry property of the data tensor the
procedure in (22) is not necessary.

5.2. Estimation of the Spatial Frequencies. After the estima-
tion of the spatial signatures matrices Â(𝑟)final, 𝑟 = 1, . . . , 𝑅, the
final step is to estimate the spatial frequencies of the sources𝜇(𝑟)𝑚 ,𝑚 = 1, . . . ,𝑀. The final estimates can be computed from
the average over the values obtained in each row of Â(𝑟)final as
follows:

𝜇(𝑟)𝑚 = 1𝑁𝑟 − 1
𝑁𝑟∑
𝑛=2

arg {Â(𝑟)final (𝑛,𝑚)}𝑛 − 1 . (39)

6. Computational Complexity

In the following, we discuss the computational complexity of
the iterative ALS-Tucker and ALS-ProKRaft algorithms. For
the sake of simplicity, the computational complexity of the
proposedmethods is described in terms of the computational
cost of the matrix SVD. For a matrix of size 𝐼1 × 𝐼2 the
number of floating-point operations associated with the
SVD computation is O(𝐼1 ⋅ 𝐼2 ⋅ min(𝐼1 ⋅ 𝐼2)) [24]. The
computational complexity of one Tucker iteration refers to
the cost associated with the SVD used to calculate the matrix
pseudoinverses in the least squares problems (18) and (20).
The overall computational complexity per iteration of the
ALS-Tucker algorithm equals the complexity of 2𝑅 matrix
SVDs associated with each estimated factor matrix according
to (19) plus the complexity of one additional matrix SVD
associated with the estimated core tensor according to (21).

The overall computational cost per iteration of the ALS-
ProKRaft algorithm equals the complexity of 𝑀(𝑅 − 1)
matrix SVDs associated with the application of the multi-
dimensional LS-KRF algorithm in (26) plus the complexity
of one additional matrix SVD associated with the update of
the unknown unitary rotation factor matrix T according to
(29).

7. Advantages and Disadvantages of
the Proposed Methods

In this section, we discuss the advantages and disadvantages
of the proposed methods to blind spatial signatures estima-
tion in 𝑅-D sensor arrays. As previously stated in Section 4.3,
the ALS-ProKRaft algorithm works on the assumption that
the sample covariance matrix of the sources Rs is perfectly
known and diagonal. However, this is only true in the
asymptotic casewhen a sufficiently large number of snapshots
is assumed (i.e., 𝐾 → ∞), as well as when the source signals
are perfectly uncorrelated. In practice, this assumption is not
guaranteed. On the other hand, the ALS-Tucker algorithm
previously formulated in Section 4.2 naturally captures any
structure for the sources covariance into the core tensorRs.
Therefore, the assumption of uncorrelated source signals is
not necessary for the ALS-Tucker algorithm,making it able to
operate in scenarios where the source covariance structure is
unknown and arbitrary (nondiagonal). Such scenarios occur,
for instance, when the sample covariance is computed from a
limited number of snapshots.

In contrast, the ALS-Tucker algorithm does not exploit
the dual-symmetry property of the data covariance tensor
and all factor matrices need to be estimated as independent
variables. However, in the ALS-ProKRaft algorithm, only half
of the factor matrices are estimated by exploiting the dual-
symmetry property of the covariance tensor. Therefore, the
ALS-ProKRaft algorithm is more computationally attractive
than the ALS-Tucker algorithm. When compared with the
state-of-the-art matrix-based algorithms such as MUSIC,
ESPRIT, and Propagator Method, the proposed tensor-based
algorithms have the advantage of fully exploiting the multi-
dimensional nature of the received signal in less specific sce-
narios, which leads to more accurate estimates. For instance,
the ESPRIT algorithm was formulated for sensor arrays that
obey the shift invariance property. On the other hand, the
MUSIC algorithm has high computational complexity due to
the search of parameters in the spatial spectrum.

8. Simulation Results

In the following, simulation results and performance evalu-
ations of the ALS-Tucker and ALS-ProKRaft algorithms for𝑅-D sensor arrays are presented. This section is divided into
two parts. Firstly, the results related to Section 4 are presented
and discussed. Then, the same is done for the 𝐿-shaped array
approach presented in Section 5. Results are obtained from
an average of 1000 independent Monte Carlo runs. In the
first part of this section, we consider a uniform rectangular
array (URA) positioned on the 𝑥-𝑧 plane.The𝑚th wavefront



8 International Journal of Antennas and Propagation

SE
STE
MUSIC

ALS-Tucker
ALS-ProKRaft

10−3

10−2

10−1

100

RM
SE

0 5 10 15 20−5

SNR (dB)

Figure 2: Total RMSE versus SNR for 𝑁 = 64 sensors, 𝐾 = 10
samples, and DoAs: {30∘, 55∘} and {45∘, 60∘} for Hadamard sequen-
ces.
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Figure 3: Total RMSE versus SNR for 𝑁 = 64 sensors, 𝐾 = 10
samples, and DoAs: {30∘, 55∘} and {45∘, 60∘} for BPSK sequences.

has direction of arrival {𝛼𝑚, 𝛽𝑚}𝑀𝑚=1, where 𝛼𝑚 and 𝛽𝑚 are
elevation and azimuth angles, respectively.

In Figures 2 and 3, the performance is measured in terms
of the root mean square error (RMSE) of the estimated
spatial frequencies 𝜇(𝑟)𝑚 in terms of Signal to Noise Ratio
(SNR).The relations between directions of arrival and spatial
frequencies are given by (32), where 𝑑(𝑟) denotes the distance
between sensors in the 𝑟th array dimension,which is assumed
here equal to 𝜆/2. In Figure 2, we consider Hadamard
sequences for the sources, while in Figure 3we consider BPSK
modulated sources. In both cases, we have 𝑁 = 64 sensors
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Figure 4: Convergence of the ALS-Tucker and ALS-ProKRaft algo-
rithms.

