
Compact Adaptive Planar Antenna
Arrays for Robust Satellite Navigation

Systems

Doctoral thesis

for attaining the academic degree of

Doctor of Engineering (Dr. -Ing.)

presented to the Faculty of Electrical Engineering and Information Technology

Technische Universität Ilmenau

by M.Sc. Safwat Irteza Butt

(30. April 1983)

1. Reviewer: Univ.-Prof. Dr. rer. nat. habil. Matthias A. Hein

2. Reviewer: Prof. Dr.-Ing. habil. Reiner S. Thomä

3. Reviewer: Dr.-Ing. Achim Dreher

Submitted on: 07.07.2015

Defended on: 13.10.2016

urn:nbn:de:gbv:ilm1-2016000659





Abstract
Over the past two decades, humankind’s reliance on global navigation satellite systems

for precise positioning, navigation and timing services has grown remarkably. Such ad-

vanced applications vary from highly accurate surveying to intelligent transport systems,

and from mobile network timing synchronisation to weather and climate monitoring. This

envisages new and higher standards of robustness, accuracy, coverage and integrity in

modern navigation receivers. Recently, this has been accomplished with the incorporation

of the multi-element navigation antenna receiver. However, the industrialisation of this

approach is limited due to the large antenna array size, hindered by the inter-element sep-

aration of half of the free-space wavelength, i.e. ≈ 10 cm at L band (1 − 2 GHz). In this

thesis, compact navigation antenna arrays with smaller inter-element separations are pro-

posed for the miniaturisation of the overall size. However, these arrays become afflicted

with the adverse effects of mutual coupling. Therefore, various figures-of-merit for the

analysis and design of a compact planar navigation antenna array, such as performance

diversity degrees-of-freedom, directional finding capabilities, and polarisation purity, in-

cluding mutual coupling effects, have been presented. This provides a general framework

for the selection and configuration of the optimum compact navigation antenna array. In

order to mitigate the mutual coupling, integration of the decoupling and matching network

into customised compact navigation antenna array designs is performed. This is fostered

by the correlated noise characterisation of the complete receiver. Furthermore, an analyti-

cal model of the equivalent carrier-to-interference-plus-noise ratio is derived to investigate

the navigation performance in interference scenarios. In the end, this is complemented by

the implementation of the complete navigation receiver for verification and robustness val-

idation of the derived compact antenna array concepts in indoor and outdoor interference

scenarios.

Zusammenfassung
In den zurückliegenden zwei Jahrzehnten ist die Abhängigkeit der Industriegesellschaft

von satellitengestützten Ortungssystemen, Navigationsdiensten und Zeitsignalen drama-

tisch gewachsen. Darauf aufbauende moderne Anwendungen reichen von hochgenauen

Ortungsgeräten bis zu intelligenten Transportsystemen und von der Synchronisation mobi-

ler Netzwerke zu Wetter- und Klimabeobachtung. Dies setzt neue höhere Standards in der

Robustheit, Genauigkeit, Verfügbarkeit und Verlässlichkeit moderner Navigationsempfän-

ger voraus. Möglich werden diese Verbesserungen aktuell mit der Einführung von Mul-

tiantennensystemen in den Navigationsgeräten. Jedoch wird die Nutzung dieses Ansat-

zes durch die größeren Abmessungen der Antennenarrays erschwert, weil standardmäßig

der Elementabstand zu einer halben Freiraumwellenlänge gewählt wird, was im L Band
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ca.10 cm bedeutet.

In dieser Arbeit werden kompakte Antennenarrays für Navigationsempfänger mit ge-

ringerem Elementabstand vorgeschlagen, die eine Miniaturisierung der Empfängerabmes-

sungen erlauben. Diese kompakten Arrays werden in ihrer Leistungsfähigkeit jedoch durch

die negativen Effekte der Verkopplung zwischen den Einzelelementen beeinträchtigt. Für

die Beurteilung der Empfängerleistungsfähigkeit existieren verschiedene Qualitätspara-

meter für Analyse und Entwurf der planaren Arrays. Damit werden z. B. Diversity Frei-

heitsgrade, Qualität der Richtungsschätzung, Polarisationsreinheit und die wechselseitigen

Kopplungen gemessen und eine Entwurfsumgebung wird vorgestellt, in der das optimale

kompakte Antennenarray für den jeweiligen Einsatzzweck ausgewählt und konfiguriert

werden kann. Dieser Prozess wird durch eine Analyse des Rauschens und seiner Korre-

lationseigenschaften für den gesamten Empfänger begleitet. Darüber hinaus wird ein ana-

lytisches Modell des effektiven carrier-to-interference-plus-noise ratio abgeleitet, um die

Leistungsfähigkeit der Navigationsempfänger in Szenarien mit Störsignalen zu untersu-

chen. Schließlich werden diese Betrachtungen durch den Aufbau eines kompletten Satelli-

tennavigationsempfängers ergänzt, um mit ihm den Nachweis der Funktionsfähigkeit und

der stabilen Funktion des entworfenen Systems mit kompaktem Array unter Störereinfluss

bei Laborbedingungen und im realen Außeneinsatz zu erbringen.



Theses of the Dissertation
– To meet the modern standards for safety-of-life critical applications like autonomous

driving and intelligent transport systems, future global navigation satellite systems
can benefit from compact antenna arrays to achieve miniaturisation and robust-
ness.

– For any N -port antenna array, such that N > 1, the radiation process is defined by

the superposition of N orthogonal modes of radiation or the diversity degrees-of-

freedom. However, compact electrical size or inter-element separation less than half

of free-space wavelength give rise to increased mutual coupling which degrades the

efficiency of these degrees-of-freedom.

– Eigen-decomposition of the antenna array spatial covariance matrix, calculated

using the scattering parameters or the far-field patterns, delivers the assessment of

the fundamental modes of radiation or the eigenmodes.

– The minimum eigenvalue or the eigenvector with least efficiency dominates the

overall radiation or reception performance of the compact antenna arrays. Primarily,

this figure-of-merit can serve as a parameter for the selection and configuration of

the optimal compact antenna array in the design process.

– Compact planar antenna array configurations provide flexibility of geometrical
optimisation for efficient degrees-of-freedom and achieving improved direction-
finding capabilities.

– The polarisation purity of the compact antenna array eigenmodes is worsened by

mutual coupling, particularly for the higher-order modes and must be taken into

account in the design process for optimum performance.

– An optimum trade-off between miniaturisation and absolute radiation efficiencies

is vital for application of these arrays in robust navigation receivers because the

efficiency enhancement provided by realistic decoupling and matching is limited.

– The decoupling and matching network integration with the antenna array demands

miniaturisation of the network, and careful implementation for minimum ohmic
losses. The decoupling and matching generally comes before the low-noise ampli-

fier, and any additional losses, i.e. noise contribution, will adversely affect the

system’s performance.

– The noise characterisation of the complete navigation antenna array receiver, in-

cluding the network losses, yields the equivalent carrier-to-interference-plus-



noise ratio by applying the conventional deterministic beamformer with null-

constraints. This framework allows for performance measure predictions in respect

of the navigation receiver.

– The impact of the polarisation impurity in the higher-order modes on the receiver’s

vulnerability to the arbitrary-polarised interferer is characterised in the equiv-

alent carrier-to-interference-plus-noise ratio. This is useful in analysing compact

antenna array robustness in worst interference scenarios before its integration with

the receiver.

– Low-cost, miniaturised, compact navigation antenna arrays, using off-the-shelf ce-

ramic patch antennas and quadrature couplers are possible. This is helpful for mass-
production.

– The developed compact navigation antenna array receiver incorporating decoupling

and matching network integration allows for realistic measurements in real-world

scenarios to verify its navigation robustness.

– The practical applicability of decoupling and matching for compact antenna arrays

becomes crucial and prominent in the interference-limited scenarios; therefore, its

implementation is necessary for robust compact navigation antenna array receivers.
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Chapter 1

Introduction

In the era of miniaturised sophisticated navigation receivers, space restrictions are far more

severe on the antenna [1], [96], [128], [129]. This conventionally leads to the simple and

practical choice of a single-element microstrip antenna, due to its low-profile, light weight

and small size [1, Chapter 2],[2]. However, with the urbanisation of human dwelling, it

becomes difficult for the fixed radiation pattern antenna to maintain the availability, in-
tegrity and accuracy of the received data, which may jeopardise the performance of the

whole system [88], [18]–[21], [97], [98]. Hence, a compact, cost-effective and low-profile

solution for receiver controlled radiation pattern antennas is vital to ensure robustness in

receivers against interference, multipath signals, spoofing and shadowing. Generally, an-
tenna arrays replenish the use of beamforming and interference suppression to achieve ac-

curacy, robustness, availability and reliability [89], [22], [99]–[101]. These multi-element

antennas can take different configurations ranging from linear to three-dimensional forms.

Nevertheless, the limiting factor for the overall dimensions, to minimise mutual coupling
and maximise directivity, is inter-element separation. The optimal separation for minimal

coupling is half of the free-space wavelength. This is quite bulky for L-band applications,

which have operating frequency between 1 − 2 GHz such as global navigation satellite
systems (GNSS), where the free-space wavelength is up to 25 cm. Therefore, in modern

navigation receivers, the application of antenna arrays are unattractive, which are restricted

in space requirements.

It is intrinsic to the antennas; a nearby antenna will receive the backscattered energy

from its neighbour. This is not just directly influenced by the immediately adjacent an-

tenna but also indirectly from the other receiving antenna array elements. These coupled

field wave may add constructively or destructively to the direct incident wave. This is a

manifestation known as mutual coupling between the antenna array elements [3], [23],

[24]. However, mutual coupling, causing a finite mutual impedance between the radiating

elements, depends on the proximity of the antenna elements. This increases proportion-

ally with decreasing inter-element separation d < λ/2, and the number of elements and

12



1. Introduction 13

their separation will determine its ramification. Mutual coupling has adverse effects on the

radiative performance of the antenna array, especially the higher-order diversity degrees-
of-freedom or super-directive modes[25]–[27], [102], [103]. The integration of such com-

pact antenna arrays in any application necessitates mitigation of the coupling; concern-

ing this, several approaches have been put forward in recent years [90], [28], [29]. One

of the innovative techniques is via orthogonal excitations and individual port matching.

These orthogonal excitations may acquire the eigenmodes of the antenna array ensuing to

the decoupled ports, and ideally achieve 100% radiation efficiency, which is not possible

due to the ohmic losses with in the network and post matching networks are required to

maximize the radiation efficiency. The practical realisation of decoupling and matching
networks (DMN) involves the use of discrete lumped components, quasi-lumped compo-

nents or directional couplers. The employment of DMN has been suggested to maximise

the receiver of signal-to-noise ratio (SNR) [30]–[33]. The SNR is a crucial parameter for

detecting and tracking the received data. The lower SNR indicates a longer transient and

integration time, which is undesirable. In all these analyses the DMN is considered to be

lossless, which presents only one half of the truth. In reality, these DMNs are dissipative,

and may delimit their usage in noise limited receivers such as GNSS, where received sig-

nals are weak and below the noise level. The DMN losses between antenna and the first

stage low-noise amplifier may degrade severely the noise figure of the receiver. Therefore,

the noise characterisation of the DMN in terms of equivalent SNR post beamforming is

necessary to identify the true benefit of DMN in the case of coupled arrays.
Some of the key questions investigated in this thesis are as follows:

– What are the challenges and limitations of the advanced robust GNSS receivers?

– What are the benefits of a multi-element GNSS antenna and its implications in the

practical implementation of the modern navigation receivers?

– What are the evaluation methodologies for the compact antenna arrays inherited with

the mutual coupling effects?

– What is the optimal miniaturised configuration for the compact planar antenna ar-

rays?

– What is the influence of the number of elements, inter-element separation, and ge-

ometrical arrangement on the direction-finding capability of the planar antenna ar-

rays?

– What are the available different techniques for mitigating mutual coupling and their

fundamental limitations?

– What is the equivalent carrier-to-interference-plus-noise ratio (CINR) including the

ohmic losses of the DMN for the navigation multi-element antenna receiver?
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– Is it beneficial to deploy a realistic(lossy) DMN for complete compact navigation

antenna array receiver?

These are addressed in different chapters as:

Chapter 2; Robustness of GNSS: This chapter describes the targeted application and

provides the motivation of this work. The basic principle of the GNSS with emphasis

on state-of-the-art civilian receivers is described. Moreover, the fundamental features and

requirements of the antennas used in the modern navigation receivers are discussed. This

is followed by discussions of the challenges and remedies of these receivers for public use

to meet the demands of advanced safety-of-life (SoL) critical applications.

Chapter 3; Evaluation methodologies of compact planar antenna arrays: The dif-

ferent figures-of-merit for the analysis of the compact planar antenna arrays are presented.

These provide a framework to find an optimal compact antenna array configuration for im-

plementation in the robust navigation receivers. This optimisation parameters involve the

minimum eigenvalue and the direction-finding capability of the compact antenna arrays.

Chapter 4; Compact robust GNSS antenna array receivers: This focuses on the

practical implementations of compact four-element antenna arrays integrated with DMN.

These antenna arrays are evaluated for the derived equivalent CINRs for navigation signals

in the interference-limited scenarios. This provides insight into the merits and demerits of

the DMN for compact antenna arrays.

Chapter 5; Adaptive compact navigation receiver demonstrator: In the end, a

complete navigation receiver with conventional adaptive beamforming and interference

suppression algorithms is developed to investigate the carrier-to-noise ratio (CNR) of the

tracked navigation signals. These include both indoor and outdoor measurement cam-

paigns for satellite signals with and without interference. Furthermore, the results of the

equivalent CINR with and without DMN obtained in the previous chapters are verified.



Chapter 2

Robustness of Global Navigation
Satellite Systems

Man’s curiosity about his origins has persisted throughout human history, with landmarks

serving as historical points of reference and, more recently, satellites serving the same

function but with exponentially higher accuracy [4]. With advancements in digital maps,

satellite navigation has become a major source of travel guidance and an efficient device

for travel assistance. Therefore, in addition to its military applications, the public has

benefited from daily use of mobile and personal hand-held devices equipped with satellite

navigation functionality. A recent market survey determined that there are nearly four bil-

lion navigation devices operated worldwide [130]. This increased dependence on satellite

navigation devices has precipitated several constraints on the system as a whole. These

include better availability of the satellite signals globally, better navigation solution accu-

racy, integrity and continuity of system robustness. In SoL critical applications, robustness

against jamming, interference and multipath become inevitable. These conditions and their

effects will be discussed later in this chapter in section 2.4.

At the beginning of this chapter, the navigation system and its basic principles are in-

troduced. The user segment is subsequently described in order to understand the main

features of its various components, more specifically the features of the navigation anten-

nas. In the last part of this chapter the challenges to the robustness of navigation receivers

are presented. Finally, solutions proposed in the last two decades, are formulated to meet

these challenges at the receiver end, which underpin the motivation for this research.

2.1 Basic principle of GNSS
Satellites that provide precise positioning and timing data are called GNSS [5]. The term

global refers to the global coverage or accessibility of these signals anywhere on the planet.

15
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Figure 2.1: The L-band allocation of frequency spectrum for the operating carrier frequencies and

bandwidths of various GNSS signals.

The complete global coverage is achieved by a minimum of 24 medium orbit satellites

travelling around the earth in several orbital planes. Generally, the GNSS is classified into

three segments: space, control, and user. The space includes the satellites, the control

is responsible for maintaining the health and error-corrections of the satellites, and the

user includes the receivers to determine position, velocity and time (PVT) information[4,

Chapter 3].

In the near future, GNSS will consist of four independent satellite navigation sys-

tems. The first and most popular complete system operated by the United States is known

as the Global Position System (GPS), which started full operation in the early 90s. It

maintains the availability of at least 24 satellites spread across six orbital planes to ensure

availability above 95% of the time with each satellite orbiting the Earth twice a day [4,

p. 358]. Simultaneously, the then-Soviet Union developed a global orbiting navigation

satellite system (GLONASS), but its full orbital constellation of 24 satellites was only just

deployed in 2011 [131]. In 2002, the European Union initiated the development of its fully

inter-operable worldwide satellite navigation system comprising high-precision hydrogen

master clocks, advanced rescue and SoL features as part of its global navigation satellite

system called Galileo, which currently has eight satellites in space; it is supposed to be

fully operational by 2020 [128]. The fourth-generation system is an upgrade to its re-

gional navigation satellite system (RNSS) developed by China, called Compass (Beidou),

into a fully-fledged GNSS system for global coverage[5, Section 12.1.2]. All these sys-

tems occupy the frequency spectrum of the L-band, i.e. 1000 − 2000 MHz, ranging from

1164 MHz to 1610 MHz, which are presented in Fig. 2.1.
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2.1.1 Characteristics of the satellite signal
The GPS satellite signals employ the code division multiple access technique (CDMA),

which is a spread spectrum technique that allows each satellite to use the same frequency

but different codes without mutual interference. Each satellite is assigned a pseudo random

noise (PRN) code and navigation message, which is modulated over carrier frequency. At

L1, i.e. 1575.42 MHz, there are two different types of PRN ranging codes that are trans-

mitted from each satellite: a coarse acquisition (C/A) and precision (P) code [132, p. 4].

The C/A-codes, available for civilian use, are short length codes with a duration of one

millisecond and repeat constantly. The P-code has a duration of seven days and repeats

after approximately every Saturday at midnight. However, these P-codes are encrypted

to Y-codes restricting use to the military, which provides anti-spoofing capabilities. The

intentional degradation of C/A code known as selection availability has been inactive since

2001, which increases the stand-alone receiver positioning accuracy within a radius of six

meters 95% of the time. With the planned modernisation of the satellites, three additional

signals were incorporated at L2C, i.e. 1227.60 MHz, to correct for the ionospheric correc-

tions, at L5, i.e. 1176.45 MHz for SoL applications, and at L1C, i.e. 1575.42 MHz, with a

new modulation scheme presenting a zero gain at the carrier frequency or the split power

spectrum [133], [134]. These are intended to improve the accuracy and provide robustness

to civilian users with standards similar to those of military users.

The European Galileo and Compass satellites operate on similar signal bands to GPS

based on the principle of the CDMA technique. However, Galileo incorporates a search

and rescue feature, which enables the use of its satellites as transponders. This provides a

feedback loop between the user and the space segment offering services in critical or disas-

ter situations [5, Section 11.3]. The GLONASS operates across different carrier frequency

bands for the transmission of its data. The primary difference between the characteristics

of the aforementioned satellite systems is that in GLONASS each satellite has the same

code but different frequencies, which uses frequency division multiple access (FDMA).

This work highlights the C/A-codes of GPS and Galileo at the L1 and E1 bands, respec-

tively, only.

For the GPS system, the received signal, yk(t), at the output of the antenna from the

satellite k can be expressed at time instant t as:

yk(t) = A︸︷︷︸
1

xm(t)︸ ︷︷ ︸
2

sin(ωct+ φk)︸ ︷︷ ︸
3

+ n(t)︸︷︷︸
4

. (2.1)

Here,

1. A is the amplitude of the transmitted signal;

2. This is the exclusive-or of the navigation message xn(t) and xc(t), the non-return to

zero (NRZ) PRN sequence of the k satellite. The navigation message has a one-bit
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Figure 2.2: The satellite signal waveforms of GPS L1 navigation message (xn(t)), C/A-code

(xc(t)), and BPSK direct spread sequence.

length of 20 ms, which represents 20 replicas of the PRN-codes, each with a duration

of one millisecond;

3. This represents the nominal carrier, which for GPS L1 C/A is 1575.42 MHz and is

modulated with xm(t); The phase φk contains the Doppler-induced variations due to

the movement of the satellite and receiver, ionospheric and tropospheric effects, and

phase noise of the satellite local oscillator;

4. The thermal noise and the background noise, which may be assumed as additive

white Gaussian noise in the simplest model;

The different wave forms associated with the navigation signal are shown in Fig. 2.2.

2.1.2 Positioning
A navigation system like any communication system consists of a transmitter satellite and

a receiver, typically a mobile device. The principal operation of determining the receiver’s

position requires direct line-of-sight to the satellites, because the satellite signal is un-

able to penetrate water, soils or other obstacles. In metropolitan areas, these signals can

be blocked by buildings or nearby mountains, which lead to the blockage of positioning

information.

The receiver requires information from at least four satellites to localise itself accu-

rately enough. The decoded satellite signal reveals the transmitted navigation message.
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sv1 sv2sv3

sv4D3

D1 D2

a) b)

estimated position 
uncertainity region

clock jitter

D4

Figure 2.3: (a) The ranging circles with radii D1, D2, D3, and D4 for estimation of the position

on Earth with each of the four satellites, respectively, grey dot indicates one of the first and second

satellite intersection points, black dot appears due to the intersection with the third satellite, which

is discarded. (b) The zoomed version of the intersecting circles, where the local oscillator clock

jitter and uncertainty in the position estimation is depicted as the black rectangular region.

This mainly contains the data frames of information comprising the precise location of the

transmitting satellite and the time of transmission. There is other auxiliary information

that can assist the receiver in correcting the errors that degrade the range measurements.

Typically, these navigation messages are monitored and corrected by the control stations to

improve performance over time. But, how do these four satellite navigation messages help

in determining the receiver’s position? This can be explained with the aid of Fig. 2.3. The

receiver determines the travel time, i.e. the duration of the transmission of the code from

satellite to the receiver. This time is gathered from each satellite, and converted into the

respective distances by multiplying by the travelling speed of the wave, which is assumed

here to be the speed of light in vacuum. Three satellites are sufficient for trilateration,

though due to receiver clock offsets, acquisition of the fourth satellite is necessary because

this permits the use of inexpensive quartz crystal in the receiver electronics. Therefore,

at any given point the receiver should be able to maintain direct line-of-sight with four

satellites at minimum to ascertain its position.

On the other hand, the distance from a satellite can also be determined using the carrier

frequency phase estimation, which has a resolution up to 19 cm. But, the carrier phase am-

biguity resolution is challenging to achieve, as it demands special data like known receiver

information to resolve, which is difficult and expensive to implement for commercial pur-

poses at every location on earth. Regardless of the range measurement techniques, there

are several other sources of position errors inherent in atmospheric effects, receiver noise,
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and satellite data. The approximate typical estimates of these errors are listed in [4, Table

7.4]. These can reduce the overall positioning accuracy up to 10 m.

2.1.3 Performance standards of GNSS
The performance standards of the GNSS service depend on the user needs. These services

vary from the basic PVT to the advanced SoL, and search and rescue. The services pro-

vided by the GNSS are affected by the location of the user, time of the measurement, and

the surrounding outdoor environment, i.e. rural or urban.

Accuracy: This is referred to as the difference between the retrieved position using

GNSS and the true or absolute PVT information. In statistics, it is the uncertainty radius

of the PVT information at a given time period around the true PVT. In 2014, modern

navigation standalone receivers using the standard positioning service available for civilian

use have a horizontal positioning error of 3.5 m, whereas the vertical positioning error

increases to 5m according to the survey report published by the Federal Aviation Authority

[135, Fig. 5.2, p. 22].

Availability: This is referred to as the visibility or acquisition of the minimum number

of satellites required to determine the PVT solution. It is given as the percentage of time

adhering to certain criteria of the PVT solution error.

Integrity: The confidence measure of the PVT solution with ability to monitor anoma-

lies in the PVT solution. The system should have the capacity to provide additional infor-

mation on the reliability of the signals. This is a crucial service required in SoL applica-

tions e.g. aviation.

Continuity: This defines the ability of the navigation system to provide the PVT solu-

tion to the user without interruption.

Robustness: The ability of the system to determine the authenticity of the received

signals. This is to protect the system against spoofing, jamming and multipath.

Interoperability: With the beginning of the complete GNSS operated by different

countries, the interoperability of these systems is of utmost importance. This will allow for

a combined PVT solution that delivers better availability, accuracies, integrity, continuity

and robustness. In addition, this may be foreseen as avoidance of inter-system interference.

2.2 Receiver architecture
The user segment of the GNSS consists of a hardware called a receiver and a software to

map the receiver position output on a graphical user interface. Like any typical communi-

cation receiver, the navigation receiver can be divided into three main categories: antenna,

front-end (FE), and the baseband processing unit. The antenna plays a pivotal role in

receiver performance, and, therefore, it will be discussed in the next section separately.
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2.2.1 Front-end
Here, the FE refers to two main blocks of the receiver: one is the analogue and the other is

digital. The analogue FE is normally designed using homodyne or zero-IF and heterodyne

or low-IF architecture, i.e. 2 − 150 MHz. Here, the term "IF" refers to the intermediate

frequency, which is obtained after the down-conversion of the received carrier at radio fre-

quency (RF). In case of zero-IF FE, the signal is centred around 0 Hz. This architecture

relaxes the complexities of devices because of the absence of imaging of the signal. How-

ever, as most of C/A code energy is centred at DC, it is highly sensitive to DC-offsets and

flicker noise. In comparison, low-IF architecture is insensitive to the aforementioned prob-

lems. But, it has the drawback of restricted image rejection, which can be cured using a

careful frequency plan and filtering. In practice, due to aforementioned reasons the zero-IF

architecture is not applied in navigation receivers. Therefore, further receiver discussions

and implementations will be limited to the low-IF architecture .

The received power from a satellite at L1/E1 band is approximately −157 dBW with

an ideal isotropic right-hand circularly polarised (RHCP) antenna [4, Table 10.2]. Consid-

ering the 2.046MHz C/A-code bandwidth, the thermal noise power is equal to −141 dBW.

This indicates that the received signal strength is below the thermal noise floor. This means

that any additional noise due to the analogue FE can adversely affect the positioning ac-

curacy. Therefore, the analogue FE architecture and the properties of components demand

careful consideration. On the other hand, the digital FE includes the analog-to-digital con-

verter, its role and impact on the performance of the receiver is been discussed in [4] for

further reference.

2.2.2 Baseband processing
In the digital domain, the core processing units of the L1/E1 baseband receiver are the (1)

acquisition and the (2) tracking algorithm. After the tracking algorithms, the navigation

message is retrieved, which is used to evaluate the PVT estimates for the receiver.

Signal Acquisition As the PRN-codes for the C/A-codes are known, the receiver must

generate the replicas of these codes. Principally, these codes are individually phase-shifted

per chip and then multiplied by the incoming signal, after removal of the carrier frequency.

This process is called code correlation. There is a maximum correlation if the code

is matched and exactly aligned with the received satellite signal. The carrier frequency

wipe-off is basically the multiplication of the incoming signal by a replicated carrier plus

Doppler in the receiver. Therefore, it is important to determine the Doppler frequency off-

set due to the movement of the satellite and the frequency offset in the receiver’s reference

oscillator compared to its specified frequency. This is a complete two-dimensional search

to determine which satellites are present in the visible space. Over the years, several ac-

quisition techniques have been developed in both the time and frequency domain, though
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these are not the focus of this thesis [6, Chapter 7]. However, the frequency domain using

the fast-Fourier transform reduces the number of operations and time in which to calcu-

late the solution. Perhaps this is the reason it is being widely employed in commercial

receivers and also in this work.

Signal Tracking After the search of the visible satellites by the acquisition algorithm

is finished, the next step is to track the satellite until it disappears from the visible space

or the signal-to-noise ratio (SNR) drops below a threshold, and is referred to as tracking
[6, Chapter 8]. The tracking is repeatedly performed, for both the frequency and code

domains, in order to maintain the replica carrier-frequency and the code-phase aligned

with changes occurring over time. Therefore, the core of the tracking algorithms is the

code-tracking loop (DLL) and the carrier-frequency tracking loop (PLL). At first, the PLL

adjusts the error in the carrier-frequency according to the received signal and the previous

iteration replica of the carrier-frequency. The new replica is multiplied by the incoming

signal to wipe off the carrier frequency. The code-phase error is adjusted by applying

three-way parallel multiplication using the early, prompt and late codes. In the last step,

the baseband signals multiplied by prompt codes are integrated and dumped to calculate

the navigation message, which has a duration of 20 ms.

2.2.3 State-of-the-art GNSS receivers
Before discussing the GNSS antennas and its related properties and requirements, a re-

view of the current state-of-the-art receivers is necessary to analyse the miniaturisation

of the GNSS devices. In the literature, the very first integrated chipset of the GPS FE

was introduced in the early 90s [96]. This was based on the gallium arsenide technology.

However, this was replaced by low-cost and popular complementary metal oxide semicon-

ductor (CMOS) technology suitable for the L-band. Sometimes in the literature, silicon

germanium has been proposed, which provides lower noise compared to the CMOS tech-

nology, but it is also more expensive. A brief list of the GNSS receiver architectures for

different technologies and their performance limitations are given in [7, p. 20].

Nowadays, many semiconductor companies provide complete GNSS receiver chipset

solutions. For information on the two oldest chipset solutions with independent FE and

baseband signal processing modules, please see [7, p. 21-22]. In order to get an idea of

the size of modern receivers and technology, five modern highly miniaturised available

complete GNSS chipset solutions are presented in Table 2.1. These are integrated designs

for the FE module and the baseband signal processing module. Generally, the input of

the receiver is directly connect to the passive or active antenna output, whereas the output

of the receiver is the decoded GPS navigation message output. The ublox M8030 is the

smallest of all with a footprint of 3 mm×3 mm and has the highest receiver sensitivity. All

are compatible with the available GNSS constellations except Buffalo and Furano, which

are limited to GPS and GLONASS. Note, the mentioned chipsets operate only within the
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L1 frequency and do not yet take advantage of the available multi-band signals for better

accuracy and robustness. The incorporation of compatibility with these signals is planned

in the near future when the modernisation of the satellites is completed.

2.3 Types and features of antennas
An antenna is the eye and ear of any receiver, which provides electromagnetic vision and

a hearing interface to the outer world. Thus, a well-designed GNSS antenna is critical

to a reliable and low-noise receiver. However, the design of the antenna is of secondary

importance to the GNSS system, creating the necessity for a simpler, cheaper and smaller

antenna design. Nonetheless, due to notoriously weak satellite signals arriving from all

directions and coverage at the L-band, i.e. free-space wavelength up to 25 cm, the antenna

design process becomes complex and challenging to meet the demands of reduced costs,

fabrication simplicity and small form factors. In order to interpret the antenna specifica-

tions for GNSS applications, the fundamentals are introduced in terms of crucial parameter

parameters like impedance bandwidth, polarisation, and radiation. In consideration of the

needs of more precise and accurate positioning, additional requirements of phase-centre

stability and multipath/interference suppression are also presented.

2.3.1 Antenna gain
The total radiated power Prad is found by integrating the flow of the Poynting vector

through a closed surface. With the surface of integration defined as a sphere of radius

r, which is large enough to hold the far-field approximation to be valid, then the Prad is

given by [3, Equation 2.13]:

Prad =
1

2ηo

∫ 2π

0

∫ π

0

| �E(r, θ, φ)|2 cos θdφdθ. (2.2)

The ηo is the intrinsic free-space wave impedance, which is approximately equal to 377 Ωs.

θ ∈ [−π/2, π/2] where zenith refers to θ = π/2 called "elevation". In the far-field electric

field, �E is transformed into

�Eo(θ, φ) = r · �E(r, θ, φ)ejkr. (2.3)

The far-field electric field consists of two orthogonal components given by Eo
θ and Eo

φ,

where the radial component is zero in the far-field zone. Therefore,

| �Eo(θ, φ)|2 = |Eo
θ(θ, φ)|2 + |Eo

φ(θ, φ)|2 (2.4)
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Now, if the normalised far-field pattern is introduced, then the normalised far-field electric

field is donated by �F (θ, φ), which is given by [26, Equation 4]:

|�F (θ, φ)|2 = 4π

2ηo

| �Eo(θ, φ)|2. (2.5)

This �F (θ, φ) refers to the complex amplitude realised gain of the antenna with respect to
an ideal isotropic radiator. This includes the ohmic as well as the mismatching losses.

