
Locomotion and Pose Estimation
in Compliant, Torque-Controlled

Hexapedal Robots

Dipl.-Ing. Martin Görner, M.S.

Dissertation

urn:nbn:de:gbv:ilm1-2017000255





Locomotion and Pose Estimation
in Compliant, Torque-Controlled

Hexapedal Robots

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

vorgelegt
der Fakultät für Maschinenbau der
Technischen Universität Ilmenau

von Herrn

Dipl.-Ing. Martin Görner, M.S.
aus Dessau

1. Gutachter: Univ.-Prof. Dipl.-Ing. Dr. med. (habil.) Hartmut Witte
Technische Universität Ilmenau

2. Gutachter: Prof. Dr.-Ing. Gerd Hirzinger
Technische Universität München

3. Gutachter: Prof. Auke Jan Ijspeert, PhD
École polytechnique fédérale de Lausanne

Tag der Einreichung: 01.11.2016

Tag der wissenschaftlichen Aussprache: 03.05.2017

urn:nbn:de:gbv:ilm1-2017000255





Für Lotte, Till und Nils





Acknowledgements

This thesis summarizes parts of the research that I have conducted during my employ-
ment at the Institute of Robotics and Mechatronics at the German Aerospace Center
(DLR) in Oberpfaffenhofen. First of all, I want to thank Prof. Gerd Hirzinger and
Prof. Alin Albu-Schäffer, the former and the current directors of the institute, for their
support and their great efforts to provide an inspiring working environment. Next, I
want to thank Prof. Hartmut Witte from Technische Universität Ilmenau for his advice
and guidance while writing this thesis. I am very thankful to Markus Grebenstein and
Christoph Borst who got me started to work on legged robots for my diploma thesis
and always supported my work on the DLR Crawler. Many thanks go to Michael
Suppa who encouraged the formation of a mobile robots group at the institute, and
thus brought together smart people that were working on isolated topics at this time.
In addition, I thank Christian Ott, the head of my department, for supporting me in
juggling family and work.

The work presented within this thesis would not have been possible without great
colleagues and their preceding or parallel work. Therefore, I want to thank the team
that created the outstanding DLR Hand II, which provided the technological basis for
the DLR Crawler. Also, I want to thank the members of the mobile robots group
for the good collaboration. Many thanks go to Thomas Wimböck for fruitful dis-
cussions on control and for providing the initial control software infrastructure for
the DLR Crawler. I would also like to thank Jörg Butterfass for the many hours
he helped me to repair broken legs, and Thomas Bahls for his efforts in fixing and
adapting the Spacewire setup. Especially during the initial phase of experimenta-
tion, I discovered several broken soldering points at difficult to reach locations. Those
were always quickly fixed by my great colleagues of the electronics workshop. Thanks
for this! Another thanks goes to Heiko Hirschmüller who developed and provided a
high-performance stereo vision algorithm that was the basis of the visual navigation
framework implemented for the DLR Crawler. I am very thankful for working with
Annett Stelzer who developed this great navigation framework, and thus added much
more sense to the Crawler project. She is a very smart person with a great sense of
humour. Thanks for all the fruitful discussions and the fun hours of lab and office
work! Further thanks go to Alexander Dietrich and Rachel Hornung for proofreading
parts of this manuscript.

One of the great strengths of the institute is the familiar and open atmosphere, which
was fostered by events like summer parties, Christmas celebrations, and great summer
and winter weekends spend in a cottage at the Hausberg (Thanks to Oliver Eiberger
and Andrea Schwier for organising and hosting those weekends!). For me personally,
this atmosphere was created by many of my colleagues during joint work, lunch and
coffee breaks, while having fruitful discussions, or just talking about nonsense. In
alphabetical order my thanks go to my former and current colleagues Andreas Bau-
mann, Wieland Bertleff, Robert Burger, Oliver Eiberger, Matthias Fuchs, Iris Grixa,
Robert Haslinger, Hannes Höppner, Rachel Hornung, Simon Kielhöfer, Sophie Lanter-
mann, Elmar Mair, Matthias Nickl, Alexander Nothhelfer, Florian Petit, Felix Rueß,



Simon Schätzle, Korbinian Schmid, Florian Schmidt, Martin Stelzer, Georg Stillfried,
Michael Strohmayr (additional thanks for pushing me to finish), Teodor Tomic, Holger
Urbanek, Jörn Vogel, Armin Wedler, and Roman Weitschat.

I am deeply grateful for the support and encouragement that I received from my
entire family and my friends. Many thanks go to my parents, my grandparents, and
my sister, as well as my parents in law. My warmest thanks belong to Andrea for
being a great partner and friend, for her love and support, for sharing the same kind
of humour, and for correcting my perspective when frustration about this work won
over enthusiasm. Most of it all, I am thankful for our children, and the love, joy, and
challenges they bring to our life.

Munich, 2016 Martin Görner



Kurzfassung

Für die planetare Exploration sowie den Einsatz in Katastrophengebieten sind au-
tonome Laufroboter zunehmend von Interesse. In diesen Szenarien sollen sie den Men-
schen an gefährlichen oder schwer zugänglichen Orten ersetzen und dort Erkundungs-
einsätze sowie Probenahmen in schwierigem Gelände durchführen. Unter der Vielzahl
an möglichen Systemen bieten im Besonderen kleinere Sechsbeiner einen sehr guten
Kompromiss zwischen Stabilität, hoher Beweglichkeit, Vielseitigkeit und einer vertret-
baren Komplexität der Regelung. Ein weiterer Vorteil ist ihre Redundanz, die es
ihnen erlaubt, den Ausfall einzelner Beine mit geringem Aufwand zu kompensieren.
Dementgegen ist die beschränkte Rechenkapazität ein Nachteil der reduzierten Größe.
Um diesen auszugleichen und das autonome Agieren in einer unbekannten Umgebung
zu ermöglichen, werden daher einfache und effiziente Algorithmen benötigt, die im
Zusammenspiel jedoch ein komplexes Verhalten erzeugen.

Auf dem Weg zum autonom explorierenden Laufroboter entwickelt diese Arbeit einen
robusten, adaptiven und fehlertoleranten Laufalgorithmus sowie eine 6D Eigenbewe-
gungsschätzung für nachgiebige, drehmomentgeregelte Sechsbeiner. Besonders her-
auszustellen ist, dass alle in der Arbeit vorgestellten Algorithmen ausschließlich die
propriozeptive Sensorik der Beine verwenden. Durch diesen Ansatz kann der Lauf-
prozess von anderen Prozessen, wie der Navigation, getrennt und somit der Datenaus-
tausch effizient gestaltet werden.

Für die Fortbewegung in unebenem Gelände kombiniert der vorgestellte Laufalgo-
rithmus eine flexible, biologisch inspirierte Gangkoordination mit verschiedenen Einzel-
beinreflexen und einer nachgiebigen Gelenkregelung. Hierbei übernimmt die Gangko-
ordination die zeitliche Steuerung der Schrittfolge, während die Einzelbeinreflexe für
eine räumliche Variation der Fußtrajektorien zuständig sind. Die nachgiebige Ge-
lenkregelung reduziert interne Kräfte und erlaubt eine Anpassung der Gelenksteifig-
keiten an die lokalen Umgebungsbedingungen sowie den aktuellen Zustand des Robot-
ers. Eine wichtige Eigenschaft des Laufalgorithmus ist seine Fähigkeit, den Ausfall
einzelner Beine zu kompensieren. In diesem Fall erfolgt eine Adaption der Gangko-
ordination über die Erneuerung der Nachbarschaftsbeziehungen der Beine. Zusätzlich
verbessern eine Veränderung der Pose und eine Erhöhung der Gelenksteifigkeiten die
Stabilität des durch den Beinverlust beeinträchtigten Roboters.

Gleich dem Laufalgorithmus verwendet die 6D Eigenbewegungsschätzung nur die
Messungen der propriozeptiven Sensoren der Beine. Hierbei arbeitet der Algorithmus
in einem dreistufigen Verfahren. Zuerst berechnet er mit Hilfe der Beinkinematik und
einer Optimierung die Pose des Roboters. Nachfolgend bestimmt er aus den Gelenkmo-
mentmessungen den Gravitationsvektor und berechnet daraus die Neigungswinkel des
Systems. Eine Fusion dieser Werte mit den Nick- und Rollwinkeln der ersten Stufe
stabilisiert daraufhin die gesamte Odometrie und reduziert deren Drift.

Alle in dieser Arbeit entwickelten Algorithmen wurden mit Hilfe von Simulationen
sowie Experimenten mit dem drehmomentgeregelten DLR Krabbler erfolgreich vali-
diert.





Abstract

Several scenarios, such as disaster response or terrestrial and extra-terrestrial explo-
ration, comprise environments that are dangerous or even inaccessible for humans. In
those cases, autonomous robots pose a promising alternative to render such endeav-
ours possible. While most of today’s robotic explorers are wheeled or tracked vehicles,
legged systems gained increased attention in recent years. With their unique com-
bination of omnidirectional mobility and intrinsic manipulation capabilities, they are
envisioned to serve as the rough terrain specialists in scouting or sample and return
missions. Especially, small to mid-size hexapods are of great interest for those sce-
narios. Providing static stability across a wide range of walking speeds, they offer an
attractive trade-off between versatility and complexity. Another important advantage
is their redundancy, allowing them to tolerate the loss of single legs. However, due to
their small size, the computational on-board resources are limited. Thus, the use of
smart and efficient algorithms is of utmost importance in order to enable autonomous
operation within a priori unknown rough environments.

Working towards such autonomous robotic scouts, this thesis contributes with the
development, implementation, and test of a self-contained walking layer as well as a
6 degrees of freedom (DOF) leg odometry for compliant, torque-controlled, hexapedal
robots. Herein, the important property of all presented algorithms is the sole use of
proprioceptive measurements provided by the legs, i. e. joint angles and joint torques.
Especially the joint torque sensors improve the walking process by enabling the use of
sensitive compliance controllers and distributed collision detection.

Comprising a set of algorithms, the walking layer organises and structures the walk-
ing process in order to generate robust, adaptive, and leg loss tolerant locomotion in
uneven terrain. Furthermore, it encapsulates the walking process, and thus hides its
complexity from higher-level algorithms such as navigation. Its three main functional
components are a flexible, biologically-inspired gait coordination algorithm, single leg
reflexes, and active joint compliance control. Thereof, the gait coordination algorithm
realises temporal adaptation of the step sequence while reflexes adjust the leg trajecto-
ries to the local terrain. The joint compliance control reduces internal forces and allows
for situation dependent stiffness adjustments. An algorithmic extensions to the basic
gait coordination enables the immediate adaptation to leg loss. In combination with
stiffness and pose adjustments, this allows the hexapod to retain stable locomotion
on five legs. In order to account for the emerging gait, the leg odometry algorithm
employs an optimisation approach to obtain a kinematics-based pose estimate from
joint angle measurements. Fusing the resulting pitch and roll angle estimates with
joint-torque-measurement-based attitude data, reduces the associated drift, and thus
stabilises the overall pose estimate.

Various simulations and experiments with the six-legged, torque-controlled DLR
Crawler demonstrate the effectiveness of the proposed walking layer as well as the
6-DOF leg odometry.
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1

1 | Introduction

1.1 Motivation

Many scenarios, such as disaster recovery or terrestrial and extra-terrestrial explo-

ration, comprise environments that are dangerous or even inaccessible for humans. In

those cases, autonomous robots pose a promising alternative in order to map an area of

interest, to collect environmental data or to take and return samples. Required to op-

erate in challenging terrain, legged systems are expected to show superior performance

over wheeled and tracked vehicles. Their advantages are omnidirectional mobility as

well as the fact that legs do not require a continuous path of ground contact. Never-

theless, these advantages come at the price of increased complexity and the need for

high structural and algorithmic robustness. Even after more than four decades of ac-

tive research in legged robotics and much progress on technology and algorithms, only

few robots are able to operate outside controlled laboratory environments. However,

incidents like the 2011 nuclear disaster at Fukushima triggered industry and academia

to create more robust and capable legged systems that are applicable to real world

scenarios. In this context, the latest DARPA robotics challenge1 is just one example

for the strong efforts taken to push the limits in legged robotics.

While current research focusses on versatile humanoid and quadrupedal systems,

there is a recurring interest in using groups of small to mid-size hexapedal robots for

terrestrial and extra-terrestrial exploration. Within different mission scenarios, the

hexapods are envisioned to serve as rough terrain scouts, offering several advantages

over their larger bi- and quadrupedal counterparts. Clearly, operating in statically

stable regimes is the most important advantage of hexapods as it drastically eases

their control. Another advantage of hexapedal robots is their inherent redundancy with

respect to the number of legs required for generating statically stable gaits. Therefore,

they are able to quickly adapt to the damage or loss of single legs while maintaining

static stability. Furthermore, using their body or any of their legs, hexapods are able

1http://archive.darpa.mil/roboticschallenge/
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to manipulate their environment and to explore its properties by the sense of touch.

As this is also true for bi- or quadrupeds, six-legged robots more easily preserve a

statically stable configuration during those operations. Thus, with a proper design

of the mechatronic system, the legs of a robotic hexapod enable a great variety of

locomotion, perception, and manipulation skills.

While realising such versatile six-legged robots is a long-term goal, the most im-

portant and basic task in exploration is to move reliably and safely from point A to

point B in an a priori unknown environment. In order to fulfil this task, the robot

has to provide sufficient rough terrain mobility as well as navigation capabilities which

should not rely on any external infrastructure. Thus, having no absolute reference,

the robot needs to collect all relevant data by itself. While doing so, it has to account

for uncertain and incomplete information about its own state, its local environment

as well as the interaction therewith. Consequently, it is crucial for the robot to pro-

vide structural and algorithmic robustness as well as the ability to constantly adapt

to changes of the terrain or the operational conditions.

1.2 Approach and Contributions

Working towards the creation of robust robotic scouts for exploration missions, this

thesis focusses on two essential capabilities of torque-controlled, six-legged walking

robots. The first and most important one is the capability to generate robust, adap-

tive, and leg-loss-tolerant gaits on natural terrain, whereas the second is the estimation

of the pose of the robot. As already mentioned above, all developments have to account

for uncertain and incomplete knowledge about the environment, the state of the robot,

and its interaction with the local terrain. Having no external reference or a priori in-

formation, the robot needs to acquire all necessary data by itself. For this reason, the

use of complex and parameter-sensitive model-based control algorithms is inappropri-

ate. Instead, robust and adaptive locomotion should emerge from the interaction of

a properly designed electro-mechanical system with a set of simple, distributed algo-

rithms maximally exploiting the available sensor data of the legs, i. e. joint angle and

joint torque measurements.

Therefore, this thesis aims to verify the following two hypotheses:

1. Simple, distributed algorithms that only use the measurements pro-

vided by the proprioceptive sensors of the legs are able to generate

robust, adaptive, and leg-loss-tolerant walking in torque-controlled

hexapedal robots.
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2. For walking, leg proprioception alone is sufficient to estimate the pose

of a torque-controlled hexapod with respect to its starting point.

Concerning these hypotheses, the list below states the contributions of this thesis.

• Hexapedal walking

– Development, implementation and test of a robust, adaptive, and leg-loss-

tolerant walking layer for compliant, torque-controlled hexapods, which

∗ enables omnidirectional walking with a flexible, emergent gait based on

the well-known coordination mechanisms of stick insects [Cruse, 1990,

Cruse et al., 1998],

∗ produces stable gaits with beneficial forward-directed waves of protrac-

tions which result in an increased stability margin,

∗ employs three simple reflexes to negotiate obstacles within the walking

height autonomously,

∗ encapsulates the whole walking process and provides simple interfaces

to higher-level algorithms such as navigation,

∗ provides a binary safety value which allows higher-level algorithms to

trigger a more risky behaviour,

∗ immediately adapts the inter-leg couplings, and thus the gait coordina-

tion, to leg loss (within 1 ms after the detection of the incident),

∗ improves the stability/smoothness of locomotion in case of leg loss by

two simple adjustments, i. e. a shift of the centre of gravity (COG) with

respect to the support polygon as well as a joint stiffness adaptation.

– Calculation of feasible velocity commands, resulting in well-coordinated

gaits for the fully functional robot as well as the impaired robot suffering

leg loss, in order to inform higher-level algorithms.

• Pose estimation

– Development, implementation, and test of a leg-proprioception-based 6 de-

grees of freedom (DOF) odometry for statically stable walking robots with

compliant joints,

∗ able to handle emergent gaits with varying ground contact configura-

tions and

∗ using joint-torque-based attitude data to stabilize the pose estimates.
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For the work presented, the term “robustness” refers to the algorithmic level. There

it addresses the robustness of the compliance controller with respect to external distur-

bances, uncertain geometric parameters, and uncertain measurements of joint angles

and joint torques (but not in the strict sense of formal robust control). In limiting

interaction torques, the underlying joint torque control provides robustness with re-

spect to soft and hard impacts. Furthermore, the gait coordination algorithm is robust

with respect to temporal delays due to reflexes, and within bounds, to the choice of

coordination mechanism weight parameters. Moreover, the pose estimation is robust

with respect to single leg slippage and varying numbers of legs in contact. Within this

work the term “adaptive” refers to the gait coordination and the reflex-based, spatio-

temporal adjustments of the foot trajectories to comply with the terrain. In addition,

it addresses the variation of the joint compliance control parameters by higher-level

algorithms. For pose estimation, adaptive relates to providing and using different sets

of tuning parameters for different terrains and gaits.

1.3 Outline

Starting with this introductory chapter, the thesis proceeds as follows:

• Chapter 2 presents related work on hexapedal walking robots. First, a general

overview of former and current systems is given that marks several of the mile-

stones in the development of six-legged robots. Next, this chapter introduces

common methods of gait generation and briefly discusses their underlying prin-

ciples. This is followed by a section on the role of torque sensing and compliance

in hexapedal walking robots. Finally, this chapter introduces related work on

pose estimation for multi-legged robots.

• Chapter 3 introduces the torque-controlled DLR Crawler, which is used as a

test platform within this thesis. At first, a general overview of the hardware is

given followed by a presentation of the joint compliance controller as well as the

forward and inverse kinematics of the legs. Thereafter, this chapter presents a

simplified dynamics model of the robot used to test the developed algorithms

prior to their implementation on the real hardware.

• Chapter 4 treats the development, implementation, and test of a robust and

adaptive gait algorithm applicable to torque-controlled hexapods. Following

a brief introduction on gait generation in general, a flexible gait coordination

method based on Cruse’s rules is developed and evaluated. The next section
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presents the calculation of the joint reference trajectories that are fed to the

joint compliance controller. To allow for adaptation to the terrain, the follow-

ing section introduces three leg reflexes as well as a binary safety value and

demonstrates their effectiveness by simulation. Finally, the chapter closes with

a section on the experimental validation of the proposed algorithms using the

DLR Crawler.

• Chapter 5 extends the gait coordination algorithm in order to allow for the

instantaneous adaptation to leg loss. Using simulations, the adaptation method

is tested and the influence of leg loss on the overall walking performance of the

robot is evaluated. In addition, experimental results obtained with the DLR

Crawler validate the approach.

• Chapter 6 introduces a leg-proprioception-based pose estimation algorithm for

torque-controlled hexapods. Following a brief introduction of the associated

problem, the kinematics-based first stage of the algorithm is presented. Next,

the joint-torque-based second stage of the algorithm is introduced, followed by

the presentation of the error-state-Kalman-filter-based fusion of the pitch and roll

angles from the first and the second stage. The subsequent sections discuss the

tuning of the algorithm and present experimental results for forward walking and

turning with respect to the walking velocity, the joint stiffness and the substrate

of the terrain. In the end, this chapter presents some experimental results of the

leg odometry for combined motions as well as for being part of a multisensor pose

estimation algorithm that is integrated within the visual navigation framework

of the DLR Crawler.

• Chapter 7 summarizes the work presented and discusses the results.

• Chapter 8 presents concluding remarks and proposes future research tasks.

Statement on the reuse of text

None of the text presented within this thesis has been previously used to obtain

any degree at a university. However, the work presented within this thesis has been

published in large parts at scientific conferences and in scientific journals as listed in

Appendix D. Parts of the text, that I have personally written as the first author of

the respective articles, are reused within this thesis. While Chapters 1 to 5 only reuse

minor parts of the text published in scientific articles, Chapter 6 reuses large parts of

the journal article “A leg-proprioception-based 6 DOF odometry for statically stable

walking robots” published in Autonomous Robots.
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2 | Related Work

Today, a large number of differently sized hexapedal robots exist, showing various lev-

els of complexity. Despite their different appearance, most of these systems serve as

laboratory test platforms that are used to verify control algorithms or to test hypothe-

ses from biology. Due to their specific design, these robots are often not well suited

for a broader range of tasks. However, in recent years, the focus increasingly shifts

from specialized towards highly versatile robots that are applicable to complex real

world scenarios. This requires the implementation of many different skills on a single

platform, and thus strong engineering efforts.

To set the perspective of this thesis, the present chapter summarizes the related work

on hexapedal walking robots. Starting with an overview of former and existing robotic

systems, the following sections present more detailed information on gait generation,

the role of torque control and leg compliance as well as on pose estimation.

2.1 Hexapedal Walking: A Robotic Systems Overview

Despite the recently growing interest in hexapedal robots, the related research dates

back 40 years and more. It has seen several waves of attention and currently shows

a broad range of research tracks spanning from large and highly versatile systems to

simple, miniaturized running robots.

In between the late 1970 ies and the early 1980 ies, research groups at the Ohio

State University (USA) as well as the Moscow State University (Russia) indepen-

dently developed impressive six-legged walking robots. The American OSU hexapod

[Klein and Briggs, 1980] and the Russian robot Masha [Gorinevsky and Shneider, 1990]

show many similarities: they both consist of electrically driven 3-DOF legs, use off-

board computation systems, and provide three-axis force sensing capabilities within

each leg. In both cases, initial research targets the generation of kinematics-based gaits,

which is later complemented by research on force control algorithms. As an example for

the latter, in [Klein and Briggs, 1980] and [Klein et al., 1983] the authors describe an

active compliance controller, allowing the OSU hexapod to cross irregular terrain under
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supervisory control. For the Russian hexapod, Gorinevsky presents the implementa-

tion and test of different force control algorithms [Gorinevsky and Shneider, 1990].

Thereof, one algorithm properly distributes the vertical ground reaction forces, and

thus enables the robot to adapt its locomotion to soft soil as well as to rigid surfaces.

Furthermore, by controlling the complete ground reaction force vector of each leg, the

robot is able to hold itself in between two opposing slanted walls and to walk along the

gap. Hence, although being very slow, both systems show a remarkable performance

with respect to the available computational power at this time. In 1985, researchers

at the Ohio State University presented a much larger six-legged walking robot, the

Adaptive Suspension Vehicle (ASV) [Waldron and McGhee, 1986, Pugh et al., 1990].

This 5 m long and 2700 kg heavy testbed for rough terrain transportation is powered

by an on-board four cylinder motorcycle engine and uses hydraulic actuators to move

its 3-DOF legs. In order to drive the vehicle, the ASV operator has the choice of

six operating modes with different levels of automation. Within the most automated

mode, the operator only commands a desired horizontal velocity vector as well as a de-

sired yaw rate. The ASV then employs a free gait to place its feet on secure footholds

identified using an on-board scanning laser rangefinder. Although the robot is not

completely autonomous, it is one of the first self-contained legged vehicles.

Within the early 1990 ies, a research group at Carnegie Mellon University devel-

oped the six-legged robot Ambler [Bares and Whittaker, 1990, Krotkov et al., 1991].

Facing the future challenge of Mars exploration, Ambler was built to quantify various

performance metrics for a legged planetary rover, such as its power consumption, its

position accuracy, and its walking autonomy [Krotkov et al., 1995]. Despite its mass

of 2000 kg, one goal for Ambler is to achieve high power efficiency. For this reason,

the hexapod has a special leg design, which arranges the single rotational as well as

the two telescoping DOF within an orthogonal configuration. Therefore, the decou-

pled actuators are able to propel and level the robot independently. Additionally, the

research group presents several interesting results with respect to an increased level

of autonomy. One of those results is a height map of the terrain created from the

data of a scanning laser rangefinder. A planning module uses this map to generate

feasible kinematic trajectories for the robot. Finally, Roston and Krotkov present a

dead-reckoning-based leg odometry that allows the robot to keep track of its pose while

walking along the planned path [Roston and Krotkov, 1992] .

In addition to the large robots developed within the 1990 ies, several research groups

present smaller laboratory systems intended for testing distributed gait and control

algorithms. Some of those draw inspiration from experimental results on insect lo-

comotion, while others follow a more technical approach in implementing finite state
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machines. Concerning their mechanical design, many of these robots loosely “copy”

the stick insect. Thus, their 3-DOF legs are arranged in an M-shape configura-

tion with respect to the frontal view. Resulting in a large leg workspace, this con-

figuration enables farther reach and simultaneously realises a stabilising low COG.

Some examples for this design are Robot II from Case Western Reserve University

[Espenschied et al., 1996], the hexapod MAX from Technical University of Munich

[Pfeiffer et al., 1995, Pfeiffer, 2007], the series of LAURON robots from FZI in Karls-

ruhe [Berns et al., 1994, Cordes et al., 1997] as well as the series of TARRY robots

from University of Duisburg-Essen [Frik et al., 1999]. In addition to a similar kine-

matic design, each of these systems provides force sensors that are embedded within

their legs. However, except for Robot II and its active compliance control, none of

the other robots uses any force control algorithm. They only employ these sensors

for contact detection. Furthermore, Robot II is the only system providing some pas-

sive compliance by design. Hence, the telescoping, spring-loaded mechanism within its

distal links allows Robot II to more easily accommodate its posture to rough terrain.

