
Single-artificial-atom lasing of a dressed flux qubit

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Physikalisch-Astronomischen Fakultät

der Friedrich-Schiller-Universität Jena

von Dipl.-Phys. Gregor Oelsner

geboren am 22. August 1983 in Schleiz



Gutachter:

1. Prof. Dr. Paul Seidel

Friedrich Schiller Universität, Jena

2. Prof. Dr. Frank Wilhelm-Mauch

Universität des Saarlandes, Saarbrücken

3. Reader Dr. Alexandre Zagoskin

Loughborough University, Loughborough, UK

Tag der Disputation: 3. November 2016



Contents

Introduction 1

1 Basics - Superconductivity and Josephson effect 5
1.1 Short introduction to superconductivity . . . . . . . . . . . . . . . . . . . 5

1.2 Flux quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Josephson effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Quantum mechanics of a Josephson junction . . . . . . . . . . . . . . . . . 11

2 Theoretical analysis of flux qubits and cavities 13
2.1 The quantum two-level system . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The superconducting flux qubit . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The flux qubit as quantum two-level system . . . . . . . . . . . . . . . . . 18

2.4 Coupling to the environment - Relaxation and Decoherence . . . . . . . . . 20

2.5 The superconducting CPW resonator . . . . . . . . . . . . . . . . . . . . . 22

2.6 Hamiltonian of a CPW resonator . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Coupling the resonator to its environment . . . . . . . . . . . . . . . . . . 29

2.8 Relaxation of the resonator . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Input field and transmission coefficient . . . . . . . . . . . . . . . . . . . . 33

3 Experimental requirements and setup 37
3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Sample fabrication and preparation . . . . . . . . . . . . . . . . . . . . . . 40

4 Coupling a flux qubit to a resonator 43
4.1 Magnetic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



CONTENTS

4.2 Continuous monitoring of a flux qubit with a CPW resonator . . . . . . . . 46

4.3 Two-tone spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Transmission of the qubit-resonator system . . . . . . . . . . . . . . . . . 53

5 Dressed qubit-resonator system and lasing 61
5.1 Strong AC-Zeeman shift and three-tone spectroscopy . . . . . . . . . . . . 61

5.2 The dressed qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Coupling between the dressed qubit and the resonator . . . . . . . . . . . . 69

5.4 Dressed-state lasing of a single artificial two-level system . . . . . . . . . . 75

5.5 Emission from the dressed qubit and lasing . . . . . . . . . . . . . . . . . 81

5.6 Strong driving - Beyond the two-level approximation . . . . . . . . . . . . 85

Summary 97

Acknowledgment 99

Appendix 101
A Notes to the qubit and the resonator . . . . . . . . . . . . . . . . . . . . . 101

A.1 Kinetic part of the flux qubit Hamiltonian . . . . . . . . . . . . . . 101

A.2 Diagonalizing the Hamiltonian . . . . . . . . . . . . . . . . . . . . 102

A.3 Classical results of the resonator . . . . . . . . . . . . . . . . . . . 104

B Time evolution of the density matrix by damping . . . . . . . . . . . . . . 106

B.1 Qubit dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.2 Resonator photon decay . . . . . . . . . . . . . . . . . . . . . . . 107

C Basic transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.1 Rotating frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.2 Dispersive regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.3 Dressed-state basis . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.4 Eigenbasis of the multiphoton driven qubit . . . . . . . . . . . . . 118

C.5 Two-photon interaction with the fundamental mode . . . . . . . . . 119

List of Symbols 121

References 129

Publications in Peer-reviewed Journals 141

iv



CONTENTS

Conference Contributions 143

Ehrenwörtliche Erklärung 145

Zusammenfassung 147

v





Introduction

In general, a laser consists of a material for which an inverse level population can be created

and that is brought into a cavity. The frequency of the level splitting should correspond to

a supported mode of the cavity. For the creation of the inverse population at least a three

level system is needed. By driving resonantly at the energy difference between the highest

and lowest together with a fast decay from the highest to the middle level, the population

is shifted to the middle level. In addition, the relaxation rate from the middle to the lowest

level should be small. Then, by stimulated emission coherent photons are created inside the

cavity giving several advantages over classical light sources [1].

Nevertheless, the first realization of a maser, a laser working in the microwave frequency

domain, as reported in 1954 [2], used a slightly different approach. It separated the molecules

that showed level inversion from the rest and brought them into a cavity. Importantly, it was

found that if the microwave power drained from the molecules exceeds the losses of the

cavity "self-sustained oscillations will result". The first lasing in the optical domain was

observed in 1960 [3]. It exploited a three level scheme as described above on Ruby.

As already mentioned, the losses in the media and of the cavity need to be compensated by

the stimulated emission. In addition, the atom field coupling in the optical domain is rather

weak, because the dipole moment of classical atoms is small. Thus, in conventional lasers a

large number of atoms with inverse population need to be brought into a cavity, and it was

not before 2003 that lasing was found using only a single atom [4]. Many technical advance-

ments were necessary to achieve the required strong atom-photon interaction, including the

trapping of single atoms or ions [5–7], their laser cooling [8–10], and the development of

the field of cavity quantum electrodynamic (CQED) [11]. On the other hand, CQED experi-

ments are now repeated on other objects as well, including macroscopic solid-state systems

such as superconducting quantum circuits.

Their key element is the Josephon junction [12] which acts as non-linear oscillator. For
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Introduction

small-scale junctions below sizes of 1 µm the system needs to be quantized and macroscopic

quantum tunneling (MQT) has been discussed [13, 14] and observed [15–18] in various ex-

periments. More control over the circuit parameters was gained with technical advances

in the production of sub-micron sized Josephson junctions [19–21]. These methods en-

abled the first coherent experiments on artificial quantum structures [22]. Driven by the aim

of quantum computing different building blocks such as the flux qubit [23, 24], the charge

qubit [25–28], and latest the transmon [29, 30] were developed and investigated.

Two possible ways in the realization of quantum calculations can be identified. The first

one follows the approach of adiabatic quantum computing [31–33]. There the calculation is

done by adiabatically transferring a system from a starting, easy to prepare ground state to

a configuration where the system encodes the solution of a problem in its ground state. The

calculation speed is then limited by the effective level splitting between the lowest and any

higher energetic state. For this purpose a low frequency tank circuit measurement technique

was developed to identify the ground state of a superconducting quantum system [34–36].

For the implementation of different architectures scientific analyses were carried out on the

entanglement of two coupled flux qubits [37, 38], the characterization of a three-qubit struc-

ture [39], and a four-qubit device [40]. In addition, schemes for controlling the coupling

between two qubits were proposed and realized [41–44].

The second approach has a closer analogy to classical computers, thus exploring transitions

between two states of a quantum object, whereat one encodes a logical zero and the other

a one. In recent years, great achievements have been made in this field, including single

qubit gate operations [45, 46], coupling and logical operations of two qubits [47–49], and

the detection of quantum states [50–52]. They resulted in the realization of two-qubit al-

gorithms [53] and the Toffoli gate [54] exploring solid-state quantum systems. The main

difficulty in realizing large scale processors is the relatively fast decoherence of solid-state

quantum systems [55]. It results from the strong coupling to external noise sources [56] that,

on the other hand, ensures fast gate operations. Nevertheless, the systems were optimized for

example by making the charge qubit insensitive to charge noise [30], developing a gradiome-

ter type flux qubit reducing flux noise effects [57], and maybe most important including the

qubits into a microwave cavity [58–61]. The longest coherence times have been achieved

at transmon qubits placed in three dimensional cavities [62, 63]. Interestingly, the transmon

qubits loose some of their controllability, since there level spacing is fixed by the fabrica-

tion process and the cavity shields the qubit from unwanted external signals. This smaller
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Introduction

coupling also brings difficulties in the entanglement with other external objects. Thus, the

analogy to a real atom in a cavity becomes more pronounced.

These obvious similarities led to the repetition of original quantum optical experiments with

solid-state objects in the microwave domain [64]. Important examples are the observation

of the vacuum Rabi splitting [59], the resonance fluorescence of a single qubit placed to

a transmission line [65], the observation of the Autler-Townes effect [66], and the electro-

magnetically induced transparency [67]. The main advantage of solid-state systems is their

controllability. By a proper circuit design it is rather simple to achieve the strong coupling

regime. Thus, it is not surprising that the single artificial-atom laser was realized [68]. Here,

with full control over the excitation process the inverse population was achieved in a three

level scheme.

In this work, a novel, different approach for lasing by a single flux qubit inside of a mi-

crowave cavity is developed. It makes use of only two qubit levels. By a strong off resonant

driving signal the energy level splitting and the corresponding dissipative rates can be altered

and controlled. Thus, a population inversion may be created by an effective excitation that is

driven by the qubit’s relaxation. This effect is experimentally investigated for the first time

and supported by a corresponding quantum theory.

This thesis is organized in five chapters.

Chapter 1 gives a short overview of the basics of superconductivity and the Josephson effect

that will be necessary for the description of superconducting qubits.

In Chapter 2 a theoretical analysis is carried out, and a quantum theory for flux qubits as

well as for coplanar waveguide (CPW) resonators is separately developed.

Chapter 3 deals briefly with experimental requirements and covers the measurement setup,

methods for achieving the presented results as well as the sample fabrication.

Chapter 4 summarizes the basic characterization of the device. It explains the coupling

between the sub-systems of Chapter 2. Also the system parameters are determined from

experimental results and a mathematical analysis based on the density matrix formalism is

derived.

Chapter 5 then introduces the scheme for creating the single-atom laser. The system is

described in the dressed-state picture. Also, a detailed analysis of the modification of the

level structure and of the dissipative rates is given. The achieved measurement results on

an optimized device are presented and compared to theoretical predictions. Finally, a gen-
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eral theory that summarizes experiments of the pump-probe kind is derived and applied to

different achieved measurement results.

The essential findings of the thesis are summarized in a conclusion.
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1 Basics - Superconductivity and
Josephson effect

1.1 Short introduction to superconductivity

Electric resistivity of metals yields from the interaction of conduction electrons with lattice

imperfections and phonons1. When lowering the temperature the number of thermal acti-

vated phonons is reduced. Therefore, one expects an increase of conductivity till it is limited

only by impurities.

In 1911 Heike Kamerlingh Onnes discovered the "Disappearance of the resistance of mer-

cury" at a temperature slightly above the boiling point of liquid Helium [69]. The effect he

had found is superconductivity. It describes a phase transition at a critical temperature Tc that

is found in several elements and materials. In table 1.1 the critical temperatures of metals

used in this work are displayed.

Metal Tc (K) λL (nm)

Nb 9.2 32-44

Pb 7.2 32-39

Al 1.19 50

Table 1.1: Values of critical temperature Tc and London penetration depth λL(T = 0) for selected

materials (from [70]).

The vanishing of the resistance at low temperatures yields from the pairing of electrons with

opposite spin to so called Cooper pairs. It arises from a weak attractive coupling mechanism,
1Phonons are quantized lattice vibration. They act as quasiparticles in solid-state physics, since a quasi-

momentum (no mass transport) and energy can be assigned to them.
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CHAPTER 1. BASICS - SUPERCONDUCTIVITY AND JOSEPHSON EFFECT

which for conventional superconductors is given by electron phonon interaction. The energy

gap for single-particle excitations is found in the theory of Bardeen, Cooper and Schrieffer

(BCS) [71] as 2G = 3.5kBTc. Thus, low temperatures are needed to avoid breaking of the

pairs by thermal excitation. Because the paired particles have an integral spin, they can be

treated as Bosons. The total wave vector of a pair as sum of the electrons wave vectors

~q =~k1 +~k2 is the same for all pairs. This quality enables the Cooper pairs to occupy the

same quantum state. A description with only one wave function

Ψ(~r) = Ψ0e−iχ(~r), (1.1)

where χ(~r) is the coordinate dependent phase, becomes possible. This superconducting

state is decoupled from the crystal lattice. Individual scattering of electrons cannot change

the momentum ~q, since it is common to all the Cooper pairs. With the momentum of the

charge carriers being a conserved quantity ideal conductivity is achieved.

The BCS theory also gives explanations for various other phenomena connected with su-

perconductivity. For example, the steep change in the specific heat and the Meissner effect

are discussed. Latter was experimentally found in 1933 by Meissner and Ochsenfeld [72].

They observed that an external magnetic field is expelled completely from the bulk of a

superconductor and, therefore, ideal diamagnetic properties are achieved.

An explanation was firstly given by London and London in 1935 [73]. They developed

a phenomenological theory of the electromechanical properties from superconductors. By

starting from the equation of motion of a single electron in the Drude model [74]

m
d~v
dt

+m
~vD

τ
=−e~E, (1.2)

where m is the mass and e the charge of a conduction electron, ~E the electric field, v the

velocity , vD the drift velocity, and τ the mean time to an interaction of an electron with the

lattice, some general statements can be deduced. In the steady state d~v/dt is equal to zero

and one obtains Ohms law

~jN =−enN~vD =
nNe2τ

m
~E, (1.3)

with~jN being the current density and nN the density of charge carriers in a normal conducting

metal. A normal conductance σ = ne2τ/m may be introduced. By assuming the time to an

interaction with the lattice τ to be infinite for a superconductor2 equation (1.2) becomes an
2This assumption expresses that no interaction with the lattice occurs.
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1.2. FLUX QUANTIZATION

"acceleration equation"

~̇jS =
nSq2

S
m

~E. (1.4)

Here, the electron charge is replaced by the charge of a cooper pair qS. A stationary current

can be found in a superconducting material even if ~E =0 immediately by integration. After

taking the curl, one can substitute the current density by the magnetic field ~H as ~jS = curl~H

and curl~E = −µ0 ~̇H as found from the Maxwell equations3. Integration with respect to the

time together with the identity curl
(

curl~Y
)
= grad(div~Y )−∆~Y and again one Maxwell equa-

tion, div~H = 0, yields the homogeneous screening relation for the magnetic field

∆~H =
1

λ 2
L

~H. (1.5)

This equation includes the Meissner effect. The general solution gives an exponential decay

of the magnetic field in a region of size λL =
√

m/nSq2
Sµ0, the London penetration depth,

from the surface of the superconductor. The supercurrent follows the same exponential de-

cay. A list of λL for different materials can be found in table 1.1.

The London theory has several limitations. For example, it gives no explanation for the

dependence of the London penetration depth on temperature nor on the thickness of a super-

conducting film. The theory developed by Ginzburg and Landau in 1950 [75] to overcome

these problems marked the first complete theoretical explanation of superconductivity and is

still commonly used for describing inhomogeneous superconductors. Starting from the basic

theory of phase transitions of the second kind4, they introduced an ordering Parameter Ψ that

is zero above the critical temperature. It can be identified with the common wave function

for the superconducting charge carriers. The normalization is selected such that the ordering

parameter will be connected to the density of superconducting charge carriers |Ψ|2 = nS. The

phase χ(~r) of this "effective" wave function (1.1) depends on the applied magnetic field due

to the vector potential ~A. The magnetic field is connected to the superconducting currents by

the gradient of Ψ and, therefore, by the phase of the wave function.

1.2 Flux quantization

One important effect for the development and the understanding of superconducting elec-

tronics is the quantization of magnetic flux in a closed superconducting loop. As mentioned,
3The displacement current is neglected.
4Phase transitions without latent heat.
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CHAPTER 1. BASICS - SUPERCONDUCTIVITY AND JOSEPHSON EFFECT

the Ginzburg-Landau theory connects the supercurrent ~jS to the gradient of the phase φ(~r)

and the vector potential ~A. This statement can be expressed by the equation [75]

~jS =− iqSh̄
2m

(Ψ∗gradΨ−ΨgradΨ
∗)−

q2
S

m
|Ψ|2~A, (1.6)

where qs denotes the charge and m the mass of the "superconducting electrons".

Φ

dr

Figure 1-1: Sketch of a thin superconducting ring. A supercurrent represented by the current density

jS will create a magnetic flux in the loop. The line element for the integration in the text is always

parallel to the vector of the current density.

Assuming the geometry shown in Fig. 1-1, integration of (1.6) along the closed supercon-

ducting ring together with (1.1) yields∮
∂D

~jS ~dr =−
∮

∂D

qSh̄
2m
|Ψ0|2 gradχ(r)~dr−

q2
S

m
|Ψ0|2

∮
∂D

~A~dr.

Here, D is the sphere enclosed by the circular integration path. The current density ~jS can

be set to zero, if the integration path is shifted away from the surface of the superconductor,

because the supercurrents are located only in a small layer of thickness λL. A simplification

to

qSh̄
m

∮
gradχ ~dr =

q2
S

m

∫
D
~B ~dF (1.7)

can be found by the use of Stoke’s theorem and |Ψ0|2 = nS. The integral on the right is equal

to the magnetic flux in the loop Φ. The integral on the left side gives the phase difference

between the wave function at the start and the end of the integration path. Because both

points coincide and the wave function should be single valued, the integral necessarily has

to be a multiple of 2π . Therefore, the total flux Φ enclosed by the loop has to be quantized.

This quantization is expressed by

Φ = n
h
qs
. (1.8)
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1.3. THE JOSEPHSON EFFECT

The first experimental observations of quantized flux were reported independently from Doll

and Näbauer [76] as well as from Deaver and Fairbank [77] in 1961. The value both groups

found for the flux quantum is Φ0 = h/2e. A comparison with (1.8) shows that the charge of

the supercurrent carriers is given by 2e and indicates the pairing of electrons.

1.3 The Josephson effect

The main building block of superconducting electronics, and therewith superconducting

quantum bits, is the Josephson junction. It is named after B.D. Josephson. In 1962 he

predicted "possible new effects" [12] on coupled superconductors by a general perturbation

theory, today summarized as Josephson effect. It is found for superconductors separated by a

region of weakened superconductivity or by thin layers of conducting or isolating materials.

The latter type is sketched in Fig. 1-2 and called tunnel junction. Its non-superconducting

layers have a typical thickness of several nanometers. All junctions considered in this work

are tunnel junctions with an isolating barrier of aluminum oxide.

Superconductor

Barrier

Superconductor

Current

Voltage

Figure 1-2: Schematic of a Josephson tunnel junction. Two superconductors are connected via an

isolating barrier. The current through and the voltage across the junction are defined by its properties.

The electronic properties of a Josephson junction are found by simple considerations [78]

assuming two superconductors with wave functions Ψ1 and Ψ2 and corresponding eigenen-

ergies E1,2. Their dynamic is given by the Schrödinger equation

∂Ψk

∂ t
=− i

h̄
(EkΨk +KΨl). (1.9)

Here K is a weak coupling coefficient and the indices k, l ∈ [1,2];k 6= l. A solution is given

by (1.1) for each of the superconductors. Also the normalization of the Ginzburg-Landau

theory |Ψk|=
√

nk can be used. Inserting Ψk =
√

nkeiχk into (1.9) yields

1
2
√

nk
ṅk + iχ̇k

√
nk =−

i
h̄

(
Ek
√

nk +K
√

nlei[χl−χk]
)
. (1.10)
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CHAPTER 1. BASICS - SUPERCONDUCTIVITY AND JOSEPHSON EFFECT

Here the dot indicates a partial time derivative. Under the assumption that two superconduc-

tors of the same kind are used (n1 = n2 = nS) the real part of the equation multiplied with

charge 2e gives

jS = 2eṅ =
4enSK

h̄
sinϕ = jc sinϕ, (1.11)

where ϕ = χ2− χ1 is the phase difference across the junction and jc the critical current

density. This equation describes the DC-Josephson effect and is known as the first Josephson

equation. From it follows that a Josephson junction can carry a superconducting current that

is created by the tunneling of Cooper pairs through the barrier. Its value depends on the

phase difference across the junction and is limited to a maximum value of jc. Another effect

is found by considering the imaginary parts of (1.10) and subtracting them5

ϕ̇ =
E2−E1

h̄
=

2eV
h̄

. (1.12)

Here, V denotes the voltage across the junction. This equation explains the AC-Josephson

effect, which states that a voltage drop at a Josephson junction is connected to a time varying

phase difference. Furthermore, by integration of (1.12) and inserting into (1.11) the corre-

sponding AC-current can be identified. Its frequency is given by ν = 2eV/h.

Together with the voltage drop a discussion of further current channels, besides the super-

current explained by (1.11), becomes necessary at the Josephson junction. It is summarized

in the so-called RCSJ (Resistive and Capacitive Shunted Junction)-model, as illustrated in

Fig. 1-3. There are two main additional channels to consider for a tunnel junction. On the

R CJ

Figure 1-3: Circuit diagram of a Josephson junction in the RCSJ-model.

one hand, the superconducting electrodes together with the isolating barrier form a capaci-

tor and therewith make a displacement current possible. The value of capacitance is given

by the material and the size of the junction. A typical value for aluminum oxide barriers is

5To clarify, subtracting the equation for χ̇1 from similar one for χ̇2.
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1.4. QUANTUM MECHANICS OF A JOSEPHSON JUNCTION

about 50 fF/µm2. On the other hand, besides the tunneling of Cooper pairs also quasiparti-

cles can give a contribution to the current flow. Because the propagation of these electrons

is connected to losses, one can introduce a normal resistance RN. This current channel can

be neglected in most cases connected to superconducting quantum circuits because the junc-

tions are usually kept in the superconducting state at temperatures well below Tc. Therefore,

the quasi particle density can be neglected. In summary, by expressing the voltage with the

derivative of the phase at the junction the sum of the currents is given by

I = Ic sinϕ +
Φ0

2πRN
ϕ̇ +

Φ0

2π
CJϕ̈ (1.13)

as firstly proposed in the works by Stewart [79] and McCumber [80].

1.4 Quantum mechanics of a Josephson junction

As described before, superconductivity as well as the Josephson effect are quantum phenom-

ena. But in general also a quantum theory has to be considered for the observables (current

and voltage or phase and charge) at the junction [81].

A first step is to find the Hamiltonian and, therefore, start with the energy conservation law

on the Josephson junction. It can be found by multiplying (1.13) with the voltage (1.12).

Neglecting the dissipative current channels yields

IV =
d
dt

(
EJ(1− cosϕ)+

1
2

(
Φ0

2π

)2

CJϕ̇
2

)
. (1.14)

The Josephson coupling energy EJ is used, and its value is given by

EJ = Φ0Ic/2π. (1.15)

The potential (U(ϕ)) and kinetic (Ek(ϕ̇)) energy form the Lagrangian L (ϕ, ϕ̇) = Ek−U ,

from which the generalized momentum can be derived as

p =
∂L

∂ ϕ̇
=

(
Φ0

2π

)2

CJϕ̇, (1.16)

whereas the generalized coordinate is given by the phase ϕ . The Hamiltonian of the system

is

H = pϕ̇−L =
p2

2m
+EJ(1− cosϕ),

11



CHAPTER 1. BASICS - SUPERCONDUCTIVITY AND JOSEPHSON EFFECT

where the mass is defined as m = h̄2CJ/4e2. Furthermore, with the relation for the AC-

Josephson effect (1.12), one can relate the charge Q to the momentum.

Q =CJV =CJ
Φ0

2π
ϕ̇ =

2e
h̄

p (1.17)

The quantization is done by substitution the variables with operators. In the phase basis the

momentum is p̂ =−ih̄∂/∂ ϕ̂ and the coordinate ϕ̂ . Hence, the Hamiltonian reads in the flux

basis

H =−EC
∂ 2

∂ ϕ̂2 +EJ(1− cos ϕ̂). (1.18)

Here, the symbol is changed to simply H to denote the quantum Hamiltonian and the charg-

ing energy EC at the junction is used as

EC =
2e2

CJ
(1.19)

With the expression for the momentum the commutation relation between the charge Q̂ and

phase ϕ̂ at the junction can be easily found[
ϕ̂, Q̂

]
=

2e
h̄
[ϕ̂, p̂] = 2ie. (1.20)

Here, the commutation relation6 [ϕ̂, p̂] = ih̄ as well as (1.12) and the definition of the flux

quantum by (1.8) are used. Because the phase and the charge do not commute, obviously, not

both can be well defined at the junction at the same time. The critical parameter is the ratio

between EJ and EC. For example, if EJ � EC the phase and therewith the current through

the junction are well defined. In this case, the charge degree of freedom can couple different

stable phase states as described later.

These quantum effects at the Josephson junction are sometimes called "secondary quantum

effects" because superconductivity or the Josephson effect themselves are quantum effects

but form the basis for the considerations above.

6As found for the given observables by applying the commutator to the wave function (1.1), for example in

the phase basis.
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2 Theoretical analysis of flux qubits and
cavities

2.1 The quantum two-level system

A quantum bit, or qubit, is a physical system containing two distinguishable states. The

difference to a classical bit lays in the possibility for both states to exist in a superposition,

what yields a statistical probability in the measurement result. This fact is expressed by the

equation for the state vector of the qubit

|Ψ〉= pg|g〉+ pe|e〉. (2.1)

In this superposition p2
n denotes the probability to measure state |n〉. It can take values be-

tween zero and one. The basis state vectors |g〉 and |e〉 are normalized and orthogonal. The

state Ψ itself should satisfy similar normalization condition, so that p2
g + p2

e = 1. Accord-

ingly, the total probability to measure either state |g〉 or state |e〉 is one. For illustration

of the superposition of the qubit and therewith operations on the qubit the so called Bloch

sphere can be used. It is sketched in Fig. 2-1. The basic states |g〉 and |e〉 are located at the

poles. Each point on this unit sphere corresponds to a superposition of the basic states. For

example, at the equator a perfect superposition with p2
g = p2

e = 1/2 is found. Any operation

changing the qubit’s state corresponds to a rotation on the Bloch sphere. Furthermore, any

of this operations can be composed by rotations around the axis x, y and z, and therefore

simply by a linear combination of the Pauli matrices, listed below.

σx =

(
0 1

1 0

)
,σy =

(
0 −i

i 0

)
,σz =

(
1 0

0 −1

)
(2.2)
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z

x

y

|e>

|g>

Figure 2-1: Sketch of the Bloch sphere. Each quantum state of the qubit corresponds to a single point

on a unit sphere. The basis states |g〉 and |e〉 are located on the poles.

Two important examples of such linear combinations are the raising and lowering operators

defined by

σ± =
1
2
(σx± iσy) , (2.3)

that only transform the ground to excited state and vice versa, respectively. Natural candi-

dates for qubits are trapped ions, nuclear or electronic spins and quantum dots. In contrast,

in this work the qubit is formed by a superconducting circuit.

The superconductivity ensures the coherence needed for a quantum system. Furthermore,

as shown in chapter 1.4 Josephson junctions can be described using the laws of quantum

mechanics. Following the statement in the mentioned chapter the solid-state qubits are dis-

tinguished depending on the well-defined quantum variable. For EJ ≈ 20EC they are usually

called flux qubits [23]. Other types include phase (EJ ≈ 200EC) and charge qubits [22]

(4EJ ≈ EC ) as well as transmons [29] (EJ ≈ 100EC)1.

2.2 The superconducting flux qubit

The flux qubit consists of a superconducting loop interrupted by at least one Josephson junc-

tion. The Josephson junction needs to be considered when calculating the conditions of the

flux quantization in the loop. Namely, the phase difference on the junctions is added to the

1Note that definition of the charging energy EC differs in some works to the one given in this work. For

example it can be defined concerning only a single electron instead of a cooper pair.
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2.2. THE SUPERCONDUCTING FLUX QUBIT

integration over the gradient of the superconducting phase (first term in (1.8))

h̄
2e

(ϕ +2πn) = Φ

ϕ

2π
=

Φ

Φ0
−n. (2.4)

Therefore, the flux in the loop Φ is directly related to the phase difference ϕ at the junction.

If, for a moment the inductance Lq of the qubit loop is considered, it is easy to find that

Φ = Φe−LqI. (2.5)

Here, Φe is the externally applied flux and I the current in the qubit loop. Equation (2.5)

implies that the external flux is partly compensated by the flux created due to the circulating

current I and it follows

ϕ

2π
=

Φe

Φ0
−

LqI
Φ0
−n. (2.6)

The effective flux in the loop may be defined as the difference between external flux and

the one compensated by the current flowing through the loop inductance Φ = Φe− LqI.

Introducing more junctions with phase differences ϕ̃m to (2.4) gives

ϕ

2π
=

Φ

Φ0
−n−∑

m

ϕ̃m

2π
. (2.7)

When comparing this equation to (2.6) it is obvious that the additional Josephson junctions

have the same influence as the loop inductance [23]. Furthermore, smaller inductances are

preferable, since they provide less coupling to the noisy environment (compare section 2.4).

Therefore, usually three junctions are fabricated to a low inductance qubit loop. The typical

shape of a flux qubit is sketched in Fig. 2-2.

To understand the quantum behavior of a flux qubit, it is necessary to find the corresponding

Hamilton operator and therewith the energy level structure. As seen in Fig. 2-2 the stan-

dard flux qubit consists of a loop containing three Josephson junctions. Two junctions are

designed to have identical size while the one of the third is scaled by a factor α < 1. If the

inductance of the loop is neglected the potential energy is given by the sum of the Josephson

energies (1.14),

U(ϕ1,ϕ2) = EJ (2+α− cosϕ1− cosϕ2−α cos [2π f +ϕ1−ϕ2]) . (2.8)
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αE J

EJ EJ

2πf + φ -φ

φ φ
1

1 2

2

n
1

n2

Figure 2-2: (left) Sketch of a flux qubit. It consists of a superconducting loop interrupted by three

Josephson junctions. One of the junctions is designed to be smaller by a ratio α . The other two

effectively increase the inductance of the loop. The qubit is controlled by an externally applied flux

Φe which for a small loop inductances can be identified with the internal flux Φ (right) SEM-image

of a fabricated flux qubit using standard two angle shadow evaporation technique.

Here, the flux quantization (2.7) is used to substitute the phase difference on the small junc-

tion2. The applied external flux, expressed by the friction f = Φe/Φ0 and the design param-

eter α influence the shape of the potential. It is plotted for different parameters in Fig. 2-3.

When the external flux is tuned close to half a flux quantum the potential has two minima.