Now, the radiated power (2.2) using (2.5) becomes,

Prad =
1

4π

∫ 2π

0

∫ π

0

|�F (θ, φ)|2 cos θdφdθ. (2.6)

In the case of navigation receivers, the desired signal is RHCP. Therefore, the amplitude

realised gain of the RHCP component in far-field is FRHCP(θ, φ). An ideal RHCP isotropic

radiator would have �F (θ, φ) = [FRHCP(θ, φ) FLHCP(θ, φ)] = [1 0].
The accepted power Pacc of the antenna is related to the input power Pin and the re-

flected power Pre according to

Pacc = Pin − Pre. (2.7)

If the incident and the reflected power waves on the antenna input terminals are defined by

complex vectors �b and �a respectively, such that Pre = �b*�b = |�b|2 and Pin = �a*�a = |�a|2 for

the single antenna. Therefore, (2.7) becomes

Pacc = |�a|2 − |�b|2, (2.8)

With�b = �Γ�a, where �Γ is the complex reflection coefficient of the antenna. Also, assuming

the normalised incident power wave, i.e. |�a|2 = 1. Putting this into (2.8) it becomes,

Pacc = 1− |Γ|2. (2.9)

The relationship between the total radiated power and the accepted power can be expressed

as:

Prad = Pacc − Ploss, (2.10)

here, Ploss represents the ohmic losses within the antenna. Therefore, Prad includes the

complete parameters of the antenna and shall be used for the performance analysis of the

antenna. In the case of a lossless antenna, Prad = Pacc. It is worth mentioning that the

derivations above are valid for both the transmitting and the receiving cases due to the

reciprocity of the antennas. In the ideal receive case, the Prad notation is replaced by Prec.

The characterisation and performance of the fixed pattern navigation antenna are de-

termined by several parameters mentioned above, but of these gain and beamwidth are the

most important factors. The GNSS receiver antennas need to have RHCP. If an isotropic
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Figure 2.4: Radiation pattern contour (solid grey line) requirements for a GNSS antenna with a

sharp masking angle to suppress ground reflections.

lossless RHCP antenna is assumed, then the maximum |FRHCP|2 = 1 or 0 dBic. If the

area of reception is reduced to the upper hemisphere with a restricted elevation minimum

masking angle. Because, it is expected that reception below this angle will make the re-

ceiver vulnerable to multipath, and ground-reflections. Keeping this, and masking angle

αm = 0, the lossless antenna can achieve the maximum realised gain |FRHCP|2 = 3 dBi. A

masking angle restriction increases the maximum possible value of the realised gain by a

factor of (1−sinαm), which at αm = 5o is increased to approximately 3.4 dBi. Obviously,

increasing the masking angle will proportionally increase the realised gain or directivity

of the antenna because of the required radiation area due to the decreased beamwidth re-

quirements. However, this will reduce the number of received satellites. The reduction

of the available satellites directly influences the positioning capability and accuracy of the

receiver.

Effect of radiation pattern on positioning accuracy: The effects of the various error

sources between the receiver and the satellite are collectively denoted as user range error

(URE). However, the standard deviation of the overall solution is a multiple of URE and

the geometric dilution-of-precision (GDOP) of the acquired or visible satellite geometric.

The GDOP is the uncertainty of all the estimated ranging parameters including latitude,

longitude, height, and the clock offset. The GDOP defines the confidence value in the esti-

mated position. The GDOP can be calculated using the geometric location of the satellites,

and is described by the following matrix [34, Chapter 11]:
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zenith
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Figure 2.5: Radiation pattern influence of a low- (solid line) and high-gain (dotted line) antenna

types, such as a rectangular Patch and Horn antenna [3].

Table 2.2: Visible satellites constellation and their respective angular positions recorded in Ilme-

nau, Germany.

sv
number

elevation
(degree)

azimuth
(degree)

sv
number

elevation
(degree)

azimuth
(degree)

11 66 282 27 26 158

32 54 213 28 24 306

4 53 284 20 11 233

1 45 285 24 3 26

14 39 89 18 1 55

Ῡ =

⎡
⎣dp1 dq1 dr1 1

. . . .
dpk dqk drk 1

⎤
⎦ , (2.11)

where, dpk = cos θk · sinφk, dqk = cos θk · cosφk, and drk = sin θk. The k = 4, that is

the number of satellites used for the calculation of the receiver’s position. Now, the scalar

GDOP is given by:

GDOP =
√
tr{[ῩTῩ]−1}. (2.12)

Example: The visible satellite constellation recorded in Ilmenau, Germany at 03 :
30 pm , on 23rd October, 2014 is shown in Fig. 2.4. The satellite vehicle (SV) values

along with their respective positions in elevation and azimuth are given in Table 2.2.

First, assuming an antenna with narrow beamwidth, high-gain, and maximum radiation in

zenith directions with masking angle of 30o. The corresponding gain pattern of the antenna
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is depicted in Fig. 2.5. Following these specifications, the antenna is capable of acquiring

only five high- and medium-elevation satellites. Considering four of these satellites, high

elevation, i.e. sv number 11, 32, 4, 1 for the positioning calculations. Then, the GDOP
using (2.12) is 107, which is significant. But, if all the lowest-elevation satellites are

considered, then the GDOP decreases to 18. On the other hand, if the antenna is designed

with a wide beamwidth antenna and low-gain sufficient enough to acquire the satellites.

This is depicted by the solid line in Fig. 2.5. This type of antenna is able to acquire all the

visible satellites. For this type of antenna, the minimum possible GDOP is reduced to 3.5
by choosing one satellite close to zenith and the remaining three from the lowest elevation.

In fact, Parkinson in [34] has shown that with four satellites, one at the elevation angle

90o and azimuth 0o, and three at elevation angle of 5o with equally spaced azimuth angles

result in the minimum GDOP of 1.73. This is the lowest limit, though, in general the

GDOP equals approximately 3.5, which is considered acceptable. One can conclude that

the beam pattern or beamwidth of the antenna does affect the positioning accuracy, and

it becomes preferable to have wider beamwidth in order to acquire both low- and high-

elevation satellites to achieve the low GDOP . This also signifies the influence of the

low-elevation satellites in the positioning accuracy.

Carrier-to-noise density ratio: The capability of the receiver to acquire and track the

satellites depends on the CNR χo(dB-Hz). This includes the noise contribution from the

environment, antenna and the first-stage amplification. In the theoretical models developed

in this work, the noise contribution of the receiver components after the first amplification

stage FE are assumed to be negligible. The available carrier power depends on the realised

gain of the antenna in the given direction and is interpreted as

C(θ, φ) = Psat|FRHCP(θ, φ)|2 (dBW), (2.13)

Psat, which is the reference received satellite signal carrier power using an ideal isotropic

RHCP radiator. The available received power from Galileo and GPS satellites on earth can

be found in [4, p. 565]. The noise power spectral density ratio, referred to as the input of

the first stage amplifier, typically a low-noise amplifier (LNA), can be derived using the

system noise temperature Tsys, and is given by:

N dB
o = 10log(kBTsys) (dBW/Hz), (2.14)

where, Tsys = TA + TLNA (K). (2.15)

kB is the Boltzmann constant, which is equal to 1.38 × 10−23 J/K. The antenna effective

noise temperature TA, in Kelvins (K), includes the contribution of the captured sky-noise

and the ohmic and mismatching losses. This can be calculated using the radiated (2.6) and

accepted power (2.9), which normalised to the Pin convert into the respective efficiencies,

therefore

TA = Tenvηrad + Tamb(ηacc − ηrad) (K). (2.16)
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Here, ηrad = Prad/Pin as Pin = 1W. Above Tenv represents the environmental temperature,

which is a scalar quantity denoting the integration of the angular temperature function in

the upper-hemisphere space. For simplification, it is assumed equal to 100 K with uniform

distribution in the upper hemisphere. Following the assumption that the antenna and the

analogue receiver are perfectly matched given Pacc = Pin and |�Γ|2 = 0. This leads to

ηacc = 1 in (2.16).

Normally, the noise figure (NF) of the LNA can be obtained from the specification

parameters of the amplifier. Therefore, the temperature of the LNA at the system reference

temperature which is considered here to be the ambient temperature, and is given by:

TLNA = (NF − 1)Tamb. (K) (2.17)

The received χo of the satellite from a given direction can be obtained using (2.13) and

(2.14)

χo(θ, φ) = (C(θ, φ)/No)
dB. (dB-Hz) (2.18)

Therefore, higher the antenna gain and lower the system noise temperature better the

CNR of the receiver. The higher CNR will ensure early acquisition of the satellite but

maintaining higher gain in all upper-hemisphere is difficult to achieve as discussed in

the last section, therefore a trade-off between CNR and maximum number of satellites

acquisition is considered in the antenna design.

2.3.2 Polarisation
The transmitted GNSS satellite signals are RHCP because the circular polarisation is unaf-

fected by the polarisation change in the ionosphere layer due to the Earth’s magnetic field.

Therefore, the receiving antenna needs to be designed and optimised for maximum recep-

tion in the RHCP. In reality, the RHCP antenna will always possess the content of left-hand

circularly polarised (LHCP), the cross-polarisation. Nevertheless, the antenna design can

be further optimised for minimum LHCP reception. It is important to minimise this in all

directions, particularly above the masking angle in order to reject multipath reflections.

A figure-of-merit determining the purity of the RHCP is defined as the axial ratio. It

can be expressed as

AR(θ, φ) =
|FRHCP(θ, φ)|+ |FLHCP(θ, φ)|
|FRHCP(θ, φ)| − |FLHCP(θ, φ)| . (2.19)

In the case of a pure RHCP antenna with no LHCP, i.e. FLHCP = 0, the AR = 1 or

0 dB. The discussion is limited to navigation receiver antennas only such that AR = 0 dB
defines the best case, and AR = ∞ dB is the worst case.
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Table 2.3: Minimum RHCP gain and maximum axial ratio standard for GNSS airborne antennas

at L1 band [1].

elevation angle
(degree)

minimum RHCP gain
(dBi)

maximum axial ratio
(dB)

>45
-2

3

15-45 6

10-15 -3
8

5-9* -4.5

* At horizon maximum allowed antenna RHCP gain is −2 dBi.

Sometimes, a term called cross-polarisation discrimination (XPD) is also used to define

the circular-polarised antennas. This is defined by

XPD(θ, φ) =
|FRHCP(θ, φ)|
|FLHCP(θ, φ)| . (2.20)

Using (2.19) and ((2.20)), the axial ratio can also be expressed in terms of XPD,

AR(θ, φ) =
XPD(θ, φ) + 1

XPD(θ, φ)− 1
. (2.21)

Generally, the navigation antenna polarisation performance is indicated by the axial ra-

tio. This term will be applied to define the performance of the antenna. Based on the

transmitting satellite and receiver antenna axial ratio, there is a polarisation mismatch loss

according to [8]

LPM = −10log10

[
1

2

(
1 +

4ARsARr + (AR2
s − 1)(AR2

s − 1) cos 2Δθ

(AR2
s + 1)(AR2

s + 1)

)]
. (dB)

(2.22)

The minimum requirements for a satellite antenna axial ratio ARs = 1.8 dB [132,

p. 19]. If the receiver antenna axial ratio is ARr = 3 dB, and with relative tilt angle

between the major axes of the polarisation ellipses of the satellite and the receiver antenna

Δθ = 0o, the polarisation mismatch loss using ( 2.22) is 0.02 dB, whereas for ARr = 6 dB
it increases to 0.2 dB. The minimum loss occurs when the ARr = ARs. In case of the

perfect linear polarised receiver antenna, ARr = ∞. Therefore, if the satellite antenna is

perfectly RHCP, then one can expect a polarisation mismatch loss of at least 3 dB, which

is not acceptable. This may also occur for RHCP patch antennas when the satellite signal

impinges on the low elevation, and the received polarisation becomes linear because of the

diminished horizontal component of the radiated field due to the presence of the perfect

conducting ground-plane.
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Figure 2.6: Different single-element GNSS antenna types used in commercial navigation devices

[1]. (a) High permittivity truncated square patch antenna. (b) Dielectric loaded quadrafilar helix

antenna. (c) Surface mount microstrip technology based loop antenna.

2.3.3 Phase centre
The phase centre in terms of the IEEE standards is defined for an antenna as the location

of the point with respect to the antenna, which, taken as the centre of a radiation sphere,

provides a constant phase either over the entire surface or at least over the portion of the

surface with significant radiation [140]. However, in reality the measured phase over the

radiating surface will have variations called phase centre variations. These variations may

occur over a range of angles and frequencies. Similarly, the phase centre where all the

wanted signal is collected may not collide with the actual antenna reference point, for

example the physical centre of the antenna, but may depend on the type or design of the

antenna as well. This offset of the phase centre from the antenna reference point is called

the phase centre offset. This parameter is typically mentioned in the data-sheets or manuals

of the commercial antennas to improve receiver positioning accuracy calculation. In this

work, it is assumed that the absolute phase centre of the radiation is the physical centre of

the antenna array. Further descriptions and effects of phase centre variations on the GPS

measurements can be found in [35], [104].

2.3.4 Commercial GNSS antennas
The requirements of the RHCP antenna types for the receiver and satellite are different.

The satellite antennas need to be high-gain directional antennas. The receiver antennas,

depending on the user requirements, vary from fixed-radiation pattern antennas (FRPA) to

control-radiation pattern antennas (CRPA). In the case of the FRPA, its ideal orientation

is omni-directional in the upper-hemisphere with a sharp masking angle in order to cover

maximum satellite reception. The limitation of this angle varies depending on the type of

application. The antennas comprising both acceptable gain in the upper-hemisphere and

lower axial ratio are generally difficult to design along with large ground-plane structures.

Microstrip antenna The most popular and widely used antenna in GNSS receivers is
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the microstrip antenna, typically the patch antenna. The patch antennas are superior be-

cause of their low profile, compact size, light weight, ability to conform to their shape and

low manufacturing cost. The integration of these antennas with the circuitry of the receiver

is easy. The amount of radiation can be reduced significantly using ceramic substrates that

offer high dielectric constants, i.e. greater than 40, with high-quality factors.

Typical values associated with these antennas are 60o 3–dB beamwidth, which makes

them excellent candidates for use as receivers. The impedance matching bandwidth is

normally 2–4%. This can be enhanced by increasing the height of the substrate, which

has a high dielectric constant. However, increased thickness leads to the propagation of

surface waves that need to be considered to optimise the antenna properties. This may lead

to reduced gain at high elevation instead of higher gain at low elevation.

Quadrifilar helix antenna (QHA) This is designed using an array of four helically

shaped antennas wrapped around a cylinder. This produces a broad 3–dB beamwidth,

i.e. 120o, for the upper-hemisphere with low axial ratio. The cylinder can be made of

dielectric material to reduce the size and cost of the antenna. This type of antenna is

especially suitable for use in mobile devices. It is also a narrow-band antenna, but is not

affected by the common mode noise in the ground-plane. In addition, the axial ratio is

not altered by the ground-plane dimensions in the main-lobe direction, in contrast to patch

antennas.

Loop antenna Hand-held devices like mobiles, personal digital assistants, etc. have

stringent space and cost requirements. Also, the antenna pattern needs to accommodate

different orientations of the device. This leads to inexpensive wire antenna designs that

are currently employed in commercial devices, e.g. loop antenna. These antennas are

linearly polarised, which precipitates a loss of at least 3 dB for the incoming satellite

signals. However, it has been shown that in urban environments with dominant multipath,

a linearly polarised antenna performs equally well as compared to a RHCP antenna [105].

The mounting on the edge of the device printed circuit board with surrounded ground-

plane from three sides gives better flexibility. The antenna efficiency is 40–50% with

a linear polarised realised gain up to 2 dBi. This type is not suitable, due to the high

reception level of multipath, for the advanced robust navigation receivers where major

concern is high positioning accuracy and integrity.

2.4 Robustness requirements and challenging environ-
ments

In conjunction with precision and accuracy of the navigation receivers, it is also desirable

to provide robustness and reliability in challenging or harsh environments. These environ-

ments may be limited by interference, multipath, and atmospheric effects.
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a) b) c)

Figure 2.7: Interference scenarios for the GNSS antenna mounted on the roof-top of a car. (a)

Intra communication system out-of-band interference, (b) GNSS repeater spoofing, and (c) in-car

jammers or PPDs.

2.4.1 Interference
The first type of impairment that can degrade GNSS performance is the interference. This

may result in degraded navigation accuracy or sometimes complete loss of positioning

estimation. Any undesired radio frequency source that is received by the GNSS receiver is

classified as interference. These can be divided into two main types: in-band, and out-of-

band interference. Normally, out-of-band interference is categorised as unintentional, e.g.

radio emissions from the licensed RF systems in the vicinity of the GNSS spectrum like

GSM-1800. This type of interference is typically suppressed through selective filtering in

the receiver analogue front end, which in modern receiver architectures, is prevalent [97].

On the contrary, in-band interference is mostly considered intentional with an aim to

disrupt the GNSS receiver and completely block the positioning information, or to produce

false position. The two classes of such types of interference are jamming and spoofing. By

jamming, high-power radio frequencies are transmitted to block the weak GNSS signals.

In spoofing, an artificial satellite signal resembling the set of normal GNSS signals is

broadcast to deceive the receiver with false position.

The theoretical framework for the effect of interference on the receiver estimation of

the CNR for GPS acquisition and tracking algorithm is thoroughly presented in [106],

[107]. This work is extended for the estimation of the CNR for the Galileo signals in the

doctoral dissertation of Balei [91]. In summary, the estimations of the CNR after the cor-

relation stages are more accurate and reliable, since the spectral shape of the interference

inside the bandwidth of the front end has no effect. Galileo E1 signal is more robust to

CW interferers at the centre frequency, whereas GPS delivers better robustness against

CW interferers that are away from the centre frequency. For a single antenna element, the

effective directional CNR influenced by the carrier tracking, demodulation and acquisition
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can be expressed according to [106, Equation 5] as:

χ(θ, φ) =
C(θ, φ)hs

Nohs + CJ(θJ , φJ)hc

where hs =

∫ Bs/2

−Bs/2

Hs(f)df, hc =

∫ Bs/2

−Bs/2

Hs(f)HJ(f)df.

(2.23)

Hs is defined as the power spectral density normalised to unit area over infinite limits, and

C(θ, φ) is given according to (2.13). It is assumed that FE bandwidth is wide enough to

contain all signal power, which leads to hs = 1. hc is the spectral correlation coefficient.

The received jammer signal is CJ(θJ , φJ) = PJ · |F (θJ , φJ)|2, where PJ is the jammer

power, in dBW, received by an ideal isotropic antenna. Consider the case of a narrow

band jammer at the centre of the signal band with bandwidth much smaller than signal

bandwidth such as BJ << Bs. Therefore, the signal is constant over the jammer band,

which means hc is a constant depending on the function of the Hs(f) or the power spectral

density function of the signal, with interferer band directly centred at the signal band

hc = Hs(0). For GPS signals having a conventional binary phase shift keying (BPSK)

modulation with code period of tc, power spectral density function is given by:

Hs(f) = tc sinc
2(πftc),

with Hs(0) = tc.
(2.24)

Example: Consider a C/A-code GPS receiver with thermal noise power spectral den-

sity No = −204 dBW/Hz and received satellite signal power of Csat = −161 dBW with

antenna realised gain in the direction of the signal 3 dBi. Therefore, the carrier-to-noise

density ratio χo = 46 dB-Hz without interference while ignoring the implementation

losses within the receiver. The receiver bandwidth is considered to be 4 MHz. The in-

terferer signal impinges on the low elevation with antenna-realised gain of −3 dBi in its

direction and bandwidth of 4 kHz. The numerically estimated effective CNR is shown in

Fig. 2.8, which gives an insight into the CNR degradation due to a single jammer. The

CNR drops to 38 dB-Hz with jammer-to-signal ratio (JSR) of 20 dB. In comparison to

the C/A-codes, P-codes used by military exhibit 10 dB better robustness in the case of the

narrow band interferer.

The signal characteristics of civil GPS jammers have been described in [108]. These

jammers range from high-power continuous wave (CW) signals to chirp signals where

the CW frequency is incorporated within the signal bandwidth over time. Previously, the

jamming was employed by the military only, but recent advancement of the cheap, though

illegal, personal privacy devices (PPD) have posed a serious jamming threat to the public
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Figure 2.8: Numerical effective CNR for single narrow band interferer with wide FE bandwidth,

i.e. 4 MHz. The grey line indicates, χo = 38 dB-Hz, the typical threshold of the navigation

receiver to acquire the satellite signal without integration [7].

use of GNSS systems [109]. The potential threats of these jammers have been discussed

in [21]. An experimental survey of the commercially available GNSS receiver operation

in the presence of these PPDs has been carried out in [98]. The result shows that with a

JSR of 25 dB only, the PVT solution is lost for more than 90% of the time, and in the case

of a solution, the positioning error accuracy is increased by 100–200 m in range, clearly

sabotaging the SoL applications.

2.4.2 Multipath
As mentioned earlier, the GNSS signals can be reflected by buildings, walls, vehicles, and

the ground. Therefore, the reflected signals will combine constructively or destructively

with the received direct line-of-sight signal. This phenomenon is called multipath. A

typical scenario for multipath is shown in Fig. 2.9. This has a detrimental effect on the

code correlation peak estimation, which results in false satellite code phase estimations.

In this case, the constructive reflection phase leads to positive ranging estimates, while

negative ranging estimates for the destructive reflection. The strength and path delay of

the reflections determine the magnitude of the code tracking or phase error. The maximum

pseudo-range error due to multipath can be up to half of the code chip, i.e. 150 m for

C/A-codes [20]. In the case of the non-line-of-sight criteria with no visible sky, like in

urban areas with tall skyscrapers, the presence of multipath signals have a severe effect

on the positioning and tracking algorithms. The multipath signal is mostly LHCP or ar-
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Direct path

Reflected path

Ground reflection

Figure 2.9: Multipath scenario for a satellite signal in an urban environment.

bitrarily polarised. On the contrary, the realistic GNSS receiver antenna is purely RHCP

in the high-elevation angles, whereas at low elevation the RHCP and LHCP receptions

are comparable. Therefore, the multipath impinging from high elevation angles does not

affect much the code-tracking algorithms. However, the low-elevation multipath from the

ground or sea may undermine the receiver performance and need to be mitigated by mask-

ing using antenna design [141] or digitally by choosing only medium- and high-elevation

satellites for positioning calculations.

2.4.3 Atmospheric effects
The GNSS signal traverses and interacts with Earth’s atmosphere during propagation be-

fore being captured by the receiver. In terms of GNSS applications, the Earth’s atmosphere

can be divided into two major portions: troposphere and ionosphere. The troposphere re-

gion is the closest of the two ranging from 0 to 20 km in the direction of space. It consists

of all the meteorological phenomena like clouds and precipitation. The ionosphere is

ionised by the incident solar radiation, which creates a small fraction of positively charged

ions and free electrons. The density of the free electrons fluctuates with the distance from

Earth and the time of day. Further details about the variations of the ionospheric layer can

be found in [36].

The primary influence of the atmospheric layers on the electromagnetic signal propa-



2. Robustness of Global Navigation Satellite Systems 37

direction-of-
arrival

position, 
velocity and 

time estimates
beamforming/
tracking svn

interference

null IMU

Figure 2.10: Multi-antenna receiver architecture with independent adaptive beamforming, and

DOA estimation for each satellite while suppressing the interference. IMU stands for the inertial

measurement unit, which may provide the attitude estimations.

gation is the atmospheric refraction. This propagation also affects the amplitude and the

phase of the signal depending on its frequency. In case of the GNSS signal, this is ap-

plicable and for the troposphere can be from 2 to 10 meters, while in the ionosphere it is

more severe, ranging from 10 m up to complete loss of the signal. Over the years, several

techniques using dual-band receivers have been used to nullify the atmospheric effects in

critical applications, e.g. surveying, mining, and mobile robots.

In October, 2003 the electromagnetic storm in the Earth’s atmosphere during the 23rd

solar cycle severely disturbed the ionospheric region causing a large-scale navigation sig-

nal blackout in Sweden [37]. Even in the case of the dual-band receiver errors up to few

centimetres were reported, causing severe disruption to crucial applications mentioned

earlier.

2.5 Multiple-antenna based GNSS receivers
Recently, multiple-antenna based navigation receivers have received significant attention

in the research community. A multiple element receiver can be classified into FRPA or a

CRPA. FRPA in this case mainly serves as the high-directional antenna, it’s easy to imple-

ment and integrate into the existing receiver but has limited benefits against the degrada-

tion of the signal due to the multipath, interference and atmospheric effects. However, the

CRPA provides the adaptation capability to align the maximum antenna radiation in the

desired direction of the satellite or the signal-of-interest while minimising the radiation in

the unwanted signal direction. This provides the capability for monitoring, investigating

and counteracting the malefactors due to the earlier mentioned challenges to the navigation

receivers. A block diagram of the multi-antenna adaptive navigation receiver architecture
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Figure 2.11: Different multiple-antenna based GNSS systems. NavSYS HAGR GNSS sydtem

using (a) 16-element antenna array, (b) seven-element antenna array, (c) DLR GALANT four-

element GNSS system.

is sketched in Fig. 2.10. This allows for the maximum gain in the direction of the satellite

and a buffer for the interference to increase the CINR ratio.

In 1999, NAVSYS presented test results using multiple-antenna with digital beamsteer-

ing for GPS receivers. The digital beamforming is performed adaptively, and in parallel,

for each visible satellite. The complete system is called a high-gain advanced GPS receiver

[110]–[112]. In the beginning, these antenna arrays consisted of 7-, 16- and 100-element

antenna arrays. It is shown that the use of antenna arrays provided a gain from 10 to

20 dB in the direction of desired satellites, which is responsible for improving the CNR

and position measurement accuracy. In [113], [114], similar arrays are used to investigate

and mitigate the effect of multipath on the receiver. The 7-element antenna array had a

footprint of 18 cm with an inter-element separation of d = λ/2, where λ is the free-space

wavelength, which is for the L1-band approximately 10 cm. The main motivation behind

the construction of such receivers at that time was to support the anti-jamming capability

of the receivers employed by military aircrafts and vehicles. Therefore, the size of the

antenna array was not restricted.

The institute of communication and navigation centre at German aerospace centre

(DLR/IKN) in [22], [100], [38] presented a GNSS multi-element receiver targeting the

SoL public applications including surveying, aviation, maritime, and civilian users. It

provides the capability of direction-of-arrival (DOA) estimation, giving altitude informa-

tion, beamforming with interference and multipath mitigation. This is a robust solution

against the challenges encountered by the integrity and accuracy of the GNSS receiver.

The antenna array consisted of four elements in a square arrangement with a footprint of

approximately 30 cm.

Several dissertations have been written on the adaptive array processing of the

multiple-antenna GNSS receiver in the past decade. In [89] software-based implemen-

tation techniques of adaptive array receivers for interference rejection are presented.

[92]along with array-processing techniques has discussed several calibration techniques

to improve the performance of such receivers. Also, work regarding the array processing
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algorithm implementation for multipath mitigation has been discussed in [88].

The entire antenna arrays employed in the above-mentioned work, which are related to

the development of a multi-element GNSS receiver, included the inter-element separation

of half of the free-space wavelength. The major merit of this is obviously the minimum

mutual coupling between the elements. In the L-band, this separation is significantly large,

e.g. at L1 is 10 cm. This dimension is large as compared to previously mentioned single

element base navigation receivers currently used in the market. In contrast to the military,

the public communication devices integrated with navigation receivers have strong restric-

tions on the size requirements, which make use of multi-element antenna-based navigation

receivers an unattractive solution. Therefore, it is important to reduce the inter-element

separation in order to decrease the overall dimensions of the antenna array generating the

possibility of its integration into the modern commercial navigation receivers. This will

surely provide the robustness, integrity, and accuracy of measurements that are critical to

modern SoL applications.

Compact antenna arrays have recently received significant attention in the litera-

ture [102], [103], [39]–[43]. This offers the reduced inter-element separation solution

and miniaturisation of the antenna array size. However, it experiences inherent mutual

coupling, which degrades the radiation performance of the antenna array considerably.

Several approaches have been investigated and implemented to mitigate the effects of mu-

tual coupling [28], [29], [44]–[46]. This is somewhat similar to restoration of the radiation

properties of the compact antenna arrays, though it is not possible to achieve miniaturisa-

tion and performance equivalent to a conventional antenna array having d = λ/2. Most

of these compact antenna arrays have been designed and targeted for mobile communica-

tion applications. Therefore, it is important to characterise and devise a general strategy

to optimise and design a compact navigation antenna array. This will be the focus of the

following chapters.

2.6 Summary
The review of the basic principles of the GNSS technology is presented for a better under-

standing of its applications, which is primarily positioning. Moreover, the characteristics

of the satellite signals are discussed, particularly C/A-codes.

The main GNSS receiver components include antenna, FE and the baseband signal

processing. The antenna is the pivotal block in the receiver chain and its properties greatly

influence the performance of the receiver. A low-gain antenna with minimum requirement

of −2 dBi along with 3 dB beamwidth requirement of greater than 120o and sharp cut-off

for a masking angle of 5o are typical for GNSS receiver antennas. These gain requirements

along with low masking angle designed to suppress the ground reflections are difficult to

achieve. The most common type of antenna fulfilling these criterion is the microstrip
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patch antenna. This provides moderate gain in the upper hemisphere with low masking

angle. However, it does suffer from high cross-polarisation content in the lower elevation,

which makes the receiver vulnerable against multipath. On the other hand, the quadrafilar

helix antenna provides low cross-polarisation, but doesn’t provide masking angle at the

horizon for suppressing ground reflections and also has a non-planar structure, which may

not be attractive for certain commercial communication devices. Therefore, it is critical to

consider the intended receiver implementation while designing and choosing the type of

antenna.

The challenges and vulnerabilities to existing GNSS receivers include multipath, at-

mospheric effects, and interference. The multipath and atmospheric effects degrade the

accuracy and integrity of the positioning, but these challenges have been thoroughly ad-

dressed in the last decade by upgrading the satellite and receiver with new signals that

need to be considered at the receiver as well, an example of which is dual-band stand-

alone GNSS receivers with L1 and L2C capability to correct for the ionospheric effects,

which improve the accuracy to the level of centimetres. The interference can be inten-

tional such as jamming and spoofing or unintentional, which is generally referred to as

transmissions in the vicinity of the GNSS bands by other communication system. The

in-Car or PPD jammers have emerged as greater threats to the SoL applications like avi-

ation and maritime. Moreover, the malicious blocking of GNSS for strategic and privacy

reasons is ever present. With the advancement of autonomous transport systems, spoofing,

which confuses the GNSS receiver with fake satellites and false position solutions, become

inevitable and needs to be addressed by modern receivers.

The multi-element antenna GNSS receivers, with the aid of advanced adaptive beam-

forming and nulling, provide an advanced solution to the challenges mentioned above,

though conventional inter-element spacing of half of the free-space wavelength, is unsuit-

able for miniaturised communication devices. This inter-element spacing is favoured be-

cause it gives minimal mutual coupling, which degrades the radiation performance of the

antenna array. This hinders the miniaturisation of the overall GNSS receiver and presents

challenging tasks for reducing the inter-element separation while mitigating the mutual

coupling effects. Therefore, it is important to characterise the mutual coupling effects on

the performance of the GNSS antenna array. The design parameters for evaluating the

compact antenna arrays with requirements of the GNSS need to be investigated, which is

the motivation of the next chapter.



