

Technische Universität Ilmenau
Institut für Mathematik

Preprint No. M 17/04

The k-server problem with parallel
requests and the compound work
function algorithm

Regina Hildenbrandt

Februar 2017

Impressum:
Hrsg.: Leiter des Instituts für Mathematik

Weimarer Straße 25
98693 Ilmenau

Tel.: +49 3677 69-3621
Fax: +49 3677 69-3270
http://www.tu-ilmenau.de/math/

URN: urn:nbn:de:gbv:ilm1-2017200221

Preprint No. 17-04

The k-Server Problem with Parallel Requests
and the Compound Work Function Algorithm

R. Hildenbrandt, Department of Mathematics,
Ilmenau Technical University

1 Introduction

This paper deals with a generalized online k-server problem. We want to
present a new algorithm, the ”compound work function algorithm”, and
show its qualities for solving this problem.

In (Hildenbrandt, 2014) we have introduced a generalized k-server prob-
lem with parallel requests where several servers can also be located on one
point. We are given initial locations of k servers in a metric space. Requests
Rt for service at several points come in over time. It is sensible in the case
of such requests to distinguish the surplus-situation where the request can
be completely fulfilled by means of the k servers and the scarcity-situation
where the request cannot be completely met. Immediately after the t-th
request is received, a sufficient number of servers must be moved from theirs
current locations to the request points. The choice of which servers are
moved, in the case of the surplus-situation or the choice of requests which
should be fulfilled, in case of the scarcity-situation, respectively, must be
made based only on the current servers configuration and on the requests
seen so far; that is, the requests Ru for u ≤ t. Moving servers costs the
distances the servers are moved, and the goal is to minimize the total cost.

Thus in online computation, an algorithm must decide how to act on
incoming requests without any knowledge of future inputs. In contrast, an
offline procedure would be allowed to know the entire sequence of requests
in advance, before it makes any decisions. We want online algorithms whose
cost compares favorably to the cost of an optimal offline algorithm.

In Section 3 we will develop the ”compound work function algorithm”
for the generalized k-server problem in the case of the surplus-situation. For
this algorithm each step of the generalized k-server problem is replaced by a
number of steps of other specific k-server problems. We will show that this
algorithm is ”competitive”.

A deterministic online algorithm is c-competitive if there exists a func-
tion α of the initial configuration so that for every finite input sequence the
cost incurred by the algorithm is bounded by α plus c times the minimum

1

cost of processing the input sequence (see Sleator and Tarjan, 1985). c is
called the competitive ratio of the algorithm. The competitive ratio is a
measure of how much better we could do if we knew the future.

Until now, only the k-server problem with requests, where at most one
server must be moved in servicing the request in each step, is elsewhere
considered in literature. This k-server problem was introduced by Manasse,
McGeoch and Sleator (1988). Meanwhile it is the most studied problem in
the area of competitive online problems. An important deterministic algo-
rithm for solving this problem is the k-server work function algorithm, which
is (2k− 1)-competitive. The idea for an online work function algorithm was
implicitly introduced by Borodin, Linial and Saks (1992) in connection to
”metrical task systems”. A work function algorithm for the (usual) k-server
problem had been proposed by several researchers. The competitiveness of
the work function algorithm in any metric space was proved by Koutsou-
pias and Papadimitriou in 1995. In the present paper we use the proof by
Borodin and El-Yaniv (see [2], Theorem 10.9 and its proof). This proof is
based on Koutsoupias’s dissertation [6] and on a presentation of this proof
due to Bartal [1] that offers a simpler potential-like function argument. Un-
fortunately, certain methods of this proof cannot be applied directly to the
k-server problems with parallel requests.

2 The formulation of the model

Now, we want to describe the generalized k-server problem. Let k ≥ 1 be an
integer, andM = (M, d) be a finite metric space whereM is a set of points
with |M| = N . An algorithm controls k mobile servers, which are located
on points of M. Several servers can be located on one point. Requests Rt

for service at several points (”parallel requests”) come in over time. Let
σ = R1, R2, · · · , Rn be such a sequence of requests.

A server configuration of the algorithm is viewed in this paper as a
multiset of k (not necessarily distinct) points representing the locations of
the servers. We denote multisets by capital letters and points ofM by small
letters.

A request can also be viewed as a multiset, but with a arbitrary number
of (not necessarily distinct) points. For a request we use the notation
R = (R1, R2, · · · , RN) with Ri ∈ {0, 1, · · · , k} for i = 1, 2, · · · , N , where Ri
is the number of servers that are needed for service at point i. Sometimes
we also use the notation R = {p1, p2, ..., pm} where pj , j = 1, 2, · · · ,m are
(not necessarily distinct) points from M.

For multisets C1 and C2 we let C1 + C2 denote the multiset union;
similarly, C1−C2 denotes multiset exclusion. For a point p and configuration
C, we abbreviate C + {p} by C + p, C −{p} by C − p, C + {p, p} by C + 2p
and so on. So, for example, if p ∈ C then the configuration C + p contains

2

at least two copies of p and C − p + p = C + p − p contains p. However, if
p /∈ C then C − p = C and C − p+ p 6= C + p− p.
Finally, |C| denotes the number of elements of the multiset C.
For every two multisets X and Y with elements from M and |X| = |Y |,
we define D(X,Y) the set distance as the value of the minimum weight
matching between X and Y .

Principally, two cases of requests have to distinguished:
N∑
i=1

Ri ≤ k de-

scribes the surplus-situation. The request can be completely fulfilled. We
say a request R is served if at least Ri servers lie on i, i = 1, 2, · · · , N . In

contrast,
N∑
i=1

Ri ≥ k means the scarcity-situation. The request cannot be

completely met, however it should be met as much as possible. The request
R is served if at most Ri servers lie on i, i = 1, 2, · · · , N .

By moving servers, the algorithm must serve the requests R1, R2, · · · , Rn
sequentially. For any request sequence σ and any k-server algorithm ALG,
ALG(σ) is defined as the total distance moved by the ALG’s servers in
servicing σ.

