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Zusammenfassung in deutscher Sprache

Die vorliegende Arbeit beschéftigt sich mit Funktionenrdumen vom Besov- und Triebel-
Lizorkin-Typ, bezeichnet mit By (R") und F; (R"), welche auch mit Gewichten aus-
gestattet sein konnen. Diese Rdume erlauben eine einheitliche Behandlung vieler schon
bekannter Funktionenrdume, wie Holder-Zygmund-Raume, Sobolev-Raume, Slobodeckij-
Rédume, Bessel-Potential-Rdume and Hardy-Rdume. In den letzten Jahrzehnten haben
diese Skalen ihre Niitzlichkeit bewiesen. Es gibt Hunderte von wissenschaftlichen Verdf-
fentlichungen und etliche Biicher, welche diese Skalen in verschiedenster Weise nutzen. So
spielen sie zum Beispiel eine wichtige Rolle in der Losungstheorie von partiellen Differen-
tialgleichungen, der Interpolationstheorie, der Approximationstheorie, der Harmonischen
Analysis oder der Spektraltheorie, um nur einige zu nennen. Fiir eine umfassende Dar-
stellung zu diesen Rdumen verkniipft mit historischen Bemerkungen verweisen wir auf die
Reihe von Biichern von H. TRIEBEL, [Tri83|, [Tri92]|, [Tri06].

In der Losungstheorie von elliptischen partiellen Differentialgleichungen fiir irregulé-
re Gebiete benotigt man Gewichte, welche lokale Singularititen aufweisen kénnen. Fiir
Existenz- und Eindeutigkeitsaussagen von Loésungen fiihrt dies zu gewichteten Sobolev-
Réumen bzw. allgemeiner (gewichteten) Besov-Raumen By (R", w) und Triebel-Lizorkin-
Réumen F; (R" w), wobei in der Definition der Riume der klassische Lebesgue-Raum
L,(R™) durch einen gewichteten Lebesgue-Raum L,(w) = L,(R™, w) ersetzt wird. Hierbei
ist w eine fast iiberall positive und lokal integrierbare Funktion auf R™. Ublicherweise sind
diese Gewichte vom Muckenhoupt-Typ. Wir untersuchen in dieser Arbeit eine Verallge-
meinerung, die sogenannten Verdopplungsgewichte. Insbesondere konzentrieren wir uns
auf atomare Darstellungen, Wavelet-Charakterisierungen, (kompakte) Einbettungen und
Envelopes fiir diese Rdume.

Kapitel 1 beschéaftigt sich mit den grundlegenden Begriffen, Definitionen und Eigen-
schaften der von uns betrachteten Gewichte und Funktionenrdume. Wir starten zunéchst
mit den Muckenhoupt-Gewichten. Eine lokal integrierbare und fast iiberall positive Funk-
tion w gehort zur Muckenhoupt Klasse A, 1 < p < oo, falls eine Konstante 0 < A < oo

existiert, so dass fiir alle Kugeln B folgendes gilt

(i rew) (i o)

wobei ]lj + 1% = 1 und |B| bezeichne das Lebesguemall von B. Diese Gewichte wurden
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eingefiihrt von B. MUCKENHOUPT in [Muc72a]. Fiir einen umfassenden Uberblick ver-
weisen wir beispielsweise auf die Biicher E. M. STEIN [Ste93] oder J. DUOANDIKOETXEA
|[Duo01]. Eine natiirliche Erweiterung dieser Gewichte bilden die sogenannten Verdopp-

lungsgewichte
w(B(z,2r)) < 2%w(B(x,r)), wobei  w(Q2) = / w(y)dy, QCR™
Q

Der Fokus der Arbeit liegt auf verdopplungsgewichteten Funktionenrdumen des Besov-
Triebel-Lizorkin Typs. Sei 0 < p < 00, 0 < ¢ < 00, s € R, {goj}‘;io eine glatte dyadische
Zerlegung der Eins und w ein Verdopplungsgewicht. Dann ist der gewichtete Besov-Raum
B (w) = B; (R",w) gegeben durch

o

1/q
o) = { e 5@) (Yo i) <)
j=0
wobei F und F~! die Fouriertransformation bzw. inverse Fouriertransformation bezeich-
nen. Analog kann man die gewichteten Triebel-Lizorkin-Réume FJ (w) = F; (R", w)
definieren, indem man die ¢,-Norm und die gewichtete L,(w)-Norm vertauscht. Diese
verdopplungsgewichteten Funktionenrdume wurden erstmals von M. BOWNIK in seinem
Paper [Bow05| eingefiihrt, wobei er dort vorwiegend mit homogenen, anisotropen Besov-
Raumen mit erweiterter Streckungsmatrix und allgemeineren Verdopplungsmafen arbei-
tete. Wir konnten zeigen, dass diese Rdume ebenfalls einige Eigenschaften der ungewich-
teten By  und FJ Réume besitzen. So gilt zum Beispiel auch hier die iibliche Einbettung

zwischen dem Schwartz-Raum S(R™) und dessen Dualraum S'(R™),
SR") = B, (R",w), F, (R",w) — S'(R"),

siehe Proposition 1.44. Dies ist eine wichtige Eigenschaft, da sie uns die Wohldefiniertheit
der dualen Paarung in der Wavelet-Charakterisierung von B; (w) und F; (w) sichert,
welche ebenfalls ein Resultat dieser Arbeit ist.

In der Theorie der Funktionenrdume haben sich atomare, subatomare und Wavelet-
Zerlegungen als ein niitzliches Werkzeug herausgestellt. In dieser Arbeit beschéaftigen wir
uns speziell mit atomaren und Wavelet-Darstellungen. Die Grundidee hierbei ist die ,Uber-
setzung” des Funktionenraumes in einen passenden, dquivalenten Folgenraum. Im Falle

der atomaren Darstellung zum Beispiel zerlegt man die Funktion f wie folgt
f = Z Aj’ma/j’w“
7,m

wobei die Funktionen a;,, vorteilhafte Eigenschaften, wie Glattheit und kompakte Trager,
besitzen. Samtliche Information von f steckt dann in den Koeffizienten A;,,, so dass man
it € by (w)
zuriickfiihren kann, wobei die Folgenréume b,  (w) vom £,-Typ sind. In die Forderungen an

die Frage f € B; (w) auf die meist wesentlich einfachere Frage A = (\j.n)

j?m
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die Qualitdt der Atome gehen hierbei nicht nur die Parameter s, p, ¢ der Raume, sondern
auch das Gewicht ein.

Die Idee der atomaren Zerlegung fiir die ungewichteten Besov-Triebel-Lizorkin-Raume
geht im wesentlichen auf die Arbeiten [FJ85|, [FJ90], [FJW91] von M. FRAZIER und B.
JAWERTH zuriick. Fiir einen detailierten Uberblick iiber die komplexe Historie der Atome
in verschiedenen Funktionenrdumen verweisen wir auf [Tri92, Section 1.9].

Fiir die atomare Darstellung in verdopplungsgewichteten B, (w) und F; (w) Riumen
verweisen wir auf die Paper [Bow05] und [Bow07] von M. BOWNIK, siehe auch Abschnitt
2.2.

Neben den atomaren Zerlegungen interessieren wir uns in dieser Arbeit auch fiir
Wavelet-Charakterisierungen. Genauer gesagt betrachten wir sogenannte Daubechies Wa-
velets mit kompaktem Triger. Fiir die Definition und entsprechende Notationen verweisen
wir auf Abschnitt 2.1. Die Standardreferenzen sind hier Y. MEYER [Mey92|, I. DAUBE-
CHIES [Dau92| und P. WoJytAszczyk [WojoT7].

Eine der wesentlichen Eigenschaften von Wavelets ist, dass sie auch als Atome be-
trachtet werden konnen. Mit anderen Worten, falls wir eine Wavelet-Charakterisierung
haben, konnen wir diese auch immer als atomare Darstellung auffassen. In dieser Ar-
beit beschéftigen wir uns mit der umgekehrten Frage, d.h. unter welchen (evtl. zusétz-
lichen) Bedingungen erhalten wir einen Wavelet-Isomorphismus, wenn wir eine atomare
Darstellung haben. Hierzu fiihren wir ein komplett neues Konzept ein, die sogenannten
»-Folgenrdume, siehe Definition 2.17. Die Definition ist sehr technisch und ergibt sich aus
dem Beweis. Das Hauptresultat sieht hier wie folgt aus:

Sei A(R™) ein (isotroper, inhomogener) Funktionraum, welcher eine L-atomare Dar-
stellung besitzt: f € S'(R™) gehdrt zu A(R™) genau dann, wenn f dargestellt werden kann
als

F= 3t @ p€ alRY), (1)
j€Ng mezn

mit unbedingter Konvergenz in S'(R™) und
1 TAR®)[| ~ inf [| [a(R™)]] (2)

wobei a(R™) der zugehorige Folgenraum ist und die {a;,,} L-Atome sind. Das Infimum
in (2) wird dber alle zulassigen Darstellungen (1) gebildet.

Zusdtzlich sei a(R™) ein s-Folgenraum gemdfs Definition 2.17 mit 0 < s < L € N.

Dann gilt, dass f € S'(R™) zu A(R™) gehirt genau dann, wenn f mit L-Wavelets darge-

stellt werden kann
F=) " AU+ > > > NG 2ul, o Aea”(RY), (3)
mezZn GeG* jeNg meZ™

mit unbedingter Konvergenz in 8'(R™). Die Darstellung in (3) ist eindeutig,

)\%G _ )\#G(f) — 2jn/2(f7 \Ijjéym)’ Am = Am(f) = (fv \Ijm)v
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meZ", j €Ny, GeG*, und

It fe ), XNEN}

ist eine isomorphe Abbildung von A(R™) auf a®(R"), wobei a¥(R™) die Wavelet-Version

von a(R™) ist.

In Abschnitt 2.3.4 zeigen wir, dass die bekannten atomaren Folgenrdume Bf),q und fl‘f’q
der ungewichteten Funktionenriumen B, (R") und F; (R") solche s-Folgenrédume sind.
Die zugehorige Wavelet-Charakterisierung, welche aus dem obigen Theorem abgeleitet
werden kann, fillt dann mit den bereits bekannten Resulten zusammen, siehe Korollar
2.38. Im Falle der verdopplungsgewichteten atomaren Folgenrdume haben wir folgendes
Resultat:

Seien 0 < p < o0, 0 < g < o0, s € R und w ein Verdopplungsgewicht mit Verdopplungs-

konstante v. Dann ist B;q(w) ein x-Folgenraum fiir jedes s mit

und f;vq(w) ist ein »x-Folgenraum fir jedes » mit

x> max(s,y0,,+ (v — 1)n —s, % — ).
Die zugehorige Wavelet-Charakterisierung kann man in Abschnitt 2.4, Korollar 2.41, nach-
lesen. Die Ergebnisse aus Kapitel 2 sind in einer gemeinsamen Arbeit [HST16| mit D. D.
HAROSKE und H. TRIEBEL zusammengefasst.

In Kapitel 3 diskutieren wir notwendige und hinreichende Bedingungen fiir stetige und
kompakte Einbettungen in verdopplungsgewichteten Besov-Ridumen Bj (w). Grundlage
hierfiir ist eine Reihe von Papern [HS08, HS1la, HS11b| von D. D. HAROSKE und L.
SKRZYPCZAK, in denen dieses Problem fiir Muckenhoupt-gewichtete Funktionenrdume
betrachtet wurde. Wir konnten sowohl fiir stetige als auch kompakte Einbettungen schar-
fe und somit optimale Bedingungen zeigen, siehe Theorem 3.5. So gilt zum Beispiel im
Falle von stetigen Einbettungen:

Seien —00 < 59 < 81 < 00, 0 < pr,pe <00, 0 < q1,q2 < 00 und wy,wy Verdopplungsge-

wichte. Dann ist die Finbettung B3 (wy) < B2, (ws) stetig genau dann, wenn

P1,91 P2,92
}j € Ly,

{27767 | {wi (Qym) TP wa Q) 7)) [y

wobet p* und q* gegeben sind durch

1__(1 1) 1__(1 1)
o\, m), ¢ \e a),

Neben diesem allgemeinen Einbettungsresultat haben wir noch einige Spezialfille betrach-

tet. Diese konnen in Abschnitt 3.3 und 3.4 nachgelesen werden.
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Kapitel 4 widmet sich dem Studium der Growth Envelope Funktionen. Das Ziel ist es,
das singuldre Verhalten von Funktionen eines Funktionenraumes X zu charakterisieren.
Um verschiedene Funktionen mit unterschiedlichen Singularitédten vergleichen zu kénnen,
benutzt man die monoton fallende Umordnung f*, welche die Singularitdten in den Null-
punkt beférdert. Das Verhalten der Singularitdten kann man nun mit Hilfe der Growth

Envelope Funktion Eé( messen

5?(25) = sup  f(t), t>0.
fex|ifx|i<1

Dieses Konzept wurde von TRIEBEL eingefiihrt und in [Tri01| bzw. [Har02| erstmals stu-
diert. Fiir detailierte Informationen verweisen wir auf das Buch [Har07] von D. D. HA-
ROSKE. Dort findet man unter anderem auch die Ergebnisse fiir die klasssischen (unge-
wichteten) Besov-Triebel-Lizorkin-Raume B; (R") und F; (R"). Bereits in [Skal0] ha-
ben wir uns mit Growth Envelope Funktionen in Muckenhoupt-gewichteten By (w) und
Fy (w) Ridumen beschiftigt. Fiir einen umfassenden Uberblick iiber die Ergebnisse im
Muckenhoupt-gewichteten Besov-Triebel-Lizorkin-Raumen verweisen wir auf das Paper
[Har10] von D. D. HAROSKE. Unser Hauptresultat sieht hier wie folgt aus:

Seien 0 < p <00, 0<q<o00, s €R undw ein Verdopplungsgewicht. Es gelte

n n n
A Dy — ad ' > .
max(p n,0) + p(7 1)<s< p7 und ll&fnw(Qo,l) >y >0

Dann erhalten wir fiir die Abschdtzung von oben

3o

XMy <ct3tR, t—0,
und fir die Abschdtzung von unten

+

3=
3w

s (w B(z°. 277 -1/

s [B(2°,277)]

ZOERN t~2 i

siehe Proposition 4.13 und Proposition 4.14.






Introduction

This work is mainly concerned with function spaces of Besov and Triebel-Lizorkin type,
denoted by By (R") and F; (R"), possibly connected with some weight functions. These
spaces have been investigated for several decades and they play an important role, for
instance, in the study of partial differential equations, interpolation theory, approximation
theory, harmonic analysis and spectral operator theory. They constitute an indispensable
part in many research papers and books.

In particular, the two scales of Besov Bs (R") and Triebel-Lizorkin spaces F; (R")
cover many well-known function spaces such as Holder-Zygmund spaces, (fractional) So-
bolev spaces, Slobodeckij spaces, Bessel-potential spaces and Hardy spaces. For a detailed
study together with historical remarks we refer to the monographs of H. TRIEBEL, |Tri83],
[Tri92|, [Tri06].

In the theory of elliptic partial differential equations one uses weight functions in
several models, which may have local singularities.

For example one considers the following differential equation with ,disturbed® ellipti-

city

"0 ou ou

in a bounded domain 2 C R", with homogeneous Dirichlet-boundary conditions U = 0.
09

Here the functions w;(z) of type
w;(x) = (dist (z,00)), & € R,

are of particular interest. For existence and uniqueness of solutions and regularity ques-
tions this leads to weighted Sobolev spaces W2(Q,w), w = (wy,...,w,), or more gene-
ral weighted Besov By (R, w) and Triebel-Lizorkin spaces F; (R", w), respectively. The
weight function is in general usually a Muckenhoupt weight. We consider in this work the
more general doubling weights.

In the definition of these weighted spaces the classical Lebesgue space L,(R") is re-
placed by the weighted Lebesgue space L,(w) = L,(R",w), where w is here a locally
integrable and positive a.e. function on R".

In Chapter 1 the basic concepts and definitions related to weights and function spaces

are provided. We start with the very famous Muckenhoupt weights. A locally integrable
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and almost everywhere positive function w belongs to the class A,, 1 < p < oo, if there

exists a constant 0 < A < oo such that for all balls B the following inequality holds

(i ) G e

where % —l—}% = 1 and |B| stands for the Lebesgue measure of B. It is well-known that this
weight class is closely connected with the boundedness of the Hardy-Littlewood mazimal

operator M )
MA@ = o [ (Wl e R

JZEY:
from L,(w) to L,(w). These weights were introduced by B. MUCKENHOUPT in [Muc72a).
For a comprehensive treatment about Muckenhoupt weights we refer to the monographs
by E. M. STEIN [Ste93] and J. DUOANDIKOETXEA |Duo01]. In this context we collect
some properties of Muckenhoupt weights, which partially will be used later on, including

that every Muckenhoupt weight satisfies the doubling property
w(B(x,2r)) < 2%w(B(x,7)), where w(Q) = / w(y)dy, QCR™
Q

In addition, based on a paper from I. WIK, [Wik89|, we show that there exists a weight
w, which has the doubling property, but does not belong to any Muckenhoupt class A,.
This leads to doubling weights, which naturally extend the Muckenhoupt weights. Here

we collect also some basic properties, like
0 <w(f) < oo, for any @ C R" with 0 < |Q] < 00

and
/ w(y) dy = oo,

see Proposition 1.23 and 1.25.

The more general doubling measures have a rich history, too; see for example [VK87,
LS98, BG00, Sta92|. In these papers one also deals with a more general setting. We
consider here doubling measures, which are absolutely continuous with respect to the
Lebesgue measure on R"™, and these doubling weights in connection with the already
mentioned Besov-Triebel-Lizorkin spaces.

In the theory of function spaces several other classes of weight functions are considered.
In the end of Section 1.2 we mention two further weight classes, on the one hand the so-
called admissible weights, we refer to the book of D. E. EDMUNDS and H. TRIEBEL,
[ET96] and on the other hand the so-called local Muckenhoupt weights A, we refer to
V. S. RycHkov |Ryc01], T. SCHOTT [Sch98| and A. WOJCIECHOWSKA [Wojl2a).

The focus in this work lies on doubling weighted function spaces of Besov-Triebel-
Lizorkin type. Therefore we introduce in Section 1.3 at first the unweighted function

spaces of Besov and Triebel-Lizorkin type and give a short overview about these spaces.
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Afterwards we extend this by their doubling weighted counterparts. Let 0 < p < oo,
0<qg<oo s€ER, {gpj};io a smooth dyadic resolution of unity and let w be a doubling
weight. Then the weighted Besov space By (w) = B, (R", w) is given by

o0

1/q
By (w) = {f es®) (L2 P i) < oo} 7
§=0
where F and F~! denote the Fourier transform and the inverse Fourier transform, re-
spectively. The definition for the weighted Triebel-Lizorkin spaces F, (w) = F; (R", w)
is similar, one changes the order of the /,-norm and the weighted Lebesgue space L,(w)-
norm. These doubling weighted function spaces were first introduced by M. BOWNIK in
the paper [Bow05|. There he mainly dealt with homogeneous, anisotropic Besov spaces
with expansive dilation matrices and more general doubling measures. We show that se-
veral properties from the unweighted B,  and F  spaces remain true. For example, the

spaces are embedded between the Schwartz space S(R™) and the dual space S'(R"),
S(R") = B, (R",w), F; (R",w) — S'(R"),

see Proposition 1.44. This is an important property and ensures us the well-definedness
of the dual pairing in the wavelet characterization for By (w) and F; (w), which is one
of the main goals in this thesis.

In the theory of function spaces it is useful to have various representations of a func-
tion f from the underlying function space. In the last years it turned out that so-called
atomic, sub-atomic or wavelet decompositions are very promising. In our work we am-
plify the atomic and wavelet representation. The basic idea here is the ,translation® from
the function space to appropriate sequence spaces. For example in the case of an atomic

representation one decomposes the function f into special building blocks
f = Z )\j,ma'j,ma
j7m

where these building blocks a;,, are ,nice” functions with convenient properties such as
smoothness or compact supports. Then all the information about f are in the coefficients
Ajms such that the question about f € Bj (w) can be reduced to the question A\ =
<)\j7m)j,m € by (w), where the sequence spaces b, (w) are of £,-type. All the parameters
s,p,q of the function space as well as the weight have influence on the quality of the
atoms.

The idea of the atomic decomposition from the B; (R") and F; (R") function spaces
goes essentially back to M. FRAZIER and B. JAWERTH in their series of papers [FJ85],
[FJ90], [FJWO1]. For a detailed overview about the complex history of atoms in various
function spaces we refer to [1ri92, Section 1.9].

The atomic representation of our doubling weighted B, (w) and F; (w) spaces can
be found in the papers [Bow05| and [Bow07| by M. BOWNIK, see Section 2.2.
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Atoms have nice properties, for example, sufficiently high smoothness, compact sup-
port and moment conditions. The disadvantage of the atoms is that the representation is

not unique, i.e., for a fixed function f one can find different decompositions
F=> Nmjm.
j7m

On the other side one has more freedom at the choice of the functions a;,, since the
structure is not completely fixed. Sometimes this is advantageous, for example, if one
works with traces, because there one does not need the isomorphism between the function
space and the corresponding sequence space. But if one is interested in embeddings, as
we do, then it is better to work with wavelet isomorphisms. For our purpose we consider
compactly supported Daubechies wavelets. For the definition and the notation we refer
to Section 2.1 and the standard references Y. MEYER [Mey92|, I. DAUBECHIES |Dau92]
and P. WoJiTAszczyk [Woj97|.

One property of wavelets is that they can always be considered as atoms. In other words,
if we have a wavelet characterization, then we have also an atomic representation. In this
thesis we discuss in Section 2.3 the converse question, that is, under which (additional)
conditions we obtain a wavelet isomorphism, when we have an atomic representation.
For this we introduce a completely new concept, the so-called »—sequence spaces, cf.
Definition 2.17. The definition is very technical and turns out from the proof. The main
theorem here is the following.

Let A(R™) be an (isotropic, inhomogeneous) function space which can be represented
by an L-atomic representation: f € S'(R™) belongs to A(R™) if, and only if, it can be
represented as

F=Y" tim@m  pcaR), (4)
j€Ng mezZn

unconditional convergence being in S'(R™) with
1 TAR®) || ~ inf [| [a(R™)]] (5)

where a(R™) is a corresponding sequence space and {a;.n} are L-atoms. The infimum in
(5) is taken over all admissible representations (4).

Additionally a(R™) is a s-sequence space according to Definition 2.17 with0 < 3 < L € N.
Then f € S'(R™) belongs to A(R™) if, and only if, it can be represented in terms of L-
wavelels as

F= ATt > YD NG2MPE, L Aea"(RY), (6)

mezn GeG* jeNg meZn

unconditional convergence being in S'(R™). The representation (6) is unique,

)\%G _ )\#G(f) _ 2jn/2(f7 \Ijjéym)’ Am = Am(f) = (f> \Ijm)a
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meZ", j €Ny, GeG* and

I: e A, NE(N}

is an isomorphic map of A(R™) onto a“(R"), where a®(R") is the wavelet version of
a(R™).

In Section 2.3.4 we show that the well-known atomic sequence spaces 5;(1 and f; o from
the corresponding unweighted function spaces B, ,(R") and F; (R") are such s-sequence
spaces. The related wavelet characterization from the theorem above coincides with well-
known results, see Corollary 2.38.

In the case of doubling weights we have the following outcome using our new approach:

Let 0 <p<oo,0<qg<o0,s€R and w be a doubling weight with doubling constant

v. Then B;q(w) s a x-sequence space for any

( n ny )
x>max|{s+—,— —5|,
p P

and ﬁf’q(w) is a s-sequence space for any

x> max(s,yo,,+ (v —1)n —s, i s).
D

The related wavelet characterization can be found in Corollary 2.41:
Let 0 <p<oo,0<qg<o0,se€R and w be a doubling weight with doubling constant

v. We assume
n n
L>max(s+—,—cn”y—s).
pp

Then f € S'(R™) belongs to B; (w) if, and only if, it can be represented in terms of

L-wavelets as

F=0 XUt D DY NE2m2w, o Nebs (w), (7)

mezLn GeG* jeNg meZm™

unconditional convergence being in S'(R™). The representation (7) is unique,
M= NN =22 (£ 0), Am = dnl(f) = (£, V),
meZ", 7 €Ny, GeG* and

I fe ) XNEN}

is an isomorphic map of By (w) onto by (w).

