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Abstract: The mean of data on the unit circle is defined as the minimizer of the average squared
Euclidean distance to the data. Based on Hoeffding’s mass concentration inequalities, non-asymptotic
confidence sets for circular means are constructed which are universal in the sense that they require no
distributional assumptions. These are then compared with asymptotic confidence sets in simulations
and for a real data set.
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1. Introduction

In applications, data assuming values on the circle, i.e., circular data, arise frequently, examples
being measurements of wind directions, or time of the day that patients are admitted to a hospital
unit. We refer to the literature, e.g., [1–5], for an overview of statistical methods for circular data,
in particular the ones described in this section.

Here, we will concern ourselves with the arguably simplest statistic, the mean. However, given
that a circle does not carry a vector space structure, i.e., there is neither a natural addition of points on
the circle nor can one divide them by a natural number, what should the meaning of “mean” be?

In order to simplify the exposition, we specifically consider the unit circle in the complex plane,
S1 = {z ∈ C : |z| = 1}, and we assume the data can be modelled as independent random variables
Z1, . . . , Zn which are identically distributed as the random variable Z taking values in S1. In the
literature, however, the circle is often taken to lie in the real plane R2, i.e., while we denote the point
on the circle corresponding to an angle θ ∈ (−π, π] by exp(iθ) = cos(θ) + i sin(θ) ∈ C one may take
it to be (cos θ, sin θ) ∈ R2.

Of course, C is a real vector space, so the Euclidean sample mean Z̄n = 1
n ∑n

k=1 Zk ∈ C is well-defined.
However, unless all Zk take identical values, it will (by the strict convexity of the closed unit disc) lie
inside the circle, i.e., its modulus |Z̄n| will be less than 1. Though Z̄n cannot be taken as a mean on the
circle, if Z̄n 6= 0, one might say that it specifies a direction; this leads to the idea of calling Z̄n/|Z̄n| the
circular sample mean of the data.
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Observing that the Euclidean sample mean is the minimiser of the sum of squared distances, this
can be put in the more general framework of Fréchet means [6]: define the set of circular sample means to be

µ̂n = argmin
ζ∈S1

n

∑
k=1
|Zk − ζ|2 , (1)

and analoguously define the set of circular population means of the random variable Z to be

µ = argmin
ζ∈S1

E |Z− ζ|2 . (2)

Then, as usual, the circular sample means are the circular population means with respect to the
empirical distribution of Z1, . . . , Zn.

The circular population mean can be related to the Euclidean population mean E Z by noting that
E |Z− ζ|2 = E |Z− E Z|2 + | E Z− ζ|2 (in statistics, this is called the bias-variance decomposition), so that

µ = argmin
ζ∈S1

| E Z− ζ|2 (3)

is the set of points on the circle closest to E Z. It follows that µ is unique if and only if E Z 6= 0 in
which case it is given by µ = E Z/| E Z|, the orthogonal projection of E Z onto the circle; otherwise, i.e.,
if E Z = 0, the set of circular population means is all of S1. We consider the information of whether the
circular population mean is not unique, e.g., but not exclusively because Z is uniformly distributed
over the circle, to be relevant; it thus should be inferred from the data as well. Analogously, µ̂n is either
all of S1 or uniquely given by Z̄n/|Z̄n| according to whether Z̄n is 0 or not. Note that Z̄n 6= 0 a.s. if Z
is continuously distributed on the circle, even if E Z = 0. Z̄n is what is known as the vector resultant,
while Z̄n/|Z̄n| is sometimes referred to as the mean direction.

The expected squared distances minimised in Equation (2) are given by the metric inherited from
the ambient space C; therefore, µ is also called the set of extrinsic population means. If we measured
distances intrinsically along the circle, i.e., using arc-length instead of chordal distance, we would
obtain what is called the set of intrinsic population means. We will not consider the latter in the
following, see e.g., [7] for a comparison and [8,9] for generalizations of these concepts.

Our aim is to construct confidence sets for the circular population mean µ that form a superset of
µ with a certain (so-called) coverage probability that is required to be not less than some pre-specified
significance level 1− α for α ∈ (0, 1).

