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Zusammenfassung

Schätzungsweise fünfzig Prozent des globalen Trinkwassers wird dem Grund-
wasser entnommen. Dementsprechend ist das Grundwasser eine sehr wich-
tige natürliche Ressource. Allerdings wird die Qualität des Grundwassers
durch eine Vielzahl von Schadstoffen aus unterschiedlichen Quellen gefährdet.
Risikoanalysen werden auf geohydrologische Systeme angewendet um abzu-
schätzen, ob Ökosysteme oder Menschen durch Verunreinigungen des Grund-
wassers gefährdet sind. In diesem Zusammenhang ist das Risiko nicht nur
von den Auswirkungen der Schadstoffe auf Ökosysteme oder auf den mensch-
lichen Körper abhängig, sondern auch von der Ausbreitung der Schadstof-
fe im Grundwasser. Zum Beispiel ob eine Schadstoffwolke einen Brunnen
kontaminieren könnte. Die Eigenschaften des Untergrunds, wie etwa die
Leitfähigkeit, haben einen starken Einfluss auf die Grundwasserströmung
und damit auch auf den Transport von gelösten Stoffen. Der Mangel an
Daten zusammen mit der Heterogenität des Untergrunds sind der Grund
dafür, dass die Unsicherheit bei der Vorhersage des Schadstofftransports oft
so groß ist, dass sie nicht vernachlässigt werden kann. Infolgedessen muss die-
se Unsicherheit in Risikobewertungen berücksichtigt werden. Dies ist durch
eine geostatistische Repräsentation des Untergrunds möglich, welche zu einer
wahrscheinlichkeitstheoretischen Beschreibung der Transportprozesse führt.

Die Methode der Wahrscheinlichkeitsdichtefunktionen (PDF) bietet eine
Möglichkeit nicht nur den Transport von Schadstoffen, sondern auch die Un-
sicherheiten in einem integrierten Framework zu berechnen. Eine Transport-
gleichung der Konzentrations-PDF wird dazu aufgestellt und gelöst. Statis-
tische Momente, wie die mittlere Konzentration oder die Konzentrationsva-
rianz, können direkt aus der PDF berechnet werden. Allerdings haben PDF-
Methoden einen Nachteil, wenn sie auf den Grundwassertransport angewen-
det werden. Um die Parameter für die PDF-Transportgleichung aus den
Eigenschaften des Untergrunds zu berechnen, müssen stochastische Mittel
unter der Annahme der statistischen Homogenität der Leitfähigkeitsfelder
berechnet werden. Dies ist problematisch, da die statistische Homogenität
durch das konditionieren von räumlichen Zufallsfeldern auf Messdaten zer-
stört wird. Des Weiteren hat jedes Messgerät ein spezifisches Stützvolumen
über welches die gewonnenen Daten gemittelt werden. Diese unterschied-
lichen Stützvolumen führen wegen der Heterogenitäten im Untergrund zu
unterschiedlichen Messergebnissen. Dadurch wird es schwierig diese Mess-
daten mit numerischen Methoden, wie die PDF-Methoden, zu vergleichen.
Wenn räumlich gemittelte Größen statt der stochastisch gemittelten Größen
verwendet werden, kann eine Alternative zu PDF-Methoden benutzt werden,
die Methode der gefilterten Wahrscheinlichkeitsdichtefunktionen (FDF). Sie
beruhen nicht auf der Annahme der statistischen Homogenität und durch



die räumliche Mittelung (auch räumlicher Filter genannt) können die FDF
auf die spezifischen Stützvolumen der unterschiedliche Messmethoden zuge-
schnitten werden.

Das Ziel der hier präsentierten Forschung ist es, solch eine FDF-Methode
für die Vorhersage des Schadstofftransports im Grundwasser zu entwickeln.
Dazu sind drei Schritte notwendig. Ein effizientes und akkurates numerisches
Lösungsverfahren für FDF-Gleichungen muss entwickelt werden. In einem
zweiten Schritt müssen die Parameter der FDF-Gleichungen durch räumliche
Filter berechnet werden. Schließlich muss ein geeignetes Mischungsmodell
gefunden werden um das Schließungsproblem des Mischungsterms zu lösen.
Dieser Term ist von besonderem Interesse da er einen direkten Einfluss auf
die zeitliche Entwicklung der Unsicherheit hat.

PDF- und FDF-Gleichungen besitzen dieselbe mathematische Struk-
tur. Deshalb kann zunächst ein numerisches Lösungsverfahren für PDF-
Gleichungen entwickelt und getestet werden, deren Parameter einfacher zu
berechnen sind. Die hohe Dimensionalität der PDFs stellt eine große Her-
ausforderung für numerische Lösungsverfahren dar. Lagrangesche Partikel-
methoden werden in diesem Fall im Allgemeinen gegenüber gitterbasierten
Lösungsverfahren bevorzugt, da sie im Falle von reaktiven Mehrkomponenten-
Transportproblemen nicht unter dem Fluch der Dimensionalität leiden. Al-
lerdings kann es passieren, dass durch die Anzahl der Partikel, die für eine
akzeptable Genauigkeit benötigt wird, die Rechenzeit für praktische An-
wendungen zu groß wird. Deshalb wird der Global Random Walk (GRW)
Algorithmus in dieser Arbeit verwendet, welcher eine Verallgemeinerung
der Particle-Tracking-Verfahren darstellt. Es werden nicht einzelne Partikel
sequentiell simuliert, sondern es werden die Bewegungen von beliebig vie-
len Partikeln auf einem regulären Gitter berechnet. Allerdings lösen solche
Particle-Tracking-Verfahren Itô-Gleichungen, die mit Fokker-Planck-Glei-
chungen in Zusammenhang stehen. Im Allgemeinen unterscheiden sich PDF-
Gleichungen von den numerisch gelösten Fokker-Planck-Gleichungen. Aus
diesem Grund werden Konsistenzbedingungen hergeleitet, welche dazu füh-
ren, dass durch die angewendeten numerischen Verfahren tatsächlich die
gesuchten PDF-Lösungen gefunden werden. Mit diesen Konsistenzbedingun-
gen ist der GRW-Algorithmus gut geeignet um PDF-Gleichungen numerisch
zu lösen. Das Geschwindigkeitsfeld wird durch den Kraichnan-Algorithmus
erzeugt, wohingegen die Dispersionskoeffizienten durch einzelne Partikeltra-
jektorien in den Geschwindigkeitsfeldern effizient abgeschätzt werden können.
Verschiedene Mischungsmodelle werden verwendet um die PDF-Gleichung
zu schließen.

Da die Konsistenzbedingungen dafür sorgen, dass die numerischen Ver-
fahren die gesuchten PDF-Lösungen approximieren, können anschließend die
stochastischen Mittelungen durch räumliche Filter ersetzt werden, um für
die FDF-Methoden benutzt zu werden. Wird ein räumlicher Filter direkt auf
die Kraichnan-Formel angewendet, erhält man einen gefilterten Kraichnan-
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Algorithmus, der sich lediglich durch einen Konstanten Faktor von dem un-
gefilterten unterscheidet. Dadurch lässt sich der gefilterte Algorithmus sehr
einfach und effizient implementieren. Für moderate Heterogenitäten des Ge-
schwindigkeitsfeldes können die Ensemble-Dispersionskoeffizienten aus ein-
zelnen Trajektorien des Transportprozesses berechnet werden. Die Ensemble-
Dispersionskoeffizienten sind abhängig von der Filtergröße und aus deren
Differenzen können die gesuchten coarse-grained Diffusionskoeffizienten be-
rechnet werden. Einzig das vielversprechendste Mischungsmodell aus den
Untersuchungen mit den PDF-Gleichungen wird für die FDF-Gleichungen
verwendet. Dieses Mischungsmodell hängt von einer Längenskala ab, welche
im Falle von PDF-Gleichungen der Korrelationslänge des Leitfähigkeitsfelds
entspricht. Für FDF-Gleichungen wird die Filtergröße zur Korrelationslänge
addiert, um eine Längenskala zu erhalten, welche von der Filtergröße abhängt.
Mit den gefilterten Parametern des Geschwindigkeitsfelds und der Dispersi-
onskoeffizienten und dem Mischungsmodell kann der GRW-Algorithmus zur
Lösung von FDF-Gleichungen verwendet werden. Wird die mittlere Kon-
zentration durch Monte-Carlo-Referenzsimulationen, durch PDF- und durch
FDF-Simulationen berechnet, so gibt es ab einer bestimmten Filtergröße kei-
ne signifikante Diskrepanz zwischen den Ergebnissen. Allerdings hängt die
mittlere Konzentration nicht von dem Mischungsmodell ab. Vergleicht man
die PDFs aus den drei genannten Verfahren, so sind die Ergebnisse weniger
vielversprechend. Obwohl das Verschmälern der PDF nicht vom Mischungs-
modell wiedergegeben wird, wird der Transport der PDF im Konzentra-
tionsraum richtig vorhergesagt und die kumulativen Verteilungsfunktionen
entsprechen der Referenzsimulation.

Da das Verhalten der PDF im Konzentrationsraum vollständig durch
das Mischungsmodell beschrieben wird, wenn Reaktionsterme vernachlässigt
werden, wird nach einem besseren Mischungsmodell gesucht. Wenn die Klas-
se der IEM-Mischungsmodelle auf die PDF-Gleichung angewendet wird und
die Varianz-Transportgleichung aus dieser bestimmten PDF-Gleichung her-
geleitet wird, so findet man eine Verbindung zwischen diesen beiden Glei-
chungen. Denn beide hängen von einem freien Parameter des Mischungsmo-
dells ab, der beeinflusst wie schnell Varianz abgebaut wird. Die Varianzglei-
chung ist viel einfacher zu handhaben. Es wird sogar eine analytische Lösung
hergeleitet, welche ebenfalls von dem freien Parameter abhängt. Durch phy-
sikalisch gestützte Argumente wird das zeitabhängige TIEM-Mischungsmo-
dell hergeleitet, welches deutlich verbesserte Ergebnisse für die Konzentrati-
onsvarianz liefert. Das TIEM-Modell wird anschließend auf PDF-Gleichungen
übertragen und liefert auch dafür bessere Ergebnisse.

Zusammenfassend liefert diese Arbeit einen Beitrag zur Entwicklung der
FDF-Methoden angewendet auf den Transport im Grundwasser.
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Abstract

It is estimated that fifty percent of the drinking water is extracted from
groundwater sources, making them a very important source of the natural
resource water. But the groundwater quality is threatened by a multitude
of contaminants. Risk assessments are applied to geohydrological systems
in order to estimate if an ecosystem or the human health is at risk through
groundwater pollution. In this context, ecosystem or human health risks
not only depend on the impact of the contaminants on the ecosystem or the
human body, but also on the spreading and propagation of contaminants in
the groundwater. For example, the risk of a well being polluted depends on
the spreading. Properties of the subsurface like the hydraulic conductivity
have a strong impact on the groundwater flow and therefore also on the
transport of solutes. The scarcity of data together with the heterogeneity of
the subsurface can cause the uncertainty of the transport predictions to be so
large that they cannot be neglected. Consequently, the uncertainty needs to
be included in the risk assessments. This is possible by using a geostatistical
representation of the subsurface, which results in a probabilistic description
of the transport processes.

Probability density function (PDF) methods provide an integrated frame-
work to predict the transport of solutes in which uncertainties are incorpor-
ated seamlessly. In these PDF methods, a time evolution equation for the
PDF is formulated and solved. Statistical moments like the mean concentra-
tion or the concentration variance can be calculated from the concentration
PDF. But PDF methods have an important drawback when applying them
to groundwater transport. Deriving the parameters for the PDF transport
equation from subsurface properties like the hydraulic conductivity, requires
stochastic averages under the assumption of a statistically homogeneous
conductivity field. This is problematic, because conditioning spatial ran-
dom fields on measurements destroys the statistical homogeneity. Further-
more, every measurement device has a specific support volume over which
the measuring technique averages heterogeneities. These different support
volumes lead to different data, which makes it difficult to compare this data
to numerical simulations, like PDF simulations. Using spatially averaged
quantities instead of stochastic averages, an alternative to PDF methods
is found: the filtered density function (FDF) methods. They do not rely
on statistically homogeneous conductivity fields and through the spatial av-
eraging (also known as spatial filtering) they can be tailored towards the
specific support volume of a measuring technique.

The aim of the research presented here is to develop such an FDF method
for predicting the transport of contaminants in groundwater. Therefore,
three steps are necessary. An efficient and accurate numerical solver for
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FDF equations needs to be developed. In a second step, the parameters
contained by the equations have to be filtered. And finally, an appropriate
mixing model needs to be found for approximating the unclosed mixing term.
The mixing term is of particular interest because it has a direct impact on
the uncertainty evolution.

PDF and FDF equations have the same mathematical structure. Hence,
a numerical solver is first developed and tested for PDF equations, with
easier to obtain parameters. The high dimensionality of PDFs pose a chal-
lenge to numerical solvers. Lagrangian particle methods avoid the curse
of dimensionality for multi-component reactive transport and are generally
favoured over grid based solvers. However, in such approaches a computa-
tionally unfeasible amount of particles may be required for an acceptable
accuracy. Therefore, the global random walk (GRW) algorithm is used
in this work. It is a generalisation of particle tracking methods. It does
not simulate single particles sequentially, but instead simulates the move-
ments of arbitrarily large numbers of particles on regular lattices. However,
these numerical particle methods solve Itô equations which actually corres-
pond to Fokker-Planck equations. In general, PDF equations differ from the
numerically solved Fokker-Planck equations. Thus, consistency conditions
are derived which equate the Fokker-Planck equations being solved to the
PDF equations of interest. With these consistency conditions, the GRW al-
gorithm proves to be well-suited to solve PDF equations. The velocity field
is generated by the Kraichnan algorithm, whereas the dispersion coefficients
are efficiently estimated from single particle trajectories in the velocity field.
Different mixing models are used to close the PDF transport equation.

With the consistency conditions ensuring that the simulations indeed
solve the correct equations, the stochastic averages are now replaced by spa-
tial filters for the use with FDF methods. Applying such a filter directly
to the Kraichnan formula results in a filtered Kraichnan algorithm, which
only differs from the original one by a constant factor, making it very easy
to implement and very efficient to compute. For moderate heterogeneity
of the velocity field, the ensemble dispersion coefficients are estimated on
single trajectories of transport process. The ensemble dispersion coefficients
depend on the filter size and from these differences, the coarse-grained diffu-
sion coefficients can be calculated. Only the most satisfactory mixing model
from the investigations with PDF equations is used for the FDF equation.
This mixing model depends on a length scale, which is the correlation length
of the hydraulic conductivity. For FDF equations, the filter size is added
to the correlation length for a filter size dependent length scale. With the
filtered velocity, dispersion, and mixing parameters, the GRW algorithm is
used to solve the FDF equation. Comparing the mean concentration calcu-
lated from Monte Carlo reference simulations, PDF simulations, and FDF
simulations, the results practically coincide from a certain filter size on.
However, the mean concentration does not depend on the mixing model and
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comparing the PDFs computed from Monte Carlo simulations, PDF simu-
lations, and FDF simulations, the results are less promising. Though the
narrowing of the PDF is not captured by the mixing model, its transport in
concentration space is correctly predicted and the cumulative distribution
functions compare well with the reference solution.

Because the behaviour of the PDF in concentration space is completely
described by the mixing model, if reaction terms are neglected, more effort
is put into finding a better one. If a certain class of mixing models, the IEM
mixing models, is applied to the PDF equation and the variance transport
equation is derived from this particular PDF equation, a connection is found
between these two equations. Both depend on the same free parameter
which describes how fast variance is destroyed. The variance equation is
much easier to handle, even an analytical solution is derived, which depends
on the free parameter. This way, different time dependent parameters can be
tested much easier. By using physical arguments, the time dependent TIEM
mixing model is found, which gives much better results for the concentration
variance. Transferring the TIEM model to PDF equations also results in
improved results.

In summary, this work contributes towards the development of an FDF
framework applied to the transport in groundwater.
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Motivation and Outline

Water is one of the most important natural resources, not only for human
beings but for all life on earth. Since 2010, the access to clean and drinkable
water is even mandated as a human right (United Nations, 2010). Besides
easily accessible freshwater from surface sources like rivers and lakes, water
stored in the subsurface is a major contribution to the globally available and
usable freshwater. It is estimated that fifty percent of the drinkable water
is extracted from groundwater sources. In some countries it contributes
up to hundred percent of the drinking-water supply of a country (Zetkser
and Everett , 2004). But the quality of the groundwater is threatened by
a multitude of risks. There is always the risk of a leakage for example
in geological nuclear or chemical waste repositories. However, one does
not have to search so deep underground for potential contaminant sources.
Waste dumps can leak toxic substances into the subsurface. Industrial and
domestic waste can be disposed of illegally or the deposition can simply be
unregulated and infiltrate the subsurface as a result. Furthermore, leakages
and spills of industrial waste can contaminate the groundwater (WWAP ,
2012).

Measuring contaminants in the groundwater is very expensive, labori-
ous, and time intensive (WWAP , 2012). One reason for the intricateness of
the measurements is that the subsurface is often highly heterogeneous. The
variability of the properties of the subsurface influencing the transport of
contaminants in groundwater ranges from the order of magnitude of indi-
vidual grains to large geological structures like facies, fractures, and sediment
layers. Without unfeasibly highly resolved measurements, the measurement
uncertainty stays relatively large with respect to the actual measurements.
Therefore, it is necessary to include the uncertainty in risk analyses and in
the prediction of the transport of contaminants in groundwater. The import-
ance of an uncertainty analysis is amplified by following fact. When human
health risks are assessed in a hydrological system, the risks are influenced by
the uncertainties of contaminant measurements in the subsurface (de Bar-
ros et al., 2011a). Moreover, the increasing impact of human activities on
groundwater systems increases additional uncertainties (WWAP , 2012).

The scarcity of data and the uncertainty together with the variability of
the subsurface make the prediction of the contaminant transport in ground-
water a demanding task. It is well known from work published in the last
decades that a major source of uncertainty associated with predicting con-
taminant concentrations is the lack of detailed information about the spatial
heterogeneity of the hydraulic conductivity in the subsurface (see e.g. Gelhar
and Axness (1983); Burr et al. (1994)). A long standing approach to deal
with this uncertainty is the stochastic parameterisation of the hydraulic con-
ductivity through random space functions with statistics inferred from field
and laboratory data. Via flow and transport equations, the contaminant
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concentrations being modelled are random functions too. Their statistics
may be inferred from Monte Carlo ensembles of transport simulations, done
for realisations of the random hydraulic conductivity or by stochastic per-
turbation approaches. Statistical moments like the mean and the variance
can be extracted from these random functions, giving a first estimate of the
expected concentration at a point in space and time. The variance can help
to assess the reliability of the mean concentration in predicting the true
concentration.

However, more information is needed for a complete risk assessment.
The complete statistical information of a random function is contained in
its probability density function (PDF). Thus, also higher moments like the
skewness or the kurtosis can be extracted from the PDF. Environmental
agencies regulate risk thresholds by prescribing an exceedance probability
which depends on the concentration PDF and cannot be calculated from
the moments alone (Andričević and Cvetković, 1996). Therefore, the con-
centration PDF is a central quantity in risk assessment. This is one of the
reasons why the PDF method has received an increased attention during
the last decade (Suciu et al., 2016). Transport equations can be formu-
lated for PDFs. They not only depend on the time and the position, like
the mean concentration for example, but also on the concentration of each
species being considered. This dependence makes PDF equations highly di-
mensional and due to computational limitations they cannot be solved by
conventional grid based Eulerian numerical methods. Instead, it is common
to use particle based Lagrangian methods to solve PDF equations (Pope,
1985; Fox , 2003; Suciu et al., 2016). These particle methods are based on
the similarity between PDF equations and Fokker-Planck equations. How-
ever, taking a closer look at these two types of equations, one finds that they
actually describe the time evolution of two different random variables, or in
other words two different random functions and thus different processes. In
Chapter 2, consistency conditions will be derived, relating PDF equations to
Fokker-Planck equations. Based on these conditions, an efficient numerical
solver for PDF equations will be presented.

Upscaling equations to coarser scales through spatial filtering has a long
history in subsurface hydrology (Wen and Gómez-Hernández , 1996; Renard
and Marsily , 1997; Rubin et al., 1999; Attinger , 2003). Upscaling equations
separates the dynamics of the scales larger than the filter size from sub-filter
effects, which are modelled. The results of measurements in the subsurface
depend on the support volume they inherently have (Gelhar , 1977). In order
to interpret these measurements and to use them in or to compare them to
numerical simulations, upscaling procedures are needed. Furthermore, if an
aquifer is to be modelled on a field-scale, even if enough measurements where
available to parameterise such a model, a highly resolved model quickly
becomes computationally unfeasible. Thus, upscaling a numerical model
also helps to reduce the computing time. Therefore, it comes naturally to
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adapt such filtering techniques to PDF equations. In turbulence theory
and combustion physics this has already been done, resulting in so-called
filtered density function (FDF) methods. However, these FDF methods
have only recently been applied to groundwater transport problems in a
paper on which this work is based upon (Suciu et al., 2016). FDF methods
are applied to groundwater transport problems in Chapter 3. Therefore,
the parameters of the FDF equation need to be upscaled from fine-grained
descriptions.

The crux of PDF/FDF methods is finding an appropriate mixing model,
which describes the temporal evolution of the uncertainty, to put it simply.
As will be shown in Chapters 2 and 3, mixing models which are used suc-
cessfully for transport in turbulent flows, do not necessarily perform well
when applied to groundwater transport. Chapter 4 deals with the problem
of finding an adequate mixing model for the subsurface transport. If a cer-
tain class of mixing models is applied and the variance transport equation
is derived from the PDF equation, then different variations of this class of
mixing models can be tested with the much easier to handle variance equa-
tion. Subsequently, a promising mixing model can be transferred back to
the PDF equation. As shown in this work, better mixing models for PDFs
applied to groundwater transport can indeed be found this way.

Groundwater Flow and the Transport therein

This section gives an overview of the theories used to describe the flow and
transport in the subsurface.

From the Pore-Scale to a Continuum Description

It is assumed that the subsurface can be described as a porous medium.
Such a porous medium is characterised by the subdivision of the medium
into a solid matrix and the pore space. The pore space is occupied by fluids,
which flow through this space. The subdivision holds down to a minimal
characteristic length scale.

In principle, the flow and transport in the subsurface can be modelled in
this pore space. The flow and transport equations are relatively easy to solve,
because in general the viscous forces dominate the advective inertial forces,
which means that the flow can be described in a linearised form, the Stokes
flow (Bear and Cheng , 2010). The true difficulty in modelling the flow and
transport in the pore space arises from the boundaries, which are composed
of the solid matrix and can form very complicated geometries. Neither
measuring nor describing the pore geometries is feasible on a catchment
scale. Therefore, an upscaling procedure is needed in order to derive an
averaged description.
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Figure 1.1: An illustration of the upscaling process from the pore-scale to
the continuum scale.

One possible way of upscaling equations from the pore-scale to the con-
tinuum scale is by introducing so-called representative elementary volumes
(REV) (Bear , 1972). An REV must contain both, parts of the solid matrix
and parts of the pore space. A spatial average over the REV for all points
of the pore-scale domain is performed in order to derive upscaled equations.

The size of an REV is chosen in such a way that it is small enough to be
assumed to be a point on the continuum scale and to include both, parts of
the solid matrix and parts of the pore space. But it is chosen large enough
that an average over the fluctuations of a quantity gives a statistically mean-
ingful average over its volume. An illustration of this upscaling procedure
is given in Figure 1.1.

A second approach to deriving equations on the continuum scale is the
method of homogenisation. This approach is used when heterogeneities
appear on two or more clearly distinct scales. A periodic structure at the
smaller scale is a prerequisite. But it has been shown, that homogenisation
also works well for small-scale structures that are not truly periodic (Bear
and Cheng , 2010).

