

Modulhandbuch

Master Ingenieurinformatik

Studienordnungsversion: 2014

gültig für das Wintersemester 2016/17

Erstellt am: 01. November 2016

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Rektor der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhb-4696

Inhaltsverzeichnis

	1.FS 2.FS 3.FS 4.FS 5.FS 6.FS	7.FS	
Name des Moduls/Fachs	VSPVSPVSPVSPVSP	PVSP Abschluss	LP Fachnr.
Dynamische Prozessoptimierung		FP	5
Dynamische Prozessoptimierung	211	PL	5 8195
Komplexe Informationstechnische Systeme - Grundlage	en	FP	5
Komplexe Informationstechnische Systeme - Grundlagen	2 1 1	PL	5 100516
Informationstheorie und Codierung		FP	5
Informationstheorie und Codierung	220	PL 90min	5 1378
Studienschwerpunkt		FP	34
		FP	0 0000
Kognitive Technische Systeme		FP	0
Hauptseminar Kognitive Robotik	020	SL	4 101186
Kognitive Robotik		FP	8 101336
Kognitive Robotik		PL 120min	8 181
Kognitive Systeme / Robotik	20	VL	0 181
Lernen in kognitiven Systemen	21	VL	0 182
Robotvision & MMI		FP	7 101337
Robotvision & MMI		PL	7 101148
Mensch-Maschine-Interaktion	200	VL	0 101352
Robotvision	2 1 0	VL	0 183
Knowledge Engineering		FP	7 101324
Knowledge Engineering		PL 120min	7 101152
Data Mining	200	VL	0 221
Evolutionäre Verfahren	100	VL	0 101153
Inferenzmethoden	200	VL	0 220
Bildverarbeitung		FP	9 101650
Bildverarbeitung		PL 120min	9 101657
Digitale Bildverarbeitung		VL	0 101654
Systemtechnik und Systemtheorie der Bildverarbeitung		VL	0 101591
Ausgewählte Methoden der Softwaretechnik		FP	5 101651
Ausgewählte Methoden der Softwaretechnik	220	PL	5 101655
Model Driven Architecture (MDA)		FP	5 101652

Model Driven Architecture (MDA)		PL	5	101656
Softwarearchitekturen		FP	6	101653
Softwarearchitekturen		PL	6	640
Multimediale Informations- und Kommunikationssysteme	e	FP	0	
Hauptseminar Multimediale Informations- und Kommunikationssysteme	020	SL	4	101189
Advanced Networking Technologies		 FP	5	101334
Advanced Networking Technologies	300	PL 20min	5	5642
Netzalgorithmen		FP	5	100525
Netzalgorithmen	2 1 0	PL 20min	5	8215
Protokolle und Dienste der Mobilkommunikation		FP	5	101351
Protokolle und Dienste der Mobilkommunikation	2 1 1	PL 30min	5	5203
Schutz von Kommunikationsinfrastrukturen		FP	5	101335
Schutz von Kommunikationsinfrastrukturen	3 0 0	PL 20min	5	5641
Distributed Data Management		FP	5	101328
Distributed Data Management	2 1 0	PL 30min	5	101155
Transaktionale Informationssysteme		FP	5	100524
Transaktionale Informationssysteme	2 1 0	PL	5	254
Advanced Mobile Communication Networks		FP	5	5837
Advanced Mobile Communication Networks	220220	PL	5	100500
Network Security		FP	5	101295
Network Security	3 0 0	PL 20min	5	5645
Cellular Communication Systems		FP	5	5844
Cellular Communication Systems	220	PL	5	100501
Verteilte Echtzeitsysteme		FP	5	101333
Verteilte Echtzeitsysteme	3 1 0	PL 20min	5	260
Interaktive Grafiksysteme / VR		FP	6	101658
Interaktive Grafik / VR		PL 60min	6	101660
Interaktive Computergrafiksysteme		VL	0	101661
Virtual and Augmented Reality		VL	0	101662
Softwaretechnik für sicherheitskritische Systeme		FP	5	101659
Softwaretechnik für sicherheitskritische Systeme	220	PL	5	101663
Medizintechnik		FP	0	
Hauptseminar BMT	020	SL	4	1685
Praktikum BMT	001002	SL	4	8411

Designprojekt BMT Msc		FP	6	100681
Designprojekt	0 4 0	PL	6	7868
Klinische Verfahren		FP	6	101355
Klinisches Seminar "Medizinische Grundlagen"		SL	1	1701
Klinische Verfahren		PL 120min	6	100526
Klinische Verfahren 1	20	VL	0	1696
Klinische Verfahren 2	200	VL	0	1697
Biomedizinische Mess- und Therapietechnik		MO	6	100800
Grundlagen der Medizinischen Messtechnik	210	PL 120min	4	1373
Biomedizinische Technik in der Therapie	200	SL 60min	2	1691
Biomedizinische Technik		FP	7	100342
Bildgebende Systeme in der Medizin 2	200	PL 20min	3	5605
Verfahren der Biomedizinischen Messtechnik	210	PL 20min	4	5603
Biosignalverarbeitung		FP	8	100341
Bildverarbeitung in der Medizin 1	210	PL 90min	4	5592
Biosignalverarbeitung 2	210	PL 90min	4	5599
Medizinische Informatik		FP	6	101356
Rechnergestützte Messdatenerfassung	110	SL 30min	3	7875
KIS, Telemedizin, eHealth	210	PL 30min	3	5601
Technische Kybernetik - Systemtechnik		FP	0	
Hauptseminar Technische Kybernetik - Systemtechnik	020	SL	4	101187
Diagnose- und Vorhersagesysteme		FP	5	100905
Diagnose- und Vorhersagesysteme	2 1 1	PL 30min	5	5542
Adaptive und strukturvariable Regelungssysteme		FP	5	100908
Adaptive und strukturvariable Regelungssysteme	2 1 1	PL	5	100755
Fuzzy und Neuro Control		FP	5	100723
Fuzzy- and Neuro Control	2 1 1	PL	5	100726
Nichtlineare Regelungssysteme 1		FP	5	100722
Nichtlineare Regelungssysteme 1	211	PL	5	100498
Nichtlineare Regelungsysteme 2		FP	5	100907
Nichtlineare Regelungssysteme 2	2 1 1	PL	5	100762
Kommunikations- und Bussysteme		FP	5	100900
Kommunikations- und Bussysteme	211	PL	5	100768
Hierarchische Steuerungssysteme		FP	5	100906
Hierarchische Steuerungssysteme	211	PL	5	101193

Ereignisdiskrete Systeme		FP	5	100903
Ereignisdiskrete Systeme	3 1 0	PL 30min	5	7631
Prozess- und Umweltsystemtechnik		FP	5	101354
Prozess und Umweltsystemtechnik	3 1 0	PL 30min	5	101195
Wissensbasierte Systeme		FP	5	100901
Wissensbasierte Systeme	2 1 1	PL 30min	5	100806
Mobilfunk		FP	0	
Hauptseminar Mobilfunk	020	SL	4	101190
Antennen		FP	5	100685
Antennen	2 1 1	PL 30min	5	5168
Digitale Messdatenverarbeitung 1		FP	5	101357
Digitale Messdatenverarbeitung 1	220	PL 30min	5	5180
Digitale Messdatenverarbeitung 2		FP	5	101358
Digitale Messdatenverarbeitung 2	220	PL 30min	5	5181
Funknavigation und UWB-Radarsensorik		FP	6	100694
Funknavigation und UWB-Radarsensorik	4 1 0	PL 60min	6	100472
Mobile Communications		FP	5	100683
Mobile Communications	3 1 0	PL 120min	5	5176
Adaptive and Array Signal Processing		FP	5	100503
Adaptive and Array Signal Processing	3 1 0	PL 120min	5	5581
Funksysteme		FP	5	100687
Funksysteme	3 1 0	PL 30min	5	5175
Messsysteme der Informations- und Kommunikationstechnik		FP	5	100684
Messsysteme der Informations- und Kommunikationstechnik	3 1 0	PL 30min	5	5170
Implementation of Broadcasting Systems		FP	5	100739
Implementation of Broadcasting Systems	220	PL 30min	5	8294
Cellular Communication Systems		FP	5	5844
Cellular Communication Systems	220	PL	5	100501
Integrierte Hard- und Softwaresysteme		FP	0	
Hauptseminar Integrierte Hard- und Softwaresysteme	020	SL	4	101188
Programmierbare Logikbausteine		FP	5	100697
Programmierbare Logikbausteine	112	PL 30min	5	100759
Rechnergestützte Schaltungssimulation und deren Algorithmen (EDA)		FP	5	100696
Rechnergestützte Schaltungssimulation und deren Algorithmen (EDA)	220	PL 30min	5	100473

Fortgeschrittene Modellierung und Rechnerarchitekturen	FP	8 101319
Fortgeschrittene Modellierung und Rechnerarchitekturen	PL	8 101157
Einchipcontroller und Digitale Signalprozessoren 2 0 0	VL	0 174
Spezielle und Innovative Rechnerarchitekturen 20	VL	0 173
Technische Applikation von Petri-Netzen 2 1 0	VL	0 171
Advanced Mobile Communication Networks	FP	5 101360
Advanced Mobile Communication Networks 220220	PL	5 100500
Leistungsbewertung Technischer Systeme	FP	5 101318
Leistungsbewertung Technischer Systeme 220	PL	5 101158
Spezielle Aspekte Integrierter Hard- und Software- Systeme	FP	5 101320
Spezielle Aspekte Integrierter Hard- und Softwaresysteme	PL	5 7793
Model Driven Architecture (MDA)	FP	5 101652
Model Driven Architecture (MDA)	PL	5 101656
Projektseminar zum Studienschwerpunkt II Msc	MO	6
Projektseminar zum Studienschwerpunkt 0 4 0	SL	6 100514
Nichttechnisches Nebenfach	MO	5
	SL	0 0000
	SL	0 0000
Masterarbeit II	FP	30
Kolloquium zur Master-Arbeit	PL 30min	6 101480
Masterarbeit	MA 6	24 7461

Modul: Dynamische Prozessoptimierung

Modulnummer:100355

Modulverantwortlich: Prof. Dr. Pu Li

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können

- die Grundlagen, Problemstellungen und Methoden der dynamischen Prozessoptimierung klassifizieren,
- · Methoden und Werkzeuge anwenden,
- unterschiedliche Problemstellungen und mathematische Herleitungen analysieren und generieren
- optimale Steuerungen berechnen sowie
- · Anwendungsfälle für industrielle Prozesse analysieren, entwickeln und bewerten.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik, Regelungs- und Systemtechnik, Prozessoptimierung 1

- 1) Schriftliche Prüfung, 90 min. und
- 2) Unbenoteter Schein (Testat) für Praktikum

Master Ingenieurinformatik 2014

Modul: Dynamische Prozessoptimierung

Dynamische Prozessoptimierung

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 8195 Prüfungsnummer:220372

Fachverantwortlich: Prof. Dr. Pu Li

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 105 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2212

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS SP SP S S Ρ SP S Ρ S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Studierenden können

- die Grundlagen, Problemstellungen und Methoden der dynamischen Prozessoptimierung klassifizieren,
- · Methoden und Werkzeuge anwenden,
- unterschiedliche Problemstellungen und mathematische Herleitungen analysieren und generieren
- · optimale Steuerungen berechnen sowie
- · Anwendungsfälle für industrielle Prozesse analysieren, entwickeln und bewerten

Vorkenntnisse

Grundlagen der Mathematik, Physik, Elektrotechnik; Regelungs- und Systemtechnik

Inhalt

Indirekte Verfahren

- Variationsverfahren, Optimalitätsbedingungen
- Das Maximum-Prinzip
- Dynamische Programmierung
- Riccati-Optimal-Regler

Direkte Verfahren

- Methoden zur Diskretisierung, Orthogonale Kollokation
- Lösung mit nichtlinearen Programmierungsverfahren
- Simultane und Sequentielle Verfahren

Anwendungsbeispiele

- Prozesse in der Luft- und Raumfahrtindustrie
- Prozesse in der Chemieindustrie
- Prozesse in der Wasserbewirtschaftung

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb

Literatur

- D. G. Luenberger. Introduction to Dynamic Systems. Wiley. 1979
- A. C. Chiang. Elements of Dynamic Optimization. McGraw-Hill. 1992
- D. P. Bertsekas. Dynamic Programming and Stochastic Control. Academic Press. 1976

- R. F. Stengel. Optimal Control and Estimation. Dover Publications. 1994
- J. Macki. Introduction to Optimal Control Theory. Springer. 1998
- D. G. Hull. Optimal Control Theory for Applications. Springer. 2003

Detailangaben zum Abschluss

- 1) Mündliche Prüfung, 30 min. und
- 2) Testat für durchzuführendes Praktikum

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Mechatronik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Electrical Power and Control Engineering 2013

Master Mechatronik 2008

Master Research in Computer & Systems Engineering 2009

Master Wirtschaftsingenieurwesen 2015 Vertiefung AT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Wirtschaftsingenieurwesen 2013 Vertiefung AT

Master Wirtschaftsingenieurwesen 2014 Vertiefung AT

Modul: Komplexe Informationstechnische Systeme - Grundlagen

Modulnummer:100358

Modulverantwortlich: Prof. Dr. Armin Zimmermann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden verstehen detailliert Aufbau und Funktionsweise von komplexen informationstechnischen Systemen. Die Studierenden die in eingebetteten Systemen zu beachtenden Echtzeit-, Kommunikations- und softwaretechnischen Aspekte. Die Studierenden sind fähig, Sicherheit, Zuverlässigkeit und Leistungsverbrauch beim Entwurf zu berücksichtigen. Die Studenten haben Kenntnisse in der Entwurfsdomäne Automotive. Methodenkompetenz: Die Studierenden sind in der Lage, Methoden des Systementwurfs, des modellbasierten Entwurfs und des Hardware-Software-Codesigns auf konkrete Problemstellungen anzuwenden. Die Studierenden sind in der Lage, verschiedene Methoden für unterschiedliche Anwendungsgebiete zu bewerten. Systemkompetenz: Die Studierenden entwerfen und validieren auszugsweise komplexe eingebettete Rechnersysteme für konkrete Einsatzszenarien. Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen des Entwurfs in der Gruppe zu lösen.

Vorraussetzungen für die Teilnahme

Bachelor Informatik / Ingenieurinformatik oder gleichwertiger Abschluss

Detailangaben zum Abschluss

Prüfungsleistung (schriftliche Klausur) und unbenotetes Praktikum (Schein, Studienleistung)

Während des Semesters werden Projektaufgaben (Entwurf, Programmierung) begleitend zur Vorlesung bearbeitet. Diese müssen für den Modul-Abschluss erfolgreich abgeschlossen werden. Dafür wird die Studienleistung verbucht. In der vorlesungsfreien Zeit wird eine schriftliche Klausur geschrieben, die die Note bestimmt. Bei sehr guten Praktikumslösungen können Bonuspunkte für die nachfolgende Klausur vergeben werden.

Master Ingenieurinformatik 2014

Modul: Komplexe Informationstechnische Systeme - Grundlagen

Komplexe Informationstechnische Systeme - Grundlagen

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100516 Prüfungsnummer:220373

Fachverantwortlich: Prof. Dr. Armin Zimmermann

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 105 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2236

2.FS 4.FS 5.FS 1.FS 3.FS 6.FS 7.FS Р S P S P S P S P SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Studierenden verstehen detailliert Aufbau und Funktionsweise von komplexen informationstechnischen Systemen. Die Studierenden die in eingebetteten Systemen zu beachtenden Echtzeit-, Kommunikations- und softwaretechnischen Aspekte. Die Studierenden sind fähig, Sicherheit, Zuverlässigkeit und Leistungsverbrauch beim Entwurf zu berücksichtigen. Die Studenten haben Kenntnisse in der Entwurfsdomäne Automotive. Methodenkompetenz: Die Studierenden sind in der Lage, Methoden des Systementwurfs, des modellbasierten Entwurfs und des Hardware-Software-Codesigns auf konkrete Problemstellungen anzuwenden. Die Studierenden sind in der Lage, verschiedene Methoden für unterschiedliche Anwendungsgebiete zu bewerten. Systemkompetenz: Die Studierenden entwerfen und validieren auszugsweise komplexe eingebettete Rechnersysteme für konkrete Einsatzszenarien. Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen des Entwurfs in der Gruppe zu lösen.

Vorkenntnisse

Bachelor Informatik / Ingenieurinformatik oder gleichwertiger Abschluss

Inhalt

Einführung, Systementwurf, Modellbasierter Entwurf Echtzeitsysteme, Zuverlässige Systeme, Zuverlässigkeitsbewertung

O officer and to also also also a A or a let a Dead of the land

Softwaretechnische Aspekte, Produktlinien

Hardware-Software-Codesign, Rechnerarchitekturaspekte

Kommunikation

Energieeffizienz

Medienformen

Folien und Übungsblätter, verfügbar auf den Webseiten

Literatur

Hinweise in der Lehrveranstaltung und auf den Webseiten

Detailangaben zum Abschluss

Prüfungsleistung (schriftliche Klausur) und unbenotetes Praktikum (Schein, Studienleistung)

Während des Semesters werden Projektaufgaben (Entwurf, Programmierung) begleitend zur Vorlesung bearbeitet.

Diese müssen für den Modul-Abschluss erfolgreich abgeschlossen werden. Dafür wird die Studienleistung verbucht. In der vorlesungsfreien Zeit wird eine schriftliche Klausur geschrieben, die die Note bestimmt. Bei sehr guten Praktikumslösungen können Bonuspunkte für die nachfolgende Klausur vergeben werden.

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Modul: Informationstheorie und Codierung

Modulnummer:100632

Modulverantwortlich: Prof. Dr. Jochen Seitz

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz

Die Studierenden lernen die informationstheoretische Beschreibung und Kenngrößen von Quellenmodellen, des Übertragungskanals und von Leitungscodierungen kennen. Sie sind fähig, Verfahren zur Optimalcodierung und fehlerkorrigierenden Codierung zu verstehen und anzuwenden. Weiterhin sind sie in der Lage, Codierungen zu klassifizieren und deren Algorithmen zu verstehen, zu analysieren und mit Hilfe entsprechender Kenngrößen zu bewerten. Sie kennen die Grundlagen der Chiffrierung, von orthogonalen Multiplexverfahren und der Kombination von Optimalcodierung und Modulation. Die Studierenden sind in der Lage, Codes hinsichtlich Redundanz, Störsicherheit und Chiffrierung zu bewerten und zu synthetisieren. Sie können die Effizienz der Redundanzreduktion für bekannte Standardverfahren in modernen Informationsübertragungssystemen (leitungsgebunden und drahtlos) analysieren und grundlegende Verfahren der Optimalcodierung in Anwendungen synthetisieren. Die Studierenden erwerben sich die Fähigkeit, neue Verfahren der Codierungstechnik zu verstehen, zu bewerten und zu synthetisieren.

Methodenkompetenz

Die Studierenden sind sicher im Umgang mit mathematischen Beschreibungen von Codierungsverfahren und sind daher in der Lage, so beschriebene Verfahren auch in Anwendungen umzusetzen.

Systemkompetenz

Durch die in dieser Vorlesung behandelten Themen sind die Studierenden in der Lage eine Übertragungsstrecke von der Quelle bis zur Senke aus informationstheoretischer Sicht als System zu verstehen, Funktionalitäten zu analysieren, zu beschreiben und zu bewerten. Sie verstehen die Aufgaben und Ziele der verschiedenen im System angewendeten Codierungsarten und deren Auswirkungen bzw. deren Einfluss auf das Gesamtverhalten des Systems.

Sozialkompetenz

Anhand von sowohl in der Vorlesung als auch in den Übungen diskutierten Beispielen sind die Studierenden in der Lage, Probleme aus dem Bereich der Informationstheorie und Codierung mit Experten zu diskutieren und eigene Beiträge zu präsentieren.

Vorraussetzungen für die Teilnahme

Pflichtfächer in den Semestern 1-4, Warscheinlichkeitsrechnung, ausgewählte Methoden der Algebra

Master Ingenieurinformatik 2014

Modul: Informationstheorie und Codierung

Informationstheorie und Codierung

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1378 Prüfungsnummer:2100022

Fachverantwortlich: Prof. Dr. Jochen Seitz

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echnik ι	und Informationstechnik				Fachgebiet:	2115

	1	I.FS)	2	2.FS	3	3.FS				1.FS)		5.FS	3	(3.FS	3	7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	
Fachsemester				2	2	0																

Lernergebnisse / Kompetenzen

Die Studierenden kennen informationstheoretische Beschreibung und Kenngrößen der Quellenmodelle, des Übertragungskanals, von Leitungscodierungen. Sie verstehen Optimalcodierungen, fehlerkorrigierende Codierungsverfahren, Grundlagen der Chiffrierung und Anwendungen der Codierungstheorie in orthogonalen Multiplexverfahren. Die Studierenden sind in der Lage, Codes hinsichtlich Redundanz, Störsicherheit und Chiffrierung zu bewerten und zu synthetisieren. Sie können die Effizienz der Redundanzreduktion für bekannte Standardverfahren in modernen Informationsübertragungssystemen (leitungsgebunden und drahtlos) analysieren und grundlegende Verfahren der Optimalcodierung in Anwendungen synthetisieren. Die Studierenden erwerben die Fähigkeit, neue Verfahren der Codierungstechnik zu verstehen, zu bewerten und zu synthetisieren.

Vorkenntnisse

Pflichtfächer in den Semestern 1-4, Warscheinlichkeitsrechnung, ausgewählte Methoden der Algebra

Inhalt

- Nachrichtenübertragungsmodell, Signalguellen, informationstheoretische Beschreibung, Entropie.
- · Quellencodierung, Redundanzminderung nach Fano und Huffman, Codierung von Markoff-Prozessen.
- Redundanzminderung durch Transformation, Selektion und Quantisierung (Golomb, Rice, Arithmetische Codierung)
- Übertragungskanal, informationstheoretische Beschreibung, Signal/Rausch-Verhältnis und Fehlerwahrscheinlichkeit
- Informationstheoretische Modellierung des Übertragungskanals, Informationsfluss und Kanalkapazität
- · Leitungscodierungen mit Beispielen
- · Fehlerkorrigierende Codierung (Kanalcodierung), Grundlagen, Fehlererkennung, Fehlerkorrektur, Restfehlerrate
- · Hamming-Codes, Linearcodes, zyklische Codes, Technische Realisierung
- · Burstfehlerkorrektur. Faltungscodierung und Viterbi- Algorithmus
- · Galoisfeld, BCH-Codes, RS-Codes, Turbo-Codes.
- Chiffrierung, symmetrische u. asymmetrische Verfahren
- Orthogonalcodes (CDMA).

Medienformen

Folienpräsentation über Beamer, Übungsaufgaben, Tafelanschrieb, Literaturverweise.

Literatur

Rohling, H.: Einführung in die Informations- und Codierungstheorie, Teubner-Verlag, 1995, ISBN 3-519-06174-0.

- Bossert, M.: Kanalcodierung, Teubner-Verlag, 1998, ISBN 3-519-06143-0.
- Kubas, Chr.: Informations- und Kodierungstheorie, 4. Lehrbuch, Dresden, 1992, ISBN 02-1590-04-0.
- Schönfeld, D.; Klimant, H.; Piotraschke, R.: Informations- und Codierungstheorie, 4. Auflage, Springer/Vieweg, 2012, ISBN 978-3-8348-8218-9.
 - Strutz, T.: Bilddatenkompression, Vieweg-Verlag, 2005, ISBN 3-528-13922-6.
- Finger, A.: Digitale Signalstrukturen in der Informationstechnik, Oldenbourg Wissenschaftsverlag, 1985, ISBN 978-3-4862-9851-2.
- Wobst; R.: Abenteuer Kryptologie Methoden, Risiken und Nutzen der Datenverschlüsselung, Addison-Wesley, 2001, ISBN 3-8273-1815-7.
 - Fey, P.: Informationstheorie, 3. Auflage, Akademie-Verlag, 1968, ASIN B004IK2XTE.
 - Valenti, M. C.: Iterative Detection and Decoding for Wireless Communications, Dissertation, 1999, Blacksburg, Virginia.
 - Golomb, S.W.: Run-length-Encodings, IEEE Trans. on Information Theory, Vol. 12, Issue 3, July 1966, pp.399-401.

Detailangaben zum Abschluss

Im Rahmen des Seminars können selbständig zu bearbeitende Projekte vergeben werden, die dem jeweiligen Semester angepasste Themen beinhalten und dann mit bis zu 20% in die Prüfungsnote eingehen, sofern die reguläre Prüfung als bestanden gilt. Die entsprechenden Rahmenbedingungen werden zur ersten Lehrveranstaltung im Semester bekanntgegeben.

Zudem wird in der ersten Lehrveranstaltung geklärt, ob die reguläre Prüfung schriftlich oder mündlich erfolgt.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Bachelor Medientechnologie 2013

Master Ingenieurinformatik 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Master Optische Systemtechnik/Optronik 2014

Bachelor Elektrotechnik und Informationstechnik 2013

Master Optronik 2010

Master Optronik 2008

Modul: Studienschwerpunkt(Wahl 1 aus 6)

Modulnummer 100361

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

- Fachkompetenz: Die Studierenden haben sich im gewählten Studienschwerpunkt vertieft und die dort vermittelten Kenntnisse erworben.
- Methodenkompetenz: Sie können die grundlegenden sowie fortgeschrittenen Methoden des gewählten Schwerpunktes anwenden und beherrschen die dort üblichen Analyse- sowie Synthesetechniken

Vorraussetzungen für die Teilnahme

Hochschulzulassung, Inhalte der ersten vier Semester des Bachelorstudiums.

Modul: Kognitive Technische Systeme

Modulnummer8335

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz: Die Studierenden verstehen Aufbau und Funktionsweise kognitiver technischer Systeme und ihrer Teilkomponenten aus der kognitiven Robotik, der Bildverarbeitung und der erforderlichen Prozessmodellierung. Die Studierenden kennen Lernparadigmen, verschiedenen Arten von technischen Sehsystemen bis hin zu Lösungsansätzen zur multimedialen Mensch-Maschine-Kommunikation. Methodenkompetenz: Die Studierenden sind in der Lage, technische Sehsysteme zu analysieren und zu konzipieren, die über Eigenschaften des Lernens verfügen und in autonom agierenden Systemen (z. B. Robotern) eingesetzt werden können. Sie beherrschen die dazu notwendigen Softwaresysteme. Sie sind in der Lage, vorhandenes Wissen in begrenzter Zeit erfolgreich zur Problemlösung in der kognitiven Robotik anzuwenden. Sozialkompetenz: Die Studierenden lösen einen Teil der Aufgaben in der Gruppe. Sie sind in der Lage, auf Kritiken und Lösungshinweise zu reagieren. Sie verstehen die Notwendigkeit einer sorgfältigen und ehrlichen Arbeitsweise.

Vorraussetzungen für die Teilnahme

keine

Master Ingenieurinformatik 2014

Modul: Kognitive Technische Systeme

Hauptseminar Kognitive Robotik

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 101186 Prüfungsnummer:2200474

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2233

	1	I.FS)	2	2.FS	3	3.FS				1.FS)		5.FS	3	(3.FS	3	7.FS			
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	
Fachsemester				0	2	0																

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verstehen ein spezielles Forschungsthema auf dem Gebiet der Ingenieurinformatik. Sie sind in der Lage den Stand der Technik zu einer vorgegebenen Fragestellung zu erfassen, einzuordnen und zu bewerten, sowie die Ergebnisse schriftlich darzustellen und in einer Präsentation zu vermitteln.
- Methodenkompetenz: Die Studierenden sind in der Lage, wissenschaftlich-technische Literatur zu recherchieren und auszuwerten.
- Systemkompetenz: Die Studierenden werden befähigt, Abhängigkeiten einer speziellen Problemstellung zu verschiedenen Anwendungsgebieten herzustellen.
- Sozialkompetenz: Die Studierenden werden befähigt, wissenschaftliche Themen schriftlich und mündlich zu präsentieren.

Vorkenntnisse

entsprechend der gewählten Problematik themenspezifisch

Inhalt

Das Hauptseminar besteht in der selbstständigen Bearbeitung eines Forschungsthemas, welches als solches nicht direkt Bestandteil der bisherigen Ausbildung war. Das Ziel besteht darin, zu Thema den state of the art zu erfassen, einzuordnen und zu bewerten. Der Student hat folgende Aufgaben zu erfüllen: Einarbeitung und Verständnis des Themenbereichs auf der Basis bisherigen Ausbildung, der vorgegebenen und weiterer für die umfassende Behandlung und das Verständnis notwendiger, selbst zu findender Literaturquellen. Einordnung des Themenbereichs in das wissenschaftliche Spektrum ingenieurtechnischer Fragestellungen auf der Basis der bis dahin in der Ausbildung vermittelten Erkenntnisse; Schriftliche und mündliche Präsentation der Ergebnisse

Medienformen

Workshops mit Präsentation (Tafel, Handouts, Laptop)

Literatur

Themenspezifische Vorgabe

Hinweis: Das Seminar kann bei folgenden Fachgebieten belegt werden:

- Prof. Dr. Horst-Michael Groß, Fakultät für Informatik und Automatisierung
- Dr. Sylvia Bräunig, Fakultät für Elektrotechnik und Informationstechnik
- Dr. Rico Nestler, Fakultät für Informatik und Automatisierung
- Prof. Dr. Detlef Streitferdt, Fakultät für Informatik und Automatisierung
- Prof. Dr. Rainer Knauf, Fakultät für Informatik und Automatisierung
- · Prof. Dr. Armin Zimmermann, Fakultät für Informatik und Automatisierung
- Prof. Dr. Gunther Notni, Fakultät für Maschinenbau
- Prof. Dr. Beat Brüderlin, Fakultät für Informatik und Automatisierung

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Modul: Kognitive Robotik

Modulnummer:101336

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Master Ingenieurinformatik 2014 Modul: Kognitive Robotik

Kognitive Robotik

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 181 Prüfungsnummer:2200100

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	8	Workload (h): 240	Anteil Selbststudium (h):	218	SWS:	2.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2233

	1	1.FS V S P			2.FS	3	3.FS			4.FS			į	5.FS	3	6	3.FS	3	7.FS		
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

naturwissenschaftliche und angewandte Grundlagen, Einbindung des angewandten Grundlagenwissens in das System der Informationsverarbeitung eines Roboters

Vorkenntnisse

Neuroinformatik

Inhalt

Begriffsdefinitionen; Anwendungsbeispiele; Marktentwicklung; Basiskomponenten Kognitiver Roboter; Antriebskonzepte; aktive und passive / interne und externe Sensoren; Hindernisvermeidung; probabilistische Umgebungsmodellierung und Selbstlokalisation mittels distanzmessender Sensorik; Pfadplanung und Bewegungssteuerung; Steuerarchitekturen; grundlegende Aspekte der Mensch-Roboter-Interaktion; Simultaneous Localization and Mapping (SLAM) und dessen Spielarten; probabilistische Verfahren zur Zustandsschätzung (Kalman-Filter, Partikel-Filter, Hierarchische Partikel-Filter); visuell-basierte Umgebungs-modellierung; multimodale Verfahren zur Umgebungs-erfassung / Sensorfusion; Entwurf von hybriden Steuerarchitekturen

Medienformen

Arbeitsblätter zur Vorlesung, Übungsaufgaben, e-learning Module

Literatur

Borenstein, Everett, Feng: Where am I? Sensors and Methods for Mobile Robot Positioning; online, 1996; Murphy: Introduction to Al Robotics, MIT Press, 2000

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Informatik 2013

Master Informatik 2009

Master Biomedizinische Technik 2014

Master Ingenieurinformatik 2014 Modul: Kognitive Robotik

Kognitive Systeme / Robotik

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 181 Prüfungsnummer:2200444

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2233

	1	I.FS	3		2.FS	3	3.FS			4.FS				5.FS	3		3.FS	3	7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	
Fachsemester	2	0	0																			

Lernergebnisse / Kompetenzen

naturwissenschaftliche und angewandte Grundlagen, Einbindung des angewandten Grundlagenwissens in das System der Informationsverarbeitung eines Roboters

Vorkenntnisse

Neuroinformatik

Inhalt

Begriffsdefinitionen; Anwendungsbeispiele; Marktentwicklung; Basiskomponenten Kognitiver Roboter; Antriebskonzepte; aktive und passive / interne und externe Sensoren; Hindernisvermeidung; probabilistische Umgebungsmodellierung und Selbstlokalisation mittels distanzmessender Sensorik; Pfadplanung und Bewegungssteuerung; Steuerarchitekturen; grundlegende Aspekte der Mensch-Roboter-Interaktion; Simultaneous Localization and Mapping (SLAM) und dessen Spielarten; probabilistische Verfahren zur Zustandsschätzung (Kalman-Filter, Partikel-Filter, Hierarchische Partikel-Filter); visuell-basierte Umgebungs-modellierung; multimodale Verfahren zur Umgebungs-erfassung / Sensorfusion; Entwurf von hybriden Steuerarchitekturen

Medienformen

Arbeitsblätter zur Vorlesung, Übungsaufgaben, e-learning Module

Literatur

Borenstein, Everett, Feng: Where am I? Sensors and Methods for Mobile Robot Positioning; online, 1996; Murphy: Introduction to Al Robotics, MIT Press, 2000

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Informatik 2013

Master Informatik 2009

Master Biomedizinische Technik 2014

Master Ingenieurinformatik 2014 Modul: Kognitive Robotik

Lernen in kognitiven Systemen

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 182 Prüfungsnummer:2200443

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2233

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

naturwissenschaftliche und angewandte Grundlagen, Einbindung des angewandten Grundlagenwissens der Informationsverarbeitung

Vorkenntnisse

Vorlesung Neuroinformatik

Inhalt

Begriffliche Grundlagen (Verhalten, Agenten, Stabilitäts-Plastizitäts-Dilemma, Exploration-Exploitation-Dilemma); Lernmethodiken (Lebenslanges Lernen, online-Lernen, Reinforcement-Lernen, Imitation Learning, One-shot-Lernen, statistisches Lernen); Ebenen des Lernens und der Wissensrepräsentation in Animals/Animates (sensomotorische/kognitive Intelligenz, prozedurales/deklaratives Wissen); Konditionierungsarten; Reinforcement Learning (RL-Task, Basiskomponenten, starke/schwache RL-Verfahren; Policy/Value Iteration, Q-Learning, Eligibility Traces, RL in neuronalen Agenten); Exemplarische Software-Implementierungen von RL-Verfahren für Navigationsaufgaben, Spiele, Prozesssteuerungen; Lernen in Neuronalen Multi-Agenten Systemen.

