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I

Abstract

The paraxial diffraction integral is used to calculate the propagation of the light in
wave optics. In this thesis, we first focus on how to calculate the diffraction integral
especially the Fresnel transform numerically and semi-analytically. To perform the
Fresnel transform, we need know both the amplitude and the phase of the optical
field. With the help of digital holography, we are able to measure the phase of the
optical field, and thus build a lensless holographic imaging system. The resolution
limits of this lensless imaging system are analyzed and experimentally demonstrated.
After that a metrology application with this holographic system is introduced and
discussed. Phase retrieval is another technique for estimating the phase of an optical
field. We examine a novel hybrid phase retrieval-holographic optical system for
recovering the phase accurately and robustly. At the end of the thesis, the propagation
of partially coherent beams is investigated. The propagation of partially coherent
beam is characterized by the 4D mutual coherence integral. Instead of solving this
4D integration, we propose an efficient method for modeling the propagation of
partially coherent light. We use this method to examine the effectiveness of DOEs
when illuminated by partially coherent light. We find a relationship between the
width of the coherence function of the partially coherent source and the feature size
of the DOE.





III

Kurzzusammenfassung

Das paraxiale Beugungsintegral wird in der Wellenoptik verwendet, um die Ausbre-
itung des Lichts zu berechnen. In dieser Arbeit konzentrieren wir uns zunächst darauf,
wie das Beugungsintegral, insbesondere die Fresnel-Transformation numerisch und
semi-analytisch gerechnet wird. Zur Durchführung der Fresnel-Transformation müssen
wir sowohl die Amplitude als auch die Phase des optischen Feldes kennen. Mit Hilfe
der digitalen Holografie sind wir in der Lage die Phase des optischen Feldes messen
zu können, und somit ein linsenloses holographisches Abbildungssystem aufzubauen.
Die Auflösungsgrenzen dieses linsenlosen Abbildungssystems werden analysiert
und experimentell demonstriert. Danach wird eine Messanwendung mit diesem
holographischen System eingeführt und diskutiert. Phase Retrieval ist eine weitere
Technik zur zu schätzen der Phase. Wir untersuchen ein neuartiges Hybrid-Phase
Retrieval-holographisches optisches System um die Phrase genau und robust zu
bekommen. Am Ende der Arbeit wird die Ausbreitung von teilweise kohärenten
Strahl untersucht. Die Ausbreitung von teilweise kohärenten Strahl lässt sich durch
das “4D gegenseitige Kohärenz Integral” beschreiben. Anstelle der Lösung des 4D
Integrats, haben wir eine effiziente Methode vorgeschlagen, um die Ausbreitung des
teilweisen kohärenten Strahls zu berechnen. Wir verwenden diese Methode, um die
Wirksamkeit von DOE zu untersuchen, wenn sie durch teilweise kohärentem Licht
beleuchtet. Wir finden eine Beziehung zwischen der Breite der Kohärenzfunktion der
teilweise kohärenten Lichtquelle und der Pixelgröße des DOEs.
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Abbreviations and mathematical notation

Symbols Names
CCD Charge-coupled device
CMOS Complementary metal-oxide-semiconductor
DFT Discrete Fourier transform
ENZ Extended Nijboer Zernike theory
FFT Fast Fourier transform
HDRH Hign dynamical range holography
OFSF Off-axis Fourier spatial filtering
PSF Point spread functions
PSI Phase Shifting Interferometry
RSD Relative standard deviation operation
SD Standard deviation operation
SENZ Simplified Extended Nijboer Zernike theory
SNR Signal noise rate
a Aperture radius
Ax4,x5,x6
x1,x2,x3 Clebsch-Gordan coeffcient

Af (ρ) Algebraic factor in ENZ theory
Ao Complex object wave at the camera plane
Ar Complex reference wave at the camera plane
Ares The residual term of the hologram
cg Thickness of the object
C,S Real and imaginary parts of the optical field
d Piezo motor step size
di Diameter of the pinhole
df Defocus term
D Half width of the CCD/CMOS sensor
E Error
Ef ENZ fitting error
EN Numerical error
f Focal length



2 Abbreviations and mathematical notation

F (ρ) Focal factor in ENZ theory
F , F−1 Forward and inverse Fourier transform operations
FFT ,FFT−1 Forward and inverse fast Fourier transforms
FST Fresnel transform operation
Hn Captured hologram
HAC ,HDC ,HK Interfere term, DC term and the interfere factor of the hologram
i Imaginary unit
I, In Intensity of the optical field
Ico Intensity as calculated from PSI capture
Imo Measured intensity when reference wave is blocked
Is Intensity profile of the incoherent light source
Jn nth-order of the Bessel functions of the first kind
k Wave number
lt Spatial coherence width
L Number of output planes that need to be calculted
Lo Optical path length
ng Refraction index of the object
NA Numerical aperture
Nn Electronic sensor noise
P (ρ,φ) Aberration term
Pn Legendre polynomial
Pp(x, y) Pupil function
∆P , ∆Q Spatial distance between the tho pinholes in x and y directions
r,φ polar coordinates of input plane
∆r, ∆φ Sampling intervals in polar coordinate system
r′ Radius of the incoherent light source
R, θ polar coordinates of output plane
Rmn Zernike radial polynomials
t Time
uo, vo Normalised optical coordinates
un, vn First and second Lommel functions
u Complex amplitude of input plane
ū The Fourier transform of u
us Complex amplitude of the incoherent light source
U Complex amplitude of output plane
UN Numerical solution of the complex amplitude of output plane
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U1,U2,U3,U4 Four different semi-analytical solutions of the focal region
wn nth-order of Jinc function
x, y Cartesian coordinates of input plane
xn, yn Discrete Cartesian coordinates of input plane
∆x, ∆y Sampling intervals in x- and y-directions
X,Y Cartesian coordinates of output plane
Xn,Yn Discrete Cartesian coordinates of output plane
∆X, ∆Y Sampling intervals in X- and Y-directions
z Distance between input and output plane
Zmn Zernike polynomials
βmn Complex-valued Zernike coefficients
γ Width of the active area of a pixel
λ Wavelength
Γ Mutual coherence function
ψ Initial phase difference between the object and reference wave
∆ψ Phase modulation from the object
ψsn Phase shift by the piezo motor
ψv Phase change due axial vibration
σ Standard deviation of the Gaussian function
ρ Normalised radius of input plane
ρc Correlation cofficient
τ Exposure time
µ Complex degree of the coherence
δ Dirac delta function
δT Dirac comb function
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1 Overview

Light, is an electromagnetic wave, which can carry different kinds of information.
Its physical parameters, like intensity, phase, frequency, coherence, polarization
can be applied to transmit information in different systems. Before photoelectric
sensors were invented, film was used to record the intensity of the optical field.
On the one hand, it can record the continuous light field without electronic noise,
however, it is expensive and inconvenient. With the rapid development of science
and technology, the photoelectric sensors like charge-coupled device (CCD) or
complementary metal-oxide-semiconductor (CMOS) are now commonly used instead
of film. Unlike film, the captured digital intensity field can be easily processed later
by computer, and the cost of capturing the light intensity is significant reduced.
However the captured field is no longer continuous, but in discrete form, and the
spatial sampling rate of the discrete digital signal depends on the pixel size of the
sensors and the spacing between them. The technology to process, transport, and
storage such optical digital information is referred to as digital optics [1].

In this thesis, several problems in digital optics are investigated. Instead of the ray
tracing technique, the diffraction integral is usually used to calculate the propagation
of the light in digital optical systems. The paraxial Fresnel diffraction integral is one
of the mostly widely used diffraction models. We review its numerical solution in
Chap. 2 in this thesis. The uniform sampling of the diffraction integral is a common
way to numerically calculate the integration. The input field can be sampled in either
Cartesian or cylindrical coordinate systems. The properties of these two sampling
techniques are fundamentally different. These two approaches are analyzed and
discussed.

Despite the convenient nature of the numerical solution, it also has some dis-
advantages like aliasing and replicas. If we instead use analytical forms to solve
the integration, these disadvantages vanish. However in most cases there are no
closed form for the diffraction integration. In Chap. 3, we discuss some special
cases with analytic solution of the Fresnel diffraction integral. However analytic
solution only exsist for particular input fields like perfect converging wave front,
and are not suitable in the general case. Then we introduce the Extended Nijboer
Zernike (ENZ) theory, which is a semi-analytical solution of the calculating the
optical field near the focus points for general cases by decomposing the input field
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into finite terms of Zernike polynomials. As a semi-analytical solution, the ENZ
theory gives a very accurate solution to the diffraction integral, however it is very
complex to implement. Therefore we we propose the simplified ENZ theory, which
reduces the complexity of the ENZ, and decreases the computation time for single
diffraction plane calculations. After that, we also use the ENZ theory to calculate
the Fresnel diffraction integral for optical planes axially displaced from the focal plane.

To describe the optical field, and use the Fresnel transform to calculate the
propagation of the light, we need both the intensity and the phase of the optical field.
However as mentioned above, only the intensity can be directly measured, the phase
information is more difficult to recover. A widely used method, digital holography is
introduced and discussed in Chap. 4. It offers a means of measuring optical phase
data and they can be used to estimate a three-dimensional surface or for optical
thickness measurements. Letting the object wave interfere with a reference wave, the
acquired holograms are recorded by digital sensor array, it is called digital hologram.
After processing the digital hologram numerically, the optical phase data can be
acquired. Digital holography offers a useful way of measuring optical phase data,
which can be used for many metrology applications, like quantitative phase-contrast
microscopy[2, 3]. The holographic system we use is a lens-less imaging system, its
theoretical resolution limits are discussed in [4]. Different kinds of noise sources in
the system are analyzed and handled, which helps us to experimentally approach the
theoretical resolution limits. At the end of Chap. 4, we use the digital holographic
system to estimate the transmittance function of a “thin” lens.

Another common way to measure the optical phase data is to use phase re-
trieve algorithms, which is introduced in Chap. 5. Usually we measure two or
more intensity patterns of the optical field. Then the optical phase data can be
calculated/estimated by iterative algorithms: phase retrieve algorithms. However the
algorithm often converges to an incorrect solution due the inappropriate initial phase
guess. To acquire a good initial phase guess for the iterative process, we combine the
digital holography with phase retrieve technique. The new method is introduced and
compared to the other traditional holographic techniques.

Note that all the theoretical problems discussed above assume that the light
source is totally coherent. The propagation of the coherent wave in free-space and
in the optical system can be mathematical described using a diffraction integral
approach. However in practice, the partially coherent, even incoherent beams like
LED, are difficult to simulate or model using wave optics. Usually we can model
the partially coherent beam by using the mutual coherence integration, however
it is a 4D integration, and is difficult to solve, In Chap. 6, we propose a concise
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method to simulate the partially coherent beam. Instead of solving the 4D mutual
coherence integration by definition, we use the spatially coherent random field to
simulate the partially coherent beam. By using the proposed method, we calculate
the diffraction pattern of a diffractive optical element (DOE) under partially coherent
illumination, and experimentally measure the performance of DOE under partially
coherent illumination.

Finally, in Chap. 7 we summarize the main results of this thesis and provide
an outlook for further research.
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2 Paraxial wave propagation

The following content is discussed in this chapter. The paraxial wave model, which
is used throughout this thesis, is introduced. Based on this wave optical model, the
Fresnel diffraction integral is used to describe the propagation of optical field in free
space. It is not possible to find an analytical solution to the Fresnel transform in
general. Therefore it is important to examine numerical methods for calculation the
diffraction integral. One approach to performing a Fresnel diffraction is solutions is by
sampling the input field uniformly. However this uniform sampling of the input field
produces infinite copies in addition to the original solution, known as replicas. This
replica effect in Cartesian and cylindrical coordinate systems is discussed. Finally,
two fast Fourier transform (FFT) based methods are presented and discussed.

2.1 Introduction to the Fresnel transform

The diffraction integral is used to model the propagation of the light, which accounts
for the diffraction phenomenon and wave nature of light. In Goodman’s treatment,
he began the derivation of a diffraction integral with Maxwell’s equations [5]. In the
scalar optical description of light, it is assumed that the different vectorial component
of the electromagnetic field can be treated independently. Goodman thus uses a single
scalar wave equation to describe the field instead of vector treatment. With the help
of the Helmholtz equation, Green’s theorem, and setting two assumptions that the
optical field and its first derivative of the vertical direction outside the aperture are
zero, Kirchhoff’s diffraction formula[6] was derived. However these two assumptions
were later proved to be inconsistent, and were modified by Sommerfeld [5]. By using
different boundary conditions, he formed the Rayleigh-Sommerfeld I and II diffraction
integral. Under the paraxial approximation, these diffraction integrations reduce to
the Fresnel diffraction integration.

2.2 Numerical calculation of the Fresnel diffraction integral

In this section, we examine the Fresnel diffraction integral (Fresnel transform). Because
only for particular cases, there are analytical solutions to the Fresnel diffraction
integral, it is important to develop robust numerical calculation so that general
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Fig. 2.1: Freespace propagation from input plane u(x, y) to output plane U(X,Y ).

diffraction problems can be solved. We discuss a numerical approach where the input
field is described using a finite set of samples in both Cartesian and cylindrical
coordinate systems. Sampling the input field generates a infinite number of copies of
the diffraction field in the output domain. We refer to these copies as replicas and
show how they arise in Sec. 2.2.

2.2.1 The Fresnel transform in a Cartesian coordinate system

We begin our analysis by defining the Fresnel transform in same manner as Ref. [5],
see Chap. 4, P. 67,

FST{u(x, y)} = U(X,Y ) = eikz

iλz

+∞∫∫
−∞

u (x, y) e
ik
2z [(X−x)

2+(Y−y)2]dxdy, (2.1)

where FST stands for the Fresnel transform operation, k = 2π/λ is the wave number,
i is the imaginary unit, and λ is the wavelength, u(x, y) is the complex amplitude of
the input plane, and U(X,Y ) is the complex amplitude of the field in the output
plane at a distance of z to the input plane (see Fig. 2.1). As mentioned before, for
the most input fields u(x, y), there are no analytical solutions and we must do the
integral numerically by sampling u(x, y). In some cases, the input field is already
given as discrete values, like lens-less digital holography[7]. If the input field is given
continuously, it need to be discretized first, then we have the Fresnel transform in
discrete form,

UN (X,Y ) = ∆x∆y
eikz

iλz

∞∑
n=−∞

∞∑
m=−∞

u (xn, ym) e
ik
2z [(X−xn)

2+(Y−ym)2], (2.2)
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UN (X,Y ) = ∆x∆y
eikz

iλz

∫∫
S

δT (x)δT (y)u (x, y) e
ik
2z [(X−x)

2+(Y−y)2]dxdy, (2.3)

UN (X,Y ) = FST{u(x, y)δT (x)δT (y)}∆x∆y, (2.4)

where n,m are integers, xn = n∆x, ym = m∆y, ∆x and ∆y are the sampling intervals
over the x and y coordinate respectively, and δT (x) is the Dirac comb function,

δT (x) =
∞∑

n=−∞
δ(x− n∆x), (2.5)

where δ(x) is a Dirac delta function [8],


δ(x) = +∞, x = 0
δ(x) = 0, x 6= 0
−∞∫
+∞

δ(x)dx = 1,
(2.6)

which we use to define the location of each sample. Then using the Poisson formula
for Dirac comb function [9],

∞∑
n=−∞

δ(x− n∆x) =
1

∆x

∞∑
n=−∞

ei2π
n

∆xx, (2.7)

Eq. (2.4) is written as,

UN (X,Y ) =
∞∑

n=−∞

∞∑
m=−∞

FST
{
u(x, y)ei2π(

nx
∆x+

my
∆y )
}

. (2.8)

Note that Eq. (2.8) can also be treated as an infinite sum of Fresnel transforms, by
using the shift property of Fresnel transform [10], i.e,

FST
{
u(x)ei2π

nx
∆x
}
= U

(
X − nzλ

∆x

)
exp

(
iπλzn2

∆x2

)
exp

(
i2πnx

∆x

)
, (2.9)

we have,

UN (X,Y ) =
∞∑

n=−∞

∞∑
m=−∞

U

(
X − nzλ

∆x
,Y − mzλ

∆y

)
exp

(
iπλzn2

∆x2

)
exp

(
iπλzm2

∆y2

)
×

exp
(
i2πnx

∆x

)
exp

(
i2πmy

∆y

)
. (2.10)
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From Eq.(2.10) we find, the numerical approach UN (X,Y ) gives an infinite set orders
of replicas centered around the zero order(m = 0,n = 0), with the separation zλ

∆x in
the x-direction and zλ

∆y in the y-direction. Every order of the replicas has the same
amplitude, however the phase is different being modulated by exp( i2πnx∆x ) exp( i2πmy∆y )

in Eq.(2.10). The sampling interval ∆x and ∆y play an important role in determining
the separation between the replicas. The smaller these intervals are, the further away
are the replicas from each other in the output plane. On the other hand, if the
sampling interval is too large, there will be an overlap between neighboring replicas
and the desired zero order solution. This is referred to as aliasing and reduces the
accuracy of the numerical solution.

2.2.2 The Fresnel transform in a cylindrical coordinate system

In this section, we will investigate the effects of sampling in a cylindrical coordinate
system. First, with the following relations,

x = r cosφ, (2.11)
y = r sinφ, (2.12)
X = R cos θ, (2.13)
Y = R sin θ, (2.14)

we rewrite the Fresnel transform in a cylindrical coordinate system as,

U(R, θ) = eikz

iλz

∫∫
S

u (r,φ) e
ik
2z (r

2+R2)e−
ikrR
z cos(φ−θ)rdrdφ, (2.15)

In order to solve the integral numerically, we sample the angle and radius with ∆φ,
∆r, then we have,

UN (R, θ) = ∆φ∆r
eikz

iλz
×

∞∑
n=−∞

M∑
m=1

u (rn,φm) e
ik
2z (r

2
n+R

2)e−
ikrnR
z cos(φm−θ)r, (2.16)

where M = 2π/∆φ, φm = m∆φ and rn = n∆r.

If we assume the input field u (rn,φm) is totally symmetric, u (rn,φm) = u (rn), we
can simplify Eq. (2.16) as,

UN (R) = ∆r
eikz

iλz

∞∑
n=−∞

u (rn) e
ik
2z (r

2
n+R

2)J0

(2πRrn
λz

)
rn, (2.17)
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UN (R) = ∆r
eikz

iλz

∞∫
0
δT (r)u (r) e

ik
2z (r

2+R2)J0

(2πRr
λz

)
rdr, (2.18)

where J0 is the Bessel function of the first kind. Again, with help of the Poisson
formula for Dirac comb function, we have,

UN (R) =
eikz

iλz

∞∑
n=−∞

∞∫
0
ei2π

nr
∆ru (r) e

ik
2z (r

2+R2)J0

(2πRr
λz

)
rdr, (2.19)

UN (R) =
eikz

iλz

∞∑
n=−∞

H0{ei2π
nr
∆ru (r) e

ik
2z (r

2+R2)}{2πR/λz}, (2.20)

where H0 is the first order of the Hankel transform[11]. Using the convolution property
of Hankel transform, see Chap. 17 of Ref. [11]),

H0{ei2π
nr
∆ru (r) e

ik
2z (r

2+R2)}{2πR/λz} = 1
2πH0{ei2π

nr
∆r } ∗H0{u (r) e

ik
2z (r

2+R2)},

(2.21)

where “∗” is the convolution operation,

(f ∗ g)(X) =

∞∫
∞
f(x)g(X − x)dx. (2.22)

Note that the analytical expression of U(R) can be also written as a Hankel trans-
form,

U(R) =
eikz

iλz

∞∫
0
u (r) e

ik
2z (r

2+R2)J0

(2πRr
λz

)
rdr = H0{u (r) e

ik
2z (r

2+R2)}. (2.23)

Furthermore we know that the Hankel transform of an exponential function e−βr, is
given by,

H0{e−βr}{v} =
β

(v2 + β2)
3
2

. (2.24)

Substituting Eq. (2.21), Eq. (2.23) and Eq. (2.24) into Eq. (2.20), we arrive of the
following expression,

UN (R) =
∞∑

n=−∞
U(R) ∗

−i2π n
∆r[(

2πR
λz

)2
− (2π n

∆r )
2
] 3

2
. (2.25)
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We see from the equation above, the fraction term on the right side acts like a Delta
function at different position R = |nλz/∆r|, which means the sampling over the
radius also produces an infinite number of replicas in the output domain. However
these replicas are fundamentally different from the replicas in Cartesian coordinate
system. The higher order replicas here are not identical to the zero order replica,
they are located at distances of R = |nλz/∆r|. Therefore the positive order +n and
negative order −n replicas overlap with each other.

