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Zusammenfassung

Wir untersuchen relative Entropie im Rahmen von Modellen, die auf (geo-
metrischen) Lévy-Prozessen basieren. Sei S = (St)s∈[0,T ], T > 0, ein auf
einemWahrscheinlichkeitsraum (Ω,F ,P) definierter geometrischer Lévy-Prozess;
das bedeutet, S sei ein stochastischer Prozess der Form

St = S0 exp(Xt), t ∈ [0, T ],

wobei S0 > 0 konstant ist und X = (Xt)t∈[0,T ] ein Lévy-Prozess mit charak-
teristischem Tripel (b, σ2, ν) verknüpft mit der abgeschnittenen Funktion h,
welche durch h(x) = x1{|x|≤1}, x ∈ R, definiert ist.

Dies ist das Basismodell unserer Untersuchung. Wir interessieren uns für
diejenigen Martingalmaße Q, für die der Prozess S ein Q-Martingal ist und
Q äquivalent zum ursprünglichen Maß P.

Die Menge der absolut stetigen Martingalmaße Ma kann eine der fol-
genden drei verschiedenen Formen annehmen: 1) leer; 2) bestehend aus nur
einem Maß (im Fall ohne Sprünge, klassisches Black–Scholes–Modell); 3) be-
stehend aus einer unendlichen Anzahl an Martingalmaßen. Wir interessieren
uns besonders für den letzten Fall.

Seien Q und P zwei Wahrscheinlichkeitsmaße auf (Ω,F ) und sei G eine
Unter-σ-Algebra von F . Die relative Entropie I(Q,P)G von Q bezüglich P

über G ist definiert durch

IG (Q,P) :=





EP

[
dQ
dP

∣∣
G
log dQ

dP

∣∣
G

]
, if Q|G � P|G ,

+∞, sonst.

Ein Wahrscheinlichkeitsmaß Q0 ∈ M heißt Minimales Entropie Martin-
galmaß (MEMM), falls es

I(Q0,P) = min
Q∈Ma

I(Q,P) = min
Q∈Ma

EP

[
dQ

dP
log

dQ

dP

]
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erfüllt.
Der Abstand zwischen P und Ma wird definiert durch

I(Ma,P) = inf
Q∈Ma

I(Q,P).

In dieser Arbeit suchen wir nach dem MEMM Q∗ in der Klasse Ma für
unser Basismodell und untersuchen die Verbindung zwischen diesem MEMM
Q∗ und dem sogenannten Esscher Martingalmaß (EMM) QE, welches folgen-
dermaßen definiert ist:
Sei κ ∈ R so, dass E[exp(κXt)] <∞ für t ∈ [0, T ], und setze

Zκ
t :=

dQκ

dP
|Ft

=
exp(κXt)

E[exp(κXt)]
für t ∈ [0, T ].

Das Wahrscheinlichkeitsmaß Qκ ist das EMM, falls X ein Qκ-Martingal auf
[0, T ] ist. Wir bezeichnen das EMM auf [0, T ], so es denn existiert, mit QE.

Eines der Hauptresultate der Arbeit ist die Gleichheit der Begriffe MEMM
und EMM für unser Basismodell.

Die Arbeit ist in vier Kapitel gegliedert, gefolgt von zwei Appendix. In
Kapitel 1 sammeln wir Hauptresultate der Maßtheorie und stochastischen
Analysis. In Kapitel 2 liefern wir eine Einführung in das Problem des EMM.
In Kapitel 3 untersuchen wir das Modell von Preisprozessen, welches auf
einem exponentiellen (geometrischen) zusammengesetzten Poisson-Prozess
basiert, und zeigen seine Verbindung zum Ein-Schritt-Modell. In Kapitel
4 sind die Hauptuntersuchungsobjekte Modelle, die von linearen und expo-
nentiellen (geometrischen) Lévy-Prozessen getrieben werden. Hier werden
die Hauptresultate der Arbeit aufgeführt, einschließlich einer hinreichenden
Bedingung für die Existenz des EMM, des Zusammenfallens des EMM und
des MEMM für von linearen und exponentiellen Lévy-Prozessen getriebenen
Modelle und einer Reihe wichtiger expliziter Gleichungen für den Wert der re-
lativen Entropie des EMM bezüglich des ursprünglichen Wahrscheinlichkeits-
maßes. In Appendix A sind die wichtigsten Eigenschaften der technischen
Funktionen ψ und ϕ, welche im Haupttext der Arbeit umfangreich benutzt
werden, gesammelt. In Appendix B wenden wir die in Kapitel 2 entwickelte
allgemeine Theorie auf ein spezielles Modell, das Ein-Schritt-Modell, an.



Abstract

We investigate relative entropy in the frame of models based on (geometric)
Lévy processes.

Let S = (St)s∈[0,T ], T > 0, be a geometric Lévy process defined on a
probability space (Ω,F ,P), that is, S is a stochastic process of the form:

St = S0 exp(Xt), t ∈ [0, T ],

where S0 > 0 is a constant and X = (Xt)t∈[0,T ] is a Lévy process with char-
acteristic triplet (b, σ2, ν) associated with the standard truncation function
h defined by h(x) = x1{|x|≤1}, x ∈ R.

This is our basic model for investigation. We are interested in such mar-
tingale measures Q that process S is Q-martingale and Q is equivalent to the
original measure P. The set of the absolutely continuous martingale measures
Ma may have one of three different forms: 1) empty; 2) consists of just one
measure (case without jumps, the classic Black–Scholes model); 3) consists
of the infinite number of martingale measures. We have special interest in
the last case.

Let Q and P be two probability measures on (Ω,F ) and G some sub-
σ-field of F . The relative entropy I(Q,P)G of Q with respect to P on G is
defined by

IG (Q,P) :=





EP

[
dQ
dP

∣∣
G
log dQ

dP

∣∣
G

]
, if Q|G � P|G ,

+∞, otherwise.

A probability measure Q0 ∈ Ma will be called the minimal entropy mar-
tingale measure (MEMM) if it satisfies

I(Q0,P) = min
Q∈Ma

I(Q,P) = min
Q∈Ma

EP

[
dQ

dP
log

dQ

dP

]
.
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The distance between P and Ma is defined by

I(Ma,P) = inf
Q∈Ma

I(Q,P).

In this thesis we are looking for the MEMM Q∗ in the class Ma for our
basic model and are investigating the connection between such MEMM Q∗

and the so-called Esscher Martingale Measure (EMM) QE defined as follows:
Let κ ∈ R with E[exp(κXt)] <∞ for t ∈ [0, T ] and define

Zκ
t :=

dQκ

dP
|Ft

=
exp(κXt)

E[exp(κXt)]
for t ∈ [0, T ].

The probability measure Qκ is the EMM if X is a Qκ-martingale on [0, T ].
The EMM on [0, T ], if it exists, is denoted by QE.

In fact, one of the main result of the thesis states the identity of the
notions MEMM and EMM for our basic model.

The thesis is divided in four chapters which are followed by two appen-
dices. In Chapter 1 we collect main results of measure theory and stochastic
analysis. In Chapter 2 we give an introduction to the problem of the MEMM.
In Chapter 3 we investigate the model of the price processes based on the
exponential (geometric) compound Poisson process and show its connection
with the one-step model. In Chapter 4 the main objects of the investigations
are models driven by the linear and exponential (geometric) Lévy processes.
There are stated the main results of the thesis, including a sufficient condi-
tion of the existence of the EMM, coincidence of the EMM and the MEMM
for the models driven by the linear and exponential Lévy processes and a
series of important explicit equalities for the value of the relative entropy of
the MEMM with respect to the original probability measure. In Appendix A
are collected the most important properties of the technical functions ψ and
ϕ which are widely used in the main body of the thesis. In Appendix B we
apply the general theory developed in Chapter 2, to a particular model, the
one-step model.



Introduction

The main aim of this PhD thesis is to investigate relative entropy in the
frame of models based on (geometric) Lévy processes.

Let S = (St)s∈[0,T ], where T > 0 is a finite horizon, be a geometric Lévy
process defined on a probability space (Ω,F ,P), that is, S is a stochastic
process of the form:

St = S0 exp(Xt), t ∈ [0, T ],

where S0 > 0 is a constant and X = (Xt)t∈[0,T ] is a Lévy process with char-
acteristic triplet (b, σ2, ν) associated with the standard truncation function
h defined by h(x) = x1{|x|≤1}, x ∈ R.

This is our basic model for investigation. We are interested in such prob-
ability measures Q that the process S is Q-martingale and Q is equivalent
(or, at least, absolutely continuous) to the original measure P. In financial
mathematics the notion of a martingale measure is very important because of
the no-arbitrage property. If ν ≡ 0 we get the famous Black–Scholes model
with volatility σ and drift µ = b − 1

2
σ2 which was already studied for dec-

ades. The well-known fact is that in this case there exists a unique absolutely
continuous martingale measure, but it is not the case for the general Lévy
process X. The set of the absolutely continuous martingale measures Ma

may have one of three different forms: 1) the set Ma could be empty (in case
when X or −X is a subordinator, Proposition 4.4); 2) the set Ma consists
of just one measure (case without jumps, the classic Black–Scholes model);
3) the set Ma consists of an infinite number of martingale measures.

The last case means that one has to make a decision which martingale
measure should be used as a pricing measure. And here comes into play the
relative entropy.

Let Q and P be two probability measures on (Ω,F ) and G some sub-
σ-field of F . The relative entropy IG (Q,P) of Q with respect to P on G is
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defined by

IG (Q,P) :=





EP

[
dQ
dP

∣∣
G
log dQ

dP

∣∣
G

]
, if Q|G � P|G ,

+∞, otherwise.

In other words, the relative entropy, also known as a Hellinger distance, plays
the role of the ”distance” between measures. For the sake of simplicity of
notation, we will often omit the subindex G if G = F or if it is clear from
the context which sub-σ-field G is used.

We are interested in such an absolutely continuous martingale measure
Q0 that is ”the closest” to the original measure P: A probability measure
Q0 ∈ Ma will be called the minimal entropy martingale measure (MEMM)
if it satisfies

I(Q0,P) = min
Q∈Ma

I(Q,P) = min
Q∈Ma

EP

[
dQ

dP
log

dQ

dP

]
.

The distance between P and Ma is defined by

I(Ma,P) = inf
Q∈Ma

I(Q,P).

For the definition of the relative entropy there was used the function
x log x, but it is also possible to use another function, for instance, x2 (in
this case the measure Q0 would be named square-optimal). Nevertheless, the
relative entropy has very important advantages. First of all, the MEMM, if
it exists, is always equivalent to the original measure P which is not the case
for the square-optimal. The second important advantage comes from the
motivation side: there is a strong connection with the portfolio-optimization
problem, in particular, there could be built the duality problem between the
problem of finding the MEMM and the problem of portfolio optimization in
case of the exponential utility function. This fact was widely investigated, in
particular, in Delbaen et al. (2002) and Kabanov & Stricker (2002).

The third important advantage is the form of the MEMM. The main result
of the thesis is the remarkable fact of the coincidence of the MEMM and the
so-called Esscher martingale measure (EMM), that is described below: Let
κ ∈ R with E[exp(κXt)] <∞ for t ∈ [0, T ] and define

Zκ
t :=

dQκ

dP
|Ft

=
exp(κXt)

E[exp(κXt)]
for t ∈ [0, T ].

The process Zκ is called Esscher density process and the measure Qκ defined
on FT is called the Esscher measure. One says that the probability measure



xi

Qκ is the Esscher martingale measure (EMM) if S is a Qκ-martingale on
[0, T ]. The EMM on [0, T ], if it exists, will be denoted by QE.

The notions of the Esscher transformation and the Esscher measure were
introduced in actuarial mathematics in Esscher (1932) in 1932. They have
many useful properties, in particular, the Esscher transformation preserves
the ”Lévy property”: if X is P-Lévy process then it is also a Qκ-Lévy process.
In Gerber & Shiu (1994) it was suggested to use the EMM for the option
pricing. This idea was significantly developed, in particularly, because of the
duality between the problem of portfolio optimization and the minimization
of relative entropy. Using the results of Frittelli (2000), there were invest-
igated for models based on (geometric) Lévy processes the cases when the
MEMM is the EMM and vice verse. We mention just a few of the numerous
papers in this field: Fujiwara & Miyahara (2003) , Grandits & Rheinländer
(2002) and Hubalek & Sgarra (2006). A very important result was obtained
in Esche & Schweizer (2005): it was shown that the MEMM, if it exists,
always preserves the ”Lévy property”. The disadvantage of the last paper is
its very sophisticated approach based on so-called Girsanov quantities and
that the proof of their result that the MEMM is the EMM is not rigorous
enough (as it is mentioned by the authors, their proof is ”a little bit more
rigorous as by Gerber and Shiu”).

We have used a completely different approach, widely exploiting an ap-
proximation procedure and the connection between the models based on the
(geometric) Lévy processes and the simple one-step model. As a first step,
we have focused on the simple model, that was already widely investigated
in the literature, in particular, in Cherny & Maslov (2003) and Cherny &
Shiryaev (2002), but is still significantly undervalued because of its simpli-
city. All main facts on this model are collected in Appendix B in a form that
is useful for application in the chapters below. The second step was to show
the equivalence of the models based on the geometric Lévy processes and on
the linear Lévy processes. It simplified the variety of the considered models.
In the following, it is therefore sufficient to focus on the linear Lévy process
X as asset price.

The third step was to find the appropriate collection of the initial as-
sumptions on the basic model and to investigate what happens when these
assumptions do not hold. We follow the literature (cf., e.g. Cherny & Shiry-
aev (2002)) that it is sufficient to assume just that neither X nor −X is a
subordinator. We give a new proof that this condition is necessary and suffi-
cient for the no-arbitrage property and we obtain further conclusions. It was
already mentioned above that if this condition fails there exist no absolutely
continuous martingale measures at all.

Then we have shown that if the EMM exists, then it is the MEMM (see
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Theorem 4.7). Further, we have constructed special sequences of probability
measures Pn that have the following properties: Pn is equivalent to P, the
processX has finite Pn-exponential moments of all order and, therefore, there
exists a sequence of EMMs QE

n , which, according to Theorem 4.7, are the
MEMMs for the respective Pn (but not the original P). Using these sequences,
we have estimated the distance between the set of equivalent martingale
measures and the original measure P.

The next step was the crucial in our investigation: we have used the
connection between the one-step model and the model based on the Lévy
processes to show that if the MEMM exists, then there exists the EMM and
both measures coincide. If the MEMM does not exist, the EMM also does
not exist.

The last step was to extend the results to the wider class of measures,
with respect to which the process X is just a local martingale.

Many important facts were collected as conclusions of the main result, in
particular, there was defined the notion of a sufficient subclass of measures
for the solution of the minimization problem. Amongst others we have de-
termined the largest class for which the solution of the minimization problem
is the MEMM and we have given a series of identities for quantities of relative
entropy.

The thesis is divided into four chapters which are followed by two appen-
dices.

In Chapter 1 we collect basic results of measure theory and stochastic
analysis which will be used in the thesis. There is also a section dedicated
to the well-known properties of relative entropy.

The aim of Chapter 2 is to give an introduction to the problem of the min-
imal entropy martingale measures (MEMM). The chapter is based on results
of Frittelli (2000) which are natural generalization of ideas of Csiszár (1975).
We consider a general incomplete security market model, with possibly an
infinite number of price processes defined on a general filtered probability
space. When the processes are bounded, it is proven that the MEMM exists
and is unique (Proposition 2.3). It is also shown that the MEMM (if it exists
and the relative entropy is finite) is always equivalent to the original measure.
The main result of this chapter is formulated in Theorem 2.6 and gives the
characterization of the density of the MEMM. The results mentioned above
are quite general and abstract, but they are useful in applications to partic-
ular models. In our case the results of this chapter will be applied to the
one-step model (see Appendix A). Despite its simplicity, the one-step model
plays an important role and is used in Chapter 4 for solving the more general
problem when the price process is driven by a linear Lévy process.

In Chapter 3 we shall investigate the model of the price processes based
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on the exponential (geometric) compound Poisson process and show its con-
nection with the one-step model. The surprising result is obtained for the
case of compound Poisson process without drift: the problem splits onto two
independent problems: find the MEMM for the jump size distribution and
find the ”best” intensity. There is also investigated the problem of approx-
imation of the optimal measure in case when MEMM does not exist.

At the beginning of Chapter 4, in Section 4.1 the main objects of the
investigations are models driven by the linear and geometric (exponential)
Lévy processes. Our first aim is to show the equivalence of the problem of
finding the martingale measures for such models. In particular, it is used the
well-known approach based on the properties of stochastic exponentials and
logarithms for reformulation of the linear case problem in terms of exponen-
tial case problem and vice verse (see Proposition 4.1). This is the reason why
we choose just the linear model for the further consideration.

In the following section (Section 4.2), we are going to introduce the key
notion of this thesis – the Esscher martingale measure (EMM) – and provide
a sufficient condition of its existence (existence of exponential moments, Pro-
position 4.4). The problem of existence of at least one equivalent martingale
measure is discussed in Section 4.3 (cf. Proposition 4.5). Afterwards, we are
going to show the coincidence of the EMM and the minimal entropy martin-
gale measure (MEMM) for the model driven by the linear Lévy process. In
Section 4.4, we show that the EMM, if it exists, is the MEMM.

Our next aim is to complete the proof of the main result of the thesis: the
coincidence of the EMM and the MEMM for the models driven by a linear
Lévy process. More precisely, we are going to prove that the EMM exists if
and only if the MEMM exists and if one (hence both) of these conditions is
satisfied then we have the coincidence of these probability measures. This
will be the subject of Sections 4.5 – 4.7.

The idea of the proof of this basic fact is the following: We construct
approximation sequences of probability measures Pn via their densities Z

(n)
T

with respect to the original probability measure P in such a way that there
always exists the EMM QE

n with respect to Pn. Furthermore, we show that
the infimum of relative entropy in the class of martingale measures Ma(T )
coincides with the upper limit of relative entropy of the sequence I(QE

n ,P).
Using the connection with the one-step model we get the equivalence of the
existence of the EMM and the MEMM and their equality for the models
driven by the linear Lévy process.

Finally, in Section 4.8, we state some important corollaries.

The aim of Appendix A is to collect the most important properties of the
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functions ψ and ϕ which are widely used in the main body of the thesis:

ϕ(κ) = E[exp(κ(ξ − ξ0))], κ ∈ R,

ψ(κ) = E[(ξ − ξ0) exp(κ(ξ − ξ0))], κ ∈ R

Note that we work here just with random variables but not with general
stochastic processes.

In Appendix B we apply the general theory developed in Chapter 2, to a
particular model, the one-step model.

The appendices are included for easier reference. The results are slight
extensions of basically known facts.



1
Preliminaries

In this chapter we collect some basic notions and results of measure theory
and stochastic analysis which will be used in the thesis. There is also a
section dedicated to the well-known properties of relative entropy.

1.1 Measure Theory

We consider an arbitrary nonempty set Ω. If A ⊆ Ω we denote by Ac the
complement of A in Ω. A system A of subsets of the set Ω is called a σ-
algebra (in Ω) if it has the following properties: (i) Ω ∈ A ; (ii) from A ∈ A

it follows that Ac ∈ A ; (iii) from (An)n∈N ⊂ A it follows that ∪n∈NAn ∈ A .

A system R of subsets of Ω is called a ring (in Ω) if it has the following
properties: (i) ∅ ∈ R; (ii) from A,B ∈ R it follows that A \ B ∈ R; (iii)
from A,B ∈ R it follows that A ∪ B ∈ R. Before we recall the definition
of a measure, we start from the notion of a pre-measure: let R be a ring in
Ω and µ a function on R with values in [0,+∞]. The function µ is called
a pre-measure on R if (i) µ(∅) = 0; (ii) for every sequence (An) of pairwise
disjoint sets from R whose union lies in R we have

µ
( ∞⋃

i=1

An

)
=

∞∑

n=1

µ(An).

1.1 Definition. A pre-measure defined on a σ-algebra A of subsets of a
set Ω is called a measure. If µ(Ω) < +∞, the measure µ is called finite.
If for some sequence (An) ⊂ A holds ∪∞

n=1An = Ω and for any n we have
µ(An) < ∞, the measure µ is called σ-finite. If µ(Ω) = 1, the measure µ is
called a probability measure.
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If Ω is a set and A a σ-algebra in Ω, the pair (Ω,A ) will be called
a measurable space and the sets from A measurable sets. If in addition a
measure µ is given on the σ-algebra A , then the triple (Ω,A , µ) arising from
the measurable space (Ω,A ) is called a measure space. If µ is a probability
measure, the measure space (Ω,A , µ) is called a probability space.

1.2 Definition. Let (Ω,A ) and (Ω′,A ′) be measurable spaces, and T :
Ω → Ω′ a mapping of Ω into Ω′. Then T is called A -A ′-measurable or
simply measurable if T−1(A′) ∈ A for every A′ ∈ A ′.

We do not go into details of the definition of the integral of a measurable
function with values in (R,B(R)) and we refer to Bauer (2001), Chapter II.
We introduce the notation

µ(f) :=

∫

Ω

f dµ :=

∫

Ω

f(x)µ(dx)

if the integral on the right-hand side exists. In particular, µ(f) is well defined
if f is nonnegative. We say that a measurable function f of arbitrary sign is
µ-integrable or simply integrable if µ(|f |) < +∞.

By functions, if not otherwise specified, we mean functions with values
in (R,B(R)), that is, numerical functions. Let f be a measurable function.
By ‖f‖q we denote the following norm

‖f‖q :=





µ(|f |q)
1
q , q ∈ [1,+∞),

ess supx∈Ω |f(x)| , q = +∞ ,

and we put

Lq(µ) := {f measurable : ‖f‖q < +∞} , q ∈ [1,+∞].

We recall that f ∈ Lq(µ) is uniquely determined up to equivalence µ-a.e.
A function f belonging to L1(µ) is called integrable, while it is called

square integrable if it belongs to L2(µ). In general, we say that f is q-
integrable if it belongs to Lq(µ), q ∈ [1,+∞). Let (fn)n≥1 be a sequence of
measurable functions on the measure space (Ω,F , µ). We say that (fn)n≥1

converges (µ-a.e.) pointwise to the measurable function f if limn→+∞ |fn(x)−
f(x)| = 0 for (µ-almost all) x ∈ Ω. We write fn −→ f pointwise to mean
that the sequence (fn)n≥1 converges pointwise to f . If the sequence (fn)n≥1

is monotonically increasing (resp., decreasing), i.e., fn ≤ fn+1 (resp., fn ≥
fn+1), we write fn ↑ f (resp., fn ↓ f) to mean that it converges pointwise to
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f . If (fn)n≥1 ⊆ Lq(µ) and f ∈ Lq(µ), we say that (fn)n≥1 converges to f in
Lq(µ) if limn→+∞ ‖fn − f‖q = 0.

Now we can formulate the theorem of Lebesgue on dominated convergence
and the theorem of B. Levi on monotone convergence. We refer to Bauer
(2001), §11 and §15.

1.3 Theorem. We fix q ∈ [1,+∞) and consider a sequence (fn)n∈N ⊆ Lq(µ)
such that fn −→ f µ-a.e. pointwise as n → +∞. If there exists a function
g ≥ 0 in Lq(µ) such that |fn| ≤ g, for every n ∈ N, then f ∈ Lq(µ) and the
convergence takes place also in Lq(µ).

1.4 Theorem. Let (fn)n∈N be a monotone sequence of nonnegative measur-
able functions such that fn ↑ f pointwise as n→ +∞. Then f is measurable
and µ(fn) ↑ µ(f) as n→ +∞.

1.5 Definition. If f is a non-negative A -measurable, numerical function on
Ω, then the measure ν defined on A by

ν(A) :=

∫

A

fdµ, A ∈ A ,

is called the measure having density f with respect to µ. It will be denoted
by

ν = fµ.

1.6 Theorem. Let f and ϕ be non-negative measurable functions on Ω,
ν := fµ. Then ∫

ϕdν =

∫
ϕfdµ (1.1)

which can be also written
∫
ϕd(fµ) =

∫
ϕfdµ.

Moreover, an A -measurable function ϕ : Ω → R̄ is ν-integrable if and only
if ϕf is µ-integrable. In this case (1.1) is again valid.

For the proof we refer to Bauer (2001), Theorem 17.3.

1.7 Definition. Given two measures µ and ν defined on the same σ-algebra
A , we say that µ is absolutely continuous with respect to ν, written µ� ν,
if µ(A) = 0, whenever ν(A) = 0 for A ∈ A . Measures µ and ν are called
equivalent, written µ ∼ ν, if µ� ν and ν � µ.
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The following theorem, known as the Radon-Nikodym theorem, explains
the connection between the absolute continuity of measures and the existence
of a non-negative function f satisfying (1.1). For the proof we refer to Bauer
(2001), Theorem 17.10.

1.8 Theorem. Let µ and ν be measures on a σ-algebra A in a set Ω. If µ
is σ-finite, the following two assertions are equivalent:

(i) ν has a density f with respect to µ;
(ii) ν is absolutely continuous with respect to µ.

Obviously, for probability measures the assumption of σ-finiteness is al-
ways satisfied.

1.2 Stochastic Processes

Let (Ω, F̃ ,P) be a probability space. By N (P) we denote the null sets of
P, i.e., N (P) := {A ⊆ Ω : ∃B ∈ F̃ , A ⊆ B, P(B) = 0}. If N (P) is
not contained in F̃ we enlarge the σ-algebra by setting F := F̃ ∨ N (P).
We call F the completion of F̃ (in itself ) with respect to P or simply P-
completion of F̃ and we say that (Ω,F ,P) is a complete probability space.
If not otherwise specified, we assume a probability space to be complete. In
the remaining part of this chapter we assume that a complete probability
space (Ω,F ,P) is fixed.

A measurable mapping ξ on (Ω,F ) into (R,B(R)) is called a random
variable. The expectation of the random variable with respect to the prob-
ability measure P is defined by

E[ξ] =

∫

Ω

ξdP,

provided the integral exists. If ξ is an integrable random variable, i.e,
E[|ξ|] < +∞, and G is a sub-σ-algebra of F , we denote by E[ξ|G ] the con-
ditional expectation with respect to G . Sometimes we write EP or EP[·|G ] to
emphasize the dependence on the probability measure P.

Now we recall the notion of the uniform integrability. We say that a
family K ⊆ L1(Ω,F ,P) is uniformly integrable if

supX∈K E[|X|1{|X|≥N}] −→ 0 as N → +∞.

If K is dominated in L1(P), i.e., there exists Y ∈ L1(P) such that |X| ≤
Y , X ∈ K , then K is uniformly integrable. Clearly, any finite family of
integrable random variables is uniformly integrable.
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By a filtration F = (Ft)t≥0 we mean a family of σ-algebras (Ft)t≥0 that
is increasing, i.e.,Fs ⊆ Ft if s ≤ t. By convention, we set: F∞ = F and
F∞− =

∨
s∈R+

Fs. With filtration F we associate the filtration

F+ = (Ft+)t≥0 by Ft+ := ∩ε>0Ft+ε.

The filtration F is called right-continuous if F = F+, that is, if Ft+ = Ft,
t ≥ 0. Note that F0+ = F0 if F is right-continuous.

1.9 Definition. A probability space (Ω,F ,P) equipped with a filtration F is
called a filtered probability space. The filtered probability space (Ω,F ,F,P),
equipped with a right-continuous filtration F, is called complete, or equival-
ently is said to satisfy the usual conditions if the σ-algebra F is P-complete
and if every Ft contains all P-null sets of F .

A stochastic process X is a collection of R-valued random variables (Xt)t≥0.
A stochastic process X can be interpreted as an application X : (t, ω) 7−→
X(t, ω) of R+ × Ω into R. We use the notation Xt(ω) := X(t, ω) and in
most cases we omit ω. If we endow the space R+ × Ω with the σ-algebra
B(R+) ⊗ F , we say that the process X = (Xt)t≥0 is measurable if X is a
B(R+)⊗F -measurable application of R+×Ω into R. A process X is adapted
to a filtration F if Xt is Ft-measurable, for every t ≥ 0. For two stochastic
processes X and Y , there exist different concepts of equality:

(i) X is equal to Y if Xt(ω) = Yt(ω) for every t ≥ 0 and for every ω ∈ Ω.
(ii) X and Y are modifications if P(Xt = Yt) = 1, for every t ≥ 0.
(iii) X and Y are indistinguishable if P(Xt = Yt, for every t ≥ 0) = 1.
If X and Y are modifications there exists a null set, Nt, such that if

ω /∈ Nt, then Xt(ω) = Yt(ω). The null set Nt depends on t. Since the interval
[0,∞) is uncountable the set N =

⋃
0≤t<∞Nt could have any probability

between 0 and 1, and it could even be non-measurable. If X and Y are
indistinguishable, however, there exists a null set N such that if ω /∈ N ,
then Xt(ω) = Yt(ω), for all t. In other words, the function t 7−→ Xt(ω) and
t 7−→ Yt(ω) are the same for all ω /∈ N , where P(N) = 0.