Transport Equations

The equation describing the fluid flow in porous media on the continuum
scale was first derived empirically for one dimension by Darcy (1856). But
later it was derived mathematically rigorously from the Navier-Stokes equa-
tions (e.g. Bear and Cheng , 2010). For a three-dimensional domain and for
a fluid of constant density, Darcy’s law can be formulated as

q = −K · ∇h. (1.1)
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Figure 1.2: The hydraulic conductivity K, which appears in Darcy’s law
(1.1), realised as an anisotropic log-normal random field.

The flux q is the discharge per unit area. ∇h is the piezometric head gradi-
ent, with h = z+ p

ρg and z being the elevation at which the piezometric head
is being considered. The variables p and ρ are the fluid’s pressure and mass
density and g is the acceleration of gravity. The coefficient of proportional-
ity K is the hydraulic conductivity and describes how much resistance the
fluid experiences when flowing through the upscaled continuum of a porous
medium. In general it is a tensor and reduces to a scalar only in case of an
isotropic medium. The hydraulic conductivity depends on the solid matrix
of the porous medium and on the fluid properties, namely its density and
its dynamic viscosity. In nature, the hydraulic conductivity varies over 14
orders of magnitude (Bear et al., 1968) and can have very heterogeneous
spatial distributions. See Figure 1.2 for an artificial example, which was
generated by the Kraichnan algorithm presented in Section 1.5.

Solutes are transported by the groundwater. Its flux is described by
Darcy’s law (1.1), but for the transport the fluid velocity is of interest.
Therefore, the so-called seepage velocity is introduced:

V =
q

ϕ
, (1.2)

with ϕ being the porosity of the porous medium. V is the mass-averaged
velocity of the fluid.
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Figure 1.3: The separation of water parcels, illustrated as streamlines, is
enhanced by the solid matrix.

Two assumptions are made in order to derive the well-known advection-
dispersion-reaction equation. The first one is the well justified assumption
of the incompressibility of the groundwater flow V(x):

∇ ·V = 0. (1.3)

The second one is the assumption of a Fickian transport, with the local
dispersion tensor D. The concept of mechanical dispersion needs to be in-
troduced. Going back to the pore-scale, it can be understood why spatial
fluctuations of the subsurface properties make the transport of solutes het-
erogeneous too. Water parcels transporting a contaminant and travelling
very closely together can be separated and follow different and distinct flow
paths. As a consequence, an enhanced spreading of the plume is observed.
This mechanism of separating water parcels without the influence of dif-
fusion is called mechanical dispersion. Such a separation is illustrated on
the pore-scale in figure 1.3. However, in the upscaled transport equation
this enhanced spreading is described by an additional diffusion-like term. In
general, it is much stronger than the molecular diffusion.

The advection-dispersion-reaction equation for Nα solutes with concen-
trations Cα(x, t), α = 1 . . . Nα and the reaction rates Sα can now be formu-
lated as:

∂tCα + Vi∂xiCα = Dij∂xi∂xjCα + Sα. (1.4)

The left hand side of equation (1.4) is the material derivative and the two
terms on the right hand side are due to the Fickian dispersion and the
reactions. The local dispersion is assumed to be diagonal with D11 = DL

being the longitudinal component, Dii = DT for i > 1 being the transversal
components, and Dij = 0 for i ̸= j. The Einstein summation convention
will be used throughout this work.
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Probability Density Functions

A short introduction to probability density functions will be given in this
section. Due to the scarcity of data in subsurface systems, processes like the
transport of solutes are modelled by random functions. Throughout this
work, random functions will be denoted by capital letters, e.g. the random
concentration of a solute C(x, t). If the concentration c is measured at point
x0 and time t0, the random concentration takes the value of the so-called
sample point C(x0, t0) = c. The sample point is an independent variable
and thus not a random variable. Such sample points will be denoted by the
same letter as their corresponding random function, but with a lowercase
letter.

The cumulative distribution function (CDF) F (c) is defined by the prob-
ability that a random variable is less than a given value c:

F (c) = Pr(C < c). (1.5)

From this definition it is clear that the probability for a value to fall into an
interval can be calculated from

Pr(c1 < C < c2) = F (c2) − F (c1). (1.6)

The CDF F (c) is a monotonically increasing function bound to the interval
[0, 1].

The probability density function (PDF) f(c) of the random variable C
is the derivative of the CDF:

f(c) =
dF (c)

dc
. (1.7)

By integrating the PDF from c1 to c2, its meaning becomes clear:∫ c2

c1

f(c)dc = F (c2) − F (c1) = Pr(c1 ≤ C < c2). (1.8)

And for an infinitesimal interval:

Pr(c ≤ C < c + dc) = f(c)dc. (1.9)

Thus, the integral of the PDF over an interval gives the probability that its
corresponding function takes a value from this interval.

A PDF has three important characteristics. Its integral over the com-
plete sample space is normed to unity, it is a non-negative function and it
vanishes as its argument tends to infinity.

The mean (or expectation) of a random variable C is defined by

⟨C⟩ =

∫
Ωc

cf(c)dc, (1.10)
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with Ωc being the sample space. A function Y (C) of a random variable is
also random. Its mean is defined very similarly to the mean (1.10) of the
random variable it depends upon:

⟨Y (C)⟩ =

∫
Ωc

Y (c)f(c)dc. (1.11)

In experiments or in numerical simulations, these integrals are approximated
by finite sums. Therefore, an ensemble of possible states is measured or
computed, by which the ensemble average is defined as

⟨C⟩N =
1

N

N∑
n=1

C(n). (1.12)

Besides the mean, all higher statistical moments of a random variable, like
the variance, the skewness, and so on, are defined by an integral over the
PDF. The nth central moment of C is defined by

µn =

∫
Ωc

(c− ⟨C⟩)nf(c)dc. (1.13)

This makes the PDF a variable with a large amount of statistical inform-
ation. It contains all one-point statistical information of its variable. In
general, the PDF cannot be reconstructed from only a finite number of mo-
ments. In this context, “one-point” means that the PDF only contains the
statistical information at one point and thus does not describe the complete
statistics of the random field. Spatial correlations or gradients cannot be
obtained from a one-point PDF.

By substituting Y (c) in equation (1.11) by the Dirac delta function
Y (c) = δ(C − c), the PDF can be identified with the expectation of the
Dirac delta function:

f(c) = ⟨δ(C − c)⟩ . (1.14)

This identity is important for the derivation of many fundamental results
of the PDF methods, which will be presented in Chapter 2. In this context
the Dirac delta function is also called the fine-grained PDF.

Figure 1.4 shows a Gaussian PDF and its FDF as green dashed lines.
In blue, 20 fine-grained PDFs are shown, which approximate the PDF by
the ensemble average (1.12). In the plot beneath, the fine-grained PDFs are
summed up and thus approximate the CDF as a step function.

Global Random Walk Algorithm

The global random walk (GRW) method is the numerical solver used through-
out this work. It is a generalisation of particle tracking methods. Although
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Figure 1.4: The PDF and the CDF are shown as green dashed lines. The
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they are well-suited to calculate global coefficients, like ensemble dispersion
coefficients with only a few hundred particles (Dentz et al., 2002; Schwarze
et al., 2001), they suffer from high computational costs if accurate local
quantities are of interest (Schüler et al., 2016). The GRW method decreases
the computational time and at the same time increases the accuracy (Vamoş
et al., 2003). The method does not simulate single particles sequentially, but
instead simulates the movements of many particles simultaneously projected
onto a regular grid and thus simulates the movement of particle numbers.
The cell sizes of the grid on which the particles move and the discretised
time steps are chosen based on physical parameters such as the diffusion
coefficient and the drift velocity. The algorithm can be interpreted as a su-
perposition of many weak solutions of Itô equations projected onto a regular
grid (Suciu, 2014).

The algorithm described here is adapted to two-dimensional problems,
but it can easily be extended to higher dimensions. The particles move on
a regular grid with the particle position being (xi, xj) = (iδx1, jδx2), with
δx1δx2 being the grid cell size. The particles located at position xi jump to
xi − d1δx1 and to xi + d1δx1 and analogous for the second axis from xj to
xj − d2δx2 and to xj + d2δx2, with d1 and d2 being natural numbers which
are related to the diffusion coefficient. Similarly, particles at xi are drifted
to xi+v1δx1 and from xj to xj+v2δx2 with v1 and v2 being natural numbers
related to the velocity field. The exact relations will be introduced later.
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The number of particles at position (xi, xj) and at time tk = kδt is
denoted by n(i, j, k), where δt is the discretised time step. The number of
particles moving at time tk from position xi to xl on the i-axis and from
position xj to xm on the j-axis is described by δn(l|i,m|j, k). The movement
of the particles is now calculated as a sum of all possible jumps:

n(i, j, k) = δn(i + v1|i, j + v2|j, k)

+ δn(i + v1 + d1|i, j + v2|j, k)

+ δn(i + v1 − d1|i, j + v2|j, k)

+ δn(i + v1|i, j + v2 + d2|j, k)

+ δn(i + v1|i, j + v2 − d2|j, k), (1.15)

n(l,m, k + 1) = δn(l,m, k) +
∑

i ̸=l,j ̸=m

δn(l|i,m|j, k) (1.16)

As a start, these particle jumps are illustrated in one dimension and only for
diffusion in Figure 1.5 over three time steps. The two-dimensional particle
jumps with advection (blue arrow) and diffusion (green arrows) are illus-
trated in Figure 1.6 over one time step. The particle movements δn are
binomial random functions and can be efficiently approximated by

δn(i + v1 − d1|i, j + v2|j, k) =

{
r1n(i, j, k)/2 if n is even,

r1n(i, j, k)/2 + θ if n is odd
(1.17)

δn(i + v1 + d1|i, j + v2|j, k) = n(i, j, k) − δn(i + v1 − d1|i, j + v2|j, k),
(1.18)

where θ is a random variable which takes the values 0 and 1 with equal
probability and equivalently for jumps in j-direction. The coefficients ri
makes it possible to simulate arbitrary diffusion coefficients, which cannot
be mapped by the discrete di alone.

In order to obtain meaningful results, the particle velocities, composed
of a drift and a diffusion part, need to be related to physical quantities,
namely the diffusion coefficient and the velocity.

The grid cell size δx1δx2 and the time steps δt are related to the diffusion
coefficient through ri by

D = ri
(diδxi)

2

2δt
. (1.19)

The advective motion of the particles through a random velocity field is
described by a set of integers (v1, v2), which are defined by

vi =

⌊
δt

δxi
Vi(xi)

⌋
, (1.20)

with ⌊·⌋ being the floor function.
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Figure 1.5: An illustration of one-dimensional GRW particle movements
only due to diffusion over three time steps.
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The concentration is calculated from the particle distribution with

c(xi, xj , tk) =
1

lδx

l/2∑
i′=−l/2

l/2∑
j′=−l/2

n(i + i′, j + j′, k), (1.21)

where l is a coefficient, which takes into account that for specific implement-
ations of the algorithm, only every second cell is populated with particles,
in which case it is set to l = 2. Otherwise it is l = 1.

Random Velocity Field Generation

A Gaussian random velocity field V(x), corresponding to a log-normal hy-
draulic conductivity Y (x) = lnK(x), can be generated in a first order ap-
proximation by the Kraichnan method (Kraichnan, 1970) as a randomised
spectral representation given by the formula

Vi(x) = ⟨V1⟩ δi1 + σY ⟨V1⟩
√

2

N

N∑
j=1

pi(k
(j)) cos(k(j) · x + ϕ(j)), (1.22)

where i = 1, . . . , d and d is the spatial dimension of the problem and

p(k) = e1 −
kk1
k2

(1.23)

is a projector ensuring the incompressibility of the velocity field (Schwarze
et al., 2001; Dentz et al., 2002). It is assumed that the mean velocity ⟨V⟩ =
⟨V ⟩ δi1 is aligned with the first unit vector e1. The simple representation
(1.22) is obtained by choosing the probability density of the random vector
k(j) as given by the Fourier transform of the correlation function of the
statistically homogeneous Gaussian random field Y divided by the variance
σ2
Y (see e.g. Kurbanmuradov and Sabelfeld , 2010). In the present study, a

Gaussian correlation of the Y field is considered. In the general anisotropic
case, it is given by

⟨Y (x)Y (x + r)⟩ = σ2
Y exp

(
− r2

λ2
Y

)
, (1.24)

with λY being the correlation length. The random vectors k(j) are thus
distributed according to the PDF

f(k(j)) =
d∏

i=1

√
πλYi exp

[
−π2

(
k
(j)
i λYi

)2
]

=

d∏
i=1

f(k
(j)
i ), (1.25)

that is, they have mutually independent components. With the change of

variables k
(j)
i = η(j)/(

√
2πλYi), where η(j) are standard normally distributed
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random variables, the corresponding probability measures of the components

become Gaussian, f(k(j))dk
(j)
i = (2π)−1/2 exp(η(j)

2
/2)dη(j). The random

components of k(j) are therefore extracted from Gaussian distributions with
vanishing mean and variances 1/(2π2λ2

Yi
).

The phases ϕ(j), also being independent random numbers, are drawn
from a uniform distribution in the interval [0, 2π). Randomised spectral
representations like (1.22), are particular cases of more general random-
isation formulas using sums of cosine and sine functions (Kurbanmuradov
and Sabelfeld , 2010; Heße et al., 2014). In this case, the general repres-
entation is obtained when

√
2 cos(k(j) · x + ϕ(j)) in (1.22) is replaced by

ξ(j) cos(2πk(j) ·x) + ζ(j) sin(2πk(j) ·x), where ξ(j) and ζ(j) are standard nor-
mal variables, mutually independent, and independent of k(j). Tests have
shown that the two representations are equally accurate, with the only dif-
ference that the general formula is about two times slower.

When dropping the first term of equation (1.22), as well as ⟨V1⟩ and the
projector p(k(j)) from the second term, (1.22) reduces to the randomisation
formula for the fluctuations of the Y field.
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Chapter 2

Probability Density
Functions

This chapter is mainly based on the paper

Suciu, N., L. Schüler, S. Attinger, and P. Knabner (2016), Towards a filtered
density function approach for reactive transport in groundwater, Adv. Wa-
ter Resourc., 90, 83-98, doi:10.1016/j.advwatres.2016.02.016,

with parts based on the papers

Suciu, N., F. A. Radu, S. Attinger, L. Schüler, and P. Knabner (2015), A
Fokker-Planck approach for probability distributions of species concentra-
tions transported in heterogeneous media, J. Comput. Appl. Math., 289,
241-252, doi:10.1016/j.cam.2015.01.030

and

Suciu, N., L. Schüler, S. Attinger, C. Vamos, and P. Knabner (2015), Con-
sistency issues in PDF methods, An. St. Univ. Ovidius Constanta, Ser.
Mat., 23 (3), 187-208, doi:10.1515/auom-2015-0055.
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Introduction

Geological formations are heterogeneous and their properties are normally
not measurable everywhere. This lack of knowledge implies uncertainty in
aquifer parameters like hydraulic conductivity. As a consequence, quantify-
ing the transport of solutes through these formations is also uncertain. This
uncertainty is dealt with by using a probabilistic description of the involved
processes. Going beyond the mean values and also considering the variance
is a good starting point to take the uncertainty into account. But in the
case of risk assessments, the need to predict extreme values of contamin-
ant concentrations becomes important. However, such occurrences cannot
be described by the variance alone. Hence, the need to describe the solute
concentrations by their complete probability density function (PDF) arises.

PDF methods were developed in the context of modelling turbulent re-
acting flows as a powerful tool to close highly non-linear terms arising from
averaged chemical reaction rates (Lundgren, 1969; Pope, 1985, 2000; Fox ,
2003; Haworth, 2010). If the reaction rates only depend on the set of species
concentrations, even highly non-linear reactions can simply be included in
the formulation without the need to approximate them. The PDF approach
is based on solving evolution equations for the one-dimensional (one-point
one-time) joint PDF of sets of variables describing the state of the system.
These variables are for example flow velocity, chemical composition, turbu-
lent frequency, temperature, or enthalpy. The PDF evolution equations can
be derived by different methods (Pope, 1976, 1985), starting from local bal-
ance equations governing the flow and the evolution of the thermochemical
state of the system. The PDF equations are unclosed because they con-
tain terms which cannot be determined by the one-point PDF alone (Pope,
1985). But the chemical source terms in the PDF equations are closed, in
strong contrast to other approaches, like the Reynolds-averaged flow equa-
tions, where chemical source terms pose major problems (Borghi , 1988; Fox ,
2003). The unclosed terms which require modelling are those describing the
turbulent frequency, the scalar mixing by molecular diffusion, and the effects
of turbulent velocity fluctuations, if the velocity is not included as a state
variable (Fox , 2003; Haworth and Pope, 2011). A recent review of scalar
mixing models is given by Celis and Figueira da Silva (2015).

When modelling mass transport through highly heterogeneous natural
groundwater systems, the randomness is introduced by the stochastic para-
metrisation of the hydraulic conductivity, which accounts for the parameter
uncertainty due to a lack of measurements. This stochasticity implies the
randomness of the Darcy flow velocity and of the dependent variables of the
transport equations (Schwede et al., 2008). The randomness in modelling
groundwater flows can be enhanced by considering uncertain sources in the
flow equations, like random recharge (Pasetto et al., 2011) or by random
parametrisations of storage coefficients for transient flows (Alzraiee et al.,
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2014). However, the uncertainty of the hydraulic conductivity is an omni-
present source of randomness and it is the focus of this work. While in earlier
stochastic approaches the focus was mainly on the mean and in some cases
the variance of the concentration, during the last decade the need to model
the concentration PDF received an increased attention (Schwede et al., 2008;
Sanchez-Vila et al., 2009; Dentz and Tartakovsky , 2010; Meyer et al., 2010;
Cirpka et al., 2011; Venturi et al., 2013; Suciu, 2014; Suciu et al., 2015a).

Concentration PDFs of conserved scalars may be inferred without solv-
ing PDF evolution equations in case of small or moderate fluctuations of the
hydraulic conductivity. In this case they are modelled as log-normal ran-
dom functions with finite correlation lengths. Then, a Gaussian shape of the
concentration may be assumed or inferred, which is completely determined
by its first two moments. The statistics of these moments, specified un-
der various assumptions in a first-order perturbation approach, are finally
“mapped” onto the concentration PDF via numerical (Schwede et al., 2008)
or analytical techniques (Dentz and Tartakovsky , 2010; Cirpka et al., 2011)
using the Gaussian functional shape of the concentration.

Another favourable situation is that of stratified transport, when the
Gaussian concentration can be expressed explicitly as a function of the
hydraulic conductivity, with the only assumption of negligible transverse
dispersion. This leads to an explicit functional dependence of the concen-
tration PDF on the hydraulic conductivity (Sanchez-Vila et al., 2009). This
approach also provides the PDF of reacting chemical species if their con-
centrations are fully defined by monotonous functions of conserved scalars
(Sanchez-Vila et al., 2009).

For advective-reactive transport, PDFs of reacting species can be com-
puted by solving evolution equations similar to those used in turbulence
(Venturi et al., 2013). Such PDF equations do not contain mixing terms,
because molecular diffusion is neglected. The only closure problem concerns
terms including velocity fluctuations, which are modelled as effective, or up-
scaled, diffusion coefficients, leading to Fokker-Planck evolution equations
(Venturi et al., 2013; Suciu et al., 2015a).

By considering the velocity among the state variables, joint velocity-
concentration PDF equations similar to turbulence problems can be derived
and no closure for velocity fluctuations is necessary. Mixing is modelled
similarly to turbulence approaches and the concentration PDF is obtained
by integrating the joint velocity-concentration PDF over the velocity state
space (Meyer et al., 2010). Evolution equations of the concentration PDF
weighted by a conserved scalar, which generalises the mass density function
used in turbulence (Pope, 1985), can be formulated as Fokker-Planck equa-
tions (Suciu et al., 2015a). Closures are provided by stochastically upscaled
diffusion coefficients (Suciu, 2014; Suciu et al., 2015a) and by mixing models,
which are formulated as a diffusion in concentration space. The paramet-
ers for this diffusion process can be inferred from measured or simulated
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concentration time series (Suciu et al., 2015b).
Throughout this work, the term “mixing” will be used with a precise

meaning, as in turbulence literature (Celis and Figueira da Silva, 2015),
which, although related, is different from its meaning in stochastic sub-
surface hydrology, where it is associated with the effective dispersion coef-
ficient (Dentz et al., 2000). The latter is the diffusion coefficient of the
stochastic process modelling the transport, centred on the actual plume
centre of mass. It differs from the diffusion coefficient of the process centred
on the centre of mass averaged over the ensemble of velocity realisations,
i.e. the ensemble dispersion coefficient describing the spreading of the solute
plume (Dentz et al., 2000), by the diffusion coefficient of the centre of mass
process (Suciu, 2014, equation (3.3)). The molecular diffusion coefficient
and a term describing the hydrodynamic dispersion by unresolved velocity
fluctuations constitute the local dispersion. It enters additively into both
the effective and the ensemble dispersion coefficients. All these are processes
are in physical space. Instead, a mixing model generically consists of an ad-
vection and a diffusion process in concentration space. The mixing models
provide closures for the conditional average of the diffusion flux, determined
by the local dispersion coefficients (Suciu et al., 2016) and are related in this
way to the transport processes in physical space.

When comparing the PDF approach applied to groundwater flows and
to turbulent flows, there are three major differences. The first one concerns
the number of parameters. While only a few parameters are required to
solve PDF equations of turbulent flows (Sabel’nikov et al., 2006; Colucci
et al., 1998; Jaberi et al., 1999), upscaling flow and transport processes
in groundwater, by either spatial or stochastic averaging, requires fields of
parameters: the hydraulic conductivity (Beckie et al., 1996a; Efendiev and
Durlofsky , 2003) or the velocity field (Heße et al., 2009; Suciu, 2014). The
second difference, related to the first one, is the origin of the randomness.
Turbulent flows are governed by the deterministic Navier-Stokes equations.
But for large Reynolds numbers the flow velocity behaves like a random
variable due the sensitive dependence of the solution on initial and boundary
conditions. This mathematical aspect corresponds to an experimental lack of
reproducibility of the measurements in turbulent systems (Pope, 1985). In
groundwater systems, the spatial variability of the hydraulic conductivity
cannot be completely described. Therefore, stochastic parameterisations
by random space functions are used to account for this uncertainty. The
flow equations are thus solved in a probabilistic sense (Cirpka et al., 2011).
In this case, randomness is caused by the uncertainty of the parameter
fields propagated through the flow and transport equations, which have to
be modelled as stochastic equations. The third difference is given by the
available experimental data. In turbulence, detailed velocity, temperature,
and concentration profiles are available from measurements. Whereas for
groundwater flows, the data is scarce and depends on the support volume

18



of the used measuring technique.
A closer look at PDF equations will be taken in Section 2.2, followed

by the detailed derivation of these equations in Section 2.3. Next, relation-
ships between PDF equations and Fokker-Planck equations are examined
in Section 2.4. These relationships are of interest, because efficient numer-
ical solvers for Fokker-Planck equations exist. These numerical solvers are
presented in Section 2.5, together with the results of numerical simulations
of a transport problem in groundwater. Finally, this chapter is concluded in
Section 2.6.

PDF Equations

In this chapter, a statistically homogeneous random velocity field V(x) with
divergence-free samples is considered. This field is a solution of the continu-
ity and Darcy equations with a random parameterisation of the hydraulic
conductivity. Furthermore, the effects of local hydrodynamic dispersion and
molecular diffusion on transport in a saturated aquifer system are modelled
by an isotropic diffusion process specified by a constant diffusion coefficient
D. A system of reacting chemical species described by the concentrations
Cα(x, t) ∈ Ωc, x ∈ Ωx, t ∈ R+, α = 1, . . . , Nα is transported through the
aquifer according to the system of balance equations

∂tCα + Vi∂xiCα = D∂xi∂xiCα + Sα, (2.1)

where S(C) denotes the reaction rates. Since the velocity field V(x) is a
random function, the concentration vector C(x, t) is a random field as well.

