

TU Ilmenau | Universitätsbibliothek | ilmedia, 2016
http://www.tu-ilmenau.de/ilmedia

Hildenbrandt, Regina

The k-Server Problem with Parallel Requests and the
Compound Harmonic Algorithm

Original published in:
Baltic journal of modern computing, Vol.4 (2016), Nr. 3 p. 607-629.

Original published: 2016-06-17
ISSN (online): 2255-8950
ISSN (print): 2255-8942
URL: http://www.bjmc.lu.lv/contents/vol-42016-no-3/

This work is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International license.
https://creativecommons.org/licenses/by-sa/4.0/

URN: urn:nbn:de:gbv:ilm1-2016200094

http://www.tu-ilmenau.de/ilmedia
http://www.bjmc.lu.lv/contents/vol-42016-no-3/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Baltic J. Modern Computing, Vol. 4 (2016), No. 3, pp. 607–629

The k-Server Problem with Parallel Requests and
the Compound Harmonic Algorithm

R. HILDENBRANDT

Institute of Mathematics, Ilmenau Technical University,
PF 10 06 65, 98684 Ilmenau, Germany

r.hildenbrandt@tu-ilmenau.de

Abstract. In this paper the (randomized) compound Harmonic algorithm for solving the gen-
eralized k-server problem is proposed. This problem is an online k-server problem with parallel
requests where several servers can also be located on one point. In 2000 Bartal and Grove have
proved that the well-known Harmonic algorithm is competitive for the (usual) k-server problem.
Unfortunately, certain techniques of this proof cannot be used to show that a natural general-
ization of the Harmonic algorithm is competitive for the problem with parallel requests. The
probabilities, which are used by the compound Harmonic algorithm are, finally, derived from a
surrogate problem, where at most one server must be moved in servicing the request in each step.
We can show that the compound Harmonic algorithm is competitive with the bound of the ratio
as which has been proved by Bartal and Grove in the case of the usual problem.

Keywords: Server problems, compound Harmonic algorithm, absorbing probabilities, competi-
tive analysis

1 Introduction

This paper deals with a generalized online k-server problem. We want to present a new
algorithm, the ”compound Harmonic algorithm”, and show its qualities for solving this
problem.

In (Hildenbrandt, 2014) we have introduced a generalized k-server problem with
parallel requests where several servers can also be located on one point. We are given
initial locations of k servers in a metric space. Requests rt for service at several points
come in over time. It is sensible in the case of such requests to distinguish the surplus-
situation where the request can be completely fulfilled by means of the k servers and
and the scarcity-situation where the request cannot be completely met. Immediately
after the t-th request is received, a sufficient number of servers must be moved from
theirs current locations to the request points. The choice of which servers are moved,
in the case of the surplus-situation or the choice of requests which should be fulfilled,
in case of the scarcity-situation, respectively, must be made based only on the current

608 Hildenbrandt

servers configuration and on the requests seen so far; that is, the requests ru for u ≤ t.
Moving servers costs the distances the servers are moved, and the goal is to minimize
the total cost.

Thus in online computation, an algorithm must decide how to act on incoming re-
quests without any knowledge of future inputs. In contrast, an offline procedure would
be allowed to know the entire sequence of requests in advance, before it makes any
decisions. We want online algorithms whose cost compares favorably to the cost of an
optimal offline algorithm (in more detail, see Section 2).

In Section 3 we will develop the ”compound Harmonic algorithm” for the general-
ized k-server problem in the case of the surplus-situation. Certain multi-step transition
probabilities and absorbing probabilities are used by the compound Harmonic algo-
rithm. For their computation each step of the generalized k-server problem is replaced
by a number of steps of other specific k-server problems. We will show that this algo-
rithm is ”competitive”.

Until now, only the k-server problem with requests, where at most one server must
be moved in servicing the request in each step, is considered in literature. This k-server
problem was introduced by Manasse, McGeoch and Sleator (1988). Meanwhile it is the
most studied problem in the area of competitive online problems. An important ran-
domized algorithm for solving this problem is the Harmonic k-server algorithm. It has
been introduced by Raghavan and Snir (1989). This algorithm is memoryless and time-
efficient. The competitiveness of the randomized Harmonic k-server algorithm against
an adaptive online adversary was proved in (Bartal and Grove, 2000). Unfortunately,
certain methods used by Bartal and Grove cannot be applied to the k-server problems
with parallel requests.

2 Principles of online optimization and the formulation of the
model

2.1 The competitiveness of randomized online algorithm

It is important to understand the concept of the competitiveness of randomized online
algorithms. One can find a good summary on this topic in (Bartal and Grove, 2000,
Section 1). Nevertheless, we will state the key issues from this in the following:

Sleator and Tarjan (1985) founded the study of ”competitive” online algorithms by
introducing the idea that the performance of such an algorithm should be measured
by the maximum ratio of the cost it incurs on any sequence of inputs to the minimum
offline cost for processing that sequence. Formally, a deterministic online algorithm is
C-competitive if there exists a function I of the initial configuration so that for every
finite input sequence the cost incurred by the algorithm is bounded by I plus C times
the minimum cost of processing the input sequence. C is called the competitive ratio of
the algorithm. The competitive ratio is a measure of how much better we could do if we
knew the future.

In this paper, we study a randomized online algorithm for the k-server problem with
parallel request and thus we need a generalization of the notion of the competitive ra-
tio to the case of randomized online algorithms. Ben-David et al. (1994) introduced

The k-Server Problem with Parallel Requests 609

a framework for studying randomized algorithms for online problems called request-
answer games. In this framework, we view the online algorithm as a player in a game
against an adversary. The adversary produces a request sequence and gives requests to
the algorithm one by one. The algorithm must respond with an answer specifying how
it serves the given request and it incurs a cost accordingly. We view the adversary as
if it generates the request sequence and must serve it as well. The competitive ratio of
an algorithm is defined as the worst-case ratio between its cost and the cost of the ad-
versary on the sequence generated by that adversary. For deterministic algorithms, this
definition is equivalent to the former definition. For randomized algorithms, the defi-
nition depends on what power the adversary is given. In particular, we must specify in
which way the request sequence may depend upon the random choices of the algorithm
and how the adversary may serve the requests. We will restrict our attention to one type
of adversary. An adaptive online adversary specifies the initial positions of k servers.
The adversary and the algorithm each control k servers, respectively the offline servers
and the online servers, whose positions are given by the initial configuration. The game
proceeds in steps. The t-th step of the game corresponds to the t-th request in the request
sequence. First, the adversary chooses offline servers, move they (possibly a distance
0) to some points, and then places corresponding requests at these points. Note that the
online algorithm does not know which servers the adversary move to these points. The
adversary may take into account the complete state of the online algorithm, including
the results of random choices from previous phases. The adversary does not have the
ability to predict the coin tosses in the current or future phases. Next, the online player
move a servers to the request points. The adversary may choose to end the game after
any number of steps. The algorithm is called C(k)-competitive if there exists a func-
tion I of the initial configuration specified by the adversary so that for every sequence
generated by an adaptive online adversary

E[cost(online algorithm)] ≤ C(k) · E[cost(adversary)] + I, (1)

where cost(online algorithm) and cost(adversary) are the costs of the algorithm and
the adversary on the sequence generated, respectively.

