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Abstract

With the tremendously growing impact of digital technology, the ways of accessing music
crucially changed. Nowadays, streaming services, download platforms, and private archives
provide a large amount of music recordings to listeners. As tools for organizing and browsing
such collections, automatic methods have become important. In the area of Music Informa-
tion Retrieval, researchers are developing algorithms for analyzing and comparing music data
with respect to musical characteristics. One typical application scenario is the classification
of music recordings according to categories such as musical genres.

In this thesis, we approach such classification problems with the goal of discriminating
subgenres within Western classical music. In particular, we focus on typical categories such
as historical periods or individual composers. From a musicological point of view, this classi-
fication problem relates to the question of musical style, which constitutes a rather ill-defined
and abstract concept. Usually, musicologists analyze musical scores in a manual fashion in
order to acquire knowledge about style and its determining factors. This thesis contributes
with computational methods for realizing such analyses on comprehensive corpora of audio
recordings. Though it is hard to extract explicit information such as note events from audio
data, the computational analysis of audio recordings might bear great potential for musi-
cological research. One reason for this is the limited availability of symbolic scores in high
quality.

The style analysis experiments presented in this thesis focus on the fields of harmony
and tonality. In the first step, we use signal processing techniques for computing chroma
representations of the audio data. These semantic “mid-level” representations capture the
pitch class content of an audio recording in a robust way and, thus, constitute a suitable
starting point for subsequent processing steps. From such chroma representations, we derive
measures for quantitatively describing stylistic properties of the music. Since chroma features
suppress timbral characteristics to a certain extent, we hope to achieve invariance to timbre
and instrumentation for our analysis methods.

Inspired by the characteristics of the chroma representations, we model in this thesis
specific concepts from music theory and propose algorithms to measure the occurence of
certain tonal structures in audio recordings. One of the proposed methods aims at estimating
the global key of a piece by considering the particular role of the final chord. Another
contribution of this thesis is an automatic method to visualize modulations regarding diatonic
scales as well as scale types over the course of a piece. Furthermore, we propose novel
techniques for estimating the presence of specific interval and chord types and for measuring
more abstract notions such as tonal complexity. In first experiments, we show the features’
behavior for individual pieces and discuss their musical meaning.

On the basis of these novel types of audio features, we perform comprehensive experiments
for analyzing and classifying audio recordings regarding musical style. For this purpose, we
apply methods from the field of machine learning. Using unsupervised clustering methods,
we investigate the similarity of musical works across composers and composition years. Even
though the underlying feature representations may be imprecise and error-prone in some
cases, we can observe interesting tendencies that may exhibit some musical meaning when
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analyzing large databases. For example, we observe an increase of tonal complexity during
the 19th and 20th century on the basis of our features. As an essential contribution of this
dissertation, we perform automatic classification experiments according to historical periods
(“eras”) and composers. We compile two datasets, on which we test common classifiers using
both our tonal features and standardized audio features. Despite the vagueness of the task
and the complexity of the data, we obtain good results for the classification with respect
to historical periods. This indicates that the tonal features proposed in this thesis seem to
robustly capture some stylistic properties. In contrast, using standardized timbral features
for classification often leads to overfitting to the training data resulting in worse performance.
Comparing different types of tonal features revealed that features relating to interval types,
tonal complexity, and chord progressions are useful for classifying audio recordings with
respect to musical style. This seems to validate the hypothesis that tonal characteristics can
be discriminative for style analysis and that we can measure such characteristics directly
from audio recordings.

In summary, the interplay between musicology and audio signal processing can be very
promising. When applied to a specific example, we have to be careful with the results of
computational methods, which, of course, cannot compete with the experienced judgement of
a musicologist. For analyzing comprehensive corpora, however, computer-assisted techniques
provide interesting opportunities to recognize fundamental trends and to verify hypotheses.
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Zusammenfassung

Im Zuge der fortschreitenden Digitalisierung vieler Lebensbereiche ist eine deutliche Verände-
rung des Musikangebots festzustellen. Streamingdienste, Downloadportale und auch private
Archive stellen dem Hörer umfangreiche Kollektionen von Musikaufnahmen zur Verfügung.
Bei der Strukturierung solcher Archive und der Suche nach Inhalten spielen automatische
Methoden eine immer wichtigere Rolle. In diesem Kontext widmet sich der noch junge For-
schungsbereich des Music Information Retrieval unter anderem der Entwicklung von Algo-
rithmen und Werkzeugen zur inhaltsbasierten Suche, Navigation, Organisation und Analyse
von Musikdatenbeständen. Eine typische Anwendung ist beispielsweise die Klassifizierung
von Aufnahmen bezüglich bestimmter Kategorien wie beispielsweise musikalischer Genres.

Diese Arbeit befasst sich mit solchen Klassifikationsproblemen mit dem Ziel einer Diffe-
renzierung innerhalb der abendländischen Kunstmusik. Als typische Kategorien stehen dabei
Epochen der Musikgeschichte oder einzelne Komponisten im Fokus. Aus musikwissenschaft-
licher Sicht berührt diese Aufgabenstellung die Frage nach der musikalischen Stilistik, welche
ein abstraktes und oft schwer definierbares Konzept darstellt. Bei der stilistischen Unter-
suchung führen Musikwissenschaftler typischerweise händische Partituranalysen durch, um
Stilmerkmale in Musikstücken zu identifizieren. Ein wesentlicher Beitrag der vorliegenden
Arbeit ist die Entwicklung computergestützter Methoden zur stilistischen Analyse umfang-
reicher Korpora von Audiodaten. Obwohl die Extraktion expliziter musikalischer Ereignisse
wie Einzelnoten aus Audiodaten schwierig ist, kann die computergestützte Analyse von Au-
dioaufnahmen eine Chance für die musikwissenschaftliche Forschung bieten, unter anderem
weil qualitativ hochwertige Notentexte in symbolischer Kodierung oft nicht vorliegen.

Die stilistischen Untersuchungen in dieser Arbeit konzentrieren sich auf die Parameter
Harmonik und Tonalität. Als erster Analyseschritt werden die Audiodaten mit Hilfe von
Signalverarbeitungstechniken in Chromadarstellungen überführt. Diese semantischen “Mid-
level”-Darstellungen spiegeln den harmonischen Gehalt der Musikaufnahmen im Bezug auf
Tonhöhenklassen auf eine robuste Weise wider und stellen somit einen geeigneten Ausgangs-
punkt für weitere Verarbeitungsschritte dar. Aus diesen Chromadarstellungen werden dann
unterschiedliche Merkmale zur quantitativen Beschreibung von Stilcharakeristika errechnet.
Durch die Unterdrückung klangfarblicher Unterschiede in den Merkmalsdarstellungen wird
eine Unabhängigkeit der Analysemethoden von der Klangfarbe und Instrumentation der Mu-
sik angestrebt.

Inspiriert von den Eigenschaften solcher Chromadarstellungen werden in dieser Arbeit mu-
siktheoretische Konzepte aus den Bereichen Tonsatz beziehungsweise Harmonielehre model-
liert und das Auftreten entsprechender tonaler Strukturen in den Audiodaten algorithmisch
gemessen. Eine in dieser Arbeit eingeführte Technik dient der automatischen Analyse der
Grundtonart eines Stückes unter Berücksichtigung der besonderen Rolle des Schlussakkords.
Ein weiterer Beitrag ist eine automatische Methode zur Visualisierung von Modulationss-
trukturen hinsichtlich diatonischer Skalen sowie von lokal vorherrschenden Skalentypen im
Verlauf eines Stückes. Weiterhin führt diese Arbeit neue Algorithmen für die Messung von
Intervall- und Akkordtypen sowie für die Quantifizierung abstrakter Konzepte wie der tonalen
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Komplexität ein. Anhand einzelner Stücke werden zunächst die Eigenschaften der Merkmale
aufgezeigt und ihre musikalische Bedeutung diskutiert.

Auf Grundlage dieser neu entwickelten Audiomerkmale werden umfangreiche Experimen-
te zur Stilanalyse und Stilklassifizierung von Musikaufnahmen durchgeführt. Dabei kommen
bekannte Algorithmen aus dem Bereich des maschinellen Lernens zum Einsatz. Mit Hil-
fe unüberwachter Lernmethoden (“unsupervised learning”) veranschaulicht diese Arbeit die
stilistische Ähnlichkeit von Musikstücken im Bezug auf Komponisten und Kompositions-
jahre. Obwohl die zugrunde liegenden Merkmalsdarstellungen im Einzelfall unpräzise und
fehlerbehaftet sein können, lassen sich bei der Analyse größerer Datenmengen interessante
Tendenzen beobachten, welche möglicherweise von musikgeschichtlicher Bedeutung sind. So
lässt sich beispielsweise ein Anstieg der tonalen Komplexität im Verlauf des 19. und 20. Jahr-
hunderts auf Grundlage der vorgestellten Merkmale beobachten. Als wesentlicher Beitrag der
Arbeit werden Experimente zur automatischen Klassifizierung von Musikdaten nach Epoche
oder Komponist(in) durchgeführt. Auf zwei neu zusammengestellten Datensätzen werden
bekannte Klassifikationsverfahren in Kombination sowohl mit tonalen Merkmalen als auch
mit standardisierten Audiomerkmalen getestet. Trotz der Vagheit der Aufgabenstellung und
der Komplexität der Daten konnten gute Ergebnisse bei der Klassifikation nach Epochen
erzielt werden. Die tonalen Merkmalen scheinen dabei stilrelevante Eigenschaften auf eine
stabile Art und Weise zu modellieren. Im Gegensatz dazu führt die Verwendung von Stan-
dardmerkmalen in Klassifikationsverfahren häufig zu einer Überanpassung der Modelle auf
die Trainingsdaten, was sich negativ auf die Klassifikationsergebnisse auswirkt. Der Vergleich
verschiedener tonaler Merkmale zeigt, dass Merkmale zur Beschreibung von Intervalltypen,
tonaler Komplexität sowie von Akkordverbindungen geeignet für die Stilklassifizierung von
Musikaufnahmen sind. Dadurch wird die Hypothese gestützt, dass sich tonale Eigenschaften
in der Musik zur Stilunterscheidung heranziehen lassen und dass solche Eigenschaften direkt
aus Audioaufnahmen gemessen werden können.

Zusammenfassend ist festzustellen, dass ein Wechselspiel zwischen den Disziplinen der Mu-
sikwissenschaft und der Audiosignalverarbeitung sehr vielversprechend sein kann. In der An-
wendung auf Einzelfallbeispiele sind audiobasierte Analysemethoden kritisch zu hinterfragen
und stehen sicherlich im Speziellen hinter der abwägenden Beurteilung durch einen Musik-
wissenschaftler zurück. Für den Vergleich von Musikstücken sowie die Betrachtung umfang-
reicher Korpora bieten die computergestützten Techniken jedoch interessante Möglichkeiten,
um grundlegende Trends zu erkennen und Hypothesen zu verifizieren.
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1

1 Introduction

During the last decades, the ways of accessing and listening to music fundamentally changed.
In the 1990s, the digital Compact Disc (CD) gained in popularity and gradually replaced
prior analog media for storing music recordings. The invention of powerful audio compression
technologies such as the MP3 format crucially influenced the distribution of digital recordings
via the internet. With efficient storage technology, the enjoyment of music on portable digital
devices (“MP3 players”) became popular. Recently, smartphones began to supersede such
players more and more. Nowadays, music lovers often privately own large amounts of digital
music recordings—up to several terabytes of data size. Public and commercial archives even
surpass this size by several orders of magnitude. Beyond such locally stored recordings, online
music streaming grew to a popular way of consuming music. Leading commercial suppliers
provide several ten millions of songs to their customers.

With the growth of such archives, technologies for automatically searching, labeling, and
organizing audio files have become important. Furthermore, automatic recommendation and
selection of similar music plays a crucial role and led to business ideas such as “selling less
of more” [7]. Often, the annotations and labels of the data are incomplete, inconsistent,
or not useful for specific search criteria. Especially in private collections, we usually find
many songs with purely technical labels such as “Track01.mp3.” Companies often make huge
efforts to manually annotate and organize these files. In recent years, researchers proposed
strategies towards an automatization of this annotation process by means of computer-based
approaches. Starting from these contributions, the research area of Music Information Re-
trieval (MIR) evolved as a domain of growing importance. In particular, the International
Society for Music Information Retrieval (ISMIR) emerged as an independent community.
Contributions in this area are discussed—among others—at the annual ISMIR conference
(since 2000).

Examples for typical MIR problems are the identification of recordings (Audio Fingerprint-
ing) or artists. Other tasks are semantically more abstract such as browsing with musical
queries (Query by Humming, Query by Example), or the search for cover songs and similar
music. Furthermore, the automated extraction of musically relevant metadata such as the
information on predominant instruments, tempo, location of beats and downbeats, musical
key, chords, main melody, or the lyrics of a song play an important part. These tasks exhibit
a high degree of interdependency since the extraction of meaningful metadata may again
support the identification and search for similar music.

Beyond the identification of specific songs, automatic labeling of data with respect to more
abstract categories may be useful. As an example, many researchers approached a problem
known as music genre classification [46,237]. In such tasks, typical categories are so-called
top-level genres such as Rock, Pop, Jazz, World music, or Classical. Since these terms are
very vague and the genres often overlap with each other, genre classification constitutes a
rather ill-defined problem. Beyond this, such categorization may be too superficial for specific
purposes. Several publications approached a finer class resolution by considering subclasses
of individual genres such as Rock [236], Electronic Dance Music [70], or Ballroom Dance
Music [55]. Most of these methods mainly rely on timbral or rhythmic characteristics.
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In this thesis, we focus on Western classical music. Thereby, our object of interest is the
typical repertoire that dominates concert halls and classic radio programmes. When consid-
ering classical music as a “genre,” a subdivision becomes particularly important since this
label usually comprises several centuries of music history, many different instrumentations,
and various moods and purposes. There are only few methods addressing such subgenre
classification for classical music. Apart from that, there are several ways to define subgen-
res. Some of the previous contributions used instrument categories as subclasses [225]. Such
timbre-related subclasses are of importance since many listeners prefer music featuring cer-
tain instruments. For example, a listener may love piano music due to the sound of the piano
but, at the same time, may dislike pieces featuring solo violin or opera arias by the same
composer.

Nevertheless, a categorization of classical music into purely instrumental categories may not
properly reflect the preferences of all listeners. Beyond the instrumentation, many classical
music lovers generally prefer music by a certain composer—be it a piano sonata, a string
quartet, or an opera. Furthermore, passionate listeners are often capable to identify the
the composer of a work after listening to only few measures—even if they cannot always
explain the reasons for their decision. We conclude that there must be internal structures in
the music that result in a composer-specific characteristic. Motivated by such observations,
some researchers approached the identification of composers from audio data [98,195]. Most
of these previous studies mainly focused on a small number of composers since the task gets
very complex for higher numbers and, moreover, some composers may be similar to each
other with respect to musical style. Beyond this, considering individual composers may not
be the only meaningful categorization. Rather, a listener may prefer music from a group
of composers or a historical period in general. We may see this as a motivation to classify
according to such periods (eras). A main contribution of this thesis is the development and
evaluation of such subgenre classification systems for music recordings (Chapter 8). We want
this classification to be invariant to timbre and instrumentation. For example, a Mozart
piano sonata should obtain the same class label as a symphony or a string quartet since we
assume some specific characteristics of Mozart’s pieces independently from the orchestration.

From the musicological point of view, the discussion of appropriate subgenres relates to
the question of musical style and its definition. Even though musicologists have a good
intuitive feeling of what style is, they argue about a clear definition of musical style and
its determining factors. The notion of style is very ambiguous since it relates to secondary
characteristics of music. Primarily, a composer usually aims at composing pieces each with an
individual character—the idea—such as, for example, a new and catchy melody. In contrast,
style rather relates to the way how a composer realizes this idea [19].

For analyzing composer styles, musicologists usually consider scores (sheet music). They
manually identify structures such as specific chords or chord progressions that may be char-
acteristic for the composer. Comparing the scores of various pieces by different composers,
they obtain insights into the evolution and coherences of styles. Since this analysis by hand
is cumbersome, musicologists often analyze a small number of representative piece and then
generalize their findings to larger corpora. Here, computer-assisted methods may be helpful
to support such claims with quantitative studies on a large amount of pieces. For approach-
ing scores with computers, we need them to be explicitly encoded in symbolic formats.
Concerning scores in graphical formats (images), we have to perform a conversion known as
Optical Music Recognition (OMR). State-of-the-art OMR systems are still error-prone
and require manual corrections.



3

Beyond musical scores, audio recordings of specific performances constitute another type
of music representation. An audio recording captures the physical observation of such an
interpretation (fluctuations of air pressure level) and, thus, represents the “sounding reality”
of a musical piece in a specific performance. In this thesis, we address the analysis and
classification of music on the basis of such audio recordings. This task is fundamentally
different from score-based analysis. In the audio domain, we can only measure spectral
energies over time and have no explicit encoding of note events. This makes the analysis of
concrete musical structures a difficult task. For this reason, one might doubt whether audio
recordings constitute a useful basis for analyzing musical styles.

There are some reasons why we think they may be helpful indeed. First, there is a practical
argument. In many large music archives, pieces are only available in the form of audio
recordings—even though there are some large score archives as well.1 As we discussed in
the beginning, audio is more relevant for many applications—such as browsing the archives
of streaming services—since an audio recording itself constitutes the object of interest for
a consumer. Second, scores may not capture all relevant properties of a musical piece. By
itself, a score does not produce any sound. Interpreting that score adds many aspects that
may be crucial for the music. Some scholars therefore proposed that “[...] we must identify
every composition with its acoustical impression” [206]. Let us discuss this by considering an
example. In an orchestral score, we may find a forte note for both flute and trumpet to be
played at the same time. From the score, one would theoretically expect these notes to have
equal loudness. However, in an acoustic realization, the (physically louder) trumpet tone
may completely cover (mask) the flute tone, which may influence the perception of harmony,
melody, or texture. A trained human—be it a musicologist or the composer—knows such
effects when reading (or writing) the score of this piece. In contrast, computers do not.
Generally, none of the representations of a piece—neither a score nor an audio recording of a
specific performance—is that musical piece. Nevertheless, we assume that an audio recording
may capture some important details of such a piece that we cannot easily find in a score.2

In principal, we could approach audio-based analysis by first detecting all note events
and, thus, generating a score-like representation, which we could then analyze in the same
way as score data. However, current state-of-the-art algorithms for this automatic music
transcription task show poor performance compared to trained human experts. In par-
ticular, transcription systems are highly dependent on instrument characteristics. Because
of that, we draw attention to more robust methods. For such purpose, semantic mid-level
representations provide a good tradeoff between semantic meaning (“concreteness”) on the
one hand and robustness to technical variations on the other hand. Regarding harmony
and tonality—which we focus on in this dissertation—, chroma representations may fulfil
these requirements. They only capture the pitch class information of the music over time
while ignoring the musical octave of these pitches. Previous MIR research showed that
chroma representations are able to capture tonal information in a way that is—to a certain
extent—robust against timbral variation.

Ignoring the octave information crucially limits the possibilities of analyzing harmonic
phenomena. Using chroma representations, we cannot discriminate an interval such as a
perfect fifth from its complementary (a perfect fourth) since we loose this information on the

1One example is the public International Music Score Library Project (http://www.imslp.org).
2For answering the questions what is music (or a musical piece), we would also have to consider the field of

music cognition. From research in this area, we know that the perception of a performance fundamentally
differs from the acoustic signal. Perceptual audio coding makes extensive use of such psychological
phenomena for audio compression.

http://www.imslp.org
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pitch class level. In Section 3.5.6, we discuss this in more detail. Because of these limitations,
we focus on such musical concepts that refer to the pitch class level and, therefore, may be
realized using chroma representations. For example, analyzing the use of a specific chord
type such as the half-diminished seventh chord is, in general, possible with chroma features.
In contrast, we cannot analyze its typical position (which chord note is the lowest). In
Chapter 2, we provide an introduction of these music theory concepts and discuss their
usability for chroma-based analysis.

In the subsequent chapters, we compare different types of chroma implementations with
respect to timbre invariance and some kind of “musical meaning” (Section 3.5). We propose
several algorithms to derive secondary features from chromagrams that may be useful for
analyzing tonal and stylistic characteristic (Chapters 5 and 6). As an important aspect,
these characteristics relate to various temporal scales of the music. One method serves to
automatically detect the global key of a piece—generating a label such as “F]minor” (Sec-
tion 5.1). Another algorithm aims at locally analyzing and visualizing the change of musical
key throughout a piece (Section 5.2). Furthermore, we propose techniques for quantifying the
use of certain interval and chord types or, more abstractly, the tonal complexity of the music
on various time scales (Chapter 6). We discuss all of these methods by means of individ-
ual pieces and visually illustrate the features’ characteristics. Based on such automatically
extracted descriptors, we perform several experiments for clustering and classifying music
recordings with respect to stylistic properties. To identify meaningful style subgenres, we
conduct some automatic clustering of pieces and composers and discuss the meaning of the
results with respect to musical style (Chapter 7). For the classification according to histori-
cal periods and composers (Chapter 8), we compare our chroma-based system to a baseline
method using standard spectrum-based features. We conduct several studies in order to eval-
uate the timbre invariance of the classification and to estimate the capability of our system
to “learn” something that may be related to musical style.

1.1 Contributions and Related Publications

The majority of the results presented in this thesis were previously published [252,254,256–
259]. In this section, we want to mention the main contributions of this dissertation and
explain their relation to the corresponding publications. At the end of this section, we add
a list of the relevant papers.

This thesis is an interdisciplinary work by touching the disciplines musicology, engineer-
ing, and informatics. Essentially, we approach questions from the field of musicology by
using algorithmic methods. Our methods are inspired by and mainly relate to music the-
ory concerning, in particular, theories on harmony and tonality. Since we deal with audio
data, technologies from the signal processing domain play a decisive role. Thereby, one of
our main contributions is the development of tonal audio features. In the final chapters, we
apply techniques from the field of machine learning for clustering and classifying pieces on
the basis of our features. From the results, we attempt to draw some conclusions on musical
style.

Because of this interdisciplinary nature, we present both musicological and technical foun-
dations as well as corresponding previous research including the following contributions:

• An introduction to the musicological foundations of tonality. In Chapter 2,
we present and discuss the most important terms and concepts for tonal analysis. Most
of the concepts originate from music theory. For several concepts, we introduce some
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mathematical notation that we use in the subsequent chapters. This chapter is intended
to serve as an introduction for researchers in the MIR field.

• A compact overview of relevant techniques in audio and MIR research.
Chapter 3 provides a short summary of the audio processing basics and presents several
standardized audio features. Furthermore, we give a more detailed overview of chroma
extraction methods. This chapter also serves to fix some mathematical notation used
in the subsequent chapters.

• A literature review for related work in the MIR domain. This state-of-the-
art (Chapter 4) briefly summarizes the relevant work both for tonal analysis of audio
recordings and for style classification of music data (symbolic and audio).

Concerning tonality analysis, this thesis contributes with several algorithms relating to
different temporal resolutions and music theory concepts. This includes the following work:

• A novel method for estimating the global key based on the final chord.
This key detection method is specifically suitable for classical music where a piece’s
final chord usually relates to the global key. In [252], we first proposed this algorithm
together with an evaluation on three datasets. We re-compiled one of these datasets,
which served as evaluation set in related work. For another public dataset (Saarland
Music Data [169]), we created and published key annotations.3 In a Bachelor’s thesis
supervised by the author of this dissertation, Schaab [211] compared the performance
of this method to state-of-the-art algorithms using an additional dataset. We further
evaluated the impact of key detection performance for style classification with key-
related features [211,259]. We did not include these results in this thesis.

• A novel method for analyzing local keys over the course of a piece. This
approach simplifies the key detection task to a 12-key problem by only considering
diatonic scales. In [254], we showed that this can lead to robust and useful visualiza-
tions of the modulations in a piece. Furthermore, we extend the method for analyzing
non-diatonic scale types. In a case study on H. Rott’s first symphony, Habryka [83]
discussed the benefits of such methods for musicological analysis. Beyond that, we
tested the local key structures as basis for tonal segmentation of pop songs [253]. We
do not consider these publications [83, 253] in this thesis. Furthermore, the Bache-
lor’s thesis by Gräfe [80]—supervised by the author of this dissertation—presents an
evaluation of classification experiments using local key properties for classifying music
recordings with respect to era and composer categories. The results are not part of this
dissertation.

• A novel algorithm for deriving interval- and chord-related features from
chromagrams. We first published this idea in [256] where we tested the resulting
features’ efficiency for style classification. Beyond this application, this thesis provides
a more profound discussion and visualization of the features.

• A novel set of features relating to the tonal complexity of music on different
time scales. In [257], we made attempts towards defining notions of tonal complexity
for our applications. Moreover, we presented realizations of such a quantification based
on chroma vectors and visually analyzed these features’ behavior for individual chords

3http://www.mpi-inf.mpg.de/resources/SMD

http://www.mpi-inf.mpg.de/resources/SMD
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and whole movements. In [258], we added some more types of complexity features and
tested their efficiency for classifying musical styles.

Beyond that, we performed several experiments to estimate these features’ capability for
capturing musical style characteristics. These experiments comprise the following contribu-
tions:

• A novel dataset for analyzing and classifying styles in Western classical mu-
sic. The first dataset (Cross-Era) comprises each 400 pieces that are representative for
the four historical periods Baroque, Classical, Romantic, and Modern (20th century).
The pieces span a certain variety of composers and are balanced with respect to the
instrumentation (200 pieces each for piano and orchestra). We provide comprehensive
annotations as well as chroma-based features extracted from these audio files.4 Further-
more, we provide global key annotations for the 1200 pieces of the Baroque, Classical,
and Romantic periods. Additionally, we compiled an add-on set (400 pieces), which
comprises music from stylistically “transitional” composers. We used the Cross-Era
dataset in several publications [256, 258, 259]. The full set Cross-Era+Add-On (2000
pieces) constitutes the basis for the clustering experiments presented in this thesis.

• A novel dataset for evaluating composer identification tasks. This Cross-
Composer dataset contains each 100 pieces by the eleven composers J. S. Bach, L. van
Beeethoven, J. Brahms, A. Dvořak, G. F. Handel, J. Haydn, F. Mendelssohn-Bartholdy,
W. A. Mozart, J.-P. Rameau, F. Schubert, and D. Shostakovich. The pieces encompass
a wide range of instrumentations and piece types. We published audio features and
annotations for this dataset.5 The annotations include a detailed specification of the
performing artists.

• Visualizations and clustering results of the Cross-Era+Add-On dataset.
From this data, we extracted chord progressions with a publicly available algorithm.
We proposed a method to illustrate audio features over the history based on the life-
time of the composers. For chord progression bigrams and tonal complexity features,
we analyze the feature values regarding the historical time axis and discuss possible
conclusions concerning the evolution of musical styles. Finally, we perform several clus-
tering experiments on the basis of the mapped features (clustering years, pieces, and
composers).

• Classification experiments for style periods and individual composers. Using
the majority of features proposed in this work, we train and evaluate three machine
learning classifiers for identifying the stylistic period (on Cross-Era) or the composer
(on Cross-Composer) from audio recordings. We compare the performance against a
baseline system relying on standard features. Furthermore, we investigate the robust-
ness of classification results with respect to timbral variety and technical artifacts using
a composer and an artist filter. We published similar experiments for Cross-Era in [256]
(using interval and chord features) and in [258] (using tonal complexity features). In
this thesis, we did not include the evaluation of key-related chroma histograms for
classifying Cross-Era published in [259].

4http://www.audiolabs-erlangen.de/resources/MIR/cross-era
5http://www.audiolabs-erlangen.de/resources/MIR/cross-comp

http://www.audiolabs-erlangen.de/resources/MIR/cross-era
http://www.audiolabs-erlangen.de/resources/MIR/cross-comp
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In the following, we provide a chronological list of all publications that are relevant for this
thesis:

[252] Christof Weiß, “Global Key Extraction from Classical Music Audio Recordings Based on the Final
Chord,” in Proceedings of the 10th Sound and Music Computing Conference (SMC), 2013, pp. 742–747.

[256] Christof Weiß, Matthias Mauch, and Simon Dixon, “Timbre-Invariant Audio Features for Style Analysis
of Classical Music,” in Proceedings of the Joint Conference 40th ICMC and 11th SMC, 2014, pp. 1461–
1468.

[254] Christof Weiß and Julian Habryka, “Chroma-Based Scale Matching for Audio Tonality Analysis,” in
Proceedings of the 9th Conference on Interdisciplinary Musicology (CIM), 2014, pp. 168–173.

[257] Christof Weiß and Meinard Müller, “Quantifying and Visualizing Tonal Complexity,” in Proceedings
of the 9th Conference on Interdisciplinary Musicology (CIM), 2014, pp. 184–187.

[258] Christof Weiß and Meinard Müller, “Tonal Complexity Features for Style Classification of Classical Mu-
sic,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2015, pp. 688–692.

[259] Christof Weiß and Maximilian Schaab, “On the Impact of Key Detection Performance for Identifying
Classical Music Styles,” in Proceedings of the 16th International Society for Music Information Retrieval
Conference (ISMIR), 2015, pp. 45–51.

1.2 Thesis Structure

This dissertation is structured as follows. The three chapters following this introduction
provide foundations and previous research that are relevant for this thesis. Chapter 2 gives
an overview of the relevant concepts in musicology and music theory regarding tonality anal-
ysis and its relation to musical style (Section 2.10). Moreover, we introduce mathematical
notation to describe the relevant tonal structures. We particularly focus on concepts that
refer to the pitch class level since we can realize them for audio data using chroma features.
In Chapter 3, we discuss various types of music representations. For the audio domain, we
outline the fundamental processing techniques such as the Short-Time Fourier Transform.
In Section 3.4, we describe various types of standard spectrum-based audio features. Since
chroma features play a decisive role in this thesis, we present more details on these fea-
tures and discuss several chroma implementations and enhancement strategies (Section 3.5).
Finally, we outline the main aspects of several machine learning methods used in the subse-
quent chapters (Section 3.6). Chapter 4 presents a literature review. We confine ourselves
to mention the most important contributions for automatic tonality analysis of audio data
as well as style classification studies for both symbolic and audio data.

Chapters 5–8 present the methods proposed in this thesis and their evaluation. In Chap-
ter 5, we describe our novel method for global key detection relying on a piece’s final chord
(Section 5.1). Furthermore, we propose a method for analyzing local keys and modulations
based on diatonic scales as well as a more general analysis technique concerning scale types
(Section 5.2). We visualize these results for a number of pieces throughout music history.
Chapter 6 provides two novel strategies for deriving tonal features from chromagrams. The
first method (Section 6.1) relates to the presence of interval and chord types. The second
method (Section 6.2) serves to quantify tonal complexity on different temporal levels. We
visualize the feature values for isolated chords and for the head movements of Beethoven’s
sonatas. In Chapter 7, we introduce our style analysis dataset Cross-Era+Add-On and pro-
pose a method for mapping features onto a historical time axis. With this method, we
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analyze chord progression bigrams (extracted with a public algorithm) and our complexity
features over 300 years of music history (Section 7.2). We analyze both feature types using
principal component analysis. On the basis of all features (chord bigrams and complexity),
we perform unsupervised clustering experiments with respect to years, pieces, and com-
posers (Section 7.3). Finally, Chapter 8 presents the results of our classification experiments.
Beyond the Cross-Era dataset, we introduce in Section 8.1 a second dataset for composer
identification (Cross-Composer). For chroma-based and standard features, we show visual-
izations of the feature space using Linear Discriminant Analysis (Section 8.2). We outline
our classification procedure and discuss some details of cross validation (Section 8.3). The
following sections show the results for different classifiers, cross validation settings, and fea-
ture constellations. We test the robustness of the classification systems to timbral variation
and their capability for generalization to unseen data. For all classification experiments,
we compare our chroma-based strategy to a standard spectrum-based system. Moreover,
we look into the details of classification by investigating the types of errors (Section 8.3.5).
Chapter 9 summarizes the results of this work and discusses the consequences of our findings.
Furthermore, we give a perspective to future research directions.
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2 Musicological Foundations

This chapter gives an overview of the fundamental terms and concepts for describing tonal
phenomena in Western classical music. We expose these phenomena along with the most
important ideas in music theory and the historical development of these ideas. For presen-
tation, we display the concepts of tonality in common Western musical notation and assume
the reader’s familiarity with the basic terms of music theory.1 Furthermore, we introduce
some mathematical modeling for the use in subsequent chapters.

State-of-the-art methods for computational audio analysis have shortcomings with respect
to several qualities of tonality. For this reason, we put special emphasis on those concepts that
one can adequately address on the basis of current signal processing techniques. Chapter 3
covers those limitations of current techniques that affect the description of tonal structures,
along with the description of digital music representations.

For explanations of the basic musical terms, we follow the textbooks on harmony by Roig-
Francoĺı [204], Kostka and Payne [122], and Laitz [127]. Several ideas link to Schönberg’s
“Harmonielehre” [214] where the page numbers refer to the English translation by Carter
[215]. Zsolt Gárdonyi’s and Hubert Nordhoff’s book [69]—only available in German—as
well as Zsolt Gárdonyi’s lessons on music theory served as an inspiration to a number of
concepts concerning the historical evolution of scales as well as the categorization of chord
progressions. Some detailed information originates from Wikipedia articles.

2.1 Tonality and Harmony

There are a number of terms describing the organization of pitch as a musical dimension.
Hereby, tonality is among the most prevalent ones but, at the same time, ambiguous and
ill-defined. Although musicologists often ascribe this term to the french music theorist Fétis,
his colleague Choron apparently used it first [226]. Among the numerous definitions existing
in the literature, we choose a rather wide-ranging one: According to this concept, music is
considered tonal when exhibiting a “systematic organization of pitch phenomena” [100]. This
encompasses all music constructed of different pitches, including dodecaphonic and modal
music.

Following a narrower but common definition, tonality denotes music’s property of featuring
a referential pitch class or chord (“tonic”). Usually, the musical process resolves to that center
at the end of a piece or section, thus generating a feeling of “arrival.” Schönberg emphasizes
this formal aspect of tonality [215, p. 27]: “Tonality is a formal possiblity [...], a possibility
of attaining a certain completeness or closure.”2 Examples for such kind of tonality are the
major-minor tonality of the common practice period3, the modal systems of the prior Early
music, or free modern systems that exhibit central tones that establish in a different way

1See [122,127,204] for detailed explanations.
2At the same time, Schönberg does not consider the artistic use of this more specific tonality as an “eternal

law.”
3In Western music history, the term “common-practice period” comprises the Baroque, Classical, and Ro-

mantic periods.
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than in common-practice music.4 Terms such as “tonicality” were proposed to describe this
notion [199]. We refer to this as referential tonality, which serves as an umbrella term for
tonal systems involving a reference pitch class.

One specific sample of such systems is the major-minor tonality of common-practice
music—prevailing roughly from 1600 to 1910 while having a strong influence on the music be-
yond this period. In this tonal system, musical phenomena are organized around a referential
tonic chord, which can be a major or a minor triad. The range of possible chords—assuming
a twelve-tone temperament—led to the framework of 24 major and minor keys. Often, tonal
music is considered as being restricted to this specific part of Western music. We stick to
the general definition of tonality mentioned before and refer to the specific 24 key system as
major-minor tonality. Within this system, the concept of a reference tonic chord entails
“abstract relations that control melodic motion and harmonic succession over long expanses
of musical time” and thus constitutes “the principal musical means with which to manage
expectation and structure desire” [100]. Several theories cover the relation of pitches and
chords towards the referential tonic chord [51,200,212,249].

Out of this, one can see that tonality is a broader and more general concept than the less
abstract terms harmony and melody. Hereby, harmony mainly relates to the “vertical” way
of combining notes. When simultaneously sounding, groups of notes form some kind of entity
in the listener’s mind—referred to as intervals (two notes) or chords (three or more notes).
Furthermore, harmony comprises the succession of such musical constructs [45]. In contrast,
melody covers the linear succession of notes in a monophonic consideration. Polyphonic
textures—combinations of several monophonic lines—exhibit both harmonic and melodic
aspects. Particular challenges arise when combining independent melodic lines. The field of
counterpoint addresses these characteristics where voice leading rules play an important
part.

Tonality is a hierarchical concept. On the one hand, it refers to different temporal scales—
from the phrase level up to multi-movement works and work cycles. On the other hand,
several concrete concepts describe tonal phenomena—pitch, pitch class, chord, scale, key,
and more. They mutually interact in many ways. Over the history of music theory, scholars
proposed several lines of argumentation to explain these terms and their interdependency.
These theories either rest on acoustic properties of the tone [214], on the historical de-
velopment of Western composition [69] or on theoretical and pedagogical reflections about
chords [51, 52, 197, 200] or scales [212, 219, 249]. In the following sections, we introduce the
fundamental terms. Starting with the characteristics of musical tones—overtones, pitch, and
pitch class—(Section 2.2), we then introduce intervals (Section 2.3). We outline the problems
of musical tuning and enharmonic equivalence (Section 2.4). Next, we describe musical scales
(Section 2.5) before we present the concept of chords and functional harmony (Section 2.6).
In Section 2.7, we cover the concept of key and modulations followed by the illustration of
important pitch models (Section 2.8). Section 2.9 exposes some general thoughts on tonal
complexity. In the final Section 2.10, we briefly discuss the impact of tonality for musical
style analysis.

4As an example, we mention B. Bartok’s “Music for Strings, Percussion and Celesta”, which exhibits several
of such central tones throughout each of the movements.
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Figure 2.1. Harmonic series including the first 16 partials of C2. Using Western music notation, we
can only approximate the exact pitches of the harmonics by rounding them to the equal-tempered scale (see
Section 2.4). Please note the different indexing scheme when referring to “overtones” instead of “partials.”

2.2 Tone, Pitch, and Pitch Class

“The material of music is the tone: what it affects first, the ear” [215, p. 19]. Just as
many music theorists, Schönberg considers the natural tone as the foundation of harmony.
For representing such tones—produced by traditional pitched instruments or by the human
voice—, we can use a series of sinusoids5 sounding simultaneously—the partials. As usual,
we denote the lowest (first) partial of the tone as fundamental, the corresponding physical
frequency as the fundamental frequency f0 ∈ R+ given in Hertz (Hz). We refer to the
higher partials as overtones with the first overtone corresponding to the second partial. For
most musical instruments, the higher partials’ frequencies are close to integer multiples—the
harmonics or harmonic partials—of the fundamental frequency.6 The frequency of the
h-th harmonic partial fPart(h) ∈ R+ is given as

fPart(h) := h · f0 (2.1)

for h ∈ N. All partials together form the harmonic series of a musical tone. Figure 2.1
shows an approximate description of the harmonic series using Western music notation.7

For tones exhibiting partials that are harmonic to a certain extent, human listeners do not
perceive these partials separately but as some kind of contribution to the tone. This psy-
choacoustic phenomenon leads to the perceptual concept of pitch that allows to order tones
on a frequency-related logarithmic scale (“highness” of a tone [122]). The pitch information
corresponds to the perceived fundamental frequency of a tone that may differ from the
physical one because of inharmonicity effects. Moreover, the amount of oscillation energy
in the fundamental may be considerably smaller than in (some of) the overtones without
changing the pitch perception.

Due to the importance of overtones for pitch perception, humans rate tones as similar that
share a high number of partials.8 Since we perceive pitch distances in a logarithmic sense,
this effect is particularly prominent for pitches whose fundamental frequencies fa0 and f b0

5To refer to a tone with a sinusoidal waveform, the term pure tone is common.
6Exceptions of this behavior occur for some pitched percussion instruments such as timpanies or tubular

bells as well as for the low strings of the piano or the guitar. This phenomenon is called inharmonicity.
In the following, we neglect such possible deviations of the partials from the harmonic frequencies and
confine ourselves to only speak of partials.

7The exact frequencies of the harmonics differ from the ones indicated by the notation in Figure 2.1 depending
on the tuning scheme assumed for notating the pitches. Section 2.4 outlines the detailed aspects of musical
tuning.

8In particular, such ratings are made by listeners who are familiar with Western music. Researchers have
shown that both for children [220] and listeners from non-Western cultures [114], in particular, the simi-
larity of close pitches (on a logarithmic frequency scale) is of high importance, too.
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Figure 2.2. Shepard’s helix of pitch perception. The height dimension illustrates the montonically
increasing tone heigth, the angular position refers to the circular notion of pitch class (image from [113]).

differ by powers of two:

f b0 = 2k · fa0 ⇔ log2

(
f b0
fa0

)
= k (2.2)

with k ∈ Z. For |k| = 1, we call this an octave relation. Combining Equations (2.1)
and (2.2), we obtain with k = 1

f bPart(h) = h · f b0 = 2h · fa0 = faPart(2h). (2.3)

Every second partial of the lower pitch (fa0 ) coincides with a partial of the higher pitch
(f b0). To consider their similar quality, musicologists group pitches related by one or more
octaves under the same pitch class. Roger Shepard’s pitch helix (Figure 2.2) simultaneously
illustrates the concepts of pitch class and pitch [223, 224]. Western music notation follows
this principle when addressing pitches with a pitch class and an octave information. For
instance, C4 denotes the pitch class C in the middle octave of the piano. With this octave
labeling, we follow the international scientific pitch notation.

2.3 Intervals

Apart from the octave, the second most frequent pitch class in the harmonic series over fa0
originates from the third partial. Similar to Equation (2.2), all pitches with a fundamental
frequency f b0 following the ratio

f b0 = 3 · 2k · fa0 (2.4)

with k ∈ Z belong to this pitch class. For a harmonic series over C, this is the pitch class
G (see Figure 2.1). We call the distance between two pitches with a fundamental frequency
relation of 3 : 2 a fifth.
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Figure 2.3. Pitch classes as a series of perfect fifths. We shifted the pitches to a suitable octave in order
to ensure readibility. The brackets indicate the pitch class content of four typical pitch class sets (scales).
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No. of Steps 0 1 2 3 4 5 6 7
Diatonic size 1 2 3 4 5 6 7 8

Generic name Unison Second Third Fourth Fifth Sixth Seventh Octave

Figure 2.4. Generic intervals for the C major scale in relation to C4. The diatonic size specifies the
distance in scale steps while counting equal pitches as 1. The interval names derive from the English or Latin
words of the order number.

By iterating this relation, we can construct sets of pitch classes that play important roles
in music history. A seven-part sub-sequence of this series of fifths forms the diatonic scale.9

Sub-sequences with different number of notes refer to other scales such as the pentatonic
scale (five pitch classes) or the chromatic scale (twelve pitch classes) (see Figure 2.3). In
Western music history, the seven-tone diatonic scale attained high importance since both the
church modes of Early music and the (natural) minor and major scales share its structure—
each with a different referential pitch class. Because of this scale’s predominance, the number-
ing of diatonic steps led to the traditional names of pitch distances—the intervals. Figure 2.4
illustrates these generic intervals [127]. Hereby, a melodic interval denotes the distance
of successively played notes and can be ascending or descending while a harmonic interval
refers to simultaneously sounding notes.

Intervals up to an octave are called simple intervals. Larger intervals sound similar
to their simple counterparts, which we obtain by octave reduction. We therefore speak of
compound intervals and refer to them as “octave + simple interval.”10 Some compound
intervals have common names such as the ninth (octave + second) up to the thirteenth (octave
+ sixth). A similar concept—inversion of intervals—corresponds to an octave reduction
of simple intervals (inverting the vertical pitch class order). We refer to the result as a
complementary interval. A simple interval and its complementary sum up to an octave.

Western music notation evolved historically along with the pitch class content—up to
reaching its current shape during the 17th century. This is why that system is particularly
convenient for representing diatonic scales. We therefore obtain an interval’s generic name
by counting the spaces and lines in the staff. Looking at Figure 2.3, we can extend the pitch
class content to include more and different scales by using accidentals. These extended pitch
class sets require a subtler discrimination of intervals. In the diatonic scale, a generic interval

9This observation is valid only when we map pitches onto the twelve-tone equal-tempered scale. In a detailed
view, tuning aspects become important (see Section 2.4). For the historical construction of the diatonic
scale, not only perfect fifths played a role but also the size of other intervals in the scale was optimized.

10Because of the strong similarity between compound intervals and their simple equivalent, we only explain
further interval characteristics by means of simple intervals.
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Specific name Perf. unison Aug. unison Min. second Maj. second

Complementary Perf. octave Dim. octave Maj. seventh Min. seventh
Abbreviation P1 / P8 +1 / ◦8 m2 / M7 M2 / m7

Semitone distance ∆ 0 / 12 1 / 11 1 / 11 2 / 10
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Aug. second Min. third Maj. third Perf. fourth Aug. fourth
Dim. seventh Maj. sixth Min. sixth Perf. fifth Dim. fifth
+2 / ◦7 m3 / M6 M3 / m6 P4 / P5 +4 / ◦5

3 / 9 3 / 9 4 / 8 5 / 7 6 / 6

Figure 2.5. Specific names of intervals and their complementaries. The modifiers specifying the
exact size are “perfect” (perf.), “major” (maj.), “minor” (min.), “diminished” (dim.), and “augmented” (aug.).
The table’s third row shows a common abbrevation as specified in [204]. The last row gives the distance in
semitones ∆ referring to the equal-tempered scale.

may refer to multiple frequency relations as soon as we consider all scale notes as a possible
reference pitch. We define an interval’s exact size with an additional modifier obtaining
the specific interval name. Traditionally, we characterize octave and fifth as well as their
complementary intervals as perfect, the other intervals as major or minor. Furthermore,
all generic interval types can appear in augmented and diminished versions. Figure 2.5
illustrates the specific names of the intervals along with their complementary equivalents.
Different versions of a generic interval share the diatonic number but not the frequency
relation. This is why the diatonic scale does not constitute an equally spaced division of the
octave but contains both whole steps (major seconds) and half steps or semitones (minor
seconds).

We derived the intervals from the diatonic scale in order to understand the Western naming
convention. Just as we explained the fifth, we also can deduce other intervals from the
harmonic series (Figure 2.1). This leads, for example, to a major third with a frequency
relation of 5 : 4 or to a minor third of 6 : 5. For these pure intervals, several harmonics of
the two pitches coincide.

2.4 Tuning and Enharmonic Equivalence

During the Early music periods, the pitch content in use evolved from one diatonic scale
towards including further scales that relate by a horizontal shift in Figure 2.3. With the
increasing use of keyboard instruments during the 17th century, this led to a central problem
in Western harmony—the conflict between the frequencies of the natural overtones and an
equal division of the octave for obtaining similar steps between scale degrees. Around the
17th century, several theorists proposed tuning systems for keyboard instruments to approach
this problem—such as the meantone temperament by Gioseffo Zarlino based on pure major
thirds with a frequency ratio of 5 : 4. Another example is the Pythagorean tuning based on
pure perfect fifths (3 : 2). We refer to these tuning systems based on pure intervals as just
intonation. In such systems, some intervals have nice frequency ratios. On the downside,
some other intervals appear to be seriously detuned leading to unusable scales and intervals
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on the keyboard. For this reason, Andreas Werckmeister, Johann Kirnberger, and others
proposed so-called well-tempered tuning systems, which allow to play scales based on all
twelve chromatic pitches without considerably mistuned intervals. The strict realization of
this idea leads to the twelve-tone equal temperament of today’s keyboard instruments11

where the octave (2 : 1) is divided into twelve semitones with an equal step size of

f b0 =
12
√

2 · fa0 ⇔ log2

(
f b0
fa0

)
=

1

12
. (2.5)

Using this scale, a pitch class is considered coincident with its enharmonic counterpart shifted
by twelve fifth intervals (Figure 2.3). Hence, we have to reduce these fifth intervals by 1/12
of the Pythagorean comma

(3/2)12

27
≈ 1.0136. (2.6)

That is, G] in Figure 2.3 is about log2(1.0136) · 1200 ≈ 23.5 Cent (percent of an equal-
tempered semitone) higher than the corresponding A[ when tuned according to a series
of perfect fifth intervals (Pythagorean tuning). In equal temperament, the Pythagorean
comma splits up equally over the twelve fifths. Therefore, the equal-tempered version of the
perfect fifth is by approximately two Cent lower than the pure version. Similarly, there is
a difference of about 21.5 Cent between a pure major third and four concatenated perfect
fifths—the syntonic comma. Because of such differences, the harmonic partials of a note do
not perfectly match other notes within an equal-tempered scale—in contrast to the notation
in Figure 2.1.

In the twelve-tone equal temperament, the chromatic scale in Figure 2.3 closes to a circle
so that the altered pitch classes coincide:

G] =̂ A[, D] =̂ E[, F] =̂ G[, B] =̂ C, F[ =̂ E, . . . . (2.7)

We refer to this observation as enharmonic equivalence. This corresponds to the piano’s
key arrangement with twelve keys per octave. Since numerous harmonic phenomena de-
rive from diatonic scales—as well as the Western notation system—, enharmonic spelling of
pitches in scores constitutes an important issue in order to ensure readability. Especially for
Early music and Baroque music, musicians usually consider pitch spelling for intonation—
such as players of wind or string instruments, or singers. As we outline in Section 3.5.6, we
do not resolve these subtle pitch differences with our analysis method. Instead, we always
assume the pitch class content of the twelve-tone equal-tempered scale.

Apart from such local microtuning aspects, we need to consider a global tuning. By
tradition, musicians use the middle A4 as reference pitch (concert pitch) . The frequency
assigned to the concert pitch increased over the eras with today’s standard value of

fconcert := 440 Hz. (2.8)

Nowadays, interpreters sometimes adjust the concert pitch to lower values following the
results of historical research. A common value for historical performance practice is

fhist
concert := 415 Hz, (2.9)

11On the piano, this is not exactly true since the inharmonicity of the low strings requires a pitch correction.
On the organ, historical tunings are still in use to enable historically faithful interpretations.
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which is close to the pitch A[ in 440 Hz tuning.

According to the observations presented in this section, we formalize pitch as a simple
numbering of the equal-tempered scale:

p ∈ [0 : 127] := {0, 1, . . . , 127} ⊂ N0 (2.10)

with p = 60 corresponding to C4. We obtain the following relation between pitch and
fundamental frequency:

f0(p) = 2(p−69)/12 · fconcert. (2.11)

Similarly, we refer to the pitch class of a note as a number

q ∈ [0 : 11]. (2.12)

In our notation, q = 0 denotes the pitch class C leading to the correspondence

(0, 1, . . . , 11) =̂ (C,C], . . . ,B) . (2.13)

Since p = 0 refers to a tone with pitch class C, we obtain the following relation:

q(p) = p mod 12 (2.14)

For the octave number in scientific pitch notation, we obtain

u(p) = bp/12c − 1. (2.15)

Thus, the pitch derives from pitch class and octave number as

p(q, u) = q + 12 · (u+ 1) . (2.16)

As for the pitches, enharmonic equivalence affects intervals as well. Two intervals are en-
harmonically equivalent when they have the same semitone distance ∆ in the equal-tempered
scale:

+1 =̂ m2, M2 =̂ ◦3, +2 =̂ m3, +3 =̂ P4, . . . . (2.17)

We define a melodic interval between two pitches pa and pb as the distance

∆(pa, pb) = pb − pa (2.18)

whereas, for harmonic intervals, only |∆(pa, pb)| is relevant. That way, we can avoid all
diminished or augmented intervals in Table 2.5 except for the augmented fourth (also referred
to as “tritone”). For a compound interval, we obtain the corresponding simple interval by

∆simple = ∆compound mod 12. (2.19)

The complementary interval relates to its original counterpart via

∆complementary = 12−∆original. (2.20)
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0 diatonic 
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-2 diatonic 

Figure 2.6. Chromatic scale in a perfect fifth ordering. The brackets are marking several diatonic
sub-sequences. We name the scales according to the number and type of accidentals necessary in Western
music notation (absolute fifth measurement). For example, the +1 diatonic scale requires one sharp (F]), the
+2 diatonic scale requires two flats (B[, E[). The 0 diatonic scale encompasses the white keys on a piano.
Diatonic scales with a close relation share a high number of pitch classes.

2.5 Scales

We already introduced the diatonic and chromatic scales. In general, we define a scale as
a set of pitch classes with a referential pitch class that exhibits a particularly emphasis and
“stability” compared to the other pitches in the scale. In that understanding, both diatonic
scale and chromatic scale are rather scale families than individual scales since they do not
exhibit a reference pitch class. These scale families can provide the pitch class material for
a certain section of music.

Regarding diatonic scales, several transpositions are possible. For the relation of these
transpositions, simple ratios of fundamental frequencies play an important role—correspond-
ing to lower partials in the harmonic series. As a consequence, fifth-related diatonic scales
seem to be more harmonically similar than scales shifted by a small interval. Because of the
perfect fifth structure of the diatonic scale, those fifth-related scales share a high number of
common pitch classes (six out of seven). Following [69], we refer to a diatonic pitch class
set by specifying the number d ∈ Z of sharp (“+”) or flat (“−”) accidentals required for
notation (absolute fifth measurement). From this, we can compute a distance D ∈ Z
between diatonic scales (relative fifth measurement). For instance, the distance between
two scales with 1] (d = 1) and 3[ (d = −3), respectively, is:

D(+1,−3) = (−3)− (+1) = −4. (2.21)

For details, see Figure 2.6.