In the early 1990 ies, two other important hexapods were built at the MIT Arti-

ficial Intelligence Lab. Designed for increased autonomy and robustness, Attila and

its copy Hannibal [Angle and Brooks, 1990] served for testing distributed, behaviour-

based control algorithms [Ferrell, 1993]. Within this approach, a central oscillator

provides a basic pacemaker signal, while each of the legs generates adequate joint

trajectories on its own. Using inter-leg communication pathways, the legs directly in-

fluence their neighbours by sending inhibition or activation signals. Furthermore, the

controller adapts to leg faults by re-routeing the inter-leg communication according

to a fixed scheme. Concerning the mechanical design, Hannibal and Attila provide 18

electrically driven joints as most of the other robots but additionally host one central

motor. The task of this motor is to simultaneously change the orientation of all legs

within the sagittal plane of the robot. Thus, Hannibal and Attila are able to keep

their legs vertical on an incline while their body stays in parallel to the surface. As

most of the other systems presented, Hannibal and Attila provide strain-gauge-based

force sensors within each leg. However, the related literature does not report any

implementation of force control algorithms for these robots.

In contrast, force control applications are one of the driving factors for the devel-

opment of the hexapod Katharina [Schmucker et al., 1996] at the Fraunhofer Insti-

tute for Factory Operation and Automation in Magdeburg. Extending the results

obtained with the Russian robot Masha, the researchers implemented an algorithm

that controls the external contact force vector during insertion or drilling operations

by properly distributing the ground reaction forces of all legs. Thus, in addition to
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realising smooth locomotion and postural adaptation, the robot employs force control

to carefully manipulate its environment. Another robot aiming at force controlled

locomotion and manipulation is LEMUR IIa. It was developed at the Jet Propulsion

Laboratory in order to maintain and inspect orbital structures during future space

missions [Kennedy et al., 2006]. Its 4-DOF legs do not only support and propel the

robot but also serve as manipulators. Using a quick-connect mechanism at each end-

effector, the robot can easily exchange its tools. As an additional feature, LEMUR IIa

provides a ring-mounted stereo camera that moves along its circumference. By this,

the robot has an omnidirectional visual coverage enabling vision guided manipulation

with each of its legs.

Apart from those highly articulated systems, several researchers present six-legged

robots comprising underactuated, passively compliant legs. Drawing inspiration from

cockroaches, these system are intended for research on robust dynamic locomotion by

exploiting a self-stabilising configuration as proposed in [Full and Koditschek, 1999].

One prominent example is the robot RHex [Saranli et al., 2001], which was developed

with DARPA funding by a consortium of US American and Canadian universities. This

robot has six identical, C-shaped, passively compliant legs that are individually driven

by hip mounted DC motors. Thereby, each hip motor modulates its rotational velocity

to realise short swing and longer stance phases according to a specific gait pattern.

During ground contact, each of the C-shaped legs acts as a spring that extends and

shortens depending on the static and dynamic loading as well as the actual location of

the contact point. Thus, at low speeds the compliant legs mainly adjust the posture

of RHex to the roughness of the terrain, while the properly tuned system exhibits

self-stabilising, limit-cycle-like dynamics at higher velocities. In one of its versions, the

robot even achieves speeds up to 2.7 m/s. In addition, RHex masters many different

locomotion tasks such as crossing rocky terrain, climbing steep slopes and ascend-

ing stairs [Johnson et al., 2011], as well as bipedal running with an upright posture

[Neville et al., 2006]. Apart from RHex, the Sprawl family of robots from Stanford

University [Cham et al., 2002] also exploits a mechanically self-stabilising sprawled

posture for robust dynamic locomotion. In comparison to RHex, these robots pos-

sess a reverse actuation scheme with active telescoping legs and passively compliant

rotary hips. However, with proper tuning and periodic feedforward actuation, the

Sprawl robots establish very robust dynamic gaits [Clark and Cutkosky, 2005] as well.

In recent years, several labs presented miniaturized running hexapods such as the 16 g

DASH [Birkmeyer et al., 2009] or the 24 g DynaRoACH [Hoover et al., 2010]. Built

of compliant composite materials, these systems employ single actuators and different

linkage mechanisms to achieve self-stabilising alternating tripod gaits up to velocities
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larger than one meter per second. Due to their folded and reinforced structure as well

as their simple actuation scheme, these robots are highly robust to falls and collisions

with the environment.

Returning to more versatile systems, the most recent examples are the robots Space-

Climber and its successor Crex from DFKI in Bremen [Bartsch et al., 2012], Hec-

tor from University of Bielefeld [Schneider et al., 2014, Paskarbeit et al., 2015], LAU-

RON V developed at FZI Karlsruhe [Rönnau et al., 2014], and Weaver from the Au-

tonomous Systems Lab of CSIRO in Brisbane [Bjelonic et al., 2016]. As a major im-

provement, all of these robots, except for HECTOR, provide at least one additional

DOF within their legs. Those additional joints do not only improve their locomotion

capabilities but also help to increase their static stability margin in rough terrain.

Furthermore, with 4-DOF legs the robots are able to generate energy efficient leg tra-

jectories while they have greater postural redundancy. This means, for a given set of

ground contact points they can attain and hold a certain body pose using different leg

configurations. This capability is especially useful for operations in obstacle-cluttered

areas. In addition to the increased mobility, the 4-DOF legs enable the robots to

manipulate their environment and to take samples. For this purpose, grippers can be

attached to their front legs folded away during walking and engaged for manipulation.

In case of Hector, its legs are not intended for active sampling or manipulation of the

environment but to hold and propel the robot in rough terrain. Its novel feature is the

mechanical design of its joints. Those include elastomer springs that render the robot

passively compliant. This, in turn, allows researchers to test advanced, biologically-

inspired leg and gait controllers that require some passive joint compliance. Inspired by

insects, HECTOR has an articulated body with three segments connected by pan-tilt

joints. As each of these segments hosts a pair of legs, the body joints will enable HEC-

TOR to climb obstacles larger than its normal standing height. Besides any mechanical

innovation, each of these five robots is equipped with a large set of proprioceptive and

exteroceptive sensors in order to extend their perceptual capabilities.

2.2 Hexapedal Walking: Gait Generation

In hexapedal walking the most important task is to advance the body by generating

coordinated leg motions with respect to the properties and the structure of the local

environment. Thus, a large fraction of research targets gait generation and control.

With respect to gait generation, very different methods have been developed. Those

can be summarized in three large groups: fixed gaits, rhythmic-pattern-generator-

based gaits, and reactive free gaits. Depending on the intended application of the
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robot and the available computational resources, each method has certain advantages

and disadvantages. The simplest and least adaptable implementation, fixed gaits, uses

fixed stepping patterns and off-line-calculated joint trajectories. To increase the us-

ability and flexibility of those gaits in uneven terrain, a fixed, pre-planned stepping

sequence is often combined with adjustable single leg trajectories that allow adapta-

tions of step height and step width. Those approaches usually require the definition of

Cartesian foot trajectories and on-line computation of inverse kinematics. Addition-

ally, a change of the gait pattern requires consistently designed transitions. Examples

for systems that employ such gaits with fixed stepping sequences are the Adaptive

Suspension Vehicle from Ohio State University [Waldron and McGhee, 1986] as well

as the hexapod Katharina from Fraunhofer IFF [Ihme, 2002].

Apart from fixed gaits, many hexapedal robots employ gait pattern generators.

Those form a large group of algorithms producing rhythmic patterns that can be mod-

ulated with respect to frequency, amplitude, and phase relations. One large sub-group

are neural-oscillator-based central pattern generators (CPGs), which are motivated by

the neural system of animals. The underlying idea is that neural circuits constitute

dynamical systems capable of generating and propagating self-sustained, synchronized

oscillations that produce high-dimensional rhythmic outputs based on a small number

of non-rhythmic inputs. These oscillations can be further modulated by sensory feed-

back. With respect to robotics the CPG outputs are usually interpreted as desired

joint position trajectories. A good general overview of CPGs in animals and robots is

given in [Ijspeert, 2008], while [Manoonpong, 2007] presents an example for a CPG-

driven six-legged walking robot. Goldschmid and collaborators extend the latter work

by adding reflex mechanisms in order to improve the obstacle crossing capabilities

[Goldschmidt et al., 2014]. An example for a rhythmic gait pattern generator that is

not a classical CPG is presented by Guddat for the hexapod TARRY II [Guddat, 2002].

The basic algorithm employs neural networks to generate rhythmic joint angle trajec-

tories, only using a small set of inputs such as directional motion commands and two

pacemaker signals. These neural networks are trained with different off-line gener-

ated, kinematically consistent gait patterns to produce variable gaits. Combined with

reflexes, they further allow the robot to cross small obstacles in uneven terrain.

The last group of gait generation methods are reactively emerging free gaits. For

those, coordinated gait patterns result from decentralized inter-leg coordination mech-

anisms and sensor stimuli that represent the interaction with the local environment.

The resulting gaits are highly versatile and adaptive in rough terrain. A prominent

example are the inhibitory and excitatory coordination rules that Cruse, Dean, and

collaborators identified for the stick insect [Cruse, 1990]. Those rules have been im-
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plemented within a neural network, the Walknet [Cruse et al., 1998], and have been

validated in producing proper hexapedal gaits by extensive simulation of kinematic

and dynamic models of the stick insect. In a recent review, Schilling et al. sum-

marize more than a decade of work related to the Walknet as well as its extensions

such as curve walking and the adaptation to leg damage [Schilling et al., 2013a]. Not

only in simulations but also on several hexapedal robots this set of rules is used to

generate adaptive gaits. Espenschied, for example, demonstrates rough terrain walk-

ing with the 18-DOF hexapod Robot II [Espenschied, 1994]. For this purpose, he

implements a reduced set of coordination rules, extends the framework to walking

in the plane, and enables obstacle crossing using single leg reflexes as well as active

and passive compliance of the legs. Furthermore, he presents lesion studies investi-

gating the importance of single coordination mechanisms in establishing a stable gait

pattern. Other systems that employ Cruse’s coordination rules are Hannibal from

MIT [Ferrell, 1995], built in the early 1990 ies, and Bill-Ant from Case Western Re-

serve University [Lewinger, 2005], built in 2005. In case of Hannibal, Cruse’s rules

are implemented for comparison with its original controller that is based on Brooks’

subsumption architecture [Brooks, 1985]. For Bill-Ant, developed at the same lab as

Robot II, the implementation follows Espenschied’s work. The recently presented six-

legged robot HECTOR [Schneider et al., 2014, Paskarbeit et al., 2015], briefly intro-

duced above, employs the latest version of Walknet for control [Schilling et al., 2013b].

Its biologically-inspired control approach is anticipated to raise reactive walking to a

level of embodied cognition in the future. A strongly reduced example of gait coordina-

tion resulting from local rules is presented by El Sayed Auf [El Sayed Auf et al., 2008]

for the six-legged walking robot Oscar. In this case, just a single coordinating rule is

used. This rule allows a leg to step only if all neighbouring legs are in contact, while

otherwise the leg has to prolong its stance phase. In combination with an adjustable

ratio of stance and swing time, a variety of gaits can be generated and delays caused

by local reflexes can be compensated.

A mixture of methods for gait generation is employed by Lauron IV and Lauron V

developed at FZI in Karlsruhe. Their so-called behaviour-based control approach

[Kerscher et al., 2008] combines fixed stepping sequences with single leg reflexes and

posture-related behaviours to generate an adaptive gait. Therein, specific behaviours

slow down or accelerate single legs while the underlying basic gait pattern is not

changed. In addition to the above presented methods for gait generation, on-line gait

planning provides another highly adaptive solution allowing for the careful selection

of footholds. However, this method is computationally expensive and requires de-

tailed perception of the environment [Belter, 2013]. Thus, a robust implementation on
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resource-limited hardware is difficult and challenging. Common to all methods for gait

coordination is their combination with different sets of single leg and postural reflexes

in order to increase the adaptability and robustness of the walking process.

2.3 Hexapedal Walking: Torque Sensors and Leg

Compliance

In order to incorporate reflexes and to adapt the gait and the posture of a robotic

hexapod to irregular terrain, kinematic joint data alone is often not sufficient. In-

stead, it should be combined with information on internal and external loads. This

idea is supported by multiple experimental studies attributing a strong influence on

the locomotive behaviour of insects to the load-sensitive mechanoreceptors embedded

within their legs. [Delcomyn et al., 1996] present a good overview of the related sense

organs, while [Ayali et al., 2015] review the current knowledge on the role of sensory

feedback in cockroach locomotion.

Among the load-sensitive mechanoreceptors of insects, campaniform sensilla are the

best understood. They were identified as strain sensors by [Pringle, 1938] almost 90

years ago, whereas [Zill et al., 2004] summarize much of today’s functional understand-

ing. Located in different parts of the leg, i. e. the trochanter and the tibia, the cam-

paniform sensilla are directionally sensitive to compressive stress. Therefore, they can

be compared to strain gauges commonly used in technical force sensors. Campaniform

sensilla appear in groups that differ in orientation, while they are arranged in parallel

within each group. Thus, individual groups are sensitive to specific forces, while the

joint groups enable the detection of complex loads experienced by a leg. In addition,

the functional redundancy within each group increases robustness with respect to fail-

ure of single receptors. Using finite elements analysis (FEA), Kaliyamoorthy et al.

investigate the potential role of the four groups of campaniform sensilla located at

the trochanter of cockroach legs [Kaliyamoorthy et al., 2005]. Based on their analy-

sis, the authors postulate four main functions: First, the campaniform sensilla detect

the magnitude and the rate of change of leg forces that result from body weight and

inertia; Second, the signals of the campaniform sensilla encode the direction of the

ground contact forces experienced during stance; Third, the campaniform sensilla help

to identify slippage by detecting rapid force decreases; And fourth, they provide muscle

activating feedback during support and propulsion.

Similar to insects, such distributed load feedback has the potential to improve rough

terrain locomotion of hexapedal robots as well. However, only few systems employ
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multiple load sensors within each leg. Some examples are Hannibal [Ferrell, 1993]

and Robot II [Espenschied, 1994] that use strain-gauge-based load signals from vari-

ous locations of their legs, as well as the DLR Crawler [Görner et al., 2008] and the

hexapod HITCR-II [Zhao et al., 2012] that both utilize joint torque sensors. In most

other cases, six-legged walking robots rely on motor-current-based joint torque esti-

mates or some kind of foot force measurements. The simplest solution are contact

switches within the feet that detect the swing-to-stance transition of a leg as used

by the hexapods OSCAR [El Sayed Auf et al., 2008] and TARRY II [Guddat, 2002].

The more complex solutions either return single-axis foot loads, like the force-sensitive

resistors of Bill-Ant [Lewinger, 2005], or a complete contact force vector, such as the

foot force sensors of Katharina [Ihme, 2002] and Lauron IV [Kerscher et al., 2008]. In

both cases, these sensors enable the use of force distribution algorithms as well as the

implementation of ground contact enforcing reflexes. However, one problem associated

to foot force sensors often remains unsolved: Due their distal location, these sensors

have to sustain high impact loads while they should provide high-resolution measure-

ments at the same time. Thus, their design is either sturdy resulting in poor resolution

or the resolution is good but the sensors are prone to damage. Therefore, the use of

joint torque sensors or other distributed load feedback could increase the robustness

and accuracy of load sensing while providing improved spatial resolution during colli-

sions. Furthermore, using distributed load feedback, reflexes could be triggered more

effectively throughout each phase of a stride.

With respect to the role of leg compliance, Blickhan and collaborators demonstrate

that the spring-loaded inverted pendulum model serves as a template for running and

hopping in animals [Blickhan, 1989], and that it is applicable to a large variety of

species [Blickhan and Full, 1993, Full and Tu, 1990]. Regarding the dynamics of com-

pliant hexapedal runners, an extensive review is given in [Holmes et al., 2006]. Apart

from these fundamental results on the role of leg compliance in hexapedal running, it

is often helpful in standing or walking that joints simply “give way”. By this, internal

forces are reduced that result from parameter uncertainties in closed kinematic chains.

As these forces require motor activity but do not provide any support or propulsion,

their reduction improves the energy efficiency of the robot and decreases the risk of

slippage. In order to realise such leg compliance, either passive elastic elements or some

kind of active spring-like control could be used. Robot II, for example, employs springs

for passive adjustments and spring-like proportional control for generating active com-

pliance. Another example is the joint-torque-measurement-based compliance control

algorithm of the DLR Crawler, which is introduced in greater detail in Chapter 3.
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2.4 Pose Estimation in Legged Robots

Not only for control but also for other tasks like pose estimation, proprioceptive data

is of great importance. In wheeled robotics, for example, it is common practice to

calculate partial pose estimates based on wheel encoder readings and steering angles.

Usually, such a wheel odometry algorithm returns a planar position as well as the

heading angle of the vehicle. Only very few wheeled robots allow the calculation of an

additional vertical motion estimate that is based on their kinematics. One of the few

examples is the Shrimp robot [Lamon and Siegwart, 2004] developed at EPFL. On this

robot an advanced bogie concept provides the necessary information for estimating the

vertical motion. Nevertheless, pitch and roll angles, like on other wheeled robots, have

to be determined by use of an inertial measurement unit (IMU).

In contrast to their wheeled counterparts, legged robots usually provide enough

proprioceptive data from sensors embedded within their legs to calculate a complete

6-DOF pose estimate. However, due to their mechanical complexity, the high number

of DOF, and the high variety and variability of gaits, the problem is much harder.

Only very few tested examples of leg odometries exist that return a full 6-DOF pose

estimate. Each of those additionally relies on IMU data to either stabilise the results or

to compensate for a missing DOF of the pose. The detailed work on the robot RHex

[Lin et al., 2005, Lin et al., 2006] is one of the few examples presented in literature.

The robot consists of six equal, passively compliant, single degree of freedom legs and

uses its hip joint encoder readings and leg deformation measurements to estimate its

pose. Due to its kinematic configuration no yaw angle can be calculated by the basic

odometry. Therefore, the data needs to be fused with IMU readings to return a full

6-DOF pose estimate. However, a great advantage of this approach is that it also

covers the flight phases occurring during dynamic running.

Another example for leg odometry is an algorithm developed for the hexapod Am-

bler [Roston and Krotkov, 1992] that was also implemented on the robot Lauron IV

[Gassmann et al., 2005b, Gassmann et al., 2005a]. In this approach, the supporting

legs are used to determine a rigid body transformation for the robot with respect to

the world frame. The algorithm assumes an ideal no slip ground contact and finds

a minimum error transformation that maps the positions of the supporting feet at

the current time step with respect to the body frame onto the stored positions of the

supporting feet with respect to the world frame. After finding the minimizing trans-

formation, the positions of the supporting feet in world coordinates are recalculated

and updated if they changed. This is necessary after a step but should not happen

for legs in support according to the ideal no-slip condition. In order to reduce the
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disturbing effect of slipping legs, individual leg weights are introduced that influence

the transformation calculation. However, for Lauron as well as for Ambler the leg

odometry experiences problems with drifting pitch angle and height estimates. To

improve the results, the odometry of Ambler discards the tilt angles and replaces them

by inclinometer readings. In case of Lauron the odometry estimates are fused with

IMU- and magnetic-compass-based orientation data. While there is some performance

data available for Ambler, there is no detailed data published for Lauron.

Recent examples for using leg odometry with dynamic quadrupeds are presented in

[Reinstein and Hoffmann, 2011, Reinstein and Hoffmann, 2013] and [Ma et al., 2012].

In the first case, Reinstein et al. obtain a full pose estimate by fusing a velocity estimate

based on leg odometry with data of an inertial navigation system using an extended

Kalman filter. In the second case, Ma et al. publish an approach to improve the

navigation robustness of the robot BigDog and its successor project LS3 by multi-

sensor data fusion using leg odometry.
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3 | The DLR Crawler

The DLR Crawler [Görner et al., 2008] is a torque-controlled, actively compliant, six-

legged walking robot that was built during a diploma thesis project [Görner, 2007] to

serve as a laboratory testbed for the development of gait and navigation algorithms.

It is based on the fingers of DLR Hand II [Butterfass et al., 2001], which uniquely

combine a comprehensive set of sensors with high performance actuation. Beginning

with an overview of the robotic hardware, the chapter proceeds with a short description

of the basic joint control algorithm, followed by the presentation of the leg kinematics

and a simplified dynamics model of the robot.

(a) Indoor gravel testbed (b) Outdoor rubble environment

Figure 3.1: The DLR Crawler within different environments

3.1 Hardware Overview

Regarding its mechanical structure, the robot consists of six identical legs and is sym-

metric to its sagittal plane. It has a footprint of approximately 350 × 380 mm, stands

on average 90 mm high, and has a mass of 3.5 kg. By design, all proximal leg joints

are placed within a common plane, whereas their specific positions and orientations

have been determined based on a careful analysis of the leg workspace as well as an
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optimisation over a nominal tripod gait cycle. This optimisation aimed to minimize

the peak loads of each leg and to maximize the stability margin of the support polygon

while using large sections of the workspace. The outcome is the following: First, the

middle legs have a larger base distance than the front and the hind legs; Second, with

respect to the common plane spanned by all proximal joints, each leg attachment is

tilted 15◦ downwards, leading to a better utilisation of the leg workspace shown in

Fig. 3.2; Finally, the projection of the attachment of the front and hind legs into the

common plane forms an angle of 50◦ with the sagittal plane.

Resulting from the initial design as a robotic finger, each leg has a length of 155 mm

in full extension, four joints, and three DOF. The first two DOF are realised within the

proximal joint using a differential bevel gear mechanism, which enables the additive

use of motor torques about a single joint axis. The third degree of freedom is realised

by a one to one coupling of the medial and distal joints of a leg. Each of the drive

units consists of a permanent magnet synchronous motor followed by harmonic drive

gears and a tooth belt transmission stage. The associated parameters, such as link

lengths, joint motion ranges, and transmission ratios, are given in Table 3.1. Further-

more, each leg hosts a variety of proprioceptive sensors. These are Hall-effect sensors

for relative motor angle measurement and commutation, link-side potentiometers for

absolute joint angle measurement, strain-gauge-based link-side joint torque sensors as

well as a 6-DOF force-torque sensor contained within the foot. In addition to the sen-

sors embedded within the legs, an IMU provides acceleration and attitude data of the

body, while a stereo camera enables visual odometry, obstacle avoidance, and terrain

assessment and mapping.

In Fig. 3.3 an overview of the system setup is given. All locomotion-related compu-

tation and control is done off-board using a QNX-based real-time PC, while a Linux

system is used for all vision-related computations as well as for path planning and nav-

igation. A 1 kHz control loop is guaranteed by connecting the robot and the real-time

PC using a fast IEEE-1355-based hierarchical serial communication link that transmits

all sensor data to the PC and returns appropriate motor commands. Power is provided

by an external 24 V supply and is transformed to various voltage levels on-board. The

decision for the external computation and power supply has two reasons: First, it is

to some extend a heritage of the DLR Hand II system architecture; But second and

more importantly, it was chosen to eliminate any restrictions by limited computational

power of on-board hardware. This allows testing of various control algorithms with

different computational complexity while not requiring an efficient implementation at

this stage of the development.
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Table 3.1: Technical data of the DLR Crawler legs

Link lengths
Proximal link 75 mm
Medial link 40 mm
Distal link 40 mm
Joint motion ranges
Protraction/retraction proximal joint ±37 deg
Elevation/depression proximal joint −55/+75 deg
Extension/flexion medial and distal joint −20/+105 deg
Transmission ratios
Harmonic drives 100:1
Tooth belt proximal joint 1.2:1
Tooth belt medial joint 2:1
Maximum joint velocity >360 deg/s
Total leg mass 375 g

Figure 3.2: DLR Crawler and the workspace of its right middle leg: the grey patch
indicates the useful region at a walking height of 80 mm
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Figure 3.3: The DLR Crawler system setup

3.2 Joint Compliance Control

Since the robot is equipped with joint torque sensors as well as force-torque sensors

within its feet, it enables the use of various torque and force control methods. How-

ever, following the assumption of uncertain or incomplete knowledge of the system

parameters and states, control methods that require a detailed dynamics model of the

robot are not considered within this thesis. Thus, the decision is to use simple joint

compliance control. This is basically a PD control law with an underlying torque con-

trol loop, emulating a spring-damper system within each joint. The general advantage

of such controller is that it enables on-line adaptation of the joint stiffness without the

need of a complex mathematical model.

The joint compliance controller of each leg is implemented based on the well-known

compliance control law,

τ j,d = −∇V (θj) − D(θj)θ̇j (3.1)

= −

(

∂V (θj)

∂θj

)T

− D(θj)θ̇j , (3.2)

V =
1

2
(θj,d − θj)

T Kθ(θj,d − θj). (3.3)
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Within those equations, τ j,d ∈ R
3 is the vector of desired joint torques, θj,d ∈ R

3

the vector of desired joint angles, and θj ∈ R
3 the vector of measured joint angles.