Medienformen

Power Point Folien, Programmieraufgaben

Literatur

wird noch spezifiziert

Detailangaben zum Abschluss

mPL 30 min, im Modul kognitive Robotik

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Biomedizinische Technik 2014

Modul: Robotvision & MMI

Modulnummer:101337

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Ziel des Moduls ist es, Kompetenzen auf den Gebieten Mensch-Maschine-Interaktion und der maschinellen Bildverarbeitung auf mobilen Plattformen (Roboter) zu vermitteln. Die Studierenden kennen und verstehen die Strategien Bildaufnahme- und verarbeitungsalgorithmen und können diese für Fragestellungen der Kommunikation Mensch – Roboter anwenden. Die Studierenden sind mit den aus den Strategien abgeleiteten methodischen Grundlagen vertraut und können die wichtigsten Verarbeitungstechniken erkennen und bewerten, sowie typische Aufgaben der Bildverarbeitung auf Robotern für Navigation und Interaktion mit ihrer Hilfe analysieren und lösen. Sie sind in der Lage, diese Kompetenzen in den Syntheseprozess komplexer Roboterprojekte einfließen zu lassen. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien von Kamera basiert arbeitenden mobilen Plattformen für Assistenz- und Servicezwecke, können diese analysieren, bewerten und bei weiterführenden Entwicklungsprozessen mitwirken. Die Studierenden sind in der Lage, Fach- Methoden- und Systemkompetenz für das Themenspektrum "Robotvision" und "Mensch-Maschine-Interaktion" in interdisziplinären Teams zu vertreten. Die Studierenden sind in der Lage, grundlegende Sachverhalte des Themenfeldes klar und korrekt zu kommunizieren.

Vorraussetzungen für die Teilnahme

keine

Master Ingenieurinformatik 2014 Modul: Robotvision & MMI

Robotvision & MMI

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101148 Prüfungsnummer:2200445

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	7	Workload (h): 210	Anteil Selbststudium (h):	154	SWS:	5.0	
Fakultät für Informa	itik un	d Automatisierung				Fachgebiet:	2233

	1	I.FS	3	2	2.FS	3	,	3.FS	3		I.FS	3	į	5.FS	3	6	3.FS	3	7	7.FS	`
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Ziel des Moduls ist es, Kompetenzen auf den Gebieten Mensch-Maschine-Interaktion und der maschinellen Bildverarbeitung auf mobilen Plattformen (Roboter) zu vermitteln. Die Studierenden kennen und verstehen die Strategien Bildaufnahme- und verarbeitungsalgorithmen und können diese für Fragestellungen der Kommunikation Mensch – Roboter anwenden. Die Studierenden sind mit den aus den Strategien abgeleiteten methodischen Grundlagen vertraut und können die wichtigsten Verarbeitungstechniken erkennen und bewerten, sowie typische Aufgaben der Bildverarbeitung auf Robotern für Navigation und Interaktion mit ihrer Hilfe analysieren und lösen. Sie sind in der Lage, diese Kompetenzen in den Syntheseprozess komplexer Roboterprojekte einfließen zu lassen. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien von Kamera basiert arbeitenden mobilen Plattformen für Assistenz- und Servicezwecke, können diese analysieren, bewerten und bei weiterführenden Entwicklungsprozessen mitwirken. Die Studierenden sind in der Lage, Fach- Methoden- und Systemkompetenz für das Themenspektrum "Robotvision" und "Mensch-Maschine-Interaktion" in interdisziplinären Teams zu vertreten. Die Studierenden sind in der Lage, grundlegende Sachverhalte des Themenfeldes klar und korrekt zu kommunizieren.

Vorkenntnisse

keine

Inhalt

siehe Vorlesungen der einzelnen Fächer

Medienformen

MMI: PowerPoint Folien, Videosequenzen; RV: Arbeitsblätter zur Vorlesung, Übungsaufgaben, e-learning Module

Literatur

Literatur der Fächer: MMI und RV

Detailangaben zum Abschluss

Die Prüfung besteht aus einer schriftlichen Klausur (120 min) und der nachgewiesenen Akltivübung im Fach Robotvision.

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Technische Kybernetik und Systemtheorie 2014 Master Ingenieurinformatik 2009

Master Ingenieurinformatik 2014 Modul: Robotvision & MMI

Mensch-Maschine-Interaktion

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101352 Prüfungsnummer:2200447

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2233

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3		3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

naturwissenschaftliche und angewandte Grundlagen, Einbindung des angewandten Grundlagenwissens der Informationsverarbeitung für Problemstellungen der Mensch-Maschine Kommunikation und -Interaktion

Vorkenntnisse

Vorlesung Neuroinformatik ist wünschenswert

Inhalt

Teilgebiete der video- und sprachbasierten Mensch-Maschine Kommunikation; Verfahren für videobasierte Personendetektion/-tracking (optischer Fluss, Bayes-Filter: Kalman-Filter, Partikel Filter); videobasierte Erkennung von Nutzerinstruktionen (Zeigeposen und -gesten); videobasierte Schätzung von Alter, Geschlecht, Blickrichtung, Gesichtsausdruck, Körpersprache; Personenidentifikationsverfahren; sprachbasierte Erkennung von Nutzerinstruktionen und Nutzerzustand (Kommandowort- und Spracherkennung, Prosodieerkennung); Audio-visuelle Integration; wichtige Basisoperationen zur Analyse von Video- und Sprachdaten (Hauptkomponentenanalyse, Independent Component Analysis, Neuronale und probabilistische Mustererkenner; Bayes Filter und Partikel Filter Graph-Matching-Verfahren, Hidden-Markov Modelle (HMMs);

Medienformen

PowerPoint Folien, Videosequenzen

Literatur

Görz, Rollinger, Scheeberger: Handbuch der Künstlichen Intelligenz, Oldenbourg Verlag 2000; Jähne, B.: Digitale Bildverarbeitung. Springer Verlag 2002; Li, S. und Jain, A.: Handbook of Face Recognition, Springer Verlag 2004

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Biomedizinische Technik 2014

Master Medientechnologie 2013

Master Ingenieurinformatik 2014 Modul: Robotvision & MMI

Robotvision

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 183 Prüfungsnummer:2200446

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2233

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	1.FS	3	Ę	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	V	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

naturwissenschaftliche und angewandte Grundlagen, Einbindung des angewandten Grundlagenwissens der Informationsverarbeitung

Vorkenntnisse

LV Neuroinformatik

Inhalt

Basisoperationen für die vision-basierte Roboternavigation: Bewegungssehen und optischer Fluss; Tiefenwahrnehmung mittels Stereosehen; Inversperspektivische Kartierung; Visuelle Selbstlokalisation und visuelles SLAM (Simultaneous Localization and Map Building); visuelle Aufmerksamkeit und Active-Vison Systeme; technische Sehsysteme für mobile Roboter; Neuronale Basisoperationen der visuo-motorischen Verarbeitung (funktionelle und topografische Abbildungen, Auflösungspyramiden, neuronale Felddynamik, ortsvariante Informationsverarbeitung); biologisch motivierte Invarianz- und Adaptationsleistungen (Farbadaptation, log-polare Abbildung); Exemplarische Software-Implementierungen von Basisoperationen

Medienformen

Arbeitsblätter zur Vorlesung, Übungsaufgaben, e-learning Module

Literatur

wird noch spezifiziert

Detailangaben zum Abschluss

Die Leistung besteht aus einer schriftlichen Klausur (60 min) und der nachgewiesenen Akltivübung.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Biomedizinische Technik 2014

Modul: Knowledge Engineering

Modulnummer:101324

Modulverantwortlich: Prof. Dr. Rainer Knauf

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Ziel des Moduls ist es, Kompetenzen auf dem Gebiet der fortschrittlichen Methoden der modernen Wissensverarbeitung zu vermitteln. Die Studierenden kennen und verstehen die Strategien der Datenverarbeitung mit evolutionären/genetischen Algorithmen, mit Inferenzmethoden der KI und dem großen Spektrum des Datamining und können diese für informatische/ingenieurinformatische Problemstellungen anwenden. Die Studierenden sind mit den methodischen Grundlagen vertraut und können die wichtigsten Datenanalyse und –verarbeitungs Techniken erkennen und bewerten, sowie typische Informatikaufgaben mit ihrer Hilfe analysieren und lösen. Sie sind in der Lage, diese Kompetenzen in den Syntheseprozess komplexer ingenieurtechnischer und informatischer Projekte einfließen zu lassen. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien von Produkten und Verfahren, bei deren Entwicklung Methoden der Wissensverarbeitung und des Datamining Anwendung fanden, können diese analysieren, bewerten und bei weiterführenden Syntheseprozessen mitwirken. Die Studierenden sind in der Lage, Fach- Methoden- und Systemkompetenz für Inferenzmethoden, Datamining und Evolutionäre/genetische Algorithmen in interdisziplinären Teams zu vertreten und grundlegende Sachverhalte dazu klar und korrekt zu kommunizieren.

Vorraussetzungen für die Teilnahme

keine

Master Ingenieurinformatik 2014 Modul: Knowledge Engineering

Knowledge Engineering

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101152 Prüfungsnummer:2200452

Fachverantwortlich: Prof. Dr. Rainer Knauf

Leistungspunkte:	7	Workload (h): 210	Anteil Selbststudium (h):	154	SWS:	5.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2238

	1	I.FS)	2	2.FS	3		3.FS	3		1.FS)	Ę	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Ziel des Moduls ist es, Kompetenzen auf dem Gebiet der fortschrittlichen Methoden der modernen Wissensverarbeitung zu vermitteln. Die Studierenden kennen und verstehen die Strategien der Datenverarbeitung mit evolutionären/genetischen Algorithmen, mit Inferenzmethoden der KI und dem großen Spektrum des Datamining und können diese für informatische/ingenieurinformatische Problemstellungen anwenden. Die Studierenden sind mit den methodischen Grundlagen vertraut und können die wichtigsten Datenanalyse und –verarbeitungs Techniken erkennen und bewerten, sowie typische Informatikaufgaben mit ihrer Hilfe analysieren und lösen. Sie sind in der Lage, diese Kompetenzen in den Syntheseprozess komplexer ingenieurtechnischer und informatischer Projekte einfließen zu lassen. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien von Produkten und Verfahren, bei deren Entwicklung Methoden der Wissensverarbeitung und des Datamining Anwendung fanden, können diese analysieren, bewerten und bei weiterführenden Syntheseprozessen mitwirken. Die Studierenden sind in der Lage, Fach- Methoden- und Systemkompetenz für Inferenzmethoden, Datamining und Evolutionäre/genetische Algorithmen in interdisziplinären Teams zu vertreten und grundlegende Sachverhalte dazu klar und korrekt zu kommunizieren.

Vorkenntnisse

keine

Inhalt

siehe Beschreibung der einzelnen Fächer

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Ingenieurinformatik 2014 Modul: Knowledge Engineering

Data Mining

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Englisch

Fachnummer: 221 Prüfungsnummer:2200454

Fachverantwortlich: Prof. Dr. Rainer Knauf

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0
Fakultät für Informa	itik un	d Automatisierung					Fachgebiet: 2238

		1.FS	3		2.FS	3		3.FS	3		1.FS	3		5.FS	3	(6.FS	<u>} </u>	7	7.FS	}
SWS nach	V	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	V	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

Vermittlung von grundlegender Methoden und Techniken

Vorkenntnisse

fundierte Kenntnisse in mathematischer Logik und Wahrscheinlichkeitstheorie

Inhalt

- (1) Motivation, typische Aufgabenklassen und Anwendungen, Stufenprozess zur Modellbildung, Entropie der Information, (2)
 Erlernen von Entscheidungsbäumen: schrittweise Verfeinerung von ID3 zu C 4.5 (numerische Attribute, fehlende Attribute),
 (3) Entscheidungsbäume über regulären Patterns, (4) Erlernen von Klassifikationsregeln: binäre Klassifikation nach John
- Stuard Mill (JSM), (5) Assoziations-Analyse und deren Verfeinerung (kategorische Attribute "others", numerische Attribute), (6) kNN-Klassifikation

Medienformen

Skript, Power-Point Präsentation, Aufgabensammlung

Literatur

(1) Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin: Introduction to Data Mining. ISBN, Pearson Education, 2006. (2) Markus Lusti: Data Warehousing and Data Mining: Eine Einführung in entscheidungsunterstützende Systeme, ISBN 3-540-42677-9, Springer, 2001. (3) Petersohn, Helge: Data Mining. Verfahren, Prozesse, Anwendungsarchitektur. ISBN 978-3-486-57715-0, Oldenbourg Verlag, 2005. (4) Lawrence, Kennth D.; Kudyba, Stephan, Klimberg, Ronald K.: Data Mining Methods and Applications, ISBN 978-0-8493-8522-3, Boca Raton, FL u.a.: Auerbach, 2008.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Master Ingenieurinformatik 2014 Modul: Knowledge Engineering

Evolutionäre Verfahren

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101153 Prüfungsnummer:2200455

Fachverantwortlich: Dr. Klaus Debes

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	1.0	
Fakultät für Informa	tik und	l Automatisierung					Fachgebiet:	2233

	1	I.FS	,	2	2.FS	3	,	3.FS	3	4	I.FS)	ļ	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				1	0	0															

Lernergebnisse / Kompetenzen

naturwissenschaftliche und angewandte Grundlagen der evolutionären und genetischen Algorythmen, Einbindung des angewandten Grundlagenwissens in das allgemeine System der Informationsverarbeitung (Computational Intellience)

Vorkenntnisse

Besuch der Vorlesung Softcomputing / Fuzzy Logic wünschenswert

Inhalt

Nichtlineare Optimierungsstrategien auf der Basis Genetischer Algorithmen (GA) und Evolutionärer Strategien (ES): verschiedene Mischformen von GA und ES, Optimierung von neuronalen Netzen und Fuzzy-Logik mit GA und ES, interdisziplinäre Anwendungsbeispiele

Medienformen

Power Point Folien, Java Applikationen

Literatur

Gerdes; Klawonn; Kruse.: Evolutionäre Algorithmen: Genetische Algorithmen - Strategien und Optimierungsverfahren – Beispielanwendungen. Viehweg, Wiesbaden, 2004 Weicker, K.: Evolutionäre Algorithmen. Teubner, Stuttgart, 2002 Rechenberg, I.: Evolutionsstrategie 94. Frommann-Holzboog, Stuttgart, 1994 (u.v.a.m., Reihung ohne Wichtung!)

Detailangaben zum Abschluss

gehört zur Modulprüfung Knowledge Engineering (sPL 120 min) Anteil 30 min

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2014 Modul: Knowledge Engineering

Inferenzmethoden

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Englisch

Fachnummer: 220 Prüfungsnummer:2200453

Fachverantwortlich: Prof. Dr. Rainer Knauf

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	atik unc	A Δutomatisierung					Fachgehiet:	2238

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3		3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

angewandte Grundlagen, Vermittlung neuester Techniken

Vorkenntnisse

Kenntnisse in mathematischer Logik: Prädikatenkalkül der 1. Stufe, Deduktion, Programmierfertigkeiten in Logischer Programmierung (alle Vorkenntnisse nach erfolgreicher Absolvierung der LV Künstliche Intelligenz vor)

Inhalt

(1) Prädikatenkalkül der ersten Stufe (PK1): Wiederholung und sinnvolle Ergänzungen (Sortenlogik, Prädikatenkalkül der ersten Stufe mit Gleichheit) (2) problembezogene Wissensrepräsentationen der KI und Varianten der Implementierung von Inferenzmethoden darüber (3) Deduktion: Grundlagen, Deduktionssysteme, Komplexitätsbetrachtungen (4) Induktion und maschinelles Lernen: Erlernen von Klassifikationsregeln aus Beispielen, Erlernen eines besten induktiven Schlusses im Prädikatenkalkül der ersten Stufe, Verfahren zur Ermittlung des speziellsten Anti-Unifikators über PK1-Ausdrücken, Klassifikation nach Bayes

Medienformen

Skript, Power-Point Präsentation, Aufgabensammlung

Literatur

(1) Luger: Künstliche Intelligenz: Strategien zur Lösung komplexer Probleme. München: Pearson Studium (Übersetzung aus dem Addison-Wesley Verlag), 4. Aufl., 2001 (2) Russel/Norvig: Künstliche Intelligenz: Ein moderner Ansatz, München: Pearson Studium (Übersetzung aus dem Addison-Wesley Verlag), 2004 (3) Knauf: Logische Programmierung und Wissensbasierte Systeme: Eine Einführung. Aachen: Shaker, 1993

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Bildverarbeitung

Modulnummer:101650

Modulverantwortlich:

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Bildverarbeitung

Bildverarbeitung

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101657 Prüfungsnummer:2200594

Fachverantwortlich: Prof. Dr. Beat Brüderlin

Leistungspunkte: 9 Workload (h): 270 Anteil Selbststudium (h): 236 SWS: 3.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2252

2.FS 3.FS 4.FS 5.FS 6.FS 1.FS 7.FS V S P S P S P S P S P S P S P SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014 Modul: Bildverarbeitung

Digitale Bildverarbeitung

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101654 Prüfungsnummer:2200591

Fachverantwortlich: Dr. Rico Nestler

Leistungspunkte: 0 Workload (h): 0 Anteil Selbststudium (h): 0 SWS: 2.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2252

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS SP S P S P S P S P S P S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Modul: Bildverarbeitung

Systemtechnik und Systemtheorie der Bildverarbeitung

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101591 Prüfungsnummer:2300524

Fachverantwortlich: Prof. Dr. Gunther Notni

Leistungspunkte: 0	Workload (h):	0	Anteil Selbststu	ıdium (h):	0	SWS:		4	4.0		
Fakultät für Maschinenbau							F	achge	ebiet:	2362	2
	1.FS	2.FS	3.FS	4.FS	5.	.FS	6.F	S	7	.FS	
014/0	VSDV	9 1	D 1/ S D	V S D	17/	e D	\/ S	D	17/	<u>د</u> ا	\Box

SWS nach Fachsemester

		1.FS)		2.F)		J.F)		₽.FS			o.FS		(o.FS)		/.FS)
1	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	>	S	Р
-																					

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen die Grundbegriffe der Systemtechnik der Bildverarbeitung und sind fähig, Aufgaben der Bildverarbeitung in unterschiedlichen Anwendungsszenarien zu analysieren. Sie sind in der Lage, Bildverarbeitungssysteme zu konzipieren, auszulegen, Lösungen zum praktischen Einsatz zu entwerfen und die Eigenschaften der Systeme und von Einzelkomponenten zu bewerten.

Im zughörigen Seminar und in praktische Anwendungen werden die in der Vorlesung erworbenen Kenntnisse in vier Versuchen gefestigt mit den Inhalten: Charakterisierung von Kamerasystemen (EMVA-Standard 1288) und Methoden der 3D-Datenerfassung

Vorkenntnisse

Naturwissenschaftliche und ingenieurwissenschaftliche Fächer des Grundstudiums

Inhalt

Grundlagen der Systemtechnik und Systemtheorie der Bildverarbeitung mit den Schwerpunkten: Gewinnung digitaler Bildsignale, Bildsensoren – Detektoren vom Röntgen bis FIR-Spektralbereich, elektronische und optische Systemkomponenten der Bildverarbeitung, Konzepte von Abbildungs- und Beleuchtungssystemen, Methoden der Bildsignalverarbeitung sowie der Systemtheorie und Applikationen (Robotik, Qualitätssicherung, Prüftechnik, Mensch-Maschine Kommunikation); Aufbau und Auslegung von Bildverarbeitungssystemen in industriellen Anwendungen; Seminar und praktische Übungen mit vier Versuchen zur Charakterisierung von Kamerasystemen und Anwendungen in der Bildverarbeitung (Schwerpunkt 3D-Bildverarbeitung).

Medienformen

Tafel, Beamer, Vorlesungsscript ppt-Datei "Systemtechnik und Systemtheorie der Bildverarbeitung , Versuchsanleitungen im Internet

Literatur

Pedrotti u.a.: Optik für Ingenieure, Springer Verlag, 2008

R.D. Fiete "Modelling the Imaging Chain of Digital Cameras", SPIE Press (2010)

N. Bauer (Hrsg.), Handbuch zur Industriellen Bildverabeitung (2008) Fraunhofer IRB Verlag

B. Jähne "Digitale Bildverarbeitung", Springer Verlag 2012

J. Beyerer, F.P. Leon, Ch. Frese.: Automatische Sichtprüfung, Springer Vieweg 2012

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Optronik 2010

Master Optronik 2008

Master Optische Systemtechnik/Optronik 2014

Master Informatik 2013

Modul: Ausgewählte Methoden der Softwaretechnik

Modulnummer:101651

Modulverantwortlich: Prof. Dr. Patrick Mäder

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Ausgewählte Methoden der Softwaretechnik

Ausgewählte Methoden der Softwaretechnik

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101655 Prüfungsnummer:2200592

Fachverantwortlich: Prof. Dr. Patrick Mäder

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 105 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2234

2.FS 3.FS 4.FS 5.FS 6.FS 1.FS 7.FS S P S P S P S P S P S P S P SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Modul: Model Driven Architecture (MDA)

Modulnummer:101652

Modulverantwortlich:

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Model Driven Architecture (MDA)

Model Driven Architecture (MDA)

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101656 Prüfungsnummer:2200593

Fachverantwortlich: Dr. Ralph Maschotta

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2236

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS	}	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Fähigkeit zur Erstellung Domainspezifischer Sprachen (DSL)

Fähigkeit zur Erstellung von Editoren für DSL

Fähigkeit der Erstellung von Modelltransformationen (M2M & M2T)

Kenntnisse der Metameta-Modelle (ECORE, EMOF)

Kenntnis des Metamodells der UML

Kenntnisse der nötigen OMG Standardspezifikationen

Vorkenntnisse

Grundlagen der objektorientierten Programmierung Hilfreich: Grundlagen des UML-Klassendiagramms

Inhalt

Die Model-Driven Architecture (MDA) ist der Object Management Group (OMG) -Ansatz des Model-Driven (Software) Developments (MDD) zur modellgetriebenen und generativen Soft- und Hardwareentwicklung. Ziel der MDA ist es die Lücke zwischen Modell und Quelltext zu schließen und den Automatisierungsgrad der Entwicklung zu erhöhen. Dies erfolgt durch eine automatische Generierung von Quellcode aus Domänenspezifischen Modellen, die auf definierten Domänenspezifischen Sprachen (DSL) beruhen. Im Ergebnis sollen die Fehlerquellen während der Entwicklung reduziert werden und die Software schneller, effizienter, kostengünstiger und qualitativ hochwertiger erstellt werden. Für die Anwendung dieses Ansatzes sind verschiedene Kenntnisse und Fähigkeiten notwendig:

- · Kenntnisse in einer Programmiersprache, in der Zielsprache und in der Modellierungssprache
- Es müssen unterschiedliche Modellierungstechniken beherrscht werden
- Eine Kerntechnologie der MDA sind die Transformationenstechnologien
- Es existieren viele verschiedene Werkzeuge und recht komplexe Toolchains, die beherrscht werden müssen Im Rahmen dieser Lehrveranstaltung sollen diese notwendigen Kenntnisse und Fähigkeiten vermittelt werden. Im Seminar

sollen mit Hilfe des Eclipse Modeling Projects (EMP) und des Eclipse Sirius Projects praktische Aufgabenstellungen gelöst werden. Hierbei soll ein eigener Editor für eine eigene Domänenspezifische Sprache erstellt werden.

Medienformen

alternative Prüfungsleistung, 90 Minuten

Details zum Abschluss:

Der Abschluss in diesem Fach umfasst zwei Teile. Zum einen die bewerteten Ergebnisse aus dem Seminar (30%) und zum

anderen die Ergebnisse aus einer schriftl. Prüfung (70%).

Im Rahmen des zugehörigen Seminars soll das Verhalten und die Struktur eines selbst gewählten technischen Systems im Team nach einem einfachen Vorgehen modelliert werden. Diese sollen Lösungen zu gestellten Modellierungsaufgaben beinhalten.

Verbindliche Anmeldung bis spätestens einen Monat nach Semesterbeginn!

Literatur

- [1] V. Gruhn, D. Pieper, and C. Röttgers, MDA®: Effektives Software-Engineering mit UML2® und Eclipse(TM) (Xpert.press) (German Edition). Dordrecht: Springer, 2007.
- [2] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse modeling framework, 2nd ed. Upper Saddle River, NJ: Addison-Wesley, 2011.
- [3] R. C. Gronback, Eclipse modeling project: A domain-specific language toolkit. Upper Saddle River, N.J. Addison-Wesley, 2009.
- [4] Object Management Group, MDA The Architecture Of Choice For A Changing World. [Online] Available: http://www.omg.org/mda/.
- [5] Object Management Group, OMG Specifications. [Online] Available: http://www.omg.org/spec/.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Modul: Softwarearchitekturen

Modulnummer 101653

Modulverantwortlich:

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Master Ingenieurinformatik 2014 Modul: Softwarearchitekturen

Softwarearchitekturen

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 640 Prüfungsnummer:2200215

Fachverantwortlich: Prof. Dr. Detlef Streitferdt

Leistungspunkte:	6	Workload (h): 18	80	Anteil Selbststudium (h):	146	SWS:	3.0	
Fakultät für Informa	itik un	d Automatisierung					Fachgebiet:	223A

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Fachkompetenz: 20%

Die Studierenden sind fähig Softwareentwicklungsprozesse zu analysieren und auf die jeweiligen Gegebenheiten eines Projektes anzupassen. Sie verstehen Architekturmuster / ~stile und können diese im Projektkontext einsetzen.

Methodenkompetenz: 40%

Die Studierenden sind fähig die vorgestellten Entwicklungsmethoden und ~werkzeuge anzuwenden und deren Ergebnisse früh im Entwicklungsprozess abzuschätzen.

Sozialkompetenz: 40%

Die Studierenden sind fähig die Auswirkungen von Architekturentscheidungen im Kontext einer Entwicklergruppe zu bewerten. Hintergründe der Projektarbeit, Anforderungen und die Bedeutung sozialer Netzwerke sind den Studenten bekannt.

Vorkenntnisse

Objektorientierte Modellierung, Objektorientierte Programmierung

Inhalt

Ziele von Softwarearchitekturen, Beschreibungsansätze, Vorgehen bei der Entwicklung, Entscheidungsfindung, Architekturstile und -muster und ihre Qualitätseigenschaften, Prüfung von Architekturen, Reengineering.

Medienformen

Script, elektronisch und el. Präsentation, Übungsanleitung.

Literatur

Posch: Basiswissen Softwarearchitektur: verstehen, entwerfen, bewerten und dokumentieren. dpunkt.verlag Heidelberg, 2004.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Multimediale Informations- und Kommunikationssysteme

Modulnummer8336

Modulverantwortlich: Prof. Dr. Jochen Seitz

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können

- fortgeschrittene automatisierungs- und systemtechnische Methoden in den genannten Fächern anwenden,
- Analyse- und Entwurfsaufgabenstellungen an praktisch relevanten Themenstellungen entwickeln, lösen und bewerten sowie
 - Experimente an praxisnahen Versuchsaufbauten ausführen.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik, Maschinenbau

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelegt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Modul: Multimediale Informations- und Kommunikationssysteme

Hauptseminar Multimediale Informations- und Kommunikationssysteme

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101189 Prüfungsnummer:2100538

Fachverantwortlich: Prof. Dr. Jochen Seitz

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2115

2.FS 1.FS 3.FS 4.FS 5.FS 6.FS 7.FS S P S P S P S P S P S P S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Modul: Advanced Networking Technologies

Modulnummer:101334

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Advanced Networking Technologies

Advanced Networking Technologies

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5642 Prüfungsnummer:2200110

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte:	5	Workload (h): 1	50	Anteil Selbststudium (h):	128	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2253

	1	I.FS)	2	2.FS	3		3.FS	3	4	1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р
Fachsemester	3	0	0																		

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu aktuellen, fortgeschrittenen Entwicklungen in der Netzwerktechnologie. Sie erkennen die besonderen Anforderungen an das Kommunikationssubsystem in ressourcenbeschränkten Umgebungen wie drahtlosen Sensornetzen sowie die jeweiligen Optimierungsmöglichkeiten auf den einzelnen Schichten und können diese im Kontext konkreter Szenarien einschätzen. Die Studierenden kennen die grundsätzlichen Ansätze, wie interessante Daten an sehr große Nutzerpopulationen verteilt werden können. Sie verstehen die unterschiedlichen Protokollkonzepte hierfür und können diese bewerten.

Methodenkompetenz: Die Studierenden sind in der Lage, für einzelne Teilaufgaben der Systemoptimierung geeignete Zielfunktionen zu identifizieren. Weiterhin können sie die bei der Optimierung gemäß mehrerer Zielfunktionen auftretenden Zielkonflikte erkennen und gegeneinander abwägen.

Vorkenntnisse

Bachelorstudium Informatik,

Bei Studium in Ilmenau: Vorlesung "Telematik 1"; vorteilhaft ist die vorherige Belegung der Vorlesungen "Telematik 2" und "Leistungsbewertung" bzw. die kombinierte Variante "Telematik 2 / Leistungsbewertung" (letztere mit PO 2013 eingeführt)

Inhalt

Der Fokus der Vorlesung liegt auf modernen Netzwerktechnologien. Momentan sind die Hauptthemen Sensor Networks und Content Delivery Networks:

- 1. Adhoc & Sensor Networks Motivation & Applications
- 2. Node Architecture: Sensor node architecture, Energy supply and consumption, Runtime environments for sensor nodes, Case study: TinyOS
- 3. Network Architecture: Network scenarios, Optimization goals, Design principles, Service interface, Gateway concepts.
- 4. Medium Access Control
- 5. Link Layer
- 6. Naming & Addressing
- 7. Localization & Positioning
- 8. Topology Control
- 9. ID Centric Routing
- 10. Content Based Networking in Sensor Networks
- 11. Introduction to Content Networking: Introduction & Motivation, Overview over basic approaches.
- 12. Caching Techniques for Web Content
- 13. Caching Techniques for Streaming Media
- 14. Navigating Content Networks

Medienformen

Vorlesung mit Tafel und Folien-Präsentationen, Arbeitsblätter, Lehrbuch

Literatur

- H. Karl, A. Willig. Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons, 2005.
- M. Hofmann, L. R. Beaumont. Content Networking Architecture, Protocols, and Practice. Morgan Kaufmann Publishers, 2005.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Netzalgorithmen

Modulnummer:100525

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Netzalgorithmen

Netzalgorithmen

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 8215 Prüfungsnummer:2200229

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte:	5	Workload (h): 1	50	Anteil Selbststudium (h):	116	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2253

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	>	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verstehen die gebräuchlichen Routingverfahren kennen die Notwendigkeit für eine bedarfsgerechte Aufteilung des Verkehrsaufkommens in Netzwerken. Sie können die verschiedenen Zielsetzung beim Netzwerkentwurf voneinander abgrenzen und gegenüberstellen.
- Methodenkompetenz: Die Studierenden können grundlegende Entwurfs- bzw. Optimierungsprobleme als Multi-Commodity-Flow Probleme formulieren. Sie sind in der Lage diese in Standardformen zu überführen und durch Anwendung mathematischer Standardsoftware zu lösen.
- Systemkompetenz: Die Studierenden verstehen die Wechselwirkungen verschiedener Optimierungsziele beim Netzwerkentwurf und -betrieb.

Vorkenntnisse

MA Informatik

Inhalt

- 1. Einführung: Kommunikation in datagrammorientierten Netzwerken, Routingalgorithmen inklusive Korrektheitsbeweise, Modellierung von Datenverkehr mittels Poisson-Prozess, MM1 Wartesystem, Grundlegende Entwurfsprobleme in Netzwerken
- 2. Netzwerkmodellierung: Modellierung von Netzwerk-Design-Aufgaben als Multi-Commodity-Flow Probleme, Pure-Allocation-Problem, Shortest-Path-Routing, Fair Networks, Tunnel-Design in MPLS Netzwerken, Multilevel Netzwerke
- 3. Optimierungsmethoden: Grundlagen der Linearen Optimierung, Simplexalgorithmus, Branch-and-Bound, Gomory-Schnitte, Branch-and-Cut
- 4. Netzwerkentwurf: Zusammenhang von Netzwerkentwurfsproblemen und mathematischer Modellierung in Standardform, kapazitierte Probleme, Pfaddiversität, Limited-Demand-Split, NP-Vollständigkeit von Single-Path-Allocation, Modular Flows, nichtlineare Zielfunktionen und Nebenbedingungen, Lösung von Problemen mit konvexen und konkaven Zielfunktionen bzw. Nebenbedingungen durch lineare Approximation
- 5. Network Resilience: Zusammenhangsmaße, Biconnected Components, Algorithmen zur Bestimmung der Blockstruktur von Graphen

Praktische Probleme und Protokollfunktionen in Kommunikationsnetzen und ihr algorithmischer Hintergrund.

Medienformen

Folien, Tafelanschrieb, Bücher

Literatur

Michal Pioro, Deepankar Medhi. Routing, Flow, and Capacity Design in Communication and Computer Networks. The Morgan Kaufmann Series in Networking, Elsevier, 2004

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Wirtschaftsinformatik 2014

Master Informatik 2013

Master Informatik 2009

Master Wirtschaftsinformatik 2015

Modul: Protokolle und Dienste der Mobilkommunikation

Modulnummer 101351

Modulverantwortlich: Prof. Dr. Jochen Seitz

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Protokolle und Dienste der Mobilkommunikation

Protokolle und Dienste der Mobilkommunikation

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5203 Prüfungsnummer:2100168

Fachverantwortlich: Prof. Dr. Jochen Seitz

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2115

	1	I.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3		3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	1																		

Lernergebnisse / Kompetenzen

Die Studierenden verstehen die wesentlichen Prinzipien aktueller und zukünftiger Mobilnetze und können diese mit den drahtgebundenen Netzen vergleichen. Sie können die Mobilnetze klassifizieren und ihre Anwendungsfelder identifizieren. Sie erkennen die Gemeinsamkeiten von öffentlichen und privaten Mobilfunknetzen und verstehen die notwendigen Netzübergänge. Sie bewerten die jeweiligen Vor- und Nachteile und haben so ein ausgereiftes Wissen, um für gegebene Anwendungsfälle selbst das optimale Mobilnetz auszusuchen.

