

# Modulhandbuch

# Master Werkstoffwissenschaft

Studienordnungsversion: 2011

gültig für das Wintersemester 2016/17

Erstellt am: 01. November 2016

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Rektor der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhb-5090

# Inhaltsverzeichnis

|                                                          | 1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.F | S           |    |         |
|----------------------------------------------------------|-----------------------------------|-------------|----|---------|
| Name des Moduls/Fachs                                    | VSPVSPVSPVSPVSPVS                 | P Abschluss | LP | Fachnr. |
| Pflichtmodul 1: Vertiefung naturwissenschaftlicher Grund | llagen                            | FP          | 6  |         |
| Spezielle anorganische Chemie                            | 2 0 1                             | PL 90min    | 3  | 6949    |
| Einführung in die Festkörperphysik für Ingenieure        | 3 0 0                             | PL 30min    | 3  | 435     |
| Pflichtmodul 2: Konstruktions- und Funktionswerkstoffe   |                                   | FP          | 7  |         |
| Funktionswerkstoffe                                      | 200                               | PL 90min    | 2  | 1365    |
| Konstruktionswerkstoffe                                  | 200                               | PL 60min    | 2  | 6954    |
| Oberflächentechnik                                       | 200                               | PL 30min    | 3  | 6951    |
| Pflichtmodul 3: Werkstoffe und Technologien für Mikro-   | und Nanotechnik                   | FP          | 7  |         |
| Mikro- und Halbleitertechnologie 1                       | 200                               | SL 30min    | 2  | 1386    |
| Mikro- und Nanotechnologiepraktikum                      | 0 0 2                             | SL          | 2  | 5974    |
| Werkstoffe der Mikro- und Nanotechnologie                | 210                               | PL 90min    | 3  | 6956    |
| Pflichtmodul 4: Werkstoffauswahl und -design             |                                   | FP          | 6  |         |
| Anforderungen und optimale Werkstoffauswahl              | 210                               | PL 30min    | 3  | 6960    |
| Modellierung und Simulation                              | 2 1 0                             | SL 30min    | 3  | 5473    |
| Pflichtmodul 5: Werkstoffanalyse und -versagen           |                                   | FP          | 6  |         |
| Bruchmechanik                                            | 2 1 0                             | PL 90min    | 3  | 6959    |
| Werkstoffzustände und -analyse                           | 210                               | PL 30min    | 3  | 101123  |
| Pflichtmodul 6: Allgemeines wissenschaftliches Pflichtmo | odul                              | FP          | 4  |         |
| Anleitung zur wissenschaftlichen Arbeit                  | 100                               | SL 60min    | 2  | 6964    |
| Qualitätsmanagement                                      | 200                               | SL 30min    | 2  | 6357    |
| Werkstofftechnische Wahlfächer I: Werkstoffe des Masc    | hinenbaus                         | FP          | 8  |         |
| Ingenieurkeramik                                         | 2 0 1                             | PL 30min    | 4  | 6917    |
| Kunststofftechnologie 1                                  | 210                               | PL 90min    | 4  | 5398    |
| Metalle                                                  | 2 0 1                             | PL 30min    | 4  | 6919    |
| Spezialgläser                                            | 2 0 1                             | PL 30min    | 4  | 6918    |
| Electromagnetic processing of materials                  | 210                               | PL 30min    | 4  | 6911    |
| Faserverbundtechnologie                                  | 210                               | PL 90min    | 4  | 6920    |
| Kreisläufe für Werkstoffe und Produkte                   | 120                               | PL 30min    | 4  | 6910    |
| Schweißtechnik                                           | 210                               | PL 90min    | 4  | 9171    |
| Tribologie                                               | 2 0 1                             | PL 30min    | 4  | 6912    |

| Werkstofftechnische Wahlfächer II: Werkstoffe der Elektro    | otechnik / Elektronik | FP        | 8        |
|--------------------------------------------------------------|-----------------------|-----------|----------|
| Dielektrische und magnetische Werkstoffe                     | 201                   | PL 30min  | 4 6927   |
| •                                                            | 210                   | PL 180min |          |
| Strahlenschutz in der Technik                                |                       |           | 4 6921   |
| Werkstoffe für optoelektronische Bauelemente                 | 2 0 1                 | PL 30min  | 4 6926   |
| Werkstoffe und Grundlagen der Vakuum- und<br>Reinraumtechnik | 201                   | PL 30min  | 4 6925   |
| Dünnschichtzustand und Schichtmesstechnik                    | 2 0 1                 | PL 90min  | 4 6924   |
| Korrosionsschutz                                             | 2 1 0                 | PL 30min  | 4 6929   |
| Mikrogalvanotechnik                                          | 2 1 0                 | PL 30min  | 4 5474   |
| Rastersonden- und Elektronenmikroskopie                      | 2 0 1                 | PL 30min  | 4 6923   |
| Regenerative Energien und Speichertechnik                    | 2 1 0                 | PL 90min  | 4 5469   |
| Werkstofftechnische Wahlfächer III: Oberflächentechnik       |                       | FP        | 8        |
| Anorganische nichtmetallische Feinstpulver                   | 2 1 0                 | PL 30min  | 4 6930   |
| Galvanotechnische Verfahren                                  | 201                   | PL 30min  | 4 6933   |
| Mikro- und nanostrukturierte Gläser                          | 201                   | PL 30min  | 4 6932   |
| Plasmaoberflächentechnik                                     | 210                   | PL 30min  | 4 6938   |
| Eigenschaften metallischer Schichten                         | 2 0 1                 | PL 30min  | 4 6937   |
| Elektrokristallisation                                       | 210                   | PL 30min  | 4 6935   |
| Niederdruckbeschichtungsverfahren                            | 2 1 0                 | PL 30min  | 4 6939   |
| Plasmatechnologien zur Werkstoffentwicklung                  | 210                   | PL 30min  | 4 5475   |
| Schichten aus und auf Glas                                   | 210                   | PL 30min  | 4 6936   |
| Werkstoffe für die Biomedizin                                | 2 0 1                 | PL 30min  | 4 9172   |
| Hauptseminar                                                 |                       | MO        | 4        |
| Hauptseminar (MA Werkstoffwissenschaft)                      | 0 2 0                 | SL 30min  | 4 6940   |
| Industrieseminar                                             |                       | MO        | 4        |
| Industrieseminar (MA Werkstoffwissenschaft)                  | 0 2 0                 | SL 30min  | 4 6942   |
| Projektarbeit mit Kolloquium                                 |                       | MO        | 10       |
| Projektarbeit mit Kolloquium                                 |                       | SL 30min  | 10 6966  |
| Masterarbeit mit Kolloquium                                  |                       | FP        | 30       |
| Abschlusskolloquium zur Masterarbeit                         |                       | PL 30min  | 0 101118 |
| Masterarbeit                                                 |                       | MA 6      | 30 6945  |



# Modul: Pflichtmodul 1: Vertiefung naturwissenschaftlicher Grundlagen

# Modulnummer6948

Modulverantwortlich: apl. Prof. Dr. Uwe Ritter

Modulabschluss: Fachprüfung/Modulprüfung generiert

# Lernergebnisse

Die Studierenden sind fähig chemisches Wissen mit grundlegenden Beziehungen und Gesetzmäßigkeiten der Natur zu verknüpfen. Nach erfolgreichem Abschluss des Moduls kann der Studierende:

systematisch Stoffklassen zuordnen,

Zusammenhänge zwischen Struktur und Eigenschaften der Elementverbindungen der Haupt- und Nebengruppen erkennen Grundprinzipien der Festköpertheorie und Prxis anwenden

# Vorraussetzungen für die Teilnahme

keine

# Detailangaben zum Abschluss

keine



Modul: Pflichtmodul 1: Vertiefung naturwissenschaftlicher Grundlagen

# Spezielle anorganische Chemie

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6949 Prüfungsnummer:2400306

Fachverantwortlich:apl. Prof. Dr. Uwe Ritter

Leistungspunkte: 3 Workload (h): 90 Anteil Selbststudium (h): 56 SWS: 3.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2425

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS Р Р S P SP S Р S P S S S SWS nach Fachsemester

# Lernergebnisse / Kompetenzen

Die Lehrveranstaltung gibt eine Einführung in die spezielle anorganische Chemie. Die Studierenden sind fähig aufgrund der erworbenen Kenntnisse der anorganischen Chemie und der Festkörperchemie Klassen anorganischer Stoffe und deren Reaktivität und Reaktionstypen zu bewerten. Die Studierenden sind in der Lage, aufgrund der erworbenen Kenntnisse über Festkörper und deren Chemie Einsatzfelder und Anwendungen der Festkörperchemie zu bewerten. Sie sind in der Lage die Vor- und Nachteile von Festkörpermaterialien aus ihrer chemischen Zusammensetzung abzuleiten bzw. eine Verbindung zwischen mikroskopischen und makroskopischen Eigenschaften zu verstehen. Die Studierenden sind in der Lage chemisches Stoffwissen der anorganischen Chemie mit grundlegenden Beziehungen und Gesetzmäßigkeiten der Chemie zu verknüpfen. Die Studierenden sind in der Lage einfache Operationen in der anorganischen Chemie zu planen und exemplarisch anorganische Reaktionen innerhalb des Praktikums durchzuführen.

# Vorkenntnisse

Ein bestandenes Modul Anorganische Chemie wird für die Teilnahme empfohlen.

#### Inhalt

- Grundlagen zur Chemie der Übergangsmetalle, der Organometallchemie und der Komplexchemie - Typen der chemischen Bindung in Kristallen, Gittertheorie und Prinzip der Kugelpackung - Ionenkristalle, Metallkristalle, Kovalente Kristalle und Molekülkristalle, Fehlgeordnete Kristalle - Aggregierte Systeme niedriger Ordnung - Mechanismen anorganischer Festkörperreaktionen - Chemische Analytik von Festkörpern - Wichtige metallorganische Stoffgruppen als Precursor in CVD-Prozessen und deren Synthese - Technische anorganische Chemie - Praktikum 4 Versuche: • Versuch zur anorganische Synthese • Versuch zur Komplexchemie • Versuche Festkörperreaktion/Reaktion in der Schmelze

# Medienformen

Präsentation/Folien/Tafel/Praktikum

#### Literatur

- Aktuelle Literatur - L. E. Smart and E. A. Moore, Solid State Chemistry, An Introduktion, Taylor & Francis 2005 - Ch. Elschenbroich und A. Salzer, Organometallchemie, Teubner Studienbücher - Heyn, Hipler, Kreisel u.w., Anorganische Synthesechemie, Springer Lehrbuch

# Detailangaben zum Abschluss

Das Sicherheitszertifikat aus dem Praktikum Grundlagen der Chemie ist Zugangsvoraussetzung für die Teilnahme am Praktikum Spezielle anorganische Chemie. Ein bestandenes Praktikum ist Voraussetzung für die Klausur.

# verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung CH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung CH

Master Elektrochemie und Galvanotechnik 2013

Bachelor Biotechnische Chemie 2013

Master Werkstoffwissenschaft 2011



Modul: Pflichtmodul 1: Vertiefung naturwissenschaftlicher Grundlagen

# Einführung in die Festkörperphysik für Ingenieure

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 435 Prüfungsnummer:2400307

Fachverantwortlich: Prof. Dr. Stefan Krischok

| Leistungspunkte:    | 3       | Workload (h): 90       | Anteil Selbststudium (h): | 56 | SWS: | 3.0         |      |
|---------------------|---------|------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Mathem | natik u | nd Naturwissenschaften |                           |    |      | Fachgebiet: | 2422 |

|              | 1 | 1.FS | 5 | 2 | 2.FS | 3 |   | 3.FS | 3 | 4 | 1.FS | <b>)</b> | į | 5.FS | 3 | ( | 3.FS | 3 | - | 7.FS | <u> </u> |
|--------------|---|------|---|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|----------|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | ٧ | S    | Р        | > | S    | Р | > | S    | Р | > | S    | Р        |
| Fachsemester |   |      |   | 3 | 0    | 0 |   |      |   |   |      |          |   |      |   |   |      |   |   |      |          |

# Lernergebnisse / Kompetenzen

Die Vorlesung gibt eine Einführung in die grundlegenden Konzepte und die experimentellen Methoden der modernen Festkörperphysik. Ausgehend von der geordneten Struktur werden die physikalischen Eigenschaften von Festkörpern, insbesondere von Gitterschwingungen und Elektronenzuständen behandelt. Die Studierenden werden befähigt, mit Hilfe von Differential-, Integral- und Vektorrechnung die vorgestellten Konzepte in konkreten Problemstellungen anzuwenden. Fachkompetenz: - Vertrauter Umgang mit Begriffen und Erkenntnissen der Festkörperphysik und Materialphysik - Erklärung makroskopischer Eigenschaften durch mikroskopische Beschreibungen

# Vorkenntnisse

Experimentalphysik I + II

# Inhalt

Die Vorlesung gibt eine Einführung in die grundlegenden Konzepte und die experimentellen Methoden der modernen Festkörperphysik. Ausgehend von der geordneten Struktur werden die physikalischen Eigenschaften von Festkörpern, insbesondere von Gitterschwingungen und Elektronenzuständen behandelt. Die Studierenden werden befähigt, mit Hilfe von Differential-, Integral- und Vektorrechnung die vorgestellten Konzepte in konkreten Problemstellungen anzuwenden.

# Medienformen

Tafel, Computer-Präsentation

#### Literatur

Bespiele von besonderer Bedeutung für die Vorlesung sind: [1] Ch. Kittel: Einführung in die Festkörperphysik; [2] Ashcroft, Neil W.; Mermin, N.D.: Festkörperphysik, Oldenbourg, 2005; bzw. Solid State Physics, Thomson Learning, 1976

# Detailangaben zum Abschluss

mündliche Prüfungsleistung, 30 Minuten

# verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Master Werkstoffwissenschaft 2013

Master Werkstoffwissenschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH Master Werkstoffwissenschaft 2010

Master Regenerative Energietechnik 2016



# Modul: Pflichtmodul 2: Konstruktions- und Funktionswerkstoffe

# Modulnummer6953

Modulverantwortlich: Dr. Günther Lange

Modulabschluss: Fachprüfung/Modulprüfung generiert

# Lernergebnisse

Die Studierenden sind in der Lage die Eigenschaften und Anwendungen der behandelten Werkstoffe sowie ihre Verarbeitung zu beschreiben. Dadurch werden die Studierenden in die Lage versetzt ingenieurwissenschaftlich relevante Anwendungen auf Basis der behandelten Werkstoffe grundlegend zu analysieren, um dann passende Lösungsmöglichkeiten aufzuzeigen und zu erarbeiten.

# Vorraussetzungen für die Teilnahme

Zulassung zum Masterstudium der Werkstoffwissenschaften an der TU Ilmenau.

# Detailangaben zum Abschluss

Das Modul zählt 7 LP Die Modulnote erfolgt entsprechend der Wichtung der einzelnen Fächer. Die Prüfungsform ist eine schriftliche Prüfungsleistung mit jeweils 90 Minuten Dauer für ein Fach. Die Prüfungsform kann von den Dozenten geändert werden.



Modul: Pflichtmodul 2: Konstruktions- und Funktionswerkstoffe

# **Funktionswerkstoffe**

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1365 Prüfungsnummer:2100198

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 15 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

|              | 1 | I.FS | 3 |   | 2.FS | <u>}                                    </u> |   | 3.FS | 3 |   | 1.FS | 3 |   | 5.FS | 3 | ( | 3.FS | <u>}                                    </u> | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|----------------------------------------------|---|------|---|---|------|---|---|------|---|---|------|----------------------------------------------|---|------|---|
| SWS nach     | > | S    | Р | ٧ | S    | Р                                            | ٧ | S    | Р | V | S    | Р | > | S    | Р | ٧ | S    | Р                                            | V | S    | Р |
| Fachsemester | 2 | 0    | 0 |   |      |                                              |   |      |   |   |      |   |   |      |   |   |      |                                              |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, mechanische und funktionale Eigenschaften der Werkstoffe aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien zu erklären und Eigenschaftsveränderungen gezielt zu analysieren, zu bewerten und für neue Anwendungen zu synthetisieren. Das Fach vermittelt 30 % Fachkompetenz, 40 % Methodenkompetenz, 30 % Systemkompetenz.

### Vorkenntnisse

Grundlagen der Werkstoffwissenschaft

# Inhalt

Dozent: apl. Prof. Dr.-Ing. habil. Lothar Spieß

Inhalt:

- 1. Einführung: Feinstruktur-Gefüge-Eigenschaftsbeziehung
- 2. Werkstoffe mit besonderer atomarer und struktureller Ordnung:
  - Einkristalle (Beispiele: Si, Quarz)
  - · Amorphe Halbleiter
  - Flüssigkristalle
  - Kohlenstoffwerkstoffe
  - · Synthetische Metalle (Interkalation)
  - · Kristalle unter Druck
  - · Festigkeitssteigerung
- 3. Dünnschichtzustand
  - · Keimbildung und Wachstum / Strukturzonenmodelle
  - · Diffusion / Elektromigration
  - Elektrische, magnetische und optische Eigenschaften
- 4. Kabel und Leitungen
  - · Rundleiter / Sektorenleiter
  - Flächenleiter
  - Supraleiter
  - Lichtwellenleiter
- 5. Wandlerwerkstoffe (Sensorwerkstoffe)

- · Mechanisch elektrisch
- Thermisch elektrisch
- Magnetisch elektrisch
- · Optisch elektrisch
- Myo elektrisch
- 6. Werkstoffe der Vakuumtechnik
- 7. Grundlagen und Einsatz analytischer und ultramikroskopischer Verfahren in der Werkstoffdiagnostik:
  - · TEM.
  - · REM,
  - · AFM/ RTM,
  - XRD

# Medienformen

Präsentationsfolien; Skript in Vorbereitung

#### Literatur

- 1. Werkstoffwissenschaft (hrsg. von W. Schatt und H. Worch).- 8. Aufl., Stuttgart: Deutscher Verlag für Grundstoffindustrie, 1996
  - 2. Schaumburg, H.: Werkstoffe. Stuttgart: Teubner, 1990
- 3. Askeland, D. R.: Materialwissenschaften: Grundlagen, Übungen, Lösungen. Heidelberg; Berlin; Oxford: Spektrum, Akad. Verlag, 1996
- 4. Funktionswerkstoffe der Elektrotechnik und Elektronik (hrsg. von K. Nitzsche und H.-J. Ullrich). 2. stark überarb. Aufl. Leipzig; Stuttgart: Dt. Verlag für Grundstoffindustrie, 1993
  - 5. Bergmann, W.: Werkstofftechnik, Teil 1: Grundlagen. 2., durchges. Aufl. München; Wien: Hanser, 1989
  - 6. Bergmann, W.: Werkstofftechnik, Teil 2: Anwendung. München; Wien: Hanser, 1987
- 7. Fasching, G.: Werkstoffe für die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften. 3., verb. und erw. Aufl. Wien; York: Springer, 1994
- 8. Göbel, W.; Ziegler, Ch.: Einführung in die Materialwissenschaften: physikalisch-chemische Grundlagen und Anwendungen. Stuttgart; Leipzig: Teubner, 1996
  - 9. Hilleringmann, U.: Silizium- Halbleitertechnologie.- 3. Aufl.: Stuttgart, Leipzig, Wiesbaden: B.G. Teubner, 2002
- 10. Magnettechnik. Grundlagen und Anwendungen (hrsg. von L. Michalowsky). 2., verb. Aufl. Leipzig; Köln: Fachbuchverl., 1995

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Mikro- und Nanotechnologien 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EWT

Master Werkstoffwissenschaft 2011

Master Micro- and Nanotechnologies 2016

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Mikro- und Nanotechnologien 2016

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Werkstoffwissenschaft 2010

Master Mikro- und Nanotechnologien 2013

Master Miniaturisierte Biotechnologie 2009

Master Wirtschaftsingenieurwesen 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Biotechnische Chemie 2016

Master Werkstoffwissenschaft 2013

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET



Modul: Pflichtmodul 2: Konstruktions- und Funktionswerkstoffe

# Konstruktionswerkstoffe

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6954 Prüfungsnummer:2300324

# Fachverantwortlich: Dr. Günther Lange

| Leistungspunkte: 2 Workload (h): | 60 | Anteil Selbststudium (h): | 38 | SWS: | 2.0         |      |
|----------------------------------|----|---------------------------|----|------|-------------|------|
| Fakultät für Maschinenbau        |    |                           |    |      | Fachgebiet: | 2352 |

|              | 1 | I.FS | <u> </u> |   | 2.FS | 3 | ;        | 3.FS | <u> </u> | 4 | I.FS | 5 |   | 5.FS | <u> </u> | - 6 | 3.FS | 3 |   | 7.FS | 3 |
|--------------|---|------|----------|---|------|---|----------|------|----------|---|------|---|---|------|----------|-----|------|---|---|------|---|
| SWS nach     | > | S    | Р        | > | S    | Р | <b>V</b> | S    | Р        | > | S    | Р | > | S    | Р        | >   | S    | Р | > | S    | Р |
| Fachsemester | 2 | 0    | 0        |   |      |   |          |      |          |   |      |   |   |      |          |     |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die Eigenschaften und Anwendungen der behandelten Werkstoffe sowie ihre Verarbeitung zu beschreiben. Dadurch werden die Studierenden in die Lage versetzt ingenieurwissenschaftlich relevante Anwendungen auf Basis der behandelten Werkstoffe grundlegend zu analysieren, um dann passende Lösungsmöglichkeiten aufzuzeigen und zu erarbeiten.