They occur at positions ϕ1 =−ϕ2 =±ϕp. By using the first Josephson equation (1.11) it is

easy to conclude that the both minima correspond to a circulating current in either clockwise

or anticlockwise direction. The absolute value of this current is called the persistent3 current

Ip. The second part of the Hamiltonian, the kinetic part, is connected to the capacitance on

the junction, and it is derived in Appendix A.1. Using the definition of the charging energy

the complete Hamiltonian reads

H =
EC

h̄2
[1+α]p2

1 +2α p1 p2 +[1+α]p2
2

1+2α

+EJ (2+α− cosϕ1− cosϕ2−α cos [2π f +ϕ1−ϕ2]) ,

(2.9)

where pi are generalized momenta described in Appendix A.1. This Hamiltonian can be

diagonalized analytically in a tight binding approximation [24] or numerically. The concrete

procedure for the latter in the charge basis can be found in Appendix A.2. The resulting

eigenenergies are plotted in Fig. 2-4 for realistic parameters. Far away from their degeneracy

point (Φe = Φ0/2) the energy of the lowest two states can be understood as the energy of a

2The direction of the phase difference is chosen opposite for ϕ1 and ϕ2 in order to achieve the same sign

for the calculated charges on the islands N1 and N2
3Sometimes the flux qubit is also known as persistent current qubit.
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Figure 2-3: The upper 2D plots show the potential over the phase differences at the big junctions,

which act as parameters. The value of α is fixed at 0.8. The three figures differ by the external

flux, taking values (from left to right) of f = 0, 0.45, and 0.5. With approaching a friction of 0.5 two

potential wells are formed. In the lower row cross section of the potential for a friction of f = 0.5

along ϕ1 = −ϕ2 for a changing value of α = 0.6, 0.7, and 0.8 are shown. The depth of the two

potential wells increases, while the barrier between them increases with increasing α .

magnetic dipole, created by the circulating current parallel to the applied field for one and

antiparallel for the other state. Therefore, their energies are linearly increasing (decreasing)

with the external magnetic field and follow from

ε =±2Ip(Φe +
Φ0

2
). (2.10)

The value ε is the energy bias of the qubit. Close to the energetic degeneracy of these two

flux states the kinetic part of the Hamitonian leads to quantum tunneling of the phase particle

between the two wells. By that the degeneracy is lifted. The minimal splitting of the qubit’s

eigenenergies is given by this tunnel amplitude ∆ (compare Fig. 2-4). Because the spacing

of the first two levels is small compared to the distance to the next higher level, the flux qubit

is considered as two-level system4.
4Indeed the superconducting qubits, including the flux qubit can also be considered as anharmonic oscillator

and for some experiments the third level can be of special importance [54]
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Figure 2-4: The first four eigenenergies of the flux qubit found by numerical diagonalization of

its Hamiltonian (2.9) for parameters α = 0.7, jc = 200 A/cm2, c = 55 fF/µm2 and area of the big

junctions 0.2× 0.75 µm2. The energy difference of the qubit levels (solid) can be tuned from its

minimal value ∆, that here is 2.5 GHz. In comparison, the distance to higher levels (dotted) is large (

> 20 GHz).

2.3 The flux qubit as quantum two-level system

If considered as two-level system the dynamics of the flux qubit can be fully described using

the Pauli matrices, σx, σy, and σz. For example, σx describes transitions between the states

of the qubit. In the basis of the flux states (|L〉 and |R〉 for left and right circulating current),

Iq = Ipσz (2.11)

is the current operator and two terms contribute to the energy of the qubit [82]

HLR
q =

ε

2
σz +

∆

2
σx. (2.12)

It consists of the energy of the magnetic dipole created by the circulating current ∝ ε and

the coupling term between the flux states via tunneling through the potential barrier with an

amplitude ∆. This Hamiltonian can be easily diagonalized

Hq =
h̄ωq

2
σz, (2.13)

where the energy difference between the ground |g〉 and excited state |e〉 is given by

h̄ωq =
√

ε2 +∆2. (2.14)
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2.3. THE FLUX QUBIT AS QUANTUM TWO-LEVEL SYSTEM

The eigenstates are given by superpositions of the flux states

|e〉= sinθ |L〉+ cosθ |R〉

|g〉=−cosθ |L〉+ sinθ |R〉
(2.15)

Here, θ = 1
2 arctan −∆

ε
is the so called mixing angle of the system5. Its value range from 0

to π/2 and it is a measure of the superposition of the two flux states to form the ground and

excited state, respectively. Close to the degeneracy, where the energy bias is zero (ε = 0) its

value is π/4. By considering (2.15) it can be concluded, that the energy states are formed

by a perfect superposition of the flux states. The probability of measuring either current

direction in the qubit is 0.5 for both ground and excited state. Therefore, the expectation

value of the measured current is zero at the degeneracy point. The creation of the energy

levels and the superposition is illustrated in Fig. 2-5. On the other hand, for big values of the

energy bias (|ε| > ∆) the qubit eigenstates can be identified with the flux states (θ → 0 for

positive epsilon and θ → π/2 for negative).
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e
rg

y 
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|R>|L>

Figure 2-5: The qubit eigenenergies. The superposition of the flux states, illustrated as color gradient,

gives the qubit’s energy eigenstates. The corresponding eigenenergies have a hyperbolic dependence

on the energy bias ε , which follows from the splitting at the degeneracy point. The coupling of the

flux states is given by tunneling from one potential well to the other with amplitude ∆.

5For the given equation HLR
q |L〉=−ε/2|L〉+∆/2|R〉 is assumed.
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2.4 Coupling to the environment - Relaxation and Decoher-

ence

The main advantage of the superconducting qubits over most other qubit types is good con-

trollability, which is achieved by strong coupling to electromagnetic control fields via the

macroscopic size of the devices. But also unwanted signals coming from external noise

sources can couple strongly to the qubit [83]. Different origins can be identified [56]. For

example, locally changing charge distributions can influence the charge on the islands of the

qubit [84]. Furthermore, the discussed qubit type needs biasing with an external magnetic

field, where fluctuations are hard to suppress completely [85]. Also two-level fluctuators

located in interlayers or on the surface are discussed to contribute to the total noise [86].

These processes can be accounted for by mathematically coupling the qubit to an external

bath, with a certain given noise spectrum S(ω). Also these noise sources can couple in

different directions to the qubit. This assumption is in analogy to a loaded spin 1/2 particle,

where an external magnetic field ~He can be decomposed in its components along x, y, and z-

direction to find the corresponding rotations on the Bloch sphere. As explained before, these

rotations are expressed by the Pauli matrices. The Hamiltonian of the qubit in the natural

flux basis may then be written as

H̃q =
∆

2
σx +µ0µq~He~S, (2.16)

where ~S = (σx,σy,σz)/2 is the spin vector, µq = 2IpAq the magneton of the qubit6, and Aq

the area of the qubit. The magnetic field can be expanded assuming that the noise is small

and acts as perturbation [87]

~He ≈ ~He(ξ0)+
∂ ~He

∂ξ

∣∣∣∣∣
ξ0

δξ +
1
2

∂ 2~He

∂ξ 2

∣∣∣∣∣
ξ0

δξ
2 + ... . (2.17)

Here, ξ is the expanding parameter and small. The term ~He(ξ0) has only a z-component

and in the Hamiltonian it yields the diagonal term εσz/2 = µ0µq~He,z(ξ0)~S as in (2.12)7. By

introducing the short notation ~δHe for the correction terms in (2.17) the total Hamiltonian

reads

H̃q =
∆

2
σx +

ε

2
σz +µq

~δHe~S, (2.18)

6Note, due to its comparable large size a standard qubit has a magneton that is about six orders of magnitude

larger than the Bohr magneton, and thus allows strong coupling to single photons.
7The product AqHe,z(ξ0) is the magnetic flux additionally applied to the ring to create an energy bias.
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and it can be transformed to the eigenbasis of the undisturbed qubit

H̃q =
h̄ωq

2
σz +

h̄
2
(X⊥σ⊥+Xzσz) . (2.19)

This equation is split in diagonal terms proportional and terms perpendicular to σz. The

latter are denoted by the subscript ⊥ and may include σx and σy. Note, (2.19) can also

be found by assuming a bath observable coupled to the qubit [88]. To keep the equa-

tion in a compact form the abbreviations Xz = µq/h̄ωq

[
∆ ~δHe,x + ε ~δHe,z

]
and X⊥σ⊥ =

µq/h̄ ~δHe,yσy+µq/h̄ωq

[
−ε ~δHe,x +∆ ~δHe,z

]
σx are used. Following the theories from Bloch

[89] and Redfield [90] one can define the rates for relaxation Γr, excitation Γe, and pure

dephasing γϕ . With Fermi’s golden rule they can be identified as

Γr =
1
2

SX⊥(ωq), (2.20)

Γe =
1
2

SX⊥(−ωq), (2.21)

γϕ = SSXz
(ω = 0). (2.22)

Here, SX(ω) =
∫
〈{X(t)X(0)}〉e−iωtdt is the quantum noise spectral density including the

correlation of observable X and SSX (ω) = 0.5(SX(ω)+ SX(−ω)) the symmetrized spectral

density. Also, it has to be assumed that the spectrum of the noise is regular. The relaxation

and excitation rates are related to noise at the qubit frequency, whereas low frequency noise

yields pure dephasing. If only flux noise is assumed, that is ~δHe,x = ~δHe,y = 0, the pure

dephasing is scaled with ε/h̄ωq and, thus, vanishes at the degeneracy point. In addition, the

relaxation and excitation rates have their maximum there and will decrease with ∆/h̄ωq.

To illustrate the origin of these rates, a general reservoir theory can be applied. In frame of

such an approach the time evolution of the density matrix ρS of a quantum system S coupled

to a reservoir R is given by [91]

ρ̇S =−
i
h̄

TrR [V (t),ρS(ti)⊗ρR(ti)]−
1
h̄2 TrR

∫ t

ti

[
V (t),

[
V (t ′),ρS(ti)⊗ρR(ti)

]]
dt ′. (2.23)

This equation follows in the Markov approximation, where the extended open reservoir is

expressed by the density matrix ρR, the traces are taken over the reservoir coordinates, ti is

the initial time, and V (t) is the interaction energy of the system with the reservoir. Here, the

latter is used in the interaction picture which follows from the above Hamiltonian (2.19) by

the transformation

V (t) = Û†
1 H̃qÛ1 =

h̄
2

(
X⊥σ+eiωqt/2 +X⊥σ−e−iωqt/2 +Xzσz

)
, (2.24)
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where Û1(t) = e−iHqt/h̄ = e−iωqσzt/2 is the time evolution operator. An analysis of the inco-

herent time evolution of the density matrix of the qubit (2.23) is given in Appendix B.1. It

can be summarized with the Lindblad term for the qubit

ρ̇q = L̂q =
Γr

2
(
2σ−ρqσ+−σ+σ−ρq−ρqσ+σ−

)
+

γϕ

2
(
σzρqσz−ρq

)
. (2.25)

Here, the excitation is neglected because in thermal equilibrium the rates for excitation is

related to the one for relaxation by the detailed balanced law

Γe = Γre
−h̄ωq
kBT . (2.26)

To avoid thermal excitation of the superconducting qubit it is cooled down to very low

temperatures in the order of a few tens of millikelvin.

The dissipative dynamics can also be summarized by the two times T1 and T2 because (2.25)

yields for the elements of the density matrix

ρ̇ee =−Γrρee, ρ̇gg = Γrρee,

ρ̇eg =−Γϕρeg, ρ̇ge =−Γϕρge,

where g and e stand for ground and excited state, ρxy = 〈x|ρ|y〉, x,y∈ (g,e), and Γϕ = γϕ +
Γr
2

is the decoherence rate. The first line contains relaxation T1 = 1/Γr, and T1 is the mean time

of the decay of energy from the qubit. T2 = 1/Γϕ is the coherence time of the qubit. In

other words, the quantum state is lost after a time of this scale. It can be enhanced if the

qubit is isolated from external noise sources, especially at low frequencies. Such isolation

can, for example, be done if the qubit is placed inside of a cavity that only allows several

eigenfrequencies.

2.5 The superconducting CPW resonator

A cavity for light fields in quantum optics has its counterpart in the superconducting copla-

nar waveguide (CPW) resonator. The coplanar line is created by a central conductor together

with two ground plates on the same plane at each side8. The widths of the line and the

distance to the plates are usually chosen to result in a 50 Ω wave impedance. The central

line is interrupted at positions x =−S/2 and x = S/2 with a coupling capacity Cc to form a

8The name coplanar waveguide is used since all relevant layers are in the same plane.
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resonator (see Fig. 2-6). The fundamental resonance is a λ/2 = S standing wave, where λ

is the corresponding wavelength, and it has a current antinode at the position x = 0 together

with voltage antinodes at the coupling capacitances. The corresponding fundamental fre-

quency ω0/2π has a value of ≈ 2.5 GHz for a resonator of length S = 23 mm fabricated out

of Nb on an intrinsic silicon substrate. The geometric inductance can be estimated from the

geometry to be L≈ 10 nH. Then from the relation ω0 = π/
√

LC (see below) the total capac-

itance C≈ 3.7 pF can be estimated. From this value a reasonable capacitance per unit length

of c = 0.16 nF/m [92, 93] results. For the resonators considered in this work the coupling

capacitance are formed by a gap of 90 µm and take a value of the order of 1 fF.

Figure 2-6: Possible designs of CPW resonators. The central conductor line has a length of 23 mm

in both shown examples. In the lower picture the resonator is meandered to reduce the chip size from

32×6.4 mm in the upper to 8×3 mm in the lower example. In the lower picture also the markers for

placing the qubit are visible.

At low temperatures of the order of tens of millikelvins the thermal occupation of the res-

onator is negligible. The Bose-Einstein statistics (see (B.21))

〈N〉= 1

e
h̄ω

kBT −1
(2.27)

gives for a temperature of 20 mK and a frequency of the considered mode of 2.5 GHz a

mean photon number of 2.5e-3. Therefore, thermal excitation can be neglected for this order

of frequencies, in contrast to experiments using tank circuits9 for the readout of supercon-

ducting qubits [34, 39, 40, 43], where the resonator is always populated by at least tens of

photons. Following the above estimations, a quantum theory is needed for the resonator.
9Formed usually by planar micro fabricated coils together with externally placed capacitances. See the

given references in the text for details.
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2.6 Hamiltonian of a CPW resonator

As a first step, it is necessary to find the Hamiltonian of the resonator. The Lagrangian

formalism can be applied for this purpose [58, 94]. Following the geometry, a coplanar

line can be understood as a series of connected inductances l, each shunted to the ground

by a parallel connection of a capacitor c and a resistor r (see Fig. 2-7). Because all the

parameters only depend on the coordinate along the symmetry axis of the resonator, the

space dependence is only one-dimensional.

c

l

r

Cc Cc
...

cr c

l

r c

l

r c

l

r

Figure 2-7: Circuit diagram of a CPW resonator. The resonator is coupled to the environment by the

coupling capacitances Cc. The inductance per unit length is l, the capacitance c and the resistance r.

The latter yields from dissipative connections of the central conduction line to the mass plates.

First it is worthwhile to discuss some properties of this system. The voltage Vn and currents

In on each node are connected by the usual relations on circuits built up by resistances,

inductances and capacitances. The Kirchhoff’s circuit laws yield

Vn−Vn−1 =−Φ̇n =−l∆xİn, In+1− In =−Q̇n =−c∆xV̇n−
∆x
r

Vn. (2.28)

Here, ∆x = S/n is the size of the cell with n being the number of cells. In the continuum

limit (∆x→ 0) the relations (2.28) give the known telegraph equations

∂V
∂x

=−l
∂ I
∂ t

,
∂ I
∂x

=−c
∂V
∂ t
− 1

r
V. (2.29)

Derivation and inserting one equation into the other yields a wave equation for the voltage

or the current:

1
l

∂ 2V
∂x2 − c

∂ 2V
∂ t2 =

1
r

∂V
∂ t

,
∂ 2I
∂x2 − cl

∂ 2I
∂ t2 =

l
r

∂ I
∂ t

. (2.30)

With a wave ansatz for the voltage V (x, t) = Ṽ eikx−iωt or the current I(x, t) = Ĩeikx−iωt , re-

spectively, these equations can be solved10. The phase velocity of the wave is s = 1/cl.

10At the moment only waves traveling in positive (right) direction are considered.
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When inserting the ansatz directly to the telegraph equations the wave impedance Z as rela-

tion between voltage and current follows

ikṼ =−ilω Ĩ, ikĨ =−icω− 1
r

Ṽ ,

Z =
l

c− i
ωr

1
Z
=

√
l

c− i
ωr

.

For small losses, which means good isolation and therefore big values of the resistance r,

the wave impedance is given by Z =
√

l/c. It is useful to introduce the flux field variable φ

as the time integral of the voltage along a closed path. The variable φ can then be treated as

generalized coordinate. Neglecting the dissipative losses in (2.30), the wave equation for the

voltage gives the equation of motion of the flux field as

1
l

φ
′′− cφ̈ = 0. (2.31)

The appropriate Lagrangian density of a transmission line to reproduce this equation of

motion by the Euler-Lagrange formula for fields ∂Ld/∂φ −d/dt ∂Ld/∂φ̇ −d/dx ∂Ld/∂φ ′ = 0

is [95]

Ld =
1
2

[
c(∂tφ)

2− 1
l
(∂xφ)2

]
. (2.32)

A CPW resonator consists of a transmission line interrupted by two coupling capacities Cc.

Thus, the Lagrangian of the CPW resonator is given by integration of (2.32) over the length

of the resonator

Lr =
∫ S/2

−S/2
Ld dx =

1
2

∫ S/2

−S/2

[
c(∂tφ)

2− 1
l
(∂xφ)2

]
dx. (2.33)

The coupling capacities at the end of the resonator produce standing electromagnetic waves.

They can be expressed by traveling waves for the flux in right (positive) and left (negative)

direction

φ(x, t) = φ
(r)+φ

(l)

= ∑
n

1√
2An

(
α
(r)
n eiknx−iωnt +α

(l)
n e−iknx−iωnt

)
+ c.c.

= ∑
n

1√
2An

([
α
(r)
n +α

(l)
n

]
cosknx+ i

[
α
(r)
n −α

(l)
n

]
sinknx

)
e−iωnt + c.c.

Here, c.c. stands for complex conjugate, and αn, ωn, and kn = nπ/S are the complex am-

plitudes, eigenfrequencies, and wave numbers of the n-th. mode, respectively. The constants
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An are chosen such that the αn are unitless and can be found below. The complex con-

jugate terms correspond to waves with negative frequencies. Those are important in the

quantum domain because they result in absorption processes, while in the positive frequency

components only emission is included. At positions ±S/2 current nodes and voltage antin-

odes are expected. This requirement is incorporated by open boundary conditions for the

flux variable, expressed by ∂xφ(±S/2) =
∫

∂xV dt ∝ I = 0. Solutions are given by choosing

αn =
1
2iα

(l)
n =− 1

2iα
(r)
n for odd n and φn =

1
2α

(l)
n = 1

2α
(r)
n for even n11 and yield

φ(x, t) =∑
n

1√
2An

(
α2n+1(t)sink2n+1x e−iω2n+1t +α2n(t)cosk2nx e−iω2n+1t

)
+c.c. . (2.34)

To shorten this equation, the translated coordinate x̃ = x + S/2 can be introduced and it

follows

φ(x, t) = ∑
n

φn(t)cosknx̃, (2.35)

where the amplitudes include the harmonic time dependence

φn(t) =
1√
2An

(
αn e−iωnt +α

∗
n eiωnt

)
. (2.36)

With this definition the phase amplitudes φn(t) are self-adjoint. The mode expansion of

the flux variable (2.35) can be substituted into the Lagrangian, where only elements of sin2

and cos2 will contribute from the product of the sums because all others are removed by

integration. 12

Lr =
1
2 ∑

n

∫ S

0

[
cφ̇

2
n (cosknx̃)2− 1

l
φ

2
n (kn sinknx̃)2

]
dx̃,

=
1
2 ∑

n

[
cφ̇

2
n

(
x̃
2
+

sin2knx̃
4kn

)
− φ 2

n k2
n

l

(
x̃
2
− sin2knx̃

4kn

)]∣∣∣∣S
0
.

After introducing the total capacitance C = cS/2 and the mode number dependent inductance

Ln = 2lS/n2π2 of an equivalent lumped element resonator (compare [92]) and inserting the

integration bounds the Lagrangian of the resonator reads

Lr =
1
2 ∑

n

(
Cφ̇

2
n −

φ 2
n

Ln

)
. (2.37)

11And similar for the complex conjugate.
12This conclusion follows directly from the fact, that sine and cosine functions span an orthonormal basis

for functions in the given interval [0,S].
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In this Lagrangian the flux amplitudes correspond to generalized coordinates and the gener-

alized momenta read

pn =
∂Lr

∂ φ̇n
=Cφ̇n, (2.38)

and they correspond to the charge amplitudes in the resonator. The Hamilton function

Hr = ∑
n

φ̇n pn−Lr

=
1
2 ∑

n

(
p2

n
C

+
φ 2

n
Ln

)
. (2.39)

can be derived. The Hamiltonian (2.39) corresponds to the sum of harmonic oscillator Hamil-

tonians. A quantization yields the canonical operators φ̂n and q̂n, for which the commutation

relation[
φ̂n, p̂m

]
= ih̄δnm, (2.40)

where δnm is the Kronecker delta, is valid.13 This relation raises the possibility to introduce

creation and annihilation operators, a†
n and an, for the photons of the n-th. mode as

an e−iωnt =
1√
2

(
Anφ̂n + iBn p̂n

)
, a†

n eiωnt =
1√
2

(
Anφ̂n− iBn p̂n

)
, (2.41)

Note, that these equations can also be found using (2.36) and identifying the complex am-

plitudes α and α∗ with the time independent operators a(0) and a†(0), respectively. The

Hamiltonian is expressed by

Hr = ∑
n

h̄ωn

(
a†

nan +
1
2

)
, (2.42)

where the symbol for the Hamiltonian in the quantum regime is changed from H to simply

H. From a short calculation and comparing with (2.39)

Hr = ∑
n

h̄ωn
(
A2

nφ̂
2
n +B2

n p̂2
n + iAnBn

[
φ̂n, p̂n

]
+1
)
,

the constants can be defined as

An =

√
1

2h̄ωnLn
, Bn =

√
1

2h̄ωnC

ωn =
1√
LnC

=
n√
LC

= nω0. (2.43)

13Please note, while here the commutator is written for flux and charge in contrast in (1.20) phase and charge

are discussed.
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Here, L = lS/π2 is used as the inductance of the coplanar waveguide resonator. The eigen-

frequencies ωn of the modes follow the usual relation on an electric oscillator for the lumped

element representation. They have a linear dependence on the mode number n. For con-

venience, in the rest of the text the subscript 1 is omitted for the creation and annihilation

operators and changed to 0 for the circular frequency of the fundamental resonator mode.

By combining the quantum expressions for the amplitudes of the flux and the charge (2.41)

with the mode expansion for the flux (2.35) the quantum expressions for the voltage and

current of the resonators are found to be

Vr =
∂φ(x, t)

∂ t
=−∑

n
i

√
h̄ωn

C

(
an(0) e−iωnt−a†

n(0) eiωnt
)

cosknx̃, (2.44)

Ir =
∫ 1

l
∂V
∂x

dt =
1
l

∂φ(x, t)
∂x

= ∑
n

√
h̄ωn

Ln

(
an(0) e−iωnt +a†

n(0) eiωnt
)

sinknx̃. (2.45)

In the equation of the current one of the telegraph equations (2.29) is used. Note, that the

voltage can be expressed as V = ∑n q̂n/C cosknx̃. It may be useful to introduce the zero

point voltage V0 =
√

h̄ω/C and the zero point current I0 =
√

h̄ω/L1. A multiplication with

the square root of the mode number n for the voltage and
√

n3 for the current yields the

respective voltages and currents of the higher modes.

Finally, the equations above can be represented in the interaction picture. Note, that the

Hamiltonian (2.42) expresses the conserved energy of the resonator and is time indepen-

dent. Following the Heisenberg equation for the time evolution of an operator yields for the

annihilation operator [96] of mode n

dan

dt
=

i
h̄
[Hr,an(0)] = i∑

m

[
ωma†

mam,an(0)
]
=−iωnan

an = an(t) = e−iωntan(0) (2.46)

and similar for the creation operator

a†
n = a†

n(t) = eiωnta†
n(0). (2.47)

These expressions can be inserted into (2.44) and (2.45) giving the expressions for the voltage

and the current in the interaction and Heisenberg picture.
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2.7. COUPLING THE RESONATOR TO ITS ENVIRONMENT

2.7 Coupling the resonator to its environment

As considered above, the resonator is isolated from the outside world. Still, for manipulation

of the system and to get information of its properties, it is necessary to couple the oscillator to

the outside leads. When coupled to the outside, modifications of the system are required that

need to be identified. That enables the description of the driving Hamiltonian, the including

of photon decay, and an equation for the transmission coefficient of the resonator.

Cc

c c

I

cc

n-1 In+1

Vn+1Vn-1

Vn... ...

Figure 2-8: The coupling capacitance is included between the cells with indices n−1 and n+1. The

change of the charge on each plate of Cc is given by the total currents in the adjoined cells, and their

sum gives the current through the coupling capacitance. In addition, the voltage at cell n is identified

by definition with the one at Cc.

A possible way for introducing the coupling capacitance is to consider an infinite transmis-

sion line interrupted at positions ±S/2 [97]. Assuming a constant capacitance c and induc-

tance l per unit length for the whole transmission line the wave equations (2.30) are valid

at any coordinate. Still, the discontinuities by the coupling capacitances need to be added.

The current through the coupling capacitance at position −S/2 assuming cell with index n,

as sketched in Fig. 2-8 can be found by

ICc = In+1 + c∆x∂tVn+1− In−1− c∆x∂tVn−1, (2.48)

It may be replaced by the time derivative of the charge and, thus, by the one of the voltage

ICc =−Cc∂tVn, where the voltage at the capacitance is identified with the one in the n-th. cell.

The latter is given by Vn =Vn+1−Vn−1. Sorting, taking the continues limit, and considering

both coupling slids yields

∂xI =−c∂tV −Cc∂tV (δ (x−S/2)+δ (x+S/2)) . (2.49)

Here, δ (x) denotes the delta function and enters from the limit ∆x→ 0 from the terms VCc/∆x.

Derivation and inserting the second unchanged telegraph equation gives the modified wave
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equations for voltage or the flux field variable14

0 =

[
1
l

∂
2
x − c∂

2
t −Cc∂

2
t (δ (x−S/2)+δ (x+S/2))

]
× [V,φ ]. (2.50)

Now it is easy to identify the Lagrangian as

Lr =
1
2

∫
∞

−∞

[
c(∂tφ)

2− 1
l
(∂xφ)2 +Cc (∂tφ)

2 (δ (x−S/2)+δ (x+S/2))
]

dx

=
1
2

∫
∞

−∞

[
c(∂tφ)

2− 1
l
(∂xφ)2

]
dx+

Cc

2

(
(∂tφ)

2 (−S/2)+(∂tφ)
2 (S/2)

)
.

(2.51)

This equation corresponds to the same Lagrangian as used before, with added energy of the

coupling capacitances and, therefore, changed boundary conditions at the positions −S/2

and S/2. They may be defined as ∂xφ(±S/2) = lI(±S/2). The corresponding current can

be found as the change of the charge on each capacitor plate and, thus, as follows from the

voltage difference between the sides of the capacitor

I(±S/2) = ∂tQ(±S/2+)−∂tQ(±S/2−) =Cc (∂tV (±S/2+)−∂tV (±S/2−)) . (2.52)

Here, V̇ (S/2±) denotes, respectively, the voltage on the right and left side of Cc at position

S/2. The voltages may be replaced by the currents with the second telegraph equation, giving

I(±S/2) =
Cc

c
(∂xI(±S/2+)−∂xI(±S/2−)) , (2.53)

which may be used to identify the boundary condition for the flux field

∂xφ(±S/2) =
Cc

c

(
∂

2
x φ(±S/2+)−∂

2
x φ(±S/2−)

)
. (2.54)

The voltage at these capacitances can be replaced by the ones at the left and right values of

the transmission lines also from this condition, namely by time integration of (2.52)

V (±S/2) =
1

Cc

∫
I(±S/2)dt = (∂tφ(±S/2+)−∂tφ(±S/2−))

∂tφ(±S/2) = (∂tφ(±S/2+)−∂tφ(±S/2−)) .
(2.55)

The total Lagrangian then reads

Lr =
1
2

∫
∞

−∞

[
c(∂tφ)

2− 1
l
(∂xφ)2

]
dx

−Cc

2

((
∂tφ

(
−S

2+

)
−∂tφ

(
−S

2−

))2

+

(
∂tφ

(
+

S
2+

)
−∂tφ

(
+

S
2−

))2
)
.

(2.56)

14Starting with the Kirchhoff equation of the voltage yields the wave equation for current and charge that

only differs by constants.
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The square terms in the lower line of the above equation consist of three different terms each.

Two include only the field variable on one of the sides of the capacitances and result in a shift

of the resonance frequency. The mixing terms between the field variables on the two sides of

the capacitances describe the coupling between the field inside and outside of the resonator.

For simplicity and because the calculation is analog, first only the center part of the trans-

mission line is considered and the other parts are assumed grounded. Also the calculations

will be restricted to the fundamental mode. The square terms on the side modify the wave

numbers k1 as found by inserting φ(x) = φ1 sink1x into the boundary condition (2.54)15

cot
(

S
2

k1

)
=

Cck1

c
. (2.57)

For small coupling capacitances Cc the wave vector will only slightly vary from the uncou-

pled value π/S as k1 = π/S(1− ε) with ε � 1. On the right hand side of (2.57) the small

ε term will be neglected and on the left the tangent16 can be approximated by its argument

πε/2 thus the condition for ε is

ε =
2Cc

cS
� 1. (2.58)

This requirement is realized in the experiment because the coupling capacitance is small

compared to the total one of the resonator. The mode expansion enters into the Lagrangian

(2.56). When analyzing the terms in its lower line it is found

∂tφ

(
−S

2+

)
= ∂tφ1 sin

[
−k1

S
2

]
=−∂tφ1 cos

[
πε

2

]
. (2.59)

Because the argument of the cosine is small it can be approximated with unity. The rest of

the integration is analog to the one in 2.6. Thus, the total Lagrangian of the central part,

where the mode expansion is inserted and the integration is carried out, reads

Lr =
1
2

(
[C1 +2Cc] φ̇

2
1 −

φ 2
1

L1

)
. (2.60)

From here the quantization of the central part is analog to the one in 2.6. With the change of

the effective capacitance of the resonator the oscillation frequency is shifted to lower values

ω̃0 = ω0/
√

1+ ε , which for small ε gives the same result as k1/
√

lc = ω0(1− ε). The

shift originates from a longer wavelength and can be understood from the wave inside the

15In contrast to (2.35), the unshifted coordinate x is used.
16The cotangent is shifted by π/2.
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resonator leaking out to the external transmission lines. The so achieved coupling between

the central resonator and the external lines is mediated by the coupling energy CcV0Vout,

where V0 is the zero point voltage amplitude inside and Vout the corresponding outside of the

resonator. Those are given by V0 =
√

h̄ω0/C and Vout(ω0) =
√

h̄ω0/cSout, where Sout is the

length of the outside transmission line.