Vorkenntnisse

Kommunikationsnetze

Inhalt

- 1. Einführung
- 2. Digital Enhanced Cordless Telecommunication DECT
- 3. Digitaler Terrestrischer Bündelfunk (TETRA)
- 4. Global System for Mobile Communication GSM
- 5. Datendienste in GSM: High Speed Circuit Switched Data HSCSD / General Packet Radio Service (GPRS)
- 6. Universal Mobile Telecommunication System UMTS
- 7. High Speed Downlink Packet Access HSDPA
- 8. Long Term Evolution (LTE)
- 9. Infrarotkommunikation mit IrDA
- 10. Bluetooth-Netze
- 11. WLAN (Wireless LAN) nach IEEE 802.11
- 12. Der ETSI-HIPERLAN-Standard
- 13. Ad-hoc Netze
- 14. Sensornetze / ZigBee
- 15. Satellitennetze

Medienformen

- PowerPoint-Vortrag mit ausgegebenen Folienkopien
- Übungsaufgaben
- studentische Präsentationen im Seminar
- · Kontrollfragen zur Prüfungsvorbereitung

· Literaturverzeichnis

Literatur

GROTE, H.; SEITZ, J.; STÖPEL, U.; TOSSE, R.: Mobile digitale Kommunikation – Standards, Netze und Applikationen. SV Corporate Media 2004

KRÜGER, G.; RESCHKE, D. (Hrsg.): Lehr- und Übungsbuch Telematik: Netze – Dienste – Protokolle. Hanser Fachbuchverlag 2004

ROTH, J.: Mobile Computing - Grundlagen, Technik, Konzepte. Dpunkt Verlag 2005

SCHILLER, J.: Mobilkommunikation. Pearson Studium 2003

SEITZ, J.; DEBES, M.; HEUBACH, M.; TOSSE, R.: Digitale Sprach- und Datenkommunikation - Netze; Protokolle;

Vermittlung. Hanser Wirtschaft

2006 WALKE, B.: Informationstechnik. Bd. 2: Bündelfunk; schnurlose Telefonsysteme; W-ATM; HIPERLAN; Satellitenfunk; UPT: Mobilfunknetze und ihre Protokolle. Teubner Verlag 2001

WALKE, B.: Informationstechnik. Bd. 1: Grundlagen; GSM; UMTS und andere zellulare Mobilfunknetze: Mobilfunknetze und ihre Protokolle. Teubner Verlag 2001

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Schutz von Kommunikationsinfrastrukturen

Modulnummer:101335

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Schutz von Kommunikationsinfrastrukturen

Schutz von Kommunikationsinfrastrukturen

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5641 Prüfungsnummer:2200112

Fachverantwortlich: Prof. Dr. Günter Schäfer

Fakultät für Informatik und Automatisierung Fachgebiet: 2253	Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	116	SWS:	3.0	
	Fakultät für Informat	ik und	Automatisierung					Fachgebiet:	2253

	1	I.FS)	2	2.FS	3		3.FS	3	4	I.FS)	į	5.FS	3	(6.FS	3	7	7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester	3	0	0																		

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse zu Risiken und Bedrohungen sowie Maßnahmen zum Schutz von Kommunikationsinfrastrukturen. Sie kennen die speziellen Techniken und Gefahren von Sabotageangriffen und können die spezifischen Risiken bei der Einführung neuer Gegenmaßnahmen gegen Sabotageangriffe analysieren und bewerten.
- Methodenkompetenz: Die Studierenden können bewerten, ob ein Systementwurf bzw. eine -implementierung, sicherheitsgerecht ist, und wie eine Angriffserkennung und Reaktion auf Angriffe durchgeführt werden kann.
- Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenwirken der Maßnahmen zum Schutz von Kommunikationsinfrastrukturen.

Vorkenntnisse

Bachelorstudium Informatik, Semester 1-4

Der vorherige Besuch der Vorlesung "Network Security" im Bachelorstudium ist hilfreich, stellt jedoch keine notwendige Voraussetzung dar.

Inhalt

Die Lehrveranstaltung behandelt Risiken und Bedrohungen sowie Maßnahmen zum Schutz von Kommunikationsinfrastrukturen. Aufbauend auf einer grundlegenden Klassifikation und einer Abgrenzung zum Inhalt der Grundlagenvorlesung Network Security werden insbesondere die Bereiche Schutz der Verfügbarkeit von Diensten und Systemen, sicherheitsgerechter Systementwurf und -implementierung, Angriffserkennung und Reaktion auf Angriffe, sowie Herausforderungen der Netzsicherheit in Umgebungen mit besonderen Randbedingungen (Adhoc Netze, Sensornetze etc.) thematisiert. 1. Introduction & Motivation 2. Denial of Service Attacks and Countermeasures 3. Protection of IP Packet Transport, Routing and DNS 4. Security Aware System Design and Implementation 5. Intrusion Detection and Response 6. Security in Sensor Networks (Challenges in Constraint Environments)

Medienformen

Vorlesung mit Tafel und Folien-Präsentationen, Arbeitsblätter, Lehrbuch

Literatur

- G. Schäfer. Netzsicherheit Algorithmische Grundlagen und Protokolle. dpunkt.verlag
- C. Eckert. IT-Sicherheit: Konzepte, Verfahren, Protokolle. zweite Auflage, Oldenbourg Verlag

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2011

Master Ingenieurinformatik 2014

Master Wirtschaftsinformatik 2009

Master Ingenieurinformatik 2009

Master Informatik 2013

Master Informatik 2009

Modul: Distributed Data Management

Modulnummer:101328

Modulverantwortlich: Prof. Dr. Kai-Uwe Sattler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Nachdem Studierende diese Veranstaltung besucht haben, kennen sie die Grundlagen verteilter und paralleler Datenmanagementlösungen. Sie verstehen die Prinzipien dieser Techniken und können darauf aufbauend selbst Lösungen entwickeln. Die Studierenden können Techniken zur Anfrageverarbeitung, Replikation und Konsistenzsicherung erklären und hinsichtlich ihrer Vor- und Nachteile für verschiedene Einsatzzwecke bewerten.

Sie sind in der Lage, verteilte Datenbanken zu entwerfen und aktuelle Datenbanktechnologien verteilter und paralleler Systeme zu bewerten und anzuwenden.

Vorraussetzungen für die Teilnahme

Vorlesung Datenbanksysteme, Transaktionale Informationssysteme

Detailangaben zum Abschluss

keine

Modul: Distributed Data Management

Distributed Data Management

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 101155 Prüfungsnummer:2200457

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2254

	1	I.FS	3	2	2.FS	3	,	3.FS	3	4	I.FS	;	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Nachdem Studierende diese Veranstaltung besucht haben, kennen sie die Grundlagen verteilter und paralleler Datenmanagementlösungen. Sie verstehen die Prinzipien dieser Techniken und können darauf aufbauend selbst Lösungen entwickeln. Die Studierenden können Techniken zur Anfrageverarbeitung, Replikation und Konsistenzsicherung erklären und hinsichtlich ihrer Vor- und Nachteile für verschiedene Einsatzzwecke bewerten.

Sie sind in der Lage, verteilte Datenbanken zu entwerfen und aktuelle Datenbanktechnologien verteilter und paralleler Systeme zu bewerten und anzuwenden

Vorkenntnisse

Vorlesung Datenbanksysteme, Transaktionale Informationssysteme

Inhalt

Einführung und Motivation; Grundlagen verteilter Datenbanken: Architektur und Datenverteilung, verteilte Anfrageverarbeitung, Replikationsverfahren; Parallele Datenbanksysteme: Architektur und Datenverteilung, parallele Anfrageverarbeitung, Shared-Disk-Systeme; Web-Scale Data Mangement: SaaS und Multi Tenancy, Virtualisierungstechniken, Konsistenzmodelle, QoS, Partitionierung, Replikation, DHTs, MapReduce

Medienformen

Vorlesung mit Präsentationen und Tafel, Handouts, Moodle

Literatur

E. Rahm: Mehrrechner-Datenbanksysteme, Addison-Wesley, Bonn, 1994

M. Tamer Özsu, P. Valduriez: Prinziples of Distributed Database Systems, 3. Auflage, Springer, 2011

C. T. Yu, W. Meng: Principles of Database Query Processing for Advanced Applications, Morgan Kaufmann Publishers, San Francisco, Ca, 1998

Lehner, Sattler: Web-Scale Data Management for the Cloud, Springer, 2013

Detailangaben zum Abschluss

mündliche Prüfung (30 min)

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Ingenieurinformatik 2009 Master Wirtschaftsinformatik 2014 Master Wirtschaftsinformatik 2015

Master Informatik 2013

Modul: Transaktionale Informationssysteme

Modulnummer100524

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Transaktionale Informationssysteme

Transaktionale Informationssysteme

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 254 Prüfungsnummer:2200228

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	5	Workload (h): 1	150	Anteil Selbststudium (h):	116	SWS:	3.0	
Fakultät für Informat	tik un	d Automatisierung					Fachgebiet:	2255

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

In verteilten Informatiksystemen wie Datenbankmanagementsystemen, Workflowmanagementsystemen oder Steuerungsund Kontrollsystemen gibt es typischerweise eine große Anzahl und Vielfalt an Ressourcen, die von vielen Systemkomponenten gemeinsam genutzt werden. Der Verteiltheit derartiger Szenarien bedingt dabei einerseits, dass ein hoher Grad an Parallelität bei der Nutzung gemeinsamer Ressourcen besteht, andererseits aber auch Ausfälle von Teilkomponenten solcher Systeme zum Regelfall gehören.

In derartigen Umgebungen stellen transaktionale Kooperationssemantiken sicher, dass trotz hochgradiger Parallelität und partieller Ausfälle die Konsistenz der genutzten Ressourcen erhalten bleibt. Ursprünglich aus dem Umfeld der Datenbankmanagementsysteme stammend haben die Meriten transaktionaler Systeme dazu geführt, dass sie heute im sehr viel allgemeineren Umfeld verteilter Systeme erheblich an Bedeutung gewonnen haben.

Die Studierenden lernen im diesem Kurs die rigorosen theoretischen Grundlagen transaktionaler System kennen, sie erwerben Kenntnisse über die Methoden, Architekturen und Algorithmen, die die Eigenschaften transaktionaler Systeme herstellen.

Vorkenntnisse

Zulassungsvoraussetzungen des Master Informatik

Inhalt

Ausgehend von beispielhaften Anwendungsszenarien werden die rigorosen theoretischen Grundlagen transaktionaler Systeme besprochen und Methoden, Algorithmen und Architekturen vorgestellt, die die Eigenschaften transaktionaler Systeme herstellen.

Kursinhalte sind Transaktionssemantiken und –modelle sowie Methoden und Algorithmen zur Herstellung der elementaren ACID-Eigenschaften.

Medienformen

Präsentationen mit Projektor und Tafel, Bücher und Fachaufsätze, Übungsaufgaben und Diskussionsblätter

Literatur

Wird aktuell im Web veröffentlicht

Detailangaben zum Abschluss

PL nach §9 (Vortrag auf Abschlussworkshop und mdl. Prüfung, Gewichtung der Endnote 1/3 und 2/3)

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Advanced Mobile Communication Networks

Modulnummer5837

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

see course description

Vorraussetzungen für die Teilnahme

- The course consists of two parts: In the first part of the semester, lectures on the material are given. In the second part, individual studies (semester-long research projects that include a term paper and a presentation) help to improve understanding of the material.
 - Grading scheme: 40% term paper plus presentation, 60% oral exam (20 min, registration at ICS office in Z1031).
- Binding registration for the exam (using Thoska or the registration form provided by the examination office IA) is required at the beginning of each semester (check the registration time window which is defined each semester) in order to participate in individual studies projects and the oral exam. As your course grade is a result of the individual studies and the oral exam, only formally registered students are eligible for participation in the individual studies and may receive credits for it.

Modul: Advanced Mobile Communication Networks

Advanced Mobile Communication Networks

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100500 Prüfungsnummer:2200348

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	8.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2235

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	l.FS)	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0	2	2	0															

Lernergebnisse / Kompetenzen

The course introduces students in advanced topics in mobile data communication. It enables students to understand the research issues from a protocol- and system point of view, resulting from the mobility and the wireless transmission.

Vorkenntnisse

Bachelor degree, basics of communication networks

Inhalt

- Introduction
- · Medium Access Schemes
- · Mobility Management
- TCP/IP
- · Self-Organization
- IEEE 802.11
- · Quality of Service
- Ad Hoc Networks
- · Cognitive Radio Networks
- · Overview on cellular systems

Medienformen

Presentations

Literatur

see webpage www.tu-ilmenau.de/ics

- The course consists of two parts: In the first part of the semester, lectures on the material are given. In the second part, individual studies (semester-long research projects that include a term paper and a presentation) help to improve understanding of the material.
 - Grading scheme: 40% term paper plus presentation, 60% oral exam (20 min, registration at ICS office in Z1031).

• Binding registration for the exam (using Thoska or the registration form provided by the examination office IA) is required at the beginning of each semester (check the registration time window which is defined each semester) in order to participate in individual studies projects and the oral exam. As your course grade is a result of the individual studies and the oral exam, only formally registered students are eligible for participation in the individual studies and may receive credits for it.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Communications and Signal Processing 2013

Master Ingenieurinformatik 2009

Master Research in Computer & Systems Engineering 2016

Master Informatik 2013

Modul: Network Security

Modulnummer 101295

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Network Security

Network Security

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5645 Prüfungsnummer:2200115

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	116	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2253

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	I.FS)	ţ	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester				3	0	0															

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zur Netzwerksicherung mittels kryptografischer Verfahren. Ihnen sind gebräuchliche Sicherheitsprotokolle, ihre Einordnung in das Schichtenmodell und ihre Eigenschaften bekannt. Sie sind darüberhinaus in der Lage Sicherheitseigenschaften weiterer Protokolle eigenständig zu analysieren.
- Methodenkompetenz: Die Studenten besitzen das erforderliche Überblickswissen zur Bewertung und Anwendung sicherer Netzwerklösungen in der Informationstechnologie.
- Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenwirken der Komponenten von Sicherheitsarchitekturen der Netzwerkkommunikation.
- •Sozialkompetenz: Die Studierenden besitzen die grundlegende Fähigkeit sich in die Perspektive eines Angreifers zu versetzen und aus diesem Blickwinkel heraus Schwachstellen in Protokollen und Systemen zu erkennen.

Vorkenntnisse

Vorlesung "Telematik 1"

Der (ggf. gleichzeitige) Besuch der Vorlesung "Telematik 2" wird empfohlen, ist jedoch keine notwendige Voraussetzung.

Inhalt

- 1. Einleitung: Bedrohungen und Sicherheitsziele, Sicherheitsanalyse für Netze, Maßnahmen der Informationssicherheit, zentrale Begriffe der Kommunikationssicherheit
- 2. Grundbegriffe der Kryptologie: Überblick über kryptografische Verfahren; Angriffe auf kryptografische Verfahren; Eigenschaften und Klassifizierung von Chiffrieralgorithmen
- 3. Symmetrische kryptografische Verfahren: Betriebsarten von Blockchiffren; der Data Encryption Standard (DES); der Advanced Encryption Standard (AES); der RC4-Algorithmus, KASUMI
- 4. Asymmetrische kryptografische Verfahren: Grundidee asymmetrischer kryptografischer Verfahren; mathematische Grundlagen; der RSA-Algorithmus; das Diffie-Hellman-Schlüsselaustauschverfahren; Grundlagen der Kryptografie auf elliptischen Kurven
- 5. Kryptografische Prüfwerte: kryptografische Hashfunktionen, Message Authentication Codes; Message Digest 5 (MD5); Secure Hash Algorithm SHA-1; SHA-2; SHA-3, Authentisierte Verschlüsselung
- 6. Die Erzeugung sicherer Zufallszahlen: Zufallszahlen und Pseudozufallszahlen; die Erzeugung von Zufallszahlen; statistische Tests für Zufallszahlen; die Erzeugung kryptografisch sicherer Pseudozufallszahlen
- 7. Kryptografische Protokolle: Nachrichten- und Instanzenauthentisierung; Needham-Schroeder Protokoll; Otway-Rees Protokoll; Kerberos v4 & v5; X.509-Schlüsselzertifikate; X.509-Authentisierungsprotokolle; Formale Bewertung kryptografischer Protokolle
- 8. Sichere Gruppenkommunikation
- 9. Zugriffskontrolle: Begriffsdefinitionen und Konzepte; Security Labels; Kategorien von Zugriffskontrollmechanismen

- 10. Integration von Sicherheitsdiensten in Kommunikationsarchitekturen:
- 11. Sicherheitsprotokolle der Datensicherungsschicht: IEEE 802.1Q, 802.1X, 802.1AE; PPP; PPTP
- 12. Die IPsec-Sicherheitsarchitektur
- 13. Sicherheitsprotokolle der Transportschicht: Secure Socket Layer (SSL); Transport Layer Security (TLS); Secure Shell (SSH)
- 14. Sicherheitsaspekte der Mobilkommunikation
- 15. Sicherheit in drahtlosen lokalen Netzen: IEE 802.11; IEEE 802.11 Task Group i;
- 16. Sicherheit in GSM- und UMTS-Netzen
- 17. Sicherheit mobiler Internetkommunikation: Mobile IP

Medienformen

Vorlesung mit Tafel und Folien-Präsentationen, Arbeitsblätter. Lehrbuch

Literatur

- G. Schäfer. Netzsicherheit Algorithmische Grundlagen und Protokolle. dpunkt.verlag
- A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone. Handbook of Applied Cryptography. CRC Press Series on Discrete Mathematics and Its Applications, CRC Press

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Ingenieurinformatik 2014

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsinformatik 2009

Master Ingenieurinformatik 2009

Master Wirtschaftsinformatik 2014

Bachelor Informatik 2013

Master Wirtschaftsinformatik 2015

Bachelor Informatik 2010

Master Wirtschaftsinformatik 2011

Master Communications and Signal Processing 2008

Bachelor Ingenieurinformatik 2013

Modul: Cellular Communication Systems

Modulnummer5844

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

see course description

Vorraussetzungen für die Teilnahme

Modul: Cellular Communication Systems

Cellular Communication Systems

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100501 Prüfungsnummer:2200349

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte:	5	Workload (h): 150	0	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2235

	1	I.FS	`	2	2.FS	3	,	3.FS	3		1.FS	}	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

The course introduces students into the functionalities of cellular communication systems, esp. GSM/GPRS/EDGE, UMTS/HSPA, LTE/SAE. It enables students to unterstand network and protocol aspects of these system as well as aspects related to their deployment and management. Main topics are the network architechture, network elements, protocols, and services of these systems. The course allows students to understand main functions as mobility management, radio resource allocation, session management and QoS, as well as authentification, authorisation and network management.

Vorkenntnisse

Communication protocols and networks, basics of mobile communication networks

Inhalt

- Review of mobile communication basics
- Overview on GSM and GPRS
- UMTS architecture (mobility management, connection and session management, wideband CDMA, management of radio resources
- UMTS radio access network
- High-Speed Packet Access (HSPA)
- Long-Term Evolution (LTE)
- System Architecture Evolution (SAE)
- Self-organization in LTE

Medienformen

Presentations with beamer, presentation slides

Literatur

- Kaaranen, Ahtiainen, Laitinen, Naghian, Niemi. UMTS Networks Architecture, Mobility and Services. Wiley, 2001
- Holma, Toskala. WCDMA for UMTS. revised edition, Wiley, 2002
- Dahlmann, Parkvall, Sköld. 4G: LTE/LTE-Advanced for Mobile Broadband, AP, 2011
- Stefania Sesia, Issam Toufik, Matthew Baker. LTE The UMTS Long Term Evolution: From Theory to Practice

Detailangaben zum Abschluss

• The course consists of two parts: In the first part of the semester, lectures on the material are given. In the second part, individual studies (semester-long research projects that include a term paper and a presentation) help to improve

understanding of the material.

- Grading scheme: 40% term paper plus presentation, 60% oral exam (20 min, registration at ICS office in Z1031).
- Binding registration for the exam (using Thoska or the registration form provided by the examination office IA) is required at the beginning of each semester (check the registration time window which is defined each semester) in order to participate in individual studies projects and the oral exam. As your course grade is a result of the individual studies and the oral exam, only formally registered students are eligible for participation in the individual studies and may receive credits for it.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Research in Computer & Systems Engineering 2012

Master Research in Computer & Systems Engineering 2016

Master Informatik 2013

Master Communications and Signal Processing 2013

Modul: Verteilte Echtzeitsysteme

Modulnummer:101333

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Master Ingenieurinformatik 2014 Modul: Verteilte Echtzeitsysteme

Verteilte Echtzeitsysteme

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 260 Prüfungsnummer:2200117

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2255

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester				3	1	0															

Lernergebnisse / Kompetenzen

Der Kurs ist eine Einführung in die Welt der echtzeitfähigen verteilten Systeme. Die Studierenden lernen die grundlegenden Aufgaben, Funktionen und Eigenschaften verteilter Echtzeitsysteme kennen und erwerben Kenntnisse über die Methoden, Paradigmen und Prinzipien, nach denen echtzeitfähige Systeme konstruiert werden sowie die Techniken und Algorithmen ihrer Programmierung. Sie erwerben die Fähigkeit, verteilte Echtzeitsysteme bezüglich ihrer Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren, zu bewerten und einzusetzen.

Vorkenntnisse

Bachelor Informatik

Inhalt

Thematische Schwerpunkte sind:

- · Anwendungsgebiete verteilter Echtzeitsysteme
- · Funktionale und nichtfunktionale Eigenschaften echtzeitfähiger verteilter Systeme
- Echtzeitfähiges Ressourcenmanagement
- Fristenkonzepte, Echtzeitscheduling, Überlastsituationen, Quality fo Service, holistische Ansätze

Medienformen

Skript/Folien-Handouts, Übungsblätter, Diskussionsblätter

Literatur

wird aktuell im Web veröffentlicht

Detailangaben zum Abschluss

mündliche Prüfung (20 min)

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Interaktive Grafiksysteme / VR

Modulnummer:101658

Modulverantwortlich:

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Interaktive Grafiksysteme / VR

Interaktive Grafik / VR

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101660 Prüfungsnummer:2200595

Fachverantwortlich: Prof. Dr. Beat Brüderlin

Leistungspunkte: 6 Workload (h): 180 Anteil Selbststudium (h): 158 SWS: 2.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2252

2.FS 3.FS 4.FS 5.FS 6.FS 1.FS 7.FS V S P S P S P S P S P S P S P SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014 Modul: Interaktive Grafik / VR

Interaktive Computergrafiksysteme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101661 Prüfungsnummer:2200596

Fachverantwortlich: Prof. Dr. Beat Brüderlin

Leistungspunkte: 0 Workload (h): 0 Anteil Selbststudium (h): 0 SWS: 2.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2252

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS S P SP S P S P S P SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienfo<u>rmen</u>

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014 Modul: Interaktive Grafik / VR

Virtual and Augmented Reality

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101662 Prüfungsnummer:2500250

Fachverantwortlich:

Leistungspunkte: 0 Workload (h): 0 Anteil Selbststudium (h): 0 SWS: 2.0 Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet: 2557

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS V S P S P S P S P S P S P S P SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Modul: Softwaretechnik für sicherheitskritische Systeme

Modulnummer:101659

Modulverantwortlich: Prof. Dr. Patrick Mäder

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Softwaretechnik für sicherheitskritische Systeme

Softwaretechnik für sicherheitskritische Systeme

Fachabschluss: Prüfungsleistung alternativ

Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 101663 Prüfungsnummer:2200597

Fachverantwortlich: Prof. Dr. Patrick Mäder

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 105 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2234

2.FS 3.FS 4.FS 5.FS 6.FS 1.FS 7.FS S P S P S P S P S P S P S SWS nach Fachsemester 2 2 0

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Modul: Medizintechnik

Modulnummer8337

Modulverantwortlich: Prof. Dr. Jens Haueisen

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können

- fortgeschrittene automatisierungs- und systemtechnische Methoden in den genannten Fächern anwenden,
- Analyse- und Entwurfsaufgabenstellungen an praktisch relevanten Themenstellungen entwickeln, lösen und bewerten sowie
 - Experimente an praxisnahen Versuchsaufbauten ausführen.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik, Maschinenbau

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelegt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Modul: Medizintechnik

Hauptseminar BMT

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 1685 Prüfungsnummer:2200172

Fachverantwortlich: Prof. Dr. Jens Haueisen

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2222

2.FS 4.FS 5.FS 6.FS 1.FS 3.FS 7.FS Ρ SP S P SP SP S P S S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verstehen ein spezielles Forschungsthema auf dem Gebiet der Biomedizinischen Technik. Sie sind in der Lage: 1. Den Stand der Technik zu einer vorgegebenen Fragestellung zu erfassen, einzuordnen und zu bewerten. 2. Ein vorgegebenes Experiment zu planen, durchzuführen und auszuwerten. 3. Zu einer vorgegebenen Fragestellung einen praktischen Aufbau oder Algorithmus zu planen, zu realisieren und zu testen. Methodenkompetenz: Die Studierenden sind in der Lage, wissenschaftlich-technische Literatur zu recherchieren und auszuwerten. Systemkompetenz: Die Studierenden werden befähigt, Abhängigkeiten einer speziellen Problemstellung zu verschiedenen Anwendungsgebieten herzustellen. Sozialkompetenz: Die Studierenden werden befähigt, wissenschaftliche Themen schriftlich und mündlich zu präsentieren.

Vorkenntnisse

Pflichtmodul 2: BMT

Inhalt

Das Hauptseminar besteht in der selbstständigen Bearbeitung eines Forschungsthemas, welches als solches nicht direkt Bestandteil der bisherigen Ausbildung war. Das Ziel besteht darin, zum Thema den State of the art zu erfassen, einzuordnen und zu bewerten. Der Student hat folgende Aufgaben zu erfüllen: Einarbeitung und Verständnis des Themenbereichs auf der Basis bisherigen Ausbildung, der vorgegebenen und weiterer für die umfassende Behandlung und das Verständnis notwendiger, selbst zu findender Literaturquellen. Einordnung des Themenbereichs in das wissenschaftliche Spektrum ingenieurtechnischer Fragestellungen auf der Basis der bis dahin in der Ausbildung vermittelten Erkenntnisse; Schriftliche und mündliche Präsentation der Ergebnisse

Medienformen

Workshops mit Präsentation (Tafel, Handouts, Laptop)

Literatur

Themenspezifische Vorgabe

Detailangaben zum Abschluss

Prüfungsform:

- 1.Schriftlicher Teil
- -15 20 Seiten (incl. Literaturverzeichnis)
- -deutsche oder englische Sprache
- -Elektronisch und Papierform

2.Mündlicher Teil

- -Vortrag (30 min)
- -Diskussion (ca. 10 min)

Abschluss:

benotete Studienleistung

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2014

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Biomedizinische Technik 2014

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Biomedizinische Technik 2013

Master Biomedizinische Technik 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Medizintechnik

Praktikum BMT

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 8411 Prüfungsnummer:2200171

Fachverantwortlich: Dr. Dunja Jannek

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informatik	k un	d Automatisierung				Fachgebiet:	2221

	1	I.FS	3	2	2.FS	3	,	3.FS	3		I.FS	6	į	5.FS	3	6	3.FS	3	7	7.FS	}
SWS nach	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester	0	0	1	0	0	2															

Lernergebnisse / Kompetenzen

Die Praktikumsinhalte orientieren sich an den Kerninhalten der Fächer. Die Studierenden vertiefen die methodischen Kenntnisse durch experimentelle Verfahren und Ergebnisse. Sie erwerben praktische Fähigkeiten und Fertigkeiten auf spezifisch technischer Wechselwirkungsebene und gleichzeitig Erfahrungen über Aufwand, Nutzen und Risiko Biomedizinischer Technik und Medizinischer Informatik als technisches Hilfsmittel im medizinischen Versorgungs- und Betreuungsprozess. Sie können Messergebnisse unter Nutzung entsprechender Programme auswerten, interpretieren und präsentieren.

Vorkenntnisse

Den Praktikumsversuchen zugrundeliegende Module mit entsprechenden Fächern.

Inhalt

Für BMT-MSc

Zum Modul Biomedizinische Technik:

- CT-Querschnittsrekonstruktion
- Ultraschallbilderzeugungssystem
- Funktionsdiagnostik

Zum Modul Biosignalverarbeitung:

- EKG-Signalanalyse
- EMG-Messung
- EEG-Signalanalyse
- Elektronische Patientenakte
- Bildverarbeitung in der Medizin 1

Zusätzlich sind im gewählten Wahlmodul 3 Versuche zu absolvieren.

Für II-MSc

Zum Modul Medizinische Physik (BSc):

- Strahlungsdetektoren

Zum Modul Biosignalverarbeitung 1/ Biostatistik (BSc)

- Biostatistik/Biometrie

Zum Modul Biomedizinische Technik

- CT-Querschnittsrekonstruktion
- Ultraschallbilderzeugungssystem
- Funktionsdiagnostik

Zum Modul Biomedizinische Mess- und Therapietechnik

- Beatmungstechnik

Zum Modul Biosignalverarbeitung:

- EEG-Signalanalyse
- Bildverarbeitung in der Medizin 1

Medienformen

Arbeitsunterlagen, die versuchsspezifisch Grundlagen, Versuchsplatzbeschreibungen, Versuchsaufgaben und Hinweise zur Versuchsdurchführung enthalten.

Literatur

Versuchsspezifisch aus den Arbeitsunterlagen des Einzelversuchs.

Detailangaben zum Abschluss

Prüfungsform: Praktikum

Abschluss: benotete Studienleistung

Gestufte Noten als arithmetisches Mittel aus den Noten der Einzelversuche.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Ingenieurinformatik 2009

Master Biomedizinische Technik 2014

Modul: Designprojekt BMT Msc

Modulnummer 100681

Modulverantwortlich: Dr. Dunja Jannek

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Das Designprojekt ist eine Gruppenarbeit, die von 3 bis 4 Studierenden im Rahmen ihrer Spezialisierung durchzuführen ist. Dabei haben die Studierenden eigenständig Projektziele zu planen, in Form eines Projektantrags zu formulieren, umzusetzen und die erreichten Arbeitsergebnisse kritisch zu betrachten, zu bewerten und zu dokumentieren.

Vorraussetzungen für die Teilnahme

Lehrinhalte des Bachelorstudiengangs und des Pflichtmoduls BMT des Masterstudiums

Detailangaben zum Abschluss

Abschluss: Einzelleistungen

Für die zu erbringenden Einzelleistungen Projektskizze, Projektantrag, Eröffnungsverteidigung, Zwischenverteidigung, Endverteidigung, Projektdurchführung und Abschlussdokumentation werden Punkte für die Gruppe und individuell vergeben. Aus der Gesamtpunktzahl ergibt sich eine gestufte Notengebung.

Master Ingenieurinformatik 2014 Modul: Designprojekt BMT Msc

Designprojekt

Fachabschluss: Prüfungsleistung alternativ

Art der Notengebung: Gestufte Noten

Sprache: Deutsch

Pflichtkennz: Pflichtfach

Turnus: ganziährig

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig
Fachnummer: 7868 Prüfungsnummer: 2200173

Fachverantwortlich:Dr. Dunja Jannek

Leistungspunkte: 6 Workload (h): 180 Anteil Selbststudium (h): 135 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2221

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				0	4	0															

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, eine gestelltes Problem zu analysieren, Lösungswege zu formulieren, praktisch umzusetzen und die Ergebnisse problem- und methodenorientiert zu analysieren, zu bewerten und zu dokumentieren. Sie besitzen Fähigkeiten und Fertigkeiten bei der Umsetzung technischer und physikalischer Wirkprinzipien, Anwendung technischer Sicherheit und der Qualitätssicherung. Die Studierenden sind fähig, kleinere Projektanträge zu erstellen, sich in der Gruppe zu organisieren, Arbeitspakete strukturiert aufzuteilen und im Projektverlauf anzupassen und zu ergänzen. Die Studierenden kennen Methoden und Werkzeuge des Projekt- und Zeitmanagements. Sie entwickeln und erwerben Kenntnisse, Fähigkeiten und Fertigkeiten in der gruppeninternen Kommunikation und der Konfliktbewältigung. Sie sind in der Lage, erreichte Ergebnisse nach außen zu kommunizieren und zu präsentieren und das Nichterreichen von Projektzielen kritisch zu hinterfragen, zu analysieren und zu bewerten.

Vorkenntnisse

Lehrinhalte des Bachelorstudiengangs und des Pflichtmoduls BMT des Masterstudiums

Inhalt

Das Designprojekt ist eine Gruppenarbeit, die von 3 bis 4 Studierenden im Rahmen ihrer Spezialisierung durchzuführen ist. Dabei haben die Studierenden eigenständig Projektziele planen, in Form eines Projektantrags zu formulieren, umzusetzen und die erreichten Arbeitsergebnisse kritisch zu betrachten, zu bewerten und zu dokumentieren.

Medienformen

Tafel, Folien, computerbasierte Präsentationen, Demonstrationen

Literatur

- 1. Fachunterlagen des Wahlmoduls bzw. der Spezialisierung
- 2. Jakoby, W.: Projektmanagement für Ingenieure: Ein praxisnahes Lehrbuch für den systematischen Projekterfolg. Springer Vieweg; 3.Aufl. 2015.
 - 3. Zell,H.: Projektmanagement. Iernen, Iehren und für die Praxis. Books on Demand; 5.Aufl. 2013.

