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“It was the best of times, it was the worst of times, it was the age of wisdom, it was the 

age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the 

season of light, it was the season of darkness, it was the spring of hope, it was the winter 

of despair, we had everything before us, we had nothing before us, we were all going 

direct to heaven, we were all going direct the other way…“ 

 

From: A tale of two cities, written by Charles John Huffam Dickens 

https://en.wikipedia.org/wiki/Charles_Dickens
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1. Introduction 

1.1 Biological role of Isoxazolin-5-one and 3-Nitropropanoic acid derivatives  

1.1.1. Occurrence 

Isoxazolin-5-one and 3-nitropropanoic acid moieties occur in a variety of organisms as 

structural elements of diverse compounds of biological importance.1-14 Some examples 

from this class of natural products are shown below (Fig. 1).  

O N

OH
HO OH

HO O
O

N O
O N O

O
HO

O

N

O N

OH
HO OH

HO O
O

NH2HO

O

O N

OH
HO OH

O O
O

O

O2N

O O

OH
HO O

O

O

O2N

NO2O

O

NO2

HO NO2

O

Karakin 7

1 2 3

5 6

3-NPA 8

N O
OHO

O

NH2

4

 

Figure 1 Structures of representative isoxazolin-5-one and 3-NPA derivatives occurring in 
different organisms (for details see following text and references).1-14 

The chemical diversity of isoxazolin-5-one and 3-nitropropanoic acid (3-NPA) derived 

compounds varies from amino acid derivatives of the heterocycle (3, 4 and 6)4, glucose 

esters of 3-NPA (2 and 7)5,7,11,12, the free acid itself (8)13,14 or other compound classes, 

e.g. cyanide derivatives as compound 54. 
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Adult leaf beetles of the subtribe Chrysomelina (Chrysomelinae: Coleoptera), e.g. 

Chrysomela populi (Fig. 2), contain isoxazolin-5-one and 3-NPA derived glucosides 1 

and 2 as major components in their elytral secretions as well as in their eggs.5,9,15  

 

Figure 2 Adult Chrysomela populi on Populus sp.; compounds 1 and 2 occur in the elytral 
secretions. 

As isoxazolin-5-one derivatives 1 and 2 occur only in leaf beetle species of the subtribe 

Chrysomelina, they were identified as taxonomic characters for the classification of these 

insects into this subtribe.16,17  

In contrast to the adult beetles, the larval defensive secretions contain volatiles that derive 

from sequestered compounds, provided by the beetle´s host plant or by de novo 

production of corresponding precursors.18-27 These volatiles, e.g. salicyl aldehyde in 

juvenile Chrysomela populi, have been shown to deter predators and exhibit toxicity to 

insects as well.28 
In the host plants of leaf beetle species belonging to the Chrysomelina subtribe, e.g. 

Populus spp. (host plant family of e.g. C. populi) or Rumex spp. (host plant family of e.g. 

Gastrophysa viridula), neither isoxazolin-5-one nor 3-NPA derivatives were detected so 

far. This indicates possible de novo production of such moieties by the insects. In 

contrast, all shown derivatives 1-8 occur in many other plant species, mainly belonging to 

the legume family (Fabaceae) as well as to the Malpighiaceae, Corynocarpaceae and 

Violaceae.3,8,11,14,29-33 In case of Fabaceae, a total number of 19500 species within 

approximately 751 genera was estimated, representing one of the biggest plant families. 
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Thus, the potential of the ecological importance of 3-NPA and isoxazolin-5-one 

derivatives is indicated, which might significantly contribute to the tremendous 

evolutionary success of this plant family, besides other factors (e.g. nitrogen 

fixation).14,34,35 

The free 3-nitropropanoic acid 8 is produced by certain fungi species as well, belonging 

to Arthrinium, Aspergillus, and Penicillium tribes.11,32,36-40 Early publications describe the 

occurrence of 3-NPA in Aspergillus flavus.41 The demonstrated widespread occurrence of 

isoxazolin-5-one and 3-NPA motivs in compounds present in organisms belonging to 

different kingdoms and diverse families directly leads to the question of ecological 

benefits for their producers. The following chapter will address parts of this aspect, 

describing phenomena of toxicity and detoxification of isoxazolin-5-one and 3-NPA 

derived compounds that have been reported prior to this thesis. 

1.1.2. Toxicology 

Toxicity of 3-nitropropanoic acid 

3-Nitropropanoic acid 8 is isoelectronic to succinic acid (Fig. 3), which is a key 

intermediate in the citric acid cycle. 

HO N

O
O

O
HO

O
OH

O

succinic acid3-nitropropanoic acid 8
(3-NPA)  

Figure 3  Structures of inhibitor and actual substrate of succinate dehydrogenase. 

Due to this property, both compounds are able to bind to the catalytically active center of 

succinate dehydrogenase. The latter enzyme catalyzes the transformation between 

succinate and fumarate, one step within the citric acid cycle.42 Consequently, it has been 

observed that 3-NPA 8 inhibits succinate dehydrogenase.43 Furthermore, it was 

demonstrated that the inhibition is irreversible, due to a covalent interaction between 

3-NPA 8 and the catalytic center of succinate dehydrogenase, as shown by x-ray 

diffraction.44,45 Thus, the ATP-generation upon oxidation of succinate to fumarate is 
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disturbed.42 These toxic effects of 3-NPA 8 affect especially nerve cells.46,47 In vivo 

studies with ants (Myrmica rubra) feeding on sucrose solutions of compounds 1 and 2 

(compare section 1.1.1.) showed increased cumulative mortality in case of the 3-NPA-

ester 2.15 In addition, the latter compound showed deterrent effects in binary choice tests 

with these ants.15 No effect in terms of mortality and deterrence was observed in case of 

non 3-NPA-derived compound 1.15 The isoxazolin-5-one and 3-NPA-derived compounds 

1 and 2 were applied in 10-1 to 10-2 M concentrations, representing (hyper-)physiological 

amounts of these substances in the defensive secretions of the adult leaf beetles.15 Similar 

experiments have been carried out with additional 3-NPA derived glucosides, isolated 

from the adult secretions of Japanese leaf beetles (Chrysomelina).9 3-NPA-esters of 

glucose, lacking the isoxazolin-5-one moiety, e.g. Karakin 7 (compare section 1.1.1.), 

isolated from legumes, have been shown to be toxic against Grass Grub (Costelytra 

zealandica; Coleoptera: Scarabaeidae).48 

 

Detoxification of 3-nitropropanoic acid 

Although the toxicity of 3-NPA 8 has been demonstrated unambiguously, several 

organisms developed different detoxification pathways.11,49-51 Due to feeding on plants 

producing 3-NPA 8 and its derivatives, a significant resistance against 3-NPA 8 toxins 

evolved in ruminants.11 It was shown that the microbiome from the gut of cow and sheep 

are able to metabolize 3-NPA 8 to produce intermediate β-alanine, which is further 

metabolized by the microorganisms (Fig. 4).11,49,52 

OH

O

O2N

3-NPA 8

H2N OH

O

β-alanine

O2N N
H

O

OH

O
R

R = H, Me, 
CH2OH, 
CHOHCH3, 
CH2CH2CO2H

further metaβolism

O2
3-NPA
oxidase

OH

O

O
+ HNO2 + HNO3 + H2O2

 

Figure 4  Detoxification products of 3-NPA in some microorganisms, plants and insects.13,14,50-52 
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An alternative pathway for detoxification of 3-nitropropanoic acid 8 was found in case of 

two grasshopper species Melanoplus bivittatus and Melanoplus sanguinipes (Caelifera: 

Melanoplinae) as well as the cotton leafworm Spodoptera littoralis (Lepidoptera).50,51 In 

both cases amides of 3-NPA and proteinogenic amino acids were detected as 

detoxification products (Fig. 4).50,51 After uptake over the gut and conjugation with amino 

acids, the detoxification products are excreted via the frass of the insect.51 In case of 

S. littoralis evidence for the detoxification by the insect itself was provided, rather than a 

participation of its intestinal microbiome.51 

A third detoxification pathway was discovered in plants belonging to the legume family 

that produce free 3-NPA.13,14 In case of Hippocrepis comosa and other fabaceous plants 

3-NPA is oxidized by the enzyme 3-NPA oxidase under consumption of oxygen, forming 

malonate semialdehyde associated with nitrate, nitrite as well as hydrogen peroxide 

(Fig. 4). Due to migration of the toxin from the shoots into the phloem, this detoxification 

within 3-NPA producers is supposed to be a protection mechanism for the plant to 

maintain mitochondrial activity.13 

 

Toxicity of Isoxazolin-5-one derivatives 

Some of the above shown isoxazolinone derivatives (see section 1.1.1.), e.g. (β-

isoxazolin-5-on-2-yl)-alanine BIA 4, occurring in legumes, show neurotoxic effects that 

are linked to the disease of lathyrism.53,54 In vitro assays with Lathyrus sativus samples 

provided evidence for the role of BIA 4 as a precursor for L-2,3-diaminopropanoate 

(DAP) and β-N-oxalyl-L-2,3-diaminopropanoic acid β-ODAP (Fig. 5).8,55 

N O
OHO

O

NH2

BIA 4

NH2HO

O

NH2

DAP 9

H
NHO

O

NH2

β-ODAP 10
O

O

OH

Oxalyl-CoA

 

Figure 5  Transformation of BIA 4 into the toxic compounds DAP 9 and β-ODAP 10.56 

β-ODAP 10 occurs in significant amounts in Lathyrus species and is assumed to be 

mainly responsible to cause neurolathyrism in higher animals upon consumption of 
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excessive amounts of e.g. Lathyrus sativus seeds.56,57 In contrast, DAP 9 is described as 

an intermediate in Lathyrus sativus, which is directly transformed into β-ODAP.56 

Nevertheless, it has been shown that DAP 9 is a growth inhibitor for some bacterial 

strains, due to inhibition of proline, pantothenate and isoleucine biosynthesis.58,59  

Furthermore, a number of non-biologically occurring 2- and 3-substituted isoxazolin-5-

one derivatives showed antifungal activity (Fig. 6).60 

3
4

5O
1

N
2

O
OCl

Cl

O
N O

OCl

Cl

O
N O

OCl

O2N

11 12 13  

Figure 6  3-Isoxazolin-5-one derivatives 11, 12 and 13 with antifungal activity.60 

The above mentioned compounds were tested against plant pathogens, e.g. 

Phythophthora infestans, Septorii apii and Alternia solari conida, showing altering 

general fungicidal activity and mycelial inhibition.60 

However, no direct toxic or repellent effects of the similar isoxazolin-5-one glucoside 1 

(compare section 1.1.1.) have yet been demonstrated.15 

1.1.3. Biosynthesis 

3-NPA moiety 

In case of Penicillium atrovenetum the biosynthetic pathway was investigated by 

different groups in several previous studies.32,36-40 In the mentioned fungus, it was 

demonstrated that the biosynthesis of 3-nitropropanoic acid 8 derives from aspartate 

(Fig. 7, top). In several subsequent steps, aspartate is oxidized at the nitrogen atom, 

leading to the formation of intermediate (S)-nitrosuccinate 14.38 The oxygen atoms for 

the oxidation steps derive from dioxygen, which is consumed via monooxygenation of 

the N-position.37 Upon decarboxylation of compound 14, 3-NPA 8 is formed in a final 

step. Derivatives of β-alanine failed to be incorporated in the biosynthetic steps of 3-

NPA, which provides evidence that the suggested pathway is the most important source 

for this compound in P. atrovenetum.40 
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16  

Figure 7 Proposed biosynthetic pathways for the formation of 3-NPA in Penicillium atrovenetum, 
adapted from Baxter et al., top37 and in Indigofera spicata, adapted from Candlish et al., 
bottom.61 

These findings have been adapted to investigate the metabolic route of the 3-NPA 

production in adult leaf beetles of the species Chrysomela tremulae.6 For this purpose, 

solutions of [14C4]-aspartate were applied to leaves of the food plant of C. tremulae and 

presented to the adults. After one week, radioactivity could be detected in compounds 1 

and 2 that were isolated from the defensive secretions. This result indicated that 

compounds 1 and 2 can be de novo produced by the adult beetles, starting from aspartate. 

However, further intermediates as well as intactness of incorporation for the suggested 

pathway have not been characterized to support this hypothesis. Studies on the 

biosynthesis of 3-nitropropanoic acid in creeping indigo (Indigofera spicata) indicated a 

different pathway, deriving from malonate as a starting compound (Fig. 7, bottom).61 

Malonate is proposed to be further transformed into malonyl monoamide 15 in this 

sequence. Via formation of intermediate malonyl monohydroxyamate 16, 3-NPA might 

be formed in I. spicata. These suggestions are evidenced by application of 

[2-14C]-malonate as well as [2-14C]-malonyl monohydroxyamate to the plants in vivo or 

in vitro.61 
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Isoxazolin-5-one moiety 

One of the few results that have been published prior to this work about the formation of 

the isoxazolin-5-one heterocycle refer to the already mentioned publication by Pasteels 

and coworkers (see section 1.1.3., 3-NPA moiety).6 In this study, feeding of [14C4]-

aspartate evidenced the formation of the heterocycle by de novo biosynthesis in adult 

Chrysomela tremulae, without providing information in terms of further intermediates on 

the pathway. Furthermore, a first indication for a link between the formation of the 

3-NPA moiety and the heterocycle is provided by these findings. 