The marginal one-point one-time PDF f(c;x, t) of the random concen-
tration C solving equation (2.1) satisfies the PDF evolution equation

∂tf + ∂xi(Vif) − ∂xi∂xj (Dijf) = −∂cα∂cβ (Mαβf) − ∂cα(Sαf), (2.2)

where V and D are the stochastically upscaled drift vector and the diffusion
tensor, respectively, and M is the conditional dissipation rate accounting
for mixing by diffusion (Suciu et al., 2015a,b). As a common convention, a
semicolon is used in writing the concentration PDF f(c;x, t) to emphasize
the distinction between the value c taken by the random function C(x, t)
in the state space Ωc and the values x and t of its independent variables in
Ωx × R+ (Pope, 1985; Minier and Peirano, 2001).

The two mostly used approaches to derive the PDF equation (2.2) are the
delta function method and the test function method and will be presented
in detail in Section 2.3. The first one starts with the definition of the PDF
given by the ensemble average of delta functions depending on random fields
and is shown in Section 2.3.1. For instance the concentration PDF is given
by f(c;x, t) = ⟨δ(C(x, t) − c)⟩. Such singular space functions were shown to
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define consistent probability distributions (Suciu, 2014) and formal calculus
involving them corresponds to rigorous operations with Dirac functionals
(Klimenko and Bilger , 1999; Suciu et al., 2015b,a). The PDF equation is
obtained by evaluating ∂tf from formal derivatives of δ functions (Pope,
1976; Sanchez-Vila et al., 2009; Haworth, 2010; Suciu et al., 2015b). In the
test function approach, presented in Section 2.3.2, the ensemble average of
the operator ∂t + Vi∂xi applied to a test function of state variables Q, with
suitable properties, is evaluated in two different ways: first, by interchan-
ging derivatives and the stochastic average and using the incompressibility
of the velocity field. And second, by multiplying the right hand side of
the concentration transport equation (2.1) by Q and taking the ensemble
average. The PDF equation follows by equating the two expressions for
⟨∂tQ + Vi∂xiQ⟩, performing integration by parts, and considering the van-
ishing of Q at the boundaries of Ωc (Pope, 1985; Fox , 2003; Haworth, 2010;
Suciu et al., 2015a).

Because of the high dimensionality of the PDF equations (time and space
dimensions and the Nα dimensions of the concentration space Ωc) solutions
by standard discretisation methods (finite-differences or finite-elements) are
impracticable and computationally unfeasible (Pope, 1985; Haworth, 2010).
Therefore, numerical solutions are usually obtained by Monte Carlo meth-
ods. “Eulerian particle methods” simulate the finite-difference solution of
the PDF equation by locating an ensemble of N notional particles at each
point of a Eulerian grid. These particles have assigned representative values
of the state variable, e.g. concentration, initially distributed according to the
initial PDF. The particles move on the grid following rules consistent with
the finite-difference scheme. Averaging over ensembles of particles converges
to the expectation estimated by the finite-difference scheme as N tends to
infinity (Pope, 1981). Even if they are computationally simpler than other
particle methods in use, Eulerian particle methods are numerically dissip-
ative and have low spatial accuracy (Möbus et al., 2001; Haworth, 2010).
Another Monte Carlo approach is the “stochastic Eulerian field method”
which uses a representation of the PDF by an ensemble of stochastically
equivalent space-time random fields, with the same one-point one-time PDF
as the solution of the PDF equation (Mustata et al., 2006; Jones et al., 2012;
Dodoulas and Navarro-Martinez , 2013). Stochastic fields are governed by
partial differential equations with a linear multiplicative noise term, inter-
preted either in Itô (Valiño, 1998) or Stratonovich (Sabel’nikov and Soul-
ard , 2005) form. The computational effort of solving a partial differential
equation for each field renders the method of stochastic Eulerian field less
competitive than other Monte Carlo methods when large numbers of fields
are required (Haworth, 2010). “Lagrangian particle methods” use systems
of stochastic particles moving in continuous space, according to grid-free
particle tracking procedures. Eventually, grids are used to compute aver-
ages and to interpolate the output of averaged transport equations to the
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particles positions. Lagrangian methods are now the dominant numerical
approach for PDF equations. The performance of the above Monte Carlo
approaches, with several variants, is analysed by Haworth (2010). The Lag-
rangian particle methods are further examined in Section 2.4.1. Using the
“reverse Fokker-Plank approach”, introduced in Section 2.4.2, GRW particle
methods can be used as an alternative to the Lagrangian particle methods,
better suited to groundwater problems. The details of the numerical solu-
tions of the reverse Fokker-Planck approach are shown in Section 2.4.3. The
results of these simulations are presented in Section 2.5. And finally, Section
2.6 concludes this chapter.

Derivation of the PDF Transport Equation

In this section, the concentration PDF transport equation (2.2) will be de-
rived, first by using the delta function method (Suciu et al., 2015b) in Section
2.3.1 and then by using the test function method (Suciu et al., 2015a) in
Section 2.3.2.

Delta Function Method

The starting point of the derivation is the so-called fine-grained PDF, which
is defined by the multidimensional Dirac delta function, see Section 1.3:

ρ(c;x, t) = δ(C(x, t) − c) =

Nα∏
α=1

δ(Cα(x, t) − cα). (2.3)

Then, the concentration PDF is given by the expectation of the fine-grained
PDF

f(c;x, t) = ⟨δ(C(x, t) − c)⟩ . (2.4)

The PDF transport equation describes the PDF time evolution and as such,
the time derivative of the definition of the PDF (2.4) is taken. Doing so
involves derivatives of δ functions. Such a derivative is defined by∫ ∞

−∞
δ′(y0 − y)g(y)dy = −

∫ ∞

−∞
δ(y0 − y)g′(y)dy, (2.5)

which can be written in a compact notation as δ′(g) = −δ(g′) = −g′(y0). If
y0 = h(x) is a function, the derivative can be generalised by

∂x

∫ ∞

−∞
δ(h(x) − y)g(y)dy = g′(h(x))∂xh(x)

= h′(x)

∫ ∞

−∞
δ(h(x) − y)g′(y)dy

= −h′(x)

∫ ∞

−∞
δ′(h(x) − y)g(y)dy. (2.6)
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This relation too can be formulated in a compact form as

∂xδ(h(x) − y) = −h′(x)∂yδ(h(x) − y). (2.7)

Applying these relationships to the concentration PDF yields

∂tf(c;x, t) = ⟨∂tδ(C(x, t) − c)⟩
= −⟨∂tCα(x, t)∂cαδ(C(x, t) − c)⟩
= −∂cα ⟨∂tCα(x, t)δ(C(x, t) − c)⟩ . (2.8)

In order to calculate derivatives, more knowledge than the one-point PDF
f(x, t) is needed, because a derivative is the limit of the difference quotients
of the dependent and independent variable. This limiting quotient is a two-
point quantity. Quantities which cannot be described by one-point PDFs
alone can be described by so-called conditional PDFs. To see that, a generic
random function Z(x, t) which is not fully described by one-point statistics
alone is considered. Let Q(Z(x, t)) be an arbitrary random function. Then
the following average can be considered

⟨Q(Z(x, t))δ(C(x, t) − c)⟩ =

⟨
δ(C(x, t) − c)

∫ ∞

−∞
Q(z)δ(Z(x, t) − z)dz

⟩
=

∫ ∞

−∞
Q(z) ⟨δ(Z(x, t) − z)δ(C(x, t) − c)⟩dz

=

∫ ∞

−∞
Q(z)f(c, z;x, t)dz

= f(c;x, t)

∫ ∞

−∞
Q(z)f(z|c;x, t)dz, (2.9)

where f(c, z;x, t) = ⟨δ(Z(x, t) − z)δ(C(x, t) − c)⟩ defines the joint PDF in
the c-z sample space. This is similar to the PDF defined by (2.4) in the c
sample space. In the last line of (2.9) the conditional PDF is introduced,
which is defined by

f(z|c;x, t) =
f(c, z;x, t)

f(c;x, t)
. (2.10)

One important conclusion is the relation

⟨Q(Z(x, t))δ(C(x, t) − c)⟩ = ⟨Q(Z(x, t)|c⟩ f(c;x, t), (2.11)

which is the expectation of the random function Q(Z(x, t)) conditional of a
fixed value of the concentration vector c multiplied by the one-point PDF
f(c;x, t) and which will be used throughout the following derivations.

Now, the concentration transport equation (2.1) can be inserted into the
time derivative of the PDF (2.8), yielding

∂tf(c;x, t) = ∂cα
{[
⟨Vi∂xiCα|c⟩ −

⟨
D∂xi∂xjCα

⏐⏐c⟩− Sα(c)
]
f(c;x, t)

}
.

(2.12)
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It should be noted that the last term in equation (2.12), which is the reaction
term, appears in a closed form, which implies that its conditional expectation
is just the value of S evaluated for the sample value c:

⟨Sα(C(x, t))|c⟩ =

∫ ∞

−∞
Sα(c)f(z|c;x, t)dz = Sα(c)

∫ ∞

−∞
f(z|c;x, t)dz = Sα(c).

(2.13)
The other two terms are not closed and require further attention.

The advective term can be transformed to

∂cα [⟨Vi∂xiCα|c⟩ f(c;x, t)] = ∂cα ⟨Vi∂xiCαδ(C(x, t) − c)⟩
= −∂xi [⟨Vi|c⟩ f(c;x, t)] , (2.14)

where the first equality follows from (2.11) and for the final result, the rela-
tionship (2.7) and the incompressibility ∂xiVi = 0 were used. By decompos-
ing the velocity into a mean part ⟨V⟩ and a fluctuating part V′ = V− ⟨V⟩
and by using the gradient diffusion closure (Pope, 1985; Fox , 2003; Haworth,
2010) ⟨

V′⏐⏐c⟩ f(c;x, t) = −D∗∇f(c;x, t), (2.15)

equation (2.14) becomes

−∂xi [⟨Vi|c⟩ f(c;x, t)] = −∂xi [⟨Vi⟩ f(c;x, t)] +∂xi

[
D∗

ij∂xjf(c;x, t)
]
. (2.16)

The upscaled diffusion tensor D∗ is calculated by turbulence models (Pope,
2000) or by stochastic upscaling of diffusion in random velocity fields (Suciu,
2014; Attinger et al., 1999).

The second unclosed term in equation (2.12) is the conditional expect-
ation of the molecular diffusion in the concentration equation (2.1). It will
be shown that this term is related to the divergence of the diffusive flux in
physical space of the PDF f(c;x, t), with the same diffusion coefficient D
as in equation (2.1). Since by (2.4), the PDF is given by the expectation of
δ functions, the divergence of the diffusive flux of f(c;x, t) is determined by

D∂xi∂xif(c;x, t) = D∂xi∂xi ⟨δ(C(x, t) − c)⟩
=D∂xi ⟨−∂xiCα(x, t)∂cαδ(C(x, t) − c)⟩
= −D ⟨∂xi∂xiCα(x, t)∂cαδ(C(x, t) − c) + ∂xiCα(x, t)∂cα∂xiδ(C(x, t) − c)⟩
= − ∂cα

⟨
D∂xi∂xi

Cα(x, t)δ(C(x, t) − c)
⟩

+ ∂cα∂cβ ⟨D∂xiCα∂xiCβδ(C(x, t) − c)⟩
= − ∂cα [⟨D∂xi∂xiCα|c⟩ f(c;x, t)]

+ ∂cα∂cβ [⟨D∂xiCα∂xiCβ|c⟩ f(c;x, t)] . (2.17)
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With equations (2.16) and (2.17), the velocity, dispersion, and mixing coef-
ficients can be defined as:

Vi = ⟨Vi⟩ + ∂xjD
∗
ij , (2.18)

Dij = D + D∗
ij , (2.19)

Mαβ = ⟨D∂xiCα∂xiCβ|c⟩ . (2.20)

Inserting these coefficients into equation (2.12), a PDF transport equation
is derived and it takes the form of equation (2.2).

Test Function Method

The test function method derives the concentration PDF transport equation
(2.2) without using δ functions (Suciu et al., 2015a). An arbitrary function
Q(x, t) = Q(C(x, t)) with compact support in the interior of the concentra-
tion space Ωc is considered, which only depends on space and time variables
through the random concentration vector C(x, t). Two independent expres-
sions of the ensemble average of the product between a weighting function
Θ(C(x, t)) and the differential operator A = ∂t + Vi∂xi applied to the func-
tion Q will be equated, yielding equation (2.2). The function Θ(C(x, t)) will
be discussed in detail in Section 2.4 and for now it is enough to know that
it fulfills the continuity equation ∂tΘ + Vi∂xiΘ = 0 and that it will be used
in the following to define weighted PDFs.

The first expression is given by

⟨ΘAQ⟩ = ⟨Θ∂tQ + ΘVi∂xiQ⟩ = ⟨∂t(ΘQ) + ∂xi(ViΘQ)⟩
= ∂t ⟨ΘQ⟩ + ⟨Vi⟩ ∂xi ⟨ΘQ⟩ + ∂xi

⟨
V ′
i ΘQ

⟩
, (2.21)

besides the continuity equation for Θ, the incompressibility of the velocity
field ∂xiVi = 0 and the Reynolds decomposition of the velocity field into its
mean part and the fluctuations about the mean V ′

i = Vi − ⟨Vi⟩ where used
here. In order to compute the ensemble average (2.21), more information
is needed than provided by the one-point PDF f(c;x, t). In this case, the
statistics of the velocity field are not fully described. Following Fox (2003,
Section 6.2), the unknown statistics are lumped together in a random vector
Z ∈ Ωz and the joint PDF f(c, z;x, t) is considered. The ensemble average
of a function f(C,Z) = F1(C)F2(Z) is then computed by

⟨F (C(x, t),Z(x, t))⟩ =

∫
Ωc

∫
Ωz

F1(c)F2(z)f(c, z;x, t)dcdz

=

∫
Ωc

F1(c) ⟨F2|c⟩ f(c;x, t)dc, (2.22)

where the conditional average is performed with respect to the conditional
PDF f(z|c;x, t) = f(c, z;x, t)/f(c;x, t):

⟨F2|c⟩ =

∫
Ωz

F2(z)f(z|c;x, t)dz. (2.23)
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With equations (2.22) and (2.23), the first expression for the ensemble av-
erage (2.21) becomes

⟨ΘAQ⟩ =∫
Ωc

Q(c)Θ(c)
{
∂tf(c;x, t) + ⟨Vi⟩ ∂xif(c;x, t) + ∂xi

[⟨
V ′
i

⏐⏐c⟩ f(c;x, t)
]}

dc.

(2.24)

The second expression for ⟨ΘAQ⟩ follows from the fact that Q depends on
time and space variables through the random concentration C(x, t) and AC
is given by the right hand side of the concentration transport equation (2.1):

⟨ΘAQ⟩ = ⟨Θ∂cαQACα⟩ = ⟨Θ∂cαQ [D∂xi∂xiCα + Sα(C)]⟩

=

∫
Ωc

Θ(c)∂cαQ(c) [⟨D∂xi∂xiCα|c⟩ + Sα(c)] f(c;x, t)dc. (2.25)

To obtain equation (2.25), the chain rule and the averaging procedure (2.22)
were used. Integrating by parts yields

⟨ΘAQ⟩ =

∫
∂Ωc

Q(c) {Θ(c) [⟨D∂xi∂xiCα|c⟩ + Sα] f(c;x, t)}nαdΓc

−
∫
Ωc

Q(c)∂cα {Θ(c) [⟨D∂xi∂xiCα|c⟩ + Sα(c)] f(c;x, t)} dc, (2.26)

where n is the outward pointing unit vector normal to the boundary ∂Ωc

of the concentration space Ωc and dΓc is the surface element. Since the
function Q(c) has a compact support in Ωc, it vanishes on the boundary
∂Ωc and with it the first integral vanishes too, so finally following equation
is obtained:

⟨ΘAQ⟩ = −
∫
Ωc

Q(c)∂cα {Θ(c) [⟨D∂xi∂xiCα|c⟩ + Sα(c)] f(c;x, t)} dc.

(2.27)
Since expressions (2.24) and (2.27) should give the same result for any func-
tion Q with compact support, equating them yields the evolution equation

∂tF + ⟨Vi⟩ ∂xiF = −∂xi

[⟨
V ′
i

⏐⏐c⟩F]
− ∂cα [⟨D∂xi∂xiCα|c⟩ F ] − ∂cα(SαF),

(2.28)
where F = Θf . Equation (2.28) is still unclosed and the conditional average
of the velocity fluctuations and that of the diffusive flux on the right hand
side require modelling. The same gradient-diffusion closure (2.15) as used
in Section 2.3.1 is used to close the first term. Doing so yields the diffusion
term ∂xiD

∗
ij∂xjF . To put equation (2.28) into a Fokker-Planck form, the

term ∂xiF∂xjD
∗
ij is added on both sides, which also implies defining the

new drift coefficients Vi = ⟨Vi⟩ + ∂xjD
∗
ij , which is identical to (2.18). The
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final remaining unclosed term is treated in the same way as in Section 2.3.1,
equation (2.17). Now, the upscaled diffusion coefficient is defined as (2.19)
and the conditional dissipation tensor is defined as (2.20). Then, the result
is equation (2.2).

The Fokker-Planck Approach to PDF Equations

Direct Fokker-Planck Approach

Following the work of Suciu et al. (2016), the relationship between con-
centration PDFs and Fokker-Planck equations are examined in this section.
Lagrangian particle methods are based on the similarity between PDF equa-
tions of type (2.2) and Fokker-Planck equations. It is common to compare
(Colucci et al., 1998; Jaberi et al., 1999; Meyer et al., 2010), or even to
assimilate (Waclawczyk et al., 2008) PDF equations to Fokker-Planck equa-
tions and to use the associated Itô equations as a model for Lagrangian
particles. Furthermore, numerical solutions of equation (2.2) are constructed
by imposing a uniform distribution of Lagrangian particles during the sim-
ulations. To understand this constraint, the concentration PDF problem is
considered and it is noted that the corresponding PDF fulfills the normalisa-
tion condition

∫
Ωc

f(c;x, t)dc = 1. On the other side, if equation (2.2) were a
Fokker-Planck equation, its solution would be a PDF p(c,x, t) defined in the
concentration-position state space Ω = Ωc ×Ωx (Suciu et al., 2015a), which
yields

∫
Ωc

p(c,x, t)dc = px(x, t) by integration over Ωc, where px(x, t) is the
position PDF of the Lagrangian particles. A uniform particle distribution
px(x, t) = const, would suffice to make p(c,x, t) proportional to f(c;x, t),
which allows estimating the concentration PDF from the solution of the
Fokker-Planck equation. As will be shown in the following, a general relation
between the two PDFs f(c;x, t) and p(c,x, t), which renders them consist-
ent with the same normalisation condition may be established if a suitable
weighting function Θ exists such that

∫
Ωc

Θ(c)f(c;x, t)dc = px(x, t).
In operator splitting schemes the transport of the PDF in physical space

is treated in separate advection and diffusion steps (Pope, 1981). These
two steps solve equation (2.2) with the right-hand side set to zero (Pope,
1985). This equation has the form of a Fokker-Planck equation describing
the position PDF of a passive scalar. The corresponding Itô equation used
to simulate the transport step in Lagrangian particle methods (Wang et al.,
2010) has the form

dXi(t) = Vi(X, t)dt + dW̃i(X, t), (2.29)

where {Xi, i = 1, 2, 3} are trajectories of an Itô diffusion process and W̃i is a
Wiener process with expectation E{W̃i(X, t)} = 0 and variance E{W̃ 2

i (X, t)}
= 2

∫ t
0 Dii(X, t′)dt′. The other fractional steps of the Lagrangian approach
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(Pope, 1985; Wang et al., 2010) correspond to the transport in concentration
space and may be formulated in a general way as

dCα(t) = Mα(Cα(t))dt + Sα(C(t))dt, (2.30)

where Cα(t) = Cα(X(t)) and the coefficients Mα are provided by mixing
models for the term containing the dissipation rate Mαβ in equation (2.2)
(Suciu et al., 2015a).

To design a Monte Carlo method based on equations (2.29) and (2.30), a
correspondence between the two mathematical objects involved have to be
established. These objects are the stochastic process {C(t),X(t)}, indexed
by a single index t, and the multi-index random function C(x, t). To do
so, it is pointed out that the Itô equation (2.29) and the corresponding
Fokker-Planck equation (Kloeden and Platen, 1999) for the position PDF

∂tpx + ∂xi(Vipx) = ∂xi∂xj (Dijpx), (2.31)

do not depend on concentrations (i.e. on the process Cα(t) or on the state
space variable c). Therefor, they may be used to describe any conserved
scalar transported in the same system (with the same parameters Vi and
Dij) under the same initial conditions. Equation (2.31) also coincides with
the equation satisfied by the ensemble averaged (Meyer et al., 2010) scalar,
which can be derived by multiplying the PDF equation (2.2) without the
reaction term by the scalar and by taking the ensemble average. It follows
that for any conserved scalar Θ(x, t) solving equation (2.1) without reaction
terms, the ensemble averaged ⟨Θ⟩ solves the Fokker-Planck equation (2.31)
and thus

⟨Θ⟩ (x, t)

Θ∗ = px(x, t), where Θ∗ =

∫
Ωx

⟨Θ⟩ (x, t)dx. (2.32)

Next, a conserved scalar depending on (x, t) through concentrations of chem-
ical species, Θ(x, t) = Θ(C(x, t)) is considered. Making use of the definition
of the PDF via delta functions (2.4), equation (2.32) is rewritten as

⟨Θ(C(x, t))⟩
Θ∗ =

1

Θ∗

⟨∫
Ωc

Θ(c)δ(C(x, t) − c)dc

⟩
=

1

Θ∗

∫
Ωc

Θ(c)f(c;x, t)dc

=

∫
Ωc

p(c,x, t)dc. (2.33)

The last equality in (2.33) is ensured by choosing

Θ(c)f(c;x, t) = Θ∗p(c,x, t). (2.34)
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Relation (2.34) provides a correspondence between the one-point statist-
ics of the random concentration C(x, t) and that of the stochastic process
{C(t),X(t)} (Suciu et al., 2016). Hence, the normalised scalar Θ/Θ∗ is the
weighting function sought after. For the first time, such a correspondence
has been introduced in a somewhat heuristic manner by Suciu et al. (2015a)
and further analysed by Suciu et al. (2015b).

With p(c|x, t) = p(c,x, t)/px(x, t) being the conditional PDF of the
concentration given the position of the stochastic process (2.29) - (2.30)
and using equation (2.32), relation (2.34) becomes equivalent to

Θ(c)

⟨Θ⟩ (x, t)
f(c;x, t) = p(c|x, t). (2.35)

Thus, relation (2.34) not only solves the normalisation issue, but according
to (2.35) it also determines the one-point statistics of the weighted concen-
tration PDF by that of the stochastic process (2.29) - (2.30). It is worth
mentioning that the PDF f(c;x, t) of the random concentration cannot be
uniquely determined by relation (2.34). Instead, based on (2.35), the system
of Itô equations (2.29) - (2.30) can be used to compute the concentration
PDF weighted by a normalised conserved scalar.

