
A dissertation submitted to the
Fakultät für Informatik und Automatisierung

Technische Universität Ilmenau

Continuous Assessment
of Software Traceability

for the degree of
DOKTOR-INGENIEUR (DR.-ING.)

by

Dipl.-Wirt.-Inf.
Patrick Rempel

born December 15, 1978
in Weimar, Germany

accepted on the recommendation of
Prof. Dr.-Ing. Patrick Mäder (JP), TU Ilmenau
Prof. Dr.-Ing. habil. Armin Zimmermann, TU Ilmenau
Prof. Dr. Barbara Paech, Universität Heidelberg

Submitted: June 29, 2015
Defended: February 16, 2016

urn:nbn:de:gbv:ilm1-2016000257

Acknowledgment

I would like to thank my professor, Prof. Dr. Ilka Philippow, who provided me the
great opportunity to work and research at the Technische Universität Ilmenau. I am
also very thankful to Dr. Patrick Mäder for supervising my research work over the last
three years. His great passion for research in general, as well as for software engineering
and traceability in particular, was an enduring source of inspiration and motivation for
me. Furthermore, I would like to thank Prof. Dr. Barbara Paech for examining my
work and providing valuable feedback on an early version of the thesis. I also thank
Prof. Dr. Armin Zimmermann for examining my work.
I was funded for the last three years by the German Ministry of Education and

Research (BMBF): grants 16V0116 and 01IS14026B.
I want to thank all members of the Software Systems/Process Informatics Group at

the Technische Universität Ilmenau. Thanks to all my colleagues for providing such
a pleasant environment and valuable feedback on my research: Tobias Kuschke, Elke
Bouillon, Theodora Kickova, Steffen Lehnert, Qurat-Ul-Ann Farooq, Oswald Kowalsky,
Jana Wäldchen, Marco Seeland, Nedal Alaqraa, Stefan Wendler, and Nils Würfel. In
memoriam, I would like to thank Heiner Kotula for his technical and non-technical
support.
I would like to thank all participants of the empirical studies, which I conducted

throughout the last three years. Each of them spent a lot of time to share their deep
expertise in personal interviews or by filling comprehensive questionnaires. The research
presented in this thesis would have been impossible without the contributions of all these
experts.
My special thanks go out to my entire family. My parents provided support at any

given opportunity. My sister helped me with difficult decisions. Finally, and most
deeply, I thank Magdalena, Katharina, and Elisabeth for being so patient and modest.

iii

Abstract

Traceability is a critical element of any rigorous software development process. It is
required by numerous software lifecycle activities such as, for example, safety analysis,
change impact analysis, coverage analysis, and compliance verification. Safety guidelines
such as ISO 61508 and its domain specific derivatives explicitly require the implemen-
tation of software traceability.
Although the crucial importance of traceability is commonly acknowledged, software

development projects rarely follow explicit traceability strategies. Traceability is rarely
planned or systematically created but should rather be regarded as a desultory ad-
hoc effort. In result, existing traces are potentially of dubious quality but serve as
the foundation for high impact development decisions. To ensure that traceability is
trustworthy, the fitness for purpose of a project’s traceability implementation must be
thoroughly ascertained, especially within the context of safety-critical software. Assess-
ing the fitness for purpose is an intricate problem for several reasons. Depending on
the project specific traceability goals, different ways of traceability are applied within
multiple projects. The development of safety-critical software is subject to different
regulations with diverse provisions that need to be regarded.
This thesis will present an approach to systematically assess the fitness for purpose of

a project’s traceability implementation, comprising two parts. The first part supports
the planning of purposed traceability, which is a prerequisite for the traceability assess-
ment. Based on the planning results, the second part supports the actual assessments.
It defines an analytical traceability assessment model. This model provides a compre-
hensive classification of possible traceability problems and defines assessment criteria to
systematically detect these problems.
The results of a traceability experts survey suggest that proposed traceability problem

classification is complete and defines relevant assessment criteria. The proposed assess-
ment approach was applied in two studies. The study results indicate that the proposed
assessment provides support for multiple purposes. It can be used in order to determine
the feasibility of important software lifecycle activities and the cost effectiveness of a
project’s traceability implementation. Safety-critical software projects can be supported
with their safety argument. The compliance of projects’ traceability implementations
to safety guidelines can be determined.

v

Zusammenfassung

Die Nachvollziehbarkeit von Anforderungen ist wichtiges Qualitätsmerkmal der Soft-
wareentwicklung. Für eine Vielzahl von Softwareentwicklungsaktivitäten ist die Nach-
vollziehbarkeit von Anforderungen eine notwenige Voraussetzung. Dazu gehören unter
anderem die Analyse funktionaler Sicherheit, die Einflussanalyse, die Analyse des Ab-
deckungsgrades oder die Compliance. Für die Entwicklung sicherheitskritischer Softwa-
resysteme ist dieses Qualitätsmerkmal von besonderer Bedeutung. Daher wird dieses
von entsprechenden Richtlinien zur Entwicklung sicherheitskritischer Software explizit
vorgeschrieben.
Obwohl die Relevanz der Nachvollziehbarkeit in Softwareprojekten allgemein bekannt

ist, findet nur in wenigen Fällen eine systematische Planung zur Erreichung dieses Quali-
tätsmerkmals Anwendung. Häufig wird Nachvollziehbarkeit erst nachträglich umgesetzt.
Daraus resultieren oft unvollständige Implementierungen der Nachvollziehbarkeit, die
trotzdem als Grundlage für schwerwiegende Entscheidungen herangezogen werden. Aus
diesem Grunde sollten die entsprechenden Implementierungen einer eingehenden Prü-
fung unterzogen werden, besonders im Rahmen der Entwicklung sicherheitskritischer
Systeme. Dazu sind jedoch eine Vielzahl von Herausforderungen zu meistern. Zum einen
hängt die Nachvollziehbarkeit von den projektspezifischen Zielen ab. Bei sicherheitskri-
tischen Systemen müssen oft Vorgaben aus Richtlinien erfüllt werden. Auch die Nutzung
der Nachvollziehbarkeit ist sehr stark von den jeweiligen Zielen abhängig.
In dieser Arbeit wird ein Ansatz zur systematischen Prüfung von Softwareprojekten

im Hinblick auf deren Nachvollziehbarkeit der Anforderungen vorgeschlagen. Eine not-
wendige Voraussetzung für den Prüfansatz ist die präzise Planung und Definition der
Nachvollziehbarkeit von Anforderungen in einem Softwareprojekt. Daher wird im Rah-
men dieser Arbeit ein entsprechender Planungsansatz präsentiert. Weiterhin wird ein
analytisches Modell zur systematischen Prüfung der Nachvollziehbarkeit in Software-
projekten präsentiert. Dieses Modell umfasst eine vollständige Klassifikation möglicher
Fehlertypen. Außerdem werden Kriterien zur systematischen Erkennung dieser Fehler
vorgeschlagen.
Die Ergebnisse einer Expertenbefragung bestätigen die Vollständigkeit des analyti-

schen Prüfmodells. Zudem wurde der vorgeschlagene Ansatz zur systematischen Prü-
fung der Nachvollziehbarkeit von Anforderungen in zwei Studien evaluiert. Dabei konnte
der Nutzen des Ansatzes für die Entwicklung von sicherheitskritischer und nicht sicher-
heitskritischer Software nachgewiesen werden.

vii

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. Contributions . 3
1.3. Thesis Outline . 4

2. Software Traceability 7
2.1. Fundamentals . 7
2.2. Traceability Characteristics . 9
2.3. Traceability Lifecycle . 11
2.4. Traceability Research Issues . 12
2.5. State of the Art . 13

2.5.1. Empirical Work on Traceability Problems 14
2.5.2. Definitional Approaches . 15
2.5.3. Anticipatory Approaches . 15
2.5.4. Analytical Approaches . 16

2.6. Critique of the State of the Art . 18

3. The Traceability Assessment Approach 21
3.1. Traceability Assessment Challenges . 21

3.1.1. Purposed . 21
3.1.2. Trusted . 22
3.1.3. Automation . 23

3.2. Characterizing Traceability Implementations 23
3.3. Overview of the Assessment Approach 26
3.4. Usage Scenarios of Traceability Assessment 27

4. Planning for Purposed Traceability 31
4.1. Identifying Traceability Requirements 31

4.1.1. A Model for Traceability Requirements 32
4.1.2. Identifying Software Lifecycle Related Goals 35
4.1.3. Identifying Goal Specific Activities 36
4.1.4. Identifying Goals that Require Traceability 37
4.1.5. Identifying Traceability Implementation Activities 38

ix

Contents

4.2. Identifying Required Traceability Information 39
4.2.1. A Model for Required Traceability Information 40
4.2.2. Identifying Required Trace Path Types 42
4.2.3. Identifying Required Trace Link Types 44

4.3. Justifying the Purpose of Required Trace Link Types 45
4.4. Summary . 47

5. Assessing the Fitness for Purpose of Implemented Traceability 49
5.1. A Traceability Assessment Model . 50
5.2. Quality Attributes of a Purposed Traceability Implementation 52
5.3. Assessable Traceability Implementation Properties with Respect to Pur-

posed Traceability . 53
5.4. Traceability Problems . 57

5.4.1. Problems Related to the Completeness 57
5.4.2. Problems Related to the Appropriateness 60
5.4.3. Problems Related to the Correctness 64

5.5. Dependencies Among the Traceability Problems 67
5.6. Performing a Traceability Assessment 70

5.6.1. Step 1: Collecting Traceability Implementation Data 70
5.6.2. Step 2: Extracting Types from Implemented Traceability Data . 72
5.6.3. Step 3: Mapping Implemented Traceability Data to Required

Traceability Information . 74
5.6.4. Step 4: Assessing the Implemented Traceability Data 74

5.7. Summary . 77

6. Tool Support for Continuous Traceability Assessment 79
6.1. The Purpose Induced Software Traceability Assessor (PurISTA) Prototype 79

6.1.1. Traceability Store . 80
6.1.2. Traceability Planner . 82
6.1.3. Traceability Collector . 82
6.1.4. Traceability Browser . 84
6.1.5. Traceability Assessor . 85

6.2. Summary . 87

7. Evaluation 89
7.1. Research Questions . 89
7.2. Study 1: Traceability Assessment Model 91
7.3. Study 2: Value Driven Traceability Implementations 93
7.4. Study 3: Regulated Traceability Implementations 97
7.5. Study 4: Traceability Assessment Results 101

x

Contents

7.6. Discussion . 106
7.6.1. Research Question 1: Relevance 106
7.6.2. Research Question 2: Completeness 107
7.6.3. Research Question 3: Feasibility of Software Lifecycle Activities . 108
7.6.4. Research Question 4: Cost-effective Implementation 109
7.6.5. Research Question 5: Compliance 109
7.6.6. Research Question 6: Migration 110
7.6.7. Research Question 7: Continuous Assessment 110
7.6.8. Limitations . 110

7.7. Threats to Validity . 111
7.7.1. Construct Validity . 112
7.7.2. External Validity . 112
7.7.3. Internal Validity . 112
7.7.4. Reliability . 113

8. Conclusions and Outlook 115
8.1. Summary . 115
8.2. Future Work . 116

List of Figures 119

List of Tables 123

Bibliography 125

A. Evaluation Material of Study 1 137

B. Evaluation Material of Study 2 141

xi

1. Introduction

The emerging Internet of Things (IoT) paradigm is advocating the interconnectedness
of devices by applying the interaction model of the World Wide Web. Analysts forecast
that the number of IoT devices will grow to 26 billion units in 2020 [Middleton et al.
2013]. The global embedded systems market, which was valued at USD 140.32 billion
in 2013, is expected to grow at a Compound Annual Growth Rate (CAGR) of 6.3%
to USD 214.39 billion in 2020. The segment of embedded software is even expected to
grow at a CAGR of 8.1% between 2014 and 2020 [Grand View Research 2014]. Analysts
also forecast that developing embedded software for safety critical systems will become
increasingly important over the next years [Grand View Research 2014].
One important aspect of developing safety critical software is the compilation of a

safety case to argue that the developed system is safe for use [Zeller et al. 2014]. The
safety argument needs to demonstrate that all safety risks have been identified and how
exactly they have been mitigated. In practice, traceability is considered an important
mean to support those safety arguments [Kelly 1999], because it provides the “ability to
describe and follow the life of a requirement in both forwards and backwards direction”
[Gotel and C. Finkelstein 1994]. This ability can be used to efficiently demonstrate that
all safety requirements have been validated, satisfied, and realized, and that their origin
is documented [Rierson 2013].
Besides supporting the safety argument for the development of safety-critical soft-

ware, traceability is considered a “critical element of any rigorous software development
process” [COEST 2015]. It provides support for numerous software engineering activ-
ities such as, for example, change impact analysis, coverage analysis, and compliance
verification. Change impact analysis activities are essential for the software change
process. The analysis results can be used to determine the software artifacts that are
impacted by a planned change [von Knethen 2002]. Furthermore, selecting relevant test
cases for regression tests can effectively be supported [Briand et al. 2002]. Coverage
analysis activities provide insights on the completion status of a software system under
development. For example, the analysis results can be used to determine whether or
not a specific requirement artifact is covered by appropriate test artifacts [Lormans and
van Deursen 2005]. It is also used to monitor a system’s overall requirements coverage
[Kirova et al. 2008]. Activities to verify the compliance of software artifacts with reg-
ulatory codes improve the accountability of the developed system [Breaux et al. 2006;
Cleland-Huang et al. 2010].

1

1. Introduction

The fact that traceability provides several effective means to support the safety ar-
gument for safety-critical software systems, shows its high importance for the devel-
opment of embedded systems. However, the variety of software engineering activi-
ties, where traceability is useful for the quality of the developed system, shows that
its relevance is not limited to the safety domain. This practical relevance is also re-
flected by the fact that traceability is explicitly demanded by safety guidelines [IEC
61508:2010; DO-178C; ISO 26262-6:2011; ECSS 2009], software quality models [Mc-
Call et al. 1977; Davis et al. 1993], software engineering standards [ISO/IEC/IEEE
12207:2008; ISO/IEC/IEEE 29148:2011], and software development maturity frame-
works [ISO/IEC 15504:2004; CMMI-DEV 2006].

