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Abstract

The projective shape of an object consists of the geometric information that is invariant under
different camera views. When describing an object as a configuration of k£ points or “land-
marks” in real projective space RP?, then the set of projective shapes can be defined as the set
(RPd)k / PGL(d) of equivalence classes of configurations under the component-wise action of
projective transformations. Equipped with the quotient topology, the space of projective shapes
is topologically ill-behaved just like in the cases of similarity and affine shapes. In particular, it
is neither a manifold nor metrizable. In this thesis the topological structure of projective shape
space is analysed in detail in quest for a reasonable topological subspace which is convenient
enough for the application of mathematical tools. Further, it is shown that the topological
subspace of Tyler regular shapes introduced by Kent and Mardia fulfills all required properties
except for some number of landmarks k£ and dimensions d. Then using Tyler standardization,
Procrustes distances and Riemannian structures can be defined on the subspace of Tyler regular
shapes. For one of these Procrustes distances, a projective mean shape is defined by using the
more general concept of Fréchet means. Since the computation of the corresponding sample
mean is rather intricate, a new mean is introduced and discussed.

Abstract (german)

Die projektive Form eines Objektes ist die geometrische Information, die invariant unter pro-
jektiven Transformationen ist. Sie tritt natiirlicherweise bei der Rekonstruktion von Objekten
anhand Fotos unkalibrierter Kameras auf. Wenn ein Objekt als Punktmenge oder Konfiguration
von Landmarken im d-dimensionalen reell-projektiven Raum RP? beschrieben wird, so ist die
Menge der projektiven Formen der Quotientenraum (RPd)k / PGL(d) und damit kanonisch
mit der Quotiententopologie versehen. Auf diesem topologischen Raum der projektiven Formen
lassen sich jedoch aus topologischen Griinden viele mathematische Werkzeuge nicht anwenden,
ein Phanomen, welches in dhnlicher Form auch bei den Réumen der Ahnlichkeits- bzw. affinen
Formen auftritt. In der vorliegenden Arbeit wird die Topologie des projektiven Formenraumes
griindlich untersucht, in Hinblick auf die Suche nach einem verniinftigen topologischen Unter-
raum, der hinreichende Eigenschaften fiir die Anwendung statistischer Methoden besitzt. Ein
Beispiel fiir einen dieser gutartigen Unterraume ist der Raum der Tyler regularen Formen, der
bereits durch Kent und Mardia betrachtet wurde. Deren Ergebnisse werden in dieser Arbeit
noch erweitert. Dieser Unterraum ist zwar fiir einige Dimensionen d und Anzahlen an Land-
marken k nicht optimal gewéhlt, jedoch liefert die so-genannte Tyler-Standardisierung dieser
Formen einem sowohl Einbettungen in metrische Rdume als auch eine Riemannsche Metrik auf
diesem Unterraum. Fiir eine dieser Einbettungen werden die dazugehorige Fréchet-Erwartungs-
sowie Mittelwerte definiert. Wéhrend die Konsistenz dieses Mittelwertes leicht zu zeigen ist,
ist die Berechnung des extrinsischen Mittelwertes numerisch anspruchsvoll. Als Ersatz wird ein
weiterer Erwartungs- bzw. Mittelwert definiert, dessen Berechnung diese Probleme umgeht.
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Chapter 1

Introduction

Consider taking d-dimensional images of a scene comprising of k ordered points or landmarks
in a d-dimensional hyperplane of (d + 1)-dimensional space such that all k£ landmarks are visible
in the images. An important result from computer vision is that these images differ only by a
projective transformation between themselves and from the original scene, even if the images are
taken with different cameras. In particular, if the calibrations of the cameras are unknown, i.e.,
if there is no information available on the camera parameters such as focal length, angle between
scene and film hyperplane, location of the camera, etc., then an image relays only information
about the scene which is invariant under projective transformations (Hartley and Zisserman;
2003). The collection of this information is known as the scene’s projective shape.

Projective shapes arise similarly in the problem of reconstruction of a 3-D scene from multiple
camera views: a scene can be reconstructed from a set of uncalibrated 2-D images at best up to
a projective transformation, so again, one retrieves only the scene’s projective shape.

In both cases, one gains more information about the original object if one has more in-
formation about the camera(s), leading to other types of shape such as similarity shape or
affine shape. Of course, if everything is known about the camera(s), then the original scene is
completely reconstructable from its images.

Mathematically, an object or scene is described by a configuration p = (p1,...,px) € (RPd)k,
i.e. a finite, ordered set of points or landmarks in real projective space RP?, while the shape [p]
of this configuration p is its orbit or equivalence class

[p] = {ap = (ap1,...,apg) @ € PGL(d)}

under the component-wise action of the projective linear group PGL(d). The set of projective
shapes is then the set of orbits
ai = (RPY)* /PGL(d).

This topological quotient is naturally equipped with the quotient topology, thus rendering af; a
topological space.

It is quite unpleasant to work with this abstract notion of projective shape, whence homo-
geneous coordinates will be used in this manuscript to describe configurations and projective
shapes. In homogeneous coordinates, a configuration is given as a k x (d+ 1)-dimensional matrix

P
P = : c ka(d-H)
Py.
with its non-vanishing rows P, € R%1\{0} representing the landmarks. Left-multiplication
of P with a non-singular, k x k-dimensional matrix D € Diag* (k) corresponds then to the same

configuration in RPY. Projective transformations act on such matrix configurations as right-
multiplication with non-singular, (d + 1) x (d + 1)-dimensional matrices B € GL(d + 1). Hence,

1



2 Chapter 1. Introduction

the projective shape of a configuration matrix P is the orbit
[P] ={DPB: D € Diag*(k), Be GL(d + 1)}.

Many mathematical applications, e.g. statistics, numerics, etc., require quantitative compar-
isons on the underlying space, i.e. a metric, or the space to be at least locally Euclidean, i.e., to
be a topological manifold. Unfortunately, the topological space aclf of projective shapes is neither
metrizable nor a topological manifold, analogously to the situation with similarity and affine
shape spaces. As in those cases, the solution to this problem is to find a topological subspace
of ag which is fulfilling the requirements needed for the desired application. This turns out to
be more complicated for projective shapes than for the cases of similarity and affine shapes in
which the topological subspace of shapes corresponding to the configurations with trivial iso-
tropy group is a differentiable Hausdorff manifold. Reasonable metrics have been defined and
discussed on these subspaces of similarity resp. affine shape space (Dryden and Mardia; 1998;
Groisser and Tagare; 2009).

The purpose of this thesis is to establish requirements for a topological subspace of project-
ive shape space such that a multitude of mathematical tools can conveniently be applied on the
topological subspace. However, the topological subspaces in question shall also be geometrically
and topologically sensible. Of course, the objective is to determine conditions for topological
subspaces for which these requirements are met, too.

This discussion of projective shape spaces is started with a clear application in mind: stat-
istics and, in particular, the computation of a sample mean shape. For the classical definition of
the sample mean as the arithmetic mean, a vector space structure is needed, but there is none
to find in ag, whence another definition of a mean has to be used. In Euclidean spaces, the
sample mean is the minimizer of the sum of squared distances to the sample. This fact can be
generalized to metric spaces, leading to the definition of the Fréchet sample mean as the set of
minimizers of the Fréchet function .

w2, 4. X)
i=1

for a sample X1,...,X,, and a metric d (Fréchet; 1948). Hence, a metrizable space is what we
aim for as a topological subspace of projective shape space. Recall from differential geometry
that differentiable Hausdorff manifolds are metrizable since they allow both the definition of a
Riemannian metric and an embedding into a Euclidean space. Hence, it is reasonable to require
the topological subspace to be a differentiable Hausdorff manifold. Both the idea of embedding
a differentiable Hausdorff manifold into a Euclidean space and the idea of endowing it with a
Riemannian metric have been widely discussed before in a statistical context. The former idea
leads to what is called extrinsic statistics, the latter to intrinsic statistics, see e.g. (Bhattacharya
and Bhattacharya; 2012). In addition to being metrizable, differentiable Hausdorff manifolds
possess of course the advantage of being locally Euclidean, i.e., mathematical tools on Euclidean
spaces can be locally performed on manifolds.

Besides requiring the structure of a differentiable Hausdorff manifold, it is natural to ask
that all landmarks play the same role in the chosen topological subspace of acll’C ; mathematically
speaking, the subspace shall be closed under permutations of the landmarks.

One of the first observations to make when working with projective transformations is that
they map lines to lines, planes to planes, etc. Hence, if some landmarks of a configuration lie in
a projective subspace of RP?, then they will lie in a projective subspace of the same dimension
under any projective transformation. So, the information of landmarks in projective subspaces
is invariant under projective transformations and an attribute of the corresponding projective
shape. We will say that a configuration resp. shape fulfills projective subspace constraints. As
the third requirement, we request the chosen topological subspace of aclf to include with a shape
all shapes with the same or less projective subspace constraints, as well. In particular, if there
is a small distortion on the landmarks of a configuration corresponding to a shape in a chosen
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topological subspace, then the distorted configuration fulfills less projective subspace constraints
and its projective shape shall again be an element of the chosen subspace. This requirement will
be called respecting the hierarchy of projective subspace constraints.

Finally, we seek topological subspaces that are maximal in the sense that further inclusion
of shapes leads to infringement of at least one other requirement.

Of course, there have been some prior attempts to find a convenient topological subspace of
projective shape space: Mardia and Patrangenaru (2005) used projective frames to define a to-
pological subspace of projective shape space via common registration, just like Bookstein (1986)
has done for similarity shapes: if one fixes a shape’s first d + 2 landmarks to a predetermined
projective frame, then the projective shape is uniquely determined by the coordinates of the
remaining k — d — 2 landmarks. This procedure is only possible for the shapes which include a
frame in its first d + 2 landmarks. While this topological subspace has the drawback of not being
closed under permutations, it respects the hierarchy of projective subspace constraints and is
homeomorphic to the differentiable Hausdorff manifold (RPd)kfdd. Of course, the definition
of a Riemannian metric resp. of an embedding into Euclidean space has been done before for
RP?, as has the computation of sample means, cf. e.g. (Hotz and Kelma; 2016) for a discussion
of the latter in the context of projective shapes.

Another topological subspace of a]j was introduced and discussed by Kent and Mardia (2012):
the subspace of Tyler regular shapes. They show that under some mild regularity conditions on
a shape’s projective subspace constraints a shape possesses a configuration of certain type which
is unique up to the action of a discrete group and of the orthogonal group. With this so-called
Tyler standardization of shapes, Procrustes distances can be defined on the topological subspace
of shapes whose projective subspace constraints fulfill the regularity conditions. However, this
topological subspace has been introduced through the existence of this standardization without
giving it a topological or geometrical justification. It has so far been unclear if this subspace
fulfills any of the requirements above, besides that the existence of metrics render this space a
Hausdorff space, and that the regularity conditions imply that the space respects the hierarchy
of projective subspace constraints. As it turns out, the topological subspace of Tyler regular
shapes fulfills all of our requirements unless k and d + 1 have a common divisor larger than 2
when maximality is not given. This subspace has been used in a statistical context to determine
if the projective shapes of two buildings are distinguishable (Kent and Mardia; 2012, Sect. 9).

Using Tyler standardization and one of the metrics introduced by Kent and Mardia (2012),
we will define the corresponding extrinsic mean shape on this space. The computation of such
a sample mean turns out to be rather difficult, whence a new mean is introduced and discussed
as well.

Overview

First and foremost, this work presents a thorough discussion of the topology of projective shape
space in search of topological subspaces which fulfill reasonable geometric and topological con-
straints for the application of mathematical tools. As it is demonstrated using direct techniques,
the topology is ruled by geometrical and algebraic properties. In particular, we discuss which
topological subspaces fulfill the separation axiom T1, which are Hausdorff, and which are differ-
entiable manifolds. For the latter the notion of a projective frame is generalized to obtain charts
on the topological subspace of free shapes. For a reasonable class of topological subspaces we
give simple conditions for which the aforementioned requirements are met.

As an explicit example the topological subspace of Tyler regular shapes is discussed. Using
Tyler standardization, we present the definition and computation of a new mean on this sub-
space and compare this mean with an extrinsic mean.

Chapter 2 recalls useful notions of projective geometry. Further, projective shape space is
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introduced and the notation is fixed for the remainder of the thesis. Additionally, the notion of
projective subspace constraints for configurations is introduced. It is shown that these geometric
entities are invariant under projective transformations, hence attributes of the projective shape
of a configuration. The chapter also includes a short discussion of the occurrences of projective
shape in computer vision.

In Chapter 3 a reasonable list of requirements for a useful topological subspace of projective
shape space is presented. With this list in mind the topology of projective shape space is analyzed
in detail, and criteria are determined for which topological subspaces fulfill these requirements.
The main results of this chapter have been published in (Hotz et al.; 2016).

In Chapter 4 the topological subspace of Tyler regular shapes is discussed. This subspace
has been introduced by Kent and Mardia (2012), and it allows the reduction of the group
action through partial standardization. A new geometric reasoning for this so-called Tyler
standardization is introduced (published in (Hotz et al.; 2016), too), and Kent and Mardia’s
results are expanded by proving which shapes—besides the Tyler regular ones—can be Tyler
standardized. Tyler standardization also leads to embeddings of the subspace of Tyler regular
shapes into metric spaces, as well as the definition of Riemannian metrics.

In Chapter 5 these embeddings are used to define an extrinsic population and sample mean
shape for which consistency is proven. Unfortunately, the computation of the sample mean is
rather hard since the projection on to the shape space can only be approximated by a gradient
descent algorithm. As a remedy, the notion of a Tyler mean shape is introduced. The Tyler
sample mean shape is easier to compute while being a strongly consistent estimator of the Tyler
population mean shape. These means are compared in elementary examples.

Finally, the thesis concludes with a short discussion of the results and an outlook for future
research.

Related works

Concerning projective geometry, there are many textbooks available which include all of the
theory needed for this discussion, cf. e.g. (Berger; 1987) or (Onishchik and Sulanke; 2006). An
overview of projective geometry in the context of image analysis can be found in (Faugeras and
Luong; 2001) and (Hartley and Zisserman; 2003).

Both (Faugeras and Luong; 2001) and (Hartley and Zisserman; 2003) additionally are stand-
ard textbooks for computer vision which discuss the occurrences of the different types of shape.
In particular, they include the key observations that an image of a flat scene is a projective
transformation of the scene, as well as that a scene can only be reconstructed up to a projective
transformation from multiple uncalibrated camera views. Another recommendable book about
computer vision is (Ma et al.; 2004).

The topologies of affine and similarity shape spaces have been discussed in a similar fashion
as this thesis does for projective shape space.

Patrangenaru and Mardia (2003) noted in a short conference article that affine shape space
is stratified into real Grassmannian manifolds; in particular, the top stratum of affine shape
space is a real Grassmannian manifold and comprises of the shapes of configurations whose
isotropy group is trivial. It is the largest sensible differentiable Hausdorff manifold in affine
shape space. A detailed discussion of these statements was provided by Groisser and Tagare
(2009). Additionally, Groisser and Tagare discuss a reasonable Riemannian metric for the top
stratum.

Some key results in the discussion of similarity shapes were presented by Bookstein and
Kendall. While Bookstein (1986) discussed—as already mentioned—the topological subspace
given by common registration, the approach by Kendall (1984) introduced the idea of pre-shapes,
i.e., to discuss only those shapes for which the group action can be reduced to a compact group
action by choosing standardized representatives. We refer the reader to (Dryden and Mardia,



Chapter 1. Introduction 5

1998) and (Kendall et al.; 1999) for a detailed description of similarity shape space and further
references.

As already mentioned, two topological subspaces of projective shape space have already been
discussed. The approach through common registration by Mardia and Patrangenaru (2005) uses
an earlier idea of Horadam (1970) and Goodall and Mardia (1999). Here, the first d+2 landmarks
of a projective shape are fixed consuming all the degrees of freedom in the transformation group.
Consequently, the projective shape is then given by the location of the remaining k — d — 2
landmarks. However, this idea works only for those projective shapes whose first d+2 landmarks
are in general position.

The approach by Kent and Mardia (2012) uses the idea of a projective pre-shape analogously
to Kendall’s approach to similarity shapes: under some conditions on its projective subspace
constraints, a projective shape possesses a configuration which is unique up to the action of
a compact group. Using this so-called Tyler standardization of projective shapes, Kent and
Mardia defined and discussed Procrustes metrics on this topological subspace. We note that
this topological subspace has also been discussed in the literature of geometric invariant theory
(Mumford et al.; 1994, Ch. 3).

The definition of a mean on non-Euclidean spaces was introduced by Fréchet (1948) as the
minimizer of the expected squared distance. Consistency results for these so-called Fréchet
means were found by Ziezold (1977) and later by Bhattacharya and Patrangenaru (2003), while
asymptotic behavior was discussed by Hendriks and Landsman (1998) and Bhattacharya and
Patrangenaru (2005).

Consistency results for means of similarity shapes were presented by Kent and Mardia (1997)
and Le (1998). Additionally, Bhattacharya and Bhattacharya (2012) introduced and discussed
nonparametric statistical methods on manifolds and, in particular, on similarity, affine, and pro-
jective shape spaces. Further results in the context of inference on shape spaces were presented
by Patrangenaru and Ellingson (2016).

The statistical results for projective shape space in Bhattacharya and Bhattacharya (2012)
and Patrangenaru and Ellingson (2016) use the approach through common registration by Mar-
dia and Patrangenaru (2005). For this topological subspace of projective shapes, an extrinsic
sample mean and parametric tests have been discussed in the context of face recognition (Mardia
and Patrangenaru; 2005), while Mardia et al. (2003) discussed the same extrinsic sample mean in
the context of reconstruction of a planar scene from multiple images. Universal, non-asymptotic
confidence sets for this extrinsic mean have been constructed by T. Hotz and the author of this
thesis (Hotz and Kelma; 2016). To our knowledge, the approach through Tyler standardization
has only been used by (Kent and Mardia; 2012) in a statistical context as we have noted above.

Unpublished contributions of this thesis

The notion of projective geometry, projective shape, and its occurences in computer vision
presented in Chapter 2 are, of course, well-known. The notion of projective subspace con-
straints was introduced by Kent et al. (2011) as “linear subspace constraints”. New are the
calculation rules for projective subspace constraints (Lemma 2.5), the partial order, the notion
of “total decomposition” as well as the canonical block matrix structure of projective shapes
(Proposition 2.7).

The main results of Chapter 3 have been published in (Hotz et al.; 2016) for which I consider
myself the main author. Many remarks and examples have been added to the discussion, though.
The results about a stratification of projective shape space (Proposition 3.2) as well as the exact
computation of the blur of a projective shape (Proposition 3.10) are unpublished. Addition-
ally, the characterization of Hausdorff spaces respecting the hierarchy of projective subspace
constraints (Corollary 3.14) is new.
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In Chapter 4 the geometric motivation of Tyler standardization was already published in
(Hotz et al.; 2016). The results regarding Tyler standardization itself were introduced by Kent
et al. (2011) for which now a comprehensive proof is given. Further, it was shown that Tyler
standardization is differentiable (Remark 4.8). The thorough discussion of Tyler semi-regular
shapes and Kent’s shape space is new, as is the connection to the notion of finite unit norm tight
frames in Hilbert spaces (Remark 4.6) resulting in a homeomorphism for shape spaces of different
dimensions (Lemma 4.11). The discussion of the embedding of Tyler standardized projection
matrices as well as the construction of a Riemannian metric in Section 4.2 are comprehensive
extensions of published results; see (Kent and Mardia; 2012) resp. (Hotz et al.; 2016).

The construction of mean shapes in Chapter 5 is completely unpublished. While the stat-
istical approach has been suggested by my supervisor Thomas Hotz, the thorough derivation of
the presented results and examples is my contribution.



Chapter 2

Projective shape space

The importance of projective geometry is visible in image analysis: when taking an image of
parallel lines in real world, e.g. railroad tracks, they do meet at the horizon which is usually
modeled to be infinitely distant. In Euclidean or affine geometry parallel lines have no inter-
section point, and there are no points at infinity, whence these geometries are not the right
framework for image analysis. In projective spaces there are points at infinity, and, in 2-D, lines
always intersect with parallel lines intersecting at infinity. Hence, projective geometry is the
natural geometry to work with in image analysis. In particular, central projections, and hence
taking pictures with pinhole cameras, can conveniently be described in this framework.

There are two distinct approaches to projective geometry: the synthetic approach is the
classical one, and it relates geometrical object (points, lines, planes, etc.) axiomatically. The
analytical approach uses—contrary to its name—concepts from linear algebra, and will be used
in this thesis since the representation in notation of linear algebra is very useful for our purposes.

The projective shape of an object comprising of a finite, ordered set of points or landmarks
in d-dimensional real projective space RP? is the information that remains if the information
about the coordinate system on RP? is removed. This kind of information arises naturally
in computer vision. The coordinate transformation group of RP? is the so-called projective
linear group PGL(d), so the projective shape of an object is the orbit of the object under the
component-wise action of PGL(d). The set of projective shapes of objects with k£ landmarks in
d-dimensional real projective space RP? can then be described as the set of equivalence classes

4 = (RPY)" / PGL(d).
Equipped with the quotient topology, ag is a topological space.

The main objective of this chapter is to fix the notation for the remainder of this thesis:
in Section 2.1 we remind the reader of projective geometry, including real projective spaces
and Grassmannians. In Section 2.2 it is shown how projective geometry is used to describe
cameras in computer vision. In particular, the occurrences of projective shapes in single- and
multiple-view settings are discussed. In Section 2.3 projective shapes and projective shape
space are introduced thoroughly. Additionally, important invariants of the group action as well
as canonical representations of configurations and shapes are discussed.

2.1 Real projective space and Grassmannians
The d-dimensional real projective space RP? derived from R is defined to be the quotient
space of R¥1\{0} modulo the component-wise action of the multiplicative group R* = R\{0},

i.e. modulo the equivalence relation

T~y = x =My for some A\ € R*

7



8 Chapter 2. Projective shape space

for x,y € R¥!. The quotient map is denoted by 7, : R4*1\{0} — RP?. Note that Ty is a
continuous, open mapping.

While d-dimensional real projective space RP? can be understood as the space of one-
dimensional vector subspaces of R4, i.e. of lines through the origin, an i-dimensional projective
subspace of RP?, 1 < i < d, is the image of an (i + 1)-dimensional vector subspace V of R+!
under m,, i.e. the set of one-dimensional vector subspaces of V. Hence, any i-dimensional
projective subspace of RP? is homeomorphic to RP?. One- and two-dimensional projective
subspaces of RP? are called (projective) lines respectively planes, while the elements of RP?
are called points. A (projective) hyperplane of RP? is the image of a vector hyperplane.

A set of k points in RP? is said to be projectively independent if k < d + 1 and there is
no (k — 2)-dimensional projective subspace of RP? containing them; it is said to be in general
position if any subset of at most d + 1 points is projectively independent.

Let {x1,...,2441} be a basis of R*?!. Then, any point p € RP? in d-dimensional real
projective space has a representation as a vector (p',...,p% 1) € R4 in the considered basis
with ﬂp((pl, ... ,pd+1)t) = p. While this so-called homogeneous coordinate vector is only unique
up to rescaling, it allows to describe projective space RP? and its morphisms in the convenient
notation of matrix calculus. Of course, one could require a homogeneous coordinate vector
(p',...,p""1)" e R4 to be of norm 1, ie., (p',...,p¢") e S = {pe R¥! : ||p|l, = 1}. Then,
the equivalence relation becomes

T~y — T =ty

for 2, € S%, and one easily obtains RP¢ =~ 8% / {+1}.

Note that the d+1 points p; = m,(z;) € RP? i€ {1,...,d+1}, are not sufficient to determine
the homogeneous coordinates of some other point ¢ € RP? since any other basis of the form
Xizi, A\ € R*, i e {1,...,d + 1}, would give the same points p;. To resolve this uncertainty,
another point pg.o € RP? in general position is needed, e.g.

DPd+2 = Tp(x1 + -+ + T441)

with homogeneous coordinates (1,...,1), whereby only two proportional bases {z1,...,z411},
{yi,...,ya+1} with z; = Ay;, A € R*, give the same points in RP?. As it turns out, there exists
a unique set of d + 2 points in general position to any homogeneous coordinate system, and vice
versa. Therefore, such a sequence of d + 2 points in general position is called projective frame
or projective basis. In a (projective) frame, the first d + 1 points are called base points, and the
(d + 2)-nd point is the unit point.

The transformation group for vector coordinates of R%*1 is the general linear group GL(d+1)
acting transitively from left on R4, Such a change of basis transforms the homogeneous co-
ordinate system. Since only uniform scalar multiplication of all basis elements does not change
the homogeneous coordinates, the kernel of this action is given by scalar multiples of the iden-
tity matrix Iz,1. Hence, the transformation group for homogeneous coordinate systems is the
projective linear group

PGL(d) = GL(d + 1) / R*I4;, (2.1)

acting simply transitively on the set of homogeneous coordinate systems, and thus on the set
of frames as stated in the First Main Theorem of Projective Geometry, cf. e.g. (Berger; 1987,
Prop. 4.5.10):

Theorem 2.1. Let (p1,...,pd+2), (q1,- .., qdr) be two projective frames of RP?. There exists
a unique projective transformation ¢ € PGL(d) such that ¢; = ¢(p;) for allie {1,...,d + 2}.