Chapter 3

Evaluation Methodologies of Compact
Planar Antenna Arrays

Antenna arrays have become viable components of communication systems because of

their capability to meet modern standards of robustness, integrity, quality and reliability

for public use. This integration has been further facilitated by advancements in the dig-

ital signal processing techniques, which are simpler to implement and at the same time

provide faster computations. Moreover, miniaturisation of analogue integrated circuitry

has made it possible to integrate such systems into space-limited communication devices.

One commercial success story is the implementation of the multiple-input-multiple-output

(MIMO) in mobile communication systems such as long-term evolution (LTE) [47].

However, overall antenna array size in these modern miniaturised receivers has been

mostly limited to the separation between neighbouring elements equal to d = λ/2, thus

limiting the overall compactness of the system [48]. In the case of the L-band in particular

where λ ≈ 20 cm, this significant separation among elements becomes a limiting factor

for designing a compact array. A widespread application in L-band is the GNSS, where

multi-element antenna arrays are becoming attractive for accurate and robust reception of

the navigation signal in the presence of interferers. As a result, in addition to compactness,

this application demands efficient arrays with maximal diversity capability or all degrees-

of-freedom to be equally efficient and low-noise receivers.

Compact arrays with an inter-element separation d < λ/2 suffer from mutual coupling

[24], [25] and, hence, degrade overall system performance. Digital beamforming at the

baseband could mitigate the effects of coupling for a compact array to some extent, though

at the expense of reduced dynamic range or radiative diversity degrees-of-freedom [27],

[102]. Recently, techniques for reducing coupling have been reported, using DMN [90] in-

volving eigenmode excitation, or defected ground structures (DGS) as an electromagnetic

band-gap (EBG) configuration in printed antennas [115]. In conjunction with addressing

coupling reduction between elements, it is necessary to optimise the array design with re-

41
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spect to its diversity degrees-of-freedom. Several methods involving, e.g. an analysis of

the super-directivity sensitivity factor, mutual impedance, or active reflection coefficient

have been identified [3], [9], [49], but lack complete scalable performance characterisa-

tion. In [43], [90], an approach is introduced that utilises eigenmode radiation efficiencies

to analyse the performance of a compact array

In order to evaluate an antenna array, the first step is to model and analyse the pa-

rameters that encompass the effects of power dissipated, i.e. lost within the antenna, and

reflected due to impedance mismatch, along with power radiated in the presence of cou-

pling between neighbouring elements. Power dissipation within the antenna is mainly due

to the losses in the dielectric substrate materials and to the finite conductivity of metal

surfaces. Therefore, their practical characterisation in performance analysis is necessary,

especially in the case of printed antennas. Compact arrays inherit a finite real part of mu-

tual impedance Zij , which results in feed impedance for individual radiators different from

their self-impedance for beamforming, giving rise to reflection losses. All of these effects

negatively affect the total efficiency of the antenna.

This chapter begins with the basic introduction of the mutual coupling in the compact

planar antenna arrays. This is followed by the eigen-analysis of the computed covariance

matrix, using measured realised gain amplitude embedded patterns, to obtain a figure-of-

merit for general compact antenna array optimisation. Next, the relationship and effects

of the eigenvalues on the diversity degrees-of-freedom in terms of diversity gain and loss

are presented. Then, the different compact planar antenna arrays of the ceramic truncated

square patch are simulated and fabricated to identify an optimum configuration for the

construction of the compact navigation receiver in later chapters. In the end, insight into

the polarisation impurity and the direction-finding capabilities of the compact antenna

arrays are investigated.

3.1 Mutual coupling
The electromagnetic interaction and energy interchange between antenna elements in the

antenna array is a phenomenon called mutual coupling. In the case of compact antenna

arrays, the disparity in size between the smaller inter-element separation compared to half

of the free-space wavelength is significant. Before going into the quantitative analysis of

the mutual coupling, an intuitive explanation or examination is discussed to understand

mutual coupling. In Fig. 3.1, the transmit and receive cases for a typical two-element

antenna array are shown.

Mutual coupling in transmit case is depicted in Fig 3.1a with antennas 1 and 2 con-

nected with generators. If the generator for antenna 1 is turned on, a forward wave a1 will

travel in the direction of the antenna. A portion of it will be reflected in the originating

backward wave b1. In the case of the complex conjugate match between the antenna and
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Figure 3.1: Mutual coupling electromagnetic wave path flow (a) from antenna "1" to antenna "2"

when in transmitting mode and (b) from antenna "1" to antenna "2" when in receiving mode at

reference terminating impedance ZL.

the generator, maximum power travels to the antenna and is eventually radiated. How-

ever, due to the presence of mutual coupling, some of the radiating energy is coupled

into the nearby antenna element, causing a current flow in the antenna, some of which is

re-radiated; the rest flows towards the generator b2, which is reflected depending on the

impedance of the generator and its excitation. This re-scattered energy is again re-radiated

into free space and some is coupled again to antenna 1 and so forth. The re-scattered waves

will alter the amplitude and phase of the outward waves from the generators. Therefore,

the resultant radiated energy is a superposition of the radiated and re-scattered fields. This

means the far-field pattern of the transmitting coupled antenna array is not only dependent

on individual excitations of the elements, but also on the coupled parasitic excitations that

originate due to mutual coupling. The amount of mutual coupling in this case depends on

the following:

1. Excitation of the antenna elements;

2. Input impedance of the generators;

3. Radiation characteristics of the individual antenna elements;

4. Geometrical configuration of the antenna array;

5. Inter-element separation d in terms of wavelengths.

Mutual coupling in receive case is depicted in Fig. 3.1b with antennas 1 and 2 con-

nected to the termination loads ZL. The incident plane wave from the far zone Einc is

received by antenna 1, given as b1. Some of it is reflected depending on the mismatch
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a1 that is radiated into the free space. Some of the radiated energy is coupled into the

nearby antenna element 2, which appears as b2. This incoming wave may be reflected,

and if so, it is then re-radiated and coupled again, and so forth. The energy received by

the individual antenna element is the superposition of the incident or direct wave, and the

re-scattered waves coupled parasitically from the neighbouring elements. The amount of

mutual coupling in this case depends on the following:

1. Direction of the incident plane wave.

2. Termination impedance or load impedance ZL.

3. Receiving properties of the individual antennas.

4. Geometrical configuration of the antenna array.

5. Inter-element separation d.

3.1.1 Mutual impedance
The mutual coupling effect in its simplest and fundamental form can be characterised

quantitatively using the mutual impedance originating between the elements of the antenna

array. As the voltage and current relationship of the N element antenna array, the circuit

according to [25], [3, Chapter 8] can be written as follows:

�va = Z̄�ia (3.1)

Here, �va = [v1, v2, ..., vN ]
T and �ia = [i1, i2, ..., iN ] represent the excited voltage sources

and the terminal currents on the antenna elements, respectively. The Z̄ is the impedance

matrix of the antenna array describing the self and mutual impedance

Z̄ =

⎡
⎢⎢⎢⎢⎣

Z11 Z12 . . Z1N

Z21 Z22 . . .
. . . . .
. . . . .

ZN1 . . . ZNN

⎤
⎥⎥⎥⎥⎦ .

The diagonal elements Znn of the Z̄ donate the self-impedance of the nth antenna element,

whereas the non-diagonal elements Znk, are the mutual impedance between the nth and the

kth element of the antenna array.

In the absence of mutual coupling, the non-diagonal elements of the antenna array

matrix are zero. Therefore, the driving point or feed impedance of the individual antenna

element is equal to the self-impedance of each element. The driving point impedance of

the nth antenna element is defined by the following:
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Znd =
vn
in

= Znn +
N∑

k=1 | k �=n

Znk
ik
in
. (3.2)

The presence of mutual coupling leads to a finite value of the mutual impedance. The

measurement of this mutual impedance for the planar antenna arrays is given by [116].

By definition, the conventional mutual impedance is the ratio of the induced open-circuit

voltage of one antenna to the exciting terminal current of the other antenna as described

above. However, Hui et. al [50], [51] have shown that this conventional definition of

mutual impedance cannot accurately measure the mutual coupling effect, due to its de-

ficiency to take into account the direction information of the receiving signals, because

of the requirement one of the antenna elements in the transmitting mode whereas in a

receiving array, all antenna elements are in the receiving mode, being illuminated by ex-

ternal source(s). Hui in [23] also introduced a new method for the measurement of the

improved mutual impedance which is difficult and not easily scalable for larger arrays to

measure because it involves the measurement of scattering parameters of the antenna array

with and without(removed) neighbouring elements. This inadequacy in the measurements

of mutual impedance matrix inhibits its generalisation as the figure-of-merit for compact

antenna arrays.

3.1.2 Consequence of the mutual coupling
The effect of the strength of mutual coupling on the performance of the antenna array

depends mainly on (1) the design of the single antenna elements, (2) the relative distance

and placement of the elements, and (3) the required beam scan volume and the number

of beams. The mutual coupling distorts the antenna array far-field pattern and introduces

impedance variations [24], [25]. The mutual coupling also has detrimental effects on the

polarisation properties of the individual array elements as well, which will be discussed in

the latter part of this chapter.

Another demerit of mutual coupling is due to the feed impedance variation for different

excitations known as the active reflection coefficients. This makes it practically impossible

to match the antenna array elements independently for the entire range of excitations or

incident wave direction of arrivals. For the transmitter, this may lead to the modification

of transmission transfer characteristics.

3.1.3 Surface waves in planar antennas
In addition to the radiated free space wave coupling, the microstrip antennas have the in-

herent capacity for excitation or launch of the surface wave modes as illustrated in Fig. 3.2.

The power trapped in the surface waves is eventually lost or result in energy storage, in
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Figure 3.2: Illustration of the surface waves and the unwanted ground-plane edge radiations in

planar antenna arrays.

the case of infinite substrate, and therefore degrades the radiation efficiency and band-

width of the antenna [52]. In reality, infinite substrates normally have finite size, which in

turn causes the diffraction of the surface waves at the edges of the ground-plane. These

diffractions distort the radiation pattern of the antenna and do not contribute to the desired

direction. In other ways, these propagations from the ground-plane edges are uncontrol-

lable from the perspective of the feed point excitation characteristics. These radiations

may help in the acquisition of low-orbit navigation satellites, but at the same time the vul-

nerability of the antenna towards multipath and ground reflections is higher. Furthermore,

these surface waves will enhance the mutual coupling between antenna array elements,

since the surface wave fields decay more slowly with radial distance than the free space

wave fields. Due to these reasons, the surface waves are undesirable, and require special

consideration in the design to minimise and diminish their effects. For the antenna arrays,

the launch of the surface waves will make the beamforming of the antenna radiation dif-

ficult and result in distorted patterns, which negatively impinge on the operation of such

antenna types.

There are two types of surface waves in microstrip antennas: (1) the transverse mag-

netic (TM) mode and (2) the transverse electric (TE) modes [2, Section 4.2]. The TE

modes launch surface waves with electric fields parallel to the surface, whereas the mag-

netic field loops extend vertically out of the surface of the substrate, and vice versa for

the TM mode [53]. The launch of these unwanted surface modes depends on the relative

permittivity εr, the relative permeability μr and the thickness h of the dielectric substrate.

The cut-off frequencies for the different surface wave modes are [54, Equation 4.2]

f c
sur =

mc

4h
√
εrμr − 1

, (3.3)

where m = 1, 3, 5, ... for the TE modes, and m = 0, 2, 4, ... for the TM modes. This

means that the surface waves will occur on all microstrip antennas because the lowest

surface wave mode TM0 has a cut-off frequency equal to DC.

In order to minimize the power launched into the surface wave modes the thickness

and the εr can be decreased, assuming that the μr = 1. However, this will result in reduced

the radiation efficiency and the matching bandwidth of the antenna array. If a microstip
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patch antenna is designed for the L1/E1 band frequencies, using a dielectric substrate with

εr = 45 then h ≤ 7 mm in order to minimise the energy being coupled into the surface

waves.

3.2 Antenna array spatial covariance matrix
The covariance matrix depicts the information regarding the radiation or reception and

exchange of the power individually and in-between respectively of the antenna array ele-

ments. This serves as a crucial parameter in determining the performance of the antenna

array characteristics like CNR, eigenvectors and eigenvalues, diversity, etc.

3.2.1 Generalisation to multi-port antennas
An extension of the reflection coefficient of single-port antennas discussed in the last chap-

ter of the multi-port antenna is scattering parameters. Generally, these parameters play a

significant role in the characterisation of microwave circuits. For further details regarding

scattering parameters, the reader should consult [10]. If the antenna array incident power

waves or the excitation vectors are given by a complex column vector�a = [a1, ...an−1, an]
T,

where n denotes the element or the port of the antenna array, then the

Pin = �aH�a =
N∑

n=1

|an|2 = 1. (3.4)

The N represents the total number of radiating elements in the antenna array. In similar

ways, the reflected waves can be represented by the column vector �b = [b1, ...bn−1, bn]
T

which are expressed in terms of the reflected power:

Pre = �bH�b =
N∑

n=1

|bn|2 ≤ 1. (3.5)

The available power to the antenna array Pacc, in relationship to the incident and the re-

flected power is expressed by (2.7). The expansion in terms of the power waves and

scattering parameters,�b = S̄�a, yields

Pacc = �aH�a−�bH�b,

= �aH(Ī − S̄HS̄)�a.
(3.6)

Assuming a lossless antenna array, the covariance matrix using the accepted power (3.6)

and (3.4) is then expressed as follows:

R̄ = R̄acc = Ī − S̄HS̄. (3.7)
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However, (3.7) does not take into account the ohmic losses of the antenna. Thus, an-

other expression of the covariance matrix using embedded far-field realised gain patterns

is derived. In the previous chapter, the complex realised total amplitude gain of the single

antenna is given by �F (θ, φ). For nth element of the antenna array, this is �Fn(θ, φ). Similar

to the excitation vectors, n represents the element of the antenna array at which the radia-

tion pattern is measured, and it ranges from 1 to N . Generally, the antenna array individual

element patterns are measured with other elements terminated with a reference impedance

Zo. These patterns are called the embedded or the active patterns in contrast to the isolated

patterns. And for conventional antenna arrays, with d = λ/2 and assuming minimal mu-

tual coupling, the embedded patterns completely suffice the radiation performance of the

antenna array.

Now extending (2.6) for the multiple antennas

Prad(�a) =
1

4π

∫ 2π

0

∫ π

0

|
N∑

n=1

an �Fn(θ, φ)|2 cos θdφdθ. (3.8)

This can be expanded after rewriting and rearranging the integrand as:

Prad(�a) =
1

4π

N∑
n=1

N∑
m=1

a*
nam

∫ 2π

0

∫ π

0

�FH
n (θ, φ)�Fm(θ, φ) cos θdφdθ. (3.9)

Using (3.4), the covariance matrix of the antenna array including ohmic losses is given by

R̄ = R̄rad,nm =
1

4π

∫ 2π

0

∫ π

0

�FH
n (θ, φ)�Fm(θ, φ) cos θdφdθ,

=
1

4π

∫ 2π

0

∫ π

0

(FH
θn(θ, φ)Fθm(θ, φ)

+ FH
φn(θ, φ)Fφm(θ, φ)) cos θdφdθ.

(3.10)

Therefore, there are two ways to compute the spatial covariance matrix of the antenna

array using the accepted power or the scattering parameters and the radiated power or the

realised gain far-field patterns which includes losses of the antenna. Generally, the notation

R̄ will be used throughout this work to denote the antenna array spatial covariance matrix

unless {·}acc or {·}rad is specified to highlight the use of the accepted or radiated power,

respectively.

The diagonal elements of the R̄ donate the auto-correlation or the power radiated by

the embedded beam patterns of the individual array elements. On the other hand, the off-

diagonal elements of the covariance matrix indicate the cross-correlation or the coupled

power between the beam patterns of element n and m of the array. This can also be
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Figure 3.3: Design and geometrical dimensions of the simulated two-element GNSS L1/E1 band

antenna array mounted on a common ground-plane; d is the inter-element separation in terms of

wavelength. Here, all units are in mm.

referred to as the measure of beam superposition between the elements of the antenna

array. An ideal antenna array that is lossless, reciprocal, and perfectly matched gives

rise to the covariance matrix such that the diagonal elements of R̄ are equal to 1, and off-

diagonal are zero. Note that this representation is independent of the shape of embedded

beam patterns.

3.2.2 Influence of the current excitation on the efficiency
As far as the efficiency of the antenna array elements is considered, it is straightforward

without mutual coupling, i.e. off-diagonal elements of the covariance matrix are zero, and

can be extracted from tr{Ī − R̄}. In the case of the compact antenna arrays, the efficiency

will depend on the excitation vectors or the impinging direction of the source. After the

normalisation of incident power, which is equal to unity, the efficiency of the antenna array

for excitation vector ā is given by:

λ(�a) =
�aHR̄�a

�aH�a
= �aHR̄�a,

with �aH�a = 1.
(3.11)

As an example, a miniaturised lossless truncated ceramic patch antenna, using high di-

electric permittivity substrate of εr ≈ 45, is simulated, and optimised for the impedance

matching and maximum RHCP realized-gain. The employed simulator is a 3D electromag-

netic solver based on a finite-element method known as Ansoft HFSS version 14.0 [142].

The individual element properties i.e., the feeding point position and the geometry of the
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Figure 3.4: The analytically computed efficiency values for different excitation coefficients of the

two-element antenna array with varying inter-element separation, d.

patch, are adjusted to achieve the reflection or matching coefficient, i.e. S11 < −10 dB at

the L1/E1 band. The antenna radiation properties are tuned for the RHCP in the main-lobe

direction mainly to achieve the desired AR < 3 dB. The final parameters for the opti-

mised antenna are shown in Fig. 3.3. This design will be used in the simulated ceramic

patch antenna arrays employed throughout this chapter.
Now, a similar element is placed in a linear array configuration at a separation distance

of d. This d is varied from λ/2 to λ/10 in order to observe the effect of mutual coupling on

the antenna covariance matrix and the corresponding efficiencies. As the antenna losses

are ignored, the S̄ matrix can be used to calculate the spatial covariance matrix using (3.7).

R̄λ/2
acc =

[
0.92 0.01∠−166o

0.01∠166o 0.92

]
, R̄λ/6

acc =

[
0.33 0.18∠−5o

0.18∠−5o 0.33

]
represent the computed covariance matrices for d = λ/2 and d = λ/6, respectively.

Clearly, these matrices are Hermitian matrices. The off-diagonal elements indicate the

percentage of correlated power, which is higher in the case of d = λ/6 due to the presence

of mutual coupling. It can also be observed that d = λ/2 is not zero but minimal.
The analytically computed efficiencies for different excitation coefficients of the two-

element simulated lossless antenna array with various inter-element separations are shown

in Fig. 3.4. If the antenna array with d = λ/2 is excited with �a = [ 1√
2
, 1√

2
]T, then the cal-

culated efficiency is 91%. In comparison, if the excitation coefficients are �a = [ 1√
2
,− 1√

2
]T

then the efficiency is 93%. There is no difference between the two efficiencies, which

means the resulting λm is not affected by the current excitation vectors. Moreover, the

array exhibits minimal mutual coupling at this inter-element separation, and is the suitable

choice for implementation in the conventional antenna arrays. In contrast, if the second



3. Evaluation Methodologies of Compact Planar Antenna Arrays 51

case, where d = λ/6, is considered, then the efficiencies for the excitation coefficients

are 53% and 17%, respectively. This is a difference of approximately 5 dB, which is sig-

nificant. Therefore, in the presence of mutual coupling, the efficiency of the antenna is

dependent on the current excitation vector, and also signifies the importance of the co-

variance matrix calculation for the performance evaluation of the compact antenna arrays,

which will be the focus in the next section.

3.2.3 Beam-pattern orthogonality and port coupling
The beam-pattern orthogonality means that the non-diagonal elements of the antenna ar-

ray covariance matrix R̄ are zero. This corresponds to the uncorrelated embedded antenna

patterns. In comparison, port coupling is referred to as the non-diagonal elements of the

scattering parameters of S̄. Often in literature, the port coupling defines the mutual cou-

pling properties of the antenna array, which is not completely true. Let’s consider two

practical examples of two-element microstrip ceramic patch antenna arrays discussed in

the earlier section: inter-element separation of d = λ/4 and a circularly-polarised antenna

element. The scattering parameters of this antenna array in are given as follows:

S̄λ/4 =

[
0.1 0.4∠86o

0.4∠86o 0.1

]
.

This suggests the port coupling or mutual coupling between the antenna elements is ap-

proximately 16%. However, in contrast, the antenna array covariance matrix is given as

follows:

R̄λ/4 =

[
0.83 0
0 0.83

]
,

which suggests no beam overlap showing that the antenna elements are uncorrelated. Even

though the scattering parameters reveal moderate coupling between the elements, there is

no beam overlap.
Another interesting example of multi-port antennas employed in GNSS applications is

the dual-polarised patch antenna element for improved polarisation diversity. For the dual

linearly polarised antennas, the generated TM10 and TM01 while considering a rectangular

patch give rise to perfect port decoupling and no beam overlap. However, the dual cir-

cular polarised truncated square patch antenna, which involves a combination of the two

diagonal TM modes, is required to generate the RHCP and LHCP each, respectively. The

simulated scattering matrix for this lossless antenna is

S̄DCP =

[
0.3∠137o 0.7∠45o

0.7∠45o 0.3∠137o

]
.

This shows the port coupling to be approximately 50%. But, the computation of the

covariance matrix,
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R̄DCP =

[
0.4 0
0 0.4

]
,

reveals no beam overlap. Principally, beam overlap implies port coupling, but the converse

is not generally true and should be avoided in the characterisation and analyses of the

coupled antenna arrays in particular. The phenomena of the mutual coupling as explained

in the first section of this chapter predominantly occur in the free space and may not

be exactly depicted at the port level. In contrast, the beam overlap using the antenna

covariance matrix suggests a true depiction of the radiation process of the antenna array.

3.3 The fundamental modes of radiation
The following work builds upon the conceptual foundations laid by C. Volmer [90] in

his doctoral dissertation for eigenmode formulation of the radiation process of arbitrary

multi-port antennas. For a symmetric antenna array, the covariance matrix is a Hermi-

tian, i.e. R̄ = R̄H [11, Theorem 4.1.3]. This property allows for the investigation of the

fundamental structure or characteristics of the covariance matrix. Mathematically, this is

the evaluation of the maximum and minimum of the functions associated with these ma-

trices. One such principal component analysis of the covariance matrix is known as the

eigen-decomposition [11, Chapter 1]. This decomposes the matrix into associated eigen-
vectors and eigenvalues. The eigen-decomposition of the covariance matrix can be written

as follows:

R̄ = Q̄Λ̄Q̄H. (3.12)

The eigen-decomposition is based on finding the set of the values or the roots of the

characteristic polynomial of the matrix R̄, i.e. det(R̄ − λĪ) = 0. The matrix Q̄ consists

of the column vectors, which diagonalise the covariance matrix with the condition that the

Q̄Q̄H = Ī , where Ī is an identity matrix. Λ̄ is a diagonal matrix with Λ̄ = diag{λ1, ..., λn},

λn represent the corresponding eigenvalues of the eigenvectors. The eigenvectors are not

unique, whereas the eigenvalues can be distinct. Therefore, for a N × N antenna array

covariance matrix, there are at most N distinct or non-distinct possible eigenvalues.

Further investigating the radiation properties of the antenna array, consider the covari-

ance matrix, R̄, associated with the antenna array computed from its given set of n em-

bedded antenna patterns �Fn(θ, φ). Now, the new normalised fictive antenna patterns are
�F n

ev(θ, φ) formed by applying the corresponding eigenvectors k of the computed R̄. This

new set of antenna patterns can be analytically accomplished with the linear superposition

of the embedded antenna patterns as shown by [90, Equation 2.31]
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�F n
ev(θ, φ) =

1√
λn

N∑
j=1

Q̄jn
�Fj(θ, φ). (3.13)

The new covariance matrix R̄ev for these eigenmode antenna patterns is identified using

(3.7), which can be condensed into the following:

R̄ev =
1√
λiλj

Λ̄ij =

{
1 if i = j,

0 otherwise.
(3.14)

This is also valid for the receiving case (see [90, Chapter 2]). The (3.14) outcome is similar

to the findings in [26, Section XI] that the eigenmodes are mutually orthogonal. These

modes form the orthonormal basis for the linear pattern space that can be spanned by the

given antenna array and constitute the complete diversity degrees-of-freedom available in

the array. The eigenvectors are responsible for the pattern shape, whereas the eigenvalues

relate to the corresponding radiation efficiencies. In fact, these radiation modes are the

fundamental representation of a given antenna array as observed in [90, Section 2.2.3].

However, it is generally impossible to achieve non-zero beam overlap for the eigenmode

excitation due to the ohmic losses of the feed networks.

3.3.1 The minimum eigenvalue
In a compact manner, the eigenvalues, which represent the radiation efficiencies of the

corresponding eigenmodes, can be evaluated as

λm =
�qH
mR̄�qm
�qH
m�qm

, (3.15)

where m donates the number of column vectors of Q̄.

Now, the maximum possible radiation efficiency or the best case for the antenna array is

given by λmax = max{λm} where m = 1, 2, ..N . Similarly, the minimum eigenefficiency

is given by λmin = min{λm}, and defines the worst-case radiation efficiency possible from

the antenna array. The nominal case or the mean eigenefficiency is given as follows:

λavg =
1

N

N∑
m=1

λm =
1

N
tr{R̄}, (3.16)

which is also given by the normalised trace of the covariance matrix R̄ [55, Equation. 17].

The analytically computed eigenvalues for the simulated lossless four- and six-element

antenna arrays are indicated in Table 3.1. For all the different configurations the maximum
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Table 3.1: Modal eigenvalues for the simulated lossless four- and six-element ceramic patch an-

tenna arrays in square-shaped and hexagonal-shaped configuration, respectively. λmin, λavg, and

λmax are the corresponding minimum, average, and maximum eigenvalues. The single-element

antenna design is similar to the one shown in Fig. 3.3.

modes

4-element 6-element

d = λ/21 d = λ/4 d = λ/4 d = λ/52

1 0.96 0.83 0.90 0.89

2 0.94 0.68 0.88 0.61

3 0.90 0.48 0.85 0.61

4 0.85 0.30 0.33 0.19

5 0.28 0.15

6 0.20 0.08

λmin 0.85 0.30 0.20 0.08

λavg 0.91 0.57 0.57 0.41

λmax 0.96 0.83 0.90 0.89

1,2 Same overall size of the antenna arrays.

and average eigenvalues are close and show no variation among each other. However,

minimum eigenvalue, λmin, is severely affected by the compactness and choice of number

of elements of the antenna array. In fact, the minimum eigenvalue dictates the minimum

performance of the antenna array, and can be considered a lower bound to the antenna array

achievable efficiency. Therefore, if the minimum eigenvalue is maximised while designing

the antenna array, the overall efficiency performance of the array will be enhanced. In

addition, it becomes interesting to analyse the translation of the eigenvalue performance in

terms of the antenna diversity, which follows in the next section.

3.4 Diversity reception
In any communication receiver, the received signal is a superposition of the multitude

of the signals, which include the line-of-sight and multipath signal field strength. The

multipath occurs due to the scattering of the signals from the nearby ground, mountains,

buildings and objects larger than the wavelength of the signal. This superposition of the

signals can be constructive and destructive depending on the length and the characteristics

of the path. This may lead to the fading of the instantaneous SNR by a significant margin,

such that the operation of the receiver is impeded.

To combat fading, modern receivers exploit independent or uncorrelated paths to im-

prove reception diversity using multiple antennas. This technique is called antenna diver-
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Figure 3.5: Signal flow graph of the linear diversity combiner receiver [56]. The complex received

signal envelopes and the receiver noise are represented by bR(n) and νR(n), respectively. The

respective receiver branches are combined with weights w(n)* and later summed. The weighted or

equivalent combined received signal and noise are denoted by bC and νC, respectively.

sity. The diversity degrees-of-freedom are proportional to the number of antenna elements,

so the more antenna elements, the greater the exploits of multiple signal paths. However, it

is necessary to place the antenna elements at half of free-space wavelength to achieve the

uncorrelated and independent signal impingement conditions, in other words full diver-
sity. But, if the antenna element separation is reduced, then the mutual coupling results in

correlated paths, which diminishes or reduces these diversity degrees-of-freedom. There-

fore, a N element compact array may deliver similar diversity performance as an N − 1
or even lesser number of element conventional half free-space wavelength array, which

undermines the miniaturisation due to decreased inter-element separation.

To establish the diversity performance of the antenna array based on its covariance

matrix or the eigenvalues, a simplified diversity receiver is modelled (see Fig. 3.5). The

instantaneous combined signal power is

P sig
C = �wH�bR

�bH
R �w. (3.17)

For simplicity, the noise contribution of the receiver components is modelled as the ad-

ditive zero-mean Gaussian random process over each receiver branch. Furthermore, the

noise contribution of each receiver chain is uncorrelated. Therefore, the additive com-

bined and weighted noise power for the equivalent receiver or system noise temperature

Tsys according to [12, Equation 2.2] is expressed as

P noise
C = �wHkoTsysB�w. (3.18)
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The quality of the received signal expressed by the SNR for the combined signal, γC,

as a function of the weights �w, is

γC(�w) =
P sig

C

P noise
C

=
�wH�bR

�bH
R �w

koTsysB
, with �wH �w = 1. (3.19)

The relationship between the previously introduced CNR and SNR, γ , according to

[4] is given by:

χo = 10log[γ · B]. (dB-Hz) (3.20)

Now, the two familiar diversity terms associated with performance of the antenna ar-

ray are the diversity gain and diversity loss. For further derivations and discussion, the

Rayleigh distribution of the signal amplitude is considered [13, p. 44]. The optimum

weight vector that maximises the SNR in (3.19) has been introduced as the maximum ratio

combiner [57], [58]

�wopt = �bR. (3.21)

This is basically the eigenvector corresponding to the largest eigenvalue that maximises

SNR in the received or radiated direction. This may suggest that the diversity, under these

assumptions, is more of an optimistic value of the compact antenna array, because mutual

coupling has no effect on the largest eigenvalue of the antenna array, under the assumption

of a single source only. Therefore, it may not be an optimal figure of merit to analyse the

robustness of the compact antenna array. But, it does provide the average of maximum

achievable performance gain in all directions from the given antenna array, which is also

useful, particularly for mobile communication applications.

3.4.1 Diversity gain
The diversity gain represents the improvement of the average combined maximum SNR

γmax normalised to the instantaneous single branch SNR γo for a given outage probability

p(γ) in all directions [14, Section 1.2.2]. More specifically, it minimises the probability of

deep fades in the received SNR. The diversity gain is the equivalent insertion gain quantity

to determine the benefits of the diversity. A closed-form formula for the diversity gain in

terms of the signal covariance matrix and its corresponding eigenvalues has been derived

in [59, Equation 29]. This allows instantaneous determination of the diversity performance

of the antenna arrays (distinct eigenvalues) under the assumption mentioned above that the

probability density function is given by Rayleigh distribution [60, Equation 30]
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p(γ) =
N∑

n=1

e−γ/λn(
N∏
k=1

λk

)
N∏

m=1
m �=n

(
1

λm

− 1

λn

) , for γ > 0. (3.22)

Mathematically, the diversity gain GD definition as a function of the signal covariance

matrix R̄ and outage probability p is

GD(R̄, p) =
d−1
R̄
(p)

d−1
1 (p)

, (3.23)

where d−1
1 (·) and d−1

R̄
(·) donate the inverse functions for the cumulative distribution

functions of the single antenna and of a diversity receiver described by R̄, respectively. A

simpler and faster approximation of this expression for N element array is given via the

Maclaurin series expansion of d−1
R̄
(·).