In plants, only the derivatization of the heterocycle 17 has been investigated so far.62-64 It 

was demonstrated that BIA 4 derives from O-acetyl-serine, while compound 1 derives 

from α-UDP-glucose (Fig. 8).63  

HN O
O

-UDP-glucose O N

OH
HO OH

HO O
O

117

α

 

Figure 8 Proposed final step in the biosynthesis of isoxazolin-5-one glucoside 1 in Pisum and 
Lathyrus seedling.63 

Compound 17 was considered as a substrate in any of these studies, but its formation was 

not described prior to this work in any detail, neither in plants, nor in leaf beetles. To 

address further questions concerning the biosynthesis of isoxazolin-5-one and 3-NPA 

derived glucosides, the chemical synthesis of such derivatives is of interest. In the 

following chapters useful previously described synthetic strategies for the construction of 

such compounds are discussed. 

1.2. Synthesis and properties of Isoxazolin-5-one and 3-NPA derived glucosides 

1.2.1. Acylation of glucosides 

For the synthesis of glucose esters, e.g. compound 2 (see section 1.1.1.), a number of 

synthetic methods has been developed. The challenge of these transformations refers to 
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the selective derivatization of the hydroxyl functions. For this purpose, the use of 

selective protection and deprotection of suitable precursors is a valid strategy (Fig. 9).65 

O
X

Y

X
X

X

O
X

Y

OH
X

X

O
X

Y

X
OH

X

O
X

Y

X
X

HO

OHO
Y

X
X

X

4-OH-deprotected 3-OH-deprotected

2-OH-deprotected6-OH-deprotected

protected
glucose

 

Figure 9 Principle of selective deprotection of glucose precursors; X = TMS, Y = α-OMe; for 
details see Wang et al.65 

The shown protected starting agent is commercially available and the selectively 

deprotected product can be further transformed by acylation reactions, e.g. carbodiimide 

couplings.66 Since it is of importance in following chapters of this thesis, the mechanism 

of such carbodiimide acylations is shown below (Fig. 10).67 
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Figure 10 One of the proposed mechanisms of carbodiimide coupled esterifications.67 

An alternative method for selective acylation is the use of catalysts, when starting from 

partial or completely unprotected precursors. These catalysts can be based on naturally 

occurring enzymes68-71 or synthetic products72 as well. In many cases, commercially 
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available immobilized Candida antarctica lipase B (CALB) is used to transform 

unprotected glucosides into the corresponding 6-O-ester (Fig. 11).70,71 

O
HO

OH

OH
OH

HO

-glucose

+ R

O

O
Cl

Cl
Cl

R = alkyl

O
O

OH

OH
OH

HO

6-O-acylglucose

O

R
CALB,

t-BuOH,

45°C,
2d

D  

Figure 11 Transesterification of an acyl-donor and D-glucose using CALB as a catalyst.70,71 

The advantages of strategies based on enzymatic catalysis lie in the reduction of the 

number of synthetic steps. In addition, expensive protected starting material can be 

circumvented in many cases. On the other hand, the yields of such reactions are not 

quantitative in many cases, depending on the acyl-donor, among other factors. Due to the 

mild reaction conditions, most of the reactants remain non-transformed, allowing a 

recovery of starting material. Furthermore, different functional groups are tolerated. 

1.2.2. Isoxazolin-5-one and glycosylation 

The synthesis of the isoxazolin-5-one heterocycle 17 has first been described by De Sarlo 

and coworkers.73 In this study, compound 17 was synthesized from ethyl propynoate in 

medium yields (Fig. 12). 

O

O

O

ONOH
HN O

O

171918

N O
O

17a

N O
OH

17b

60%

KHCO3,
NaOH,
NH2OH*HCl,
0°C, 15h

EtOH/H2O

1.) exc.
NaOH
2.) HCl,
0°C

17

 

Figure 12 Synthesis of isoxazolin-5-one 17 and its tautomers 17a and 17b respectively; the total 
yield is given.73 
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The content of the single tautomers 17, 17a and 17b in the equilibrium depends on the 

polarity of the solvent.73 Having access to compound 17, van Rompuy et al. described the 

syntheses of naturally occurring derivatives of isoxazolin-5-one by substitution 

reactions.2 Due to the mentioned tautomerism as well as the low reactivity of the 

heterocycle, the overall yields of these reactions were small. The substitutive Koenigs-

Knorr approach for the synthesis of glucoside 1 resulted in a total yield of only 1 % 

(Fig. 13).3,4 

NaN O
O

O
AcO

Br

OAc
OAc

AcO
+

1.) dry MeOH, 
     rt, over night
2.) H+

3.) NaOMe

1%

O
HO

N

OH
OH

HO

O
O

1  

Figure 13 Synthetic protocol for the synthesis of compound 1 by substitution of α-
acetobromoglucose with the anion of isoxazolin-5-one.3,4  

The described low yields reached in this strategy are due to alternative substitution as 

well as the instability of compound 1 under high pH conditions, as discussed in section 

2.1. 

Isoxazolin-5-one derivatives, e.g. compound 1 and other biologically occurring products, 

were characterized in terms of their photochemical properties as well as stability under 

different pH conditions. It was observed that these derivatives possess high 

photochemical activity upon irradiation into their absorption maxima around 260 nm. 

Under these conditions, the quantum yields for the photodegradation in water were 

determined to be in a range of 0.34 to 0.62.4 Glucose and glutamic acid were identified as 

degradation products of compound 3 in such experiments.4 In addition, it was described 

that under alkaline conditions the N-substituted isoxazolin-5-ones decompose,4 while the 

free heterocycle itself shows higher stability in alkaline aqueous media and degrades 

rapidly under acidic conditions.73  
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Due to the generally occurring low yields that were achieved using the substitution 

strategy, Baldwin and coworkers developed an alternative method to synthesize 

isoxazolin-5-one systems based on a 5-endo-dig reaction (Fig. 14).74,75  

R
H
N

OH R
N

OH

t-BOC

R
N

O

t-BOC

O

N O
O

R

t-BOC2O,
1,4-Dioxane,
rt, 30 min

PA,
DCC,
DCM, rt
12h

HCO2H,
rt, 4h

53-66%

 

Figure 14 Synthetic strategy for the synthesis of N-substituted 3,4-unsubstituted isoxazolin-5-one 
derivatives based on a 5-endo-dig reaction; R = t-Bu, cyclopentyl, Me and Bn; total 
yields are given.74,75 

The above mentioned 5-endo-dig strategy was applied to synthesize aliphatic N-

substituted derivatives of isoxazolin-5-one to yield naturally occurring amino acid as well 

as other derivatives of the heterocycle.75,76 However, the 5-endo-dig strategy has not yet 

been applied for the synthesis of isoxazolin-5-one glycosides, e.g. compounds 1 or 2. 

This alternative approach for the synthesis of compounds 1, 2 and other glycosides is 

discussed in section 2.1. 

1.2.3. 3-Nitropropanoic acid and propanoate derivatives 

For studies concerning the biosynthesis of the 3-nitropropanoic acid derivatives, the 

syntheses of stable-isotope-labeled 3-NPA and other useful products have previously 

been described.37,76 The synthesis of [1-13C, 2,2-D2]-3-nitropropanoic acid was achieved 

by a three-step synthetic route starting from Na13CN and 2-chloroethanol. The deuterium 

atoms were introduced by DBr/D2O. In a final step, the nitro group was constructed using 

NaNO2 as a substituting agent (Fig. 15).37 

HO
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Na13CN,
18-cr.-6

H2O,
80-90°C,
3h

HO
13C

N DBr/D2O

reflux,
2h

Br
D D

13C
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O NaNO2,
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1.5h

O2N
D D

13C
OD

O

 

Figure 15 Synthesis of 3-[1-13C,2,2-D2]-nitropropanoic acid, described by Baxter et al.37 
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13C-labeled propynoic acid, as a useful precursor of isoxazolin-5-one and 3-NPA 

derivatives, has been synthesized by Baldwin and coworkers (Fig. 16).76 

CaC2

H2O,

0°C

1.) n-BuLi,
     THF, 0°C
2.) 13CO2, 1h

3.) H2O

13C
O

OH

[1-13C]-20  

Figure 16 Synthesis of [1-13C]-propynoic acid 20, described by Baldwin and coworkers.76 

The above described synthetic methods were used to synthesize intermediates to unravel 

the biosynthesis of isoxazolin-5-one and 3-NPA derivatives in Chrysomelina larvae (see 

section 2.3.1.). 

1.3. Aims of this thesis 

In the previous sections it was shown that isoxazolin-5-one and 3-NPA derivatives 1 and 

2 occur in the defensive secretion of adults and the eggs of leaf beetles, belonging to the 

subtribe Chrysomelina. Some aspects of the biosynthesis of these compounds have been 

addressed by feeding of 14C-labeled aspartic acid to Chrysomela tremulae adults. 

Compound 1 has already been synthesized by a substitution strategy, providing very poor 

yields of around 1 %. In addition, no biological function could be shown in case of 

compound 1. In order to study further details in terms of the occurrence, biosynthesis, 

chemical synthesis and biological functions of compounds 1 and 2 in Chrysomelina, 

alternative synthetic routes for these molecules were of interest. The synthesized 

compounds should then be used as authentic (stable-isotope-labeled and non-labeled) 

standards for identification and quantification of the biological occurring products. The 

toxicity of compound 1 against cell cultures was of interest. The (physico-)chemical 

properties of isoxazolin-5-one glycosides should be addressed, on the basis of the 

synthetic standards. It was of interest to study all life stages and compartments of these 

insects by NMR- and LC-MS-techniques as well. Furthermore, it was of interest to 

unravel the biosynthetic pathway of compounds 1 and 2 using in-vivo- and in-vitro-

application of commercial and synthetic stable-isotope-labeled and non-labeled putative 

intermediates. 
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2. General Discussion 

2.1. Synthesis and properties of isoxazolinone and 3-NPA derivatives 

2.1.1. Synthesis 

For the synthesis of isoxazolin-5-one derived glucosides, the 5-endo-dig strategy, 

developed by Baldwin and coworkers75, was applied (Fig. 17).77  
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Figure 17 Synthesis of compounds 1 and 2, based on a 6-exo-trig-5-endo-dig cascade reaction, 
followed by deprotection and regioselective transesterification.77 

For this purpose, a tetra-O-benzyl protected N-Boc-N-hydroxyglucopyranosylamine was 

a rational intermediate that should be synthesized in two steps from tetra-O-

benzylglucose. However, the cyclic pyranose compound 21 is only the minor isomer, 

while predominantly the non-cyclic E- and Z-oximes 22 are formed.78 1H NMR 

measurements showed that the equilibrium between the open-chain oximes and the cyclic 
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pyranose isomer can be influenced by the applied solvent. In case of acetonitrile only the 

open chain form was observed, while in chloroform the ratio between oxime 22 and 

pyranose 21 was about 3 to 1 (Fig. 17).77 Due to these circumstances, an effective N-Boc-

protection/deprotection of N-hydroxyglucopyranosylamine 21 failed. Alternatively, the 

oxime forms E- and Z-22 were directly converted with DCC-activated propynoic acid. As 

a result, the α and β-isomers of the desired corresponding tetra-O-benzyl-protected 

isoxazolin-5-one glucosides 23 and 24 were obtained in moderate yields (35%). To 

circumvent an acylation at the C(5)-OH group, the DCC coupling was carried out without 

the use of DMAP as a catalyst, exploiting the intrinsic differences in the reactivity as well 

as the steric hindrance of the secondary C(5)-OH compared to the primary N-OH group. 

Additionally, the reactants were slowly mixed over 20 min to prevent from double 

acylation (at the NOH- and C-5´-OH-position).77 1H NMR measurements show that the 

acylation at the NOH group is nearly quantitative. The long reaction time (7d) provides 

evidence for a high energy barrier, probably due to the formation of the 5-membered 

isoxazolin-5-one ring. However, higher temperatures after the acylation could not 

improve the yield significantly. 

The mechanism of the reaction leading to the isoxazolin-5-one products 23 and 24 is 

supposed to proceed via a 6-exo-trig-5-endo-dig cascade (Fig. 18).77  
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Figure 18 Proposed mechanism for the cascade reaction.77 
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Online NMR measurements of the reaction mixture provided evidence for this 

hypothesis.77 The purification of compounds 23 and 24 was successful using preparative 

low-pressure column chromatography on two consecutive silica columns, eluted with 

DCM/MeCN 100:1 and CHCl3/EtOAc 95:5. The β-isomer could be crystallized from 

EtOAc and an x-ray crystal structure analysis of this sample was performed (Fig. 19).77  

 

Figure 19 X-ray structure of compound 24, showing ellipsoids with 50% probability; Grey = 
carbon, white = hydrogen, red = oxygen, blue = nitrogen.77 

The above shown crystal structure of compound 24 is equivalent with a structure 

alignment of the heterocycle as a 3-isoxazolin-5-one ring. 