1.1. Motivation

Although the crucial importance of traceability is commonly acknowledged, software
development projects rarely follow explicit traceability strategies [Mäder et al. 2009b].
Instead, traceability in current software development practices is rarely planned or sys-
tematically created but rather a desultory ad-hoc effort and often implemented as an
afterthought [Rempel et al. 2013; Mäder et al. 2013]. Besides, traceability is mostly
implemented by humans who make mistakes that often remain undetected [Hayes and
Dekhtyar 2005; Regan et al. 2012]. Leading to situations where implemented traceabil-
ity is far away from being suitability for its originally intended purpose [Mäder et al.
2013].
To mitigate this lack of appropriate traceability practices, software engineering guide-

lines were developed by standardization organizations and certification authorities. Gen-
eral purpose software development guidelines (e.g., [CMMI-DEV 2006; ISO/IEC/IEEE
12207:2008; ISO/IEC/IEEE 29148:2011]) as well as guidelines for the development of
safety-critical systems (e.g., [IEC 61508:2010]) provide traceability recommendations
for practitioners. Some safety domains even developed domain-specific guidelines (e.g.,
avionics: [DO-178C], space: [ECSS 2009], automotive: [ISO 26262-6:2011], railway:
[CENELEC 2011], medical: [FDA 2002]) to address their particular needs. Although
these guidelines were created to support practitioners, organizations in practice struggle
to implement accurate and complete sets of trace links [Rempel et al. 2013; Mäder et al.
2013; Rempel et al. 2014]. An analysis of the traceability information submitted by
various organizations to the US Food and Drug Administration (FDA) as part of the
medical device approval process in the United States showed a significant traceability
gap between the traceability expectations as laid out in the FDA’s “Guidance for the
Content of Premarket Submissions for Software Contained in Medical Devices” [FDA
2002], and the traceability data documented in the submissions [Mäder et al. 2013].
While all submissions attempted to satisfy the FDA’s traceability guidelines, serious
deficiencies were found in almost all the submissions in terms of missing traceability

2

1.2. Contributions

paths, missing and redundant trace links, and problems in trace granularity, which
made it very difficult to understand the rationale for individual links. The criticality of
software engineering activities (e.g., safety argument, change impact analysis) that are
conducted in practice with incomplete traceability data gives cause for concerns.
All these observations in current industrial practice suggest that there is a gap be-

tween required and implemented traceability. This traceability gap demands for ad-
equate traceability assessments to detect these gaps [Merilinna and Pärssinen 2010].
Researchers argue that traceability must be purposed and trusted [Cleland-Huang et al.
2014]. However, they also stated that these goals remain a challenge, which has not
yet been achieved. Since traceability is subject of gradual decay with the evolution of a
software system, the fitness for purpose of a project’s traceability implementation needs
to be assessed in a continuous and timely manner. In fact, the European Open-DO ini-
tiative [Comar et al. 2009], actively seeks to address the Big Freeze problem in which the
significant cost and effort of the assessment and certification process makes it difficult to
introduce change once the product is certified. The initiative urges for the integration
of continuous assessments into the development process of safety-critical software.
It can be concluded that current practice lacks effective methods to assess the quality

of traceability implementations. More systematic manners to detect existing existing
traceability gaps are yet to be found. Further, the Big Freeze problem demands for
automated techniques, allowing traceability assessments in a continuous manner.

1.2. Contributions

To address the lack of effective traceability assessment methods in today’s practice, a
novel traceability assessment approach will be presented in this thesis. Therefore, five
main contributions will be made. Each of the contributions will be separately discussed
in the following:

1. An analytical Traceability Assessment Model (TAM), essential to the pro-
posed assessment approach, will be presented in this thesis. It provides means
to assess a project’s traceability implementation for its fitness for purpose. The
model defines quality attributes that are relevant for a traceability implementa-
tion’s fitness for purpose. Further, the TAM provides generalized definitions, how
these abstract quality attributes can be applied to a concrete traceability data of
a software system.

2. A comprehensive classification of atomic traceability problems will be pro-
vided as an integral part of the analytical TAM. Each atomic problem represents
a specific type of shortcomings of traceability implementations that indicate the
existence of a traceability gap. For each problem, generalized assessment rules will

3

1. Introduction

be presented. These rules are abstracted from concrete rule languages and devel-
opment project specific concepts to ensure universal applicability of the assessment
rules.

3. A traceability assessment tool was prototypically implemented to address the
Big Freeze problem. The prototype allows the automatic execution of traceability
assessments. It enables scenarios where the assessment of a project’s traceabil-
ity implementation is triggered by changes to software artifacts in a continuous
manner.

4. Traceability requirements can vary, depending on the project specific goals. There-
fore, a clear specification of a project’s traceability requirements is a prerequisite
for assessing the fitness for purpose of its traceability implementation. This thesis
will present a purpose-oriented traceability planning approach to support
the specification of traceability requirements. The output of the proposed planning
approach is precisely defined by a meta-model.

5. The presented assessment approach has been qualitatively and quantitatively
evaluated for its industrial applicability. Extensive interviews have been con-
ducted with subjects from 17 industry partners. Feedback has been collected from
12 traceability experts on the TAM and its traceability problem classification.
The automated assessment approach was applied to the development artifacts of
four safety-critical software projects. Feedback has been collected from 17 safety-
project participants and safety certifiers on the produced assessment results.

1.3. Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Software Traceability. This chapter sets the context of this thesis
and establishes the research baseline. Fundamental elements and concepts of software
traceability are introduced. The current state of the art is discussed with respect to the
goals trusted and purposed. Finally, a critique of the current state of the art is provided,
which identifies shortcomings of existing traceability approaches.

Chapter 3: The Traceability Assessment Approach. This chapter outlines a
novel traceability assessment approach to remedy the identified shortcomings of existing
approaches. Explicit challenges are derived from the critique of the state of the art.
Additionally, general characteristics of traceability implementation data are discussed,
which are relevant for the traceability assessment approach. Further, possible usage
scenarios are envisioned to motivate the relevance of the proposed assessment approach.

4

1.3. Thesis Outline

The proposed assessment approach consists of two parts. Each part is introduced in a
separate chapter.

Chapter 4: Planning for Purposed Traceability. This chapter presents the first
part of the proposed traceability assessment approach. To assess the fitness for purpose
of a project’s traceability implementation, a precise definition of the required traceability
information is needed. Therefore, a goal-oriented planning approach is presented, which
derives a definition of required traceability information from project specific traceability
goals.

Chapter 5: Assessing the Fitness for Purpose of Implemented Traceability.
This chapter presents the second and core part of the traceability assessment approach.
Relevant quality attributes are identified and defined to characterize the abstract fitness
for purpose concept and to specify assessable properties. Further, a comprehensive
traceability problem classification is provided.

Chapter 6: Tool Support for Continuous Traceability Assessment. This chap-
ter describes to a prototypical tool implementation that supports the proposed trace-
ability assessment approach. Main purpose of this prototype is to support the automatic
execution of traceability assessment in a continuous and timely manner.

Chapter 7: Evaluation. This chapter discusses three studies that have been con-
ducted to evaluate the proposed traceability assessment approach. First, in an interview
study with 17 software companies, the applicability of the first part of the assessment
approach was evaluated. Second, a questionnaire study with 13 traceability experts
has been conducted to evaluate the traceability problem classification with respect to
it’s completeness and level of importance. Third, a case study with four safety criti-
cal software projects has been conducted to evaluate the applicability of the proposed
assessment approach. Required traceability was derived from three different safety stan-
dards through the proposed traceability planning approach. For the case study results,
additional qualitative feedback has been collected from 17 safety project participants
and certifiers. A discussion of potential threats to validity is provided and how these
threats were mitigated.

Chapter 8: Conclusions and Outlook. This chapter concludes this thesis by sum-
marizing its important findings and contributions. Based on the results of this thesis,
possible future work is outlined.

Appendix A: Evaluation Material of Study 1. This appendix provides the evalu-
ation material that was created for the second study.

5

1. Introduction

Appendix B: Evaluation Material of Study 2. This appendix provides the evalua-
tion material that was created to collect qualitative feedback from certifiers and project
participants in the third study.

6

2. Software Traceability

Traceability is an essential quality within the context of software system development.
Already in the in the late seventies of the last century, software quality models em-
phasized the importance of traceability for any rigorous software development process
[McCall et al. 1977]. One reason for its importance is the variety of software engineering
activities, which are supported by traceability. It supports software engineering activ-
ities such as, for example but not limited to, safety analysis, change impact analysis,
compliance verification, and coverage analysis. Although, the importance of traceabil-
ity was recognized so long time ago, it is still subject of extensive research aiming to
improve existing challenges that have not yet been solved satisfactorily [Cleland-Huang
et al. 2014].
To summarize the context of this thesis, traceability related concepts and the state

of the art are presented in this chapter. Section 2.1 defines fundamental traceability
elements. Section 2.2 discusses important traceability dimensions. In Section 2.3, an
overview of the traceability lifecycle is provided. Traceability research issues are dis-
cussed in Section 2.4. Section 2.6 provides a critical discussion of the existing state of
the art and identifies problems of the existing approaches that need to be addressed.

2.1. Fundamentals

Traceability is at the most fundamental level the “potential to relate data that is stored
within artifacts of some kinds, along with the ability to examine this relationship” [Gotel
et al. 2012b]. Originally, traceability was defined as “the ability to describe and follow the
life of a requirement, in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and use, and
through all periods of on-going refinement and iteration in any of these phases)” [Gotel
and C. Finkelstein 1994]. This definition has a very requirements centric perspective.
Hence, the more general traceability definition is used in this thesis, which is provided
in [COEST 2015a]. The authors define traceability in the following way:

Definition 1 (Software traceability). The ability to interrelate any uniquely identifiable
software engineering artifact to any other, maintain required links over time, and use the
resulting network to answer questions of both, the software product and its development
process.

7

2. Software Traceability

According to this definition, the following two main building blocks of traceability
can be derived: artifact and trace link. The term artifact refers to any work product
that is created throughout the software lifecycle. Within the context of the Rational
Unified Process (RUP), artifacts are defined as “a piece of information that is produced,
modified, or used by a process” [Kroll and Kruchten 2003]. Since this definition has a
process centric perspective, the following more general definition of the term artifact is
provided for this thesis:

Definition 2 (Artifact). An artifact refers to any output, whether final or not, that is
produced or maintained by any activity throughout the entire software lifecycle.

As described above, the term trace link is the second building block of traceability.
It refers to a concept that interrelates two artifacts. As defined in [Gotel et al. 2012b],
a trace link is a “single association forged between two [..] artifacts, one comprising
the source artifact and one comprising the target artifact”. The definition implies that
a trace link has a direction indicating from where (origin) to where (destination) the
trace link is established [Cleland-Huang et al. 2003].

Source
artifact

Target
artifact

Bidirectional trace link

Figure 2.1.: Directed trace link between two artifacts, a source and a target artifact,
that supports bi-directional traversal (adapted from [Gotel et al. 2012b])

As exemplified in Figure 2.1, the artifact from which the depicted trace link is orig-
inated holds the role source, and the artifact, to which the trace link directs, holds
the role target. Explicitly stating a source and target of a trace link ensures that the
semantics of the directionality are clear [Gotel et al. 2012b]. However, traceability is
commonly considered to be bidirectional [Gotel and C. Finkelstein 1994], which means
that a trace link can potentially be traversed in both forward and reverse direction
[Wieringa 1995]. In consideration of these aspects, the term trace link is defined in this
thesis as follows:

Definition 3 (Trace Link). A trace link is a directed association established between two
artifacts, the originating artifact that holds the role source and the destination artifact
that holds the role target. A trace link can be traversed in both, forward and reverse
direction.

Traceability is established through the creation of trace links. An artifact is traceable
if it is associated to one or many other artifacts via a trace link. Trace links typically form

8

2.2. Traceability Characteristics

a traceability network, as emphasized in the software traceability definition (see Defini-
tion 1). The Oxford Dictionary [Stevenson 2010] defines a network as “an arrangement
of intersecting horizontal and vertical lines” and “a group or system of interconnected
people or things”. Within the context of traceability, it is a common approach to rep-
resent networks of trace links as a traceability graph [S. Pfleeger and S. Bohner 1990;
S. A. Bohner 1995; F. Pinheiro and Goguen 1996; Ramesh 1997; Ramesh and Jarke
2001; Egyed 2001; Vanhooff et al. 2007; Cleland-Huang et al. 2009; J. I. Maletic and
Collard 2009; Schwarz et al. 2010]. Accordingly, the concept of a traceability graph is
defined as follows for this thesis:

Definition 4 (Traceability Graph). A traceability graph models and formally describes
the system of traceable artifacts that are interconnected through trace links. The trace-
ability graph consists of a set of vertices and a set of edges. A vertex of the traceability
graph represents a traceable artifact. An edge of the traceability graph represents a trace
link.

A fundamental concept of graph theory are paths. A path is a finite non-null sequence,
whose terms are alternately vertices and edges [Bondy and Murty 1976]. The edges and
the vertices of a path are distinct. The length of a path is represented by the number
of its edges, which is larger or equal than one. Accordingly, a specific trace path for a
traceability graph is defined as follows:

Definition 5 (Trace Path). A trace path is a relation between two traceable artifacts,
the originating artifact that holds the role source, and the destination artifact that holds
the role target. Thereby, the trace path consists of a sequence one to many distinct trace
links such that any pair of adjacent trace links within the sequence is associated to one
common artifact.

