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Abstract

In many real-world optimization problems, a solution cannot be realized in practice
exactly as computed, e.g., it may be impossible to produce a board of exactly 3.546 mm
width. Whenever computed solutions are not realized exactly but in a perturbed way,
we speak of decision uncertainty. We study decision uncertainty in multiobjective opti-
mization problems and we propose the concept decision robust efficiency for evaluating
the robustness of a solution in this case. Therefore, we address decision uncertainty
within the framework of set-valued maps. First, we prove that convexity and continuity
are preserved by the resulting set-valued mappings. Second, we obtain specific results
for particular classes of objective functions that are relevant for solving the set-valued
problem. We furthermore prove that decision robust efficient solutions can be found by
solving a deterministic problem in case of linear objective functions. We also investigate
the relationship of the proposed concept to other concepts in the literature.

1 Introduction

When applying mathematical optimization methods to real world problems, several difficul-
ties have to be considered. We study a class of problems where two specific difficulties occur
simultaneously. First, the problem can have several conflicting objectives, leading to a mul-
tiobjective optimization problem. Secondly, a calculated solution may only be realized within
some accuracy instead of being put into practice exactly. Realizations of calculated solutions
have to be considered uncertain in this case. In the following, we refer to this kind of uncer-
tainty as decision uncertainty since the decision variables are the source of uncertainty inside
the problem. We distinguish decision uncertainty from parameter uncertainty in optimization
problems, see, e.g., [BTGN09], where the values of parameters are not known at the time a
problem is solved.

In recent years, multiobjective optimization problems including parameter uncertainty have
been studied in various ways. In [KL12] and [GJLVP14], the authors consider for each solution
the vector consisting in each component of the worst case of the corresponding objective in
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place of the uncertain objective. [EIS14] and [AB08] compare solutions by the sets of their
possible outcome vectors. Solutions that are effficient for all realizations of uncertainty are
studied, e.g., in [GLP13]. For a survey of different concepts of robustness in the literature,
we refer the reader to [IS16].

Single-objective optimization problems including decision uncertainty have been treated with
minmax robustness for instance in [Das97], [LP09] and [BS07]. Decision uncertainty in multi-
objective optimization has been addressed by evaluating the mean or integral of each objective
over the set of possible values of a solution, see, e.g. [DG06], or by sensitivity analysis, see,
e.g., [BA06]. However, until now, there exists no worst-case robustness approach for decision
uncertainty in multiobjective optimization.

In this work, we investigate decision uncertainty in multiobjective optimization with a minmax
robustness approach based on set-valued optimization, i.e., we define and analyze a robust
counterpart for this kind of problem and we present approaches for solving it.
The conceptual idea of the presented robustness concept, which we call decision robust effi-
ciency, is based on a minmax robustness approach for parameter uncertainty in multiobjective
optimization introduced by [EIS14]. However, exploiting the specific structure arising in prob-
lems with decision uncertainty, we obtain results that are generally not valid for problems
with parameter uncertainty.

In the following paragraphs we sketch practical applications of multiobjective problems that
are affected by decision uncertainty. Definitions from set-valued optimization are recalled in
Section 2. Following on that, the robustness concept decision robust efficiency is developed.
In Section 3, the set-valued functions that correspond to decision robust efficiency are inves-
tigated with respect to continuity and convexity properties. Section 4 relates the presented
robustness concept to approaches in the literature. Solution approaches for problem classes
with specific objective functions are studied in Section 5.

Applications

We present two real-world applications for multiobjective decision uncertainty. First, we
present an application in the Lorentz force velocimetry framework and secondly, we present
the Growing Media Mixing Problem for plant nurseries. Both applications can be modeled
as biobjective optimization problems with decision uncertainty.

Lorentz Force Velocimetry (LFV) Framework The LFV is an electromagnetic non-
contact flow measurement technique for electrically conducting fluids. This is especially suited
for corrosive or extremely hot fluids like glass melts or acidic mixtures which can damage
other measurement setups [DTE14]. The magnetic field of the permanent magnets interacts
with an electrically conducting fluid which moves through a channel, see Figure 1. Eddy

Figure 1: Illustration of a non-contact flow measurement system with 8 magnets.
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currents develop and the resulting secondary magnetic field acts on the magnet system. The
Lorentz force breaks the fluid and an equal but opposite force deflects the magnet system,
which can be measured. Fluids with a small electrical conductivity produce only very small
Lorentz forces. Thus, a sensitive balance system is required for a reliable measurement. This
limits the weight of the external magnet system. Therefore, we obtain two conflicting goals:
maximize the Lorentz force and minimize the magnetization. As variables, the direction of
the magnetization of each magnet and the magnetization have to be optimized.
Figure 1 gives a simple arrangement of eight permanent magnets around a channel. In
practice an (optimally) chosen magnetic direction cannot be realized in the desired accuracy,
as magnets can only be produced with a guarantee of the magnetic directions within some
tolerance interval. Therefore, decision uncertainty has to be taken into account here, in order
to avoid solutions with practical realizations that are far from being efficient in the worst
case.

Growing Media Mixing Problem for a Plant Nursery For each plant species, a plant
nursery that produces potted plants has to decide the type of planter pot and the type of
growing media to be used. First, possible types of planter pots are plastic pots made from
fossil ressources and bio-degradable planter pots. The former are cheaper, while the latter
are more eco-friendly. Secondly, the growing media can be chosen as a mixture of peat and
compost, where the feasible mixing ratio lies between 100% peat and 33% peat plus 66%
compost. The corresponding decision problem consists of determining one type of planter pot
and one mixing ratio for each plant species such that two objectives, i.e., costs and global
warming potential, are minimized.
However, a chosen mixing ratio can usually not be put into practice exactly. Workers in plant
nurseries are used to work rather fast than exactly and the different types of soil are often
mixed in a rough fashion only. Hence, the mixing ratio will vary in each planter pot. Because
the mixing ratio influences the quality of the raised plant and therefore its selling price,
decision uncertainty has to be taken into account in this biobjective optimization problem.
A detailed study of this problem can be found in [CKGS16].

2 Decision Robust Efficiency

We consider the (deterministic) multiobjective optimization problem

(P) min
x∈Ω

f(x)

with feasible set Ω ⊆ Rn and objective function f : Ω → Rk. We want to take into account
the fact that the decision variables in (P) are uncertain, i.e., they can not be realized exactly
as computed.
The practical realization of a solution x ∈ Rn is composed of x and a perturbation from a
fixed perturbation set Z ⊆ Rn, i.e., the realization of a solution x is an element of the set
{x}+ Z = {x + z | z ∈ Z}. Because a solution might as well be put into practice exactly as
planned, we require 0 ∈ Z. Decision uncertainty in (P) is modeled by considering the family
of optimization problems (

P(z) min
x+z∈Ω

f(x+ z), z ∈ Z
)
.
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The goal is to find a solution x without knowing the value of the perturbation z. We want
to hedge against the worst case. Addressing decision uncertainty within the framework of
robust optimization, we define:

Definition 1. A point x ∈ Rn is called decision robust feasible for (P(z), z ∈ Z) if {x+ z |
z ∈ Z} ⊆ Ω, i.e., if all realizations of x are feasible solutions. We call

X := {x ∈ Rn | x+ z ∈ Ω for all z ∈ Z}

the set of decision robust feasible solutions.

Definition 1 takes a conservative point of view since x is required to be feasible for every
perturbation that may occur. This conceptual idea corresponds to strict robust feasibility by
[BTGN09] for single-objective robust optimization with parameter uncertainty.

In the remainder of the paper, we make the following two assumptions:

• We assume Z ⊆ Rn is a compact set and 0 ∈ Z. Hence, X ⊆ Ω.

• We furthermore assume X 6= ∅.

For each decision robust feasible solution x ∈ X we define the image set of all realizations of
x as

fZ(x) := {f(x+ z) | z ∈ Z}.

In order to develop a solution concept for (P(z), z ∈ Z), we recall solution concepts from
both, multiobjective optimization and set-valued optimization.