In Gregorian chant and Renaissance vocal polyphony, all notes of the diatonic pitch class
set served as reference note (finalis)—with one exception (the Locrian scale). The most
common scales—known as church modes—are the upper four in Figure 2.7 (a–d). Named
after Greek and Asian regions, Dorian (Mode I), Phrygian (Mode III), Lydian (Mode V),
and Mixolydian (Mode VII) form the basis of the ancient modal system. Furthermore, there
are derived versions differing only in the typical melodic structure (Modes II, IV, VI, VIII).
In his “Dodecachordon” (1547), Glarean introduced the additional modes Aeolian and Ionian
with their derivatives (modes IX–XII). They constitute the basis for the major-minor tonality
of the common-practice period. For later music, the modes gained in importance again—
particularly for late Romantic and impressionist music as well as for jazz improvisation.

For major-minor tonality, the most important scale is the major scale equaling the Ionian
mode. We illustrate its detailed properties in Figure 2.8. Hereby, the caret numbers 1̂, 2̂
etc. denote the scale degrees in relation to the reference pitch. In contrast, the pedagogical
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Figure 2.7. Diatonic modes. On the left hand side, we display the modes as diatonic shifts of the 0 diatonic
scale without accidentals. On the right hand side, we show the same scale type over C as reference pitch class.

concept of relative solmisation12 assigns constant solfège syllables to each note of a
diatonic scale set. In the 0 diatonic scale, for example, the pitch class C always obtains the
syllable do (see Table 2.1) independently from the chosen reference note. As we mentioned
before, the major scale is not equally spaced in pitch with respect to the twelve-tone equal-
tempered scale. Between the scale degrees 3̂–4̂ as well as 7̂–8̂ (corresponding to 7̂–1̂), a half
step (H) or semitone occurs. The remaining steps are whole steps (W). The positions of
the half steps circularly shift for the other diatonic modes. Therefore, mi–fa always forms
a half step whereas the size of 3̂–4̂ depends on the specific scale. Additionally, there are
common functional names for the scale degrees such as “tonic,”“mediant,” or “leading tone”
(Figure 2.8). They behave in the same way as the scale degree numbers introduced previously.
Here, it is important to avoid confusions between the scale degrees as pitch classes and
other harmonic structures—such as chords or other scales—built upon these pitch classes.
Therefore, we use a more specific reference such as “tonic note.”

For the minor scale, we find a different situation (Figure 2.9). In the aeolian scale—also
called natural minor—, 7̂–8̂ results in a whole step. To preserve the harmonic quality of
the raised leading tone as in the major scale, we alter this tone to ]7̂ obtaining the harmonic

12This concept (also called “movable do solfège”) is not to confuse with the absolute pitch spelling (“fixed do
solfège”) used in Romance languages. Besides the diatonic notes, there are also syllables for alterations
such as fi for the raised fa degree or ta for the flatted ti.
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W W H W W H W  

c ����� ���
Degree 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ = 1̂
Name Tonic Supertonic Mediant Subdominant Dominant Submediant Leading Tone Tonic

Solfège do re mi fa sol la ti do

Figure 2.8. C major scale with scale degree numbers. Between the degrees 3̂–4̂ and 7̂–8̂ (equals 7̂–1̂
when referring to pitch classes), a half step occurs (m2). All other steps are whole steps (M2). The second
column in the table lists the functional names of the scale degrees. In the last row, we show a common version
of the solfège syllables used for relative solmization of scale degrees.

Table 2.1. Solfège syllables for the scale degrees of the diatonic modes.

Scale Degree 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂

Ionian do re mi fa sol la ti

Dorian re mi fa sol la ti do

Phrygian mi fa sol la ti do re

Lydian fa sol la ti do re mi

Mixolydian sol la ti do re mi fa

Aeolian la ti do re mi fa sol

Locrian ti do re mi fa sol la

minor scale.13 This leads to the unusual interval of an augmented second (+2) between 6̂–7̂.
To solve this melodic problem, we alter the submediant as well (]6̂) to obtain a smoother
melodic interval. This generates the upward version of the melodic minor scale. For
downward melodic movement, both alterations (]6̂ and ]7̂) are not common. This leads to a
larger set of nine pitch classes and, thus, a more complicated situation for minor scales.

Besides the diatonic scale types, there are other scales based on fifth relations. The pen-
tatonic scale is a five-part sub-sequence of the series of fifth (see Figure 2.3) and plays an
important role in impressionist music. Other scales do not form a consecutive excerpt of
the fifth series. One example is the acoustic scale, which is relevant for a number of 20th
century compositions. We can derive this scale from the harmonic series by selecting the
first seven pitch classes. It is similar to the major scale but contains ]4̂ and [7̂ as alter-
ations. There are also scales constructed from a symmetrical division of the octave assuming
the equal-tempered scale as basis. One example is the six-note whole tone scale. We find
other symmetrical divisions for the octatonic scale (half and whole steps alternating)—also
called diminished scale—and the hexatonic scale (half steps and minor thirds alternating).
Figure 2.10 illustrates examples for such scales.

For the non-diatonic scales, the common notation system does not provide an ideal repre-
sentation. When considering scales as pitch class sets

S ⊂ [0 : 11] (2.22)

we better see the symmetry of, e.g., the whole tone scale:

SWholetone = {0, 2, 4, 6, 8, 10}. (2.23)

13We discuss the reasons for this alteration in Section 2.6.
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Figure 2.9. Different versions of the C minor scale. We notate the scales using the key signature of
C minor. For indicating the alterations, we place accidentals next to the notes.

a) Pentatonic b) Acoustic 
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Figure 2.10. Several non-diatonic scales based on C. For the symmetrical scales (c–e), the traditional
notation system is not convenient. For example, it does not reflect the equidistant spacing of the whole tone
scale.

Alternatively, we can model a pitch class set as an “activation vector” or “energy distribu-
tion” T ∈ R12 for the twelve chromatic pitch classes. Then, a specific pitch class q can be
part of the scale (Tq = 1) or not (Tq = 0). For the whole tone scale, we obtain

TWholetone = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)T. (2.24)

This better shows the symmetry of such scales. The other scales introduced in this chapter
correspond to the following pitch class vectors:

TChromatic = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T

TDiatonic = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1)T

TNaturalMinor = (1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0)T

THarmonicMinor = (1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1)T

TMelodicMinor = (1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1)T

TPentatonic = (1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0)T

TAcoustic = (1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0)T

THexatonic = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)T

TOctatonic = (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0)T (2.25)

This representation also helps to recognize half steps and whole steps. We will present further
ideas relating to pitch class sets in Section 2.8.2. In Equation (2.25), the pitch class vectors
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Thirds (M3,m3) (m3,M3) (m3,m3) (M3,M3)

Frame interval P5 P5 ◦5 +5
Triad type name Major Minor Diminished Augmented

Abbreviation M m ◦ +

Figure 2.11. Basic triad types above C4. Here, we show the triads in in root position (tertian structure).

refer to scales on the pitch class C. To obtain a transposed14 version T̃ based on the pitch
class qref ∈ [0 : 11], we have to perform a circular shift of the vector entries:

T̃q = T(q+qref) mod 12 (2.26)

with q ∈ [0 : 11].

2.6 Chords

2.6.1 Triads and Seventh Chords

Just as we consider scales as the “imitation of the tone on the horizontal plane” (“analysis of
the tone”), chords constitute the analogue“on the vertical”plane (“synthesis”of the tone) [215,
p. 26]. Western music grounds on monophonic chant. Later, composers combined more
and more horizontal lines simultaneously (vocal polyphony). Thereby, chords occurred as
events of coinciding notes while strictly following rules of harmony and counterpoint. With
the beginning 17th century, these chords assumed a separate existence due to the arising
monody and the basso continuo. From this era on, the “vertical” understanding of note
groups particularly influenced composition and harmony analysis. According to this“chordal”
perception of music, chords comprising three or more notes constitute the basic harmonic
unit; harmonic intervals are components of chords rather than their origin [137].

Similar to the tone—as a compound of partials—, humans perceive chords as an entity
rather than as individual notes. The most frequent chords are triads. The major triad (M)
consists of three pitches, e.g., C4, E4, and G4. The major triad’s pitch classes correspond to
the first three pitch classes that contribute to the harmonic series. Because of that, humans
perceive this chord as a stable sound. In terms of intervals, the major triad constitutes a
tuple of two thirds (M3,m3) where the outer notes form a P5. Because of the high stability
of the perfect fifth interval, the minor triad (m3,M3) behaves stable as well—though the
pitch class of the m3 above the root note is none of the lower partials. Concatenating twice
the same third interval, we obtain the diminished and the augmented triad, named after
their frame interval’s quality ( ◦5 or +5). Figure 2.11 shows these basic triads.

In the tertian structure—built out of concatenated thirds—, we refer to the triad’s con-
stituent notes as root, third, and fifth. A triad is in root position when the root note is
lowest (the bass note). For the inversions of triads, either the third note (first inversion or
6 chord) or the fifth note are lowest (second inversion or 6

4 chord).15 Due to the structure

14Here, we refer to the “musical” transposition, which corresponds to a shift in pitch by a constant interval.
15This figured bass notation practice stems from the Baroque period. Together with a notated bass line,

additional numbers indicate the chord notes as intervals above the bass note (not the root!). Accidentals
next to the numbers denote alterations of the chord notes. The numbers 3 and 5 may be absent.
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Inversion Root pos. 1st inv. 2nd inv. 1st inv. (open pos.)

Figured bass notation (5
3) 6 6

4
6

Bass note Root Third Fifth Third

Figure 2.12. Triad inversions shown for the CM triad. The last chord is in open position. Such
detailed aspects of pitch arrangement (voicing) do not affect other harmonic properties of a chord such as
chord type or inversion.

of the harmonic series, major and minor triads in root position are more stable than their
inversions. This leads to a different harmonic usage of inverted triads. When the size of all
intervals between chord notes is minimal16, we speak of close position. All other arrange-
ments of notes (voicings) are in open position. These voicing aspects only slightly affect
the harmonic quality of sounds as long as the bass note belongs to the same pitch class.

When referring to chords as a more abstract notion, we can think of them as sets of pitch
classes sounding simultaneously. For the major triad based on C, we obtain the three-part
set

SCM = {0, 4, 7} (2.27)

and the activation vector

TCM = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)T. (2.28)

Note that these representations are invariant under triad inversions and octave shifts of any
chord note but not under transposition. Equation (2.28) also describes the CM 6 and CM 6

4

chords. However, to specifiy a D[M chord, we need to perform a circular shift.

The other chord types correspond to the following pitch class vectors (based on C):

TCm = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)T

TC◦
= (1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0)T

TC+ = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)T (2.29)

Extending the tertian structure to four-note structures, we obtain seventh chords—
since three concatenated thirds result in a seventh interval. We can define seventh chords
as triples of thirds such as (M3,m3,m3)—or pairs of a triad and a specific seventh interval
above the root note (M,m7). Over the course of the 17th century, seventh chords obtained an
independent role. For instance, J. S. Bach made considerable use of the diminished seventh
chord. In classical harmonic, the dominant seventh chords is of major importance. Romantic
harmony extensively features seventh chords such as the half-diminished one (R. Wagner and
others). Figure 2.13 displays some commonly used seventh chord types. As for the triads,
seventh chords can appear in different inversions (6

5, 4
3, and 2 chord in figured bass notation).

During the 19th century, chords with even more notes established. In tertian structure,
the ninth interval (m9 or M9) above the root is the next to add. Composers of the later
Romantic period occasionally use these ninth chords. In jazz harmony, the ninth and other
additional tensions (9, 11, and 13, with alterations) play an important role.

16Usually, the distance between the bass and the lowest upper voice does not need to be minimal.



2.6 Chords 23

 

,,,,�� � ,� �� ��,,,,,,,, ,,,�� ,,,,
Thirds (M3,m3,M3) (M3,m3,m3) (m3,M3,m3) (m3,m3,M3) (m3,m3,m3)

Triad+7 (M,M7) (M,m7) (m,m7) (◦,m7) (◦, ◦7)
Name Major 7 Dominant 7 Minor 7 Half-diminished 7 Diminished 7

Abbr. Mmaj7 M7 m7 ø7 ◦7

Figure 2.13. Five seventh chord types used in Western classical music. We show the chords in root
position above C4. The first row indicates the specific thirds for constructing the chords, the second row
denotes the chords as a compound of triads and seventh interval above the root.

2.6.2 Nonchord Tones

Apart from the simultaneous appearance of chords (chorale style or block chords), com-
posers make use of melodic elements to artistically shape harmonic constructs. We call the
musical texture to be homophonic when mainly being constructed from block chords.
As for the opposite observation, polyphonic music exhibits voices that are independent in
rhythm and melody.

For chord-based concepts of music analysis, the homophonic texture is the default. Here,
the rhythm of the music—marked by onsets of instruments or voices—coincides with the
harmonic rhythm generated by the change of chords in the abstract sense. The umbrella
term figuration summarizes all deviations from this homophonic structure. We speak of
rhythmic figuration when repeating notes without any change in pitch. Harmonic figu-
ration refers to chord notes sounding successively after each other—known as broken chord
or arpeggio. In most situations, we perceive these structures as variations of chords rather
than as melodic lines due to the strong completeness of chords. J. S. Bach’s famous Prelude
in C major BWV 846 is an example for this psychoacoustical phenomenon.

All other melodic elements involve pitch classes outside the current chord denoted as non-
chord tones. This melodic figuration makes use of additional notes to fill gaps between
chord tones and to smooth the melodic lines of the voices. That way, they contribute to the
horizontal aspect of harmony and touch the fields of voice leading and counterpoint. Usually,
the nonchord tones are part of the underlying scale. Sometimes, chromatic alterations of
scale notes appear as well. In Romantic harmony, notes from other scales often serve as
nonchord tones.

There are different categories of nonchord tones depending on the way they are approached
and left, and on their metrical position [69, 122, 191, 204]. In the following, we explain the
different types by means of the example in Figure 2.14.

• Passing tones appear within a stepwise, unidirectional motion. There are accented
passing tones—placed on a strong beat—or unaccented ones. In Figure 2.14, we find an
unaccented passing tone in Measure 7, Beat 1+ (F] in the bass). An accented passing
tone occurs in Measure 9, Beat 2 in the bass (F]) resolving to E as third note of the
triad C]◦.

• Neighbor notes depart stepwise from a chord tone and return. In Measure 1, Beat 3+,
we find an unaccented neighbor note (D] in the alto). A neighbor group comprises
upper and lower neighbor notes within one motion.

• Incomplete neighbor notes arise when considering leapwise motion. The tenor F]
in Measure 1, Beat 3+ is an unaccented example. Particular types of incomplete neigh-
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Jesu, meine Freude
Motette III

J.S. Bach (1685-1750)

BWV 227
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Figure 2.14. Opening choral from J. S. Bach’s motet “Jesu, meine Freude.” We display the

score in a public engraving by Alvarez using the free software Lilypond. The source file is available at

http://www.uma.es/victoria/varios.html.

http://www.uma.es/victoria/varios.html
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bors are the unaccented escape tone—coming from a stepwise motion and resolving
by a leap in the opposite direction—and the appogiatura—an accented neighbor ap-
proached by a leap and resolved by an opposite step.

• Anticipations are unaccented notes that become part of the following chord. We see
an anticipation in Measure 10, Beat 2+ (soprano C]).

• Suspensions are chord notes from the previous chord (prepared) and resolve down-
wards after the chord change—performing a rhythmic delay. For a suspension, the
preparation of the tone in the same voice is essential. In Measure 5, Beat 3, we see a
suspension over the chord BM (E resolving to D] in the tenor). This 4−3 suspension
(fourth to third above the bass note) and the joint 6−5

4−3 double suspension are the most
frequent forms in Western classical music.17 Other types are 2−3, 7−6, and 9−8 suspen-
sions. Sometimes, the resolution of a suspension coincides with the next chord change.
The analogue to the suspension in upward direction is called retardation.

• Pedal points are sustained notes while the other voices change chords. Most often,
they constitute prolongations of the tonic note 1̂ or the dominant note 5̂.

The different manifestations of figuration can appear in various combinations and succes-
sions. Altogether, figurative elements constitute a crucial aspect of musical style.

2.6.3 Functional Harmony and Chord Progressions

As for pitch classes, the relation of chords to a reference note (or chord) accounts for their
diatonic function. For this reason, a similar terminology became established—known as
functional harmony. Rameau [197] first proposed ideas for such a system, which Riemann
[200] elaborated. Later, Maler [145] contributed to a standardization of terms and symbols
in the German tradition.

With terminology of functions, it is important not to confuse notes (tonic note) with chords
(tonic chord—a triad built upon the tonic note). We therefore specify the tonal construct
when referring to functional names. In functional harmony, we group diatonic functions into
three main categories according to the principal chords on 1̂, 4̂, and 5̂—tonic, dominant, and

subdominant chord. The chords within a class are related as parallel chords (M
down m3−−−−−−→ m

and m
up m3−−−−→ M) or contrast chords18 (M

up M3−−−−→ m and m
down M3−−−−−−→ M). In the tradition

of functional theory, the diminished chord on scale degree 7̂ in major is regarded as an
“incomplete” dominant seventh chord on 5̂ (missing root note). This interpretation is not in
compliance with the historical evolution of this chord and leads to problems when interpreting
chord progressions.19

This is one reason why we prefer a different analysis system—Roman numeral analy-
sis—referring to chords as numbers [69,219,249]. For example, “V” refers to a major triad on
the scale degree 5̂, “iii” denotes a minor triad on 3̂, and “]iv◦” indicates a diminished triad on
the altered scale degree ]4̂. Sometimes, capital roman numerals also refer to the triads’ roots

17Note that these suspensions are nonchord tones and, thus, no chords. For this reason, it is not correct
to speak of a “suspended chord” (“sus4”) in classical harmony. Similarly, the 6

4 double suspension is no
chord—even though it looks like a triad inversion.

18In German: Gegenklang, or Leittonwechselklang.
19In diatonic “circle of fifths” sequences, diminished triads appear as individual chords with the 7̂ acting as a

root note. Another example are cadences, where voice leading rules do not indicate incompleteness of this
chord. Gárdonyi and Nordhoff expose the problems of this “incomplete chord” concept [69, p. 15].
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Figure 2.15. Scalar triads of the major and minor scales. The upper part shows the triads appearing
in the major scale. The lower part displays the most important triads of the natural and harmonic minor
scales. In the first row, we denote the triad type. The next two rows indicate the diatonic function according
to Riemann and its abbreviation (lower-case letters refer to minor chords). In the last row, we mark the
roman numerals for the chords. For the harmonic minor mode, the altered leading tone results in a major
dominant chord V—just as for the major scale.

without further indicating the chord types. Figure 2.15 gives an overview of the different
terminology for the major and the minor scale.

Besides the structure and function of chords—and their ornamental variation—, the way
of connecting chords plays an important role for perception of tonality and musical style.
Typical chord progressions appear frequently within musical styles (and across them). The
most important motions are the following:

• A harmonic pendulum denotes the succession of a chord progression and its backward
motion. Often, they appear with the tonic chord as frame chord and serve to establish
or stabilize the key at the beginning of a section. Frequent samples are I-V-I and I-vii◦-I
in major or i-V-i and i-vii◦-i in minor.

• Sequences are successions of root note progressions that repeat a pattern of one or
more intervals. They can either stay in the pitch class content of the actual scale (dia-
tonic sequences) or employ other scales while preserving the specific interval size of the
progressions (real sequences). In general, sequences provide high harmonic motion—
often in association with a fast harmonic rhythm. The most important example is
the “circle of fifths” sequence consisting of concatenated descending fifth progressions:
I-IV-vii◦-iii-vi-ii-V-I (in major).

• Cadences are the ubiquitous ending sequences in Western harmony. They arised from
combinations of the melodic “clausulae” in Early music. The most important cadences
(in major) are ii-V-I, IV-V-I, and IV-vii◦-I. As opposite to the authentic cadence V-I

as a falling fifth progression (M
down P5−−−−−→ M), the plagal cadence IV-I with a rising

fifth (M
up P5−−−−→ M) is less common and sometimes dedicated to particular effects—

such as the “A-men” in church music. Apart from this, a half-cadence or imperfect
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Table 2.2. Categorization of root note progressions. Here, we display an overview of the authentic
and plagal categories of root note progressions. Progressions by complementary intervals in opposite direction
belong to the same category.

Interval ∆ Complem. ∆ Quality

P1 0 P8 ↘ -12 None

m2 ↗ +1 M7 ↘ -11 Authentic

M2 ↗ +2 m7 ↘ -10 Authentic

m3 ↗ +3 M6 ↘ -9 Plagal

M3 ↗ +4 m6 ↘ -8 Plagal

P4 ↗ +5 P5 ↘ -7 Authentic

+4 ↗ +6 ◦5 ↘ -6 None

P5 ↗ +7 P4 ↘ -5 Plagal

m6 ↗ +8 M3 ↘ -4 Authentic

M6 ↗ +9 m3 ↘ -3 Authentic

m7 ↗ +10 M2 ↘ -2 Plagal

M7 ↗ +11 m2 ↘ -1 Plagal

P8 ↗ +12 P1 0 None

cadence ends on the dominant chord (V) and, thus, constitutes a rather weak feeling
of arrival that calls for continuation (towards the tonic chord).

To categorize chord progressions, we extend the system of plagal and authentic cadences
to all chord progressions—as proposed by Bárdos [14, 69]. Hereby, authentic progressions
comprise root note movements of descending fifth and third intervals as well as ascending
second ( =̂ descending seventh) interval progressions. Plagal progressions are of opposite
direction (see Table 2.2). These qualities only refer to pitch classes and are independent
from the octave of the notes. For that reason, progressions by complementary intervals in
the opposite direction belong to the same category. The ratio between authentic and plagal
chord progessions in music appears to be characteristic for a specific musical style [69].

2.7 Key and Modulation

Finally, we want to introduce the concept of musical key, which is essential for music from the
common-practice period. Both chords and the scale are important for establishing a key [45].
There are different theories to explain their interdependency.20 The theory of “Stufen” (scale
degrees) departs from the scale as preexisting material and deduces the chords as triads
on the scale degrees [219, 249]. As opposite to this, the theory of functions proceeds from
the principal triads (tonic, dominant, subdominant) and derives the scale as the sum of
these chords’ pitch classes [51,200,214]. Whereas the scale constitutes a pitch class set with
a pronounced starting note, a key is defined by a referential major or minor chord that
marks the center of gravity. For this subjective sense of arrival and rest, both the scale
and particular chord progressions—such as cadences—play an important role but are not
invariable. Human key perception shows a certain invariance against scale variations such
as chromatic inflection of chords [45]. Examples are the Neapolitan sixth chord (as altered

20Basically, we find the same controversy as the one between Riemann’s functional harmony and the Roman
numeral analysis (Section 2.6.3).
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subdominant) or the Picardy third (a major final chord at the end of minor key pieces—such
as the last chord in Figure 2.14). In summary, we define a key as “a set of pitch relationships
that establish a note—or, better, a chord—as a tonal center” [204, p. 43].

In major-minor tonality, we name the 24 keys after their corresponding tonic chord:
G major is the key with the tonic chord GM. The G major scale provides the most im-
portant pitch classes for this key. This is indicated by the key signature (accidentals at
the beginning of the staff such as the ] sign next to the clef in Figure 2.14). Nevertheless,
other pitch classes arise as well—with particular harmonic purposes. Apart from the global
key—often mentioned in the work title such as “Symphony in G major”—, parts of a move-
ment may exhibit different local keys. These foreign key regions often occur in the middle
section of a movement. When the harmonic structure prepares the arrival of the new key,
we speak of a modulation [204]. There are different types:

• Diatonic modulations use a diatonic pivot chord, which has different functions
in the previous and in the new key.

• A chromatic modulation takes place when a pitch class or chord from the previous
key is chromatically altered in order to obtain a new role.

• Enharmonic modulations make use of the enharmonic equivalence of pitch classes or
chords. By re-spelling pitches, an altered chord receives a new function in the upcoming
key.

Even if single notes or chords play a particular role, modulations typically constitute a longer
process [214].

In Section 2.5, we saw that fifth-related scales share a high amount of pitch classes (Fig-
ure 2.6). Due to the close connection between key and scale, we can apply the concept of
fifth measurement to keys as well. Closely related keys have a small fifth distance (|D| ≤ 1).
The circle of fifths (Figure 2.16) visualizes these key distances [204, p. 466 ff.]. There are
particular names for some key relationships:

• Relative keys share the same key signature and diatonic scale (D = 0), for instance:

F major
down m3−−−−−−→ D minor (2.30)

and vice versa.21 For pieces with a minor global key, the modulation to the relative
major key is very common.

• Parallel keys share the tonic note but not the tonic triad (|D| = 3):

F major
P1−−→ F minor. (2.31)

• Fifth-related keys differ in one scale note (|D| = 1), such as:

F major
up P5−−−−→ C major, (2.32)

21Note the different traditions: In German, “Paralleltonart” denotes the relative key. The analogous chord
relationship influenced the names of diatonic functions such as “tonic parallel” (compare Figure 2.15). The
German equivalent for “parallel key” is “Varianttonart.”
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Figure 2.16. Circle of fifths for musical keys. Parallel major and minor keys share the same key
signature; fifth-related keys are next to each other. For key signatures with more than five accidentals, the
enharmonically equivalent key is shown as well (image from [261]).

but also the relatives with equal diatonic scale:

F major
up M3−−−−→ A minor. (2.33)

Fifth-related keys are neighbors in the circle of fifths (Figure 2.16). The modulation to
the upper fifth key is the most frequent one in pieces with a major global key.

• Mediant keys relate by a third interval between their tonic notes. Relative and
parallel keys constitute mediant relations, but we also find modulations to chromatic
mediants—especially in the Romantic period. An example is (D = +3)

F major
down m3−−−−−−→ D major. (2.34)

We avoid the problematic terminology of using functional names for keys. For example, the
dominant chord has a specific tension towards the tonal center (tonic) and, thus, is always a
major chord with a leading tone—also in minor keys. It is not helpful to speak of a“dominant
key”, which—being the result of a modulation—constitutes a new tonal center itself with
a new dominant chord. We therefore prefer the more neutral relative fifth measurement
introduced in Section 2.5. In this notation, a “+1 key” can be a minor key as well since it
has no dominant function.
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2.8 Models of Musical Pitch

2.8.1 Consonance and Dissonance

In the previous sections, we saw several theories for explaining relationships between chords,
scales, and other structures. Now, we also want to mention theories approaching pitch
relations in a more fundamental way. It is important to consider the type of tonal structures
these theories apply to.

One of the oldest classification models for pitch relations is the concept of consonance
and dissonance. In Early music, most principles of counterpoint rely on the resolution of
dissonant intervals compliant to specific rules. Nevertheless, the detailed categorization of
intervals changed over time, constituting an important style indicator. From today’s point
of view, consonance is “only a matter of degree, not of kind” [215, p. 21]. The common
nomenclature of consonant intervals hints at that fact: Perfect consonances encompass
the perfect intervals22

P1, P4, P5, P8. (2.35)

Major and minor thirds and sixths are called imperfect consonances:

m3, M3, m6, M6. (2.36)

Because of this “imperfectness,” the final chords in Medieval and Early Renaissance music
do not exhibit triad thirds. All other intervals constitute dissonances. In most tonal
systems, they resolve following particular rules such as 2−3, 4−3, 6−5, 7−6, or 9−8 (compare
Section 2.6.2). One may specify degrees of dissonances as well—a major second interval
sounds less harsh than a minor second. Summarizing these fine distinctions, the concept of
consonance may relate to the location of pitch classes in the harmonic series of the reference
tone. According to Schönberg, dissonances merely constitute “more distant overtones” [215,
p. 45].

With the beginning 20th century, the novel handling of dissonances was the crucial step
towards new tonal systems. This “emancipation of the dissonance” [216, p. 104] leads to a
similar treatment of consonances and dissonances, no longer forcing a resolution of the latter.
Musical pieces following such rules rely on the equal-tempered chromatic scale rather than
on diatonic scales. For analyzing such pieces, theorists proposed particular systems such
as the pitch class set theory [64, 86]. Here, we only consider unordered pitch class sets
sounding either successively or simultaneously—also called sonorities. In Section 2.5, we
already introduced the notation for this concept (Equation (2.22)). For instance, we can
write an augmented triad as

S+ = {0, 4, 8}. (2.37)

For pitch classes, only six different interval types occur when ignoring the octave and unison.
We can therefore order all possible pitch class sets into six interval categories (IC) by
iterating the basic intervals [94, 196]. Table 2.3 lists prototypes for these categories with
the pitch classes in ascending order. We apply suitable transpositions in order to start with
q = 0.

22Note that the perfect fourth behaves in a particular way. A fourth in relation to the root note—such as a
4−3 suspension—constitutes a dissonance. In contrast, a fourth in a different context is consonant.
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Table 2.3. Interval categories and prototypes of pitch class sets. The sets are constructed by iterating
the interval distance ∆ (mod 12). When the iteration reaches an already existing pitch class, the procedure
starts again a semitone higher. Finally, we transform the sets to so-called“prime forms”by suitably transposing
and inverting (table from [94]).

Category ∆ Prototypes

IC1 1 {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, . . .

IC2 2 {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, . . .

IC3 3 {0, 3}, {0, 3, 6}, {0, 3, 6, 9}, . . .

IC4 4 {0, 4}, {0, 4, 8}, {0, 1, 4, 8}, . . .

IC5 5 {0, 5}, {0, 2, 7}, {0, 2, 5, 7}, . . .

IC6 6 {0, 6}, {0, 1, 6}, {0, 1, 6, 7}, . . .

2.8.2 Geometric Pitch Models

Beyond the presented concepts, there are theories that try to explain pitch relations by
means of geometric models. They usually “correlate spatial distance with intuitive musical
distance.” [135, p. 42]. Originating from tuning theories, they served to rapidly calculate
frequency relations. We already introduced several geometric models such as Shepard’s pitch
helix (Figure 2.2) or the circle of fifths (Figure 2.16), which sometimes also applies to pitch
classes. Another historical concept is Weber’s regional chart [249]. Euler’s “Tonnetz”—
primarily developed for representing just intonation—inspired the theories of Riemann and
Cohn [41]. A spatial visualization of the Tonnetz results in a toroidal structure [13]. All
of these concepts give major importance to perfect fifth relations. Moreover, they consider
major and minor third axes that are important for chords and keys (relative, parallel, and
other mediant relations).

More recent models have refined these ideas to better account for the different perception
of pitches, chords, and keys. They also take into account the results of psychoacoustic studies
such as the ones by Krumhansl [124]. Gatzsche and Mehnert [71, 72] proposed a symmetry-
based model that separately considers key-related (diatonic) and key-spanning (chromatic)
properties. Chew [34,35] developed a model named “spiral array” with a special emphasis on
the determination of tonal centers. Lerdahl’s tonal pitch space [135] introduces several spatial
models for pitch classes, chords, and keys. These levels interrelate by tree-like structures.

Theorists from the Hungarian tradition also consider symmetrical divisions of the octave.
They particularly analyze the symmetries of scales that constitute the basic pitch material
for sections of music [69,134]. Some of these ideas are known as “Theorie der Tonfelder” [82].

Most of the mentioned theories employ complex and high-dimensional models to explain
tonal relations. Often, these models serve to explain particular musical structures, styles,
or even single composers’ techniques. Sometimes, a clear discrimination of the concerned
types of tonal structures is missing. In this thesis, we do not use complex spatial models.
Rather, we attempt to understand how the general types of tonal structures are responsible
for musical style. However, we make extensive use of relations by perfect fifths as the most
basic pitch class relation. This may be a justified assumption when dealing with Western
classical music since “only the fifth cycle is basic to the diatonic system, which in many
respects is asymmetrical” [135, p. 45].
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2.9 Tonal Complexity

Beyond the concrete treatment of specific tonal structures such as intervals or chords, more
abstract concepts are useful to describe the overall nature of tonality. Theorists proposed
different notions for such purpose. One idea is a“degree of tonality”[92] in the specific sense of
“keyness” [100] or“keystrength” [124]. Another idea in the literature is the definition of“tonal
tension” [135,136]. We summarize such concepts under the term tonal complexity. Relying
on the introductory parts of [257], we discuss the characteristics of this notion respecting
the hierarchical nature of tonality in the time domain. In Section 6.2, we compile a set
of concrete musical assumptions for a quantitative measure of tonal complexity. Based on
these hypotheses, we design experiments for testing our proposed tonal complexity measures
regarding different temporal scales.

In Western art music, one major purpose of harmony is to emphasize musical structure.
Typical harmonic phenomena serve to highlight pivotal moments of a composition. This
observation applies to different time scales. Local structures such as intervals or chords
show different characteristics with respect to harmonic stability, creating a feeling of either
tension or resolution. Progressions of these items over time such as pendula, sequences,
and cadences form larger lines of development by employing chords of appropriate quality.
Over the course of a work, the structural parts may differ significantly with respect to their
tonal characteristics. A section that is harmonically stable may be followed by a contrasting
section that feels rather unstable or tense. These contrasts serve to create the arc of tension
of a musical piece. In the sonata form, for example, the unstable development part stands
between the more stable exposition and recapitulation phases.

Apart from such intra-work aspects, there is a related but more abstract quality describing
the harmony of complete pieces or even a compositional style. The pitch class selection of
Western music evolved from a diatonic scale to a fully chromatic set of equally relevant
pitches in the atonal period [190]. The applied chords and chord progressions became more
complex—on a rough scale—over the centuries. We find a similar behavior for the complexity
with respect to larger formal structures. For example, the number and harmonic distance of
modulations in Romantic pieces is usually much higher than for Classical works. LaRue [130]
described such kind of tension as one of the basic functions of harmony and discusses the
stylistic impacts of such phenomena.

For all these different aspects of tonality, pitch class distributions may constitute a useful
source of information. Regarding local tonal structures such as chords, the quality of pitch
class sets and their characteristic intervals is crucial (compare Section 2.8.1). For coarser time
scales up to a complete movement, pitch class histograms may provide information about
tonal complexity since their flatness relates to the amount and the type of modulations and
the relationship of local keys. Motivated by this, we propose in Section 6.2 several measures
based on pitch class representations and test their behavior with respect to several musical
assumptions.

2.10 Tonality Aspects of Musical Style

We mentioned the interaction between musical style and the use of certain tonal elements
several times. As a concluding remark of this chapter, we want to summarize these ideas and
discuss the overall impact of tonality for style recognition. Parts of this discourse follow the
introduction of [256].
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When addressing Western classical music, musicologists often prefer the detailed view.
They find a great individuality in the style of single composers, together with substantial
evolutions and breaks within their oeuvre. These subtle stylistic differences may arise “partly
because of the differing attitudes of societies and composers” [182]. The balance between a
composer’s personal style and a time-related contemporary style or epochal style
changed over the course of music history [182]. Out of many theorists who discussed this
relation, we point to de la Motte [51,52] who linked the debate with harmony analysis.

In any case, one can observe lines of development in music history as well as the breaking
of such lines. Because of that, many researchers and listeners divide the repertoire of Western
classical music into historical periods or eras. Such a categorization inevitably constitutes
a simplification but can provide “a reasonably consistent basis for discussion” [74]. Treating
such task with success provides a starting point for analysis and may precede a closer look
at individual stylistic tendencies [65,250].

Some researchers illustrate the homogeneity of periods with a “unique artistic and intel-
lectual spirit” and focus on each periods’ new achievements [240]. Others treat the style of
a specific era and its inner coherence [28, 205]. Clarke [40] makes attempts towards a more
detailed view by taking into account different sub-phases of eras. He claims styles to begin
in an experimental phase, to grow to an established language, and to die after an elabo-
rate ending period. Beyond the historical context, style classes often relate to geographical
categories and may exhibit influences of local folk culture or particular social conditions.
Adler [3] determines three types of style definition relating to time, place, and author. He
estimates the time-related categorization as the “essence of independent style-criticism” but
on the other hand values author identification as “style-criticism in its highest form” that,
however, “sometimes turns on subordinate details.”

Looking at a piece of music, we further have to devote attention to the specific musical
genre23 and the possibilities of the instruments. The refined distinctions between style and
idea, genre, or form are of major importance. The choice of a genre determines the external
conditions; a genre usually exists throughout different periods but may play a more important
part in one of those periods. The idea is the primary factor of a concrete piece, its individual
element. Often, the idea relates to the melodic domain but also elements concerning other
parameters may serve as musical idea. Form is the shape or structure of a piece with respect
to time, thus dealing with aspects such as repetition, variation, and development.

According to Belaiev [19], a composition is “the result of giving form to an idea.” Style
is one of the factors how to do this. As complementary notions, style and idea may embody
“the general” versus “the particular” [182]. In comparison, most scholars consider the idea as
a work’s more important and prominent constituent [19,216]. This is one challenge for style
analysis: style constitutes a deeper layer, often covered by the idea and external requirements.
Some researchers propose to depart from an analysis of form followed by the detailed analysis
of content [3]. Others stress the importance of the details—in relation to the whole—and
claim statistical analysis of certain style indicators to be an appropriate method [206].

Concerning such style indicators, harmony constitutes one domain—besides sound, form,
rhythm, and melody [129]. The situation is complex because of a high interdependency of
these categories. Their relationship itself changes over history. Apart from the sound with
its “psychological firstness” [129], many researchers ascribe high importance to tonality and

23Here, the term “genre” (German “Gattung”) denotes a particular type of work, usually connected to a
defined instrumentation, a musical form model, and sometimes with an external purpose. Examples are
the mass, the opera, the piano sonata, the string quartet, or the symphony.
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notice “clear conventions of harmonic behavior” within an era [130]. Belaiev [19] stresses
the importance of “chordal combinations” and harmonies in general for defining a style. For
Rosen [205], the establishment of a new style refers to all musical parameters in a way“that all
the contemporary elements of musical style [...] work coherently together.” Nevertheless, he
emphasizes“the musical language [...] of tonality”as an essential precondition for the classical
style. As a musical dimension, harmony is widely independent from timbral properties such
as instrumentation, playing techniques, or singing style. Therefore, we may find important
aspects of the deeper layer “style” in a work’s harmonic characteristics.

In his overview article [129], LaRue proposed a list (“sample outline”) of stylistic properties
as a guideline for style analysis. With respect to harmony, he ascribes importance to—among
others—the following characteristics:

• Large-scale tonal relationships, key-schemes, harmonic motifs. This broad
dimension has particular meaning before concentrating on details. Here, the global
key, secondary keys, and key relationships to other movements play a role.

• Modality, chromaticism, polytonality. These properties mainly relate to the pitch
class content and scales in use. Gárdonyi and Nordhoff [69] announced various obser-
vations in this field.

• Chord vocabulary, alterations, dissonances, progressions, modulations, har-
monic rhythm. Here, not only modulations to various keys, but also their relative
emphasis (length, weight) matter. De la Motte [52] also remarked the meaning of
the chord vocabulary and its historical evolution. Others emphasize the use of spe-
cific chord progressions and modulation routes [14, 69]. LaRue rates the treatment of
dissonance and chromaticism as crucial for a composer’s individuality.

• Imitation, voice leading, texture, counterpoint. These details of part writing and
the general interrelation of voices constitute a central stylistic aspect of some historical
periods.

• Text influence, affective chords. Though this category is only relevant for text-
based music, it is of high importance for style analysis. With respect to harmony, a
single chord or key may suffice for expressing a mood.

In his later book [130], LaRue further abstracts beyond the conventions of the common-
practice period. He defines color and tension as the most basic functions of harmony that
are not to confuse. These functions exist on various time scales.

In this section, we pointed out the difficulty of defining and analyzing the abstract notion
of style in music. Style properties may hide behind many other—and, more predominant—
characteristics of a piece. Nevertheless, we may always find stylistic peculiarities in a musical
work—and there are good reasons to look for them in the field of harmony and tonality.
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3 Technical Foundations

Humans produce music in order to be perceived by other humans or by themselves. Therefore,
we may regard music as a form of communication or artistic expression. Physically, musical
sounds—as all sounds—are fluctuations of the local air pressure level, which propagate to the
listener’s ears as longitudinal waves. Researchers [10,160,171] as well as composers [244,263]
led an intensive debate about how to define music and where to draw the separation line
between music and non-musical sounds. Today, there is no agreement about that. Neverthe-
less, it is clear that there are several types of music that do neither exhibit harmonic sounds
(tones) nor clear metrical structures.

The most common form of music experience is the human performance with people
playing in front of an audience. For more than hundred years, technical methods exist to
store the acoustic impression of performances in the form of music recordings. Section 3.2
outlines the technical properties of such audio recordings.

When talking about a musical work or composition, we assume that this specific piece
of music is reproducible. For music from the common-practice period, the traditional form
of transmitting and preserving music is the musical score. Apart from such written doc-
uments, technical advancements of the last decades enabled further ways of storing the pa-
rameters and instructions for human or automatic music performances. In Section 3.1, we
will present several kinds of such symbolic music representations.

This dissertation deals with automatic methods for analyzing audio recordings. The first
step in most systems is the extraction of suitable features for describing properties of the
audio data. In Section 3.4, we show several common feature types that mostly relate to the
timbre of the music. Some of these features rely on spectrograms, which we introduce in
Section 3.3. Section 3.5 presents features that describe the tonal content of the music on a
low and intermediate semantic level.

3.1 Score Representations and Symbolic Data Types

In many cultures, people transmitted musical pieces by means of oral tradition. Through
the history of Western art music, the use of written documents that indicate clues for the
performance of pieces obtained more and more importance. In ancient and medieval times,
signs served to roughly indicate pitch change direction—the neumes. Later, the Roman
square notation introduced first note symbols of today’s kind. Over the centuries, the
five-line staff established and an increasing number of symbols served to determine more
and more musical parameters such as articulation, dynamics, and expression [227].

The most detailed type of notation is the full score, which provides a separate staff for
every instrumental or vocal part, or for small groups of such parts. Figure 3.1 shows the
first score page of L. van Beethoven’s “Fidelio” overture for full orchestra. For notation of
common-practice orchestral music, the traditional order is—from top to bottom—woodwind
instruments, brass instruments, percussion instruments, soloists or choir, and string instru-
ments. For historical and practical reasons, the notation of some wind instruments makes use
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Figure 3.1. Overture from L. van Beethoven’s opera “Fidelio” op. 72c. We display the first page in a

music engraving by Oram using Lilypond. The score and the source files are available under creative commons

public domain license at the homepage of the Mutopia project http://www.mutopiaproject.org.

http://www.mutopiaproject.org
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Figure 3.2. Piano reduction of the “Fidelio” score page. The pitches comprise the most important
components from the full orchestral version as shown in Figure 3.1. The text marks roughly indicate the
instrumentation of the music: “G. Orch.” stands for the full orchestra (“Großes Orchester”) and “Hrn.” for
the french horn section.

of a transposition. In Figure 3.1, for example, the french horns (“Corni in E”) are sounding
a minor sixth interval lower than indicated by the notes.

Full scores are the most important source for accomplishing a musical performance since
they contain the most detailed musical information as provided by the composers them-
selves. From the full score, the conductor gets the overview of all parts that the individual
instruments are playing. Beyond that, more compact representations of the essential musical
content1 are useful for several purposes. When compressing a full score to a piano system—a
pair of staves, often with treble and bass clef jointly—we speak of a piano reduction or
piano score. Répétiteurs use such piano versions (“vocal scores”) to rehearse with singers;
pianists also artistically perform piano transcriptions of orchestral works—sometimes ar-
ranged for two or more pianos. Figure 3.2 shows a piano reduction of the first “Fidelio” score
page (Figure 3.1). The piano reduction does not necessarily contain all the pitches from the
original score in order to be readable and playable on a piano. In our example, some of the
timpanis’ and trumpets’ pitches are missing due to musical reasons.

Traditionally, scores are hand-written or printed on paper. For accessing scores with
computers, it is common to convert printed sheet music into digital images using scanners.
Such type of graphical score data is publicly available on a number of web pages such as the
International Music Score Library Project (IMSLP).2 For enabling computers to read the
musical information from scores, we need a different data format with an explicit encoding
of musical information [162]. Examples for such symbolic representations of music are
the commercially developed MusicXML format [79] or a related type created by the open-
source project Music Encoding Initiative (MEI).3 We may consider the source code of the
engraving software Lilypond4 as another symbolic representation. In Figure 3.3, we show the
MusicXML encoding of the Violin I part (first measure) from the Beethoven score.

A further symbolic format widely used by musicians is the MIDI [99] format (Musical
Instrument Digital Interface), a technical standard protocol originally developed for the in-
tercommunication of electronic instruments. A MIDI file consists of several event messages
that are specified through a set of parameters such as pitch, volume, key velocity, or channel
number (“note on” event). With a corresponding “note off” event, we can derive the duration
of a note. The MIDI pitch number range is p ∈ [0 : 127] with p = 69 corresponding to the

1In Western music, this most often refers to the main melody, the bass, and an excerpt of the harmonic
accompaniment (the basic chords).

2http://www.imslp.org
3http://www.music-encoding.org
4http://www.lilypond.org

http://www.imslp.org
http://www.music-encoding.org
http://www.lilypond.org


38 3 Technical Foundations

<?xml version="1.0" encoding="UTF-8">

<movement-title>Ouvertüre

zu Fidelio</movement-title>

<identification>

<creator type="composer">Ludwig van Beethoven

(1770-1827) Op. 72c</creator>

</identification>

<part-list>

<score-part id="P1">

<part-name>Violine I</part-name>

</score-part>

</part-list>

<!--======================================-->

<part id="P1">

<measure number="1">

<attributes>

<divisions>2</divisions>

<key>

<fifths>4</fifths>

<mode>major</mode>

</key>

<time symbol="cut">

<beats>2</beats>

<beat-type>2</beat-type>

</time>

<clef>

<sign>G</sign>

<line>2</line>

</clef>

</attributes>

<direction placement="below">

<direction-type>

<dynamics>

<f/>

</dynamics>

</direction-type>

</direction>

<note default-x="145">

<pitch>

<step>E</step>

<octave>5</octave>

</pitch>

<duration>3</duration>

<type>quarter</type>

<dot/>

<stem default-y="-40">down</stem>

</note>

<note default-x="210">

<pitch>

<step>B</step>

<octave>4</octave>

</pitch>

<duration>1</duration>

<type>eighth</type>

<stem default-y="-55">down</stem>

</note>

<note default-x="240">

<pitch>

<step>B</step>

<octave>4</octave>

</pitch>

<duration>2</duration>

<type>quarter</type>

<stem default-y="-55">down</stem>

<notations>

<articulations>

<staccato default-x="4" default-y="-7"/>

</articulations>

</notations>

</note>

<note default-x="300">

<rest/>

<duration>2</duration>

<type>quarter</type>

</note>

</measure>

</part>

<!--======================================-->

</score-partwise>

Figure 3.3. MusicXML encoding of the Violin I part from Beethoven’s “Fidelio” overture. We
show the MusicXML commands for Measure 1 (Figure 3.1, staff 11). The first blocks (left hand side) refer to
the preamble and the definition of key and time elements followed by the encoding of the dynamics indication
(“forte”). The right hand side contains the encoding of the four note elements with the last one being a rest.

concert pitch A4. We already introduced this notation in Equation (2.10). Apart from an
event list, we can also graphically display the pitch and time information from a MIDI file.
Figure 3.4 shows such type of piano roll representation.5

On the web, we find large collections of symbolic music data that is publicly available.
The most established data type is the MIDI format. Hereby, the quality range of the data
is wide and we can find a lot of MIDI files with considerable errors compared to the pieces’
scores. Furthermore, different types of MIDI files exist. Since the MIDI data relies on a

5This term comes from the early automatic pianos, which used a roll of paper with holes for mechanically
encoding a performance.
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Figure 3.4. Piano roll representation of a MIDI file We visualize the first four measures of the Violin I
part from Beethoven’s “Fidelio” overture by displaying the MIDI events as a piano roll. The bars indicate
note events of a specified duration.

physical time axis and not on a musical one, the events can principally occur at every time.
Automatically generated MIDI files—for example, exported from music engraving software—
usually have a constant tempo, which can be different for individual sections. Beyond that,
MIDI files can originate from human performances on respective instruments such as, for
example, pianos with MIDI capabilities. These MIDI files have an additional information of
human interpretation since they reflect the small tempo and rhythm deviations as made by
humans (“performed MIDI”). Sometimes, this constitutes a challenge when trying to convert
these MIDI files into scores. Beyond this, some musical information that is essential for
Western music notation is missing in MIDI representations. Among others, this concerns the
key signature or the enharmonic pitch spelling.

3.2 Audio Representations

For the human listener, music is an acoustic experience. A real performance of music by
means of instruments or human voices contains much more information than we encode by
means of a symbolic representation. For example, a listener may recognize an individual
singer’s voice due to the specific timbre of his or her voice. Further aspects such as room
acoustics or the relative positioning of the musicians affect the characteristics of a perfor-
mance. The first methods for recording performances stored the acoustic signal in an analog
fashion. Examples are phonograph records or magnetic tapes. An analog music recording
constitutes a real-valued continuous-time signal. By the end of the 20th century, digital
technologies found their way into the field of audio applications. The compact disc (CD)
became the first publicly used medium for storing music in a digital representation. Such
representations describe the audio content as a finite amount of numbers.

For converting analog signals into the digital domain—a process called digitization or
analog-to-digital (AD) conversion—, two steps are necessary. First, we transfer the continu-
ous time axis into a discrete set of time instances, which is known as sampling. We obtain
a discrete-time signal that we may regard as a function x : Z → R. The most com-
mon method is equidistant sampling. Hereby, we take the samples x(n) from the analog
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Figure 3.5. Waveforms of two audio recordings of Beethoven’s “Fidelio” overture (Measures
1–8). The first version (a) is a recording by the Slovak Philharmonic Orchestra conducted by Stephen Gun-
zenhauser (1988). The second example (b) is an arrangement for piano four hands by Alexander Zemlinsky.
The pianists are Dennis Russell Davies and Maki Namekawa (2008). Instead of the sample numbers n, we
indicate the corresponding physical time.

recording at equally spaced time points t = n · T ∈ R+
0 with

n ∈ [0 : N − 1] := {0, 1, . . . , N − 1} ⊂ Z (3.1)

where N ∈ Z denotes the total number of samples [162]. The constant sampling period
T ∈ R+ is the physical time distance between two neighboring samples. We express the
number of samples per second with the sampling rate or sampling frequency

fs :=
1

T
, (3.2)

usually given in Hertz (Hz). According to the Nyquist-Shannon sampling theorem, a digital
signal with a sampling rate fs allows for perfect reconstruction as long as the original signal
has only frequencies up to the Nyquist frequency fs/2. A CD recording typically has a
sampling rate of fs = 44.1 kHz and, thus, comprises the human hearing range reaching up to
20 kHz. For further details of the sampling procedure, we refer to [270].

As the second step, we represent the signal amplitudes x(n) ∈ R using a finite number of
bits (quantization). An example is a uniform quantizer with a constant step size. Commer-
cial audio CDs have a precision of 16 bits encompassing a range of 216 = 65 536 amplitude
values. For the details of quantization, we refer to the literature [162,270].
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The process of digitization described above is also known as Pulse-Code Modulation
(PCM). The graphical visualization of an audio signal’s amplitude is called waveform. In
Figure 3.5, we display the waveforms for two recordings of the first eight measures from
“Fidelio,” one being an orchestra recording and the other one a piano transcription for four
hands. The digital representation of both recordings is at CD quality with fs = 44.1 kHz
and 16 bit quantization.6 Looking at the waveforms, we first observe the different length
of the signals—although they represent the same excerpt of the score. This results from a
different tempo shaping of the performances. The Allegro motif in forte (Measures 1− 4)
has a comparable length of roughly 5 s in both recordings whereas the Adagio is slower in
the piano version. In the forte part, the peak amplitudes reach higher values in the piano
recording. Looking at the Adagio’s whole notes, we observe the difference between the
decaying piano notes (Example (b), 8 s ff.) and the sustained horn notes in the orchestra
version (Example (a), 5 s ff.)

3.3 Spectrograms

For understanding the physical and perceptual properties of audio signals, it turned out
useful to analyze the signal’s frequency content. Hereby, we regard a signal as a mixture of
sinusoidal components with different frequencies.7 The set of frequency coefficients regarding
the individual sinusoids is called spectrum. To obtain the coefficients of a discrete-time
signal x : [0 : N −1]→ R, we can compute the Discrete Fourier Transform (DFT) of
size N , which is a complex-valued function DFTN : RN → CN . We obtain the Fourier
coefficients X(k) ∈ C via

X(k) :=
N−1∑
n=0

x(n) exp

(
−2πikn

N

)
(3.3)

with k ∈ [0 : K − 1] denoting the discrete frequency parameters (K = N).8 We obtain the
physical frequency (in Hz) related to k by calculating

fcoeff(k) :=
k

N
· fs. (3.4)

To represent the discrete signal as a series with coefficients X(k), we use the inverse DFT:

x(n) =
1

N

N−1∑
k=0

X(k) exp

(
2πikn

N

)
(3.5)

The computation of all Fourier coefficients X(k) requires O(N2) operations, which may
take a long time for large values of N . To speed up this process, we make use of the Fast
Fourier Transform (FFT) algorithm [43]. This method recursively computes the DFT

6For most experiments in this thesis, we used audio recordings stored in compressed formats such as the
MP3 format. Before applying further processing steps, we decode this data to a PCM audio representation
and ignore the effects of possible audio coding artifacts. This may be justified since we use bitrates of at
least 192 kilobits per second.