The results from Chapter 2 are contained in a joint paper with D. D. HAROSKE and
H. TrRIEBEL, [HST16].

In Chapter 3 we discuss necessary and sufficient conditions for continuous and compact

embeddings for doubling weighted Besov spaces B, (w). Here we follow the approach from



20 Introduction

the series of papers [HS08, HS11a, HS11b] by D. D. HAROSKE and L. SKRZYPCZAK,
where function spaces with Muckenhoupt weights were considered. We use the technique
of wavelet characterization, which we proved in Chapter 2. This allows us to transform the
problem from the function spaces to the simpler context of the sequence spaces. Moreover
we apply an assertion for general weighted sequence spaces which can be found in the paper
[KLSS06b| by T. KUnN, H.-G. LEOPOLD, W. SICKEL and L. SKRZYPCZAK. Therefore
we obtain sharp and optimal conditions for continuous as well as compact embeddings,
cf. Theorem 3.5. For example in the case of continuous embeddings we have:

Let —00 < 59 < 51 <00, 0 < p,p2 <00, 0 < q1,q2 < 00 and let wy,wy be doubling

weights. The embedding B3} | (wy) < Bs2  (ws) is continuous if, and only if,

{27702 | {wn (Qym) P wa(Qym) P2) } [y

}j € gl]*’

where p* and q* are given by

1_(1 1) 1_(1 1)
oo\ m/), ¢ \e a/,

Although the conditions for the embeddings in Theorem 3.5 are sharp and optimal, we
discuss later in this chapter two special cases of this general embedding result, since the
conditions are very technical and difficult to prove. Here we obtain, for instance, results
of the following type:

The embedding By}, (w) — B2 . is continuous, if

1 >
(a) jnf w(Qop) > ¢ >0,

(b) 5>p£1(7—1), if ¢* < oo,
5>p£1('7_1)7 if q" = 0,

(c) P1 < pe,
where the difference of the differential dimensions § is given by

5281—2—82+ﬁ.
b1 P2
We refer to Section 3.3 and Section 3.4 for further results.

Chapter 4 is devoted to the study of growth envelope functions. The aim is to characte-
rize the singularity behaviour of functions belonging to a function space X, in particular,
when this space contains essentially unbounded functions. In order to compare various
functions regardless of the location of their singularities one uses the non-increasing rear-
rangement f* of a function f, which puts the singularities of f into 0. This leads to the
growth envelope functions Eé( defined by

5?(25) = sup  f(t), t>0.
fex|IfIx|i<t
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This concept was introduced and first studied in [Tri01] and [Har02|. For detailed in-
formation about growth envelopes and more general approaches we refer to the book
|[Har07| by D. D. HAROSKE. There one finds among others the results for the classsical
(unweighted) Besov-Triebel-Lizorkin spaces B; (R") and F; (R"). In [Skal0] we alrea-
dy dealt with growth envelope functions in Muckenhoupt weighted B; (w) and F; (w)
spaces. For an extensive overview about the results in the context of Muckenhoupt weigh-
ted Besov-Triebel-Lizorkin spaces we refer to the paper [Har10] by D. D. HAROSKE. Our
main results, for instance for the Besov spaces, here are the following:

Let 0 <p<oo, 0 <qg< oo, s€R andw be doubling. We assume

max(E —n,0) 4+ E(W —1)<s< 27 and inf w(Qo,;) > ¢y > 0.
b p p lezn

Then we have for the estimate from above

3w

XMy <3t Lo,
and for the estimate from below

s o (w _1l.s B 0,27j —1/p
z0eR t~2—In |B<CL’ ) 2 )‘

cf. Proposition 4.13 and Proposition 4.14.

In [Harl0] one finds similar results for both estimates from above and from below for
Ef;’q(w) (t), t — 0, if w is a general Muckenhoupt weight, see [Harl0, Prop. 4.3., Prop.
4.12. and Rem. 4.14.]. This is not surprising, since we do not use weight-specific properties
except for the embedding result and the atomic decomposition, but there we have also
similar results as in the Muckenhoupt case. However, nothing was known so far in case
of (general) doubling weights. One can think of further applications of those results, but

this is postponed to future research.






1 Weighted Function Spaces

1.1 Preliminaries

In this section we collect some notation, which remain fixed throughout this work. By N
we mean the set of natural numbers and by Ny the set NU{0}. R™ denotes the Euclidean
n—space, where n € N, and C denotes the complex plane. As usual Z", where n € N,
is the collection of all lattice points in R" having integer components. Let Nj, where
n € N, be the set of all multi-indices, a = (a,...,a,) with a; € Ny and |af =377, ;.

Qn

If v = (21,...,2,) € R" and a = (aq,...,,) € Ny then we put 2% = 27" --- 22

(monomials). The positive part of a real function f is denoted by fi(z) = max(f(z),0)
and the integer part of a € R by |a] = max{k € Z : k < a}. If 0 < u < o0, the number
u’ is given by 5 =(1— %)+ For two non-negative functions ¢, ©» we mean by ¢(t) ~ 1(t)
that there exist constants cj,cy > 0 such that ¢1¢(t) < ¥(t) < ca¢(t) for all admitted
values of t. Moreover ¢(t) < () stands for that there exists a constant ¢ > 0 such that
o(t) < c(t) for all admitted values of t. Given two (quasi-) Banach spaces X and Y, we
write X — Y if X C Y and the natural embedding of X in Y is continuous.

Let for m € Z" and j € Ny, @, denote the n-dimensional (open) cube with sides
parallel to the axes of coordinates, centred at 27/m and with side length 277. Occasionally
we shall also deal with n-dimensional (open) cubes @ = Q(x,) with sides parallel to the
axes of coordinates, centred at x and with side length [. Then 2 ) stands for the cube
centred at x and with doubled side-length 21, i.e., 2Q = Q(z,21(). For x € R™ and r > 0,
let B(z,r) denote the open ball B(z,r) ={y e R": |y —z| <r}.

All unimportant positive constants will be denoted by ¢, occasionally with subscripts.
For convenience, let both dx and |-| stand for the (n-dimensional) Lebesgue measure
in the sequel. The characteristic function of a measurable set §2 is denoted by yq. For
any measurable subset 2 C R" the Lebesgue space L,(2),0 < p < oo, consists of all

measurable functions for which

I 120 = ([ 1P a) " (1)

is finite, where we use in the limiting case p = oo the usual modification with the essential
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supremuin

I 1ol )] = esssup ().

Taking Q =N, Z or Q = {1,...,n} and replacing the Lebesgue measure by the counting

measure produces Lebesgue sequence spaces denoted as usual by ¢, and £, respectively.

p7
In the sequel we shall always deal with function spaces on R", we may often omit the ‘R™
from their notation for convenience.

Let C(R™) be the space of all complex-valued bounded uniformly continuous functions

on R", equipped with the supremum norm
IFICR™)|| = sup |f(2)].

For m € N, C™(R") denotes the collection of all complex-valued functions f which have

bounded continuous derivatives D®f on R” for all |a| < m, i.e.
C™"R")={f:R"—C|D*f € C(R") forall |of<m}.
C™(R™) is equipped with the norm

IFIC™ (R = > ID*fICRM)].
la]<m
In addition we denote by C*(R") the class of all infinitely differentiable functions f
mapping from R" to C.

D(R™) or C3°(R™), respectively, denotes the space of all C* functions with compact
support. The space of continuous linear functionals on D(R™) will be denoted by D'(R"),
the space of distributions and the topological dual of D(R™) . The Schwartz space of
all complex-valued, rapidly decreasing C*° functions on R™ is denoted by S(R") and is
endowed with the semi-norms

l@lles = sup (1 + [2[)* > [D*p(x)|, Vk,I€ N, (1.2)
zERn o=
where p € S(R™). The topological dual of S(R") is denoted by S'(R™), the space of all
complex-valued tempered distributions on R".
We define the Fourier transform of a function f € S(R™) by

FfE) = (@2m) 7 (z)e ™ dz,  £E€R",

R”

and the inverse Fourier transform by
FUHE =@ [ fle)e™tds,  ¢eR™
Rn

The Fourier transform is a one to one mapping from S(R") onto S(R™). Moreover,
FUFf) = f, f € SR"). Both F and F~! are extended to S'(R") in the standard

way.
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1.2 Weights

By a weight w we shall always mean a locally integrable and positive a.e. function w on
R", in the sequel. To prevent trivialities we assume always that w is nonzero. As usual,

we use the abbreviation

w() :/Qw(:r) dz, (1.3)

where ) C R"™ is some bounded, measurable set.

For such a weight w we extend the usual Lebesgue space L,(R"), 0 < p < oo, with the

I 15wl = [ 1@t m)p, (14)

with the usual modification for p = 0o, and obtain the weighted Lebesgue space L,(w) =
L,(R" w), 0 < p < oc.

We are mainly interested in doubling weights, but for later use we briefly recall, in

weighted L,-norm,

addition, the notion of Muckenhoupt weights and some of their characteristic features.

1.2.1 Muckenhoupt weights

The purpose of this section is to review the definition of the Muckenhoupt weights and the
collection of some known properties. For more information about Muckenhoupt weights
we refer for example to [Duo01, GCRAF85, Ste93, ST89, Tor86|.

For a locally integrable function f the Hardy-Littlewood mazximal operator M is given
by

(M1)(e) = ?iswxr\/x7 vy, =eR, (1.5)

where here B is the collection of all open balls B(x,r) centred at x € R™, r > 0. Sometimes

we will use the maximal operator with cubes instead of balls. So we define

(M'f)(a —wmajkf\w, (1.6)

Q>z

where the supremum is taken over all cubes containing x. There exist constants ¢, and

C,, depending only on n, such that

tn (M [f)(x) < (Mf)() < Cp (M'f)(2). (1.7)

Because of inequality (1.7), the two operators M and M’ are interchangeable, and we
will use whichever is more appropriate, depending on the circumstances. Alternatively,
one could define centered versions of the maximal functions with centered balls and cubes,

respectively. However we do not want to distinguish between M and M’ in the following.
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It is well-known that the Muckenhoupt weight class is closely connected with the
boundedness of this operator M acting in weighted Lebesgue spaces, L,(w),
|(Mf)(@)[Pw(z)de < A [ |f(z)[Pw(z) dz, (1.8)
R7 R”
for some p, 1 < p < oo. Moreover there exist a lot of characterizations of Muckenhoupt
weights. We use here the standard definition, which has been proved as very useful in the

last years.
Definition 1.1. Let w be a weight on R".

(i) Then w belongs to the Muckenhoupt class A, 1 < p < oo, if there exists a constant
0 < A < oo such that for all balls B the following inequality holds

(% /B w(x) d:c) . (I%I /B w(x)p’/de)p/p, <A (1.9)

The smallest such A is called the Muckenhoupt constant A, = A,(w).

(ii) Then w belongs to the Muckenhoupt class A; if there exists a constant 0 < A < oo
such that the inequality
(Mw)(z) < Aw(x) (1.10)
holds for almost all x € R™. The smallest such A is called the Muckenhoupt constant
Al = Al (w)

(iii) The Muckenhoupt class A, is given by
Aw = A4 (1.11)

p>1
Since the pioneering work of MUCKENHOUPT [Muc72a, Muc72b, Muc74], these classes
of weight functions have been studied in great detail, we refer, in particular, to the mo-
nographs [Duo01, GCRAF85, Ste93, ST89, Tor86| for a complete account on the theory
of Muckenhoupt weights.
Note, that the A, condition (1.9) can also be defined by cubes instead of balls

(o) (g o) "<

for all cubes . Both conditions (1.9) and (1.12) are equivalent, see Remark 1.16 below.

Moreover, there exists an equivalent characterization for the A; weights,

%ﬁ) < Cw(z), ae x€Q, (1.13)
for any cube @, cf. [Duo01, p. 134| formula (7.4). Certainly (1.13) also holds for balls
instead of cubes, because the respective maximal operators are equal.

We give a short overview of some fundamental properties. We start with a series of easy

observations, cf. [Ste93, Chapt. V| or [Duo01, Chapt. 7|.
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Proposition 1.2.

(i) The class A, is invariant concerning translation, dilation and multiplication by a

positive scalar, where the Muckenhoupt constant is the same as that of w.
(ii) If w € A,, then the function o := w™/P = w'™" belongs to A, where % + 1% =1.
(iii) If w € A,,, then w € A,,, for p1 < ps; moreover A, (w) < A, (w).
(iv) If wo,w, € Ay, then wow, * € A,.

Proof. The proof of (i) is straightforward and (ii) is an easy observation by changing
the order of the two factors on the left-hand side in (1.9).

Furthermore (iii) is a direct consequence of the definition (1.9), Holder’s inequality, and
the fact that if p; < pe then pl/py < p}/p1.

Finally for (iv) we need to prove that

/

(é /B wo(z) wl(x)l_pdx) - (ﬁ /B wola) ™ wy (x) dx)p/p < A (1.14)

Note, that 1 — p' = —% and 1 —p = _1% By the A; condition (1.13) it holds for = € B
and ¢ = 0,1,

wi(z)~! < supwi(x)~! = (inf wi(ac))_l <c <w|"g|3)>_1 |

xEeB zeB

If we substitute this into the left-hand side of (1.14) for the negative exponents we get
the desired inequality. |

Example 1.3. One of the most prominent examples of a Muckenhoupt weight w € A
is given by w(x) = |z|?, 0 > —n. We modified this example by
|, |z| <1,

Wap(x) = , (1.15)
|z, |z > 1,

where a,b > —n. Straightforward calculation shows that

) ) —n<ab<n(p-—1), if 1<p<oo,
weyp € A, if, and only if,
—n <a,b<0, if p=1.
A proof of this one can find for example in [Baa07|. For further examples we refer to
[HP08, HS08, HS11a].

There is an alternative way to define A4, that is closer related to the boundedness of
the maximal operator, we described in (1.8). For any locally integrable function f and
any ball B the weight w belongs to A, exactly when the p-th power of the mean value of

f on B is bounded by the mean value of f? taken with respect to the measure w(x) dz.
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Proposition 1.4. Let w € LY(R™) positive a.e. and 1 < p < co. Then w € A, if and
only if, there exists a constant ¢ > 0 such that for all non-negative functions f € LY(R™)

and for all balls B the following inequality holds

(g [rar) < - [ plout)as (1.16)

Proof.
(i) Let w € A, then

(ﬁ / f(a:)dx)p _ (ﬁ / f(x)wi@)w‘i(x)dx)p
Holgder <|B| ) (/ o (ew(e) do (/Bw - dm)l/p’>p
_ |B|p./pr z)dz - (|1|/Bw _pdx) p,-\Byf'

weA

2’ /B fP(@)w(z) dz - Ay Blw(B)™ - |B|¥ - |B| 7

1_p+§-i Plx)w(x
= | e

since 1 —p = —I%. Besides we have ¢ < A,

(ii) On the other hand, assume (1.16). Let € > 0. We choose f := (w + €)"?/?, then
?’ w—+e>e P
/f(x) dx:/(w~|—e)z7($) dr < € 7|B] <o (1.17)
B B
and so we have f € L°°(R") and f > 0. The assumption (1.16) yields us for this f

(% /B<w o dx)p = w(CB) /B(w + ) P w(z) dz. (1.18)

Additionally we have

/

/ (w4 €) 7P (z)w(z) dz L / (w+ )P z)dz = / (w+e) 7 (z)dx (1.19)
B B B
is finite, because of (1.17), where we here use that 1 — p’ = —%.

Altogether delivers us

B () ( [ w0 @ ute) ar)

B ) ([ w0 b ar)

c/B(uH—e)_p' w(z) dz.

(1.19)
<
(1.18)
<
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Since the latter integral is finite, we bring it on the other side and obtain for all € > 0

P

P’

B ) 181 ([ w0 @ ue) ar)” <

where the c is independent of e. We use again 1 — p = —}% and € — 0 finishes the proof.

In particular we have A, <c. [ |

Remark 1.5. The proof of Proposition 1.4 shows us, that the constant ¢ in (1.16) coin-
cides with the Muckenhoupt constant A, = A, (w).

A direct consequence of this Proposition is the following useful property, that will be

used later more frequently.

Proposition 1.6. Let 1 < p < oo and w € A,. Then there exists a constant ¢’ > 0 such

that for all balls B

IEI)p Jw(E)

=) < ¢ ., VECB. (1.20)
(IBI w(B)

Proof. Let B C B, E C B. We use Proposition 1.4 with f := xg, then

(5 [ewar) <o [ uwan

() <o

this implies

where ¢ := c. [ |

Proposition 1.7. Let w € A.,. Then there exists an r > 1 and a ¢ > 0 such that

(o [w@a) <& [ wwa (1.21)

Proof. A proof of this one can find for example in [Ste93, Ch. §5.3, Prop. 3.4, page
203]. [ |

Remark 1.8. This is the so-called reverse Holder’s inequality, because (except for the
constant ¢) this is the reverse of the Holder’s inequality, which holds automatically for all
nonnegative functions. Proposition 1.7 is one of the fundamental properties of 4, weights,

which leads us to the next surprising consequence.
Corollary 1.9. Let 1 <p < oo and w € A,. Then there exists a p1 < p such that

w e Ay, (1.22)
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Proof. Let % + 1% = 1lthen o :=w 7 € A, C As. We use Proposition 1.7 for o, then

there exists an r > 1 and a ¢ > 0 such that

<|;?’/Bar(x) dx)w < ’Ta/Ba(x) da

holds. We take the L-th power an both sides and use the A, condition (1.9) for w, then

1 ! w1 _Z vowedy (] !
E/Bw r (z)dx <c E/Bw P (x)de < ¢ E/Bw(:v)dx

Thus we get

P

(oow) G o) s

Furthermore it holds

1 1 1y

~—+—-=1 & p+p=p & p=@-1)p & —==
p p p—1 p
Then we have , . ) ,
LA —— - _n (1.24)
p p—1 P=+1-1 p—-1 m
where p; ;= p;1 + 1. Moreover
p—1+r
l<r & p—-1l<r(p-1) & p—-1l+r<pgpr & ——<p & p <p
r
So we can write (1.23) together with (1.24) in this way
1 1 ; ot
_r Py
— w(x)dx) (—/w P1($)dx) < A,.
(!B|/B B[ /5 "
[

Corollary 1.10. Let 1 < p < oo and w € A,. Then there exists py < p and a ¢ > 0 such
that for all balls B

|E| )pl w(E)
— <c—-=, E CB. (1.25)
(|B | w(B)
Proof. This is an immediate conclusion of Proposition 1.6 and Corollary 1.9. [ |

Remark 1.11. Tt even holds the reverse of Corollary 1.10, see [Wik89, Cor. 1, page 250].

Remark 1.12. In view of Corollary 1.9 it is natural to ask for the smallest r, which

satisfies (1.22). So we introduce the number
ro:=inf{r >1 :we A}, weA,, (1.26)

that plays some role later on. Obviously, 1 < r, < oo, and w € A, implies r,, = 1.
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Example 1.13. For our weight w,, given by (1.15), here we have r,, , = 1 + 200,

A special case of Proposition 1.4 or Proposition 1.6, respectively, shows us the next
property of Muckenhoupt weights, which leads us as well to the weight class we are mainly

interested in.

Proposition 1.14. Let 1 < p < oo and w € A,. Then there exists a constant ¢ > 0 such
that for all x € R™ and for all r > 0 holds

w(B(z,2r)) < cw(B(z,r)). (1.27)

Proof. We use Proposition 1.6 with B = B(z,2r) and E = B(z,r) C B(z,2r), then

Mp C—,-w T, T
(W30u2rﬂ) = w(B(z,2r)) (B(z,r))

(M)p < <. w(B(x,7))

jwn| n=t (2r)
w(B(z,2r)) < 2" w(B(x,r)).
In particular ¢ = ¢ 2" = A,(w) 2". |

Remark 1.15. Condition (1.27) is called doubling property or doubling condition,
respectively. We see that all Muckenhoupt weights have the doubling property. In the next

section we give a finer characterization of what is a doubling weight.

Remark 1.16. In view of this doubling property and the fact that by Proposition 1.2
w7 is also a doubling weight or measure, respectively, together with the characterization
(1.16) we could replace the family of balls by the family of cubes or other such equivalent

families.

Before we come to the most important weight class of this work, the doubling weights,

we discuss a weight w which does not belong to A, but still has the doubling property.

1.2.2 An Example

In this section we will give a function which does not belongs to A, but still has the

doubling property. This Example is based on a paper of WIK from 1989, see [Wik89].

I. Construction For convenience we consider only the 1-dimensional case in R. We

start with the function wy given by

x, 0<z <1,
wo(z) =92—2, 1<2<2, (1.28)

0, elsewhere.
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We construct the graph of w; by dividing step by step the graph of wy by 2 in both the
x and y direction and translate it in that way, that it adjoins to the existing graph. We
do this till such time as we reach the point x = 4, then we reflect (symmetrically) the
existing graph at the line z = 4.

In general we construct w, from w,_; in the same way. In formulas this is given by

Srso 2w, (28 — 4"+ 4t 0 <@ <At
wn+1($) = wn+1(2 L4qntl .CE), gn+l1 <r<2- 4n+1’ (129)

0, elsewhere.

Then we define
w(z) = lim w,(x), for x>0,
n—oo
and
w(z) = w(—x), for x <O0.

II. Properties At first we prove this easy observation, for n € Ny we have

/0 () di = (g)n (1.30)

Proof. We do this easily by induction. For n = 0 we have

2 1 2
/wo(x)dx:/xd:c—l—/(Q—x) de =1.
0 0 1
2.4M 8 n
/ wy(z) der = (—) (1.31)
0 3
our induction hypothesis. Then

2.4n+1
/ Wy (x) do
0

4n+1

=2 / Wy (x) do
0

Let

o0 4n+1

=2 2’?/() wy, (28(x — 41 + 4" da,
k=0

the substitution y = 2%(z — 4"1) + 4" dy = 2* dx yields us

o0 4n+1
=2. Z 2_%/4 wy(y) dy.
k=0

n+1 (1,2k)

Since w,(y) =0, y & [0,2-4"] and 4" > 247 47+1(1 — 2%) <0, k € Ny we have

o0 2.4m
=2y 27 / wy(y) dy
k=0 0
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and the induction hypothesis (1.31) delivers us

8 n oo 8 n+1
=2. (= 272k — (= .
) 2= 6)

1
[ |
Now let us consider these sets
E,:={zel0,2-4" :w(z) <27"}. (1.32)

We make an estimation of the Lebesgue measure of these sets.

For the set Ej its clear, that we have
|Eol = {z €[0,2] : wo(x) <1} = 2.
In the case of E; we have
Ei={z 0,8 :w(x) <27'}.

Let us consider the graph of F;. We see it contains infinitely many pyramids. We would
like to call all pyramids with a rise of 27% as P(k+1). The graph of w,; contains exactly 2
pyramids P1, P2,... In our estimation we would like to consider only the pyramids whose
tops lie over the line 271 But for these pyramids we have only to consider the part which
lies under the line 27!, So we have in the case of E; that only the both pyramids P1 rise

over the line 27!, They have an area of 2 and a rise of 1. Thus
|Ey|>2-1-271.2=2.

In general we only consider all the pyramids whose tops lie over the line 27" and for these
the part which lies under the line 27". The part of the pyramids Pk which lies under the

line 27" is:
1

—k+2
2 2—l<:+1

L2 = (1.33)
We see this part is for all admissible pyramids Pk equal (only depends on n). So we have
only to count the admissible pyramids Pk. We see that the number of the pyramids P1 is
doubled in every step, i.e. the graph of w, contains 2" pyramids P1. Further the number
of the pyramids Pk depends on the number of pyramids P1. Because of the construction

of w, from w,_; it emerge iterated sums at counting the sets of pyramids. So we have
|Ep| >27"[2242-2%] =271 22[1 + 2] =6,
|E5] >272- 221+ (1+2) + (1+2+ 3)] = 20,

n k1

kn—
Byl >2m2n Yy 22 k1

k1=1ko=1 kn—1=1

n k‘l k?n72 knfl

>2) Y o) YL

k1=1ko=1 kn—1=1k,=1
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The iterated sums correspond to this combinatoric question:
HA(ky,.. . ky) n>k>ko> 0. > kg > ky > 1}
This is the selection of n elements from an n—element set with repeating.
(n+k5—1) n=k <2n—1) _ (@2n-1)!
k B n  (n—1Dn!