The scalar V (θj) is a potential function which collects all spring potentials and the

matrix Kθ is the related positive definite stiffness matrix. Furthermore, the matrix

D(θj) is a positive semi-definite damping matrix. To account for the differential bevel

gear mechanism of the base joint, a simple kinematic transformation matrix transforms

the desired and measured joint torques to the respective motor-side torques τ m,d and

τ m. Since this transformation is only relevant for the first two DOF, the last row and

column of the matrix realise an identity mapping for the third degree of freedom. Based

on the motor-side torques, an underlying torque control loop, (3.4), is implemented

that consists of a simple proportional controller with a gain matrix Kτ and a friction

compensation term τ̂ m,fric. The latter is provided by a friction observer estimating the

static and viscous friction torques. These mainly originate from the harmonic drive

gears but also include velocity-related back electromotive force (EMF) effects.

um = Kτ (τ m,d − τ m) + τ̂ m,fric (3.4)

While the above controller depicts the ideal case, the legs comprise some structural

characteristics that have to be considered. For all joints, the controller assumes an axis

of rotation that is identical to the axis of joint torque measurement. However, due to

engineering reasons this could not be realised for the base joint. In this case, the 2D

joint torque sensor is a bending beam structure placed 2.8 cm in a distal direction with

respect to the joint axes. Therefore, the measured torques are smaller than the actual

joint torques by an amount that is equal to the product of the distance in between

sensor and joint axes and the shear force within the leg structure at the location of

the sensor. Depending on the configuration of the leg and the application point of an

external force, this difference is not negligible. To give some examples, the following

two cases are considered. First, a force of 10 N is applied at the foot of the fully

extended leg into a direction that is normal to the leg axis and normal to the axis of

the second joint (elevation/depression). This causes an actual joint torque of 1.55 Nm

at a distance of 15.5 cm from the force application point. However, the joint torque

sensor located at a distance of 12.7 cm from the force application point only measures

1.27 Nm. Thus, the related error is about 18 % of the actual joint torque. If the

leg is configured such that the force of 10 N is applied at a distance of 7.5 cm to the

base joint, the error already grows to 37 %. Measuring or estimating the application

point of an external force, the measurements could be corrected by a simple kinematic

ratio. Assuming a fixed contact point at the tip of the foot, such a correction is

applied for pose estimation presented in Chapter 6. However, this is not sufficient for
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walking in general since multiple contacts might occur along the leg that cannot be

resolved properly. Therefore, neglecting this source of error and applying the above

controller without any correction of the measurement is an option. But what are

the consequences? During the swing phase, the shear forces within the leg structure,

resulting from gravity and inertial effects, are small. For this reason the controller will

track the swing reference trajectories well. During the stance phase, the main loads

on a leg originate in the body weight of the robot, and thus cause larger shear forces

within its structure. In this case, the uncorrected joint torque measurements result in

an actual joint stiffness that is larger than the desired value and grows with decreasing

distance in between the force application point and the joint axis. In general, this is

not a problem for walking. If the robot walks forward, the application point of the

ground contact force roughly remains at a similar distance to the base joint. Therefore,

the actual joint stiffness does not vary significantly. If the robot walks sideways, the

force application point at the foot moves towards the base joint for all legs on one side

of the robot, while it moves away for all legs on the other side. Thus, for a constant

joint stiffness command, the base joint stiffens if the leg moves towards the body, while

it softens for moving away. Fortunately, this behaviour is beneficial, since a leg that is

closer to the body has to bear more weight.

In summary, the distance in between the joint torque sensors of the base joint and

the joint axes has non-negligible effects that fortunately do not negatively influence

the walking performance. Nevertheless, for using Cartesian force control algorithms,

the measurements have to be corrected. This requires assumptions about the force

application point or an additional hardware effort. For example, an improved sensor

that determines the 2D shear forces within the intersection of the bending beam could

easily solve the problem.

3.3 Leg Forward Kinematics

This section introduces the leg forward kinematics Bxf (θj) of the DLR Crawler, which

is part of the simplified dynamics model presented in Section 3.5 as well as the leg

odometry algorithm developed in Chapter 6. Using transformation matrices Ti−1
i , the

Denavit-Hartenberg (DH) parameters given in Table 3.2, and the matrix product given

by (3.6), the Cartesian position of the foot Bxf is computed with respect to the leg base

frame “B”. Each transformation matrix, Ti−1
i , collects four successive single degree of

freedom transformations that follow a fixed sequence according to [Craig, 2005] and

uniquely define the transformation from link i − 1 to link i. For each set of DH

parameters, this sequence is a rotation of φi−1 about the axis xi−1, a fixed translation
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Table 3.2: DH-parameters of the DLR Crawler legs

Transformation φi−1 in rad ai−1 in mm θi = (θji
+ θoffi

) in rad di in mm

B → 0 ( 15
180

+ 1)π 0 π
2

0
0 → 1 0 0 θj1 0
1 → 2 π

2
0 θj2 0

2 → 3 0 75 θj3 0
3 → 4 0 40 θj4 − π

2
0

4 → 5 −π
2

0 π 40

of ai−1 along the axis xi−1, a rotation of θi about the axis zi, wherein θi is the joint

angle plus some offset, and a fixed translation of di−1 along the axis zi.
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Figure 3.4: Coordinate systems and joint definitions used by the forward kinematics
of the DLR Crawler legs (sketched for zero joint angle deflection)

Ti−1
i =















cos θi − sin θi 0 ai−1

cos φi−1 sin θi cos φi−1 cos θi − sin φi −di sin φi−1

sin φi−1 sin θi sin φi−1 cos θi cos φi−1 di cos φi−1

0 0 0 1















(3.5)
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(3.6)

Taking the time derivative of Bxf (θj) yields the Cartesian velocity of the foot as

well as the Jacobian matrix of the leg Jl.

Bẋf =
d

dt
Bxf (θj) =

∂ Bxf(θj)

∂θj

θ̇j = Jlθ̇j (3.7)

3.4 Leg Inverse Kinematics
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Figure 3.5: Parameters and geometric relations used to compute the inverse kinematics
of the DLR Crawler legs

As the gait coordination algorithm of the robot presented in Chapter 4 works on the

Cartesian positions of the feet, an inverse kinematics algorithm has to be employed in

order to compute the desired joint angles required by the joint compliance controller.

For this purpose, an analytical approach is chosen, since the related equations can be

efficiently solved for 3-DOF legs, even if these include an additional, passively coupled

joint. After transforming the foot position from the body coordinate system into the

leg-based coordinate system 0 shown in Fig. 3.5(a), the joint angle involved in the
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protraction and retraction of the leg, θj1, is computed. Employing the inverse tangent

function with two arguments, atan2, this angle is determined including the proper sign.

θj1 = atan2

(

0yf

0xf

)

(3.8)

Using angle θj1, the position of the foot is transformed into the leg-based coordinate

system 1 shown in Fig. 3.5(b) in order to compute the remaining two angles, θj2 and

θj3. These angles are involved in the elevation and depression of the leg as well as its

extension and flexion. According to the Pythagorean theorem the following equation

is obtained.

0 = (l1 cos θj2 + l2 cos (θj2 + θj3) + l3 cos (θj2 + 2θj3))
2

+ (l1 sin θj2 + l2 sin (θj2 + θj3) + l3 sin (θj2 + 2θj3))
2

−
(

1xf
2

+ 1zf
2
)

(3.9)

Simplifying this equation and rearranging terms, θj2 is eliminated. The resulting

quadratic equation is then easily solved for θj3.

0 = cos2 θj3 +
l2 (l1 + l3)

2l1l3
cos θj3 +

l2
1 + l2

2 + l2
3 − 2l1l3 − 1xf

2
− 1zf

2

4l1l3
(3.10)

θj3 = arccos





−
l2 (l1 + l3)

4l1l3
+

√

√

√

√

(

l2(l1 + l3)

4l1l3

)2

−
l2
1 + l2

2 + l2
3 − 2l1l3 − 1xf

2 − 1zf
2

4l1l3







(3.11)

Finally, inserting θj3 into the following equation yields the second angle of the base

joint θj2.

θj2 = arctan

(

1zf

1xf

)

− arctan

(

l2 sin θj3 + l3 sin 2θj3

l1 + l2 cos θj3 + l3 cos 2θj3

)

(3.12)

3.5 A Simplified Dynamics Model

This section introduces a simplified dynamics model of the DLR Crawler, which in-

cludes a body with distributed inertia but assumes massless legs. This assumption is

justified by the negligible inertial forces that the legs of the robot exert on its body
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during walking. The ground reaction forces are computed based on kinematic rela-

tions of the legs as well as joint torques that result from joint spring compressions. In

addition, friction forces in between the tip of a slipping leg and the ground are approx-

imated by a first-order model. The reason for this choice over a full multi-body model

is simply faster computation. With respect to multi-body simulations there are several

factors that slow down the simulation speed. First of all, the small masses and mass

moments of inertia of the leg segments paired with high joint stiffness render multi-

body simulations numerically “stiff”, and thus slow. Next, the coupling of the medial

and distal joint within the legs of the DLR Crawler adds constraints that cannot be

resolved properly by many software packages. Furthermore, consistently integrating

the dynamic equations for all closed kinematic chains formed by the legs in ground

contact increases the computation time, too. In order to verify the validity of such

a simplified model, it has been successfully tested against a multi-body simulation of

the DLR Crawler using the commercial software package Simpack.

The simplified model of the DLR Crawler employs the parameters given in Ap-

pendix A and is set up as follows. In order to model the dynamics of the robot body,

a set of first-order differential equations is employed. Given in vector notation, the

state variables are the linear momentum of the body p ∈ R
3, the angular momentum

of the body L ∈ R
3, the centre of mass (COM) position x ∈ R

3, and the unit

quaternion q = (q1, q2, q3, q4) that represents the orientation of the body with respect

to the inertial frame. The quaternion representation has been chosen over others due

to not having the gimbal lock problem associated to Euler angles and only experiencing

small numerical drifts during integration in comparison to rotation matrices. Given

by the following equations, the time derivatives of the linear momentum as well as the

angular momentum are simply computed by summing all externally acting forces and

torques, respectively.

ṗ =
6
∑

i=1

fr,i + fg (3.13)

L̇ =
6
∑

i=1

τ r,i (3.14)

(3.15)

With respect to the inertial frame, fr,i ∈ R
3, i = 1, ..., 6 and τ r,i ∈ R

3, i = 1, ..., 6

are vectors that represent the reaction forces and reaction torques applied to the body

by leg i. For a leg in its stance phase, they result from the ground contact forces, while

they are zero for a leg in its swing phase. Those ground-contact-based reaction forces
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and reaction torques as well as the gravitational force fg are the only ones that act

on the body during simulation. Thus, they are responsible for all of its position and

attitude changes.

Employing the simple 3 × 3 mass matrix of the body, M, and its angular velocity

vector with respect to the inertial frame, ω ∈ R
3, the time derivatives of the robot

position as well as the unit quaternion are calculated using the following equations,

ẋ = M−1p (3.16)

q̇ =
1

2















−ω1q2 − ω2q3 − ω3q4

ω1q1 + ω2q4 − ω3q3

ω2q1 + ω3q2 − ω1q4

ω3q1 + ω1q3 − ω2q2















(3.17)

Hereby, the time derivative q̇ is the result of a quaternion product in between the

quaternion [0, ω] and the quaternion q, wherein the required angular velocity vector

ω ∈ R
3 is computed as follows. First, by using the unit quaternion q a rotation

matrix R is calculated.

R =









1 − 2(q2
3 + q2

4) 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) 1 − 2(q2
2 + q2

4) 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) 1 − 2(q2
2 + q2

3)









(3.18)

Next, the body-coordinate-system-referenced inertia tensor Ib is transformed to the

inertial frame. Finally, the angular velocity vector is calculated based on the angular

momentum L.

I = RIbR
T (3.19)

ω = I−1L (3.20)

In the following, the calculation of the reaction forces and torques applied to the

body is presented in more detail. Knowing the positions of the hip and the foot contact

point of leg i, a vector can be calculated that represents the extension of the respective

leg. Applying the inverse kinematics algorithm introduced within the previous section,

the actual joint angles can be calculated. Given a desired leg trajectory, the desired

joint angles are know. Now, with knowledge of the actual and the desired joint angles

as well as their derivatives, the joint compliance control law introduced in Section 3.2

is applied and returns the desired joint torques. Due to the assumption of massless legs
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without joint friction, the desired torques are equivalent to the applied joint torques.

Employing the forward-kinematics-based leg Jacobian matrix Jl,i, the vector of applied

joint torques τ l,i can be transformed to a force Bfl,i that is exerted by the foot onto

the ground with respect to the leg base frame B.

τ l,i = JT
l,i

Bfl,i (3.21)

Bfl,i = (JT
l,i)

−1
τ l,i (3.22)

Defining a vector with the same magnitude as Bfl,i but opposite direction gives the

ground reaction force of the leg in frame B. Next, by multiplying this vector with a

rotation matrix, it is transformed from the leg base coordinate system to the inertial

frame. The resulting force vector is then the reaction force fr,i that leg i exerts on

the body. Taking the cross product of the inertial-frame-based distance vector, which

is spanned in between the ground contact point of leg i and the body COM, and the

related reaction force vector fr,i, the reaction torque on the body, τ r,i, is obtained.

For all previous computations, proper transitions of the leg states are of great im-

portance. Within its swing phase, a leg has no ground contact and, being massless,

perfectly follows the desired foot trajectory. During this phase the touch-down condi-

tion (TD) for a transition to the stance phase is constantly monitored. With respect

to the inertial frame, this condition is met once the vertical position of the leg tip is

smaller or equal to the corresponding ground height. At touch-down of the foot, the

leg state switches to stance and the coordinates of the contact point are stored for

the computation of the reaction torques and forces. Being within the stance phase a

lift-off condition (LO) is monitored for each leg. This condition is met once the normal

component of the reaction force vector with respect to the ground surface is smaller

than zero and shows a negative derivative. It ensures that a rigid ground does not

pull on the leg, which is physically not feasible. At lift-off the leg state switches to

swing, the reaction forces and torques of the respective leg are set to zero, and the

leg tip instantaneously follows its desired trajectory. However, a shortcoming off the

massless leg assumption becomes apparent at lift-off when small amounts of energy

stored within the legs springs are immediately lost.

To allow for slipping legs, a simple first-order model [Saranli, 2000] approximates the

sliding velocity of a foot once the ground reaction force vector leaves the friction cone.

For this purpose, the leg force fl,i represented within the inertial frame is separated

into a normal and a tangential component, fn,i and ft,i, with respect to the ground.

Next, the static friction force is calculated from the normal component of the leg force
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and the coefficient of friction µ. If the tangential leg force is larger than the friction

force, a sliding-velocity vector is computed according to (3.23). This velocity vector

is integrated and the resulting position increment is added to the coordinates of the

ground contact point, emulating a slipping leg. The corresponding tangential fraction

of the reaction force onto the body is reduced to the friction force. The sliding motion

of the contact point continues until the tangential force component is smaller than the

friction force, which resets the sliding velocity to zero.

vslip,i = vslip,nom
‖ft,i‖ − ‖µfn,i‖

‖ft,i‖2
ft,i (3.23)

In order to demonstrate the effectiveness of this simplified dynamics model, the

following figures present the results of an exemplary simulation run. All parameters

are set to the values given in Appendix A. The soft joint stiffness setting is chosen and

the robot is commanded to walk forward at a desired velocity of vx,des = 40 mm/s. The

set of algorithms, introduced within the next chapter, generates a tetrapod gait that

properly propels the robot. The resulting smooth forward motion is shown in Fig. 3.6,

which also displays the lateral and vertical oscillations of the body.
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Figure 3.6: Centre of mass trajectories of the simulated DLR Crawler: soft joints,
vx,des = 40 mm/s
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In addition, Fig. 3.7 depicts the associated oscillations of the yaw, pitch, and roll

angles. Thereof, the pitch angle shows the highest amplitude, whereas the other two

angles oscillate at approximately twice the frequency. Finally, Fig. 3.8 displays the

ground reaction forces of the legs, which properly share the vertical loads. However,

similar to observations on running cockroaches [Full et al., 1991], the legs of the walk-

ing robot specialise with respect to their propulsive contribution. The front legs mainly

serve as brakes, while the hind legs mostly propel the body. The middle legs do both

as they change their behaviour from braking to propulsion at mid-stance. In addition,

the y-components of the individual ground reaction forces reveal outward pushing legs.

Again, similar observations were made on running cockroaches, even though the total

ground reaction force characteristics do not match due to the different phase relations

of the legs.
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Figure 3.7: Yaw, pitch and roll angles of the simulated DLR Crawler: soft joints,
vx,des = 40 mm/s
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(d) Right middle leg (R2)
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Figure 3.8: Ground reaction forces of the simulated DLR Crawler: soft joints,
vx,des = 40 mm/s
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4 | Robust and Adaptive Gaits

4.1 Introduction

Autonomous, goal-directed walking across uneven and previously unknown natural

terrain is a complex and challenging task for a six-legged robot. In addition to the

process of walking itself, it requires the robot to collect data about its environment,

to assess the terrain based on this information, and to plan a path towards the desired

goal. In order to follow this path, the legs of the robot have to produce well-coordinated

motions. For this purpose, each leg alternates in between two states. During stance it

propels the body in a kinematically consistent way along the planned path, whereas

it repositions the foot during swing by producing appropriate stepping motions. Due

to the uneven terrain and varying motion commands, each leg is constantly forced

to adapt its stance and swing cycle with respect to amplitude, timing, and direction.

While doing so, it is crucial that the robot as a whole maintains a statically stable

configuration at all times. Considering the fact that an exploration mission combines

locomotion, terrain assessment, path planning, and other high level tasks, it quickly

becomes a very complex problem. To reduce the related computational efforts and

to enable the implementation on resource-limited on-board hardware, a hierarchical

algorithmic structure based on strongly self-contained layers with different levels of

abstraction appears to be the most promising option. Following such an approach

of a layered structure, this chapter presents the development, implementation, and

test of a set of algorithms that constitute the “walking layer” of a compliant six-

legged robot. The main task of this walking layer is to generate robust and adaptive

omnidirectional gaits that enable the robot to negotiate obstacles within the walking

height autonomously. Hereby, it is intended to hide the complexity of generating

coordinated, locally appropriate leg motions from other layers such as for example path

planning and navigation. Clearly, for smooth operation, there must be an information

exchange in between the layers, but each layer should act as a filter that only propagates

relevant information at a useful level of abstraction. Thus, to connect with other layers,

the walking layer provides a reduced set of commands like walking velocity, walking
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direction, and turning rate, which allow for steering the robot. In addition, it returns

useful information about the walking process itself as for example information about

the pose of the robot, collisions with the environment, or actual loading conditions.

Based on the assumption of having uncertain information about the robot and its

environment, all algorithms involved in the walking process target simplicity and follow

a decentralised scheme that locally exploits proprioceptive sensor data provided by the

legs. Thus, the presented approach favours to resolve complex situations by emerging

behaviour instead of using complex models of the robot and its interaction with the

local terrain. The chapter proceeds as follows. First, the gait-generating algorithms

are presented. These consist of a decentralised flexible gait coordination based on well-

known behavioural results from stick insect studies, a kinematics-based joint trajectory

generation which sets the reference for the joint compliance controllers, and several

simple leg reflexes which enable reactive obstacle crossing. Following these sections,

experimental results are presented in order to validate the approach.

4.2 Coordination of Stepping Motions

Within this work, the coordination of stepping motions is based on the well-known be-

havioural rules that Cruse and collaborators [Cruse, 1990, Cruse et al., 1998] identified

for the stick insect. This approach is chosen over others due to its capacity to gen-

erate flexible stepping sequences while being simple and computationally inexpensive.

In general, the following viewpoint is adopted. Each leg is considered as an abstract

hybrid oscillator which cycles through swing and stance phases. These phases are

roughly determined by a small set of centrally promoted variables, like walking veloc-

ity, walking direction, and turning rate, as well as some leg-specific variables, such as

nominal step height and protraction velocity. During the stance phase each leg propels

the body into the desired direction by moving in a kinematically consistent way. Upon

reaching a kinematic threshold with respect to the body, i. e. the posterior extreme

position (PEP), a leg changes from stance to swing and performs a return stroke to

reposition its foot with respect to the walking direction at the anterior extreme posi-

tion (AEP). While the AEP of each leg mostly remains at a fixed distance, the PEP is

modulated by the behaviour of neighbouring legs. This modulation causes prolonged

or shortened stance periods, resulting in flexibly coordinated stepping sequences.

Prior to describing the specific algorithmic implementation, this paragraph recalls

Cruses’s rules for gait coordination and their direction of influence as depicted by

Fig. 4.1(a). The first mechanism acts in between ipsilateral legs and is directed towards

the front of the animal. The rule states that, while performing a return stroke, the
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sending leg inhibits the onset of the return stroke of its anterior neighbour. The

second mechanism acts in between ipsilateral and contralateral legs. With respect to

the ipsilateral legs it is directed towards the anterior leg, while it is a bidirectional

influence in between contralateral legs. By this mechanism the sending leg excites

the return stroke of the receiving leg right after it has finished its own return stroke.

The third mechanism also acts in both directions in between contralateral legs and is

posteriorly directed in between ipsilateral legs. Using this mechanism the sending leg

excites the return stroke of a receiving leg. This excitation grows stronger the closer

the sending leg approaches its own PEP. Similar to mechanism 1, mechanism 4 acts in

between ipsilateral legs but is directed from the front to the back of the animal. Hereby,

the receiving leg targets the current foot position of the anterior leg as a potential next

foothold. Mechanism 5 is about load-induced coupling of the legs, which on the one

hand results in the co-activation of legs and on the other hand leads to prolonged

stance phases to support larger loads. The last mechanism, called “treading on tarsus

reflex”, initiates a small correction step of the receiving leg if it steps onto the tarsus

of the sending leg.

With respect to the temporal coordination of stepping motions, the first three

mechanisms are the most important. They facilitate forward-directed waves of pro-

tractions along each side of the animal while contralateral legs are pushed towards

a 180◦ phase shift. Considering the stability of a forward walking animal, those

forward-directed waves of return strokes are clearly beneficial. Just having finished

their own steps, the posterior legs better support the body, and thus provide addi-

tional time to the front legs for negotiating upcoming obstacles. In turn, the pos-

terior legs will already benefit from the footholds found by the front legs. The

fact that the first three coordinating rules are sufficient to produce a continuum of

stable gaits for hexapedal robots is demonstrated by Espenschied using Robot II

[Espenschied, 1994, Espenschied et al., 1996]. Within his approach all legs are con-

nected by mechanisms 1, 2 and 3 as originally proposed by Cruse. In addition to

those connections, Espenschied introduces a bidirectional coupling of both hind legs

by mechanism 1, which is shown in Fig. 4.1(b). The introduction of this additional

coupling is not explained in Espenschied’s publications, but it most likely helps to

establish the out-of-phase relation of contralateral legs.

The gait coordination developed within this thesis is based on the first three of

Cruse’s coordinating mechanisms as well. The major differences with respect to Es-

penschied’s approach and to the original set of Cruse’s rules are the following. At

first, mechanism 2 is not only active for a short time after the footfall of a sending

leg, but throughout its complete stance phase as introduced in [Ferrell, 1993]. This
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Figure 4.1: Coordination rules: a) Cruse’s rules as presented in [Dürr et al., 2004]
b) Espenschied’s implementation [Espenschied et al., 1996] c) Implemen-
tation for the DLR Crawler
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adjustment strongly supports forward-directed waves of protractions across the whole

range of feasible walking velocities. The second difference is the use of an additional

inhibitory mechanism. This simple mechanism is termed mechanism 0 and bidirec-

tionally connects all neighbouring legs. Prior to initiating a return stroke, this new

mechanism explicitly requires each leg to check the state of its neighbours. In case not

all neighbours are within their stance phase, the leg requesting to step is not allowed

to transition into the swing phase and subsequently has to prolong its own stance

phase. In parallel to this work, El Sayed Auf employs a similar inhibitory rule in com-

bination with a variable duty cycle to generate a continuum of coordinated gaits for

the six-legged robot Oscar [El Sayed Auf et al., 2008, El Sayed Auf, 2010]. By this, he

demonstrates that a single inhibitory rule applied to legs connected in a ring topology

is sufficient to produce stable gaits. However, the combination of such a rule with

Cruse’s first three mechanisms grants much more influence on the emerging gait.

In order to investigate the influence of each mechanism on the characteristics of

the emerging gait, Espenschied introduces lesions that suppress the connections of

single or multiple mechanisms [Espenschied, 1994]. His observations are the following.

Mechanism 2 promotes forward-directed waves of protractions, while mechanism 3 pro-

motes 180◦ phase shifts in between contralateral neighbours. Furthermore, he states

that using mechanism 3 alone enables locomotion over a limited range of speeds and

that changing the weights of mechanism 3 has the most disruptive influence on the

emergence of stable gaits. Additional results are presented by Calvitti who inves-

tigates the gait coordination by Cruse’s rules with respect to hybrid system theory

[Calvitti and Beer, 2000, Calvitti, 2004]. Central to his analysis is the question how

the dynamics of small subnetworks influence the overall temporal coordination, and

thus facilitate phenomena like phase locking. For this purpose, he analyses networks

of two oscillators with either unidirectional or for some cases bidirectional coupling by

mechanisms 1, 2 or 3. Those mechanisms are implemented using simple step or ramp

functions as proposed by Espenschied. However, there are two differences in Calvitti’s

implementation. First, it only considers forward walking, and second, mechanism 2

is position- and not time-dependent. Regarding the unidirectional two oscillator net-

work, Calvitti demonstrates that even those simple hybrid systems show rich dynamic

behaviour which strongly depends on the parametrisation. He states that instead of

asymptotically stable phase relations only neutral stability has been found and due to

this the phase locking is rather a phase compression. One important result is that the

individual mechanisms generate a funnel which draws a large range of initial conditions

towards a narrow band of phase relations. Nevertheless, up to date an analysis of the

full range of hexapedal coordination is still missing.
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Figure 4.2: Schematic top view of the DLR Crawler indicating the leg labelling, the
body-centred coordinate system, the leg workspaces as well as the AEP
and PEP circles and their respective centres

As it is the clear goal to generate omnidirectional gaits for the DLR Crawler, Es-

penschied’s definition of the AEP and PEP to be the radii of circles is adopted. In

the following, all coordination-related kinematic measures are defined with respect to

a coordinate frame that is centred within the robot body as shown in Fig. 4.2. The

x-axis of this frame points towards the front of the robot, the y-axis towards its left

side and the z-axis completes a right-hand system pointing upwards. The AEP and

PEP circles of each leg are centred within a cross section of the corresponding leg

workspace such that they all lie within a common plane that is in parallel to the hor-

izontal plane of the body. Furthermore, by projecting the positions of the feet onto

the common plane, this approach decouples the coordination from height variations

that are required for posture adjustments or adaptation to the terrain. Considering a

suitable range of heights, the resulting AEP and PEP cylinders represent the admissi-

ble volume for the motion of the stance feet. According to the coordination influences

of neighbouring legs, the PEP circle and the corresponding cylinder radially shrink or

extend, which results in varying stance-to-swing transitions and consequently leads to

coordinated stepping motions. Being within its PEP cylinder, the foot of a stance leg

freely moves such that it propels the body according to the desired walking velocity,

walking direction, and turning rate. Once the projection of the foot onto the common
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plane leaves its PEP circle, it requests to step. At this point mechanism 0 is activated

and checks if all neighbouring legs are within their stance phase. If they are not, the

leg prolongs its own stance phase and leaves its PEP cylinder in radial direction while

waiting for its neighbour to change from swing to stance. In case the leg reaches a

predefined kinematic boundary during this process, it stops and sends a stop signal

to all other legs as well. At this point the neighbouring leg, which caused the delay,

gets further time to finish its step. If somehow this is not possible, a higher-level algo-

rithm has to resolve the situation by switching to a central coordination of leg motions.