2.8 Relaxation of the resonator

There may be two contributions to the process of photon decay. Those are losses inside

of the cavity as well as through the coupling capacitances. A straightforward way of in-

corporating the damping into a quantum description seems to be by including them in the

Lagrangian formalism (2.6) because they are already part in the wave equations (2.30), which

is the equation of motion of the resonator. A proper Lagrangian to reproduce it by the Eu-

ler Lagrange formula was found by Bateman [98]. Nevertheless, an additional degree of

freedom is introduced, and a quantum theory has several difficulties [99]. To avoid these,

here the losses through the coupling capacitances are considered and dissipative currents are

neglected r = ∞. As seen in A.3 the total relaxation may then be found by rescaling the

coupling capacitance as well as the resistance of the leads.

The influence of the coupling capacitances on a system involving the center resonator and

two infinite long transmission lines at each side is discussed above. Again the discussion is

restricted to the fundamental mode. When quantizing all parts the total Hamiltonian reads

H̃r =h̄ω0a†a+∑
k

h̄ωkb†
k,Lbk,L +∑

k
h̄ωkb†

k,Rbk,R

− h̄∑
k

gk

(
a−a†

)(
bk,L−b†

k,L

)
+ h̄∑

k
gk

(
a−a†

)(
bk,R−b†

k,R

) (2.61)

The quantization of the outside fields is analog to the resonator field with Sout instead of S as

length of the transmission lines. Also, the coupling constants are given by gk =CcV0Vout/h̄.

The Hamiltonian above corresponds to the start point of a standard description of damping

[91], as similarly discussed in 2.4 for the qubit. The lower line corresponds to the interaction

Hamiltonian, and it reads in a rotating wave approximation, neglecting fast oscillating terms

with frequencies ω0 +ωk such as abk,L,

Vr(t)=h̄∑
k

gk

(
a†bk,Le−i(ω0−ωk)t+ab†

k,Lei(ω0−ωk)t
)
−h̄∑

k
gk

(
a†bk,Re−i(ω0−ωk)t+ab†

k,Rei(ω0−ωk)t
)
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(2.62)

By assuming the fields in the transmission lines to be in thermal equilibrium, the result of

the time evolution of the resonator’s density matrix is found from (2.23) with the above

interaction Hamiltonian. It is given by [91]

ρ̇r = L̂r(ρr) =−
κ

2
(n̄th +1)

(
a†aρr−2aρra† +ρra†a

)
(2.63)

where

κ = 2ω
2
0C2

c Z/C (2.64)

is the photon decay constant (compare (A.14)), Z the load resistance in the external lines,

and n̄th the mean thermal photon number at frequency ω0. The latter may be set to zero for

the parameters of the experiment. Details of the calculations for the one dimensional CPW

resonator are shown in B.2.

2.9 Input field and transmission coefficient

The input field coupling is already described in 2.7, and its quantum representation is explic-

itly given in 2.8. Assuming a classical probing field Vin = Vp sinωpt, with amplitude Vp and

circular frequency ωp applied through the transmission line to the resonator, the coupling

Hamiltonian is given by17

Hp =−iCcV0Vp sinωpt
(

a†−a
)
. (2.65)

With only keeping the slow rotating terms, see (2.46) and (2.47), and introducing the probing

amplitude

Ωp =
CcV0Vp

2h̄
, (2.66)

the Hamiltonian can be expressed as

Hp = h̄Ωp

(
a†e−iωpt +aeiωpt

)
. (2.67)

This calculation is restricted to the fundamental mode because ωp is assumed close to its

frequency. In principle, the sum of all modes may be entered and all fast oscillating terms in

17The minus sign is due to the negative voltage amplitude at −S/2 of the resonator.
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2.67 may then be omitted. The driving in other resonator modes can be identified completely

analog.

To characterize the resonator the transmission tr defined as Vout/Vin can be measured at a

probing frequency ωp/2π . The output voltage is defined from the series circuit of the output

coupling capacitance Cc and the load resistance18,

Vout =
Z

Zc +Z
〈Vr〉 ≈ iωpCcZ〈Vr〉. (2.68)

Here, 〈Vr〉 is the expectation value of the voltage at the output coupling capacitance and cor-

responds to the voltage amplitude in the resonator (x̃= S in (2.44)). In addition, Zc = 1/iωpCc

is the coupling capacitance impedance, where ωp/2π is the frequency of the voltage field

excited in the resonator. For high quality resonators the coupling impedance is significantly

larger than the wave impedance which justifies the assumption in (2.68). By considering an

excited first mode of the resonator, the expectation value can also be expressed by

〈V 〉=−iV0〈a e−iωpt−a†eiωpt〉

=−iV0

(
〈a〉 e−iωpt−〈a†〉eiωpt

)
= 2V0

(
Re(〈a〉)sinωpt− Im(〈a〉)cosωpt

)
,

where Re(〈a〉) and Im(〈a〉) are the real and imaginary part of the expectation value of the

field operator a, respectively. A network analyzer mixes the output signal with the input

signal and an π/2 shifted copy of the input. After a normalization to the input amplitude Vp

this mixing results in the quadratures Q and I as "in phase" and "out of phase" signal. They

are taken as real and imaginary part of the complex output signal and transmission ampli-

tude tr =
√

Q2 + I2 and phase φtr = arctan(I/Q) may be calculated. Thus, the transmission

coefficient as measured by a network analyzer is

tr = i
2ωpCcZV0

Vp
〈a〉. (2.69)

With the definitions of the zero point voltage V0 (see 2.6), the loss rate(2.64), the driving am-

plitude (2.66), and under the assumption that the resonator is probed close to the fundamental

mode ωp ≈ ω0 it reads

tr = i
κ

2Ωp
〈a〉. (2.70)

18Or the wave impedance Z outside of the resonator, which has the same value as the load of the measurement

device or the amplifier.
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Information of the system can also be gained without the need of a probing signal by the use

of a spectrum analyzer. Then amplitudes of signals emitted from the resonator at different

frequencies are collected, e.g. giving information about excited resonator modes.
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3 Experimental requirements and setup

3.1 Experimental setup

The characteristic frequencies of the discussed superconducting qubits lay in the microwave

regime between 1 GHz and 20 GHz. To perform quantum type experiments, it is necessary

that the system can relax into the ground state and to avoid thermal population in the corre-

sponding resonators. Although classical resonators can be used to probe the quantum nature

of the two-level systems [34] and to test several effects, such as different coupling types [40]

or the so called Sisyphus effect [100], a real quantum coupling implies a resonator in its

ground state as well. Furthermore, the quantum space can be limited to a small amount of

states, and a quantum theory can lead to analytic results [93].

To ensure that no thermal excitations occur, the energy of the surrounding bath needs to be

well below the energy of a single photon. Assuming an energy splitting of the states of about

2.5 GHz this requirement demands a temperature

T <
hν

kB
= 130 mK (3.1)

This relation illustrates that experiments need to be performed in a dilution refrigerator (see

Schematic in Fig. 3-1), where a mixture of He3 and He4 is used to achieve temperatures

around 10 mK. This mixture is condensed after cooling with a pumped He4 pot and expand-

ing on an imped-ance in the so-called condensing tube. Below a temperature of 1.2 K a phase

separation into a phase rich on He3 and one which has almost no He3 is occurring. The latter

is mainly collected in the so-called still. By pumping He3 from it an evaporation of He3 into

this quasi vacuum from the second phase located in the mixing chamber is achieved. For this

process heat is required, and a cooling effect working down to several mK results. With the

use of heat exchangers to cool the mixture that is condensing with the He3 that is pumped,

a closed cycle can be realized. In addition, any impurities in the closed cycle of the mixture
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mixing chamber 20 mK

heat exchanger

1K-pot - 1.7 K

still - 0.5 K

liquid ~ 6 % He
3

 liquid 100 % He3

liquid < 1 % He
3

gas > 90 % He3

liquid He4

gas He4

pump pumpfrom coldtraps

Figure 3-1: Schematic of a dilution refrigerator. The different components as well as the process of

cooling are discussed in the text.

need to be avoided. The purity of the gas can be ensured by the use of different cold traps

working with liquid nitrogen and helium.

To increase the amount of He3 that is circulating, usually the still is heated with a power in

the mW range1. Still, the cooling effect is reduced with decreasing temperatures; therefore,

any heat load on the cold stages needs to be avoided. Thus, in a measurement setup all the

cables used need to be thermally anchored at each temperature state.

3.2 Measurement setup

Cabling to the sample not only is needed to apply probing or manipulating signals and read-

ing its response, but it also connects the 300 K environment of the measurement devices to it.

Since the corresponding noise would also lead to excitation from the ground state, damping

and filtering is applied for the different lines. A principle sketch of the used measurement

setup is shown in Fig. 3-2. In the MW-part 20 dB attenuators are used at the 1-K and mixing

chamber stages to thermalize the signal. There the 300 K noise from the room temperature

1For more details see for example [101]
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CPF-20 dB

20 mK

-20 dB
1.7 K

4 K

RCF

-20 dB

RCF

FTR

measurement and control devices
RT

Figure 3-2: Schematic of the cabling of the samples. The resonators input and output are connected

by microwave lines. A cold amplifier together with a series of room temperature amplifiers provide

a total gain of about 75 dB. An external coil is used for applying the energy bias to the qubit. The

sample is isolated from the noise of the measurement devices by attenuators in the MW-input lines

and filters (RCF - rc-filter, FTR - feedthrough-filter, and CPF - copper-powder-filter) in the DC lines.

The noise reaching the sample from the amplifier is suppressed by an isolator.

devices is reduced together with the signal by a factor of 1000. This suppression results in

an effective noise less than 30 mK at the sample. Because the output signal is small, a se-

ries of commercial amplifiers are used. The noise background in the measurement is mainly

given by the noise temperature of the first cold amplifier which is about 10 K. The sample is

protected from the amplifier noise by the use of an isolator placed at the 20 mK stage.

The MW-lines are realized by semi-rigid coaxial cables with an impedance of 50 Ohm. For

the connection from 300 K to the 1 K stage 2.2 mm thick cables with copper beryllium

inner and stainless steel outer conductor are used. The input lines from 1 K to the sample

are 0.8 mm thick and made from stainless steel, while for the output from the sample NbTi

wires are used with a thickness of 2.2 mm. The DC- lines are realized as shielded twisted

pairs and made from brass from 300 K to the 4 K filter and from NbTi below.

To achieve stable measurement conditions, the influence of external fields to the sample

should be avoided. Therefore, it is enclosed by mu-metal and superconducting shields. The
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CHAPTER 3. EXPERIMENTAL REQUIREMENTS AND SETUP

first mentioned suppresses external magnetic fields, while the latter freezes the remaining

magnetic field when cooled below the superconducting transition.

To characterize the sample, transmission type measurements can be performed or its output

spectrum can be recorded. For this purpose a vector network analyzer or a spectrum analyzer

is used, respectively. Additional microwave signals can be applied to the input by the use of

combiners and microwave generators.

3.3 Sample fabrication and preparation

The fabrication of a sample consists of two steps. At first a 200 nm thick Nb film is deposited

on an intrinsic silicon substrate. The resonator is then structured by e-beam lithography and

CF4-reactive ion etching. The minimal structure size is of the order of 1 µm, and limited by

the aspect ratio of the etching.

suspended mask

substrate

aluminum
oxide

Figure 3-3: (left) Principle sketch of the shadow evaporation technique explained in the main text.

(right) SEM image of a single Josephson junction fabricated in such way. For a better visibility the

lower layer is coloured in blue, the upper in red.

In a second step the qubit structures are formed by the shadow evaporation technique [19],

see Fig. 3-3. Evaporation of two layers of Al with thicknesses of 50 nm and 80 nm, re-

spectively, at two different angles through a suspended mask formed by e-beam lithography

can create an overlap between the two layers. A Josephson tunnel junction is formed in this

overlap region, when an oxidation between the two evaporation steps is introduced. The pa-

rameters of the junction mainly depend on the oxidation time and pressure. The openings in

the mask for a flux qubit usually have a linewidth of 150 nm and the overlap region for the

junctions a dimension of about 500 nm. A final lift-off finishes the qubit fabrication.
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3.3. SAMPLE FABRICATION AND PREPARATION

The experimentally investigated samples considered below are all designed as three junction

flux qubits. The sizes range from 120×550 nm2 to 180×800 nm2 for the two large junctions

in one loop. The third junction is about 20 % to 35 % smaller.

SMA-connector

connector pin

resonator-qubit chip

conductive silver

copper box

qubit position

mixing chamber plate

copper sample holders

bias coil position

mixing chamber

sample

superconducting shield

mu-metal shields

Figure 3-4: (left) Picture of opened complete sample. The resonator-qubit chip is placed inside a

copper box and wired to SMA-connectors, thus forming the total sample. (right) It is mounted at the

bottom of the mk-plate of a dilution refrigerator. In addition bias coils and different shields are used.

The sample is placed inside of a copper box, see left image in Fig. 3-4. The box is designed

such, that directly below and above the chip no copper is placed along the central resonator

line. This design reduces losses of the resonator.

SMA-connectors are mounted on each side of the copper box, their pins lying directly on

the chip’s microwave bond pads. The connection between the both as well as between the

mass plates of the sample and the copper box is achieved with connective silver for good

microwave contact. The in that way finished sample is pressed between two fingers mounted

at the base of a dilution refrigerator as shown in the right of Fig. 3-4. Those are made

from copper for good thermal contact and also carry two coils, centered above and below

the qubit’s position for dc flux bias. Finally, SMA-cables2 for in- and output are connected

before one superconducting and two mu-metal shields close the experimental setup.

2The cables, SMA-connectors, and the final 20 dB attenuator are not shown in the figure.
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4 Coupling a flux qubit to a resonator

In this chapter the basic coupling mechanism of the qubit-resonator system will be discussed.

For doing that a weak probing signal is applied close to the fundamental mode frequency.

The coupling then enables to experimentally determine the properties of the complete system

from the transmitted signal, which will be discussed comparatively for two samples with

different parameters. Finally, the direct qubit-resonator resonance will be closer investigated

and a theoretical description developed.

4.1 Magnetic coupling

The dimensions of a single flux qubit are small compared to the wavelength of its correspond-

ing eigenfrequencies. Thus, it can be physically placed at any position inside the resonator.

As discussed in chapter 2.2, the flux qubit is tunable with magnetic fields. To achieve cou-

pling between the two systems, the qubit should therefore be placed at a position where the

magnetic field of the resonator has a maximum - at a current antinode. For a λ/2 resonator

and its fundamental mode1 it lays in the middle of the resonator (see (2.45)). The coupling

energy between the two systems in the qubit’s flux basis is then given by

Hc = MIqIr = h̄g
(

a+a†
)

σz. (4.1)

Here, the coupling constant to the fundamental mode is given by g = MI0Ip, where M is

the mutual inductance between the resonator and the qubit, I0 the zero point current in the

resonator, and Ip the persistent current of the qubit. The coupling for all odd harmonics is

similar found. The origin of the above equation can be understood, by considering MIr as

changing flux that is added to (2.5). That gives an extra term in (2.12), which corresponds to

(4.1). Also, the current in the resonator is given by (2.45), and on a scale of the qubit around
1And for all the odd harmonics.
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CHAPTER 4. COUPLING A FLUX QUBIT TO A RESONATOR

the center of the resonator the sinusoidal term for the space dependence can safely be put to

one for all odd modes. The back action on the resonator can be understood by interpreting

the qubit as additional magnetic moment given by the mean current in the loop. In the same

way as an iron core in a coil, the qubit can change the effective inductance of the resonator

and, therewith, its resonance frequency.

The mutual inductance is only given by the geometry of the fabricated sample. One can esti-

mate the value by assuming a current I inside the infinite one dimensional center conductor

and using the Biot-Savart law. The magnetic field at the qubit’s position is perpendicular to

the qubit area and has a value of

B =
µ0I
2πy

, (4.2)

where y is the distance from the center of the conductor. Integration of this field over the

area of the qubit gives the flux and the mutual inductance follows as

M =
Φ

I
=

µ0lq
2π

ln
(

hq +dq

dq

)
. (4.3)

Here, lq is the length, hq the height, and dq the distance from the center conductor of the qubit.

Assuming reasonable values, as a qubit size of 5x5 µm2 and a distance from the center of

2 µm2, the value of the mutual inductance is about 0.3 pH. It may be enlarged by increasing

the magnetic flux created by the resonator inside of the qubit loop. Thus, either the size of

the qubit should be increased or the magnetic field in the qubit loop enhanced. Latter may be

achieved by tapering the resonator, or in other words decreasing the slid between the center

conductor and the ground planes of the resonator.

a) b)

Figure 4-1: Central part of the qubit-resonator-structures calculated with FASTHENRY. a) Straight

geometry. The central conductor has a width of 50 µm width a gap of 30 µm to the ground planes. b)

Tapered geometry. The central line of the resonator is tapered to a width of 1 µm while the size of the

gap to the ground plane is decreased to 9 µ . In both shown geometries a qubit loop of size 5×5 µm2

is placed in the remaining slid.

The assumption above can be tested by the use of simulation programs such as FASTHENRY

[102]. To do so the geometries shown in Fig. 4-1 have been simulated and the resulting
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4.1. MAGNETIC COUPLING

inductance values are listed in table 4.1. In this example the tapering of the resonator yields

geometry qubit size (µm2) L (nH) M (pH)

straight 5×2.5 10.5 0.2

straight 5×5 10.5 0.3

tapered 5×2.5 13.7 0.8

tapered 5×5 13.7 1.3

Table 4.1: Results for the inductance of the resonator L and the mutual inductance M of the FAS-

THENRY simulations for the geometries shown in Fig. 4-1 and different qubit sizes.

an increase of the mutual inductance by a factor of four. Interestingly the value for the not

tapered resonator and a qubit size of 5× 5 µm2 corresponds well to the analytic estimate.

This fact indicates that the field created by the current in the ground plane can be neglected

if its distance to the center conductor and the qubit is large compared to the qubit size.

By analyzing (4.1) a direct exchange of energy between the subsystems can occur. This

interaction can be identified even more obvious by a transformation of (4.1) into the qubit’s

energy eigenstates

Hc = g
(

a+a†
)(

ε

ωq
σz +

∆

ωq
σx

)
. (4.4)

Here, terms of direct energy exchange a†σ− and aσ+ are included2, in the sense that a photon

in the resonator is destroyed while the qubit state is changed from ground to the excited state

and vice versa. Interestingly, there are two coupling terms. The one proportional to σx is

similar to the dipole coupling between an atom and a light field [91]. On the other hand,

the diagonal coupling term proportional to σz does only occur for tunable systems. In other

words, at the degeneracy point the potential is symmetric and thus the states have a well-

defined parity. In that case, the selection rules are the same as for the dipole moment of an

atom [103]. Away from the degeneracy point the symmetry of the potential is broken. This

fact can lead to the coexistence of single and multi-photon transitions [104] and, as shown

later, to transitions that in first order are not observable in quantum optics with atoms.

2Note that σx = σ++σ−.
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CHAPTER 4. COUPLING A FLUX QUBIT TO A RESONATOR

4.2 Continuous monitoring of a flux qubit with a CPW res-

onator

Qubit1 Qubit0

Figure 4-2: SEM-image of the two samples with different qubit sizes. Each qubit is placed close to

the center of the resonator inside of the gap between the tapered center line of the resonator (bottom)

and its ground plane (top).

In a first experiment two samples are considered. They are named as Qubit0 and Qubit1; and

each has a single qubit placed inside of a resonator, tapered as described above. In Fig.4-2

SEM images displaying the center part of the resonator with the qubits are shown. They

have nominal sizes of 5× 2.5 µm2 for Qubit1 and 5× 5 µm2 for the Qubit0. By applying

a weak probe signal and measuring the transmission through the resonator, the samples can

be characterized.

First, the resonator properties are found by sweeping the probing signal frequency ωp and

measuring the transmission coefficient |tr|, while the qubits are detuned far away from there

degeneracy point
∣∣ε0,1

∣∣� 0. From fitting the Lorentzian line shapes, as shown in Fig. 4-3, the

resonant frequencies ω0/2π and quality factors Q are accurately found to be 2.585 GHz and

2.2×104 for Qubit1 and 2.590 GHz and 12×104 for Qubit0, respectively. Both resonators

have a similar design. They are under coupled, meaning that the quality factor is mainly

determined by internal losses. This property may explain the quite different numbers because

in that case several aspects, like sample mounting, contacting, and so on, can contribute to

additional losses.

Next, the probing frequency is fixed at the resonator center frequency ωp = ω0. Then, by

sweeping the magnetic field applied by the external coil the phase of the transmitted signal
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Figure 4-3: Measured normalized transmission of a weak probing signal through the resonators (black

crosses). The probing frequency is varied around the resonant frequency of the two resonators and

fitted with (A.11) for each of the samples (blue solid lines). For better comparison the x-axes of the

two plots is scaled similar.

is changed in dependence of the qubits’ properties. The phase change corresponds in both

cases to a dispersive shift of the resonant frequency of the resonator, when the detuning

between the resonator and qubit energy splitting becomes smaller. As displayed in Fig. 4-4,

the qubit on sample Qubit1 shifts the resonant frequency only to smaller frequencies, while

the other one has two symmetric phase jumps. The quite different shapes occur because of

the different minimal energy splitting.

To explain these different responses the total systems Hamiltonian

H = h̄
ωq

2
σz + h̄ω0a†a+g

(
a+a†

)(
ε

ωq
σz +

∆

ωq
σx

)
+ h̄Ωp

(
a†e−iωpt +aeiωpt

)
(4.5)

has to be considered. Here, the terms account for the energy of the qubit (2.13), the resonator

(2.42), the coupling between both (4.4), and the probing signal (2.67). After an unitary

transformation to a frame rotating with the probing frequency using Û2 = eiωp(σz
2 +a†a) (for

details see appendix C.1), Hamiltonian (4.5) reads

H = h̄
δqp

2
σz + h̄δrpa†a+ h̄g∆

(
aσ++a†

σ−
)
+ h̄Ωp

(
a† +a

)
. (4.6)

Above the qubit lowering and raising operators σ± are used. Terms rotating with frequencies

ωp and 2ωp have been neglected because they would average out fast. This assumption
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Figure 4-4: When sweeping the magnetic field with the external coil while the signal frequency

is fixed at the resonant frequency, a characteristic phase shift of the transmitted signal reveals the

coupling to the qubits. The different shape of the curves is due to the different minimal energy

splitting, as explained in the text.

is called the rotating wave approximation (RWA). The variables δqp = ωq−ωp and δrp =

ω0−ωp denote the detuning between the probing frequency and the qubit as well as between

probing signal and resonator, respectively. Also, the coupling constant is rescaled with the

ratio between the qubit gap and its total energy g∆ = g ∆

h̄ωq
and has its maximum at the

degeneracy point. Note, the first three terms of (4.6) correspond to the Jaynes-Cummings

Hamiltonian and describe the basic energy exchange between a photon field and an atom.

A second transformation Û3 = e
g∆
δqr (aσ+−a†σ−) [58], which is expanded to the second order in

g∆ (see App. C.2) brings the Hamiltonian into the form

H ≈ h̄
(

ω0 +
g∆

2

δqr
σz

)
a†a+

h̄
2

(
ωq +

g∆
2

δqr

)
σz. (4.7)

It illustrates the origin of the measurement results in the dispersive regime, when the detuning

between resonator and qubit δqr = ωq −ω0 is large. The first term gives the resonance

frequency depending on the qubit state. If the qubit stays in the ground state (〈σz〉=−1), the

dispersive shift of the resonator frequency depends on detuning and rescaling of the coupling.

Since only a shift to negative frequencies is observed for Qubit0, the qubit gap frequency has

to be above the one of the resonator ∆ > ω0. In other words, the qubit level splitting lays for
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4.3. TWO-TONE SPECTROSCOPY

all values of the energy bias ε above the one of the resonator. The strongest shift corresponds

to minimal detuning, which is achieved at the degeneracy point where h̄ωq = ∆. On the other

side, the phase jumps in the response from Qubit1 correspond to direct resonances between

the resonator and the qubit ωq = ω0 at bias values for which the detuning changes it sign.

Since δqr = 0 at this points the estimation for Hamiltonian (4.7) breaks down. Nevertheless,

a measurement procedure for reconstructing the qubit parameters can be found in it.

4.3 Two-tone spectroscopy

As explained above, the resonance frequency of the resonator in the dispersive regime de-

pends on the qubit state. A continuous signal applied at the qubit frequency produces a su-

perposition between ground and excited state. This result can be concluded from the Hamil-

tonian of a qubit driven by a classical field. In the flux basis and assuming the qubit coupled

to the magnetic component of the ac-drive, it reads3

Hd =
∆

2
σx +

ε

2
σz + h̄Ωcl cosωdt σz. (4.8)

Here, the amplitude of the classical drive Ωcl = 2g
√

N includes the coupling of the signal to

the qubit and the mean number of photons in the resonator. Note, the Hamiltonian above is

also used as start point for the analysis of Landau-Zener-Stückelberg interferometry [105]. If

the driving signal is applied directly to the resonator the amplitude reaching the qubit is small

because the resonator acts as bandpass filter. Thus, high driving amplitudes are needed.

The above Hamiltonian reads in the eigenbasis of the qubit and in a frame rotating with

frequency ωd around σz

Hd = h̄
δqd

2
σz + h̄

Ω′cl
2

σx, (4.9)

where Ω′cl = Ωcl
∆

h̄ωq
, and again terms rotating with frequencies larger or equal ωd have been

neglected. Also, δqd = ωq−ωd describes the detuning between driving and qubit frequency.

A physical interpretation of Ωcl may easily be found in the resonance case δqd = 0. Then

3The Hamiltonian can be found from (4.5) in the flux basis H = εσz/2 + ∆σx/2 + h̄gσz(a† + a) +

h̄Ωd
(
a†e−iωdt +aeiωdt

)
, where the eigenenergy of the resonator is neglected. By transforming to a rotating

frame with Û4 = eiωdta†a the time dependency is shifted to the coupling term. A coherent field can be assumed

in the resonator α = 〈a〉 =
√

N with N the mean number of photons in the resonator. Finally, the constant

energy term ∝ Ωd can be neglected.
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by solving the Schrödinger equation, an oscillation of the population between ground and

excited state with frequency Ωcl/2π is found. Such oscillations are called Rabi oscillations

and the corresponding frequency at the interaction point is named the on-resonance Rabi

frequency ΩR0 = Ω′cl.

The expectation value for the population of the qubit’s state is

〈σz〉= ρee−ρgg.

Its value can be calculated by solving the stationary master equation

ρ̇q =
i
h̄

[
Hd,ρq

]
+ L̂q(ρq) (4.10)

for the given Hamiltonian and L̂q as in (2.25). The master equation gives four equations for

the components of the density matrix, which can be written as
ρ̇ee

ρ̇gg

ρ̇eg

ρ̇ge

=


−Γr 0 iΩ′cl/2 −iΩ′cl/2

Γr 0 −iΩ′cl/2 iΩ′cl/2

iΩ′cl/2 −iΩ′cl/2 −Γϕ − iδqd 0

−iΩ′cl/2 iΩ′cl/2 0 −Γϕ + iδqd




ρee

ρgg

ρeg

ρge

 (4.11)

In addition, the trace of the density matrix is one, ρee + ρgg = 1. By introducing the new

variables ρ0 = ρee− ρgg, ρ+ = ρeg + ρge, and ρ− = ρeg− ρge [106] only three equations

remain. Note the above introduced values are the elements of Bloch-vector and correspond

to the expectation values of the Pauli-operators σz, σx, and σy, respectively. Their time

evolution is given by the Bloch-equations [107]

ρ̇0 =−Γr (1+ρ0)+ iΩ′clρ−

ρ̇+ =−Γϕρ+− iδqdρ−

ρ̇− = iΩ′clρ0− iδqdρ+−Γϕρ− (4.12)

and the steady state solution (ρ̇ = 0) gives

ρ0 = 〈σz〉=−
Γr

Ω′cl
2

Γ′ϕ
+Γr

(4.13)

ρ+ =−
iΩ′clΓr

ΓrΓ′ϕ +Ω′cl
2

ρ− =−
δqd

Γϕ

Ω′clΓr

ΓrΓ′ϕ +Ω′cl
2 ,
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4.3. TWO-TONE SPECTROSCOPY

where Γ′ϕ =
δ 2

qd+Γ2
ϕ

Γϕ
. Due to relaxation and dephasing the Rabi oscillation and the oscillation

of coherences get damped, so that a steady state results. By interpreting (4.13), the dispersive

shift can be reduced by driving the qubit in resonance δqd = 0. A corresponding measurement

result is shown for both discussed samples in Fig. 4-5.
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Figure 4-5: Qubit spectroscopy. Phase of the transmitted signal in dependence of the qubit bias and

the driving frequency. The color scale gives the dispersive shift, which is always negative for the

Qubit0 sample and produces a phase jump in the measurement of qubit1 at a bias value, where the

detuning between probing and qubit frequency changes its sign. When the driving signal fits the qubit

level splitting, the dispersive shift is reduced, and gives the parabolic shaped curves in both pictures.

The dashed lines correspond to fits with the equation for the qubit energy (2.14).

There, the transmission phase is recorded at different driving frequencies and qubit biases.

The points at which the dispersive shift is reduced correspond to resonances between the

qubit and driving signal. A fit of their dependence on the energy bias with (2.14) gives the

energy gap frequencies ∆1/h = 1.79 GHz and ∆0/h = 2.97 GHz as well as the persistent

currents Ip1 = 180 nA and Ip0 = 160 nA, respectively.

In addition, the expectation value for the population of the driven qubit depends on the

relaxation rates. Following (4.13) the ratio between driving strength and relaxation rate

Γr defines the height of the spectroscopy line, while the ratio between the driving and the

decoherence rate Γϕ gives its width. In addition, the bias dependence of the effective driving

Ω′cl gives the possibility to identify all the parameters, when the spectroscopy signal for
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CHAPTER 4. COUPLING A FLUX QUBIT TO A RESONATOR

different frequencies is fitted. This parameter reconstruction is demonstrated in Fig. 4-6.
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Figure 4-6: Horizontal cuts of Fig.4-5 for different driving frequencies. The phase response reveals

the dispersive shift. Close to the resonance conditions where δqd ≈ 0 the dispersive shift is cancelled

giving the spectroscopy lines in Fig.4-5. The blue lines are calculated by the frequency shift explained

in (4.7) and with an expectation value of σz given by the first equation in (4.13). The corresponding

relaxation rates are given in the main text.