Hence we have

B> 2. (2n —1)!
" (n—1)nl’
Using Stirling’s formula, we obtain
471

III. w ¢ A Our purpose is to violate (1.25) if p; is large enough. For this we take
p1=In(n), B=@Q, =10,2-4"], E = E, as above. Then it holds:

g\ "
4m _
|Enl 2 w(E,) < 27" E,|.

N
This leads to

2 —

w(Qn) \ |En| 8
3\" —np1, An pi=

3\" p—

<(5) = v

Thus w does not belong to any A,, p > 1.

IV. w is doubling In the first step we consider intervals I = [a, b] of the form
a=m-2F, b=(m+1)-2%, meNy, keZ

Then |I]| = 2%. For I = [a, b] we denote by 3 = [2a — b,2b — a.
It holds
w(3l) < 6w(). (1.35)
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Proof. At first we will prove this important fact about the area of the pyramids Pk.

- 1
> [Pl = 2 |PK|, (1.36)

I=k+1

where |Pk| denotes the area of Pk.

i [Pl = |P(k+1)| +|P(k+2)| + |P(k+3)[ +...

I=k+1

1 1 1
:ZWPM+Z¢Pw+1M+Z¢P@+2N+”.

1 1\? 1\*
= —.|Pk -] - |Pk - - |Pk|+...
Fipk () ekl (5) ek +

oo

1\ 1 1
:|PH-§:<E) zlPM-lj;l:EﬂPkL

=1 4

Now we have some cases:

(i) Let m = 0 and k € N then I = [0,2*]. If k is even we have 2% = 4!, [ € N, then w|,
consists of exactly one half of a copy of w;. Therefore wls; consists of exactly 3 of these

half copies of w;. Tt holds

w([-4",0]) = w([0,4'])
w([4,2-4") = w([0,4')).

Consequently
w(3l) =3w(I) < 6w(l).

If k is odd we have 221 = 2.4! | € Ny, then w|; consists of exactly one copy of w;. Thus
w|3r consists of exactly 2 of these copies of w; and an infinite succession of smaller copies

of w;. So we have

w([=2-4',0]) = w([0,2-47),

w([2- 4, 47+1]) (136) 1

S w([0.2-47) < w([0,2-47)
and thus
w(3I) < 3w(I) < 6w(l).

Here we have used (1.36). Let m # 0 in the following.

(ii) Let @ = 4" or b = 4™ (w.l.o.g. a = 4"), then w|; consists of an infinite succession of
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copies of w,_1. Hence w|3; consists of 2 of these infinite successions of copies of w,,_; and

in the worst case of one bigger copy of w,_1. It holds

w((2a — b,a)) = w(la, b)),

w2 —a)) < 3w((a,b)).
Consequently

w(3D) < 5w(l) < 6w(l).

(iii) w|; consists of exactly one copy of w,, then we have 2 cases. On the one side w|s;
consists of this copy of w, and 2 infinite successions of smaller copies of w,,. Because of
(1.36) it is clear that we have

1

w(3) "L (1) + 5 wh) + % w(I) < 6w(I).

On the other side w|s; consists of this copy of w,, an infinite succession of smaller copies
of w, and one half bigger copy of w,. It is also evident, that w(3]) < 6 w([),
(1.36)

w(3l) = w([)—i—%w([)—i—Qw([) < 6w(l).

(iv) wl; consists of exactly one half copy of w,. If w|; consists of exactly one half copy
of wy, it is clear that w(3l) < 3w(l) < 6 w([l). Otherwise we have still 2 cases. On the
one side w|3; consists of 2 of these half copies of w,, and one smaller copy of w,. Thus we
obtain

1.36)

w(3])( w([)+w([)+%w(])<6w(]).

On the other side w|3; consists of 2 these half copies of w,, and one bigger copy of w,,_1.
(1.36) yields us

w(dD) "2 w(1) + w(I) + 3w(l) < 6 w(l).
(v) The remaining cases are: w|; consists of 1 or ¢ or ... of a copy of wy. But for this it
is easy to prove that w(31) < 6 w([).
Since w is even, (1.35) also holds for m < 0. So we have (1.35) shown for all k € Z and
m € Z.
In the second step let I be an arbitrary interval. Then we find a & € Z such that 2F <

|I| < 281 and then we choose an m € Z such that
I''=[m-2"" (m+1)-2""'] C L (1.37)

It is easily seen that 21 C 161’ = 2I”, where I"” := 8I'. Since I” satisfies step 1, we have

(1.35)
<

w(2l) < w(2I") < w(3I") 6 w(I").

Using (1.35) 3 more times, we obtain

1.35 1.37
w2l < 6w "2 6 w(r) "2 6hw(D).

This finished the proof. |
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1.2.3 Doubling weights

We come to the most important weight class in this work which naturally extends Mu-

ckenhoupt weights.

Definition 1.17. We say that a nonnegative Borel measure 1 on R™ is doubling (concer-

ning balls) if there exists a constant § > 0 such that
w(B(x,2r)) < 2" u(B(x, 7)), forall zeR", r>0, (1.38)
The smallest such (3 is called doubling constant of .

Remark 1.18. Note that the doubling measure p does not need to be absolutely conti-
nuous with respect to the Lebesgue measure on R”, cf. [BM00]. On the other hand, any
weight w € A, defines a doubling measure y by dy = w(z)dx in view of Proposition

1.14, see also Example 1.21 below.

In the following we are only interested in doubling measures, which are absolutely
continuous with respect to the Lebesgue measure on R". So we introduce the so-called
doubling weights. We remind, that we shall mean by a weight a locally integrable and

positive a.e. function on R".

Definition 1.19. Let w be a weight on R™. w is called doubling (concerning balls) if

there exists a constant S > 0 such that
w(B(z,2r)) < 2"w(B(z,r)),  forall zeR" r>0. (1.39)
The smallest such f is called doubling constant of w (concerning balls).

Example 1.20. Tt is clear that w = 1 is doubling, because |B(zx,2r)| = 2"|B(x,r)| for
arbitrary balls B(z,r), i.e. f = 1.

Example 1.21. Our weight w,; from Example 1.3 is doubling, if a,b > —n, i.e. w,y is
doubling, if and only if, w,; € Ax. In view of Proposition 1.14 all Muckenhoupt weights
w € A are doubling. Short calculation using (1.20) yields us 5 = p log A,(w), see also
the proof of Proposition 1.14, or, in view of later use, 8 = ¢ r,, respectively, whereas
the ¢ = ¢, > 1 depends on w. On the contrary, there exist doubling weights which do
not belong to A, as we have seen in Section 1.2.2. Hence A, is a proper subset of all
doubling weights which are absolutely continuous with respect to the Lebesgue measure

on R™.

Now we introduce another definition of doubling weights with respect to cubes. This
is an equivalent definition. The constants depend on the dimension, see Proposition 1.23

below.
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Definition 1.22. Let w be a weight on R". w is called doubling (concerning cubes) if
there exists a constant v > 0 such that for all cubes )

w(2Q) <2Mw(Q). (1.40)
The smallest such ~ is called doubling constant of w (concerning cubes).
Proposition 1.23. Let w be a weight on R™.

(i) The conditions (1.39) and (1.40) are equivalent.
(ii) For the doubling constants holds
%ﬂgfygcﬁ, (1.41)
where ¢ = |logy(v/n)| + 2.

(iii) The doubling constants satisfy B > 1 and v > 1.

Proof. Step 1. First assume that w satisfies (1.39). Let Q = Q(x,l) = - [—%, %]n + x,
x € R™, [ > 0, be an arbitrary cube. Then there exist balls B; = B(x, %), By = B(z,+/nl),
such that the outer ball By touches the corners of the cube Q(z,2l) and the inner ball B;

touches the inner sidewalls of the cube Q(x,[). Thus we have
w2Q) = [ uy)dy
Q(x,21)
< [ vy = (B VD)
B(x

V)

(1.39)

< 2%w(B(e, 1))
(1.39)

< gnBk) (B ﬂl»

where we applied (1.39) and k& € N is chosen such that ‘2/—5 < 1 & logyv/n < k, say,
k = |logy(v/n)| + 1. Thus we can continue our estimate by

w(2Q) < 27+ Vu(B(r, 1))

< 2770w (Q)

and obtain for the doubling constants v < (|log,(v/n)] +2) - .
Step 2. On the other side if (1.40) holds. Let B = B(xz,r), z € R", r > 0 be an arbitrary
ball. Then we have in the same way 2 cubes ;1 = Q(z, \2/—%), Q2 = Q(x,4r) with

w(B(z,2r)) < w(Q(z,4r))

(1.40) o
(1.40)

2 g, 2o Y0y,

Jn o 2k
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where we applied (1.40) and k& € N have been chosen again such that *2/—3 <1< log,v/n <
k, say, k = [logy(1/n)] + 1. Hence,

2r
%))

< 2+ (B, 1))

w(B(z,2r)) < 2Dy (Q(x,

and we get 8 < (|logy(v/n)] + 2) - v. This concludes the proof of (i) and (ii). It remains
to verify (iii).
Step 3. Let w be doubling (concering cubes). Let @ be a cube with sidelength 1. Moreover

let [ be an arbitrary natural number. Q contains 2 disjoint cubes @; with sidelength 2.

It holds
2nl

UQz‘ CQ, Q=2 QnQ;=0.
i=1

Let ; be an arbitrary small cube in @), then the big cube @ is covered by z - );, whereas
x-27"> 2, ie. x> 27 Then it applies for a fixed / € Nand all i € {1,...,2"} that

ont onl
QMJ,:IFigM w(@;) < w(@y) <w(l Q) < w@)
""" j=1 j=1

< w(271Q;) < 2 w(Q,), i=1,...,2"% VleN.

Choose i such that w(Q);) is minimal, then it holds

orl < gm(+l) L <~ VleN,

[+

ie. vy >1.
The proof for ( is similar. Let w be now a doubling weight concerning balls. Let B
a ball with radius 1, then B contains a cube @ with sidelength y/n and this cube @
contains as mentioned above 2™ disjoint cubes @Q; with sidelength 27!\/n, U?:l Q: C Q,
|Q:| =27, Q;: N Q; = 0. Moreover every of the small cubes Q; contains a ball B; with
radius r; = 2*“/75. Consequently the ball B contains 2™ disjoint balls B; with radius
2‘“/75 and Uf:ll B; C B. We take an arbitrary small ball B;, blow it z—times up to cover
the big ball B, whereby =z -r;, = = - 2_“/75 > 2, ie x> 242 > 2““1‘/75. Then holds for a
fixed € Nand all i € {1,...,2"} that

2nl 2nl
nl
2 ]:rlr’l}g"lw(B]) < ;w(Bj) < w(JLJl B;) < w(B)

< w2 B;) < 2" y(By),  i=1,...,2" VIeN.

Choose i again such that w(B;) is minimal, then

!
[+2
ie. 5> 1. [ |

onl < gnblH2) <B VIeN,
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Remark 1.24. In the following we will not distinguish between doubling weights concer-
ning balls or concerning cubes as long as their doubling constants do not play any role.
Otherwise we stick to our convention to label the doubling constant concerning balls with

B, and the one concerning cubes with ~.
We prove another feature of doubling weights which will be used below.

Proposition 1.25. Let w be a doubling weight. Then

(i) VECR" with 0<|E|<0: 0 <w(F) < oo,

() [ wldy=c

Proof. (i) This is a immediate consequence of the doubling property.

(ii) Let w be a doubling weight with w(B(x,2r)) < c w(B(z,r)) for arbitrary z €
R", r > 0, here we denote the doubling constant 2"° by c. Let Ry > 0 be an arbitrary
positive number and zy = (%, 0,--- ,O)T and r1 = (2 Ry, 0,--- ,O)T. Then

R
B(a:o,70) C{yeR": Ry <|y—a1| <2Ry}. (1.42)

Since w is doubling, remember that 0 < w(B) < oo for all balls B; see (i). So in particular
w(B(zo, %)) > a > 0. Now it holds

w(B(21,2 Ry)) = / w(y) dy

B(wl,Q Ro)

=/ w(y) dy+/ w(y) dy
B(x1,Ro) Ro<|y—z1|<2 Ry

(1.42) |
2 L (Blar,2 Re)) + / w(y) dy
C B(zo Rg

' 2

-~

>a>0

1
> Ew(B(:vl, 2 Ro)) + a.

We bring the first summand on the other side and obtain

c
w(B(z1,2 Ry)) > a 1
Next we set Ry := 4Ry, then x; = (%,O,--- ,O)T. In general we set Rpy1 = 4Ry,
T = (%, 0,--- ,O)T for k € Ny. Repeat the upper calculation for x1, R; instead of xq, Ry
and receive )
w(B(:Eg,&)) >a ( ¢ ) .
277~ c—1

Iteratively we obtain in the k-th step

w(B(xk,%))Za( ‘ )k (1.43)

c—1
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Finally we get

(1.43) c \*
/ w(y)dy > lim w(y)dy > a( ) = 0.

1.2.4 Further weight classes

In the history of Sobolev, Besov and Triebel-Lizorkin type spaces several classes of weights
play an important role. In this section we have a look at some of these weight classes and
briefly discuss their relationship to Muckenhoupt weights and doubling weights, respec-

tively, to get a better overview.

Admissible weights

We start with the so-called admissible weights, which have a long history in the theory of
function spaces.
We use the abbreviation (z) = (1 + |z|2)"/*, z € R".

Definition 1.26. The class of admissible weight functions is the collection of all positive

C* functions w on R™ with the following properties:

(i) for all n € Nj there exists a positive constant ¢, with

ID"w(z)| < c,w(z) forall zeR™

(ii) there exist two constants ¢ > 0 and « > 0 such that

0 <w(x) <cw(y)(x—y)* foral =z yeR"

Remark 1.27. Note that for admissible weights w and v, also 1/w and vw are admissible
weights. For further details about admissible weights we refer for example to [HT94, HT05|
or also to [ET96, KLSS06a, KL.SS06b, KLSS07].

Example 1.28. Obviously, v,(z) = ()% a € R, is an admissible weight. Note that
Vo € A for a > —n unlike in case of « < —n. Conversely, w,; given by (1.15) with
—n < a < 0, b > —n, is not admissible in the above sense, but belongs to A, or is

doubling, respectively.
There exists a generalization of definition 1.26.

Definition 1.29. The class of general locally regular weight functions is the collection of

all positive C'*° functions w on R™ with the following properties:
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(i) for all n € Nj there exists a positive constant ¢, with

ID"w(z)| < c,w(z) forall zeR™;

(ii) there exist two constants C' > 0 and 0 < § < 1 such that

0<w(z) <Cuw(y)exp(Clz—y|’) forall z,yeR™
Remark 1.30. Of course any admissible weight is locally regular. For further details we
refer to [Sch98.

Example 1.31. For example the weight
w(r) =exp(|z’), 0<B <1, (1.44)

is locally regular but not admissible, see [Sch98§].

Local Muckenhoupt weights

We extend these weight classes by the so-called local Muckenhoupt weights, which also

contain the already mentioned Muckenhoupt weights.
Definition 1.32. Let w be a weight on R".

(1) Then w belongs to the local Muckenhoupt class A}DOC, 1 < p < oo, if there exists a
constant 0 < A < oo such that for all balls B with |B| < 1 the following inequality

T o) G o

The smallest such A is called the Muckenhoupt constant A}DOC = Aéoc(w).

(ii) Then w belongs to the Muckenhoupt class AP if there exists a constant 0 < A < oo

such that the inequality
Muw(z) < Aw(z) (1.46)
holds for almost all z € R, where here M!° stands for the local Hardy-Littlewood

maximal operator given by

loc — d Rn
M f(x) sup |er|/“ y)ldy, zeR",

(z,r)eB,0<r<1

The smallest such A is called the Muckenhoupt constant A¢ = Ale¢(w),
(iii) The Muckenhoupt class A% is given by

AL =) Ape. (1.47)

p>1
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Remark 1.33. These weights were introduced 2001 by RYCHKOV in [Ryc01]. Obviously
it holds that A, C A and A¥°(w) < Ap(w) for any w € A,, 1 < p < oo. They do not
only extend the Muckenhoupt weights, but also contain the above introduced admissible
and locally regular weights, cf. [Sch98, Ryc01, HT05]. Moreover AY¢ contains the regular
weights, see [Wojl2a, Prop. 2.4].

Example 1.34. A typical example which is contained in A°, but not in A, and is also

not locally regular, is given by

i if |z| <1,
wa,exp(x):
explla 1), i |zl > 1,

where a > —n, see [Wojl2a|. If —n < a < n(p—1) and 1 < p < oo then w € Ap°. If
—n < a <0 then w € AP°.
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1.3 Function spaces

1.3.1 Spaces of Besov and Triebel-Lizorkin type

This section gives an introduction to the classical function spaces of Besov and Triebel-
Lizorkin type. There are various ways to define these spaces, e.g. by derivatives, differences
of functions, the Fourier analytical representation, local means, atomic decomposition,
etc. We present the most common Fourier analytical approach. For this we need the
concept of a smooth dyadic resolution of unity in R™. This is a system of functions
{¢i}en, € C*(R™) with the following properties.

supp po C {x € R" : |z| < 2}, (1.48)
supp ¢; C {z € R" : 2771 < || <2741} jeN, (1.49)
|(DYp;) ()] < cq 279101, VreR", VaeNg, jeN,,  (1.50)
D pi(z) =1, VacR" (1.51)

It is rather easy to construct such a resolution of unity: Let ¢y = ¢ € S(R™) be such that
suppp C{y € R": ly| <2} and ¢(x) =1, if |z| <1,

and for each j € N let p;(x) = p(2772) — p(277"1x). Then {p;}2 forms a system with
the required properties. Let f; := F 1(¢;Ff), f € S'(R™). Then supp F f; C supp ¢;.
Since ¢; has a compact support f; is well-defined for any f € S'(R™) and f; is by
the Paley-Wiener-Schwartz theorem an entire analytic function with respect to x € R™.
Furthermore it holds for all f € S'(R™)

Z]—“ (o, Ff)(z Z fix with convergence in §'(R").

The (unweighted) Besov and Triebel-Lizorkin spaces are defined in the following way.
Definition 1.35. Let {goj} be a smooth dyadic resolution of unity.

(i) Let 0 < p <00, 0 < ¢ < 00, s € R. The Besov space B, , = By (R") is the set of
all distributions f € &’ such that

o 1/q
7185, - (z wsquf—lefnwAv)

J=0

is finite (with the usual modification in the limiting case ¢ = 00).
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(ii) Let 0 < p < 00, 0 < ¢ < 00, s € R. The Triebel-Lizorkin space F; = F; (R") is
the set of all distributions f € & such that

o0 1/q
71 = (Zwv—ww><->|q) L,

=0
is finite (with the usual modification in the limiting case ¢ = 00).

Remark 1.36. The spaces B; (R") and F; (R") are independent of the particular choice
of the smooth dyadic resolution of unity {goj}‘;io appearing in their definitions (in the
sense of equivalent norms). A proof may be found in [Tri92, Section 2.3.2, pp. 93-96].
They are quasi-Banach spaces (Banach spaces for p,q > 1) and it holds S(R") —
B, (R?), F> (R") — S'(R"), where the first embedding is dense if p < co and ¢ < oo, cf.
[Tri83, Section 2.3.3].

Moreover we have some elementary embeddings for these spaces. For this purpose we
adopt the usual convention to write A5 (R") instead of By (R") or F; (R"), respectively,
when both scales of spaces are meant simultaneously in some context. Let 0 < p < oo,
0<q<o0,s€eR, then

APy (RY) = A2l (R™), if  —oo <53 <8 <00, 0<q,q <0,
Ap g (R") = A7 (R™),if 0<qo<q < oo,
and
o min(p.g) (R") = Fy ((R") = By oo (R,

cf. [Tri83, Section 2.3.2, Prop. 2|.

If one compares the two parts of the above definitions then p = oo is missing in connection
with the space Fj . It comes out that a direct extension of the above definition of FJ,
to p = oo does not make sense if 0 < ¢ < oo (in particular, a corresponding space is not
independent of the choice of {¢;},). However, using a modification it is possible to define
spaces F5,  (R™), cf. [Tri92, 1.5.2]. Note that the spaces A5 (R") contain tempered distri-
butions which can only be interpreted as regular distributions (functions) for sufficiently

high smoothness. More precisely, for B-spaces we have

s> 0, for0<p<oo, 0<q<oo,
B;,q(Rn) - Llloc(Rn) if, and only if, s=o0, for0<p<l1 0<q¢<l1,
s =0, forl<p<oo, 0<gq<min(p,2),
(1.52)
and in case of F-spaces

s>0, forO0<p<l1, 0<qg<oo,
Fy (R") C LY(R") if, and only if, {s>0, forl<p<oo, 0<q<oo, (1.53)

s=o0p forl<p<oo, 0<qg<2,
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cf. [ST95, Thm. 3.3.2], where o, is given as usual by

)
op=n|—— .
P D .

The scale F; (R™) contains many well-known function spaces. We list a few special cases.
Let 1 < p < oo, then
Fro(R") = H (R"), s € R,

where the latter are the (fractional) Sobolev spaces containing all f € §’'(R"™) with
FU(1+ 167 f) € L(RY)
In particular, for k& € Ny, we obtain the classical Sobolev spaces
Fp(R") =W, (R")  and  F,(R") = Ly(R"),

usually normed by
1/p

AW @® = > ID*FIL,@®RMIP |

o<k

where here D®f are generalized derivatives in the sense of distributions. Otherwise for

0 < p < oo we obtain the Hardy spaces
FO,(R") = hy(R").

For comprehensive treatment of the Besov-Triebel-Lizorkin spaces we refer, in particular,
to the series of monographs by TRIEBEL, [Tri78, Tri83, Tri92, Tri97, Tri01, Tri06, Tri0§].

Remark 1.37. As already mentioned there are different ways to define Besov and Triebel-
Lizorkin spaces, respectively. The classical Besov spaces, in particular, when 1 < p, ¢ < oo
and s > 0, are characterized by iterated differences and derivatives.

For an arbitrary function f on R”, h € R" and r € N let

(Af)(@) = f(x+h) = f(z) and (A} f)(z) = A4(ALf)(x)

be the iterated differences.
Let 1 <p,qg < oo and s > 0. We put

s=[s]” +{s}", (1.54)

where [s]” is an integer and 0 < {s}* < 1. Then the classical Besov space B; (R")
contains all f € L,(R") such that

s ny|l _ [s]” (Ton —{s}Tq 2« n\|q dh Ha
115 (R = LA W, R+ ) /Rn 1] |ARD Ly (R™)] T (1.55)

=51~
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is finite, where we use for ¢ = oo the following norm modification

s n s|™ n —{s}t « n
7185 (RO = IAWET R+ 37 sup (Al ATD LR (1.56)
loo|=[s]~

These Banach spaces have been introduced by BESOV in 1959/60, see [Bes59, Bes61|, and
have a comprehensive history, see for example in [Tri92, Section 1.2.5]|.
However (1.55) can be modified in the following way. Given a function f € L,(R") the

r-th order of modulus of smoothness is defined by

wr(f,t), = sup [|AL fIL,(R™M)|, t>0, 0<p<oo. (1.57)

|h|<t

Then (1.55) and (1.56) can be replaced by

1 d 1/q
19135, R = U121+ ([ 707 ) (158

(with the usual modification if ¢ = 00). The study for all admitted s, p and ¢ goes back
to [SOT78|, we also refer to [BS88, Ch. 5, Def. 4.3] and [DL93, Ch. 2, §10]. In view of the
characterization (1.56) there is obviously an analogy from B3,  (R") with the Hélder-
Zygmund spaces C*(R™), which are given by all f € C'(R") such that

s n s| n —{s}t a n
IA1C* ®M)[ = I FICH R+ O;;Lle%nlhl B ATD FICRM|
loo|=[s]~

is finite. This means, that
B, (R") =C*R"), s>0. (1.59)

This can be extended to all s € R. For more details about these classical Besov spaces we
refer to [Tri83, Section 2.2.2, 2.5.12].

The approach by differences for the spaces F;q(R”) has been described in detail in [Tri83,
Section 2.5.10]. Otherwise one finds in [Tri06], Section 9.2.2, pp. 386-390, the necessary

explanations and references to the relevant literature.