2.2. Traceability Characteristics

Depending on the types of traceable artifacts that are related through a trace link, ver-
tical and horizontal traceability relationships are distinguished in literature [S. Pfleeger
and S. Bohner 1990; Lindvall and Sandahl 1996; Pohl 2010]. Vertical traceability refers
to trace links between artifacts of the same type such as, for example, a trace link be-
tween two requirement artifacts. Horizontal traceability refers to trace links between
artifacts of different types such as, for example, a trace ink between a requirement and
a design artifact.
Specifying a trace link’s source and target ensures that the semantics of the direction-

ality are clear [Gotel et al. 2012b]. However, researchers argue that trace links should
be usable bidirectional [Ramesh and Edwards 1992; Gotel and C. Finkelstein 1994].
Bidirectional traceability describes the ability to follow a trace link in both, forward

9

2. Software Traceability

and backward directions. Accordingly, forward traceability refers to following a trace
link from the source to the target artifact. Backward traceability refers to the opposite.
Another dimension of traceability is the representation of trace links. In particular,

traceability can either be represented explicitly or implicitly. Explicit traceability refers
to a persistent storage of trace links. Over the years, researchers and industrial prac-
tice have proposed and tested a variety of trace link representation. Commonly used
representations of explicit traceability are the following.

• References. Trace links are created through textual references [Lindvall and San-
dahl 1996]. Thereby, the source artifact is annotated with a text that refers to a
target artifact. These textual references are typically used in textual documents.
A drawback of textual references is that these trace links can only be used bidirec-
tionally if both, the source and the target are annotated with textual references.

• Hyperlinks. Trace links are created through hypertext references [Ebner and
Kaindl 2002]. It better supports traceability users with the navigation between
traceable artifacts.

• Traceability matrix - each row and each column of the matrix represents a traceable
artifact [Jönsson and Lindvall 2005]. Trace links are created by putting a mark
on the intersect of two traceable artifacts. Thus, traceability matrices unify the
source and the target artifacts of all trace links in one holistic view and enable
bidirectional traceability usage [Watkins and Neal 1994].

• Traceability repositories. Researchers argue that traceability should be imple-
mented by means of an explicit registration of the artifacts and their links in a
traceability repository [F. A. C. Pinheiro 2004]. These traceability repositories
enable a holistic view to the complete software lifecycle [Mäder et al. 2008]. How-
ever, especially in projects with a heterogeneous artifact and tool landscape, the
vision of a unified traceability repository requires enormous effort [Arkley et al.
2002].

Implicit traceability refers to relations that are not explicitly materialized through
trace links. Thereby, implicit knowledge about artifact dependencies is used. Using
implicit traceability reduces the number of trace links that needs to be created explicitly.
In the past, different sources were used for mining implicit traceability relations [Lindvall
and Sandahl 1996; Bianchi et al. 2000; Mäder et al. 2007]. The authors leveraged name
tracing, system or domain knowledge, and structural dependencies.

• Name tracing. It derives implicit relations from artifacts with similar names.
This approach assumes a coherent artifact naming strategy and its consistent
implementation.

10

2.3. Traceability Lifecycle

• System or domain knowledge. Experienced software engineers can use their expert
knowledge about the system or domain, in order to infer artifact relations, which
are not specified explicitly. The downside of this approach is that the knowledge
cannot easily be transfered to other stakeholders.

• Structural dependencies. It derives implicit relations from artifact model defini-
tions that specify structural dependencies. Definitions of the Rational Unified
Process (RUP), for example, were used to infer implicit trace links in [Mäder et
al. 2007].

It is important to notice that the characteristics of traceability vary across multiple
projects, depending on factors such as the implemented software process, used tools and
technologies, and the software lifecycle orchestration.

2.3. Traceability Lifecycle

A software project’s traceability implementation, materialized as a traceability graph,
runs through a traceability lifecycle, which is embedded within the comprehensive soft-
ware lifecycle. In the past, various models were suggested to classify the traceability
lifecycle activities [von Knethen and Paech 2002; F. A. C. Pinheiro 2004; Heindl and
Biffl 2006; Mäder 2010; Winkler and von Pilgrim 2010; Gotel et al. 2012b; Cleland-
Huang et al. 2014]. The authors distinguish the three activities traceability planning,
traceability implementation, and traceability usage.

Traceability lifecycle

Software lifecycle

Traceability
planning

Traceability
usage

Traceability
implementation

Traceability
creation

Traceability
maintenance

governs enables

supports

Figure 2.2.: Overview of the traceability lifecycle activities and their sub-activities

1. Traceability planning. It refers to the activity where a project specific traceability
implementation is strategically planned. Initially, the stakeholders’ traceability

11

2. Software Traceability

related needs are identified, because “determining needs [..] is a precursor to any
discussion about trace artifacts, trace links and mechanism“ [Gotel et al. 2012a].

2. Traceability implementation. It refers to the activity where trace links are imple-
mented to establish a traceability graph. The traceability implementation consists
of two sub-activities traceability creation and traceability maintenance. The first
sub-activity is concerned with creating trace links to produce traceable artifacts.
The second sub-activity is concerned with maintaining existing trace links to keep
the traceability graph updated, in accordance with the ongoing software evolution.

3. Traceability usage. It refers to the activity where the implemented trace links are
used to answer questions related to the software and its development process.

Figure 2.2 provides an overview of the three traceability lifecycle activities and their
sub-activities. The labeled arrows denote dependencies between the lifecycle activities.
The result of the traceability planning activity governs the traceability implementation
activity. The established trace links, which are the result of the traceability implemen-
tation activity, are a prerequisite for the traceability usage activity. Conducting the
traceability usage activity supports and enables a variety of software lifecycle activities
such as, for example, safety analysis [Panesar-Walawege et al. 2010; Cleland-Huang et
al. 2012; Briand et al. 2014], change impact analysis [Bohner 1996; von Knethen 2002;
Briand et al. 2002], coverage analysis [Lormans and van Deursen 2005; Kirova et al.
2008], and compliance verification [Breaux et al. 2006; Cleland-Huang et al. 2010].

2.4. Traceability Research Issues

The previous sections of this chapter have introduced and discussed essential aspects
of software traceability. Over the past decades, these aspects have been subject to
extensive research. Reasonable effort has been made to support the activities of the
traceability lifecycle. However, some traceability research issues still remain, as they
have not yet been solved satisfactorily. This section summarizes these remaining issues.
In 2014, the international conference on software engineering featured a “Future of

Software Engineering (FOSE)” track, where leading software traceability experts were
invited to report on open traceability research issues [Cleland-Huang et al. 2014]. The
authors identified 8 desired traceability qualities and specified related goals, which are
summarized in Table 2.1. The list of the not yet achieved goals emphasizes the great
demand for further research in traceability area. As discussed in Section 1.1, several
organizations struggle to implement adequate traceability that is fit-for-purpose. In
current practice, there is a gap between the required and the implemented traceabil-
ity. Traceability implementations suffer from serious deficiencies such as, for example,
missing or redundant trace links, undermining their trustworthiness and damaging their

12

2.5. State of the Art

Table 2.1.: Overview of desired traceability qualities and their related goals [Cleland-
Huang et al. 2014]

Quality Goal

Purposed Traceability is fit-for-purpose and supports stakeholder needs (i.e.,
traceability is requirements-driven).

Cost-effective The return on investment (ROI) from using traceability is adequate in
relation to the outlay of establishing it.

Configurable Traceability is established as specified, moment-to-moment, and ac-
commodates changing stakeholder needs.

Trusted All stakeholders have full confidence in the traceability, as it is created
and maintained in the face of inconsistency, omissions and change; all
stakeholders can and do depend upon the traceability provided.

Scalable Varying types of artifacts can be traced, at variable levels of granularity
and in quantity, as the traceability extends through-life and across
organizational and business boundaries.

Portable Traceability is exchanged, merged and reused across projects, organi-
zations, domains, pro duct lines and supporting tools.

Valued Traceability is a strategic priority valued by all; every stakeholder has
a role to play and actively discharges his or her responsibilities.

Ubiquitous Traceability is always there, without ever having to think about getting
it there, as it is built into the engineering process; traceability has
effectively “disappeared without a trace”.

reputation as an effective means to support critical software engineering activities. The
focus of this thesis is therefore set on the traceability qualities purposed and trusted.

2.5. State of the Art

Although the goals related to purposed and trusted traceability may not have been
achieved yet, traceability has been subject to extensive research over the past decades.
This section summarizes the research efforts with respect to the qualities purposed and
trusted traceability.
Section 2.5.1 provides on overview of empirical work that identified and investigated

traceability problems industrial practices with respect to purposed and trusted traceabil-
ity. The remaining part of this section discusses approaches that have been suggested
in order to support purposed and trusted traceability. The approach discussion dis-
tinguishes three types of approaches, namely definitional, anticipatory, and analytical
approaches. Section 2.5.2 discusses definitional approaches, which are used to remedy
the problem that purposed traceability is usually difficult to define within a project spe-

13

2. Software Traceability

cific context. Existing anticipatory approaches are discussed in Section 2.5.3, which are
used to prevent problems with respect to purposed and trusted traceability. Analytical
approaches are used to detect these problems and are discussed in Section 2.5.4.

2.5.1. Empirical Work on Traceability Problems

This section summarizes the empirical traceability research efforts that have been made
to understand and systematize the challenges to successfully implement purposed trace-
ability in software projects that can be trusted.
In 1994, an extensive study on the so-called traceability problem was conducted [Gotel

and C. Finkelstein 1994]. The study involved around one hundred software development
practitioners, holding a variety of positions within a large organization, with experience
ranging between 0.75 and 30 years on a variety of project types. They identified various
reasons for that problem, such as lack of training and guidance in traceability practice,
failure to follow standard practices, undefined traceability roles, lack of coordination
and cooperation between people responsible for different artifacts, and inadequate in-
formation about how people contributed to traceability data.
Arkley and Riddle identified a lack of motivation for requirements traceability and a

lack of understanding for how to employ traceability [Arkley and Riddle 2005]. The lack
of understanding was mainly the result of communication issues between developers and
the quality team, which failed to properly communicate the purpose traceability. The
lack of motivation was caused by the fact that developers do not perceive immediate
benefits from traceability. Developers considered traceability as a bureaucratic nuisance
imposed by the quality team. In [Arkley and Riddle 2006], the authors found that the
motivation can be improved by tailoring traceability to stakeholder specific needs.
In [Ramesh et al. 1995], the problem of relatively high costs of creating and maintain-

ing traceability was identified, which can only be compensated by higher quality and
reduced overall costs if traceability is applied purposefully. Leading to a traceability cost-
benefit problem. Traceability cost drivers such as team size, productivity/experience of
the personnel, project complexity, and requirements volatility were identified in [Ingram
and Riddle 2012]. Heindl and Biffl found that the trace link creation effort with respect
to time depends on the traceable artifacts [Heindl and Biffl 2005]. While creating trace
links from requirements to source code methods lasted took on average 45 minutes per
requirement, the creation of trace links from requirements to source code classes took on
average 10 minutes per requirement. Cleland-Huang et al. assumed an average trace link
creation time of 15 minutes for their case studies [Cleland-Huang et al. 2004]. Captur-
ing software development activities to automatically generate traces may reduce trace
capturing effort [Marcus and J. Maletic 2003; Hayes et al. 2007; De Lucia et al. 2008;
Cleland-Huang et al. 2007; Omoronyia et al. 2011; Delater and Paech 2013]. Though
neglecting traceability completely or capturing traces in an unstructured manner to re-

14

2.5. State of the Art

duce costs will lead to reduced system quality, expensive iterations of defect corrections,
and increased project costs [Pohl 1996; Dömges and Pohl 1998].
Several studies have investigated the negative impact of inadequate traceability on

software development. Researchers found that wrong granularity can lead to over-
complex or inadequate traceability graphs, and thereby leads to project over-runs or
software failures [Mäder et al. 2009b; Leffingwell 1997]. Serious traceability deficiencies
were also found in safety critical software systems [Mäder et al. 2013; Panesar-Walawege
et al. 2010]. Both studies reported problems, such as missing or redundant trace links,
and problems in trace granularity.

2.5.2. Definitional Approaches

Ramesh identified two general groups of traceability users, whom he refers to as low-end
and high-end traceability users [Ramesh 1998]. While low-ends users rely on simple
dependencies among requirements, high-end users leverage much more sophisticated
traceability schemes. Ramesh and Jarke conducted a large practitioner and tool study
on traceability [Ramesh and Jarke 2001]. They pointed out that traceability links should
be strongly typed in order to avoid semantic misinterpretations.

2.5.3. Anticipatory Approaches

Several authors have conducted empirical research on requirements traceability and ar-
gue the need for planned traceability and defined traceability strategies. Gotel and A.
Finkelstein argue in [Gotel and A. Finkelstein 1997] that the knowledge about stake-
holders that contributed to traced artifacts helps improving traceability.
As a result, the authors proposed a traceability meta-model and reference models as

guidance for practitioners. The use of a traceability information model as a necessary
condition to employ traceability as advocated in [Mäder et al. 2009a]. The traceability
information model concept is similar to conceptual traceability model concept, which
was proposed in [von Knethen et al. 2002]. Arkley and Riddle conducted a case study
in [Arkley and Riddle 2006] on a software project, which successfully leveraged trace-
ability. They concluded that the success of the observed traceability system was mainly
influenced by two facts: (i) general traceability needs were examined to support project
participants in their tasks (ii) the traceability information model was systematically
tailored to the identified needs.
Dömges and Pohl propose a more holistic approach to employ project-specific trace-

ability [Dömges and Pohl 1998]. Rather than reducing traceability to the definition
of permitted artifacts and link types, the definition of project-specific trace strategies
is advocated. Thereby, trace capture and usage strategies define what data should be
captured and used, in which situation, by whom, and how. Additionally, the authors
developed the framework PRIME-RT, which provides integrated traceability guidance

15

2. Software Traceability

by automatically reminding, enforcing, and controlling a project-specific traceability
strategy [Pohl et al. 1999]. The authors reported that the application of this frame-
work in prototypical experiments lead to better traceability and higher product quality.
Though, PRIME-RT supports the application of traceability strategies, the authors did
not discuss what is required to define an adequate traceability strategy, which in turn
is necessary to successfully employ the strategy.