Alternatively, one can define local coordinate systems, and thus proving that RP? is a d-
dimensional manifold: again, let {x1,...,24,1} be a basis of R, and let

Hi = {Trp((pla .. 7pd+1)t) € RPd : pl = O}
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for i € {1,...,d + 1} be the hyperplane of RP? comprising of those points whose i-th entry in
homogeneous coordinates to the chosen basis is zero. Now, RPd\HZ- is homeomorphic to R¢,
and a homeomorphism is e.g. given by the map

@ : RPN\ H; — R .
1 d+1 ! =1 pitl d+1\t 2.2
7Tp((pr"?p_'_)t) L <%7"'7ppi7ppi7"'7p7>-
These charts ¢;, i € {1,...,d + 1}, are compatible and their domains cover RP?, rendering

RP? a d-dimensional differentiable manifold. The maps 5, i € {1,...,d 4 1}, are usually called
inhomogeneous coordinates.

While RP? is the manifold of one-dimensional vector subspaces of R4, the real Grass-
mannian manifold (short: Grassmannian) Gr(d + 1,r) is the manifold of r-dimensional vector
subspaces of R r e {1,...,d+1}, and thus generalizes real projective space. The Grassman-
nian Gr(d + 1,r) is defined as the quotient space

Gr(d+1,r) =St(d+1,r) / GL(r) (2.3)

with St(d + 1,7) being the space of (d + 1) x r-dimensional, real matrices of full rank and right-
action of GL(r) on it. Here, the columns of the full rank matrices correspond to a basis of a
vector subspace of R%*! and the GL(r)-action is the change of basis. The topological space
St(d + 1,r) is commonly known as the non-compact Stiefel manifold.

Equivalently, the Grassmannian can be defined via orthonormal bases, i.e.,

Gr(d+1,r) = St°(d +1,7) / O(r) (2.4)

with St°(d + 1, ) being the space of (d+ 1) x r-dimensional full rank matrices with orthonormal
columns which is commonly known as the orthogonal Stiefel manifold. Note that Gr(d+1,1) =
RP? since St(d + 1,1) = R¥1\{0} and GL(1) = R*, respectively St°(d + 1,1) = S? and
O(1) = Cy = {£1}.

The Grassmannian Gr(d+1,r) is a r(d+1—r)-dimensional, compact, differentiable Hausdorft
manifold. It can be smoothly embedded into the Euclidean space Sym(d + 1) by choosing a
representative X € St(d+1,r) to each element of Gr(d+1,r) and mapping X to the orthogonal
projection matrix My = X (X*X)~!X* which projects R%*! orthogonally to the column space
L(X) of X. This mapping

t: Gr(d+1,7) — Sym(d+1) (25)
L(X) — Mx '
is called Veronese- Whitney embedding. The Euclidean vector product on Sym(d+ 1) is given by
the Frobenius inner product (A, B)p = tr(AB) for A, B € Sym(d + 1), while the corresponding
norm |A|p = +/tr(AA) is called Frobenius norm. Note that Gr(d+1,r) is mapped to symmetric
matrices of rank r and norm 4/r.

The Veronese-Whitney embedding naturally gives a homeomorphism T between Gr(d+1, )
and Gr(d + 1,d +1 — r) by mapping a vector subspace of R%*! to its orthogonal complement,
ie.,

T: Gr(d+1,r) — Gr(d+1,d+1-r)

L(X) — T (I — u(X). (2:6)

The union P? = U‘Ti:% Gr(d + 1,7) u {0} of Grassmannians together with the trivial vector
subspace o = {0} € R¥*! is called d-dimensional projective geometry over R, while its elements
are called projective subspaces. The projective dimension of a projective subspace is given by the
dimension of the corresponding vector space diminished by 1, or equivalently by the rank rk X
of a representative X € St(d + 1,r) to the projective subspace minus 1.
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The trivial vector subspace o is added to the geometry for mathematical reasons, whence
two products can be defined on 3%: the section U A V (also called meet or intersection) of two
projective subspaces U,V € B¢ is just its intersection as sets, i.e.,

UAV=UnYV,

while the join of U,V € P? is the smallest projective subspace in 3¢ which contains both U
and V, i.e.,
UvV=”L(U)uV)).

The join is very useful to describe projective independence. A set {pi1,...,pr} of points in
real projective space is projectively independent if and only if the projective dimension of

piv - VPg

equals k — 1. More general, a set {Ul, cee Uk} of projective subspaces of RP? is called project-
ively independent if and only if the dimension of

Uy v:---vU

as a vector subspace of R4t equals the sum of the dimensions of the vector subspaces U;
of R41 1 < i < k, or equivalently, equals the sum of projective dimensions of the U;, 1 <i < k,
plus k£ — 1.

In RP? there exist sets of d+1 projectively independent points, e.g. the points corresponding
to any basis of R4, Any set of k > d + 1 points is projectively dependent.

The morphisms in the category of projective geometries stem from morphisms on their
corresponding vector spaces, i.e. from linear maps between them. A linear map A : R4 —
Rl d, e e N, ie. a matrix A € REFD*EHD paturally defines a map

a: Pd — pe

between the corresponding projective geometries 3¢ and 3¢ by mapping a vector subspace U of
R to its image AU under A. Such a morphism « preserves the operation of both the section
and the join, i.e.,

a(UAV)=aU) A aV) and a(UvV)y=a(U) v alV)

for all projective subspaces U,V € . Two morphism «, 3 induced by linear maps A, B are
identical if and only if A and B are identical up to a scalar, i.e., A = AB for some A € R*,
whence the set of morphisms is the projective space to the vector space of linear maps between
the corresponding vector spaces.

Note that a can be reconstructed from its restriction

Arpd, o} : RP? U {0} — RP°u {0}

since elements of Grassmannians are projective subspaces of the corresponding projective space.
Similarly, A defines a map m,(A) between the corresponding projective spaces

m(A) 1 RPN\ m,(ker(A)\{0}) — RP® (2.7)

() — my(Az) '
by passing on to the quotient spaces. The map m,(A) is well-defined since A(Ax) = AAz. Then,
a or m(A) is an isomorphism if A is an isomorphism, i.e., if A € GL(d + 1), in which case m,(A)
is defined on the whole of RP%. Such an isomorphism is called projective transformation or
homography.
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The automorphisms of a d-dimensional geometry form a group under the usual composition
of maps which is again the projective linear group

PGL(d) = GL(d+1) /R*I;;. (2.8)
Note that projective transformations are homeomorphisms on RP?.

Projective geometry is in some sense a generalization of Euclidean and affine geometry. In
particular, Euclidean and affine space are subspaces of projective space, and the corresponding
automorphism groups are subgroups of the projective linear group.

Regarding affine geometry, let H < RP™ be a hyperplane in projective space. Then,
Al = RPd\H is a d-dimensional affine space with H being called the hyperplane at infin-
ity. Parallelism, which is the property separating affine from projective geometry, is defined
as follows: let A, B < RPY be projective subspaces not lying in H, and A’ = A n A? resp.
B' = B n A% its affine counterparts. The affine subspaces A’ and B’ are said to be parallel if
they only meet at infinity, i.e.,

AANH<CBAH or BAHCAAH.

Affine transformations are thus projective transformations which preserve parallelism, i.e., the
affine group Aff(d) is given by those elements of PGL(d) which map H bijectively to itself:

Aff(d) = {f e PGL(d): f(H) = H}.

When speaking of the hyperplane at infinity, most geometers think of the hyperplane Hy, 1 =

{Trp((pl, e pd”)t) cpttl = 0} in homogeneous coordinates to the standard basis of R4*1. In
these homogeneous coordinates, affine space A? = RPd\H is homeomorphic to R? by inhomo-
geneous coordinates

ert Al=RT — RPN\H

@B — (0 ph 1)), (2.9)

and affine transformations are given by matrices

A ¢
0 1
with A € GL(d) and ¢ € R? acting from the left on homogeneous coordinate vectors. In

particular, Aff(d) = R? x GL(d).
Similarly, the similarity transformation group

Sim(d) = R? x (RT x O(d))

generated by translations, rescaling and rotations/reflections forms a subgroup of Aff(d) and
PGL(d). With respect to the embedding ‘P;ip similarity transformations on R® are given by

matrices
sR c
0 1

with s € R" = {z e R: 2 > 0}, R e O(d), and t € R%. Of course, Euclidean transformations
are similarity transformations with s = 1.
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/C\ |

Figure 2.1: A central projection  mapping points in RP3\{c} to the hyperplane H by using
the unique projective lines through the projection center c.

2.2 Projective shapes in computer vision

Central projections can be easily described in the framework of projective geometry with the
notion of join and section: let H be a projective hyperplane in RP?*!, and let ¢ € RP%*! be a
point not incident with H, i.e., c ¢ H.

For any p € RP4"1\{c}, there is a unique line connecting p and ¢, namely p v ¢. This line
intersects H in the unique point (p v ¢) A H € RP!, defining a map

p — (pve)aH
as depicted in Figure 2.1 for d = 2. This so-called central projection v from RP*\{c} to H
with projection center (or optical center) c is a linear map in homogeneous coordinates.

Lemma 2.2. There is a linear map C : R¥? — 7 1(H) = R™™ such that v = m,(C).

PROOF. Let U be the hyperplane of R?*2 such that m,(U) = H and V = 7, (c). Then,

R™*2 = U @V, and 7 is induced by the linear projection onto U. O

The (d+1) x (d +2)-dimensional matrix C' corresponding to - is called perspective projection
matriz. Of course, it is only unique up to rescaling and depends on the coordinate systems given
on RP*! respectively H ~ RP.

For d + 1 = 3 this map v describes the working mechanism of a pinhole camera or camera
obscura. The projection center ¢ corresponds to the pinhole, while H =~ RP? is the image plane
of the camera. The matrix C encodes the internal camera parameters and the camera’s position
and orientation in the surrounding space RP3. For a reasonable camera, C should be of rank 3.
The projection center is then the unique point ¢ € RP? which satisfies Cc = 0 in homogeneous
coordinates. Even though modern cameras have a focus and a lens to increase illuminance,
which leads to distortion, the pinhole camera model is a good approximation for photography.
Of course, one can define “pinhole cameras” for general dimensions d > 1.

In this thesis objects in space are modeled as finite configurations p of landmarks, i.e. as
elements of
k dyk
a; = (RPY)", (2.11)

resp. in homogeneous coordinates as k x (d + 1)-dimensional matrices P € R¥*(@+1) with the
non-trivial rows of P giving the homogeneous coordinates of the landmarks in RP?. In abuse
of notation, we will write both p € ﬂg’; and P e /‘Zlé“ with the lower case letter p always denoting
a configuration in RP?, the corresponding upper case letter P always denoting a configuration
matrix.
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/
.

~——
7| € PGL(2)

Figure 2.2: The image of a configuration in a hyperplane is a projective transformation of the
configuration.

Yalms © 1l
e PGL(2)

2| m, € PGL(2)

Figure 2.3: Two images of a configuration in a hyperplane are equivalent under PGL(d).

The image of an object p = (p1,...,pk) € ﬂ§+1 under a central projection « is then the
component-wise image y(p) = ('y(pl), e ,'y(pk)) € /‘le’;. This is only well-defined if no point of p
coincides with the projection center ¢. In homogeneous coordinates, the image configuration is
given by PC" with P being a configuration matrix and C' the perspective projection matrix.

If the object p itself lies in a hyperplane H' ¢ RP™! disjoint with the projection center c,
then the restriction of v to H' =~ RP? is a projective transformation, i.e., v|;r € PGL(d).
In particular, the original configuration p € ﬂll’j differs from the image v(p) € /‘Zl(’f only by a
projective transformation. Therefore, an object p cannot be completely reconstructed from an
image if the camera’s calibration is unknown. It can only be reconstructed up to a projective
transformation and the information one retrieves is called the projective shape of p. By the
same line of thought, two images of the same hyperplanar object are related by a projective
transformation, see Figure 2.2 and Figure 2.3. This ambiguity decreases to affine or similarity
transformations if more information about the camera parameters, i.e. about the matrix C, is
given.

Of course, the cases d = 1 and d = 2 are the critical ones in reality.

Another topic in computer vision is the reconstruction of an object in real world from several
images of it.

Two images X = PC! € 45 and Y = PC} € 45 of an unknown object P € 4% taken
with two cameras C1,Cs are considered. The objective is to reconstruct the object P from
the landmark correspondences X;. «— Y;.. If the cameras are uncalibrated, i.e., if the camera
matrices C, Co are unknown, then P can be at best recovered up to a projective transformation
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a € PGL(3) since the application of A € GL(4) with a = m,(A) to the scene and the cameras
does not change the image:
X = PC! = PA(A'CY).

It has been shown that this projective ambiguity is also the worst case if there are sufficiently
many well-distributed landmark correspondences, cf. (Hartley and Zisserman; 2003, Ch. 10 et
seq.). Hence, the projective shape of the object P is all the information that can be retrieved
from multiple images by uncalibrated cameras.

All results from this section can be found in (Faugeras and Luong; 2001), (Hartley and
Zisserman; 2003), and (Ma et al.; 2004).

2.3 Projective shape space

Geometrically, objects are described as configurations of landmarks, i.e. as a finite, ordered
set of landmarks in space, while the shape of a configuration is the information that remains
when removing the coordinate system the configuration is described in. As we have seen before,
the set of coordinate systems may be described as the transformation group corresponding to
the geometry. Then, the shape of an object is the orbit of the corresponding configuration
under the component-wise group action, while the shape space is the topological quotient of the
configuration space modulo the group action.

In the setup of projective geometry, an object is then of course described as a configuration
p=(p1,...,p) of k> 1 landmarks in d-dimensional! real projective space RP? d >0, ie. as
an element of

a% = (RPY)", (2.12)

and the projective shape [p] of such a configuration is the information about the object that is
invariant under the component-wise action of PGL(d), i.e. the equivalence class or orbit

[p] = {ap = (a(pl), e a(pk)) fo € PGL(d)}. (2.13)

The set?
ai = 45 /PGL(d) = {[p] : p€ 45} (2.14)

of projective shapes, i.e. the set of orbits in 4%, is naturally equipped with the quotient topology.
This topological space is thus called projective shape space. Note that the critical dimensions
in real world are d = 1, 2,3, while the number of landmarks is often quite large, in particular
k=d+2.

Recall that the quotient topology is the finest topology on ajj making the projection

T A% — ab (2.15)

a continuous map. Here, the projection map = is also an open map: since projective trans-
formations are homeomorphisms on RPY, the preimage of the image of an open set U € /‘Zl(’f

™ Hr(U)) = U aU,

aePGL(d)

which is—as a union of open sets—open in /‘Zlé“ . Thus, 7w(U) is open.
It is common to describe configurations in homogeneous coordinates as k x (d+1)-dimensional
matrices P with the non-trivial rows of P giving the homogeneous coordinates of the landmarks

!The case d = 0 is rather boring: RP? is a singleton and PGL(0) the trivial group, whence A and af are
singletons for any k, too. However, this case is added to the discussion to describe some results more elegantly.

2Note that configuration spaces are always denoted by upper case letters, the corresponding projective shape
spaces by lower case letters.
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in RP?. Since homogeneous coordinates are only unique up to rescaling, left-multiplication
with non-singular, diagonal k x k-dimensional matrices D € Diag*(k) = (R*)* does not change
the configuration in RP?. The group PGL(d) acts on P, contrary to Section 2.1, now as
right-multiplication of non-singular matrices B € GL(d + 1) since landmarks are represented in
homogeneous coordinates as row vectors in this matrix notation. Then, the (projective) shape
of a matrix configuration P under PGL(d) is the orbit

[P] = {DPB: D € Diag*(k), B GL(d + 1)}. (2.16)

Note that the joint action of Diag® (k) and GL(d + 1) is not effective on matrix configurations
since

DPB = (AD) P (\'B)

for all A € R*, D € Diag*(k), B € GL(d + 1) and any P € 4% In particular, any matrix
configuration is preserved by the simultaneous left-action of A\I;, € Diag* (k) and right-action of
A4 € GL(d + 1). This ineffectiveness can be removed by fixing the scaling of one of the
matrices, e.g. by requiring® det(B) = 1.

The rank of a configuration matrix P is obviously invariant under both the left-action of
Diag*(k) and the right-action of GL(d + 1), i.e., the rank rkp of a configuration p € 4% is
well-defined as the rank of one representing matrix configuration P, as is the rank rk[p] of a
projective shape [p] € ag. Similarly, the group actions preserve the linear dependencies of the
rows of P, or projectively speaking, projective transformations a € PGL(d) map projective
subspaces of RP? to projective subspaces of the same dimension, i.e. points to points, lines to
lines, etc., as we have already seen in Section 2.1. Hence, if j landmarks of a configuration p lie in
an i-dimensional projective subspace, then the same is true for any equivalent configuration ap.
So, this information is invariant under PGL(d), too, and a property of its projective shape [p].

Definition 2.3. Let j € {1,...,d} and I < {1,...,k} be asubset of size |I| > j. A configuration
pE /‘Zlclf fulfills the projective subspace constraint (I ,7) if and only if the projective dimension of
V ey Pi is at most j — 1, or equivalently if and only if the landmarks p;, i € I, lie in a projective
subspace of projective dimension j—1. In other words, rk p; < j with p; denoting the restriction
of p to landmarks with index 7 € I.
We denote the collection of projective subspace constraints fulfilled by a configuration p € }7[5
by
C(p) = {(L,7) : p tulfills (I, 5)}. (2.17)
A projective subspace constraint (I,j) € C(p) is said to be non-trivial if I < {1,...,k} is of

cardinality strictly larger than j. The collection of non-trivial projective subspace constraints
fulfilled by a configuration p € ﬂgf is denoted by

C*(p) = {(I,j) € C(p) : (I,5) is non-trivial}. (2.18)

Further, (1,7) € C(p) is called decomposable in C(p) if there are projective subspace constraints
(I1,71), (I2, j2) € C(p) with disjoint, non-empty sets I1, Is < I and integers ji, j2 € {1,...,d} such
that Iy Ul = I and j1 +j2 = j. Else, (I,7) € C(p) is called non-decomposable. A configuration p

is said to be decomposable resp. non-decomposable if ({1, ok d+ 1) is decomposable resp.
non-decomposable, slightly generalizing our notation. O

Note that any configuration p € ﬂlg fulfills the subspace constraints ({2 , ) 1 < k.
Further, rk p; = j for non-decomposable projective subspace constraints (I, j) € C'(p); otherw1se

(I,7) decomposes into (I\{i},j — 1), ({i},1) € C(p) for any i € I.

Corollary 2.4. The collection of projective subspace constraints C(p) from Definition 2.3 is

well-defined for any projective shape |p| € ac];'

3For odd dimensions d (even d + 1), fixing the determinant of B € GL(d + 1) only lessens the ineffectiveness
since multiplication of B and D by —1 has still no effect on DPB.
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2

p [ ]
o C*(p) = {({1,3},1), ({1,2,3},2), ({2,4,5},2)}

183 o4

2
q [ ]

Va Y51 C*(Q) = {({17273}72)}

19 °4

Figure 2.4: Two configurations p, q € /‘2125 and their respective collections of non-trivial project-
ive subspace constraints. The configuration p is decomposable since ({1, ..., 5}, 3) decomposes
into ({1,3}, 1), ({2,4,5},2). Obviously, C*(p) o C*(q), whence C(p) D C(q), i.e., p is less con-
strained than ¢, while ¢ is less regular than p. The lines are only added to visualize projective
subspace constraints.

Lemma 2.5. Letpe€ )Zlc’? fulfill the projective subspace constraints (I, j1), (I2, j2) € C(p). Then:
(i) p fulfills the projective subspace constraint (I,j1) for all subsets I < Iy with |I| = ji;
(i) p fulfills the projective subspace constraint (IyO{i}, j1 + 1) for allie If = {1,...,k}\I1;
(#13) p fulfills the projective subspace constraint (Iy U Ia, j1 + jo) (if |1 v I2| = j1 + jo2).
Note that (ii) is a special case of (iii) for Iy = {i} ¢ I and jo = 1.

PROOF. (i) Note that rkp; < rkpp < j; forall I € ;.

(ii) The rank of p;, increases at most by 1 by adding another landmark to the subconfigur-
ation.

(iii) rkpr, o, <rkpr +rkpn, < ji+ jo. |

On the set of collections of projective subspace constraints, we can naturally define the
partial order of inclusion. A configuration p resp. shape [p] is said to be less constrained than g
resp. [¢] if C(p) < C(q), and less regular if C(p) > C(q), see Figure 2.4.

This partial order is apparent in the topology of a(]j .

Lemma 2.6. Let p € A% and [p] € a¥. Then, the following holds:

(i) There is an open neighborhood U < .545 of p such that all elements of U are less or equally
constrained than p, i.e., C(q) € C(p) for all g€ U.

(i) There is an open neighborhood V- < ac’f of [p] such that all elements of V' are less or equally
constrained than [p], i.e., C(q) < C(p) for all [q] € V.

(iti) The subsets {q € A% : C(q) < C(p)} and {[q] € af : C(q) = C(p)} are open in AY resp. aj.

PRrROOF. The statements (i) and (ii) are special cases of statement (iii).

The set {Q € ak.c@)ccC (P)} of less constrained matrix configurations is an open subset
of RF*{@+1) gince small distortions of the entries of a matrix P do not produce “more” linear
dependencies in the rows. Since the projection map 7, is open, the set {g € 4% : C(¢q) < C(p)}
is open. Further, the set {[q] €ai:C(q) < C(p)} is open since the projection map 7 : A% — af
is open. O
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We can now give a canonical matrix representation for a projective shape [p] € Llallf which
illustrates the decomposability of [p]. Please note that this representation is tremendously
important for the remainder of this thesis.

Proposition 2.7. Let p € /‘215 be a configuration and [p] € aé“ its projective shape. Then, the
following holds:

(i) There is a unique subset
{(117]1)77(I87j8)} gc(p) (219)

of non-decomposable projective subspace constraints fulfilled by p resp. [p] with | Ji_, I, =
{1,...,k} and >’ _, jr = rkp. This subset is called total decomposition of p resp. [p]. The
projective subspaces spanned by the landmarks pr., 1 < r < s, are projectively independent.

(ii) There is a permutation o € Sy of the landmarks such that [op] has a block matrixz repre-
sentation of the partitioned form

P 0 0 0

0 B (2.20)
0

0 0 P, 0

) I ;
with P, € /‘lelTﬂl c R'IT‘XJT, 1<r<s.

PRrOOF. (i) Note that a projective subspace constraint (I,j) with j = 1 is necessarily non-
decomposable. To obtain a total decomposition, start with the projective subspace constraint
({1, e k‘},rkp) € C(p). If it is non-decomposable, then there is nothing to prove. If it is
decomposable, then it decomposes into two projective subspace constraints (I3, j1), (I2, j2) €
C(p) with j1 +jo =j, 1 vy =1, I} n I = . Check these projective subspace constraints
for decomposability and iterate this procedure until all projective subspace constraints are non-
decomposable. Since ji,j2 < j, this algorithm will terminate after finite iterations.

For a total decomposition {(Il, J1)s - (Is, js)} of p e A%, the projective subspaces spanned
by the landmarks py., 1 <r < s, are projectively independent since Y rkp;,. = > rkp; = rkp,
cf. page 10.

To prove the uniqueness of the total decomposition, assume that there are two distinct total
decompositions {(I1,j1), ..., [Ls,js)} # {(I},41),....(I},4)} € C(p) of ({1,...,k},rkp) into
non-decomposable projective subspace constraints. Let p € /‘Zl(’j be a representative of [p], and
let (I, jr) # (I.,, 72) be distinct projective subspace constraints of p with I, n I/, # &. If I, = 1/,
then j, # j,, and consequently rkp;, = j, # j, = rkpy, contradicting I, = Ij,. Therefore, let
L\Il, # & (wlo.g.). Then, (I, j,) decomposes into (IT\I{L,rkaT\IL) and (Ir N I{L,rkplmla)
since the projective subspace spanned by landmarks of py,\j; is projectively independent from the
projective subspace spanned by the landmarks of p;; and py, ~,. Hence, (I, jr) is decomposable
in contradiction to the assumption, whence the total decompositions {(I 1,01)s -, (Is, js)} and
{(I7,4%), ..., (1], 1)} are identical.

(ii) Let {(I1,41),...,(Ls,Js)} < C(p) be the unique subset of non-decomposable projective
subspace constraint from (i). Further, let o € S;, be a permutation such that

O'(Il) = {1,...,|Il|},
o(Iy) ={|L|+1,..., || + | 2]},

s—1
o(ly) = {Z |I,| + 1k}
r=1
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and let ¥ be the permutation matrix permuting the standard basis vectors eq, ..., e; of RF such
that Ye; = e,(;). Let P be a matrix representing [p]. When permuting the rows of P to ¥P,
successive blocks of |I,.| rows span the j,-dimensional vector subspace S, to the corresponding
projective subspace constraint (I,,j.). Note that these vector subspaces S, are projectively
independent since the projective subspace constraints are non-decomposable, and thus they
only intersect mutually in the origin, i.e., S, nS; = {0}. Let B € GL(d + 1) be a non-singular
matrix such that S7 is mapped to the vector subspace spanned by the first j; standard basis
vectors of R41, Sy is mapped to the vector subspace spanned by the next j» standard basis
vectors, and so forth. Then, the matrix P = Y PB has the form described in Equation (2.20).00

Remarks 2.8. (i) The canonical matrix representation is not unique since neither the per-
mutation o in Proposition 2.7(ii) nor the blocks P, are unique. The composition of o with any
permutation of the blocks or within the blocks gives another canonical matrix representation.
Meanwhile, the blocks P, are only unique up to left-multiplication with non-singular diagonal
matrices D € Diag®(|],|) and right-multiplication with non-singular matrices B € GL(j,), so a
decomposable shape “decomposes into non-decomposable shapes of lower dimension”, cf. Pro-
position 3.2.