1.3.2 Weighted function spaces

In this section we define doubling weighted Besov and Triebel-Lizorkin spaces and collect
some basic properties, which have a later use. As already introduced in the beginning of
Section 1.2 the weighted Lebesgue space L,(w) = L,(R™, w) is defined with the weighted
L,(w)-norm, 0 < p < oo,

1/p
I 15wl = 17 12wl = ([ 1r@Puar)
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with the usual modification for p = oo, whereas w is now a doubling weight. Unless
otherwise mentioned, w is usually a doubling weight in the following.

Then L,(w) equipped with this norm are quasi-Banach spaces (Banach spaces for
p,q > 1). It is clear that L,(R™ w) = L,(R") for w = 1. Moreover for p = oo one obtains
the classical (unweighted) Lebesgue space, Lo (R", w) = Lo (R™) with equality of norms,
Le. || flLoo(R™, w)|| ~ || f|Loo(R™)||, more precisely,

inf  sup |f(x)]~ inf sup |f(z)].
NCR™, peRn\N NCR™, pcRn\N

w(N)=0 IN|=0
Thus it is sufficient to show w(N) =0 < |N| = 0. This is an immediate consequence
of Proposition 1.25 (i) and the fact, that we here only consider measures, which are
absolutely continuous with respect to the Lebesgue measure on R".

We thus mainly restrict ourselves to p < oo in what follows.

Example 1.38. For 0 < p < oo and w doubling the function (1+ |z|)~* belongs to L,(w)
for sufficiently large L € N.

Proof. We use the notation B; := {& € R": |z| < 27} for j € Np. Then B; \ Bj_; =
{x eR™: 271 < |z| <27}, j € N, denotes the annuli. For € B; \ B;_1, we have (1 +
20)7Ir < (14 |z))™ 7 < (142771712 ie. (1 + |x]) 5 ~ 27127, Furthermore we can use
the doubling property w(B; \ B;_1) < w(B;) = w(2/By) < 27"%w(By).

Both together lead us to

11+ Ja]) 5| L) [ = / (1 + |a))uw(x) de

Z/ (1 + |z)) " w(z) dz +/ (1 + |z)) " w(z) dw
Bi\Bs <c2-Lpj Bo <1

< Cq 22 ]pr i \Bj_l) —|—w(B0)

<2imBw(By)
oo
< Z 27ij2]nﬁU)(Bo) < 00
j=0 ~1
if L > "2, ]

We use the Fourier analytical approach for the definition of the doubling weighted
Besov and Triebel-Lizorkin spaces. We refer to the beginning of Section 1.3.1 for explaining

the concept of a smooth dyadic resolution of unity and their properties.

Definition 1.39. Let 0 <p < 00,0 < ¢ < o0, s € R, {gpj} a smooth dyadic resolution
of unity and let w be a doubling weight.
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(i) The weighted Besov space By (w) = B; (R",w) is the set of all distributions f € &'
such that

0o 1/q
17132, () = (z gin Hfl(sojff)\Lp(w)Hq>

J=0

is finite (with the usual modification in the limiting case ¢ = 00).

(ii) The weighted Triebel-Lizorkin space F; (w) = F; (R",w) is the set of all distribu-
tions f € S’ such that

00 1/q
gzl = | (2 e n0r ) 1ot

is finite (with the usual modification in the limiting case ¢ = c0).

Remark 1.40. The spaces B, (w) and Fj (w) are independent of the choice of the
smooth dyadic resolution of unity {gpj}jio appearing in their definitions, cf. [Bow05] and
[BHO6], respectively. They are quasi-Banach spaces (Banach spaces for p,q > 1). Moreo-
ver, for w = 1 we re-obtain the usual (unweighted) Besov and Triebel-Lizorkin spaces, for
this we refer to Section 1.3.1.

Weighted function spaces have also a preceding history. A general approach for Besov-
Triebel-Lizorkin spaces with weights is given in [ST87, Chapter 5|. In [ET96, Chapter
4] one finds function spaces especially with admissible weights, which we introduced in
Section 1.2.4.

Doubling weighted Besov-Triebel-Lizorkin spaces were first introduced by BOWNIK
in the papers [Bow05, BHO6, Bow07, Bow08]. There he mainly dealt with homogeneous,
anisotropic Besov spaces with expansive dilation matrices and more general doubling
measures, but he showed that some of these result also hold for inhomogeneous spaces.
For more details about the differences between his and our approach we refer to Remark
2.10 in Chapter 2 below.

Remark 1.41. As already mentioned there exist further types of Besov-Triebel-Lizorkin
spaces with other weight classes, for example Muckenhoupt weights or admissible weights.
They can be introduced in the same way like our doubling weighted spaces. One consi-
ders the weighted Lebesgue spaces L,(w), where the Lebesgue measure is replaced by
the measure w(x)dx, as we introduced it in Section 1.2. For Muckenhoupt weights and
admissible weights, respectively, L,(w) are again (quasi-)Banach spaces and it also holds
w(N)=0 < |N|=0, N CR" thus Lo(w) = Lo. Then for these weights the Besov
and Triebel-Lizorkin spaces can be defined as in Definition 1.39 by replacing the doubling
weighted L,(w)-norm by the respective one.

The spaces with weights of Muckenhoupt type have been studied systematically by
Bur in [Bui81, Bui82, Bui83, Bui84, Buid94|. There exist many counterparts of the results
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from the unweighted situation, compare with Remark 1.36 in Section 1.3.1. For example
we have

Fﬁg(w) = hy(w), for 0 <p < oo, weA,

see [Bui82, Thm. 1.4], in particular,
F;Q(w) = L,(w) = hy(w), for 1 <p<oo, weA,

see [ST89, Chapter 6, Thm. 1].
Concerning Sobolev spaces W) (w) it holds

F;Q(w):WZf(w), for ke Ny, 1 <p<oo, weA,

see [Bui82, Thm. 2.8|. Further results, concerning, for instance, embeddings, real interpo-
lation, extrapolation, lift operators and duality assertions may be found in [Bui82, Bui84,
GCRAF85, Rou04].

Concerning admissible weights exist also many respective counterparts of the results from
the unweighted Besov-Triebel-Lizorkin spaces, which we mentioned in Section 1.3.1. We
refer to [ET96, Chapter 4] and [Tri06, Chapter 6] for the necessary explanations. Because

of a later use, we have in particular,
B oo (R, w,) = C*(R", wa), (1.60)

cf. [Tri06, Remark 6.14]. Whereas w,(z) = (1 + |2]?)*/2, a € R, is the admissible weight
from Example 1.28.

Now we consider again function spaces with doubling weights. We have the usual
elementary embeddings for these weighted spaces. For this purpose we adopt the usual
convention to write A5 (w) instead of By (w) or Fy (w), respectively, when both scales

of spaces are meant simultaneously in some context.
Proposition 1.42. Let 0 <p < o0, 0 < g <00, s € R and w be a doubling weight.
(i) Let 0 < qo < ¢4 < 00. Then

A (w) = A2, (w). (1.61)

Psq0 p,q1

(i) Let 0 < gop <00, 0<q < oo ande > 0. Then

Apao(w) = A 4, (w). (1.62)
(iii) We have

B;,min(p,q) (w) — Fpiq(w) — B;,max(p,q) (UJ) (163)
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Proof. (i) is a simple consequence of the monotonicity of the ¢,—spaces, since £,, < (,,,

for 0 < qo < ¢1 < oo. The (ii) assertion works in a similar way and follows from

0 /a1 00 /a1
Z 9sjq1 ’bj“h < sup 2(S+€)j|bj| Z 9—ciq
j:() jENO

=0
< ¢ sup 20N |b;| = ¢ 207N | Lol < e 120y ] | Lol
Jj€No
(modification if ¢; = 00).
We prove (iii). Let aj(z) := 29F Yp;Ff)(z) with j € Ny, z € R™. We shall use the
generalized triangle inequality for Banach spaces.
Thus we assume first 0 < ¢ < p < o0, i.e. § > 1. Then we have

1By maxea) (W] = [[F1Bp p (W) = [la[€p(Lp(w))]| = [la;| Ly(w, £)]]
< laj| Lyp(w, €)I| = [[f1E7 o (w)]]-

Furthermore

s 1/q
|1 E5 g (w)] = (Z|aj(-)|q) | Ly(w)|| =

1/q

3[4 Lyl

[eS) 1/q 00 1/q
SZNWWMWM)={ZMMMM@ = 7 1B )l

For 0 < p < ¢ < o0 it works analogously with the Minkowski’s inequality. |

Lemma 1.43. Let L C R™ compact, 0 < p < oo and w be a doubling weight. Then there
exist ¢, N > 0 such that for all j € Ny,

sup DL L)l for all § € SRY) with supp FF € 9K (164
S T fal)

Proof. The proof works similarly to the proof of Corollary 3.1 in [Bow05]. [

Proposition 1.44. Let 0 < p < o0, 0 < ¢ <00, s € R and w be a doubling weight.

(i)
S(R™) < L(w) (1.65)

(ii)
S(R™) < A3 (w) (1.66)

(iii)
A (w) < S'(R") (1.67)
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Proof. (i) Let f € S(R"). The semi-norms in S(R") are given by
[ f]lks o= sup (1 + |z])F Z\D"‘ l, VkI€N,.
rER”
la|<I

Since f € S(R™) we have

1Ly ()] = /R [+ 2D @)]" (A + |2~ w(e) do
< IR0 A+ 2D ™F L)l < oo,

for L > %ﬁ, see Example 1.38. This proves (i).
To show (ii) and (iii) we remind a useful trick. As a consequence of Proposition 1.42 it
holds for all e > 0
s+e s S
Byo(w) = B} (w) = B, (w)
and

B;,JrE( )%Bsmln(pq)( )%F;( )%B; (_>st),oo(w)

max(p,q) (w)

So it is sufficient to show, that
SR") = B,  (w) — S'(R").
(ii) Let f € S(R™).
1] 1By o (W) = sup 2| F (0, F f) | Lp(w)|

J€Ng

= sup 2°[|(1 + |2 ) "F (0 F ) (1 + [a]) 7" | Ly(w)]]

Jj€Ng
< sup 27°|] (14 [z)" F @ Ff) | Lool | [|(1 + []) ™" [ Ly (w)]],
j€Ng N—

=>, CaZ®

where the latter part is bounded, see Example 1.38. Then we take the polynomial inside

the Fourier transform and get derivatives

<oy sup27||F [ D0 D (0, F 1)l |Lecll,

j€Np
la|<L <max cq=c

use Riemann-Lebesgue and Leibniz formula for derivatives and obtain

< er sup 27| Y D%, F )| L

7€No la|<L
< ¢z sup 27| Z D% Z |DT(F )] |La]]-
7€No lal<L Inl<L

Since supp p; C {z € R™: 2771 < |z| < 27T} it holds 27 ~ (1 + |z|)*, thus

1F 1By e (w)l] < c4 sup 1L+ 2))* > D%l Y [IDUFS) |Lall.

la|<L In|<L
———

<o
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Choose M large enough, such that ||(1 + |z|)™|L,|| is bounded, then

< ¢ sup (L J2)* (L4 J2)™ > [DUF AN+ [2) ™ | L]

N(l+rxr|)s+]\4 In|<L

< ¢ |F S seare 1L+ 1) ™ Lol < e [1f | ansrsrar,

since F is bijective on S(R").

(iii) Similar to step (ii) it is sufficient to show, that By (w) — S'(R"), i.e. 3 k,1 €
NoV & € S(R") :

[F(@)] < e [lF1By o ()] || @51

We mention that {¢;} a smooth dyadic resolution of unity. We define

jeNo 18
o = o + 1,

| (1.68)
VY =pj1+¢;+ i+, JEN

Thus

o =1 on suppyy and suppiyy C {:U eR":|z] < 22}, (1.69)
;=1 on suppp; and suppe; C {x cR": 2172 < |z| < 2j+2}. '
Let f € S'(R") and ® € S(R"), then

@) = |3 F e, (@)

= | X FneF )
2| F s, F )
= | > FNeF FF )

Jj=0

(F (fff))(f( Fle))| (1.70)

Jj=0 —D
J =:9;

I

Mg

&
&

Now we use Lemma 1.43 with K = suppyy and f = f;, since supp Ff; C suppy; C
27supp o = 2°K. Then there exist ¢, N > 0 such that for all j € Ny

ap AL

reR? ( ’

; < ||| Lyl (L.71)
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We obtain
| f5(®5)] < : |5 (@) |(1+ []) N |@;(2)|(1 + |2])™ da
< I fil Lyp(w)|| [[(1 + |])¥ 5] Ly ]
< 275 20| i Ly (w)|| [1(1 + |z)N ;| Ly
—_———
<IF1Bg, oo (w)]]

< e 20009 || 7182 (w)|| (1 + [2]) V@, | L] | (1.72)

Now we consider the last part

10+ DY ILl < [ 1F@F @I+ )1+ )1+ o) da

< |F (W, F ) |ynsro / (14 o)™ de.
Rn

J/

TV
<00

Since F is bijective on S(R™), we get

< ¢ [0 F 19|t Npng1

—c sup (L) 3T D))

|a|<N+n+1
Use first the support of the ;, (1.69),
= osup (L[ D DY@ D [DUF ) ()]
2i—2<|g|<27+2 la|<N+n+1 [n|<N+4+n+1

and then the boundedness of 1;, (1.68), (1.50), hence we obtain for any s; > 0

Sy sup (L+[a])" 3" (DUF ) ()] (14 Je)
|[~29 [n|<N-+n+1 P

< ¢y 2Js1 ||]:_1q)||n+1+81,N+n+1

<279 || P|| Nt2nt2.n+14s, -

Note, that s; > 0 is at the moment arbitrary and we can choose it later, if necessary. So

we have for arbitrary s; > 0
11+ |2[)YF(y;F @) La] < 5 277 || @] ns2ns2,n1s - (1.73)
Insert this in (1.70), (1.72) and we obtain

@) < 1))

<y mexoe@0=9) | £ B (w)]] [|(1+ |z])N 4] Ly|
§=0

[o.¢]
< cq Z 9—j(s1—max(logy(c),0)+s) [|®]|Nt2nt2mt1ts ||f|B;7oo(w)||,
§=0
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We choose s; > 0 such that s; — max(log,(c),0) + s =: s9 > 0, then

oo

<o 30279 [|0]lvsonsznsier 1B (@)l
=0
G

<o

So there exist K := N +2n+2 >0, L:=n+ 1+ s; > 0 such that for all ® € S(R")

IF(@)] < er [[R]lx.z |1f1Bp oo (w)]].






2 Decompositions

The main goal of this section is to prove a wavelet characterization for spaces of type
Bs (w) and F; (w), where w is a doubling weight. For this we determine in Section 2.3 a
new and equally useful tool, the so-called »-sequence spaces, which yields us, under some
additional conditions, a wavelet isomorphism, when we have an atomic decomposition.
This part is the heart of the thesis and we deal here with a more general setting. So the
main theorem in Section 2.3.3 can be applied for many different function spaces, when
they satisfy the sc-condition, see Definition 2.17.

As a preparation we introduce in Section 2.1 the concept of atoms and wavelets and what
we understand by this, since there exist many different kinds of these.

In Section 2.2 we collect the atomic representations for the function spaces, in which we
are particularly interested. Finally in Section 2.4 we show the wavelet characterization
for our doubling weighted Besov-Triebel-Lizorkin spaces by using the main Theorem 2.23.
Additionally we prove the wavelet characterization for some further function spaces and
compare this with the well-known results from the literature.

The results of this chapter are contained in the joined paper [HST16] which is submitted

for publication.

2.1 Atoms and wavelets

In the theory of function spaces it is useful to have various representations of a function

f from the underlying function space,
f = Z )\Jamaj’m
7,m

In most of them one decomposes the function f into special building blocks, for exam-
ple, atoms, wavelets, quarks, molecules. For more information about this we refer for
example to [Tri06, Tri01, Woj97|. These building blocks are ,nice* functions with conve-
nient properties such as smoothness or compact supports. Here we amplify the atomic
and wavelet representation. We start with the L., —normalized (K, L,d)-atoms, where
K € Ny, L € Ny, d > 1, cf. |Tri06, Tri08§].
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Definition 2.1. Let K € Ny, L € Ny and d > 1.
The complex-valued functions a;,, € C*(R") are called (K, L, d)-atoms if

Supp @;m C d Qjm, j €Ny, meZ", (2.1)
D"a;m(x)] <21 jeN,, meZ", |y <K, (2.2)
/ 2%a; (z) dz = 0, jeN, meZ" 0| <L. (2.3)

Choosing L = 0 in (2.3) means that no moment conditions are required. For con-
venience the fixed number d > 1 will not be indicated in the sequel. Furthermore, if
K = L € N we denote the respective functions a;,, as L-atoms, [1ri08, Tril0].

The idea of atomic decompositions in B, (R") and F; (R") goes essentially back to
FRAZIER and JAWERTH in their series of papers |FJ85], [FJ90], [FJW91], see also |Tri97,
Section 13| for an alternative way based on so-called local means. For a detailed overview
about the complex history of atoms in various function spaces we refer to [Tri92, Section
1.9], see also |Tri06, Remark 1.48].

Atoms have nice properties, for example, sufficiently high smoothness, compact sup-
port and moment conditions. The disadvantage of the atoms is that the representation is

not unique, i.e., for a fixed function f one can find different decompositions
F=Y " Nmtjm
j7m

On the other side one has more freedom at the choice of the functions a;,, since the
structure is not completely fixed. Sometimes this is advantageous, for example, if one
works with traces, because there one does not need the isomorphism between the function
space and the corresponding sequence space. But if one is interested in embeddings, as
we do, then it is better to work with wavelet isomorphisms. Thus next we introduce the
concept of (smooth) wavelet systems. For this we give a brief description of some well-
known assertions about wavelet bases in Ly(R™) and multiresolution analysis, see [Tri06,
Section 1.7]. The standard references here are [Mal89], [Mal98|, [Mey87|, [Mey92|, [Dau88|,
[Dau92|, [Woj97].

We look first at the one-dimensional case.

Definition 2.2. An (inhomogeneous) multiresolution analysis is a sequence {V; : j € Ny}
of subspaces of Ly(R™) such that

i) ocwvic---cV;C Vi C-o 5 span U2,V = La(R),
(ii

(i

)
) f eV if, and only if, f(x —m) € V; for any m € Z,

) f €V, if, and only if, f(277z) € V; for all j € N,

(iv) there is a function ¥z € Vj such that {¢p(x —m) : m € Z} is an orthonormal basis
in V.
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Remark 2.3. The function ¢ is called scaling function (or father wavelet, where the F’

comes from.) By (iii) and (iv) it follows that
{2j/21/1p(2jx —m):meZ}, jeN,
is an orthonormal basis in V;. Let W, C Lo(R) the orthogonal complement such that
Vin=W;aV;; jeN,.

Then (i) can be reformulated as
Ly(R) =V, & W,
=0

the orthogonal decomposition.
One of the main assertions of multiresolution analysis is to prove that there are functions
Yy € La(R), called an associated function (or mother wavelet), such that
{vpy(x —m) :m € Z} is an orthonormal basis in Wy,
and to construct them starting from . Then it holds
20712 (27 e —m), ifjEN, meZ,

is an orthonormal basis in Ly(R).
The extension from one dimension to n dimensions follows by the standard procedures of
tensor products. Let G = (Gy,...,G,) € G* := {F, M}"™, where G, is either F' or M and

where * indicates that at least one of the components of G must be an M. Then we set

() =22 ][ e, (P2, —m,),  GeG ={F,M}™, jeNy,meZ", (24)

r=1

and the starting terms are given by
U (2) = [ [vorle, —m),  mez” (2.5)
r=1

Then {\Ifm, \I/ij :meZ” jeNy, Ge G*} is an orthonormal basis in Ly(R").

For our purpose we consider here smooth wavelets, more precisely compactly supported

Daubechies wavelets.

Definition 2.4. Let L € N. Let ¢p, ¢y € CL(R) are real-valued compactly supported

(Lo-normalized) functions with
/z/zp(t)dt: 1 /W(t) thdt =0, I<L. (2.6)
R R

Then {\Ilm, \I/jdm :meZ" €Ny, Ge G*}, constructed in the above sense, is called a

(Daubechies) wavelet system.
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The existence of the functions ¥ r and 1), in Definition 2.4 is given by [Mey92| and
[Dau92], see also [Woj97| or [Tri06, Thm. 1.61]. Hence the above definition makes sense.

Remark 2.5. The structure of the wavelet system {\I/m, \11ij :meZ jeNy, Ge€
G*} is rather fixed. We start with two (not explicitly known) functions 1y, 1p and build
the rest in a fixed pattern. This structure saves us the isomorphism. We know that this
system of functions {\Ifm, \IJJGm - meZ" jeNy, Ge G*} builds an orthonormal basis
in Ly(R™), if the starting functions ¢, 1y, are Ls—normalized. Furthermore, for some
c> 0,

{c\I/m, c2_j”/2\1fé7W} are L.-normalized L-atoms,

cf. [Tri06, Chapter 3|. This means, that wavelets can always be considered as atoms.
In other words, if we have a wavelet characterization, then we have also an atomic re-
presentation. Later in Section 2.3 we shall discuss the converse question, that is, under
which (additional) conditions we obtain a wavelet isomorphism, when we have an atomic

representation.
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2.2 Atomic decomposition

In connection with atoms and function spaces we always have sequence spaces for the
sequences of the coefficients, which will appear in atomic decompositions.

Recall our definition of @);,,, where m € Z", j € Ny, in the beginning. For 0 < p < oo,
j € Ny and m € Z" we denote by Xy,)r)n the p-normalised characteristic function of the
cube @, defined by

n 2%, if 7€ Qjm
X (@) = 2% Xy (@) = , ’ (2.7)
0, if ¢ Qjm.

It is easy to see that ||X§?%|LP(R”)|| — 1.

Definition 2.6.

(i) Let 0 < p<o00,0<q<o00,s€Rand w be a doubling weight. Then
Ba(u) = {2 = Dimbins i €€, [, (0)] < o0}

and

0] = {2 L)

S P, €H (2.8
mezmn

}jENO

(with obvious modification for p = oo or ¢ = 00).

(ii) Let 0 < p <00, 0 < g < o0, s € R, and w be a doubling weight. Then
) = {0 Dok €€ AR <

and

> Pialxgin ()

q) 1/q
mezmn

izl = | (e
j=0

(with obvious modification for ¢ = 00).

Lw| e

Remark 2.7. We can rewrite the b5 (w)-norm as follows

q

[ A1B5, (w)]| = (i%’sq( > |Ajjm|pw(Qj,m))p)l/q (2.10)

§=0 mezn

(with obvious modification for p = oo or ¢ = 00).
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Remark 2.8. Note that the cubes @);,, have no overlap on the same level j. Modify
1754 w)]] by

il =] (2 2t

jE€Ng,meZ™

Lp(w)H. (2.11)

Remark 2.9. In the unweighted case, i.e., when w = 1, we get

- U I\ 1Va
M54 = <§ :2”(“”< > IAj,mlp) ) (2.12)
j=0

meZ™

and

L, (2.13)

_ ) 1/q
PR = i)

j€Np,mezZ™

(with obvious modification for p = oo or ¢ = 00).

Remark 2.10. The next result that we want to apply is from BOWNIK, see [Bow05] and
[Bow07], respectively. Note, that BOWNIK dealt with anisotropic Besov-Triebel-Lizorkin
spaces with expansive dilation matrices and more general doubling measures. The diffe-
rence is that there are used quasi-norms ¢4 associated with an expansive matrix A. In
the standard dyadic case A = 2/ a quasi-norm g4 satisfies p4(2x) = 2"pa(x) instead of
the usual scalar homogeneity. In particular, p4(z) = |z|™ is an example for a quasi-norm
for A =21.

Instead of this quasi-norm | - |* we will use the usual Euclidean norm | - | in R™. For
more details we refer to [Bow03, LR94|. We recall that all quasi-norms associated to a
fixed dilation matrix A are equivalent. Moreover, there always exists a quasi-norm g4,
which is C*° on R™ except the origin.

Note also that BOWNIK dealt with a different decomposition of unity, but we get equi-
valent quasi-norms. In the main part of [Bow05] and [Bow(07], respectively, BOWNIK works
with homogeneous spaces, later he showed that these results also hold for inhomogeneous
spaces. Furthermore the atoms and the sequence spaces are Lo-normalised. In our case

we have an L.,-normalisation.