We now focus on the problem of numerically calculating the integration over
the angle φ with a finite number of samples as in Eq. (2.15). To make the analysis
easier, we examine the integral over the angle separately,

U(R, θ) = A(θ)
eikz

iλz

∞∫
0
u (r) e

ik
2z (r

2+R2)rdr, (2.26)

A(θ) =

2π∫
0
e−

ikrR
z cos(θ−φ)dφ. (2.27)

After we sample the angle variable φ, we have the following numerical expression,

AN (θ) = ∆φ
M∑
m=1

e−
ikrR
z cos(θ−φm) (2.28)

= ∆φ
2π∫
0
δT (φm)e

− ikrRz cos(θ−φ)dφ (2.29)

=
∞∑

m=−∞

2π∫
0
eimMφe−

ikrR
z cos(θ−φ)dφ (2.30)

which AN (θ) is the sampled form of A(θ). Substituting Eq. (2.31), which is given in
Chap. 2.2, Eq. (5) in Ref. [12],

Jn(α) = −
1

2π

2π∫
0
ei[nφ−α cos(φ)]dφ, (2.31)

into Eq. (2.28), we arrive at the following result,

AN (θ) =
∞∑

m=−∞
eimMφ2πJmM

(
krR

z

)
= A(θ) +EN , (2.32)
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which EN is the numerical error with,

EN =
∞∑
m=1

2πJmM (v)
[
eimMφ + (−1)Me−imMφ

]
. (2.33)

The accuracy of the angular sampling depends on this error EN . It is a summation
over the different orders of Bessel function JM , J2M , J3M .... If the term v = krR

z is
small (0 < v < 1), the contribution from the higher orders of Bessel functions are
approximately zero,

EN ≈ 2πJM (v)
[
eiMφ + (−1)Me−iMφ

]
. (2.34)

In this case, when M > 5, JM (v) ≈ 0 and therefore EN ≈ 0, the sampling will give a
reasonable accurate result. However if we want to calculate the points far away from
the optical axis, which means v >> 1, a higher number of sampling points M are
needed, to ensure numerically accurate results.

2.3 Some numerical examples

In order to verify our mathematical analysis above, we calculate some examples
of Fresnel transform numerically, by sampling the input field in the two different
coordinate systems, and examine the properties of the resulting replicas.

2.3.1 A symmetrical converging spherical wave

In this Cartesian case, we want to calculate the optical field in the output plane when
a perfect converging spherical wave is incident upon a circular aperture. We choose
the aperture radius a = 0.25 mm, wavelength λ = 500 nm, the focal point of the
converging wave is f = 50 mm and the sampling interval is ∆x = ∆y = 0.025 mm.
The input field in Cartesian coordinate system is then given in Ref. [5] in Chap. 5,

u(x, y) = e−
iπ
λf (x

2+y2), x2 + y2 ≤ a2

u(x, y) = 0, x2 + y2 > a2
(2.35)

Substituting the input field u(x, y) into Eq. (2.2), the amplitude distribution at
the focus plane z = 50 mm is calculated and the result plotted in Fig. 2.2. From
Eq. (2.10) we know that an infinite numbers of replicas are generated along with
the original solution. These replicas are separated from each other by a distance of
λz/∆x = 1 mm, which is in accordance with the simulation result in Fig. 2.2. We
not that if the ∆x and ∆y are too big, these replicas would overlap with the original
result, producing aliasing and thus reducing the accuracy of the result.
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Fig. 2.2: Amplitude distribution of a converging spherical wave at the focus plane, see
details in text. The input field is sampled in Cartesian coordinate system, with
∆x = ∆y = 0.025 mm. Therefore the replicas are seen at the distance of λz/∆x = 1
mm.

We now repeat the calculation for the same input field however this time us-
ing a cylindrical coordinate system. In this case the cylindrical input field is written
as, u(r, θ) = e−

iπ
λf r

2
, r ≤ a

u(r, θ) = 0, r > a
(2.36)

In order to investigate this calculation in more detail we sample over the radius r and
the angle θ separately. We first look at the replica along the output radial coordinate.
We sampled the radius with ∆r = 0.025 mm, then substituting Eq. (2.36) into Eq.
(2.17). The amplitude is plotted in Fig. 2.3. As predicted by Eq. (2.25), we can see
replicas with the distance of R = λz/∆r = 1 mm. However unlike the replicas in Fig.
2.2, where the amplitudes of different orders of replicas are identical to the original
one, the replicas here are totally different to the original result. In fact the positive
and negative orders overlap at the same location.

If we sample the angle in cylindrical coordinate system using Eq. (2.28), the
error depends on the sampling number M and calculated radius v = krR/z in output
plane. In order to validate Eq. (2.34), we use Eq. (2.28) to calculate Eq. (2.27) with
vo = krR/z = 1 and M = 10. The result is plotted in Fig. 2.4. According to Eq.
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Fig. 2.3: Amplitude distribution of a converging spherical wave at the focus plane. The input
field is sampled in cylindric coordinate system, with ∆r = 0.025 mm. Therefore
the replicas are seen at the distance of λz/∆r = 1 mm.

(2.34), the numerical error should be,

EN ≈ 4πJ10(1) cos(10φ) = 3.3057× 10−9 cos(10φ), (2.37)

which matches the result in Fig. 2.4, there are 10 periods in 0− 2π. The bigger vo is,
the more sampling points M are needed to get an accurate result.

2.3.2 An asymmetrical input field

In the previous section, we analyzed and calculated the diffracted field when a
completely symmetrical input field was used in both Cartesian and cylindrical
coordinate systems. In this section, we will calculate the asymmetrical input field by
sampling in cylindrical coordinate systems.

We take the shifted converging field as our input field , instead Eq. (2.36). We have
now the asymmetrical input field in cylindrical coordinate systems with,

u(r,φ) = e−
iπ
λf (r

2)ei2πr cos(φ)/0.1. (2.38)

The focal point is therefore shifted and located at x = 0.25 mm. As a reference we
calculate the results by sampling the input field in Cartesian coordinate system, with
very fine sampling ∆x = ∆y = 0.001 mm, to make sure the replicas do not affect
the accuracy of the results. The amplitude distribution is plotted in Fig. 2.5. In Fig.
2.6-2.8, the amplitude distribution, by sampling in a cylindrical coordinate system,
are plotted, with same sampling interval of radius ∆r = 0.05 mm, but different
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Fig. 2.4: Numerical error EN by sampling the angle with M = 10 and vo = 1.

sampling number M over φ. Therefore we can see replicas in Fig. 2.6-2.8, with the
same replicas distances, which is given by λz/∆r = 0.5 mm. In Fig. 2.6, M = 300
is taken to uniformly sample the angle φ, replicas are averagely distributed around
the focus point. When we reduce the sampling number M to 80, as shown in Fig.
2.7, the error are seen at the third order of replica. If less sampling number M = 40
is taken, which is shown in Fig. 2.8, the error increases and even the first order of
replica is effected by the undersampling of φ. The further away from the zero order
the observation location is, the more samples M are required to keep the error within
given bounds.

2.4 FFT-based calculation

Regardless of which coordinate system is chosen, sampling the input field and doing
the integral directly will take a large calculation time. For example for an input field
is sampled with 200× 200 points, to calculate the complex amplitude at a single
output location takes about 0.04 s with the following computer: Intel(R) Core(TM)
i7-2600K. Therefore the calculation of an output field with 200× 200 points will take
about 25 minutes. In this section, we discuss the numerical solution of the Fresnel
transform using the highly efficient FFT-based calculation, which can dramatically
reduce the computation time.

The Fourier transform is a linear integral transformation [13]. By transforming the
signal between the time domain and frequency domain, it has many applications
in physics and engineering. In digital optics, we use it to transform the optical
signal between the spatial domain and spatial-frequency domain, its applications are
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Fig. 2.5: Amplitude contour |UN (X,Y )| by sampling in the Cartesian coordinate system
with ∆x = ∆y = 0.001 mm. Here the replicas are far enough apart from each
other, to produce accurate numerical results.

Fig. 2.6: Amplitude contour |UN (X,Y )| by sampling in the cylindrical coordinate system
with ∆r = 0.05 mm, M = 300. Here the circle replicas are seen at a distance of
λz/∆r = 0.5 mm. Because the angle is very fine sampled, the numerical error due
the angle sampling is very small.
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Fig. 2.7: Amplitude contour |UN (X,Y )| by sampling in the cylindrical coordinate system
with ∆r = 0.05 mm, M = 80. The angle is sampled with M = 80, therefore we
can see the error due the angle sampling appears at the position, where vo is large.

Fig. 2.8: Amplitude contour |UN (X,Y )| by sampling in the cylindrical coordinate system
with ∆r = 0.05 mm, M = 40. In this case, the angle sampling is not enough, the
error can be seen even near centre of the diffraction plane.
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found in diffraction, imaging, optical data processing, and holography. The Fourier
transform of a continuous function is,

ū(X) = F{u(x)}{X} =
∫
u(x)e−i2πxXdx, (2.39)

and the inverse Fourier transform is given by,

u(x) = F−1{ū(X)}{x} =
∫
ū(X)ei2πxXdX, (2.40)

where F and F−1 are the forward and inverse Fourier transform operations. For the
2D case, the Fourier transform is then,

ū(X,Y ) = F{u(x, y)}{X,Y } =
∫∫

u(x, y)e−i2πxXe−i2πyY dxdy. (2.41)

Again it is not possible to solve the Fourier integral for general input function. We
must again turn to numerical approaches. In a discrete system, a computer can
calculate for a finite number of samples. Therefore we change the Fourier transform
to the discrete Fourier transform. We rewrite the Fourier transform Eq. (2.39) in
discrete form,

ū(X) = ∆x
N∑
n=1

u(xn)e
−i2πxnX , (2.42)

which u(xn) has a sequence with N samples u(x1),u(x2), ...,u(xN ), the sampling
interval is ∆x. According to Eq. (2.42), the calculated output signal ū(X) is continuous.
Calculating the Eq. (2.42) uses a large computational load O(n2). The use of fast
Fourier transform algorithm(FFT) reduces the computational load to O(n log n)
instead. As same as Eq. (2.42), we have a discrete signal u(xn) with N samples, and
the sampling interval ∆x. After the FFT operation, we get the same output signal
ū(Xn) however in discrete form,

ū(Xn) = FFT {u(xn)} . (2.43)

The acquired output signal Ū(Xn) has the same sequence size N as the input signal,
however the sampling interval of the output signal is changed with ∆X = 1/(N∆x),
and the output signal extent is therefore 1/∆x. Note that the input signal is uniformly
sampled, which produces also replica effect similar to the discussion in Sec. 2.2.1. The
distance between replicas is 1/∆x. We note that, the sampling interval of the output
signal is fixed with ∆X and the extent of the output signal is limited by N∆X. If
we want to calculate the output signal with finer sampling rate and larger extent,
zero-padding and interpolation could be used.

Zero-padding
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For example a input signal u = [u(x1),u(x2)...u(xN )] that is sampled with N

samples and with a sampling interval ∆x, we put extra zeros beside the signal, and
have the signal uzp,

uzp = [0, 0, 0, ...u..., 0, 0, 0], (2.44)

the vector uzp in Eq. (2.44) has M samples(M > N), and M −N is the number of
the adding zeros, we call this technique zero-padding. In this case, the extent of the
output signal does not change, but with more sampling points M , so the sampling
interval of the output signal is 1/M∆x instead of 1/N∆x.

Interpolation
Another technique to manipulate the sampling of the output signal is the interpolation.
If we interpolate the input signal u, then we have the signal uip,

uip = [u(x1),u(x1),u(x2),u(x2),u(x3)...,u(xN )], (2.45)

which u(xn) means the interpolated terms between u(xn) and u(xn+1), with

u(xn) =
u(xn) + u(xn+1)

2 . (2.46)

In this instance, the original signal u is replaced into uip with a smaller sampling
interval, which leads to a larger extent of the output signal, however the sampling
interval of the output signal is still the same.

By properly combining these two numerical techniques we can manipulate the
sampling rate and the extent of the output signal, and calculate the signal for any
spatial frequency coordinate we want.

We now return to our discussion and calculate the Fresnel transform numeri-
cally. In order to perform the calculation of the Fresnel transform, we rewrite
the Fresnel transform into the form of the Fourier transform. By using the FFT
algorithms, the speed of calculating the Fresnel transform is significantly improved.
Generally there are two methods to calculate the Fresnel transform using FFT
technique, the direct method and the spectral method. Next, we will examine these
two FFT-based methods.
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2.4.1 The direct method

We rewrite the Fresnel transform from Eq. (2.1) as following,

FST{u(x, y)} = U(X,Y ) = e
ik(X2+Y 2)

2z
eikz

iλz

+∞∫∫
−∞

u (x, y) e
ik(x2+y2)

2z e
−ik(xX+yY )

z dxdy.

(2.47)

Note that we can rewrite the equation above in the form of 2D Fourier transform,
with the scaled factor vx = X/(λz), vy = Y /(λz),

FST{u(x, y)} = U(X,Y ) = e
ik(X2+Y 2)

2z
eikz

λz
F

{
u (x, y) e

ik(x2+y2)
2z

}
{vx, vy} . (2.48)

Using FFT to calculate the Fourier transform, we have the discrete output field with
direct method,

FST{u(xn, yn)} = U(Xn,Yn) = e
ik(X2

n+Y
2
n )

2z
eikz

λz
FFT

{
u (xn, yn) e

ik(x2
n+y

2
n)

2z

}
. (2.49)

According to the property of the FFT operation, the discrete output field U(Xn,Yn)
has the same matrix size as the input field u(xn, yn). The sampling interval and
the extent of the output field is (λz/N∆x,λz/N∆y) and (λz/∆x,λz/∆y) in both
coordinates.

Note that unless λz/N = ∆x2,λz/N = ∆y2, the extent of output field is dif-
ferent from the extent of input field, the output extent size depends on the factor
λz/N . Therefore when we calculate the Fresnel transform using direct method at
different propagation distances z or for different λ, the sampling interval and the
extent of the output field are changed accordingly.

2.4.2 The spectral method

Similar to the direct method, the Fresnel transform is rewritten in the form of Fourier
transform. We note that the Fresnel transform can be expressed as a convolution
operation,

U(X,Y ) = eikz

iλz

[
u (x, y) ∗ e

ik(x2+y2)
2z

]
, (2.50)

(f ∗ g)(t) =
∞∫
−∞

f(τ )g(t− τ )dτ , (2.51)
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Table 2.1: Comparison between direct method and spectral method

output field property direct method spectral method
sampling interval λz/N∆x ∆x
output extent λz/∆x N∆x

sampling interval after zero-padding λz/M∆x ∆x
extent after zero-padding λz/∆x M∆x

sampling interval after interpolation λz/N∆x N∆x/M
extent after interpolation Mλz/N∆x N∆x

where “*” is the convolution operation. Then make use of Fourier property of convo-
lution,

F{U(X,Y )} = eikz

iλz
F{u (x, y)}F{e

ik(x2+y2)
2z }, (2.52)

U(X,Y ) = eikz

iλz
F−1

{
F{u (x, y)}{x̄, ȳ} ×F{e

ik(x2+y2)
2z }{x̄, ȳ}

}
{X,Y } . (2.53)

Similarly we use discrete FFT instead of continuous Fourier transform,

U(Xn,Yn) =
eikz

iλz
FFT−1

{
FFT{u (xn, yn)} × FFT{e

ik(x2
n+y

2
n)

2z }
}

. (2.54)

In the spectral method, two FFTs are used in the convolution. This ensures
that the sampling interval of the output field is as same as the sampling inter-
val of the input field, ∆X = ∆x, ∆Y = ∆y. Hence the extent of output field is
always equal to the extent of input field, no matter what the propagation distance z is.

Note that both methods produce replicas, the distance between the two neigh-
boring replicas equals to the extent of the output field. If the extent of the output
field is smaller than the signal width, there would be aliasing in the output field.
To separate the replicas we increase the extent of the output field by using the
zero-padding or the interpolating techniques, which will be discussed in the next
section.

2.4.3 A comparison of the direct and spectral methods

After introducing the two FFT-based techniques, we discuss their properties and
some advantages and disadvantages of the two techniques in this section. Assuming
the input field u(xn, yn) has a matrix of N ×N points, the sampling interval are
∆x, ∆y in x and y coordinates, the differences of these two methods are listed in Tab.
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2.1.

As mentioned above, the extent and the sampling interval of output field do
not change while using spectral method, however by using direct method, the extent
and the sampling interval are changed proportional to the propagation distance z.
In addition, the differences are apparent when we manipulate the input field by
using zero-padding or interpolation. For the direct method, if we zero-pad the input
field to a matrix size M ×M(M > N), the extent of output field does not change,
but we do get a finer sampled input field with the sampling interval λz/M∆x in
x-coordinate, and corresponding λz/M∆y in y-coordinate. For the spectral method,
the effect of the zero-padding is opposite to the direct method, the sampling interval
is unchanged, while the extent/distance between two neighboring replicas is expanded
to M∆x,M∆y. Another numerical technique for controlling the sampling property
in the output domain is by interpolation. After linear interpolation, the input field
has a matrix size M = 2N or 3N depending on whether we upsample by a factor of
two or three. In this case, the sampling interval of output domain does not change
while using direct method, but the extent/distance between two neighboring replicas
is enlarged to Mλz/N∆x. For the spectral method, the extent remains unchanged,
however the sampling interval is reduced to N∆x/M .

Although FFT-based methods give us the discrete solution of the output field
U(Xn,Yn), by appropriately using the zero-padding and the interpolation techniques
any spatial locations in the output field can be calculated with these two methods.
However there is still a crucial difference between them. In spectral method, after the
first FFT, we change the input field from spatial domain to the spatial-frequency
domain. If the input field contains very high spatial frequency component, such
high spatial frequency part would cause aliasing in the spatial-frequency domain.
Therefore some input fields with high spatial frequency are not suitable for using the
spectral method, however for direct method, there is no such problem.

2.5 Conclusion

In this chapter, the Fresnel transform was introduced. To solve the Fresnel transform
numerically, we examined how sampling the input field effected the accuracy of
the numerical results in two different coordinate systems. We also examined the
relationship between the correct analytical solution and higher order replicas that
arise due to the sampling process. The use of the FFT algorithm reduces the calculation
time of the Fresnel transform significantly. Two different FFT-based methods were
demonstrated, and their properties were discussed.
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3 A semi-analytical solution of the diffraction integral

In Chap. 2, we introduced the Fresnel transform and its numerical solution. With
the direct integral in Sec. 2.2, the calculation is time-consuming. If we rewrite the
Fresnel transform in the form of a Fourier transform and use an FFT-based technique
to calculate the output field with either spectral method or direct method, the
calculation time is significantly reduced. A significant disadvantage however is that
the resulting output field is discrete and the sampling interval and the extent of the
output plane are determined by the sampling of the input plane. Also the replicas
are inevitable if the input field is uniformly sampled.

In most cases there are no closed form for the diffraction integral. Therefore
in this chapter, we focus on the semi-analytical solution of the diffraction integral.
There are several good reasons for investigating diffraction problems using analytical
techniques: (i) more insight into the diffraction process is provided, (ii) a “correct”
analytical solution serves as an excellent way of testing the predictions of numerical
calculations in specific cases, and (iii) sometimes it may be desirable to use a
combination of analytical and numerical techniques to best model a given diffraction
problem.

3.1 A focal region calculation for a perfectly converging lens

We assume that the paraxial approximation is valid and also use the Fresnel transform
to model the diffraction and propagation of light in free space. As mentioned before,
for most cases, there are no analytical solutions for the Fresnel transform. In this
section we examine the diffraction of monochromatic light when a perfect converging
lens that is limited in extent by a circular aperture. By perfect converging lens
we mean there is no abberations in the lens, or in the viewpoint of geometrical
optics, all the light rays focus to an single focal point. To calculate this focal region
problem analytically, Lommel [14] introduced two functions to solve the integral in
1885. In 1947, Nijboer [15][16] gave another solution of the integral using Zernike
polynomials. With this solution we can calculate the 3D field distribution behind
a perfect converging lens. This solution can also be extended to include the effects
of abberation. In 2002, Cao [17] developed another series expansion, and used it to
solve the diffraction integral analytically.
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Fig. 3.1: Schematic view of the diffractive geometric.

These semi-analytical solutions are all mathematical equivalent. However none
of them are a closed form solution and hence require an infinite sum of series terms.
To calculate the result from one of these solutions, in practice, requires truncating
the infinite series when a desired accuracy has been achieved. As we shall see each
solution, has different convergence properties, which vary depending on the spatial
location in the output plane. In this section we find some of these solutions are
stable and converge quickly in some regions, however do not perform so well in other
locations. We analyse the reasons behind this and provide guidelines on how to
choose the appropriate solution for a given spatial location.

We use Fig. 3.1 to illustrate the optical system that we wish to analyze. A
plane wave is incident on a perfect converging spherical lens. In the geometrical
approximation the focused light would converge to an ideal point source at the focus.
In paraxial wave optics however, diffraction introduced by the finite extent of the
focusing lens aperture, causes the complex amplitude distribution in the focal plane
to spread out over the plane. If one traces the intensity distribution in the focal plane,
moving radially out from the focus, one observes a bright central lobe which changes
to series of bright and dark rings as one moves out along the plane. We wish to
examine the distribution over the entire focal volume, which requires a more complex
analytical solution. Using the Fresnel transform in cylindrical coordinate system(Eq.
(2.11-2.15)), and substituting the input field of a perfect converging spherical lens(Eq.
(2.36)), we have,

U(R, θ) = eikz

iλz

a∫
0

2π∫
0
e−

ik
2f (r

2)e
ik
2z (r

2+R2)e−
ikrR
z cos(φ−θ)rdrdφ. (3.1)
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Then using a property of the Bessel function (see Ref. [5], Chap. 2),

J0(α) =
1

2π

2π∫
0
e−iα cos(θ−φ)dθ, (3.2)

we arrive at the following result,

U(R, z) = 2π
iλz

e
jk
(
z+R2

2z

) a∫
0
e
iπr2
λ ( 1

z−
1
f )J0

(2πRr
λz

)
rdr. (3.3)

After introducing the normalise radius ρ,

0 ≤ ρ = r/a ≤ 1, (3.4)

and using two normalised optical coordinates uo, vo to make the integral concise,

uo =
2πa2

λ

(
1
f
− 1
z

)
, (3.5)

vo =
2πaR
λz

, (3.6)

we get,

U(uo, vo) =
1∫

0
e−

iuoρ
2

2 J0(voρ)ρdρ. (3.7)

Note that we are interested in the intensity of the output field, therefore the phase
term and the amplitude constant outside the integral are ignored. Using Eq. (3.7) we
can calculate the complex amplitude of the points behind the lens.