We call the application t 7→ Xt(ω) path or trajectory of the process X.
We say that the stochastic process X is right-continuous with left-hand lim-
its or càdlàg, if every trajectory is right-continuous with left-hand limits.
Analogously, we say that X is continuous or left-continuous if all its traject-
ories have this property. An adapted stochastic process X which is càdlàg
is B(R) ⊗ F -measurable. For a càdlàg process X, we define the random
variable Xt− for every t > 0 as Xt− := lims↑tXs which is finite. Adopting the
convention X0− := X0, we can introduce the process X− = (Xt−)t≥0 on the
whole positive real line. With a càdlàg process X we associate the process
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∆X := (∆Xt)t≥0 of jumps of X by ∆Xt := Xt−Xt−, t ≥ 0. A consequence
of the convention X0− = X0 is that ∆X0 = 0. If X is a continuous stochastic
process, then we have X− = X and ∆X = 0.

The σ-algebra Ft can be thought of as representing all (theoretically)
observable events up to and including time t. We would like to have an
analogous notion of events that are observable before a random time.

1.10 Definition. A random variable T on Ω into [0,+∞] is called a stopping
time if the event {T ≤ t} := {ω ∈ Ω : T (ω) ≤ t} is Ft-measurable, for every
t ≥ 0. The σ-algebras FT and FT− associated with a stopping time T are
defined to be

FT := {A ∈ F : A ∩ {T ≤ t} ∈ Ft, t ≥ 0}

and
FT− := F0 ∨ σ{A ∩ {t < T}, A ∈ Ft, t ≥ 0}.

Let S, T be two stopping times. We define the stochastic interval [S, T )
by [S, T ) := {(t, ω) ∈ R+ ×Ω : S(ω) ≤ t < T (ω)}. The notions (S, T ], (S, T )
and [S, T ] can be defined in a similar way.

1.11 Definition. The σ-field on Ω × R+ generated by all càdlàg adapted
processes is called optional σ-field and is denoted by O. The σ-field on Ω×R+

generated by all left-continuous adapted processes is called predictable σ-field
and is denoted by P. A stochastic process or a set is said to be optional
(resp., predictable), if it is O-measurable (resp., P-measurable).

It is easy to observe that both O and P are σ-algebras of the product
space R+ × Ω and the inclusions P ⊆ O ⊆ B(R+) ⊗ F hold. We would
like to state some important facts concerning the properties of optional and
predictable processes and sets without giving the proofs. First of all, optional
processes are also adapted (Jacod & Shiryaev (2000), Proposition I.1.21).
Another important fact concerns the predictable sets and processes: for any
stopping time T , the stochastic interval [0, T ] is a predictable set (Dellacherie
(1972), Theorem IV.3) and consequently the process 1[0,T ] is predictable.

1.12 Definition. Let X be a stochastic process and T a stopping time with
values in [0,+∞]. On {T < +∞}, we define the random variable XT by

XT (ω) := XT (ω)(ω) = X(T (ω), ω)

and, consequently, the stochastic process XT = (XT
t )t≥0 by

XT
t := Xt∧T , t ≥ 0,

where the symbol “ ∧ ” denotes the minimum function. We say that XT is
the stopped process at time T .
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Very often the stopped processes have similar properties to the original
processes, for instance, if X is an optional (resp., predictable) process, then
the stopped process XT is optional (resp., predictable) (Jacod & Shiryaev
(2000), Proposition I.1.21 and I.2.4). A class C of processes is called stable
under stopping if for every X ∈ C the stopped process XT belongs again to
C , for every stopping time T .

1.13 Definition. If C is a class of processes, we denote by Cloc the localized
class, defined as such: a process X belongs to Cloc if and only if there exists
an increasing sequence (Tn) of stopping times (depending on X) such that
limn→∞ Tn = ∞ a.s. and that each stopped process XTn belongs to C . The
sequence (Tn) is called a localizing or reducing sequence for X (relative to
C ).

1.3 Martingales

For this section we fix the probability space (Ω,F ,P) and a filtration F

satisfying the usual conditions.

1.14 Definition. A martingale (resp., submartingale, supermartingale) rel-
ative to the filtration F is an adapted process X such that Xt is integrable
for every t ≥ 0 and for all 0 ≤ s ≤ t, we have

E[Xt|Fs] = Xs (resp., E[Xt|Fs] ≥ Xs, E[Xt|Fs] ≤ Xs) P-a.s.

For shortness, we simply say that a martingale (resp., a submartingale
or a supermartingale) relative to a filtration F is an F-martingale (resp., F-
submartingale or F-supermartingale) to emphasize the filtration or, if the fil-
tration is fixed, a P-martingale (resp., P-submartingale or P-supermartingale)
to emphasize the probability measure. Sometimes, in the definition of a
martingale it is also required that P-almost all paths are càdlàg (e.g., in
Jacod & Shiryaev (2000)), but because the filtration F satisfies the usual
conditions, every F-martingale admits a càdlàg modification which is again
an F-martingale (cf., e.g., Meyer (1966), Chapter VI, or He, Wang & Yan
(1992), Chapter II). If not otherwise specified, we always consider càdlàg
martingales.

We say that a process X has a terminal variable X∞ if Xt converges a.s.
to a limit X∞ as t ↑ +∞. If T is a stopping time, the random variable XT

given by XT (ω) := XT (ω)(ω) is, in general, only defined on {T < +∞}. If
the process X admits the terminal variable X∞, the random variable XT is
defined also on {T = +∞} setting XT = X∞ on this set.



8 1. Preliminaries

We denote by M the class of uniformly integrable martingales, i.e., the
class of all martingales M such that the family of random variables (Mt)t≥0

is uniformly integrable. By M0, we denote the subset of uniformly integrable
martingales starting at 0. The terminal value M∞ of a uniformly integrable
martingale exists and Mt converges in L

1(P) to M∞. Furthermore, for every
stopping times T , MT = E[M∞|FT ]. For a proof of these facts, cf. Jacod
& Shiryaev (2000), Theorem I.1.42. Doob’s Stopping Theorem (cf. Jacod
& Shiryaev (2000), Theorem I.1.39) implies that for every stopping time T
the random variable MT , M ∈ M , is integrable and, if S is also a stopping
time, we have E[MT |FS] = MS on {S ≤ T}. A first consequence of these
facts is that M is stable under stopping. Indeed, if M ∈ M and T is a
stopping time, we have that T ∧ t is a stopping time and that M∞ and MT∧t

are integrable, t ≥ 0. Moreover,

|MT
t | = |MT∧t| = |E[M∞|FT∧t]| ≤ E[|M∞||FT∧t],

where we used Jensen’s inequality in the last passage. Because of He, Wang
& Yan (1992), Theorem 1.8, the right-hand side in the previous estimation
is uniformly integrable and so MT = (MT

t )t≥0 is uniformly integrable. By
Doob’s Stopping Theorem, we get Mt = E[MT |Ft] on {t ≤ T} and, by
the properties of the conditional expectation, E[MT |Ft] = MT on {t > T}.
Hence MT

t = E[MT |Ft], t ≥ 0, and so the process MT is an F-martingale.
By localization from M we can introduce the space Mloc. A local martingale
will be an element of Mloc. We observe that the class Mloc is stable under
stopping.

We denote by V + (resp., by V ) the set of all real-valued processes A that
are càdlàg, adapted, with A0 = 0 and whose paths are non-decreasing (resp.,
have finite variation on each finite interval [0, t]). We say that a process in
V + (resp., in V ) is an increasing process (resp., a process of finite variation).

For a process A ∈ V , by Var(A) = (Var(A)t)t≥0 we denote the associated
variation process, that is, the process such that Var(A)t(ω) is the total vari-
ation of the function s 7→ As(ω) on the interval [0, t]. Of course, Var(A) = A
if A ∈ V +. In Jacod & Shiryaev (2000), Proposition I.3.3, the following
important relation between V and V + is established: If A ∈ V , then there
exists a unique pair of processes B,C ∈ V + such that A = B − C and
Var(A) = B + C (hence, Var(A) ∈ V + and V = V + 	 V +). Moreover, if A
is predictable, then B, C and Var(A) are also predictable.

For a process A ∈ V + the function t 7→ At(ω) is a measure-generating
function, that is, it is the distribution of a measure, say µA

ω , defined on R+

by

µA
ω ([0, t]) := At(ω), t ∈ R+, ω ∈ Ω,
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which is a locally finite measure.
The stochastic integral with respect to A ∈ V + of a measurable process

H is defined as a Stiltjes–Lebesgue integral, i.e., by fixing ω ∈ Ω and defining
the integral pathwise with respect to the trajectory t 7→ At(ω). We say that
a measurable process H is integrable with respect to A if

∫ t

0
|Hs(ω)|µ

A
ω (ds) <

+∞ for every t ≥ 0 and for every ω ∈ Ω. If H is integrable with respect to
A by ∫ t

0

Hs(ω) dAs(ω) :=

∫ t

0

Hs(ω)µ
A
ω (ds), t ≥ 0,

we denote the integral of H with respect to A up to time t. We introduce
the integral process H · A = (H · At)t≥0 by

H · At(ω) :=





∫ t

0
Hs(ω) dAs(ω), if

∫ t

0
|Hs(ω)| dAs(ω) < +∞,

+∞, otherwise.

If A ∈ V , we can introduce the integral for measurable processes in a similar
way. Indeed, there exist two unique processes B,C ∈ V + such that A =
B − C and Var(A) = B + C. In this case, we say that a measurable process
H is integrable with respect to A if it is integrable with respect to Var(A)
and we introduce the integral process H · A = (H · At)t≥0 by

H · At(ω) :=





∫ t

0
Hs(ω) dAs(ω), if

∫ t

0
|Hs(ω)| dVar(A)s(ω) < +∞,

+∞, otherwise.

If H is a (resp., nonnegative) measurable process which is integrable with
respect to A ∈ V (resp., A ∈ V +), then the process H · A belongs to V

(resp., V +). If moreover A and H are predictable, then H ·A is predictable
(cf. Jacod & Shiryaev (2000), Proposition I.3.5). We notice that locally
bounded measurable processes are always integrable with respect to A ∈
V . Indeed, if H is a locally bounded measurable process and (Tn)n∈N is a
reducing sequence, say, such that |HTn | ≤ cn, we have, for every n ≥ 1 and
every fixed t ≥ 0, |HTn | · Var(A)t ≤ cn Var(A)t < +∞. On the other side,
Tn ↑ +∞. Hence, for every fixed t ≥ 0 and ω, there exists n(t) ∈ N such that
Tn(ω) ≥ t for every n ≥ n(t) and so |H| · Var(A)t(ω) ≤ cn Var(A)t(ω) < +∞,
n ≥ n(t).

Now we introduce two other classes of processes.
(i) A + := {A ∈ V + : E[A∞] < +∞}: set of integrable processes from

V +.
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(ii) A := {A ∈ V : E[Var(A)∞] < +∞}: set of processes of integrable
variation.

We denote by H 2 the class of square integrable martingales, that is, we
put

H 2 :=
{
M ∈ Mloc : E[supt≥0(Mt)

2] < +∞
}
.

The space H 2
loc of locally square integrable local martingales is introduced

from H 2 by localization. The space H 2 is a Hilbert space with the scalar
product

(M,N)H 2 := E[M∞N∞], (1.2)

where the terminal value M∞ is defined because H 2 ⊂ M .
Now we can mention the following well-known result (cf. Jacod & Shiryaev

(2000), Theorem I.4.2): For any M and N belonging to H 2
loc, there exists a

predictable process 〈M,N〉 ∈ V , called point brackets (or predictable process
of finite variation) associated with M and N , which is unique up to an
evanescent set, such that MN − 〈M,N〉 ∈ Mloc. The so-called polarization
identity holds:

〈M,N〉 =
1

4
(〈M +N,M +N〉 − 〈M −N,M −N〉). (1.3)

If M,N ∈ H 2, then 〈M,N〉 ∈ A and MN − 〈M,N〉 ∈ M . Furthermore,
the identity 〈M,N〉 = 〈M −M0, N −N0〉 holds and 〈M,M〉 belongs to V +.
The next relation explains the behavior of the point brackets with respect
to the stopping procedure (cf. He, Wang & Yan (1992), Theorem 6.31). For
every stopping time T it follows that

〈M,NT 〉 = 〈MT , N〉 = 〈MT , NT 〉 = 〈M,N〉T . (1.4)

Furthermore, because of the definition of the point brackets, we have

(M,N)H 2 := E[〈M,N〉∞] + E[M0N0], M,N ∈ H
2. (1.5)

The following theorem is known as Kunita–Watanabe inequality and plays
an important role in the construction of the stochastic integral.

1.15 Theorem. Let M and N be square integrable martingales and H, K
be two measurable processes. Then

E

[ ∫

(0,∞)

|Hu| |Ku|d|〈M,N〉|u
]
≤ E

[ ∫

(0,∞)

H2
ud〈M,M〉u

]1/2
E

[ ∫

(0,∞)

K2
ud〈N,N〉u

]1/2
.
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For the proof we refer to He, Wang & Yan (1992), Theorem 6.33.
Our aim is to define a stochastic integration of predictable process with

respect to locally square integrable martingales. Recall that H 2 is a Hilbert
space with scalar product (M,N)H 2 := E[M∞N∞] for any N,M in H 2. For
M ∈ H 2, the space of integrands is defined as follows:

L2(M) := {H predictable : H2 · 〈M,N〉 ∈ A
+}.

Let us introduce a norm ||H‖L2(M)‖:

|H‖L2(M)‖ := E

[ ∫

(0,∞)

|Hu| |Hu|d|〈M,N〉|u
]
.

For M ∈ H 2 and H ∈ L2(M) we introduce the functional CM,H by

CM,H(N) := E[H · 〈M,N〉∞], N ∈ H
2.

Obviously, CM,H is a linear functional on H 2. Moreover, it is continuous.
Indeed, by the Kunita–Watanabe inequality,

|CM,H(N)| ≤ ‖H‖L2(M)‖N‖H 2 < +∞ for any N ∈ H
2,

where for the last estimation we used that H ∈ L2(M) and that M ∈ H 2.
Therefore, CM,H is bounded and linear, hence continuous. By the stheorem
of Riez, there exist a unique element X ∈ H 2, such that

CM,H(N) = (X,N)H 2 for any N ∈ H
2.

We call this process X ∈ H 2 the stochastic integral process of H with respect
to M and we write

X =: H ·M.

By definition, X ∈ H 2. If M ∈ H 2 ∩ V , then H ·M coincides with the
Stieltjes–Lebesgue integral (cf. Jacod (1979), Remark 2.47). Let us define the
space L2

loc(M) of all predictable H for which there is an increasing sequence
(Tn) of stopping times converging to infinity and such that H1[0,Tn] belongs
to L2(M). It is easy to see that the space of integrands L2

loc(M) is obtained
from L2(M) by localization. In a natural way we can extend the notion of
stochastic integration with respect to the martingale M and integrands H
from L2

l oc(M).
An adapted process S is called a semimartingale if:

S = S0 +M + A, (1.6)



12 1. Preliminaries

where S0 is an F0-measurable random variable, M ∈ Mloc, M0 = 0 and
A ∈ V . We call M the martingale part and A the finite-variation part
of the semimartingale S, respectively. We call a representation as (1.6) a
semimartingale decomposition of S. Note that every local martingale can
be decomposed (but not in a unique way) into a locally square integrable
martingale and a martingale with finite variation (cf. Jacod & Shiryaev
(2000), Proposition 4.17). Therefore, for locally bounded and predictable
H we can introduce the stochastic integral process of H with respect to a
semimartingale S:

H · S := H ·M +H · A = H ·M ′ +H ·M ′′ +H · A, (1.7)

where M ′ ∈ H 2
loc and M

′′ ∈ V with M = M ′ +M ′′. The property of local
boundedness of H ensures the existence of H ·M ′′ and H ·A, and in combin-
ation with the property of predictability guaranties that H ∈ L2

loc(M
′). The

integral process does not depend on the martingale decomposition. For the
proof we refer to Jacod & Shiryaev (2000), Proposition 4.40.

1.4 Lévy Process

We fix a probability space (Ω,F ,P) and a filtration F. For the moment,
F is a general filtration and we do not assume that the probability space
is complete. We recall that an F-adapted stochastic process X is said to
have homogeneous one-dimensional increments if (Xt−Xs) is distributed as
Xt−s−X0, for every 0 ≤ s ≤ t, while it is said to have independent increments
if the random vector (Xt0 , Xt1−Xt0 , . . . Xtn−Xtn−1) is independent, for every
0 ≤ t0 < t1 < . . . < tn, n ∈ N. We say that an adapted process X has F-
independent increments if (Xt−Xs) is independent of Fs, for every 0 ≤ s ≤ t.
Notice that a process with independent and homogeneous one-dimensional
increments has also homogeneous n-dimensional increments, for every n ≥ 1.
In this case we simply say that X has homogeneous increments. It is easy
to see that if X is a process with independent increments with respect to
the filtration F, so is X with respect to the completion of F. To verify that
an adapted process with F-independent increments is an F-martingale is a
simple task:

1.16 Lemma. Let X be an adapted process with F-independent increments
such that X0 = 0. Then X is a martingale (not necessarily càdlàg) if and
only if the random variable Xt is integrable and E[Xt] = 0, for every t ≥ 0.

Proof. If X is a process with F-independent increments such that X0 = 0
and a (not necessarily càdlàg) martingale then E[Xt] = E[X0] = 0, t ≥ 0.
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Conversely, ifX is a process with F-independent increments such thatX0 = 0
and that E[Xt] = 0, t ≥ 0, we get

E[Xt|Fs] = E[Xt −Xs|Fs] +Xs = E[Xt −Xs] +Xs = Xs, 0 ≤ s ≤ t,

proving that X is an F-martingale.

The F-independence of the increments and the homogeneity of the one-
dimensional increments are stable under convergence in probability, as the
following lemma shows.

1.17 Lemma. Let X be an F-adapted process. If (Xn)n≥1 is a sequence of
processes with F-independent increments (resp., homogeneous one-dimensional
increments) such that Xn

t converges to Xt in probability, for every t ≥ 0, as
n → +∞, then X has F-independent increments (resp., homogeneous one-
dimensional increments).

Proof. We assume that the sequence (Xn)n≥1 has F-independent increments
(resp., homogeneous one-dimensional increments). For every 0 ≤ s ≤ t, we
have

E[eiu(X
n
t −Xn

s )|Fs] = E[eiu(X
n
t −Xn

s )] (resp., E[eiu(X
n
t −Xn

s )] = E[eiu(X
n
t−s−Xn

0 )]), u ∈ R.

Letting n converge to +∞ in the previous formula and applying the theorem
of Lebesgue on dominated convergence we get

E[eiu(Xt−Xs)|Fs] = E[eiu(Xt−Xs)], ( resp., E[eiu(Xt−Xs)] = E[eiu(Xt−s−X0)]), u ∈ R,

which concludes the proof.

If F is a filtration satisfying the usual conditions, a stochastically con-
tinuous adapted process with F-independent increments has a unique càdlàg
modification which is again a stochastically continuous adapted process with
F-independent increments (cf., e.g., He, Wang & Yan (1992), Theorem 2.68).
We observe that any process X with one-dimensional homogeneous incre-
ments such that X0 = 0 a.s. and that Xt −→ 0 in probability as t ↓ 0 is
stochastically continuous. Indeed,

lim
s→t

|Xt −Xs| = lim s→ t|X|t−s|| = lim
u→0

|Xu| = 0,

where the limits are considered in probability and the equalities in distribu-
tion. In particular, any càdlàg process with one-dimensional homogeneous
increments which starts at zero is stochastically continuous.
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1.18 Definition. Let X be an adapted and stochastically continuous process
such that X0 = 0.

(i) We say that X is an additive process in law if it has independent
increments.

(ii) If X is a càdlàg additive process in law, we simply call it an additive
process.

(iii) We say that X is an additive process in law relative to the filtration
F if it has F-independent increments. If X is also càdlàg, we simply call it
an additive process relative to F.

A relevant subclass of additive processes, which we are going to introduce,
are Lévy processes.

1.19 Definition. (i) We say that an additive process (resp., an additive
process in law) is a Lévy process (resp., a Lévy process in law) if it has also
homogeneous increments.

(ii) We say that an additive process (resp., an additive process in law)
relative to F is a Lévy process (resp., a Lévy process in law) relative to F if
it has also homogeneous increments.

Let L be a Lévy process (resp., a Lévy process in law) relative to F. The
notation (L,F) emphasizes the filtration with respect to which L is a Lévy
process (resp., a Lévy process in law) and sometimes we simply say that
(L,F) is a Lévy process (resp., a Lévy process in law) to mean that L is a
Lévy process (resp., a Lévy process in law) relative to F.

For Lévy processes the notions of a martingale and a local martingale are
equivalent:

1.20 Proposition. Let (L,F) be a Lévy process. Then (L,F) is a local
martingale if and only if (L,F) is a martingale.

Proof. Let us prove this statement under the additional assumption that
E|Lt| < ∞, t ≥ 0 (the general case can be found in He, Wang and Yan
(1992), Theorem 11.46). We assume that (L,F) is a local martingale and
would like to prove that (L,F) is a martingale.
1) There exists a sequence of stopping times (τn) such that τn ↑ ∞ and
(Lτn ,F) are martingales.
2) SetMt := Lt−E[Lt] for t ≥ 0. Then (M,F) and (M τn ,F) are martingales.
3) From 1) and 2) we have that (Lτn −M τn ,F) is a martingale. The process
L is a Lévy process and hence E[Lt] = tE[L1].
4) Using 2) and 3) we can represent the stopped process M τn as

Mt∧τn = Lt∧τn − (t ∧ τn)E[L1], t ≥ 0.
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Finally, we calculate the expectation of Lτn −M τn :

0 = E[Lτn
t −M τn

t ] = E[Lτn
t − Lτn

t + (t ∧ τn)EL1] = E[t ∧ τn]E[L1],

but, if n is sufficiently large, E[t ∧ τn] > 0 and hence E[L1] = 0 = tE[L1] =
E[Lt]. Therefore the process L is a true martingale, as a Lévy process with
expectation zero.

We recall that we call a real-valued function c truncation function if it
satisfies the following conditions:

(i) c is bounded;
(ii) c(x) = 1 +O(x) when x→ 0;
(iii) c(x) = O(1/x) when |x| → +∞. The following theorem is known as

the Lévy–Chintchine formula or the Lévy–Chintchine decomposition:

1.21 Theorem. Let L be a Lévy process and c a truncation function. Then
there exist parameters b ∈ R, σ2 ≥ 0 and a measure ν on R satisfying

(a) ν({0}) = 0,

(b)

∫

R

(x2 ∧ 1)ν(dx) < +∞,

such that, for every u ∈ R, one has

E exp(iLtu) = exp
[
t
(
iub−

1

2
u2σ2 +

∫

R

(eiux − 1− iuxc(x))ν(dx)
)]
. (1.8)

For the fixed function c the triplet (b, σ2, ν) is uniquely determined.

The proof can be found in Sato (1999), Theorem 8.1. The measure ν
from the Lévy–Chintchine decomposition is called the Lévy measure and
the triplet b, σ2, ν) is called the characteristic triplet of L. The next result
we want to mention concerns the characteristic triplet under an equivalent
change of measure:

1.22 Theorem. Let (L,P) and (L,P′) be two Lévy processes on R with
characteristic triplets (b, σ2, ν) and (b′, σ′2, ν ′), respectively. Then P|Ft

and
P′|Ft

are equivalent for all t (or equivalently for one t > 0) if and only if the
following three conditions are satisfied:

(i) σ2 = σ′2;
(ii) the Lévy measures ν and ν ′ are equivalent with

∫

R

(eβ(x)/2 − 1)2ν(dx) <∞,

where β(x) = log dν′

dν
;
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(iii) If σ = 0 then

b′ − b =

∫ 1

−1

x(ν ′ − ν)(dx).

For the proof we refer to Sato (1999), Theorem 33.1.
We define the g-moments of a random variable and discuss finiteness of

the g-moment of Xt for a Lévy process X.

1.23 Definition. Let g(x) be a nonnegative measurable function on R. We
call

∫
g(x)µ(dx) the g-moment of a measure µ on R. We call E[g(X)] the

g-moment of a random variable X on R.

1.24 Definition. A function g(x) on R is called submultiplicative if it is
nonnegative and there is a constant a > 0 such that

g(x+ y) ≤ ag(x)g(y) for x, y ∈ R. (1.9)

A function bounded on every compact set is called locally bounded.

1.25 Proposition. Let g be a submultiplicative, locally bounded, measur-
able function on R. Then, finiteness of the g-moments is not a time dependent
property in the class of Lévy processes. Let (L,F) be a Lévy process on R

with Lévy measure ν. Then, Lt has finite g-moments for every t > 0 if and
only if ν1{|x|>1} has finite g-moments.

The proof of Proposition 1.25 can be found in Sato (1999), Proposition
25.3. As an important example of a submultiplicative function it is necessary
to mention the function exp(αx) for any α ∈ R. Therefore, it follows that
the Lévy process L has finite (α-)exponential moments if and only if

∫

{|x>1|}

exp(αx)ν(dx) <∞ for α ∈ R.

1.5 Poisson Random Measures

We devote this section to Poisson random measures relative to a filtration.
We do not consider general Poisson random measures. Rather we restrict our
attention to random measures associated with the jumps of adapted càdlàg
processes and consider only the homogeneous case. Before we need to in-
troduce the notion of a random measure and of an integer-valued random
measure. Of particular interest will be the part concerning the definition of
the stochastic integral of deterministic functions with respect to a Poisson
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random measure and with respect to a compensated Poisson random meas-
ure. We recall that we fixed a complete probability space (Ω,F ,P) and a
filtration F satisfying the usual conditions. For the sake of simplicity, we
introduce the following notation:

(E,B(E)) := (R+ × R,B(R+)⊗ B(R)). (1.10)

1.26 Definition. A random measure µ on (E,B(E)) is a mapping on Ω×
B(E) in [0,+∞] such that:

(i) µ(·, A) is a random variable for every A ∈ B(E).
(ii) µ(ω, ·) is a measure on (E,B(E)) such that µ(ω; {0}×R) = 0, ω ∈ Ω.

If µ is a random measure on (E,B(E)), we write µ(A) := µ(ω,A), A ∈
B(E).

For any measurable set A, µ(A) is a nonnegative random variable on
(Ω,F ,P). We can therefore introduce the expectation of µ(A) (note that,
by definition, µ(A) ≥ 0). We call intensity measure of µ the mapping m on
B(E) in [0,+∞] defined by

m(A) := E[µ(A)]. (1.11)

The intensity measure m is a (deterministic) measure on (E,B(E)). Indeed,
we have m(∅) = 0 because µ(ω, ∅) = 0, for every ω, µ(ω, ·) being a measure.
The σ-additivity of m follows from the theorem of B. Levi on monotone
convergence (cf. Theorem 1.4).

We say that a random measure µ on (E,B(E)) is an integer-valued ran-
dom measure if µ(A) takes values in N∪{+∞}, for every A ∈ B(E). Integer-
valued random measures are of special importance because of the relation
that they have with càdlàg adapted processes. Let X be a càdlàg adapted
process. For every A ∈ B(E) we define on (E,B(E)) the random measure
µ by

µ(ω;A) =
∑

s≥0

1{∆Xs(ω) 6=0}1A(s,∆Xs(ω)), ω ∈ Ω, A ∈ B(E). (1.12)

1.27 Proposition. Let X be an adapted càdlàg process with values in R.
Then the random measure µ defined on (E,B(E)) by (1.12) is an integer-
valued random measure.

Proof. Cf. Jacod & Shiryaev (2000), Proposition II.1.16.

We call the integer-valued random measure µ defined in (1.12) the jump
measure of X. Let X be an F-adapted càdlàg process and let µ be its jump
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measure. It is easy to see that µ({t}×R) ∈ {0, 1}. Indeed, from the definition
of µ, we get

µ({t} × R) =
∑

s≥0 1{∆Xs 6=0}1{t}×R(s,∆Xs)

= 1{∆Xt 6=0}1{t}×R(t,∆Xt)

= 1{∆Xt 6=0} ∈ {0, 1}.

If A ∈ B(E), we define the process NA = (NA
t )t≥0 by

NA
t := µ(A ∩ [0, t]× R). (1.13)

1.28 Definition. We say that an integer-valued random measure µ is a
(homogeneous) Poisson random measure relative to the filtration F if:

1. The intensity measure m is of the form m = λ+ ⊗ ν, where λ+ is the Le-
besgue measure on (R+,B(R+)) and ν is a σ-finite measure on (R,B(R)),

2. For every fixed s ∈ R+ and every A ∈ B(E) such that A ⊆ (s,+∞)×R,
m(A) < +∞, the random variable µ(A) is independent of Fs.