2.1 Approach using Multiobjective Optimization

In the following, we write cl(·), int (·) and bd(·) for the closure, the interior and the boundary
of a set, respectively. Furthermore, we denote the open and closed ball of radius ε > 0 for
a given norm ‖ · ‖ on Rk around a point y ∈ Rk as B(y, ε) := {y ∈ Rk | ‖y‖ < ε} and
B(y, ε) := {y ∈ Rk | ‖y‖ ≤ ε}.
Recall that a nonempty set K is called a cone if λk ∈ K for all λ ≥ 0 and all k ∈ K, pointed
if K ∩ (−K) = {0}, and solid if int (K) 6= ∅. A cone K is convex if and only if K +K = K.
It is well known that for a convex pointed cone K we have K + int (K) = int (K) as well as
K\{0} + K = K\{0} and that the sets int (K) and K\{0} are also convex (see for instance
[Jah11]). A closed convex pointed and solid cone K ⊆ Rk defines a partial order on Rk. We
consider the following relations:

x [</≤/5] y ⇔ y − x ∈ [int(K)/K\{0}/K]

A possible choice for K ⊆ Rk is K = Rk+ :=
{
y ∈ Rk | yi ≥ 0, ∀1 ≤ i ≤ k

}
. Then the partial

order introduced by K is also called the component-wise or natural order on Rk.
Given a closed, convex, pointed and solid cone K ⊆ Rk, the classical optimality concepts for
the deterministic multiobjective problem (P) are given in the following definition. We remark
that efficiency is often refered to as (Edgeworth-) Pareto minimality.

Definition 2. A solution x∗ ∈ Ω is called [weakly/·/strictly] efficient for (P) if there is no
x ∈ Ω \ {x∗} with the property f(x) ∈ {f(x∗)} − [int(K)/K\{0}/K].
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In order define a concept for a solution of the decision uncertain problem (P(z), z ∈ Z), we
replace the outcome vector f(x) in Definition 2 by the set fZ(x).

Definition 3. A solution x∗ ∈ X is called a decision robust [weakly/·/strictly] efficient
solution of (P(z), z ∈ Z), if there is no x ∈ X\{x∗} with the property

fZ(x) ⊆ fZ(x∗)− [int(K)/K\{0}/K]. (1)

Therefore, by decision robust efficiency, we obtain a solution concept for the decision uncertain
multiobjecive problem (P(z), z ∈ Z).

2.2 Approach using Set-Valued Optimization

Considering the image set of all realizations fZ(x) for all x ∈ X defines a set-valued map
fZ : X ⇒ Rk. We define the Robust Counterpart (RC) of the decision uncertain multiobjective
problem (P(z), z ∈ Z) as the set-valued optimization problem

(RC) min
x∈X

fZ(x).

Next, we see that the decision robust efficient solutions of (P(z), z ∈ Z) are exactly the optimal
solutions to the set-valued problem (RC). In set-valued optimization, i.e., in optimization with
a set-valued objective function, the so called set approach [EJ12, HJ11, Kur98] uses order
relations to compare the sets that are the images of the objective function. One widely used
order relation is the u-type less order relation 4K , see [HJ11, Def. 3.2], which is defined for
arbitrary nonempty sets A,B ⊆ Rk by

A 4K B :⇔ A ⊆ B −K. (2)

The order relation 4K is a reflexive and transitive binary relation. It can also be written in
the following form:

A 4K B ⇔ (∀a ∈ A ∃b ∈ B : a 5 b). (3)

If we replace K by K\{0} or int (K) in (2), and thus 5 by ≤ or by < in (3), we analogously
obtain the set relations 4K\{0} and 4int(K) . However, these are no longer reflexive.

In order to specify optimal solutions of the set-valued optimization problem (RC), we make
use of the following definition, see, e.g., [RMS07].

Definition 4. Let a nonempty set X ⊆ Rn and a set-valued map H : X ⇒ Rk be given
with H(x) 6= ∅ for all x ∈ X. The element x∗ ∈ X is called strictly optimal solution of the
set-valued optimization problem

min
x∈X

H(x)

w.r.t. 4, where 4∈ {4K ,4int(K),4K\{0}}, if there exists no x ∈ X\{x∗} with H(x) 4 H(x∗).

Using the set relation (2) we can replace

fZ(x) ⊆ fZ(x∗)− [int(K)/K\{0}/K]

in (1) by
fZ(x) [4int(K) /4K\{0} /4K ] fZ(x∗)

as done similarly in [IKK+14] for multi-objective parameter uncertainty. Consequently, we
receive equivalence of the optimal solutions to (RC) using Definition 4 and regularization
robust efficient solutions according to Definition 3.
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Proposition 5. The point x∗ ∈ X is a decision robust [weakly/·/strictly] efficient solution of
(P(z), z ∈ Z) if and only if x∗ ∈ X is a strictly optimal solution of the set-valued optimization
problem (RC) w.r.t. [4int(K) /4K\{0} /4K ].

The following example illustrates decision robust efficiency. It shows that decision robust
efficient solutions are not necessarily efficient for the deterministic problem (P).

Example 6. Let

(P) min
x∈Ω

(
x21
−x2

)
and

(P(z), z ∈ Z) =

(
min
x+z∈Ω

(
(x1+z1)2

−x2−z2

)
, z ∈ Z

)
,

where

Ω = conv
{(−0.6

0

)
,
(−0.6

1

)
, ( 1

1 ) , ( 1
0 ) ,
(

0.7
−0.3

)
,
(−0.3
−0.3

)}
and Z = conv

({(−0.6
0

)
, ( 0

0 ) ,
(−0.3
−0.3

)})
.

Consequently, we obtain X = [0, 1]2 as the set of decision robust feasible solutions. The
feasible set Ω and the decision robust feasible set X are visualized in Figure 2.

x1

x2

-1 1 2

-1

1

2

Ω

x1

x2

-1 1 2

-1

1

2

X

Figure 2: Illustration of the sets Ω and X in Example 6.

Furthermore, let K = R2
+. We obtain

(RC) min
x∈X

fZ(x) where fZ(x) =
{(

(x1+z1)2

−x2−z2

)
, z ∈ Z

}
.

Consider x0 := ( 0.3
1 ) and x1 := ( 0

1 ) . In this example:

• The solution x1 is efficient for (P), but not decision robust efficient for (P(z), z ∈ Z).

• The solution x0 is decision robust efficient for (P(z), z ∈ Z), but not efficient for (P).

One can check that there exists no x ∈ X with f(x) ∈ {f(x1)}−R2
+\{0}. Hence, x1 is efficient

for the deterministic problem. In particular,

f(x1) =
(

0
−1

)
≤
(

0.09
−1

)
= f(x0).

Therefore, x0 is not efficient for the deterministic problem. Looking at the set fZ(x) for
each x ∈ X, one can check that there is no x ∈ X\{x0} with fZ(x) ⊆ fZ(x0) − R2

+\{0}
and x0 is decision robust efficient according to Definition 3. In particular, it holds fZ(x0) ⊆
fZ(x1) − R2

+\{0} as illustrated in Figure 3. Hence, x1 is not decision robust efficient even
though being efficient for the deterministic problem.
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f1(x)

f2(x)

(0,-0.5)

fZ(x1)

fZ(x0)

f1(x)

f2(x)

fZ(x1)− R2
+\{0}

fZ(x0)

Figure 3: Relationship of the set fZ(x0) and the set fZ(x1) in Example 6.

2.3 Approach using Supremal Sets

In minmax robust optimization, solutions are determined that perform best in the objective
function when evaluated together with worst-case realizations of uncertainty. Therefore, we
investigate suprema of the sets fZ(x) for x ∈ X. We show that minimizing the supremal sets
of the sets fZ is equivalent to solving (RC).
We use a concept for the supremum of a set that is defined and studied thoroughly in [Nie80]
and [Löh11].

Definition 7. For a bounded nonempty subset A ( Rk the supremal set of A is defined as

Sup(A) = {y ∈ cl(A−K) | ({y}+ int (K)) ∩ cl (A−K) = ∅}.

According to [Löh11, Cor. 1.48, Cor. 1.49], for a bounded nonempty subset A ( Rk it holds

Sup(A) = bd (Sup(A)−K). (4)

For an illustration of a supremal set, we refer to Figure 3. The boundary of the blue set, iclud-
ing the broken and unbrocken blue lines, is exactly the supremal set of fZ(x1) in Example 6.
Following Definition 7, we formulate another set-valued optimization problem

min
x∈X

fSup(x) with fSup : X ⇒ Rk, x 7→ Sup (fZ(x)). (5)

In general set-valued optimization problems, the image set of the objective function, such
as fSup(x) in (5), is assumed to be nonempty. Therefore, we additionally assume f to be
continuous in the remainder of the section.