Analogous to (Borodin and El-Yaniv, p. 152) working with lazy algo-
rithms ALG is sufficient. This means, servers are not moved in a step if
they are not needed to fulfil requests in this step. For that reason we define
the set of feasible servers’ positions with respect to the previous servers’
positions S and the request R in the following way

ÂN ;k(S,R) =
{
S̄ ∈ SN (k)

∣∣Ri ≤ S̄i ≤ max{Si, Ri}, i = 1, · · · , N
}
, (1)

where

SN (k) :=

{
S̄ = (S̄1, S̄2, · · · , S̄N) | S̄i ∈ Z+, i = 1, · · · , N,

N∑
i=1

S̄i = k

}
,

(2)
in the case of the surplus-situation and

ÂN ;k(S,R) =
{
S̄ ∈ SN (k)

∣∣min{Si, Ri} ≤ S̄i ≤ Ri, i = 1, · · · , N
}

(1a)

in the case of the scarcity-situation.
The metric d implies that (SN (k), D) is also a finite metric space (see

[4], Lemma 3.6).

3 The compound work function algorithm

3.1 Work functions and the solution of the offline problem

Next we want to generalize the definition of the work funtions, which are
used in the work function algorithm applied to the usual k-sever problem (see

3

[2], p. 164, 165 and [8],p.74, 75 for example). We will use this generalization
to solve the problem with parallel request.

Fix a request sequence, σ = R1, R2, · · · , Rn, and use σt to denote the
prefix, R1, R2, · · · , Rt, of σ. Use ∅ to denote the empty request sequence.
Work functions are defined in terms of an initial configuration S0 and a
request sequence. Specifically, for each configuration S0, configuration S,
the k-server work function wt(S) = wσt(S) = wσt(S

0, S) is defined as the
optimal offline cost (sequentially) servicing all requests in σt, starting from
the initial configuration S0 and ending at configuration S. Notice that the
configuration S does not necessarily contain the last request Rt of σt (or
any requested points in σt).

Work functions can be computed recursively (by means of dynamic pro-
gramming) as follows. For each configuration S, the initial work function
w∅(S) is simply the configuration distance between S0 and S. That is

w∅(S) = D(S0, S). (3)

Assume that the value wt(S) is known for any configuration S. Given the
next requestRt+1 and a configuration S, the value of wt+1(S)(= wσt,Rt+1(S))
is computed as follows. If Rt+1 ⊆ S (surplus-situation) or S ⊆ Rt+1

(scarcity-situation), respectively, then clearly wt+1(S) = wt(S). Other-
wise, the optimal offline algorithm that must first serve the request Rt+1

(as much as possible in the case of the scarcity-situation) before ending up
in configuration S can first process the sequence σt, R

t+1 ending up in some
configuration S̃ ⊇ Rt+1 (surplus-situation) or S̃ ⊆ Rt+1 (scarcity-situation),
respectively and then move to configuration S. Thus, it follows

wt+1(S) = min

S̃:


S̃ ⊇ Rt+1 if

N∑
i=1

Ri ≤ k

S̃ ⊆ Rt+1 if
N∑
i=1

Ri ≥ k

{wt+1(S̃) +D(S̃, S)}

= min

S̃:


S̃ ⊇ Rt+1 if

N∑
i=1

Ri ≤ k

S̃ ⊆ Rt+1 if
N∑
i=1

Ri ≥ k

{wt(S̃) +D(S̃, S)}.
(4)

The second equality in the above equations is due to the fact that
S̃ ⊇ Rt+1 (surplus-situation) or S̃ ⊆ Rt+1 (scarcity-situation), respectively.
(3) and (4) provides the means for computing the work functions.

From the definition of the work functions follows the property

4

w∅(A) ≤ w∅(B) +D(A,B) and
wt(A) ≤ wt(B) +D(A,B) for t = 1, 2, · · · , n (5)

for any server configurations A and B.
The proof of (5) is simple. If wt(B) = wt(B̃

∗) + D(B̃∗, B), where B̃∗ is
an optimal solution of (4), then also wt(A) ≤ wt(B̃∗) +D(B̃∗, A). Subtract-
ing the equation from the inequality, together with the triangle-inequlality
D(B̃∗, A)−D(B̃∗, B) ≤ D(A;B) we get (5). �

Using (5) and the triangle-inequality, (4) can be simplified a little:
In case of the surplus-situation it is sufficient to consider S̃ = S−X+Rt+1

which differs from S by at most |Rt+1 − S| points. Then, we can compute
the work functions as

wt+1(S) = min
X⊆S,|X|=|Rt+1|

{wt+1(S −X +Rt+1) +D(Rt+1, X)}

= min
X⊆S,|X|=|Rt+1|

{wt(S −X +Rt+1) +D(Rt+1, X)}
(6)

or as

wt+1(S) = min
X̂⊆Ŝ, |X̂|=|R̂t+1|

{wt+1(S − X̂ + R̂t+1) +D(R̂t+1, X̂)}

= min
X̂⊆Ŝ, |X̂|=|R̂t+1|

{wt(S − X̂ + R̂t+1) +D(R̂t+1, X̂)},
(7)

where

R̂t+1 := Rt+1 − S, Ŝ := S −Rt+1. (8)

If X is a solution of (6) then there exists a solution X̂ of (7), and vice
versa, so that

X = X̂ + X̃ with X̃ = S ∩Rt+1. (9)

If we set S̃ = X then (4) has the representation:

wt+1(S) = min
X⊆Rt+1,|X|=k

{wt+1(X) +D(S,X)}

= min
X⊆Rt+1,|X|=k

{wt(X) +D(S,X)}
(10)

in the case of the scarcity-situation. However, it is sufficient to consider
S̃ = X̂+(S∩Rt+1) which differs from S by at most |S−Rt+1| points. Then
it follows:

5

wt+1(S) = min
X̂⊆R̂t+1,|X̂|=|Ŝ|

{wt+1(X̂ + (S ∩Rt+1)) +D(Ŝ, X̂)}

= min
X̂⊆R̂t+1,|X̂|=|Ŝ|

{wt(X̂ + (S ∩Rt+1)) +D(Ŝ, X̂)},
(11)

where

R̂t+1 := Rt+1 − S, Ŝ := S −Rt+1. (12)

If X is a solution of (10) then there exists a solution X̂ of (11), and vice
versa, so that

X = X̂ + X̃, with X̃ = S ∩Rt+1. (13)

Given any initial configuration and any request sequence σ, we can use
work functions to compute the optimal offline cost to serve σ, which is

OPT (σ) = min
S
wσ(S). (14)

Remark 1 . According to the definition of the work function wt(S) at the
beginning of Section 3.1, a sequence of configurations

U0 = S0, U1, · · · , U t−1, U t, (S =: U t+1)

and a sequence of multisets
Y ∗1 , Y ∗2 , · · · , Y ∗t−1, Y ∗t ,

exist so that U t̄ = U t̄−1 − Y ∗t̄ +Rt̄ ⊇ Rt̄ and |Y ∗t̄ | = |R
t̄| 1 in case of the

surplus-situation or U t̄ = Y ∗t̄ ⊆ Rt̄ in case of the scarcity-situation, respec-
tively, for t̄ = 1, 2, · · · , t.