The conserved scalar Θ can be chosen as the sum of all species concentra-
tions composing the reaction system Θ =

∑Nα
α=1Cα. This sum is conserved

in closed systems as a consequence of mass conservation of the total amount
of chemical elements contained in the reacting species molecules (Suciu et al.,
2015b). That this is indeed the case has been proven by Suciu et al. (2016)
by a slight extension of the method used by Bilger (1976) to construct con-
served scalars as concentrations of chemical elements. Let rαk be the weight
(e.g. the mass fraction) of the chemical element indexed by k in the com-
position of the molecules α and let Ck be the total concentration of the
element k. Obviously, the elemental masses sum to unity:

∑Nk
k=1 rαk = 1

and Ck =
∑Nα

α=1 rαkCα. It follows that

Nk∑
k=1

Ck =

Nk∑
k=1

Nα∑
α=1

rαkCα =

Nα∑
α=1

Cα

Nk∑
k=1

rαk =

Nα∑
α=1

Cα, (2.36)

that is, the sum of elemental concentrations equals the sum of species con-
centrations. Since elemental concentrations are conserved under chemical
reactions, the sum of species concentrations is a conserved scalar. Further-
more, summing up the concentration equations (2.1) with species independ-
ent coefficients, one obtains the relation

∑Nα
α=1 Sα = 0, which expresses the

conservation of mass of the reacting system, if Cα are mass concentrations.
In particular, if the transport problem is formulated in terms of mass

concentrations Cα = ρα and all the components of the fluid system are
included among the Nα species, it is Θ =

∑Nα
α=1 ρα = ρ, where ρ is the fluid
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density. Then, according to equation (2.32), Θ∗ = M is the total mass of
fluid in Ωx, ⟨ρ⟩ (x, t) = Mpx(x, t), and the correspondence relation (2.34)
takes the form

ρ(c)f(c;x, t) = Mp(c,x, t), (2.37)

which relates the mass density function F(c,x; t) = ρ(c)f(c;x, t) to the
PDF p(c,x, t) of the system of stochastic particles used in Lagrangian Monte
Carlo solution algorithms (Pope, 1985).

With the correspondence relation (2.34) inserted, equation (2.28) can
also be interpreted as a Fokker-Planck equation for the PDF p(c,x, t) gov-
erning the concentration position process:

∂tp(c,x, t) + ⟨Vi⟩ ∂xip(c,x, t) + ∂xi

[⟨
V ′
i

⏐⏐c⟩ p(c,x, t)
]

= − ∂cα {[⟨D∂xi∂xiCα|c⟩ + Sα(c)] p(c,x, t)} . (2.38)

Only if Θ = const is assumed, can the same models which lead to the
coefficients (2.18), (2.19), and (2.20) be applied. But the assumption Θ =
const, together with equation (2.32) implies a uniform position PDF equal
to the inverse of the volume of the physical domain, Θ/Θ∗ = px(x, t) ≡
1/

∫
Ωx

dx, and from (2.35) one obtains

f(c;x, t) = p(c|x, t). (2.39)

Further, with the parameters (2.18) - (2.20) and with equation (2.39) inser-
ted into (2.38), one obtains the PDF equation (2.2) (Suciu et al., 2015a).

In turbulence applications, the D∗
ij component of the upscaled diffusion

coefficients Dij defined in (2.19) is an isotropic tensor, called “turbulent
diffusion coefficient”, which may vary in space and time (Pope, 1985). If
only the gradient-diffusion closure is considered in equation (2.38), without
transforming the conditional diffusion flux, then Dij = D∗

ij and in the PDF
equation (2.2) the mixing term has to be replaced by the first term on the
right hand side of equation (2.38) (Pope, 1985, 2000; Fox , 2003). In mod-
els for solute plumes migrating in groundwater systems and for statistically
homogeneous velocity fields, considered in this study, Dij are the ensemble
dispersion coefficients which govern the evolution of the mean concentration,
see (2.31). The corresponding term D∗

ij is the contribution of velocity correl-
ations and it is an anisotropic tensor whose components are time-dependent
and uniform in space (Suciu, 2014). Then, the drift coefficient (2.18) coin-
cides with the ensemble averaged velocity, Vi = ⟨Vi⟩. For Θ = ρ = const,
equation (2.2) with coefficients given by (2.18) - (2.20) and the relation (2.39)
provide the framework of the PDF approach for constant density flows (Fox ,
2003; Meyer et al., 2010; Colucci et al., 1998; Waclawczyk et al., 2008). It is
noted that it is only in this simple situation of a constant weighting factor
Θ that the PDF equation (2.2) can be treated as a Fokker-Planck equation.

Within the direct Fokker-Planck approach, the coefficients of equation
(2.38) are determined by those of the transport equations (2.1) through
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unclosed conditional averages. The joint concentration-position PDF solv-
ing this equation can be numerically approximated by the associated Itô
equations (2.29) and (2.30) and interpreted as a weighted concentration
PDF by using the correspondence relation (2.34). Relations between joint
concentration-position PDFs of Itô processes and density weighted concen-
tration PDFs (2.37) are the core of the Lagrangian particle Monte Carlo
approaches. These approaches where introduced by somewhat involved ar-
guments using the concept of “fluid particles” (Pope, 1985; Minier and Peir-
ano, 2001; Fox , 2003), which is rather questionable for systems undergoing
diffusion (Suciu et al., 2015a).

Reverse Fokker-Planck Approach

Following Suciu et al. (2016), the issue of choosing the weighting function
Θ for reactive transport in groundwater is discussed in this section. The
balance equation for the solvent is considered together with those for Nα−1

reacting species concentrations. Then, by summing up these equations,
not only the sum of the reaction rates but also that of the diffusion fluxes
vanishes. Then, it follows that the solution Θ =

∑Nα
α=1Cα of the continuity

equation
∂tΘ + Vi∂xiΘ = 0 (2.40)

is precisely the density ρ of the fluid system (Herz , 2014). Considering the
balance equations for all the components of the fluid is a natural choice
in PDF approaches for reacting gas mixtures (Pope, 1985), where differ-
ent components may have comparable weights. Including the carrying fluid
among species components of a dilute solution transported in groundwater
may cause difficulties in solving PDF problems. Even if the complicated
balance equation for the solvent may be avoided by using the Nα−1 equa-
tions (2.1) and the continuity equation (2.40) (Herz , 2014), the numerical
solution of the system of Itô equations (2.29) - (2.30) would be complicated
by the need to consider the initial condition for the carrying fluid. If one
neglects the variations of the solvent concentration, which is tantamount to
considering constant density flows, in a direct Fokker-Planck approach, then
equation (2.32) imposes a uniform position PDF. In turn, a space-time con-
stant solution of the position PDF equation (2.31) requires some relations
between the spatial derivatives of the drift and diffusion coefficients (Suciu
et al., 2015a), which may not be fulfilled in case of statistically inhomo-
geneous velocity fields (Morales-Casique et al., 2006a). Such issues can be
avoided in a Fokker-Planck approach which does not require the fulfillment
of the continuity equation (2.40).

Such an alternative Fokker-Planck approach has already been sugges-
ted by Suciu (2014). Instead of specifying the system of Itô equations by
the (modelled) coefficients of the Fokker-Planck equation (2.38), modelled
Itô equations may be used to derive a Fokker-Planck equation. In the case
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considered here, given the system of Itô equations (2.29) - (2.30), the cor-
responding Fokker-Planck equation is (Kloeden and Platen, 1999)

∂tp + ∂xi(Vip) + ∂cα(Mαp) = ∂xi∂xj (Dijp) − ∂cα(Sαp). (2.41)

According to the correspondence relation (2.34), the solution p of the Fokker-
Planck equation (2.41) coincides with the concentration PDF f weighted
by a conserved scalar Θ solving the concentration equation (2.1) without
reaction terms, but not necessarily solving the continuity equation (2.40).
This “reverse” Fokker-Planck approach could be a valid option in modelling
groundwater systems, for which dispersion coefficients Dij are provided by
various theoretical (Rubin et al., 1999; Cirpka et al., 2011; De Barros and
Rubin, 2011) or numerical (Efendiev et al., 2000; Suciu, 2014) methods and
mixing models may be inferred from measurements (Suciu et al., 2015b).
Similar reverse approaches have been used in a hydrological context to obtain
the Fokker-Planck equation for the concentration PDF of a process generated
by a given mixing model for fixed positions in physical space (Bellin and
Tonina, 2007), and, in a general setting, to formulate the evolution equation
for the velocity-concentration PDF (Meyer et al., 2010). Also, similar to
this approach is the derivation of the evolution equation for the mass density
function from a diffusion model for the velocity of discrete particles dispersed
in turbulent flows presented by Minier et al. (2014). The novelty of the
reverse Fokker-Planck approach presented in this work is that it does not
require the conserved scalar Θ to be a solution of the continuity equation.

Numerical Solutions

A straightforward solution to the system of Itô equations (2.29) and (2.30)
is given by a grid-free particle tracking in the concentration-position state
space Ωc × Ωx. A particle follows a trajectory which starts at an initial po-
sition (c0,x0) drawn from the initial PDF p(c,x, 0). N particles initialised
in the same way are used to form a statistical ensemble. The approximation
of p(c,x, t) at t > 0 is given by the particle distribution in computational
cells around (c,x). As an example, a two-dimensional passive transport in
groundwater with initial concentration C(x, 0) = 1 in a rectangular initial
support in the (x1, x2) plane is considered. The initial PDF p(c,x, 0) is
approximated by a uniform distribution of particles in the same rectangle
lifted in a plane parallel to the (x1, x2) plane which intersects the concen-
tration axis at c = 1. The actual joint concentration-position PDF p(c,x, t)
is then approximated at the centre of the cubic cells of a regular lattice in
the (c, x1, x2) space by the number of particles n in each cell, through the
particle number density n/N .

In Lagrangian particle approaches, the solution algorithm differs from
the straightforward solution to the system of Itô equations. A “notional

31



particle” carries a “composition” c = {c1, . . . , cNα} of species concentra-
tions in physical space. The Itô equation (2.29) is solved for N notional
particles and Itô equation (2.30), solved for each particle, updates its com-
position (Pope, 1985; Fox , 2003). For a fixed initial position x0 of a notional
particle, the composition c0, consistent with the initial PDF p(c,x, 0), has
to be extracted from the conditional PDF p(c|x, 0). It follows that the ini-
tial distribution of notional particles has to approximate the position PDF
px(x, 0), to ensure that the joint event “extracting c0 and x0” belongs to
the ensemble with the PDF p(c|x, 0)px(x, 0) = p(c,x, 0). The algorithm is
mainly useful when one wants to impose a uniform position PDF px which
allows representing the concentration PDF through conditional PDFs of the
Itô process by using equation (2.39). As an illustration, for the case of two-
dimensional passive transport discussed above, the notional particles are
initially uniformly distributed and their concentrations are set to unity for
particles inside the rectangular support of the initial concentration and to
zero outside (Meyer et al., 2010). The concentration PDF p(c,x, t) may be
approximated by histograms obtained from ensembles of particles in cells,
further smoothed by spline functions (Pope, 1985), taking spatially con-
stant values in the cells (Meyer et al., 2010), or in a weak sense, through
estimations of cell averaged quantities (Minier and Peirano, 2001).

Both particle tracking and Lagrangian particle methods suffer from the
increase of the computational costs with the number of particles and from
numerical diffusion generated by interpolation of cell averages to the particles’
positions (Klimenko, 2007; Suciu et al., 2015a). Such inconveniences are
overcome by using a global random walk (GRW) algorithm as presented
in Section 1.4. Unlike sequential particle tracking procedures, in GRW al-
gorithms all N particles used to construct a numerical estimate of the prob-
ability density solving the Fokker-Planck equation are distributed on the
lattice, according to the initial PDF, at the beginning of the simulation. The
particles from each lattice site are then globally spread over new positions
on the lattice determined by drift and diffusion coefficients, according to bi-
nomial distributions. This numerical procedure is free of numerical diffusion
by construction. Moreover, the GRW algorithm is practically insensitive to
the increase of the number of particles (Suciu, 2014). Since mean values are
defined at lattice sites, the GRW solutions are not affected by the artificial
diffusion caused by cell averaging and interpolation in particle tracking and
Lagrangian particle approaches.

PDF Simulations

A two-dimensional problem for passive transport in saturated aquifers, pre-
viously considered for investigations on ergodicity, memory effects, and
asymptotic behaviour (Suciu, 2014; Suciu et al., 2006, 2009, 2016), is chosen

32



to illustrate the principles and utilities of the PDF approach in subsurface
hydrology.

Within the frame of the reverse Fokker-Planck approach presented in
Section 2.4.2, the PDF solutions will be computed from the one-time PDF
of a two-dimensional Itô process, governed by a particular form of equations
(2.29) and (2.30):

dX(t) = Vdt +
√

2DdW1(t), (2.42)

dC(t) = Vcdt +
√

2DcdW2(t), (2.43)

where C(t) = C(X(t)) and W1(t),W2(t) are two independent standard
Wiener processes (Suciu, 2014). The particular form of the Fokker-Planck
equation (2.41) derived from the Itô equations (2.42) and (2.43) is

∂tp + V∂xp + Vc∂cp = D∂2
xp + Dc∂

2
c p. (2.44)

The PDF f(c;x, t) is estimated from the solution p(c, x, t) of the Fokker-
Planck equation (2.44) via relationship (2.35) with Θ(c) = c, which makes
it to

c

⟨C⟩ (x, t)
f(c;x, t) = p(c|x, t). (2.45)

This choice will be evaluated in Section 2.5.1.
Samples of a Gaussian random velocity field are numerically generated

with the Kraichnan formula (1.22), as presented in Section 1.5. The vari-
ance of the underlying hydraulic conductivity field is set to σ2

Y = 0.1,
the correlation length to λY = 1 m with a corresponding integral scale
of IY = 0.09 m and the mean velocity to ⟨V⟩ = (1, 0)Tm d−1. The local
dispersion is described by an isotropic and constant diffusion coefficient
D = 0.01 m2 d−1. With these parameters, the longitudinal ensemble dis-
persion coefficient (Suciu et al., 2006) takes the long time asymptotic value
of Dens

11 = D + ⟨V1⟩ IY = 0.1 m2 d−1 so that Dens
11 /D = 10. The initial plume

is chosen as a slab of size 1 m×100 m, which corresponds to a transversal di-
mension of 100 correlation scales of the random hydraulic conductivity field.
Statistical ensembles are obtained by repeating simulations for R = 256 to
R = 3072 realisations of the velocity field. The larger ensemble of 3072 real-
isations is computed with an exponential correlation of the log-conductivity
field, with the same correlation length and variance as the Gaussian correl-
ation considered here (Suciu et al., 2006).

As an observable affected by uncertainty, the cross-section concentra-
tion at the plume centre of mass is considered. It is obtained by summing
the number of particles n(x1, x2, t) over transversal slabs ∆x1 × Lx2 , where
∆x1 = 1 m and Lx2 is the transversal length of the computational domain.
This concentration

C(x, t) =

∫ Lx2

0
c(x1, x2, t)dx2, (2.46)
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is estimated on the trajectory x1 = ⟨V1⟩ t of the ensemble averaged flow
velocity at intervals of one day.

Reference estimates of the concentration PDFs and dispersion coeffi-
cients are obtained from the ensembles of Monte Carlo simulations presen-
ted by Suciu et al. (2006), as well as from new simulations performed during
this work.

The transport of the cross-section averaged concentration C is essentially
one-dimensional. For now, the assertion is made that the upscaled velocity
is the ensemble averaged longitudinal velocity V = ⟨V1⟩ = 1 m d−1 and the
upscaled diffusion coefficient is the time-dependent longitudinal ensemble
dispersion coefficient Dens

11 (t) (Suciu, 2014). These assertions allow the re-
duction of the dimensionality of the PDF problem by one. Their validity
will be demonstrated numerically in Section 2.5.3.

Weighting Function

The Monte Carlo results presented in Figures 2.1 and 2.2 show that there is
no significant difference between the concentration PDFs f(c;x, t) and the
weighted PDFs cf(c;x, t)/ ⟨C⟩. This is a consequence of the large trans-
versal slab source, for which the transport is almost ergodic (Suciu, 2014;
Suciu et al., 2006), that is C ≈ ⟨C⟩. Therefore, relation (2.35) may be
approximated by (2.39). In Section 2.5.3, the concentration PDF f(c;x, t)
will be estimated by the conditional PDF p(c|x, t) = p(c, x, t)/px(x, t). The
latter is obtained by GRW simulations consisting of superpositions of about
1025 solutions of the Itô equations (2.42) and (2.43) projected onto a regular
grid. The computational particles are initially distributed on the c-axis at
x = 0 proportionally to the concentration PDF estimated by Monte Carlo
simulations at t = 1 d. Contours of the particle numbers of such a simulation
are shown in Figure 2.3.

Upscaled Diffusion Coefficients

Thanks to their self-averaging property, upscaled diffusion coefficients can be
efficiently estimated from computations on single trajectories of the advection-
diffusion process (Suciu and Vamoş, 2009; Suciu, 2014; Suciu et al., 2016,
Appendix B) specified in Section 2.5. Such estimations were validated nu-
merically for diffusion in velocity fields with finite correlation lengths (Suciu
and Vamoş, 2009). One expects these estimations also to be valid in the
case of power law correlated velocities as long as their covariance sampled
on trajectories is ergodic (Suciu, 2014).

In the following, the method of the self-averaging estimation is intro-
duced. A component of the ensemble process {Xt, t ≥ 0} is considered. It
has a zero mean starting from X0 = 0, obtained by subtracting the ensemble
mean ⟨Xi,t⟩ from one of the components Xi,t, i = 1, 2, of the transport pro-
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Figure 2.1: Concentration PDFs at x = ⟨V1⟩ t, sampled at 2 days inter-
vals, from t = 0 d to 100 d (from right to left), inferred from 3072 GRW
simulations of the two dimensional transport problem.
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Figure 2.2: The CDFs corresponding to the PDFs presented in Figure 2.1.
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Figure 2.3: Contours of the number of particles in the (x, c) GRW lattice at
successive times t = 0 d, 10 d, 50 d, and 100 d.

cess. If the continuous time interval [0, t] is partitioned into S subintervals
of equal length τ , so that t = Sτ , then a position on the trajectory Xt and
its square X2

t can be expressed in terms of increments δXs = Xsτ −X(s−1)τ

as

Xt =
S∑

s=1

δXs, X2
t =

S∑
s=1

(δXs)
2 + 2

S−1∑
r=1

S−r∑
s=1

δXsδXs+r. (2.47)

Further, introducing the time averages

ρ(r) =
1

S − r

S−r∑
s=1

δXsδXs+r, (2.48)

X2
t can be rewritten as

X2
t = Sρ(0) + 2

S−1∑
r=1

(S − r)ρ(r). (2.49)

Since the averages ρ defined by (2.48) are similar to stochastic correlations,
equation (2.49) is a single-realisation form of the Taylor formula for processes
with stationary variance (Suciu, 2014).

The process of the increments δXs is determined through advective dis-
placements by the velocity field sampled on trajectories (Suciu and Vamoş,
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2009), which has ergodic covariances in a first order approximation (Suciu,
2014). Therefore, one expects that the ergodic estimation (2.48) converges
to the correlation of δXs, so that (2.49) yields a good approximation of the
variance of Xt. Then, the diffusion coefficient can be estimated on a single
sample of Xt as D̃ = X2

t /(2Sτ). With this, equation (2.49) yields

D̃ =
1

2τ
ρ(0) +

1

τ

S−1∑
r=1

(
1 − r

S

)
ρ(r). (2.50)

Since the time averages ρ are poor ergodic estimates of the correlations as
r gets closer to S, a rigorous ergodicity statement is not possible in this
case. Nevertheless, the reliability of the self-averaging estimator (2.50) has
been demonstrated by numerical experiments (Suciu and Vamoş, 2009).
In practice, acceptable results are obtained if the estimation time Sτ is
larger than the total simulation time T . For the PDF simulations with
T = 100 d presented here, Sτ = 400 d is chosen. For an increased accuracy,
the ergodic estimations (2.48) of the correlations ρ are further averaged over
106 paths S sampled on the same trajectory. With these parameters, the
computation time of the estimation (2.50) of the diffusion coefficient is about
4 min. For comparison, on the same computing platform, the computation
of an ensemble of GRW simulations which provides the time variation of the
ensemble dispersion coefficients over 100 d requires about 10 min and 256
processors.

The longitudinal ensemble dispersion coefficient estimated by (2.50), as
well as those given by Monte Carlo GRW simulations of two-dimensional
transport (Suciu et al., 2006), are defined as one-half of the mean slope of the
time dependent variance of the ensemble process. The diffusion coefficient
D from (2.42), needed in PDF simulations, is defined as one-half of the local
variance, which is tantamount to one-half of the derivative of the global
variance, since the process has finite first and second spatial moments at
finite times (Suciu, 2014). D is approximated in the GRW-PDF scheme
from the input parameter numerically estimated by (2.50) as

D(t) =
1

δt

[
(t + δt)D̃(t + δt) − tD̃(t)

]
, (2.51)

where δt is the simulation time step.

Mixing Models and Results

In this section, three different mixing models are examined which account
for the transport in concentration space. Because finding mixing models
is the final step towards solving PDF equations, the simulation results are
presented here too.
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The Time Series Mixing Model

In the following, the coefficients Vc and Dc occurring in the Itô equation
(2.43) are estimated by a stochastic time series analysis (Suciu et al., 2016).
An ensemble of 500 time series C(t) = C(⟨V1⟩ t, t) of simulated concentra-
tions, previously described by Suciu et al. (2015b), is presented in Figure 2.4.
As common in time series analyses, t is an integer and represents the count of
successive terms, sampled at regular intervals of one day in this case. Since
the velocity field is statistically homogeneous, these time series correspond
to the concentration C sampled at the plume centre of mass (Suciu et al.,
2006). The corresponding increments dC(t) = C(t+1)−C(t), approximating
the slope dC(t)/dt of a continuous time series, are shown in Figure 2.5. The
residual noise in the time series increments, ξ(t) = dC(t)−⟨dC(t)⟩ is shown
in Figure 2.6 and has an approximately exponentially decaying amplitude.
After normalising each ξ-sample by its maximum amplitude ∥ξ∥ = max |ξ|,
the standardised noise ξ/∥ξ∥ may be approximated by a white noise, as
shown in Figure 2.7. In turn, it follows that ξ(t) may be approximated by a
so-called heteroskedastic process (Vamoş and Crăciun, 2010) consisting of
a white noise with a rapidly decaying amplitude.

The drift coefficient Vc in the Itô equation (2.43) is inferred from the slope
of the ensemble mean concentration ⟨C(t)⟩, represented by a thick and dark
curve in Figure 2.5. The maximum value of the diffusion coefficient Dc is
specified by an initial amplitude of diffusive jumps in the GRW algorithm of
5δc, where δc = 0.001 is the space step in concentration space. This value is
chosen as close as possible to the standard deviation 0.0053 of the maximum
amplitude ∥ξ∥ of the noise shown in Figure 2.6. The time variation of the
diffusion coefficient Dc which mimics the behaviour of the noise in Figure
2.6 is optimised through a crude calibration of the PDF simulations.

As shown in Figure 2.8, the time series mixing model (TS) presented
above accurately describes the transport of the PDF in concentration space,
but it fails to reproduce the narrowing of the PDF at large times and small
values of the concentration shown in Figure 2.1 (Suciu, 2014; Suciu et al.,
2015a,b). The narrowing of the PDF is due to the local dispersion process
which smooths the concentration differences so that in the limit of uniform
concentration distributions the PDF approaches a δ function in every real-
isation of the transport process. The narrower the PDF is, the smaller
the differences between the concentration realisations and their ensemble
average. An appropriate mixing model should therefore account for this
“attraction” towards the mean of the concentration. For the TS model, the
drift in equation (2.43), shown in Figure 2.4, vanishes relatively quickly and
the concentration C(t) = C(X(t)) will be almost constant on the traject-
ory X(t) = ⟨V1⟩ t, with small fluctuations given by the noisy term shown
in Figure 2.6. This behaviour of the TS model could be explained by the
excessive smoothing in the stochastic time series analysis used to infer its
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Figure 2.4: Time series of cross-section concentrations C(t) at the centre of
mass of the plume, given by Monte Carlo simulations.

parameters. An automatic algorithm to decompose time series into intrinsic
components (Vamoş et al., 2015) could be used to check whether, besides
the trend and the noise shown in Figures 2.5 and 2.6, the concentration time
series contains more components which were smoothed out by the stochastic
analysis.