To unprotect the tetra-O-benzyl derivatives, a reductive strategy was not applied due to 

the α,β-unsaturated carbonyl moiety. Instead, BCl3 was used as a reagent at low 

temperatures in ether, yielding the unprotected target molecule 1.77,79 Oxidative attempts 

using DDQ for the deprotection of 24 yielded complex mixtures of the incompletely 

deprotected precursor. The overall yield of compound 1 in the novel described sequence 

is around 22%, which is a significant improvement of the earlier described route that 

yielded only 1% of the compound.4,77 Compound 2 could be synthesized by using the 

trichloro-activated ester of 3-NPA 25, which reacted with compound 1 under 

regioselective transesterification using commercial immobilized Candida antarctica 

lipase B (CALB). The yield of the latter reaction was in the range that is described for 

O N

OBn
BnO OBn

OBn O
O
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such transformations70 (around 35%) and the starting material (compound 1) can be 

particularly recovered within the column chromatography purification (Silica, 

EtOAc/MeOH/DCM 10:1:1 to 2:1:0).77 The activated ester 25 was synthesized using 

commercial 3-NPA and 2,2,2-trichloroethanol under Steglich-conditions.66  

In order to access further isoxazolin-5-one derived glycosides, the synthetic route for the 

construction of the heterocycle was further simplified by the use of unprotected sugars as 

starting reagents. The novel protocol was applied to D-glucose, D-fructose, D-maltose, D-

xylose, D-ribose as well as D-2-deoxyribose (Fig. 20).80 
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Figure 20 Synthetic protocol (a) and structures (b) for the synthesis of isoxazolin-5-one glycosides 
applying the one-pot protocol; yields are given in brackets; quant. = quantitative.80 

This method for the synthesis of isoxazolin-5-one glycosides was successful in case of 

glucose, maltose, xylose and fructose and failed using ribose and 2-deoxyribose as 

starting material. The isolated yields for the successfully synthesized single compounds 

were in the range of 11 to 22%. The number of steps starting from commercial material 
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was reduced from three to two and the reactions were carried out in one pot. For the 

purification column chromatography based on MeCN/H2O mixtures on silica were used, 

yielding pure material that crystallized reproducibly in case of glucose and maltose. For 

the naturally occurring glucose derivative 1 a crystal structure could be obtained by 

single crystal x-ray diffraction, again performed and kindly provided by Dr. Helmar 

Görls (Fig. 21). 

 

Figure 21 Unpublished x-ray structure of compound 1, showing ellipsoids with 50% probability; 
Grey = carbon, white = hydrogen, red = oxygen, blue = nitrogen; left: packing, right: 
single molecular structure. 

The formation of compounds 1, 26, 27, 28 and 29 derives from easily accessible N-

hydroxyamino glycosides that were synthesized in the first step in quantitative yields, 

according to literature procedures.81 These intermediates exhibit an equilibrium between 

the open-chain E/Z-oxime forms and the corresponding cyclic N-hydroxy derivatives. In 

case of solutions of the reducing sugars (glucose, xylose, maltose and ribose) the oxime 

forms mainly predominate, while the ring forms are the only isomers present in the 

crystalline precipitate.81 In case of fructose the open chain forms are the only isomers that 

can be observed in both, solutions as well as precipitates. Due to these observations the 

proposed mechanisms may succeed via a 5-endo-dig pathway (in case the ring form is the 

starting material) or a 6-exo-trig-5-endo-dig cascade (in case of open chain oximes, 

Fig. 22).80 
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Figure 22 Proposed mechanisms of the formation of products 1 and 26 to 29.80 

The structure assignment was carried out using 1D and 2D NMR experiments (for details 

see the literature data77,80) being supported in case of glucose by x-ray crystal structure 

analyses. In case of fructose (lacking an anomeric proton), the structure was assigned by 

comparison of the NMR and other data with literature results of similar fructofuranosides 

and -pyranosides.82-84  

It is supposed that the observed variations in terms of the yields and α/β-selectivities for 

the products depend on the nature of the starting material (open chain vs. cyclic isomers). 

This hypothesis is evidenced by the comparison of the α/β-selectivities between the 

above mentioned protecting group strategy based synthesis vs. the protecting group free 

route. The selectivities in both cases were determined via 1H NMR measurements 

(Fig. 23).77,80 

 

Figure 23 a) 500 MHz 1H NMR spectrum of the reaction mixture providing compounds 23 and 24 
in CD3CN; b) 400 MHz 1H NMR spectrum of a typical D2O extract of the reaction 
mixture mainly providing compound 1; The relative integrals are given in brackets.77,80 
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The NMR experiments show that the α/β-ratio in case of the protecting group strategy 

(Fig. 23 a) is 1:3.2 while in case of the alternative method the ratio equals 1:16 (Fig. 

23 b), as proposed by the two different mechanisms (Fig. 22), depending on the structures 

of the starting materials (Fig. 23 a open-chain oxime, Fig. 23 b cyclic N-

hydroxyglucopyranose). In addition, figure 23 b shows that glucose is formed in the 

aqueous reaction medium due to hydrolysis of the acylated N-hydroxyglucopyranose. 

This observation is an explanation for the limited the yields of the reaction in case of the 

protecting group free synthetic route. To circumvent this hydrolysis, the reactions were 

also performed in (less reactive) methanolic medium without success. When carried out 

in methanol as a solvent, the yields were smaller and the reaction times increased in case 

of glucose. Another observation from the NMR measurements, as indicated in 

figure 23 b, is that the consumption of the starting material (N-

hydroxyglucopyransolamine) is nearly quantitative, if only 1.5 equivalents of DCC/PA 

were applied. This indicates that the hydrolysis occurs at the acylated N-

hydroxyglucopyransolamine, rather than at the product of DCC and propynoic acid (see 

section 1.2.1. for a mechanism of DCC couplings). 

Compared to the reactions carried out in acetonitrile, the reaction rate in the aqueous 

medium is much faster (several hours compared to 7 days). This indicates that a major 

rate limitation is due to the protonation at the C-4-position, rather than due to the attack 

of the nitrogen atom at the C-3-position of the triple bond. 

While in case of the successfully transformed sugars glucose, maltose, xylose and 

fructose the rate of the sugar-ring-closure and the formation of the isoxazolin-5-one ring 

seem to overcome the rate of hydrolysis to a certain extent, it is hypothesized that the 

ribose derivatives do not show a first ring closure with a rate, which is high enough to 

overcome hydrolysis at all. This may refer to the cis-orientation of the vicinal hydroxyl-

substituents. In case of 2-deoxyribose the missing 2-OH group (being present in all other 

applied sugars) may leads to higher hydrolysis rates at the C-1´-position, due to increased 

steric access. 

The in this chapter presented results allow the simple and rapid synthesis of naturally 

occurring compounds 1 and 2 as well as other isoxazolin-5-one glycosides 26 to 29. As a 
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consequence of this rapid access and due to the possibility to use unprotected glucose as a 

starting reagent for the construction of compounds 1 and 2, it is reasonable to synthesize 
13C6-labeled compounds 1 and 2, using commercial 13C6-D-glucose. These stable-isotope-

labeled compounds were synthesized applying the described techniques and used as 

internal standards for quantification experiments (see section 2.2.). Furthermore, the 

corresponding (physico-)chemical stability was investigated to get insights into possible 

biological roles and functions of the naturally occurring derivatives. The results of these 

experiments are discussed in the following section and reflected in section 2.2.2. 

2.1.2. Photosensitivity and chemical properties 

To investigate the effectivity of photodegradation as a general property of isoxazolin-5-

one glycosides in water, solutions of the synthesized compounds 1 and 26 to 29 were 

prepared and irradiated with a weak UV handlamp at rt. Parallel to the irradiation of the 

sample, the UV absorption A around 260 nm was recorded. The same experiment was 

done using (commercial) uridine as a standard. By comparison of the degradation rates at 

the beginning of the irradiation, the quantum yields of this process were determined 

(Fig. 24).80  
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Figure 24 Photodegradation experiments using compounds 1 and 26 to 29 in H2O; quantum yields ± 
estimated errors are given in brackets.80,85 
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In addition, 1H NMR measurements of irradiated samples of the glycosides 1, 28 and 29 

showed quantitative formation of the corresponding free sugar, glucose and fructose 

respectively, after comparison with spectra of standard solutions. These results show that 

the isoxazolin-5-one moiety is a very effective leaving group in the anomeric position of 

glycosides upon irradiation at λ ≈ 260 nm in water at rt and neutral pH. In contrast, these 

compounds do not show any observable change at very low pH values and rt, which is 

very unusual for any kind of glycoside.4,80 Furthermore, compound 1 remained 

completely unaltered in a D2O solution with β-glucosidase from almonds after days.80 

Thus, it is unlikely that the heterocycle can be cleaved at all under physiological 

conditions. 

These results show that synthetic strategies, relying on either basic or acidic conditions 

do not yield significant amounts of isoxazolin-5-one glycosides. One reason is the 

instability of the heterocycle under acidic conditions, while on the other hand the N-

substituted product is unstable at high pH. A second major drawback in terms of the 

synthesis of isoxazolin-5-one glycosides is the poor selectivity of the substitution reaction 

itself, allowing the heterocycle to be substituted not only at the nitrogen atom, but also at 

especially the oxygen and maybe other positions, as observed earlier.2 Due to these 

findings, the isoxazolin-5-one derived compounds can be synthesized more efficiently as 

described by Baldwin and coworkers as well as in this work.74-77,80 The following 

sections describe the application of authentic synthetic standards of compounds 1 and 2 

to investigate the occurrence, amounts as well as the biosynthesis of these substances in 

juvenile Chrysomelina. 

2.2. Biological role of compounds 1 and 2 in Chrysomelina Larvae 

2.2.1. Protection of different life stages and chemotaxonomy 

HPLC-MS analyses of samples from Phaedon cochleariae indicated the occurrence of 

isoxazolin-5-one derived glucosides 1 and 2 in the hemolymph of juvenile Chrysomelina. 

After comparison of these analyses with spectra of authentic synthetic standards of 1 and 

2, the natural compounds were confirmed to be present in the larval hemolymph, as 

shown via NMR and HPLC-MS (Fig. 25). 



DISCUSSION 
 

 
23 

 

 
 

0.0

0.5

1.0

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

 

I re
l  Larval extract

         m /z = 292 and 393

 

I re
l  Compound 1

         m /z = 292

I re
l

t / min

 Compound 2
         m /z = 393

c)

290 291 292 293 294 295 296
0.0

0.5

1.0

391 392 393 394 395 396 397
0.0

0.5

1.0

290 291 292 293 294 295 296
0.0

0.5

1.0

391 392 393 394 395 396 397
0.0

0.5

1.0 

I re
l Compound 1

standard

[M-H+HCO2H]- [M-H+HCO2H]-

 

 Compound 2
standard

[M-H+HCO2H]-
I re

l

m /z

Compound 1
from extract

d)

 

m /z

Compound 2
from extract

 

Figure 25 1H NMR spectra of hemolymph pooled from 30 C. populi larvae (red), compound 1 
(black) as well as compound 2 (blue) in CD3OD at 400 MHz; a) shows doublet signals of 
the H-3 position, b) shows the triplet of H-2´´; c) chromatograms of synthetic standards 
as well as larval extracts, measured on a LUNA-NH2 column (Phenomenex), eluted with 
MeCN/H2O (9:1, isocratic, 25°C) applying APCI; d) Mass spectra of synthetic standards 
of compounds 1 and 2 as well as from larval extracts; compounds 1 and 2 show addition 
of formic acid (HCO2H) and loss of a proton ([M-H+HCO2H]-) under these conditions. 

Further investigations were carried out with 17 different species of leaf beetles belonging 

to diverse subtribes of Chrysomelina, including Chrysomelini as well as Chrysolinini. In 

case of the Chrysomelini subtribe compounds 1 and 2, as well as other 3-NPA esters have 

previously been identified in adult secretions and eggs, while in the latter group such 

derivatives were not detected.15,86 In agreement with the first analyses on the hemolymph 

of P. cochleariae and C. populi, all species belonging to the Chrysomelini subtribe were 
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positively tested in terms of the occurrence of compounds 1 and 2 in the larval 

hemolymph. Due to the presence of compounds 1 and 2 in eggs, larvae and adult 

secretions of these insects, a chemotaxonomic allocation of leaf beetle species to their 

corresponding subtribes due to the presence of isoxazolin-5-one glucosides is obvious 

(Fig. 26).87 

 

Figure 26 Phylogeny of leaf beetles (Chrysomelidae) correlated with the occurrence of isoxazolin-
5-one glucosides 1 and 2; species in the box contain compounds 1 and 2 and belong to 
the subtribe Chrysomelini, which is assigned with A; B allocates the subtribe 
Chrysolinini.87 

Additional LC-MS analyses of whole pupa-extractions as well as adult hemolymph 

samples confirmed this conclusion (results of LC-MS analyses are analogous to the 

findings shown in Fig. 25). Furthermore and in contrast to adult chrysomeline leaf 

beetles, isoxazolin-5-one glucosides were not detected in the larval defensive secretion 

and thus are not transported parallel to other glucosides, e.g. salicin in C. populi, into the 

secretory system, although both types of glycosides occur in the hemolymph of juvenile 

Chrysomelina.87 In addition, multi-ester compounds or 3-NPA esters lacking the 

isoxazolin-5-one heterocycle that are major components of adult secretions were not 

detected in case of the larvae at all, neither in NMR- nor in HPLC-MS-analyses. These 
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results indicate that isoxazolin-5-one and 3-NPA moieties exclusively occur in 

compounds 1 and 2 in juvenile Chrysomelina. Thus, it should be sufficient to address 

compounds 1 and 2 for quantitative investigations on isoxazolin-5-one and 3-NPA 

moieties in leaf beetle larvae. 