(ii) For a non-decomposable shape [p], the total decomposition is {({1, ok d+ 1)}, and
any representing matrix configuration is canonical. Note that ({1, kY d+ 1) is not an element
of C(p), so the total decomposition is, technically speaking, not a subset of C(p).

(i) Similar to Proposition 2.7, one can show that a shape [p] € a§ with (I, ) € C(p) (after
permuting the rows) has a block matrix representation

Py 0
2.21
(P21 P22) (2:21)

for some matrices Py; € REIXI| Py € REIXI and Pyy € RIIx(d+1=3), 0

The projective subspace constraints of a configuration resp. shape can also be reconstructed
from the so-called volume cross ratios which are invariants in the algebraic sense: let p € 542”3
such that the projective subspaces p; v -+ Vv pg—1 v p; are (d — 1)-dimensional for all i €
{d,...,d+ 3}, and pairwise different for at least all but one pair of indexes. Let P be a matrix
representation of p, and denote the submatrix of P comprising of the rows of P with index
Ic{1,...,k} by P;. The value

) _ |P{1,...,d—1,d,d+1}| |P{1,...,d—1,d+2,d+3}|

cr(p17"')pd+3 eRuy {w} (222)

P a—1ddi2y] 1P, de1,d+1,d43)]

with | - | denoting the determinant of the configuration in homogeneous coordinates is then
invariant under the action of PGL(d) and is called volume cross ratio, cf. (Olver; 1999) or
(Boutin and Kemper; 2005) for a discussion of the case d = 2. Note that we allow at most one
of the determinant to take the value 0 for py,...,pg4r3, else the cross ratio is not defined for
P1,--.5DPd+3-

This definition generalizes the usual notion of a cross ratio which is defined on the real
projective line RP! via homogeneous coordinates: let ﬂp((pl, l)t)7 . ,ﬂp((p4, 1)t) € RP! be
four landmarks on the line with at most one pair coincidence p" = p® for r # s. Then, the cross
ratio is defined as the quotient

1 2\(n3 _
cr(ﬂp((pl, l)t), . ,ﬂp((pl, 1)t)) = Egl _;;Egz _;; e R u {w}.

If and only if a configuration resp. shape fulfills some non-trivial subspace constraints, then
some volume cross ratios take values 0, 1, oo or are not defined since some determinants vanish
in this case.
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Remark 2.9. While the focus of this manuscript is on projective shapes, similarity and affine
shapes can be described in the same manner: configurations in R? can be described in homogen-
eous coordinates as matrix configurations P with P; 4.1 # 0 for all i € {1,...,k}. The similarity
and affine groups act by right-multiplication by matrices

A0
o= )

such that the similarity shape of P is the orbit

{DP (3£9): D e Diag*(k),s € R*, Re O(d), c Rd}

Ct

while the affine shape of P is the orbit

{DP(;‘%?) :DeDiag*(k;),AeGL(d),ceRd}. 0
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Chapter 3

The topology of projective
shape space

The main objective of this thesis is to find “good” topological subspaces y of projective shape
space aclf on which well-known mathematical tools (e.g. statistics, optimization, etc.) can be
applied. Here of course, the question arises what the meaning of “good topological subspace”
shall be.

The topological subspaces we are looking for shall fulfill the following properties:

1) differentiable Hausdorff manifold

Many mathematical tools require the topological subspace to be a metric space such that project-
ive shapes can be distinguished by a distance function. There are two main concepts to metricise
a topological space: first, one might require the topological space to be a Riemannian manifold.
In statistics, this would lead to intrinsic statistics which uses the metric of the Riemannian
manifold. For mathematical convenience, the completeness of the Riemannian structure should
be a property one would like to add. Alternatively, an embedding of the topological space into
some metric space would also equip the topological space with a metric, namely the subspace
metric. This would lead to extrinsic statistics. Either way, the topological space itself has to be
Hausdorff for the respective structure to exist. If a topological subspace of ag is a differentiable
Hausdorff manifold, then the existence of both a Riemannian metric (Lee; 2013, Prop. 13.3)
and of an embedding into Euclidean space (Lee; 2013, Thm. 6.15) is guaranteed, whence we will
look for this structure. Additionally, manifolds allow the application of local formalisms, e.g.
optimization, statistics, etc., using the local homeomorphy to Euclidean space.

2) closure under permutations

The first statistical approach to projective shape space via projective frames by Mardia and Pat-
rangenaru (2005) is in some way analogous to Bookstein’s approach for similarity shapes. Let
@5 c /‘Zlcll“ be the set of configurations whose first d + 2 landmarks form a projective frame. The
corresponding shape space 55 is then homeomorphic to k —d—2 copies of RP? by standardizing
a shape’s first d + 2 landmarks to a fixed projective frame, see Lemma 3.15. This approach
has the drawback that it was chosen to have the first d + 2 landmarks form a frame, i.e., these
landmarks play a special role in this approach without cause. A reasonable topological subspace
of projective shapes should not have such a designation. Mathematically speaking, a reasonable
topological subspace of ag should be closed under permutation of the landmarks’ order, i.e.,
the inclusion of the shape of (pi,...,px) shall induce the inclusion of (py(1),- .. ,Psk)) for all
permutations o of {1,...,k}, see Figure 3.1 (a).

3) respecting the hierarchy of projective subspace constraints

As noted in Section 2.3, the geometry of projective shapes can be described by projective sub-
space constraints. With inclusion of a shape [p], it is natural to ask for the inclusion of all less
constrained shapes, i.e., the inclusion of all shapes [¢] with C'(¢q) € C(p), see Figure 3.1 (b). A
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2 4
[ ] [ ]
Ry 16
L %) 5
1s o4 3 ®2
(b)
2 2
[ ] [ ]
Ry 3
L35 °5
19 .4 1s °4

Figure 3.1: (a) Two configurations in 45. A topological subspace of ag which is closed under
permutations and includes the shape of one of the configurations includes the other shape, too.
(b) Two configurations in 4. Let the 9 S 43 be a topological subspace including the left
configuration. If the corresponding shape space y respects the hierarchy of projective subspace
constraints, then the shape of the right configuration is in y, too, since the right configuration
is less constrained.

topological subspace of acll“ fulfilling this property is said to “respect the hierarchy of projective
subspace constraints”.

4) maximality
Of course, one will want to choose the topological subspace as large as possible while fulfilling
the above properties.

Please note that 115 is not Hausdorff for any £ > 1 and d € N, i.e., aﬁf does not fulfill prop-
erty 1). Indeed it is not even T1 (see Section 3.1), whence we indeed have to look for a true
topological subspace of afi“.

This chapter is structured as follows: first, a few topological subspaces of ag will be dis-
tinguished which are of special interest for algebraic or geometric reasons. In Section 3.2 it is
shown that the quotient topology on aC’f and its topological subspaces inherits some properties
from the configuration space .5715 since the quotient group PGL(d) consists of homeomorphism.
In Section 3.3 we will discuss which projective shapes can be separated from each other by open
neighborhoods. It turns out that the largest T1 subset which respects the hierarchy of projective
subspace constraints is both given by algebraic and geometric properties. Additionally, we will
precisely state the criteria for which a topological subspace is Hausdorff. In Section 3.4 the
notion of a projective frame is generalized to obtain charts on the shape space corresponding
to the configurations with trivial isotropy group. Finally, the class of topological subspaces
bounded by projective subspace numbers is introduced in Section 3.5, and it is shown in which
cases these topological subspaces fulfill the properties 1) to 4).

3.1 Topological subspaces of special interest

The space ag of all projective shapes is closed under permutations and respects the hierarchy
of projective subspace constraints. It is, however, not a Hausdorff manifold (unless k& = 1) as
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we show in Sections 3.3 and 3.4. There is also a quick argument for that: consider the trivial
configurations p € ,’Zl(’j in which all landmarks coincide, i.e., p; = p; for all 4,5 € {1,...,k}.
These trivial configurations are equivalent under PGL(d) since PGL(d) acts transitively on
RP?. Furthermore, PGL(d) includes the action of rescaling of configurations (in homogeneous
coordinates), i.e., any configuration ¢ € /‘45 has an equivalent configuration with its landmarks
arbitrarily close together. Topologically speaking, any neighborhood of a trivial configuration p
contains a configuration which is equivalent to g; respectively in shape space, the only neigh-
borhood of the trivial shape [p] is a%. Consequently, aclf is not Hausdorff or even T1. This
phenomenon also arises in similarity and affine shape space.

Therefore, we have to find a topological subspace of a(]j to fulfill the aforementioned require-
ments. In this matter, a few topological subspaces of .5lelC resp. ag deserve special attention due
to algebraic, geometric or historic reasons:

G%, which contains a configuration p = (p1,...,pr) € A¥ if and only if its landmarks
pi,...,pe € RP? are in general position, i.c., if and only if any subconfiguration pr
of size |I| < d + 1 is of rank rkp; = |I|. In particular, p fulfills only trivial projective

subspace constraints. The elements of gj” are projective frames.

B~ which contains a configuration p = (p1,...,pr) € ﬂl]j if and only if the first d + 2
landmarks in p form a projective frame, i.e., if and only if (p1,...,p4s+2) € gj*z. They
allow to define the equivalent of Bookstein coordinates for similarity shapes (Mardia
and Patrangenaru; 2005, p. 1672; @fj being called G(k,d) there).

P% which contains a configuration p € /‘45 if and only if arbitrary d + 2 landmarks of p
form a projective frame, i.e., if and only if there exists a permutation o € Sy such that
opE ‘Bg (Mardia and Patrangenaru; 2005, Remark 2.1; Tf being called .FC]d"’ there).

Tdk, which contains a configuration p € /‘Zl(]f if and only if the isotropy group of p is trivial, i.e.,
{a € PGL(d) : ap = p} = {e}. Such configurations are said to be free or regular under
the group action of PGL(d). In homogeneous coordinates a matrix configuration is free
if and only if P = DPB is equivalent to D = M, and B = A~'I;,; being multiplies of
identity matrices for some A € R¥.

Q)C’l“, which contains a configuration p € “q!; if and only if it is decomposable, i.e., there is
a partition {I1, I} of {1,...,k} into disjoint, non-empty sets I1, I such that rkps, +
rkpr, <d+ 1, see Definition 2.3.

% which contains a configuration p € 4% if and only if p is of rank d + 1, i.e., there is no
d
projective subspace of dimension m < d containing all landmarks. In particular, any
corresponding configuration matrix P is of rank d + 1, and ({1, . kY d) ¢ C(p).

NE(n) for n = (n1,...,n4) € N¢ with ny < -+ < ng, which contains a configuration p € 4%
if and only if any projective subspace constraint (I, j) € C(p) fulfills [I| < n;. The
topological subspace M(n) is said to be bounded by projective subspace numbers n.

TF, which contains a configuration if and only |I| < k’ﬁ for any projective subspace
constraint (I,j) € C(p). These configurations are called Tyler regular by Kent and

Mardia (2012).

Recall that a topological subspace 9 of configuration space /‘Zlcll“ is always denoted by an upper
case letter, the corresponding topological subspace y < ag of projective shapes by a lower case
letter, for example /‘Zlclf, @5, etc. for the configuration spaces, a[’i“, 55, etc. for the corresponding
shape spaces.

Of course, some of the topological subspaces defined above include another or are mutual
complements in /’Zlg .
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Proposition 3.1. The following holds for all d,k > 1:

(i) Py < F7 < Rf;

(ii) Ak = Dk O FE for all d, k;

(iii) A% = DY resp. FF = & if and only if k <d +1;

(iv) gj” = @g” = ij” = dd+2 is a singleton;

(v) gj; c Né“(n) for any n € N with equality if and only if nj = j for all j < min{d, k};
(vi) NE(n) = A% if and only if ny > k.
Fork>d+2:

(vii) Gj = Bj < Py;
(viii) Ta’f c fdk with equality if and only if d = 1,2 or k = d + 3;

PRrOOF. (i) Let P ¢ ‘Rfj be not of full rank, i.e., rkP < d + 1. Then, there is a basis
{z1,..., 2441} of R¥! such that the rows P;. of P are in the space spanned by x1,...,zq,
ie., P. € E({xl,...,xd}) for all + € {1,...,k}. Let {x1,..., 24,2} ,} be another basis with
Tay1 # 2., The basis transformation matrix B is then no scalar multiple of the identity
matrix Iz,1, but it leaves P unchanged, i.e., P = PB. Therefore, P is not free, whence free
configurations are of full rank, i.e., FF € R%. Theorem 2.1 states that PGL(d) acts freely on
the set fPC‘lHQ of frames. Hence, PGL(d) acts freely on P¥ for any k > 1, and P¥ < FF < RE.

However, shapes comprising of only d + 1 distinct landmarks are always decomposable, and
thus not free due to (ii). Hence, P¥ < F.F < Rk.

(i) We will show that decomposable implies not free, and vice versa. Let P € .545 be a
matrix configuration. If P is not of full rank, then P is decomposable since ({1,...,k},d + 1)
decomposes into ({1,...,k —1},d), ({k},1) € C(P). From (i) we conclude that P is also not
free.

Now, assume that P is of rank rk P = d + 1 and decomposable, i.e., there are projective
subspace constraints (1, 7), (I¢,d + 1 — j7) € C(P). By Proposition 2.7, there is a permutation
matrix ¥ of the vertices and a matrix A € GL(d 4+ 1) such that ¥ PA is in canonical block

Pr oo
structure ( 0’ 5 ) Then,

Ic
<f3] 0 ) . ()\Iu 0 ) (P] 0 ) <)\le 0 )
0 P[c O I|[c‘ 0 P]c 0 Id+17j
—_—

“

D 5
= DYPAB,

whence L PA is not free. Therefore, X P is not free, and neither is P since P = X~ !DXPAB
with ¥~' DY being a diagonal matrix and AB € GL(d + 1).

For the opposite direction, assume P is not free, i.e., there are a non-singular, diagonal
matrix D € Diag*(k) and a non-singular matrix B € GL(d + 1), B # Agy1, A € R*, such
that P = DPB. Then, the rows of P are left eigenvectors of B with corresponding eigenval-
ues A1,...,A;. There are at least two distinct values among the A;, i € {1,...,k}, otherwise
B = \1;11 in contradiction to the assumption. Then, the rows of P divide into classes of corres-
ponding eigenvalues, and P fulfills the projective subspace constraints (I , Tk PI)7 (I ¢ rk PIC) €
C(P) with I = {i : \; = A1}, while rk P; + rk Pc = d + 1, whence P is decomposable.

(iii) If & < d + 1, there are no configurations of full rank and thus no free configurations
due to (i). For k = d + 1, the configurations of full rank, i.e. those in general position, are
decomposable since the trivial projective subspace constraints ({1}, 1), ({2}, 1), ce ({k}, 1) give
a decomposition. Hence, there are no free configurations if k < d + 1.
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(iv) Letp e ﬂg” be a configuration which fulfills a non-trivial projective subspace constraint
(I,j) € C*(p). Then, |I| = j +1 > j, and (I¢,rkpc) € C(p) is a trivial projective subspace
constraint fulfilled by p with rkpje = || = d+2—|I| < d+1—j,ie,pe /‘216‘1”2 is decomposable
if and only it fulfills a non-trivial projective subspace constraint. After reminding the reader
that a frame consists of d + 2 landmarks in general position, the equalities are obvious. Since

all frames are equivalent under the action of PGL(d) since PGL(d) acts transitively on them,
d+2

see Theorem 2.1, p;™~ comprises of one element.

(v) By definition n; > j for all feasible vectors n = (ny,...,n4) € N% so configurations
fulfilling only trivial projective subspace constraints are always allowed, i.e., gclf c Ns(n) There
are only configurations with trivial projective subspace constraints in N%(n) if n = (1,...,d)
orif k=1.

(vi) A% (n) = 4% if and only if the projective subspace numbers n = (ny, ..., ng) allow for all
possible projective subspace constraints, i.e., even ({1, .k} 1), so n1 = k and, consequently,

Ng>-++>nN1 Zk

(vii) Recall that a frame consists of d + 2 landmarks in general position. Then, there is
nothing left to prove.

(viii) The statement Py < FF follows directly from Theorem 2.1. For the statement regard-
ing equality we refer to Section 3.4, in particular to page 42 for the cases d = 1, 2. O

From Proposition 2.7 and Proposition 3.1, we conclude that ag can be decomposed into
disjoint subsets with fixed total decomposition.

Proposition 3.2. Let k=1 andd > 1. Then,

d+1
. H I AN
d = .7171 js*l
r=1 s=1 {(Ilvjl)a""(lsvjs)}
is total decomposition
with 0 _ jn =T
T | 1.
~ 1 s
= [ o1 X X fi
s=1

{(Ilajl)v LR (Isajs)}
is total decomposition

Note that the stratification of Proposition 3.2 is only a set-theoretic one, but not a topological
one. However, Proposition 3.10 states how the strata, which turn out to be manifolds of different
dimensions (see Theorem 3.24), are glued together. Analogous stratifications have been proven
for similarity shape space (Kendall et al.; 1999, Sect. 2.6) as well as affine shape space (Groisser
and Tagare; 2009, Thm. 4.2). In these cases the strata can be ordered in terms of matrix
ranks. This is not possible for the stratification of projective shape space given above since
projective shapes of full rank are not necessarily free. However, a partial order can be given by
the dimensions of the strata.

3.2 Properties of all topological subspaces

The quotient topology on ag inherits some properties from the topology on /‘715. First of all, recall
that the projection map 7 : /‘Zlclf — ag is continuous by the definition of the quotient topology,
and open since projective transformations are homeomorphisms on ﬂlj. It easily follows that
the quotient topology on u(’j fulfills the first and second axiom of countability, i.e., there is a
countable set of open subsets of ag such that any open subset of ag is a union of some of these

distinguished open subsets.

Lemma 3.3. The topology on aclf fulfills the first and second axziom of countability.
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Proor. 4% = (RPd)k fulfills the second axiom of countability since it is a finite product of
second-countable spaces. Hence, there is a countable base (U, )nen of the topology. Any open
subset V C ak is of the form V = 7(U) for an open U € A%, ie., V = n(U) = n(U;e; Us) =
User m(Us) for some I < N. Since 7 is open, (7(Uy,)) is a base of the topology on a%. Thus,

k
a,

neN
is second-countable, and consequently first-countable, too. O

A classical result of general topology states that the topology of a first-countable space is
determined by sequences (Kelley; 1955, Ch. 2, Thm. 8). In particular, the topology of af is
determined by sequences.

Corollary 3.4. A subset y < aff is open if and only if for any [p] € y and any sequence
([ ”])neN with limit [p] there is an N € N such that [p,] € y for alln > N.

Furthermore, when thinking about a converging sequence in shape space acll“, one may always
think about a converging sequence in configuration space /‘Zlg.

Corollary 3.5. To any sequence ([pn])neN in projective shape space ak with limit [p] and any

configuration q € 7'('_1([])]), there is a sequence (qn)neN in configuration space /‘715 with limit q
such that [pn] = 7(qn).

PROOF. Let ([pn]), . D€ @ sequence in @) with limit [p] and ¢ € A} with [p] = m(q). Since
/‘4§ fulfills the first axiom of countability, there is a countable base (Um)m o of neighborhoods
at q. W.lo.g. U,, 2 Uy for all k > m, otherwise, consider the countable base (U{n)meN with
U, = ﬂkgm Uy. For all m € N there exists an N,,, € N such that [p,] € 7(U,,) for all n > Ny,
since ([ ”])neN has limit [p] and 7(Up,) is a neighborhood of [p]. Now, choose the sequence
(Gn)nen such that 7(g,) = [pn] and ¢, € U,, for all n > N,,, for all m € N. O

Note that Lemma 3.3, Corollary 3.4 and Corollary 3.5 also hold for topological subspaces
of a[’lg since they inherit the property of the axioms of countability through the subspace topology.
Additionally, dense topological subspaces of .545 are again dense under .

Lemma 3.6. Let 9 < A% be dense in A%. Then, y = 7(Y) is dense in a¥. In particular, the

topological subspace gclf of shapes with all landmarks in general position is dense in a¥.

PROOF. Let U < a¥ be a neighborhood of [p] € a¥. Then, #=1(U) is a neighborhood of p € 4%
and thus contains an element g € 9" since 9 is dense in A¥. Hence, [q] € m(m~HU)) ny,soy
is dense in afj.

For the second statement, let p € ﬂl!j be an arbitrary configuration. Then, one can resolve
all non-trivial projective subspace constraints of p by arbitrary small perturbations on the land-
marks of p, whence a configuration ¢ € gclf in general position can be found in any neighborhood
of p. Thus, g(’j is dense in 4%, as is gcll" in afj. O

Further, topological subspaces respecting the hierarchy of projective subspace constraints

are open in ak.

Proposition 3.7. A topological subspace y < a(’j which respects the hierarchy of projective sub-

space constraints is open. In particular, the topological subspace gf of shapes with all landmarks
i general position is open.

ProOOF. Both statements are direct consequences of Lemma 2.6. O
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3.3 T1 and Hausdorff subspaces

As mentioned in requirement 1), we are interested in Hausdorff subspaces of ag. For the con-
struction of these, it is important to understand which shapes [¢] € ag can be separated from a
fixed shape [p] € ag by an open neighborhood and which cannot.

To describe the degree of separation, topologists introduced separation axioms. Besides
HausdorfIness, two more notions of separation will be discussed here.

A topological space M is said to be

TO if for any two elements p, ¢ € M there is an open neighborhood of p or ¢ not containing the
other element;

T1 if for any two elements p,q € M there are open neighborhoods U, and U, of p resp. ¢ not
containing the other element, i.e., ¢ ¢ U, and p ¢ Uy;

Hausdorff or T2 if for any two elements p, g € M there are disjoint open neighborhoods of p
and q.

Obviously, a Hausdorff space is T1, too, while a T1 space is also TO0.

To understand the separation properties of a topological space M, it is very useful to compute
the intersection of all open neighborhoods to an element p € M. Groisser and Tagare (2009)
have considered this set in their discussion of affine shape space, and it was called the blur Bl(p)
of p in M there. An element p € M is said to be blurry in the case that its blur is a strict
superset of {p}, and unblurry if Bl(p) = {p}.

Note that the blur of an element p € M depends heavily on the topological space in which
the blur is considered. However, if U is any topological subspace of M, then the blur of an
element p in U is a subset of the blur of p in M with equality if ¢/ is open.

The blur can also be defined via sequences:

Lemma 3.8. Let M be a topological space and p,q € M elements in M. Then, q € Bl(p) if
and only if p is a limit point of the constant sequence (q)neN -

PROOF. The sequence (q)nen converges to p if and only if (¢)nen is ultimately in every neigh-
borhood of p, i.e., if and only if ¢ is in every neighborhood of p. By definition, ¢ is in every
neighborhood of p if and only if ¢ € Bl(p). O

The more familiar concept of the closure C1(U) of a set U is similarly defined as the intersec-
tion of all closed supersets of U. Groisser and Tagare (2009) have pointed out that the concepts
of the blur Bl(p) and the closure Cl(p) of an element p € M are basically interchangeable.

Lemma 3.9 (Groisser and Tagare (2009), Lemma 5.2). Let M be a topological space and
p,q € M, and let Cl(p) denote the closure of {p} in M. Then, q € Cl(p) if and only if p € Bl(q).
In particular, every element of M is closed, i.e., Cl(p) = {p}, if and only if every element is
unblurry.

Recall that a topological space is T'1 if and only if all of its elements are closed (Arkhangel’skii
and Fedorchuk; 1990, Sect. 2.6, Prop. 13). Consequently, the topological subspace of aﬁf com-
prising of unblurry shapes is T1.

From now on, only the case k = d + 3 will be discussed, the case k < d + 2 is less relevant
and less interesting as Proposition 3.1 shows. The blurry shapes in ag are then characterized

by decomposability.

Proposition 3.10. A shape [p] € acll€ is blurry in ac]lC if and only if |p] is decomposable.
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A shape [q] € a¥

landmarks such that

is in the blur of [p] in aclf if and only if there is a permutation o of the

P 0 -+ 0 0
0o P
o[p] = o (3.1)
0
0 0 P O
has a block representation, and
Py P P P
0 P - P Py
old=|{. . . . . (3.2)
0O -~ 0 Ps Py

is upper block “triangular” for some P;; of suitable dimension. In particular, the blur Bl([p])
of [p] consists only of less constrained shapes, i.e., C(q) < C(p) for all [¢q] € B1([p]).

Before proving Proposition 3.10, let us give a simple example to show the concept of the
proof: let [P] € df be of rank d + 1 with ({1,...,i},5), ({i + 1,...,k},d + 1 — j) € C(P) with
i€ {l,...,k}, and let P be a representing matrix configuration in block diagonal form, i.e.,

(P 0
(0 n)

for some matrices P; € /‘Zl;_l and P € /qc’l“__;. The sequence (Qn)neN given by

= Py %Y _ I; 0 P Y Ij 0
Qn - (0 P2> B <0 nIk*l' 0 P2 0 n711d+17’j (33)

has limit P in /‘Zlc'lf for any Y € R*(@+1=3) while the corresponding sequence in projective shape
k is constant since Equation (3.3) shows

space d;
(A iY\] _[(A Y
2= |(5 w)] - [0 »))
Due to Lemma 3.8,

K’S é)]eBl([P]), and analogously [(Zl gﬂeBl([P])

for any Y € R*(d+1-0) 7 ¢ R=D%J Now, there is a Y € R™*{@+1-0) or 7 ¢ R*—9*J which
breaks a projective subspace constraint of [P], whence BI([P]) # {[P]}.