In order to prove (1) a potential function Φ could be used. Intuitively, Φ is an upper
bound on the expected amount of work the algorithm can be forced to do if the offline
servers do not move. Here we will use a potential function, which is a function of the
current locations of the online and offline servers. Now, let Φt denote the value of Φ at
the end of the t-th step (corresponding to the t-th request rt in the request sequence)
and let Φ∼

t denote the value of Φ after the first stage of the t-th step (i.e., after the
adversary’s move and before the algorithm’s move). If such a potential function exists,
which satisfies the following properties with regard to a randomized online algorithm
ALG:

Φ ≥ 0 (2)

Φ∼
t − Φt−1 ≤ C(k)Dt, (3)

610 Hildenbrandt

where Dt denotes the distance moved by the offline servers (controlled
by the adversary) to serve the request in the t-th step,

E(Φ∼
t − Φt) ≥ E(Zt), (4)

where Zt represents the cost which incurred by the online algorithm
to serve the request in the t-th step,

then algorithm ALG is C(k)-competitive, see (Bartal and Grove, 2000, Lemma 1).

2.2 The k-server problem with parallel requests

Now, we want to describe the generalized k-server problem. Let k ≥ 1 be an integer,
and M = (M,d) be a finite metric space where M is a set of points with |M | = N . An
algorithm controls k mobile servers, which are located on points of M . Several servers
can be located on one point. Requests rt for service at several points come in over time.
Let σ = r1, r2, · · · , rn be such a sequence of requests. A request r is defined as an
N -ary vector of integers with ri ∈ {0, 1, · · · , k}, i = 1, 2, · · · , N (”parallel requests”).
The request means that ri servers are needed on point i, i = 1, 2, · · · , N .

Principally, two cases of requests have to distinguished:
N∑
i=1

ri ≤ k describes the

surplus-situation. The request can be completely fulfilled. We say a request r is served

if at least ri servers lie on i, i = 1, 2, · · · , N . In contrast,
N∑
i=1

ri ≥ k means the scarcity-

situation. The request cannot be completely met, however it should be met as much as
possible. The request r is served if at most ri servers lie on i, i = 1, 2, · · · , N .

By moving servers, the algorithm must serve the requests r1, r2, · · · , rn sequen-
tially. For any request sequence σ and any k-server algorithm ALG, ALG(σ) is defined
as the total distance (measured by the metric d) moved by the ALG’s servers in servic-
ing σ.

Analogous to (Borodin and El-Yaniv, p. 152) working with lazy algorithms ALG is
sufficient. This means, servers are not moved in a step if they are not needed to fulfil
requests in this step. For that reason we define the set of feasible servers’ positions with
respect to the previous servers’ positions s and the request r in the following way

ÂN ;k(s, r) = {s′ ∈ SN (k) |ri ≤ s′i ≤ max{si, ri}, i = 1, · · · , N } (5)

where SN (k) :=

{
s ∈ ZN+ |

N∑
i=1

si = k

}
(6)

in the case of the surplus-situation and

ÂN ;k(s, r) = {s′ ∈ SN (k) |min{si, ri} ≤ s′i ≤ ri, i = 1, · · · , N } (5a)

in the case of the scarcity-situation.

The k-Server Problem with Parallel Requests 611

The metric d implies that (SN (k), d̂) is also a finite metric space where d̂ are the
optimal values of the classical transportation problems with availabilities s and require-

ments s′ ∈ SN (k):
N∑
i=1

N∑
j=N

d(i, j) xij → min

subject to
N∑
j=1

xij = si ∀i,
N∑
i=1

xij = s′j ∀j, x ∈ ZN+ × ZN+ ,

see (Hildenbrandt, 1995, Lemma 3.6).
In the following we will develop the compound Harmonic k-server algorithm and

show that this algorithm is competitive (see Theorem 1) against an adaptive online
adversary in the case of the surplus-situation.

3 The compound Harmonic algorithm

Firstly, we examine a natural generalization of the well-know Harmonic algorithm in
this section. Then we derive the compound Harmonic k-server algorithm for the gener-
alized k-server problem.

3.1 Considerations concerning the Harmonic algorithm

The randomized Harmonic algorithm, applied to the usual k-server problem, sends
each server with probability proportional to the inverse of its distance from the cur-
rent request location. A natural generalization of this algorithm, adapted to the k-server
problem with parallel requests, is the following: Harmonic serves a not completely
covered request r with randomly chosen servers so that for the new servers’ positions
s′ ∈ ÂN ;k(s, r) is valid with respect to the previous servers’ positions s and the request
r. More precisely, Harmonic leads to s′ ∈ ÂN ;k(s, r) with probability

PH(s′|s, r) = 1/d̂(s,s′)∑
s′′:s′′∈ÂN;k(s,r)

1/d̂(s,s′′)
. (7)

(The quantity
∑

s′′:s′′∈ÂN;k(s,r)

1/d̂(s, s′′) is referred to as the normalization factor.)

At first we give an example that the Harmonic algorithm is not competitive in gen-

eral, where the case
N∑
i=1

ri ≥ k is allowed.

Example 1 We focus on a number of similar examples E1, E2, · · · , Ej, · · · with k =
1, finite metric spacesMj = {−j,−j + 1, · · · , 0, · · · , j − 1, j} and request sequences{
r1, r2, · · · , rn

}
, n ≤ j. Let the following assumptions be valid for all examples. The

usual metric of integers is used. If the server of the adversary is located on point s̄ ∈ Z
and the server of the algorithm on point s ∈ Z then the adversary produces the request
r with

ri =


{

1 if i = s− 1 or i = s+ 1
0 otherwise if s̄ = s{
1 if i = s̄ or i = s+ 1
0 otherwise if s̄ 6= s.

612 Hildenbrandt

The adversary moves his server to another point, more precisely to s−1, if and only
if the servers of the adversary and of the algorithm are located on the same point.

We assume that s̄ ≤ s at the beginning. Then

s̄ ≤ s (8)

is valid in every step. Furthermore, we use the following symbols

δ =

{
s− s̄ if s 6= s̄
1 if s = s̄

and
hlδ = E[cost(Harmonic algorithm)]

with regard to l steps and δ at the beginning,

alδ = E[cost(adversary)]
with regard to l steps and δ at the beginning

for the the expected costs. Then

lim
l→∞

hl1
al1

=∞ (9)

can be proved (see Appendix A). Thus the Harmonic algorithm is not competitive
for such examples, with the severs’ start position s = s̄ and where the lengths l of the
request sequences tends to infinity.

Bartal and Grove (2000) have used a potential function in order to prove that the
Harmonic k-server algorithm against an adaptive online adversary is competitive for the
(usual) k-server problem. As we will see in Example 2, such methods cannot be applied
to show the competitiveness of the Harmonic algorithm for the k-server problem with
parallel requests.

With regard to the Harmonic k-server algorithm Bartal and Grove have constructed
the following potential function: Let OFF be the set of offline servers, and ON the
set of online servers. Y. Bartal and E. Grove have defined a weighted bipartite graph G
on the online and offline servers in the following way. Given an online server x and an
offline server Y , then all paths from x to Y in {x}∪OFF are considered. The length of
the j-th step of a path is weighted by a scaling function f̂j that is very large for small j
and decreases monotonically. The weight of the edge from x to Y in G is the minimum
scaled length of a simple path from x to Y in {x} ∪ OFF . Let p be an assignment of
servers to points in the metric space then

w(x, Y) =

min
{Y1,··· ,Yl=Y }⊂OFF

{
f̂1 · d (p(x), p(Y1)) +

∑
2≤j≤l

f̂j · d (p(Yj−1), p(Yj))

}
,

(10)

where f̂j are weights with f̂1 > f̂2 > · · · > f̂N .

The k-Server Problem with Parallel Requests 613

The potential function is:

Φ = min
M̄ : ON↔OFF

∑
x∈ON

w(x, M̄(x)). (11)

This potential function is a function of the current locations of the online and offline
servers. The weights f̂j are computed in such a way that (4) is valid.