To determine the amount and estimate the ecological importance of these compounds for 

Chrysomelina, first quantifications of isoxazolin-5-one glucosides 1 and 2 in larval 

hemolymph samples were carried out by HPLC-MS analyses based on external synthetic 

standards.87 These experiments revealed concentrations of compounds 1 and 2 of up to 

50 nmol/mg hemolymph fresh weight, which is equivalent to concentrations in the range 

of 50 mmol/l, if it is considered that 1 mg hemolymph equals a volume of 1 µl. Due to 

the rapid synthetic access to 13C6-labeled compounds 1 and 2 via commercial 13C6-

glucose (compare section 2.3.1.), it was possible to spike the samples with defined 

amounts of authentic internal standards for quantification experiments.77,80,88 This SIL-IS-

method minimizes the matrix effects that are significant in HPLC-MS analyses of natural 

samples.89 At the same time an external calibration is redundant. This reduces the time 

consumption for the analyses and increases the reproducibility significantly.89  
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Figure 27 Specific amounts1 of compounds 1 (a) and 2 (b) in P. cochleariae larvae with respect to 
the body weight in nmol/mg, determined by HPLC-MS using SIL-IS; Nbiol=20.88 

                                                 
 
1 The molar amount per mass is defined here as the specific amount. 
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Applying this SIL-IS approach, the amounts of compounds 1 and 2 in juvenile 

Chrysomelina were determined per larval body weight (Fig. 27).88 The above shown 

results are consistent with previously published data, where total concentrations of 

compounds 1 and 2 above 10 mmol/l were described in case of eggs of Chrysomelina.15 

This indicates that leaf beetle larvae are chemically protected by the 3-NPA derived ester 

compound 2 as well. This protective function of compound 2 as a pre-toxic compound is 

understood via hydrolysis of the ester bond upon digestion of predated leaf beetle larvae, 

resulting in the release of the actual toxin 3-nitropropanoic acid (3-NPA). This leads to an 

intoxication of the predator with 3-NPA, as indicated by former experiments using ants 

(Myrmica rubra) as potential predators. In these experiments, an increased mortality, 

comparable with starving ants, was observed.15 In addition, a significant repellent effect 

of compound 2 in binary choice tests was demonstrated.15 These results indicate the 

ecological significance of the 3-NPA ester 2 as a pre-toxic and repellent secondary 

metabolite in leaf beetle larvae as well. Thus, two defensive mechanisms in the 

Chrysomelini subtribe are active at the same time, as represented by repellent excreted 

volatiles in the secretions and the 3-NPA-ester 2 in the hemolymph.24,25,27,87 

Furthemore, an increase of the content of compound 2 and thus of 3-NPA production 

with respect to the larval body weight was observed.87 Applying the SIL-IS-approach, 

this increase is statistically significant for linear regression (R2=0.400, P=0.003, Nbiol=20, 

Ntech=1), although the number of measurements per biological replicate was reduced by 

the factor of 4, in comparison to quantification by external calibration (R2=0.345, 

P<0.001, Nbiol=30, Ntech=1).87 This increase of the specific amount of 3-NPA-units per 

larval body weight indicates autogenous production of this moiety, which is discussed in 

more detail in section 2.3. 

2.2.2. Functions of non 3-NPA-containing compound 1  

While the role of compound 2 is principally understood as a non-toxic storage molecule 

for the actual toxin 3-NPA, the biological function of compound 1 remained unknown in 

Chrysomelina as well as in plants producing this compound. Injections of [1-13C,15N]-3-

nitropropanoic acid into the larval hemolymph show the subsequent conjugation of 

compound 1 with the toxin, resulting in the formation of compound 2 (Fig. 28).87 
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Figure 28 Mass spectra of C. populi hemolymph samples after injection of buffer (top) and 
[1-13C,15N]-3-NPA (bottom).87 

Furthermore, the specific amount of compound 1 often exceeds the amount of 

compound 2, especially in the early stages of the larvae (Fig. 27, previous section).88 

With increasing larval body weight, the specific amount of compound 2 significantly 

increases, while the amount of compound 1 slightly decreases (compare section 2.2.1.). 

These results indicate that compound 1 serves as a platform for the prevention of self-

intoxication with free 3-NPA. Although this hypothesis is plausible, it was of interest, 

whether compound 1 itself shows some cytotoxic effects. Since antifungal properties 

have been previously shown in case of components of larval secretions90,91 and some 

non-natural isoxazolin-5-one derivatives 11-13 (section 1.1.2.),60 the cytotoxicity of 

compound 1 was tested using cell cultures of microorganisms as well as human cell lines. 

For this purpose, solutions of isoxazolin-5-one glucoside 1 were added to cell lines of 

phyto- and entomopathogens as Beauveria Bassiana, Conidiobolus coronatus, Alternaria 

alternata, Fusarium graminearum, Cladosporium herbarium and Glomerella cingulata 

as well as the human pathogens Bacillus subtilis, Staphilococcus aureus, Escherichia 
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coli, Pseudomonas aeruginosa, Enterococcus faecalis, Mycobacterium vaccae, 

Sporobolomyces salmicolor, Candida albicans and Penicillium notatum. These 

experiments were performed by Christiane Weigel (Group of Kerstin Voigt at the HKI in 

Jena). Furthermore, human HUVEC, K-562 as well as HeLa cell lines were tested. These 

experiments were performed by Dr. Hans-Martin Dahse. 

All of those tests resulted in no detectable inhibition of growth or increased mortality in 

the cell lines treated with solutions of compound 1, applying concentrations of 0.1 to 

1 mg/ml (4 to 40 mmol/l). These results are consistent with the lack of toxicity of 

compound 1 against ants (Myrmica rubra), shown by Pasteels and coworkers.15 Due to 

the high chemical stability of the isoxazolin-5-one ring bound to the glycosidic position 

in compound 1 (section 2.1.2.), a cleavage of the C-N bond to release the heterocycle 17 

into the solution, analogous to the cleavage of the 3-NPA ester, is unlikely. In addition, 

the free heterocycle 17 is unstable in aqueous solution, forming cyano acetic acid as a 

degradation product, which is not known to elicit any toxic effects.73  

To summarize these results, isoxazolin-5-one glucoside 1 circulates in millimolar 

concentrations in the hemolymph and is non-toxic to the insect itself as well as to a 

variety of other cell types from different organisms. The capacity for esterification of 1 

with the CoA ester of 3-NPA is always sufficient to prevent the leaf beetle larvae from 

poisoning with this irreversible mitochondrial inhibitor. Thus, it can be assumed that a 

major benefit of compound 1 for leaf beetles is the prevention from self-intoxication with 

3-NPA via formation of the corresponding ester 2.  

2.3. Biosynthesis of compounds 1 and 2 in Chrysomelina larvae 

2.3.1. Synthesis of standards and putative metabolic intermediates  

In order to study the metabolic pathway of the biosynthesis yielding compounds 1 and 2 

in Chrysomelina, several stable-isotope-labeled putative intermediates were synthesized 

for trace experiments.92 As proposed earlier6,32,93,94 as promising intermediates in such 

pathways, it was of interest to access labeled N-oxidized derivatives of β-alanine, e.g. 

compounds 30 and 31 as well as [1-13C,15N]-3-NPA 8. To realize the syntheses of 

compounds [1-13C,15N]-8 as well as [1-13C,15N]-30 a synthetic route described by Baxter 

and coworkers37 was applied, introducing an additional 15N-label (Fig. 29 a).  
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Figure 29 Conditions for the syntheses of intermediates, used to study the metabolic pathway of 
compounds 1 and 2 in Chrysomelina larvae; total isolated yields are given; for details see 
lit.37,73,76,77,80,88 

Two labeled atoms at defined positions provide major advantages compared to a single 

label or to a deuteration of acidic CH-positions. This is due to the lower abundance of 

naturally occurring double-labeled ([M+2]) compared to single-labeled ([M+1]) products. 

In case of deuteration, the partial re-exchange with 1H under physiological conditions 

yields a randomly distributed pattern of differently deuterated products, reducing the 

sensitivity of measurements as well as the ease of interpretation of the obtained spectra. 
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For the synthesis of compound [1-13C,15N]-31, [1-13C]-propynoic acid was synthesized as 

an intermediate according to a modified procedure described by Baldwin and 

coworkers.76 [1-13C]-propynoic acid was then further transformed into [1-13C,15N]-31 by 

addition of 15NH2OH (Fig. 29 b). To increase the yield for the synthesis of [1-13C]-

propynoic acid, the reaction mixture was intermediately heated under reduced pressure, 

to force the decarboxylation of the side product acetylene dicarboxylate, yielding a higher 

content of the desired monoacid [1-13C]-propynoate. In general, the overall yields of 

these transformations are rather small, which limits the application of the compounds for 

biosynthetic investigations. However, the isolated amounts of the products were 

sufficient for multiple injection experiments (see section 2.3.2.). Column chromatography 

provided appropriate purity (for details see original publication88). 

To test whether the heterocycle 17 itself occurs as an intermediate in the biosynthesis of 

compounds 1 and 2 in Chrysomelina, a synthesis of [1-13C,15N]-labeled isoxazolin-5-one 

17 via oxime 31 and DCC in ether was performed (Fig. 29 c). After this attempt, the 

column chromatography (SiO2 and RP-18) failed to isolate heterocycle 17, although UV 

activity at appropriate wavelengths (around 260 nm) of these solutions could be measured 

prior to column chromatography. This observation might correlate with the instability of 

compound 17 under acidic conditions. To circumvent this problem of isolating small 

amounts of an (expensive) labeled product, the unlabeled heterocycle 17 was synthesized 

and isolated by extraction, according to De Sarlo et al.73 The isolated product 17 was then 

used for in vitro investigations using larval tissue samples (see section 2.3.2.). 

For quantitative studies, the synthesis of stable-isotope-labeled compounds 1 and 2 was 

carried out (Fig. 29 d).77,80,88 With the use of these six-fold-labeled substances, 

quantification of natural compounds 1 and 2 from biological samples was possible using 

the SIL-IS89 approach, as described in sections 2.2 and 2.3.2. 

2.3.2. Metabolic pathway 

The previously described synthesized compounds as well as commercially available 13C- 

and 15N-labeled substances were applied to larvae of P. cochleariae, C. populi and 

G. viridula to investigate the metabolic pathway for the formation of compounds 1 and 2 

in juvenile Chrysomelina. In first experiments, commercial [13C4,15N]-aspartate, 
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[13C3,15N]-β-alanine, [13C3]-propanoate as well as [13C5,15N]-valine were fed to larvae of 

P. cochleariae and LC-MS analyses were performed from MeCN/H2O-extracts of the so 

treated juvenile leaf beetles (Fig. 30).88  
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Figure 30 Representative mass spectra after LC-separation of larval extracts from P. cochleariae 
feeding on the given substances for 10 d.88 

The mass spectra indicate that randomly re-assembled fragments of [13C4,15N]-Asp are 

incorporated into compound 2 as evidenced by an increase of the intensity of isotopic 

peaks at m/z 394, 395, 396, 397, 398, 399 and 400 compared to the control spectrum. 

These signals at m/z 394 to 400 exhibit an approximately linear decrease in their intensity 

with ascending m/z ratio. In contrast, the spectrum of larval samples treated with 

[13C5,15N]-Val show signals of distinct ions of maximum intensity at m/z 396 as well as 

399, indicating an incorporation of intact fragments deriving from this amino acid into 

compound 2. These observations provide clear evidence for a direct pathway from the 
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essential amino acid valine to compound 2, while the incorporation of aspartate seems to 

derive from general multistep metabolic pathways within these organisms. Observations 

analogous to the results upon feeding of [13C5,15N]-Val were made in case of the 

[13C3,15N]-β-alanine and [13C3]-propanoate treated larvae, as indicated by distinct peaks at 

m/z 397 and 401 as well as 396 and 399 respectively. In addition, the distinct signals at 

m/z 399 (valine and propanoate) as well as 401 (β-alanine) can be explained by 

incorporation of two consecutive units into compound 2, deriving from these precursors. 

This indicates that both, the isoxazolin-5-one as well as the 3-NPA moiety, derive from 

the same precursors, as exemplified using valine, propanoate as well as β-alanine. This 

hypothesis is further evidenced by the mass spectra of compound 1 after LC-separation of 

the larval samples as well as LC-MS analyses of hydrolyzed compound 2, which resulted 

in the detection of labeled free 3-NPA (for details see literature88, ESI). 

The spectra measured from larval samples treated with [13C5,15N]-Val additionally show 

increased intensities at m/z 394, 395, 397, 398 and 400, compared to the control 

spectrum. This observation can be explained by essential deamination and consecutive 

transamination, transferring the 15N-atom to natural unlabeled intermediates, leading to 

peaks at m/z 394 and 395 or to labeled intermediates, leading to an increase of signals at 

m/z 397, 398 and 400. 