Under normal conditions Cruse’s rules prevent simultaneous stepping of adjacent legs

and leave enough time and space for adaptation. However, for abrupt changes of the

walking command or due to the negotiation of obstacles, the return strokes of two

neighbouring legs might overlap in time. In this case mechanism 0 guarantees that

neighbouring legs never step simultaneously and subsequently destabilise the robot.

rpep raep

fdpep

foot at PEP: 

stance to swing 

transition

new AEP target: 

swing to stance 

transition

foot in stance 

f f

Figure 4.3: Schematic top view of the leg workspace and coordination / foot motion-
related variables and parameters

Besides applying the coordination rules themselves, another important property of

the algorithm is that each leg performs its return stroke at a high return stroke velocity.

Following Graham’s observations from stick insect studies [Graham, 1972], this velocity

is equal for all legs and independent of the overall walking speed. In detail, Graham

noticed that for adult animals the protraction time of a leg is independent of the step

cycle time, and thus, the walking speed. Within the implementation for the DLR

Crawler the return stroke velocity is defined with respect to the common plane that
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contains the AEP and PEP circles. Herein, it is the velocity at which the projection

of a foot onto this plane moves along a straight line from its final position on the PEP

circle to a target position on the AEP circle. Thereby, the target point on the AEP

circle is calculated at the onset of the return stroke as shown in Fig. 4.3. It is situated

at the intersection of the AEP circle with a velocity-based vector that originates at

its centre. This vector points into the direction opposite to the velocity vector that a

stance foot, located at the centre of the AEP circle, would have based on the current

walking commands. Furthermore, it is important that each return stroke is finished

as planned at its onset, even if the walking command reverses during its execution. In

this case, the leg will complete its swing phase in order to immediately initiate another

return stroke directed towards the new target point on the AEP circle.

Next, the specific implementation of the three mechanisms that act on the PEP

is described. It follows Espenschied’s approach in a way that mechanisms 1 and 2

have constant outputs, while mechanism 3 produces a simple ramp that grows with a

decreasing distance in between the foot and the PEP circle. Apart from Espenschied,

this simple but yet powerful realisation of Cruse’s coordination rules has already been

successfully employed by other researchers, as for example by Lewinger to generate

gaits for the hexapod Bill Ant [Lewinger, 2005]. In the following, all mechanism out-

puts are normalized. Thus, mechanism 1 has an output of 1 while mechanism 2 has

an output of -1. The output of mechanism 3 is in between 0 and -1 as long as the

foot of the sending leg is inside the nominal PEP circle and becomes smaller than -1

once the foot crosses the circle. Its value m3,i for leg i is computed according to the

following equation wherein rpep_nom stands for the nominal PEP radius of the leg and

dpep,i for the distance in between the foot and the PEP circle in the direction of the

foot velocity as displayed by Fig. 4.3.

m3,i = −

(

1 −
dpep,i

2 · rpep_nom

)

(4.1)

At a receiving leg all incoming, normalized values of the mechanisms are multiplied

by weights. The resulting sum of all weighted mechanisms that influence an individual

leg is then added to its nominal PEP radius. This results either in a larger PEP circle,

and thus a prolonged stance phase, or a smaller one causing an earlier transition

to the swing phase. In addition to its nominal value, mechanism 1 has a timing

component which has a strong influence on the gait characteristics. Being active

during the complete swing phase of a sending leg, the mechanism remains active for

a short period after the swing to stance transition of the respective leg. In contrast

to the original work of Cruse, mechanism 2 does not only become active for a short
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time span after the swing-to-stance transition of the sending leg, but remains active

throughout its entire stance phase. Based on the influences of neighbouring legs, the

PEP radius rpep,j of leg j is then computed at each time step as follows,

rpep,j = rpep_nom +
∑

i

∑

n

kn,ij · mn,i. (4.2)

Within this equation, the term kn,ij is the weight to determine how strong the value

of mechanism n, mn,i, originating at the sending leg i influences the PEP radius of the

receiving leg j. The following equation exemplifies the detailed computation of the

PEP for the left front leg L1 which is influenced by the behaviour of the left middle

leg L2 and the right front leg R1.

rpep,L1 = rpep_nom +k1,L2L1 ·m1,L2 +k2,L2L1 ·m2,L2 +k2,R1L1 ·m2,R1 +k3,R1L1 ·m3,R1 (4.3)

Not only the choice and the specific implementation of the coordinating mechanisms

have a large influence on the gait characteristics, but also the overall parametrisation.

Therefore, an appropriate set of values for the mechanism weights, the nominal AEP

and PEP radii, the return stroke velocity, and the time components of mechanism

one and two has to be found. Except for Lewinger, who used an optimisation to

determine those parameters for the robot Bill Ant [Lewinger, 2005], most previous

applications rely on experimentation and manual tuning. This is also the method

of choice within this work. The reason for choosing manual parameter tuning is the

ambiguity of the optimization criteria related to this problem. Furthermore, it is not

clear how to interpret the local optima that result from the large number of parameters,

possible initial conditions, and potential walking commands. In this case, despite

of being tedious work, manual tuning helps to develop an intuition about how to

obtain favourable gait characteristics and to gain some insight into the relevance of

the different parameters used. Interestingly, removing the original timing component

of mechanism 2 simplified this tuning process drastically. A suitable set of parameters

found for the DLR Crawler is given in Table 4.1.

With respect to the effectiveness of the implementation presented within this work

and its parametrisation the following observations were made. First, mechanism 0

alone is sufficient to generate stable gaits but the resulting pattern strongly depends on

the initial configuration. Employing only mechanism 1 and 2 already establishes stable

gaits that show forward-directed waves of protractions along the left and the right side

of the robot. Those waves along each side have fixed phase relations in between

ipsilateral legs but weak contralateral coupling. Adding mechanism 3 strengthens the
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Table 4.1: Gait parameters and coordination mechanism weights

Parameter Value Parameter Value Parameter Value

rpep_nom[mm] 40 k2,L3L2[mm] 5 k3,L2L3[mm] 5
rpep_max[mm] 50 k2,L2L1[mm] 5 k3,L1L2[mm] 5
raep_nom[mm] 40 k2,L3R3[mm] 5 k3,L3R3[mm] 5
vswing[mm/s] 100 k2,L2R2[mm] 5 k3,L2R2[mm] 5

tm1[s] 0.1 k2,L1R1[mm] 10 k3,L1R1[mm] 5
tm2[s] - k2,R3R2[mm] 5 k3,R2R3[mm] 5

k1,L3L2[mm] 10 k2,R2R1[mm] 5 k3,R1R2[mm] 5
k1,L2L1[mm] 10 k2,R3L3[mm] 5 k3,R3L3[mm] 5
k1,R3R2[mm] 10 k2,R2L2[mm] 5 k3,R2L2[mm] 5
k1,R2R1[mm] 10 k2,R1L1[mm] 10 k3,R1L1[mm] 5

contralateral coupling and creates a phase shift in between the wave of protractions

along the left side and the wave of protractions along the right side. The result at low

walking speeds is that a wave of protractions on one side starts upon completion of

the wave on the opposite side. However, the value of this phase shift strongly depends

on the initial configuration. Additionally enabling mechanism 0 fixes this phase shift

and renders it independent for a larger set of initial configurations. Thus, combining

the mechanisms 0, 1, 2, and 3 does not only generate stable gaits but also gaits that

show the desired forward-directed waves of protractions.

Figure 4.4 shows the resulting gait patterns for forward walking at different velocities.

As indicated by the red diagonal lines, forward-directed waves of protractions run along

each side of the robot. For increasing walking speeds, their relative phase relations

are maintained in between ipsilateral legs, while the waves along the left and the

right side are shifted towards each other with respect to time. Thus, starting with a

pentapod gait at low speeds the pattern evolves via a tetrapod towards a tripod gait

at high speeds. A similar observation is made for rotations about the yaw axis such

as for turning to the left shown in Fig. 4.5. Again, with increasing velocity the phase

relations in between ipsilateral legs are maintained while the gait pattern of the left

side is shifted towards the pattern of the right side.
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Figure 4.4: Gait simulations for the DLR Crawler walking forward at different veloci-
ties (white: stance phase; dark/light grey: swing phase left/right side)
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Figure 4.5: Gait simulations for the DLR Crawler turning left at different velocities
(white: stance phase; dark/light grey: swing phase left/right side)

In order to assess the capability of the algorithm to generate well-coordinated, omni-

directional gaits, a large number of kinematic simulations has been performed using the

parameters given in Table 4.1. First, straight line locomotion was tested by command-

ing various combinations of forward and lateral velocities according to an equidistant

grid with 5 mm/s increments in each direction. The simulations cover 861 combinations

of forward and lateral velocities and have been run for a timespan of 3 minutes each.

The results are shown in Fig. 4.6(a) wherein the green dots indicate the range of mo-

tion commands that produce stable gaits assuming no external disturbance. Within

this context, the term “stable” is related to the gait coordination and refers to the

emergence of regular gait patterns which are characterized by the following properties.

First, neighbouring legs must not step at the same time, and second, no leg has to
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stop its motion due to a neighbour not being finished with its return stroke. This does

not conclude that all velocity combinations indicated by a red square do not result in

effective locomotion, but in those cases some legs regularly invoke brief periods of a

central stop due to reaching their preset kinematic limits. For this reason, these gaits

are called unstable with respect to the coordination of the stepping sequences. The

circular shape, which is formed by the green dots in Fig. 4.6(a), clearly demonstrates

the capability of the algorithm to generate omnidirectional gaits across a large range

of velocity commands without any impairment in relation to the walking direction.

The maximum walking velocity that can be achieved with the given parametrisation is

about 90 mm/s and is bounded by the swing velocity of 100 mm/s. Thereby, no perfect

tripod gait at the swing velocity can be generated. Such gait would require instanta-

neous transitions from the left to the right tripod and vice versa, which is prevented

by the time component of mechanism 1 that remains active for a short time after the

swing-to-stance transition of a sending leg. Combinations of sideways and backward

walking have been tested as well, but the presentation of the results is omitted in this

place as they show similar behaviour to combined forward and sideways walking.
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Figure 4.6: Stability assessment of the gait coordination of the DLR Crawler for various
combinations of velocity commands; green dots indicate stable and red
squares unstable gaits; the dark lines in b) indicate combinations that
result in curves with an equal radius

Within Figs. 4.6(b) and 4.6(c) the results for turning and curve walking are pre-

sented. Hereby, Fig. 4.6(b) shows the combination of a forward velocity and a yaw
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rate, i. e. an angular velocity about the body-fixed z-axis, which results in curves to

the left for positive values of ω and curves to the right for negative ones. The diagram

shows that pure turning on the spot is possible up to an angular velocity of about

20 ◦/s to both sides. Considering the combination of angular velocity and forward ve-

locity, the tongue-shaped cluster to the right indicates that the maximum attainable

walking speed is tightly coupled to the radius of the curved path. To visualize this

relation, the 4 dark green lines in Fig. 4.6(b) indicate different combinations of yaw

rate and forward velocity that result in curves with radii of 0.25 m, 0.5 m, 1 m, and

2 m denoted by r250, r500, r1000, and r2000, respectively. While walking along a curve

with a radius of 0.5 m is only possible up to a velocity of 20 mm/s, curves with radii

larger than 2 m nearly allow walking across the full range of possible forward speeds.

A similar behaviour is observed for motions that combine lateral and angular velocity

commands, as shown in Fig. 4.6(c). Herein, negative yaw rates result in inward facing

curves to the left while positive yaw rates produce outward facing curves to the left.

Again, the presentation of the results for negative lateral velocities is omitted as they

produce similar curves that are directed to the right of the robot.

So far, the gait coordination presented guarantees stable gaits in the sense that

no neighbouring legs step at the same time. With respect to the overall locomotion

this is a helpful property. Nevertheless, it is not sufficient to conclude static stability,

which requires the gravity-aligned projection of the COM onto the ground to be within

the polygon of support. In order to quantitatively assess the static stability, the so-

called stability margin is a commonly used measure. This margin is defined to be the

shortest distance in between the projected COM and the edges of the polygon spanned

by all feet in contact. To give an example, Fig. 4.7(a) shows the gait diagram and the

resulting stability margin for forward walking at 40 mm/s. Therein, the red bars mark

the supporting legs that span the corresponding edge with the smallest distance to the

projected COM. To further visualize the concept using the above example, Fig. 4.7(b)

schematically indicates the stability margin and the related edge of the support polygon

at different times of the gait cycle. Those sketches clearly show that lifting either a

front or a hind leg reduces the stability margin most, and thus results in the least stable

configurations. However, with all legs functional, the stability margin is large enough

across the complete gait cycle and grants static stability for the anticipated range

of walking velocities. Due to the comparatively small velocities, dynamic stability

measures do not have to be considered. With respect to the static stability margin

itself, there are a few underlying assumptions that simplify its computation at this

stage. First, the ideal case is considered where all mass is concentrated within the

body, which results in a fixed COM position. In contrast, the COM of the real robot
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Figure 4.7: a) Gait simulation for the DLR Crawler walking forward at vx = 40 mm/s
and the related stability margin over time; red bars indicate the stance
legs that span the edge with the smallest distance to the COM projection
(white/red: stance phase; dark/light grey: swing phase left/right side);
b) Schematic sketches of the foot configuration, stability margin and the
corresponding edge at distinct times marked in (a)
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moves within small bounds due to the motion of the legs and their associated mass.

Second, only horizontal plane motions are considered at this time, but extensions to

slopes and uneven terrain are straightforward.

Returning to the advantages of forward-directed waves of protractions, the related

gaits show larger stability margins than those with a reversed stepping sequence, such

as given in Fig. 4.8. A comparison of the stability margins across the range of feasible

forward velocities yields the results depicted in Fig. 4.9. While the stability margin for

forward-directed waves of protractions at low walking speeds is significantly larger than

for rearward-directed ones, the difference decreases with increasing speed. Starting at

a 45 % larger stability margin at 10 mm/s, it decreases via 25 % at 50 mm/s towards

similar values at the highest walking velocities. This convergence at high speeds is

an obvious behaviour since forward- as well as backward-directed stepping sequences

produce tripod gaits at those velocities.
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Figure 4.8: Gait simulation for the DLR Crawler walking forward at vx = 30 mm/s
with front-to-back waves of protractions; only four mechanism weights
are changed: k2,R1L1 = 5 mm, k2,L1R1 = 5 mm, k2,R3L3 = 10 mm,
k2,L3R3 = 10 mm; (white: stance phase; dark/light grey: swing phase
left/right side)

10 20 30 40 50 60 70 80
0

20

40

60

80

100

vx inmm/s

d
s
t
a
b

m
in

in
m

m

 

 

Front−to−back waves
Back−to−front waves

Figure 4.9: Minimum stability margins of the DLR Crawler for walking forward at var-
ious velocities with forward- and rearward-directed waves of protractions
(orange square: front-to-back waves; red circle: back-to-front waves)
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4.3 Leg Reference Trajectories

So far, the gait coordination algorithm only considers the Cartesian positions of the feet

with respect to a body-centred coordinate system. While the high-level motion com-

mands determine the stance-phase trajectories of the feet, the swing-phase trajectories

are individually calculated by second-order polynomials. Those polynomials connect

the starting point of a foot located on the PEP circle and its target point on the AEP

circle while meeting the desired step height as well as the preset protraction speed with

respect to the horizontal plane. The inverse kinematics algorithm presented in Sec-

tion 3.4 computes joint angle reference trajectories from the desired Cartesian positions

of the feet. Those joint angles then serve as desired values for the joint compliance

controller presented in Section 3.2. To give an example, Fig. 4.10 shows the Cartesian

reference trajectories for the right-side feet of the DLR Crawler while walking with a

tripod gait on flat lab floor. Those trajectories are compared to the realised Cartesian

foot trajectories, that are computed from joint angle measurements using the forward

kinematics presented in Section 3.3. Obviously, the joint compliance controller shows

good tracking performance for high and medium stiffness settings along the rising and

falling edges of the swing trajectories. Only the right front leg experiences larger de-

viations along the rising edge of the medium stiffness trial. However, this behaviour

is most likely caused by an inaccurate friction estimate. Furthermore, in this example

none of the feet shows good trajectory tracking at the peak of its step, which does not

necessarily indicate bad controller performance. The explanation of this behaviour is

straightforward and shows another feature of the controller implementation. In order

to avoid hitting the mechanical end stops of the joints, the joint compliance controller

simply limits the possible range of desired joint angles and guides the foot along the

work space boundary in this case. In addition to these deviations during the swing

phase, each of the three legs shows deviations from their reference trajectories during

their stance phase. These are a direct result from the joint compliance control, as the

virtual joint springs deflect to produce the torques that support the body weight. As

expected, the deviations from the reference trajectory are smaller for higher joint stiff-

ness settings. Another interesting observation is the larger mid-step tracking error of

the real foot trajectories which indicates higher leg loads during this phase. However,

the explanation of this behaviour is simple again. Partially overlapping tripods, and

thus short phases with more than three legs in stance, reduce the individual leg load

at the beginning and the end of a step.
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Figure 4.10: Cartesian trajectories of the right-side feet of the DLR Crawler with
respect to the body coordinate system for walking on flat lab floor at
60 mm/s - each diagram shows the reference trajectory and the trajecto-
ries for medium as well as high joint stiffness settings that were computed
by forward kinematics from Hall-sensor-based joint angle measurements
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4.4 Leg Reflexes and Safety Value

While the gait coordination algorithm influences the phase relations in between the

legs, and thus allows for temporal adaptations, it does not account for spatial vari-

ations of the terrain. However, moving across natural terrain requires the robot to

constantly adapt its configuration to accommodate height changes of the ground sur-

face. Therefore, each leg has to adjust its extension during the stance phase as well as

its step height during the swing phase. In case of having perfect a priori knowledge of

the terrain, the required adaptations could be preplanned. Since such detailed know-

ledge is not always available or difficult to attain, another approach is chosen within

this work. Herein, each leg reactively adapts its step height as well as its extension

by utilizing three different types of reflexes. Combined with the flexible gait coordina-

tion, these reflexes enable the robot to negotiate obstacles within the walking height

autonomously.

(a) Stretch reflex (b) Search reflex (c) Elevator reflex

Figure 4.11: Leg reflexes

The three well-known reflexes employed are: the stretch reflex, the search reflex, and

the elevator reflex, as depicted in Fig. 4.11. For proper function, each of them requires

the detection of contacts with the environment. This contact detection is realised by

comparing joint torque measurements to state dependent torque thresholds. The re-

flex that is responsible to enforce the ground contact of a supporting leg is the stretch

reflex. Since the nominal swing phase ends at a predefined leg extension, the stretch

reflex is triggered if a leg does not detect ground at the anticipated height. Further-

more, it is activated if the leg loses ground contact during the stance phase. Being

active, the stretch reflex extends the leg with respect to the negative z-direction of the

body coordinate system until the foot detects ground contact or the leg has reached

a preset maximum extension. If the foot has found ground contact, the additional leg

extension is kept until the end of the current stance phase or until reaching a high
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torque threshold that triggers its reduction. With the onset of the next swing phase,

any reflex-based extension will be quickly reduced to zero. If the stretch reflex was

not successful in establishing ground contact, the search reflex is triggered. This reflex

initiates short, successive stepping motions into the walking direction in order to find

a support within the vicinity. Without success, those exploratory steps are followed by

stepping motions into orthogonal directions. If the leg does still not find any support,

it triggers a central stop of the robot and returns to its last foothold. At this time a

higher-level algorithm gets activated in order to search for a solution. This algorithm,

for example, starts an extended search that includes coordinated body motions to in-

crease the reach of the leg, or it plans a new path for the whole system. The last reflex

employed within this work is the elevator reflex which is triggered once a leg hits an

obstacle during its swing phase. In this case, the elevator reflex retracts and raises the

leg about a fixed amount before it proceeds with its stepping motion. If necessary,

this procedure is repeated up to a preset maximum step height. If the elevator reflex

is not successful in clearing the obstacle, a higher-level algorithm is activated as well.

First, the clearance of the leg is increased by equally extending all supporting legs. If

this does not succeed, then the algorithm initiates a new planning phase to find a path

around the obstacle. Remarkably, this small set of reflexes in combination with the

flexible gait coordination is sufficient to master a large variety of terrains and obsta-

cles. Thereby, the basic approach does not utilize any active posture control but lets

the robot follow the inclination of the terrain by the interplay of reflexes. While this

approach clearly simplifies the control, it is only suitable for smaller robots that have

legs strong enough to temporarily sustain larger unbalanced loads. In contrast, large

and heavy robots require the careful distribution of contact forces in order to avoid

overloads within single legs. However, compared to small robots such large systems

usually carry enough computational power to do so.

In addition to the reflexes presented above, this work introduces a binary “safety

value”. This new parameter enables the navigation layer to influence the obstacle-

crossing behaviour of the robot. Set to 1, the robot walks more carefully, while it takes

greater risks at a safety value of 0. The functional principle of this approach is the

following. A safety value of 1 requires each leg to provide proper support before its

state is allowed to switch from swing to stance. Thus, being not successful in making

ground contact, a leg cannot enter its stance phase and has to trigger a central stop

for the complete robot. This, in turn, activates higher-level algorithms which try to

find a solution to the problem. In contrast, if the safety value is set to 0, then each leg

immediately switches to stance at the end of its nominal swing trajectory, independent

of its contact state. Being in stance, each leg without sufficient ground support then
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triggers the stretch reflex and extends while the gait coordination smoothly proceeds.

Even though this approach seems contradictory to the original ideas for the walking

layer, such behaviour is very useful under certain conditions. To give an example,

the risky mode enables the robot to descend large downward steps which it could not

traverse otherwise. The explanation is as follows: Within the safe mode, the front legs

of the robot trigger the stretch reflex at the downward step and extend in order to

find a support on the lower plane. If this attempt is not successful, they will trigger

the search reflex which might also fail in establishing ground contact. Even though

only few centimetres might be missing, the robot would stop and the walking layer

would consider the downward step to be non-traversable. Nevertheless, a very different

behaviour emerges if the safety value is set to 0. In this case, each leg immediately

switches to stance at the end of its nominal swing trajectory, not considering its contact

state. Thus, after crossing the upper edge, the front legs stretch to their maximum

extent in trying to find ground support. Even though they do not reach the ground,

the gait proceeds and the middle and hind legs push the robot across the edge. At

some point, the body pitches downwards and the stretched front legs contact the lower

plane. There, they provide the necessary support while the middle and hind legs follow

across the edge in a similar way. Hence the safety value enables an informed navigation

layer to influence the walking layer such that it is able to descend large steps.

Next, several simulations demonstrate the effectiveness of the safety value as well

as the reflexes introduced above. Utilizing a Matlab/Simulink implementation of the

simplified dynamics model presented in Section 3.5 as well as an Inventor-Graphics-

based visualisation, the simulated robot climbs and descends slanted steps of different

heights. The first set of simulations tests the reflex behaviours. For this purpose, the

safety value is set to zero and the robot traverses an 8 cm step twice in both directions,

once with all reflexes enabled and once with all reflexes disabled. Thereafter, the

robot descends a 5 cm step to demonstrate the effects of the safety value. In this case,

all reflexes remain enabled while the safety value is changed from 0 to 1 in between

the trials. As listed in Table 4.1, four gait parameters have been changed for all of

the simulations to improve the obstacle crossing behaviour of the simulated robot by

shorter steps (raep_nom, rpep_nom and rpep_max ) and reduced ground impacts (vswing).