There, the dispersive responses of qubit0 and qubit1 are shown as transmitted phase signals.

Each of the traces is measured at different driving frequencies. The solid lines correspond

to calculation results of the dispersive shift considering (4.7) and (4.13). In addition, it is

necessary to add a bias dependence for the pure dephasing. For a good correspondence, a

proportionality of the effective pure dephasing to the first derivative of the energy γϕ ∝ ε/ωq

is introduced (see 2.4). This requirement indicates flux noise as main source of decoherence

[85].

Note, (4.7) is valid only away from the resonance point, that is δqr� gε , which explains the

discrepancy between measurement result and calculation where the phase changes its sign

at the Qubit1 sample. Also, the dispersive shift without additional driving of the qubit gives

the coupling constant g. Therefore, all of the parameters of the two qubits are reconstructed

by measuring the two-tone spectroscopy.

In summary, all of them are listed in table 4.2. The reconstructed mutual inductance agrees

well with the values found by numerical analysis of the geometry, compare to table 4.1. In
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Qubit1 Qubit0

gap frequency ∆/h (GHz) 1.79 2.97

persistent current Ip (nA) 180 160

coupling constant g/2π (MHz) 3 4

mutual inductance M (pH) 0.8 1.2

relaxation rate Γr/2π (MHz) 0.75 0.75

pure dephasing γϕ/2π (MHz) 20 30

Table 4.2: List of qubit paramters for samples qubit1 and qubit0

addition, the driving amplitudes Ωcl/2π used for the measurements reconstruct to 4 MHz for

Qubit1 and 3 MHz for Qubit0, respectively.

4.4 Transmission of the qubit-resonator system

The system parameters as found above suggest that the system is in an intermediate coupling

regime. That means, the coupling constant is well above the resonator decay rate g� κ but

almost of the same order as the relaxation and decoherence rates of the qubit g≈ Γr,Γϕ . The

latter is in contrast to the well analyzed strong coupling regime, where g� κ,Γ [59, 60].

With the intermediate coupling the resonator still is a good detector for the qubit states;

but on the other hand, when the states of the resonator are mixed with the qubit levels, the

decoherence of the qubit will influence the resonator’s linewidth. This impact is observable

by measuring at the resonance point between the two. Because for Qubit0 the gap of the qubit

is above the fundamental resonator mode, in the following the Qubit1 sample is considered.

In Fig. 4-7 (a) the measurement result of the resonator’s transmission amplitude is plotted

around its resonance frequency for different qubit energy bias values. The white, dashed

vertical lines mark the resonance point where the detuning δqr vanishes. In addition, the solid

white lines are the first two calculated eigenfrequencies of Hamiltonian (4.5) with neglected

probing signal (Ωp = 0) and diagonal coupling (see below). The latter is neglected because

the diagonal coupling proportional to σz is small compared to the distance of the levels

that it couples. Therefore, its influence to the level structure is negligible for small photon

numbers. Then, the energy conserving qubit-resonator dynamic only involves a subspace of
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Figure 4-7: Transmission through the qubit-resonator system at different probing frequencies by

sweeping the energy bias. (a) Experimental results. The picture is measured with low probing powers

Ωp, ensuring a mean photon number in the resonator less than one. Each vertical traces gives the

Lorentzian line shape of the resonator. The solid white lines correspond to the first eigenfrequen-

cies (4.14), while the dashed lines show the points of resonance between qubit and resonator. (b)

Calculated transmission amplitude using (4.29)

levels |g,N〉 and |e,N−1〉. The eigenenergies of this subsystem can be presented as

E±,N
h̄

= Nω0 +
δqr

2
± 1

2

√
δ 2

qr +4
(

g∆

h̄ωq

)2

N. (4.14)

These energy levels are often called dressed qubit states. They give a ladder of stairs, where

the levels on one step - the two levels for plus and minus in the above equation - have a

constant total amount of excitations N. We can identify the square root in the above equation

as generalized Rabi frequency, which involves both, the detuning between resonator and

qubit as well as the excitation dependent splitting

ΩR =

√
δ 2

qr +

(
2g∆

h̄ωq

√
N
)2

. (4.15)

The term in the brackets proportional4 to
√

N is again the on-resonance Rabi frequency.

For the measurement in Fig. 4-7 (a) the resonance frequency follows the lines for a total

excitation N = 1. Therefore, when applying a signal at an energy bias close to the resonance
4This proportionality means that the splitting is proportional to the signal amplitude in the resonator.
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4.4. TRANSMISSION OF THE QUBIT-RESONATOR SYSTEM

the dressed states get probed, which explains the measured frequency shift. A quantitative

analysis of Fig. 4-7 (a) can again be carried out by solving the stationary Master equation.

When restricting to a sub-space involving only the zero and one photon cavity states as

well as the qubit states, already 16 equations for the time dependence of the density matrix

elements need to be solved. Thus, it is worthwhile to rewrite the Master equation to the

expectation values of the corresponding operators. In general, the time dependency of the

expectation value of an operator A in a system with Hamiltonian H and dissipative Lindblad

term L is

d〈A〉
dt

=
d
dt

Tr (Aρ) = Tr
(

A
∂ρ

∂ t

)
= Tr

(
−A

i
h̄
[H,ρ]+AL̂(ρ)

)
=− i

h̄
Tr (AHρ−AρH)+Tr

(
AL̂(ρ)

)
=− i

h̄
〈[A,H]〉+Tr

(
AL̂(ρ)

)
. (4.16)

For the last line the invariance of the trace under cyclic permutations is used. To describe the

experimental data of Fig. 4-7 the Hamiltonian of the system in RWA (4.6) and the Lindblad

terms for the resonator (2.63) and qubit (2.25) need to be considered. Then the so called

Maxwell-Bloch-equations [108, 109] for the expectation values of the operators a, σz, σ−,

and N = a†a are found5

d〈a〉
dt

=− iδrp〈a〉− ig∆〈σ−〉− iΩp−
κ

2
〈a〉 (4.17)

d〈σ−〉
dt

=− iδqp〈σ−〉+ ig∆〈aσz〉−Γϕ〈σ−〉 (4.18)

d〈σz〉
dt

=−2ig∆

(
〈aσ+〉−〈a†

σ−〉
)
−Γr (〈σz〉+1) (4.19)

d〈a†a〉
dt

=− ig∆

(
〈a†

σ−〉−〈aσ+〉
)
− iΩp

(
〈a†〉−〈a〉

)
−κ〈a†a〉 (4.20)

d〈aσz〉
dt

=− iδrp〈aσz〉− ig∆

(
2〈aaσ+〉−〈σ−〉−2〈a†aσ−〉

)
− iΩp〈σz〉

− κ

2
〈aσz〉−Γr (〈aσz〉+ 〈a〉) . (4.21)

Here, again cyclic permutations of the operators under the trace as well as commutation

relations like
[
a,a†a

]
= a are used. Only the first four of infinite coupled equations are

5Compared to the Bloch equations (4.12), here the expectation values of the field and correlations to the

two-level system are included.
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CHAPTER 4. COUPLING A FLUX QUBIT TO A RESONATOR

shown above. Higher order correlations between the operators enter when trying to describe

the full dynamics. They can be avoided by certain assumptions as shown below.

At first, the properties of the bare resonator may be obtained, when the coupling between

qubit and resonator is neglected. Than from the steady state solution6 of (4.18), (4.17), and

(4.20) follows 〈σ−〉= 0,

〈a〉0 =−
2Ωp

2δrp− iκ
, (4.22)

and the mean photon number in the resonator

〈n〉0 =−
Ωp

κ
2Im(〈a〉0) =

4Ω2
p

4δ 2
rp +κ2 . (4.23)

A generalization of the above equations allows relating the driving or probing amplitudes

at any harmonic with the corresponding mean number of photons. In resonance δrp = 0, it

is given by the simple relation of probing (or driving) amplitude and loss from the cavity

〈n〉 = 4Ω2
p/κ2. This relation can be interpreted as the power exciting the cavity divided by

the loss from it [60]. Nevertheless, it is important to note that the effective driving or probing

not only depends on the input voltage but also on the coupling capacitance.(see (2.66)).

When the systems are coupled and in the case of weak probing amplitudes Ωp, the corre-

lations containing three operators can be neglected in (4.21). This assumption is valid if

the mean photon number 〈a†a〉 is small and corresponds in the language of density matrix

elements to a restriction to the lowest energy states, when the resonator is populated mostly

in the ground state 〈0|ρ|0〉 � 〈N|ρ|N〉 for all N > 0. Then the steady state expressions of

(4.17), (4.18), and (4.21) can be used to find an expression for the expectation value of the

field operator

〈a〉=
−Ωp

δ̃rpδ̃qp−g2
∆

(
δ̃qp−

ig2
∆
[〈σz〉+1]

iδ̃rp +Γr

)
. (4.24)

Here, the redefined detunings include the decoherence rates δ̃rp = δrp− iκ/2 and δ̃qp = δqp−
iΓϕ . The above equation can be rearranged as

〈a〉=
−Ωp

δ̃rp +
g2

∆

δ̃qp
Sq

, (4.25)

6That means zero left hand sides.
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where

Sq =
δ̃qp

(
iδ̃rp〈σz〉−Γr

)
δ̃qp

(
iδ̃r +Γr

)
− ig2

∆
[1+ 〈σz〉]

(4.26)

depends on the population of the qubit 〈σz〉. Again, if the probing power is weak 〈σz〉 will

be changed only slightly. Indeed, it only acquires changes of the second order in the probing

amplitude σz ≈ 〈σz〉0+O(Ω2
p). Here, 〈σz〉0 =−1 is the population of the undisturbed qubit,

that can be recovered from the steady state solution of (4.19), when the coupling between

resonator and qubit is neglected g = 0. Therefore, in the first order of the probing amplitude

(4.26) yields S =−1.

Interestingly, similar results can be found for high probing amplitudes, when assuming the

expectation values of products of qubit and resonator operators to factorize 〈aσz〉= 〈a〉〈σz〉.
Then, the stationary solution of (4.17) to (4.19) can be found. With excluding σ− the re-

maining equations read

〈a〉=
−Ωp

δ̃rp +
g2

∆

δ̃qp
〈σz〉

, (4.27)

〈σz〉=−
Γr

4g2
∆

Γ′ϕ
〈a〉〈a†〉+Γr

. (4.28)

Here, Γ′ϕ is defined in the same way as in 4.3.

The second of the above equations coincides with the result for the population of a driven

qubit (4.13), when the driving amplitude Ω′cl is replaced with 2g∆

√
〈a〉〈a†〉. Although, the

limit of small probing amplitudes is beyond the semi-classical approach, if the field expec-

tation value is assumed small the qubit will stay in the ground state and the approximation

〈σz〉=−1 can be found. Note that by driving the maximum achievable value for this expec-

tation value is zero.

From the first equation (4.27) together with (2.70) the transmission of the qubit resonator

system follows as

tr =
i
2

κ

δ̃rp +
g2

∆

δ̃qp
〈σz〉

. (4.29)

Interestingly, the denominator can be interpreted as the total detuning of the probing sig-

nal from the effective resonator frequency. Its first term gives the probe-resonator detuning
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CHAPTER 4. COUPLING A FLUX QUBIT TO A RESONATOR

added to the photon decay rate of the cavity (κ/2), while, in comparison to (4.7), the second

term is a generalized dispersive shift, that includes the decoherence of the qubit. If the cou-

pling between qubit and resonator vanishes, the Lorentzian shaped transmission amplitude

of the resonator is recovered. That can be validated by taking the absolute value of (4.29)

and comparing it to the normalized classical result (A.11). The same also applies for a large

detuning between qubit and probing signal.

Finally, the equation for the transmission can be used to explain the experimental data. As

seen in Fig. 4-7 the correspondence between the experimental (a) and the theoretical (b) plot

is good. This agreement justifies the assumptions above of factorization of the expectation

values and the small probing power keeping the qubit in the ground state. In addition, with

the theory in hand, the influence of the relation of the coupling constant to the decoherence

rate can be analyzed in the resonance point where ωq = ω0.
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Figure 4-8: Calculated transmission amplitude using (4.29) at resonance ωq = ω0 for different prob-

ing frequencies. The different curves are calculated using the parameters of qubit1 except the pure

dephasing rate γϕ which is increased according to the legend. The reference curve displays the undis-

turbed resonator transmission g = 0. When the total decoherence rate is smaller than the coupling,

two peaks are visible.

As seen in Fig. 4-8, in resonance two peaks are visible for small decoherence rates. For

the experimental observation of these so called vacuum Rabi split peaks a coupling constant

above the decoherence rate of the qubit (and of the cavity) is necessary. With increasing de-

coherence the Rabi peaks vanish and a single Lorentzain peak with reduced quality appears
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4.4. TRANSMISSION OF THE QUBIT-RESONATOR SYSTEM

at the undisturbed resonator frequency. Although the dispersive shift of the resonator fre-

quency gives a clear indication of the avoided crossing between resonator and qubit energy

levels, a high decoherence of the qubit destroys the coherent coupling of the dressed states in

this intermediate coupling regime. Another insight arises if the decoherence is interpreted as

the width of the energy levels. In that view, a separation of the energy levels is only possible

if their distance, given by the coupling constant g∆, is larger than the width.
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5 Dressed qubit-resonator system and
lasing

In extension to the already discussed experiments, in this chapter two signals are applied to

the qubit-resonator system. Again close to the fundamental mode frequency a small probing

signal is applied and its transmission is recorded. In addition, a second strong driving signal

is used at a harmonic frequency of the resonator. As discussed further it will have an effect

on both, the level structure and the dissipative rates of the combined qubit-resonator system.

5.1 Strong AC-Zeeman shift and three-tone spectroscopy

As a first step, the level structure of the qubit coupled to a strong field in the third harmonic

should be analyzed. Therefore, the probing signal and the fundamental mode are neglected.

Then the dynamic between the harmonic and the qubit is described by a Hamiltonian of the

form (4.5). Note, although in the experiment the third harmonic is used, the theory applies to

a strong driving at any harmonic that couples to the qubit. Thus, below ah and a†
h are used for

the annihilation and creation operators of the driven resonator harmonic. In the same way as

in 4.2, when the detuning between the harmonic frequency ωh and the qubit δqh = ωq−ωh

is large , the Hamiltonian can be transformed into the same form as (4.7).

The discussion in 4.2 concentrated on the qubit’s influence on the resonator frequency. To

estimate the influence of the resonator mode on the qubit one can present it for the harmonic

as

Hh,q ≈ h̄ωha†
hah +

h̄
2

(
ωq

2
+

g2
h,∆

δqh

[
1
2
+a†

hah

])
σz. (5.1)

The term in the brackets can be interpreted as an effective qubit level splitting valid away
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CHAPTER 5. DRESSED QUBIT-RESONATOR SYSTEM AND LASING

from the resonance. The term dependent on the mean photon number N = 〈a†
hah〉 is called

the AC Zeeman shift1. Since high photon numbers can be achieved in the cavity, the splitting

between the qubit states may be strongly changed compared to the undisturbed qubit. Fur-

thermore, the direction of the shift of the levels depends on the sign of the detuning. In that

way it should be possible to reduce the minimal qubit level splitting below the gap frequency.

An experimental test of this prediction is carried out on qubit0 sample. To prove the assump-

tion above, a small probing signal is again applied at the resonator’s fundamental mode.

Then its dispersive shift is recorded for different energy bias and applied driving powers in

the third harmonic. The results are shown in Fig. 5-1.
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Figure 5-1: Amplitude (left) and phase (right) of the transmitted probing signal by sweeping the

energy bias for different driving powers. As visible from the plots, the qubit dip is first increased with

the driving. From a certain power two dips appear, and by a further increase they show phase jumps

that indicate avoided level crossings between the effective qubit and fundamental mode levels.

Indeed, when the driving power is increased the qubit dip is increased and eventually splits

into two, showing characteristic phase jumps. Both indicate that the effective qubit splitting

is decreased. That is due to the increase of the dispersive shift of the fundamental mode

because the detuning between qubit and probed resonator is decreased (compare discussion

of the dispersive shift in 4.2). When the effective minimal splitting of the qubit becomes
1The same shift is observable for charge qubits by MW-driving, but since the coupling there is mediated by

the electric field in this case it would be named AC-Stark shift.
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5.1. STRONG AC-ZEEMAN SHIFT AND THREE-TONE SPECTROSCOPY

smaller than the one of the resonator an avoided level crossing produces two symmetric

phase jumps. In that sense, the phase response is changed from the one of qubit0 to the one

of qubit1.

As discussed in 4.3, with a spectroscopy the qubit level splitting can be directly determined.

For investigation of the Zeeman-shifted qubit levels, three signals have to be applied to the

resonator. The first strong driving signal is applied at the third harmonic, introducing the

change in the qubit spectrum. This spectrum is then probed by a second strong driving

signal with changeable frequency, so that the dispersive shift of the fundamental mode will

be canceled if the frequencies match. Finally, the total dispersive shift of the fundamental

mode is recorded by measuring the transmission of a weak probe signal at its frequency. In

that way the measurement data in Fig 5-2 is recorded.
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Figure 5-2: Spectroscopy in the transmission amplitude measured for the AC-Zeeman-shifted qubit

levels for different driving powers. The spectra are measured in the same way as in 4.3. The picture

on the left shows a reference plot without driving in the third harmonic. Then from left to right the

driving power in the third harmonic is increased in two dBm steps. This results in a reduction of the

qubit gap even below the fundamental mode frequency. The power values are given for the input of

the sample.

In the analyzed driving power range the effective level splitting follows almost perfectly

to the prediction by the dispersive shift. In the experiment it is possible to reduce the gap

frequency ∆ from about 3 GHz below the fundamental mode at about 2.5 GHz. As seen
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CHAPTER 5. DRESSED QUBIT-RESONATOR SYSTEM AND LASING

before, the driving will also influence the population of the qubit states (compare (4.13)).

Still, the visibility of the spectroscopic line indicates that the expectation value σz of the

qubit is not yet saturated in the analyzed bias range. In other words, the population difference

between ground and excited level remains, allowing a bias dependent dispersive shift for the

detection of the qubit’s spectrum.

An interesting question is how far the minimal qubit frequency can be shifted. One can

even imagine putting the higher energetic level below the ground states position. For an

experimental test the transmission amplitude and phase of the probe signal is plotted versus

qubit bias and driving amplitude in Fig. 5-3.
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Figure 5-3: Transmission amplitude (left) and phase (right) measured at the fundamental mode in

dependence of the qubit energy bias and the driving power at the third harmonic frequency. For the

latter the values at the input of the sample are given.

For low power the dispersive qubit shift of the resonator produces a single dip around the

degeneracy point. With increasing power the dip becomes larger, since the detuning between

qubit and fundamental mode is reduced. When the gap of the qubit becomes smaller than

the fundamental mode frequency the dip is split into two. These correspond to the resonant

interaction regions. These move for further increased power to higher bias values. After

a region where the transmission amplitude is constant, for very strong driving again lines

appear. Surprisingly, they show transmission amplitudes bigger than one. This amplification

process has to be connected to the σx coupling term in (4.4), since the diagonal coupling
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5.2. THE DRESSED QUBIT

vanishes. Also it indicates an effective shift of the minimal qubit splitting to negative values.

In this inversed qubit a relaxation ends in the upper state and by the interaction with the

resonator energy may be added to the transmitted signal.

5.2 The dressed qubit

In the chapter above the discussion is restricted to the dispersive regime, where a description

of the measured effects is rather simple. When considering the qubit spectrum close to the

resonance point between qubit and third harmonic mode, it is worthwhile to transform the

Hamiltonian of the third harmonic coupled to the qubit

Hh,q = h̄ωh

[
a†

hah +
1
2

]
+

h̄ωq

2
σz +gh

(
∆

ωq
σx +

ε

ωq
σz

)[
a†

h +ah

]
(5.2)

to the dressed-state basis. This transformation is done by introducing the basis vectors [110,

111] similar as for the qubit energy eigenstates (2.15)

|1N〉= cosθ |eN−1〉+ sinθ |gN〉

|2N〉= sinθ |eN−1〉− cosθ |gN〉.
(5.3)

Here, |gN〉 and |eN〉 are the basis vectors for the state with N photons in the harmonic and

the qubit in the ground or excited state, respectively. The numbers 1 and 2 denote the higher

and lower energetic level, respectively. The mixing angle tan2θ = ΩR0/δqh depends on the

detuning between harmonic and qubit frequency δqh and the resonance splitting h̄ΩR0. The

latter is given by the on-resonance Rabi frequency, which is proportional to the amplitude in

the cavity2

ΩR0 = 2
gh∆

h̄ωq

√
N. (5.4)

The definition of θ leads to the following expressions3

sin2θ =
ΩR0

ΩR
, cos2θ =

δqh

ΩR
, sinθ =

1√
2

√
1−

δqh

ΩR
, cosθ =

1√
2

√
1+

δqh

ΩR
(5.5)

2Note, the amplitude is given by the expectation value of the annihilation operator ah and, therefore, the

square root of N.
3Note, the Rabi frequency ΩR is defined as in (4.15) for the harmonic values gh, δqh, and the photon number

in the harmonic N.
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With the definition above the dressed states 1 and 2 have the same total number of excitation

N. It also ensures the normalization and orthogonality of the basis vectors. Neglecting the

diagonal coupling term, proportional to σz, and the non-resonant terms (ahσ− and ah † σ+),

the Hamiltonian in the dressed basis reads [112]

HR = h̄ωhn̂+ h̄
Ω̂R

2
, (5.6)

where the excitation number operator n̂ = ∑N N (|1N〉〈1N|+ |2N〉〈2N|) replaces the number

operator a†
hah and the Rabi operator Ω̂R = ∑N ΩR(N)(|1N〉〈1N|− |2N〉|2N〉) gives the split-

ting of the states on one step of the dressed ladder. The Hamiltonian (5.6) is of diagonal form

in the dressed-state basis. The generalized Rabi frequency is defined as in (4.15)

ΩR(N) =
√

δ 2
qh +Ω2

R0. (5.7)

The formation of the dressed levels is sketched for two different photon numbers and for the

parameters of Qubit0 sample in Fig. 5-4.
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Figure 5-4: Step of the dressed ladder at photon numbers of 4× 103 and 20× 103 in the third har-

monic for the parameters of Qubit0 sample. The black dashed lines show the original qubit-resonator

states, while the blue solid lines are the dressed states. The dash-dotted green curve demonstrates the

dispersive shift of the qubit level splitting by (5.1). The degeneracy of the states |gN〉 and |eN− 1〉
is lifted due to the coupling term ahσ++ a†

hσ− in Hamiltonian (5.2). Away from the resonance the

calculated dispersive shift corresponds well to the dressed states as long as gh,∆
√

N is small compared

to the eigenenergies.

66



5.2. THE DRESSED QUBIT

When assuming the third harmonic to be driven with a high amplitude signal, a coherent

state is created in the resonator. Then the mean number of photons 〈N〉 is large and the

generalized Rabi frequency can be set to the constant value ΩR(〈N〉). After tracing out the

photon degree of freedom and neglecting the constant energy from the first term in (5.7), the

Hamiltonian of an effective two-level system is found

H̃R = h̄
ΩR

2
σz. (5.8)

This procedure is summarized in Fig. 5-5
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Figure 5-5: Formation of the dressed states effective two-level system. The dressed ladder is shown

around the mean photon number N (left). The relaxation of the qubit is indicated by the black arrows.

It shifts the population from an excited to a ground state qubit without changing the photon number

N. Therefore, the population is concentrated for the uncoupled system in the horizontal levels. When

coupled, the population depends on the weight of the ground state in a dressed level. After tracing out

the driving photon degree of freedom an effective two-level system (right) is recovered. Its splitting is

given by the generalized Rabi frequency (5.7). Depending on the sign of the detuning δqh, the qubit’s

relaxation can lead to relaxation or excitation. Close to the resonance, where δqh ≈ 0, an almost equal

population is predicted by (4.13).

According to (4.13) or (4.28) for strong driving signals the population of the driven level

may be changed. Especially in resonance, an almost equal population is expected for the

qubit and, therewith, also for the traced dressed levels. Another interpretation can be given
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CHAPTER 5. DRESSED QUBIT-RESONATOR SYSTEM AND LASING

by looking at the creation of the dressed states, as they are formed by a superposition of the

ground and the excited state of the qubit. Depending on the weight of the ground state in

each of the dressed levels an higher or lower population may be expected. In that sense, it

is necessary to transform the incoherent dynamics, in other words the dissipative Lindblad

terms, into the dressed-state basis. The terms which remain under a RWA in frames rotating

around the σz-axis are (see Appendix C.3 for a detailed calculation)

L̂11 =−
Γr

2
δqh

ΩR
(ρ11 +ρ22)+

[
Γr

2

δ 2
qh

Ω2
R
−

Γϕ

2
Ω2

R0

Ω2
R

]
(ρ11−ρ22) ,

L̂22 =−L̂11,

(5.9)

L̂12 =

[
−Γϕ +

Ω2
R0

2Ω2
R

(
Γϕ −Γr

)]
ρ12,and

L̂21 =

[
−Γϕ +

Ω2
R0

2Ω2
R

(
Γϕ −Γr

)]
ρ21.

(5.10)

Here, L̂i j = ∑N〈iN|L̂| jN〉 and ρi j = ∑N〈iN|ρ| jN〉 are reduced elements of the Linblad and

density operator, respectively. As seen from the first of the equations above, depending on the

sign of the detuning δqh, either relaxation or excitation is dominant at the effective dressed

two level system. For large detuning
∣∣δqh

∣∣ ≈ ΩR, pure excitation with the qubit relaxation

rate Γr is found for negative detuning. Within the same limit, (5.10) demonstrates a similar

decoherence of the dressed levels compared to the one of the qubit.

On the other hand, close to the resonance where ΩR ≈ ΩR0, (5.9) is dominated by the term

proportional to the decoherence rate Γϕ . Since it is multiplied to the population difference

between higher and lower level, the decoherence rate of the qubit yields a fast equalization of

the state’s population. Interestingly, (5.10) suggests that the decoherence of the dressed lev-

els may be reduced to almost half, if the qubit relaxation is small. The effective rates defined

in (5.9) and (5.10) reflect the change of the matrix elements. Nevertheless, as calculated in

C.3 one can define relaxation, excitation, and pure dephasing of the dressed qubit as defined

by (C.53) by the rates

Γ
(dr)
r =

Γr

2

(
1+

δqh

ΩR

)
+
(
Γϕ −Γr

) Ω2
R0

2Ω2
R
,

Γ
(dr)
e =

Γr

2

(
1−

δqh

ΩR

)
+
(
Γϕ −Γr

) Ω2
R0

2Ω2
R
,and

γ
(dr)
ϕ = Γϕ −

Γr

2
−
(
Γϕ −Γr

)Ω2
R0

Ω2
R
.

(5.11)
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In summary, an effective two-level system can be created by driving the qubit strongly in

one of the harmonics of the resonator. Its splitting can be tuned by both, the detuning of

the driving signal to the qubit and the driving amplitude. Also the population of the levels is

dependent on the detuning and a level inversion can be achieved. Since the coupling constant

can be reasonable large for superconducting qubits and the photon number in the harmonic

can achieve high values, a splitting of the order of the resonator’s fundamental mode may be

achieved. Still, it should be cleared, whether a coupling constant is found between the both.

Note that the dipole moment in quantum optics does not allow these transitions.

5.3 Coupling between the dressed qubit and the resonator

The question raised above, whether the fundamental mode of the resonator couples to the

Rabi-split states, may be answered by transforming the total systems Hamiltonian into the

dressed-state basis. In the eigenbasis of the qubit it takes the form

Ht = Hh,q + h̄ω0a†a+g
[

∆

ωq
σx +

ε

ωq
σz

][
a+a†

]
+ h̄Ωp

[
aeiωpt +a†e−iωpt

]
(5.12)

Here, Hh,q is given by (5.2) and includes the harmonic of the resonator, the qubit, and the

coupling between both. In addition, the fundamental mode is considered to be coupled to

the qubit and probed by a small amplitude signal with frequency ωp and amplitude Ωp. As

described before, the first term can be transformed to the effective two-level-system Hamilto-

nian (5.8). The pure fundamental mode terms will also not be effected by the transformation

to the dressed states. Therefore, the two coupling terms proportional to σx and σz need to be

considered. As demonstrated in Appendix C.3, only the σz term gives transitions between the

Rabi-split states of one manifold, keeping the total excitation number N constant. Close to

the resonance between the Rabi levels and the fundamental mode ΩR ≈ ω0 the non-resonant

terms given by σx can be neglected and the Hamiltonian of the complete system

H̃dr = h̄
ΩR

2
σz+ h̄ω0a†a+ h̄gε

[
ΩR0

ΩR
σx +

δqh

ΩR
σz

][
a+a†

]
+ h̄Ωp

[
aeiωpt +a†e−iωpt

]
(5.13)

takes the exact form of (4.5), where the qubit is solely coupled to the fundamental mode.

The coupling constant gε = gε/h̄ωq is rescaled with the energy bias and becomes zero at the

degeneracy point.
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From the Hamiltonian above a resonant interaction is expected when the Rabi frequency (5.7)

equals the one of the resonator’s fundamental mode. Therefore, an experiment is carried

out on sample Qubit0, where a strong driving signal in the third harmonic of the resonator

creates a coherent state, with large photon number N. Then, while the qubit bias is varied, the

transmission amplitude and phase of a probe signal at the fundamental mode are recorded.

The results are shown in Fig. 5-6 for two different probing powers.
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Figure 5-6: Transmission amplitude and phase for a dressed qubit coupled to the fundamental mode.

Each plot contains two curves for different probing powers and calculation results from the low am-

plitude and semi-classical equations. The curves with higher probing amplitudes are shifted down by

0.2 for the amplitude and 0.5 rad for the phase for better visibility. For convenience, also the detuning

between qubit and third harmonic frequency is given as x-axis label.

In addition to the dispersive ground state response4, four resonance points are visible, indi-

cated by the typical phase jumps. For the resonances closer to the degeneracy point, amplifi-

cation of almost 30% is observed. This amplification vanishes for higher probing amplitudes,

while the characteristic of the resonant interaction, the peak dip structure in the phase, re-

mains. The reason lays in the limited amount of energy that can be produced per cycle in

the resonator’s fundamental mode by the dressed qubit. The theoretical calculations below,

which are plotted as blue solid lines, show a good correspondence for weak probing ampli-

4The dispersive response is not reproduced by the theoretical lines in Fig. 5-6 because the off-diagonal

coupling term in Hamiltonian (5.12) is lost during the transformation to the dressed-state basis.
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tudes, both qualitative and quantitative. On the other hand, the semi-classical model does

predict a vanishing of the amplification, but cannot accurately reproduce the measured sig-

nal. The photon number in the third harmonic is set to 3.6 thousand and a probing amplitude

of 300 kHz in the semi-classical limit is used.