GD(R̄, p) ≈ q

p

[
1 +

tr{R̄−1}
N(N + 1)

q

]
=

q

p

[
1 +

∑N
i=1 λ

−1
i

N(N + 1)
q

]
, (3.24)

and q can be obtained by

q = N

√
N !det{R̄}p, (3.25)

or in terms of the eigenvalues q = N

√
N !p

∏N
i=1 λi. It may be noted that this is different

than the array gain, which refers to the average increase in the SNR at the receiver, result-

ing at the combiner’s output [14, Section 1.2.1]. This is the summation of the eigenvalues

of the antenna array covariance matrix and is expressed as [11]

GA(R̄) = 10log[tr{R̄}] = 10log
N∑

n=1

λn. (dB) (3.26)

The ideal single antenna will have an array gain of 0 dB. And for the ideal antenna

arrays the array gain is equal to the number of elements N , as all the eigenvalues λn = 1.

This insight is also similar to the general understanding that the percentage power captured

by the antenna array is dictated by the efficiencies of the degrees-of-freedom.

3.4.2 Diversity loss
This is defined as the decrease in SNR of the compact N element antenna array as com-

pared to the ideal N element antenna array. A simplified closed-form expression indepen-

dent of the outage probability is derived in [59, Equation 25] and is given by
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Figure 3.6: The minimum eigeefficiencies for simulated lossless arrays versus the number of ra-

diating elements (N ) for different inter-element separations (d) and different geometrical arrange-

ments. The shaded region indicates the antenna array configurations with λmin > 20%

.

LD ≈ −10

N
log

[
det{R̄}] = −10

N
log

[
N∏
i=1

λi

]
. (dB) (3.27)

The dependence of the diversity loss on the product of the eigenvalues implies that the

worst eigenvalue will increase the loss. Therefore, the least efficient mode of the antenna

array will reduce the overall diversity performance severely. Also, according to (3.27), the

diversity loss is inversely proportional to the number of elements; that is, more elements

will decrease the influence of the individually degraded eigenefficiencies.

Note, the accuracy of the diversity loss expression mentioned above is limited to a four-

element antenna array and is more precise for outage probability consideration of 1% [59].

On the other hand, if the coupling is strong such that λmax/λmin > 10, then the error as

compared to the exact values becomes larger than 1 dB. Over the frequency bandwidth, the

accuracy characteristics of the diversity loss expression display narrow-band behaviour.

3.5 Compact ceramic patch antenna array configurations
The antenna array design engineers, while configuring the antenna parameters, target for

the optimisation of higher gain, broad beamwidth and impedance matching bandwidth.

These parameters are normally optimised according to the requirements of the applica-
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tions in light of the possible scenarios or environments of operation. However, the inter-

element separation is kept constant at half of the free-space wavelength to have minimum

mutual coupling. But, in the presence of mutual coupling it becomes cumbersome to anal-

yse and evaluate, and at the same time difficult to optimise the antenna array design for

gain, beamwidth and impedance bandwidth values independent of the excitation coeffi-

cients. Therefore, as mentioned earlier, the eigenvectors define the entire vector space of

the radiation. Therefore, eigenvectors along with the eigenvalues provide the complete

information about the radiation process of the antenna array, and are the optimum tools for

performance investigations of compact antenna array designs.

Now, the main focus of antenna array optimisation is to simplify and find an optimum

array, without additional circuitry, with efficient degrees-of-freedom that are capable of

delivering an acceptable CNR at the navigation receiver input. This value depends on the

type of application and receiver characteristics. It is proposed that the maximisation of

the minimum eigenvalue ensures the best radiation performance of the compact antenna

arrays, which is further investigated with the simulation of different antenna array config-

urations. These involve adaptations of the following parameters:

1. Inter-element separation, d/λ.

2. Number of elements, N .

3. Geometrical arrangement of the elements.

In Fig. 3.6, the computed minimum eigenvalues of the R̄, for various antenna arrays

simulated, are displayed.

3.5.1 Optimal number of elements
According to (3.26), the antenna array gain is proportional to the total number of ele-

ments N . From the perspective of the receiver, this will ensure higher CNR in the desired

source directions. Therefore, a straightforward choice is to fill the available space with

the maximum number of elements. On the other hand, if robustness against interference

is sought, the maximum number of nulls from a given antenna array with one degree of

freedom fixed to the wanted signal direction are N − 1. However, the minimum eigen-

value for inter-element spacing d = λ/2 is reduced with increasing number of elements

N as shown in Fig. 3.6, even though the maximum eigenvalue remains unchanged. This

means that increasing number of elements in the array eventually degrade the diversity

degrees-of-freedom, particularly the minimum eigenvalue. Therefore, it is not straight-

forward to achieve higher CNR and maximum nulls simply by increasing the number of

elements. Basically, there is a trade-off between highest possible CNR and robustness of

the receivers in the interference-limited scenario.
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In the compact antenna array case, where the aperture area is already fixed and small,

adding more elements will result in increased mutual coupling, which further degrades the

eigenvalues of the higher-order modes, necessary for interference scenarios. Therefore,

the number of elements should always be chosen such that for a fixed aperture area all

degrees of freedom or eigenvalues, particularly minimum eigenvalue, are efficient enough

to contribute equally towards the detection and acquisition of the desired signal.

3.5.2 Optimal inter-element separation
The mutual coupling increases with decreasing inter-element separation between the an-

tenna array elements. This degrades the eigenefficiencies of the antenna array accordingly.

Therefore, the antenna array diversity gain is inversely proportional to inter-element sep-

aration if the overall size remains fixed. Although smaller inter-element separation offers

miniaturisation, which is a favourable attribute for modern receivers, it is challenged with

greater mutual coupling. So, how much inter-element separation reduction is affordable

without compromising significant loss of antenna array performance concerns most an-

tenna array design engineers. Considering the same example for a two-element ceramic

patch antenna array, the eigenefficiencies for d = λ/4 are λ1 = 0.85 and λ2 = 0.84. This

is reduced to λ1 = 0.55 and λ2 = 0.17 for the d = λ/6 separation. Obviously, the better

choice is the one that provides higher efficiency; that is, with larger separation. The mini-

mum eigenvalue for compact inter-element separation is worsened further with increasing

number of elements; see Fig. 3.6. One can say that it is a trade-off between miniaturisation

and radiation performance of antenna arrays. Still, some radiation efficiency can be recov-

ered by decreasing the mismatching losses of these higher-order modes (see discussions

in Chapter 4).

For lossless compact antenna array configurations, according to Fig. 3.6, considering

the minimum eigenvalue of 20% as a threshold, a designer’s suitable choices are N = 4
with spacing of d = λ/4 or N = 3 with d = λ/5. The former configuration offers higher

gain, more nulls but with a larger size as compared to the array mentioned later. Actually, it

depends on the intended application and size constraints for the configuration of the array.

3.5.3 Optimal geometry
With inter-element separation d = λ/2 for similar number of elements N the minimum

eigenvalue is least affected across different geometrical arrangements shown in Fig. 3.7,

and is also similar for linear configurations. But if the inter-element separation is de-

creased, i.e. d < λ/2 the geometrical configuration variations have a significant impact on

the minimum eigenvalue.

For the four-element antenna array, different geometrical configurations are feasible.

The resulting eigenvalues are displayed in Table 3.2. It may be observed that at d =
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Figure 3.7: Geometrical arrangements for different designed antenna arrays (a) three elements

triangular-shaped; four elements that are (b) square-shaped, (c) circular-shaped, (d) y-shaped; six

elements that are (e) rectangular-shaped, (f) hexagonal-shaped.

Table 3.2: Eigenvalues for the simulated lossless four-element ceramic patch antenna arrays in

different linear, square, and circular geometrical configurations with d = λ/4, and square geometry

with d = λ/5. The computed diversity loss and gain for the respective arrays are also indicated.

modes d = λ/4 d = λ/5

linear square* circular square

1 0.88 0.83 0.83 0.71

2 0.81 0.68 0.78 0.40

3 0.66 0.48 0.39 0.30

4 0.02 0.30 0.09 0.14

LD (dB) 5.02 2.76 4.02 4.81

GD (dB) 15.39 16.34 15 14.31

Table 3.3: Minimum eigenvalues for the simulated six-element lossless ceramic patch antenna

arrays in linear and planar geometrical configurations.

d linear planar

rectangular hexagonal

λ/2 0.62 0.64 0.64

λ/4 0.02 0.06 0.21

λ/4 for the square shape antenna array the minimum eigenvalue is significantly larger

than other geometrical configurations. Also, at d = λ/5 the minimum eigenvalue for
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square shape is better than its counterpart geometries having d = λ/4. The diversity loss

according to (3.27) is smallest for the square shape array as well. This is in agreement with

the maximum diversity gain calculated at outage probability of 1% from (3.24). It may

be concluded that the diversity figures-of-merit show similar behaviour as the minimum

eigenvalue. In other words, the compact antenna array with largest minimum eigenvalue

result in the maximum antenna diversity.
The extension to the six-element array reveals similar results for different geometrical

configurations, shown in Table 3.3. Like the four-element case, the planar geometry gives

minimum eigenvalues superior to the linear geometry. Furthermore, the hexagonal ge-

ometry provides better minimum eigenvalue as compared to the rectangular arrangement.

Therefore, it can be generalised that the N–element compact array, where coupling is

prominent, minimum eigenvalue is sensitive to the changes in the geometrical arrangement

of the radiating elements, and can be optimised to achieve better diversity and robustness

performance.

3.5.4 Examples: Fabricated four-element ceramic patch antenna ar-
rays

In order to verify the results in the simulations, the four-element ceramic patch antenna

array is fabricated using commercially available GPS antennas. These antennas are based

on the ceramic substrates that offer high dielectric constants and low dielectric loss tangent.

These antennas are optimised for RHCP in the main-lobe direction over a ground-plane of

70 mm×70 mm which is a standard size for the available off-the-shelf ceramic GPS patch

antennas in the market.
Linear configuration: The antenna elements are mounted on the ground-plane of 1.6λ

with an inter-element separation of λ/4 as shown in Fig. 3.8. The measured scattering

parameters indicate the maximum coupling between any of the two elements is approxi-

mately −7 dB. Due to the presence of strong mutual coupling of the elements, the match-

ing of the individual elements is also disrupted and shifted from the operating frequency.

In the next step, the embedded far-field patterns of the antenna elements are measured,

which are then applied to obtain the eigenvalues for all the diversity degrees-of-freedom

of the antenna array. The eigenvalues are calculated by decomposing the integrated far-

field realised gain patterns using (3.12) and are shown in Fig. 3.9. It can be observed that

the maximum eigenvalue or the even mode has the highest efficiency, i.e. above 80% in the

operating band, whereas the minimum eigenefficiency is below 5%, which is significantly

low and useless in diversity receivers.
Planar configuration: Let’s consider the case of four-element antenna array in a

square geometry. The designed antenna array is shown in Fig. 3.10 The ground-plane

size is identical to that of the linear antenna array. Similar to the linear array, the reflec-

tion coefficients at the operating frequency are disturbed due to the presence of mutual
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Figure 3.8: Linear four-element ceramic patch antenna array at L1/E1 bands with d = λ/4 and

ground-plane size 1.6λ × 1.6λ. (a) The manufactured array. (b) Top-view sketch of the antenna

array.

Figure 3.9: Computed eigenefficiencies, λm in %, for the fabricated four-element ceramic patch

antenna array with d = λ/4. The highlighted grey portion indicates the operating L1/E1 band.

coupling, which has a maximum value of −8 dB. This is 1 dB less than the linear array.

Now, the eigen-analysis, see Fig. 3.11, reveals that the maximum eigenvalue is still above

80%, whereas minimum eigenvalue increases to 20%, which is significantly greater than

the linear array. This is in agreement with the results obtained for the optimal geome-

try analysis in simulations. The odd-1 and odd-2 mode eigenvalues are similar for both

configurations. This suggests that the planar square geometry provides better minimum

eigenvalues in comparison to the linear configuration. Note that the bandwidth of the odd-

2 and π mode is considerably reduced as compared to the even and odd-1 mode for both
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Figure 3.10: Planar square-shaped four-element ceramic patch antenna array at L1/E1 bands with

d = λ/4 and ground-plane size 1.6λ × 1.6λ. (a) The manufactured antenna array. (b) Top-view

sketch of the antenna array.

Figure 3.11: Computed eigenefficiencies, λm in %, for the fabricated four-element ceramic patch

antenna array with d = λ/4. The highlighted grey portion indicate the operating L1/E1 band.

linear and planar configurations, which may be another limiting factor for certain types of

GNSS signals. The bandwidth characteristics of the compact antenna arrays are discussed

in the next chapter.

To visualise the difference in the radiation patterns of the individual antenna elements

and the eigenmodes, the corresponding realised gain patterns are plotted. In Fig. 3.12 and

Fig. 3.13, the measured embedded far-field RHCP and LHCP patterns for the elevation and

azimuth cut are shown, respectively. It can be seen that the maximum RHCP and LHCP

realised gain is approximately 0 dBi for all elements, and shape of the RHCP radiation

patterns are quite similar to each other.
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Figure 3.12: Measured embedded realised gain RHCP and LHCP in elevation with fixed azimuth

φ = 0o, |�FRHCP(θ, φ)|2 (solid line) and |�FLHCP(θ, φ)|2 (dashed line) of the four-element square-

shaped ceramic patch antenna array at the operating frequency fo = 1575.42 MHz for element

number (a) 1, (b) 2, (c) 3, and (d) 4, respectively.

Figure 3.13: Measured embedded realised gain RHCP and LHCP in azimuth with fixed elevation

θ = 30o, |�FRHCP(θ, φ)|2 (solid line) and |�FLHCP(θ, φ)|2 (dashed line) of the four-element square-

shaped ceramic patch antenna array at the operating frequency fo = 1575.42 MHz for element

number (a) 1, (b) 2, (c) 3, and (d) 4, respectively.

Now, using ( 3.13), the eigenmode far-field patterns can be computed analytically.

Again, the elevation cut with fixed azimuth, i.e. φ = 0o is shown in the Fig. 3.14, whereas
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Figure 3.14: Analytically calculated eigenmode realised gain RHCP and LHCP in elevation with

fixed azimuth φ = 0o, |�FRHCP
m (θ, φ)|2 (solid line) and |�F LHCP

m (θ, φ)|2 (dashed line) of the four-

element square-shaped ceramic patch antenna array at the operating frequency fo = 1575.42 MHz
for (a) even, (b) odd-1, (c) odd-2, and (d) π mode, respectively.

Figure 3.15: Analytically calculated eigenmode realised gain RHCP and LHCP in azimuth with

fixed elevation θ = 30o, |�FRHCP
m (θ, φ)|2 (solid line) and |�F LHCP

m (θ, φ)|2 (dashed line) of the four-

element square-shaped ceramic patch antenna array at the operating frequency fo = 1575.42 MHz
for (a) even, (b) odd-1, (c) odd-2, and (d) π mode, respectively.

the azimuth with fixed low-elevation, i.e. θ = 30o is drawn in Fig 3.15. Altogether, these

can be visualised as the radiation patterns of the eigenmodes or the orthogonal modes. The
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even mode, that is, the in-phase excitation in this case, is responsible for radiation in the

zenith. This mode gives the maximum realised gain for the RHCP, which is above 5 dBi
in this case. The higher-order modes produce nulls in their patterns, which indicate the

excitation of the out-of-phase excitation coefficients in the neighbouring elements. The

π mode provides the maximum nulls, i.e. three for the four-element array, but minimum

realised gain.

The cross-polarisation or LHCP gain for the even mode is high, which is not particu-

larly desired for the main-lobe directions. With the higher modes, the cross-polarisation

levels become comparable or even greater than the co-polarised gain values, which indi-

cate increased sensitivity of the array to unwanted signals.

3.6 Polarisation purity
An ideal GNSS antenna array does not pose any content of the LHCP. However, in re-

ality it is generally impossible to achieve. Typically, antenna designers quote the axial

ratio of the antenna arrays in the main-lobe directions for the combined pattern case, that

is, superposition of embedded patterns with equal phase and amplitudes [143]. For the

symmetric antenna array, this combined mode represents the even mode with the largest

eigenvalue of the antenna array. It can be observed for all four-element compact antenna

designs mentioned in previous sections that the LHCP in the even mode is high in con-

trast to the individual antenna polarisation properties. The high LHCP in the even mode

leads to susceptibility to multipath reflections, which can severely jeopardise the position-

ing accuracy and is unacceptable. Therefore, the antenna array must be optimised for the

axial ratio in the even mode. On the other hand, insight into the higher modes of the com-

pact array reveal significant values of LHCP sometimes even larger than the RHCP. These

higher-order modes are crucial for acquisition of low-elevation satellites, beamforming

and interference cancellation applications. With reception of an arbitrarily polarised in-

terferer in both polarisations equally, the robustness of the receiver may be compromised,

because of the requirement of multiple degrees-of-freedom to suppress such an interferer,

which is discussed in detail in the next chapter.

With the discussion above and in combination with robustness requirements mentioned

in the previous chatper, observation of antenna array polarisation purity in the even mode

only is insufficient. Rather, it is vital to describe the polarisation performance of the higher-

order modes as well, which is unfortunately overlooked or ignored in practice. In addition

to the radiation efficiency of the antenna array, the eigen-analysis also provides the insight

into the polarisation purity of the designed antenna arrays, which can be helpful for the

optimisation of the antenna array for all conditions and scenarios, thus maximising the

overall robustness.

In the previous section, a contributing factor for poor polarisation performance can be
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Figure 3.16: Elevation tilted, β = 160o or tilting angle of 10o with respect to the horizon, four-

element ceramic patch antenna array at L1/E1 bands with d = λ/4 and ground-plane size 0.80λ×
0.80λ .(a) The manufactured antenna array. (b) Side-view sketch of the tilted antenna array.

Figure 3.17: Computed eigenefficiencies, λm in %, for the tilted four-element ceramic patch an-

tenna array with d = λ/4. The highlighted grey portion indicates the operating L1/E1 band.

the planar structure of the antenna arrays considered since the horizontal component of the

electric field becomes zero at the surface of the ground-plane, where the antenna acts lin-

early polarised. Therefore, the axial ratio approaches infinity for an infinite ground-plane,

assuming a state of linear polarisation. Much research has been undertaken to minimise the

cross-polarisation with the ground-plane alterations such as choke ring and tilting [61]. On

the other hand, the antenna designs such as those mentioned in Section 1.4 of quadrafilar

helix type offer low cross-polarisation at low elevations as well. But complete eigenmode

performance of such antenna type arrays along with small inter-element separations is non-

existent in literature. Therefore, two examples of non-planar compact antenna arrays, i.e.
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tilted ceramic patch antenna arrays and QHA arrays, are implemented to provide insight

into the polarisation impurity in their respective eigenmode radiations. The former is an

alteration of the structure of the planar antenna array, whereas the latter is the resilient

polarisation antenna design.

3.6.1 Tilted ceramic patch antenna array
Intuitively, the antenna array can be optimised for the third dimension and evolve into a 3D

antenna array by tilting. This tilting can be applied in xz, yz or both planes. The fabricated

antenna array with tilting in xz plane is shown in Fig. 3.16 Here, the angle β = 160o, which

corresponds to a tilting of 10o. The inter-element separation is d = λ/4. As observed in

simulations, the measured scattering parameters show that the maximum coupling is sim-

ilar to the planar case and is not decreased by tilting. Although the coupling coefficient in

the tilting plane antenna elements is decreased by 1–2 dB. In simulations, different tilting

angles up to 30o are investigated and the mutual coupling is not significantly changed.

The eigen-analysis of the antenna array measured covariance matrix shows the max-

imum eigenvalues is comparable to the planar array, whereas the minimum eigenvalue

improves to 25%. This improvement in the minimum eigenvalue can be attributed to the

less disturbance of the reflections coefficients of the individual antenna elements because

of the reduced coupling.

Now, in order to investigate the polarisation purity of the tilted antenna array, the mea-

sured realised gain patterns for the RHCP and LHCP at fo = 1575.42 MHz are plotted

for elevation cut with fixed azimuth φ = 0o in Fig. 3.18. For the even mode, the LHCP

is higher than the planar antenna array. However, the LHCP is decreased in the higher-

order modes and is below the RHCP gain in most directions. But it is still comparable. It

may also be noted that the RHCP gain in the low elevation for the higher-order modes has

become more symmetric around the zenith and is slightly improved, which is due to tilt-

ing. Similarly, the azimuth realised gain in RHCP and LHCP for fixed elevation θ = 30o

is plotted in the Fig. 3.19 The cross-polarisation is slightly suppressed like in elevation

directions, but not completely removed or significantly decreased.

3.6.2 Quadrafilar helix antenna array
The compact antenna array using commercially available QHA has been fabricated [144].

For reader’s interest, a customised printed QHA with reduce height four-element antenna

array is presented in Appendix B. These antenna designs are types of wire antennas com-

pared to patch antennas [3, Section 1.2.1]. The current distribution is in the z−direction,

whereas for patch antennas it is present in the xy− or the azimuth plane. It also possesses

no surface wave propagation, which may help in the reduction of mutual coupling. Each

element consists of four helix antennas with each excited relative quadrature phase to the
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Figure 3.18: Measured eigenmode realised gain RHCP and LHCP in elevation with fixed azimuth

φ = 30o, |�FRHCP
m (θ, φ)|2 (solid line) and |�F LHCP

m (θ, φ)|2 (dashed line), of the four-element tilted

ceramic patch antenna array at the operating frequency fo = 1575.42 MHz for (a) even, (b) odd-1,

(c) odd-2, and (d) π mode respectively.

Figure 3.19: Measured eigenmode realised gain RHCP and LHCP in azimuth with fixed elevation

θ = 30o, |�FRHCP
m (θ, φ)|2 (solid line) and |�F LHCP

m (θ, φ)|2 (dashed line), of the four-element tilted

ceramic patch antenna array at the operating frequency fo = 1575.42 MHz for (a) even, (b) odd-1,

(c) odd-2, and (d) π mode respectively.

previous element responsible for the RHCP radiation in the zenith directions. This antenna

array may not be interesting for the applications requiring planarity because of the height,
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Figure 3.20: Square-shaped four-element quadrafilar helix GNSS antenna array at L1/E1 bands

with d = λ/4 and ground-plane size 0.80λ × 0.80λ (a) fabricated, (b) sketch, side view with

dimensions.

Figure 3.21: Measure scattering parameters of the quadrafilar helix antenna array, Sij . (a) The

reflection coefficients Sii in dB, (b) The coupling coefficients Sij , with i �= j, in dB.

h > 2 cm, of the helix, though high permittivity dielectric loaded helix may be incor-

porated to reduce the height of these antennas. In this work, it is worth mentioning the

radiation performance of another type of antenna, which independently offers more robust

and accurate positioning in the GNSS receivers for safety-critical applications [1], as the

compact antenna array design. The fabricated antenna array is shown in Fig. 3.20a. As

mentioned previously, the elements are arranged in a square shape in the xy−plane. The

chosen inter-element separation d is mentioned in Fig. 3.20b.
The measured scattering parameters are displayed in Fig. 3.21. The excellent matching

performance of the antenna array at the desired operating band is manifestation of the fact

that the maximum coupling is below −15 dB. However, the eigenvalues of the respective

frequency shown in the Fig. 3.22 are quite poor. The even mode efficiency is below 50%
whereas the π mode efficiency is below 1%. These low efficiencies can be attributed to the

high loss-tangent of the dielectric and losses in the additional feeding network to excite

circular polarisation mode of the individual elements. Therefore, the reduced coupling can

be linked to the losses within the antenna element.
The realised gain RHCP and LHCP of the antenna array for all eigenmodes in the ele-

vation and azimuth cuts for fixed azimuth φ = 0o and θ = 0o are plotted in Figs. 3.23 and
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Figure 3.22: Computed eigenefficiencies, λm, for the four-elment quadrafilar helix antenna array

with d = λ/4. The highlighted grey portion indicate the operating L1/E1 band.

3.24, respectively. The even mode maximum RHCP realised gain is 3 dBi approximately,

whereas the LHCP is −15 dB in almost all directions; this is the same in all azimuth di-

rections as well. As stated earlier, this antenna array does offer higher gain at very low

elevation angles close to the horizon. But, the higher-order modes suffer from low gain in

the RHCP, and additionally the nulls are not well defined, which detract from the ability

of the receiver to acquire the satellites in scenarios where these modes are active.

The axial ratio in the zenith direction plots for both QHA and tilted ceramic patch

antenna array over the frequency are shown in Fig. 3.25. With 3 dB as cut-off criteria, the

QHA array delivers wideband characteristics as compared to the tilted ceramic patch array.

Nonetheless, for civilian L1/E1 GNSS, signal bandwidths are small, i.e. 2 MHz, which is

possible with tilted ceramic patch antennas as well. However, the axial ratio with tilted

ceramic patch antenna is de-tuned and needs to be optimised. Therefore, the wideband

characteristics of the QHA array offer better manufacturing tolerances which might be

attractive for low-cost commercial applications.

3.7 Direction-of-Arrival estimation capabilities
Even though satellite position in terms of elevation and azimuth is provided in the ephemeris

data, still the use of multiple-antenna receivers can facilitate the estimation of the DOA of

the satellite signals independently. Collectively, this position information of the satellite—

the attitude of the receiver—can be estimated, which provides crucial information for
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Figure 3.23: Measured eigenmode realised gain RHCP and LHCP in elevation with fixed azimuth

φ = 30o, |�FRHCP
m (θ, φ)|2 (solid line) and |�F LHCP

m (θ, φ)|2 (dashed line) of the four-element square-

shaped QHA array at the operating frequency fo = 1575.42MHz for (a) even, (b) odd-1, (c) odd-2,

and (d) π mode respectively.

Figure 3.24: Measured eigenmode realised gain RHCP and LHCP in azimuth with fixed elevation

θ = 30o, |�FRHCP
m (θ, φ)|2 (solid line) and |�F LHCP

m (θ, φ)|2 (dashed line) of the four-element square-

shaped QHA array at the operating frequency fo = 1575.42MHz for (a) even, (b) odd-1, (c) odd-2,

and (d) π mode respectively.

achieving more accurate and robust positioning. Primarily, the robustness of the receiver

is enhanced against spoofing signals. Therefore, in addition to the eigen-analysis, the
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Figure 3.25: Measured axial ratio, in dB, of the even mode in the main-lobe directions, which is

θ = 0o, and φ = 0o, for the fabricated tilted ceramic patch and QHA array.

direction-finding capabilities of the compact antenna array are investigated in this work.

The Cramer-Rao lower bound (CRLB) provides the framework to evaluate the perfor-

mance of any unbiased estimator; it provides the achievable minimum variance of the

estimated variable [62]. In the case of DOA estimation of the elevation angle θ, where the

estimate is defined by θ̂, the variance of the estimator satisfies the following condition:

CRLBθ ≤ Var{θ̂} (3.28)

Consider the received signal with the assumption of white Gaussian noise with variance

given by σ2Ī . Then, the received signal for mth sample from kth source, with K being the

total number of sources, is given by:

�yk(m) = �F (θk, φk)xc(m) + �n(m). (3.29)

Here, it is assumed that the number of samples M is much greater than the number of

receiving antennas N . For the given model, the well-known asymptotic one-dimensional

CRLB elevation, i.e. θ, in the deterministic case, which is sometimes called conditional

model, is given by [62, Equation 4.1] (see also [63])

CRLBθ =
σ2

2M

[�{ξ̄HŌF
⊥ξ̄ · R̄xx}

]−1
. (3.30)

ŌF
⊥ is defined as the projection of the subspace orthogonal to the steering vector F̄K =

[�F (θ1, φ1), �F (θk, φk), ... �F (θK , φK)], which is a matrix of dimension N × K, the noise
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subspace. In case of the known interferer directions, the interference-free subspace pro-

jector Ōint
⊥ can be found using the F̄int, which is then multiplied by steering vectors in order

to compute the CRLB. However, in this section, the discussion is limited to single source

angular direction estimation with no interference for simplicity. And, ξ̄ denotes the partial

derivatives with respect to the unknown, which is θk in this case. Therefore,

ŌF
⊥ = [ĪN − F̄K(F̄

H
KF̄K)

−1F̄H
K ],

ξ̄ = [
∂ �F1

∂θ1
,
∂ �Fk

∂θk
· · · ∂

�FK

∂θK
],

and R̄xx =
1

M
�xT�x.

(3.31)

An extension to the CRLB for two dimensions case, that is the two unknowns θ and φ
has been derived in following work [64, Equation 19-21]. The two-dimensional CRLB is

¯CRLB =

[
CRLBθθ CRLBθφ

CRLBφθ CRLBφφ

]
=

σ2

2M

[�{ξ̄H
θφŌ

F
⊥ξ̄θφ · 12,2R̄xx}

]
. (3.32)

Now, the partial derivative matrix ξ̄θφ has a second dimension and is given by:

ξ̄θφ = [
∂ �F1

∂θ1
,
∂ �Fk

∂θk
· · · ∂

�FK

∂θK
;
∂ �F1

∂φ1

,
∂ �Fk

∂φk

· · · ∂
�FK

∂φK

]. (3.33)

In the case of limited angular resolution far-field pattern data, the partial derivative

matrices can be interpolated by obtaining the effective aperture distribution function of the

antenna array, which is thoroughly discussed in [117], and is not presented here. Now, two

examples of GNSS antenna configurations for CRLB estimations are discussed. These

include four- and six-element antenna arrays. The scenario consists of a single RHCP

source spanning the upper hemisphere with M = 100 received signal samples, and a fixed

SNR, i.e. γ = −10 dB, which is typical for the GNSS signals [4].

Effect of inter-element separation: The computed CRLBθθ and CRLBφφ, in dB,

for the four-element square-shaped array geometry with different inter-element separation

d, for the upper hemisphere are shown in Fig. 3.26. Here, it may be pointed out that

lower the variance bound, in dB, better is the direction-finding capability of antenna array.

Therefore, best DOA performance or the minimum CRLB is asserted by the largest inter-

element separation, d = λ/2, because of the larger aperture area. Reduced inter-element

separation increase the CRLB by 6 dB and 10 dB for d = λ/4 and d = λ/5, respectively,

particularly in the low-elevation directions. However, even for d = λ/2 at lower elevations

at azimuth locations φ = 0o, 90o, 180o, and 270o, the bound is higher, which is attributed

to the geometrical placement of the antenna elements at the diagonals of the azimuth.
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Figure 3.27: Estimated CRLBθθ in the upper-hemisphere for the simulated four-element lossless

square-shaped ceramic patch antenna array with inter-element separation d = λ/4 for (a) linear

geometry oriented along φ = 0o and (b) y-shaped geometry.

On the other hand, the CRLBφφ is high on the zenith or high-elevation and is lower

at lower elevation for the azimuth directions. This means that the DOA estimation is

not spherically symmetric for elevation and azimuth. Furthermore, it also increases with

decreasing inter-element separation. To simplify for the remaining section, the results are

limited to the CRLB in elevation only.

Effect of geometry: In Fig. 3.27, CRLBθθ is displayed for two different geometries

of four-element antenna arrays with fixed inter-element separation, i.e. d = λ/4, which

are linear and y-shaped (sketched in Fig. 3.7). The linear geometry is strongly impaired for

DOA in the direction perpendicular to the orientation of the array (y-axis). This outcome

is in accordance with the minimum eigenvalues in Table 3.2, which revealed that a linear

configuration has the worst minimum eigenvalue. If the elements are distributed in a y-

shaped geometry instead of the square shape, the CRLB is similar in high elevation but

considerably improved for the low-elevation angles in all azimuth directions shown in

Fig. 3.27b. Altogether, the mean DOA estimation is improved in comparison to the square

geometry. However, it can be mentioned that the minimum eigenvalue for this y-shaped

array is decreased by 20%. Therefore, this becomes a trade-off between better direction-

finding capability and the robustness in the interference limited scenario. Nevertheless, it

can be concluded that the antenna element arrangement even for the planar configuration

can improve angular DOA estimation or achieving minimum CRLB.