The classical approach is to construct an asymptotic confidence interval where the coverage
probability converges to 1− α when n tends to infinity. This can be done as follows: since Z is a
bounded random variable,

√
n(Z̄n−E Z) converges to a bivariate normal distribution when identifying

C with R2. Now, assume E Z 6= 0 so µ is unique. Then, the orthogonal projection is differentiable in a
neighbourhood of E Z, so the δ-method (see e.g., [1] (p. 111) or [4] (Lemma 3.1)) can be applied and
one easily obtains

√
n Arg(µ−1µ̂n)

D→ N
(

0,
E(Im(µ−1Z))2

| E Z|2

)
, (4)

where Arg : C \ {0} → (−π, π] ⊂ R denotes the argument of a complex number (it is defined
arbitrarily at 0 ∈ C), while multiplying with µ−1 rotates such that E Z = µ is mapped to 0 ∈ (−π, π],
see e.g., [4] (Proposition 3.1) or [7] (Theorem 5). Estimating the asymptotic variance and applying
Slutsky’s lemma, one arrives at the asymptotic confidence set CA = {ζ ∈ S1 : |Arg(ζ−1µ̂n)| < δA}
provided µ̂n is unique, where the angle determining the interval is given by

δA =
q1− α

2

n|Z̄n|

√
n

∑
k=1

(
Im(µ̂−1

n Zk)
)2, (5)
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with q1− α
2

denoting the (1− α
2 )-quantile of the standard normal distribution N (0, 1).

There are two major drawbacks to the use of asymptotic confidence intervals: firstly, by definition,
they do not guarantee a coverage probability of at least 1− α for finite n, so the coverage probability
for a fixed distribution and sample size may be much smaller. Indeed, Simulation 2 in Section 4
demonstrates that, even for n = 100, the coverage probability may be as low as 64% when constructing
the asymptotic confidence set for 1− α = 90%. Secondly, they assume that E Z 6= 0, so they are not
applicable to all distributions on the circle. Since in practice it is unknown whether this assumption
hold, one would have to test the hypothesis E Z = 0, possibly again by an asymptotic test, and
construct the confidence set conditioned on this hypothesis having been rejected, setting CA = S1

otherwise. However, this sequential procedure would require some adaptation taking the pre-test into
account (cf. e.g., [10])—we come back to this point in Section 5—and it is not commonly implemented
in practice.

We therefore aim to construct non-asymptotic confidence sets for µ, guaranteeing coverage with at
least the desired probability for any sample size n, which in addition are universal in the sense that they
do not make any distributional assumptions about the circular data besides them being independent
and identically distributed. It has been shown in [7] that this is possible; however, the confidence
sets that were constructed there were far too large to be of use in practice. Nonetheless, we start by
varying that construction in Section 2 but using Hoeffding’s inequality instead of Chebyshev’s as in [7].
Considerable improvements are possible if one takes the variance E(Im(µ−1Z))2 “perpendicular to
E Z” into account; this is achieved by a second construction in Section 3. Of course, the latter confidence
sets will still be conservative but Proposition 2(iv) shows that they are (for 1− α = 95%) only a factor
∼ 3

2 longer than the asymptotic ones when the sample size n is large. We further illustrate and compare
those confidence sets in simulations and for an application to real data in Section 4, discussing the
results obtained in Section 5.

2. Construction Using Hoeffding’s Inequality

We will construct a confidence set as the acceptance region of a series of tests. This idea
has been used before for the construction of confidence sets for the circular population mean [7]
(Section 6); however, we will modify that construction by replacing Chebyshev’s inequality—which is
too conservative here—by three applications of Hoeffding’s inequality [11] (Theorem 1): if U1, . . . , Un

are independent random variables taking values in the bounded interval [a, b] with −∞ < a < b < ∞.
Then, Ūn = 1

n ∑n
k=1 Uk with E Ūn = ν fulfills

P
(
Ūn − ν ≥ t

)
≤
[(

ν− a
ν− a + t

)ν−a+t ( b− ν

b− ν− t

)b−ν−t
] n

b−a

(6)

for any t ∈ (0, b − ν). The bound on the right-hand side—denoted β(t)—is continuous and
strictly decreasing in t (as expected; see Appendix A) with β(0) = 1 and limt→b−ν β(t) =

(
ν−a
b−a
)n

whence a unique solution t = t(γ, ν, a, b) to the equation β(t) = γ exists for any γ ∈
((

ν−a
b−a
)n, 1

)
.

Equivalently, t(γ, ν, a, b) is strictly decreasing in γ. Furthermore, ν + t(γ, ν, a, b) is strictly increasing in
ν (see Appendix A again), which is also to be expected. While there is no closed form expression for
t(γ, ν, a, b), it can without difficulty be determined numerically.