To calculate the transmission of a probe field a similar procedure as in 4.4 can be used, while

the modified level splitting and population of the dressed system should be considered.

In a first step, (5.13) is transformed to a frame rotating with ωp. In RWA only the coupling

terms aσ+ and a†σ− remain and the Hamiltonian reads

H̃dr = h̄
δRp

2
σz + h̄δrpa†a+ h̄gε

ΩR0

ΩR

(
aσ++a†

σ−
)
+Ωp

(
a+a†

)
, (5.14)

where δRp = ΩR−ωp is the detuning between probe and Rabi frequency, and the resonator

detuning δrp is defined as before. The Maxwell-Bloch equations for the system expectation

values are then given by (4.16) considering the Hamiltonian (5.14) and the Lindblad term

(C.49). They read similar to (4.17) - (4.21)

d〈a〉
dt

=− iδrp〈a〉− igdr〈σ−〉− iΩp−
κ

2
〈a〉 (5.15)

d〈σ−〉
dt

=− iδRp〈σ−〉+ igdr〈aσz〉−Γdrϕ〈σ−〉 (5.16)

d〈σz〉
dt

=−2igdr

(
〈aσ+〉−〈a†

σ−〉
)
−Γdr1−Γdr2〈σz〉 (5.17)

d〈a†a〉
dt

=igdr

(
〈aσ+〉−〈a†

σ−〉
)
− iΩp

(
〈a†〉−〈a〉

)
−κ〈a†a〉 (5.18)

d〈aσz〉
dt

=− iδrp〈aσz〉− igdr

(
2〈aaσ+〉−〈σ−〉−2〈a†aσ−〉

)
− iΩp〈σz〉

− κ

2
〈aσz〉−Γdr1〈a〉−Γdr2〈aσz〉 (5.19)

Here, the abbreviations

gdr = g
εΩR0

h̄ωqΩR
, Γdrϕ = Γϕ −

[
Γϕ −Γr

] Ω2
R0

2Ω2
R
,

Γdr1 = Γr
δqh

ΩR
, and Γdr2 = Γr

δ 2
qh

Ω2
R
+Γϕ

Ω2
R0

Ω2
R
.

are introduced. As discussed in the last chapter, the above defined rates reflect the change

of the matrix elements of the density matrix. For example, Γdrϕ is the total decoherence of

the dressed qubit, as it reflects the decay rate of the off-diagonal density matrix elements. It

would also be possible to start with the relaxation, excitation, and dephasing rates as defined
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by (C.53) and given in (5.11). Nevertheless, the calculation would finally result in the same

terms as used in (5.15) to (5.19).

Similar as in 4.4, for low probing powers the correlations involving three operators are ne-

glected in (5.19). Then, the quasi steady state solution of (5.15), (5.16), and (5.19) is given

by

〈a〉=−
Ωp

δ̃rp +
g2

dr

δ̃R
S(dr)

q

, (5.20)

where the generalized detuning of the Rabi levels is δ̃Rp = δR− iΓdrϕ , δ̃rp defined as in 4.4,

and

S(dr)
q =

δ̃Rp

(
iδ̃rp〈σz〉−Γdr1

)
(

iδ̃rp +Γdr2

)
δ̃Rp− ig2

dr (1+ 〈σz〉)
. (5.21)

The analogy of the Hamiltonians and Lindblad operators of the coupled dressed qubit res-

onator system to the one of a simple qubit coupled to the fundamental mode is again reflected

in a similar form of (5.20) and (5.21), as compared to their counterparts in 4.4. As already

mentioned in the last chapter, the relaxation and excitation rates of the dressed system de-

pend on the variables driving amplitude and energy bias. From (5.17) the population of

the dressed levels for vanishing coupling to the fundamental mode5 can be recovered. This

undisturbed population of the dressed levels is

〈σz〉0 =−
Γdr1

Γdr2
. (5.22)

Its dependency on the driving photon number N is shown in Fig. 5-7.

Without a signal in the harmonic N = 0 no coupling is achieved and the qubit stays in the

ground state. From the definition of the dressed levels their population changes its sign at the

resonance point ωq = ωh. This steep change is washed out with increasing photon numbers,

as follows from the mixing of the ground and excited qubit state. In the same way, as the

states get mixed also a coupling to the fundamental mode is achieved. For small driving

it is concentrated close to the resonance point. In the limit of strong driving, e.g. where

N = 106, the higher and lower energetic dressed levels become mostly equal occupied and

the coupling reaches almost the value of the effective qubit coupling.

5Or zero field in the fundamental mode.
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Figure 5-7: Population (left) and effective coupling (right) to the fundamental mode of the dressed-

two-level system for different photon numbers. The plots assume the parameters from qubit0 sample.

Finally, the transmission in the weak probing limit is defined by (2.70) together with (5.20)

as

tr = i
κδ̃Rp

δ̃rpδ̃Rp−g2
drS

(dr)
q

. (5.23)

The transmission coefficient above does not depend on the probing amplitude Ωp. This result

is well justified, if the signal is small and therefore, it has no influence on the dressed levels

population. On the other side, in the experiment the probing amplitude may not always be

small.

In the semi-classical limit, a solution can be found for arbitrary probing amplitudes. By

assuming the expectation values of the qubit and resonator operators to factorize, the calcu-

lation of the quasi steady state solution of (5.15) to (5.17) is the same as in 4.4. The so found

expressions for the resonator field and dressed-state population expectation values

〈a〉=
−Ωp

δ̃rp +
g2

dr

δ̃Rp
〈σz〉

(5.24)

〈σz〉=−
Γdr1

4g2
dr

Γ′drϕ
〈a〉〈a†〉+Γdr2

(5.25)

have a similar form as (4.27) and (4.28). Here, the additional introduced variable is Γ′drϕ =
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Γ2
drϕ+δ 2

Rp
Γdrϕ

. The population of the dressed qubit then acquires changes given by

〈σz〉= 〈σz〉0−
2iΩp

Γdr2

(
〈a†〉−〈a〉

)
− 2κ

Γdr2
〈a〉〈a†〉. (5.26)

This equation can be found by removing 〈σ−〉 in (5.17) with (5.15). Inserting (5.24), it

becomes obvious that the corrections are proportional to Ω2
p. The population is then given

by a cubic equation which may be solved analytically. Since the expression is long and not

easy to interpret, only the results for 〈σz〉 are plotted for different probing amplitudes in

Fig. 5-8.
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Figure 5-8: Population of the probed dressed-two-level system for different probing amplitudes. The

plots assume the parameters from qubit0 sample and a photon number of N = 500 in the third har-

monic. The black dotted line is inserted for a better visibility of the equal population value.

For low probing powers the curves follow the result for the undisturbed dressed levels. When

the power is increased the interaction with the fundamental mode mixes the higher and lower

energetic dressed levels with the resonator states. Close to the resonances the population of

the dressed-two-level system is then reduced to a value of equal population, and for strong

probing signals it is equalized over a wide range around the resonances. Therefore, the visi-

bility of amplification and damping effects is best for probing signals with small amplitudes.

For high amplitudes the found values for 〈σz〉 have to be used in the equation for the trans-

mission in the semi-classical limit

tr =
i
2

κδ̃Rp

δ̃rpδ̃Rp +g2
dr〈σz〉

. (5.27)
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In 4.4 the results for weak amplitudes and for factorization of the operators coincided when

the expectation value of the qubit population is set to its undisturbed value 〈σz〉 = 〈σz〉0 =
−1. This relation can be also reformulated as Sq(〈σz〉0) = 〈σz〉0. Similar, the parameter

S(dr)
q (〈σz〉0) coincides with the undisturbed value 〈σz〉0, if the coupling can be neglected, and

it gives in first order the same result as the probe power dependence (5.26) plotted in Fig. 5-8.

5.4 Dressed-state lasing of a single artificial two-level sys-

tem

Lasers are based on the population inversion between two levels of an atom in a cavity.

The energy splitting of these levels needs to be equal to the eigenfrequency of the cavity.

By stimulated emission the light field in the cavity can then be coherently increased. This

process sets certain requirements on the coupled systems time constants. The fastest process

needs to be the excitation to the higher energetic state by a pump, since the atomic system

should not be excited by the light in the cavity. Otherwise damping would be achieved. The

coupling between the atom and the light should also be faster than the relaxation of photons

from the cavity. This condition is needed for one photon to coherently create a secondary

one before it leaves the resonator.

In a simple scheme atomic laser systems usually require at least three levels to create an

inversion population. It is then achieved by a strong pump between the first and third level

and a fast relaxation from the third to the second. Considering a two-level system a pumping

in resonance would in maximum equalize the population, as can be seen from the discussion

above (especially 4.13). With full control, one could also expect a coherent excitation by

sending only a series of so called π-pulses6, but to achieve lasing a high timing accuracy

would be necessary and, in addition, the pump would directly couple into the cavity. But on

the other hand, the use of a detuned drive leads to the dressed system as explained in 5.2,

where an excitation to the higher level is achieved by the qubit’s relaxation rate.

In order to fulfill the requirements mentioned above on the time constants of a possible lasing

system using a single superconducting flux qubit, a new sample has been specially designed

6A resonant signal drives the qubit between ground and excited state. If the driving is stopped when the

excited state is achieved the pulse length corresponds to one quarter of a full Rabi oscillation. Therefore, a

resonant pulse of this length is called π-pulse.
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(see also [112]). The resonator’s gap capacitance is slightly increased by reducing the gap

in the center line to 15 µm to enhance the output coupling of the cavity. The qubit itself is

enlarged to a size of 10× 3.5 µm2 to increase its coupling to the resonator field. Also the

effective excitation of the qubit is proportional to the relaxation rate of the qubit. In order to

achieve faster relaxation, a gold resistor is placed next to the qubit loop. A SEM image of

the sample’s center part, including the center conductor of the resonator, the qubit, and the

gold plate resistor is shown in Fig. 5-9.

Figure 5-9: SEM image of the sample for demonstrating dressed-state lasing. The picture shows the

center part of the resonator. The light straight line is the center conductor of the resonator with a

width of 1 µm. In the gap to the ground plane the qubit with a size of 10×3.5 µm is placed together

with a 10×4 µm gold plate resistor. The latter should enhance the relaxation of the qubit.

The resonator has similar parameters as the ones considered above with a center frequency of

2.59 GHz and a quality factor of about 50000. The mutual inductance of the qubit is found by

numerical calculations with fasthenry to be 3.5 pH. The qubit parameters are reconstructed

by fitting the dispersive ground state response and found to be ∆L/h = 3.7 GHz, IpL = 12 nA

and gL = 1.6 MHz, where the subscript L emphasizes that this parameters are connected to

the lasing sample. For verification, the resonance points of the qubit with higher harmonics

of the resonator are recorded by measuring their transmission and varying the qubit bias.7

Because the persistent current is unexpectedly small compared to the other samples, also the

coupling constant is reduced. This reduction certainly is a result of the deposition of the gold

film next to the qubit loop. With the smaller relation between Josephson and charging energy

at the junctions the qubit becomes more sensitive to electric fields. Nevertheless, during the

experiment no charge noise effects, as shifting of the qubit gap are observed. In addition,

7The data is not shown, because no additional information is recovered.
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a direct spectroscopy is observable which also made an estimation of the dissipative rates

of the qubit as in 4.3 impossible. They are, therefore, used as fitting parameters of the later

shown amplification data. Considering (4.13), indeed the dissipative rates may be enhanced

by the design modification and therefore the driving amplitude Ωd did not reach comparable

high values to observe the spectroscopic signal.

In a first experiment the transmission of a weak probe beam close to the fundamental mode

frequency is measured while the system is driven with a strong amplitude at the third har-

monic and the qubit bias is changed. The powers applied are −122 dBm at the fundamental

and −104 dBm at the third mode. The result is plotted in Fig. 5-10 a).
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Figure 5-10: Amplification of the probe signal by the dressed qubit. a) The measured normalized

transmission amplitude is plotted for changing frequency of the probe beam and different energy

bias. An additional applied strong driving signal at the third harmonic dresses the qubit states. At an

energy bias εL/h≈±5 GHz the resonator’s fundamental mode is in resonance with the dressed levels.

Thus, amplification is found. b) The Lorentzian shaped transmission is plotted in the amplification

point (circles) and away from it (crosses). They correspond to the solid and dashed lines in a). For

convenience the same y-axis is used in a) and b). The results of the calculation using (5.23) are

presented in the same way in c) and d).

Symmetric around the degeneracy point an amplification of the probe signal is observed

for an energy bias of εL/h ≈ ±5 GHz. Here, the fundamental mode of the resonator is

resonant to the Rabi splitting. The latter is induced by a high photon number in the third
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harmonic. Experimentally the transmission is enhanced by about 10% and also the width of

the Lorentzian curve is reduced by the same percentage compared to the curves away from

resonance. These results are illustrated in Fig. 5-10 b) where the transmission curves are

plotted in dependency of the probing frequency detuning in and away from this resonance

point. The increased quality demonstrates an energy transfer from the dressed qubit to the

fundamental mode. To clarify, after starting with a constant N, the number of photons in the

third harmonic would be reduced due to the relaxation of the qubit as well as by the energy

transfer used for the amplification. Nevertheless, in the calculations the quasi steady state

for the dressed qubit resonator system is faster achieved than a significant change of this

photon number. That is justifying the assumption of a constant Rabi splitting. In addition,

the driving signal balances the additional losses to the fundamental mode in the experiment.

The experimental data on the Rabi resonance can accurately be reproduced by the equation

for the transmission in the weak probing limit (5.23) as demonstrated in Fig. 5-10 c) and

5-10 d). For the fitting, the parameters ΓrL/2π = 15MHz, γϕL/2π = 90MHz, and a mean

photon number 〈N〉 = 48× 103 are used. The values differ from the ones given in our pa-

per [112], since the theoretical model is improved and the pure dephasing considered. The

value for the relaxation rate reconstructed in that way is significantly increased compared to

the one of qubit0 and qubit1 sample, as intended by the gold film resistor. Note, the theo-

retical approach does not include the direct interaction of the Zeeman shifted qubit with the

resonator’s fundamental mode (see 5.1). Nevertheless, these resonances are experimentally

observed close to the degeneracy point at a qubit bias of about 1 GHz. The amplification

in the theoretical curve is slightly higher than in the experimental one, which indicates that

the probing power may not have been sufficiently low. To investigate the dependency of the

amplification on the amplitudes of the applied fields two more experiments were carried out.

At first, the energy bias is limited to a close range around the amplification feature while the

probe is fixed at the fundamental mode frequency and the probing power is varied. In Fig. 5-

11 (a) this measured probe power dependency is plotted together with calculation results in

(b), using (5.27) and a numerical defined population from (5.26) and (5.24).

Both show amplification at a detuning of δqh ≈ −1.58 GHz. In the experimental picture

around -110 dBm the amplification signal is lost, which may be explained by flux noise

shifting the system away from the resonance point. The transmission is increased in maxi-

mum by about 15%. With increasing probing power the amplification is reduced, which can

be understood in two ways. As visible in Fig. 5-8 the population inversion is reduced with
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Figure 5-11: Probe power dependence of the dressed-state amplification. Measured (a) and calculated

(b) transmission amplitude for an energy bias (given as the qubit detuning from the third harmonic

frequency) around the resonance of the fundamental mode with the dressed qubit and different prob-

ing powers. The y-axis of the right plot is calculated from the one of the left using (2.66). The photon

number in the third harmonic is found to be N ≈ 44×103.

increasing field amplitude at the fundamental mode. This result means it is less likely to

find the dressed qubit in its higher energetic state and stimulated emission is reduced while

absorption of photons in the cavity may be enhanced. On the other hand, only a certain

amount of energy can be transferred from the dressed qubit to the cavity per resonator cycle.

Its value depends on the system coupling and excitation rates. The total field in the cavity is

then given by a sum of the one induced by and proportional to the probe beam and this con-

stant energy transfer. For the transmission coefficient the signal leaving the cavity is divided

by the value of the probing amplitude. When increasing the latter the component from the

dressed qubit is, therefore, reduced.

For the theoretical plot in Fig. 5-11, the probing amplitude is calculated directly from the

applied probing power using (2.66) and the values for the capacitances given in 2.5. Although

the coupling capacitance is only estimated and the probing power at the input of the resonator

depends on the contacting of the sample and cable losses, the correspondence between the

measured result and the theory is good. The amplification signal starts to vanish around

the same value, about −128 dBm or 150 kHz. For weak amplitudes the amplification is
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CHAPTER 5. DRESSED QUBIT-RESONATOR SYSTEM AND LASING

saturated. The minimal photon number created by the probing signal is below one photon.

Note, the semi-classical approach used for calculation is not valid for low probing powers in

general, but for the explanation of the experimental data a dependency of the transmission

on the power is essential.

These data illustrate the small discrepancy between experimental and calculation results in

Fig. 5-10 since for the probing power used there (−118 dBm) the maximum of amplification

is not expected. Another interesting analysis is the dependency on the driving amplitude and,

thus, on the mean photon number in the third harmonic.

In a second experiment the probing power is fixed at−135 dBm, which corresponds to about

one photon at the resonator’s fundamental mode. Then the qubit bias as well as the driving

amplitude are varied around the already found resonance point, while the frequencies of

drive and probe are fixed at the resonator’s first and third harmonic. The results are plotted

again together with calculation data in Fig. 5-12.
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Figure 5-12: Driving power dependence of the dressed-state amplification. Measured (a) and calcu-

lated (b) transmission amplitude for an energy bias (given as the qubit detuning from the third har-

monic frequency) around the resonance of the fundamental mode with the dressed qubit and different

driving powers. Here, the y-axis of the left plot is mapped to the one of the right with the resonance

condition ΩR = ω0 and the corresponding definition of the Rabi frequency (5.7). The probing power

is fixed at −135 dBm.

The amplification point moves for higher driving powers to smaller absolute detunings
∣∣δqh

∣∣
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and thus closer to the resonance between qubit and driving signal. In that way, the Rabi

frequency (5.7) in the amplification region is always close to the frequency of the funda-

mental mode, thus fulfilling the resonance condition ΩR(〈N〉) = ω0. This quality enables

a direct mapping of the mean photon number 〈N〉 to the driving power, since all other pa-

rameters in this relation are known. One could expect the width of the resonance line to be

increased by the distribution of the coherent state at the third harmonic over many photon

number states. Indeed, when estimating this value at its maximum8 as ΩR

(√
〈N〉
)
/2π =

2gh∆N0.25/hωq ≈ 100 MHz, it is of the same order of magnitude as the qubit decoherence

rate and, therewith, of the natural width of the dressed qubit levels.

The driving power dependency of the amplification demonstrated in Fig. 5-12 shows a max-

imum in a region around δqh/2π ≈ −1.5 GHz. That can be explained by the dependency

of the coupling to the fundamental mode and the dressed population (see Fig. 5-8). For

small photon numbers and negative detunings the excitation rate of the qubit is given by

the relaxation rate of the qubit. On the other hand, the coupling of the dressed qubit to the

fundamental mode close to their resonance would be weak. Note, in this case this resonance

point is close to a detuning of δqh/2π ≈−2.5 GHz. Therefore, only a small amplification is

expected. In contrast, for high photon numbers in the harmonic the contribution of ΩR0 to

the Rabi splitting is dominant and the resonance is observed for a smaller absolute detuning∣∣δqh
∣∣. Thus, the coupling is monotonically increased with reducing the detuning but the pop-

ulation of the dressed qubit is lowered. In that way, the occurrence of an optimum in a region

with reasonable excitation rate and coupling constant gdr can be explained. This optimum is

observable in both, the experimental and the calculated plot in Fig. 5-12.

To this point only amplification, meaning an increase in transmission compared to the one of

the undisturbed resonator is discussed. As seen by the power dependency above, an optimum

for this amplification can be found. On the other hand, the value of amplification depends on

the probing amplitude, making it difficult to quantify the process effectiveness. Therefore, it

is worthwhile to study the emission of the dressed qubit system at the fundamental mode.

5.5 Emission from the dressed qubit and lasing

To quantify the emission spectrum of the dressed system close to the fundamental mode, in

another experiment the network analyzer is replaced by a spectrum analyzer. In the experi-

8There the photon number is maximal and, thus, the detuning δqh becomes zero.
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ment the probe beam is removed. Because the emission from the resonator is weak compared

to the thermal noise of the cold amplifier, long averaging times are needed. To exclude the

influence of low frequency noise between a measurement and its reference part and to ex-

clude heating effects by the driving signal, the experiment is carried out in the following

way: The driving signal is continuously switched OFF and ON. In each case the emission

spectrum is recorded in a span of 300 kHz around the fundamental mode frequency ω0/2π .

The spectrum is taken at 101 equidistant points with a resolution bandwidth of 5.1 kHz and a

video bandwidth of 510 Hz. These parameters ensure a fast sweep time of 90 ms per curve.

The data is then recorded and averaged over a total of 120 000 iterations. With the process-

ing of the data a total measurement time of one spectrum is then eleven hours for the used

setup. During the measurement the bias point of the qubit as well as the power for the driving

signal is kept constant. The collected data as shown in Fig. 5-13 is recorded for the optimal

parameters found in the amplification measurements (see last chapter). That is an energy

bias giving as detuning δqh/2π = −1.4 GHz and a driving signal amplitude that supplies a

photon number of about 48000 in the third harmonic.
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Figure 5-13: Emission from the qubit-resonator system with (circles) and without (dots) the dressing

signal is recorded as power spectral density for frequencies around the fundamental mode. The curves

are fitted with Lorentzian functions (square of (A.11)) and the line widths are given in the legend.

A clear difference between the spectra with and without the driving signal at the third har-
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monic is observable. The curve without driving corresponds to the emission of a thermal

resonator at an effective temperature of 30 mK above the noise floor of the cold amplifier.

The latter gives the background of 97.6×10−24 W/Hz what corresponds to a noise tempera-

ture of 7 K, which is in good agreement with the amplifiers specification. The Lorentzian fit

of the thermal curve gives an R square value of 0.69 and with 95 % confidence bounds the

curve width is found to be κ/2π = (54±14) kHz. On the other hand, the emission from the

dressed system into the resonator’s fundamental mode yields a signal clear distinguishable

from the noise floor. Its maximum is found about 1× 10−24 W/Hz above the noise floor.

Thus, the amplitude is more than doubled compared to the thermal response. The corre-

sponding Lorentzian fit gives a R square of 0.86 and a linewidth of κ/2π = (45± 7) kHz.

The latter is reduced by approximately 20 % compared to the thermal response and about

10 % to the transmission measurements. The smaller linewidth and increased emission is an

indication of lasing of the dressed-qubit-resonator system.

A better analysis of the line shapes is possible if the data is smoothed with a moving average

as in Fig. 5-14.
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Figure 5-14: The emission from the qubit-resonator system with (circles) and without (dots) the

dressing signal as power spectral density for frequencies around the fundamental mode. For better

visibility of the line shapes a moving average with size five is used.

Here, the thermal response is seen to be nonlinear. Indeed, the shape reminds a Fano reso-
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nance [113], which may be explained by the competition of the excitation to the quantized

resonator states and to the continuum of states of the transmission line. Also, when the dress-

ing signal is on, two small side peaks are observable at about −120 kHz and 100 kHz. Such

a spectrum with several peaks can be explained in different ways. First, one could expect

the observation of a Mollow triplet, as the incoherent scattered part of the cavity photons

with the dressed-two-level system [114]. Nevertheless, the distance from the central peak

to the ones on the side should then be of the order of the effective coupling constant gdr.

However for the given parameters it is ≈ 1 MHz. In addition, the dressed-two-level system

actually is a multilevel system. Therefore, a second explanation may be the direct obser-

vation of the different Rabi frequencies. The differences in the frequency splitting of the

states of manifold N compared to N−1 is for the above chosen bias point and mean photon

number 〈N〉 = N of the order of several tens of kHz. Although that gives the right magni-

tude of the distance to the side peaks, their width then raises questions. Since the dressed

levels are composed by qubit and (third harmonic) resonator states, one would expect their

width to be of the order of the qubit’s decoherence rate. This requirement is not supported

by to the observed data because the width of all the peaks is close to the resonator’s photon

decay rate. Still, the collected data has a small signal to noise ratio, so that the side peaks

may be a measurement artefact. A continuation of the spectral investigation with improved

coupling, resonator output, and noise properties of the output circuitry is therefore necessary

for further investigations.

Finally, to exclude other effects, like heating or parametric down conversion as reasons for

an increased power spectral density when the driving signal is on, the experiment is repeated

at different bias points while all other parameters are kept unchanged. For better comparison

the area under the difference curve between the spectra with and without driving is recorded

instead of plotting the whole spectra in the different cases. After subtracting the minimal

value found for a positive bias value, a curve as plotted in Fig. 5-15 is received.

A maximum of power emitted from the cavity is found close the expected resonance between

fundamental mode and Rabi frequency at a detuning of δqh ≈−1.4 GHz. For a bias shifted

away from resonance the power emission value is almost constant. The point taken for a

positive bias value is close to the Rabi resonance where the effective relaxation brings the

dressed-state system into its lower energetic state. Thus, some signal is taken from the

resonator’s fundamental mode for excitation of the qubit and the smallest emitted power is

measured. This reduction corresponds to cooling the resonator.
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Figure 5-15: Area under the difference between the spectra with and without the driving signal for

varying detuning. The values are plotted in relation to the the minimal area measured for δqh ≈
1.3 GHz.

5.6 Strong driving - Beyond the two-level approximation

In this final chapter the situation of even higher driving signals in a harmonic will be consid-

ered. From the above model one could expect a constant increase of the on-resonance Rabi

frequency with the driving amplitude. But, this increase would apply for all the steps of the

dressed ladder. Thus, the levels of different manifolds would come closer together giving

raise to new observable interactions and changes in the level structure. Also, with higher

driving amplitudes, the probability of multiphoton excitations becomes larger. To test such

predictions, a simple experiment can be carried out: The transmission of the resonator’s fun-

damental mode is measured for different energy bias and with increasing driving amplitude

in the third harmonic. The results of such a measurement on sample Qubit0 is shown in

Fig. 5-16.

Several features found in this plot are already explained above. For example, close to the

degeneracy point the strong AC-Zeeman shift, induced by the driving, pushes the effective

minimal level spacing below the resonator’s fundamental mode frequency. Thus, the dis-

persive shift of the resonator frequency is first increased until resonant interactions occur at
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Figure 5-16: Normalized transmission amplitude and transmission phase of a probe signal applied at

the fundamental mode frequency, while the qubit energy bias and the driving amplitude are changed.

The latter is applied in the third harmonic of the resonator. The dotted (white and black) lines mark

the positions on the negative bias axes where ωq = nωh with n ∈ {1,2}. The probing power takes a

value of -127 dBm.

around −98 dBm (compare to Fig.5-3). Then the two resonances move away from the de-

generacy point and eventually vanish. Two resonances appear close to the degeneracy point

for further increase of the power. There amplification is found that may be explained by

pushing the excited state of the qubit below its ground state.

Second, in a distance of about 2.5 GHz from the dotted lines resonant interactions appear.

The corresponding driving powers are about −100 dBm for the closer and about −96 dBm

for the further line from the degeneracy point, respectively. They are characterized by a

change of amplitude and characteristic phase jumps. These resonances correspond to the

Rabi resonance discussed in the last few sub-chapters for one photon and two-photon driving.

Thus, they are found around the lines for zero detunings δqh = ωq−ωh and δ
(2)
qh = ωq−2ωh.

Interestingly, the power dependence of these resonances is different. While the positive

and negative detuned resonances for the two-photon drive move for higher powers to one

point, they are always separated for the one photon drive. This property suggests a non-

monotonic dependence of the on resonance Rabi frequency. Note, the probing power used

in this experiment is to high to find amplification for the negative detuned Rabi resonance in
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the one photon case9. In addition, further resonance lines appear for strong driving, which

are not explained with the considerations above.

A mathematical description aimed for better correspondence between theory and experiment

should again start at the basic system Hamiltonian. That means considering a qubit with two

driving signals applied in the harmonics of a resonator. In the eigenbasis of the qubit it reads

Ht =h̄
ωq

2
σz + h̄ωha†

hah +
gh

ωh
(εσz +∆σx)

[
a†

h +ah

]
+ h̄Ωd

[
a†

he−iωdt +aheiωdt
]

+
g

ωq
(εσz +∆σx)

[
a† +a

]
+Ha.

(5.28)

Here, Ha = h̄ω0a†a+ h̄Ωp
[
a†e−iωpt +aeiωpt] contains solely field operators of the funda-

mental mode10.

As shown in our papers, two ways to deal with this Hamiltonian [109, 115] are possible.

Here, only the first method using RWA will be sketched. First, to proceed the system can be

transformed into a frame rotating with the driving frequency ωd around a†
hah by the transfor-

mation Û5 = eiωdta†
hah , giving

Ht = h̄
ωq

2
σz + h̄δhda†

hah +
gh

ωq
(εσz +∆σx)

[
a†

heiωdt +ahe−iωdt
]
+ h̄Ωd

[
a†

h +ah

]
+

g
ωq

(εσz +∆σx)
[
a† +a

]
+Ha.

(5.29)

Here, δhd =ωh−ωd is the detuning of the drive from the third harmonic. The driving and also

the probing signal will produce a coherent state in the corresponding harmonic. Since the

driving in the third harmonic is strong, it is worthwhile to average (5.29) over this coherent

state |αh〉, that is an eigenstate of the annihilation operator ah|αh〉= αh|αh〉 with αh =
√
〈N〉

H̃t =
h̄ωq

2
σz +

ε

2ωq
Ωh cosωdtσz +

∆

2ωq
Ωh cosωdtσx

+
g

ωq
(εσz +∆σx)

[
a† +a

]
+Ha,

(5.30)

where Ωh = 4gh
√
〈N〉 and the constant energy terms h̄δhdα2

h and h̄Ωdαh are omitted. To

remove the second term from the right-hand side of (5.30), a unitary transformation Û6 =

9Nevertheless, as tested by experiments with lower probing power they are observable also for this sample.
10Before a high photon number in the harmonic is assumed without asking the question how to create it.

Now a driving signal is explicitly added to the Hamiltonian, that creates a coherent state in the harmonic.
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eiησz/2 with η = ε

h̄ωqωd
Ωh sinωdt is applied.