This idea of “different speeds of convergence” employed in Equation (3.3) will be used a few
more times in this thesis, e.g. in a more evolved way in the following proof of Proposition 3.10.
It has been introduced before in (Kent et al.; 2011, Sect. 3.4), albeit in a less general way.

PRrROOF (PROPOSITION 3.10). It suffices to show the second statement that the blur comprises
of shapes as in Equation (3.2). The other statements then follow immediately.

Let P e Q)C’f be a decomposable matrix configuration of shape [p] with total decomposition
{(I1, /1), ....(Is,js)} S C(p) and define jo = d + 1 — rk P. By Proposition 2.7, there is a
permutation matrix ¥ and a non-singular matrix B € GL(d + 1) such that the matrix P = 2 PB
is a block “diagonal” matrix

P 0 -~ 0 0
0 P o
o .
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with matrices B, € RIF1¥ir 1 < r < s. By using different speeds of convergence, the sequence
(D”QB")neN with

P 312 1[:’15 1?10
0 P - Ps Py
Q = . . . 5
0 0 ps PSO
Ip, 0 0
Do—| O Mel T | Diagt(e,
0 0 n8711|ls|
L 0 0 0
0 n 'L, : :
B, =1 : 0 : e GL(d+1)
0 - 0 nstIL, 0
0 0 n=°L,

has limit P for any matrices P.; € RI"1*J¢ while being constant in shape space. Hence, [Q] €
Bl([fj]) for any matrices P, € RI"*Jt by Lemma 3.8, as has been discussed similarly by (Kent
et al; 2011, Sect. 3.4). Analogously, the sequence (X 'D, XX 'QB,B), has limit P, and
[EilQ] € Bl([p]). As mentioned in Remarks 2.8, there is more than one permutation to obtain
a block structure as in Equation (3.1), i.e., all of the shapes as in Equation (3.2) are indeed
included in the blur.

Further, we have to show that these shapes actually comprise the blur of [p], i.e., that it
suffices to think in such block structures: denote the indices in P of the block P, by I, x J,.. The
non-decomposable projective subspace constraints of P are then given by (Ir, |JT|)7 1<r<s.
Let [Q] be a shape with [Q] € BI([P]), i.e., the constant sequence ([Q])neN has limit [P] by
Lemma 3.8, and let ) be a representing configuration of [@]. Then, there is a sequence (P,)neN
of matrix configurations with limit P and [P, ] = [Q] for all n € N (Corollary 3.5). In particular,
there are non-singular diagonal matrices D,, and non-singular matrices B, € GL(d + 1) such
that

D, P, = QB, (3.4)

for all n € N. Without loss of generality the following can be assumed:

- B, is diagonal for all n € N: using a singular value decomposition for B,, one obtains
the existence of diagonal matrices D,,, E,, and orthogonal matrices U,, V,, € O(d + 1) such
that D, P, = QV,E,U! or equivalently D, P,U, = QV,E,. The sequences (U,)nen and
(Vi)nen have common converging subsequences since O(d + 1) is compact, whence we can
assume U,, — U, V,, —» V, and consequently P,U,, — PU and QV,, —» QV without restric-
tion. Since right-multiplication by an orthogonal matrix does not change the projective
shape of P, resp. ), we can choose P, () such that the corresponding B,, is diagonal.

- ||Bu|ww = 1 for all n € N: if otherwise, consider | By | Dy and | B, ]! By instead of D,
and B,,.

- (Bn)nen converges to some limit B with |B|e = 1: (Bp)pen is w.l.o.g. bounded in the
supremum norm, hence possesses at least a converging subsequence. Consequently, we can
assume QQB, — B, too.

- (Dn)nen converges to some limit D with | Dy, |« < p, p > 0, for all n € N; else a row of P
would be the null vector since D, P,, —» QB and P,, — P, which is impossible.
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Now, if <((D”))”> diverges, then (F,);; has to converge to 0 due to Equation (3.4), i.e., P;; = 0;
Bn neN

if (((g:))ﬂ)neN converges to 0, then @;; = 0 and thus also (F,);; = P;; = 0. Consequently, there

isajedJ.toanyie I, 1 <r < s, such that % — ¢ # 0 as n goes to infinity since P has
njjj

non-trivial rows. If there were ¢ € I, and j € J, such that (%) diverges or Dndu_,
(Bn)jj neN (Bn)jj

as n goes to infinity, then one obtains a decomposition of (I, j,) by merging rows and columns
of same speed of convergence, and (I, j,) is decomposable in contradiction to the assumption.
Hence, there are blocks of different speeds of convergence corresponding to the blocks of P.
When ordering these speeds in a decreasing order, one obtains the proposed block structure
of Q. Note that the elements of {1, cel, k}\ \U?_, I, belong to the trivial columns of P.

To see that the blur BI([p]) of a shape [p] contains only less constrained shapes, recall that
the topological subspace

{lal € ai: Cl9) € C(p)}
is open by Lemma 2.6. Thus, Bl([p]) < {[q] € 4} : C(q) < C(p)} by the definition of the blur.00

Proposition 3.10 states that open topological subspaces of ag, e.g. subspaces respecting
the hierarchy of projective subspace constraints, cannot be T1 and even less Hausdorff if a
decomposable shape is included. However, acllf is TO, so are all of its topological subspaces since
less regular shapes can be separated from less constrained shapes by an open neighborhood of
the latter, while equally constrained shapes can even be separated in the T1 sense, which can
be concluded from the later Theorem 3.24. By Proposition 3.1, the largest T1 subspace of agj
respecting the hierarchy of projective subspace constraints is therefore the topological subspace
1F = af\d} of free shapes.

Example 3.11. In aik decomposable shapes are either of rank 1 (the trivial shape where all
landmarks coincide) or their total decomposition is {(Z,1), (1% 1)} for a non-trivial subset I <
{1,...,k} (shapes comprising of exactly two distinct landmarks). Therefore, the topological
subspace flk of free shapes comprises of those with at least three distinct landmarks, i.e. a
frame, so fF = pf.

For k = 4, the blur in af of the shape [p] € d{ with p; = py and p3 = p4, but p; # p3 (double
pair coincidence) comprises of [p] and the single pair coincidences [¢q] with g3 = ¢4 and [r] with
r1 = T9 sS1nce

[p] = [q] = ;=

SO = =
— =0 O
—= =0 O
OO ==
S O = =
e e )
— =0 O
O = = =

Here, the representative of [¢] and the first representative of [p] are already in the structures of
Proposition 3.10, while for [r] the permutation interchanging the first two landmarks with the
latter two has to be applied on the representative of [r] and the second representative of [p].
The blur of the trivial shape is a,f, and the blur of the shape

[s] = e df

O =
_ o O O

with the triple coincidence s; = so = s3 # s4 comprises of all less constrained shapes. 0

Of course, we are looking for Hausdorff spaces, and the topological subspace ]ff of the free
is not Hausdorff for any d = 1 and k > d + 3 as we will see shortly.
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Consider a shape [p] € rclf which fulfills the projective subspace constraint ({1, .. ,i},j), ie.,
[p] has a block matrix representation
P 0
P=(% n)

(k

for some matrices P € /‘Zl;fl, P e /‘215:;, and Z € R*k=9%J see Remarks 2.8. Then, the sequence

([Pn]), op With
p_ (D iy (/L 0 P Y\ (L 0
"o Z P2 N 0 nIk,Z- %Z P2 0 %IdJrl,j

has limit points [P] and
a=[(i »)]

with ({i +1,...,k},d+1—j) € C(Q). Meanwhile sequences in first-countable, Hausdorff spaces
have at most one limit point (Kelley; 1955, Ch. 2, Thm. 3), whence a topological subspace of aé“
containing [P], [Q] and [P,] for all n € N simultaneously is not Hausdorff.

A generalization of this observation gives us a criterion to determine if a topological subspace
of a§ is Hausdorff.

Proposition 3.12. Let y < r(f be a topological subspace containing all shapes in general posi-
tion, i.e., gclf C y. The subspace y is not Hausdorff if and only if there are two distinct shapes
[p], [¢] € y which after simultaneous reordering of rows by some permutation o have the block
structure

Pi Po - Py
0 ) )
alp] = (3.5)
P P_im
0 0 P
and
DiP1B1 O 0
o= || @ Qe , (3.6)
: - : 0
Qn o Qum—1 DiPpy B

with Prg, Qrs being matrices of the same dimensions for all r,s, and
(i) 1,m > 1 since [p] # [q],
(ii) if Prs,Qrs # 0, then Q,s = D, P,sBs with D, diagonal and non-singular, Bs non-singular,
(i1i) Prs =0 if there is a pair (a,b) # (r,s) witha <7, b= s and Qqp # 0,
(v) Qrs = 0 if there is a pair (a,b) # (r,s) witha =17, b < s and Py, # 0.

For an illustration of the form of the configurations P = (Prs) and Q) = (Qm) see Figure 3.2.

PRrROOF. The strategy of the proof is to use the definition of Hausdorff spaces via sequences in
first-countable spaces: if two distinct elements p, g € M in a first-countable topological space M
do not possess disjoint open neighborhoods, then there is a sequence with limit points p and ¢
(Kelley; 1955, Ch. 2, Thm. 3). Equivalently, this means that sequences in Hausdorff spaces
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Figure 3.2: The form of the configurations P and @ in Proposition 3.12. The configuration P
is zero in the blue, hatched area (:::) due to (iii), while @ is zero in the red, hatched area ()
due to (iv). In the green area (), the corresponding matrices are equivalent due to (ii).

possess at most one limit point. In shape space y, this gives us the equation D, P, = Q,B, for
all n € N, and sequences ([P,]), . ([@n]), cp With distinct but non-separable limit points [P]
resp. [Q]. As in the proof of Proposition 3.10 we can w.l.o.g. assume that B,, is diagonal for
all n € N, and that the sequences (Bp)neN, (Dn)neN converge to singular matrices. By using
the method of different speeds of convergence, we will then obtain the described form of the
configurations P and Q.

For the other direction the idea of different speeds of convergence will be used to construct
a shape in any neighborhood of some [P], [Q] € y of the described form.

Recall that aﬁ and all of its topological subspaces are first-countable (Lemma 3.3). Let
[r], [¢] € y be distinct shapes which cannot be separated in the Hausdorff sense, i.e., there are
no disjoint open neighborhoods of [p] and [¢]. Then, there is a sequence ([rn])neN in y with
limits [p], [¢]. We can assume [r,] € gF¥ to be in general position for all n € N since g% is
dense in y < aclf by Lemma 3.6. By Corollary 3.5, there are sequences (P, )nen with limit P
and (Qn)nen With limit @ in the configuration space A% such that 7(P,) = 7(Qn) = [rn]
for all n € N and n(P) = [p], 7(Q) = [¢]. Further, there are matrices D,, € Diag*(k) and
B, € GL(d + 1) such that

Dy P, = Qan

for all n € N since P, and @, are of the same projective shape.
Without loss of generality the following can be assumed:

- B, is diagonal for all n € N: in fact, using a singular value decomposition for B,
one obtains the existence of diagonal matrices D,, € Diag*(k), E, € Diag*(d + 1) and
orthogonal matrices Up,,V,, € O(d + 1) such that D, P, = Q,V,E,Ul or equivalently
D, P, U, = Q,V,E,. The sequences (U, )nen and (V,,)nen have common converging sub-
sequences since O(d + 1) is compact, so w.lo.g. U, — U, V;, » V, P,U, — PU and
@QnV, — QV. Since right-multiplication by an orthogonal matrix does not change the
projective shape of P, resp. Q),,, we can choose P,, @, such that the corresponding B, is
diagonal.

- |Bullw = 1 for all n € N; otherwise, consider the matrices || B[ Dy and ||By|,! Bn
instead of D,, and B,,.

- (Bp)nen converges to some limit B with |B|s = 1: the sequence (Bp)pen is w.lo.g.
bounded in the supremum norm (see above), whence it possesses a converging subsequence.
Thus, we can assume ), B,, — B without restriction, too.

- (Dn)nen converges to some limit D, hence |Dyllc < p, p > 0, for all n € N; else, since
D, P, —» QB and P, — P, a row of P would be the null vector which is impossible.

- B and D are singular, but non-trivial matrices, i.e., B, D # 0: if B was non-singular, so
would be D; else QB and thus () would have a vanishing row which is impossible. If D was
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non-singular, so would be B; otherwise, P would be of rank less than d+1 in contradiction
to the assumption y & rf. If both are non-singular, then P = D~'QB in contradiction to
[p] # [¢]- Hence, both B and D are singular. Further, B is non-trivial since ||Bls = 1,
while D is non-trivial since B is non-trivial and P and @ are of full rank.

Recall that neither P nor ) may have trivial rows or columns by assumption. By reordering of

(Dn)jj (Bn)jj
for all i < j, so (Dp)i does not grow faster than (D,,);; for all i < j. The merger of columns
respectively rows of equal speed of convergence leads then to the proposed block structure of P

rows and columns, one may assume that (%) and (M) converge to a finite limit
neEN neN

and @. If the sequence (%) converges to a non-zero value for some 1, j, then the corres-
n)ii / neN

ponding block is of type (ii). If the sequence (%

explains type (iv). Concerning blocks of type (iii), consider the equalities P, F,, = G,Q, with
F, = B;Y/|B; o and Gy, = D;;/||B; Y| for all n € N. If the sequence (%> N diverges,
ne

) converges to 0, then @;; = 0 which
neN

(Bn)jj
: (Bn)jj> _ (HBMRI(DTLI)M) _ ((Gn)n‘)
or equivalently, the sequence ( Du)is ) o Bal (520 ) e (Fss ) en converges to 0,
then Pj; = 0 which explains type (iii).
Finally, we have to show that the upper left and bottom right blocks are of type (ii): since

every row of () is non-trivial, (( (Dn)k

ﬁ) does not converge to 0. The corresponding
nj)d+1,d+1 neN

sequence of inverses (%) N does not converge to 0 since P is of full rank. Con-
n ne

sequently, these sequences converge to a non-zero number, i.e., to blocks of type (ii). Analog-

ously, (Bn)11 converges to a non-zero number since P has no trivial row and @ is of full
(Dn)i1 ) peN

rank. This finishes the proof that P and ) are of the described form.

Conversely, assume there exist [P], [Q] € y with P, Q in the described form. Let Uy, and Uy
be arbitrary open neighborhoods of [p] resp. [¢] in y. Further, let 9" = 7=1(y), and let B,.(P) be
the open ball with radius r» and center P in the space " of matrix configurations equipped with
the max norm. Then, there is a § > 0 such that Bs(P) < 7 (Up,) and Bs(Q) < m~ ' (Upy)-
We will construct a configuration A € G% < 9 such that its shape [A] is an element of both
7(Bs(P)) and 7(Bs(Q)). For n € N consider block diagonal matrices

TLdl El e 0
D, = : : € Diag* (k)
0 ... onh Dl
and .
n-h B, 0
B, = : : e GL(d+1)
0 ... nmB,

with non-singular diagonal matrices D,, non-singular matrices B,, and speeds of convergence
d,,bs € Ng such that

- b, > bs, d > dg for all r > s;

- by = d, and D, = D,, By = By for pairs (r, s) with Prs, Qrs # 0, and thus Q. = D, PrsB;
(blocks of type (ii));

- otherwise, bs; # d, and D, =1B, = I; more precisely, let by > d, for all (r,s) with P.s # 0
(blocks of type (iv)), while by < d,. for all (r, s) with Q,s # 0 (blocks of type (iii)).

Then,
max{nbs*dr 2 (rys) with Qs # 0, P = 0} <n !
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and
max{ndr_bs 2 (r,s) with Ps # 0,Qps = 0} <n Ll

Further, define a configuration A = (Ars) with the same block structure as P and () and entries

A P, if P.s # 0,
" b DI1Q B if Py = 0.

The equivalent configuration DAB is then given by

(DAB) . Qrs ifPrszoa
rs o\ ndrb D P By if P # 0.

Now, choose n large enough such that

max’

w5, P s |5, @rsB ) <

whence both ||[A — P|max < 0 and |[DAB — Q|lmax < 0, ie., [A] € m(Bs(P)) n m(Bs(Q)) as
subsets of af. Since g¥ is dense in @} by Lemma 3.6 and 7(Bs(P)) n m(Bs(Q)) # & is open,
there is a shape [A] € g¥ such that

[A] € 7(Bs(P)) n 7(B5(Q)) n g < Upy 0 Upy-
Consequently, Uy, and Uy, are not disjoint, whence y is not Hausdorff. O

Proposition 3.12 shows that neither the topological subspace fd'C of free shapes nor the topo-
logical subspace pf of shapes with a frame is Hausdorff for any k > d + 2: the configurations

1 /1, s 1/ 1

////////////

and @ =

are elements of EP§+3 - Tdd+3 since the first resp. last d + 2 landmarks form a frame. Thus,
P73 is not Hausdorff since [P] and [Q] are of the described form of Proposition 3.12 (see also

Figure 3.2) and gg c pf; c fdk. For k > d + 3, some of the landmarks may be repeated.

Example 3.13. Inthe case d = 1 and k = 4, the discussion above shows that e.g. the topological
subspace y comprising of the shapes in general position and the single pair coincidences [p], [¢]
with three distinct landmarks p1, pa, p3 resp. qo, q3, g4, but p3 = p4 resp. g1 = ¢, is not Hausdorft.
In fact, then

=S

cERE

with [ = m = 2. Recall that y is T1 since all shapes of y are free. 0
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Proposition 3.12 simplifies for topological subspaces respecting the hierarchy of projective
subspace constraints.

Corollary 3.14. Let y < rf with gf C y. If y is not Hausdorff, then there are two distinct
shapes [pl, q] € y, |p] # [q] such that (I,j) € C(p) and (I¢,d +1—j) € C(q). If y additionally
respects the hierarchy of projective subspace constraints, the converse statement is also true.

PROOF. The first statement follows immediately from the block structure of [p] and [¢] in Pro-
position 3.12, simply let I contain the rows below the upper left block of [p] as in Equation (3.5),
and let j be the number of columns to the right of the upper left block.

For the converse statement in case that y respects the hierarchy of projective subspace con-
straints, let [p], [¢] € y, [p] # [q], be distinct shapes with (1, j) € C(p) and (I¢,d + 1 — j) € C(q).
Then, there are representatives such that after simultaneous reordering of the rows

= (5 0)] e ta-[(% 2)]

with P11, Q11 € RMHUI%J ete. Consider the matrices

=[G )]t =[5 )

in the same block structure with Ry; € gj‘ﬂl, Roy € gc‘lI_CJ', as well as Rop € gj‘ﬂi and Sio € gy_‘j
such that the subconfigurations

(Ro1 R22)€gjfc| and (Ri1 Si2) (LI‘,

ie., [rr] € gyc‘ and [sr] € 3(‘1” are in general position. Then, [r] and [s] are less or equally
constrained than [p] resp. [¢] and, since y respects the hierarchy of projective subspace con-
straints, contained in y. Since [r] and [s] are of the block structure as in Proposition 3.12, y is
not Hausdorff. 0

3.4 Topological subspaces with manifold structure

In the requirements of a good topological subspace of ag, we listed “differentiable Hausdorff
manifold.” We already know from the previous section how to check the Hausdorff property,
but we still do not know which topological subspaces of a§ are topological manifolds and can
be given a differentiable structure.

Before we begin constructing charts, recall that a topological manifold M of dimension n is
a second-countable topological space for which every element p € M has a neighborhood U that
is homeomorphic to an open subset V of R"™. Such a homeomorphism

p: U — V

is called (coordinate) chart, and a family of charts whose domains cover M is called an atlas.
If oy : Uy — Vi and ¢y : Uy — Vu are two charts with Uy n Us # &, the composite map
o1 © <p2_1 2 po(Ur n Us) = p1(Up n Us) is called the transition map between these two charts.
Two charts 1 and @9 are compatible if either Uy n Uy = J or its transition map is a diffeo-
morphism. A differentiable manifold M of dimension n is a topological manifold together with
a differentiable structure, i.e. a maximal atlas of compatible charts.

While we do not require a manifold to be Hausdorff, a manifold is T1 by our definition:
let p,q € M be two elements of the manifold M. Then, there are charts ¢, : U, — V,, and
g : Uy — Vg withpe U, and qe Uy. If p¢ Uy and ¢ ¢ U, then U, and U, are the requested
open neighborhoods of p,q. If p,q are in the domain of the same chart, i.e., p € Uy or q € Up,
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then p and ¢ can be separated in U, resp. U, and M even in the Hausdorff sense since U, resp.
Up is open in M and homeomorphic to the Hausdorff space V, € R" resp. V, € R".

From Proposition 3.10 we concluded that, for k£ = d + 2, the space fdk of the free shapes is
the largest T1 subspace of aﬁf which respects the hierarchy of projective subspace constraints.
Indeed, £F will turn out to be a differentiable manifold (Theorem 3.24), as it is the case for
similarity and affine shape space. This is true even for k < d + 2 since, by Proposition 3.1, fgld+2
is—as a singleton—a zero-dimensional manifold, while fdk = ¢ for k < d + 2. However, we will
continue to consider just the case k > d + 2.

Before constructing compatible charts on fdk, we will shortly recall the approach to projective
shape space by Mardia and Patrangenaru (2005) via a topological subspace defined through pro-
jective frames: since there is a unique projective transformation mapping a frame (p1, ..., p4+2)
of d + 2 points in general position to another frame (q1,...,qq12), see Theorem 2.1, the group
action of PGL(d) on /‘Zlg can be removed from a projective shape [p] by choosing the represen-
tation ¢, m(q) = [p], with a fixed frame. Of course, this standardization is only possible if the
shape contains a frame, and one quickly obtains that the topological subspace of shapes with a
frame in a fixed subset of d + 2 landmarks is a differentiable Hausdorff manifold.

Lemma 3.15 (Mardia and Patrangenaru (2005), Prop. 2.3). Let B¥ < 4% the topolo-
gical subspace of configurations with a frame in its first d + 2 landmarks. The corresponding
shape space 55 is then homeomorphic to the d(k — d — 2)-dimensional differentiable Hausdorff
manifold

)k—d—2

bk ~ (RP? (3.7)

and respects the hierarchy of projective subspace constraints.

Note that this statement is the projective analogon to Bookstein coordinates in similarity
shape space, cf. Bookstein (1986). It has first been discovered in the case d = 2 by Goodall and
Mardia (1999) and by Horadam (1970).

ProOOF. PGL(d) acts transitively and effectively on frames (see Theorem 2.1), hence there is
a unique configuration g representing the shape [p] such that ¢; = m,(e;) for all 1 <i<d+1
and gg+2 = mp(er + -+ + eq41) with e; denoting the i-th canonical basis vector of R*!. Map-
ping [p] to qgg43,. k) then gives a homeomorphism to (RP%)F=4=2_ In matrix notation, there is
a representation () of the form

1 0 -+ 0 O
1
0 0 Lat1
Q=10 0 1 o0f=|11 11 (3.8)
cee e 1
1 1 -~ 1 1 Q{d+3,...k}
for any [p] € EC’? which is unique up to rescaling of the last k — d — 2 rows. O

Example 3.16. By Lemma 3.15, 525 is homeomorphic to RP2, and projective shapes in 525 can
be visualized as elements in R?> ¢ RP? using inhomogeneous coordinates, see Equation (2.9):
any shape [p] € 525 possesses a representation P such that the projective frame in the shape’s
first 4 landmarks is standardized to a square in R?, i.e. e.g.

) ) 1
5 =5 1
P=|-5 -5 1
-5 5 1

P51 Pso P
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In this representation, Ps3 is either 0 (if the fifth landmark is at infinity) or can be chosen to
be 1. In the latter case, (P51, P52) are the coordinates of the fifth landmark in R?. O

While 55 obviously respects the hierarchy of projective subspace constraints, it is not closed
under relabeling for £ > d + 3 since 235 then includes the configuration with py; 440y being a
frame and p; = pg42 for all i € {d + 3, ..., k}, but not all of its permutations.

The largest topological subspace of 55 which is closed under relabeling is the subspace gj of
shapes in general position.

Corollary 3.17. The topological subspace g§ of shapes in general position is homeomorphic to
a d(k — d — 2)-dimensional differentiable Hausdorff manifold, closed under permutations and
respects the hierarchy of projective subspace constraints.

ProOOF. gj is open in Eé“ due to Proposition 3.7 since it respects the hierarchy of projective
subspace constraints. An open topological subspace of a manifold is a manifold of the same
dimension itself which can be seen by restriction of the corresponding charts. O

Unfortunately, gj’ has the drawback of not being maximal unless k£ = 4 and d = 1, as we will
see in Section 3.5.

The closure of 55 under permutations is by definition the topological subspace pfj of shapes
containing a frame in arbitrary d + 2 landmarks. While pfj is a differentiable manifold, it is not
Hausdorff for any d > 1, k > d + 3, see Proposition 3.12.

Corollary 3.18. The topological space pg of shapes with a frame is homeomorphic to a differ-
entiable T1 manifold of dimension d(k —d — 2).

ProOF. From Lemma 3.15 we obtain homeomorphisms from the topological subspaces of shapes
with a frame in a fixed subset of d+2 landmarks to (RP%)*~4=2, These subspaces of shapes with
a frame respect the hierarchy of projective subspace constraints and are thus open in a§ and
plj due to Proposition 3.7. Therefore, these homeomorphisms can be considered as “manifold-
valued” charts on pfj. To obtain ordinary charts on pfj, one can compose the manifold-valued
charts with charts on the manifold (RP%)*~4-2  e.g. inhomogeneous coordinates. The transition
maps are then just multiplications with non-singular diagonal and non-singular matrices as
well as division by non-vanishing parameters depending smoothly on the representation matrix,
whence we obtain compatible charts on pfj rendering pfj a differentiable T'1 manifold of dimension
d(k — d — 2). See the more general setup presented in the later Example 3.22 for a detailed
construction of these charts.