As a consequence of these findings, intermediates derived from β-alanine, such as 

compounds 8, [1-13C,15N]-8, 17, [1-13C,15N]-30 and [1-13C,15N]-31 were applied to larval 

fat body tissue (in case of 8 and 17) or were injected into the larval hemolymph (in case 

of [1-13C,15N]-8, [1-13C,15N]-30 and [1-13C,15N]-31) to explore further steps in the 

metabolic pathway. All of these experiments resulted in positive incorporation of the 

putative intermediates, as shown in Fig. 31.88 
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Figure 31 a) Representative 1H NMR spectra of the supernatant of a fat body suspension from P. 
cochleariae (red), compound 17 and α-UDP-glucose (black); supernatant of fat body 
from P. cochleariae, compound 17 and α-UDP-glucose (blue) and synthetic compound 1 
(grey); b) Representative mass spectrum of compound 2 after LC separation of a larval 
extract from P. cochleariae, injected with either compound [1-13C,15N]-30 or -31; for a 
control spectrum see Fig. 30.88 

The above shown results lead to a novel supposed biosynthetic pathway for the formation 

of compounds 1 and 2 in Chrysomelina larvae, starting from essential amino acids as 

demonstrated for valine (Fig. 32). 
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Figure 32 Proposed metabolic pathway for the biosynthesis of compounds 1 and 2 in juvenile 
Chrysomelina.88 

It is supposed that over several steps valine is converted into propanoyl-CoA, being 

described as a general occurring catabolic pathway for several essential amino acids.95-97 

Propanoate can then be transformed into β-alanine upon oxidation, followed by 

transamination or addition of ammonia. β-Alanine is then oxidized at the nitrogen atom 

in three consecutive steps, most likely upon monooxygenation, to form 3-NPA. The 

formation of the heterocycle proceeds via two oxidation steps, resulting in the formation 

of the oxime 31, which cyclizes either enzymatically or non-enzymatically to form 

isoxazolin-5-one 17. In the presence of α-UDP-glucose, the heterocycle 17 is then finally 
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transformed into glucoside 1. Under consumption of ATP and Coenzyme A, compounds 

1 and 3-NPA are transformed into the nitro-ester 2. To study the contribution of the 

described intermediates to the biosynthesis of compounds 1 and 2 in juvenile 

Chrysomelina, the percentiles of incorporation of the injected compounds in case of 

[13C4,15N]-aspartate, [13C3,15N]-β-alanine as well as [13C3]-propanoate were determined 

using P. cochleariae larvae (Fig. 33, details are described in the original publication88). 
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Figure 33 Incorporations (C in %) of the injected substances into compounds 1 and 2 in P. 
cochleariae. 

The results clearly indicate the low contribution of aspartate, while propanoate and 

especially β-alanine show much higher incorporation of up to 40%.88 The incorporation 

of valine was estimated by comparison of the results of the feeding experiments after 

feeding on leaves coated with aspartate- and valine-solutions (analogous to literature 

methods88, equ. 3). These analyses show that the incorporation of valine is 8.1 times 

higher than that of aspartate, indicating that Val is a significantly more important source 

than Asp for the construction of compounds 1 and 2 in juvenile Chrysomelina. 

Previously, it was demonstrated that free valine occurs in higher amounts in Brassica 

rapa pekinensis leaves compared to aspartate, which supports this hypothesis in case of 

P. cochleariae.98 In addition, all three investigated species (P. chochleariae, C. populi 
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and G. viridula) show a very similar total content of isoxazolin-5-one and 3-NPA 

moieties with respect to their body weight (Fig. 34). 
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Figure 34 Isoxazolin-5-one and 3-NPA content in Chrysomelina species in nmol/mg, determined 
with SIL-IS; NP. cochleariae = NG. viridula = 20, NC. populi = 16. 

This further indicates a biosynthesis via generally occurring precursors, as essential 

amino acids, e.g. valine, as well as other host plant-derived nutrients, as β-alanine and 

propanoic acid. In (dqf)-COSY-NMR measurements of crude hemolymph samples from 

juvenile Chrysomelina a high content of free valine is indicated (Fig. 35).87 

 



DISCUSSION 
 

 
37 

 

 

Figure 35 Double quantum filtered (dqf)-COSY spectra at 500 MHz in CD3OD of the crude 
hemolymph from C. populi (A) and P. cochleariae (B); Signals corresponding to amino 
acids (three letter codes), as well as isoxazolin-5-one (IO), glucose (Glc), and 3-
nitropropionate (NPA) units are labelled.87 
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These spectra provide evidence for the required efficient uptake of significant amounts of 

valine and other amino acids upon ingestion and digestion of the host plant leafs, needed 

for the biosynthesis of compounds 1 and 2 in Chrysomelina larvae. 

No increase in isotopic peak intensities in compounds 1 and 2 occurred after feeding of 

leaves covered with [13C2]-malonate solutions. The same result was observed in case of 

threonine. In case of α-alanine only an incorporation of the nitrogen atom was observed 

upon feeding of leaves covered with [13C3,15N]-α-alanine- and [15N]-α-alanine-solutions. 

These results rule out alternative carbon sources for β-alanine, as described elsewhere61,99 

and indicate that the amino-nitrogen of proteinogenic amino acids serves as the nitrogen 

source.  

The novel findings reveal that the formation of both moieties, the isoxazolin-5-one ring 

and 3-NPA, derives from the same precursors. A previously suggested pathway via 

decarboxylation of aspartate, providing required β-alanine, is unlikely due the 

incorporation of randomly reassembled fragments of aspartate, rather than intact atomic 

groups. Thus, essential amino acids as valine are ultimate precursors for the formation of 

compounds 1 and 2 rather than metabolites deriving from aspartate metabolism. 
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3. Summary 

3.1. Synthesis of isoxazolin-5-one glucosides 

An alternative access to isoxazolin-5-one glycosides was realized, based on a cascade 

reaction.74,75,77,80 The total yield for the synthesis of naturally occurring compound 1 was 

improved from 1%4 (Koenigs-Knorr) to 22%.4,77,80 In a subsequent step, compound 2 

could be synthesized by transesterification (Fig. 36).77 
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Figure 36 a) Novel approach for the synthesis of compounds 1 and 2, starting from tetra-O-benzyl 
glucose; b) Principal for the synthesis of isoxazolin-5-one glycosides 1 and 26-29 from 
unprotected sugars as precursors.77,88 

The required number of steps for the synthesis was further reduced by starting from 

unprotected sugars that were transformed into the corresponding oximes.80 Using this 

method, compound 1 as well as four novel isoxazolin-5-one glycosides, derived from 

xylose, maltose and fructose were synthesized, purified and characterized.80 Crystals of 

compound 1 could be isolated to perform a single-crystal x-ray diffraction analysis. All 

isoxazolin-5-one glycosides showed high quantum yields around 0.3 for 

photodegradation upon irradiation at a wavelength of 254 nm in aqueous media and rt, 

analogous to similar natural occurring isoxazolin-5-one derivatives.4,80 These 

photoreactions resulted in quantitative release of the corresponding sugars.80 Compound 

1 shows high stability in presence of β-glucosidase from almonds.80  
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3.2. Ecological relevance of isoxazolin-5-one derivatives in leaf beetles 

NMR- and HPLC-MS-based analyses of samples from juvenile Chrysomelina leaf beetles 

provided evidence for the occurrence of isoxazolin-5-one and 3-NPA derived glucosides 

that were only known from adult secretions as well as eggs of these species.5,15 Upon 

comparison of spectra from authentic synthetic standards of these isoxazolin-5-one 

glucosides with the spectra of biological samples, the occurrence of compounds 1 and 2 

was confirmed in Chrysomelina larvae, pupae as well as adult hemolymph.87 Quantitative 

analyses revealed ecologically significant specific amounts of compounds 1 and 2 in the 

range of several nmol/mg, which correlates with millimolar concentrations.88 The use of 

the SIL-IS approach significantly reduces the required time for analyses, while the 

analytical precision and accuracy are optimized.89 The increase of the specific amount of 

compound 2 with respect to the body weight in Chrysomelina larvae was observed.87,88 

The major biological function of compound 1 in Chrysomelina leaf beetles was identified 

to be the precursor for esterification with the toxin 3-nitropropanoic acid to form 

compound 2, as a storage molecule that can circulate in the insect’s hemolymph.87 This 

hypothesis is supported by the high concentrations of compound 1 in the hemolymph, 

guaranteeing sufficient transesterification potential. Furthermore, no toxicity of this 

substance was observed upon application of significant concentrated solutions to diverse 

cell lines of fungi, bacteria as well as human cells. 

The observed detoxification pathway in 3-NPA producers via ester-formation has not yet 

been described so far. Furthermore, these findings extend the understanding of chemical 

defense in juvenile Chrysomelina leaf beetles, showing toxin production as well as 

aposematic warning via secreted volatiles as two different modes of defense occurring at 

the same time.24,25,87  

3.3. Biosynthesis of isoxazolin-5-one and 3-NPA moieties in Chrysomelina 

Isotopic labeled and non-labeled putative intermediates of the biosynthetic pathway of 

compounds 1 and 2 in Chrysomelina larvae were applied to the insects or to suspensions 

of their fat body. HPLC-MS- as well as NMR-analyses of these samples resulted in the 

suggestion of an unexpected metabolic route for the formation of isoxazolin-5-one 

glucosides 1 and 2 in juvenile Chrysomelina (Fig. 37).37,61,88 
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Figure 37 Comparison of different proposed biosynthetic pathways of 3-NPA. 

The novel supposed pathway starts from essential amino acids, e.g. valine, and proceeds 

via propanoyl-CoA and β-alanine as intermediates. Further stepwise monooxygenation at 

the nitrogen atom of β-alanine leads to the formation of intermediate 3-

(hydroxyamino)propanoic acid 30 as well as 3-(hydroxyimino)propanoic acid 31.  The 

oxime 31 is cyclized to form isoazolin-5-one 17, which is transformed into compound 1 

via α-UDP-glucose. Further oxidation of the oxime provides 3-nitropropanoic acid.  The 

corresponding CoA-ester is finally transformed into compound 2. Quantitative 

experiments revealed the significance of the proposed intermediates of the biosynthetic 

pathway. These experiments show that the isoxazolin-5-one as well as the 3-NPA 

moieties derive from the same precursors in Chrysomelina larvae. Malonate and 

threonine do not show incorporation.88 A direct decarboxylation of aspartate to yield 

β-alanine was not observed.6 Thus, the novel supposed pathway is alternative to the 

previously described metabolic routes37,61 and provides information on the formation of 

the isoxazolin-5-one heterocycle for the first time.88 
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4. Perspectives 

4.1. Uptake of plant derived precursors 

Upon comparison of the percentiles of amino acid incorporation into compounds 1 and 2 

(see chapter 2.3.2.) with the specific amounts of available free amino acids in the host 

plant leafs88, it becomes obvious that the ingestion of these nutrients by the leaf beetle 

larvae is not sufficient to explain the observed specific amounts of isoxazolin-5-one and 

3-NPA moieties in these insects. This difference is evidence for the necessity of an 

uptake of further compounds deriving from the ingested and digested plant material. 

Firstly, such compounds could be intermediates on the biosynthetic pathway, starting 

from essential amino acids, especially valine, methionine as well as isoleucine, and 

finally yielding β-alanine, as the frontier between primary and secondary metabolism in 

leaf beetles in terms of compounds 1 and 2. Secondly, a major nutrition source in 

Chrysomelina might be the digestion of proteins, resulting in the release of required 

amino acids. As an additional source of possible nutrients for the anabolism of 

compounds 1 and 2, parallel pathways that provide β-alanine in leaf beetles, not yet 

validated, have to be taken into account, e.g. from spermine.100 

To summarize these perspective results, anabolic biosynthetic pathways in general cannot 

be reduced to single substances as starting points that might be ingested from the food.  

4.2. Enzymes involved in the biosynthesis of compounds 1 and 2 

In first experiments on putative candidates for enzymes involved in the biosynthetic 

pathway of compounds 1 and 2 in juvenile Chrysomelina, synthetic [13C6]-1 and [13C6]-2 

were used as standards for SIL-IS-quantifications within RNAi-approaches. At first, it 

was of interest to identify enzymes that catalyze the oxidation of the nitrogen atom of β-

alanine. These reactions result in the formation of the oxime, and thus the heterocycle, 

and the actual toxin 3-NPA as well.88 Thus, sequences from enzymes belonging to the 

cytochrome P450 family were identified in the beetles as putative candidates. After 

injection of corresponding P450-derived double-stranded RNA (dsRNA) into larval 
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hemolymph of C. populi, a decreased specific amount of compound 2 as well as a 

simultaneous increase in the amount of compound 1 could be detected (Fig. 38). 
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Figure 38 Specific amounts of compounds 1 (a) and 2 (b) after RNAi-treatments of C. populi larvae 
compared to GFP-controls; NGFP = 3, NRNAi = 4. 

The dsRNA was provided by Toni Krause. In the future, compounds [13C6]-1 and [13C6]-2 

will be used in the RNAi-based identification of further putative candidates for enzymes 

involved in the biosynthesis compounds 1 and 2 in Chrysomelina. 