Now we would like to introduce the stochastic integral for Poisson random
measures. Let X be an F-adapted càdlàg process. We assume that the jump
measure of X defined by (1.12) is a Poisson random measure relative to
the filtration F with intensity measure m = λ+ ⊗ ν. We observe that this
part remains valid also if µ is a general Poisson random measure relative to
the filtration F (cf. Jacod & Shiryaev (2000), Chapter II) and not only a
homogeneous Poisson random measure which moreover is the jump measure
of an adapted càdlàg process. We recall that the definition of (E,B(E)) was
given in (1.10). For a deterministic numerical function f which is B(E)-
measurable we have introduced the notation

m(f) :=

∫

E

f(t, x)m(dt, dx)

if the integral on the right-hand side exists. In particular m(f) is well
defined if f is nonnegative. We define the integral of f with respect to µ
ω-wise in an analogous way, because µ(ω, ·) is a (nonnegative) measure on
(E,B(E)) for every ω ∈ Ω. If f is a nonnegative measurable function, then
the integral

∫
E
f(t, x)µ(ω, dt, dx) always exists. We shall use the notation

µ(f) for this random variable with values in [0,+∞]. This definition ex-
tends to functions f of arbitrary sign. More precisely, for any measurable
function f on (E,B(E)), by Ωf we denote the set of all ω ∈ Ω such that∫
E
f(t, x)µ(ω, dt, dx) exists and is finite a.s. Obviously Ωf ∈ F . We say
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that the integral of f with respect to µ exists and is finite a.s. if P[Ωf ] = 1.
In this case the random variable µ(f) defined by

µ(ω, f) := µ(f)(ω) :=





∫
E
f(t, x)µ(ω, dt, dx), if ω ∈ Ωf ;

0, otherwise;

(1.14)

is called the stochastic integral of f with respect to the Poisson random
measure µ. Note that the stochastic integral µ(f) exists and is finite a.s. if
and only if µ(|f |) < +∞ a.s. We now state the so-called exponential formula
(cf. Kallenberg (1997), Lemma 10.2).

1.29 Lemma (Exponential Formula). Let f be a function on (E,B(E)). If
f ≥ 0, then

E[e−µ(f)] = exp(m(e−f − 1)). (1.15)

We now show how to compute the expectation of the random variable
µ(f), where f is a function which belongs to L1(m).

1.30 Lemma. Let f ∈ L1(m). Then

E[µ(f)] = m(f). (1.16)

Moreover, the stochastic integral with respect to µ is a continuous operator
on L1(m) into L1(P).

Proof. For every nonnegative function f ∈ L1(m) formula (1.16) holds.
Indeed, this is true for indicator functions of the form 1A, A ∈ B(E),
m(A) < +∞, and hence for nonnegative simple functions f . For an arbit-
rary nonnegative function f we can find a sequence (fn)n≥1 of nonnegative
simple functions such that fn ↑ f pointwise as n → +∞. The result follows
applying the theorem of B. Levi on monotone convergence (cf. Theorem 1.4).
Clearly, formula (1.16) extends to functions f such that m(|f |) < +∞. The
statement on the continuity follows from

E[|µ(f)|] ≤ E[µ(|f |)] = m(|f |) < +∞.

Now we characterize, in terms of the intensity measure m, under which
conditions the integral of a deterministic function f with respect to µ exists
and is a.s. finite (cf. Kallenberg (1997), Lemma 10.2).
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1.31 Proposition. Let µ be a Poisson random measure on (E,B(E)) with
intensity measure m. Then µ(f) exists and is finite a.s. if and only if m(|f | ∧
1) < +∞.

In the following proposition we show that, for every A ∈ B(E) such that
m(A) < +∞, the process (NA,F) defined by (1.13) is a Poisson process.

1.32 Proposition. Let µ be the jump measure of a Lévy process (L,F) with
intensity measure m = λ+⊗ν and let A ∈ B(E) be such that (λ+⊗ν)(A) <
+∞. Then the process NA := (NA

t )t≥0 defined by NA
t := µ(A ∩ [0, t] × R),

t ≥ 0, is a Poisson process relative to F and aA(·) := (λ+ ⊗ ν)(A∩ [0, ·]×R)
is its intensity function.

Proof. For every set A ∈ B([0, T ]) ⊗ B(R) consider µ(A ∩ [0, t]). It is a
simple point process (cf. Jacod & Shiryaev (2000), Example 3, page 34):

(i) the process µ([0, t] ∩ A) is increasing;
(ii) ∆µ([0, t] ∩ A) = µ({t} × A) ∈ {0, 1} because µ is an integer-valued

random measure (cf. Jacod & Shiryaev (2000), Proposition II.1.16);
(iii) the process µ([0, t] ∩ A) is adapted:

µ([0, t] ∩ A) = µ(A ∩ [0, t]× R) =
∑

0≤s≤t 1{∆Xs 6=0}1A(s,∆Xs)

=
∑∞

n:Tn≤t 1A(Tn,∆XTn
),

where (Tn)n≥1 is an exhausting sequence for the jumps of X such that [Tn]∩
[Tm] = ∅, m 6= n. The process ∆X is an optional process and therefore
the random variable ∆XTn

is FTn
-measurable, for every n ≥ 1 (cf. Jacod &

Shiryaev (2000), Proposition I.1.21). Hence 1A(Tn,∆XTn
) is FTn

-measurable
and therefore 1A(Tn,∆XTn

)1{Tn≤t} is Ft-measurable, because Tn is a stopping
time for every n ≥ 1. By Jacod & Shiryaev (2000), Theorem II.4.5, the
process µ([0, t] ∩ A) is a Poisson process if its intensity function is aA(·) :=
(λ+⊗ν)(A∩[0, ·]×R) is the compensator or, equivalently, that (µ([0, ·]∩A)−
aA(·),F) is a martingale. For this it is sufficient to show the F-independence
of the increments of NA, which follows from the definition of the Poisson
random measure, and to apply Lemma 1.30.

1.6 Stochastic Exponential and Logarithm

Let us consider the filtered probability space (Ω,F ,F,P) satisfying the usual
conditions. In the following section we would like to focus the attention on
the stochastic alternative of the exponential transformation, which plays an
important role in this thesis.



1.6 Stochastic Exponential and Logarithm 21

1.33 Proposition. Let Y be a real-valued semimartingale and consider the
stochastic differential equation

dZt = Zt−dYt, t ≥ 0,

with Z0 = 1. This equation has a unique (up to indistinguishability) càdlàg
adapted solution, called the stochastic exponential of Y , which is a semi-
martingale and is denoted by E (Y ). Explicitly,

E (Y )t = exp(Yt − Y0 −
1

2
〈Y c

t 〉)
∏

s≤t

(1 + ∆Ys) exp(−∆Ys), t ≥ 0.

If we define τ := inf {t ≥ 0 : ∆Yt = −1}, then E (Y ) 6= 0 on [0, τ), E (Y )− 6= 0
on [0, τ ] and E (Y ) = 0 on [τ,∞), t ≥ 0.

For the proof we refer to Jacod & Shiryaev (2000), Theorem I.4.61.

The mapping Y 7→ E (Y ) can be inverted. The following proposition
shows this fact.

1.34 Proposition. Let Z be a semimartingale such that Z, Z− do not van-
ish. Then there exists an up to indistinguishability unique semimartingale
Y with Y0 = 0 and Z = Z0E (Y ). It is given by

Yt =

t∫

0

1

Zu−

dZu, t ≥ 0.

The proof of this proposition can be found in Jacod & Shiryaev (2000),
Theorem II.8.3, or Kallsen & Shiryaev (2002), Lemma 2.2. The process Y
from the previous proposition is called the stochastic logarithm of Z and is
written L (Z) := Y . But such transformations preserve not just the semi-
martingale property of the underlying process, but even the local martingale
property:

1.35 Proposition. Let E (Y ) > 0 P-a.s. The process Y is a local martingale
if and only if E (Y ) is a local martingale.

Proof. Let us assume that E (Y ) is a local martingale. Then there exists a
sequence of stopping times {τn} which localizes the local martingale E (Y )
(i.e., E (Y )τn is a martingale for any n). Let σn = τn ∧ inf{t : E (Y )t <

1
n
}.

So {σn} is still a sequence of stopping times such that σn ↑ ∞ P-a.s. and
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E (Y )σn are martingales and the (stopped) process
1[0,σn]

E (Y )σn
−

is predictable and

bounded. By the definition of E (Y ),

Yt =

t∫

0

1

E (Y )u−
dE (Y )u, t ≥ 0.

Using localization we have

Y σn

t =

t∫

0

1[0,σn](u)

E (Y )σn
u−

dE (Y )σn

u , t ≥ 0,

so Y σn
t is a martingale and hence Yt is a local martingale. Here we have used

that the stochastic integral of a bounded predictable process with respect to
a martingale is again a martingale.

Similarly in the converse direction.

If the underlying process in the stochastic exponential is a Lévy process,
then the stronger result is true:

1.36 Proposition. If L is a Lévy process and a martingale, then its stochastic
exponential Z = E (L) is also a martingale.

The proof of this fact can be found in Cont & Tankow (2003), Proposition
8.23.

1.7 Relative Entropy

In this section we introduce the notion of relative entropy and discuss some
well-known properties of it.

1.37 Definition. Let Q and P be two probability measures on (Ω,F ) and
G some sub-σ-field of F . The relative entropy I(Q,P)G of Q with respect to
P on G is defined by

IG (Q,P) :=





EP

[
dQ
dP

∣∣
G
log dQ

dP

∣∣
G

]
, if Q|G � P|G ,

+∞, otherwise.

For G = F we simply write IG (Q,P) = I(Q,P) and call I(Q,P) the relative
entropy of Q with respect to P.
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If we are given a filtration F = (Ft)t∈[0,T ] for T > 0 and Q|FT
� P|FT

, we
define the entropy process of Q with respect to P by It(Q,P) = IFt

(Q,P), t ≥
0.

Now we state some properties of the relative entropy.

1.38 Lemma. Let Q � P on some σ-field G ⊆ F and let H ⊆ G be
another σ-field. Then

IH (Q,P) ≤ IG (Q,P).

Proof. The density ZG = dQ
dP

∣∣
G
is P-integrable, and without loss of generality

we may assume that IG (P,Q) < ∞. Thus ZG logZG is P-integrable as well,
and by Jensen’s inequality for conditional expectations we have

IH (Q,P) = EP[ZH logZH ] = EP[EP[ZG |H ] logEP[ZG |H ]]

≤ EP[EP[ZG logZG |H ]] = EP[ZG logZG ]

= IG (Q,P),

and hence the claim.

1.39 Lemma. Let Q1,Q2 � P on some σ-field G ⊆ F . Then for all
0 ≤ α ≤ 1

IG ((1− α)Q1 + αQ2,P) ≤ (1− α)IG (Q1,P) + αIG (Q2,P),

i.e., relative entropy is a convex functional in the first argument.

Proof. Let Q := (1− α)Q1 + αQ2 and Z1 and Z2 be the densities of Q1 and
Q2 on G , respectively. Then the density of Q on G is Z = (1− α)Z1 + αZ2.
The function ϕ(z) := z log z is convex on [0,∞), hence

IG (Q,P) = EPϕ(Z) = EP[ϕ((1− α)Z1 + αZ2)]

≤ EP[(1− α)ϕ(Z1) + αϕ(Z2)]

= (1− α)EPϕ(Z1) + αEPϕ(Z2),

therefore the statement is proven.

1.40 Lemma. Let Q|FT
� P|FT

with density process Z and finite-valued
entropy process. Then Z logZ is a P-submartingale on [0, T ] relative to F.

Proof. Let 0 ≤ s ≤ t ≤ T . Note that Zt logZt is P-integrable due to finiteness
of It(Q,P). So by Jensen’s inequality and the fact that Z is a P-martingale
we have

EP[Zt logZt|F ] ≥ EP[Zt|Fs] logEP[Zt|F ] = Zs logZs

P-a.s., hence Q-a.s. The statement is proven.



24 1. Preliminaries

In Section 1.3 we have defined the notions of a martingale and a local
martingale for time parameters t ≥ 0. The notion of a martingale can be
easily adopted for finite intervals, but with local martingales we have to take
some care. If we consider open from the right interval [0, T ), for the definition
of a local martingale it is sufficient to change the limit point for the reducing
sequence from ∞ to T . But for the closed interval [0, T ] this condition is
not appropriate. Let us consider the following example: Let W be a Wiener
process on [0, T ]. We define a process X in the following way

Xt :=





Wt, if t ∈ [0, T ),

1, if t = T.

It is easy to see that the process X is a martingale on [0, T ), but it is not
the case for the closed interval [0, T ]. Therefore, we say that the process M
is a local martingale on the closed interval [0, T ], if there exists a sequence
of stopping times (τn) such that τn ↑ T when n→ ∞, the processes M τn are
martingales for every n and {τn = T} ↑ Ω.

Consider a real-valued adapted stochastic process X defined on a filtered
probability space (Ω,F ,F = (Ft)t∈[0,T ],P) for some fixed T > 0.

Let us introduce the following notations for classes of probability meas-
ures:
(i) The class of absolutely continuous measures Q with respect to P defined
on FT such that the stochastic process (X,F) is a Q-martingale on [0, T ]:

Ma(T ) := {Q : (X,F) is a Q-martingale on [0, T ], Q � P on FT}.

(ii) The class of absolutely continuous measures Q with respect to P defined
on FT such that the stochastic process (X,F) satisfies the moment condition
EQXT = 0 at time T :

M̃a(T ) := {Q : EQXT = 0 and Q � P on FT}.

In the case X0 = 0 (as it holds for Lévy processes), one can easily observe

that Ma(T ) ⊆ M̃a(T ).
(iii) The class of absolutely continuous measures Q with respect to P defined
on FT such that the stochastic process (X,F) is a Q-local martingale on
[0, T ]:

M
loc
a (T ) := {Q : (X,F) is a Q-local martingale on [0, T ], Q � P on FT}.

Note that here we use the definition of the local martingale M on the closed
interval [0, T ]: there exists a sequence of monotonically increasing stopping
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times (τn) such that τn ↑ T : (M τn ,F) is a martingale on [0, T ] and {τn =
T} ↑ Ω.
(iv) The class of equivalent measures Q with respect to P defined on FT

such that the stochastic process (X,F) is a Q-local martingale on [0, T ]:

Me(T ) := {Q ∈ M
loc
a (T ) : Q ∼ P on FT}.

(v) The class of measures Q from M loc
a (T ) such that the relative entropy is

finite:
Mf (T ) := {Q ∈ M

loc
a (T ) : I(Q,P) < +∞ on FT}.

(vi) The class of measures Q from M loc
a (T ) such that the process X is still

a Q-Lévy process on [0, T ]:

Ml(T ) := {Q ∈ M
loc
a (T ) : (X,F) is a Q-Lévy process on [0, T ]}.

Taking into account Proposition 1.20 we can easily observe that in the last
definition we can substitute the class M loc

a (T ) by the class Ma(T ): if the
Lévy process is a local martingale on [0, T ], then it is a martingale on [0, T ].

Let Qn be defined similarly to the definition of Pn:

dQn

dQ
(FT ) = Z

(n)
T , n ≥ 1,

where Q is absolutely continuous measure with respect to P. We assume that
I(Q,P) < +∞.

1.41 Definition. A probability measure Q0 ∈ Ma will be called the minimal
entropy martingale measure (MEMM) if it satisfies

I(Q0,P) = min
Q∈Ma

I(Q,P) = min
Q∈Ma

EP

[
dQ

dP
log

dQ

dP

]
.

The distance between P and Ma is defined by

I(Ma,P) = inf
Q∈Ma

I(Q,P).
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2
General Approach

The aim of this chapter is to give an introduction to the problem of the min-
imal entropy martingale measures (MEMM). The chapter is based on results
of Frittelli (2000) which are natural generalizations of ideas of Csiszár (1975).
We consider a general incomplete security market model, with possibly an
infinite number of price processes defined on a general filtered probability
space. When the processes are bounded, it is proven that the MEMM exists
and is unique (Proposition 2.3). It is also shown that the MEMM (if it exists
and the relative entropy is finite) is always equivalent to the original measure.
The main result of this part is formulated in Theorem 2.6 and gives the char-
acterization of the density of the MEMM. The results mentioned above are
quite general and abstract, but they are useful in applications to particular
models. In our case the results of this chapter will be applied to the one-step
model (see Appendix A). Despite its simplicity, the one-step model plays an
important role and is later used for solving the more general problem when
the price process is driven by a geometrical Lévy process.

2.1 Some Definitions and Notations

Let (Ω,F ) be a measurable space and Q any probability measure on it. We
denote the set of time parameters by T ⊆ [0,+∞) . Let us assume that
0 ∈ T . We introduce the filtration F := (Ft)t∈T and consider a family X

of real-valued F-adapted stochastic processes X = (Xt)t∈T such that X0 is
bounded Q-a.s. The expectation with respect to Q is denoted by EQ.

The set of all real-valued random variables on (Ω,F ,Q) is denoted by
L0(Q). For the set of all essentially bounded random variables on (Ω,F ,Q)
we shall use the notation L∞(Q). The set of integrable random variables on
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(Ω,F ,Q) is denoted by L1(Q) = {η : EQ[|η|] <∞}.

2.1 Definition. A probability measure Q is called a martingale measure, if
all processes X ∈ X are martingales under Q.

From now on we fix a probability measure P on the space (Ω,F ): This is
the reference probability measure and by E we denote the expectation with
respect to it.

2.2 Definition. The set of all martingale measures Q defined on (Ω,F )
which are absolutely continuous with respect to P is denoted by Ma, that is,

Ma := {Q : Q � P, (Xt,Ft)t∈T is a Q-martingale for any X ∈ X },

while Me denotes the set of all martingale measures Q defined on (Ω,F )
which are equivalent to P, i.e.,

Me := {Q : Q ∈ Ma, Q ∼ P}.

Let us introduce the linear space K of random variables defined by

K = Span({ζ(Xt −Xs) : ζ ∈ L∞(Ω,Fs,P), s, t ∈ T , s ≤ t, X ∈ X }).

It is easy to prove the following identity:

Ma = {Q : Q � P, EQ[Z] = 0, Z ∈ K}. (2.1)

Indeed, if we set N := {Q : Q � P, EQ[Z] = 0, Z ∈ K} and we consider
Q ∈ Ma, then from EQ[ζ(Xt−Xs)] = EQ[ζ EQ[Xt−Xs|Fs]] = 0 for every Fs-
measurable bounded ζ, it follows that EQ[Z] = 0 for every Z ∈ K, meaning
that Ma ⊂ N . Conversely, if Q ∈ N andX ∈ X , then EQ[1A(Xt−Xs)] = 0
for any A ∈ Fs, thus X is a Q-martingale, i.e., N ⊂ Ma. Hence, Ma = N .

2.2 Construction of the MEMM

Before we describe the particular case of existence and uniqueness of the
MEMM, it is necessary to introduce some additional notations. The function
ϕ is defined as

ϕ(x) := x log x

for any x from the interval (0,+∞), ϕ(0) := 0. We recall the Definition 1.37:
the relative entropy IG (Q,P) of Q with respect to P on G ⊂ F is defined by

IG (Q,P) :=





EP

[
dQ
dP

∣∣
G
log dQ

dP

∣∣
G

]
, if Q|G � P|G ,

+∞, otherwise.
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In this chapter we always work with entropy on the σ-algebra F , therefore
for the sake of simplicity of notations the σ-algebra will be omitted. We also
want to recall the notation of the class Mf of all absolutely continuous with
respect to P martingale measures with finite relative entropy:

Mf = {Q ∈ Ma : I(Q,P) < +∞}.

In the following proposition we give a simple condition for the existence of
the MEMM.

2.3 Proposition. If I(Ma,P) < +∞ and if all X ∈ X are bounded then
there exists the MEMM and it is unique.

Proof. Let us choose a sequence (Qk)k≥1 ⊂ Mf such that I(Qk,P) ↓ I(Ma,P).

For the probability densities dQk
dP

we have the properties

dQk

dP
≥ 0 and EP

dQk

dP
= 1.

By the Komlós theorem (see Kabanov & Pergamenshchikov (2013), The-
orem A7.1) there is a subsequence kj such that Zn := 1

n

∑n
j=1 dQkj/dP con-

verges almost surely to a certain η ∈ L1(P) as n → +∞. Using Fatou’s
lemma and the convexity of ϕ we obtain

Eϕ(η) = E

[
lim
n→∞

ϕ(Zn)
]
≤ lim inf

n→∞
E

[
ϕ(Zn)

]
≤ lim sup

n→∞
E

[
ϕ(Zn)

]

≤ lim
n→∞

1

n

n∑

j=1

E

[
ϕ
(dQkj

dP

)]
= I(Ma,P) < +∞.

(2.2)

Hence, by the Valleé-Poussin criterion, (Zn)n≥1 is uniformly integrable and
therefore converges in L1(P) to η. In particular, this implies that E[η] = 1.
From this and the assumption that ζ ∈ K is bounded, it follows that we can
define a probability measure Q with density η with respect to the measure
P, i.e., dQ := ηdP, and

EQ[ζ] = E[ζη] = lim
n→∞

E

(
ζ
1

n

n∑

j=1

dQkj

dP

)
= lim

n→∞

1

n

n∑

j=1

E

(
ζ
dQkj

dP

)

= lim
n→∞

1

n

n∑

j=1

EQkj
(ζ) = 0.

Moreover, the infimum of the relative entropy between the measure P and
the set of all absolutely continuous martingale measures with respect to P is
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achieved at Q. This follows from the fact that Q is a martingale measure,
the equality I(Q,P) = Eϕ(η) and (2.2). Consequently, I(Q,P) = I(Ma,P).
The uniqueness follows from strict convexity of ϕ.

It is worth to mention that in the last proof we follow the approach of
Kabanov and Stricker (see Kabanov & Stricker (2002), Proposition 3.2) which
is direct and simpler in comparison to the approach of Frittelli (see Frittelli
(2000), Theorem 2.1), where are used arguments of the Dunford–Pettis com-
pactness theorem and convergence in the σ(L1(P), L∞(P)) topology.

In general, the condition of the boundedness of the price-processes is very
rarely satisfied and usually we don’t have so strong limitations. Our next
aim is to show an important property of the MEMM: if it exists, then it is
equivalent to the original measure P. For other types of Hellinger’s distance,
for example, so-called variation distance when the function ϕ is quadratic,
this property does not hold. The following lemma will be needed later.

2.4 Lemma. Let Q0,Q1 ∈ Mf and

f(t) := ϕ

(
t
dQ1

dP
+ (1− t)

dQ0

dP

)
, t ∈ [0, 1].

Then EQ1

[
log

dQ0

dP

]
is well-defined and

(
d

dt
Ef(t)

) ∣∣∣
t=0

= Ef ′(0) = EQ1

[
log

dQ0

dP

]
− I(Q0,P) < +∞. (2.3)

Proof. Since f is convex, the ratio
f(t)− f(0)

t
is not decreasing, moreover

it is converging to f ′(0) as t ↓ 0 and

f ′(0) ≤
f(t)− f(0)

t
≤ f(1)− f(0) = ϕ

(
dQ1

dP

)
− ϕ

(
dQ0

dP

)
,

therefore
f(t)− f(0)

t
is dominated by an integrable random variable and,

hence, integrable. Indeed, by assumption, the measures Q1 and Q2 have finite

relative entropy with respect to the measure P, consequently E[ϕ
(
dQ0
dP

)
] =

I(Q0,P) < +∞ and E[ϕ
(
dQ1
dP

)
] = I(Q1,P) < +∞. Using the theorem on

monotone convergence, from these two facts it follows that

lim
t↓0

E

[
f(t)− f(0)

t

]
= Ef ′(0)
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but

f ′(t) =

(
ϕ

(
t
dQ1

dP
+ (1− t)

dQ0

dP

))′

= ϕ′

(
t
dQ1

dP
+ (1− t)

dQ0

dP

)(
dQ1

dP
−

dQ0

dP

)

=

(
log

(
t
dQ1

dP
+ (1− t)

dQ0

dP

)
+ 1

)(
dQ1

dP
−

dQ0

dP

)
. (2.4)

Putting t = 0 into (2.4) we get

f ′(0) =

(
log

(
dQ1

dP

)
+ 1

)(
dQ1

dP
−

dQ0

dP

)

and hence

Ef ′(0) = E

(
dQ0

dP
−

dQ0

dP

)(
log

dQ0

dP
+ 1

)

= EQ1

[
log

dQ0

dP

]
− I(Q0,P).

The statement is proven.

Now we can prove a statement about the property of the MEMM an-
nounced earlier.

2.5 Theorem. Suppose that Q0 is the MEMM. If there exists a probability
Q1 ∈ Me such that I(Q1,P) < +∞, then Q0 is equivalent to P.

Proof. To prove this fact it is necessary to show, that the probability of the

set
{
dQ0
dP

= 0
}

is zero with respect to P. For this it is enough to use the

fact that ϕ′(0) = −∞ and the previous lemma. Indeed, because Q0 is the
MEMM we have (

d

dt
Ef(t)

) ∣∣∣
t=0

≥ 0, (2.5)

otherwise there exists such t0 and corresponding measure Qt0 , defined by

Qt0 := t0
dQ1

dP
+ (1− t0)

dQ0

dP

with the property I(Qt0 ,P) < I(Q0,P). However, from the equation (2.3),
we see that (2.5) cannot be satisfied if Q0 is not equivalent to P, since then

P

({
dQ0
dP

= 0
})

> 0 and hence Q1

({
dQ0
dP

= 0
})

> 0.
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The next step is the characterization of the MEMM. For this reason let
us define the class L of all integrable random variables with respect to all
absolutely continuous (with respect to P) martingale measures with finite
entropy,

L :=
⋂

Q∈Mf

L1(Q),

and the set C0 of random variables with non-positive expectation under every
absolutely continuous (with respect to P) martingale measure with finite
entropy,

C0 = {f ∈ L : EQ[f ] ≤ 0, ∀Q ∈ Mf} . (2.6)

2.6 Theorem. Assume that I(Me,P) < +∞. A probability Q0 is the
MEMM if and only if:

(i) Q0 ∈ Ma;
(ii) dQ0/dP = c exp(−f0)P-a.s., where f0 ∈ L1(Q0),EQ0f0 = 0 and c > 0;
(iii) f0 ∈ C0.

Proof. Let us first prove the sufficiency of the conditions (i)–(iii) for the
probability measure Q0 to be the MEMM. Let the conditions (i)–(iii) be
satisfied. Then the relative entropy of Q0 with respect to P is

I(Q0,P) = E[c exp(−f0) log(c exp[−f0])] = EQ0 [log c+ (−f0)] = log c. (2.7)

Note that, because of (ii), Q0 is equivalent to P and hence every Q ∈ Mf is
abolutely continuous with respect to Q0. Now for any Q ∈ Mf the relative
entropy with respect to P is

I(Q,P) = EQ

[
log

dQ

dP

]

= EQ

[
log

dQ

dQ0

dQ0

dP

]

= EQ

[
log

dQ

dQ0

]
+ EQ

[
log

dQ0

dP

]

= EQ

[
log

dQ

dQ0

]
+ EQ[log c− f0]

= I(Q,Q0) + log c− EQf0 ≥ log c,

where the condition (iii) was used. In the last line it was also used the non-
negativity of the relative entropy: I(Q,Q0) ≥ 0. The sufficiency is proven.

Now let us prove the necessity of the conditions (i)–(iii). Suppose that
Q0 is the MEMM. It is necessary to show that I(Q0,P) < +∞, but from
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the definition of the MEMM I(Q0,P) ≤ I(Me,P) < +∞. The condition (i)
holds by the definition of the MEMM. Let Q1 ∈ Mf be arbitrarily given and
define

f0 := I(Q0,P)− log
dQ0

dP
(2.8)

as well as

Qt := tQ1 + (1− t)Q0.

By Lemma 2.4 it follows that EQ1

[
log dQ0

dP

]
is well-defined. Let the function

f be defined as in Lemma 2.4, then I(Qt,P) = Ef(t) and since Q0 is the
MEMM,

d

dt
I(Qt,P)

∣∣∣
t=0

≥ 0.

Using Lemma 2.4 once again, we obtain

0 ≤

(
d

dt
I(Qt,P)

) ∣∣∣
t=0

= EQ1

[
log

dQ0

dP
− I(Q0,P)

]

Taking into account (2.8) we get

0 ≤ EQ1

[
log

dQ0

dP

]
− I(Q0,P) = −EQ1 [f0]

= EQ1

[
log

dQ0

dP

]
− I(Q0,P) < +∞.

So (ii) with c = exp(I(Q0,P)) and (iii) hold and the proof of the theorem is
finished.

The set C0 can be characterized in another way. Let us define the set C
as follows:

C = K − L∞
+ (P) =

{
η − h : η ∈ K, h ∈ L∞

+ (P)
}
, (2.9)

where

L∞
+ (P) = {h : h ∈ L∞(P), h ≥ 0} .

By C̄Q the closure of C in the L1(Q)-norm topology is denoted.

The next proposition gives an important characterization of C0.



34 2. General Approach

2.7 Proposition. Let C0 be defined as in (2.6) and the closure of C in
L1(Q)-norm topology as above. Then the following identity holds:

C0 =
⋂

Q∈Mf

C̄Q.

Proof. Indeed, ifQ ∈ Mf then for all f ∈ C it follows EQf ≤ 0, so
⋂

Q∈Mf

C̄Q ⊆

C0.

Let us fix Q ∈ Mf . To complete the proof it is sufficient to show that if
f0 ∈ L and f0 /∈ C̄Q then f0 /∈ C0. Note that this statement is equivalent to
L ∩ (C̄Q)c) ⊆ Cc

0, hence to C0 ⊆ L c ∪ C̄Q, but C0 ⊆ L , so also to C0 ⊆ C̄Q

which is just to verify.