The Interaction by Exchange with the Mean Mixing Model

The attraction towards the mean of the concentration realisations is en-
forced by the Interaction by Exchange with the Mean (IEM) model Vc =
−χ(C − ⟨C⟩), where χ is the inverse decay time scale of the concentration
fluctuations (Pope, 1985; Colucci et al., 1998). For a statistically homo-
geneous Gaussian concentration field of a passive scalar in homogeneous
and isotropic turbulence, the IEM model is precisely the expression of the
conditional diffusion flux, which it tries to approximate (Pope, 2000). Fur-
thermore, since in this case the density is constant and the PDF no longer
depends on spatial coordinates, it follows from equations (2.38) and (2.2)
that the mixing terms based on the conditional diffusion flux and the con-
ditional dissipation rate are equivalent. The IEM model has the drawback
that it preserves the shape of the initial PDF (Pope, 2000, 1985). However,
the simple IEM model has proven to be useful in many practical PDF prob-
lems for turbulent reacting flows (Colucci et al., 1998; Jaberi et al., 1999;
Mustata et al., 2006). For the purpose of the present illustration of the IEM
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Figure 2.5: Concentration increments dC(t) of the sample time series shown
in figure 2.4.
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Figure 2.6: The residual concentration noise ξ(t) of the concentration incre-
ments dC(t) shown in figure 2.5.
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Figure 2.7: The residual concentration noise normalised by the maximum
amplitude ξ(t)/∥ξ∥.

model, the characteristic frequency χ is defined as an inverse diffusion time,
similarly to PDF approaches in turbulence (Colucci et al., 1998; Jaberi et al.,
1999), in terms of effective dispersion coefficients and a characteristic length
scale l. Since the transport process is almost ergodic, the effective and the
ensemble coefficients are almost identical (Suciu, 2014), so that χ = D/l2.
The scale l is given by the correlation length λY of the log-hydraulic con-
ductivity field. With these parameters, the IEM model reads

VIEM
c = −kχ

D
λ2
Y

(C − ⟨C⟩). (2.52)

The dimensionless model constant kχ is not a universal constant and it
is generally determined from comparisons with measurements or reference
solutions. In turbulence studies for instance, kχ ranges between 0.6 and
3.1 (Pope, 1985). For the present study, a value of κ = 2 was found to be
appropriate for the PDF simulations.

The Time Series - Interaction by Exchange with the Mean Mixing
Model

Since the IEM model is not satisfactory at all, as shown in Figure 2.8, a
linear combination of the TS and IEM models is also considered (Suciu
et al., 2016) and hereafter referred to as the TS-IEM model:

VTS−IEM
c (t) =

T − t

T
VTS
c (t) +

t

T
VIEM
c (t), (2.53)
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Figure 2.8: GRW solutions of the PDF f(c;x, t) with different mixing models
(time series, IEM, and time series IEM) compared to Monte Carlo reference
solutions, sampled at position x = Vt at different times t = 0 d, 5 d, 10 d,
20 d, 30 d, 50 d, and 100 d (from right to left).

where T denotes the total simulation time. For both IEM and TS-IEM
models of the drift Vc, the diffusion term in the Itô equation (2.43) with the
diffusion coefficient Dc is provided by the TS model. In Figures 2.8 and 2.9
PDF-GRW simulations carried out with the three mixing models are com-
pared. The reference solution and the initial condition for these simulations
are those from Monte Carlo ensembles computed with the exponential log-
conductivity field. As shown in Figure 2.8, both the IEM model (2.52) and
the TS-IEM model (2.53) yield narrow PDFs at small concentrations but
they do not reproduce the reference solution. The PDFs are non-smooth
for both models and the pure IEM model completely fails to reproduce the
transport of the PDF in concentration space. The IEM solution for the
cumulative distribution function shown in Figure 2.9 is also totally unsatis-
factory, the corresponding curves lagging far behind the reference solution.
The TS-IEM solution for the cumulative distribution function compares sat-
isfactorily with the TS and the reference solutions at small to intermediate
times, as seen from Figure 2.9.
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Figure 2.9: The concentration CDFs F (c;x, t) corresponding to the PDFs
shown in Figure 2.8.

Conclusions

PDF evolution equations are formulated as Fokker-Planck equations describ-
ing processes in the concentration-position space stochastically equivalent to
random concentration fields. Within this approach, which is called the “re-
verse Fokker-Planck approach”, the PDF weighted by a conserved scalar is
numerically approximated by the one-time PDF of the Itô process in the
concentration-position space described by the Fokker-Planck equation. The
conserved scalar which weights the one-point one-time PDF to render it
equivalent to the one-time PDF of the concentration-position process is not
involved in chemical reactions but, unlike in classical approaches, it does
not necessarily solve a continuity equation. For systems of mobile reacting
species in groundwater with species-independent diffusion coefficients, the
conserved scalar can be chosen as the sum of molecular species concentra-
tions, governed by an advection-diffusion equation.

The numerical solution is provided by the GRW algorithm, which com-
putes the density of an ensemble of computational particles on a lattice em-
bedded in the concentration-position space. The GRW algorithm is stable,
free of numerical diffusion, and practically insensitive to the increase of the
number of particles. The transport of the system of particles in the phys-
ical space is described by drift and diffusion coefficients obtained through
stochastic upscaling. For small variances of the log-hydraulic conductivity,
the upscaled coefficients can be determined through self-averaging estima-
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tions using a single trajectory of diffusion in the velocity field.
One of the most stringent problems in PDF approaches is to design an

appropriate mixing model which describes the transport in concentration
space of the system of computational particles. For the problem considered
here, with the random concentration depending on a single spatial coordin-
ate, an advection-diffusion process in concentration space, inferred from a
time series analysis was found to yield a correct solution for the transport
of the cumulative distribution towards low concentration values. The time
series are taken from simulated concentrations sampled on the mean-flow
trajectory. However, this time series model cannot account for the narrow-
ing and the raising peak of the maximum PDF values at large times and
small concentrations.

The classical IEM model widely used in turbulence studies, which should
in principle recover this large time behaviour, fails to describe the transport
in concentration space of the cumulative distribution function. A linear com-
bination of time series and IEM mixing models (TS-IEM) used in the PDF
simulations yields an acceptable accuracy only for moderately large times.
The numerical computations carried out with the TS-IEM model indicate
that improvements can be achieved by choosing an appropriate variation of
the characteristic time scale in the coefficient of the IEM component of the
model which would result in an enhanced drift in concentration space at
early times, which decreases gradually as the spreading of the solute plume
progresses. This idea is investigated in Chapter 4.
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Chapter 3

Filtered Density Functions

This chapter is based on the paper

Suciu, N., L. Schüler, S. Attinger, and P. Knabner (2016), Towards a filtered
density function approach for reactive transport in groundwater, Adv. Water
Resourc., 90, 83-98, doi:10.1016/j.advwatres.2016.02.016.
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Introduction

Filtered density function (FDF) methods provide an alternative to PDF
methods. FDF methods use spatially filtered quantities instead of stochastic
averages on which PDF methods are based (Haworth and Pope, 2011; Colucci
et al., 1998; Jaberi et al., 1999; McDermott and Pope, 2007). In this con-
text, spatial filtering means spatial averaging. The FDF has the meaning of
a PDF of state variables at scales smaller than the filter width (Heinz , 2007;
Dodoulas and Navarro-Martinez , 2013). FDF evolution equations can be de-
rived by similar procedures and have the same structure as PDF equations,
with source terms in a closed form (Haworth, 2010; Haworth and Pope, 2011;
Colucci et al., 1998). For an introduction to PDF methods, see Section 2.1.
With rare exceptions, the only state variables considered in FDF methods
are the scalars describing the thermochemical composition (Haworth and
Pope, 2011). Unlike the PDF, which is a deterministic function, the FDF
is a random quantity. Its expectation tends to its PDF only in the limit
of a small filter width (Haworth and Pope, 2011). However, by invoking an
ergodic theorem, the ensemble averaging may be seen as a filtering in space
with a filter width much smaller than the domain, but larger than the char-
acteristic length of the large-scale motions. Thus, the FDF should approach
its PDF in the limit of a large filter width (Heinz , 2007). Even though this
assertion has not been proven theoretically, in some cases the convergence
may be demonstrated numerically, as will be shown in Section 3.5.

While several PDF approaches are being developed for modelling trans-
port in groundwater systems (Meyer et al., 2010; Venturi et al., 2013; Suciu
et al., 2015a), FDF methods were not yet used for such systems. In the
following, the feasibility and the utility of the FDF approach in stochastic
subsurface hydrology will be investigated (Suciu et al., 2016). First, the
striking similarities between large eddy simulations (LES) in turbulence
(Colucci et al., 1998; Jaberi et al., 1999; Dodoulas and Navarro-Martinez ,
2013) and some approaches to coarse-scale, or coarse-grained simulations
(CGS) in porous media (Beckie et al., 1996a,b; Efendiev et al., 2000; Efen-
diev and Durlofsky , 2003; Efendiev and Hou, 2009; Attinger , 2003) should
be noted. In both cases, spatial averages of dependent variables are used to
coarsen the computational grid, whereas subgrid effects are modelled. The
objective is to obtain results comparable to fine grid simulations at reduced
computational costs. In case of reactive transport, the upscaled equations
obtained by spatial filtering contain unclosed averaged reaction terms. In
LES, the closure problem is solved by coupling the filtered equations to FDF
evolution equations (Dodoulas and Navarro-Martinez , 2013). In subsurface
hydrology, effective reaction rates closing the problem can only be determ-
ined for specific problems under simplifying assumptions (Heße et al., 2009).
FDF approaches can be used to avoid the need to close the filtered reaction
terms. CGS can be designed based on numerical upscaling through volume
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averages (Efendiev et al., 2000; Efendiev and Durlofsky , 2003), multiscale
finite element methods (Efendiev and Hou, 2009), and by solving filtered
equations, similarly to LES (Beckie et al., 1996a,b).

Nevertheless, there are three major differences with respect to LES-FDF
modelling for turbulent flows. These differences have already been discussed
in detail in Section 2.1 and will therefore only briefly be repeated here. Only
a few parameters are needed to solve filtered LES equations, whereas upscal-
ing of flow and transport processes in the groundwater requires whole para-
meter fields, namely hydraulic conductivity or velocity fields. The second
difference is related to the first one and concerns the origin of the random-
ness. Turbulent flows are governed by the Navier-Stokes equations, which
show deterministically chaotic behaviour. This mathematical aspect corres-
ponds to an experimental lack of reproducibility. In groundwater systems
stochastic parametrisation is used to account for the uncertainty caused by
the scarcity of data. The third difference is given by the available experi-
mental data. In contrast to transport in groundwater, there is an abund-
ance of experimental data of transport in turbulent flows. Consequently,
in LES-PDF simulations the objective is to obtain a good agreement with
the available measurements, at scales lying between that of the fine-scale
simulations, which fully resolve the variability of the turbulent flows, and
that of the ensemble averaged solutions of the Navier-Stokes and trans-
port equations, for which the variability of the unresolved scales is modelled
by the solution of the PDF equation (Heinz , 2007; Dodoulas and Navarro-
Martinez , 2013). In natural porous media the measurements are sparse
and subject to uncertainty. Therefore, as long as the simulation relies on
fields of stochastic parameters (hydraulic conductivity or velocity) and no
detailed experimental data is available, the aim of the FDF approach should
be a probabilistic quantification of the uncertainty for the whole hierarchy
of scales. In other words, FDF approaches for modelling transport processes
in groundwater systems, besides closing reaction terms, could alleviate the
computational costs through estimations of the global FDF from filtered
parameter fields and coarse-grained simulations.

In Section 3.2, the FDF equation is discussed in detail. Section 3.3 deals
with the spatial filtering of the Kraichnan algorithm, introduced in Section
1.5. Coarse-grained simulations are investigated in Section 3.4, where the
details of the upscaling of the parameters is shown. The results of the FDF
simulations are presented in Section 3.5, including the numerical results
of the convergence of the FDF solution towards the PDF solution with
increasing filter width. Section 3.6 concludes this chapter.
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FDF Equations

In this section, FDF equations will be discussed in detail. The same system
of local transport equations as in Section 2.3 is considered

∂tCα + Vi∂xiCα −D∂xi∂xiCα = Sα, (3.1)

together with the corresponding one-point one-time PDF f(c;x, t), which
solves

∂tf + ∂xi(Vif) − ∂xi∂xj (Dijf) = −∂cα∂cβ (Mαβf) − ∂cα(Sαf). (3.2)

The upscaled drift vector V and diffusion tensor D and the conditional
dissipation rate M have the same structure as (2.18), (2.19), and (2.20),
but with the difference that now the averages have to be understood as
spatial averages.

In LES approaches, spatial filters are used to separate the dynamics of
the scales larger than the filter width from sub-filter effects. The former are
obtained as solutions of filtered equations and the latter, corresponding to
unresolved scales, are modelled (Heinz , 2007; Haworth, 2010; Haworth and
Pope, 2011). The filtered value of a physical quantity Q is given by the
spatial average

⟨Q⟩λ (x, t) =

∫
Ωx

Q(x′, t)G(x′ − x)dx′, (3.3)

with λ being the filter width, which is implicitly defined by the filter func-
tion G(x′ − x). The filter G(x′ − x) is spatially invariant, non-negative,
and normalised to unity:

∫
Ωx

G(x′ − x)dx′ = 1. Furthermore, the filtering
operation commutes with differentiation (Waclawczyk et al., 2008). Under
these conditions, the FDF can be defined as the filtered fine-grained PDF:

fλ(c;x, t) = ⟨δ(C(x, t) − c)⟩λ . (3.4)

It has the same characteristics as a PDF defined by the expectation of the
fine-grained PDF, see Section 1.3. FDF equations can be derived by the
delta function method analogous to PDF equations (Haworth, 2010). The
FDF equation has the form of PDF equation (3.2), but its coefficients are
now obtained by spatial averages (3.3) instead of ensemble averages. Note
that technically, neither the derivation of the PDF equation nor the deriva-
tion of the FDF equation require the statistical homogeneity of the random
velocity field (Suciu et al., 2015a,b). Nevertheless, there is an important
difference between PDF and FDF approaches. While in the case of the
PDF approach to transport in groundwater, the statistical homogeneity of
the random velocity is essential for the existence of the stochastically up-
scaled coefficients (Morales-Casique et al., 2006b), spatially filtered upscaled
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coefficients to be used in FDF equations can be derived by methods free of
homogeneity assumptions (Efendiev et al., 2000; Efendiev and Durlofsky ,
2003). This opens the perspective of FDF methods applicable to realistic
situations, such as transport simulations conditional on measurements of the
hydraulic conductivity (Morales-Casique et al., 2006a).

The same consistency conditions as for the PDF equations, derived in
Section 2.4.1 hold true for FDF equations when the ensemble average of the
weighting function ⟨Θ⟩ is replaced by the spatial filter (3.3), resulting in
⟨Θ⟩λ (Suciu et al., 2016).

To facilitate the derivation of the FDF evolution equation, the filtered
mass density function is usually written as (Jaberi et al., 1999; Haworth,
2010)

Fλ(c;x, t) =

∫
Ωx

ρ(x′, t)δ(C(x′, t) − c)G(x′ − x)dx′. (3.5)

With ρ(x, t) = ρ(C(x, t)) being the density, using the FDF definition by the
filtering operation (3.3) applied to δ(C(x, t) − c) and the sifting property
ρ(c)δ(C(x, t)− c) = ρ(C(x, t))δ(C(x, t)− c) (Suciu et al., 2015b), it is easy
to recognise that Fλ(c;x, t) = ρ(c)fλ(c;x, t). Further, (2.33) still holds
when the ensemble average is replaced by filtering and the FDF version of
the correspondence relation is given by (2.37), with f replaced by fλ.

Filtering Velocity fields

The purpose of filtering the velocity field is to smooth out the small-scale
fluctuations, which are smaller than a prescribed filter width λ. The choice
of the filter function is arbitrary, but it should have a sharp cut-off at the
given filter width. One choice would be a rectangular function, but it is not
differentiable. Therefore a Gaussian filter function is chosen:

G(x′ − x) =

(
b

π

)d/2

exp[−b(x′ − x)2], (3.6)

where b = a/λ2 and a ∈ R+. Using the filter function (3.6) in the filtering
operation (3.3) applied to the Kraichnan formula (1.22), one obtains

⟨Vi⟩λ (x) =

∫ ∞

−∞

(
b

π

)d/2

Vi exp
[
−b(x′ − x)2

]
dx′

= ⟨V1⟩ δi1 + σY ⟨V1⟩
√

2/N

N∑
j=1

pi(k
(j))

∫ ∞

−∞
cos

(
k(j) · x′ + ϕ(j)

)(
b

π

)d/2

exp
[
−b(x′ − x)2

]
dx′  

=I

.
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The integral I can be simplified by the substitution q = x′−x, which results
in

I =

(
b

π

)d/2 ∫ ∞

−∞
cos

(
k(j) · q + k(j) · x + ϕ(j)

)
exp

(
−bq2

)
dq.

The cosine function has an argument with 2d + 1 terms, of which d depend
on a component of the vector q. The goal now is to separate these d terms
from the rest. This separation can be achieved by a trigonometric identity.
For fewer terms, this identity is

cos(u + v) = cos(u) cos(v) − sin(u) sin(v),

cos(u1 + u2 + v) = cos(u1) cos(u2) cos(v) − sin(u1) sin(u2) cos(v)

− sin(u1) cos(u2) sin(v) − cos(u1) sin(u2) sin(v)

. . . ,

and it can be seen that there is always only one term which has no sine
functions. As sine functions are antisymmetric and the exponential func-
tion with which they are multiplied under the integral is symmetric, the
resulting term is antisymmetric and the evaluated integral over all these
terms vanishes. Hence, only the single term with no sine functions gives
a non-zero value. Thus, by using the result

∫∞
−∞ dq cos(uq) exp(−w2q2) =√

π exp(−u2/4w2)/w (Bronstein et al., 2006), the integral gives

I =

(
b

π

)d/2 ∫ ∞

−∞

[
d∏

α=1

cos(k(j)α qα) cos(k(j) · x + ϕ(j)) + . . .

]
exp

(
−bq2

)
dq

= cos(k(j) · x + ϕ(j)) exp

[
−(k(j))2

4b

]
.

The final expression for the Gaussian filtered velocity field is

⟨Vi⟩λ (x) =

⟨V1⟩ δi1 + σY ⟨V1⟩
√

2/N
N∑
j=1

pi(k
(j)) cos(k(j) · x + ϕ(j)) exp

[
−(k(j)λ)2

4a

]
.

(3.7)

The same derivation as shown above can be done with a rectangular filter
function, e.g. as used by Colucci et al. (1998)

G(x′ − x) =
d∏

i=1

G̃(x′i − xi), with G̃(x′i − xi) =

{
1/λ if |x′i − xi| ≤ λ/2

0 else
.

(3.8)
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The result is then

⟨Vi⟩λ (x) =

⟨V1⟩ δi1 + σY ⟨V1⟩
√

22d+1/N

N∑
j=1

pi(k
(j)) cos(k(j) · x + ϕ(j))

d∏
m=1

sin(k
(j)
m λ/2)

k
(j)
m

.

(3.9)

However, for the present computations of filtered velocities, the Gaussian
filter function was used with a = 2 (Attinger , 2003). The only difference
compared to the unfiltered velocity equation (1.22) is one factor for each
mode, which can be precalculated and saved before the actual simulations
start.

The number of Fourier modes is set to N = 6400 for all the simulations
performed in this study. The isotropic version of the correlation function
(1.24) is considered and is specified by the correlation length λY = 1 m
and by the variance σ2

Y = 0.1, which ensures the accuracy of the first-
order approximation. With these parameters, integrating (1.24) from zero
to infinity along any straight line through the origin of the coordinate system
yields the integral scale IY =

√
πσ2

Y λY /2 ≈ 0.09 m.
The effect of the filtering on the velocity field can be seen in Figure 3.1,

where the longitudinal and transversal components of the filtered velocity
field ⟨V1⟩λ and ⟨V2⟩λ approach their ensemble averages ⟨V1⟩ = 1 m d−1 and
⟨V1⟩ = 0 m d−1, respectively, with increasing filter width. Figure 3.2 com-
pares the streamlines of an unfiltered velocity field generated according to
the Kraichnan formula (1.22) to the streamlines of a filtered velocity field
generated by the filtered Kraichnan formula (3.7). For this comparison, the
variance of the underlying hydraulic conductivity field was set to a value of
σY = 3, for which the small variance assumption used to derive the Kraich-
nan formula surely breaks down. But this is just a visual comparison of
the effect of the filtering on the spatial distribution and the patterns of the
streamlines.

Coarse-Grained Transport Simulations

In this section, the effect of filtering the velocity field on the transport
behaviour of a solute is investigated. In particular, the dependence of the
ensemble dispersion coefficients on the filter size and how to estimate these
coefficients from single particle trajectories will be examined in Section 3.4.1.
In Section 3.4.2 these coarse-grained ensemble dispersion coefficients are
used for simulations on a coarse-grained velocity field to retrieve the mean
concentration.

The same simulation setup as for the PDF approach described in Section
2.5 is used here. Thus, also the same parameters are used.
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Figure 3.1: The longitudinal and transversal components of a velocity field
unfiltered (λ = 0 m) and with two different sized filters.
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Figure 3.2: The streamlines of a 2-dimensional unfiltered velocity field (λ =
0 m) and of the same field with a filter of size λ = 2 m applied.
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Coarse-Graining Dispersion Coefficients

Ensemble dispersion coefficients computed for diffusive transport in filtered
velocity fields only account for the variability of the velocity at scales larger
than the filter width λ. Therefore, as seen in Figure 3.3, the coefficients
Dens

11 (t, λ) are smaller than the coefficients obtained for fine-grained, un-
filtered velocity fields (the case λ = 0 m) and they approach the local disper-
sion coefficient D as λ increases and the velocity fluctuations are smoothed
out. The sub-filter variability is modelled by fictitious diffusion coefficients.
When used in a coarse-grained description, such coefficients should retrieve
the statistics of the spatial moments in stochastic approaches (Dagan, 1994;
Rubin et al., 1999; De Barros and Rubin, 2011) or they should produce
results close to those from fine scale simulations in numerical upscaling ap-
proaches (Efendiev et al., 2000; Efendiev and Durlofsky , 2003).

Following this paradigm, GRW-CGS of the two dimensional transport
problem formulated in Section 2.5 are conducted. Therefore, the filtered ve-
locities ⟨V⟩λ generated by the filtered Kraichnan formula (3.7) are used. The
coarse-grained longitudinal diffusion coefficients are obtained by adding the
difference between fine-grained and filtered ensemble dispersion coefficients
to the local dispersion coefficient D:

Dcg
11(t, λ) = D + δD(t, λ), δD(t, λ) = Dens

11 (t) −Dens
11 (t, λ). (3.10)

Because the corrections to the transverse coefficient were found to be neg-
ligible, it is set to Dcg

22 = D. By using the representation of the dispersion
coefficients in terms of trajectories of Itô processes, it can be seen that the
corrections δD in equation (3.10) are entirely due to sub-filter effects only in
absence of correlations between the filtered and the sub-filter velocity fields
(see paragraph on page 56). Such correlations are generally non-vanishing
in upscaling by spatial averages of the flow equations (Beckie et al., 1996b).
In analytical estimations by first order approximations in σ2

Y the condition
of vanishing correlations is ensured by integrating over disjoint domains in
the Fourier space (Rubin et al., 1999). In the numerical approach presented
here, the lack of correlations is ensured by using independent sets of random
numbers to generate filtered and fine-grained velocity fields.

The longitudinal ensemble dispersion coefficients are computed with
GRW simulations from the variance of the ensemble process

Xens
1 = X1 − ⟨X1⟩ (3.11)

as

Dens
11 =

⟨
(Xens

1 )2
⟩

2t
, (3.12)

where ⟨·⟩ is the average over the N = 1010 particles (realisations of the local
diffusion process) and over the R = 256 realisations of the velocity field.
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Figure 3.3: Ensemble dispersion coefficients Dens
11 (t, λ) derived from GRW

simulations for single realisations of the filtered velocity field compared to
their ensemble average (plotted as dashed curves).