On the other hand, work functions can be computed by means of dynamic
programming, which proceeds backward in time. This leads to a sequence of
configurations

S =: St+1, St, · · · , S2, S1, (S0)

and a sequence of multisets
X∗t , X∗t−1, · · · , X∗2 , X∗1 ,

1Pay attention to the fact that working with lazy algorithms is sufficient (Chapter 2).

6

with S t̄ = S t̄+1 −X∗t̄ + Rt̄ ⊇ Rt̄ and |X∗t̄ | = |R
t̄| in case of the surplus-

situation or S t̄ = X∗t̄ ⊆ R
t̄ in case of the scarcity-situation, respectively, for

t̄ = 1, 2, · · · , t.

U t̄ and S t̄, t̄ ∈ {1, 2, · · · , t} can be different. However, the principle of
dynamic programming implies that wt(S) = wt(U

t) +D(U t, S).

The generalized work functions are quasi-convex. We say that a work
function w(= wσt) is quasi-convex if for any configurations X and Y and
any subset X̃ ⊆ X,

min
Ỹ⊆Y,|Ỹ |=|X̃|

{w(X − X̃ + Ỹ) + w(Y − Ỹ + X̃)} ≤ w(X) + w(Y). (15)

Lemma 1 (Quasi-convexity lemma)
All work functions are quasi-convex.

This Lemma is shown on the analogy of the proof of Lemma 10.4 in [2].
The case of the the scarcity-situation must be considered in addition. The
complete proof can be found in the Appendix.

3.2 Considerations concerning the work function algorithm

The work function algorithm (WFA) applied to the usual k-server problem
can be found in [2], p. 166 for example. A natural generalization of this
algorithm, adapted to the k-server problem with parallel requests, is the
following:

Let σt be the request sequence thus far and let S′t be the configuration
of the WFA algorithm after servicing σt. Then, given the next request Rt+1.

In the case of the surplus-situation algorithm WFA serves Rt+1 with
servers X∗W ⊆ S′t satisfying

X∗W = arg min
X⊆S′t,|X|=|Rt+1|

{wt(S′t −X +Rt+1) +D(Rt+1, X)}.

S′t+1 = S′t −X∗W +Rt+1

(16)

is then the configuration at the end of step t+ 1.
According to (7), we can also use the equivalent formulas

X̂∗W = arg min
X̂⊆Ŝ′t, |X̂|=|R̂t+1|

{wt(S′t − X̂ + R̂t+1) +D(R̂t+1, X̂)} (16a)

S′t+1 = S′t − X̂∗W + R̂t+1.

7

In the case of the scarcity-situation algorithm WFA chooses servers
X∗W ⊆ S′t satisfying

X∗W = arg min
X⊆Rt+1,|X|=k

{wt(X) +D(X,S′t)}.

Then S′t+1 = X∗W .

(17)

(An equivalent representation according to (11) would also be possible.)
Clearly, the cost of algorithm WFA to serve the request Rt+1 is

D(Rt+1, X) (= D(R̂t+1, X̂)) in both cases.

Remark 2 . In [2] (see Exercise 10.11, p. 175) can be found the following
generalization of algorithm WFA in the case of the usual k-server problem.
Let γ be any real in [0, 1], and consider the following algorithm called WFAγ:
while in configuration S′, choose to serve the next request r with the sever
x∗ satisfying

x∗ = arg min
x∈S′
{γ · w(S′ − x+ r) + (1− γ) · d(r, x)}.

Then WFAγ is not competitive, if γ < 1
2 and WFAγ is γ

1−γ (2k−1)-competitive,

if γ ≥ 1
2 . This shows the importance of the values of the work function in

comparison to the current distances.

Next we want to give an example that the WFA algorithm is not com-

petitive in general (where the case
N∑
i=1

Ri ≥ k is allowed).

Example 1 Let ε ∈ (0, 1) and let h = 1, 3, · · · be a sequence of positive
integers with h1 = 1 and ht+1 = ht + t + 1 for t = 1, 2, · · · . We focus on
a number of similar examples E2, E3, · · · , Ej , · · · with k = 1, finite metric
spaces Mj = {−j − ε,−j + 1− ε, · · · ,−1− ε, 0, h1, h2, · · · , hj}, S0 = {0}
and request sequences

{
R1, R2, · · · , Rnj

}
, nj ∈ {2, 3, · · · , j} with

Rt = {−t − ε, ht} for t = 1, 2, · · · . Finally, the usual metric of the reals is
used in all examples.

Then, w∅({−1− ε}) = 1 + ε, w∅({h1}) = 1,
wt({−t− ε}) = t+ ε, wt({ht}) = ht for t = 1, 2, · · · , nj , j = 2, 3, · · · ,
wt({−1− t− ε}) = 1 + t+ ε, wt({ht+1}) = ht+1 for t = 1, 2, · · · , nj − 1,
j = 2, 3, · · · .

The minimum costs of the corresponding offline problems is
cost(offline) = min

S
wσ(S) = wnj ({−nj − ε}) = nj + ε for j = 2, 3, · · · , where

Snj = {−nj − ε} are the optimal solutions.
Now, we show by mathematical induction that algorithm WFA yields

S′t = {ht} for t = 1, 2, · · · , nj , j = 2, 3, · · · .
Base case. Obviously, S′1 = {h1} = {1}.
Induction step. Assume that S′t = {ht}.

8

According to (17),
X∗W = arg min

X⊆{−1−t−ε,ht+1},|X|=1
{wt(X) +D(X, {ht})}.