2.5.4. Analytical Approaches

Various researchers have proposed traceability metrics to characterize traced software
artifacts. For example, Pfleger and Bohner proposed software maintenance metrics for
traceability graphs [S. Pfleeger and S. Bohner 1990]. They distinguished vertical trace-
ability metrics (i.e., cyclomatic complexity and size) and horizontal traceability metrics.
While vertical metrics are meant to characterize the developed product, horizontal met-
rics are meant to characterize the development process. To generically measure the com-
plexity of requirements traceability, Costello et al. proposed the use of linkage statistic
metrics [Costello and Liu 1995]. Dick extended the idea of analyzing traceability graphs
by introducing trace link semantics, which he calls rich traceability. The main advantage
of his approach is that propositional reasoning can be applied to analyze traceability
relationships for their consistency [Dick 2002]. Hull and Dick carried on with the idea
of analyzing rich traceability graphs and proposed further metrics: breadth is related
to the coverage and measures the progress of a development phase, depth measures the
number of layers making it a global metric, growth is related to the potential change
impact, balance measures the distribution of growth factors, latent change measures the
impact on a change [Hull et al. 2011]. While all of the proposed requirements traceability
metrics were meant to measure specific characteristics of the requirements traceability
graph, little empirical evidence is available on how and to what extent these metrics
support practitioners with activities such as requirements planing and requirements im-
pact analysis. Instead of calculating traceability metrics, Canfora and Cerulo employed
information retrieval algorithms for the purpose of impact analysis [Canfora and Cerulo
2005]. The authors leveraged the description of requirements changes to automatically
analyze the impact of a requirements change. Briand et al. analyzed traceability in-
formation between design and test data to automatically characterize design changes
[Briand et al. 2002].
For safety-critical software systems, a safety case needs to be compiled in order to

argue that the system is safe for use. Traceability can be used to establish evidence for
a safety case. Accordingly, traceability is considered an important means to support
safety argument [Kelly 1999]. However, a safety argument can only supported through
traceability if its suitability can be proven.
There are two approaches that support automatic traceability assessment. In [Ridder-

16

2.5. State of the Art

hof et al. 2007], Ridderhof et al. proposed a methodology to establish a safety argument
based on traceability for the automotive domain and its domain specific safety standard
ISO 26262 [ISO 26262-6:2011]. For the sake of establishing a safety argument, evidence
is established based on traceability. Based on Object Contraint Language (OCL) con-
straints, the authors formulated rules that check a project’s traceability implementation
for missing trace links. Due to the fact, that the authors focus on a specific safety do-
main only, the proposed verification rules do not provide a comprehensive assessment.
Therefore, their approach is not capable of identifying all possible traceability prob-
lems. The proposed approach cannot be regarded generalizable, because it can only be
applied to design artifacts represented in UML. Panesar-Walawege et al. conceptually
modeled the chain of evidence for safety arguments based on the general purpose safety
standard IEC 61508 [Panesar-Walawege et al. 2010]. As part of this chain of evidence,
the authors derived a Traceability Information Model (TIM) that addresses traceability
related requirements of the standard. Similarly to Ridderhof et al., the authors for-
mulated OCL constraints to validate the traceability implementation for missing trace
links. The empirical results of the case study showed that the assessed project suffered
from missing trace links. The proposed approach also lacks generalizability, because it
can only be applied to design artifacts represented in SysML.
The remaining approaches were solely based on manual traceability assessments.

Mäder et al. validated the traceability of project data that were submitted the FDA
in [Mäder et al. 2013]. Although, the authors neither supported systematic nor re-
producible assessments, the empirical results of the study indicate that safety-critical
projects in the medical domain suffer from incomplete and incorrect traceability too,
which make a safety argument at least more difficult for the manufacturer. Kornecki and
Zalewski reported on a case study, where development tools were assessed for qualifica-
tion purpose. The qualification of development tools is required, if those tools are used
for the development of safety-critical software systems. Although, the authors reported
that they qualitatively assessed the tool’s traceability, they did not provide a systematic
or reproducible assessment procedure. The reported results indicate that “important as-
pects [..] were not properly captured or were simply lost in the translation” [Kornecki
and Zalewski 2005].
The traceability assessment approaches discussed so far, focused on the assessment of

the implemented traceability implementation data. The actual traceability implemen-
tation process was not explicitly considered. This was done by Regan et al. in [Regan
et al. 2014]. A traceability implementation process assessment was prosed for the de-
velopment of medical devices in accordance with various medial safety standard. Based
on these standards, the authors defined traceability best practices such as bidirectional
traceability between each change request and relevant problem report. Inspired by the
Capability Maturity Model Integration (CMMI) model, Casey and Mc Caffery proposed
a traceability process assessment and improvement model med-trace for the development

17

2. Software Traceability

of medical devices. Based on these assessments, an action plan of traceability process
improvements can be derived. The authors report the results of two case studies, where
the traceability could be improved successfully.

2.6. Critique of the State of the Art

It can be concluded that intensive research effort has been conducted within the area of
traceability. Over the past years, a variety of traceability approaches has been proposed
to address the goals related to a purposed traceability that can be trusted. However,
the discussed traceability approaches suffer from a number of shortcomings. These
shortcomings are summarized in the following.

Purposed. Existing anticipatory approaches provide effective means to plan required
traceability for a project [F. Pinheiro and Goguen 1996; von Knethen et al. 2002; Mäder
et al. 2009a]. However, planning for purposed traceability is not yet supported by any
of these approaches. The proposed models do not provide support for linking the re-
quired traceability information to its purpose. The output of the existing anticipatory
approaches can not be used to specify the target state of a purposed traceability imple-
mentation. However, specifying such a target state is a prerequisite to assess the fitness
for purpose of a traceability implementation.

Trusted. The most important shortcoming of existing analytical traceability approaches
is the lack of systematic and comprehensive guidance on how to determine if a traceabil-
ity implementation is fit for its purpose. Existing publications of analytical traceability
approaches are confined to the presentation of empirical observations, without provid-
ing precise and applicable assessment criteria [Kornecki and Zalewski 2005; Ridderhof
et al. 2007; Panesar-Walawege et al. 2010; Casey and Mc Caffery 2011; Mäder et al.
2013]. Determining the fitness for purpose of a project’s traceability implementation is
essential for establishing trust. Although, existing definitional approaches provide pre-
cise definitions of traceability semantics, they lack definitions of the fitness for purpose
[Ramesh and Jarke 2001; Dick 2002].

Automation. There are two analytical approaches that support automatic assessments.
However, both approaches have a very strict limitation. They can only be applied to
design artifacts, which are represented as UML [Ridderhof et al. 2007] or SysML models
[Panesar-Walawege et al. 2010]. Thus, a holistic traceability assessment of all project
artifacts is not supported by these approaches. The remaining existing analytical trace-
ability approaches are based on manual assessments [Kornecki and Zalewski 2005; Casey
and Mc Caffery 2011; Mäder et al. 2013; Regan et al. 2014], which are time-consuming
and costly for complex traceability graphs. Since traceability is subject of gradual decay,

18

2.6. Critique of the State of the Art

the fitness for purpose of a project’s traceability implementation needs to be assessed
in a continuous and timely manner, in order to ensure that it remains trustworthy. The
current lack of automated traceability assessments techniques makes it unlikely to com-
pletely assess the fitness for purpose of complex traceability implementations in a timely
manner.

These shortcomings are emphasized by the fact that current industrial traceability im-
plementations feature serious deficiencies, which often remain undetected. Even safety-
critical projects fail to implement traceability that is fit for the safety purpose [Panesar-
Walawege et al. 2010; Mäder et al. 2013]. To remedy the identified shortcomings, a
novel traceability assessment approach is presented in the following three chapters.

19

3. The Traceability Assessment
Approach

This chapter outlines the proposed traceability assessment approach. Based on the cri-
tique of the state of the art (see Section 2.6), challenges for the traceability assessment
approach are derived in Section 3.1. Since a profound understanding of the subject is
essential to effective assessment, the general characteristics of a software project’s trace-
ability implementation are discussed in Section 3.2. Section 3.3 presents an overview of
the assessment approach. The two main parts of the approach are introduced. Which
challenge is supposed to be addressed by what part of the proposed assessment ap-
proach for solving the identified problems within the critique of the state of the art, is
also discussed within this chapter.

3.1. Traceability Assessment Challenges

The critical discussion of the state of the art in Section 2.6 has revealed that existing
anticipatory traceability approaches do not provide adequate means to plan for pur-
posed traceability. Existing analytical and definitional approaches are not able to assess
the fitness for purpose of a project’s traceability implementations. Shortcomings were
identified with respect to the attributes purposed, trusted, and automation. This sec-
tion introduces challenges that need to be addressed by a new traceability assessment
approach to remedy the identified shortcomings.

3.1.1. Purposed

A traceability target state must be planned before a project’s traceability implementa-
tion can be assessed. The specification of required traceability information [von Knethen
et al. 2002; Mäder et al. 2009a] is commonly used for traceability planning [Mirakhorli
and Cleland-Huang 2011; Delater and Paech 2013; Nejati et al. 2012]. As discussed in
Section 2.6, existing approaches [von Knethen et al. 2002; Mäder et al. 2009a] do not
provide support for linking the required traceability information to its purpose. The
lack of support for planning purposed traceability leads to the following challenge:

Challenge 1 (Support the planning for purposed traceability). The approach shall
support the planning for purposed traceability so that all required traceability information

21

3. The Traceability Assessment Approach

is justified by one or many purposes.

Traceability is commonly implemented for multiple purposes (e.g., safety analysis,
change impact analysis, compliance verification, and coverage analysis). Different pur-
poses mostly require different sets of trace links. Hence, the traceability planning needs
to unify the various traceability requirements of these multiple purposes. This leads to
another challenge:

Challenge 2 (Support the planning for multiple purposes). The approach shall support
the planning for multiple purposes and unify all relevant traceability requirements.

To ensure that a traceability target state can be specified, these two challenges need
to be addressed by the assessment approach.

3.1.2. Trusted

To establish trust, a project’s traceability implementation needs to be assessed for its
fitness for purpose. This requires a common understanding of the term “fitness for
purpose”. As discussed in Section 2.6, existing definitional approaches lack a precise
definition of the term fitness for purpose [Ramesh and Jarke 2001; Dick 2002]. This
leads to the following challenge:

Challenge 3 (Define fitness for purpose). The assessment approach shall identify rel-
evant quality attributes and provide comprehensible definitions of these attributes with
respect to the term fitness for purpose.

In order to conduct systematic traceability assessments, the definition of clear assess-
ment criteria is required. To ensure reproducible assessment results, assessment criteria
need to be defined in a way that does not leave any room for interpretation. As discussed
in Section 2.6, existing analytical approaches are lacking clear assessment criteria [Ko-
rnecki and Zalewski 2005; Ridderhof et al. 2007; Panesar-Walawege et al. 2010; Casey
and Mc Caffery 2011; Mäder et al. 2013]. Therefore, the following challenge needs to be
addressed as well:

Challenge 4 (Provide clear assessment criteria). The assessment approach shall provide
clear criteria that can be used to reproducibly assess a project’s traceability implementa-
tion for its fitness for purpose.

An important goal of the assessment is to detect concrete traceability problems. How-
ever, detecting only some traceability problems is not sufficient. The assessment needs
to ensure that all traceability problems can be detected. This implies that the as-
sessment criteria need to cover all types of traceability problems. Existing analytical
approaches are restricted to a very limited number of traceability problems [Ridderhof
et al. 2007; Panesar-Walawege et al. 2010; Mäder et al. 2013]. Accordingly, the following
challenge can be derived:

22

3.2. Characterizing Traceability Implementations

Challenge 5 (Detect all relevant traceability problems). The assessment approach shall
provide a complete set of assessment criteria that cover can detect all relevant traceability
problems.

These three challenges are required to be addressed by the assessment approach to
verify the fitness for purpose of a project’s traceability implementations.

3.1.3. Automation

Since traceability is subject to gradual decay, the fitness for purpose of a project’s
traceability implementation needs to be assessed in a continuous manner to ensure
that it remains trustworthy. Existing approaches for traceability assessment are either
manual [Kornecki and Zalewski 2005; Casey and Mc Caffery 2011; Mäder et al. 2013;
Regan et al. 2014] or restricted to formalized design artifacts [Ridderhof et al. 2007;
Panesar-Walawege et al. 2010]. To ensure continuous traceability assessments of all
project artifacts, the traceability assessment needs to be automated and support all
project artifacts. This leads to the following challenge:

Challenge 6 (Support automated traceability assessment). The assessment approach
shall support the automated assessment of a project’s entire traceability implementation.

Addressing these challenges is required in order to support the automated traceability
assessments in a continuous manner.

3.2. Characterizing Traceability Implementations

Assessing a project’s traceability implementation effectively requires a profound un-
derstanding of its characteristics. These characteristics are discussed in this section.
Traceability is implemented through capturing trace links, which establish a directed
association between two artifacts (see Definition 3). A variety of traceability charac-
teristics emerge from establishing trace links between artifacts. Figure 3.1 provides a
meta-model characterizing these fundamental concepts in Unified Modeling Language
(UML) notation. Throughout this thesis, elements of this model are referred to as
Traceability Implementation Data (TID). In the following, each element of the meta-
model will be discussed in detail. Throughout this discussion, functions are introduced
to formalize the relationships among the TID elements. These elements and functions
will later be used to define generalized assessment rules, which are abstracted from a
concrete traceability implementation, and thus, generally applicable to any software
project.

Artifact Type. An artifact type represents a particular group of artifacts sharing a
common set of characteristics. Let IA be the set of all implemented artifact types. For

23

3. The Traceability Assessment Approach

Trace Link Trace Path
* 1

source

* 1

target
*

source

1

*

target

1

** {ordered}steps

Artifact

* 1

source

* 1

target
*

source

1

*

target

1
** {ordered}steps

Trace Link
Type

Artifact
Type

Trace Path
Type

«instantiate» «instantiate» «instantiate»

Figure 3.1.: Meta-model of relevant Traceability Implementation Data (TID) character-
izing the fundamental concepts of a project’s traceability implementation

example, an artifact type software requirement refers to the group of all artifacts that
specify a software related requirement for the system to be developed.