For convenience we adopt the usual notations

1 1
o,=n|--—-1 , Opg=n|——"7—"7-—1 ) 2.14
? (p )+ P (mln(p, Q> )+ ( )

for 0 < p,q < o0.
Then the atomic decomposition result used below reads as follows, see [Bow05, Thm.
5.10] and [Bow07, Theorem 5.7, Remark 5.8] with the above-described modifications.
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Proposition 2.11. Let 0 < p < o0, 0 < g < 00, s € R and w be a doubling weight with
doubling constant 3.

(i) Let K € Ny, L € Ny, d € R with
K >s and L>——++0,—s (2.15)

and d > 1 be fized. Then a tempered distribution f € S'(R") belongs to By (w) if,

and only if, it can be written as a series

f= Z Z Njm@jm, converging in S'(R"), (2.16)
7=0 mezn"
where a;,, are (K, L)-atoms according to Definition 2.1 and A = {\jn}im € l_);’q(w).
Furthermore
inf [[A|65  (w)]] (2.17)

is an equivalent quasi-norm in B q(w), where the infimum ranges over all admissible

representations (2.16).
(ii) Let K € Ny, L € Ny, d € R with

-1
K>s and L> M—i—ap,q—s (2.18)

p

and d > 1 be fized. Then a tempered distribution f € S(R™) belongs to F; (w) if,

and only if, it can be written as a series

f= Z Z Njm@jm, converging in S'(R™), (2.19)
=0 mezn
where aj, are (K, L)-atoms according to Definition 2.1 and X = {\jm}jm € f5,(w).

Furthermore

inf | |A| 3, (w)]| (2.20)
1$ an equivalent quasi-norm in F]j’,q(w), where the infimum ranges over all admissible
representations (2.19).

We exemplify the above result in two cases and compare it with known results.

Example 2.12. Let w = 1. Then we have by Example 1.20 that 5 = 1, such that (2.15)
reads as K > s and L > g, — s. Then the result coincides with [Tri97, Theorem 13.8| or
[Tri06, Theorem 1.19]|, respectively.
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Example 2.13. Let w € A,,. Then by Example 1.21 we have § = cr,, such that (2.15)
reads as

K >s and L> W +o,—s. (2.21)
This result is contained in [HP08, Theorem 3.10], because assumption (2.21) is in this
case slightly stronger than the assumption on L in [HP08, Theorem 3.10]. Consequently,
the result of [HPO8| has better quantitative characteristics than the ones obtained here
as long as we stay in the realm of A, weights. This is a prize to pay by studying Besov-

Triebel-Lizorkin spaces with doubling weights instead of A, weights.

Remark 2.14. Weighted Besov spaces and their atomic (and wavelet) decompositions in
case of admissible weights have been studied in some detail in [HT94, HT05, KI.SS06a,
KLSS06b, KLSS07]. As far as local Muckenhoupt weights A;OC are concerned, we refer to
[Ryc01, Wojl2a, Wojll, Wojl2b].
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2.3 From atoms to wavelets: the s-connection

2.3.1 The Setting

We begin our exposition in a general setting. Let a(R") be a quasi-Banach sequence space,

consisting of all sequences
p=A{pujmeC: jeNy, meZ"}, |pla(R")| < oo, (2.22)

with the standard properties of quasi-Banach lattices:

If [p] = {lpjml} and p" = {p] .} with 1], < [pjml, then
e la@®M)]} =l la@®DI, 4 a®] < [lp]a®™)]. (2.23)
Let ao(R™) be the subspace of a(R™) consisting of all sequences
{Wjm : Hom = fm, jm =0 where j €N, meZ"}. (2.24)

Then the wavelet version a*(R™) of a(R™) collects all sequences

p=4{pu, €C, pif €C: meZ", jeNy, GeG}, (2.25)
quasi-normed by
il R = [{rm o lao@®") |+ D {5} jm a(R™)]| < oo, (2.26)
Gea~

For example the classical ¢,-spaces fit into this scheme. We are interested in sequence
spaces of B;’q, ;f’q—type, also with some weight functions, especially with doubling weights.
These spaces also fit into this scheme of quasi-Banach sequence spaces a(R").

On the other side we deal with (isotropic, inhomogeneous) quasi-Banach function
spaces A(R™) in R", which satisfy

S(R™) = A(R™) — S'(R™), (2.27)

where S(R") and S’(R™) have their usual meaning here, cf. Section 1.1. Additionally
A(R™) can be characterized in terms of L-atomic representations:
f e S'(R"™) belongs to A(R™) if, and only if, it can be represented as

f= Z Z Wjm Qs w € a(R™), (2.28)

J€Ng mezZ"

unconditional convergence being in S'(R™) with

[/ TART)[| ~ inf [l [a(R") ], (2.29)
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where a(R™) is a sequence space as introduced above and {a;,} are L-atoms. The infimum
in (2.29) is taken over all admissible representations (2.28).

The question arises under which issue L-atomic representations of A(R™), based on a(R"),
admit corresponding L-wavelet characterizations now based on the wavelet version of
a”(R™) of a(R™) according to (2.25), (2.26). The desired result in this context reads as
follows:

f € S'(R") belongs to A(R™) if, and only if, it can be represented in terms of L-wavelets

as
F=0 AUt DD N NCG2w, o Aea”(RY), (2.30)

mezn GeG* jeENy meZn

unconditional convergence being in S'(R™). The representation (2.30) is unique,
MNE=NEN) =2 ([ 9,.), Am= (] V), (2.31)

meZ", 5 €Ny, GeG* and
Iio fe A, NS (2.32)

is an isomorphic map of A(R™) onto a™(R").
As already mentioned, if one has such an L-wavelet representation, then this automati-
cally provides an L-atomic counterpart. However, the step from L-atomic representations

to L-wavelet characterizations causes several problems. Formally one has to show that
[A]a®(R™)[] < ¢|lp|a(R™)]], (2.33)

with A as in (2.31) and a constant ¢ > 0 which is independent of all admitted sequences
pin (2.28), (2.29). For this purpose one has not only to clarify what is meant by the dual
pairings (f, \IIJGm), (f,¥,,) of f € A(R") and L-wavelets, but also to ensure f = g € A(R"™)
if

(f %) = (9. %0m),  (F,¥n) = (9. V), (2.34)

for all ‘I/ém, W,,. This is a matter of duality which requires some care.

Later in this work we want to apply the above mentioned concept of quasi-Banach se-
quence spaces a(R"™) and quasi-Banach function spaces A(R™) to such prominent examples
like By (w), F; (w) and by (w), f; (w), where By (w), F; (w) and b (w), f5 (w) are
the above introduced sequence and function spaces.

We have the essential embeddings
S(R") = B, (w), F; (w) — S'(R"), (2.35)

forall 0 < p <o0,0<q<o00,s€R and w be doubling, cf. Proposition 1.44. Thus the
(doubling weighted) spaces By (w) and F; (w) should fit into our scheme of (isotropic,
inhomogeneous) quasi-Banach function spaces A(R™) (if we have in addition an atomic

representation of them).
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Remark 2.15. Let 0 < p,q < oo be fixed. Then

SR = () By, R"w,) and S®R")= |] B, (R" wa), (2.36)

a€cR,;seR a€R,seR

where w,(r) = (1 + |2[)*2, a € R, is the admissible weight from Example 1.28. A
detailed proof of this more or less known assertion may be found in [KKab08]. We remind,
that

B3, o(R" w,) = C*(R™, w,),

cf. (1.60) in Remark 1.41. Of interest for us is a special case from (2.36)

SERY = () C®,w)= () C[®R"w,), (2.37)

a€eR,seR a,s€R
where C*(R", w,,) is the completion of D(R™) = C§°(R") in C*(R", w,). The second equa-

lity follows from
C(R™, ware) = CH(R™, wy), e >0, (2.38)

which can be justified by the wavelet characterization for spaces of type Bj (R" w,),
[Tri06, Theorem 6.15].

g 1C* (R, wa)l| ~ sup 2 (1 + [277m]) " |} (g)]. (2.39)

J7 7m

Remark 2.16. If A(R") is a Banach space, then it follows from (2.27), (2.37) and well
known properties of embeddings of locally convex spaces according to [Yos80, Theorem
1, Section 1,6, p.42| that

C*(R", wa) — A(R), (2.40)

for some s € R and some o € R. If in addition S(R") is dense in the Banach spaces
A(R™), then (2.40) can be complemented by

° /

A(RY) < (C*(R™ w,)) = Bri(R, w_y). (2.41)

If A(R") is a quasi-Banach space (in particular not necessarily locally convex), then it is
not clear whether (2.27) ensures (2.40) for some s, and (2.41). But, we shall see that
a weak local duality of (2.40) will be sufficient to justify (f, \If]Gm) and f = g if one has
(2.34).

2.3.2 Well-definedness of the dual pairing

We deal with sequence spaces a(R™) with (2.22), (2.23) adapted to atomic decompositions.
Let m € Z", j,J € Ny, d > 1, C; > 0. For convenience let us denote by

If](m) = {M e 7" dQJVM NnCy Qj,m 7é @} C Z". (242)
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Note that the cardinality #1I%(m) satisfies

y ]'7 J S .7
BT (m) ~ | ’ (2.43)
2”(J—J), J > 7,

with constants independent of j, J € Ny and m € Z".
Definition 2.17. Let s > 0. Then a(R") is called a sc-sequence space if
(i) for any d > 1, C; > 0, and all u € a(R™) any sequence
A={\m€eC:jeN,meZ"}
with

Njn| <Oy Y2770 N 0Dy |, j €Ny, me 27, (2.44)

JeNo Mel (m)

belongs to a(R™) and satisfies
A [a(R™)]] < Cq [|u|a(R™)| (2.45)
for some C5 > 0 which may depend on d, C;, > and n € N;

(ii) for any cube @ there is a constant ¢y > 0 such that for all 4 € a(R"),

lsar] < co 277 |pla(®™)|| forall Je€Nyand M € Z" with Quu C Q.
(2.46)

Remark 2.18. The definition of the s-sequence space is very technical. It comes out
from the proof of our main theorem below, where (i) is used in the proof of Theorem 2.23
and (ii) in the proof of Proposition 2.20. We add a respective comment in Remark 2.39
below.

Remark 2.19. If J < j, then the sum over () in (2.44) has only finitely many terms,
independent of Q;,,. If J > j, then this sum has ~ 2"(/=7) terms and

Z an(H)mJ,M’ <c
Mer(m)

‘NJ,M| (2-47)

max
Mel’ (m)
for some ¢ > 0 which again is independent of Q) ,.

If we remind to the last section, then it is our first aim to explain the well-definedness
of the dual pairings (f, \I’é,m)7 (f,¥,,) in (2.31) of f € A(R™) and the L-wavelets ¥,,,
vl
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Let €2 be a bounded C*° domain in R™ and ¢ € R. Then EQ(Q) is the completion of
D(Q) = C°(2) in C2(R™). Let again (f, ) with f € A(R") and ¢ € D(Q2) be the usual
dual pairing in the context of (S(R"),S’(R™)). If one has in addition

[(F; )l < callf[ARY - lp[CE R, fe AR, ¢eDQ), (2.48)

then one can extend the above dual pairing to (f,g) with f € A(R") and g € C?(Q2)
by standard arguments in the duality theory of function spaces. We refer to questions of
this type in [Tri83, Section 2.11| for a detailed discussion. Then we will say that the dual

pairing (f,g) with f € A(R") and g € 5@(9) is well defined.

Proposition 2.20. Let A(R™) be a function space which can be represented by the L-
atomic expansions (2.28), (2.29) where a(R™) is a s¢-sequence space according to Definition
2.17 with 0 < s« < L € N. Let o > ». Let Q be a bounded C*° domain in R™. Then the

dual pairing

(f,g)  with feARY, g¢eCQ) (2.49)

1s well defined and there is a constant cq > 0 such that
I(f, 9] < callf[ARY)] - lglC*®™)[,  feAR"), geC(Q). (2.50)

Proof. We may assume s < o < L. Let g € éQ(Q). Since 89(9) — C2(2) and E’Q(Q) is
the completion of D(£2), g has compact support in 2 and we can extend g on R™ (by zero).
Thus g € C¢(Q) := {h € C2(R") : supp (h) C O} C C¢(R"). On C¢(R") = BE (R") we
have a wavelet characterization, see [Tri06, Theorem 3.5] or [Tri08, Theorem 1.20|. Let

1= Y N2, @2:51)

73Gm

be the L-wavelet expansion of g € 5‘9(5), incorporating now the starting terms W,,, see
(2.30). Then

lgICeR™)]| ~ sup 24|05 (9)]- (2.52)
J7,t,m

We may assume ||g|C2(R™)|| = 1. Let f € A(R™) be expanded by L-atoms according to

(2.28). Then

(f,9) = Z Mg, M (GJ,M, gs + gJ), (2.53)
JM
where
g1 =Y NS(g) 272wl . gl =Y N(g 2 (2.54)
<, j2J,

G,m G,m
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Formally (2.53) has to be justified. But one can first deal with finite sums and defines

afterwards (2.53) by standard limiting arguments based on what follows.

[(f.9)] < ZWJMH ajm, 97 |+Z|MJM|| asnr, 9”)|

J,M
< Z|MJM|Z|/\JG W (@, 277720, )
J]\/f i<J,
G,m
+Z|MM|ZWG MW (s, 27720, ).
>,
Gm

The sums over m € Z" have only finitely many terms since both the atoms and wavelets

have compact support conditions. We use the index set

]{%(M) :{mGZ” : dQJyMﬂClQ]}m?é@},

where d () ;s denotes the support of ajy and C @, denotes the support of \T/]Gm =
27"/, . Then
1

(M) ~ ’
#15(M) S

J <,
, g >
Furthermore both the L-atoms and L-wavelets have classical derivatives up to order L

and cancellations of type (2.3), (2.6). For fixed J,M and j < J, m € I}(M) we use a
Taylor expansion of \I/ . in zg = 27/ M up to the order L — 1,

o] <L ’ la|=L

where ¢ lies between xg and y.
Insert this Taylor expansion and use the moment conditions of a ;s up to the order L —1.
Then one obtains for fixed J, M and j < J, m € I(M)

‘(aJ,Ma ‘IJJGm)‘ = ‘ e aJM (?/) dy‘

< ¢ ‘ Z ca/ yrasm(y dy’ (2.55)

la|<L <

=0, V\a|<L

+ep Yy sup \D“{Iv’fm(w)l/R |asn()||y — 27 M|" dy

la|=L TER™

Vv
<! 2ilel=¢ 241

Co 2jL/ }aJ,M(y)’ ’y—2*‘]M|L dy
Qum V<1 —/—gcrﬂ

< g 2L 97Tl 97 = g QUL 9=, (2.56)

IN
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On the other hand for fixed j > J we change the roles, i.e., we use a Taylor expansion of
ajum in xo = 277m up to the order L — 1,

asm(y) = Z mag—]\f(x())(y —x0)" + Z Daa;—’f[(@@ — )*

lo|<L . la|=L

and use then the moment conditions of (Iv/]Gm Then the counterpart of (2.56) is
‘(aJ,My ‘ = ‘/ asm(y dy‘
< ¢ | Z ca/ a\I/G (y)dy | (2.57)

|a|<L
0, V]a|<L
+ Z sup ‘D ay( |/ {\I/ )Hy—2_jm|Ldy
jaf=£ T

< 2J|a\ —c/ 2JL

¢ 2”/ WG ()| |y —277m|" dy
C —_— e —— ——

1 Q]',m

IN

SC ScQ*jL

< g 27F 97k 9mIn — oy QUL 9 (2.58)

We use [M:CE(g)] < ¢277¢ and » < ¢ < L. Since Q is bounded one has ~ 27" relevant

terms for fixed J in the sum over M. Let ZQ be the corresponding sum. Note that we
JM
have ~ 1 relevant j-terms if j < J. Then one has by (2.46),

D it l@sar g0)| < ¢ 3 ol (D270 27100 27)

J,M J,M i<J,
G,m
< ZQ 29 |y1yng] 22 <Z Q—j(g—L)>
JM i<J
J (2.59)
~2—J(e—L)

< cq sup”|usa|277°
JM
< cq [lp|a®™)]].

Furthermore for j > J we have ~ 2"0~7) relevant j-terms, such that

Z“’LJ,MH(CLJ’M, |<CZ |NJM|(ZQ” ) 9—je 9—L(j— )Q*jn)
J,M

J,.M i>J
<d 292 Jn‘,uJM‘ (ZQ jo9—L(j- )
= (2.60)
S cq sup |MJ,M’ 2—Jg (ZQ—j(L-i-g)) .
J M =
[ —
<00

< co [|u]a(R™)].
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By (2.53) and (2.29) one obtains

(£ 9)l < callf[AR™)]] (2.61)
for g € éQ(Q) with ||g |C¢(R™)|| = 1. This proves also (2.50) for all g € EQ(Q). |

Remark 2.21. The above proposition is a weak and, in particular, local duality assertion.
But this will be sufficient to show that (2.34) implies f = g.

Remark 2.22. In (2.59) and (2.60) we use (2.46), thus there comes the (ii) condition at

2 out.

2.3.3 Main theorem

Recall that a*(R") is the wavelet version of a(R") as introduced in (2.25), (2.26).

Theorem 2.23. Let A(R™) be an (isotropic, inhomogeneous) function space which can be
represented by the L-atomic expansions (2.27)-(2.29) where a(R™) is a »-sequence space
according to Definition 2.17 with 0 < 3¢ < L € N. Then f € S'(R™) belongs to A(R™) if,

and only if, it can be represented in terms of L-wavelets as

F= AUt D> Y NG2m2w, o Nea(R), (2.62)

mezn GeG* jeENy meZn

unconditional convergence being in S'(R™). The representation (2.62) is unique,

NS =M =22 (F9G0), A= Anlf) = (, W), (2.63)

meZ", 7 €Ny, GeG* and

Lo [ ), N (D)) (2.64)
is an isomorphic map of A(R™) onto o™ (R").

Proof. Step 1. By (2.25), (2.26) the right-hand side of (2.62) can be interpreted as an
L-atomic representation of f. Hence f € A(R") and

1A AR < ef|A]a®(R™)]. (2.65)

Step 2. We prove the converse. At first we show the well-definedness of (2.63). The counter-
part of (2.38) yields us that for every wavelet \If]Gm (including the starting terms W,,) there

exists a bounded C'* domain 2 in R™ and an € > 0 such that \I/JGm € Co(Q) — EQ(Q).
Thus we can apply Proposition 2.20 with » < o < L to \I/ij with a corresponding boun-
ded C* domain Q and f € A(R"). Therefore (2.63) is well defined.

Step 3. Next we prove that A(f) = {\.(f), ME(f)} € a*(R") and [|A(f) |a®(R™)]] <
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c|lfJAR™)]. Since f € A(R™) we have an admissible atomic representation with (2.28),
(2.29)

f= Z Z MM QM p € a(R™).

JEeNg MezZn
For convenience we will ignore the starting terms A, (f) in (2.63) and concentrate on
MN:G(f). The modifications otherwise are obvious. For fixed j, G, m we insert the atomic
representation in \:¢(f) according to (2.63), hence

NE)y=2" 3N g (agar, 272, (2.66)

JENy MeZn

Formally one may insert first only finite partial sums of (2.28) complemented afterwards
by standard limiting arguments based on Proposition 2.20 and what follows. We will not
stress this point. The situation now is very similar to the proof of Proposition 2.20. We
have two cases for (azr, 27/2 Wg7m), if J <jandif J> j. We do a Taylor expansion
both on a;)s and on \IIG = 27In/2 \If]Gm and use alternately the support, boundary and

moment conditions of ay,; and ¥ 2.1),(2.2),(2.3),(2.6). We use the index set

jm7(

]&(m) = {M e 7" : dQJ’M N Cy Qjﬂn ?é @},

see (2.42).
Then we obtain for fixed j,m and J < j, M € Ii(m), that

|(agar, W§,)| < 27Dk o= (2.67)
and for fixed j,m and J > j, M € I}(m),
| (agr, UG,)| < c 207Dk o=In, (2.68)

Recall that the set I7(m) has finitely many terms, see (2.43). If J < j then we apply
(2.67) to ~ 1 relevant terms and if J > j, then we apply (2.68) to ~ 2"V=9) relevant

terms. Hence

IO 27D ol [(agar, 27779

<5 Mer(m)

+ 2" Z Z ‘,UJ,M| ‘ ajm, 9—in/2 lD]Gm)’

J>j MEIj( )

< e2m TN |y 27D 27

=5 Mer(m)

+e2m YT N | 27 27 (2.69)

I>5 Me)(m)

Recall that 5 < L. Then one obtains by (2.44), (2.45), in view of (2.69) that A(f) € a*(R")
and
IACH) [ (R < el |a(R™)]], (2.70)
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where ¢ > 0 is independent of u. By (2.29) one obtains
IACF) [a® (R < e[ f AR (2.71)
Step 4. In particular, if f € A(R™), then one has

9= AW+ D DD N2, € AR, (2.72)

AL GEeG* jENg mezZn

since {W,,,277"/2 \I/ij} can be also considered as atoms and by (2.70) A(f) also belongs
to a(R™).

But now we are in the same position as in |Tri06, p.155] relying on Proposition 2.20
instead of the duality relations for A> (R") used there. Recall that {\I/m,\IJ]Gm} is an

orthonormal basis in Ly(R™). In particular,

(9, 6n) = 27"PNE () = (£ 0G,n) and (g, W) = (F, %) (273)

for all admitted j, G, m. We apply Proposition 2.20 and the L-wavelet expansion (2.51)
to ¢ € D(R"), hence

p=limy; with ¢;= Y Ay(p) 27720k, (2.74)
J J<j,G,M

Since ¢; are finite linear combinations of U7 ,, one can extend (2.73) to

(9.905) =(f,95), JEN (2.75)
Furthermore,
I — ¢ [C2(R)[| ~ quEGzJ@ IAf ()] < 2710, (2.76)
7.]7 b

Hence ¢; — ¢ in C?(R") with s < p < L. Then one obtains from Proposition 2.20 and
(2.75)

(fip) =(9,9), ¢ €DR"). (2.77)

This can be extended to ¢ € S(R™) by standard arguments. Hence f = g. This proves
(2.62). In the same way one obtains the uniqueness of the representation (2.62). From
(2.65) and (2.71) it follows that I in (2.64) is an isomorphic map. |

Remark 2.24. So far we relied on L-atoms (better (L,d)-atoms with some fixed d >
1) according to (2.1)-(2.3) with K = L. But K and L play in the theory of atomic
representations different roles, [Tri08, pp.4/5, Theorem 1.7|. For example L = 0 is useful
for pointwise multipliers. The situation for wavelets is different where we relied on K =
L = as in [Tri08, p.13|.
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Remark 2.25. To use the same L € N in Theorem 2.23 for atoms, wavelets and the -
sequence spaces with > < L is convenient. One may ask for better optimal choices (maybe
a suitable decoupling). But in the case of a(R") = Z_);q and (even more) a(R") = T;q
in the proof of [Tri08, Theorem 1.15, pp.7-12] one needs L large enough to compensate
276=3) compared with 27¢~») and for wa in addition to compensate estimates for related

maximal functions. We recall the typical argument. Let J > j,

QJ,M C Qj,ma T e Qj,ma w = min(l,p, Q) (278)

Let M be the usual Hardy-Littlewood mazimal function, which we introduced in Section
1.2.1. Then the estimate

Xjm(7) < 2077w (M) (€)' (2.79)

for the related characteristic functions follows from

1/w N
(Mxar) ()" > c( dy) =27y, T € Qjm- (2.80)

‘ijm| Qi m

Hence s in Definition 2.17 must be large enough to ensure (2.45) in these cases.

2.3.4 Applications and Examples

Recall that

1
ap:n(——l) : 0<p<o0. (2.81)
p +

We consider first the unweighted sequence space l;;q defined by (2.12).