#### Vorkenntnisse

Bachelor im MB, FZT oder Werkstoffwissenschaft

#### Inhalt

- Was sind Konstruktionswerkstoffe
- Stahl, Herstellung, Eigenschaften, Einflüsse auf die mechanischen Eigenschaften
- Ausgewählte Stahllegierungen
- ZTU Diagramme, Ermittlung, Anwendung
- Magnesium, Aufbau, Herstellung, Verarbeitung, Eigenschaften
- Titan, Aufbau, Herstellung, Verarbeitung, Eigenschaften
- Strangpressverfahren, Conformverfahren, Werkstoffeinfluss

#### Medienformen

Power Point, Tafel

Vorlesungsbegleitende Unterlagen werden zum Download bereitgestellt.

# Literatur

- Handbuch Konstruktionswerkstoffe; E. Möller, München: Hanser, 2008
- Konstruktionswerkstoffe des Maschinen- und Anlagenbaus; W. Schatt, Stuttgart: Dt. Verl. für Grundstoffindustrie, 1998
- Werkstoffe Aufbau und Eigenschaften; E. Hornbogen, G. Eggeler, E. Werner; 9. Auflage, Springer, 2008
- Werkstoffwissenschaft; W. Schatt, H. Worch; 9. Auflage, Wiley-VCH, 2003
- Neuere Literatur wird in der Vorlesung bekannt gegeben.

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010



Modul: Pflichtmodul 2: Konstruktions- und Funktionswerkstoffe

# Oberflächentechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6951 Prüfungsnummer:2100319

# Fachverantwortlich: Prof. Dr. Andreas Bund

| Leistungspunkte:      | 3     | Workload (h): 90           | Anteil Selbststudium (h): | 68 | SWS: | 2.0         |      |
|-----------------------|-------|----------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echni | ik und Informationstechnik |                           |    |      | Fachgebiet: | 2175 |

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 | , | 3.FS | 3 | 4        | 1.FS | 3 |          | 5.FS | } | - ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|---|----------|------|---|-----|------|---|---|------|---|
| SWS nach     | > | S    | Р | ٧ | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р | <b>V</b> | S    | Р | ٧   | S    | Р | > | S    | Р |
| Fachsemester | 2 | 0    | 0 |   |      |   |   |      |   |          |      |   |          |      |   |     |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

• Die Studenten kenne die Prinzipien der physikalischen Behandlung und Beschichtung von Oberflächen. Sie kennen die wichtigsten Verfahrensschritte und Prozessparameter und verstehen die Grundlagen der Schichtbildung für unterschiedlichen Bedingungen. • Dieses Wissen befähigt die Studenten, oberflächentechnische Verfahren auszuwählen und hinsichtlich ihrer Eignung zu beurteilen.

#### Vorkenntnisse

**BA WSW** 

#### Inhalt

- Allgemeiner Beschichtungsablauf - oberflächentechnische Verfahren zur Vorbehandlung, Reinigung und Nachbehandlung - thermisches Spritzen: Normen, Gase und Anlagentechnik, Verfahrensparameter, Schichtbildung und -eigenschaften - PVD- und CVD-Verfahren: Besonderheiten, Zonenmodelle der Schichtbildung, Beispiele und Eigenschaften - Diamant- und DLC- Schichten - Hartstoffschichten - physikalische Verfahren zur Entschichtung von Oberflächen

#### Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer

#### Literatur

- Steffens/Brandl: Moderne Beschichtungsverfahren - DGM Verlag Dortmund, 1992 - Grainger: Funktionelle Beschichtungen in Konstruktion und Anwendung - Eugen G. Leutze Verlag, Saulgau 1994 - Lugscheider: Handbuch der thermischen Spritztechnik - DVS-Verlag Düsseldorf 2002 - Frey/Kienel: Dünnschichttechnologie - VDI-Verlag Düsseldorf, 1987

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



# Modul: Pflichtmodul 3: Werkstoffe und Technologien für Mikro- und Nanotechnik

# Modulnummer6955

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

# Lernergebnisse

Die Studierenden sind in der Lage, mechanische und funktionale Eigenschaften der Werkstoffe im Mikro- und Nanometerbereich aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien zu erklären und Eigenschaftsveränderungen gezielt zu analysieren, zu bewerten und für neue Anwendungen zu synthetisieren. Weiterhin sind sie in der Lage technologische Verfahrensschritte für die Herstellung vorschzuschlagen, zu bewerten und durchzuführen.

Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

# Vorraussetzungen für die Teilnahme

Grundkenntnisse Werkstoffe.

Detailangaben zum Abschluss



Modul: Pflichtmodul 3: Werkstoffe und Technologien für Mikro- und Nanotechnik

# Mikro- und Halbleitertechnologie 1

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1386 Prüfungsnummer:2100197

Fachverantwortlich: Dr. Jörg Pezoldt

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 26 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2142

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS Р S P SP SP S P SP S S SWS nach Fachsemester

# Lernergebnisse / Kompetenzen

Grundverständnis und Verständnis für die Einzelprozesse und des physikalisch materialwissenschaftlichen Hintergrundes der Herstellung von Halbleiterbauelementen, integrierten Schaltkreisen, Sensor- und Mikrosystemen. Es werden Fähigkeiten vermittelt, die es ermöglichen, die einzelnen Prozessschritte in der Mikro- und Halbleitertechnologie hinsichtlich der physikalischen, chemischen und materialwissenschftlichen Grundlagen und ihrer Anwendbarkeit zu analysieren und zu bewerten.

#### Vorkenntnisse

Grundkenntnisse in Physik, Chemie und den Funktionsweisen von elektronischen Bauelementen und integrierten Schaltkreisen

#### Inhalt

Die Vorlesung gibt eine Einführung in die physikalischen, chemischen und technischen Grundlagen der Einzelprozesse, die bei der Herstellung von Sensoren, Halbleiterbauelementen, integrierten Schaltkreisen, Sensor- und Mikrosystemen Verwendung finden. Die technologischen Verfahren und Abläufe, sowie die Anlagentechnik zur Fertigung von Halbleiterbauelementen und deren Integration in Systeme werden am Beispiel der Siliziumtechnologie und Galliumarsenidtechnologie vermittelt. 1. Einführung in die Halbleitertechnologie: Die Welt der kontrollierten Defekte 2. Einkristallzucht 3. Scheibenherstellung 4. Waferreinigung 5. Epitaxie 6. Dotieren: Legieren und Diffusion 7. Dotieren: lonenimplantation, Transmutationslegierung 8. Thermische Oxidation 9. Methoden der Schichtabscheidung: Bedampfen 10. Methoden der Schichtabscheidung: CVD 11. Methoden der Schichtabscheidung: Plasma gestützte Prozesse 12. Ätzprozesse: Nasschemisches isotropes und anisotropes Ätzen 13. Ätzprozesse: Trockenchemisches isotropes und anisotropes Ätzen 14. Elemente der Prozeßintegration

# Medienformen

Folien, Powerpointpresentationen, Tafel

# Literatur

- J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon Technology: Fundamentals, Practice and Modelling, Prentice Hall, 2000. - U. Hilleringmann, Silizium - Halbleitertechnologie, B.G. Teubner, 1999. - D. Widmann, H. Mader, H. Friedrich, Technology of Integrated Circuits, Springer, 2000. - VLSI Technology, Ed. S.M. Sze, McGraw-Hill, 1988. - ULSI Technology, Ed. C.Y. Chang, S.M. Sze, McGraw-Hill, 1996. - I. Ruge, H. Mader, Halbleiter-Technologie, Springer, 1991. - U. Hilleringmann, Mikrosystemtechnik auf Silizium, B.G. Teubner, 1995.

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Mikro- und Nanotechnologien 2008

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Regenerative Energietechnik 2011

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Werkstoffwissenschaft 2011

Bachelor Elektrotechnik und Informationstechnik 2013

Master Regenerative Energietechnik 2013

Master Mikro- und Nanotechnologien 2013

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2008

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Werkstoffwissenschaft 2010

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET



Modul: Pflichtmodul 3: Werkstoffe und Technologien für Mikro- und Nanotechnik

# Mikro- und Nanotechnologiepraktikum

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 5974 Prüfungsnummer:2100199

Fachverantwortlich: Prof. Dr. Heiko Jacobs

| Leistungspunkte:        | 2     | Workload (h): 60        | Anteil Selbststudium (h): | 26 | SWS: | 2.0         |      |
|-------------------------|-------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektroted | chnik | und Informationstechnik |                           |    |      | Fachgebiet: | 2142 |

|              | 1 | l.FS | 3 | 2 | 2.FS | 3 |   | 3.FS | 3 | 4        | 1.FS | 3 | 5        | 5.FS | 3 | 6 | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|---|----------|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р | <b>V</b> | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester | 0 | 0    | 2 |   |      |   |   |      |   |          |      |   |          |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage ausgewählte mikro- und nanoelektronische sowie mikromechanische Bauelemente herzustellen. Die Studenten besitzen die Fachkompetenz um Technologieabläufe zur Herstellung von Halbleiterbauelementen zu planen und durchzuführen. Sie besitzen die Fachkompetenz Bauelemente zu charakterisieren und Fehlfunktionen zu identifizieren.

# Vorkenntnisse

Mikro- und Halbleitertechnologie / Mikrotechnik I

#### Inhalt

Es werden praktische Fähigkeiten vermittelt, die es ermöglichen, die einzelnen Prozessschritte in der Mikro- und Halbleitertechnologie hinsichtlich der physikalischen, chemischen und anlagentechnischen Grundlagen und ihrer Anwendbarkeit zu analysieren und zu bewerten. Das Praktikum gibt eine Vertiefung in die physikalischen, chemischen und anlagentechnischen Grundlagen der Einzelprozesse, die bei der Herstellung von Sensoren, Halbleiterbauelementen, integrierten Schaltkreisen, Sensor- und Mikrosystemen Verwendung finden. Dies wird am Beispiel einer geschlossenen Prozessierung eines Halbleiterbauelementes vermittelt. Entwurf einfacher elektronischer und mikromechanischer Bauelelmente, Definition der Prozesskette, Durchführung der Einzelverfahren, Charakterisierung der Bauelemente

# Medienformen

Technologiepraktikum

### Literatur

Nanoelectronics and Information Technology Rainer Waser (Ed.) 2003 WILEY-VCH Verlag GmbH & Co ISBN 3-527-40363-9 Fundamentals of microfabrication M. Madou

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Technische Physik 2008

Master Mikro- und Nanotechnologien 2008

Master Regenerative Energietechnik 2011

Master Regenerative Energietechnik 2013

Master Technische Physik 2011

Master Werkstoffwissenschaft 2010

Master Mikro- und Nanotechnologien 2013

Master Technische Physik 2013

Modul: Pflichtmodul 3: Werkstoffe und Technologien für Mikro- und Nanotechnik

# Werkstoffe der Mikro- und Nanotechnologie

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Englisch (Deutsch) Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6956 Prüfungsnummer:2100320

# Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte: 3         | Workload (h):         | 90   | Anteil Selbststudium (h): | 56 | SWS: | 3.0         |      |
|----------------------------|-----------------------|------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrotechni | k und Informationstec | hnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1 | I.FS | <b>)</b> | 2 | 2.FS | 3 |   | 3.FS | 3 | 4        | 1.FS | 3 |          | 5.FS | 3 | - ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|----------|---|------|---|---|------|---|----------|------|---|----------|------|---|-----|------|---|---|------|---|
| SWS nach     | > | S    | Р        | ٧ | S    | Р | V | S    | Р | <b>V</b> | S    | Р | <b>V</b> | S    | Р | ٧   | S    | Р | > | S    | Р |
| Fachsemester | 2 | 1    | 0        |   |      |   |   |      |   |          |      |   |          |      |   |     |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Students are able to explain the mechanical and functional properties of materials in micro- and nanotechnology starting from the microscopic and submicroscopic structure. The can analyze changes in the properties and judge them for their applicability in new applications and can develop strategies for their implementation.

Students know the various materials in micro- and nanotechnology and in sensorics. They gain knowledge about the basic materials properties, their application and the fabrication of such materials.

The students know the basics of fabrication of highly integrated circuits, the preparation of microsystems and sensors and how the materials have to be selected.

Various methods and steps, materials and their control and analysis are treated for selected applications.

In the seminar, the students gain deeper knowledge for selected examples, and they learn how to search information and how to present this in a talk and to discuss the problems.

Die Studierenden sind in der Lage, mechanische und funktionale Eigenschaften der Werkstoffe im Mikro- und Nanometerbereich aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien zu erklären und Eigenschaftsveränderungen gezielt zu analysieren, zu bewerten und für neue Anwendungen zu synthetisieren. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

#### Vorkenntnisse

Knowledge in materials, physics, and chemistry on bachelor level.

Gute Grundkennte in Werkstoffe, Physik, Chemie, Elektrotechnik, Mechanik auf Bachelorniveau

## Inhalt

Materials for micro- and nanotechnology

- 1. Introduction
- 2. Thin films, deposition, transport mechanisms in thin films
- 2.1. basic processes during deposition
- 2.2. Epitaxy / Superlattices
- 2.3. Diffusion
- 2.4. Electromigration
- 2.5. functional properties of thin films
- 3. Mesoscopic Materials
- 3.1. Definition
- 3.2. Quantum interference
- 3.3. Applications
- 4. liquid crystals

- 5. carbon materials
- 6. Gradient materials
- 7. Properties and treatment of materials in basic technologies of micro- and nanotechnology
- 7.1. Lithography
- 7.2. Anisotropic etching
- 7.3. coating
- 7.4. LIGA-method
- 7.5. materials for packaging technology
- 8. materials for sensorics
- 9. materials for plasmonics
- 10. materials for energy conversion and storage

# Werkstoffe der Mikro- und Nanotechnologie

- 1. Einführung
- 2. Dünnschichtzustand, Schichtbildung und Transportvorgänge in dünnen Schichten
- 2.1. Elementarprozesse beim Schichtaufbau
- 2.2. Epitaxie / Supergitter
- 2.3. Diffusion
- 2.4. Elektromigration
- 2.5. Spezielle funktionale Eigenschaften dünner Schichten
- 3. Werkstoffe im mesoskopischen Zustand
- 3.1. Definition
- 3.2. Quanteninterferenz
- 3.3. Anwendungen
- 4. Flüssigkristalle
- 4.1. Definition
- 4.2. Strukturen thermotroper Flüssigkristalle
- 4.3. Dynamische Streuung und Anwendungen
- 5. Kohlenstoff-Werkstoffe
- 5.1. Modifikationen des Kohlenstoff
- 5.2. Interkalation des Graphit
- 5.3. Fullerene
- 5.4. Nanotubes
- 6. Gradientenwerkstoffe
- 6.1. Gradierung durch Diffusion
- 6.2. Gradierung durch Ionenimplantation
- 7. Verhalten und Behandlung der Werkstoffe in den Basistechnologien der Mikro- und Nanotechnik
- 7.1. Lithografie
- 7.2. Anisotropes Ätzen
- 7.3. Beschichten
- 7.4. LIGA-Technik
- 7.5. Aufbau- und Verbindungstechnik
- Die Vorlesung wird durch ein Praktikum begleitet.

# Medienformen

Scriptum, powerpoint, computer demos, animations, specialized literature

# Literatur

Specialized literature will be given in the course.

- 1. Introduction to nanoscience and nanomaterials. Agrawal. World Scientific.
- 2. Materials for microelectronics. Elsevier.
- 3. Werkstoffwissenschaft / W. Schatt; H. Worch / Wiley- VCH Verlag, 2003
- 4. Menz, W.; Mohr, J.; Paul, O.: Mikrosystemtechnik für Ingenieure. Wiley-VCH, 2005
- 5. Grundlagen der Mikrosystemtechnik: Lehr- und Fachbuch / G. Gerlach; W. Dötzel / Hanser, 1997
- 6. Sensorik: Handbuch für Praxis und Wissenschaft / H.- R. Tränkler; E. Obermeier / Springer, 1998
- 7. Mikrosytemtechnik / W.-J. Fischer / Würzburg: Vogel, 2000
- 8. Schaumburg, H.: Sensoren / H. Schaumburg / Teubner, 1992
- 9. Frühauf, J.: Werkstoffe der Mikrotechnik; Hanser Verlag 2005

# Detailangaben zum Abschluss

Zulassung zur Klausur nur beo erfolgreich absolviertem Praktikum und erfolgreicher Seminarteilnahme, die durch einen Vortrag von 30min Dauer mit anschliessender Diskussion zu belegen ist.

# verwendet in folgenden Studiengängen

Master Micro- and Nanotechnologies 2016

Bachelor Werkstoffwissenschaft 2009

Master Mikro- und Nanotechnologien 2016

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Master Miniaturisierte Biotechnologie 2009

Master Biotechnische Chemie 2016



# Modul: Pflichtmodul 4: Werkstoffauswahl und -design

Modulnummer6961

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

# Lernergebnisse

Die Studierenden kennen Werkstoffe und deren strukturellen Aufbau. Sie kennen die Untersuchungsmethoden zur Gewinnung der Strukturdaten, besonders der Röntgenbeugungsverfahren. Die mechanischen Eigenschaften werden anhand der Bruchmechanik tiefgründig behandelt. Ausgehend von diesen Größen können sie Werkstoffe und deren Eigenschaften mathematisch beschreiben, Modelle aufstellen und in eine statistische Versuchsplanung umsetzen. Die Studierenden sind in der Lage, die optimale Werkstoffauswahl aus der Kenntnis der Anforderungen und der Eigenschaften auszuwählen. Sie sind in der Lage, ein komplexes Werkstoffproblem zu erkennen, die Maßnahmen zur Lösung des Problems zu treffen indem konkrete Anforderungen abgeleitet werden und sich fehlende Strukturdaten durch geeignete zu beschaffen.