Effect of number of elements: The six-element antenna array CRLBθθ for hexago-

nal and rectangular geometry with d = λ/4 is shown in Fig. 3.28 The optimal CRLB is

obtained for the hexagonal geometrical configuration. But, the rectangular geometry DOA

performance is similar to the four-element square-shaped array, which may be attributed

to the increased correlation among the embedded antenna patterns. Therefore, it is not
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Table 3.4: Mean CRLBθθ, in dB, in the upper-hemisphere for the simulated four- and six-element

lossless ceramic patch antenna arrays in the case of different geometrical and inter-element separa-

tion configurations.

4-element 6-element

geometry λ/2 λ/4 λ/5 λ/2 λ/4 λ/5

square −21 −15(−12)* −12
linear −4(−6)* −3

y-shaped −18
hexagonal −26 −20 −17
rectangular −21 −16 −11

* The estimated values from the measured far-field patterns of the man-

ufactured antenna arrays.

straightforward that increasing the number of elements minimises the CRLB; rather, it de-

mands careful placement or geometrical configuration of the antenna elements to achieve

optimal DOA performance.

The mean values for all directions in the upper hemisphere are presented in Table. 3.3.

The CRLB for the implemented four-element arrays with d = λ/4 shown in Figs. 3.8 and

3.10 also verify the simulated antenna array CRLB and show similar behaviour.

3.8 Summary
In this chapter the phenomenon of mutual coupling is explained with the help of scattering

waves interactions. In order to characterise the mutual coupling and its effect on the array

radiation various figures-of-merit have been presented. Mutual impedance does offer a

quick insight into the level of mutual coupling, however, its dependence on the illumina-

tion or excitation currents present difficulties of evaluating the array in wholesome. This

problem is overcome by computing the array covariance matrix with either the available

scattering parameters, which is only true for lossless antenna arrays, or the integration of

the embedded realised amplitude gain of the antenna array in the sphere. Furthermore, the

eigen-analysis or the eigen-decomposition of this covariance matrix provides basis func-

tion or eigenmodes of the array whose properties dictate the performance of the antenna

array, in terms of the pattern shapes and the efficiencies, because in fact any scenario of

illumination or excitation is a superposition of these basis functions. In general, all these

diversity degrees-of-freedom need to be efficient and uniform, but the eigenvector cor-

responding to the minimum eigenvalue is proposed to be crucial for the diversity or the

average SNR performance of the compact array in interference limited scenarios, and can
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be solely optimised for improved quality of reception. Several lossless compact antenna

arrays, using high dielectric permittivity truncated ceramic patch antennas, with different

number of elements, inter-element separation and geometrical configurations are com-

pared with respect to the minimum eigenvalue. This provides a platform for the choice of

antenna array suitable for robust GNSS antenna arrays development in the coming chap-

ters. It turns out, keeping the constraint of maximum three interferer scenario and mini-

mum eigenvalue above 20%, suitable choices for the compact GNSS antenna arrays can

be four elements with d > λ/5 in square arrangement or six elements with d > λ/4 in

hexagonal shape geometry.

The polarisation purity of the compact antenna arrays is also specified by computing

the eigenmode realised gain patterns for the respective polarisation analytically. The po-

larisation impurity of the even mode in the upper hemisphere can be optimised by altering

the geometrical shape of the antenna elements, in presence of mutual coupling this is com-

plex to achieve which sometimes require redesign and fabrication of the complete array.

Therefore, it is necessary to tune the individual elements of the array, even mode polari-

sation characteristics, including the mutual coupling effects. This limits the practical use

of readily available cheap ceramic antennas directly into the compact navigation receivers,

where polarisation purity is intended.

This chapter provides the insight into direction-finding capabilities of the compact an-

tenna arrays which determine the DOA performance of the receiver. For this purpose, the

conventional CRLB is computed for simulated four and six element GNSS antenna arrays.

Obviously, larger aperture area d = λ/2 results in the lower bound. The influence of ge-

ometry for the compact antenna array is quite significant. For example, the four-element

antenna array with d = λ/4 in y-shaped geometry provides mean CRLB in upper hemi-

sphere 3 dB (improved DOA estimations) less than the square geometry, even though it

has the worse minimum eigenvalue relatively. Similarly, the six element antenna array for

fixed inter-element separation hexagonal geometry provides 5 dB lower estimation vari-

ance than the rectangular. In a nutshell the geometry of the antenna array along with the

aperture area does influence the direction-finding capabilities. Based on the observations,

it may be concluded that usually, but not necessarily, the antenna array with higher mini-

mum eigenvalue provides better DOA estimation.



Chapter 4

Compact Robust GNSS Antenna Array
Receivers

In the previous chapter, insight into the degraded diversity degrees-of-freedom of the com-

pact antenna arrays necessitates mitigation of the mutual coupling. This provides the pos-

sibility of restoring the power transfer between the antenna array and receiver disrupted

due to mismatching or coupling. Theoretically, in the case of lossless implementation of

such decoupling and matching full diversity can be achieved, but in reality this is not pos-

sible. Therefore, choice of the decoupling and matching technique and its implementation

can greatly influence the performance of a receiver in particular, like its SNR.

As far as the decoupling of the antenna array is concerned, it can be performed either

at the antenna level by introducing additional structures in between the antenna elements

[46], [65]–[68] or by introducing decoupling networks, i.e. to excite orthogonal current

distributions, eigenvectors, which result in the decoupling of the antenna ports [90], [28].

Generally, the available antenna-level decoupling techniques deliver narrow-band char-

acteristics, whereas the network-based decoupling can be broadband but creates ohmic

losses and requires additional space. Therefore, these designs need to be miniaturised and

carefully optimised to achieve the desired purpose.

Customized miniaturized antenna arrays are developed and investigated for robust

GNSS applications against narrow-band interference signals. In contrast to previous suc-

cessful implementations, e.g. [100], the goal here is to provide the benefits of array pro-

cessing on a smaller geometrical scale, where compactness is achieved by reducing both

the size of the individual antenna elements as well as their inter-element separations. In

order to achieve efficient radiative degrees-of-freedom, a DMN based on the eigenvector

excitations explained in the previous section as proposed earlier, e.g. by Volmer [90] is

integrated into the compact antenna arrays.

For receivers in general, and GNSS applications in particular, noise needs to be con-

sidered thoroughly since it limits overall system performance. DMNs are passive circuits;

81
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they generate noise proportional to their ohmic losses. Since the DMN forms an integral

part of the antenna, it must be connected directly to the feed ports of the array. Therefore,

it must be placed in front of the first amplifier, resulting in a noise penalty that might out-

weigh the intended gain in diversity. So far, DMNs have been considered lossless [30]–

[32], [69], [118]. To our knowledge, it has not yet been proven that real, i.e. dissipative,

DMNs can be used beneficially for low-noise GNSS receivers.

Principally in this chapter, the influence of a real DMN on the system performance

of the GNSS receiver chain is examined. The formulae for the CINR and the equivalent

noise temperatures of the diversity receiver are derived from the antenna far-field patterns,

the amplifier noise parameters, and their respective scattering parameters. Based on these

equations, the performance of the whole receiver chain, with and without a dissipative

DMN, is calculated and compared to the fabricated compact GNSS antenna arrays under

different interference scenarios. Finally, a miniaturised compact GNSS array along with

a DMN using cheap off-the-shelf components is developed for the purpose of industrial

mass-production.

4.1 Techniques for antenna array decoupling

In the previous chapter, the mutual coupling of the compact antenna arrays was highlighted

and discussed. For compact arrays there is a performance trade-off between the size and

the number of elements of the antenna array. Obviously, the diversity performance of

the antenna array with the same number of elements but smaller inter-element separations

cannot be improved than larger inter-element separations. This may be enhanced by min-

imising the mismatch caused by the coupling. However, it is impossible to match the

antenna array receiver elements for all possible direction of arrivals independently in the

presence of strong coupling. Therefore, the compact antenna array poses a decoupling

problem more than a matching one. Though, the ultimate goal is still matching of the

antenna, which in fact follows the decoupling. Altogether, decoupling and matching is

responsible for the overall improvement in antenna efficiency.

Perhaps due to the above mentioned reasons, decoupling techniques have received sig-

nificant attention in the literature over the past decade. One such technique involves the

reduction of the coupling between the antenna elements directly, e.g. defected ground

structures, to ensure that the non-diagonal components of the scattering matrix are min-

imised, which may not be completely true for radiation decoupling as discussed in sec-

tion 2.3 of the previous chapter. On the other hand, a decoupling network is designed

to transform the antenna covariance matrix with the goal of making the cross-correlation

coefficients zero.
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4.1.1 Radiation element level decoupling

One way to perform the antenna decoupling is to directly reduce the mutual coupling

between the elements. This is achieved by the introduction of additional structures in the

ground-plane or the near-field to modify their current distributions. These techniques can

be classified as follows:

1. Electromagnetic band-gap structures;

2. Parasitic structures;

3. Neutralisation lines.

EBG structures: EBG structures provide the pass- and stop-frequency band charac-

teristics which, when inserted in between the antenna elements, stop and trap the coupled

energy [70]. Typically, such structures take the form of DGS or frequency-selective sur-

faces. In case of microstrip antennas, these additionally help in suppressing surface waves.

The modification of the ground-plane for microstrip antenna arrays is not a suitable

option for the receivers, where the circuitry is fabricated at the back of the antenna with

the common ground-plane, for miniaturisation. Also, the size of structure is generally half

of the free-space guide wavelength which is not attractive for compact antenna array de-

signs. It is worth mentioning that most of the literature describing such implementations

consider antenna element separations equal to λ/2, which brings about another uncer-

tainty for implementation in compact antenna arrays. Normally, the smaller inter-element

separations are avoided because of the larger size of the DGS unit cells. Furthermore, it

becomes complex to deploy such structures in a planar antenna array with larger elements.

Moreover, the backward radiation is increased for such designs, which is a drawback for

GNSS receiving arrays.

There is another approach to implement EBG structures, i.e. the use of frequency-

selective surfaces in between the ground-plane and the antenna layer [71]. This is expen-

sive to implement because of the multi-layer technology. Besides the cost, it is narrowband

and the frequency selectivity depends on the direction of illumination source, which is not

suitable for GNSS applications where the useful satellites are present in the complete upper

hemisphere.

The shorting-vias fence around the individual antenna elements is another approach to

mitigate the mutual coupling. Maximum rejection is obtained when the fence is at quarter

of a free-space wavelength distance from the elements. This hinders the miniaturisation

of the inter-element separation between the antenna elements intended for the compact

antenna array configurations.

Parasitic structures: This involves passive parasitic elements between the antenna

elements. These new elements are terminated with reference load impedance, and absorb
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the mutual coupling energy as described in [119]. This technique is especially used in wire

antenna arrays, e.g. electronically-steerable parasitic array radiator antennas, even though

here the main objective is to achieve higher directivity, but it still helps in mitigating mutual

coupling effects. In the case of compact planar antenna arrays, it is not easy to place a

replica parasitic element in between two radiating elements due to its two-dimensional

structure and size. Apart from that, the parasitic elements have a resonant behaviour, and

so the decoupling is narrow band.

Neutralisation line: A simple yet intuitive method of antenna-level decoupling is de-

scribed in [68]. Here, a suspended transmission line is connected between the antenna

array elements, and acts as a neutralisation line to counter the mutual coupling. Different

configurations of the line provide either a high decoupling (isolation) over narrow fre-

quency bandwidth or a moderate decoupling (isolation) over wide frequency bandwidth.

Broadly speaking, this technique has only been investigated for two-element arrays be-

cause of its simplicity and the needed large lengths of line.

In general, decoupling techniques at the antenna-level are possible but the drawback

of the additional structure size, narrow bandwidth and its placement around the antenna in

particular makes them unsuitable for compact planar antenna arrays. Secondly, the prop-

erties of the decoupling structures at the antenna-level may depend on the array excitation

current vectors which is undesirable for direction-finding arrays.

4.1.2 Network-based decoupling

Generally, in the recent past, two network-based techniques have been given considerable

attention. The first is based on the current transformation network of an antenna array by

applying a network consisting of lumped or discrete components. The second technique

involves the exploitation of the symmetrical geometrical properties of the antenna array,

which means that the eigenvectors required to decouple the antenna array are similar to

the eigenvectors generated by the available 180o−hybrid and 90o−directional couplers.

Current transformation matrix based decoupling network: This involves using

a transfer matrix to transform the antenna array scattering matrix into a new scattering

matrix with the constraint S̄A = 0̄. The transformation matrix can take the form of the

orthogonal vectors, such as eigenvectors, of the antenna array covariance matrix. In case

of an N elements array to completely decouple the antenna array N(2N − 1), discrete

components are required, whereas decoupling and matching together require N(2N + 1)
discrete elements. Therefore, for the two-element compact antenna array, six elements are

required to decouple the antenna array, which increases to 28 elements in the case of a

four-element array. Surely, the complexity and the number of discrete elements increases

with the number of radiating elements in the antenna array. The benefit of this technique

is associated with the possibility of decoupling non-identical and non-symmetric antenna
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Figure 4.1: Signal flow of the single symmetric 180o-hybrid coupler for the (a) even mode and (b)

odd or π mode.

arrays. It also offers flexibility to receive from all possible arbitrary orthogonal basis

vectors, depending on the type of the desired application, which may involve receiving

from orthogonal sub-spaces of the hemisphere with a single main beam (single source)

only.

The bandwidth and efficiency of the network depend on the losses or the quality of

the individual components, in combination with the design of the network, due to possi-

ble raised number of cross-overs with the increasing number of elements. The drawback

of this technique is the a priori knowledge of the antenna parameters, in particular the

scattering parameters. The accuracy of these parameters measurements affect the overall

performance of the network. This means that the network becomes specific to a particular

antenna array and cannot be generalised for any other similar configuration antenna array.

Decoupling across symmetry planes: The simplest case of a two-element compact

antenna array constitutes the foundation for decoupling larger symmetrical antenna arrays.

The eigenvector matrix Q̄ needed to decouple this antenna array is given by:

Q̄ =
1√
2

[
1 −1
1 1

]
(4.1)

The block matrices corresponding to the even and odd mode vectors are similar to the

eigenvectors excited by the rat-race, 180o−hybrid [72], or branch-line couplers [73]. The

first column vector of the Q̄ matrix is the even mode of the coupler, whereas the second

column is the odd, or the π, mode. In Fig. 4.1, the two modes of the 180o−hybrid coupler

are illustrated. In this case, any type of directional coupler is suitable for the practical im-

plementation of the decoupling network. For the symmetric case, the benefit of the decou-

pling network with directional couplers is that it does not require the scattering matrix of

the antenna array to be known. For any 2N−element antenna array the decoupling proce-

dure is to partition the antenna array into its symmetric planes and then apply the two-port

decoupling across each plane until all the elements and symmetries are exhausted. The

necessary condition is that the array must possess at least one plane of symmetry, where
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elements 1 to N are different, and are the same from N + 1 to 2N elements. This an-

tenna array symmetry is typically, but not necessarily, the result of geometrical symmetry.

Therefore, for a symmetric antenna array, the scattering parameter in block notation can

be written as

S̄ =

[
S̄11 S̄21

S̄21 S̄11

]
. (4.2)

A bank of symmetric 180o−hybrid couplers is applied to decouple the antenna array

element across the single plane of symmetry. The individual decoupling of the two el-

ements is not influenced or affected by the other decoupling. The new set of ports are

further decoupled for the new symmetries until all the symmetries are exhausted. This

type of decoupling procedure is valid for an array consisting of elements of the power two.

However, as described in [90, Section 3.4.3] radiator merging arbitrary N−element arrays

can also be decoupling using this strategy.

Let’s consider the decoupling of the four-element square-shaped antenna array with

hybrid couplers. First, the antenna array is decoupled by connecting two hybrid couplers

across the vertical plane of symmetry. A single hybrid coupler is applied to decouple

elements 1 and 2, and another one decouples elements 3 and 4. This creates an even and

an odd set of ports which are independent of each other. As a result of the additional

horizontal symmetry plane, both sets are port-symmetric themselves and can therefore be

decoupled with two hybrid couplers independently. The final decoupling network consists

of four hybrid couplers as shown in Fig. 4.2. Note, the complete network is designed

independently of any measurement data.

In Fig. 4.2a the even mode signal flow inside the decoupling network is shown. The

incoming signal is split into two equal amplitudes and phase signals. Subsequently, these

two output signals excite the even modes of the next bank of hybrid couplers, which even-

tually excite all the antenna elements relative to each other with equal phase and amplitude.

In Fig. 4.2b the odd mode of the first hybrid coupler is excited, which generates two equal

amplitude but 180o out-of-phase signals, which in turn again excite the even modes of the

consequent hybrid couplers. Therefore, antennas 1 and 2 are excited with similar phases

and antennas 3 and 4 are excited with similar phases to each other, but 180o out-of-phase

signals relative to the aforementioned antenna elements. This is denoted as the odd − 1
mode. In Fig. 4.2c the odd − 2 mode signal flow is illustrated. Now, antennas 2 and 3

are excited with similar phases, but 180o out-of-phase with antennas 1 and 4. In the last

scenario, shown in Fig. 4.2d, all the adjacent elements have equal amplitudes but 180o

out-of-phase excitation. From discussions in Chapter 3, this is the π mode, which has the

least efficiency but maximum number of nulls. The complete excitation matrix is
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ant. 1 ant. 2

ant. 4 ant. 3

ant. 1 ant. 2

ant. 4 ant. 3

odd-2 

c)

d)

in-phase 
out-of-phase 
jumper 

Figure 4.2: Decoupling network for the four-element antenna array using four 180o-hybrid cou-

plers. Additionally, illustration of the signal flow for the (a) even , (b) odd-1, (c) odd-2, and (d) π
mode is sketched.
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Q̄ =
1

2

⎡
⎢⎢⎣

1 1 −1 −1
1 1 1 1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦ . (4.3)

This matrix also holds valid for the receive case because of the reciprocity.

4.2 Techniques for modal matching

Post decoupling, the antenna array scattering parameters become a diagonal matrix while

the off-diagonal elements or the coupling coefficients become zero. Therefore, it is the

individual ports impedance matching to a reference impedance Z̄o that needs to be per-

formed. For eigenmode antenna arrays, however, it is the impedance matching of the

respective modes that needs to be carried out. As far as the reference impedance matching

is concerned, complex conjugate matching of the input impedance denoted by Γ̄P of the

LNA stage can be performed to achieve the maximum power transfer, sometimes called

power matching. In the case of the receiver, it is useful to transform the impedance to Γ̄opt

of the LNA, referring to the impedance value which provides the minimum NF instead of

the maximum amplification gain; this strategy is known as noise matching. However, in

one of the studies carried out in [157], it was observed that the modern designs of the LNA

are optimised such that Γ̄P and Γ̄opt are close to each other, therefore, noise matching and

power matching give similar CNR values.

Typically, the received signal comprises a fractional bandwidth, Bf = Δf/fo, around

the carrier frequency, fo, which, in the case of the L1/E1 C/A-code narrowband signal

is approximately 0.1%. This increases to 1–2% for military P-codes. Therefore, for an

antenna array the impedance matching fractional bandwidth is desired to be at least equal

to or greater than the desired received signal bandwidth. This raises the question in the

case of a compact antenna array which has a small aperture area, of how much of the

impedance matching bandwidth of the modal antenna array is achievable. Hence, it is

necessary to investigate the maximum impedance matching bandwidth limitations of the

modal compact antenna array.

4.2.1 Fundamental bandwidth limitations

An antenna array with eigenmode excitation vectors can also be visualised as a multi-mode

antenna which excites these fundamental modes from separate single feed ports. This ap-

proximate equivalence means that the reduction of the electrical size of the multi-mode an-

tenna is similar to the miniaturisation of the inter-element separation of the antenna array.
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Furthermore, the bandwidth limitation calculations of the multi-mode antenna can pro-

vide useful insight into the equivalently sized eigenmode antenna array bandwidth lower

bounds, which will be employed in this section.

The far-field characteristics of the multi-mode antenna enclosed in a surface of radius,

a, may be expressed in terms of the equivalent circuits of transverse electric, TEmn, and

transverse magnetic, TMmn, modes, where m defines the order of the spherical Bessel

function [15, Chapter 10], and n represents the azimuthal variation. Generally, the well-

known Fano limit for the maximum achievable matching bandwidth of these modes is

obtained using these equivalent circuits [74]. However, in the case of the higher-order

modes, where m > 1, it is tedious to solve this with increasing circuit complexity and

non-linearity of the Fano theory. Therefore, the resistance, inductance and capacitance

based approximate equivalent circuits involving Q-factor, Qf, valid for the above men-

tioned modes is described in [75, Section 2]. Here, Qf represents the quality factor of the

antenna radiation. It is commonly known that the achievable matching fractional band-

width, Bf, is inversely proportional to Q. However, Gustaffson has derived an inequality

for the lowest bound of the reflection coefficient, |Γ|, as a function of the antenna radiation

quality factor and the fractional bandwidth, which is [75, Equation 25]

|Γ| ≥ exp

(
− π

κm

(1− B2
f /4)

)
,

where κm = QfBf.

(4.4)

This follows that if the antenna quality factor for the given propagation mode is known

then the achievable bandwidth for a given reflection coefficient can be estimated. The

quality factor of the antenna is defined by the ratio of the stored reactive energy to the total

radiated power. Furthermore, in this analysis it is assumed that the antennas are lossless,

which follows

Qf =
4πfoW

Prad

. (4.5)

W is the maximum amount of stored electric and magnetic energy. In [76], Chu de-

scribes the quality factor closed form equation for the spherical modes, TMm0, which

possess a greater amount of stored electric energy in comparison to stored magnetic en-

ergy. Moreover, the quality factor is independent of the azimuthal mode index variations,

therefore it is fixed to n = 0 [77, Section 2]. Also, relevant to our interest, the TMm0 are

typical propagation modes in the case of a rectangular planar antenna [16, Section 4.2].

In the case of cylindrical modes, which are the superposition of TE and TM modes, the

reader is referred to [77, Section 3]. For clarity and simplicity, here only the spherical

modes are investigated. Now, the Qf of the TMm0, denoted as Qf
m, is obtained by:
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Figure 4.3: Numerically calculated fractional bandwidth limitations of the first four TMm0 modes

of lossless antenna for a given reflection coefficient |Γ| with electrical size fixed to a = 0.25λ. The

grey line indicates the −10 dB criterion, and shaded region highlight the possible bandwidths for

various modes.

Qf
m = ka[1−

{(
(ka)2

2
+m+ 1

)(
j2sm(ka) + y2sm(ka)

)}
− ka

2

(
j2sm+1

(ka) + y2sm+1
(ka)

)
+ ka

(2n+ 3

2

(
jsm(ka)jsm+1(ka) + ysm+1(ka)ysm+1(ka)

) ]
.

(4.6)

jsm(ka) and ysm(ka) represent the spherical Bessel functions of the first and second kind

respectively, calculated for the m order at ka which is the electrical size of the antenna,

and refers to a product of the wavenumber k = 2π/λ and sphere with radius a enclosing

the antenna. If the electrical size of the antenna is fixed such that a = 0.25λ, then the first

four modes minimum bound for the reflection coefficient against the achievable fractional

bandwidths is plotted in Fig. 4.3. This illustrates the fact that for a certain value of |Γ|, Bf

decreases with increasing mode order. For example, if |Γ| = 0.3 and Bf = 5%, then only

the first three modes meet this condition, and fourth mode is useless for this criteria. With

a smaller electrical size, ka ≤ 1, ultimately all modes of the antenna eventually become

useless with increasing bandwidth.

In Fig. 4.4 for m = 4 with variable electrical size, a, the reflection coefficients along

with maximum achievable fractional bandwidths Bf is shown. The increased antenna aper-
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Figure 4.4: Numerically calculated fractional bandwidth limitations of the TM40 mode of lossless

antenna for a given reflection coefficient |Γ| with changing electrical size a. The grey line indicates

the −10 dB criterion, and shaded region highlight the possible bandwidths for mode 4 in the case

of different sizes a of the antenna.

ture offers larger bandwidth to achieve |Γ| = 0.3. Therefore, a trade-off for the larger size

of the antenna is necessary to make all modes useful. Similarly, for higher modes, such

curves can provide an insight into the limitations of fractional bandwidth for a given aper-

ture size. Note, the antenna modal bandwidth constraints depend on the application and

characteristics of the desired signal.

4.2.2 Practical implementations and implications

The matching network can be integrated after the decoupling to maximise the power trans-

fer. Basically, this network constitutes passive lumped components. These lumped compo-

nents can be designed via the quasi-lumped or off-the-shelf available discrete components.

Therefore, the performance of the network is affected by the individual properties of these

lumped components.

In case of the quasi-lumped strategy it is possible to achieve high quality -factor or

high efficiencies for the individual components, which means better overall antenna array

efficiency. However, this produces narrowband characteristics which make the network

sensitive to the material and manufacturing tolerances, and it becomes difficult to tune and

achieve the exact operating band. This demands the matching network to be either exposed

and accessible for post-manufacturing tuning or re-configurable to match component de-

sign in order to cope with these tolerances. Furthermore, such modifications compromise
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Figure 4.5: (a) Complete matrix signal flow diagram of the diversity receiver including the antenna

array signal power waves �bA and the noise power waves �ν and �μ of the constituent receiver parts.

(b) Collapsed signal flow graph of the received combined signal vector �bR involving the received

noise power wave vectors�bN,A,�bN,DMN, and�bN,LNA along with signal power wave vector�bC.

the overall miniaturisation and integration intended for compact antenna arrays.

The application of discrete off-the-shelf lumped components offer mounting and re-

mounting flexibility in order to adjust for the manufacturing and material tolerances. In

general, these lumped components have low quality-factor, with typical values ranging

from 1–25 at the L-band[145], [146]. This results in greater bandwidth at the expense of

losses of the network components, which will limit the maximum achievable CNR.

The material and design order of the matching network does affect the resulting band-

width characteristics of the antenna array. This type of investigation is carried out in the

work [90, Chapter 3], where different individual lumped designs and network topologies

are implemented, especially for the bandwidth-limited compact antenna array higher-order

modes. This reveals that the realised gain bandwidth product of the higher-order modes

remain the same for all configurations, meaning that the increased bandwidth beyond the

fundamental limit results in reduced realised gain, because of the ohmic losses within the

network.

4.3 Noise characterisation of the robust receiver

Following the diversity model shown in Fig. 3.5, the matrix signal flow graph for the

integrated receiver, including the antenna array, DMN and LNAs is depicted in Fig. 4.5.

The edge weights in the graphs are matrices, which in general do not commute under

multiplication. A Mason-like approach by Riegle and Lin [78] specifically developed for

matrix signal flow graphs is applied to solve the noise matrices.



4. Compact Robust GNSS Antenna Array Receivers 94

Now, the receiver noise covariance matrix, R̄n, is defined as:

R̄n = Var{�bn} = kT̄sysB. (4.7)

To obtain this, firstly, the �ν and �μ forward and reverse travelling noise wave sources

have been introduced. The simplified signal flow graph, according to Fig. 4.5b, the re-

ceived noise covariance matrix is basically a superposition of the antenna array, DMN and

the LNAs covariance matrices. Therefore,

Var{�bn} = Var{�bN, A}+ Var{�bN, DMN}+ Var{�bN, LNA}, (4.8)

or in terms of the noise temperature matrices it leads to

T̄sys = T̄N, A + T̄N, DMN + T̄N, LNA. (4.9)

Assuming uncorrelated noise sources, the respective noise temperature covariance ma-

trices of receiver blocks can be calculated independently. All of these are derived at the

reference plane definition at the input of the LNAs.

4.3.1 Antenna array noise

The noise temperature covariance matrix, T̄N, A, of the antenna array depends on the re-

ceived noise wave vector,�bN, A, which is given by the relationship:

Var{�bN, A} = kT̄N, AB. (4.10)

Considering the noise-free DMN and LNA, the complete noise wave model is simplified,

and the received noise wave vector at the input of the LNAs becomes

�bN, A = ḠLNA�n3 (4.11)

The complete set of equations for the respective node vectors are as follows:

�n1 = �νA + S̄A�n2,

�n2 = S̄22, DMN�n1 + S̄21, DMN�n4,

�n3 = S̄12, DMN�n1 + S̄11, DMN�n4,

�n4 = 0.

(4.12)

Now, manipulating (4.12) and solving for �n3,

�n3 = S̄12, DMN(Ī − S̄AS̄22, DMN)
−1�νA (4.13)
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Here, the transfer gain matrix, ḠDMN, of the DMN can be defined as:

ḠDMN = S̄12, DMN(Ī − S̄AS̄22, DMN)
−1. (4.14)

Therefore, the received antenna noise wave covariance matrix follows from:

Var{�bN, A} = ḠLNAḠDMNT̄vA
ḠH

DMNḠ
H
LNA, (4.15)

where Var{�νA} = kT̄vA
B, basically, the noise contributions to the antenna are related to the

environment noise captured by the antenna array and the ohmic losses within the antenna

array.

The environment noise temperature captured by the antenna array can be obtained by

the integration of the normalised realised gain patterns over the complete sphere along

with the angular distribution function of the environment temperature. On other hand,

the ohmic losses are associated with the ambient temperature Tamb = 290K. The ohmic

losses within the antenna array can be calculated with the aid of the antenna array radiated

and accepted power covariance matrix, as derived in the previous chapter. Therefore, the

antenna noise wave vector covariance matrix is given by:

T̄vA
=

1

4π

∫ 2π

0

∫ π

0

Tenv(θ, φ) · �Fn(θ, φ)�F
H
m(θ, φ)cosθdφdθ

+ Tamb(R̄acc − R̄rad)
T

(4.16)

However, if the environment temperature distribution is assumed to be uniform over

the sphere then (4.16) is simplified to

T̄vA
= TenvR̄rad + Tamb(R̄acc − R̄rad)

T. (4.17)

Using (4.10) and the simplified form of (4.16), leads to the noise temperature covariance

matrix of the antenna as

T̄N, A = ḠLNAḠDMN(TenvR̄
T
rad + Tamb(R̄acc − R̄rad)

T)ḠH
DMNḠ

H
LNA (4.18)

4.3.2 Decoupling and matching network noise

In previous studies, the DMN is considered to be lossless, which means that the noise

contribution is zero. In other words, the lossless DMN will lead to T̄N, DMN = 0. But in

reality the losses play a vital role in the characterisation of the receiver noise, as these ap-

pear before the first amplification stage and must be considered for complete performance

analysis. Therefore, it is necessary to find the DMN covariance matrix and its contribution

to the receiver noise.
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The DMN noise covariance matrix is given by:

Var{�bN, DMN} = kT̄N, DMNB (4.19)

Now, the receiver signal flow diagram considers the forward and reverse travelling

�νDMN and �μDMN respectively. Accordingly, the antenna and the LNA is assumed to be

noise free. The received noise wave vector due to DMN noise using the matrix signal flow

diagram can be written as:

�bN, DMN = ḠLNA�n3. (4.20)

Similarly, the respective nodes shown in Fig. 4.5 can be equated as:

�n1 = S̄A�n2,

�n2 = �μDMN + S̄22, DMN�n1 + S̄21, DMN�n4,

�n3 = �νDMN + S̄11, DMN�n4 + S̄12, DMN�n1,

�n4 = 0.