Since the definition of h implies
wt({−1− t− ε}) +D({−1− t− ε}, {ht}) = 1 + t+ ε+ 1 + t+ ε+ ht
> wt({ht+1}) +D({ht+1}, {ht}) = ht+1 + ht+1 − ht,
X∗W = S′t+1 = {ht+1} follows.
Then the cost of algorithm WFA to serve all requests is

cost(WFA) = 1+
nj−1∑
t=1

D({ht+1}, {ht}) =
nj∑
t=1

t =
nj (nj+1)

2 for any example

Ej. From this we get the following equation
cost(WFA)
cost(offline) =

1/2 nj (nj+1)
nj+ε

. Algorithm WFA applied to the k-server problem

with parallel request is not competitive (if the case
N∑
i=1

Ri ≥ k is allowed),

since lim
nj→∞

1/2 nj (nj+1)
nj+ε

=∞.

Remark 3 The definitions of the minimizer, the maximizer and the potential-
like function are used to prove that the WFA algorithm applied to the usual k-
server is competitive (see [2], Section 10.7). These definitions can be adapted
to the k-server problem with parallel request. However, it seems not possible
to complete such a proof with success in the case of the generalized k-server
problem, where only the surplus-situation is allowed.

Until now, it remains an open question whether the WFA is competitive
or not in the case of the surplus-situation. Thats why, we will suggest the
new ”compound work function algorithm” in the following section and prove
that this algorithm is also (2k − 1)-competitive.

3.3 The compound work function algorithm

As a basis for further considerations we introduce the following more specific
k-server problem. The term ”k-server problem with a simple extension”
describes a k-server problem with the following properties:

(i) More than one server can be located on a point.

(ii) Requests Rt with Rtr > 0 for one r ∈ {1, · · · , N} and where in addition,
Rtr ≤ min{Rt−1

r + 1, k} must be fulfilled, are allowed.

Then at most one server must be moved in servicing the request in
each step.

Lemma 2 Algorithm WFA applied to the k-server problem with a simple
extension is (2 k − 1)-competitive for any k and any metric space.

9

This Lemma can be shown on the analogy of the proof of Theorem 10.9
in [2]. Therefore, we do not show the complete proof, but make the following
comments. We define the minimizer configuration A of p with respect to wt
similarly as in [2]:

A = arg min
X
{wt(X)−

N∑
i=1

Xi d(i, p)}, where wt is the current

work function and p ∈M. Statements which are analogous to Lemma 10.5
or Lemma 10.6 (duality lemma) in [2] can be proved, since

N∑
i=1

X̃i d(i, r) = D(X̃, R), where R is a request with Rr > 0, Ri = 0 for

i 6= r and X̃ is a multiset with |X̃| = |R| = Rr.

The compound work function algorithm is based on a surrogate problem,
which is a k-server problem with a simple extension.

In order to construct the surrogate problem we replace the steps of the
original problem (k-server problem with parallel request, where only the
surplus-situation is allowed) by a number of steps in the surrogate problem.

In more detail, let Rt = (Rt1, R
t
2, · · · , RtN) be the request in the t-th step.

Then we set
N̄ := |{i | Rti 6= 0}| (18)

and

ρi := Rti, ρ̄i :=
i∑
l=1

ρl for i = 1, · · · , N, ρ̄0 := 0, ρ̄ := ρ̄N . (19)

(Note that N̄ and ρ̄, · · · depend on t.)
Furthermore, let j̄ be an integer with j̄ = 1 if N̄ = 1 and with

δ∗ · (j̄ − 1) > ρ̄ · δ∗ = |Rt| · δ∗, if N̄ > 1, respectively,

where δ∗ = min
{r1,r2}⊆Rt,r1 6=r2

d(r1, r2), δ∗ = max
r∈Rt,s∈M

d(r, s).
(20)

((20) is a sufficient condition for the validity of the following statements.)
We replace a step t of the generalized k-server problem by steps

t1,1, · · · , t1,ρ̄, t2,1, · · · , t2,ρ̄, tj̄,1, · · · , tj̄,ρ̄ with requests R̄1,1, · · · , R̄1,ρ̄,

R̄2,1, · · · , R̄2,ρ̄, · · · , R̄j̄,1, · · · , R̄j̄,ρ̄ in the surrogate problem, where

R̄j,fi =


f − ρ̄i−1 for i with Rti 6= 0, f ∈ {ρ̄i−1 + 1, ρ̄i−1 + 2, · · · , ρ̄i} ,

and j = 1, · · · , j̄
0 otherwise

.

(21)
Since R̄j,f are independent of j we set

10

R̄f := R̄j,f for f = 1, 2, · · · , ρ̄. (22)

For example, Rt = (0, 2, 3) implies that N̄ = 2, ρ̄ = 5 and R̄1 = (0, 1, 0),
R̄2 = (0, 2, 0), R̄3 = (0, 0, 1), R̄4 = (0, 0, 2), R̄5 = (0, 0, 3).

Work functions for the surrogate problem are indexed in correspondence
to the steps and the requirements: wtj,f . In addition, we set

wt := wtj̄,ρ̄ for t = 1, 2, · · · , n and wtj̄,0 ... := wtj̄−1,ρ̄
for j̄ > 1. (23)

In the following we characterize the solutions of the surrogate problem
considered first as offline problem, where the entire sequence of requests is
known in advance, and second as online problem.

Lemma 3 (offline). Let (SP) be the surrogate problem for a given k-server
problem with parallel requests. Furthermore, let S be any configuration and
z̄ ∈ {1, · · · , ρ̄}. If, according to (6), wtj̄,z̄(S) = wtj̄,z̄−1

(S − Y ∗
j̄,z̄

+ R̄z̄) +

D(Y ∗
j̄,z̄
, R̄z̄) for a Y ∗

j̄,z̄
⊆ S with

∣∣∣Y ∗j̄,z̄∣∣∣ = |R̄z̄| then Y ∗
j̄,z̄

satisfies the following

property
Y ∗
j̄,z̄
∩Rt = S ∩ R̄z̄. (24)

PROOF. Clearly, if N̄ = 1 then (24) is fulfilled. Now, we want to con-
sider the case that N̄ > 1: LetRtil 6= 0 for l = 1, 2, · · · , N̄ and l̄ ∈