Ht =
h̄ωq

2
σz +

∆

2ωq
Ωh cosωdt

[
eiη

σ++ e−iη
σ−
]

+
g

ωq

(
εσz +∆

[
eiη

σ++ e−iη
σ−
])[

a† +a
]
+Ha.

(5.31)

Using the Jacobi-Anger expansion eizsinx = ∑
∞
l=−∞

Jl(z)eilx, where Jl denote the Bessel func-

tion of the first kind, the Hamiltonian can be rewritten as

Ht =
h̄ωq

2
σz +

∆

4ωq
Ωh

(
eiωdt + e−iωdt

) ∞

∑
l=−∞

Jl

(
εΩh

h̄ωqωd

)[
eilωdt

σ++ e−ilωdt
σ−
]

+
g

ωq

(
εσz +∆

∞

∑
l=−∞

Jl

(
εΩh

h̄ωqωd

)[
eilωdt

σ++ e−ilωdt
σ−
])[

a† +a
]
+Ha.

(5.32)

A final unitary transformation Û7 = eikωdtσz/2 and omitting terms oscillating with multiples

of frequencies ωd yields

Ht = h̄
δqk

2
σz + h̄

Ωk0

2
σx +

g
ωq

(
εσz +∆

′
kσx
)[

a† +a
]
+H f a. (5.33)

Here, δqk = ωq−kωd is the detuning of the qubit frequency from its k-th. resonance with the

driving signal, Ω′h =−
εΩh

h̄ωqωd
the argument of the Bessel function11, and Ωk0 =−kωd∆

ε
Jk
(
Ω′h
)

the additional splitting between qubit and driving states induced by the k-th. resonance12. In

addition the σx coupling term to the fundamental mode is rescaled with ∆′k = ∆Jk
(
Ω′h
)
. The

system Hamiltonian reads in the eigenbasis of the uncoupled states

Ht =
h̄Ωk

2
σz +

g
ωq

[
a† +a

](
εΩk0 +∆′kδqk

Ωk
σx +

εδqk−∆′kΩk0

Ωk
σz

)
+Ha (5.34)

In the following the abbreviations gzk = g εδqk−∆′kΩk0
h̄ωqΩk

and gxk = g εΩk0+∆′kδqk
h̄ωqΩk

will be used.

The above Hamiltonian describes a tunable two-level system with frequency splitting Ωk =√
δ 2

qk +Ω2
k0 coupled to the fundamental mode and is equivalent to (4.5) and (5.13). The

effect of the different resonances becomes clear when the corresponding splittings and cou-

pling constants are plotted.

In Fig. 5-17 such plots are shown for the first three resonances k ∈ {0,1,2}. For k = 0

the level splitting between the effective states is not changing when increasing the photon
11The minus appears because of the condition for non-fast rotating terms, l = −k± 1 in the first Bessel

function term and l = −k in the second of (5.32), together with the property J−k(x) = Jk(−x) of the Bessel

function.
12Here, Jk+1(x)+ Jk−1(x) = 2kJk(x)/x is used.
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Figure 5-17: Splitting between the effective two levels (upper row) and corresponding off diagonal

coupling constant (lower row) in dependence of the energy bias of the qubit for different mean photon

numbers 〈N〉 in the third harmonic and the first three resonances k ∈ {0,1,2}. For the plots the

parameters of qubit0 sample are used.

number and is identical to the undisturbed qubit levels. This observation is not surprising

because Ωk0 = 0 follows from the properties of the Bessel function J−n(z) = (−1)nJn(z).

Although the levels are unchanged, the off diagonal coupling constant indeed depends on

the driving signal. For higher values of k, Rabi splittings are observed around an energy

bias where δqk = 0. With higher photon numbers, or in other words stronger driving, these

splittings are first increased. The Bessel function behavior then leads to an oscillation of the

total splitting, while also the shape around the resonance is modified. The corresponding

coupling constants are increased around the k-th resonance.

The incoherent dynamics of the qubit will not be changed by the transformations Û5 to Û7,

since they either involve only operators of the third harmonic field or σz
13. The rotation of

(5.33) into the eigenbasis of the uncoupled systems can also be written down by a unitary

transformation with Û8 = eiθσy and tan2θ =Ωk0/δqk. This procedure is analog to the rotation

of the basis as shown in 5.2 and can be understood from writing eiθσy = cosθ + iσy sinθ ,

where σ2n
y = 1 and σ2n+1

y = σy are used for integer n. The calculation of the dissipative rates

13The latter yields a multiplication with oscillating terms that have positive frequency for σ+ and negative

for σ− (see C.1). Since these operators contribute equally to the relaxation and decoherence, the additional

terms are canceled.
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for the new basis in a matrix calculation approach is demonstrated in App. C.4 and gives in

the form the exact same result as found by the evaluation of the change of the elements of the

dressed density matrix as shown in App. C.3. The found relaxation, excitation, dephasing,

and decoherence rates read

Γrk =
Γr

2

(
1+

δqk

Ωk

)
+
(
Γϕ −Γr

) Ω2
k0

2Ω2
k
,

Γek =
Γr

2

(
1−

δqk

Ωk

)
+
(
Γϕ −Γr

) Ω2
k0

2Ω2
k
,

γϕk = Γϕ −
Γr

2
−
(
Γϕ −Γr

)Ω2
k0

Ω2
k
,

Γϕk = Γϕ −
(
Γϕ −Γr

) Ω2
k0

2Ω2
k
,

(5.35)

respectively. The effective excitation and decoherence rates are plotted in Fig. 5-18 for

k ∈ {0,1,2}. For k = 0 no excitation is found and the relaxation and decoherence rates coin-

cide with the ones of the undisturbed qubit. In contrast, for k > 0 a maximum of relaxation

and excitation is found around the resonances ωq = kωd. There, these rates are mainly dom-

inated by the term proportional to Ω2
k0/2Ω2

k . Furthermore, δqk is small, thus both excitation

and relaxation take the same values creating an equal population of higher and lower ener-

getic state. Away from the resonance and especially for small photon numbers in the third

harmonic, the relaxation and excitation depend on the sign of δqk, and they are of the or-

der of the undisturbed resonator relaxation. This result is best visible in the plot for k = 2.

The decoherence around the resonance is reduced to approximately half of its undisturbed

value. That corresponds to an increase in the coherence time when considering Rabi levels,

compared to the undisturbed qubit levels. With higher photon numbers this effect can be ex-

tended to a wider range in the energy bias and is eventually canceled by the Bessel function

behavior.

It is useful to consider the σz coupling term as well. Therefore, a small rotation described

by the unitary transformation Û9 = egzk/ω0(a†−a)σz is considered, where gzk
√

N0/ω0 is as-

sumed small and N0 corresponds to the mean photon number in the fundamental resonator

mode. When expanding only to the first order it transforms the diagonal coupling into a

two-photon off-diagonal coupling. The calculation is demonstrated in App. C.5 and yields
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Figure 5-18: Excitation (upper row), relaxation (middle row), and decoherence (lower row) rate be-

tween the effective two levels in dependence of the energy bias of the qubit for different mean photon

numbers 〈N〉 in the third harmonic and the first three resonances k ∈ {0,1,2}. For the plots the

parameters of qubit0 sample are used.

an approximate Hamiltonian

H̃t =
h̄Ωk

2
σz + h̄ω0a†a+Ωp

(
a†e−iωpt +aeiωpt

)
+ h̄gxk

[
a† +a

]
σx +2ih̄

gxkgzk

ω0
σy

(
a†a†−aa

)
,

(5.36)

where small terms of the order of gig j/ω0, [i, j]∈ [x,z], that are not multiplied by photon field

operators and higher orders in gi are neglected. Note, the above rotation will not influence

the relaxation rates of the effective two-level system, see (5.35).

The calculation of the transmission of the system is again done in a rotating frame with

the probe frequency ωp around a†a and m× σz, with m an integer number.(5.34)14 The

Hamiltonian than reads for m = 1 in RWA

H̃t = h̄δrpa†a+
h̄δkp1

2
σz +gxk

[
aσ++a†

σ−
]
+ h̄Ωp

[
a† +a

]
, (5.37)

14The Lindblad term is invariant under this rotation.
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where δkp1 = Ωk −ωp. The Hamiltonian (5.37) together with the dissipative rates (5.35)

have the same form as the corresponding equations in 5.3. Thus, the calculation of the

transmission coefficient is completely analog and the results from 5.3 in the small-photon

limit as well as in the semi-classical limit can be applied with replacing the corresponding

dressed transition frequency, coupling, and dissipative rates by the one for the multi-photon

resonance of interest15.

The two-photon processes can be analyzed in a frame rotating with double frequency m = 2

around σz compared to (5.37). The corresponding Hamiltonian then reads

H̃t = h̄δrpa†a+
h̄δkp2

2
σz−

2gxkgzk

ω0

[
aaσ++a†a†

σ−
]
+ h̄Ωp

[
a† +a

]
, (5.38)

where δkp2 = Ωk− 2ωp. While the Lindblad term is again unchanged, the Maxwell-Bloch

equations need to be slightly modified

d〈a〉
dt

=− iδrp〈a〉+ i
4gxkgzk

ω0
〈a†

σ−〉− iΩp−
κ

2
〈a〉 (5.39)

d〈σ−〉
dt

=− iδkp2〈σ−〉− i
2gxkgzk

ω0
〈aaσz〉−Γϕk〈σ−〉 (5.40)

d〈σz〉
dt

=i
4gxkgzk

ω0

(
〈aaσ+〉−〈a†a†

σ−〉
)
−Γk1−Γk2〈σz〉 (5.41)

d〈a†a〉
dt

=− i
4gxkgzk

ω0

(
〈aaσ+〉−〈a†a†

σ−〉
)
− iΩp

(
〈a†〉−〈a〉

)
−κ〈a†a〉. (5.42)

Here, Γk1 = Γrk−Γek and Γk2 = Γrk +Γek. As seen below, the two-photon process becomes

more likely for high photon numbers in the fundamental mode. Thus, only the semi-classical

limit will be discussed, and it can be assumed that all expectation values factorize. The steady

state solution of (5.39) - (5.42) can be brought into a similar form as in 5.3, e.g. by removing

〈σ−〉 in (5.39) with (5.40)

〈a〉=
−Ωp

δ̃rp +
8g2

xkg2
zk

ω2
0 δ̃kp2
〈a†〉〈a〉〈σz〉

(5.43)

and removing the coupling terms in (5.41) with (5.42)

〈σz〉=−
Γk1

Γk2
−

iΩp

Γk2

(
〈a†〉−〈a〉

)
− κ

Γk2
〈a†a〉. (5.44)

Note, the latter equations are valid without assuming high photon numbers. The parameters

δ̃rp and δ̃kp2 = δkp2− iΓϕk are introduced similar as in 5.3. Comparing (5.24) to (5.43), the

15In other words it is necessary to choose an index k to describe the measurement results in a given parameter

range.
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effective coupling constant for the two-photon process to the fundamental mode is scaled

with the corresponding photon number as g2ph = 2
√

2gxkgzk
√

N/ω0. If the probing ampli-

tude is large this photon number may be set to the value as found for the uncoupled system

gxk = gzk = 0 from (5.39) and (5.42)

〈a†a〉0 =
4Ω2

p

4δ 2
rp +κ2 . (5.45)

This estimation is valid if the mean photon number is not influenced much by the interaction

with the dressed qubit as compared to the influence of the probing amplitude. When con-

sidering such a rescaled coupling, the calculation of the transmission coefficient is analog to

the case of the one photon resonance. The results of such calculations are summarized in

Fig. 5-19.
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Figure 5-19: Calculated normalized transmission through the driven qubit-resonator system. The

one and two-photon interactions with the fundamental mode are plotted in the upper and lower row,

respectively. The columns correspond to a multiphoton drive with zero to two photons. The plots are

shown for different energy bias and driving amplitude. The latter is given in mean photon number in

the resonator and corresponds approximately to the same values as in Fig. 5-16.

There for indexes k ∈ [0,1,2] and m∈ [1,2] the normalized transmission amplitude is plotted

for the sample parameters of qubit0 and varying bias and driving power. The probing power
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is set to 220 kHz, a value where both the one and two-photon processes are visible. By further

increase the equalization of the qubit population is reducing both, the one and two-photon

response. On the other hand, the effective coupling constant of the two-photon process is

increased. For k = 0 the dispersive qubit dip is observed. Its shape is slightly altered by

the power dependency of the coupling constant. Because in this case the qubit energy is

not changed, also the two-photon resonance gives only a single vertical line at a bias where

2ω0 = ωq. In the case of one and two-photon driving, k = 1,2 we find characteristic peak-

dip structures around the resonances kωd = ωq in the one photon interaction m = 1. For

k = 1 this structure is similar to the above discussed interaction with the dressed states.

Nevertheless, the Bessel-function behavior keeps the splitting of the effective two levels

close to resonance in an interval between 0 and ωd, since the diagonal coupling term creates

avoided-level crossings between the states of different manifolds. This additional interaction

leads to a non-monotonic behavior of the on-resonance Rabi frequency. Furthermore, this

effect is so strong for the given parameters, that the lines for amplification and damping are

not connected together, as predicted in 5.2.

The coupling constants of the fundamental mode to the effective two-level systems takes a

maximum close to the resonances ωq = kωd and decreases fast with detuning δkp for k > 0.

Thus, in the two-photon interaction m = 2 only a single sharp damping line is visible in the

k = 1 picture. At higher orders of dressing the two-photon interaction with the fundamental

mode is negligible.

Note, for small driving amplitudes the two-photon damping for k = 0 is found approximately

at the same bias point as the one photon amplification for k = 1. This fact explains the change

from amplification to damping when the probing amplitude is increased16. Still, the positions

of the different interactions only follow from considering a single interaction with index k.

To improve the correspondence between measurement and experiment the shifts induced by

all resonances with indexes k = 1,2 are summed in a hand waving approach to the total

effective level splitting for each single index k. The rest of the calculation stays the same.

As demonstrated in Fig. 5-20, this procedure allows the reconstruction of main features

of the experiment. Most pronounced the vanishing of the qubit dip is nicely reproduced

in the upper left subplot. It occurs from shifting the minimal qubit level splitting below

the resonator’s fundamental mode frequency. The sharp lines that are then bent for higher

probing amplitudes correspond to resonant interactions, where ωk = ω0. The corresponding

16Compare Fig. 5-6 and corresponding discussion
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Figure 5-20: Same plot as in Fig. 5-19 but taking in each picture the level shift of all indices k from

−2 to 2 into account.

two-photon process follows the same curve as the one photon amplification for k = 2 to

amplitudes 〈N〉 ≈ 20 000. Thus, in the experiment damping is observed, which for higher

driving may be changed to amplification, when the effective coupling constant for k = 0 and

m = 2 becomes smaller. Both is explained well by the theoretical calculated plots.

Nevertheless, when comparing to Fig.5-16 several differences remain. They include the

amplification close to the degeneracy point, the closed curves around the first and second

resonance k = 1,217, the strength of the two-photon response, and in general, the positions

of the curves for high photon numbers in the third harmonic. Reason may be manifold. For

example, it may be necessary to include higher orders of driving k > 2 as well as negative

ones18 or the third qubit level may become important due to the high excitation number in

the harmonic of the resonator.

17The one close to the first resonance is mainly visible in the phase.
18From negative frequency components that give shifts of the effective qubit energy in different direction

and include as example the Bloch-Siegert shift(see e.g. [110]).
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Summary

A single artificial atom (qubit) is used to achieve lasing characterized by linewidth narrow-

ing and increase in the output power of a superconducting cavity. Compared to classical

lasing schemes, for the first time only a single two-level system is needed. For a conve-

nient analysis of this lasing effect, the interaction of a superconducting flux qubit coupled

to a coplanar waveguide resonator has been studied experimentally and theoretically in an

intermediate coupling regime. Both systems are introduced separately, and a corresponding

quantum theory is derived from first principles. The basic mechanism of coupling, via the

magnetic field, was used to design appropriate samples and is included into the theoretical

approach. These samples have been measured at temperatures close to absolute zero in order

to avoid thermal excitation. In addition, the measurement environment has been designed

and optimized for these samples, involving sample mounting, thermal anchoring, shielding,

signal filtering, and thermalization.

In a first experimental part basic properties of the coupled system are studied. A theoretical

analysis and analytical reproduction of the measurement results allowed a full reconstruction

of the parameters of the total system. In addition, the dissipative rates of the two subsystems

are estimated from the results of weak continues measurements, thus from the measurement

of steady state values.

One important result of this thesis is that a microwave signal applied to the qubit may be

used for further controllability. This additional knob involves both, the shift of the qubit

levels as well as control over their population. The main part of the work focuses on the

manipulation of the qubit to achieve an inversion population. It is realized by a strong off-

resonant driving of the qubit that enables a controllability of the population of the evolving

dressed states by external parameters. The reason is the rescaling of the relaxation rates of

the qubit. In other words, the relaxation of the qubit can lead to an excitation in the dressed-

state basis. In addition, the calculations show a first order coupling of these Rabi-split states
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to the resonator, which is contrary to similar systems made from atoms because their dipole

moment does not allow such transitions.

Experimentally amplification and damping both are observed. A theoretical description for

the steady state of the transmission coefficient reproduces the measurements qualitatively

and quantitatively. In addition, the measurement of the power spectral density emitted from

the cavity for the first time demonstrates self-oscillations in the resonator created by the in-

teraction with a dressed qubit. Also, effects from the probing signal or heating are excluded,

and the spectral measurements allow a real quantification of this lasing effect. A linewidth

narrowing of about 20 % and an increase in the emitted power to a more than doubled value

are found. In follow up works, this lasing effect is optimized together with the Bratislava

group to a factor of 10 in narrowing and a factor of 9 increase of the emitted power in a two

photon process [116].

In a final experiment the driving power is further increased to identify the limits of the

dressed-state approach for describing the experimental situation. As a result an extension to

a multiphoton-dressed-state approach can improve the understanding of the observed reso-

nances. Nevertheless, some interesting features, as the amplification at the degeneracy point,

are not fully reproduced. Note, the general theory can be applied to explain many effects in

frame of the pump-probe technique, such as the spectroscopy data or multiphoton interaction

for high probing powers.

In follow up studies possible ways to increase the amplification, either by exploring the two-

photon process [116] or by identifying optimal parameter combinations [117], are discussed.

An additional spectral analysis, especially to observe the fluorescence spectrum of the qubit

may give further insights.

The lasing effect discussed in this work has several possible applications. They range from

the amplification of test signals to the signal generation on a chip. Furthermore, the use of

a strong radiation field to control the population of a two-level system and additionally their

splitting gives a valuable tool in studying the basic light-matter interaction.

98



Acknowledgment

First I like to thank my supervisor Prof. Paul Seidel for his guidance and professional advice,

especially in the preparation of this work.

I am deeply grateful to my supervisor at the IPHT, Evgeni Il’ichev, for his persistent great

support, for discussing the experimental data or physical problems, and for introducing me

to so many great scientists. I always enjoyed the cordial atmosphere in our small group.

I thank the whole department quantum detection at the IPHT-Jena for creating a great work-

ing atmosphere. Particularly, I like to mention our group leader Torsten May and department

director Hans-Georg Meyer for their support. I express my sincere gratitude to my colleagues

from the clean room that prepared the samples and mainly Uwe Hübner and Solveig Anders,

who have been my first contacts when a new sample design needed to be fabricated. I like

to thank our technical staff and mainly Marion Sondermann and Heike Schneider, who not

only helped in the sample mounting. I want to include my colleagues from the workshop,

especially Michael Wiedemann. It always was impressive for me to get the parts to my hands

that I had drawn on paper. Also I acknowledge the support of Jürgen Kunert in sample de-

sign and for planning the supply with liquid helium. The latter has been a great relief during

the measurement time and gave me more focus on the experiments. The experiments would

not have been possible without the work of Detlef Born and Thomas Wagner to keep the

cryostats alive, Thomas also teaching me how to run cryostats of different types.

Special thanks go to my former colleagues and fellow PhD. students Boris Ivanov, Pascal

Macha, and Simon van der Ploeg. Your work in and outside the lab pushed and motivated me

to achieve good results. I enjoyed our joined work in the lab even during nights, weekends,

or holidays.

I thank all of our guests at the IPHT during the time of my PhD because everyone gave me

an additional perspective not only to the experimental data, but also to life. I thank Oleg

99



Acknowledgment

Astafiev for sharing his scientific knowledge and teaching me the theory to understand and

reconstruct experimental results. I acknowledge the support in the theoretical description of

the experiments by Sergey Shevchenko and Yakov Greenberg. Special thanks go to Yakov for

his great hospitality during my visit in Novosibirsk, for professional scientific discussions,

and for proofreading parts of the thesis. I thank Miroslav Grajcar, Pavol Neilinger, and

Matus Rehak for many interesting discussions and the great joined work. Miro, I thank you

for teaching me to look at things from different perspectives.

Finally, I want to acknowledge the support of my family and friends. I especially like to

mention Frank Ohme, Sven Döring, Martin Kielhorn, and Matthias Schmidt for keeping life

beside work alive. I am deeply thankful to my mother and my late father for their great

support through all my life and to my sisters Jenny and Aniane who are always willing to

listen to my problems.

Most grateful I am to my wife Karoline, who probably suffered the most from the long

working hours during the many measurement runs, but who always is insightful and patient.

Last but for sure not least, I am so happy with and thankful to my son Johann, who, in the

short time we have now been together, already ensured me that there are many important

things in life beside work.

100



Appendix

A Notes to the qubit and the resonator

A.1 Kinetic part of the flux qubit Hamiltonian

The second Josephson equation (1.12) connects the voltages at the Josephson junctions to

the time derivative of the phase difference ϕ̇ . Thus, the kinetic energy of the qubit is related

to the voltages at the junctions, and its total value is found by the sum of the kinetic energies

of each junction

Ek =
1
2

CJ1V 2
J1 +CJ2V 2

J2 +CJ3V 2
J3.

Here, the voltages VJi and capacitances CJi at the different junctions in the qubit loop are

used. The junctions 1 and 2 have the same capacitance, whereas at the small junction it will

be reduced by the factor α . With the second Josephson equation (1.12) the voltages can be

substituted with the phase differences as

Ek =
Φ2

0
8π2CJ

(
ϕ̇1

2 + ϕ̇2
2 +αϕ̇3

2) .
Removing the phase difference at the small junction using the flux quantization yields

Ek =
Φ2

0
8π2CJ

(
ϕ̇1

2 + ϕ̇2
2 +α [ϕ̇1− ϕ̇2]

2
)
=

Φ2
0

8π2CJ~̇ϕ
T

(
1+α −α

−α 1+α

)
~̇ϕ. (A.1)

Possible time dependent magnetic fields are neglected ( ḟ = 0) and a vector notation (~̇ϕT =

(ϕ̇1ϕ̇2)) is used to give compact equations. The latter allows a straightforward extension to

a loop with even more junctions. The superscript T denotes the transpose of a vector. In a

next step, a differentiation of the Lagrangian will give the generalized momenta. Please note,
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the potential (2.8) does not explicitly depend on the time derivatives of the phase difference.

Thus, the momenta are

pi =
∂Ek

∂ ϕ̇i

~p =
Φ2

0
4π2CJ

(
1+α −α

−α 1+α

)
~̇ϕ. (A.2)

When rewriting these equations, the time differentiated phase differences are expressed with

the generalized momenta

~̇ϕ =
4π2

CJΦ
2
0

Ξ~p,

where

Ξ =
1

1+2α

(
1+α α

α 1+α

)

is the inverse of the transformation matrix in (A.2). The Hamilton function is defined as

H = ~pT~̇ϕ−L(ϕ1,ϕ2, ϕ̇1, ϕ̇2) =
4π2

CJΦ
2
0
~pT

Ξ~p− 1
2
~̇ϕT~p+U(ϕ1,ϕ2)

=
4π2

CJΦ
2
0
~pT

Ξ~p− 1
2

4π2

CJΦ
2
0
~pT

Ξ~p+U(ϕ1,ϕ2)

=
2π2

CΦ2
0
~pT

Ξ~p+U(ϕ1,ϕ2) (A.3)

Finally, by expanding the first term the final Hamiltonian reads

H =
EC

h̄2
1

2α +1
(
[1+α][p2

1 + p2
2]+2α p1 p2

)
+U(ϕ1,ϕ2) (A.4)

A.2 Diagonalizing the Hamiltonian

To find the eigenenergies numerically, it is necessary to understand, how the operators in

the Hamiltonian act on the states. Below the charge basis will be used. Their basic states

correspond to the charge on the islands between the junctions in units of cooper pairs, as

will be seen later. At the moment, the description is possible in the general coordinate x

and momentum p notation. Here the momentum states are chosen. The momentum and the
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coordinate are connected by the Fourier transform, so writing an arbitrary momentum state

as Fourier series is possible

〈p| f 〉= f (p) =
1√
2π h̄

∫
f (x)e

−ipx
h̄ dx.

Here, the h̄ yields from using momentum instead of wave vector ~k. On the other hand,

inserting the closure relation
∫
|x〉〈x|dx on the left hand side gives

〈p| f 〉=
∫
〈p|x〉〈x| f 〉dx =

∫
〈p|x〉 f (x)dx.

As conclusion

〈p|x〉= 1√
2π h̄

e
−ipx

h̄

and it is possible to represent the momentum in the coordinate basis

|p〉=
∫
|x〉〈x|p〉dx =

1√
2π h̄

∫
e

ipx
h̄ |x〉dx. (A.5)

In the Hamiltonian only terms which are directly the momentum operator together with co-

sine functions of the phase difference occur. Their influence on the momentum states is

p̂|p〉= p|p〉

cos x̂|p〉=
∫ 1

2

(
eix + e−ix

)
e

ipx
h̄ dx

=
1
2
(|p+ h̄〉+ |p− h̄〉) . (A.6)

This behavior is illustrative in the discrete charge basis. The momentum states give the

number of cooper pairs on an island Ni. On the other hand, the cosine operators of the phase

can change the number of Cooper pairs by one. The latter can be identified with tunneling

of cooper pairs through and, thus, the current over the junction. The complete, discrete

Hamiltonian for integration to a numerical calculation reads

H =

[
EC

(1+α)N2
1 +2αN1N2 +(1+α)N2

2
1+2α

+EJ(2+α)

]
|N1,N2〉〈N1,N2|

− EJ

2

[
|N1 +1,N2〉〈N1,N2|+ |N1−1,N2〉〈N1,N2|+ |N1,N2 +1〉〈N1,N2|

+|N1,N2−1〉〈N1,N2|+αei2π f |N1 +1,N2−1〉〈N1,N2|

+αe−i2π f |N1−1,N2 +1〉〈N1,N2|
]
, (A.7)

where (1.17) is used and |N1,N2〉 are the possible charge states. By the numerical definition

of a set of basis states, the Hamiltonian above can be expressed in matrix form. Then a

numerical diagonalization yields the eigenenergies.
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A.3 Classical results of the resonator

It is useful to compare the results of the quantum calculation on a CPW-resonator with the

classical calculations on a lumped element representation, since several results, as for exam-

ple the frequency dependence of the transmission, should be equivalent.

As explained in the main text, the lumped element resonator has an inductance L and capac-

itance C. Here, the dependency of the inductance on the mode number n is neglected, and

the calculations are restricted to the fundamental mode. The internal losses are introduced

by a resistance R and the coupling to the environment can be treated via two coupling capac-

itances Cc together with the loads RL (compare Fig. -1 a) The dynamic of the voltage V (t)

C

C

Cc c

L R

R RLL

C

C

e

L R

R Ree

a) b)

Ce

Figure -1: a) Lumped element representation of a CPW resonator including the internal losses given

by R and the coupling to the loads RL by the coupling capacitances Cc. b) The series circuit of Cc and

RL can be transformed to a parallel one with values Ce and Re.

at the resonator is described by the differential equation

V +
cl
k2

0

∂ 2V
∂ t2 +

l
k2

0r
∂V
∂ t

= LC
∂ 2V
∂ t2 +

L
R

∂V
∂ t

+V = 0, (A.8)

where the definitions of k0, C, and L are used and R = 2r/S. It is found from the wave

equation (2.30) when inserting the mode expansion for the voltage, which in turn follows

from the one for the flux (2.35). The dependence on the coordinate is thereby removed.

A driving force at a probing frequency ωp can be added, which is applied by an oscillating

voltage at the coupling capacitor Cc (at positions x =−S/2 or x̃ = 0).

∂ 2V
∂ t2 +κ

∂V
∂ t

+ω
2
0V = ω

2
0Vin cosωpt. (A.9)

Here, ω0 = 1/
√

LC is the loss free resonance frequency and κ = 1/CR describes the damp-

ing rate. Note, the driving voltage is, in principle, applied at the external lead RL. Then
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it is necessary to find the voltage Vin in the resonator from the relation of the different

impedances. For details see 2.9 and especially (2.68). The oscillations in the resonator

follow the frequency of the external drive. Therefore, one solution of the above equation is

V = Ṽ cos(ωt +φ). Inserting together with a short calculation yield the amplitude Ṽ and the

phase shift φ of this driven oscillations

Ṽ =Vin
ω2

0√(
ω2

0 −ω2
p
)2

+
(
κωp

)2
, φ = arctan

(
κω0

ω2
p −ω2

0

)
. (A.10)

These may be rewritten close to the resonance by applying ω2
0−ω2

p =
(
ω0 +ωp

)(
ω0−ωp

)
≈

2ω0
(
ω0−ωp

)
to find

Ṽ =Vin
ω0√

4
(
ω0−ωp

)2
+κ2

, φ = arctan

(
κ

2
(
ωp−ω0

)) . (A.11)

The normalized result above is in correspondence with the absolute value of the quantum

solution (4.29) if the coupling to the qubit is neglected. When these functions are plotted

versus the frequency, they show a resonance peak for the voltage Ṽ and a phase shift from

−π/2 to π/2 around the resonance frequency. The width of the curve where the amplitude is

reduced to 1/
√

2 of its maximum value is κ . Note that the power, as ∝ V 2, gives a Lorentzian

line shape with kappa being the FWHM (full width at half maximum).

After a transformation of the series circuit of Cc and RL to a parallel circuit with values Re

and Ce one can directly identify their influence to the resonance frequency and the quality

(compare Fig. -1 b)).

1
iωCc

+RL =

(
iωCe +

1
Re

)−1

=
Re

iωCeRe +1
. (A.12)

Real and imaginary part give two equations for defining the unknown parameters Re and Ce.