(4.21)

Solving for �n3 gives:

�n3 = �νDMN + ḠDMNS̄A�μDMN. (4.22)

Therefore, the DMN noise wave covariance matrix can also be written as:

Var{�bN, DMN} = ḠLNA(T̄vDMN
+ ḠDMNS̄AT̄μDMN

ḠH
DMNS̄

H
A

+ T̄vμDMN
ḠH

DMNS̄
H
A + ḠDMNS̄AT̄μvDMN

)ḠH
LNA.

(4.23)

In case of any two-port passive network, the noise waves covariance matrix can be found

using the scattering parameters, and is given by:

Var

{(
�νDMN

�μDMN)

)}
= kB

(
T̄vDMN

T̄vμDMN

T̄μvDMN
T̄μDMN

)
= kBTamb(Ī − S̄DMNS̄

H
DMN) (4.24)

or

T̄vDMN
= Tamb(Ī − S̄11, DMNS̄

H
11, DMN − S̄21, DMNS̄

H
12, DMN),

T̄μDMN
= Tamb(Ī − S̄12, DMNS̄

H
21, DMN − S̄22, DMNS̄

H
22, DMN),

T̄vμDMN
= Tamb(−S̄11, DMNS̄

H
21, DMN − S̄12, DMNS̄

H
22, DMN),

and T̄μvDMN
= T̄H

vμDMN
.

(4.25)

Finally, the DMN noise temperature covariance matrix can be found using (4.20) and

(4.24).
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4.3.3 Low-noise amplifier noise

The LNA noise temperature is given by the covariance matrix of the received noise wave

due to the forward and backward LNA noise waves, while considering the noise free an-

tenna array and the DMN. According to Bosma’s theorem for cascaded two-port devices

at uniform temperature, Tamb (see Appendix A.2):

Var{�bN, LNA} = kT̄N, LNAB(Ī − S̄sysS̄
H
sys). (4.26)

The noise source waves for the LNA are modelled by �νLNA and �μLNA for the forward and

backward waves, respectively. The received noise vector due to LNA noise sources is

described by:
�bN,LNA = ḠLNA�n3. (4.27)

The new equation system constituting of the respective nodal equations are:

�n1 = S̄A�n2,

�n2 = S̄21,DMN�n4 + S̄22,DMN�n1,

�n3 = Ī�νLNA + S̄12,DMN + S̄11,DMN�n4,

�n4 = Ī�μLNA.

(4.28)

Manipulating (4.28) and solving for the �n3,

�n3 = (S̄11,DMN + S̄12,DMN(Ī − S̄AS̄22,DMN)
−1︸ ︷︷ ︸

ḠDMN

S̄AS̄21,DMN)Ī�μLNA − Ī�νLNA. (4.29)

The system scattering matrix S̄sys at the input of the DMN with antenna attached is defined

as:

S̄sys = S̄11,DMN + ḠDMNS̄AS̄21,DMN, (4.30)

This equation is valid for any passive antenna array connected in cascade with another

similar rank multi-port network. Further, using equation (4.26) and (4.30) the covariance

matrix becomes:

Var{�bN, LNA} = ḠLNA(T̄v,LNA − S̄sysT̄μv,LNA − T̄μv,LNAS̄
H
sys + S̄sysT̄μ,LNAS̄

H
sys)Ḡ

H
LNA. (4.31)

Here, the noise temperature matrices for the source waves are given by:

Var

{(
�νLNA

�μLNA)

)}
= kB

(
T̄v,LNA T̄vμ,LNA

T̄μv,LNA T̄μ,LNA

)
. (4.32)
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Table 4.1: Measured noise parameters of the low-noise amplifiers developed during this work.

These parameters are recorded with a chip mounted on the printed-circuit board.

noise parameters

amplifiers Fmin

(dB)

Rn

(Ω)

Zopt

(Ω)

ALM1912 1.66 8.2 28+j10

IMMS 1.7 6 26+j0.3

Since the LNA is an active device, it is not possible to obtain the covariance matrix for

the respective noise source waves with only the help of the scattering parameters. How-

ever, these can be determined, in addition to the scattering parameters of the devices, with

the three noise parameters noise resistance, Rn, optimal impedance, Zopt, and the mini-

mum noise figure, NFmin [12]. These noise parameters for different amplifiers have been

measured using Maury noise parameter equipment [147]. The noise parameters measured

for two different amplifiers employed during this work are displayed in Table 4.1. Fur-

thermore, it is assumed that the noise generated by one LNA is uncorrelated to all other

amplifiers. Therefore, the input-referred noise correlation matrices in equation simplify to

T̄v,LNA = Tv,LNAĪ , T̄μ,LNA = Tμ,LNAĪ , and T̄vμ,LNA = T̄H
vμ,LNA = Tvμ,LNAĪ , in which Tv,LNA,

Tμ,LNA, and Tvμ,LNA are calculated from the measured noise parameters NFmin, Rn, and

Zopt according to Appendix A.3.

4.4 Equivalent carrier-to-interference-plus-noise ratio

The equivalent CINR for a given direction of arrival at the input of the first-stage amplifier

for a GNSS array receiver is given as:

χint
o (θ, φ) =

C(θ, φ)∑
i Cint(θi, φi) +No

. (4.33)

The equivalent available carrier power, C(θ, φ), with DMN is found by solving the covari-

ance matrix of the forward traveling wave at the input of the first-stage LNA,�bc. Calculat-

ing the equation system at the respective nodes:

�n1 = �bA + S̄A�n2,

�n2 = S̄22,DMNn1 + S̄21,DMN�n4,

�n3 = S̄11,DMNn4 + S̄12,DMN�n1,

�n4 = 0.

(4.34)
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where
�bc = ḠLNA�n3. (4.35)

Using (4.35), and solving for n3 by manipulating (4.34) to obtain

�bc = ḠLNAḠDMN
�bA. (4.36)

This leads to the received signal covariance matrix

C̄(θ, φ) = Var{�bc} = ḠLNAḠDMNVar{�bA}ḠH
DMNḠ

H
LNA. (4.37)

Here, the covariance matrix of the antenna array received at the output of the antenna array

ports is described by extending the previous definition given in (2.13) for the multi-element

antenna as:

Var{�bA} = Csat
�F (θ, φ)�FH(θ, φ) (4.38)

It is of more interest to find the scalar or the equivalent carrier power at the input of the

LNA stage. This can be obtained using the beamforming weights �w which transform the

C̄(θ, φ) accordingly,

C(θ, φ) = Psat �w
HC̄(θ, φ)�w. (4.39)

The noise spectral density can be obtained using the system noise temperature co-

variance matrix T̄sys derived in the previous section, and the beamforming weights in the

direction of the desired satellite with interference suppression constraints. This can be

written as follows:

No = k �wHT̄sys �w. (4.40)

Now, the equivalent available interference power can be defined in a way similar to the

received signal power. Moreover, it is assumed that interferers are narrow-band and un-

correlated. Therefore, for an arbitrarily polarised interferer

Cint(θi, φi) = Pint �w
H
(
[�Fθ

�Fφ]�p
)
�w. (4.41)

The vector for the polarisation of the interference is given by �p = [cosα sinα · ejβ]T,

which in the case of the circular polarised interferer is

�pcirc =
1√
2
[1 ± j]T (4.42)

and for the linear polarised interferer is given by

�plin =
1√
2
[cosα sinα]T. (4.43)
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150 mmtruncated square patch array
common ground-plane

DMN

feeding vias

εr = 10.2 2.54 mm

εr = 10.2 1.27 mm

ground vias
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b) c) d)

0 1cm 0 1cm
0 1cm

Figure 4.6: Customised four-element GNSS truncated square patch antenna array designed using

commercially available substrates. (a) Exploded sketch with integrated DMN, (b) top view of the

fabricated antenna version "A", "B", and "C", (c) bottom view of antenna version "B", and (d)

bottom view of the antenna version "C".

4.5 Design, implementation, and evaluation of compact
GNSS antenna arrays

Before investigating the equivalent CINR performance of the compact GNSS antenna ar-

ray, different four-element square-shaped GNSS antenna arrays having d = λ/4 with and

without DMN have been designed. These customised designs, with compact inter-element

separation, are optimised such that the antenna properties are in accordance with the re-

quirements for the RHCP reception in the GNSS, while utilising the eigenvectors. Here,

the even mode is responsible for maximum radiation in the zenith directions, therefore the

antenna array elements are individually optimised to achieve the minimum axial ratio in

this direction, which according to Table. 2.3 is 3 dB for a bandwidth of 2 MHz.

4.5.1 Four-element λ/4 GNSS antenna arrays with integrated decou-
pling and matching networks

The different four-element compact GNSS antenna arrays incorporate variations of the

individual elements and the DMN designs. These variations designs can be summarised

as follows:
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150 mmsquare patch array
 ground-plane

εr = 10.2 5.1 mm

εr = 10.2 0.64 mm
 ground-plane

DMN

εr = 10.2 1.27 mm

ground vias
feeding vias

RHCP hybrid feed

b) c)

a)

0 1cm

0 1cm

Figure 4.7: Customised four-element GNSS square patch antenna array version "D" with hybrid

feed for conversion into circular polarisation, designed using commercially available substrates. (a)

Exploded sketch with integrated DMN, (b) top view, and (c) bottom view of the fabricated antenna

array.

1. Antenna "A": This consists of four truncated square patches to excite RHCP on the

substrate with dielectric permittivity of εr = 10.2 and a loss tangent of tan δ =
0.0021, i.e. RO3010 [148]. The thickness of the substrate is 2.54 mm. This antenna

does not include DMN, and represents the antenna portion only in Fig. 4.6a and b.

2. Antenna "B": The antenna is similar to Antenna "A". However, this antenna is

integrated with DMN, based on the design shown in Fig. 4.2. This constitutes four

reduced length 180o−hybrid couplers, as the total circumference of the hybrid is

a single waveguide wavelength, λg [79], and is designed over a substrate with a

thickness of 1.27 mm and permittivity of εr = 10.2. The complete sketch and

fabricated antenna is shown in Fig. 4.6b and c, respectively.

3. Antenna "C": The antenna array design is also similar to Antenna "A". However,

the integrated DMN is designed over a thin substrate with a reduced dielectric per-

mittivity of εr = 3.55, dielectric loss tangent is tan δ = 0.0027, and a thickness of

0.25 mm, i.e. RO4003 [148]. The bottom view of the fabricated antenna array are

shown in Fig. 4.6d.

4. Antenna "D": The antenna array is based on dual-feed, linearly polarised, square
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patches where RHCP is achieved by a separate feeding network consisting of four

quadrature couplers, which provide the quadrature phase shift between the two feed-

ings. The antenna substrate thickness is increased to 5.1 mm to enhance and attain

the required bandwidth and radiation efficiency in the case of GNSS. All substrate

layers have values for εr = 10.2 and tan δ = 0.0023 according to the data-sheets of

the substrate material provider. The design of the DMN is similar to Antenna "B".

The complete antenna array design sketch and the fabricated top and bottom views

of the antenna arrays are shown in Fig. 4.7a, b and c, respectively.

Antenna "A": This is a conventional four-element compact GNSS antenna array with-

out DMN, which has similar efficiencies for the individual elements. The pattern shape of

the individual antenna elements are uniform in the upper-hemisphere, with no nulls. The

matching, or Sii, is better than −10 dB in the operating L1/E1 frequency band for all ele-

ments, whereas the maximum coupling between the adjacent and non-adjacent elements,

or Sij , is −7 dB. The measured radiation efficiency of each element is approximately

33% which is slightly lower than the simulation estimate of 37%, and may be attributed

to the tolerances in tan δ and metal conductivity values taken into account in the simu-

lations. The measured RHCP realised gain radiation patterns, F i
RHCP(θ, φ), are shown for

the antenna elements in Fig. 4.8a. The recorded maximum RHCP realised gains are 2.4,

3.4, 2.5 and 3.8 dBi for the respective antenna elements. The cross-polarisation, or mea-

sured LHCP realised gain radiation patterns, F i
LHCP(θ, φ) are displayed in Fig. 4.8b. These

possess higher-order modes and are contributed mainly by the ground currents[16]. The

maximum LHCP realised gains are −4, −2.1, −4, and −1.8 dBi for the antenna elements.

Furthermore, the eigenanalysis by computing the covariance matrix, R̄, using (3.12),

is performed on the measured embedded patterns F̄i(θ, φ). The efficiencies associated

with the even, odd-1, odd-2 and π modes, are 64%, 38%, 26%, and 10%, respectively. As

expected for the symmetric antenna array, the eigenmode absolute amplitudes and phases

to decouple the antenna array are in close agreement to the modes of the 180o−hybrid

couplers depicted in Fig. 4.2.

Antenna "B": The antenna array design is similar to Antenna "A". However, the

DMN is integrated at the back of the antenna array. The DMN is responsible for the

excitation of the eigenmodes which eventually decouple and match the resulting ports.

The permittivity of the DMN substrate is εr = 10.2, which offers miniaturisation, but the

impedance matching bandwidth is reduced. This is compensated for by increasing the

thickness of the substrate to 1.27 mm. The matching coefficient for all modes is better

than −12 dB with a minimum bandwidth of 4 MHz, S̄ii ≤ −10 dB criterion, which

is sufficient to fulfil the GNSS requirements. The maximum decoupling coefficient is

−11 dB. This is not perfect decoupling, and is associated with the ohmic losses of the

network and the dominant surface waves due to the combination of higher permittivity and

thicker substrate. The measured total eigenefficiencies at the output of the DMN for the
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even, odd-1, odd-2, and π modes are 63%, 56%, 38%, and 25%, respectively, at the centre

frequency of L1/E1. The minimum eigenefficiency is considerably improved compared to

Antenna "A", which is without DMN.

The measured RHCP realised gain radiation patterns for the modes are shown in

Fig. 4.9a. Here, the recorded maximum RHCP realised gains are 6, 4.2, 2.4, and 0.2 dBi
for the even, odd-1, odd-2, and π modes, respectively. The measured LHCP realised gain

radiation patterns are shown in Fig. 4.9b. In this case, the maximum realised gains are

−5.9, −1, −3, −0.2 dBi.
The truncated square patches are known to possess a narrow axial ratio bandwidth but

it is sufficient to fulfil the criterion for the L1/E1 C/A-code signal, which is ±1.023 MHz.
However, this narrow bandwidth property offers little manufacturing tolerance, which may

be unattractive for mass-production. Secondly, it is noteworthy that the axial ratio over the

complete upper hemisphere is not uniform, and is drastically increased close to the horizon,

which may be improved by the dual-feed linear polarised patch antenna array, such a type

is described later in this section. Furthermore, the π mode LHCP maximum gain is equal

to the RHCP, which is undesired for robustness, and will be examined using the equivalent

CINR analysis.

Antenna "C": In order to decrease the mutual coupling more than −15 dB, a low

permittivity and thin DMN substrate is employed for the DMN design. The thin DMN

substrate with low dielectric permittivity minimises the generation of surface waves, and

thus mutual coupling. However, there are certain disadvantages for this choice of substrate,

including a larger size and narrower bandwidths. The measured matching coefficient for

all modes is better than −12 dB for the minimum bandwidth for the π mode 4 MHz,
for a S̄ii ≤ −10 dB criterion. However, the maximum coupling coefficient is decreased

significantly to −17 dB.

The measured RHCP realised gain radiation patterns are shown in Fig. 4.10a. The

maximum RHCP realised gains for the respective modes are 5.8, 3.4, 2.6, −2.5 dBi. It

may also be noted that for eigenmode antenna arrays as well, these maximum gain values

do not correspond to the same directions. Therefore, in a fixed direction, the deviation

among the gain values is larger.

The measured LHCP realised gain radiation patterns are displayed in Fig. 4.10b. The

maximum LHCP realised gains for the even, odd-1, odd-2, and π modes are −7.2, −4,

−4.5, and −2.9 dBi, respectively. The measured axial ratio in the main-lobe (zenith)

direction is also below 3 dB. The measured eigenefficiencies at the output of the DMN

for the even, odd-1, odd-2, and π modes are 63%, 46%, 35%, and 20%, respectively.

In comparison to Antenna "B", the minimum eigenefficiency is decreased, which can be

attributed to the choice of the dielectric substrate properties, but is still acceptable for the

considered threshold in this study.

Antenna "D": This antenna design consists of a dual-feed linear polarised square

patch antenna with a separate quadrature coupler feeding network to generate the RHCP
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Table 4.2: Summarised measured radiation efficiencies of the different antenna versions. In the

case of antenna "A" these are the embedded element efficiencies. Last row of the table indicates

the maximum measured coupling between any two elements or modes of the antenna array.

antenna version

mode A
(w/o DMN) B C D

even 64 63 63 49

odd-1 38 56 46 30

odd-2 26 38 35 10

π 10 25 20 7

max.
coupling (dB) -7 -11 -17 -14

from each element. This offers wide axial ratio bandwidth for the main-lobe direction,

which provides greater manufacturing and material properties tolerances. Furthermore,

the antenna substrate thickness is increased by twice that of Antenna "A", which provides

wider impedance-matching and realised gain bandwidths across the operating band, which

result in better manufacturing tolerances.

The integrated DMN design is similar to the Antenna "B" as shown in Fig. 4.7c. The

measured matching coefficients are less than −15 dB, with maximum coupling coefficient

of −14 dB. The measured −10 dB matching bandwidth is improved to 10 MHz in the π
mode.

However, the measured modal eigenefficiencies differ greatly from the simulation. The

measured modal efficiencies are 49%, 30%, 10%, and 7% whereas in the simulation they

are 75%, 62%, 57%, and 35%. The high insertion loss is found to be linked to the employed

gold-plating, which includes Nickel as a carrier layer. This was examined by a separate

construction of Antenna "B" using conventional copper and gold-plating. Unfortunately,

another version of Antenna "D" was not possible during this work. Nonetheless, this fabri-

cated design is still functional, but with slightly degraded performance when compared to

the above mentioned antennas, therefore it is unfair to consider it for further comparison

analyses.
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The axial ratios in the main-lobe directions for the even modes of the compact antenna

array with DMN are shown in Fig. 4.11. The truncated square patch-based antenna array

depicts narrow-band behaviour due to the single feed design. However, as mentioned ear-

lier, it is sufficient for public navigation signals. The axial ratio for the dual-feed antenna

array design "D" is de-tuned from the centre frequency, but due its broadband character-

istics it achieved less than 3 dB for the desired band. In addition, in this design, the axial

ratio in other directions (in the upper hemisphere) is better than the truncated square patch

antenna arrays.

The summarised maximum realised gains in RHCP and LHCP at the centre frequency

of the L1/E1 band, i.e. fo = 1575.42 MHz are shown in Table 4.3.

4.5.2 Co-polarised interference scenarios

The robustness performance of the compact antenna array receiver is analysed using the

equivalent CINR model derived in (4.33). For simplification purposes, the non-linear ef-

fects of the FE components are not considered. Furthermore, the assumption is made that

noise contribution from FE components other than the LNA are negligible, and thus they

are ignored. Now, with a priori knowledge of the j interferer directions, the optimal weight

coefficient in the deterministic case for desired satellite direction can be given as:

�wd = �FH
d (θd, φd)Ō

int
⊥ . (4.44)

Here, Ōint
⊥ represents the projection to the interference-free subspace and is found using

(3.31), where the steering vectors are defined by the interferers’ directions. There are

also several other methods for estimating the beamforming weighting coefficients in the

presence of interferences, such as the minimum variance distortionless response (MVDR),

which provides additional constraints for interference attenuation with a certain trade-off

for antenna array gain [17, Section 6.2.1]. In the context of this work the discussion will

be limited to the aforementioned beamformer. The maximum possible interferers with one

degree-of-freedom fixed for satellite direction are three, for four-element antenna array.

One interferer: A single RHCP interferer, with the same polarisation as the desired

satellite, and JSR of 40 dB impinging from fixed direction (θ, φ) = (15o, 90o). The equiv-

alent CINR using the weighting coefficients in (4.44) is computed for every satellite di-

rection, with Csat = −157 dBW, in the upper hemisphere, and an elevation angle, θ, from

0o − 180o, and azimuth angle, φ, from 0o − 360o. For clarification, θ = 0o and θ = 180o

correspond to the horizon. In Fig. 4.12a, the computed equivalent CINR in the azimuth

directions with fixed elevation directions, θ = 15o, of different antenna versions with and

without DMN described in the previous section is shown. In Fig. 4.12b the equivalent

CINR in elevation directions with fixed azimuth, φ = 90o, for the respective compact

antenna array is shown.
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Figure 4.12: The calculated equivalent CINR for one RHCP interferer case with JSR of 40 dB
impinging from fixed direction (θ, φ) = (15o, 90o), (a) in azimuth with elevation θ = 15o, and

(b) in elevation with azimuth φ = 90o. Here, θ = 90o refers to the zenith directions. The angular

resolution of the far-field measurements is 5o.

The equivalent CINR for Antenna "B" is 1–2 dB better than the other antennas in

low elevation directions, which has best efficiency of all, but is not perfect decoupled.

However, in certain azimuth directions without DMN Antenna "A" is 0.2 − 0.5 dB bet-

ter than the antenna arrays with DMN. In general, the equivalent CINR is similar in the

upper hemisphere direction with or without DMN. However, the advantage of the DMN

is marginally evident at low elevations. Therefore, it may be concluded that in the single

interferer scenario, the benefit of DMN is not prominent, except at low elevations. This

outcome is similar to the results obtained in our work [157].

Two interferers: At first, two RHCP interferers, with a JSR of 40 dB, each for fixed

azimuth impinging directions (θ1, φ1) = (15o, 90o) and (θ2, φ2) = (15o, 180o) are investi-

gated. The computed equivalent CINR for the desired satellite directions in the azimuthal

directions with fixed elevation angle θ = 15o is plotted in Fig. 4.13a. In azimuth direc-

tions close to the two interferers’ directions, the equivalent CINR dropped by at least 2 dB
compared to the single interferer case. This is related to the decrease in the antenna gain

with the use of the higher-order modes observed in the previous sub-section.

Next, the interferer directions are distributed in elevations of (θ1, φ1) = (15o, 90o) and
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Figure 4.13: The calculated equivalent CINR for two RHCP interferer cases with JSR of 40 dB
each. The impinging directions (a) (θ1, φ1) = (15o, 90o) and (θ2, φ2) = (15o, 180o) while the

plot represents azimuth directions with fixed elevation θ = 15o, (b) (θ1, φ1) = (15o, 90o) and

(θ2, φ2) = (60o, 90o), which is plotted for all elevation directions with fixed azimuth φ = 90o.

Here, θ = 90o refers to the zenith directions. The angular resolution of the far-field measurements

is 5o.

(θ2, φ2) = (60o, 90o), and the corresponding equivalent CINR with constant azimuth di-

rection φ = 90o for different antenna arrays is shown in Fig. 4.13b. The CINR is improved

significantly by 3 dB for Antenna "B" close to the interferer elevation directions. How-

ever, without DMN provides better or equal CINR in other directions. In cases where the

interferers are distributed in elevation and the desired source is impinging from a low el-

evation, DMN is a preferable choice for the compact antenna arrays. Note, the absolute

CINR gain may differ for different types, inter-element separation and geometry of the

antenna arrays. This is also affected by characteristics such as ohmic losses of the DMN.

Three interferers: This is the worst-case for the four elements compact antenna array,

as it requires all degrees-of-freedom of the antenna array. This may sometimes become

a limiting factor for the selection of antenna array configurations, if the equivalent CINR

drops below the detectable threshold of the receiver. Therefore, it is necessary to analyse
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Figure 4.14: The calculated equivalent CINR for three RHCP interferer cases with JSR of

40 dB each. The impinging directions (a) (θ1, φ1) = (15o, 90o), (θ2, φ2) = (15o, 180o),
(θ3, φ3) = (15o, 300o) while the plot represents azimuth directions with fixed elevation θ = 15o,

(b) (θ1, φ1) = (15o, 90o), (θ2, φ2) = (60o, 90o), (θ3, φ3) = (60o, 180o), which is plotted for all

elevation directions with fixed azimuth φ = 90o. Here, θ = 90o refer to the zenith directions. The

angular resolution of the far-field measurements is 5o.

the equivalent CINR, while also considering the losses of the DMN. Therefore, introducing

three RHCP interferers in the different azimuth directions with fixed elevation direction,

at (θ1, φ1) = (15o, 90o), (θ2, φ2) = (15o, 180o), and (θ3, φ3) = (15o, 300o), reduces the

CINR for all the antennas considerably by 5− 10 dB which confirms the fact that mutual

coupling degrades the radiative performance of the antennas severely, as observed in the

minimum eigenvalue analysis in the previous chapter. But the use of DMN restores the

antenna CINR by at least 3 dB in all directions, which signifies its benefit.

In the case of three RHCP interferers distributed in elevation directions with fixed az-

imuths of (θ1, φ1) = (15o, 90o), (θ2, φ2) = (60o, 90o), and (θ3, φ3) = (60o, 180o), antennas

with DMN (i.e. "B" and "C") deliver better performance, in particular Antenna "B". Over-

all, the antenna array performance with DMN is better up to a maximum of 10 dB in

certain directions. Basically, this advantage is linked to the matching gain provided by the
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Figure 4.15: The calculated equivalent CINR for one LP interferer applying (a) single and (b)

multiple degrees-of-freedom interference cancellation constraints.

DMN which appears dominant on its ohmic losses for all directions of the three interfer-

ers. Based on these results, it can be generalised that for robust navigation receivers it is

necessary to deploy DMN for compact antenna arrays.

Non-linear characteristics of the analogue FE: So far we ignored the non-linear

characteristics of the analogue FE, especially the gain compression. However, if the re-

ceived input power exceeds a threshold due to high-power interferences, the amplifying

gain of the analogue FE is compressed. As a result of the compression of either one of

the output amplifiers of the analogue receiver circuit or the analogue-to-digital converters

(ADC), the satellite signals are severely distorted or even blocked. This effect leads to a

reduced equivalent CINR and an increased acquisition error.

In the case of single strong RHCP interferer and antenna "A" considered previously, it

is observed that the received power is almost equal for all antenna elements. The analogue

FE is prevented from saturation only for some directions where the interferer suppres-

sion is approximately 10 dB. The reason is that the mutual coupling between the antenna

elements cannot be eradicated using digital beamforming techniques. However, the re-

ceived interference power with DMN, i.e. antenna "B", antenna "C", and antenna "D", is

suppressed by approximately 15 dB in most directions for at least one of the receiver chan-

nels. The desired satellite signals coming from this direction are, therefore, not blocked,

i.e. they are fully available for signal processing. This is because the DMN not only decou-

ples the antenna elements, but also provides orthogonal patterns with nulls before the input

of the analogue FE. This helps in suppressing the strong interferer before the input of the

analogue FE and avoids its saturation, which provides additional benefit of the decoupling

and matching network concerning the robustness of the receiver.



4. Compact Robust GNSS Antenna Array Receivers 114

4.5.3 Arbitrary polarised interference scenarios

In the previous scenarios, only the co-polarised interferers were considered. These do not

truly represent real-life scenarios, because in urban or non-line-of-sight scenarios, interfer-

ers become elliptically polarised. On the other hand, it is easier to form a linear polarised

(LP) interferer than a circular polarised one. In addition, in the previous chapter it was

shown that the cross-polarisation, or LHCP, becomes comparable to RHCP, in particular

for the highest order mode of the compact antenna arrays.

Therefore, with a single LHCP or LP interferer and null-constraint in the RHCP di-

rection, the CINR drops well below 0 dB, as shown in Fig. 4.15a. In the case of the

LHCP interferer, it can be nullified using a single LHCP degree-of-freedom. However,

with the LP interferer, it is not possible to nullify it with a single circular polarised degree-

of-freedom, as it is received in both co- and cross- circularly polarised antennas, if their

levels are comparable. But, if an additional LHCP null-constraint in the previously con-

sidered single LP interferer situation is used, which is fixing one of the remaining two

degrees-of-freedom, for the suppression in cross-polarisation, with the RHCP and LHCP

constraints nulling the same interference direction, then it can be mitigated. With this

configuration, a similar CINR performance in all azimuth directions as compared to a sin-

gle RHCP interferer with RHCP null-constraint is achieved. The calculated CINR for the

complete upper hemisphere in the case of a LP interferer, fixed at θ = 15o, φi = 75o is

shown in Fig. 4.15b. For the four-element circularly polarised compact antenna array, this

approach of interference cancellation will ensure nulling of, at maximum, one arbitrarily

polarised interferer and either one RHCP or one LHCP interferer [158].

4.6 Low-cost compact GNSS antenna array

Until now, customised approaches of compact antenna arrays, using commercially avail-

able substrates, have been developed. These demand careful designing, optimising of

the individual radiators, and even expensive manufacturing, to achieve the desired ax-

ial ratio and matching bandwidths, which may limit their economic mass-production on

an industrial scale. In contrast, commercial off-the-shelf (COTS) antenna elements are

cheap and readily available. These antennas have already been applied to conventional

half-wavelength antenna arrays for improving navigation accuracy along with interference

mitigation [89].

The developed compact antenna array consists of four radiating elements with an

inter-element separation of a quarter of a free-space wavelength. The individual antenna

elements, COTS GPS ceramic patch antennas (discussed in the previous chapter), are

mounted with separated substrates on a common ground-plane, as shown in Fig. 4.16a.

The overall size of the antenna array with a ground-plane is 100 mm × 100 mm, about
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a) b)

0 1cm

Figure 4.16: (a) Four-element square ceramic patch antenna array on a reduced ground-plane

10 cm×10 cm with inter-element separation of d = λ/4 and (b) slits applied to tune the individual

antenna elements for axial ratio.

Figure 4.17: Measured axial ratio in the main-lobe directions for the antenna shown in Fig. 4.16a.

λ/2, which is considerably smaller than the dimensions of the antenna arrays described

previously. The RHCP realised gain in main-lobe direction, is approximately 5 dBi, and

the maximum LHCP realised gain in the same direction is −4.5 dBi. The axial ratio versus

frequency shown in Fig. 4.17, clearly reveals that the value remains above 3 dB over the

entire signal bandwidth in the main-lobe direction which needs to be addressed in order

to employ these arrays in navigation applications. This shortcoming may be removed by

re-tuning the antenna elements, and is normally done by inserting slits on the edges of

the patch, as highlighted in the inset of Fig. 4.16b. This modification for the even mode,

while maintaining the precise manual etching of the individual radiators, is not easily re-

alisable because of the narrowband axial ratio characteristics associated with these types

of truncated patch antennas (cf. discussion in Section 4.5.1).

The significant level of cross-polarisation will cause the reception of unwanted mul-

tipath signals which undermine the robustness of the receiver. In order to minimise the
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a) b)

0 1cm

0 1cm

Figure 4.18: (a) Four-element square-shaped ceramic patch antenna array on a reduced ground-

plane 10 cm × 10 cm with inter-element separation of d = λ/4, (b) introduced slits, highlighted

with dotted ellipse, in the ground-plane to tune the axial ratio.

Figure 4.19: Measured axial ratio in the main-lobe directions for the antenna with ground-plane

slits shown in Fig. 4.18.

axial ratio in the main-lobe direction, additional slits in the ground-plane highlighted in

the inset of Fig. 4.18 are introduced. These slits decouple the higher-order modes which

are responsible for cross-polarisation radiation, and suppress their radiation in the case of

even mode excitation. The co-polarisation radiation is also affected, and the realised gain

is reduced by 1 dB, but this is still acceptable. The axial ratio versus frequency for the

modified antenna is shown in Fig. 4.19, which in the operating band drops below 3 dB in

the frequency range of interest, and fulfils the requirements for the navigation antennas.