{
1, · · · , N̄

}
such that ρ̄il̄−1

< z̄ ≤ ρ̄il̄ . Further on, let

wtj̄,z̄(S) = wt−1(S − Y ∗
j̄,z̄

+ R̄z̄ − Y ∗
j̄,z̄−1

+ R̄z̄−1 −+ · · · − Y ∗
j̄,1

+ R̄1

−Y ∗
j̄−1,ρ̄

+ R̄ρ̄ − Y ∗
j̄−1,ρ̄−1

+ R̄ρ̄−1 −+ · · · − Y ∗
j̄−1,1

+ R̄1 −+ · · ·

−Y ∗1,ρ̄ + R̄ρ̄ − Y ∗1,ρ̄−1 + R̄ρ̄−1 −+ · · · − Y ∗1,1 + R̄1)

+D(Y ∗1,1, R̄
1) + · · ·+D(Y ∗1,ρ̄−1, R̄

ρ̄−1) +D(Y ∗1,ρ̄, R̄
ρ̄) + · · ·

+D(Y ∗
j̄−1,1

, R̄1) + · · ·+D(Y ∗
j̄−1,ρ̄−1

, R̄ρ̄−1) +D(Y ∗
j̄−1,ρ̄

, R̄ρ̄)

+D(Y ∗
j̄,1
, R̄1) + · · ·+D(Y ∗

j̄,z̄−1
, R̄z̄−1) +D(Y ∗

j̄,z̄
, R̄z̄)

be a recursive representation, where Y ∗
j̄,z̄
, · · · , Y ∗1,1 are computed accord-

ing to (6). The minimum weight matchings between Y ∗
j̄,z̄

and R̄z̄, · · · , Y ∗1,1
and R̄1 yield the optimal movements of the servers in the steps tj̄,z̄, · · · , t1,1.
Let ς be the number of real movements (with distances greater than 0) from
S − Rt in Rt which occur in these steps. Then the definition of the work
functions together with the triangle-inequality imply that ς ≤ |Rt − S| and

11

that these movements must be executed in the first ρ̄ steps backwards. If
ς = |Rt − S| then the total cost is not greater than |Rt − S| · δ∗.

If ς < |Rt−S| then at least one real movement of a server from Rt in Rt

in all subsequences of steps (tj,z̄, · · · , tj−1,z̄+1), 2 ≤ j ≤ j̄ is necessary. The
total cost would in this case be greater or equal to δ∗ · (j̄ − 1). Thus, from
condition (20) it follows that ς = |Rt − S|.

The above properties of optimal movements imply that

Y ∗
j̄,z
∩Rt = S ∩ R̄z for z ∈

{
ρ̄i1 , · · · , ρ̄il̄−1

, z̄
}

,

Y ∗
j̄,z

= R̄z for z ∈ {1, · · · , z̄ − 1} \
{
ρ̄i1 , · · · , ρ̄il̄−1

}
,

Y ∗
j̄−1,z

∩Rt = S ∩ R̄z for z ∈
{
ρ̄il̄+1

, · · · , ρ̄iN̄ (= ρ̄)
}

,

Y ∗
j̄−1,z

∩Rt = (S + (R̄z̄ − S)) ∩ R̄z for z = ρ̄il̄ ,

Y ∗
j̄−1,z

= R̄z for z ∈ {1, · · · , ρ̄} \
{
ρ̄il̄+1

, · · · , ρ̄iN̄
}

and

Y ∗j,z = R̄z for j ∈ {1, · · · , j̄ − 2}, z ∈ {1, · · · , ρ̄}.

Thus, the statement Y ∗
j̄,z
∩Rt = S ∩ R̄z for z = z̄ is shown. �

Lemma 4 (offline). Let (SP) be the surrogate problem for a given k-server
problem with parallel requests (OP) and let the entire sequence of requests
be known in advance.

(i) If S is the configuration of the offline servers at the beginning of a step
t1,1 corresponding with a optimal solution of (SP), then such a optimal
solution of (SP)

(∗) includes exactly |Rt−S| real movements in the steps t1,1, · · · , tj̄,ρ̄.
All these movements are movements from S −Rt in Rt, and are
executed in the first ρ̄ steps t1,1, · · · , t1,ρ̄.

(ii) The optimal offline costs of (SP) and (OP) are equal.

PROOF.
(i) can be proved in a similar way as Lemma 3 (see also Remark 1).

(ii) follows from (i) and the facts that a feasible solution of (OP) im-
plies a feasible solution of (SP) which fulfilled properties (*) and vice versa.
�

12

Lemma 5 (online). Let (SP) be the surrogate problem for a given k-server
problem with parallel requests. Then a sequence of online servers’ positions
exists which can be constructed by the WFA algorithm so that Rt ⊆ S′j̄,ρ̄ for
any t, where S′j̄,ρ̄ denotes the online servers’ positions at the end of step
tj̄,ρ̄.

PROOF. If N̄ = 1 then the proof is obvious. Now, we want to consider
the case N̄ > 1: Let Rtil 6= 0 for l = 1, 2, · · · , N̄ . In addition, we set ρ̄i0 := 0

and R̄0 := ∅.
Rt ⊆ S′j̄,ρ̄ is equivalent to R̄ρ̄i1 + R̄ρ̄i2 + · · ·+ R̄ρ̄iN̄ ⊆ S′j̄,ρ̄.
For this we prove by mathematical induction that
R̄ρ̄i0 + R̄ρ̄i1 + · · ·+ R̄

ρ̄il̄−1 + R̄z̄ ⊆ S′j̄,z̄ for each z̄ ∈ {1, · · · , ρ̄}, where
l̄(= l̄(z̄)) ∈

{
1, · · · , N̄

}
such that ρ̄il̄−1

< z̄ ≤ ρ̄il̄ .

Base case. Obviously, R̄1(= {i1}) ⊆ S′j̄,1.

Induction step. Assume that R̄ρ̄i1 + R̄ρ̄i2 + · · · ∪ R̄ρ̄il̄−1 + R̄f ⊆ S′j̄,f for

f ∈
{
ρ̄il̄−1

+ 1, ρ̄il̄−1
+ 2, · · · , ρ̄il̄

}
if l̄ ∈

{
1, · · · , N̄ − 1

}
or

f ∈
{
ρ̄iN̄−1

+ 1, ρ̄iN̄−1
+ 2, · · · , ρ̄iN̄ − 1

}
, respectively. There S′j̄,f denotes

the online servers’ positions at the end of step tj̄,f . In addition, we notice

that R̄fil̄
= f − ρ̄il̄−1

according to (21).