The set C̄Q is a closed convex cone in the Banach space L1(Q) and by the
Hahn-Banach separation theorem there exists a continuous linear functional
on L1(Q) that strictly separates f0 from C̄Q. This means that there exists
ζ ∈ L∞(Q), ζ 6= 0, such that 0 = sup

f∈C
EQ[ζf ] < EQ[ζf0]. Now we want to

construct a probability measure which is an absolutely continuous martingale
measure with respect to the measure P, but at the same time the expectation
of f0 under this measure is strictly positive.
Since −1{ζ<0} ∈ C (take in the definition of C the random variable η = 0),
ζ ≥ 0 Q-a.s. The random variable ζ is in L∞(Q), so it is possible to normalize
ζ, i.e., to put c = EQζ > 0 and then to introduce ζ̃ = ζ

c
∈ L∞(Q). Now we

define the probability Q1 � Q by setting dQ1
dQ

= ζ̃. Since K ⊆ C is a linear

space, sup
f∈C

EQ[ζ̃f ] = 0 implies EQ1f = 0 for f ∈ K, so that Q1 is an absolutely

continuous martingale measure. Since ζ̃ ∈ L∞(Q) and I(Q,P) < +∞,
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I(Q1,P) = E

[
dQ1

dP
log

dQ1

dP

]

= EQ

[
dQ1

dP

dP

dQ
log

dQ1

dP

]

= EQ

[
dQ1

dQ

(
log

dQ1

dQ
+ log

dQ

dP

)]

= EQ

[
ζ̃ log ζ̃

]
+ EQ

[
ζ̃ log

dQ

dP

]

≤ EQ

[
ζ̃ log ζ̃

]
+ EQ

[
ζ̃

(
log

dQ

dP

)+
]

≤ EQ

[
ζ̃ log ζ̃

]
+ dEQ

[(
log

dQ

dP

)+
]
< +∞,

where we used that ζ̃ is nonnegative and bounded Q-a.s. from above by a
constant d, that the function x log x is bounded on compact sets and that Q
is in Mf which ensures that

EQ

[(
log

dQ

dP

)+
]
< +∞.

Hence Q1 ∈ Mf and

EQ1 [f0] = EQ[ζ̃f0] =
1

c
EQ[ζf0] > 0,

consequently f0 /∈ C0.
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3
Compound Poisson Case

In this chapter we would like to investigate the model of the price processes
based on the exponential (geometric) compound Poisson process and to show
its connection with the one-step model.

Let (Ω,F ,F,P) be a filtered probability space with F = (Ft)t∈[0,T ] sat-
isfying the usual conditions, where T is a finite horizon. Let us introduce
the compound Poisson process (X,F) with the drift b by its characteristic
function

E exp(iuXt) = exp

(
ibt+

∫

R

(eiux − 1)ν(dx)

)
, u ∈ R, t ∈ [0, T ].

The characteristic triplet is (b, 0, ν) where ν is a finite measure on (R,B(R)),
ν(R) > 0. We have used here the truncation function c = 0, because every
compound Poisson process has a finite number of jumps on finite intervals
and we do not need to manipulate with the infinite number of small jumps
in the neighborhood of zero. The process X can be also represented in the
following form:

Xt =
Nt∑

i=1

ξi + bt, t ∈ [0, T ],

where N is a Poisson process with intensity λ = ν(R), the sequence (ξi) is
independent and identically distributed, independent of N , with distribution
law Pξ1 =

1
λ
ν.

Let us define the price process S by

St := S0 exp(Xt), t ∈ [0, T ],

for some finite time horizon T and S0− = S0 > 0.
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We recall that a probability measure Q, defined on (Ω,F ,Q), is called a
martingale measure, if (S,F) is a Q-(local) martingale. The following sets of
martingale measures where already defined and discussed in Section 1.7, so
we just recall the definition:

Ma(T ) := {Q : (S,F) is a Q-local martingale, Q � P on FT},

Me(T ) := {Q ∈ Ma(T ) : Q ∼ P on FT},

Ml(T ) := {Q ∈ Ma(T ) : (X,F) is a Q-Lévy process},

Mf (T ) := {Q ∈ Ma(T ) : IT (Q,P) <∞}.

We are interested in the MEMM Q∗ in the class of martingale measures which
preserve the Lévy property of the price-generating process X:

Q∗ = argminQ∈Ml(T )IT (Q,P).

The interest is naturally caused by the properties of the process with inde-
pendent and homogeneous increments that make the model intuitively close
to the real behavior of the price processes. Nevertheless, in Chapter 4 we
prove that

argminQ∈Ma(T )IT (Q,P) = argminQ∈Ml(T )IT (Q,P)

and therefore the desired martingale measure Q∗, if it exists, is also the
MEMM in the class Ma(T ).

In our particular model, the price process is always a positive semimartin-
gale and S0 > 0. These are important properties, which give us the possibil-
ity to investigate the price process as a stochastic exponential of some other
semimartingale and use the already known relation between stochastic expo-
nentials and stochastic logarithms stated in Section 1.6.

Now we would like to show the explicit relation between the process X
and the stochastic logarithm of the process S.

3.1 Proposition. The stochastic logarithm L (S) of S is equal to

L (S)t =

t∫

0

[exp(∆Xu)− 1]dNu+bt =
Nt∑

i=1

[exp(ξi)− 1]+bt =: Lt, t ∈ [0, T ].

The process (L,F) is a compound Poisson process with drift b and Lévy
measure

νL = ν ◦ F−1, F (x) = ex − 1, x ∈ R.

The measure νL can also be written as

νL = λPη1 , η1 := exp(ξ1)− 1.
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Proof. Because of the correspondence between stochastic exponentials and
stochastic logarithms (cf., Theorem 1.34), to prove the statement it is suffi-
cient to show that the stochastic exponential of the process L is equal to the
process S P-a.s. According to Theorem 1.33, the stochastic exponential of
some semimartingale Y has the form

E (Y )t = exp(Yt − Y0 −
1

2
〈Y c〉)

∏

s≤t

(1 + ∆Ys)e
−∆Ys , t ∈ [0, T ],

where Y c stands for the continuous martingale part of the process Y . Let us
introduce the process (L,F) by

Lt :=
Nt∑

i=1

[exp(ξi)− 1] + bt =

t∫

0

[exp(∆Xu)− 1]dNu + bt, t ∈ [0, T ].

The stochastic exponential of the process (L,F) has the form

E (L)t = exp

(
Nt∑

i=1

[exp(ξi)− 1] + bt

)

×
∏

0≤s≤t

[1 + ∆Ns[exp(ξNs
)− 1]] exp(−∆Ns[exp(ξNs

)− 1])

= exp

(
Nt∑

i=1

[exp(ξi)− 1] + bt

)

×
Nt∏

i=1

[1 + [exp(ξi)− 1]] exp(−[exp(ξi)− 1])

= exp

(
Nt∑

i=1

[exp(ξi)− 1] + bt+
Nt∑

i=1

ξi −
Nt∑

i=1

[exp(ξi)− 1]

)

= exp

(
bt+

Nt∑

i=1

ξi

)
= St.

So L is the stochastic logarithm of S.

In the following we will give some preparations before the consideration
of our concrete model, in particular there will be stated some general results
about Lévy processes and (local) martingales.

Proposition 1.35 gives us an alternative formulation of the original prob-
lem: Instead of the price process S being a local martingale we may look
for measures Q under which the stochastic logarithm of the price process
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L (S) = L is a local martingale. Because of Proposition 3.1, the process L
is a Lévy process under the original measure P, moreover L is a compound
Poisson process with drift. At the same time, the MEMM Q∗ is in class
Ml(T ) and by definition preserves the Lévy property of the process X, hence
the process L is also a Q∗-Lévy process.

In the general case, the price process L must be just a local martingale
with respect to the MEMM Q∗, but in our particular model we can prove
that it is even a true martingale under Q∗. For this the key property is the
preservation of the Lévy property of L with respect to Q∗ because for Lévy
processes the conditions of being a martingale and a local martingale are
equivalent (cf. Theorem 1.20). The price process L is a compound Poisson
process with drift under the original probability measure P. Using this fact,
we show that under the MEMM Q∗, if it exists, L is also a compound Poisson
with drift and there cannot appear a Gaussian component. For this we
need to know the relation between the parameters of Lévy processes under
equivalent change of measure that preserves the Lévy property.

3.2 Theorem. Let (Lt,Ft, t ≥ 0) be a P- and Q-Lévy process on R with
generating triplets (b̃, 0, ν) and (b̃Q, σ

2, νQ), respectively, and standard trun-
cation function c(x). The filtration F0 = (F 0

t )t≥0 is a natural filtration:
F 0

t = σ(Ls : 0 ≤ s ≤ t), t ≥ 0.Then the following two statements (i) and
(ii) are equivalent:

(i) P|Ft
∼ Q|Ft

for every t ∈ (0,∞);
(ii) The generating triplets satisfy

(a) σ2 = 0;

(b) ν ∼ νQ,

(c)
∫
R

(
exp

[
β(x)
2

]
− 1
)2
ν(dx) <∞

with the function β defined by
dνQ
dν

= exp[β],

(d) b̃Q − b̃−
∫

{|x|≤1}

x(νQ − ν)(dx) = 0.

Proof. This is the special case of Theorem 1.22 for a Lévy process without
Gaussian part.

Note that this theorem is only valid for the natural filtration F = F0

where F0 = (F 0
t )t≥0 and F 0

t = σ(Xs : 0 ≤ s ≤ t), t ≥ 0. Otherwise the
statement is true just in the direction (i)⇒ (ii) and in general does not hold
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in the direction (ii)⇒ (i). It is worth to mention that in case of a compound
Poisson process with a drift we can omit the truncation function (in other
words, we put c ≡ 0). Therefore, the new drift parameters bQ and b can be
easily calculated:

bQ = b̃Q −

∫

{|x|≤1}

xνQ(dx),

b = b̃−

∫

{|x|≤1}

xν(dx).

Taking into account condition (d) of the previous theorem we get bQ = b.
In the following (L,F) denotes an arbitrary compound Poisson process

with drift.
The following proposition shows that under the MEMM, if it exists, the

linear price process (L,F) is still a compound Poisson process with drift.

3.3 Proposition. Assume that Q ∼ P on FT and (L,F) is a Q-Lévy process.
ThenX (resp., L) is compound Poisson with drift b and Lévy measure νQ ∼ ν
(resp., νLQ = νQ ◦ F−1).

Proof. Because of Proposition 3.1 it is sufficient to prove the statement either
for the process X or for the process L. Let us prove it for the process X.
According to Theorem 3.2 the characteristic triplets must satisfy the relations
(a), (b), (c) and (d). The process (X,F) is P-compound Poisson, hence σ2 = 0
(i.e., (X,F) has no Gaussian part under the measure Q). From the statement
(b) we have the equivalence of the Lévy measures. The parameters b and bQ
are finite, moreover ν(R) < +∞. We now show that νQ(R) < +∞ which
would imply that the process X is a Q-compound Poisson process with the
drift bQ. Indeed, the density exp[β(x)] can be estimated:

exp[β(x)] = (exp[β(x)/2])2

= (exp[β(x)/2]− 1 + 1)2

≤ 2[(exp[β(x)/2]− 1)2 + 1].

Taking into account the condition (c) and the fact that ν(R) < +∞ we have:

νQ(R) =

∫

R

exp (β(x))ν(dx)

≤ 2



∫

R

(
exp

[
β(x)

2

]
− 1

)2

ν(dx) + ν(R)


 < +∞.

The statement is proven.



42 3. Compound Poisson Case

3.1 Construction of the density for the meas-

ure transformation

Let the process (L,F) be a general compound Poisson process with drift, the
jump sizes are denoted by (ηn), the Lévy measure (intensity measure) by νL.

Our next goal is to find conditions, under which the Lévy preserving meas-
ure is also a martingale measure. We assume that the following condition
holds:

Ml(T ) ∩ Mf (T ) ∩ Me(T ) 6= ∅.

If Q ∼ P on FT and (L,F) is a Q-Lévy process, we always denote by νQ
(respectively, νLQ) the Lévy measure of the compound Poisson process (X,F)
(respectively, (L,F)) with respect to Q (cf., Proposition 3.3). We also intro-
duce the intensity λQ of the compound Poisson process (X,F) and (L,F) with
respect to Q. Note that λQ = νQ(R) = νLQ(R). The next proposition gives
a characterization of martingale measures in the class of Lévy-preserving
probability measures Q on FT equivalent to P.

3.4 Proposition. Let (L,F) be a Q-Lévy process, Q ∼ P on FT . Then
the probability measure Q ∈ Me(T ) ∩ Ml(T ) iff Q is a martingale measure.
Moreover, Q is a martingale measure iff

EQ[exp(ξ1)] = −
b

λQ
+ 1. (3.1)

Proof. We will prove this statement in several steps.

Step 1. Let us show the equivalence of the following conditions (1) and
(2) for any compound Poisson process (Y,F) with Lévy measure ν:

(1) E[|Yt|] < +∞ for any t ≥ 0 ;

(2)
∫
R

|x|ν(dx) < +∞.

Let us assume that E[|Yt|] < +∞ for some t ≥ 0. The process Y at fixed
time point is a compound Poisson random variable, so

Yt =
Nt∑

i=1

ζi,

where Nt is a Poisson random variable with intensity λt := ν(R)t, the se-
quence {ζi} is independent and identically distributed, independent of Nt,
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with the distribution law ζi ∼
ν

ν(R)
. By assumption, for any t ≥ 0 we have

+∞ > E[|Yt|]

= E[|
Nt∑

i=1

ζi|]

=
∞∑

n=0

E[|
n∑

i=1

ζi
(λt)n

n!
e−λt|]

≥ E[|ζ1|]λte
−λt.

From this follows that E[|ζ1|] < +∞. But ζi ∼
ν

ν(R)
and hence

E[|ζ1|] =

∫

R

|x|
ν(dx)

ν(R)
< +∞

from which we have ∫

R

|x|ν(dx) < +∞.

Let us prove the converse statement. Assume that
∫
R

|x|ν(dx) < +∞. We

have to show that E[|Yt|] < +∞ for any t ≥ 0. But for any t ≥ 0 we have

E[|Yt|] = E[|
Nt∑

i=1

ζi|]

≤ E[
Nt∑

i=1

|ζi|]

= E[|ζ1|]E[Nt] = E[|ζ1|]λt < +∞,

where we have used Wald’s identity.

Step 2. The application of Proposition 3.3 ensures that under the assump-
tions of this proposition (L,F) is a compound Poisson process with drift b
with respect to Q. Now we can apply the result of Step 1 to the compound
Poisson process L with drift b with the characteristic triplet (b, 0, νLQ). In-
deed, it is possible to estimate the expectation EQ[|Lt|] for any t ≥ 0 from
above and below:

EQ[|Lt − bt| − |bt|] ≤ EQ[|Lt|] ≤ EQ[|Lt − bt|] + |bt|, t ≥ 0,
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where (Lt − bt)t≥0 is a compound Poisson process. Therefore the condition

EQ[|Lt|] < +∞, t ≥ 0,

is equivalent to ∫

R

|x|νLQ(dx) <∞.

Step 3. The distribution of ηi is just Qηi =
νLQ

νLQ(R)
. This yields that

EQ[|Lt|] < +∞, t ≥ 0, if and only if EQ[|ηi|] < +∞.
Step 4. Assume Q ∈ Me(T ) ∩ Ml(T ). It follows that EQ[Lt] = 0 for any

t > 0 and, in particular, EQ[|Lt|] < +∞, t ≥ 0. Therefore

0 = EQ[Lt]

= EQ

[ Nt∑

i=1

(ηi)
]
+ bt

= EQ[Nt]EQ[ηi] + bt

= λQtEQ[η1] + bt,

where λQ = νLQ(R). Here Wald’s identity is used which can be applied because
EQNt < +∞ and EQ|ηi| < +∞. Finally, we obtain

EQ[η1] = −
b

λQ
.

Step 5. Now we want to prove the statement of Step 4 in the converse

direction. By assumption, EQ[η1] = −
b

λQ
. Then EQ[η1] < +∞ and therefore

EQ[|Lt|] < +∞ which follows from Step 3. Similarly to Step 4, we can
compute EQ[Lt] with the result

EQ[Lt] = λQtEQ [ηi] + bt

which is equal to zero because of the assumption. As a Lévy process with
expectation zero, (L,F) is a Q-martingale. Since Q ∼ P on FT and (L,F) is
a Q-Lévy process by assumption we obtain Q ∈ Me(T ) ∩ Ml(T ).

Note that the last proposition gives us a necessary and sufficient condition
for a Lévy preserving measure to be a martingale measure. At the beginning
of this chapter it was assumed that the following condition is satisfied:

Ml(T ) ∩ Mf (T ) ∩ Me(T ) 6= ∅,
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and the condition of finite entropy we will discuss later. The next step is to
find the explicit form of the density of the measure transformation. We have
already characterized it in Theorem 3.2 and Proposition 3.3, but without
giving the explicit form of the density.

3.5 Theorem. Let (L,F) be a compound Poisson process with drift b with
respect to the probability measure P.

(1) If (L,F) is a compound Poisson process with drift b with respect to Q

and Q ∼ P on FT , then ν
L
Q ∼ νL and

dQ

dP
(FL

T ) = exp

[
T (νL(R)− νLQ(R)) +

∑

0<r≤T

log ρ(∆Lr)

]
, (3.2)

where ρ :=
dνLQ
dνL

.

(2) If the measure Q is defined on FT by

dQ

dP
(FT ) = exp

[
T (νL(R)− νLQ(R)) +

∑

0<r≤T

log ρ(∆Lr)

]
, (3.3)

where νLQ is a finite measure on R such that νLQ ∼ νL and ρ :=
dνLQ
dνL

, then

the process (L,F) is a compound Poisson process with Lévy measure νLQ and
drift b with respect to Q.

Proof. First we prove part (2). Let us define the process

Ut := exp

[
t(νL(R)− νLQ(R)) +

∑

0≤r≤t

log ρ(∆Lr)

]
, t ∈ [0, T ].

Inputting ηi and β = log ρ we can write

Ut := exp

[
t(νL(R)− νLQ(R)) +

Nt∑

i=1

β(ηi)

]

= exp
[
t(νL(R)− νLQ(R))

] Nt∏

i=1

ρ(ηi), t ∈ [0, T ].

This shows that (U,F) is an exponential compound Poisson process with
drift, U0 = 1, and for proving that it is a density process (a martingale) it is
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sufficient to verify that E[Ut] = 1, t ∈ [0, T ]. For this let us compute

E

[
Nt∏

i=1

ρ(ηi)

]
=

∞∑

k=0

E

[
k∏

i=1

ρ(ηi)1{Nt=k}

]

=
∞∑

k=0

E

[
k∏

i=1

ρ(ηi)

]
P({Nt = k})

=
∞∑

k=0

(E [ρ(η1)])
k (λt)

k

k!
exp(−λt)

= exp(λt(E[ρ(η1)− 1]))

= exp(t[νLQ(R)− νL(R)])

since λ = νL(R) and λE[ρ(η1)] = νLQ(R). This proves the martingale property
of (U,F).

Now let us define the probability measure Q on FT by

dQ = UTdP.

We want to prove that the process L is a Lévy process with respect to Q

on [0, T ] with characteristic triplet (b, 0, νLQ). In order to prove that L is
a Q-Lévy process with prescribed characteristics, we consider the following
lemma:

3.6 Lemma. For any 0 ≤ s ≤ t and u ∈ R the following identity holds

EQ[exp(iu(Lt − Ls))|Fs]

= exp[i(t− s)ub+ (t− s)

∫

R

(eiux − 1)νLQ(dx)] P-a.s. and Q-a.s.

Proof. Because of the homogeneity of increments of the process L in time
and their independence the process Ls defined by Ls := Ls+t − Ls, t ≥ 0,
is again a Lévy process with respect to Fs := (Fs+t)t≥0 and has the same
distribution as L for all s ≥ 0. In particular, Ls is independent of Fs. Now
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we calculate

EQ[exp(iu(Lt − Ls))|Fs]

= EP[exp(iu(Lt − Ls))
Ut

Us

|Fs]

= EP

[
exp

(
iu
( ∑

s<r≤t

∆Lr + (t− s)b
)
+ (t− s)(νL(R)− νLQ(R))

+
∑

s<r≤t

log ρ(∆Lr)
)
|Fs

]

= EP

[
exp

(
iu
( ∑

0<r≤t−s

∆Ls
r + (t− s)b

)
+ (t− s)(νL(R)− νLQ(R))

+
∑

0<r≤t−s

log ρ(∆Ls
r)
)
|Fs

]
.

Because of the independence of the process Ls of Fs, the conditional expect-
ation in the last expression is equal to the usual expectation:

EQ[exp(iu(Lt − Ls))|Fs]

= EP

[
exp

(
iu
( ∑

0<r≤t−s

∆Ls
r + (t− s)b

)
+ (t− s)(νL(R)− νLQ(R))

+
∑

0<r≤t−s

log ρ(∆Ls
r)
)]
.

Taking into account the fact that processes L and Ls are equal in distribution,
we can replace Ls by L:

EP

[
exp

(
iu
( ∑

0<r≤t−s

∆Ls
r + (t− s)b

)
+ (t− s)(νL(R)− νLQ(R))

+
∑

0<r≤t−s

log ρ(∆Ls
r)
)]

= EP

[
exp

(
iu
( ∑

0<r≤t−s

∆Lr + (t− s)b
)
+ (t− s)(νL(R)− νLQ(R))

+
∑

0<r≤t−s

log ρ(∆Lr)
)]

= EP[exp(iuLt−s)Ut−s].
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On the other side,

EP[exp(iuLt)Ut]

= exp(t(νL(R)− νLQ(R)))EP

[
exp

(
iu
( Nt∑

j=1

ηj + bt
)
+

Nt∑

j=1

β(ηj)
)]

= exp(t(νL(R)− νLQ(R)) + tiub)EP

[
exp

( Nt∑

j=1

(iuηj + β(ηj))
)]
.

Expanding the expression under the expectation for the formula of total
probability, we continue

= exp(t(νL(R)− νLQ(R)) + tiub)
∞∑

k=0

[
EP

[
exp

(
iuη1 + β(η1)

)]]k (λt)k
k!

e−λt

= exp(t(νL(R)− νLQ(R)) + tiub+ (λt)EP[exp(iuη1 + β(η1))]− λt).

Now we obtain

λEP[exp(iuη1 + β(η1))] = λ

∫

R

exp(iux+ β(x))
νL(dx)

νL(R)

=

∫

R

exp(iux)ρ(x)νL(dx)

=

∫

R

exp(iux)νLQ(dx).

At the last step we have used the facts that λ = νL(R) and ρ = exp(β).
Hence

EP[exp(iuLt)Ut] = exp(itub+ t

∫

R

(exp(iux)− 1)νLQ(dx)).

Inserting t− s instead of t yields the statement of the lemma.

Hence the process (L,F) is a Lévy process with respect to Q on [0, T ]
with characteristic triplet (b, 0, νLQ) relative to the truncation function c = 0.
This completes the proof of part (2).

We now prove part (1) of the theorem. Let Q be a probability measure
such that Q ∼ P on FT and (L,F) is a compound Poisson process with Lévy
measure νLQ and drift b. First we will show that then νLQ ∼ νL. To this end
let ML be the jump measure of L which is a Poisson random measure with
intensity measure λ ⊗ νL with respect to P and λ ⊗ νLQ with respect to Q.
Consequently, for every B ∈ B(R), ML([0, T ] × B) is a Poisson-distributed
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random variable with parameter TνL(B) with respect to P and TνLQ(B) with
respect to Q. This yields

P({ML([0, T ]× B) = 0}) = exp(−TνL(B))

and
Q({ML([0, T ]× B) = 0}) = exp(−TνLQ(B)).

If νL(B) = 0 from the first equality it follows that

P({ML([0, T ]× B) = 0}) = 1

and because of Q ∼ P on FT , Q({ML([0, T ]×B) = 0}) = 1. Now the second
equality implies νLQ(B) = 0. Hence νLQ � νL. Analogously, it can be shown
that νL � νLQ. Thus ν

L ∼ νLQ and the claim is proven.

Now we define the probability measure Q̃ on FT by

dQ̃

dP
(FT ) = exp

[
T (νL(R)− νLQ(R)) +

∑

0≤r≤T

log ρ(∆Lr)

]
,

where ρ =
dνLQ
dνL

. Because of part (2) of the theorem and its proof, Q̃ is indeed

a probability measure on FT . Moreover, the process (L,F) is a compound
Poisson process on [0, T ] with Lévy measure νLQ and drift b with respect to

Q̃. But by assumption (L,F) is also a compound Poisson process with Lévy
measure νLQ and drift b with respect to Q. from this follows that the finite
dimensional distributions are equal:

Q̃({Lt1 ∈ B1, . . . , Ltn ∈ Bn}) = Q({Lt1 ∈ B1, . . . , Ltn ∈ Bn})

for B1, . . . , Bn ∈ B, t1, . . . , tn ≤ T . Hence Q̃ = Q on FT . Consequently,

dQ

dP
(FL

T ) =
dQ̃

dP
(FL

T ) =
dQ̃

dP
(FT ), (3.4)

the second equality being true because by definition of dQ̃
dP
(FT ) we see that

dQ̃
dP
(FT ) is FL

T -measurable. Again using the definition of dQ̃
dP
(FT ) we obtain

(3.2) from (3.4). Part (1) of the theorem is proven.

From the last theorem we observe that on FL
T = FX

T the Lévy preserving
equivalent martingale measure is uniquely determined by the characteristic
triplet of the processX (or the process L, because by Proposition 3.1 from the
characteristic triplet of the process X we can easily derive the characteristic
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triplet of the process L and vice versa). Moreover, there is no Gaussian
part and the Lévy measure is finite, therefore on FL

T the Lévy preserving
equivalent martingale measure Q can be defined just by two parameters: the
intensity λQ and the distribution of the size of the jump η1 with respect to
the measure Q, denoted as µQ.

3.2 Well-determined Systems of Measures

However, since we introduced the entropy IT (Q,P) with respect to the σ-field
FT instead of FL

T we need an additional property of a measure Q ∈ Me(T )
that Q is well-determined on FT by its values on FL

T . This gives rise to
introduce the next definition.

3.7 Definition. (i) Let Q be a probability measure on FT such that Q ∼ P

on FT . Then Q is said to be well-defined by L on [0, T ] if

dQ

dP
(FT ) =

dQ

dP
(FL

T ) P-a.s.

or, equivalently, if dQ
dP
(FT ) is FL

T -measurable.
(ii) We shall denote by M L

e (T ) the system of all Q ∈ Me(T ) such that
Q is well-determined by L on [0, T ].

For all Q ∈ M L
e (T ) ∩ Me(T ) it is now possible to calculate its entropy

IT (Q,P).
It is worth recalling the definition of the relative entropy with respect to

the one-dimensional distribution(cf. Section 1.7): Let µ and µ′ be probability
distributions on (R,B(R)). The relative entropy H(µ′, µ) of µ′ with respect
to µ is defined by

H(µ′, µ) =





Eµ

[
dµ′

dµ
log

dµ′

dµ

]
if µ′ � µ,

+∞ otherwise.

In more details the one-step model was discussed in Appendix B.

3.8 Proposition. Let us assume that there exists an equivalent martingale
measure Q such that it preserves the Lévy property: Q ∈ M L

e (T ) ∩ Ml(T ).
Then the relative entropy IT (Q,P) has the form

IT (Q,P) = T [λ− λQ + λQ log
λQ

λ
+ λQH(µQ, µ)],

where µQ and µ are the distributions of η1 under the probability measures Q
and P, respectively.
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Proof. We can write IT (Q,P) as

IT (Q,P) = E

[dQ
dP

(FT ) log
dQ

dP
(FT )

]

= EQ

[
log

dQ

dP
(FT )

]

= EQ

[
log

dQ

dP
(FL

T )
]

= EQ

[
log exp

[
T (νL(R)− νLQ(R)) +

∑

0<r≤T

log ρ(∆Lr)
]]

= T (λ− λQ) + EQ

[ ∑

0<r≤T

log ρ(∆Lr)
]

= T (λ− λQ) + EQ

[ Nt∑

i=1

β(ηi)
]

= T (λ− λQ) + λQT EQ[β(η1)],

where we have used that Q is well-determined by L on [0, T ] and the explicit
form of the density dQ

dP
(FL

T ) from Theorem 3.5, (1). Let us calculate the last
part of the expression:

EQ[β(η1)] =

∫

R

log
dνQ

dν
(x)µQ(dx)

=

∫

R

log
λQdµQ

λdµ
(x)µQ(dx)

= log
λQ

λ
+H(µQ, µ).

Finally, the entropy can be represented as

IT (Q,P) = T [λ− λQ + λQ log
λQ

λ
+ λQI(µQ, µ)]. (3.5)

The theorem is proven.