7Mathematically, any set of periodic functions may serve as basis function instead of sinusoids. However,
sinusoidal functions turned out most convenient for computation.

8For real-valued signals, only the frequency parameters up to K/2 corresponding to the Nyquist frequency
are relevant.
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Figure 3.6. Hamming window function. Here, we display a Hamming window with a blocksize of
B = 1024 samples.

by exploiting redundancies between the coefficients and, thus, reduces the computational
complexity to O(N · log2N) operations. The recursion works particularly efficient if N is a
power of two.

The DFT provides the frequency information of the whole signal x. The phase of the
complex Fourier coefficients X(k) ∈ C encodes the time information with respect to the
sinusoids. For analyzing the frequency content over time, we can use a local variant of the
DFT called Short-Time Fourier Transform (STFT). To this end, we segment the signal
into several windows or frames and estimate the sinusoidal components for each frame
individually [68].

For the windowing procedure, we employ a discrete function v : [0 : B − 1] → R with a
length—or blocksize—of B ∈ N samples. The choice of this function is of major importance
since the STFT describes the properties not only of the signal but also of the window function.
It turned out beneficial to use bell-shaped windows such as the Hamming window (see
Figure 3.6). We shift this window along the signal by a given amount of samples called
hopsize H ∈ N (compare also Figure 5.7).

Applying the DFT to each of the resultings frames, we obtain the discrete STFT

X (k,m) :=

B−1∑
n=0

x(n+mH)v(n) exp

(
−2πikn

B

)
. (3.6)

Hereby, m ∈ [0 : M − 1] denotes the frame index with the total number of frames

M ≈ N/H. (3.7)

In the matrix X , each column X (·,m) forms a spectral vector indicating the frequency
content of the m-th frame. With a suitable hopsize H, the position of the frames gives a
sufficiently fine time spacing to locate the frequency contributions for some applications. In
this case, we can ignore the complex phase information,9 which leads us to the concept of a
spectrogram10 S:

S(k,m) := |X (k,m)|2 . (3.8)

9In contrast, phase information is crucial in scenarios where a reconstruction of the signal should be possible
such as, for example, in source separation applications.

10Sometimes, authors refer to |X (k,m)| as magnitude spectrogram and denote |X (k,m)|2 as power spec-
trogram.
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Figure 3.7. Magnitude spectrograms of the two “Fidelio” audio recordings. Here, we only display
the frequency content up to f = 6000 Hz. In these time-frequency plots, we encode the amplitudes S(k,m)
by means of different gray levels.

One entry S(k,m) of this matrix describes the contribution of the physical frequency fcoeff(k)
(Equation (3.4)) to the spectrum of frame m centered at the physical time instant

tcoeff(m) := (mH +B/2) · T =
mH +B/2

fs
. (3.9)

In Figure 3.5, we show the magnitude spectrograms for the two “Fidelio” examples from
Figure 3.7. For computing the STFT, we used a Hamming window with parameters B = 4096
and H = 2048. As for the waveform, we can roughly estimate the rhythm and loudness
from the spectrograms. Furthermore, we observe the decaying behavior of the piano notes
in contrast to the sustained horn notes in the Adagio part. The vertical arrangement of
the horizontal lines shows some kind of repetition along the frequency axis—caused by the
partials (compare Section 2.2). We also see that the higher partials have different amplitudes
and individual decay time. Finally, the vertical lines in the piano spectrogram indicate the
percussive onsets of the piano hammers. In comparison, the onsets of the orchestra recording
seem to be softer.
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The STFT cannot reach an arbitrary high resolution in both time and frequency domain at
the same time. Related to the Heisenberg uncertainty principle, this is known as the Fourier
uncertainty principle. To balance out this tradeoff, researchers proposed several time-
frequency transforms, which are suitable for different purposes. For music processing
applications, the Constant-Q Transform (CQT) is a useful concept that relates to human
auditory perception [27, 217]. In contrast to the STFT, the coefficient’s have a logarithmic
frequency spacing, which—with appropriate parameters—may correspond to musical pitches.

3.4 Standardized Audio Features

For MIR tasks such as music classification, we need compact representations that cap-
ture important characteristics of the audio content while ignoring irrelevant information
[154,237,264]. Ideally, these audio features Θ carry some semantic meaning related to hu-
man perception. Sometimes, people categorize the features according to the quality of their
semantic meaning. Low-level features describe rather technical properties of the signal and
often have no direct interpretation. An example is the Zero Crossing Rate ΘZCR, which
we obtain by counting the sign changes of the signal in the time domain. High-level features
have an explicit meaning such as, for example, the key or tempo of a piece. Mid-level fea-
tures relate to human-interpretable concepts but in a way that is not obvious. In this section,
we present a selection of standard audio features commonly used for MIR tasks [154,237,251].
In the following, we focus on features based on a spectrogram representation. Some of these
features originate from the field of speech processing but showed success for processing music
data as well. The Moving Pictures Expert Group (MPEG) defined a set of such descrip-
tors in the MPEG-7 standard [139]. We roughly follow Peeters [184] who gives an overview
of the most important audio features. In Chapter 8, we present classification experiments on
the basis of different features types. Since we merely use the standard descriptors for baseline
experiments, we only mention the most important concepts and do not focus on technical
details.

To describe the spectral properties of a signal in more detail, researchers usually compute
the features for several frequency bands individually. To model human auditory perception,
Zwicker [271] proposed a perceptual frequency scale called Bark scale (Figure 3.8 (a)).
Dividing this scale into equidistant intervals leads to the Bark bands or critical bands,
which have a particular meaning in the context of psychoacoustics. As a simplification,
researchers often use a simple logarithmic scale to derive bands. Figure 3.8 (b) shows such
a partitioning where each octave is subdivided into four bands starting at 250 Hz. In the
following, we calculate the features for a subset of such frequency bands j ∈ [0 : J − 1] using
different scales. Each band j comprises a set Kj of STFT frequency coefficients where Nj

denotes the total number of coefficients within the band.

A set of features describing the spectral shape is the Audio Spectral Envelope (ASE).
From the magnitude spectrogram S (Equation (3.8)), we obtain the ASE features by summing
up the energies within each band j:

ΘASE(j,m) :=
∑
k∈Kj

S(k,m) (3.10)

Here, we use two logarithmic bands per octave from 125 Hz to 16 kHz, together with two
bands summarizing the lower and higher frequencies, respectively. In Figure 3.9, we display
the audio spectral envelope for the two audio excerpts of the “Fidelio” overture. The broad
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Figure 3.8. Frequency mapping using different scales. In the upper plot, we show the conversion
from a linear frequency scale in Hz to the Bark scale indicated by the thick line. Dividing the Bark scale
into equidistant intervals, we obtain the critical bands. The lower plot shows an approximation by using a
logarithmic scale. We use four bands per octave starting at 250 Hz.

dark area in the beginning phase indicates the wide range of pitches here. In contrast, the
second part concentrates on a more specific frequency region. Furthermore, we observe the
decays of the piano notes. The broader spectral shape for the horn notes in the orchestra
recording—compared to the piano equivalents—may result from having more energy in the
higher partials of the horn spectrum.

The Spectral Flatness Measure (SFM) relates to the noisiness or percussiveness of a
signal frame in the respective bands:

ΘSFM(j,m) :=

(∏
k∈Kj

S(k,m)
)1/Nj∑

k∈Kj
S(k,m)/Nj

(3.11)

Small values ΘSFM(j,m) occur for tonal frames exhibiting only few sharp frequency compo-
nents. A related measure is the Spectral Crest Factor (SCF) depending on the maximal
spectral magnitude

ΘSCF(j,m) :=
maxk∈Kj

S(k,m)∑
k∈Kj

S(k,m)/Nj
. (3.12)
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Figure 3.9. Audio spectral envelope features for the “Fidelio” examples. The first band summarizes
low frequencies up to 125 Hz, the last band (j =16) comprises high frequencies from 16 kHz to the Nyquist
frequency (22 kHz).

The Spectral Centroid (SC) estimates the “center of mass” frequency of a frame in each
frequency band:

ΘSC(j,m) :=

∑
k∈Kj

S(k,m)fcoeff(k)∑
k∈Kj

S(k,m)/Nj
(3.13)

We calculate ΘSFM, ΘSCF, and ΘSC for 16 logarithmic bands with four bands per octave—
comprising a range from 250 Hz to 4 kHz.

A more specialized feature set for describing spectral envelopes are Mel Frequency Cep-
stral Coefficients (MFCC), extensively used for speech processing purposes [26, 158]. To
compute these features, we map the frequencies onto the so-called mel scale—another per-
ceptual frequency scale derived from human ratings of pitch distances [229]. We group the
spectrogram bins into mel bands using triangular filters whose center frequencies are equally
spaced over the mel scale (Figure 3.10). From the resulting mel-band amplitudes, we calculate
the logarithm and apply the Discrete Cosine Transform (DCT). The DCT is a real-valued
transform related to the Fourier transform and has several applications in digital signal pro-
cessing. Performing DCT on the mel-band magnitudes yields some kind of “spectrum of the
spectrum”—often denoted with the artificial word “cepstrum.” Usually, researchers take the
first 12–16 DCT coefficients as MFCCs. In Figure 3.11, we show an overview of the MFCC
calculation procedure. MFCCs turned out useful for several tasks related to musical timbre
such as speech-music discrimination [141], music similarity analysis [142], or music genre
classification [237].
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Figure 3.10. Mel scale mapping and triangular filters. The thick line in the upper plot marks the
conversion from a linear frequency scale in Hz to the mel scale. The vertical and horizontal lines correspond
to the center frequencies of the triangular windows used for calculating MFCCs. In the lower plot, we show
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Figure 3.11. Schematic overview of the MFCC calculation.
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Figure 3.12. Loudness features for the “Fidelio” orchestra excerpt. Here, we plot the feature
ΘLogLoud(j,m) relating to the specific loudness for 12 critical bands.

For the latter task, Jiang et al. [108] proposed a similar but music-specific feature called
Octave Spectral Contrast (OSC). To compute these features, they use six logarithmic
bands with one band per octave. For each band, they estimate the difference between the
spectral peaks and valleys instead of taking the average spectral energy. After taking the
logarithm from these differences, Jiang et al. apply a Karhunen-Loeve transform instead of
a DCT as used for calculating MFCCs.

In addition to these timbre-related descriptors, features for describing the loudness capture
useful information. To account for human loudness perception, we weight the frequencies with
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the ear transfer curve and group the frequencies into critical bands [60]. From the resulting
specific loudness for each band, we take the logarithm obtaining the feature ΘLogLoud(j,m).
In Figure 3.12, we show these loudness values for the “Fidelio” orchestra example. Compared
to Figure 3.8 (a), we summarize each two of the critical bands. We can observe the overall
loudness shape with the forte beginning and the second part in piano. In addition to the
logarithmized loudness, we obtain a second loudness feature ΘNormLoud(j,m) by normalizing
the specific loudness for each frame. This results in a relative loudness measure for each band
independent from the total loudness.

3.5 Pitch-Based Features

3.5.1 Log-Frequency Spectrogram

The spectrogram S introduced in Section 3.3 exhibits a linear spacing of the frequency
parameters k ∈ [0 : K/2]. In contrast, humans perceive pitch distances in a logarithmic
fashion (see Section 2.2). We rate pitch distances as equal that share the same relation of
their fundamental frequencies fa0 and f b0 . For this reason, we define a logarithmic distance
measure

∆(fa0 , f
b
0) := γ log

(
f b0
fa0

)
= γ

(
log f b0 − log fa0

)
(3.14)

with a suitable constant γ. For pitches of the twelve-tone equal-tempered scale, we obtain
the distance in semitones when setting γ := 12/ log(2):

∆(fa0 , f
b
0) := 12 log2

(
f b0
fa0

)
(3.15)

This measure ∆ is identical to the definition in Equation (2.18) for the corresponding pitches.
Because of this perceptual behavior, a logarithmic spacing of the frequencies turned out useful
for analyzing harmonic content. Corresponding to the pitch definition in Equations (2.10)
and (2.11), we compute the log-frequency spectrogram Y via

Y(p,m) :=
∑
k∈Wp

S(k,m). (3.16)

For the pitch p with center frequency f0(p), we define the set of frequencies

Wp = {k : f0(p− dp) ≤ fcoeff(k) < f0(p+ dp)} (3.17)

with a usual size of dp = 0.5. Here, we use the frequency fcoeff(k) as defined by Equa-
tion (3.4). We extend the definition of f0(p) in Equation (2.11) to continuous values p ∈ R.
By computing Y (Equation (3.16)), we perform two steps at once. We rescale the frequency
axis to a logarithmic spacing and sum all neighboring frequencies that belong to a pitch
p (frequency binning). Therefore, the rows of Y correspond to the musical pitches on
an equal-tempered scale.11 Because of that, Y is also denoted as pitchogram. Inverting
Equation (2.11), we see the logarithmic frequency spacing for a linear series of pitch numbers:

11Note that this only relates to the spacing of the frequency axis. The log-frequency spectrogram does not
reflect the perceptual phenomenon of pitch as a compound sound of a series of partials.



3.5 Pitch-Based Features 49

a) Orchestra Recording

1 2 3 4 5 6 7 8 9 10 11 12 13 14

30

40

50

60

70

80

90

100

t (s)

p

 

 

10
−6

10
−4

10
−2

10
0

10
2

b) Piano Recording

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

30

40

50

60

70

80

90

100

t (s)

p

 

 

10
−6

10
−4

10
−2

10
0

10
2

Figure 3.13. Log-frequency spectrograms of the two “Fidelio” examples. We computed these spec-
trograms using a bank of elliptic filters as published in [165]. The frame specifications (blocksize B and hopsize
H) are identical to the linear-frequency spectrograms shown in Figure 3.7. We display the pitches of the piano
range p ∈ [21 : 108]. The gray levels indicate the energy values in the pitch bands.

p(f) = 12 log2

(
f

fconcert

)
+ 69. (3.18)

for f ∈ R+.

The procedure presented above constitutes a simple filtering with center frequencies f0(p)
and a bandwidth ∆BW ∈ R of

∆BW(p) := f0(p+ dp)− f0(p− dp). (3.19)
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With Equation (2.11), we obtain

∆BW(p) =
(

2dp − 2−dp

)
· f0(p) (3.20)

Therefore, the bandwidth decreases towards lower pitches. Together with a linear spacing of
the frequency parameters k ∈ [0 :K/2], this may lead to a poor resolution for the lower pitches
since the setWp may comprise only few or even zero frequency coefficients k (Equations (3.4)
and (3.17)). This effect is exceptional for a low frequency resolution of the STFT.12 For this
reason, scholars proposed several approaches for improving the frequency resolution for the
whole range of musically relevant pitches. A popular method is the constant-Q transform
(Section 3.3), which turned out useful for several audio analysis purposes [194, 268]. It is
convenient to directly space the constant-Q filters in semitones.

Another method to improve spectral resolution relies on a reassignment of the time and
frequency coordinates. This approach incorporates phase information by using the phase
derivative from the complex-valued spectrogram. By reallocating the spectral energy, we
obtaining an Instantaneous Frequency (IF) spectrum [1, 2]. Several feature implemen-
tations for describing musical pitch rely on this time-frequency transform [57, 115]. As a
further strategy, Müller et al. [161, 165, 170] use a multi-rate filter bank of elliptic filters
to account for the different pitch ranges.

For Figure 3.13, we used the latter approach to compute the log-frequency spectrogram
for the two “Fidelio” examples. In the second part of the examples (Andante), we now
can observe the interval structure of the horn motif. Due to the logarithmic spacing, the
frequencies of the overtones have less distance in the higher regions. Comparing the two
examples, we again see the more percussive attacks as well as the decaying character of the
notes in the piano recording. Besides the partials, many more frequencies contribute with
small but non-zero energies. Due to the different sampling rates for the filters, the lower
pitches show a coarser time resolution. This constitutes the tradeoff of a sufficiently high
frequency resolution in the low range.

3.5.2 Chroma Features

In Section 2.2, we outlined the special role of octave relationship for human pitch perception.
For analyzing harmonic phenomena, representing the pitch class content of the music came
out beneficial. Researchers proposed methods for extracting pitch class information from
audio using signal processing methods [17, 18, 67, 167]. Usually, these features are called
pitch class profiles or chroma features. A chroma vector c := (c0, c1, . . . , c11)T ∈ RQ of
dimension Q := 12 describes the energy of the pitch classes q ∈ [0 : Q − 1]. We adopt the
definition in Equation (2.13) with q = 0 denoting the pitch class C, and so on:

(0, 1, . . . , 11) =̂ (C,C], . . . ,B) (3.21)

From the log-frequency spectrogram Y, we obtain one chroma entry cq by summing up the
energy of all pitches {p | p mod 12 = q} belonging to this pitch class q. The series of chroma

12Typically, K is equal to the blocksize B (number of samples per STFT frame). In this case, there is a
tradeoff between time and frequency resolution of the log-frequency spectrogram.
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vectors for the frames m ∈ [0 : M − 1] forms a chromagram C defined by

C(q,m) :=
∑

{p | p mod 12 = q}

Y(p,m). (3.22)

One column of the chromagram corresponds to the chroma vector cm := C(·,m) for a fixed
frame index m. For analyzing the harmonic content of an audio recording, we are only
interested in the relative energy of the values. To this end, we normalize the chroma vectors.
Mathematical norms typically used for this purposes are the Manhattan norm

`1(c) :=

Q−1∑
q=0

|cq| (3.23)

or the Euclidean norm

`2(c) :=

Q−1∑
q=0

c2
q

1/2

. (3.24)

Using one of these norms `z(c), we replace every chroma vector c with its normalized version

c`z = (c`z0 , . . . , c
`z
11)T :=

c

`z(c)
, (3.25)

obtaining the normalized chromagram C`z . For frames with very low energy, the normal-
ization process may lead to random-like chroma vectors. To avoid artifacts in the normal-
ization step, some authors introduce an energy threshold ε and assign a flat vector to the
respective frames [165, 167]. Conceptually, applying column-wise normalization corresponds
to some kind of dynamic equalization by ignoring characteristics such as overall energy or
loudness. For analyzing harmonic effects such as the occurrence of certain chords, we are only
interested in the relative pitch class importance independently of the signal’s local energy.

In Figure 3.14, we show the normalized chromagrams C`1 for the orchestra and piano
recording of the “Fidelio” opening. For this, we used the public Chroma Pitch (CP) im-
plementation based on elliptic filters [165]. We clearly observe the pitch classes from the
unisono melody (first half) and the horn motif (second half). In such a chroma representa-
tion, we cannot resolve the difference between the notes B3 and B4 in the horn motif since
these pitches belong to the same pitch class. Comparing the two versions, we find a very
similar structure, in general. Differences occur with respect to the balance within chords or
intervals. Looking at the P5 interval B–F] (at about 9 s in the orchestra recording and 12 s
in the piano version), we find a more equal energy balance in the piano version.

Because of the normalization, this chromagram does not capture the decay phases of the
piano chromagram as observed in the other representations (Figures 3.7 and 3.13). The light
gray area in the piano chromagram (at about 7 s) has energy values below the threshold
ε and, thus, obtains a flat chroma distribution. Overall, we can see that chroma features
are much more robust against variations in timbre or loudness compared to spectrogram
representations. However, the prominent pitch classes in the chromagrams do not exactly
correspond to the notes in the score. One reason is the presence of overtones. This leads to
some energy contribution for pitch classes corresponding to the overtones of the played notes
rather than to their fundamental. The pitch class F] at about 1.5 s in the orchestra chroma-
gram of Figure 3.14 may be an example for such an effect. In the corresponding measure in
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Figure 3.14. Chromagrams of the two“Fidelio”recordings. Here, we show the normalized chromagram
version C`1 computed with a public implementation based on elliptic filters [165]. The frame specifications
correspond to the Figures 3.7 and 3.13. On the vertical axis, we specify the note names corresponding to the
chromagram’s rows. We encode the chroma values via different gray levels.

the score, there is no F] note. However, the third partial of the prominent note B corresponds
to this pitch class. Apart from such problems, percussive effects or percussion instruments
may deteriorate the chroma features’ clarity due to their broad frequency distribution. This
constitutes a major problem for analyzing harmonies from popular music, which typically
includes drums as a standard instrument.
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Table 3.1. Different methods for extracting chroma features from audio. Apart from the different
time-frequency transforms, the features vary with respect to different pre- and post-processing techniques.

Authors Name Transform Specifications Application

Fujishima [67] PCP STFT – Chord recognition

Bartsch &
Wakefield [17]

– STFT Beat synchronization Audio thumbnailing

Bello & Pickens [21] – CQT Beat synchronization Chord recognition

Gómez [76–78] HPCP STFT Spectral peak-picking,
overtone estimation

Global key detection

Lee [131] EPCP CQT Overtone estimation Chord recognition

Ellis & Poliner [57] IFC IF Beat synchronization Cover song identific.

Ueda et al. [238] FTC CQT Harmonic-percussive
separation, diagonalization

Chord recognition

Müller &
Ewert [164,166]

CRP Elliptic filters Log. compression, timbre
homogenization (DCT)

Audio matching

Müller et al. [167] CENS Elliptic filters Logarithmic quantization,
temporal smoothing

Audio matching

Mauch & Dixon [147] NNLS STFT Spectral windowing,
approximate transcription

Chord recognition

Khadkevich et al. [115] RC IF – Chord recognition

Kronvall et al. [123] CEBS – Sinusoidal modeling,
sparsity constraints

Visualization

3.5.3 Timbre Invariance and Enhanced Chroma Features

3.5.3.1 Overview

Researchers proposed several approaches to overcome problems as described above and to
boost the invariance of chroma features against timbral variations. In general, the benefit of
certain chroma improvement strategies considerably depends on the specific application con-
text. A number of authors focused on chord labeling as application and compared different
chroma features for this purpose [36,109,147,228]. Another case for applying chroma-based
strategies is audio matching. In [164], the authors evaluated several chroma feature im-
plementations with respect to this application. In the following, we will present the most
important ideas to improve the robustness of chroma features against timbral variation and
signal processing artifacts. Table 3.1 gives an overview of these contributions together with
the applications used for testing the respective features.

3.5.3.2 Overtone Removal

As we mentioned previously, an important deficiency of simple chroma extraction methods is
the influence of overtones belonging to pitch classes other than the fundamental’s pitch class.
To reduce these contributions, Gómez proposed a strategy for estimating the overtones using
a geometric decay model for the amplitudes a(h) ∈ R [76]

a(h) := sh (3.26)

for h ∈ N being the partial number and s ∈]0, 1[. For the latter parameter, Gómez proposed
a value of s = 0.6. Considering the harmonic partials this way, we obtain the Harmonic
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Pitch Class Profiles (HPCP). To approach the same problem, Lee [131] proposed a method
using the Harmonic Product Spectrum (HPS). For computing the HPS, we multiply each
frequency coefficient in the spectrogram with several components corresponding to integer
multiples of this frequency. This leads to a reduction of non-tonal elements in the features
resulting in the Enhanced Pitch Class Profiles (EPCP).13 A further method by Mauch
et al. [147] makes use of idealized note profiles. These profiles follow a geometric decay as de-
scribed by Equation (3.26), with a suggested value of s = 0.7 for popular music. The authors
obtain a fundamental frequency pitchogram by solving a Non-Negative Least Squares
(NNLS) problem, which minimizes the squared differences between the log-frequency spec-
trogram Y and the aggregated note profiles. This pitchogram extraction constitutes some
kind of approximate transcription and builds the basis for the NNLS chroma feature
computation.

3.5.3.3 Timbre Homogenization

Apart from these overtone removal strategies, several researchers proposed ideas to homoge-
nize the timbre by flattening the spectral envelope. A common procedure to do this is spec-
tral whitening, which removes short-time correlation from the signal by locally normalizing
the subbands [117,118]. The HPCP feature computation incorporates such a step [76]. Müller
and Ewert proposed another strategy for flattening the spectral envelope [164, 166]. Their
method relates to the computation of MFCCs (Section 3.4) but uses a pitch scale instead
of the mel scale before applying the DCT. From the resulting Pitch Frequency Cepstral
Coefficients (PFCCs), they discard the lower ones that relate to timbral characteristics as
described by the spectral envelope. After performing the inverse DCT, the resulting pitch
bands are mapped onto chroma values. The resulting features are called Chroma DCT-
Reduced Log Pitch (CRP). Because of the PFCC elimination, negative CRP values can
occur after applying the inverse DCT.

As a simpler strategy to reduce the influence of timbral characteristics, some authors
perform logarithmic compression before the chroma mapping step [119, 166, 238]. For this
purpose, we replace the log-frequency spectrogram Y describing the energy per pitch band
with a logarithmized version

Ylog(p,m) := log (1 + η · Y(p,m)) (3.27)

with a parameter η ∈ R+. Typical values from the literature are η = 100 or η = 1000
[36,164,166]. Computing chroma features on the basis of Ylog, we obtain the Chroma Log
Pitch (CLP).

3.5.3.4 Other Enhancement Strategies

Overtones and timbral properties mostly contribute to the high pitch regions. Furthermore,
the very low pitches suffer from a bad frequency resolution in the time-frequency transform, in
many chroma implementations.14 Due to these effects, a simple reduction of the pitch range
for the chroma computation may already improve the feature quality. A typical selection
is the pitch range of the piano [164]. To weaken the effect of the outer frequency regions,

13The authors suggest to take only frequency multiples of powers of two. In this case, only octave-related
partials with the same pitch class contribute to the HPS.

14For popular music including drums, an additional effect arises from the bass drum, which often contributes
with a particular pitch to the spectrogram representations [36].
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some authors introduce a Gaussian window for weighting the pitches of the log-frequency
spectrogram [36,147,163] centered, for example, at the note C4 with p = 60

YW(p,m) := exp

(
−(p− 60)2

2 · 152

)
· Y(p,m). (3.28)

Some authors also use a second window covering the lower octaves only (centered at about
p = 40) to obtain a bass chromagram [58, 147, 148, 163, 208]. Combining bass and treble
chromagrams, an estimation of chord inversions is possible.

For computing the HPCP features, Gómez proposes further enhancement strategies. To
reduce spectral noise, she applies a spectral peak-picking stage prior to the overtone esti-
mation [76]. Another problem with chroma features arises from non-tonal frames such as
transients or percussive events. In the HPCP extraction procedure, a transient location
method removes these frames prior to the time-frequency transform [23, 76]. To account for
these percussive components, other researchers experimented with Harmonic-Percussive
Source Separation algorithms such as [176] as a preprocessing stage [173,238].

3.5.3.5 Comparison of Chroma Types

Implementations of several chroma extraction methods are publicly available. The Chroma
Toolbox15 comprises MATLAB implementations of the feature types CP, CLP, and CRP
[165]. For extracting HPCP features16 and NNLS features,17 Vamp plugins for the use with
open source software such as Sonic Visualizer18 or Sonic Annotator19 are accessible online.
For the EPCP features, we use a re-implementation of the method described in [131].

In Figure 3.15, we show the chromagram of the “Fidelio” orchestra examples for different
chroma extraction methods. For the CLP features, we clearly observe the enhancement of
the weaker components through logarithmic compression, especially for the forte beginning.
Here, timbre homogenization with methods such as CRP helps to remove non-harmonic
noise. The EPCP features show a contrary behavior since they suppress weak components.
This leads to a sharper description of the fundamentals. On the other hand, we see more
fluctuations in the chroma structure. Furthermore, pitches with less energy in the respective
overtones almost disappear. We observe such problems for some of the horn notes in the
second half of the example already with only two HPS iterations. The NNLS method seems
to conduct a more careful overtone removal. Here, we find no suppression of played pitches
but overtones such as the D] between 10 s and 12 s (third harmonic of G]) obtain smaller
values. Additionally, the least squares overtone estimation also leads to some enhancement
of weak components (as similarly described in [36]).

In the respective publications, the authors tested their proposed chroma extraction meth-
ods with respect to a particular application (see Table 3.1). Furthermore, there are several
studies dedicated to a comparison of chroma feature performance. Stein et al. [228] conducted
a comparison experiment between the feature types PCP (with different weighting functions
around a pitch’s center frequency), HPCP, EPCP, IFC, a constant-Q based approach, and a
filter bank approach. They measured the difference between the played pitches of synthesized

15http://resources.mpi-inf.mpg.de/MIR/chromatoolbox
16http://mtg.upf.edu/technologies/hpcp
17http://isophonics.net/nnls-chroma
18http://www.sonicvisualiser.org [30]
19http://www.vamp-plugins.org/sonic-annotator

http://resources.mpi-inf.mpg.de/MIR/chromatoolbox
http://mtg.upf.edu/technologies/hpcp
http://isophonics.net/nnls-chroma
http://www.sonicvisualiser.org
http://www.vamp-plugins.org/sonic-annotator
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c) CRP features
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e) NNLS features
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Figure 3.15. Different chromagram representations of the “Fidelio” orchestra recording, first
measures. We normalized all chromagrams to C`1 for a direct comparison.
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audio excerpts with the chroma values corresponding to those pitches. In this study, EPCP
features performed best.

In [123], the authors conducted a similar evaluation by visually comparing the output of two
CLP feature types with their own implementation using sparsity constraints. With respect
to such evaluations, chroma strategies that suppress weaker components always achieve best
results. However, emphasizing weak components such as timbre homogenization turned out
useful when used in a real application context. In [164], CRP features led to preferable
performance in an audio matching experiment based on dynamic time warping. Here, the
comparison between features of the same type is important rather than their correspondence
to the notated pitches.

Several studies focus on the impact of chroma feature quality for chord recognition. Jiang
et al. [109] evaluated different filter bank chroma features such as CP, CLP, and CRP as well
as an IFC implementation in a chord recognition experiment. They used a chord recognition
algorithm based on Hidden Markov Models (HMMs) and evaluated on the Beatles songs
with publicly available chord annotations. In this context, logarithmic compression—which
is part of both CLP and CRP feature strategies—lead to strong increase in chord recognition
performance. On the same dataset, Mauch and Dixon [147] compared their NNLS chroma
features against a standard method for chord recognition. They found considerable improve-
ments with NNLS chroma, especially for the detection of difficult chords such as seventh
chords or triad inversions.

Cho and Bello [36] published a large study of chord recognition algorithms evaluated on a
dataset of about 500 pop songs. They re-implemented several chroma extraction algorithms
presented here such as the NNLS and the CRP methods. In this experiment, overtone
removal turned out beneficial for chord detection performance. In contrast, the effect of
timbre homogenization was small or negative. However, features with a combination of
both ideas achieved the best results. For both steps, the simpler approaches performed
similar or even better than their complex equivalents. Therefore, overtone removal with a
Gaussian filter over the pitch range (Equation (3.28)) seems to be sufficient as well as timbre
homogenization with logarithmic compression only. Harmonic-percussive source separation
did not lead to improvements in this study.

When comparing chord detection experiments, the selection of chord types considered for
detection (and evaluation) is an important factor. Using NNLS chroma, Mauch et al. [147]
observed considerable improvements for difficult chords. In contrast, others only consider
major and minor triads together with a No chord state, which is a simplified scenario that
cannot properly describe all harmonic phenomena in pop songs [36,109].

3.5.4 Tuning Estimation

As we discussed in Section 2.4, instruments or ensembles may employ a global tuning other
than the standard concert pitch fconcert = 440 Hz. In particular, historical performances of
Early Music make use of lower global tuning. When using fixed center frequencies for the filter
banks or the pitch summarization, this may lead to problems in the chroma computation. In
the worst scenario, a played pitch contributes with equal energy to a chroma value and its
neighbor, thus leading to a smearing across chroma bands. To avoid such problems, several
researchers implement a global tuning estimation into their chroma extraction algorithms.
Harte and Sandler [87] propose a finer chroma resolution of 36 bins per octave corresponding
to three bins per semitone. Gómez [76] and Lee [131] follow this idea. To adapt to the
recording, they consider the twelve bins maximizing the overall energy. Zhu and Kankanhalli
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Figure 3.16. Chromagram in different temporal resolutions for the“Fidelio”orchestra recording,
first measures. We compute the smoothed versions from a CP chromagram with an initial feature rate of
ffeat = 10 Hz. Finally, we normalize all chromagrams to C`1 for a direct comparison.

[268] follow a similar idea and choose the energy maximizing band out of ten bands per
semitone (± 50 Cent). Müller and Ewert [165] use a similar estimation stategy. Depending
on the estimated reference frequency, they use the best out of six shifted filter banks. We
follow this approach but use a shifted filter bank only for deviations > 15 Cent from a 440 Hz
tuning. Because of performance practice for classical music, we assume all deviating reference
frequencies to lie below 440 Hz.

3.5.5 Temporal Resolution and Feature Smoothing

In addition to the chroma enhancement strategies presented in the previous section, we
can increase the robustness of chroma representations by locally smoothing the features in
a post-processing step. This makes the features invariant against local variations such as
articulation or ornamentation. At the same time, the features obtain some different meaning
since they describe pitch class statistics rather than the local pitch classes. For a rather fine
resolution, this statistics may correspond to local tonal items such as chords. On a coarser
scale, concepts such as local keys and modulations may have considerable influence on the
smoothed features.
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Figure 3.17. Chroma histograms of the two “Fidelio” recordings. We show the normalized histograms
g`1 for both the orchestra and the piano version. In contrast to the previous visualizations, we used the full
pieces for computing these histograms instead of only the first measures.

We follow the procedure for computing Chroma Energy Normalized Statistics (CENS)
as described in [161,167]. We use the implementation of the Chroma Toolbox [165] but leave
out the quantization step, which may lead to a loss of information in our application scenarios.
For the smoothing process, we consider a selection of w ∈ N frames from the original chroma-
gram C weighted with a Hanning window. We obtain the smoothed chromagram Cw(q,m).
Since the window of length w usually comprises several consecutive chroma vectors, neigh-
boring frames in Cw exhibit a high degree of similarity. Therefore, we can downsample this
sequence by a factor d ∈ R by keeping only every d-th vector (with 1 < d < w). We finally
obtain a chromagram Cwd (q,m), m ∈ [0 : (Mred − 1)] of reduced size Mred ≈ bM/dc. In
Figure 3.16, we show the initial CP chromagram of the “Fidelio” orchestra example together
with two smoothed and downsampled versions Cwd for different parameters w and d.

Beyond such smoothed chromagrams, we obtain a very rough summary of a piece’s tonal
content by computing a global chroma histogram g := (g0, . . . , g11)T ∈ R12 over the whole
recording:

gq :=
M−1∑
m=0

C`1(q,m) (3.29)

By analogy with the definition in Equation (3.25), we obtain a normalized histogram g`1 :

g`1q :=
gq

`1(g)
(3.30)

In Figure 3.17, we show the normalized histograms g`1 for the full recordings of the “Fidelio”
overture. The highest bars correspond to the most important pitch classes in the E major
key. Interestingly, the pitch class B (dominant note) shows higher intensity than the tonic
note E in both recordings. This may have several reasons. First, B is part of both chords
EM (tonic chord) and BM (dominant chord). Furthermore, modulations to the upper fifth
key (here B major) are the most frequent ones for pieces in sonata form. Last, B is also part
of the overtone series of E, which may lead to further enhancement. Due to this large variety
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of effects, a global chroma histogram does not provide enough information for resolving all
tonal properties of a music recording. On the other side, such histograms constitute robust
and compact representations of musical pieces. Comparing the orchestra histogram with the
piano histogram, we see a very similar structure. We only find subtler differences such as the
energy of the pitch class G] being more pronounced for the piano recording. This difference
may arise mostly due to acoustic behavior such as timbral characteristics of the instruments
or the specific instrumentation of the two versions.

3.5.6 Properties of Chroma-Based Analysis

In the previous sections, we showed the efficiency of chromagrams for describing the tonal
content of audio recordings. However, the benefits of chroma features come along with a
considerable loss of information. In this section, we discuss several important points that we
have to consider when using chroma features for tonal analysis.

A fundamental problem of audio-based analyses is the separation of the audio signal into
musical voices. For ensembles with different instruments, automatic source separation
techniques can be useful to approach this problem. For polyphonic music in a monotimbral
instrumentation—such as a fugue for piano, organ, or string orchestra—separation is often
not feasible since all voices have similar timbral characteristics. It is also hard to separate
voices on the basis of fixed pitch ranges since they may exhibit larger jumps and intersect
with each other. Hence, we can only estimate to which voice a note event belongs, for
example, by considering knowledge about melodies such as the fugue subject. Without a
reliable separation of the pitch content into musical voices, it is not possible to automatically
analyze voice leading phenomena, which constitute important style characteristics according
to [129].

An important step for the chroma computation is the summarization of neighboring fre-
quencies, which belong to a certain pitch (see Equation (3.17)). Thereby, we smooth out
subtler differences in pitch and loose the possibility of resolving details of intonation and
local tuning as well as the information of enharmonic spelling. These details may carry
some stylistic information since musicians adapt their intonation behavior to the musical
style, especially for recordings in historical performance practice. Concretely spoken, this is
the computation step where we map all pitches onto the equal-tempered scale. Therefore,
we cannot discriminate between enharmonically equivalent pitches such as G] and A[ on the
basis of pitch or chroma features. This observation extends to other harmonic concepts such
as intervals. For example, we cannot resolve any difference between a +2 and a m3 interval
in such a pitch representation.

Furthermore, we loose information by summarizing octave-related pitches to obtain chroma
features. Since we only keep the pitch class instead of the complete pitch information, we
have no indications about interval or triad inversions. As an example, a chroma vector with
strong C and E values may refer to an M3 interval. In the same way, this chroma vector
can describe the complementary interval m6 depending on which pitch class belongs to the
higher pitch. Therefore, we can only discriminate six different interval categories as shown
in Table 2.3. In a melodic context, this limitation also relates to the direction of intervals.

For the reasons stated above, it is not possible to apply all concepts of musicological
analysis—as presented in Chapter 2—for analyzing audio recordings. We could approach
some of the limitations described above by means of more complex algorithms such as source
separation and automatic transcription methods. However, most of these algorithms con-
siderably depend on characteristics of the analyzed instruments such as onsets or timbre.
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Because of that, these algorithms show deviating results when analyzing recordings with dif-
ferent orchestration. With respect to such properties, analyses based on normalized chroma
representations show a higher degree of stability across different interpretations and instru-
mentations.

3.6 Machine Learning Methods

3.6.1 Experimental Design

In the last decades, automatic methods from the machine learning field showed success for
analyzing and organizing large databases [5]. In this section, we summarize some relevant
techniques that we later apply to audio datasets of Western classical music (Chapters 7 and 8).
The main contribution of this thesis lies in the design of new tonal features for classification.
For this reason, we are not interested in the technical details of the classification algorithms
and rather use them as some kind of “black boxes.” This is why we keep the explanation
very brief and confine ourselves to mention only those parameters that are relevant for our
experiments.

In general, there are two types of machine learning algorithms. Unsupervised learning
strategies serve to find structure in unlabeled data. In contrast, supervised algorithms
learn a mapping from training data to corresponding output values. For discrete output
variables, we speak of a classification task. As opposed to this, a regression problem
exhibits continuous output values. Since we do not use regression methods in this thesis, we
refer to [5] for interested readers.

As the input to these methods, we have a set of I ∈ N examples—the instances. For each
instance with index i ∈ [1 : I], we compute a feature vector Φi := (φi1, . . . , φ

i
D)T ∈ RD

of dimensionality D ∈ N, which quantifies the characteristics of this instance. Often, the
corresponding space RD is called feature space. The set of feature vectors for all instances
forms the feature matrix F ∈ RD×I :

F :=
(
Φ1, . . . ,ΦI

)
=

φ
1
1 · · · φI1
...

. . .
...

φ1
D · · · φID.

 (3.31)

Typical examples for supervised learning are classification scenarios. In this case, we want
to assign a class label20 z(i) ∈ [1 : Z] to each instance i ∈ [1 : I] of a dataset. With
Z = 2, we speak of a two-class problem (binary classification). Scenarios with Z > 2 are
multi-class problems. The classification algorithm or classifier learns a model for the
classes using a set of training data with corresponding class labels. According to the learned
model, the classifier predicts the classes for a test set consisting of unlabeled examples. The
fraction of correctly classified test examples (accuracy) may serve as a metric to quantify
the classifier’s performance. For a multi-class problem, it can be useful to calculate the
mean accuracy over all classes. Nevertheless, this single number does not necessarily reflect
properly the characteristics of a classification result [233]. We obtain more information by
looking at confusion matrices or the stability of classification when changing parameters or
experimental configurations.

For optimally exploiting the available data, we apply a procedure called cross validation
(CV). Thereby, we split the data in Y ∈ N folds. One of the folds serves as test data,

20There are also strategies for multi-label classification. We do not consider such approaches in this thesis.
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Figure 3.18. Three-fold cross validation. Each of the data folds serves as test data in one round.

the remaining folds as training data. We run this for Y rounds—once using each fold as
test set—and calculate the average accuracy over all runs (Figure 3.18). An extreme case
is Leave-One-Out CV where the test set only comprises a single instance (Y = I). In
general, we have to make sure that the class distribution in the training set equals the
overall distribution (stratified CV). Usually, the partitioning of instances into CV folds is
a randomized process. For this reason, it may be useful to perform several runs of the whole
CV procedure with re-initialized folds in order to analyze the stability of the classification
results with respect to the fold partioning.

3.6.2 Clustering

3.6.2.1 K-Means Clustering

For unlabeled data, an automatic (unsupervised) clustering of instances constitutes a useful
analysis since it can reveal inherent structures of the data. A cluster comprises instances
that are close to each other in the feature space—according to a suitable metric such as
the Euclidean distance. The most common algorithm in this field is K-Means Clustering
[140,144]. As the general idea of this method, we iteratively refine the assignment of instances
to a cluster until the cluster centroids are stable (local optimum). Hereby, we assume that
the instances in a cluster have a spherical distribution.

In K-means clustering, the number of clusters KKM ∈ N is an important parameter since
the quality of the clustering result crucially depends on KKM. Scholars proposed several
methods to automatically determine the optimal value for KKM. In Chapter 7, we make use
of the silhouette score, which quantifies the similarity of the instances within a cluster [207].

3.6.2.2 Hierarchical Clustering

The design of the K-means algorithm allows to express only one layer of clusters. For many
applications, a hierarchical structure turned out to better represent the similarities of the
data (hierarchical clustering). Typically, such structures consist of specific clusters and
more general cluster families. In the field of bioinformatics, there are numerous meth-
ods for applications such as clustering of DNA sequences. One example are Phylogenetic
Trees, which serve to represent evolutionary relationships as branching diagrams [88]. For a
computational construction of such trees, a number of techniques exist. A simple bottom-up
method is neighbor-joining, which bases on multiple sequence alignment. More advanced
approaches consider evolutionary models such as the minimum-evolution principle [54].
In Chapter 7, we compute such phylogenetic trees to hierarchically cluster pieces by different
composers.
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Figure 3.19. Gaussian Mixture Model. The histogram indicates the distribution of the data values.
Here, GGMM = 2 Gaussians seem to be necessary to resolve the structure of the data.

3.6.3 Classification

Classification is a supervised learning method. For well-defined scenarios, the classifier should
learn to discriminate the classes in a robust way and be capable of adapting to unseen data—
denoted as generalization [5]. To obtain good generalization, we have to consider the size
and variety of the training data. Moreover, the model complexity plays a role. Complex
classifiers usually comprise a lot of free input parameters. A small training set in combination
with a complex classifier may lead to an over-adaptation—or overfitting—to the training
data, which results in bad generalization. For example, complex models together with a large
feature dimensionality D may cause this effect. The latter problem is known as the curse
of dimensionality [20, 246]. As a rule of thumb, scholars consider a number of ≥ 10 · D
training instances per class as sufficient to prevent overfitting [107, 198]. For larger feature
vectors, dimensionality reduction is necessary. A popular way to do this is feature space
transformation, which we introduce in Section 3.6.4. Beyond that, feature selection can
be a helpful strategy where we can additionally gain some insight into the relative importance
of the feature dimensions. One example is Inertia Ratio Maximization Using Feature
Space Projection (IRMFSP) proposed by Peeters and Rodet [187].

Scholars divide classification algorithms into two groups. Generative classifiers make
use of probabilistic models and estimate the model parameters from the training data. Dis-
criminative classifiers derive optimal decision boundaries from the training data [37,172].

3.6.3.1 K-Nearest-Neighbor Classifier

A simple discriminative model is the K Nearest Neighbor (KNN) classifier. Based on a
suitable distance measure, we consider the KKNN training instances having minimal distance
to a test instance and assign a class label with a majority decision [5]. The parameter
KKNN ∈ N controls the classifier’s sensitivity against outliers and local fluctuations in the
feature space.

3.6.3.2 Gaussian Mixture Model Classifier

The Gaussian Mixture Model (GMM) is a generative classifier that estimates probabil-
ity density functions in the feature space for each class (derived from the training data).
These distributions are weighted sums of GGMM ∈ N multivariate normal distributions. For
each class, we estimate the parameters (mean vectors, covariance matrices, and weights)
by maximizing the likelihood on the training data. An efficient strategy for this step is
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the expectation-maximization algorithm [53]. With the parameter GGMM (the number of
Gaussians), we can control the model complexity (see Figure 3.19).

3.6.3.3 Support Vector Machine

Regarding discriminative classifiers, a widely used method is the Support Vector Machine
(SVM) introduced by Vapnik et al. [44,243]. This algorithm aims at finding a hyperplane that
optimally separates the classes. Among several possibilities, we choose the hyperplane that
maximizes the distance between the separating plane and the closest data points (maximum
margin classifier). Often, a hyperplane that perfectly separates the training instances does
not exist. For this non-separable case, Cortes and Vapnik [44] proposed a solution using
slack variables to minimize the general error for a non-perfect hyperplane (soft margin
hyperplane). We can control these variables with an error penalty parameter CSVM.

The basic SVM algorithms works with a linear hyperplane in a space of dimensionality
(D−1). In many scenarios, we may achieve better class separation with a nonlinear classifier.
We obtain a nonlinear classification by applying the kernel trick [4, 24]. Using a nonlinear
mapping function, we fit a linear hyperplane in a higher dimensional space. As the basic idea
of the kernel trick, we do not transform all the data points but directly compute the scalar
product in the new space from the initial coordinates by using a kernel function. In our
experiments, we use the Radial Basis Function (RBF) kernel. In this case, the performance
of the SVM depends on the parameters CSVM and γSVM. To optimize these parameters for
the specific problem, Hsu et al. suggest a multistage grid search by using an internal 5-fold
cross validation on the training set [97]. This step usually improves perfomance but makes
the training of an SVM with RBF kernel a time-consuming procedure. In its original form,
the SVM is a binary classifier. In order to apply this algorithm to multiclass problems, we
split the task into several binary problems. Hereby, we use a one-versus-one strategy as
implemented in the LIBSVM library [32].

3.6.3.4 Random Forest Classifier

Another discriminative method is the Random Forest (RF) classifier [6,25]. This algorithm
makes use of the ensemble learning strategy based on decision trees. A decision tree is a
hierarchical, rule-based model composed of internal decision nodes and terminal leaves [5].
Each node constitutes a discriminant value—or decision boundary—for one or more feature
values with discrete outcomes labeling the branches. The leaf nodes assign the output values.

A basic tree construction procedure may lead to an over-adaptation of the trees to the
training data. To overcome this problem, one possibility is to reduce the complexity (size) of
the trees by removing irrelevant branches (“pruning”). As another strategy, the RF classifier
makes use of bootstrap aggregation or bagging by selecting a random subset of instances
for several training steps. The number of trees BRF is a parameter. Additionally, the RF
employs a feature bagging approach by only using a subset of the features for training each
node (random subspace method). In a large study comprising different machine learning
tasks, RF classifiers performed similar to SVMs [62]. In comparison, the training of RF is
less time-consuming.

3.6.3.5 Further Classification Algorithms

Beyond the presented algorithms, many more classification methods were proposed. For im-
age classification problems, Sparse Representation Classifiers turned out useful [262].
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The basic idea of this strategy is to model the feature vector of a test instance as a lin-
ear combination of training feature vectors. Hereby, the algorithm prefers sparse linear
combinations in the sense that only few of the training instances have non-zero coefficients.21

Furthermore, Artificial Neural Networks showed good performance on machine learn-
ing tasks [5, 152]. Neural networks consist of several layers of nodes. Beyond the input
layer (the features) and the output layer (the class labels), hidden layers serve to connect
input and output using complex non-linear combinations of the previous layers. Recently,
Deep Learning techniques have become popular. These methods use a high number of
hidden layers and can apply techniques for automatic learning of features. Due to their
high complexity, these models are highly sensitive to overfitting when dealing with small or
unbalanced training datasets. Additionally, it is hard to get an insight into their semantic
behavior. Due to these reasons, we do not use such algorithms in this thesis.

3.6.4 Dimensionality Reduction

3.6.4.1 Principal Component Analysis

In machine learning problems, the number of features can be quite large (D � 100). Often,
the feature matrix shows some kind of redundancy so that a lower dimensionality may be
sufficient to capture the relevant information. In this case, dimensionality reduction tech-
niques can be useful in order to obtain a representation of lower dimensionality L < D. One
of the unsupervised methods to do this is Principal Component Analysis (PCA). This
method constitutes a transformation of the feature vectors into a new basis with orthonormal
basis vectors wl := (wl

1, . . . , w
l
D)T ∈ RD, l ∈ [1 : D]. The entries of wl are called weights or

loadings. The first component w1 points towards the maximum variance direction of the
feature space. With increasing index l, a vector wl describes a smaller fraction of the data’s
variance. Therefore, we can reduce the dimensionality of the feature space by only keeping
the first L < D components while still describing a large part of the variance.

We can express the feature vectors in the new basis as

Φi =

D∑
l=1

λi,lw
l (3.32)

with principal component scores λi,l = (wl)TΦi. As an important preprocessing step for
PCA, we have to subtract the mean vector over all instances from the initial feature vectors.
Furthermore, it can be useful to divide the feature values by the standard deviation over all
instances in order to equalize the contribution of the feature dimensions [5].

3.6.4.2 Linear Discriminant Analysis

For scenarios with multiple classes, we might additionally take into account the class labels
for dimensionality reduction. One example of such supervised methods is Linear Discrim-
inant Analysis (LDA) [5, 146, 248]. Hereby, we want to optimally separate the instances
belonging to different classes. We therefore try to find a representation that maximizes the
variance between different classes while minimizing the variance within each class (Fisher’s

21Sturm and Noorzad [234] showed that applying such a classifier to audio-based music genre recognition—in
conjunction with timbre-related features—may capture irrelevant properties that only correlate to genre
in a specific dataset. Similar observations were made for other classifiers, too.
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criterion). Researchers showed that for Z classes at most (Z − 1) linear independent di-
mensions exist [5]. In comparison, using LDA as feature space transformation often leads to
better classification performance than using PCA. However, exceptions from this behavior oc-
cur when the training data does not properly represent the underlying statistical distribution
of the feature space [146].

3.6.4.3 Further Dimensionality Reduction Techniques

The methods presented above consider the whole feature space for calculating the transfor-
mation. For this reason, they are sensitive to outliers. A more sophisticated method are
Self-Organizing Maps. This reduction technique considers the local neighborhood of an
instance by means of pairwise distances in order to preserve the topological characteristics
of the initial feature space [120]. A related method is Multidimensional Scaling [125]. In
contrast to self-organizing maps or LDA, this technique only requires as input the distances
between the instances and not the full feature vectors. In this thesis, we do not use these
more sophisticated methods for dimensionality reduction.
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4 State-of-the-Art

In this chapter, we give an overview of algorithms for tonality analysis and style classification
published in the area of Music Information Retrieval (MIR). Concerning the representations
of music, we focus on methods for audio data but also mention important work treating
symbolic data. Furthermore, we summarize publications dealing with methods for analyzing
and organizing music datasets and archives (classification and clustering).

4.1 Overview

First, we want to give an overview of the most important tasks in this research area. To
this end, we present in Figure 4.1 a specificity-granularity plane inspired by Grosche
et al. [81]. We focus on the musical parameters tonality and style and ignore other as-
pects that principally might be relevant for our work.1 The most detailed analysis of audio
recordings is automatic transcription. Despite considerable progress in recent years, this
task still remains challenging for many scenarios. Complex instrumentations with subtle
timbral differences—such as a Romantic symphony orchestra—or polyphonic textures with
many musical voices provide major problems for transcription algorithms. However, scholars
successfully approached secondary concepts such as chords or key without having perfect
transcription systems. These methods typically rely on chroma features for capturing rele-
vant pitch class information.