Artifact. An artifact refers to any output, whether final or not, that is produced or
maintained throughout the entire software lifecycle. Let IA be the set of all implemented
artifacts. The instantiate dependency between the artifact type and the artifact implies
that each artifact is an instance of an artifact type and each artifact type is a classifier
of an artifact. In the following, this instantiate dependency will be represented by the
function implements : IA → IA . This function maps any artifact ai to the artifact type
that is instantiated by ai so that implements(ai) = {the classifier of the artifact ai}.

Trace Link Type. A trace link type represents a particular group of trace links sharing
two common characteristics. First, the source artifact of each trace link belongs to one
specific artifact type, and second, the target artifact of each trace link belongs to one
specific artifact type. Accordingly, each trace link type is associated with two artifact
types, an originating artifact type holding the role source and a destination artifact
type holding the role target. These associations are represented by the following two
functions. The function source : IL → IA maps any trace link type li to its source
artifact type so that source(li) = {the source artifact of li}. The function target :

IL → IA maps any trace link type li to its target artifact type so that target(li) =

{the target artifact of li}. Let IL be the set of all implemented trace link types. In the

following, a trace link type is denoted as IA
IL−→ IA .

Trace Link. A trace link is a directed association, established between two artifacts.
Let IL be the set of all implemented trace links. In this thesis, a trace link is denoted as

24

3.2. Characterizing Traceability Implementations

IA
IL−→ IA. A trace link is associated with two artifacts, an originating artifact holding

the role source and a destination artifact holding the role target. In the following, these
relationships will be represented by two functions. The function source : IL → IA maps
any trace link li to its source artifact so that source(li) = {the source artifact of li}. The
function target : IL → IA maps any trace link li to its target artifact so that target(li) =
{the target artifact of li}. The instantiate dependency between the trace link type and
the trace link implies that each trace link is an instance of a trace link type and each
trace link type is a classifier of a trace link. In the following, this instantiate dependency
will be represented by the function implements : IL → IL . This function maps any
trace link li to the trace link type that is instantiated by li so that imlements(li) =

{the classifier of the trace link li}.

Trace Path Type. A trace path type results from a sequence of one to many im-
plemented trace link types. Let IP be the set of all implemented trace path types.

Accordingly, a trace path type is denoted as a sequence of trace link types: IA
IL−→

IA ... IA
IL−→ IA . Thus, a trace path type represents an ordered sequence of trace link

types. Similar to a trace link type, the originating artifact type holds the role source and
the destination artifact type holds the role target. These associations are represented
by the following two functions. The function source : IP → IA maps any trace path
type pi to its source artifact type so that source(pi) = {the source artifact type of pi}.
The function target : IP → IA maps any trace path type pi to its target artifact type
so that target(pi) = {the target artifact type of pi}.

Trace Path. The trace path element refers to a sequence of one to many implemented
trace links. Let IP be the set of all trace paths in a software development project,
which result from all implemented trace links. Accordingly, a trace path is denoted as

IA
IL−→ IA ... IA

IL−→ IA. Similar to a trace link, the originating artifact of a trace path
holds the role source and the destination artifact holds the role target. The function
source : IP → IA maps any trace path pi to its source artifact so that source(pi) =

{the source artifact of pi}. The function target : IP → IA maps any trace path pi

to its target artifact so that target(pi) = {the target artifact of pi}. The instantiate
dependency between the trace path type and the trace path implies that each trace
path is an instance of a trace path type and each trace path type is a classifier of a
trace path. In the following, this instantiate dependency is represented by the function
implements : IP → IP . This function maps any trace path pi to the trace path type
that is instantiated by pi so that imlements(pi) = {the classifier of the trace path pi}.

25

3. The Traceability Assessment Approach

3.3. Overview of the Assessment Approach

Assessing a project’s traceability information for its fitness for purpose is closely related
to the traceability qualities purposed and trusted (see Section 2.4). It verifies that
the implemented traceability is suitable with respect to the project specific traceability
goals. The verified traceability implementation can be trusted to support the project
specific traceability goals.
In practice, there are several drivers for implementing traceability [Mäder et al. 2009b].

General projects implement traceability to support software engineering activities that
require traceability. In this case, the provided value is the main driver for implementing
traceability. In safety-critical domains (i.e., avionic, public transportation, or medical
devices), the creation of traceability is required by regulatory authorities. Accordingly,
the traceability drivers regulation and value are distinguished in this thesis. Depending
on a project’s driver for implementing traceability, its fitness for purpose can have dif-
ferent implications. If traceability is required by a regulatory authority to demonstrate
the safety of the developed product, its fitness for purpose is inevitable to get approval
for the release to market. Otherwise, it determines whether or not the associated value
of a traceability goal (i.e., the support of a specific software engineering activity) can
be provided by the implemented traceability.

Regulated

Value

Traceability
drivers

Traceability planning result (target state)

Traceability implementation (actual state)

Traceability goals

Safety
analysis

Change
impact
analysis

Coverage
analysis

Compliance
verification

..

Requirement Design
Source
code

r1

d1

s1

d2

s2

s3

s4

Requirement Design
Source
code

❶ Planning for
purposed traceability

❷ Assessing
the fitness

for purpose

Figure 3.2.: Overview of the traceability assessment approach

Figure 3.2 provides an overview of the proposed traceability assessment approach. The
approach consists of two parts: ¶ planning for purposed traceability and · assessing the
fitness for purpose. Part ¶ is a prerequisite of the assessment approach and specifies

26

3.4. Usage Scenarios of Traceability Assessment

the target state of a traceability implementation. Without specifying a target state, a
reference for assessing the actual state of a project’s traceability implementation would
be missing. The target state of a traceability implementation is derived from project
specific traceability goals through the planning of purposed traceability. As discussed
above, these traceability goals are driven by regulation or value. A detailed discussion
of the preliminary first part of the assessment approach is provided in Chapter 4.

Part · represents the core part of the assessment approach. It systematically as-
sesses the actual state of a project’s traceability implementation with respect to the
preliminarily derived target state to determine its fitness for purpose. For this purpose
an analytical Traceability Assessment Model (TAM) is presented. The abstract term
fitness for purpose is decomposed into explicit quality attributes, which are respectively
defined. The TAM provides definitions on how these qualities can be assessed in project
specific TID. As an integral part of the TAM, a comprehensive classification of atomic
traceability problems is provided with respect to the identified quality attributes. Chap-
ter 5 presents the assessment approach in detail. The implementation of prototype for
conducting automatic traceability assessments is provided in Chapter 6.

3.4. Usage Scenarios of Traceability Assessment

Planning for purposed traceability and assessing the fitness for purpose of traceability
implementations can be useful for different reasons. This section discusses six major
usage scenarios of traceability assessment. Four scenarios (scenario 1-4) are primarily
relevant for the traceability driver regulation. The two remaining scenarios (scenario
5-6) are primarily relevant for the traceability driver value.

Scenario 1: compliance to relevant guidelines. Safety critical software products
need to be certified by the responsible authority before they can be released to the mar-
ket. During this certification process, the authority checks whether or not the developed
systems can be considered as safe to be used. As part of this certification process, certi-
fiers check compliance of the implemented traceability with traceability requirements of
the relevant guideline(s). The introduced assessment approach can be used to evaluate
the projects conformance to the relevant guidelines with respect to traceability.

Scenario 2: continuous certification. Consistently maintaining a project in a ready-
to-certify state is challenging, but certainly not impossible [Farail et al. 2006]. It requires
a rigorous verification process built into the development environment, continuous in-
tegration, and accurately maintained traceability, available at any time to support the
certification process. The proposed approach supports ongoing analysis of the traceabil-
ity fitness for purpose of a system with respect to the relevant guidelines.

27

3. The Traceability Assessment Approach

Scenario 3: migration to a new or revised guideline. When an existing product
is introduced into a new market, it may be necessary to certify the product under a
new guideline. Similarly, existing guidelines may be revised (for example, DO-178B →
DO-178C) and the new version will immediately become relevant for product develop-
ment. In such scenarios the existing traceability model is updated to reflect the new
and/or modified guidelines, and a gap analysis is performed between the updated and
original traceability model. The approach provides support for planning the necessary
traceability implementation changes due to the new or revised guideline. Additionally,
the approach provides support for identifying traceability problems introduced by the
adoption of a new or revised guideline.

Scenario 4: conformance to multiple guidelines. Products are often released into
multiple markets governed by different guidelines. Similarly, a single product may con-
tain components governed by different guidelines. In both cases, the product needs to
comply to multiple guidelines. This introduces the need for creating a merged traceabil-
ity model for two or more guidelines. To find the high watermark, i.e., the minimum set
of traceability requirements that, if followed, will satisfy all relevant guidelines, trace-
ability requirements need to be merged and contradictions need to be addressed [Gordon
and Breaux 2013]. This approach derives a single set of required traceability informa-
tion from different traceability goals. It supports the systematic planning for multiple
traceability purposes. Thus, the approach provides support for identifying traceability
problems across multiple guidelines.

Scenario 5: feasibility of software lifecycle activities. Traceability is required
by numerous software lifecycle activities such as, for example, change impact analysis,
coverage analysis, and compliance verification. The set of trace links required by one
activity can be different to the set required by another activity. Thus, the feasibility of
a particular activity depends on the completeness of the respective set of trace links.
The approach can be used to determine the completeness of these sets of trace links.
Thus, the approach provides support for determining the feasibility of software lifecycle
activities. The approach can also be used to plan for traceability that ensures the
feasibility of software lifecycle activities.

Scenario 6: cost effective traceability implementation. The manual creation of
trace links is cost-intensive. Creating trace links takes on average 15 minutes [Cleland-
Huang et al. 2004]. Depending on the artifact types, the average creation times can vary
between 10 and 45 minutes [Heindl and Biffl 2005]. Hence, the creation of superfluous
trace links should be avoided in order to ensure a cost effective traceability implementa-
tion. The planning for purposed traceability provides explicit recommendations for cost
effective traceability implementation. Further, the approach can be used to identify and

28

3.4. Usage Scenarios of Traceability Assessment

eliminate superfluous trace links within existing traceability implementations to reduce
the traceability maintenance costs.

These six scenarios describe the context for the assessment approach presented in the
following three chapters. Additionally, these scenarios are used as a reference to derive
research questions for the evaluation of the assessment approach.

29

4. Planning for Purposed Traceability

Planning for purposed traceability is a prerequisite for assessing the fitness for purpose of
a project’s traceability assessment. The result of the planning specifies the target state
of a traceability implementation, which is used as assessment reference. This chapter
presents a systematic approach for planning purposed traceability. As elaborated in
Section 3.3, traceability drivers can be regulation or value. The traceability planning
approach provides the capability to address both traceability drivers. Traceability driver
specific planning considerations are explicitly highlighted.
The planning approach consists of two activities namely identifying traceability re-

quirements and specifying traceable artifact types. The first activity derives traceability
requirements from project specific traceability goals (see Section 4.1). The second ac-
tivity specifies what artifact types should be traceable and how traceability should be
established between these artifact types (see Section 4.2). Section 4.3 discusses how the
produced planning output can be used to justify the purpose of each trace link type.
Section 4.4 summarizes the planning approach with respect to the challenges that are
related to purposed traceability (see Section 3.1.1).

4.1. Identifying Traceability Requirements

The main objective of the traceability planning approach is to specify purposed trace-
ability. Therefore, the traceability planning needs to be driven by a project’s intended
traceability usage, which represents the project specific purpose. To ensure that the
traceability planning is driven by the intended traceability usage, a goal oriented ap-
proach is proposed to identify traceability requirements. The usage of goals is a common
technique in software engineering for identifying and justifying software requirements.
Therefore, the concept of goals is also used for identifying traceability requirements. In
a broad context of software engineering, goals are considered as high-level objectives of
the business, organization, or system, which capture why the development of a software
system is necessary [Anton 1996]. For the traceability planning approach, the concept of
goals is used in a much more restricted way. Software traceability aims to support other
software engineering activities throughout the software lifecycle. Therefore, within the
context of software traceability, the concept of goals is restricted to objectives related
to a software lifecycle activity.
To ensure that traceability requirements are produced in a systematic fashion, a

31

4. Planning for Purposed Traceability

precise definition of the expected output is required. Hence, a model for traceability
requirements is defined in Section 4.1.1. The remainder of this section provides a detailed
discussion of the required steps to systematically identify traceability requirements. The
activity “identifying traceability requirements” consists of the following steps:

1. Identifying software lifecycle related goals. Software traceability aims at supporting
software engineering activities throughout the software lifecycle. Thus, any soft-
ware lifecycle related stakeholder objective is potentially relevant for the elicita-
tion of traceability requirements. These objectives are identified in a goal-oriented
manner (see Section 4.1.2).

2. Identifying goal specific activities. Software engineering activities are performed
by agents throughout the software lifecycle in order to achieve the stakeholders’
goals. To support the analysis for determining if an activity requires traceability,
all goal specific activities need to be identified and documented (see Section 4.1.3).

3. Identifying goals that require traceability. Only those software lifecycle related goals
are relevant for the definition of traceability requirements that require traceability.
Thus, the subset of goals is identified that require software traceability to be
achievable (see Section 4.1.4).

4. Identifying traceability implementation activities. Goals that require traceability
can only be achieved if the required traceability is implemented. Hence, this last
step identifies traceability implementation activities that need to be performed to
establish the required traceability (see Section 4.1.5).

4.1.1. A Model for Traceability Requirements

To ensure that the planning output can be used as a reference for assessments, clear
traceability requirements are necessary. The creation of a Traceability Requirements
Model (TRM) is advocated. To provide a precise definition of the created traceability
requirements, a meta-model for the TRM is defined. Figure 4.1 provides an overview of
the defined meta-model as UML class diagram. While the top part of Figure 4.1 depicts
general concepts related to the software lifecycle, the bottom part depicts traceability
specific concepts. The remainder of the section discusses each meta-model element in
detail. Throughout the discussion, functions are introduced to formalize the relation-
ships among the TRM elements. These elements and functions will later be used to
demonstrate how the purpose of each specified trace link type can be justified.

Goal. The goal element describes stakeholders’ interests which pertain to the software
system’s development. Let G bet the set of all goals. Collecting software lifecycle
related goals during the traceability requirements planning ensure that it is driven by
the stakeholders’ interests rather than the gut feeling of the project manager.