At first, we consider the case that f < ρ̄il̄ .

Then R̄f+1
il̄

= f + 1− ρ̄il̄−1
= R̄fil̄

+ 1 is valid.

We will show that

R̄ρ̄i0 + R̄ρ̄i1 + · · ·+ R̄
ρ̄il̄−1 + R̄f+1 ⊆ S′j̄,f+1. (25)

If already R̄f+1 ⊆ S′j̄,f then S′j̄,f = S′j̄,f+1 follows and (25) is true.
Now, let R̄f+1 * S′j̄,f .

Then a S′j̄,f+1 = S′j̄,f−X̂∗W +il̄, which satisfies (25), can be determined

by the WFA algorithm, where X̂∗W ⊆ Ŝ′j̄,f with X̂∗W 6= {il̄} and
∣∣∣X̂∗W ∣∣∣ = 1

is computed as an element from the argminset of:

wj̄,f (S′j̄,f − X̂ + il̄) +D(X̂, {il̄}) (26)

over X̂, according to (16a).

Case I:
{
X̂∗W ∩ R̄ρ̄il = ∅ for all l ∈

{
1, 2, · · · l̄ − 1

}}
or{

if X̂∗W = {il} (l ∈
{

1, 2, · · · l̄ − 1
}

) then also R̄ρ̄il + il ⊆ S′j̄,f
}

:

13

In this case (25) follows immediatly.

Case II: X̂∗W = {iλ} (λ ∈
{

1, 2, · · · l̄ − 1
}

) and R̄ϕ + iλ * S′j̄,f

for ϕ = ρ̄iλ :
In this case we will show that then also a X̂∗1(6= il̄) exists which satisfies

Case I and implies the same value of (26) as X̂∗W .
(26) leads to

wtj̄,f (S′j̄,f − iλ + il̄) +D({iλ} , {il̄}) (27)

for X̂∗W = {iλ}. In addition,

wtj̄,f (S′j̄,f − iλ + il̄) = wtj̄,ϕ(S′j̄,f − iλ + il̄), (28)

since R̄u ⊆ S′j̄,f − iλ + il̄ for u = ϕ + 1, ϕ + 2, · · · , f according to the
induction hypothesis and Case II.

Using formula (6) for the recursive computation of work functions yields

wtj̄,ϕ(S′j̄,f − iλ + il̄)

= min
Y⊆S′j̄,f−iλ+il,|Y |=ρiλ

{wtj̄,ϕ−1
(S′j̄,f − iλ + il̄ − Y + {ρiλ})

+D(Y, {ρiλ})},

(29)

where {ρiλ} denotes the multiset which only include a number of ρiλ
elements iλ. Lemma 3 (with S = S′j̄,f − iλ + il̄ and z̄ = ϕ) implies that

Y ∗ ∩Rt = (S′j̄,f − iλ + il̄) ∩ R̄ϕ (30)

for optimal solutions Y ∗ of (29). In Case II this means

Y ∗ ∩Rt = {ρiλ − 1} and hence,

Y ∗ = {ρiλ − 1}+ Ŷ ∗ with |Ŷ ∗| = 1 and

Ŷ ∗ 6= {iλ̄} (λ̄ ∈
{

1, 2, · · · , l̄ − 1
}

) if R̄ϕ̄ + iλ̄ * S′j̄,f for ϕ̄ = ρ̄iλ̄ . (31)

Furthermore,
Ŷ ∗ 6= {il̄} (32)

also follows from (30). Hence (29) can be written as

wtj̄,ϕ(S′j̄,f − iλ + il̄) = wtj̄,ϕ−1
(S′j̄,f + il̄ − Ŷ ∗) +D(Ŷ ∗, {iλ}).

This equation (see also (28)) is equivalent to

wtj̄,f (S′j̄,f − iλ + il̄) = wtj̄,f (S′j̄,f + il̄ − Ŷ ∗) +D(Ŷ ∗, {iλ}), (33)

14

since R̄u ⊆ S′j̄,f−iλ+il̄ for u = ϕ+1, ϕ+2, · · · , f according to the induction
hypothesis and (31) and (32).

Now, we want to determine the argminset of (26) where in addition only
X̂ with X̂ 6= {iλ̄} (λ̄ ∈

{
1, 2, · · · l̄ − 1

}
) if R̄ρ̄iλ̄ + iλ̄ * S′j̄,f (see Case I) are

allowed. Let X̂∗1 denote an element of such an argminset.

These conditions are also fulfilled by Ŷ ∗ according to (31), (32) and
R̄ρ̄iλ̄ + iλ * S′j̄,f in Case II. Hence,

wj̄,f (S′j̄,f − X̂∗1 + il̄) +D(X̂∗1, {il̄}) ≤ wj̄,f (S′j̄,f − Ŷ ∗ + il̄) +D(Ŷ ∗, {il̄}).
(34)

(34) and (33) together with the triangle-inequality
−D(Ŷ ∗, {iλ}) +D(Ŷ ∗, {il̄}) ≤ D({iλ}), {il̄}), imply that

wtj̄,f (S′j̄,f +il̄−X̂∗1)+D(X̂∗1, {il̄}) ≤ wtj̄,f (S′j̄,f +il̄−iλ)+D({iλ}), {il̄}).

X̂∗W = {iλ} is an element of the argminset in Case II. However, the last
inequality shows that in every case an element X̂∗1 of the argminset exists
which satisfies Case I.

In the case that f = ρ̄il̄ (l̄ ∈
{

1, · · · , N̄ − 1
}

) it is R̄f+1
il̄+1

= 1. Then

R̄ρ̄i1 + R̄ρ̄i2 + · · · + R̄ρ̄il̄ + R̄f+1 ⊆ S′j̄,f+1 can be shown on the analogy of
the above proof (in the case that f < ρ̄il̄), where all il̄ are to be replaced by
il̄+1 and all sets of indices

{
1, 2, · · · l̄ − 1

}
by
{

1, 2, · · · l̄
}

. �

Now we want to suggest the compound work function algorithm (com-
pound WFA). There the usual WFA (see also Section 3.2) is applied to the
surrogate problem. Also the movements of servers, which are unnecessary
for the original problem, are skipped.

In more detail, let σt−1 be the request sequence thus far and let S′t−1 be
the configuration of WFA after servicing σt−1. Then, given the next request
Rt.