Remark 8. Due to our assumptions, the perturbation set Z is nonempty and compact and
f : Ω→ Rk is continuous. Hence, fZ(x) is compact and nonempty for all x ∈ X ⊆ Ω and

fZ(x)−K = cl (fZ(x)−K) 6∈ {Rk, ∅}.

According to Corollary 1.44 in [Löh11], this directly implies

fSup(x) = Sup(fZ(x)) 6= ∅.

The following lemma is fundamental for our main result which relates the solutions of (5) to the
solutions of (RC) and the decision robust [weakly/·/strictly] efficient solutions of (P(z), z ∈
Z).
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Lemma 9. Let A,B ( Rk be compact sets. Then

A− [int(K)/K\{0}/K] = Sup (A)− [int(K)/K\{0}/K]

and thus for any 4∈ {4K ,4int(K),4K\{0}} it holds

A 4 B ⇔ Sup (A) 4 Sup (B).

Proof. In [Löh11, Chapter 1] it was shown that Sup (A)−int (K) = cl(A−K)−int (K). As A is
compact andK is closed we have cl(A−K) = A−K and we get Sup (A)−int (K) = A−int (K).
Next we show

A−K = Sup (A)−K. (6)

By [Löh11] we have cl (A−K) = Sup (A) ∪ (Sup (A)− int (K)). And thus

A−K = cl (A−K) = Sup (A) ∪ (Sup (A)− int (K)) ⊆ Sup (A)−K.

By the definition of the supremal set and the compactness of A we also have Sup (A)−K ⊆
cl (A−K)−K = A−K and we have shown (6). Finally we get from (6)

A−K\{0} = A−K −K\{0} = Sup (A)−K −K\{0} = Sup (A)−K\{0}.

Due to Relation (2) we obtain the last assertion:

A ⊆ B − [int(K)/K\{0}/K] ⇔ A−K ⊆ B − [int(K)/K\{0}/K]
⇔ Sup (A)−K ⊆ Sup (B)− [int(K)/K\{0}/K]
⇔ Sup (A) ⊆ Sup (B)− [int(K)/K\{0}/K].

Due to Z being compact, the set fZ(x) is compact for a continuous objective function f and
for each x ∈ X.

Corollary 10. Let f be continuous. Then it holds for all x, x′ ∈ X and 4∈ {4K ,4int(K),4K\{0}}

fZ(x) 4 fZ(x′) if and only if Sup (fZ(x)) 4 Sup
(
fZ(x′)

)
,

i.e., the set-valued optimization problems (RC) and (5) are equivalent in the sense that the
sets of strictly optimal solutions w.r.t. [4int(K) /4K\{0} /4K ] are the same.

Using Proposition 5 and Corollary 10 we directly obtain our main result of this section.

Theorem 11. Let f be continuous. The point x∗ ∈ X is a decision robust [weakly/·/strictly]
efficient solution of (P(z), z ∈ Z) if and only if x∗ ∈ X is a strictly optimal solution for the
set-valued optimization problem (5) w.r.t. [4int(K) /4K\{0} /4K ].

3 Properties of the Set-Valued Functions fZ(·) and Sup(fZ(·))
We prove that convexity of the vector-valued function f implies convexity of the set-valued
mapping fZ . Furthermore, we prove that continuity of the vector-valued function f is pre-
served when considering the set-valued mapping fZ or the respective supremal sets of its
images instead of f.
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3.1 Convexity

We start by recalling the definition of a K-convex single-valued and a K-convex set-valued
map for a convex cone K. See here, e.g., [Kur96, Def. 2.1],[AF90, Lemma 2.1.2] as well as
[BP03] and the references therein.

Definition 12. Let Y ⊆ Rn be a convex set. A map f : Y → Rk is called K-convex, if for all
x1, x2 ∈ Y and λ ∈ [0, 1] it holds that λf(x1) + (1− λ)f(x2) ∈ {f(λx1 + (1− λ)x2)}+K.

Definition 13. Let Y ⊆ Rn be a convex set. A set-valued map H : Y ⇒ Rk is called K-convex,
if for all x1, x2 ∈ Y and λ ∈ [0, 1] it holds that λH(x1)+(1−λ)H(x2) ⊆ H(λx1+(1−λ)x2)+K.

Proposition 14. Let Ω and Z be convex. Let f : Ω→ Rk be a K-convex single-valued map.
Then, X is a convex set and fZ : X ⇒ Rk is a K-convex set-valued map.

Proof. For fixed z ∈ Z, the set {x ∈ Rn | x + z ∈ Ω} is convex. Hence, X =
⋂
z∈Z{x ∈ Rn |

x+ z ∈ Ω} is convex as an intersection of convex sets.
Let a ∈ fZ(x1) and b ∈ fZ(x2) be arbitrarily chosen. Then there exist z1, z2 ∈ Z with
a = f(x1 + z1) and b = f(x2 + z2). With x := λx1 + (1−λ)x2 and z := λ z1 + (1−λ) z2 ∈ Z
we obtain

λ a+ (1− λ) b = λ f(x1 + z1) + (1− λ) f(x2 + z2)
∈ {f(λ (x1 + z1) + (1− λ) (x2 + z2))}+K
= {f(x+ z)}+K
⊆ fZ(x) +K.

Note that Sup(fZ(·)) is not a K-convex map and that, in contrast to K-convexity, linearity
of a function f : Ω→ Rk does not necessarily lead to linearity in the corresponding set-valued
function fZ : X ⇒ Rk.

3.2 Semicontinuity

We prove that, if f is continuous everywhere, the set-valued functions fZ and Sup(fZ(·))
inherit continuity properties. We show that continuity of f leads to semicontinuity of fZ .
Moreover, Sup(fZ(·)) is lower but not necessarily upper semicontinuous if f is continuous.

Throughout this section, we consider the feasible set Ω ⊆ Rn as a metric space. Ω is equipped
with the metric derived from an arbitrary norm ‖ · ‖ on Rn. Hence, we can use the following
definition of [AF90, Section 1.4] to define semicontinuity on subsets of Rn, such as Ω.

Definition 15. Let S be a metric space and let H : S ⇒ Rk be a set-valued map.

(a) H is called lower semicontinuous at x0 ∈ S, if for all open sets V ⊆ Rk with H(x0)∩V 6=
∅ there is a neighborhood U of x0 such that H(x) ∩ V 6= ∅ for all x ∈ U . H is lower
semicontinuous if it is lower semicontinuous at any x0 ∈ S.

(b) H is called upper semicontinuous at x0 ∈ S if for all open sets V ⊆ Rk with H(x0) ⊆ V
there is a neighborhood U of x0 such that H(x) ⊆ V for all x ∈ U . H is upper
semicontinuous if it is upper semicontinuous at any x0 ∈ S.
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An equivalent definition can be found in [KTZ15] under the name of lower and upper conti-
nuity. For a survey of the different and related notions for upper and lower semicontinuity
used in the literature, we refer to [DD79].
If the function f is not continuous everywhere, the set-valued map fZ might be neither
lower nor upper semicontinuous. The following example shows: if f is continuous everywhere
except at one point, the set-valued map fZ does not need to be upper semicontinuous. By a
similar example, it is also easy to see that the set-valued map fZ does not need to be upper
semicontinuous if f is continuous everywhere except at one point.

Example 16. Let f : R→ R be defined by

f(x) =

{
0 if x ≥ −1,
1 else

and Z := [−1, 1]. Then

fZ(x) =

{
{0} if x ≥ 0,
{0, 1} if x < 0.

Let x0 = 0 and V = (−0.5, 0.5). Then fZ(x0) ⊆ V but there is no neighborhood U of x0 such
that fZ(x) ⊂ V for all x ∈ U . However, fZ is lower semicontinuous.

Next, we show that fZ is both upper and lower semicontinuous if f is continuous.

Proposition 17. Let x0 ∈ X be given and let f : Ω→ Rk be continuous in the set {x0}+Z.
Then fZ : X ⇒ Rk is lower semicontinuous at x0.