(i.e.,𝑁1 and𝑁2 equal to 8) and the sample covariance matrix
of the received data (12) is calculated from a reduced number𝐾 = 10 of samples. The total RMSE is defined as

RMSE = √𝐸{ 𝑅∑
𝑟=1

𝑀∑
𝑚=1

(𝜇(𝑟)𝑚 − 𝜇(𝑟)𝑚 )2}. (40)

From Figure 2, it can be seen that both ALS-Tucker
and ALS-ProKRaft algorithms have similar performances in
terms of RMSE, when Hadamard sequences are considered.
In contrast, in Figure 3, when BPSK symbols are considered,
a floor is exhibited by the ALS-ProKraft algorithm for high
SNR values. This behavior occurs due to the modeling errors
in the core tensor of the PARAFAC decomposition, which in
turn arises due to the nonorthogonality of the source signals,
resulting in a nondiagonal sample covariance matrix of the
sources in this case. Note that in the ALS-Tucker algorithm
the covariance matrix of the sources possess an arbitrary and
unknown structure which discards possible constraints to the
source signals. This difference makes the Tucker decompo-
sition approach more attractive in those practical scenarios
in which source uncorrelatedness is not guaranteed. When
compared tomatrix-based standard ESPRIT (SE) [2], matrix-
based MUSIC algorithm to planar array configuration [25],
and tensor-based standard ESPRIT (STE) [10], the proposed
algorithms have improved accuracy in all the considered
scenarios.

Figure 4 shows the convergence performance of the
iterative algorithms. In this experiment, the median values
of the normalized estimation error 𝑒(𝑖)/𝑁(2𝑅) are plotted in
terms of the number of iterations for different SNR. It is
noteworthy that the ALS-ProKRaft algorithm has a faster
convergence compared to the ALS-Tucker algorithm. This
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Figure 5: Total RMSE versus SNR for 𝑁 = 13 sensors, 𝐾 = 500
samples, and DoAs: {30∘, 45∘} and {50∘, 55∘}.

behavior is expected since ALS-ProKRaft exploits the dual-
symmetry property of the data tensor, which results in
estimating half asmany factormatrices compared to theALS-
Tucker approach.

In the second part of this section, we consider a 𝐿-shaped
configuration array. In Figure 5, we set 𝑁 = 13 sensors
(i.e., 𝑁1 and 𝑁2 equal to 7) and 𝐾 = 500 samples. Each
uniform linear array is divided into 𝑃 = 2 and 𝑊 = 2
subarrays, respectively. In this experiment, the performance
of the proposed ALS-Tucker algorithm is compared to the
state-of-the-art matrix-based methods, namely, Propagator
Method (PM) [26],MUSIC [27], and ESPRIT [28], all of them
originally formulated for 𝐿-shaped arrays. Note that the ALS-
Tucker algorithm presents an improved performance over
its competitors, with more evidenced gains in the low-to-
medium SNR range. For high SNR values, the performance
of the MUSIC method comes close to that of our proposal.
However, theALS-Tucker algorithmdispenses any estimation
procedure via bidimensional peak search as occurs with
MUSIC, being the former more computationally attractive.

Figure 6 shows the performance of the ALS-Tucker by
assuming different number of sensors. In this experiment,
we consider 𝐾 = 500 samples. We can observe a better
performance in terms of RMSE when the number sensors
of the 𝐿-shaped array is increased. This is valid for all the
simulated SNR values.

In Figure 7, we analyze the influence of the number 𝐾
of samples on the performance of the ALS-Tucker algorithm.
This experiment considers the same parameters as the experi-
ment of Figure 5, except the SNRvalue that is assumedfixed at
20 dB and the number of samples that varies between 50 and
3000. First, we can see that the performance of the algorithms
improves by increasing the number of samples collected by
sensor array, as expected. However, similar to Figure 5 the
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Figure 6: Total RMSE versus SNR (performance of the ALS-Tucker
algorithm for different number of sensors).
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Figure 7: Total RMSE versus number of samples.

proposed ALS-Tucker algorithm outperforms the state-of-
the-art PM, ESPRIT, and MUSIC methods.

9. Conclusion

In this paper, two tensor-based approaches based on the
Tucker and PARAFAC decompositions have been formulated
to solve the blind spatial signatures estimation problem in
multidimensional sensor arrays. First, we have proposed
a covariance-based generalization of the Tucker decom-
position for 𝑅-D sensor arrays. Then, a link between the
ALS-ProKRaft algorithm and covariance-based array signal
processing for blind spatial signatures estimation has been
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established. As another contribution, we have formulated a
cross-correlation-based fourth-order Tucker decomposition
which makes the proposed ALS-Tucker algorithm applicable
in scenarios composed by 𝐿-shaped array configurations.
The two proposed tensor methods differ in the structure
assumed for the source covariance. It is worth pointing out
that, in realistic scenarios, when the received covariance
matrix is calculated from a reduced number of samples,
or snapshots, the ALS-Tucker algorithm becomes preferable
since it operates with an arbitrary and unknown struc-
ture for the covariance of the source signals. In contrast,
when the sources can be assumed to be uncorrelated, we
can achieve improved performance by exploiting the dual-
symmetry property of the covariance tensor, whichmakes the
ALS-ProKRaft algorithm preferable since it provides good
estimation accuracy with a smaller number of ALS iterations.
Finally, when compared with other state-of-the-art matrix-
based and tensor-based techniques, the proposed tensor-
based iterative algorithms have shown their effectiveness with
remarkable gains in terms of estimation error.
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