As shown in Figure 4.2, different types of tonal structures hierarchically depend on each
other. In particular, there is no agreement among musicologists which layer (chords or scales)
is the more fundamental one (as discussed in Section 2.7). In the next sections, we approach
these concepts in the following order:

• Global key detection (Section 4.2) is a straightforward task where we want to assign
a single key label (tonic note and mode) for the whole movement.

• Local key analysis (Section 4.3) attempts to resolve key changes (modulations) that
occur throughout a movement. Here, scholars either try to partition a piece into key
segments [31,267] or propose visualizations that account for ambiguities [209,210].

• Chord recognition (Section 4.4) refers to a finer temporal level. Here, the aim is to
find appropriate chord labels together with the corresponding start and ending time.

Some methods concurrently approach two or more of these layers [148, 155, 180, 201, 222].
For segmentation, the latter two applications employ either rule-based strategies or dynamic
programming—often using Hidden Markov Models (HMMs). Besides the 24-key problem,
several researchers propose different systems for local tonality analysis relying on—among
others—diatonic scales [266]. In Section 4.5, we summarize more abstract concepts for de-
scribing tonality such as tonal complexity, harmonic tension, or degrees of tonality. Based

1For example, some authors combine beat tracking with tonality analysis in order to obtain musically relevant
segments [148,180].
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Figure 4.1. Overview of tonality and style analysis tasks. This figure visualizes different topics from
the field of MIR research. Inspired by [81], we arrange the tasks according to their semantic relation in a
specificity-granularity plane. The vertical axis indicates the temporal scale the concepts refer to. The specifity
of the concepts is given by their horizontal position. Here, we restrict ourselves to methods for tonality and
style analysis and ignore other musical parameters such as rhythm, meter, melody/motifs, or instrumentation.

on such descriptors, some authors classify music into tonal and atonal pieces [93]. More
concrete experiments address the automatic categorization into historical periods or try to
identify the composer of a piece. In MIR research, this is considered as a specific case of
music genre classification—with style-related subgenres of the top-level genre “classical.”
In Section 4.6, we present a detailed summary of the work in this field concerning both
symbolic and audio data.

For the majority of applications, researchers mainly focus on popular music. For example,
many authors evaluate their chord recognition systems on songs by The Beatles and other
pop music. Because of this, we mention the most important contributions from this field
even though we are mainly interested in studies performed on Western art music.

In general, a quantitative comparison of results is problematic. Even though many pub-
lications deal with similar or identical tasks, the experimental settings—such as the size
and the structure of datasets, the number and the definition of classes, or the chord types
considered—as well as the evaluation measures vary widely. For learning-based approaches,
the experimental design with respect to training and evaluation (cross validation) may exhibit
crucial differences. Nevertheless, we try to mention the central results of the publications
together with the important details of the evaluation procedure. It is important to be very
careful with a direct comparison of these numbers.
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Figure 4.2. Hierarchical nature of tonal structures. This overview visualizes different concepts for
tonality analysis of a movement with respect to their temporal levels.

4.2 Global Key Detection

This overview follows the one given in [252]. Since it is a standard task in MIR research, a
number of scholars proposed methods for detecting the global key (see Section 2.7) from audio.
There are algorithms dealing with symbolic data only as well as audio analysis methods, on
which we focus on here. Several authors give overviews of the state-of-the-art [180,218] and
compare knowledge-based and data-driven algorithms—the two main approaches. The
latter category (data-driven) usually requires a training stage whereas strategies from the
other domain are rule- and parameter-based.

In general, the first step is an extraction of chroma features. Motivated by studies on
human pitch perception [124,235], many algorithms match the chroma statistics to pitch class
templates or use advancements of such approaches [75,78,103,180,183,222]. For example, Zhu
et al. [268,269] introduce a tuning esimation stage as well as overtone reduction (consonance
filtering) and temporal smoothing for improving chroma robustness. They use a two-step
approach for scale and tonic note estimation and obtain success rates of 81 % for 72 orchestral
pieces from different eras [268].

Izmirli [104] shows that reducing the feature dimensionality from twelve to not less than
six dimensions (using PCA) does not deteriorate key detection performance. He evaluates
on 152 classical pieces from commercial recordings. Shenoy et al. [222] first conduct a simple
chord detection algorithm and estimate the key by comparing chord statistics. They obtain
90 % accuracy for 20 pop songs.

Among the systems using data-driven techniques, HMMs constitute a popular method
[31, 174, 186]. Chai and Vercoe [31] combine HMMs with a two-step approach, considering
the key signature (the most prominent diatonic scale) and the tonic note individually. Noland
and Sandler [174] investigate the effect of signal processing parameters and test their HMM-
based approach on recordings of Bach’s well-tempered piano, first book (48 tracks), yielding
98 % correct classification for the best parameter settings. Peeters [186] trains HMM models
for the 24 keys and evaluates on 302 classical pieces from different eras with 86 % accuracy.
He obtains an improved result of 89 % when using an overtone reduction algorithm (harmonic
peak subtraction) for computing the chroma features [185].

There are several works considering special sections of the recordings. Izmirli [103] inves-
tigates the first seconds of 85 classical pieces by different composers with up to 86 % success.
Chuan and Chew [39] test their geometrical approach on the beginning of several Mozart
symphonies yielding up to 96 % success rate. Extending these experiments to a wide stylistic
range [38], they reach 75 % correct keys. Mehnert et al. [157] propose another spatial pitch
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model (symmetry model) for key detection and evaluate on a mixed dataset with 83 % correct
keys. Van de Par et al. [239] combine profile training with a special weighting of the begin-
ning and ending section (15 seconds). They evaluate on piano music2 with high accuracies
up to 98 %. In the MIREX contest3 (1252 classical pieces synthesized from MIDI), the best
results of the past years reached 87 % correctly identified keys [102].

In conclusion, efficient detection of the global key is possible with a number of different
strategies. However, exceeding the glass ceiling of about 90 % accuracy—without overfitting
to a specific dataset or musical style—seems to remain challenging.

4.3 Local Key and Modulations

As we mentioned in Section 2.7, the musical key may change over the course of a piece. To
account for such changes (modulations), several researchers extended key analysis to a local
approach. For this task, the annotation and evaluation is time-consuming and often not
consistent among different annotators and task definitions. This makes a comparison of the
algorithms problematic.

Izmirli [105] combines local key finding with non-negative matrix factorization (NMF)
for segmentation. A number of scholars considered HMMs for this task—such as Chai and
Vercoe [31] who compared the 12-key problem (without mode detection) to the classification
of 24 keys. Zhu and Kankanhalli [266] propose diatonic scale estimation for addressing the
global 12-key problem and further apply this model to key-based melody segmentation in
pop songs [267]. They test their approach on a small dataset of monophonic MIDI signals.

Several methods address the problem of chord detection and local tonality at the same time
[148,180,201]. Often, beat tracking serves as a preprocessing step in order to obtain musically
meaningful analysis windows [148,180]. Papadopoulos and Peeters [180] simultaneously treat
global and local key finding by incorporating downbeat information. They evaluate their
system on two datasets of different styles (Mozart piano sonatas and pop songs) with key
detection accuracies up to 80 %.

Compared to popular music, we find less contributions regarding local tonality in classical
music. One reason for this may be the ambiguous nature of segment borders in classical
music. The modulation types described in Section 2.7 usually proceed gradually over a
certain time span. In contrast, pop music often employs abrupt or fast changes using only
few pivot chords. Mearns et al. [155] try to detect modulations in synthesized recordings of
twelve chorales by J. S. Bach. As a first step, they perform automatic transcription. On
the transcribed music as well as for reference MIDI data, they recognize the chords and
finally estimate the local key segmentation from the chord progressions using HMMs based
on music theory models. Though transcription performance is low, they obtain good local
key detection results for both audio- and MIDI-based segmentation.

Because of the ambiguous and time-consuming annotation procedure, several researchers
restrict themselves to a visualization of local keys in classical music rather than segmenting
and evaluating quantitatively. Purwins et al. [194] use a very basic approach for local key
tracking by extending the template-matching approach to local windows. They obtain inter-
esting results for a piano prélude by F. Chopin. For such visualizations, the time resolution
of the local windowing plays a crucial role. Sapp [209, 210] proposes a useful technique for
visualizing several time scales simultaneously by using scape plots for local key analysis.

2See Section 5.1 and [183] for detailed information about this dataset.
3http://www.music-ir.org/mirex

http://www.music-ir.org/mirex
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Jiang and Müller [110, 168] adapt this method for structural and tonal analysis of piano
sonatas by L. van Beethoven.

4.4 Recognition of Chords and Chord Progressions

Since chords constitute an important concept for composing, playing, and analyzing Western
music, numerous publications deal with the automatic extraction of chord symbols from
audio. Fujishima [67] first proposed a system for estimating several chord types over time
using chroma features. In [221], Sheh and Ellis introduce HMMs with Viterbi decoding
in order to perform smoothing and chord estimation at the same time. Many researchers
experimented with improvement strategies to this fundamental approach. As the main ideas,
they try to enhance the robustness of chroma features [57,131,147,238] or introduce complex
chord models [29, 132, 260]. Some methods incorporate beat tracking as a preprocessing
step [21, 57] or concurrently estimate several idioms such as downbeat, chords, and key
[148,201]. For a detailed overview of contributions to the chord recognition task, we refer to
the comprehensive study by Cho and Bello [36].

Most of the studies presented above evaluate the proposed algorithms on popular music.
A major issue of chord recognition methods is the selection of possible chord types. A large
fraction of the approaches only use major and minor triads, which cannot fully describe
the harmonic content—even for popular music. On the other side, the use of a large chord
dictionary deteriorates robustness of chord detection and may lead to rather artificial chord
changes such as CM−CM7−CM or similar progressions, which do not describe the musical
content in a meaningful way. Furthermore, signal processing artifacts such as the influence of
overtones may lead to confusions for difficult chords [147]. The selection of meaningful chord
types considerably depends on the musical style. In jazz or Romantic music, in particular,
complex chord types may arise. Konz et al. [59,121] performed several studies to evaluate the
consistency of chord recognizers. In [121], they systematically compare the results of such an
algorithm for different interpretations of the same piece (L. van Beethoven’s “Appassionata”).

Several researchers automatically analyzed chord progressions. Inspired by language mod-
els, they most often describe these progressions as probabilistic n-grams and analyze their
statistics for music databases [33,175,188,213,265]. Scholz et al. [213] perform such a study
on manually labeled chord sequences of Beatles songs and show the efficiency of smoothing
and selection techniques. Using the same data, Yoshii and Goto [265] extend this approach
with a nonparametric Bayesian model. Mauch et al. [149] analyze manually labeled chord
progressions from 400 Beatles songs and jazz standards. From the same data, Anglade and
Dixon [9] automatically derive harmony rules using inductive logic programming. Concerning
classical music, Kaneko et al. [112] analyze 50 manually labeled pieces using chord bigrams.

Beyond such manually extracted chord labels, a number of researchers proposed methods
for obtaining harmony rules or harmonic grammar from symbolic data [15, 47–50, 101, 177,
203]. Paiement et al. [177] suggest to use tree structures instead of HMMs and evaluate
on jazz standard themes in a MIDI representation. Barthélemy and Bonadi [15] try to
extract the harmonic content in form of a figured bass using automatic score reduction.
Others use complex hierarchical models to describe chord progressions within a larger tonal
framework [49,203].

A number of authors used automatic chord recognition algorithms as basis for analyzing
chord progressions from audio. Cheng et al. [33] use an n-gram model in an HMM framework
to derive chord progression probabilities. They obtain best results for n = 3 and n = 4 based
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on 28 Beatles songs. Mauch et al. [151] perform a large analysis of chord progressions in the
US pop music charts using the Chordino Vamp plugin.4 With the same software, Barthet
et al. [16] summarize chord bigram probabilities for several musical styles from a commercial
audio collection including nearly 27 000 classical music tracks. They provide a web interface5

for exploring the extracted chord progressions by means of different visualizations [111].

4.5 Tonal Complexity

Apart from concrete tonal items, several researchers introduce methods for measuring more
abstract concepts such as tonal complexity. We discussed the musical implications of this
notion in Section 2.9. Concerning the computational analysis of such concepts, Parry [181]
analyzes the complexity of popular music but focuses on rhythmic and melodic aspects.
Honingh and Bod [92] evaluate the suitability of pitch class set categories for measuring
degrees of tonality based on MIDI data. Analyzing classical pieces from different composers,
they found an interesting correlation between the presence of interval category IC5 (P4 and
P5 intervals, see Table 2.3) with a decrease of tonal complexity. For the purposes of style
classification and authorship analysis based on symbolic data, Kranenburg et al. [12,241,242]
make use of entropy measures for pitches, chords, and sonorities.

Streich and Herrera [230, 231] discuss harmonic complexity as one facet of overall music
complexity and propose an audio-based method for describing this notion. They measure
the relation between the local tonal content in a short-time window to the one in a longer
window. With a similar approach, Mauch and Levy [150] analyze and visualize the structural
change of musical pieces based on—among others—tonal complexity.

4.6 Classification and Clustering

4.6.1 Overview

In MIR, the classification of audio data into genres and stylistic categories constitutes a
central task [46,237]. For an overview of this field, we refer to the article by Weihs et al. [251].
In Figure 4.3, we illustrate the hierarchical nature of genre classification tasks. The majority
of studies focus on top-level genres such as Rock, Pop, Jazz, or Classical. There are several
attempts to obtain a finer class resolution by considering sub-classes of individual genres such
as Rock [236], Electronic [70], or Ballroom dance music [55]. Further studies consider global
cultural areas as subgenres [126, 179]. For approaching these tasks, most methods make use
of timbral or rhythmic features. In contrast, there are only few methods concerning the
subgenre classification of classical music. In this section, we give an overview of studies for
clustering and classification of both composers and stylistic periods. We focus on methods
that use features for describing tonal aspects of the music. Table 4.1 gives a summary of
the most important contributions. To get a rough overview of the methods’ performance,
we list the classification accuracies as reported in the respective publications. However, a
comparison of these values is very problematic since the experimental configurations vary
widely.

4http://isophonics.net/nnls-chroma
5http://dml.city.ac.uk/chordseqvis

http://isophonics.net/nnls-chroma
http://dml.city.ac.uk/chordseqvis
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Figure 4.3. Different levels of music genre classification. The labels in the upper part refer to the
top-level genres. Regarding classical music, typical subgenres are historical or stylistic periods (middle layers).
Composer identification (lower part) constitutes a more specific task.

4.6.2 Studies on Symbolic Data

Concerning style classification of Western classical music, we find several studies based on
scores or symbolic data. McKay and Fujinaga [153] perform hierarchical classification into
root genres (classical, jazz, and pop) and leaf genres (three for each root genre) using high-
level musical features extracted from MIDI data. As classical subgenres, they consider the
periods Baroque, Romantic, and Modern with a success rate of about 85 % within the full
hierarchical classification. Ogihara and Li [175] analyze progressions from chord symbols for
clustering and measuring similarity among eight jazz composers. Hedges et al. [89] extend this
idea and perform classification experiments with multiple viewpoint Markov classifiers based
on chord sequences. Among other tasks, they evaluate classification of nine jazz composers
with 67 % accuracy. Furthermore, they classify into eight jazz subgenres obtaining 58 %
accuracy in the optimal setting. De Leon and Iñesta [192] test different pattern recognition
approaches for discriminating the genres jazz and classical. They calculate different measures
from MIDI representations of monophonic melodies.

Regarding classical music, Geertzen and van Zaanen [73] estimate rhythmic and melodic
structures from scores using grammatical inference. They obtain up to 80 % accuracy for
two- and three-composer classification tasks. Mearns et al. [156] perform classification ex-
periments for seven composers from the Renaissance and Baroque periods. Based on score
data, they calculate high-level features for quantifying harmonic intervals as well as properties
of counterpoint obtaining 66 % accuracy on a small dataset. Van Kranenburg et al. [12,242]
evaluate different composer identification and clustering tasks on score data using interval-
and pitch-related features as style markers. For the five-composer problem (Bach, Handel,
Telemann, Haydn, and Mozart), they obtain classification results of about 75 %. However,
they also test other class constellations such the “Bach-vs.-all” scenario with up to 95 % ac-
curacy. Moreover, they perform visualizations for studying works of uncertain authorship
in a suitable feature space using LDA [12, 241]. Among other features, they also quantify
notions such as pitch entropy, which exhibits some relation to tonal complexity. Hontanilla
et al. [95] use the five-composer data from [242] and classify on the basis of language models
(4-grams) for melodies. They obtain a similar result of 79 % for the five-composer task.
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Table 4.1. Clustering and classification experiments for musical styles. This overview summarizes
relevant studies dealing with stylistic subgenres such as style periods or composers.

Authors Task Classes Repres. Features Acc.

Symbolic data

McKay &
Fujinaga [153]

Classific. 3 classical styles MIDI various 85 %

Ogihara & Li [175] Clustering 8 jazz composers Chord
symbols

Chord progressions –

Hedges et al. [89] Classific. 9 jazz composers Chord
symbols

Chord progressions 67 %

Hedges et al. [89] Classific. 8 jazz styles Chord
symbols

Chord progressions 58 %

Mearns et al. [156] Classific. 7 classical composers Score Intervals,
counterpoint

66 %

Geertzen & van
Zaanen [73]

Classific. ≤ 3 classical
composers

Score Melody & rhythm
sequences

80 %

Ponce de León &
Iñesta [193]

Classific. 2 styles
(classical–jazz)

MIDI Melody descriptors 90 %

Van Kranenburg &
Backer [242]

Clustering
& Classific.

≤ 5 classical
composers

Score Intervals, pitch
entropy, counterpoint

80 %

Hontanilla et al. [95] Classific. ≤ 5 classical
composers

Score Melody n-grams 79 %

Ventura [245] Classific. 3 classical styles Score Melody entropy –

Rodrigue Zivic
et al. [202]

Clustering historical periods Score Melodic intervals –

Honingh & Bod [93] Classific. 2 classical styles
(tonal–atonal)

MIDI Interval categories 95 %

Hillewaere et al. [91] Classific. 2 classical composers
(Mozart–Haydn)

MIDI Melody n-grams and
statistics

75 %

Dor & Reich [56] Classific. ≤ 9 classical
composers

Score Pitch class, octave,
melodic

79 %

Audio data

Pérez-Sancho
et al. [189]

Classific. 3×3 subgenres Audio Chord n-grams 68 %

Jiang et al. [108] Classific. 5 (sub-)genres Audio MFCC, OSC 82 %

Hu et al. [98] Classific. 9 classical composers Audio MFCC-like 76 %

Purwins et al. [195] Clustering
& Classific.

6 classical composers
(“one-vs.-all”)

Audio Chroma histograms,
tonic-note-related

97 %
ROC

Izmirli [106] Classific. 2 classical styles
(tonal–atonal)

Audio Chroma histograms 91 %

Hamel [85] Classific. 11 composers (2011
MIREX task)

Audio MFCC-like 78 %

Regarding tonal complexity, Perttu [190] studies the increase of chromaticism in Western
music from the year 1600 to 1900 on score representations of musical themes. Ventura [245]
uses score representations to identify the periods Baroque, Romantic, and Contemporary
based on some kind of melodic entropy. He directly compares individual feature values for
a small set of examples. As an early contribution, Fucks and Lauter [66] present statistical
analyses of instrumental parts (violin, flute, and vocal) for about 100 examples. Among other
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features, they compute kurtosis and correlation measures for distributions and transition
matrices of pitches, note durations, and intervals. As their main finding, they measure a
fundamentally different tonal behavior of atonal and tonal music. For such kind of melody-
based studies, Viro’s “Peachnote” corpus [247] provides interesting material. This dataset
contains statistics of melodic intervals obtained via optical music recognition from open-
access graphical scores.6 On that data, Rodriguez Zivic et al. [202] perform unsupervised
clustering experiments obtaining a division into the eras Baroque, Classical, Romantic, and
Modern. The approach by Honingh and Bod [92,93] relies on quantifying interval categories.
They evaluate several clustering and classification tasks on MIDI representations of individual
pieces. Among other experiments, they perform tonal-vs.-atonal classification with up to 95 %
success rate [93].

Kiernan [116] tests classification of flute compositions by three composers using key-related
pitch class occurrences from scores. After training, he investigates the system’s output on
compositions with unknown authorship and, thus, does not report quantiative results. For the
specific two-composer task of discriminating Mozart and Haydn string quartets, Hillewaere
et al. [91] propose a MIDI-based approach. They calculate global features and estimate
melody n-gram models to the individual parts of the string quartet. They achieve 75 %
classification accuracy—with global features performing best on violin I parts, and n-grams
being superior on cello parts. Dor and Reich [56] perform a large study by evaluating score-
based features on several composer identification tasks. The dataset comprises piano pieces
and works for strings. From a total of 1183 scores by nine different composers, they compile
several subsets. Their feature set encompasses both absolute pitch class and octave statistics
as well as note counts, durations, and melodic sequences (trigrams). With an automatic
feature learning procedure, they evaluate the individual features’ impact. Hereby, pitch
classes and octaves show high importance whereas adding melodic properties only leads to
small improvements. For their two-composer experiments, they obtain accuracies ≥90 %
except for Haydn–Mozart (63 %), Beethoven–Chopin (84 %), and Corelli–Vivaldi (85 %). In
the instrument-specific experiments, the cases of string data yield slightly better results. In
general, comparing scores for a specific instrumentation only shows higher recognition rates in
most class constellations. For their maximal task of classifying eight composers, they obtain
79 % accuracy. Overall, absolute pitch class histograms show high impact in their experiments
(≥60 % average contribution to two-composer results) even if they are not independent from
the key of a piece. To the author’s knowledge, this comprehensive study [56] constitutes the
state-of-the-art for composer identification based on symbolic data.

4.6.3 Studies on Audio Data

For classifying audio data, only few studies consider subgenres of classical music. Some of
them use instrument categories as sub-classes [225]. By using a transcription system, Lidy
et al. [138] adapt features for symbolic data from [193] combined with audio features for genre
classification. Anglade et al. [8] follow a similar idea by using a chord detection algorithm.
For the training, they learn harmony rules from symbolic data. In another genre classification
study, Pérez-Sancho et al. [189] adapt their symbolic data approach based on chord n-grams
[188] to the audio domain by using automatic chord transcription. They classify into three
genres (including classical) with each three subgenres obtaining 68 % classification accuracy.

6http://www.imslp.org

http://www.imslp.org
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Jiang et al. [108] also use classical subgenres (Baroque and Romantic) together with other
top-level genres. They obtain results of 82 % by using MFCC and OSC features.

For composer identification, Hu et al. [98] test an approach involving deep neural networks
with MFCC-like features. They yield 76 % classification accuracy for a nine-composer task
with about 360 clips of 30 s length per composer. Their dataset comprises pieces with several
types of instrumentation. Purwins et al. [195] perform different ML experiments on a set of
piano recordings from six classical composers. Their experiments rely on constant-Q chroma
features summarized to global histograms. They obtain relative pitch class histograms by
shifting the chroma histograms to the tonic note of the annotated key. Classifying the
composers in a “one-vs.-all” setting, they obtain results between 72 % (Scriabin) to 97 %
(Hindemith) area under the curve (AUC) measure using receiver operating characteristic
(ROC) as evaluation method.7 With unsupervised clustering (K-means), the main sepa-
ration occurs between pieces in major and minor mode. Concerning some exceptional and
borderline data points, the authors mention several musical reasons. Using self-organizing
maps, they find different regions in the feature space for individual composers. Similarly,
Kaneko et al. [112] perform PCA on chord transition bigrams obtaining clusters with com-
posers of an era. Izmirli [106] performs classification of tonal-vs.-atonal music based on
chroma histograms. He obtains a classification accuracy of 91 %.

In the MIREX contest, one sub-task of genre classification addresses classical composer
identification from audio data. The corresponding dataset consists of 2772 audio excerpts
of 30 s length by 11 different composers (252 clips per composer). The annotations include
information about the albums. According to the website,8 album filtering is applied in the
evaluation (compare Section 8.3.3). Most submissions to this task are intended to serve for
genre classification tasks in general. Concerning the maximum classification accuracy, the
approach by Hamel [85] in 2011 reached the best result obtained so far. This system relies
on spectral features related to MFCCs (“Principal Mel-Spectrum Components”) and uses
feature pooling with a neural network.

In summary, most studies for automatic style recognition deal with symbolic data. The
features often rely on melodic properties, but also chord progressions and pitch class oc-
currences are typical. For audio data, scholars employed both spectral- and chroma-based
features with success. The reported accuracies reach up to 78 % [85, 98] for classifying nine
and eleven composers, respectively. Thus, composer identification based on audio and sym-
bolic [56] data leads to roughly similar results. However, it is difficult to directly compare
published results since evaluation measures, experimental setup, and the data to analyze are
varying to a high degree. Thus, systematic experiments to compare classification algorithms
for Western classical music are yet to be done.

7This evaluation procedure for binary classifiers considerably differs from the mean accuracy [61]. Hence, a
direct comparison of these numbers is not meaningful.

8http://www.music-ir.org/mirex

http://www.music-ir.org/mirex
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5 Analysis Methods for Key and Scale
Structures

The contributions of this thesis address the automatic analysis and classification of classical
music audio recordings. In this chapter, we present several methods for extracting tonal
content from audio data. For all of these algorithms, we rely on some type of chroma
features and derive measures for estimating the occurrence of certain tonal structures. We
discussed the limitations of such strategy in Section 3.5.6. For some algorithms, we provide
quantitative analyses on both publicly available and specifically created datasets. For other
ideas, we demonstrate the potential by means of visualizations. In Section 5.1, we treat the
problem of global key finding in classical music and propose an approach relying on the final
chord. Section 5.2 describes analysis methods for the local presence of diatonic scales and
different scale types in general, which we demonstrate for several pieces.

5.1 Global Key Estimation Based on the Final Chord

5.1.1 Introduction

In Western classical music, the global key plays an essential part for a piece’s tonal character-
istics (see Section 2.7). Many works already include the key in their title such as “Symphony
in G major.” For several composers, certain keys exhibit a particular semantic meaning [11].
Beyond this, global key information is crucial to relate tonal structures (pitch classes, chords,
local keys, etc.) to the tonic note in order to obtain key-independent features. In this sec-
tion, we propose and evaluate an approach for global key extraction from audio recordings
restricting ourselves to Western classical music from the common-practice period. Our rule-
based method relies on chroma features. We put special emphasis on the final chord of the
piece for estimating the tonic note. To determine the mode, we analyze a chroma histogram
over the complete piece and estimate the underlying diatonic scale. For both steps, we apply
a multiplicative procedure obtaining high robustness against errors. This approach helps to
minimize the number of tonic note errors, which is important for subsequent tonal analyses.

This section relies on the publication [252]. Partly, the results stem from [259] and the
associated bachelor’s thesis by Schaab [211]. We first present the design of our key detection
algorithm (Section 5.1.2). Then, we outline the results of several studies on the basis of
suitable audio datasets (Section 5.1.3). For the details of musicological terminology, we refer
to Chapter 2. Section 4.2 summarizes related work concerning global key detection.

5.1.2 Proposed System

In the presented key detection system, we make use of the final chord’s significance in Western
classical music applying a two-step approach. First, we separately estimate the final chord’s
root note and the complete piece’s dominating diatonic scale. Finally, we combine these
results obtaining the most probable key candidate consisting of the tonic note and the mode.
Figure 5.1 shows an overview of the processing flow.
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Figure 5.1. Overview of the key extraction process. After estimating the final chord’s root and the
global diatonic scale, we combine this information in order to obtain the global key.

5.1.2.1 Feature Extraction

The algorithm presented in this section relies on chroma features. We use the Chroma
Toolbox [165] to compute a pitchogram Y in the piano range and derive CP chroma features,
both with a temporal resolutions of 10 Hz. To account for the global tuning, we use the
tuning estimation functionality of this toolbox package and apply a shifted filter bank as
soon as the difference from a 440 Hz tuning exceeds 15 Cent. We obtain a log-frequency
spectrogram (pitchogram) Y(p,m) with p ∈ [21 : 108] and m ∈ [0 : M − 1] (see Section 3.5).
To estimate the overall energy, we calculate the average `1 norm (Equation (3.23)) of the
pitchogram frames pm := Y(·,m) :

Emean =
1

M

M−1∑
m=0

`1(pm) (5.1)

Furthermore, we calculate a normalized chromagram C`2 as well as a normalized chroma
histogram g`2 as presented in Section 3.5.5.

5.1.2.2 Tonic Note Estimation

On the basis of this feature set, we estimate the root note of the piece’s final chord. Since
we do not want to consider frames containing silence, we take the last F feature frames that
exceed a defined energy threshold. To account for the overall loudness of the piece, we apply
a dynamical adaption for the energy threshold. To this end, we calculate the `1 norm for
each of these pitch feature vectors pm and select only frames m that fulfill the condition

`1(pm) > ρ · Emean (5.2)

with a suitable factor ρ ∈ R+. From the frame selection thus obtained (length F ), we
compute a normalized chroma histogram h := (h0, . . . , h11)T similar to Equation (3.30) but
using the Euclidean norm `2 here. To consider the tonal relationship between the chroma
classes, we re-sort the entries of h according to a series of perfect fifths by re-ordering the



5.1 Global Key Estimation Based on the Final Chord 79

level 0 diatonic 

� ������ ��� ������ �� ��
Pitch class index q 1 8 3 10 5 0 7 2 9 4 11 6

Re-ordered index r 0 1 2 3 4 5 6 7 8 9 10 11

Template entry V
(2)
r 0 0 0 0 1 3 2 1 2 3 1 0

Figure 5.2. A diatonic subset (level 0) of the fifth-ordered chromatic scale. The first row indicates
the pitch class indices from Equation (3.21) with q = 0 denoting C. The second row gives the re-ordered
indices r. In this notation, the notes with indices r ∈ [4 : 10] are forming the level 0 diatonic scale (C major
scale). For this scale, we show in the third row the exponents for the specific template V(2).

indices q → r := (q · 7 + 5) mod 12:

(0, 1, . . . , 11)→ (5, 0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10) (5.3)

We obtain a fifth-ordered chroma histogram hfifth := (hfifth
0 , . . . , hfifth

11 )T ∈ R12. The indices
r ∈ [0 : 11] correspond to the pitch classes in the following way (Figure 5.2):

(0, 1, . . . , 11) =̂ (D[,A[,E[,B[,F,C,G,D,A,E,B,F]) (5.4)

This pitch class ordering relates to the key arrangement in the circle of fifths (see Figure 2.16).

We now multiply these values for each two neighboring entries in order to consider only
those chroma peaks that also contain some energy in the corresponding upper fifth chroma
(Figure 5.3). This results in a product histogram hprod := (hprod

0 , . . . , hprod
11 )T with

hprod
r := hfifth

r · hfifth
(r+1) mod 12 (5.5)

for r ∈ [0 : 11]. At this stage, we are only interested in the root note and not in the mode
of the final chord and, thus, ignore this chord’s third note.1 Since the majority of classical
pieces’ final chords—independently of their mode—contain strong energy in the root as well
as in the fifth chroma, this procedure provides the final chord’s root with a high reliability:

rroot := arg max
r∈[0:11]

hprod
r (5.6)

For monophonic endings, this method also works well since the third partial of the root
always produces some energy in the fifth chroma (compare Section 2.2). Figure 5.3 shows
the root note estimation for a piano example.

To obtain likelihoods for each pitch class being the final root, we calculate a vector Ptonic :=
(P tonic

0 , . . . , P tonic
11 )T of confidence measures using the Euclidean norm:

P tonic
r :=

hprod
r

`2(hprod)
(5.7)

with r ∈ [0 : 11].

1In classical music, the final chord may not be representative for the overall mode of the piece. For instance,
many minor pieces end in the associated major chord (Picardy third). Furthermore, certain symphony
movements show a development from a minor key to the parallel major key.
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Figure 5.3. Final chord estimation process. The score denotes the last bars of F. Chopin’s Impromptu
No. 1 for Piano, op. 29 in A[ major. The upper plot shows the re-sorted chroma histogram hfifth from the
last F = 30 frames. This results in the lower one hprod after pairwise multiplication. From this, we identify
the correct root note A[ even though the maximum value in the chroma histogram belongs to E[.

5.1.2.3 Diatonic Scale Estimation

Since classical works or single movements may pass through certain tonal progressions, show
parts in other keys, or even end in a key other than the global key,2 we consider the full
length of the recording to identify the underlying diatonic scale. Here, we assume that the
most prominent diatonic scale corresponds to the global key’s major or natural minor scale,
respectively. To this end, we extract a chroma histogram g`2 from the whole piece and
try to estimate the most probable diatonic scale. The concept of diatonic scales as “tonal
levels” turned out useful for various tonal analysis tasks [69]. As an example, we denote
G major as well as E minor as +1 level (1 ]), B[ major and G minor as −2 level (2 [). Since
the diatonic scale consists of seven fifth-related notes (compare Figures 5.2 and 2.6), we
again re-sort the histogram to a fifth ordering gfifth := (gfifth

0 , . . . , gfifth
11 )T ∈ R12. To obtain

estimates for the different transpositions, we multiply each seven fifth-related chroma ener-
gies corresponding to the respective diatonic scale. We obtain the scale product histogram
gprod := (gprod

0 , . . . , gprod
11 )T ∈ R12 by calculating

gprod
r :=

11∏
n=0

(
gfifth
n

)V(n−r+5) mod 12

. (5.8)

with r ∈ [0 : 11]. The template V := (V0, . . . , V11) ∈ R12 is zero for the pitch classes outside
the diatonic scale resulting in the multiplicative identity for these pitch classes. Later, we
explain the details of this template (see Equation (5.10)).

Similar to Equation (5.7), we compute likelihood measures Pscale := (P scale
0 , . . . , P scale

11 )T ∈
R12 for the diatonic scales:

P scale
r :=

gprod
r

`2(gprod)
(5.9)

2Most frequently, this is the parallel key (compare Section 2.7).
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with r ∈ [0 : 11]. Hereby, P scale
r indicates the likelihood for the scale d := r−5. For example,

P scale
1 denotes the likelihood for the level d = −4 (A[ major scale or natural F minor scale 3).

To account for the individual relevance of the notes, we propose a weighting procedure4

by means of four different templates of exponents V := (V0, . . . , V11)T:

V(1) = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0)T

V(2) = (0, 0, 0, 0, 1, 3, 2, 1, 2, 3, 1, 0)T

V(3) = (0, 0, 0, 0, 3.75, 4.75, 3.00, 3.75, 4.25, 4.50, 3.75, 0)T

V(4) = (0, 0, 0, 0, 4.04, 5.87, 4.27, 3.51, 5.00, 4.57, 3.20, 0)T (5.10)

In Equation (5.8), the seven entries V4, . . . , V10 are the weighting exponents for the scale
degrees corresponding to the solfège syllables

(V4, . . . , V10)→ (fa, do, sol, re, la,mi, ti), (5.11)

independently from the transposition index r (compare also Figure 2.6 and Table 2.1). For
example, V4 is the weighting for the tonic note of the corresponding major scale.

With the exponents V(1), we realize equal weighting. V(2) emphasizes the notes of the
tonic chords (for level 0, these are the CM and the Am chords). V(3) results from Temperley’s
templates [235] by averaging the major and the relative minor profile for the diatonic scale
notes. V(4) is the same for Krumhansl’s templates [124]. For all templates, we ignore the non-
diatonic notes by exponentiating them with zero. Up to this strategy, the scale estimation
step basically equals a common template matching approach.5 However, the multiplicative
procedure leads to a suppression of those scales for that one or more scale notes have only
small energy.

5.1.2.4 Decision Process

In order to select the most probable key, we combine every tonic note likelihood with the
associated diatonic scale likelihoods:

Pmajor
r = (P tonic

r )s · P scale
r

Pminor
r = (P tonic

r )s · P scale
(r−3) mod 12 (5.12)

with r ∈ [0 : 11]. Here, the exponent s ∈ R serves as a tuning parameter between root
and scale influence. To calculate the likelihood for C major, for example, we combine the
likelihood P tonic

5 —for pitch class C being the root—with the likelihood P scale
5 for level d = 0

(no accidentals). For the minor case, we need to shift the scale vector by three entries
to associate the roots with the corresponding minor scales. To compute the likelihood for
C minor, we multiply P tonic

5 with the scale likelihood P scale
2 corresponding to the level d = −3.

3With this procedure, we do not consider harmonic or melodic minor scales, which may lead to a degraded
scale estimation performance. We believe that, when analyzing whole movements, the notes of the natural
minor scale are sufficiently present. Since we compute a global scale estimate, we therefore assume little
effect of the alterations in minor keys. Mostly, this was confirmed by our experimental observations.

4Note that for a product calculation, we have to perform weighting by exponentiation instead of multiplica-
tion.

5Essentially, the fifth ordering is only for the purpose of convenient visualization. In this representation, all
diatonic scale notes are neighbors.
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Table 5.1. Contents of the dataset Symph. For each composer, we denote the numbers of the symphonies
contained in the dataset.

Composer Symphonies No.

Beethoven, L. van 2, 3, 8

Brahms, J. 2, 3

Bruckner, A. 3, 4, 8

Dvořak, A. 5, 7

Haydn, J. 22, 29, 60, 103

Mendelssohn-B., F. 3, 5

Mozart, W. A. 35, 39, 40, 41

Schubert, F. 2, 3, 8

Schumann, R. 2, 4

Sibelius, J. 3, 4

Tchaikovsky, P. I. 5, 6

We calculate a combined likelihood vector Pcomb ∈ R24 by concatenating major and minor
estimates:

Pcomb = (P comb
0 , . . . , P comb

23 )T := (Pmajor
0 , . . . , Pmajor

11 , Pminor
0 , . . . , Pminor

11 )T (5.13)

From this, we obtain the key by taking the index with the maximal likelihood:

kkey = arg max
k∈[0:23]

P comb
k (5.14)

5.1.3 Evaluation

5.1.3.1 Datasets

For evaluating our algorithm, we consider three datasets of classical music audio recordings.
The first one (Symph) contains symphonies from eleven classical and romantic composers
(all movements for each symphony), 29 symphonies with 115 tracks in total. We compiled
this data from commercial recordings. Table 5.1 lists the composers and works.

The second dataset (SMD) is a selection from Saarland Music Data Western Music, a freely
available dataset collected in a collaboration of Saarland University and MPI Informatik
Saarbrücken with Hochschule für Musik Saar [169]. This data encompasses music for solo
instruments, voice and piano, as well as chamber and orchestral music. We annotated the
key for the 126 tracks showing clear tonality.6

Third, we test our method on a dataset of piano music recordings (Pno). The authors of
the publications [183] and [239] used this data to investigate key determination. This allows
for a direct comparison of key detection performance. The set contains commercial audio
recordings of 237 piano pieces by Bach, Brahms, Chopin and Shostakovich. The composers
explicitly dedicated these pieces to a special key such as, for example, in “The Well-Tempered

6To this end, we skipped works of Bellini, Berg, Debussy, Donizetti, Martin, Poulenc and Ravel as well as the

first and second movement of Faure’s op. 15. From Schumann’s works, we removed Op. 15 and Op. 48 since

they are work cycles and do not constitute sets of separate pieces in some way. For detailed information,

see http://www.mpi-inf.mpg.de/resources/SMD. Our key annotations are also available on this
website.

http://www.mpi-inf.mpg.de/resources/SMD
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Table 5.2. Properties of the key evaluation datasets. The first rows summarize the distribution of the
modes. The middle part outlines the final chord statistics. Last, we show the overlap of final chord and global
key labels throughout the datasets.

Dataset Symph SMD Pno Total

Major global key 70 % 57 % 49 % 56 %

Minor global key 30 % 43 % 51 % 44 %

Major final chord 72 % 55 % 70 % 67 %

Minor final chord 12 % 20 % 14 % 15 %

Third-less final chord 16 % 25 % 15 % 18 %

Final chord =̂ global key 70 % 64 % 53 % 60 %

Final root =̂ global tonic 99 % 98 % 98 % 99 %

Clavier”, which contains each one prelude and fugue for every key. Pauws [183] provides
detailed information about the recordings.

Table 5.2 shows some properties of the datasets. Final chord and global key coincide for
only 60 % of the pieces. However, the final chord’s root matches the global key’s tonic note
almost always (99 %). Most of the mode deviations are Picardy thirds (20 %) with a minor
piece ending in the relative major chord (the opposite case is rare—see Section 2.7). The
remaining exceptions stem from third-less final chords (18 %) such as empty fifths (1 %) or
unisono endings (17 %). Overall, 71 % of the pieces end in a full triad while 11 % end in a
fifth-less chord.

5.1.3.2 Experimental Results

We investigate the influence of the system parameters in a detailed study on the three datasets
Symph, SMD , and Pno.7 Table 5.3 shows an overview of these results. The last column
denotes the average performance ΛTotal, computed as a weighted sum over the performance
on the three individual datasets:

ΛTotal =
115 ΛSymph + 126 ΛSMD + 237 ΛPno

478
(5.15)

First, we test different sizes F of the final frame set. Here, a value of F = 20 frames
corresponding to 2 s duration performs best. This value seems to balance the requirements for
short final chords (no failures caused by previous chords) with a sufficiently high robustness.
To estimate the individual influence of root and scale estimation, we run the algorithm
with different weight exponents s for the decision process. A slight preference of the scale
confidence with s = 0.8 yields best results. Next, we show selected results for different
energy threshold factors ρ. For this parameter, a value of ρ = 0.20 % seems to optimally
separate silence from music frames. With this low dynamic threshold, we may also include
the reverberation of the final chord to a certain extent. For this reason—and, because of the
frequent occurrence of a final ritardando in classical music performances—we do not have to

7The results presented in this section slightly deviate from the numbers in [252]. This is due to a misinter-
pretation in the paper where we assumed a false sampling rate for the chroma computation. Because of
that, the optimal number for the parameter F is lower here. Furthermore, we test the effect of reducing
the contribution of the bass region to the chroma features, which shows a similar effect as the sampling
rate confusion.
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Table 5.3. Correct full key classification results for different parameter sets. We test the influence
of the size of the final frame set F (A), the root–scale weight exponent s (B), the energy threshold factor
ρ (C), and the weight exponent set V (D). The bold lines mark the best results for each parameter. For
(E1 ), we removed the multiplication in the tonic note estimation Equation (5.5). For the results (E2 ), we
replaced the product in Equation (5.8) with a weighted sum. (E3 ) considers both of these changes. For (E4 ),
we used the averaged (major and relative minor) Krumhansl templates—without restriction to the diatonic
entries—and calculate a sum instead of a product. (E5 ) and (E6 ) constitute the standard template matching
procedure for 24 keys using the templates proposed by Krumhansl (E5 ) and Gómez (E6 ), respectively.

Parameters Symph SMD Pno Total

A) s = 0.8, ρ = 0.15 %, V = V(2)

F = 10 90.4 % 95.2,% 92.8 % 92.2 %

F = 20 92.2 % 95.2 % 94.1 % 93.9 %

F = 30 92.2 % 92.1 % 93.2 % 92.7 %

F = 40 93.0 % 92.1 % 93.7 % 93.1 %

F = 60 92.2 % 89.7 % 92.0 % 91.4 %

B) F = 20, ρ = 0.15 %, V = V(2)

s = 0.6 92.2 % 93.7 % 94.9 % 93.9 %

s = 0.7 92.2 % 94.4 % 94.5 % 93.9 %

s = 0.8 92.2 % 95.2 % 94.1 % 93.9 %

s = 0.9 92.2 % 94.4 % 94.1 % 93.7 %

s = 1.0 92.2 % 94.4 % 93.7 % 93.5 %

s = 1.2 92.2 % 94.4 % 93.7 % 93.5 %

C) F = 20, s = 0.8, V = V(2)

ρ = 0.10 % 91.3 % 94.4 % 94.9 % 93.9 %

ρ = 0.15 % 92.2 % 95.2 % 94.1 % 93.9 %

ρ = 0.20 % 93.0 % 94.4 % 94.1 % 93.9 %

ρ = 0.25 % 93.9 % 92.9 % 94.1 % 93.7 %

ρ = 0.30 % 93.9 % 92.9 % 92.8 % 93.1 %

ρ = 0.50 % 93.9 % 92.1 % 92.8 % 92.9 %

D) F = 20, s = 0.8, ρ = 0.20 %

V = V(1) 88.7 % 93.7 % 92.8 % 92.1 %

V = V(2) 93.0 % 94.4 % 94.1 % 93.9 %

V = V(3) 90.4 % 93.7 % 95.8 % 93.9 %

V = V(4) 89.6 % 93.7 % 95.4 % 93.5 %

E) F = 20, s = 0.8, ρ = 0.20 %

E1 83.5 % 80.2 % 81.0 % 81.4 %

E2 88.7 % 92.1 % 89.0 % 89.7 %

E3 74.8 % 63.5 % 57.4 % 63.2 %

E4 88.7 % 90.5 % 86.5 % 88.1 %

E5 44.3 % 42.1 % 49.4 % 46.2 %

E6 71.3 % 75.4 % 65.0 % 69.2 %

worry about choosing a fixed small number of final frames F independently of the tempo of
the piece.8

8Intuitively, one might consider longer frame sets for slow pieces and shorter ones for fast pieces. However,
we did not find any increase of performance using such method.
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Figure 5.4. Key detection results for different pitch ranges. In this study, we vary the lower pitch
boundary for computing the chroma features. We obtained best performance with a lower limit at p = 36.

Testing the weight exponents V, the emphasis of the chord notes in V(2) and the template
derived from Temperley V(3) perform best. To check the influence of the individual steps, we
perform several experiments without the multiplicative procedure in the tonic note estimation
or in the diatonic scale estimation (block (E) in Table 5.3). For the first test (E1 ), we
remove the pairwise fifth-multiplication for the tonic note estimation and directly pick the
maximum from the final chroma frames, leading to a decrease of about 10 percentage points
in performance. In contrast, replacing the product matching for the scale (Equation (5.8))
with a weighted sum only slightly affects performance. The combination of both changes
(E3 ) leads to considerably decreasing results. For (E4 ), we extended this weighted sum to
all twelve pitch classes by combining the values of Krumhansl’s templates for the major and
relative minor keys. This still leads to good results of 88 % total performance. However,
the traditional template matching (E5 ) with the 24 Krumhansl probe tone ratings—without
considering the final tonic note—performed much worse (46 % on average). Inspired by
Schaab [211], we test this approach using Gómez’ templates instead [76]. This results in a
performance of about 70 %—much better than with Krumhansl’s templates but still worse
than our final chord algorithm. Overall, the use of the final chord approach turns out
beneficial for key detection performance compared to pure template-based strategies. The
fifth multiplication in the tonic note estimation step seems to be important whereas the
details in the diatonic scale matching procedure shows less influence.

Most of the parameters that we evaluated here show important impact especially on one
of the databases. A reason for this may be the different acoustic behavior of orchestra and
piano recordings. Furthermore, different properties of the music contained in the datasets
may play a role. For example, the style dependency of tonality (compare Table 5.5) or the
temporal dimensions in symphonic music in contrast to soloistic and chamber music may
affect the difficulty of key detection.

Inspired by some observations in the testing procedure, we conducted a further study to
estimate the lower pitch boundary for the chroma computation (Equation (3.22)). In the
Chroma Toolbox algorithm [165], the default boundary is the pitch corresponding to the
lowest piano key (p = 21). Instead of using this value, we vary the lower pitch boundary
from p = 24 up to p = 46. The individual datasets react on the variation of this parameter
in different ways. For Symph, a lower value of about p = 34 leads to best results whereas for
the other datasets, higher boundaries of roughly p = 40 seem to be optimal. This behavior
may arise due to the acoustic properties of the low piano keys (Symph does not contain piano
music). Regarding the total performance ΛTotal, we found p = 36 to be an optimal boundary.
For the upper boundary, we keep the default value p = 108 since we found no considerable
effect by changing this value.
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Table 5.4. Key extraction results for the optimal parameter combination. As evaluated in the
previous experiments, we choose the optimal parameters F = 20, s = 0.8, ρ = 0.20 %, V = V(2) and a low
pitch boundary at p = 36.

Dataset Symph SMD Pno Total

Correct full key 93.9 % 95.2 % 95.4 % 95.0 %

Correct tonic note 100 % 96.8 % 96.6 % 97.5 %

Fifth errors 0 % 0.8 % 1.3 % 0.8 %

Third errors 0 % 2.4 % 2.1 % 1.7 %

Mean confidence 96.5 % 96.1 % 97.1 % 96.7 %

Table 5.5. Results by historical period. The parameters are the same as for Table 5.4.

Period Baroque Classical Early Rom. Late R./Mod.

No. in Symph 0 46 26 43

No. in SMD 11 49 20 46

No. in Pno 144 0 0 93

Total No. 155 95 46 185

Correct full key 97 % 96 % 96 % 93 %

Correct tonic note 97 % 98 % 100 % 97 %

In Table 5.4, we show individual error rates for the best parameter set. Hereby, we empha-
size the small number of fifths errors that arise frequently for other key detection approaches.
Third errors include all tonic note relations of minor and major thirds, including the relative
key. Especially on symphonic data, identification of the correct tonic note is clearly more
reliable than full key detection.

In Table 5.5, we break down these results to the historical periods. To this end, we
cluster the results by composer and aggregate music by Bach (Baroque), Haydn, Mozart and
Beethoven (Classical), Schubert, Schumann and Mendelssohn (Early Romantic), and the rest
(Late Romantic and Modern). As expected, we find lower accuracy for the late romantic and
modern pieces. This may proceed from a higher tonal complexity in these periods.

The results for the optimal parameter combination (Table 5.4) are slightly below the state-
of-the-art [39, 174]. Hereby, we have to take into account that the authors of these papers
evaluated their algorithms on music from one composer for one type of orchestration. Our
data comprises a wider range of styles and instrumentations. On the Pno set, we almost
reach the accuracy of 98 % presented in [239]. To compare to a public algorithm, we run the
key detection algorithm of MIRtoolbox from University of Jyväskylä [128] on our data with
a total performance of 67.5 %. This method is a common template matching approach based
on chroma features. Here, the authors use Gómez’ templates for the key estimation. Looking
at the results in Table 5.6, we see that our method performs better for full key detection.
Especially, the final-chord-based algorithms outperforms the template-based approach with
respect to the tonic note estimation performance. In our re-implementation of the template
matching, we obtain roughly similar results (69.2 %) when using the same templates (setting
(E6 ) in Table 5.3). The deviations between the results of the MIRtoolbox and our template
matching may originate from a different chroma extraction method.

To further compare the performance of the proposed algorithms with other methods, we
performed another study [259] by re-implementing several published algorithms. Beyond the
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Table 5.6. Results of the MIRtoolbox key detection algorithm. For this experiment, we use the
public algorithm presented in [128].

Dataset Symph SMD Pno Total

Correct full key 73.0 % 71.2 % 62.9 % 67.5 %

Correct tonic note 78.4 % 71.2 % 62.9 % 68.8 %

Fifth errors 9.0 % 12.8 % 13.1 % 12.0 %

Third errors 12.6 % 14.4 % 20.2 % 16.8 %

standard template matching approach, we consider the idea by Van de Par et al. [239]. They
used a profile learning strategy together with a special weighting of the beginning and ending
phases. To account for approaches using geometrical pitch models, we also test the symmetry
model by Gatzsche and Mehnert [72]. In [157], they evaluated this model for key detection.

For estimating the optimal parameters, we run each algorithm with different parameter
settings in a stepwise fashion. To that end, we optimize each parameter by maximizing the
weighted total performance ΛTotal and fix the remaining parameters to default or best fit
values. We perform this overfitting on the three datasets Symph, SMD , and Pno since we
later use an unseen dataset (Cross-Era) for evaluation.

For the basic chroma features, we test six different implementations (compare Sec-
tion 3.5.3): CP, CLP (with η = 1000), CRP, HPCP, EPCP (three iterations of the harmonic
product spectrum), and NNLS. We obtain the following results for the different algorithms
(for the parameters’ meaning, see [259]):

• Template matching. We test the profiles proposed by Krumhansl [124], Temperley
[235], and Gomez [76] with the latter ones performing best. Although Gómez developed
these profiles in combination with HPCP features, NNLS features outperform these
features (84.7 %), followed by CLP.

• Profile learning. For the profile training, we perform a cross-validation with 98 %
training data, 2 % test data, and 5000 repetitions, exactly following [239]. We find best
performance for CLP chroma features (92.3 %)—closely followed by NNLS. We cannot
reach the result presented in [239] (98 % on the Pno dataset). As a reason for this,
we assume that the specific chroma implementation presented in that work (including
a masking model) provides additional benefits.

• Symmetry model. This algorithm [157] works best in conjunction with NNLS
chroma. We find the optimal pitch set energy threshold at fTR = 0.12. The an-
gular vector value comes out best at wsym = 0.53 leading to a total performance of
82.6 %.

• Final chord. For the final chord algorithm, we found a slightly deviating optimal
parameter set here:

F = 19, s = 0.9, ρ = 0.19 %, V = V(2) (5.16)

With these parameters, we obtained 93.7 % accuracy. The final chord algorithm ob-
tained optimal results on the basis of CP chroma features. Here, we do not test the
influence of the lower pitch boundary in the chroma computation step but use the piano
range p ∈ [21 : 108].
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Figure 5.5. Evaluation of different key detection algorithms. Here, we show the individual key
recognition accuracies for the three datasets Symph, SMD, and Pno. We compare six types of chroma features
serving as basis feature for the different methods.