At the end of Section 3.3 (page 34), it was shown that p§ is not Hausdorff. O

Unfortunately, for d > 3 there are free shapes that do not include a frame: e.g. for d = 3,
take three projective lines in RP? with their join being RP? and their section being a point,
i.e., three non-coplanar lines with a common intersection point. Put two distinct landmarks on
each line and another on the intersection point (see Figure 3.3). The resulting configuration
of seven landmarks is free since it is not decomposable; if it was decomposable, then the seven
landmarks would either decompose into a set of landmarks lying in a projective hyperplane and
a set of coinciding landmarks (decomposition (I, 3), (I¢,1)) or into two sets of landmarks lying in
projective lines (decomposition (7,2), (I¢,2)), which is not the case. However, this configuration
does not contain a frame since there are no d + 2 = 5 landmarks in general position. The same
argument works for £ = 6 when the landmark on the intersection point is removed. For k > 8
free shapes without a frame are constructed by multiplication of landmarks. Free shapes without
a frame can be constructed analogously for any d > 3 by using d non-coplanar projective lines
with a common intersection point.

Hence, a free shape does not necessarily contain a frame, and thus frames only form an atlas
on pfj Efdk, but not on ]ff for d = 3.
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1000
14 0100
0010

*5 .6 "7 P=10 00 1
% g ¥ 1100
1010

1001

Figure 3.3: A free configuration P € 9737 in RP? without a frame. All landmarks are distinct
and lie on three non-coplanar lines with common intersection point; landmark 1 lies on the
intersection point.

100 0 4 5
0100 . .
0010

P=|(0oo0 01 GP) |7
1100 6
1010 . .
100 1 1 5 2

Figure 3.4: The free configuration P € le37 without a frame from Figure 3.3 and its graph
corresponding to the base points Py 93 43

From Proposition 3.1, we know that free shapes are non-decomposable, and vice versa. In
particular, a free shape [p] is of full rank, i.e., there are at least d + 1 landmarks in general
position in [p], say, its first d + 1 landmarks. Let P = ( P ) be a matrix configuration with
[P] = [p] and Py the submatrix consisting of the first d + 1 rows of P. Then, Py € GL(d + 1),
whence

P=pPP1= <Id~+1> (3.9)

is also a matrix configuration of shape [p] with P, = PPyt consisting of non-trivial rows.
To such a configuration P, define an edge-colored, undirected graph G(P) = (V(P), E(P)) by
taking the columns of P as vertices, i.e., V(P) = {1,...,d + 1}. Let there an edge labeled with
“I” between two distinct vertices i and j if both Py # 0 and Py # 0 for l € {d +2,...,k} (see
Figure 3.4 as an example). The set of edges E(P) = Uf: 4+2 1 has a partition into sets of edges
E; labeled with “color” [ € {d + 2,...,k}. Note that multiple edges between two vertices which
are labeled differently are allowed. Loops are not allowed, though.

Note that this definition of the graph G(P) of a configuration P with its first d+ 1 landmarks
in general position is well-defined and invariant under PGL(d): for an equivalent configuration
Q = DPB let Dy € Diag*(d + 1) be the upper left square block of D with d + 1 rows, D; €
Diag*(k — d — 1) be the lower right square block of D with k —d — 1 rows, Qo € GL(d + 1) be
the first d + 1 landmarks (here: rows) of @, and @ be the last K —d — 1 landmarks of @, i.e.,

(&)= (0 ) ()7
Q1 0 Dij\P)
and in particular Q; = D;P;B, i = 0,1. Then, Q, in Q = QQal is given by

Q1Qy" = DiPLB(DoPyB) ™' = D1 P Py Dy Y,
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whence P; is only unique up to left- and right-multiplication by non-singular diagonal matrices.
However, these actions do not affect the graph G(P) since they only rescale rows and columns.

Of course, this definition of the graph is only well-defined if the configuration’s resp. shape’s
first d+ 1 landmarks are in general position. It can, however, easily be extended to any configur-
ation resp. shape with fixed d + 1 landmarks in general position by mapping the corresponding
submatrix to the identity matrix. These distinguished landmarks are said to be the base points.
Note that the ordering of the chosen landmarks is not critical for the graph since a permutation
of the landmarks will only permute the vertices. Without restriction, we will assume the base
points to be in ascending order.

It turns out that the graph of a shape encodes algebraic information. In fact, the graph is
connected if and only if the shape is free.

Proposition 3.19. Let P € ﬂé“ be a configuration with its first d + 1 landmarks in general
position. Then, G(P) is connected if and only if P is free.

PROOF. If G(P) is not connected, then the vertices of G(P), i.e. the columns of P in Equa-
tion (3.9), split into two or more connected components Ji, ..., Js, s = 2, with J, # J for all
re{l,...,s}and >7_; |J;| = d + 1. Define

an{ie{l,...?k}:pie\/pj}7 r=1,...,s,

jeJr

as the set of rows of P which are in the projective subspace spanned by the base points numbered
by elements of J,.. Then, (Ir, |JT|) e C(P) for all r € {1,...,s}. The sets I, are pairwise disjoint
since the J, are pairwise disjoint and the first d + 1 landmarks of P are in general position.
Further, | J7_, I, = {1,...,k}. Hence,

{(Ir,|JT|) ir= 1,...,8}

is the total decomposition of P, i.e., P is decomposable, and thus—according to Proposi-
tion 3.1—not free.

Conversely, suppose that G(P) is connected. Without restriction we can assume that P = P,
i.e., P{1,..a+13 = Lgr1. Suppose that there are matrices D = diag(\1, ..., \;) € Diag*(k) and
B e GL(d + 1) leaving P unchanged, i.e., DPB = P. Then, Equation (3.9) implies

diag(A1, - Aay1)lar1 B = Lgyy

for the first d + 1 rows of P, and consequently B = diag()\fl, e )\;jl). If two columns i, j are
connected by an edge in G(P), then there is a row P,. such that both P; # 0 and P # 0 by
the definition of the graph. From the identities

Pi = MN(PB),, = NP;A7" and  Pj=\ (PB)lj = NPT

we then conclude

Ai = A=A,
and thus A\; = ... = A\gy1 since G(P) is connected. Consequently, the isotropy group of P
comprises of multiples of the identity matrix D = A1 and B = /\l_lldH, i.e., P is free. O

In the following the d + 1 base points together with a connected tree G with edges labeled
with the remaining landmarks will be called a pseudo-frame. Note that a tree contains no circles
and gets disconnected if an edge is removed; hence, it is a minimal substructure of a connected
graph. A shape [p] is said to contain the pseudo-frame ({il, ooy ldr1) G) if its landmarks with
indices {i1,...,i4+1} are in general position and the corresponding graph of [p| has G as a
subgraph. From Proposition 3.19 we immediately conclude that fdk comprises of the shapes
which contain a pseudo-frame.
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Corollary 3.20. A shape is free if and only if it contains a pseudo-frame.

PRrOOF. If a shape is free, then its graph to some ordered set of d + 1 landmarks in general
position is connected by Proposition 3.19. A spanning tree of this graph together with the d + 1
landmarks gives a pseudo-frame.

Vice versa, if a shape contains a pseudo-frame, then the graph corresponding to the base
points is connected, and the shape is free. O

The shapes including a fixed pseudo-frame form a differentiable Hausdorff manifold, gener-
alizing Lemma 3.15.

Proposition 3.21. Let ({i1,...,ia+1},G) be a pseudo-frame with tree G = ({1,...,d+ 1}, E).
Denote the number of edges in G labeled with the landmark | by |Ej|, and let #E = ‘{l B # @}‘
be the number of colors in G. The topological subspace of all shapes containing the pseudo-frame
({i1, ... igs1}, G) is then homeomorphic to the d(k—d—2)-dimensional differentiable Hausdor{f
manifold

k
k—d—1—#E _
(RPY) x X RIIEL (3.10)
l=d+2:
EHZFQ

PrOOF. Note that Zf=d+2 |E;| = d is the number of edges in the tree G with d + 1 vertices.
Then, the dimension of the final factor of the product is

k k
Y, d—|E|=#E-d— ) |B|=d(#E-1),
l=d+2: l=d+2

E#d

whence the dimension of the product is d(k — d — 2).

To construct a homeomorphism, the idea is to give a standardized matrix configuration to
any shape with pseudo-frame ({2'1, ceylai} G). Let [p] € a¥ be a shape with this pseudo-
frame, and let P be any matrix configuration of this shape. Then, there is a unique matrix
A€ GL(d + 1) such that Py, _,, 1A =Lz, namely A= Pgl . Additionally, there are
non-singular matrices D € Diag*(k) and B € Diag*(d+1) € GL(d+1) such that (DPAB);; =1
for columns i € {1,...,d + 1} with an adjacent edge labeled with [ while still (DPAB)g = I41.
Note that B is unique! while D;; is only unique for i € {1,...,d + 1} u {l : E; # &}. Then, a
homeomorphism mapping [p] to

k
k—d—1—#E _
(RP?) x X R
l=d+2:
E#0

is defined in the following way: the rows of DPAB with numbers not in E are only well-defined
up to rescaling, i.e., they are elements of RP?, and they will be mapped to (RPd)k_d_l_#E.
The rows of DPAB with numbers in {l : E; # &} will be mapped to RE by omitting the

entries fixed to 1; see the following Example 3.22. O

Example 3.22. Consider a shape [p] € a¥ with pseudo-frame ((17 2,3,4), G) with G being the
following edge-coloured tree:

1 6 2
6

G 5

4’ ‘3

1Uniqueness is—of course—only given up to the usual scalar multiplication of D and B
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Here, #F = 2, |E5| = 1 and |Eg| = 2. Let P be a corresponding matrix configuration. The
standardization described in the proof of Proposition 3.21 brings P then to a matrix of form

1 0 O 0
0O 1 0 0
0 0 1 0
o=|0o 0o o 1 (3.11)
Q51 1 1 Qun
I 1 Qes 1
Qy7,...k}

for some Q51,Q54,Q63 € R and some Q7 1y € ﬂl?’f_ﬁ. The configuration @ is, for P =
PPt given by the matrix multiplication

{1’27374}7
o b D D b p_p-l —1 : p—1 p—1 p—1 p—1
Q = dlag(PﬁbP62aP537P647P62P52 alaD77a' . ) P 'P{1727374} 'dlag(Pfjl >P6 7P5 7P6 ) .
Y - N’ Y -
D A B
(3.12)
Since the entries D77, ..., Dggx € R* are arbitrary, Q7 .y is only unique up to left-multiplication

with non-singular diagonal matrices, i.e. a configuration in )Zl:f_G = (RP?’)k*ﬁ. In contrast, the
entries Qs1, @54, Qs3 € R are uniquely given by Equation (3.12). Hence, we obtain that the
topological subspace of shapes with this pseudo-frame is homeomorphic to (RP3)]€_6 x R3, as
it was proposed by Proposition 3.21. Note that the standardization ) depends smoothly on the
entries of P. o

Remarks 3.23. (a) In Example 3.22 the following three edge-colored trees give the same stand-
ardization, and consequently the same homeomorphisms:

1 6 2 1 2 1 6 2
6 5 6 O 5 6 5
4’ ‘3 4’ "3 4’ ‘3

1 6 2
6

6 5

4’ ‘3

In general, the construction of the homeomorphism in the proof of Proposition 3.21 does not
change if in the definition of a pseudo-frame one allows G to be an edge-colored tree, but with
its unicolored subgraphs completed. These kind of graphs are called trees of cliques.

(b) Considering only the distinguished landmarks, a frame gives rise to a complete graph
with only one color (see Figure 3.5). A frame is thus a pseudo-frame with a unicolored tree G,
i.e., #F = 1. In particular, Proposition 3.21 is a generalization of Lemma 3.15, as are the
correspondent standardizations. For d = 1, the notion of pseudo-frame and frame are identical
since there is only one tree with two vertices which is automatically unicolored since it only has
one edge. o

Now, similar to the situation with % and p% (see Lemma 3.15 and Corollary 3.18), Propos-
ition 3.21 gives us finitely many, manifold-valued charts for the topological subspace £F of free
shapes, whence we can now prove that fdk is a differentiable manifold.
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1 5 2
1000 . .
0100 5

P=|00 10 G(P) 5 5
0001 5
1111 . .

4 5 3

Figure 3.5: A projective frame P € G3 and its complete graph G(P) corresponding to the base
points Py o 34;. All spanning trees of G(P) give a pseudo-frame.

Theorem 3.24. The topological space fdk of free shapes is a d(k — d — 2)-dimensional differen-
tiable manifold.

PRrROOF. fdk is the topological subspace of shapes which contain a pseudo-frame. Proposition 3.21
gives us homeomorphisms from open subsets of jfik to differentiable manifolds, i.e. manifold-
valued charts. As in the proof of Corollary 3.18, charts on fdk are then obtained by composition
of these manifold-valued charts with charts of the differentiable manifolds. In the matrix notation
as in Example 3.22, the corresponding transition maps are then just multiplications with non-
singular diagonal and non-singular matrices depending smoothly on the representation matrix.
Consequently, fdk is a differentiable manifold. O

We would like to point out that, for d = 1 and d = 2, any shape with a pseudo-frame already
contains a frame, i.e., fdk = pij for d = 1,2. While pseudo-frames are already frames in the case
d = 1, the critical shape to consider in the case d = 2 is (in the form of Equation (3.9))

1

0
0 0
0 1
U w
x z

R e OO

Let there be a pseudo-frame, say, in the first five rows of [p]. The shape [p] contains a frame if
either all of u,v,w # 0 or all of x, ¥y, z # 0. So, assume that there is a vanishing value in both of
the rows. Since there is a pseudo-frame in the first five rows of [p], i.e., since the three columns
are connected by the rows 4 and 5, there is at most one vanishing value in these rows, and it
cannot be in the same column. For the sake of argument, let u,y = 0 be the vanishing values.
Then, p1 245 is a frame. Consequently, the differentiable manifolds flk and fzk are already
covered by the charts associated to frames. On ka pseudo-frames give a larger atlas.

Open subsets of fdk are differentiable manifolds. For topological subspaces respecting the
hierarchy of projective subspace constraints, we obtain the following result.

Corollary 3.25. Let y < aclf be a Hausdorff subspace respecting the hierarchy of projective
subspace constraints. Then, y Efdk 1s a differentiable submanifold.

PRroOOF. If y respects the hierarchy of projective subspace constraints, then it is an open subset
of ‘15 due to Lemma 2.6.

Further, y is Hausdorff if and only if there are no shapes [p], [¢] € y with (Z,j) € C(p) and
(I¢,d+ 1 — j) € C(q) by Corollary 3.14. Consequently, there is no decomposable shape [r] € y
with (I, j), (I¢,d+1—j) € C(r) since y respects the hierarchy of projective subspace constraints.
Hence, y is an open subset of Jff and thus a differentiable manifold. O

Proposition 3.2 states that ag is a stratified space with its strata being products of spaces of
free shapes. Using Theorem 3.24 we conclude that the strata are differentiable manifolds with
its top stratum being fdk . Recall that Proposition 3.10 states how the strata are glued together.
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3.5 Topological subspaces bounded by projective subspace num-
bers

One class of topological subspaces being closed under permutations and respecting the hierarchy
of projective subspace constraints is the class of topological subspaces bounded by projective
subspace numbers: to a vector n = (ny,...,ng) € N% with 1 < n; < ng < --- < ng define the
topological subspace

Ak(n) = {pe Ak |1 < nj for all (1,5) e C(p)}, (3.13)

comprising of those configurations p for which there are at most n; landmarks in any (j — 1)-
dimensional projective subspace of RP?, ¢f. Section 3.1. Recall from Proposition 3.1 that 57\[5(11)
contains G} for all feasible n € N since nj > j for all 1 < j < d, while A%(n) = G¥ if and only
if nj = j for all 1 < j < d. Further, 57\[5 /‘45 if and only if n; > kforall 1 <j <d.

Remark 3.26. It is not a restriction to require n = (nq,...,nq) € N? to be strictly increasing:
let (n1,...,nq) € N¢ be an arbitrary, not necessarily increasing vector of projective subspace
numbers. Since (I,j2) € C(p) follows from (I,j1) € C(p) for j1 < j» and any p € 4% (see
Lemma 2.5), the vectors (ni,...,ny) and

(min(nl, .eoyng), min(ne, ..., ng), ..., min(ng_1,nq), nd)

give rise to the very same topological subspace, so (n1, . ..,ng) is w.l.o.g. increasing. Additionally,
if n,, < k for some 2 < m < d, then all projective subspace constraints (I, j) € C'(p) with smaller
dimension j < m contain less landmarks, i.e., |I| < n,; if there were a configuration p € N %(n)
with (I,m — 1) € C(p) for some I with |I| = ny,, then (IU{i},m) ¢ C(p) with i € I° in
contradiction to Lemma 2.5. Hence, w.l.o.g. nj < ny, for all j < m. 0

Of course, we are interested in projective subspace numbers n which give rise to differentiable
Hausdorff manifolds n%(n) = N*(n) / PGL(d). Conditions for such feasible n € N can be
deduced from Corollary 3. 14 and Corollary 3.25.

Theorem 3.27. Let n = (ny,...,ng) be a vector of projective subspace numbers. Then, the
following statements are equivalent:

(i) n¥(n) is Hausdorff;
(ii) nf(n) < fi';
(iii) nclf(n) is an open Hausdorff submanifold offdk;

() nj +ngy1-; <k foralll <j<d.

PROOF. The implications (i)=>(ii) and (i)=>(iii) hold due to Corollary 3.25. (iii)=>(i) is obvious.
Regarding (ii)=(i), recall that in non-Hausdorff subspaces there are shapes [p] and [¢] with
(I,j) € C(p) and (I°,d +1 —j) € C(q) for some I < {1,...,k} and j € {1,...,d} (see Corol-
lary 3.14). Thus, if #¥(n) is not Hausdorff, then it contains, by construction, also a shape [r]
fulfilling both projective subspace constraints (I, 5), ([¢,d + 1 — j), i.e. a decomposable shape,
whence nd( s fd Hence, subspaces bounded by projective subspace numbers consisting only
of free shapes are Hausdorff.

To proof the equivalence of (i) and (iv), note that there is no pair of shapes [p], [¢] € n¥(n)
with (I,5) € C(p) and (I¢,d +1 —j) € C(q) for some I < {1,...,k} and j € {1,...,d} if and
only if nj +ngr1—; < k for all 1 < j < d. This is the case if and only if n; + ngi1—; < k for all
1<j<d. O
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The set N¢ may be equipped with the partial order induced by the component-wise total
order on N. Then, a vector n € N is said to be mazimal if ng(n) is a differentiable Hausdorff
manifold and there is no m > n such that 7¥(m) is a differentiable Hausdorff manifold, too. This
notion of maximality accords with requirement 4) of the introduction of this chapter since the
addition of further projective shapes would automatically lead to the violation of requirement 1).
While there might be more than one maximal vector n € N¢ for given d and k, there is a simple
criterion for the maximality of n resp. the corresponding topological subspace ng‘(n)

Corollary 3.28. Let n = (ny,...,nq) € N? be a vector of projective subspace numbers. The
topological subspace ng(n) 1s then mazimal if and only if

nj+ngyi—j =k —1 (3.14)
forall j € {1,...,d}, respectively 2 - n(gy1)o =k — 2 in the critical case for odd d and even k.

The topological subspace gj’ of shapes in general position is bounded by projective subspace
numbers n; = j for j € {1,...,d}, whence gfj is a differentiable Hausdorff manifold for &k > d + 3
by Theorem 3.27. In the case d = 1 and k = 4, g7 is maximal since 2-ny = d+1 =k — 2.
Otherwise however, gg is not maximal; then, n; +n4y = d+1 < k—1, so ng can be increased by 1
without violating the bound in point (iv) of Theorem 3.27 if d > 1, or n; and ng if kK > d + 3.

Another example for a topological subspace of a[’j bounded by projective subspace numbers
is the space tclf of Tyler regular shapes introduced by Kent and Mardia (2012). Here, t’fl = n!l“(t)
is the topological subspace bounded by projective subspace numbers t = (1, ...,t7) € N¢ with

.k .

where | -] denotes the ceiling function. Then, the corresponding configuration space ‘Z;lk com-
prises of those configurations p which fulfill

K
1] < kgt

for all I < {1,...,k} (see also Section 3.1).
By Theorem 3.27, t’; is a differentiable Hausdorff manifold since

.k Lk

k
F(d+1—j)—ro

<JiE d+1

=k
for all 1 < j < d. In general, charts given by projective frames do not suffice to cover tclf for
d = 3 since there are Tyler regular shapes which do not contain a frame; as an example see the
shape discussed in Figure 3.3 on page 38. Of course, charts given by pseudo-frames are sufficient
since t§ < fF.
Unfortunately, tlj is not maximal for some d and k.
Proposition 3.29. The topological subspace téf is a maximal choice in the class of subspaces

bounded by subspace numbers if and only if the greatest common divisor of k and d + 1 is either
1 or 2. In particular, tf is maximal for

(i) relatively prime k and d + 1,
(ii) d =1 and arbitrary k > d + 3, as well as

(iii) arbitrary d and k = d + 3.
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PROOF. Recall that k and d +1 are relatively prime if and only if their greatest common divisor

¢ = ged(k,d + 1) is 1. If the quotient j—ﬁ is not integral for some j € {1,...,d}, then W
is not integral, and ¢; + t441—; = k — 1 due to rounding.
The quotient dJTk1 is integral if and only if j < d+1 is a multiple of dicl. However, for j = d—ng
d+1 k d+1 k
td+1)/e T tar1—(d+1)/c = [ - dJrl] -1+ [(C -1) C dJrJ -1
k k
=24t (c—1)" =2
c (c )c
=k—2,

whence t41(4+1)/c can be increased by 1 by Corollary 3.28 unless ¢4, 1 (4+1)/c = t(d+1)/c In the
case ¢ = 2.

The cases (i)—(iii) follow easily: (i) is obvious. If d = 1 as in (ii), then d + 1 = 2, whence
the greatest common divisor of d + 1 and k is either 1 or 2. For the case k = d + 3 as in (iii),
recall that the the greatest common divisor ¢ = ged(k,d + 1) of k and d + 1 is also a divisor of
k—d—1=2. Then, cis 1 if both d + 1 and k are odd, and 2 if both d + 1 and k are even. O

While the space tf of Tyler regular shapes is not maximal in some cases, it has other prop-
erties which prove helpful for the definition of embeddings resp. Riemannian metrics as will be
discussed in Chapter 4.

Of course, there are other ways to construct topological subspaces of aC’l“ which are closed
under permutations and respect the hierarchy of projective subspace constraints, e.g. by taking
the closure under permutations of {[¢] € a¥ : C(q) = C(p)} for a chosen [p] € df, i.e.,

ci(p) = {[q] € a : 3o € S s.t. C(oq) € C(p)}. (3.16)

Again, one can easily check if such a space is a differentiable Hausdorff manifold with Corol-
lary 3.14 and Corollary 3.25. The topological subspace cé“ (p) is e.g. Hausdorff if there are no
projective subspace constraints (1, j), (I, d+ 1 — j) € C(p) such that |I| + |I'| = k with I, I’ not
necessarily disjoint.
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Chapter 4

Tyler regular shapes

The notion of Tyler regularity of configurations respectively shapes was introduced by Kent and
Mardia (2012). The main motivation for a discussion of Tyler regular shapes was the observation
that they possess a Tyler standardization, i.e., to any Tyler regular shape [p] € tclf there is a
representing matrix configuration P such that

P.Pl=%1 forall1<i<k (4.1)
and
k
P'P=>PIP. =14 (4.2)
=1

As it is shown in Section 4.1, Tyler regular shapes are the only free shapes that are Tyler
standardizable. For some k and d however, there are decomposable shapes which allow Tyler
standardization, too. Additionally, a geometric reasoning for Tyler standardization will be
presented.

Using the corresponding Tyler standardized projection matrices Mp = PP?, the topological
subspace of Tyler standardizable shapes can be embedded into a metric space, see Section 4.2. A
Riemannian metric can only be defined for Tyler regular shapes through Tyler standardization,
though.

4.1 Tyler standardization

Via the matrix representation of projective shape, one can obtain another noteworthy approach
to projective shape. Let [P] € rf be a shape of full rank and P be a matrix representation
of [P]. By definition, P is only unique up to left-multiplication with non-singular diagonal
k x k-dimensional matrices D € Diag® (k) and right-multiplication of non-singular (d+1) x (d+1)-
dimensional matrices B € GL(d+1). Instead of considering the k x (d+1)-dimensional matrix P
as an aggregation of rows representing the landmarks, one can also consider the matrix P as an
aggregation of columns forming a basis of the (d + 1)-dimensional column space £(P) c RE,
i.e., P is an element of the non-compact Stiefel manifold St(k,d + 1). In this latter approach,
the right-action of GL(d + 1) on P is then the change of basis vectors of £(P). In particular,
an orthonormal basis of the column space L(P) can be chosen as a representation, i.e. a matrix
P e St°(k,d + 1) with orthonormal columns. Then,

P'P =141

with P being unique up to the action of the orthogonal group O(d + 1) from the right.

In this approach, the left-action of Diag®(k) on configurations P can be considered as an
action on the Grassmannian manifold Gr(k,d + 1) of (d + 1)-dimensional subspaces of R¥, see
Section 2.1.