Additionally, let
s̄ (∈ SN (k)) denote the (offline) servers’ positions controlled by the adversary at the

end of the (t− 1)-th step (i.e., at the beginning of the t-th step),
s (∈ SN (k)) denote the (online) servers’ positions controlled by the

algorithm at the beginning of the t-th step,
s′ (∈ ÂN ;k(s, rt)) denote the online servers’ positions at the end of

the t-th step and
s̄′ (∈ SN (k)) denote the (offline) servers’ positions controlled by the

adversary after the first stage of the t-th step.

Example 2 Let k = 4 and let a metric space M consist of 3 points p1, p2, p3 with the
pairwise distance of 1 and certain points p ∈ [2,∞) on the line. The distance of two
points pi, pj (i, j /∈ {1, 2, 3}) on the line is d(pi, pj) = |pi − pj | as usual. The distance
d(pi, p) for i ∈ {1, 2, 3} and p ∈ [2,∞) is defined as d(pi, p) := p.

At the beginning let the online and offline servers be located on p1, p2, 2, 5.
Additionally, we set:

d0 = (d0(l) =) 1 + l , d1 = (d1(l) =)


3 if l = 1

3 + 3
2

l+1∑
q=3

√
q if l = 2, 3, · · ·

,

d2 = (d2(l) =) 3
2

√
l + 2 and d3 = (d3(l) =) 3

2

√
l + 1 for l = 1, 2, · · · .

Possible server configurations Ca(l), · · · , Ci(l), corresponding requests r and an-
swers by the adversary can be found in Appendix B. Here we focus on the configuration
Cc(l):

Cc(l) : ON is located on p1, p2, p3, d0 + d1 and
OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1 at the beginning of
the t-step.

r : one server on d0 + 1 and one server on d0 + d1 + d2 are needed.
Answer by the adversary: the offline servers on d0, d0 + d1 are moved.

We will show that property (4) of the potential function for sufficiently large l cannot
be fulfilled.

According to (10) and (11), Φ∼
t (s, s̄′) = f̂1 d2+f̂1+f̂2+f̂3 (d0+1) for sufficiently

large l. ÂN ;k(s, r) includes the following 6 elements:
s′(1) : servers on pi, pj , d0 + 1, d0 + d1 + d2 (that means s′(1) = s̄′),
s′(2) : servers on pi, pq, q ∈ {1, 2, 3} \ {i, j}, d0 + 1, d0 + d1 + d2,
s′(3) : servers on pj , pq, q ∈ {1, 2, 3} \ {i, j}, d0 + 1, d0 + d1 + d2,
s′(4) : servers on pi, d0 + 1, d0 + d1, d0 + d1 + d2,
s′(5) : servers on pj , d0 + 1, d0 + d1, d0 + d1 + d2,
s′(6) : servers on pq, q ∈ {1, 2, 3} \ {i, j}, d0 + 1, d0 + d1, d0 + d1 + d2.

614 Hildenbrandt

The distances between the online servers’ positions at the beginning and at the end
of the t-th step, in other words, the cost which incurred by the online algorithm to serve
the request, are d̂(s, s′(1)) = Zt(s, s

′(1)) = d0 + 1 + d2, d̂(s, s′(2)) = Zt(s, s
′(2)) =

d0 + 1 + d2, d̂(s, s′(3)) = Zt(s, s
′(3)) = d0 + 1 + d2, d̂(s, s′(4)) = Zt(s, s

′(4)) =

2 d0 + 1 + d1 + d2, d̂(s, s′(5)) = Zt(s, s
′(5)) = 2 d0 + 1 + d1 + d2 and d̂(s, s′(6)) =

Zt(s, s
′(6)) = 2 d0 + 1 + d1 + d2.

The Harmonic algorithm realizes s′(i) with probability:
PH(s′(i)|s, r) = 1/d̂(s,s′(i))

Nf
for i = 1, 2, · · · 6, whereNf = 3

d0+1+d2
+ 3

2 d0+1+d1+d2

is referred to as the normalization factor.
Using (10) and (11) computations yield

Φt(s̄
′, s′(1)) PH(s′(1)|s, r) Nf = 0,

Φt(s̄
′, s′(i)) PH(s′(i)|s, r) Nf = f̂1

d0+1+d2
(i = 2, 3),

Φt(s̄
′, s′(i)) PH(s′(i)|s, r) Nf = f̂1 d2+f̂2 (d1+d2−1)+f̂3 (d0+1)

2 d0+1+d1+d2
(i = 4, 5),

Φt(s̄
′, s′(6)) PH(s′(6)|s, r) Nf = f̂1+f̂1 d2+f̂2 (d1+d2−1)+f̂3 (d0+1)

2 d0+1+d1+d2

for sufficiently large l.
Condition (4) is equivalent to Nf Φ∼

t − Nf E(Φt) ≥ 6. This inequality can be
written in the following representation:

f̂1 d2+f̂1+f̂2+f̂3 (d0+1)
d0+1+d2

+2 f̂1 d2+f̂2+f̂3 (d0+1)
d0+1+d2

+2 f̂1−f̂2 (d1+d2−2)
2 d0+1+d1+d2

+ −f̂2 (d1+d2−2)
2 d0+1+d1+d2

= 3 f̂1 d2+f̂1+3 f̂2+3f̂3 (d0+1)
d0+1+d2

+ 2 f̂1−3 f̂2 (d1+d2−2)
2 d0+1+d1+d2

≥ 6.

If l tends to infinity then f̂3 − f̂2 ≥ 2 follows. This inequality is false since f̂2 > f̂3

is assumed.

Until now, we do not even have found a potential function in order to proof the
competitiveness of the Harmonic algorithm. So it remains an open question whether
the Harmonic algorithm is competitive or not in the case of the surplus-situation. Thats
why, we will introduce the new ”compound Harmonic algorithm” in the following sec-
tions and prove the same bound of the competitive ratio as Bartal and Grove.

Let PC denote the probabilities which are used by the compound Harmonic algo-
rithm. These probabilities are, finally, derived from a surrogate problem, where at most
one server must be moved in servicing the request in each step. In this way, the methods
of Bartal and Grove can be applied. In order to construct surrogate problems, we will
distinguish whether r is a multiple request on one point, this means ri > 0 for at most
one i, or not. In the second case we call r proper parallel request. (See for example
Figure 1). Furthermore, we can use ”blocking of servers” to compute PC . This concept
will be introduced in Section 3.2. There, we will also adapt the potential function (see
(10) and (11)) for the generalized k-server problem. The probabilities PC will be com-
puted as multi-step transition probabilities for each multiple request on one point and as
absorbing probabilities for proper parallel requests, respectively (Sections 3.3, 3.4). In
Section 3.5 the competitiveness of the compound Harmonic algorithm will be proved.

The k-Server Problem with Parallel Requests 615

step 1 step 2 · · ·
t

0 1 2
| | |

• 5 0 0
• 2 0 0
• 0 3 0 · · ·
• 0 0 3
• 0 0 2

M s0︸︷︷︸ r1︸︷︷︸ r2︸︷︷︸
servers’ posi- multiple proper

tions at the request on parallel
beginning one point request

Fig. 1. The generalized k-server problem: two cases of parallel requests

3.2 Blocking of servers and a corresponding k-server problem

In this section more than one server can be located on a point. For certain considerations
we will also use the same potential function as Bartal and Grove (see (10) and (11)).

(Example: If we have three points p1, p2 and p3 with the distances
d(p1, p2) = 1, d(p1, p3) = d(p2, p3) = 5 and the online servers’ positions are given by
s = (3, 0, 0), the offline servers’ positions by s̄ = (0, 2, 1) then
Φ(s, s̄) = f̂1 + f̂1 + (f̂1 + 0 ∗ f̂2 + 5 ∗ f̂3) if f̂3 <

4
5 f̂1.)