Compound WFA, (step t): Apply the (usual) WFA algorithm to the
surrogate problem in the steps t1,1, · · · , t1,ρ̄, t2,1, · · · , t2,ρ̄, tj̄,1, · · · , tj̄,ρ̄, which
replace step t of the original problem, and construct a sequence of online
servers’ positions (S′1,1, S′1,2, · · · , S′1,ρ̄, S′2,1, S′2,2, · · · , S′2,ρ̄, · · · , S′j̄,1, S′j̄,2,
· · · , S′j̄,ρ̄) such that Rt ⊆ S′j̄,ρ̄. Set S′t := S′j̄,ρ̄.

Skip movements of servers, which are unnecessary for the original prob-
lem, in the following way: The set of all (real) movements of the servers
in the surrogate steps can be partitioned that if S′tn̄ > S′t−1

n̄ then movements
of S′tn̄ − S′t−1

n̄ servers exist for each of them as follows. Such a server is
located on a point n0 with S′tn0

< S′t−1
n0

at the beginning of step t. In the
steps: tjn0 ,fn0

, tjn1 ,fn1
, · · · , tjnī ,fnī (where jn0 ≤ jn1 ≤ · · · ≤ jnī , nī = n̄ and

15

ρ̄ni−1 < fni ≤ ρ̄ni) the server is moved from point n0 to point n1 and so on,
finally to point nī. Replace these movements by one. Move the correspond-
ing server directly from point n0 to point n̄.

We want to point out that the condition Rt ⊆ S′t for any t can be fulfilled
according to Lemma 5. This condition implies that the compound WFA
algorithm solves the original problem (the k-server problem with parallel
requests).

Theorem 6 The compound WFA algorithm is (2 k−1)-competitive for any
k and any metric space.

PROOF. According to Lemma 2, WFA is (2 k−1)-competitive for the
k-server problem with a simple extension, thus also for (SP). If the number
of movements is reduced by the compound WFA then the online cost is
lower because of the triangle-inequality. The optimal offline costs of (SP)
and (OP) are equal (Lemma 4, (ii)). Hence, the compound WFA algorithm
is also (2 k − 1)-competitive. �

References

[1] Bartal, Y.(1996). On the k-server conjecture: Simplification of
Koutsoupias-Papadimitriou proof. unpublished manuscript.

[2] Borodin, A., El-Yaniv, R. (1998) Online computation and competitive
analysis. University Press, Cambrigde.

[3] Borodin, A., Linial,N., Saks, M. (1992). An optimal online algorithm for
metrical task systems. Journal of the ACM, 39, 745-763.

[4] Hildenbrandt, R. (1995). Methoden aus ganzzahliger Optimierung und
Verbandstheorie zur Behandlung eines stochastischen dynamischen Trans-
portproblems. Habilitationsschrift, TU Ilmenau, (Libri BoD 2000).

[5] Hildenbrandt, R. (2014). A k-server problem with parallel requests and
unit distances. Information Processing Letters 114(5), 239-246.

[6] Koutsoupias, E. (1994). On-line Algorithms and the k-Server Conjec-
ture. Ph.D.dissertation, Department of Computer Science and Engineer-
ing, University of California, San Diego.

[7] Koutsoupias, E., Papadimitriou, C. (1995). On the k-server conjecture.
Journal of the ACM, 42(5), 971-983.

[8] Krumke, S. O., Rambau, J. (2005) Online Optimierung. Vor-
lesungsskript, Technische Universität Berlin.
www.fsmpi.uni-bayreuth.de/skripten/online optimierung.pdf

16

[9] Manasse, M.S., McGeoch L.A., Sleator, D.D. (1988). Competitive al-
gorithms for on-line problems. In: Proceeding of the 20th Annual ACM
Symposium on Theory of Computing, 322-333 (Journal version).

[10] Sleator, D. D.,Tarjan, R. E. (1985) Amortized efficiency of list update
and paging rules, Communications of the ACM 28, no. 2, 202-208.

Appendix

Proof of the quasi-convexity lemma

Proof. In order to prove the lemma, we show that work functions
satisfy a more general quasi-convexity property.

Property GQ: Let w be a work function and let X and Y be two
configurations. Then there exists a bijection g : X → Y such that for all
partitions of X into X̃1 and X̃2, the following holds

w(X̃1 + g(X̃2)) + w(g(X̃1) + X̃2) ≤ w(X) + w(Y). (A.1)

By setting X̃1 = X − X̃(= X − X̃2) and letting Ỹ = g(X̃)(= g(X̃2)),
we can see that the property GQ implies the quasi-convexity property. We
prove that the work function satisfy the property GQ by relying the follow-
ing claim.

Claim: If the bijection g satisfies equation (A.1), then there exists a bi-
jection ḡ such that ḡ(x) = x for all x ∈ X ∩ Y , which also satisfies equation
(A.1).

Firstly, the preceding claim is proved. Let g : X → Y be a bijection.
Assume that among all such bijections, g maps the maximum number of
elements from X ∩ Y to themselves. Assume, by contradiction, that there
exists some a ∈ X ∩ Y such that g(a) 6= a.

Define the bijection ḡ : X → Y that agrees with g everywhere but
interchanges the values of g on a and a−1 = g−1(a).
That is, set ḡ(a) = a and ḡ(a−1) = g(a).

By our assumption, ḡ cannot satisfies property GQ.
Let (X1, X2) be any partition ofX and assume, without loss of generality,

that a−1 = g−1(a) ∈ X1.
It cannot be the case that, a ∈ X1; if it were the case, then

g(X1) = ḡ(X1) and g(X2) = ḡ(X2) and the inequality (A.1) would be full-
filed.

17

Given a /∈ X1 (hence, a ∈ X2), we have

w(X) +w(Y) ≥ w((X1 + a) + g(X2− a)) +w((g(X1 + a) + (X2− a)),
since g satisfies equation (A.1);

= w((X1 +a)+ ḡ(X2−a))+w((ḡ(X1 +a)+(X2−a)),
by the definition of ḡ;

= w(X1 + ḡ(X2)) + w(ḡ(X1) +X2).

Hence, ḡ does satisfy property GQ, which is a contradiction.

Now, we prove the following by induction on the length of the request
sequence.

Induction hypothesis: Work functions satisfy the property GQ.