# Vorraussetzungen für die Teilnahme

Grundlagen der Werkstoffwissenschaft

Detailangaben zum Abschluss

# **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011

Modul: Pflichtmodul 4: Werkstoffauswahl und -design



# Anforderungen und optimale Werkstoffauswahl

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6960 Prüfungsnummer:2100321

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 3 Workload (h): 90 Anteil Selbststudium (h): 56 SWS: 3.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

|              | 1 | 1.FS | <u>`                                    </u> | 2 | 2.FS | <u>`                                    </u> |   | 3.FS | 3 |   | 1.FS | <u> </u> |   | 5.FS | 3 | ( | 6.FS | <u>;                                    </u> | 7 | 7.FS | } |
|--------------|---|------|----------------------------------------------|---|------|----------------------------------------------|---|------|---|---|------|----------|---|------|---|---|------|----------------------------------------------|---|------|---|
| SWS nach     | > | S    | Р                                            | ٧ | S    | Р                                            | ٧ | S    | Р | > | S    | Р        | ٧ | S    | Р | ٧ | S    | Р                                            | V | S    | Р |
| Fachsemester | 2 | 1    | 0                                            |   |      |                                              |   |      |   |   |      |          |   |      |   |   |      |                                              |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden lernen Methoden zur Auswahl und Bewertung von Werkstoffdaten unter Anwendung von Datenbanken/Asby-Diagrammen kennen. Die Studierenden bewerten Werkstoffe in Abhängigkeit des geplanten Einsatzes und der Erfüllung des Anforderungsprofils kennen. Die Internationalität der Ausbildung wird hier dokumentiert, dass nach einem englischem Lehrbuch vorgegangen werden soll. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

### Vorkenntnisse

Kenntnisse aus dem Bachelor Werkstoffwissenschaft oder äquivalente Kenntnisse.

#### Inhalt

Dozent: Prof. Dr.-Ing. Lothar Spieß

- 1. Zielstellung Struktur-Gefüge Eigenschaften der wichtigste Werkstoffzusammenhang
- 2. Anforderungen an Werkstoffe für Energietechnik für Automobiltechnik für Mikroelektronik für Nanotechnik für chemische Industrie für Biowerkstoffe
- 3. Vergleichbarkeit von Werkstoffeigenschaften Datenbanken für Werkstoffe Asby-Diagramme
- 4. Methoden der Auswahl
- 5. Methoden zur Bewertung

Die Vorlesung wird durch eine Übung, teilweise unter Nutzung von Datenbankarbeit und mit Asby- Diagrammerstellung begleitet.

#### Medienformen

Vorlesungsskript Computer Demo

#### Literatur

- Callister, W. D.: Materials science and engineering an introduction, 7. ed. Wiley, 2007
- Ashby: Werkstoffauswahl

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

# **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011

Modul: Pflichtmodul 4: Werkstoffauswahl und -design



# **Modellierung und Simulation**

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5473 Prüfungsnummer:2100322

Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte:      | 3     | Workload (h): 90          | Anteil Selbststudium (h): | 56 | SWS: | 3.0         |      |
|-----------------------|-------|---------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echni | k und Informationstechnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1        | I.FS | 3 | 2 | 2.FS | 3 | , | 3.FS | 3 |   | 1.FS | 3 | 5 | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|----------|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | <b>V</b> | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester | 2        | 1    | 0 |   |      |   |   |      |   |   |      |   |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden lernen Methoden zur Bestimmung von Werkstoffeigenschaften und zur Aufnahme von Werkstoffkennwerten kennen und anzuwenden. Die Besonderheiten beim Einsatz von Schichten werden verstärkt herausgearbeitet. Die Studierenden bewerten Werkstoffkenngrößen zusammenhängend auf die Eigenschaftskennwerte von Werkstoffen. Die Studierenden können Probenreihen statistisch auswerten, hierbei können Sie die Methoden der Weibullverteilung und ähnliche Verteilungen anwenden. Die Studierenden können optimierte Versuchpläne aufstellen, anwenden und auswerten. Sie können dabei komplexe Eigenschaftsbeziehungen von Werkstoffen aus ihren Experimenten synthetisieren. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

# Vorkenntnisse

**BA WSW** 

# Inhalt

Dozent: Prof. Dr. Lothar Spieß

- 1. Werkstoffcharakterisierungsmethoden zur Gewinnung von Datenmaterial, wie klassische Werkstoffprüfverfahren angewendet auf dünne Schichten; Röntgenbeugung, Röntgenfluoreszenz, Atomkraftmikroskopie, Elektronenmikroskopie, analytische Elektronenmikroskopie, Augerspektroskopie
- 2. Werkstoffbeschreibung Beschreibung von ausgewählten Werkstoffkennwerten durch mathematische Modelle
- 3. Optimierte Versuchsplanung Erstellen von optimierten Versuchsplänen zur Analyse von Werkstoff- und Bauteileigenschaften
- 4. Mathematische Verteilungsfunktionen zur Bewertung von Versuchen mit wenigen Proben, Weibull-Verteilungen, Weibullnetze Die Vorlesung wird durch eine Übung, teilweise unter Nutzung von Simulationssoftware begleitet.

#### Medienformen

Vorlesungsskript Computer Demo

#### Literatur

1. Spieß; Schwarzer; Behnken; Teichert: Moderne Röntgenbeugung; BG. Teubner Verlag, 1. Auflage 2005 2. Heine, B.: Werkstoffprüfung; Fachbuchverlag Leipzig, 1. Auflage 2003 3. Nitzsche, K.: Schichtmeßtechnik; Vogel Buch Verlag Würzburg 1. Auflage 1997 4. Storm, R.: Wahrscheinlichkeitsrechnung, mathematische Statistik und statistische Qualitätskontrolle, Fachbuchverlag Leipzig, 11. Auflage 2001 5. Engeln-Müllgens, G.; Schäfer, W.; Trippler, G.: Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik; Fachbuchverlag Leipzig 1999 6. Timischl, W.: Qualitätssicherung - Statistische Methoden, Hanser Verlag, 2. Auflage 1996 7. Schott, D.: Ingenieurmathematik mit MATLAB, Fachbuchverlag Leipzig, 2004

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



# Modul: Pflichtmodul 5: Werkstoffanalyse und -versagen

# Modulnummer7970

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

# Lernergebnisse

Die Studierenden lernen Methoden zur Bestimmung und Bewertung von Werkstoffstrukturgrößen unter vorrangiger Anwendung der Röntgendiffraktometrie kennen.

Die Studierenden analysieren verschiedene Bruchmechanismen, lernen daraus Methoden zur Bestimmung von Werkstoffeigenschaften und bewerten die Bruchkenngrößen.

# Vorraussetzungen für die Teilnahme

Grundlagen der Werkstoffwissenschaft

Detailangaben zum Abschluss

# **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011

Modul: Pflichtmodul 5: Werkstoffanalyse und -versagen



# **Bruchmechanik**

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6959 Prüfungsnummer:2300387

# Fachverantwortlich: Dr. Günther Lange

| Leistungspunkte:      | 3     | Workload (h): | 90 | Anteil Selbststudium (h): | 56 | SWS: | 3.0         |      |
|-----------------------|-------|---------------|----|---------------------------|----|------|-------------|------|
| Fakultät für Maschine | enbau |               |    |                           |    |      | Fachgebiet: | 2352 |

|              | 1 | <u> </u> | <u> </u> |   | 2.FS | 3 |   | 3.FS | 3 |   | 1.FS | 3 |   | 5.FS | 3 | 6 | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|----------|----------|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S        | Р        | > | S    | Р | ٧ | S    | Р | > | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |   |          |          | 2 | 1    | 0 |   |      |   |   |      |   |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage Bruchbilder, Anrissvorgänge und Bruchvorgänge zu verstehen und zu beschrieben. Hierbei sind die Studierenden in der Lage die Zusammenhänge zwischen Anriss, Bruch, Bruchvermeidung und Lebensdauer zu analysieren und entsprechende Lösungen zu erarbeiten und auszuwählen.

#### Vorkenntnisse

Bachelor in MB, FZT oder Werkstoffwissenschaft; Technische Mechanik 1 - 3

# Inhalt

- Risstheorien (Entwicklung, Unterschiede, Rissbetrachtung)
- Theorie nach Griffith (Griffith-Kriterium, etc.)
- K-Faktor
- Praktische Bruchmechanik
- Vermeidung von Brüchen und Rissen
- Lebensdauer / Betriebsfestigkeit

# Medienformen

Power Point, Tafel

Vorlesungsbegleitende Unterlagen werden zum Download bereitgestellt.

Anschauungsobjekte werden in der Vorlesung besprochen.

# Literatur

Bücher aus dem Bereich der Bruchmechanik, Werkstoffprüfung und Betriebsfestigkeit Neuere Literatur wird in der Vorlesung bekannt gegeben.

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



Modul: Pflichtmodul 5: Werkstoffanalyse und -versagen

# Werkstoffzustände und -analyse

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 101123 Prüfungsnummer:2100323

Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte:      | 3        | Workload (h): 90        | Anteil Selbststudium (h): | 56 | SWS: | 3.0         |      |
|-----------------------|----------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echnik ι | und Informationstechnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1 | I.FS | <b>;</b> | 2 | 2.FS | 3 | ; | 3.FS | 3 | 4 | 1.FS | <b>)</b> |   | 5.FS | 3 | 6 | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|----------|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | ٧ | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |   |      |          | 2 | 1    | 0 |   |      |   |   |      |          |   |      |   |   |      |   |   |      |   |

Lernergebnisse / Kompetenzen

Die Studierenden lernen Methoden zur Bestimmung von Werkstoffstrukturdaten unter Anwendung von ionisierender Strahlung kennen. Die Besonderheiten beim Einsatz von Schichten werden verstärkt herausgearbeitet. Die Studierenden bewerten Werkstoffstrukturdaten in Abhängigkeit der Untersuchungsmethoden und der erhaltenen Strukturkenngrößen. Die Studierenden können Diffraktogramme, die PDF-Datei und die Geräte prinzipell auswerten bzw. anwenden. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

# Vorkenntnisse

BA WSW

# Inhalt

Dozent: Prof. Dr. Lothar Spieß

1. Zielstellung Struktur-Gefüge Eigenschaften - der wichtigste Werkstoffzusammenhang 2. Werkstoffzustände - fest, kristallin, amorph - flüssig, gasförmig, plasmaförmig, - Dünnschichtzustand, - Nanokristallin 3. Ionisierende Strahlung und Detektion - Röntgenstrahlerzeugung - radioaktive Quellen - Detektoren für Strahlung 4. Radiografie - Kontrast bei Abbildung durch Durchleuchtung - Computertomographie 5. Röntgenbeugungsuntersuchungen - Vielkristalluntersuchungsverfahren - Debye-Scherrer Verfahren und Bragg-Brentano Diffraktometer - Dünnschichtuntersuchungsanordnungen 6. Röntgenografische Spannungsanalyse 7. Röntgenografische Texturanalyse 8. Fundamentalparameteranalyse 9.

Einkristalluntersuchungsverfahren Laue-Verfahren Weisenbergmethode 10. Gerätetechnische Realisierung Die Vorlesung wird durch eine Übung, teilweise unter Nutzung von Gerätevorführungen begleitet.

# Medienformen

Vorlesungsskript Computer Demo

# Literatur

1. Spieß; Schwarzer; Behnken; Teichert: Moderne Röntgenbeugung; BG. Teubner Verlag, 1. Auflage 2005 2. Heine, B.: Werkstoffprüfung; Fachbuchverlag Leipzig, 1. Auflage 2003 3. Nitzsche, K.: Schichtmeßtechnik; Vogel Buch Verlag Würzburg 1. Auflage 1997 4. Stolz, W.: Radioaktivität; 5. Auflage, Teubner-Verlag 2005 5. Massa, W.: Kristallstrukturbestimmung; 4. Auflage, Teubner-Verlag, 2005 6. Allmann, R.; Kern, A.: Röntgenpulverdiffraktometrie, 2. Auflage, Springer Verlag 2002

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Micro- and Nanotechnologies 2016

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EWT

Master Mikro- und Nanotechnologien 2016

Master Werkstoffwissenschaft 2013

Master Werkstoffwissenschaft 2011

Master Regenerative Energietechnik 2013



# Modul: Pflichtmodul 6: Allgemeines wissenschaftliches Pflichtmodul

# Modulnummer6962

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

# Lernergebnisse

Erwerben die in den ausgewählten Modulen und Fächern beschriebenen Kompetenzen.

Die Studierenden lernen sich auf der Grundlage bestehender wissenschaftlicher Erkenntnisse auf aktuellem Stand wissenschaftlich zu diskutieren und sich mit den Gedanken anderer auseinanderzusetzen, sich eigene Gedanken zu machen und das Ergebnis in einer verständlichen Form darzustellen. Die Studierenden kennen übliche Formen der Darstellung der Ergebnisse und Konventionen.

Die Studierenden kennen die Anforderungen an eine wissenschaftliche Arbeit und die generelle Gliederung.

Sie kennen die Wege der Literaturbeschaffung und deren kritische Einordnung.

Die Studierenden können hierauf aufbauend einen Arbeitsplan erstellen und eine Versuchsplanung aufsetzen. Sie können ihre Arbeiten und Ergebnisse auswerten und wissenschaftlich darstellen.

Dieses Lehrfach bietet einen umfassenden Überblick über Methoden und Werkzeugen des Qualitätsmanagements. Die Studierenden sollen durch praktische Beispiele Fähigkeiten und Fertigkeiten zu einzelnen QM-Tools erwerben. Bei der Vermittlung von Methoden des QM werden auch Sozialkompetenzen erarbeitet.

Die Studierenden

- haben eine systematische Übersicht zu den Methoden und Werkzeugen des Qualitätsmanagements
- lernen die Anwendung von ausgewählten QM-Werkzeugen zur Qualitätsplanung, zur Produktrealisierung, zur Qualitätsauswertung und zur Qualitätsverbesserung kennen.

# Vorraussetzungen für die Teilnahme

Grundkenntnisse naturwissenschaftlich und ingenieurtechnischer Arbeit

# Detailangaben zum Abschluss

Modul: Pflichtmodul 6: Allgemeines wissenschaftliches Pflichtmodul

# Anleitung zur wissenschaftlichen Arbeit

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6964 Prüfungsnummer:2100324

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 49 SWS: 1.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 |   | 3.FS | 3 |   | 1.FS | <u> </u> |   | 5.FS | 3 | ( | 3.FS | 3 |   | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | V | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester | 1 | 0    | 0 |   |      |   |   |      |   |   |      |          |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Students are able to discuss scientific problems on the basis of existing scientific knowledge and literature.

The can argue in a scientific way and are able to report own ideas and thoughts.

Students know the usual forms and conventions of representing a scientific work. Students are able to judge about the quality of a work.

Students are able to prepare a work plan and a scientific project. The can make use of all formal requirements for a scientific work.

The can search for relevant literature and use it in their work.

Students can analyse their results and present them in a scientific manner.

Die Studierenden lernen sich auf der Grundlage bestehender wissenschaftlicher Erkenntnisse auf aktuellem Stand wissenschaftlich zu diskutieren und sich mit den Gedanken anderer auseinanderzusetzen, sich eigene Gedanken zu machen und das Ergebnis in einer verständlichen Form darzustellen. Die Studierenden kennen übliche Formen der Darstellung der Ergebnisse und Konventionen. Die Studierenden kennen die Anforderungen an eine wissenschaftliche Arbeit und die generelle Gliederung. Sie kennen die Wege der Literaturbeschaffung und deren kritische Einordnung. Die Studierenden können hierauf aufbauend einen Arbeitsplan erstellen und eine Versuchsplanung aufsetzen. Sie können ihre Arbeiten und Ergebnisse auswerten und wissenschaftlich darstellen. Das Fach vermittelt Fach- (10%), Methoden- (50%) und Systemkompetenz (40%).

# Vorkenntnisse

# Inhalt

What is scientific work? What is good scientific work? Structure of a written scientific work.

Good Scientific practice.

Working with a lab book.

Literature search and citing rules, use of literature databases, working with literature and citation programs.

Methods for experiment planning and work planning

Data analysis and data representation

Error analysis and presentation

Scientific discussion

Was ist Wissenschaftliche Arbeit.

Gute Wissenschaftliche Praxis.

Literaturrecherche und Zietierung

Auswertung und Darstellung von Messergebnissen

#### Fehlerrechnung

- 1. Aufbau und Gliederung einer wissenschaftlichen Arbeit
- 2. Erstellung, Nutzung, Einbindung einer Literaturdatenbank bzw. Teile davon in eine eigene wissenschaftliche Arbeit
- 3. Methoden der Arbeits- und Versuchsplanung,
- 4. Methoden der (statistischen) Auswertung und der wissenschaftlichen Darstellung
- 5. Methoden der wissenschaftlichen Diskussion

#### Medienformen

Scriptum, powerpoint, computer presentations, databases, standards, example, online exercises PowerPoint/Tafel/Vorlesungsskript/ Datenbanken, Patentrecherche, Konkrete Fallbeispiele

# Literatur

- "Die Regeln guter wissenschaftlicher Praxis" (DFG und TU Ilmenau), good scientific practice.
- Web of Science, Scopus, ScienceDirect
- Databases
- Mendeley, EndNote, Citavi, JabRef
- Data Reduction and Error Analysis
- Graphic Programms
- Latex, BibTex
- Seesink, Werner (1994): Einführung in das wissenschaftliche Arbeiten ohne und mit PC. Oldenbourg Verlag.
- Standop, Ewald (1990): Die Form der wissenschaftlichen Arbeit. UTB für Wissenschaft 272.
- Standards: ISO, EN, DIN
- databases

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Micro- and Nanotechnologies 2016

Master Werkstoffwissenschaft 2010

Bachelor Werkstoffwissenschaft 2013

Master Mikro- und Nanotechnologien 2016

#### **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011

Modul: Pflichtmodul 6: Allgemeines wissenschaftliches Pflichtmodul



# Qualitätsmanagement

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6357 Prüfungsnummer:2300261

# Fachverantwortlich: Prof. Dr. Gunther Notni

| Leistungspunkte:     | 2     | Workload (h): | 60 | Anteil Selbststudium (h): | 38 | SWS: | 2.0         |      |
|----------------------|-------|---------------|----|---------------------------|----|------|-------------|------|
| Fakultät für Maschin | enbau |               |    |                           |    |      | Fachgebiet: | 2362 |

|              | 1 | I.FS | ; | 2 | 2.FS | 3 | , | 3.FS | 3 | 4 | I.FS | <b>)</b> | ļ | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester | 2 | 0    | 0 |   |      |   |   |      |   |   |      |          |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Dieses Lehrfach bietet einen umfassenden Überblick über Methoden und Werkzeugen des Qualitätsmanagements. Die Studierenden sollen durch praktische Beispiele Fähigkeiten und Fertigkeiten zu einzelnen QM-Tools erwerben. Bei der Vermittlung von Methoden des QM werden auch Sozialkompetenzen erarbeitet. Die Studierenden - haben eine systematische Übersicht zu den Methoden und Werkzeugen des Qualitätsmanagements - lernen die Anwendung von ausgewählten QM-Werkzeugen zur Qualitätsplanung, zur Produktrealisierung, zur Qualitätsauswertung und zur Qualitätsverbesserung kennen.

#### Vorkenntnisse

Naturwissenschaftliche und ingenieurwissenschaftliche Fächer des Grundstudiums, wünschenswert Kenntnisse in Wahrscheinlichkeitsrechnung und Statistik

#### Inhalt

Systematisierung von Methoden und Werkzeugen des Qualitätsmanagements Elementare Methoden und Werkzeuge für das Qualitätsmanagement Fehlermöglichkeits- und -einflussanalyse - FMEA, Prüfprozesseignung, Maschinen- und Prozessfähigkeitsuntersuchung, Stichprobenprüfung, Prüfplanung, Audit und Fehlermanagement

#### Medienformen

Tafel, Overhead-Projektor, Beamer,

#### Literatur

Linß, G.: Qualitätsmanagement für Ingenieure. 3. Auflage, Leipzig: Fachbuchverlag, 2011 Linß, G.: Training Qualitätsmanagement. 3. Aufl. Leipzig: Hanser Fachbuchverlag 2011 Gerhard L.: Statistiktraining im Qualitätsmanagement. Leipzig: Hanser Fachbuchverlag 2006

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2011 Vertiefung MB

Master Wirtschaftsingenieurwesen 2009 Vertiefung MB

Master Werkstoffwissenschaft 2010

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2010 Vertiefung MB



## Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus

Modulnummer6915

Modulverantwortlich: Prof. Dr. Edda Rädlein

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



## Ingenieurkeramik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Sommersemester

Fachnummer: 6917 Prüfungsnummer:2300328

Fachverantwortlich: Prof. Dr. Edda Rädlein

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 86 SWS: 3.0 Fakultät für Maschinenbau Fachgebiet: 2351

2.FS 1.FS 5.FS 3.FS 4.FS 6.FS 7.FS SP SP S Р S P SP SP S SWS nach Fachsemester 0

## Lernergebnisse / Kompetenzen

Die Studierenden kennen moderne Technische Keramik und können die Beziehungen zwischen deren Struktur und Eigenschaften darstellen. Sie wissen, mit welchen Herstellungsmethoden die Eigenschaftsprofile optimiert werden können und haben Strategien zur Entwicklung neuartiger Keramiken kennengelernt.