It is simple to prove the following property of this potential function:

Lemma 1. If si (> 0) online severs and s̄i (> 0) offline severs are located on point i
then the number of min{si, s̄i} online servers on point i are assigned to this number of
offline severs on point i for the computation of the potential function Φt(s, s̄) by means
of the minimum weight matching (see (10) and (11)).

Blocking of servers: Besides creating the request the adaptive online adversary can
additionally block the same number of online and offline servers on points in a step,
which are then not to be used in order to serve the request in this step.

Corresponding potential functions must be independent of blocking. Otherwise
Φt 6= Φ(t+1)−1 in general, where Φt is the potential function at the end of step t and
Φ(t+1)−1 is the potential function at the beginning of step t + 1, where some servers
could be blocked.

As basics for further considerations we introduce the following more specific k-
server problem. The term ”k-server problem with blocking” describes a k-server prob-
lem with the following three properties:

(i) More than one server can be located on a point.
(ii) The problem possesses the possibility of blocking of servers by the adversary.

(iii) The problem only contains request where at most one server must be moved in
servicing the request in each step. In more detail, a request r with one ri > 0 and
ri = bi+1, where bi is the number of blocked online and offline servers, is allowed.

616 Hildenbrandt

This also means that the probabilities which are implied by the Harmonic algorithm
are different to those for models without blocking:

PHb(i)
(s′|s, r) = 1/d(l0,i)∑

l:sl>bl

1/d(l,i) , where s′ : s′l =

{
sl − 1 if l = l0
sl otherwise .

A statement which is analogous with Lemma 1 in (Bartal and Grove, 2000) is also
valid:

Lemma 2. If there exists a potential function Φ, satisfying the properties (2), (3) and
(4) with respect to some randomized online algorithm for the corresponding k-server
problem with blocking then this algorithm is C(k)-competitive.

The proof is analogous to the proof in (Bartal and Grove, 2000). Merely the random
choices by the algorithm must also satisfy the conditions of blocking. 1

Now, we consider k-server problems with blocking only on the point where the
current request is placed by the adversary. Briefly speaking, k-server problems with
blocking on the request point.

Lemma 3. The Harmonic k-server algorithm applied to the k-server problem with
blocking on the request point is ((k + 1)(2k − 1)− k)-competitive against an adap-
tive online adversary.

The proof is similar to the proof in (Bartal and Grove, 2000). We use a potential
function as above. If bi online and offline servers are blocked on a point, then these
online and offline severs are assigned to each other for the computation of the potential
function by means of the minimum weight matching, which corresponds to Lemma 1.
The values of the scaling function f̂ and C(k) can be computed analogous to the proof
by Bartal and Grove.

Remark 1. The Harmonic k-server algorithm applied to the k-server problem with block-
ing, but not necessary on the request point, is also competitive against an adaptive online
adversary (for the proof see Appendix C). However, the bound of the competitive ratio,
proved in Lemma 3, cannot be shown for such a k-server problem.

3.3 The generalized k-server problem where a multiple request on one point is
allowed in each step

In the case of such problems the probabilities PC , which are used by the compound
Harmonic algorithm, and the proof of its competitiveness are derived from a surrogate
problem. That is a k-server problem which can be described by means of blocking on
the request point. In order to construct this problem we replace each step of the original
problem by a number of steps in the surrogate problem.

In more detail, let s be the online servers’ positions at the beginning of a step t and
let r with k > ri > min{1, si} and rj = 0 for j 6= i be a multiple request on point
i in the t-th step. Then we replace the t-th step of the generalized k-server problem by

1 Also in case of parallel requests such a lemma would be valid. However in order to use the
lemma, a corresponding potential function must be found.

The k-Server Problem with Parallel Requests 617

ri − si =: j̄ steps t1, t2, · · · , tj̄ of a corresponding k-server problem with blocking on
the request point i. More detailed, that means the request

r′j of the tj -th step is si + j on point i, j ∈ {1, 2, · · · , j̄} and si + j − 1
online and offline servers on point i are blocked in this step. (12)

See for example Figure 2.
If s′ denotes the online servers’ positions at the end of step t in case of such

a generalized k-server problem then several sequences (s′0, s′1, · · · , s′j̄) with s′j ∈
ÂN ;k(s′j−1, r′j) for j = 1, 2, · · · , j̄ exist in general, where s′0 = s, s′j̄ = s′ and s′j

denotes the online servers’ positions at the end of step tj .
Then the probabilities PC(s′|s, r) which will be defined for a multiple request on

one point are j̄-step transition probabilities. In more detail,

PC(s′|s, r) :=∑
{(s′1,s′2,··· ,s′j̄−1,s′)}

PHb(i)
(s′1|s, r′1) · PHb(i)

(s′2|s′1, r′2) · · · · PHb(i)
(s′|s′j̄−1, r′j̄),

(13)
where PHb(i)

(s′j |s′j−1, r′j) (j = 1, · · · , j̄, s′0 = s, s′j = s′) are be computed
according to the Harmonic algorithm with the blocked servers in mind:
If s′jl0 = s′j−1

l0
− 1 (l0 6= i) then

PHb(i)
(s′j |s′j−1, r′j) = 1/d(l0,i)∑

l:s
′j−1
l

>0

1/d(l,i) . (14)

step 1

step 11 step 12 step 13 · · ·
t

0 1
| | | |

• 5 0 0 0
• 2 0 0 0
• 0 1 B 2 B 3 · · ·
• 0 0 0 0
• 0 0 0 0

M s0 r′1 r′2 r′3 = r1

(B: blocking)

Fig. 2. Steps of the surrogate problem, which replace step 1 in Figure 1.

Lemma 4. The compound Harmonic algorithm applied to the generalized
k-server problem, where a multiple request on one point is allowed in each step, is
((k + 1)(2k − 1)− k)-competitive against an adaptive online adversary.

PROOF. In order to prove the statement, we consider on the one hand the given
generalized k-server problem, where a multiple request on one point is allowed in each

618 Hildenbrandt

step and on the other hand the surrogate problem with blocking on the request point (as
above introduced).

Without loss of generality, we can assume that the adversary moves the same servers
in the surrogate problem (sp) (in j̄ steps) as in the original problem (op) (in one step).
Then the expected values Eop[cost(adversary)(σ)] and Esp[cost(adversary)(σ′)] are
equal, where the request sequence σ′ of the surrogate problem is constructed according
to (12).

Eop[cost(compound Harmonic algorithm)(σ)] and
Esp[cost(compound Harmonic algorithm)(σ′)] are also equal because of (13).
Then the statement follows by means of Lemma 3. �

3.4 The generalized k-server problems with proper parallel requests

The probabilities PC , which are used by the compound Harmonic algorithm, and the
proof of Theorem 1 are again derived from a surrogate problem, which is in this case a
k-server problem where a multiple request on one point is allowed in each step. Similar
as above, each step of the original problem will be replaced by a number of steps in the
surrogate problem.

In more detail, let s denote the online servers’ positions at the beginning of a step t
and let r be a request in the t-th step with (w.l.o.g.){

ri > 0 for i = 1, · · · , N̄
ri = 0 for i = N̄ + 1, N̄ + 2, · · · , N , 2 ≤ N̄ ≤ N and

N∑
i=1

ri < k.