Detailangaben zum Abschluss

Für die zu erbringenden Einzelleistungen Projektskizze, Projektantrag, Eröffnungsverteidigung, Zwischenverteidigung, Endverteidigung, Projektdurchführung und Abschlussdokumentation werden Punkte für die Gruppe und individuell vergeben. Aus der Gesamtpunktzahl ergibt sich eine gestufte Notengebung.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Ingenieurinformatik 2009

Master Biomedizinische Technik 2014

Modul: Klinische Verfahren

Modulnummer 101355

Modulverantwortlich: Prof. Dr. Jens Haueisen

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

- Die Studierenden vertiefen und verbreitern ihr medizinisches Grundwissen
- Die Studierenden verstehen die Grundprinzipien ärztlichen Handelns.
- Die Studierenden besitzen Grundkenntnisse über ausgewählte Krankheitsbilder (Klinik, Pathologie Prävention, Diagnostik, Therapie).
- Die Studierenden überblicken die Möglichkeiten ausgewählter diagnostischer und therapeutischer Verfahren und verstehen die Zuordnung zu Indikationsstellungen.
 - Die Studierenden kennen Bedeutung, Möglichkeiten und Grenzen der Epidemiologie.
- Die Studierenden besitzen einen Überblick über Berufsfelder und Zuständigkeiten in der Medizin sowie die relevanten Rechtsnormen.
 - · Die Studierenden können medizin-ethische Diskussionen fachlich fundiert verstehen und führen.
- Die Studierenden sind in der Lage, ausgesuchte Organsysteme (Herz/Kreislauf, Atmung, Nervensystem) einer detaillierten Betrachtung zu unterziehen, um dadurch eine problemzentrierte umfassende Systematik medizinischer Entscheidungsprozesse zu präsentieren.

Vorraussetzungen für die Teilnahme

Anatomie und Physiologie

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 120 min

Abschluss: Prüfungsleistung

Für die Modulprüfung werden die Fächer "Klinische Verfahren 1" und "Klinische Verfahren 2" als Komplexklausur über 120 min geprüft. Die Note ergibt sich aus dem Ergebnis der Komplexprüfung.

Master Ingenieurinformatik 2014 Modul: Klinische Verfahren

Klinisches Seminar "Medizinische Grundlagen"

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 1701 Prüfungsnummer:2200041

Fachverantwortlich: Dr. Marko Helbig

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	8	SWS:	2.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2222

	1.FS			2.FS			3.FS			4.FS			Ę	5.FS	3	(3.FS	3	7.FS		
SWS nach	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester		30 h																			

Lernergebnisse / Kompetenzen

Ziel ist es, anhand ausgesuchter Organsysteme (Herz/Kreislauf, Atmung, Nervensystem usw.) die Systematik des Entscheidungsprozesses in der Medizin ¿ Anamnese, Diagnostik, Therapie, Verlauf - einer detaillierten Betrachtung zu unterziehen. Zur komprimierten und gleichzeitig didaktisch transparenten Vermittlung der Wissensinhalte von Struktur und Funktionsweise des menschlichen Organismus, sich daraus ableitenden Krankheitsbildern sowie diagnostischen und therapeutischen Verfahren ist es empfehlenswert, sich auf ein konkretes Krankheitsbild zu beschränken und dafür den ärztlichen Entscheidungsprozess sowie die Rolle der Medizintechnik dabei im Mittelpunkt zu stellen.

Vorkenntnisse

Die Lehrveranstaltung baut auf Vorkenntnissen aus den Vorlesungen Anatomie und Physiologie und Klinische Verfahren der Diagnostik und Therapie.

Inhalt

Inhaltliche Seminarstruktur: (am Beispiel der Atmung)

- a) Theoretischer Teil:
- Darstellung eines aktuellen klinischen Falles mit Anamnese, Schilderung des Aufnahmegrundes und –zustandes mit diagnostischen Befunden incl. Bildgebung
- Anatomie und Physiologie des Atmungsapparates, Physiologie des Gasaustausches und Säure-Basen-Haushaltes (unter bewusster Inkaufnahme von Redundanzen zu der Lehrveranstaltung "Klinische Verfahren"), davon abgeleitet spezielle pathoanatomische und pathophysiologische Betrachtungen (Ursachen und Konsequenzen der eingeschränkten Ventilation und Oxygenierung).
- Therapeutische Konzepte zur Kompensation von Gasaustauschstörungen
- b) Praktischer Teil (je nach Teilnehmerzahl in mehreren Gruppen)
- Präsentation und Anwendung technischer Hilfsmittel am Phantom bzw. Probanden (Respiratortechnik mit verschiedenen Beatmungsformen, Monitoring)
- Erläuterung des Therapiekonzeptes am konkreten Fall mit klinischer Visite
- Die Punkte können bei notwendiger Aufteilung der Gruppen parallel abgehandelt werden, da die klinische Visite durch Ärzte der Intensivstation begleitet werden kann.

Themenkomplexe:

- Kardiologie
- Neurologie
- Pneumologie/Intensivmedizin
- Urologie, einschl. minimalinvasive Methoden

Rehabilitation

Medienformen

Vorlesungsskripte, Tafel, Präsentation, Demonstration am Patienten, Visite

Literatur

Literaturempfehlungen zu den Lehrveranstaltungen "Anatomie und Physiologie" und "Klinische Verfahren" sowie Vorlesungsskripte

Detailangaben zum Abschluss

Prüfungsform: Hospitiation in diversen Kliniken

Dauer: 90 min

Abschluss: unbenotete Studienleistung

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Bachelor Biomedizinische Technik 2013

Bachelor Biomedizinische Technik 2014

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Bachelor Biomedizinische Technik 2008

Master Ingenieurinformatik 2014 Modul: Klinische Verfahren

Klinische Verfahren

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100526 Prüfungsnummer:2200360

Fachverantwortlich: Dr. Lutz Mirow

Leistungspunkte:	6	Workload (h):	180	Anteil Selbststudium (h):	158	SWS:	2.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2221

	1.FS			2.FS			3.FS			4.FS			Ę	5.FS	3	(3.FS	3	7.FS		
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	>	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

- 1. Die Studierenden vertiefen und verbreitern ihr medizinisches Grundwissen
- 2. Die Studierenden verstehen die Grundprinzipien ärztlichen Handelns.
- 3. Die Studierenden besitzen Grundkenntnisse über ausgewählte Krankheitsbilder (Klinik, Pathologie Prävention, Diagnostik, Therapie).
- 4. Die Studierenden überblicken die Möglichkeiten ausgewählter diagnostischer und therapeutischer Verfahren und verstehen die Zuordnung zu Indikationsstellungen.
- 5. Die Studierenden kennen Bedeutung, Möglichkeiten und Grenzen der Epidemiologie.
- 6. Die Studierenden besitzen einen Überblick über Berufsfelder und Zuständigkeiten in der Medizin sowie die relevanten Rechtsnormen.
- 7. Die Studierenden können medizin-ethische Diskussionen fachlich fundiert verstehen und führen.

Vorkenntnisse

- 1. Abiturwissen Biologie und Chemie
- 2. Medizinisches Grundlagenwissen in Tiefe und Umfang wie in den Fächern "Anatomie und Physiologie 1" und "Anatomie und Physiologie 2" vermittelt
- 3. Klinisches Wissen in Tiefe und Umfang wie im Fach "Klinische Verfahren der Diagnostik und Therapie 1" vermittelt.

Inhalt

Grundlagen der medizinischen Diagnostik (klinische Untersuchungsverfahren der ärztlichen Routinediagnostik, einfache apparative Untersuchungstechniken, spezielle Therapieverfahren).

Krankheitsbilder:

- Herzkreislauferkrankungen mit Schwerpunkt auf Herzinfarkt, coronare Durchblutungsstörung, Herzklappenerkrankung, angeborene Herzfehler
- Moderne interventionelle und operative Therapieverfahren bei Herz-Kreislauferkrankungen
- Herz-Lungen-Maschine, Hypothermie, PTCA, Herzklappenersatz mit unterschiedlichen Prothesen, Herzunterstützungsverfahren, transplantationsmedizinische Grundbegriffe.
- -Krankheitsentitäten nach ICD 10 (International Code of Diseases)

Verfahren:

- Röntgendiagnostische Verfahren
- Kardiopulmonale Funktionsdiagnostik
- Ultraschalldiagnostik
- Endoskopie
- Elektrotherapie
- Minimalinvasive Chirurgie

- Herzschrittmachertherapie einschl. CRT
- Elektrochirurgie
- Lasertherapie und -diagnostik
- Nuklearmedizinische Verfahren und Diagnostik
- Strahlentherapeutische Verfahren
- Thermographie

Medienformen

Tafel, Präsentation, Demonstrationsobjekte, Demonstration von Fallbeispielen, intensivierter Kontakt mit Patienten, Ärzten und medizinischem Hilfspersonal

Literatur

Speziell zusammengestellter "Reader", gemeinsam identifizierte themen-relevante Zeitschriftenartikel

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Master Wirtschaftsingenieurwesen 2013

Master Ingenieurinformatik 2014 Modul: Klinische Verfahren

Klinische Verfahren 1

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1696 Prüfungsnummer:2200361

Fachverantwortlich: Dr. Lutz Mirow

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2221

	1.FS		2.FS			3.FS			4.FS			5.FS			6.FS			7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	0	0																		

Lernergebnisse / Kompetenzen

- 1. Die Studierenden verstehen die Grundprinzipien ärztlichen Handelns.
- 2. Die Studierenden besitzen Grundkenntnisse über ausgewählte Krankheitsbilder (Klinik, Pathologie Prävention, Diagnostik, Therapie).
- 3. Die Studierenden überblicken die Möglichkeiten ausgewählter diagnostischer und therapeutischer Verfahren und verstehen die Zuordnung zu Indikationsstellungen.
- 4. Die Studierenden kennen Bedeutung, Möglichkeiten und Grenzen der Epidemiologie.
- 5. Die Studierenden besitzen einen Überblick über Berufsfelder und Zuständigkeiten in der Medizin sowie die relevanten Rechtsnormen.
- 6. Die Studierenden können medizin-ethische Diskussionen fachlich fundiert verstehen und führen.

Vorkenntnisse

- 1. Abiturwissen Biologie und Chemie
- 2. Medizinisches Grundlagenwissen in Tiefe und Umfang wie im Fach Anatomie und Physiologie 1 vermittelt

Inhalt

Grundlagen der medizinischen Diagnostik (klinische Untersuchungsverfahren der ärztlichen Routinediagnostik, einfache apparative Untersuchungstechniken, spezielle Therapieverfahren).
Krankheitsbilder:

- Herzkreislauferkrankungen mit Schwerpunkt auf Herzinfarkt, coronare Durchblutungsstörung, Herzklappenerkrankung, angeborene Herzfehler
- Moderne interventionelle und operative Therapieverfahren bei Herz-Kreislauferkrankungen
- Herz-Lungen-Maschine, Hypothermie, PTCA, Herzklappenersatz mit unterschiedlichen Prothesen, Herzunterstützungsverfahren, transplantationsmedizinische Grundbegriffe.

Verfahren:

- Röntgendiagnostische Verfahren
- Kardiopulmonale Funktionsdiagnostik
- Ultraschalldiagnostik
- Endoskopie
- Elektrotherapie
- Minimalinvasive Chirurgie
- Herzschrittmachertherapie einschl. CRT
- Elektrochirurgie
- Lasertherapie und -diagnostik

Medienformen

Tafel, Präsentation, Demonstrationsobjekte, Demonstration von Fallbeispielen einschl. Patientendemonstration

Literatur

- 1. Kramme (Hrsg.), Medizintechnik, , 4. Auflage, 2011, Springer
- 2. Wintermantel/Ha, Medizintechnik, Springer
- 3. Braunwald et al., Heart diseases, Saunders Company, letzte Auflage
- 4. Hirner/Weise, Chirurgie, Thieme, 2008
- 5. Speziell zusammengestellter Reader

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsingenieurwesen 2009

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Master Wirtschaftsingenieurwesen 2013

Bachelor Mathematik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Biomedizinische Technik 2013

Bachelor Mathematik 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Biomedizinische Technik 2014

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Ingenieurinformatik 2014 Modul: Klinische Verfahren

Klinische Verfahren 2

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1697 Prüfungsnummer:2200362

Fachverantwortlich: Dr. Lutz Mirow

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2221

	1.FS			2	2.FS	3	3.FS			4.FS			į	5.FS	3	6	6.FS	3	7.FS			
SWS nach	>	S	Р	٧	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р	
Fachsemester				2	0	0																

Lernergebnisse / Kompetenzen

- 1. Die Studierenden vertiefen und verbreitern ihr medizinisches Grundwissen
- 2. Die Studierenden verstehen die Grundprinzipien ärztlichen Handelns.
- 3. Die Studierenden besitzen Grundkenntnisse über ausgewählte Krankheitsbilder (Klinik, Pathologie Prävention, Diagnostik, Therapie).
- 4. Die Studierenden überblicken die Möglichkeiten ausgewählter diagnostischer und therapeutischer Verfahren und verstehen die Zuordnung zu Indikationsstellungen.
- 5. Die Studierenden kennen Bedeutung, Möglichkeiten und Grenzen der Epidemiologie.
- 6. Die Studierenden besitzen einen Überblick über Berufsfelder und Zuständigkeiten in der Medizin sowie die relevanten Rechtsnormen.
- 7. Die Studierenden können medizin-ethische Diskussionen fachlich fundiert verstehen und führen.

Vorkenntnisse

- 1. Abiturwissen Biologie, Chemie und Physik
- 2. Medizinisches Grundlagenwissen in Tiefe und Umfang wie in den Fächern "Anatomie und Physiologie 1" und "Anatomie und Physiologie 2" vermittelt
- 3. Klinisches Wissen in Tiefe und Umfang wie im Fach "Klinische Verfahren 1" vermittelt.

Inhalt

- Kreislauferkrankungen mit Schwerpunkt auf peripherer arterielle Durchblutungsstörung, Schlaganfall, Lungenembolie, Thrombosen
- Pathophysiologie der Arteriosklerose, Prävention und Therapie unter Vermittlung pharmakologischer Grundlagen der medikamentösen Therapie, interventionelle und operative Therapieverfahren
- Gerinnungstherapie
- Besondere Krankheitsbilder, z.B. Diabetes mellitus, arterielle Hypertonie/Therapie inkl. Radioablation, Carotisstenose, Hemikranektomie, Aneurysmacoiling
- Patientenselbstcontrolling durch moderne Medizintechnik, Telemedizin
- Grundlagen der Intensivmedizin
- Tumorerkrankungen (Mammakarzinom, Prostatakarzinom, Bronchialkarzinom), diagnostische und therapeutische Verfahren, Molekularpathologie, Ethik
- Fakultatives Praktikum mit Betonung kardiovaskulärer und pulmonaler Erkrankungen
- Obligatorisches Praktikum: medizinische Rehabilitation kardiovaskulärer und Tumorerkrankungen (Medianklinik Bad Berka), Falldemonstration, Hands-on-Training mit vaskulärem Ultraschall, Ergometrie, Schwimmtelemetrie

Medienformen

Tafel, Präsentation, Demonstrationsobjekte, Demonstration von Fallbeispielen, intensivierter Kontakt mit Patienten, Ärzten und medizinischem Hilfspersonal

Literatur

- 1. Kramme (Hrsg.), Medizintechnik, , 4. Auflage, 2011, Springer
- 2. Wintermantel/Ha, Medizintechnik, Springer
- 3. Braunwald et al., Heart diseases, Saunders Company, letzte Auflage
- 4. Hirner/Weise, Chirurgie, Thieme, 2008
- 5. Lehrbücher der inneren Medizin, Chirurgie, Radiologie, z.B. Henne-Bruns et al., Chirurgie, Thieme, 2008, Duale Reihe
- 6. Speziell zusammengestellter Reader

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Bachelor Biomedizinische Technik 2013

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Ingenieurinformatik 2009

Bachelor Biomedizinische Technik 2008

Master Wirtschaftsingenieurwesen 2013

Bachelor Biomedizinische Technik 2014

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Modul: Biomedizinische Mess- und Therapietechnik

Modulnummer:100800

Modulverantwortlich: Prof. Dr. Jens Haueisen

Modulabschluss:

Lernergebnisse

Ziel des Moduls ist es die grundlegenden Kompetenzen auf dem Gebiet der biomedizinischen Messtechnik und Therapietechnik zu vermittelt.

Die Studierenden kennen und verstehen die grundlegenden Messprinzipien in der Biomedizinischen Technik, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Messgeräte. Die Studierenden können vorliegende Messaufgaben im biomedizinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Die Studierenden sind in der Lage medizinische Messgeräte zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen der Biomedizinischen Sensorik, deren Messgrößen und Prinzipien und sind in der Lage biomedizinische Sensoren zu analysieren, zu bewerten, anzuwenden und in den Syntheseprozess bei medizinsicher Messtechnik einfließen zu lassen. Die Studierenden kennen und verstehen Messtechnik für bioelektrische und biomagnetische Signale, können diese in der Klinik und der Grundlagenforschung anwenden, analysieren und bewerten. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Messtechnik für bioelektrische und biomagnetische Signale.

Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien ausgewählter Biomedizinischer Therapietechnik, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Therapiegeräte. Die Studierenden sind in der Lage ausgewählte medizinische Therapiegeräte zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen zu Art und Einsatz von Biomaterialien und sind in der Lage künstliche Organe zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen der Organtransplantation und von Sterilisationsverfahren. Die Studierenden kennen und verstehen Beatmungs- und Narkosetechniken. Die Studierenden sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Designprozess mitzuwirken. Die Studierenden kennen und verstehen Dialysetechniken, Herzschrittmacher, Tiefenhirnstimulation, Ophthalmologietechnik und Minimal-invasive Chirurgietechniken. Sie sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Syntheseprozess mitzuwirken. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Biomedizinischer Therapietechnik.

Die Studierenden sind in der Lage messtechnische Sachverhalte und therapiegrätetechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für medizinische Messtechnik und für Biomedizinische Technik in der Therapie in interdisziplinären Teams zu vertreten.

Vorraussetzungen für die Teilnahme

AET 1+2, Mathematik 1+2

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelgt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Master Ingenieurinformatik 2014

Modul: Biomedizinische Mess- und Therapietechnik

Grundlagen der Medizinischen Messtechnik

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 1373 Prüfungsnummer:2200489

Fachverantwortlich: Prof. Dr. Jens Haueisen

Leistungspunkte:	4	Workload (h): 12	20	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2221

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Grundlagen der Medizinischen Messtechnik zu vermitteln. Die Studierenden kennen und verstehen die grundlegenden Messprinzipien in der Biomedizinischen Technik, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Messgeräte. Die Studierenden können vorliegende Messaufgaben im biomedizinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Die Studierenden sind in der Lage medizinische Messgeräte zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen der Biomedizinischen Sensorik, deren Messgrößen und Prinzipien und sind in der Lage biomedizinische Sensoren zu analysieren, zu bewerten, anzuwenden und in den Syntheseprozess bei medizinsicher Messtechnik einfließen zu lassen. Die Studierenden kennen und verstehen Messtechnik für bioelektrische und biomagnetische Signale, können diese in der Klinik und der Grundlagenforschung anwenden, analysieren und bewerten. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Messtechnik für bioelektrische und biomagnetische Signale. Die Studierenden sind in der Lage messtechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für medizinische Messtechnik in interdisziplinären Teams zu vertreten.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Theoretische Elektrotechnik

Inhalt

Einführung: Grundkonzepte der medizinischen Messtechnik, spezifische Problemfelder bei Messungen am biologischen Objekt, Anforderungen an medizinische Messverfahren und –geräte

Biomedizinische Sensoren: Physiologische Messgrößen, Physikalische Messprinzipien, medizinische Anwendungen, bioelektromagnetische Sensoren, optische Sensoren in der Medizintechnik

Bioelektrische und biomagnetische Signale: Signalquellen, Eigenschaften, Erfassung bioelektrischer Potentiale, Erfassung biomagnetischer Felder, Einfluss und Ausschaltung von Störsignalen

Biosignalverstärker: Anforderungen und Entwurfskonzepte, Rauschen, Differenzverstärker, Elektrodenvorverstärker, Isolierverstärker, Guarding-Technik

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

- 1. Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992
- 2. Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985

- 3. Webster, J.G. (Ed.): Medical Instrumentation Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992
- 4. Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000
- 5. Malmivuo, J.: Bioelectromagnetism, Oxford University Press, 1995
- 6. Haueisen, J.: Numerische Berechnung und Analyse biomagnetischer Felder. Wissenschaftsverlag Ilmenau, 2004

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2014

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Biomedizinische Technik 2013

Master Ingenieurinformatik 2014

Modul: Biomedizinische Mess- und Therapietechnik

Biomedizinische Technik in der Therapie

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 1691 Prüfungsnummer:2200490

Fachverantwortlich: Prof. Dr. Jens Haueisen

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2221

	1	I.FS	<u> </u>	2	2.FS	3		3.FS	3		I.FS	3	5	5.FS	3	- (3.FS	3		7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	V	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	0	0																		

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Grundlagen und Anwendungen der Biomedizinische Technik in der Therapie zu vermitteln. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien ausgewählter Biomedizinischer Therapietechnik, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Therapiegeräte. Die Studierenden sind in der Lage ausgewählte medizinische Therapiegeräte zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen zu Art und Einsatz von Biomaterialien und sind in der Lage künstliche Organe zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen der Organtransplantation und von Sterilisationsverfahren. Die Studierenden kennen und verstehen Beatmungs- und Narkosetechniken. Die Studierenden sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Designprozess mitzuwirken. Die Studierenden kennen und verstehen Dialysetechniken, Herzschrittmacher, Tiefenhirnstimulation, Minimal-invasive Chirurgietechniken und Laser in der Medizin. Sie sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Syntheseprozess mitzuwirken. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Biomedizinischer Therapietechnik. Die Studierenden sind in der Lage therapiegrätetechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für Biomedizinische Technik in der Therapie in interdisziplinären Teams zu vertreten.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Theoretische Elektrotechnik, Grundlagen der Biomedizinischen Technik

Inhalt

Einführung: Klassifizierung und Strukturierung Biomedizinischer Technik in der Therapie, Anforderungen an medizinische Therapiegräte, spezifische Problemfelder bei Therapiegeräten Biomaterialien und Biokompatibilität: Arten und Einsatz der Biomaterialien, Biokompatibilität, künstliche Organe und Organtransplantation, Sterilisation, Beatmungs- und Narkosetechnik: medizinische und physiologische Grundlagen, methodische und technische Lösungen, Dialyse/ künstliche Niere: medizinische und physiologische Grundlagen, Hämodialyse, extrakorporaler Kreislauf, Technik der Hämodialyse, Ultrafiltration, Dialyse-Monitoring, Herzschrittmacher: medizinische und physiologische Grundlagen, Stimulation, Elektroden, Gerätespezifikation, Einsatz Tiefenhirnstimulation: medizinische und physiologische Grundlagen, Stimulationstechniken, Therapiegeräte Minimal-invasive Chirurgie: Entwicklung der Endoskopie, Anforderungen an minimal-invasive Gerätestystem, Techniken und Instrumente Laser in der Medizin: Anwendungsspektrum der Laser in der Medizin, Prinzipien medizinischer Laser, Ophthalmologische Technik: Technik der Cataract-Operation und Intraokularlinsenimplantation, Glaskörperchirurgie, ophthalmologische Implantate

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992 Bronzino, J. D. (Ed.): The Biomedical Engineering Hand-book, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Biomedizinische Technik 2013

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Modul: Biomedizinische Technik

Modulnummer:100342

Modulverantwortlich: Prof. Dr. Jens Haueisen

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Ziel des Moduls ist es spezifische Kompetenzen auf dem Gebiet der Biomedizinischen Technik zu vermitteln. Die Studierenden kennen und verstehen die Messprinzipien in der Medizinischen Praxis, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Messgeräte. Die Studierenden können Messaufgaben im klinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Die Studierenden sind in der Lage medizinische Messgeräte zu analysieren und zu bewerten. Die Studierenden verstehen die Messtechnik für bioelektrische und biomagnetische Signale, können diese in der Klinik anwenden und bewerten. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Messtechnik für bioelektrische und biomagnetische Signale. Die Studierenden besitzen methodenorientierten Kenntnissen der Bildsignalgenerierung im Ergebnis des genutzten physikalischen Wechselwirkungsprozesses sowie der Übertragung, Visualisierung und Speicherung des Bildsignales. Die Studierenden begreifen Bilderzeugungssysteme in der Medizin als spezialisierten Gegenstands- und Methodenbereich der Biomedizinischen Technik, der sich mit Analyse, Synthese und Optimierung sowie mit der Qualitätssicherung der Anwendung von Bilderzeugungssystemen in der Medizin beschäftigt. Die Studierenden sind in der Lage, auf der Ebene des Signalübertragungsprozesses Aufbau und Funktion der Bilderzeugungssysteme zu Erkennen und zu analysieren einschließlich der Aufwärtseffekte der genutzten physikalischen Wechselwirkungsprozesse. Sie verstehen die komplexen Zusammenhänge Bildgebender Systeme als technische Hilfsmittel zum Erkennen von Krankheiten. Sie sind in der Lage, deren Aufwand, Nutzen und Risiko im medizinischen Versorgungs- und ärztlichen Betreuungsprozess zu bewerten. Die Studierenden sind in der Lage messtechnische und bildgebende Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für medizinische Messtechnik und Bildgebung in interdisziplinären Teams zu vertreten.

Vorraussetzungen für die Teilnahme

AET 1+2, Mathematik 1+2

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelgt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Master Ingenieurinformatik 2014 Modul: Biomedizinische Technik

Bildgebende Systeme in der Medizin 2

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5605 Prüfungsnummer:2200104

Fachverantwortlich: Prof. Dr. Andreas Keller

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Informat	tik und	d Automatisierung					Fachgebiet:	2221

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р
Fachsemester	2	0	0																		

Lernergebnisse / Kompetenzen

Die Kerninhalte orientieren sich überwiegend an methodenorientierten Kenntnissen der Bildsignalgenerierung im Ergebnis des genutzten physikalischen Wechselwirkungsprozesses sowie der Übertragung, Visualisierung und Speicherung des Bildsignales. Gerätetechnische Kenntnisse werden als aktuelle Anwendungsbeispiele gestaltet. Die Studierenden begreifen Bilderzeugungssysteme in der Medizin als spezialisierten Gegenstands- und Methodenbereich der Biomedizinischen Technik, der sich mit Analyse, Synthese und Optimierung sowie mit der Qualitätssicherung der Anwendung von Bilderzeugungssystemen in der Medizin beschäftigt. Die Studierenden sind in der Lage, auf der Ebene des Signalübertragungsprozesses Aufbau und Funktion der Bilderzeugungssysteme zu Erkennen und zu Analysieren einschließlich der Aufwärtseffekte der genutzten physikalischen Wechselwirkungsprozesse. Sie verstehen die komplexen Zusammenhänge Bildgebender Systeme als technische Hilfsmittel zum Erkennen von Krankheiten. Sie sind in der Lage, deren Aufwand, Nutzen und Risiko im medizinischen Versorgungs- und ärztlichen Betreuungsprozess zu bewerten.

Vorkenntnisse

Physik, Messtechnik, Signale und Systeme

Inhalt

BILDGEBENDE SYSTEM IN DER MEDIZIN:

Aufgaben, Ziele, Leistungsbewertung

SIGNALÜBERTRAGUNGSVERHALTEN:

Charakteristik des elementaren BES, Erweiterung des Dynamikbegriffes, Systemklassen, Operatoreigenschaften,

Heuristischer Ansatz, Vollständige Beschreibung, Koordinatentransformation, Statisches Verhalten, Kontrastübertragung, Örtliche Dynamik, Zerlegung in Impulse,

Zerlegung in Sinusschwingungen, Rauschen, Übertragung von Rauschen, Auswirkung auf die

Detailerkennbarkeit, Abtastsysteme, Örtliche Abtastung, 2D-Abtasttheorem, Undersampling, Aliasing,

Querschnittrekonstruktionsverfahren, Modellansatz, Gefilterte Rückprojektion, Messung des

Übertragungsverhaltens, Aussage des Übertragungsverhaltens, das Auge.

MAGNETRESONANZTOMOGRAFIE:

Wechselwirkungseffekt, Mikroskopische Kernmagnetisierung, Makroskopische Kernmagnetisierung, Relaxation, Kernresonanz, Bestimmung der Relaxationszeiten, MR-Bildgebung, Ortsauflösung: Gradientenfelder, Prinzip, Möglichkeiten, Einzelschichtverfahren, Gerätetechnik.

DIAGNOSTISCHE ULTRASCHALLANWENDUNGEN:

Wechselwirkungseffekte, Schall, Ultraschall, Schallausbreitung an Grenzschichten, Echoprinzip, Dopplerprinzip, Ultraschallerzeugung, -wandlung, Bildgebung, Echoimpulstechnik, A-Bild, B-Bild, M-Bild, Doppler, Farbdoppler, Übertragungsverhalten, Örtliches Auflösungsvermögen, Zeitliches Auflösungsvermögen, Störgrößen, Rauschen.

Medienformen

PowerPoint-Präsentation, Mitschriften, Arbeitsblätter

Literatur

Bücher

- 1. Imaging Systems for Medical Diagnostics; Ed.: Oppelt, A; 2nd. rev. & enl. ed.; Erlangen: Publicis 2005. 996 S.
- 2. Barrett, H. H.; Swindell, W.: Radiological Imaging: The Theory of Image Formation, Detection, and Processing; Vol.I & II; New York: Academic Press 1981. 384 + 352 S.
- 3. Buzug, T. M.: Einführung in die Computertomographie Mathematisch-physikalische Grundlagen der Bildrekonstruktion; Berlin: Springer 2004. 420 S.
- 4. Kalender, W. A.: Computertomographie Grundlagen, Gerätetechnologie, Bildqualität, Anwendungen; 2., überarb. u. erw. Aufl.; Erlangen: Publicis Corp. Publ. 2006. 324 S.
- 5. Schmidt, F.: Einige Probleme bei der digitalen Abtastung von Bildern Wiss. Z. TH Ilmenau 35 (1989) H.2; S.67-76
- 6. Vlaardingerbroek, M. T.;Boer, J. A. den: Magnetresonanzbildgebung; Berlin: Springer 2004. 500 S. 7. Götz, A.-J., Enke,
- F.: Kompendium der medizinisch diagnostischen Ultrasonographie; Stuttgart: Enke 1997. 124 S.

Zeitschriften

Keller, A.: Zum Übertragungsverhalten medizinischer Bilderzeugungssysteme

Teil 1: Begriffe, Charakteristik, Beschreibungsmöglichkeiten.

mt-medizintechnik 132(2012), Nr.4, S.152-157

- Teil 2: Koordinatentransformation. mt-medizintechnik 132(2012), Nr.5, S.188-194
- Teil 3: Statisches Übertragungsverhalten. mt-Medizintechnik 133(2013), Nr.3, S.107-111
- Teil 4: Örtliche Dynamik: Beschreibungsmethoden, Zerlegung in Impulse.

mt-medizintechnik 133(2013), Nr.5, S.194-196

Teil 5: Örtliche Dynamik: Indirekte Beschreibung mittels Zerlegung in Sinusschwingungen.

mt-medizintechnik 134(2014), Nr.4, S.145-150

- Teil 6: Örtliche Dynamik: Kennfunktionen. mt-medizintechnik 135(2015), Nr.2, S.70-76
- Teil 7: Rauschen. mt-medizintechnik 135(2015), Nr.4, S.153-156
- Teil 8: Abtastsysteme. mt-medizintechnik 136 (2016) Nr. 3, (im Druck)

(Teile 9 ff in Vorbereitung)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Biomedizinische Technik 2014

Master Ingenieurinformatik 2014 Modul: Biomedizinische Technik

Verfahren der Biomedizinischen Messtechnik

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5603 Prüfungsnummer:2200105

Fachverantwortlich: Prof. Dr. Jens Haueisen

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informatik	k un	d Automatisierung				Fachgebiet:	2221

	1	l.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Verfahren der Medizinischen Messtechnik zu vermitteln. Die Studierenden kennen und verstehen die Messprinzipien in der Medizinischen Praxis, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Messgeräte. Die Studierenden können Messaufgaben im klinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Die Studierenden sind in der Lage medizinische Messgeräte zu analysieren und zu bewerten. Die Studierenden verstehen die Messtechnik für bioelektrische und biomagnetische Signale, können diese in der Klinik anwenden und bewerten. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Messtechnik für bioelektrische und biomagnetische Signale. Die Studierenden sind in der Lage messtechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für medizinische Messtechnik in interdisziplinären Teams zu vertreten.

Vorkenntnisse

Grundlagen der Biomedizinischen Technik, Grundlagen der Medizinischen Messtechnik

Inhalt

Elektrophysiologische Messverfahren (Elektrokardiografie, Elektroenzephalografie); Blutdruckmessung (methodische Grundlagen, Blutdruck-Parameter, direkte / indirekte Messverfahren); Blutflussmessung (methodische Grundlagen, Messverfahren); Respiratorische Messverfahren (physiolog./ messmethodische Grundlagen, Messgrößen, Messverfahren); optische Messverfahren (methodische Grundlagen, Photoplethysomgrafie, Spektralfotometrie, Pulsoximetrie)

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

• Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992 • Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985 • Webster, J.G. (Ed.): Medical Instrumentation - Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992 • Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000 • Malmivuo, J.: Bioelectromagnetism, Oxford University Press, 1995 • Kramme, R. (Hrsg.): Medizintechnik, Springer-Verlag Berlin, Heidelberg, New York, 2002

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010

Master Biomedizinische Technik 2014

Modul: Biosignalverarbeitung

Modulnummer 100341

Modulverantwortlich: Prof. Dr. Jens Haueisen

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden kennen die wichtigsten Biosignale im Amplituden- und Frequenzverhalten. Sie erhalten Fachkenntnisse und Methodenkompetenz auf dem Gebiet der Zeit-Frequenz-Verteilungen und im Raum-Zeit-Bereich. Sie sind in der Lage, Biosignale entsprechend ihrer Natur als instationäre Prozesse, die in Zeit, Frequenz und Raum extrem dynamisch sind, methodisch kompetent zu analysieren, darzustellen, zu präsentieren und Konsequenzen für signalbasierte Therapie zu entwerfen.