32

4.1. Identifying Traceability Requirements

Goal

Stakeholder

*

concerns

Agent

Activity

1..*

performs

1..*
achieves

Traceability
Goal

Traceability
Usage

Activity

Traceability
Implementation

Activity

1..*
achieves

1..*

1..*

enables

Traceability
User

Traceability
Implementer

1..*
performs

1..*
performs

T
ra

ce
ab

ili
ty

 s
p

e
ci

fi
c

G
en

er
al

Figure 4.1.: Meta-model of the Traceability Requirements Model (TRM)

Stakeholder. A stakeholder is an individual or a group of persons who has an interest
in the software development project. Due to this interest relationship, a stakeholder
can either be impacted by a project or can impact the project by herself. Let H be the
set of all stakeholders. Stakeholder interests with respect to the software lifecycle are
represented by the concept goal. A stakeholder can have zero to many goals, which is
denoted by the function concerns : H → 2G mapping any stakeholder hi to a set of
goals so that concerns(hi) = {the goals of the stakeholder hi}.

Activity. Throughout the software lifecycle, a variety of software engineering activities
are performed to develop the product. Let C be the set of all activities related to the
software lifecycle. These activities performed to achieve software lifecyle related goals.
This relationship is represented by the function achieves : C → 2G that maps any
activity ci to a set of goals that are supposed to be achieved by ci so that achieves(ci) =
{the goals to be achieved by ci}.

Agent. Each software lifecycle related activity is performed by an agent, who aims to
achieve the activity related goal. Let N be the set of all agents. In software devel-
opment, agents are commonly represented either represented by humans or automata
that perform the activities. Therefore both, humans and automata, are subsumed by
the concept agent. The relationship that agents perform activities is represented by the
function performs : N → 2C that maps any agent ni to a set of activities that are
performed by ni so that performs(ni) = {the activities performed by ni}.

33

4. Planning for Purposed Traceability

Traceability Goal. A traceability goal represents a subset of the goal element that
contains traceability related goals only. For planning the intended use of traceability,
the identification of traceability related goals is necessary. Let TG bet the set of all
traceability goals. Since traceability goals are a subset of goals, the mapping of the
function concerns includes a stakeholder’s traceability goals.

Traceability Usage Activity. The element traceability usage activity is a subset
of the activity element that represents activities related with using traceability only.
Identifying traceability usage activities is important to derive purposed traceability re-
quirements. Let TUC be the set of all traceability usage activities. Traceability us-
age activities are performed to achieve traceability goals. This relationship is repre-
sented by the function achieves : TUC → 2

TG that maps any traceability usage activ-
ity tuci to a set of traceability goals that are supposed to be achieved by tuci so that
achieves(tuci) = {the traceability goals to be achieved by tuci }.

Traceability User. The element traceability user is a subset of the agent element. It
represents agents that perform traceability usage activities. Let TUN be the set of all
traceability users. The relationship that traceability users perform traceability usage
activities is represented by the function performs : TUN → 2TUC that maps any trace-
ability user tuni to a set of activities that are performed by tuni so that performs(tuni) =

{the traceability usage activities performed by tuni }.

Traceability Implementation Activity. The element traceability implementation
activity is a subset of the activity element that represents activities related with im-
plementing traceability only. Let TIC be the set of all traceability implementation ac-
tivities. As discussed in Section 2.3, performing traceability implementation activities
enables the performance of traceability usage activities. This relationship is repre-
sented by the function enables : TIC → 2TUC that maps any traceability implementa-
tion activity tici to a set of traceability usage activities that are enabled by tuci so that
enables(tici) = {the traceability usage activities that are enabled by tici }.

Traceability Implementer. The element traceability implementer is a subset of the
agent element. It represents agents that perform traceability implementation activities.
Let TIN be the set of all traceability implementers. The relationship that traceability im-
plementers perform traceability implementation activities is represented by the function
performs : TIN → 2TIC that maps any traceability implementer tini to a set of activities
that are performed by tini so that performs(tini) = {the traceability implementation
activities performed by tini }.

34

4.1. Identifying Traceability Requirements

4.1.2. Identifying Software Lifecycle Related Goals

Software traceability aims to support software lifecycle related goals. To understand
which goal requires traceability, all goals need to be identified initially. Depending on
the traceability driver, different sources of information are relevant.
For safety-critical projects that are driven by regulation, explicit guidelines are pro-

vided by the responsible authorities. These guidelines follow a similar structure which
starts with a description of the software lifecycle. This lifecycle consists of multiple
processes, each composed of activities, their prerequisites, and the produced artifacts.
Additionally, a guideline defines the objectives to be fulfilled for demonstrating safety.
These objective definitions can be used to directly derive software lifecycle related goals.
Stakeholder is the regulatory authority. The authority is concerned with the achieve-
ment of these goals to ensure product safety.
For projects where implementing traceability is driven by value, software lifecycle re-

lated goals need to be elicited directly. Therefore, relevant stakeholders of the project
that may be concerned with the result of any software engineering activity need to be
identified. These stakeholders need to be interviewed in order to identify and document
their goals. Conducting these interviews requires careful preparation (for example, in-
terview type, questionnaire, briefing, and recording). A detailed interview study that il-
lustrates the application of interviewing techniques to identify stakeholder specific goals,
will be discussed in Section 7.3. For this study, stakeholders from 17 software companies
were interviewed to identify software lifecycle related goals. However, contributing to
the theory of interviewing techniques is out of the scope of this thesis. The existing
work on that topic provides comprehensive guidance (see, for example, [Gorden 1980;
Bellamy et al. 2006; Fitzpatrick et al. 2009]).

[G1] Ensure accurate
source code with

respect to the high-
level requirements

[G2] Ensure
that the source code

completely satisfy
high-level

requirements

[G3] Ensure that no source
code implements undocumented
function that do not satisfy any

high-level requirement

Notation:

Stakeholder

Stakeholder boundary

Goal

FAA

Figure 4.2.: Illustrating autopilot project: goals of the stakeholder Federal Aviation Ad-
ministration (FAA) that were derived from the guideline DO-178B

To document the planning results, the Goal-oriented Requirement Language (GRL) is
leveraged [Amyot 2003]. The GRL provides effective means to document the identified
goals and stakeholders in accordance with the TRM meta-model (see Section 4.1.1).
For illustration purposes, a fictional software project is used to illustrate the concrete
application of each step of the proposed planning activities. In the following, this

35

4. Planning for Purposed Traceability

fictional project is referred to as autopilot, developing an automatic flight control system.
Autopilot is safety-critical and regulated by the Federal Aviation Administration (FAA),
which applies the guideline [DO-178B] to determine if it will perform reliably in an
airborne environment. This means that the guideline DO-178B can be used to derive
goals of the stakeholder FAA. Figure 4.2 depicts three goals, G1, G2, and G3, that were
derived from the guideline DO-178B. It should be noted that the three goals represent
an illustrating excerpt only, and by far do not cover the DO-178B guideline completely.

4.1.3. Identifying Goal Specific Activities

As specified within the TRM meta-model, one or many activities are performed by an
agent in order to achieve a goal. These activities need to be identified and documented.
Each activity can be analyzed in later steps to determine if it requires traceability.
Similar to the goal identification step, different sources of information are relevant for

the identification of goal specific activities. Guidelines explicitly specify activities for
regulated projects that need to be performed with respect to the goals. For projects that
implement traceability due to the excepted value, two sources of information are relevant.
First, software engineers who perform activities throughout the software lifecycle need
to be interviewed. These interviews provide insights to the activities that are performed
by human agents. Second, the documentation of automated agents needs to be analyzed
to understand automatically executed activities.

[G1] Ensure accurate
source code with

respect to the low-level
requirements

[G2] Ensure
that the source code

completely satisfy low-
level requirements

[G3] Ensure that no source
code implements undocumented
function that do not satisfy any

low-level requirement

FAA

Source
Code

Reviewer
[C1] Perform

reviews and analyses
of the source code

Notation:

Stakeholder

Agent

Agent boundary

Achievement contribution

Activity

Goal

Stakeholder boundary

[C2] Analyze for each low-
level requirement (LLR) if it is

traceable to a source code
artifact satisfying the LLR

[C3] Analyze for each source
code artifact (SC) if it is trace-

able to a low-level requirement
that is satisfied by the SC

Figure 4.3.: The autopilot project: activities derived from the guideline DO-178B that
are supposed to address the goals of the stakeholder Federal Aviation Ad-
ministration (FAA)

Figure 4.3 depicts the three activities, C1, C2, and C3, that were derived from the
guideline DO-178B for the autopilot example. These activities are performed by the
source code reviewer. The goal G1 is achieved by the performance of C1, the goal G2 is
achieved by the performance of C1 and C1, and the goal G3 is achieved by the performance
of C1 and C3.

36

4.1. Identifying Traceability Requirements

4.1.4. Identifying Goals that Require Traceability

The two preceding steps have identified all the activities that are performed by agents
throughout the software lifecycle to achieve the stakeholders’ goals. For the identification
of traceability requirements, only the subset of traceability goals is relevant. As defined
in the TRM meta-model, traceability goals are goals that require traceability. Since the
identified activities are performed to achieve the goals, each activity needs to be analyzed
to determine if its performance requires traceability. As experienced in a prior study
[Rempel et al. 2014], activities that require traceability can be identified systematically
by searching for keywords that either refer to traceability in general (i.e., trace, trace
link, traceable, or traceability) or that refer to common trace link semantics (i.e., evolve,
satisfy, depend on, or verify). Ramesh and Jarke provide a comprehensive classification
of possible trace link semantics in [Ramesh and Jarke 2001] that can be used to select
appropriate keywords for trace link semantics. Another prior study showed that these
keywords can also be used very effectively in interviews with agents and stakeholders
to identify activities that require traceability in projects that are driven by the value of
implemented traceability [Rempel et al. 2013].
This means that the keyword based search in activity definitions is used to identify

those activities that require traceability. As defined in the TRM meta-model, these
activities are denoted as traceability usage activities. Since each activity is associated
to the goals that are achieved by its performance, the set of traceability goals can directly
be derived by searching for all goals that are associated to a traceability usage activity.

[G1] Ensure accurate
source code with

respect to the high-
level requirements

«traceability»
[G2] Ensure

that the source code
completely satisfy high-

level requirements

«traceability»
[G3] Ensure that no source

code implements undocumented
function that do not satisfy any

high-level requirement

FAA

Source
Code

Reviewer

[C1] Perform
reviews and analyses

of the source code

Notation:

Stakeholder

Agent

Agent boundary

Achievement contribution

Activity

Goal

Stakeholder boundary

«traceability usage»
[C2] Analyze for each high-

level requirement (HLR) if it is
traceable to a source code
artifact satisfying the LLR

«traceability usage»
[C3] Analyze for each source

code artifact (SC) if it is trace-
able to a high-level requirement

that is satisfied by the SC
«tu» Traceability Usage Activity

«t» Traceability Goal

Figure 4.4.: The autopilot project: identified activities that require traceability (trace-
ability usage activities) and their related goals (traceability goals)

Figure 4.4 shows the result of the keyword based search for traceability related goals.
The activities C2 and C3 contain the keyword traceable. Accordingly, both activities are
explicitly marked as traceability usage tasks by the stereotype «traceability usage». The
goal G2 is achieved, among others, by the performance of C2 and the goal G3 is achieved,

37

4. Planning for Purposed Traceability

amongst other, by the performance of C3. Accordingly, the two goals, G2 and G3, are
marked as traceability goals by the stereotype «traceability».

4.1.5. Identifying Traceability Implementation Activities

Traceability goals can only be achieved if the associated traceability usage activities can
be performed. The performance of traceability usage activities requires implemented
traceability. As defined in the TRM meta-model, traceability usage activities are en-
abled by traceability implementation activities. Hence, to finalize the identification
of traceability requirements, required traceability implementation activities need to be
identified and specified.
Traceability usage activities contain the necessary information for identifying trace-

ability implementation activities. Two kinds of information need to be identified. First,
the source artifact type that needs to be traceable. Second, the target artifact type to
which traceability needs to be provided. A traceability usage activity can potentially
require traceability for multiple pairs of source and target artifact types. In this case,
a multiple traceability implementation activities are defined. This approach ensures
that each defined traceability implementation activity is atomic, defining one pair that
contains a source artifact type and a target artifact type.
As discussed in Section 2.3, a traceability implementation activity consists of the two

sub-activities traceability creation and traceability maintenance. This needs to be con-
sidered when traceability implementation activities are defined. Traceability can only
be created if both, the source and the target artifact, exist. That means, the agent
who creates the artifact that is created second is responsible for creating the traceabil-
ity between the two artifacts. As at the point in the time when the second artifact is
created, both artifacts, source and target, are available for creating traceability. Trace-
ability maintenance is required if either the source or the target artifact is maintained.
The agent who maintains either the source or the target artifact is responsible to main-
tain its traceability. This means that three traceability implementation activities need
to be specified for each triplet, one creation activity and two maintenance activities.
To standardize the definition of traceability implementation activities, the usage of a
specification template is advocated.
In Grammar 4.1, a specification template is specified in Backus Naur Form. The

template consists of the following parts:

• Identifier 〈id〉. It specifies a unique identifier for the activity.

• Implementation activity 〈impl-act〉. The implementation activity can either be
create or maintain. For the activity create, it needs to be specified if the required
traceability relation is unidirectional from source to target (->), unidirectional
from target to sorce (<-) or bidirectional (<->). For the activity maintain, it needs

38

4.2. Identifying Required Traceability Information

〈template〉 ::= 〈id〉 〈impl-act〉 ‘:’ 〈source〉 ‘, <target> ‘.’

〈id〉 ::= ‘[’ 〈literal〉 ‘]’

〈impl-act〉 ::= ‘create’ ‘=’ ‘->’ |‘create’ ‘=’ ‘<-’ |‘create’ ‘=’ ‘<->’ | ‘maintain’
‘=’ ‘source’ | ‘maintain’ ‘=’ ‘target’

〈source〉 ::= ‘source’ ‘=’ 〈literal〉

〈target〉 ::= ‘target’ ‘=’ 〈literal〉

〈literal〉 ::= 〈char〉 { 〈char〉 }

Grammar 4.1: Specification template for traceability implementation activities

to be specified if a change to the source or to the target artifact type triggers the
maintenance.