Note that the estimate

β(t) ≤ exp
(
−2nt2/(b− a)2) (7)

is often used and called Hoeffding’s inequality [11]. While this would allow to solve explicitly for t,
we prefer to work with β as it is sharper, especially for ν close to b as well as for large t. Nonetheless, it
shows that the tail bound β(t) tends to zero as fast as if using the central limit theorem which is why it
is widely applied for bounded variables, see e.g., [12].
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Now, for any ζ ∈ S1, we will test the hypothesis that ζ is a circular population mean.
This hypothesis is equivalent to saying that there is some λ ∈ [0, 1] such that E Z = λζ. Multiplication
by ζ−1 then rotates E Z onto the non-negative real axis: E ζ−1Z = λ ≥ 0.

Now, fix ζ and consider Xk = Re(ζ−1Zk), Yk = Im(ζ−1Zk) for k = 1, . . . , n which may be viewed
as the projection of Z1, . . . , Zk onto the line in the direction of ζ and onto the line perpendicular to
it. Both are sequences of independent random variables taking values in [−1, 1] with E Xk = λ and
E Yk = 0 under the hypothesis. They thus fulfill the conditions for Hoeffding’s inequality with a = −1,
b = 1 and ν = λ or 0, respectively.

We will first consider the case of non-uniqueness of the circular mean, i.e., µ = S1, or equivalently
λ = 0. Then, the critical value s0 = t( α

4 , 0,−1, 1) is well-defined for any α
4 > 2−n, and we get

P(X̄n ≥ s0) ≤ α
4 , and also, by considering −X1, . . . ,−Xn, that P(−X̄n ≥ s0) ≤ α

4 . Analogously,
P(|Ȳn| ≥ s0) ≤ 2 α

4 = α
2 . We conclude that

P
(
|Z̄n| ≥

√
2s0
)
= P

(
|X̄n|2 + |Ȳn|2 ≥ 2s2

0
)
≤ P

(
|X̄n|2 ≥ s2

0
)
+ P

(
|Ȳn|2 ≥ s2

0
)
≤ α.

Rejecting the hypothesis µ = S1, i.e., E Z = 0, if |Z̄n| ≥
√

2s0 thus leads to a test whose probability
of false rejection is at most α (see Figure 1). Of course, one may work with |X̄n|2 ≥ s2

0 and |Ȳn|2 ≥ s2
0

as criterions for rejection; however, we prefer working with |Z̄n| ≥
√

2s0 since it is independent of
the chosen ζ.

0 s0

s0
P(Re Z̄n ≥ s0) ≤ α

4P(Re Z̄n ≤ −s0) ≤ α
4

P(Im Z̄n ≤ −s0) ≤ α
4

P(Im Z̄n ≥ s0) ≤ α
4

Figure 1. The construction for the test of the hypothesis µ = S1, or equivalently E Z = 0.

In the case of uniqueness of the circular mean, i.e., for the hypothesis λ > 0, we use the
monotonicity of ν + t(γ, ν, a, b) in ν and obtain

P
(
X̄n ≤ −s0

)
= P

(
−X̄n ≥ t( α

4 , 0,−1, 1)
)
≤ P

(
−X̄n ≥ −λ + t( α

4 ,−λ,−1, 1)
)
≤ α

4

as well. For the direction perpendicular to the direction of ζ (see Figure 2), however, we may now work
with 3

8 α, so for sp = t( 3
8 α, 0,−1, 1)—which is well-defined whenever s0 is since 3

8 α > α
4 > 2−n—we obtain

P
(
Ȳn ≥ sp

)
+P
(
Ȳn ≤ −sp

)
≤ 2 · 3

8 α.

Rejecting if X̄n ≤ −s0 or |Ȳn| ≥ sp, then, will happen with probability at most α
4 + 2 · 3

8 α = α under
the hypothesis µ = ζ. In case that we already rejected the hypothesis µ = S1, i.e., if |Z̄n| ≥

√
2s0,

ζ will not be rejected if and only if X̄n > s0 > 0 and |Ȳn| < sp < s0 which is then equivalent to
|Arg(ζ−1Z̄n)| = arcsin(|Ȳn|/|Z̄n|) < arcsin(sp/|Z̄n|) = δH (see Figure 3).

Define CH as all ζ which we could not reject, i.e.,

CH =

{
S1, if α ≤ 2−n+2 or |Z̄n| ≤

√
2s0,{

ζ ∈ S1 : |Arg(ζ−1µ̂n)| < δH
}

otherwise.
(8)
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Then, we obtain the following result:

sp

s0
0

λζ

ζ

P(Im ζ−1Z̄n ≥ sp) ≤ 3
8 α

P(Re ζ−1Z̄n ≤ −s0) ≤ α
4

P(Im ζ−1Z̄n ≤ −sp) ≤ 3
8 α

Figure 2. The construction for the test of the hypothesis E Z = λζ with λ > 0.

sp

Z̄n

δH
0

λζ ζ

Figure 3. The critical Z̄n regarding the rejection of ζ. δH bounds the angle between µ̂n and any
accepted ζ.