Remark. As we can easily observe from the equation (3.5), the relative
entropy IT (Q,P) is finite if and only if H(µQ, µ) is finite. Indeed, λQ and λ
are finite and strictly positive and, hence the finiteness of the relative entropy
IT (Q,P) depends just on the last term. Moreover, the equation (3.5) is true
not just for martingale measures, but for all Lévy preserving measures.
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3.3 Case without Drift

Let us come back to the original problem stated at the beginning: we are
interested in the MEMM Q∗ in the class Ma(T ) such that

IT (Q
∗,P) = inf

Q∈Ma(T )
IT (Q,P). (3.6)

As we have already seen in Proposition 3.1, there is a unique correspondence
between the original process X and the stochastic logarithm of its expo-
nential L := L (exp(X)), therefore Theorem 1.35 gives us an alternative
formulation of the original problem: we are allowed to replace the price pro-
cess S = S0 exp(X) by the process L. As we have seen, (L,F) is a compound
Poisson process with drift. For the convenience of the calculations we con-
sider the original problem with respect to the compound Poisson process
(L,F). With this in mind, we can dispense with the origin of the process
(L,F) as the stochastic logarithm of (S,F) and allow that (L,F) is an arbit-
rary compound Poisson process with drift. In this way, we shall investigate a
more general problem than the original one for the exponential price process
(S,F). Because of Theorem 2.5 we find that under the condition that the
relative entropy between the original measure P and the class of equivalent
measures Me(T ) is finite, i.e., IT (Me(T ),P) <∞, then Q∗ ∈ Me(T ). In this
chapter we are looking for the MEMM in the class of Lévy preserving mar-
tingale measures Ml(T ) not just because of heuristic reasons, but this is a
sufficient subclass of measures. The last fact will be proven in Theorem 4.21.
It means that the problem (3.6) can be reduced to the problem (I):

IT (Q
∗,P) = inf

Q∈Me(T )∩Ml(T )
IT (Q,P). (I)

Note that the conditions for Me(T )∩Ml(T ) 6= ∅ are equivalent to the condi-
tions for Me(T ) 6= ∅. Indeed, from Proposition ?? it follows that there exists
at least one equivalent martingale measure if and only if the Lévy process L
is not monotone, or in other words, L and −L are not subordinators. But in
case when L is a compound Poisson process, the statement can be simplified,
because there is no need of a truncation function. Therefore we can deduce
the following conditions in dependence on the sign of the drift in terms of
the Lévy measure:

3.9 Proposition. Let (L,F) be a compound Poisson process with drift b
with respect to the measure P. Then the class Me(T )∩Ml(T ) is not empty
if and only if one of the following conditions is satisfied:
(i) b > 0 and supp νL ∩ (−∞, 0) 6= ∅;
(ii) b < 0 and supp νL ∩ (0,+∞) 6= ∅;
(iii) b = 0, supp νL ∩ (−∞, 0)− 6= ∅ and supp νL ∩ (0,+∞) 6= ∅.
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Now we will show that M L
e (T )∩Ml(T ) is a sufficient subclass of Me(T )∩

Ml(T ) for solving the problem (I).

3.10 Proposition. For every Q ∈ Me(T )∩Ml(T ) there exists Q̃ ∈ M L
e (T )∩

Ml(T ) such that

IT (Q̃,P) ≤ IT (Q,P).

Proof. Suppose that Q ∈ Me(T )∩Ml(T ). We define the probability measure
Q̃ on FT by its density

dQ̃

dP
(FT ) :=

dQ

dP
(FL

T ).

Using Theorem 3.5, (1), we get

dQ̃

dP
(FT ) = exp

[
T (νL(R)− νLQ(R)) +

∑

0<r≤T

log ρ(∆Lr)

]

with ρ :=
dνQ

L

dνL
. An application of Theorem 3.5, (2), now shows that (L,F) is

a compound Poisson process with Lévy measure νLQ and drift b with respect

to Q̃.
For proving Q̃ ∈ Me(T ) it suffices to verify that

EQ̃[Lt] = 0, t ∈ [0, T ].

But

EQ̃[Lt] = E

[dQ̃
dP

(FT )Lt

]

= E

[dQ
dP

(FL
T )Lt

]

= E

[
E

[dQ
dP

(FT )|F
L
T

]
Lt

]

= E

[
E

[dQ
dP

(FT )Lt|F
L
T

]]

= E

[dQ
dP

(FT )Lt

]

= EQ[Lt] = 0

because Q ∈ Me(T ) ∩ Ml(T ). Furthermore, dQ̃
dP
(FT ) is FL

T -measurable and

hence Q̃ is well-determined by L on [0, T ]. Summarizing the properties of Q̃
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we observe that Q̃ ∈ M L
e (T ) ∩ Ml(T ). Finally, we estimate

IT (Q̃,P) = E

[dQ̃
dP

(FT ) log
dQ̃

dP
(FT )

]

= E

[
E

[dQ
dP

(FT )|F
L
T

]
logE

[dQ
dP

(FT )|F
L
T

]]

≤ E

[
E

[dQ
dP

(FT ) log
dQ

dP
(FT )|F

L
T

]]

= E

[dQ
dP

(FT ) log
dQ

dP
(FT )

]

= IT (Q,P)

where in the third line we have applied Jensen’s inequality for conditional
expectations and the convex function x log x, x > 0. This completes the
proof of the proposition.

As a result of the last proposition, the problem (I) is equivalent to the
following problem (II):

IT (Q
∗,P) = inf

Q∈ML
e (T )∩Ml(T )

IT (Q,P). (II)

In the following we shall investigate the problem (II) under the assumption
of the absence of drift: b = 0. Note that the condition (iii) of Proposition 3.9
coincides with the statement of Proposition B.2 that refers us to the one-
step model. Recall that the distribution of η1 (the size of the first jump of
L) with respect to P is denoted by µ. By analogy to the one-step model, let
us introduce the class Me of all probability measures µ′ on (R,B(R)) such
that µ′ ∼ µ and the moment condition is satisfied:

∫

R

xµ′(dx) = 0.

Let us consider another minimization problem, (III), which is motivated by
identity (3.5). First of all, we rewrite the right-hand side of the identity (3.5)
in the following way:

J(λ′, µ′) := T [λ− λ′ + λ′ log
λ′

λ
+ λ′H(µ′, µ)], (3.7)

where λ and µ are given and fixed, λ′ > 0 and µ′ ∈ Me. In particular, µ
is the distribution of η1 with respect to P, the parameter λ is defined as
λ = νL(R) > 0. Assume that Me 6= ∅, or in other words, the distribution µ
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satisfies the condition of Proposition B.2. We are interested in such a couple
(λ∗, µ∗) that minimizes the expression (3.7):

J(λ∗, µ∗) = inf
λ′>0, µ′∈Me

J(λ′, µ′). (III)

We are now going to investigate the relation between the minimization prob-
lems (II) and (III). For this we introduce the mapping

Λ : M
L
e (T ) ∩ Ml(T ) 7−→ (0,+∞)×Me

defined by
Λ(Q) = (λQ, µQ), Q ∈ M

L
e (T ) ∩ Ml(T ).

We recall that (L,F) is a compound Poisson process on [0, T ] with respect to
Q with Lévy measure νLQ for every Q ∈ M L

e (T )∩Ml(T ) and that λQ = νLQ(R)

and µQ =
νL
Q

νL
Q
(R)

denote the intensity and the jump size distribution of (L,F)

with respect to Q.

3.11 Proposition. The mapping Λ is a bijection between the sets M L
e (T )∩

Ml(T ) and (0,+∞)×Me.

Proof. First we show that Λ(Q) = (λQ, µQ) belongs to (0,+∞) × Me for
every Q ∈ M L

e (T ) ∩ Ml(T ). Obviously, λQ > 0. Furthermore, in view of
Proposition 3.4 we get

∫

R

xµQ(dx) = EQ[η1] = 0

because Q ∈ M L
e (T ) ∩ Ml(T ). Using Theorem 3.5, (1), we obtain that

νLQ ∼ νL which implies µQ ∼ µ. Consequently, µQ ∈ Me. Next we verify that

the mapping Λ is one-to-one. For this let Q, Q̃ ∈ M L
e (T )∩Ml(T ) such that

(λQ, µQ) = (λQ̃, µQ̃). Thus we have νLQ = νL
Q̃
. Applying Theorem 3.5, (1), we

observe
dQ

dP
(FL

T ) =
dQ̃

dP
(FL

T ) P-a.s.

and since Q and Q̃ are well-determined by L on [0, T ] we get

dQ

dP
(FT ) =

dQ̃

dP
(FT ) P-a.s.

Hence Q = Q̃ on FT .
Finally, we prove that Λ maps onto (0,+∞)×Me. Let (λ

′, µ′) ∈ (0,+∞)×
Me and define νLQ := λ′µ′. Then νLQ ∼ νL. Using Theorem 3.5, (2), we obtain
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that (L,F) is a compound Poisson process with Lévy measure νLQ with respect
to the probability measure Q on FT defined by its density

dQ

dP
(FT ) = exp

[
T (νL(R)− νLQ(R)) +

∑

0<r≤T

log ρ(∆Lr)

]
,

where ρ :=
dνL

Q

dνL
. Obviously, λQ = λ′ and µQ = µ′. It remains to show that

Q ∈ M L
e (T ) ∈ Ml(T ). By the construction of Q, we have Q ∼ P on FT

and Q is well-determined by L on [0, T ] because dQ
dP

(FT ) is FL
T -measurable.

Moreover, Q is a martingale measure because

EQ[η1] =

∫

R

xµQ(dx) =

∫

R

xµ′(dx) = 0

since µ′ ∈ Me (cf. Proposition 3.4). This proves the proposition.

3.12 Theorem. The minimization problems (II) and (III) are equivalent: If
Q∗ is a solution of the problem (II) then (λ∗, µ∗) := (λQ

∗

, µQ∗

) is a solution
of the problem (III). Conversely, if (λ∗, µ∗) is a solution of the problem (III)
then Q∗ := Λ−1(λ∗, µ∗) is a solution of the problem (II).

Proof. Let Q∗ be a solution of the problem (II) and put (λ∗, µ∗) := (λQ
∗

, µQ∗

).
Then

J(λ∗, µ∗) = J(λQ
∗

, µQ∗

)

= IT (Q
∗,P)

≤ IT (Q,P)

= J(λQ, µQ).

In the second and fourth lines we have used Proposition 3.8. Hence,

J(λ∗, µ∗) = inf
Q∈ML

e (T )∩Ml(T )
J(λQ, µQ)

= inf
(λ′,µ′)∈(0,+∞)×Me

J(λ′, µ′),

where in the last equality Proposition 3.11 is used. This implies that (λ∗, µ∗)
is a solution of the problem (III). The proof of the converse is similar.

Since the latter theorem holds, we can consider the alternative, repara-
metrized problem (III) instead of the problem (II).

If Me(T ) ∩ Ml(T ) ∩ Mf (T ) = ∅ (or, equivalently, H(µ′, µ) = +∞ for all
µ′ ∈ Me) then every Q ∈ Me(T ) ∩ Ml(T ) is a solution of the problem (II)
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(or, equivalently, every (λ′, µ′) ∈ (0,+∞) × Me is a solution of the problem
(III)). Therefore, in the following it can be assumed that Me(T ) ∩ Ml(T ) ∩
Mf (T ) 6= ∅ which is equivalent to H(µ′, µ) < ∞ for some µ′ ∈ Me. Hence
the minimization can be restricted to these sets.

3.13 Proposition. The solution (λ∗, µ∗) of the problem (III) exists if and
only if there exists a solution µ̃ of the one-step model problem (D). Moreover,
µ∗ = µ̃ and

λ∗ = λ∗(µ∗) = λ exp(−H(µ∗, µ)). (3.8)

Proof. Considering the expression (3.7) it is easy to observe that the one-
dimensional relative entropy H(µ′, µ) appears with the strictly positive coef-
ficient Tλ′ and hence the smaller is H(µ′, µ), the smaller is all the right-hand
side in (3.7). This observation is important since the set Me of parameters
µ′ does not depend on λ′ and therefore the problem of minimization of the
one-dimensional relative entropy H(µ′, µ) can be considered independently of
the more complicated problem (III). For the one-dimensional problem we can
refer to Appendix B where the one-step model is considered, in particular,
Theorem B.5 gives us the concrete form of the entropy minimal martingale
distribution µ∗ satisfying the problem (D) and explains the conditions when
such optimal distribution exists. It allows us to make the next step: let us
fix the value of H(µ′, µ). Taking derivative of (3.7) in λ′ and equating it to
zero we can find the extremal points of the expression:

d

dλ′
I(λ′, µ′) = T [−1 + log

λ′

λ
+ λ′

1

λ′
+H(µ′, µ)] = 0.

The constants inside the brackets mutually compensate and after the ele-
mentary transformations we obtain the extremal point λ∗(µ′):

λ∗(µ′) = λ exp(−H(µ′, µ)), µ′ ∈ Me.

The second derivative is strictly positive and hence this point corresponds
to the local minimum. Putting into (3.7) the boundary values of λ′ (points
0 and +∞) we find out that at point λ∗(µ′) is a global minimum. If the
solution µ̃ of one-step model problem (D) does not exist (cf., Theorem B.5)
the minimum of the expression (3.7) cannot be attained and hence there does
not exist such a couple (λ∗, µ∗) that solves the problem (III).

We have just proven that the solution (λ∗, µ∗) of (III) exists if there exists
a solution µ̃ of the one-step model problem (D). Now our aim is to show that
the reverse statement is also true: there exists a solution µ̃ of the one-step
model problem (D) if the solution (λ∗, µ∗) of (III) exists. But it follows
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from the construction of (λ∗, µ∗): the distribution µ∗ ∈ Me is such that it
minimizes the relative entropy in the class Me, that is

(H(µ∗, µ) = min
µ′∈Me

H(µ′, µ))

and hence is a solution of the problem (D).

Assume that there exists the MEMM Q∗ in the class of Me(T ). By
Proposition 3.11 we can reparametrize this measure with the corresponding
couple (λ∗, µ∗) = (λQ

∗

, µQ∗

). Proposition 3.13 gives the connection of the
couple (λ∗, µ∗) and the solution µ̃ of the one-step model problem (D) and
therefore the measure Q∗ can be characterized just by the one-dimensional
distribution µ̃. Because of Theorem B.5 we know that µ̃ is the EMM and
hence can be characterized just by one simple parameter: the Esscher para-
meter κ∗.

Let us calculate the relative entropy IT (Q,P):

IT (Q,P) = J(λQ, µQ)

= T [λ− λQ + λQ log
λQ

λ
+ λQH(µQ, µ)].

The last formula is true also for the MEMM Q∗. For finding IT (Q
∗,P) we

substitute instead of λQ the value (3.8) and continue

IT (Q
∗,P) = T [λ− λ∗ + λ∗ log

λ∗

λ
+ λ∗H(µ∗, µ)]

= T [λ− λ exp(−H(µ∗, µ)) + λ exp(−H(µ∗, µ)) log
λ exp(−H(µ∗, µ))

λ
+λ exp(−H(µ∗, µ))H(µ∗, µ)]

= T [λ− λ exp(−H(µ∗, µ))].

Note that the optimal λ∗ guarantees the mutual compensation of the last
two terms on the right-hand side of the second equality. At the next step we
would like to use the connection with the one-step model (Appendix B). Let

us recall the form of the Esscher density
dµ∗

dµ
:

dµ∗

dµ
=

exp(κ∗η1)

Eµ[exp(κ∗η1)]

= c exp(κ∗η1).

where

c =
(∫

R

exp(κ∗x)dµ
)−1

.
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Inserting the Esscher density inside the entropy H(µ∗, µ) we get

T
[
λ− λ exp(−H(µ∗, µ))

]
= Tλ

[
1− exp

(
− Eµ

[dµ∗

dµ
log

dµ∗

dµ

])]

= Tλ
[
1− exp

(
− Eµ∗

[
log

dµ∗

dµ

])]

= Tλ[1− exp(− log c)]

= Tλ
[
1− exp

(
− log

(∫

R

exp(κ∗x)dµ
)−1)]

= Tλ
[
1− exp

(
log
(∫

R

exp(κ∗x)dµ
))]

= Tλ
[
1−

∫

R

exp(κ∗x)dµ
]
.

Finally, we may state the following theorem:

3.14 Theorem. If there exists the MEMM Q∗ in the class Me(T ) then the
following identity for the relative entropy IT (Q

∗,P) holds:

IT (Q
∗,P) = Tλ

[
1−

∫

R

exp(κ∗x)dµ
]
, (3.9)

where κ∗ = κ∗(Q∗) is the corresponding Esscher parameter.

3.4 Approximation of the Entropy-Optimal

Measure

We shall now briefly discuss what happens when the MEMM Q∗ does not
exist. In other words, what can one say about the relative entropy when
there does not exist the corresponding Esscher parameter for the one-step
model problem D? Assume that Mf 6= ∅. Then for every ε > 0 it is always
possible to find µε such that

H(µε, µ) ≤ inf
µ′∈Me

H(µ′, µ) + ε. (3.10)

In other words, the relative entropy H(µε, µ) of the one-dimensional distri-
bution µε with respect to the original distribution µ does not exceed the
entropy H(Me, µ) more than the value ε. Because of Proposition 3.13 (form
of the parameter λ∗) and Proposition 3.11 we can construct a probability
measure Qε on FT that corresponds to the distribution µε. More precisely,
the probability measure Qε is given by

Qε = Λ−1(λ∗(µε), µε),
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where λ∗(µε) = λ exp(−H(µε, µ)). Therefore it has sense to consider the rel-
ative entropy IT (Qε,P) and to compare it with the relative entropy IT (Me(T ),P):

IT (Qε,P)− IT (Me(T ),P) ≤

≤ Tλ[1− exp(− inf
µ′∈Me

H(µ′, µ)− ε)]− Tλ[1− exp(− inf
µ′∈Me

H(µ′, µ))]

= Tλ exp(− inf
µ′∈Me

H(µ′, µ))[1− exp(−ε)]

≤ Tλ[1− exp(−ε)] ≤ Tλε. (3.11)

In the last inequality, the fact was used that the relative entropy infµ′∈Me
H(µ′, µ)

is always nonnegative and hence exp(− infµ′∈Me
H(µ′, µ)) ≤ 1. We observe

that the error generated by the ε-measure Qε can be estimated by the de-
terministic function, has the order of convergence O(ε) and does not depend
on the nature of the class Me(T ).

3.5 The Cramér–Lundberg Model

As a particular example of the model without drift, we would like to consider
the Cramér–Lundberg model with stochastic premiums that comes from the
risk theory. The classical Cramér–Lundberg model is usually used in general
(non-life) insurance to explain the evolution of the capital of the company
and it has the following form

Ut = u0 + c t− St = u0 + c t−
Nt∑

j=1

ξi, t ≥ 0,

where Ut is the value of the company assets at the moment t, u0 stands for
the initial value of the company assets, the flow of insurance premiums c t
is assumed to be homogeneous and constant in time (which corresponds to
the assumption of the stable market), the process S is a compound Poisson
process with parameters λ and µ, and it stands for the random sum of the
positive independent identically distributed (i.i.d.) contingent claims (ξi)
(with distribution µ), the Poisson process N with parameter λ corresponds
to the number of claims.

Despite its simplicity, the model is still used in insurance and there are
various generalizations of it adopted to needs of the particular market: with
additional income from investment, ’switching’ parameter of claims intensity,
including inflation and so on. For the case of the new or unstable market cor-
responds the so-called Cramér–Lundberg model with stochastic premiums.
The main aim is to replace the constant flow of the premiums c t by the new



3.5 The Cramér–Lundberg Model 61

compound Poisson process P that stands for stochastic premiums:

Ut = u0 + Pt − St = u0 +

N1
t∑

i=1

ζi −

N2
t∑

j=1

ξi, t ≥ 0.

The Poisson processes N1 and N2 have the parameters λ1 and λ2, respect-
ively, the distributions µ1 and µ2 correspond to the positive i.i.d. random
variables (ζi) and (ξj). Note, that N1, N2, (ζi) and (ξj) are assumed to be
independent.

It is easy to see that the sum of two compound Poisson processes P − S
is again a compound Poisson process. Indeed, let us consider a characteristic
function ψ(s) of this process at the time t:

ψ(s) = E[exp(i s(Pt − St))]

= E


exp


i s




N1
t∑

i=1

ζi −

N2
t∑

j=1

ξi








= E


exp


i s

N1
t∑

i=1

ζi


 exp


−i s

N2
t∑

j=1

ξi






= E


E


exp


i s

N1
t∑

i=1

ζi


 exp


−i s

N2
t∑

j=1

ξi



∣∣∣σ(Sl, 0 ≤ l ≤ t)






= E


exp


i s

N1
t∑

i=1

ζi


E


exp


−i s

N2
t∑

j=1

ξi



∣∣∣σ(Sl, 0 ≤ l ≤ t)






= E


exp


i s

N1
t∑

i=1

ζi




E


exp


−i s

N2
t∑

j=1

ξi




 .

With σ(Sl, 0 ≤ l ≤ t) we have denoted the σ-algebra generated by the process
S at time interval [0, t]. For the last step we have used the independence of
S and P . Let us denote the characteristic functions of distributions of ζ and
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−ξ by χ1 and χ2, respectively. Continuing our calculation, we get

ψ(s) = E


exp


i s

N1
t∑

i=1

ζi




E


exp


−i s

N2
t∑

j=1

ξi






= exp(λ1t(χ1(s)− 1)) exp(λ2t(χ2(s)− 1))

= exp

(
it (λ1 + λ2)

(
λ1

λ1 + λ2
χ1(s) +

λ2
λ1 + λ2

χ2(s)− 1

))
.

The last line corresponds to the characteristic function of the compound
Poisson process N with intensity parameter λ = λ1+λ2 and the jump distri-

bution µ =
λ1

λ1 + λ2
µ1 +

λ2
λ1 + λ2

µ∗
2, where by µ∗

2 is denoted the distribution

of (−ξ).
Now our model has the form of the compound Poisson process without

drift and as it was already Section 3.3, the problem of finding the MEMM
reduces to the problem for one-step model for distribution µ.



4
Models driven by the Lévy Processes.

General Case

At the beginning of the chapter the main objects of the investigations are
models driven by the linear and geometric (exponential) Lévy processes. Our
first aim is to show the equivalence of the problem of finding the martingale
measures for such models. In particular, it is used the well-known approach
based on the properties of stochastic exponentials and logarithms for refor-
mulation of the linear case problem in terms of exponential case problem and
vice versa (see Proposition 4.1). This is the reason why we choose just the
linear model for the further consideration.

In the following section (Section 4.2)we are going to introduce the key
notion of this thesis – the Esscher martingale measure (EMM) – and provide
a sufficient condition of its existence (existence of exponential moments, Pro-
position 4.4). The problem of existence of at least one equivalent martingale
measure is discussed in the next section (cf. Proposition 4.5). Afterwords,
we are going to show the coincidence of the EMM and the minimal entropy
martingale measure (MEMM) for the model driven by the linear Lévy pro-
cess. We start with the definition of the EMM and then show that the EMM,
if it exists, is the MEMM.

Our next aim is prove the main result of the thesis: the coincidence of
the EMM and the MEMM for the models driven by a linear Lévy process.
More precisely, the EMM exists if and only if the MEMM exists and if one
(hence both) of these conditions is satisfied then we have the coincidence of
these probability measures.

The idea of the basic fact is the following: We construct approximation
sequences of probability measures (Pn) via their densities (Z

(n)
T ) with respect

to the original probability measure P in such a way that there always exists
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the EMM QE
n with respect to Pn. Furthermore, we show that the infimum

of relative entropy in the class of martingale measures Ma(T ) coincides with
the upper limit of relative entropy of the approximating sequence I(QE

n ,P).
Using the connection with the one-step model we get the equivalence of
the existence of the EMM and the MEMM and their equality for the models
driven by the linear Lévy process. Finally we state some important corollaries
and give several examples.

4.1 Connection between Exponential and Lin-

ear Models

In the following section we are going to consider two models driven by the
Lévy processes: linear and exponential. The main objective of the section
is to show the equivalence of these models in the sense that we can pass
on from one to the other without changing the class of local martingale
measures. To achieve this aim, we use the well-known standard approach
which was discussed, for example, in Fujiwara & Miyahara (2003).

Let S = (St)s∈[0,T ], T > 0, be a geometric Lévy process defined on a
probability space (Ω,F ,P), that is, S is a stochastic process of the form:

St = S0 exp(Xt), t ∈ [0, T ],

where S0 > 0 is a constant and X = (Xt)t∈[0,T ] is a Lévy process and charac-
teristic triplet (b, σ2, ν) associated with the standard truncation function h
defined by h(x) = x1{|x|≤1}, x ∈ R.

If ν ≡ 0 we get the famous Black–Scholes model with volatility σ and
drift µ = b− 1

2
σ2 which was already studied for decades and there is a huge

variety of literature dedicated to this case. To exclude this special case from
discussion, we assume that ν 6≡ 0.

If σ = 0 we get a pure jump Lévy process with drift b. In particular, this
case includes the model driven by a compound Poisson process with drift
which was already discussed in the previous chapter and we would like to get
a result similar to Proposition 3.1.

Let us denote by F the point process on R \ {0} defined by Ft := ∆Xt,
where

∆Xt := Xt −Xt−, Xt− := lim
u↑t

Xu.

We denote by NF (dudx) the counting measure of the point process F :

NF ((0, t], A) := ]{u ∈ DF ∩ (0, t]; Fu ∈ A} for A ∈ B(R \ {0}),
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where DF denotes the domain of Ft, that is, DF := {t > 0 : ∆Xt 6= 0} and
B(R \ {0}) the Borel σ-field on R \ {0}. We also denote by N̂F (dudx) the
compensator of NF (dudx). In fact, NF (dudx) is a Poisson random measure
and

N̂F (dudx) = duν(dx).

The Lévy–Itô decomposition of the process X yields the representation:

Xt = σWt + bt+

∫

(0,t]

∫

{|x|≤1}

xÑF (dudx) +

∫

(0,t]

∫

{|x|>1}

xNF (dudx), (4.1)

where (Wt) is a one-dimensional standard Brownian motion and ÑF (dudx)
is the compensated measure of NF (dudx) defined by

ÑF (dudx) := NF (dudx)− N̂F (dudx). (4.2)

Now we would like to represent the process S as a stochastic exponential of
some other process L: St = S0E (L)t. We apply Proposition 1.33 and find
the explicit form of the process L:

Lt = Xt +
1

2
σ2t+

∫

(0,t]

∫

R\{0}

(ex − 1− x)NF (dudx)

= σWt + b1t+

∫

(0,t]

∫

{|x|≤1}

(ex − 1)ÑF (dudx)

+

∫

(0,t]

∫

{|x|>1}

(ex − 1)NF (dudx),

where

b1 :=
1

2
σ2 + b+

∫

{|x|≤1}

(ex − 1− x)ν(dx).

Therefore, L is still a Lévy process under the measure P.

In order to know the characteristics of L, we transform the point process
F into another one G by

DG := DF and Gt := ϑ(Ft),

where ϑ(x) := ex − 1 for x ∈ R. Then we see that

N̂G(dudy) = duµ(dy),
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where νL(dy) := ν ◦ ϑ−1(dy) and that

Lt = σWt + b1t+

∫

(0,t]

∫

{e−1−1≤y≤e−1}

yÑG(dudy)

+

∫

(0,t]

∫

{y<e−1−1}∪{y>e−1}

yNG(dudy)

= σWt + b2t+

∫

(0,t]

∫

{|y|≤1}

yÑG(dudy)

+

∫

(0,t]

∫

{|y|>1}

yNG(dudy),

where

b2 := b1 +

∫

{x<−1}

(ex − 1)ν(dx)−

∫

{log 2<x≤1}

(ex − 1)ν(dx).

This gives the Lévy–Itô decomposition of the process L associated with the
standard truncation function h(x) := x1{|x|≤1}, and hence its characteristic
triplet has the form (b2, σ

2, νL).

4.1 Proposition. Let S = (St)s∈[0,T ], T > 0, be a Geometric Lévy process
defined on a probability space (Ω,F ,P):

St = S0 exp(Xt), t ∈ [0, T ],

where S0 > 0 is a constant and X = (Lt)t∈[0,T ] is a Lévy process with X0 = 0
and characteristic triplet (b, σ2, ν) associated with the standard truncation
function h(x) = x1{|x|≤1}.
Then St = S0E (L)t, where L is a P-Lévy process with characteristic triplet
(b2, σ

2, νL),

b2 :=
1

2
σ2 + b+

∫

{|x|≤1}

(ex − 1− x)ν(dx)

+

∫

{x<−1}

(ex − 1)ν(dx)−

∫

{log 2<x≤1}

(ex − 1)ν(dx).

Taking into account Proposition 1.35 we find that for every probability
measure Q the process S is Q-local martingale if and only if the process L̂ is
Q-local martingale. Moreover, because of Proposition 1.36, it follows that if
the measure Q is a local martingale measure for one of these processes and
preserves the Lévy property of it, then it is even a martingale measure for
both processes.
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As we have seen, the exponential problem seeming at first glance much
more complicated than the linear problem, is in fact even simpler because of
the limited support of the sizes of the negative jumps and is already included
in the linear problem. Therefore, for the further investigation we would like
to focus our attention on the model driven by the linear Lévy processes.

4.2 The Esscher Martingale Measure

Let (Ω,F ,F,P) be a filtered probability space with F = (Ft)t≥0 satisfying the
usual conditions. Let us introduce a Lévy process (L,F) with characteristic
triplet (b, σ, ν).