Then we replace the t-th step of the generalized k-server problem with proper paral-
lel requests by a number of steps t1, t2, · · · of a corresponding k-server problem where a
multiple request on one point is allowed. In more detail, the following request sequence
(r̄j)j=1,2,··· for the surrogate steps should be created:

r̄ji =

{
ri if j ≡ i mod(N̄)
0 otherwise . (15)

See for example Figure 3.
If s′ denotes the online servers’ positions at the end of step t in case of the general-

ized k-server problem then several sequences (s′0, s′1, s′2, · · · , s′j̄) with several length
j̄, s′j ∈ ÂN ;k(s′j−1, r̄j) for j = 1, 2, · · · , j̄ exist, where s′0 = s, s′j̄ = s′ and s′j

denotes the online servers’ positions at the end of step tj . If s′ji ≥ r̄j+1
i > 0 then the

corresponding surrogate step could be also omitted.
Such sequences represent realizations of a time-homogeneous Markov chain with

transient states (s′j−1, r̄j), absorbing states s′ ∈ ÂN ;k(s, r) and transition probabilities
PC(s′j , r̄j+1|s′j−1, r̄j) := PC(s′j |s′j−1, r̄j).

The probabilities PC(s′|s, r), s′ ∈ ÂN ;k(s, r) for proper parallel requests, which
are used by the compound Harmonic algorithm, are defined as absorbing probabili-
ties. Absorbing probabilities can be computed by means of linear systems, see e.g.
(Langrock and Jahn, Theorem 6.6 and the following Example 3). For this purpose all
states of the above mentioned Markov chains must be known and the corresponding
transition probabilities are the coefficients of these linear systems. The number of these

The k-Server Problem with Parallel Requests 619

states is finite. Furthermore ∑
s′∈ÂN;k(s,r)

PC(s′|s, r) = 1 (16)

is valid and the solutions of the linear systems are unique.
Clearly, if N̄ = 1 then the special case of a multiple request on one point is given

in the current step.

step 2

step 21 step 22 step 23 step 24 · · ·
t

1 2
| | | | | |

• 0 0 0 0
• 0 0 0 0
• · · · 0 0 0 0 · · · · · ·
• 3 0 3 0
• 0 2 0 2

M r̄1 r̄2 r̄3 r̄4

Fig. 3. Steps of the surrogate problem, which replace step 2 in Figure 1.

3.5 The compound Harmonic algorithm applied to the generalized k-server
problem

In general, the compound Harmonic algorithm uses more-step transition and absorbing
probabilities PC from Sections 3.3 and 3.4 instead of the probabilities PH (see (7)).

For the computation of the absorbing probabilities transient and absorbing states
of the corresponding Markov chain must be found (see Langrock and Jahn, Section 6).
This can be done according to following Algorithm 1.

In Example 3 we compute probabilities PC , used by the compound Harmonic algo-
rithm, and compare they with probabilities PH of the Harmonic algorithm.

Example 3 Let k = 4 and let the metric space M consist of 6 points p1, p2, · · · , p6 of
the two-dimensional Euclidean space with the distances
d(p3, p1) = 5, d(p4, p1) = 3, 85, d(p5, p1) = 1, 6, d(p6, p1) = 4, 5, d(p2, p1) = 2, 4
and d(p3, p2) = 4, d(p4, p2) = 5, d(p5, p2) = 2, 1, d(p6, p2) = 4, 55.

The current online servers’ positions are given by s = (0, 0, 1, 1, 1, 1)T

and the current (proper parallel) requests by r = (1, 1, 0, 0, 0, 0)T .
Then we have 6 feasible online servers’ positions with respect to s and r:

s′(1) = (1, 1, 0, 0, 1, 1)T , s′(2) = (1, 1, 0, 1, 0, 1)T , s′(3) = (1, 1, 0, 1, 1, 0)T ,
s′(4) = (1, 1, 1, 0, 0, 1)T , s′(5) = (1, 1, 1, 0, 1, 0)T , s′(6) = (1, 1, 1, 1, 0, 0)T .
Corresponding distances d̂(s, s′(i)), probabilities PH(s′(i)|s, r) (according to the

Harmonic algorithm) and PC(s′(i)|s, r) (according to the compound Harmonic algo-
rithm) can be found in Table 1.

620 Hildenbrandt

Table 1.

i 1 2 3 4 5 6
d̂(s, s′(i)) 7,85 5,60 8,50 2,95 8,40 6,15

PH(s′(i)|s, r) 0,1459 0,2045 0,1347 0,1924 0,1363 0,1862
PC(s′(i)|s, r) 0,0836 0,2504 0,0781 0,2582 0,0829 0,2466

.

PH(s′(i)|s, r) can be calculated according to (7) and d̂(s, s′(i)) by means of the clas-
sical transportation problem, see Section 2. For the computation of PC(s′(i)|s, r) see
Appendix D. We can observe that PC(s′(i)|s, r) < PH(s′(i)|s, r) for greater distances
d̂(s, s′(i)) and PC(s′(i)|s, r) > PH(s′(i)|s, r) for smaller d̂(s, s′(i)).

Theorem 1. The compound Harmonic algorithm applied to the generalized k-server
problems with parallel requests is ((k+ 1)(2k − 1)− k)-competitive against an adap-
tive online adversary in the case of the surplus-situation.

PROOF. In order to prove the statement, we consider on the one hand the given
generalized k-server problem with parallel requests and on the other hand the surro-
gate problem where a multiple request on one point is allowed in each step (as above
introduced).

Without loss of generality, we can assume that the adversary moves the same servers
in the surrogate problem (sp), in the first N̄ steps, as in the original problem (op) in one
step. Then the expected valuesEop[cost(adversary)(σ)] andEsp[cost(adversary)(σ′)]
are equal, where the request sequence σ′ of the surrogate problem is constructed accord-
ing to (15). We can use such surrogate sequences since (16) is valid.

By means of the triangle-inequality
Eop[cost(compound Harmonic algorithm)(σ)] ≤
Esp[cost(compound Harmonic algorithm)(σ′)] follows in general.

Then the application of Lemma 4 leads to the bound of the competitive ratio. �

Corollary 1. The compound Harmonic algorithm applied to the generalized k-server
problems with parallel requests r1, r2, · · · , rn, where rji ≤ 1 for any i, j and
N∑
i=1

rji ≤ k for any j, have the same competitive ratio as the Harmonic algorithm

applied to the (usual) k-server problems against an adaptive online adversary.

PROOF. Because of rji ≤ 1 for any i and j, sequences σ′ present request se-
quences for usual k-server problems and
Esp[cost(compound Harmonic algorithm)(σ′)]

= Esp[cost(Harmonic algorithm)(σ′)]. �

Remark 2. (i) In the case of unit distances, that means d(i, j) = 1 ∀ i 6= j, all
probabilities PC(s′|s, r) are the same for s′ ∈ ÂN ;k(s, r). Hence, PC(s′|s, r) =
PH(s′|s, r) and the compound Harmonic algorithm and the Harmonic algorithm
are identical.

The k-Server Problem with Parallel Requests 621

Algorithm 1: Computation of absorbing probabilities, step t
Data:
s: the (online) servers’ positions at the beginning of the t-th step
r: the request in the t-th step with (w.l.o.g.){

ri > 0 for i = 1, · · · , N̄
ri = 0 for i = N̄ + 1, N̄ + 2, · · · , N , 2 ≤ N̄ ≤ N and

N∑
i=1

ri < k.