#### Vorkenntnisse

**BA WSW** 

#### Inhalt

Oxidische technische Keramik Elektrokeramik Magnetokeramik Biokeramik Nichtoxidkeramik Verbundkeramik

#### Medienformen

Vorlesungsskript, Tafel, Computer Demo

#### Literatur

Salmang, H., Scholze, H., Telle, R. (hrsgg.): Keramik, Springer, Berlin 2007 RichersonD.W.: Modern ceramic engineering: Properties, processing and use in design, Dekker, New York 2005

#### Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



## Kunststofftechnologie 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5398 Prüfungsnummer:2300342

## Fachverantwortlich: Prof. Dr. Michael Koch

| Leistungspunkte: 4     | 4    | Workload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|------------------------|------|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschiner | nbau |               |     |                           |    |      | Fachgebiet: | 2353 |

|              | 1 | I.FS | , | 2 | 2.FS | 3 | , | 3.FS | 3 | 4 | I.FS | <b>)</b> | ļ | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |   |      |   | 2 | 1    | 0 |   |      |   |   |      |          |   |      |   |   |      |   |   |      |   |

## Lernergebnisse / Kompetenzen

Die Studierenden lernen die grundlegenden mathematisch physikalischen Modellbildungen kennen, mit denen die Kernprozesse der Kunststoffverarbeitungsverfahren abbildbar sind.

#### Vorkenntnisse

Grundlagen der Kunststoffverarbeitung.

#### Inhalt

- 1. Einführung und einige Grundlagen
- 2. Stoffdaten und ihre mathematische Beschreibung
- 2.1. Rheologie
- 2.2. Thermische Kenndaten
- 2.3. Tribologische Kenndaten
- 3. Einfache Kunststoff-Strömungen
- 3.1. Druckströmungen
- 3.2. Quetsch- und Radialfließen
- 3.3. Schleppströmung
- 3.4. Überlagerte Druck- und Schleppströmung
- 4. Verarbeitung von Thermoplasten auf Schneckenmaschinen
- 4.1. Einteilung und Bauarten
- 4.2. Fließverhältnisse im Einschneckenextruder
- 4.3. Druck und Durchsatz im Einschneckenextruder
- 4.3. Feststoffförderung
- 4.5. Aufschmelzvorgang
- 4.6. Homogenisierung
- 4.7. Leistungsverhalten
- 4.8. Doppelschneckenextruder
- 5. Grundlagen der Schneckenberechnung
- 5.1. Druck- und Durchsatzberechnung
- 5.2. Leistungsberechnung
- 5.3. Aufschmelzberechnung
- 5.4. Homogenitätsberechnung
- 6. Thermische Prozesse in der Kunststoffverarbeitung
- 6.1. Wärmetransportmechanismen und Erwärmung

- 6.2. Abkühlvorgänge in kontinuierlichen Prozessen
- 6.3. Abkühlvorgänge in diskontinuierlichen Prozessen

#### Medienformen

Vorlesungsunterlagen von der website des FG herunterzuladen, bn&pw werden semesterspezifisch bekanntgegeben. Dazu ergänzend Tafelbilder.

#### Literatur

White, J.L., Potente, H.(Hrsg): Screw Extrusion, Carl Hanser Verlag, 2003

Michaeli, W.: Extrusionswerkzeuge, Carl Hanser Verlag, 1991

NN.: VDI Wärmeatlas, VDI Verlag, 1977

Tadmor, Z., Gogos, C.: Principles of Polymer Processing, John Wiley & Sons, 1979

Kohlgrüber, K.: Doppelschneckenextruder, Carl Hanser Verlag, 2007

Johannhaber, F., Michaeli, W.: Handbuch Spritzgießen, Carl Hanser Verlag, 2004

Thielen, M., Hartwig, K., Gust, P.: Blasformen, Carl Hanser Verlag 2006

Potente, H.: Fügen von Kunststoffen, Carl Hanser Verlag 2004

Schöppner, V.: Skript zur Vorlesung Kunststofftechnologie 2, Universität Paderborn 2009

#### Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Maschinenbau 2014

Master Mechatronik 2014

Master Fahrzeugtechnik 2009

Master Maschinenbau 2009

Master Fahrzeugtechnik 2014

Master Maschinenbau 2011

Master Werkstoffwissenschaft 2011

Master Mechatronik 2008

Master Werkstoffwissenschaft 2010

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



#### Metalle

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Sommersemester

Fachnummer: 6919 Prüfungsnummer:2300326

## Fachverantwortlich: Dr. Günther Lange

| Leistungspunkte: 4        | Workload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|---------------------------|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschinenbau |               |     |                           |    |      | Fachgebiet: | 2352 |

|              | 1 | 1.FS | ; | 2 | 2.FS | 3 | , | 3.FS | 3 | 4        | 1.FS | <b>)</b> | į | 5.FS | 3 | ( | 3.FS | 3 | - | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р        | > | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |   |      |   | 2 | 0    | 1 |   |      |   |          |      |          |   |      |   |   |      |   |   |      |   |

## Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die Eigenschaften und Anwendungen der behandelten Metalle sowie ihre Verarbeitung zu beschreiben. Dadurch werden die Studierenden in die Lage versetzt ingenieurwissenschaftlich relevante Anwendungen auf Basis der behandelten Werkstoffe grundlegend zu analysieren, um dann passende Lösungsmöglichkeiten aufzuzeigen und zu erarbeiten.

#### Vorkenntnisse

Bachelor in Werkstoffwissenschaften

#### Inhalt

- Geschichtliche Betrachtung der Metalle
- Nickel, Herstellung, Eigenschaften und Anwendung
- Formgedächtnislegierungen (NiTi), Eigenschaften und Anwendungen
- Hartmetalle und ihre Anwendungen, Eigenschaften und Herstellung
- Gießverfahren (u. a. Herdguss, Maskenguss) und Einfluss der Werkstoffe auf das Verfahren
- Druckgießen
- Thixo-Verfahren, Vorrausetzungen, Werkstoffe. Eigenschaften, Verfahren
- Strangpressverfahren
- Kugelstrahlen
- seltene Erden

#### Medienformen

Power Point, Tafel

Vorlesungsbegleitende Unterlagen werden zum Download bereit gestellt.

#### Literatur

- Werkstoffe Aufbau und Eigenschaften; E. Hornbogen, G. Eggeler, E. Werner, 9. Auflage, Springer, 2008
- Werkstoffwissenschaft; E. Schatt, H. Worch, 9. Auflage, Wiley-VCH, 2003
- Werkstofftechnik 1; W. Bergmann, 6. Auflage, Hanser Verlag, 2008
- Werkstofftechnik 2; W. Bergmann, 4. Auflage, Hanser Verlag, 2009
- Werkstoffwissenschaften und Fertigungstechnik; B. Ilschner, R. Singer, 4. Auflage, Springer, 2004
- Werkstoffkunde und Werkstoffprüfung; W. Weißbach; 16. Auflage, Vieweg+Teubner, 2007
- Werkstoffe 1 Eigenschaften, Mechanismen, Anwendung; M. Ashby, D. Jones, 3. Auflage

Spektrum Akademischer Verlag, 2006

- Werkstoffkunde; Bargel-Schulze, Springer
- Fundamentals of Material Science and Engeneering; W. Callister, D. Rethwisch, 3. Auflage, Wiley & Sons, 2008
- The Science and Engeneering of Materials; D. Askeland, P. Phule; 5. Auflage, Thomson Learning, 2006
- Neuere Literatur wird in der Vorlesung bekannt gegeben.

# Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



## Spezialgläser

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6918 Prüfungsnummer:2300327

Fachverantwortlich: Prof. Dr. Edda Rädlein

| Leistungspunkte: 4      |     | Workload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-------------------------|-----|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschinent | bau |               |     |                           |    |      | Fachgebiet: | 2351 |

|              | 1        | I.FS | <b>3</b> | 2 | 2.FS | 3 | , | 3.FS | 3 | 4 | I.FS | 6 | į | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|----------|------|----------|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | <b>V</b> | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |          |      |          | 2 | 0    | 1 |   |      |   |   |      |   |   |      |   |   |      |   |   |      |   |

#### Lernergebnisse / Kompetenzen

Die Studierenden kennen Spezialgläser für High-Tech-Anwendungen und können die Beziehungen zwischen deren Struktur und Eigenschaften darstellen. Sie wissen, wie man über Zusammensetzung und Herstellungsmethoden Gläser für anspruchsvolle Anwendungen maßschneidert. Im Rahmen des Seminars haben sie gelernt, mit Hilfe moderner Recherchemethoden sich selbständig Informationen zu einer Produkt-Neuentwicklung oder ein aktuelles Forschungsthema zu beschaffen und diese in verständlicher Form in der Gruppe zu präsentieren.

#### Vorkenntnisse

**BA WSW** 

#### Inhalt

Silicatische Gläser - für Hochtemperaturanwendungen - für den Hochbau - für den Automobilbau - für optische Anwendungen - für Verbundwerkstoffe - für den Strahlenschutz - für Glaskeramik - für Medizin und Pharmazie Nichtsilicatische Gläser, metallische Gläser

#### Medienformen

Vorlesungsskript Tafel / Whiteboard Computer Demo

## Literatur

- Varshneya, A. K.: Fundamentals of Inorganic Glasses. Academic Press, Boston etc. 1994 (ed. 2006: incl. SciGlass CD) - Shelby, J. E.: Introduction to Glass Science and Technology. The Royal Society of Chemistry, Cambridge, 1997 - Vogel, W.: Glaschemie. Springer Verlag, Berlin etc., 1992 - Scholze, H: Glas - Natur, Struktur und Eigenschaften. Springer, Berlin etc., 1988 - Pfaender, H. G.: Schott Glaslexikon. mvg Verlag, Landsberg am Lech, 1997 - Renno, D. und Hübscher, M.: Glas Werkstoffkunde, Deutscher Verlag für Grundstoffindustrie, Stuttgart, 2000

## Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



## **Electromagnetic processing of materials**

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Wintersemester

Fachnummer: 6911 Prüfungsnummer:2300334

## Fachverantwortlich: Dr. Bernd Halbedel

| Leistungspunkte: 4        | Workload (h): 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|---------------------------|-------------------|---------------------------|----|------|-------------|------|
| Fakultät für Maschinenbau |                   |                           |    |      | Fachgebiet: | 2351 |

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 |   | 3.FS | 3 | 4        | 1.FS | <b>)</b> | 5 | 5.FS | 3 | 6        | 3.FS | 3 | 7        | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|----------|---|------|---|----------|------|---|----------|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | V | S    | Р | <b>V</b> | S    | Р        | ٧ | S    | Р | <b>V</b> | S    | Р | <b>V</b> | S    | Р |
| Fachsemester |   |      |   |   |      |   | 2 | 1    | 0 |          |      |          |   |      |   |          |      |   |          |      |   |

#### Lernergebnisse / Kompetenzen

Fachkompetenz 60 %: Die Studierenden lernen ausgehend von einer Wiederholung der notwendigen Grundlagen der Elektro- und Hydrodynamik das Potential elektromagnetischer Kräfte (Lorentzkraft, Inhomogenitätskräfte) zum Design von Werkstoffen und zur Realisierung von speziellen Verfahren sowie den Aufbau/die Funktion der dazugehörigen Anlagen kennen. Methodenkompetenz 20 %: Zusammenspiel von elektrodynamischen und mechanischen/werkstofflichen Phänomenen. Methoden zur Abschätzung von elektromagnetischen Effekten Umsetzung von physikalischen Zusammenhängen in Geräte/Anlagen Systemkompetenz 15 %: Verbindung von natur- und ingenieurwissenschaftlichen Kenntnissen Sozialkompetenz 5 %: Kommunikative Fähigkeiten, Teamorientierung, Kreativität

#### Vorkenntnisse

Physik, Mathematik, Elektrodynamik, Strömungstechnik, Werkstofftechnik

#### Inhalt

1 Einführung 2 Grundlagen der Elektro- und Hydrodynamik 3 Potential elektromagnetischer Kräfte in der Werkstofftechnik 4 Innovative Applikationen (Schmelzen, Erstarren, Kristallisieren, Separieren in/mit Magnetfeldern)

#### Medienformen

Handouts, Tafel, Computer/Demo's

#### Literatur

Elektromagnetische Felder. Wunsch, G.; NTechnik Verlag, Berlin, 1989 Strömungslehre. Spurk, J.H., Springer Verlag,2007 An Introduction to Magnetohydrodynamics. Davidson, P. A., Cambridge Univ. Press, 2001 Ferrodynamics. Rosensweig, R. E., Dover Public., Minieola, New York, 1997 Michalowsky, L.: Neue Keramische Werkstoffe. Dt. Verlag für Grundstoffindustrie, 1994 Aktuelle Literatur aus Fachzeitschriften

#### Detailangaben zum Abschluss

#### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus

## Faserverbundtechnologie

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6920 Prüfungsnummer:2300330

#### Fachverantwortlich: Prof. Dr. Michael Koch

| Leistungspunkte: 4      |     | Workload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-------------------------|-----|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschinenb | oau |               |     |                           |    |      | Fachgebiet: | 2353 |

|              | 1 | I.FS | <b>;</b> | 2 | 2.FS | 3 | ; | 3.FS | 3 | 4 | 1.FS | <b>)</b> |   | 5.FS | 3 |   | 3.FS | 3 | - | 7.FS | 3 |
|--------------|---|------|----------|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | ٧ | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |   |      |          |   |      |   | 2 | 1    | 0 |   |      |          |   |      |   |   |      |   |   |      |   |

## Lernergebnisse / Kompetenzen

Die Studierenden lernen die Verarbeitungstechnik für und die Auslegung von Bauteilen aus faserverstärkten Kunststoffen auf der Basis von Duroplasten soweit kennen, dass Sie ein Bauteil dimensionieren, auslegen und für ein geeignetes Fertigungsverfahren die notwendigen Vorgaben machen können. Die bekannten Fertigungsverfahren werden für die gesamten Wertschöpfungsstufen behandelt. Neben theoretischen Grundlagen werden die notwendigen anwendungstechnischen Prozessparameter auch der Ausgangsmaterialien vorgestellt.

#### Vorkenntnisse

Grundlagen der Kunststoffverarbeitung, Leichtbautechnologie.

#### Inhalt

- 1. Einführung in die duroplastischen Faserverbunde
- 2. Ausgangswerkstoffe
- 2.1. Duroplastische Harzsysteme als Matrixmaterial
- 2.2. Verstärkungsfasern und textile Halbzeuge
- 2.3. Füllstoffe und Additive & Hilfsmaterialien
- 3. Grundlegende Verarbeitungsgesichtspunkte und deren Simulation
- 3.1. Werkstoff und Prozess
- 3.2. Fließvorgang und Imprägnierung
- 3.3. Reaktionsverlauf
- 3.4. Faser- und Gewerbedrapierung
- 4. Verarbeitungsverfahren
- 4.1. Manuelle Techniken: Handlaminieren, Faserspritzen
- 4.2. Infusionsverfahren
- 4.3. Verfahren für Halbzeuge: Wickelverfahren/Pultrusion
- 4.4. Thermoplastische Halbzeuge, Organoblechverfahren
- 4.5. Prereg-Autoklavtechnik und Pressverfahren
- 4.6. PUR Verfahren: RIM Technik
- 4.7. RTM Verfahren und seine Varianten
- 4.8. Nachbearbeitung von Faserverbundkomponenten
- 5. Werkstoffmodelle, Mechanik und Auslegung von Faserverbunden
- 5.1. Leichtbaukennzahlen und Materialmodelle
- 5.2. Faseranisotropie und Sondereffekte
- 5.3. Laminatmodelle und Mikromechanik

- 5.4. Klassische Laminattheorie und Abweichungen
- 5.5. Verfahrensabhängige Werkstoffmodelle
- 5.6. Auslegung mit Versagenskriterien

Üung 1: Faser-Matrix-Kombination

Übung 2: RTM-Verfahrensberechnung

Übung 3: Laminatmechanik

Übung 4: Festigkeits- und Schadensanalyse

Übung 5: Bauteilauslegung Praktikum 1: Handlaminieren Praktikum 2: Herstellungsresulate Praktikum 3: Harzverhalten

Praktikum 4: Mechanische Prüfung

#### Medienformen

Vorlesungsunterlagen von der website des FG herunterzuladen, bn&pw werden semesterspezifisch bekanntgegeben. Dazu ergänzend Tafelbilder.

#### Literatur

Raju, D., Loos, A.: Processing of Composites, Carl Hanser Verlag, 2000

M. Neitzel, P. Mitschang: Handbuch Verbundwerkstoffe, Carl Hanser Verlag, München 2004

G. Ehrenstein: Faserverbundkunststoffe, Carl Hanser Verlag, München 2006

AVK, Kleinholz, R.: Handbuch Faserverbundkunststoffe Michaeli, W., Wegener, M.: Einführung in der Verarbeitung von Faserverbundwerkstoffen, Carl Hanser Verlag, 1989

Flemming, M., Ziegmann, G., Roth, S.: Faserverbundbauweisen - Fertigungsverfahren mit duroplastischer Matrix, Springer Verlag 1995

Krenkel, W.: Verbundwerkstoffe, Wiley VCH, 2009

Flemming, M., Ziegmann, G.; Roth, S.: Faserverbundbauweisen - Halbzeuge und Bauweisen Springer Verlag 1996

#### Detailangaben zum Abschluss

#### verwendet in folgenden Studiengängen

Master Maschinenbau 2014

Master Fahrzeugtechnik 2009

Master Maschinenbau 2009

Master Fahrzeugtechnik 2014

Master Maschinenbau 2011

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



#### Kreisläufe für Werkstoffe und Produkte

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Wintersemester

Fachnummer: 6910 Prüfungsnummer:2300335

#### Fachverantwortlich: Prof. Dr. Edda Rädlein

| Leistungspunkte:      | 4     | Workload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|-------|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschine | enbau |               |     |                           |    |      | Fachgebiet: | 2351 |

|              | 1        | I.FS | 5 | 2 | 2.FS | 3 | , | 3.FS | 3 | 4 | l.FS | <b>;</b> | į | 5.FS | 3 | 6 | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|----------|------|---|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | <b>V</b> | S    | Р | ٧ | S    | Р | ٧ | S    | Р | > | S    | Р        | ٧ | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |          |      |   |   |      |   | 1 | 2    | 0 |   |      |          |   |      |   |   |      |   |   |      |   |

#### Lernergebnisse / Kompetenzen

Die Studierenden kennen die Grundsätze der EU-weiten Gesetzgebung zur Kreislaufwirtschaft und der Verpackungsverordnung. Sie verstehen Prinzipien von Sortier- und Aufbereitungsanlagen und können beurteilen, in welchen Fällen energetischer, rohstoffliches, werkstoffliches oder Produkt-Recycling ökonomisch und ökologisch sinnvoll sind. Am Beispiel des Werkstoffs Glas können sie verschiedene Veredelungsstufen und Produkte hinsichtlich Verwertbarkeit und kreislaufgerechter Produktentwicklung einschätzen. Sie kennen Konzepte der Schadstoffinertisierung, insbesondere für radioaktive Abfälle. Im Rahmen des Seminars erarbeiten sie selbständig Vorstellungen zu innovativen Trenntechniken und Verwertungsmöglichkeiten weiterer Werkstoffe. Neben der effektiven Informationsbeschaffung und moderner Präsentationstechnik haben sie Kompetenzen in der Beurteilung der Wirtschaftlichkeit von Wertstoff-Kreisläufen erworben. Sie haben mindestens eine Aufbereitungsanlage im Betrieb besichtigt.