In the next section, however we first concentrate on finding a solution to the
integral U(uo, vo), using four different semi-analytical methods. As shown in Fig.
3.1, the diffraction field can be divided into two areas: if |uo| > |vo|, it is in the
illumination area; And if |uo| < |vo|, it is in the geometrical shadow area. Note that,
if |uo| = |vo|, the point is at the boundary between the illumination area and the
shadow area, and that the focal point is located at the coordinates uo = 0, vo = 0. It
seems reasonable to expect that the various semi-analytical solutions have different
properties in each of these regions.

3.1.1 A semi-analytical solution in the focal region

In this section, we derive four different semi-analytical solutions for the diffraction
integral, Eq. (3.7).
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I. The first Lommel solution
U(uo, vo) is separated into real and imaginary parts[14],

U(uo, vo) = C(uo, vo) + iS(uo, vo), (3.8)

where

C(uo, vo) =
1∫

0
J0(voρ) cos

(1
2uoρ

2
)
ρdρ, (3.9)

S(uo, vo) =
1∫

0
J0(voρ) sin

(1
2uoρ

2
)
ρdρ. (3.10)

Using integral by parts,∫
A(x)B′(x)dx = A(x)B(x)−

∫
A′(x)B(x)dx, (3.11)

where A(x) = cos(1
2uoρ

2) and B′(x) = J0(voρ), and using the property of Bessel
function (Ref. [12], Page 18),

d

dx

[
xn+1Jn+1(x)

]
= xn+1Jn(x). (3.12)

we get that,

C(uo, vo) =
1
vo
×
[
J1(vo) cos

(1
2uo

)
+ u

1∫
0
ρ2J1(voρ) sin

(1
2uoρ

2
)
dρ

]
. (3.13)

Using the Eq. (3.12) and integral by parts again, we get finally,

C(uo, vo) =
cos

(
1
2uo

)
uo

u1(uo, vo) +
sin

(
1
2uo

)
uo

u2(uo, vO), (3.14)

where un(uo, vo) is the first Lommel function, as discussed in Ref. [12] and [18],

un(uo, vo) =
∞∑
s=0

(−1)s
(
uo
vo

)n+2s
Jn+2s(vo). (3.15)

Similar we get that,

S(uo, vo) =
sin

(
1
2uo

)
uo

u1(uo, vo) +
cos

(
1
2uo

)
uo

u2(uo, vo), (3.16)
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Substituting Eqs. (3.14-3.16) into Eq. (3.8), we get the first of our semi-analytical
solution of Eq. (3.7),

U1(uo, vo) =
u1(uo, vo) + u2(uo, vo)i

uo
e−

iuo
2 , (3.17)

Where the subscript “1” indicate that this is the first solution of the integral. Note
that the term Jn+2s(vo) in the first Lommel function converge to zero. In the
illumination area, |u| < |v|, the term

(
u
v

)n+2s
converge to zero, too. It therefore is

appropriate to use this solution in the illumination area [19][20].

II. The second Lommel solution
We now provide a solution to the Eq. (3.7) using the second Lommel function.
Integral by parts is still used. But with A(x) = J0(voρ) and B′(x) = cos(1

2uoρ
2)

[21], or using alternatively the equations from Ref. [12], Chap. 16, Page 537-542,

v1(uo, vo)− v0(uo, vo)i
uo

e
−iuo

2 =

∞∫
1
J0(voρ)e

−iuoρ2
2 ρdρ, (3.18)

∞∫
0
J0(voρ)e

−iuoρ2
2 ρdρ = − i

uo
e
iv2
o

2uo . (3.19)

vn(uo, vo) is the second Lommel function,

vn(uo, vo) =
∞∑
s=0

(−1)s
(
vo
uo

)n+2s
Jn+2s(vo). (3.20)

Using Eqs. (3.19) - (3.18), the solution is,

U2(uo, vo) = −
i

uo
e
iv2
o

2uo − v1(uo, vo)− v0(uo, vo)i
uo

e
−iuo

2 . (3.21)

Using the second Lommel function the term
(
vo
uo

)n+2s
appears instead of

(
uo
vo

)n+2s

in Eq. (3.15), this indicates the solution converges in the shadow area. So we propose
to use this solution in the geometric shadow area[19][20].

III. Nijboer’s solution with Zernike polynomials
We now turn out attention to employing the third solution. In Eq. (3.7) we have the
term

e−
iuoρ

2
2 = e−

iuo
4 e−

iuo
4 (2ρ2−1). (3.22)
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and from Ref. [18] and Ref. [22], we note that,

eic(2ρ
2−1) =

√
π

2c

∞∑
n=0

in(2n+ 1)Jn+ 1
2
(c)Pn(2ρ2 − 1), (3.23)

where Pn is the Legendre polynomial, which is related to the Zernike polynomial (Ref.
[23]), as follows

Pn(2ρ2 − 1) = R0
2n(ρ), (3.24)

R0
2n(ρ) is the Zernike radial polynomials,

R|m|n (ρ) =

n−|m|
2∑
l=0

(−1)l (n− l)!
l!
( |m|+n

2 − l
)

!
(
n−|m|

2 − l
)

!
ρn−2l, (3.25)

where “!” is the factorial operation. n and (n−m) are non-negative integers, and
(n−m) must be even. Substituting Eqs. (3.22-3.24) into Eq. (3.7), and introducing
the parameter c = −u/4,

U(uo, vo) =
∞∑
n=0

e−
iuo

4

√
2π
−uo

in(2n+ 1)Jn+ 1
2

(
−uo4

) 1∫
0
R0

2n(ρ)J0(vρ)ρdρ. (3.26)

Another relationship, which is important in the diffraction theory of aberrations [23],
is that

1∫
0
R0

2n(ρ)J0(vρ)ρdρ = (−1)nJ2n+1(vo)

vo
. (3.27)

Substituting Eq. (3.27) into Eq. (3.26) gives the third solution for Eq. (3.7),

U3(u, v) =
∞∑
n=0

e−
iuo

4

√
2π
−uo

(−i)n(2n+ 1)Jn+ 1
2

(
−uo4

)
J2n+1(vo)

vo
. (3.28)

IV. Cao’s solution
More recently Cao defined a family of generalized Jinc functions wn(v) as follows
[17],

wn(vo) =
1

v2n+2
o

vo∫
0
x2n+1J0(x)dx. (3.29)
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The zero order(n = 0) of this function is the traditional Jinc function. We rearrange
the integral as follows, with ρ = x/vo,

wn(vo) =

1∫
0
ρ2n+1J0(voρ)dρ. (3.30)

This can also be rewritten as the form of a polynomial [17],

wn(vo) =
n∑

m=0
(−2)m n!

(n−m)!
Jm+1(vo)

vm+1
o

. (3.31)

Using the Taylor series expansion for e− 1
2 iuoρ

2 , it can be shown that

U(uo, vo) =
∞∑
n=0

(
−1

2iuo
)n

n!

1∫
0
ρ2n+1J0(voρ)dρ. (3.32)

Substituting Eqs. (3.30-3.31) into Eq. (3.32) we get a fourth solution of the form,

U4(uo, vo) =
∞∑
n=0

(
−1

2iuo
)n

n!

n∑
m=0

(−2)m n!
(n−m)!

Jm+1(vo)

vm+1
o

. (3.33)

Apply these four solutions we can calculate the intensity distribution, to within a
constant multiplicative factor, at any plane behind the lens,

I(uo, vo) = |U(uo, vo)|2. (3.34)

3.1.2 A comparison of some analytical solutions

It must be emphasized that, all of the four semi-analytical solutions, derived in the
previous section, are mathematically equivalent. They all involve summing over an
infinite number of Bessel functions to solve the integral exactly. In practice, however,
only a finite number of terms can be used in the calculation and so the rate of
convergence of each solution is of very real practical importance. It is shown that the
rate at which each method converges has strong spatial dependence and we establish
a relationship between the spatial location and the convergence rate for each solution.

In order to compare the relative performance of each of the different semi-analytical
solutions we have found it useful to compare the results to those found by directly
numerically integral the diffraction integral Eq. (3.7), which has been discussed in
Chap. 2. The result UN for such a calculation is presented in Fig. 3.2.
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Fig. 3.2: A contour plot of |UN |2 in the focal region.

We first however compare the analytical solutions for given numbers of series
terms along different cross-sections through the focus. We then examine how many
series terms are required for each solution to meet the same convergence criteria
at a set of specific points, P1, P2 and P3, see Fig. 3.2. Various cross-sections and
spatial locations are identified in Fig. 3.2. After that, we examine the differences
between each analytical solution and the numerically calculated results and produce
a set of error maps so that the significants of these errors can be visualized. Finally,
the time taken to calculate the results using each of the analytical solutions are
demonstrated.

3.1.2.1 A comparison of the semi-analytical solutions along several cross-sections
through the focal region

We begin our comparison of the semi-analytical solutions by examining their predic-
tions along three different cross-sections, each of which passes through the focal point.
Three different cross-sections are shown in Fig. 3.2 and defined as: A. along the focal
plane (uo = 0), B. along the optical axis (vo = 0) and C. along the boundary of the
illumination area (|uo| = |vo|).

A. Along focal plane (uo = 0)
For each solution only the first five terms of the analytical series is used for the
calculation and we examine |U(uo, vo)|2 over the range −30 < vo < 30. We note
that when uo = 0, one must perform a limiting operation in order to arrive at the
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Fig. 3.3: Intensity along the focal plane (uo = 0) when five series terms are used in the
calculations.

Fig. 3.4: Intensity distribution along the optical axis (vo = 0) retaining five series terms.

Fig. 3.5: Intensity at the boundary (|uo| = |vo|) of the illumination area. Again only five
series terms are used in the calculations.
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Fig. 3.6: Intensity at the boundary (|uo| = |vo|) of the illumination area with ten terms.

correct result for the first Lommel function, second Lommel function and Zernike
polynomial solutions. This is because of the presence of the 1/uo term. In practice we
use uo = 0.0001 close to uo = 0. Fig. 3.3 shows the log of the intensity distribution
in the focal plane. The solutions, |U1|2, |U3|2 and |U4|2 converge quickly and closely
agree with each other in Fig. 3.3. However the second Lommel function, |u2|2, does
not converge. As when uo ≈ 0, and vo � uo, the term (vo/uo)

n+2s in Eq. (3.20)
requires that more terms be included so as to achieve convergence.

B. Along the optical axis (vo = 0)
As in the previous calculation along the focal plane, we again use the first five series
terms in each of the analytical solutions. The calculation range is −30 < uo < 30.
Again due to the presence of the 1/vo term, we only calculate the result for
vo = 0.0001 instead of vo = 0. The comparison is shown in Fig. 3.4. In this region
|U2|2 and |U3|2 converge quickly (brown-yellow distribution). But for the other two,
five terms are not sufficient to ensure that the analytical solution converges. The U4
solution converges over the range −6 < vo < 6 when 5 terms are used while the |U1|2

solution performs better converging over the range −9 < vo < 9 (see the green and
blue plots in Fig. 3.4 respectively). Therefore we conclude that it is better to use
|U2|2 or |U3|2 near the optical axis, i.e. when vo = 0.

C. Along the boundary of the illumination area (|vo| = |uo|)
In this region we have |vo| = |uo|, and the calculation range is −30 < vo = uo < 30.
The results from the four analytical solutions are presented in Fig. 3.5. The result
predicted by |U4|2 converges (green plot) for spatial locations near the focal region,
however does poorly for most other spatial locations along the cross-section. In fact
each solution converges at different rates along this cross-section. To examine this
feature in more detail, we calculate the intensity distributions again, however now
using ten terms, see Fig. 3.6. It is clear that the |U3|2 distribution does not change,
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Fig. 3.7: Converge process at P1 as a function of series terms.

however the additional terms improve the convergence of the other three solutions.
So we see that the |U3|2 solution converges most quickly along this boundary region
while the |U4|2 solution performs the worst in this region.

3.1.2.2 Convergence rate at three specific spatial locations: P1, P2 and P3

In the previous section we examined the performance of the analytical solutions along
three different cross-sections of the focal distribution all of which pass through the
focus. In this section we wish to examine in more detail how each solution converges
as a function of the number of series terms retaining. We choose three specific spatial
locations as indicated in Fig. 3.2.

P1. Near the focal plane |uo| = 5, |vo| = 25 From Fig. 3.3 we see that at
the focal plane the performance of the U1, U3 and U4 solutions are good, while the U2
solution does not converge. A question arises as to whether we can make U2 converge
by simply including more series terms? In the Fig. 3.7 we calculate the intensity at
point P1(|uo| = 5, |vo| = 25) near the focal plane, and we see that the U1, U3 and U4
solutions converge rapidly. Increasing the number of terms used with the U2 solution
does not seem to help and the solution does not converge. This lack of convergence
is numerical in nature and is related to the number of significant figures that can
be used to represent a rational number in a computer. “The floating-point machine
reals follow the IEEE standard Double Format using 53 bits of machine storage
(including one hidden bit) with a machine epsilon of 2−52 (which is approximately
2.2× 10−16)"[24], and hence the inaccuracy is of the order 10−16. In most cases
this difference does not cause numerical instability, however here, if vo � uo, the
second Lommel solution produces values that are larger than 1016. In the U2 series
solution at P1, successive series terms are very large and opposite in sign. Adding
large numbers of opposite sign means that the resulting small round-off errors can
quickly lead to numerical stability problems. While there are means of improving
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Fig. 3.8: Converge process at P2 as a function of series terms.

Fig. 3.9: Converge process at P3 as a function of series terms.

the numerical accuracy, they are not pursued here and we say that second Lommel
function does not provide a numerically stable solution in this region.

P2. Near the optical axis |uo| = 25, |vo| = 5
Now we turn to look at the point near the optical axis |uo| = 25, |vo| = 5. From
Fig. 3.8 we see that both the U2 and U3 solutions converge quickly needing only
a few series terms to reach a final stable value. The U1 and U4 solutions converge
more slowly. If we compare the manner in which the U2 solution in Fig. 3.7, and
the U1 and U4 solutions in Fig. 3.8, converge, we can see a similar trend. Although
the U1 and U4 solutions converge for all the cases presented here, we expect from
this observation that similarly there are regions where these solutions will fail
due to similar numerical stability reasons. We have not found a simple means
of defining these unstable regions. Hence we adopt the rule that if the solution
does not stabilize as the series are increased, one should choose an alternative solution.

P3. At the boundary of geometric shadow |uo| = 25, |vo| = 25
This point is located away from the optical axis and the focal plane, and we can see
that more terms are required to achieve the same level of accuracy (see Fig. 3.9). The
U1 and U2 solutions need about fourteen terms to reach the correct answer. The U3
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solution converges the fastest, needing only ten terms. The U4 solution needs more
than thirty terms to converge. We note the nature of the convergence is similar in
form to U2 in Fig. 3.7. As we move out further along curve C, and away from the
focus, this U4 solution becomes increasingly unstable and will eventually reach a
point where it dose not converge due to the digital limit discussed before.

3.1.2.3 Error maps

In this section we determine regions where the solutions converge well and where
the maximum errors are to be found. As reference we use the directly numerically
integrating of Eq. (3.7) in Chap. 2. We refer to this numerical solution as UN , 10000
sampling points of ρ are taken to ensure that the replicas are far away from each
other enough, so that an accuracy of 10−6 is guaranteed [25].

We compare the four analytical solutions, each calculated using only ten terms, with
a numerical solution UN . In Figs. 3.10 - 3.13 the resulting errors can be seen and
regions of convergence identified. We make the following observations:

1. The U1(u, v) solution converges well within the illuminated region behind the
lens.

2. The opposite appears to hold for the U2(u, v) solution, where the largest er-
rors are within the illuminated region. It does however converge well in the
geometrical shadow.

3. The Nijboer solution provides the most stable solution over the ranges we have
examined. The error increases as one moves away from the focus of the lens.

4. The Cao solution seems to be have a performance that is a combination of the
Lommel solutions. It is not as robust as the Nijboer and the errors appear to
be symmetrical about the u = 0 plane.

From these results we conclude that while all the solutions are mathematically equiv-
alent they require a finite number of series terms to be used in practical calculations.
When only a finite number of terms are used, the Nijboer solution has a very robust
convergence properties in the whole focal region.

3.1.2.4 A comparison of the calculation time

In addition to the accuracy, the total time taken to calculate a numerical result
from the analytical solutions is an important parameter. Here we examine how
the computation time varies for each of the four analytical solutions. We calculate
100× 100 points distributed in the focal region −20 < u < 20,−20 < v < 20. The
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Fig. 3.10: Error map of solution U1,
log(|U1 −UN |) is plotted.

Fig. 3.11: Error map of solution U2,
log(|U2 −UN |) is plotted.

Fig. 3.12: Error map of solution U3,
log(|U3 −UN |) is plotted.

Fig. 3.13: Error map of solution U4,
log(|U4 −UN |) is plotted.

computer we used is an Intel(R) Core(TM) i7-2600K, and the computing platform
is Matlab. The computation time for the four solutions are plotted as a function of
the number of series terms, see Fig. 3.14. The U4 solution takes the most time of all,
then follow the Nijboer’s solution and two Lommel solutions, the time spent of the
three solutions are similar. The Nijboer’s solution performs very well, not only the
fast computation time but also the relative stable convergence properties.

3.2 A focal region calculation based on the Extended Nijboer
Zernike theory (ENZ)

In the section above we discussed the semi-analytical solutions of a perfect converging
lens, although all four solutions mathematical equivalent are, the convergence proper-
ties of them are totally different between each other, and we found that the Nijboer’s
solution with Zernike polynomials is the most robust solution of all. In this section,
we introduce the focal region calculation of aberrated lens based on ENZ theory.
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Fig. 3.14: Comparison of the computation time for the four semi-analytical solutions.

3.2.1 The Extended Nijboer Zernike theory

In 1942 Nijboer established the diffraction theory of abberation using Zernike polyno-
mials [23]. He gave the analytical solution of the optical point spread functions(PSF)
at the focus plane in an aberrated system. In 2002 Janssen extended Nijboer’s work
to include the defocus case[26, 27, 28]. Later, S. van Haver and J.J.M. Braat used
ENZ to solve different kinds of diffraction integral for systems with high numerical
aperture(NA) and vector fields[29, 30, 31, 32], and introduced truncation technique
to accelerate the calculation of the algorithm[33]. Compare to traditional numerical
techniques, ENZ theory as a semi-analytical technique of the diffraction integral, has
a very high accuracy of the results. The calculated diffraction field is continuous, and
suffers no replicas effect.

The Zernike polynomials are a sequence of polynomials that are orthogonal on the
unit disk and are named after optical physicist Frits Zernike[34]. The polynomials
are defined as following,Z

m
n (ρ,φ) = R|m|n (ρ) cos(mφ), m ≥ 0

Zmn (ρ,φ) = R|m|n (ρ) sin(mφ), m < 0
(3.35)

where R|m|n (ρ) is the Zernike radial polynomials, which was defined in Eq. (3.25).
Note that different orders of Zernike polynomials are orthogonal to each other
and correspond to the different lens aberrations[35](see Fig. 3.15). The ENZ can
solve different kinds of diffraction integral in the focal region. The basic ideal is to
decompose different terms in the integral into Zernike series, then using the following
equation[36, 23],

2π∫
0

exp(ivoρ cos(θ− φ)) cos(mφ)dφ = 2πimJm (voρ) cos(mθ), (3.36)
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Fig. 3.15: The 2-10th order of Zernike polynomials Zm
n , corresponding to the lens

aberrations.

2π∫
0

exp(ivoρ cos(θ− φ)) sin(mφ)dφ = 2πimJm (voρ) sin(mθ), (3.37)

1∫
0
Rmn (ρ)Jm(voρ)ρdρ = (−1)

n−m
2
Jn+1(vo)

vo
, (3.38)

to get the analytical express.