47
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Using the Veronese-Whitney embedding ¢ of Gr(k,d + 1) into Sym(k), cf. page 9, elements
of the Grassmannian Gr(k, d+1) can be represented by the corresponding orthogonal projection
matrices

Mp = P(P'P) "' P' € Sym(k) (4.3)

mapping elements of R¥ orthogonally onto the column space of P. This, of course, simplifies
to Mp = PP! if P'P = 1441, i.e., if P fulfills Equation (4.2). The symmetric matrix Mp is
then—as an orthogonal projection—a k x k-dimensional matrix of rank and trace d + 1. In
this representation, the group Diag®*(k) of non-singular diagonal matrices acts infinitesimally
on the Grassmannian Gr(k, d+1) by conjugation as follows!: for a non-singular diagonal matrix
D = diag(D;,i = 1,...,k) in a sufficiently small neighborhood of I the inverse of P!D?P can
be represented as a Neumann series (Shalit; 2017, Prop. 8.3.9):

0
(P'D?*P)™" = (Tg1 — (a1 — P'D*P)) ™' = Y (1441 — P'D?P)".
n=0

Further, aLDiD = e;e! with e; denoting the i-th canonical basis vector of RF. Then,

55-Mpp = 55-[DP(P'D*P) ' P'D]

= e;et P(P'D*P) "' P'D + DP(P'D?*P) ™' Ple;et

0 n
+DP| 3} 3 (Tasr = P'D?P) " (=2D,Pleiet P) (Ly1 — P'D*P)" ™ | P'D.
n=11[=1

For the derivative aLDiMDP at D = I, P'P = 14,1, and consequently for P!D?P = 14,4,
D; =1, and Mp = PP!, we conclude
55-Mpp = e;e;PP' + PP'e;ef — 2PP'e;e PP’
= (giegMp — Mpeieé)Mp + Mp (Mpeief — eiengi).

"

antisymmetric antisymmetric

Meanwhile, the infinitesimal action of the orthogonal group O(k) acting by conjugation on
Mp € Gr(k,d + 1) is given by

%|t:00(t)MPO(t)t = O(O)MP + MPOt(O) = O(O)MP - MPO(O)

for a differentiable curve R 3 ¢ — O(t) € O(k) with O(0) = I, and antisymmetric O(0) € o(k) =
{M eRF>¥F M =—-M t}. Hence, aLDiM pp is an infinitesimal rotation in the plane spanned by
Mpe; and e;. Therefore, fixing the angle

<6i,Mp6i> = eﬁMpei = 6§MpMpei = HMpeiH2
— elPP'e; = PP = |P.J?

in R¥ for all 1 < i < k fixes the remaining action of Diag*(k) on Mp, and thus standardizes
the projection matrix Mp resp. the configuration P. Since we still require invariance under
permutations, all directions e; resp. landmarks P;. have to be treated equally, i.e., there is a
constant C' € R such that

P.P.=C foralll<i<k.

The values P,. P! are the diagonal elements of the orthogonal projection matrix Mp, whence we

conclude C' = dzl since Mp has trace d+ 1. Of course, fixing the norm of the rows P;. of P does

not completely remove the action of the diagonal group Diag™* (k) since multiplication with +1
is still allowed.

IThe following ideas on this page are property of T. Hotz.
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This standardization of a projective shape respectively a configuration fulfilling Equations
(4.1) and (4.2) is called Tyler standardization and was first introduced by Kent and Mardia
(2006). Unfortunately, Tyler standardization does only remove the action of PGL(d) up to a
compact group since the right-action of O(d + 1) and left-action of the group

Chk = e Diag*(k) : \je {1} = Cy for all i € {1,..., k} (4.4)
Ak

of sign matrices remain. Further, Tyler standardization is not possible for all shapes [p] € acli“,
but only for Tyler regular shapes and certain decomposable ones.

The following topological subspaces of A% have been first discussed by Kent et al. (2011) in
an unpublished article:

TF is, as in Section 3.1, the topological space of Tyler regular configurations, i.e., p € TF

if and only if |I| < kd+1 for any (I,7) € C(p).

TSTZ, Which contains a configuration p if and only if p is Tyler semi-reqular, i.e., p € @k With

[I| = kgty and |I¢] = kdd+1 for all pairs (I,7), (I¢,d+1—j) € C(p), while |I| < k=L

for all other projective subspace constraints (I, j) € C(p).

d+1

‘Ters, which contains a configuration p if and only if p is Tyler extended-regular, i.e., p is

neither Tyler regular nor Tyler semi-regular, but |I| < kg5 for all (7, 5) € C(p).

‘Z‘irfb which contains a configuration p if and only if p is Tyler irregular, i.e., p fulfills a

projective subspace constraint (I, j) € C(p) such that |I| > kz45.

For relatively prime d + 1 and k, however, there are no Tyler extended- and semi-regular
configurations and shapes.

Proposition 4.1. ‘Zfsr’;, ‘Zkrs = if and only if d+1 and k are relatively prime. In particular,
there are Tyler extended- and semi-reqular shapes if tf is not maximal, but also in the case that
the greatest common divisor of k and d + 1 is 2.

PRrOOF. There are Tyler extended- and semi-regular configuration resp. shapes if and only if
the quotient 7% +1 is integer for some j € {1,...,d}. The latter is the case if and only if d + 1 and
k have a common divisor ¢ > 2.

The second statement holds due to Proposition 3.29. O

Tyler regular shapes are free (Section 3.5), while Tyler semi-regular shapes are decomposable
by definition. There can be Tyler extended- and irregular shapes of both kinds. Tyler extended-
and semi-regular shapes are necessarily of full rank since ty < k=% 711 < k for any kand d.

Let ¢ be the greatest common divisor of k and d + 1, and let ¥’ = k/c and d' = (d + 1)/c.
Further, let P(k,k’) be the set of partitions of {1,...,k} into subsets whose cardinalities are
multiples of k. To a partition § = {I,...,I,} € P(k k’) with [I,| = m,k' = 35 = =K define
té“ (0) to be the space of Tyler semi-regular shapes with total decomposition { L,j1),...,(Is, js)}
resp. the space of Tyler regular shapes tclf in the case that 6 = {{17 ceey k:}} Then, the space
kﬁ = tf V) tsr’j of Tyler standardizable shapes is, as a set, the disjoint union of the topological

subspaces tF(0), i.e.,
Kl = H £y (6

0P (k,k')

while

l
k ~ rk’
t(0) = Xty
r=1
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as one can easily conclude from the canonical block matrix structure for decomposable shapes,
see Proposition 2.7 and Proposition 3.2.

The blur of a Tyler semi-regular shape [p] is disjoint from tclf and comprises of Tyler extended-
regular shapes besides one Tyler semi-regular shape in the blur of [p]—mamely [p] itself—since
K’df = tclf U tsr’; will turn out to be a topological manifold for any d and k. Of course, the blur
of a Tyler semi-regular shape can also be discussed using Proposition 3.10.

The manifold structure of K’g = tgf U tsrfl can be obtained through the use of pseudo-frames.
Of course, pseudo-frames cover té‘/’ c fdk, but not tsr’; c a[dk; however, one can substitute any
Tyler semi-regular shape with a free one from its blur which is then covered by a pseudo-frame.
This accords with the topology of k"lf , and one obtains actually differentiable manifolds by this
procedure. Unfortunately, it is unclear if the resulting differentiable structures are independent
of the choice of the free shapes in the blur of Tyler semi-regular shapes.

The topological subspace kg has been suggested to me as the topological subspace of choice
by John T. Kent through personal communication, and will thus be called “Kent’s shape space”.
Of course, kﬁ = tC’f if and only if d+1 and k are relatively prime due to Proposition 4.1, otherwise
K’df has the drawback of not respecting the hierarchy of projective subspace constraints. Thus,
K fulfills all requirements from the introduction of Chapter 3 if and only if ged(k,d + 1) = 1.

Example 4.2 (Kent et al. (2011), Sect. 7.2). In the case d = 1 and k = 4, a shape [p] is
Tyler regular if |I| < 4-3 = 2 for any (I,1) € C(p), i.e., Tyler regular shapes are already
in general position and consist of four distinct landmarks. The Tyler semi-regular shapes are
the three shapes with double pair coincidences; the Tyler extended-regular shapes are the six
shapes with a single pair coincidence, while Tyler irregular shapes have at least three coinciding
landmarks. O

Tyler standardization is only possible for Tyler regular and Tyler semi-regular shapes.

Theorem 4.3 (Kent et al. (2011), Thm. 3). There is a matriz configuration P of shape [p]

such that the rows of P are of norm 4/ dzl, i.€.,

PPl =% forallie{1,...,k}, (4.1)
and the columns of P are orthonormal, i.e.,
k
P'P =3 PP =Tgy, (4.2)
=1

if and only if [p] € kﬁ = téc U tsrs is Tyler regular or Tyler semi-reqular. The matriz P is
unique up to left-multiplication with sign matrices D € C’§ and up to right-multiplication with
orthogonal matrices B € O(d+1). A matriz configuration P fulfilling Equations (4.1) and (4.2)
1s said to be Tyler standardized.

For the proof of Theorem 4.3 we need the following result:

Proposition 4.4. Let X € /‘Zlcll"’ be a configuration matriz. There is a Tyler standardized mat-
riz P of shape [X] if and only if

1@
AZMZ& (4.5)

has a positive definite, symmetric solution A € GL(d + 1).

Proor. First, let P = DX B be Tyler standardized, i.e.,

k
1,1 = P'P = B'X'D’XB = B! (Z Xf.Di-Xi~> B
=1
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and
= P.P! = DX, BB'X}.

Then,

d+12 ZXtX ZXt _ (Bt)—lelz (BBt)_l
Xt BBtX P '
with (BBt)_1 € Sym(k) being positive definite.
The other direction has already been shown by Kent and Mardia (2012): let A € GL(d + 1)
be a positive definite, symmetric solution of Equation (4.5). This solution is at most unique
up to scale, so w.l.o.g. det(A) = 1. Let B be the unique positive definite, symmetric square

root of A™!, and let D be the diagonal matrix with entries D;; = (d+1X AL X, ) 12 Then,
P = DXB is Tyler standardized. O

Finally, we are able to prove Theorem 4.3:

PRrROOF (THEOREM 4.3). The existence of a Tyler standardization has already been shown for
Tyler regular shapes by Kent and Mardia (2012). The proof given here follows their line of
thought. In the unpublished manuscript (Kent et al.; 2011) a sketch of a proof for the full
statement can be found.

The proof of Theorem 4.3 is based on Proposition 4.4 and results of Kent and Tyler (1988)
(and earlier work of Tyler (1987a,b)) about the existence of a solution to Equation (4.5).

For a Tyler regular configurations X € TF, a solution to Equation (4.5) exists (Kent and
Tyler; 1988, Thm. 1) and is unique up to a scalar multiple (Kent and Tyler; 1988, Thm. 2).
Further, if X € ‘Tirfi is Tyler irregular, then there is no solution (Kent and Tyler; 1988, Thm. 3),
and thus no Tyler standardization due to Proposition 4.4.

Regarding Tyler semi- resp. extended-regular configurations, the corresponding results about
the existence of a solution to Equation (4.5) can be found in (Auderset et al.; 2005). However,
the statements can be proven directly with a little more insight as well: Tyler semi-regular
shapes can be understood as direct products of Tyler regular ones, see page 49. In particular, if
[p] € t.srfl is Tyler semi-regular, then it has a representation X in canonical block structure with
Tyler regular blocks on the diagonal with dimension ratio equal to %, i.e., after reordering of
the rows

X1 0 -+ 0
X = 0
: . .0
0 - 0 X
for some X, € Tkr with dk-T—l = %, 1 <r < s. After Tyler standardization of these diagonal

blocks, the full matrlx is Tyler standardized.

Concerning the Tyler extended-regular case [p] € ter’fl, suppose there were a Tyler standard-
ization P of shape [p]. Since [p] is Tyler extended regular, [p] fulfills a projective subspace
constraint (I, j) € C(p) such that |I| = d+1 and (I¢,d+1—j) ¢ C(p). Then, there is a rotation
matrix B € O(d + 1) such that (again after reordering the rows)

X110 )
PB =
(X21 Xoo
for some Xq; € ‘Z}'ﬂl, X1 € R/I°1%J and Xo9 € K‘yﬂl Since P is Tyler standardized, so is PB.
In particular, the columns of PB are orthogonal, whence X5, = 0 and (I¢,d+ 1 —j) € C(p) in

contradiction to the assumption. Therefore, there is no Tyler standardization to Tyler extended-
regular shapes, finishing the proof. O
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The existence of Tyler standardization offers topological advantages, in particular with re-
spect to the definition of a metric, see Section 4.2 for a discussion of the latter.

Proposition 4.5. The topological space 'TSC(kdlf) < RF*+YD) of all Tyler standardized con-
figuration matrices is compact. Further, the topological space TSC (tf) of Tyler standardized
configuration matrices corresponding to Tyler reqular shapes is a differentiable submanifold

Of Rk’X(dJrl).

PROOF. The space TSC (kﬁ) of Tyler standardized configurations is, of course, a subset of
R¥*(@+1) Even more, Equation (4.2) states that Tyler standardized configurations are elements
of the orthogonal Stiefel manifold St°(k,d + 1) which comprises of orthonormal bases of (d + 1)-
dimensional vector subspaces of R¥. Equation (4.1) specifies these elements. As a pre-image of
a closed set under a continuous function, ’TSC(kd’f) is itself closed. Further, it is also bounded
in the Euclidean norm of R¥*(@+1)  whence TSC (K’d“) is compact.

The space TSC (tclf) of Tyler standardized configurations corresponding to Tyler regular
shapes is a differentiable submanifold of both R¥*{4+1) and the orthogonal Stiefel manifold due
to the regular value theorem (Dykema and Strawn; 2006, Thm. 4.3; TSC (tclf) being called ]:,ffdﬂ
there). O

Any Tyler semi-regular shape possesses a Tyler standardized configuration in canonical block
matrix structure, i.e., with its landmarks lying in orthogonal, complementary linear subspaces
of R*1. The isotropy group of a Tyler standardized configuration in canonical block matrix
structure comprises of simultaneous multiplication of block sign matrices from the left and right.
With this in mind note that the first statement of Proposition 4.5 is not true for TSC(té“) if
tclf # kﬁ, i.e., if d4+ 1 and k are not relatively prime. Similarly, the second statement is not true
for TSC (ﬁf) in the case that k and d+ 1 are not relatively prime. Here, the Tyler standardized
configurations corresponding to Tyler semi-regular shapes are “points of higher dimension”.

Remark 4.6. In a Hilbert space H there is the notion of a frame as a list of vectors F' = (f;)ier
in H satisfying
Alpl? < 1Ko, fid? < Bllo||* for all ve H
el

for some constants A, B = 0. With this notion in mind, Tyler standardized configurations can
be understood as frames of length k& in R4*!. Since the vectors lie, up to rescaling, on the unit
sphere due to Equation (4.1), and since the frame bounds A, B can be chosen to be equal to
each other with value 1 (resp. ﬁ after the aforementioned rescaling) due to Equation (4.2),
we concern ourselves actually with what is called a finite unit norm tight frame (also: finite

spherical tight frame, finite normalized tight frame), cf. e.g. (Dykema and Strawn; 2006). %

Example 4.7 (Kent and Mardia (2012), Sect. 7). In the case d = 1 and k = 4, Tyler
standardized configurations are—up to rotation, reflections, and signs—those of the form

cos ¢ sin

p= \/g Z;’E*D —sing (4.6)
%) cos
—singp cose

for ¢ € [0,7) or a permutation thereof. The configuration P is Tyler semi-regular for ¢ €
{0, T %’r} Note that the cross ratio of P is —tan?2¢p for ¢ ¢ {O, 4.5 %’r . 0

Unfortunately, a solution to Equation (4.5), and thus a Tyler standardization to a configu-
ration resp. shape, can only be approximated numerically (Kent and Tyler; 1988).
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Remark 4.8. The solution of Equation (4.5) (if existent) is the maximum likelihood estimator
for the angular central Gaussian distribution on RP, see (Tyler; 1987b). In particular, it is the
minimizer of the negative log-likelihood function (up to a constant positive factor)

1yt

21 (X;th ) (4.7)
for symmetric, positive definite, (d+ 1) x (d + 1)-dimensional matrices A. Auderset et al. (2005)
have shown that px has a unique minimum in the space ©411 of symmetric, positive definite,
(d + 1) x (d 4+ 1)-dimensional matrices of determinant 1 if and only if the configuration X is
Tyler regular. For Tyler semi-regular configurations decomposing into s Tyler regular parts,
the minimizers of px form a submanifold of ©4,1 of dimension s — 1. For Tyler extended- and
irregular configurations, px admits no minimum.

Note that the minimizer of px depends differentiably on X € TF: the set ©4,1 is naturally
equipped with a symmetric space structure (Auderset et al.; 2005, Appendix A); in particular,
geodesic can be defined. Using the language of differentiable geometry, the function p : (X, A) —
px(A) is twice continuously differentiable with respect to (X,A4) € TF x ©4.1, and px is
(geodesically) strictly convex on ©4.1 for any X € Cl;lk (Auderset et al.; 2005, Thm. 2). Let
Ap be the minimizer at Xo € TF, ie., Vapx,(4g) = 0. Then, the Jacobian of V4 px, at
Ap is invertible since it equals the transpose of the Hessian of p which is positive definite for

strictly convex functions, and thus invertible. By the implicit function theorem there is an open
neighborhood of Ay and a continuously differentiable function « with

a(X)=A st. Vapx(A) =0
= argmin px(A).
AE@d+1
So, the minimizer of px depends indeed differentiably on X € ‘Zzlk. We immediately conclude
that Tyler standardization of configurations X € ‘Z;lk is continuously differentiable, i.e., the map

X +— DXB (4'8)

1/2

with diagonal matrix D with entries D;; = (d+1X a(X)'X;) " and B € GL(d + 1) being

the unique positive definite square root of a(X) ! is continuously differentiable. 0

So, Tyler standardizable shapes [p] € ks can be mapped to Tyler standardized configuration
matrices P € RF*(@+1D) uniquely up to the discrete group action of C§ = {+1}* c Diag*(k)
from the left and the right-action of O(d + 1). The latter ambiguity, however, can be removed
by moving on to the corresponding orthogonal projection matrices Mp = PPt

Note that Mp is of rank d 4+ 1 and Frobenius norm +/d + 1 and is the matrix comprising of
the inner products of the rows of the Tyler standardized matrix P, i.e.,

(Mp),; = P.P}..

In particular, the diagonal of Mp is constant % since the rows of P are of norm d“ . Further,
the rows and the columns of Mp are of norm %:
k k
> (Mp)] = 3 (PP’ Z P.PLP;.P! = tr(PLP,P!P;.)
j=1 j=1 j=1 J=1
k 4.10
— tr(PLP. Y, PLP;.) = tr(PLP:) = PPl = (Mp),, = 4 (4.10)
j=1
——
PtP=Tyy

forallie {1,...,k}.
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Corollary 4.9. Let [p] € ag’f. If and only if [p] € k‘l]f s Tyler regular or Tyler semi-reqular, there
is an orthogonal projection matriz M € Sym(k) with constant diagonal equal to d—zl such that
any k x (d+1)-dimensional matriz with its columns comprising of a basis of the range of M is of
shape [p]. The matriz M is unique up to conjugation with sign matrices s € C’g. An orthogonal
projection matriz with constant diagonal is said to be Tyler standardized.

Similarly to the situation with Tyler standardized configuration matrices (Proposition 4.5),
the set TSP(@) of Tyler standardized projection matrices is naturally a subset of the space
Sym(k) < RFX* of symmetric matrices and of the set of orthogonal projection matrices
t(Gr(k,d + 1)). Note that TSP (K%) is a closed subset of Sym(k) and +(Gr(k,d+1)) since it is
a pre-image of a closed set under a continuous function. Further, Tyler standardized projection
matrices are bounded in the Frobenius norm, whence TSP(@) is a compact set.

As in the situation of Tyler standardized configurations, TSP(t(f) is a submanifold of
Sym(k) by the regular value theorem (see (Dykema and Strawn; 2006, Thm. 4.3; TSP(tC’f)
being called g,}}dH there)). The map

b TSP(th) — ¢

it — [ (4.11)

is a differentiable covering map, i.e., differentiable, surjective, and each projective shape [P] € tgf
has a neighborhood Uppj such that v restricted to each connected component of ! (U [ p]) isa
diffeomorphism to Upp).

Meanwhile, TSP(ks) is only a submanifold of Sym(k) if there are no Tyler semi-regular
shapes and thus TSP(kdk) = TSP(tC'f), i.e., if k and d+1 are relatively prime, see Example 4.10.
Note that Tyler standardized projection matrices of Tyler semi-regular shapes will be block
diagonal after a suitable permutation of rows and columns since Tyler semi-regular shapes
possess a Tyler standardized matrix configuration in canonical block structure, see page 52.

Example 4.10 (Kent and Mardia (2012), Sect. 7). In the case d = 1 and k = 4, Tyler
standardized projection matrices are of the form

(4.12)

QU S Q=
D O N
S0 o
N~ O

From Equation (4.10) we conclude
A+ +d+ (1) =
a’+c* +e + (%)2 =
B+ + 2+ (5) =

NI— NI N

so M is determined up to signs by a, b, c € R. By addition of these equations we obtain

A+ + =53 (P+e+ 7)) =1,

PN,

so M is already determined by two of the three values. Indeed, by computation of the Tyler
standardized projection matrices from the Tyler standardized configuration matrices in Ex-
ample 4.7, we observe that there are only three kinds of Tyler standardized projection matrices:

% z y 0 % z 0 vy % 0 =z vy

1 1 1
r 5 0 —y r 5 -y O 0 5 -y =z 41
y 0 % x|’ 0 —y % x|’ x -y % 0 (4.13)
0 -y =« % y 0 =z % y = 0 %
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with = L(cos? ¢ — sin? ¢) = L cos2p € [-3,3] and y = sinpcosp = 1sin2p € [—3,3]. By
mapping M to (a,b,c) € R3, we can think of TSP(K‘{) as three great circles on the sphere
S? c R? with radius % which intersect orthogonally. The intersection points (when = = 0 or

y = 0) correspond to Tyler semi-regular shapes. o

Due to the homeomorphism

T: Gr(k,d+1) —> Gr(kk—d—1)
1% — L (Ik — L(V)),

see Equation (2.6), we immediately conclude that TSP (kﬁ) is homeomorphic to TSP (Kﬁ d72)'
By transition to the quotient spaces, we obtain that kg and K,’:_ J—o are homeomorphic.

Lemma 4.11 (Dykema and Strawn (2006); Cor. 2.7). K% and K¥ , , are homeomorphic.

PROOF. The group C% acts on Gr(k,d + 1) and Gr(k, k — d — 1) by conjugation on the corres-
ponding k£ x k-dimensional orthogonal projection matrices M. This action leaves the diagonal
elements of M untouched and is, in particular, trivial on the identity matrix Ir. Therefore, the
action commutes with the homeomorphism 7', and we obtain a well-defined homeomorphism
m’j : K’j — Kﬁ_ d—g Dy restriction of toT o t~1 to Tyler standardized projection matrices. O

Example 4.12. By Lemma 4.11 K} = £} = n?(2) and K3 = 3 = n5(1,3) are homeomorphic
two-dimensional differentiable Hausdorfl manifolds.

By Lemma 3.15 6} is homeomorphic to the 2-torus T? =~ S! x S! ~ RP! x RP!. Some
elements of b are not in ¢}, namely those shapes [p] € b with a triple coincidence ({i,4,5},1) €
C(p) for ¢ € {1,2,3}. However, those shapes cannot be separated in the Hausdorff sense in 015
from the shapes [g] € £} with the double coincidence ({1,2,3}\{i}, 1) € C(q) by Proposition 3.12
as should be clear from the following two exemplary shapes in a}:

i e = N e N T
I
=
o,
|l
Q
[
Il

The shape [p] contains a frame in its first three coordinates, i.e., [p] € 67. The shape [q] is Tyler
regular if (z,y,2) € R3\{(a,a,a) : a € R} with rescaling of (z,y,z) not changing the shape.
Through right-multiplication with a suitable non-singular matrix and left-multiplication with
a suitable diagonal, non-singular matrix, one can standardize [¢q] even further such that x = 0
(w.l.o.g.). Then, (y,2) € R?\{0} with rescaling not changing the shape, i.e., [¢] is determined
by an element of RP!. The topological subspace of Tyler regular shapes which cannot be
separated from the shapes [p] € b7 with triple coincidence ({i,4,5},1) € C(p) for i € {1,2,3}
is thus homeomorphic to RP!. Hence, to obtain t3, one has to insert a projective line at the
shapes [p] € b7 with a triple coincidence ({i,4,5},1) € C(p) for i € {1,2,3}. Topologically, this
is equivalent to forming the so-called connected sum of A7 =~ T? and RP?, i.e., by cutting out
an open subset homeomorhpic to the open disc B1(0) € R? (or equivalently to homeomorphic
to R?) in both topological spaces and identifying the resulting spaces by a homeomorphism of
the arisen boundaries, cf. (Massey; 1991). The line at infinity of RP? corresponds then to the
inserted projective line. So, ti’ is homeomorphic to

£ = T?#RP?’#RP*#RP?;

see Figure 4.1.