#### Vorkenntnisse

Modul Werkstofftechnologie 1

#### Inhalt

- 1. Einleitung: Definitionen, Ökobilanz, Gesetzgebung
- 2. Produktrecycling
- 3. Werkstoffrecycling am Beispiel Glas
- 4. Reststoffverwertung, Inestisierung
- 5. Kreislaufgerechte Produktentwicklung

#### Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Skript, Exkursion

#### Literatur

Bilitewski, B., Wärdtle, G. und Marek, K., Abfallwirtschaft. Springer Berlin 1994

Hornbogen, E., Bode, R. und Donner. P., Recycling - Materialwissenschaftliche Aspekte, Springer Berlin 1993 Jungbauer, A.: Recycling von Kunststoffen. Vogel Buchverlag, Würzburg 1994

BMU: Verpackungsverordnung – VerpackV, Verordnung über die Vermeidung und Verwertung von Verpackungsabfällen; download: wwwBMU.de (2007) (oder neuere ...)

D 1 31 1 A1 11

## Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Bachelor Werkstoffwissenschaft 2013

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



#### Schweißtechnik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: deutsch, englisch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 9171 Prüfungsnummer:2300388

## Fachverantwortlich: Prof. Dr. Jean Pierre Bergmann

| Leistungspunkte: 4       | Workload ( | ): 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|--------------------------|------------|--------|---------------------------|----|------|-------------|------|
| Fakultät für Maschinenba | au         |        |                           |    |      | Fachgebiet: | 2321 |

|              | 1        | I.FS | 5 | 2 | 2.FS | 3 | , | 3.FS | 3 | 4 | I.FS | 3 | į | 5.FS | 3 | 6 | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|----------|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | <b>V</b> | S    | Р | ٧ | S    | Р | ٧ | S    | Р | > | S    | Р | > | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |          |      |   |   |      |   | 2 | 1    | 0 |   |      |   |   |      |   |   |      |   |   |      |   |

#### Lernergebnisse / Kompetenzen

Lernergebnis: Studierende sind in der Lage, die Wirkungsweise, das Funktionsprinzip und die Einsatzbedingungen von Schweißverfahren zu analysieren und zu separieren. Methodisch werden Studierende in die Lage versetzt, Veränderungen im Werkstoff durch das vorherrschende Zeit-Temperaturregime zu koppeln.

Erworbene Kompetenz: Die Studierenden sind in der Lage, ausgehend von gegebenen Voraussetzungen die Auswahl von Schweißprozessen auf Basis der Werkstoffe zu tätigen. Sie können die Auswirkung thermischer Zustände auf die Güte von metallischen Schweißverbindungen bewerten und daraus Veränderungen im Prozess ableiten.

#### Vorkenntnisse

Werkstoffe, Grundlagen der Fertigungstechnik, Fertigungsgerechtes Konstruieren

#### Inhalt

Metallurgie des Schweißens am Beispiel von Stählen, Aluminium, Titan und Magnesium. Einfluss der Gefügezustände auf die Schweißverbindung. Veränderung des Gefügezustandes durch das Schweißen.

#### Medienformen

#### Literatur

Folien im Netz

Schulze, G. (Hrsg.) Die Metallurgie des Schweißens, VDI Verlag, 2010

#### Detailangaben zum Abschluss

#### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer I: Werkstoffe des Maschinenbaus



## **Tribologie**

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6912 Prüfungsnummer:2300333

## Fachverantwortlich: Dr. Günther Lange

| Leistungspunkte:      | 4     | Workload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|-------|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschine | enbau |               |     |                           |    |      | Fachgebiet: | 2352 |

|              |   | 1.FS | <b>`</b> | 2 | 2.FS | 3 |   | 3.FS | 3 |          | I.FS | <b>)</b> | ļ | 5.FS | 3 | ( | 3.FS | 3 |   | 7.FS | <u> </u> |
|--------------|---|------|----------|---|------|---|---|------|---|----------|------|----------|---|------|---|---|------|---|---|------|----------|
| SWS nach     | > | S    | Р        | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р        | > | S    | Р | > | S    | Р | > | S    | Р        |
| Fachsemester |   |      |          |   |      |   | 2 | 0    | 1 |          |      |          |   |      |   |   |      |   |   |      |          |

#### Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage durch Grundkenntnisse der Tribologie, Reibung und Verschleiss tribologische Prozesse zu verstehen; die Systemanalyse, Prüftechnik, Werkstoffauswahl und Konstruktionselemente anzuwenden. Kennenlernen von Reib- und Verschleissprüfungen (Praktikum)

#### Vorkenntnisse

Pflichtmodul 1-4

#### Inhalt

1. Bedeutung, Definition und Aufgaben der Tribologie 2. Tribotechnische Systeme 3. Tribologische Beanspruchung 4. Reibung 5. Verschleiss 6. Reibungs- und Verschleissprüftechnik 7. Schmierung 8. Schmierstoffe 9. tribotechnische Werkstoffe 10.Tribologie von Konstruktionselementen 11.Tribologie von Werkzeugen 12.Methodik zur Bearbeitung von Reibungs- und Verschleissproblemen

#### Medienformen

Vorlesungsskript Folien Tafel / Whiteboard

#### Literatur

Czichos, Horst: Tribologie-Handbuch: Reibung und Verschleiss, Werkstoffe und Konstruktionselemente; Vieweg-Verlag

## Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



# Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik

Modulnummer6928

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

#### Lernergebnisse

Die Studierenden erlernen spezielle Kenntnisse zu Werkstoffen der Elektrotechnik/Elektronik aber auch in der Mikroelektronik und der Nanotechnologie.

Zusammenspiel von nanostrukturellen Aufbau und daraus sich wesentlicher Eigenschaftsänderung der Werkstoffe Methoden zur Strukturaufklärung auf

atomarer Ebene Umsetzung von physikalischen

Zusammenhängen in Geräte/Anlagen

Verbindung von natur- und ingenieurwissenschaftlichen Kenntnissen

Kommunikative Fähigkeiten, Teamorientierung, Kreativität

## Vorraussetzungen für die Teilnahme

Gute Kenntnisse der Werkstoffwissenschaft.

## Detailangaben zum Abschluss

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik



## Dielektrische und magnetische Werkstoffe

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Sommersemester

Fachnummer: 6927 Prüfungsnummer:2300336

Fachverantwortlich: Dr. Bernd Halbedel

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 86 SWS: 3.0 Fakultät für Maschinenbau Fachgebiet: 2351

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS SP S S Ρ SP S Р S S SWS nach Fachsemester 0

#### Lernergebnisse / Kompetenzen

Die Studierenden lernen die Struktur- und Eigenschaftsbeziehungen kennen, spezielle dielektrisch und magnetische Werkstoffe herzustellen und die messtechnisch zu charakterisieren. Damit können sie Werkstoffe funktional systematisieren sowie Struktur (Feinstruktur und Gefüge) und elektromagnetische Eigenschaften zuordnen und sind in der Lage, dielektrische/magnetische Werkstoffe zu modifizieren und anwendungsgerecht einzusetzen. Methodenkompetenz 20 %: Design von dielektrischen/magnetischen Werkstoffen Systemkompetenz 15 %: Verbindung von natur- und ingenieurwissenschaftlichen Kenntnissen Sozialkompetenz 5 %: Kommunikative Fähigkeiten, Teamorientierung, Kreativität

#### Vorkenntnisse

Physik, Chemie, Mathematik, Werkstoffwissenschaft und Werkstofftechnik, Messtechnik

#### Inhalt

Physikalische Erscheinungen von Werkstoffen in elektromagnetischen Feldern, Struktur- und Eigenschaftsbeziehungen Ausgewählte Herstellungstechnolgien von dielektrischen und magnetischen Materialien (Pulver und Volumenmaterialien) Messtechnische Erfassung dielektrischer und magnetischer Kennwerte Innovative Applikationen in Elektrotechnik und Maschinenbau

#### Medienformen

Handouts, Tafel, Computer/Demo's

#### Literatur

Schatt, W.: Werkstoffwissenschaft.Wiley-VCH Verlag, Weinheim 2003 Shackelford, J.F.: Werkstofftechnologie für Ingenieure. Pearson München, 2005 Michalowsky, L.: Neue Keramische Werkstoffe. Dt. Verlag für Grundstoffindustrie, 1994 L. Michalowsky: Magnettechnik: Grundlagen und Anwendungen. Fachbuchverlag Leipzig - Köln 1993

#### Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

TECHNISCHE UNIVERSITÄT
ILMENAU

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik

#### Strahlenschutz in der Technik

Fachabschluss: Prüfungsleistung schriftlich 180 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6921 Prüfungsnummer:2100329

Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte:      | 4     | Workload (h): 120         | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|-------|---------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echni | k und Informationstechnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1 | I.FS | <u> </u> | 2 | 2.FS | 3 | , | 3.FS | 3 |   | 1.FS | 3 |          | 5.FS | 3 | ( | 3.FS | 3 | - | 7.FS | <u> </u> |
|--------------|---|------|----------|---|------|---|---|------|---|---|------|---|----------|------|---|---|------|---|---|------|----------|
| SWS nach     | > | S    | Р        | > | S    | Р | ٧ | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р | V | S    | Р | ٧ | S    | Р        |
| Fachsemester |   |      |          | 2 | 1    | 0 |   |      |   |   |      |   |          |      |   |   |      |   |   |      |          |

## Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage die grundlegenden Zusammenhänge zwischen der Entstehung von radioaktiver Strahlung, dem Schutz vor einer ungerechtfertigten Exposition und der behördlichen Verfahren zu verstehen und anzuwenden. Die Inhalte der Vorlesung entsprechen den Anforderungen für Kurse zum Erwerb der Fachkunde im Strahlenschutz für verschiedene Fachkundegruppen und sind als Erwerbskurse anerkannt.

## Vorkenntnisse

Physik, Elektrotechnik, Werkstoffzustände und Werkstoffanalyse, Einführung in den Strahlenschutz

#### Inhalt

Dozent: apl. Prof. Dr. Lothar Spieß

Inhalt:

- Erzeugung und Eigenschaften von ionisierenden Strahlen
- Detektoren für ionisierende Strahlen Strahlenbiologie
- Dosis- und Dosisgrößen
- zivilisatorische Strahlenexposition
- natürliche Strahlenexposition
- Gesetzliche Vorschriften
- handelnde Personen Strahlenschutzveantwortliche Strahlenschutzbeauftragte
- Verfahren unter Anwendung ionisierender Strahlen,
- Einsatz von Röntgen- und radioaktiven Strahlern

#### Medienformen

Vorlesungsskript Tafel / Whiteboard Folien

#### Literatur

- Atomenergiegesetz, Novellierung vom 31.10.2006
- Strahlenschutzverordnung vom 20.07.2001, BGBI. I, S. 1714
- Röntgenverordnung vom 18. Juni 2002 BGBI. I, S. 1869
- Spieß, I.; Schwarzer, R.; Behnken, H.; Teichert, G.: Moderne Röntgenbeugung, Teubner Verlag 2005
- Krieger, H.: Grundlagen der Strahlenphysik und des Strahlenschutzes, 2. Auflage, Teubner Verlag 2007
- Vogt, H. G.; Schultz, H.: Grundzüge des praktischen Strahlenschutzes, 3. Auflage, Hanser Verlag 2004

## Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik



## Werkstoffe für optoelektronische Bauelemente

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6926 Prüfungsnummer:2100325

Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte:      | 4     | Workload (h): 120         | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|-------|---------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echni | k und Informationstechnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 | , | 3.FS | 3 |   | I.FS | 3 | į | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | V | S    | Р | > | S    | Р | V | S    | Р | ٧ | S    | Р | > | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |   |      |   | 2 | 0    | 1 |   |      |   |   |      |   |   |      |   |   |      |   |   |      |   |

## Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die grundlegenden Zusammenhänge zwischen den optischen Eigenschaften und der Struktur der Werkstoffe zu erkennen und anzuwenden. Die Studierenden verstehen und wenden an, dass optische elektronische Bauelemente ihre Funktion nur erfüllen, wenn diese sowohl quantenmechanisch als technologisch im Zusammenhang betrachtet werden.

## Vorkenntnisse

Physik, Elektrotechnik, Werkstoffzustände und Werkstoffanalyse

#### Inhalt

1. Einleitung 2. Breitbandhalbleiter 3. Siliziumkarbid als Breitbandhalbleiter 4. Galliumnitrid als Breitbandhalbleiter 5. Technologie für optische elektronische Bauelemente 6. Zusammenfassung, Effizenzvergleich, Toxizität

#### Medienformen

Vorlesungsskript Tafel / Whiteboard Folien

#### Literatur

- Wide bandgap light emitting materials and devices / ed. by Gertrude F. Neumark; Igor L. Kuskovsky and Hongxing Jiang Neumark, Gertrude F.; Kuskovsky, Igor L.; Jiang, Hongxing Weinheim: WILEY-VCH, 2007 XI, 214 S.: III., ISBN 3-527-40331-0, 978-3-527-40331-8; 55 PHY UP 3100 N493 - Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices; with 36 tables / Kiyoshi Takahashi; Akihiko Yoshikawa and Adarsh Sandhu (Eds.) Takahashi, Kiyoshi; Yoshikawa, Akihiko; Sandhu, Adarsh Berlin [u.a.]: Springer, 2007 XXV, 460 S.: The contents of this book are based on the Japanese language "Wide gap semiconductors, optical and electron devices" published in March 2006 by Morikita Shuppan Co. Ltd.; ISBN 3-540-47234-7, 978-3-540-47234-6; 55 PHY UP 3100 T136 - Wide band gap materials and new developments / eds. Mikael Syväjärvi Trivandrum, Kerala: Research Signpost, 2006; 208 S.: ISBN 81-3080092-6; 55 PHY UP 3100 S995 - III-Nitride: semiconductor materials / ed.: Zhe Chuan Feng London: Imperial College Press, 2006; 428 S. ISBN 1-86094-636-4; 55 PHY UP 3100 F332

#### Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik



## Werkstoffe und Grundlagen der Vakuum- und Reinraumtechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6925 Prüfungsnummer:2100326

Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte    | 4        | Workload (h): 120       | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|--------------------|----------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elekt | otechnik | und Informationstechnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1 | 1.FS | , | 2 | 2.FS | 3 | , | 3.FS | 3 | 4        | I.FS | 3 |   | 5.FS | 3 | 6 | 3.FS | 3 | - | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р | V | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |   |      |   | 2 | 0    | 1 |   |      |   |          |      |   |   |      |   |   |      |   |   |      |   |

#### Lernergebnisse / Kompetenzen

Die Studierenden können Vakua herstellen und messen, sowie die richtigen Werkstoffe für Vakuumanlagen bestimmen. Sie können geeignete Pumpen- und Meßsysteme für eine bestimmte Aufgabe auswählen und kritisch bewerten. Die Studierenden können die Regeln und Maßnahmen im Reinraum anwenden und notwendige Reinraumklassen für Ihre Anwendungen bestimmen und einrichten.

#### Vorkenntnisse

Naturwissenschaftliche und werkstofftechnische Grundlagen

#### Inhalt

Die Studierenden lernen die Grundlagen der Vakuum- und Reinraumtechnik kennen. - Prinzipien von Vakuumanlagen - Grundlagen des Vakuums, Gasdruck, Adsorption, Desoption - Werkstoffe - Dichtungen - Pumpen - Meßgeräte - Schleusen - Vorgehensweisen - Temperaturabhängigkeiten Reinraum - Reinraumklassen - technische Ausführung, Prinzipien - Werkstoffe - Regeln im Reinraum - Auslegung von Reinräumen - Anwendung und Klassifizierung für Prozesse

#### Medienformen

Vorlesung mit Folien, Vorlesungsscript, Praktikum mit praktischen Aufgaben an Vakuumanlagen und im Reinraum.

#### Literatur

- Jousten, K.; Wutz - Handbuch Vakuumtechnik; 9. Auflage, Vieweg 2006. - Vorlesungsskript -

## Detailangaben zum Abschluss

#### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik

#### Dünnschichtzustand und Schichtmesstechnik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6924 Prüfungsnummer:2100327

Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte:      | 4      | Workload (h): 120       | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|--------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrof | echnik | und Informationstechnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1        | I.FS | 3 | 2 | 2.FS | 3 | , | 3.FS | 3 | 2        | 1.FS | 3 | 5 | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|----------|------|---|---|------|---|---|------|---|----------|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | <b>V</b> | S    | Р | ٧ | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |          |      |   |   |      |   | 2 | 0    | 1 |          |      |   |   |      |   |   |      |   |   |      |   |

## Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, Schichtdickenmessverfahren und Verfahren für Zustandsparamter zu erklären und für neue Anwendungen anzuwenden. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

#### Vorkenntnisse

Grundlagen der Werkstoffwissenschaft und der Naturwissenschaften

#### Inhalt

1. Schichtdickenmessverfahren 1.1. Begriffsbestimmungen "Schicht" und "Schichtdicke" 1.2. Massebestimmung 1.3. Optische Verfahren 1.4. Elektrische Verfahren 1.5. Magnetische Verfahren 1.6. Pneumatische Verfahren 1.7. Radiometrische Verfahren 1.8. Thermische Verfahren 2. Messverfahren für innere mechanische Spannungen 2.1. Mechanische Verfahren 2.2. Akustische Verfahren 2.3. Optische Prüfverfahren 2.4. Röntgen- und Elektronenbeugungsverfahren 2.5. Dehnmessstreifen 3. Rauheitsmessungen 3.1. Optische Verfahren 3.2. Mechanische Verfahren 3.3. Pneumatische Verfahren 4. Haftfestigkeitsprüfverfahren 4.1. Technologische Prüfverfahren 4.2. Mechanische Messverfahren 4.3. Zerstörungsfreie Prüfverfahren 5. Glanzbestimmung 6. Härtemessung an Schichten 6.1. Eindringkörpermethoden 6.2. Ritzhärteprüfmethoden 6.3. Zerstörungsfreie Härteprüfverfahren 7. Porositätsbestimmung 7.1. Chemische und elektrochemische Verfahren 7.2. Physikalische Verfahren 8. Dichtebestimmung 8.1. Begriffsbestimmung 8.2. Messverfahren 9. Temperaturmessung 9.1 Temperaturskalen 9.2. Berührungsthermometer 9.3. Strahlungsthermometer 9.4. Probleme der Temperaturbestimmung 10. Druckmessung

#### Medienformen

Vorlesungsskript Tafel / Whiteboard Computer Demo

#### Literatur

- Nitzsche, H.: Schichtmeßtechnik, Würzburg: Vogel, 1997 - Herrmann, D.: Schichtdickenmessung, München, Wien: Oldenbourg, 1993 - Moderne Beschichtungsverfahren .- 2. neubearb. Aufl. (Herausg. H.-D. Steffens, J. Wilden). Oberursel: DGM Informationsgesellschaft, 1996 - Werkstoffprüfung (Herausg.: H. Blumenauer), 6. Aufl. Stuttgart: Deutscher Verlag für Grundstoffindustrie, 1994

## Detailangaben zum Abschluss

#### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Seite 59 von 95

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik



#### Korrosionsschutz

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6929 Prüfungsnummer:2100332

Fachverantwortlich: Prof. Dr. Andreas Bund

| Leistungspunkte:      | 4     | Workload (h): 120         | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|-------|---------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echni | k und Informationstechnik |                           |    |      | Fachgebiet: | 2175 |

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 |   | 3.FS | 3 | 4        | 1.FS | <b>)</b> | 5 | 5.FS | 3 | 6 | 3.FS | 3 | 7        | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|----------|---|------|---|---|------|---|----------|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | V | S    | Р | <b>V</b> | S    | Р        | ٧ | S    | Р | > | S    | Р | <b>V</b> | S    | Р |
| Fachsemester |   |      |   |   |      |   | 2 | 1    | 0 |          |      |          |   |      |   |   |      |   |          |      |   |