Proposition 2.26. Let 0 < p,q < 0o, s € R. Then EISW 1S a »x-sequence space for any x

» > max <s, - s) . (2.82)
p
Proof. Step 1. Note that (2.82) also implies
% >max (s,0, —s) > 0. (2.83)

This can be seen as follows. We explicate (2.44) and obtain

J
Nl < €13 27070 N7 g+ C 327U N ) (2.84)
J=0

Mer,(m) J>j Mer,(m)
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If 0 < p <1, then this can be continued immediately by

Z |)‘j7m|p

meznr
J
S DI D DR DI DD D DD DI e
J=0 mezn MGIJ m) J>j mezZn ME[] (m)
J
Sclzgf(yai)%p Z gl Z 1_|_C'122*(J7])(%+n)p Z g1 ]? Z 1
J=0 Mezn mel? (M) J>j Mezn merJ (M)
S—— S——
~2n(i=J) ~1
J
< 0222—(J—J)(%—;)p Z |MJ,M|p+O222_(J_J)(%+n)p Z |t |P. (2.85)
J=0 Mezn J>j Mezn

If 1 < p < oo, then applying Hélder’s inequality twice yields for some € > 0,

J
Z 9—(j=J) Z |y
J=0

MeT(m)
J p / 1/p'
(ZQ (j—J)(e—¢)p ( Z |MJ,M|)p> (Z 2(jJ)sp’>
J=0 Melj-(m) \J=0 - |
<oo
J p/o'\ /P
<e <ZQ(jJ)(%E)p S sl ( 3 1p’) )
J=0 MeI(m) Mer)(m)
N ~- .
j 1/p
< ¢y < 9—(=J)(—=e)p Z |MJ’M|p> 7 (2.86)
J=0 Mer,(m)

where we also applied (2.43). On the other hand, when J > j, similar arguments lead to

Z 9—(J=j)(>+n) Z |01

J>j MeL)(m)

/' \ /P
<o Sre s e (5 w)")

J>j MeT’(m) MeT’(m)

J/

~2n(J=5)(p—1)

1/p
:C4<ZQ(JJ'><M+Z>I’ > |MJ7M|p> : (2.87)
m)

I>j MeI(
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Combining (2.86) and (2.87), the counterpart of (2.85) for 1 < p < oo thus reads as

Z |/\Jm|p<c3z2 ey Z |y arl?

mEZ” MeZn
+0322 mDCR N P (2.88)
J>j Mezn

Using the notation (2.81) we can unify (2.85) and (2.88) by

Z [Ajml” <0322 UmDlemeip Z pg0r |

mezn Mezr

+0322 M (2.89)

J>j MeZm

Now assume first 0 < ¢ < p, then as before,

a/p
9i(s—3)a (Z ‘)\j’m’p)
mezn
qa/p
< 0422 N(s=3)a 9= (=) (x—e=3)a 9 (s=F) ( Z |NJM|p>

Mezn

qa/p
+ O,y Z 9= (s=3)a 9=(J =) (x—e+ T —0p)q 9J(s=F)q ( Z |’uJ7M|p>

J>j Mezn

a/p
= 0422 (G=T)(x—e=5)q 9 (s=3)a ( Z |MJM|:0>

Mezm

q/p
+C4Z2 (J—j)(e—e+s— qu2J (Z ‘,UJM‘p> ’

J>j MeZm
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such that finally

0o a/p
>t ( 3 )
=0

mez"™
oo ] q/p
< (4 Z Z 9~ (=N Geme=s)a 9 J(s=3)a ( Z |MJ,M|p>
=0 J=0 Meznr
[e’s) q/p
e P
§=0 J>j Mezn
0 q/p
< Cs ZQJ(S*%)Q ( Z |MJ7M|p> ZQ—(j—J)(%—E—S)q
J=0 Meznr j>J
<o0
o0 q/p
+Cs Z 2J(S*%)q < Z ’MJ’M’p) Z 9= (J=j)(x—ets—0p)q
J=0 Mezn j<J
<oo
S C’6 H/u|b;),q‘ q7

where we may always choose ¢ such that
0<e<min(sx—s,24+s—0, =x—max(s,o, —s)

in view of (2.83). This gives (2.45) for a = b5 . In case of p < ¢ < oo and also for
p < 00,q = oo the argument is similar, we make use of Holder’s inequality again and
may choose ¢ sufficiently small such that, say, 2¢ < s — max (s, 0, — s). The case p = oo,

q = oo can be handled analogously with the use of Remark 2.19, see in the following,

(2.47) J .
sup [Nl <7 C1Y 27077 sup max |pg |

mezn =0 mezZr Mel’(m)
+OU 32U sup 209D max [l
J>j mezn Mel’(m)

J
< Gy ZTU*J)% sup |pg | + C5 ZT(H)” sup |yl
J:O MEZ" J>] MGZ’VL
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Then we have

J
sup 27° sup |\jm| < Cf sup Z 2= 9=U=1% 275 sup |l

j€Ng mezn j€Np J=0 Meznr
/ j—J —(J—J J
+ C sup E 2U=s 9=(I=0% 975 sup |y u]

< Cf sup 2"8 sup |pgar] Y 270700
JeNp Mezn >

+ O sup 27% sup |pJM|Z2 (J=9)(ets)
JeNy  Mezn <

< O [|plbZ ool
where we have to choose
»x > max(—s,s) = |s|.

Step 2. It remains to verify (i), that is, (2.46). By the monotonicity of the spaces b, in
0 < q < o0, it is sufficient to show

1/p
277 tjm| < cq || 1Dy o0 (R™)|| ~ € sup 2" <Z |Nuk|p>

keZn

for all j € No, m € Z" with Q;,,, C Q. Let £y be the side-length of the cube @, then the
assumption Q;,, C Q gives the rough estimate 2/ > Eél. Hence

1/p
sup 27070 N T P | = 20T ] = 2T T2
v€No kezn

—(s—2s) 1 i
>l "2 ] = @2 7 tjm

We now consider the weighted spaces B;q(w) where w is some Muckenhoupt weight.

Proposition 2.27. Let 0 <p< o0, 0 < g<o00, s € R and w € As. Then l_);q(w) is a

»-sequence space for any

7 > max (s—l—ﬁ,w—s) : (2.90)
p D
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Proof. Step 1. We return to (2.84) and include the weight terms according to (2.10),

j

1 (i 1
Nl W(Q1m)? < C1 Y2707 N" ] w(Qjum)?
— - ——
J=0 Mer (m) 1
J <w(Qu,n)P

1

—(J—7)(c4n 1 w l,m P

LAY 200 S Q) (M)
= - w(Qum)
J Mer) (m) -7
(lé())zf(jf])nr%

IN

J
‘ 1
C’QZT”O*J) Z |\ w(Qar)?
J=0

Mer(m)

—(J=Jj)(se+n—nZ 1
+0222 (=) Z b | w(Quar)?,

J>j Mer(m)

where we used w > 0 a.e. in R™ for the first term, and (1.20) for the second term with

r > ry. Proceeding now as above we arrive at the counterpart of (2.89),

27 3" Nyl? w(Qym)

mezZm™

< CSZQ T)(x—e=s=3)p 9 Jsp Z \itgae[Pw(Qar)

Mezn

+0322 Vmnlemety s on o1 N P (Qu)- (2.91)
J>j Mezn
The rest of the argumentation is now the same as in the proof of Proposition 2.26, that
is, application of Holder’s inequality (when ¢ > p) or monotonicity (when ¢ < p), such
that we arrive at
MG o ()] < € [|alB 4 (w) |

assuming that

. n w— 1
0<5<m1n( —5——%+s—ap—n )
p

p
) (2.92)

Note that (2.90) implies (2.92). Analogously to the unweighted case we obtain the same

:%—max(s—l— —5+n
p

result for ¢ = co. For p = 00, g = oo the spaces l;z,q(w) coincide with the unweighted l;;,q.
So we do not consider it here.

Step 2. As for (ii), that is, (2.46), we may again restrict ourselves to the case ¢ = oo by
monotonicity, that is, it is sufficient to show

1/p
27 ] < cq ||l oo (W) ~ o sup 27 (Z " Q”’“)>

kezm
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for all j € No, m € Z™ with Q;,, C Q. Let again /o be the side-length of the cube @,
then @Q;,, C Q implies 27 > %1. Hence

sup 27 (Z ‘,uuk| Ql/k‘))

veNo kezn

> D ptjon] w(Qsom)? = 227 1] (%QT)) @y

nr

Stu—"r 1
¢ 2005 w(Q) v

l

v

7j%’ﬂjm|
(5= +5)

Q U)(Q)P|Q’ p 277 |Mj,m| = CQl 2™ ‘:uj,m|

IV

if 5 > ™ — s, where we applied (1.20) with r > r,, again. So we arrive at

In the next example we consider the weighted sequence spaces lf);q(w) where w is a
doubling weight.

Proposition 2.28. Let 0 < p < o0, 0 < g <00, s € R and w be a doubling weight with

doubling constant . Then B;q(w) 1S a »-sequence space for any x

» > max (s + 2 e s) (2.93)
p p

Proof. Step 1. Analogously to the unweighted case we have

Ajml” < Z 9~ (=N)(e=elep Z g al” + 1 Z o~ (TmIlemery monlp Z g P

Mer(m) J>j Mer (m)

Always we have to consider the two cases J < j and J > j.

For J < j it is clear: w(Q;,m) < w(Q M) (maybe with some constant because of the
overlap in I(m)).

For J > j we blow the cube Q) ;) [-times up until we cover the cube Q);,,. We choose
[ =J —j+ 1. Then we have with the use of the doubling property (1.40)

W(Qjm) < w(2' Quar) < 2™ wW(Q ) (2.94)
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Thus we get

Z Xjml? W(Qjm) < 0222 (eme=p) Z \pgar[Pw(Qua)
meZ™ ez
e Z 2 NG N g 200 20 (Q )
= Mezn
< c3z2 (eme=3) Z g ar[Pw(Q )
Mezn
+03Z2_(J_j Costm P N g Pw(Quar). (2.95)
J>j Mezn

Similar to the unweighted case we have to use Holder’s inequality again (when ¢ > p) or

monotonicity (when ¢ < p). Finally we get

a/p
zzm( S Pyl @m)

mezn
< 0422qu< Z |70 P ( QJM)) 22 (—e—s—2)q
Mezn =7
o a/p
- —7)(— n S—0 _ny
+C422qu< > |uJ,M|pw(@J,M>> Rl A 2
J=0 MeZn j<J
< csllulty ()1, 2.96)

where we assume ¢ such that

0<€<min(%—s—E,%—i—s—ap—ﬂ(y—l))
D p

:%—max<s+g,ap—s+g(7—l)). (2.97)

Note again that (2.93) implies (2.97).

Step 2. Now let us prove (ii).We may again restrict ourselves to the case ¢ = oo by
monotonicity. Let ) be an arbitrary cube with sidelength ¢g. Let Q;,, C @ for fixed
j € Ng, m € Z". This implies 2/ > %1. We blow @), ,,, [-times up to cover the cube @), i.e.,
2'Qjm = Qj_19-1m D Q, where we assume 277 > 205 So we choose | = |log,({g)|+j+1.
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Because of Q;,, C @, the number [ is always natural. Hence

[|14]5, 0 (w)]] = sup 27 (Z | kl” w ka))

v€No kezn

B =

> 2769279 s [w0(Q )
> 27(+7) 27" (QZ Qjm)? 277 A|HJ7
> gi(sts—"2) o 23 (| loga (Lq) | +1) w(Q ) 27j%|,ujm’

B =

> E s+y—ﬂ) 27— LlogQ(ZQ)J +1) ( ) 2_j%|,uj,m|
if 52 > =1 — s. This together with (2.97) yields (2.93). |

Now let us consider the ﬁf,q—spaces. Therefore we need some preliminary considerations.
Recall that M stands for the Hardy-Littlewood maximal operator

(Mg)(x —Sup‘Q’/lg )| dy,

where the supremum is taken over all cubes containing = and ¢ is a locally integrable
function. In this situation we need cubes. We refer to Section 1.2.1.

Our later arguments rely on the vector-valued maximal inequality of Fefferman-Stein due
to [FST1].

Proposition 2.29. Let 0 < p < 00, 0 < ¢ < 00, 0 < 9 < min(p, q). Then there exists a
constant C' such that

1/q
ZM 94/9) q/@) IL,(R")

For a proof we refer to [FST1].

(2.98)

(Z 9:0) )1/qup<R"> |

In view of the s-condition for doubling weighted f;q(w)—spaces we need a little modifica-

tion of the maximal operator M.

Definition 2.30. Let w be a doubling weight and g € L'°(R"). The weighted Hardy-
Littlewood maximal operator M,, is defined by

(Mug)(z) = sup

/]g )|w(y) dy, r eR", (2.99)
Q32 W

where the supremum is taken over all open cubes () containing z.

For this operator M,, exists a modified weighted vector-valued maximal inequality of

Fefferman-Stein.
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Lemma 2.31. Let 1 <p < oo, 1 < q< o0 and w be a doubling weight. Then there exists

a constant C such that

H (fj Mool Ly

holds for any (gi)r C Ly(w).

<C (2.100)

(i o) Ly

For a proof we refer to [Bow07, Prop. 2.8|.

An immediate conclusion of this lemma is the following corollary.

Corollary 2.32. Let 0 < p < 00, 0 < ¢ < 00, 0 < 9 < min(p,q) and w be a doubling
weight. Then there exists a constant C' such that

H (kf; Mw(|gk!g)(-)q“) 1/q|Lp(w)

<c (2.101)

(iw)l/qr%(w |

Proof. Since 0 < ¢ < min(p,q), it follows that 1 < ’—; < oo and 1 < 2 < oo. Then
::’gk‘g. [ |

(SR

Corollary 2.32 is a consequence of Lemma 2.31 and g, :

Now let us consider the s-condition for the f;’q—space. We start with the unweighted

case.

Proposition 2.33. Let 0 < p < oo, 0 < g < o0, s € R. Then f;q 1S 4 ¥-SeqUENCE space

for any »
7 > max (3, n_ S, 0pq — s) , (2.102)
p
where 0,4 1s given by
1 n
= ——1) = —n. 2.103
Tpa n(min(p, q) +  min(1l,p,q) " ( )

Proof. Step 1. In the first step we have to prove (2.45) under the assumption of (2.44).
This part is based on the vector-valued maximal inequality of Fefferman-Stein, cf. (2.98).
We return to (2.84)

i
Nl < C1Y 277070 Ny G Y 27N .
J=0 Mer(m) J>j MeT,(m)

Let first J < j. We assume ¢ < oo and € > 0, then we obtain (by Hélders inequality or

monotonicity),

j
25 N X () < Cp Yy 270770 N T 950 1 g1 ().
J=0

MeT’(m)
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Summation over m € Z" delivers

Z zjsq’)\j,m‘qum < 0322 (3c—s—¢)q Z 2jsq|,UJ,M|q Z Xj,m(x)'

mez" Mezn mEZ”:MEIﬁ(m)

Analogously to the proof of Thm. 1.15 in [Tri08|, see page 11, we argue that for fixed
r € R", j,J € Ng and M € Z" the summation Y x;m,(x) over those m € Z" with
M € [I}(m) is comparable with x () and can be estimated from above by its maximal

function. Hence we obtain for any o > 0,

D 2| () < 0422 Do 37 M2l X () ()
mezZm™ Mezn
(2.104)

As for the case J > j, we have

2% | Xj X () < Co Xjm () ZTU_M%SM) Z 27%| g1
J>j Mel (m)

Assume 0 < p < 1 and z € R"” with x;,,(z) = 1, then we can estimate the last sum by

S ¢ S 1
< >, 2 |MJ,M|> < Y 2yl Xom(y) dy

Mer,(m) Mer (m) @l S
< c2/m o gin / > 2l Pxam(y) dy
! MeT’,(m)

<2 M3 2l () @)

MeT (m)

Insert this above. Assuming again ¢ < oo one obtains for any fixed € > 0 that
5N | X Gam () < 3 ZQf(J*j)(%JFH"*%*E)qM( Z 2J59’UJ,M’9XJ,M(')>(x)q/g'
J>j MeT,(m)
First we consider the summation over m € Z". With J = j +t we have

D 2N X ()

mezZn

< ¢ 22 (sets+n—"2—e)q Z M( Z 2(j+t)sg|ﬂj+t,M’QXj-i-t,M('))(x)Q/g- (2.105)

n
mEZL Meljj+t( m)

Let us consider the sum

S @ o)’

Merl? +t(m)
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for fixed j € Ny, t € N, m € Z" and € R". The cube @);,, is divided in the cubes

Qj+¢,m- Note, that the ,small cubes Q);1+ s are all disjoint to each other. So we have

Z (2(j+t)s|Hj+t,]\/[’Xj+t,M(w))g

MeIJth( m)
. 4
:( Z 2(]+t)s|Mj+t,M|Xj+t,M(x)) = 9§,m(I)g’

Melﬁt( m)

Thus we get with (2.104) and (2.105) together and summation over j

Z Z 27%4] Ajaml X jm ()

J€No mezZ™
<Gy, Y M (2J59|MJ,M|QXJ,M(')> (2)v/e 3 2 G- Nles=
J=0 MezZ" J>J
<%
+C4ZQ toetstn—t—e) Z Z M(gt () )q/@

7=0 mezn"

with 0 < ¢ < »r — 5. Finally we have

U < (S 3 MG unebun)re) 1)

J=0 MeZn
+C5H<ZQ t(x+s+n—"—e)q Z Z /\/l g]m q/g) |L H
t=1 j=0 mezZn"

With an additional use of Holders inequality (for 0 < ¢ < 1) and an additional € we can
take the sum over ¢ out of the L,-norm,

||)‘|fzfq” < CGH(i Z M<2JSQ‘NJ,M‘QXJ,M>(')q/g)l/qle

J=0 MeZ™

9] o _n_ o 1/

ey 27 (3787 M((h,)%) () L
t=1 =0 meZn

Since 0 < ¢ < min(1l,p,q) we can apply the vector-valued maximal inequality due to
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Fefferman-Stein from (2.98).
A5l

< C7H<Z Z 2759 10y ar | X g0 (- )) ‘ P
. 1/
o (S5 (T i)
=1

7=0 mez" MEIJJ'+t(m)

J

- Z 2095 15yt X e ()
Me[j_H( m)
— C’7\|u\f;qH+c722—t(z+s+n—%—2e ‘(Z Z 2759 1.7 20| X g (- )) ‘ )
=1 J=0 MeZn
<o

< 08||/“L|f;,q”7

where 0 <2e <3 +s+n—7and 0 <p< min(1, p, q). Recall, that we have additionally

0 < e < 2 — s. Finally we choose
2 > max(s, 0,4 — 5). (2.106)

Step 2. The second part of Definition 2.17 is easy to show. It holds f;q — B;OO. So we

have here the same condition for ¢ as in the b-case,

x> 2 s (2.107)

p
Both (2.106) and (2.107) together lead to (2.102). With some modifications and a similar
proof we obtain the same result for ¢ = oc. [ |

In our next example we consider the doubling weighted fzf’q(w)—space.

Proposition 2.34. Let 0 <p < o0, 0 < g <00, s € R and w be a doubling weight with

doubling constant ~v. Then f;f’q(w) 1S a x-sequence space for any »x
ny
2 >max(s,yo,,+ (v — 1)n —s, o s). (2.108)

Proof. We recall the norm for the weighted f3 (w) from Remark 2.8

A 1/q
Rl = (5 2 nt)) o]
jE€Ng,mezZ"

As usual we split into two cases, J < j and J > j. Let first J < j. Analogously to the

unweighted case we have for ¢ < oo and € > 0

Z 2j5q|)\j,m|qum < C«SZQ J)(»—s—¢)q Z 2qu|,u Z ij(:)j).

mezn Mezn mEZ”:MEI?}(m)
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With similar arguments it holds, that for fixed x € R", j,J € Ny and M € Z" the
summation 3 x;j.(z) over m € Z" with M € I’(m) is comparable with y () and can
be estimated from above by the weighted maximal function M,,. Hence we obtain for any
0> 0,

Z 2j8q|)‘]}m|qu7m(x) S C(4 Z 2_(j_J)(%_S_8)q Z Mw <2JSQ|MJ,M|QXJ7M(')> (x)q/g.

mezn J=0 Mezn
(2.109)
In the case J > j, then we have
2| Ajan X () < Coxjn() Y 27T T 9.
J>j Mer,(m)
Assume 0 < p < 1 and z € R with x;,,(z) =1, then
Js e Jso 0 1
( Z 2 |MJ,M|> < Z 27 pgml® ——=— | xum(y)w(y)dy
- - w(Qum) Jre
Mel’(m) Merl’(m)
S e2n Q / > 27 x e (y)w(y) dy
jim) Jrn

MEIJ(m

< o=y ./\/lw< Z 2 SQ‘MJ,M‘QXJ,M(')><x)7

MeT’,(m)

where we here used in the second estimate the doubling property with (2.94). Assume

again ¢ < oo and € > 0, we receive with this

2jsq’)\j,m‘qu,m( < 3 22 (J— J)(%—l-s-&-n———eqM ( Z 21]89’HJ,M’9XJ,M(‘>>(x)q/g-

J>j Mer,(m)

Summation over m € Z" with J = j +t yields

> 2%\ X ()

mezZn

< 0322 (etstn—"T—e)g ZM ( Z 2(j+t)39|/tj+t,M!QX]'H,M('))($)Q/9- (2.110)

n
meZ Me[g]+t( m)

As in the proof of Proposition 2.33 we denote by

. 4
9§,m<x>g 32( Z 2(J+t)s‘,uj+t,M|Xj+t,M(x))

M€I§+t( m)

= Z (2 j+t)s’/'bj+t,M‘Xj+t,M(m))Q-

MEI]+,( m)
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Summation over j in (2.109) and (2.110) yields

Z Z 2j5q|/\j,Tn|qu,m(x>

j€Ng mezZn™
< 052 Z MW<2JSQ|MJ,M|QXJ,M(‘)>(I)q/QZQ_U_J)(”—S—E)q
J=0 Mezn =
oo
+C4Z2 (estn—=F—e)g Z Z M (g ()9) (2 ) (a)?/e,

7=0 mez"

with 0 < & < 2 — s. Finally we have with an additional use of Hélders inequality (for
0 < ¢ < 1) and an additional ¢ that

N < G 3 Ma (2 lnrxan ) (072) | Lyw)

(33 Mullel) ) Lyt

o0
—t( _ny

+ o § :2 t(s+s+n 5 2¢)

t=1 7=0 mezZn"

We choose 0 < ¢ < min(1, p, q) and use Corollary 2.32, then we obtain

1AL q(w)]]
< Crllplfpq ()i

oo
— _ny_
+C7§ :2 t(se+s+n > 2¢)
t=1

(i Z ( Z 2J+t)5|,ug+tM|Xg+tM( )>q>1/q}Lp(w)H

7=0 mezZ" MEI]]'-H,(m)

= Crllplfp (W)l

oo
— _ny_
+C7§ :2 t(se+s+n - 2¢)
t=1

(33 2 adran)) | Lufw)|

J=0 Mez"

~
<oo

< Gsllulfpq)Il;

where 0 < 2¢ < »x+s+n — ”—J and 0 < ¢ < min(1,p,q). Furthermore we still need
0 < e < 7 — s. Finally we choose

x> max(s,yo,,+ (v —1)n—s). (2.111)

The second part of Definition 2.17 is easy to show. It holds f5 (w) < b5 (w). So we

have here the same condition for sz as for the l_);q(w)—spaces,
o>, (2.112)
p
Both (2.111) and (2.112) together lead to (2.108). With some modifications and a similar

proof we obtain the same result for ¢ = oc. [ |
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Remark 2.35. Finally we consider again Muckenhoupt weights as special case of doub-
ling weights. One can exactly follow the proof of Proposition 2.33 with the Muckenhoupt
weighted vector-valued maximal inequality instead of the unweighted vector-valued ma-
ximal inequality of Fefferman-Stein from (2.98).