Base case. For t = 0 we have w∅(X) + w∅(Y) = D(S0, X) +D(S0, Y).
Consider two minimum weight matchings MX and MY whose values are
D(S0, X) and D(S0, Y), respectively. Each point sj ∈ S0 is mapped by MX

to some point xj ∈ X and by MY to some point yj ∈ Y . It is easy to see
that the bijection g(xj) = yj satisfies equation (A.1).

Induction step. Assume that w satisfies the property GQ and let R be
the new request. We show that w′(= wσt,Rt+1) satisfies the property GQ.

In the case of the surplus-situation there exists some X̃ ⊆ X with
∣∣∣X̃∣∣∣ =

|R| , so that w′(X) = w(X − X̃ +R) +D(X̃, R), according to equation (6).

Similarly, w′(Y) = w(Y − Ỹ +R)+D(Ỹ , R) for some Ỹ ⊆ Y with
∣∣∣Ỹ ∣∣∣ = |R|.

According to the induction hypothesis, for X − X̃ +R and Y − Ỹ +R,
there exists a bijection g : (X − X̃ + R) → (Y − Ỹ + R) that satisfies the
property GQ.
We can furter assume, from the preceding claim, that g(r) = r for all r ∈ R.

Define the bijection g′ : X → Y :

Case x /∈ X̃ : g′(x) := g(x),
Case x = x̃ ∈ X̃ : g′(x̃) := g(ỹ), where ỹ is determined in the following

way.
Let MX̃ and MỸ be the two minimum weight matchings whose values

are D(X̃, R) and D(Ỹ , R), respectively. Each point r ∈ R is mapped by
MX̃ to some point x̃ ∈ X̃ and by MỸ to some point ỹ ∈ Ỹ .

18

To prove that w′ satisfies the property GQ, consider any partition (X1, X2)
of X. This partition implies a partition (X̃1, X̃2) of X̃, where
X̃1 = {x ∈ X|x ∈ X1 ∩ X̃} and X̃2 = {x ∈ X|x ∈ X2 ∩ X̃}.

Then, X − X̃ +R = X1 − X̃1 +X2 − X̃2 +R follows.

w′(X)+w′(Y) = w(X− X̃+R)+w(Y − Ỹ +R)+D(X̃, R)+D(Ỹ , R)

≥ w(X1 − X̃1 + g(X2 − X̃2 +R)) + w(g(X1 − X̃1) +X2 − X̃2 +R)

+D(X̃, R) +D(Ỹ , R),
by the induction hypothesis;

≥ w(X1 − X̃1 + g′(X2)− g′(X̃2) +R)

+w(g′(X1)− g′(X̃1) +X2 − X̃2 +R) +D(X̃, R) +D(Ỹ , R),

since g(X2− X̃2 +R) = g(X2− X̃2)+g(R) = g′(X2)−g′(X̃2)+R,
g(X1 − X̃1) = g′(X1)− g′(X̃1);

≥ w(X1 + g′(X2)− X̃1− g′(X̃2) +R) +D(X̃1, R
(1)) +D(g′(X̃2), R(2))

+w(g′(X1) +X2− g′(X̃1)− X̃2 +R) +D(g′(X̃1), R(1)) +D(X̃2, R
(2)),

where D(X̃, R) = D(X̃1, R
(1)) +D(X̃2, R

(2)),
D(Ỹ , R) = D(Ỹ1, R

(1)) +D(Ỹ2, R
(2)) with Ỹ1 = g′(X̃1),

Ỹ2 = g′(X̃2) according to the corresponding
partitionings of the matchings MX̃,R,MỸ ,R;

≥ w(X1 + g′(X2)) + w(X2 + g′(X1)),

using D(X̃1, R
(1)) +D(g′(X̃2), R(2)) ≥ D(X̃1 + g′(X̃2), R),

D(g′(X̃1), R(1)) +D(X̃2, R
(2)) ≥ D(g′(X̃1) + X̃2, R) and (5).

In case of the scarcity-situation there exists some X̃ ⊆ R with
∣∣∣X̃∣∣∣ = k,

so that w′(X) = w(X̃) +D(X̃,X), according to equation (10).

Similarly, w′(Y) = w(Ỹ) +D(Ỹ , Y) for some Ỹ ⊆ R with
∣∣∣Ỹ ∣∣∣ = k.

According to the induction hypothesis, for X̃ and Ỹ , there exists a bi-
jection g : X̃ → Ỹ that satisfies the property GQ. We can further assume,
from the preceding claim, that g(r) = r for all r ∈ X̃ ∩ Ỹ .

Define the bijection g′ : X → Y in the following way:

19

Let MX̃,X and MỸ ,Y be two minimum weight matchings whose values

are D(X̃,X) and D(Ỹ , Y), respectively.
Set g′(x) = y (x ∈ X, y ∈ Y), if x is mapped by MX̃,X to x̃ ∈ X̃, y is

mapped by MỸ ,Y to ỹ ∈ Ỹ and g(x̃) = ỹ.

To prove that w′ satisfies the property GQ, consider any partition (X1, X2)
of X. This partition leads to a partition (X̃1, X̃2) of X̃ by means of the
matching MX̃,X , where, in more detail, X1 is mapped to X̃1 by MX̃,X .

w′(X) + w′(Y) = w(X̃) + w(Ỹ) +D(X̃,X) +D(Ỹ , Y)

≥ w(X̃1 + g(X̃2)) + w(g(X̃1) + X̃2)

+D(X̃1, X1) +D(X̃2, X2) +D(Ỹ1, Y1) +D(Ỹ2, Y2),
by the induction hypothesis
and where g(X̃2) =: Ỹ2, g(X̃1) =: Ỹ1;

≥ w(X̃1 + Ỹ2) +D(X̃1, X1) +D(Ỹ2, Y2)

+w(Ỹ1 + X̃2) +D(X̃2, X2) +D(Ỹ1, Y1)

≥ w(X1 + Y2) + w(Y1 +X2),
using D(X̃1, X1) +D(Ỹ2, Y2) ≥ D(X̃1 + Ỹ2, X1 + Y2),
D(X̃2, X2) +D(Ỹ1, Y1) ≥ D(X̃2 + Ỹ1X2 + Y1) and (5),
where Y1 = g′(X1), Y2 = g′(X2). �

20