Let us introduce the Esscher martingale measure QE:

4.2 Definition. Let κ ∈ R with E[exp(κLt)] <∞ for t ∈ [0, T ] and define

Zκ
t :=

dQκ

dP
|Ft

=
exp(κLt)

E[exp(κLt)]
for t ∈ [0, T ]. (4.3)

The process Zκ is called Esscher density process and the measure Qκ defined
on FT is called Esscher measure. One says that the probability measure Qκ

is the Esscher martingale measure (EMM) if (L,F) is a Qκ-martingale on
[0, T ]. The EMM on [0, T ], if it exists, will be denoted by QE.

The process Zκ is indeed a strictly positive P-martingale on [0, T ] as an
exponential of a process with independent increments divided by its expect-
ation. An important fact is that the process (L,F) is still a Qκ-Lévy process.
In fact, for our model driven by the linear Lévy process (L,F) the martingale
condition can be replaced just by the moment condition

EQκ [LT ] = EP [cLT exp(κLT )] = 0.

Indeed, it is easy to see that for 0 ≤ s ≤ t ≤ T we have:

EQκ [Lt|Fs] = EQκ [Lt − Ls + Ls|Fs]

= EQκ [Lt − Ls|Fs] + Ls

= EQκ [Lt − Ls] + Ls,

where the last step follows from the F-independence of increments. Hence,
the process L is a Qκ-martingale means that

EQκ [Lt − Ls] = 0.
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Taking into account the homogeneity of L in time and the initial value L0 = 0
we come to the fact that for

EQκ [Lt − Ls] = EQκ [Lt−s − L0] = EQκ [Lt−s] = 0.

Moreover, instead of the fixed time we can take any t ∈ (0, T ].
Let us consider the function ϕ of t and κ defined by

ϕt(κ) = E[exp(κLt)], κ ∈ R, t ∈ [0, T ],

in more details. The function ϕ is called the cummulant function. We can
observe that this is the moment generating function of L and hence,

ϕt(κ) = (ϕ1(κ))
t,

or in other words, the logarithm of this function is linear in t:

logϕt(κ) = t logϕ1(κ).

We can also explicitly calculate the relative entropy of the EMM QE (if it
exists) with respect to P on FT :

I(QE,P) = EQE

[
log

dQE

dP
(FT )

]

= EQE [log exp(κLT − T log(ϕ1(κ)))]

= EQE [κLT − T log(ϕ1(κ))] (4.4)

= EQE [κLT ]− T log(ϕ1(κ)) (4.5)

= −T log(ϕ1(κ)). (4.6)

At step from (4.4) to (4.5) we used the linearity of the integral and from (4.5)
to (4.6) that QE is a martingale measure. We are allowed to use linearity
because

EQE

[∣∣∣∣log
dQE

dP
(FT )

∣∣∣∣
]
<∞.

Indeed, for proving the last claim we estimate

∣∣∣∣log
dQE

dP
(FT )

∣∣∣∣ = |log exp(κXT − T log(ϕ1(κ)))|

≤ |T logϕ1(κ)|+ |κXT | for κ ∈ R.

But in view of EQELT = 0 by the definition of the EMM QE it follows that
EQE |LT | <∞.
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Note that 0 ≤ −T log(ϕ1(κ)) < +∞. Nonnegativity follows from the
nonnegativity property of the relative entropy, finiteness follows from the
definition of the EMM.

Summarizing the properties of EMM discussed above, we can state the
following lemma:

4.3 Lemma. Let κ0 ∈ R with E[exp(κ0Lt)] < ∞ for some (and hence for
all) t ∈ [0, T ] and Qκ0 is defined by (4.3). Then

1. The Esscher measure Qκ0 is a martingale measure QE if and only if

EQκ0 [Lt] = 0 for some (and hence for all) t ∈ (0, T ]. (4.7)

2. The relative entropy of Qκ0 with respect to P has the form

I(QE,P) = −T log(ϕ1(κ0)). (4.8)

For later use, we would like to give simple sufficient conditions for the
existence of the EMM in terms of exponential moments:

4.4 Proposition. Assume that the Lévy process L is not monotone (in
other words, neither L nor −L is a subordinator) and for any κ ∈ R we have
E[exp(κLT )] <∞. Then there exists the EMM QE.

Proof. It is necessary to prove that there exists κ0 ∈ R such that Qκ0 is
well-defined and EQκ0 [LT ] = 0. Because of independence of increments and
homogeneity of the Lévy process L, for any 0 < t ≤ T we have

E[exp(κLt)] =
(
E[exp(κLT )]

) t
T <∞,

therefore, for any κ ∈ R the Esscher measure Qκ is well-defined.
The process L is not monotone, in particular, means that P({LT > 0}) >

0 and P({LT < 0}) > 0. Hence, we can consider the asymptotic behavior of
the function ψ(κ) := E[LT exp(κLT )]. Applying Proposition A.1, part5, we
know that

lim
κ↑+∞

ψ(κ) = +∞;

lim
κ↓−∞

ψ(κ) = −∞.

In other words, ψ(R) = (−∞,+∞). By Proposition A.1, part6, the function
ψ is continuous and therefore there exists κ0 such that ψ(κ0) = 0. The
statement is proven.
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4.3 Existence of Equivalent Martingale Meas-

ures

In this section we would like to consider conditions under which there exists
at least one equivalent martingale measure. In fact, there can be stated
a necessary and sufficient condition which was already mentioned in the
previous proposition.

4.5 Proposition. Let (Lt,Ft)t∈[0,T ] be a nontrivial Lévy process under meas-
ure P with characteristic triplet (b, σ2, ν). There exists an equivalent mar-
tingale measure if and only if L is not monotone.

Proof. First we verify that the condition is necessary. Assume L is monotone
and increasing Lévy process, in other words subordinator. It means that

P({Lt − Ls ≥ 0}) = 1 for any 0 ≤ s ≤ t ≤ T.

In particular, it holds for s = 0 and t = T :

P({LT − L0 ≥ 0}) = P({LT ≥ 0}) = 1.

Let Q ∼ P be an equivalent probability measure. By definition, Q({LT ≥
0}) = 1 and hence EQ[LT ] ≥ 0. Taking into account the fact that L is
not trivial, we get a strict inequality EQ[LT ] > 0. Therefore, in the class
of probability measures equivalent to P there exists no martingale measure.
Now let us prove the statement in the reverse direction: if L is not monotone,
then there exists at least one equivalent martingale measure. Let Q be the
probability measure that satisfies Theorem 1.22 with b′ = b

r(x) :=





1, if |x| ≤ 1,

exp(−x2), if |x| > 1.

It means that Q ∼ P and L is Q-Lévy process with characteristic triplet
(b, σ2, ν ′), where r(x) = log dν′

dν
. In other words, probability measure Q

changes just the probability of the jumps of the process L of sizes larger
than 1, keeping the same drift, diffusion part and small jumps (of sizes smal-
ler than 1). According to Theorem 1.25, the process L has finite exponential
moments (i.e., EQ[exp(κXt)] < +∞ for all t ∈ [0, T ], κ ∈ R) with respect to
the probability measure Q if and only if

∫

{|x|>1}

exp(κx)ν ′(dx) <∞ for κ ∈ R.
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But

∫

{|x|>1}

exp(κx)ν ′(dx) =

∫

{|x|>1}

exp(κx) exp(−x2)ν(dx)

<∞) for κ ∈ R.

The integrand is a continuous function and because of L’Hospital’s rule con-
verges to zero if |x| converges to ∞. Hence the integrand is bounded and
therefore integrable on |x| > 1 because ν is a finite measure on this set. Ap-
plying Proposition 4.4 to the probability measure Q we find that there exists
the Esscher martingale measure QE with respect to Q. Thus, QE ∼ Q and
hence QE ∼ P. The statement is proven.

Note, that QE is the Esscher martingale measure in correspondence to Q,
but in general is not such for the measure P.

If the Lévy process is trivial, then there also exists an equivalent martin-
gale measure: P itself.

4.6 Proposition. Assume that the no-arbitrage condition holds: (L,F) is a
non-monotonic Lévy process. Then we have

Me(T ) ∩ Mf (T ) ∩ Ml(T ) 6= ∅. (4.9)

Proof. Indeed, the Esscher martingale measure QE with respect to Q is a
martingale measure equivalent to P, has finite entropy with respect to P and
is preserving the Lévy property.

Note, that usually (4.9) is used as an assumption, in particular, in Esche
& Schweizer (2005) and Frittelli (2000), but now we see that it is sufficient
just to assume the no-arbitrage condition.

4.4 The EMM is the MEMM

Our next aim is to show that the EMM, if it exists, is the MEMM in the
class Ma(T ).

4.7 Theorem. The EMM QE, if it exists, is the MEMM in the class Ma(T ).

Proof. Assume that there exists the EMM QE. From the above we know
that I(QE,P) < +∞. It means that the class Mf (T ) is not empty. Let Q
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be from the class Mf (T ). We can estimate the relative entropy I(Q,P):

I(Q,P) = EQ

[
log

dQ

dP
(FT )

]

= EQ

[
log

dQ

dQE
(FT ) + log

dQE

dP
(FT )

]
(4.10)

= I(Q,QE) + EQ[κLT − T log(ϕ1(κ))]. (4.11)

Note that QE ∼ P on FT and hence Q � QE on FT . At step from (4.10)
to (4.11) we used the linearity of the integral. Note that the two summands
of the integrand in (4.10) are Q-integrable. For the second one, it follows by
direct calculation. For the first one, we have

log dQ/dQE(FT ) = log dQ/dP(FT )− log dQE/dP(FT ),

both members of the right hand side are Q-integrable. Hence linearity can
be applied for concluding (4.11) from (4.10).

Taking into account that by assumption the process L is a Q-martingale,
we conclude

I(Q,P) = I(Q,QE) + EQ[κLT ]− T log(ϕ1(κ))

= I(Q,QE)− T log(ϕ1(κ))

≥ −T log(ϕ1(κ)) = I(QE,P),

where the last equality comes from (4.6). The statement is proven.

Note that in the proof of the last statement, instead of the martingale
property of the measure Q, it is used just the moment condition EQ[XT ] = 0.
Therefore, the following corollary holds:

4.8 Corollary. The EMM QE, if it exists, is the MEMM in the class M̃a(T ).

It is possible to generalize the result of the last theorem for the class
M loc

a (T ).

4.9 Theorem. The EMM QE is the MEMM in the class M loc
a (T ).

Proof. Assume that there exists the EMM QE. Then QE ∈ Ma(T ) ⊆
M loc

a (T ) and hence the class M loc
a (T ) is not empty. Let Q be from the

class M loc
a (T ). It means that there exists a localizing sequence (ρn)n≥1 for

the process L such that ρn ↑ +∞ and Lρn is a Q-martingale on [0, T ] for any
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n ≥ 1. Now we estimate the ρn-entropy of the measure Q with respect to P

on FT :

Iρn∧T (Q,P) := IFρn∧T
(Q,P)

= EQ

[
log

dQ

dP
(Fρn∧T )

]
.

It is worth to mention that by definition

dQ

dP
(Fρn∧T ) = EQ

[
dQ

dP
(FT )|Fρn∧T

]
.

As in the previous theorem, we would like to use at this step the linearity of
the integral and split the expression of the relative entropy into two parts

EQ

[
log

dQ

dP
(Fρn∧T )

]
= EQ

[
log

dQ

dQE
(Fρn∧T )

]

+EQ

[
log

dQE

dP
(Fρn∧T )

]
. (4.12)

The first term from the right is the ρn-entropy of the measure Q with respect
to the EMM QE on FT and therefore it is nonnegative. Now we have to
calculate the second term. Note that

Zκ
t =

dQE

dP
(Ft) = exp(κXt − t logϕ1(κ)) P-a.s., t ∈ [0, T ].

This is because the right-hand side is a martingale as well as the left-hand side
and the equality holds for t = T . Using Doob’s optional sampling theorem
we obtain

dQE

dP
(Fρn∧T ) = E

[
dQE

dP
(FT )|Fρn∧T

]

= E[Zκ
T |Fρn∧T ]

= Zκ
ρn∧T

= exp(κLρn∧T − (ρn ∧ T ) logϕ1(κ)), (4.13)

where ϕ1(κ) is the cumulant function taken at time t = 1 and the Esscher
parameter κ. From (4.12) and (4.13) we can now conclude

Iρn∧T (Q,P) ≥ EQ[κLρn∧T − (ρn ∧ T ) logϕ1(κ)]

= EQ[κLρn∧T ]− EQ[(ρn ∧ T )] logϕ1(κ).
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Recall that Q ∈ M loc
a (T ) therefore EQ[κLρn∧T ] = 0 and we get

Iρn∧T (Q,P) ≥ −EQ[(ρn ∧ T )] logϕ1(κ). (4.14)

In view of E[Zκ
t logZ

κ
t ] < +∞, t ∈ [0, T ], and that (Zκ,F) is a P-martingale

on [0, T ] we observe that (Zκ logZκ,F) is a P-submartingale on [0, T ]. Using
again Doob’s optional sampling theorem we get

IT (Q,P) = E[Zκ
T logZκ

T ]

≥ E[Zκ
ρn∧T logZκ

ρn∧T ]

= Iρn∧T (Q,P)

≥ −EQ[ρn ∧ T ] logϕ1(κ),

where the last inequality follows from (4.14). Passing to the limit n → ∞
yields

I(Q,P) ≥ −T logϕ1(κ).

On the other side, in Lemma 4.3 we have calculated

IT (Q
E,P) = log c = −T logϕ1(κ)

and consequently
IT (Q,P) ≥ IT (Q

E,P)

for all Q ∈ M loc
a (T ). But QE ∈ Ma(T ) ⊆ M loc

a (T ) and hence QE is the
MEMM in M loc

a (T ) (and also in Ma(T )). The theorem is proven.

Our next aim (and the main goal of the thesis) is to show the coincidence
of the EMM and the MEMM for the models driven by a linear Lévy process.
More precisely, we would like to prove the EMM exists if and only if the
MEMM exists and if one (hence both) of these conditions is satisfied then
we have coincidence of these probability measures.

At first it is necessary to make some preparations. The basic idea is
the following: We construct approximation sequences of probability meas-
ures (Pn) via their densities (Z

(n)
T ) with respect to the original probability

measure P in such a way that there always exists the EMM QE
n with respect

to Pn. Furthermore, we show that the infimum of relative entropy I(Q,P )
where Q is running through the class of martingale measures Ma(T ) coin-
cides with the upper limit of relative entropy of the approximating sequence
I(QE

n ,P). Using the connection with the one-step model we get the equival-
ence of the existence of the EMM and the MEMM and there equality for the
models driven by the linear Lévy process. Finally we state some important
corollaries.
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4.5 Approximation

Let (Ω,F ,F,P) be a filtered probability space with F = (Ft)t≥0 satisfying the
usual conditions. Let us introduce a Lévy process (L,F) with characteristic
triplet (b, σ, ν). The jump measure of the process L is denoted by µ = µL.

Let µp be the compensator of µ:

µp((0, t]× B) = tν(B), t ≥ 0, B ∈ B(R),

where ν is the Lévy measure of the process L. In other words, µp is the
product measure λ⊗ ν where λ denotes the Lebesgue measure on R+.

The aim is to construct such a sequence of probability densities (Z
(n)
T )

that preserves the Lévy property (i.e., the process LZ(n) is a Lévy process
with respect to the measure P) and at the same time allows us to build the
EMM with respect to every probability measure Pn of the sequence. Another
important property, which we would like to have, is the equivalence of Pn to
the original measure P.

Let us define the function Yn as

Yn(x) = exp(−fn(x)), x ∈ R, n ≥ 1,

where the functions fn satisfy the following properties:

(1) 0 ≤ fn+1, fn+1 ≤ fn, lim
n→∞

fn(x) = 0;

(2)
|x|

fn(x)
→ 0 when |x| → ∞ for ∀n ≥ 1

(in other words, |x| = o(fn(x)) when |x| → ∞);

(3) 1− exp(−fn) ∈ L1(ν).

The family of functions (Yn) will be used for the construction of the
probability densities with the desirable properties. First of all, we observe
that Yn−1 ∈ L2(ν)∩L1(ν): From (3) follows Yn−1 = exp(−fn)−1 ∈ L1(ν).
Moreover,

(Yn(x)− 1)2 = (exp(−fn(x))− 1)2 ≤ |(exp(−fn(x))− 1)|

because 0 ≤ |(exp(−fn(x)) − 1)| ≤ 1, therefore Yn − 1 ∈ L2(ν). Our
observation implies (Yn − 1)1[0,t] ∈ L2(µp) ∩ L1(µp) for all t ≥ 0. From
(Yn − 1)1[0,t] ∈ L2(µp) and the definition of the stochastic integral with re-
spect to the compensated Poisson random measure we get that the stochastic
integral

N
(n)
t = (Yn − 1) ∗ (µ− µp)t, t ≥ 0,
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is well-defined and is a square integrable martingale, moreover, for t ∈ [0, T ]
and n ≥ 1

N
(n)
t = (Yn − 1) ∗ (µ− µp)t

= (Yn − 1) ∗ µt −

∫

R×[0,t]

(exp(−fn(x))− 1)µp(dx, ds) (4.15)

= (Yn − 1) ∗ µt − t

∫

R

(exp(−fn(x))− 1)ν(dx). (4.16)

In (4.15) we use the fact that (Yn − 1)1[0,t] ∈ L2(µp) ∩ L1(µp) for all
t ≥ 0 and hence the integral can be splitted according to Proposition II.1.28
from Jacod & Shiryaev (2000). The last part of the expression in (4.16) is
a continuous function of t, the compensator of the first part which is a pure
jump Lévy process. The family of density processes (Z(n)) we introduce as
stochastic exponentials (see Section 1.6, in particular Proposition 1.33) of
the martingales (and Lévy processes) N (n):

Z
(n)
t := E (N (n))t (4.17)

= exp(N
(n)
t )

∏

0<u≤t

(1 + ∆N (n)
u )e−∆N

(n)
u , t ≥ 0. (4.18)

Let us calculate
∏

0<u≤t

(1 + ∆N (n)
u )e−∆N

(n)
u :

∏

0<u≤t

(1 + ∆N (n)
u )e−∆N

(n)
u

=
∏

0<u≤t

(1 + ∆((Yn − 1) ∗ µu))e
−∆((Yn−1)∗µu)

=

(
∏

0<u≤t

(1 + ∆((Yn − 1) ∗ µu))

)
exp

(
∑

0<u≤t

−∆((Yn − 1) ∗ µu)

)

=
∏

0<u≤t

(1 + (Yn(∆Lu)− 1)) exp(−(Yn − 1) ∗ µt)

= exp

(
−
∑

0<u≤t

(fn(∆Lu))− (Yn − 1) ∗ µt

)
.

We still need to prove the convergence of
∑

0<u≤t

(fn(∆Lu)), but it follows from
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the fact that 1− exp(−fn) ∈ L1(ν). Indeed, let us define the function h as

h(x) =
1− e−x

x ∧ 1
, x ∈ (0,+∞] ,

which is strictly positive and continuous on the set (0,+∞]. Moreover,

lim
x↓0

h(x) = −(e−x)′x=0 = 1.

Hence the function

h̄(x) =

{
h(x), x ∈ (0,+∞] ,
1, x = 0,

is strictly positive and continuous on the compact set [0,+∞]. Consequently,

inf
x∈[0,+∞]

h̄(x) = c > 0.

From this we observe

c(x ∧ 1) ≤ 1− e−x, x ≥ 0,

and therefore

c(fn(x) ∧ 1) ≤ 1− e−fn(x), x ∈ R.

Hence, if 1− exp(−fn) ∈ L1(ν) then fn∧ 1 ∈ L1(ν). Since we assume (3) the

expression
∑

0<u≤t

fn(∆Lu) = fn ∗ µt converges for t ≥ 0. Coming back to the

stochastic exponential Z(n), we can write

Z
(n)
t := E (N (n))t

= exp(N
(n)
t )

∏

0<u≤t

(1 + ∆N (n)
u )e−∆N

(n)
u

= exp (Yn − 1) ∗ (µ− µp)t) exp

(
−(Yn − 1) ∗ µt −

∑

o<u≤t

fn(∆Lu)

)

= exp

(
−
∑

0<u≤t

fn(∆Lu)− (Yn − 1) ∗ µp
t

)

= exp


−

∑

0<u≤t

fn(∆Lu) + t

∫

R

(1− exp(−fn(x)))ν(dx)


 .
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As a result, we can conclude the following representation of the density pro-
cess Z(n):

Z
(n)
t = exp

(
−
∑

0<u≤t

fn(∆Lu) + t

∫

R

(1− exp(−fn(x)))ν(dx)

)
. (4.19)

Since (N (n),F) are martingales, because of Theorem 1.35 the processes (Z(n),F)
are also local martingales. To confirm that (Z(n),F) are indeed density pro-
cesses it is sufficient to show that they are (nonnegative) martingales and the

expectation of Z
(n)
t is equal to 1. Using the monotonicity of fn in n we have

Z
(n)
t ≤ exp


t
∫

R

(1− exp(−fn(x)))ν(dx)




≤ exp


t
∫

R

(1− exp(−f1(x)))ν(dx)


 < +∞

hence

sup
0≤t≤T
n≥1

Z
(n)
t ≤ exp


T

∫

R

(exp(−f1(x))− 1)ν(dx)


 < +∞. (4.20)

Therefore (Z(n),F) are local martingales bounded on every finite interval

[0, T ] and hence are martingales. Therefore E[Z
(n)
t ] = E[Z

(n)
0 ] and by defini-

tion of Z(n) we have Z
(n)
0 = 1. Hence E[Z

(n)
t ] = 1 for all t ≥ 0.

We define the sequence of probability measures Pn using their densities
with respect to the measure P:

dPn = Z
(n)
T dP on FT . (4.21)

Now we are going to show that such measures preserve the Lévy property of
the process L:

4.10 Proposition. (L,F) is a Pn-Lévy process on [0, T ].

Proof. Let A ∈ Ft. We calculate

Pn (A ∩ {Lt+s − Lt ∈ B}) = E

[
Z

(n)
T 1A1{Lt+s−Lt∈B}

]

= E

[
Z

(n)
t+s1A1{Lt+s−Lt∈B}

]
,
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because (Z(n),F) is a martingale and we can condition with respect to Ft+s

inside the expectation. Now we can write

E

[
Z

(n)
t+s1A1{Lt+s−Lt∈B}

]
= E

[
Z

(n)
t 1A

Z
(n)
t+s

Z
(n)
t

1{Lt+s−Lt∈B}

]

and we have

Z
(n)
t+s

Z
(n)
t

= exp


−

∑

t<u≤t+s

fn(∆Lu) + s

∫

R

(1− exp(−fn(x)))ν(dx)




= exp


−

∑

0<u≤s

fn(∆
tLu) + s

∫

R

(1− exp(−fn(x)))ν(dx)


 ,

where tX = (tXs)s≥0 is defined by tLs := Lt+s − Lt, s ≥ 0, which is again a
Lévy process with characteristics (β, σ2, ν) independent of Ft. Thus we can
write

Z
(n)
t+s

Z
(n)
t

1{Lt+s−Lt∈B}

= exp


−

∑

0<u≤s

fn(∆
tLu) + s

∫

R

(1− exp(−fn(x)))ν(dx)


 1{tLs∈B}

which is independent of Ft and, consequently, independent of Z
(n)
t 1A. From

this follows

Pn (A ∩ {Lt+s − Lt ∈ B}) = E[Z
(n)
t 1A]E

[
exp

(
−
∑

0<u≤s

fn(∆
tLu)

+s

∫

R

(1− exp(−fn(x)))ν(dx)

)
1{tLs∈B}

]

= E[Z
(n)
t 1A]E[Z

(n)
s 1{Ls∈B}],

because tL has the same law as L with respect to P. We also get

E[Z
(n)
t 1A]E[Z

(n)
s 1{Ls∈B}] = E[Z

(n)
T 1A]E[Z

(n)
T 1{Ls∈B}]

= Pn(A)Pn({Ls ∈ B})
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and as a result we get

Pn (A ∩ {Lt+s − Lt ∈ B}) = Pn(A)Pn({Ls ∈ B}). (4.22)

Putting A = Ω yields

Pn ({Lt+s − Lt ∈ B}) = Pn({Ls ∈ B}), s, t ≥ 0,

hence L has homogeneous increments with respect to Pn. Inserting this in
(4.22) we obtain

Pn (A ∩ {Lt+s − Lt ∈ B}) = Pn(A)Pn({Lt+s − Lt ∈ B})

for all A ∈ Ft and B ∈ B(R). This means that Lt+s − Lt is independent of
Ft for all s, t ≥ 0. Finally, L0 = 0 and L is càdlàg Pn-a.s. since Pn � P.
Hence (L,F) is a Lévy process with respect to Pn.

Our next goal is to investigate the characteristics of the Lévy process
(L,F) with respect to the new measures Pn.

4.11 Proposition. With respect to Pn, the Lévy process (L,F) has charac-
teristics (β, σ2, νn) with Lévy measure given by νn(dx) = exp(−fn(x))ν(dx).

Proof. Since (L,F) is a Pn-Lévy process its jump measure µ is a Poisson
random measure with intensity measure µp

n defined by

µp
n(A) = EPn

[µ(A)], A ∈ B(R+)⊗ B(R),

which is given by µp
n = λ+ ⊗ νn. Here λ+ denotes the Lebesgue measure

on R+ and νn the Lévy measure of (L,F) with respect to Pn. From this
immediately follows

νn(B) = EPn
µ([0, 1]× B), B ∈ B(R).

Using this formula we calculate νn. For this let B ∈ B(R) such that ν(B) <
+∞. By the definition of Pn we get

EPn
[exp(−µ([0, 1]× B))] = E[Z

(n)
1 exp(−µ([0, 1]× B))]

= E

[
exp

(
−
∑

0<u≤1

fn(∆Lu) +

∫

R

(1− exp(−fn(x)))ν(dx)− µ([0, 1]× B)

)]

= exp

(∫

R

(1− exp(−fn(x)))ν(dx)

)
E[exp(−(fn + 1B) ∗ µ1)]. (4.23)
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Using the exponential formula for the Poisson random measure µ with
respect to P (cf. Kallenberg (1997), Lemma 10.2) we get

E[exp(−(fn + 1B) ∗ µ1)] = exp(µp(exp[−(fn + 1B)1[0,1]]− 1)), (4.24)

where µp = λ+ ⊗ ν is the intensity measure of µ with respect to P. Now we
observe

µp(exp[−(fn + 1B)1[0,1]]− 1)

=

∫

[0,1]×R

[exp(−fn(x)− 1B(x))− 1](λ+ ⊗ ν)(ds, dx)

=

∫

R

[exp(−fn(x)− 1B(x))− 1]ν(dx). (4.25)

Pasting together (4.23) – (4.25) yields

EPn
[exp(−µ([0, 1])× B)]

= exp

(∫

R

(1− exp(−fn(x)))ν(dx) +

∫

R

[exp(−fn(x)− 1B(x))− 1]ν(dx)

)

= exp



∫

R

[exp(−1B(x))− 1] exp(−fn(x))ν(dx)




= exp


(exp(−1)− 1)

∫

B

exp(−fn(x))ν(dx)


 . (4.26)

This equality means that µ([0, 1]×B) has a Poisson distribution with para-

meter

∫

B

exp(−fn(x))ν(dx) with respect to Pn. On the other side, (L,F) is

a Lévy process with respect to Pn and if we denote its Lévy measure by νn
as above we conclude

νn(B) = EPn
[µ([0, 1]× B)] (4.27)

=

∫

B

exp(−fn(x))ν(dx), ∀B with ν(B) < +∞, (4.28)

as expectation of the Poisson-distributed random variable µ([0, 1]×B) with

parameter

∫

B

exp(−fn(x))ν(dx) with respect to Pn. If B is an arbitrary Borel
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subset of R we set

Bk = B ∩ {|x| ≥ frm[o]−−/k} , k ≥ 1.

Then ν(Bk) < +∞ and hence (4.28) holds for Bk:

νn(Bk) =

∫

Bk

exp(−fn(x))ν(dx).

Passing to the limit as k → ∞ yields

νn(B) =

∫

B

exp(−fn(x))ν(dx).

Note that νn({0}) = ν({0}) = 0. Consequently, we have proven

νn(dx) = exp(−fn(x))ν(dx).

In the next step we calculate

EPn
[exp(iuLt)] = E[Z

(n)
t exp(iuLt)].

For this we use the Lévy–Itô decomposition of L:

Lt = βt+ σWt + (x1{|x|≤1}) ∗ µ̄t + (x1{|x|>1}) ∗ µt,

where µ̄ = µ− µp is the compensated Poisson random measure with respect
to P. Here (W,F) is a Brownian motion independent of µ if σ 6= 0. (If σ = 0
we use the conventionW ≡ 0.) Now we observe that βt+σWt is independent

of Z
(n)
t exp(iu[(x1{|x|≤1}) ∗ µ̄t + (x1{|x|>1}) ∗ µt]) and hence

EPn
[exp(iuLt)]

= E[exp(iuβt+ iuσWt)]EPn
[exp(iu[(x1{|x|≤1}) ∗ µ̄t + (x1{|x|>1}) ∗ µt])]

= exp(iuβt−
1

2
u2σ2t) exp


t
∫

R

(exp(iux)− 1− iux1{|x|≤1})


 νn(dx)

because (x1{|x|≤1})∗ µ̄t+(x1{|x|>1})∗µt) is a Lévy process with characteristics
(0, 0, νn) with respect to Pn. This follows from the fact proven above that νn
is the Lévy measure of (L,F) with respect to Pn. Hence

EPn
[exp(iuLt)] = exp


iuβt− 1

2
u2σ2t+ t

∫

R

(exp(iux)− 1− iux1{|x|≤1})νn(dx)




and by the uniqueness of the Lévy–Chintchine representation we get that
(L,F) is a Lévy process with characteristics (β, σ2, νn) with respect to Pn

where we have νn(dx) = exp(−fn(x))ν(dx).
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Now it is time to explain the role of condition (2) on the sequence of
functions fn. Let us fix n.