; // Computation of the set of transient states ŜT , the set of

absorbing states Ŝ and of corresponding transition probabilities: 1

- 16

1 r̄ji :=

{
ri if j ≡ i mod(N̄)
0 otherwise

, j = 1, 2, · · · , i = 1, 2, · · ·N ;

2 ŜT1 := ∅, ŜT2 := ∅, · · · ;
3 if s1 ≥ r1, · · · , sj−1 ≥ rj−1 and sj < rj then ŜT := ŜTj := {s};
4 for j = 1, 2, · · · do
5 if ŜTj 6= ∅ then
6 find all s̃ ∈ {ÂN ;k(s′′, r̄j)|s′′ ∈ ŜTj};

7 for s̃ ∈ {ÂN ;k(s′′, r̄j)|s′′ ∈ ŜTj} do
8 if s̃j+1 ≥ rj+1, · · · , s̃j+l−1 ≥ rj+l−1 and s̃j+l < rj+l then
9 ŜTj+l := ŜTj+l ∪ {s̃};

10 ŜT := ŜT ∪ {(s̃, r̄j+l)};
11 compute PC(s̃, r̄j+l|s′′, r̄j) := PC(s̃|s′′, r̄j) according to (13);

12 if s̃ ∈ ÂN ;k(s, r) then
13 Ŝ := Ŝ ∪ {s̃};
14 compute PC(s̃|s′′, r̄j) according to (13);

15 if no new transient or absorbing state can be found then
16 Stop;

17 Compute PC(s′|s, r) for s′ ∈ ÂN ;k(s, r) as absorbing probabilities by means of a linear
systems, see e.g. (Langrock and Jahn, Theorem 6.6);

622 Hildenbrandt

(ii) For k-server problems with proper parallel requests we could also introduce another

compound Harmonic algorithm, where
N̄∑
i=1

(ri − si)-step transition probabilities

would be used instead of the absorbing probabilities, and where several servers on
several points must be blocked. Then the computation of such probabilities would
be more simple. Remark 1 would also imply the competitiveness of such an algo-
rithm, however with a weaker bound of the competitive ratio.

(iii) Another method to dealing with a multiple request on one point can be found in (N.
Bansal et al.), for example. There, such a point is replaced by k points at epsilon
distance. However, the complexity for the computation of absorbing probabilities
would then be very large.

4 Conclusion

In this paper we have considered a generalized k-server problem with parallel requests.
In the case of the surplus-situation it is difficult to answer the question whether a cor-
responding Harmonic algorithm is competitive or not against an adaptive online adver-
sary. At least we have given an example that the potential function which was introduced
by Bartal and Grove is not helpful to prove competitiveness. We have constructed the
compound Harmonic algorithm which is also a memoryless algorithm. We were able to
prove the same bound of the competitive ratio as for the Harmonic algorithm applied to
the (usual) k-server problem, see (Bartal and Grove, 2000). However, multi-step tran-
sition probabilities and absorbing probabilities must be computed by the compound
Harmonic algorithm. In the case of unit distances the Harmonic algorithm and the com-
pound Harmonic algorithm are identical.

References

Bansal, N., Buchbinder N., Naor J. (2010). Towards the randomized k-server conjecture: A
primal-dual approach. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 40-55.

Bartal, Y., Grove, E. (2000). The Harmonic k-Server Algorithm Is Competitive. Journal of the
ACM, 47 (1), 1-15.

Borodin A., El-Yaniv, R. (1998) Online computation and competitive analysis. University Press,
Cambrigde.

Hildenbrandt, R. (1995). Methoden aus ganzzahliger Optimierung und Verbandstheorie zur Be-
handlung eines stochastischen dynamischen Transportproblems. Habilitationsschrift, TU Il-
menau, (Libri BoD 2000).

Hildenbrandt, R. (2014). A k-server problem with parallel requests and unit distances. Informa-
tion Processing Letters 114(5), 239-246.

Koutsoupias, E., Papadimitriou, C. (1995). On the k-server conjecture. Journal of the ACM, 42(5),
971-983.

Langrock, P., Jahn, W. (1979) Einführung in die Theorie der Markovschen Ketten und ihre An-
wendungen. Teubner, Leipzig.

Manasse, M.S., McGeoch L.A., Sleator, D.D. (1988). Competitive algorithms for on-line prob-
lems. In: Proceeding of the 20th Annual ACM Symposium on Theory of Computing, pp. 322-
333 (Journal version).

The k-Server Problem with Parallel Requests 623

Raghavan P., Snir, M. (1989). Memory versus randomization in on-line algorithms. In: Proceed-
ing of the 16th ICALB, Vol. 372 of Lecture Notes in Computer Sciences, pp. 687 - 703.

Appendices

A Proof of (9) concerning Example 1

According to the Harmonic algorithm

h1
δ =

1

δ + 1
· δ +

δ

δ + 1
· 1 = 2 · δ

δ + 1
for δ = 1, 2, ... (A.1)

and a1
1 = 1, a1

δ = 0 for δ = 2, 3, ... (A.2)

follow. Using (A.1) and (A.2) recursion computations lead to

hl+1
δ = 1

δ+1 (δ + hl1) + δ
δ+1 (1 + hlδ+1) = 1

δ+1 (hl1 + δhlδ+1) + h1
δ (A.3)

al+1
δ = 1

δ+1 (al1 + δalδ+1) + a1
δ (A.4)

for δ = 1, 2,
At first we consider more general sequences (glδ)l=1,2,... with

gl+1
δ = 1

δ+1 (gl1 + δglδ+1) + g1
δ and any given g1

δ for δ = 1, 2,
We will show by mathematical induction that

glδ = g1
1

[
1
δ+1a

l−1
1 + δ

(δ+1)(δ+2) · a
l−2
1 + δ

(δ+2)(δ+3) · a
l−3
1 + · · ·+ δ

(δ+l−2)(δ+l−1)a
1
1

]
+ g1

2 · 1
2

[
1
δ+1a

l−2
1 + δ

(δ+1)(δ+2)a
l−3
1 + δ

(δ+2)(δ+3)a
l−4
1 + · · ·+ δ

(δ+l−3)(δ+l−2)a
1
1

]
+ g1

3 · 1
3

[
1
δ+1a

l−3
1 + δ

(δ+1)(δ+2)a
l−4
1 + · · ·+ δ

(δ+l−4)(δ+l−3)a
1
1

]
+
...

+ g1
l−2 · 1

l−2

[
1
δ+1a

2
1 + δ

(δ+1)(δ+2)a
1
1

]
+ g1

l−1 · 1
l−1

1
δ+1 · a

1
1

+ g1
δ

+ δ
δ+1g

1
δ+1 + δ

δ+2g
1
δ+2 + · · ·+ δ

δ+l−2g
1
δ+l−2 + δ

δ+l−1g
1
δ+l−1.

(A.5)
Using (A.1) and (A.2) formula (A.5) implies the specific equations

al1 = 1
2a
l−1
1 + 1

2·3 · a
l−2
1 + 1

3·4 · a
l−3
1 + · · ·+ 1

(l−1)la
1
1 + 1 (A.6)

624 Hildenbrandt

and

hl1 = 1
2a
l−1
1 + 1

2·3 · a
l−2
1 + 1

3·4 · a
l−3
1 + · · ·+ 1

(l−1)la
1
1 + h1

1

+ h1
2 · 1

2

[
1
2a
l−2
1 + 1

2·3a
l−3
1 + 1

3·4a
l−4
1 + · · ·+ 1

(l−2)(l−1)a
1
1

]
+ 1

2h
1
2

+

...

+ h1
l−2 · 1

l−2

[
1
2a

2
1 + 1

2·3a
1
1

]
+ h1

l−2 · 1
l−2

+ h1
l−1 · 1

l−1
1
2 · a

1
1 + h1

l−1 · 1
l−1

+ 1
l h

1
l

= al1 + 2 · 2
2·3 · a

l−1
1 + 2 · 3

3·4 · a
l−2
1 + · · ·+ 2 · l−1

(l−1)la
2
1 + 2 · l

l(l+1)a
1
1.