Proposition 1. Let Z1, . . . , Zn be random variables taking values on the unit circle S1, α ∈ (0, 1), and let CH
be defined as in Equation (8).

(i) CH is a (1− α)-confidence set for the circular population mean set. In particular, if E Z = 0, i.e.,
the circular population mean set equals S1, then |Z̄n| >

√
2s0 with probability at most α, so indeed

CH = S1 with probability at least 1− α.

(ii) s0 and sp are of order n−
1
2 .

(iii) If E Z 6= 0, then
√

nδH → 0 in probability and the probability of obtaining the trivial confidence set, i.e.,
P(CH = S1) = P(|Z̄n| ≤

√
2s0), goes to 0 exponentially fast.

Proof. (i) holds by construction.

For (ii), recall Equation (7), from which we obtain the estimates α
4 ≤ exp(−ns2

0/2) resp.
3
8 α ≤ exp(−ns2

p/2), implying that s0 and sp are of order n−
1
2 ; the same holds stochastically for

δH since Z̄n → E Z a.s. Regarding the second statement of (iii), if µ is unique, consider ζ = −µ;
then, τ = E X̄n < 0 and −

√
2s0 is eventually less than τ

2 and also α > 2−n+2 eventually.
Hence, the probability of obtaining the trivial confidence set CH = S1 is eventually bounded by
P(ζ ∈ CH) ≤ P(X̄n > −s0) ≤ P(X̄n > τ

2 ) = P(X̄n − E X̄n > − τ
2 ) ≤ exp(−nτ2/8), and thus will go to

zero exponentially fast as n tends to infinity.

3. Estimating the Variance

From the central limit theorem for µ̂n in case of unique µ, cf. Equation (4), we see that the
aymptotic variance of µ̂n gets small if | E Z| is close to 1 (then E Z is close to the boundary S1 of the unit
disc, which is possible only if the distribution is very concentrated) or if the variance E(Im(µ−1Z))2 in
the direction perpendicular to µ is small (if the distribution were concentrated on ±µ, this variance
would be zero and µ̂n would equal µ with large probability). While δH (|Z̄n| being the denominator
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of its sine) takes the former into account, the latter has not been exploited yet. To do so, we need to
estimate E(Im(µ−1Z))2.

Consider Vn = 1
n ∑n

k=1 Y2
k that is under the hypothesis that the corresponding ζ is the

unique circular population mean has expectation σ2 = Var(Yk) = E(Im(ζ−1Z))2. Now,
1−Vn = 1

n ∑n
k=1(1−Y2

k ) is the mean of n independent random variables taking values in [0, 1] and
having expectation 1 − σ2. By another application of Equation (6), we obtain P(σ2 ≥ Vn + t) =

P(1 − Vn ≥ 1 − σ2 + t) ≤ α
4 for t = t( α

4 , 1 − σ2, 0, 1), the latter existing if α
4 > (1 − σ2)n.

Since 1 − σ2 + t( α
4 , 1 − σ2, 0, 1) increases with 1 − σ2, there is a minimal σ2 for which 1 − Vn ≥

1− σ2 + t( α
4 , 1− σ2, 0, 1) holds and becomes an equality; we denote it by σ̂2 = Vn + t( α

4 , 1− σ̂2, 0, 1).
Inserting into Equation (6), it by construction fulfills

α

4
=

[(
1− σ̂2

1−Vn

)1−Vn ( σ̂2

Vn

)Vn
]n

. (9)

It is easy to see that the right-hand side depends continuously on and is strictly decreasing in
σ̂2 ∈ [Vn, 1] (see Appendix A), thereby traversing the interval [0, 1] so that one can again solve the
equation numerically. We then may, with an error probability of at most α

4 , use σ̂2 as an upper bound
for σ2. Note that σ̂2 > Vn exists if α

4 > (1− σ̂2)n. The latter is fulfilled for any Vn < 1 since Equation (9)
is equivalent to

α

4
=
(
1− σ̂2

)n
[(

1
1−Vn

)
︸ ︷︷ ︸

>1

(
1− σ̂2

1−Vn

)−Vn

︸ ︷︷ ︸
>1

(
σ̂2

Vn

)Vn

︸ ︷︷ ︸
>1

]n

.