Assuming we have a focus systems, the diffraction integral for this system can
be written as [32],

U(vo, θ) =
1∫

0

2π∫
0
Af (ρ)F (ρ)P (ρ,φ) exp [ivoρ cos(θ− φ)] ρdρdφ. (3.39)

Where Af (ρ) and F (ρ) are the algebraic factor and focal factor. P (ρ,φ) is the
aberration term. If we have a system without aberration, P (ρ,φ) = 1, Otherwise, the
aberration can be written in terms of Zernike polynomials,

P (ρ,φ) =
∑
n,m

βmn Z
m
n (ρ,φ), (3.40)
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which βmn is the complex Zernike coefficients. The algebraic factor (related to ra-
diometric effect) and focal factor (related to defocus) are different based on the
diffraction approaches we use. For example, in the Debye approximation with a small
defocus, these two factor are [32],

Af (ρ) = 1, (3.41)

F (ρ) = exp(idfρ2); (3.42)

in case of a large defocus, the two factor are changed to,

Af (ρ) =
1√

1−NA2ρ2
, (3.43)

F (ρ) = exp
i df

1−
√

1−NA2

(
1−

√
1−NA2ρ2

) . (3.44)

where df is the defocus term,

df = k(z − f)
(

1−
√

1−NA2
)

, (3.45)

and NA= f/2a is the object space numerical apertures. Using the mathematical
treatment in [32], and the Clebsch-Gordan coeffcient in [37], the product of Zernike
radial polynomials, algebraic factor A(ρ) and focal factor F (ρ) is written as,

Af (ρ)F (ρ)R
|m|
n =

∑
h,l
A0mm

2l,n,hwtR
|m|
h (ρ), (3.46)

A2l,n,h is the Clebsch-Gordan coeffcient and wt is the sum of different Clebsch-Gordan
coeffcients related to Af (ρ)F (ρ), see Eq. (35-57) in [32] for detail.

Substitute Eq. (3.35,3.40,3.46) into Eq. (3.39), and use the analytical solution of the
integral in Eq. (3.36-3.38), the semi-analytical solution of Eq. (3.39) can be calculated.

The calculation of ENZ can be divided into three steps: Decomposing the aberra-
tion term P (ρ,φ) into finite orders of Zernike polynomials; Using Clebsch-Gordan
coeffcient to combined the product of two or more Zernike radial polynomials to one
Zernike cirle polynomias; Accumulating the analytical results of integrals of every
orders of Zernike polynomials. ENZ theory provides a semi-analytical treatment to
calculate the focal region for different systems, not only the low-NA systems with
Rayleigh integral, but also the high-NA systems with vector fields, of cause with more
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calculation efforts. Compare to traditional numerical calculation, ENZ has a very
high accuracy of 10−6 in appropriate location (|df | < 25) [32], and has no replicas in
the whole output region.

3.2.2 Simplified Extended Nijboer Zernike theory (SENZ)

ENZ offers an effective and accurate semi-analytical solution of different diffraction
integrals. However the implementation of the resulting algorithm is complex, and
needs a triple summation of a series of Zernike radial polynomials. In this section, we
propose a simplified ENZ technique, which greatly reduces the complexity of the ENZ.

In traditional ENZ, we use a Zernike decomposition to fit the aberration term
P (ρ,φ). With the help of the Clebsch-Gordan coeffcient we combine the aberration
term with the algebraic factor Af (ρ) and the focal factor F (ρ). At the end we get
the analytical 3D distribution at the focal region of the system. In our approach, we
decompose the product of P (ρ,φ), Af (ρ) and F (ρ) instead of Eq. (3.40),

P (ρ,φ)Af (ρ)F (ρ) =
∑
n,m

βmn Z
m
n (ρ,φ). (3.47)

Then substituting Eq. (3.47) into Eq. (3.39),

U(vo, θ) =
1∫

0

2π∫
0

∑
n,m

βmn Z
m
n (ρ,φ) exp [ivoρ cos(θ− φ)] ρdρdφ, (3.48)

U(vo, θ) =
1∫

0

2π∫
0

∑
n,m≥0

βmn R
|m|
n (ρ) cos(mφ) exp [ivoρ cos(θ− φ)] ρdρdφ+

1∫
0

2π∫
0

∑
n,m<0

βmn R
|m|
n (ρ) sin(mφ) exp [ivoρ cos(θ− φ)] ρdρdφ. (3.49)

With the help of Eq. (3.36-3.37), we analytically integrate the angle dφ,

U(vo, θ) =
1∫

0

∑
n,m≥0

βmn R
|m|
n (ρ)2πimJm (voρ) cos(mθ)ρdρ+

1∫
0

∑
n,m<0

βmn R
|m|
n (ρ)2πimJm (voρ) sin(mθ)ρdρ. (3.50)
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At the end, the product of Zernike radial polynomials R|m|n and Bessel function Jm is
integrated analytically according to Eq. (3.38),

U(vo, θ) = 2πim(−1)
n−m

2
Jn+1(vo)

vo

 ∑
n,m≥0

βmn cos(mθ) +
∑

n,m<0
βmn sin(mθ)

 .

(3.51)

In this simplified approach, the calculation process is divided into two steps: De-
composing the term P (ρ,φ)Af (ρ)F (ρ) into finite orders of Zernike polynomials;
Accumulating the analytical results of integrals of every orders of Zernike polynomials.
Without the Clebsch-Gordan coeffcient step, the programming complexity and the
calculation time are greatly reduced.

3.2.3 Comparison of the ENZ and the SENZ approaches

As shown in the two section above, both the ENZ and the SENZ are the semi-
analytical approaches. By projecting different field into a Nijboer-Zernike basis set,
then using the known analytical solution of the Zernike radial polynomials integration,
the diffraction field at the output plane is calculated semi-analytically. In this section
we compare these two approaches in two points of view: the computation speed and
the accuracy.

The total computation time tt consists of two parts, td by decomposing the
term (P (ρ,φ) in ENZ or P (ρ,φ)Af (ρ)F (ρ) in SENZ), and ta by accumulating differ-
ent orders of Zernike radial polynomials. In the decomposing part, we use Shakibaei’s
recursive technique to generate different orders of Rmn [38, 39], the computational
complexity is significant reduced and this computation time can be omitted. By
performing the least mean squared in Matlab, we get the complex-valued Zernike
coefficients βmn . The computation time depends on two variables: on the one hand,
the number of points of the to be decomposed term P (ρ,φ) or P (ρ,φ)Af (ρ)F (ρ);
on the other hand, the maximal orders of the Zernike radial polynomials. If the
expression to be decomposed is similar to a lens abberation, as in Fig. 3.15, only a
few Zernike terms are required to fit the field well. However if we want to decompose
a field like a speckle field, that has random amplitudes and phases[40, 41, 42], a
large number of Zernike terms must be taken, which leads to a significant increase
of the computation time. In our comparison, if the size of the decomposed term
and the maximal orders of the Zernike radial polynomials are the same, we have
tENZd = tSENZd .

The second part of the computation time is the accumulation part. If we com-
pare the computation time vertically, it is proportional to the number of points which



46 3 A semi-analytical solution of the diffraction integral

need to be calculated in the output plane. If we compare the time horizontally, the
ENZ has a triple summation of the Zernike radial polynomials while the SENZ has
only a single summation. Therefore within the same order of Zernike polynomials
and the same number of the points in the output plane, tENZa > tSENZa . Therefore if
we calculate a diffraction plane of a system, SENZ is faster than the ENZ. However
if the focal region of a system need to be calculated, which means the diffraction
field with for example L planes with different distances, the situation is reversed. In
ENZ the defocus term is contained in step 2 and 3, to calculate the output field at
different distances, the decomposing step only need to be done once, so the total
computation time is written as,

tENZt = tENZd + L× tENZa . (3.52)

However in SENZ, the defocus term is combined with the aberration term, the
decomposing step need be performed for every distance, and the total computation
time is written as,

tSENZt = L
(
tSENZd + tSENZa

)
. (3.53)

Although tENZa > tSENZa , if we want to calculate L output planes, ENZ will be a
more efficient way to take instead of SENZ.

As semi-analytical solutions instead of closed form solutions, both approaches
have systematical error in the calculation. Note in the algorithms, the accumulating
step is a purely analytical step (step 3 in ENZ and step 2 in SENZ), there is no
numerical error. Although step 2 in ENZ use finite polynomials to approach the
product of two Zernike radial polynomials, there is a guideline to chose the required
terms to keep the error to an arbitrary small amount [33]. The only step which could
introduce large error is the decomposing step. By comparing the accuracy of these
two approaches, we just need to test how well the Zernike polynomials fits the terms
P (ρ,φ)Af (ρ)F (ρ) or P (ρ,φ).

Assuming we have a system with the focal length f = 20 mm, wave length
λ = 600 nm, NA=0.6, and a small abberation term P (ρ,φ)(Fig. 3.16). By performing
the Debye approximation we calculate the diffraction plane at a distance z = 19.995
mm using Eq. (3.43) and Eq. (3.44). With ENZ approach we use the maximum
Zernike radial polynomials nmax = 20 to fit P (ρ,φ), and the reconstructed field is
shown in Fig. 3.17. From the figures can be seen that the Zernike fit works very
well, the maximum difference between the aberration term and the reconstructed
aberration term is of the order of 10−5. For the SENZ approach, we use the same
maximal Zernike radial polynomials nmax = 20 to fit P (ρ,φ)Af (ρ)F (ρ) instead. The
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Fig. 3.16: The amplitude and phase of the aberration term P (ρ,φ).
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Fig. 3.17: The reconstructed amplitude and phase of the aberration term P (ρ,φ) with a
Zernike fit of nmax = 20.

amplitude and the phase of the term P (ρ,φ)Af (ρ)F (ρ) is shown in Fig. 3.18, and
its reconstruction is plotted in Fig. 3.19. The decomposing process of SENZ works as
well as ENZ, the maximal difference between the original term and the reconstructed
term is also of the same order of 10−5. We also chose some other examples with
different kinds of aberration term P (ρ,φ), and found that the reconstruction error
of both ENZ and SENZ methods are similar. From the analysis above we conclude
the accuracy of both techniques are at the same level. In Fig. 3.20, the intensity
distribution at a distance of z = 19.995 mm is plotted, the results of ENZ and SENZ
coincide very well, the difference of them varies between 10−5 and 10−4.

In this section, we compare ENZ and SENZ in two different ways. For the accuracy,
both approaches perform very well at the same level. In the computation time point
of view, if only a single diffraction plane is calculated, SENZ is faster. If we want to
calculate the whole diffraction field with different diffraction distances z, then the
ENZ is more efficient than the SENZ.
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Fig. 3.18: The amplitude and phase of the term P (ρ,φ)Af (ρ)F (ρ).
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Fig. 3.19: The reconstructed amplitude and phase of the term P (ρ,φ)Af (ρ)F (ρ) with a
Zernike fit of nmax = 20.
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Fig. 3.20: A comparison of the intensity distribution (Y = 0, −4× 10−3 mm< X < 4× 10−3

mm is plotted) using ENZ and SENZ. System variables: focal length 20 mm,
NA=0.6, defocus 0.005 mm, wavelength 600 nm, aberration term see Fig. 3.17.
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3.3 The Fresnel transform as a projection onto a series of
Zernike polynomials

3.3.1 Mathematical derivation

In the previous section we have discussed the ENZ and SENZ methods for calculating
the optical distribution in the focal region of a lens system. In this section we try to
extend the scope of the ENZ based technique and calculate the output of a general
function using the Fresnel transform. In our approach, we use the Fresnel transform
in cylindrical coordinate system from Eq. (2.15), and use Eq. (3.4) to normalise the
radius r,

U(R, θ) = a2e
ik
2zR

2
1∫

0

2π∫
0
u(ρ,φ)e

ik
2z (aρ)

2
e
−ikRaρ

z cos(φ−θ)ρdρdφ. (3.54)

Note in this approach, the input field is defined in a circular aperture, the optical field
outside the aperture is set to zero. The idea here is similar to SENZ, we combine the
term u(ρ,φ)e ik2z (aρ)2 and project it onto a series of Zernike radial polynomials[43],

ū(ρ,φ) = u(ρ,φ)e
ik
2z (aρ)

2
=

∞∑
m≥0,n

βmn R
|m|
n (ρ) cos(mφ) +

∞∑
m<0,n

βmn R
|m|
n (ρ) sin(mφ).

(3.55)

Substituting Eq. (3.55) into Eq. (3.54) then integrating over φ and ρ using Eq.
(3.36-3.38), we get the following result,

U(R, θ) = 2πa2e
ik
2zR

2
im(−1)

n−m
2
zJn+1(−kRa/z)

−kRa
× ∞∑

m≥0,n
βmn cos(mθ) +

∞∑
m<0,n

βmn sin(mθ)
 . (3.56)

Theoretically we need to sum over an infinite number of n,m terms to generalize
the pupil function ū(ρ,φ). In practice only a finite number of terms are taken to
describe the field with ūf (ρ,φ). The average differences between the fitted field and
the original field is defined as,

Ef =
〈
|ū(ρ,φ)− ūf (ρ,φ)|

〉
, (3.57)

where “〈〉” is the ensemble average operation. As demonstrated in the last section,
Ef plays an important role in determining the accuracy of the technique. Similar to
the SENZ method, the number of necessary terms of Zernike radial polynomials is
dependent on the complexity of the pupil function. In order to verify our technique,
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Table 3.1: Fitting error and maximal relative error between our ENZ method and the
reference second Lommel result using maximal Zernike radial polynomials nmax =
15

input field fitting error Ef maximal relative error E
200×200 pixels 1.0% 3.5%
400×400 pixels 0.96% 1.7%
600×600 pixels 0.93% 1.1%
800×800 pixels 0.92% 0.7%

we use the maximal relative error E to quantify the accuracy of our technique,

E = max
[
|Ue(R, θ)−Ur(R, θ)|

Ur(R, θ)

]
. (3.58)

which Ue(R, θ) is calculated from Eq. (3.56), and Ur(R, θ) is the reference solution.

3.3.2 Simulation result

As mentioned before, there is generally no analytical solution for the Fresnel transform,
so we chose a test case with a semi-analytical result. We consider a converging wave
front with a circular aperture of radius 2 mm, which is focused at a distance of f =

400 mm. Therefore we have a continuous input field u(ρ,φ) = e−ikρ
2/2f . A strongly

defocused output field is calculated at the distance z = 600 mm. As a reference
solution we use the second Lommel function Eq. (3.21) which converges quickly in this
area. In order to get the complex Zernike coefficient βmn we need to sample the input
field and fit it with Zernike radial polynomials. We use the fitting error Ef to estimate
how well we describe the aperture function. At first, we sample the input field with a
matrix of 200×200 pixels, the fitting error is Ef = 1% using nmax = 15 Zernike radial
polynomials, and the maximal relative error to the reference solution is E = 3.5%, see
Tab. 3.1. Then we sample the input field more finely with 400×400, 600×600, 800×800
pixels, the fitting error takes a nearly constant value of 0.9%. However E is reduced to
1.7%, 1.1% and 0.7%. For the continuous input field, the finer we sample the original
field ū(ρ,φ), more accurate is the fitted field ūf (ρ,φ) to the original field. Therefore in
this case, the sampling rate of the input field has a significant impact on the accuracy.

In the second test case we investigate the propagation of a sampled input field.
The second test case corresponds to the common situation that the input field is
represented by discrete values. Fig. 3.21 shows the amplitude and the phase of an
input field, its amplitude is a shifted Gaussian distribution, and the phase is given
as a sine wave along the x and y axis. Here we calculate the Fresnel transform at
a distance of z = 600 mm using our technique. In this case, there is no analytical
solution, and it is difficult to find a perfect reference. Therefore we compare the result
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Fig. 3.21: Amplitude and phase distribution of the input field u(ρ,φ).

using ENZ technique to the result using point by point integration as shown in Eq.
(2.2) with ∆x = ∆y = 7.4µm and each axis is sampled with 400 samples. The results
are presented in Fig. 3.22 (a) and are nearly identical. However the point by point
numerical integration has a low accuracy, and can not be used as a perfect reference.
From Eq. (3.55) we see that the accuracy of our method increases with the number
of Zernike terms. We thus fit the input field with nmax = 40, and take this as our
reference. In this case the fitting error is reduced to approximately 0.1%. Fig. 3.22 (b)
show the fitting error and the maximal relative error to the reference for nmax = 15,
20, 25, 30, 35. With more Zernike polynomials, the fitting error reduces significantly,
from 60% to 0.3%, also the maximal relative error reduces to 0.15% for nmax = 35.
It shows that our technique works for converging but also for non-converging fields,
and the results have an accuracy of 10−3 if the fitting error is smaller than 1%. This
simulation has also coincided with the argument we made in Sec. 3.2.3, the fitting
error is the only error source of our technique.
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Fig. 3.22: (a): Intensity distribution across the optical axis. The curve 1 shows the results
using ENZ based technique (nmax = 40), the curve 2 shows the results using
point by point integration. (b): The fitting error Ef and the maximal relative
error E to the reference in terms of the number of used Zernike terms.
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A traditional CCD array gives a rectangular input plane. If we want to calcu-
late the Fresnel transform using ENZ based technique, we need set the pixel values
located outside the circular aperture, to 0. Also, a traditional CCD array includes
digital noise. This noise can be significantly reduced by the Zernike fit. In Fig. 3.23
we use the Fresnel transform to reconstruct a hologram of a converging lens (It will be
more detailed in the next chapter). The phase modulation of the lens is calculated by
(a): our ENZ based technique with nmax = 40 and (b): FFT based spectral method.
Because of the digital noise, the reconstruction in Fig. 3.23 (b) is not as clear as
the reconstruction in Fig. 3.23 (a), whose digital noise is reduced by the fitting process.

(a): phase reconstruction 
with ENZ based technique
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Fig. 3.23: Phase reconstruction of a hologram using (a): ENZ based technique with nmax =
60, (b): FFT based spectral method

However if we want to reconstruct a hologram of a USAF chart, it is not suit-
able to use our technique. In Fig. 3.24 we show the reconstuction using (a): our
ENZ based technique with nmax = 60 and (b): the FFT based spectral method. It is
obvious that our technique failed in this case, more terms of Zernike polynomials
need to be taken to fit the term ū(ρ,φ). To obtain accurate results, a much larger
number of Zernike terms would be required. The Nijboer-Zernike basis set is defined
to correspond to different orders of abberation in a lens. If we want to project a field,
which is similar to a lens abberation as in Fig. 3.23, to the Nijboer-Zernike basis
set, only a few Zernike terms are enough to fit the field well. However if we want
to project a field like a hologram of the USAF chart in Fig. 3.24, a large number of
Zernike terms must be taken, which is not suitable anymore to use this technique.

In this section we have introduced a technique to calculate the optical Fresnel
transform semi-analytically. Unlike the usual FFT based techniques, we can calculate
the output field at arbitrary points. In our ENZ technique, the accuracy is dependant
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Fig. 3.24: Intensity reconstruction of USAF chart using (a): ENZ based technique with
nmax = 60, (b): FFT based spectral method

on the sampling rate of the input plane and the number of Zernike terms used
to fit the input plane. Therefore for some complex input field, to achieve a high
level of accuracy, we need to fit the input field with more Zernike terms, which
increases calculation time. In our technique, if we have enough Zernike terms to
describe the pupil function ū(ρ,φ), we don’t need to worry about the problems
of conventional numerical methods, like replicas, limited sampling rates and the
extent of the output plane. Our method has also some limitations. It works well for
long distance propagation with a small circular pupil, ka2/z < 20, and some field
similar to the lens abberation, where only a few Zernike terms are required to fit the
quadratical phase term e

ika2ρ2
2z . For the near field propagation or some complex field

like a speckle field, this technique is less suitable, as a high number of Zernike terms
are required for accurately fitting the input plane and it takes a long calculation
time.

3.4 Conclusion

In this chapter, we have discussed the semi-analytical solution of the diffraction
integrals. We begin our analysis with a typical diffraction problem, intensity distribu-
tion of focal region of a perfect converging system. By comparing the four different
solutions, we found the Nijboer’s solution with Zernike polynomials converges very
fast at the whole focal region, performances the best. Then we investigate the ENZ
theory and propose a simplified version of the ENZ. The SENZ is easy to program and
has the same accuracy as the ENZ. Using the same technique as SENZ, we proposed
a semi-analytical solution of the Fresnel transform.
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4 Holographic imaging system

4.1 Introduction to holography

In Chap. 2 and Chap. 3, we discussed the propagation of light in wave optics using
the Fresnel transform. If we know both the intensity and the phase of the optical
field in a particular plane, then we can use the Fresnel transform to calculate the
optical field in different planes. Here we examine how we can use this feature to
build a lensless imaging system. In practice, the intensity can be easily measured
by film or photoelectric sensors, however the phase is more difficult to recover.
In this chapter, we will introduce and use holography to capture the phase infor-
mation of the optical field, and reconstruct the object in a lens-less holographic system.

In a holographic setup, the light source is divided by a beam splitter into two
parts: the object arm and the reference arm, see Fig. 4.1. The reference wave Ar(x, y)
is a plane wave and propagates through the optical system, until it comes to the
second beam splitter. Meanwhile the object arm (also a plane wave) is incident
upon the object in Fig. 4.1. We refer to the field immediately after the object as
the scattered object wave Uo(x, y). The scattered object wave propagates to the
CCD plane after the Fresnel transform, which is written as Ao(x, y). These two
beams interfere with each other and the resulting intensity pattern is recorded by the
electronic detection. This is a stable intensity pattern, which we call a hologram. For
the traditional holography, the hologram is captured by film, and the object wave
can be reconstructed by the laser illumination [44]. If we use a digital device like a
CCD instead of film to capture the hologram and then reconstruct the object wave
numerically, the technique is then called digital holography.