4.3. Biosynthetic pathways yielding compounds 1 and 2 in other organisms 

Due to former experiments applying radioactive labelled precursors to unravel aspects of 

the biosynthesis of especially 3-NPA, e.g. in I. spicata, the picture of the formation of 

these compounds remains incomplete.61 As shown within this thesis, it is not sufficient to 

rely only on radioactivity as a tracer for incorporation of biosynthetic intermediates.88 As 

isoxazolin-5-one and 3-NPA moieties occur parallel in particular, as shown in Astragalus 

species,7 it is likely that similar or equal metabolic pathways as described in this thesis 

for leaf beetles might also occur in plants and other organisms. 
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5. Zusammenfassung 

5.1. Synthese von Isoxazolin-5-on-Glucosiden 

Ein alternativer Zugang zu Isoxazolin-5-on-Glycosiden wurde realisiert, basierend auf 

einer Kaskadenreaktion.74,75,77,80 Die Totalausbeute der Naturstoffsynthese  von 

Verbindung 1 wurde von 1% (Koenigs-Knorr) auf 22% gesteigert.4,77,80 In einem 

weiteren Reaktionsschritt wurde Verbindung 2 durch Transesterifizierung dargestellt 

(Fig. 39).77 
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Figure 39 a) Neuer Ansatz zur Synthese der Verbindungen 1 und 2, ausgehend von tetra-O-
benzylglucose; b) Prinzip der Synthese von Isoxazolin-5-on-Glycosiden 1 und 26-29 
ausgehend von ungeschützten Zuckern als Vorstufen.77,88 

Die Anzahl von Synthesestufen wurde durch den Einsatz ungeschützter Zucker, die in die 

entsprechenden Oxime überführt wurden, weiter reduziert.80 Unter Verwendung dieser 

Methode wurden Verbindung 1 sowie vier neue Isoxazolin-5-on-Glycoside, abgeleitet 

von Xylose, Maltose und Fructose synthetisiert, aufgereinigt und charakterisiert.80 

Kristalle von Verbindung 1 konnten isoliert werden, um eine 

Röntgenkristallstrukturanalyse durchzuführen. Alle Isoxazolin-5-on-Glycoside zeigten 

hohe Quantenausbeuten um 0,3 bei der photochemischen Zersetzung unter Einstrahlung 

von UV-Licht mit Wellenlängen von 254 nm im wässrigen Milieu und bei rt, analog zu 

ähnlichen Isoxazolin-5-on-Naturstoffen.4,80 Diese Photoreaktionen resultierten in 
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quantitativer Freisetzung der korrespondierenden Zucker.80 Verbindung 1 zeigt hohe 

Stabilität in Gegenwart von β-Glucosidase aus Mandeln.80 

5.2. Ökologische Bedeutung von Isoxazolin-5-on-Derivaten in Blattkäfern 

NMR- und HPLC-MS-basierte Analysen von Proben von juvenilen Chrysomelina 

Blattkäfern lieferten Evidenz für das Vorkommen von Isoxazolin-5-on- und 3-NPA-

abgeleiteten Glucosiden, welche einzig von adulten Sekreten sowie Eiern dieser Spezies 

bekannt waren.5,15 Nach Vergleich von Spektren der authentischen Synthesestandards 

dieser Isoxazolin-5-on-Glucoside mit Spektren der biologischen Proben wurde das 

Vorkommen von Verbindungen 1 und 2 in Chrysomelina Larven, den Puppen sowie der 

adulten Hämolymphe bestätigt.87 Quantitative Analysen zeigten ökologisch signifikante 

spezifische Stoffmengen von Verbindungen 1 und 2 im Bereich einiger nmol/mg, was 

mit millimolaren Konzentrationen korreliert.88 Die Verwendung des SIL-IS-Ansatzes 

reduziert signifikant die Analysenzeit, während die analytische Genauigkeit und 

Präzision optimiert werden.89 Es wurde beobachtet, dass die spezifische Stoffmenge von 

Verbindung 2 in Chrysomelina Larven mit der Körpermasse ansteigt.87,88 Die biologische 

Hauptfunktion von Verbindung 1 in Chrysomelina ist das Bereitstellen einer Vorstufe zur 

Veresterung mit dem Gift 3-NPA zur Bildung von Verbindung 2, als Speichermolekül, 

das in der Insektenhämolymphe zirkuliert.87 Diese Hypothese wird durch die hohe 

Konzentration von Verbindung 1 in der Hämolymphe gestützt, welche ausreichendes 

Transesterifizierungspotential garantiert. Außerdem wurde keinerlei Toxizität dieser 

Substanz beobachtet, nachdem signifikant konzentrierte Lösungen Zellkulturen von 

Pilzen, Bakterien sowie humanen Zelllinien zugesetzt wurden. Der beobachtete 

Entgiftungsweg in 3-NPA-Produzenten über eine Esterbildung wurde bis jetzt nicht 

beschrieben. Zudem erweitern diese Ergebnisse das Verständnis der chemischen Abwehr 

in juvenilen Chrysomelina Blattkäfern, durch die Produktion von Gift sowie 

aposematische Warnung über sekretierte Volatile, was zwei verschiedenen 

Verteidigungs-Modi zur selben Zeit entspricht.24,25,87 
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5.3. Biosynthese von Isoxazolin-5-on- und 3-NPA-Einheiten in Chrysomelina  

Isotopenmarkierte und nicht-markierte putative Intermediate des Biosynthesewegs von 

Verbindungen 1 und 2 in Chrysomelina Larven wurden den Insekten oder Suspensionen 

ihres  Fettkörpers  zugesetzt. HPLC-MS sowie NMR-Analysen dieser Proben resultierten 

im Vorschlag für eine unerwartete metabolische Route zur Bildung von Verbindungen 1 

und 2 in juvenilen Chrysomelina (Fig. 40).37,61,88  
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Figure 40 Vergleich verschiedener vorgeschlagener biosynthetischer Wege von 3-NPA. 

Der neuartige vorgeschlagene Weg startet bei essentiellen Aminosäuren, z.B. Valin, und 

führt über Propanoyl-CoA und β-Alanin als Zwischenstufen. Weitere stufenweise 

Monooxygenierung am Stickstoffatom von β-Alanin führt zur Bildung der Intermediate 

3-(Hydroxyamino)propansäure 30 sowie 3-(Hydroxyimino)propansäure 31. Das Oxim 31 

wird zyklisiert, um Isoxazolin-5-on 17 zu bilden, welches über α-UDP-Glucose in 

Verbindung 1 überführt wird. Weitere Oxidation des Oxims liefert 3-Nitropropansäure. 

Der korrespondierende CoA-Ester wird zuletzt in Verbindung 2 überführt. Quantitative 

Experimente belegten die Signifikanz der vorgeschlagenen Intermediate auf dem 

Biosyntheseweg. Diese Experimente zeigen, dass die Isoxazolin-5-on- sowie die 3-NPA-

Einheiten in Chrysomelina Larven von den selben Vorstufen ausgehend gebildet werden. 

Malonsäure sowie Threonin zeigen keinen Einbau.88 Eine direkte Decarboxylierung von 

Asparaginsäure zur Bildung von β-Alanin wurde nicht beobachtet.6 Folglich ist die neue 

vorgeschlagene metabolische Route alternativ zu den vorher beschriebenen37,61 und 

liefert zum ersten Mal Informationen zur Bildung des Isoxazolin-5-on-Heterozyklus.88 
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6. Ausblick 

6.1. Aufnahme von Vorstufen aus den Pflanzen 

Nach Vergleich des prozentualen Einbaus von Aminosäuren in die Verbindungen 1 und 2 

(Vergleich Kapitel 2.3.2.) mit den spezifischen Stoffmengen verfügbarer freier 

Aminosäuren in den Blättern der Wirtspflanze88 wird deutlich, dass die Aufnahme dieser 

Nährstoffe durch die Blattkäferlarve nicht ausreicht, um die beobachteten spezifischen 

Stoffmengen der Isoxazolin-5-on- und 3-NPA-Einheiten in diesen Insekten zu erklären. 

Diese Differenz ist Evidenz für die Notwendigkeit der Aufnahme weiterer Verbindungen, 

die sich vom aufgenommenen und verdauten Pflanzenmaterial ableiten. Erstens könnten 

solche Verbindungen Intermediaten des Biosynthesewegs entsprechen, wie zum Beispiel 

Valin, Methionin oder Isoleucin, die letztendlich in der Bildung von β-Alanin münden, 

der Grenzverbindung zwischen primärem und sekundärem Metabolismus in Blattkäfern 

in Bezug auf Verbindungen 1 und 2. Zweitens stellt eine wesentliche Nährstoffquelle in 

Chrysomelina möglicherweise die Verdauung von Proteinen aus der aufgenommenen 

Wirtspflanze dar, die zur Freisetzung von Aminosäuren führt. Weiterhin könnten noch 

nicht validierte parallele Wege zur Bildung von β-Alanin in Chrysomelina führen, z.B. 

über Spermin.100 

Um diese perspektivischen Resultate zusammen zu fassen lässt sich sagen, dass 

Biosynthesewege nicht auf einzelne Substanzen als Startpunkte reduziert werden können, 

die eventuell aus der Nahrung aufgenommen werden.  

6.2. Enzyme in der Biosynthese von Verbindungen 1 und 2 

In ersten Experimenten in Bezug auf putative Enzym-Kandidaten, die in die Biosynthese 

von Verbindungen 1 und 2 in juvenilen Chrysomelina involviert sind, wurden die 

synthetischen Verbindungen [13C6]-1 und [13C6]-2 als Standards für SIL-IS-

Quantifizierungen in RNAi-Ansätzen verwendet. Zunächst war es von Interesse Enzyme 

zu identifizieren, welche die Oxidation des Stickstoffatoms in β-Alanin katalysieren. 

Diese Reaktionen resultieren in der Bildung des Oxims und somit des Heterozyklus 

sowie dem eigentlichen Giftstoff 3-NPA.88 Deshalb wurden Sequenzen von Enzymen, die 
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zur Cytochrom P450-Familie gehören in den Käfern als putative Kandidaten identifiziert. 

Nach der Injektion von doppelsträngiger RNA (dsRNA), die zu P450-Sequenzen 

korrespondiert, in larvale Hämolymphe von C. Populi, wurde eine Abnahme der 

spezifischen Stoffmenge von Verbindung 2 sowie eine gleichzeitige Zunahme der 

Stoffmenge von Verbindung 1 detektiert (Fig. 41). 
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Figure 41 Spezifische Stoffmengen von Verbindung 1 (a) und 2 (b) nach RNAi-Behandlung von C. 
populi Larven im Vergleich zu GFP-Kontrollen. NGFP=3, NRNAi=4. 

Die dsRNA wurde von Toni Krause bereitgestellt. In zukünftigen Experimenten sollen 

[13C6]-1 und [13C6]-2 in RNAi-basierten Identifikationen weiterer putativer Kandidaten 

von Enzymen auf dem Biosyntheseweg von Verbindungen 1 und 2 verwendet werden. 

6.3. Biosynthesewege von Verbindungen 1 und 2 in anderen Organismen 

Aufgrund von vorherigen Versuchen auf der Basis von radioaktiv markierten Vorstufen, 

die verwendet wurden, um Aspekte der Biosynthese, z.B. von 3-NPA in I. spicata, 

aufzuklären, bleibt das Gesamtbild der Entstehung dieser Verbindungen unvollständig.61 

Wie in dieser Arbeit gezeigt wurde ist es nicht ausreichend, sich einzig auf Radioaktivität 

als Marker für biosynthetische Vorstufen zu verlassen.88 Da Isoxazolin-5-on- und 3-

NPA-Einheiten in einigen Organsimen gleichzeitig auftreten, wie in Astragalus Spezies 

gezeigt wurde,7 ist es naheliegend, dass die Biosynthesen dieser Verbindungen in 

Pflanzen und anderen Organismen ähnlich oder identisch zu den in Blattkäfern 

gefundenen sind. 
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8. Original Manuscripts and Publication Equivalents 

8.1. General remarks 

In this section the original publications that form the basis of this thesis are shown. For 

this purpose, reprint permissions for every publication were obtained from the publishers. 

The electronic supporting information (ESI) of each publication is provided. Unpublished 

results are discussed in the chapter “General Discussion” together with the findings 

published in the articles that are mentioned as follows. 

8.2. Manuscript 1 

Publikation: Becker, T.1, Görls, H.2, Pauls, G.3, Wedekind, R.4, Kai, M.5, von Reuß, 

S. H.6, Boland, W.7 (2013). Synthesis of Isoxazolin-5-one glucosides by a cascade 

reaction. The Journal of Organic Chemistry, 78, 12779-12783. DOI: 

10.1021/jo4023155. 

Wird diskutiert in den Kapiteln: 2.1.1., 3.1. und 5.1. 

Beteiligt an Autor Nummer 

 1 2 3 4 5 6 7 

Konzeption X     X X 

Planung X      X 

Datenerhebung X X X X X   

Datenanalyse und -interpretation X    X X X 

Schreiben des Manuskripts X     X X 

Publikationsäquivalente 1.0       

 

The subsequent manuscript has been used in the PhD thesis of Gerhard Pauls to show 

how compounds 1 and 2 have been synthesized to use them for quantification of these 

substances in natural samples. The properties, especially in terms of HPLC-MS 

separation, have been discussed.    
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Publikation: Becker, T.1, Kartikeya, P.2, Paetz, C.3, von Reuß, S. H.4, Boland, W.5 

(2015). Synthesis and photosensitivity of isoxazolin-5-one glycosides. Organic & 

Biomolecular Chemistry, 13, 4025-4030. DOI: 10.1039/C5OB00244C. 

Wird diskutiert in den Kapiteln: 2.1.1., 2.1.2., 3.1. und 5.1. 