Proof. Let V ⊆ Rk be an arbitrary open set such that fZ(x0)∩V 6= ∅. Then there exists z ∈ Z
such that f(x0 +z) ∈ V . As V is an open set, there exists ε > 0 such that B(f(x0 +z), ε) ⊆ V.
Because f is continuous in x0 + z, there exists δ > 0 such that ‖f(x0 + z)− f(w)‖ < ε for all
w ∈ Ω with ‖x0 + z − w‖ < δ. We define the neighborhood U(x0) = {x ∈ X | ‖x− x0‖ < δ}
of x0 in X. Then we have for all x ∈ U(x0) an element w := x+ z ∈ {x}+ Z and

‖x0 + z − w‖ = ‖x− x0‖ < δ.

Hence, f(x+ z) = f(w) ∈ B(f(x0 + z), ε) ⊆ V and fZ(x) ∩ V 6= ∅.

Proposition 18. Let f : Ω→ Rk be continuous. Then fZ : X ⇒ Rk is upper semicontinuous.

Proof. Let x0 ∈ X be given and let V ⊆ Rk be open such that fZ(x0) ⊆ V. Because f
is continuous, the inverse image W := {y ∈ Ω | f(y) ∈ V } is open in Ω. If W = Ω, we
immediately obtain {x}+ Z ⊆W and fZ(x) ⊆ V for all x ∈ X and our claim is true.
Otherwise, A := Ω\W is nonempty and closed in the metric space Ω and disjoint from the
compact set {x0} + Z ⊆ W. Consequently, there exists δ > 0 such that for all y ∈ {x0} + Z
and a ∈ A

‖y − a‖ > δ.

Thus, ⋃
z∈Z

B(x0 + z, δ) ⊆W.
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We define the neighborhood U := B(x0, δ) ⊆ X. For all x ∈ U and z ∈ Z we have ‖x + z −
(x0 + z)‖ = ‖x− x0‖ < δ and

{x}+ Z ⊆
⋃
z∈Z

B(x0 + z, δ) ⊆W,

where B(x0 + z, δ) denotes an open ball in the metric space Ω for all z ∈ Z. Therefore, for all
x ∈ U

fZ(x) ⊆ {f(w) | w ∈W} ⊆ V.

As we have seen in Theorem 11, determining whether a decision robust feasible solution is
decision robust efficient is equivalent to a comparison of supremal sets. Therefore, we continue
by examining semicontinuity properties of the set-valued function

fSup : X ⇒ Rk, x 7→ Sup(fZ(x))

that was already introduced as (5) in Section 2.3.
The following lemma serves as a preparation for proving the lower semicontinuity of the
function fSup in Proposition 20.

Lemma 19. Let ε > 0, and let a ∈ int (K) with ‖a‖ < ε. Then

T = B(0, ε) ∩ ({a} − int (K)) ∩ ({−a}+ int (K))

(a) is convex and open,

(b) B(0, ε̃) ⊆ T ⊆ B(0, ε) for some 0 < ε̃ < ε,

(c) T is symmetric, i.e. T = −T.

(d) For all s, u ∈ Rk it holds

{s}+ T ⊆ {u} − int (K) ⇔ {u}+ T ⊆ {s}+ int (K).

(e) a ∈ cl (T ).

Proof. The set T is convex and open as an intersection of three convex sets, hence (a) holds.
Furthermore, T ⊆ B(0, ε). To see the second part of (b), note that 0 ∈ T because 0 ∈ B(0, ε),
0 = a− a ∈ {a} − int (K) and 0 = −a+ a ∈ {−a}+ int (K). Because T is open, there exists
ε̃ > 0 such that B(0, ε̃) ⊆ T.
Next, (c) results from B(0, ε) = −B(0, ε) and from {a} − int (K) = − ({−a}+ int (K)),
and (d) is a direct consequence of (c). Finally, for (e), note that a ∈ int (B(0, ε)) and that
a ∈ int ({−a}+ int (K)) since a = −a+ 2 · a and a ∈ int (K). Because a is in the interior of
both sets, every sequence that is convergent to a has a subsequence that converges to a in
B(0, ε) ∩ ({−a}+ int (K)) . Furthermore, a ∈ cl ({a} − int (K)) and the result follows.

Proposition 20. Let f : Ω → Rk be continuous. Then fSup : X ⇒ Rk with x 7→ Sup(fZ(x))
is lower semicontinuous.
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Proof. Let x0 ∈ X and let V ⊆ Rk be an open set such that Sup(fZ(x0)) ∩ V 6= ∅. Choose
s ∈ Sup(fZ(x0)) ∩ V 6= ∅. Due to Lemma 9 we have for all x ∈ X

fZ(x)−K = Sup(fZ(x))−K. (7)

Therefore, there exist z ∈ Z and k ∈ K such that s := f(x0 + z) − k. Furthermore, there
exists ε > 0 such that {s}+B(0, ε) ⊆ V.
Additionally, there exists a convex neighborhood T of 0 ∈ Rk that satisfies the properties of
Lemma 19. In accordance with Property (a) of Lemma 19, let a ∈ Rk such that

T = B(0, ε) ∩ ({a} − int (K)) ∩ ({−a}+ int (K)) . (8)

According to Property (b) of Lemma 19, {s} + T is a convex neighborhood of s satisfying
{s}+B(0, ε̃) ⊆ {s}+ T ⊆ {s}+B(0, ε) ⊆ V . Because f is continuous, there exists for ε̃ > 0
some δ0 > 0 such that

f(y) ∈ {f(x0 + z)}+ T for all y ∈ Ω with ‖y − (x0 + z)‖ < δ0. (9)

Furthermore, fZ is upper semicontinuous in x0 due to Proposition 18. Consequently, there
exists δ1 > 0 such that fZ(x) ⊆ fZ(x0) + T for all x ∈ X with ‖x − x0‖ < δ1. We define
δ := min{δ0, δ1}. The set U := {x ∈ X | ‖x − x0‖ < δ} is a neighborhood of x0 in X with
respect to the subset topology inherited from Rn.
Assume that there exists x ∈ U such that

Sup(fZ(x)) ∩ ({s}+ T ) = ∅. (10)

Next, we show that this assumption leads to

{s}+ T ⊆ Sup(fZ(x))−K. (11)

We have ‖x+ z − (x0 + z)‖ < δ ≤ δ0, hence, using (9) and the definition of s, we get

f(x+ z)− k ∈ {s}+ T.

Together with (7), we obtain

f(x+ z)− k ∈ ({s}+ T ) ∩ (fZ(x)−K) = ({s}+ T ) ∩ (Sup(fZ(x))−K) . (12)

By our assumption (10), f(x+z)−k 6∈ Sup(fZ(x)). Next, we assume that (11) does not hold.
Then, there exists t ∈ T such that s+ t 6∈ Sup(fZ(x))−K. Due to (12) and because of {s}+T
being convex due to Lemma 19, there exists w ∈ conv{f(x + z) − k, s + t} such that, using
(4),

w ∈ bd (Sup(fZ(x))−K) ∩ ({s}+ T ) = Sup(fZ(x)) ∩ ({s}+ T )

in contradiction to assumption (10). Hence, (11) holds and by using (7) and Remark 8 we
obtain

cl ({s}+ T ) ⊆ cl (Sup(fZ(x))−K) = cl (fZ(x)−K) = fZ(x)−K.

By Property (e) in Lemma 19 we get

s+ a ∈ cl ({s}+ T ) ⊆ fZ(x)−K.
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Therefore, there exists z̃ ∈ Z such that s+ a ∈ {f(x+ z̃)} −K. Consequently, due to (8),

{s}+ T ⊆ {s+ a} − int (K) ⊆ {f(x+ z̃)} − int (K).

According to Property (d) in Lemma 19 this is equivalent to

{f(x+ z̃)}+ T ⊆ {s}+ int (K).

Because of ‖x− x0‖ < δ ≤ δ1, there exists z0 ∈ Z such that f(x0 + z0) ∈ {f(x+ z̃)}+ T. As
a consequence, we finally obtain

f(x0 + z0) ∈ {f(x+ z̃)}+ T ⊆ {s}+ int (K)

in contradiction to s ∈ Sup(fZ(x0)). Thus, (10) does not hold and we have for all x ∈ U

∅ 6= Sup(fZ(x)) ∩ ({s}+ T ) ⊆ Sup(fZ(x)) ∩ ({s}+B(0, ε)) ⊆ Sup(fZ(x)) ∩ V.