For Vn = 1, let σ̂2 = 1 be the trivial bound.
With such an upper bound on its variance, we now can get a better estimate for P(Ȳn > t).

Indeed, one may use another inequality by Hoeffding [11] (Theorem 3): the mean W̄n = 1
n ∑n

k=1 Wk of
a sequence W1, . . . , Wn of independent random variables taking values in (−∞, 1], each having zero
expectation as well as variance ρ2 fulfills

P
(
W̄n ≥ w

)
≤
[(

1 +
w
ρ2

)−ρ2−w (
1− w

)w−1
] n

1+ρ2

, (10)

≤ exp
(
−nt[(1 + ρ2

t ) ln(1 + t
ρ2 )− 1]

)
. (11)

for any w ∈ (0, 1). Again, an elementary calculation (analogous to Lemma A1) shows that the
right-hand side of Equation (10) is strictly decreasing in w, continuously ranging between 1 and( ρ2

1+ρ2

)n as w varies in (0, 1), so that there exists a unique w = w(γ, ρ2) for which the right-hand side

equals γ, provided γ ∈
(( ρ2

1+ρ2

)n, 1
)

. Moreover, the right-hand side increases with ρ2 (as expected),

so that w(γ, ρ2) is increasing in ρ2, too (cf. Appendix A).
Therefore, under the hypothesis that the corresponding ζ is the unique circular population mean,

P
(
|Ȳn| ≥ w( α

4 , σ2)
)
≤ 2 α

4 = α
2 . Now, since P

(
w( α

4 , σ2) ≥ w( α
4 , σ̂2)

)
= P(σ2 ≥ σ̂2) ≤ α

4 , setting

sV = w( α
4 , σ̂2) we get P

(
|Ȳn| ≥ sV

)
≤ 3

4 α. Note that ρ2

1+ρ2 increases with ρ2, so in case s0 exists, σ̂2 ≤ 1

implies α
4 > 2−n ≥

(
σ̂2

1+σ̂2

)n
, i.e., the existence of sV .

Following the construction for CH from Section 2, we can again obtain a confidence set for µ with
coverage probability at least 1− α as shown in our previous article [13]. In practice however, this
confidence set is hard to calculate since σ̂2 = σ̂2(ζ) has to be calculated for every ζ ∈ S1. Though these
confidence sets can be approximated by using a grid as in [13], we suggest using a simultaneous upper
bound for the variance of Im ζ−1Zk.
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We obtain a (conservative) connected, symmetric confidence set CV ⊆ CH by testing ζ ∈ CH with
σ̂2

max = supζ∈CH
σ̂2 as a common upper bound for the variance perpendicular to any ζ ∈ CH . Note that

σ̂2
max can be obtained as the solution of Equation (9) with

Ṽn = sup
ζ∈CH

1
n

n

∑
k=1

(
Im ζ−1Zk

)2.

Furthermore, we can shorten CV by iteratively redefining Ṽn = supζ∈CV
1
n ∑n

k=1
(
Im ζ−1Zk

)2 and
recalculating CV (see Algorithm 1). The resulting opening angle will be denoted by δV = arcsin sV

|Z̄n |
.

Algorithm 1: Algorithm for computation of CV .

Data: observations Z1, . . . , Zn ∈ S1; significance level α; stop criterion ε

Result: a non-asymptotic confidence set CV for the circular population mean

1 compute the confidence set CH ;
2 if CH = S1 then
3 CV ← S1

4 else
5 CV ← CH ; σ̂2

max ← 1;

6 while supζ∈CV
σ̂2 < σ̂2

max − ε do

7 σ̂2
max ← supζ∈CV

σ̂2;

8 sV ← w( α
4 , σ̂2);

9 CV ←
{

ζ ∈ S1 : |Arg(ζ−1µ̂n)| < arcsin sV
|Z̄n |
}

10 end
11 end

Proposition 2. Let Z1, . . . , Zn be random variables taking values on the unit circle S1, and let α ∈ (0, 1).

(i) The set CV resulting from Algorithm 1 is a (1− α)-confidence set for the circular population mean
set. In particular, if E Z = 0, i.e., the circular population mean set equals S1, then |Z̄n| >

√
2s0 with

probability at most α, so indeed CV = S1 with probability of at least 1− α.

(ii) sV is of order n−
1
2 .