A short calculation yields

Re =
ω2Cc

2RL
2 +1

ω2Cc
2RL

, Ce =
Cc

ω2Cc
2RL

2 +1
. (A.13)

The total relaxation rate of the cavity is finally found as

κ =
2

(2Ce +C)
(
2R−1

e +R−1
) ≈ 2ω2C2

c RL

C
. (A.14)

Here, the factors of two are introduced to account for coupling to the leads on both sides of

the resonator. Also Cc is neglected compared C as well as R−1 versus R−1
e , and ω2Cc

2RL
2�
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1 is used. Note, the value for κ calculated for the parameters of the resonators are about one

order of magnitude smaller than the measured ones. Thus, the internal losses are dominating

in the experiment. Nevertheless, calculation results using this experimental value give results

that correspond to normalized measurement data.

B Time evolution of the density matrix by damping

B.1 Qubit dissipation

Time evolution of the qubits density matrix is given by (2.23), where the coupling to the

environment is given by the interaction energy V (t). If written down explicitly the latter

reads

V (t) =
h̄
2

(
X+σ+eiωqt +X−σ−e−iωqt +Xzσz

)
. (B.15)

The noise variables are defined in the same way as the raising and lowering operators (2.3)

X+ = Xx + iXy and X− = Xx− iXy, where X⊥σ⊥ = Xxσx + iXyσy is assumed. The time evolu-

tion reads

ρ̇S =− i
2
〈X+(t)〉eiωqt (σ+ρS−ρSσ+)−

i
2
〈Xz(t)〉σzρS

− 1
4

∫ t

ti

[
〈X+(t)X+(t ′)〉eiωq(t+t ′)

σ+ρSσ++ 〈X−(t)X−(t ′)〉e−iωq(t+t ′)
σ−ρSσ−

]
dt ′

− 1
4

∫ t

ti
〈Xz(t)Xz(t ′)〉dt ′ (σzρSσz−ρS)

− 1
4

∫ t

ti
〈X+(t)X−(t ′)〉eiωq(t−t ′) (σ+σ−ρS−σ+ρSσ−)dt ′

− 1
4

∫ t

ti
〈X−(t)X+(t ′)〉e−iωq(t−t ′) (σ−σ+ρS−σ−ρSσ+)dt ′+h.c.

(B.16)

Here, h.c. stands for hermitian conjugate and σ2
± = 0, σ2

z = 1 are used. Also each field

noise component is assumed uncorrelated with the other two19, so that 〈Xz(t)X±(t ′)〉 =
〈X±(t)Xz(t ′)〉 = 0 is used. The first three terms in the equation above can be set to zero

19As Xx and Xz are constructed from the same field noise components one may expect correlations. Still, a

careful analysis shows, that they will sum to zero, since 〈Xz(t)Xx(t ′)〉∝ ∆ε

(
〈 ~δHe,z

~δHe,z〉−〈 ~δHe,x
~δHe,x〉

)
and

the correlations of the noise are assumed identical in different directions.
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because the expectation value of the noise field and also of any of its components is assumed

zero. The noise correlation terms in the second line of (B.16) can be rewritten by using the

definitions of X± as∫
〈X±(t)X±(t ′)〉e±iωq(t+t ′)dt ′

=
∫
〈Xx(t)Xx(t ′)〉e±iωq(t+t ′)dt ′−

∫
〈Xy(t)Xy(t ′)〉e±iωq(t+t ′)dt ′ = 0,

where again the different components are assumed uncorrelated20. In addition, the correla-

tion of the noise spectrum for different components is supposed identical. This assumption

means that the noise has no preferential direction. A coordinate transformation t̃ = t ′− t in

the integrals of the remaining terms in (B.16) yields

ρ̇S =− 1
4

∫ 0

ti−t
〈Xz(t)Xz(t + t̃)〉dt̃ (σzρSσz−ρS)

− 1
4

∫ 0

ti−t
〈X+(t)X−(t + t̃)〉e−iωqt̃ dt̃ (σ+σ−ρS−σ+ρSσ−)

− 1
4

∫ 0

ti−t
〈X−(t)X+(t + t̃〉eiωqt̃ dt̃ (σ−σ+ρS−σ−ρSσ+)+h.c..

(B.17)

Note that the correlation of the noise enters from the time the correlation starts ti to the

time of interest t. For the qubit one can safely put ti→−∞. Then, using 〈X±(t)X∓(t ′)〉 =
〈Xx(t)Xx(t ′)〉+ 〈Xy(t)Xy(t ′)〉, where the mixing terms again are neglected because of uncor-

related noise components, and the definitions of the damping rates (2.22) yields

ρ̇S=
ΓR

2
(σ+ρSσ−−σ+σ−ρS)+

ΓE

2
(σ−ρSσ+−σ−σ+ρS)−

γϕ

4
(σzρSσz−ρS)+h.c. (B.18)

Note, the decoherence is caused by noise at low frequencies ω ≈ 0. Thus, one can imagine

an included factor of e−iωτ ≈ 1 in the corresponding time integrals in (B.17).

B.2 Resonator photon decay

Compared to the corresponding Hamiltonian of the qubit 2.24, Hamiltonian 2.62, describing

the coupling of the resonator field a to the environment, has a rather clear interpretation:

The photons can enter or leave the cavity via the coupling capacitances. Whenever a photon

is annihilated in the cavity a corresponding one is created in the external lines. To analyze

the effect of this damping on the cavity, it is necessary to trace over the external degrees of

20In other words mixing terms as 〈X±(t)X∓(t ′)〉 are zero.
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freedom. To simplify the calculation below, only the field in the transmission line on the left

is considered (in (2.62)), since the same calculation is necessary for the right side, except a

minus sign. The time evolution of the resonators density matrix ρr is then given by

ρ̇r =− i∑
k

gk〈bk〉e−i(ω−ωk)t
(

a†
ρr(t)−ρr(t)a†

)
− i∑

k
gk〈b†

k〉e
−i(ω−ωk)t(aρr(t)−ρr(t)a)

−∑
k,l

gkgl

∫ t

t1

[
〈bkbl〉e−i(ωt+ωt ′−ωkt−ωlt ′)

(
a†a†

ρr(t ′)−2a†
ρr(t ′)a† +ρr(t ′)a†a†

)
−〈b†

kb†
l 〉e

i(ωt+ωt ′−ωkt−ωlt ′)
(
aaρr(t ′)−2aρr(t ′)a+ρr(t ′)aa

)
+ e−i(ωt+ωt ′−ωkt−ωlt ′)

×
(

a†aρr(t ′)〈bkb†
l 〉−a†

ρr(t ′)a〈b†
l bk〉−aρr(t ′)a†〈bkb†

l 〉+ρr(t ′)aa†〈b†
l bk〉

)
+
(

aa†
ρr(t ′)〈b†

kbl〉−aρr(t ′)a†〈blb
†
k〉−a†

ρr(t ′)a〈b†
kbl〉+ρr(t ′)a†a〈blb

†
k〉
)

×ei(ωt+ωt ′−ωkt−ωlt ′)
]

dt ′.

(B.19)

The writing is shorted by substituting bk,L and b†
k,L with bk and b†

k , respectively. The trans-

mission lines on both sides of the resonator are assumed in thermal equilibrium. Thus, the

distribution function is given by a canonical ensemble [118] and the density matrix of the

resonator’s environment ρR follows as

ρR =
e−βH

Tr(e−βH)
= ∏

k

1

Tr(e−β h̄ωkb†
kbk)

e−β h̄ωkb†
kbk , (B.20)

where β = 1/kBT and the Hamilton operator H in the outside transmission line is inserted.

Considering only a single mode, the trace in the equation above is found by the expansion of

the operator in the number state basis

Tr(e−β h̄ωkb†
kbk) = Tr

(
e−β h̄ωkNk |Nk〉〈Nk|

)
=

∞

∑
Nk=0

e−β h̄ωkNk

=
eβ h̄ωk

eβ h̄ωk−1
=

1
1− e−β h̄ωk

.

In the same way, the photon number expectation is calculated by first taking the following

trace

Tr(b†
kbke−β h̄ωkb†

kbk) =
∞

∑
Nk=0

Nke−β h̄ωkNk =
eβ h̄ωk(

eβ h̄ωk−1
)2 ,

and then dividing the last two equations. This step yields the Bose-Einstein statistics for the

thermal population of the k-th. mode

〈Nk〉= Tr
(

b†
kbkρR

)
=

1
eβ h̄ωk−1

. (B.21)
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To proceed, the total density matrix of the thermal state is given as

ρR = ∏
k

(
1− e−β h̄ωk

)
e−β h̄ωkb†

kbk . (B.22)

With the above considerations the density matrix only has elements on the main diagonal.

Thus, the different expectation values in (B.19) are non-zero only if they include the same

number of creation and annihilation operators

〈bk〉= 〈b†
k〉= 〈blbk〉= 〈b†

l b†
k〉= 0

〈b†
l bk〉= δlkNk

〈blb
†
k〉= δlk(Nk +1)

(B.23)

With these relations (B.19) simplifies to

ρ̇r=−
∫ t

t1
∑
k

g2
k

[([
a†aρr(t ′)−aρr(t ′)a†

]
(Nk +1)+

[
ρr(t ′)aa†−a†

ρr(t ′)a
]
Nk

)
e−i(ω−ωk)(t−t ′)

+
([

aa†
ρr(t ′)−a†

ρr(t ′)a
]

Nk +
[
ρr(t ′)a†a−aρr(t ′)a†

]
(Nk +1)

)
ei(ω−ωk)(t−t ′)

]
dt ′.

(B.24)

The sum in the equation above may be replaced with an integral by ∑k → Sout/2π
∫

dk,

where Sout, as before, is the length of the external transmission line, and k is changed from

an index to the wave number. With the relation of the phase velocity the integration can

be carried out for frequencies
∫

∞

0 dk = 1
s
∫

∞

0 dωk. Note, the time integral in (B.24) is non-

negligible where ωk is close to ω , which describes that frequencies close to the resonators

eigenfrequency can be coupled into and out from the resonator. Thus, the lower integration

bound for the frequency integration can be set to−∞, n̄th will be used for the thermal photon

number at ω in the transmission lines, and ωk may be replaced with ω in gk = Cc

√
ωkω

CcSout

With
∫

∞

−∞
e±i(ω−ωk)(t−t ′)dωk = 2πδ (t − t ′), where δ denotes the Dirac delta function, the

time integral in (B.24) can be solved and the evolution of the density matrix of the resonator

reads

ρ̇r =−
C2

c ω2

C
1
sc

[
n̄th

(
aa†

ρr−2a†
ρra+ρraa†

)
+(n̄th+1)

(
a†aρr−2aρra† +ρra†a

)]
(B.25)

As all expectation values with mixing terms between operators of the two sides are zero, the

calculation for the right side is analogue. Furthermore, all remaining terms yield from the

integral in (2.23), where the sign of V is squared. Thus, the same terms are recovered for the

right side transmission line, and a factor of two can be inserted into (B.25) to account for the
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left and right side transmission lines. The relaxation constant is found in consistency with

the classical calculation κ =
2ω2C2

c Z
Cr

(compare (A.14)), where s = 1/
√

lc and Z =
√

l/c are

used. Furthermore, for low temperatures the mean number of photons in the transmission

lines can be set zero n̄th = 0 and only the photon decay remains

ρ̇r =−
κ

2

(
a†aρr−2aρra† +ρra†a

)
(B.26)

C Basic transformations

C.1 Rotating frames

In this section the transformation of basic operators into rotating frames are shown. In gen-

eral a transformation of a basis η to a new basis ζ is given by ζ = Ûη , where Û is a unitary

operator. The Schrödinger equation remains valid in the new basis, so that

ih̄∂tζ = H̃ζ

ih̄∂t
(
Ûη
)
= H̃Ûη

ih̄
(

˙̂Uη +Û η̇

)
= H̃Ûη

ih̄∂tη =
(

Û†H̃Û− ih̄Û† ˙̂U
)

η . (C.27)

Since the last line is the Schrödinger equation in the old basis, the term in brackets corre-

sponds to the original Hamiltonian H, so that

H̃ = ÛHÛ† + ih̄U̇U†. (C.28)

As a first step the lowering and raising operators σ± will be transformed into a frame rotating

around the σz axis with an angular frequency ω . Therefore the transformation operator reads

Û1 = e
iωtσz

2 .

Û1σ±Û†
1 = Û1σ±e−

iωtσz
2

= Û1

[
σ± cos

(
ωt
2

σz

)
− iσ± sin

(
ωt
2

σz

)]
.

Note, the cosine function only includes even powers of its argument and the sine only odd.

The fact σ2n
i = 1 and σ

2n+1
i = σi for the Pauli matrices (i ∈ {x,y,z}) together with σ±σz =
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∓σ± and σzσ± =±σ± yields

Û1σ±Û†
1 = Û1

[
cos
(

ωt
2

)
± i sin

(
ωt
2

)]
σ±

= e±
iωt
2 e

iωt
2 σzσ±

= e±
iωt
2 e±

iωt
2 σ±

= e±iωt
σ± (C.29)

Second, the transformation of the photon field operators a and a† into a frame rotating with

frequency ω around a†a can be easily concluded from its time evolution (2.46) [96]. The

transformation follows from

a(t) = eiωta†aa(0)e−iωta†a = a(0)e−iωt ,

as

eiωta†a(a+a†)e−iωta†a = ae−iωt +a†eiωt (C.30)

C.2 Dispersive regime

Hamiltonian (4.6) may be transformed by the unitary transformation Û3 = eG with generator

G = g∆

δqr

(
aσ+−a†σ−

)
for identifying the dispersive shift. Nevertheless, it is worthwhile to

start by transforming Hamiltonian (4.5). When neglecting the probing terms as well as the

diagonal coupling and off resonant interactions the Jaynes-Cummings Hamiltonian remains

H =
h̄ωq

2
σz + h̄ω0a†a+ h̄g∆

(
aσ++a†

σ−
)
. (C.31)

In the regime where the detuning δqr is much smaller than the coupling constant g∆ an ex-

pansion of Û3 to the second order of its argument is sufficient

Û3HÛ†
3 ≈ H +[G,H]−2GHG+

1
2

GGH +
1
2

HGG. (C.32)

The transformation of each operator in the considered Hamiltonian is then[
G,

h̄ωq

2
σz

]
=−h̄ωq

g∆

δqr

(
aσ++a†

σ−
)

(C.33)

[
G, h̄ω0a†a

]
= h̄ω0

g∆

δqr

(
aσ++a†

σ−
)

(C.34)
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[
G, h̄g∆

(
aσ++a†

σ−
)]

= h̄
g2

∆

δqr

(
2a†aσz +σz +1

)
(C.35)

In the following only terms to second order in g∆ are kept. They read

h̄ωq

2

(
−GσzG+

1
2

G2
σz+

1
2

σzG2
)
=

h̄ωq

2
g2

∆

δqr2

(
2a†aσ−σ+−2aa†

σ+σ−
)

=−
h̄ωq

2
g2

∆

δ 2
qr

(
2a†aσz +σz +1

) (C.36)

and

h̄ω0

(
−Ga†aG+

1
2

G2a†a +
1
2

a†aG2
)
=

h̄ω0

2
g2

∆

δ 2
qr

(
2aa†aa†

σ+σ−+2a†a†aaσ−σ+

−aa†a†aσ+σ−−2a†aa†aσ−σ+−a†aaa†
σ+σ−

)
=

h̄ω0

2
g2

∆

δ 2
qr

(
2
[
a†a+1

]
σ+σ−−2a†aσ−σ+

)
=

h̄ω0

2
g2

∆

δ 2
qr

(
2a†aσz +σz +1

)
.

(C.37)

For calculating the commutation relation of the field operators
[
a,a†] = 1 as well as prop-

erties of the lowering and rasing operators σzσ± = −σ±σz = ±σ±, σ2
± = 0, and 2σ±σ∓ =

1±σz are used. The sum of (C.33) and (C.34) cancels the coupling term in the Hamiltonian.

The additional terms given by the sum of (C.35) to (C.37) include the dispersive shift. The

total transformed Hamiltonian reads

H ≈ h̄
(

ω0 +
g2

∆

δqr
σz

)
a†a+

h̄
2

(
ωq +

g2
∆

δqr

)
σz, (C.38)

where the constant energy g2
∆

2δqr
is neglected.

C.3 Dressed-state basis

Following the definition of the dressed levels (5.3) and the back transformation

|gN〉= sinθ |1N〉− cosθ |2N〉

|eN−1〉= cosθ |1N〉+ sinθ |2N〉,
(C.39)
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the Hamiltonian as well as the Lindblad term of the driven qubit can be transformed to the

dressed-state basis. The elements of the Lindblad operator transform as

〈1N|Lq|1N〉=sin2
θ〈gN|Lq|gN〉+ cos2

θ〈eN−1|Lq|eN−1〉

+ sinθ cosθ
[
〈gN|Lq|eN−1〉+ 〈eN−1|Lq|gN〉

]
=Γr

[
sin2

θ〈eN|ρ|eN〉− cos2
θ〈eN−1|ρ|eN−1〉

]
−Γϕ sinθ cosθ [〈gN|ρ|eN−1〉+ 〈eN−1|ρ|gN〉]

=Γr sin2
θ cos2

θ〈1N +1|ρ|1N +1〉+Γr sin4
θ〈2N +1|ρ|2N +1〉

+Γr sin3
θ cosθ [〈1N +1|ρ|2N +1〉+ 〈2N +1|ρ|1N +1〉]

−Γr cos4
θ〈1N|ρ|1N〉−Γr sin2

θ cos2
θ〈2N|ρ|2N〉

−Γr sinθ cos3
θ〈1N|ρ|2N〉−Γr sinθ cos3

θ〈2N|ρ|1N〉

−2Γϕ sin2
θ cos2

θ [〈1N|ρ|1N〉−〈2N|ρ|2N〉]

+Γϕ sinθ cosθ cos2θ [〈1N|ρ|2N〉+ 〈2N|ρ|1N〉]

(C.40)

Note, the decoherence only produces terms with same photon number N. But due to the

relaxation, populations and coherences of the step (N + 1) above the considered one of the

dressed ladder contribute to the Lindblad operator in the dressed basis. The reason is that

the decoherence cannot change the total number of excitations N. On the other hand, the

relaxation can remove one excitation from the system. The same is true for the remaining

terms. They read

〈2N|Lq|2N〉=cos2
θ〈gN|Lq|gN〉+ sin2

θ〈eN−1|Lq|eN−1〉

− sinθ cosθ
[
〈gN|Lq|eN−1〉+ 〈eN−1|Lq|gN〉

]
=Γr

[
cos2

θ〈eN|ρ|eN〉− sin2
θ〈eN−1|ρ|eN−1〉

]
+Γϕ sinθ cosθ [〈gN|ρ|eN−1〉+ 〈eN−1|ρ|gN〉]

=Γr cos4
θ〈1N +1|ρ|1N +1〉+Γr sin2

θ cos2
θ〈2N +1|ρ|2N +1〉

+Γr sinθ cos3
θ [〈1N +1|ρ|2N +1〉+ 〈2N +1|ρ|1N +1〉]

−Γr sin2 cos2
θ〈1N|ρ|1N〉−Γr sin4

θ〈2N|ρ|2N〉

−Γr sin3
θ cosθ〈1N|ρ|2N〉−Γr sin3

θ cosθ〈2N|ρ|1N〉

+2Γϕ sin2
θ cos2

θ [〈1N|ρ|1N〉−〈2N|ρ|2N〉]

−Γϕ sinθ cosθ cos2θ [〈1N|ρ|2N〉+ 〈2N|ρ|1N〉] ,

(C.41)
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〈1N|Lq|2N〉=−sinθ cosθ〈gN|Lq|gN〉+ sinθ cosθ〈eN−1|Lq|eN−1〉

+ sin2
θ〈gN|Lq|eN−1〉− cos2

θ〈eN−1|Lq|gN〉

=Γr [−sinθ cosθ〈eN|ρ|eN〉− sinθ cosθ〈eN−1|ρ|eN−1〉]

−Γϕ sin2
θ〈gN|ρ|eN−1〉+Γϕ cos2

θ〈eN−1|ρ|gN〉

=−Γr sinθ cos3
θ〈1N +1|ρ|1N +1〉−Γr sin3

θ cosθ〈2N +1|ρ|2N +1〉

−Γr sin2
θ cos2

θ [〈1N +1|ρ|2N +1〉+ 〈2N +1|ρ|1N +1〉]

−Γr sinθ cos3
θ〈1N|ρ|1N〉−Γr sin3

θ cosθ〈2N|ρ|2N〉

−Γr sin2
θ cos2

θ [〈1N|ρ|2N〉+ 〈2N|ρ|1N〉]

+Γϕ sinθ cosθ
[
cos2

θ − sin2
θ
]
[〈1N|ρ|1N〉−〈2N|ρ|2N〉]

−Γϕ

[
sin4

θ + cos4
θ
]
〈1N|ρ|2N〉+2Γϕ sin2

θ cos2
θ〈2N|ρ|1N〉,

(C.42)

〈2N|Lq|1N〉=−sinθ cosθ〈gN|Lq|gN〉+ sinθ cosθ〈eN−1|Lq|eN−1〉

− cos2
θ〈gN|Lq|eN−1〉+ sin2

θ〈eN−1|Lq|gN〉

=Γr [−sinθ cosθ〈eN|ρ|eN〉− sinθ cosθ〈eN−1|ρ|eN−1〉]

+Γϕ cos2
θ〈gN|ρ|eN−1〉−Γϕ sin2

θ〈eN−1|ρ|gN〉

=−Γr sinθ cos3
θ〈1N +1|ρ|1N +1〉−Γr sin3

θ cosθ〈2N +1|ρ|2N +1〉

−Γr sin2
θ cos2

θ [〈1N +1|ρ|2N +1〉+ 〈2N +1|ρ|1N +1〉]

−Γr sinθ cos3
θ〈1N|ρ|1N〉−Γr sin3

θ cosθ〈2N|ρ|2N〉

−Γr sin2
θ cos2

θ [〈1N|ρ|2N〉+ 〈2N|ρ|1N〉]

+Γϕ sinθ cosθ
[
cos2

θ − sin2
θ
]
[〈1N|ρ|1N〉−〈2N|ρ|2N〉]

+2Γϕ sin2
θ cos2

θ〈1N|ρ|2N〉−Γϕ

[
sin4

θ + cos4
θ
]
〈2N|ρ|1N〉.

(C.43)

After tracing the equations over the photon number N of the driving field, the reduced el-

ements of the Linblad operator Li j = 〈i|Lq,dr| j〉 = TrN〈iN|Lq,dr| jN〉 with [i, j]] ∈ {1,2} in

dependence of the reduced density matrix elements ρi j = TrN〈iN|ρ| jN〉 read

L11=−
[
Γr cos2

θ cos2θ+
Γϕ

2
sin22θ

]
ρ11−

[
Γrsin2

θ cos2θ−
Γϕ

2
sin22θ

]
ρ22

+
Γϕ −Γr

2
sin2θ cos2θ (ρ12 +ρ21) ,

(C.44)
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L22=

[
Γr cos2

θ cos2θ+
Γϕ

2
sin22θ

]
ρ11+

[
Γr sin2

θ cos2θ−
Γϕ

2
sin22θ

]
ρ22

−
Γϕ −Γr

2
sin2θ cos2θ (ρ12 +ρ21) ,

=−L11

(C.45)

L12 =

[
−Γr cos2

θ sin2θ+
Γϕ

2
sin2θ cos2θ

]
ρ11+

[
−Γr sin2

θ sin2θ−
Γϕ

2
sin2θ cos2θ

]
ρ22

+
[
Γϕ −Γr

] sin2 2θ

2
(ρ12 +ρ21)−Γϕρ12,

(C.46)

L21 =

[
−Γr cos2

θ sin2θ+
Γϕ

2
sin2θ cos2θ

]
ρ11+

[
−Γr sin2

θ sin2θ−
Γϕ

2
sin2θ cos2θ

]
ρ22

+
[
Γϕ −Γr

] sin2 2θ

2
(ρ12 +ρ21)−Γϕρ21.

(C.47)

The total Lindblad operator of the qubit in the dressed-state basis can be summarized in

matrix form as

Lq,dr =−
Γr

2
δqh

ΩR
[σ+σ−ρσ+σ−+σ+ρσ−−σ−ρσ+−σ−σ+ρσ−σ+]

−

(
Γr

2

δ 2
qh

Ω2
R
+

Γϕ

2
Ω2

R0

Ω2
R

)
[σ+σ−ρσ+σ−−σ+ρσ−−σ−ρσ++σ−σ+ρσ−σ+]

−
(
Γϕ −Γr

) δqhΩR0

Ω2
R

[σ+σ−ρσ−+σ+ρσ+σ−−σ−ρσ−σ+−σ−σ+ρσ+]

− Γr

2
ΩR0

ΩR
[σ+σ−ρσ++σ+ρσ−σ++σ−ρσ+σ−+σ−σ+ρσ−]

+
(
Γϕ −Γr

)ΩR0δqh

2Ω2
R

[σ+σ−ρσ+−σ+ρσ−σ++σ−ρσ+σ−−σ−σ+ρσ−]

+

(
−Γϕ +

(
Γϕ −Γr

) Ω2
R0

2Ω2
R

)
[σ+σ−ρσ−σ++σ−σ+ρσ+σ−]

+
(
Γϕ −Γr

) Ω2
R0

2ΩR
[σ+ρσ++σ−ρσ−] .

(C.48)

Note, in the sixth line the terms σ+σ−ρσ−σ++σ−σ+ρσ+σ− can be replaced by the iden-

tical term (−σzρσz +ρ)/2. It is worthwhile to reduce the above equation to the terms that
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remain after a RWA in a frame rotating around the σz axis. Therefore, terms with unequal

contribution regarding σ+ and σ− will be neglected21, since they would oscillate fast and,

thus, average out. The invariant part of the Lindblad operator then is

Lq,dr =−
Γr

2
δqh

ΩR
[σ+σ−ρσ+σ−+σ+ρσ−−σ−ρσ+−σ−σ+ρσ−σ+]

−

(
Γr

2

δ 2
qh

Ω2
R
+

Γϕ

2
Ω2

R0

Ω2
R

)
[σ+σ−ρσ+σ−−σ+ρσ−−σ−ρσ++σ−σ+ρσ−σ+]

+

(
Γϕ

2
−
(
Γϕ −Γr

) Ω2
R0

4ΩR

)
[σzρσz−ρ] .

(C.49)

The above equation can be brought to a more transparent form if the identities

2σ+σ−ρσ+σ−−2σ−σ+ρσ−σ+ = σ+σ−ρ +ρσ+σ−−σ−σ+ρ−ρσ−σ+ (C.50)

and

σ+σ−ρσ+σ−−σ−σ+ρσ−σ+ =
1
2
(σzρσz +ρ)

=
1
2
(σzρσz−ρ +σ+σ−ρ +σ−σ+ρ +ρσ−σ++ρσ+σ−)

(C.51)

are used in the first and second line of (C.49), respectively. In addition, with
δ 2

qh

Ω2
R
= 1− Ω2

R0
Ω2

R
the Lindblad term can be written as

Lq,dr =
Γr

4
δqh

ΩR
[−σ+σ−ρ−ρσ+σ−+σ−σ+ρ +ρσ−σ+−2σ+ρσ−+2σ−ρσ+]

+

(
Γr

4

(
Ω2

R0

Ω2
R
−1
)
−

Γϕ

4
Ω2

R0

Ω2
R

)
× [σ+σ−ρ +ρσ+σ−+σ−σ+ρ +ρσ−σ+−2σ−ρσ+−2σ+ρσ−]

+

(
Γr

4

(
Ω2

R0

Ω2
R
−1
)
−

Γϕ

4
Ω2

R0

Ω2
R
+

Γϕ

2
−
(
Γϕ −Γr

) Ω2
R0

4ΩR

)
[σzρσz−ρ] .

(C.52)

When rearranged as

Lq,dr =
1
2

(
Γr

2

(
1−

δqh

ΩR

)
+
(
Γϕ −Γr

) Ω2
R0

2Ω2
R

)
[2σ+ρσ−−σ−σ+ρ−ρσ−σ+]

+
1
2

(
Γr

2

(
1+

δqh

ΩR

)
+
(
Γϕ −Γr

) Ω2
R0

2Ω2
R

)
[2σ−ρσ+−σ+σ−ρ−ρσ+σ−]

+
1
2

(
Γϕ −

Γr

2
−
(
Γϕ −Γr

)Ω2
R0

Ω2
R

)
[σzρσz−ρ] .

(C.53)

21These terms are neglected because in a frame rotating with the additional probing signal they are fast

oscillating. Nevertheless, if a spectral analysis without the probe is to be achieved they should be taken into

account.
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it is possible to identify a rate for excitation, relaxation, and dephasing as given by the first,

second, and third line of the above equation, respectively (compare to (B.18)).

To analyze the coupling of the fundamental mode to the dressed system, the influence of the

operators σx and σz of the original qubit basis on the dressed states needs to be calculated.

To start with σx applied on the dressed states, it reads

σx|1N〉=σx (sinθ |gN〉+ cosθ |en−1〉) = sinθ |eN〉+ cosθ |gn−1〉

=sinθ cosθ |1N +1〉+ sin2
θ |2N +1〉

+ sinθ cosθ |1N−1〉− cos2
θ |2N−1〉,

(C.54)

σx|2N〉=σx (−cosθ |gN〉+ sinθ |en−1〉) =−cosθ |eN〉+ sinθ |gn−1〉

=− cos2
θ |1N +1〉− sinθ cosθ |2N +1〉

+ sin2
θ |1N−1〉− sinθ cosθ |2N−1〉.

(C.55)

Here, no interactions between levels of the same manifold are found. The σx term instead

couples each level of one manifold to the two levels of the manifold above (N+1) and below

(N-1). This interaction corresponds to the Rabi frequency shifted transition frequencies.

They also may be probed (see chapter 5.6) and play an important role in quantum optics

[110], since amplification and damping may also be found there. A transition between the

Rabi levels of one manifold is given by the σz interaction, as

σz|1N〉=σz (sinθ |gN〉+ cosθ |en−1〉) =−sinθ |gN〉+ cosθ |en−1〉

=− sin2
θ |1N〉+ sinθ cosθ |2N〉

+ cos2
θ |1N〉+ sinθ cosθ |2N〉,

(C.56)

σz|2N〉=σz (−cosθ |gN〉+ sinθ |en−1〉) = cosθ |gN〉+ sinθ |en−1〉

=sinθ cosθ |1N〉− cos2
θ |2N〉

+ sinθ cosθ |1N〉+ sinθ cosθ |2N〉.