In Figure 5.5, we show the overall results of the key detection evaluation for different types
of chroma features. All algorithms considerably depend on the chroma extraction method—
especially when the data includes piano music (Pno and SMD). NNLS features often obtain
best results and seem to be the most stable basis for key detection methods. EPCP features
are not a good choice for this purpose. The profile learning and the final chord strategies
perform similarly. Hereby, the first one is rather data-dependent whereas the final chord
algorithm requires a fine parameter tuning.

In the previous experiments, we optimized the parameters of the algorithms with respect
to the evaluation datasets. To estimate the real-world performance of these algorithms,
we make use of unseen data. To this end, we use a subset of the Cross-Era dataset (see
Section 7.1). We annotated the key for 1200 pieces comprising both piano and orchestral
music from the periods Baroque, Classical, and Romantic. For each method, we use the
feature and parameter setting performing best in the previous experiments.9 We obtain a
performance of 83.9 % for the template matching algorithm, 87.1 % for the profile learning,
80.4 % for the symmetry model, and 85.4 % for the final chord approach. Figure 5.6 displays
the detailed results. Compared to the optimization datasets, the overall performance is worse
and the differences between the methods are smaller. Profile learning and final chord still
obtain the best results. However, the learning strategy seems to be slightly more robust than
the parameter-dependent final chord algorithm.

5.1.4 Conclusion

In this section, we presented a new rule-based approach to extract the global key information
from classical music audio recordings. The method puts special emphasis on the final chord
of the piece. After extracting chroma features, we automatically select a set of final frames

9For the profile learning approach, we also train the profiles on the previously used datasets Symph, SMD ,
and Pno.
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a) Symph, SMD , Pno datasets (optimized parameters)
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Figure 5.6. Key detection performance for unseen data. Here, we compare the key detection results
on the datasets previously used with the performance on unseen data. The upper plot shows the weighted
total performance on the three datasets Symph, SMD, and Pno. In the lower plot, we display the results on
a 1200 track database of orchestra and piano music (Cross-Era database).

that exceed a given energy threshold. From these frames, we determine the final chord’s root
using a pairwise multiplication of fifth-related chroma values. From chroma statistics of the
full piece, we estimate the underlying diatonic scale. Finally, we combine these results by
multiplying corresponding likelihood measures obtaining the full key.

For the evaluation, we consider three datasets on symphonic, chamber, and solo piano
music containing 478 recordings in total. We performed a detailed study to estimate the
optimal parameters for our algorithm. In these experiments, we reach success rates of up to
95 % for full key detection and 97 % for tonic note detection. Our results are in the range of
most state-of-the-art approaches designed for key detection in classical music. To compare
with these public methods, we re-implemented several key detection systems proposed in the
literature. For all algorithms, we found a considerable dependency on the chroma feature
type. Hereby, CP and NNLS features performed best. On unseen data, we tested the
robustness of the methods. Compared to the most competitive approach by Van de Par
et al. [239], the final-chord-based algorithm seems to be slightly less robust.

5.2 Local Estimation of Scales

5.2.1 Introduction

As we saw in Section 2.7 and in the previous section, we do not find a constant global key
for every musical piece. Rather, composers use to play with key and key expectation and
create transitional phases (modulations) leading from one local key to another. For classical
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music, these transitions usually take place over a considerable span of time. Hence, it is
often hard to manually annotate a ground truth segmentation of local keys since the segment
borders—and even the keys—are often ambiguous. For these reasons, we restrict ourselves to
a visualization of modulations in this section without performing any quantitative evaluation.
Our approach relates to music theory concepts on harmony and tonality. In particular, we
consider scale-based theories for explaining tonal relations (compare Sections 2.5 and 2.7)
and derive automatic analysis methods based on these theories.

The first visualization type presented in this section serves to display the temporal evolution
of local keys within a movement (Section 5.2.4). This method relates to Gárdonyi’s and
Nordhoff’s [69] analysis technique regarding diatonic key relationships and “tonal levels.” We
calculate local estimates for the underlying diatonic scales and arrange these scale estimates
according to a perfect fifth series in order to account for tonal similarity of pitch classes.
Visualizing the local results over time provides a useful overview of the modulation structure
of a piece.

In Section 5.2.5, we present a second method referring to the general scale type and the
symmetries of the local pitch content. This technique relates to scale-based theories of
harmony such as the distance principle by Gárdonyi, Nordhoff, and Lendvai [69] or the
Tonfeld concept by Simon [82]. Scale models such as the whole tone scale, the octatonic
scale, or the acoustic scale play an important role in impressionistic music or in O. Messiaen’s
compositions, among others. With our method, we compute the local likelihood for different
scale types. We display these estimates over the course of a piece in order to show the locally
prominent scales. This allows for an analysis of the formal aspects of tonality.

Both visualization techniques may be helpful for assisting musicological research. With
such an automatic approach, it is possible to get a quick overview of a piece with respect
to tonal relationships and progressions. This also applies to particularly long works such
as operas or symphonies where the analysis of large-scale structures may be very costly.
Furthermore, an automatic approach enables the search after tonal phenomena on large
musical corpora and their statistical analysis.

This section closely follows the study presented in [257]. From a musicological point of view,
Habryka [83] published a case study using some of these methods for analyzing a particular
piece of late romantic music (the Scherzo from H. Rott’s first symphony). Beyond that, we
published a key segmentation method for pop music based on a very similar method [253],
which we do not consider here.

5.2.2 Musicological Foundations

The analysis technique presented in this work relies on the local scale material used in
a composition. In Western music theory from the 19th century on, there are two ways
of treating scales and their relation to tonality. Some scholars consider chords and chord
progressions as fundamental— without focussing on the pitch class content [42,51,90,200,214].
Understanding harmony this way, a scale is the consequence of the used chords. Other
musicologists consider scales as preexistent and deduce the chords as triads on the scale
degrees [69,82,133,219,249]. In Section 2.7, we already discussed these contrary notions.

Besides such local observations, our visualization method allows for analyzing the formal
aspects of tonality. In Schenkerian analysis [212], a piece of music constitutes a sequence of
scale degrees (“Stufen”). Hereby, we understand the term “scale degree” in an extended and
more abstract way. It no longer denotes a single note or triad but consumes several harmonies
that constitute autonomous chords themselves. These scale degrees are prolongated and
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Figure 5.7. Segmentation of a chromagram. Each box stands for one chromagram frame. We divide
the initial chromagram into analysis windows with a blocksize BT and a hopsize HT given in frames.
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Figure 5.8. Diatonic subsets of a chromatic scale. We notate the chromatic scale in a perfect fifth
ordering. The brackets are marking several diatonic subsequences. We name the scales according to the
absolute fifth measurement. Diatonic scales with a close relation share a high number of pitch classes. Compare
Section 2.5 for a more profound discussion.

connected to formal concepts such as the sonata form or the fugue. Other theories emphasize
the structural purpose of tonality [22]. Further large scale analyses of tonality focus on the
music dramas of R. Wagner—such as the analyses performed by Lorenz [143], which relate to
our visualization method of local keys. The idea of aggregating pitch classes to superior tonal
structures influenced recent musicological concepts such as the pitch class set theory [64].

5.2.3 Feature Extraction

Similar to the previous section, we build our local tonality visualization method on chroma
feature representations of the audio data Section 3.5. Here, we use a normalized chromagram
C`1 based on the CP chroma implementation from the public Chroma Toolbox [165]. After
applying a tuning estimation step, we compute a log-frequency spectrogram Y(p,m) in the
piano range p ∈ [21 : 108] with frame index m ∈ [0 : M − 1]. From this, we derive the
chromagram C`1(q,m) with q ∈ [0 : 11] as described in Equation (3.22).

We compute the chroma vectors with an initial feature rate of ffeat = 10 Hz. For analyzing
the local pitch content, we need larger analysis windows. Therefore, we group the chroma
vectors to blocks of size BT with a hopsize of HT such as shown in Figure 5.7. A block of
BT = 200 feature frames corresponds to an analysis window of BT/ffeat = 20 s. For every
block containing BT chroma vectors, we compute a chroma histogram g`1 as presented in
Section 3.5.5.

To account for harmonic similarity of pitch classes, it turned out useful to re-order the
chroma vector to a series of perfect fifths (D[,A[,E[, . . . ,F]). For each block, we obtain
a fifth-ordered chroma histogram gfifth := (gfifth

0 , . . . , gfifth
11 )T ∈ R12 as introduced in Sec-

tion 5.1.2.

5.2.4 Analysis of Modulations

The first analysis method proposed in this section refers to the local key of the music. For
this, we consider the analysis method presented in [69] regarding the similarity of fifth-related
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keys. By re-ordering the chromatic scale to a series of perfect fifth related pitch classes, a
diatonic scale corresponds to an excerpt of seven neighbors (for convenience of the reader,
we repeat in Figure 5.8 the illustration from Section 2.5). In such a representation, two
fifth-related diatonic scales such as the C major and the G major major scale only differ
by one note (in this example, F] instead of F). We use the nomenclature presented in [69]
and denote the diatonic scales according to the number and type of accidentals necessary for
notation. For example, a D major scale (2 ]) is called +2 diatonic or +2 level, an A[ major
scale is a −4 diatonic. Beyond this absolute fifth measurement, which denotes the scales
in accordance with the required accidentals, it is sometimes more convenient to use relative
fifth measurement. Here, level 0 indicates the diatonic scale corresponding to the global
key. The other scales obtain their names from the relative distance D to the global key. In
Section 2.5, we discussed the musical properties of diatonic scales in more detail.

Similar to Section 5.1.2.3, we try to estimate the underlying diatonic scale. To do this for
the local tonal content, we compute the local chroma histogram gfifth for each analysis block.
From this, we multiply each seven entries hr corresponding to the seven pitches of a diatonic
scale. The absence of one or more scale notes results in a multiplication with a small number
and, thus, leads to a small likelihood for this scale. Following Equation (5.8), we calculate

the estimates gprod
r via

gprod
r :=

11∏
n=0

(
gfifth
n

)V(n−r+5) mod 12

(5.17)

with r ∈ [0 : 11]. Hereby, gprod
r describes the likelihood for the (absolute) level d := r − 5.

Inspired by the experimental results of Section 5.1, we weight the scale degrees with a set
of exponents V to account for the individual importance of the scale notes. This exponential
weighting turned out to improve scale estimation in the context of global key detection
(Section 5.1). We derive the specific template V(5) from the Krumhansl tone profiles V(4)

[124] combined with a weighting of the tonic triads V(1) (see Equation (5.10)):

V(5) =
1

2

(
V(1) +

1

2
·V(4)

)
= (0, 0, 0, 0, 1.51, 2.97, 2.07, 1.38, 2.25, 2.64, 1.30, 0)T (5.18)

We do not consider the off-scale notes and, thus, exponentiate them with zero. The proposed
procedure corresponds to a multiplicative version of common template matching strategies.
This turned out useful for obtaining a robust scale estimation algorithm.

Finally, we normalize gprod with respect to the `2 norm in order to obtain the diatonic
scale likelihoods:

Pdiatonic(d) =
gprod
d+5

`2(gprod)
(5.19)

with the level index d ∈ [−5 : 6] indicating to the number and type of accidentals. With the
normalization, we force the system to decide on the likeliest local diatonic scale (or combina-

tion of scales) even if all gprod
r are rather small. This turned out to enhance the robustness of

the method. As a drawback, the output for non-diatonic music is not always meaningful and,
thus, we have to carefully consider the preconditions for applying this analysis method. For
example, the presence of melodic or harmonic minor scales may produce misleading results.
In the following, we will discuss such problems.

We now want to show a number of different analyses and discuss the characteristics of our
method on the basis of several visualizations. Since diatonic scale estimation mainly relates
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b) BT = 240, HT = 60
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Figure 5.9. Diatonic scale visualization of J. S. Bach’s Sinfonia No. 3, BWV 789. For this piece
in D major, the diatonic level 0 corresponds to 2 ]. We compare two different time resolutions: blocksize
BT = 120 frames and hopsize HT = 30 frames in the upper plot (a), BT = 240 frames, HT = 60 frames in
the lower plot (b). We analyze a recording by J. Sebestyén (Naxos 1993).

to Gárdonyi’s theory, we first look at J. S. Bach’s Sinfonia in D major BWV 789, which
is discussed in [69, p. 250]. Note that for such tonality analyses, the nomenclature of the
diatonic scales refers to the global key (relative fifth measurement). For this example, we
denote the diatonic scale corresponding to D major (2 ]) as level 0, the A major scale (3 ]) as
+1 level, etc. In contrast to Gárdonyi’s approach, our automatic method cannot discriminate
between major and relative minor keys.

Figure 5.9 shows the results of this analyis. Using a fine time resolution (upper plot), we
observe the general modulation structure with local keys at +1 in the beginning and −1 in the
second half. At about 0:30 min, we see sudden jumps to the +2 level, in contrast to [69]. Here,
a short modulation to the key F]minor is taking place (cadence in Measure 14) introducing
the pitches G] and D] (as part of the F] melodic minor scale). Using larger analysis windows
(lower plot), these local alterations show less influence—leading to a sine-shaped structure
similar to [69]. From this observations, we see that the analysis results are meaningful in
general. Problems may arise from short-time local modulations as well as for non-diatonic
scales such as the melodic minor scale. With our method, we do not account for the possible
alterations in minor scales. This may lead to a misestimation with scales having more sharp
accidentals. We can see this effect in Figure 5.9 a) at about 0:30 min. Hereby, the temporal
resolution of the analysis windows plays a crucial role. With a coarser resolution such as in
Figure 5.9 b), the algorithm does not produce this error. Here, the local chroma histograms
seem to have sufficient influence of the natural minor scale’s notes. Nevertheless, a more
flexible approach for dealing with minor scales should be considered for future work.
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Figure 5.10. Diatonic scale visualization of G. P. da Palestrina’s “Missa Papae Marcelli.” We
analyze the Kyrie from this mass with level 0 =̂ no accidentals, BT = 100, HT = 50 in a recording by The
Tallis Scholars (Gimell 1980/2005).
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Figure 5.11. Diatonic scale visualization of O. di Lasso’s “Prophetiae Sibyllarum.”This plot shows
No. 4 “Sibylla Cimmeria” from this work cycle, recorded by Ensemble Daedalus (Alpha 2005). Here, level
0 =̂ 1 [ according to the common notation, the final chord is GM. BT = 80, HT = 40.

Next, we want to discuss visualizations of pieces composed in various musical styles. In
Figure 5.10, we show an analysis of the Kyrie from G. P. da Palestrina’s “Missa Papae
Marcelli.” To a great extent, the pitch classes used in this piece belong to one diatonic scale.
Smaller deviations to the +1 level arise due to local voice leading phenomena, for example,
at 2:00 min where an F] is present. In contrast, the +1 scale detected at 3:30 min constitutes
an ambiguity. Here, at the end of the “Christe eleison,” a GM triad holds for a couple of
seconds. The algorithm misinterprets this half-cadence as a modulation to the +1 level.
Further obscurities occur at the very beginning. After the initial silence, the voices come in
gradually and, thus, the full scale material is present after some seconds for the first time.
Due to this reason, scale detection is difficult here.

As a contrasting example, we display the analysis of a piece by the 16th century composer
O. di Lasso (Figure 5.11). Here, the preconditions of scale-based diatonic music are not
fulfilled. Sometimes, we find a small number of chords belonging to one diatonic scale.
However, most of the chord changes rely on chromatic movements of the voices such as the
change from an FM to an AM chord at 0:22 min. In such situations, the algorithm cannot
estimate a constant scale since the chords are stemming from different diatonic scales. At
about 2:00 min, we find an extreme example for this behavior. Overall, this example points
to the limitations of our method for chromatic chord-based music.

In Figure 5.12, we show the analysis of a choral by J. S. Bach. We can recognize well the
modulation to the +1 level in the repeated first phrase. The deviation to the “minus” region
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Figure 5.12. Diatonic scale visualization of a Choral from J. S. Bach’s “Johannespassion”
BWV 245. We analyze the Choral No. 22 “Durch dein Gefängnis” in E major with level 0 =̂ 4 ], BT = 42,
HT = 15, in a recording by Scholars Baroque Ensemble (Naxos 1994).
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Figure 5.13. Diatonic scale visualization of a sonata by L. van Beethoven. This analysis describes the
sonata Op. 14, No. 2, 1st movement in G major. Level 0 =̂ 1 ], BT = 150, HT = 60, played by D. Barenboim
(EMI 1998).

at about 0:40 min may arise due to the flat alterations at the chromatic elaboration of the
text passage “unsere Knechtschaft.” The +1 level at 0:50 min is a misinterpretation of the
long dominant triad BM.

Looking at Beethoven’s sonata Op. 14, No. 2 in G major (Figure 5.13), we observe the
modulation shape of the classical sonata form with some interesting details. In the transition
phase between the first to the second theme at 0:20 min (repeated at 2:00 min), we even see
a small +2 area where we only expect level +1. Indeed, the piece modulates to A major
for a short time, indicated by the presence of the pitch class G]. In the development (3:30–
5:00 min), we find keys in the minus region, in particular.

As the last example, we discuss R. Wagner’s overture from the opera “Die Meistersinger
von Nürnberg” (Figure 5.14). Interestingly, we find a structure that roughly corresponds to
the tonal shape of a sonata form. There are +1 regions in the first part, a highly modulating
middle part, as well as an ending mainly based on level 0. The modulation path at about
4:00 min is remarkable, in particular. Here, our analysis indicates a modulation around the
circle of fifths. After a short period at the levels +4 and +3, the tonal structure slowly
leads back to the global key emphasized by a three minute coda mostly in level 0. For this
particular example, the proposed method seems to provide an appropriate analysis. This has
to be tested for other works by R. Wagner. Regarding larger structures such as R. Wagners
tetralogy “Der Ring des Nibelungen,” a comparison of our algorithm’s output to the analyses
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Figure 5.14. Diatonic scale visualization of R. Wagner’s “Meistersinger von Nürnberg.” For the
Overture in C major, we show the progression of diatonic scales over time. Here, level 0 corresponds to no
accidentals, BT = 150, HT = 65. The recording is played by the Polish National Radio Symphony Orchestra,
conducted by J. Wildner (Naxos 1993).

presented in [143] could be of interest. A preliminary study on this subject can be found
in [255].

5.2.5 Local Scale Type Estimation

As we discussed in Section 2.5, scale models other than diatonic scales play a crucial role in
compositions from the late romantic period and the 20th century. To analyze which general
scale types are present throughout a piece of music, we propose a second analysis method.
Here, we do not compare the likelihood for different transpositions of one scale type. Instead,
we only consider the likeliest transposition for every scale type and compare these maximal
likelihoods among different scale types. To calculate the scale type estimates Sq, we again
depart from the local chroma histogram g`1 . Unlike Equation (5.17), we here use the chroma
histograms in chromatic order. In the following, we use the abbreviation g = (g0, . . . g11)T :=
g`1 . We replace the exponents V with binary templates T := (T0, . . . , T11)T ∈ R12 describing
the different scale models:10

Sq =
11∏
n=0

(gn)T(n+q) mod 12 (5.20)

The index q ∈ [0 : 11] indicates the transposition of the scale in semitones. We use the
maximal value Smax of all transpositions as scale type estimate:

Smax = max
q
Sq (5.21)

To investigate various concepts from music theory, we use templates T for different scale
models. We showed templates for several scales in Equations (2.24) and (2.25) such as the
fifth-based pentatonic scale

TPentatonic = (1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0)T (5.22)

or the symmetrical whole tone scale

TWholetone = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)T . (5.23)

10Note that the entries of the template vectors T now refer to a chromatic pitch ordering.
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Figure 5.15. Scale type visualization of C. Debussy’s “Voiles.” For this piece (No. 2 from the first
book of “Préludes” for piano), we estimate the presence of different scale types. The analysis windows exhibit
a blocksize of BT = 100 frames and a hopsize HT = 50 frames. We consider a recording by F. Thiollier (Naxos
1998).

In Figure 2.10, we show these scales in Western music notation. For the symmetrical scales
(whole tone scale, hexatonic scale, and octatonic scale), some of the transposed versions are
identical to each other. Since we pick the maximum likelihood of all transpositions, this does
not constitute a problem. However, in order to compare the likelihoods for different scale
types to each other, we have to account for the varying number of notes Ksc ∈ N in the
scales:

Ksc :=
11∑
q=0

Tq. (5.24)

We therefore introduce a normalization factor depending on the number of notes in the scale.
For a `1-normalized histogram g = g`1 , an equal distribution of energy over the scale notes
results in a maximal chroma value of gn = 1/Ksc for each scale note with index n. Thus,
the maximal value of Sq in Equation (5.20) is (1/Ksc)

Ksc . We normalize with this factor and
compute the final likelihoods as

Pscaletype :=
Smax

(1/Ksc)Ksc
. (5.25)

We obtain a maximum value of Pscaletype = 1 if all scale notes have equal energy and the
off-scale notes have zero values:

gq :=
1

Ksc
· Tq (5.26)

with q ∈ [0 : 11]. For a graphical visualization of these analyses, we show the scale type
likelihoods—indicated by the gray scale level—over time. We display the results for each
frame from the beginning of the analysis window until the beginning of the next window. To
compare the likelihood for different scale types, we use different template vectors T. Note
that we do not normalize the local histograms—in contrast to Section 5.2.4. Therefore, all
scale type estimates may be high or low at the same time in principle.

We now want to present several examples for our scale type estimation algorithm. Non-
diatonic scale types such as symmetrical scales have become important from the late romantic
period on. In particular, composers from the impressionist period used pentatonic and whole
tone scales, among others. In Figure 5.15, we show the analysis of C. Debussy’s prelude
“Voiles.” We indicate the likelihoods Pscaletype by different gray levels with a logarithmic color
axis. In the first part until 1:50 min, the whole tone scale is dominating. This corresponds
to the score, which only contains pitches from one whole tone scale for the first 41 measures.
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Figure 5.16. Scale type visualization of C. Debussy’s “La Mer.” This plot shows the first movement
“De l’aube à midi sur la mer” from the orchestral piece. We compare analyses based on synthetic (not
interpreted) MIDI data (a) and audio data (b) with BT = 200 and HT = 50. For the audio analysis, we use a
recording played the Belgian Radio and Television Philharmonic Orchestra under A. Rahbari (Naxos 1997).

In contrast, the middle part relies on a pentatonic scale. For the ending section, the music
returns to the pitch class content of the whole tone scale. In the parts with dominating whole
tone scale, we see some contributions to the likelihood for the acoustic scale as well. This
is not very surprising, since the acoustic scale contains five out of the six notes of a whole
tone scale. This close relationship—together with chroma artifacts stemming from upper
harmonics or effects such as resonances in the piano—may lead to a non-zero likelihood for
the acoustic scale. We observe a similar behavior comparing the pentatonic and the diatonic
scales. Since the pentatonic scale pitches are a subset of the diatonic scale, small energy
deviations in the “silent” chroma bands may produce a contribution to the diatonic scale
likelihood—even if only the notes of a pentatonic scale are sounding.

Effects of this kind may cause even more problems when dealing with complex orchestral
music, which exhibits a large variety of timbres. To investigate this, we show an analysis
computed on a MIDI representation of C. Debussy’s orchestral piece “La Mer” and compare
this analysis to the results of the audio-based method for the same piece (Figure 5.16). For
the MIDI analysis, we weight the pitches with their velocity values and aggregate to pitch
classes in order to build chroma-like features. On these features, we perform our analysis as
described previously. Note that the time axes are not synchronized in a musically meaningful
way so that the time positions only roughly relate to each other.

Comparing the results for the two representations (Figure 5.16 a, b), we observe a very
similar structure. Looking at the details, we find some smaller deviations. In the ending
sections (8:00–9:00 min), we find some “noisy” contributions to the likelihood of a chromatic
scale for the audio analysis. In the beginning at about 0:30 min, we find more substantial
differences. The reasons for the high likelihood of the chromatic scale in the audio analysis are
not very clear since there is no indication in the score. Rather, an acoustic scale seems to be
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Figure 5.17. Scale type visualization of I. Stravinsky’s “Le Sacre du Printemps.” The upper plot
shows the first part, the lower plot refers to the second part, BT = 200, HT = 50. We use a recording of the
Belgian Radio and Television Philharmonic Orchestra, conducted by A. Rahbari (Naxos 1991).

present here. However, the audio-based method may have advantages as well. Gárdonyi [69]
claims the horn motif in octaves to be an example for acoustic tonality. This motif first
appears at about 1:45 (rehearsal letter11 3). Here, the audio-based analysis slightly better
detects the presence of this scale. Moreover, we also notice the repetitions of that motif at
about 3:00 min (letter 5) and around 4:00 min (short before letter 8) in the audio visualization.
Nevertheless, these repetitions become more clear in the MIDI-based analysis. In general,
we find a lot of pentatonic scales as well as some diatonic and acoustic scales. In contrast,
there is almost no prominent whole tone scale. This may result from the fact that this scale
appears simultaneously—as a kind of chord or “cluster”—less often than, for example, the
pentatonic scale.

Next, we test our method on a piece containing atonal structures as well as parts dominated
by percussion instruments. In Figure 5.17, we show an analysis of I. Stravinsky’s ballet music
“Le Sacre du Printemps.” As we expected, we find high likelihoods for the chromatic scale in
several sections of the piece. In particular, atonal and percussive phenomena may be present
at the end of both parts. We find a contrasting section at the begin of the “Spring Rounds”
movement (between 8:00 min and 10:00 min in the first part). Here, we find a pitch class
selection related to the E[ dorian scale (level −5). This is one of the few sections of the piece
that the composer notated with a key signature (5[). Indeed, we find highest likelihood for
the diatonic scale here. For some sections, we observe indications for acoustic tonality. A
weak example for such an observation is in the first part at 6:30 min (rehearsal letter 32)—
in accordance to [69]. In the second part, there is a very clear indication for an acoustic
scale at the beginning of the “Ritual Action of the Ancestors” at about 11:00 min (rehearsal
letter 129). Here, we find a high likelihood for the acoustic scale, without ambiguities with
other scales. The score analysis confirms this assumption. We see another indication for the
acoustic scale in the second part at about 3:00 min (rehearsal letter 87). Analyzing the score

11In most editions of this piece, the score has no measure numbers but rehearsal letters (in this case, numbers
are used for this purpose). These markers serve to quickly identify important positions in the sheet music
in order to clarify the structure and facilitate communication in rehearsals.
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Figure 5.18. Visualization of O. Messiaen’s modes. For“La vierge et l’enfant,” No. 1 from O. Messiaen’s
“La Nativité du Seigneur” for organ, we estimate the presence of the different modes, with BT = 150, HT = 50,
based on a recording by D. G. Weir (Priory 1994).

leads to a similar result. The pitch classes of an acoustic scale based on B[ dominate this
passage, with one additional pitch class (D[). Altogether, we see that this method can be
helpful to get an overview over the tonal structure of large pieces. For pieces that combine
different concepts of tonality, our approach can provide hints to particular tonal phenomena.

The scale type analysis presented in this section may be a suitable method for analyzing
the music of O. Messiaen. In [159], he proposes a set of symmetrical scales called “modes of
limited transposition”, which is crucial for his compositional approach. We already introduced
some of these modes. The first mode corresponds to the whole tone scale and the second
mode is the octatonic scale. The third mode relates to the hexatonic scale since it shows a
periodicity in major third distance. The other three modes are periodic with respect to the
tritone interval [159]. Here, we cannot give a full explanation of this theory. To illustrate the
possibilities of our method for analyzing such music, we perform an analysis of an organ piece
from “La Nativité du Seigneur,” shown in Figure 5.18. We find a clearly octatonic section
in the last part of the piece between 4:00 min and 5:20 min (Modus 2). For the presence of
other modes, we cannot see any clear indications. One reason for this may be the acoustic
behavior of the organ. In this recording, aliquot registers—enhancing particular harmonics
of the played pitches—have a strong influence on the sound. This may lead to deviations
of the chroma features from the notated pitch classes. At the end of the piece (between
5:30 min and 6:00 min), none of the considered scale types seems to be present. Overall, the
analysis of scale types is not satisfying for this piece even though several modes are present
in the score. To investigate the problem of such analyses, further studies including MIDI
representations of the pieces could be helpful.

5.2.6 Conclusion

In this section, we presented a novel approach for the computational analysis of audio data
with respect to tonal and harmonic properties. The presented methods rely on chroma
features grouped into analysis windows of variable length. We presented two post-processing
methods inspired by several musicological theories. The first method locally estimates the
likelihoods for the twelve diatonic scales over the course of a recording. We tested this
method for music examples from several historical periods. Visualizing the results provides
an overview of the modulation structure in a musically meaningful way—under the condition
that the tonality of the music relies on diatonic scales. With the second analysis technique,
we estimate the general scale type of the local tonal content. To do this, we match the chroma
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vectors to binary templates of several scale types and extract the maximum likelihood for all
transpositions of each scale model. We showed several examples from the 20th century where
we identified fifth-based scale types (pentatonic, diatonic), symmetrical models (octatonic,
hexatonic, whole tone scale), and acoustic tonality successfully. For atonal passages, we
detected an enhanced likelihood for the chromatic scale.

If only a fraction of the scale notes is presented locally, the proposed analysis method might
lead to problems and ambiguities. Therefore, the size and position and the analysis windows
plays a crucial role. In the current system, the user has to manually adapt these parameters,
which do not relate to musical time positions. Information about the musical time from
automatic beat tracking or a manual annotation of the measure positions could improve
analysis quality. This would also be helpful to link score positions to the analysis frames in
an exact and reliable way. Furthermore, an adaptive approach could help to automatically
improve clarity of visualizations by adjusting window parameters. Comparing the audio-
based analysis to results computed on a MIDI representation of the same piece, we found
only slight deviations pointing to a certain robustness against acoustical artifacts and noise.
Altogether, both methods provide musically meaningful visualizations, which may help to
get an overview of a piece’s tonal shape.
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6 Design of Tonal Features

In this chapter, we introduce further methods to automatically analyze the tonal content
of music audio recordings. As opposed to Chapter 5—where we focused on the analysis of
key and scale structures—, we present in Section 6.1 a procedure to estimate the occurence
of simultaneous interval and triad types from a chromagram. Section 6.2 comprises the
description of several features for quantifying tonal complexity. We discuss these features’
characteristics by computing them for isolated chords. Furthermore, we visualize the feature
values for selected movements of Beethoven’s piano sonatas in order to study their behavior in
a realistic scenario. Most of the tonality measures proposed in this chapter serve as features
for the classification experiments presented in Chapter 8.

6.1 Measuring Interval and Chord Categories

6.1.1 Introduction

Harmony mostly relates to the “vertical” way of combining musical tones. The analysis
of harmony deals with musical constructs that sound simultaneously (sonorities), their
quality, and their progression over time. The simplest form are harmonic intervals—two
pitches sounding at the same time—since one can construct more complex sonorities by
combining such intervals. A systematic way of interval-based analysis is the pitch class set
theory [64,86] (compare Section 2.8.1). Furthermore, triads attained a particularly important
role throughout Western music history so that some theorists consider triads as the basis of
harmony rather than harmonic intervals [137].

In this section, we propose a method to quantify the occurrence of interval and triad cat-
egories. We compute these features on the basis of chroma representations with multiple
temporal resolutions. The following considerations rely on [256] where we first introduced
these features for the purpose of classifying musical styles. Here, we only describe the de-
sign of the features (Sections 6.1.2 and 6.1.3) and provide visualizations to illustrate their
semantic meaning (Section 6.1.4). The classification experiments presented in [256] are topic
of Chapter 8.

6.1.2 Extraction of Chroma Features

6.1.2.1 Chroma Feature Types and Enhancement

For describing the harmonic content of audio data without considering the details of timbre
and instrumentation, chroma features were shown to be useful since they relate to the pitch
class content of the music (compare Section 3.5.2). Scholars presented a number of different
chroma feature extraction methods, which they evaluated with respect to different MIR tasks
such as chord recognition (Section 3.5.3). One of the fundamental difficulties of the chroma
representation is the influence of the partials: Each note played by an acoustical instrument
generates a spectrum showing energy not only at the fundamental frequency but also at
the integer multiples of this frequency. While the octave-related harmonics do not cause
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problems in a chroma representation, harmonics corresponding to other pitches such as the
upper fifths may lead to wrong musical interpretations. Several chroma extraction methods
try to cope with this issue [76, 131, 147], as we discussed in Section 3.5.3. Exemplarily, we
consider four different chroma computation techniques in this chapter:

• CP. Müller and Ewert [161,170] present a chroma extraction method using a multirate
pitch filter bank. We use the chroma pitch (CP) as published in the Chroma Toolbox
package [165] as baseline representation. For the chroma computation, we consider
pitch features in the piano range p ∈ [21 : 108].

• CLP. For a chord recognition task, Jiang et al. [109] test several chroma features based
on filter banks. They find significant improvement when using logarithmic compression
before applying the octave mapping. We test the chroma logarithmic pitch (CLP) with
compression parameter η = 1000 performing best in this evaluation.

• EPCP. Stein et al. [228] test a different chord matching algorithm. The enhanced
pitch class profiles (EPCP) proposed by Lee [131] performed best in this study. This
chroma feature is based on an iterative approach called harmonic product spectrum
(HPS). We use three HPS iterations in the following studies.

• NNLS. In [147], Mauch and Dixon present an approximate transcription method using
a non-negative least squares (NNLS) algorithm for chroma extraction. The authors use
these features as input to a high-level model for chord transcription and evaluate on
the MIREX Chord Detection task with good results (among the best systems in 2013
and 2014). They published their code as a Vamp plugin.1

We compute all chroma feature representations with an initial feature rate of ffeat = 10 Hz
using a hopsize of H = 4410 samples with an audio sampling rate of fs = 44.1 kHz. We
normalize the features to the Manhattan norm `1 in order to eliminate the influence of
dynamics obtaining a chromagram C`1 .

6.1.2.2 Multi-Scale Feature Smoothing

Since tonality is a hierarchical concept, tonal characteristics of music refer to various time
scales. On a rough scale, the global key as well as local keys and modulations play an
important role. Regarding a finer level, chords and their progressions provide more detailed
information. Finally, considering the properties of melody and voice leading gives an insight
into the relationship of the pitches to the underlying chords. These different layers of tonality
are crucial for musical style recognition as well. Analyzing a piece of dodecaphonic music,
we find a complex tonality making use of most of the chromatic pitches on a fine scale as
well as on a global scale. A large-scale Romantic piece may look similarly complex globally
due to numerous modulations while being built from rather simple constructs on a fine level.

Motivated by this, we consider different temporal resolutions for the computation of our
features. To do this, we start with the chroma features introduced in Section 6.1.2 with a
feature resolution of ffeat = 10 Hz. Then, we apply a feature smoothing to different reso-
lutions. We use the approach proposed by Müller et al. [161, 167] for the CENS features
with smoothing window length w and downsampling factor d given in frames as previously
discussed (Section 3.5.5). After smoothing, we again normalize the feature frames using the

1http://isophonics.net/nnls-chroma

http://isophonics.net/nnls-chroma
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Table 6.1. Chroma feature types for different time scales. Based on the initial chromagrams, we
calculate several smoothed versions [Chroma]wd specified by the parameters w (length of the smoothing window
in frames) and d (downsampling factor).

Feature type

T
em

po
ra

l
re

so
lu

ti
o
n CPglobal CLPglobal EPCPglobal NNLSglobal

CP200
100 CLP200

100 EPCP200
100 NNLS200

100

CP100
20 CLP100

20 EPCP100
20 NNLS100

20

CP20
10 CLP20

10 EPCP20
10 NNLS20

10

CP10
5 CLP10

5 EPCP10
5 NNLS10

5

CP4
2 CLP4

2 EPCP4
2 NNLS4

2

CPlocal CLPlocal EPCPlocal NNLSlocal

Table 6.2. Interval categories. For the categories IC1, . . . , IC6, we list the characteristic intervals and the
associated interval distances in semitones.

Category Intervals ∆

IC1 m2 / M7 1 / 11

IC2 M2 / m7 2 / 10

IC3 m3 / M6 3 / 9

IC4 M3 / m6 4 / 8

IC5 P4 / P5 5 / 7

IC6 +4 / ◦5 6 / 6

`1 norm. Furthermore, we compute a global chroma histogram g`1 for every feature type
(denoted as [Chroma]global). Together with the local features [Chroma]local (10 Hz), we obtain
seven different temporal resolutions (see Table 6.1) for the experiments in [256].

6.1.3 Interval and Chord Features

Relying on chroma features such as the ones listed in Table 6.1, we compute semantic mid-
level features describing the tonal content of the audio data at several time scales. Since we do
not want our features to depend on the global or local key, these features have to be invariant
under cyclic shifts of the chroma vector (musical transposition). With this requirement, the
task relates to the analysis method of pitch class set theory (compare Section 2.8.1). This the-
ory summarizes simultaneous sounds—harmonies or sonoritites—to pitch class sets. These
pitch class sets can be assigned to interval categories (IC) characterized by their predomi-
nant interval class. Since we are dealing with pitch classes here, we identify complementary
intervals ending up with only six interval categories. In Table 2.3, we introduced the ICs
and the construction of pitch class set prototypes for the categories. If we only consider
harmonic intervals as sonorities (two-part pitch class sets), we obtain one pitch class set per
category that describes an interval, its complementary and all related compound intervals
(see Section 2.3 for the explanation of these terms). In Table 6.2, we list these intervals.

Based on this theory, Honigh and Bod [92, 93] performed classification and tonal analysis
experiments on MIDI data, which showed that pitch class sets can be valuable style markers.
We extend this approach to audio data using chroma features as basis. To this end, we use
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simple binary templates modeling the interval and chord content of the music. Since we
cannot discriminate between an interval and its complementary, the six interval categories in
Table 6.2 are the only information left. For a fixed frame index m ∈ [1 : M ], every column
of the chromagram forms a chroma vector c := C`1(·,m) ∈ R12. For each of these vectors,
we compute the likelihood for the joint appearance of two pitch classes that relate by the
respective interval. To this end, we multiply their chroma values given by c. For the feature
ΨIC5 related to the intervals P4/P5, for example, we multiply the chroma value c0 for pitch
class C with the value c5 for F (q = 5) forming an interval with distance ∆ = 5 semitones.
Since we are interested in the type of the interval and not in the specific pitches, we equally
weight all transpositions of this interval by summing over all cyclic shifts. We obtain the
feature value

ΨIC5(c) :=
11∑
q=0

cq · c(q+5) mod 12. (6.1)

To generalize this expression, we use a binary template T := (T0, . . . , T11)T ∈ R12:

ΨT(c) =
11∑
q=0

(
11∏
k=0

(
c(q+k) mod 12

)Tk

)
(6.2)

By suitably choosing T, we can estimate the different interval categories:

TIC1 = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

TIC2 = (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

TIC3 = (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T

TIC4 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T

TIC5 = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)T

TIC6 = (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)T (6.3)

Using the template TIC5, we obtain the feature value ΨIC5(c) as denoted in Equation (6.1).

We can easily extend this procedure to sets of three or more pitch classes. As the basic
triads in Western tonality, we consider the triad types Major (M), Minor (m), Diminished
(◦), and Augmented (+):

TM = (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)T

Tm = (1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)T

T
◦

= (1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0)T

T+ = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)T (6.4)

With this approach, we already include the triad inversions for the same triad type. Mathe-
matically, this template matching strategy is identical to the scale type matching algorithm
presented in Section 5.2.5. Here, we only use different templates describing intervals and
chords rather than complete scales. In contrast to these simultaneous sounds, the concept of
scales and (local) keys relates to larger sections of a musical piece. Therefore, a rather fine
temporal resolution seems to be suitable for estimating intervals and chords whereas a more
course time scale is required for estimating scale types.
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b) Interval Features
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c) Triad Features
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Figure 6.1. Template-based features for the “Fidelio” orchestra recording. For this excerpt, which
we used as running example in Chapter 3, we show the normalized chromagram C`1 of the first measures
(upper plot (a)). Here, we use the CP chroma implementation in a resolution of 10 Hz (CPlocal). The middle
plot (b) shows the six interval features computed from the same chromagram. Plot (c) shows the feature
values using the four triad templates. We encode the feature values by means of different gray levels. During
the first five seconds, the full orchestra is playing in forte. The second part is a solo of two horns in piano.

In Chapter 8, we use all of the template-based features presented in this section
(ΨIC1, . . . ,ΨIC6,ΨM,Ψm,Ψ

◦
,Ψ+)T as classification features, calculated for every chroma fea-

ture type of Table 6.1. To aggregate the frame-wise features Ψ for a whole piece, we calculate
the mean and the standard deviation over the individual frames’ feature values.

6.1.4 Visualization Examples

To better understand the behavior of the features for real audio examples, we show some
graphical examples for the features. In Figure 6.1, we present a short visualization for the
“Fidelio” example from Chapter 3 based on the chromagram shown in Figure 3.14. Here, we
use the CPlocal feature to compute the different features. Looking at the interval estimates, we
see two phases. For the first 6 s, the features show a considerable amount of noise stemming
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from small non-zero values for most of the chroma values in (a). Nevertheless, the interval
category IC5 exhibits larger values for this section. As a musical interpretation, we suppose
that this results from the major triads EM and BM, which are written in the score here. The
triad features confirm this assumption with a rather large value for the major triad type. In
the second half of the example where only the horns are playing, the situation is different.
Here, the chromagram is “cleaner” and concentrates the main energy in the pitch classes
notated in the score. This leads to a high precision in the interval features that correctly
indicate the interval sequence m3, P5, m3, and M3. Here, the triad features show low values.
This is no surprise since only two voices are sounding at a time. However, we observe a
strong value for the major triad at about 12.5 s. This may arise from the overlap of the m3
interval G]–B with the M3 interval E–G]—maybe due to the reverb of the first sound.

To investigate the influence of the chroma feature implementation, we repeat the visual-
ization of the interval features using different chroma features as input (Figure 6.2). The
first plot (a) corresponds to the interval features of Figure 6.1 based on CP chroma. Using
logarithmic compression (CLP) smoothes out the discontinuities to some degree leading to a
nice visualization of the horn part. On the downside, this may flatten the chroma vectors too
much. For the first seconds, we cannot see the enhanced feature values for IC5 and the third
categories (IC3 and IC4) anymore. Using EPCP features, we see the enhancement of these
categories in the first section. However, the interval estimates based on these features show
a fluctuating behavior. For the second part, the third intervals are strongly suppressed com-
pared to the other representations. This may arise from the low chroma values for some of
the horn tones (compare Figure 3.15). Looking at the NNLS-based features, we find a small
increase of noise compared to the CP-based representation. In general, these features seem
to generate robust interval estimates. Here, the PC5 values in the beginning are in the same
range as the horn intervals. Overall, the template-based features provide meaningful musical
information but considerably depend on the quality of the underlying chroma features.

Finally, we examine the features’ dependency on the chroma smoothing step (Figure 6.3).
We use four different smoothed versions of the CP chroma features as well as a chroma his-
togram over the whole audio excerpt. For small smoothing parameters (a–d), the features’
behavior only slightly deviates from using the initial CP chromagram. Using the global
chroma histogram as input, the features change considerably. The intensity of the interval
categories does not correspond to the statistics of the local features. The reason for this lies
in the calculation of the histogram where all pitch class energies are summed up regardless
of when they are sounding. Thus, we do not estimate the occurrence of locally simultaneous
sounds with global features but describe properties of the overall pitch class statistics. How-
ever, these global properties may capture other meaningful information about tonality and
musical style such as, for example, the relation of prominent local keys throughout a piece.

6.1.5 Conclusion

The method presented in this section serves to estimate the occurence of simultaneous sonori-
ties from audio recordings. The features rely on a normalized chromagram representation
of the audio data. Furthermore, we account for different temporal scales by using several
smoothed versions of the chromagram. We showed the features’ suitability for estimating
harmonic interval and triad types by means of visualizations. Hereby, both the quality and
robustness of the initial chroma features and the temporal smoothing showed considerable
influence on the result. In the experiments presented in Chapters 7 and 8, we show the
features’ efficiency for capturing stylistic properties of the music.
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b) Interval Feat. (CLP)
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c) Interval Feat. (EPCP)
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d) Interval Feat. (NNLS)
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Figure 6.2. Interval features for the “Fidelio” example based on different chroma types. We
compare the example of Figure 6.1 computed from different chroma implementations. In Figure 3.15, we
showed these chromagrams for the same audio excerpt.

6.2 Quantifying Tonal Complexity

6.2.1 Introduction

In the previous section, we introduced features for quantifying the occurrence of specific tonal
structures such as interval and chord types. Closely following our work published in [257], we
now propose methods for describing a more abstract property of the music that we refer to as
tonal complexity. We discussed the musical context of this notion in Section 2.9. To obtain
a more precise definition, we compile in Section 6.2.2 a set of musical assumptions regarding
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b) Interval Feat. (CP10
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c) Interval Feat. (CP20
10)
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d) Interval Feat. (CP100
20 )
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e) Interval Feat. (CPglobal)
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Figure 6.3. Interval features for the “Fidelio” example in different temporal resolutions. Here,
we use different smoothed versions of the CP chroma for computing the interval features. For the lower plot
(e), we calculate these features based on a chroma histogram over the whole example.

various temporal scales. In Section 6.2.3, we propose novel features for quantifying tonal
complexity. The features rely on statistical measures calculated from chroma representations.
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The characteristics of tonal complexity apply to different time scales. To illustrate this
time scale dependence for the proposed features, we present hierarchical visualizations based
on the previously introduced scape plot representation (Section 6.2.4). On a fine temporal
level, tonal complexity relates to the characteristics of chords or scales. For example, in a
modulating transition phase, we usually find more complex chords than at the beginning
of a piece. To analyze such differences, we study the feature values for isolated chords
(Section 6.2.4.1). Looking at a coarser level, the presence of modulations typically leads to
an increase of tonal complexity. In the sonata form, for example, the development usually
contains several modulations. To account for this property, we calculate the complexity
features based on a coarse resolution of the chroma features. For evaluation of this coarse-
scale complexity, we analyze selected movements of L. van Beethoven’s piano sonatas where
we find higher complexity in the development parts (Section 6.2.4.2).

Beyond these experiments, we tested the benefit of our complexity features for classifying
music styles [258]. We do not discuss these results in this section. Chapter 8 provides the
results of our style classification experiments based on—among others—tonal complexity
features. Nevertheless, we introduce in Section 6.2.3.2 all of the complexity measures and do
not restrict ourselves to the three features discussed as examples in [257].

There are several attempts to approach similar concepts. Concerning symbolic music
representations, Honingh and Bod [92] test ideas from pitch class set theory to measure
degrees of tonality. Kranenburg and Backer [242] use notions such as pitch entropy for style
classification based on scores. Considering audio data, scholars proposed a few methods to
quantify properties related to tonal complexity [150, 230]. They usually address sequential
properties of harmony. We propose a different approach, accounting for the local pitch class
distribution on various temporal scales. For a more profound literature survey, we refer to
Section 4.5.

6.2.2 Musicological Implications

Assuming the existence of a musical dimension related to some kind of “tonal complexity,” we
want to approach the meaning of this quantity by considering several musicological questions.
From these questions, we define intuitive hypotheses that a tonal complexity measure should
fulfill.

The quality of intervals and chords plays an important role to create stabilizing and desta-
bilizing musical moments. Considering the simple cadence GM7–CM, the striving nature of
the dominant seventh chord with the dissonant ◦5 interval requires a resolution to a con-
sonant chord. In late Romantic harmony, more complex resolution chords may appear as
well. In that case, however, the previous chord often feels even more dissonant. Thus, tonal
complexity on a chord level may relate to the dissonance grade of the local tonal content.
A major chord suggests a more stable feeling to the listener than a diminished chord, a
dominant seventh chord, or just this major chord while playing figurative nonchord tones.

On a coarser scale, the change of chords and their tonal relationships may influence com-
plexity. This level refers to the scales representing the local pitch content, and the way these
scales change. Chord changes within the pitch content of a diatonic scale do not sound very
surprising, neither do chords from a neighboring key with only one or two new accidentals.
In contrast, a CM chord followed by F]M without harmonic progression generates an abrupt
change. Moreover, structural sections of a piece may show different complexity levels accord-
ing to their role within musical form, thus constituting “areas of stability and instability in
relation to a starting point” [130].



112 6 Design of Tonal Features

Motivated by these considerations, we want to find a measure—say Γ—that expresses some
kind of complexity of the tonal content on various temporal levels:

• Chord level. Different chords or scales should show distinct complexity:

Γ(“Complex chord”) > Γ(“Simple chord”) (6.5)

• Fine structure. The subparts of a sonata exposition should be different in complexity:

Γ(“Transition phase”) > Γ(“Theme”) (6.6)

• Coarse structure. The parts of a sonata form movement should show specific trends
in complexity:

Γ(“Development”) > Γ(“Exposition”) (6.7)

• Cross-work. Considering the oeuvre of one composer, we expect the late works to be
more complex than the early ones:2

Γ(“Late sonata”) > Γ(“Early sonata”) (6.8)

• Cross-composer. On a cross-composer level, we assume stylistic trends. The histor-
ical periods may exhibit different levels of complexity:

Γ(“Romantic”) > Γ(“Classical”) (6.9)

We are conscious of the limitations of these rather simplistic assumptions and use them only
as a guiding principle for testing certain tendencies. For verifying some of the hypotheses,
we may need perceptional studies and listening tests, others require a closer look at the
musical scores and a detailed view on musical styles. In Section 6.2.3.2, we propose several
mathematical realizations of such measure Γ on the basis of pitch class distributions.

6.2.3 Proposed Method

6.2.3.1 Extraction of Chroma Features

For an appropriate description of tonality, we want the complexity features to be invariant
against timbral variations. For example, an orchestra chord should obtain a similar value as
the same chord played on a piano. Thus, we build our systems on chroma features, which
were shown to capture tonal information and to be invariant against timbral variations to a
large extent (compare Section 3.5.2).

In the following, c := (c0, c1, . . . , c11)T denotes a chroma vector as introduced in Sec-
tion 3.5.2. For the chroma extraction, we employ the CLP chroma implementation from
the Chroma Toolbox package [165]. We use a feature resolution of 10 Hz and normalize the
features column-wise such that `1(c) = 1. In the following, c may refer to the columns

2This assumption may only be true for some composers (such as A. Schönberg). For others, we may find the
opposite kind of evolution (K. Penderecki). In both cases, we find some kind of “change” or “evolution”
over the lifetime of the composer. For this reason, we may consider this as an analysis scenario rather than
a guideline for feature design. In Section 6.2.4.2, we study this evolution for L. van Beethoven’s piano
sonatas.
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m ∈ [1 : M ] of a local chromagram C`1(·,m) or to a chroma histogram g`1 computed over
several local vectors.

In this section, we introduce some basic concepts for quantifying tonal complexity. Thus,
we do not optimize the chroma extraction by considering higher partials or other enhancement
methods. For further improvements, it may be necessary to consider more advanced chroma
computation methods such as the ones presented in Section 3.5.3. In order to account for the
logarithmic behavior of loudness perception, we apply a logarithmic compression before the
normalization step (Section 3.5.3.3). Inspired by Jiang et al. [109], we choose the parameter
η = 100 for our experiments.

6.2.3.2 Complexity Features

Motivated by the considerations presented in Section 2.9, we want to find a measure—say
Γ—that expresses the complexity of the (local) tonal content. To this end, we now propose
several statistical measures calculated on a chroma vector. We want the feature values to
increase for growing tonal complexity and scale to unit range:

0 ≤ Γ ≤ 1. (6.10)

The basic idea of all these features is to compute a measure for the flatness of the chroma
distribution. This is motivated by the following considerations. On a fine level, the simplest
tonal item may be an isolated musical note represented by a Dirac-like (“sparse”) pitch class
distribution

csparse := (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T . (6.11)

To this vector, we want to assign the lowest complexity value Γ(csparse) = 0. Furthermore,
a sparser chromagram describing, for example, a diatonic scale should obtain a smaller com-
plexity value than an equal (“flat”) distribution

cflat :=
1

12
· (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T . (6.12)

The latter case—where all twelve pitch classes have the same energy—could occur for do-
decaphonic music. We want to rate this flat distribution with the highest complexity value:
Γ(cflat) = 1. Following these guidelines, we present a number of features for capturing such
characteristics. Though not all features are fulfilling all of the hypotheses from Section 6.2.2,
the individual features may contribute to model different aspects of tonal complexity.

(1) Sum of chroma differences: To account for harmonic similarity of pitch classes, we re-
sort the chroma values to an ordering of P5 intervals (7 semitones) cfifth := (cfifth

0 , . . . , cfifth
11 )T:

cfifth
q = c(q·7 mod 12) (6.13)

with q ∈ [0 : 11]. Then, we compute the absolute differences between all neighboring chroma
values:

Γ̃Diff(c) :=

11∑
q=0

|cfifth
(q+1) mod 12 − c

fifth
q |. (6.14)



114 6 Design of Tonal Features

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

Descending Chroma Vector Index

Figure 6.4. Linear fit to descending chroma values. The chroma values correspond to the global chroma
histogram of the “Fidelio” example, re-ordered to a descending series.