In digital holography, we have the hologram H(x, y),

H(x, y) = |Ao(x, y) +Ar(x, y)|2

= |Ao(x, y)|2 + |Ar(x, y)|2 +A∗o(x, y)Ar(x, y) +Ao(x, y)A∗r(x, y)
= |Ao(x, y)|2 + |Ar(x, y)|2 + 2Ao(x, y)Ar(x, y) cos(ψ(x, y)), (4.1)

where Ar is the complex reference wave, Ao is the complex object wave at the sensor
plane, ψ(x, y) is the phase difference between the object and reference wave, and
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the superscript “*” is the conjugate operation. There are three different parts in the
hologram: the DC term |Ao(x, y)|2 + |Ar(x, y)|2, real image term Ao(x, y)A∗r(x, y)
and the twin image term A∗o(x, y)Ar(x, y). The task of the reconstruction step in
digital holography is to separate the real image term from the other terms. Once
the real image term is separated, we have both the phase and amplitude of the
object wave. Then we can use the Fresnel transform to propagate the object wave
from the sensor plane back to the object plane, which builds a lens-less imaging system.

In this chapter, we use the phase shifting technique [45] to separate the ob-
ject wave from the others (in which we take 4 captures, and for every capture
the phase difference ψ(x, y) is shifted over π/2), and reconstruct the object in the
Fresnel domain. The resolution limits in this lens-less imaging system are discussed
and experimentally approached. At the end of the chapter, we use this lens-less
holographic system to measure the phase modulation of the object, and therefore
indirectly measure the optical thickness of the object.

4.2 Phase Shifting Interferometry

It is important to be able to quantify, both theoretically and experimentally, the
performance of coherent digital systems so that their suitability for a given metrology
application can be assessed. Here a free-space inline digital holographic system is
investigated. To isolate the scattered object field, Phase Shifting Interferometry (PSI)
techniques are used. A typical setup is depicted in Fig. 4.1. In our setup light from a
He-Ne laser is spatially filtered with a microscope objective and a pinhole (diameter
of 20 microns) which cleans up the beam and improves the spatial coherence.
The light emerging from the pinhole is modeled as an ideal point source which is
collimated with an achromatic lens to form an approximate plane wave traveling
along the optical axis. The first beam-splitter (BS1) diverts the plane wave into the
object and reference arms respectively. In the reference arm the mirror M can be
shifted precisely using a piezomotor to realize relative phase shifting between the
reference and object arms. In the object arm, the plane wave illuminating the object,
is scattered and propagates in free space until it is incident on the CCD detector
(IMPERX IGV-B2020 with 2056× 2060 pixels, and the pixel size is 7.4 µm). The
second beam splitter is used to recombine the reference and object beams, where
they interfere producing a hologram that is recorded by the digital CCD device. This
intensity is in fact a digital hologram. To isolate the desired real image term we
use a 4-step Phase Shifting Interferometry (PSI) technique [45] and a piezo motor
(P-611.ZS) supplied by “Physik Instrumente”.

A theoretical examination of the performance of such a holographic system [4, 46, 47]
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Fig. 4.1: Schematic depicting the measurement setup: M, mirror; BS, beamsplitter; MO,
microscope objective; Al, Achromatic lens; Ph, pinhole; PM, piezo motor; BP,
black plate (to block the reference wave, will be used for error metric to estimate
the performance of PSI).

in the paraxial regime supposes that there are no measurement errors in the recording
process and that the following assumptions hold:

(i) A perfectly flat reference field,

(ii) With a noise free digital capture, where no quantization (rounding off due to
finite number of bits) occurs in the digital sensor, [uniform pixel characteristics
are also assumed]

(iii) vibration free environment,

(iv) and a perfectly calibrated PSI technique.

If this is the case then it has been shown [48, 49, 50, 51, 52, 4, 47] that the ultimate
performance of the system is by several fundamental factors:

(1) the finite extent of the CCD/CMOS array, which limits the maximum spatial
frequency to approximately D/λz, which D is the half width of the CCD/CMOS
array, λ is the wavelength and z is the distance between the object and the
detection;

(2) averaging of the light intensity over the finite size of the each pixel, which limits
the resolution spot with the spatial frequency 1/γ, where γ is the width of the
active area of a pixel. This is effectively a convolution operation and will remove
spatial frequencies, see [46, 47];
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Table 4.1: Meaning of parameter in Eq. (4.2 - 4.5, 4.10)

Ar(x, y) complex reference wave
Ao(x, y) complex object wave at the camera plane
ψ(x, y) initial phase difference between the object and reference wave

∆ψo(x, y) phase modulation from the object
ψsn phase shift by the piezo motor
ψv(t) phase change due axial vibration
Nn sensor noise
τ exposure time

Imo (x, y) measured intensity when reference wave is blocked
Ico(x, y) intensity as calculated from PSI capture

(3) the sampling interval or distance between the centers of each pixel, ∆, acts to
limit the field of view in the reconstruction domain, to the range: λz/∆.

We begin our analysis with the following holographic equation [53],

Hn(x, y; t) = τ ·HDC(x, y) +HK(x, y) ·HAC(x, y; t) +Nn, (4.2)

HDC(x, y) = |Ar(x, y)|2 + |Ao(x, y)|2, (4.3)

HK(x, y) = 2|Ar(x, y)||Ao(x, y)|, (4.4)

HAC(x, y; t) =
t+τ∫
t

cos[ψ(x, y) + ∆ψo(x, y) + ψsn + ψv(t
′)]dt′, (4.5)

where Ar is the complex reference wave, Ao is the complex object wave at the camera
plane, ψ(x, y) is the systematic phase difference between the object and reference
wave, ∆ψo(x, y) is phase of the object field that we want to measure, ψsn is phase
shift that we deliberately introduce with the piezo motor, ψv(t) is a phase error
introduced by axial vibration and Nn is electronic sensor noise, and τ is the sensor
exposure time. We use the parameter n refers to the index each of the four holograms
(see Tab. 4.1).

Under the ideal conditions outlined earlier, i.e. when the assumptions (i)-(iv)
are all fulfilled, then Nn = 0, ψv = 0, the phase shift is precisely ψsn = nπ/2, and
we have the ideal inline reference and object plane waves, the initial difference is
constant all over the camera, we can set ψ(x, y) = const. Using the four-step-phase
shifting algorithm [45], we can recover the object phase distribution ∆ψo(x, y) and
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the object amplitude Ao(x, y) with the following equation,

Ao(x, y) = H1(x, y)−H3(x, y) + i [H4(x, y)−H2(x, y)] . (4.6)

So the recovered intensity Ico(x, y) and the phase ∆φo(x, y) are,

Ico(x, y) = [H1(x, y)−H3(x, y)]2 + [H4(x, y)−H2(x, y)]2 , (4.7)

∆ψo(x, y) = arg(Ao). (4.8)

In the paraxial regime we use the Fresnel transform to recover complex object wave
in the object plane with Uo(X,Y ) [10],

Uo(X,Y ) = exp(i2π/λ)
iλz

∞∫
−∞

Ao(x, y) exp
{
iπ

λz

[
(x−X)2 + (y− Y )2

]}
dxdy, (4.9)

where the uppercase (X,Y ) and lowercase (x, y) refer to spatial coordinates in the
object and detection (CCD) planes respectively, see Fig. (4.1). We note that the
complex object field at the sensor plane, Ao(x, y), is a continuous complex function
that is then subject to several filtering and sampling operations before a discrete set
of values are returned by the CCD device [46, 47]. The parameters associated with
the filtering and sampling operations are determined by the properties of the digital
recording device. We assume that these operations are constant and hence examine
how the field Ao(x, y) changes due to conditions (i) - (iv), see in particular [49, 51, 48].

From Eq. (4.7) we see that it is possible to separate the DC and twin image
terms from the real image term and hence we can calculate the intensity Ico(x, y)
of the object wave. It is also possible to directly measure the intensity Imo (x, y) of
the object wave by blocking the reference wave. If we can recover the object wave
perfectly then directly measured intensity should be identical to that recovered
from the PSI process, otherwise measurement errors lead to differences between the
measured intensity and recovered intensity. We can directly estimate this with the
following error metric E,

E =
∑
x,y

[Ico(x, y)− Imo (x, y)]2 . (4.10)

This error metric, E, is a direct measure of any experimentally errors and system
noise introduced by the holographic recording process.

In the following section, we discuss in detail each of the idealized conditions:
(i) - (iv) in the following sections individually. We provide a theoretical analysis of
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the errors introduced to the holographic measurement by each non-ideal condition
and provide experimental results to support the description.

4.3 Vibration

In this section we examine the effect that vibration has on our system, which has
also been discussed in these references[54, 55, 56, 57, 58, 59]. We assume that any
vibration has a small pure amplitude with lower than micrometer. Also we assume
that the lateral influence of the vibrations can be neglected as far they are much
smaller than the pixel. This implies that the vibration will not influence the HDC

and HK terms in Eq. (4.2), and only the axial vibration would affect the interference
term HAC with ψv(t).

We now write this vibration term in a Fourier series expansion [56],

φv(t) =
∞∑
m=0

bm sin(m2πvt). (4.11)

The digital sensor integral such signal over the exposure time τ , as shown in Eq.
(4.5). It works as a low pass filter with the bandwidth 1/τ [60]. Considering only one
Fourier component, we make, V = mv and b = bm, and ignoring all the other noise.
Then we consider only one pixel and rewrite the hologram intensity Hn(x, y; t) as
Hn(t),

Hn(t) = HK

t+τ∫
t

cos
[
∆ψo + b sin(2πV t′)

]
dt′ + τ ·HDC . (4.12)

As stated earlier, low amplitude vibrations are considered and we have negligible
lateral effect of the vibration. Thus the termsHDC andHK are assumed to be constant.
As such, the vibration only effect the interference term cos [∆ψo + b sin(2πV t)]. Using
a standard trigonometric relation, we can rewrite Eq. (4.12) as,

Hn(t) = HK

t+τ∫
t

{cos ∆ψo cos
[
b sin(2πV t′)

]
− sin ∆ψo sin

[
b sin(2πV t′)

]
}dt′ + τ ·HDC .

(4.13)

Now using a Bessel function expansion of the time-dependent trigonometric functions,
see Chap. 2, Page 23 of Ref. [12], the terms inside the square brackets of Eq. (4.13)
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Fig. 4.2: (a) Shows the spectral density function of the vibration noise of 50 Hz by measuring
the fluctuation of one pixel intensity, then do the Fourier transform of the intensity
series; (b) shows the axial position fluctuation of piezo motor in still.

can be expressed as,

cos
[
b sin(2πV t′)

]
= J0(b) + 2

∞∑
n=1

J2n(b) cos(2π · 2nV t′), (4.14)

sin
[
b sin(2πV t′)

]
= 2

∞∑
n=1

J2n−1(b) cos
[
2π(2n− 1)V t′

]
, (4.15)

where Jn(b) is the Bessel function with n-th order. Making use of these relationships,
the hologram intensity with first three harmonic terms is given by,

Hn(t) = τ ·HDC +HK

t+τ∫
t

[cos ∆ψoJ0(b)− 2 sin ∆ψoJ1(b) cos(2πV t′)+

2 cos ∆ψoJ2(b) cos(2π · 2V t′)− 2 sin ∆ψoJ3(b) cos(2π · 3V t′) + ...]dt′. (4.16)

With this equation, we analyze the vibration for different cases.

4.3.1 Low frequency vibration

Now, let us examine the case of low frequency vibration (V < 1/τ) such as that of
an optical table. For low frequency we approximately have,

t+τ∫
t

cos(2πV t′)dt′ ≈ τ cos(2πV t), (4.17)
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then Eq. (4.16) is rewritten as following,

Hn(t) = τ ·HDC + τ ·HK · [cos ∆ψoJ0(b)− 2 sin ∆ψoJ1(b) cos(2πV t)+
2 cos ∆ψoJ2(b) cos(2π · 2V t)− 2 sin ∆ψoJ3(b) cos(2π · 3V t) + ...]. (4.18)

From the equation above we see that, if we have a vibration source with the frequency
V , then we expect vibration of the output signal with frequencies, V , 2V , 3V ... and
with amplitudes HK sin ∆ψoJ1(b), HK cos ∆ψoJ2(b), HK sin ∆ψoJ3(b)....

We tested the predictions of Eq. (4.18) using a vibrating mechanical shaker
(in our case a loud-speaker), oscillating with a sinusoidal tone of 50 Hz. Then we
capture the intensity value of a single pixel every 1 ms for 2 seconds and do the
Fourier transform to get the spectral density function of the signal. As Fig. 4.2 (a)
shows, in addition to the original vibration frequency V , there are doubled and
tripled frequency components 2V , 3V and so on. The amplitudes of these harmonic
frequencies depend on the Bessel function and the original object phase.

4.3.2 High frequency vibration

For the high frequency vibration (V > 1/τ) of optical table, Eq. (4.16) can be
simplified since the harmonic terms are filtered by the low pass filter (temporal
integrating process of the sensor), we have

Hn = τ [HDC +HK · J0(b) cos ∆ψo]. (4.19)

The intensity is now time independent, however the contrast of the interference is
multiplied by J0(b) and hence is determined by the amplitude, b, of the vibration.

4.3.3 Piezo-motor jitter (low amplitude vibration)

In the experiment we use a piezo motor P-611.ZS operating under a closed loop
control system from “Physik Instrumente” to implement phase stepping. To perform
phase shifting the movement of the mirror must be repeatedly controlled and the
step size must less than that of a wavelength. Although piezo motors are highly
accurate, there is still a motor jitter effect. Leaving the motor rest in a fixed position,
we read the sequential position value returned by the closed loop system over 100
s. In Fig. 4.2 (b) we see the random fluctuation. The standard deviation of the
fluctuation from our piezo motor is about 5 nm. We can considerate this fluctuation
as a kind of vibration. A cycle phase shift 2π correspond the movement of the
piezo motor of 4d = 448 nm, d is the piezo motor step size (as will be discussed
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later in Section 4.3.2). By the uncertainty of 5 nm (standard deviation of the
fluctuation) of our piezo motor, we have the movement amplitude b = 2π × 5 nm
/ 448 nm=0.07. Substituting b = 0.07 into Eq. (4.18-4.19), we see that for such
small b, the zero order Bessel function J0(b) ≈ 1 and other order Bessel function
Jn(b) ≈ 0,n = 1, 2, 3..., which results that all the harmonic terms are approximate-
ly 0, and the system has not been much changed by the fluctuation of the piezo motor.

In this section, a vibration sources and their effects were discussed and anal-
ysed. The resulting mathematical model describing these sources was also presented.
Using this model, motor jitter was found not to influence the imaging system.
Remotely capture of holograms was found to aide reduction of ambient vibration
sources.

4.4 Systematic phase errors

4.4.1 Phase error in the illuminating beam

In an in-line PSI system, a flat reference plane wave is of particular important. Ideally
the illuminating beam should also be a plane wave and both should be propagating
exactly along the optical axis. In this case, the phase difference ψ(x, y) is constant,
so we can get the clear phase modulation of the object. In our setup, presented in Fig.
4.1, a number of optical elements are used to produce a plane wave. These include a
microscope objective, a pinhole and an achromatic lens, and the beams must also
pass through two beam-splitters. In addition to this, there inevitably exists a small
angle between the reference and objects wavefields. Such errors in the illumination
wavefields result in a non-uniform initial phase difference over the sensor’s active area.
The resulting reconstructed phase contains the non-uniform initial phase difference
between the object and reference wavefields, ψ(x, y) + ∆ψo(x, y).

In order to get the desired ∆ψo(x, y), we must know the initial phase differ-
ence ψ(x, y) to compensate the recovered phase. Zernike fitting has been used to
compensate the imperfect plane wave to get the phase modulation of ∆ψo(x, y)
[61, 62]. Here we use another convenient compensation technique. In this technique
the object is removed from the object wavefield and a hologram is recorded using the
PSI technique described here. Employing Eq. (4.6,4.8), the initial phase, ψ(x, y) is
calculated. Having determined the initial phase, the object is placed into the object
wavefield and a PSI hologram is captured. In our case, the object is a USAF chart.
We run the PSI, and compensate for ψ(x, y) from the recovered phase. With this
compensated phase information, substituted into Eq. (4.9), we get the reconstructed
USAF chart. Fig. 4.3 (a) shows the phase distribution without the compensation of
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Fig. 4.3: Phase reconstructions before (a) and after (b) the compensation. There are many
fringes in (a) and no fringes in (b). The numbers on x and y axis presents the
pixel number.

the initial phase difference, there are many fringe at the object bars, which gives the
wrong phase modulation ∆ψo(x, y) from the object. Fig. 4.3 (b) presents the phase
distribution with the compensation, we get the clear phase modulation of the object.

Using the compensation method described here, the object modulation is mea-
sured and can be done so using a nonuniform beam provided the maximal spatial
frequency of the illumination wavefield is lower than the reconstructible frequency
of the holographic system, see Points (1)-(3) in Section 4.1. This is limited by
the diffraction and sensor pixel size as mentioned in Section 4.1. A clear example
where this is not suitable is using an illumination wavefield containing very high
spatial frequencies, such as a speckle illumination. Similarly, if we have a very good
illuminating beam, we can also compensate any reference wave, whose maximal
spatial frequency is lower than the reconstructible frequency.

4.4.2 PSI phase stepping error

As described above we use a piezo motor to move the mirror in the reference wave
path. The laser we used is a HeNe laser with 633 nm wave length, which means we
need change the reference optical wave path with a step size φsn of λ/4 = 158.25 nm.
Due to the geometrical setup, we need move the piezo motor d = λ/(4

√
2) = 112

nm every step theoretically (See Fig. 4.1, piezo motor (PM) moves with d, the optical
path length of the reference wave changes with

√
2d). However it is difficult to move

exactly this distance, and errors so introduced are referred to as phase stepping errors.



4.5 Detector noise 65

0 0.5 1 1.5 2 2.5 3
60

80

100

120

140

160

Piezo motor movement [µm]

In
te

ns
ity

 v
al

ue

 

 

Measurement
Fitting curve

Fig. 4.4: Pixel intensity (0-255) change during the phase shift: Solid line with star is the
measurement curve, and the dash line is the fitting curve.

In the setup we also need calibrate the piezo motor, to ensure that the optical path
difference between every step is λ/4. From Eq. (4.5) we see that, the intensity of the
hologram should take a sinusoidal appearance as we increase the phase difference by
moving the piezo motor. From calculating the period, we can get the right distance
of movement for the piezo motor.

In the calibrating we move every steps 10 nm for 300 steps, the intensity change
of one pixel is shown in Fig. 4.4, as we expected, they are sinusoidal. By fitting
this curve with a sinus curve, using least mean square method, we get a period of
about 0.45 µm, corresponding the phase shift of 2π. Therefore by every step we need
shift the phase with π/2, and we should move 0.45 µm/4=0.1224 µm which fits our
theoretical distance d = 0.122 µm very well. We thus minimize the PSI error and
now neglect it as a noise source in our system.

4.5 Detector noise

4.5.1 Statistical properties of detector noise

Another important factor which affects our reconstruction is the CCD/CMOS digital
noise [63]. In modern optical systems discrete digital devices for measuring intensity
distributions like CCD/CMOS array are widely used. The intensity incident on
the CCD/CMOS array is averaged over the spatial extent of each pixel for a given
exposure time. During image capture, the electronic detection noise appears. This
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detection noise is random variation of brightness in images, it contains many different
noise sources, such as white noise, salt-and-pepper noise, pink noise and in particular
shot noise. The influence of different noise sources depends on several factors such as
the exposure time, gain, pixel size, temperature etc. We expect that the intensity
value measured by each pixel will fluctuate over time because of such noise. Some
methods can be used post-capture to reduce noise, like resizing the original image
[64] and using a median kernel filter [65], however these methods tend to lower the
achievable resolution limit of the holographic imaging system.

In order to reduce the noise effect, first of all, we need to analyze the proper-
ty of the noise. As shown in Fig. 4.1, we block the reference wave with the black
plate. Then we use camera to capture only the fluctuation of object intensity by
taking N sequential frames In(x, y), where n refers to the frame index, from 1 to N .
In order to quantify the noise level, we define the fluctuation as the relative standard
deviation (RSD) of the measured intensity In(x, y), and the RSD is

RSD(In(x, y)) = SD[In(x, y)]
〈In(x, y)〉 , (4.20)

which SD(•) is the standard deviation. According to measuring the RSD of the pixel,
we get the noise level of our signal.

In our previous work[66], we found the RSD is only depending on the intensi-
ty of the measured pixel, the brighter pixels have the lower RSD of the fluctuation,
the RSD seems to be primarily dependent on the number of photons each pixel gets.
In order to decrease the RSD we can increase the pixel value by having a longer
exposure time or equivalently increasing the power of the light source. The higher
the photon count the lower RSD of the signal, properties that are reminiscent of shot
noise. The standard deviation (SD) of shot noise is proportional to the square root of
intensity,

SD = c
√
I, (4.21)

which c is one constant. So the RSD of the shot noise is,

RSD =
c
√
I

I
=

c√
I

. (4.22)

To examine this further we examine the RSD noise level for a range of different
intensities. In Fig. 4.5 we can see the two curves fitting well with each other, which
indicates that the main source of our noise is shot noise. In order to decrease the
RSD, we know from the analysis above, the intensity value should be kept in a high
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Fig. 4.6: Solid line: Intensity difference between the measurement and the recovered one at
different exposure time. Dash line: Saturation percent of the image.

level, either increasing the laser power or increasing the exposure time. However we
can not increase the intensity endlessly, it is limited by saturation.

4.5.2 High Dynamic Range Holography (HDRH)

From Section 4.4.1 we know that the dominating electronic detection noise is shot
noise, where the signal noise rate (SNR) of the shot noise is proportional to the
square of the intensity measurement value. In order to increase the SNR, we can
either increase the laser power or exposure time. In our experiment we adjust the
sensor exposure time to change the intensity value from low to high, and perform
the PSI measurement, to determine, which exposure time gives the best reconstruction.