(iii) If E Z 6= 0, i.e., if the circular population mean is unique, then
√

nδV → 0 in probability, and the
probability of obtaining a trivial confidence set, i.e., P(CH = S1) = P(|Z̄n| ≤

√
2s0), goes to 0

exponentially fast.
(iv) If E Z 6= 0, then

lim sup
n→∞

δV
δA
≤

√
−2 ln α

4
q

1− α
2

a.s.

with q1− α
2

denoting the (1− α
2 )-quantile of the standard normal distribution N (0, 1).

Proof. Again, (i) follows by construction, while (iii) is shown as in Proposition 1.

For (ii), note that sV ≤ s0 since the bound in Equation (10) for ρ2 = 1 agrees with the bound in

Equation (6) for a = −1, b = 1 and v = 0, thus sV and δV are at least of the order n−
1
2 .
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For (iv), we will use the estimate in Equation (11). Recall that ln(1+ x) = x− x2

2 + o(x2); therefore,
for large n and hence small sV a.s.

α

4
≤ exp

(
−nsV

[(
1 + σ̂2

max
sV

)(
sV

σ̂2
max
− s2

V

2(σ̂2
max)2

+ o(s2
V)
)
− 1
])

= exp
(
−ns2

V
/

2σ̂2
max + o(s2

V)
)
,

thus sV ≤
√
−2σ̂2

max ln( α
4 )
/

n + o
(
n−

1
2
)
. Additionally, arcsin x = x + o(x) for x close to 0 which gives

δV = sV
/
|Z̄n|+ o(sV) ≤

√
−2σ̂2

max ln α
4
/
(
√

n|Z̄n|) + o
(
n−

1
2
)

a.s.

Furthermore, σ̂2
max → σ2 a.s. for n→ ∞, and we obtain

lim sup
n→∞

δV
δA
≤

√
−2 ln α

4

q1− α
2

a.s.

since

δA =
q1− α

2√
n|Z̄n|

√
1
n

n

∑
k=1

(
Im(µ̂−1

n Zk)
)2

︸ ︷︷ ︸
→
√

σ2

(see Equation (5)).

4. Simulation and Application to Real Data

We will compare the asymptotic confidence set CA, the confidence set CH constructed directly
using Hoeffding’s inequality in Section 2, and the confidence set CV resulting from Algorithm 1 by
reporting their corresponding opening angles δA, δH , and δV in degrees (◦) as well as their coverage
frequencies in simulations.

All computations have been performed using our own code based on the software package R
(version 2.15.3) [14] .

4.1. Simulation 1: Two Points of Equal Mass at ±10◦

First, we consider a rather favourable situation: n = 400 independent draws from the distribution
with P(Z = exp(10πi/180)) = P(Z = exp(−10πi/180)) = 1

2 . Then, we have | E Z| = E Z =

cos(10πi/180) ≈ 0.985, implying that the data are highly concentrated, µ = 1 is unique, and the
variance of Z in the direction of µ is 0; there is only variation perpendicular to µ, i.e., in the direction of
the imaginary axis (see Figure 4).

0

10◦

−10◦
E Z

Figure 4. Two points of equal mass at ±10◦ and their Euclidean mean.
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Table 1. Results for simulation 1 (two points of equal mass at ±10◦) based on 10,000 repetitions with
n = 400 observations each: average observed δH , δV , and δA (with corresponding standard deviation),
as well as frequency (with corresponding standard error) with which µ = 1 was covered by CH , CV ,
and CA, respectively; the nominal coverage probability was 1− α = 95%.

Confidence Set Mean δ (±s.d.) Coverage Frequency (±s.e.)

CH 8.2◦ (±0.0005◦) 100.0% (±0.0%)
CV 2.4◦ (±0.0025◦) 100.0% (±0.0%)
CA 1.0◦ (±0.0019◦) 94.8% (±0.2%)

Table 1 shows the results based on 10,000 repetitions for a nominal coverage probability of
1− α = 95%: the average δH is about 3.5 times larger than δV , which is about twice as large as δA.
As expected, the asymptotics are rather precise in this situation: CA did cover the true mean in about
95% of the cases, which implies that the other confidence sets are quite conservative; indeed CH and
CV covered the true mean in all repetitions. One may also note that the angles varied only a little
between repetitions.

4.2. Simulation 2: Three Points Placed Asymmetrically

Secondly, we consider a situation which has been designed to show that even a considerably large
sample size (n = 100) does not guarantee approximate coverage for the asymptotic confidence set
CA: the distribution of Z is concentrated on three points, ξ j = exp(θjπi/180), j = 1, 2, 3 with weights
ωj = P(Z = ξ j) chosen such that E Z = | E Z| = 0.9 (implying a small variance and µ = 1), ω1 = 1%
and Arg ξ1 > 0, while Arg ξ2, Arg ξ3 < 0. In numbers, θ1 ≈ 25.8, θ2 ≈ −0.3, and θ3 ≈ −179.7 (in ◦)
while ω2 ≈ 94%, and ω3 ≈ 5% (see Figure 5).