Weiterhin sind die Studierenden fähig, die speziellen Probleme der medizinischen Bildverarbeitung zu erkennen und erwerben die grundlegende Methodenkompetenz, um eigenständig elementare medizinische Bildverarbeitungsprobleme zu lösen. Die Studierenden sind in der Lage die erworbene Methodenkompetenz in Matlab umzusetzen und auf praktische Problemstellungen anwenden zu können. Des Weiteren sind sie befähigt auf Basis der erworbenen Grundlagen auch fortgeschrittene Methoden der medizinischen Bildverarbeitung zu untersuchen.

Außerdem erlangen die Studierenden Wissen über die wichtigsten informationsverarbeitenden Systeme der modernen Gesundheitsversorgung. Sie kennen und verstehen die Struktur und Architektur heutiger Krankenhausinformationssysteme und telemedizinische Anwendungen, die damit verbundenen spezifischen Problemfelder und die Anforderungen an Hardund Software. Die Studierenden können adäquate Aufgaben aus dem klinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Sie sind in der Lage medizinische Software zu analysieren und zu bewerten und können diese in der Klinik anwenden. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung medizinischer IVSysteme. Sie sind in der Lage informationstechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage System-kompetenz für medizinische Informationsverarbeitung in interdisziplinären Teams zu vertreten.

Vorraussetzungen für die Teilnahme

- -Mathematik
- -Informatik
- -Elektrotechnik
- -Elektronik und Systemtechnik
- -Medizinische Grundlagen

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelgt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Master Ingenieurinformatik 2014 Modul: Biosignalverarbeitung

Bildverarbeitung in der Medizin 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5592 Prüfungsnummer:2200084

Fachverantwortlich: Martin Weis

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	ıtik un	d Automatisierung				Fachgebiet:	2221

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	;	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Der Studierende erkennt die speziellen Probleme der medizinischen Bildverarbeitung und erwirbt die grundlegende Methodenkompetenz, um eigenständig elementare medizinische Bildverarbeitungsprobleme zu lösen. Dabei nutzt der Studierende auch die bereits erworbenen Grundlagen, die zuvor in anderen Fächern zur Signalverarbeitung und zur Bildgebung vermittelt wurden. Der Studierende ist in der Lage die erworbene Methodenkompetenz in Matlab umzusetzen und auf praktische Problemstellungen anwenden zu können. Des Weiteren ist er befähigt auf Basis der erworbenen Grundlagen auch fortgeschrittene Methoden der medizinischen Bildverarbeitung zu untersuchen.

Vorkenntnisse

- Signale und Systeme
- Grundlagen der Biosignalverarbeitung
- Biosignalverarbeitung 1
- Bildgebung in der Medizin 1

Inhalt

Im Rahmen der Vorlesung werden die Grundlagen der Bildverarbeitung mit einem speziellen Fokus auf die in der Medizintechnik relevanten Bereiche vermittelt. Die Schwerpunkte werden dabei insbesondere auf die Bildrepräsentation und Bildeigenschaften, die Bildvorverarbeitung, sowie die Segmentierungsverfahren gelegt. Im Rahmen des Seminars werden die behandelten Methoden zur Lösung praktischer Aufgabenstellungen mit Hilfe von Matlab eingesetzt und diskutiert. Gliederung:

- Einführung in die Bildverarbeitung und Vorstellung spezieller Probleme in medizinischen Anwendungen
- Bildrepräsentation und Bildeigenschaften im Ortsbereich und im Ortsfrequenzbereich (zweidimensionale Fouriertransformation)
- Bildvorverarbeitung (lineare diskrete Operatoren, Bildrestauration, Bildregistrierung, Bildverbesserung)
- Morphologische Operationen
- Segmentierung (Pixelbasierte Segmentierung, Regionenbasierte Segmentierung, Kantenbasierte Segmentierung, Wasserscheidentransformation, Modellbasierte Segmentierung)
- Merkmalsextraktion und Einführung in die Klassifikation

Medienformen

Hauptsächlich Tafel ergänzt um Folien mit Beamer für die Vorlesung; Whiteboard und rechentechnisches Kabinett für das Seminar

Literatur

- 1. Klaus D. Tönnies, "Grundlagen der Bildverarbeitung", Pearson Studium, 1. Auflage, 2005.
- 2. Heinz Handels, "Medizinische Bildverarbeitung", Vieweg + Teubner, 2. Auflage, 2009.
- 3. Bernd Jähne, "Digitale Bildverarbeitung", Springer, 6. Auflage, 2005.
- 4. Angelika Erhardt, "Einführung in die Digitale Bildverarbeitung", Vieweg + Teubner, 1. Auflage, 2008.
- 5. Rafael C. Gonzales and Richard E. Woods, "Digital Image Processing", Pearson International, 3. Edition, 2008.
- 6. Geoff Dougherty, "Digital Image Processing for Medical Applications", Cambridge University Press, 1. Edition, 2009.
- 7. William K. Pratt, "Digital Image Processing", Wiley, 4. Edition, 2007.
- 8. Wilhelm Burger and Mark J. Burge, "Principles of Digital Image Processing Core Algorithms", Springer, 1. Edition, 2009.
- 9. John L. Semmlow, "Biosignal and Medical Image Processing", CRC Press, 2. Edition, 2009.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Informatik 2013

Master Biomedizinische Technik 2014

Master Mathematik und Wirtschaftsmathematik 2008

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Ingenieurinformatik 2014 Modul: Biosignalverarbeitung

Biosignalverarbeitung 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5599 Prüfungsnummer:2200083

Fachverantwortlich: Prof. Dr. Peter Husar

Leistungspunkte:	4	Workload (h): 12	20	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2222

	1	I.FS	3	2	2.FS	3	,	3.FS	3	4	I.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Die Studierenden kennen die wichtigsten Biosignale im Amplituden- und Frequenzverhalten. In dieser Veranstaltung erweitern sie ihre Fachkenntnisse und Methodenkompetenz um zwei neue Dimensionen: Zeit-Frequenz-Verteilungen und Raum-Zeit-Bereich. Sie sind in der Lage, Biosignale entsprechend ihrer Natur als instationäre Prozesse, die in Zeit, Frequenz und Raum extrem dynamisch sind, methodisch kompetent zu analysieren, darzustellen, zu präsentieren und Konsequenzen für signalbasierte Therapie zu entwerfen.

Vorkenntnisse

- Signale und Systeme
- Biosignalverarbeitung 1
- Biostatistik
- Elektro- und Neurophysiologie
- Elektrische Messtechnik
- Prozessmess- und Sensortechnik

Inhalt

- Zeitvariante Verteilungen: Signaldynamik, Instationarität, zeitliche und spektrale Auflösung
- Methodik: lineare und quadratische Zeit-Frequenz-Analysemethoden
- STFT, Spektrogramm
- Wavelets
- Wignerbasierte Verteilungen
- Signalverarbeitung in Raum-Zeit, Array Signal Processing: Theorie des Beamforming, Praktikable Ansätze für Beamforming, räumliche Filterung, adaptive Beamformer
- Ableitungsreferenzen
- Topographie und Mapping räumlicher Biosignale
- Signalzerlegung: Orthogonal PCA, Unabhängig ICA
- Artefakterkennung und –elimination in verschiedenen Signaldomänen: Zeit, Frequenz, Raum, Verbunddomänen, Adaptive Filter in Zeit und Raum
- EKG: Entstehung, Ausbreitung, physiologische und pathologische Muster, Diagnostik, automatisierte Detektion, Applikation
- Ähnlichkeitsmaße und Vergleich in Zeit, Frequenz und Raum

Medienformen

Folien mit Beamer für die Vorlesung, Tafel, Computersimulationen. Whiteboard und rechentechnisches Kabinett für das Seminar

Literatur

- 1. Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000
- 2. Husar, P.: Biosignalverarbeitung, Springer, 2010
- 3. Akay M.: Time Frequency and Wavelets in Biomedical Signal Proessing. IEEE Press, 1998
- 4. Bendat J., Piersol A.: Measurement and Analysis of Random Data. John Wiley, 1986
- 5. Hofmann R.: Signalanalyse und -erkennung. Springer Verlag, Berlin, Heidelberg, New York, 1998
- 6. Hutten H.: Biomedizinische Technik Bd.1 u. 3. Springer Verlag, New York, Berlin, Heidelberg, 1992
- 7. Proakis, J.G, Manolakis, D.G.: Digital Signal Processing, Pearson Prentice Hall, 2007

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Biomedizinische Technik 2014

Master Mathematik und Wirtschaftsmathematik 2008

Modul: Medizinische Informatik

Modulnummer 101356

Modulverantwortlich: Dr. Marko Helbig

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Der Absolvent soll das aktuelle Wissen und die Methodik der Informatik zur Lösung von Problemen in der Medizin einsetzen können. Er soll die besonderen Sicherheitsaspekte kennen und bei der Lösung von technischen Problemen sowie bei der Überwachung technischer Einrichtungen in der Medizin verantwortungsvoll einsetzen können. Der Absolvent soll die medizinische diagnostische und therapeutische Fragestellung verstehen und geeignete Lösungen entwerfen und realisieren können. Er soll die besonderen Aspekte bei der Wechselwirkung technischer Systeme mit dem menschlichen Körper kennen und berücksichtigen. Der Absolvent soll die Grundprinzipien der klinischen Arbeitsweise bei diagnostischen und therapeutischen Verfahren kennen.

Vorraussetzungen für die Teilnahme

- -Abiturwissen Biologie
- -Mathematik 1+2
- -AET 1+2

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelgt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Master Ingenieurinformatik 2014 Modul: Medizinische Informatik

Rechnergestützte Messdatenerfassung

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 7875 Prüfungsnummer:2200500

Fachverantwortlich: Dr. Marko Helbig

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2222

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS	S	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	1	1	0																		

Lernergebnisse / Kompetenzen

Die Studierenden kennen Aufbau, Funktion und Einsatzfelder wesentlicher Komponenten der medizinisch relevanten digitalen Messtechnik (Analog-Digital-Wandler, Mikroprozessoren und Mikrocontroller, Bussysteme und Schnittstellen). Sie kennen Prinzipien und Hardwarestrukturen paralleler Programmierung (DSP, FPGA, GPU). Die Studierenden erlernen die grundlegende Vorgehensweise bei der Anwendung eines FPGA's in der Biomedizintechnik und der Programmierung eines FPGA's mittels VHDL.

Vorkenntnisse

Elektrotechnik, Elektrische Messtechnik, Messelektronik in der BMT II

Inhalt

- Komponenten medizintechnisch relevanter Digitalmesstechnik: ADC (Abtastung, Quantisierung, Wandlungsprinzipien, Parameter), Mikroprozessoren und Mikrocontroller (Architekturen, Speicher, Interruptkonzept, Timer, I/O, Programmierung), Bussysteme und Schnittstellen
- Grundkonzepte paralleler Messdatenverarbeitung: DSP, FPGA, GPU
- FPGA (Aufbau, Funktionsweise, Grundlagen der Programmierung mit VHDL)
- Seminarinhalte: Programmierübungen mit FPGA-Entwicklungsboard

Medienformen

Powerpoint-Folien, Tafel, Demonstration, FPGA-Entwicklungsboard

Literatur

- · Hartl u.a.: Elektronische Schaltungstechnik. Pearson Studium, 2008
- · Maloberti: Data Converters. Springer, 2007
- · Wüst: Mikroprozessortechnik. Vieweg, 2010
- · Rauber, Rünger: Parallele Programmierung. Springer, 2012
- · Reichardt, Schwarz: VHDL-Synthese. De Gruyter-Studium, 2015
- · Kesel, Bartholomä: Entwurf von digitalen Schaltungen und Systemen mit HDLs und FPGAs. Oldenbourg, 2013
- · Sauer: Hardware-Design mit FPGA, elektor, 2010
- · Molitor, Ritter: Kompaktkurs VHDL, Oldenbourg-Verlag, 2013
- · Baese: Digital Signal Processing with Field Programmable Gate Arrays. Springer, 2014

Detailangaben zum Abschluss

Wird als Teilfach in der mündlichen Komplexprüfung Elektromedizinische Technik geprüft.

Als Technisches Nebenfach: Prüfungsform: mündlich

Dauer: 30 min

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Biomedizinische Technik 2014

Master Ingenieurinformatik 2014 Modul: Medizinische Informatik

KIS, Telemedizin, eHealth

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5601 Prüfungsnummer:2200499

Fachverantwortlich: Prof. Dr. Vesselin Detschew

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2222

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden besitzen Grundkenntnisse über Datenverarbeitungsaufgaben und Informationssysteme im Krankenhaus und in der modernen Gesundheitsversorgung. Sie kennen den Rechtsrahmen ärztlichen Handelns (Datenschutz) und die daraus abgeleiteten Aufgaben (Datensicherheit). Die Studierenden kennen Struktur und Architektur heutiger Krankenhausinformationssysteme und telemedizinischer Anwendungen, die damit verbundenen spezifischen Problemfelder und die Anforderungen an Hard- und Software. Die Studierenden können adäquate Aufgaben aus dem klinischen Umfeld analysieren, bewerten und geeignete Lösungsansätze entwickeln. Sie können diese informationstechnischen Sachverhalte klar und korrekt kommunizieren und in interdisziplinären Teams vertreten.

Vorkenntnisse

Grundlegende med. Begriffe, Grundkenntnisse in Datenbanken und Software Engineering, Krankenhausökonomie / Krankenhausmanagement

Inhalt

- Krankenhausinformationssystem Definition, Bestandteile, Struktur und Architektur
- Krankenhausinformationssystem Management-Komponenten, Patientenverwaltung, Abrechnung
- Klinische Subsysteme, Operationsmanagement, Labor, Pflege, Intensivmedizin, , Qualitätssicherung
- Kommunikationsstandards HL7, DICOM, andere
- Medizinische Dokumentation Ziele, Umsetzung, konventionelle und elektronische Patientenakte, klinische Basisdokumentation
- Datenschutz und Datensicherheit
- Telemedizin Definition, Anwendungen; Telemedizinische Standards, Home-Monitoring
- $\ Elektronische \ Gesundheitskarte \ Telematik-Infrastruktur, \ Architektur, \ Anwendungen$

Medienformen

Powerpoint-Folien, Tafel, studentische Vorträge

Literatur

- Lehmann, T.: Handbuch der Medizinischen Informatik. Hanser 2005
- Kramme, R. (Hrsg.): Medizintechnik Verfahren. Systeme, Informationsverarbeitung. Springer 2002
- Haas, P.: Medizinische Informationssysteme und elektronische Krankenakte. Springer 2005
- · Jähn, K.: e-Health. Springer 2004
- Herbig, B.: Informations- und Kommunikationstechnologien im Krankenhaus. Schattauer 2006
- Leimer u.a.: Medizinische Dokumentation. Schattauer, 2012

• Gärtner: Gärtner, Medizintechnik und Informationstechnologie. TÜV Media GmbH

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Ingenieurinformatik 2014

Master Wirtschaftsinformatik 2009

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsinformatik 2014

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Master Biomedizinische Technik 2014

Master Wirtschaftsinformatik 2011

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Biomedizinische Technik 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsinformatik 2015

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Modul: Technische Kybernetik - Systemtechnik

Modulnummer8338

Modulverantwortlich: Prof. Dr. Pu Li

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können

- fortgeschrittene automatisierungs- und systemtechnische Methoden in den genannten Fächern anwenden,
- Analyse- und Entwurfsaufgabenstellungen an praktisch relevanten Themenstellungen entwickeln, lösen und bewerten sowie
 - Experimente an praxisnahen Versuchsaufbauten ausführen.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik, Maschinenbau

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelegt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Master Ingenieurinformatik 2014

Modul: Technische Kybernetik - Systemtechnik

Hauptseminar Technische Kybernetik - Systemtechnik

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 101187 Prüfungsnummer:2200475

Fachverantwortlich: Dr. Kai Wulff

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	98	SWS:	2.0	
Fakultät für Informa	itik un	d Automatisierung				Fachgebiet:	2213

	1	I.FS)		2.FS	3	,	3.FS	3		1.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	V	S	Р
Fachsemester				0	2	0															

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, wissenschaftlich-technische Literatur zu recherchieren und auszuwerten.
- Die Studierenden können ein neues, weiterführendes Verfahren oder einen Anwendungsfall eigenständig erfassen und bewerten.
 - Die Studierenden können ein wissenschaftliches Thema schriftlich und mündlich angemessen präsentieren.

Vorkenntnisse

Regelungs- und Systemtechnik 1 und 2, Digitale Regelungen/Regelungssysteme, Grundlagen Matlab. Empfohlen Regelungs- und Systemtechnik 3 und Nichtlinerare Regelungssysteme

Inhalt

wechselnde Themen aus den Gebieten Automatisierungstechnik, Optimierung, Regelungstechnik, Systemanalyse und Systemtheorie

Medienformen

Folienpräsentationen, Simulationen,

Handouts

http://www.tu-ilmenau.de/regelungstechnik/lehre/hauptseminar

Literatur

abhängig vom Thema variierend

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Modul: Diagnose- und Vorhersagesysteme

Modulnummer:100905

Modulverantwortlich: Prof. Dr. Christoph Ament

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

siehe Fachbeschreibung

Detailangaben zum Abschluss

Master Ingenieurinformatik 2014

Modul: Diagnose- und Vorhersagesysteme

Diagnose- und Vorhersagesysteme

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5542 Prüfungsnummer:2200134

Fachverantwortlich: Prof. Dr. Christoph Ament

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Informa	itik und	Automatisierung				Fachgebiet:	2211

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	I.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	>	S	Р
Fachsemester				2	1	1															

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, technische Systeme hinsichtlich der Diagnosemöglichkeiten zu bewerten und eigenständig Lösungen für Diagnoseaufgaben zu erarbeiten. Sie sind weiterhin in der Lage Systeme und Zeitreihen hinsichtlich ihrer Vorhersagbarkeit zu analysieren und mit Hilfe systemtechnischer Methoden Vorhersagen für unterschiedliche Zeithorizonte zu realisieren. Durch die Kombination von Methoden der Diagnose und Vorehrsage lösen die Studierenden Aufgaben auf dem Gebiet der prädiktiven Diagnose. Die Studierenden wenden moderne Methoden der Prozess- und Systemanalyse sowie moderne Computersimulationssysteme an. Teamorientierung, Präsentationstechnik und Arbeitsorganisation werden ausgeprägt.

Vorkenntnisse

Abschluss der Grundausbildung in Mathematik, Regelungstechnik, Systemanalyse

Inhalt

Diagnose

- Auswertung von Signalen und Zuständen
- · Verwendung von Systemmodellen
- · Berechnung von Kennwerten
- Klassifikationsverfahren
- · Modellreferenzverfahren
- · Wissensbasierte Verfahren

Vorhersage

- Vorhersagbarkeit
- Prognoseprozess
- · Primärdatenaufbereitung
- · Vorhersage mit deterministischen Signalmodellen
- Vorhersage mit stochastischen Signalmodellen
- · Musterbasierte Vorhersage
- · Konnektionistische Verfahren zur Vorhersage

Medienformen

Skript, Video, Vorführungen, Rechnerübungen

Literatur

- Brockwell, P. J. Davis, R. A.: Introduction to Time Series and Forecasting. New York: Springer-Verlag, 1996
- Isermann, Rolf: Uberwachung und Fehlerdiagnose. VDI Verlag, 1994
- Janacek, Gareth; Swift, Louise: Time series: Forecasting, Simulation, Applications. New York, London, Toronto, Sydney, Tokyo, Singapore: Ellis Horwood, 1993
 - Romberg, T. [u. a.]: Signal processing for industrial diagnostics. Wiley, 1996
 - · Schlittgen, Rainer: Angewandte Zeitreihenanalyse. Munchen, Wien: Oldenbourg Wissenschaftsverlag, 2001
- Schlittgen, Rainer; Streitberg, Bernd H.J.: Zeitreihenanalyse. 9. Auflage. Munchen, "Wien, Oldenbourg Wissenschaftsverlag, 2001
 - Wernstedt, Jurgen: Experimentelle Prozessanalyse. 1. Auflage. Berlin: Verlag Technik, 1989

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Modul: Adaptive und strukturvariable Regelungssysteme

Modulnummer:100908

Modulverantwortlich: Dr. Kai Wulff

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Nach erfolgreichem Abschluss des Moduls:

- Kennen die Studierenden unterschiedliche Systemklassen, die für nichtlineare und schaltende Systeme betrachtet werden
 - Kennen die Studierenden verschiedene Stabilitätskonzepte für solche Systemklassen
 - Kennen die Studierenden Stabilitätskriterien für die unterschiedlichen Systemklassen und können diese anwenden.
- Kennen die Studierenden die unterschiedliche Verfahren zum Entwurf adaptiver und strukturvariabler Regelungen und sind in der Lage diese anzuwenden.
- Sind die Studierenden in der Lage typische Softwarewerkzeuge zur Analyse und zum Entwurf von adaptiven Regelkreisen zu verwenden.
 - · Können die Studierenden adaptive und strukturvariable Regler auf gängigen Plattformen implementieren.

Vorraussetzungen für die Teilnahme

ohne

Detailangaben zum Abschluss

Zusätzlich zur Prüfungsleistung muss das Praktikum inkl. Testat erfolgreich absolviert werden.

Master Ingenieurinformatik 2014

Modul: Adaptive und strukturvariable Regelungssysteme

Adaptive und strukturvariable Regelungssysteme

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100755 Prüfungsnummer:220401

Fachverantwortlich: Dr. Kai Wulff

Leistungspunkte:	5	Workload (h): 1	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2213

	1	I.FS	3	2	2.FS	3	,	3.FS	3		I.FS	3	į	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	1															

Lernergebnisse / Kompetenzen

Nach erfolgreichem Abschluss des Moduls:

- Kennen die Studierenden unterschiedliche Systemklassen, die für nichtlineare und schaltende Systeme betrachtet werden
 - Kennen die Studierenden verschiedene Stabilitätskonzepte für solche Systemklassen
 - Kennen die Studierenden Stabilitätskriterien für die unterschiedlichen Systemklassen und können diese anwenden.
- Kennen die Studierenden die unterschiedliche Verfahren zum Entwurf adaptiver und strukturvariabler Regelungen und sind in der Lage diese anzuwenden.
- Sind die Studierenden in der Lage typische Softwarewerkzeuge zur Analyse und zum Entwurf von adaptiven Regelkreisen zu verwenden.
 - · Können die Studierenden adaptive und strukturvariable Regler auf gängigen Plattformen implementieren.

Vorkenntnisse

Regelungs- und Systemtechnik 1 und 2

Inhalt

- · Standardregelkreis mit statischer Nichtlinearität
- Stabilitätskriterien im Frequenzbereich (KYP-Lemma, Passivität, Popov-Kriterium, Kreiskriterium)
- · Stabilität schaltender Systeme
- Adaptive Regelungsverfahren
- Strukturvariable Reglungsverfahren (Sliding-Mode Control, Gain-Scheduling)

Medienformen

Entwicklung an der Tafel, Folienpräsentationen, Simulationen, Beiblätter, Übungsblätter und Simulationsbeispiele

Literatur

- Rugh, "Linear System Theory", Prentice Hall, 1996
- M. Vidyasagar. Nonlinear Systems Analysis. 2. Edition. Prentice Hall, Englewood Cliffs, New Jersey, 1993.
- H. K. Khalil. Nonlinear Systems. 3. Edition. Prentice Hall, Upper Saddle River, New Jersey, 2002.
- O. Föllinger. Nichtlineare Regelungssysteme 2. 7. Edition. Oldenbourg, München, 1993.
- O. Föllinger. Nichtlineare Regelungssysteme 3. 1. Edition. Oldenbourg, München, 1970.

Detailangaben zum Abschluss

mündliche Prüfungsleistung, 30 Minuten

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Mechatronik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Electrical Power and Control Engineering 2013

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Mechatronik 2008

Modul: Fuzzy und Neuro Control

Modulnummer 100723

Modulverantwortlich: Prof. Dr. Christoph Ament

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Abschluss der Grundausbildung in Mathematik, Regelungstechnik, Systemanalyse

Detailangaben zum Abschluss

siehe Fachbeschreibung

Master Ingenieurinformatik 2014 Modul: Fuzzy und Neuro Control

Fuzzy- and Neuro Control

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100726 Prüfungsnummer:220398

Fachverantwortlich: Prof. Dr. Christoph Ament

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2211

	1	I.FS	6	2	2.FS	3		3.FS	3		1.FS	S	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	1															

Lernergebnisse / Kompetenzen

Aneignung von Kenntnissen und praktischen Fertigkeiten beim Entwurf von Fuzzy- und Neuro-Systemen zur Anwendung auf den Gebieten der Modellbildung, des Entwurfs regelungstechnischer Systeme und der Lösung von Klassifikationsaufgaben in wissensbasierten Entscheidungshilfesystemen. Kennenlernen von Basismechanismen und Anwendungsgebieten von Evolutionären Algorithmen.

Vorkenntnisse

Abschluss der Grundausbildung in Mathematik, Regelungstechnik, Systemanalyse

Inhalt

Grundlagen der Fuzzy-Theorie, Module des Fuzzy-Systems, Kennlinien und Kennflächen von Fuzzy-Sytemen, Fuzzy-Modellbildungsstrategien, Fuzzy-Klassifikation und -Klassensteuerung, optimaler Entwurf von Fuzzy-Steuerungen und Regelungen, adaptive/lernende Fuzzy-Konzepte, Beispiele aus Technik, verwendete Tools: Fuzzy-Control Design Toolbox, Fuzzy Logic Toolbox für MATLAB.

Theoretische Grundlagen Künstlicher Neuronaler Netze. Lernstrategien (Hebbsches Lernen, Delta-Regel Lernen, Competetives Lernen). Vorstellung grundlegender Netzwerktypen wie Perzeptron, Adaline, Madaline, Back-Propagation Netze, Kohonen-Netze. Modellbildung mit Hilfe Neuronaler Netze für statische (Polynommodell) und dynamische (Differenzengleichungsmodell, Volterra-Reihen-Modell) nichtlineare Systeme einschließlich entsprechender Anwendungshinweise (Fehlermöglichkeiten, Datenvorverarbeitung, Gestaltung des Lernprozesses). Strukturen zur Steuerung/Regelung mit Hilfe Neuronaler Netze (Kopieren eines konventionellen Reglers, Inverses Systemmodell, Internal Model Control, Model Predictive Control, direktes Training eines neuronalen Reglers, Reinforcement Learning). Methoden zur Neuro-Klassifikation (Backpropagation, Learning Vector Quantization). Anwendungsbeispiele und Vorstellung von Entwicklungstools für Künstliche Neuronale Netze , verwendete Tools: Neural Network Toolbox für MATLAB, HALCON, NeuralWorks Professional.

Medienformen

Bei der Vorlesung werden über Beamer die wichtigsten Skizzen, Gleichungen und Strukturen dargestellt. Einfache Beispiele, das Herleiten von Gleichungen und die Erstellung von Strukturen werden anhand von Tafelbildern entwickelt. Zusätzlich wird der Lehrstoff mit Beispielen unter Verwendung der in MATLAB vorhandenen Toolboxen anhand untermauert. Die Vorlesungsfolien und das Skript können als PDF-Dokument heruntergeladen werden. Es findet zusätzlich zur Vorlesung alle zwei Wochen ein rechnergestütztes Seminar statt, in welchem die Studenten unter Verwendung von MATLAB/Simulink Aufgaben im Bereich der Modellbildung, Regelung und Klassifikation mit Fuzzy und Neuro Methoden lösen.

Literatur

- Adamy J.: Fuzzy Logik, Neuronale Netze und Evolutionäre Algorithmen Shaker Verlag, Aachen 2005.
- Koch M., Kuhn Th., Wernstedt J.: Fuzzy Control Optimale Nachbildung und Entwurf optimaler Entscheidungen, Oldenbourg, München, 1996.
 - Kiendl H.: Fuzzy Control methodenorientiert, Oldenbourg, München 1997.
- D. Patterson: Künstliche Neuronale Netze, München,...: Prentice Hall, 1996. R. Brause: Neuronale Netze, Stuttgart: Teubner, 1995. K. Warwick, G.W.Irwin, K.J. Hunt: Neural networks for control and systems, London: Peter Pelegrinus Ltd., 1992.
- Schöneburg E., Heinzmann F., Fedderson S.: Genetische Algorithmen und Evolutionsstrategien, Addison-Wesley, 1994.
 - Rechenberg I.: Evolutionsstrategie '94, frommann-holzboog, 1994

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung AT

Master Wirtschaftsingenieurwesen 2014 Vertiefung AT

Master Mechatronik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Electrical Power and Control Engineering 2013

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2015 Vertiefung AT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Modul: Nichtlineare Regelungssysteme 1

Modulnummer:100722

Modulverantwortlich: Prof. Dr. Johann Reger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Abschluss GIG

Detailangaben zum Abschluss

Mündliche Prüfung (30 min) + Testat für das Praktikum

Master Ingenieurinformatik 2014

Modul: Nichtlineare Regelungssysteme 1

Nichtlineare Regelungssysteme 1

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100498 Prüfungsnummer:220399

Fachverantwortlich: Prof. Dr. Johann Reger

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung			Fachgebiet:	2213	

	1.FS		2.FS			3.FS			4.FS			5.FS			6.FS			7.FS			
SWS nach	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	>	S	Р
Fachsemester	2	1	1																		

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, die Existenz und Eindeutigkeit von Lösungen nichtlinearer dynamischer Systemmodelle zu untersuchen.
- Die Studierenden können typische nichtlineare Phänomene wie z.B. Grenzzyklen oder endliche Entweichzeit einordnen und analysieren.
- Die Studierenden können Eigenschaften von nichtlinearen Systemen zweiter Ordnung in der Phasenebene analysieren und beurteilen.
 - Die Studierenden können die Stabilität von Ruhelagen nichtlinearer Systeme überprüfen und beurteilen.
 - Für die Klasse der Euler-Lagrange-Systeme können die Studierenden Betriebspunkt- und Folgeregelungen entwerfen.
 - Die Studierenden können adaptive Regelungen mit Hilfe der Lyapunov-Theorie entwerfen.
 - Die Studierenden können Regelungen zur Verbesserung des Einzugsbereichs entwerfen.

Vorkenntnisse

Grundkenntnisse über Zustandsraumverfahren, z.B. aus Regelungs- und Systemtechnik 2

Inhalt

Medienformen

Entwicklung an der Tafel, Beiblätter, Übungsblätter und Simulationsbeispiele unter: http://www.tu-ilmenau.de/regelungstechnik/lehre/nichtlineare-regelungssysteme-1

Literatur

- Khalil, H., Nonlinear Systems, Prentice Hall, 1996
- · Slotine, J.-J., Li, W., Applied Nonlinear Control, Prentice Hall, 1991
- Sontag, E., Mathematical Control Theory, Springer, 1998
- Spong, M., Hutchinson, S., Vidyasagar, M., Robot Modeling and Control, Wiley, 2005
- · Vidyasagar, M., Nonlinear Systems Analysis, SIAM, 2002

Detailangaben zum Abschluss

schriftliche Prüfungsleistung, 120 Minuten

Zusätzlich zur Prüfungsleistung muss das Praktikum inkl. Testat erfolgreich absolviert werden.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung AT

Master Wirtschaftsingenieurwesen 2014 Vertiefung AT

Master Mechatronik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Electrical Power and Control Engineering 2013

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2015 Vertiefung AT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Modul: Nichtlineare Regelungsysteme 2

Modulnummer:100907

Modulverantwortlich: Prof. Dr. Johann Reger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Abschluss GIG

Detailangaben zum Abschluss

Mündliche Prüfung (30 min) + Testat für das Praktikum

Master Ingenieurinformatik 2014

Modul: Nichtlineare Regelungsysteme 2

Nichtlineare Regelungssysteme 2

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100762 Prüfungsnummer:220402

Fachverantwortlich: Prof. Dr. Johann Reger

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	nd Automatisierung			Fachgebiet:	2213	

	1.FS		2.FS			3.FS			4	1.FS)	5.FS			6.FS			7.FS			
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	>	S	Р
Fachsemester				2	1	1															

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, nichtlineare Systemmodelle aus der Mechatronik in eine PCHD-Darstellung zu bringen.
 - Die Studierenden wissen das Konzept Passivität für den Zustandsreglerentwurf einzusetzen.
- Die Studierenden beherrschen die wichtigsten Backstepping-Regelungsverfahren, können diese verallgemeinern und für Anwendungen problemorientiert anpassen.
- Die Studierenden können die Bedingungen bei der exakten Linearisierung überprüfen und das Konzept zum Entwurf von Betriebspunktregelungen einsetzen.
- Die Studierenden haben die Fähigkeit, das Konzept Flachheit beim Vorsteuerungsentwurf und bei Folgeregelungen zu nutzen.
 - Die Studierenden können lokale Beobachter für nichtlineare flache Systeme entwerfen.
 - Die Studierenden sind in der Lage, nichtlineare Entkopplungsregler zu berechnen.