While the set-valued function fSup(·) = Sup(fZ(·)) is lower semicontinuous, it is not upper
semicontinuous as the following counterexample shows.

Example 21. Let Ω = [−1, 1]2, Z = {0}, K = R2
+ and f = id: R2 → R2, x 7→ x. Then

X = Ω and we have for all x ∈ X

Sup(fZ(x)) = {x} − bd(R2
+).

The set

V :=
{
z ∈ R2 | z1 ≤ 0

}
∪
{
z ∈ R2 | z1 > 0, z2 > −

1

z1

}
is a neighborhood of Sup(fZ(x0)) with x0 = (0, 0)>. We show that for each δ > 0 there exists
x ∈ X with ‖x0 − x‖∞ < δ and with Sup(fZ(x)) 6⊆ V . Choose an arbitrary δ > 0 with δ < 2.
Then x′ := δ

2(1, 0)> ∈ X satisfies ‖x0 − x′‖∞ < δ. We have w := (δ/2,−4/δ)> ∈ Sup(fZ(x′))
but due to

w2 = −4

δ
≤ −2

δ
= − 1

w1

it holds w 6∈ V . Because δ > 0 can be chosen arbitrarily small, we see that Sup(fZ(·)) is not
upper semicontinuous.

The results on the semicontinuity of the functions considered in this section are summarized
in the following table. For continuous objective functions f we have:

fZ(·) Sup(fZ(·))
lower semicontinuous 3 3

upper semicontinuous 3 7

Even though Sup(fZ(·)) is not upper semicontinuous, we finally show that Sup(fZ(x0)) and
Sup(fZ(x)) are arbitrary close for x0, x ∈ X with ‖x0−x‖ < δ if we chose δ > 0 small enough.
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Theorem 22. Let f : Ω → Rk be continuous. Then for each x0 ∈ X and ε > 0 there exists
δ > 0 such that

Sup(fZ(x)) ⊆ Sup(fZ(x0)) +B(0, ε)

for all x ∈ X with ‖x0 − x‖ < δ.

Proof. Let ε > 0 and x0 ∈ X.
Due to Lemma 19, there exists a convex neighborhood T of 0 ∈ Rk that satisfies the properties
of Lemma 19. In accordance with of Lemma 19, let a ∈ Rk such that

T = B(0, ε) ∩ ({a} − int (K)) ∩ ({−a}+ int (K)) . (13)

According to Property (b) of Lemma 19, for every v ∈ Rk the set {v} + T is a convex
neighborhood of v satisfying {v}+ T ⊆ B(v, ε).
Because fZ(x0) is compact in Rk and

⋃
z∈Z{f(x0 + z)}+ 1

2T is an open cover of fZ(x0), there
exists a finite subcover

fZ(x0) ⊆
⋃
z̃∈Z̃

{f(x0 + z̃)}+
1

2
T,

which will be indexed by Z̃ ⊆ Z with |Z̃| <∞. Furthermore, there exists δ1 > 0 such that

fZ(x) ⊆
⋃
z̃∈Z̃

{f(x0 + z̃)}+
1

2
T (14)

for all x ∈ X with ‖x− x0‖ < δ1 because fZ is upper semicontinuous due to Proposition 18.
Because f is continuous on Ω, there exists δ(z̃) > 0 for each z̃ ∈ Z̃ such that

f(y) ∈ {f(x0 + z̃)}+
1

2
T for all y ∈ Ω with ‖y − (x0 + z̃)‖ < δ(z̃). (15)

Let δ2 = min{δ(z̃) | z̃ ∈ Z̃} and define δ := min{δ1, δ2}.
We hence have that f(x + z̃) ∈ {f(x0 + z̃)} + 1

2T for all x ∈ X with ‖x0 − x‖ < δ ≤ δ2 and

all z̃ ∈ Z̃ and, because of the symmetry of T due to Property (c) in Lemma 19,

f(x0 + z̃) ∈ {f(x+ z̃)}+
1

2
T. (16)

Additionally, for each z ∈ Z there exists z̃ ∈ Z̃ such that

f(x0 + z) ∈ {f(x0 + z̃)}+
1

2
T

because our finite subcover is indexed by Z̃. Together with Relation (16) we see that for each
x ∈ X with ‖x0 − x‖ < δ and z ∈ Z there exists z̃ ∈ Z̃ such that

f(x0 + z) ∈ {f(x0 + z̃)}+
1

2
T ⊆ ({f(x+ z̃)}+

1

2
T ) +

1

2
T = {f(x+ z̃)}+ T

because T is convex. Hence, using again the symmetry of T, we obtain for each z ∈ Z the
existence of some z̃ ∈ Z̃ such that

f(x+ z̃) ∈ {f(x0 + z)}+ T. (17)
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In order to prove Theorem 22, we assume on the contrary that there exists x ∈ X with
‖x0 − x‖ < δ such that

Sup(fZ(x)) 6⊆ Sup(fZ(x0)) + T. (18)

Then there exists y ∈ Sup(fZ(x)) such that y 6∈ Sup(fZ(x0)) + T and, due to the symmetry
of T,

({y}+ T ) ∩ Sup(fZ(x0)) = ∅. (19)

Recall from Lemma 9 that for all x′ ∈ X

fZ(x′)−K = Sup(fZ(x′))−K. (20)

From (20) we know that there exist z ∈ Z and k ∈ K such that

y = f(x+ z)− k. (21)

Next, we show that Assumption (19) leads to

{y}+ T ⊆ Sup(fZ(x0))−K. (22)

We have ‖x− x0‖ < δ ≤ δ1. Due to (14) together with the symmetry of T, there exists z̃ ∈ Z̃
such that f(x0 + z̃) ∈ {f(x + z)} + 1

2T ⊆ {f(x + z)} + T, because T is convex and 0 ∈ T.
Hence, we get from (21)

f(x0 + z̃)− k ∈ ({y}+ T ) ∩
(
Sup(fZ(x0))−K

)
. (23)

By assumption (19), f(x0 + z̃)− k 6∈ Sup(fZ(x0)).
We assume that (22) does not hold. Then, there exists t ∈ T such that y+t 6∈ Sup(fZ(x0))−K.
Because {y}+ T is convex and due to (23), there exists

w ∈ conv{f(x0 + z̃)− k, y + t} ⊆ {y}+ T

such that, using (4),

w ∈ bd
(
Sup(fZ(x0))−K

)
∩ ({y}+ T ) = Sup(fZ(x0)) ∩ ({y}+ T )

in contradiction to (19). Hence, (22) holds and by using (20) we obtain

cl ({y}+ T ) ⊆ cl
(
Sup(fZ(x0))−K

)
= cl

(
fZ(x0)−K

)
.

By Property (e) in Lemma 19 and Remark 8 we get

y + a ∈ cl ({y}+ T ) ⊆ cl
(
fZ(x0)−K

)
= fZ(x0)−K.

Therefore, there exists z′ ∈ Z such that y+ a ∈ {f(x0 + z′)}−K. Then, due to (13), it holds

{y}+ T ⊆ {y + a} − int (K) ⊆ {f(x0 + z′)} − int (K).

According to Property (d) in Lemma 19 this is equivalent to

{f(x0 + z′)}+ T ⊆ {y}+ int (K).

Due to (17), there exists z̃ ∈ Z such that f(x+ z̃) ∈ {f(x0 + z′)}+ T. As a consequence, we
finally obtain

f(x+ z̃) ∈ {f(x0 + z′)}+ T ⊆ {y}+ int (K)

in contradiction to y ∈ Sup(fZ(x)). Thus, (18) does not hold and we have

Sup(fZ(x)) ⊆ Sup(fZ(x0)) + T ⊆ Sup(fZ(x0)) +B(0, ε).
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4 Relationship to Robustness Concepts in the Literature

This section compares decision robust efficiency to two types of robustness concepts in the
literature. First, a minmax robust counterpart for decision uncertainty in single objective
optimization is investigated. We show that decision robust efficiency can be considered as
a general approach to decision uncertainty because it reduces to a scalar-valued decision
robustness concept when applied to single objective problems. Secondly, we investigate a
robustness concept for parameter uncertainty in multiobjective optimization. We show that
decision robust efficiency can be considered a special case of the presented concept if the
corresponding multiobjective problem with decision uncertainty is reformulated accordingly.