4.6.1 Miniaturisation of decoupling and matching network

As discussed earlier, for a four-element antenna array, four hybrid couplers are required

to excite the respective eigenmodes (cf. Fig. 4.6b and c). However, the size of the single

miniaturised hybrid coupler is 0.32λg which is approximately 20 mm in diameter at the
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a) b)

3 mm

2 mm

0 1cm

Figure 4.20: (a) The fabricated design of the DMN of the antenna array shown in Fig. 4.18. (b)

X-ray view of the applied quadrature coupler.
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ant. 3 
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90o

90o
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Figure 4.21: The block diagram of the decoupling network using OTS quadrature couplers for the

four-element antenna array.

L1/E1 frequencies, while using a substrate with εr = 10.2. Here, the waveguide wave-

length is defined as λg = λo/
√
εr. This results in a large size of the complete DMN and

does not offer an attractive solution, neither for miniaturisation nor for mass production.

Therefore, a complete DMN using four COTS 90o−directional couplers on the low-

cost FR-4 epoxy substrate with εr = 4.4 and a thickness of 1.58 mm is fabricated, as shown

in Fig. 4.20. The block diagram shown in Fig. 4.21, describes the circuit of the network,

which includes 90o delay lines to transform these quadrature couplers into 180o−hybrid

couplers. As apparent from the figure, the use of COTS components offers a compact

size and eases industrial-scale assembly. The overall size of the decoupling network only

is reduced by half of the previous designs in Section 4.5.1. Furthermore, overall size

miniaturisation is also possible by high permittivity carrier substrate for the miniaturisation

of the quadrature microstrip delay lines, which are a limiting factor for the overall size in

this approach.

Earlier, the equivalent CINR was introduced as the crucial parameter for navigation

receiver performance. Therefore, instead of describing the mutual coupling coefficients
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Table 4.4: The analytically computed equivalent CINR values, in dB-Hz, for the COTS four-

element antenna array with and without DMN in the fixed desired calculation of θ = 87.5o and

φ = 108o. The RHCP interferer directions are fixed in elevation directions, i.e., 15o, and are

distributed in azimuth directions.

antenna configurations

number
of

interferers

interferer impinging
directions without DMN with DMN

zero (without) - 56.3 56.2

one θ = 15o, φ = 0o 50.5 51.7

two θ = 15o, φ = 0o, and 180o 45.4 46.5

three θ = 15o, φ = 0o, 90o and 180o 41.75 45.86

of the antenna array with and without DMN, the CINR is calculated for the measured

antenna patterns. The calculated equivalent CINR with and without interference scenarios

are recorded in Table. 4.4. With no interference, the CINR in the desired direction is

56.3 dB-Hz without DMN and slits, which is 0.1 dB higher than with DMN and slits in

the antenna array. Therefore, there is no advantage of DMN or the slits in the no interferer

scenario. As the even mode of the antenna array matching is not affected by the mutual

coupling, the DMN gives no benefit; rather it introduces insertion loss which undermines

the performance of the antenna array.

In the case of one and two RHCP interferers, the CINR of the antenna array with DMN

is 1 dB better than without DMN, which is in agreement with the previous conclusions.

There is marginal improvement with DMN for the equivalent CINR in a minimum number

of interferers. However, in the case of maximum interferers, i.e. three, the CINR with

DMN is improved by 4 dB in the desired satellite direction. This validates the importance

of DMN for robust compact navigation antenna arrays in interference-limited scenarios in

particular.

4.7 Summary
In this chapter, the challenges of the decoupling and matching techniques and their imple-

mentations are described. In order to achieve the matching of the compact antenna arrays

for all direction of arrivals, it is necessary to primarily perform the decoupling. Several

decoupling techniques along with their limitations are discussed. The broadband decou-

pling, based on hybrid couplers network, is possible which allows larger tolerances for

manufacturing. However, eigenmode matching techniques suffers from narrow bandwidth
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characteristics, especially for the higher-order modes. The maximum achievable band-

width is observed to be limited due to the inter-element separation of the antenna arrays.

The integration of the DMN with the compact planar antenna array in multi-layered

substrate approach is successfully designed and fabricated. As far as the DMN is con-

cerned, it is helpful to increase the minimum eigenvalue of the antenna by at least 50%
as compared to the similar antenna array without decoupling and matching. However,

for other eigenvalues the benefit is not significant. Therefore, it becomes necessary to

find how does this improvement in efficiencies of eigenmodes translate into the navigation

receiver’s CNR performance, while including insertion losses of the DMN.

In order to evaluate the effect of ohmic losses and mutual coupling on navigation per-

formance, the diversity receiver model incorporating equivalent CINR has been derived

based on the measured correlated noise matrices of the antenna array. The absolute perfor-

mance is dependent on the beamforming weights and the corresponding algorithm charac-

teristics.

To investigate the equivalent CINR performance, several customised GNSS compact

antenna array designs with integrated DMN are presented. In regards to the robustness,

decoupling and matching network has no advantage or disadvantage in the case of no

interference. However, the significance of the DMN seems to be noticeable in the presence

of interference, because of the utilisation of the higher-order modes for beamforming.

Moreover, the benefit of the DMN is more prominent for the maximum interferer scenario,

which is three for the four-element antenna array. The equivalent CINR is improved by at

least 3 dB in all directions, and extends to 10 dB in low-elevation directions.

Finally, an optimal miniaturised L1/E1 band RHCP compact antenna array, with inte-

grated miniaturised DMN, using cheap commercial off-the-shelf high permittivity ceramic

patch antennas and discrete quadrature directional couplers, is presented. This provides the

possibility of mass-production with the constraint of low-cost.



Chapter 5

Practical Implementation of Adaptive
Compact Navigation Receiver

An implementation of a complete navigation receiver, including the analogue FE, digital

receiver, and baseband processing is essential to verify the equivalent CINR model derived

in previous chapters. This also provides a platform from which to evaluate the performance

of the compact GNSS antenna array in realistic scenarios with and without DMN. To the

best of the author’s knowledge, this insight is not yet available in the literature.

One approach of implementing the multi-channel analogue FE may involve existing

GNSS single-channel analogue FEs. However, these are not compatible with interference

signals because of their small dynamic range and high-gain amplification. If used, they will

cause the FEs to be saturated and operate in the non-linear region for a very low-power

interference or jammer signal. Therefore, different customised multi-channel FEs are de-

veloped and explained in this chapter while keeping the specifications of interferences in

mind. The maximum JSR considered in this work is 40 dB: beyond this, the analogue FE

will saturate the input of the analogue-to-digital converters (ADCs). Secondly, the use of

eigenmode antenna arrays in which radiation patterns are non-uniform and dissimilar, add

more uncertainty in terms of applying conventional beamforming and interference sup-

pression algorithms in the digital receiver. The consequence of the eigenmode antenna

arrays on these adaptive algorithms is relevant in these implementations. Therefore, con-

ventional adaptive nulling algorithms with CNR performance are investigated using the

developed demonstrator.

The beginning of this chapter presents the overview of the demonstrator components.

This follows a description of the algorithms in the baseband and the adaptive null-steering.

Finally, the results of the demonstrator for indoor and outdoor experiments under the in-

fluence of the interference are revealed.

120
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5.1 Overview of the compact multi-element GNSS demon-
strators

The GNSS demonstrator can be divided into four main components:

1. Antenna array;

2. Analogue FE;

3. Digital receiver;

4. Baseband signal processing.

Antenna array: The antenna array block consists of the compact antenna array with

miniaturisation of the inter-element separation to d = λ/4 along with the integrated DMN.

These designs have been thoroughly discussed earlier (see Chapter 4). Furthermore, for the

functionality of the complete demonstrator and signal processing algorithms, like beam-

forming and DOA, a calibration network is necessary and is integrated into this block as

well, after the DMN. The purpose and description of this calibration network is described

later (see Section 5.4).

Analogue FE: In the navigation receivers, the analogue FE is responsible for the am-

plification of the RF signal delivered or captured by the antenna and the down-conversion

to the IF signal. The main blocks for the single-channel case have already been discussed

in Chapter 1. There are several state-of-the-art single-channel FEs available off-the-shelf

that are suitable for navigation signal reception. However, these are not suitable for use as

robust navigation receivers. Basically, the high-gain amplification along with smaller 1 dB
compression of the amplifiers causes their non-linearity in the presence of high-power in-

band interferers. Moreover, the multi-channel FE demands the synchronisation of the local

oscillator (LO), which is impossible to achieve in these FEs because of the lack of access

to the internal LO stage. On the other hand, a multi-channel analogue FE that meets the

specifications for robust GNSS applications is not yet commercially available. Therefore,

the customised multi-channel FE design becomes crucial for the development of the GNSS

demonstrator.

Digital receiver: The digital receiver block consists of the data acquisition, covariance

matrix estimator, and signal conditioning stages. The data acquisition mainly consists of

the ADCs with a common reference clock for sampling. As in this work, only C/A-code

signals of the L1/E1 band are considered for the demonstrator; therefore, a minimum

bandwidth of ±1.023 MHz around the central frequency fo = 1575.42 MHz is required

from this block, such that the sampling rate remains twice the signal bandwidth, to recover

the complete signal. Next, the digitised data are used to estimate the received covariance
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matrix, R̄y, for the received signal matrix, Ȳ , which has dimension of N ×M , where M
are the total number of recorded samples. This is given by

R̄y =
1

M
Ȳ Ȳ H (5.1)

The accuracy of R̄y is directly proportional to the N number of samples considered. The

next step of signal conditioning may include the spatial filtering of the received signal from

the unwanted signals, such as interference or jammer signals mainly in-band.
Baseband signal processing: The received signal is digitally down-converted to the

baseband, which involves the removal of the carrier signal, by multiplication of the re-

ceived signal with the in-phase (Ip) and the quadrature-phase (Qp) replicas of the carrier

sinusoidal signal. These baseband signals are then searched to acquire the transmitted

satellite code signals. The acquired satellites, with SNR above the set threshold, are passed

on to the tracking algorithm to lock the given satellite code and carrier in order to retrieve

the transmitted navigation signals. Therefore, each 20 ms of tracked signal retrieves one

complete navigation bit. These tracked navigation bits are then decoded to ascertain the

satellite time and position information along with the vital CNR information.
The complete block diagram of the compact GNSS antenna array receiver demonstra-

tor is shown in Fig. 5.1.

5.2 Multi-channel analogue front-end architecture
The parameters of the multi-channel analogue FE receiver architecture that govern its per-

formance include the maximum allowed input signal power level, amplification gain, out-

of-band suppression levels, noise figure, and dynamic range of the ADCs in the digital

receiver. Considering the C/A-code, the received carrier power is below the thermal noise

power level; therefore, the maximum allowed input signal detection level defines the max-

imum acceptable jammer power, which is 40 dB. Both the amplification gain and the

dynamic range, collectively, are defined by the minimum input detection power level of

the analogue FE. This should also consider the maximum jammer power level to remain

in the dynamic range of the ADC, which will otherwise be saturated.
There are two different types of low-IF analogue FEs implemented in this work. The

first part constitutes off-the-shelf discrete integrated circuit (IC) printed-circuit board (PCBs).

The second is a customised design and fabrication of a four-channel IC chip for L1/E1

band frequencies.

5.2.1 Analogue front-end based on discrete components
The analogue FE constitutes the following building blocks: LNAs, mixers, low-pass filters

(LPFs), IF amplifiers, band-pass filters (BPFs), PLL, and a power divider as shown in
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Fig. 5.1. The PCB designs for the individual ICs are optimised for better RF shielding,

minimal cross-talk (coupling among the channels) and noise figures.

LNA: The first four-channel low-noise high-gain amplification stage is designed as a

separate PCB mounted directly after the DMN outputs as shown in Fig. 5.2a. Moreover,

to minimise the overall noise figure of the complete receiver, this is directly connected at

the output of the DMN (after the calibration network, if employed). It consists of four

independent channels, each providing high-gain amplification up to 36–38 dB. This is

achieved using two LNAs from Avago Technologies ALM-1912 [149] in cascade config-

uration. In addition, each LNA is preceded by a bulk acoustic wave (BAW) filter, which

delivers superior out-of-band rejection performance with steeper curves compared to sur-

face acoustic wave (SAW) filters, for which the minimum is 40 dB. The measured NF for

each channel is approximately 1.7 dB. The measured output 1 dB compression point is

−30 dBm. Note that, because the fabrication and soldering tolerances result in ±2 dB and

±0.2 dB variation in the amplifications and the noise figure values, respectively, of the

individual channels, careful calibration is required.

Mixer: An active mixer PCB with a high output 1 dB compression point is designed

for down-conversion into the IF, which is chosen to be 74.8 MHz (see Fig. 5.2b). An

LPF with a cut-off frequency of 95 MHz, LFCN-95+ from Minicircuits [150], is placed

directly after the output of the mixer to reject image and high-frequency spurious sig-

nals. The minimum input power for the LO is 5–10 dBm. This PCB also includes a

pre- and post-amplifier stage for the LO input and IF output, respectively. The mixer is a

HMC421QS16 chip from Hittite [151]. The independent four-mixer PCBs are well sep-

arated from each other to avoid cross-talk, particularly for the LO signal, which is in the

vicinity of the incoming L1/E1 signal (i.e. 1500.62 MHz). Furthermore, in order to main-

tain the phase coherence between the mixer LO inputs, a 0o-phase output four-way splitter

is used to divide the amplified PLL output (4 dBm) while keeping the output powers above

the required threshold.

IF amplifier and band-pass filter: After the down-conversion, the IF signal is fed

to the IF gain block with a high output 1 dB compression point of 20 dBm and 40 dB
amplification gain. This is based on the Analog Devices ADL5531 ICs [152]. A narrow

band-pass filter BPF-C75+ with 8 MHz bandwidth from Minicircuits [150] is necessary to

reduce the out-of-band noise. The two separate PCBs are shown in Fig. 5.2c and d.

Phase-locked-loop synthesiser: The ADF4351 PLL frequency synthesiser PCB from

Analog Devices [152] with an integrated voltage-controlled oscillator (VCO) consists of

a programmable Universal Serial Bus interface controller for tuning the output frequency.

The reference clock can be provided from the external signal generator or the internal fixed

25 MHz temperature-controlled oscillator (TXCO), which is robust against temperature

changes. The output of the PLL is tuned to 1500.62 MHz with maximum output power

from the PLL of only 4 dBm, which decreases to approximately −3 dBm with power

divider and is below the recommended input power level for the LO input of the mixers.
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a) b)

RFin
IFout

IC

PLL

 channel 4  channel 3

 channel 1  channel 2

Figure 5.3: (a) Chip photograph of the FE IC. The enlarged area contains the active FE compo-

nents, highlighted as channels and PLL. Other structures are for characterisation purposes only.

Die size: 5 mm× 5 mm. (b) The four-channel FE IC evaluation board with IC under black top in

the center of the board. The RF inputs, indicated as RFin, are mounted on the back side, and four

IF outputs, indicated as IFout on the left and right corners of the PCB. Board size: 14 cm× 9 cm.

Therefore, an external broadband amplifier is applied at the output of the PLL to achieve

the output power levels of 10 dBm, which is the required minimum input power level for

the mixers.

5.2.2 Integrated analogue front-end circuit
This work has been a contribution from partners at the Institute for Microelektronic und

Mechatronic System (IMMS) [153]. The main part of the integrated multi-channel FE

is implemented in a commercial 180 nm silicon CMOS process. An external SAW filter

for pre-selection of the RF band is fabricated on the evaluation board. Furthermore, in

order to reduce the out-of-band noise before sampling, an external IF filter is employed

with a narrow band defined according to the signal bandwidth requirements. A detailed

description of the IC and the evaluation board can be found in [159].

A micro-photograph of the manufactured FE IC is shown in Fig. 5.3a. The four in-

dividual signal paths are placed symmetrically in the corners of the IC in order to reduce

coupling through the inductors or the substrate of the chip. The five on-chip inductors

shown in Fig. 5.3a are clearly visible in the layout. The PLL, including the inductor of the

voltage-controlled oscillator, is located on the centre right-hand side of the IC. The chip

size is 5 mm× 5 mm. The RF and IF signal pads are shielded by ground pads in order to

reduce the coupling between the bond wires.

The FE IC characterised on wafer level and populated within an evaluation board is

shown in Fig. 5.3b. The board itself consists of a 0.25 mm thick RO4003 substrate with

εr = 3.55 from Rogers cooperation laminated on a 1.54 mm thick FR4 carrier substrate

with εr = 4.4. Off-chip matching of the LNA is realised with transmission lines and



5. Practical Implementation of Adaptive Compact Navigation Receiver 127

 calibration signal

FE 1 ant. 1 ant. 2 FE 2

ant. 3 FE 3FE 4 ant. 4

50 

a) b)

0 1 cm

Figure 5.4: (a) Sketch of the calibration network, it constitutes a four-way power divider and four

directional couplers. (b) The fabricated calibration network.

capacitors instead of discrete lumped components in order to minimise the losses of the

matching circuit.

5.3 Calibration of the analogue front-end
Even though the analogue FE is operated using a coherent LO, the anomalies in the signal

path lengths due to the design and fabrication may vary the relative phase and amplitudes

of the signal among the channels. This may lead to inaccuracies in the DOA, beamforming,

and position estimation for the navigation receiver. Therefore, it is necessary to calibrate

the analogue FE with the accurate operation of the signal processing algorithms in digital

and baseband domains.

A rudimentary technique for calibration involves the offline measurement of the rela-

tive phase and amplitude between the channels of the analogue FE. The term offline indi-

cates the lack of the antenna array and digital receiver. These measured fixed values can

be stored in the digital domain for compensation in the calculation of its algorithms. This

can be termed an offline calibration method. However, if the inter-connecting cables or

connectors either inside the analogue FE or between the ADC and the analogue FE are

changed, then the measured calibration coefficients become invalid. Another drawback of

such a calibration approach is that the temperature or heating effects are ignored, which

may change the measured coefficients because of the environmental conditions and the

operational time span of the receiver.

On the other hand, an online calibration is performed with the antenna array, analogue

FE, and digital receiver connected and is more robust to hardware or temperature changes
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within the system. One such technique employed in multi-antenna receivers is the cal-

culation of relative calibration coefficients using a reference source or transmitter signal

present in the environment. In the case of the GNSS signals, this is normally employed

using the satellite available in the zenith. However, the probability of finding the satellite

in the zenith permanently at a fixed Earth location is very low. Therefore, a satellite close

to the zenith is normally considered for this purpose, which induces a bias in the signal

processing estimation algorithms and is undesirable. Additionally, this method requires

a priori knowledge of the satellite constellation, which makes it an impractical approach.

Moreover, for the compact antenna array with mode patterns that are orthogonal in nature,

it is not possible to acquire the satellite coming from zenith directions independently by

every channel simultaneously.

In [120], a robust online calibration method is proposed that involves the injection of

an artificially generated up-converted satellite reference signal in the digital receiver at the

input of the analogue FE through a dedicated passive calibration network. In this work,

this calibration network is implemented in the analogue FE. However, it is inserted after the

DMN rather than the compact antenna array in order to avoid mismatching and coupling

malefactors. The network design is based on microstrip line technology on a commercially

available Rogers RO3010 substrate of thickness 1.27 mm and εr = 10.2 with tan δ =
0.0023. The network comprises four directional couplers and a four-way power divider.

The layout of the calibration network is shown in Fig. 5.4a, and the fabricated one is

shown in Fig. 5.4b. The measured scattering parameters of the calibration network show

an insertion loss of 0.2 dB between the antenna outputs and the FE inputs, a coupling factor

of −22 dB between the calibration signal and the FE inputs, directivity of 26 dB, and an

isolation of 48 dB between the antenna and the calibration signal within the operating band

of L1/E1.

5.4 Data acquisition
The data acquisition block includes the ADCs and the interface to the personal computer.

This is designed using low-cost digital video broadcast for terrestrial (DVB-T) dongles

based on the RTL2832 chipset [154]. This platform provides an output of Ip/Qp 8-bit

samples (each) with a maximum sampling rate of 2.56 MSps. This provides a dynamic

range of approximately 45 dB for a maximum input power of 10 dBm. These dongles pos-

sess an on-board low-quality reference clock oscillator with high phase noise and without

any option for an external reference clock input. However, in the case of multi-channel

ADCs, it is necessary to synchronise the sampling clock. This synchronisation is achieved

by manually disassembling the in-built oscillator and replacing it with an external con-

nector that is fed with a shared high-precision clock source. The setup with the modified

circuitry for the four dongles is displayed in Fig. 5.5
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Figure 5.5: Four-channel data acquisition unit based on the broadband DVB-T dongles with 8-bit

raw Ip an Qp samples at a maximum sampling rate of 2.56 MSps.

The ADC sample outputs are transferred to the PC using a USB connection. The

high-speed USB 2.0 interface delivers the captured data to the PC at a maximum rate of

30 MSps. The received digitised data is then stored using MATLAB. This provides flexi-

bility and ease of implementation for the complex interference cancellation and navigation

baseband signal processing algorithms.

During this study, another high-end data acquisition platform using a four channel

ADC with 14-bit resolution and a sampling rate of 125 MSps integrated with a field-

programmable gate array (FPGA) has also been implemented for the GNSS compact an-

tenna arrays. This work is a contribution from the master’s thesis work of Elamir [93].

This study is limited in terms of recording long datasets due to their huge size; therefore,

that platform is not suitable for accurate CNR estimation and is not discussed here.

The complete integrated antenna array, DMN, calibration network, and LNA stage

is shown in Fig. 5.6. It is attached to an assembly for mounting on the tripod and the

measurement vehicle. The RF outputs of the LNAs are connected through coaxial cables

to the analogue FE inputs shown in Fig. 5.7 for conversion into the IF.

5.5 Baseband signal processing
The baseband signal processing is performed in MATLAB because of its flexibility. It

comprises three main blocks; acquisition, tracking, and CNR estimation. In the case of the

eigenbeamformer the beamforming is performed post-correlation—that is, at the output of

the tracking algorithms.
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Figure 5.6: The integrated antenna array, DMN, calibration network, and the LNA PCBs. This

assembly is directly mounted on the tripod for static testings and on the measurement vehicle roof-

top for dynamic testings.
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Figure 5.7: The designed and implemented four-channel FE, including PLL, mixer, IF amplifiers,

and BPFs.
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Figure 5.8: The acquisition algorithm block diagram implemented in the baseband processing.

Figure 5.9: The output of the acquisition algorithm is the acquisition metric for the acquired GPS

satellites. The grey bar indicates the availability of the satellite.

5.5.1 Acquisition
This is a typical parallel code phase search algorithm for C/A-code [4]. This is chosen

as it is more efficient than the other serial code phase search approach discussed in the

beginning. Also advantage in the frequency domain computation is calculating the peak

metric for all code phase delays simultaneously. Only the carrier frequency spectrum is

searched to find the maximum value. Here, the minimum data required for acquisition is

1 ms which is the time duration of a C/A-code transmitted from the satellite at L1/E1 band.

The signal flow diagram of the acquisition algorithm is shown in the Fig. 5.8. The

received signal �y(M), minimum one millisecond data, is multiplied by carrier frequency

replicas to obtain the Ip and Qp samples. In order to compensate the carrier frequency

errors due to the PLL and ADC noise, it is swept over the frequency bandwidth of ±20 kHz
centred at the operating IF frequency of 74.8 MHz. The fast-fourier transform (FFT) is
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Figure 5.10: (a) The demodulated in-phase and quadrature navigation bits. (b) The retrieved

navigation message over the time interval of one second.

taken for the complex signal and then multiplied by the FFT of the PRN code of the

satellite after taking its Hermitian, | · |H. This process is repeated for all possible satellite

codes. It may be reduced by specifying only the number of satellites that are available at

the time of tests and recordings.

The output of the acquisition delivers the peak metric values obtained for each satel-

lite, which—by applying a threshold—can be categorised into the available and unavail-

able satellites as shown in Fig. 5.9. Here, the acquisition peak metric is set to 2.5. The

information on the code phase delay and the carrier frequency shift is transferred to the

tracking algorithms for tracking the acquired satellite signals.

5.5.2 Tracking
The tracking algorithm incorporates two tracking loops—one for the code delay and the

second for the carrier frequency phase, called DLL and PLL, respectively, (see C.1). This

is the conventional way of implementing the tracking as opposed to the more advanced

Kalman filter based tracking algorithms, in which the navigation process dynamically con-

trols the tracking loops in an optimal manner. The detailed description of the loop can be

found in [4, Section 9.2.3]

The navigation message retrieved for satellite vehicle 21 is shown in Fig. 5.10. The Ip

and Qp deviation from its mean value in the amplitude is an indication of the noise present

in the demodulated signal. The navigation message has a signal bit duration of 20 ms. The

navigation message sub-frame requires a minimum of 30 s of the data to determine the

position and time estimates. These navigation bits are transferred to the CNR estimation

algorithm described in the next section.



5. Practical Implementation of Adaptive Compact Navigation Receiver 133

5.5.3 Estimation of carrier-to-noise ratio
The CNR estimation is generally applied after the tracking correlation, because it pro-

vides a closer estimate to the actual effective CNR [94]. The validity of the estimation

assumes that the interference has already been suppressed or nullified. Normally, the pre-

correlation CNR estimations are not reliable or stable because of their higher dependence

on the analogue FE bandwidth compared to the signal spectrum[4]. There are two well-

known estimators for the CNR as described in [80]. The first estimator is called the vari-

ance summing method, and the second is the power ratio method (PRM). In this work,

the PRM method is implemented and will be described here only in its basic terms for the

purpose of understanding. For further details about these estimators and their performance

parameters, the reader is referred to [81]. In the PRM method, the CNR is given by:

χo = 10log

(
1

tcoh

κ− 1

M − κ

)
, dB-Hz. (5.2)

Here, tcoh is defined as the coherent integration time used in the correlators, which

in this case is 1 ms. M represents the number of considered correlator outputs for CNR

estimation. This can be a maximum value of 20 in order to avoid the navigation message

transition bit. Therefore, in the implementation M ∈ [1, 2, 4, 5, 10, 20] is taken to be 20
because of its higher accuracy in estimating the lower CNR values [80]. This means that

a single CNR estimate for a given satellite vehicle is obtained after every 20 ms. In the

above-mentioned (5.2), κ is defined as the averages of the calculated noise power Pnoise

and is given as:

κ =
1

l

l∑
k=1

Pnoise(k),

where Pnoise(k) =
PNB(k)

PWB(k)
.

(5.3)

The noise power is the ratio of the narrow-band noise power, PNB, to the wide-band noise

power, PWB. These noise powers are calculated over M correlator samples. The narrow-

band noise power has a bandwidth of 1/Mtcoh, which in the case of M = 20 is 50 Hz,
compared to the wide-band value of 1/tcoh, which is 1 kHz. Both the narrow-band and

the wide-band noise powers are calculated using L number of Ip and Qp samples of the

correlators and are described as:
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PNB(k) =

⎛
⎝ kM∑

(k−1)M+1

Ip(k)

⎞
⎠2

+

⎛
⎝ kM∑

(k−1)M+1

Qp(k)

⎞
⎠2

,

PWB(k) =
kM∑

(k−1)M+1

(
I2p (k) +Q2

p(k)
)
,

where k ∈ [1, 2, ..., L/M ].

(5.4)

For example, for 20 s of data, the total number of Ip an Qp samples are L = 20 k with

an accumulation time of 1 ms. Therefore, the maximum possible noise power values, k,

can be L/M = 1 k samples, while considering M = 20. Therefore, without averaging

l = 1, the possible CNR estimate values from 20 s of data will also be 1 k samples.

Accordingly, with averaging or l > 1, the accuracy of the CNR estimator will increase,

but the total number of output samples will decrease.

5.6 Adaptive null-steering or interference suppression
The weak GNSS signal power, which is below the thermal noise power level, makes it

vulnerable against deliberate or inadvertent interference. Therefore, the multi-antenna

system provides the possibility of suppressing these unwanted signals using the sophis-

ticated algorithms of null-steering in signal processing. In the case of compact antenna

arrays with integrated DMN, the new degrees-of-freedom or the eigenmodes are not iden-

tical as with the conventional multiple-antenna array because of the non-uniform radiation

pattern shapes and efficiencies. Therefore, it is interesting to investigate the performance

and properties of the conventional adaptive null-steering concepts for eigenmode antenna

arrays in which the direction of the satellite and the interferers is unknown.

5.6.1 Power minimisation
The most popular and the simplest null-steering algorithm involves the minimisation of

the mean square difference value between the reference antenna output and the auxiliary

beamformer output. This leads to the optimal weighting vector function given in [121,

Equation 7], which involves the inversion of the receiver covariance matrix R̄y,

�w =
R̄y

−1
�a

�aTR̄y�a
(5.5)

subject to: �wH�a = 1, (5.6)
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Figure 5.11: Adaptive baseband signal processing algorithm block diagrams, using power minimi-

sation as the interference cancellation technique.

where �a is the N × 1 column vector, �a = [1, 0, ..0]T. The implementation block diagram

of this algorithm in the digital receiver is illustrated in Fig. 5.11. Before analysing the per-

formance of different antenna array configurations in the receiver, the measured antenna

array RHCP patterns with and without DMN are considered to study the influence of inter-

ference cancellation on the effective antenna realised gain and pattern shapes. Therefore,

with the assumption of the signal, interference and noise being uncorrelated, the received

spatial covariance matrix R̄ can be also expressed as the sum of interferers covariance

matrix R̄int, the receiver noise covariance matrix and the GNSS signal covariance matrix,

which is

R̄ = �FH(θk, φk)P̄
int
i

�F (θk, φk) + R̄nn + �FH(θs, φs)P̄
sat
s

�F (θs, φs). (5.7)

Here, P̄ int
k is a k × k diagonal matrix containing the power of the respective kth interferer

sources. Similarly, P̄ sat
s is the diagonal matrix containing the power of the respective satel-

lite signals, And the noise covariance matrix can be computed using the noise temperature

covariance matrix derived in the last chapter for compact antenna arrays integrated with

DMN, R̄nn = koBT̄sys. Therefore, the effective antenna patterns are analytically computed,

for those without DMN (Antenna "A") and with DMN (Antenna "B") antenna arrays, us-

ing (5.7) and (5.5) in the case of a single fixed RHCP interferer impinging from direction

θ = 5o and φ = 0o. These are plotted in Fig. 5.12a and b, respectively. The antenna array

with DMN has at least 2 dB better effective or equivalent realised gain in the directions

other than the interferer because of the higher gain of the reference element, which is even

mode in this case. Moreover, without DMN, the effective antenna pattern is distorted, be-

cause additional nulls in the directions other than the interferer directions appear, which

are not intended. Thereby, simple nulling algorithms may take the advantage of the eigen-
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Figure 5.12: The equivalent gain pattern of the antenna for the computed weights using a power

minimisation algorithm in fixed one interferer scenario: (a) without DMN and (b) with DMN

antenna arrays.

mode antenna array, but it will interesting to analyse the equivalent CNR performance of

the complete receiver in realistic scenarios, which will be performed in the coming section.

5.6.2 Eigenbeamformer
Generally, the inversion of the covariance matrix is difficult to implement in the hard-

ware owing to its complexity and greater resource requirements. Therefore, a simplified

approach using the eigen decomposition of the received covariance matrix for GNSS re-

ceivers has been recently proposed in [122]. This is performed in two stages: at the pre-

correlation, the interference is removed; and then at post-correlation, the beamforming in

the direction of the satellite is performed.

In the first step, the received covariance matrix is decomposed into the eigenvectors

and eigenvalues, which can be given similar to (3.12).