Let 0 <p<o0,0<q<o0andwée A, with r, =inf{r > 1 :w € A,}. Furthermore
let 0 < o < min(p/ry, q), then holds

H ZM 9:1%) q/g)wwp(w) (gwgkc)rq)wu:p(w)

where M stands here for the usual (unweighted) maximal operator from (1.6). A proof
of this interesting result may be found in [AJ81], [Kok78]|, see also [Bui81, Thm. 3.1],
[GCRAF85]. Then one obtains, that j;qu(w), w € Ay, 1S a se-sequence space for any s

: (2.113)

2% > max(s, Op/r,.q — S, Dlw s). (2.114)
p

Remark 2.36. We have shown that the (classical) sequence spaces bp , and f;’q with
s € Rand 0 < p,q < oo fit into the scheme of s-sequence spaces introduced in Section
2.3.2. Moreover we have even proved that doubling weighted sequence spaces of b-type
and f-type are s-sequence spaces if » is sufficiently large. One may ask for optimal (or
at least sufficient) ¢ in the context of this spaces? The condition (ii) is local, such that
one can expect that weighted spaces of type b (w) and f5 (w) can be incorporated for
very general weights or measures. The weight properties are only used in the first part of

the proofs of Proposition 2.28 or Proposition 2.34.
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2.4 Wayvelet characterization

In this section we apply our main Theorem 2.23 from the last section to obtain the wavelet
characterization for specific function spaces, more precisely for doubling weighted Besov
and Triebel-Lizorkin spaces.

At first we have to modify the sequence space norm from Definition 2.6 a little bit to
get the ,wavelet version® of them.

Definition 2.37.

(i) Let 0 < p < 00,0 < g < 00, s € R and w be a doubling weight. Then b7 (w) is the
collection of all sequences

A={A €CNEeC:meZ" jeNy,GeG)}

such that
1/p o > g 1/q
Il = (32 Pa@n) (22 3 (32 @)’
mezn =0  GeG* mezn
is finite (with obvious modification for p = 0o or ¢ = 00).

(ii) Let 0 <p < 00,0 < g <00, s € R, and w be a doubling weight. Then f (w) is the
collection of all sequences

A={\ ECNEeC:meZ",jeNy,GeG)}

such that

mezZm™ meZm™,jeENg,GEG*

Lw)|

is finite (with obvious modification for ¢ = 00).

As a conclusion of Theorem 2.23 we obtain a wavelet characterization for the unweigh-

ted Besov and Triebel-Lizorkin spaces.

Corollary 2.38.

(i) Let 0 <p<o0,0<g<o0,seR. Weassume
n
L > max (s, - — s) : (2.115)
p

Then f € S'(R™) belongs to B (R™) if, and only if, it can be represented in terms of

L-wavelets as

F=Y) AU+ > > > NG, o Nel;,, (2.116)

mezn GeG* jeNg meZr
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unconditional convergence being in S'(R™). The representation (2.116) is unique,
NG = NE) = 2"2(F,9 ), Am = Anlf) = (f, U, (2.117)

meZ", 7 €Ny, GeG* and

Ii e {a(f), NS} (2.118)

is an isomorphic map of B, (R™) onto b; ..

(i) Let 0 <p < o0, 0< g <00, s€R. We assume
n
L > max (s, — — 8,054 — s) . (2.119)
p

Then f € S'(R") belongs to F; (R™) if, and only if, it can be represented in terms of

L-wavelets as

F= ATt > DN NC2m2w, o Nefs, (2.120)

mezn GEG* jeNg meZn

unconditional convergence being in S'(R™). The representation (2.120) is unique,
NG =NE) =22 (£,9,),  Am = Anlf) = (f, U), (2.121)

meZ", 7 €Ny, GeG*, and

I fe (), NEH} (2.122)

is an isomorphic map of F; (R™) onto f; .

Proof. Step 1. Since L > max(s, & —s) it exists a s > 0 such that L > 3¢ > max(s, & —s).
As a consequence of Proposition 2.26 by , is a s¢-sequence space for this s and b, , is the
wavelet version of l_);g. Moreover, there exists an L-atomic representation for B;’q(R"),
for L > max(s,% — s), see for example in [Tri08, Theorem 1.7, Section 1.1.2, p.5| or
[Tri97, Theorem 13.8], respectively. In addition, B, (IR") satisfies the essential embedding
S(R") — By (R") — S'(R"), cf. Remark 1.36 or [Tri83, Section 2.3.3]. Thus Theorem
2.23 yields us the desired result.

Step 2. Analogously there exists a s such that L > s > max(s,% — 8,05, — s) and f;jq
is a s-sequence space for this s, because of Proposition 2.33. Additionally f;, is the
wavelet version of f and it holds S(R") — F: (R") < S'(R"), cf. Remark 1.36 or
[Tri83, Section 2.3.3]. Furthermore we have also an L-atomic representation for £ (R"),
for L > max(s,% — 5,0p4 — S), see for example in [Tri08, Theorem 1.7, Section 1.1.2,
p.5| or |Tri97, Theorem 13.8|, respectively. Then Theorem 2.23 yields us the L-wavelet

characterization for F; (R"). |
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Remark 2.39. The condition for L comes out from the condition for s. If one compares
this result with the well-known results for b; . and f;  spaces from [Tri08, Theorem 1.20]
and takes a look in the proofs of Proposition 2.26 or Proposition 2.33, respectively, then
one sees that the (i) condition at s is really sharp and coincides with the condition at
L = w in [Tri08, Theorem 1.20]. But the (ii) condition at 3¢ is stronger and therefore the
result in Corollary 2.38 is slightly weaker than in [Tri08, Theorem 1.20]. In summary it
can be said, that condition (i) at s is sharp and (perhaps) one can find optimal values
for s, but it is more technical and harder to prove. On the other hand condition (ii) at
2 is easy to prove, but maybe too weak to get optimal values for s in connection with
condition (i). Maybe it is suitable to decouple both conditions to get optimal values for

.

Next we get a wavelet characterization for Muckenhoupt weighted Besov-Triebel-
Lizorkin spaces. This result is not new, for example one can find it in [HS08]. But here

we have a new approach.

Corollary 2.40. Let 0 < p < 00,0 < qg < o0, s € R and w € Ay be a weight with r,
given by (1.26).

(i) We assume

L > max <s+§,ﬁrw—s). (2.123)
PP

Then f € S'(R™) belongs to B, (w) if, and only if, it can be represented in terms of

L-wavelets as
F=3 AU+ >3 ST NG, Neb (w), (2.124)
mezZ"™ GeG* jeNg mezZn

unconditional convergence being in S'(R™). The representation (2.124) is unique,
ME =N =22 (£, 05,), Aw = Analf) = (£, V), (2.125)

meZ", 5 €Ny, GeG*, and

e fe ). MO (2.126)

s an tsomorphic map of B;q(w) onto bf;,q(w>'

(ii) We assume
L > max(s, 0p/r,,q — 5, L Tw — S). (2.127)
p
Then f € S'(R") belongs to Fy (w) if, and only if, it can be represented in terms of

L-wavelets as

F=) AU+ > > > NG, Nefi (w), (2.128)

mezn GeG* jeNg meZn
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unconditional convergence being in S'(R™). The representation (2.128) is unique,

N = NO(f) = 20 ), A= Aalf) = (W), (2129)

meZ", 7 €Ny, GeG* and

Ir o ), MWD} (2.130)
is an isomorphic map of F; (w) onto f5 (w).

Proof. Step 1. Since L > max(s + 2,7 7y — s) it exists a 3 > 0 such that L > 3 >
max(s+ %, 2y, —s). Then by  (w) is a s-sequence space for this s concerning Proposition
2.27. It holds that S(R") < B; (w) < S'(R"), see [Bui82, Thm. 2.4, and b; (w) is the
wavelet version of l_);q(w). Moreover there exists an L-atomic representation for B, (w),
since (2.123) implies L > max(s, 0,/ —s), cf. [HS08, Proposition 1.12] or [HP08, Theorem
3.10]. Thus Theorem 2.23 yields us the desired result.
Step 2. Analogously there exists a s such that L > s > max(s, op/r, 4 — S, % Ty — S) and
> ,(w) is a »-sequence space for this s, see Remark 2.35. It holds also that S(R") —
ES (w) — S'(R"), see [Bui82, Thm. 2.4], and f; (w) is the related wavelet version of
> ,(w). Furthermore we have also an L-atomic representation for F (w), since L >
max(s, op/r,.q — S, “2* — s), cf. [HP08, Theorem 3.10]. Then Theorem 2.23 yields us the

L-wavelet characterization for F; (w). |

Now we consider doubling weighted Besov and Triebel-Lizorkin spaces and obtain for

these spaces a wavelet characterization. This is a new result.

Corollary 2.41. Let 0 < p < 00, 0 < ¢ < 00, s € R and w be a doubling weight with

doubling constant .

(i) We assume

L > max <S+ E,EC’}/— S) : (2.131)
pp

where ¢ = [logy(v/n)] + 2 is the same as in Proposition 1.23.
Then f € S'(R™) belongs to By (w) if, and only if, it can be represented in terms of

L-wavelets as

F=) AU+ > > > NG, Ael) (w), (2.132)

mezn GeG* jeNg meZr

unconditional convergence being in S'(R™). The representation (2.132) is unique,
Ml =X =22 (£ ), Am = Anlf) = (f, ), (2.133)
meZ", 7 €Ny, GeG* and

I f= (), NEH} (2.134)

is an tsomorphic map of B;q(w) onto bf;,q(w)-
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(ii) We assume

n
L> —1)n—s5,———— — 2.135
maX(87 W/Up,q —I— (’y )n S? mln(p, q) c /y 8)7 ( )

where ¢ = |logy(v/n)| + 2 is the same as in Proposition 1.23.
Then f € S'(R") belongs to F, (w) if, and only if, it can be represented in terms of

L-wavelets as

F=D AaWpt > DN NGom2wl o Ne fr(w), (2.136)

mezn GeG* jeNg meZ™

unconditional convergence being in S'(R™). The representation (2.136) is unique,
Ml =) = 2" (£ ), Am = Anlf) = (f, ), (2.137)

meZ", 7 €Ny, GeG* and

Io = {Aa(f), XS} (2.138)

is an isomorphic map of F; (w) onto f5 (w).

Proof. Step 1. Since L > max(s + 2, % cy —s) > max(s+ 7, =1 — s) it exists a > > 0

such that L > > > max(s + 3,71 — s). As a consequence of Proposition 2.28 5;7q(w) is
a se-sequence space for this s and by (w) is the wavelet version of b; (w). On the other
side we have the essential embedding S(R") — By (w) < S'(R™), see Proposition 1.44.
It holds that L > max(s + 2, % ¢y —s) = max(s + 2,2 f — s) > max(s, % +0,—9),
where (3 is the doubling constant concerning balls, see Section 1.2.3. Hence, there exists an
L-atomic representation for By (w), cf. Proposition 2.11 (i) or see in [HS14, Proposition
2.21, p. 10| or [Bow05, Theorem 5.10], respectively. Thus Theorem 2.23 yields us the
wavelet isomorphism for doubling weighted Besov spaces By (w).

Step 2. Analogously there exists a s such that L > 3¢ > max(s, 70,4+ (y—1)n—s, 1 —s),
since L > max(s,y opg+ (v —1)n—s, g ¢y —s) 2 max(s,y opq+(y—n—s, 27 —s).
Thus f;,(w) is a se-sequence space for this s, see Proposition 2.33, and f; (w) is the
related wavelet version of f;q(w). Furthermore we have also the essential embedding
S(R") — F; (w) — S'(R"), see Proposition 1.44, and an L-atomic representation for
Fpq(w), since L > max(s,y 0pq+ (v = 1)n—s, g ¢y — 5) =2 max(s, yope + (Y= 1)n —
G B~ 8) Z max(s,yope + (Y = )n — s, "wp_l) + 0pq — ), cf. Proposition 2.11 (ii)
or see in [BHO6, Theorem 5.11]. Then Theorem 2.23 yields us (ii). [ |

Remark 2.42. On the one side the condition for L comes out from the condition for s and
on the other side it comes out from the condition for L = K in the atomic representation.
One can slightly optimize the condition for L in corollary 2.41 by using both doubling

constants vy (concerning cubes) and 5 (concerning balls), then (2.131) can be replaced by

-1
L>max<s+ﬁ,ﬁy—s,w+ap—s)
pp p
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and (2.135) can be replaced by
n
L > max(s,y o+ (1~ D —s, 2y =5, 20D 1 o )
p p
On the other hand (2.135) can also be replaced by
n
L >max(s,cyop,+(cy—1n—s,—v—s).
p

But if one ask for optimal values for L, then the theory of s-sequence spaces is not the

best choice. In this case it is the best way to prove the wavelet characterization directly.



3 Continuous and compact embeddings

The aim of this Chapter is to study necessary and sufficient conditions for continuous and
compact embeddings for doubling weighted Besov spaces By (w). We follow the approach
from the series of papers [HS08, HS11a, HS11b| by HAROSKE and SKRZYPCZAK. Therefore
we apply the wavelet characterization, which we proved in the last chapter. This allows us
to transform the problem from the function spaces to the simpler context of the sequence
spaces. Additionally we use a result for general weighted sequence spaces from the paper
[KLSS06b, Thm. 3.1] by KUHN LEOPOLD SICKEL and SKRZYPCZAK.

3.1 Embeddings of general weighted sequence spaces

Before we come to state our embedding results, we introduce a notation for sequence
spaces, which is used in the paper [KLSS06b].

Definition 3.1. Let { = (§;); and w = (wjn),,,, be sequences of positive numbers. Then

)

0,(&;¢,(w)) is the collection of all sequences
)\:{)\jijC:jENO,mEZ"}
such that

[ A14g(&lp(w))|| = (ig]‘?( > ij,mwj’m‘p)gy/q )

mezn

is finite (with the usual modifications for p = oo or ¢ = 00).

Remark 3.2. At first we adapt our sequence spaces by (w) with w doubling to this

description. Let A = (M.C)

ijC(C,SGR,O<p<oo,andassume0<q<oofor

convenience. Then

i = (S ) (£ 5 (5 o)

mezZm™ 7=0 GeG* mez”
00 " % 1/q -

~ (L (X Ranblunt)*) = [Ratety(an) (5:2)
=0 mezn

with S\/ = ()\j,m> ) S C; g = (’Sj)j = <2js)j and w = (wj,m)j m? wj,m = w(@j,m)l/p7 .] € N07
Jm ’
m € Z". Note that if w is doubling, then 0 < w(B) < oo for all balls B, cf. Proposition

1.25. Therefore £ = (¢;); and w = (wjm); ,, are sequences of positive numbers.
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Remark 3.3. Let £%) = <£](-k)> ~and wh) = (w](m> -, k=1,2, be sequences of positive
]7m
numbers. One can easily verify that
1 2
Uy (657, (W) = € (€7 6 (0?))

holds if, and only if,
¢
gth (ﬁgpl (m)) — &12 (£p2)'
J

So it is sufficient to consider unweighted target spaces.

Corollary 3.4. Lel —00 < 59 < 51 <00, 0 < p1,p2 <00, 0 < q1,q < 00 and let wy, ws
be doubling weights. We put

1 11 1 1 1
1 <___> L <___> | (3.3)
P* P2 P/ q @2 Q)

(1) The embedding b3 | (wq) — b2 (ws) is continuous if, and only if,

P11 2,2
{2_j(81_82) H{U)l(Qmm)_l/ple(Qj’m)l/pz)}m |£p* }j c gq*. (34)
(ii) The embedding by} , (w1) < 032 (wo) is compact if, and only if, (3.4) holds and, in

addition,
i 27919 || {u Q) (@) )] by | =0 i =00 (35)

and
s w1 (Qjm) /P ws(Qjm) P =00 forallj €Ny if p* = oo. (3.6)
m|—0o0

Proof. Let b5 (wy) = £, (£§k)€pk(w(k))) with S}k) = 2% and w®) = (wﬁ%) s wj(kn)l =
J,m

Pk,9k

Wi (Qj.m)YPx, k = 1,2, be given. We apply [KLSS06b, Thm. 3.1] and obtain that

o (€0, (WD) = b3 (w1) = b2 (wn) = Ly, (67 £y, (W) (3.7)

p1,q1 P2,q2

is continuous if, and only if,

(2 (2)
N W
1) o) <
which coincides with (3.4). Moreover (3.7) is compact if, and only if, (3.8) holds and, in
addition,
@ | (1@
1 2J J,m « — 1 * —
jlggo @ ] 50 |0, 0 if¢g" =00
J 7. ) m,
and
g
lim —= =00 forallj e Ny ifp* = oo,

which coincides with (3.4), (3.5) and (3.6). |
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3.2 The main embedding result

At first we write down the general result for doubling weighted embeddings. Later we

discuss two special cases of embeddings. Here we follow the approach from [HS11a].
Theorem 3.5. Let —00 < 59 < 81 < 00, 0 < p1,p2 <00, 0 < q1,q2 < 00 and let wy, ws
be doubling weights.
(1) The embedding B! , (wy) — B2 (ws) is continuous if, and only if,

PL,q1 2,42
{2—j(51—52) H{wl(Qj,m)_l/plwz(Qjm)l/pz)}m o= H}] € Uy, (3.9)

where p* and q* are given by (3.3).
(ii) The embedding B:' , (wy) — B22  (we) is compact if, and only if, (3.9) holds and, in

P1,91 p2,92
addition,
lim 277612 || Ly (Qjm) ™ P wa(Qyn) ™} [€e]| =0 if¢" =00 (3.10)
j—00 m
and
‘ 1‘1m w1 (Q; m)l/plwg(Qjm)_l/p2 =o0 forallj €Ny ifp" = o0, (3.11)
m|—0o0

where p* and q* are given by (3.3).

Proof. It follows from Theorem 2.41 that we have isomorphic maps 7" between B3!  (w;)

P1,91

and bt . (w;) and S between B>2  (w:) and b2 (w2). Moreover Corollary 3.4 yields, that
the embedding b5! | (w1) < b2 q2(w2) is continuous if, and only if, (3.9) holds, and the
embedding byt | (w1) < b2 . (w2) is compact if, and only if, (3.9), (3.10) and (3.11) holds.
Consequently we have the following commutative diagrams

B Ly b I, Ba

p1, q1( wi) p1,q1(w1) p1, q1( wi) p1,q1(w1)
Idl lid and idl lld

B;i Q2( ) b;é Q2( ) bf)g q2( ) B;g qg( ) .
Because of the two isomorphic maps 7" and S we get the same conditions for the function
space embeddings Bl (w1) = B2 (w2). |

Remark 3.6. In view of what we said in the beginning of Section 1.3.2 we obtain the
unweighted Besov spaces if p; = ps = 0o. We exclude this case in the sequel, since the

unweighted situation is well-known already.

Example 3.7. For w; = wy = 1 we have w(Qjn) = w2(Qj.m) = 277" Thus we get in

(3.9) o
2*3‘(81782)“{2%*%} =

m 1G]
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Then ||1]¢,+|| < oo immediately implies p* = oo, that is p; < ps. We set
n n
Ji=85———S+— (3.12)
D1 P2

as the difference of the differential dimensions, as usual. Then it remains to consider
{2*3'5}” € L. For ¢* = o0, ie., ¢1 < o, we need § > 0. Otherwise, for ¢; > g2, § > 0 is

required. Altogether the embedding B,! =< B;? s continuous if, and only if,

020, if ¢ <g,
p1 < p2, S22 < Su,
o> O, if q1 > Q.
Moreover the embedding is never compact, since (3.11) for all j € Ny failed. This is a
generalization of [Tri83, Theorem 2.7.1, p. 129].

Theorem 3.5 is sharp and optimal in view of the embeddings. But the conditions (3.9),
(3.10) and (3.11) are very technical and difficult to prove. Therefore we ask now for simpler
sufficient or necessary conditions.

In the literature mainly two special cases of weighted embeddings are of further inte-
rest. Firstly, when only the source space is weighted and the target space is unweighted,
i.e., we consider embeddings of type

B (R™w) < B2 (RY), (3.13)

P1,91 p2,92

where w is doubling and the parameters are given by
—00 < 8 <851 <00, 0<p <00, 0<py <00, 0<qy,q2 < 0.

As mentioned above, we assume that p; < oo, since otherwise we have B)!  (w) = B,! |
and we arrive in the unweighted situation which is already well-known. Secondly, we
consider the so-called ,double-weighted® situation, where both spaces are weighted in the
same way, i.e. w; = wy = w. The corresponding setting is to consider embeddings of type

B (R" w) — B2 (R" w), (3.14)

P1,q1 Pp2,q2

with
_OO<82§81<OO7 O<p1»p2<007 0<Q1#]2§©©

and w doubling.

Before we write down the associated results, we insert a short preparation. In view
of Theorem 3.5 we have to check the three conditions (3.9), (3.10) and (3.11). In (3.9)
and (3.10) we have to consider expressions of type w;(Q;.m) /P wy(Q;m)"P2. In case of
(3.13) this reads as 277"/P2w(Q;,,)"*/P* and in case of (3.14) that equals w(Qj,m)%fﬁ.
For p* = o0, i.e., p; < po, we get there for both cases expressions of type w(Q); )" with

k < 0, where in case of (3.14) we exclude p; = ps, because this is trivial, see Corollary
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3.12 below. Furthermore we get in (3.11) for both cases expressions of type w(Q; )" with
A > 0, if p* = 0o, where we here exclude p; = p, again in case of (3.14).

Let j € Ny and [ € Z™ be fixed. Assume m € Z" such that Q;,, N Qo; # 0. Note that
there exist ~ 27" such cubes Q;,,. We blow the little cube Q;,, a-times up until we cover
the cube Qg ;, i.e. Qo; C 29+ Qjm. It is sufficient to choose a = j + 1. Let w be a doubling
weight. Then we obtain via (j + 1)-times application of the doubling property (1.40) for
fixed j e Ngand [ € Z"

w(Qoy) <2V p(Qj,m)  Ym € Z™ with Q. N Qo # 0. (3.15)
So, for any kK < 0 we have
W(Qjm)" < 27UIME 4(Qo )" Ym € Z" with Qj,n N Qoy # 0.

Then

[ {w(Qjm)"}, ool = sup w(Qjm)"

mezZ”

< su max w(Q;.,)"
_lezpn mezL™: (Qsm)

Qj,meO,HHZ)
<27UDMR gy max w(Qoy)"
lezn mezZ™: ’
Qj,mNQo, 170
< ¢ 279 qup w(Qoy)"
lezn
) K
<270 <li%f w(Qo,l)) (3.16)
6 n

for any k < 0, j € Ng. Moreover, for any A > 0, we have by (3.15) for j € Ny and [ € Z"
Y > 27(j+1)n'y)\ A v 7 ith ) (Z)
w(Qjm)" > w(Qoy) m e with @Q;m N Qo # 0.
This leads to

lim w(Q;m)* =00 forallj€Ny, if,andonlyif, lim w(Qp;) =00,  (3.17)

[m|—o0 [l]—o00

where A\ > 0 is fixed. The necessity is clear with j = 0 and the sufficiency follows from the

above estimate. Altogether for embeddings of type (3.13) and (3.14) we have to require

conditions
llelg;lw<Q0’l) >c¢>0 (3.18)
and
lim w(Qo;) = o0 (3.19)
[l]—o00

if p* = oo. For p* < oo we consider the embeddings (3.13) and (3.14) separately. We start

with the ,double-weighted” situation. When p* < oo, i.e., p; > py, we have 0 < piQ - p% =
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1%‘ For any fixed j € Ny we obtain

H {U}(Qjm)é_ﬁ }m |Cp

: <gz:n/“”w(y) dy>p B (/n%) dy)pl*.

So we have to demand for our weight that fRn w(y)dy < oo. But this is impossible for
a doubling weight, recall Proposition 1.25. So the situation p* < oo does not appear in
(3.14), unlike in case of (3.13). Here we have the following estimate

(X w@n )"

[ {w(@sm) ™}, 16

meZ™
_p*\ 1/
(Y Y @)
lezn mezZ™:
Q;j,mNQo, 170
. . * 1/p*
(T uen i ¥ 1)
lezn mezZ™:
Qj,mNQo,1 70
—_———
~2Jn
N\ T
< e Pt (Z w(QO’l)‘Zl>
lezn

. )
= c 2707 {w(Qoa) VP e

I

where we use (3.15) again. Therefore the condition

1 {w(Qoa) ™'}, 16| < 00 (3.20)

is necessary for embeddings of type (3.13) if p* < oco. Note that in this case condition
(3.11) in Theorem 3.5 disappears.
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3.3 The One-weighted situation

At first we recall the setting for the one-weighted situation. We regard embeddings of type
By (R w) = By, (R),
where w is doubling and the parameters are given by

—00 < 59 <51 <00, 0<p; <00, 0<py <00, 0<qq,q < oo. (3.21)

The above considerations yield us three necessary conditions. If p* = oo the conditions

1 >
lle%f;’w(Qo’l) >c>0 (3.22)
and
lim w(Qo;) = o0 (3.23)
[l]—o00

are essential and if p* < co we need

[ {w(Qoa) P}, 1] < 0. (3.24)
Recall that d is the difference of the differential dimensions
5281—2—52+£.
y4! P2
We start with p* = oo.