Since Γ̃Diff(cflat) = 0 and Γ̃Diff(csparse) = 2, we rescale this feature with γ1 := 2:

ΓDiff(c) := 1− Γ̃Diff(c)

γ1
(6.15)

(2) Standard deviation of the chroma vector:

Γ̃Std(c) :=

√√√√√ 1

11

11∑
q=0

(
cq −

1

12

11∑
k=0

ck

)2

(6.16)

The standard deviation reaches its maximum for a sparse distribution γ2 := Γ̃Std(csparse) =
1/
√

12 ≈ 0.29 so that we calculate the rescaled feature in the following way:

ΓStd(c) := 1− Γ̃Std(c)

γ2
(6.17)

(3) Negative slope of a linear function: We re-order the chroma vector entries to a de-
scending series

cdescend := (max
q
cq, . . . ,min

q
cq). (6.18)

To measure the flatness, we apply linear regression assuming cdescend
i being dependent on the

index i (see Figure 6.4). The slope λ(cdescend) of the line that best fits cdescend in a least
squares sense serves as feature value. For a sparse chroma vector, the fitted line has a slope
of λ(csparse) ≈ −0.039. Hence, we rescale this feature with γ3 = 0.039 ≈ λ(csparse):

ΓSlope(c) := 1− |λ(cdescend)|
γ3

(6.19)

(4) Shannon entropy of the chroma vector, after re-normalization to `1(c) = 1:

ΓEntr(c) := − 1

log2 (12)

 11∑
q=0

cq · log2(cq)

 (6.20)

With the re-normalization, the boundary conditions ΓEntr(c
flat) = 1 and ΓEntr(c

sparse) = 0
are fulfilled
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Figure 6.5. Circular interpretation of chroma vectors. The length of the yellow bars corresponds to
the chroma vector entries c`1q with q ∈ [0 : 11]. We equally distribute the twelve chroma values over the circle.
The red line indicates the resultant vector. For a sparse chroma vector csparse, the resultant vector has length
1 (Figure (a)). A flat vector cflat obtains length 0 (Figure (b)). In Figure (c), we illustrate this principle for
a random-like chroma vector.

(5) Non-Sparseness feature based on the relationship of `1- and `2-norm [96], inverted by
subtraction from 1:

ΓSparse(c) := 1−
√

12− ||c||1/||c||2√
12− 1

(6.21)

This feature naturally lies between 0 and 1.

(6) Flatness measure describing the relation between the geometric and the arithmetic
mean [184]:

ΓFlat(c) :=

(∏11
q=0 cq

)1/12

1
12

∑11
q=0 cq

(6.22)

The flatness has values between 0 and 1.

(7) Angular deviation of the fifth-ordered chroma vector: We re-sort the chroma values
according to Equation (6.13) obtaining a circular distribution of the pitch class energies—
similar to the circle of fifths but now referring to pitch classes instead of musical keys. From
this, we calculate the length of the mean resultant vector

rfifth(c) =

∣∣∣∣∣∣
11∑
q=0

cfifth
q exp

(
2πiq

12

)∣∣∣∣∣∣ . (6.23)

In Figure 6.5, we illustrate this circular interpretation together with the resultant vector for
three different chroma vectors. From the resultant vector, we obtain the angular deviation
via

ΓFifth(c) :=
√

1− rfifth(c). (6.24)

This way, ΓFifth describes the spread of the pitch classes. A short resultant vector—
corresponding to a flat chroma vector—results in a high complexity value ΓFifth.

All of the proposed features take values between 0 and 1 and fulfill the conditions
Γ(csparse) = 0 and Γ(cflat) = 1. The features ΓDiff and ΓFifth respect the ordering of the
chroma entries and penalize distant relations in a perfect fifth sense. The remaining features
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Figure 6.6. Example for a scape plot visualization. The horizontal axis gives the time position in
seconds, whereas the vertical axis refers to the length of the segment. We indicate the feature values by
different gray levels.

are invariant against permutation of the chroma vector entries. With this set of features, we
consider several flatness-related aspects of a chroma vector. In Section 6.2.4.1, we discuss
the individual features’ properties for single notes, chords, and scales.

6.2.3.3 Scale Dependence

The measurement of complexity crucially depends on the time scale of the observation. On a
chromagram with fine resolution, the measures give an estimate of the complexity of chords
and local scales. Regarding coarser levels, we calculate the complexity of several bars or a
whole section. Using a chroma histogram as input, the complexity value refers to the full
movement.

To examine the dependence of our proposed features, we visualize them hierarchically on
different time scales, using the scape plot technique by Sapp [209,210]. With this techniques,
we visualize different time scales in one plot. Figure 6.6 shows such a scape plot. The
horizontal axis indicates the time position of the analysis window (mean). The vertical axis
indicates the window’s length. The colors encode the feature value for every point. For
example, the highest point gives the value for the complete recording. In the lowest row, we
find the values for the local chroma vectors.

6.2.4 Evaluation

6.2.4.1 Chord Study

To better understand the proposed features, we analyze their behavior for different local items
of tonality such as single pitches, intervals, chords, and scales. First, we do this for synthetic
versions of these items and calculate the feature values for idealized binary templates. For
example, the major chord template is cMajor = c̃Major/`1(c̃Major) with

c̃Major = (1, ε, ε, ε, 1, ε, ε, 1, ε, ε, ε, ε)T . (6.25)

To avoid degeneration in formulas due to zero entries, we use a small value for the silent pitch
classes. We compare the results for ε = 0 and ε = 0.05 in order to estimate the consequences
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Figure 6.7. Complexity feature values for different tonal items. In (a), we display the musical
notations of the sonorities. The next plot (b) illustrates the idealized chroma templates of the items (with
ε = 0.05). Figure (c) shows the values for the ideal templates with ε = 0, Figure (d) for ε = 0.05. In the lowest
part (e), we visualize the feature values for the recorded piano chords using CLP chroma with a compression
parameter of η = 100 [110].

of this effect. Second, we analyze real audio recordings of the same chords, played on a piano
for approximately 3 s. We calculate chroma histograms over this short time span and use
them as input for computing the complexity features. As tonal items, we consider a single
pitch, a fifth interval, the four basic triads, seven types of seventh chords, four types of ninth
chords, and three scales (pentatonic, diatonic, and chromatic). The results of this study are
shown in Figure 6.7.
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First, let us start with the results for ideal chord templates. With ε = 0 (Figure 6.7 c), all
features assume the value Γ = 0 for the single pitch (No. 1). For ΓEntr, ΓSparse, ΓSlope, and
ΓStd, the feature values increase monotonically with growing number of notes. For these four
features, a seventh chord obtains a higher complexity value than a triad. They correspond
to some “degree of polyphony” of the local chords. In contrast, ΓFifth and ΓDiff account for
the ordering of the pitches. For example, ΓFifth obtains a higher value for a diminished triad
(No. 5) than for a major triad value (No. 3) since the diminished triad has a larger spread on
a perfect fifth axis. Symmetric divisions of the octave such as the augmented triad (No. 6)
and the full-diminished seventh chord (No. 12) obtain maximal ΓFifth values. In contrast, the
pentatonic scale (No. 18) with five pitches has a relatively small ΓFifth value since all pitches
related by perfect fifths. ΓDiff especially reacts on the number of perfect fifth intervals inside
a chord. So, the augmented triad (No. 6) or the diminished seventh chord (No. 12) obtain
ΓDiff = 0 since they show no fifth interval. In contrast, the pentatonic scale (No. 18) obtains
a high value. ΓFlat is very sensitive to degradations since one zero value in the chroma vector
already leads to ΓFlat = 0.

We observe a different behavior with ε = 0.05. In this case, ΓFlat does not assume zero
values but rather reacts on the number of notes. Similarly, the chords with ΓDiff = 0 obtain
a higher value now. Beyond these effects, only slight changes appear. Interestingly, the fifth
interval (No. 2) obtains a smaller value than the single note (No. 1) when having a non-zero
ε. For the chromatic scale (No. 20), both configurations lead to Γ = 1.

For the recorded chords, differences in intensity appear in the chroma vector, although the
chords are played with approximately equal loudness. The features react on these variations
so that the above mentioned observations are less clear for the real piano chords. ΓFlat

turned out particularly sensitive to this effect. To improve the robustness of the features,
more elaborate chroma features with respect to timbre invariance could be useful (compare
Section 3.5.3). In our experiments, logarithmic compression in the chroma computation
(compare Section 3.5.3.3) led to noticeable improvements for the real chords and, thus, seems
to be an important step for computing robust complexity features.

6.2.4.2 Study on L. van Beethoven’s Piano Sonatas

As the next example, we want to study the piano sonatas of L. van Beethoven’s in a recording
by D. Barenboim. Even though they are not standard sonata examples of their time but full
of surprising ideas and changes, we can observe some general trends. In the upper part of
Figure 6.8, we show three scape plots as introduced in Section 6.2.3.3. To compute the plots,
we average the original 10 Hz chroma features at different window sizes. The horizontal axis
gives the position of the segment in seconds, the vertical axis corresponds to the length of
the segment. The lowest row describes a local level, the triangle’s top gives a single value
for the full recording. We encode the feature value for the respective segment by the color’s
darkness. For all three movements, we see a dark region indicating high complexity for the
development phases. We can well recognize the similarity between the exposition and its
repetition. Regarding the fine structure, we see bright phases corresponding to the themes
and dark phases describing the higher complexity in the transition phases. In the develop-
ment, the global complexity is always high—in contrast to the local one. This may arise from
development parts without complex chords but with complex modulations—covering distant
keys within a short segment. Looking at the development of the “Appassionata” Op. 57
(Figure 6.8 b), a modulating phase is followed by a long segment in A[ major indicated by a
white section that starts at 240 s.
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(a) Sonata Op. 2, No. 3 in C major (b) Op. 57 in F minor

(b) “Appassionata”

(c) Op. 106 in B[ major

(c) “Hammerklavier”
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Figure 6.8. Tonal complexity analysis for selected movements from Beethoven’s sonatas. In
the upper row, we show scape plots using ΓFifth for the first movements of three selected sonatas. For an
overview, we display ΓFifth for the all first movements of L. van Beethoven’s sonatas that are in sonata form
(lower figure). We calculate the features for the individual parts on a 100 s level (0.01 Hz) and average.

To test the coarse structure hypothesis (Equation (6.7)), we plot the average ΓFifth values
for the main parts of the 28 head movements composed in sonata form (Figure 6.8, lower
part). The complexity in the development phase is always highest, with four exceptions. One
case is the sonata Op. 109, where the development shows almost no modulations. Rather,
the movement consists of alternating parts with similar harmonic structure. In the G minor
sonata Op. 49, No. 1, the development contains a long stable E[ major part and, thus, does
not obtain a high complexity score. In contrast, the recapitulation of this movement yields a
high ΓFifth value—clearly higher than the exposition. One reason for this observation may be
the local key structure of the sonata form in minor keys. In the exposition, the second theme
usually stands in the relative major key and, thus, contains mainly one diatonic scale. In the
recapitulation, this part is transposed to the global key (minor key), which includes pitches
from the harmonic and melodic minor scales, leading to a higher complexity. We observe a
similar effect for other movements in minor keys (Op. 2, No. 1 or Op. 10, No. 1). In general,
the recapitulation seems to be slightly more complex than the exposition. This may arise
due to additional harmonic effects, which serve to vitalize the non-modulating repetition of
the familiar exposition material.

In Op. 79, we find a contrasting scenario with a stable exposition section followed by a
strongly modulating development, which touches the local keys E major, C major, C minor,
E[ major, and changes back to G major. In future work, it could be useful to combine
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the discussion of further details with analyses of modulations such as the ones presented in
Section 5.2 or [110].

Regarding global complexity, the hypothesis in Equation (6.8) assuming increasing values
over the course of a composer’s lifetime does not hold. The scores for the late works change
substantially—a hint to high individuality of the compositions—in contrast to the early
sonatas, which show a similar complexity structure among each other. Within the late
sonatas, we find the most extreme values—the light and tonally constant Op. 101 in E major
in contrast to the last sonata Op. 111 in C minor with complex harmony full of dissonances
and a polyphonic development. Trusting in our features, however, we cannot confirm a
general trend towards higher complexity with increasing composition time. This observation
is consistent with the results of [190].

6.2.5 Conclusion

In this section, we presented novel features for quantifying the complexity of music regarding
tonality. We compiled a set of assumptions to define requirements for the features’ charac-
teristics. In a study with ideal chord templates as well as recorded piano chords, we tested
these assumption on a fine temporal level. Hierarchical visualizations of complexity values
for movements of Beethoven’s sonatas show the features’ capability to capture the structure
of the sonata form. Development parts and transition phases between themes show a higher
complexity, in general. We could verify this behavior for most of the first movements in
L. van Beethoven’s piano sonatas.



121

7 Clustering and Analysis of Musical Styles

In the Chapters 5 and 6, we presented different types of features for capturing tonal charac-
teristics of audio recordings. In several case studies, we showed these features’ behavior for
individual pieces, segments, or isolated chords. We now want to analyze such kind of descrip-
tors for analyzing databases of Western classical music with respect to style characteristics.
Hereby, we make use of methods from the fields of data analysis and machine learning as
presented in Section 3.6. In this chapter, we focus on unsupervised methods in order to get
insights into the structure of our corpus with respect to stylistically similar pieces—without
incorporating primary assumptions about historical or stylistic periods. As opposed to this,
Chapter 8 deals with the automatic classification of pieces into pre-defined style categories.

In Section 7.1, we describe the dataset that we compiled for our analyses. Section 7.2
presents a method for mapping the feature values of indiviual pieces onto a historical time
axis. Finally, we perform unsupervised clustering experiments (Section 7.3) in order to
automatically group pieces, years, or composers on the basis of our features.

7.1 Dataset

In this thesis, we are interested in the typical repertoire of Western classical music. The
compilation of a representative dataset constitutes a cumbersome task since collecting and
annotating data is time-consuming and judgement of “importance” or “appropriateness” of
works is highly subjective. In our work, we focused on composers whose works frequently
appear in concerts and on classical radio programs. At the same time, we tried to ensure a
certain variety of countries, composers, musical forms, keys, or tempi.

For classification experiments, a balanced distribution of instances with respect to the
class labels is beneficial. For these reasons, we compiled a dataset of 4× 400 = 1600 pieces,1

which we assigned to the four historical periods Baroque, Classical, Romantic, and Mod-
ern2 (Table 7.1). Our manual attribution of pieces to these coarse-level periods or eras3

is rather subjective and not unambiguous. We tried to focus on such composers where we
expect musicologists to agree about the era assignment and checked this assumption with
categorization in Wikipedia.4 Later, we will discuss our selection guidelines in more detail.
In the following, we refer to this corpus as Cross-Era dataset. We used this data for the
classification experiments in Chapter 8 and in the associated publications [256,258,259].

To systematically investigate the timbre invariance of our algorithms, we further balanced
the dataset with respect to the instrumentation. For every period, the dataset incorporates
each 200 pieces of orchestra and piano music. To avoid the system learning timbral partic-
ularities (when classifying on piano only), we only selected piano recordings performed on

1For multi-movement works or work cycles, we regard every movement as a “piece” when counting items in
the dataset. Moreover, global feature values are also computed on the movement level.

2Hereby, the “Modern” class mainly refers to works from the first half of the 20th century. We did not include
works that are stylistically close to late Romanticism.

3In this thesis, we synonymously use the terms period and era.
4http://www.wikipedia.org

http://www.wikipedia.org
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Table 7.1. Cross-Era dataset. For the four eras under consideration as well as for the “Add-On” data, we
list the composers and their countries for each sub-class.

Era Instrument. Composers Countries

Baroque Piano Bach, J. S.; Couperin, F.; Giustini, L.; Platti, G. B.;
Rameau, J.-P.

France, Germany, Italy

Orchestra Albinoni, T.; Bach, J. S.; Corelli, A.; Handel, G. F.;
Lully, J.-B.; Purcell, H.; Rameau, J.-P.; Vivaldi, A.

England, France,
Germany, Italy

Classical Piano Cimarosa, D.; Clementi, M.; Dussek, J. L.; Haydn, J.;
Mozart, W. A.

Austria, Czechia,
England, Italy

Orchestra Bach, J. C.; Boccherini, L. R.; Haydn, J. M.;
Haydn, J.; Mozart, W. A.; Pleyel, I. J.; Salieri, A.

Austria, England,
Germany, Italy

Romantic Piano Brahms, J.; Chopin, F.; Faure, G.; Grieg, E.; Liszt, F.;
Mendelssohn Bartholdy, F.; Schumann, C.;
Schumann, R.; Tchaikovsky, P. I.

France, Germany,
Hungary, Norway,
Poland, Russia

Orchestra Berlioz, H.; Borodin, A.; Brahms, J.; Bruckner, A.;
Dvořak, A.; Grieg, E.; Liszt, F.;
Mendelssohn Bartholdy, F.; Mussorgsky, M.;
Rimsky-Korsakov, N.; Saint-Saëns, C.; Schumann, R.;
Smetana, B.; Tchaikovsky, P. I.; Verdi, G.; Wagner, R.

Austria, Czechia,
France, Germany,
Hungary, Italy,
Norway, Russia, USA

Modern Piano Bartók, B.; Berg, A.; Boulez, P.; Hindemith, P.;
Messiaen, O.; Milhaud, D.; Prokofiev, S.;
Schönberg, A.; Shostakovich, D., Stravinsky, I.;
Webern, A.

Austria, France,
Germany, Russia, USA

Orchestra Antheil, G.; Bartók, B.; Berg, A.; Britten, B.;
Hindemith, P.; Ives, C. E.; Messiaen, O.; Prokofiev, S.;
Schönberg, A.; Shostakovich, D.; Stravinsky, I.;
Varèse, E.; Webern, A.; Weill, K.

Austria, England,
France, Germany,
Hungary, Russia, USA

“Add-On” Piano Bach, C. P. E.; Beethoven, L. van; Debussy, C.;
Ravel, M.; Scarlatti, D.; Schubert, F.; Sibelius, J.;
Weber, C. M. von

Austria, France,
Finland, Germany,
Italy

Orchestra Bach, C. P. E.; Beethoven, L. van; Debussy, C.;
Mahler, G.; Mozart, Leopold; Ravel, M.; Rossini, G.,
Scarlatti, D.; Schubert, F.; Sibelius, J.;
Stamitz, Johann; Strauss, R.; Telemann, G. P.;
Weber, C. M. von

Austria, Czechia,
France, Finland,
Germany, Italy

the modern grand piano (no harpsichord recordings in the Baroque class). Moreover, the or-
chestral data neither includes works featuring vocal parts nor solo concertos.5 For obtaining
a meaningful subgenre classification rather than capturing individual composer styles, every
category contains music from a minimum of five different composers from three different
countries. Table 7.1 lists the composers and the countries for each sub-class.

To make sure that we do not classify properties other than style-related ones, we tried to
include a certain range of different works by every composer. Hereby, we considered different
musical forms (sonatas, variations, suites, symphonies, symphonic poems, overtures, and
more) as well as fast and slow movement types (head movements, slow movements, minuets,
etc.). The data exhibits a variety of keys and modes (major/minor) but is not perfectly
balanced with respect to these aspects.

5Because of the omnipresence of the figured bass, it is hard to find recordings for Baroque orchestral works
without involving a harpsichord. This may lead to some timbral peculiarity for the Baroque orchestra class.
Nevertheless, the harpsichord may not be too present acoustically since it constitutes an accompanying
instrument in these pieces.
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Figure 7.1. Overview of the composers in the combined dataset. A bar corresponds to the composer’s
lifetime. The color marks the class a composer belongs to. Yellow bars refer to the “Add-On” data. With
the intensity of the color, we indicate the number of the composer’s works considered in the dataset. More
intense colors correspond to a higher number (see, for example, J. S. Bach, or W. A. Mozart).

From a musicological point of view, a categorization into four eras is rather superficial. In
the classification experiments (Chapter 8), however, we want to test our features’ capability
for a very rough style analysis. We therefore try to avoid ambiguous musical tasks that
treat subtle stylistic differences. To this end, we did not include composers whose stylistic
attribution is rather ambiguous.6 As a consequence, the Cross-Era data does not show
an equal distribution with respect to the composers’ lifetimes but exhibits some historical
“gaps.” To overcome this problem, we created an additional set of recordings comprising
works by such“transitional”composers. This“Add-On”includes each 200 piano and orchestra
pieces and serves to “fill the gaps” between the historical periods in the Cross-Era set. The

6For example, we did not select works by Beethoven or Schubert since these composers show influences from
both Classical and Romantic styles.
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transitional character mainly relates to the composers’ lifetime (e. g., for Carl Maria von
Weber or Franz Schubert). Some of the composers contributed to the establishment of a
new style—such as Johann Stamitz or Carl Philipp Emmanuel Bach in the pre-classical
phase. In other cases, we included composers who historically but not stylistically match
one of the eras. Examples are Richard Strauss and Jean Sibelius whose style could be
considered closely connected to the Romantic era rather than to 20th century’s avant-garde
(which we mainly consider for the Modern period). We end up with a more or less balanced
distribution (Figure 7.3), which enables us to analyze the correlation of style characteristics
with composition time in this section.

The lower part of Table 7.1 lists the additional composers. Figure 7.1 provides a visual-
ization of the combined dataset with respect to the composers’ lifetime. The colors mark
the class labels with the yellow bars corresponding to the “transitional” composers. With the
intensity of the color, we indicate the number of recordings included in the dataset by the
respective composer. Popular composers such as Johann Sebastian Bach, Wolfgang Amadeus
Mozart, or Dmitri Shostakovich contribute more works than others. Following this princi-
ple, our dataset may—to some degree—represent the typical repertoire of Western classical
music. We refer to the combined dataset as Cross-Era+Add-On comprising 2000 tracks in
total.

We compiled the recordings from commercial audio CDs. In order to allow reproduction
of some of our experiments, we published the basic audio features on a website.7 We provide
chroma features (Section 3.5.2) and chord analysis results, which served as basis for the
experiments presented in this chapter.

7.2 Visualization of Audio Features through Music History

7.2.1 Data Mapping

To examine the stylistic evolution of music over the history, a corpus of works with a roughly
equal distribution of composition dates would be necessary. Unfortunately, we do not have
these composition dates for all pieces in our dataset. A huge effort would have to be made
to compile all this information—and for many works, the composition years are unknown or
in doubt. Even if we had all composition dates at hand, it would still constitute a difficult
task to find an equal amount of works for all the years while—at the same time—balancing
the dataset with respect to other aspects such as the instrumentation.

For these reasons, we use a different strategy and map the works of a composer onto his or
her lifetime. Figure 7.2 illustrates this procedure in detail. This approach is rather superficial
since, with this simplification, we cannot resolve historical details of style evolution. In
particular, the assumption of stylistic homogeneity over a composer’s lifetime may be violated
in some cases. We may think of composers with several “creative periods” such as Arnold
Schönberg whose style developed from late Romanticism to dodecaphony in several steps.
In this chapter, however, we are interested in a rather “global” view and look at the overall
tendencies. For this reason, we assume that the simplifications of our mapping technique do
not have a crucial impact for analyzing the general trends.

With the above mentioned procedure, our dataset spreads over the historical timeline as
shown in Figure 7.3. Though not being a flat distribution, we have at least five compositions
on average for every year from 1700 to 1950. Before 1700 and after 1950, the average number

7http://www.audiolabs-erlangen.de/resources/MIR/cross-era

http://www.audiolabs-erlangen.de/resources/MIR/cross-era
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Figure 7.2. Example distribution of a composers works over the lifetime. Here, we show the process
of mapping a composer’s works onto the lifetime for L. van Beethoven, living 1770–1827 and contributing 63
movements to the dataset. For this, we use a Tukey window with parameter α = .35 while excluding the first
ten years of the composer’s lifetime. We normalize the years’ values so that their sum equals the total number
of the composers’ works in the dataset.
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Figure 7.3. Average number of works per year for the different eras. The colors indicate the eras
Baroque, Classical, Romantic, and Modern. The yellow bars correspond to the additional works by transitional
composers between the eras. The black line denotes the total number of works per year in the dataset.

of pieces—and composers—decreases. For this reason, we need to be very careful with
an interpretation of the results for these outer time spans since they may be heavily biased
towards the pieces of only one or two composers. In subsequent sections, we use this mapping
procedure to visualize values of features over the time axis. For this, we first compute the
feature values for all pieces of a composer and average. Then, we map the average features
to years using the respective weighting factors. As for normalization, we finally divide the
year-wise values by the number of works in the year—given by the black line in Figure 7.3—so
that a constant feature value for all pieces results in a flat curve.

7.2.2 Analysis of Chord Progressions

In Section 2.6.3, we introduced the categorization of chord progressions into authentic and
plagal types as proposed by Bárdos [14]. According to [69], the quantitative relation between
authentic and plagal progressions provides a useful criterion to discriminate musical styles.

Motivated by such hypotheses, we now want to use our mapping technique for analyzing
chord progressions over the course of music history. For estimating the chords, we use the
public algorithm Chordino.8 This method relies on NNLS chroma features (see Section 3.5.3)
and incorporates Hidden Markov Models for concurrently estimating and smoothing the
chord labels [147]. With the public software Sonic Annotator, we extracted the chords for
our database.

8http://isophonics.net/nnls-chroma

http://isophonics.net/nnls-chroma
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Figure 7.4. Estimation of root note progressions. In this schematic overview, we show the processing
flow for estimating the frequency of root progressions. First, we reduce the output of the chord estimator to
consider only root notes. From this sequence, we calculate statistics of melodic intervals between the root
notes.

The Chordino plugin allows for an adaptation of possible chord types using a dictionary
file (“chord.dict”). We modified this dictionary for our purpose by only using the four basic
triad types (see Figure 2.11) as well as the five seventh chord types presented in Figure 2.13.
In the appendix, we show the dictionary file in detail (Table A.1). We do not use the bass
note estimation since, for classical music, the bass notes9 do not necessarily lie within a
fixed pitch range. For all other system parameters, we use the default values. Of course,
this automatic chord estimation system produces a number of errors or results that are not
musically meaningful or accurate. Furthermore, the chosen selection of chord types may not
be suitable for the sonorities appearing in the Modern class, in particular. This means that,
for the Modern pieces, a specific type of “measurement error” may be characteristic rather
than an explicit output that is semantically meaningful. Nevertheless, we expect certain
tendencies to occur since we look at a large number of works and, thus, local errors may
disappear in the global view. Moreover, errors concerning the chord types do not affect
some of our experiments since we are mainly interested in the chords’ root notes and their
progressions.

As a first scenario, we only consider such root note progressions. To this end, we only keep
the root notes of the chords and count the melodic intervals between them (see Figure 7.4).
We divide the resulting numbers by the total number of chord progressions to obtain relative
values for each piece. With the method presented in Section 7.2.1, we then map these piece-
level features onto the time axis (Figure 7.5). We arrange the values according to authentic
(falling) and plagal (ascending) progressions following the system by Bárdos. For details on
this theory, we refer to Section 2.6.3 and Table 2.2. Because of enharmonic equivalence in our
features, we cannot assign the tritone progressions to one of these categories (CM → F]M
equals CM→ G[M). We do not consider transitions between chords with the same root note
either such as, for instance, the transition CM→ Cm.

We now apply this analysis to the whole Cross-Era+Add-On dataset using our mapping
technique (Figure 7.5). Here, we first observe the important role of the fifth progressions.
Both authentic and plagal fifth progressions occur frequently, with a slight dominance of
the authentic fifth—especially for the early 18th century. Another important step is the
major second. Here, both directions show similar rates. During the 19th century, third
note progressions seem to become more important. From the year 1900 on, the distribution
flattens slowly. Moreover, the number of minor second and tritone progressions increases.
Overall, the flat distribution may point to a random-like behavior of the chord assignment.
This is in accordance with our expectation, since the chord types allowed for the system

9Here, we refer to the harmonic bass note—the lowest note in a given voicing of a chord—independently of
this note’s octave or the playing instrument.
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Figure 7.5. Relative frequency of root note progressions. With the mapping method from Section 7.2.1,
we visualize the frequency of melodic intervals between root notes. We arrange the progressions according to
authentic and plagal categories. Hereby, we ignore self-transitions (between chords with identical root notes).
The gray levels (logarithmic color-axis) indicate the relative frequency of the root note distances.

are not relevant for most of the Modern class pieces. To see the influence of the individual
composers’ pieces on the chord progressions distribution, we show in the appendix a detailed
plot with composer-specific root progressions (Figure A.1).

To systematically evaluate the relation between authentic and plagal progression, we sum
up all progressions belonging to each group (see Table 2.2). Here, we ignore the tritone-
and self-transitions. For each piece, we calculate the ratio between the piece-wise normalized
numbers #Authentic/#Plagal. A ratio of 1 indicates an equal numbers of plagal and au-
thentic progressions. We map these numbers onto the time axis with the procedure presented
in Section 7.2.1. Figure 7.6 shows the resulting curve. With a bootstrapping procedure, we
estimate the robustness of the year-wise mean. This method serves to analyze the stability
of the mean when the underlying distribution is unknown. For each year, we create 500
duplicates of the initial sample (the feature values contributing to this year) using sampling
with replacement.10 We calculate the mean from each of the 500 samples and derive the 95 %
confidence interval. This bootstrap error is larger for years with only few contributing pieces
such as the years before 1700.

Looking at Figure 7.6, we always find a higher number of authentic progressions (ratio > 1).
This points to a high importance of progressions such as authentic cadences or“circle of fifths”
sequences, which are typical for a “functional” concept of harmony. Around the year 1750, we
find a considerable decrease of the ratio. Looking at the composer plot (Figure 7.1), several
typical Baroque composers stop contributing here (J. S. Bach, G. F. Handel, J. P. Rameau,
and others). For this reason, the dominance of authentic progressions may be a criterion to
discriminate late Baroque from Classical style. Between the years 1820–1850, we find a small

10Sampling with replacement leads to a sample of the same size but usually with some values missing and
others occuring multiple times. The weights for the individual composers (Figure 7.2) serve as sampling
probabilities.
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Figure 7.6. Ratio between authentic and plagal chord progressions distributed over the years. For
each year, we performed weighted bootstrapping (500 bootstrap samples) on the piece-wise values and calcu-
lated a 2σ confidence interval (95 % confidence).

a) Major → Major b) Minor → Minor

Year

A
u
th

e
n
ti
c
  
  
  
  
  
  
  
P

la
g

a
l 
  

  

 

 

1700 1750 1800 1850 1900 1950

+/− Tritone 

− Minor Second 

− Major Second 

+ Minor Third 

+ Major Third 

+ Perfect Fifth 

(Self Transition)

− Perfect Fifth 

− Major Third 

− Minor Third 

+ Major Second 

+ Minor Second 
10

−5

10
−4

10
−3

10
−2

10
−1

Year

A
u
th

e
n
ti
c
  
  
  
  
  
  
  
P

la
g
a

l 
  

  

 

 

1700 1750 1800 1850 1900 1950

+/− Tritone 

− Minor Second 

− Major Second 

+ Minor Third 

+ Major Third 

+ Perfect Fifth 

(Self Transition)

− Perfect Fifth 

− Major Third 

− Minor Third 

+ Major Second 

+ Minor Second 
10

−5

10
−4

10
−3

10
−2

10
−1

c) Major → Minor d) Minor → Major

Year

A
u
th

e
n
ti
c
  
  
  
  
  
  
  
P

la
g
a
l 
  
  

 

 

1700 1750 1800 1850 1900 1950

+/− Tritone 

− Minor Second 

− Major Second 

+ Minor Third 

+ Major Third 

+ Perfect Fifth 

(Self Transition)

− Perfect Fifth 

− Major Third 

− Minor Third 

+ Major Second 

+ Minor Second 
10

−5

10
−4

10
−3

10
−2

10
−1

Year

A
u
th

e
n
ti
c
  

  
  

  
  

  
  

P
la

g
a

l 
  
  

 

 

1700 1750 1800 1850 1900 1950

+/− Tritone 

− Minor Second 

− Major Second 

+ Minor Third 

+ Major Third 

+ Perfect Fifth 

(Self Transition)

− Perfect Fifth 

− Major Third 

− Minor Third 

+ Major Second 

+ Minor Second 
10

−5

10
−4

10
−3

10
−2

10
−1

Figure 7.7. Root note progressions for different chord types. Here, we order the bigrams by the
quality of the first and last chord. We order the root progressions to authentic and plagal categories.

increase of authentic progressions. Among others, we find contributions by R. Schumann
and F. Mendelssohn Bartholdy here. Possibly, a new popularity of the Baroque music in this
time showed some influence on the style of these composers.11 Besides such speculations,
the reasons for this behavior are not clear and have to be examined in future work. During
the 20th century, the ratio gradually comes closer to 1. This confirms our expectation of

11For example, many treatises on music history consider the rediscovery and performance of J. S. Bach’s “St.
Matthew Passion” initiated and conducted by F. Mendelssohn Bartholdy in 1829 as an important event.
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Figure 7.8. Root note progressions of a dominant seventh chord. For this plot, we sum up all
progressions from a dominant seventh chord to any other chord type (M7 → M,M7 → m, . . . ,M7 → m7, . . .).
We see the prevalence of the authentic fifth progression in this scenario.

a random-like chord estimation, which should not exhibit a trend towards certain types of
chord progressions.

To study the influence of the chord types, we want to discriminate between major and
minor types. “Major type” refers to all chords based on the major triad and, thus, includes
the major triad itself (M), the major seventh chord (Mmaj7), and the dominant seventh chord
(M7). The minor type comprises the minor triad (m) and the minor seventh chord (m7). In
Figure 7.7, we show the progressions by type. As an example, “Major → Minor” refers to all
bigrams beginning with a major type chord and ending with a minor type chord—arranged
according to the distance of the chords’ root notes. For all combinations, we find a rough
similarity to Figure 7.5. Root progressions by perfect fifth and major second intervals seem
to be important for all combinations. When the first chord is of major type, the authentic
progressions seem to be more frequent (Subfigures a) and c)).

This behavior becomes more evident when we only look at progressions departing from a
dominant seventh chord (M7) and leading to a chord of any other type (Figure 7.8). In this
case, the authentic fifth progressions is much more frequent than any other resolution (up to
factor 10). This is no surprise since, in common-practice music, the dominant seventh chord
typically resolves in that way—such as for the frequent cadences V7-I and V7-i.

Finally, we want to show the distribution of recognized chord types over the years (Fig-
ure 7.9). Here, we find a dominance of “stable chords” with a major or minor triad as basis.
During the Classical period (about 1750–1820), the major chord types are even more present
compared to other types. The diminished types gain importance during the 19th century.
The augmented type—which only comprises the augmented triad here—is found more often
in 20th century pieces. Looking at the seventh chords, we also see a decreasing influence dur-
ing the Classical time. The diminished seventh chord (◦7) seems to be particularly important
during the 19th century. In contrast, the half-diminished seventh chord (ø7) becomes more
important with the end of the 19th century.
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Figure 7.9. Chord types distributed over the years. “Major Type” includes all major triads as well
as all seventh chord types based on a major triad. “Minor type” are the minor triad and the minor seventh
chord.

In Figure 7.9, we detect some problems with the detailed chord type analysis. In this
plot, the major seventh chord is sometimes even more frequent than the dominant seventh
chord—for example, from 1750–1800. However, this chord was practically not existing at
that time. In our interpretation, this is mostly a misinterpretation of the major triad by the
Chordino algorithm. This may result from the third partial of the triad’s third note, which
corresponds to the major seventh above the root. Another reason may be the presence of the
seventh as a figurative melodic note. Because of such effects, we have to be very careful with
a comparison of chord types. Nevertheless, most of the confusions do not lead to a wrong
root note estimation and, thus, produce no errors when analyzing root note progressions.

7.2.3 Analysis of Interval and Complexity Features

In Chapter 6, we presented several features for quantifying the presence of interval classes
or tonal complexity. In contrast to the chord estimation used for the previous section, these
features do not have to locally decide on the best matching item. They have a continuous-
valued output and, thus, can reflect mixtures of items. In this section, we want to analyze
the distribution of such features over the course of music history.

First, we use a set of features (ΨIC1, . . . ,ΨIC6) describing interval categories as presented in
Section 6.1.3. We calculate the features on the basis of NNLS chromagrams with a resolution
of 10 Hz (no feature smoothing). For this reason, the features mainly refer to simultaneous
intervals. Then, we map the results onto composition years using the strategy from Sec-
tion 7.2.1. Figure 7.10 shows the resulting plot. We observe a prominent role of the category
IC5 comprising perfect fifth and fourth intervals. During the 20th century, the frequency
of these intervals slightly decreases and the overall distribution flattens. We saw a similar
behavior for the chord progressions in the previous section. The major third and minor
sixth class (IC4) seems to be important for the Classical and Romantic periods. For the
minor third, we find an increase during the “high Romanticism” (about 1830–1890). One
reason may be the frequent use of chords such as the diminished seventh chord (◦7) in this
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Figure 7.11. Complexity features distributed over the years. This feature ΓFifth (Equation (6.24))
describes the pitch distribution over a circle of perfect fifths (see Section 6.2.3). We compute the features for
different resolutions of the NNLS chroma features and plot the average feature values per year.

period—which we observed in Figure 7.9. In the 20th century, the dissonant categories IC2
(whole tone) and, in particular, IC1 (semitone) and IC6 (tritone) become important. We
expected such behavior since 20th century composers often use dissonant chords such as, for
example, chromatic clusters. Fucks and Lauter [66] presented similar results when statisti-
cally analyzing melodic and harmonic intervals in single parts (violin, flute, and vocal parts)
based on symbolic data. In particular, they observed a prominent role of the intervals M7
and m9—both belonging to IC1—in works by A. Schönberg and A. Webern.

Second, we visualize measures for quantifying tonal complexity over the years. In Sec-
tion 6.2, we proposed such measures and analyzed their behavior for single chords or segments
of pieces. Here, we calculate the feature ΓFifth (Equation (6.24)) for four different time scales
on the basis of NNLS chroma features (NNLSglobal, NNLS200

100, NNLS10
5 , NNLSlocal).

12 We
average the features over each piece and distribute the values over the history as presented
above (Figure 7.11). For all temporal resolutions, we find a general increase with the years.
After 1750, the complexity seems to decrease for some decades. Interestingly, this confirms
the demand for more “simplicity”, which musicologists often claim to be a paradigm for the
begin of the Classical period. We observe a similar behavior—but less obvious—for the early
Romantic period (about 1810–1830). After this time, the global complexity considerably in-

12For the details of the chroma smoothing procedure, we refer to Section 3.5.5.
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Figure 7.12. Self-similarity matrix of root note progressions. This matrix shows the Euclidean
distance between each pairs of years encoded by the gray levels. As input features, we used the eleven basic
root note progressions between any types of chord and mapped them onto the years.

creases during the 19th century, whereas the local complexity stays approximately constant.
In our interpretation, this effect may stem from an increasing use of modulations—flattening
the global chroma histogram—whereas the local structures such as chords remain less com-
plex. This relationship changes towards the 20th century, where we observe a strong increase
of complexity for all temporal scales. This means, we also find complex local sonorities for
the 20th century, which may arise from contributions of rigorous atonal music by composers
such as A. Schönberg, A. Webern, and others. As mentioned above, we have to be careful
with the early and late years shown in our plots. In particular, the sharp increase at around
1970 may not be representative for this time. This artifact is caused by the pieces of P. Boulez
and his teacher O. Messiaen, which are the only composers contributing to these years. For
studying the composer-specific complexity values, we show a detailed plot in the appendix
(Figure A.2).

7.3 Style Analysis with Clustering Methods

7.3.1 Clustering Years

7.3.1.1 Chord Progressions

In the previous section, we presented a method for mapping feature values of individual
pieces onto a time axis. We applied this technique for analyzing automatically extracted
chord progressions as well as interval and complexity features over history. At first glance,
some of the observed structures relate to stylistic evolutions in music history. We now want
to apply unsupervised clustering techniques to analyze the similarity of pieces, composers,
and years on the basis of our features. This may provide an insight in the usefulness of such
features for stylistic analysis.

We first analyze the chord progression statistics individually. For this, we look at the root
note progression statistics mapped onto the years as presented in Figure 7.5. We consider
the years 1761–1975 where at least three composers contribute to the statistics. Since we
ignore the self-transitions, we end up with eleven progressions and, thus, a feature matrix
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Figure 7.13. First three principal components from eleven root progression types. We display the
PCA scores over the instances (years). To better recognize the small component λ3,i, we multiplied its value
with the factor 3.

FRootProg ∈ R11×315. On this data, we calculate a self-similarity matrix (Figure 7.12). This
matrix comprises the Euclidean distance between each possible pair of data points. Blocks of
higher values indicate a higher homogeneity of the respective fragments. We can observe sev-
eral of such blocks. Two pairs of blocks—with a separation at about 1850 and 1900—suggest
a discrimination into the categories traditional–modern (or tonal–atonal). Furthermore, we
find darker blocks for the years 1700–1750 (late Baroque) and 1750–1820 (Classical period).
In contrast, the 19th century does not constitute a homogeneous period in this plot.

To analyze the contributions of the individual progressions, we perform principal compo-
nent analysis (Section 3.6.4.1). For normalization, we first subtract from each row its mean
value.13 Then, we compute the principal component weights wl ∈ R11 and scores λi,l ∈ R
with l ∈ [1 : 11] and i ∈ [1 : 315]. In Figure 7.13, we show the PCA scores. The scores
constitute the feature values (linear combinations of the root progressions for each year) in
the principal component space14 of dimension R11×315. Table 7.2 lists the weights wl for the
first three components l ∈ [1 : 3]. The weight vectors are normalized to `2(wl) := 1. A minus
sign indicates negative contribution.

The first component score decreases over time and seems to capture the difference between
the early periods and the rather modern styles. Looking at the weight vector w1 in Table 7.2,
we see the largest entries for the perfect fifths progressions with an emphasis on the authentic
P5 (.871). Only the perfect fifth and major second progressions have positive sign, in contrast
to all other components. Thus, the first component describes the relative frequency of the
most typical progressions (perfect fifths and major seconds) in tonal music. From 1850 on,
other progressions seem to become more frequent leading to a smaller value of the first
principal component.

13For features of different type, a division of each row’s values by the standard deviation is also necessary.
Here, we have features of similar type. We do not divide by the standard deviation in order to keep the
influence of the overall frequency of a chord progression type.

14In Section 3.6.4.1, we introduced PCA as a method for dimensionality reduction. In general, the principal
component space has the same size as the initial feature space. To obtain a reduced number of dimensions,
we usually keep only a fraction of the principal components. This is useful since, with increasing index l,
a vector wl describes a smaller fraction of the data’s variance.
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Table 7.2. Principal component weights for root note progressions. We re-ordered the vector entries
according to the axis of Figure 7.5. The second column ∆ indicates the size of the respective interval in semi-
tones. Note that we cannot resolve the direction and therefore, the values may also refer to the complementary
interval in opposite direction (P5 ↘ =̂ P4 ↗).

Interval ∆ w1 w2 w3 Quality

+4 ↗ +6 −.138 −.178 −.045 None

m2 ↘ −1 −.127 −.159 −.012 Plagal

M2 ↘ −2 .038 −.155 .358 Plagal

m3 ↗ +3 −.139 −.039 −.136 Plagal

M3 ↗ +4 −.121 .068 −.330 Plagal

P5 ↗ +7 .325 .715 .407 Plagal

P5 ↘ −7 .871 −.202 −.418 Authentic

M3 ↘ −4 −.114 −.039 −.250 Authentic

m3 ↘ −3 −.081 −.125 −.021 Authentic

M2 ↗ +2 .199 −.579 .576 Authentic

m2 ↗ +1 −.082 −.095 −.087 Authentic
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Figure 7.14. K-means clustering for root note progressions. For each value of KKM, we repeat the
clustering 200 times. We show the mean silhouette score over all runs indicating the clustering quality.

The second component’s weight vector w2 also has large values for the perfect fifth
progressions—but with opposite sign. The plagal P5 has a large positive coefficient (.715),
whereas all authentic progressions (including P5 and M2) have negative coefficients. This
means that the second component describes some kind of ratio between plagal and authentic
progressions. Looking at the corresponding PCA score in Figure 7.13, we see that this com-
ponent mainly distinguishes the Classical period (about 1750–1820) from the other years. In
our opinion, this observation is interesting since it stems from an unsupervised clustering of
the progression features—without any prior assumptions about style periods.

To obtain an automatic partitioning of the years into segments, we run the K-means clus-
tering algorithm (Section 3.6.2.1) on the three principal components of our chord progression
features. For this method, the number of clusters KKM is an important parameter. To de-
termine the optimal value, we calculate so-called “silhouette scores” for KKM ∈ [1 : 40]. The
silhouette is computed for every data point (year) and indicates how similar that point is to
points in its own cluster compared to points in other clusters [207]. A high silhouette score
indicates a good clustering. Figure 7.14 shows the scores over KKM. Six or eight clusters
seem to be optimal for this data. However, we also obtain a high score for two clusters.

In Figure 7.15, we plot the results of the clustering procedure. Interestingly, the first split
point (for two clusters) divides the romantic period at about 1850. We find several “stable”
cluster boundaries that are present in the clustering results for most KKM values. Here, they
arise at about 1750, 1850, and 1900. For all KKM, the 19th century is split into several
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Figure 7.15. Clustering of years for root note progressions. For different numbers of clusters KKM,
we show the clustering result based on root note progressions. Each cluster is indicated by a color.
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Figure 7.16. First three principal components from interval and complexity features. We show
the values of the PCA scores for the individual years. For better recognition, we re-scaled the third component
λ3,i with a factor of 3.

clusters. With the optimal number of six clusters, the Classical era constitutes one cluster
and the Baroque time is split at about 1700. Sometimes, a cluster comprises years that are
not continuously connected. As an example, we find for KKM ∈ [3 : 7] the same cluster
assignment for the first years (1660–1680) and the Classical period. In this case, this may
not be a meaningful observation since only few composers contribute to the first years.

7.3.1.2 Interval and Complexity Features

To compare such clustering results for other types of features, we perform the same ex-
periments on the features used in Section 7.2.3. On the basis of NNLS chroma features,
we consider the six simultaneous interval types (ΨIC1, . . . ,ΨIC6) as well as the complexity
feature ΓFifth on four different time scales (10 features in total). Before performing PCA,
we normalize the rows by subtracting their mean value. Furthermore, we have to divide the
rows by their standard deviation since intervals and complexity are different types of features
with individual scales. In Figure 7.16, we show the resulting PCA scores. Table 7.3 lists the
entries of the associated weight vectors. The first component increases over the years and
particularly marks the stylistic change at about 1900. Looking at the entries of w1, we see
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Table 7.3. Principal component weights for interval and complexity features. The interval features
rely on local chroma features (NNLSlocal). For the complexity, we selected the feature ΓFifth based on four
different time resolutions.

Feature type w1 w2 w3

ΨIC1 .341 −.140 .081

ΨIC2 .334 −.128 −.287

ΨIC3 −.087 .881 −.363

ΨIC4 −.292 .204 .739

ΨIC5 −.310 −.265 −.424

ΨIC6 .336 .197 .149

ΓFifth NNLSglobal .335 .174 −.047

ΓFifth NNLS200
100 .344 −.031 .009

ΓFifth NNLS10
5 .347 .011 .132

ΓFifth NNLSlocal .344 .077 .110

1700 1750 1800 1850 1900 1950

1700

1750

1800

1850

1900

1950

Year

Y
e
a
r

 

 

0

2

4

6

8

10

12

14

Figure 7.17. Self-similarity matrix of interval and complexity features. After normalizing the rows
to mean zero and standard deviation one, we computed the self-similarity matrix based on the Euclidean
distance of interval and complexity features.

that almost all dimensions have a similar weight, which may be an effect of the normalization.
The entries for the complexity features all have positive sign indicating a close relationship
between the first principal component and the complexity of the music, which increases over
the years. The w1 entries of the interval features support this assumption since the dissonant
intervals (IC1 , IC2, and IC6) have positive sign whereas the consonant intervals (IC3, IC4,
and IC5) contribute with negative sign. For the second principal component, the situation is
less clear. Looking at w2, this component seems to describe the relation between thirds—in
particular, minor thirds with a weight of .881—and other intervals such as perfect fifths (IC5
with a negative sign). From Figure 7.16, we see that this component mainly discriminates the
Romantic period (about 1825-1890) from the other years. This might point to the observa-
tion that chords with many third intervals—such as seventh or ninth chords—are important
for Romantic styles. The positive coefficient of the tritone in w2 indicates an important role
of diminished and half-diminished triads. For the third principal component, the relation
between major and minor thirds seems to be crucial since IC3 and IC4 have large values
with opposite sign. The score of this component suggests a relation to the Classical period.
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Figure 7.18. K-means clustering based on interval and complexity features. On the first three
principal components, we repeat the clustering procedure 200 times and calculate the silhouette scores. We
display the mean scores over the number of clusters KKM.
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Figure 7.19. Clustering of years for local chroma-based features. This plot illustrates the clusters of
years for a different number of clusters KKM. Each cluster obtains a different color.

Figure 7.17 shows the self-similarity matrix for these features. Since interval and complex-
ity features have different scales, we calculated this matrix on the basis of three principal
components (after normalization). The two main homogeneous blocks separate around 1900.
This may indicate that complexity and interval features are useful to distinguish tonal and
atonal music. We observe further structures before the year 1900, which are less obvious.

To obtain a meaningful number of clusters, we calculate the silhouette score for the K-
means algorithm on the basis of the interval and complexity features. We only use the first
three principal components as input. In this scenario, we find an optimal number of clusters of
12 or 13. The optimal value obtained for the root progressions—six clusters—also has a high
silhouette score here. Looking at the clusters (Figure 7.19), we find stable cluster boundaries
at about 1900 and 1700, similar to Figure 7.15. The first border arises at 1900, which mainly
seems to discriminate tonal from atonal pieces. The boundary at 1750 arises for KKM ≥ 5
clusters and, thus, seems to be less obvious than for chord progressions (Figure 7.12). In
contrast, the 1820 boundary seems to be more important when using intervals and complexity.
Furthermore, there is a boundary at 1780. The boundary at 1800—observed for the chord
progressions—does not play a major role here. Principally, the clustering result is different
with other types of features. Nevertheless, some change points in music history (for example,
at 1750 or 1900) seem to establish with both feature types independently from each other.

7.3.1.3 Feature Combination

In the previous sections, we saw that chord progression statistics and local chroma-based fea-
tures may complementarily capture different aspects of stylistic similarity. For this reason, we
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Figure 7.20. Self-similarity matrix based on the feature combination. Using the first three principal
components from 55 root note progressions, six interval and four complexity features, we visualize the distances
between years.
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Figure 7.21. Clustering result for a combination of features. Based on the first three principal
components from all features, we plot the cluster assignment of the years for different numbers of clusters.

combine both feature types in the following. To add more detailed information about chord
progressions, we now consider the specific root note progressions with respect to the chord
types (major / minor) as presented in Section 7.2.2.15 Leaving out the self-transitions, we end
up with 11×5=55 dimensions of root note progressions (compare Figure 7.7). Together with
the ten interval and complexity measures from Section 7.3.1.2, we have 65 feature dimensions
in total. On this data, we perform PCA with a prior normalization of the rows to a mean of
zero and a standard deviation of one. For the first three principal components, we compute
a self-similarity matrix using the Euclidean distance (Figure 7.20). Comparing this plot to
Figures 7.12 and 7.17, we find influences from both features. The clear separation at roughly
the year 1900 probably stems from the interval and complexity features. Furthemore, these
features seem to contribute to some homogeneity of the Romantic era (about 1820–1900).
In contrast, the splitting into two sub-blocks at 1850 may result from the chord progressions
since this is a major boundary in Figure 7.12. When ignoring the years before 1700 (few
composers contributing), we find a division into four main eras with several sub-structures.

15In Section 7.3.1.1, we only used root note progressions independently from the chord types in order to
enable an easier interpretation of the results.
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In Figure 7.21, we show the result of the K-means clustering algorithm on the basis of the
first three principal components. As we expect from the structure of the self-similarity matrix,
the years 1750 and 1900 play a major part for separating clusters. Similar to the interval
and complexity features (Figure 7.19), the boundary at 1820 seems to be important whereas
the 1850 boundary—indicated by the chord progressions in Figure 7.15—only appears for
seven or more clusters. The Baroque period separates into two clusters at 1700 for KKM ≥ 5.
Clustering into six or more clusters, we find at least one “intermediate period” between
the Classical and Romantic eras. In summary, the clustering results based on the feature
combination seem to be a bit smoother than for the individual feature types. Most of the
boundaries between clusters coincide with breaking points proposed by music historians.
Nevertheless, a clustering of years with several contributing composers cannot resolve details
of stylistic evolution, which often exhibits parallel and contrasting trends. As we mentioned
in Section 4.6.2, Rodriguez Zivic et al. [202] performed a similar clustering of years based on
melodic intervals from symbolic data (the “Peachnote” corpus [247]). Though they have the
exact composition dates in their dataset—in contrast to our scenario—, the results may be
comparable to some degree since they use a smoothing window of ten years for the clustering
results. As a result, they obtained roughly similar break points between their four clusters—
at the years 1760, 1825, and 1895. This is a very interesting agreement since they derived
their features from score data using Optical Music Recognition—a completely different type
of data. For this reason, we might be willing to assume that our clustering methods uncover
some historical evolutions of style even though the features themselves and the clustering
procedure may be error-prone and inaccurate on the fine level.