Single-realisation estimations of Dens
11 are computed by averaging (Xens

1 )2

for R = 1 over the N particles, while keeping the fully averaged mean ⟨X1⟩.
In Figure 3.4 it is shown that CGS, performed with filtered velocity

fields and coarse-grained diffusion coefficients (3.10) determined from single-
realisation coefficients Dens

11 (t, λ), recover the fine-grained ensemble coeffi-
cient computed in a single realisation (corresponding to λ = 0 m) for large
enough filter widths. Figure 3.5 shows that for the same single realisation
CGS, but with coarse-grained coefficients (3.10) computed from Dens

11 (t, λ)
averaged over R = 256 realisations, for a filter width λ = 4 m one recovers
the ensemble averaged Dens

11 given by fine-grained simulations (λ = 0 m).
This demonstrates the usefulness of CGS, which reduces the computational
costs by a factor of 256, provided that the coarse-grained coefficient Dcg

11(t, λ)
can be obtained without carrying out ensembles of GRW simulations.

In the present numerical setup, the low variance σ2
Y = 0.1 makes it pos-

sible to generate velocity fields at given points in space (Section 3.3) and
to construct trajectories on which self-averaging estimations of the coef-
ficients Dens

11 (t, λ) for filtered velocity fields are readily available (Section
2.5.2). These self-averaging estimations, shown in Figure 3.6, are used to
infer the coarse-grained coefficients (3.10). With the coefficients Dcg

11(t, λ)
obtained in this way, it was found that GRW simulations for R = 256 ve-
locity realisations yield an acceptable recovery of the fine-grained ensemble
coefficient Dens

11 , as shown in Figure 3.7. The suitability of the self-averaging
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Figure 3.4: Single-realisation coarse-grained simulation estimations of the
ensemble dispersion coefficient Dens

11 for increasing filter width λ, performed
with single-realisation coarse-grained diffusion coefficients Dcg

11(t, λ).
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Figure 3.5: Single-realisation coarse-grained simulation estimations of
the fine-grained dispersion coefficient Dens

11 for increasing filter width λ,
performed with ensemble averaged coarse-grained diffusion coefficients
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Figure 3.6: Ensemble dispersion coefficients Dens
11 (t, λ) for filtered velocity

fields obtained by self-averaging estimations and corresponding standard
deviations (represented by lighter colours). Dashed black lines represent en-
semble averaged coefficients Dens

11 (t, λ) obtained from 256 GRW simulations.

estimations of the coarse-grained coefficients for ensemble average estimates
could significantly alleviate the costs in Monte Carlo simulations by using
discretisation elements several times coarser than in fine-grained simulations.

Prerequisite for Coarse-Graining Diffusion Coefficients

Decomposing the velocity field into its ensemble mean and fluctuations
around this mean V = ⟨V⟩ + V′ and taking its statistical homogeneity
into account, it can be seen that it is related to the filtered velocity by

V = ⟨V⟩ +
⟨
V′⟩

λ
+ V′

λ, (3.13)

where ⟨V′⟩λ is the filtered fluctuation of the fine-grained velocity and V′
λ is

the residual sub-filter velocity fluctuation about the filtered velocity ⟨V⟩λ =
⟨V⟩ + ⟨V′⟩λ. The longitudinal component of the transport process starting
at X = 0 is described by the Itô equation

X1(t) =

∫ t

0
V1(t

′)dt′ + W (t), (3.14)

where V1(t
′) = V1(X(t′)) and W (t) is a Wiener process of zero mean and

variance equal to 2Dt. For statistically homogeneous velocity fields, the
ensemble average of (3.14) is ⟨X1⟩ (t) = ⟨V1⟩ t. The longitudinal ensemble
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Figure 3.7: Estimations of the fine-grained ensemble averaged coefficient
Dens

11 (t) for increasing filter width λ, obtained from 256 GRW simulations
with filtered velocities and self-averaging estimates of the coarse-grained
diffusion coefficients Dcg

11(t, λ).

process Xens
1 (t) = X1(t)−⟨X1(t)⟩ verifies the same equation (3.14), with the

velocity component V1 replaced by its fluctuation V ′
1 . The half derivative of

its variance gives the ensemble dispersion coefficient in the following form
(Suciu, 2014):

Dens
11 (t) = D +

∫ t

0

⟨
V ′
1(t)V ′

1(t′)
⟩

dt′. (3.15)

From equations (3.13) and (3.14) one obtains the equivalent expression

Dens
11 (t) = D +

∫ t

0

⟨⟨
V ′
1

⟩
λ

(t)
⟨
V ′
1(t′)

⟩
λ

⟩
dt′

+

∫ t

0

⟨
V ′
λ,1(t)V

′
λ,1(t

′)
⟩

dt′

+

∫ t

0

⟨⟨
V ′
1

⟩
λ

(t)V ′
λ,1(t

′)
⟩

dt′ +

∫ t

0

⟨⟨
V ′
1

⟩
λ

(t′)V ′
λ,1(t)

⟩
dt′.

(3.16)

The first line in equation (3.16) corresponds to equation (3.15) with V ′
1 re-

placed by ⟨V ′
1⟩λ, that is to the coefficient Dens

11 (t, λ) derived for a filtered
velocity field. The second line is given by the integral from (3.15) writ-
ten for the correlation of the sub-filter velocity fluctuations. And last line
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Figure 3.8: Cross section concentration C(x1, t) recorded at t = 10 d, 50 d,
and 100 d and the concentration at the expected centre of mass C(⟨V1⟩ t, t)
(shown as monotonically decreasing curves) given by single-realisation GRW
simulations with filtered velocities.

in equation (3.16) describes a contribution to the ensemble coefficient pro-
duced by correlations between filtered and sub-filter velocity fluctuations.
If this last contribution vanishes, then the contribution from the second
line of (3.16) corresponds to the correction δDens

11 (t, λ) of the coarse-grained
diffusion coefficient defined by equation (3.10).

Coarse-Grained Concentration Simulations

The cross-section concentration C(x1, t) and the concentration at the ex-
pected position of the centre of mass ⟨V1⟩ t are calculated from a single
GRW simulation with filtered velocities and with an unchanged local dis-
persion coefficient D. The result is shown in Figure 3.8. An ensemble of
R = 256 GRW simulations, using self-averaging estimations of the coarse-
grained coefficients Dcg

11(t, λ) and filtered velocities, recover the fine-grained
ensemble averaged cross-section concentration with a good precision, which
can be seen in Figure 3.9. This result indicates that the self-averaging es-
timations of the coarse-grained coefficients Dcg

11(t, λ) are accurate enough for
the purpose of simulating the transport of the PDF/FDF in physical space,
which is governed by the same equation as for the mean concentration (2.42).
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Figure 3.9: Fine-grained ensemble averages corresponding to the concentra-
tions shown in Figure 3.8, recovered from 256 GRW simulations with filtered
velocities and self-averaging coarse-grained dispersion coefficients Dcg

11(t, λ).

FDF Mixing Model

When mixing models are used in FDF simulations, the filter width should
be taken into account by the mixing model. Thus it is proposed that the
correlation length of the hydraulic conductivity λY used as a length scale
in the IEM equation (2.52) is replaced by a linear combination of λY and
the filter width λ. It is noted that for λ > 0, the coefficient D is the coarse-
grained diffusion coefficient (3.10). With these parameters, the IEM model
reads

VIEM
c = −kχ

D
(λY + λ)2

(C − ⟨C⟩), (3.17)

with kχ = 0.6. Furthermore, as shown in Section 2.5.3, only the linear
combination of the time series and the IEM mixing model (TS-IEM) yields
acceptable results. Hence, the TS-IEM model (2.53) with the IEM model
taking the filter width into account (3.17), is the only mixing model used
for the FDF simulations.

FDF Simulations

GRW-FDF solutions for the problem of passive transport formulated in Sec-
tion 2.5 and specified for FDF simulations in Section 3.4 are computed
with drift coefficients for transport in physical space V (see equation (2.42))
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given by filtered velocity fields ⟨V1⟩λ. The filtered fields are generated in a
first-order approximation by the modified Kraichnan expression (3.7). The
corresponding diffusion coefficients, D in equation (2.42), are computed by
equation (2.51) from coarse-grained longitudinal ensemble dispersion coeffi-
cients Dcg

11(t, λ). The coefficients Dcg
11(t, λ) are obtained by equation (3.10)

from the mean values of the self-averaging ensemble dispersion coefficients
presented in Figure 3.6.

The GRW-PDF solutions are obtained similarly, with V given by the
ensemble average ⟨V1⟩ = 1 m d−1 of the fine-grained velocity field and D
given by the mean value of the self-averaging ensemble dispersion coefficient
Dens

11 (t, 0) (the case λ = 0 m in Figure 3.6). The coefficients describing the
transport in concentration space, Vc and Dc in equation (2.43), are those of
the combined TS-IEM model (2.53).

The reference solution and the initial condition for these simulations
are estimated from the Monte Carlo ensemble of 256 transport simulations
computed for log-conductivities with Gaussian correlation and for λ = 0 m
(Section 3.4). The same ensemble was used to estimate the drift Vc in the
TS model, while using the diffusion coefficient Dc inferred in Section 2.5.3.

In the present reverse Fokker-Planck approach to PDF/FDF solutions
(Section 2.4.2), the weighting factor is the scalar concentration itself, Θ(c) =
c. Hence, as follows from relation (2.32), the mean concentration equals
the position PDF ⟨C⟩ (x, t) = px(x, t), which is simply obtained from the
GRW-PDF/FDF simulation by summing up the joint concentration-position
PDF/FDF p(c, x, t) over the c-axis. The advantage of using the reverse
Fokker-Planck approach should be stressed. In a direct approach, the scalar
concentration c cannot serve as a weighting factor Θ, because it undergoes
diffusion and does not verify the continuity equation (2.40).

Results for the mean concentration ⟨C⟩λ obtained from GRW-FDF sim-
ulations using the linear combination of mixing models TS-IEM (2.53) for
increasing filter width λ are compared to Monte Carlo results and to GRW-
PDF simulations using the TS mixing model in Figure 3.10. It can be seen
that the accuracy of the GRW-FDF solutions increases with the filter width
λ and for λ ≥ 5 m the results obtained by the three methods practically co-
incide. It is also remarked that the FDF solution for small λ is less smooth
than similar results obtained from single-realisation GRW simulations of the
two dimensional transport shown in Figure 3.8. In both cases, one can see
a discrepancy between ⟨C⟩ (t) or ⟨C⟩λ (t) respectively, both recorded at the
expected centre of mass x = ⟨V1⟩ t and the peaks in the spatial distribution
of the concentration located at the position of the actual centre of mass,
which is random and generally does not coincide with its expectation.

The mean concentration is the PDF px(x, t) of the Itô process (2.42)
which solves the Fokker-Planck equation (2.31). Thus, ⟨C⟩λ can also be
computed by solving equation (2.31), independently of the FDF problem,
like in moment equations approaches (Haworth, 2010). As for the variance, it
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Figure 3.10: ⟨C⟩λ (x, t) recorded at fixed times t = 10 d, 50 d, and 100 d
and ⟨C⟩λ (t) recorded at x = ⟨V1⟩ t. TS-IEM results for increasing λ are
compared to Monte Carlo estimates (MC) and PDF solutions using the TS
model (PDF).

requires the computation of
⟨
C2

⟩
λ
, which involves the consistency condition

(2.34) and the knowledge of the one point FDF (Suciu et al., 2015b). Since,
as shown in the following, the estimated FDFs are generally inaccurate, so
will be the variance, and it is not estimated.

Cumulative distribution functions sampled on the same trajectory x =
⟨V1⟩ t are shown in Figure 3.11. At early times t ≤ 20 d the cumulative
distributions obtained by GRW-FDF simulations approach the PDF and
the Monte Carlo results with increasing filter width. However, at larger
times the FDF solutions are even worse than the PDF solutions for the
TS-IEM model shown in Figure 2.8. Figure 3.12 shows that the FDFs are
shifted towards small concentrations with increasing time, the smaller λ,
the larger the shift. The corresponding cumulative distributions, presented
in Figure 3.13 show a similar behaviour, with large deviations from the
reference solution for λ = 5 m and t ≥ 20 d. For the largest filter width
λ = 10 m, acceptable GRW-FDF estimations of the cumulative distribution
can be obtained at small and intermediate times t < 50 d.

The behaviour of the TS-IEM model at large times indicates that the
left-drift, towards small concentrations, is too large. Since, according to the
TS-IEM mixing model (2.53) the IEM model has a dominant contribution
at large times, VTS−IEM

c can be reduced by reducing VIEM
c . A larger time

scale τ at large times is therefore needed in the IEM model. The convergent
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Figure 3.11: Cumulative distribution functions (CDF) for the same cases
as in Figure 3.10, estimated at x = ⟨V1⟩ t, for t = 5 d, 10 d, and 20 d (from
right to left).
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Figure 3.12: GRW-FDF solutions f(c;x, t) for the TS-IEM mixing model,
compared to Monte Carlo estimates and PDF solutions with the TS model,
sampled at x = ⟨V1⟩ t, for t = 0 d, 5 d, 10 d, 20 d, 30 d, 50 d, and 100 d (from
right to left).
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Figure 3.13: Cumulative distribution functions (CDF) corresponding to the
PDFs presented in Figure 3.12 for t = 0 d, 5 d, 10 d, 20 d, 30 d, and 50 d.

behaviour of the TS-IEM model at intermediate times is ensured by the
TS component VTS

C , which compensates the smallness of VIEM
c (see Figure

2.9). The same result can be obtained by an IEM model with a smaller time
scale τ at small times. These ideas will be further examined in Chapter 4.
The time scale τ = L2/D used in turbulence seems to be inadequate for the
PDF/FDF problem considered here. The GRW-FDF solutions presented
in this article could be utilized to design the appropriate mixing model for
solute plumes migrating in groundwater.

Conclusions

Although they share the same mathematical formalism, CGS-FDF model-
ling of groundwater systems and LES-FDF modelling of turbulent reacting
flows differ in an important aspect. Whereas in turbulence the upscaled
transport parameters are not known a priori, for transport in aquifers with
the hydraulic conductivity modelled by statistically homogeneous random
fields with low variance, the stochastically upscaled model is completely de-
termined, at least in a first-order approximation, by the statistics of the
random field. In addition, the coarse-grained diffusion coefficients (3.10),
estimated as ensemble averages, converge to the stochastically upscaled dif-
fusion coefficients with increasing filter width and allow recovering the res-
ults of the stochastically upscaled model in single-realisation CGS (Figure
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3.5). Thus, in CGS-FDF simulations, the solution of equation (2.42) ap-
proaches the PDF solution for the mean concentration with increasing filter
width. Provided that the same convergence holds for the solution of equation
(2.43), which describes the transport of the FDF in concentration space, the
CGS-FDF solution converges to the PDF solution. The numerical results
presented here partially illustrate this convergence: with high accuracy for
the mean concentration, at moderately large times for the cumulative distri-
bution function, but, in absence of an adequate mixing model, only at small
times for the filtered density. For sake of clarity and simplicity, chemical
reactions were not considered in the numerical illustration of the approach.
Because the reaction terms are in a closed form, they only contribute with
a supplementary drift in equation (2.43).

If the hydraulic conductivity is no longer statistically homogeneous, the
upscaled transport parameters are not known a priori and even the existence
of the upscaled transport equation is questionable. In this case, filtered velo-
cities and single-realisation estimates of coarse-grained diffusion coefficients
can be used to recover the results obtained for the fully resolved velocity
field (Figure 3.4). The CGS-FDF modelling is now similar to the classical
LES-FDF approach. Like in turbulence modelling, the ensemble average is
replaced by a smoothing in space which still allows an appropriate descrip-
tion of the large scale variability of the velocity field. The PDF will then
be the probabilistic description obtained by the spatial smoothing of the
fine-scale description of the process, and the aim of FDF modelling will be
to recover this global probabilistic description on coarse grids, at affordable
computational costs. Volume averaging or multi-grid numerical upscaling
procedures can be used to extend the CGS-FDF strategy illustrated in this
chapter to problems of reactive transport in conditions of highly variable
and statistically inhomogeneous hydraulic conductivity of the groundwater
system. Furthermore, the reverse Fokker-Planck approach could also be
used to design robust numerical schemes based on the GRW algorithm to
solve PDF/FDF problems for other fluid systems, such as those studied in
turbulence and combustion theory.
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Chapter 4

A Time Dependent Mixing
Model

This chapter is based on the paper

Schüler, L., N. Suciu, P. Knabner, and S. Attinger, A time dependent mixing
model to close PDF equations for transport in heterogeneous aquifers, Adv.
Water Resour., under review.
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Introduction

The moment approach predicts the evolution of the true concentration distri-
bution by its statistical moments. They are consistent with the geostatistical
representation of the heterogeneity of the subsurface. If this heterogeneity
is statistically homogeneous, the equation for the first moment, which is
the mean concentration, has the following characteristics: The highly het-
erogeneous and spatially fluctuating groundwater velocity is replaced by an
ensemble averaged velocity field and the effect of the fluctuating velocity on
the transport is modelled by an enhanced dispersion, called macrodispersion
or ensemble dispersion (Gelhar and Axness, 1983). This approach has the
limitation that the ensemble averaged concentration only describes the mean
plume behaviour. But in general, the mean behaviour differs from that of a
specific plume in a single aquifer. See Figure 4.1 for a comparison between
the mean concentration and a concentration obtained from a simulation in a
specific velocity field realisation. Only if the hydraulic conductivity has finite
correlation lengths and the plume has sampled a representative part of the
aquifer, it becomes ergodic and its transport behaviour can be modelled by
the ensemble averaged behaviour, described above. In a first step, possible
deviations from the mean behaviour can be quantified by the concentration
variance. It is transported by the same processes as the mean concentra-
tion, thus it is advected by the averaged velocity field and dispersed by an
enhanced macrodispersion. But concentration variance is also generated by
mean concentration gradients and simultaneously it is destroyed by dissip-
ative processes, which are created by small-scale fluctuations in the velocity
field. In order to calculate the influence of these small-scale fluctuations on
the concentration variance, a closure model is needed.

In the field of turbulence modelling, where very similar transport equa-
tions are used, different approaches exist for such closure models (e.g. Ten-
nekes and Lumley , 1972). Up to this point, the adaption of these approaches
to groundwater transport modelling has been hampered by the vastly differ-
ent flow conditions prevalent in both fields. Contrary to most other problems
where turbulent flows are more challenging, the roles are reversed here. The
strong mixing induced by turbulent flows causes this closure problem to be
easier to tackle. The mixing induced by heterogeneities in the groundwater
flow is slower and changes significantly in time and is therefore more dif-
ficult to model. As Dentz et al. (2000) have shown, the mechanism which
generates the physical mixing in a given aquifer realisation is more reliably
described by the effective dispersion coefficients in comparison to the en-
semble dispersion coefficients, which correspond to the turbulent diffusion
coefficients. The effective dispersion is small at early times and increases
only slowly with time. Therefore, concentration gradients at early times are
steep and may remain steep for prolonged times, which in turn prevents the
smoothing of concentration fluctuations and preserves concentration uncer-
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Figure 4.1: A measure is needed to quantify how good the mean concentra-
tion ⟨C⟩ approximates the actual concentration C, since the difference can
be significant.

tainty. Andričević (1998) proposed a mixing mechanism based on a time
variable effective length scale which, in principle, could be determined exper-
imentally. Kapoor and Gelhar (1994a,b) derived a transport equation for
the concentration variance, including local dispersivity and macrodispers-
ive transport. By neglecting the local dispersivity, the results from Dagan
(1982) could be derived. It was concluded that even very small local dispers-
ivities create a qualitatively different behaviour compared to the zero local
dispersivity case, as the local dispersivity is the only mechanism which can
reduce the variance. They used an approach developed for turbulent flows
to model the variance dissipation, created by the local dispersivity. Further-
more, analytical solutions for the long-time behaviour of the concentration
variance were derived. These results were confirmed for globally integrated
variances by numerical simulations (Kapoor and Kitanidis, 1997).

If the predictions made by a contaminant transport model are to be
used for risk analysis, even more information than the mean concentration
and the variance is needed. Risk thresholds, regulated e.g. by an environ-
mental agency (WWAP , 2012), can only be factored in by the exceedance
probability (e.g. Andričević and Cvetković, 1996). It depends on the com-
plete one-point PDF of the concentration. The concentration variance, as
discussed above, can only be used to calculate a first estimation of the ex-
ceedance probability (de Barros et al., 2011b). Even if such estimation
would be an acceptable approximation, rare events or extreme values can-
not be mapped by the mean concentration and the concentration variance
alone. This limitation stems from the fact that by using only the first two
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statistical moments, namely the mean and the variance, a Gaussian shape
for the concentration PDF is implied. Such a distribution is short-tailed
and therefore excludes the possibility of rare events. Yee and Chan (1997)
analysed a large set of experimental data from tracer tests in the turbulent
atmosphere. From this analysis they identified a collapse of higher-order
concentration moments, which means that the higher-order moments can
be expressed through lower-order moments. Srzic et al. (2013a) applied
such an analysis to the transport of solutes in groundwater and also found
a collapse. This might be a promising way of computing the concentration
PDF from the mean concentration and the concentration variance.

In this chapter, the evolution of the concentration variance and the con-
centration PDF over a long time period is investigated and it is shown that
mixing models used before fail to reproduce the variance at all times. To
that end, a closed transport equation for the one-point concentration PDF
is briefly repeated in Section 4.2.1. Using this equation as a starting point,
the transport equations of the first two statistical moments are derived in
Section 4.2.2. It is shown that by prescribing a certain mixing model, both
the PDF and the variance equations have the same closure problem and
thus depend on the same mixing coefficients. The importance of this find-
ing lies in the possibility of testing new mixing models with much simpler
concentration variance simulations first and subsequently transferring them
to PDF models. Next, analytical solutions of the moment equations are
derived in Section 4.2.3 and the dependence of the analytical solution of the
concentration variance on the mixing model is highlighted. In Section 4.3
the need for a time dependency of the coefficients of the mixing model is
identified and a new time dependent mixing model is proposed. This new
model is explicit and in a closed form. It is then verified in Section 4.4 by
comparing the previously derived analytical solution of the concentration
variance equation with the old and the new mixing model with reference
Monte Carlo simulations. Afterwards, the new model is also used in the
PDF framework and compared to reference Monte Carlo solutions. Finally,
this chapter is concluded in Section 4.5 and a future perspective is shown.

Physical Background and Methods

The reactive transport of a solute in groundwater can be described by equa-
tion (1.4). It is assumed that the random velocity field V(x) is statistically
homogeneous and that the local dispersion D is isotropic. If an ensemble
of statistically equivalent solutions of this equation is calculated, the mean
behaviour can be calculated from the ensemble average ⟨C⟩ =

∑N
i=1C

(i)/N
over N realisations. As a first measure, the variance σ2

c(x, t) can quantify
how good the ensemble average approximates the behaviour in a specific
realisation. The mean concentration ⟨C⟩ (x, t) and the concentration vari-

68



ance σ2
c(x, t) are the first and second statistical moments of the one-point

one-time concentration PDF f(c;x, t):

⟨C⟩ :=

∫
Ωc

cfdc (4.1)

σ2
c :=

∫
Ωc

c2fdc− ⟨C⟩2 . (4.2)

Thus, if a transport equation for the PDF is derived, transport equations of
the mean and variance can be derived too.

PDF Transport Equations

The derivation of the PDF transport equation has already been shown in
two different ways in Section 2.3. With the considerations regarding the
parameters of the resulting PDF transport equation (2.2) made at the end
of Section 2.4.1, the equation can be formulated as

∂tf + ⟨Vi⟩ ∂xif −Dens
ij ∂xi∂xjf = −∂cα∂cβ (Mαβf) − ∂cα(Sαf), (4.3)

The ensemble dispersion coefficient tensor Dens is diagonal with Dens
11 =

Dens
L , Dens

ii = Dens
T for i > 1, and Dens

ij = 0 for i ̸= j. In general, the ensemble
dispersion coefficients Dens are time dependent. But in the turbulent regime,
these coefficients can be assumed to be constant in time, because mixing is
so fast. In aquifers, the asymptotic values can be reached within a few
advective time scales (Dentz et al., 2000).