Beteiligt an Autor Nummer 
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Konzeption X    X 

Planung X    X 

Datenerhebung X X X X  

Datenanalyse und -interpretation X  X X X 
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Publikationsäquivalente 1.0     

 

The subsequent manuscript has not been used in any other cumulative PhD thesis.    
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Fig. S1: Decay curve of uridine in Na2HPO4/NaH2PO4; λmax = 254 nm; I261 = 0.18 

mW/cm2; pH = 7; dlamp = 5 cm; rt; the error bars show the standard deviation (n = 5). 
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Fig. S2: Absorption of compound 1 at 261 nm under different pH conditions over the 

time. 
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Fig. S3: Decay curve of comp. 1 in Na2HPO4/NaH2PO4; λmax = 254 nm; I261 = 0.18 

mW/cm2; pH = 7; dlamp = 5 cm; rt; the error bars show the standard deviation (n = 5). 
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Fig. S4: Decay curve of comp. 2 in Na2HPO4/NaH2PO4; λmax = 254 nm; I261 = 0.18 

mW/cm2; pH = 7; dlamp = 5 cm; rt; the error bars show the standard deviation (n = 5). 
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Fig. S5: Decay curve of comp. 3 in Na2HPO4/NaH2PO4; λmax = 254 nm; I261 = 0.18 

mW/cm2; pH = 7; dlamp = 5 cm; rt; the error bars show the standard deviation (n = 5). 
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Fig. S6: Decay curve of comp. 4 in Na2HPO4/NaH2PO4; λmax = 254 nm; I261 = 0.18 

mW/cm2; pH = 7; dlamp = 5 cm; rt; the error bars show the standard deviation (n = 5). 
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Fig. S7: Decay curve of comp. 5 in Na2HPO4/NaH2PO4; λmax = 254 nm; I261 = 0.18 

mW/cm2; pH = 7; dlamp = 5 cm; rt; the error bars show the standard deviation (n = 5). 
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8.4. Manuscript 3 

Publikation: Pauls, G.1, Becker, T.2, Rahfeld, P.3, Gretscher, R.4, Paetz, C.5, Pasteels, 

J.6, von Reuss, S. H.7, Burse, A.8, Boland, W.9 (2016). Two defensive lines in juvenile 

leaf beetles; esters of 3-nitropropionic acid in the hemolymph and aposematic warning. 

Journal of Chemical Ecology, 42(3), 240-248. DOI: 10.1007/s10886-016-0684-0. 

Wird diskutiert in den Kapiteln: 2.2.1., 3.2. und 5.2. 

Beteiligt an Autor Nummer 

 1 2 3 4 5 6 7 8 9 

Konzeption X     X X X X 

Planung X       X X 

Datenerhebung X X X X X  X   

Datenanalyse und -interpretation X    X  X  X 

Schreiben des Manuskripts X     X X X X 

Publikationsäquivalente  0.5        

 

The subsequent manuscript has been used in the PhD thesis of Gerhard Pauls as a major 

part of this thesis, describing the analytical as well as taxonomic and ecological aspects 

of the novel findings.    
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Fig. S1 Mass spectra of isoxazoline-5-one-glucoside and isoxazoline-5-one-glucoside 

ester. Marked signals correspond to [M]- and[M+HCOOH]-  ions 
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Fig. S2 Mass spectra of isoxazoline-5-one-glucoside ester before and after injection with 

[13C,15N]-3-NPA. 

The signal intensity of m/z 395 corresponding to [M+HCOOH+2] - is increased, see Fig. 

S5 for labelling ratios of the investigated species 
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Fig. S3 Double quantum filtered (dqf)-COSY spectra (500 MHz, CD3OD) of the crude 

hemolymph from Chrysomela populi (A) or Phaedon cochleariae (B). Signals 

corresponding to amino acids (three letter codes), as well as isoxazoline (IO), glucose 

(Glc), and 3-nitropropionate (NPA) units are labelled. 
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Fig. S4 Concentrations of isoxazolinone glucoside 5 and its 3-Nitropropionic acid ester 6 

per mg body weight. The concentration of isoxazolinone glucoside (triangles) remained 

stable during development (regression analysis, P=0.448, F=0.593, N=30), the ester 

(dots) showed an increase in concentration (P<0.001, F=14.757, r²= 0.345, N=30), 

indicating autogenous synthesis 
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Fig. S5 [13C,15N]-enrichment of isoxazolin glucoside ester 6 upon injection with 

[13C,15N]-3-Nitropropionic acid. The enrichment of 6 upon incorporation of injected 

labelled 3-NPA was calculated based on the relative intensities of the isotopic signals 

(detected as formic acid adducts) by using the equation:  [13C,15N]-6 in % = 100 / 

([M+HCOO]- L + [M+1+HCOO]- L + [M+2+HCOO]- L) * ([M+2+HCOO] - L - 

[M+2+HCOO] - C)  with L representing the labelled compound and C the unlabelled 

control. The isotope enrichment for compound 6 in Chrysomela populi was 13.2 % ± 

4,3% (mean value ± standard deviation, n=10 for each species), in the case of Phaedon 

cochleariae it was 7% ± 1,3%, while Chrysomela lapponica showed 24.5% ± 9,5% 

enrichment. 
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Fig. S6 NMR spectroscopic identification of 8-hydroxygeraniol glucoside and salicin. A: 

Partial dqf-COSY spectrum of the crude Phaedon cochleariae hemolymph; B: dqf-COSY 

spectrum of 8-hydroxygeraniol glucoside standard; C: Partial dqf-COSY spectrum of the 

crude Chrysomela populi hemolymph; D: dqf-COSY spectrum of salicin standard. 
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Tab. S1 Leaf beetle larvae analyzed for this study with collection site and host plant 
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 5 6 

 1H COSY 13C HMBC 1H COSY 13C HMBC 

1 4.925 d J1,2 = 9.2 90.4* C-1’,  

C-2,3,5 

4.930 d J1,2 = 9.2 90.2* C-1’ 

C-2,3,5 

2 3.746* H-1’, H-3’ 71.0* C-1,3 3.746* H-1’, H-3’ 71.0* C-1,3 

3 3.457* H-2’, H-4’ 78.5* C-2,4 3.457* H-2’, H-4’ 78.5* C-2,4 

4 3.326* H-3’, H-5’ 70.9 C-3,5,6 3.326* H-3’, H-5’ 70.9 C-3,5,6 

5 3.407 ddd J5,4 = 10.8 

J5,6 = 5.5 

80.3 C-1,3,4 3.610 ddd J5,4 = 10.7 

J5,6 = 5.7 

77.2 C-1,4 

6a 3.84 dd 

12.2, 2.1 

2J = 12.2 

J6,5 = 2.1 

62.3 C-4,5 4.466 dd 

12.0, 1.9 

2J = 12.0 

J6,5 = 1.9 

64.7 C-1’’,  

C-4,5 

6b 3.65 dd 2J = 12.3 

J6,5 = 6.0 

 C-4,5 4.203 dd 2J = 12.0 

J6,5 = 6.0 

 C-1’’,  

C-4,5 

1’ 8.453 d J1,2 = 3.7 154.8 C-2’, C-3’ 8.433 d J1,2 = 3.7 155.1 C-2’, C-3’ 

2’ 5.315 d J2,1 = 3.7 90.9 C-1’, C-3’ 5.344 d J2,1 = 3.7 91.5 C-1’, C-3’ 

3’ - - 174.0  - - 173.9  

1’’ - - -  - - 171.5  

2’’ - - -  3.016 t J = 5.9 31.7  

3’’ - - -  4.705 t J = 5.8 70.7 C-1’’,  

C-2’’ 

Tab. S2 NMR data of isoxazolinone glucosides 5 and 6 derived from analysis of 1H 

NMR, dqf-COSY, HSQC, and HMBC spectra of Phaedon cochleariae hemolymph 
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Tab. S3 Screening of larval hemolymph for isoxazolinone glucoside, the corresponding 

ester and the presence of free 3-Nitropropionic acid. Hemolymph was taken in capillaries, 

sealed and shipped at RT.  1 hemolymph analyzed freshly. 2 amounts below limit of 

quantification. Concentrations are given in nmol/mg hemolymph. 
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Overview of the syntheses 
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Fig. S1: Synthetic routes for the described substrates 1 to 5. 

 

 

 

 

S3 



MANUSCRIPTS 
 

 
124 

 

Overview of the incorporation results 

Table S1: 

Compound Significance of incorporation 

   

[13C5
15N]-Val *** 

[13C3]-propanoate *** 

[13C3
15N]-β-Ala *** 

[1-13C15N]-3-(hydroxyamino)propanoic acid 3 *** 

[1-13C15N]-3-(hydroxyimino)propanoic acid 4 *** 

isoxazolin-5-one 5 a *** a 

[1-13C15N]-3-nitropropanoic acid b *** b 

[13C4
15N]-Asp - 

[4-13C]-Asp - 

[13C4]-Asp - 

[13C4
15N]-Thr - 

[13C2]-malonate - 

[13C3
15N]-α-L-Ala c - c 

[15N]-α-L-Ala c - c 

 

 “-“ = no significant intact incorporation into compounds 1 and 2 observed 
a in vitro assays 
b shown in vivo in a previous study: G. Pauls, T. Becker et al. as well as in vitro in this 

study using unlabeled 1, 5, ATP, CoA as well as 3-NPA 
c Only Nitrogen incorporation 
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Synthetic protocols and spectra 
 

[1-13C, 15N]-3-(hydroxyamino)propanoic acid 3 

2.223 g (27.61 mmol) of 2-chloroethanol were dissolved in 13.1 ml ethanol and 6.5 ml 

water. Then 1.034 g (6.9 mmol) NaI and 661 mg (10 mmol) K13CN were added. The 

mixture was heated to 70 °C for 18h. After the reaction time was finished the solvents 

were removed at 40 °C under reduced pressure and the residual oil was taken up with 

ethyl acetate (5 ml). The mixture was added to 5g of dry silica and eluted with ethyl 

acetate (30 ml). The solvent was removed to obtain 1.9 g (26.4 mmol, 95.5%) 3-

hydroxypropionitrile. The intermediate was dissolved in 25.5 ml of HBr (40% in water) 

and the mixture was heated for 2.5 h. Then 20 ml water were added and the mixture was 

extracted with diethyl ether (7 x 50 ml). The combined organic phases were dried over 

MgSO4, filtrated and the solvent was removed at 40 °C under reduced pressure to obtain 

840 mg (5.456 mmol, 20.7%) 3-bromopropanoic acid. The product was dissolved in 

diethyl ether (10 ml), a solution of 216.3 mg (6.55 mmol) NH2OH in MeOH as well as 

377 mg (2.728 mmol) K2CO3 were added. NH2OH in methanol was prepared from 461.5 

mg (6.55 mmol) NH2OH*HCl that was dissolved in dry methanol (6.6 ml). To the 

solution of NH2OH*HCl 704.1 mg (6.274 mmol) KOtBu were added at 0 °C. After 15 

min of stirring at rt the mixture was filtrated and washed with dry methanol (3 x 1.1 ml). 

The mixture of 3-bromopropanoic acid, NH2OH and K2CO3 in MeOH/Et2O was stirred 

for 18h at 40 °C. The solvents were removed at 40 °C under reduced pressure, the residue 

was taken up in MeCN/H2O (3:1) and eluted with this eluent over SiO2. The solvents 

were removed from the product fractions to obtain a colorless solid 3 (20 mg, 3.5%). 
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Rf(MeCN/H2O 3:1)=0.16; 

1H NMR (400 MHz, CDCl3) δ 3.21 (q, J = 5.2 Hz, 2H, H-3), 2.58 (dq, J1 = 6.5 Hz, J2 = 

3.0 Hz, 2H, H-2); 

13C NMR (100 MHz, CDCl3) δ 178.3 (s, C-1), 36.6 (d, 1J15N13C = 5.7 Hz, C-3), 33.5 (d, 

1J1,2 = 50.8 Hz, C-2); 

HRMS (ESI-TOF) m/z calcd for C2
13CH6

15NO3
- 106.035706 [M - H]-, found 106.035769. 
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[1-13C, 15N]-3-(hydroxyimino)propanoic acid 4 

At 0 °C water was added slowly and dropwise to 10g CaC2. The developing acetylene 

was dried with CaCl2 and lead through a solution of 15 ml n-BuLi (c = 1.5 mol/l, n = 22.5 

mmol) in 20 ml of dry THF under argon atmosphere at 0 °C. After precipitation of a 

colorless solid 13CO2 was lead through the solution for 20 h at 0 °C to rt. Then the 

solution was neutralized with 3.4 ml of HCl in water (3.18 mol/l) and 5 ml KOH in water 

(1 mol/l) were added. The mixture was heated to 70 °C under reduced pressure (700 

mbar) for 2h. Then 15 ml of HCl in water (3.18 mol/l) were added and the mixture was 

extracted with diethyl ether (5 x 100 ml). The solvents of the combined organic phases 

were removed at 40 °C and reduced pressure to yield crude [1-13C]propynoic acid as a 

yellow oil (1.05 g). The crude product was added to a solution of 15NH2OH in dry 

methanol, that was prepared by dissolving 15NH2OH*HCl (534 mg, 7.58 mmol) in 8 ml 

of dry methanol, addition of KOtBu (2.52 g, 22.5 mmol) at 0 °C, filtration of the solution 

and washing with 4 ml of dry methanol. After stirring for 4d at rt the mixture was 

concentrated to 2 ml, added to a column (Silica) and eluted with EtOAc/MeOH/AcOH 

100:10:1. After removal of the eluent from the product fractions at 40 °C and reduced 

pressure a colorless solid 4 was obtained (57 mg, 0.54 mmol, 7.2%). 

Rf(EtOAc/MeOH/AcOH 100:10:1)=0.63; 

1H NMR (400 MHz, CDCl3) δ 7.31 (m, 0.1H, Z-H-3), 6.82 (m, 1H, E-H-3), 3.23 (m, 2H, 

E-H-2), 3.11 (m, 0.29H, Z-H-2); 

13C NMR (100 MHz, CDCl3) δ 171.4 (s, C-1), 144.0 (s, Z-C-3), 124.7 (s, E-C-3), 31.2 (d, 

1J1,2 = 55.7 Hz, C-2); 

HRMS (ESI-TOF) m/z calcd for C2
13CH4

15NO3
- 104.02006 [M - H]-, found 104.020056.  
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Isoxazolin-5-one 5 

6.57 g (94.6 mmol) NH2OH*HCl were added at 0 °C to a solution of 21.1 ml KOH in 

water (c = 4.49 mol/l). Then 4.64 g (47.3 mmol) ethyl propiolate in 37.8 ml ethanol and 

9.47 g (94.46 mmol) KHCO3 were added to the mixture at 0 °C. After stirring for 20h at -

15 to 7 °C 100 ml of water were added. The mixture was extracted with diethyl ether (3 x 

80 ml). The combined organic phases were counter extracted with water (1 x 100 ml). 