## Lernergebnisse / Kompetenzen

Korrosionsschutz Verschleißschutz

#### Vorkenntnisse

Elektrochemie, Elektrotechnik

#### Inhalt

1. Korrosion in speziellen Medien - Atmosphärische Korrosion - Einflussgrößen, Beanspruchungsarten, Kennzeichnung der Aggressivität der Atmosphäre - Korrosion in Wässern - Korrosion in Kaltwasser, Meerwasser, Warmwasserversorgungsanlagen und Kondensatzleitungen - Korrosion in Erdböden 2. Korrosionsverhalten metallischer Werkstoffe - Eisenwerkstoffe und unlegierter Stahl, rostund säurebeständige Stähle, Aluminium und Aluminiumlegierungen, Kupfer- und Kupferlegierungen 3. Korrosionsprobleme in Kernenergieanlagen 4. Korrosionsschutz - Elektrochemische Schutzverfahren - anodischer und katodischer Schutz - Inhibitoren und Passivatoren - metallische, anorganische Schichten 5. Korrosionsprüfmethoden 6. Verschleiß als kompleve Werkstoffbeanspruchung

Schutzverfahren - anodischer und katodischer Schutz - Inhibitoren und Passivatoren - metallische, anorganische nichtmetallische und organische Schichten 5. Korrosionsprüfmethoden 6. Verschleiß als komplexe Werkstoffbeanspruchung - Abrasionsverschleiß - Adhäsionsverschleiß - Ermüdungsverschleiß - Korrosionsverschleiß 7. Verschleißschutzmaßnahmen

8. Verschleißprüfverfahren

#### Medienformen

Tafel / Whiteboard Folien

#### Literatur

- H. Kaesche; "Korrosion der Metalle"; - Springer Verlag; 1990 - Wranglen; "Korrosion und Korrosionsschutz"; - Springer Verlag 1985

#### Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik



## Mikrogalvanotechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5474 Prüfungsnummer:2100330

#### Fachverantwortlich: Prof. Dr. Andreas Bund

| Leistungspunkte:       | 4      | Workload (h): 120        | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|------------------------|--------|--------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrote | echnik | cund Informationstechnik |                           |    |      | Fachgebiet: | 2175 |

|              | 1 | 1.FS | <u> </u> | 2 | 2.FS | 3 |   | 3.FS | 3 |          | I.FS | <b>)</b> | Į. | 5.FS | 3 | ( | 3.FS | 3 |   | 7.FS | <u> </u> |
|--------------|---|------|----------|---|------|---|---|------|---|----------|------|----------|----|------|---|---|------|---|---|------|----------|
| SWS nach     | > | S    | Р        | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р        | >  | S    | Р | > | S    | Р | > | S    | Р        |
| Fachsemester |   |      |          |   |      |   | 2 | 1    | 0 |          |      |          |    |      |   |   |      |   |   |      |          |

## Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, die Eigenschaften der beschichteten Werkstoffe zu bestimmen und die geeigneten Messverfahren zielführend anzuwenden. - Die Studierenden kennen die Mess- und Prüfverfahren und sind in der Lage, die Ergebnisse zu bewerten und zu vergleichen. - Die Studierenden können Mess- und Prüfverfahren in den technologischen Prozess einordnen und die Qualitätssicherung garantieren.

## Vorkenntnisse

Chemie, Elektrochemie

#### Inhalt

- Beschichtungstechnologien - Vorbehandlung Substrate - Resiste - Eigenschaften und Anwendung - Strukturierung der Resiste - Galvanoformung in den Mikrostrukturen - Aufbau- und Verbindungstechnologien - Nachbehandlung der gefüllten Resiste - Ablösen der Resiste - Qualitätskontrolle, Messtechnik

#### Medienformen

Skripte, Folien, Tafel

#### Literatur

J. Frühauf; "Werkstoffe der Mikrotechnik"; Fachbuchverlag Leipzig im Carl Hanser Verlag; 2005 B. Heimann, W. Gerth, K. Popp; "Mechatronik - Komponenten, Methoden, Beispiele"; Fachbuchverlag Leipzig im Carl Hanser Verlag, 1998 B. Elsner; "Integration von Sensoren mittels additiver Mikrogalvanik"; Shaker Verlag Aachen, 2000

## Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik



## Rastersonden- und Elektronenmikroskopie

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6923 Prüfungsnummer:2100328

#### Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte:      | 4      | Workload (h): 120       | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|--------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echnik | und Informationstechnik |                           |    |      | Fachgebiet: | 2172 |

|              | 1 | I.FS | 6 | 2 | 2.FS | 3 | , | 3.FS | 3 |   | 1.FS | 6 | Ę | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |   |      |   |   |      |   | 2 | 0    | 1 |   |      |   |   |      |   |   |      |   |   |      |   |

#### Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage die grundlegenden Zusammenhänge zwischen der Rastersondenmikroskopie und der Elektronenmikroskopie, der benötigten Gerätekonfigurationen und der Möglichkeiten der Bildentstehung

#### Vorkenntnisse

Physik, Elektrotechnik, Werkstoffzustände und Werkstoffanalyse

#### Inhalt

1. Rastersondenmikroskopie: Aufbau und Arbeitsweise Rastertunnelmikroskop, Aufbau und Arbeitsweise Rasterkraftmikroskop 2. Reglerprinzipien im Rastersondenmikroskop 3. Abbildung der Oberflächentopographie mit dem Rastertunnelmikroskop - Abbildungsprinzipien für atomare Auflösungen, - Fourieranalyse zur Sichtbarmachung periodischer Strukturen 4. Abbildung der Oberflächentopographie mit dem Rasterkraftmikroskop, - internal Sensorbild - Topographieabbildung - Lateralforceabbildung - Kraft-Eindringkurven 5. Elektronenmikroskopie: - Erzeugung hoch fokussierter Elektronenstrahlen (Kathoden, Linsen), Detektoren, - Wechselwirkungskette (Sekundär, Rückstreuelektronen, Augerelektronen ...), 6. Transmisionselektronenmikroskopie - Bildaufbau im Elektronenmikroskop bei Durchstrahlung - Hellfeld- und Dunkelfeldaufnahmen - Beugung im Transmissionsmode - Höchstauflösung als Beugung - Konvergente Beugung - Fourieranalyse zur Analyse Atomabastände und reziproke Gitterabbildung 7. Umweltmikroskopie (ESEM) 8. Analytische Elektronenmikroskopie - Elektronenstrahl induzierte Röntgenstrahlung - Detektionsmöglichkeiten (EDX, WDX) - Detektoraufbau - qualitative und quantitative EDX - Elektronenenergieverlustspektroskopie (EELS) - Rückstreubeugung (EBSD) 9. Zusammenfassung - Vergleich der Verfahren bezüglich Auflösung, Quantifizierbarkeit, Kosten, Probenanforderung

#### Medienformen

Vorlesungsskript Tafel / Whiteboard Folien

#### Literatur

- Hunger, H.J.: Werkstoffanalytische Verfahren: eine Auswahl; 1. Auflage, Deutscher Verlag für Grundstoffindustrie 1995 - Reimer, I.: Scanning Electron Microscopy; 2. Auflage, Springer Verlag 2008 - Reimer, L; Pfefferkorn, G.: Raster-Elektronenmikroskopie; 2. Auflage, Springer Verlag 1977 - Schmidt, P. F.: Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse, expert-Verlag 1994 - Slayter, E.: Light and electron microscopy, Cambridge Univ. Press 1992 - Schäfer; Terlecki: Halbleiterprüfung, Hüthig- Verlag 1986 - Eggert, F.: Standardfreie Elektronenstrahl-Mikroanalyse (mit dem EDX im Rasterelektronenmikroskop): Ein Handbuch für die Praxis (Taschenbuch); Books on Demand Gmbh; Auflage: 1 (Februar 2005); ISBN: 978-3833425998

## Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer II: Werkstoffe der Elektrotechnik / Elektronik

## Regenerative Energien und Speichertechnik

Fachabschluss: Prüfungsleistung alternativ 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5469 Prüfungsnummer:2100331

#### Fachverantwortlich: Prof. Dr. Andreas Bund

| Leistungspunkte:      | 4     | Workload (h): 120         | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|-------|---------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echni | k und Informationstechnik |                           |    |      | Fachgebiet: | 2175 |

|              | 1        | I.FS | 5 | 2 | 2.FS | 3 | , | 3.FS | 3 | 4 | I.FS | 3 | į | 5.FS | 3 | 6 | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|----------|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | <b>V</b> | S    | Р | ٧ | S    | Р | ٧ | S    | Р | > | S    | Р | > | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |          |      |   |   |      |   | 2 | 1    | 0 |   |      |   |   |      |   |   |      |   |   |      |   |

#### Lernergebnisse / Kompetenzen

Die Studierenden kennen die chemischen und physikalischen Grundlagen für die Speicherung und Wandlung von Energie, insbesondere im Hinblick auf elektrochemischen Anwendungen. Sie können für eine bestimmte Anwendung (z.B. Elektromobilität, Netzstabilisierung) ein geeignetes Speicher- oder Wandlersystem vorschlagen.

## Vorkenntnisse

Grundkenntnisse in Physik und Chemie

#### Inhalt

Thermodynamische Grundlagen der Energiewandlung

Physikalische und chemische Grundlagen von Energiewandlern und Speichern

Vertiefende Diskussion elektrochemischer Speicher (Batterien, kapazitive Speicher) und Wandler (Brennstoffzellen, Elektrolyseure)

Herstellung und Transport von Energieträgern

#### Medienformen

Tafelanschrieb

Projektor

#### Literatur

Holger Watter: Nachhaltige Energiesysteme. Vieweg+Teubner, 2009

Richard A. Zahoranski: Energietechnik, 4. Auflage. Vieweg+Teubner, 2009

K. Kordesch, G. Simader: Fuel cells and their application. Wiley-VCH, 1996

J. Larminie, A. Dicks: Fuel cell systems explained, 2nd edition. John Wiley & Sons, 2003

Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz: Fuel cells fundamentals, 2nd edition. John Wiley & Sons, 2009 M. Kaltschmidt, H. Hartmann, H. Hofbauer: Energie aus Biomasse, 2. Auflage. Springer, 2009

#### Detailangaben zum Abschluss

Die alternative Prüfungsleistung ergibt sich aus folgenden Einzelleistungen:

- erfolgreiche Teilnahme an der Abschlussprüfung (schrifftlich, 90 min.) am Ende der Vorlesungszeit:
- 40 Prozent der Modulnote
  - · erfolgreiche Teilnahme am Seminar während der Vorlesungszeit:
- 30 Prozent der Modulnote

• erfolgreiche Bearbeitung der Praktikumsversuche während der Vorlesungszeit sowie Erstellung eines Berichts zu jedem Praktikumsversuch:

30 Prozent der Modulnote

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EWT



## Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

## Modulnummer6934

Modulverantwortlich: Prof. Dr. Andreas Bund

Modulabschluss: Fachprüfung/Modulprüfung generiert

#### Lernergebnisse

Die Studierenden kennen wichtige messbare Merkmale (Größe, Oberfläche, Ladung) und Wechselwirkungen (DLVO-Theorie) von Teilchen und Oberflächen. Sie sind mit Syntheseverfahren für Submikropulver vertraut. Weiterhin können sie spezielle Pulver herstellen, charakterisieren und in flüssigen Medien stabilisieren. Damit sind sie in der Lage, Mess- und Syntheseverfahren zielführend auszuwählen und einzusetzen. Es werden Fach-, Methoden-, System- und Sozialkompetenz vermittelt.

## Vorraussetzungen für die Teilnahme

Grundkenntnisse in Chemie und Physik

Detailangaben zum Abschluss

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik



## Anorganische nichtmetallische Feinstpulver

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Sommersemester

Fachnummer: 6930 Prüfungsnummer:2300339

Fachverantwortlich: Dr. Bernd Halbedel

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 86 SWS: 3.0 Fakultät für Maschinenbau Fachgebiet: 2351

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS SP S P S S Ρ SP SP S SWS nach Fachsemester

#### Lernergebnisse / Kompetenzen

Fachkompetenz 60 %: Die Studierenden lernen messbare Partikelmerkmale (Größe, Oberfläche, Ladung), Partikelwechselwirkungen und deren Modifizierbarkeit (DLVO-Theorie), Syntheseverfahren (top-down, buttom-up) von Submikropulvern kennen, spezielle Pulver herzustellen, diese messtechnisch zu charakterisieren und in wässrigen Medien zu stabilisieren. Damit sind sie in der Lage, Mess- und Syntheseverfahren zielführend auszuwählen und einzusetzen. Methodenkompetenz 20 %: Auswahl von Messverfahren zur Partikelcharakterisierung. Charakterisierung von Submikropulvern Modifizierung von Partikelwechselwirkungen/ Herstellung und Stabilisierung von kolloidalen Suspensionen Systemkompetenz 15 %: Verbindung von natur- und ingenieurwissenschaftlichen Kenntnissen Sozialkompetenz 5 %: Kommunikative Fähigkeiten, Teamorientierung, Kreativität

#### Vorkenntnisse

Physik, Chemie, Mathematik, Grundlagen Werkstoffe (Kristallographie, Werkstofftechnik) Messtechnik

#### Inhalt

1 Einführung 2 Kennzeichnung disperser Systeme 3 Herstellung/Synthese von Submikropulvern 4 Innovative Applikationen

#### Medienformen

Tafel / Whiteboard Folien Computer Demo

#### Literatur

- Modern methods of particle size analysis: Howard G. Barth, New York [u.a.], Wiley, 1984 - Mechanische Verfahrenstechnik: Heinrich Schubert, 3., erw. und durchges. Leipzig, Dt. Verl. für Grundstoffindustrie, 1990 - Mechanische Verfahrenstechnik/ Bd. 1: M. Stieß, Springer, Berlin, 1995 - Zetapotential und Partikelladung in der Laborpraxis: R.H. Müller, wiss. Verlagsgesell schaft mbH, Stuttgart,1996 - Michalowsky, L.: Neue Keramische Werkstoffe. Dt. Verlag für Grundstoffindustrie, 1994 - Schmid, G.: Nanoparticels. Wiley -VCH Verlag GmbH Co. KGaA, 2004

## Detailangaben zum Abschluss

#### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

## Galvanotechnische Verfahren

Fachabschluss: Prüfungsleistung alternativ 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6933 Prüfungsnummer:2100333

Fachverantwortlich: Prof. Dr. Andreas Bund

| Leistungspunkte:      | 4        | Workload (h): 120       | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|----------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echnik ι | und Informationstechnik |                           |    |      | Fachgebiet: | 2175 |

|              | 1 | 1.FS | , | 2 | 2.FS | 3 | , | 3.FS | 3 | 4        | I.FS | 3 |   | 5.FS | 3 | 6 | 3.FS | 3 | - | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р | V | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |   |      |   | 2 | 0    | 1 |   |      |   |          |      |   |   |      |   |   |      |   |   |      |   |

#### Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, galvanische Beschichtungsysteme für funktionelle oder dekorative Anwendungen auszuwählen. Sie können Techniken zur galvanischen Beschichtung bewerten und sind mit Prüfverfahren für die Eigenschaften galvanischer Schichten vertraut. Ferner kennen die Qualitätsstandards der Schichten und können Fragen zum Arbeits- und Umweltschutz im Zusammenhang mit galvanotechnischen Verfahren kompetent beantworten.

#### Vorkenntnisse

Chemie, Elektrochemie, Elektrotechnik

#### Inhalt

Überspannung und Polarisation, Stromdichteverteilung

Streufähigkeit, Einebnung, Glanz

Pulsabscheidung

Stromlose Verfahren

Gängige Verfahren zur galvanischen Abscheidung von technisch wichtigen Schichten und Schichtsystemen (z.B. Zn, Zn-Ni, Cu, Cr, Sn, Fe)

## Medienformen

**Tafelanschrieb** 

Projektor

#### Literatur

T.W. Jelinek: "Praktische Galvnotechnik", 6. Auflage, Eugen G. Leuze Verlag, 2005, ISBN 3-87480-207-8 Nasser Kanani; "Galvanotechnik"; Carl Hanser Verlag, München; Wien 2000; ISBN 3-446- 21024-5

Herrmann A. Jehn; "Galvanische Schichten"; expert Verlag 1999; ISBN 3-8169-1783-6

A. F. Bogenschütz, U. George; "Galvanische Legierungsabscheidung und Analytik"; Leuze Verlag, 1982 Dettner/Elze; "Handbuch der Galvanotechnik" Band I - III; Carl Hanser Verlag München, 1963

## Detailangaben zum Abschluss

#### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik



#### Mikro- und nanostrukturierte Gläser

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Sommersemester

Fachnummer: 6932 Prüfungsnummer:2300337

#### Fachverantwortlich: Prof. Dr. Edda Rädlein

| Leistungspunkte: 4      | V   | Vorkload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-------------------------|-----|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschinent | oau |               |     |                           |    |      | Fachgebiet: | 2351 |

|              | 1 | 1.FS | ; | 2 | 2.FS | 3 | , | 3.FS | 3 | 4        | 1.FS | <b>)</b> | į | 5.FS | 3 | ( | 3.FS | 3 | - | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р        | > | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |   |      |   | 2 | 0    | 1 |   |      |   |          |      |          |   |      |   |   |      |   |   |      |   |

## Lernergebnisse / Kompetenzen

Fachkompetenz 70 %: Die Studierenden sind in der Lage, Werkstoffe und Bearbeitungsverfahren der Mikrotechnik für Anwendungen im Mechatronikbereich für unterschiedliche Gläser systematisch anzuwenden. Vertiefte Kenntnisse von Struktur- / Eigenschaftsbeziehungen ermöglichen die Analyse von Fertigungsprozessen und die Ableitung von Applikationen. Methodenkompetenz 20 %: Qualitätssicherung, systematische Entwicklung von Produkten, ökologische Technikbewertung Systemkompetenz 5 %: fachübergreifendes Denken Sozialkompetenz 5 %: Lernvermögen im Kollektiv, Flexibilität

#### Vorkenntnisse

- Physik, Chemie, Fertigungstechnik - Grundlagen der Werkstoffwissenschaften (BA)

#### Inhalt

- Begriffe, Begriffshirarchie der MST - Anforderungen der Fertigung mikrotechnischer Komponenten - Applikationen (Substrate, mechanische und optische Sensoren, Fluidikbauteile) - Technische und stoffliche Voraussetzungen - Ausgewählte werkstoffliche Grundlagen (Struktur-Eigenschaftsbeziehungen, Kristallisation von Gläsern) - Einteilung Strukturierungsverfahren - Lithographiebasierend Verfahren - Beschichtungsprozesse - Ätzprozesse - Mechanische Verfahren - Laserstrahlverfahren

## Medienformen

powerpoint-Folien

#### Literatur

[1] D. Hülsenberg et. al.: Microstructurieng of Glasses. Springer-Verlag Berlin-Heidelberg, 2008 [2] W. Vogel: Glaschemie. 3. Auflage, Springerverlag, 1992 [3] G. Gerlach: Einführung in die Mikrosystemtechnik. Carl-Hanser Verlag, 2006

#### Detailangaben zum Abschluss

## verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Master Mikro- und Nanotechnologien 2008



Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

#### Plasmaoberflächentechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6938 Prüfungsnummer:2100338

Fachverantwortlich: Dr. Birger Dzur

| Leistungspunkte:       | 4      | Workload (h): 120         | Anteil Selbststudium (h): | 86 | SWS:        | 3.0  |  |
|------------------------|--------|---------------------------|---------------------------|----|-------------|------|--|
| Fakultät für Elektrote | echnil | k und Informationstechnik |                           |    | Fachgebiet: | 2173 |  |

|              | 1.FS |   | 2.FS |   | 3.FS |   | 4.FS |   |   | 5.FS |   |   | 6.FS |   |   | 7.FS |   |   |   |   |   |
|--------------|------|---|------|---|------|---|------|---|---|------|---|---|------|---|---|------|---|---|---|---|---|
| SWS nach     | ٧    | S | Р    | ٧ | S    | Р | ٧    | S | Р | ٧    | S | Р | ٧    | S | Р | ٧    | S | Р | ٧ | S | Р |
| Fachsemester |      |   |      | 2 | 1    | 0 |      |   |   |      |   |   |      |   |   |      |   |   |   |   |   |

## Lernergebnisse / Kompetenzen

- Die Studenten kennen die physikalischen und thermodynamischen Grundlagen und Prinzipien der Wärmeübertragung und verstehen die Besonderheiten des Wärmeübergangs unter Plasmabedingungen. Sie können einfache Modelle für Aufheizung, Beschleunigung, Deformation und Abkühlung von Partikeln im Plasma anwenden und die resultierenden Besonderheiten des Aufbaus thermischer Sprizschichten daraus ableiten. Sie kennen die wichtigsten Anwendungen und zugehörigen Eigenschaften thermisch gespritzter und die Unterschiede zu PVD/CVD-Schichten. - Dieses Wissen befähigt die Studenten, Aussagen über zu erwartende Schichteigen-schaften in Abhängigkeit der technologischen Parameter zu treffen, sowie Werkstoffe und Verfahren für wichtige Anwendungen auszuwählen.