4.1 Relationship to Minmax Robustness for Decision Uncertainty in Single-
Objective Optimization

Single-objective optimization with decision uncertainty has been studied for years in the areas
robust optimization and robust optimal control, see [BS07] for a survey.
In single-objective robust optimization, the function f : Rn → R is replaced by the mapping

x 7→ f̄(x) := sup
z∈Z

f(x+ z),

leading to the single-objective minmax robust counterpart

(RCso) min
x∈X

f̄(x).

The mapping f̄ is studied in more detail under the name robust regularization in [Lew02] and
[LP09]. The definition of the robust regularization f̄ is given under the assumption that for
all x ∈ X the supremum satisfies supz∈Z f(x+ z) <∞ and hence f̄ : X → R.
In the literature on single-objective optimization with decision uncertainty, Z is widely defined
as a convex compact neighborhood of 0. However, we only require 0 ∈ Z and Z compact.
Proposition 23 shows that fSup, which is studied in Section 2.3, reduces to f̄ in single-objective
problems. Hence, the set of decision robust efficient solutions corresponds exactly to the
minimizers of (RCso) if k = 1 and K = R+. Therefore, our definition of decision robust
efficiency can be considered as a generalization of the single-objective framework.

Proposition 23. Let f : Ω→ R be continuous and let K = R+. Then we have for all x∗ ∈ X

(i) fSup(x∗) = {f̄(x∗)} = {supz∈Z f(x∗ + z)},

(ii) x∗ is decision robust [weakly/·/strictly] efficient in the sense of Definition 3 if and only
if x∗ is [an/an/the unique] optimal solution of (RCso).

Proof. We consider dimension k = 1, hence int (R+) = R+\{0} and decision robust efficiency
coincides with decision robust weak efficiency. The maximum maxz∈Z f(x∗+z) = f̄(x∗) exists
because f is continuous and Z is compact. Consequently, for all x∗ ∈ X it holds according
to Definition 7

fSup(x) = {y ∈ cl (fZ(x)− R+) | ∀y′ > y : y′ 6∈ cl (fZ(x)− R+)}
= {supz∈Z f(x+ z)} = {maxz∈Z f(x+ z)}.

Applying Theorem 11, we therefore obtain that x∗ is decision robust [weakly/·/strictly] effi-
cient if and only if maxz∈Z f(x + z)[≥ / ≥ / >] maxz∈Z f(x∗ + z) for all x ∈ X\{x∗}, i.e., if
and only if x∗ is [an/an/the unique] optimal solution of (RCso).
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Remark 24. Result (i) in Proposition 23 also holds if f is not continuous, but (ii) is less
strong in that case. If f is not continuous, it is straightforward to prove for all x∗ ∈ X:

• If x∗ is decision robust [weakly/·] efficient, then x∗ is an optimal solution of (RCso).

• If x∗ is the unique optimal solution of (RCso), then x∗ is decision robust strictly efficient.

4.2 Relationship to Parameter Uncertainty in Multiobjective Optimization

Decision robust efficiency is a methodology to handle decision uncertainty in multiobjective
optimization. Parameter uncertainty in multiobjective optimization has recently been ad-
dressed with minmax robustness, see, e.g., [EIS14]. From a mathematical point of view, both
concepts are related, as Proposition 26 shows. We first give the definition of robust efficiency
for parameter uncertainty in multiobjective optimization problems.

Definition 25 ([EIS14],[IKK+14]). Let (P(ξ), ξ ∈ U) be a family of optimization problems of
the type

(P(ξ)) min
x∈Rn
{g(x, ξ) | Gj(x, ξ) ≤ 0, ∀1 ≤ j ≤ m},

where U ⊆ Rp, g : Rn × U → Rk and G : Rn × U → Rm. A point x ∈ Rn is called robust
feasible for (P(ξ), ξ ∈ U) if x is feasible for (P(ξ)) for all ξ ∈ U .
A robust feasible solution x ∈ Rn is called robust [weakly/·/strictly] efficient for (P(ξ), ξ ∈ U)
if there is no other robust feasible y 6= x such that

gU (y) ⊆ gU (x)− [int(K)/K\{0}/K],

where gU (y) = {g(y, ξ) | ξ ∈ U} for y ∈ Rn. In case of K = Rk+, each robust [weakly/·/strictly]
efficient solution is called a minmax robust [weakly/·/strictly] efficient solution.

In the following we show that we can rewrite the multiobjective problem with decision un-
certainty (P(z), z ∈ Z) to an equivalent problem with parameter uncertainty and that the
decision robust [weakly/·/strictly] efficient solutions for the former coincide with the robust
[weakly/·/strictly] efficient solutions for the latter.

Proposition 26. (i) Every family (P(z), z ∈ Z), where

P(z) = min
x∈Rn
{f(x+ z) | Fj(x+ z) ≤ 0 ∀1 ≤ j ≤ m}

can be written as a family (P(ξ), ξ ∈ U) of uncertain multiobjective optimization prob-
lems in the sense of Definition 25, where U = Z, g(x, ξ) = f(x + ξ) and Gj(x, ξ) =
Fj(x+ ξ) for x ∈ Ω, ξ ∈ U .

(ii) A solution x ∈ Ω is decision robust [weakly/·/strictly] efficient for (RC) if and only
if it is robust [weakly/·/strictly] efficient w.r.t. the family of uncertain multiobjective
optimization problems according to (i).

Proof. (i) Plugging the definitions of U , g : Ω × Z → Rk, and G : Ω × U → Rm into (P(ξ))
results exactly in (P(z)) for all z ∈ Z.
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(ii) a solution x is robust feasible in the sense of Definition 25 if and only if Gj(x, ξ) ≤ 0 for
all 1 ≤ j ≤ m and ξ ∈ U . Then

x is decision robust feasible

⇔ ∀z ∈ U = Z ∀1 ≤ j ≤ m : 0 ≥ Gj(x+ z) = Fj(x, z)

⇔ x is robust feasible in the sense of Definition 25.

From the definitions of g and U in (i) we have fZ(x) = gU (x) for all x ∈ X = {y ∈ Rn |
Fj(y + z) ≤ 0 ∀z ∈ Z ∀1 ≤ j ≤ m} = {y ∈ Rn | Gj(y, z) ≤ 0 ∀z ∈ U ∀1 ≤ j ≤ m}.
Hence,

x ∈ X is decision robust [weakly/·/strictly] efficient for (RC)

⇔ ∀y ∈ X\{x} : fZ(y) * fZ(x)− [int(K)/K\{0}/K]

⇔ ∀y ∈ X\{x} : gU (y) * gU (x)− [int(K)/K\{0}/K]

⇔ x ∈ X is robust [weakly/·/strictly] efficient w.r.t. Definition 25.

Hence, from the mathematical point of view, decision uncertainty can be considered as a
special case of parameter uncertainty and the results of [EIS14] apply. However, the setting
of decision uncertainty in multiobjective optimization adds a significant amount of structure
to the robust counterpart. In Section 2.3, the specific structure of decision uncertainty leads
to the presented continuity properties of the set-valued functions fZ and fSup. Moreover, in
the following section, this specific structure benefits the study of (RC) with respect to specific
classes of objective functions. In the following, we present solution approaches for our setting
that do not hold for multiobjective problems with parameter uncertainty.

5 Results for Special Classes of Objective Functions

In the following, we investigate properties of the decision robust counterpart (RC) for three
distinct types of objective functions. The types are linear, Lipschitz continuous and mono-
tonic objective functions. For linear objective functions, we show that the decision robust
[weakly/·/strictly] efficient solutions can be determined by methods from deterministic linear
multiobjective optimization. A necessary condition for decision robust efficient solutions is
given in case of Lipschitz continuous objective functions. We also present a sufficient condition
for decision robust efficient solutions in case of monotonic objective functions.

5.1 Linear Objective Functions

In this section we look at the case where the objective function f is linear. We prove that each
decision robust feasible solution is decision robust [weakly/·/strictly] efficient for (P(z), z ∈ Z)
if and only if it is [weakly/·/strictly] efficient for the deterministic multiobjective problem

(P|X) min
x∈X

f(x).

As a preparation for the main result of this section, we state the following lemma.
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Lemma 27. Let K be a closed convex pointed solid cone in Rk. Let v ∈ Rk such that
v 6∈ [int(K)/K\{0}/K]. Then there exists c ∈ Rk such that 〈c, v〉 < 〈c, k〉 for all k ∈
[int(K)/K\{0}/K].