(C.57)

The transition matrix elements can be summarized in the form22

σz→ sin2θσx + cos2θσz (C.58)

22Note, in this work a discrimination between the Pauli operators in flux, original qubit, or dressed basis

is not used. They are usually multiplied with energies or frequencies that have indices defining the basis.

Nevertheless, one should always be aware, which basis is used.
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C.4 Eigenbasis of the multiphoton driven qubit

As mentioned in 5.6, the relaxation rates of the qubit are modified when the basis is changed

by a rotation around the y-axis. This change of basis is expressed by a unitary transformation

Û8 = eiθσy and tan2θ = Ωk0/δqk which is equivalent to a rotation given by cosθ + iσy sinθ .

For analyzing its influence, in a first step the transformation of the basic operators is given

by

Û†
8 σ+Û8 =−sinθ cosθσz + cos2

θσ+− sin2
θσ−,

Û†
8 σ−Û8 =−sinθ cosθσz− sin2

θσ++ cos2
θσ−,

Û†
8 σ+σ−Û8 = cos2

θσ+σ−+ sinθ cosθ(σ++σ−)+ sin2
θσ−σ+,

Û†
8 σzÛ8 = cos2θσz + sin2θ(σ++σ−).

(C.59)

Then the transformation of the Lindblad term is done by

Lk =Û†
8 LqÛ8

=
Γr

2

(
2Û†

8 σ−Û8ρÛ†
8 σ+Û8−Û†

8 σ+σ−Û8ρ−ρÛ†
8 σ+σ−Û8

)
+

γφ

2

(
Û†

8 σzÛ8ρÛ†
8 σzÛ8−ρ

)
.

(C.60)

Using the relations in (C.59) the transformation can be carried out

Lk =
Γr

2

(
sin2 2θ

2
[σzρσz−σ+ρσ+−σ−ρσ−]+ sin2θ sin2

θ [σ+ρσz +σzρσ−]

−sin2θ cos2
θ [σ−ρσz +σzρσ+]+2cos4

θσ−ρσ++2sin4
θσ+ρσ−

−cos2
θ [σ+σ−ρ +ρσ+σ−]− sin2

θ [σ−σ+ρ +ρσ−σ+]

sin2θ

2
[σ+ρ +σ−ρ +ρσ++ρσ−]

)
+

γϕ

2
(
cos2 2θσzρσz + sin2 2θ [σ+ρσ++σ−ρσ−+σ+ρσ−+σ−ρσ+]

+ sin2θ cos2θ [σzρσ++σzρσ−+σ+ρσz +σ−ρσz]−ρ) .

(C.61)

118



C. BASIC TRANSFORMATIONS

As in the last chapter only terms that remain after a RWA are kept

Lk =
Γr

2
sin2 2θ

2
(σzρσz−σ−ρσ+−σ+ρσ−)

+
Γr

2
(
cos2

θ [2σ−ρσ+−σ+σ−ρ−ρσ+σ−]+ sin2
θ [2σ+ρσ−−σ−σ+ρ−ρσ−σ+]

)
+

γϕ

2
sin2 2θ (−σzρσz +σ+ρσ−+σ−ρσ+)+

γϕ

2
(σzρσz−ρ) .

=

(
Γr

2
− γϕ

)
sin2 2θ

2
(σzρσz−σ−ρσ+−σ+ρσ−)+

γϕ

2
(σzρσz−ρ)

+
Γr

2
(
cos2

θ [2σ−ρσ+−σ+σ−ρ−ρσ+σ−]+ sin2
θ [2σ+ρσ−−σ−σ+ρ−ρσ−σ+]

)
.

(C.62)

With 0 = ρ−ρ added to the first term, and replacing the positive ρ by (σ+σ−ρ +ρσ+σ−+

σ−σ+ρ +ρσ−σ+)/2 a more transparent form is achieved:

Lk =

(
Γr

2
cos2

θ −
(

Γr

2
− γϕ

)
sin2θ

4

)
[2σ−ρσ+−σ+σ−ρ−ρσ+σ−]

+

(
Γr

2
sin2

θ −
(

Γr

2
− γϕ

)
sin2θ

4

)
[2σ+ρσ−−σ−σ+ρ−ρσ−σ+]

+

(
γϕ

2
+

(
Γr

2
− γϕ

)
sin2 2θ

2

)
[σzρσz−ρ]

(C.63)

Substituting the trigonometric functions as well as the pure dephasing with γϕ = Γϕ −Γr/2

the Lindblad term in the new basis takes the exact same form as C.53.

Lk =
1
2

(
Γr

2

(
1+

δqk

Ωk

)
+
(
Γϕ −Γr

) Ω2
k0

2Ω2
k

)
[2σ−ρσ+−σ+σ−ρ−ρσ+σ−]

+
1
2

(
Γr

2

(
1−

δqk

Ωk

)
+
(
Γϕ −Γr

) Ω2
k0

2Ω2
k

)
[2σ+ρσ−−σ−σ+ρ−ρσ−σ+]

+
1
2

(
Γϕ −

Γr

2
−
(
Γφ −Γr

)Ω2
k0

Ω2
k

)
[σzρσz−ρ] .

(C.64)

This equation allows identifying the relaxation, excitation, and dephasing rates. Please note,

in the last two chapters two different ways for calculation of the relaxation rates by a basis

change are sketched.

C.5 Two-photon interaction with the fundamental mode

In the Hamiltonian (5.34) an effective two-level system is coupled by an off-diagonal and a

diagonal coupling term to the fundamental mode of the resonator. The latter, proportional to
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σz may be transformed into a two-photon off-diagonal term. The Hamiltonian considered is

Ht =
h̄Ωk

2
σz + h̄

[
a† +a

]
(gxkσx +gzkσz)+ h̄ω0a†a+Ωp

(
a†e−iωpt +aeiωpt

)
, (C.65)

where the short abbreviations gzk and gxk are introduced for the diagonal and off-diagonal

coupling constants. To identify the two photon resonances a unitary transformation Û9 =

e
gzk
ω0

(a†−a)σz will be applied. Note, the generator G = gzk
ω0
(a†−a)σz is small for gzk

√
N�ω0.

This requirement is fulfilled for the experimental parameters. Thus the transformation can

be expanded to first order in G only. Then it results in 23

H̃t = Û9HtÛ
†
9 ≈ H̃t +[G,Ht] (C.66)

for the transformed Hamiltonian, since G† = −G. The transformation of the different com-

ponents of (C.65) is[(
a†−a

)
σz,σz

]
= 0[(

a†−a
)

σz,
(

a† +a
)

σx

]
= 2iσy

(
a†a†−aa

)
[(

a†−a
)

σz,
(

a† +a
)

σz

]
=−2[(

a†−a
)

σz,a†a
]
=−σz

(
a† +a

)
[(

a†−a
)

σz,a†e−iωpt +aeiωpt
]
= 2cosωpt σz,

(C.67)

where the second line gives the two-photon off-diagonal coupling, the fourth line cancels the

σz coupling term in H̃t and the time dependence of the last line may be canceled by a RWA.

The final Hamiltonian then reads

H̃t =
h̄Ωk

2
σz + h̄gxk

[
a† +a

]
σx + h̄ω0a†a+Ωp

(
a†e−iωpt +aeiωpt

)
+2ih̄

gxkgzk

ω0
σy

(
a†a†−aa

) (C.68)

Note, also the dissipative Lindblad term of the resonator’s fundamental mode would be influ-

enced from the transformations above. Nevertheless, the additional terms can be dropped in

RWA, since all would oscillate with multiples of the probing frequency in a rotating frame.

23Compare to the Schrieffer-Wolff transformation [88, 119].
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List of Symbols

Constants

e elementary charge
h̄ reduced Planck constant
h Planck constant
i imaginary unit
kB Boltzmann constant
µ0 vacuum permeability
Φ0 magnetic flux quantum
π ratio of a circle’s circumference to its diameter

Variables

α scaling factor of the small junction in a flux qubit loop
αh expectation value of the coherent state of a resonator’s harmonic
αn,α

∗
n unitless field amplitude in the resonator and its complex conjugate, re-

spectively
α
(l)
n ,α

(r)
n unitless field amplitudes for left and right traveling waves of mode n,

respectively
χ(~r) phase of the wave function
∆ minimal energy level splitting of qubit - qubit gap
∆x discrete cell sizes
δ (x) Dirac delta function
δhd harmonic-driving frequency detuning
∆L qubit gap of the lasing sample
δqd qubit-drive detuning
δqh qubit-resonator harmonic detuning
δqp,δrp qubit-probe and resonator-probe detuning, respectively
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List of Symbols

δqr qubit-resonator detuning
δRp detuning between probe and Rabi frequency
∆′k redefined qubit gap induced by the k-th. resonance with the driving

signal
δqk detuning of the qubit frequency from its k-th. resonance with the driv-

ing signal
δkp1,δkp2 detuning between multiphoton split two level system probing signal
δnm Kronecker delta
δ̃qp, δ̃rp, δ̃Rp redefined qubit-probe, resonator-probe, and Rabi-probe detuning in-

cluding photon decay and decoherence, respectively
δ̃Rp redefined detuning between probe and Rabi frequency including deco-

herence
δ̃kp2 redefined detuning between multiphoton split state and probing signal

including decoherence
ε energy bias of qubit
εL energy bias of the lasing sample
η abbreviation for qubit drive as part of the generator of a unitary trans-

formation
γϕL pure dephasing of the lasing sample
ΓrL relaxation rate of the lasing sample
Γr,Γe,Γϕγϕ qubit relaxation, excitation, decoherence, and pure dephasing rate
Γ

(dr)
r ,Γ(dr)

e ,γ (dr)
ϕ respective relaxation, excitation, and dephasing rate of the effective

dressed two level system
Γ′ϕ modified decoherence rate of the qubit
Γrk,Γek,γϕk,Γϕk respective relaxation, excitation, dephasing, and decoherence rate of

the multi-photon dressed qubit
Γ′drϕ modified decoherence rate of the effective dressed two level system
Γk1,Γk2 abbreviations for including the relaxation to the Maxwell-Bloch equa-

tions
λL London penetration depth
λ wavelength
µq magneton of a qubit
ν frequency
Ω̂R Rabi operator
Ω′cl qubit bias dependent driving amplitude of the qubit
ω0 circular eigenfrequency of the resonator’s fundamental mode
Ωd driving amplitude of the resonator
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List of Symbols

Ωh driving amplitude of the qubit by the signal in the harmonic
ωh circular frequency of the qubit harmonic
Ω′h argument of the Bessel function
Ωp amplitude of the probing field
ωq eigenfrequency of the qubit - frequency splitting of the qubit
ΩR circular Rabi frequency
ωd circular driving frequency
Ωcl driving amplitude of the qubit
ΩR0 on-resonance Rabi frequency
ωk circular frequency of mode k in the external transmission line
ωn circular frequency of the n-th. resonator mode
ωp circular frequency of the probing field
Ωk0 additional on resonance splitting by the driving signal at the k-th. res-

onance
Ωk generalized splitting around the k-th. resonance
χ1,χ2 phases of the wave functions on the two sides of Josephson junction
φ̂n flux field operator for mode n
ϕ̂ generalized coordinate (phase) operator
Φ magnetic flux
φ flux field variable of the resonator
φ (l),φ (r) time dependent flux field amplitudes for left and right traveling waves,

respectively
Φe externally applied magnetic flux
Φn flux in cell n
φn time dependent flux field amplitude, canonical variable
Ψ(~r) wave funtion
Ψ1,Ψ2 wave functions on the two sides of Josephson junction
ϕ1,ϕ2 phase difference at the two large junctions of a qubit loop
ϕ phase difference at a Josephson junction
ρ,ρS,ρR,ρq,ρr density matrices in general, for a system, a reservoir, the qubit, and the

resonator, respectively
ρ+,ρ− sum and difference of the qubit’s coherences
ρ0 population difference between upper and lower qubit level
ρi j elements of the density matrix of the effective dressed-two-level sys-

tem
σ normal conductance
σ+,σ− rasing and lowering qubit operators, respectively
σx,σy,σz Pauli matrices
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List of Symbols

τ mean time of electron lattice interaction
θ state mixing angle
Ξ inverse of a transformation matrix
ξ small expansion parameter
~A vector potential
a†,a creation and annihilation operator for the fundamental resonator mode
Aq area of a flux qubit
An,Bn multiplication constants
a†

n,an creation and annihilation operator for the n-th. mode of the resonator
b†

k,Lbk,L,b
†
k,Rbk,R creation and annihilation operators in the left and right external trans-

mission lines, respectively
C capacitance of lumped element representation of the resonator
c capacitance per unit length
Cc coupling capacitance of the resonator
CJ capacitance of Josephson junction
CJi capacitance of the i-th. Josephson junction of a qubit loop
D integration sphere
dq distance of the qubit from the central conduction line of the resonator
〈Y 〉,〈Y 〉0 respective expectation value with and without coupling for operator Y
~E electric field
E1,E2 eigenenergies on the two sides of Josephson junction
EC charging energy
EJ Josephson coupling energy
Ek kinetic energy
E±,N eigenenergies of the pair of states on step N of the dressed ladder
f friction of a qubit due external magnetic field
G energy gap of a superconductor
g coupling constant between resonator and qubit
g∆,gε respective off-diagonal and diagonal coupling constant
gh Hamiltonian of a qubit coupled to the resonator’s harmonic
gL coupling constant of the lasing sample
gdr,Γdrϕ ,Γdr1,Γdr2 abbreviations including the coupling and the relaxation processes to

the Maxwell-Bloch equations
gk coupling constant of the resonator field to the k-th. mode of the external

transmission lines
gxk,gzk off-diagonal and diagonal effective coupling between fundamental mode

and the effective two level system induced by the k-th. resonance
H Hamilton function
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List of Symbols

H̃dr Hamiltonian of the effective two level system coupled to the funda-

mental mode
H̃R Hamiltonian of the effective two level dressed system
H̃r Hamiltonian of the resonator and the external transmission lines
~δHe magnetic field fluctuations
~H magnetic field
~He external magnetic field
H Hamilton operator
Ha driven fundamental mode Hamiltonian
Hc coupling Hamiltonian of qubit and resonator
Hh,q Hamiltonian of a qubit coupled to the resonator’s harmonic
Hp Hamiltonian for the probing field
Hq qubit Hamiltonian
hq vertical dimension of the qubit
Ht total system Hamiltonian
Hd driving Hamiltonian
Ĩ current amplitude
I current
I0 zero point current of the resonator
Ic critical current of a Josephson junction
IpL persistent current of the lasing sample
Ip persistent current of a flux qubit
Iq current operator of the qubit
Ir current in the resonator (operator)
In current in cell n
ICc current at the coupling capacitance
~jN normal current density
~jS superconducting current density
jc critical current density at a Josephson junction
Jl Bessel function of the first kind
|1N〉, |2N〉 dressed-state vectors in the Dirac notation
|αh〉 state vector of the coherent state in the harmonic in Dirac notation
|g,N〉, |e,N〉 respective state vectors for ground and excited state qubit and N pho-

tons in the resonator in Dirac notation
|g〉, |e〉 state vectors for ground and excited state of the qubit in Dirac notation
|R〉, |L〉 state vectors for qubit states with right and left circulating current in

Dirac notation, respectively
~k wave vector of an electron
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K coupling energy between the wave functions on a Josephson junction
kn wave number of the n-th. resonator mode
L̂ Lindblad operator of the effective dressed-two-level system
L̂q Lindblad term of the qubit
L̂r Lindblad term of the resonator
L̂i j elements of the Lindblad operator of the effective dressed-two-level

system
L Lagrangian
Ld Lagrangian density of a transmission line
Lr Lagrangian of the resonator
L inductance of lumped element representation of the resonator
l inductance per unit length
Lq inductance of a qubit
lq horizontal dimension of the qubit
Ln lumped element equivalent inductance of the resonator for mode n
M mutual inductance
m mass
n̂ modified number operator for the dressed-states
N photon number in the resonator
N1,N2 number of cooper pairs (charges) on the independent islands of a Joseph-

son junction
n1,n2 densities of cooper pairs on the two sides of Josephson junction
nN density of normal charge carriers
nS density of superconducting charge carriers
p̂ generalized momentum operator
p̂n canonical momentum (charge field) operator for mode n
p canonical momentum
pg, pe probability for qubit ground and excited state, respectively
pi generalized momenta in a qubit loop, i is the index of the junction
pn canonical momentum of mode n
Q̂ charge operator
~q total wave vector of a cooper pair
Q electric charge
qS cooper pair charge
Qn charge in cell n
r resistance per unit length
RL load resistance of the transmission lines
RN normal resistance on a Josephson junction
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~S spin vector
S length of the CPW resonator
s phase velocity in the coplanar line
S(ω) noise spectrum
Sout length of the external transmission lines
Sq influence of the qubit to the transmission of the qubit
S(dr)

q influence of the population of the effective dressed two level system to

the transmission of the fundamental mode
SX(ω) quantum noise spectral density
SSX symmetrized noise spectral density
T temperature
t time
T1,T2 relaxation and decoherence time, respectively
Tc critical temperature for superconducting phase transition
tr transmission through the resonator
ti initial time
Ûi unitary transformation operators numbered with i as they appear in the

text
U potential energy
V interaction energy
Vr interaction Hamiltonian of the resonator and the external transmission

lines
Ṽ voltage amplitude
V voltage
v particle velocity
V0 zero point voltage of the resonator
vD drift velocity
Vout zero point voltage in the external transmission lines
Vp input voltage of the probing field
Vr voltage in the resonator (operator)
Vin input voltage of input field applied to the resonator
Vn voltage in cell n
VJi voltage at the i-th. Josephson junction of a qubit loop
x̃ translated coordinate
x,y,z coordinates
Xx,Xy,X± x-, y-, and secondary components of the noise bath observable, respec-

tively
Xz,X⊥ z- and perpendicular components of a noise bath observable, respec-
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tively
Z impedance of the transmission line
Z load resistance and wave impedance of the external lines
Zc impedance of the coupling capacitance
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Zusammenfassung

In dieser Arbeit werden die Wechselwirkungen eines künstlichen Atoms mit einem Reso-

nator hoher Güte untersucht und daraus ein neues Konzept zur Erzeugung schmalbandiger,

kohärenter Mikrowellenstrahlung (Lasing) entwickelt. Das System entspricht dabei der klas-

sischen Architektur der Quantenelektrodynamik in einer Kavität. Dabei wird ein supraleiten-

des Qubit als Atom genutzt. Dies ist ein supraleitender Ring, der mindestens einen Josephson

Kontakt als nicht lineares Element enthält. Das Qubit kann daher als ein Harmonischer Os-

zillator mit nicht-linearem Potential verstanden werden. Damit entsteht ein Objekt mit nicht

äquidistanten Energieniveaus, sodass einzelne Übergänge mit verschiedenen Frequenzen an-

geregt werden können.

Seit dem Nachweis und der Manipulation kohärenter Oszillationen eines supraleitenden

Schaltkreises [22] entwickelt sich das Feld solcher Festkörperquantensysteme hauptsächlich

in zwei Richtungen. Auf der einen Seite stehen Experimente mit dem Ziel eines funktio-

nierenden Quantencomputers. Der Fokus liegt dabei auf der Realisierung von Quantenga-

tes [45–54] und der Verbesserung der Kohärenz [30, 57, 62, 63]. Wie auch der vorliegen-

den Arbeit zu entnehmen, zeigen sich andererseits in vielen Experimenten Parallelen zwi-

schen natürlichen Atomen und Festkörperquantensysteme. Dies konnte eindrucksvoll an-

hand von originär quantenoptischen Experimenten an supraleitenden Quantenschaltkreisen

gezeigt werden. Dazu zählen die Beobachtung der Vakuum-Rabi Aufspaltung [59], die Re-

sonanzfluoreszenz eines einzelnen Qubits [65], die Beobachtung des Autler-Townes Effek-

tes [66] und die elektromagnetisch induzierte Transparenz [67].

Bei experimentellen Untersuchungen macht man sich die hohe Kontrollierbarkeit dieser ma-

kroskopischen Quantensysteme zunutze. Da diese als Schaltkreise entworfen und hergestellt

werden, kann z.B. das Regime starker Kopplung relativ einfach erreicht und kontrolliert wer-

den [59,60]. Dies bedeutet, dass die Kopplung zwischen dem Strahlungsfeld und dem künst-

lichen Atom jegliche Verlustprozesse der beteiligten Systeme übersteigt. Letztere sind aller-
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dings bei supraleitenden Quantensystemen signifikant höher als die entsprechenden Raten

bei natürlichen Atomen, was ebenfalls eine Auswirkung der Größe der Schaltkreise und der

damit einhergehenden starken Kopplung an Störfeldern ist. Damit konnte die starke Kopp-

lung eines einzelnen Festkörperquantensystems an das Strahlungsfeld in einer supraleiten-

den Kavität zur Realisierung eines Einzel-Atom-Lasers im Mikrowellenbereich genutzt wer-

den [68]. Hier wurden drei Energielevel des künstlichen Quantenobjektes verwendet. Mit

voller Kontrolle über den Übergang vom niedrigsten zum höchsten Level und einer schnel-

len Relaxation in das mittlere Niveau konnte eine Besetzungsinversion erzeugt werden. Das

klassische Laser Regime ist damit reproduziert [1].

Im Gegensatz dazu zeigt und analysiert diese Arbeit erstmals ein Konzept, in dem ausschließ-

lich zwei Energieniveaus benötigt werden, um eine inverse Besetzung zu erzeugen und La-

sing eines einzelnen künstlichen Atoms nachzuweisen.

Dazu werden zunächst die beiden hier verwendeten Komponenten eines solchen Einzel-

Atom-Lasers, das Flussqubit als künstliches Zwei-Niveau-System und der supraleitende Re-

sonator als Strahlungskavität, beschrieben und theoretisch analysiert. Physikalische Grund-

prinzipien, supraleitende Effekte und die Geometrie der Systeme ermöglichen eine quanten-

optische Beschreibung. Diese beinhaltet ebenfalls die Kopplung an die Umgebung. Mit einer

allgemeinen Reservoir-Theorie können die dissipativen Prozesse, wie Relaxation und Deko-

härenz im Qubit sowie das Abklingen der Photonenzahl und die Linienbreite des Resonators,

begründet und mathematisch erfasst werden. Dies dient als Grundlage zur Beschreibung und

Analyse von experimentellen Ergebnissen.

Experimentelle Untersuchen wurden in einem Mischungskühler bei Temperaturen nahe dem

absoluten Nullpunkt durchgeführt, da einerseits die Sprungtemperatur zur Supraleitung un-

terschritten sein muss und es zweitens von entscheidender Bedeutung ist, dass sowohl für

Qubit als auch Resonator keine thermischen Anregungen aus dem Grundzustand auftreten.

Letzteres setzt Anforderungen sowohl an geringe Temperaturen als auch an ein geringes

Rauschlevel der Eingangssignale, da die Energieaufspaltungen der beteiligten Systeme im

Mikrowellenbereich liegen. Der Messplatz wurde dahingehend entwickelt und angepasst.

Das beinhaltet eine Verankerung der Proben für guten thermischen Kontakt und eine Mini-

mierung des eingetragenen Rauschens bei der Verkabelung und durch Abschirmung.

Das Probendesign wurde so ausgelegt, dass der Resonator zur Charakterisierung des ange-

koppelten Qubits dient, also als Detektor für den Qubitzustand. Orientierend an vorherge-

henden Arbeiten [36, 39, 43] bedeutet dies, dass die Linienbreite des Resonators kleiner ist
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als die durch das Qubit verursachte Verschiebung der Resonanzfrequenz im Grundzustand,

oft auch als dispersive Verschiebung oder Krümmung des Grundzustandes beschrieben. Im

Vergleich zu den zuvor verwendeten Resonatoren aus diskreten Elementen müssen Wellen-

leiterresonatoren daher eine sehr viel höhere Güte aufweisen, da auch die Eigenfrequenzen

entsprechend höher liegen.

Anhand einer ersten Serie experimenteller Untersuchen wird gezeigt, dass alle wesentlichen

Parameter der Einzelsysteme durch kontinuierliche Messung der Transmission eines Pro-

bensignals durch den Resonator bestimmt werden können. Die Kopplung zwischen Fluss-

Qubit und Resonator wird durch eine Kopplungsinduktivität erzeugt. Diese wirkt sich auf

die Transmissionseigenschaften des Resonators aus. Mit Hilfe der sogenannten Zwei-Ton-

Spektroskopie wurde die Energieaufspaltung des Qubits in Abhängigkeit vom externen Kon-

trollfeld bestimmt. Dabei wird ein zusätzliches Mikrowellensignal mit variierender Frequenz

eingestrahlt. Dieses hebt bei Resonanz mit dem Übergang des Qubits die dispersive Verschie-

bung auf. Vergleichend wird dabei auf zwei Proben eingegangen und Unterschiede in den

Messergebnissen erklärt, die durch eine unterschiedliche minimale Energieaufspaltung zu-

stande kommen. Detailliert wird auf die Entstehung der Spektroskopielinie eingegangen und

der Einfluss der Zerfallsraten des Qubits diskutiert. Diese können ebenso wie die Kopplungs-

konstante zwischen Qubit und Resonator bestimmt werden. Mit Hilfe des Dichtematrix-

Formalismus werden Erwartungswerte des Feldes und der Besetzung der Qubitzustände be-

rechnet und mit experimentellen Ergebnissen verglichen. Dabei wird eine sehr gute Über-

einstimmung zwischen Theorie und Experiment gefunden. Gleichzeitig dient die mathema-

tische Beschreibung als Prototyp für weitere Untersuchungen.

In weiteren experimentellen und theoretischen Untersuchungen wird die Wirkung eines star-

ken Mikrowellensignals, das mit einer Frequenz nahe einer Harmonischen des Resonators

angelegt wird, untersucht. Experimentelle Ergebnisse, wie der Übergang vom dispersiven

zum resonanten Regime, können mit einer AC-Zeeman Verschiebung erklärt werden. Dabei

verändert die hohe Photonenanzahl im Resonator effektiv die Energieaufspaltung des Qubits.

Mit Hilfe einer Drei-Ton Spektroskopie wird dies überzeugend experimentell bestätigt. Dar-

aus entsteht die Möglichkeit, mit dem zusätzlichen Mikrowellensignal einen weiteren Kon-

trollparameter einzuführen.

Im Rahmen der Beschreibung mit geordneten Zuständen (dressed states) kann der Einfluss

auf effektive Energieaufspaltung und Relaxationsraten nachvollzogen werden. Von entschei-

dender Bedeutung ist dabei, dass sowohl Zerfall aber auch Anregung des Systems, abhän-
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gig vom Vorzeichen der Verstimmung des Mikrowellensignals zum Qubit, erreicht werden

können. Im Resonanzfall ist dagegen lediglich eine ausgeglichene Besetzung zu erreichen.

Anhand von Leveldiagrammen und Berechnung wird dies begründet. Dabei wird das System

aus Qubit und hochangeregtem Strahlungsfeld zu einem effektiven Zwei-Niveau-System re-

duziert. Darin ist die Anregungsrate proportional zur Zerfallsrate des originalen Qubits. Ge-

koppelt an die fundamentale Mode des Resonators werden damit analytische Berechnungen

durchgeführt. In einer Reihe von Experimenten werden sowohl Verstärkung als auch Ab-

schwächung eines Testsignals nachgewiesen.

Zum Nachweis des Lasing-Effekts wurde eine spezielle Probe hergestellt. Dabei dient ein

in der Nähe des Qubits eingebrachter Goldwiderstand der Erhöhung der Relaxationsraten

und damit der schnelleren Anregung im effektiven System. In einer Reihe von Experimen-

ten werden optimale Bedingungen für den Verstärkungseffekt ermittelt. Außerdem zeigt eine

Leistungsabhängigkeit den additiven Charakter der Verstärkung des Testsignals. Unabhängig

von der Eingangsleistung ist die Anzahl der zusätzlichen Mikrowellenphotonen pro Zyklus

nur durch das Verhältnis der Anregungsrate, der System-Resonator Kopplung und der Zer-

fallsrate des Resonators bestimmt.

Eine spektrale Analyse ohne Testsignal zeigt selbsterhaltende Oszillationen und damit den

Lasing-Effekt. Diese werden durch eine Erhöhung der abgestrahlten Leistung und einer Ver-

ringerung der Linienbreite um 20 % im Vergleich zur thermischen Resonatoranregung nach-

gewiesen. Kontrollmessungen an verschiedenen Arbeitspunkten schließen außerdem andere

mögliche Ursachen einer Signalerhöhung aus. In weiteren Optimierungen mit unseren Kolle-

gen aus Bratislava, die über diese Arbeit hinausgehen, konnte die Verstärkung auf den Faktor

neun erhöht werden [116].

Weitere Messungen der Transmission eines schwachen Testsignals bei Frequenzen nahe der

Fundamentalmode und unter starker auf das Qubit wirkender Mikrowellenleistungen zeigen

außerdem ein reiches Spektrum an Verstärkungs- und Abschwächungsregionen. Daher wird

abschließend das Gesamtsystem in einem generalisierten Ansatz beschrieben. Dadurch kön-

nen Multiphotoneninteraktionen sowohl zur Anregung des Qubits als auch in der Kopplung

an den Resonator in die Berechnung einbezogen werden und diese in den Messresultaten

erklärt und zugeordnet werden. Allerdings finden sich auch einige Facetten, wie z.B. eine

Verstärkung nahe dem Entartungspunkt des künstlichen Atoms, die von dem Modell noch

nicht erfasst sind. Dies kann in den verwendeten Näherungen, wie der Restriktion auf zwei

Energieniveaus des Qubits, begründet liegen. Dennoch kann das entwickelte theoretische
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Modell zur Beschreibung einer Vielzahl von Experimenten der Pump-Probe-Technik ge-

nutzt werden. Aktuelle Untersuchungen befassen sich mit einer weiteren Verallgemeinerung

im Rahmen von sogenannten Rabi-ähnlichen Oszillationen, welche durch Landau-Zener-

Stückelberg-Majorana Übergängen zustande kommen [120].

Die Nutzung eines starken Mikrowellensignals zur Manipulation der Zustände und Beset-

zungen eines künstlichen Atoms hat neben einem fundamentalen Interesse verschiedene

mögliche Anwendungsbereiche. Diese reichen von einer von der Verstärkung eines Test-

signals über die Signalerzeugung auf einem Chip bis zu einer zusätzlichen Kontrolle über

die Energieaufspaltung des Qubits. Damit wird die Palette der Werkzeuge für quantenopti-

sche Experimente auf einem Chip erweitert und ein Beitrag zum besseren Verständnis für

die Wechselwirkung zwischen (künstlichen) Atomen und elektromagnetischer Strahlung ge-

leistet.
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