4.12 Proposition. Let Pn be the probability measure defined in (4.21) and
assume that the function fn satisfies the conditions (1) – (3). Then L has
finite exponential moments of all orders with respect to Pn.

Proof. From the last proposition we already know that the process L is a
Lévy process with Lévy measure νn(dx) = exp(−fn(x))ν(dx) with respect to
Pn. Recall the necessary and sufficient conditions of the existence of finite
moments EPn

[g(Lt)] for any t > 0, where g is a submultiplicative (hence
nonnegative), locally bounded measurable function on R. The condition is

∫

{|x|>1}

g(x)ν(dx) < +∞. (4.29)

We want to show that the condition (2) guarantees the finiteness of expo-
nential moments of all orders: for any α ∈ R and any t ∈ [0, T ] we have

EPn
[exp(αLt)] < +∞.

The first step is to prove, that the function exp(αx) satisfies the condi-
tions necessary and sufficient of existence of finite moments. This function
is indeed measurable and bounded on every compact set, submultiplicativity
follows from multiplicativity of the exponential function. The last step is to
show that (4.29) holds:

∫

{|x|>1}

exp(αx)νn(dx) =

∫

{|x|>1}

exp(αx) exp(−fn(x))ν(dx).

The Lévy measure ν is, by definition, finite outside any neighborhood of zero
and, in particular, ν({|x| > 1}) < +∞. Hence the condition is satisfied if
α = 0. Let us now assume that α 6= 0. By condition (2), there exists c > 1
such that

|x| ≤
1

|α|
fn(x), |x| > c,

and hence

|αx| ≤ fn(x), |x| > c.
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By the linearity and monotonicity of the integral we can split
∫

{|x|>1}

exp(αx− fn(x))ν(dx)

≤

∫

{1<|x|≤c}

exp(αx− fn(x))ν(dx) +

∫

{|x|>c}

exp(|αx| − fn(x))ν(dx)

≤

∫

{1<|x|≤c}

exp(αx)ν(dx) +

∫

{|x|>c}

cν(dx) (4.30)

≤ exp(|αc|)ν({|x| > 1}) + cν({|x| > 1}) < +∞.

In (4.30) we have used the estimate

exp(|αx| − fn(x)) ≤ 1 for |x| > c.

Hence, the process L has finite exponential moments of all orders with respect
to the measure Pn. The proposition is proven.

Let Qn be defined similarly to the definition of Pn:

dQn

dQ
(FT ) = Z

(n)
T , n ≥ 1.

4.13 Proposition. IT (Q,P) = lim
n→∞

IT (Qn,Pn).

Proof. By definition

IT (Qn,Pn) = EQn

[
log

dQn

dPn

]

= EQn

[
log

dQ

dP

]
, (4.31)

because

dQn

dPn

=
dQn

dQ

dQ

dP

dP

dPn

(FT ) = Z
(n)
T

dQ

dP
(Z

(n)
T )−1(FT ) =

dQ

dP
(FT ).

Now we obtain

EQn

[
log

dQ

dP
(FT )

]
= EQ

[
dQn

dQ
(FT ) log

dQ

dP
(FT )

]

= EQ

[
Z

(n)
T log

dQ

dP
(FT )

]
.
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By the assumption that IT (Q,P) <∞,
dQ

dP
(FT ) is Q-integrable and by (4.20)

and (4.31), lim
n→∞

Z
(n)
T = 1 and Z

(n)
T is uniformly bounded. Combining these

facts and letting n to infinity, we can use the theorem of Lebesgue:

EQ

[
Z

(n)
T log

dQ

dP
(FT )

]
−→ EQ

[
log

dQ

dP
(FT )

]
= IT (Q,P).

Hence,

lim
n→∞

IT (Qn,Pn) = IT (Q,P).

The statement is proven.

4.6 The Esscher Martingale Measures with

Respect to Pn

Let us introduce the EMM QE
n with respect to the probability measure Pn:

dQE
n

dPn

(FT ) = cn exp(κnXT ),

where κn is such that the moment condition

EPn
[LT exp(κnLT )] = 0

is satisfied, cn is the normalizing constant:

cn = (EPn
[exp(κnLT )])

−1 .

We know from Proposition 4.12 that the condition (2) on the functions
fn guarantees the finiteness of all exponential moments of L under the prob-
ability measure Pn and therefore, because of Proposition 4.4, the parameters
cn and κn always exist. In the next proposition, we compare the asymptotic
behavior of measures QE

n and Pn.

4.14 Proposition.

lim
n→∞

IT (Q
E
n ,P) ≤ lim

n→∞
IT (Q

E
n ,Pn).
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Proof. Let us consider the relative entropy between the measures QE
n and P:

IT (Q
E
n ,P) = EQE

n

[
log

dQE
n

dP
(FT )

]

= EQE
n

[
log

dQE
n

dPn

(FT ) + log
dPn

dP
(FT )

]
(4.32)

= IT (Q
E
n ,Pn) + EQE

n

[
log

dPn

dP
(FT )

]
(4.33)

= IT (Q
E
n ,Pn) + EQE

n

[
logZ

(n)
T

]
.

Note that IT (Q
E
n ,Pn) is nonnegative (by definition) and finite:

0 ≤ IT (Q
E
n ,Pn) = EQE

n

[
log

dQE
n

dPn

(FT )

]

= EQE
n
(log cn + κnLT )

= log cn < +∞.

The expression log
dPn

dP
(FT ) = logZ

(n)
T is bounded from above by the con-

stant

T

∫

R

1− exp(−fn(x))ν(dx).

Hence EQE
n

[
log

dPn

dP
(FT )

]
exists and is less than +∞. Therefore we are

allowed to use the linearity of the integral and to split the expression in
(4.32) into on two parts in (4.33). Now, by Lebesgue’s theorem

lim
n→∞

EQE
n

[
logZ

(n)
T

]
≤ lim

n→∞
T

∫

R

(1− exp(−fn(x)))ν(dx) = 0,

and finally we get

lim
n→∞

IT (Q
E
n ,P) ≤ lim

n→∞
IT (Q

E
n ,Pn).

The proposition is proven.

Our next goal is to compare the asymptotics of IT (Qn,Pn) and IT (Q
E
n ,Pn).

Recall that Qn are defined similarly to the definition of Pn:

dQn

dQ
(FT ) = Z

(n)
T , n ≥ 1.

But to get a better result we need to state additional assumptions on the
probability measure Q.
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4.15 Proposition. Let Q be from M̃a(T ): Q � P and EQ[LT ] = 0. Then

lim
n→∞

IT (Q
E
n ,Pn) ≤ lim

n→∞
IT (Qn,Pn).

Proof. Let us start from the right hand side:

IT (Qn,Pn) = EQn

[
log

dQn

dPn

(FT )

]
(4.34)

= EQn

[
log

dQn

dQE
n

(FT ) + log
dQE

n

dPn

(FT )

]
(4.35)

= EQn

[
log

dQn

dQE
n

(FT )

]
+ EQn

[
log

dQE
n

dPn

(FT )

]
(4.36)

= IT (Qn,Q
E
n ) + log cn + EQn

[κnLT ] (4.37)

≥ log cn + EQn
[κnLT ], (4.38)

where log cn = I(QE
n ,Pn). For step from (4.35) to (4.36) we used the linearity

of the integral. We are allowed to use it because

EQn

[
log

dQn

dPn

(FT )

]
= IT (Qn,Q

E
n ) ≥ 0

and

EQn

[∣∣∣∣log
dQE

n

dPn

(FT )

∣∣∣∣
]
< +∞. (4.39)

Indeed, for proving the second claim, we estimate

∣∣∣∣log
dQE

n

dPn

(FT )

∣∣∣∣ = | log[cn exp(κnLT )]|

≤ | log cn|+ |κnLT |

for some cn > 0 and κ ∈ R. Now we observe

EQn
[|LT |] = EQ[Z

(n)
T |LT |]

≤ K EQ[|LT |]

where K is the constant given on the right-hand side of (4.20). But in
view of EQ[LT ] = 0 by the assumption of the proposition it follows that
EQn

[|LT |] < +∞. Pasting together the above estimates yields the claim
(4.39).



88 4. Models driven by the Lévy Processes. General Case

In (4.37) we have used the fact that the entropy IT (Qn,Q
E
n ) is nonnegat-

ive. For proving the statement of Proposition 4.15, it now suffices to verify
that

lim
n→∞

EQn
[κnLT ] = 0.

By definition of the EMM QE
n we have:

EPn
[LT exp(κnLT )] = 0.

We now introduce the function ϕT,n by

ϕT,n(κ) = EPn
[exp(κLT )] < +∞, κ ∈ R.

Then ϕT,n is twice continuously differentiable (by Proposition A.1, parts
(2),(3),(6) and (7))and it is possible to write explicit forms of the derivatives

ϕ′
T,n(κ) = EPn

[LT exp(κLT )], ϕ
′′
T,n(κ) = EPn

[L2
T exp(κLT )], κ ∈ R

(see Appendix A). From the definition of κn now follows ϕ′
T,n(κn) = 0 and,

because of ϕ′′
T,n(κn) > 0, ϕT,n reaches its minimum at the point κn.

We define the sets Kn by

Kn :=



κ ∈ R : ϕT,n(κ) exp


−T

∫

R

(1− exp(−fn))ν(dx)


 ≤ 1



 .

We notice that

ϕT,n(κ) exp


−T

∫

R

(1− exp(−fn))ν(dx)




= EPn
[exp(κLT )] exp


−T

∫

R

(1− exp(−fn))ν(dx)




= EP[Z
(n)
T exp(κLT )] exp


−T

∫

R

(1− exp(−fn))ν(dx)




= EP

[
exp

(
−
∑

0<u≤T

fn(∆Lu)

)
exp(κLT )

]
,

where we have used the representation (4.19) for the density process Z(n).
The last term being monotonically increasing in n shows that the sets Kn

are monotonically decreasing and, in particular, that Kn ⊆ K1 for all n ≥ 1.
The function ϕn is strictly positive, ϕn(0) = 1, hence its minimum is not
larger then 1 and κn ∈ Kn ⊆ K1. We can easily observe that K1 is compact:
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(a) K1 is bounded because lim
|κ|→∞

ϕ1(κ) = +∞ (Proposition A.1, part (1));

(b) K1 is closed because ϕ1 is continuous (Proposition A.1, part (2)).

This implies that the sequence (κn) is bounded and therefore we can estimate

|EQn
[κnLT ]| ≤ sup

k≥1
|κk| |EQn

[LT ]|.

But

EQn
[LT ] = EQ[Z

(n)
T LT ]

and using Lebesgue’s theorem on dominating convergence we obtain that the
right-hand side converges to EQ[LT ] = 0. Indeed, we have

lim
n→∞

Z
(n)
T LT = LT

and

|Z
(n)
T LT | ≤ K|LT |

with a constant K > 0 given in (4.20). Obviously, the right-hand side K|LT |
is integrable with respect to Q. In summary, we can conclude

lim
n→∞

EQn
[κnLT ] = 0.

Taking the upper limit in (4.38) and noting that log cn = IT (Q
E
n ,Pn) we

obtain the required result.

In the proof of the last proposition, an important fact was proven, which
we would like to use also later and formulate it as a corollary:

4.16 Corollary. The sequence of Esscher parameters (κn)n≥1 is bounded.

Summarizing Proposition 4.13, Proposition 4.14 and Proposition 4.15 we
get the following statement.

4.17 Proposition. The following identity holds:

lim
n→∞

IT (Q
E
n ,P) = inf

Q∈Ma(T )
IT (Q,P) = inf

Q∈M̃a(T )

IT (Q,P).

Proof. From Proposition 4.14 we have

lim
n→∞

IT (Q
E
n ,P) ≤ lim

n→∞
IT (Q

E
n ,Pn).
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Applying Proposition 4.15 we get

lim
n→∞

IT (Q
E
n ,Pn) ≤ lim

n→∞
IT (Qn,Pn)

for any Q ∈ M̃a(T ), but from Proposition 4.13 it follows

lim
n→∞

IT (Qn,Pn) = IT (Q,P).

Hence
lim
n→∞

IT (Q
E
n ,P) ≤ inf

Q∈M̃a(T )

IT (Q,P).

The sequence of EMM QE
n is contained in the class of all martingale measures

Ma(T ), therefore

inf
Q∈Ma(T )

IT (Q,P) ≤ lim
n→∞

IT (Q
E
n ,P).

On the other side, Ma(T ) ⊆ M̃a(T ) and hence

inf
Q∈M̃a(T )

IT (Q,P) ≤ inf
Q∈Ma(T )

IT (Q,P).

Finally, we get

inf
Q∈M̃a(T )

IT (Q,P) ≤ inf
Q∈Ma(T )

IT (Q,P) ≤ lim
n→∞

IT (Q
E
n ,P) ≤ inf

Q∈M̃a(T )

IT (Q,P)

and, consequently,

inf
Q∈M̃a(T )

IT (Q,P) = inf
Q∈Ma(T )

IT (Q,P) = lim
n→∞

IT (Q
E
n ,P).

The statement is proven.

4.7 Coincidence of the EMM and the MEMM

Finally, we can prove the main result of the present thesis: the coincidence
of the EMM and the MEMM. First we prove the simpler case, for martingale
measures and then we will apply a localization procedure and generalize the
result also to local martingale measures.

4.18 Theorem. (i) If there exists the EMM QE then it is the MEMM in
the class M̃a(T ).

(ii) If there exists the MEMM Q∗ in the class Ma(T ) then it is the EMM.
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(iii) If there exists the MEMM Q∗ in the class M̃a(T ) then it is the EMM.

Proof. The identity proven in the last proposition gives us an opportunity to

reduce the problem of finding the MEMM in the classes Ma(T ) and M̃a(T )
to the one-step problem (D) (see Appendix B.5). Let us start from (iii).

Assume that Q∗ is the MEMM in the class M̃a(T ) (as a solution of the
moment problem). Then by Theorem 2.6 we find that

dQ∗

dP
= c exp(f),

where f ∈ K
Q
, Q ∈ M 0 (using the notations of Definition 2.2). But this is

the formulation of the one-step problem (D) and hence from Theorem 2.7 we

know the structure of the space K
Q
:

K
Q
= K = {κLT : κ ∈ R} .

Taking into account the last fact we observe the explicit form of the density:

dQ∗

dP
= c exp(κLT ).

Note that parameters κ and c are deterministic, therefore the obtained dens-
ity coincides with the definition of the Esscher density. Because EQ∗ [LT ] = 0
by assumption, the Esscher measure Q∗ is a martingale measure ((L, F ) is
again a Lévy process w.r.t. Q∗) and hence it is the Esscher martingale meas-
ure. Let us prove now the converse direction, part (i) of the theorem. Assume
that there exists the EMM QE, then we can consider our problem in terms
of the one-step problem (D), setting ξ = LT and F1 = FT . In this case the
EMM QE coincides the Esscher martingale measure of the one-step problem,
which is, by Theorem B.5, the MEMM in the class Ma or in other words,
the solution of the one-step problem (D). Taking into account that ξ = LT

we observe that classes of measures Ma and M̃a(T ) coincide and hence QE

is the solution of the moment problem.
The statement (ii) is based on Proposition 4.17 and part (iii): if there

exists the MEMM Q∗ in the class Ma(T ) then by Proposition 4.17 it is the

MEMM in class M̃a(T ) and we can use part (iii).

The last step is to localize the previous statement.

4.19 Theorem. If the MEMM Q∗ in the class M loc
a (T ) exists then it is the

EMM.
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Proof. Let us assume that the MEMM Q∗ in the class M loc
a (T ) exists. Define

the sequence of only finite measures (Q∗
n)n≥1 by

dQ∗
n

dQ∗
(FT ) = Z

(n)
T , n ≥ 1, (4.40)

where Z
(n)
T is defined in (4.17). In a similar way we define the sequence of

probability measures (Pn)n≥1:

dPn

dP
(FT ) = Z

(n)
T , n ≥ 1. (4.41)

From Proposition 4.12 it follows that the process L has finite exponential
moments with respect to every probability measure Pn and hence, applying
Proposition 4.4, we find that for every Pn there exists the appropriate EMM
QE

n :

dQE
n

dPn

(FT ) = exp(κnLT − T logϕ1,n(κn)). (4.42)

Choose a reducing sequence (ρi)i≥1: (ρi)i≥1 is a sequence of stopping times
such that ρi ↑ +∞ and (Lρi∧T ,F) is a Q∗-martingale on [0, T ] for every i ≥ 1.
We then get

IT (Q
∗
n,Pn) ≥ Iρi∧T (Q

∗
n,Pn) (4.43)

= EQ∗
n

[
log

dQ∗
n

dPn

(Fρi∧T )

]

= EQ∗
n

[
log

dQ∗
n

dQE
n

(Fρi∧T )

]
+ EQ∗

n

[
log

dQE
n

dPn

(Fρi∧T )

]
(4.44)

≥ EQ∗
n

[
log

dQE
n

dPn

(Fρi∧T )

]
, (4.45)

In (4.43) we used the monotonicity of the relative entropy in time, in
(4.44) we used linearity of the integral, which is allowed because of

0 ≤ EQ∗
n

[
log

dQ∗
n

dQE
n

(Fρi∧T )

]
< +∞

as the property of the relative entropy, and in (4.45) we used the nonnegat-
ivity of the relative entropy. Inserting (4.42) in (4.45) and applying Doob’s
optional sampling theorem, we obtain

IT (Q
∗
n,Pn) ≥ EQ∗

n
[κnLρi∧T ]− logϕ1,n(κn)EQ∗

n
[ρi ∧ T ].
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Letting n to infinity we get

lim
n→∞

IT (Q
∗
n,Pn) ≥ lim

n→∞
EQ∗

n
[κnLρi∧T ]− limn→∞ logϕn(κn)EQ∗

n
[ρi ∧ T ].

Our next step is to prove that

lim
n→∞

EQ∗
n
[κnLρi∧T ] = 0.

We use the same approach as in the proof of Proposition 4.15. First of all, it
is worth to mention that according to Corollary 4.16 our sequence of Esscher
parameters is bounded. Hence the following estimate holds:

|EQ∗
n
[κnLρi∧T ]| ≤ sup

m≥1
|κm||EQ∗

n
[Lρi∧T ]|.

But
EQ∗

n
[Lρi∧T ] = EQ∗ [Z

(n)
T Lρi∧T ]

and using Lebesgue’s theorem on dominated convergence we obtain that the
right-hand side converges to EQ∗ [Lρi∧T ] = 0. As a result, we get:

lim
n→∞

IT (Q
∗
n,Pn) ≥ −limn→∞ logϕ1,n(κn)EQ∗

n
[ρi ∧ T ].

Using Propositions 4.13 and 4.14, and letting i to infinity we get

IT (Q
∗,P) = lim

n→∞
IT (Q

∗
n,Pn)

≥ limn→∞ − logϕ1,n(κn)T = lim
n→∞

IT (Q
E
n ,Pn) ≥ inf

Q∈M loc
a (T )

IT (Q,P),

where the last inequality follows from the fact, that the Esscher martingale
measures (QE

n ) are included in the class M loc
a (T ). From the last expression

we find that
inf

Q∈M loc
a (T )

IT (Q,P) = lim
n→∞

[− logϕ1,n(kn)T ].

Proposition A.1, part 4 implies the existence of a minimal point of the func-
tion ϕn, moreover κn is the minimal point of ϕ1,n (Proposition A.1, part 4)
guarantees the convergence of the sequence (κn) to some κ0 and the conver-
gence of the minimal values ϕ1,n(κn) to ϕ1(κ0). Hence

inf
Q∈M loc

a (T )
IT (Q,P) = lim

n→∞
[− logϕ1,n(kn)T ] = −T logϕ1(κ0). (4.46)

Let us define Qκ0 as the Esscher measure with parameter κ0 (in general,
it need not be a martingale measure, but it is the measure defined by the
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Esscher density). Then we get

IT (Q
∗,P) ≥ Iρi∧T (Q

∗,P)

= EQ∗

[
log

dQ∗

dP
(Fρi∧T )

]

= EQ∗

[
log

dQ∗

dQκ0
(Fρi∧T )

]
+ EQ∗

[
log

dQκ0

dP
(Fρi∧T )

]

= Iρi∧T (Q
∗,Qκ0) + EQ∗ [κ0Lρi∧T − logϕ1(κ0)(ρi ∧ T )]

= Iρi∧T (Q
∗,Qκ0)− logϕ1(κ0)EQ∗ [ρi ∧ T ].

Passing to the limit for i→ ∞ we find

IT (Q
∗,P) ≥ lim

i→∞
Iρi∧T (Q

∗,Qκ0)−logϕ1(κ0)T = lim
i→∞

Iρi∧T (Q
∗,Qκ0)+IT (Q

∗,P).

This implies

lim
i→∞

Iρi∧T (Q
∗,Qκ0) = 0

and since the entropy process is increasing in time

Iρi∧T (Q
∗,Qκ0) = 0 for ∀i ≥ 1.

The entropy is zero just in case when the measures coincide on the given
σ-algebras. Thus

Q∗|Fρi∧T
= Qκ0 |Fρi∧T

for ∀i ≥ 1.

Let us recall that by definition of a local martingale we have {ρi∧T = T} ↑ Ω
as n → ∞. The set {ρi ∧ T = T} belongs to Fρi∧T , take any set A ∈ FT ,
then A ∩ {ρi ∧ T = T} ∈ Fρi∧T , letting i to ∞ the increasing sequence
A ∩ {ρi ∧ T} converges to A and we get

Q∗(A) = Q0(A) for any A ∈ FT .

This means that the Esscher measure, defined by its parameter κ0, coincides
with the MEMM Q∗. As a result the Esscher measure Q0 is a martingale
measure, namely, the MEMM Q∗. Hence Q∗ is the EMM. The proposition
is proven.

4.8 Conclusions

Combining all the propositions above we can generalize the statement of
Proposition 4.17 and Proposition 4.18:
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4.20 Theorem. The following identity holds:

inf
n≥1

IT (Q
E
n ,P) = inf

Q∈Ma(T )
IT (Q,P) (4.47)

= inf
Q∈M̃a(T )

IT (Q,P) (4.48)

= inf
Q∈M loc

a (T )
IT (Q,P) (4.49)

= −T logϕ(κ0) (4.50)

= inf
Q∈Mefl(T )

IT (Q,P), (4.51)

where Mefl(T ) denotes Me(T ) ∩ Mf (T ) ∩ Ml(T ).

Proof. Identities (4.47) and(4.48) follow from Proposition 4.17. Identity of
(4.49) and (4.50) was proven in Theorem 4.19 in (4.46). Identity of (4.47)
and (4.50) follows from Proposition (A.1), part (4). The last identity, (4.51),
follows from the facts that the Esscher martingale measures QE

n preserve the
Lévy property and, hence, belong to the class Ml(T ). At the same time,
Ml(T ) ⊂ Ma(T ).

Theorem 4.19 also gives us the clue for sufficient classes of measures that
should be considered for finding the MEMM: The key role is played by the
Esscher measures. We stress the very important fact that Esscher measures
preserve the Lévy property of the process (L,F).

4.21 Theorem. The probability measure Q∗ is the minimal entropy martin-
gale measure in the class M loc

a (T ) if and only if it is the minimal entropy
martingale measure in the class Mefl(T ).

Proof. The proof follows from the fact, that the Esscher measures preserve
the Lévy property.

If there exists a probability measure Q∗ which is the minimal entropy
martingale measure in the class M loc

a (T ), then by Theorem 4.19 we find that
Q∗ is the Esscher martingale measure and hence Q∗ ∈ Ml(T ), and by the fact
that Ml(T ) ⊆ M loc

a (T ) it is the MEMM in the class ∈ Ml(T ). Moreover,
applying (4.51) we get that the MEMM is even in class Mefl(T ).

Now let us prove the statement in the reverse direction, but it obviously
follows from identities (4.49)-(4.51).

4.22 Theorem. The EMM QE exists if and only if there exists the MEMM

Q∗ in the class M loc
a (T ) ∪ M̃a(T ). These measures coincide: QE = Q∗.
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Proof. Assume there exists the MEMM Q∗ in class M loc
a (T ) ∪ M̃a(T ). It

means that either Q∗ ∈ M loc
a (T ) or Q∗ ∈ M̃a(T ). If Q∗ ∈ M loc

a (T ), then

by Theorem 4.18, part (iii), Q∗ is the EMM. If Q∗ ∈ M̃a(T ), then by The-
orem 4.19 Q∗ is the EMM.

Now let us prove in the reverse direction. Assume there exists the EMM
QE. Then according to Lemma 4.3 we have IT (Q,P) = −T logϕ(κ0). Note,
that

inf
Q∈M̃a(T )∪M loc

a (T )

IT (Q,P) = min( inf
Q∈M̃a(T )

IT (Q,P), inf
Q∈M loc

a (T )
IT (Q,P))

= −T logϕ(κ0),

where the last equality holds because of Theorem 4.20. While the EMM

QE ∈ M loc
a (T ) ∪ M̃a(T ), it is the MEMM in this class. The statement is

proven.

Last two theorems characterize the value of the minimal entropy and the

connection between the EMM and the MEMM in the class M loc
a (T )∪M̃a(T ).

Our next statement is based on the collection of the Theorems 4.21 – 4.22 and
concerns the preservation of infima of the entropy by the sufficient subclass
for the solution of all the minimization problems.

4.23 Theorem. The MEMM Q∗ in the class M loc
a (T )∪M̃a(T ) exists if and

only if there exists the MEMM Q∗
l in the class Ml(T ). Moreover, in case

of existence these measures coincide between themselves and with the EMM,
which also exists: Q∗

l = Q∗ = QE.

Proof. The prove is trivial and follows from Theorem 4.22, Theorem 4.20,
part 4.51, and the fact that the EMM preserves the Lévy property of the
process (and hence, if the EMM exists, it belongs to the class Ml(T )).

In the last theorem it is explicitly mentioned the smallest, sufficient class
in searching of the MEMM – the class of Lévy preserving measures Ml(T ) –
and the largest class, for which this measure, if it exists, is also the MEMM. It
is worth to mention, that if there does not exist the EMM, then there does not
exist a MEMM in all these classes. What happens in this case? Surprisingly,
the situation is the same as in one-step model, in particular, it depends on the
exponential integrability and there may happen 4 situations (among which
just 3 are indeed different), which are discussed in Proposition A.2.

Now we will conduct a small comparison of our results with results stated
in Esche & Schweizer (2005).

The authors have proven that the MEMM Q∗ is Lévy preserving (The-
orem A). In fact, they prove, but not state it explicitly, that Lévy preserving



4.8 Conclusions 97

(local) martingale measures are a sufficient subclass. In our case we obtain
this property as a corollary (cf. Theorem 4.21) and show that the subclass
Mefl(T ) is sufficient for the search of the MEMM. Theorem B states that the
EMM is the MEMM. Theorem A is actually used to justify that for finding
the MEMM it is enough to minimize the entropy over all (local) martingale
measures Q that preserve the Lévy property. This yields the minimization
problem over the deterministic parameters (called β and Γ) for finding the
MEMM. This minimization problem was solved by using formal arguments.
The formal solution is the EMM. In other words, the paper does not give a
strict proof that the MEMM (if it exists) implies the existence of the EMM
(and equality between them).

Another paper in this field, Fujiwara & Miyahara (2003), states the fol-
lowing: EMM, if it exists, is the MEMM. Moreover, there are also conditions
on existence of the EMM: The EMM exists if there exists κ∗ ∈ R such that

(1)

∫

R

|x expκ∗x− h(x)|ν(dx) < +∞,

(2) β + σκ∗ +

∫

R

(x expκ∗x− h(x))ν(dx) = 0.

These are analytical conditions in terms of the characteristics (β, σ, ν). In
probabilistic terms it means:

(1’) E[|LT | exp(κ
∗LT )] < +∞,

(2’) E[LT exp(κ∗LT )] = 0.
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A
Appendix A. Properties of the Functions ϕ

and ψ

The aim of this appendix is to collect the most important properties of the
functions ϕ and ψ which are widely used in the main body of the thesis. Note
that we work here just with random variables but not with general stochastic
processes.

Let be given a probability space (Ω,F ,P) and a non-degenerated random
variable ξ − ξ0 defined on it. It looks a little bit confusing to consider here
the difference ξ − ξ0 instead of just ξ, but the motivation comes from the
one-step model (cf. Appendix B): ξ0 is an initial value of some price process
X, ξ0 = X0, may be either constant or a random variable measurable with
respect to the initial σ-algebra F0, random variable ξ stands for the value of
the price process X at the end of the step, ξ = X1, and is measurable with
respect to a σ-algebra F1 = F . In this appendix we are interested in the
behavior of the functions, that use as an argument an increment ξ− ξ0 of the
value of the price process.