Proof. In case of v 6∈ K or v 6∈ int (K) the claim corresponds to the Theorem of Hahn-Banach,
see, e.g., [Rud91].
For the case v 6∈ K\{0} we distinguish two cases: If v 6= 0 we can separate v from K, hence
also from K\{0}. Now, let v = 0. Because K is closed, convex and pointed, we have

K# = {d ∈ Rk | 〈d, k〉 > 0, ∀k ∈ K\{0}} 6= ∅

due to Theorem 3.38 in [Jah11]. Hence, for each c ∈ K# and all k ∈ K\{0} it holds
〈c, k〉 > 0 = 〈c, v〉.

Now, we can prove our main result about decision robust [weakly/·/strictly] efficient solutions
to uncertain problems with linear objective functions.

Theorem 28. Let f : Ω→ Rk be linear. Then for each decision robust feasible solution x ∈ X

x is [weakly/·/strictly] efficient for (P|X)

⇔ x is decision robust [weakly/·/strictly] efficient for (P(z), z ∈ Z).

According to this theorem, solving the deterministic linear multiobjective problem (P|X),
is equivalent to determining decision robust efficient solutions. Hence, linear multiobjective
problems including decision uncertainty can be solved by any solution method for determin-
istic linear multiobjective optimization.

Proof. We begin by showing that every [weakly/·/strictly] efficient solution for (P|X) is also
decision robust [weakly/·/strictly] efficient for (P(z), z ∈ Z). Let x ∈ X be [weakly/·/strictly]
efficient for (P|X) and assume that x is not decision robust [weakly/·/strictly] efficient for
(P(z), z ∈ Z). Consequently, there exists y ∈ X\{x} such that fZ(y) ⊆ fZ(x)−[int(K)/K\{0}/K].
Since x is [weakly/·/strictly] efficient

v := f(x)− f(y) = f(x− y) 6∈ [int(K)/K\{0}/K].

According to Lemma 27 there exists c ∈ Rk such that

〈c, v〉 < 〈c, k〉 ∀k ∈ [int(K)/K\{0}/K]. (24)

Choose z̃ ∈ argmaxz∈Z〈c, f(z)〉, which is nonempty, because f and the inner product are
continuous and Z is compact. Hence,

〈c, f(z − z̃)〉 ≤ 0 ∀z ∈ Z. (25)

Because fZ(y) ⊆ fZ(x)− [int(K)/K\{0}/K], there exists z ∈ Z and k ∈ [int(K)/K\{0}/K]
such that f(y + z̃) = f(x+ z)− k. Then, by using (25),

k = f(x− y) + f(z − z̃) = v + f(z − z̃)
⇒ 〈c, k〉 = 〈c, v〉+ 〈c, f(z − z̃)〉 ≤ 〈c, v〉
⇒ 〈c, k〉 ≤ 〈c, v〉

19



in contradiction to Equation (24). Therefore, x is decision robust [weakly/·/strictly] efficient.

Now, the opposite implication is proven. Assume that x is not [weakly/·/strictly] efficient for
(P|X). We show that x can not be decision robust [weakly/·/strictly] efficient in this case.

x is not [weakly/·/strictly] efficient

⇒ ∃y ∈ X\{x} : f(y) ∈ {f(x)} − [int(K)/K\{0}/K]

⇒ ∃y ∈ X\{x} : ∀z ∈ Z f(y + z) ∈ {f(x+ z)} − [int(K)/K\{0}/K]

⇒ ∃y ∈ X\{x} : ∀z ∈ Z∃z′ = z ∈ Z : f(y + z) ∈ {f(x+ z′)} − [int(K)/K\{0}/K]

⇒ x is not decision robust [weakly/·/strictly] efficient.

5.2 Lipschitz Continuous Objective Functions

In general, decision robust efficient solutions for (P(z), z ∈ Z) are not efficient for (P|X). As
Example 6 shows, this is not even true for Lipschitz objective functions, since the objective
function is Lipschitz on the compact feasible set Ω. Nevertheless, in case of Lipschitz objective
functions, every decision robust efficient solution is at least approximately efficient. Therefore,
we prove a necessary condition for a decision robust efficient solution.
Recall that a function f : Rn → Rk is called Lipschitz continuous or Lipschitz with Lipschitz
constant L > 0 if for all x, y ∈ Rn

‖f(x)− f(y)‖ ≤ L · ‖x− y‖.

Several concepts of approximate solutions for multiobjective optimization problems have been
introduced in the literature see for instance [Dur07] and the references therein. We use the
following concept which goes back to Kutateladze [Kut79].

Definition 29. Let k0 ∈ K\{0} and ε > 0 be given. The point x∗ ∈ X is a [weakly/·/strictly]
(ε, k0)-minimal solution for (P|X), i.e., minx∈X f(x), if there exists no x ∈ X such that

f(x) ∈ {f(x∗)− ε k0} − [int(K)/K\{0}/K].

In the following we assume w.l.o.g. ‖k0‖ = 1 in the definition above.

Proposition 30. Let f : Rn → Rk be Lipschitz continuous with Lipschitz constant L > 0 and
Z 6= {0}. Furthermore, set

L̃ := L ·max
z∈Z
‖z‖ and S :=

⋂
h∈B(0,L̃)

{h}+K.

If x∗ ∈ X is decision robust [weakly/·/strictly] efficient for (P(z), z ∈ Z), then there exists
no x̃ ∈ X and no s ∈ S such that f(x̃) ∈ {f(x∗)− s} − [int(K)/K\{0}/K]. Hence, x∗ is an
[weakly/·/strictly] (ε, k0)-minimal solution for (P|X), i.e., minx∈X f(x), where

k0 =
s

‖s‖
and ε = ‖s‖

for all s ∈ S.
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Proof. First we note that S ⊆ K\{0}: as K is pointed and solid there exists h̃ ∈ int (K) ∩
B(0, L̃) and thus we have S ⊆ {h̃}+K ⊆ int (K) and 0 6∈ S.
Because f is Lipschitz continuous, we have for all x ∈ X and the closed Ball of radius L̃,
B(0, L̃),

fZ(x) ⊆ {f(x)}+B(0, L̃).

Consequently, for each x ∈ X and z ∈ Z there exists h ∈ B(0, L̃) such that f(x+z) = f(x)+h.
Furthermore, it holds s ∈ S if and only if h ∈ {s} −K for all h ∈ B(0, L̃).
Let x∗ ∈ X be decision robust [weakly/·/strictly] efficient and suppose there exists x̃ ∈ X
and s ∈ S such that

f(x̃) ∈ {f(x∗)− s} − [int(K)/K\{0}/K].

Then, for each z ∈ Z there exists h ∈ B(0, L̃) such that

f(x̃+ z) = f(x̃) + h

∈ {f(x̃)}+ ({s} −K)

⊆ {f(x∗)− s}+ {s} − [int(K)/K\{0}/K]

= {f(x∗)} − [int(K)/K\{0}/K]

⊆ fZ(x∗)− [int(K)/K\{0}/K],

in contradiction to x∗ being decision robust [weakly/·/strictly] efficient.

5.3 Monotonic Objective Functions

In the following, we look at the special case of monotonically decreasing and increasing ob-
jective functions. We show that, in case of at least one increasing objective, one decreasing
objective and a partially ordered feasible set, all solutions are decision robust efficient.
Throughout this section, we assume that Rk is partially ordered by the closed convex pointed
solid cone Rk+ and that Rn is ordered correspondingly by the cone Rn+. First, we recall the
definition of a monotonically increasing function on Rn, see, e.g., [Jah11, Mie12].

Definition 31. Let S be a nonempty subset of Y ⊆ Rn. Then the function h : Y → R is
called

(a) monotonically increasing on S if for all x, y ∈ S it holds

x 5 y ⇒ h(x) ≤ h(y).

(b) strictly monotonically increasing on S if for all x, y ∈ S it holds

x < y ⇒ h(x) < h(y).

(c) strongly monotonically increasing on S if for all x, y ∈ S it holds

x ≤ y ⇒ h(x) < h(y).

Similarly, f is called decreasing if (−f) is increasing.