7.3.2 Clustering Individual Pieces

To better account for the stylistic inhomogeneity of the years, we perform our clustering ex-
periment with an inverted order. We consider the combined features as used in Section 7.3.1.3
(55 chord progression, six interval, and four complexity features) for the individual pieces
without prior mapping to years. On the resulting feature matrix FPieces ∈ R65×2000, we
perform PCA after normalizing the rows to a mean of zero and a standard deviation of one.
To the reduced matrix (three principal components), we apply the K-means algorithm with
a number of KKM = 5 clusters.

With this procedure, we assign every piece in the dataset to one of the five clusters. As
the next step, we map the cluster assignments of the individual pieces onto the time axis
with the procedure shown in Section 7.2.1. The resulting distribution describes the fraction
of pieces belonging to each cluster over the years. In Figure 7.22, we individually show this
fraction for the five clusters. Figure 7.23 jointly visualizes all cluster assignments as stacked
bars.

We now want to discuss the possible meanings of the different clusters. Compared to the
previous sections (clustering of years), the results are much less clear. Cluster 1 exhibits
the most descriptive distribution. This cluster enters gradually during the 19th century and
seems to play an important role in the 20th century. We assume that this is the “Avant-
garde” cluster, which is mostly characterized by complex and atonal pieces. Nevertheless,
this is not the only cluster present in the 20th century. Cluster 5 also contributes here, which
is the most prominent cluster throughout the 19th century (“Romantic” cluster) but also
shows influence in previous years. The presence of cluster 1 (“Avant-garde”) and cluster 5
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Figure 7.22. K-means clustering of individual pieces distributed over the years. For a fixed number
of KKM = 5 clusters, we assign every piece to a cluster. Mapping the assignments over the years, we obtain
the fractions of pieces per year that belong to each of the individual clusters. Figure 7.23 shows a color plot
of the same values.

1700 1750 1800 1850 1900 1950
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f 
P

ie
c
e
s
 P

e
r 

C
lu

s
te

r

Year

 

 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Figure 7.23. K-means clustering of individual pieces as bar histogram. The fraction of pieces
belonging to each cluster is indicated by bars in different colors.

(“Romantic”) for the years 1910–1960 may reflect the parallelism of styles during this time.16

Cluster 2 is also present during the 20th century. This cluster obtains a very flat distribution
over the years so that we can hardly interpret its meaning (“noise cluster”). The meaning
of the clusters 3 and 4 is not very clear. They seem to mostly describe the Baroque and
Classical periods and decrease to small values after 1850. Hereby, cluster 3 is slightly more
prominent for the Baroque time and has less contributions to the years 1750–1820 (Classical

16For example, romantic pieces by R. Strauss and dodecaphonic music by A. Schönberg simultaneously
contribute here.
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period). After this, we see a small “revival” of this cluster for 1820–1850. As opposed to
this, cluster 4 is more important for the early classical time (1750–1800). Nevertheless, this
cluster also contributes to the Baroque period and, in particular, to the years before 1700.

We see that the situation is much less distinct when clustering pieces before mapping to
years. None of the cluster covers more than 60 % of the pieces for a considerable span of time.
The individuality of pieces and composers seems to be stronger than the stylistic homogeneity
of a period. This indicates that the procedure of the previous sections (clustering years after
averaging) has some limitations. Supposedly, first averaging over all piece-wise features of a
year—followed by clustering the years—is too superficial and obscures the heterogeneity of
the pieces contributing to a year. Though being ambiguous to some degree, the clustering of
pieces before mapping to years provides some insights into historical trends.

7.3.3 Clustering Composers

Finally, we want to use our methods to analyze the stylistic relation between different com-
posers. For each of the 70 composers, we average the chord progression, interval, and com-
plexity features over all pieces by the respective composer. On the resulting feature matrix
FComposers ∈ R65×70, we perform PCA followed by K-means clustering on the first three
principal components. We choose a number of KKM = 5 clusters.

In Figure 7.24, we display the resulting cluster assignments for the composers as colored
bars of their lifetime. This plot relates to the overview plot in Figure 7.1—but here, the
colors indicate the automatic cluster assignments instead of the annotated classes. The
results seem to be very interesting. Mostly, composers with a similar lifetime belong to the
same cluster. This indicates some fundamental relationship between historical context and
stylistic similarity. For example, Cluster 1 (green) comprises most of the Baroque composers.
However, single composers escape such a simple partitioning. For example, A. Vivaldi and
D. Scarlatti obtain the cluster label of the Classical time. If we try to find musical reasons for
this attribution, we might argue that the harmonic properties of A. Vivaldi’s music show some
similarities with music from the Classical period. As another interesting observation, C. P. E.
Bach belongs to the Romantic cluster. Often, musicologists label his music as the “sensitive
style” (“Empfindsamer Stil”)—one of the pre-classical trends, which was indeed motivated by
some ideas that relate to Romantic paradigms. For the other two composers assigned to the
Romantic cluster in this time (L. Giustini and G. B. Platti), we are not aware of such relations.
As for this example, such kind of rather surprising observations could be a starting point
for musicological research in the future. Other pre-classical composers such as J. Stamitz,
L. Mozart, or J. C. Bach belong to the Classical cluster. For the stylistic change between the
Classical and Romantic periods, we find a rather clear separation. Here, L. van Beethoven,
C. M. von Weber, and G. Rossini constitute the latest Classical representatives whereas
F. Schubert and F. Mendelssohn belong to the Romantic cluster. For the 20th century, we
find two parallel clusters. The yellow cluster (Cluster 5) comprises the avant-garde of that
time with mostly rigorous atonal composers such as A. Schönberg, A. Berg, A. Webern,
I. Stravinsky, E. Varèse, or B. Bartók. Furthermore, the younger 20th century composers
B. Britten, O. Messiaen, and P. Boulez belong to this cluster. The other modern cluster
(Cluster 4, red) contains composers with a more moderate harmonic style such as S. Prokofiev
and D. Shostakovich. The assignment of M. Mussorgsky and G. Faure to this cluster is rather
surprising since most of the late romantic composers (G. Mahler, R. Strauss) as well as the
impressionists (C. Debussy, M. Ravel) belong to the Romantic cluster.
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Figure 7.24. K-means clustering of composers. With a fixed number of KKM = 5 clusters, we assigned
the pieces of each composer to one of the clusters. Here, we show the lifetimes of the composers with the color
indicating the cluster assignments.

These outliers point to the difficulties of clustering composers to a fixed number of top-level
clusters. As an outlook, we therefore present two studies of applying methods for hierarchical
clustering to such type of features. In bioinformatics, these phylogenetic trees are popular
tools for clustering DNA sequences in order to highlight evolutionary developments and
trends. The trees rely on the Euclidean distance between feature vectors and hierarchically
arrange composers into similarity groups of variable size. Figures 7.25 and 7.26 show two of
these phylogenetic trees computed with different configurations. In Figure 7.25, the two main
groups—divided at the first node—roughly relate to tonal and atonal composers. Most of
the composer pairings seem to be stylistically meaningful such as W. A. Mozart – J. Haydn,
C. Debussy – M. Ravel, or R. Schumann – F. Mendelssohn. But there are also limitations.
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Figure 7.25. Hierarchical clustering of composers. This phylogenetic tree method relies on the maximal
distance of individual elements in the two initial clusters (complete-linkage clustering).

For example, the pairing of J. Sibelius with C. P. E. Bach does probably not reflect meaningful
stylistic similarity.

In Figure 7.26, we show a tree computed with a different method. Here, the branch length
provides further information about distances between items. The total branch length from
one composer to another corresponds to their“stylistic distance.” Interestingly, the horizontal
position of the composers seems to roughly correlate to some kind of“tonal evolution”of their
music. Most Baroque composers stand at the very left side whereas the group to the very right
comprises the atonal composers. Though they are far from being a “final statement” about
any stylistic relationship between composer, such feature-based methods seem to provide
meaningful insights about the interrelation of composer styles—even beyond the well-known
connections.

7.4 Conclusion

In this chapter, we applied visualization and clustering methods for exploring stylistic and
historic relations within Western classical music. We presented our dataset, which comprises
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Figure 7.26. Hierarchical clustering using the minimum evolution criterion. With this method
(ordinary least squares with unweighted subtrees), the branch length corresponds to the distance of nodes or
items to their ancestor. The minimum evolution criterion enforces the total length of branches to be minimal.

2000 audio recordings of piano and orchestra pieces by 70 composers and from almost 400
years of music history. From these recordings, we automatically extracted audio features for
describing tonal structures. The first type of features serves to quantify chord progressions.
From the estimated chord sequences, we derived statistics of progressions with respect to the
chords’ root notes. The second class of features aims at quantifying the presence of interval
types and the degree of tonal complexity—as introduced in Chapter 6.

In the first step, we mapped these features onto a historical time axis regarding the lifetime
of the composers. These visualizations of the features showed interesting trends, which, to a
certain extent, seem to describe stylistic evolutions in the dataset. For example, we observed
an increasing use of major and minor thirds during the 19th century—both as distances
of chord progressions and as simultaneous intervals. Furthermore, a higher frequency of
authentic chord progression compared to plagal progressions occurred as a decisive feature
to discriminate late baroque music from classical style pieces. The tonal complexity features
showed a minimum in the classical period and increased during the 19th century and, in
particular, towards the 20th century. Interestingly, this increase was stronger regarding
global complexity (referring to the arrangement of keys on a large scale) than for local
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complexity values (referring to the structure of chords). For most of the features, the change
at about 1900 was the most remarkable one—primarily caused by the atonal music arising
at that time. Fucks and Lauter [66] reported similar findings in their statistical analyses of
instrumental parts from score data.

Next, we performed several clustering experiments with respect to years, individual pieces,
and composers. Though not all relations highlighted by the clustering are musically mean-
ingful, we made several observations that confirm common assumptions of stylistic trends
in music history. Furthermore, some of our findings point to rather unknown stylistic rela-
tionships between pieces or composers. For clustering years, we found groups that primarily
correlate to the historical periods as commonly outlined by musicologists. It is an encourag-
ing result to obtain this typical partitioning of periods from automatic data analysis without
any prior assumptions. Interestingly, Rodriguez Zivic et al. [202] obtained a quite similar
result using a completely different strategy (analysis of melodic intervals based on graphical
scores using OMR).

Applying a different strategy—first clustering pieces and then mapping the clustering re-
sults to years—revealed that pieces within a period may fundamentally differ from each
other. This may let us conclude that the individuality of a single piece is of greater im-
portance than the stylistic homogeneity within a period. A possible explanation could be
the hypothesis that composers usually aim at writing “novel” pieces whereas style relates
to secondary characteristics that rather unconsciously “happen” in the composition process
(compare the discussion in Section 2.10).

Surprisingly, we found a different picture when averaging over all works of a composer
and then clustering the composers. In this scenario, composers living at the same time
predominantly appeared in the same cluster—with two parallel “Modern” clusters in the
20th century. Based on this observation, we suppose that averaging over many works by
a composer balances out the individual pieces’ characteristics (which may strongly differ
between the pieces) and, thus, helps to uncover the composer’s style to a certain extent.
Altogether, we assume that such kind of methods may provide useful tools for analyzing and
highlighting stylistic relationships between musical works. In future studies, these analyses
could support hypotheses about style evolution or point to interesting coherences that are
yet to discover.
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8 Subgenre Classification for Western
Classical Music

In the previous chapter, we presented a couple of methods for analyzing corpora of classical
music on the basis of tonal audio features. We showed that such techniques may be useful
to look into subtle differences and evolutions between pieces, composers, and years. Fur-
thermore, we presented clustering techniques to obtain an automatic grouping into different
categories without prior assumptions about musical similarity. In contrast to that, we now
want to approach the task of automatic classification. Such methods are called “supervised”
since we train some kind of classifier on given training data with corresponding class labels
(see Section 3.6). This section is mainly based on previous publications [256,258] but further
provides additional experiments and more profound discussions.

For classification tasks, the structure of the dataset and the class assignments are of major
importance. The data should contain a sufficiently high number of items which are repre-
sentative for each class in order to enable a successful training procedure. In Section 8.1, we
introduce the datasets used for our classification experiments. In this thesis, we deal with two
scenarios. First, we are interested in the assignment of pieces to stylistic periods or eras. Sec-
ond, we perform experiments to identify the composer of a piece. In Section 8.2, we discuss
the importance of dimensionality reduction as a preprocessing step for classification. We show
that dimensionality reduction may also provide interesting visualizations of the data based
on the structure of the feature space. Next (Section 8.3), we present the classification results.
Section 8.3.1 outlines the main experimental procedure. In Section 8.3.2, we test different
classifiers and configurations on the two datasets. For experiments using cross validation,
we need to ensure that no correlations exist in the data between the semantic (“musical”)
properties which we want to classify and other characteristics—such as irrelevant timbral
properties or artifacts from recording conditions or audio downmixing. To this account, we
apply different filtering strategies for the cross validation procedure (Section 8.3.3).

As a central motivation for performing classification experiments, we want to investigate
the efficiency of different feature types for recognizing style. From the visualizations presented
in Chapters 6 and 7, we obtained a rough impression of these features’ “musical meaning.”
We suppose that the performance of different features in classification experiments may
provide some insights how important the related musical phenomena are for discriminating
styles. Let us consider an example. If the accuracy for classifying pieces regarding the
classes “Classical” and “Romantic” benefits from the use of tonal complexity features on a
global scale, this might point to a high importance of modulations and global tonality for
discriminating these styles. In Section 8.3.4, we draw such comparisons between different
feature types. Finally (Section 8.3.5), we exemplarily look at some individual pieces in order
to get a better understanding of the classification mechanisms in our systems. Section 8.4
concludes this chapter with a discussion of the benefits and problems with such classification
experiments.
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8.1 Datasets

As we mentioned in Chapter 1, automatic classification of music recordings into genre cate-
gories constitutes a main research task in the field of Music Information Retrieval. Typical
classification scenarios deal with several top-level genres such as Rock, Pop, or Jazz (see
Section 4.6). In this thesis, we are interested in classifying subgenres of classical music and
in understanding the musical meaning of such categories—as discussed in Section 2.10. To
this end, we compiled two datasets, each for a specific task.

The first scenario deals with the classification into historical or, more precisely, stylistic pe-
riods (“eras”). We consider the four periods Baroque, Classical, Romantic, and Modern. The
Modern category contains music from the early 20th century that clearly applies advanced
concepts of tonality. Typical examples for this type of music are the dodecaphonic pieces by
Schönberg and his followers. As we outlined in Section 2.10, such a categorization is quite
superficial. Musicologists often prefer a more detailed view considering individual composers
or even single works in order to observe subtle stylistic differences. Beyond these details, one
may detect more general development lines in music history as well as the breaking of such
lines. This is why a classification into eras can be helpful as a first analysis step, which may
precede a closer look at individual tendencies of style [65,74,250].

To study this scenario, we compiled a dataset with a balanced number of 400 pieces for each
of the four periods. We already presented and discussed this Cross-Era dataset in Section 7.1.
The compilation comprises works by various composers from different countries in each class.
To investigate dependencies on timbral characteristics, we only included orchestra recordings
on the one hand and piano recordings—played on a modern grand piano—on the other hand
(no harpsichord for the Baroque class). We did not include any works featuring singing voices
or the organ. Each of the four classes contains 200 orchestra and 200 piano recordings. This
enables us to create the balanced subsets Cross-Era-Piano and Cross-Era-Orchestra, which
might be useful to investigate timbre-invariance of the classification algorithm. Table 8.1
gives an overview of the different datasets. We avoided to include transitional composers
who cannot be assigned clearly to one of the periods (such as, for example, L. van Beethoven
or F. Schubert, who could be considered both as late classical or early romantic composers).
To preserve the variety of movement types with respect to properties such as rhythm and
mood (major/minor keys, slow/fast tempo, duple/triple meter), we included all movements
or parts for most of the work cycles. For further details of the Cross-Era set, we refer to
Table 7.1 and Figure 7.1.

In the Cross-Era set, we summarized several composers into one stylistic class, respec-
tively. To go beyond this simplified scenario, we also approach the problem of composer
identification. Moreover, this task allows for a better comparison to state-of-the-art algo-
rithms since the composer identification problem was approached more often.1 For these
reasons, we compiled another dataset comprising 100 pieces by each of the eleven com-
posers J. S. Bach, L. van Beeethoven, J. Brahms, A. Dvořak, G. F. Handel, J. Haydn,
F. Mendelssohn Bartholdy, W. A. Mozart, J.-P. Rameau, F. Schubert, and D. Shostakovich.
Here, we included a large variety of instrumentations including—among others—orchestral
works, piano pieces, and solo concertos as well as compositions for choir, organ, and harpsi-
chord. The pieces stem from commercial recordings on 94 different albums and are played
by 68 different interpreters. Table 8.2 provides more detailed information about the dataset.

1For example, the annual evaluation contest MIREX for MIR algorithms includes a composer identification
task with eleven composers (http://www.music-ir.org/mirex/).

http://www.music-ir.org/mirex/
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Table 8.1. Classification datasets and their properties. From the two main datasets Cross-Era and
Cross-Composer , we compiled different subsets.

Dataset Classes No. classes Items per class Total items

Cross-Era-Full Baroque; Classical; Romantic;
Modern

4 400 1600

Cross-Era-Piano Baroque; Classical; Romantic;
Modern

4 200 800

Cross-Era-Orchestra Baroque; Classical; Romantic;
Modern

4 200 800

Cross-Comp-11 Bach, J. S.; Beethoven, L. van;
Brahms, J.; Dvořak, A.;
Handel, G. F.; Haydn, J.;
Mendelssohn Bartholdy, F.;
Mozart, W. A.; Rameau, J.-P.;
Schubert, F.; Shostakovich, D.

11 100 1100

Cross-Comp-5 Bach, J. S.; Beethoven, L. van;
Brahms, J.; Haydn, J.;
Shostakovich, D.

5 100 500

Table 8.2. Cross-Composer dataset. The percentage numbers indicate the fraction of works featuring
the instruments. Here, we only mention the more frequent orchestrations.

Instruments Fraction of Pieces

Orchestra 38.7 %

Piano 38.6 %

Ensemble 19.5 %

Choir 6.6 %

Organ 6.3 %

To enable a comparison with the MIREX results, we chose the same number of 11 com-
posers. Due to our data resources, we did not use exactly the same composers but replaced
F. Chopin and A. Vivaldi with J. P. Rameau and D. Shostakovich. In contrast to the MIREX
data, which contains audio excerpts of 30 seconds length, we use the full-length tracks for
our classification experiments.2 We made features and annotations for this dataset publicly
available on a website.3

Since an eleven-class problem is quite a challenging task for any classification algorithm,
we further make use of a subset. To this end, we selected five of the composers that are
stylistically more distinct from each other than is the case for the full dataset (see lower part
of Table 8.1). In the following, we refer to the full dataset as Cross-Comp-11 and to the
reduced one as Cross-Comp-5 .

2In our opinion, it is musically more meaningful to use full-length recordings (movements). For example,
we may perceive an excerpt from the development phase in a Mozart symphony movement as stylistically
different from an excerpt from the exposition of the same movement. Furthermore, global characteris-
tics such as repetitions, modulations, and formal aspects may constitute relevant stylistic cues (compare
Section 2.10 and [129]), which we loose when using only 30-second clips.

3http://www.audiolabs-erlangen.de/resources/MIR/cross-comp

http://www.audiolabs-erlangen.de/resources/MIR/cross-comp
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8.2 Dimensionality Reduction

As we discussed in Section 3.6, the feature dimensionality D ∈ N can be quite large. In our
case, we combine different types of chroma-based features each with different configurations
leading to D > 100 features for many scenarios. Since the size of our datasets is limited,
we have to take care of the “curse of dimensionality” (compare Section 3.6.1 and [246]). To
prevent overfitting due to this effect, we apply a method known as Fisher transformation
or Linear Discriminant Analysis (LDA) for reducing the feature dimensionality to a smaller
number L < D (Section 3.6.4.2). This supervised decomposition reduces the feature dimen-
sionality in such a way that the class separation is optimal [248]. For a scenario with Z
classes, we use the maximum number of

L := Z − 1 (8.1)

linearly independent dimensions [5]. Since our datasets contain at least I = 100 instances
per class, we fulfill the common rule of thumb I ≥ 10 · L [107,198].

Beyond this purpose, we can also use LDA for visualization purposes. To this end, we only
use L = 2 output dimensions and visualize the instances in a two-dimensional plot. Since
LDA aims for a maximal separation of the classes, features with high discriminative power
should lead to a clear visual separation. Figure 8.1 shows such plots for the Cross-Era-Full
dataset on the basis of different types of features. For all feature configurations, the spatial
arrangement of the classes is in accordance with their historical ordering (Baroque–Classical–
Romantic–Modern). To a great extent, overlapping regions only occur between neighboring
periods such as Classical–Romantic.

For the first plot, we used template-based features for six interval and four triad types
as presented in Section 6.1.3. We derived these features from NNLS chromagrams4 in four
different temporal resolutions (NNLSlocal, NNLS200

100, NNLS10
5 , and NNLSglobal). From the

same chroma features, we computed seven types of tonal complexity features as outlined in
Section 6.2. From all these local features, we calculated the mean and standard deviation
per piece ending up with D = 2 · 4 · (6 + 4 + 7) = 136 feature dimensions. Looking at
Figure 8.1 a, we see that not all of the periods are separable with the chroma-based features.
In particular, the separation of the Baroque and Classical classes seems to be hard. If a
considerable difference between Baroque and Classical harmony exists, our features seem
not to capture these characteristics sufficiently. In contrast, the discrimination of Modern
against the other styles is rather clear. This indicates that interval- and complexity features
can discriminate between tonal (low complexity) and atonal music (high complexity). The
desired separation of the Romantic style and the Classical style may be the result of a slightly
higher tonal complexity of Romantic music compared to Classical music.

To compare our results with common methods, we also test standard audio features for
calculating LDA visualizations, which we mostly calculate for several frequency bands each
(see Section 3.4 for more details). We consider Mel Frequency Cepstral Coefficients (16
dimensions), Octave Spectral Contrast (14), Zero Crossing Rate (1) and Audio Spectral
Envelope (16), Spectral Flatness Measure (16), Spectral Crest Factor (16), and Spectral
Centroid (16). Furthermore, we use the two loudness features ΘLogLoud (12) and ΘNormLoud

(12). Calculating mean and standard deviation over the local values results in D = 2 · (16 +
14 + 1 + 16 + 16 + 16 + 16 + 12 + 12) = 238 features. When performing LDA using these
features, we observe a different distribution of the data (Figure 8.1 b). In particular, we

4For a comparison of different chroma features for classification experiments, we refer to Section 8.3.4.
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a) Chroma-based features (136 → 2 dimensions)
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b) Standard features (238 → 2 dimensions)
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c) Chroma-based + Standard features combined (374 → 2 dimensions)
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Figure 8.1. LDA visualizations of the Cross-Era-full dataset. In the upper plot (a), we performed
LDA for a set of interval- and complexity features on the basis of NNLS chromagrams. The middle plot (b)
relies on several types of standard features. For plot (c), we combined all of these features.
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obtain a good separation of Baroque and Classical pieces here. This may be the result of
a considerable change between these periods regarding the instrumentation of the music.
Indications for such a change may be the disappearance of the figured bass (basso continuo)
in orchestral music—usually played with the involvement of a harpsichord—or a different use
of octave registers due to the development of keyboard instruments. As opposed to this, we
cannot really discriminate Romantic music from Classical and—even more—from Modern
music with standard features. A possible reason for this may be the rather continuous
evolution of instrumentation from the Classical period on. For example, the scoring of an
orchestra was extended step by step from a small Classical orchestra (Haydn) to a huge
Romantic orchestra (Bruckner), which most of the modern composers changed only slightly
(Shostakovich). Using standard features for separating orchestra data only (Figure 8.2 d)
confirms this assumption. Here, the Romantic pieces also overlap with Classical and even
more with Modern pieces. For the piano case (Figure 8.2 c), Romantic and Modern pieces
completely overlap. Regarding timbre, the piano almost reached its modern form and range
at the beginning of the Romantic period. Therefore, the way of using the sound and range
of pianos may have changed only marginally for later composers in our dataset. This might
be an explanation why standard features cannot separate Romantic and Modern periods.

Due to the different behavior of chroma-based features and standard features, the separa-
tion capability may benefit from a combination of the two feature types. Figure 8.1 c confirms
this assumption. Using both feature sets, we can discriminate Baroque and Classical music
well thanks to the standard features. The separation between Romantic and Modern is not
perfect but considerably better than for standard features alone. Discrimination of Classical
and Romantic pieces also benefits from the joint usage of the features, but is still difficult.
This is in accordance with musicological expectations since the stylistic change from the
Classical to the Romantic period is not very distinctive.

To study the timbre-invariance of the chroma-based features, we performed LDA visual-
izations of the subsets Cross-Era-Piano and Cross-Era-Orchestra individually (Figure 8.2).
Compared to the reduction of the full dataset using these features (Figure 8.1 a), these sce-
narios show slightly better separation of classes for most cases. In general, orchestral music
seems to be somewhat easier to separate. Similar to the full dataset, Baroque–Classical
constitutes the main problem for chroma-based features and Romantic–Modern for standard
features. Combining the feature sets leads to a good separation for both Cross-Era subsets.

Finally, we want to apply such visualization methods to the Cross-Composer dataset as
well. Since eleven composers are hard to display in two dimensions, we restrict ourselves to
subsets with five and three composers, respectively (Figure 8.3). Let us first consider the
five-composer scenario (left hand side). Here, chroma-based features do not lead to a good
separation of classes in two dimensions. The pieces by Shostakovich are lying somewhat
outside the region with the highest density of points. This points to a better separation of
20th century music with tonal features. Data points for the classes Beethoven and Haydn
highly mix with each other and, to a smaller extent, with Bach and Brahms. With standard
features, the visualization is more discriminative. Here, every composer obtains his own
region. Between neighboring regions, we find some minor overlaps. With a combination,
we almost achieve an identical plot as with standard features alone. Therefore, we assume
that standard features are mainly responsible for the separation here. It is not clear, why
the composer separation works better when including standard features. Since the classes
have a rather small size and not a very broad variety, we suppose that this could be due to
overfitting to the individual sound characteristic of the classes, which may be caused by a
bias towards certain instrumentations or individual performers, among others.
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a) Cross-Era-Piano | Chroma-based features
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b) Cross-Era-Orchestra | Chroma-based features
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c) Cross-Era-Piano | Standard features
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d) Cross-Era-Orchestra | Standard features
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e) Cross-Era-Piano | Combined features
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f) Cross-Era-Orchestra | Combined features
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Figure 8.2. LDA visualization of the Cross-Era subsets. The left hand side shows LDA reductions
of the Cross-Era-Piano dataset based on three different feature sets. On the right hand side, we display
reductions of the Cross-Era-Orchestra data. The upper row (a, b) refers to chroma-based features (D = 136),
the middle row (c, d) to standard features (D = 238), and the lower row (e, f) to the combination of both
(D = 374).

For the three-composer reduction (right hand side of Figure 8.3), the plots are clearer in
general. Here, we obtain a good separation with chroma-based features as well. We find
slightly overlapping regions and some outliers. With standard features, the discrimination
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a) Cross-Comp-5 | Chroma-based features
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b) Cross-Comp-3 | Chroma-based features
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c) Cross-Comp-5 | Standard features
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d) Cross-Comp-3 | Standard features
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e) Cross-Comp-5 | Combined features
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f) Cross-Comp-3 | Combined features
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Figure 8.3. LDA visualization of two Cross-Composer subsets. On the left hand side (a, c, e),
we visualize a five-composer subset whereas the right hand side (b, d, f) deals with three composers. The
visualizations in the upper row (a, b) rely on chroma-based interval and complexity features, the middle row
(c, d) refers to standard features, and the lower row (e, f) to a combination of both.

becomes even more evident in this scenario (Figure 8.3 d). The regions are clearly separable
with considerable space between each other. We find an interesting “Beethoven outlier”
among J. S. Bach’s pieces (the point lies at about (92,−71)). This point belongs to the piece
“Trauermarsch für Eleonore Prochaska,” a short piece in B minor with a dotted rhythm,
which is characteristic for a funeral march. Though being written for full orchestra, the
instrumentation is mainly dominated by the wind instruments. This possibly results in a
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Figure 8.4. Schematic overview of the classification procedure. For applying cross validation, we
split the datasets into training and test set. After extracting features for both sets, we perform dimensionality
reduction (LDA) to Z−1 dimensions on the training set and transform the test set features with the resulting
matrix. On the reduced features, we train and test a machine learning classifier.

unique timbral character, which is—in our dataset—more similar to the timbre of some of
the pieces by J. S. Bach. Here, one might argue that a timbral similarity due to the use of
certain instruments constitutes a stylistic similarity as well. Just as in the five-composer case,
the combined features lead to a similar picture than standard features alone. The Beethoven
outlier is still visible but slightly better separated from Bach’s pieces. Overall, we see that
we have to be careful when interpreting such graphs. Even if a clear separation is possible
with some kind of audio features, this does not necessarily constitute a meaningful separation
based on human-interpretable musical reasons.

8.3 Classification Experiments

8.3.1 Classification Procedure

In this section, we present detailed results of our classification experiments. First, we want
to describe the experimental design. We employ a standard classification procedure as typ-
ically used for MIR experiments (compare Section 3.6). As the first step, we calculate a
feature matrix using different configurations of our chroma-based features. Moreover, we
test standard audio features as a baseline approach (see Section 8.3.4 for more details on the
features’ influence). As discussed in the previous section, we then apply dimensionality re-
duction (LDA) in order to avoid problems due to the “curse of dimensionality.” We compute
the LDA transformation matrix on the basis of the (labeled) training data and apply the
resulting transformation to the test set’s features as well. For the output dimensionality L,
we always use L = Z−1 with Z denoting the number of classes in the classification problem.
This results in L = 3 reduced feature dimensions for all Cross-Era subsets, L = 10 dimensions
for Cross-Comp-11 , and L = 4 dimensions for Cross-Comp-5 . On the LDA-reduced features
of the training set, we then train a classifier (Section 8.3.2). After performing classification
on the test set, we calculate the fraction of correctly classified test instances and average this
number over all classes (mean classification accuracy).

To optimally exploit our available data, we perform cross validation (CV) as presented in
Section 3.6.3. For all our experiments, we use Y = 3 folds resulting in 2/3 of the dataset
for training and 1/3 for testing. A higher number of folds may lead to better classification
performance. However, the danger of overfitting with respect to semantically meaningless
factors simultaneously increases. Furthermore, we want to study the robustness of the clas-
sification with respect to the randomized distribution of folds. To this end, we repeat the
whole classification procedure ten times with re-initialized folds and average over the results.

Beyond the mean classification accuracy, we calculate deviations with respect to different
evaluation steps in order to better estimate the classification performance for unseen data:
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• Inter-Run Deviation. Here, we compute the standard deviation of the mean multi-
class accuracy over the ten runs of the whole experiment. This is a measure for the
stability of the results with respect to different fold partitionings since we randomly
re-initialize the fold partitioning for every run. For an ideal scenario, we would expect
an inter-run deviation of zero since the training should not depend on the data selec-
tion. In the opposite case, we may have a high impact of the fold partitioning on the
learning success. Then, the classification accuracies obtained in the ten CV runs may
considerably differ from each other leading to a high inter-run deviation.

• Inter-Fold Deviation. This measure relates to the stability of the results throughout
one single cross validation procedure. For each of the three CV rounds (compare
Figure 3.18), we use one of the three folds as test data and obtain a mean accuracy. We
calculate the standard deviation of the three accuracy values. This measure indicates
how much the accuracies for the three test folds differ from each other. If many instances
are classified correctly in one fold but much less in the other fold, we obtain a high inter-
fold deviation. Finally, we average this standard deviation over all 10 runs (repetitions
of the whole CV).

• Inter-Class Deviation. For the third measure, we consider the individual class
accuracies—the fraction of correctly classified instances for each class. We calculate
the standard deviation over these individual class accuracies. This value indicates how
balanced the results are between the classes. A bad classifier assigns most of the test
instances to one or few classes while other classes do hardly obtain any instance. This
leads to high accuracies for the preferred classes at the cost of low accuracies for the
others. Therefore, a high inter-class deviation points to a bias towards one or few of
the classes. We calculate this measure for every run (CV repetition) and finally average
over the ten runs.

8.3.2 Influence of the Classifiers

First, we present classification results obtained with three different classifiers. As features,
we use the three configurations from the previous section, namely chroma-based features
(interval, chord, and complexity features on the basis of NNLS chroma in four time scales,
136 features in total), standard spectrum-based features (MFCC, OSC, ASE, Loudness and
more, 238 dimensions in total), as well as the combination of both. We try out three different
classifiers as presented in Section 3.6.3. As an example for a generative classifier, we use a
Gaussian Mixture Model (GMM) with GGMM = 10 multivariate Gaussians. Furthermore,
we employ a Support Vector Machine (SVM) as implemented in the public LIBSVM library
[32] with an RBF kernel and a two-stage grid search for optimizing the kernel parameters
CSVM and γSVM.5 Finally, we make use of a Random Forest (RF) classifier in the WEKA
implementation [84].

Table 8.3 displays the results of the study. For the Cross-Era set and its subsets (blocks
1–3), the performance is high in general (> 80 % accuracy for most scenarios). In comparison,
a random guess would obtain 25 % on average for four classes. Only the RF classifier obtains
slightly worse results of about 70 % for Cross-Era-Piano and Cross-Era-Orchestra on the basis
of the combined features. Besides these two outliers, all three classifiers perform similarly
for the Cross-Era data. In general, the SVM results are slightly higher than the others’.

5For the grid search, we run an internal five-fold cross validation on the training set only.
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Table 8.3. Classification results for different classifiers and datasets. For five data subsets and
three feature configurations, we show the classification results of three different classifiers in a three-fold cross
validation over ten runs. Beyond the mean classification accuracy, we display standard deviations with respect
to three different parameters. We use LDA transformation to reduce the initial dimensionality of the feature
space with respect to the number of classes.

Feature Types Chroma-based features Standard features Combined features

Dimensionality 136→ L ∈ {3, 10, 4} 238→ L ∈ {3, 10, 4} 374→ L ∈ {3, 10, 4}
Classifier GMM SVM RF GMM SVM RF GMM SVM RF

Cross-Era-Full (L = 3)

Mean Accuracy 83.4% 84.3% 82.7% 86.6% 87.0% 85.4% 92.1% 92.2% 90.0%

Inter-Run Dev. 0.5% 0.6% 0.7% 0.6% 0.5% 0.7% 0.5% 0.7% 0.7%

Inter-Fold Dev. 1.5% 1.4% 1.4% 1.2% 1.2% 1.1% 0.8% 0.8% 1.4%

Inter-Class Dev. 3.2% 2.3% 3.2% 8.2% 8.2% 8.4% 3.8% 3.4% 4.7%

Cross-Era-Piano (L = 3)

Mean Accuracy 84.0% 86.0% 83.8% 87.3% 88.0% 85.9% 85.5% 86.7% 71.5%

Inter-Run Dev. 1.0% 0.7% 1.0% 1.2% 1.6% 1.1% 1.6% 0.8% 2.4%

Inter-Fold Dev. 1.7% 2.0% 2.4% 1.3% 1.9% 1.7% 2.1% 2.2% 3.4%

Inter-Class Dev. 4.4% 4.1% 4.8% 10.7% 10.0% 11.2% 9.1% 7.8% 13.2%

Cross-Era-Orchestra (L = 3)

Mean Accuracy 85.3% 87.3% 85.1% 84.5% 85.9% 82.4% 80.3% 82.9% 70.8%

Inter-Run Dev. 1.2% 0.7% 0.7% 1.2% 1.2% 1.3% 1.1% 1.3% 2.5%

Inter-Fold Dev. 1.7% 1.7% 1.4% 2.2% 1.2% 2.7% 2.3% 2.0% 2.7%

Inter-Class Dev. 3.9% 2.5% 4.0% 8.4% 7.6% 7.8% 6.0% 4.8% 5.7%

Cross-Comp-11 (L = 10)

Mean Accuracy 61.1% 67.3% 9.3% 80.1% 82.3% 9.3% 81.1% 82.7% 9.6%

Inter-Run Dev. 1.8% 1.1% 0.6% 1.2% 1.4% 0.4% 2.5% 4.3% 0.6%

Inter-Fold Dev. 1.4% 2.1% 0.9% 2.1% 2.8% 1.0% 4.1% 4.7% 0.8%

Inter-Class Dev. 12.2% 10.9% 19.6% 8.7% 7.3% 24.0% 7.6% 6.2% 25.1%

Cross-Comp-5 (L = 4)

Mean Accuracy 73.6% 77.2% 72.7% 75.2% 78.0% 68.2% 34.6% 42.7% 41.4%

Inter-Run Dev. 1.4% 2.0% 1.2% 5.3% 2.2% 4.0% 3.2% 5.1% 2.9%

Inter-Fold Dev. 3.1% 2.4% 2.7% 4.5% 3.6% 4.5% 5.6% 7.5% 6.7%

Inter-Class Dev. 6.0% 5.7% 7.1% 9.2% 10.0% 7.4% 9.9% 11.2% 10.9%

Comparing the different feature types, we mostly find weak differences. For Cross-Era-Full
and Cross-Era-Piano, standard features lead to slightly better accuracies than chroma-based
features. The orchestra scenario behaves differently. Here, chroma-based features outperform
standard features or the combination of both. This is an interesting observation since we
would expect a more meaningful classification based on timbral characteristics for orchestral
music than for piano. Only for the full dataset, the combination of both feature sets leads to
further improvement, which is a surprising observation. Possibly, having these very different
feature types at hand may enable the classifier to over-adapt to the training data, which may
lead to worse generalization. For the full dataset, this over-adaptation might be prevented
by the need to model two timbrally different types of pieces simultaneously.

Though the standard features perform similar or better for the Cross-Era subsets, we need
to be careful with these results. Looking at the inter-class deviation (lowest row in each
block), we find considerably higher values for the standard features with all classifiers and
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subsets. This points to more imbalanced results between the classes. We will further discuss
such type of behavior in the following sections.

Let us now consider the Cross-Composer dataset. Here, the results are worse in general.
There may be several reasons for this behavior. First, the number of items per class is lower
(100) than for the Cross-Era data (400 for Cross-Era-Full). Along with this, the pieces
in Cross-Era are stemming from more different sources (albums, artists) than the pieces in
Cross-Composer . Therefore, the variety of training data better covers the variances within
one class for Cross-Era. Apart from this, the scenario itself is harder since we have more
classes. In particular, the Cross-Comp-11 scenario requires a very subtle discrimination
between stylistically related composers such as Haydn and Mozart.

Having these characteristics in mind, the results may be judged as quite good. For the
Cross-Comp-11 task, our combined features even outperform the best results in the MIREX
classical composer identification task (78% in 2011 with MFCC-like features and a Neural
Network [85]), which is fairly comparable to our experiment (see Section 8.4 for a detailed
discussion). Concerning the different classifiers, we again find best results for the SVM,
closely followed by the GMM. Interestingly, the RF classifier fails completely for the Cross-
Comp-11 scenario (below random guess accuracy). In contrast, RF performs similar to the
other classifiers for the reduced composer problem Cross-Comp-5 . We have no explanation
why this classifier only fails for certain scenarios. Not using dimensional reduction (LDA)
here did not improve this bad result.

Looking at the different feature configurations, the composer identification tasks seem to
benefit from the use of standard features. Especially for the eleven composer problem, the
difference to the use of chroma-based features is large (up to 19%). Moreover, the inter-
class deviation is smaller for standard features. These observations are in accordance to the
LDA visualizations (Figure 8.3) where we observed better separation with standard features.
For the Cross-Comp-11 scenario, the combination of chroma-based and standard features
leads to further improvement. For the five-composer problem, we find a different behavior.
Here, the combination of features leads to clearly worse results—much lower accuracies and
higher inter-class deviations—than each feature set alone. Hence, the combination of different
feature types seems to cause over-adaptation in the training phase.

Regarding the different evaluation measures, we only find slight deviations both for the
inter-run and inter-fold deviations. These measures slightly increase with decreasing classi-
fication accuracy. In comparison, the inter-class deviation seems to be more important. As
an example, the accuracies for Cross-Era-Piano are all quite similar whereas the inter-class
deviation considerably changes. For the following sections, we only consider mean accuracy
and inter-class deviation as evaluation measures.

In summary, we found only smaller differences between the different classifiers’ perfor-
mance. The SVM classifier always performed best. In comparison, the GMM results came
out slightly worse. The RF classifier obtained similar accuracies for most scenarios but failed
completely for the Cross-Comp-11 dataset. Concerning computational complexity and run-
time, SVM is by far the slowest method since the grid search optimization is extremely
time-consuming. For these reasons, we used the GMM classifier for further experiments.
In the following section, we also investigate the influence of the model parameter GGMM

(number of Gaussians, see Figure 8.5).
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Table 8.4. Classification results with filtering. We display the performance of a GMM classifier with
GGMM = 10 Gaussians. For all data subsets and three feature configurations, we compare the results with
and without filtering instances for the cross validation. We use dimensionality reduction (LDA) resulting in
L-dimensional features as input for the classifier.

Feature Types Chroma-based features Standard features Combined features

Dimensionality 136→ L ∈ {3, 10, 4} 238→ L ∈ {3, 10, 4} 374→ L ∈ {3, 10, 4}
Filter – Composer – Composer – Composer

Cross-Era-Full (L = 3)

Mean Accuracy 83.5% 72.7% 86.5% 54.0% 92.1% 67.7%

Inter-Class Dev. 3.4% 6.9% 8.7% 7.5% 3.8% 12.5%

Cross-Era-Piano (L = 3)

Mean Accuracy 84.4% 69.6% 87.6% 35.8% 85.5% 44.2%

Inter-Class Dev. 4.3% 6.6% 10.2% 18.9% 9.1% 22.4%

Cross-Era-Orchestra (L = 3)

Mean Accuracy 85.9% 77.7% 84.6% 70.2% 80.3% 67.7%

Inter-Class Dev. 3.5% 6.9% 7.4% 9.8% 6.0% 7.0%

Filter – Artist – Artist – Artist

Cross-Comp-11 (L = 10)

Mean Accuracy 61.5% 37.4% 80.3% 35.7% 81.1% 38.9%

Inter-Class Dev. 13.0% 12.5% 8.2% 22.5% 7.6% 22.0%

Cross-Comp-5 (L = 4)

Mean Accuracy 54.9% 54.0% 71.7% 47.5% 34.6% 27.3%

Inter-Class Dev. 10.9% 11.4% 10.9% 28.9% 9.9% 11.0%

8.3.3 Influence of the Cross Validation Design

Inspired by previous MIR research [63,178], we want to examine our classification procedure
with respect to the partitioning of the cross validation folds. As usual in genre classification
datasets, the classes in Cross-Era and Cross-Composer often contain several tracks from one
album. These tracks exhibit not only stylistic similarity but may have typical characteristics
due to the artists, the recording conditions or audio post production steps. In the CV
procedure, this may lead to overfitting due to the so-called “album” or “artist effect.” If both
training and test folds contain items from the same CD recording, the system can adapt
to technical artifacts or the specific sound of a recording rather than learning musically
meaningful properties [63, 178]. Additionally, we want to avoid substantial influence of a
specific composer style on the classification but capture the overall style characteristics of
a period. Motivated by these considerations, we apply a “composer filter,” which forces a
composer’s works to be in the same fold, thus avoiding the album effect and a “composer
effect” at the same time.6

Ideally, it would be useful to separate album- and composer-filtering. Applying a composer
filter makes the classification task considerably harder since the classifier gets no training
data from a composer to learn its style. Unfortunately, we do not have album or artist
annotations for the Cross-Era set. For Cross-Composer , we have such annotations regarding
the artists.7 Therefore, we apply composer filtering for Cross-Era and artist filtering for
Cross-Composer—having in mind that these filters have different effects.

6The Cross-Era dataset does not contain works by different composers that are on one album.
7With the term “artist,” we refer to the interpreter of a piece such as the soloist or the orchestra.
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Table 8.4 presents classification results for evaluating the effects of filtering. In general,
the use of filtering leads to a considerable decrease in accuracy. Furthermore, the inter-class
deviation increases for most configurations. For the standard features, the loss of performance
is extreme. Looking at the Cross-Era-Piano data, the accuracy using standard features drops
from 87.6 % to 35.8 % when using the composer filter, which is already close to the chance
level result of 25 %. For the complex scenario Cross-Comp-11 , the high performance of 80.3 %
goes down to 35.7 % only. From such observations, we conclude that classification based on
standard features—which mostly capture timbral characteristics—is not sufficient to learn
musical styles since a massive overfitting to timbral artifacts may occur. The situation is
slightly better for Cross-Era-Orchestra where we still achieve 70.2 % accuracy with standard
features.

For the chroma-based features, filtering also leads to a decrease in performance but, to a
much smaller extent. Classifying Cross-Era-Full , we still obtain 72.7 % accuracy compared
to 83.5 % without composer filter. The subsets of Cross-Era behave similarly. For the Cross-
Comp-11 data, the decrease is more extreme. Here, the accuracy drops from 61.5 % to 37.4 %.
Hence, the album effect also affects classification performance when using chroma-based
features. However, the Cross-Composer dataset is rather small consisting of 100 instances
per class, which—in some cases—stem from a small number of different albums. For this
reason, CV with album filtering may considerably reduce the variability of the data with
respect to musical properties such as key, mode, tempo, or instrumentation. Thus, it would
be helpful to conduct these experiments with a larger dataset. For the subset Cross-Comp-5 ,
the situation is quite different. Here, we almost obtain the same result of 54 % when using
filtering. This indicates that chroma-based features may be useful for capturing style in a
musically meaningful way.

For the combination of chroma-based and standard features, we also find decreasing perfor-
mance when using filters. Interestingly, the combination of features obtains worse results than
chroma-based features alone. For Cross-Era-Full and Cross-Era-Piano with composer filter,
the combined features’ accuracies lie between the accuracies of chroma-based and standard
features. From this, we might conclude that the better performance of chroma-based features
gets affected when combined with standard features. As a possible reason, the inclusion of
standard features might lead to a different training behavior that may rely on properties that
are not relevant for style. We see that classification with chroma-based features is the most
“stable” scenario with respect to the filtering step. Only for Cross-Comp-11 , the combined
features achieve best results with filtering.

In the next experiment, we evaluate the impact of classifier complexity with respect to
the different scenarios. For the GMM classifier, we can adjust the model complexity via
the number of Gaussians GGMM. A model with many Gaussians can thoroughly adapt to
the shape of the training feature space. Figure 8.5 shows classification results over this
parameter. Surprisingly, performance decreases with increasing model complexity—we find
the best results for the simple case of GGMM = 1. This may be due to the cross validation
procedure. A more complex model may tend to over-adaptation towards the training data,
which leads to a worse generalization. The Cross-Composer dataset (Subfigures b, d) seems
to be more sensitive to this effect, which may be due to its smaller size per class. Moreover,
composer identification with artist filter exhibits large values for the inter-class deviation.
This points to the classification being highly biased towards few composers. Due to these
results, we use a GMM with GGMM = 1 in the further experiments, which, additionally,
constitutes a computationally fast classifier. The observations in this section may indicate
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a) Cross-Era-Full | Chroma-based features
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b) Cross-Comp-11 | Chroma-based features
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c) Cross-Era-Full | Standard features
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d) Cross-Comp-11 | Standard features
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Figure 8.5. Classification results for varying model complexity. For the two datasets Cross-Era-Full
(left hand side) and Cross-Comp-11 (right hand side), we plot the classification accuracy of a GMM classifier
over the number of Gaussians GGMM. The error bars correspond to the inter-class deviation. The results in
the upper row (a, b) rely on chroma-based features, for the lower row (c, d), on standard features. In all cases,
we perform LDA to reduce the feature dimensionality to L = 3 (Cross-Era) and L = 10 (Cross-Comp-11 ),
respectively. The blue lines indicate the results without filtering. For the red curves, we applied composer
filtering (for Cross-Era) or artist filtering (for Cross-Composer) in the cross validation.

that the chroma-based features capture some “musical” information that is not related to
timbre but to tonal aspects.

8.3.4 Influence of the Feature Types

We now want to examine the efficiency of the different feature types in more detail. First, we
investigate the influence of the time scale for computing chroma-based classification features
(compare Section 6.1.2.2). For this study, we refer to [256] where we presented results for
Cross-Era with a different setting (ten-fold cross validation, SVM classifier, no LDA reduc-
tion, no grid search, no filtering).8 In total, we use seven different temporal resolutions of
the chroma features as presented in Table 6.1. Based on these representations, we calculate
template-based features Ψ (Section 6.1.3) for the six interval categories ΨIC1, . . . ,ΨIC6 and

8This experimental configuration is considerably different from the one used in our following studies. How-
ever, this does not necessarily constitute a problem, since we are not interested in the absolute accuracies
but in the relative importance of different chroma resolutions for classification.



162 8 Subgenre Classification for Western Classical Music

a) Single time scale b) Single time scale removed
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Figure 8.6. Classification accuracy for different temporal resolutions. Based on seven different
chromagram resolutions, we derive template-based features for intervals and triads. The left figure (a) shows
the accuracy of an SVM classifier using only features based on a single time scale. To the right hand side (b),
we used all but one time scale. We obtained these results using ten-fold cross validation.

the four triad types ΨM,Ψm,Ψ
◦
,Ψ+. Calculating the mean of the local values, we obtain 10

features per time scale for each piece.

Figure 8.6 shows the results of this study. In one test (a), we used only one temporal
resolution (10 feature dimensions). In the other scenario (b), we left out the respective
time scale (10 × (7 − 1) = 60 dimensions). Here, we do not use dimensionality reduction
(LDA). The results confirm our assumption that, for a powerful classification, more than
one time scale is necessary. Only relying on the global scale leads to bad results since
a 12-dimensional global chroma statistics cannot represent the tonal characteristics of the
music in all details. Nonetheless, the local and fine scales alone are not sufficient for a
good classification either. Leaving out one of the medium resolutions only slightly affects
the performance. For all other experiments, we confine ourselves to use the four different
time scales [Chroma]global, [Chroma]200

100, [Chroma]10
5 , and [Chroma]local. Thereby, we keep

the variety of different resolutions including global and local scale.

For the following studies, we use the GMM classifier with one Gaussian. For better under-
standing the real-world behavior for unseen data, we use composer filtering for Cross-Era and
artist filtering for Cross-Composer , respectively. Table 8.5 shows the results of a large study
regarding different feature types. We averaged all results over 10 runs of the 3-fold CV and
give the inter-class deviations (compare Section 8.3.2). In the first block, we display the clas-
sification results for the four different chroma implementations Chroma Pitch (CP, [165]),
Chroma Log Pitch (CLP, [165]), Enhanced Pitch Class Profiles (EPCP, [131]), and Non-
Negative Least Squares chroma (NNLS, [147]). For details of the implementations, we refer
to Section 3.5.3. We smoothed the chromagrams to four different temporal resolutions and
calculated template-based features for intervals and triads as mentioned above. Furthermore,
we calculated the seven types of complexity features (Section 6.2.3). From the local features,
we computed the arithmetic mean and the standard deviation in order to obtain piece-level
classification features. Therefore, we end up with 2× (6+4+7)×4 = 136 feature dimensions
for each chroma implementation before applying LDA reduction to L = Z − 1 dimensions.

First, let us discuss the impact of the chroma computation. For the three Cross-Era
subsets, the NNLS chroma performs best—followed by CP. The enhancement strategies of
CLP (logarithmic compression) and EPCP (overtone removal by spectral multiplication) do
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Table 8.5. Classification experiments for different feature types. We classify all five subsets with
a GMM classifier (GGMM = 1). For both scenarios, we apply filtering (composer filter for Cross-Era and
artist filter for Cross-Composer). “Dim.” indicates the initial number of feature dimensions before applying
dimensionality reduction. In the “Dev.” column, we display the inter-class deviation. For the chroma-based
features (Complexity, Interval, and Triads), we always use the four time scales [Chroma]global, [Chroma]200

100,
[Chroma]10

5 , and [Chroma]local.

Dataset Cross-Era Cross-Era Cross-Era Cross-Comp Cross-Comp

Subset Full Piano Orchestra 11 Comp. 5 Comp.

Reduced dimensionality L 3 3 3 10 4

Features Dim. Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev. Acc. Dev.