As discussed in Section 4.1 Eq. (4.10), we can contrast the recovered intensity
Ico using Eq. (4.7) with the measured intensity Imo by blocking the reference wave
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to estimate the error in the system. It must be emphasized, that both Ico and Imo
suffer from the detector noise. In our experiment we measure the object intensity
Imo several times by blocking the reference wave, then take the average of these
intensity patterns. We say in this case, the detector noise of the measured object
intensity Imo has been reduced due to the average process, and can be treated as
the reference. The exposure time is changed from 200 µs to 3000 µs, we contrast
the recovered intensity and the measured intensity to evaluate the quality of the
reconstruction. The differences E, in Eq. (4.10), are shown in Fig. 4.6 with the solid
line. As the exposure time increases, the difference between the two decreases. The
result of this is a better reconstruction, because of the higher SNR of the shot noise.
A turning point is encountered on the curve in Fig. 4.6. At an exposure time of 1000
µs, the difference between 1000 µs and 3000 µs rises dues to the saturation of the
sensor pixels. Sensors have a base two dynamic range with intensity values falling
between a minimum (usually 0) and a maximum. In our case, the maximum value
is (28 − 1) = 255. By increasing the exposure time, some pixel values go up to 255,
they are saturated, so the difference begins to rise. This effect can be seen as a dash
line in Fig. 4.6, the turning point of the solid line, is the same point where the pixel
start to become saturated.

Figure 4.7 (a,b,c) show the phase reconstruction of groups 4 and 5 in the US-
AF chart with different exposure time. Fig. 4.7 (a) is reconstructed with low exposure
time (400 µs), there are many speckle like noise (which is not the regular speckle noise
in holography) at the reconstruction because of the shot noise. Fig. 4.7 (b) shows
the reconstruction with longer exposure time (800 µs), although the noise speckles
has now been reduced, it still exists. If we continue to increase the exposure time
to 1500 µs, the reconstruction is shown in Fig. 4.7 (c), the noise speckles increases
again, because of the saturation of the pixels. According to taking long exposure
time we can reduce the effect of shot noise, however this is limited by the saturation.
To overcome this restriction we introduce a technique that we term High Dynamic
Range Holography (HDRH) [67, 68]. We take every hologram with different exposure
time, for example in our case 800 µs, 1200 µs, 1600 µs, 2000 µs. Only pixel intensities
between a 170 and 240 at different exposure times are kept and later normalized by
the exposure time, then they are combined together to form a new hologram. This
new hologram has no saturation points, also the shot noise level is reduced. From
these results we see that to recover accurate phase information it is necessary to
represent the digital signal with a higher number of bits which can be achieved using
the HDRH approach as shown in Fig. 4.7 (d). The random phase fluctuations reduce
significantly as the effective quantization depth representation of the digital signal is
increased.
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(d) Phase reconstruction using HDRH.

Fig. 4.7: Phase reconstruction with different exposure time and using HDRH technique.

4.5.3 Optimal power ratio between the reference and object arms

Here we analyze the optimal power balance between the object and reference waves
based on the noise analysis above. Base on the argument above we examine Eq.
(4.2) by considering the effect of detector shot noise. Hence Nn in Eq. (4.2), can be
substituted into Eq. (4.6) and written in the following manner,

∆ψo(x, y) = arg {2HK cos[∆ψo(x, y)] +N1 +N3 + i{2HK sin[∆ψo(x, y)] +N2 +N4}} .
(4.23)

From the equation above we see that, if there is no digital noise, Nn = 0, then the
equation reduces to the correct answer ∆ψo(x, y). In order to minimize the effect of
noise, we should keep the term HK as large as possible relative to the noise term Nn.
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Fig. 4.8: Intensity difference between the measurement and the recovered one with different
intensity ratio between reference wave and object wave

We define the ratio of the reference and the object wave is rro,

rro =
|Ar(x, y)|
|Ao(x, y)| . (4.24)

To avoid the saturation, the following condition should be obeyed,

(|Ar(x, y)|+ |Ao(x, y)|)2 ≤ Imax = 255. (4.25)

For the purpose of reducing the shot noise, we take equal sign in the formula above.
With the equation above, we have,

HK = Imax
2rro

(1 + rro)2 . (4.26)

When rro = 1 we get a maximum value for the term HK , which indicates that the
intensity of reference wave and the object wave should be the same, to achieve the
highest accuracy with minimum influence of shot noise, in keeping with the theoretical
results presented here [53, 69, 70, 71]. In order to experimentally prove the argument
above, we again contrast the recovered intensity and direct measured intensity as we
did in Fig. 4.6 in Section 4.4.2, but with different power ratio. As shown in Fig. 4.8
the difference E at ratio rro = 0.1 is about 0.21, then rro is increased, the difference
is reduced. When the power ratio goes to 1, the difference reaches the minimal, which
agrees with our analysis. If we go on increasing the ratio, E goes larger again.

In this section we have analyzed the noise of the camera system and found
its property meets the shot noise. We could either increase the laser power or the
exposure time to reduce the effect of the detect noise. By using HDRH technique
we increase the quantisation of the pixel value, which helps us to get a noiseless
phase information. With the knowledge of the shot noise we show the optimal power
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ratio between object and reference waves should be 1:1, then we have experimentally
supported this argument.

4.6 Experimental results

In this section, we will show the reconstruction results using the methods discussed
above to reduce the effect of noise then try to get the resolution limit. We use a
USAF chart as our object, by recognising the groups of three bars we could evaluate
the quality and the image detail of the reconstruction. The CCD we used has
2056× 2060 pixels, and the pixel size is γ = 7.4 µm, so the half sensor extend is
D ≈ 1000× 7.4 µm=7.4 mm. And the the coherent light source we used is HeNe
Laser with wavelength λ = 633 nm.

In the configuration above we take the distance between the sensor plane and
the object plane with z = 0.18 m. As stated in Section 4.1, we have two factors that
limit our resolution. One is related to the sensor extend with D/λz at 65 line/mm,
another one is related to the pixel size with 1/γ at 135 line/mm, in our case the
sensor extend limits our resolution. As shown in Fig. 4.9 (a), we can resolve the detail
of the USAF chart with group 5, element 6 (G5E6 57 line/mm). We have approached
the theoretical resolution limit at 65 line/mm.

We then reduce the distance between sensor and object to z = 0.12 m to get
a higher resolution. At this condition we could get the resolution limit with 97
line/mm, corresponding G6E4 in USAF chart. Fig. 4.9 (b) shows the reconstruction
when z = 0.12 m, we can resolve now 80.6 line/mm (G6E3), and it has approached
to the resolution limit 97 line/mm. Note that the Nyquist frequency is the half of
the sampling rate of a discrete signal processing system [72], in our case is only
1/2γ = 67.5 mm−1, corresponding G6E1, so the Nyquist limit does not limit the our
holographic system at all.

From the experiment above we test and verify the resolution limit determined
by the sensor extend by D/λz = 97 line /mm. Now we are going to investigate
another limitation concerning the pixel size. The resolution limit of the pixel size
in the experiment above is 1/γ = 1/0.0074 mm=135 line/mm, it is greater than
the other one, so this limit will not affect our system. In order to make the pixel
size resolution limit critical, we combine four pixel to one pixel, so the sensor
extend resolution limit is still the same, however the other resolution limit becomes
135/2=67.5 line/mm, this resolution limit is now critical to our system. Fig. 4.9 (c)
shows the reconstruction with pixel size 14.8 µm. We can resolve in this case about
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Fig. 4.9: Intensity reconstruction with different configuration z and γ

45.3 line/mm corresponding G5E4, the resolution has been decreased and is now
limited by the pixel size.

4.7 A metrology application with digital holography

In the previous sections, we have talked about the digital holography and how the
resolution of such systems are limited both theoretically and practically. In this
section, metrology applications with digital holography are discussed.

Unlike traditional imaging systems, which capture only the intensity of the optical
field, digital holography can measure both the intensity and phase of the optical
field. The phase of optical field is related to the optical path length Lo, which is
defined as the product of refraction index and the propagation distance. Consider a
plane wave incident on a piece of glass as shown in Fig. 4.10. Because the refraction
index of the glass is higher than air, the optical path length of the upper half is
longer than the lower half, the optical path length difference is ∆Lo = (ng − 1)cg,
which cg and ng is the thickness and the refraction index of the glass. Therefore
the wavefront of the upper half is delayed, which corresponds a phase delay of
its optical field. With the help of digital holography, we can measure this phase
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Fig. 4.10: Schematic depicting the changing of wavefront due optical elements.

Fig. 4.11: Schematic depicting the changing of wavefront due optical elements.

difference for any given object. Note that the phase changing is very sensitive, any
perturbation at the order of wavelength will cause changes in the hologram and thus
can be measured. Therefore digital holography is a powerful technique for a range
of metrology applications, such as vibration analysis [73, 74], deformation detection
[75, 76], quantitative phase-contrast microscopy [3]. In the following section, we
examine measuring a freeform surface using digital holography.

4.7.1 Freeform surface measurement

The holographical setup here is similar to the setup in Fig. 4.1. Instead of USAF
chart used earlier, we have here the phase object, for example freeform lenses or
other different kinds of lenses (Fig. 4.11). By performing the PSI in the manner
described earlier, we reduce different kinds of error sources, and can reconstruct the
phase changing due our phase object ∆ψ(X,Y ). Assuming the laser we use has the
wavelength λ in vacuum, the thickness and the refraction index at this wavelength
of the phase object is cg(X,Y ),ng. According to the phase changing ∆ψ(X,Y ) we
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Fig. 4.12: Schematic depiction of the phase change when light goes through the glass prisms
with different slopes.

could calculate the thickness of the phase object with,

cg(X,Y ) = λ

2π(ng − 1)∆ψ(X,Y ). (4.27)

As a holographic system, the resolution of the measurement is also limited, the reso-
lution limit is reflected in how large the slope of the object surface can be measured.
If the slope of the object surface is too large, which introduces high spatial-frequency
components, such high spatial frequency components could not be recorded in the
hologram due the finite extent of the sensor array or the convolution operation by
the pixel size. In order to understand how the slope limits the measurement, we take
two prisms with different slopes as example (Fig. 4.12). The phase changing due to
the top prism with lower slope has a lower spatial frequency, which the prism with
higher slope produces a higher spatial frequency, and this spatial frequency is limited
by the resolution limit of the system discussed in Section 4.6.

Let’s say the resolution limit of the system is Rlim line/mm, which corresponds the
phase changing ∆ψ(X,Y ) = 2πRlim mm−1. Substituting into Eq. (4.27), we have
the measurable slope limit with,

tan(α) = λRlim
ng − 1mm

−1. (4.28)

If we have a system which is shown in Fig. 4.9 (b) with 97 line/mm resolution
limit, and the light source is HeNe laser with λ = 633 nm, the refraction index of
the object is ng = 1.5, thus the maximal measurable slope of the object is about
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Fig. 4.13: Schematic depiction of the path-dependent phase unwrapping algorithm.

λRlim/(ng − 1) = 0.12, and the maximal measured angle of the surface is about
tan−1(0.12) = 7◦. Although this holographical measurement has a high accuracy of
the order of wavelength, the range of measurement is limited by the resolution limit
of the system. To enlarge the range of measurement, we need decrease the pixel size
of the sensor array and increase the sensor extent or decrease the distance between
the object and sensor which was discussed in Section 4.6.

4.7.2 Phase unwrapping

4.7.2.1 Basic of a phase unwrapping process

Even if we can measure the phase change due an object with the demonstrated PSI
technique, a problem remains: The phase function ∆ψ(X,Y ) is wrapped over modulo
2π. This means the phase distribution is indefinite to an additive integer of 2π [77],

cg(X,Y ) = λ

2π(ng − 1) [∆ψ(X,Y ) + 2πn] , (4.29)

n is an integer. Therefore the thickness function contains 2π jumps at the position
when ∆ψ(X,Y ) = π or ∆ψ(X,Y ) = −π. In order to correct these 2π jumps to get a
continuously varying phase, phase unwrapping is an essential step in the measurement.

Several unwrapping algorithms have been developed recent years [78, 79, 80].
In this section, we describe the so called path-dependent algorithm [77]. We consid-
erate the two dimensional case. We imagine we have a wrapped phase distribution
with a N ×N pixels. To perform the path-dependent unwrapping we need find a
path to pass through all the pixels. Usually we chose the center pixel as our starting
point P1, the second pixel P2 is the pixel beside the first one P1 as shown in Fig.
4.13. The next pixel P3 goes surrounding the already unwrapped pixels and keep
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Fig. 4.14: (a): Original wrapped phase distribution; (b) Phase distribution after unwrapping.

going on until all the pixels are traversed. Similarly we reshape ∆ψ(X,Y ) also as
∆ψ1, ∆ψ2... corresponding the position of P1,P2.... At the begin of the traversing we
make P1 = ∆ψ1, the next unwrapped pixel Pn+1 is calculated as following,

Pn+1 = ∆ψn+1 − ∆ψn + Pn, −π < ∆ψn+1 − ∆ψn < π

Pn+1 = ∆ψn+1 − ∆ψn + Pn + 2π, ∆ψn+1 − ∆ψn < −π
Pn+1 = ∆ψn+1 − ∆ψn + Pn − 2π, ∆ψn+1 − ∆ψn > π

(4.30)

When all theN2 pixels are all traversed, we will have the unwrapped phase distribution
over the pixels P1 to PN2 . An unwrapping example is shown in Fig. 4.14. Fig. 4.14
(a) is the original wrapped phase distribution, and Fig. 4.14 (b) is the unwrapped
phase distribution, which can be substituted into Eq. (4.27) to get the object surface
profile.

4.7.2.2 Noise reduction before phase unwrapping

In the last section, we introduced the conventional path-dependent phase unwrapping
algorithm, and found it works well for an ideal and noise-free simulation example.
However in practice, the phase distribution suffers from different kinds of noise (see
Sec. 4.3-4.5 for the noise analysis) (b), we can not get a “clean” phase distribution.
In Fig. 4.15 (a) a wrapped phase distribution of a converging lens measured with
digital holography is plotted, and Fig. 4.15 (b) is a zoomed in section of Fig. 4.15
(a). It can be seen, there are much noise at the boundary of the phase jumps. These
noise effects are critical to the path-dependent phase unwrapping algorithm, and will
make the unwrapping algorithm fail.

In order to reduce such noise we need to perform some type of smoothing or
filtering operations. We propose here a new technique using Zernike fitting. We know
that different orders of Zernike polynomials correspond different aberrations of the
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Fig. 4.15: (a): Wrapped phase distribution of a converging lens; (b) Partial enlarged drawing
of (a); (c) Phase distribution after Zernike fitting.

lens, and the surface of lens can be decomposed into a finite number of Zernike
polynomials. Therefore we use these Zernike polynomials to fit the reconstructed
phase distribution by digital holography,

exp(i∆ψ) =
∑
n,m

βmn Z
m
n (ρ,φ), (4.31)

and use the acquired complex-valued Zernike coefficients βmn to regenerate the phase
distribution. In this case, the noise is filtered by the Zernike fitting, we can then
perform the unwrapping algorithm to get the thickness of object. Fig. 4.15 (c) shows
the phase distribution of Fig. 4.15 (b) after Zernike fitting, the noise is significantly
reduced, and the phase distribution is more smooth than the phase distribution
before the filter.

It should be noted that the Zernike fitting process is based on the least mean
squares method, its computational time depends on the pixel number of the fitted
phase distribution. Therefore if we want to filter a phase distribution with 1000× 1000
pixels, it will take over 10 mins to do the fitting process, and care must be taken
to avoid running out of RAM when using Matlab. To reduce the computation time,
we introduce a convenient processing step to improve the noise filtering operation.
Instead of fitting the whole field exp(i∆ψ), we cut the field into small parts, and do
the fitting for each individual section. We then combine all of these sections together.
In Fig. 4.16 (a), the reconstructed phase distribution of Fig. 4.15 (a) is plotted. The
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(a): Reconstructed wrapped phase distribution
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Fig. 4.16: (a): Reconstructed phase distribution of Fig. 4.15 (a) after Zernike fit. The original
phase field is divided into 4× 4 parts, and are combined together after the Zernike
fit. (b): the unwrapped phase distribution of (a).

original phase field is divided into 4× 4 sections and each section is fitted by Zernike
polynomial with a maximal order of nmax = 40. After the fitting, the path-dependent
unwrapping algorithm is performed, and the result is shown in Fig. 4.15 (b).

It must be emphasized that, this Zernike fitting technique is valid for the ob-
jects with smooth surface, which can be decomposed into finite orders of Zernike
polynomials. Otherwise, this technique is not suitable, since a high number of Zernike
terms are required for fitting the phase distribution, and may even introduce more
noise into measurement result.

4.8 Conclusion

In this chapter we analyzed different kinds of practical experimental factors which
reduce the accuracy of a Fresnel holographic setup with a PSI algorithm. These are:
initial phase difference, PSI steps error, detection noise and vibration. In Section
4.3 we developed a mathematical model to account for vibrations and we analyzed
the piezo motor jitter. It was shown that the piezo motor jitter will not affect the
PSI system. For the initial phase difference, we could compensate them as shown in
Section 4.4.1. In Section 4.4.2, we calibrated the PSI motor step size to correct the
stepping error of the motor. In Section 4.5.1 for the detection noise we found in our
investigation that the main noise of the CCD/CMOS array is the shot noise, whose
SNR is proportional to the square of the intensity value of the pixel. By increasing
the exposure time or using the high power laser we could reduce the speckle like noise
in the reconstruction, however it is limited by the saturation of pixel. We introduced
the HDRH technique to overcome this limitation which is shown in Section 4.5.2,
then we have analytically and experimentally found that the best power ratio of
reference and object wave should be 1:1.
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With these methods above, in Section 4.6, we have corrected all these factor,
and validated the two kinds of resolution limits of our holographic system: one is the
diffraction limit with D/λz, which is limited by the CCD aperture; the other one is
related to the pixel size with 1/γ, the detection sensor has filtered the signal with the
pixel size, so the signal frequency higher than pixel frequency will be filtered. In order
to achieve the high resolution imaging we need to considerate both these limitations.
On one hand we could reduce the distance between the CCD array and the ob-
ject, or increase the detection extent. The pixel size also needs to be taken into account.

In the last section, we discussed the metrology application with digital holog-
raphy, especially a freeform surface measurement. Despite the high accuracy of the
system, the range of measurement is still limited by the resolution limit. With the
digital holographical system the phase modulation of the object can be measured,
which can be related to the optical thickness of the object. However the measured
phase is wrapped with 2π, hence an unwrapping algorithm is needed. The traditional
path-dependent algorithm is a convenient way of unwrapping the phase, however it is
not robust against noise. With the help of Zernike fit procedure, we can reduce the
noise significantly and recover the surface profile of the object.
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5 Iterative phase retrieval

In the last chapter, we discussed how the holographic technique can be used to measure
the phase of optical field. In this chapter, another technique to estimate/measure
the optical phase information, named iterative phase retrieval, is introduced and
discussed. It differs from the holographic approach, which measures the phase using a
reference wave. Iterative phase retrieval recovers the phase information from several
intensity measurements made in axially displaced planes. In the following section,
different phase retrieval techniques are introduced and compared. Based on the phase
retrieval algorithm, we propose another technique to measure the phase.

5.1 Gerchberg-Saxton algorithm between the Fourier domains

In 1972, R. W. Gerchberg and W. O. Saxton proposed an iterative algorithm to
recover the phase distribution of the optical field from two intensity measurements
[81, 82].

Assuming there is an optical field u(x) = |u(x)| exp(iψx) located in the front
focal plane of a lens, see Fig. 5.1. The optical field in the back focal plane of the lens
ū(X) = |ū(X)| exp(iψX) corresponds to the optical Fourier transform of u(x), see
Chap. 5, P. 105 in Ref. [5],

ū(X) = F{u(x)}
{
X

λf

}
. (5.1)

With the help of optical digital sensor, we can measure the intensities in the front and
back focal planes giving |ū(X)|2 and |u(x)|2. In order to get the phase information
ψx and ψX in both planes, the Gerchberg-Saxton algorithm can be used.

The algorithm consists of the following six steps:
(1) Estimate the phase ψex of the u(x), and do the Fourier transform of the signal;
(2) Replace the amplitude of the resulting Fourier transform with measured amplitude
in the back focal plane |ū(X)|;
(3) Calculate the inverse Fourier transform of the signal after step 2;
(4) Replace the amplitude of the resulting inverse Fourier transform with measured
amplitude in the front focal plane |u(x)|;
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Fig. 5.1: Schematic depiction of the Fourier relationship in a lens system.

Fig. 5.2: Block diagram of the Gerchberg-Saxton algorithm.

(5) Calculate the Fourier transform of the signal after step 4;
(6) Redo step (2)-(4), until the difference between the estimated amplitude and
measured amplitude decreases to a satisfactory level. The correspondent steps are
depicted in Fig. 5.2. With this iterations algorithm, the phase of the optical fields are
calculated.

In addition to measuring the phase information of the optical field, the Gerchberg-
Saxton algorithm is also used in the design of diffractive optical elements [83, 84]. A
diffractive optical element (DOE) is an optical element, which is used to shape or
modulate an optical field to produce an output with a designed intensity profile. It
is made of light transparent material, and works as a phase object. When the light
propagates through the DOE, its phase is changed due the thickness of the DOE, see
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Fig. 5.3: Schematic depiction of a phase object (DOE).