#### Vorkenntnisse

Mathematik und Physik für Ingenieure, Grundlagen der Elektrotechnik, Grundlagen der Oberflächentechnik (BA), Oberflächentechnik (MSc)

#### Inhalt

Kapitel 0: Allgemeine Grundlagen des Wärmeübergangs: Grundbegriffe, Grundgleichungen, Ähnlichkeitstheorie Kapitel 1: Der Plasmaspritzprozess: Injektion, Aufheizung und Beschleunigung, Aufprall und Deformation, Abkühlung, Schichtbildung Kapitel 2: Thermische Spritzschichten: Lichtbogenspritzen, Plasmaspritzschichten, Pulversynthese und -modifikation Kapitel 3: Plasmadiffusionsverfahren: Berechnungsgrundlagen, Verfahrensvarianten und -parameter, Randschichtaufbau Kapitel 4: PA-PVD und CVD-Schichten: Verfahren, Ablauf und Besonderheiten, Zonenmodelle der Schichtbildung, Schichtbeispiele Kapitel 5: Diamant- und DLC-Schichten Kapitel 6: Plasmasynthese nanostrukturierter Pulver und Schichten

#### Medienformen

Vorlesungsskript, Tafel / Whiteboard, Folien

#### Literatur

- Cerbe/Wilhelms: Technische Thermodynamik (Grundlagen und Übungsaufgaben) - Hanser-Verlag, München, Wien 2005 - Kretzschmar/Kraft: Kleine Formelsammlung Technische Thermodynamik - Hanser-Verlag, München, Wien 2007-10-05 - Carlslaw/Jaeger: Conduction of Heat in Solids. Oxford Press, 1959 - Pitts/Sissom: 1000 solved Problems in heat. Transfer McGrawHill, New York 1991 - S. Grainger: Funktionelle Beschichtungen in Konstruktion und Anwendung - Leutze-Verlag, Saulgau 1994

## Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

# Eigenschaften metallischer Schichten

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6937 Prüfungsnummer:2100334

### Fachverantwortlich: Prof. Dr. Andreas Bund

| Leistungspunkte: 4          | Workload (h): 120       | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrotechnik | und Informationstechnik |                           |    |      | Fachgebiet: | 2175 |

|              | 1        | I.FS | ; | 2 | 2.FS | 3 | ; | 3.FS | 3 | 4 | 1.FS | <b>)</b> | 5 | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|----------|------|---|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | <b>V</b> | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |          |      |   |   |      |   | 2 | 0    | 1 |   |      |          |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, die Eigenschaften der beschichteten Werkstoffe zu bestimmen und die geeigneten Meßverfahren zielführend anzuwenden. - Die Studierenden kennen die Mess- und Prüfverfahren und sind in der Lage, die Ergebnisse zu bewerten und zu vergleichen. - Die Studierenden können Mess- und Prüfverfahren in den technologischen Prozess einordnen und die Qualitätssicherung garantieren.

# Vorkenntnisse

Chemie, Elektrochemie, Elektrotechnik

#### Inhalt

- Mechanische Eigenschaften - IS, Härte, Haftfestigkeit, Verschleiß, Lötbarkeit; - Elektrische Eigenschaften, - Magnetische Eigenschaften, - Widerstandsmessung; - Optische Eigenschaften, Glanz, - Elektropolieren

### Medienformen

Vorlesungsskript, Tafel / Whiteboard, Folien

## Literatur

- Bergmann, W.: Werkstofftechnik Teil1: Grundlagen, Carl Hanser Verlag München Wien, 3. Auflage (2000) - Bergmann, W.: Werkstofftechnik Teil 2:Werkstoffherstellung - Werkstoffverarbeitung - Werkstoffanwendung, Carl Hanser Verlag München Wien, 3. Auflage (2002) - Dettner, W., Elze, J.: Handbuch der Galvanotechnik, Carl Hanser Verlag München (1966) - Fischer, H.: Elektrolytische Abscheidung und Elektrokristallisation von Metallen, Springer Verlag Berlin- Göttingen- Heidelberg (1954) - Fischer, H., Hofmann, H., Spindler, J.: Werkstoffe in der Elektrotechnik, Carl Hanser Verlag München Wien, 4. Auflage (2000) - Fischer, K.-F., u.a.: Taschenbuch der Technischen Formeln, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 2. Auflage (1999) - Gräfen, H.: VDI Lexikon Werkstofftechnik, VDI Verlag Düsseldorf (1993) - Hamann, C. H., Vielstich, W.: Elektrochemie, Wiley- VCH (1998) - Heuberger, U., Pfund, A., Zielonka, A.: MSM 200 - Entwicklung eines in-situ-Messsystems zur Erfassung von inneren Spannungen in galvanisch und außen-stromlos abgeschiedenen Schichten, Zeitschrift Galvanotechnik 91 (2000)5, S. 1236/40, Eugen G. Leuze Verlag Saulgau/Württ. - Hitzig, J., Jüttner, K., Lorenz, W. J., Paatsch, W.: AC-Impedance Measurements on Corroded Porous Aluminum Oxide Films, J. Electrochem. Soc. 133(1986) No.5, 887 - Jelinek, T. W. u.a.: Prüfung von funktionellen metallischen Schichten, Eugen G. Leuze Verlag Saulgau/Württ., 1. Auflage (1997) - Jehn, H. A. u.a.: Galvanische Schichten Abscheidung, Eigenschaften, Anwendungen, Meßmethoden, Qualitätssicherung, expert Verlag (1993), Ehringen bei Böblingen, Kontakt & Studium, Bd. 406 - Jordan, M.: Die galvanische Abscheidung von Zinn und Zinnlegierungen, Eugen G. Leuze Verlag Saulgau/Württ. (1993) - Junge, H.-D., Müller, G.: Lexikon Elektrotechnik, VCH Verlagsgesellschaft mbH Weinheim×New×York×Basel×Cambridge×Tokyo, 1. Auflage (1994) -Kanani, N.: Galvanotechnik, Grundlagen, Verfahren, Praxis; Carl Hanser Verlag München Wien, 1. Auflage (2000) - Kuchling, H.: Taschenbuch der Physik, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 16. Auflage (1999) - Merkel, M., Thomas, K.-H.: Taschenbuch der Werkstoffe, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 5. Auflage (2000) - Michalowsky u.a.: Magnet-Technik - Grundlagen und Anwendung, Fachbuchverlag Leipzig, Köln (1993) - Nitzsche, K.: Schichtmeßtechnik, Vogel-Fachbuchverlag Würzburg, 1.Auflage (1997) - Nohse, W.: Untersuchung galvanischer Bäder in der Hullzelle, Eugen G. Leuze Verlag, Saulgau/Württ., 4. Auflage - Schwister, K., u.a.: Taschenbuch der Chemie, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 2. Auflage (1999) - Seidel, W.: Werkstofftechnik, Carl Hanser Verlag München Wien, 4. Auflage (2000) - Simon, H., Thoma, M.: Angewandte Oberflächentechnik für metallische Werkstoffe, Carl Hanser Verlag München Wien, 2. Auflage (1989) - Sotirova- Chakarova, G. u.a.: Innere Spannungen in galvanischen Überzügen Teil 1 und 2, Zeitschrift Galvanotechnik, Eugen G. Leuze Verlag 81(1990)6, S. 2004-2013 und 81(1990)7, S. 2358-2366 - Vetter, K.-J.: Elektrochemische Kinetik, Springer Verlag Heidelberg (1961) S. 180 - 184

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

### **Elektrokristallisation**

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6935 Prüfungsnummer:2100335

### Fachverantwortlich: Prof. Dr. Andreas Bund

| Leistungspunkte:      | 4        | Workload (h): 120       | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|----------|-------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echnik ι | und Informationstechnik |                           |    |      | Fachgebiet: | 2175 |

|              | 1 | I.FS | 6 | 2 | 2.FS | 3 | , | 3.FS | 3 | 4 | 1.FS | <b>)</b> | 5 | 5.FS | 3 | ( | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|---|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | ٧ | S    | Р | > | S    | Р        | ٧ | S    | Р | ٧ | S    | Р | ٧ | S    | Р |
| Fachsemester |   |      |   |   |      |   | 2 | 1    | 0 |   |      |          |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden haben einen guten theoretischen und experimentellen Überblick über die elektrochemische Keimbildung und Wachstum erworben. Sie können Vergleiche zwische Theorie und Experiment ziehen und bewerten.

#### Vorkenntnisse

Grundlagen der Physikalischen Chemie Grundlagen der Elektrochemischen Kinetik

# Inhalt

- 1. Thermodynamik der elektrochemischen Nukleation
- 2. Kinetik der elektrochemischen Nukleation
- 3. Stochastischer Ansatz zur Keimbildung
- 4. Mechanismus des elektrochemischen Kristallwachstums
- 5. Großflächige Elektrokristallisation

# Medienformen

**Tafelanschrieb** 

Projektor

#### Literatur

Evgeni B. Budevski, Georgi T. Staikov, Wolfgang J. Lorenz: Electrochemical Phase Formation and Growth. An Introduction to the Initial Stages of Metal Deposition. Wiley-VCH, 1996

Alexander Milchev: Electrocrystallization: Fundamentals of Nucleation and Growth. Springer, 2002

# Detailangaben zum Abschluss

Erfolgreiche Teilnahme an der Abschlussprüfung am Ende der Vorlesungszeit.

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

# Niederdruckbeschichtungsverfahren

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6939 Prüfungsnummer:2100337

Fachverantwortlich: Dr. Birger Dzur

| Leistungspunkte:      | 4    | Workload (h): 120          | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|------|----------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echn | ik und Informationstechnik |                           |    |      | Fachgebiet: | 2173 |

|              | 1 | 1.FS | <b>)</b> | 2 | 2.FS | 3 | , | 3.FS | 3 | 4        | 1.FS | <b>)</b> | ţ | 5.FS | 3 | ( | 6.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|----------|---|------|---|---|------|---|----------|------|----------|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р        | > | S    | Р | ٧ | S    | Р | <b>V</b> | S    | Р        | > | S    | Р | > | S    | Р | > | S    | Р |
| Fachsemester |   |      |          |   |      |   | 2 | 1    | 0 |          |      |          |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

• Die Studenten verstehen die physikalischen und technischen Prinzipien der Vakuumerzeugung und -messung. Sie beherrschen die Grundlagen der Plasmagenerierung, die Grundformen von Plasmen im Vakuum, sowie den Aufbau und die Funktionsweise verschiedener technischer Plasmaerzeuger Sie verstehen die Mechanismen der Schichtbildung und die beeinflssenden Verfahensparameter zur Erzeugung dünner Schichten. Sie haben einen Überblick über die wichtigsten Anwendungen von Niederdruck- Plasmen in der Werkstoff- und Oberflächentechnik. • Dieses Wissen befähigt die Studenten, plasmatechnologische Konzepte für eine gegebene Aufgabenstellung auszuwählen und zu beurteilen

### Vorkenntnisse

Mathematik und Physik für Ingenieure, Grundlagen der Elektrotechnik, Grundlagen der Oberflächentechnik (BA), Oberflächentechnik (MSc)

#### Inhalt

Kapitel 0: Grundlagen des Vakuums Vakuumerzeugung, -eigenschaften und -messung Kapitel 1: Plasmagenerierung im Vakuum Ladungsträgererzeugung im Vakuum, Niederdruck- Durchschlag. Eigenschaften des Niederdruck- Plasmas Kapitel 2: PVD- und CVD-Prozesse Grundlagen, Verfahren, Schichtbildung, Zonenmodelle Kapitel 3: Glimmentladungen Aufbau und technische Erzeugung, Anwendungen (PVD, CVD, Plasmadiffusionsverfahren) Kapitel 4: HF-Plasmen kapazitiv und induktiv gekoppelte HF-Plasmen, Anwendungen zur Oberflächenstrukturierung und Beschichtung Kapitel 5: Mikrowellen-Plasmen Generierun, Aufbau von Magnetrons, Anwendungen Kapitel 6: Ionenstrahlverfahren Wirkung vbn Ionen auf Festkörper, Ionenquellen, Ionenstrahlanlagen, Anwendungen (Aktivieren, Beschichten, Sputern, Imlantieren) Kapitel 7: Dielektrisch behinderte Entladungen Prinzip der gereierung, Anordnunen, Anwendungen (Aktivierung, Obeflächenmodofikation, Beschichten)

### Medienformen

Vorlesungsskript Folien

### Literatur

- Hippler et al: Low Temperature Plasma Physics- Fundamental Aspects and Applications; Wiley VCH Verlag, 2001 - H. Frey: Dünnschichttechnologie; VDI-Verlag Düsseldorf, 1987; Dresvin et al: Physics and Technology of Low-Temperature Plasmas; lowa State University Press/AMES, 1977

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

# Plasmatechnologien zur Werkstoffentwicklung

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5475 Prüfungsnummer:2100336

Fachverantwortlich: Dr. Birger Dzur

| Leistungspunkte:      | 4     | Workload (h): 120         | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-----------------------|-------|---------------------------|---------------------------|----|------|-------------|------|
| Fakultät für Elektrot | echni | k und Informationstechnik |                           |    |      | Fachgebiet: | 2173 |

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 | , | 3.F | 3 | 4 | I.FS | 3 | į | 5.FS | 3 | 6 | 3.FS | 3 | 7 | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|-----|---|---|------|---|---|------|---|---|------|---|---|------|---|
| SWS nach     | > | S    | Р | ٧ | S    | Р | ٧ | S   | Р | > | S    | Р | > | S    | Р | ٧ | S    | Р | > | S    | Р |
| Fachsemester |   |      |   |   |      |   | 2 | 1   | 0 |   |      |   |   |      |   |   |      |   |   |      |   |

# Lernergebnisse / Kompetenzen

Die Studenten verstehen die physikalischen Grundlagen des Plasmas sowie die Prinzipien der Plasmagenerierung. Sie kennen die wichtigsten physikalischen Eigenschaften thermischer Plasmen. Sie kennen den Aufbau und die Funktionsweise technischer Plasmaerzeuger und haben einen Überblick über die wichtigsten technischen Anwendungen thermischer Plasmen. Dieses Wissen befähigt die Studenten, plasmatechnologische Konzepte für eine gegebene Aufgabenstellung auszuwählen und zu bewerten.

### Vorkenntnisse

Mathematik und Physik für Ingenieure, Grundlagen der Elektrotechnik

### Inhalt

- Das Plasma: Definition, Generierung, Grundformen und Eigenschaften - Der Lichtbogen: Aufbau, Eigenschaften, Kennlinien und Anwendungen (Lichtbogenspritzen) - DC-Plasmaerzeuger: Bauformen, thermisches Spritzen - IC-Plasmaerzeuger: Aufbau, Plasmagenerierung, Pulversynthese und Pulvermodifikation - Niederdruck-Plasmaverfahren: Plasmadiffusion mit Glimmentladungen, Ionenstrahlverfahren, Mikrowellensputtern/-beschichten

### Medienformen

- Tafelbild - Videos/PowerPoint-Präsentationen - Script

# Literatur

M. I. Boulos, P. Fauchais, E. Pfender: Thermal Plasmas - Fundamentals and Applications, Vol. 1; Plenum Press, New York and London, 1994 A. v. Engel: Electric Plasmas - Their Nature and Uses; Taylor & Francis Ltd., London and New York, 1983 O. P. Solonenko, M. F. Zhukov: Thermal Plasmas and New Materials Technology, Vol. 1 and 2; Cambridge Interscience Publishing 1995

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

#### **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011

Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik



# Schichten aus und auf Glas

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6936 Prüfungsnummer:2300338

Fachverantwortlich: Prof. Dr. Edda Rädlein

| Leistungspunkte: 4      |     | Workload (h): | 120 | Anteil Selbststudium (h): | 86 | SWS: | 3.0         |      |
|-------------------------|-----|---------------|-----|---------------------------|----|------|-------------|------|
| Fakultät für Maschinenl | bau |               |     |                           |    |      | Fachgebiet: | 2351 |

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 |   | 3.FS | 3 | 4        | 1.FS | <b>)</b> | 5 | 5.FS | 3 | 6        | 3.FS | 3 | 7        | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|----------|------|----------|---|------|---|----------|------|---|----------|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | V | S    | Р | <b>V</b> | S    | Р        | ٧ | S    | Р | <b>V</b> | S    | Р | <b>V</b> | S    | Р |
| Fachsemester |   |      |   |   |      |   | 2 | 1    | 0 |          |      |          |   |      |   |          |      |   |          |      |   |

# Lernergebnisse / Kompetenzen

Die Studierenden kennen die komplette Wertschöpfungskette von der Auswahl geeigneter Substrat- und Schichtmaterialien bis zum veredelten Produkt und können Vor- und Nachteile unterschiedlicher Beschichtungsmethoden gegeneinander abwägen. Sie sind mit den besonderen Anforderungen vertraut, die der nichtleitende Werkstoff Glas and die Oberflächenanalyse stellt. Sie können anhand von Funktionsbeispielen die Wechselwirkungen zwischen Schicht und Substrat und die Designprinzipien für Mehrfachschichten erläutern.

### Vorkenntnisse

Zulassung zum Masterstudiengang RET

### Inhalt

Struktur und Eigenschaften von Glasoberflächen, Vorbereitung von Substraten, spezielle Oberflächenanalytik für Nichtleiter, Schichtmaterialien, Grenzflächenwechselwirkungen, Herstellung und Anwendung dicker Schichten, Herstellungsmethoden für dünne Schichten, Funktionsbeispiele (Ver- und Entspiegeln, Sonnen- und Wärmeschutz, Photokatalyse, Steuerung der Benetzung, transparent leitfähige Schichten, schaltbare Transmission

### Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Skript

### Literatur

Gläser, H.J., Dünnfilmtechnologie auf Flachglas, Hofmann, Schorndorf, 1999

Pulker, H.K., Coatings on Glass, Elsevier, Amsterdam etc. 1999

Bach, H. Krause, D. (hrsg.), Thin Films on Glass, Schott Series on Glass and Glass Ceramics, Springer, Berlin, etc. 1997. Brinker, C.J., Scherer, G.W., Sol-Gel-Science, Academic Press, Boston etc., 1990

# Detailangaben zum Abschluss

### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Regenerative Energietechnik 2013

Master Regenerative Energietechnik 2011



Modul: Werkstofftechnische Wahlfächer III: Oberflächentechnik

### Werkstoffe für die Biomedizin

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 9172 Prüfungsnummer:2300389

### Fachverantwortlich: Prof. Dr. Edda Rädlein

| Leistungspunkte: 4        | Workload (h): 120 | Anteil Selbststudium (h): | 75 | SWS: | 3.0         |      |
|---------------------------|-------------------|---------------------------|----|------|-------------|------|
| Fakultät für Maschinenbau |                   |                           |    |      | Fachgebiet: | 2351 |

|              | 1 | I.FS | 3 | 2 | 2.FS | 3 |   | 3.FS | 3 | 4 | I.FS | <b>)</b> | 5        | 5.FS | ; | 6        | 3.FS | 3 | 7        | 7.FS | 3 |
|--------------|---|------|---|---|------|---|---|------|---|---|------|----------|----------|------|---|----------|------|---|----------|------|---|
| SWS nach     | > | S    | Р | > | S    | Р | V | S    | Р | ٧ | S    | Р        | <b>V</b> | S    | Р | <b>V</b> | S    | Р | <b>V</b> | S    | Р |
| Fachsemester |   |      |   |   |      |   | 2 | 0    | 1 |   |      |          |          |      |   |          |      |   |          |      |   |

# Lernergebnisse / Kompetenzen

Grundkenntnisse zu medizinischen Kriterien der Implantologie

Erwerb von Spezialkenntnissen zu Werkstoffeigenschaften, Herstellungstechnologien und Anwendungsfeldern biokompatibler/bioaktiver Implantatmaterialien.