Considering the 8-cm-downward step first, Fig. 4.12(a) displays a series of images

from the trial with all reflexes enabled. As shown in the middle image of the top row,

both front legs activate the stretch reflex and extend downwards in order to find a

foothold along the slope. Due to the active compliance, the resulting configuration

causes increased flexion of the middle legs as they carry now larger parts of the body

weight. Moving the body further forward, the loading of the hind legs constantly
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t = 4 s t = 8 s t = 10 s

t = 12 s t = 14 s t = 18 s

(a) All reflexes enabled

t = 4 s t = 8 s t = 10 s

t = 12 s t = 14 s t = 18 s

(b) All reflexes disabled

Figure 4.12: Simulation results for crossing an 8-cm-downward step with the DLR
Crawler (using the simplified dynamics model presented in Section 3.5)
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Table 4.2: Modified gait parameters

Parameter Value Parameter Value

rpep_nom[mm] 30 rpep_max[mm] 45
raep_nom[mm] 30 vswing[mm/s] 80

decreases up to a value below the stance phase threshold of the stretch reflex. Still

being in their stance phase, the hind legs trigger this reflex to enforce the ground

contact. As a result, the hind legs lift the posterior part of the robot. This causes a

downward tilted body as indicated by the positive pitch angle β (green graph) shown

in Fig. 4.14. At this time, the shortest distance from the robot body to the ground is

in between the center of its bottom side and the upper edge of the slope. If a middle

leg steps now, it will surely hit the edge and subsequently trigger its elevator reflex

to overcome this obstacle. Once the hind legs are placed on the slope and the front

legs have reached the lower plane, the middle legs are required to execute the stretch

reflex as shown in the middle image of the bottom row in Fig. 4.12(a). Especially,

crossing such edges requires the legs to activate the elevator as well as the stretch

reflex. Figures 4.12(b) and 4.13 clearly demonstrate that a robot without reflexes

is not able to cross the downward step. The reason for the observed behaviour is

twofold. First, the front legs do not find sufficient support on the slope due to the

missing stretch reflex. Furthermore, the middle legs do not step high enough to cross

the upper edge due to the missing elevator reflex. Thus, without reflexes, the robot is

caught in a bouncing and rocking motion about the upper edge which is indicated by

the oscillating pitch, roll, and yaw angles presented in Fig. 4.14.
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Figure 4.13: Centre of mass trajectories of the simulated DLR Crawler for crossing
an 8-cm-downward step at a forward velocity of vx = 40 mm/s: reflexes
enabled (green) / disabled (red)
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Figure 4.14: Yaw (α), pitch (β) and roll (γ) angles of the simulated DLR Crawler for
crossing an 8-cm-downward step at a forward velocity of vx = 40 mm/s:
reflexes enabled (green) / disabled (red)

Returning to the reflex activity while crossing the downward step, Fig. 4.15 displays

the joint angle trajectories of the left front leg as an example. Therein, the coloured,

dashed ellipses mark the activation of either a stretch reflex (red) or an elevator reflex

(brown). As already mentioned above, each front leg predominantly triggers the stretch

reflex upon entering the slope and the elevator reflex after reaching the lower plane.

Within the present example, the elevator reflex is activated each time early in the swing

phase. At this point, the left front leg raises and unloads, which causes the robot body

to tilt towards its left front. This results in a collision of the raising leg with the

ground, which triggers the elevator reflex. Thereafter, the foot rapidly raises, and

thus provides sufficient ground clearance to avoid stumbling. While this section only

displays exemplary downward step joint trajectories for the left front leg, Appendix B

presents the corresponding results for the other legs.

Similar to this example, the Figs. 4.16 and 4.19 demonstrate the importance of

reflexes in crossing the same step in an upwards direction. First, the elevator reflex

allows the front legs to master the slope and to clear the upper edge. Next, as shown

in Fig. 4.18, the stretch reflex enables the left front leg to find a support on the

upper plane. This, in turn, helps the Crawler to maintain its beneficial upward-tilted

configuration, which redirects the thrust of the backward moving hind legs to push the
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Figure 4.15: Joint trajectories of the left front leg (L1) of the simulated DLR Crawler
for crossing an 8-cm-downward step; all reflexes are enabled; red ellipses
mark stretch reflex activity; brown ellipses mark elevator reflex activity

robot upwards. Furthermore, the stretch reflex is crucial to enforce the ground contact

of the middle legs while they transition from the lower plane to the slope as shown in

Fig. 4.19(a). Once the front and middle legs are placed on the upper plane, the loading

of the hind legs decreases. Upon reaching the respective torque threshold, the stretch

reflex gets active and each of the hind legs extends. This behaviour induces a transition

of the body inclination such that the negative pitch angle of the upward-tilted robot

decreases to zero, as shown in Fig. 4.17.
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Figure 4.16: Centre of mass trajectories of the simulated DLR Crawler for crossing an
8-cm-upward step at a forward velocity of vx = 40 mm/s: reflexes enabled
(green) / disabled (red)
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Figure 4.17: Yaw (α), pitch (β) and roll (γ) angles of the simulated DLR Crawler
for crossing an 8-cm-upward step at a forward velocity of vx = 40 mm/s:
reflexes enabled (green) / disabled (red)
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Figure 4.18: Joint trajectories of the left front leg (L1) of the simulated DLR Crawler
for crossing an 8-cm-upward step; all reflexes are enabled; red ellipses
mark stretch reflex activity; brown ellipses mark elevator reflex activity
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t = 7 s t = 11 s t = 15 s

t = 19 s t = 23 s t = 27 s

(a) All reflexes enabled

t = 7 s t = 11 s t = 15 s

t = 19 s t = 23 s t = 27 s

(b) All reflexes disabled

Figure 4.19: Simulation results for crossing an 8-cm-upward step with the DLR Crawler
(using the simplified dynamics model presented in Section 3.5)
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Next, this section proceeds to evaluate the influence of the safety value on the gait

of the robot. For this purpose, the simulated robot descends a 5 cm step twice with

all reflexes enabled but different safety value settings. At first, Fig. 4.20 compares

the gait patterns that emerge for a safety value of 1 and a safety value of 0. While

those gaits are similar for flat ground, they differ substantially when the robot crosses

the step. Obviously, the walking layer produces a less regular pattern while being in

the safe mode, i. e. the safety value is set to 1. The reason for this is that each leg

requires proper ground contact before it switches into the stance phase. Thus, each

stance leg delays the onset of its swing phase as long as its stepping neighbour is

searching for support. This, in turn, induces changes of the relative timing in between

the legs, which might even stop the complete robot for a short period. In contrast,

the resulting gait pattern for the risky mode, i. e. the safety value is set to 0, is quite

regular and shows only small changes of the leg cycle. Those changes mostly trace

back to elevator reflex activity and the related delays. Nevertheless, the safety value

does not only affect the gait pattern but also the overall motion of the robot. This

becomes apparent in the pitch angle trajectories shown in Fig. 4.22. Therein, for a

safety value of 0, the robot experiences stronger pitch oscillations while crossing the

step. In addition, the joint torques are less smooth in this case, which is shown in

Fig. 4.23 for the left front leg. Again, the corresponding trajectories of the other legs

are presented in Appendix B.
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Figure 4.20: Gait diagrams for descending a 5 cm step with the simulated DLR Crawler
at a forward velocity of vx = 40 mm/s and different safety value settings
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Figure 4.21: Centre of mass trajectories of the simulated DLR Crawler for crossing a
5-cm-downward step at a forward velocity of vx = 40 mm/s: all reflexes
enabled; safety value = 1 (green) / safety value = 0 (red)
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Figure 4.22: Yaw (α), pitch (β) and roll (γ) angles of the simulated DLR Crawler for
crossing a 5-cm-downward step at a forward velocity of vx = 40 mm/s: all
reflexes enabled; safety value = 1 (green) / safety value = 0 (red)
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Figure 4.23: Joint angles (blue) and joint torques (orange) of the left front leg (L1) of
the simulated DLR Crawler for crossing a 5-cm-downward step: reflexes
enabled; stretch reflex (red ellipse); elevator reflex (brown ellipse); reflex
height reduction (green ellipse)
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4.5 Experiments

Following the previous sections on the development of gait and control algorithms

for six-legged robots, this section summarizes the experimental validation. For this

purpose, the DLR Crawler serves as a test platform throughout various trials within

laboratory and outdoor testbeds. Recorded trajectories as well as series of images ex-

tracted from video material document the results. During most of the experiments, an

operator manually steered the robot by velocity commands, using a Spacemouse as in-

put device. However, this section also presents two experiments wherein the developed

gait algorithm is part of a stereo-vision-based autonomous navigation framework.

collision triggers 

elevator reflex

stretch reflex 

active

collision triggers 

elevator reflex

t = 9 s t = 11 s t = 13 s

t = 15 s t = 17 s t = 19 s

t = 21 s t = 23 s t = 25 s

40 mm

Figure 4.24: The DLR Crawler climbs a 4 cm step

Within the first experimental trial shown in Fig. 4.24, the DLR Crawler climbs a

4 cm step. The height difference is large enough to cause collisions of the front legs

which then have to execute the elevator reflex in order to reach the upper platform.

Being on top, the front legs extend towards their nominal height, and thus push the

robot upwards. This, in turn, requires the middle legs to execute the stretch reflex
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to provide sufficient support on the lower platform. Thus, the interplay of reflexes

induces a terrain-following behaviour of the robot body which does not require any

active posture control.

t = 6 s t = 10 s t = 14 s

t = 18 s t = 22 s t = 26 s

t = 30 s t = 34 s t = 38 s

Figure 4.25: The DLR Crawler crosses stones within the indoor gravel testbed

The next experiment, shown in Fig. 4.25, presents a scenario wherein the DLR

Crawler has to cross a group of larger stones within the indoor gravel testbed. As for

the previous trial, those obstacles require the robot to exert multiple reflexes, and thus

to permanently adapt the gait coordination. Therefore, the experiment demonstrates

that the robot effectively walks on gravel, easily handles a change of the substrate,

and is able to negotiate a larger obstacle within its walking height. In addition, the

images clearly show that the body inclination follows the terrain instead of remaining

horizontal.

During the next trial, presented in Fig. 4.26, the robot walks across an outdoor gravel

field. This terrain comprises gravel with diameters up to 10 cm, which creates multiple

large steps and ditches, and therefore requires the use of all reflexes. Furthermore,

loose stones challenge the joint controllers and induce slippage. However, throughout

all trials, the compliance controller remained stable and the robot always was able to

accommodate to the height differences. In addition to crossing gravel surfaces, the

robot easily walks on normal soil or cut grass. However, sandy terrain was not tested

due to the open leg structure of the robot and the potential damage of the gears.
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t = 4 s t = 6 s t = 8 s

t = 10 s t = 12 s t = 14 s

Figure 4.26: The DLR Crawler crosses a gravel field within the DLR outdoor testbed

Figure 4.27 presents the last series of images that visualizes an experimental trial. It

demonstrates the ability of the robot to climb slopes that consist of mixed substrates,

such as the combination of soil, gravel, and large stones. Using the gait and control

algorithms developed within this work, the DLR Crawler easily handles such challeng-

ing conditions up to an inclination of approximately 35◦. However, for walking along

steeper slopes (> 35◦) or slopes with very loose substrates, the robot should actively

adjust its ground reaction forces to avoid slippage.

t = 8 s t = 12 s t = 16 s

t = 20 s t = 24 s t = 30 s

t = 34 s t = 38 s t = 42 s

Figure 4.27: The DLR Crawler climbs a 30◦ slope within the DLR outdoor testbed
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The next experiment with the DLR Crawler combines several different locomotion

tasks while walking along the indoor test track shown in Fig. 4.28. First, the robot

has to climb a short 15◦ slope onto a small platform. There, it slightly adjusts its

position prior to turning 90◦ to the left. Next, it crosses a 5-cm-downward step and

climbs another short 15◦ slope until it reaches a second platform where it stops.

B

C

A

Figure 4.28: The DLR Crawler walks along a test track which comprises two slopes
and a 5-cm-downward step

Along this track, there are several challenging passages that require spatio-temporal

adaptation of the gait, i. e. the execution of reflexes as well as phase adjustments of the

coordination. Those passages are, for example, the negative and positive edges at the

beginning and the end of each slope as well as the 5-cm-downward step. For each case,

height differences have to be accommodated as well as early or late ground contacts.

To exemplify the leg activity along this track, Fig. 4.29 displays the joint trajectories

of the right front leg (R1) as well as the Cartesian trajectories of the respective foot.

The time intervals “A”, “B” and “C”, marked within those diagrams, correspond to

the three equally labelled passages shown in Fig. 4.28, i. e. walking along the slope,

turning to the left, and crossing the downward step. Furthermore, the z-trajectory of

the foot is shown in greater detail for those intervals in Fig. 4.30, which also presents

the related Cartesian foot trajectories with respect to the body frame.

As shown in Fig. 4.29(a) the overall tracking performance of the joint compliance

controller is good. The largest errors occur for the third degree of freedom, which

comprises the coupled medial and distal joints. In addition, a large error is apparent

for the second degree of freedom in interval “C”. However, this does not result from

poor controller performance. Instead, a reflexive elevation of the leg causes the desired

joint angle to exceed a protective, software-set limit that is indicated by the light blue

line in Fig. 4.29(a). At this limit, the software saturates the joint angle command,

which is apparent for the measured value depicted within the same diagram.
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(a) Joint trajectories of the right front leg (R1)
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(b) Foot trajectories of the right front leg (R1) in body frame

Figure 4.29: The DLR Crawler walks along a test track - trajectories of leg R1
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Figure 4.30: The DLR Crawler walks along a test track - foot trajectory of leg R1 with
respect to the body coordinate system at specific time intervals (A, B,
C): top row - z-position of the foot with respect to time; middle row -
xz-trajectory of the foot; bottom row - xy-trajectory of the foot
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In Fig. 4.29(b), the first 20 seconds of the x-trajectory of the foot clearly indicate

temporal adaptations of the leg cycle. Those have two main reasons: starting from

rest and crossing the negative edge of the first slope. Nevertheless, during this time,

the leg does not invoke the elevator reflex, as it contacts the ground late in its swing

phase when the reflex is already inactive. Along the slope, the leg always extends to its

nominal length which pushes the front of the robot upwards to follow the inclination of

the terrain. In addition, the leg executes its stretch reflex for a short period following

the swing-to-stance transition in order to achieve sufficient loading. This is clearly

shown by the xz-trajectory of the foot displayed in the first column of Fig. 4.30.

Around the time of 30 seconds, the robot transitions from the first slope onto the

first platform. Crossing this positive edge invokes the stretch reflex multiple times,

which is evident from the bottom row of Fig. 4.29(b). Once the robot is completely

on top of the first platform, it moves sideways. Then it turns 90◦ to the left as shown

within the time interval labelled “B”. During the next time interval, labelled “C”, the

robot crosses the downward step that causes most of the reflex activity within this

experiment. As shown in the third column of Fig. 4.30, the stretch reflex is activated

several times. Each time, this reflex almost fully extends the leg to establish sufficient

ground contact. In contrast, the elevator reflex is triggered only once. In this case,

the leg retracts and raises to recover from a collision with the second slope early in its

swing phase. As previously discussed, the commanded reflex step height of the foot is

truncated due to the software-set limit of the second degree of freedom. However, this

has no negative consequences and the leg returns to its regular cycle afterwards. The

trajectories of all other legs are omitted in this place, as they show similar results.

The next two experiments exemplify the autonomous operation of the DLR Crawler

in a priori unknown terrain, and thus the interaction of its walking layer with the stereo-

vision-based navigation framework introduced in [Stelzer et al., 2012]. Within the first

experiment, the DLR Crawler changes its gait generation method in dependence of

the terrain. On flat ground without obstacles it utilizes a very simple, preprogrammed

gait pattern but switches to the adaptive gait on challenging terrain. The reason

for implementing such a behaviour is to save or redistribute computational resources

whenever they are not required for locomotion. Of course, this is not important for

the cable-bound DLR Crawler but of great relevance for future power autonomous

systems with on-board computation. Figure 4.31 shows the setup of the experiment.

The test track therein comprises two flat sections with different substrates as well as

a bump that provides negative edges at its bottom and a positive edge at its top.

As for the previous example, passing such edges requires spatio-temporal adaptation

of the gait, and thus a flexible gait coordination in combination with reflexes. To
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initiate the gait switch, a stereo-vision-based danger value is utilized. According to

[Stelzer et al., 2012], this value is computed from slope, roughness and step height of

the local terrain while an appropriate switching threshold is experimentally determined

for each robot. Figure 4.31 shows that the DLR Crawler uses a preprogrammed tripod

gait within the green and yellow sections of the test track while it switches to the

adaptive gait for the more dangerous orange areas, i. e. the negative and positive edges

of the bump.

(a) Test setup

(b) Navigation map(b) Traversibility map of the terrain

(c) xz-trajectory of the DLR Crawler

Figure 4.31: The DLR Crawler walks across a bump and switches its gait in dependence
of the traversability of the terrain

The final experiment within this section demonstrates the adaptation of the path

planning process to hardware- or task-related constraints. If the robot, for example, has

to finish a time critical task, taking a short but risky path may be justified. The same

is true, if the battery is low and the robot has to reach its base station within limited
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time. On the other hand, if the robot is damaged or carries large loads, the reduced

mobility might require taking a longer but safer path. A simple way to adjust the path

planning process is to change the danger value threshold that separates passable from

impassable regions. Depending on the situation, this could be either done by high-level

software such as mission planning, or by the walking layer of the robot. Figure 4.32

presents the setup of the experiment and two exemplary runs with different danger

value thresholds. The diagram in Fig. 4.32(b) shows the trial with a low threshold.

In this case, all grid cells with danger values higher than 0.2 are marked to be not

traversable and the path planner chooses the longer but safer way. Furthermore, the

robot uses the preplanned tripod gait due to the low danger value along its path. In the

other case, shown in Fig. 4.32(c), the threshold is set to 1. Therefore, the path planner

chooses the direct but more difficult way across the obstacles, which also induces a

switch to the adaptive gait in between the points “A” and “B”.

(a) Test setup
=

(b) Traversibility map and path for dmax = 0.2

=
(c) Traversibility map and path for
dmax = 1

Figure 4.32: The DLR Crawler navigates with different danger value thresholds dmax
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5 | Adaptation to Leg Loss

5.1 Introduction

Autonomous operation within scenarios such as extra-terrestrial exploration or ter-

restrial disaster response requires robotic systems to be highly robust. However, the

robustness should not only be provided by the mechatronic hardware but also on the

algorithmic level. Regarding hexapedal walking robots, the loss of a single leg is a

likely source of error, which must not result into failure of the mission. Despite being

impaired, a six-legged robot should be able to exploit its inherent redundancy in order

to compensate for the loss and to proceed with its task. Several methods of vary-

ing complexity are reported in literature that adapt the gait of a six-legged robot to

leg loss. Some of them simply use pre-computed gaits while others employ structural

changes of the gait coordination network or learning-based approaches. [Ferrell, 1993],

for example, reports on developments for the hexapod Hannibal that uses a damaged

leg as a switchboard to transmit coordination signals to the next functional leg. In a

similar way, the hexapod Oscar adapts to leg loss by removing a damaged leg from

the active gait coordination network [El Sayed Auf et al., 2008]. Within a very recent

example a learning algorithm retunes the oscillation frequencies of a synchronised net-

work of multiple chaotic CPGs to account for a damaged leg [Ren et al., 2015]. The

T-resilience algorithm [Koos et al., 2013], in contrast, combines a learning-based ap-

proach with self-modelling to cope with malfunctions of the legs. Therein, the robot

uses the self-model, i. e. a dynamics model, to find new behaviours that do not use the

damaged part, even though this is not known to the model. For this purpose, the algo-

rithm chooses the behaviour that produces the least deviations in between the intact

model and the impaired real system. A very interesting recent approach is presented

in [Cully et al., 2015]. Herein, the robot pre-computes a behaviour-performance map

that stores a large number of effective motion behaviours. In case of some damage, the

robot applies a fast trial-and-error search based on this map and selects an appropriate

motion for the specific error case. Also incorporating dynamic behaviours this method
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Table 5.1: Mechanism weights for the selectively activated inter-leg couplings

Parameter Value Parameter Value Parameter Value

k1,L3L1[mm] 5 k2,L3L1[mm] 5 k2,R3R1[mm] 5
k1,R3R1[mm] 5 k2,L2R1[mm] 10 k2,R1L2[mm] 5
k2,L1R2[mm] 5 k2,R2L1[mm] 10 k2,L3R2[mm] 10
k2,R2L3[mm] 10 k2,L2R3[mm] 10 k2,R3L2[mm] 10

is highly successful in generating effective locomotion. However, the approach does

currently not consider the induced loads that might lead to further damage.

Returning to the approach for adaptation to leg loss presented within this thesis,

the chapter proceeds as follows. First, the gait coordination algorithm introduced in

Chapter 4 is extended in order to generate stable gait patterns for a five-legged robot.

Next, a simple method is developed that increases the stability margin of the polygon

of support, and thus smooths the motion of the impaired robot. Finally, the chapter

concludes with the presentation of simulations and experimental results for the DLR

Crawler being subject to leg loss.

5.2 Extended Gait Coordination

To enable proper adaptation to leg loss, the gait coordination algorithm introduced in

Section 4.2 is extended by adding selectively activated inter-leg couplings, as shown in

Fig. 5.1, and the associated mechanism weights given in Table 5.1. This assignment

of new neighbourhood relations is the key to the immediate adaptation of the gait.

While those additional inter-leg couplings remain inactive for the fully operational

robot, they get instantaneously activated once a leg is labelled “damaged”, and thus

removed from the network, as shown in Fig. 5.2. An important difference of these

new couplings is the exclusion of mechanism 3, which did not show any beneficial

influence on the resulting gaits in this case. Furthermore, only the loss of single legs

is considered, while the approach also applies to the loss of two.

In addition to the immediate adaptation of the gait coordination, the emerging

gait pattern should also preserve its beneficial properties such as forward-directed

waves of protractions. The gait diagrams presented in Fig. 5.3 clearly demonstrate

the effectiveness of the algorithmic extension in achieving those requirements. Since

the results are similar for both sides, the figure only presents gait diagrams related

to the loss of a left-side leg while those for the loss of a right-side leg are omitted
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Figure 5.1: Extended coordination rules to adapt to leg loss/damage
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Figure 5.2: Extended coordination rules: a) left front leg (L1) disabled, b) left middle
leg (L2) disabled
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in this place. As desired, each of the diagrams shows immediate adaptation of the

gait pattern and sustained forward-directed waves of protractions. These go along

with changing phase relations that are established during several step cycles after the

leg-loss incident. This behaviour is clearly apparent in Fig. 5.3(b), which shows a

decreasing time gap in between the steps of the left hind leg and the left front leg.

0 5 10 15 20 25 30 35 40

R1
R2
R3
L1
L2
L3

t in s

(a) L1 disabled at t = 10 s

0 5 10 15 20 25 30 35 40

R1
R2
R3
L1
L2
L3

t in s

(b) L2 disabled at t = 10 s

0 5 10 15 20 25 30 35 40

R1
R2
R3
L1
L2
L3

t in s

(c) L3 disabled at t = 10 s

Figure 5.3: Gait diagrams of the DLR Crawler walking forward with single disabled
legs at vx = 30 mm/s (white: stance phase; dark/light grey: swing phase
left/right side)

In order to assess the feasible range of velocity commands that produce well coordi-

nated gaits for the five-legged robot, a large number of kinematic simulations has been

performed. The resulting data for combined forward and sideways walking as well as

for curve walking is presented in Fig. 5.4 and Fig. 5.5, respectively. In comparison to

the fully functional six-legged configuration, the loss of a front or hind leg reduces the

maximum velocity for straight-line walking approximately to one half, while the loss

of a middle leg only results in reductions of one third. Furthermore, the cluster for

curve walking with radii above 2 m is reduced to smaller speeds by 40 to 50 % while

turning on the spot is less impaired. Based on these results, a higher-level planning

algorithm is now able to adjust its commands to account for the changed capabilities

of a five-legged robot.
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(d) R1 disabled
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(f) R3 disabled

Figure 5.4: Stability assessment of the gait coordination of the DLR Crawler for various
combinations of forward and lateral velocities in case of leg loss; green dots
indicate stable gaits and red squares unstable gaits
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Figure 5.5: Stability assessment of the gait coordination of the DLR Crawler for various
combinations of forward velocity and yaw rate in case of leg loss; green dots
indicate stable gaits and red squares unstable gaits



5.3 Improving Stability and Performance 77

5.3 Improving Stability and Performance

Knowing about the capability of the gait coordination to produce well-coordinated

gaits in case of leg loss, there is another important issue to be considered. While

the coordination algorithm guarantees that neighbouring legs do not step at the same

time, there is no guarantee for static stability of the five-legged robot. This fact is

visualized by Fig. 5.6 which shows strongly reduced or even negative stability margins

for the impaired robot. Since such unstable configurations only occur for short periods

of time, they do not necessarily result in falls but cause undesirable rocking motions.

In order to increase the static stability margin, this work introduces a very intuitive

solution to the problem. As shown in Fig. 5.7, the projected center of gravity is simply

shifted away from the damaged leg by adding a fixed offset to the desired position of

each foot. Based on a set of kinematic simulations, Fig. 5.8 proves the effectiveness

of this approach for the DLR Crawler. The diagrams therein compare the cyclic

minima of the static stability margin in case of leg loss with and without COG shift

applied. Following the loss of a left-side leg, the COG is shifted 20 mm to the right

and additionally 20 mm along the longitudinal axis if the loss concerns a front or a

hind leg. Obviously, these adjustments are sufficient to produce positive minima of

the static stability margin for most of the feasible walking velocities.

L1 disabled L2 disabled L3 disabled

x
v

x
v

Figure 5.6: The sketches show the minimal stability margins and the respective config-
urations for different leg-loss scenarios and forward velocities; the red cross
marks the damaged leg and the green area the polygon of support
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(a) Stability margin without COG shift (b) Stability margin with COG shift

Figure 5.7: The DLR Crawler increases its stability margin by shifting its COG into
the polygon of support, i. e. away from the damaged left front leg (L1); the
red cross marks the damaged leg and the yellow circle a stepping leg
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Figure 5.8: Comparison of the stability margin minima of the five-legged DLR Crawler
while walking at different forward velocities with and without COG shift
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Based on kinematics only, those simulations do not yet give the full picture. For this

reason, additional simulations of the dynamics were performed that employ the sim-

plified model introduced in Section 3.5 and the set of parameters given in Appendix A.

The results provide an overview of the actual locomotive performance of the impaired

robot, i. e. the rocking motions of the body and the yaw angle drift caused by un-

balanced propulsive forces. In order to improve this performance, different measures

were tested in addition to or in combination with the proposed COG shift. At first,

the step size of the robot was reduced by changing the nominal AEP and PEP radii

from 40 mm to 30 mm each. This adjustment already decreased the rocking motions

of the robot body, while it had negligible influence on the gait coordination stability.