Fig. 5.3. By appropriately fabricating the thickness of the DOE at different spatial
locations, we can produce the designed optical field. Therefore we can generate
arbitrary output intensity distributions in the back focal plane [85]. Assuming we
have the intensity distribution of a plane wave illumination with |u(x)|2, and we want
to generate an intensity distribution with |ū(X)|2. Substituting these two intensity
values into the Gerchberg-Saxton algorithm, we can calculate the phase distribu-
tion ψx of the field u(x). Then using Eq. (4.27), we calculate the thickness of the
DOE in order to shape the beam intensity from |u(x)|2 to |ū(X)|2 in the image plane.

Note that in the iteration algorithm, both the forward Fourier and inverse Fouri-
er transform operations are performed several times. To improve the speed of
calculation, it is essential to use the FFT algorithm. However as mentioned in
Chap. 2, the sampling intervals between two domains are different, in this case,
their scaling factor depends on λ and f . Assuming the sampling interval of u(x)
is ∆x with N elements u(x1),u(x2)...u(xN ). After the FFT, we get the optical
field ū(x) with also N elements, however the sampling interval is now ∆X = λf/Nδx.

In practice, we usually use the same sensor to measure the two intensity dis-
tributions, which means the sampling interval of the measured intensities u(x)
and ū(X) are the same. However in the Gerchberg-Saxton algorithm, the sam-
pling interval of the two intensity planes are different for the most case (except
∆x = ∆X = λf/Nδx). Therefore the measured intensities can not be directly
substituted into the algorithm, which makes the algorithm not convenient in practice
to retrieval the phase between two intensity measurement. In the next section, we
will introduce another iterative algorithm, which is suitable for the intensity planes
with the same sampling interval.
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Fig. 5.4: Schematic depiction of the phase retrieval between Fresnel domains.

5.2 Phase retrieval using different Fresnel planes

In the last section, the intensity of the optical field is measured in an image plane and
a Fourier plane. In this section, the optical field is measured in a series of free-space
planes. The Fresnel transform is used to relate the fields in the different planes, see
Fig. 5.4. For example the intensity distributions are captured in two different locations
|uz0(x)|2, |uz1(x)|2. In this case, we can use the Fresnel transform to describe the
free-space propagation of the optical field,

uz1 = FST{uz0}. (5.2)

Similar to the Gerchberg-Saxton algorithm we also an iterative process as depicted
in Fig. 5.2, however the Fresnel transform and the inverse Fresnel transform are used
instead of the Fourier transform and inverse Fourier transform in Step 1,3 and 5 (by
the inverse Fresnel transform we set −z as the propagation distance instead of z
in the Fresnel transform). To calculate this iterative process efficiently, we can use
the FFT based propagation algorithms as outlined in Sec. 2.4. It is more convenient
for us to calculate the Fresnel transform using the spectral method. The sampling
intervals in both planes are identical, which means we can directly use the measured
intensity signal in different planes, and substitute them into the iterative algorithm.

It must be emphasized that, as an iterative algorithm, the speed of convergence
is important. In practice, the error decreases rapidly for the first few iterations,
then more slowly for later iterations [81, 86]. In order to accelerate the speed of
convergence, different kinds of techniques are used. For example instead calculating
the optical field between two intensity planes, people found it converges more quickly
when multiple intensity planes uz0,uz1,uz2... are used in the algorithm as shown
in Fig. 5.4 [87]. Or we could modify the Gerchberg-Saxton algorithm and use the
so-called hybrid input output algorithm to accelerate the convergence [88]. Another
important factor that affects the speed of convergence is the initial estimated phase. If
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the estimated phase approaches the real phase of the optical field, the algorithm will
converge to the real phase in few iterations [89]. Otherwise, the algorithm converges
not only very slow, but often converges to the incorrect local minimum, instead of
the correct global minimum. In the next section, we propose a new technique to
reconstruct the phase, in which we use the holographic system to make a good phase
estimation and substitute the estimated phase into the phase retrieve technique.

5.3 Iterative reconstruction of digital holograms from three
intensity measurements

Generally two methods are employed to capture and reconstruct in a digital hologram
system:
(1): The Off-axis Fourier Spatial Filtering (OFSF) technique[44, 77], in which both
the DC term, (i.e. average or zeroth order term) and twin image term are suppressed
in the frequency domain;
(2): the Phase Shifting Interferometry (PSI) [7, 45] as we discussed in Chap. 4, in
which a series of interference pattern images are acquired following controlled phase
shifts of the reference beam.

The main advantage of the OFSF is that only one intensity pattern measure-
ment (one image frame grab) is required. After a Fourier transform on the hologram,
the real image term, the twin image term and the DC term are separated spatially in
the frequency domain. After filtering the twin image term and the DC term, and use
the inverse Fourier transform on the remaining real image term, we can reconstruct
the object field. However, it has several disadvantages: (a) It is an off-axis technique
rather than inline technique. Therefore it cannot be employed to capture and
reconstruct in-line holograms; (b) It is difficult to capture holograms of speckle fields
[77], so it cannot be used with strongly diffuse objects; and (c) Its resolution is limited
by the reduced Nyquist rate achievable due to the use of an off-axis reference beam [4].

Compared with the OFSF, PSI is a more accurate digital holographic technique,
and can be used to capture both in-line and off-axis digital holograms. However
when applying PSI, the reference phase must be shifted in precise steps of a
quarter of a wavelength between each of the (at least three) images that must be
captured. Therefore: (1) The phase step accuracy requirement is a limitation of
this technique [90, 91]; (2) The experimental setup for PSI is more complicated
than in the OFSF case. In relation to (1) we note that there are several different
ways to produce the required phase shifts. One is mechanically, using piezoelectric
motors (e.g. in Chap. 4 in this thesis), another is by inserting appropriate wave
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Fig. 5.5: Schematic depicting the measurement setup. MO, microscope objective; PH,
pinhole; Al, achromatic lens; BS, beam-splitter; Mirror: M1 can be rotated to
create both an in-line reference, (when θx = 0, where θx is the angle of the reference
wave), or an off-axis reference (when θx 6= 0), and M2 is fixed; Note insertion of
the diffuser generates a diffuse object field. The figure is taken from the Ref. [92].

plates (quarter, half etc.) into the reference beam. However precise piezoelectric mo-
tors can be expensive, while the typical accuracy of wave plates is not sufficiently high.

In this section, we propose a new digital holographic technique employing iter-
ative computational algorithms [92], that overcomes the limitations of flexibility
associated with the OFSF, and also overcomes the issues of for example piezoelectric
motor cost associated with PSI. Furthermore the proposed system allows digital
hologram data reconstruction in the case of diffuse objects, i.e. speckle fields. Finally,
using the new method, which employs iterative phase retrieval algorithms [82, 93],
twin image elimination is demonstrated.

5.3.1 Description of proposed technique

The setup of the proposed technique is shown in Fig. 5.5. Similar to the PSI setup,
shown in Fig. 4.1. The laser light is collimated and separated into reference wave
path and object wave path, then interfere again and captured by the CCD sensor.
There are several differences: (i) Two shutters, one in the reference and object wave
paths to block the reference wave or object wave at will; (ii) An aperture, placed
before the object, to generate a clear boundary (sharp support) for the object
image; and (iii) A diffuser, which can be inserted into the illumination beam before
the aperture, (in order to randomize the illumination phase), to produce a diffuse
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object field. Additionally, compared with a typical PSI setup, the proposed op-
tical system is simpler because it lacks phase shift unit like wave plates or piezo motors.

As shown in Fig. 5.5 the space variable, x, refers to the coordinate in the camera
plane, while X refers to the coordinate in the object plane. We assume that the
original object wave-field in the object plane is Uo(X,Y ), while the object and
reference wavefronts in the camera plane are Ao(x, y) and Ar(x, y). The resulting
intensity distribution of the hologram is,

H(x, y) = |Ao(x, y) +Ar(x, y)|2

= |Ao(x, y)|2 + |Ar(x, y)|2 +Ao(x, y)A∗r(x, y) +A∗o(x, y)Ar(x, y)
= |Ao(x, y)|2 + |Ar(x, y)|2 +Ares(x, y), (5.3)

Ares(x, y) = Ao(x, y)A∗r(x, y) +A∗o(x, y)Ar(x, y). (5.4)

Note the terms |Ao(x, y)|2 and |Ar(x, y)|2 appearing in Eq. (5.3) can be measured
by blocking either the reference or object wavefronts using the shutters, see Fig. 5.5.
Once these two terms are removed, only the residual term, Ares(x), remains, i.e. the
sum of the real and twin image terms. If Ares(x) is numerically back propagated
to the object plane by applying an inverse Fresnel transform, then the resulting
reconstructed image in the object plane will only contain contributions from the real
and twin image terms. It should be noted that, in the object plane, the resulting real
image contribution will be in-focus, while the twin image contribution is out of focus.
Since the FST is a linear transform, the contributions from these two different terms
(which are added together) can be mathematically considered separately,

FST−z{Ares(x)} = FST−z{Ao(x, y)A∗r(x, y)}+ FST−z{A∗o(x, y)Ar(x, y)}. (5.5)

In order to separate the real image from the twin image, we propose a practical
numerical technique to eliminate the twin image contribution when:
(a) A well-defined image boundary (sharp support constraint) is present; and
(b) Applying iterative phase retrieval techniques.
It should be noted in relation to (a) that it is much easier to separate the real and
twin image contributions if the original object image has a clear boundary [94]. In
relation to (b), we note that, using standard/conventional iterative phase retrieval
techniques it is well known that the object image phase can be reconstructed from
two (or more) intensity measurements [93].

We note that an initial phase guess needs to be made when applying the con-
ventional iterative phase retrieval techniques. This initial phase guess determines the
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Fig. 5.6: Iterative phase retrieval algorithm flow chart, taken from the Ref. [92].

performance of corresponding phase retrieval algorithms:
(1) A “good” initial phase guess, (i.e. when the initial phase guess is close to the
actual phase of the object), can improve the performance [89]; and
(2) A “bad” initial phase guess, (i.e. when the initial phase guess is different form the
actual phase of the object), can significantly reduce the performance.

This poses one of the most serious limitations of iterative phase retrieval algo-
rithms. However in the proposed method there is no need to make such initial phase
guess. The reason for this is that in the proposed method we have a priori information,
i.e. the residual term ures(x) (obtained from the experimental data, see Eq. (5.3)),
for the starting phase distribution.

The flow chart for the iterative phase retrieval algorithm of the proposed method
is shown in Fig. 5.6. In Fig. 5.6, N is the total (maximum) number of iterations, n
indicates the nth iteration, n = 1, 2...N . In performing the numerical calculations a
discrete algorithm, the spectral method is employed to approximate the continuous
FST. The operation of the algorithm is as follows. To start we set, n = 1, and then:
Step 1: The initial value of the residual term, Ares(x, y), is calculated us-
ing the measured hologram, object, and reference intensities, Ares(x, y) =

H(x, y)− |Ao(x, y)|2 − |Ar(x, y)|2.

Step 2: Ares(x, y) is back propagated to the object plane employing the inverse FST,
U(X,Y ) = FST−z{Ares(x, y)}.
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Step 3: The field U(X,Y ) is replace by Ū(X,Y ) which is generated by apply-
ing the boundary constraint in the object plane. Ū(X,Y ) inside the boundary is
identical to the corresponding field U(X,Y ). However at each iterative step the field
outside the boundary are set to 0.

Step 4: Ū(X,Y ) is forward propagated to the camera plane, giving a new es-
timate of the residual term Āres(x, y) = FSTz{Ū(X,Y )}.

Step 5: This Āres(x, y) is then modified using the known intensity constraint
in the camera plane, Ares(x, y) = Āres(x, y)× |Ao(x, y)|/|Āres(x, y)|. When n < N ,
the iteration value increments becoming n+ 1. Then the new value of Ares(x, y) is
used as the input for the next iteration, i.e. Step 2. When n = N , the algorithms
stops.

5.3.2 Simulation and experiment results

The parameters used in our simulation are as follows: λ = 633 nm, z = 162.55 mm,
the pixel size γ = 7.4 µm, and the number of pixels is 512× 512. In the simulation,
three cases are examined:

(a) A non-diffuse object having a small overlap area between the real and twin image
contributions, (i.e. large reference beam angle θx ≈ 0.363◦);

(b) A non-diffuse object having a large overlap area, (i.e. small reference beam angle
θx ≈ 0.073◦);

(c) A diffusely illuminated object, i.e. random phase at the camera by setting
the phase of the object field randomly between 0 and 2π.

To perform the simulations we choose an original complex valued object field
Uo(X,Y ). For the results presented the amplitude of Uo(X,Y ) is defined using a
grayscale Lena image. A circular aperture of diameter 1.263 mm is applied to this
image. We take N = 20 as the maximal number of iterations. The simulation results
of these three cases are shown in Fig. 5.7.

The simulation results of Case. (a) is shown in the first columns of Fig. 5.7.
For a large reference beam angle θx, the real image has only a small overlap with
the twin image, see (a1). After the boundary constraint, most twin image is filtered.
With this “good” initial phase guess and after 20 iterations, we have a relative good
reconstruction (a2) compare to the reconstruction by PSI in (a3). If we reconstruct
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Fig. 5.7: Simulation results. The figures in the 1st, 2nd, and 3rd columns are reconstructed
for: a non-diffuse object having: (a) Small overlap area, and (b) Larger overlap area;
(c) diffuse object. The 1st and 2nd rows contain figures showing the reconstructed
images obtained using the proposed method for n = 1 and n = 20 respectively.
The figures in the 3th row are obtained using PSI. The figures in the 4th and 5th
rows are obtained using the OFSF technique. The figure is taken from the Ref.
[92]

the hologram using OFSF technique, the real image and twin image can not be well
separated, see (a4), thus only a rough profile of the object can be reconstructed in (a5).
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For Case (b) with a small reference beam angle, the simulation results are plotted in
the second columns in Fig. 5.7. From (b1) we see that there is a big overlap area
of the real image and twin image. After the boundary constraint, only a small part
of twin image is eliminated, which means we have a “bad” initial phase guess. The
reconstruction after 20 iterations is shown in (b2). Because of the “bad” initial phase
guess, the reconstruction (b3) is failed. Also for the OFSF technique, see (b4) and
(b5) the real image and twin image can not be separated in the frequency domain,
and the reconstruction is also failed.

The last columns of Fig. 5.7 corresponds the Case (c), in which a diffuse ob-
ject is simulated. In this case, the twin image is distributed over the whole object
plane, only a small part of the twin image is overlapped with the real image. After
20 iterations, we found the reconstruction using our technique is as good as the
reconstruction by using PSI, see (c2) and (c3). However for the OFSF technique, it is
impossible to separate the real and twin images, the reconstruction is also poor.

From the simulation we found, the proposed technique works well if we have
an off axis setup or a diffusely illumination, which means a “good” initial phase guess.
Next, we will examine our technique experimentally. In the experiment we use a
He-Ne laser with λ = 633 nm, an arbitrary chosen distance z=162.55 mm is applied
(measured by a micrometer). The three intensities measurements were captured using
a CCD camera (IMPERX IGV-B2020 with 2056× 2060 pixels, having pixel size 7.4
µm).

As same as the simulation, the three cases discussed above were examined, Cases (a)
and (b): Non-diffuse objects having (a) a large reference beam angle (off axis setup)
or (b) a slightly reference beam angle (nearly in line setup); and Case (c): the diffuse
object case. A standard USAF chart is used as the object with the diffuse object case
being produced by inserting the diffuser into the beam illuminating the object as
shown in Fig. 5.5.

The experiment results are demonstrated in Fig. 5.8. The performance of the
proposed technique is similar to the simulation results. For Case (a) with a large
reference beam angle, a small overlap between the real and twin images can be seen in
(a1). After 20 iterations, the twin image is filtered, and we got a good reconstruction
(a2) as well as the reconstruction by PSI (a3) and OFSF (a5). For Case (b) with a
nearly inline setup, the twin image and the real image are overlapped, we got a bad
reconstruction as same as the OFSF (b5). For the diffuse case (c), the reconstruction
of our technique (c2) performs as well as the reconstruction by PSI (c3), however
the result with OFSF fails due the overlap of real and twin images in the frequency
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Fig. 5.8: Experimental results. Comparison of the reconstructed image intensities obtained
by the proposed method, PSI and OFSF for three cases: A non-diffuse object
having (a) a small overlap area (large off-axis reference angle of incidence) and (b)
a significant (large) overlap area; (c) a diffuse object. The figure is taken from the
Ref. [92]

domain. The experimental results coincide with the simulation results for the three
different cases.

In comparison to previously used PSI, OFSF methods, there are several bene-
fits of the proposed method. First, compared with the PSI, no expensive piezo motor
or quarter wave plates are required, resulting in a much simpler experimental setup.
Second, the proposed method works as well as the OFSF for the large reference angle
case, and also works for the diffuse case, for which the OFSF fails.
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5.4 Conclusion

In this chapter, we have introduced the iterative phase retrieval technique, which
estimates the optical phase by measuring the intensity of the field in two or more
planes. Compared to the digital holography, phase retrieval doesn’t need reference
wave and therefore has a relative simple setup. However the accuracy of the phase
retrieval depends on the initial phase guess. If a “bad” initial phase is chosen, the
phase retrieval algorithms converges slowly and usually converges to a local minimum
rather than the global minimum solution. Hence the phase distribution is often
incorrectly estimated. Therefore, we proposed a technique, combining a holographic
system with a phase retrieval technique. The reconstructions with the proposed
method are simulated and experimentally tested.
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6 Diffraction under partially coherent illumination

6.1 Introduction

In the previous chapters, we have assumed that the light in our optical system
was monochromatic and totally coherent. An example of a coherent beam is a
well stabilised laser. Incoherent beam are more common in daily life and include
sunlight and the light from LEDs. Between these two limiting cases coherent and
incoherent, we have what we refer to as the partially coherent beam. The partially
coherent beam has received a lot of attention in recent decades, like the long range
communication, speckle reduction [95, 96]. Hence it is important to be able to
simulate the propagation of partially coherent beam efficiently and accurately.

For a fully coherent beam, we can use diffraction integral, for example the Fresnel
transform, to calculate its propagation. The phase of an optical field varies rapidly
over time. For a coherent field, while the phase may vary rapidly, all parts of the field
vary in unison. For a partially coherent field this is no longer true. And different points
of the field (in a given plane) vary randomly and rapidly respect to each other. So for
the partially coherent beam, it is not possible to use a static diffraction integral to
describe the intensity that would be measured by a detection. To model this partially
coherent case we can use the mutual coherence function to describe the partially
coherent beam, and calculate the propagation of this mutual coherence function
using a 4D mutual coherence integral, see Chap 5.4 in Ref. [40]. However, as for the
Fresnel transform calculations, for the most cases, there are no analytical solutions
for the mutual coherence integral and we must do the integral numerically. As a 4D
integration, it is challenging to solve it using the methods that were implemented in
Chap. 2.

In this chapter, we decompose the dynamic partially coherent field into a tem-
poral sequence of static spatially coherent random fields. By propagating these
spatially coherent random fields separately and adding them together on an intensity
basis, we can model the output of the 4D mutual coherence integral. In order to verify
the proposed technique, we simulate the Thompson-Wolf experiment and compare
the simulated diffraction pattern with these theoretical results. At the end, we use
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the proposed technique to simulate the performance of DOE under partially coherent
illumination, some interesting results are found and discussed.

6.2 The Thompson-Wolf experiment

In 1957, B. J. Thompson and E. Wolf developed an experiment, in order to investigate
the partial coherence of a luminous source [97]. In this section, we will review their
experiment, introduce and characterize some fundamental concepts of the partially
coherent beam.