Vorkenntnisse

Nichtlineare Regelungssysteme 1

Inhalt

http://www.tu-ilmenau.de/regelungstechnik/lehre/nichtlineare-regelungssysteme-2

Medienformen

Entwicklung an der Tafel, Beiblätter, Übungsblätter und Simulationsbeispiele unter: http://www.tu-ilmenau.de/regelungstechnik/lehre/nichtlineare-regelungssysteme-2

Literatur

- · Isidori, A., Nonlinear Control Systems, Band 1, Springer, 2001
- Khalil, H., Nonlinear Systems, Prentice Hall, 1996
- Krstic, M., Kanellakopoulus, I., Kokotovic, P., Nonlinear and Adaptive Control Design, Wiley, 1995
- · Marino, R., Tomei, P., Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall, 1995
- · Slotine, J.-J., Li, W., Applied Nonlinear Control, Prentice Hall, 1991

Detailangaben zum Abschluss

mündliche Prüfungsleistung, 30 Minuten

Zusätzlich zur Prüfungsleistung muss das Praktikum inkl. Testat erfolgreich absolviert werden.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung AT

Master Wirtschaftsingenieurwesen 2014 Vertiefung AT

Master Mechatronik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Electrical Power and Control Engineering 2013

Master Mechatronik 2008

Master Wirtschaftsingenieurwesen 2015 Vertiefung AT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Modul: Kommunikations- und Bussysteme

Modulnummer:100900

Modulverantwortlich: Prof. Dr. Christoph Ament

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Technische Informatik 1 und 2; Regelungstechnik, Systemanalyse

Modul: Kommunikations- und Bussysteme

Kommunikations- und Bussysteme

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100768 Prüfungsnummer:220403

Fachverantwortlich: Dr. Fred Roß

Leistungspunkte:	5	Workload (h): 15	50	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik uı	nd Automatisierung					Fachgebiet:	2211

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	1																		

Lernergebnisse / Kompetenzen

Der Hörer erhält eine Übersicht über Methoden und Technologien der Netzwerktechnik. Es werden Fähigkeiten und Fertigkeiten zum Einsatz von Feldbussystemen erarbeitet. Die Vorlesung soll darüber hinaus die methodische und begriffliche Basis legen, um sich spezielle Lösungsansätze aus Textbüchern oder Veröffentlichungen eigenständig aneignen zu können.

Vorkenntnisse

Technische Informatik 1 und 2: Regelungstechnik, Systemanalyse

Inhalt

Kommunikationsstrukturen (offene und geschlossene Systeme, Einsatzgebiete), Netzwerktopologien (Stern-, Bus-, Baum-, Ringstrukturen), ISO/OSI-Referenzmodell, Bezugsgriffsverfahren (determiniert, nach Bedarf), Datenübertragung (Übertragungsarten, Codierungsarten, Fehlerarten, Methoden der Übertragungssicherheit), Verbindungsmedien (Zweidrahtleitung, Koaxialleitung, Lichtwellenleiter, Koppelstationen), Spezielle Bussysteme (PROFIBUS, Interbus, LON, CAN)

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Zur Veranschaulichung werden Overhead-Projektionen eingefügt. Ein Script im PDF-Format wird angeboten.

Literatur

- R. Bure, Feldbussysteme im Vergleich, Pflaum 1996
- K. W. Bonfig, Feldbus-Systeme, expend-Verlag 1992
- D. Piscitello, L. Chapin, Open systems-networking, Addison-Wesley 1994
- A. Baginski, Interbus, Hüthig 1998 K. Bender, M. Katz, Profibus, Hanser 1992

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Maschinenbau 2014

Master Mechatronik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Ingenieurinformatik 2009

Master Maschinenbau 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2015 Vertiefung AT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2013 Vertiefung AT

Master Wirtschaftsingenieurwesen 2014 Vertiefung AT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Maschinenbau 2011

Master Mechatronik 2008

Modul: Hierarchische Steuerungssysteme

Modulnummer:100906

Modulverantwortlich: Prof. Dr. Pu Li

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können Steuerungsaufgaben für hochdimensionale Systeme analysieren und entwickeln. Sie klassifizieren Zerlegungs- und Koordinationsprinzipien.

Auf der Grundlage der nichtlinearen Optimierung und des Optimalsteuerungsentwurfs sind sie in Lage, Steuerungssysteme zu zerlegen, Optimierungs- und Optimalsteuerungsprobleme zu formulieren und mittels hierarchischer Methoden zu lösen, d. h. die Steuerungen zu entwerfen. Die Studierenden beschreiben die Grundbegriffe der mehrkriteriellen Optimierung, deren Aufgabenstellung und Lösungsmethoden.

Vorraussetzungen für die Teilnahme

Regelungs- und Systemtechnik 1 - 3, Statische und Dynamische Prozessoptimierung

- 1) Mündliche Prüfung, 30 min. und
- 2) Unbenoteter Schein (Testat) für Praktikum (2 Versuche)

Modul: Hierarchische Steuerungssysteme

Hierarchische Steuerungssysteme

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101193 Prüfungsnummer:220413

Fachverantwortlich: Dr. Siegbert Hopfgarten

Leistungspunkte:	5	Workload (h): 15	50	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informat	tik ur	nd Automatisierung					Fachgebiet:	2212

	1	I.FS	6	2	2.FS	3		3.FS	3		1.FS	S	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	1															

Lernergebnisse / Kompetenzen

Die Studierenden können Steuerungsaufgaben für hochdimensionale Systeme analysieren und entwickeln. Sie klassifizieren Zerlegungs- und Koordinationsprinzipien.

Auf der Grundlage der nichtlinearen Optimierung und des Optimalsteuerungsentwurfs sind sie in Lage, Steuerungssysteme zu zerlegen, Optimierungs- und Optimalsteuerungsprobleme zu formulieren und mittels hierarchischer Methoden zu lösen, d. h. die Steuerungen zu entwerfen. Die Studierenden beschreiben die Grundbegriffe der mehrkriteriellen Optimierung, deren Aufgabenstellung und Lösungsmethoden.

Vorkenntnisse

Regelungs- und Systemtechnik 1 - 3, Statische und Dynamische Prozessoptimierung

Inhalt

Hierarchische Optimierung statischer und dynamischer Systeme: Zerlegung und Beschreibung hierarchisch strukturierter Systeme; Koordinationsmethoden für statische Mehrebenenstrukturen; Möglichkeiten des Einsatzes statischer Hierarchiemethoden:

Hierarchische Optimierung großer dynamischer Systeme; Wechselwirkungsbalance- Methode und Wechselwirkungsvorhersage- Methode für lineare und nichtlineare Systeme; Trajektorienzerlegung. Verteilte Optimierung.

Prinzipien der mehrkriteriellen Entscheidungsfindung:

Mehrkriterieller Charakter von Entscheidungsproblemen; Steuermenge, Zielmenge, Kompromissmenge; Ein- und Mehrzieloptimierung; Verfahren zur Bestimmung der Kompromissmenge und von optimal effizienten Lösungen. Praktikum (3 Versuche: HSS-1: Mehrebenen-Optimierung stationärer Prozesse; HSS-2: Dynamische hierarchische Optimierung; HSS-3: Verteilte Optimierung)

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb

Literatur

- K. Reinisch. Kybernetische Grundlagen und Beschreibung kontinuierlicher Systeme. Verlag Technik. 1977
- W: Findeisen. Hierarchische Steuerungssysteme. Verlag Technik. 1974
- M. Papageorgiou . Optimierung, Oldenbourg Verlag. München. 2006
- M. G. Singh. Dynamical hierarchical control. North Holland Publishing Company. Amsterdam. 1977
- M. G. Singh, A. Titli. Systems: Decomposition optimization and control. Pergamon Press. Oxford. 1978
- K. Reinisch. Hierarchische und dezentrale Steuerungssysteme. In: E. Philippow (Hrsg.). Taschenbuch Elektrotechnik. Bd. 2.

Verlag Technik. 1987

J. Ester: Systemanalyse und mehrkriterielle Entscheidung. Verlag Technik. 1987

Detailangaben zum Abschluss

- 1) Mündliche Prüfung, 30 min. und
- 2) Unbenoteter Schein (Testat) für Praktikum

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Technische Kybernetik und Systemtheorie 2014

Modul: Ereignisdiskrete Systeme

Modulnummer:100903

Modulverantwortlich: Prof. Dr. Johann Reger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

Mündliche Prüfung (30 min) Es gibt hier kein Praktikum.

Master Ingenieurinformatik 2014 Modul: Ereignisdiskrete Systeme

Ereignisdiskrete Systeme

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 7631 Prüfungsnummer:2200271

Fachverantwortlich: Prof. Dr. Johann Reger

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2215

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	I.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester	3	1	0																		

Lernergebnisse / Kompetenzen

·Die Studierenden lernen wichtige Eigenschaften ereignisdiskreter Systeme in Form von Automaten und Petri-Netzen zu beschreiben und zu analysieren. ·Die Studierenden können einfache Supervisoren für typische Systemspezifikationen im geschlossenen Regelkreis entwerfen. ·Zur Reduktion der Komplexität der Entwurfsaufgabe werden die Studierenden in die Lage versetzt, modulare und dezentrale sowie hierachische Enturfsmethoden erfolgreich anzuwenden.

Vorkenntnisse

Abschluß der Grundausbildung in Mathematik, Regelungstechnik

Inhalt

·Eigenschaften ereignisgetriebener Prozesse ·formale Sprachen und Automaten ·Eigenschaften von Automaten ·das Konzept des Supervisory-Control ·Steuerbarkeit und Blockierungsfreiheit von Automaten ·minimal restriktiver Supervisor-Entwurf ·modulare und dezentrale Ansätze ·hierarchische Entwurfsverfahren ·Stellen-Transitions-Netze ·Eigenschaften von Petri-Netzen ·Zustandsbasierter Reglerentwurf für Petri-Netze

Medienformen

Tafel, Beiblätter, PC-Unterstützung

Literatur

·Christos Cassandras, Stéphane Lafortune, Introduction to Discrete Event Systems, Springer, 2008 ·Jan Lunze, Ereignisdiskrete Systeme: Modellierung und Analyse dynamischer Systeme mit Automaten, Markovketten und Petrinetzen, Oldenbourg, 2006 ·William Wonham, Supervisory Control of Discrete-Event Systems, Vorlesungsskriptum, http://www.control.utoronto.ca/cgi-bin/dldes.cgi

Detailangaben zum Abschluss

Zusätzlich zur Prüfungsleistung muss das Praktikum inkl. Testat erfolgreich absolviert werden.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Technische Kybernetik und Systemtheorie 2014

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Modul: Prozess- und Umweltsystemtechnik

Modulnummer:101354

Modulverantwortlich: Prof. Dr. Pu Li

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können

- durch die Anwendung grundlegender physikalischer Gesetzmäßigkeiten verschiedene technische Prozesse mathematisch beschreiben,
 - typische verfahrenstechnische Prozesse kennen lernen und modellieren,
- Dynamik einzelner Prozesse anhand der Ergebnisse der theoretischen Prozessanalyse (Modellbildung) und deren Abstraktion zu analysieren sowie
- Analogien zwischen verschiedenen Klassen technischer Prozesse (mechanisch, elektrisch, verfahrenstechnisch, ...) herstellen
 - ausgewählte komplexe dynamische Umweltprozesse erklären,
 - Modelle solcher Prozesse verstehen und im Rahmen modellgestützter Entscheidungshilfesysteme anwenden,
 - · Optimierungstechniken für die Entwicklung von Entscheidungshilfen verstehen und anwenden,
 - Entscheidungshilfesysteme analysieren, entwerfen und evaluieren.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik, Regelungs- und Systemtechnik 1 - 3, Prozessoptimierung 1 + 2

Detailangaben zum Abschluss

Mündliche Prüfung 30 min.

Modul: Prozess- und Umweltsystemtechnik

Prozess und Umweltsystemtechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 101195 Prüfungsnummer:2200480

Fachverantwortlich: Prof. Dr. Pu Li

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2212

	1	I.FS		2	2.FS	3	,	3.FS	3	4	I.FS	3	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р
Fachsemester				3	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden können

- durch die Anwendung grundlegender physikalischer Gesetzmäßigkeiten verschiedene technische Prozesse mathematisch beschreiben,
 - typische verfahrenstechnische Prozesse kennen lernen und modellieren,
- Dynamik einzelner Prozesse anhand der Ergebnisse der theoretischen Prozessanalyse (Modellbildung) und deren Abstraktion zu analysieren,
- Analogien zwischen verschiedenen Klassen technischer Prozesse (mechanisch, elektrisch, verfahrenstechnisch, ...) herstellen
 - ausgewählte komplexe dynamische Umweltprozesse erklären,
 - · Modelle solcher Prozesse verstehen und im Rahmen modellgestützter Entscheidungshilfesysteme anwenden,
 - · Optimierungstechniken für die Entwicklung von Entscheidungshilfen verstehen und anwenden,
 - Entscheidungshilfesysteme analysieren, entwerfen und evaluieren.

Vorkenntnisse

Grundlagen der Mathematik, Physik, Elektrotechnik, Regelungs- und Systemtechnik 1, 2, 3, Prozessoptimierung 1 + 2

Inhalt

- Einführung in die theoretische Prozessanalyse
- Grundsätzlicher Ablauf der theoretischen Prozessanalyse-Bilanzgleichungen
- Grundlagen der Thermodynamik
- Modellbildung thermischer Trennprozesse
- · Chemisches Gleichgewicht
- · Dynamik von Reaktoren
- · Kinetik katalytischer Reaktion mittels Enzyme
- Komplexe dynamische Umweltprozesse (Prozesse der Wassergüte, der Wassermengenverteilung, des

Pflanzenwachstums und solartechnische Systeme)

- Pflanzliche Wachstumsprozesse, biologische Reinigungsprozesse, Wasserqualität in Seen, Talsperren oder auch in Trinkwassernetzen
 - Globale Modelle (Populations-, Konsumtions- sowie Umweltbelastungsmodelle)
 - Messung, Übertragung, Speicherung und Vorverarbeitung von Umweltdaten; Verwendung zur Modellierung
 - Nutzung solcher Modelle in modellgestützten Entscheidungshilfesystemen

• Nutzung von Optimierungstechniken für die Entwicklung von modellgestützten Entscheidungshilfen für Umweltprozesse

Medienformen

Präsentation, Tafelanschrieb

Literatur

- E. Blass: Entwicklung verfahrenstechnischer Prozesse. Springer. 1997
- A. Mersmann, M. Kind, J. Stichlmair: Thermische Verfahrenstechnik. Springer. 2005
- K. Hertwig, L. Martens: Chemische Verfahrenstechnik. Oldenbourg Verlag. 2012
- H. Bossel: Systeme, Dynamik, Simulation. Books on Demand GmbH Norderstedt. 2004
- F. E. Cellier: Continuous system modeling. Springer. 1991 und 2005
- K. Hutter (Hrsg.): Dynamik umweltrelevanter Systeme. Springer-Verlag. 1991
- O. Richter: Simulation des Verhaltens ökologischer Systeme. VCH Verlagsgesellschaft. 1985

Detailangaben zum Abschluss

Mündliche Prüfung, 30 min.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Technische Kybernetik und Systemtheorie 2014

Modul: Wissensbasierte Systeme

Modulnummer:100901

Modulverantwortlich: Dr. Fred Roß

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Der Hörer erhält eine Übersicht über Konzepte und Methoden des Entwurfs wissensbasierter Systeme. Er soll in die Lage versetzt werden, solche Systeme eigenständig designen zu können. Die Vorlesung soll darüber hinaus die methodische und begriffliche Basis legen, um sich spezielle Lösungsansätze aus Textbüchern oder Veröffentlichungen aneignen zu können.

Vorraussetzungen für die Teilnahme

Prozessanalyse/Modellbildung, Wahrscheinlichkeitsrechnung/Statistik, Fuzzy Control (von Vorteil)

Master Ingenieurinformatik 2014 Modul: Wissensbasierte Systeme

Wissensbasierte Systeme

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100806 Prüfungsnummer:2200407

Fachverantwortlich: Dr. Fred Roß

Leistungspunkte:	5	Workload (h): 15	50	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik uı	nd Automatisierung					Fachgebiet:	2211

	1	I.FS	6	2	2.FS	3		3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester	2	1	1																		

Lernergebnisse / Kompetenzen

Der Hörer erhält eine Übersicht über Konzepte und Methoden des Entwurfs wissensbasierter Systeme. Er soll in die Lage versetzt werden, solche Systeme eigenständig designen zu können. Die Vorlesung soll darüber hinaus die methodische und begriffliche Basis legen, um sich spezielle Lösungsansätze aus Textbüchern oder Veröffentlichungen aneignen zu können.

Vorkenntnisse

Prozessanalyse/Modellbildung, Wahrscheinlichkeitsrechnung/Statistik, Fuzzy Control (von Vorteil)

Inhalt

Grundlagen wissensbasierterter Systeme (Wissensarten, Wissensdarstellung/-repräsentation, Architekturen, Design), Methoden der Entscheidungstheorie (Entscheidungssituationen, Darstellung der Entscheidungssituationen, Entscheidungsregeln bei Ungewissheit, Entscheidungsregeln bei Risiko), Automatische Klassifikation (Grundlagen, Bayes-Klassifikator, Abstandsklassifikatoren, Trennfunktionsklassifikatoren, Punkt-zu-Punkt-Klassifikator), Expertensysteme (Darstellung deklarativen Wissens, Suchstrategien, Besonderheiten großer Fuzzy-Systeme)

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Zur Veranschaulichung werden Overhead-Projektionen eingefügt. Ein Script im PDF-Format wird angeboten.

Literatur

- H. Laux: Entscheidungstheorie, Springer Verlag 2005
- · H. Wiese: Entscheidungs- und Spieltheorie, Springer Verlag 2002
- F. Puppe: Einführung in Expertensysteme, Springer Verlag 1991
- H. H. Bock: Automatische Klassifikation, Vandenhoeck & Ruprecht 1971

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Master Technische Kybernetik und Systemtheorie 2014

Modul: Mobilfunk

Modulnummer8339

Modulverantwortlich: Prof. Dr. Reiner Thomä

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können

- fortgeschrittene automatisierungs- und systemtechnische Methoden in den genannten Fächern anwenden,
- Analyse- und Entwurfsaufgabenstellungen an praktisch relevanten Themenstellungen entwickeln, lösen und bewerten sowie
 - Experimente an praxisnahen Versuchsaufbauten ausführen.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik, Maschinenbau

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelegt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Modul: Mobilfunk

Hauptseminar Mobilfunk

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Wintersemester

Fachnummer: 101190 Prüfungsnummer:2100539

Fachverantwortlich: Prof. Dr. Reiner Thomä

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2112

3.FS 4.FS 5.FS 6.FS 1.FS 2.FS 7.FS V SP S P S P S P SP S Ρ S SWS nach Fachsemester 0 2 0

Lernergebnisse / Kompetenzen

Das Hauptseminar zielt auf eine selbständige Einarbeitung in ein wissenschaftliches Thema ab. Die Bearbeitung wird durch einen wissenschaftlichen Betreuer unterstützt und begleitet. Ergebnisse und Methodik der Themenbearbeitung sind schriftlich darzulegen und zu verteidigen.

Vorkenntnisse

Grundkenntnisse zum gewählten Thema

Inhalt

Vertiefung von Themen aus den Forschungsschwerpunkten des Institutes zu Fragestellungen des Mobilfunks. Bearbeitung von wissenschaftlichen Themen eigener Wahl.

Medienformen

Literaturstudium, Internetrecherche, Vorträge, Programmierung

Literatur

ausgewählte Fachliteratur abhängig vom gewählten Thema

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Modul: Antennen

Modulnummer:100685

Modulverantwortlich: Prof. Dr. Matthias Hein

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Antennen

Antennen

Fachabschluss: Prüfungsleistung alternativ 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5168 Prüfungsnummer:2100171

Fachverantwortlich: Prof. Dr. Matthias Hein

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2113

	1	l.FS	,	2	2.FS	3		3.FS	3	4	1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р
Fachsemester	2	1	1																		

Lernergebnisse / Kompetenzen

Die Studierenden verstehen die Eigenschaften elektromagnetischer Wellen und wenden dieses Wissen auf die grundlegenden Entwurfs- und Berechnungsverfahren von Antennen im Fernfeld an. Sie analysieren solche Verfahren hinsichtlich ihrer Eignung und Auswirkungen für verschiedene Antennentypen. Vertiefende Problemstellungen in den Übungen versetzen die Studierenden in die Lage, Antennenentwürfe zu synthetisieren. Die Studierenden generalisieren die Eigenschaften einzelner Antennen in Bezug auf das Zusammenwirken in Strahlergruppen. Sie übertragen ihnen bekannte Darstellungsverfahren auf die räumlich-zeitlich filternden Eigenschaften von Gruppenantennen. Die Studierenden erkennen Zusammenhänge aus dem Bereich der Antennentechnik mit Wellenausbreitung und Funksystemen, Schaltungen und Bausteinen der HF- und Mikrowellentechnik, der Nachrichtentechnik und Informationstheorie und vermögen diese anwendungsspezifisch zu bewerten.

Fachkompetenzen: Natur- und ingenieurwissenschaftliche Grundlagen, frühzeitige Einbindung von Entwicklungstendenzen, neueste Techniken und Methoden, Einbindung des angewandten Grundlagenwissens der Informationsverarbeitung. Methodenkompetenz: Systematisches Erschließen und Nutzen des Fachwissens und Dokumentation von

interioderikompeteriz. Systematisches Erschließen und Nutzen des Pachwissens und Dokumentation von

Arbeitsergebnissen; Modellbildung, Planung, Simulation und Bewertung komplexer Systeme.

Systemkompetenzen: Überblickwissen über angrenzende Fachgebiete, die für die Gestaltung von Systemen wichtig sind, fachübergreifendes, systemorientiertes Denken.

Sozialkompetenzen: Kommunikation, Teamwork, Präsentation; Erkennen und Analyse gesellsch. Bedürfnisse, Schnittstellen techn. Problemstellungen zur Gesellschaft.

Vorkenntnisse

Elektrodynamik / Elektromagnetische Wellen

Signale und Systeme

Grundlagen der Hochfrequenztechnik

Inhalt

- 1. Einführung: Inhaltsübersicht, Motivation, Entwicklungen und Trends, elektromagnetische Grundlagen
- 2. Antennen im Sendebetrieb: Beschreibung des Strahlungsfeldes, Fern-feldbedingung, Elementar-antennen, Antennenkenn-größen
- 3. Antennen im Empfangsbetrieb: Reziprozitätstheorem, Wirkfläche, Leistungsübertragung (Fränz'sche Formel und Radargleichung), Rausch-temperatur
- 4. Bauformen einfacher Antennen: Flächenstrahler, Drahtantennen, Planarantennen, Beschreibungsmodelle, Kenngrößen
- 5. Gruppenantennen (antenna arrays): Phasengesteuerte Arrays, lineare Arrays, Richtcharakteristik von Arrays (Strahlungskopplung), Strahl-formung
- 6. Signalverarbeitung mit Antennen: Räumliche Frequenzen, Antennen als Filter, Keulensynthese, superdirektive Antennen, adaptive Antennen

7. Antennenmesstechnik: Gewinn, Richtcharakteristik (Nah- und Fernfeld), Rauschtemperatur, Eingangswiderstand, Bandbreite

Die alternative Prüfungsleistung besteht aus einer 30-minütigen mündlichen Prüfung sowie einem benoteten Praktikum (1 SWS). Die Prüfung geht mit 75%, das Praktikum mit 25% in die Gesamtbewertung ein.

Praktikum Antennenmessprojekt

Das Praktikum zur Lehrveranstaltung Antennen umfasst drei unterschiedliche Projekte zur Antennenmessung an folgenden drei Einrichtungen:

Antennenmesslabor,

Nahfeldscanner,

Messlabor VISTA.

Im laufenden Semester hat jeder teilnehmende Student eines der Projekte zu absolvieren.

Medienformen

Tafelbild, interaktive Entwicklung der Stoffinhalte

Illustrationen zur Vorlesung (in elektronischer Form verfügbar)

Exponate, Möglichkeiten zur individuellen Nutzung / experimentellen Untersuchung

Hinweise zur persönlichen Vertiefung

Identifikation vorlesungsübergreifender Zusammenhänge

Vorlesungsbegleitende Aufgabensammlung zur selbständigen Nacharbeitung (in elektronischer Form verfügbar)

Literatur

- S. Drabowitch, A. Papiernik, H. Griffiths, J. Encinas, B. L. Smith, "Modern antennas", Chapman & Hill, 1998.
- C.A. Balanis, "Antenna theory: analysis and design", Wiley, 1997.
- J.D. Kraus und R.J. Marhefka, "Antennas for all applications", McGraw-Hill, 2002.

Zinke-Brunswig, "Hochfrequenztechnik 1" (Kap. 6), Springer, 2000.

- E. Stirner, "Antennen", Band 1: Grundlagen, Band 2: Praxis, Band 3: Messtechnik, Hüthig-Verlag, 1977.
- R. Kühn, "Mikrowellenantennen", Verlag Technik Berlin.
- E. Pehl, "Mikrowellentechnik", Band 2: "Antennen und aktive Bauteile", Dr. Alfred Hüthig Verlag, 1984.

Detailangaben zum Abschluss

Die alternative Prüfungsleistung besteht aus einer 30-minütigen mündlichen Prüfung sowie einem benoteten Praktikum (1 SWS). Die Prüfung geht mit 75%, das Praktikum mit 25% in die Gesamtbewertung ein.

Achtung: Die alternative Prüfungsleistung wird entsprechend dem Turnus der Lehrveranstaltung jeweils nur im Sommersemester angeboten!

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Digitale Messdatenverarbeitung 1

Modulnummer 101357

Modulverantwortlich: Prof. Dr. Reiner Thomä

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Digitale Messdatenverarbeitung 1

Digitale Messdatenverarbeitung 1

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5180 Prüfungsnummer:2100172

Fachverantwortlich: Prof. Dr. Reiner Thomä

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Elektrote	echni	k und Informationstechnik				Fachgebiet:	2112

	1	1.FS			S 2.FS				3.FS			4.FS			3	6.FS			7.FS		
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0																		

Lernergebnisse / Kompetenzen

Die Studierenden verstehen die Methoden der digitalen Signalverarbeitung und Spektralanalyse für deterministische und stochastische Signale. Sie sind in der Lage, komplexe Konzepte für die Signal- und Systemanalyse zu bewerten, zu konzipieren und zu implementieren. Die Studierenden verstehen die Zusammenhänge der verschiedenen algorithmischen Konzepte und können das Fehlerverhalten der Algorithmen analysieren und bewerten. Sie sind in der Lage, diese Methoden zur Analyse von Messdaten in der Informations-, Kommunikations- und Hochfrequenztechnik anzuwenden.

Vorkenntnisse

Modul Elektrotechik Signale und Systeme

Inhalt

1. Diskrete Fouriertransformation - Grundgesetze und Zusammenhang zur Fourierintegraltransformation - Zerlegungssatz (verallgemeinerte Periodifizierung und Dezimierung) - FFT-Algorithmen (DIF, DIT, Radix 2, 4, ..., Mixed Radix, Split Radix, reelle Folgen) 2. Analyse impulsförmiger Signale - Näherungsweise Berechnung der Fourierintegraltransformation - Abtastung und Zeitbegrenzung - Interpolation - Interpolation mit Modellfunktion - Methode der kleinsten Fehlerquadrate - Beispiele aus der Systemidentifikation 3. Messdatenerfassung und Filter - Anti-Aliasing Filter (für aperiodische und für periodische Signale) - Multiratenfilter (FIR, Dezimation, Interpolation, Halbbandfilter) - Überabtastung (digitale Anti-Aliasing-Filter) - analytisches Signal, Hilberttransformation, komplexe Signalhüllkurve 4. Quantisierung - Quatisierungstheorem - Dither - Überabtastung und Noise Shaping - Sigma-Delta-Prinzip - Quantisierungseffekte durch endliche Wortlänge (Abschneiden/Runden, Überlauf, Skalierung, Blockgleitkomma) - Quantisierungseffekte in Filtern und in der FFT 5. FFT-Spektralanalyse periodischer und quasiperiodischer Signale - Abtastung und Unterabtastung - Varianz und systematischer Fehler durch überlagertes Rauschen und unbekannte Phasen (für komplexe Fourierkoeffizienten und für Leistungen, Fensterfunktionseinfluss, Rauschbandbreite) - Verteilungsdichten - Dynamikbereich - Fensterfunktionen (Klassifikation und Kennwerte, Cos-Summenfenster, Flat-top-Fenster, Tschebybescheff-Fenster, Periodifizierung und Unterabtastung)

Medienformen

Tafelbild, interaktiv, Folien, Folienskript. Übungsaufgaben (MATLAB)

Literatur

K.-D. Kammeyer, K. Kroschel, "Digitale Signalverarbeitung, Filterung und Spektralanalyse mit MATLAB-Übungen," Teubner-Verlag 2006 R. Thomä, "Fensterfunktionen in der DFT-Spektralanalyse,", Reihe Elektronische Meßtechnik, MEDAV, Uttenreuth 1995, ISBN 3-9804152-0-1, 145 p.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Digitale Messdatenverarbeitung 2

Modulnummer 101358

Modulverantwortlich: Prof. Dr. Reiner Thomä

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Digitale Messdatenverarbeitung 2

Digitale Messdatenverarbeitung 2

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5181 Prüfungsnummer:2100175

Fachverantwortlich: Prof. Dr. Reiner Thomä

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Elektro	technil	k und Informationstechnik				Fachgebiet:	2112

	1.FS 2.FS				,	3.FS	3		1.FS	3		5.FS	3	6.FS			7.FS				
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die Studierenden verstehen die Methoden der digitalen Signalverarbeitung und Spektralanalyse für deterministische und stochastische Signale. Sie sind in der Lage, komplexe Konzepte für die Signal- und Systemanalyse zu bewerten, zu konzipieren und zu implementieren. Die Studierenden verstehen die Zusammenhänge der verschiedenen algorithmischen Konzepte und können das Fehlerverhalten der Algorithmen analysieren und bewerten. Sie sind in der Lage, diese Methoden zur Analyse von Messdaten in der Informations-, Kommunikations- und Hochfrequenztechnik anzuwenden.

Vorkenntnisse

Signale und Systeme

Inhalt

6. Kurzzeit-Fouriertransformation - Interpretation als Multiratenfilterbank - Entwurf der Filtercharakteristik - Zeit-Frequenzauflösung - Analyse und Synthese (Rekonstruktion, Einfluss der Überlappung) - Modifikation im Frequenzbereich - Schnelle Faltung 7. Spektralanalyse stationärer stochastischer Signale - Rohschätzung (Varianz, Erwartungswert, Konsistenz, Verteilung) - Blackman-Tukey-Methode (Äquivalenz von AKF-Fenster und Glättung durch Faltung im Frequenzbereich, Lag Reshaping) - WOSA-Methode (Fensterfunktion, Überlappung, Varianzabschätzung, äquivalente Anzahl der Freiheitsgrade) - STUSE und Methode von Rader 8. Spektalanalyse instationärer und zyklostionärer Signale - Wignerverteilung, Ambiguity-Funktion und spektrale Korrelation - Einfluss von Faltung und Multiplikation - Kreuzterme - Geglättete WD, Pseudo-WD - Wigner-Ville-Spektrum - Zyklostationäre Signale und spektrale Korrelation 9. Parametrische Spektralschätzer - AR-Prozess - Yule-Walker-Gleichung - Levinson-Durbin-Rekursion

Medienformen

Tafelbild, interaktiv, Folien, Folienskript. Übungsaufgaben (MATLAB)

Literatur

K.-D. Kammeyer, K. Kroschel, "Digitale Signalverarbeitung, Filterung und Spektralanalyse mit MATLAB-Übungen," Teubner-Verlag 2006 R. Thomä, "Fensterfunktionen in der DFT-Spektralanalyse,", Reihe Elektronische Meßtechnik, MEDAV, Uttenreuth 1995, ISBN 3-9804152-0-1, 145 p. W. A. Gardner, "Cyclostationarity in Communications and Signal Processing," IEEE Press, 1994 F. Hlawatsch, "Time-Frequency Analysis and Synthesis of Linear Signal Spaces," Kluwer Academic Publishers, 1998

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Funknavigation und UWB-Radarsensorik

Modulnummer100694

Modulverantwortlich: Prof. Dr. Reiner Thomä

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Funknavigation und UWB-Radarsensorik

Funknavigation und UWB-Radarsensorik

Fachabschluss: Prüfungsleistung mündlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100472 Prüfungsnummer:2100437

Fachverantwortlich: Prof. Dr. Reiner Thomä

Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	124	SWS:	5.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2112

	1	1.FS			1.FS 2.FS				3	;	3.FS	3	4	1.FS)		5.FS	3	6.FS			7.FS		
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р			
Fachsemester				4	1	0																		

Lernergebnisse / Kompetenzen

Funknavigation:

Die Studierenden verstehen die Methoden der terrestrischen und sattelitengestützten Funknavigation. Sie sind in der Lage, existierende Funknavigationssysteme anzuwenden und in Systemkonzepte einzubinden. Sie verstehen die Zusammenhänge der verschiedenen Konzepte und können das Fehlerverhalten bewerten. Sie sind in der Lage, lokale Navigationssysteme zu konzipieren und zu entwerfen.

UWB-Radarsensorik:

Die Studierenden verstehen die Wechselwirkungen zwischen Testobjekten und elektromagnetischen Wellen, insbesondere wenn diese einen nicht sinusförmigen Verlauf aufweisen. Sie kennen die Wirkungsweise breitbandiger Messverfahren und können deren Leistungsfähigkeit analysieren. Die Studierenden sind fähig, theoretische Systembeschreibungen im Zeit- und Frequenzbereich hinsichtlich sensorspezifischer Anwendungsaspekte zu analysieren, um daraus geeignete Messmethoden zu synthetisieren.