Next, the joint stiffness was doubled, which significantly reduced the pitch and roll

angle oscillations. Furthermore, it turned out that some of the reflexes have a deteri-

orating influence in case of leg loss. To give an example, the loss of a front leg causes

the robot to tilt towards this lost leg. Therefore, the hind legs unload and trigger

their stretch reflex. The resulting extension of the hind legs then further increases the

downward pitch of the body. Being cyclic, this behaviour induces strong pitch and roll

oscillations. To investigate such reflex influences on the overall motion of the impaired

robot, 27 different sets of simulations were run. These sets comprise walking without

a left front, middle, or hind leg at three different velocities with three different reflex

settings: all reflexes disabled, all reflexes enabled, and the stretch reflex enabled only.

Furthermore, each of these simulation sets includes four individual runs with different

settings of the joint stiffness as well as the applied COG shift. This amounts to a total

number of 108 simulations. Within the 80 seconds of each run the “lost” left-side leg

was disabled at t = 20 s and recovered its function t = 60 s.

Next, this section presents the results of one exemplary set of simulations in greater

detail. Having lost its left front leg, the robot walks with all reflexes disabled at a

velocity of 30 mm/s. At first, Fig. 5.9(a) compares the xy-trajectories of four different

runs with respect to the influence of COG shift and leg compliance. In each case,

the robot experiences a lateral drift which is most severe for walking at low joint

stiffness settings. Without COG shift, this lateral motion results from the yaw angle

drift shown in the top diagram of Fig. 5.9(b). With COG shift, the lateral drift mainly

stems from an imbalance of propulsive forces. Nevertheless, doubling the joint stiffness

by control strongly reduces the lateral drift as well as the amplitude of pitch and roll

angle oscillations. For the present example, this effect does not depend on a COG

shift, as shown Fig. 5.10(a) and Fig. 5.10(b). Therefore, the increased joint stiffness is

the most important adjustment to improve the locomotive performance of a six-legged

robot suffering the loss of a front leg.
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Figure 5.9: xy- and yaw angle trajectories of the simulated DLR Crawler for different
stiffness and COG shift settings: all reflexes disabled, vx = 30 mm/s, loss
of the left front leg (L1) in between t = 20 s and t = 60 s
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Figure 5.10: Pitch and roll angle trajectories of the simulated DLR Crawler for different
stiffness and COG shift settings: all reflexes disabled, vx = 30 mm/s, loss
of the left front leg (L1) in between t = 20 s and t = 60 s
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Following this detailed example, Fig. 5.11, Fig. 5.12 and Fig. 5.13 summarize the

results of the 108 individual simulation runs. First, Fig. 5.11 compares the drift rate

of the yaw angle at three forward walking velocities that is caused by the loss of a

single left-side leg. Within each of these diagrams four different combinations of COG

shift and leg compliance are evaluated for a robot that has either all reflexes enabled,

all reflexes disabled, or the stretch reflex enabled only.
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Figure 5.11: Leg-loss-induced yaw angle drift rate of the simulated DLR Crawler while
walking at different velocities

Next, Fig. 5.12 and Fig. 5.13 follow a similar scheme in comparing the minima and

maxima of the leg-loss-induced pitch and roll oscillations. For some of the configura-

tions, the diagrams show no result. This is either caused by failing simulations or due

to the robot getting stuck within a reflex loop. Obviously, the trials with all reflexes

enabled most often failed. Especially, the loss of a middle leg caused strong pitch-
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ing and rolling motions provoking repeated ground collisions of the adjacent front or

hind legs. While stepping, these legs then repeatedly triggered their elevator reflex

and got caught in reflex loops. To resolve this issue, different reflexes were disabled.

In combination with an increased joint stiffness this approach yields the best overall

performance after the loss of a front leg. In contrast, disabling reflexes and shifting

the COG is the method of choice to reduce the pitch and roll oscillations induced by

the loss of a middle or hind leg.
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Figure 5.12: Leg-loss-induced cyclic pitch angle minima and maxima of the simulated
DLR Crawler while walking at different velocities

In summary, disabling reflexes, increasing the joint stiffness, and simultaneously

shifting the COG of the impaired robot always reduces the pitch and roll oscillations

as well as the associated yaw angle drift. Often, but not always, this combination

also yields the best result. Nevertheless, in uneven terrain it might not be possible to
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turn off the reflexes. In this case, a higher-level algorithm should limit the velocity

command following the loss of a front or hind leg while keeping the reflexes enabled.

Since this approach does not apply to the loss of a middle leg, as shown in Fig. 5.11,

Fig. 5.12 and Fig. 5.13, a high-level strategy has to be developed to resolve situations

that require the full reflex capabilities.

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(a) No L1, vx = 20 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(b) No L2, vx = 20 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(c) No L3, vx = 20 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(d) No L1, vx = 30 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(e) No L2, vx = 30 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(f) No L3, vx = 30 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(g) No L1, vx = 40 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

 

 No COG shift, soft
No COG shift, stiff
COG shift, soft
COG shift, stiff

(h) No L2, vx = 40 mm/s

w/o reflexes stretch refl. w/ reflexes

−10

−5

0

5

γ
in

d
eg

(i) No L3, vx = 40 mm/s

Figure 5.13: Leg-loss-induced cyclic roll angle minima and maxima of the simulated
DLR Crawler while walking at different velocities

5.4 Simulations and Experiments

To complete the chapter, this section presents a visual impression of the results. For

this purpose, various image series were extracted from video recordings of simulation

runs and experimental trials. At first, Fig. 5.14 visualises the simulation results of the
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DLR Crawler experiencing the loss of its left front leg. At t = 4 s this leg is disabled

by control and the foot is lifted to a resting position. Therein it stays throughout

the remainder of the trial. Following this “loss” event, the gait coordination instan-

taneously adapts to the new five-legged configuration. In the meantime, the walking

layer enhances the stability as it initiates a COG shift, stiffens the joints and disables

the reflexes of the robot. Thus, after an initial downward pitch of its frontal part, the

robot quickly recovers its stable and smooth locomotion. Similar results are obtained

for the loss of the left middle and the left hind leg, as shown in Appendix C

t = 2 s t = 3 s t = 4 s

t = 5 s t = 6 s t = 7 s

Figure 5.14: Simulation of the DLR Crawler experiencing the loss of its left front leg
(L1); light green frames: the robot is fully functional, red frame: the left
front leg is lost (i. e. lifted and hold in this position), green frames: the
robot instantaneously adapts its gait, shifts its COG away from L1, and
increases its joint stiffness settings

Of course, the presented gait adaptation scheme also works with the real system

which is shown in Fig. 5.15. The scenario is equal to the simulation shown above.

The robot experiences the loss of a left-side leg and instantaneously adapts its gait. In

addition, it increases its joints stiffness, shifts its COG, and disables all of its reflexes.

The results are similar to those of the simulation as the robot is able to smoothly walk

with five legs.
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t = 1 s t = 4 s t = 8 s

(a) Failure of the left front leg (L1)

t = 1 s t = 6 s t = 11 s

(b) Failure of the left middle leg (L2)

t = 1 s t = 4 s t = 7 s

(c) Failure of the left hind leg (L3)

Figure 5.15: Experimental trials for the loss of a left front, middle, or hind leg of
the DLR Crawler; red crosses indicate lost/damaged legs, yellow circles
indicate stepping legs
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6 | Leg Odometry

6.1 Introduction

Within future exploration scenarios, legged robots will serve as the rough terrain spe-

cialists for short range tasks. Having neither a prior knowledge of the environment

nor reliable absolute references, like GPS or an external magnetic field, they have to

collect all of the relevant information by themselves. For this reason, they need to

exploit the measurements of their on-board sensors to a maximum extent and should

not discard any useful information. Very important to exploration is the ability of

each robot to localise itself with respect to its environment. This means, the robot has

to know its current pose, i. e. the position and orientation of its body, in relation to a

fixed world frame. However, as there is no absolute external reference available, it has

to rely on relative methods, such as dead reckoning, to compute a pose estimate from

IMU, visual or joint sensor data.

Therefore, this chapter presents the development and test of a leg-proprioception-

based odometry algorithm for statically stable, torque-controlled walking robots. Ap-

plicable to four-, six- or eight-legged systems, the algorithm returns a full 6-DOF pose

estimate. Thus, the leg odometry constitutes a “pose sensor” that is solely based on

proprioceptive data from the legs, i. e. joint angles and joint torques. The key feature of

the algorithm is the stabilisation of a kinematics-based 6-DOF estimate with absolute

pitch and roll angles that are computed from joint torque measurements. The chap-

ter proceeds as follows. Section 6.2 introduces the overall method and describes the

three individual stages of the algorithm. Thereafter, Section 6.3 presents experimental

results for the DLR Crawler and evaluates the performance of the leg odometry algo-

rithm with respect to walking on different substrates, at different velocities, and with

different joint stiffness settings. In the end of this chapter some experimental results

demonstrate the successful integration of the leg odometry within a multisensor data

fusion scheme for robust pose estimation [Chilian et al., 2011], which is an integral

part of the visual navigation framework of the DLR Crawler [Stelzer et al., 2012].
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6.2 Method

In comparison to any wheel odometry, the computation of a 6D leg odometry for

multi-legged robots is a complex task. It has to consider a large number of sensors,

which often results in an over-constrained problem. To cope with this challenge, the

presented method borrows from computer vision. It treats the supporting feet at two

consecutive time steps as point clouds and tries to match them by finding a minimizing

transformation. Referenced to a body-fixed coordinate system, this transformation

encodes the relative change of the robot pose within the time interval. Summing up

all relative motions then results in a full pose estimate for the robot with respect to

its initial body frame. To obtain proper results, the algorithm requires at least three

non-collinear feet in contact with the ground. Furthermore, it assumes rigid point

clouds, which implies a no slip condition. Hence slipping legs have to be detected and

the related measurements have to be treated adequately. However, as it is true for

any dead reckoning method, small errors accumulate over time. In the present case,

the pitch and roll angle estimates are most susceptible to errors which propagate to

severe deviations of the overall position estimate. Thus, these two angle estimates

have to be stabilised by some additional measurements. For this purpose, an error-

state Kalman filter fuses the kinematics-based pitch and roll angles with two absolute

values. Those are derived from joint torque measurements based on the assumption

that the main loads at slow speeds result from gravitational forces. As modern walking

robots increasingly employ joint torque sensors for control reasons [Ott et al., 2011],

[Boaventura et al., 2012], they do not involve any additional hardware effort just for

the odometry.

6.2.1 Joint-Angles-Based Pose Estimate

The first stage of the algorithm is purely based on kinematics and calculates the

relative change of the robot pose from two consecutive stance feet configurations. The

resulting incremental motions are summed up over time, yielding the pose of the robot

with respect to the world frame. This so-called world frame is defined to be the

gravity-aligned body frame of the robot at its start position. The body frame, in turn,

is oriented as follows. The positive x-direction points from the back to the front of

the robot, while the positive z-direction points upwards from its bottom to its top.

The positive y-direction completes a right hand system and the origin is placed at the

center of the robot body. All rotations follow the xyz-convention with yaw angle α

defined about the z-axis, pitch angle β about the y-axis and roll angle γ about the

x-axis.
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Figure 6.1: Foot contacts and their centroids for two consecutive time steps with re-
spect to the body frame

For proper operation, the first stage of the algorithm requires at least three non-

collinear legs in contact with the ground. This condition is true as long as the robot

stays within a statically stable regime. Having more than three legs in contact with the

ground, the system is over-constraint and the odometry algorithm has to account for

this situation. Furthermore, due to rolling ground contacts of the feet and small errors

within the kinematics, it is unlikely that the stance feet point clouds perfectly match.

Thus, a rigid body transformation with the rotation matrix Rodo and the translation

vector btodo has to be found that minimizes the matching error. The detailed approach

to solve this problem, including the complete derivation, was initially presented in a

computer vision article [Haralick et al., 1989]. In the following, the necessary equations

are given for the purpose of completeness. The algorithm aims to minimize ǫ, which is

the sum of squared errors of the rigid body transformation augmented by constraints

f(λ, Rodo) that enforce an orthogonal rotation matrix, RodoR
T
odo = I.

ǫ =
n
∑

i=1

wi(‖
bpi,t − Rodo · bpi,t−1 − btodo‖2)

2 + f(λ, R) (6.1)

Herein, the vectors bpi,t−1 and bpi,t are the positions of a foot at two consecutive time

steps with respect to the body frame b. These foot positions are calculated from joint

angle measurements using forward kinematics. The parameter n is the number of legs

of the robot, which is usually 4, 6 or 8. The parameters wi are weights that are 1 if
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a foot is in a valid contact state or 0 otherwise. A valid contact state means that the

foot has contact at both time steps and does not slip severely. The vector λ consists

of Lagrange multipliers for the six constraints.

Taking the partial derivative of ǫ with respect to the translation vector btodo and

setting it equal to zero results into the following equation.

btodo = bp̄t − Rodo
bp̄t−1

=

n
∑

i=1
wi

bpi,t

n
∑

i=1
wi

− Rodo

n
∑

i=1
wi

bpi,t−1

n
∑

i=1
wi

(6.2)

The terms bp̄t and bp̄t−1 can be considered as the centroids of the contact point

clouds at two consecutive time steps, as depicted in Fig. 6.1. Inserting btodo into

(6.1) leaves ǫ as a function of the elements of the rotation matrix and the Lagrange

multipliers λ. Taking now the partial derivative of ǫ with respect to each element of

the rotation matrix, setting it equal to zero, [ ∂ǫ
∂rodo,(m,n)

]3×3 = 03×3, and rearranging

terms results into the following equation.

ART
odo + RT

odoΛ = B (6.3)

Herein, Λ is a symmetric matrix consisting of the six Lagrange multipliers and A

as well as B are defined as follows.

A =
n
∑

i=1

wi(
bp̄t−1 − bpi,t−1)(bp̄t−1 − bpi,t−1)T (6.4)

B = [ bx by bz ]3x3 (6.5)

bx =
n
∑

i=1

wi(
bp̄x,t − bpi,x,t)(

bp̄t−1 − bpi,t−1) (6.6)

by =
n
∑

i=1

wi(
bp̄y,t − bpi,y,t)(

bp̄t−1 − bpi,t−1) (6.7)

bz =
n
∑

i=1

wi(
bp̄z,t − bpi,z,t)(

bp̄t−1 − bpi,t−1) (6.8)

Multiplying (6.3) with Rodo from the left leaves an equation with symmetric left-

and right-hand sides since A and Λ are symmetric matrices.

RodoB = RodoART
odo + Λ

= (RodoB)T
(6.9)
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Thus, a singular value decomposition of B into the orthogonal matrices U and V

and the diagonal matrix D allows the calculation of Rodo, which can be verified by

inserting (6.10) and (6.11) into (6.9).

B = UDVT (6.10)

Rodo = VUT (6.11)

One important property of the solution for Rodo is that the rotation matrix is only

valid if its determinant is positive. If this is not true, the last column of the matrix V

has to be multiplied by -1 to deliver a valid result. Inserting Rodo into (6.2) gives the

relative translation of the robot. Propagating the relative rotation and translation,

the pose of the robot can be determined with respect to the world frame, i. e. relative

to the gravity-aligned frame at the start point of the robot.

In order to reduce errors accumulated over time, leg slip should be detected and

the slipping leg should be discarded from the calculations, if possible. To assess the

severity of the point cloud deformation due to slip, the quadratic error of the rigid

body transformation for two consecutive time steps is calculated. If this error is higher

than an acceptable threshold, the algorithm will try to identify the leg that causes

the strongest distortion. For this purpose, the relative distance of each leg in contact

to each other stance leg is calculated and compared to the distances of the previous

time step. If more than three legs are in contact, the leg with the largest change

of distance to all other legs in contact is removed from the calculation by setting its

weight equal to zero. In most cases this approach already reduces the squared error

of the transformation such that it is smaller than the acceptable threshold. If it does

not suffice or only three legs are in contact, the remaining error will be compared to a

second threshold and the rotation and translation during this time interval are either

neglected or accepted. If many odometry calculations are neglected the odometry is

invalidated. Nevertheless, slippage of the complete robot on a slope or on icy ground

cannot be detected by this approach, and thus remains a limitation of the leg odometry.

6.2.2 Joint-Torques-Based Pitch and Roll Angle Estimates

Within its second stage, the leg odometry algorithm computes absolute pitch and roll

angle estimates for the robot which are based on joint torque measurements. The

approach assumes that the joint loads of slowly walking robots, e.g. < 10 cm/s for

the DLR Crawler, mainly originate in gravitational forces that act on the body of the

robot. Following this assumption of quasi-static behaviour, the ground contact forces
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of each leg Bfl,i , i = 1 . . . 6, with respect to the leg base frame B are calculated from

its measured joint torque vector τ l,i and its individual leg Jacobian Jl,i.

τ l,i = JT
l,i

Bfl,i (6.12)

Bfl,i = (JT
l,i)

−1
τ l,i (6.13)

After transformation from the leg base frame into the body frame, the sum of these

individual ground contact forces bfl,i yields the total ground contact force of the robot
bf that is assumed to be mostly caused by gravity. Given with respect to the body

frame, the total ground contact force vector allows for calculating the pitch angle βabs

as well as the roll angle γabs of the robot.

γabs = atan2(bfy, bfz) (6.14)

βabs = atan2(−bfx, bfy sin(γabs) + bfz cos(γabs)) (6.15)

If there are no torque sensors available, foot force sensors are equally useful to

compute absolute pitch and roll angle estimates. In this case, the total ground reaction

force vector is the sum of the individual foot force measurements that are rotated from

their sensor frame into the body frame.

6.2.3 Error-State-Kalman-Filter-Based Data Fusion

To improve the overall pose estimate, the joint-angles-based pitch and roll angle es-

timates of the first stage are fused with the joint-torques-based pitch and roll angle

estimates of the second stage by an error-state Kalman filter in feedback configura-

tion. The fusion process shown in Fig. 6.2 combines the fast components of the joint-

angles-based estimates with the slow components of the joint-torques-based estimates.

Consequently, it removes the drift of the pitch and roll angles from the first stage of

the algorithm as well as the ground-impact-related peaks from the second stage. Since

both stages employ the same joint angle measurements, the results are not optimal in

the sense of Kalman filter theory. Although the measurements are not independent,

the correlation of errors is expected to be small. The reasons for this expectation are

the different sources of errors. For the first stage, the drift results from the calculation

of the transformation rather than from the joint angles themselves, while the errors

in the second stage originate in the ground impacts measured by the joint torque sen-

sors. Thus, not being optimal, the filter is still a good method to stabilises the leg
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odometry using leg sensors only. In addition, the chosen error-state formulation of the

filter has the advantage that it only estimates the error of the states but not the states

themselves. Therefore, the filter does not require a complex motion model of the robot

which eases the computation. Furthermore, due to the feedback formulation the error

is corrected at each step and the assumption of a perfect correction allows to simplify

the prediction stage of the filter as well. In the following, the general equations of

a Kalman filter, as given in [Welch and Bishop, 2006], are reduced to the error-state

formulation.
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Figure 6.2: Signal flow diagram for the complete joint-torque-aided 6-DOF odometry
implemented on the DLR Crawler
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The first part of the filter is the prediction or time update step. Herein, ∆x̂t =

[∆βcor, ∆γcor]
T represents the rotation angle error estimates and ∆zt = [∆β, ∆γ]T the

rotation angle error measurements, which are derived later in this section following the

Kalman filter description.

∆x̂−

t = At∆x̂t−1 = 0 (6.16)

P−

t = AtPt−1AT
t + Qp (6.17)

In this first stage of the filter, (6.16) presents an error propagation model, wherein

the terms ∆x̂−

t and ∆x̂t−1 are the predicted error estimate at time t and the corrected

error estimate at time t − 1, respectively. Due to the feedback formulation of the

filter, the error estimate of the previous time step ∆x̂t−1 is set to zero. Therefore, the

predicted error estimate of the current time step ∆x̂−

t is also zero. The process matrix

At is set to be a 2×2 identity matrix, At = I2×2. (6.17) gives the predicted estimate of

the error covariance matrix P−

t based on the previous estimate of the error covariance

matrix Pt−1 and the process noise covariance matrix Qp.

The second part of the filter is the correction or measurement update step. Here the

Kalman gain matrix Kt is calculated based on the predicted estimate of the process

error covariance matrix P−

t , the matrix H = I2×2 relating the measured errors ∆zt and

the error-state estimates ∆x̂t as well as the measurement noise covariance matrix Qm.

Depending on the covariance matrices, the Kalman gain matrix adjusts the influence

on the corrected error estimate either towards the predicted error estimate or towards

the measurement. The last part of the correction step is the update of the estimated

error covariance matrix Pt.

Kt = P−

t HT (HP−

t HT + Qm)−1 (6.18)

∆x̂t = Kt∆zt (6.19)

Pt = (I − KtH)P−

t (6.20)

For the odometry, all calculations that involve rotation matrices and Euler angles

follow the xyz-convention. The rotation matrices are calculated as shown below with
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yaw angle α, pitch angle β, and roll angle γ, where “c” represents a cosine and “s” a

sine.

R = Rα · Rβγ

=









cα −sα 0

sα cα 0

0 0 1









·









cβ sβsγ sβcγ

0 cγ −sγ

−sβ cβsγ cβcγ






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
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sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ









(6.21)

To fuse the orientation angles from the first stage of the algorithm with pitch and

roll angles from the second stage, an orientation angle error vector is calculated that

is based on the predicted rotation matrix w
b R−

t and the measured rotation matrix

Rβγmeas,t. Herein, the matrix w
b R−

t is calculated from the corrected rotation matrix

of the previous time step w
b Rt−1 and the matrix Rodo,t that represents the actual

incremental rotation returned by the first stage of the algorithm. With respect to the

matrices, the subscript b and the superscript w refer to a rotation from the body frame

into the world frame.

w
b R−

t = w
b Rt−1Rodo,t (6.22)

Since the joint torque measurements allow no yaw angle estimate, Rβγmeas,t only

consists of pitch and roll terms. The predicted rotation matrix w
b R−

t is separated into

a rotation matrix R−

α,t representing the yaw component and a rotation matrix R−

βγ,t

representing the pitch and roll components. Only R−

βγ,t is used in the fusion process

and is related to Rβγmeas,t by the following equation.

R∆ = R−

βγ,t · RT
βγmeas,t (6.23)

Herein, R∆ = [r∆,(i,j)]3×3 is a matrix that represents the pitch and roll rotation error

measurement and ∆zt = [∆β, ∆γ]T can be calculated as follows.

∆β = arcsin(−r∆,(3,1)) (6.24)

∆γ = atan2(r∆,(2,1), r∆,(1,1)) (6.25)
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Applying both steps of the Kalman filter and using ∆x̂t = [∆βcor, ∆γcor]
T to calculate

a corrected rotation error matrix R∆,cor, the corrected rotation matrix of the current

time step w
b Rt can be calculated.

w
b Rt = R−

α,t · RT
∆,cor · R−

βγ,t (6.26)

Using the above matrix, the position of the walking robot (the DLR Crawler in this

case) with respect to the world frame wpCrawler,t can be updated based on the relative

position change btodo computed by the first stage of the leg odometry algorithm.

wpCrawler,t = wpCrawler,t−1 + w
b Rt · btodo (6.27)

The measurement noise covariance matrix Qm is significantly larger than the process

noise covariance matrix Qp. The final settings have to be found by manual filter tuning

and are further discussed in the following section.

6.3 Experiments

This section presents experimental results for the complete 6-DOF leg odometry algo-

rithm. The DLR Crawler serves as test system and all runs were either performed on

flat lab floor or within a 2 m × 2 m box filled with gravel 10 to 15 cm high. First, some

examples illustrate the performance of each single stage of the algorithm in order to

motivate the necessity of data fusion. Then, different error sources are identified and

three parameters are presented that are used to attenuate the errors and to adjust the

odometry algorithm for different conditions. In the following, the performance of the

algorithm is evaluated for forward walking and turning on two different substrates,

at two different joint stiffness settings, and at two different desired walking velocities.

Furthermore, Section 6.3.5 presents some results for walking along a rectangular path

on gravel as well as for walking along a path that includes uphill segments and a

downward step. During all of the test runs the robot was steered manually and ground

truth measurements were recorded using an A.R.T. tracking system. For this purpose,

a target body was attached to the DLR Crawler that was tracked with four infrared

cameras to obtain ground truth data of the 6-DOF pose with an average accuracy of

0.5 mm for the translational DOF and 0.12 ◦ for the orientation angles.
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6.3.1 Behaviour of the Individual Stages: Drift and Error Sour ces

To give an example for the performance of the first stage of the leg odometry algorithm,

Fig. 6.3 compares those estimates to the data of the ground truth measurement system

(GTMS). The diagram clearly shows that the path estimated by the first stage of the

algorithm is strongly bent and deviates from the ground truth measurements.
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Figure 6.3: The DLR Crawler walks along a rectangular path on flat ground
(vdes = 6 cm/s, medium joint stiffness): Comparison of the COM position
estimates of the first stage of the odometry algorithm, the complete leg
odometry (data fusion) as well as the ground truth measurement system

This behaviour is mainly attributed to the interaction of the odometry calculation

and the active compliance, which results in an angular drift that is shown in the
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“forward walking” marked region of Fig. 6.4. The drift of the pitch or roll angle

depends on the direction of motion and strongly affects the absolute pose estimate.

For forward or backward walking, the pitch angle is affected, while sideways walking

leads to a drift of the roll angle. During pure turning this disturbing behaviour was not

observed. In order to give an explanation, the case of forward walking is considered.

Here, after touch down, a front leg moves towards the COG of the robot. During this

motion the loading of the leg increases and causes its height to decrease due to the

active compliance. Opposite to this behaviour, the loading of a hind leg decreases over

the course of its stance motion since it moves away from the robot COG. Thus, the leg

extends depending on the stiffness setting. To each calculation of the incremental pose

change this behaviour appears to be a tilting motion that increases the pitch angle,

summing up to the strong angular drift apparent in Fig. 6.4. Having built up a large

pitch angle, each turning motion, i. e. increase or decrease of the yaw angle, transfers

the pitch to a roll angle, which is apparent within the plots.