0

θ1 = 25.8◦

θ2 = −0.3◦θ3 = −179.7◦
E Z

Figure 5. Three points placed asymmetrically with different masses and their Euclidean mean.

The results based on 10,000 repetitions are shown in Table 2 where a nominal coverage probability
of 1− α = 90% was prescribed. Clearly, CA with its coverage probability of less than 64% performs
quite poorly while the others are conservative; δV ≈ 5◦ still appears small enough to be useful in
practice, though.

Table 2. Results for simulation 2 (three points placed asymmetrically) based on 10,000 repetitions with
n = 100 observations each: average observed δH , δV , and δA (with corresponding standard deviation),
as well as frequency (with corresponding standard error) with which µ = 1 was covered by CH , CV ,
and CA, respectively; the nominal coverage probability was 1− α = 90%.

Confidence Set Mean δ (±s.d.) Coverage Frequency (±s.e.)

CH 16.5◦ (±0.85◦) 100.0% (±0.0%)
CV 5.0◦ (±0.38◦) 100.0% (±0.0%)
CA 0.4◦ (±0.28◦) 62.8% (±0.5%)
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4.3. Real Data: Movements of Ants

Fisher [3] (Example 4.4) describes a data set of the directions 100 ants took in response to an
illuminated target placed at 180◦ for which it may be of interest to know whether the ants indeed
(on average) move towards that target (see [15] for the original publication). The data set is available
as Ants_radians within the R package CircNNTSR [16].

The circular sample mean for this data set is about −176.9◦; for a nominal coverage probability of
1− α = 95%, one gets δH ≈ 27.3◦, δV ≈ 20.5◦, and δA ≈ 9.6◦ so that all confidence sets contain ±180◦

(see Figure 6). The data set’s concentration is not very high, however, so the circular population mean
could—according to CV—also be −156.4◦ or 162.6◦.

Target

Figure 6. Ant data ( ) placed at increasing radii to visually resolve ties; in addition, the circular mean
direction ( ) as well as confidence sets CH ( ), CV ( ), and CA ( ) are shown.

5. Discussion

We have derived two confidence sets, CH and CV , for the set of circular sample means.
Both guarantee coverage for any finite sample size without making any assumptions on the distribution
of the data (besides that they are independent and identically distributed) at the cost of potentially
being quite conservative; they are non-asymptotic and universal in this sense. Judging from the
simulations and the real data set, CV—which estimates the variance perpendicular to the mean
direction—appears to be preferable over CH (as expected) and small enough to be useful in practice.

While the asymptotic confidence set’s opening angle is less than half (asymptotically about 2/3
for α = 5%) of the one for CV in our simulations and application, it has the drawback that even
for a sample size of n = 100, it may fail to give a coverage probability close to the nominal one;
in addition, one has to assume that the circular population mean is unique. Of course, one could also
devise an asymptotically justified test for the latter but this would entail a correction for multiple
testing (for example working with α

2 each time), which would also render the asymptotic confidence
set conservative.

Further improvements would require sharper “universal” mass concentration inequalities taking
the first or the first two moments into account; however, this is beyond the scope of this article.
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Appendix A. Proofs of Monotonicity

Lemma A1. β(t) =

[(
ν−a

ν−a+t

)ν−a+t (
b−ν

b−ν−t

)b−ν−t
] n

b−a

is strictly decreasing in t.

Proof. We show the equivalent statement that β̃(t) = ln
[(

ν−a
ν−a+t

)ν−a+t (
b−ν

b−ν−t

)b−ν−t]
is strictly

decreasing in t:

d
dt

β̃(t) =
d
dt

((
ln(ν− a)− ln(ν− a + t)

)
(ν− a + t) +

(
ln(b− ν)− ln(b− ν− t)

)
(b− ν− t)

)
= ln(ν− a)− ln(ν− a + t)− 1

ν−a+t (ν− a + t)− ln(b− ν) + ln(b− ν− t) + 1
b−ν−t (b− ν− t)

= ln
(

b− ν− t
b− ν︸ ︷︷ ︸
<1

· ν− a
ν− a + t︸ ︷︷ ︸

<1

)
< 0.

Hence, β̃(t) and thus β(t) are strictly decreasing in t.