Fachkompetenz: ingenieurtechnische Grundlagen zerstörungsfreier Messwerterfassung auf Basis der Ausbreitung elektromagnetischer Wellen; neueste Technologien und Messverfahren

Methodenkompetenz: methodische Aufbereitung eines Messproblems und Zergliederung in Teilaufgaben; Übertragung grundsätzlich bekannter Sachverhalte auf neue Anwendungsfelder

Systemkompetenz: hierarchische Strukturierung messtechnischer Problemstellungen und Lösungsansätze Sozialkompetenz: Einsatzmöglichkeiten von Sensoren zur Lösung sozialer und medizinischer Problemstellungen

Vorkenntnisse

Funknavigation: Signale und Systeme

UWB-Radarsensorik: Modul: Elektrotechnik Modul: Grundlagen der IKT Modul: Elektronik und Systemtechnik

Inhalt

Funknavigation:

1. Geschichte der Navigation und Funkortung 2. Grundsätzliche Methoden der Funknavigation - Wellenausbreitung - Signale für die Funkortung (Breitband- und Schmalbandverfahren) - Messgrößen (Laufzeit, Phase, Doppler) - Ortungsverfahren und klassische Anwendungsbeispiele (Radiokompass, Peiler, LORAN und OMEGA) 3. Einführung in die Satellitennavigation - GPS - Globale Koordinatensysteme - Satellitenbahnen - Navigation Message - Navigationsgleichung - Pseudorange-Konzept - Terrestrische Koordinatensysteme - 4. Messungen und Fehlerquellen - GPS-Signal - Korrelationsmessung - Sender- und Empfängerstruktur - Fehlerquellen und Fehlermaße 5. Lösung der Navigationsgleichung - Linearisierung - Position und Geschwindigkeit - Kleinste Fehlerquadrat-Schätzung - Tracking 6. Verbesserung der Genauigkeit - Differentialverfahren - GPS-Evolution - Galileo - Augmentation-Systems 7. Lokalisierung von Mobilfunkterminals - Kooperative und blinde Verfahren - Messung von Laufzeit und Winkel - Einfluss der Wellenausbreitung 8. Lokale Navigation - Einführung - Lokalisierung ohne

Infrastruktur - Kooperierende Verfahren - Lokalisierung in Sensornetzwerken

UWB-Radarsensorik:

- 1. Einführung, Definitionen und Radioregulierung
- 2. Schwerpunktmäßige Wiederholung und Ergänzungen zur Signal- und Systemtheorie sowie der Ausbreitung elektromagnetischer Wellen
- 3. Ultra-Breitband-Verfahren (frequenzvariabler Sinus, FMCW, Impulsverfahren, Rausch- und Pseudo-Rauschverfahren)
- 4. Antennen mit kurzer Impulsantwort: typische Antennenprinzipien, charakteristische Parameter, messtechnische Evaluierung
- 5. Breitbandradarsensoren; Prinzipien, wichtige Parameter, Einführung in die Signalverarbeitung, Anwendungen:
- Abstandsmessung, Ground Penetrating Radar, Through Wall Radar, Personendetektion; Demonstrationsbeispiele
- 6. Ultrabreitband-Lokalisierung und -Positionierung: aktive und passive Verfahren, Trilateration, Fehlerbetrachtung, Demonstrationsbeispiele
- 7. Impedanzspektroskopie: Messschaltungen, Fehlerkorrektur, Demonstrationsbeispiele

Medienformen

Funknavigation:

Tafelbild, interaktiv, Folien, Folienskript.

UWB-Radarsensorik:

Interaktives Tafelbild, PowerPoint-Folien, Experimentalvorlesung / praktische Übungen

Literatur

Funknavigation:

D. Kaplan, "Understanding GPS, Principles and Applications," Artech House Publishers, 1996 P. Mitra, P. Enge, Global Positioning System, Signals, Measurement, and Performance," Ganga-Jamuna Press, 2001 B. Hofmann-Wellenhof u.a. "Navigation, Principles of Positioning and Guidance," Springer, 2003

UWB-Radarsensorik:

Skript mit Folien:

- D. J. Daniels, Ground penetrating radar, 2nd ed. London: Institution of Electrical Engineers, 2004.
- H. M. Jol, Ground Penetrating Radar: Theory and Applications: Elsevier, 2009.
- M. G. Amin, Through-The-Wall Radar Imaging: CRC Press, 2011.
- J. Sachs, Handbook of Ultra-Wideband Short-Range Sensing Theory, Sensors, Applications. Berlin: Wiley-VCH, 2012.
- L. Y. Astanin and A. A. Kostylev, *Ultrawideband radar measurements analysis and processing*. London, UK: The Institution of Electrical Engineers, 1997.
- M. Kummer, Grundlagen der Mikrowellentechnik. Berlin: VEB Verlag Technik Berlin, 1989.
- H. Arslan, Z. N. Chen, and M.-G. Di Benedetto, *Ultra Wideband Wireless Communication* John Wiley & Sons, 2006.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Mobile Communications(in Englisch)

Modulnummer 100683

Modulverantwortlich: Prof. Dr. Martin Haardt

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Mobile Communications(in Englisch)

Mobile Communications

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5176 Prüfungsnummer:2100144

Fachverantwortlich: Prof. Dr. Martin Haardt

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2111

	1	1.FS			S 2.FS				3.FS			4.FS			3	6.FS			7.FS		
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	3	1	0																		

Lernergebnisse / Kompetenzen

Vermittlung von vertiefenden Kenntnissen auf dem Gebiet der Mobilkommunikation. Sicherer Umgang mit Matlab/Octave zur Lösung komplexer Aufgaben.

Vorkenntnisse

Bachelorabschluß

Inhalt

- 1 Introduction
- + Overview of mobile communication standards and applications (1G 5G)
- + 5G Vision and Requirements
- + The Wireless Channel
- Path loss
- Shadowing
- Fast fading
- 2 Mobile Communication Channels
- + Review: Representation of Bandpass Signals and Systems
- 2.1 Propagation Modelling
- + Time variance (Doppler)
- + Time-varying multipath channels
- Transmission functions of the time-varying channel (1st set of Bello functions)
- 4 ways to calculate the received signals
- Identification of linear time-varing (LTV) systems
- 2.2 Statistical Characterization of Multipath Channels
- + Rayleigh channel (fading)
- + Rician channel
- + Channel Correlation Functions and Power Spectra of Fading Multipath Channels
- Time-variations of the channel
- Characterization of a WSSUS channel (2nd set of Bello functions)
- 2.3 The effect of signal characteristics on the choice of a channel model
- + Frequency non-selective channels
- + Frequency selective channels
- Truncated tapped delay line model of a frequency selective channel
- 2.4 Space-Time Channel and Signal Models

- + Generalization of the time-varying channel impulse response
- First set of Bello functions extended to the spatial domain
- Example: specular L paths model (continued)
- + Homogeneous channels (WSSUS-HO model)
- + Correlation functions and power spectra extended to the spatial domain
- Second set of Bello functions extended to the spatial domain
- Coherence time, coherence frequency, coherence distance
- + Transmission functions extended to transmit and receive antenna arrays (MIMO)
- Definition of the array manifold
- + Notation for SISO, SIMO, MISO, and MIMO channels
- Example: L paths model (continued)
- + Classical IID Channel Model
- + Extended MIMO Channel Models
- Spatial fading correlation at the transmit and the receive arrays
- > Review of the eigenvalue decomposition (EVD)
- > General model
- > Kronecker model
- Additional Line-of-Sight (LOS) component
- + Sampled signal model for SISO, SIMO, MISO, and MIMO channels
- 3 Capacity of Space-Time Channels
- 3.1 Differential Entropy and Mutual Information for Continuous Ensembles (review)
- 3.2 Capacity Theorem for the AWGN SISO Case (review)
- 3.3 Capacity of the Flat Fading MIMO channel
- + Differential entropy for CSCG random vectors
- + Choosing Rss (with and without CSI @ the transmitter)
- Singular Value Decomposition (SVD)
- Special case: uncorrelated Rayleigh fading and Mt very large
- + Parallel Spatial Sub-Channels
- Design of the precoder and the decoder for MIMO systems with CSI at the transmitter
- Optimum power allocation (waterpouring algorithm) with CSI at the transmitter
- + SIMO Channel Capacity
- + MISO Channel Capacity
- + Capacity of Random MIMO Channels
- Ergodic vs. non-ergodic channels
- Ergodic capacity
- > Examples, e.g., Rice, correlation
- Outage capacity
- 3.4 Capacity of the Frequency Selective MIMO channel
- + Space-Frequency Waterpouring
- 4 Transmission Techniques
- 4.1 Bit error probability
- + Binary signaling over Rayleigh fading channel
- 4.2 Diversity techniques for fading multipath channels
- + Frequency diversity
- + Time diversity
- + Space diversity
- + Post-processing techniques
- Selection combining, equal gain combining, maximum ratio combining, square-law combining
- 4.3 Approximation of the Probability of Symbol Error
- + Fading channel with D-fold diversity
- + Chernoff bound
- + Coding gain vs. diversity gain
- 5 Space-Time Processing
- 5.1 Receive antenna diversity (SIMO channel): MRC
- 5.2 Transmit antenna diversity
- + MISO channel unknown to the transmitter: Alamouti scheme (1998)
- + MISO channel known to the transmitter: MRT
- + MIMO channel unknown to the transmitter: Alamouti scheme (1998)
- + MIMO channel known to the transmitter: DET

- + Definiton of the effective diversity order
- + Summary: Diversity of space-time-frequency selective channels
- 5.3 Space-Time Coding without channel state information (CSI) at the transmitter
- + Space-Time Coding for frequency flat channels
- + Space-Time codeword design criteria
- definition of the pairwise error probability (PEP)
- rank criterion
- determinant criterion
- + Orthogonal Space-Time Block Codes (OSTBCs)
- OSTBCs for real-valued constellations
- OSTBCs for complex-valued constellations
- + Spatial Multiplexing (SM) as a Space-Time Code
- + Encoder Structures for Spatial Multiplexing (SM)
- horizontal encoding
- vertical encoding
- diagonal encoding (D-BLAST transmission)
- 5.4 Gains achievable with smart antennas
- + Array Gain
- + Diversity Gain
- + Spatial Multiplexing Gain
- + Interference Reduction Gain
- frequency reuse and cluster sizes
- 5.5 Multi-User MIMO Systems
- + Block Diagonalization
- 5.6 Multiple access schemes
- + OFDM
- + Single carrier vs. OFDM vs. spread spectrum

Medienformen

Skript, Overheadprojektor, Beamer

Literatur

- A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.
- C. E. Shannon, A mathematical theory of communication.

Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948.

· G. Strang, Introduction to Linear Algebra.

Wellesley-Cambridge Press, Wellesley, MA, 1993.

• A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications.

Cambridge University Press, 2003.

- A. Hottinen, O. Tirkkonen, and R. Wichman, Multi-antennas Transceiver Techniques for 3G and Beyond. Wiley, 2003.
- S. Haykin, Communication Systems.

John Wiley & Sons, 4th edition, 2001.

• S. Haykin and M. Moher, Modern Wireless Communications.

Pearson Education, Inc., 2005.

- F. Jondral and A. Wiesler, Grundlagen der Wahrscheinlichkeitsrechnung und stochastischer Prozesse für Ingenieure. Teubner Verlag, Stuttgart/Leipzig, 2000.
 - A. Papoulis, Probability, Random Variables, and Stochastic Processes.

McGraw-Hill, 2nd edition, 1984.

• T. S. Rappaport, Wireless Communications.

Prentice Hall, 1996.

· J. Proakis, Digital Communications.

McGraw-Hill, 4th edition, 2001.

• G. L. Stüber, Mobile Communication.

Kluwer Academic Publishers, 2nd edition, 2001.

• R. Steele and L. Hanzo, eds., Mobile Radio Communications.

Wiley, 2nd edition, 1999.

• S. Saunders, Antennas and Propagation for Wireless Communication Systems.

Wiley, 1999.

- A. Graham, Kronecker Products and Matrix Calculus with Applications. Halsted Press, 1981.
- E. G. Larson, P. Stoica, and G. Ganesan, Space-Time Block Coding for Wireless Communications.

Cambridge University Press, 2003.

• H. Bölcskei, D. Gesbert, C. B. Papadias, and A.-J. van der Veen, eds., Space-Time Wireless Systems From Array Processing to MIMO Communications.

Cambridge University Press, 2006.

- E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V. Poor, MIMO Wireless Communications. Cambridge University Press, 2007.
 - · C. Oestges and B. Clerckx, MIMO wireless communictions.

Academic Press, 1 ed., 2007.

· Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels,"

IEEE Transactions on Signal Processing, vol. 52, pp. 461-471, Feb. 2004.

 Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, ``An introduction to the multi-user MIMO downlink," IEEE Communications Magazine, pp. 60-67, Oct. 2004.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Medientechnologie 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Medientechnologie 2013

Master Wirtschaftsingenieurwesen 2010

Master Mathematik und Wirtschaftsmathematik 2008

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET

Modul: Adaptive and Array Signal Processing(in Englisch)

Modulnummer:100503

Modulverantwortlich: Prof. Dr. Martin Haardt

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Adaptive and Array Signal Processing(in Englisch)

Adaptive and Array Signal Processing

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5581 Prüfungsnummer:2100143

Fachverantwortlich: Prof. Dr. Martin Haardt

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrotec	chnik ur	nd Informationsted	chnik				Fachgebiet:	2111

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				3	1	0															

Lernergebnisse / Kompetenzen

The fundamental concepts of adaptive filters and array signal processing are developed in class. The students understand the relationships between temporal and spatial filters, as well as the principle of high-resolution parameter estimation, and they are able to adapt their knowledge to other scientific disciplines. The students are able to develop or improve algorithms and to evaluate their performance in an analytical manner or by simulations. Futhermore, the students are enabled to read and understand current research publications in the areas of adaptive filters and array signal processing and they can use these concepts and results for their own research.

Vorkenntnisse

Bachelorabschluß

Inhalt

- 1 Introduction
- Adaptive Filters
- Single channel adaptive equalization (temporal filter)
- Multi channel adaptive beamforming (spatial filter)

2 Mathematical Background

- 2.1 Calculus
- Gradients
- Differentiation with respect to a complex vector
- Quadratic optimization with linear constraints (method of Lagrangian multipliers)
- 2.2 Stochastic processes
- Stationary processes
- Time averages
- Ergodic processes
- Correlation matrices
- 2.3 Linear algebra
- Eigenvalue decomposition
- Eigenfilter
- Linear system of equations
- Four fundamental subspaces
- Singular value decomposition
- Generalized inverse of a matrix

- Projections
- Low rank modeling
- 3 Adaptive Filters
- 3.1 Linear Optimum Filtering (Wiener Filters)
- Principle of Orthogonality
- Wiener-Hopf equations
- Error-performance surface
- MMSE (minimum mean-squared error)
- Canonical form of the error-performance surface
- MMSE filtering in case of linear Models
- 3.2 Linearly Constrained Minimum Variance Filter
- LCMV beamformer
- Minimum Variance Distortionless Response (MVDR) spectrum: Capon's method
- LCMV beamforming with multiple linear constraints
- 3.3 Generalized Sidelobe Canceler
- 3.4 Iterative Solution of the Normal Equations
- Steepest descent algorithm
- Stability of the algorithm
- Optimization of the step-size
- 3.5 Least Mean Square (LMS) Algorithm
- 3.6 Recursive Least Squares (RLS) Algorithm

4 High-Resolution Parameter Estimation

- Data model (DOA estimation)
- Eigendecomposition of the spatial correlation matrix at the receive array
- Subspace estimates
- Estimation of the model order
- 4.1 Spectral MUSIC
- DOA estimation
- Example: uniform linear array (ULA)
- Root-MUSIC for ULAs
- Periodogram
- MVDR spatial spectrum estimation (review)
- 4.2 Standard ESPRIT
- Selection matrices
- Shift invariance property
- 4.3 Signal Reconstruction
- LS solution
- MVDR / BLUE solution
- Wiener solution (MMSE solution)
- Antenna patterns
- 4.4 Spatial smoothing
- 4.5 Forward-backward averaging
- 4.6 Real-valued subspace estimation
- 4.7 1-D Unitary ESPRIT
- Reliability test
- Applications in Audio Coding
- 4.8 Multidimensional Extensions
- 2-D MUSIC
- 2-D Unitary ESPRIT
- R-D Unitary ESPRIT
- 4.9 Multidimensional Real-Time Channel Sounding
- 4.10 Direction of Arrival Estimation with Hexagonal ESPAR Arrays
- 5 Tensor-Based Signal Processing
- 5.1 Introduction and Motivation
- 5.2 Fundamental Concepts of Tensor Algebra
- 5.3 Elementary Tensor Decompositions
- Higher Order SVD (HOSVD)

- CANDECOMP / PARAFAC (CP) Decomposition
- 5.4 Tensors in Selected Signal Processing Applications
- 6 Maximum Likelihood Estimators
- 6.1 Maximum Likelihood Principle
- 6.2 The Fisher Information Matrix and the Cramer Rao Lower Bound (CRLB)
- Efficiency
- CRLB for 1-D direction finding applications
- Asymptotic CRLB

Medienformen

Skript, Overheadprojektor, Beamer

Literatur

- G. Strang, Introductionto Linear Algebra, Wellesley-Cambridge Press, Wellesley, MA, 1993.
- G. Strang, Linear Algebra anditsapplications, Harcourt BraceJovanovich, San Diego, CA, 3rd edition, 1988.
- S. Haykin, Adaptive Filter Theory, Prentice-Hall, 4th edition, 2002.
- H. L. Van Trees, Optimum Array Processing, John Wiley & Sons, Inc., New York, NY, 2002.
- L. L. Scharf, Statistical Signal Processing, Addison-Wesley Publishing Co., 1991.
- T. K. Moon and W. C. Stirling, MathematicalMethodsandAlgorithmsfor Signal Processing, Prentice-Hall, 2000.
- A. H. Sayed, Fundamentalsof Adaptive Filtering, John Wiley & Sons, Inc., New York, NY, 2003.
- S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation Theory, Prentice-Hall, Englewood Cliffs, N.J., 1993.
- M. Haardt, EfficientOne-, Two-, and Multidimensional High-Resolution Array Signal Processing, Shaker Verlag, 1997.
- S. Haykinand M. Moher, Modern Wireless Communications, Pearson Education, Inc., 2005.
- T. Kaiser, A. Bourdoux, H. Boche, editors, Smart Antennas State of The Art, Hindawi Publishing Corporation, 2005.
- A. Paulraj, R. Nabar, and D. Gore, Introductionto Space-Time Wireless Communications, Cambridge University Press, 2003.
- A. Hjørungnes, Complex-valued matrix derivatives: with applications in signal processing and communications, Cambridge University Press, 2011.
- M. Haardt, M. Pesavento, F. Roemer, and M. N. El Korso, Subspacemethodsandexploitationofspecialarraystructures,in Academic Press Library in Signal Processing: Volume 3 Array and Statistical Signal Processing (A. M. Zoubir, M. Viberg, R. Chellappa, and S. Theodoridis, eds.), vol. 3, pp. 651 717, Elsevier Ltd., 2014, Chapter 15, ISBN 978-0-12-411597-2.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Medientechnologie 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Medientechnologie 2013

Master Wirtschaftsingenieurwesen 2010

Master Mathematik und Wirtschaftsmathematik 2008

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Modul: Funksysteme

Modulnummer:100687

Modulverantwortlich: Prof. Dr. Matthias Hein

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Funksysteme

Funksysteme

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5175 Prüfungsnummer:2100176

Fachverantwortlich: Prof. Dr. Matthias Hein

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echni	ik und Informationstechnik				Fachgebiet:	2113

	1	I.FS	6	2	2.FS	3		3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				3	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden verstehen grundlegende Phänomene und Systeme der Funktechnik. Sie wenden diese Grundkenntnisse auf den Einsatz typischer und den Entwurf anwendungsspezifischer Funksysteme an. Die Studierenden klassifizieren und vergleichen die für verschiedene Fre-quenzbereiche relevanten Ausbreitungsbedingungen drahtloser Übertragungssysteme. Sie bewerten deren Auswirkungen auf die systembezogene Konzeption von Funksystemen und Übertragungsverfahren. Die Studierenden erkennen darüber hinaus fachübergreifende Zusammenhänge funktechnischer Systeme mit Antennen, Schaltungen und Bausteinen der HF- und Mikrowellentechnik, sowie der Nachrichtentechnik und vermögen diese anwendungsspezifisch zu bewerten.

Fachkompetenzen: Natur- und ingenieurwissenschaftliche Grundlagen, frühzeitige Einbindung von Entwicklungstendenzen, neueste Techniken und Methoden, Einbindung des angewandten Grundlagenwissens der Informationsverarbeitung. Methodenkompetenz: Systematisches Erschließen und Nutzen des Fachwissens und Dokumentation von Arbeitsergebnissen; Modellbildung, Planung, Simulation und Bewertung komplexer Systeme.

Systemkompetenzen: Überblickwissen über angrenzende Fachgebiete, die für die Gestaltung von Systemen wichtig sind, fachübergreifendes, systemorientiertes Denken.

Sozialkompetenzen: Kommunikation, Teamwork, Präsentation; Erkennen und Analyse gesellsch. Bedürfnisse, Schnittstellen techn. Problemstellungen zur Gesellschaft.

Vorkenntnisse

Allgemeine Elektrotechnik, Grundlagen der Schaltungstechnik und der Hochfrequenztechnik, elektromagnetische Wellen

Inhalt

Teil I - Wellenausbreitung

- 11. Einführung: Inhalt, Motivation, Frequenzbereichszuordnung, Grundlagen
- I2. Freiraumausbreitung und Bodenwellen: Ausbreitung in unbegrenzten verlustlosen und homogen verlustbehafteten Medien, Ausbreitung an der Grenzfläche zweier Medien (Erde-Luft)
- 13. Wellenausbreitung in der Atmosphäre: Schichtstruktur der Ionosphäre, Wellenausbreitung, Echolotung, tropo-sphärische Brechung, Streuung und Absorption
- 14. Ausbreitung ultrakurzer Wellen: Kirchhoff'sche Beugung, Hindernisse, Reflexion, Mehrwegeausbreitung

Teil II - Systeme der Funktechnik

- II1. Grundkonzeption von Funkempfängern: Geradeausempfänger, Heterodynempfänger, Zero-IF-Konzept, Empfängerkennwerte
- II.2. Mischerschaltungen: Eintakt-, Gegentakt- und Ringmischer, Gilbertzelle
- II.3. Technische Antennenausführung: Stabantennen, Kompaktantennen; Symmetrierglieder mit Ferriten und Leitungen

- II.4. Grundlagen der Satellitenfunktechnik: Technik von geostationären und LEO-Satelliten
- II.5. Informationsübertragung mit Richtfunk: Systemkonzept, Beispiel
- II.6. Grundlagen der Radioastronomie: Natürliche Strahlungsquellen, Beobachtungsmöglichkeiten

Medienformen

Tafelbild, interaktive Entwicklung der Stoffinhalte

Illustrationen zur Vorlesung (in elektronischer Form verfügbar)

Hinweise zur persönlichen Vertiefung

Identifikation vorlesungsübergreifender Zusammenhänge

Vorlesungsbegleitende Aufgabensammlung zur selbständigen Nacharbeitung (in elektronischer Form verfügbar)

Literatur

- K.D. Becker, "Ausbreitung elektromagnetischer Wellen", Springer, 1974.
- P. Beckmann, "Die Ausbreitung der ultrakurzen Wellen", Akad. Verlagsgesellschaft Geest und Pontig, Leipzig 1963.
- V.L. Ginsburg, "The propagation of electromagnetic waves in plasmas", Pergamon Press, 1970.
- J. Großkopf, "Wellenausbreitung", BI Hochschultaschenbücher, Bd. 141/141a, Mannheim 1970.
- G. Klawitter: "Langwellen- und Längstwellenfunk", Siebel-Verlag Meckenheim 1991.
- T.S.M. Maclean and Z. Wu, "Radiowave propagation over ground", Chapman and Hall, 1993.
- N. Geng und W. Wiesbeck, "Planungsmethoden für die Mobilkommunikation: Funknetzplanung unter realen physikalischen Ausbreitungsbedingungen", Springer 1998.

Meinke/Gundlach, "Taschenbuch der Hochfrequenztechnik", Band 1: Grundlagen, Kapitel B, H; Springer Verlag, 1992. Zinke, Brunswig: Hochfrequenztechnik 1 und 2, Springer-Verlag 1992

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Messsysteme der Informations- und Kommunikationstechnik

Modulnummer:100684

Modulverantwortlich: Prof. Dr. Reiner Thomä

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Messsysteme der Informations- und Kommunikationstechnik

Messsysteme der Informations- und Kommunikationstechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5170 Prüfungsnummer:2100177

Fachverantwortlich: Prof. Dr. Reiner Thomä

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Elektro	technil	k und Informationstechnik				Fachgebiet:	2112

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	V	S	Р	٧	S	Р	>	S	Р
Fachsemester	3	1	0																		

Lernergebnisse / Kompetenzen

Es werden die grundlegenden Messmethoden zur Charakterisierung von Übertragungs- und Kommunikationssystemen betrachtet. Der Student wird damit in die Lage versetzt, selbständig komplexere Aufgabenstellungen zu systematisieren, zu planen und durchzuführen. Durch die Betonung der methodischen Ansätze wird insbesondere die Übertragung von Lösungsstrategien auf verschiedene und auch artfremde Anwendungsfelder geschult.

Vorkenntnisse

Modul: Elektrotechnik Modul: Grundlagen der IKT Modul: Elektronik und Systemtechnik Signale und Systeme, HF-Technik

Inhalt

Messung von Streuparametern für akustische und elektromagnetische Wellen: • Strom-Spannungs-Parameter • Wellen und normalisierte Wellen • Streuparameter, Mason-Graph • Wellenseparation (Richtkoppler, Zeitisolation, Zwei-Proben-Methode) • Bestimmung von Mehrtor-Parametern • Zufällige Fehler • Systematische Fehler und deren Korrektur Signalquellen: • Frequenzsynthese • Breitband VCO • Impulsquellen • Parameter von Signalquellen Architektur von Breitbandempfängern: • Hilbert-Transformation • Reale und komplexe Mischung • Direkte Frequenzumsetzung • Image rejection Mischer • Empfängerarchitektur mit niedriger Zwischenfrequenz Korrelation und Systemidentifikation: • Lineare und zeitinvariante Systeme • Rauschen am Eingang und/oder Ausgang • Schätzung der Übertragungsfunktion • Aufbau von Korrelatoren im Zeitbereich (sliding correlator) • Korrelatoren für den Frequenzbereich • Anregung mit zufälligen und periodischen Signalen • Entwurf von Multi-Trägersignalen • Intermodulation, Kompression, Nachbarkanalstörung • Rauschklirrmessung • Realitätsnahe Messung der nichtlinearen Verzerrung Messung der Wellenausbreitung für den Mobilfunk: • Zeitvariante Multipfad-Ausbreitung • Breitband-MIMO-Channel-Sounder • Laufzeit-Doppler-Schätzung • Antennenarrays • Mehrdimensionale Parameterschätzung hoher Auflösung • Messwertbasierte Übertragungspegelsimulation • Charakterisierung des Übertragungskanals

Medienformen

Interaktives Tafelbild, PowerPoint-Folien, Übungen mit praktischen Vorführungen und Demonstrationen

Literatur

R. Pintelon, J. Schoukens, "System Identifikation – A Frequency Domain Approach," IEEE Press, Piscataway, NJ, 2001 R.S. Thomä, M. Landmann, A. Richter, U. Trautwein, "Multidimensional High-Resolution Channel Sounding," in T. Kaiser et. al. (Ed.), Smart Antennas in Europe – State-of-the-Art, EURASIP Book Series on SP&C, Vol. 3, Hindawi Publishing Corporation, 2005, ISBN 977-5945-09-7 A. F. Molisch, "Wireless Communications," John Wiley & Sons, Chichester, 2005. S. R. Saunders, "Antennas and Propagation for Wireless Communication Systems," John Wiley & Sons, Chichester, 2001.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Implementation of Broadcasting Systems(in Englisch)

Modulnummer 100739

Modulverantwortlich: Prof. Dr. Giovanni Del Galdo

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Implementation of Broadcasting Systems(in Englisch)

Implementation of Broadcasting Systems

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 8294 Prüfungsnummer:2100250

Fachverantwortlich:Prof. Dr. Giovanni Del Galdo

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2118

	1	I.FS	<u> </u>		2.FS	3		3.FS	3		1.FS	3	į	5.FS	<u>`</u>	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

The students get to know the demands and parameters of components and circuits regarding broadcasting receiver technology. They understand the pros and cons of different receiver architectures, they analyze the influence of non-linear effects and noise onto the system, and are enabled to evaluate, select and synthesize components and devices.

Vorkenntnisse

- signal and system theory
- basics of information technology
- basics of circuit technology

Inhalt

- Overview
- Amplifiers and circuit technology
- Heterodyne reception
- Influence of non-linear distortions and noise
- Receiver architectures
- Transmitters
- Transmit- and receive antennas
- digital signal processing in base band

Medienformen

Slides, board

Literatur

- Tietze, Schenk, "Halbleiterschaltungstechnik", Springer
- Meinke, Gundlach, "Taschenbuch der Hochfrequenztechnik" Band 1 bis 3, Springer
- Seifart, "Analoge Schaltungen", Verlag Technik

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Master Ingenieurinformatik 2009

Master Medientechnologie 2009

Master Medientechnologie 2013

Modul: Cellular Communication Systems

Modulnummer5844

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

see course description

Vorraussetzungen für die Teilnahme

Modul: Cellular Communication Systems

Cellular Communication Systems

Fachabschluss: Prüfungsleistung alternativ

Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100501 Prüfungsnummer:2200349

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung				Fachgebiet:	2235

	1	I.FS	`	2	2.FS	3	,	3.FS	3	4	I.FS	S	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

The course introduces students into the functionalities of cellular communication systems, esp. GSM/GPRS/EDGE, UMTS/HSPA, LTE/SAE. It enables students to unterstand network and protocol aspects of these system as well as aspects related to their deployment and management. Main topics are the network architechture, network elements, protocols, and services of these systems. The course allows students to understand main functions as mobility management, radio resource allocation, session management and QoS, as well as authentification, authorisation and network management.

Vorkenntnisse

Communication protocols and networks, basics of mobile communication networks

Inhalt

- Review of mobile communication basics
- Overview on GSM and GPRS
- UMTS architecture (mobility management, connection and session management, wideband CDMA, management of radio resources
- UMTS radio access network
- High-Speed Packet Access (HSPA)
- Long-Term Evolution (LTE)
- System Architecture Evolution (SAE)
- Self-organization in LTE

Medienformen

Presentations with beamer, presentation slides

Literatur

- Kaaranen, Ahtiainen, Laitinen, Naghian, Niemi. UMTS Networks Architecture, Mobility and Services. Wiley, 2001
- Holma, Toskala. WCDMA for UMTS. revised edition, Wiley, 2002
- Dahlmann, Parkvall, Sköld. 4G: LTE/LTE-Advanced for Mobile Broadband, AP, 2011
- Stefania Sesia, Issam Toufik, Matthew Baker. LTE The UMTS Long Term Evolution: From Theory to Practice

Detailangaben zum Abschluss

• The course consists of two parts: In the first part of the semester, lectures on the material are given. In the second part, individual studies (semester-long research projects that include a term paper and a presentation) help to improve

understanding of the material.

- Grading scheme: 40% term paper plus presentation, 60% oral exam (20 min, registration at ICS office in Z1031).
- Binding registration for the exam (using Thoska or the registration form provided by the examination office IA) is required at the beginning of each semester (check the registration time window which is defined each semester) in order to participate in individual studies projects and the oral exam. As your course grade is a result of the individual studies and the oral exam, only formally registered students are eligible for participation in the individual studies and may receive credits for it.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2009

Master Research in Computer & Systems Engineering 2012

Master Research in Computer & Systems Engineering 2016

Master Informatik 2013

Master Communications and Signal Processing 2013

Modul: Integrierte Hard- und Softwaresysteme

Modulnummer8340

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können

- fortgeschrittene automatisierungs- und systemtechnische Methoden in den genannten Fächern anwenden,
- Analyse- und Entwurfsaufgabenstellungen an praktisch relevanten Themenstellungen entwickeln, lösen und bewerten sowie
 - Experimente an praxisnahen Versuchsaufbauten ausführen.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik, Maschinenbau

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelegt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Modul: Integrierte Hard- und Softwaresysteme

Hauptseminar Integrierte Hard- und Softwaresysteme

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 101188 Prüfungsnummer:2200476

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2235

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS S P S P S P S P SP S P S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Modul: Programmierbare Logikbausteine

Modulnummer:100697

Modulverantwortlich: Prof. Dr. Ralf Sommer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Programmierbare Logikbausteine

Programmierbare Logikbausteine

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100759 Prüfungsnummer:2100497

Fachverantwortlich: Prof. Dr. Ralf Sommer

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	technik	und Informationstechnik				Fachgebiet:	2144

	1	I.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	1	1	2																		

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, die verschiedensten angebotenen Bausteine in die unterschiedlichen Architekturen von PLD einzuordnen und die sich daraus ergebenden Konsequenzen für den Entwurf von digitalen Schaltungen abzuleiten. Sie können für konkrete Anwendungen eine optimale Bausteinauswahl treffen und den Entwurf unter Anwendung moderner Designmethoden (Hierarchischer Entwurf, Hardwarebeschreibungssprache usw.) realisieren. Ökonomische Parameter fließen genauso bei der Auswahl geeigneter Bausteine in die Überlegungen ein wie technische. Dadurch besitzen die Studenten ein strategisches Wissen, dass es Ihnen ermöglicht, auch Neueinführungen auf dem Markt zu beurteilen. Durch die Praktikas ist Ihnen der Entwurfsablauf von der Problematik (Pflichtenheft) über die Schaltungseingabe, Verifikation, Programmierung bis hin zur Testung geläufig und auf andere Anforderungen übertragbar.

Vorkenntnisse

Digitale Schaltungstechnik

Inhalt

Einarbeitung in die Entwurfssoftware Max+Plus II von Altera, Einführung und Besonderheiten der Hardwarebeschreibungssprache AHDL, Systematisierung der gebräuchlichen PLD, unterschiedliche Bausteinarchitekturen und deren Vor- bzw. Nachteile, Programmiertechnologien, Verbindungsarchitekturen, Möglichkeiten der Speicherrealisierung in komplexen PLD, CPLD und FPGA, Handhabung von Intellectually Property in PLD, Embedded Processor Solutions am Beispiel eines 32bit Prozessors (Softcore) in einem PLD mit zusätzlicher Hardware, technische Parameter des Prozessors, Programmierung des Prozessors. Überblick über analoge PLD, Einschränkung, Vorstellung eines Analogmasters, Vergleich von PLD verschiedener Hersteller (Altera, XILINX, Lattice u.a.) Im Praktikum Entwurf eines PLD (von der formellen Aufgabenstellung bis hin zur Erprobung in der Hardware)

Medienformen

Powerpoint-Präsentation, Skript

Literatur

Wannemacher: Das FPGA-Kochbuch

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Rechnergestützte Schaltungssimulation und deren Algorithmen (EDA)

Modulnummer 100696

Modulverantwortlich: Prof. Dr. Ralf Sommer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Rechnergestützte Schaltungssimulation und deren Algorithmen (EDA)

Rechnergestützte Schaltungssimulation und deren Algorithmen (EDA)

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100473 Prüfungsnummer:2100438

Fachverantwortlich: Prof. Dr. Ralf Sommer

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrote	echni	k und Informationstechnik				Fachgebiet:	2144

	1	1.FS	<u> </u>	2	2.FS	3		3.FS	3	4	I.FS)	į	5.FS	3	(3.FS	3	-	7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester	2	2	0																		

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, die Hintergründe und Algorithmen der rechnergestützten Schaltungssimulation zu verstehen. Sie haben einen Überblick über die verschiedenen Simulations- und Analyseverfahren für Analog/Mixed-Signal-Schaltungen und kennen die Bedeutung und Wirkung der Simulationssteuerungsvariablen von Schaltungssimulatoren. Die Studierenden können Methoden zur numerischen und symbolischen Analyse, zur Dimensionierung und zur Optimierung anwenden.