The interaction by exchange with the mean (IEM) model for closing the
mixing term was first formulated by Villermaux and Devillon (1972) and
by Dopazo and O’Brien (1974) and still remains very popular for modelling
reactive and turbulent flows (see e.g. Colucci et al., 1998; Raman and Pitsch,
2007; Popov and Pope, 2014). It was already introduced in Section 2.5.3 and
it closes the mixing term by following approximation

M = ∂cα∂cβ (Mαβf) = −∂cα [χ (cα − ⟨Cα⟩) f ] , (4.4)

where χ is a parameter called the mixing frequency when used in PDF
methods or the variance decay coefficient (Kapoor and Gelhar , 1994a) when
used in moment methods. It has to be prescribed and it will be discussed in
detail in Section 4.3. This model causes concentration fluctuations to relax
towards the local mean concentration in an exponentially decaying way.

Mean and Variance Transport Equations

The transport equation for the mean concentration can be derived from the
PDF transport equation (4.3) by multiplying it with c and integrating over
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the entire concentration space (Schüler et al., 2016). Doing so yields∫
Ωc

cα∂tfdc +

∫
Ωc

cα ⟨Vi⟩ ∂xifdc−
∫
Ωc

cαD
ens
ij ∂xi∂xjfdc

=

∫
Ωc

cα∂cα [χ(cα − ⟨Cα⟩)f ] dc−
∫
Ωc

cα∂cα(Sαf)dc. (4.5)

The order of integration and derivation is swapped on the left hand side and
on the right hand side the product rule is applied:

∂t

∫
Ωc

cαfdc + ⟨Vi⟩ ∂xi

∫
Ωc

cαfdc−Dens
ij ∂xi∂xj

∫
Ωc

cαfdc

=

∫
Ωc

{∂cα [cαχ (cα − ⟨Cα⟩) f ] − χ (cα − ⟨Cα⟩) f∂cαcα} dc

−
∫
Ωc

[∂cα(cαSαf) − Sαf∂cαcα] dc. (4.6)

On the left hand side, the definition of the mean concentration ⟨C⟩ =∫
Ωc

cfdc and on the right hand side the mean reaction rate ⟨S⟩ =
∫
Ωc

Sfdc
can already be inserted. Furthermore, evaluating the last integrals yields

∂t ⟨Cα⟩ + ⟨Vi⟩ ∂xi ⟨Cα⟩ −Dens
ij ∂xi∂xj ⟨Cα⟩

= cαχ (cα − ⟨Cα⟩) f |Ωc
− χ (⟨Cα⟩ − ⟨Cα⟩) f

− cαSαf |Ωc
+ ⟨Sα⟩ . (4.7)

The first three terms on the right hand side vanish, assuming that the func-
tion cα has compact support in Ωc. Thus, the transport equation for the
mean concentration is

∂t ⟨Cα⟩ + ⟨Vi⟩ ∂xi ⟨Cα⟩ −Dens
ij ∂xi∂xj ⟨Cα⟩ = ⟨Sα⟩ . (4.8)

It can be seen that the mixing term does not influence the mean concentra-
tion, as it cancels itself out.

The variance is defined by (4.2). Thus, as with the derivation of the mean
concentration, the starting point is again the PDF transport equation (4.3),
but now it is multiplied by c2 and integrated over the whole concentration
space (Schüler et al., 2016). The order of integration and derivation is
swapped and the product rule is applied to the right hand side:

∂t

∫
Ωc

c2αfdc + ⟨Vi⟩ ∂xi

∫
Ωc

c2αfdc−Dens
ij ∂xi∂xj

∫
Ωc

c2αfdc

=

∫
Ωc

{
∂cα

[
c2αχ (cα − ⟨Cα⟩) f

]
− 2cαχ (cα − ⟨Cα⟩) f

}
dc

−
∫
Ωc

[
∂cα(c2αSαf) − 2cαSαf

]
dc. (4.9)
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The first and third term on the right hand side both vanish for the same
reason as in the derivation of the mean concentration. The definition of the
mean concentration (4.1) can be inserted into the second term on the right
hand side:

∂t

∫
Ωc

c2αfdc + ⟨Vi⟩ ∂xi

∫
Ωc

c2αfdc−Dens
ij ∂xi∂xj

∫
Ωc

c2αfdc

= − 2χ

[∫
Ωc

c2αfdc− ⟨Cα⟩2
]

+ 2

∫
Ωc

cαSαfdc. (4.10)

The term inside the squared brackets on the right hand side could already
be replaced by the concentration variance (4.2), but to do this for every
term, the transport equation of ⟨C⟩2 needs to be subtracted from equation
(4.10). Therefore, the equation of the squared mean concentration needs to
be derived first. This is done by multiplying equation (4.8) by ⟨C⟩, yielding

⟨Cα⟩ ∂t ⟨Cα⟩ + ⟨Cα⟩ ⟨Vi⟩ ∂xi ⟨Cα⟩ − ⟨Cα⟩Dens
ij ∂xi∂xj ⟨Cα⟩ = ⟨Cα⟩ ⟨Sα⟩ .

(4.11)
By making extensive use of the product rule, it follows

∂t ⟨Cα⟩2 − ⟨Cα⟩ ∂t ⟨Cα⟩ + ⟨Vi⟩ ∂xi ⟨Cα⟩2 − ⟨Cα⟩ ⟨Vi⟩ ∂xi ⟨Cα⟩
−Dens

ij

[
∂xi

(
⟨Cα⟩ ∂xj ⟨Cα⟩

)
− ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩

]
= ⟨Cα⟩ ⟨Sα⟩ . (4.12)

The dispersion term is further modified by using the product rule:

Dens
ij

[
∂xi

(
⟨Cα⟩ ∂xj ⟨Cα⟩

)
− ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩

]
=Dens

ij

[
∂xi

(
∂xj ⟨Cα⟩2 − ⟨Cα⟩ ∂xj ⟨Cα⟩

)
− ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩

]
=Dens

ij

[
∂xi∂xj ⟨Cα⟩2 − ⟨Cα⟩ ∂xi∂xj ⟨Cα⟩ − 2∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩

]
. (4.13)

Hence, equation (4.12) is transformed into

∂t ⟨Cα⟩2 + ⟨Vi⟩ ∂xi ⟨Cα⟩2 −Dens
ij ∂xi∂xj ⟨Cα⟩2 + 2Dens

ij ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩
− ⟨Cα⟩ ∂t ⟨Cα⟩ − ⟨Cα⟩ ⟨Vi⟩ ∂xi ⟨Cα⟩ + ⟨Cα⟩Dens

ij ∂xi∂xj ⟨Cα⟩ = ⟨Cα⟩ ⟨Sα⟩ .
(4.14)

Comparing the second line of equation (4.14) with equation (4.11), it is seen
that it is identical to −⟨Cα⟩ ⟨Sα⟩ and the transport equation of ⟨C⟩2 is

∂t ⟨Cα⟩2 + ⟨Vi⟩ ∂xi ⟨Cα⟩2 −Dens
ij ∂xi∂xj ⟨Cα⟩2

+2Dens
ij ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩ − 2 ⟨Cα⟩ ⟨Sα⟩ = 0. (4.15)
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Now, equation (4.15) can be subtracted from equation (4.10) and the mean
⟨CαSα⟩ =

∫
Ωc

cαSαfdc can be inserted:

∂t

[∫
Ωc

c2αfdc− ⟨Cα⟩2
]

+ ⟨Vi⟩ ∂xi

[∫
Ωc

c2αfdcα − ⟨Cα⟩2
]

−Dens
ij ∂xi∂xj

[∫
Ωc

c2αfdc− ⟨Cα⟩2
]

=2Dens
ij ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩ − 2χ

[∫
Ωc

c2αfdc− ⟨Cα⟩2
]

+2 (⟨CαSα⟩ − ⟨Cα⟩ ⟨Sα⟩) . (4.16)

Finally, the definition of the concentration variance (4.2) is inserted and
the last term on the right hand side is identified as the covariance between
the concentration and the reaction rate cov(Cα, Sα) = ⟨CαSα⟩ − ⟨Cα⟩ ⟨Sα⟩,
which yields the transport equation for the variance:

∂tσ
2
cα + ⟨Vi⟩ ∂xiσ

2
cα −Dens

ij ∂xi∂xjσ
2
cα

=2Dens
ij ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩ − 2χσ2

cα + 2cov(Cα, Sα). (4.17)

It can be seen that the concentration variance is transported by the mean
velocity ⟨V⟩ and by the ensemble dispersion coefficients Dens exactly like the
mean concentration. But in contrast to the transport equation for the mean
concentration (4.8) it has additional source and sink terms on the right hand
side. The source term creates variance at mean concentration gradients and
couples the two equations (4.8) and (4.17) weakly, as the coupling is only in
one direction. The reaction term in equation (4.3) is transformed into the
covariance between the concentration and the reaction rate. For this study,
the most interesting term of equation (4.17) is the second one on the right
hand side. This sink term destroys variance by small-scale fluctuations. It is
not closed and the same variance decay coefficient χ as in the mixing term of
the transport equation of the full PDF (4.3) appears here. This link makes
it possible to test different propositions of the variance decay coefficient as a
closure assumption for the transport equation for the concentration variance.
Subsequently, the new proposition can be transferred to the PDF equation.
The big advantage of testing different closures for the variance is that this
equation is easier to handle. On the one hand, the variance equation has
an analytical solution expressed by a time integral (see Section 4.2.3) which
can be readily evaluated by numerical quadratures. And on the other hand,
PDF equations are high-dimensional, with independent variables in both the
physical and the concentration space and they have to be solved numerically.

Analytical Solutions of the Moment Equations

With an analytical solution of the concentration variance transport equa-
tion, new mixing models can easily be examined and compared to Monte
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Carlo reference simulations. In order to make the analytical solutions for
the first two moments easier, it is assumed that the ensemble dispersion
coefficients Dens are constant. The asymptotic value is therefore used. This
assumption was already justified in Section 4.2.1. Furthermore, only one
species is considered and the reaction term is set to zero, yielding

∂t ⟨C⟩ + ⟨Vi⟩ ∂xi ⟨C⟩ −Dens
ij ∂xi∂xj ⟨C⟩ = 0. (4.18)

Analytical Solution of the Mean Concentration Equation

An analytical solution of the passive transport equation for the mean con-
centration (4.18) can be found, for example, by transforming it into the
frequency domain, which makes it an ordinary differential equation. Follow-
ing Kapoor and Gelhar (1994b), a multivariate Gaussian distribution with
zero mean and a diagonal covariance matrix 2Dens

ii t0 as the initial condition
is prescribed. It can be interpreted as a function which evolved from a Dirac
delta function for a time span t0 according to equation (4.18) without the
advection term. The solution is then given by

⟨C⟩ (x, t) =
d∏

i=1

(4πDens
ii (t + t0))

−1/2 exp

(
− (xi − ⟨Vi⟩ t)2

4Dens
ii (t + t0)

)
, (4.19)

where d is the spatial dimension.

Analytical Solution of the Concentration Variance Equation

Deriving an analytical solution of the concentration variance evolution equa-
tion is more involved than deriving a solution of the mean concentration
equation. This derivation is similar to the one presented by Kapoor and
Gelhar (1994b), but the derivation presented here uses more standard tech-
niques and is more straightforward. Furthermore, a time dependency of the
variance decay coefficient χ(t) is considered here (Schüler et al., 2016).

The variance evolution equation for passive transport is equation (4.17)
with the covariance term set to zero

∂tσ
2
cα +⟨Vi⟩ ∂xiσ

2
cα−Dens

ij ∂xi∂xjσ
2
cα = 2Dens

ij ∂xi ⟨Cα⟩ ∂xj ⟨Cα⟩−2χσ2
cα (4.20)

and is an inhomogeneous linear partial differential equation and as such a
fundamental solution (also known as Green’s function) is formulated. The
general solution of equation (4.20) can then be calculated by the convolution
of Green’s function with the inhomogeneity 2Dens

ij ∂xi ⟨C⟩ ∂xj ⟨C⟩. This way,
an analytical solution can be found without making any approximations or
assumptions. Because the convolution transforms into a simple multiplic-
ation, it is transformed into Fourier space. Eventually, the solution of the
mean concentration (4.19) is needed. This is where the time shift t0 becomes
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important, because without it, a singularity would appear in the limit t → 0,
as the Gaussian solution would tend to a Dirac delta function in this short
time limit. By applying this time shift, the solution stays Gaussian and the
singularity vanishes.

The differential operator L(x, t) is defined by

Lσ2
c = ∂tσ

2
c + ⟨Vi⟩ ∂xiσ

2
c −Dens

ij ∂xi∂xjσ
2
c − 2χσ2

c = 0, (4.21)

with the inhomogeneity

g(x, t) = 2Dens
ij ∂xi ⟨C⟩ ∂xj ⟨C⟩ . (4.22)

Then, the concentration variance transport equation (4.20) can be rewritten
as

L(x, t)σ2
c (x, t) = g(x, t). (4.23)

The fundamental solution (or Green’s function) G(x− x′, t, t′) is defined as
the solution of the differential operator L(x, t) with delta functions as the
inhomogeneity:

L(x, t)G(x− x′, t, t′) = δ(x− x′)δ(t− t′). (4.24)

The fundamental solution is translation invariant in space, because the op-
erator L has constant coefficients with respect to x. The general solution of
equation (4.20) is given by

σ2
c (x, t) = σ2

ch
(x, t) +

∫ t

0

∫
Ωx

G(x− x′, t, t′)g(x′, t′)dx′dt′, (4.25)

where σ2
ch

(x, t) is the solution of equation (4.20) without the inhomogeneity.
But because it is assumed that the initial condition is known exactly, the
variance at time t = 0 is σ2

c (x, t = 0) = 0. Thus, without the inhomogeneity,
which acts as the only source term, the solution of the homogeneous partial
differential equation is σ2

ch
(x, t) = 0 for all times. Therefore, the solution of

the homogeneous equation can be dropped.
If Green’s function is known, the solution of equation (4.20) can be

calculated from equation (4.25), which is a convolution of Green’s function
and the inhomogeneity in physical space:

σ2
c (x, t) =

∫ t

0

∫
Ωx

G(x− x′, t, t′)g(x′, t′)dx′dt′

=

∫ t

0
(G ∗ g)(x, t, t′)dt′

=

∫ t

0
F−1

[
G̃(k, t, t′)g̃(k, t′)

]
dt′, (4.26)
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where F−1 denotes the inverse Fourier transform with the independent vari-
able k ∈ Ωk being defined in the frequency space. A tilde denotes the Fourier
transform of a function. Hence, G̃ and g̃ need to be calculated in order to
obtain the solution σ2

c .
Fourier transforming both sides of equation (4.24) gives an inhomogen-

eous ordinary differential equation in the frequency domain:(
∂t + I ⟨Vi⟩ ki + Dens

ij kikj + 2χ(t)
)
G̃(k, t, t′) = δ(t− t′), (4.27)

with I being the imaginary unit. This ordinary differential equation can be
solved by separation of variables for a solution of the homogeneous equation,
which can be used as a starting point to guess a particular solution of the
inhomogeneous solution, yielding

G̃(k, t, t′) = Θ(t− t′) exp

(
−
(
Dens

ij kikj + I⟨Vi⟩ki
)

(t− t′) − 2

∫ t

t′
dt′′χ(t′′)

)
,

(4.28)
where Θ is the Heaviside step function. In order to transform the inhomo-
geneity (4.22), the transformed mean concentration ⟨C⟩ from equation (4.19)
needs to be plugged in:

g̃(k, t) = F
[
2Dens

ij ∂xi ⟨C⟩ ∂xj ⟨C⟩
]

=
−2Dens

ij

(2π)d/2
ki ˜⟨C⟩ ∗ kj ˜⟨C⟩. (4.29)

At this point, the time shift t0 is needed. Otherwise, a singularity for t = 0
would cause problems, as the Gaussian distribution would tend to a Dirac
delta function for small times. The Fourier transformed mean concentration
is

˜⟨C⟩ =
1

(2π)d/2
exp

(
−Dens

ij kikj(t + t0) − Iki⟨Vi⟩t
)
. (4.30)

With this solution, the Fourier transformed inhomogeneity can be calcu-
lated:

g̃(k, t) =
Dens

ij

2(2π)d
1

(2Dens
ij (t + t0))d/2

[
d

Dens
ij (t + t0)

− kikj

]

exp

(
−1

2
Dens

ij (t + t0)kikj − I⟨Vi⟩kit
)
. (4.31)

Finally, the transformed Green’s function (4.28) and the transformed in-
homogeneity (4.31) are inserted into equation (4.26):

σ2
c (x, t) =

Dens
ij

2(2π)3d/2

∫ t

0
dt′

Θ(t− t′)
[2Dens

ij (t′ + t0)]d/2

∫
Ωk

dk

[
d

Dens
ij (t′ + t0)

− kikj

]

exp

(
−1

2
Dens

ij

(
2t− t′ + t0

)
kikj + I(xi − ⟨Vi⟩t)ki − 2

∫ t

t′
dt′′χ(t′′)

)
,

(4.32)
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By completing the square for the variable k, the Fourier integrand is lead
back to a Gaussian function which can be integrated. Because the ensemble
dispersion tensor is diagonal, the expression can be simplified by only con-
sidering the diagonal elements. Now, only a final time integral remains to
be calculated:

σ2
c (x, t) =

d∑
i=1

2Dens
ii

∫ t

0
dt′

d∏
j=1

exp
(
− (xj−⟨Vj⟩t)2

2Dens
jj (2t+t0−t′)

)
[
(2πDens

jj )2(2t + t0 − t′)(t′ + t0)
]1/2

[
t− t′

2Dens
ii (2t + t0 − t′)(t′ + t0)

+
(xi − ⟨Vi⟩t)2

(2Dens
ii (2t + t0 − t′))2

]

exp

(
−2

∫ t

t′
dt′′χ(t′′)

)
. (4.33)

This integral can either be evaluated analytically by using a long-time ap-
proximation or by applying numerical methods. The time integral is rather
well behaved and can easily be solved, for example by adaptive numerical
quadrature algorithms. Kapoor and Gelhar (1994b) have further tackled
this integral with χ = const by applying some long term approximations
and came up with a closed analytical solution. But because the short time
behaviour is of interest in this work, solution (4.33) will be considered. The
variance decay coefficient χ appears in the argument of the last exponential
function. Hence, new mixing models can be verified with this equation if,
for example, compared to Monte Carlo reference solutions.

Time Dependent Extension of the IEM Model

The IEM model describes the decrease of the concentration PDF too slow, as
already pointed out in Sections 2.5.3 and 3.5. It was developed for simulating
turbulent flows. One major difference between turbulent flows and flows in
porous media is the time scale on which mixing takes place. In the turbulent
regime, it is often taken as a constant. And even there, a mixing time scale
as a variable parameter has already been taken into account (Sabel’nikov
et al., 2006; Jones et al., 2012; Dodoulas and Navarro-Martinez , 2013).

The original IEM model for turbulent flows approximates the conditional
dissipation rate by equation (4.4). The variance decay coefficient χ is pro-
portional to the inverse mixing time scale. In classical PDF approaches, the
latter is usually assumed to be proportional to the turbulence time scale
(Pope, 1985; Celis and Figueira da Silva, 2015). In large eddy simulations
(LES), the mixing time scale is often estimated as a velocity (Dodoulas and
Navarro-Martinez , 2013) or as a diffusion time scale (Colucci et al., 1998).
Colucci et al. (1998), for instance, used the subgrid length scale λ, which
defines the transition from resolved to unresolved scales and the subgrid
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diffusion coefficient, which corresponds to an isotropic ensemble dispersion
coefficient Dens in groundwater flows. Following this approach, the variance
decay coefficient can be formulated as

χ = kχ
Dens

λ2
. (4.34)

The dimensionless model parameter kχ is usually in the range of 0.6 ≤ kχ ≤
3.1 (Pope, 1985; Colucci et al., 1998).

For groundwater systems, characterised by the anisotropic local disper-
sion coefficients Dij , Kapoor and Gelhar (1994a) arrived at a very similar
equation for the variance decay coefficient, by introducing the Taylor micro-
scales ∆ci , which characterise the gradients of the concentration fluctuations
along the ith coordinate. The resulting variance decay coefficient is

χ =

d∑
i,j=1

Dij

∆ci∆cj

. (4.35)

However, the Taylor microscales could only be fitted to measurements, as a
closed formula was not given.

It is recalled that the IEM model was developed to approximate the
second derivative of the conditional dissipation rate with respect to c (4.4).
The conditional dissipation rate is defined by

M =
⟨
Dij∂xiC∂xjC

⏐⏐c⟩ , (4.36)

with ⟨A|B⟩ = ⟨AB⟩ / ⟨B⟩ denoting the conditional expectation of A given B.
The conditional dissipation rate M depends on the squared concentration
gradients, which clearly evolve in time. But the IEM model has no way of
accounting for this evolution. It only takes the difference between the current
concentration and the local mean concentration into account. As already
mentioned in Section 3.5, a more accurate mixing model would account
for larger dissipation rates at early times and smaller dissipation rates at
later times, as the concentration gradients decrease. For turbulent reactive
flows, a dependence of χ on the Reynolds number of the subgrid scale flow
was already proposed (Jones et al., 2012; Dodoulas and Navarro-Martinez ,
2013). Furthermore, Sabel’nikov et al. (2006) modelled the mixing frequency
as a stochastic process in order to account for the entire range of time scales
in the mixing process. They named their model “extended interaction by
exchange with the mean” (EIEM). The idea of using a variable variance
decay coefficient χ(t) is elaborated and a new time dependent extension of
the model, adapted to the transport processes in groundwater, is proposed.

Like Andričević (1998), the concentration gradients are approximated
using an evolving effective spatial scale λc(t). This assumption implies that
the squared concentration gradients evolve inversely proportional to that
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squared characteristic length scale (∇C)2 ∼ λc(t)
−2 as the plume spreads

and its fringes and fluctuations smooth out. Since the concentration fluc-
tuations are smoothed out by the local dispersion with the characteristic
scale λc(t) =

√
2Dt, it is assumed that the decay of the conditional dissip-

ation rate (4.36) is proportional to M ∼ λc(t)
−2. In order to improve the

IEM model, this dependency on λc(t) is included into the variance decay
coefficient (4.34).

Furthermore, the ensemble dispersion coefficient Dens accounts for an
artificial dispersion which is caused by centre of mass fluctuations of the
solute plume from realisation to realisation. The effective dispersion coef-
ficient Deff excludes this artificial dispersion and converges to Dens in the
long-time limit for velocity fields with short range correlations (Dentz et al.,
2000; Suciu, 2014). Because the mixing in turbulent flows is so much faster
than it is in groundwater flows, the difference does not matter for turbulent
flows. Therefore, the mathematically simpler to handle ensemble disper-
sion coefficient is used in studies concerning flows in the turbulent regime
(Pope, 1985; Colucci et al., 1998). But in groundwater flows the difference
is significant and because the centre of mass fluctuations do not influence
the dissipation, the effective dispersion coefficient Deff describes the correct
behaviour for the mixing model. With these physical arguments and choos-
ing kχ = 2 from the middle of the interval of reported values, following
time-dependent variance decay coefficient is proposed:

χ(t) =
d∑

i,j=1

Deff
ij (t)

Dijt
. (4.37)

In order to show the similarities between this newly proposed variance decay
coefficient and the previous ones, it is assumed that the correlation length
of the log conductivity field λY and the local dispersion coefficient D are
both isotropic, which yields the dispersive time scale τD = λ2

Y /D. With this
relationship, the variance decay coefficient can be transformed to

χ(t) =

d∑
i,j=1

Deff
ij (t)τD

λ2
Y t

. (4.38)

Equation (4.38) generalises equation (4.34) to a time-variable characteristic
length scale and to anisotropic effective dispersion coefficients. Compared
to the coefficient (4.35) introduced by Kapoor and Gelhar (1994a), the new
variance decay coefficient (4.38) depends on the effective dispersion coeffi-
cients instead of the local dispersion coefficients. Furthermore, the unclosed
Taylor microscale was replaced by the correlation length and a dimensionless
time factor τD/t is included.