The organic phase was dried over MgSO4, filtrated and the solvent was removed at 40 °C 

under educed pressure to yield ethyl 3-(hydroxyimino)propanoate as a colorless solid 

(2.78 g, 21.2 mmol, 44.8%). Without further characterization the oxime (2.78 g, 21.2 

mmol) was dissolved in 53 ml water and cooled to 0 °C. Then 21.5 ml of a solution of 

NaOH in water (c = 4.49 mol/l) was added. The mixture was stirred for 10 min and 

acidified with 35.2 ml of HCl in water (c = 3.18 mol/l)and extracted with diethyl ether (3 

x 100 ml). The combined organic phases were dried with MgSO4, filtrated and the 

solvent was removed at 40 °C under reduced pressure to yield a yellow powder (1.51 g, 

17.8 mmol, 83.7%). 

1H NMR (400 MHz, CDCl3) δ 7.88 (m, 1H, H-3), 3.46 (d, 3J3,4 = 1.4 Hz, 2H, H-4); 

13C NMR (100 MHz, CDCl3) δ 174.0 (C-5), 154.0 (C-3), 34.4 (C-4); 

HRMS (ESI-TOF) m/z calcd for C3H2NO2
- 84.00910 [M - H]-, found 84.00928; 
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[1´,2´,3´,4´,5´,6´-13C6]-2-(β-D-Glucopyranosyl)-3-isoxazolin-5-one [1´,2´,3´,4´,5´,6´-

13C6]-1 

To a stirred solution of 581 mg (8.362 mmol, 1.5 eq.) hydroxylamine hydrochloride in 8 

ml dry methanol 875 mg (7.798 mmol, 1.4 eq.) potassium tert-butoxide were added in 5 

portions at 0 °C under stirring. After 15 min at rt the solution was filtered under vacuum, 

washed with 4 ml of dry methanol and 1.0375g (5.57 mmol) of [1´,2´,3´,4´,5´,6´-

13C6]glucose was added. After 1 d of stirring at rt the solvent was removed under reduced 

pressure at 40 °C. The dry residue was dissolved in 4 ml of water. Under stirring 20 ml of 

DCC in MeCN (c = 0.4 M, 1.44 eq.) and 19.5 ml of propynoic acid in MeCN (c = 0.42 

M, 1.47 eq.) were added simultaneously at rt over 5 h. After 20 h of stirring at rt the 

solvents were removed at 25 °C under reduced pressure. The mixture was taken up in 10 

ml of water and applied to an ultrasound bath for 1 h at 22–27 °C. The suspension was 

filtrated and washed with water (3 × 10 ml). To the filtrate 500 ml of MeCN were added 

and the solvents were removed at 25 °C and 200 to 75 mbar. Then 1.25 g of dry silica and 

250 ml MeCN were added. The solvents were removed again at 25 °C and 200 to 75 

mbar to yield a dry crude mixture. The dry mixture was applied to a column and eluted 

(MeCN/H2O 55 : 1, silica). The product fractions were combined and concentrated to 

yield 250 mg (0.973 mmol, 17.5 %) of [1´,2´,3´,4´,5´,6´-13C6]1 as a colorless powder. 

Rf(MeCN/H2O 55:1)=0.15 

1H NMR (400 MHz, D2O) δ 8.45 (d, 3J3,4 = 3.7 Hz, 1H, H-3), 5.47 (d, 3J3,4 = 3.7 Hz, 1H, 

H-4), 5.34-4.89 (m, 1H, H-1´), 4.12-3.26 (m, 6H, H-2´to H-6´); 
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13C NMR (100 MHz, D2O) δ 175.3 (s, C-5), 155.4 (s, C-3), 91.2 (s, C-4), 88.9 (dt, J1 = 

43.3 Hz, J2 = 4.3 Hz, C-1´), 78.8 (t, J = 41.5 Hz, C-5´), 76.8 (t, J = 39.4 Hz, C-3´), 71.0-

69.6 (m, C-2´ and C-4´); 61.0 (dt, J1 = 43.0 Hz, J2 = 3.9 Hz, C-6´); 

LC/MS (RP18e MeCN/H2O/APCI) m/z for C4
13C6H14NO9

- 298.1 [M + FA - H]-. 

[1´,2´,3´,4´,5´,6´-13C6]-2-[6′-(3″-Nitropropanoyl)-β-D-glucopyranosyl]-3-isoxazolin-5-

one [1´,2´,3´,4´,5´,6´-13C6]-2 

A mixture of 60 mg (0.237 mmol) 2-(β-D-glucopyranosyl)-3-isoxazolin-5-one 1, 94 mg 

(0.375 mmol) 2,2,2-trichloroethyl 3-nitropropanoate 6, 90 mg immobilized C. antarctica 

lipase B and 4 Å molecular sieves was suspended in 4.2 ml dry tert-butyl alcohol. The 

suspension was stirred at 50 °C under an argon atmosphere for 3d. 0.65 g of dry silica 

was added and the mixture was concentrated under reduced pressure at 40 °C. The dry 

residue was added to a silica column, and the product was purified by column 

chromatography (ethyl acetate/MeOH/DCM 10:1:1 to 2:1:0). The solvent was removed 

to yield 2 as a colorless solid (15.6 mg, 0.044 mmol, 18.5 %). Nonconverted glucoside 

[1´,2´,3´,4´,5´,6´-13C6]1 could be recovered (15 mg, 0.059 mmol, 25 %). 

Rf(ethyl acetate/MeOH/DCM 10:1:1)=0.20 

1H NMR (400 MHz, D2O) δ 8.46 (d, 3J3,4 = 3.7 Hz, 1H, H-3), 5.50 (d, 3J3,4 = 3.7 Hz, 1H, 

H-4), 5.35-4.80 (m, 1H, H-1´), 4.57-3.09 (m, 10H, H-2´ to H-3´´); 

13C NMR (100 MHz, D2O) δ 174.7 (C-5), 172.4 (C-1″), 155.0 (C-3), 91.7 (C-4), 88.7 (dt, 

J1 = 43.4 Hz, J2 = 4.3 Hz, C-1´), 77.0-75.6 (m, C-5′ and C-3′), 70.4-69.0 (m, C-3″, C-2′ 

and C-4′), 63.9 (dt, J1 = 44.2 Hz, J2 = 4.1 Hz, C-6´), 31.7 (C-2″); 

LC/MS (RP18e MeCN/H2O/APCI) m/z for C7
13C6H17N2O12

- 398.9 [M + FA - H]-. 
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2,2,2-Trichloroethyl 3-Nitropropanoate 6 

3-Nitropropanoic acid (687 mg, 5.77 mmol), 2,2,2-trichloroethanol (3.45 g, 23.08 mmol, 

4 equiv), and DMAP (63.4 mg, 0.52 mmol, 9 mol %) were dissolved in dry DCM (5.77 

mL). The mixture was cooled to 0 °C, and DCC (1.308 g, 6.35 mmol, 1.1 equiv) was 

added all at once. After 10 min at 0 °C, the mixture was heated to rt and stirred for 3 h. 

After purification by flash column chromatography (CHCl3) and removal of the solvent 

at 40 °C under reduced pressure, a colorless powder of 6 (834 mg, 3.33 mmol, 57.7%) 

was obtained. 

Rf(CHCl3)=0.78; 

1H NMR (500 MHz, CDCl3) δ 4.81 (s, 2H, CH2CCl3), 4.72 (t, 3J2,3 = 6.1 Hz, 2H, 

CH2NO2), 3.16 (t, 3J2,3 = 6.1 Hz, 2H, CH2CO2R);  

13C NMR (125 MHz, CDCl3) δ 168.13, 94.46, 74.59, 69.35, 30.97; HRMS (APCI-

Orbitrap) m/z calcd for C5H7Cl3NO4 249.9435 [M + H]+, found 249.9429; 
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In vitro experiments 

 

Fig. S2: Representative 400 MHz 1H NMR spectra of buffered solutions of the fat body, 

as a control, (green) of Phaedon cochleariae, compound 5 and α-UDP-Glucose (black), 

compound 5, α-UDP-Glucose and fat body (blue) as well as the synthetic compound 1 

(red) after 1d of incubation at 30 °C. 
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Fig. S3: Representative HPLC-MS signal of m/z 393 of buffered solutions containing 

ATP, CoenzymeA, compound 1, 3-NPA and/or the fat body of Chrysomela populi after 

1d of incubation at 30 °C. 
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In vivo experiments 

Mass Spectrum Report 
 

 
Meas. 
m/z 

# Formula Score m/z err 
[mDa] 

err 
[ppm] 

mSi
g 
m
a 

rdβ e¯ 
Con
f 

 

118.01428
5 

1 C 5 N 3 O 0.00 118.004685 -9.600 -81.347 1.6 7.5 even  
 2 C 4 N 5 62.83 118.015919 1.633 13.840 3.5 7.5 even  
 3 C 3 H 4 N O 4 100.00 118.014581 0.296 2.507 18.9 2.5 even  
 4 C 2 H 4 N 3 O 3 0.00 118.025815 11.529 97.694 20.6 2.5 even  
 5 C 6 H N 2 O 0.00 117.009436 -2.127 -18.020 535.6 7.5 even  
 6 C 5 H N 4 0.00 117.020670 8.390 71.095 537.6 7.5 even  
 7 C 4 H 5 O 4 0.00 117.019332 8.468 71.752 552.4 2.5 even  
 8 C H N 4 O 3 0.00 117.005413 -8.946 -75.801 562.6 3.5 even  

121.02714
1 

1 C 2 H 5 N 2 O 4 64.18 121.025480 -1.660 -13.720 17.4 1.5 even  
122.02147
1 

1 H 4 O 4 ^13C 3 ^15N 100.00 122.021681 0.209 1.714 7.4 2.5 even  
 2 C N 4 ^13C 3 ^15N 41.71 122.023018 1.547 12.675 14.8 7.5 even  
 3 C 2 N 2 O ^13C 3 

^15N 
0.00 122.011785 -9.687 -79.386 20.7 7.5 even  

 4 C 3 H N O ^13C 3 
^15N 

0.00 121.016536 -2.200 -18.029 801.9 7.5 even  
 5 C 2 H N 3 ^13C 3 ^15N 0.00 121.027769 7.529 61.705 803.3 7.5 even  

124.02562
0 

1 C 2 H 6 N O 5 100.00 124.025146 -0.474 -3.821 15.8 0.5 even  
162.04060
9 

1 C 6 H 4 N 5 O 65.55 162.042133 1.525 9.409 6.2 7.5 even  
 

Fig. S4: Representative high resolution mass spectrum of free 3-NPA after LC 

separation of larval MeCN/H2O (1:1) extracts from P. cochleariae upon feeding on 

[13C3
15N]-β-Ala in KH2PO4/K2HPO4 for 10 d.  
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Fig. S5 Representative mass spectra of compound 1 after LC separation of larval extracts 

(MeCN/H2O, 1:1) from P. cochleariae after feeding on different diets for 10 d; diets 

consisted of B. rapa pekinensis leaves, impregnated with KH2PO4/K2HPO4 buffered 

solutions of the compounds given above; as a control only buffer was used.  
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Quantification of compounds 1 and 2 in Chrysomelina 

The quantifications were carried out via addition of 13C6 isotopic labelled standards of 

compounds 1 and 2 to whole larval extracts (spiking). As shown in our previous work (G. 

Pauls, T. Becker et al.), the ester moiety hydrolyses in compound 2 upon extraction with 

aqueous or alcoholic media to a certain extent, so that free 3-NPA can be detected upon 

HPLC-MS analysis. Due to these circumstances, the quantifications were carried out as 

soon as possible after extraction of the samples. Furthermore the samples were stored 

at -25 °C prior to analysis. 
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Fig. S6: Molar amount of compound 1 in Phaedon cochleariae per body weight, feeding 

on Brassica rapa pekinensis leafs.  
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Fig. S7: Molar amount of compound 2 in Phaedon cochleariae per body weight, feeding 

on Brassica rapa pekinensis leafs.  

S22 



MANUSCRIPTS 
 

 
143 

 

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

am
ou

nt
 c

om
p.

 1
 / 

nm
oλ

*m
g-1

λarvaλ fresh body weight / mg
Chrysomela populi

 

Fig. S8: Molar amount of compound 1 in Chrysomela populi per body weight, feeding on 

Populus canadensis leafs. 
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Fig. S9: Molar amount of compound 2 in Chrysomela populi per body weight, feeding on 

Populus canadensis leafs.  
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Fig. S10: Molar amount of compound 1 in Gastrophysa viridula per body weight, feeding 

on Rumex obtusifolius leafs. 
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Fig. S11: Molar amount of compound 2 in Gastrophysa viridula per body weight, feeding 

on Rumex obtusifolius leafs. 
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GC-MS measurements of plant extracts 
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Fig. S12: Molar amounts of free β-alanine in plant leafs per mg fresh weight; n = 7 ± SD. 
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Fig. S13: Molar amounts of free aspartic acid in plant leafs per mg fresh weight; n = 7 

± SD. 
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