Fähigkeit, im Dialog mit medizinischen Anwendern geeignete Werkstoffkombinationen zu bestimmen und deren Eigenschaften zu optimieren.

### Vorkenntnisse

Vertiefung Werkstofftechnik, Spezialglas und Ingenieurkeramik

### Inhalt

Biokompatibilität

Der menschliche Körper aus der Sicht des Werkstoffwissenschaftlers

Werkstoffe: Glas, Keramik, Glaskeramik, Metalle, organische Polymere und Silikone. biogene Werkstoffe, Schichten und Oberflächenfunktionalisierung

Testmethoden

Ausgewählte Beispiele für Anwendungen (Dentalmedizin, Implantate, Therapiemethoden, Materialien für die Zellzucht)

### Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Skript

### Literatur

E. Wintermantel, S.-W. Ha, Medizintechnik: life science engineering Springer, Berlin 2008 (4. Auflage), ISBN 978-3-540-74924-0\*Gb L.L. Hench, Bioceramics, J.Am.Ceram.Soc. 81 (1998) 1705-1728 Höland, W. Glaskeramik, vdf Hochschulverlag, Zürich, 2006

### Detailangaben zum Abschluss

### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



# Modul: Hauptseminar

Modulnummer6941

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss:

# Lernergebnisse

Die Studierenden vertiefen bei speziellen fachlichen Themen des jeweiligen Themengebiets ihr Wissen. Sie erwerben die nachfolgenden Schlüsselqualifikationen - die Fähigkeit, anhand von Literaturdatenbanken und anderen Quellen Material zu einem vorgegebenen Thema zu erschließen - die Fähigkeit, anspruchsvolle englische Originalliteratur zu lesen und zu verstehen - die Fähigkeit, vor einem Fachpublikum einen Vortrag zu einem nichttrivialen wissenschaftlichen Thema zu entwerfen also auch didaktisch richtig zu gestalten) und ihn unter Einsatz üblicher Medien abzuhalten - die Fähigkeit, zu Diskussionen über wissenschaftlichen Themen beizutragen - die Fähigkeit, Abhandlungen, Berichte, Texte von ca. 10 - 20 Seiten zu verfassen, i. d. R. zur Erklärung wissenschaftlicher Inhalte. Hauptseminare behandeln wechselnde fachliche Themen, die auf Lehrstoffe der ersten drei Fachsemester aufbauen. Die Themen können schon vorhandene fachliche Interessen und Schwerpunkte vertiefen. Teilnehmer an einem Seminar müssen im einzelnen folgende Leistungen erbringen: 1. Abhalten eines Vortrags 2. Erstellen einer Ausarbeitung zum Vortrag 3. Teilnahme an den Diskussionen zu allen Vorträgen

# Vorraussetzungen für die Teilnahme

Erfolgreiches Absolvieren der davor liegenden Semester

### Detailangaben zum Abschluss

SL

### **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011

Modul: Hauptseminar



# **Hauptseminar (MA Werkstoffwissenschaft)**

Fachabschluss: Studienleistung alternativ 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6940 Prüfungsnummer:2100342

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

|              | 1.FS |   | 2.FS |   | 3.FS |   |   | 4.FS |   |   | 5.FS |   |   | 6.FS |   |   | 7.FS |   |   |   |   |
|--------------|------|---|------|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|---|---|
| SWS nach     | >    | S | Р    | > | S    | Р | ٧ | S    | Р | V | S    | Р | ٧ | S    | Р | ٧ | S    | Р | ٧ | S | Р |
| Fachsemester |      |   |      |   |      |   | 0 | 2    | 0 |   |      |   |   |      |   |   |      |   |   |   |   |

### Lernergebnisse / Kompetenzen

Die Studierenden vertiefen bei speziellen fachlichen Themen des jeweiligen Themengebiets ihr Wissen. Sie erwerben die nachfolgenden Schlüsselqualifikationen - die Fähigkeit, anhand von Literaturdatenbanken und anderen Quellen Material zu einem vorgegebenen Thema zu erschließen - die Fähigkeit, anspruchsvolle englische Originalliteratur zu lesen und zu verstehen - die Fähigkeit, vor einem Fachpublikum einen Vortrag zu einem nichttrivialen wissenschaftlichen Thema zu entwerfen also auch didaktisch richtig zu gestalten) und ihn unter Einsatz üblicher Medien abzuhalten - die Fähigkeit, zu Diskussionen über wissenschaftlichen Themen beizutragen - die Fähigkeit, Abhandlungen, Berichte, Texte von ca. 10 - 20 Seiten zu verfassen, i. d. R. zur Erklärung wissenschaftlicher Inhalte. Hauptseminare behandeln wechselnde fachliche Themen, die auf Lehrstoffe der ersten drei Fachsemester aufbauen. Die Themen können schon vorhandene fachliche Interessen und Schwerpunkte vertiefen. Teilnehmer an einem Seminar müssen im einzelnen folgende Leistungen erbringen: 1. Abhalten eines Vortrags 2. Erstellen einer Ausarbeitung zum Vortrag 3. Teilnahme an den Diskussionen zu allen Vorträgen

#### Vorkenntnisse

Erfolgreiches Absolvieren der davor liegenden Semester

### Inhalt

Das Hauptseminar behandelt spezielle Themengebiete der Werkstoffwissenschaft und beinhaltet die Einarbeitung in ein ausgewähltes Thema und die Aufbereitung als Präsentation, die dann vor den Teilnehmern vorgetragen wird und von diesen und den Hochschullehrern kritisch hinterfragt wird.

### Medienformen

Seminar, Vortrag, Diskussion, Spezialliteratur, Lehrbücher der Werkstoffwissenschaft und angrenzender Gebiete

### Literatur

Spezialliteratur, Lehrbücher der Werkstoffwissenschaft und angrenzender Gebiete

### Detailangaben zum Abschluss

### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



# Modul: Industrieseminar

Modulnummer6943

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss:

# Lernergebnisse

Die Studierenden vertiefen bei Exkursionen in die Industrie in speziellen fachlichen Themen des jeweiligen Themengebiets ihr Wissen. Im Industrieseminar präsentieren Mitarbeiter/ ehemalige Absolventen von regionalen und überregionalen Unternehmen Aufgabenstellungen, Arbeitsmethoden und Problemlösungen aus ihrem jeweiligen Arbeitsumfeld sowie deren Einordnung in den Gesamtgeschäftsprozess. Sind die Vortragenden Absolventen, dann können insbesondere auch den Studierenden Perspektiven für ihre persönliche Berufswahl gegeben werden. Neben kleineren Exkursionen, die von einzelnen Lehrenden organisiert werden, werden Exkursionen in die Industrie zentral geplant und angeboten. Die Studierenden fertigen von den Exkursionen Protokolle an, die bewertet werden.

# Vorraussetzungen für die Teilnahme

Grundlagen der Werkstoffwissenschaften

# Detailangaben zum Abschluss

-

### **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011

Modul: Industrieseminar



# Industrieseminar (MA Werkstoffwissenschaft)

Fachabschluss: Studienleistung alternativ 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6942 Prüfungsnummer:2100350

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

|              | 1.FS |   |   | 2.FS |   |   | 3.FS |   |   | 4.FS |   |   | 5.FS |   |   | 6.FS |   |   | 7.FS |   |   |
|--------------|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|------|---|---|
| SWS nach     | >    | S | Р | >    | S | Р | ٧    | S | Р | >    | S | Р | ٧    | S | Р | ٧    | S | Р | ٧    | S | Р |
| Fachsemester |      |   |   |      |   |   | 0    | 2 | 0 |      |   |   |      |   |   |      |   |   |      |   |   |

### Lernergebnisse / Kompetenzen

Die Studierenden vertiefen bei Exkursionen in die Industrie in speziellen fachlichen Themen des jeweiligen Themengebiets ihr Wissen. Im Industrieseminar präsentieren Mitarbeiter/ehemalige Absolventen von regionalen und überregionalen Unternehmen Aufgabenstellungen, Arbeitsmethoden und Problemlösungen aus ihrem jeweiligen Arbeitsumfeld sowie deren Einordnung in den Gesamtgeschäftsprozess. Sind die Vortragenden Absolventen, dann können insbesondere auch den Studierenden Perspektiven für ihre persönliche Berufswahl gegeben werden. Neben kleineren Exkursionen, die von einzelnen Lehrenden organisiert werden, werden Exkursionen in die Industrie zentral geplant und angeboten. Die Studierenden fertigen von den Exkursionen Protokolle an, die bewertet werden.

# Vorkenntnisse

Erfolgreiches Absolvieren der davor liegenden Semester

# Inhalt

Seminar mit Vortrag und Diskussion, Die Studierenden erarbeiten ein spezielles Thema mit einer industriellen Problematik in Bezug zur Werkstoffwissenschaft, Zusammenarbeit mit der Industrie möglich

### Medienformen

Vortrag und Diskussion, Spezialliteratur, Industriebesuche und Diskussionen.

### Literatur

spezielle Literatur entsprechend der jeweiligen Fragestellung,

### Detailangaben zum Abschluss

### verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011



# Modul: Projektarbeit mit Kolloquium

### Modulnummer6965

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss:

# Lernergebnisse

Die Lösung von komplexen technischen Fragestellungen innerhalb einer begrenzten Zeitraums gehört zu den beruflichen Fähigkeiten von Ingenieuren. Die systematische Durchführung von Versuchen, Experimenten oder Erprobungen sowie die damit zusammenhängende Erstellung von technischen Berichten und Publikationen dient der Kommunikation zwischen Fachleuten und stellt sicher, dass erworbenes Wissen und Erfahrungen erhalten bleiben.

Mit der Projektarbeit soll ein Problem aus der Technik/Wissenschaft/Gesellschaft umfassend bearbeitet werden. Es sind Gruppen von mindestens zwei bis maximal drei Studenten zu einem gemeinsamen Thema zu bilden. Die aufzustellende Projektarbeit muss die Teile

- Problemstellung
- Lösungsansätze
- Bewertung gesellschaftspolitisch
- Umweltrelevanz
- Systemverträglichkeit

gleichmäßig behandeln. Die Projektarbeit ist eine Gemeinschaftsarbeit, Abgrenzungen der einzelnen Beteiligten ist sichtbar zu machen.

Die Teamarbeit wird hierbei überprüft.

Das Thema ist in der zweiten Hälfte des 1. Fachsemesters auszuwählen und am Ende des 1. Fachsemesters in einem Kolloquium vorzustellen (Eröffungsverteidigung).

Während der Bearbeitungsphase sind Literaturauswertungen ebenso notwendig wie mindestens ein Zwischenkolloquium und der Abschluss erfolgt in einer Abschlussverteidigung, wo jeder Teilnehmer in einem ca. 30 min. Vortrag wesentliche Teile der Arbeit verteidigt werden.

### Vorraussetzungen für die Teilnahme

Grundlagen der Werkstoffwissenschaft

### Detailangaben zum Abschluss

Schriftlicher Projektbericht und mündlicher Vortrag zum Projekt.

### **ACHTUNG: Fach wird nicht mehr angeboten!**

Master Werkstoffwissenschaft 2011 Modul: Projektarbeit mit Kolloquium



# Projektarbeit mit Kolloquium

Fachabschluss: Studienleistung alternativ 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch und Englisch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 6966 Prüfungsnummer:2100351

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 10 Workload (h): 300 Anteil Selbststudium (h): 188 SWS: 10.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

3.FS 4.FS 5.FS 1.FS 2.FS 6.FS 7.FS SP SP S P S P S P V S P S SWS nach Fachsemester 150 h 150 h

### Lernergebnisse / Kompetenzen

Die Lösung von komplexen technischen Fragestellungen innerhalb einer begrenzten Zeitraums gehört zu den beruflichen Fähigkeiten von Ingenieuren. Die systematische Durchführung von Versuchen, Experimenten oder Erprobungen sowie die damit zusammenhängende Erstellung von technischen Berichten und Publikationen dient der Kommunikation zwischen Fachleuten und stellt sicher, dass erworbenes Wissen und Erfahrungen erhalten bleiben. Mit der Projektarbeit soll ein Problem aus der Technik/Wissenschaft/Gesellschaft umfassend bearbeitet werden. Es sind Gruppen von mindestens zwei bis maximal drei Studenten zu einem gemeinsamen Thema zu bilden. Die aufzustellende Projektarbeit muss die Teile - Problemstellung - Lösungsansätze - Bewertung gesellschaftspolitisch - Umweltrelevanz - Systemverträglichkeit gleichmäßig behandeln. Die Projektarbeit ist eine Gemeinschaftsarbeit, Abgrenzungen der einzelnen Beteiligten ist sichtbar zu machen. Die Teamarbeit wird hierbei überprüft. Das Thema ist in der zweiten Hälfte des 1. Fachsemesters auszuwählen und am Ende des 1. Fachsemesters in einem Kolloquium vorzustellen (Eröffungsverteidigung). Während der Bearbeitungsphase sind Literaturauswertungen ebenso notwendig wie mindestens ein Zwischenkolloquium und der Abschluss erfolgt in einer Abschlussverteidigung, wo jeder Teilnehmer in einem 20 min. Vortrag wesentliche Teile der Arbeit verteidigt werden.

### Vorkenntnisse

BA WSW, Erfolgreiches Absolvieren der davor liegenden Semester

### Inhalt

Die Studierenden bearbeiten selbstständig ein gestelltes experimentelles Problem der Werkstoffwissenschaft in Zusammenarbeit mit einem betreuenden Hochschullehrer. Die Projektarbeit wird im Anschluss in einem Kolloquium vorgestellt und Diskutiert.

### Medienformen

Experimentelles Praktisches Arbeiten im Labor und am Computer, Spezialliteratur nach Thema und Lehrbücher.

### Literatur

Literatur entsprechend der jeweiligen Aufgabenstellung

### Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen



# Modul: Masterarbeit mit Kolloquium

Modulnummer6944

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

# Lernergebnisse

Die Lösung von komplexen technischen Fragestellungen innerhalb eines begrenzten Zeitraums gehört zu den notwendigen beruflichen Fähigkeiten von Ingenieuren. Die systematische Durchführung von Versuchen, Experimenten oder Erprobungen sowie die damit zusammenhängende Erstellung von technischen Berichten und Publikationen dient der Kommunikation zwischen Fachleuten und stellt sicher, dass erworbenes Wissen und Erfahrungen erhalten bleiben. Mit der Masterarbeit zeigen Studierende, dass sie in der Lage sind, eine komplexe technische Fragestellung mit wissenschaftlichen Methoden innerhalb eines begrenzten Zeitraums zu lösen und das dabei erworbene theoretische und praktische Wissen nachvollziehbar zu dokumentieren. Im Rahmen des Kolloquiums weisen die Studierenden nach, dass sie die Ergebnisse ihrer Arbeit verbal kommunizieren können.

# Vorraussetzungen für die Teilnahme

Alle Vorleistungen die zur Zulassung der Masterarbeit notwendig sind.

### Detailangaben zum Abschluss

Seite 91 von 95



Master Werkstoffwissenschaft 2011 Modul: Masterarbeit mit Kolloquium

| Abschlusskolloquium zur Masterarbei | A | bsch | luss | kollod | muiur | zur | Master | rarbe | it |
|-------------------------------------|---|------|------|--------|-------|-----|--------|-------|----|
|-------------------------------------|---|------|------|--------|-------|-----|--------|-------|----|

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 101118 Prüfungsnummer:99002

Fachverantwortlich:

SWS: Leistungspunkte: Workload (h): Anteil Selbststudium (h): 0.0 Fachgebiet: 217

Fakultät für Elektrotechnik und Informationstechnik

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS S P SP S P S P S P S P S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010



Master Werkstoffwissenschaft 2011 Modul: Masterarbeit mit Kolloquium

### **Masterarbeit**

Fachabschluss: Masterarbeit schriftlich 6 Monate Art der Notengebung: Gestufte Noten

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 6945 Prüfungsnummer:99001

Fachverantwortlich: Prof. Dr. Peter Schaaf

| Leistungspunkte:     | 30      | Workload (h): 900       | Anteil Selbststudium (h): | 900 | SWS: | 0.0         |     |
|----------------------|---------|-------------------------|---------------------------|-----|------|-------------|-----|
| Fakultät für Elektro | technik | und Informationstechnik |                           |     |      | Fachgebiet: | 217 |

|              | 1.FS     |   | 2.FS |   |   | 3.FS |   |   | 4.FS |       |   | 5.FS |   |   | 6.FS |   |   | 7.FS |   |   |   |
|--------------|----------|---|------|---|---|------|---|---|------|-------|---|------|---|---|------|---|---|------|---|---|---|
| SWS nach     | <b>V</b> | S | Р    | > | S | Р    | ٧ | S | Р    | ٧     | S | Р    | ٧ | S | Р    | ٧ | S | Р    | ٧ | S | Р |
| Fachsemester |          |   |      |   |   |      |   |   |      | 900 h |   |      |   |   |      |   |   |      |   |   |   |

# Lernergebnisse / Kompetenzen

Die Studierenden sind fähig eine wissenschaftliche Fragestellung oder Thema in der Komplexität einer Masterarbeit mit Anleitung selbständig zu bearbeiten. Die Studierenden können den Sachverhalt analysieren und bewerten. Sie entwerfen eine Gliederung bzw. Arbeitsprogramm, sie können Versuche planen und auswerten und die Ergebnisse in schriftlicher und mündlicher Form zu präsentieren.

#### Vorkenntnisse

Erfolgreicher Abschluss aller Module des 1. - 3. Semesters im Masterstudium

#### Inhalt

Die Studierenden, die dieses Modul erfolgreich absolviert haben, ... wissen, wie eine Aufgabe methodisch bearbeitet und in einem vorgegebenen Zeitrahmen mit einem klar strukturiertem Ergebnis dargestellt wird. ... können sich schnell in eine neue Aufgabenstellung einarbeiten und das Wissen in einem speziellen Gebiet selbstständig vertiefen. ... setzen eine Reihe von Standard- und einige fortgeschrittene Verfahren und Methoden ein, um Daten zu verarbeiten und strukturiert darzustellen, um so Informationen zu gewinnen, zu bearbeiten und zu verbessern. ... unterziehen Ideen, Konzepte, Informationen und Themen einer kritischen Analyse und Bewertung und stellen diese in einem Gesamtkontext dar. ... wenden eine Reihe fachspezifischer Fähigkeiten, Fertigkeiten und Techniken an, um Aufgaben selbstständig zu lösen.

# Medienformen

Bücher, Computerprogramme, Literatur, Datenbanken, Spezialliteratur entsprechend der konkreten Aufgabenstellung

### Literatur

Individuell entsprechend der Aufgabenstellung; Die Literaturrecherche ist Teil der Abschlussarbeit.

# Detailangaben zum Abschluss

# verwendet in folgenden Studiengängen

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Master Werkstoffwissenschaft 2013

Seite 93 von 95

# Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Nomen nescio, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It.

K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)

Inhaltsverzeichnis