Another error is caused by the initial contact phase of the legs, especially during the

execution of the stretch reflex while walking on uneven ground. The source of this error

is that the algorithm considers larger parts of the downward motion at the beginning of

the stance phase than of the upward motion at the end of the stance phase, where the

leg quickly loses contact. The downward motion of a leg caused by the stretch reflex

has an effect on the translation estimation and appears to the algorithm as upward

motion of the robot body. In order to attenuate this behaviour, the ground contact has

to be detected properly. For this purpose, contact thresholds are introduced that can

be adjusted and influence the pose estimate depending on the walking speed and the

terrain, which is discussed in further detail in the following subsection on parameter

tuning.

The error caused by the stretch reflexes appears randomly and depends on the dis-

tribution of the height differences across the ground. The error due to the compliance

is somehow systematic but depends on many parameters like joint stiffness, walking

velocity, and ground properties. For this reason, an error prediction and correction

without further sources of information is infeasible. Thus, absolute pitch and roll

angles from a different source have to correct the odometry data. As introduced in

Section 6.4, the joint torque measurements are sufficient to estimate the gravity vector

with respect to the body frame.

To give an example for the performance of the second stage of the odometry al-

gorithm, Fig. 6.5 shows joint-torque-measurement-based pitch angle estimates for the

DLR Crawler. The upper figure refers to the Crawler standing on a slowly tilting

board that is manually moved. It shows that the pitch angle estimate has an initial
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Figure 6.4: The DLR Crawler walks along a rectangular path on flat ground: Compar-
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as well as the ground truth measurement system
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offset and does not closely track the angular motion. The lower figure depicts the pitch

angle estimate for the Crawler walking uphill. It clearly shows that the ground impacts

during walking cause strong force peaks that are translated to false peaks within the

pitch angle estimates. It also shows that for walking uphill the pitch angle estimate of

the first stage of the algorithm as presented in Section 6.2.1 is dominated by the com-

pliance induced drift. Nevertheless, standing on the tilting board or walking uphill, the

data contains information about the inclination of the robot. Thus, the joint torque

sensors emulate an inclination sensor even though it is not a very accurate one. Since

the joint-torque-based pitch and roll angle estimates are very noisy but free of drift and

the joint-angle-based estimates include little noise but show strong drift, they are very

well suited to be fused by a Kalman filter as presented in the previous section. The

improvements gained by this fusion process with respect to each single stage become

apparent in Fig. 6.3, Fig. 6.4 and Fig. 6.5. As can be seen, the large position errors

caused by the compliance-induced pitch angle drift are completely removed by fusion

with the joint-torque-based absolute pitch and roll angles. The remaining position

error mainly originates in a small yaw angle drift during forward walking and slight

underestimation of the yaw angle during turning. Due to a missing absolute reference

for the yaw angle this error cannot be removed.

6.3.2 Tuning Parameters

The algorithm provides three parameters that are adjusted in order to increase the

accuracy of the estimate and to account for different conditions. These parameters are

two torque thresholds used for contact detection in the first stage of the algorithm and

the process noise covariance matrix of the error-state Kalman filter in the third stage.

The first torque threshold is active during the swing phase of the leg and detects

the initial contact that marks the onset of the stance phase. The second threshold

becomes active once the stance is established. It is used to monitor if the leg loses

contact during stance and to detect the onset of the next swing phase once the leg

lifts. In all cases the first threshold is higher than the second and helps to discard

the error-prone initial contact and loading phase of a leg that has strong influence

on errors of the z-coordinate and especially the yaw angle. Thus, the first threshold

reduces the error of the yaw estimate while the second mainly reduces the error of the

z-coordinate estimate. During the experiments two distinct values were identified for

the first threshold that are independent of the terrain or the stiffness setting and are

only influenced by the walking speed. Here, the first constant value was used for slow

walking dominated by emerging pentapod or tetrapod gaits. The threshold had to be

increased to the second constant value for fast walking with dominating tripod gaits.
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This is actually obvious since the leg load is higher during the tripod. Furthermore,

the second torque threshold appears to be independent of the stiffness but needs to be

adjusted for each terrain and once the gait changes from tetrapod to tripod.

The last tuning parameter, the process noise covariance matrix, is used to remove the

remaining z-coordinate drift. The measurement noise covariance matrix is kept equal

for all settings and the process noise covariance matrix is assumed to change depending

on the gait, the stiffness setting and the terrain. For walking on gravel the values

were smaller than for walking on lab floor. Considering the fixed measurement noise

covariance matrix, this means that for walking on gravel the joint-torque-based pitch

and roll estimates are less trusted. Furthermore, the process noise covariance values are

smaller for slow walking on gravel than for fast walking on gravel and did not change

when the stiffness changed. For walking on lab floor the values had to be increased

once the gait changed from tetrapod to tripod and also had to be increased once the

stiffness was increased. Altogether, there is no single set of parameters that is valid for

all combinations of gait, terrain, and joint stiffness. Nevertheless, different parameter

sets can be identified and stored depending on the combination of the dominating gait,

the stiffness setting, and the terrain. This identification is currently done manually but

will be done automatically in future by calibrating the leg odometry on a new terrain

type with respect to the IMU and visual odometry derived pose estimates. Each time

a change of dominating gait or stiffness is initiated or a change of terrain is detected by

visual cues or a change of reflex activation behaviour, the filter can be automatically

adapted by loading the appropriate parameter set.

6.3.3 Forward Walking

This set of experiments was conducted to evaluate the performance of the complete

leg odometry and its associated errors under varying conditions. For this purpose, the

robot walked forward at a certain velocity and the absolute translation and orientation

errors were measured at the times when the ground truth measurement system (GTMS)

indicated 0.5 m, 1 m, and 1.5 m travel in the x-direction of the local start frame. In

order to evaluate the algorithm for different emerging gaits, two sets of trials at a

lower and a higher velocity were performed. First, the robot walked at a commanded

velocity of 3 cm/s to enforce a tetrapod gait while a velocity command of 6 cm/s mainly

generated a tripod gait. For each velocity setting, runs at two different stiffness values

were recorded: A medium joint stiffness setting and a stiff configuration with doubled

joint stiffness values. Furthermore, each velocity-stiffness configuration was tested

on laboratory floor as well as in the gravel testbed, which resulted in 8 different test

conditions. For each of these 8 conditions, 10 separate runs were recorded and analysed.
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Figure 6.6: Exemplary Crawler odometry COM position estimates for forward walking
on lab floor at a velocity of vdes = 3 cm/s and medium joint stiffness
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(b) Pitch angle of the DLR Crawler
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Figure 6.7: Exemplary Crawler odometry Euler angles estimates for forward walking
on lab floor at a velocity of vdes = 3 cm/s and medium joint stiffness
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Figure 6.8: Exemplary Crawler odometry COM position estimates for forward walking
on gravel at a velocity of vdes = 6 cm/s and medium joint stiffness
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Figure 6.9: Exemplary Crawler odometry Euler angles estimates for forward walking
on gravel at a velocity of vdes = 6 cm/s and medium joint stiffness
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Figures 6.6 and 6.7 as well as Figs. 6.8 and 6.9 display the pose estimates for good

exemplary runs at 3 cm/s on lab floor and at 6 cm/s on gravel, respectively. The

graphs show that the actual walking velocity in both cases is slightly lower than the

commanded velocity, which is attributed to the medium joint stiffness setting and

the resulting reduced tracking accuracy of the joints. After walking a comparable

distance of 1.5 m in the x-direction of the local start frame, as measured by the GTMS,

the absolute Cartesian position errors are 1.74 cm for the run at 3 cm/s on lab floor

and 3.21 cm for the run at 6 cm/s on gravel. The absolute Cartesian position errors

at this distance with respect to the Cartesian path length are 0.82 % and 1.39 %,

respectively. In both cases the dominant source of the endpoint errors is a drift of

the yaw angle estimate. Additionally, the baselines of the z-coordinate estimates show

deviations from the baselines of the GTMS data. Nevertheless, the oscillations around

the baselines closely represent the observed z-coordinate variations that result from the

change of stance configurations. The baseline deviations are caused by a combination

of small remaining influences from the stretch reflex and the compliance induced z-

coordinate drift as well as inaccuracies in the pitch angle estimate. Furthermore, the

pitch and roll angle estimates show offsets that appear due to horizontal propulsion

forces, which have been assumed to be negligible at low speeds.

Table 6.1 displays the means and standard deviations of the errors observed during

the forward walking experiments. The computed errors for each single run are the

Cartesian position errors in the x-, y-, and z-direction with respect to the start frame,

the absolute Cartesian position error with respect to the travelled path length, and

the root mean square (rms) errors of the yaw, pitch, and roll angles all measured

after 0.5 m, 1 m, and 1.5 m travel in the x-direction of the start frame. Apparently,

the odometry algorithm underestimates the distance travelled in the x-direction for all

trials on lab floor. In contrast, it overestimates the travelled distance on gravel due

to increased leg slip that is partially mistaken for forward body motion. In almost

all cases the lateral motion in the y-direction is overestimated which is strongest on

gravel and mainly caused by larger yaw angle errors. In all cases, the yaw angle rms

error increases with distance, indicating a yaw angle drift. Pitch and roll angle rms

errors show in most cases constant values independent of the distance travelled. Only

on lab floor the pitch angle shows a slight drift but with errors being smaller than

the ones for gravel. The z-coordinate estimates show the largest errors for slow walks

on gravel. Considering the absolute Cartesian position error with respect to the path

length, ∆p, the smallest error on gravel is obtained with a tripod gait and medium

joint stiffness settings, while on lab floor a tetrapod gait and medium joint stiffness is

best. Nevertheless, with the right torque thresholds and process covariance matrices all
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Table 6.1: Error behaviour of the complete Crawler odometry (with fusion of first
and second stage) for forward walking: Average Cartesian position er-
rors (∆x,∆y,∆z) and average orientation rms errors (∆αrms,∆βrms,∆γrms)
at different combinations of ground substrate, desired forward velocity, and
joint stiffness at 50 cm, 100 cm, and 150 cm distance to the start point with
respect to the x-direction of the start frame (10 experimental runs for each
combination); ∆p is the absolute Cartesian position error with re-
spect to the travelled Cartesian path length

vdes Stiffness ∆x in cm ∆y in cm ∆z in cm ∆p in % ∆αrms in ◦ ∆βrms in ◦ ∆γrms in ◦

mean (std) mean (std) mean (std) mean (std) mean (std) mean (std) mean (std)

xtracking = 50 cm

Lab floor
3 cm/s medium -1.15 (0.38) 0.06 (0.30) -0.18 (0.49) 1.91 (0.44) 0.55 (0.21) 0.33 (0.83) 2.28 (0.24)
3 cm/s stiff -1.49 (0.20) 0.61 (0.33) -0.13 (0.34) 2.48 (0.29) 0.46 (0.26) 1.40 (0.30) 0.99 (0.40)
6 cm/s medium -0.78 (0.45) 0.03 (0.52) -0.14 (0.15) 1.6 (0.33) 0.34 (0.18) 1.27 (0.1) 2.37 (0.17)
6 cm/s stiff -0.48 (0.21) 0.14 (0.15) -0.29 (0.26) 1.03 (0.31) 0.31 (0.04) 1.30 (0.19) 2.46 (0.15)

Gravel
3 cm/s medium 0.80 (2.28) 0.15 (2.48) 2.47 (0.89) 4.82 (2.28) 1.79 (1.39) 1.79 (0.67) 1.26 (0.39)
3 cm/s stiff 0.83 (1.70) 0.99 (1.65) 3.09 (1.82) 4.70 (2.18) 2.44 (1.02) 2.54 (0.80) 1.76 (0.81)
6 cm/s medium 0.87 (1.37) 1.84 (1.96) 0.04 (1.04) 3.86 (1.87) 2.12 (1.23) 2.45 (0.58) 2.02 (0.85)
6 cm/s stiff 0.07 (1.62) 1.00 (1.83) 0.29 (1.50) 3.59 (1.53) 2.01 (1.14) 2.16 (0.51) 2.60 (1.63)

xtracking = 100 cm

Lab floor
3 cm/s medium -1.64 (0.59) 0.01 (0.55) -0.36 (1.08) 1.47 (0.48) 0.59 (0.22) 1.16 (0.31) 2.05 (0.18)
3 cm/s stiff -2.13 (0.49) 1.12 (1.15) 0.07 (0.74) 2.00 (0.41) 0.76 (0.23) 1.23 (0.29) 0.83 (0.31)
6 cm/s medium -1.77 (0.59) -0.08 (0.92) -0.08 (0.46) 1.63 (0.23) 0.38 (0.24) 1.38 (0.2) 2.32 (0.08)
6 cm/s stiff -1.34 (0.40) 0.69 (0.40) -0.46 (0.39) 1.31 (0.33) 0.39 (0.11) 1.50 (0.15) 2.16 (0.10)

Gravel
3 cm/s medium 2.33 (2.90) 1.97 (5.17) 2.15 (1.79) 3.79 (2.29) 2.47 (1.27) 2.31 (0.44) 1.68 (0.32)
3 cm/s stiff 0.44 (2.22) 0.47 (2.89) 4.16 (3.10) 3.37 (1.71) 2.55 (1.42) 2.38 (0.28) 1.82 (0.54)
6 cm/s medium 0.71 (1.98) 2.26 (2.40) -0.25 (1.77) 2.47 (1.25) 2.29 (1.14) 2.63 (0.84) 2.27 (0.92)
6 cm/s stiff -0.58 (2.24) 3.39 (4.04) -0.17 (1.52) 3.37 (2.00) 2.82 (1.24) 2.33 (0.50) 2.80 (1.04)

xtracking = 150 cm

Lab floor
3 cm/s medium -1.74 (0.85) 0.86 (1.22) -0.31 (1.73) 1.30 (0.52) 0.83 (0.36) 1.95 (0.58) 1.93 (0.20)
3 cm/s stiff -2.77 (0.89) 2.97 (2.18) 0.35 (1.24) 2.24 (0.46) 1.34 (0.54) 1.27 (0.32) 0.76 (0.23)
6 cm/s medium -2.69 (0.64) -0.3 (1.47) 0.32 (0.68) 1.63 (0.24) 0.5 (0.2) 1.63 (0.17) 2.31 (0.06)
6 cm/s stiff -2.17 (0.45) 1.13 (0.86) -0.55 (0.41) 1.37 (0.27) 0.43 (0.17) 1.71 (0.09) 1.97 (0.07)

Gravel
3 cm/s medium 3.88 (3.55) 1.08 (7.98) 2.57 (2.17) 3.71 (1.79) 3.13 (1.32) 2.42 (0.51) 1.88 (0.39)
3 cm/s stiff 1.32 (3.43) 1.83 (5.57) 4.44 (4.46) 3.26 (1.60) 2.95 (1.52) 2.36 (0.43) 1.98 (0.41)
6 cm/s medium 2.81 (2.4) 2.53 (5.05) -0.57 (2.51) 2.54 (1.69) 2.51 (1.48) 2.59 (0.70) 2.30 (0.79)
6 cm/s stiff 0.56 (2.79) 5.93 (6.20) -0.57 (2.15) 3.58 (1.90) 3.22 (1.23) 2.21 (0.43) 2.94 (0.73)
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configurations show comparable results. As expected the estimation errors are smaller

on lab floor where ∆p is within 1 % to 3 %, while on gravel it mainly lies in a range of

2 % to 6 %.

6.3.4 Turning
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Figure 6.10: Yaw angle estimates for turning on gravel: α̇des = ±10 ◦/s, medium joint
stiffness

As for forward walking, a set of experiments was conducted to evaluate the perfor-

mance of pure turning. To visualize an average result, Fig. 6.10 shows an exemplary

yaw angle plot for a 90 ◦ right-left turn on gravel. Appropriate tuning parameters

were manually identified for gravel as well as for lab floor and showed only very small

dependence on the joint stiffness setting as well as the turning velocity. Thus, they are

only adjusted for a change of substrate. Since the algorithm appears to be independent

of velocity and stiffness setting for turning, Table 6.2 only displays the results for five

trials of turning to the right on each substrate at 10 ◦/s and medium joint stiffness.

The data shows that the yaw angle estimate on lab floor experiences a drift which

amounts to 2 ◦ to 5 ◦ per 90 ◦ turn. For gravel, the error is smaller and shows no drift.

The Cartesian position errors are very small for turning and the pitch and roll angle

estimates show constant but smaller errors than for forward walking. Turning to the

left shows similar error behaviour. Therefore, the performance evaluation is omitted

in this place.
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Table 6.2: Error behaviour of the complete Crawler odometry (with fusion of first and
second stage) for turning to the right: Average translation rms errors
(∆xrms,∆yrms,∆zrms), average absolute yaw angle errors (∆α) and av-
erage orientation rms errors (∆αrms,∆βrms,∆γrms) on lab floor and gravel at
−30 ◦, −60 ◦ and −90 ◦ (5 experimental runs for each ground substrate);

αground_truth in ◦ ∆xrms in cm ∆yrms in cm ∆zrms in cm ∆α in ◦ ∆αrms in ◦ ∆βrms in ◦ ∆γrms in ◦

mean (std) mean (std) mean (std) mean (std) mean (std) mean (std) mean (std)

Lab floor
-30 0.22 (0.03) 0.10 (0.03) 0.14 (0.07) 1.29 (0.37) 0.92 (0.35) 1.05 (0.21) 1.47 (0.53)
-60 0.34 (0.04) 0.16 (0.04) 0.23 (0.10) 2.48 (0.46) 1.53 (0.31) 0.93 (0.11) 1.27 (0.37)
-90 0.37 (0.03) 0.31 (0.08) 0.31 (0.10) 3.75 (0.51) 2.22 (0.33) 0.97 (0.08) 1.22 (0.32)

Gravel
-30 0.37 (0.25) 0.44 (0.27) 0.34 (0.26) 0.73 (1.91) 1.15 (0.86) 1.50 (0.36) 1.92 (0.43)
-60 0.48 (0.25) 0.65 (0.26) 0.52 (0.27) 1.00 (2.15) 1.33 (0.80) 1.31 (0.21) 2.07 (1.02)
-90 0.65 (0.36) 0.90 (0.35) 0.72 (0.39) 0.90 (1.88) 1.47 (0.92) 1.29 (0.18) 1.94 (0.90)

6.3.5 Combined Motions

To further evaluate the algorithm, this section gives a few examples of combined mo-

tions. Figure 6.11 shows an average result for walking a rectangular path on gravel.

As can be seen, the absolute Cartesian position error on gravel is larger than on lab

floor as shown in Fig. 6.3 above. In both cases the absolute Cartesian position error

is mainly caused by errors of the yaw angle estimate. On lab floor the estimated path

opens slightly outwards, which is a result of underestimating the yaw angle during the

turning motions while it is estimated quite accurately for the forward walking parts.

The opposite happens on gravel where the rectangular path is bent inwards. Here, the

yaw estimates for the turning motions are quite accurate while the yaw angle estimate

experiences a drift for the forward walking segments. In both cases, the behaviour

is consistent with the performance results obtained for forward walking and turning.

Even with the high number of steps that the robot takes while walking a distance of

several meters, the z-coordinate estimate remains close to the GTMS value.

The final experiment shows an average result for a path that combines forward,

upward, and turning motions, and includes a downward step as an additional challenge.

In this case, the robot walks uphill along a short 15 ◦ slope, moves sideways, and turns

90 ◦ to the left on top of a plateau. Then it crosses a 5 cm edge and walks up a

second 15 ◦ slope onto a second plateau as depicted in Fig. 6.12. Along its path the

odometry algorithm uses the torque thresholds and the process noise covariance matrix
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(a) Path of the DLR Crawler projected onto the xy-plane
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(b) Path of the DLR Crawler projected onto the xz-plane

Figure 6.11: The DLR Crawler walks along a rectangular path on gravel (vdes = 6 cm/s,
medium joint stiffness): Comparison of the COM position estimates of the
first stage of the odometry algorithm, the complete leg odometry (data
fusion) as well as the ground truth measurement system
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(a) DLR Crawler in the test area
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(b) Estimated and measured trajectories in xyz

Figure 6.12: Crawler odometry for walking uphill (vdes = 6 cm/s, high joint stiffness)

identified for walking with a tripod gait on lab floor and switches to the parameter

set for walking with a tripod gait on gravel while crossing the edge. This switch is

initiated automatically by stronger reflex activations and height differences within the

legs and improves the estimate while crossing the edge. Again, the main source of the

Cartesian position error is the yaw angle estimate that experiences a drift, especially

while walking along the slopes. The overall z-coordinate estimate shown in Fig. 6.13

is quite good, even though it misses the onset of the upward motion and slightly

overestimates it thereafter due to experiencing slip along the slope. The pitch angle

estimate shown in Fig. 6.14 detects the slopes and closely represents the shaky motion

while crossing the edge. In summary, the odometry results are very encouraging,

especially since the algorithm only employs the proprioceptive sensors of the legs.
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(a) x-position of the DLR Crawler
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(b) y-position of the DLR Crawler
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Figure 6.13: Crawler odometry COM position estimates for walking uphill
(vdes = 6 cm/s, high joint stiffness)
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(a) Yaw angle of the DLR Crawler
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(b) Pitch angle of the DLR Crawler
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Figure 6.14: Crawler odometry Euler angles estimates for walking uphill
(vdes = 6 cm/s, high joint stiffness)
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6.3.6 Leg-Odometry-Enhanced, Vision-Based Pose Estimatio n

The leg odometry algorithm presented within this chapter is a valuable source of

information for any higher-level algorithm. However, being an incremental method,

errors accumulate over time. Therefore, the approach is only useful within certain

spatial and temporal bounds. For this reason, the leg odometry is integrated into the

visual navigation framework of the DLR Crawler, wherein it serves as an aiding sensor

for robust pose estimation. Since obstacle avoidance and navigation algorithms require

accurate pose estimates, the fusion of pose data from multiple sources will improve

their performance. In case of the DLR Crawler, an indirect feedback information filter

was chosen to fuse the data provided by its IMU, its visual odometry, and its leg

odometry [Chilian et al., 2011]. The information filter used is numerically equivalent

to a Kalman filter but has inverse mathematical properties. Similar to the error-

state Kalman filter chosen for the leg odometry, an indirect version of the information

filter was selected. Working on an error model, this approach greatly simplifies the

computation as the filter does not require a nonlinear dynamics model of the robot.

Instead it works on linear equations that describe the state error propagation within

the system. Considering leg and visual odometry as aiding sensors the filter is easily

expandable to further sources, if they become available. As none of the used sensors is

perfect, the pose estimation process tries to exploit their strengths while it eliminates

their deficits. For example, an IMU usually has a high update rate and is independent

of environmental influences, but its orientation and position output suffer a strong

drift due to the double integration of acceleration signals. In contrast, visual odometry

experiences only small drift but has low update rates and requires a sufficiently textured

environment. The leg odometry is somewhere in between as it has a quite high update

rate but is less accurate and experiences stronger drift. Comparing visual odometry

to leg odometry, they are complementary. The visual odometry works well in rough

terrain, which provides good texture but causes the legs to slip, while the leg odometry

works best on smooth ground, which provides little texture for the visual odometry.

Within this multisensor fusion process developed in [Chilian et al., 2011], the leg

odometry increases the robustness of the overall pose estimate with respect to visual

disturbances. For this purpose, the visual odometry returns an error measure that

influences the weights of the information filter. These adjust the filter such that it

increasingly trusts the leg odometry in case of poor visual performance. On the other

hand, the leg odometry invalidates its output if it detects severe slippage of single

legs, and thus can be neglected by the information filter. The following experiment

is an example that demonstrates the stabilising effect of the leg odometry on the

overall pose estimate in the presence of visual disturbances. During this experiment,
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(a) Gravel testbed with one brightly illuminated area

(b) Left camera view of the DLR Crawler at distinct locations

Figure 6.15: Test setup for the multisensor data fusion experiments with the DLR
Crawler under varying visual conditions [Chilian et al., 2011]

the DLR Crawler walked manually steered through the gravel testbed. Its cameras

were set to fixed exposure, the lab was shaded, and a single corner of the testbed was

illuminated by a bright, slightly downward-pointing light, as depicted in Fig. 6.15(a).

Reaching this highly lit corner “C”, the robot was blinded as shown by the exemplary

left camera image in Fig. 6.15(b). Within this area, the camera images did not provide

enough texture for proper visual odometry, which returned a high error value. This

error value then caused the information filter to shift its weights towards an increased

influence of the leg odometry. Therefore, the overall pose estimate was not affected

by the strong errors of the visual odometry, as shown in Fig. 6.16(a). Once the visual

conditions improved, the weights of the fusion process changed towards an increased

influence of the visual odometry estimate. A comparison with the GTMS trajectories

shows, that the fusion result was highly accurate throughout the entire trial, even

though the robot experienced slippage and severe visual disturbances. This result

demonstrates that multisensor data fusion strongly increases the robustness of the

overall pose estimate, which is of great importance for navigating in environments

without external references.
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(c) Yaw angle with respect to time

Figure 6.16: Multisensor-data-fusion-based pose estimates of the DLR Crawler for an
experimental run under varying visual conditions [Chilian et al., 2011]
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7 | Discussion

Aiming at the development of six-legged robotic scouts for disaster recovery and ex-

ploration missions, this thesis introduced a set of algorithms that constitute a self-

contained walking layer for compliant, torque-controlled hexapedal robots. Further-

more, it proposed a novel 6-DOF leg odometry for these systems. The underlying

idea of the presented work is to produce complex locomotive behaviours and suffi-

ciently accurate pose estimates while only using simple algorithms that rely on the

proprioceptive measurements provided by the legs, i. e. joint angles and joint torques.