Compare Chroma Feature Types (Complexity + Intervals + Triads)

CP-based 136 71.6% 4.4% 66.6% 13.3% 77.1% 1.9% 37.1% 12.6% 57.8% 7.5%

CLP-based 136 67.6% 8.2% 58.6% 17.7% 75.5% 2.8% 32.7% 13.7% 54.2% 7.9%

EPCP-based 136 66.9% 7.8% 56.4% 11.8% 76.0% 4.5% 36.0% 14.4% 57.8% 12.9%

NNLS-based 136 73.9% 7.2% 72.7% 7.3% 79.1% 6.4% 40.1% 13.4% 55.8% 11.4%

Compare Secondary Feature Types (NNLS-based)

Complexity
+ Intervals + Triads

136 73.9% 7.2% 72.7% 7.3% 79.1% 6.4% 40.1% 13.4% 55.8% 11.4%

Complexity 56 67.1% 7.9% 65.1% 6.7% 74.8% 5.8% 35.8% 13.8% 56.5% 8.4%

Intervals + Triads 80 74.6% 6.9% 73.7% 4.9% 79.4% 6.3% 39.2% 10.1% 57.5% 9.8%

Intervals only 48 70.9% 9.0% 71.2% 5.6% 78.7% 4.5% 37.2% 11.6% 54.6% 9.0%

Triads only 32 70.2% 10.0% 66.3% 8.8% 78.4% 6.1% 38.7% 13.8% 58.4% 7.1%

Influence of Chord Progressions

Chord progr. 55 65.9% 11.1% 56.1% 13.3% 68.8% 6.6% 28.5% 15.8% 44.0% 20.1%

Chord progr. 191 73.7% 6.0% 70.3% 6.4% 79.6% 5.7% 42.6% 13.2% 55.9% 5.9%

+ NNLS-based

Chord progr. 135 75.5% 5.2% 72.5% 4.5% 78.8% 6.6% 42.4% 10.9% 58.8% 4.9%

+ Intervals + Triads

Chord progr. 111 70.9% 6.2% 65.7% 5.2% 78.0% 4.4% 41.4% 13.1% 59.6% 5.2%

+ Complexity

Combinations with Standard Features

Standard only 238 52.7% 8.9% 36.3% 20.5% 71.8% 9.2% 38.5% 23.5% 50.0% 32.1%

Standard
+ NNLS-based

374 67.7% 14.2% 44.6% 22.1% 71.0% 7.0% 42.0% 22.0% 30.6% 11.6%

Stand. + Chord pr. 293 62.7% 12.6% 40.8% 21.5% 74.8% 7.7% 40.6% 21.3% 44.6% 23.8%

Stand. + Chord pr.
+ NNLS-based

429 67.7% 14.4% 45.6% 21.1% 71.7% 7.2% 41.8% 21.3% 46.4% 22.1%

not seem to be beneficial for deriving classification features. For CLP, this is no surprise
since logarithmic compression makes the features less distinct. Regarding instrumentation,
the differences are most remarkable for piano data. For Cross-Comp-11 , the situation is
similar to the Cross-Era results. In contrast, CP and EPCP features perform better than
NNLS in the Cross-Comp-5 scenario. Due to their overall good performance, we rely on
NNLS chroma for deriving classification features in all further experiments.

The next block displays results obtained with different chroma-based features. To this
end, we computed template-based features for intervals and triads as well as complexity fea-
tures from NNLS chromagrams in four temporal resolutions. Comparing complexity features
with template-based interval and triad features, the latter ones lead to better accuracies.
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Looking at the templates in more detail, both interval templates and triad templates result
in a meaningful classification. For Cross-Era, we find a slightly better performance when
using interval templates. With the Cross-Composer scenario, the results are better for triad
templates—which even outperform the combination of both for the Cross-Comp-5 dataset.
For all scenarios except for the Cross-Comp-11 case, template-based features alone perform
even better than in combination with complexity features. We may see this as a motivation
to test more advanced templates (modeling seventh chords or more dissonant sonorities) in
future work.

In the third block, we show classification results using chord progressions as classification
features. From the chords obtained with the Chordino algorithm [147], we calculate the rela-
tive frequency of general root note progressions (for any chord types) and the root note pro-
gressions with respect to the chord types (Major→Major, Major→Minor, Minor→Major,
Major→Minor). Ignoring the self-transitions, we end up with 11×5 = 55 feature dimensions
(see Section 7.2.2 for more details). Using chord progression features alone already results
in remarkable performance (65.9 % for Cross-Era-Full). In combination with the chroma-
based features, the results are better. For Cross-Era-Orchestra and Cross-Comp-11 , this
configuration leads to the overall best result. Interestingly, leaving out features does not al-
ways lead to worse performance. For Cross-Era-Full , the results are better when combining
chord progressions with template-based features only (overall best performance). For Cross-
Comp-5 , chord progressions and complexity features together result in the highest accuracy.
The reasons are not very clear. Maybe, the classifier obtains better generalization with a
smaller initial dimensionality. In summary, chord progression bigrams seem to be beneficial
for classifying. We may see this as a motivation to test longer n-grams (with n > 2) as well.

Finally, we want to investigate the combination of tonal features with standard features. As
we mentioned in the previous section, standard features do not lead to better accuracies—
as soon as we use composer or artist filtering. Here, we observe a similar behavior. For
Cross-Era, standard features alone lead to good results for orchestral data. Since standard
features mostly capture timbral properties, this may be due to the individual sound and
instrumentation of each style period. The piano case seems to fail with standard features
(with 36.3 % only about 10 % above chance level), which is in accordance with our results
in [258]. Beyond worse accuracies, the inter-class deviation is higher for most scenarios
including standard features. For the Cross-Composer tasks, standard features seem to be
more beneficial. As stated above, we assume that this may result from the small size of
the dataset in combination with a large variety of instrumentations rather than from “real”
stylistic properties. Combining standard features with any kind of tonal feature leads to
improvements in most cases. Only for Cross-Comp-5 , this effect is reversed. Adding NNLS-
based template and complexity features leads to a performance decrease of 20 %. The reasons
for this behavior are not clear. However, the result for standard features alone (50.0 %) has
a large inter-class deviation and, thus, seems to be highly unbalanced with respect to the
individual composers.

Comparing all of these results with respect to the initial feature dimensionality (before
performing LDA), we see that a high number of features does not necessarily lead to higher
performance. For example, 80-dimensional template-based features lead to the best results for
Cross-Era-Piano. First, this suggests that our training procedure (dimensionality reduction
and cross validation filtering) succeeds in avoiding the“curse of dimensionality.” Furthermore,
we suppose that using many features may lead to an over-adaptation to the training data,
which results in lower accuracies for the test set and, thus, worse generalization.
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a) Cross-Era | Chroma-based features (D = 136)
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b) Cross-Composer | Chroma-based feat. (D = 136)
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c) Cross-Era | Standard features (D = 238)
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d) Cross-Composer | Standard features (D = 238)
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e) Cross-Era | Combined features (D = 374)
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Figure 8.7. Classification results for varying number of LDA dimensions. For testing the dependency
of the classification procedure on dimensionality reduction, we conducted experiments with varying number
of output dimensions and without using LDA. The left hand side shows the results for the Cross-Era subsets,
the right hand side for Cross-Composer . We performed this study using chroma-based features (interval,
chord, and complexity based on NNLS chroma) and standard features as well as their combination. For all
experiments, we used a GMM classifier with one Gaussian and composer/artist filtering.

Nevertheless, we observed some unexpected behavior when combining different feature
types. Several feature combinations showed considerably worse performance than each fea-
ture set alone. Possibly, the dimensionality reduction step (LDA) may influence some of these
effects. To test this assumption, we perform further classification experiments with varying
output dimensionality L. Figure 8.7 shows the results of this study using a GMM classifier
with GGMM = 1 on all five data subsets. Most of the observations confirm our expectations.
In general, classification performance steadily increases with the output dimensionality L.
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Table 8.6. Classification results of a GMM classifier. For these experiments, we use template-based
features for intervals and chords based on four temporal resolutions of the NNLS chroma. We obtained
these results by performing 100 CV runs for each dataset using a GMM classifier with one Gaussian and
composer/artist filtering.

Dataset Cross-Era Cross-Era Cross-Era Cross-Comp Cross-Comp

Subset Full Piano Orchestra 11 Comp. 5 Comp.

Dimensionality 80→ 3 80→ 3 80→ 3 80→ 10 80→ 4

Mean Accuracy 74.60% 73.70% 79.44% 39.28% 57.90%

Inter-Run Dev. 0.85% 1.51% 0.63% 0.95% 0.75%

Inter-Fold Dev. 3.78% 5.63% 3.12% 3.54% 6.22%

Inter-Class Dev. 6.74% 5.50% 6.46% 9.84% 9.22%

At L = Z−1, the curves reach a kind of saturation and do not considerably increase further.
For Cross-Era (Z = 4), we find this point at L = 3, for Cross-Comp-5 at L = 4, and for
Cross-Comp-11 at L = 10. This behavior is in accordance with our expectations since the
LDA transformation only generates Z− 1 linearly independent output dimensions. Using no
dimensionality reduction at all usually leads to worse performance. For example, the classi-
fication accuracy for Cross-Comp-11 with standard features drops by almost 20 % without
LDA (Figure 8.7 d). This clearly confirms the “curse of dimensionality.”

Beyond this expected behavior, some scenarios showed very different effects. For Cross-
Era-Piano, standard features almost always lead to bad performance only slightly above
chance level (25 %). This accuracy only slightly depends on the LDA dimensionality. Without
LDA, we obtain the best result here. This may be an indication that LDA suppresses useful
information in that scenario. For the combined features, accuracies are slightly better and
behave as expected. However, using no LDA results here in a performance increase as well.
We find a even more suprising behavior for the Cross-Comp-5 scenario. Here, both chroma-
based and standard features alone show respectable accuracies and a reasonable behavior.
However, the combination of features (Figure 8.7 f) performs much worse and, moreover,
increases extremely (by 20 %) when not using LDA. We have no explanation for this effect,
even though the LDA plots in Figure 8.3 do not show such a behavior. Nevertheless, we
may see this as a motivation to test late-fusion approaches, which separately classify using
different feature types and then merge the results.

8.3.5 Classification Results in Detail

In the previous sections, we mainly discussed our classification results by looking at the mean
classification accuracy and its balance over the classes (Inter-Class Deviation). Sturm [233]
discussed such type of evaluation in the context of (general) music genre classification. He
concludes that only considering mean accuracies may not properly reflect the characteris-
tics of a classification algorithm. To overcome this problem, he suggests to include further
“Figures of Merit” into the evaluation—such as confusion matrices or the investigation of
constantly misclassified instances. In this section, we want to apply some of these techniques
and further show selective results of applying our classification systems to unseen data.

First, let us consider the confusion matrices for some classifiers. We use one of the good
performing settings from the previous section, namely a GMM classifier with GGMM = 1,
template-based interval and triad features (80 dimensions). The features rely on NNLS
chromagrams in four different temporal resolutions. For the experiments of this section, we
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Figure 8.8. Confusion matrices for the individual datasets. For 100 CV runs with a GMM classifier
(including composer/artist filtering), we show the confusion matrices of the classification.
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perform 100 runs of the CV with composer and artist filtering, respectively. In Table 8.6, we
summarize mean accuracies and three kinds of deviations for this setting. Figure 8.8 shows
the corresponding confusion matrices for this experiment. Looking at the Cross-Era subsets
(a–c), we always find lowest per-class accuracies for the Baroque class. Most frequently,
pieces from this class are misclassified as Classical—the “historical neighbor” class—followed
by Romantic. Confusions with the Modern class are rare. The next worst accuracy results
for the Classical pieces, which the classifier mostly assigns to Baroque and less often, to
Romantic. Practically never, instances from the Classical period are confused with Modern.
The discrimination between Baroque and Classical seems to be the most difficult task for the
classifier.

For all scenarios, Romantic and Modern obtain best results with a slightly better per-
formance on Modern for Cross-Era-Full and Cross-Era-Orchestra. Most frequently, these
classes are confused with each other. Since the evolution of compositional style is a rather
continuous process, we expect historically neighboring periods to be stylistically more similar
in general than more distant periods such as Baroque and Modern.9 For this reason, con-
fusions between these “neighbor classes” may still have some musical meaning. Such errors
point to a lack of precision in style classification rather than to a complete fail by overadapt-
ing to semantically meaningless characteristics. As we saw in the previous section, a more
complex classifier may increase this precision but, on the other hand, often obtains worse
generalization. Finally, the “neighbor class” errors may reveal the “ill-definedness” of our
four-era classification problem itself (compare Section 2.10).

Let us now discuss the confusions for the Cross-Composer datasets (Figure 8.8 d–e). For
the five-composer problem, Haydn, Beethoven, and Brahms obtain the best per-class accura-
cies. Among these, the classifier is mostly confusing Haydn and Beethoven with each other.
The Brahms pieces are assigned to Shostakovich most often. In the historical view, these
all are “neighbor-class” confusions as mentioned above—with respect to this specific dataset.
To better illustrate this, we arranged the classes according to the composers’ lifetime. For
Bach, the situation is different. His pieces are mostly misclassified as Haydn (a “neighbor
class”) but, closely followed, also as Brahms and Shostakovich. If we try to find a “musical”
explanation for these confusions, we might argue that J. S. Bach’s music had great influence
on composers of the later periods, in particular. In our Shostakovich data, for example, we
included the 24 Preludes and Fugues, which constitute an explicit reference to Bach’s well-
tempered piano—not only in the arrangement of movements but also with respect to some
musical content. The confusions for Shostakovich confirm such assumptions since 19 % of his
pieces are classified as “Bach.” However, the “neighbor confusions” with Brahms even exceed
this number—leading to a overall bad performance of 45.2 % for Shostakovich. For Cross-
Comp-11 , the situation is more complicated. For some composers, we observe considerable
“neighbor class errors”—indicated by a darker region around the diagonal. Apart from this,
we see some confusions within groups of more than two composers by means of square-like
blocks with somewhat darker colors. For example, Bach–Handel–Rameau, Haydn–Mozart–
Beethoven, as well as Mendelssohn–Brahms–Dvořak. These confusion structures may point
to a homogeneity of style within the groups, which leads to an increase of confusions among
the respective composers. For Schubert, we obtain the overall best results of 56.3 %. Beyond
this, the confusions of Schubert’s pieces are broadly distributed over the other classes, which

9Nevertheless, some relationships are in contrast to this argument. At some change points in music history,
composer wanted to break with the old style. Later, these styles became popular again and gained
influence on the composer. One example is the rediscovery of J. S Bach’s “St. Matthew Passion” by
F. Mendelssohn Bartholdy in 1829 (influence of Baroque style on Romantic composers).
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Table 8.7. Examples for consistently misclassified instances. From 100 CV runs, we investigated all
instances that obtained a wrong but consistent label over all runs. Here, we display all of these errors that
are not confusions of “neighbor classes” such as Baroque–Classical or Romantic–Modern. The left column
indicates the “true” class. At the very right, we display the automatically determined class label. “Ins.” refers
to the instrumentation (P =̂ Piano, O =̂ Orchestra).

Class Composer Piece Ins. Classified

Baroque Bach, J. S. Well-Tempered Piano 1, Prelude in E[minor BWV 853 P Romantic

Baroque Bach, J. S. Well-Tempered Piano 1, Prelude in F major BWV 856 P Romantic

Baroque Bach, J. S. Well-Tempered Piano 1, Prelude in A minor BWV 865 P Romantic

Baroque Bach, J. S. Well-Tempered Piano 1, Prelude in B[ major BWV 866 P Romantic

Baroque Bach, J. S. Well-Tempered Piano 1, Prelude in B[minor BWV 867 P Romantic

Baroque Bach, J. S. English Suite No. 3 in G minor BWV 808, Sarabande P Romantic

Baroque Bach, J. S. Brandenburg Conc. No. 1 in F major BWV 1046, Adagio O Romantic

Baroque Bach, J. S. Overture No. 2 in B minor BWV 1067, Badinerie O Romantic

Baroque Bach, J. S. Overture No. 3 in D major BWV 1068, Gigue O Romantic

Baroque Couperin, F. 27 Ordres, Huitième ordre, IX. Rondeau passacaille P Romantic

Baroque Corelli, A. Concerto grosso op. 6 No. 2, III. Grave – Andante largo O Romantic

Baroque Lully, J.-B. Ballet de Xerces LWV 12, Gavotte en rondeau O Romantic

Baroque Purcell, H. Opera “Dido and Aeneas” Z. 626, Overture O Romantic

Baroque Vivaldi, A. “The Four Seasons,” RV 293 “Autumn,” Adagio molto O Romantic

Romantic Schumann, R. Kinderszenen op. 15, “Haschemann” P Baroque

Romantic Grieg, E. Holberg suite op. 40, Gavotte O Baroque

Romantic Mendelssohn, F. Symphony No. 4 in A major, IV. Saltarello, presto O Baroque

Modern Shostakovich, D. Preludes & Fugues op. 87 Fugue No. 1 in C major P Baroque

Modern Shostakovich, D. Preludes & Fugues op. 87 Fugue No. 5 in D major P Baroque

establishes some outstanding position. We observe a similar behavior for Shostakovich, whose
pieces are mostly classified as Dvořak (13.4 %) and Bach (10.3 %). The worst performance
occurs for the Mozart pieces (23.4 %), which are mostly assigned to Haydn (24.3 %). This is
the only case where the classifier fails for the majority of instances. Here, one might argue
that the stylistic relation between Mozart and Haydn is indeed a very close one. Overall,
classification is not very precise. Many confusion pairs obtain values of several percent.
However, a closer look into the nature of the confusions reveals some relationships that may
originate from the music itself rather than from purely technical or machine learning errors.

We now want to look at some error cases in more detail. Previously, we discussed that
the CV procedure may lead to misclassifications due to an inconvenient fold partitioning. To
get an insight into the classifier’s behavior, Sturm [232, 233] suggested to investigate those
errors that are consistently and persistently mislabeled throughout multiple CV runs. Such
instances, which obtain the same wrong class label over all runs, constitute errors that are
inherent to the classification model. To this end, we look at the results of the 100 CV runs of
the GMM classifier (equivalent to Table 8.6) for the Cross-Era-Full dataset. In total, we found
25.33 % errors on average. From these, 11.06 % (177 instances) are consistent and persistent
misclassifications. This is quite a high number since it affects 43 % of all errors. Looking at
the type of misclassification, we found that 158 of them constitute“neighbor class errors”such
as Classical–Romantic. As we discussed above, this points to a low precision or“sharpness”of
the classification rather than to completely meaningless results. A GMM classifier with one
Gaussian and previous LDA reduction may just not be able to properly resolve the borders
in the overlap regions with chroma-based features only (compare Figure 8.1 a).
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Table 8.8. Era classification for unseen data. For this experiment we trained our GMM classfier with
chroma-based features on the whole Cross-Era-Full dataset (no cross validation). With the resulting model,
we classified the Cross-Comp-11 dataset. This table shows the number of pieces of each composer that are
classified to each of the periods (100 pieces per composer in total). The left part refers to a classification
experiment with using LDA, the right part without LDA.

Classified Era Baroque Classical Romantic Modern Baroque Classical Romantic Modern

With LDA Without LDA

Bach 5 0 75 20 68 5 9 18

Handel 3 0 64 33 56 23 15 6

Rameau 1 0 77 22 69 22 6 3

Haydn 0 0 92 8 25 53 19 3

Mozart 2 1 87 10 28 51 7 14

Beethoven 0 0 91 9 16 37 38 9

Schubert 0 0 78 22 7 16 24 53

Mendelssohn 0 0 91 9 15 19 55 11

Brahms 0 0 92 8 6 13 69 12

Dvořak 1 0 84 15 14 17 65 4

Shostakovich 0 2 83 15 15 2 8 75

Σ Instances 12 3 914 171 319 258 315 208

Let us now consider the 19 remaining errors—consistently misclassified and no “neighbor
classes.” Table 8.7 lists the composers and titles of these pieces. The most frequent case
are Baroque pieces classified as Romantic. Among these, most are pieces by J. S. Bach. We
find five Preludes from the first book of the “Well-Tempered Clavier” as well as several Suite
movements. Some of the errors may be“justified”musically. For example, the movement from
the first “Brandenburg Concerto” constitutes a slow and lyric piece in minor key. Vivaldi’s
“Autumn” movement is also very atmospherical and broad. Other cases are less clear such as
the two overture movements including the famous “Badinerie.” With a fluid and monotonous
motion and a typical formal shape, both seem to be rather typical for Baroque suites. For
the opposed case (Romantic pieces misclassified as Baroque), we find three examples. From
these, the Gavotte from Grieg’s “Holberg suite” indeed reminds of a Baroque suite movement.
In contrast, the other two cases are less obvious. Finally, we also find two of the Shostakovich
fugues to be consistently mislabeled as Baroque. Here, we should mention that even more
(eight) movements from this work cycle were assigned to the Romantic class. Since these
constitute “neighbor class” errors, we did not include them in the table.

As the last experimental results, we want to present two studies of applying our classifiers
to completely unseen data—without using CV. For the first one, we used the Cross-Era-Full
dataset in a way that all instances from one subset (Cross-Era-Piano or Cross-Era-Orchestra)
either serve as training data or as test data only. With this experiment, we can test the
capability to generalize over different timbral structures. Training on the piano data and
evaluating on orchestral pieces, we obtain 65.4 % mean classification accuracy. The reversed
case results in a similar performance of 63.5 %. Both accuracies are far over chance level
(25 %). Compared to the CV results of Table 8.6, these results are quite encouraging. In
relation to the Cross-Era-Full CV performance, we only loose about 10 % in accuracy. From
this, we conclude that a simple classification model combined with our chroma-based features
may achieve a classification that is not perfect but robust to timbral variation.
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To further test the classifier’s behavior on unseen data, we trained a GMM model for the
complete Cross-Era-Full dataset (without CV). We then applied the resulting classification
system to the Cross-Comp-11 data, which includes composers that match the periods well
but also transitional composers such as Beethoven or Schubert.10 In Table 8.8, we show the
number of resulting class labels for the 100 pieces of each composer. For the experiment, we
used the configuration of the previous section (GMM, one Gaussian, template-based features,
NNLS chroma). Surprisingly, this configuration fails completely (left part). Almost all of the
pieces (914 from 1100) obtain the “Romantic” label. Only three instances were classified as
“Classical.” For the Modern class assignments, most pieces stem from Handel (33), which, in
our opinion, is not really meaningful. It is not very clear why LDA reduction leads to such
an imbalanced and meaningless classification here.

Repeating this experiment without LDA reduction, the situation changes (right hand side
of Table 8.8). Now, the assignment of the four classes is much more balanced. For Bach, Han-
del, and Rameau, most instances obtained the“correct”Baroque label. Haydn’s and Mozart’s
pieces are categorized as Classical mostly. Interestingly, the assignment of Beethoven’s pieces
seems to be balanced equally over Classical and Romantic. In contrast, Schubert’s pieces are
mainly classified as modern, which is rather surprising. Possibly, the inclusion of singing voice
recordings (about 50 % of the Schubert examples) leads to this confusion, since singing voice
examples were not included in the training dataset Cross-Era-Full . Mendelssohn, Brahms,
and Dvořak are preferably classified as Romantic, and 75 % of Shostakovich’s pieces obtain
the Modern label. Ignoring Beethoven and Schubert as “transitional” and taking the pieces
of all other composers as “correct” for the aforementioned eras, we obtain an accuracy of
62.3 %, which is very similar to the results of the cross-instrumentation study. Though not
being very sharp in “stylistic resolution,” our classification system seems to produce some
musically meaningful style predictions for the majority of the unseen recordings.

8.4 Discussion

In this chapter, we tested several machine learning algorithms for classifying musical style.
For this, we considered two scenarios with respective datasets. To classify pieces according
to rather coarse historical periods, we compiled the Cross-Era dataset, which contains an
equal amount of piano and orchestra pieces for each class and, thus, enables to study the
timbre-invariance of such methods. Second, we tested our features for the task of composer
identification. To this end, we compiled the Cross-Composer dataset. This corpus is fairly
comparable to the dataset of the corresponding MIREX task (11 composers) but only in-
cludes the limited number of 100 instances per class, which, additionally, may not be perfectly
representative for the whole stylistic range of a composer’s oeuvre. Both datasets contain
multiple tracks from the same albums in each class. To consider this effect for classification,
we used a composer filter (Cross-Era) and an artist filter (Cross-Composer), respectively.
Our goal was to test different kinds of chroma-based features—as introduced in the previ-
ous chapters—for the two classification scenarios. As baseline, we compared the results of
chroma-based features with standard audio features that mainly rely on spectral properties
and describe the timbre of the music.

10For the vast majority of pieces, these datasets have no overlap. However, single pieces may occur in
different interpretations such as Shostakovich’s Preludes, which are present in Cross-Era (Ashkenazy) and
Cross-Composer (Sherbakov). We assume that this does not considerably influence the overall results.
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First, we presented some visualizations using a supervised dimensionality reduction tech-
nique (Linear Discriminant Analysis). We compared these plots for the use of different fea-
tures. All configurations were able to roughly separate the periods in Cross-Era. However,
chroma-based features had problems with resolving Baroque and Classical. In contrast, they
obtained good separation of Modern and the rest of the pieces. Standard features could bet-
ter resolve Baroque and Classical but led to a high overlap between Romantic and Modern.
For the Cross-Composer data, standard features seem to be more beneficial. Considering the
results of the classification experiments, we doubt that this separation is based on musical
properties of style. Possibly, confounding structures in the spectral domain can be used by
the LDA algorithm to separate the classes. In future work, this should be analyzed in more
detail.

Using LDA to avoid the “curse of dimensionality,” we performed several classification ex-
periments. We first compared different types of generative (GMM) and discriminative (SVM,
RF) classifiers. When using no filtering for the cross validation, the results are very similar for
all classifiers. Only the Random Forest classifier seems to fail for the more complex scenarios
such as the classification of eleven composers. The reasons for this behavior are not very
clear since this classifier obtained good results in other scenarios. Due to its computational
efficiency, we used the GMM classifier for all other experiments. Considering different filters
for avoiding album- or artist-specific effects, we observed worse results. As we mentioned
in [258], this effect was drastical when using standard features only. On the Cross-Era-Piano
subset, this led to results only slightly above chance level and, thus, a meaningless classi-
fication. Chroma-based features came out much less sensitive to such filtering. They even
outperformed the combination of standard and chroma-based features. We conclude that
standard features mostly capture non-meaningful properties for style and, thus, including
standard features leads to an overadaptation in the training phase. Investigating the clas-
sifier complexity (for GMM, the number of Gaussians), we found that a very simple model
of only one Gaussian leads to the best and most stable results with respect to the album
effect. In summary, we can reach classification accuracies up to 90 % with a complex clas-
sifier (SVM) and standard features. However, these results seem to be highly affected by
overtraining to semantically meaningless properties—especially for piano music. In contrast,
a simple classifier with chroma-based features may perform considerably worse but is much
more robust. Under real conditions, such a systems may constitute a less precise but stable
and reliable classifier.

Regarding the feature types, we found only slight differences for the various types of
chroma-based features proposed in this work. The template-based features for intervals and
chords performed best for the Cross-Era cases. For classifying composers, the use of chord
progressions turned out useful. Regarding the chroma feature extraction, NNLS chroma
seems to be beneficial for most scenarios. Combining chroma-based features with standard
features did not improve classification performance in any scenario when using album or
composer filtering in the CV. In other work, further types of chroma-based features were
tested for classifying the Cross-Era dataset. In this context, Schaab [211, 259] performed
several experiments to directly use global chroma histograms as classification features com-
bined with automatic key detection. In [259], we discussed the impact of the key detection
performance on the classification results in detail. Gräfe [80] extended these experiments
to the use of local keys (duration and transition histograms) for classification. In all these
publications [80, 211, 259], the proposed features did not lead to an increase of performance
for Cross-Era. However, the experiments were performed without using CV filtering, which
should be done in future work.
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In all experiments, the orchestral data could be classified better than the piano or the
combined data. We suggest two explanations for this. First, style characteristics may be
more pronounced for orchestral music. This could arise from the fact that orchestral music
was often dedicated to a larger audience and, thus, may be less complex and outstanding
than piano music, or chamber music in general. Second, our chroma-based features could
still contain some timbral information, which may be more useful for classifying a purely
orchestral data set.

Finally, we discussed our classification results in more detail by looking at confusion ma-
trices and consistently mislabeled items. For this, we used the simple GMM classifier on the
basis of template-based features, which yielded one of the best results. From these analyses,
we obtained a good intuition for the behavior of our classifier. Though not generating very
high accuracies, we could find some musical explanations for several types of confusions and
mis-classifications. Indeed, most of the confusions occurred between “historically neighbor-
ing” classes. This is encouraging since we assume that such neighbor instances may still
exhibit some kind of stylistic similarity. Altogether, the overall high number of confusions
may not only point to the deficiencies of our system but may also reflect the ambiguity of the
style categorization itself. As discussed in Section 2.10, musical style may be heavily overlaid
by the individuality of the single piece.

Comparing our composer identification results with the state-of-the-art systems of the
MIREX task [85], we obtain clearly worse performance. Since we do not know the exact
composition of the MIREX dataset, we cannot guarantee that our Cross-Comp-11 dataset
is comparable. Even though the MIREX evaluation makes use of an artist filtering step, our
scenario may be more ambitious for machine learning algorithms since we have only a small
number of instances per class (100). Furthermore, these instances stem from a small amount
of albums (CD compilations), which leads to even more unbalanced training scenario when
using the artist filter. For this reason, we assume that a larger and more balanced composer
dataset would be necessary to realistically compare our algorithms to the MIREX results.
Since many of the MIREX submissions show some similarity to our baseline experiments
relying on standard features, we would expect these systems to produce considerably lower
accuracies in a scenario like our Cross-Composer classification.

Overall, we saw that we have to be very careful with the interpretation of classification
results. Machine Learning systems may heavily rely on confounding factors such as recording
artifacts or artist-specific timbral properties, which results in a bad generalization for real
world scenarios. We showed that using tonality-related features based on a suitable chroma
implementation may lead to more robust classification systems—even if the cross validation
accuracies are lower in some scenarios.
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9 Conclusions

In this thesis, we approached the computational analysis of classical music audio recordings
with respect to tonality and style characteristics. For this purpose, we proposed novel types
of tonal audio features that build the basis for different analysis systems. In particular,
we used these features for clustering and classifying audio recordings with respect to style
categories. In our classification experiments, we compared the features’ performance against
a baseline method using standard spectrum-based features. We further tested, to which
extent our methods are invariant to variations in timbre and instrumentation.

In general, the automatic analysis of audio recordings with respect to tonal characteristics
constitutes a challenging task. For many music scenarios, state-of-the-art systems for music
transcription do not yield satisfying results. Therefore, we cannot use automated methods to
simply convert audio recordings into symbolic scores, which musicologists usually take as basis
for their analysis. For this reason, we consider tonal mid-level representations of the audio
data. More specifically, we use chroma features, which serve to locally capture the pitch class
content of the music. We discussed and tested several state-of-the-art methods for chroma
extraction and showed that they are, to a certain extent, robust to timbral variations. On
the basis of such chroma representations, we proposed techniques for measuring the presence
of several types of tonal structures. These analysis methods are inspired by music theory.
Hereby, we particularly considered such concepts that can be modeled on the pitch class level
and, thus, allow for a realization using chroma features.

As one contribution of this thesis, we proposed a novel method to estimate the global key of
a musical piece from an audio recording. This method exploits the particular role of the final
chord in classical music for estimating the tonic note. Additionally, we performed an analysis
of the full piece’s predominant diatonic scale in order to decide on the mode. With optimized
parameters, this system reached a key detection accuracy of up to 94 % on three datasets
comprising 478 pieces. We compared our results to a state-of-the-art algorithm [239], which
makes use of learning strategies for deriving pitch class profiles. This algorithm reached 98 %
on a dataset of piano recordings, which we considered in our evaluation as well. With our
reimplementation, we could not reproduce this result—probably, due to a different chroma
extraction method. On an unseen dataset of 1200 pieces, our version of this baseline algorithm
obtained an accuracy of 87.1 %. Our proposed algorithm performed slightly worse (85.4 %)
but still outperformed other approaches.

Furthermore, we extended our global key estimation method to a local approach. We
focused on a twelve-key problem by only considering diatonic scales. Similar tasks were
previously approached in the field of Music Information Retrieval. For visualizing diatonic
scales over time, we used a chroma smoothing procedure followed by multiplicative scale
matching. Inspired by music theory, we arranged these visualizations according to the circle
of fifths obtaining a spatial arrangement of “diatonic levels.” For several music examples,
we showed that our visualization technique can be useful for analyzing modulations and
structural aspects of tonality. We further extended the method to cope for non-diatonic
scale types and applied this analysis to several audio examples. The presence of different
scale types could be observed from the plots. With these scale estimation methods, the
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analysis results turned out to sensitively depend on the windowing parameters, which need
to be manually adapted. In related publications, our scale estimation method showed success
for key segmentation in pop songs [253] and for deriving features for style classification [80].

As a further contribution of this thesis, we presented novel types of chroma-based features
that model tonal characteristics of a piece independently of the key. We computed these
features on the basis of different temporal resolutions of the chromagram in order to measure
tonal properties on several time scales. One type of features proposed in this dissertation
serves to quantify the occurence of interval and chord types. Since chroma features only
incorporate pitch class information and no octave labels, these features cannot discriminate
between an interval and its complementary, or between inversions of a chord. In Chapter 8,
we showed that these features are useful for style classification. Furthermore, we proposed
features to quantify the more abstract notion of tonal complexity. Inspired by several musico-
logical hypotheses, we implemented mathematical realizations for chroma-based complexity
measures. We analyzed these features’ behavior for individual chords and for the head move-
ments of L. van Beethoven’s piano sonatas. For the sonatas, our analyses indicated higher
complexity in the development phases and a greater individuality of the late sonatas. In
Chapter 7, we analyzed complexity features over the history. As one result, we could mea-
sure an increase of tonal complexity over the centuries. During the 19th century, global
complexity (relating to full movements) increased, in contrast to local complexity (relating
to chords). Our classification experiments revealed that complexity features are useful for
obtaining robust style classification.

Beyond this, we performed studies to analyze musical styles with unsupervised methods.
For this application, we consider both interval type and tonal complexity features together
with chord progression bigrams obtained with a public chord detection algorithm [147]. We
compiled a balanced dataset comprising 2000 recordings of orchestra and piano music, re-
spectively. Since we had no annotations of composition years, we mapped the feature values
for the pieces onto a historical time axis using the composers’ lifetime. With this strategy, we
visualized feature values for chord progressions and tonal complexity. We could observe an
increase of tonal complexity over the centuries. Furthermore, we confirmed the expectation
of high complexity values for atonal pieces by composers such as A. Schönberg or A. We-
bern. Investigating chord progressions, we observed an increase of third relations between
the root notes of consecutive chords during the 19th century. Moreover, the ratio of authentic
(“falling”) and plagal (“rising”) progressions seems to be a suitable measure to discriminate
between the Baroque (higher ratio) and the Classical style.

Using such features for clustering pieces individually, across composers, and across composi-
tion years led to interesting results. Mapping pieces to composition years and then clustering
the year-wise averaged features yielded a clustering result in accordance with the traditionally
defined eras in music history. Important boundaries between the clusters occurred roughly
at the years 1750, 1825, and 1900. In contrast, the reversed procedure—clustering individual
pieces first and then mapping the resulting cluster assignments to the years—produced a dif-
ferent picture by showing only very coarse trends. Pieces seem to exhibit higher individuality
than the rather “clean” clustering results for the years might indicate. In contrast, averaging
the feature values over all pieces by a composer led to a clearer result. Here, most of the
composers were assigned to the “correct” cluster according to their lifetime—with two paral-
lel modern clusters. We conclude that looking at a certain variety of works by a composer
may be more suitable for analyzing his or her style rather than investigating a single piece.
In general, we have to be careful with these results since the long processing chain may be
subject to artifacts and propagation of errors. Furthermore, the chord detection algorithm
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itself is error-prone. Nevertheless, these errors seem to be less problematic when analyzing
large databases. In such a large-scale scenarios, we could observe interesting tendencies that
appear to be musically meaningful, to some degree.

As one of our main contributions, we tested the proposed features for classifying audio
recordings of Western classical music. For comparison, we used standardized spectrum-
based features as a baseline system. We considered two scenarios of subgenres, namely four
historical periods (Baroque, Classical, Romantic, Modern) and classical composers (five and
eleven composers, respectively). For this purpose, we compiled two datasets. To test the
separation of classes in the feature space, we visualized the datasets using dimensionality
reduction (Linear Discriminant Analysis) for chroma-based features, standard features, and
the combination of both. The plots revealed that chroma-based features have problems to
discriminate Baroque and Classical music whereas standard features struggle with discrim-
inating Romantic and Modern music. Possibly, this may point to similar tonal character-
istics of Baroque and Classical music and similar timbral characteristics of Romantic and
Modern. The combination of both feature types led to a good separation of instances, in
general. Moreover, we tested common machine learning classifiers on our datasets in a cross-
validation scenario. Here, we found a different situation. Both chroma-based and standard
features led to high mean accuracies up to 90 % using different types of classifiers. However,
performing classification in a more realistic scenario by applying filtering techniques1 in the
cross validation resulted in a severe deterioration of results. This observation indicates that,
without filtering, our system may learn non-meaningful characteristics such as artist-specific
properties—known as “album effect” [63, 178]. With filtering, a classification with standard
features led to very low accuracies. In contrast, chroma-based features seem to be less prone
to overfitting because of the album effect (73 % accuracy for four eras). Surprisingly, the com-
bination of both feature types performed worse than using chroma features alone. Adding
standard features seems to negatively affect the robustness of tonal features. Concerning the
classifier complexity, a rather simple model (Gaussian Mixture Model with one Gaussian)
seemed to result in a robust system when applying filters in the cross validation. Such a
model also produced meaningful classification results of up to 62 % for unseen data without
using cross validation. Among the tonal features, template-based interval and chord features
alone already resulted in good performances. Combining these features with chord progres-
sions and complexity features led to an increase of accuracy in several scenarios. Regarding
the different chroma feature types, NNLS chroma features [147] led to best results for deriv-
ing tonal features. We also showed that classification with tonal features is timbre-invariant
to a certain extent. Training on piano data and evaluating on orchestral data resulted in
65 % accuracy for classifying into four eras.

As a general trend, we observed that classification accuracies are higher for orchestral
pieces than for piano pieces. We assume that the instrumentation provides some meaningful
stylistic details and even influences chroma-based features—though they are nearly invariant
to timbral differences. We now reconsider the quantitative results in one specific setting—a
GMM classifier with one Gaussian using interval and triad features based on NNLS chroma.
Here, we obtained an accuracy of 75 % for the full dataset. On piano data, the results were
similar whereas classifying orchestral data led to better performance (79 %). Comparing
these results to existing work is difficult since there are no studies considering the same
categories as in our setting (four historical periods) among related publications. For composer
classification, our system obtained worse accuracies. Classifying eleven composers resulted

1We used a composer filter for classifying eras and an artist filter for classifying composers.
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in 39 % accuracy. For five composers, we obtained an accuracy of 58 %. Some researchers
used related categories but in conjunction with subclasses of very different genres [108,189].
Concerning composer identification, authors reported results of 76 % for nine composers [98]
and 78 % for eleven composers in the 2011 MIREX task [85]. In comparison, our system
performed clearly worse (39 % for eleven composers using tonal features). Considering the
fact that our baseline system with standard features produced accuracies of over 80 %—which
dropped to 36 % when using artist filtering—, we doubt that the experimental conditions
(datasets and cross validation settings) are comparable to our restrictive filtering procedure.
We suppose that a larger dataset with a higher variety of pieces, instruments, and performers
within each class could lead to better results.

In summary, this thesis showed that chroma-based analysis of audio recordings may provide
meaningful insights into the tonal and stylistic properties of musical pieces. We presented
novel methods for analyzing key and scale structures, for measuring the presence of interval
and chord types, and for quantifying some kind of tonal complexity in music recordings. In
several case studies, we showed that these analyses have the potential to highlight musically
meaningful structures. One challenge is that the feature representations sometimes empha-
size details that are not relevant for a musical task. These artifacts may propagate and
cause misleading analysis results. Furthermore, the underlying musicological models may
not be suitable for a particular piece of music. Additionally, a specific recording may exhibit
performance-related artifacts. Due to these reasons, it is often not clear if the automated
analysis captures some relevant information about the musical work itself or an artifact of the
specific representation. Therefore, fine-grained analysis results based on an individual piece
or recording have to be taken with care. In particular, such analyses cannot compete with a
detailed and reflected analysis by a musical expert, who can also provide an interpretation
of the results. However, the manual generation of analyses becomes very time-consuming for
larger corpora of musical works. In such scenarios, automated methods unfold their potential
since they allow for analyzing a huge amount of pieces with quantitative and objective meth-
ods. When analyzing large databases, artifacts of specific pieces may be averaged out and
tendencies become visible. The visualizations presented in this thesis confirmed this assump-
tion by showing interesting trends over the course of music history. As another goal of this
thesis, we tested the efficiency of our tonal descriptors for clustering and classifying music
recordings according to style categories. Though we primarily found a great individuality
of pieces, unsupervised clustering of composers highlighted some stylistic similarities that
are undoubtedly recognized among musicologists. Classifying pieces according to historical
periods resulted in a good performance despite the vagueness of the task and the complexity
of the data. For such experiments, it is very important to carefully compile the datasets.

Our experimental results let us conclude that an interdisciplinary collaboration between
musicology and audio signal processing can be very promising. In the specific case of an
individual piece, the domain-knowledge of musicologists is necessary for adequately conduct-
ing and interpreting musical analyses. With appropriate algorithms, such analyses can then
be transferred from individual pieces to large corpora that comprise representative parts of
the Western classical music repertoire. This strategy allows for quantitatively testing and
verifying hypotheses as well as for highlighting far-reaching trends and, thus, may have the
potential to open up a new dimension for musicological research.
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Table A.1. Dictionary file for the Chordino algorithm. This is the “chord.dict” file for configuring
the Chordino Vamp plugin. We used this configuration to estimate the chords for the analyses presented in
Chapter 7. The first twelve entries refer to the bass notes, which we did not use. The last twelve entries
indicate the active pitch classes for the respective chord type. We have considered the four basic triad types as
well as five types of seventh chords. Regarding the nomenclature, the part after the first underscore relates to
the quality of the basic triad (major, minor, diminished, or augmented). For the seventh chords, we indicate
the quality of the seventh interval over the root note after the second underscore. The algorithm automatically
generates circularly shifted versions of these templates to account for all twelve possible root notes.

_maj = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0

_min = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0

_dim = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0

_aug = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0

_dim_dim7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0

_dim_min7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0

_maj_min7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0

_maj_maj7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1

_min_min7 = 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0
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[15] Jérôme Barthélemy, “Figured Bass and Tonality Recognition,” in Proceedings of the 2nd International
Symposium on Music Information Retrieval (ISMIR), 2001, pp. 129–136.

[16] Mathieu Barthet, Mark D. Plumbley, Alexander Kachkaev, Jason Dykes, Daniel Wolff, and Tillman
Weyde, “Big Chord Data Extraction and Mining,” in Proceedings of the 9th Conference on Interdisci-
plinary Musicology (CIM), 2014, pp. 174–179.

[17] Mark A. Bartsch and Gregory H. Wakefield, “To Catch a Chorus: Using Chroma-Based Representations
for Audio Thumbnailing,” in Proceedings Workshop on Applications of Signal Processing (WASPAA),
2001, pp. 15–18.

[18] Mark A. Bartsch and Gregory H. Wakefield, “Audio Thumbnailing of Popular Music Using Chroma-
Based Representations,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 96–104, 2005.

[19] Victor Belaiev, “The Signs of Style in Music,” The Musical Quarterly, vol. 16, no. 3, pp. 366–377, 1930.

[20] Richard Ernest Bellman, Adaptive Control Processes: A Guided Tour, vol. 4, Princeton University
Press, Princeton, 1961.

[21] Juan Pablo Bello and Jeremy Pickens, “A Robust Mid-Level Representation for Harmonic Content
in Music Signals,” in Proceedings of the 6th International Society for Music Information Retrieval
Conference (ISMIR), 2005, pp. 304–311.



186 Bibliography

[22] David W. Bernstein, “Nineteenth-Century Harmonic Theory: The Austro-German Legacy,” in The
Cambridge History of Western Music Theory, pp. 778–811. Cambridge University Press, Cambridge,
2002.

[23] Jordi Bonada, “Automatic Technique in Frequency Domain for Near-Lossless Time-Scale Modification
of Audio,” in Proceedings of the International Computer Music Conference (ICMC), 2000, pp. 396–399.

[24] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik, “A Training Algorithm for Optimal
Margin Classifiers,” in Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
1992, pp. 144–152.

[25] Leo Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[26] John S. Bridle and Michael D. Brown, “An Experimental Automatic Word Recognition System,” in
Joint Speech Research Unit Report, vol. 1003. Ruislip, England, 1974.

[27] Judith C. Brown, “Calculation of a Constant Q Spectral Transform,” Journal of the Acoustical Society
of America, vol. 89, no. 1, pp. 425–434, 1991.

[28] Manfred F. Bukofzer, Music in the Baroque Era: from Monteverdi to Bach, Norton History of Music.
W. W. Norton, New York, 1947.

[29] John A. Burgoyne, Laurent Pugin, Corey Kereliuk, and Ichiro Fujinaga, “A Cross-Validated Study of
Modelling Strategies for Automatic Chord Recognition in Audio,” in Proceedings of the 8th International
Society for Music Information Retrieval Conference (ISMIR), 2007, pp. 251–254.

[30] Chris Cannam, Christian Landone, and Mark Sandler, “Sonic Visualiser: An Open Source Application
for Viewing, Analysing, and Annotating Music Audio Files,” in Proceedings of the ACM Multimedia
2010 International Conference, Firenze, Italy, 2010, pp. 1467–1468.

[31] Wei Chai and Barry Vercoe, “Detection of Key Change in Classical Piano Music,” in Proceedings of the
6th International Society for Music Information Retrieval Conference (ISMIR), 2005, pp. 468–474.

[32] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A Library for Support Vector Machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27, 2011.

[33] Heng-Tze Cheng, Yi-Hsuan Yang, Yu-Ching Lin, I-Bin Liao, and Homer H. Chen, “Automatic Chord
Recognition for Music Classification and Retrieval,” in Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME), 2008, pp. 1505–1508.

[34] Elaine Chew, Towards a Mathematical Model of Tonality, PhD Thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 2000.

[35] Elaine Chew, Mathematical and Computational Modeling of Tonality: Theory and Applications, Inter-
national Series in Operations Research & Management Science. Springer US, 2014.

[36] Taemin Cho and Juan Pablo Bello, “On the Relative Importance of Individual Components of Chord
Recognition Systems,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 22, no. 2,
pp. 477–492, 2014.

[37] Wei-Ta Chu, Wen-Huang Cheng, and Ja-Ling Wu, “Generative and Discriminative Modeling toward
Semantic Context Detection in Audio Tracks,” in Proceedings of the 11th IEEE International Multimedia
Modelling Conference, 2005, pp. 38–45.

[38] Ching-Hua Chuan and Elaine Chew, “Fuzzy Analysis in Pitch Class Determination for Polyphonic
Audio Key Finding,” in Proceedings of the 6th International Society for Music Information Retrieval
Conference (ISMIR), 2005, pp. 296–303.

[39] Ching-Hua Chuan and Elaine Chew, “Polyphonic Audio Key Finding Using the Spiral Array CEG
Algorithm,” in Proceedings of the IEEE International Conference on Multimedia and Expo, 2005, pp.
21–24.

[40] Henry Leland Clarke, “Toward a Musical Periodization of Music,” Journal of the American Musicological
Society, vol. 9, no. 1, pp. 25–30, 1956.

[41] Richard L. Cohn, “Neo-Riemannian Operations, Parsimonious Trichords, and their ”Tonnetz” Repre-
sentations,” Journal of Music Theory, vol. 41, no. 1, pp. 1–66, 1997.

[42] Richard L. Cohn, Audacious Euphony, Oxford University Press, Oxford, 2012.

[43] James W. Cooley and John W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier
Series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–301, 1965.



Bibliography 187

[44] Corinna Cortes and Vladimir N. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3,
pp. 273–297, 1995.

[45] Carl Dahlhaus, Julian Anderson, Charles Wilson, Richard L. Cohn, and Brian Hyer, “Harmony,” in
Grove Music Online: Oxford Music Online, Deane Root, Ed. Oxford University Press, 2001.

[46] Roger B. Dannenberg, Belinda Thom, and David Watson, “A Machine Learning Approach to Musical
Style Recognition,” in Proceedings of the International Computer Music Conference (ICMC), 1997.
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[104] Özgür Izmirli, “Audio Key Finding Using Low-Dimensional Spaces,” in Proceedings of the 7th Interna-
tional Society for Music Information Retrieval Conference (ISMIR), 2006, pp. 127–132.
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[173] Yizhao Ni, Matt McVicar, Raúl Santos-Rodriguez, and Tijl de Bie, “An End-to-End Machine Learn-
ing System for Harmonic Analysis of Music,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 6, pp. 1771–1783, 2012.

[174] Katy Noland and Mark Sandler, “Influences of Signal Processing, Tone Profiles, and Chord Progressions
on a Model for Estimating the Musical Key From Audio,” Computer Music Journal, vol. 33, no. 1, pp.
42–56, 2009.

[175] Mitsunori Ogihara and Tao Li, “N-Gram Chord Profiles for Composer Style Identification,” in Proceed-
ings of the 9th International Society for Music Information Retrieval Conference (ISMIR), 2008, pp.
671–676.

[176] Nobutaka Ono, Kenichi Miyamoto, Jonathan Kameoka Hirokazu Le Roux, and Shigeki Sagayama, “Sep-
aration of a Monaural Audio Signal Into Harmonic/Percussive Components by Complementary Diffusion
on Spectrogram,” in Proceedings of the 16th European Signal Processing Conference (EUSIPCO), 2008,
pp. 1–4.



Bibliography 193

[177] Jean-François Paiement, Douglas Eck, and Samy Bengio, “A Probabilistic Model for Chord Progres-
sions,” in Proceedings of the 6th International Society for Music Information Retrieval Conference
(ISMIR), 2005, pp. 312–319.

[178] Elias Pampalk, Arthur Flexer, and Gerhard Widmer, “Improvements of Audio-Based Music Similarity
and Genre Classificaton,” in Proceedings of the 6th International Society for Music Information Retrieval
Conference (ISMIR), 2005, pp. 628–633.

[179] Maria Panteli, Emmanouil Benetos, and Simon Dixon, “Learning a feature space for similarity in world
music,” in Proceedings of the International Conference on Music Information Retrieval (ISMIR), New
York, USA, 2016, pp. 538–544.

[180] Hélène Papadopoulos and Geoffroy Peeters, “Local Key Estimation From an Audio Signal Relying on
Harmonic and Metrical Structures,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 20, no. 4, pp. 1297–1312, 2012.

[181] Mitchell Parry, “Musical Complexity and Top 40 Chart Performance: Technical Report,” 2004.

[182] Robert Pascall, “Style,” in Grove Music Online: Oxford Music Online, Deane Root, Ed. Oxford
University Press, 2001.

[183] Steffen Pauws, “Musical Key Extraction From Audio,” in Proceedings of the 5th International Society
for Music Information Retrieval Conference (ISMIR), 2004.

[184] Geoffroy Peeters, “A Large Set of Audio Features for Sound Description (Similarity and Classification)
in the CUIDADO Project: Technical Report,” 2004.

[185] Geoffroy Peeters, “Chroma-Based Estimation of Musical Key From Audio-Singal Analysis,” in Proceed-
ings of the 7th International Society for Music Information Retrieval Conference (ISMIR), 2006, pp.
115–120.

[186] Geoffroy Peeters, “Musical Key Estimation of Audio Signals Based on Hidden Markov Modeling of
Chroma Vectors,” in Proceedings of the 9th International Conference on Digital Audio Effects (DAFx),
2006.

[187] Geoffroy Peeters and Xavier Rodet, “Hierarchical Gaussian Tree with Inertia Ratio Maximization for
the Classification of Large Musical Instruments Databases,” in Proceedings of the 6th International
Conference on Digital Audio Effects (DAFx), 2003.
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[244] Edgard Varèse and Chou Wen-Chung, “The Liberation of Sound,” Perspectives of New Music, pp.
11–19, 1966.

[245] Michele Ventura, “Detection of Historical Period in Symbolic Music Text,” International Journal of
e-Education, e-Business, e-Management and e-Learning, vol. 4, no. 1, pp. 32–36, 2014.

[246] Michel Verleysen and Damien François, “The Curse of Dimensionality in Data Mining and Time Series
Prediction,” in Computational Intelligence and Bioinspired Systems, pp. 758–770. Springer, Berlin,
Heidelberg, 2005.

[247] Vladimir Viro, “Peachnote: Music Score Search and Analysis Platform,” in Proceedings of the 12th
International Society for Music Information Retrieval Conference (ISMIR), 2011, pp. 359–362.

[248] Andrew R. Webb, Statistical Pattern Recognition, John Wiley & Sons, 2nd edition, 2002.

[249] Jacob Gottfried Weber, Versuch einer geordneten Theorie der Tonsetzkunst, vol. 3, B. Schott’s Söhne,
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