R̄y = Q̄yΛ̄Q̄
H
y . (5.8)

Here, the number of eigenvalues λi above a certain threshold value indicates the pres-

ence of the interference signal. Therefore, the eigenvectors associated with these eigen-

values indicate the interference subspaces that need to be suppressed or eliminated. This

is achieved by projection of the received data into the interference-free subspace, which is

given by the projection matrix ŌV
⊥ (3.31):

ŌV
⊥ = (ĪN − V̄ (V̄ HV̄ )−1)V̄ H. (5.9)
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Figure 5.13: Adaptive baseband signal processing algorithm block diagrams, employing eigen-

beamforming as the interference cancellation and beamforming technique.

where V̄ = [�q1, ..., �qi], with �qi being the column vector and i indicating the number of

eigenvectors to be considered—in other words, the number of interferers to be suppressed.

For the four-element antenna array with one degree-of-freedom fixed for the satellite di-

rection, maximum i = 3. ĪN is the identity matrix of size N × N . The interference-free

received signal is then obtained by:

Ȳw = ŌV
⊥Ȳ . (5.10)

Now, as shown in Fig. 5.13, Ȳw is processed for each row (antenna element) indepen-

dently by the acquisition and tracking block of the baseband signal processing to retrieve

the navigation message bits for each millisecond of C/A-codes �xn(k), where new set of

reduced samples k ∈ {1, 2, · · ·K}. The beamforming can be applied using the associated

eigenvector of new covariance matrix (5.1) of the tracked navigation message with highest

eigenvalue. This leads to the transformation of the navigation message as follows:

�xw(k) = �qH
max�xn(k). (5.11)

The post-correlation beamforming is necessary to improve the CNR of the antenna

array from wanted satellite signal direction. The signal flow block diagram of the eigen-

beamforming technique implemented in the digital receiver is shown in Fig. 5.13.

5.7 Experimental verification of the adaptive compact nav-
igation receiver

In order to verify the results and performance of the demonstrator, two tests and mea-

surement campaigns have been performed. One was inside the lab with a controlled en-
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Figure 5.14: (a) Indoor setup for the satellite acquisition in the presence of the RHCP continuous

wave interferers. The satellite directions are (b) low-elevation (θ = 30o) (c) medium-elevation

(θ = 60o) and (d) high-elevation (θ = 90o). The interference directions for all the position of the

AUT are fixed.

vironment for the artificial satellite transmission using the available GNSS signal gener-

ator SMBV100A from Rhode & Schwarz [155] along with sinusoidal interferers. The

indoor setup is limited due to resources and the structural unavailability to transmit multi-

ple satellites from several locations to test the antenna performance realistically. However,

it provides the advantage of transmitting the interferer at any bandwidth, amplitude, and

modulation. In the end, a measurement campaign is performed at a specific outdoor loca-

tion, which is discussed in the later part of this section.

5.7.1 Indoor testing
The indoor test setup is shown in Fig. 5.14a. The antenna array with DMN, calibration

network and LNAs is mounted on the tripod. The GNSS signal generator is tuned to trans-

mit the single satellite signal with SV number 21. The interferer signal generator output

is connected to the quadrafilar antenna with very low axial ratio for RHCP radiations in

the upper-hemisphere. Similarly, the RHCP interferers, using the quadrafilar antenna, are

setup connected to a sinusoidal signal generator tuned to frequency 1575.42 MHz. The

received combined JSR in each case—i.e. one, two and three interferers—is adjusted to

30 dB. This choice of this JSR is motivated by the low dynamic range, 45 dB, of the

medium-resolution ADC converters.
These investigations involve the configuration of different elevation angles of antenna

arrays—which are shown in Fig. 5.14b, c, and d—while keeping the positions of the in-
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Figure 5.15: The recorded equivalent CNR for low-elevation satellite directions in the presence of

one, two, and three interferers with and without DMN antenna arrays using power minimisation

algorithms. Note: The shaded region indicates the time when the interference is switched OFF.

terferers and satellite fixed. For each configuration with and without DMN Ip/Qp data

8-bit resolution data samples at 2.2 MSps for 20 s are recorded on the hard drive for

post-processing. Each time the interference is switched on after approximately 5 s of the

recording for a duration of 10 s and then switched off for the next 5 s. Further, the raw

data is processed by applying the two previously described adaptive null-steering schemes

to evaluate the equivalent CNR.

Power minimisation: The equivalent CNR for the antenna array with and without

DMN in the case of one, two, and three interferers for the power minimisation scheme,

with antenna elevation angle set to 30o relative to the impinging satellite direction, is dis-

played in Fig. 5.15. Without interference—i.e. for the first 5 s—it can be observed that

the case with the DMN antenna array has 1–2 dB better CNR. This is because of the fact

that the reference antenna is a single element without the DMN antenna array, compared

to with DMN in which it is taken as the even mode or the combined four antenna elements.

In the case of one interferer, the CNR drops for both with and without DMN, and

the performance of the antenna array without DMN is slightly better. Similarly, with
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Figure 5.16: The recorded equivalent CNR for medium-elevation satellite directions in the pres-

ence of one and three interferers with and without DMN antenna arrays using power minimisation

algorithms. Note: The shaded region indicates the time when the interference is switched OFF.

Figure 5.17: The recorded equivalent CNR for high-elevation satellite directions in the presence

of one and three interferers with and without DMN antenna arrays using power minimisation algo-

rithms. Note: The shaded region indicates the time when the interference is switched OFF.

two interferer, the CNR difference with and without DMN is marginal, and it appears

that there is no advantage of applying DMN here as well. However, with three interferers

switched on, the CNR with the DMN antenna array is considerably improved. A minimum

difference of 10 dB is recorded here.

In the next step, the antenna array is moved to the elevation angle of approximately 60o,

which is classified as medium elevation, with respect to the satellite antenna, as shown

in Fig. 5.14c. With interference, the CNR estimates are slightly improved by 1 dB in
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Figure 5.18: The recorded equivalent CNR for low-elevation satellite directions in the presence

of one, two, and three interferers with and without DMN antenna arrays using eigenbeamforming

algorithms. Note: The shaded region indicates the time when the interference is switched OFF.

comparison to the lower elevation scenario. With and without DMN, the performances of

the CNR are similar to the case with one interferer. However, with three interferers, the

CNR is again 10 dB greater than with DMN, which is also observed at the low elevation.

The antenna array is moved to the elevation angle of approximately 90o, classified as

high elevation. With one interferer, the CNR values are again comparable, and there is no

advantage with DMN, as shown in Fig. 5.17. Similar to previous scenarios, the antenna

array with DMN provides improved and robust CNR for the three-interferer case, which

is 6 dB better than without DMN.

Eigenbeamforming: As discussed earlier, that power minimisation algorithm perfor-

mance depends on the the choice of the reference antenna with which DMN provides better

gain. Moreover, it is doesn’t exploit the adaptive beamforming in the direction of the de-

sired satellite, and each intereferer arrives from the far-field at discrete angles. Therefore, a

complete and efficient eigenbeamforming algorithm based on pre-whitening and the adap-

tive beamforming described previously is also tested with the constructed demonstrator.

In Fig. 5.18 the CNR with and without DMN at the low-elevation configuration for
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Figure 5.19: The recorded equivalent CNR for medium-elevation satellite directions in the pres-

ence of one and three interferers with and without DMN antenna arrays using eigenbeamforming

algorithms. Note: The shaded region indicates the time when the interference is switched OFF.

Figure 5.20: The recorded equivalent CNR for high-elevation satellite directions in the presence

of one and three interferers with and without DMN antenna arrays using eigenbeamforming algo-

rithms. Note: The shaded region indicates the time when the interference is switched OFF.

one, two, and three interferers are shown. In the interferer-free scenario—i.e. for the first

5 s, it can be observed that this time without DMN, CNR on the average is comparable

to DMN because of the use of maximum degrees-of-freedom in the beamforming. This

signifies the advantage of utilising beamforming for the improved CNR as well. However,

similar to the results in the power minimisation algorithm, with one and two interferers,

the CNR with DMN is equivalent to that without DMN; and in case of three interferers,

the CNR with DMN has at least 10 dB superior performance.

Fig. 5.19 shows the CNR for the medium-elevation configuration. With one interferer
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Figure 5.21: An outdoor test-setup against interference of the built demonstrator at the Galileo

Test Range (GATE) in Berchtesgaden, Germany.

the performance of the CNR is equivalent with or without DMN. However, with three

interferers without DMN, CNR is again 10 dB worse than that with DMN.

At the end of the indoor testing, the CNR obtained for the high-elevation configuration

is shown in Fig. 5.20. The recorded CNR values show similar behaviour to the previous

cases: with DMN, the performance gain is dominant for the maximum interferer case—i.e.

three. The margin is at least 6 dB in this case.

5.7.2 Outdoor testing
The GNSS signals are easily available to acquire and track on Earth with a condition

of visibility into the open sky. However, transmitting interference signals outdoors in the

vicinity of the navigation signals operating bandwidth is prohibited, particularly within the

European Union. This requires a special permission or license for a given location. Within

Germany, these locations are classified as Galileo Test- und Entwicklungsumgebungen

(GATEs) facilities, which include GATE, SeaGate, aviationGate, automotiveGATE, and

railGATE, each of which targets various public transportation systems as their names sug-

gest. These facilities are equipped with four artificial Galileo satellite signals transmitted

from the top of the nearby mountains, which provide additional possibilities of testing

the receiver with Galileo signals. However, these facilities are expensive for testing and

measurement developing systems and have limited availability. During this work, only

testing at GATE in Berechtesgaden has been possible for a period of one week only. The

testing location is a rural area with no infrastructure around, therefore no multipaths are

generated. Furthermore, these investigations focus on the maximum JSR and the position

estimations with compact antenna arrays.

In these tests, a high-end digital receiver and baseband signal processing hardware

unit is provided by project partners in Rheinisch-Westfälische Technische Hochschule

(RWTH) Aachen and Deutschen Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffen-

hofen [160]. This is a customised device designed and optimised for robust GNSS signal



5. Practical Implementation of Adaptive Compact Navigation Receiver 144

reception in presence of the interferers and jammers. This provides simultaneous acqui-

sition and tracking of the GPS and Galileo satellites. However, the maximum number of

satellite tracking channels is limited to six, but is sufficient to determine the vital PVT

information. This platform also delivers the DOA estimations for the satellites compared

to their actual positions (see Appendix C.2). The complete setup of the demonstrator

mounted on the measurement vehicle and interference is shown in Fig. 5.21, whereas the

static tripod setup is shown in Appendix C.3. For further implementation details about

the compact navigation receiver and the related algorithms, the reader is referred to the

conference contribution [161, Section IV].

Initially, the experimental setup with fixed FE and different antennas configurations is

analysed. The configuration includes a conventional half free-space wavelength antenna

array from the Galileo antenna and receiver demonstrator for SoL applications (GALANT)

[99], Antenna "A", Antenna "B" and Antenna "D". In Table 5.1, maximum recorded CNR

values for high-elevation satellites without interference are presented. The conventional

antenna array has 3 dB higher CNR than the compact antenna array. This is a trade-off

for miniaturisation of the antenna array by half of the effective aperture area. In addition,

there is no advantage from using the DMN in this scenario that is without interference

and with the satellite impinging from high elevation, which was also observed during the

indoor testing as well. Antenna "D" provides better cross-polarisation; however, the low

gain gives lower CNR.

The Table 5.2 presents a summary of the maximum CW interferer suppression or JSR

achieved by the receiver with different antennas connected. Similar to the case without

interference, the single interferer maximum JSR is the same with and without DMN. The

three interferer case with DMN is 10 dB more robust than without DMN. This verifies the

result obtained in the CNR analysis, where the CNR difference for one interferer with and

without DMN is negligible, whereas with three interferers the CNR is at least 3−4 dB bet-

ter with DMN. The maximum performance gain depends on the interference impinging di-

rections and the desired satellite’s direction. Furthermore, The last row is the performance

of the receiver without applying beamforming in the satellite direction and interference

cancellation in the digital domain. The JSR is 20 dB lower than with digital algorithms.

Therefore, robustness of the receiver relies on the use of sophisticated beamforming and

interference cancellation algorithms.

Dynamic tests: In GATE, the dynamic tests are performed in the presence of a PPD

jammer, which is installed inside a car at a fixed position. The compact antenna array

receiver plus commercially available single element receivers are installed on the moving

vehicle. The vehicle starts at position A and travels to and from position B, as shown

in Fig. 5.22. The jammer is fixed at location X. The reference position of the vehicle is

recorded using the inertial measurement unit (IMU).

The latitude position component, which is measured by the different receivers and the

IMU are shown in Fig. 5.22. During both the forward and return journeys, the commercial
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A
B

a)

b)

X

Figure 5.22: (a) The dynamic test setup with compact antenna array along with commercial re-

ceivers mounted on the vehicle. (b) The recorded positioning latitude component between route A

and B.

receivers suffered from several outages and loss of position, while the compact antenna

array receiver tracked continuously with small variance. During the turn at point B, the

compact receiver lost the position. However, this is not due to the jammer, but probably due

to shadowing. As mentioned before, the compact receiver has only six tracking channels,

while the other receivers possess more, i.e. if three satellites are lost by shadowing, the

compact receiver loses the position, while the others can still provide a position. Because

of the limited time, analysis of the compact receiver with and without DMN has not been

possible during this measurement campaign. However, these tests clearly demonstrate the

necessity of multi-antenna systems for robust navigation and accurate position informa-

tion. In addition, the principle of the compact antenna array receiver has been verified.
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Further tests may involve more interferers along with multipath scenarios for robustness

investigations of the navigation receiver.

5.8 Summary
This chapter presents the overview of the developed GNSS compact antenna array receiver.

The receiver chain components are similar to the conventional single-channel GNSS re-

ceiver. However, the specifications are different, which include lower gain with a higher

dynamic range in the ADCs, which define the maximum JSR. The overall saturation of the

FE must be adjusted with the maximum allowed jammer input power. For the digital re-

ceiver to operate correctly, it is important that the analogue FE remain in the linear region,

which is below the 1 dB output compression point for the intended unwanted jammer sig-

nals. Another salient feature of the customised receiver development provides the coherent

LO for all channels, which is crucial for the digital beamforming and direction-of-arrival

algorithms.

The results of the indoor and outdoor tests are presented. With the outdoor tests, the

satellite signals are available, but it is impossible to transmit the interference signals with-

out a license, which is allowed only at specific locations. The indoor setup allows for any

type of interference signal; however, satellite signals are not available and are emulated

using GNSS signal generators. The indoor measurements verify similar behaviour of the

compact antenna array for the equivalent CNR, which is provided by the analytical results

of the diversity receiver model presented in the last chapter. With DMN, the CNR for the

three-interferer case provides an advantage of 6–10 dB.

The outdoor tests show similar characteristics of the DMN performance as observed

earlier and also include the dynamic measurements with the moving receiver. These mea-

surements provide the first insight into the performance of the compact GNSS antenna

array, which provides the position, velocity, and time estimate. The estimated CNR shows

that there is no advantage or disadvantage to employing DMN in the case of minimum

or no interference scenarios. Furthermore, the measured maximum CNR for the compact

antenna array with d = λ/4 as compared to the conventional d = λ/2 is 3 dB which

is a trade-off for miniaturisation and cannot be recovered with DMN. However, the ne-

cessity of DMN is only prominent in the maximum interferer case, which is three for a

four-element antenna array.



Chapter 6

Conclusions

The novel concept of compact planar antenna arrays in GNSS receivers has been suc-

cessfully applied and verified in this work. This provides an attractive solution for the

miniaturization of modern robust GNSS receivers. Furthermore, this enables the penetra-

tion and mass production of the multi-element antennas in the existing highly competitive

GNSS market.

The choice of the number of elements determines the maximum number of unwanted

signals to be suppressed. But, for a fixed aperture size this results in reduced inter-element

separation with an increasing number of elements. This introducesmutual coupling, and

degrades the radiative or reception performance of the array such that the diversity degrees-

of-freedom become inefficient or useless. Consequently, in a small aperture size a four-

element array may have similar diversity performance as compared to a three-element

array. Therefore, it is necessary to devise corresponding figures-of-merit including mutual

coupling effects. In this work, the eigenvector and associated eigenvalues of the measured

antenna covariance matrix serve as the basic parameters in design optimization and selec-

tion of the coupled antenna array. This reveals that the minimum eigenvalue dominates the

diversity performance, and therefore, needs to be maximized in the design process. The

minimum eigenvalue is inversely proportional to the number of elements and the inter-

element separation. Therefore, a choice of four elements with d = λ/4 provides better

diversity degrees-of-freedom as compared to a six element array with d = λ/5. However,

with an equal number of elements in compact configuration an optimized planar geomet-

rical arrangement can produce an optimum minimum eigenvalue. In the aforementioned

four-element array it is square shape whereas in the six element it is the hexagonal geom-

etry which gives the maximum eigenvalues. Similarly, the direction finding capability of

the compact array can be estimated with the help of the Cramer-Rao lower bound. The

effect of geometrical arrangement of the array on the lower bound is severe. Even though

the square shaped geometry for a four element array provides better minimum eigenvalue

as compared to the y-shaped geometry yet it provides minimum mean Cramer-Rao lower
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bound in the upper hemisphere. Therefore, the design process is a trade-off between ro-

bustness and better direction finding ability of the array.

The integration of the decoupling and matching network is also presented which allows

further miniaturization for the robust design. The impedance matching of the compact an-

tenna array for diversity degrees-of-freedom necessities the decoupling incipiently. This

can be achieved by several techniques from the antenna level to the network based ap-

proach. It is also possible to achieve a broadband decoupling, e.g. hybrid coupler based,

which allows larger manufacturing tolerances. As far as matching is concerned, it does

become simpler after decoupling, however, the fractional bandwidth decreases with the

higher-order modes. The matching is bounded by the compactness, in other words the elec-

trical size of the antenna array, and its characteristic is typically narrow-band. Moreover,

the practical implementations give rise to ohmic losses within this network which may

or may not compromise its benefit. Therefore, an equivalent carrier-to-interference-plus-

noise ratio including the effects of the antenna array, decoupling and matching network,

low-noise amplifier and the beamformer has been derived. This yields valuable insights

into the performance of the compact arrays with and without decoupling and matching

network in the navigation scenarios before integration with the digital receiver. For the

four element array d = λ/4 the equivalent carrier-to-interference-plus-noise ratio with the

decoupling and matching network is at least 3 dB in all directions for the highest-order

mode which is the three-interferer scenario. On the other hand, without interferer there

is no benefit of employing the decoupling and matching network, while at the same time

there is no disadvantage as well. Therefore, it can be concluded that the decoupling and

matching is necessary for the compact antenna array especially when operating in the

interference limited scenario.

The impact of polarization impurity in the compact antenna arrays has also been stud-

ied. The presence of mutual coupling also degrades the polarization properties of the

antenna. In case of the even mode excitation or reception, the individual antenna elements

can be geometrically altered, to minimize the cross-polarization levels. The individual an-

tenna element designs also effect the polarization purity of the even mode. However, the

cross-polarization levels of the higher order modes are comparable to the co-polarization

levels. Furthermore, with the introduction of a decoupling and matching network perfor-

mance is not improved or changed. In the case of the arbitrarily polarized interferer for the

circular polarized compact antenna array the degrees-of-freedom to null the interferer are

doubled. This reduces the maximum number of nulling degrees-of-freedom with one fixed

for the desired satellite direction. A remedy to this adverse effect can be the application of

dual-polarized antenna elements for greater robustness.

In the end, the complete GNSS receiver demonstrator design is presented. The ro-

bust receiver specification demands a customized multi-channel analogue front-end design

along with an adaptation of the digital algorithms to cope with the non-uniform antenna

gain patterns. The indoor and the outdoor measurement campaigns verify and validate
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the results obtained analytically. The jammer-to-signal ratio obtained for the fabricated

four-element compact antenna array is equal with and without decoupling and matching

network in instance of the single interferer scenario whereas for three interferers it is im-

proved by 10 dB compared with the former case. Basically, with the reduction of the

antenna array size by half the carrier-to-noise ratio of the received satellites from the high-

elevation angles is reduced by half which is sufficient to acquire and track them without

the requirement of integration. The decoupling and matching networks mainly effect the

reception performance of the antenna array in the interference scenarios particularly the

maximum interferer case. Hence, in this case the improved robustness for the localisation

capability of the navigation receive is the decisive argument to deploy the decoupling and

matching network in the compact antenna arrays.



Appendix A

Multi-port junctions, exchangeable
powers, and noise parameters

A.1 Multi-port junctions

2S1S
1a

1b

2a

2b
1v 2v

2i1i

2,oZ1,oZ

Figure A.1: Representation of the interface between two multi-port interface in terms of the power

waves.

The condition to combine the scattering parameters of the multi-port network cascaded

are discussed in this appendix. Consider the representation of the two networks connected

with each other as shown in Fig. A.1 . The power waves in relation to the voltage and

current are expressed as follows [82]

an =
vn + Zo,nin

2
√�{Zo,n}

,

bn =
vn − Z∗

o,nin

2
√�{Zo,n}

.

(A.1)
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N-port

Z

sv

i
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sb b
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sS S

Figure A.2: N-port network reflection coefficients at nth port connected to multichannel source.

From the graphical representation, the boundary conditions at the junction are

v1 = v2, and i1 = −i2. (A.2)

This, in the wave domain, translates in the bound condition for the power waves, i.e.

b1 = a2 and b2 = a1. Lets express these terms in accordance with (A.1) and using the

boundary conditions defined above

b1 =
v1 + Z∗

o,1i1

2
√�{Zo,1}

; a2 =
v1 + Zo,2i1

2
√�{Zo,2}

. (A.3)

In order to hold equality of the power waves condition, it is necessary that the normalis-

ing reference impedance are complex conjugate of each other, which leads to Zo,2 = Z∗
o,1.

Therefore, it is necessary for combining the scattering parameters for two different net-

work, that the normalising reference impedance is conjugate of each other. In this thesis,

the normalisation impedance is a real quantity, i.e. Zo,n = 50Ωs.

A.2 Expression for exchangeable power by incident power
wave

Consider the N -port network connected to sources with conjugate matched normalised

reference impedances as shown in Fig. A.2. Now, the power delivered to the network is

defined by the power waves as

PN = �aH�a−�bH�b = �aH(Ī − S̄HS̄)�a. (A.4)

The incident power from the source can be expressed in terms of the forward travelling

wave �a in the following manner

�a = �bs +�bS̄s, (A.5)



A. Multi-port junctions, exchangeable powers, and noise parameters 153

and using the fact that�b = S̄�a leads to

�a = �bs(Ī − S̄sS̄)
−1. (A.6)

Therefore, the power flowing into the connected network is converted into

PN = �bH
s

(
(Ī − S̄HS̄)

(Ī − S̄sS̄)(Ī − S̄HS̄H
s )

)
�bs (A.7)

And under the conjugate matching condition, i.e. S̄ = S̄H
s , the variance of the source wave

in relation to exchangeable power is defined by

Var{�bs} = PN(Ī − S̄sS̄
H
s ). (A.8)

This is in agreement with the outcome of [95, Equation 2.247] (see also [83]).

A.3 Noise parameters
In order to characterise the noise properties of amplifiers several noise parameters have

been developed. Rothe and Dahlke introduced these parameters based on the noise volt-

ages and currents [84]. These are still the most extensive used type of noise parameters.

There are almost an infinite number of ways to define these set of parameters. In this

work, we are interested in finding the temperature noise parameters using the minimum

noise figure NFmin, optimum reflection coefficient Γopt and the noise resistance Rn, which

are measured through measurements. This transformation to the set of noise temperature

parameters is given as follows:

Yopt =
(1− Γopt)

(ΓoptZo + Zo)
, (A.9)

Tv =
Tamb

Zo

(Rn(1 + |ZoYopt|2) + Zo(NFmin − 1)− 2Rn(ZoR{Yopt})), (A.10)

Tμ =
Tamb

Zo

(Rn(1 + Z2
o |Yopt|2)− Zo(NFmin − 1) + 2Rn(ZoR{Yopt})), (A.11)

Tvμ =
Tamb

Zo

(Rn(1− |Yopt|2Z2
o ) + 2jTambRnI{Yopt}). (A.12)
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Printed quadrafilar helix GPS antenna
using folded inverted-F antenna

10 mm

10 mm

groundinput

air

d = /4

Figure B.1: (top) The simulated four-element QHA array (diametric view) using the inverted-F

antenna elements. Overall size of the ground plane is 10 cm × 10 cm. (bottom) Side view of the

antenna array.

In order to reduce the height of the QHA antenna to achieve planarity, printed quadrafi-

lar helix GPS antennas are an attractive solution. In addition, by using the inverted-F an-

tenna broad impedance matching bandwidth can be achieved. This is suitable in order

to cope with the evolving GNSS multiple band signals. The reported single element of

such a QHA implementation delivers 50% bandwidth at the L1-band [123]. On the other

hand, these antennas offer broad beamwidth with very low cross-polarisation levels, which

154
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provides additional robustness in the acquiring low-elevation satellites. A four-element an-

tenna array using the commercially available RO4003, εr = 3.55 and height of 10 mm is

designed and simulated in this work, it is shown in Fig. B.1.

Figure B.2: The simulated normalised realised gain elevation cut with fixed azimuth (φ = 0o),

in dBi, for the even mode of the QHA array. The normalisation is with respect to the maximum

RHCP gain.

The realised gain elevation cut for the fixed azimuth, i.e. φ = 0o for the RHCP and

LHCP are shown in Fig. B.2, in the case of even mode excitations. The RHCP pattern

resembles cardiac shape and has higher gain at low-elevation as compared to conventional

patch antenna. Also, the LHCP levels over the complete hemisphere are below −20 dB,

which does excellent multipath rejection.
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GNSS antenna array demonstrator

C.1 Tracking algorithm flow diagram
The signal flow of the tracking algorithm employed in the baseband signal processing

block is sketched in the Fig. C.1. This includes a Costas loop based implementation of

PLL to track the carrier wave signal and a code tracking loop, DLL, to keep the code

aligned. The code tracking is performed on both I and Q in similar way.

carrier
NCO

90o

promptlate early

code 
NCO

accumulate 
and dump

accumulate 
and dump

accumulate 
and dump

PRN 
code

IP

IL

IE

PLL DLL

navigation message( )y N

Q

I

Figure C.1: Tracking algorithm signal flow diagram.
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C.2 GNSS graphical user interface
The graphical user interface (GUI) displays the crucial navigation parameters like PVT,

and CNR estimations. The pre-correlation and post-correlation beam patterns indicate

the presence of interferences and satellites as shown in Fig. C.3. The DoA for acquired

satellites using the compact antenna array with DMN are shown in Fig. C.4. The difference

between these measurements aid in estimating the attitude of the receiver and also the

spoofing satellites.

C.3 GNSS demonstrator – static setup
A complete GNSS demonstrator in the project framework of KOMPASSION shown in

Fig. C.2, was developed which comprises the compact antenna array, a miniaturized multi-

channel analog front end, and a digital receiver. The digital receiver comprises high-speed

correlation blocks implemented on the FPGA. The beamforming and the DoA estimation

is performed at the dedicated PC.
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antenna array with integrated DMN

multichannel analogue frontend

graphical user interface

digital receiver

Figure C.2: The L-band allocation of frequency spectrum for the operating carrier frequencies and

bandwidths of various GNSS signals.



C. GNSS antenna array demonstrator 159

interferers 
suppression beamforming in the 

satellite direction

position and time 
estimation

Figure C.3: The graphical user interface of the demonstrator.

true satellite location
estimated DoA

Figure C.4: The true satellite positions retrieved from the navigation messages along with the

estimated DoA of these satellites.
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Notations and Abbreviations

{.}H Hermitian transpose.

{.}T transpose operation.

{.}* complex conjugate element-wise operation without transpose.

{̄.} matrix.

�{.} vector.

�{.},
{.} real and imaginary parts of a complex variable.

{|.|} absolute value.

{.}i ith element of the vector �{.}.

�{.}(i) ith column vector of the matrix {̄.}.

log base-10 logarithm.

tr{̄.} trace of a matrix.

det{̄.} determinant of a matrix.

{̄.}−1
inverse of a matrix.

Var{.} variance of a random variable.

Var �{.} covariance of a vector.

a,b signal power waves travelling in the inwards (a) and outwards (b) directions.

Fi(θ,φ) embedded realised amplitude far-field pattern of port i.

R̄ covariance matrix of the antenna array.
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Ī the identity matrix unless otherwise stated.

N number of antenna elements.

P power.

Q̄ unitary matrix of eigenvectors or eigenmodes of R̄.

Ip,Qp in-phase and quadrature-phase.

S̄ scattering parameters matrix.

T ,T̄ equivalent noise temperature and the temperature covariance matrix.

�w vector of the beamforming weights for a multi-element receiver.

Zo characteristic impedance of a transmission line.

Γ reflection coefficient of a single-port.

χo carrier-to-noise density ratio.

γ signal-to-noise ratio.

No noise spectral density.

θ elevation angle in degrees.

φ azimuth angle in degrees.

λ free-space wavelength.

fo operating frequency.

ν,μ noise power waves travelling in the inwards (ν) and outwards (μ) directions.

R̄acc accepted covariance matrix of the antenna array calculated using scattering matrix.

R̄rad,R̄ radiated or received covariance matrix of the antenna array calculated using

antenna array embedded patterns.

R̄y covariance matrix of the antenna array calculated using recorded streams of raw data.

Dn Pseudo-range from nth satellite.

xn navigation message.
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xc C/A-code.

xm BPSK modulated satellite signal.

GNSS Global Navigation Satellite Systems.

DMN Decoupling and Matching Networks.

SNR Signal-to-Noise Ratio.

CNR Carrier-to-Noise Ratio.

CINR Carrier-to-Interference-plus-Noise Ratio.

SoL Safety-of-Life.

PVT Position Velocity and Time.

GPS Global Positioning System.

GLONASS Global Orbiting Navigation Satellite System.

PRN Pseudo Random Number.

CDMA Code Division Multiple Access.

FDMA Frequency Division Multiple Access.

NRZ Non-Return to Zero.

C/A Coarse Acquisition Codes.

RNSS Radio Navigation Satellite Systems.

P Precision Codes.

FE Front-End.

RF Radio Frequency.

IF Intermediate Frequency.

RHCP Right-Hand Circularly Polarised.

DLL Code Tracking Loop.

PLL Phase Locked Loop.
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CMOS Complementary Metal Oxide Semiconductor.

URE User Range Error.

GDOP Geometric Dilution of Position.

SV Satellite Vehicle.

LNA Low-Noise Amplifier.

NF Noise Figure.

LHCP Left-Hand Circular Polarised.

XPD Cross-Polarisation Discrimination.

IEEE Institute of Electrical and Electronics Engineers.

QHA Quadrafilar Helix Antenna.

FRPA Fixed-Radiation Pattern Antenna.

CRPA Controlled-Radiation Pattern Antenna.

GSM Global System for Mobile.

BPSK Binary Phase Shift Keying.

JSR Jammer-to-Signal Ratio.

CW Continuous Wave (Sinusoidal Signal).

PPD Personal Privacy Device.

DOA Direction-of-Arrival.

MIMO Multi-input Multi-output.

LTE Long-Term Evolution.

DGS Defected Ground Structures.

EBG Electromagnetic Band-Gap.

LP Linearly Polarised.

CRLB Cramer-Rao lower bound.
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COTS Commercial Off-the-Shelf.

LO Local Oscillator.

ADC Analogue-to-Digital Converter.

BPF Band-Pass Filter.

LPF Low-Pass Filter.

PCB Printed-Circuit Board.

IC Integrated Circuit.

m units in metres.

cm centimetres.

nm nanometres.

dB decibels.

dBW decibels Watts.

dBm decibels milliWatts.

s seconds.

ms milliseconds.

dB-Hz decibels-Hertz.

dBi decibels with respect to isotropic antenna.

kHz kiloHertz or 1000 hertz.

MHz megaHertz or 1000 kilohertz.