Assume that for the support of the distribution of the increment ξ − ξ0
the following condition holds: suppL (ξ− ξ0)∩ (−∞, 0) 6= ∅ and suppL (ξ−
ξ0) ∩ (0,+∞) 6= ∅. According to Proposition B.2, this is a necessary and
sufficient condition for the existence of at least one martingale measure for
the one-step model with initial value ξ0 and terminal value ξ. Define

ϕ(κ) = E[exp(κ(ξ − ξ0))], κ ∈ R, (A.1)

ψ(κ) = E[(ξ − ξ0) exp(κ(ξ − ξ0))], κ ∈ R. (A.2)

Let I = {κ ∈ R : ϕ(κ) < +∞}. Then I is convex and 0 ∈ I. Therefore I is
an interval with endpoints a and b, a ≤ 0 ≤ b. The set of interior points of
I is denoted by I0. Clearly, I0 = (a, b). Note that I0 can be the empty set
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which happens in the case if a = b = 0. Let E = {κ ∈ R : |ψ(κ)| < +∞}.

A.1 Proposition. Let functions ϕ and ψ be defined by (A.1) and (A.2),
respectively. Then the following properties hold:

1. ϕ is convex,

ϕ(−∞) = ϕ(+∞) = +∞;

2. ϕ is continuous on I;

3. ϕ is differentiable on (a, b). If a ∈ I then ϕ differentiable from the
right at a with right derivative +∞ > ϕ′

+(a) ≥ −∞. If b ∈ I then ϕ is
differentiable from the left at b with left derivative +∞ ≥ ϕ′

−(b) > −∞;

4. ϕ has a unique minimum point κ0;

5. ψ is monotonically increasing,

ψ(−∞) = −∞, ψ(+∞) = +∞;

6. ψ is continuous on E;

7. ψ is differentiable on (a, b).

Proof. (1) In case I0 = ∅ the statement of the proposition is trivial. Therefore
we assume that I0 = (a, b) with a < b. Since ϕ′′(κ) > 0, the function ϕ is
strictly convex on (a, b). The function (ξ− ξ0) exp(κ(ξ− ξ0)) is increasing in
κ and therefore E[(ξ − ξ0) exp(κ(ξ − ξ0))] exists for all κ ≥ b and

−∞ < E[(ξ − ξ0) exp(κ(ξ − ξ0))].

Analogously, E[(ξ − ξ0) exp(κ(ξ − ξ0))] exists and

E[(ξ − ξ0) exp(κ(ξ − ξ0))] < +∞, κ ≤ a.

Hence the function ψ introduced by

ψ(κ) = E[(ξ − ξ0) exp(κ(ξ − ξ0))], κ ∈ R,

is well-defined and monotonically increasing. Because of the monotonicity it
follows that

−∞ = ψ(κ), κ < a; ψ(κ) = +∞, b < κ.
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To prove that for κ < a ≤ 0 holds ψ(κ) = −∞. It is sufficient to verify that

E[(ξ − ξ0)
− exp(κ(ξ − ξ0))] = +∞,

since (ξ − ξ0)
− exp(κ(ξ − ξ0)) is negative part of (ξ − ξ0) exp(κ(ξ − ξ0)).

E[(ξ − ξ0)
− exp(κ(ξ − ξ0))] ≥ E[(ξ − ξ0)

−1{(ξ−ξ0)−≥1} exp(κ(ξ − ξ0))]

≥ E[1{(ξ−ξ0)−≥1} exp(κ(ξ − ξ0))] = ∞

since ϕ(κ) = E[exp(κ(ξ − ξ0))] = +∞ and using the assumption κ < 0 we
have

E[1{(ξ−ξ0)−<1} exp(κ(ξ − ξ0))] ≤ E[1{(ξ−ξ0)−≥1} exp(−κ(ξ − ξ0)
−)] < +∞.

Similar arguments we use for κ > b. We can observe the asymptotic behavior
of the function ψ:

lim
κ→+∞

ψ(κ) = +∞, lim
κ→−∞

ψ(κ) = −∞.

Indeed,

E[(ξ − ξ0)
+ exp(κ(ξ − ξ0))] = E[(ξ − ξ0)

+1{(ξ−ξ0)+>0} exp(κ(ξ − ξ0)
+)]

which converges to +∞ as κ→ ∞ by monotone convergence. Here we used
one part of the no-arbitrage property of Proposition B.2: P ({(ξ − ξ0)

+ > 0}) >
0. Similarly for κ→ −∞. The property (1) is proven.

(2) We would like to show that the function ϕ is continuous on I. In view
of its convexity, ϕ is continuous on I0. Now assume that b ∈ I. We then
have to show that ϕ is continuous at b. Let κn → b (a < κn ≤ b). We have

0 ≤ exp(κn(ξ − ξ0)) ≤ exp(κn(ξ − ξ0)
+) ≤ exp(b(ξ − ξ0)

+)

and since exp(b(ξ− ξ0)
+) is integrable, by dominated convergence we obtain

lim
n→∞

E[exp(κn(ξ − ξ0))] = E[exp(b(ξ − ξ0))].

(3) Because of the theorem of Lebesgue the function ϕ is differentiable
on (a, b) and

ϕ′(κ) = E[(ξ − ξ0) exp(κ(ξ − ξ0)], κ ∈ (a, b).

Similarly, the second derivative is

ϕ′′(κ) = ψ′(κ) = E[(ξ − ξ0)
2 exp(κ(ξ − ξ0))], κ ∈ (a, b).
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Moreover, ϕ is infinitely differentiable on (a, b). Therefore the properties (7)
and (3) hold.

(4) We now show that ϕ always has a minimum. Let us define the set

E := {κ ∈ R : E[|ξ − ξ0| exp(κ(ξ − ξ0))] < +∞} .

Obviously, E ⊆ I, and E0 = I0.
The next aim is to show that function ϕ attains its minimum on E.
The value of the function ϕ converges to infinity while the argument

converges to infinity:

lim
|κ|→∞

ϕ(κ) = +∞.

Indeed, if κ > 0

ϕ(κ) ≥ E[1{ξ−xi0>0} exp(κ(ξ − ξ0)
+)]

and the right-hand side converges to +∞ if κ→ ∞ by monotone convergence
and P({(ξ − ξ0)

+ > 0}) > 0. The proof is similar for κ→ −∞.
The set K = {κ ∈ R : ϕ(κ) ≤ 1} is a nonempty compact subset of R.

Indeed, 0 ∈ K and K is bounded in view of the above verified convergence
to ∞. Let (κn)n≥1 be a sequence from K such that κn → κ. By the lemma
of Fatou,

ϕ(κ) = E[exp(κ(ξ − ξ0))] ≤ limn→∞E[exp(κn(ξ − ξ0))] ≤ 1.

Hence K is closed. As a bounded and closed subset of R, the set K must
be compact. Therefore, it follows from (2) that the function ϕ is continuous
on the compact set K. Thus ϕ has a minimum on K which coincides with
the minimum of ϕ on R which follows from the definition of K. Uniqueness
follows from the convexity of the function.

Let κ0 be the minimal point of ϕ. Then κ0 ∈ I. If κ0 ∈ I0 = (a, b) then
as a necessary condition to be the minimal point of ϕ we have

ψ(κ0) = ϕ′(κ0) = E[(ξ − ξ0) exp(κ0(ξ − ξ0))] = 0.

Conversely, if κ0 ∈ I0 satisfies

ψ(κ0) = ϕ′(κ0) = E[(ξ − ξ0) exp(κ0(ξ − ξ0))] = 0

then, because of the strict convexity of ϕ and ϕ′(κ0) = 0, κ0 is a minimum
point of ϕ. The latter is also true if κ0 is only a boundary point of I and
does not belong to the interior points I0.
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Let us consider two cases: 1) a = b = 0; 2) a < b. The first case is
trivial, we have 0 /∈ I0 and the function ϕ attains its minimum at point 0.
Otherwise, if a < b and

E[(ξ − ξ0) exp(b(ξ − ξ0))] = 0 (A.3)

then we must have ϕ(b) < +∞ and there exists the left derivative ϕ′
l(b) and

ϕ′
l(b) = E[(ξ − ξ0) exp(b(ξ − ξ0))] = 0.

Similarly we obtain

ϕ′′
l (b) = E[(ξ − ξ0)

2 exp(b(ξ − ξ0))] > 0.

This implies that ϕ has a minimum at point b. The last argument can be
replaced by the following: ϕ must have a minimum at b because

ϕ′
l(κ) = ψ(κ) = E[(ξ − ξ0) exp(κ(ξ − ξ0))] < 0, κ ∈ I, κ < b,

where the strict inequality follows from monotonicity of ψ on (a, b) (because
of the strict positivity of ψ′ on (a, b)) and (A.3), hence ϕ(b) < ϕ(κ) for such
κ. The left differentiability can be seen as follows: For h > 0, we estimate

| exp(−h(ξ − ξ0))− 1| = | −

h∫

0

(ξ − ξ0) exp(−u(ξ − ξ0))du|

≤

h∫

0

|ξ − ξ0| exp(−u(ξ − ξ0))du

≤ |ξ − ξ0|h exp(h(ξ − ξ0)
−)

and hence
∣∣∣∣
exp((b− h)(ξ − ξ0))− exp(b(ξ − ξ0))

h

∣∣∣∣

= exp(b(ξ − ξ0))

∣∣∣∣
exp(−h(ξ − ξ0))− 1

h

∣∣∣∣
≤ exp(b(ξ − ξ0))|ξ − ξ0| exp(h(ξ − ξ0)

−)

≤ exp(b(ξ − ξ0)
+)|ξ − ξ0|

for h ≤ b which is integrable because of E[(ξ − ξ0) exp(b(ξ − ξ0))] = 0.
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Summarizing, if

E[(ξ − ξ0) exp(κ0(ξ − ξ0))] = 0 (A.4)

for some κ0 ∈ I then κ0 is the unique minimum point of ϕ and the converse
is true if κ0 ∈ (a, b). However, there can be points κ0 on the boundary of I
(a or b if ϕ(a) < +∞ or ϕ(b) < +∞) such that κ0 is a minimum point but
the equality (A.4) does not hold:

E[(ξ − ξ0) exp(κ0(ξ − ξ0))] 6= 0.

More precisely, it can happen that

E[(ξ − ξ0) exp(b(ξ − ξ0))] < 0

or
E[(ξ − ξ0) exp(a(ξ − ξ0))] > 0.

But the structure of the set E gives more information about the existence
of the MEMM. It is easy to see, that if E = ∅, i.e., there is no Esscher
martingale measure, by Theorem 2.6 the MEMM does not exist. Assume E
is not empty. Then it may have one of the following form: (i) (a, b), (ii) [a, b],
(iii) (a, b], (iv) [a, b), where −∞ ≤ a ≤ 0 ≤ b ≤ +∞. If the endpoints are
not included in the set E, the function ψ(κ) smoothly converges to ±∞, the
sign depending on whether it is the right or left endpoint, while κ converges
to the endpoint. Taking into account the continuity of the function ψ in κ,
we find that for the case (i) there always exists the MEMM. Indeed,

lim
κ→a+

ψ(κ) = −∞, lim
κ→b−

ψ(κ) = +∞

and the function ψ is continuous on (a, b), therefore there always exists κ0
such that ψ(κ0) = 0, i.e., κ0 is the required Esscher parameter and the
martingale condition is satisfied. If one of the endpoints is included in E,
then there can arise some problems because the minimum of the function
ϕ can be attained exactly at the endpoint, but the martingale condition is
not necessarily satisfied. In case (iii) (respectively, (iv)) the existence of the
MEMM depends on the sign of the ψ(κ) at the endpoint κ = a (respectively,
κ = b). We have limκ→b− ψ(κ) = +∞ (respectively, limκ→a+ ψ(κ) = −∞),
therefore for the existence of the MEMM it is necessary and sufficient that
ψ(a) ≤ 0 (respectively, ψ(b) ≥ 0), i.e., it is necessary and sufficient that the
function ψ crosses the level 0. In case of equality ψ(a) = 0 (respectively,
ψ(b) = 0) the minimum of ϕ is attained at the endpoint a (respectively, b)
and the martingale condition is satisfied.



105

The last case (ii) happens when both endpoints are included in the set
E: E = [a, b]. Obviously, we obtain the following condition for the existence
of the MEMM: ψ(a)ψ(b) ≤ 0. In other words, we still need that ψ crosses
the level 0. If the last condition is not satisfied, we get the situation that
ϕ attains its minimum on the endpoint, but the martingale condition does
not hold. In terms of the function ψ it means, that it ”jumps over” the level
0: ψ(κ) is either always greater then zero or always smaller then zero for
κ ∈ E. Therefore there does not exist the Esscher parameter which satisfies
the martingale condition and consequently the MEMM does not exist.

Summarizing all we have mentioned above, we may state the following
proposition:

A.2 Proposition. Let the set E be defined as

E := {κ ∈ R : E[|ξ − ξ0| exp(κ(ξ − ξ0))] < +∞} .

There are four possible cases:

1. The set E is not empty and has the form of an open interval:

E = (a, b), where a, b ∈ R ∪ {±∞}.

Then there always exists κ0 ∈ E such that ψ(κ0) = 0;

2. The set E is not empty and has the form of a semi-open interval:

E = (a, b], where a ∈ R ∪ {±∞}, b ∈ R, or

E = [a, b), where b ∈ R ∪ {±∞}, a ∈ R.

Then there exists such κ0 ∈ E that ψ(κ0) = 0 if and only if ψ(b) ≥ 0
(for the case E = (a, b]) or ψ(a) ≤ 0 (for the case E = [a, b)).

3. The set E has the form of a closed interval:

E = [a, b], where a, b ∈ R.

Then there exists such κ0 ∈ E that ψ(κ0) = 0 if and only if

ψ(a)ψ(b) ≤ 0.

4. The set E is empty: E = ∅. Then there does not exist a point κ0 that
satisfies the martingale property.
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B
Appendix B. One-Step Model

In this appendix we would like to apply the general theory developed in
Chapter 2, to a particular model, the one-step model. The appendix is
included for easier reference. The results are slight extensions of basically
known facts.

Let us consider a probability space (Ω,F , µ) and random variables ξ
and ξ0 defined on it. There are two time points: the initial time t = 0
and the terminal time t = 1. The filtration F (“the flow of information”)
consists of two σ-algebras: F0 and F1, F0 ⊆ F1 ⊆ F , F = (Ft)t=0,1. Then
(Ω,F ,F, µ) is a filtered probability space. The price process is defined by
X = (Xt)t=0,1 with X0 = ξ0 and X1 = ξ. By assumption, the process X is
F-adapted and the increment X1 − X0 = ξ − ξ0 is independent of F0 with
respect to the given probability measure µ. The special case: F0 is trivial
(or only µ-trivial). Then the assumption of independence of increment is
automatically satisfied and ξ0 is (µ-a.s.) equal to a constant. Similarly as
in Section 2.1, let us define the set K. In our particular case it has a much
simpler structure, because there are just two time-points:

K = Span({ζ(Xt −Xs) : ζ ∈ L∞(Ω,Fs,P), s, t ∈ T , s ≤ t, X ∈ X })

= {η : η = k(ξ − ξ0) for k ∈ L∞(Ω,F0, µ)}.

The definition of the martingale measure is also simplified:

B.1 Definition. A probability measure ν on (Ω,F ) is called a martingale
measure, if Eν [ξ|F0] = ξ0.

Note, that in the special case when F0 is trivial, the variable ξ0 is a fixed
constant, therefore the martingale condition can be formulated without the
conditional expectation:

Eν [ξ|F0] = Eν [ξ] = ξ0.
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If F0 is µ-trivial, the statement holds for absolutely continuous measures.

Now we state the problem (D) which we would like to investigate in the
current Appendix: We would like to find such a martingale measure ν0, that
is absolutely continuous with respect to µ and minimizes the relative entropy:

H(ν0, µ) = inf
ν∈Ma

H(ν, µ). (D)

The existence of at least one equivalent martingale measure means that
the financial market is arbitrage-free. This is a very important condition
for the further investigation and it is possible to state necessary and suffi-
cient conditions for the existence of an equivalent martingale measure in our
particular model.

B.2 Proposition. The set of equivalent martingale measures Me is not
empty if and only if one of the following conditions is satisfied:

(i) µ({ξ = ξ0}) = 1;

(ii) µ({ξ − ξ0 > 0}) > 0 and µ({ξ − ξ0 < 0}) > 0.

Proof. Assume that the set of equivalent martingale measures Me is not
empty and hence there exists a martingale measure ν ∈ Me. Let us fur-
ther assume that condition (i) is not satisfied. Then we have to verify that
condition (ii) holds. The expectation of (ξ − ξ0)

+ and (ξ − ξ0)
− under the

measure ν must be equal (by definition of a martingale measure) and must
be strictly positive, otherwise it contradicts the assumption that (i) is not
satisfied. Hence, ν({ξ − ξ0 > 0}) > 0 and ν({ξ − ξ0 < 0}) > 0. But ν ∼ µ,
therefore µ({ξ − ξ0 > 0}) > 0 and µ({ξ − ξ0 < 0}) > 0. This proves the
necessity of the condition that (i) or (ii) holds.

Now let us prove the sufficiency. If the condition (i) is satisfied, then µ ∈ Me

and the statement holds. Let us assume that the condition (ii) is satisfied,
i.e., µ({ξ − ξ0 > 0}) > 0 and µ({ξ − ξ0 < 0}) > 0 holds. Define

l−(c) := E[|ξ − ξ0|1{ξ−ξ0<0} exp(c(ξ − ξ0))]

and similarly

l+(c) := E[(ξ − ξ0)1{ξ−ξ0>0} exp(c(ξ − ξ0))].

For c < 0 the expression l+(c) is always finite and strictly positive, for c > 0
the expression l−(c) is always finite and strictly positive, so let us fix a couple
(c1, c2) such that −∞ < c1 < 0 < c2 < +∞. Now we would like to construct
a density, that will make the tails of the distribution lighter and at the same
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time the new measure defined by this density will be a martingale measure.
Let us define a function a(c1, c2) as

a(c1, c2) := exp(c1(ξ − ξ0))1{ξ−ξ0>0}l
−(c2)

+ exp(c2(ξ − ξ0))1{ξ−ξ0<0}l
+(c1)

+1{ξ=ξ0}.

Obviously, we always have a(c1, c2) > 0. Then define ν as

η =
dν

dµ
,

where

η =
a(c1, c2)

E[a(c1, c2)]
.

In view of η > 0 we get ν ∼ µ. Furthermore, a simple calculation shows that

Eν [ξ − ξ0|F0] =
Eµ[η(ξ − ξ0)|F0]

Eµ[η|F0]

= Eµ[η(ξ − ξ0)|F0] (B.1)

= Eµ[η(ξ − ξ0)] = 0, (B.2)

where we use twice the independence of the increment ξ − ξ0 of F0 with
respect to the measure µ. Hence ν is an equivalent martingale measure.

Note, if condition (i) or (ii) is satisfied, it is always possible to build an
equivalent martingale measure, using the density η, with the finite entropy,
that preserves the ”independence property”. The independence of the incre-
ment is explicitly shown in the proof. Finiteness of the entropy follows from
the way in which we choose parameters c1 and c2. Our next aim is to apply
the general approach introduced in Chapter 2 to our particular case. Let us
recall the definition of the set C0:

C0 = {f ∈ L : EQ[f ] ≤ 0, ∀Q ∈ Mf} .

In the following lemma we explicitly use the structure of the set K for the
one-step model and improve the result of Lemma 2.4.

B.3 Lemma. Let ν0 ∈ Mf , ν0 ∈ Me, f0 ∈ C0, Eν0 [f0] = 0.
Then f0 ∈ K

ν0
and

K
ν0

= {k(ξ − ξ0) : k(ξ − ξ0) integrable w.r.t. ν0, kF0-measurable}. (B.3)
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Proof. The first part of the statement that f0 ∈ K
ν0
, follows from Lemma 2.4.

The principle difference is the additional information about the structure of
the set K

ν0
. Let us denote the right-hand part of the (B.3) by K̃:

K̃ := {k(ξ − ξ0) : k(ξ − ξ0) integrable w.r.t. ν0, kF0-measurable}.

We have to prove that K
ν0

= K̃. We start by proving the inclusion K̃ ⊆ K
ν0
.

Let k(ξ − ξ0) ∈ K̃. We can define kn = (k ∧ n) ∨ (−n) and by the definition
of the set K

ν0
we get kn(ξ − ξ0) ∈ K

ν0
. Obviously, we have

|kn(ξ − ξ0)| ≤ |k||ξ − ξ0|.

The right hand side being integrable with respect to ν0 we can apply the
theorem of Lebesgue on dominated convergence and obtain that kn(ξ − ξ0)
converges to k(ξ − ξ0) in L1(ν0). Hence, k(ξ − ξ0) ∈ K

ν0
. Therefore, the

inclusion K̃ ⊆ K
ν0

holds. Our next aim is to show that every converging in
L1(ν0) sequence from K

ν0
has a limit in K̃:

ηn := kn(ξ − ξ0) ∈ K
ν0
, ηn −→ η in L1(ν0) when n −→ ∞, then η ∈ K̃.

Let (ηn) be such a sequence, then

Eν0 [|ηn − ηm|] = Eν0 [|kn(ξ − ξ0)− km(ξ − ξ0)|] (B.4)

= Eν0 [Eν0 [|ξ − ξ0||kn − km||F0]] (B.5)

= Eν0 [|kn − km|Eν0 [|ξ − ξ0||F0]] (B.6)

= Eν1 [|kn − km|] −→ 0 when n,m,→ ∞, (B.7)

where dν1 := Zdν0 and

Z := Eν0 [|ξ − ξ0||F0] ≥ 0.

From (B.7) it follows that (kn) is a Cauchy sequence in L1(ν1). Hence there
exists a limit k of (kn) in L

1(ν1). As a limit, k is F
ν0
0 -measurable, where F

ν0
0

is the completion of F0 with respect to ν0. We can assume that F0 = F
ν0
0 ,

otherwise we choose an F0-measurable version of k, again denoted by k. We
put η = k(ξ−ξ0). Inserting in (B.4)-(B.7) η instead of ηm we observe that ηn
converges to η in L1(ν0). Hence, η belongs to K

ν0
as required. The statement

is proven.

We recall the notion of the Esscher martingale measure for the one-step
model and investigate its relation to the MEMM. Let us start from the defin-
itions:
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B.4 Definition. Given a probability space (Ω,F , µ), assume ξ, ξ0 are ran-
dom variables and κ ∈ R such that E[exp(κ(ξ− ξ0))] < +∞. Then ζ defined
by

ζ :=
exp(κ(ξ − ξ0))

E[exp(κ(ξ − ξ0))]

is called an Esscher density and κ is called an Esscher parameter or coefficient.

The random variable ζ is positive µ-a.s., integrable and normalized (E[ζ] =

1), hence ν defined by ζ = dν
dµ

is a probability measure, ν ∼ µ. This prob-

ability measure ν is called an Esscher measure. If Eν [ξ − ξ0] = 0, then ν
is a martingale measure for the process (X,F) and it is called an Esscher
martingale measure (EMM).

The next step is to investigate the relation between the MEMM and the
Esscher martingale measure. The following theorem states that for a one-
step model the notions of the minimal entropy martingale measure and the
Esscher martingale measure coincide.

B.5 Theorem. Let µ be an arbitrary probability measure on the filtered prob-
ability space (Ω,F ,F = (Ft)t=1,2), ξ is the random variable defined on this
space and ξ is independent of F0, ξ0 ∈ R. A probability measure ν0 on (Ω,F )
is the MEMM if and only if ν0 is the Esscher martingale measure.

Proof. Let us prove that if there exists the MEMM, then it is the Esscher
martingale measure. Let ν0 be the MEMM. By Theorem 2.6 we know the
form of the density of the MEMM with respect to the given probability
measure µ: dν0/dµ = c exp(−f0) µ-a.s., where f0 ∈ C0 and Eν0 [f0] = 0,
c > 0.

Lemma B.3 guarantees that f0 ∈ K̄ν0 and provides us with the explicit
structure of the space K̄ν0 : there exists an F0-measurable random variable
k such that f0 = −k(ξ − ξ0) ν0-a.s. From the properties of the density
of a probability measure we get the expression for the constant c: c−1 =
E[exp(−f0)]. Taking into account that ν0 is a martingale measure, we obtain
the identity:

Eν0 [ξ − ξ0|F0] = cEµ[(ξ − ξ0) exp(k(ξ − ξ0))|F0](E[dν0/dµ|F0])
−1 = 0.

Using that k is F0-measurable and ξ−ξ0 is independent of F0, we can rewrite
the conditional expectation above as follows

0 = Eµ[(ξ − ξ0) exp(k(ξ − ξ0))|F0](ω)

= Eµ[(ξ − ξ0(·)) exp(k(ω)(ξ − ξ0)(·))] P-a.s.,
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where the expectation Eµ is taken with respect to the free variable (·). The
right-hand side being equal to zero µ-a.s. and recalling the definition of
function ψ (see (A.2)) we obtain ψ(k(ω)) = 0 µ-a.s. We know (see Pro-
position A.1) that because of monotonicity the function ψ has at most one
point κ ∈ R such that ψ(κ) = 0. As a result, a random variable k is constant
µ-a.s. Setting κ0 = E[k], finally we get that the given MEMM ν0 has density

dν0
dµ

= c exp(κ(ξ − ξ0)) =: ζ.

From this it follows, that

c =
1

E[exp(κ(ξ − ξ0))]

and

ζ =
exp(κ(ξ − ξ0))

E[exp(κ(ξ − ξ0))]

is the Esscher transformation, ν0 is the Esscher martingale measure and κ is
the Esscher parameter.

Now we are going to prove, that the statement also is true in the re-
verse direction: if there exists an Esscher martingale measure, then it is the
MEMM. Assume that there exists the Esscher martingale measure ν0. This
means that there exists κ0 such that Eµ[(ξ − ξ0) exp(κ(ξ − ξ0))]. Then it
is easy to verify that the Esscher martingale measure ν0 with Esscher para-
meter κ0 satisfies the conditions of Theorem 2.6 with f0 = −κ0(ξ − ξ0) and
c = (E[exp(κ0(ξ − ξ0))])

−1. Theorem 2.6 implies that ν0 is the MEMM.

Now we can summarize different characterizations of the existence of the
MEMM in the following corollary:

B.6 Corollary. Assume that set Me is not empty. Then the following
conditions are equivalent:

(a) There exists the MEMM.

(b) There exists the Esscher martingale measure.

(c) There exists κ ∈ R such that Eµ[(ξ − ξ0) exp(κ(ξ − ξ0))] = 0.

(d) There exists the solution of the problem (D).

Proof. Conditions (a) and (b) are equivalent by Theorem B.5. Conditions (b)
and (c) are equivalent by the definition of the Esscher martingale measure.
Conditions (a) and (d) are equivalent by the definition of the MEMM.
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Note that we can rewrite condition (c) in a more useful form:

Eµ[(ξ − ξ0) exp(κ(ξ − ξ0))] = ψ(κ) = 0.

A similar problem was considered in Cherny & Maslov (2003) but using
completely another approach. In particular, there was used the method of
Lagrange multipliers for minimization of the expression −Eν [ξ] + H(ν, µ)
over all absolutely continuous distributions ν with respect to µ, where ξ is a
random variable such that E[exp(ξ)] < +∞ and E[|ξ| exp(ξ)] < +∞. As a
result there was obtained the form of the optimal density:

dν0 = c exp(ξ)dµ, c ∈ R,

that corresponds to the Esscher transformation and that ν0 is the Esscher
measure. Applying the martingale condition on the measure ν0 it was found
that the MEMM coincides with the EMM.

Now let us consider two very similar cases of distributions µ but with
different results of existence of the MEMM:
Example 1. Let ξ be a Cauchy distributed symmetric random variable. Its
distribution is:

µ(dx) =
1

π(1 + x2)
dx.

In this case there does not exist the MEMM. For this it is sufficient to show
that for all κ : E[exp(κξ)] = +∞. Obviously,

E[exp(κξ)] = E[1ξ<0 exp(κξ)] + E[1{ξ>0} exp(κξ)].

If κ > 0, then E[1{ξ>0} exp(κξ)] = +∞. If κ < 0, then E[1{ξ<0} exp(κξ)] =
+∞. If κ = 0, we have ψ(κ) = +∞ and, consequently, there exists no
Esscher measure, hence, no MEMM.

Example 2. Let ξ is “shifted” one-side Cauchy distributed random variable.

µ(dx) = 1{x∈[−a,+∞)}
2

π(1 + (x+ a)2)
dx

where a > 0. Then, similarly to the proof of Lemma B.3, it is possible to
construct l−(κ) and l+(κ) just for negative κ and show that there exists a
solution. Another way is to analyze the behavior of ψ and to apply Proposi-
tion A.2, in particular, the set E has the form of an open interval. According
to it, there exists such κ0 and corresponding EMM.
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Heidelberg 1979.

J. Jacod, A. Shiryaev. Limit Theorems for Stochastic Processes 2ed. Springer,
2000.

J. Jacod, M. Yor. Études des solutions extrémales et représentation intégrale
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