As shown in Figure 4.2, this variance decay coefficient has larger values
than the constant one at early times, which causes a stronger dissipation.
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Figure 4.2: An illustration of the different time behaviours of the IEM and
the TIEM variance decay coefficients. The TIEM model causes strong dis-
sipation at early times, but for long times it causes less dissipation than the
IEM model.

But then it drops below the constant variance decay coefficient and ap-
proaches limt→∞ χ(t) = 0. In order to distinguish this model from other
extensions of the IEM model, it is named the “time dependent interaction
by exchange with the mean model” (TIEM).

With this extension, the simplicity and low computational costs of the
IEM model are preserved, while at the same time, it incorporates the time
dependent physical processes causing the dissipation.

Simulations

Variance Modelling

In order to verify the TIEM model independently, simulations with two
different numerical models were performed. A sequential standard particle
tracking model is implemented following Dentz et al. (2002) and the global
random walk (GRW) algorithm (Vamoş et al., 2003), presented in Section
1.4, is used as an independent model. The mean concentration and the con-
centration variance are derived from both numerical simulations and com-
pared to the analytical solutions (4.19) and (4.33) with the IEM and TIEM
mixing models.
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Simulation setup

Both numerical transport simulations are calculated for the same conditions
as the PDF simulations from Section 2.5. Thus, a two-dimensional hetero-
geneous velocity field which is modelled as a solution of the linearised Darcy
and continuity equations by the Kraichnan algorithm (Kraichnan, 1970).
The mean flow velocity is prescribed as ⟨V⟩ = (1, 0)Tm d−1 and an isotropic
Gaussian covariance structure with a correlation length of λ = (1, 1)Tm and
a variance of σ2 = 0.1 is chosen for the underlying conductivity field. The
flow fields are generated by using 6400 Fourier modes for the randomisation
method (Suciu et al., 2016; Heße et al., 2014), in order to capture the self-
averaging behaviour of the transport process over hundreds of correlation
lengths (Eberhard et al., 2007).

The simulations are performed with an isotropic local dispersion coeffi-
cient of D = 0.01 m2 d−1, which results in a Péclet number equal to 100 with
the above parameters for the mean velocity and the correlation length. The
particles are injected instantaneously and distributed uniformly on a rect-
angle with side lengths 1.62 m× 1.62 m. This initial distribution of particles
approximates the analytical solution (4.19) for t = 0 and t0 = 10 d. Both
numerical models use a time step of ∆t = 0.5 d.

For the standard particle tracking simulation, the particles, transported
by the velocity field and dispersed by heterogeneities, are modelled according
to the Itô equations

dXi(t) = Vi(X)dt +
√

2DdWi(t), (4.39)

where Wi(t) are independent standard Wiener processes (Suciu et al., 2015a).
An extended Runge-Kutta scheme (Drummond et al., 1984) with an accur-
acy of order (∆t)3/2 is used to discretise the stochastic equations (4.39).

1000 realisations with 150000 particles in each of them are calculated
to create a statistical ensemble. It takes about 1100 min to compute one
realisation on a single core of the EVE cluster at the UFZ Leipzig.

The GRW-algorithm takes a different approach. It uses a superposition
of many weak solutions of Itô equations projected onto a regular grid. The
particles solving the Itô equations are spread on the grid globally according
to the drift and diffusion coefficients of the equation. By construction, this
algorithm is free of numerical diffusion and can be used for practically arbit-
rary numbers of particles without an impact on the computational costs. For
more details about the GRW algorithm see Section 1.4. Suciu et al. (2006,
Appendix A1) show how to implement an efficient GRW version of Monte
Carlo simulations, whereas more technical details and the convergence beha-
viour of the schemes are presented by Suciu (2014) and Suciu et al. (2013).
The same physical parameters are used as for the standard particle tracking.
The GRW simulations are performed on a grid with 4600 × 1800 cells with
a resolution of 0.1 m × 0.1 m. A total of 1024 particles are used to represent
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the behaviour of the concentration on the GRW lattice. The computation
of the velocity field on the grid and the GRW transport simulation takes
about 48 min for each realisation. The ensemble of realisations of the trans-
port process is obtained by conducting independent simulations on 1000
cores, in a single job executed on the JURECA supercomputer at Research
Centre Jülich.

A normalised two-dimensional histogram on grid cells with a size of
1 m × 1 m is performed for both simulations to calculate concentrations
from the particle distributions. Rather than representing a sampling volume
which mimics experimental measurements, the cells are needed to estimate
concentrations from particles distributions provided by the two numerical
methods. Ensembles of simulated concentrations, along the mean flow dir-
ection, are used to estimate variances which are further compared to the
analytical solution at the continuum scale given by equation (4.33).

A comparison of the two numerical approaches shows how much the
number of particles required for accurate simulations of localised quantit-
ies reduces the computational performance in classical, sequential particle
tracking methods. Fewer particles are needed to compute global quantities,
such as spatial moments of the solute plume (e.g. Dentz et al., 2002). But
for accurate estimations of the local variance of the solute concentration,
105, or even more particles are required (see Figure 4.3). This results in a
dramatic increase of computational time. Comparing the computing times
normalised by the corresponding numbers of particles shows that GRW sim-
ulations are about 1020 times more efficient in estimating the same localised
quantity.

Results

The impact of the TIEM model (4.37) on the analytical solution (4.33)
of the concentration variance evolution equation (4.17) is investigated by
comparing the results to the two numerical models described in Section
4.4.1. Because no mixing term appears in the evolution equation for the
mean concentration (4.8), different mixing models do not influence the mean
concentration behaviour. Thus, the results for the mean concentration will
not be shown here.

When using it in the analytical solution, the IEM model has no space
dependency. Therefore, it destroys the variance at a uniform rate over the
whole plume. Hence, the well-known bimodal shape of the variance of a
Gaussian-like mean concentration will remain unaltered and only the mag-
nitude of the variance will change by introducing new mixing models which
act globally.

In Figure 4.4, the concentration standard deviation σc computed from
the GRW simulation is compared to the analytical solution (4.33) using
the two different mixing models. For the ensemble and effective dispersion
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Figure 4.3: The concentration standard deviation calculated from standard
particle tracking simulations with different amounts of particles per real-
isation compared to results from GRW simulations with 1024 particles per
realisation.
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Figure 4.4: Analytical concentration standard deviations with the IEM and
TIEM mixing models compared to concentration standard deviations com-
puted from GRW simulations at times t = 10 d, 50 d, and 100 d.
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Figure 4.5: For t > 500 d, the TIEM solutions stays larger than the IEM
solution.
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Figure 4.6: The concentration standard deviation at the centre of mass
xcm = ⟨V⟩t.
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Figure 4.7: The analytical concentration standard deviation with different
exponents a for ta. The solution with a = −1 is the same as in Figure 4.4.
A semi-log plot is used in order to make the differences at t = 150 d clearer.

coefficients, the results from Dentz et al. (2000) are used. The results from
the particle tracking are omitted, because they are very similar to the GRW
solutions and make the figure difficult to read. The different solutions are
plotted at t = 10 d, 50 d, and 100 d after injection. Instead of the variance,
its square root, the standard deviation, is plotted in Figure 4.4 for practical
reasons.

The most obvious feature of the figure is the large peak of the analyt-
ical solution at short times with the IEM mixing model. This large peak
shows the problem of the IEM model, namely that the variance destruction
at short times due to small-scale fluctuations of the flow field is strongly un-
derestimated. As seen from Figure 4.2, the TIEM model has a much larger
variance decay coefficient at short times which manifests itself as a stronger
decline of variance at these early times. In Figure 4.4, this behaviour can
be seen in the analytical solution with the TIEM model, which matches the
numerical simulation very well at intermediate and long times. At 500 d,
the analytical solutions with the IEM and the TIEM models intersect. At
even larger times, the TIEM solution stays greater than the IEM solution, as
shown in Figure 4.5. On the other side of the time axis, at very early times,
ranging from t = 0 d up to about t = 15 d there is still a gap between the
numerical reference simulations and the TIEM model. But for t = 10 d the
IEM model differs from the reference simulations by about 61%, compared
to a difference of 18% with the TIEM model, which is a major improvement.
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The time evolution of the concentration standard deviation at the centre of
mass of the mean concentration plume xcm = ⟨V⟩ t is shown in Figure 4.6,
to highlight the influence of the time dependent mixing model at early times.
It should be noted that the analytical solution pronounces the valley of the
bimodal structure of the variance curve too much. Comparing the peaks
of the analytical solution and of the GRW solution, the difference at early
times is more pronounced and becomes increasingly smaller at intermediate
and long times. The slight asymmetry in the numerical solutions is due to
the non-ergodicity at early times.

Finally, the impact of different exponents of the explicit time dependency
of the TIEM model (4.38) is tested. In Figure 4.7, the standard deviation
curves with the exponents t−1/2 and t−3/2 are compared to the exponent t−1,
which follows from the arguments made in Section 4.3. It can be seen that
the exponent of −1/2 causes the variance to be too large at early times,
which then decreases so fast over time, that it is less than the reference
solution for t > τD = 100 d. Thus, even if the large values at early times
would be adjusted by the constant factor kχ in the TIEM model, the vari-
ance would quickly drop beneath the reference values. On the other hand,
the exponent of −3/2 causes the variance to be too small at early times,
which then decreases so slowly, that for t > 100 d, it is greater than the ref-
erence solution. These results further support the physical reasoning made
in Section 4.3.

PDF Modelling

As already discussed in Section 2.4, Lagrangian particle methods used to
solve PDF problems in the fields of combustion and turbulence are not well-
suited for groundwater problems, where concentrations are strongly diluted
(Suciu et al., 2016, 2015b). Therefore, numerical simulations of the PDF
equation with the new TIEM model are only performed with the GRW
algorithm adapted to PDF simulations. The concentration PDF at the
centre of mass of the plume is simulated based on the GRW setup described
in Section 2.5 and by Suciu et al. (2015a, Sections 4 and 5). There, it is
shown that the PDF equation for the concentration at the centre of mass of
the plume integrated over the transversal direction can be formulated as a
two-dimensional Fokker-Planck equation. This equation describes the cross-
section of the concentration at the centre of mass, for which corresponding
Itô equations are formulated:

dX(t) = ⟨V1⟩dt +
√

2Dens
11 dW (t) (4.40)

dC(t) = Mdt, (4.41)

These stochastic differential equations can be solved by Monte Carlo meth-
ods and thus by the GRW algorithm. The same parameters as for the simu-
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lations described in Section 4.4.1 are used. A reference solution is calculated
from Monte Carlo simulations (Suciu et al., 2015a).

The results are shown in Figure 4.8. Here, the cumulative distribution
function F (c;x, t) and therefore the integral of the PDF is shown, because
in general the CDF is a smoother curve than the PDF and can thus be
compared better. The CDF at the centre of mass is shown at t = 30 d, 50 d,
and 100 d after injection (from right to left). It can be seen that the TIEM
model is a major improvement over the IEM model. At early times, the IEM
model predicts a CDF which is shifted far towards higher concentrations.
The TIEM model is just slightly shifted, but the shape differs too with
a longer tail towards low concentrations, similar to the IEM model. At
t = 50 d both models perform acceptable. At t = 100 d the IEM model is
even shifted too far towards lower concentrations, while the TIEM model is
still close to the reference solution. The deviation of the IEM model from
the reference solution indicates that the drift in concentration space (see
equation (4.41)) is too slow at early times and too large at large times. By
considering a time variable variance decay coefficient χ(t) (see Figure 4.2),
the TIEM model proposed in this work provides a correction for the drift
in concentration space. This leads to the observed improvements of the
PDF simulations. Sabel’nikov et al. (2006) also extended the IEM model to
incorporate a time dependency of the variance decay coefficient for turbulent
reactive flows. Compared to direct numerical simulations, they too reported
a good match at intermediate times, but an increasing mismatch for small
and large times.

Conclusions and Future Perspectives

This chapter presents a new and time-dependent mixing model: an extended
IEM model for groundwater, named TIEM. It is shown that the same mixing
model is used for both the concentration variance evolution equation (4.17)
and the concentration PDF evolution equation (4.3). This link is used to
verify the new TIEM model (4.37) with the much simpler to handle variance
equation. The verification is done by comparing an analytical solution of
the variance equation (4.33), which depends on a mixing closure model,
to two independent numerical models. The TIEM model shows a strong
improvement over the IEM model. A significant deviation from the reference
simulations can only be observed at times t < 15 d. And even for these very
short times, the new model is a significant improvement.

Based on these promising results, the model is transferred to the PDF
framework. The results obtained from the PDF simulations with the TIEM
model are not quite as satisfying as the results from the variance simulations
mentioned above. Although there are mismatches at early and also at later
times, the new model is still a major improvement over the classical IEM
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Figure 4.8: The CDF at the centre of mass of the solute plume at times
t = 30 d, 50 d, and 100 d (from right to left) is calculated with two different
IEM models and with dissipation rates extracted from simulated particle
trajectories.

model. One possible way of further improving the IEM model is to derive
a partial differential equation as a dynamic model for the variance decay
coefficient (Im et al., 1997; Pierce and Moin, 1998). Such a model could
include the actual and instantaneous length scales of the processes destroying
the variance. This feature would make it possible to also apply the model to
statistically non-homogeneous conductivity fields (Pierce and Moin, 1998),
as needed if the fields are to be conditioned on measurements.

The GRW-simulations, together with the TIEM model, can easily be ex-
tended to three-dimensional problems, to anisotropic dispersion coefficients,
and to reactive transport. Especially the latter point is worth highlighting.
The reaction terms can simply be plugged into the PDF equations (Suciu
et al., 2016), which makes the PDF framework the method of choice for
modelling complex reactive transport in groundwater.

The TIEM model explicitly takes into account the dimensionality of the
transport problem through expression (4.38) of the variance decay coeffi-
cient. This shows that by increasing the dimension of the physical space
the variance decay coefficient increases, which results in enhanced mixing.
The TIEM model also depends on the Péclet number implicitly, through the
dependence on the effective diffusion coefficient given in (4.38). The limit
of an infinite Péclet number causes a singularity in (4.38). However, for
vanishing local dispersion there is no mixing at all and the PDF equation
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takes the form of a Fokker-Planck equation (Venturi et al., 2013). In case
of passive transport as considered here, this Fokker-Planck equation reduces
to equation (4.3) with the right hand side set to zero, which describes the
PDF transport in physical space.

Unlike the approaches based on mapping random variables (Dentz and
Tartakovsky , 2010; Cirpka et al., 2011; de Barros and Fiori , 2014), the de-
rivation of the PDF equation (see Section 2.3) and the closure by IEM or
TIEM mixing models are free of the low heterogeneity variance assumption.
Another important difference is the way the influence of the sampling volume
is taken into account. In mapping approaches (de Barros and Fiori , 2014),
as well as in Monte Carlo simulations (Srzic et al., 2013a,b) the sampling
volume is explicitly considered in the computation of the concentration. A
sampling volume, associated with the spatial scale of the measurement, can
be accounted for by a spatial filtering of the transport equations, similarly
to the LES approach in turbulence (Suciu et al., 2016), which is presented
in Chapter 3. The FDF, which describes the unresolved concentration fluc-
tuations, verifies the PDF equation (4.3), with coefficients defined by spatial
filtering and is solved by the GRW algorithm described in Section 4.4.2. The
GRW solution also provides the filtered concentration, which corresponds to
a spatial average over the sampling volume in this approach. In the limit of
large filter widths, the filtered concentration tends to its ensemble average.
For finite filter widths it is a random quantity. Its statistics can be inferred
from a Monte Carlo ensemble of GRW-FDF solutions, obtained at low com-
putational costs (e.g. computing time of the order of seconds (Suciu et al.,
2016)). The TIEM model for FDF simulations is easily obtained by adding
the filter width at the denominators of the terms in expression (4.38).
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Chapter 5

Summary and Outlook

Inherently connected to subsurface hydrology is the scarcity of data in
conjunction with the high variability of physical properties influencing the
groundwater and the transport of solutes. The uncertainty, which is always
present when investigating transport in the subsurface, needs to be taken
into account for risk assessments. Therefore, a geostatistical representation
of the subsurface is created from all available measurements and knowledge.
This representation includes the uncertainties and variabilities encountered.
Now, the concentration PDF can be simulated. All necessary statistical in-
formation about the transport can be extracted from the PDF. However,
these PDF methods rely on a statistically homogeneous conductivity field,
which can thus not be conditioned on measurements. Moreover, PDF meth-
ods cannot take the support volume of different measuring techniques into
account. An alternative to PDF approaches is therefore found by applying a
spatial filter to the PDF equations, resulting in FDFs where the dynamics of
the larger scales on a coarser grid are separated from subgrid effects, which
are modelled. The aim of this research was to develop an FDF framework
tailored towards the transport in groundwater.

The first step towards such a framework was to develop an efficient nu-
merical solver for PDF equations. Because the simulation of concentra-
tion PDFs is computationally very expensive due to the highly dimensional
nature of these functions, Lagrangian particle methods are the method of
choice for solving them, as these methods scale better with increasing dimen-
sionality. But they actually solve Fokker-Planck equations and not necessar-
ily PDF equations. Therefore, consistency conditions where formulated that
relate PDF equations to Fokker-Planck equations, which makes it possible
to use particle methods to solve PDF equations. From these consistency
conditions, a reverse Fokker-Planck approach was developed. The GRW
algorithm was adapted to solve such Fokker-Planck equations and in turn
solve the PDF equations of interest. The adapted GRW algorithm proofs to
be computationally very efficient for solving PDF equations.
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The next step was to adapt FDF equations to groundwater transport.
FDF equations have the same mathematical structure as PDF equations and
are also derived in a very similar manner. The main difference is that the
ensemble average of the fine-grained PDF is replaced by a spatial filter. The
resulting FDF equation now contains spatial averages of the parameters, in-
stead of their expectations. Consequently, the filtered parameters need to be
calculated. The velocity field was coarse-grained by applying a spatial filter
directly to the Kraichnan formula. The filtered formula can still be evalu-
ated at every arbitrary point without the need to interpolate between values.
Moreover, the coarse-graining procedure results in only one additional term
per mode. These terms can even be calculated prior to any simulations and
be saved. Single particle trajectories where computed on different filtered
velocity fields with increasing filter sizes. The upscaled dispersion coeffi-
cients could be computed from the differences between the fine-grained and
filtered dispersion coefficients. The conditional dissipation rate, governing
the transport of the FDF in concentration space, was modelled by a mixing
model. This model consists of a linear combination of two individual mixing
models. The first one is a time series mixing model, which uses an ensemble
of simulated time series to extract the necessary information. The second
one is the IEM model, which has proven itself useful in turbulent reactive
flows. With the so found parameters of the velocity, the dispersion, and the
mixing, the FDF simulations could be performed. The results are promising,
but also show that further research needs to be invested into finding mixing
models adequately adapted to the transport in groundwater.

Therefore, a connection is identified between the PDF equation and the
variance equation, which is derived from the PDF equation. This connec-
tion is created when the IEM model with an unknown parameter is applied
to the PDF equation. Then the unknown parameter is transferred to the
variance equation. Because the variance equation is much easier to handle,
different time dependent parameters in the IEM model can be evaluated
very efficiently. By using physical arguments and by testing it with the
variance equation, the TIEM model is found. Subsequently, it is transferred
to PDF equations. The new TIEM model performs much better than the
traditional IEM model, but still leaves room for improvement.

This work presents the first results on the way towards FDF methods
applied to transport in groundwater. Future research should focus on find-
ing better mixing models. One possible way of finding better mixing models
by linking the PDF equations to the variance equation is shown in this work.
Furthermore, the upscaling of the dispersion coefficients by analysing single
particle trajectories is only possible under restricting assumptions. A more
general way needs to be found. This research relied on statistically homogen-
eous conductivity fields. Thus, there is no way to incorporate measurements,
as this is done by conditioning random conductivity fields on the given meas-
urements, which destroys the statistical homogeneity. One way of upscaling
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dispersion coefficients in statistically non-homogeneous conductivity fields
is to apply numerical volume averages. Another way could be multiscale
finite element methods. However, more research is needed to suggest an
appropriate upscaling procedure.

The research presented here contributes towards the development of an
integrated risk assessment framework applicable to human health risks and
ecological risks through contaminations in hydrological systems.
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Andričević, R. (1998), Effects of local dispersion and sampling volume on the
evolution of concentration fluctuations in aquifers, Water Resour. Res.,
34 (5), 1115–1129, doi:10.1029/98WR00260.
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Eberhard, J. P., N. Suciu, and C. Vamoş (2007), On the self-averaging of dis-
persion for transport in quasi-periodic random media, J. Phys. A: Math.
Gen., 40 (4), 597, doi:10.1088/1751-8113/40/4/002.

Efendiev, Y., and L. J. Durlofsky (2003), A Generalized Convection-
Diffusion Model for Subgrid Transport in Porous Media, Multiscale Model.
Simul., 1 (3), 504–526, doi:10.1137/S1540345902413693.

94



Efendiev, Y., and T. Y. Hou (2009), Multiscale Finite Element Methods:
Theory and Applications, Springer, New York.

Efendiev, Y., L. J. Durlofsky, and S. H. Lee (2000), Modeling of subgrid ef-
fects in coarse-scale simulations of transport in heterogeneous porous me-
dia, Water Resour. Res., 36 (8), 2031–2041, doi:10.1029/2000WR900141.

Fox, R. O. (2003), Computational Models for Turbulent Reacting Flows,
Cambridge Series in Chemical Engineering, Cambridge University Press,
New York.

Gelhar, L. W. (1977), Effects of hydraulic conductivity variations on ground-
water flows, in Effects of hydraulic conductivity variations on groundwater
flows, pp. 409–431, Water Resources Publications, Fort Collins, Colo.

Gelhar, L. W., and C. L. Axness (1983), Three Dimensional Stochastic Ana-
lysis of Macrodispersion in Aquifers, Water Resour. Res., 19 (1), 161–180,
doi:10.1029/WR019i001p00161.

Haworth, D. C. (2010), Progress in probability density function methods for
turbulent reacting flows, Prog. Energy Combust. Sci., 36, 168–259.

Haworth, D. C., and S. B. Pope (2011), Transported Probability Density
Function Methods for Reynolds-Averaged and Large-Eddy Simulations,
in Turbulent Combustion Modeling, no. 95 in Fluid Mechanics and Its
Applications, pp. 119–142, Springer Netherlands.

Heinz, S. (2007), Unified turbulence models for LES and RANS, FDF
and PDF simulations, Theor. Comput. Fluid Dyn., 21 (2), 99–118, doi:
10.1007/s00162-006-0036-8.

Herz, M. (2014), Mathematical Modelling and Analysis of Electrolyte Solu-
tions, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg.

Heße, F., F. Radu, M. Thullner, and S. Attinger (2009), Upscaling of the
advection–diffusion–reaction equation with Monod reaction, Adv. Water
Resour., 32 (8), 1336–1351, doi:10.1016/j.advwatres.2009.05.009.
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Schüler, L., N. Suciu, P. Knabner, and S. Attinger (2016), A time depend-
ent mixing model to close PDF equations for transport in heterogeneous
aquifers, Adv. Water Resour., under review.

98



Srzic, V., R. Andricevic, H. Gotovac, and V. Cvetkovic (2013a), Collapse
of higher-order solute concentration moments in groundwater transport,
Water Resour. Res., 49 (8), 4751–4764, doi:10.1002/wrcr.20371.

Srzic, V., V. Cvetkovic, R. Andricevic, and H. Gotovac (2013b), Im-
pact of aquifer heterogeneity structure and local-scale dispersion on
solute concentration uncertainty: Impact of Aquifer Heterogeneity on
Concentration Uncertainty, Water Resour. Res., 49 (6), 3712–3728, doi:
10.1002/wrcr.20314.

Suciu, N. (2014), Diffusion in random velocity fields with applications to
contaminant transport in groundwater, Adv. Water Resour., 69, 114–133,
doi:10.1016/j.advwatres.2014.04.002.
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Ich erkläre, dass ich die vorliegende Arbeit selbstständig und unter Verwen-
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