Note that every strongly increasing function is also strictly increasing and increasing, while
strictly increasing functions are not necessarily increasing if n ≥ 2. For n = 1, strict and
strong monotonicity coincide and every strictly increasing function is also increasing.
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Theorem 32. Let X ⊆ Ω ⊆ Rn and let x ∈ X be such that for all y ∈ X

x 6= y ⇒ x [≤ / < / ≤] y or y [≤ / < / ≤] x

and let Z ⊆ Rn have the property

z1 6= z2 ⇒ z1 [≤ / < / ≤] z2 or z2 [≤ / < / ≤] z1

for all z1, z2 ∈ Z.
Let k ≥ 2 and let f : Rn → Rk have the property that there exist j, l ∈ {1, . . . , k}, j 6= l, such
that

(a) fj : Rn → R is [./strictly/strongly] increasing on X

(b) fl : Rn → R is [./strictly/strongly] decreasing on X.

Then x is decision robust [weakly/strictly/strictly]–efficient.

Proof. Choose y ∈ X\{x} arbitrarily. Because Z is compact and totally ordered with respect
to 5, there exist a minimal element zmin ∈ Z and a maximal element zmax ∈ Z due to Zorn’s
Lemma.
We distinguish two cases. First, we study the case x [≤ / < / ≤] y. This leads to

x+ z [≤ / < / ≤] y + z 5 y + zmax ∀z ∈ Z
(a)⇒ fj(x+ z) [≤ / < / <] fj(y + zmax) ∀z ∈ Z
⇒ f(y + zmax) 6∈ fZ(x)− [int(Rk+)/Rk+/Rk+]

⇒ fZ(y) * fZ(x)− [int(Rk+)/Rk+/Rk+].

Secondly, we study the alternative case y [≤ / < / ≤] x. This leads to

y + zmin [≤ / < / ≤] x+ zmin 5 x+ z ∀z ∈ Z
(b)⇒ fl(y + zmin) [≥ / > / >] fl(x+ z) ∀z ∈ Z
⇒ f(y + zmin) 6∈ fZ(x)− [int(Rk+)/Rk+/Rk+]

⇒ fZ(y) * fZ(x)− [int(Rk+)/Rk+/Rk+].

In summary, there is no y ∈ X\{x} such that fZ(y) ⊆ fZ(x)− [int(Rk+)/Rk+/Rk+]. Therefore,
x is decision robust [weakly/strictly/strictly]–efficient.

For an illustarion of Theorem 32, we refer to Example 34 in Appendix A.
A direct consequence of Theorem 32 is the next Corollary.

Corollary 33. Let Z ⊆ R and X ⊆ Ω ⊆ R be compact intervals and f : R→ Rk be such that
f1 : R→ R is [./strictly] increasing and f2 : R→ R is [./strictly] decreasing.
Then all x ∈ X are decision robust [weakly/strictly]–efficient.

In particular, Corollary 33 can be applied whenever f : I → Rk is a curve with at least one
increasing and one decreasing objective, where I ⊆ R is an interval.
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6 Conclusions

A robustness concept for decision uncertainty in multiobjective optimization is introduced
and investigated. The corresponding decision robust counterpart (RC) is introduced as a
set-valued optimization problem. Semicontinuity and convexity of the set-valued objective
functions in (RC) and their supremal sets are proven under the assumption that the vector-
valued objective function in (P) is continuous.
Results are obtained that lead to the determination of decision robust efficient solutions by
methods from deterministic multiobjective optimization for three types of objective functions.
First, in case of linear objective functions, solving (RC) is equivalent to solving a deterministic
linear multiobjective problem. Second, a necessary condition for decision robust efficient
solutions in case of Lipschitz objective functions is presented. Third, a sufficient condition
for decision robust efficient solutions in case of monotonic objective functions is obtained.
Decision robust efficiency and (RC) are consistent with the generalization of the supremum
to supremal sets in set-valued optimization. Furthermore, decision robust efficiency is closely
related to existing robustness concepts in the literature in two ways. On the one hand, it is
a generalization of minmax robustness approaches for decision uncertainty in single-objective
optimization and on the other hand, it can be regarded as a special case of minmax robust
efficiency for parameter uncertainty in multiobjective optimization.

Following the presented theoretical results, there are different options for further research.
The results for the different classes of objective functions indicate that extended study of
problems with specific structure might lead to specific solution techniques for various appli-
cations. Solution techniques and numerical evaluations of the two applications presented in
the introduction are currently under research, see [CKGS16] for a specific application.
Additionally, the problem description of decision uncertainty can be extended by allowing the
perturbation set Z to depend on the solution. There are various applications for problems
with variable perturbation sets, including perurbation sets whose size depend on a percentage
of the solution aimed at. It will be interesting to see, which of our results can be extended to
that case.
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[KTZ15] A.A. Khan, C. Tammer, and C. Zălinescu. Set-valued Optimization. Springer,
Berlin Heidelberg, 2015.

[Kur96] D. Kuroiwa. Convexity for set-valued maps. Appl. Math. Lett., 9(2):97–101, 1996.

[Kur98] D. Kuroiwa. The natural criteria in set-valued optimization. RIMS Kokyuroku,
1031:85–90, 1998.

[Kut79] S.S. Kutateladze. Convex ε-programming. Soviet Math Dokl, 20(2):391–393,
1979.

[Lew02] A.S. Lewis. Robust regularization. Technical report, School of ORIE, Cornell Uni-
versity, Ithaca, NY, 2002. Available online at http://people.orie.cornell.

edu/aslewis/publications/2002.html.
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Appendix A An Example for Monotonic Objective Functions

The following example illustrates Theorem 32 and shows that, after having excluded a specific
part of the decision robust feasible set, all decision robust efficient solutions can be determined
by Theorem 32.

Example 34. Let the feasible set, the perturbation set and the objective function be

Ω = conv {( 0
0 ) , ( 1.5

0 ) , ( 1.5
1 ) , ( 1

1 )} , Z = [0, 0.5]× {0}

and f : R2 → R2, x 7→
(
−(x1+x2)

x21+x22

)
.

Then f1 is strongly decreasing and f2 is strongly increasing on R2
+ and therefore also on the

decision robust feasible subset X of Ω, which is illustrated in Figure 4.
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Figure 4: The feasible set Ω and the decision robust feasible set X in Example 34.

We show next that the set of decision robust [·/strictly] efficient solutions is

Y = conv {( 0
0 ) , ( 1

1 )} .

We first show that the elements of X\Y can not be decision robust efficient.
For all s ∈ (0, 2) we define the set Ls = {x ∈ X | x1 + x2 = s} and ys = 1

2 · (
s
s ) ∈ Ls, which

is illustrated in Figure 5.
Let s ∈ (0, 2) and let x ∈ Ls\{ys}. Then x1 > x2 and there exists 0 < t ≤ s

2 such that
x1 = s

2 + t and x2 = s
2 − t. For each z ∈ Z it holds

f1(x+ z) = −(x1 + x2 + z1) = −(s+ z1) = −(ys1 + ys2 + z1) = f1(ys + z)

as well as

f2(ys + z) =
s2

2
+ s · z1 + z2

1

and

f2(x+ z) =
s2

2
+ s · z1 + z2

1︸ ︷︷ ︸
=f2(ys+z)

+ 2t2︸︷︷︸
>0

+ 2tz1︸︷︷︸
≥0

> f2(ys + z).

x1

x2

1

1

X

Y

L1 f1(x)

f2(x)

fZ(y1 = (0.5, 0.5)T )

fZ(x′ = (0.75, 0.25)T )

fZ(x′′ = (1, 0)T )

Figure 5: Illustration of Example 34. The sets Y and Ls for s = 1 are illustrated on the left
hand side. On the right hand side, inclusions of the sets fZ for different elements of L1 are
displayed.

Consequently, f(ys + z) ≤ f(x + z) for all z ∈ Z. Since x ∈ Ls was arbitrarily chosen, we
have for all x ∈ Ls\{ys}

fZ(ys) ⊆ fZ(x)− R2
+\{0},
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which is visualized in Figure 5. Therefore, the set of decision robust [·/strictly] efficient
solutions is a subset of Y. Furthermore, because of the transitivity of 5, every element in Y
that is not decision robust [·/strictly] efficient is dominated by another element of Y. Since Y
and Z are totally ordered with respect to 5, f1 is strongly de- and f2 is strongly increasing,
Theorem 32 can be applied, leading to the conclusion that all y ∈ Y are decision robust
[·/strictly] efficient.
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