Fig. 6.1: Illustrating the setup of the Thompson-Wolf experiment

Consider a finite quasi-monochromatic source, locates in the front focal plane
of a lens L1. In the back focal plane of L1 we have a diffracting mask of two pinholes
P1 and P2. Its Fourier pattern is captured in the back focal plane of another lens L2.
Let u(x1, y1; t) and u(x2, y2; t) be the complex optical field at points P1 and P2, at
time t, and Γ(P1,P2) is known as the mutual coherence function,

Γ(P1,P2) = 〈u(x1, y1; t)u∗(x2, y2; t)〉 , (6.1)

where the angular brackets “〈〉” is the ensemble average operation over time. Know
that the light source plane and the pinhole plane have a Fourier relationship, and we
can write the mutual coherence function as the Fourier transform of the light source
us(x′, y′; t),

〈u(x1, y1; t)u∗(x2, y2; t)〉 =〈∫∫
us(x

′
1, y′1; t)e−

i2π(x′1x1+y
′
1y1)

λf dx′1dy
′
1

∫∫
u∗s(x

′
2, y′2; t)e

i2π(x′2x2+y
′
2y2)

λf dx′2dy
′
2

〉
. (6.2)



6.2 The Thompson-Wolf experiment 97

In the integration above, only the complex field of light source us(x′, y′; t) is changing
over time, so we rewrite the Eq. (6.2) as,

〈u(x1, y1; t)u∗(x2, y2; t)〉 =∫∫ ∫∫ 〈
us(x

′
1, y′1; t)u∗s(x′2, y′2; t)

〉
e−

i2π(x′1x1+y
′
1y1)

λf e
i2π(x′2x2+y

′
2y2)

λf dx′1dy
′
1dx
′
2dy
′
2. (6.3)

Note that an incoherent light source is characterised as Dirac delta correlated, thus
we have,
〈
us(x

′
1, y′1; t)u∗s(x′2, y′2; t)

〉
= us(x

′
1, y′1; t)u∗s(x′2, y′2; t)δ(x′1 − x′2)δ(y′1 − y′2). (6.4)

Substituting Eq. (6.4) into Eq. (6.3) and Eq. (6.1), we reduce the 4D integral into a
2D integral with,

Γ(P1,P2) =
∫∫

Is(x
′, y′)e−

i2π[x′(x1−x2)+y
′(y1−y2)]

λf dx′dy′, (6.5)

which Is(x′, y′) = us(x′1, y′1; t)u∗s(x′2, y′2; t) is the intensity of the light source. Note
that the mutual coherence function between P1 and P2 depends only on their spatial
distance ∆P = x1 − x2 in x direction, and ∆Q = y1 − y2 in y direction, therefore
Γ(P1,P2) can also be written as,

Γ(P1,P2) = Γ(∆P , ∆Q) =
∫∫

Is(x
′, y′)e−

i2π(x′∆P+y′∆Q)
λf dx′dy′. (6.6)

The mutual coherence function in the pinhole plane is the Fourier transform of the
intensity pattern of the incoherent light source. In the Thompson-Wolf experiment,
they had a incoherent light source with uniform intensity in a circular aperture of a
radius r′. According to Eq. (6.6), the mutual coherence function in this case is the
Fourier transform of a circular aperture, which is a Jinc function,

Γ(∆P , ∆Q) ∝ Jinc

2πr′
√

∆P 2 + ∆Q2

λf

 (6.7)

Jinc(x) =
J1(x)

x
. (6.8)

Note that the mutual coherence function here is circularly symmetric, so we have,

Γ(∆P , ∆Q) = Γ(r) ∝ Jinc

(
2πr′r
λf

)
, (6.9)

r =
√

∆P 2 + ∆Q2. (6.10)
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By normalizing the mutual coherence function, we have the complex degree of the
coherence µ(P1,P2) with,

µ(P1,P2) = µ(r) =
Γ(P1,P2)

[Γ(P1,P1)Γ(P2,P2)]1/2 = 2Jinc
(

2πr′r
λf

)
. (6.11)

Note that this complex degree of the coherence µ characterizes the correlation between
the two beams, and it amplitude has to be between 0 and 1,

0 ≤ |µ(P1,P2)| ≤ 1. (6.12)

Consider the light source has a very small radius r′ → 0, as a point source. Then
even for a large ∆P between two pinholes, we have a complex degree of the coherence
µ(P1,P2) → 1. In this case, we have a fully coherent illumination, the diffraction
pattern of these two pinholes at their Fourier plane is then,

It(X,Y ) = 2 cos
[

2π
λf

(∆PX + ∆QY )
]

, (6.13)

we have a maximal visibility vm of 1, which is defined as [97],

vm =
Imax− Imin
Imax+ Imin

. (6.14)

If the light source is no longer a point source and has a large spatial extent r′. The
complex degree of the coherence is then decreased between 0 and 1. For this instance,
we have a partially coherent illumination, and the diffraction pattern is then,

It(X,Y ) = (1 + |µ(P1,P2)|) cos
[

2π
λf

(∆PX + ∆QY )
]

, (6.15)

the visibility vm is decreased as well as the complex degree of the coherence µ(P1,P2),
vm = µ(P1,P2). In practice, the pinhole can not be infinite small and has a diameter
of di. So we modify the Eq. (6.15) by considering the extent of pinhole (see Ref. [40],
Eq. (5.2-44) for detail),

It(X,Y ) =
J1

(
πdi
λf

√
X2 + Y 2

)
πdi
λf

√
X2 + Y 2

2 {
1 + |µ(∆P , ∆Q)| cos

[
2π
λf

(∆PX + ∆QY )
]}

.

(6.16)

At this point, we have derived the analytical express of the diffraction pattern in the
Thompson-Wolf experiment. In the next section, we will simulate the Thompson-Wolf
experiment and compare the results with this analytical express.
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6.3 Wave optics simulation of partially coherent beams

In the last section, we reviewed the Thompson-Wolf experiment and introduced some
important concepts of the coherence theorem. In this section, we will investigate how
partially coherent beam propagates and how to calculate its propagation efficiently.

In our approach, instead of solve the 4D integration directly, we generate enough
more random complex fields u(x, y; t), with the same mutual coherence function Γ.
Then we propagate these random spatially coherent fields, and have their complex
field in the output plane U(X,Y ; t). By adding adding them together on an inten-
sity basis, we have the intensity pattern INt in the diffraction plane of the two pinholes.

In order to better understand and validate the proposed technique, we simu-
late the Thompson-Wolf experiment introduced in the last section and compare its
intensity pattern INt in the output plane with its theoretical pattern in Eq. (6.16).

Consider an incoherent light source, see Fig. 6.1, whose intensity is uniform in
a circular aperture of radius r′, Is(x

′, y′) = 1,x′2 + y′2 ≤ r′2)

Is(x
′, y′) = 0.x′2 + y′2 > r′2)

(6.17)

And we can write the complex field of this incoherent light source as,

us(x
′, y′; t) =

√
Is(x′, y′) expiθ(x

′,y′;t) . (6.18)

Because the light source is incoherent, the phase of the light source θ(x′, y′; t) at
any instance t is uncorrelated with each other between 0 and 2π. This complex
random field us(x′, y′; t) propagates through the lens L1, and generates a speckle
field u(x, y; t) in the back focal plane of L1, which is characterized as the Fourier
transform of us(x′, y′; t),

u(x, y; t) = F{us(x′, y′; t)}
{
x

λf
, y
λf

}
. (6.19)

According to Eq. (6.11), the normalised mutual coherence function of u(x, y; t) is a
Jinc function,

µ(x1, y1;x2, y2) = µ(∆x, ∆y) = F{Is(x′, y′)}
{

∆x
λf

, ∆y
λf

}
= 2Jinc

[
2πr′(∆x2 + ∆y2)

λf

]
,

(6.20)
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Fig. 6.2: Comparison of the theoretical
intensity distribution It(X, 0) to
the simulated results IN

t (X, 0)
with the degree of coherence µ =
0.2.
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Fig. 6.3: Comparison of the theoretical
intensity distribution It(X, 0) to
the simulated results IN

t (X, 0)
with the degree of coherence µ =
0.5.

where ∆x = x1 − x2 and ∆y = y1 − y2. And we can manipulate the complex degree
of the coherence by choosing different r′ according to Eq. (6.20). By multiplying the
generated random field u(x, y; t) with the pupil function Pp(x, y) of the pinholes and
performing the Fourier transform of it, we have the complex field U(X,Y ; t) at the
output plane,

U(X,Y ; t) = F{u(x, y; t)Pp(x, y)}
{
X

λf
, Y
λf

}
, (6.21)

Pp(x, y) = 1, (x, y) inside the pinhole area
Pp(x, y) = 0.(x, y) outside the pinhole area

(6.22)

And we have thus the intensity pattern INt (X,Y ) at the output plane,

INt (X,Y ) =
〈
|U(X,Y ; t)|2

〉
. (6.23)

In our simulation, we have λ = 700 nm, di = 1 cm, ∆P = 4 cm, ∆Q = 0 cm, f = 300
mm. By properly choosing the σ in Eq. (6.20), we take three different configurations
with, µ(∆P , ∆Q) = 0.2, 0.5, 0.8 (We use Eq. (6.20) to chose correspondent radius
r′ of the incoherent light source). For every configuration 200 random speckle fields
u(x, y; t) are generated using Eq. 6.19, and substituted into Eq. (6.21) and Eq. (6.23).
The intensity distribution INt (X,Y ) along X axis at the output plane are calculated
and plotted in Fig. 6.2-6.4. A high agreement can been seen between the simulation
and the theoretical results.
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Fig. 6.4: Comparison of the theoretical intensity distribution It(X, 0) to the simulated
results IN

t (X, 0) with the degree of coherence µ = 0.8.

6.4 Simulation of the DOE diffraction pattern with the partially
coherent beam

As we introduced in Chap. 5.1, diffractive optical element (DOE) uses a thin micro
structure pattern to alter the phase of the light that passes through it. This phase
pattern, once properly designed, can manipulate the light so that almost any desired
intensity profile can be produced. Examples include beam shaping and splitting or
generating cartoon figures for projection system. To design a DOE with a particular
designed output intensity profile, the Iterative Fourier Transformation Algorithm
(IFTA) after Gerchberg and Saxton [81] (Detailed in Chap. 5) is often used. With
this algorithm we can calculate a phase distribution that can be etched onto a DOE
to produce a designed intensity profile in the output domain.

Note that the DOEs are designed with the assumption that the light is coherent.
The coherence of the illumination light plays an important role of the performance of
the DOEs. We expect that the diffraction pattern loses its clarity as the light source
becomes increasingly incoherent. In this section, we are interesting in examining this
effect in more detail using numerical simulations. We show how partially coherent
beam affects the performance of the DOE, and provide design guidelines to ensure
that the DOE operates within specific limits under partially coherent illumination.

We consider a DOE, which is designed to transform an incident plane wave
into a intensity profile given by a series of rings [target intensity profile, see Fig. 6.5
(a)]. Using the IFTA method proposed by Gerchberg and Saxton [81], we designed
our DOE phase pattern with 2000× 2000 features, each feature has an extent of
0.01 mm. If we use a laser illumination on the designed DOE, we expect that we
can have a profile with the sharp edges, which is shown in Fig. 6.5 (b). If the DOE
is illuminated by a partially coherent beam instead, we expect that its diffraction
pattern will get blurred. In this simulation, we use an incoherent light source with a
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(a): Target intensity profile of the DOE

 

 

(b): Simulated target intensity profile of the DOE
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Fig. 6.5: Intensity profile of the DOE diffraction pattern: (a) target intensity profile, (b)
simulated intensity profile under totally coherent illumination.

(a) Spatial coherence width l
t
=0.5 mm (b) Spatial coherence width l

t
=0.1 mm

Fig. 6.6: Intensity profile of the DOE diffraction pattern under partially coherent illumina-
tion: (a) lt = 0.5 mm, (b) lt = 0.1 mm.
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Gaussian intensity profile instead of the circular aperture,

Is(x′, y′) = exp
(
−x
′2 + y′2

2σ2

)
, (6.24)

which σ is the standard deviation. In this case, the degree of coherence function µ is
also Gaussian. Using the method we proposed above, we calculate the DOE diffraction
patterns under spatially coherent illumination with different spatial coherence width
lt, which is defined as the half width or standard deviation of the Gaussian complex
degree of the coherence µ,

µ(lt) = exp
[
−2π2σ2l2t

λ2f2

]
≈ 0.606, (6.25)

lt = µ−1(0.606). (6.26)

The simulation results are shown in Fig. 6.6. The intensity patterns are calculated
under partially coherent illumination with the spatial coherence width 0.5 mm and
0.1 mm. The intensity pattern with the large spatial coherence width (Fig. 6.6 (a))
is blurred compared to the totally coherent illumination (Fig. 6.5 (b)), while the
intensity pattern with the small coherence width (Fig. 6.6 (b)) is much more blurred.
To quantify this blurred effect, we use the Michelson visibility vm, which is defined in
Eq. (6.14), as a criterion to evaluate the diffraction pattern of the DOE. In Fig. 6.6
(a), the intensity pattern is similar to Fig. 6.5 (b) due the large spatial coherence
width, we have a high visibility of 0.9174. However for the Fig. 6.6 (b), which has
the illumination with a small spatial coherence width, the visibility is reduced to
0.5659. In order to investigate the effect of partially coherent illumination on the
DOE with different designed feature sizes, we also designed another three DOEs:
1500× 1500 features with the feature size 0.0133 mm; 1000× 1000 features with the
feature size 0.02 mm and 500× 500 features with the feature size 0.04 mm. They
all perform very well under the totally coherent illumination as designed with the
sharp edges. However under partially coherent illumination, the diffraction patterns
will get blurred, similar to Fig. 6.6. Their diffraction patterns with different spatial
coherence width are calculated, and their visibility are plotted in Fig. 6.7 (a). When
the illuminating beam is totally incoherent (spatial coherence width approaches
0), we lost the visibility for all the DOEs, vm = 0. As the spatial coherence width
increases, the visibility of all the DOE increases as well. For the DOE with the
smallest feature size 10 µm, the visibility of the diffraction pattern increases to 0.75,
however the DOE with the biggest feature size 40 µm, we only got a visibility of
0.4. The visibility of the DOE diffraction pattern with small feature size increases
much quickly than the DOE diffraction pattern with large feature size. For the same
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Fig. 6.7: (a): Visibility of the DOE diffraction pattern under spatially coherent illumination
with different spatial coherence width. (b): Replot of (a) with the x axis of the
ratio of coherence width and feature size.

partially coherent illumination, the DOE with the small feature size performs better
than the DOE with the large feature size. If we replot Fig. 6.7 (a), changing the x
axis to the ratio of the spatial coherence width to the feature size instead of spatial
coherence width, the result is plotted in Fig. 6.7 (b). We found that all the curves
are overlapped with each other, which means the ratio of the spatial coherence width
to the feature size determines the performance of the DOE diffraction pattern under
partially coherent illumination.

From the simulation results, we find the DOE can also work under partially
coherent illumination, if the spatial coherence width of the light source is much bigger
than the designed feature size of DOE. The DOE with small feature size is more
adapted to the partially coherent beam, however it increases the manufacturing cost.
By designing the DOEs, we could chose the appropriate feature size, to balance the
cost and the efficiency of the DOEs.

6.5 Experiment results

In the last section, we have simulated the diffraction pattern of DOE under partially
spatial coherent illumination. In this section, an experiment is designed and carried
out as shown in Fig. 6.8 to demonstrate the theoretical model we have developed. A
HeNe Laser is spatial filtered with a lens and a pinhole, then collimated into a plane
wave, which is assumed to be fully spatial coherent. We first remove the diffuser
and the lens L2, and thus have a coherent plane wave irradiating the DOE and the
diffraction pattern is captured by a CCD sensor in an optical Fourier transform
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Fig. 6.8: Schematic of the experiment setup: L1,L2,L3, lens; MO: microscope objective; Ph,
pinhole; DF, diffuser; AP: adjustable aperture.

system (The DOE diffraction profile is designed at the Fourier plane using the
Gerchberg-Saxton algorithm introduced in Section 5.1, therefore we use a lens to
measure its diffraction pattern at the Fourier plane). As the simulation results in
the last section, we expect that if the light source is partially spatial coherent, the
diffraction pattern captured by the CCD will get blurred, depending on the spatial
coherence width. In order to generate a partially spatial coherent field, we could insert
a diffuser and the lens L2 back into the light path between of collimated lens L1 and
the DOE (Fig. 6.8), and rotate it [98, 99]. According to adjusting the aperture size
before the diffuser, we can manipulate the spatial coherence width at the DOE plane,
then measure the diffraction pattern of DOE. In our experiment, instead of rotating
the diffuser to get a partially spatial coherent field, we use hundreds of stationary
speckle field to equivalently simulate the partially spatial coherent field. First a spatial
coherent speckle field is used to illuminate our DOE, and the diffraction pattern is
recorded. We move the diffuser with every step 0.1 mm to generate a new spatial
coherent speckle field, and record the diffraction pattern of this speckle illumination.
200 diffraction patterns of different speckle illumination are at last added togeth-
er, their mean intensity is equivalent to captured intensity in the rotating diffuser case.

The diffraction pattern of DOE we used is designed as an owl. Because the
size of the designed intensity profile is much bigger than the CCD sensor, only a part
of the intensity profile is captured and shown in Fig. 6.9. Under totally coherent
illumination, the diffraction pattern of this DOE is shown in Fig. 6.9 (a). A shape
intensity profile can be seen as designed, however, the totally coherent illumination
also introduces speckle near the profile. If the illumination is partially spatial coherent,
the diffraction pattern will become blurred. In Fig. 6.9 (b) the aperture size before
the DOE is 5 mm, the spatial coherence width is about 40 µm according to the Van
Cittert-Zernike theorem. With such a big aperture size, the designed DOE intensity
profile can barely be identified. If we reduce the aperture size, with 2 mm and 1 mm,
the partially coherent fields with much larger spatial coherence width of 100 µm
and 200 µm are generated. Their diffraction pattern are shown in Fig. 6.9 (c) and
(d). As the spatial coherence width gets larger, the diffraction pattern goes more
clear, and approaches to the designed profile. Note that the partially spatial coherent
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(a): Coherent illumination (b): Aperture size 5 mm

(c): Aperture size 2 mm (d): Aperture size 1 mm

Fig. 6.9: DOE diffraction patterns under (a) totally coherent illumination, and partially
spatial coherent illumination, the aperture size before the diffuser are (b) 5 mm,
(c) 2 mm, (d) 1 mm.

illumination does not produce speckle in the diffraction plane, which makes partially
spatial coherent illumination better than the laser in some imaging applications
[100, 101].

6.6 Conclusion

In this chapter, we examined some aspects of coherence theory of the light, in
particular light that is partially coherent. The partially coherent beam, can be consider
to be the transitional status between the two extremes coherent and incoherent
cases, is difficult to simulate. In order to describe the propagation of a partially
coherent beam, we treated the beam as a summation of series spatially coherent
random fields on an intensity basis over the integration time of the optical detection.
After verify the proposed technique, the diffraction patterns of DOE under partially
coherent illumination are investigated. Although the DOEs are designed for coherent
illumination, we found that they also work under partially coherent illumination. And
that the performance depends on the ratio of the coherence width to the designed
feature size. The smaller the feature size of DOE, the better performs the DOE under
partially coherent illumination. At the end of the chapter, we design a experiment,
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which shows the DOEs do work under partially coherent illumination as simulated
above.
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7 Summary and outlook

This thesis addressed several problems in the digital optics. In modern optics, the
photoelectric sensors like CCD / CMOS play very important role in recording optical
signals. With the help of photoelectric sensors, the continuous optical signals are
digitised, and are available for the subsequent processing.

The propagation of the light is one of the most important topic in the optics.
In Chap 2 and 3, the Fresnel transform is detailed introduced and investigated. To
calculate the Fresnel transform numerically, we uniformly sample the integration in
Cartesian and cylindrical coordinate systems. It has been found that, the uniformly
sampling will produce infinity replicas, which introduces error by insufficiently sam-
pling of the input plane. The types of replicas are fundamental different depending
on the sampling in different coordinate systems. As a 2D integration, it is very time
costing to solve the Fresnel transform directly by sampling the input field. Two FFT
based techniques are introduced, which greatly decrease the calculation time of the
Fresnel transform. However due the uniformly sampling, the FFT based techniques
also suffer the replica problems. To overcome this shortage, the analytical solutions
of the Fresnel transform are investigated. We begin with the easy case of a perfect
converging input field. According to comparing the four different methods, we found
all the solutions are not closed form, they are written in infinity orders of polynomials.
The third method with Zernike polynomials performs the best of all, it converges very
quickly at nearly all the locations in the focal region. After that, we systematically
studied the ENZ theory, and proposed the SENZ, which simplified the ENZ. At the
end of Chap. 3, we use the same ideal in SENZ to calculate the Fresnel transform
semi-analytically.

In Chap. 4, PSI as a wide used holographic technique is introduced. In our
lens-less setup, we use Fresnel transform to reconstruct the object field, both intensity
and phase. The resolution limits of the system are given. On one hand, it depends
on the pixel size of the photoelectric sensors; on the other hand, it is limited by
the numerical aperture D/z of the system. To approach the theoretical resolution
limits, we analyzed different types of the noise in the system, and used correspondent
techniques to reduce their effect of the system. After handling these noise sources,
we have experimentally approached the theoretical resolution limits. At the end of
Chap. 4, we used the PSI setup to measure the thickness of lens. Despite of the high
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accuracy of the measurement, the range of measurement (surface slope) is limited by
the resolution limits of the PSI system. For the future work, it will be meaningful,
using different techniques to enlarge the range of measurement.

Phase retrieval as another technique to measure the phase information is discussed in
Chap. 5. Due its simple setup (without reference wave) it was widely used in the
optics. However as a iterative process, its convergence is not robust, by inappropriate
initial phase estimating, the algorithm would converges very slowly, even converges to
an incorrect result. Combining with the holographic setup, we proposed a simple way
to measure the phase using iterative process. With the priori phase information, the
phase can be calculated in few iterations for the off axis and speckle illumination cases.

In the last chapter, we investigated the partially coherent beam and its propa-
gation. Instead of solving the 4D mutual coherence integral for the partially coherent
beam, we used the speckle fields to simulate the partially coherent beam temporally.
To verify the proposed simulation technique, we compare our simulation result to the
analytical solution of the Thompson-Wolf experiment, which shows a high coincide
between the two results. At the end, we simulate the diffraction pattern of DOE
under partially coherent beam, and found the designed the ratio of the spatial
coherence width to the feature size of DOE is an important factor to determine the
performance of DOE under partially coherent illumination. However it is a prediction
due simulation, it is important to experimentally measure the intensity profile of the
DOE with different designed feature size in the future. This would provide us a way
to beam shaping the partially coherent beam like LED using DOE by manipulating
the spatial coherence width of the light source.
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