Thus

hl1 = al1 + 2 · 1
3 · a

l−1
1 + 2 · 1

4 · a
l−2
1 + · · ·+ 2 · 1

l a
2
1 + 2 · 1

l+1a
1
1. (A.7)

Proof of (A.5) by mathematical induction on l:
Induction basic: g2

δ = 1
δ+1 (g1

1 + δg1
δ+1) + g1

δ = 1
δ+1g

1
1 + g1

δ + δ
δ+1g

1
δ+1

corresponds to (A.5) for l = 2.
Induction step: If we replace gl1 and glδ+1 in gl+1

δ = 1
δ+1g

l
1 + g1

δ + δ
δ+1g

l
δ+1 by means

of (A.5) then the following equation follows

gl+1
δ = 1

δ+1g
1
1

[
1
2a
l−1
1 + 1

2 ·
1
3a
l−2
1 + · · ·+ 1

l−1
1
l a

1
1

]
+ 1
δ+1g

1
2

1
2

[
1
2a
l−2
1 + 1

2 ·
1
3a
l−3
1 + · · ·+ 1

l−2
1
l−1a

1
1

]
+
...
+ 1
δ+1g

1
l−2

1
l−2

[
1
2a

2
1 + 1

2·3a
1
1

]
+ 1
δ+1g

1
l−1 · 1

2 · a
1
1

+ 1
δ+1

[
g1

1 + 1
2g

1
2 + 1

3g
1
3 + · · ·+ 1

l g
1
l

]
+ g1

δ

+ δ
δ+1g

1
1

[
1
δ+2a

l−1
1 + δ+1

(δ+2)(δ+3)a
l−2
1 + · · ·+ δ+1

(δ+l−1)(δ+l)a
1
1

]
+ δ
δ+1g

1
2 · 1

2

[
1
δ+2a

l−2
1 + δ+1

(δ+2)(δ+3)a
l−3
1 + · · ·+ δ+1

(δ+l−2)(δ+l−1)a
1
1

]
+
...
+ δ
δ+1

1
g1
l−2

1
l−2

[
1
δ+2a

2
1 + δ+1

(δ+2)(δ+3)a
1
1

]

The k-Server Problem with Parallel Requests 625

+ δ
δ+1g

1
l−1

1
l−1 ·

1
δ+2 · a

1
1

+ δ
δ+1g

1
δ+1

+ δ
δ+1 (δ+1

δ+2g
1
δ+2 + δ+1

δ+3g
1
δ+3 + · · ·+ δ+1

δ+l g
1
δ+l).

If we reorganize the sum and use such partial sums as

(1
δ+1g

1
1

[
1
2a
l−1
1 + 1

2 ·
1
3a
l−2
1 + · · ·+ 1

l−1
1
l a

1
1

]
) + (1

δ+1g
1
1) = 1

δ+1g
1
1a
l
1,

(1
δ+1g

1
2

1
2

[
1
2a
l−2
1 + 1

2 ·
1
3a
l−3
1 + · · ·+ 1

l−2
1
l−1a

1
1

]
) + (1

δ+1
1
2g

1
2) = 1

δ+1g
1
2

1
2a
l−1
1

(and so on) then it follows that (A.5) is valid for l + 1.

Now, we will show the following properties of the sequence (al)l=1,2,...

(where al := al1 for l = 1, 2, · · ·):

(i) (al)l=1,2,... is strictly increasing. (A.8)

This property can be proved by a simple mathematical induction.
Clearly a1 = 1 < a2 = 3

2 according to (A.6).

al = 1
2a
l−1 + 1

2 ·
1
3a
l−2 + · · ·+ 1

l−1
1
l a

1 + 1 <

al+1 = 1
2a
l + 1

2 ·
1
3a
l−1 + · · ·+ 1

l−1
1
l a

2 + 1
l

1
l+1a

1 + 1

follows from al−1 < al, · · · , a2 < a3, a1 < a2.

(ii) The sequence (al − al−1)l=1,2,... is bounded. (A.9)

Firstly al+1 = 1
2a
l + 1

2 ·
1
3a
l−1 + 1

3 ·
1
4a
l−2 + · · ·+ 1

l−1
1
l a

2 + 1
l

1
l+1a

1 + 1

= 1
2a
l + 1

2a
l−1 − 1

3 (al−1 − al−2)− · · · − 1
l (a

2 − a1)− 1
l+1a

1 + 1.

Since al+1 > al it is necessary that 1
3 (al−1 − al−2) < 1 and thus

al−1 − al−2 < 3.
For l + 1 = 3, 4, 5, · · · we get a2 − a1 < 3, a3 − a2 < 3, a4 − a3 < 3, · · · .

(iii) lim
l→∞

al

al−1 = 1 (A.10)

follows from (A.8) and (A.9) in both cases that lim
l→∞

al exists or that

lim
l→∞

al =∞.

Finally we will show that lim
l→∞

hl

al
=∞.

According to (A.7) hl+1 = al+1 + 2
3a
l + 2

4a
l−1 + · · ·+ 2

l+2a
1.

Thus, h
l+1

al+1 = 1 + 2
3

al

al+1 + 2
4
al−1

al+1 + · · ·+ 2
l+2

a1

al+1

where
aj

al+1 = aj

aj+1 · a
j+1

aj+2 · · · · · al

al+1 (for j < l). (A.11)

626 Hildenbrandt

Let l + 1 − L be the number of terms aj

al+1 ≥ 1
3 (l ≥ j ≥ L). We will show that

l + 1− L tends to infinity if l tends to infinity.

Then hl+1

al+1 →∞ follows since these quotients are related to Harmonic series.

The properties (A.8) and (A.10) imply that

∀ ε > 0 ∃ L(ε) : 1 ≥ ai

ai+1 ≥ 1− ε ∀ i ≥ L(ε).

Using (A.11) we obtain that aj

al+1 ≥ (1− ε)l+1−j ∀ l ≥ j ≥ L(ε).

aj

al+1 ≥ aL(ε)

al+1 ≥ (1− ε)l+1−L(ε) ≥ 1
3 is valid if and only if

l + 1− L(ε) ≤ −ln3
ln(1−ε) .

If ε tends to 0 then −ln3
ln(1−ε) tends to infinity

and also the number of terms aj

al+1 ≥ 1
3 (l ≥ j ≥ L(ε)). �

B Completion of Example 2

Following configurations Ca(l), · · · , Ci(l) of the online and offline servers can oc-
cur if the corresponding requests r given by the adversary and the answers by the ad-
versary are as below:

Ca(l) : ON is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.
OFF is located on pi, pj , d0, d0 + d1.

r : one server on pq, q ∈ {1, 2, 3} \ {i, j},

answer by the adversary: the offline server on
{
pq−1 if q ∈ {2, 3}
p3 if q = 1

is moved.

(Ca(l) represents the initial configuration for l = 1, i = 1 and j = 2.)

Cb(l) : ON is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.
OFF is located on pi, pq, q ∈ {1, 2, 3} \ {i, j}, d0, d0 + d1.

r : one server on pq , no server is moved by the adversary.

Cc(l) : ON is located on p1, p2, p3, d0 + d1.
OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

r : one server on d0 + 1 and one server on d0 + d1 + d2,
answer by the adversary: the offline servers on d0, d0 + d1 are moved.

Cd(l) : ON is located on p1, p2, p3, d0.
OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

r : one server on d0 + d1, no server is moved by the adversary.

Ce(l) : ON is located on pi, i ∈ {1, 2, 3}, d0, d0 + d1, d0 + d1 − d3.
OFF is located on pj , pq, j, q ∈ {1, 2, 3} \ {i}, d0, d0 + d1.

r : one server on pj and one server on pq , no server is moved by the adversary.

Cf (l) : ON is located on pi, i ∈ {1, 2, 3}, d0, d0 + d1, d0 + d1 − d3.
OFF is located on pi, pj , j ∈ {1, 2, 3} \ {i}, d0, d0 + d1.

r : one server on pj , no server is moved by the adversary.

The k-Server Problem with Parallel Requests 627

Cg(l) : ON : is located on pi, pj , i, j ∈ {1, 2, 3}, d0 + d1, d0 + d1 − d3

OFF : is located on pi, pj , d0, d0 + d1

r : one server on d0, no server is moved by the adversary.