Lemma A2. Let t = t(γ, ν, a, b) be the solution to the equation β(t) = γ. Then, ν + t is strictly increasing in ν.

Proof. t is the solution of the equation

(ν− a + t) ln
(

ν− a
ν− a + t

)
+ (b− ν− t) ln

(
b− ν

b− ν− t

)
=

b− a
n

ln γ. (A1)

The derivatives of the left-hand side of Equation (A1) w.r.t. ν and t exist and are continuous.
Furthermore, the derivative w.r.t. t does not vanish for any t ∈ (0, b− ν), cf. the proof of Lemma A1,
whence the derivative t′ = dt

dν exists by the implicit function theorem. When differentiating
Equation (A1) with respect to ν, one obtains

(1+ t′) ln
(

ν− a
ν− a + t

)
+ (ν− a + t)

(
1

ν− a
− 1+ t′

ν− a + t

)
− (1+ t′) ln

(
b− ν

b− ν− t

)
+ (b− ν− t)

(
− 1

b− ν
+

1+ t′

b− ν− t

)
= 0,

or equivalently

(1+ t′)
[

ln
(

ν− a
ν− a + t

)
︸ ︷︷ ︸

<0

− ln
(

b− ν

b− ν− t

)
︸ ︷︷ ︸

>0

]
=

t(a− b)
(v− a)(b− v)

< 0,

whence 1+ t′ = d
dν (ν + t) > 0 finishes the proof.

Lemma A3. The function

ξ
(
σ̂2
)
=

[(
1− σ̂2

1−Vn

)1−Vn ( σ̂2

Vn

)Vn
]n

is strictly decreasing in σ̂2 ∈ [Vn, 1].
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Proof. We show the equivalent statement that n−1 ln ξ
(
σ̂2
)

is strictly decreasing in σ̂2 :

d

dσ̂2

[
n−1 ln ξ

(
σ̂2
)]

=
d

dσ̂2

[
(1−Vn)

(
ln(1− σ̂2)− ln(1−Vn)

)
+Vn

(
ln(σ̂2)− ln(Vn)

)]
= − 1−Vn

1− σ̂2︸ ︷︷ ︸
>1

+
Vn

σ̂2︸︷︷︸
<1

< 0.

Lemma A4. Let w = w(γ, ρ2) be the solution of the equation

[(
1+

w
ρ2

)−ρ2−w (
1−w

)w−1
] n

1+ρ2

= γ.

Then, w is increasing in ρ2.

Proof. w is the solution of the equation

ρ2 + w
1+ ρ2 ln

(
1+

w
ρ2

)
+

1−w
1+ ρ2 ln

(
1−w

)
= − ln γ

n
. (A2)

The derivatives of the left-hand side of Equation (A2) w.r.t. ρ2 and w exist and are continuous.
Furthermore, the derivative w.r.t. w does not vanish for any w ∈ (0, 1): this derivative is

1
1+ ρ2

[
ln
(

1+
w
ρ2

)
+

ρ2 + w
ρ2
(
1+ w

ρ2

) − ln(1−w)− 1
]
=

1
1+ ρ2

[
ln
(

1+
w
ρ2

)
− ln(1−w)

]
,

vanishing if and only if 1+ w
ρ2 = 1−w, i.e., if and only if w

(
1+ 1

ρ2

)
= 0, which does not happen for

w, ρ2 > 0. Now, the derivative w′ = dw
dρ2 exists by the implicit function theorem. When differentiating

Equation (A2) with respect to ρ2, one obtains

(1+ w′)(1+ ρ2)− (ρ2 + w)

(1+ ρ2)2 ln
(

1+
w
ρ2

)
+

ρ2 + w
1+ ρ2 ·

w′
ρ2 − w

ρ4

1+ w
ρ2︸ ︷︷ ︸

w′ρ2−w
ρ2(1+ρ2)

−w′(1+ ρ2) + (1−w)

(1+ ρ2)2 ln(1−w)− w′

1+ ρ2 = 0,

or equivalently

w′
[
ln
(

1+
w
ρ2

)
− ln(1−w)︸ ︷︷ ︸

>0

]
=

w
ρ2 −

1−w
1+ ρ2 ln

( ρ2 + w
ρ2(1−w)

)
.

Hence, w′ ≥ 0 if and only if w
ρ2 ≥ 1−w

1+ρ2 ln
( ρ2+w

ρ2(1−w)

)
, which holds since ln

( ρ2+w
ρ2(1−w)

)
= ln

(
1+ w(1+ρ2)

ρ2(1−w)

)
≤

w
ρ2

1+ρ2

1−w , finishing the proof.
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