• Source 〈source〉. It specifies the source artifact type of the required traceability
relation.

• Target 〈target〉. It specifies the target artifact type of the required traceability
relation.

To demonstrate the practical usage of the specification template for traceability im-
plementation activities, the advocated template is used for the autopilot project. Figure
4.5 shows the defined traceability implementation activities C4, C5, and C6 that enable
the traceability usage activities C2 and C3. C4 specifies the creation activity, C5 specifies
the maintenance activity for the case that the target artifact is changed, C6 specifies the
maintenance activity for the case that the source artifact is changed. The traceability
usage activities C2 and C3 are enabled by the same set of traceability implementation
activities, as both use the same traceability relation in different directions. Accord-
ingly, the traceability implementation activity C4 specifies the creation of bidirectional
traceability.

4.2. Identifying Required Traceability Information

The results of the traceability planning are supposed to define the traceability informa-
tion that is required to be implemented. The assessment approach uses the required
traceability information as a target state. To ensure that the traceability planning out-
put can be used as a target state for assessments, a precise definition of the expected
output is required.

39

4. Planning for Purposed Traceability

[G1] Ensure accurate
source code with

respect to the high-
level requirements

«traceability»
[G2] Ensure

that the source code
completely satisfy

high-level
requirements

«traceability»
[G3] Ensure that no source

code implements undocumented
function that do not satisfy any

high-level requirement

FAA

Source
Code

Reviewer

[C1] Perform
reviews and analyses

of the source code

Notation:

Stakeholder

Agent

Agent boundary

Achievement contribution

Activity

Goal

Stakeholder boundary

«traceability usage»
[C2] Analyze for each high-

level requirement (HLR) if it is
traceable to a source code
artifact satisfying the LLR

«traceability usage»
[C3] Analyze for each source

code artifact (SC) if it is trace-
able to a high-level requirement

that is satisfied by the SC

«tu» Traceability Usage Activity

«t» Traceability Goal

Developer Design
Engineer

«traceability impl»
[C4] create=<->:

source=high-level requirement,

target=source code.

«traceability impl»
[C5] maintain=target:

source=high-level requirement,

target=source code.

«traceability impl»
[C6] maintain=source:

source=high-level requirement,

target=source code.

Enable contribution

«ti» Traceability
Implementation Activity

Figure 4.5.: The autopilot project: derived traceability requirements (traceability im-
plementation activities)

To satisfy this need for a precise definition, a model for required traceability infor-
mation is defined in Section 4.2.1. The remainder of this section provides a detailed
discussion of the required steps to systematically specify required traceability informa-
tion at the required level of granularity. The activity “specifying traceable artifact types”
consists of the following steps:

• Identifying required trace path types. Required trace path types are derived from
the traceability requirements defined within the TRM (see Section 4.2.2).

• Identifying required trace link types. Required trace path types consist of sequences
of one to many required trace link types. The required trace link types are iden-
tified to break down the planning to single trace links (see Section 4.2.3).

4.2.1. A Model for Required Traceability Information

As outlined in Section 2.5.3, the creation of a so called Traceability Information Model
(TIM) is the current state of practice for the specification of a project’s traceability
implementation target state [Mäder et al. 2009a]. The TIM approach provides for the
concept’s required artifact type and for the required trace link type. However, one
important concept is missing. A specific traceability purpose may lead to a traceability
requirement that demands for a sequence of more than one trace link types. For example,

40

4.2. Identifying Required Traceability Information

the verification of requirements is typically ensured by a chain of artifacts. A test
case is defined to verify a requirement. This test case is typically executed by a test
procedure. Finally, the execution of the procedure leads to a test result. To analyze
whether or not the verification of a requirement leads to a positive result, the complete
path of trace links needs to be traversed. Another example would be the analysis if all
requirements are implemented. Requirements are typically satisfied by design artifacts
and these design artifacts are implemented by source code artifacts. To analyze whether
or not a requirement is implemented by a source code artifact, the complete path from
requirements through the design to the source code needs to be considered for the
analysis.
To address this problem, the existing TIM approach is extended by the concept re-

quired trace path type. To provide a precise definition of possible instances, a TIM
meta-model is provided. Figure 4.6 shows the meta-model as UML class diagram. The
remainder of the section discusses each meta-model element in detail. Throughout
the discussion, functions are introduced formalize the relationships among the TIM ele-
ments. These elements and functions will later be used for the definition of generalized
traceability assessment rules.

source

1

target

1

*

source

1

1

target

1

1..* {ordered}steps

Required
Artifact Type

Required
Trace Path Type

Required
Trace Link Type

Activity Artifact Type

Traceable

output

1..*

input

*

Figure 4.6.: Meta-model of the extended Traceability Information Model (TIM)

Artifact Type. The term artifact refers to any work product that is created throughout
the software lifecycle. Accordingly, an artifact type refers to the types of work products.

Activity. Throughout the software lifecycle, a variety of software engineering activities
are performed to develop the product. Each activity is characterized by the set of
artifact types that it creates. Additionally, an activity may use one or more previously
created artifact types. The function input : C → 2A maps any activity ai to its input
artifact types so that input(ai) = {the input artifact types of ai}. The function output :

41

4. Planning for Purposed Traceability

C → 2A maps any activity ai to its set of output artifact types so that output(ai) =

{the output artifact types of ai}.

Required Artifact Type. The element required artifact type represents a subset of
those artifact types that are required to be traceable. Let R A be the set of all artifact
types that are required to be traceable.

Required Trace Link Type. A required trace link type represents the types of
trace links that need to be created to satisfy a traceability requirement as specified
in the TRM. Let R L be the set of all required trace link types. A required trace
link type refers to a required source artifact type and to a required target artifact
type. These associations are represented by the following two functions. The function
source : R L → R A maps any required trace link type li to its required source artifact
type so that source(li) = {the required source artifact type of li}. The function target :

R L → R A maps any trace link type li to its required target artifact type so that
target(li) = {the required target artifact type of li}.

Required Trace Path Type. A required trace path type represents a sequence of
trace link types that need to be created in order to satisfy a traceability requirement as
specified in the TRM. Let R P be the set of all required trace path types. Similar to a re-
quired trace link type, the originating required artifact type holds the role source and the
destination artifact type holds the role target. These associations are represented by the
following two functions. The function source : R P → R A maps any trace path type pi

to its source artifact type so that source(pi) = {the required source artifact type of pi}.
The function target : R P → R A maps any trace path type pi to its target artifact type
so that target(pi) = {the required target artifact type of pi}.

4.2.2. Identifying Required Trace Path Types

As a first step, required trace path types are identified, as trace path types are the most
coarse-grain concepts of the TIM. As discussed in Section 4.2.1, a required trace path
type consists of a sequence of one to many required trace link types and the respective
required artifact types. Furthermore, traceability implementation activities of the TRM
are defined at this level of granularity. The required trace path types can be derived
from traceability implementation activities of the TRM that refer to creation activities.
Due to the usage of a formalized specification template, the following general derivation
rules can be defined:

1. The 〈literal〉 of the element 〈source〉 represents the source of the required trace
path type.

2. The 〈literal〉 of the element 〈target〉 represents the target of the required trace

42

4.2. Identifying Required Traceability Information

path type.

3. The 〈impl-act〉 indicated the direction of the required trace path type. If bidirec-
tional traceability is required, two required trace path types are derived, one from
source to target and one from target to source.

These rules can be used to derive a first draft of the TIM, containing required trace
path types. Figure 4.7 depicts the application of these derivation rules for the illustrating
autopilot project. The left part of the figure shows the traceability implementation
activity C4 of the autopilot’s TRM. The right part shows the first draft of the autopilot’s
TIM containing two required artifact types HLR and SC as well as two required trace
path types HLR ->> SC and SC ->> HLR. The following four derivation rules were applied:

¶ The required artifact type HLR was derived from the 〈source〉 element of C4.

· The required artifact type SC was derived from the 〈target〉 element of C4.

¸ The required trace path type HLR ->> SC was derived from the 〈impl-act〉 element
of C4 that requires bidirectional traceability.

¹ The required trace path type SC ->> HLR was derived from the 〈impl-act〉 element
of C4 that requires bidirectional traceability.

The illustrated procedure for deriving required trace path types is repeated accord-
ingly, if a TRM contains multiple traceability implementation activities for creation.
The result of this first step is the draft of a TIM, containing required trace path types.

«traceability impl»

[C4] create=<->:
source=high-level requirement,

target=source code.

[SC]
source code

[HLR]
high-level

requirement

«trace path type»

SC ->> HLR

«trace path type»

HLR ->> SC

❶
❷

❸ ❹

❶

❷ ❸

❹

Notation:

Required artifact type Required trace path type«TI» Traceability implementation activity

Figure 4.7.: The autopilot project: deriving required trace path types from a traceability
implementation activity

43

4. Planning for Purposed Traceability

4.2.3. Identifying Required Trace Link Types

The previous step derived a draft of the TIM, containing required trace path types.
However, this TIM draft does not yet provide all of the required information. It lacks
the information, which trace link types are required for creating the required trace path
types. As discussed in Section 4.2.1, a required trace path type can consist of a sequence
of many required trace link types.
Hence, this section discusses how these required trace link types can be derived for

each required trace path type. Initially, a required trace path type provides three kinds
of information, the source artifact type, the target artifact type, and the requirement
that a path between source and target is required. Starting from the source artifact
type, possible trace link types, that originate from the source artifact type, need to be
identified. For this purpose, the activities of the software lifecycle are analyzed. As
defined in Section 4.2.1, each activity creates one or many artifact types. Additionally,
an activity may use one or more previously created artifact types. As the performance
of an activity represents an evolution of the software lifecycle, each combination of
activity input and output artifact type represents a possible trace link type. To identify
the required trace link types for a trace path type, the sequence of activities, that
evolve from the source of a trace path type to the target of a trace path type, needs to
be identified. This sequence of activities represents the required trace link types of a
trace path.

«trace path type»

HLR -> LLR -> SC

Notation:
Traceable
artifact type

Required
trace path type

Activity

[C7]
Create

software
design

[HLR]
high-level

requirements

[LLR]
low-level

requirements

[SA]
software

archiecture

[C8]
Implement

design

[LLR]
low-level

requirements

[SA]
software

archiecture

[SC]
source code

[LLR]
low-level

requirements

[HLR]
high-level

requirements «trace link type»

HLR -> LLR

«trace link type»

LLR -> HLR

[SC]
source code

«trace link type»

LLR -> SC

«trace link type»

SC -> LLR

Artifact
type

Activity
input

Activity
output

Required
trace path type

❶

❷
❷

❸

«trace path type»

SC -> LLR -> HLR

❶

❸

❸

❸

❶

❷

❷

❷ ❸

Figure 4.8.: The autopilot project: deriving required trace link types from required trace
path types and software lifecycle activities

Figure 4.7 shows how required trace link types are derived for the two required trace
paths for the illustrating autopilot project. The left part of the figure shows the activities
C7 and C8 of the autopilot’s software lifecycle. The right part shows the autopilot’s TIM

44

4.3. Justifying the Purpose of Required Trace Link Types

containing three required artifact types HLR, LLR, and SC, two required trace path types
HLR -> LLR -> SC and SC -> LLR -> HLR, and four required trace link types HLR -> LLR,
LLR -> SC, LLR -> HLR, and SC -> LLR. The created TIM is the result of the finding
that the artifact type HLR evolves to the artifact type SC through the activity sequence
C7, C8. The TIM was derived in three steps:

¶ The activity output LLR is an intermediate artifact type of the required trace path
type. Since LLR is required as an intermediated artifact type, it becomes a new
traceable artifact type of the TIM.

· HLR evolves to LLR through the activity C7. Thus, a required trace link type HLR

-> LLR is derived for the TIM. As traceability between HLR and SC is required to
be bidirectional, the reverse required trace link type LLR -> HLR is derived as well.

¸ LLR evolves to SC through the activity C8. Thus, a required trace link type LLR

-> SC is derived for the TIM. The reverse required trace link type is again derived
due to the bidirectional required trace path type. Additionally, the sequence of
required trace link types can be explicitly specified for the required trace path
types, leading to the required trace path types HLR -> LLR -> SC and SC -> LLR

-> HLR.

The illustrated procedure for deriving required trace link types can be repeated if the
TIM draft contains multiple required trace path types. The result of this second step
is a complete TIM, containing all required trace path types, required trace link types,
and traceable artifact types.

4.3. Justifying the Purpose of Required Trace Link Types

A clear justification of the purpose is needed for every required trace link type. Only if
this is ensured, the derived TIM can be considered a valid target state for the assess-
ment of the fitness for purpose of implemented traceability. If this justification of the
purpose is missing a single required trace link type, the entire assessment result can be
questioned, as a potentially invalid target state may have been used for assessment with
respect to the fitness for purpose. Thus, this section provides a discussion on why the
proposed planning approach with the resulting TIM ensures that the purpose of each
containing required trace link type can be justified.
The proposed planning approach for purposed traceability consists of six consecutive

steps. Each step builds upon the results of the preceding step. Following these steps
in the proposed order establishes a chain of evidence from a traceability goal to the
results required trace link types. The chain evidence can be traced backward, from the
required trace link type to a traceability goal, to verify that each required trace link type
is justified by a traceability goal. It can also be traced forward, from a traceability goal

45

4. Planning for Purposed Traceability

«trace path type»

HLR -> LLR -> SC

[LLR]
low-level

requirements

[HLR]
high-level

requirements «trace link type»

HLR -> LLR

«trace link type»

LLR -> HLR

[SC]
source code

«trace link type»

LLR -> SC

«trace link type»

SC -> LLR
«trace path type»

SC -> LLR -> HLR

«traceability»
[G2] Ensure

that the source code
completely satisfy high-

level requirements

«traceability»
[G3] Ensure that no source

code implements undocumented
function that do not satisfy any

high-level requirement

FAA

Source
Code

Reviewer
«traceability usage»

[C2] Analyze for each high-
level requirement (LLR) if it is

traceable to a source code
artifact satisfying the LLR

«traceability usage»
[C3] Analyze for each source

code artifact (SC) if it is trace-
able to a high-level requirement

that is satisfied by the SC

Developer

«traceability impl»
[C4] create=<->:

source=high-level requirement,
target=source code.