7.1 Robust, Adaptive, and Leg-Loss-Tolerant Hexapedal

Walking

With respect to hexapedal locomotion, this thesis demonstrates that such a set of

simple algorithms is well suited to produce robust, adaptive, and leg-loss-tolerant

walking in torque-controlled hexapods. The presented gait coordination adopts the

first three inter-leg coordination mechanisms that Cruse and collaborators identified

for the stick insect [Cruse, 1990]. Differing from the original findings as well as Espen-

schied’s implementation of Cruse’s rules [Espenschied, 1994, Espenschied et al., 1996],

this work uses three important adjustments. First, similar to [Ferrell, 1995], it re-

moves the timing component of mechanism 2. Therefore, each stance leg encourages

its anterior neighbour throughout the complete stance phase to initiate a step. This

strongly enforces forward-directed waves of protractions, which produce polygons of

support that provide a large margin of stability across the entire range of walking

speeds (see Chapter 4). Next, this thesis introduces a new coordination rule in order

to prevent simultaneous stepping of adjacent legs, which is a rare but possible event

when applying Cruse’s rules. This simple rule, called mechanism 0, bidirectionally

connects neighbouring legs and strictly inhibits the stance-to-swing transition of a

leg as long as any of its neighbours has not finished its step. Independently of this

thesis work, [El Sayed Auf, 2010] presents a similar inhibition rule for the six-legged
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walking robot Oscar, where it serves as the only mean of gait coordination. While

El Sayed Auf realises different gaits by adjusting the duty cycle of the legs, i. e. the

relation of stance-to-swing time, the combination of such a rule with Cruse’s first three

mechanisms results in a higher variability of the emerging gait. The third difference

of the coordination algorithm presented in this thesis is the novel binary safety value

that implements either a timing- or a contact-force-induced swing-to-stance transition.

This safety value enables higher-level algorithms to influence the walking layer such

that the robot takes greater risks in uneven terrain. Consequently, the robot is able

to descend steps that are larger than its walking height.

In addition to the gait coordination algorithm, the walking layer developed in

this thesis employs three basic leg reflexes, the stretch reflex, the elevator reflex,

and the search reflex. For these reflexes, the availability of joint torque measure-

ments is one of the main advantages in comparison to related work presented in

[Espenschied et al., 1996, El Sayed Auf, 2010, Bartsch et al., 2012, Rönnau et al., 2014,

Goldschmidt et al., 2014]. While the use of reflexes is quite common in multi-legged

robots, the use of joint torque measurements for triggering and monitoring them is

not. Collision detection, for example, benefits of the high sensitivity that joint torque

sensors provide along the entire leg in comparison to the limited capabilities of sen-

sors located at the feet. Furthermore, based on multiple sensors within each leg, the

collision detection gains redundancy with respect to sensor failure, and thus delivers

more reliable results. Only in [Paskarbeit et al., 2015] the authors report a similar

approach in employing joint torque estimates for collision detection. In their case the

joint torque estimates are obtained from the deflection of elastomer springs integrated

within the joints to provide passive compliance. While the gait coordination presented

in this thesis is responsible for temporal adaptations of the stepping sequence, the

reflexes mainly account for spatial variations of the terrain. However, extending the

swing phase of individual legs, elevator and search reflex also influence the gait tim-

ing. Thus, the interaction with the environment couples reflex and gait coordination

activity, and therefore produces complex spatio-temporal motion patterns. Another

important aspect of the presented approach is the fact that torque-threshold-based

stretch reflexes are sufficient to generate a terrain following behaviour in small robots

without requiring active posture control (see Sections 4.4 and 4.5). This significantly

reduces computational efforts while allowing the robot to effectively cross uneven ter-

rain. Of course, there is a limit to this behaviour at which posture control or active

force distribution control is inevitable to effectively master steep slopes (> 35◦ in case

of the DLR Crawler) or to prevent slippage in critical terrain where a fall might cause

the loss of the robot.
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In contrast to the common use of reflexes in hexapedal robots, the use of joint com-

pliance controllers with an underlying joint torque control loop, as presented within

this thesis, is unique. The strength of this approach is its ability to adapt the behaviour

of the robot in a very simple and intuitive way without using computationally expen-

sive inverse dynamics models. Additionally, the controller does not require accurate

knowledge of the system parameters, which are hard to determine. The underlying

joint torque controller further enables fast reactions (within 1 ms) and strongly lim-

its the interaction forces during collisions. Especially in the case of hard contacts,

this approach outperforms force-control methods relying on underlying position con-

trol loops as investigated in [Albu-Schäffer and Hirzinger, 2002]. Another advantage

of the joint compliance controller is its robustness with respect to disturbances. The

implemented controller never got unstable throughout all experiments. Even placing a

foot on loose stones does not destabilise the control. Furthermore, the joint compliance

controller reduces internal forces that result from uncertainties of the geometric param-

eters. Therefore, it prevents excessive slippage, which is often experienced in purely

position controlled hexapods. In addition, the controller allows the robot to comply

with natural terrain and to handle small elevation differences without reflex activity.

Accordingly, the joint compliance controller achieves more balanced leg loads while

not using an active leg force distribution algorithm. Related to this approach, but in-

volving higher computational efforts and an underlying position control loop, two very

recent examples employ virtual model control to achieve balanced leg loads in uneven

terrain [Paskarbeit et al., 2015, Bjelonic et al., 2016]. In both cases the stance legs are

treated as individual virtual mass-spring-damper systems and their foot positions are

adjusted such that the robot body moves towards an equilibrium configuration.

Another important property of the walking layer has been introduced in Chapter 5.

Therein, the gait coordination is extended to allow for the adaptation to the loss of

single legs. Following the detection of such an event, the walking layer quickly (within

1 ms) reorganises the neighbourhood relations of the functional legs in order to produce

proper gaits for the impaired robot. After a short transition phase of approximately

5 to 15 s the adapted gait pattern has fully emerged. A detailed simulation study

shows that the range of possible velocity commands reduces to approximately one

half of the completely functional robot. However, within these limits the gait coor-

dination preserves the beneficial forward-directed waves of protractions. Similar to

this approach, simple adaptation schemes have been investigated by other researchers

as well. [Ferrell, 1993] and [El Sayed Auf et al., 2008], for example, apply predefined

topological changes to their gait coordination networks. In contrast, [Ren et al., 2015]

and [Koos et al., 2013] employ learning-based methods to retune a CPG network or
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to completely learn adapted motions, respectively. While the latter two approaches

are very powerful, they are slow and computationally expensive. Therefore, they are

currently not well suited for use with resources limited hardware. Moreover, only this

thesis and the work of [El Sayed Auf, 2010] present solutions to improve the locomo-

tion performance of the impaired robot. For this purpose, El Sayed Auf adds another

local rule to each leg. This rule prevents a neighbour of a damaged leg from stepping

until its next functional neighbour is at a nearby extreme position (i. e. close to PEP

or AEP). As a result, the support polygon provides greater stability, but it is not clear

how the gait pattern is affected. In contrast, this thesis introduced several simple

measures to improve the locomotion performance, which do not interfere with the gait

coordination. An extensive simulation study shows that a combination of COG shift

and increased joint stiffness is most effective in reducing the leg-loss-induced rocking

motions and the associated yaw drift. However, the simulations also reveal that some

of the reflexes disturb the locomotion of the five-legged robot. Therefore, if possible

with respect to the terrain they should be turned off. Despite these limitations, the

adaptation scheme presented within this thesis reliably and effectively handles leg loss,

integrates well with the biologically-inspired gait, and preserves the positive aspects of

emerging gait patterns (e. g. temporal adaptation of the gait).

Compared to other approaches, the performance and variability of the presented

walking layer are unique. However, a detailed comparison is difficult since the ex-

perimental platforms have very different levels of maturity with respect to the hard-

ware used. Thus, it is not always clear to which extent a better performance is the

result of algorithmic properties or just better hardware. Nevertheless, the work of

[Espenschied et al., 1996] is outstanding as they present the first conclusive use of

Cruse’s rules in conjunction with reflexes on a real hexapedal robot. In addition,

they provide valuable lesion studies investigating the influence of single coordination

mechanisms. The approach presented by Manoonpong is very promising since it ad-

dresses a rich set of capabilities by using inter-connected CPGs that integrate proprio-

ceptive (joint angles only) and exteroceptive sensory feedback [Manoonpong, 2007].

His research group is also one of the few that investigates adaptation to leg loss

[Ren et al., 2015] as discussed above. [El Sayed Auf, 2010] employs the so-called or-

ganic computing framework to enable hexapedal walking while only using a set of very

simple rules. Based on this approach, the robot Oscar realises different gaits, reflex-

based obstacle crossing, and is able to adapt to leg loss. However, the results show

less variability and locomotive performance than those presented within this thesis.

Nevertheless, they are difficult to compare due to different levels of hardware inte-

gration. Anyway, the computational effort involved with Oscar is very low, and thus
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provides a great advantage for highly resource limited applications. While those simple

algorithms enable hexapods to cross a large variety of terrains, multi-legged robotic

locomotion across difficult obstacles currently still requires computationally expensive

foot point planning as investigated, for example, in [Belter, 2013].

However, considering the presented walking layer and the related experimental re-

sults, this work clearly verifies the first hypothesis of this thesis that simple and dis-

tributed algorithms, which only use the measurements provided by the proprioceptive

sensors of the legs, are able to generate robust, adaptive, and leg-loss-tolerant walking

in torque-controlled hexapedal robots. The performance of the DLR Crawler during at

least one hundred hours of operation (mostly during navigation experiments) is very

convincing. During these experiments the robot smoothly moved across natural ter-

rain and negotiated obstacles within its walking height autonomously. The approach

in general is highly adaptive to uneven ground and to the loss of single legs while

being robust with respect to disturbances experienced by the emerging gait (i. e. nego-

tiation of obstacles) or the joint controller. Additionally, most of the presented work

is not limited to the hardware concept of the DLR Crawler but also applies to robots

with serial elastic actuation and joint springs serving as torque sensors. Furthermore,

the presented walking layer easily extends to eight-legged robots as demonstrated in

[Görner and Hirzinger, 2010].

7.2 Pose Estimation in Torque-Controlled Hexapods

Regarding pose estimation in torque-controlled hexapods, this work proposed and

evaluated a full 6-DOF odometry that only uses the proprioceptive sensors of the

legs. Employing an optimisation-based approach, the first stage of the algorithm

incrementally computes the robot pose from joint angles while handling the vary-

ing ground contact configurations immanent to an emergent gait. The novel fusion

of the resulting pitch and roll angle estimates with absolute joint-torque-based val-

ues strongly improves the overall result of the pose estimation process. Not requir-

ing a complex motion model of the robot, the error-state Kalman filter represents a

simple but powerful algorithmic solution. With respect to the pose computation by

its first stage, the odometry algorithm shows similarities to the approaches used for

the robots Ambler [Roston and Krotkov, 1992] and Lauron [Gassmann et al., 2005b,

Gassmann et al., 2005a]. However, the main difference of the method developed within

this thesis is that it does not require an IMU to obtain a complete 6-DOF pose esti-

mate that incorporates absolute pitch and roll information. Moreover, the method can

be applied to stiff and compliant walking robots and is able to handle any statically
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stable emerging gait. Compared to most of the previous work, the algorithm has been

extensively tested and its performance is documented for the DLR Crawler walking on

different ground substrates, at different joint stiffness settings, and at different walking

velocities, and thus with various emerging gaits. In all of those experimental trials, the

Cartesian endpoint error remained within a range of 1 to 5 %. This is a remarkable

accuracy for a multi-legged robot that does not use an IMU at this stage. Thus, for

walking, the experimental results clearly validate the second hypothesis of this work

that leg proprioception alone is sufficient to estimate the pose of a torque-controlled

hexapod with respect to its starting point.

Clearly, the presented approach has several limitations as well. First of all, the odom-

etry is only applicable to statically stable walking robots, which was the focus of this

work. During dynamic locomotion, pose estimation requires IMU data to cover flight

phases as presented in [Reinstein and Hoffmann, 2011, Reinstein and Hoffmann, 2013]

and [Lin et al., 2005, Lin et al., 2006]. Additionally, for running, the gravity vector

computation is not valid since the ground contact forces are not dominated by grav-

itational loads anymore. Another limitation of the presented approach is the drift

inherent to all dead reckoning methods. This drift results in an estimation error that

grows unbounded with the distance travelled, and therefore limits the useful range of

the odometry. However, since the leg odometry is intended to serve as an aiding sen-

sor in a multi-modal sensor fusion scheme for localisation, this drift is less important.

Within this framework, the leg odometry provides redundancy and strongly increases

the robustness of the pose estimate with respect to IMU failures and temporary dis-

turbances of the visual odometry. This advantageous behaviour has been successfully

demonstrated in various navigation experiments with the DLR Crawler.
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8 | Conclusions and Outlook

This thesis investigated the locomotion and pose estimation in compliant, torque-

controlled hexapods. The work presented verifies the hypothesis that simple, dis-

tributed, and solely leg-proprioception-based algorithms are able to generate robust,

adaptive, and leg-loss-tolerant walking in natural terrain. Furthermore, it verifies the

hypothesis that leg proprioception alone is sufficient to provide a full pose estimate

with respect to the starting point of the robot. The motivation for employing only

simple algorithms is to avoid complex, and thus error-prone, model-based approaches.

This is especially important for small mobile robots that operate with limited com-

putational resources in a priori unknown environments. A key feature of the work

presented is the use of joint torque measurements, enabling simple but highly robust

compliance control, a sensitive detection of contacts and collisions, and pose estimation

with increased accuracy.

The set of algorithms proposed constitutes a walking layer that realises omnidirec-

tional locomotion. For this purpose, it employs a flexible, biologically-inspired gait co-

ordination, generating stable gaits with forward-directed waves of protractions. Those

gaits are beneficial as they increase the static stability margin. Furthermore, the walk-

ing layer provides three basic reflexes, which enable the robot to negotiate obstacles

within its walking height autonomously. Another important property of the walking

layer is that it encapsulates the whole walking process, and thus facilitates interaction

with higher-level algorithms using a simple interface. Apart from steering commands

and state information, this interface provides a novel binary safety value. Setting

this value to zero allows the higher-level algorithm to influence the obstacle-crossing

behaviour of the robot such that it takes higher risks. Having lost a single leg, the

walking layer is able to adapt the gait coordination within one time step. Thereafter,

an adapted gait fully emerges within 15 seconds. Stiffening the joints and shifting the

COG with respect to the support polygon strongly improves the locomotion perfor-

mance of the five-legged robot. To inform a higher-level navigation algorithm about

the locomotive capabilities of the robot, a range of feasible velocity commands has been

computed for the fully functional as well as the impaired system. With respect to the
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leg-proprioception-based pose estimation, this thesis demonstrates the ability of the

algorithm to handle emerging gaits with varying ground contact configurations. More-

over, it proves that joint-torque-based attitude information stabilises and improves the

overall pose estimate.

Despite of all useful properties, the presented approach also has several limitations.

At first, it is only applicable to smaller robots that provide sufficiently strong legs to

endure short periods of asymmetric, high loads. Large robots, in contrast, often require

a careful distribution of ground reaction forces as their legs can only support smaller

portions of their weight. Next, the walking layer requires torque measurements, and

thus the integration of additional sensors. However, the hardware effort is justified by

its substantial benefits on locomotion and localisation. Furthermore, it is important

to note that the walking layer only covers one mode of locomotion, i. e. slow, statically

stable walking in uneven terrain. With respect to complex exploration scenarios, future

robots should also provide two additional modes: energetically efficient running on un-

even ground, and force-controlled climbing in very rugged terrain. Similar to walking,

those two should not require computationally complex model-based controllers, but

should employ simple, distributed solutions as well. The running mode, for example,

could exploit self-stabilising mechanics that are driven by feedforward control. For

climbing the problem is much harder as it requires a careful distribution of ground

reaction forces. Apart from those different modes of locomotion, a future exploration

robot should also provide the capability to manipulate its environment using its legs

or its body. As for climbing, manipulation requires the careful control of interaction

forces. Being structurally related, a common approach should ideally solve both prob-

lems. Using tactile sensors, the legs could also actively explore the environment using

the sense of touch. Doing so, they could create sparse 3D maps under visually bad

conditions while simultaneously estimating the properties of the local terrain.

To conclude, this thesis demonstrates in simulations and experiments with the DLR

Crawler that simple, distributed, and solely leg-proprioception-based algorithms are

capable to generate robust, adaptive, and leg-loss-tolerant walking in torque-controlled

hexapods. In addition, it shows that leg proprioception is sufficient for these robots

to obtain a full pose estimate. Hence by investigating torque-controlled hexapedal

walking and by adding new and improved capabilities to these systems, this thesis

contributes to the ongoing process of creating autonomous six-legged robots for future

exploration missions.
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A | Parameters of the Simplified Dynam-

ics Model

Table A.1: Parameters of the simplified dynamics model of the DLR Crawler

Parameter Description Value

Body

mb [kg] mass of the robot body 3.66
Jb,xx [kgm2] mass moment of inertia about the x axis of the robot body 0.0153
Jb,yy [kgm2] mass moment of inertia about the y axis of the robot body 0.0221
Jb,zz [kgm2] mass moment of inertia about the z axis of the robot body 0.0313
lb [m] length of the robot body in between the front and hind leg 0.25
bb1 [m] width of the robot body in between the middle legs 0.22
bb2 [m] width of the robot body in between the front/hind legs 0.176
αleg [◦] downward tilt of the leg base wrt the body xy-plane 15
βleg [◦] angle of the front/hind legs wrt the body xz-plane 50

Leg

l1 [m] length of the proximal segment of the leg 0.075
l2 [m] length of the medial segment of the leg 0.04
l3 [m] length of the distal segment of the leg 0.04
k1 [Nm/rad] low(high) joint stiffness value of the protraction/retraction DOF 8(16)
k2 [Nm/rad] low(high) joint stiffness value of the elevation/depression DOF 6(12)
k3 [Nm/rad] low(high) joint stiffness value of the extension/flexion DOF 6(12)
d1 [Nms/rad] joint damping of the protraction/retraction DOF 0.2
d2 [Nms/rad] joint damping of the elevation/depression DOF 0.2
d3 [Nms/rad] joint damping of the extension/flexion DOF 0.1

Ground

µ coefficient of friction 0.8
vslip,nom [m/s] nominal slipping velocity 1
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B | Crossing Steps: Additional Simu-

lation Results
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Figure B.1: Joint trajectories of the left middle leg (L2) of the simulated DLR Crawler
for crossing an 8-cm-downward step; all reflexes are enabled; red ellipses
mark stretch reflex activity; brown ellipses mark elevator reflex activity
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Figure B.2: Joint trajectories of the left hind leg (L3) of the simulated DLR Crawler
for crossing an 8-cm-downward step; all reflexes are enabled; red ellipses
mark stretch reflex activity; brown ellipses mark elevator reflex activity
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Figure B.3: Joint trajectories of the right front leg (R1) of the simulated DLR Crawler
for crossing an 8-cm-downward step; all reflexes are enabled; red ellipses
mark stretch reflex activity; brown ellipses mark elevator reflex activity
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Figure B.4: Joint trajectories of the right middle leg (R2) of the simulated DLR
Crawler for crossing an 8-cm-downward step; all reflexes are enabled; red
ellipses mark stretch reflex activity; brown ellipses mark elevator reflex
activity
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Figure B.5: Joint trajectories of the right hind leg (R3) of the simulated DLR Crawler
for crossing an 8-cm-downward step; all reflexes are enabled; red ellipses
mark stretch reflex activity; brown ellipses mark elevator reflex activity
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Figure B.6: Joint angles (blue) and joint torques (orange) of the left middle leg (L2)
of the simulated DLR Crawler for crossing a 5-cm-downward step: reflexes
enabled; stretch reflex (red ellipse); elevator reflex (brown ellipse); reflex
height reduction (green ellipse)
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Figure B.7: Joint angles (blue) and joint torques (orange) of the left hind leg (L3) of
the simulated DLR Crawler for crossing a 5-cm-downward step: reflexes
enabled; stretch reflex (red ellipse); elevator reflex (brown ellipse); reflex
height reduction (green ellipse)
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Figure B.8: Joint angles (blue) and joint torques (orange) of the right front leg (R1) of
the simulated DLR Crawler for crossing a 5-cm-downward step: reflexes
enabled; stretch reflex (red ellipse); elevator reflex (brown ellipse); reflex
height reduction (green ellipse)



133

10 15 20 25 30
−20

0

20

t in s

θ 1
,R

2
in

d
eg

10 15 20 25 30
−0.8

0

0.8

τ 1
,R

2
in

N
m

10 15 20 25 30

−50

0

50

t in s

θ 2
,R

2
in

d
eg

10 15 20 25 30

−1

0

1

τ 2
,R

2
in

N
m

10 15 20 25 30

−50

0

50

t in s

θ 3
,R

2
in

d
eg

10 15 20 25 30

−1

0

1

τ 3
,R

2
in

N
m

robot crosses downward step

(a) Safety value: 1

10 15 20 25 30
−20

0

20

t in s

θ 1
,R

2
in

d
eg

10 15 20 25 30
−0.8

0

0.8

τ 1
,R

2
in

N
m

10 15 20 25 30

−50

0

50

t in s

θ 2
,R

2
in

d
eg

10 15 20 25 30

−1

0

1

τ 2
,R

2
in

N
m

10 15 20 25 30

−50

0

50

t in s

θ 3
,R

2
in

d
eg

10 15 20 25 30

−1

0

1

τ 3
,R

2
in

N
m

robot crosses downward step

(b) Safety value: 0

Figure B.9: Joint angles (blue) and joint torques (orange) of the right middle leg (R2)
of the simulated DLR Crawler for crossing a 5-cm-downward step: reflexes
enabled; stretch reflex (red ellipse); elevator reflex (brown ellipse); reflex
height reduction (green ellipse)
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Figure B.10: Joint angles (blue) and joint torques (orange) of the right hind leg (R3) of
the simulated DLR Crawler for crossing a 5-cm-downward step: reflexes
enabled; stretch reflex (red ellipse); elevator reflex (brown ellipse); reflex
height reduction (green ellipse)
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C | Additional Leg-Loss Simulations

t = 2 s t = 3 s t = 4 s

t = 5 s t = 6 s t = 7 s

Figure C.1: Simulation of the DLR Crawler experiencing the loss of its left middle leg
(L2); light green frames: the robot is fully functional, red frame: the left
front leg is lost (i. e. lifted and hold in this position), green frames: the
robot instantaneously adapts its gait, shifts its COG away from L1 and
increases its joint stiffness settings
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t = 2 s t = 3 s t = 4 s

t = 5 s t = 6 s t = 7 s

Figure C.2: Simulation of the DLR Crawler experiencing the loss of its left hind leg
(L3); light green frames: the robot is fully functional, red frame: the left
front leg is lost (i. e. lifted and hold in this position), green frames: the
robot instantaneously adapts its gait, shifts its COG away from L1 and
increases its joint stiffness settings
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D | Thesis-Related Publications

Within the following list, all scientific publications are given that originate in the work

summarized and presented by this thesis. The list is split in two parts - one part

wherein I am the first author of the published articles and another part wherein I am

the co-author. For each of the publications, a short statement is included that relates

the presented results to the respective chapter of this thesis.

Publications as first author:

• Journal articles

– M. Görner, Th. Wimböck and G. Hirzinger (2009), The DLR Crawler:

Evaluation of gaits and control of an actively compliant six-legged walking

robot, Industrial Robot: An International Journal, 36(4):344-351 (This ar-

ticle relates to Chapter 3 and 4 as it gives an overview of the robot, its joint

compliance control, the basic gait algorithm and the reflexes used. However,

the results presented within this thesis refer to an improved and extended

version of the algorithms.)

– M. Görner and A. Stelzer (2013), A leg proprioception based 6 DOF odom-

etry for statically stable walking robots, Autonomous Robots, 34(4):311-326

(This article relates to Chapter 6 and presents the derivation of the algo-

rithm as well as large parts of the respective results given in this thesis.)
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• Conference articles

– M. Görner and G. Hirzinger (2010), Analysis and evaluation of the stability

of a biologically inspired, leg loss tolerant gait for six- and eight-legged walk-

ing robots, In IEEE International Conference on Robotics and Automation

(ICRA), pages 4728 - 4735, Anchorage, AK, USA (This article relates to

Chapter 5 and presents the basic adaptation scheme as well as the influ-

ence of a leg loss on the feasible walking velocities. However, the results

presented within this thesis are based on an improved and extended version

of the algorithm.)

– M. Görner, A. Chilian and H. Hirschmüller (2010), Towards an autonomous

walking robot for planetary surfaces, In International Symposium on Arti-

ficial Intelligence, Robotics and Automation in Space (i-SAIRAS), pages

170-177, Sapporo, Japan (This article gives a short overview of the robot,

summarizes the gait algorithm as well as the adaptation to leg loss and

presents the visual navigation scheme. Some of the navigation experiments

presented in this article are included in Chapter 4 of this thesis.)

Publications as co-author:

• Journal articles

– A. Stelzer, H. Hirschmüller and M. Görner (2012), Stereo-vision-based nav-

igation of a six-legged walking robot in unknown rough terrain, The Inter-

national Journal of Robotics Research, 31(4):381-402 (This article presents

the complete rough terrain navigation of the DLR Crawler. It is related to

Chapter 6 of this thesis, which in one section presents some of the experi-

mental results.)

• Conference articles

– A. Stelzer, H. Hirschmüller and M. Görner (2011), Multisensor data fusion

for robust pose estimation of a six-legged walking robot, In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

2497-2504, San Francisco, CA, USA (This article presents the multisensor

data fusion of the DLR Crawler including, IMU, visual odometry and leg

odometry. It is related to Chapter 6 of this thesis, which includes some of

the experimental results under bad visual conditions.)
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