On the other hand, b3 is homeomorphic to RP? by Lemma 3.15. However, the shapes
[p] € B3 with a single pair coincidence ({i,5},1) € C(p) are not Tyler regular. In aj they
cannot be separated from the shapes [q] € t5 with three landmarks on a projective line, i.e.,
({1,2,3,41\{i},2) € C(qg) as the following two shapes illustrate:
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5 5
£ ts
1=5
@ 2
3=5 Nl ~4~5/
U \J L
1=4 2=4 o |3=4 1=4 1~2~5 3~4~5
B/
V4 f/ \\
V' 2—5 2~3~5
% )
A Y
H% 37_\
g N &
¢ = 9]

Figure 4.1: t? is 515 >~ T? (here presented as a square with opposite edges identified) with
the three triple coincidences replaced by RP! (here presented as circles). The line denoted
with “1 = 4” represents the topological subspace of shapes [r] € 515 with r; = ry, i.e., with
({1,4},1) € C(r)), ete.

Similarly, ¢35 is b3 =~ RP? (here presented without its line at infinity as R?) with the four single
pair coincidences replaced by RP! (presented as circles). The line denoted with “1 ~ 2 ~ 57
represents the topological subspace of shapes [r] € b3 with ({1, 2,5}, 2) e C(r), etc.

These topological spaces are homeomorphic as was discussed in Example 4.12.

olone

== oo
-

—

The shape [p] contains a frame in its first four coordinates, i.e., [p] € b3. The shape [q] is Tyler
regular if (w,z), (y,2) € R? are distinct, i.e., if (w,x) # (y,z). Through right-multiplication
with a suitable non-singular matrix and left-multiplication with a suitable diagonal, non-singular
matrix, one can standardize [q] such that (w,z) = (0,0) (w.l.o.g.). Then, (y,z) € R?\{(0,0)}
with rescaling not changing the shape. The topological subspaces of Tyler regular shapes which
cannot be separated from the shapes [p] € b} with a single pair coincidence ({i,5},1) € C(p)
are thus homeomorphic to RP!. Hence, t5 is homeomorphic to a connected sum of five real
projective planes, i.e.,
t5 ~ RP?’#RP?*#RP’*#RP*#RP?;

see Figure 4.1.

Additionally to Lemma 4.11, ¢ and t} are also homeomorphic by a result about two-
dimensional manifolds (Massey; 1991, Sect. 1.7, Lem. 7.1) which states that the connected sum
of a 2-torus T? and a real projective plane RP? is homeomorphic to the connected sum of three
real projective planes, i.e.,

T?#RP? ~ RP2#RP?*#RP2. 0

Of course, a Tyler standardized projection matrix of a Tyler standardizable shape is only
unique up to conjugation with sign matrices. One may remove the ambiguity of the remaining
action of C& by squaring all entries of Mp = (mw) The emerging matrix Np = (nw) with

nij = m; =(P.PL.)"
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does then, of course, not depend on the choice of the sign matrix.

The symmetric matrix Np is itself again an inner product matrix, namely the inner product
matrix to a configuration in the Euclidean space Sym(d + 1) of symmetric matrices equipped
with the Frobenius inner product (A, B)p = tr(AB) since

(Np)ij = (Pi'P;-)z
= PP} PP}
= tr(P,.P|.P,.P})
= tr(PZtPZP]tPJ)
= (P{P;.,Pj.P;.),.

A configuration «(P) = (Pf,Pl., .. ,P,?Pk.)t € (Sym(d + 1))k of rank 1 orthogonal projection
matrices is then Tyler standardized if

(P{P. Tgi1y, = tr(PLPdgy) = tr(PP) = PP = 4L (4.14)

for all i e {1,...,k} and

k
PP =P'P =14, (4.15)
i=1
i.e., Tyler standardized configurations in Sym(d + 1) are configurations of orthogonal projection
matrices (up to the factor %) which have constant angle to the identity matrix and are centered
if the negative identity matrix is added to the configuration. The augmentation of the negative
identity matrix to ¢(P) does therefore not give any extra information. The inner product matrix
of this augmented configuration will be denoted with N ]13. Note that the Tyler standardized
configuration ¢(P) in Sym(d + 1) corresponding to a shape [P] € kﬁ is only unique up to
conjugation with orthogonal matrices B € O(d + 1) since the Tyler standardization P is only
unique up to right-multiplication with orthogonal matrices B € O(d + 1) and left-multiplication
with sign matrices (the latter action is removed by the embedding ¢).
For d = 1, the matrices Mp and Np contain the same information, as was pointed out by
Kent and Mardia (2012), so the mapping

v: K¥ — Sym(k) (4.16)
[p] —  Np
is a topological embedding, i.e., injective and homeomorphic onto its image. Unfortunately, this
is not true for all d > 1 and k as Example 4.13 shows?.

Of course, one might try to remove the ambiguity of the Cé”—action by considering the matrix
abs(Mp) comprising of the absolutes of the entries of the inner product matrix Mp, but abs(Mp)
does obviously contain the same information as Np, so there is no extra insight.

Example 4.13. For k = 6 and d = 2, consider the matrix configuration

0 1 g
0 1 —g
P:71 AF e 0 € G
Vayitg |-l g 0|9
g 0 1
g 0 -1

2This example was discovered by Thomas Hotz in (Blumenthal; 1970, Ch. IX, Sect. 80).
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with g = 1+T‘/‘?’ being the golden ratio. This matrix configuration P is Tyler standardized, while
the corresponding orthogonal projection matrix is

$ h h —h —h h
h L h —h h —h
h h Y hn h h
Mp=PF ~h —h h L h h
~h h h h L -h
h —h h h —h %
with h = 2(1119922) = 2(11992) = ﬁ, i.e., this configuration consists of 6 evenly distributed

Jandmarks on RP? and is the projection of the icosahedron (12 evenly distributed landmarks
on the sphere S?) with opposite landmarks identified.

Now, there are permutations o of the landmarks such that [c P] # [P], e.g. the permutation
fixing the first 4 landmarks (a frame) and interchanging the remaining two. These configurations
are distinct in their shapes, but they do have the same inner product matrix Np, i.e., the map
v : K§ — Sym(6) mapping [P] to Np is not injective, and thus no embedding. %

For d = 1, the original shape [p] can be reconstructed from V([p]) = Np resp. N} which has
been pointed out by Kent and Mardia (2012). However, the following explicit reconstruction
has not been considered before: for a Tyler standardized configuration P € ‘.7(’1“, recall that
N} is the inner product matrix to the centered configuration (P{.Pi.,..., P} Py., —Ig)t of sym-
metric matrices, i.e., in the Euclidean space (Sym(?),<-, >F) Note that Sym(2) is naturally
isomorphic to the Euclidean space R? by mapping the upper triangle of a symmetric matrix to
R3 by multiplying the off-diagonal entry with +/2, i.e.,

Sym(2) — R?
o) (a11,a22,v2a12), (4.17)
aiz a2

so augmented configurations in Sym(2) can be represented as (k + 1) x 3-dimensional matrices
with the rows corresponding to symmetric matrices.
The inner product matrix Np = (n;j) is a positive semi-definite similarity matrix, i.e.,
N} =0 and
ng; < mny o for all i, j. (4.18)

Due to results from multidimensional scaling, see (Mardia et al.; 1995, Ch. 14), a centered
configuration in Sym(2) =~ R? of k + 1 landmarks can be constructed which has N} as its inner
product matrix. Such a configuration is the (k + 1) x 3-dimensional matrix S comprising of
%

eigenvectors to the three largest eigenvalues of IV ]13 with their norms being . Any other

centered configuration with inner product matrix N}; is given by a rotation resp. reflexion of S
in Sym(2), i.e., S is only unique up to the action of the orthogonal group O(3). However, we
know that the (k + 1)-st landmark of a feasible configuration is the negative identity matrix,
whence the ambiguity is reduced to an action of O(2). This is, of course, also the ambiguity
of the Tyler standardized configuration +(P); in particular, S is a rotation or reflexion of the
original configuration (PfPl., oo, PPy, —Iz)t.

Remark 4.14. Multidimensional scaling can also be used to define a sample mean of projective
shapes [P1],...,[P.] € K}: the arithmetic mean of the inner product matrices N{,..., N} €
Sym(k) is again a positive semi-definite similarity matrix, so it makes sense to look for the
configuration in Sym(2) whose inner product matrix is the closest to this arithmetic mean.
Again, multidimensional scaling is concerned with this topic, and, as above, the solution to
this problem is given by a matrix comprising of eigenvectors to the three largest eigenvalues
with their norms being the square root of the respective eigenvalue. The last landmark can
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be restandardized to the negative identity matrix. Then, the first £ landmarks may not be
rank 1 projection matrices (and thus embedded elements of RPl), but they can be projected
to a rank 1 projection matrix resp. to RP! by mapping them to the eigenvector of the largest
eigenvalue. The shape of the obtained configuration can then be considered as the mean of
the sample [P1],...,[P.] € K}. Of course, the largest eigenvalues might not be unique in this
computation, so the mean might not be unique in some cases.

This sample mean will not be discussed any further in this thesis, partly because it is unclear
if this definition of a mean fits into the framework of the so-called Fréchet mean (see Chapter 5).0

4.2 Metrization

The space of Tyler standardizable shapes k"j is a differentiable Hausdorff manifold, whence it is
metrizable both by a differentiable embedding into Euclidean space (Lee; 2013, Thm. 6.15) and
by definition of a Riemannian metric (Lee; 2013, Prop. 13.3).

Embedding into metric space

In Section 4.1 we have already seen that K’f can be topologically embedded into the Euclidean
space Sym(k) by mapping to inner product matrices N, see Equation (4.16). Kent and Mar-
dia (2012) have shown that the distance on Kj induced by the Frobenius norm on Sym/(k)
matches then the Euclidean geometry of a planar triangle with its vertices corresponding to the
Tyler semi-regular shapes (double pair coincidences). In particular, the topological embedding
v: K} — Sym(4) is not a differentiable embedding.

Of course, K’df may be smoothly embedded into some Euclidean space as a differentiable
Hausdorff manifold. However, we will discuss only a topological embedding into a metric space.

As mentioned above, the space TSP(kJ’f) of Tyler standardized projection matrices is a
topological subspace of Sym(k) of symmetric matrices which is a Euclidean space when equipped
with the Frobenius inner product (A, B)r = tr(AB). Since TSP (K%) is the space of orthogonal
projection matrices fulfilling Equation 4.10, it consists of matrices with trace d + 1 and norm
v/d+ 1. Hence, TSP(K’;) is closed, bounded, and compact in this metric space. This fact
is quite helpful to construct a topological embedding of the space k§ of Tyler standardizable
shapes into a metric space. The remaining ambiguity of a Tyler standardized projection matrix
to a projective shape is the action of the finite group C4 by conjugation, i.e., K’j is naturally
homeomorphic to the space of equivalence classes

tsp(K5) = TSP(K}) / C5 (4.19)

This action only changes the sign pattern of a projection matrix and can be naturally carried
forward to the space Sym(k) of symmetric matrices. In Sym(k) orthants are then identified by
this group action, whence the quotient space

sym(k) = Sym(k) / Ck. (4.20)

is a space of orthants which are conglutinated along hyperplanes. Thus, kdlf > tsp(kg) is
naturally topologically embedded in sym(k). Note that sym(k) consists of 2(**~#~2)/2 orthants
since Sym(k) comprises of 2k(k+1)/2 orthants with 25=1 of those each being identified by the

action of C5.
Let [M] = {sMs: s € C5} € sym(k) be the equivalence class of M € Sym(k), and define a
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map d : sym(k) x sym(k) - R>¢ by

d*([Mi], [M2]) = min{||A — B|}, : Ae [Mi], B e [Ma]}
= min{|M; — sMys||% : s € CS}
= min{| M1 |3 + |sMas|% — 2tr(MisMas) : s € Ch}
=2(d + 1 — min{tr(MysMss) : s € Cg})

Proposition 4.15. (sym(k:), d) s a metric space.

PROOF. The map d is obviously a non-negative function, ie., d([M],[Mz]) = 0 for all
[Mi], [M;] € sym(k), and symmetric in its arguments, i.e., d([M1], [Ma2]) = d([Mz], [M1])
for all [Mi], [M2] € sym(k).

For the triangle inequality note that | M|z = ||sMys|F for all s € C§, whence

d([Mi], [M>]) = min{|M; — sMas|p : s € Ch}
= min{||sMs — tMt|p : s, t € Cg}

Let [M;i], [Ma], [Ms] € sym(k). Then, there are M; € [M;] for i € {1,2,3} such that both
d([[Ml]], [[MQ]]) = HM1 — MQHF and d(ﬂMgﬂ, [[Mg]]) = HMQ — MSHF Consequently,

d([Mi], [Ma]) + d([Mz], [Ma]) = M1 — Ma|p + | Mz — Ms|p
> | My — Ms||p
> d([Mi], [Ms])

finishing the proof. O

The metric d has been considered before by Kent and Mardia (2012) and is a so-called
Procrustes metric, i.e., the distance of two equivalence classes is given by the shortest distance
between representatives.

Of course, one could also consider the affine subspace of Sym(k) comprising of those sym-
metric matrices with constant diagonal equal to % as a surrounding space. However, the

embedding above seems to be more convenient for our purposes, see Chapter 5.

Example 4.16. In the case d = 1 and k = 4, the action of Cj3 identifies the spherical triangles of
the space TSP(K‘%), see Example 4.10. Hence, the space tsp(&‘ll) with the metric d introduced
above is geometrically a spherical triangle with Euclidean distance, as was noted before by Kent
and Mardia (2012). 0

As we have discussed on page 54, the space TSP (k‘llf) c Sym(k) of Tyler projection matrices
is closed and bounded in the Frobenius norm (and thus compact) for any d and k. Consequently,
tsp(k‘l]j”) is compact as a topological subspace of sym(k), whence (tsp(k‘l]f),d) is a complete
metric space (Arkhangel’skii and Fedorchuk; 1990, Sect. 5.3, Thm. 7).

Riemannian metric

Tyler standardization offers two distinct ways to define Riemannian metrics on tf.

First, consider the space of Tyler regular standardized configuration matrices TSC (t(f). As
mentioned in Section 4.1, this space is an embedded submanifold of the (orthogonal) Stiefel
manifold, and both are embedded submanifolds of the Euclidean space R¥*(@+1) which is a
Riemannian manifold in the natural way. Hence, TSC(té“) inherits the subspace metric (also
called pullback or induced metric). Since the elements of O(d + 1) and of C§ act as isometries
on RF*(@+1) this Riemannian metric is well-defined on the quotient space.
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Let P be a Tyler standardized projection matrix. The tangent space Tp TSC(tC]l") at P is
then given by

TpTSC(th) = {A e RF*(D . ptA 4+ A'P =0, A, P! + PLA! =0, i€ {l,.. k}} (4.21)

This can easily be seen by differentiating Equations (4.1) and (4.2). The induced Riemanninan
metric is given by the Frobenius inner product (4, Byp = tr(A’B) for A, B € Tp TSC(t}).

Alternatively, one may consider the space TSP(tC’f) of Tyler standardized projection ma-
trices. This space is a submanifold of the embedded Grassmannian ((Gr(k,d + 1)), and both
are embedded submanifolds of the Euclidean space Sym(k) of symmetric matrices with scalar
product (A, B)p = tr(AB) which is a Riemannian manifold in the natural way. Hence, the
space of Tyler standardized projection matrices inherits the subspace metric. Since the elements
of CS act as isometries on Sym(k), this Riemannian metric is well-defined on the quotient space
tsp(té“) > té“. The tangent spaces Ths TSP(t(f) and Ty tsp(t(f) are identical since C’Q“ is a
finite group.

Let M be a Tyler standardized projection matrix. The tangent space Ty, TSP(tC’f) at M in
the space TSP(th) of Tyler standardized projection matrices is then a linear subspace of the
tangent space

Ty Gr(k,d + 1) = {[M, Ale Sym(k): Ae o(k)}

of M considered in the Grassmannian with [A, B] = AB — BA denoting the Lie bracket. The
tangent vectors of M in the space TSP(té“) of Tyler standardized projection matrices addition-
ally preserve the constant diagonal of M, i.e.,

Ty TSP (th) = {[M, Al e Sym(k) : A€ o(k), diag[M, A] = 0}
(4.23)
- {[M, Al e Sym(k) : A€ o(k), tr(eel[M,A]) =0Viel,..., k}

Again, the Riemannian metric is given by the Frobenius inner product (A, B)p = tr(AB) for
A, B e T); TSP(t}).

Of course, a classical result of Cartan (1952) states that Riemannian metrics on the Grass-
mannian invariant under O(k) are unique up to positive scale. As it turns out, the Riemannian
metrics presented here are identical up to a scale of 2, cf. e.g. (Harandi et al.; 2013).

If d+ 1 and k are relatively prime, then TSP(tC’f) = TSP(@) is a compact space, whence
the Riemannian metric is complete by the Hopf-Rinow theorem (Jost; 2011, Thm. 1.7.1). Un-
fortunately, the Riemannian metric on TSP(tC’f) is not complete if d + 1 and k have a common
divisor greater than 1 (i.e., if TSP(t}) # TSP(K%)).

The Riemannian metric above cannot be continued on TSP(kﬁ) resp. tsp(kj) in the case
that d + 1 and k are not relatively prime; recall that in this case TSP(ks) is not a manifold.

Example 4.17. As we have seen in Example 4.10, TSP (Kff) can be seen as three great circles on
the sphere in R? with radius % which intersect orthogonally. Recall that the intersection points
correspond to the Tyler semi-regular shapes. The Riemannian metric on TSP(tfl) discussed
above fits into this representation, i.e., tsp(t{l) with the Riemannian metric above is a spherical
triangle with orthogonal edges and removed vertices. In particular, tsp(t{l) is not complete in
this metric. Further, the metric cannot be extended to tsp(&‘f). 0

Note that the space kg for not relatively prime d + 1 and k£ might be smoothly embeddable
into a Euclidean space and metrizable by a Riemannian metric, but neither can be achieved
through Tyler standardization. The reason for that is that Tyler standardization handles Tyler
semi-regular shapes not “in a differentiable way.”
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Chapter 5

Averaging projective shapes

The mean of a random value X € M or of a sample X1,...,X,, € M in a metric, but non-
Euclidean space (M, d) cannot be defined as the usual population resp. sample mean since M
does generally not carry a vector space structure. As a remedy, Fréchet (1948) introduced the
Fréchet population mean [i as the set of minimizers

p = argmin E d*(X, p) (5.1)
peEM

of the expected quadratic distance to the random value resp. the Fréchet sample mean

fln, = arg min Z d*(X;,p) (5.2)
peM i=1

in the case of an empirical distribution. This generalizes the usual population and sample means
for random values on Euclidean spaces.

On the space kj of Tyler standardizable shapes two different metrics have been discussed
in Section 4.2: first, there is the Riemannian metric on tf which would lead to a so-called
intrinsic mean shape. This mean will not be discussed in this thesis. Secondly, there is the
metric given by embedding Tyler standardizable shapes into the metric space (sym(k), d). The
corresponding Fréchet mean is then called extrinsic mean shape since the it uses the metric d of
the surrounding metric space. The computation of this mean will be discussed in this chapter.
As we will see in Section 5.1, the Fréchet function

F([R]) = %Z ([A2:], [RD) (5.3)

for a sample [M],. .., [M,] € tsp(K%) decomposes into a Euclidean and a projection term. For
concentrated data the computation of the Euclidean term is rather straight-forward. Meanwhile,
the projection term can only be estimated numerically as of now. As a remedy, Tyler population
and sample mean shapes are introduced in Section 5.2 for which consistency can be proven.
Finally, both means are discussed in a few examples in Section 5.3.

5.1 Extrinsic mean shape

Kent’s shape space kﬁ can be topologically embedded into the metric space (sym(k:),d) in-
troduced in Section 4.2, so in this setup the extrinsic population mean shape [u] of a random
variable [M] with values in tsp(K%) = K% is

[u] = argmin Ed2(ﬂMﬂ,[[Rﬂ). (5.4)
[Rletsp(K})

63
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Analogously, the extrinsic sample mean shape [fi,] of a sample [Mi],...,[M,] € tsp(kg) of
projective shapes is then the minimizer in tsp(ks) x> K’j of the Fréchet function

F: sym(k) — R>o
[R]  — Lyr, @ (IMIL[R]), (5:5)
[fn] = argmin 2> d*([M], [R]). (5.6)

[Rletsp(K)) =1
Note that both [u] and [f,] might be sets, but there always is an extrinsic population resp.
sample mean since tsp(@) is compact, i.e., [u], [@n] # .

Proposition 5.1. Let [Mi],...,[M,] € tsp(K%) be independent, identically distributed ran-
dom wvariables with unique extrinsic population mean shape [u]. Every measurable choice from
the extrinsic sample mean shape [fin] is then a strongly consistent estimator of the extrinsic
population mean shape [p], i.e.,

[n] = [u] a. s. (5.7)

PROOF. Recall that tsp(ks) is compact. Then, the statement immediately follows from more
general results by Ziezold (1977) and Bhattacharya and Patrangenaru (2003) (Thm. 2.3). O

Unfortunately, the computation of an extrinsic sample mean is not straightforward. The
function F' can be decomposed into two parts: let R € [R] and choose M; € [M;], i € {1,...,n},
such that d([R], [M;]) = [|[R — M;|p for all i € {1,...,n}. Of course, the choice of M; € [M;]
might not be unique. Further, let

n n
M = argmin%Z HA—MzHi = %ZM’ (5.8)
AESym(k) i=1 i=1

be the Euclidean sample mean of the representing matrices M;. Then,
= 2

1

n 2 HR - MlHF
i=1

n
|7 = M+ 5 3 M = 2]
1=1

F([R])
(5.9)

so F' decomposes into a term measuring the distance from R € Sym(k) to some “Euclidean”
sample mean M and a term measuring the distance from M to the data.

To find the minimum of F' in tsp(ks) for a given sample, there are two problems remaining:
first, the representing Tyler standardizations M; in Equation (5.9) depend on [R]. In particular,
it does not suffice to minimize the first term of Equation (5.9), but the sum of both terms has to
minimized. However, there are at most 25~ choices for M;, and thus at most (2k_1)n = gn(k=1)
possibilities for M. Note that there might not be an [R] € tsp(K%) for all possible “Euclidean”
means M. Hence, a solution to this problem is to compare the minimizers of the term |R— M |%
for all these valid choices for M. Of course, one may compute all 2"*~1) possible Euclidean
means and their corresponding minimizers of the term |R — M|%, but then one has to check
the minimizer afterward if they have indeed the corresponding M;, i € {1,...,n}, as closest
representatives of the data (see Algorithm 1). Unfortunately, the number of possibilities on(k—1)
increases exponentially with the sample size n and might be rather large. As we will see in
Proposition 5.2, this problem simplifies if the data are sufficiently concentrated.

The second problem is—of course—to identify the minimizers of |R — M|%, i.e., to compute
the projection in the sense of best approximation of M € Sym(k) to the topological subspace of
Tyler standardized projection matrices TSP(@) c Sym(k). Note that this projection exists
and is unique since TSP(@) is compact.

The first problem vanishes if the sample is sufficiently concentrated.
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Data: observations [p1],...,[pn] € t§
Result: (set of) extrinsic sample mean shape(s)

1 compute orbits [Mi],. .., [My] of Tyler standardized projection matrices to [p1], ..., [pn];

2 compute all arithmetic means " | M; with M; € [M;], i€ {1,...,n};

3 compute all projections in the sense of best approximations of the arithmetic means to
TSP (iﬁéC ) ;

4 check if the projections have indeed the corresponding M;, i € {1,...,n}, as closest
representatives of the data; if not, remove the projection;

5 return the valid projection(s) which minimize(s) F

Algorithm 1: algorithm for computation of extrinsic mean (sets) of projective shape data

Proposition 5.2. Let [N] € sym(k) be the equivalence class of a symmetric matriz under
conjugation with sign matrices, and define

e = ¢([N])= min{|N — sNs|p:s€ C5,s # £I;} (5.10)

as the minimal distance between symmetric matrices in [N]. Further, let [P1],...,[P,] € K%
be a sample of projective shapes and [Mi],...,[M,] € tsp(ks) their corresponding equivalence
classes of Tyler standardized projection matrices.

(i) If d([M;], [N]) < § for alli€ {1,...,n}, i.e., if the data are concentrated in an open ball
B: (IN1) with radius § and center [N], then there are unique Tyler standardized projection
matrices M; € [M;] corresponding to the data such that

for all i,5 € {1,...,n} and for all [A] € Bi([[N]]) with d([A],[N]) = |A = N||¢ for
A € Sym(k). In particular, the minimizer of F in sym(k) is in B:([N]), and it is

uniquely given by the equivalence class of

£
4

n
M=21%"1 (5.12)
=1

(it) If [N] € tsp(K%) and the data are concentrated in an open ball Bg([[N]]) with radius g,
then the minimizer of F in tsp(ks) is an element of B% ([[N]]) and is the minimizer of
|R — M|3% with M as in Equation (5.12).

Remark 5.3. Let [p] € tsr’j be a Tyler semi-regular shape with decomposition

({1,...,i}5), ({i+1,...,k},d+1—j) € C(p).