Vorkenntnisse

Grundlagen der Schaltungstechnik, Analoge Schaltungen

Inhalt

Einführung in die Schaltungssimulation, Netzwerktheorie als Grundlage für die automatisierte Aufstellung von Schaltungsgleichungen, Lösung linearer Gleichungssysteme (LU-Zerlegung, Pivotisierung, Makrowitz-Rordering, Sparse-Matrix-Techniken), Lösung nichtlinearer Gleichungen, Lösung von Differentialgleichungen, Device-Modelle SPICE, Verhaltensmodellierung - Lösung von Verhaltensmodellen, Symbolische Analyse, Statistische Analyse und Entwurfszentrierung/Ausbeuteoptimierung, Überblick über die statistische Devicemodellierung, Überblick Device-Alterung undf Alterungssimulation (Cadence, RelXpert), RF-Simulationsverfahren (Cadence SpectreRF), Anwendungen

Medienformen

Vorlesung mit Ableitungen an der Tafel (Schwerpunkt), Powerpoint-Folien (Präsentation)

Literatur

Leon, O. Chua, Pen-Min Lin: Computer-aided analysis of electronic circuits: algorithms and computational techniques Kishore Singhal, Jiri Vlach: Computer Methods for Cirucit Analysis and Design Horneber: Simulation elektrischer Schaltungen auf dem Rechner

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Modul: Fortgeschrittene Modellierung und Rechnerarchitekturen

Modulnummer:101319

Modulverantwortlich: Prof. Dr. Wolfgang Fengler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibungen

Vorraussetzungen für die Teilnahme

siehe Fachbeschreibungen

- Die Prüfungsleistung für das Modul besteht aus drei einzelnen Prüfungsgesprächen für die drei enthaltenen Fächer. Dauer jeweils 20 Minuten.
 - Auf Wunsch sind kombinierte Prüfungsgespräche für zwei oder drei Fächer möglich.
 - Die gesamte Prüfungsleistung muss innerhalb von zwei Semestern erbracht werden.
 - Die Anmeldung zur Modulprüfung erfolgt im ersten dieser beiden Semester und gilt für das folgende Semester weiter.
 - Die Endnote bildet sich zu gleichen Teilen aus den Einzelergebnissen der drei Prüfungsgespräche.

Modul: Fortgeschrittene Modellierung und Rechnerarchitekturen

Fortgeschrittene Modellierung und Rechnerarchitekturen

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 101157 Prüfungsnummer:2200460

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte: 8 Workload (h): 240 Anteil Selbststudium (h): 161 SWS: 7.0
Fakultät für Informatik und Automatisierung Fachgebiet: 2231

2.FS 3.FS 4.FS 5.FS 1.FS 6.FS 7.FS V S P SP SP SP SP SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Siehe Einzelfächer.

Vorkenntnisse

Siehe Einzelfächer.

Inhalt

Siehe Einzelfächer.

Medienformen

Siehe Einzelfächer.

Literatur

Siehe Einzelfächer.

Detailangaben zum Abschluss

- Die Prüfungsleistung für das Modul besteht aus drei einzelnen Prüfungsgesprächen für die drei enthaltenen Fächer. Dauer jeweils 20 Minuten.
 - Auf Wunsch sind kombinierte Prüfungsgespräche für zwei oder drei Fächer möglich.
 - Die gesamte Prüfungsleistung muss innerhalb von zwei Semestern erbracht werden.
 - Die Anmeldung zur Modulprüfung erfolgt im ersten dieser beiden Semester und gilt für das folgende Semester weiter.
 - Die Endnote bildet sich zu gleichen Teilen aus den Einzelergebnissen der drei Prüfungsgespräche.

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Modul: Fortgeschrittene Modellierung und Rechnerarchitekturen

Einchipcontroller und Digitale Signalprozessoren

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 174 Prüfungsnummer:2200462

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte: 0 Workload (h): 0 Anteil Selbststudium (h): 0 SWS: 2.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2231

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS S S SP SP S S S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

- · Grundlegende Merkmale und Eigenschaften von Einchipcontrollern und Digitalen Signalprozessoren
- Behandlung konkreter Eigenschaften von Einchipcontrollern an einzelnen Typenbeispielen
- · Behandlung konkreter Eigenschaften von Digitalen Signalprozessoren an einzelnen Typenbeispielen

Vorkenntnisse

Notwendig: Grundkenntnisse zu Aufbau und Funktionsweise von Rechnern, z.B. aus den Fächern Rechnerarchitekturen 1, Technische Informatik 2 oder Technische Informatik (Teil RA).

Empfohlen: Kenntnisse zu fortgeschrittenen Rechnerarchitekturen, z.B. aus dem Fach Rechnerarchitekturen2.

Inhalt

- 1. Einleitung und allgemeine Merkmale
- 2. Einchipcontroller am Beispiel
- 3. Digitale Signalprozessoren am Beispiel
- 4. Zusammenfassung und Ausblick

Medienformen

Alle Informationen sind auf der Webseite der Vorlesung zu finden: http://tu-ilmenau.de/?r-dsp

Literatur

Alle Informationen sind auf der Webseite der Vorlesung zu finden: http://tu-ilmenau.de/?r-dsp

Detailangaben zum Abschluss

- Modulprüfung: Siehe dort.
- Einzelfall: Mündliche Prüfung 20 Minuten.

verwendet in folgenden Studiengängen

Master Fahrzeugtechnik 2009

Master Ingenieurinformatik 2009

Master Fahrzeugtechnik 2014

Master Informatik 2013

Master Informatik 2009

Modul: Fortgeschrittene Modellierung und Rechnerarchitekturen

Spezielle und Innovative Rechnerarchitekturen

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 173 Prüfungsnummer:2200461

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2231

	1	l.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3		3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	0	0																		

Lernergebnisse / Kompetenzen

Überblickswissen und Detailkenntnisse zu Recnerarchitekturen und Funktionsprinzipien, die von den bekannten und weit verbreiteten Lösungen abweichen. Darunter sind sowohl Realisierungen mit Nischencharakter als auch mögliche Richtungen zukünftiger Weiterentwicklungen.

Vorkenntnisse

Notwendig: Grundkenntnisse zu Aufbau und Funktionsweise von Rechnern, z.B. aus den Fächern Rechnerarchitekturen 1, Technische Informatik 2 oder Technische Informatik (Teil RA).

Empfohlen: Grundlagen paralleler Architekturen, z.B. aus dem Fach Rechnerarchitekturen 2.

Inhalt

- 1. Einleitung
- 2. Vektorrechner
- 3. Virtuelle Befehlssatzarchitekturen
- 4. Datenfluss-Architekturen
- 5. Processing in Memory (PIM)
- 6. Neurocomputer
- 7. Tendenzen bei Steuerfluss-Prozessoren
- 8. Optische Computer
- 9. Quantencomputer

Medienformen

Alle Informationen sind auf der Webseite der Vorlesung zu finden: http://tu-ilmenau.de/?r-sira

Literatur

Alle Informationen sind auf der Webseite der Vorlesung zu finden: http://tu-ilmenau.de/?r-sira

Detailangaben zum Abschluss

· Modulprüfung: Siehe dort.

• Einzelfall: Mündliche Prüfung 20 Minuten.

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Fortgeschrittene Modellierung und Rechnerarchitekturen

Technische Applikation von Petri-Netzen

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 171 Prüfungsnummer:2200463

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2231

	1	1.FS			2.FS	3	,	3.FS	3		1.FS	3	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Beherrschen der formalen Behandlung von Petri-Netzen (Definitionen, Analyseverfahren), Beherrschen der Anwendung von Petri-Netzen zur Modellierung und Analyse verschiedener technischer und nichttechnischer Sachverhalte.

Vorkenntnisse

Empfohlen: Grundlagen zu Petri-Netzen aus den Veranstaltungen Rechnerarchitekturen 1 oder Technische Informatik 2 (keine Bedingung)

In<u>halt</u>

- 1. Einleitung
- 2. Definitionen und Eigenschaften von Platz-Transitions-Netzen (PTN)
- 3. Steuerungsentwurf mit PTN
- 4. Hierarchie in PTN
- 5. Höhere Netze: Colored Petri Nets (CPN)
- 6. Modellierung paralleler und verteilter Programme
- 7. Technologiemodellierung mit CPN
- 8. UML-Diagramme und Petri-Netze
- 9. Geschäftsprozesse, Workflow und PN

Medienformen

Alle Informationen sind auf der Webseite der Vorlesung zu finden:

http://tu-ilmenau.de/?r-tapn

Literatur

Alle Informationen sind auf der Webseite der Vorlesung zu finden:

http://tu-ilmenau.de/?r-tapn

Detailangaben zum Abschluss

- Modulprüfung: Siehe dort.
- Einzelfall: Mündliche Prüfung 20 Minuten.

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Advanced Mobile Communication Networks

Modulnummer 101360

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

see course description

Vorraussetzungen für die Teilnahme

Modul: Advanced Mobile Communication Networks

Advanced Mobile Communication Networks

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Englisch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100500 Prüfungsnummer:2200348

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	8.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2235

	1	I.FS	`	2	2.FS	3	,	3.FS	3	4	I.FS	S	Ę	5.FS	3	6	3.FS	3	7	7.FS	`
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0	2	2	0															

Lernergebnisse / Kompetenzen

The course introduces students in advanced topics in mobile data communication. It enables students to understand the research issues from a protocol- and system point of view, resulting from the mobility and the wireless transmission.

Vorkenntnisse

Bachelor degree, basics of communication networks

Inhalt

- Introduction
- · Medium Access Schemes
- · Mobility Management
- TCP/IP
- · Self-Organization
- IEEE 802.11
- · Quality of Service
- Ad Hoc Networks
- · Cognitive Radio Networks
- · Overview on cellular systems

Medienformen

Presentations

Literatur

see webpage www.tu-ilmenau.de/ics

- The course consists of two parts: In the first part of the semester, lectures on the material are given. In the second part, individual studies (semester-long research projects that include a term paper and a presentation) help to improve understanding of the material.
 - Grading scheme: 40% term paper plus presentation, 60% oral exam (20 min, registration at ICS office in Z1031).

• Binding registration for the exam (using Thoska or the registration form provided by the examination office IA) is required at the beginning of each semester (check the registration time window which is defined each semester) in order to participate in individual studies projects and the oral exam. As your course grade is a result of the individual studies and the oral exam, only formally registered students are eligible for participation in the individual studies and may receive credits for it.

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Communications and Signal Processing 2013

Master Ingenieurinformatik 2009

Master Research in Computer & Systems Engineering 2016

Master Informatik 2013

Modul: Leistungsbewertung Technischer Systeme

Modulnummer:101318

Modulverantwortlich: Prof. Dr. Armin Zimmermann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz: Die Studierenden verstehen detailliert Hintergrund und Funktionsweise von Verfahren der Modellierung und quantitativen Bewertung technischer Systeme. Die Studierenden sind fähig, quantitative Aspekte technischer Systeme beim Entwurf zu untersuchen und zu bewerten. Die Studenten haben Kenntnisse in Anwendungsgebieten der Leistungsbewertung. Methodenkompetenz: Die Studierenden sind in der Lage, Methoden des quantitativen Systementwurfs, der Modellierung und Bewertung auf konkrete Problemstellungen anzuwenden. Die Studierenden sind in der Lage, passende Modelle und Werkzeuge auszuwählen und einzusetzen. Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen der Leistungsbewertung in der Gruppe zu lösen und zu präsentieren.

Vorraussetzungen für die Teilnahme

BsC im Studiengang Ingenieurinformatik / Informatik bzw. weitgehend äquivalentem Studiengang

Detailangaben zum Abschluss

Vollständige Bearbeitung der Übungsaufgaben (unbenotet) ist Voraussetzung für die Teilnahme an der abschließenden mündlichen Prüfung (ca 30 Minuten).

Modul: Leistungsbewertung Technischer Systeme

Leistungsbewertung Technischer Systeme

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101158 Prüfungsnummer:2200464

Fachverantwortlich: Prof. Dr. Armin Zimmermann

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2236

	1	I.FS	3	2	2.FS	3	,	3.FS	3	4	I.FS	;	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0																		

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verstehen detailliert Hintergrund und Funktionsweise von Verfahren der Modellierung und quantitativen Bewertung technischer Systeme. Die Studierenden sind fähig, quantitative Aspekte technischer Systeme beim Entwurf zu untersuchen und zu bewerten. Die Studenten haben Kenntnisse in Anwendungsgebieten der Leistungsbewertung. Methodenkompetenz: Die Studierenden sind in der Lage, Methoden des quantitativen Systementwurfs, der Modellierung und Bewertung auf konkrete Problemstellungen anzuwenden. Die Studierenden sind in der Lage, passende Modelle und Werkzeuge auszuwählen und einzusetzen. Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen der Leistungsbewertung in der Gruppe zu lösen und zu präsentieren.

Vorkenntnisse

BsC im Studiengang Ingenieurinformatik / Informatik bzw. weitgehend äquivalentem Studiengang

Inhalt

Modellierung und Leistungsbewertung diskreter technischer Systeme

Grundlagen (Stochastische Grundlagen, Stochastische Prozesse)

Modelle (Markov-Ketten, stochastische Petri-Netze, farbige stochastische Petri-Netze)

Bewertungsverfahren (numerische Analyse, Simulation, Beschleunigungsverfahren)

Ausgewählte Anwendungsgebiete, Bewertung zuverlässiger Systeme

Medienformen

Folien und Aufgabenzettel: verfügbar über Webseite der Lehrveranstaltung.

Ergänzende Informationen als Tafelanschrieb.

Literatur

siehe Webseiten der Lehrveranstaltung sowie Hinweise in der ersten Vorlesung

Detailangaben zum Abschluss

Vollständige Bearbeitung der Übungsaufgaben (unbenotet) ist Voraussetzung für die Teilnahme an der abschließenden mündlichen Prüfung (ca 30 Minuten).

verwendet in folgenden Studiengängen

Master Informatik 2013

Modul: Spezielle Aspekte Integrierter Hard- und Software-Systeme

Modulnummer:101320

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Spezielle Aspekte Integrierter Hard- und Software-Systeme

Spezielle Aspekte Integrierter Hard- und Softwaresysteme

Fachabschluss: Prüfungsleistung mündlich Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7793 Prüfungsnummer:2200176

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte:	5	Workload (h): 1	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung			Fachgebiet:	2235		

	1.FS			2.FS			3.FS			4.FS			Ę	5.FS	3	(6.FS	<u>`</u>	7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	
Fachsemester				2	2	0																

Lernergebnisse / Kompetenzen

Detailliertes fortgeschrittenes Verständnis für und Fähigkeiten zu speziellen Themen zu Aufbau, Funktion, Modellierung und Entwurf integrierter Hard- und Softwaresysteme

Vorkenntnisse

Vertiefungskenntnisse zu integrierten Hard- und Softwaresystemen

Inhalt

Auswahl von Themen zum fortgeschrittenen Stand des Gebietes Integrierte Hard- und Softwaresysteme

Medienformen

kurzfristig unter Lehrmaterial auf den WEB-Seiten der beteiligten Fachgebiete abrufbare pdf-Dateien

Literatur

Literaturangaben individuell zu den behandelten Themen in der Vorlesung bzw. im bereitgestellten Lehrmaterial

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Master Ingenieurinformatik 2014

Master Informatik 2009

Modul: Model Driven Architecture (MDA)

Modulnummer:101652

Modulverantwortlich:

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Model Driven Architecture (MDA)

Model Driven Architecture (MDA)

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101656 Prüfungsnummer:2200593

Fachverantwortlich: Dr. Ralph Maschotta

Leistungspunkte:	5	Workload (h): 150	0	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung			Fachgebiet:	2236		

	1.FS			1.FS 2.FS				3.FS	3	4.FS			5	5.FS	3	(3.FS	3	7.FS			
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	
Fachsemester																						

Lernergebnisse / Kompetenzen

Fähigkeit zur Erstellung Domainspezifischer Sprachen (DSL)

Fähigkeit zur Erstellung von Editoren für DSL

Fähigkeit der Erstellung von Modelltransformationen (M2M & M2T)

Kenntnisse der Metameta-Modelle (ECORE, EMOF)

Kenntnis des Metamodells der UML

Kenntnisse der nötigen OMG Standardspezifikationen

Vorkenntnisse

Grundlagen der objektorientierten Programmierung Hilfreich: Grundlagen des UML-Klassendiagramms

Inhalt

Die Model-Driven Architecture (MDA) ist der Object Management Group (OMG) -Ansatz des Model-Driven (Software) Developments (MDD) zur modellgetriebenen und generativen Soft- und Hardwareentwicklung. Ziel der MDA ist es die Lücke zwischen Modell und Quelltext zu schließen und den Automatisierungsgrad der Entwicklung zu erhöhen. Dies erfolgt durch eine automatische Generierung von Quellcode aus Domänenspezifischen Modellen, die auf definierten Domänenspezifischen Sprachen (DSL) beruhen. Im Ergebnis sollen die Fehlerquellen während der Entwicklung reduziert werden und die Software schneller, effizienter, kostengünstiger und qualitativ hochwertiger erstellt werden. Für die Anwendung dieses Ansatzes sind verschiedene Kenntnisse und Fähigkeiten notwendig:

- · Kenntnisse in einer Programmiersprache, in der Zielsprache und in der Modellierungssprache
- Es müssen unterschiedliche Modellierungstechniken beherrscht werden
- Eine Kerntechnologie der MDA sind die Transformationenstechnologien
- Es existieren viele verschiedene Werkzeuge und recht komplexe Toolchains, die beherrscht werden müssen Im Rahmen dieser Lehrveranstaltung sollen diese notwendigen Kenntnisse und Fähigkeiten vermittelt werden. Im Seminar

sollen mit Hilfe des Eclipse Modeling Projects (EMP) und des Eclipse Sirius Projects praktische Aufgabenstellungen gelöst werden. Hierbei soll ein eigener Editor für eine eigene Domänenspezifische Sprache erstellt werden.

Medienformen

alternative Prüfungsleistung, 90 Minuten

Details zum Abschluss:

Der Abschluss in diesem Fach umfasst zwei Teile. Zum einen die bewerteten Ergebnisse aus dem Seminar (30%) und zum

anderen die Ergebnisse aus einer schriftl. Prüfung (70%).

Im Rahmen des zugehörigen Seminars soll das Verhalten und die Struktur eines selbst gewählten technischen Systems im Team nach einem einfachen Vorgehen modelliert werden. Diese sollen Lösungen zu gestellten Modellierungsaufgaben beinhalten.

Verbindliche Anmeldung bis spätestens einen Monat nach Semesterbeginn!

Literatur

- [1] V. Gruhn, D. Pieper, and C. Röttgers, MDA®: Effektives Software-Engineering mit UML2® und Eclipse(TM) (Xpert.press) (German Edition). Dordrecht: Springer, 2007.
- [2] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse modeling framework, 2nd ed. Upper Saddle River, NJ: Addison-Wesley, 2011.
- [3] R. C. Gronback, Eclipse modeling project: A domain-specific language toolkit. Upper Saddle River, N.J. Addison-Wesley, 2009.
- [4] Object Management Group, MDA The Architecture Of Choice For A Changing World. [Online] Available: http://www.omg.org/mda/.
- [5] Object Management Group, OMG Specifications. [Online] Available: http://www.omg.org/spec/.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Informatik 2013

Modul: Projektseminar zum Studienschwerpunkt II Msc

Modulnummer 100364

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss:

Lernergebnisse

- Fachkompetenz: Die Studierenden können das in den von Ihnen belegten Vorlesungen und Übungen erworbene Wissen im Kontext einer konkreten Aufgabenstellung anwenden.
 - · Methodenkompetenz:
- Systemkompetenz: Abhängig von der konkret ausgegebenen Aufgabenstellung haben die Studierenden spezifische Systemzusammenhänge erschlossen und verstehen die gegenseitigen Abhängigkeiten einzelner Systemkomponenten. Sie können die Auswirkungen spezifischer Entwurfsentscheidungen für einzelne Komponenten im Kontext des Gesamtsystems einschätzen und gegeneinander abwägen.
- Sozialkompetenz: Die Studierenden können Ihre Arbeit in einem Team koordinieren und Ihre Ergebnisse gemeinsam darstellen.

Vorraussetzungen für die Teilnahme

Hochschulzulassung, Inhalte der ersten vier Semester des Bachelorstudiums.

Modul: Projektseminar zum Studienschwerpunkt II Msc

Projektseminar zum Studienschwerpunkt

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100514 Prüfungsnummer:2200350

Fachverantwortlich: Prof. Dr. Günter Schäfer

	Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	135	SWS:	4.0	
1	Fakultät für Informat	tik un	ıd Automatisierung				Fachgebiet:	2253

	1.FS			2.FS			3.FS			4.FS				5.FS	3	(3.FS	3	7.FS			
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	
Fachsemester				0	4	0																

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden können das in den von Ihnen belegten Vorlesungen und Übungen erworbene Wissen im Kontext einer konkreten Aufgabenstellung anwenden.
 - · Methodenkompetenz:
- Systemkompetenz: Abhängig von der konkret ausgegebenen Aufgabenstellung haben die Studierenden spezifische Systemzusammenhänge erschlossen und verstehen die gegenseitigen Abhängigkeiten einzelner Systemkomponenten. Sie können die Auswirkungen spezifischer Entwurfsentscheidungen für einzelne Komponenten im Kontext des Gesamtsystems einschätzen und gegeneinander abwägen.
- Sozialkompetenz: Die Studierenden können Ihre Arbeit in einem Team koordinieren und Ihre Ergebnisse gemeinsam darstellen.

Vorkenntnisse

Hochschulzulassung, Inhalte der ersten vier Semester des Bachelorstudiums.

Inhalt

Die Studierenden bearbeiten in kleinen Gruppen (zwischen zwei und vier Studierende) eine aktuelle Themenstellung mit inhaltlichem Bezug zu den von Ihnen belegten Fächern. Hierdurch wird das in Vorlesungen und Übungen erworbene Wissen im Kontext einer konkreten Aufgabenstellung vertieft und angewendet. Die Ergebnisse werden schriftlich dokumentiert und in einem Vortrag vorgestellt, in der Regel ergänzt durch eine Vorführung selbst erstellter Software bzw. durchgeführter Experimente.

Medienformen

werden im Seminar bekannt gegeben

Literatur

Themenspezifische Literatur wird nach Absprache empfohlen.

Detailangaben zum Abschluss

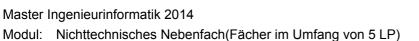
Themen werden nach Vereinbarung vergeben

verwendet in folgenden Studiengängen

Modul: Nichttechnisches Nebenfach(Fächer im Umfang von 5 LP)

Modulnummer 100366

Modulverantwortlich: Prof. Dr. Günter Schäfer


Modulabschluss:

Lernergebnisse

- Fachkompetenz: Die Studierenden kennen die Grundlagen des von Ihnen gewählten nichttechnischen Nebenfachs.
- Methodenkompetenz: Sie können grundlegende Problemstellungen aus dem gewählten Fachgebiet analysieren und bewerten.
- Systemkompetenz: Abhängig von dem konkret gewählten nicht-technischen Nebenfach verstehen die Studierenden grundlegend die Systemzusammenhänge der jeweiligen Domäne.
- Sozialkompetenz: Die Studierenden haben durch die Beschäftigung mit ihrem nicht-technischen Nebenfach ihre Fähigkeiten zur Kommunikation mit nicht-technisch orientierten Gesprächspartnern erweitert. Sie sind in der Lage interdisziplinär ausgerichtete Fragestellungen zu diskutieren.

Vorraussetzungen für die Teilnahme

Hochschulzulassung; Lehrveranstaltungen des ersten Studienjahres.

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:unbekannt

Fachnummer: 0000 Prüfungsnummer:92101

Fachverantwortlich:

Leistungspunkte: 0 Workload (h): 0 Anteil Selbststudium (h): 0 SWS: 0.0

Fakultät für Informatik und Automatisierung Fachgebiet:

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS SP SP S P SP SP SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2014

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MA

Master Technische Kybernetik und Systemtheorie 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsinformatik 2014

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung SK

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Allgemeine Betriebswirtschaftslehre 2013

Master Medien- und Kommunikationswissenschaft 2011

Bachelor Mathematik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Master Elektrochemie und Galvanotechnik 2013

Master Wirtschaftsingenieurwesen 2015

Bachelor Elektrotechnik und Informationstechnik 2008

Master Elektrotechnik und Informationstechnik 2014 Vertiefung ATE

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MA

Master Wirtschaftsingenieurwesen 2014

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Regenerative Energietechnik 2016

Master Fahrzeugtechnik 2009

Bachelor Angewandte Medienwissenschaft 2011

Master Wirtschaftsinformatik 2015

Bachelor Medienwirtschaft 2015

Master Wirtschaftsingenieurwesen 2009

Master Technische Physik 2013

Bachelor Angewandte Medienwissenschaft 2008

Master Wirtschaftsinformatik 2013

Master Research in Computer & Systems Engineering 2012

Master Medien- und Kommunikationswissenschaft 2009

Bachelor Technische Physik 2013

Master Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung SK

Master Regenerative Energietechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung EN

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Maschinenbau 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung EN

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT Master Biomedizinische Technik 2014 Bachelor Technische Physik 2011 Master Werkstoffwissenschaft 2013 Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT Master Mikro- und Nanotechnologien 2016 Master Wirtschaftsingenieurwesen 2010 Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB Master Electrical Power and Control Engineering 2013 Master Wirtschaftsingenieurwesen 2013 Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Master Technische Physik 2011 Bachelor Angewandte Medien- und Kommunikationswissenschaft 2012 Master Research in Computer & Systems Engineering 2016 Bachelor Medientechnologie 2013 Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Bachelor Technische Kybernetik und Systemtheorie 2010 Master Communications and Signal Processing 2013 Master Medienwirtschaft 2013 Master Wirtschaftsingenieurwesen 2015 Vertiefung BT Bachelor Medienwirtschaft 2013 Master Ingenieurinformatik 2009 Master Medienwirtschaft 2015 Master Medientechnologie 2013 Master Mathematik und Wirtschaftsmathematik 2008 Master Medien- und Kommunikationswissenschaft 2013 Bachelor Angewandte Medienwissenschaft 2009 Master Informatik 2013 Master Wirtschaftsingenieurwesen 2011 Bachelor Biotechnische Chemie 2013 **Bachelor Mathematik 2013** Bachelor Informatik 2010 Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET Master Micro- and Nanotechnologies 2016

Seite 228 von 239

Master Maschinenbau 2011

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EWT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung MNE

Master Medienwirtschaft 2014

Master Electrical Power and Control Engineering 2008

Master Mikro- und Nanotechnologien 2013

Modul: Nichttechnisches Nebenfach(Fächer im Umfang von 5 LP)

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:unbekannt

Fachnummer: 0000 Prüfungsnummer:92102

Fachverantwortlich:

Leistungspunkte: 0 Workload (h): 0 Anteil Selbststudium (h): 0 SWS: 0.0 Fakultät für Informatik und Automatisierung Fachgebiet:

2.FS 3.FS 5.FS 1.FS 4.FS 6.FS 7.FS S P S P S P S P S P S P S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2014

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MA

Master Technische Kybernetik und Systemtheorie 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsinformatik 2014

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung SK

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Allgemeine Betriebswirtschaftslehre 2013

Master Medien- und Kommunikationswissenschaft 2011

Bachelor Mathematik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Master Elektrochemie und Galvanotechnik 2013

Master Wirtschaftsingenieurwesen 2015

Bachelor Elektrotechnik und Informationstechnik 2008

Master Elektrotechnik und Informationstechnik 2014 Vertiefung ATE

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MA

Master Wirtschaftsingenieurwesen 2014

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Regenerative Energietechnik 2016

Master Fahrzeugtechnik 2009

Bachelor Angewandte Medienwissenschaft 2011

Master Wirtschaftsinformatik 2015

Bachelor Medienwirtschaft 2015

Master Wirtschaftsingenieurwesen 2009

Master Technische Physik 2013

Bachelor Angewandte Medienwissenschaft 2008

Master Wirtschaftsinformatik 2013

Master Research in Computer & Systems Engineering 2012

Master Medien- und Kommunikationswissenschaft 2009

Bachelor Technische Physik 2013

Master Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung SK

Master Regenerative Energietechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung EN

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Maschinenbau 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung EN

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT Master Biomedizinische Technik 2014 Bachelor Technische Physik 2011 Master Werkstoffwissenschaft 2013 Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT Master Mikro- und Nanotechnologien 2016 Master Wirtschaftsingenieurwesen 2010 Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB Master Electrical Power and Control Engineering 2013 Master Wirtschaftsingenieurwesen 2013 Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Master Technische Physik 2011 Bachelor Angewandte Medien- und Kommunikationswissenschaft 2012 Master Research in Computer & Systems Engineering 2016 Bachelor Medientechnologie 2013 Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Bachelor Technische Kybernetik und Systemtheorie 2010 Master Communications and Signal Processing 2013 Master Medienwirtschaft 2013 Master Wirtschaftsingenieurwesen 2015 Vertiefung BT Bachelor Medienwirtschaft 2013 Master Ingenieurinformatik 2009 Master Medienwirtschaft 2015 Master Medientechnologie 2013 Master Mathematik und Wirtschaftsmathematik 2008 Master Medien- und Kommunikationswissenschaft 2013 Bachelor Angewandte Medienwissenschaft 2009 Master Informatik 2013 Master Wirtschaftsingenieurwesen 2011 Bachelor Biotechnische Chemie 2013 **Bachelor Mathematik 2013** Bachelor Informatik 2010 Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET Master Micro- and Nanotechnologies 2016

Seite 232 von 239

Master Maschinenbau 2011

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EWT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung MNE

Master Medienwirtschaft 2014

Master Electrical Power and Control Engineering 2008

Master Mikro- und Nanotechnologien 2013

Modul: Masterarbeit II

Modulnummer 100682

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden erwerben eine besondere fachliche Tiefe in einem speziellen Bereich der Ingenieurinformatik. Sie sind in der Lage, eine konkrete wissenschaftliche Problemstellung zu bearbeiten, unter Anwendung der im Studium erworbenen Methodenkompetenz selbstständig zu lösen und die Ergebnisse gemäß wissenschaftlicher Standards fachlich fundiert zu dokumentieren. Die Studierenden können die Erkenntnisse ihrer Arbeit bewerten und in den Stand der Forschung einordnen. Gegenüber einem Fachpublikum können sie ihre Vorgehensweise motivieren, damit erreichte Ergebnisse und Erkenntnisse angemessen präsentieren sowie in einer abschließenden Diskussion verteidigen.

Vorraussetzungen für die Teilnahme

Masterarbeit

Modul: Masterarbeit II

Kolloquium zur Master-Arbeit

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 101480 Prüfungsnummer:99002

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte: 6 Workload (h): 180 Anteil Selbststudium (h): 180 SWS: 0.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2253

6.FS 2.FS 3.FS 4.FS 5.FS 1.FS 7.FS S P SP S P S P V SP SP S SWS nach Fachsemester 180 h

Lernergebnisse / Kompetenzen

Die Studierenden können das Thema ihrer wissenschaftlichen Arbeit einem Fachpublikum in einem Vortrag präsentieren. Die Studierenden sind in der Lage, die Wahl ihrer Vorgehensweise zu motivieren und damit erreichte Ergebnisse und Erkenntnisse angemessen darzustellen sowie in abschließender Diskussion zu verteidigen.

Vorkenntnisse

Schriftfassung der wissenschaftlichen Arbeit muss abgegeben sein

Inhalt

Vorbereitung und Durchführung des Abschlusskolloquiums

Medienformen

Vortrag mit Präsentationshilfen, Tafel

Literatur

Eigenrecherche

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2009

Modul: Masterarbeit II

Masterarbeit

Fachabschluss: Masterarbeit schriftlich 6 Monate Art der Notengebung: Generierte Note mit 2

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 7461 Prüfungsnummer:99001

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte: 24 Workload (h): 720 Anteil Selbststudium (h): 720 SWS: 0.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2253

	1.FS			2.FS			3.FS			4.FS			Ę	5.FS	3	(6.FS	3	7.FS			
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	
Fachsemester								720 ł	ı													

Lernergebnisse / Kompetenzen

Die Studierenden können das Thema ihrer wissenschaftlichen Arbeit einem Fachpublikum in einem Vortrag präsentieren. Die Studierenden sind in der Lage, die Wahl ihrer Vorgehensweise zu motivieren und damit erreichte Ergebnisse und Erkenntnisse angemessen darzustellen sowie in abschließender Diskussion zu verteidigen.

Vorkenntnisse

Schriftfassung der wissenschaftlichen Arbeit muss abgegeben sein

Inhalt

Vorbereitung und Durchführung des Abschlusskolloquiums

Medienformen

Vortrag mit Präsentationshilfen, Tafel

Literatur

Eigenrecherche

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Maschinenbau 2014

Master Mechatronik 2014

Master Fahrzeugtechnik 2009

Master Maschinenbau 2009

Master Ingenieurinformatik 2009

Master Optronik 2010

Master Optronik 2008

Master Fahrzeugtechnik 2014

Master Maschinenbau 2011

Master Optische Systemtechnik/Optronik 2014

Master Mechatronik 2008

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Nomen nescio, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It. K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)

Inhaltsverzeichnis