Ch(l) : ON is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1 − d3.
OFF is located on pi, pj , d0, d0 + d1.

r : one server on d0 + d1, no server is moved by the adversary.

Ci(l) : ON is located on p1, p2, p3, d0 + d1 − d3.
OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

r: one server on d0 and one server on d0 +d1, no server is moved by the adversary.

C Proof of the statement from Remark 1

The statement, that the Harmonic k-server algorithm applied to the k-server prob-
lem with blocking is competitive against an adaptive online adversary, can be shown
analogous to the proof in (Bartal and Grove, 2000). However, blocking of servers im-
plies other inequalities for the computation of the values of the scaling function. Then
another bound of the competitive ratio follows:

In Case 1, see (Bartal and Grove, 5. Analysis of the Step-Change in the Poten-
tial Function, p. 6 - 8) a path P (x) = {X1, · · · , Xl(x)} is considered. In relation to
k-server problems with blocking it could be that several offline servers from the set
{X1, · · · , Xl(x)−1} lie on the same point.

Let l′ be the number of blocked offline servers from the set {X1, · · · , Xl(x)−1}
(l′ ≤ l(x) − 1) and l′′ be the number of the remaining blocked offline servers then
k′ = k − l′ − l′′ is the number of non-blocked offline (and online) servers.

By reason of blocked servers we must replace the last inequality
j f(j) ≥ (k−j) f(j+1)+k on page 10 in (Y. Bartal and E. Grove), which corresponds
to j f̂j ≥ (k − j) f̂j+1 + k using our symbols, by

(j − l′) f̂j ≥ (k′ + l′ − j) f̂j+1 + k′ = (k − l′′ − j) f̂j+1 + k − l′ − l′′.
Since f̂j is increasing if l′′ is decreasing we must consider the above inequality for

l′′ = 0 in order to compute a bound of the competitive ratio.
(j − l′) f̂j ≥ (k − j) f̂j+1 + k − l′ (l′ ≤ j − 1) is equivalent to
f̂j ≥ k−l′

j−l′ (f̂j+1 + 1) − f̂j+1. If l′ = j − 1 then k−l′
j−l′ = k − j + 1 is the largest

possible factor.
We set f̂k = 1 and then the other values of the scaling function can be successively

calculated by means of the inequalities f̂j ≥ (k − j)(f̂j+1 + 1) + 1, j = k − 1, · · · , 1.
(Obviously, the values are greater than those in (Bartal and Grove).) Finally, C(k) =

k f̂1 +(k−1) f̂2 follows as in (Bartal and Grove, p. 9 and 10) by means of property (3).

D Computations relating to Example 3

If we want to compute absorbing probabilities PC(s′(i)|s, r) we need for the corre-
sponding Markov chains besides the states s =: s(0) and the absorbing states
s′(1), s′(2), · · · , s′(6) also the states

628 Hildenbrandt

s(1) = (1, 0, 1, 1, 1, 0)T , s(2) = (1, 0, 1, 1, 0, 1)T , s(3) = (1, 0, 1, 0, 1, 1)T ,

s(4) = (1, 0, 0, 1, 1, 1)T , s(5) = (0, 1, 1, 1, 1, 0)T , s(6) = (0, 1, 1, 1, 0, 1)T ,

s(7) = (0, 1, 1, 0, 1, 1)T , s(8) = (0, 1, 0, 1, 1, 1)T , which are transient states. 2

For example (s(0), s(2), s(6), s(2), s(6), s′(4)) is a realization of the time-homogeneous
Markov chain with the absorbing state s′(4), where the corresponding surrogate request
sequence (r̄j)j=1,2,··· is
((1, 0, 0, 0, 0, 0)T , (0, 1, 0, 0, 0, 0)T , (1, 0, 0, 0, 0, 0)T , (0, 1, 0, 0, 0, 0)T , (1, 0, 0, 0, 0, 0)T)
as described in Section 3.4

If we want to compute the absorbing probabilities PC(s′(i)|s, r) we need the (one-
step) transition probabilities. At first we give the matrix of transition probabilities from
the transient states s(0), s(1), · · · , s(8) into these transient states:

B =



0 1/d61

Nf

1/d51

Nf

1/d41

Nf

1/d31

Nf
0 0 0 0

0 0 0 0 0 1/d12

N4
f

0 0 0

0 0 0 0 0 0 1/d12

N3
f

0 0

0 0 0 0 0 0 0 1/d12

N2
f

0

0 0 0 0 0 0 0 0 1/d12

N1
f

0 1/d12

N8
f

0 0 0 0 0 0 0

0 0 1/d12

N7
f

0 0 0 0 0 0

0 0 0 1/d12

N6
f

0 0 0 0 0

0 0 0 0 1/d12

N5
f

0 0 0 0


where dij := d(pi, pj), Nf = 1/d61 + 1/d51 + 1/d41 + 1/d31,

N1
f = 1/d12 + 1/d62 + 1/d52 + 1/d42, N

5
f = 1/d21 + 1/d61 + 1/d51 + 1/d41,

N2
f = 1/d12 + 1/d62 + 1/d52 + 1/d32, N

6
f = 1/d21 + 1/d61 + 1/d51 + 1/d31,

N3
f = 1/d12 + 1/d62 + 1/d42 + 1/d32, N

7
f = 1/d21 + 1/d61 + 1/d41 + 1/d31,

N4
f = 1/d12 + 1/d52 + 1/d42 + 1/d32, N

8
f = 1/d21 + 1/d51 + 1/d41 + 1/d31.

B̄ is the matrix of transition probabilities from the transient states into the absorbing
states:

2 For this example the more detailed representation (s(l), r̄(·)), where r̄(1) = r̄j =
(1, 0, 0, 0, 0, 0)T for j = 1, 3, · · · and r̄(2) = r̄j = (0, 1, 0, 0, 0, 0)T for j = 2, 4, · · · of the
transient states is not necessary since these assignments are unique for each s(l): (s(0), r̄(1))
at the beginning, (s(1), r̄(2)), (s(2), r̄(2)) and so on.

The k-Server Problem with Parallel Requests 629

B̄ =



0 0 0 0 0 0
1/d52

N4
f

1/d42

N4
f

1/d32

N4
f

0 0 0
1/d62

N3
f

0 0 1/d42

N3
f

1/d32

N3
f

0

0 1/d62

N2
f

0 1/d52

N2
f

0 1/d32

N2
f

0 0 1/d62

N1
f

0 1/d52

N1
f

1/d42

N1
f

1/d51

N8
f

1/d41

N8
f

1/d31

N8
f

0 0 0
1/d61

N7
f

0 0 1/d41

N7
f

1/d31

N7
f

0

0 1/d61

N6
f

0 1/d51

N6
f

0 1/d31

N6
f

0 0 1/d61

N5
f

0 1/d51

N5
f

1/d41

N5
f



.

Finally, the absorbing probabilities can be computed by the following linear sys-
tems, see e.g. (Langrock and Jahn, Theorem 6.6).

u(j) = B u(j) + B̄(j)

with variables u(j)
i (i = 0, · · · , 8) and where B̄(j) is the j-th column of matrix B̄. The

solution value of u(j)
i is the absorbing probability of state s′(j) (j ∈ {1, · · · , 6}), if

the initial state of the corresponding Markov chain is s(i) (i ∈ {0, 1, · · · , 8}). Thus
u

(j)
0 = PC(s′(j)|s, r).

Author’s information

R. Hildenbrandt received a PhD degree as well a doctor habilitus degree from Ilmenau
Technical University and works now as a Privatdozent in the Optimization Department
on stochastic dynamic programming and online optimization.

Received January, 2016 , revised May 4, 2016, accepted June 13, 2016