Any Tyler standardized projection matrix Mp to [p] is then block diagonal (see page 54 in

Section 4.1). Consequently,

sM PS = M P
for any sign matrix s € C’g which is constant on the blocks, i.e., s;,i, = si,i, for all i1,72 €
{1,...,i} resp. for all i1,ip € {i + 1,...,k}. In particular, e([Mp]) = 0 for Tyler semi-regular
shapes, so Proposition 5.2 is not helpful if the data are concentrated around a Tyler semi-regular
shape. 0

PROOF (PROPOSITION 5.2). (i) Choose a matrix N € Sym(k) from the orbit of [N] € sym/(k),
and let A, B € Sym(k) be the matrices in [A] € B (IN]) = sym(k) resp. [B] € B- (IN]) which
are closest to IV, i.e.,

A(ALINY) = |A= N, <5 and  d(IBLIND) = |B -], <5
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Then,
d([A] [B]) < d([A], [N]) +d([N], [B]) < 5.
and
|A—sBs|p = [N —sNs|, = |N = A, = |sBs — sNs| .
> i

for all sign matrices s € C’g , s # I, whence necessarily
d([A],[B]) = [A - B
In particular, this is true if [A] = [M;] and [B] = [M;] for i,5 € {1,...,n}, proving Equa-
tions (5.11).
As for the statement that the minimizer of F' is in Be (IN]), let [Z] ¢ Be (IN]) with
Z € Sym(k) such that d([Z], [N]) = |Z — N||, and define
I = {Z € {1, . ,n} : d([[Z]], [[Mz]]) = HZ — MzHF} R
J = {] S {1, - 7n} : d(HZ]], [[MJ]]) = HZ — SijSjHF #* HZ — MJHF for some S5 #* ilk} .
Then,
2 2
F(iD) = 4(X 12 - Ml + Y12 - sy
el jeJ
with IUJ = {1,...,n} and s; # +Ij for j € J. The summands |Z — s;M;s;|% indexed by j € J
are greater than (3 — | Z — NHF)2 since
e <N =8N
<N = 2|+ (2 = siMjsj| o + [51M)s; — 5N
<N =2|p+ (2 =5 Myl p + 5
for s; # +Ij. If all summands in F([Z]) are greater than %, then F([N]) < % < F([2]),
and if J = &, then F([M]) < F([Z]) for M = 23" | M;. So, assume that there is an i € |
such that |Z — M;|p < § (w.lo.g.), and thus d([N], [Z]) = |[N — Z|r < §. If A([N], [2]) =
|Z = N|p =5, then |Z — s;M;sj| . > % _|Z-Nlp=5>|Z- M|, for all s; # +I; and
for all j € {1,...,k}, ie., J = &, thus F([M]) < F([Z]) for M = 23" | M; as we have seen
shortly before. Consequently, we can assume d([N],[Z]) = |Z — N[ > §. Then, the orbit
[Y] of

12— Nle—= B
Y = Z =25yt (2= N) = 2= @212 = Nlr = 5) - 50

is in the ball Be (IN1), i-e., [Y] has smaller distance to [N] than [Z], see Figure 5.1:
d([YD.IND) = [Y = N5

1Z=Nlr—3
et -,
12 Nlr—5
= (1—2”2_7NF||F4> 2 =Nl
=5-[2-N];
<3

Further, [Y] and has smaller distance to [M;] than Z for all j € J and i € I:
d([V]. [M;]) < d([Y]. [N]) + a([N], [A4])
<5-[Z2-Nlp+5
<2 = 5;M;55]
= d([2], [M;])
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Figure 5.1: The construction of Y. A = N +
reflection of Z at A

%”Z NT | N). Y is the
for all j € J. Additionally,

d2 ([[Y]]> [[MZ]])

~ |y - wal?
T A T 1)

N = Ml + Y = N (1Y = Nl = 2@ = M)

v~

=z N M)

|V = Mol + 2 = Ny (12 = N - 2{E005 N - M)
= dQ([[Zﬂ7[[Miﬂ)

for all i € I. Hence, F([Y]) < F([Z]), so the minimizer of F in sym(k) is indeed in B: ([N])
and it is the orbit of

n
M = argmin - = Z ‘A MHF— %Z:Mz
Aesym(i)" {5 i=1
which is in Be (IN]) since the latter ball is convex

For (ii), let [N] € tsp(kd) be a projective shape, and let the data be concentrated in an
open g-ball with center [N]. The minimizer of F' in tsp(kd) is then an element of the -ball
with center [N] since, for [R] ¢ Be (IN])

F(RD = ;24 (1R). ) > %2() >4 2, & (V. ) = F(IV)
Due to (i),

PR = |- 2

n n 2
1 1
D w2 Mi—
j=11 i=1 F
for all [R] € Bz ([N]), so the minimizer of F in tsp(kﬁ) minimizes the distance to the “Euc-
lidean” sample mean in this case.

|
Note that projective shape data are often highly concentrated, e.g. both in the case of face
recognition and in the case of fusion of images, so Proposition 5.2 is a very useful result

The second problem in the minimization of the Fréchet function F' is the computation of
the closest Tyler standardized projection matrix to a symmetric matrix, i.e., the computation
of the minimizer of

G: TSP(KE) —  Rxo
R — |R-M[ (>19)
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for a matrix M € Sym(k). The mapping of M to the corresponding minimizer is—of course—
the projection in the sense of best approximation. However, this projection might not be unique
for some M.

To find a local minimizer of G(R) = | R — M|/%, there is the idea of using the method of the
steepest descent on a Riemannian manifold which generalizes the usual steepest descent method
by conducting a search along a curve in the manifold through the iteration step whose differential
at the iteration step equals the gradient of the scalar field which is to minimize: let g : M — R
be a differentiable scalar field on a Riemannian manifold M, and let r be a retraction, i.e., a
smooth mapping from the tangent bundle T M to M with restrictions r, = |, A such that

(i) 7p(0p) = p for all p e M with 0, € T, M denoting the zero element of T, M, and

ii) the differential Dr,(0,) is the identity on T, M, or equivalently, the curve ~v¢(t) = r,(t&
p\Up P 13 p
satisfies 4¢(0) = ¢ for all £ € T, M.

Then, the update formula is given by

p[”l] = Tpli] (—ti gradg(p[i])), (5.14)

so the next iteration step is found by first moving along the negative gradient with a step size t;,
and then to “project” this point back to the manifold with the retraction r. For suitable step
sizes t;, this gradient descent algorithm guarantees convergence to critical points, see (Absil
et al.; 2008, Ch. 4). Note that the requirements of the algorithm may be weakened: it suffices
if r is defined on a small neighborhood of 0, € T, M for each p € M, and it suffices if the
directions of the iteration step have negative scalar product with the gradient at the iteration
step.

For complete Riemannian manifolds there always is a retraction; in this case, the exponential
map exp,, : 1, M — M is defined on all of T, M for all p € M by the theorem of Hopf-Rinow
(Jost; 2011, Thm. 1.7.1). For incomplete Riemannian manifolds, the exponential map is only
defined on a neighborhood of 0, € T, M for each p € M, but—as noted before—this is sufficient
for the method of the steepest descent. However, the computation of the exponential map might
be numerically challenging since the exponential map is itself defined as a solution of non-linear
ordinary differential equations which are, in general, not numerically cheap to compute.

In the case of minimizing G(R) = |R — M|[%, this steepest descent gradient algorithm is
applicable on TSP(té“) as an embedded manifold with well-known tangent bundle (see Sec-
tion 4.2). It is not applicable on TSP(kj) in case that there are Tyler semi-regular shapes
since TSP(:{Z) is then not a manifold.

The gradient of G at R € TSP(tU]f) is the orthogonal projection of 2(R — M) to the tangent
space at R.

Regarding the retraction, one can of course use the Riemannian exponential. However, we
suggest using the following map

TylP: Sym(k) — tsp(K5%) (5.15)

which maps a symmetric matrix A € Sym(k) to the equivalence class of Tyler standardized
projection matrices corresponding to a configuration matrix P whose column space spans the
space spanned by the eigenvectors to the d + 1 largest eigenvalues of A. Then, it seems sensible
to map a tangent vector V € TMlTSP(t;f) at M; to the matrix My € [Ms] = TylP(M; + V)
which is closest to My, ie., d([Mi], [Ma]) = |Mi — Ma|p. Unfortunately, it is unclear if this
procedure defines a retraction.

Remarks 5.4. (a) The choice of P in the definition of TylP is irrelevant since PB for B €
GL(d + 1) gives the same equivalence class of Tyler standardized projection matrices;

(b) TylP is not well-defined if the configuration matrix P is Tyler extended- or Tyler irregular,
and it might be set-valued if the (d + 1)-st and (d + 2)-nd eigenvalues of A are equal; we call
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Data: symmetric matrix M € Sym(k); step size ; stopping criteria ¢ and ¢;
Result: a local minimizer M of the function G(R) = |R — M||%
1 compute Tyler standardized projection matrix M0 e TylP(M) which is closest to M;
o Mloc M[O];
3 1« 0
. . 1 .
4 while Hprol‘]ThllocTSP(t;)(M — M%)HF > 4§ Emd i <tdo
5 N «— M©¢+ - Projr. . TSP(tk) (M - M OC); |
6 compute Tyler standardized projection matrix M+ e TylP(N) which is closest
to M,
Mloc  pgli+1].
1—1+1
9 end

Algorithm 2: algorithm for computation of a local minimizer of G

symmetric matrices with identical (d + 1)-st and (d + 2)-nd eigenvalues Tyler focal points. The
part of the domain of TylP where TylP is well-defined and unique is open and dense in Sym/(k).
On the part of the domain, where TylP maps uniquely to Tyler standardized matrices of Tyler
regular shapes, TylP is differentiable since Tyler standardization is continuously differentiable
(see Remark 4.8). For our purposes it suffices to define TylP on positive semi-definite, symmetric
matrices;

(c) TylP is invariant under C%, i.e., TylP(A) = TylP(sAs) for all s € C5 and A € Sym(k)
(if A = UDU" is an eigendecomposition of A, then sAs = (sU)D(sU)! is an eigendecomposition
of sAs); in particular, TylP is well-defined on sym(k). 0

As for the initial value recall that the Frobenius norm of R — M is small if R and M have
similar eigenvalues to similar eigenvectors. Since we are looking for the closest Tyler standardized
projection matrix to M, the matrix MI% e TylP(M) which is closest to M should be a good
guess for the minimizer of G(R) = |R — M|%. Thus, we use MI% as the initial value for the
algorithm.

Starting with M9, the algorithm works by projecting the negative gradient 2(M - M [i])
of G in Sym(k) to the tangent space of TSP(t}) at the point MU of the current iterate.
The next iterate M1 is found by proceeding with a small step size v > 0 on TSP(té“) into
the direction of the projected negative gradient. This last step is done by computing the Tyler
standardized projection matrix to the eigenvectors corresponding to the d+1 largest eigenvalues
of

MU 4 2. projg, sk (M — My, (5.16)

which is closest to M.

While it is unclear if this algorithm (see Algorithm 2) always converges to the global min-
imizer or even to a critical value, our examples in Section 5.3 hint at that this is indeed a valid
construction. Note that one can check the type of critical value again numerically.

5.2 Tyler mean shape

As an alternative to Fréchet means, we introduce another mean: for a random variable [M] €
tsp(kﬁ) define the Tyler population mean shape to be

[r] = TylP( argmin E d2([M], [[A]})), (5.17)
[A]esym(k)
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and analogously for a sample [M;],...,[M,] € tsp(ks) define the Tyler sample mean shape to
be
n
[7] = TylP( argmin Y. d?([M], [[Aﬂ)). (5.18)
[Alesym(k) ;1
The Tyler mean shape can be understood as the “Tyler standardization” of the Fréchet mean
in (sym(k),d), i.e. of the minimizer in sym(k) of the Fréchet function F' (see Equation (5.3)).
Consequently, the Tyler sample mean shape is easier to compute than the extrinsic sample mean
shape from Section 5.1 since there is no projection anymore. However, there are still on(k=1)
possible values for the extrinsic sample mean in sym(k). In the case that the data are highly
concentrated, the Tyler sample mean shape can be computed using Proposition 5.2, and it equals
the initial value M9 from the previous section.
The Tyler mean shape [7] resp. [7,] is a set in two cases: the Fréchet mean in (sym(k), d)
might itself be a set or it might be a Tyler focal point such that the mapping TylP is set-valued.
Again, strong consistency can be proven for this definition of a population resp. sample mean
shape.

Proposition 5.5. Let [Mi],...,[M,] € tsp(:ﬂf) be independent, identically distributed random
variables with unique extrinsic population mean [R] in sym(k) such that TylP([R]) is well-
defined and unique. Every measurable choice from the Tyler sample mean shape [7,,] is then a
strongly consistent estimator of the Tyler population mean shape [T], i.e.,

[7] =3 [7] @ s. (5.19)

PROOF. Due to (Ziezold; 1977) resp. (Bhattacharya and Patrangenaru; 2003, Thm. 2.3), the
Fréchet sample mean in (sym(k),d) is a strongly consistent estimator of the corresponding

Fréchet population mean since the data lie in the closed ball B /77 ([0]) < sym(k). Further,
recall that TylP is a continuous mapping on its domain, see Remarks 5.4. Then, the result is
an immediate consequence of the continuous mapping theorem. O

5.3 Examples in K3

For the discussion of the presented methods, we will compute some extrinsic and Tyler sample
means in the case k = 5 and d = 2. For these k and d, there are no Tyler semi-regular shapes
since k = 5 and d + 1 = 3 are relatively prime, so Kg = tg.

All computations have been performed using our own code based on the software package R
(version 3.3.1) (R Core Team; 2016). For the computation of a solution of Equation (4.5), the
package ICSNP (Nordhausen et al.; 2015) has been used. The extrinsic mean shapes have been
computed with Algorithms 1 and 2 (step size v = .01, stop criteria 6 = .0001 and ¢ = 1000).

First, we will discuss the computation of weighted means of two shapes. For the computa-
tion of the mean of n shapes randomly drawn from {[p], [¢]} < #3, it suffices to compute the
projection of 2F~1 = 16 arithmetic means of Tyler standardized projection matrices since we
can choose a fixed representative of [Mp] and compute the arithmetic mean with all choices
MQ S [[MQ]]

Example 5.6. We compute the weighted extrinsic and Tyler mean shapes of two shapes in t3.
(a) Let

5 5 1 5 5 1
5 -5 1 5 -5 1
P=|-5 -5 1 and Q=|-5 -5 1
-5 5 1 5 5 1
-5 8 1 8 0 1

Figure 5.2 shows the extrinsic and Tyler means of 16 shapes drawn from {[P],[Q]} = #3. The
shapes are presented in the chart given by standardizing the first four landmarks to a square in
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Figure 5.2: Two shapes [P], [Q] from Example 5.6 (a) and their weighted extrinsic (o) resp.
Tyler (+) means in the chart mapping the frame in their first four landmarks to the square given

by Py, 43,{1,2}-

R? c RP?, cf. Example 3.16. The means follow almost the same path, but differ in position.
While the extrinsic sample mean of {[P],[Q]} is approximately

) 5 1
5 -5 1
[Ian] = -9 -5 1 )
-5 5 1
1.443 8.021 1
the Tyler sample mean is approximately
) 5 1
5 -5 1
[Tn] = -5 -5 1
-5 5 1
2373 7.527 1

(b) As a warning, we consider another pair of shapes: let

5 5 1 5 o5 1
5 =51 -5 =5 1
R=]1-5 -5 1 and S=15 -5 1
-5 5 1 -5 5 1
0 —4 1 3 6 1

with corresponding Tyler standardized projection matrices

0.6 0.149 —-0.268 0.375 0.070
0.149 0.6 —0.175 —0.268 0.339
Mp = | —-0.268 —0.175 0.6 0.149  0.339
0.375 —0.268 0.149 0.6  0.070
0.070 0339 0.339 0.070 0.6
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S5
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Figure 5.3: Two shapes [R],[S] from Example 5.6 (b) and their weighted extrinsic (o) resp.
Tyler (+) means in the chart mapping the frame in their first four landmarks to the square given

by R{l,...,4},{1,2}-

and
0.6 0.227 0.078 0.183 —0.386

0.227 0.6 —0.367 0.190 0.133
Mg =1 0.078 —-0.367 0.6 0.313 —0.027

0.183  0.190 0.313 0.6 0.269

—-0.386 0.133 —0.027 0.269 0.6

Figure 5.3 shows the extrinsic and Tyler means of 16 shapes drawn from {[R], [S]} < t3. Again,
the shapes are presented in the chart given by standardizing the first four landmarks to a square
in R? « RP2 While the extrinsic sample mean of {[R], [S]} is approximately

) 5 1

5 -5 1

-5 5 1

8.527 —-3.310 1

the Tyler sample mean is approximately

5 5 1

) -5 1

[T0n] = -5 -5 1

) 5 1

8.402 —2.966 1

However, the weighted means do not follow the same path since the extrinsic mean in tsp (tg)
is not the projection in the sense of best approximation of the extrinsic mean in sym(5) for all
possible samples. For a sample comprising of six observations of [R] and ten observations of [S],
the extrinsic sample mean in sym(5) is

0.6 0.198 —0.052 0.255 —0.215
0.198 0.6 —0.295 0.018 0.210
M = 1—16(6 -Mpr+10-Mg) = | —0.052 —0.295 0.6 0.252 0.110
0.255 0.018  0.252 0.6 0.194
—0.215 0.210 0.110 0.194 0.6
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with eigenvalues 0.999, 0.949, 0.811, 0.189, and 0.051. The projection in the sense of best
approximation of M is farther away from the sample than the projection of the “Euclidean”
sample mean

0.6  0.086 0.149 0.255 —0.268
0.086 0.6 —0.295 0.219 0.210
N=2(6-Mp+10-sMgs) = | 0149 —0.295 0.6  0.140 0.110
0.255 0.219  0.140 0.6  0.142
—0.268 0.210  0.110 0.142 0.6

with

This simple example shows that the extrinsic mean shape might cause some undesired phenom-
ena when working with unconcentrated data. 0

Additionally, we discuss an application of Proposition 5.2 for concentrated data.

Example 5.7. Let [P] be the shape of

5 5 1
5 -5 1
P=|-5 -5 1],
5 5 1
0 5 1

and let [Mp] be the equivalence class of Tyler standardized projection matrices of [P]. Then,
e =e([Mp]) ~ 1.13. We consider a sample of n = 25 shapes [Qy,], 1 < m < n, around [P] with

5 5 1

5 -5 1

Qm = -5 -5 1
-5 5 1

100+xy, 5+ym 1

Here, z,, and y,, 1 < m < n, are independently drawn from a uniform distribution on
[-1.5,1.5] < R. In the sample we considered, the equivalence classes [M,,] to [@Qmn], 1 < m < n,
were in a ball with center [Mp] and radius g, as we have checked numerically. Therefore, Pro-
position 5.2 can be applied for the computation of both the extrinsic and the Tyler sample mean
shapes of [@1],...,[@n].- The results are practically identical:

) ) 1
) -5 1
[Ian] = [fn] = —9 -5 1 )
-5 9 1
10.118 5.243 1

see Figure 5.4.
This suggests that the numerically challenging computation of the projection in the sense of
best approximation can be avoided with clear conscience. 0
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R

Ps Py

Figure 5.4: [P] and the sample from Example 5.7 in the chart mapping the frame in their first
4 landmarks to the square given by Py 4y (19). Its extrinsic (o) and Tyler (+) sample means
are practically identical at (10.118,5.243).



Chapter 6

Discussion and outlook

This chapter summarizes and discusses the main results and original contributions of this thesis.
Further, it provides a collection of unsolved problems for future research.

6.1 Summary

The main objective of this work was to determine reasonable topological subspaces of projective
shape space. To accomplish that, a detailed topological discussion of projective shape space was
presented. It turned out that the topological entities of projective shape space are more intricate
than in similarity or affine shape space where the topological subspace of free shapes is a differen-
tiable Hausdorff manifold. In projective shape space the topological subspace fdk of shapes with
trivial isotropy group gives rise to a differentiable T'1 manifold which is never Hausdorff for any
k > d+2 (Theorem 3.24). However, the shapes that cannot be separated from another shape by
an open neighborhood were characterized (Proposition 3.10), and we consequently determined
the topological subspaces which are Hausdorff (Proposition 3.12). Additionally, a reasonable
class of topological subspaces was identified, and easy-to-check conditions were determined for
which such a topological subspace is a differentiable Hausdorff manifold (Theorem 3.27) and
maximal (Corollary 3.28).

The topological subspace of Tyler regular shapes is an element of this class. While this
subspace is indeed a differentiable Hausdorff manifold and a sensible choice for a topological
subspace of projective shape space, there are cases when the subspace of Tyler regular shapes
is not a maximal choice in this class (Proposition 3.29).

The advantage of Tyler regular shapes is the existence of a Tyler standardization, i.e. a
projective pre-shape (Theorem 4.3). Using Tyler standardization, the definition of Procrustes
metrics on the topological subspace of Tyler regular shapes is possible through embeddings. To
one of these metrics, the computation of an extrinsic sample mean for projective shape data was
discussed (Section 5.1). Additionally, the Tyler mean was introduced which is easier to compute
(Section 5.2). For both means consistency has been proven, and examples have been discussed
(Section 5.3).

6.2 Contributions

The main contribution of the thesis is the thorough discussion of the topology of projective
shape space. Another noteworthy achievement is the definition and computation of a sample
mean shape using Tyler standardization.

In detail, the substantial contributions are:

- A sensible list of requirements has been presented which a reasonable topological subspace
of projective shape space has to satisfy (page 21).

75
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- Projective subspace constraints are used for the description of irregularity of configurations
resp. shapes. Calculation rules for projective subspace constraints have been presented
(Lemma 2.5). The notion of “total decomposition” has been introduced. Using the latter,
a configuration is called decomposable if its total decomposition is non-trivial. In par-
ticular, a decomposable shape possesses a matrix representative which is block diagonal
(Proposition 2.7). A key result shows that decomposable shapes are not free, and vice
versa (Proposition 3.1). This immediately gives a stratification of projective shape space
(Proposition 3.2).

- Using the notion of the blur and a generalization of the method of distinct speeds of
convergence introduced by Kent et al. (2011), it was determined which shapes [g] cannot
be separated from another shape [p] by an open neighborhood of [p]. Indeed, a shape
[p] € a¥ can be separated from all less regular shapes (Proposition 3.10). This result is
useful for the determination of T1 subspaces. As it turns out, the largest reasonable T1
subspace is the subspace of free shapes.

- Additionally, the Hausdorff subspaces were characterized, again using the method of dis-
tinct speeds of convergence Proposition 3.12.

- The topological subspace of free shapes carries the structure of a topological manifold.
Charts were constructed by generalizing the notion of frames to the new notion of pseudo-
frames. These charts are compatible rendering the topological subspace of the free a
differentiable manifold (Theorem 3.24).

- The idea of Kent and Mardia (2012) of bounding the number of landmarks in a topolo-
gical subspace was generalized, and the class of topological subspaces bounded by pro-
jective subspace numbers was introduced. These subspaces are by definition closed under
permutations and respect the hierarchy of projective subspace constraints (Section 3.5).
Under simple bounds to the projective subspace numbers, these topological subspaces of
projective shape space are Hausdorff and open subsets of the subspace of free shapes,
hence differentiable manifolds (Theorem 3.27). Maximality in this class is achieved by
exhaustion of these bounds (Corollary 3.28).

- The space of Tyler regular shapes is an example for a topological subspace bounded by
projective subspace numbers. Using our more general results, it was shown that this
subspace is indeed a differentiable Hausdorff manifold, but only maximal if the greatest
common divisor of k and d + 1 is at most 2 (Proposition 3.29).

- A complete proof was given for the statement of Kent et al. (2011) that Tyler standardiz-
ation is only possible for Tyler regular and Tyler semi-regular shapes (Theorem 4.3). The
latter are decomposable, but only exist if the greatest common divisor of k and d + 1 is
larger than 1, i.e., if k and d + 1 are not relatively prime. The topological subspace of
Tyler standardizable shapes is a differentiable manifold in either case (page 50).

- When representing Tyler standardizable shapes as equivalence classes of Tyler standardized
projection matrices, one obtains a Procrustes metric on the space of Tyler standardizable
shapes by embedding Tyler standardizable shapes into the space of equivalence classes of
symmetric matrices (Section 4.2). In this setup, the corresponding extrinsic mean was
discussed (Section 5.1). While the extrinsic sample mean shape is a strongly consistent
estimator of the corresponding extrinsic population mean shape (Proposition 5.1), the
computation of the extrinsic sample mean is rather difficult. A method to compute this
mean was given, but proving its correctness appears difficult.

- As a remedy, a new mean for projective shapes, the Tyler mean, was introduced which is
easier to compute. Again, the Tyler sample mean shape is a strongly consistent estimator
of the corresponding Tyler population mean shape (Proposition 5.5).
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- The computation of both means simplifies if the data are sufficiently concentrated (Pro-
position 5.2).

- Both means were discussed and compared in elementary examples (Section 5.3).

6.3 Outlook

While the objective to find reasonable topological subspaces of projective shape space has been
achieved, there remain several interesting questions for future research:

- Are there “natural” standardizations, embeddings or Riemannian metrics for other reas-
onable topological subspaces? Are there embeddings into Euclidean spaces? Is there a
sensible way to embed Tyler standardizable shapes smoothly?

- The construction of confidence regions for the Tyler mean shape should be rather straight-
forward as the images under TylP of respective confidence regions of the extrinsic mean in
sym(k). The map TylP is differentiable when well-defined and unique, so there should be
sufficient estimates for the image of a confidence region around the extrinsic sample mean.

- Isak = (RPd)k /PGL(d) the right shape space for uncalibrated cameras? While projective
geometry is useful for image analysis, one should always remember that real world cameras
are Euclidean devices taking measurements in a Euclidean space. In particular, some
effects cannot happen in reality; e.g. landmarks cannot be pushed beyond infinity by a
hyperplane-to-hyperplane projective transformation, and often there is information about
the camera, e.g. whether object and film are on the same side of the optical center, or not.
This extra information should of course be taken into account in applications—and this
might lead in turn to new interesting shape spaces...
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