Corollary 3.8. Let the parameters be given by (3.21) with p1 < py. Let w be a doubling

weight with the corresponding doubling constant .

i) Then the embedding B (w) — B2 s continuous, if
(i)

p1,q1 P2,q2

(a) inf w(Qo,) > ¢ >0, (3.25)

lezn

6> m(y—1), if ¢ <o,

(b) , (3.26)
5> 2(y—1), i ¢ =ocx.
Conversely, if the embedding B;! (w) — B2 ., is continuous, then
(a) li%f w(Qoy) > ¢ >0, (3.27)
e n
(b) 5 > 0. (3.28)
(ii) The embedding B;! , (w) — B2 is compact, if
(a) lie%liw(Qo’l) >c >0, (3.29)
(b) ‘l1|im w(Qo,) = 00, (3.30)
—00
()  0>—(y—1). (3.31)

y4!
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Conversely, if the embedding B3' . (w) < B2 is compact, then

(a) li&aw(Qo’l) >c¢>0, (3.32)
0 m w(Qu) = (333
(c) 6> 0. (3.34)

(iii) If 0 <0 or 6 =0 and ¢* < 0o, then B3 (w) is not embedded in B

P1,q1 P2,92°

Proof. Step 1. We start with (iii). For any j € Ny it holds

w(Qoy) > 2" min  w(Qjm), lez".
mez™:
Qj,mCQo,

Then one obtains

1 {w(Qoa) ™/} el < 2777 || {w(Qyn) 71}, Iecll, 7 € No.

Thus
[{z77 R @iy, e}
> H{Tj‘sll {w(Qo)) "™}, woou}j »
= || {w(Qo,l)_l/pl}l |€oo||H{2_j5}j Uy || = 00

if 0 <0oréd=0and ¢* < oco. This together with Theorem 3.5 yields us (iii).
Step 2. Let (3.25) and (3.26) be satisfied. Thus (3.9) (with wy; = w, wy = 1) can be
reduced by using (3.16), with k = —1/py, to

9—i(s1—s2) ||{w1(Qj7m)_1/p1w2(Qj,m)1/p2)}m |€ooH

| o -1/p1
c 2—](81—82+5_ﬁ) (inf w(Qo,z))

lezn

. n _l/pl
— 27050~ (inf w(QO’l)) |

IA

lezn

So the continuity of the embedding follows from Theorem 3.5 (i) in view of (3.25) and
(3.26). Moreover, if additionally (3.30) and (3.31) hold, the compactness of the embedding
follows from Theorem 3.5 (ii) and the above estimate, where (3.30) yields us (3.17) and
(3.31) together with (3.29) ensure (3.17).

Step 3. If (3.27) does not hold, then || {w(ijm)*l/pl}m |¢~|| fails for j = 0. Thus there is
no embedding (independent of §) in view of (3.9). Similarly, if (3.33) does not hold, then
the embedding cannot be compact in view of (3.11) and (3.17) with A = 1/p;. The rest
of (i) and (ii) follows from step 1. |
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Remark 3.9. There remains a gap for

0 <6< Lly—1).
Y2
This is not surprising, because conditions as (3.25) and (3.30) are general features of w.
It makes sense, that we need more information about the weight, than reflected by + and

(3.25) or (3.30) only, to get a full characterization, respectively.
The situation with p* < oo is similar.

Corollary 3.10. Let the parameters be given by (3.21) with p; > py. Let w be a doubling

weight with the corresponding doubling constant .

(i) Then the embedding Byl (w) < B3? . is continuous, if

(a) 1 {w(Qo0) ™"}, e (3.35)
0> 4+ (y—1), of ¢ <oo,
(b) (v —1) Z_f q* < o0 (3.36)
5>p—+p—(7—1), if ¢ = oo.
Conversely, if the embedding By} | (w) — By2 . is continuous, then
(a) 1 {w(Qo0) ™7}, 1] < o0, (3.37)
(b) 0> 3 (3.38)
P
(ii) The embedding By}, (w) < B3 is compact, if
(a) 1 {w(Qo)™ 7}, 16y 3.39)
n o n
b 0> —+—(y—1). 3.40
() Ly Ly (3.40)
Conversely, if the embedding B;! | (w) — B2 . is compact, then
(a) 1 {w(Qo) ™7}, 1] < o0, (3.41)
(b) 5> (3.42)

p*
iii) If 0 < X ord =L and ¢* < oo, then B! 1s not embedded in B2
p p

P1,91 p2,92°

Proof. The proof works similar to the proof of Corollary 3.8.
Step 1. For any 7 € Ny it holds

w(Qoy) > 2" min W(Qjm), leZ".

mezanj,mCQ(),l

Then one obtains

[ {w(Qo)) ™7}, 1|l < 27 )7 1]l € No.
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Thus
[{27 e @), 6
c H{Z‘jéﬂf* {w(Qo)) ™7}, |€p*|’}.

J
= ¢|[{w(Qo) """}, ‘gp*l‘H{Z_j(é_&)}j

h

by

Eq*

v

lyr|| = 00

if 6 < - ord =% and ¢* < oo. This together with Theorem 3.5 yields us (iii).
Step 2. Let (3.35) and (3.36) be satisfied. Then

9—i(s1—=s2) 9—in/p2 H{W(Qjm)_l/pl}

¢ 9 (s1=satn/pa—Th—2%)

m |€p*

| {w(Qoa) ™"}, 60|
(6= _
= 2 J( IS Pl(w 1))|| {w<QO,Z) 1/p1}l |€p*

IN

is finite. Thus the embedding B! | (w) < B,?  is continuous concerning Theorem 3.5
(i). Moreover the embedding is even compact, if (3.40) holds instead of (3.36). Note, that
condition (3.11) has no meaning here.

Step 3. Obviously there is no embedding (independent of 0), if (3.37) or (3.41) do not
hold in view of (3.9), respectively. Also if (3.38) or (3.42) does not holds, see step 1.,

respectively. [ |
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3.4 The Double-weighted situation

The setting for the double-weighted situation is the following. We regard embeddings of

type
Bt (]R”,w)(—>Bs2 (R”,w),

P1,91 P2,92

where w is doubling and the parameters are given by
—00 < 89 < 81 < 00,0 < pp,p2 < 00,0 < qp,qe < 00. (3.43)
The considerations in Section 3.2 show, that the conditions

inf >
;rlen@" w(Qoz) >c¢>0

and

lim w(Qo,) = o0
|z|—o0

are essential. Furthermore we proved there, that only the case p* = oo, i.e., p; < po, is
interesting. Recall that

n n
0=s5—— =8+ —
y4 b2

has its usual meaning.

Corollary 3.11. Let the parameters be given by (3.43) with p; < pe. Let w be a doubling

weight with the corresponding doubling constant .

(i) Then the embedding B, (w) < B2, (w) is continuous, if

p1,91 p2,92
(a) zier%fn w(Qoy) > ¢ >0, (3.44)
5> —D(E =L, if ¢ < oo,
(b) it >(p; ”f) yoase (3.45)
52n(r- (- 1), i ¢ =oco
Conversely, if the embedding By}, (w) < B2  (w) is continuous, then
(a) lie%fnw(QO’l> >c >0, (3.46)
(b)  §>0. (3.47)
(ii) The embedding B;! , (w) < By2 . (w) is compact, if
(a) lie%fnw<QOvl) >c¢>0, (3.48)
(b) |ll‘im w(Qoy) = 00, (3.49)
—00
1 1
(c) d>n(y—1)(———). (3.50)

p1 P2
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Conversely, if the embedding B3' . (w) < B2 is compact, then

()  infw(Qu)=c>0, (3.51)
(b)  lim (@) = oo, (3.52)
(c) 5> 0. (3.53)

(iii) If 0 <0 or 6 =0 and ¢* < 0o, then B, (w) is not embedded in B

P1,91 p2,92°

Proof. The proof is completely parallel to the proof of Corollary 3.8, where we apply
(3.16) with k = piQ — pil < 0 and (3.17) with A = pil — piQ. [ |
Corollary 3.12. Let the parameters be given by (3.43) with p; = pe. Let w be a doub-
ling weight with the corresponding doubling constant . Then the embedding B,! | (w) —

B2 . (w) is continuous if, and only if,

s1— 8 >0, if ¢ <oo,

s1— 8 >0, if ¢ =o0.

The embedding B!, (w) — B2 . (w) is never compact.

Proof. Corollary 3.12 follows immediately from Theorem 3.5. |
Remark 3.13. This result is already well-known for Muckenhoupt weights, see [HS08,

HS11a]. It is natural to extend this to doubling weights, since there is no direct influence
of the weight there.



4 An application: Envelopes

In this section we talk about growth envelope functions in doubling weighted Besov-
Triebel-Lizorkin spaces as an application of our atomic decomposition from Proposition
2.11 and the embedding result from Theorem 3.5. The concept of envelopes was introduced
and first studied in [Tri01, Sect. 12|, [Har02]. For detailed information about envelopes
and the proofs for the basic properties we refer to the book from HAROSKE, [Har07].
We start with some preliminaries. Let for some measurable function f : R” — C, finite

a.e., its non-increasing rearrangement f* be defined as usual,
fr(t) :=inf{s >0: [{x e R" : |f(x)| > s}| <t}, t>0.

For further details about the non-increasing rearrangement f* we refer to [BS88, Ch. 2,
Sect. 1|, [DL93, Ch. 2, §2| and [EE04, Ch. 3], for instance.

Definition 4.1. Let X be a quasi-normed function space on R™.
The growth envelope function Eg : (0,00) — [0, 00] of X is defined by

()= sup  fU(t), t>0. (4.1)
FeXIIfIX<1

Remark 4.2. We put Sé((T) =o0if {f*(7) : ||f|X]|| < 1} is not bounded from above for
some 7 > (. Note that it causes some problems when taking into account that we shall
always deal with equivalent (quasi-) norms in the underlying function space. Assume we
have two different, but equivalent (quasi-) norms || - |X||; and || - |X|]2 in X. Then there
exists for every function f € X with ||f|X]|[s < 1, f # 0, a function g; := cf, where
c = ||fIX||1/]|f|1X]||2 and it holds ||g¢| X ||z < 1. From the properties of the non-increasing
rearrangement results g; = c f*, see [BS88, Ch. 2, Sect. 1, Prop. 1.7].

Now we build on the one hand the growth envelope function with || - |X||; and on the
other hand with || - | X|[2. This leads to two different, but equivalent expressions for Eé( .
Therefore it is a matter of equivalence classes of growth envelope functions, where we

choose one representative

Eé((t) ~ sup f*(t), t>0.
1F1XTI<1
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However we do not want to distinguish between representative and equivalence class in
the sequel.

Furthermore, by (4.1) the growth envelope function Sé( (t) is defined for all values ¢t > 0,
but it is of particular interest to consider this function for small ¢ > 0, say, 0 < ¢t < 1,
because there accumulate the singularities through the non-increasing rearrangement.
This local characterization is reinforced by the so-called index ug, which gives a finer
measure of the (local) integrability of functions belonging to X. The exact definition of
this index ug is very technical and not important for this work, since we only look for the
growth envelope function Eg (t) here. Both together, the growth envelope function Sé( (t)
and the index ug are called the growth envelope € (X) = (5?(),2%) for the function
space X. For detailed information about the index ug and the growth envelope €;(X) we
refer to the book [Har07, Ch. 4] by HAROSKE.

In contrast to the local characterization it turned out, that sometimes also the global
behavior of the growth envelope function Sé{ (t) for t — oo is of interest. But in this work

we only look for the local characterization.
The classical example for growth envelopes is the Lorentz space L, .

Definition 4.3. Let 0 < p,q < oo. The Lorentz space L,, = L, ,(R") consists of all

measurable functions f for which

) 1 q 1/‘1
(f [t?f*(t)} %) , 0<q< oo,
1Lyl = \o U (12)
sup tr f*(t), q = o0,
0<t<oo

is finite.

Remark 4.4. This definition is well-known and can be found, for instance, in [BS88, Ch.
4, p. 216]. Obviously, L,, = L, and Ly, = {0}, 0 < ¢ < oo, contains only the zero

function. In addition, L. o = Lo the classical Lebesgue space. Moreover, it holds
Ly, = Ly, if, and only if| q<r. (4.3)

Note that (4.2) do not give a norm in any case, not even for p, ¢ > 1. However, replacing

the non-increasing rearrangement f* in (4.2) by its maximal function f**, given by

P = % / F(s)ds, t>0, (4.4)

one obtains for 1 < p < 0o, 1 < ¢ < o0, a norm, see [BS83, Ch. 4, Thm. 4.6]. The
essential advantage of the maximal function f** is that it possesses a certain sub-additivity
property,

(f+9)7 @) <) +g7 (1), t>0,
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cf. [BS88, Ch. 2, (3.10)]. Moreover, for 1 < p < oo and 1 < ¢ < oo, the corresponding
expressions (4.2) with f* and f**, respectively, are equivalent; cf. [BS88, Ch. 4, Lemma
4.5].

For the Lorentz space L, , we have the following growth envelope function.
Proposition 4.5. Let 0 < p < o0, 0 < g < 00. Then
Era(t)y m 7, t 0. (4.5)
Proof. [Har07, Prop. 3.12]. [ |
Remark 4.6. In particular, it is known that
C(Lpg) = (t_%,q> :

cf. [Har07, Thm. 4.7]. Hence, this leads to expressions of type

1/v

[lero] ) < difisa

if, and only if, v > ¢ = ué”. Here one observes very well that the index ud gives a finer

local characterization and there is some connection to a Lorentz space embedding.
Let us collect some basic properties of the growth envelope function.
Proposition 4.7. Let X, X1, X5 be some function spaces on R™.
(i) Sé( is monotonically decreasing and right-continuous, (5(?()* = Sé(.
(ii) We have X — Ly, if, and only if, Eé(() is bounded.
(iii) If Xy — Xy then there exists a constant ¢ > 0 such that for allt >0

EXH(t) < cE22(t). (4.6)

For a proof we refer to [Har07, Prop. 3.4|.

Remark 4.8. For rearrangement-invariant Banach function spaces X with fundamental
function ¢y it is proved in [Har07, Sect. 3.3] that

Ee (t) ~ = [Ixa XY t>0,

1
px(t)
where A; C R"™ with |A;| = t. For more information about rearrangement-invariant func-
tion spaces and the concept of the fundamental function ¢y we refer to [Har07, Sect. 3.3|
or |BS88, Ch. 2|, respectively.
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In the classical (unweighted) Besov and Triebel-Lizorkin spaces we have this result.
Proposition 4.9. Let 0 <p < o0, 0 < g < o0 and 0, = n(% —1)4 <s <. Then
(‘:GB;’q(t) ~ (c/’g;,q (t) ~ t_%"_% (47)
Remark 4.10. The condition to s comes from the fact, that the concept of growth
envelopes makes only sense for regular distributions and unbounded growth envelope
functions, where the borderline situations are not considered here. For the unweighted

Besov and Triebel-Lizorkin spaces are also the growth envelopes known, that is,

&(By,) = (177 .0)
and
Ca(Fy) = (775 .p).
Proofs of this can be found in [Har07, Thm. 8.1] or |Tri01, Thm. 15.2|. Moreover, there

one can also find some results for the borderline situations.

Now we want to characterize the singularity behavior of A° (w), where w is doubling.
As already mentioned the concept of growth envelopes makes only sense for regular distri-
butions, i.e. we need a condition A% (w) C Ly® for our function spaces. On the other hand
we already know, that we have no singularity behavior in the sense of growth envelope,
that is Sé( (t) is bounded, if AS (w) < Lo. The borderline situations we do not consider

here. So as a preparation we receive Corollary 4.11.

Corollary 4.11. Let 0 < p < o0, 0 < ¢ < 00, s € R and w is doubling with

1 >
lle%fnw(Qo,z) > ¢y > 0. (4.8)

(i) Let s—2 (v —1) > 0, Then
AS (w) C Ly~ (4.9)
(ii) Let s> 2. Then

A3 (w) = L. (4.10)

Proof. The extension to the F-spaces is a direct consequence of (1.63), so it is sufficient
to consider B-spaces. We use Corollary 3.8 (i) with py = ps =p, 1 = g2 = ¢, 51 = s and
s2 =s— 2 (y—1). Then p* = o0, ¢* = oo and § = % (y — 1). Thus (4.8) implies the
embedding

=2 (r-1)

B, (w) = Bq (4.11)
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Moreover we have

s—2 (y—1
Bpq” o= - LllOC if s— n (v —1) > oy,
p

cf. (1.52) in Remark 1.36. This completes (i). Otherwise it holds

s—2 (y—1) . n n

B,q" — Lo if s——(y—-1)>—,

na , =12

see |ET96, 2.3.3. (iii)| or |[Har07, Prop. 7.13 (7.42)|, respectively. This completes (ii). W
Remark 4.12. In view of this corollary it makes only sense to consider growth envelopes

for parameters
n n
0<p<oo, 0<g<oo, o,+—(y—1)<s<—y (4.12)
p p

borderline situations are still out of the frame. Furthermore we have the restriction (4.8)
for our weight. If one compares this with well known results for Muckenhoupt weights,
then we have there similar conditions, see [Skal0, Lemma 4.6, Bem. 4.7] or [Har10, Prop.
4.3].

We start with the estimate from above.

Proposition 4.13. Let 0 < p < o0, 0 < ¢ <00, s € R and w be doubling.
We assume

n n
—(y—1 — d inf > .
op+ p(7 ) <s< pv an lle%nw(QO’l) > ¢y >0

Then

@

gLy < et 3t L0 (4.13)

3|

Proof. Just as in the proof of Corollary 4.11, we use the embedding from Corollary 3.8
(i) with p1 = p2 =p, 1 = @@ = ¢, 31zsandSQZS—%(’y—l).Thenp*:oo,q*:oo
and 0 = = (v — 1) again and in view of our assumptions is 0, < s3 = 5 — - (v—1) < >
Thus it follows from the results of the unweighted case, see Proposition 4.9, and property
(4.6) of the growth envelope functions

s (w (4.6),(4.11) s—3 (v=1) (4.7 n
gGB@q( )(t) S 1 ggp,q (t) < s t*%Jr% sy (v=1)) = cy t*%Jr

S

, t—=0.

The F-space result follows immediately from the embedding (1.63), then

¢ ey (46),(1.63) s (w 4
gt TS e &) et t 0.

3w

Now we deal with the estimate from below.
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Proposition 4.14. Let 0 <p < o0, 0 < g <00, s € R and w be doubling.

We assume
n n .
op+ 5(7 -1)<s< ]—97 and lle%fnw(Qo,z) = ¢y > 0.
Then ;
gy > ctrth sup <—w(B(x0’2_-j)))_l/p7 L0 1)
Oekn tnp-in | B(20,277)]

Proof. As usual for the proof of the estimate from below we construct special functions
fiz0 € By (w) with [|f;.0| By (w)]| ~ 1 such that

&M (2 2 ¢ sup f10(277), jEN
Let for 2° € R, j € N,
fiao(2) == Aj 100 40(2), r e R, (4.15)
with

WBEEZDNNE ) = (e 29)

| B2, 277))]
where ¢ € C3°(R™) is given by

o =20 (

__a
e =P if 2| < 1,
0, if x| > 1.

We observe that the a;,0, j € N (without loss of generality should j > 2), are special

atoms according to Definition 2.1 with d = 4, K > s and L = 0, since suppa;,o C
B(2°,277) C 4 Qja-240),

D%, 40(x)] < 2710 |a| < K
up 0O a constan epen mng on and our assump 10n on s 1mp 1€S at we do not nee
t tant depending d ti implies that we do not need

moment conditions, see (2.15). Then f; ,o(z) = A 00,0 is a special atomic decomposition

and we obtain for the norm
|| f00| By (0)]] < € [|AJB5 ,(w)]] ~ Ajz027°w(B(2,279)P = 1.

Thus our functions f; 0, j € N, 2° € R™, are admitted to the competition in the supremum
By ,(w)
of &; .
Furthermore for 7 € N we have
s, 0 (¢ 277 w(B(a°,277))71/P)
= {z e R": 27w (B(2",277)) P2 (v — 2°)) > ¢ 27 w(B(a",279)) "7}
> c|B(z°,277)| =" 27" (4.16)
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Then

. - (4.16) . .
fio(d277") =inf{s > 0: [, 0(s) <c277t = d 273w(B(a°,279)) 7P (4.17)

3,0

since 1, o is monotonically decreasing.
Let 0 < t < 1 fixed, then there exists a jo € N such that ¢t ~ 277", Thus

By 4 (w) *
EF) > sp  fra()
jEN,z0cR”

> sup f;’k,xo (t)
ZOERM t~2—I7n
w(B(zY,277)) > ~1/p

> ctrth S (
C p n u - 7
P 1B(20,27)|

20ER™ tn2—in
Just as in the proof of Corollary 4.11 and Proposition 4.13 follows the assertion for the
F—space with embedding (1.63) and property (4.6)

()

(4.6),(1.63)

Egﬁq(w) (t) > cl (c/’GBzymin(p,q)(w)

(w(B(xO, 2_9'))>—1/p7 Lo,

1 s
> trtn :
ahr o [B(20,277)]

ZOER g~2—0M

Remark 4.15. If one uses the approach from the proof of Proposition 4.12. in [Har10],
one can refine the result (4.14) a little bit by

L%Hogtu (B( 0 2—j)) _y 1/q

B q(w) —j(s—=2)g (W T, P
E t) > ¢ sup 277 <—) , t—0 4.18
0z |2 B0, 29) (418)

(with usual modification if ¢’ = 00).
Now we briefly discuss the compatibility of (4.13) and (4.14). Let 2 € R™ and v € N. We
apply the doubling property respective cubes (1.40) together with (4.8), then

w(@l/,m) Z /w<c20,l)2_yn’Y Z Cw 2—1/n’y

and consequently

(w(vam))—l/p - 2yn<v;1>
|Qum]

where ¢ is independent of v € N and 2° € R™. Moreover let ¢ ~ 27", Thus we have

sup sup
29ER™ Qu,m D20

— ?

s 0 9—v 1
t*%JrZ sup ('LU(B(Z‘O 72 ))) /p
xOERnJ,\,qun |B([L’ 3 27,})'
s _1/]9
~ tTrTh sup sup (—M(Qy’m>>
2OER™ Q,m D20 t~2- V0 ’Qu,m|
< ctetn

So (4.13) and (4.14) do not contradict each other. The compatibility of (4.13) and (4.18)

can be shown in the same way.
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Remark 4.16. In [Harl0| one finds similar results for both estimates from above and
from below for Eéf”q(w)(t), t — 0, if w € Ay, see [Harl0, Prop. 4.3., Prop. 4.12. and Rem.
4.14.]. This is not surprising, since we do not use weight-specific properties except for the
embedding (4.11) or (3.9), respectively, and the atomic decomposition from Proposition
(2.11) with v or 3 instead of r,,, respectively.

Furthermore similar to the Muckenhoupt weights one could introduce the so-called set of

singularities Sgng(w) = Sp(w) U Ss(w), where Sp(w) and S (w) are given by

So(w)= 4% cR": inf M:o},
o(w) {x Q:{ﬂlaxo Qo

Quv,m>z° |Qu7m|

Soo(w) = {xo eR": sup W(Qrm) = oo} :

In case of w € A we know, that |Sgne(w)| = 0, see [HS11a, Prop. 4.5.]. An extension to

|Ssing (w)| = 0, i.e. Sging(w) is not dense in R™, can be found in [HS16]. In case of doubling

weights there exists no statement yet. Then, if So(w) # 0, (4.18) can be replaced by

B (w) | £[logt|] ey w(B(:L"O,Q_j)) —sz’ "
& (t)ZCxozlslgw) ; PR <_|B(x0,2_j)| > , t—0
and (4.14) can be replaced by
SGAZ’C‘(w) (t) > ctrtn sup sup <M>_l/p t— 0,
29€80(w) Qu,m3a0,t~2-¥n ’Qum|

respectively.

Example 4.17. In the unweighted case for w = 1 we have v = 1 and the supremum in
(4.14) vanishes. Thus (4.14) and (4.13) together coincide with the unweighted result (4.7).
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