❶

❷

❸

❸

❹ ❹

Figure 4.9.: The autopilot project: chain of evidence to justify the purpose of the re-
quired trace link type HLR -> LLR

to the required trace link types, to verify that all traceability goals have been addressed
by required trace link types in the TIM. In fact, following this chain of evidence provides
traceability for the required trace link types.

Figure 4.9 illustrates the chain of evidence for the required trace link type HLR -> LLR

46

4.4. Summary

of the autopilot example. It consists of the following steps:

¶ A required trace link type is part of a sequence of required trace link types that
form a required trace path type (see Section 4.2.3). This part-of relationship allows
the identification of the required trace path types that contain the required trace
link type for which the purpose needs to be justified.

· A required trace path type is always derived from a traceability implementation
activity (see Section 4.2.2). This derive dependency allows the identification of
the traceability implementation activity from which the required trace path type
was derived.

¸ A traceability implementation activity enables a traceability usage activity (see
Section 4.1.5). Following this enable relationship allows to identify traceability
usage activity.

¹ A traceability usage activity is performed to achieve a traceability goal (see Section
4.1.4). Following the achieve relationship allows to identify originating traceability
goal.

It can be concluded that the traceability goals G2 and G3 can be identified as the
purpose of the required trace link type HLR -> LLR by following the illustrated chain
of evidence. This can be achieved in a similar way for all required trace link types,
because all were derived with the same planning methodology. This implies that the
purpose can be justified for every required trace link type of the derived TIM. Thus, it
can be used as a target state to assess the fitness for purpose of a project’s traceability
implementation.

4.4. Summary

This chapter has presented a method for the planning of purposed traceability. It
represents the first part of the proposed traceability assessment approach (see Section
3.3). Main objective of this part is to ensure purposed traceability. In this section, a
summary of the presented method is provided with respect to the challenges that are
related to purposed traceability (see Section 3.1.1).
As stated in Challenge 1, the planning for purposed traceability needs to be sup-

ported. The proposed approach addresses this challenge by introducing a traceability
goal oriented planning methodology. As illustrated in Section 4.3, each required trace-
ability information that is created by the proposed planning approach is justified by one
or many purposes, which are represented as traceability goals.
Challenge 2 emphasized that the planning should be able to unify traceability require-

ments with respect to multiple purposes. As shown in Sections 4.2.2 and 4.2.3, the TIM

47

4. Planning for Purposed Traceability

is derived from the TRM. The TRM can contain as many traceability goals as necessary.
As a consequence, the derived TIM unifies the required traceability information of all
traceability goals.
Planning for purposed traceability is the first part of the proposed traceability as-

sessment approach (see Section 3.3). The following chapter will present the second
part.

48

5. Assessing the Fitness for Purpose of
Implemented Traceability

As discussed in Section 2.3, the current state of the art mainly considers three relevant
traceability lifecycle activities, namely traceability planning, traceability implementa-
tion, and traceability usage. The critique of the state of the art in Section 2.6 has
identified the urgent need to verify that the implemented traceability is trustworthy.
Hence, the traceability lifecycle is extended by an additional traceability verification ac-
tivity. As depicted in Figure 5.1, the newly introduced traceability verification activity
is driven by the output of the traceability planning activity and assesses the output of
the traceability implementation activity.

Traceability lifecycle

Software lifecycle

Traceability
planning

Traceability
usage

Traceability
implementation

Traceability
creation

Traceability
maintenance

governs

enables

supports

Traceability
verification

assesses

drives

Figure 5.1.: Overview of the traceability lifecycle including the new traceability verifi-
cation activity

To provide the means for the newly introduced traceability verification activity, this
chapter presents an approach to assess the fitness for purpose of a project’s traceability
implementation. As a prerequisite, the assessment approach requires the specification of
a target state for the project’s traceability implementation with respect to its traceability
goals. The previous chapter presented a traceability planning approach to specify this
target state. The presentation of the assessment approach in this chapter is organized as
follows: Section 5.1 introduces an analytical assessment model for traceability, which is

49

5. Assessing the Fitness for Purpose of Implemented Traceability

the foundation for the traceability assessment approach. Section 5.2 identifies relevant
quality attributes that define the fitness for purpose of a project’s traceability imple-
mentation. Section 5.3 defines assessable traceability implementation properties with
respect to the identified quality attributes that are relevant for the fitness for purpose.
A comprehensive classification of traceability problems with respect to the identified
quality attributes is presented in Section 5.4. The classification includes the defini-
tion of assessable traceability implementation properties that indicate these traceability
problems. Dependencies among these traceability problems are discussed in Section 5.5.
These problem dependencies are relevant to understand the implications of traceability
assessment results. Section 5.6 discusses how the presented traceability assessment ap-
proach can be operationalized in software projects. In Section 5.7, a discussion of the
presented traceability assessment approach is provided with respect to the identified
challenges (see Section 3.1), which were derived from the critique of the state of the art
(see Section 2.6). Section 5.7 summarizes the assessment approach with respect to the
challenges that are related to trusted traceability (see Section 3.1.2).

5.1. A Traceability Assessment Model

Main goal of this approach is to assess a project’s traceability implementation for its
fitness for purpose. This means that an existing traceability implementation is supposed
to be assessed with respect to specific quality attributes that refer to the fitness of pur-
pose. As a groundwork for this assessment, a Traceability Assessment Model (TAM)
is proposed that defines the relevant concept for the performance of a traceability as-
sessment. To provide a precise definition of these concepts, a meta-model is defined
for the TAM. Figure 5.2 provides an overview of the defined meta-model as UML class
diagram. The remainder of the section discusses each meta-model element in detail.

Traceability
Entity

Reference
State

Traceability
Problem

Reference
State

Deviation

1*

*

11

* Quality
Attribute

Figure 5.2.: Meta-model of the Traceability Assessment Model (TAM)

Traceability Entity. A traceability entity subsumes all elements of a project specific

50

5.1. A Traceability Assessment Model

traceability implementation (see Section 3.2) that is supposed to be assessed for its
fitness for purpose. As depicted in Figure 5.3, the traceability entity element subsumes
the traceability implementation data elements artifact, artifact type, trace link, trace
link type, trace path, and trace path type.

Traceability
Entity

Trace Link
Type

Artifact
Type

Trace Path
Type

Trace
Link

Artifact
Trace
Path

Figure 5.3.: Overview of the traceability implementation elements that are subsumed
by the TAM element traceability entity

Quality Attribute. Each quality characteristic for which a project’s traceability im-
plementation is supposed to be assessed is represented as a quality attribute. It should
be noted that a quality attribute can represent very abstract quality characteristics as
well as more concrete sub-characteristics. Therefore, the TAM meta-model specifies
that a quality attribute can be composed of other quality attributes. Defining quality
attribute hierarchies is a common approach in existing software product quality models
[Boehm 1978; ISO 25010:2011].

Reference State. Each quality attribute needs to be mapped to properties of a
project’s traceability implementation that can be assessed for this quality. For this
purpose, a reference state is defined for each entity of a traceability implementation.
It specifies an assessable property of a traceability entity that corresponds to a specific
quality attribute. To make this correspondence to a quality attributes explicit, each
reference state is mapped to one or many quality attributes.

Reference State Deviation. A project specific traceability implementation may de-
viate from this reference state. Recent studies [Mäder et al. 2013; Rempel et al. 2013;
Rempel et al. 2014] have shown that these deviations are the rule rather than an ex-
ception. The existence of such deviations from the reference state indicate a problem
with respect to the quality attribute that is related to the reference state. The reference
state deviation element represents an assessable property of a traceability entity that
indicates a traceability problem.

Traceability Problem. The aforementioned problems, which are indicated by a refer-

51

5. Assessing the Fitness for Purpose of Implemented Traceability

ence state deviation, are represented by the element traceability problem. Traceability
problems are explicitly associated to the reference state deviation that indicates the
problem. A reference state deviation may indication one or many traceability problems.

5.2. Quality Attributes of a Purposed Traceability
Implementation

This section identifies and defines the relevant quality attributes, which are expected
from a software project’s traceability implementation to be fit for purpose. The ISO
25010 standard on Systems and software Quality Requirements and Evaluation (SQuaRE)
defines a product quality model that consists of eight high-level quality attributes such
as functional suitability, performance efficiency, compatibility, usability, reliability, se-
curity, maintainability, and portability [ISO 25010:2011]. Since the presented approach
focuses solely on assessing the fitness for purpose, functional suitability is the relevant
high-level quality attribute. Functional suitability is defined as the “degree to which a
product or system provides functions that meet stated and implied needs when used under
specified conditions” [ISO 25010:2011]. As illustrated in Figure 5.4, this high-level qual-
ity attribute is composed of the three sub-characteristics completeness, appropriateness,
and correctness.

Functional Suitability

Completeness

Correctness

Appropriateness

Figure 5.4.: Quality tree of the high-level attribute functional suitability

The assessment approach focuses on assessing the quality of traceability implementa-
tions only rather then the entire software system. Hence, the definitions of completeness,
appropriateness, and correctness, as provided in [ISO 25010:2011], are adapted in this
thesis for the specific scope of traceability implementation assessments.

Definition 6 (Completeness). It refers to the degree to which a project’s traceability
implementation data cover all required traceability information as specified in the TIM.

Definition 7 (Appropriateness). It refers to the degree to which a project’s traceability
implementation data facilitate the achievement of the traceability goals that are specified
within the TRM.

Definition 8 (Correctness). It refers to the degree of precision to which a project pro-
vides traceability implementation data with respect to the required traceability informa-
tion.

52

5.3. Assessable Traceability Implementation Properties with Respect to Purposed Traceability

Hence, to assess a project’s traceability implementation for its fitness for purpose,
the respective traceability implementation data need to be assessed with respect to the
quality attributes completeness, appropriateness and correctness.

5.3. Assessable Traceability Implementation Properties with
Respect to Purposed Traceability

The quality attributes completeness, appropriateness, and correctness are abstract con-
cepts, which cannot be directly observed in a project’s traceability implementation data.
Thus, this section defines the properties of traceability implementation data that are
related to the quality attributes. For each traceability implementation data element, a
generalized reference state is defined to specify what is required so that any instance of
the respective traceability implementation data element is complete, appropriate, and
correct. Additionally, a formal expression is provided for each reference state. This
formal expression can be used to determine whether or not a specific traceability imple-
mentation data instance fulfills the reference state requirements. An illustrating example
is provided for each traceability implementation data element.

Artifact Type. A fundamental assumption for the completeness of traceability is that
all artifact types that are required to be traceable are implemented. For the appropri-
ateness of traceability it is necessary that all implemented artifact types are required.
The correctness of traceability is not directly affected by artifact types. Reference state:
For each required artifact type that is at least a source or a target artifact type of one
required trace link type in the TIM, there exists a corresponding artifact type within the
TID. Each implemented artifact type should correspond to one required artifact type of
the TIM. Formal expression: ∀r ∈ R A∀i ∈ IA [implements−1(r) ∈ IA∧implements(i) ∈
R A]. Example: Figure 5.5 sketches an example of valid artifact type implementations

R A IA
implements

implements

Figure 5.5.: Example of valid artifact type implementations

as Venn diagram. The shown example is valid because all required artifact types are
implemented (complete) and all implemented artifact types are required (appropriate).

Trace Link Type. For the completeness of traceability it is also required that all
required trace link types are implemented. For the appropriateness of traceability it is

53

5. Assessing the Fitness for Purpose of Implemented Traceability

necessary that all implemented trace link types are required. For the correctness of the
traceability it is necessary that all required direct trace link types are implemented by a
trace link type. Reference state: For each required trace link type in the TIM there ex-
ists a corresponding trace link type within the TID that implements the corresponding
required trace link type. Each trace link type that is implemented in TID corresponds
to one required trace link type of the TIM that it implements. Formal expression:
∀r ∈ R L∀i ∈ IL [implements−1(r) ∈ IL ∧ implements(i) ∈ R L]. Example: Figure 5.6
sketches an example of a valid trace link type implementation as Venn diagram. The
shown example is valid because all required trace link types are implemented (com-
plete), all implemented trace link types are required (appropriate), all required direct
traceability relations are implemented by a trace link type (correct).

R L IL

implements

implements

implements

Figure 5.6.: Example of a valid trace link type implementation

Trace Path Type. For the completeness of traceability it is also required that all
required trace path types are implemented. For the appropriateness of traceability it
is necessary that all implemented trace path types are required. For the correctness
of the traceability it is necessary that all required path types are implemented by a
trace path type. Reference state: For each required trace path type in the TIM there
exists a corresponding trace path type within the TID that implements the required
trace path type. Each trace path type that is implemented in TID corresponds to one
required trace path type of the TIM that it implements. Formal expression: ∀r ∈

R P∀i ∈ IP [implements−1(r) ∈ IP ∧ implements(i) ∈ R P]. Example: Figure 5.7
sketches an example of a valid trace path type implementation as Venn diagram. The
shown example is valid because all the required transitive traceability relations are
implemented (complete), all implemented trace path types are required (appropriate),
all required path types are implemented by a trace path type (correct).

Artifact. Another fundamental assumption for the completeness of traceability is that
all implemented artifact types are instantiated by concrete artifacts. For the appropri-
ateness of traceability it is necessary that all implemented artifacts are an instance of
an implemented artifact type. The correctness of traceability is not directly affected

54

5.3. Assessable Traceability Implementation Properties with Respect to Purposed Traceability

R P IP

implements

implements

implements

implements

Figure 5.7.: Example of a valid trace path type implementation

by artifacts. Reference state: For each implemented artifact type there exists one or
many artifacts that are instances of the implemented artifact type. Each implemented
artifact is an instance of an implemented artifact type in the TID. Formal expression:
∀it ∈ IA∀ii ∈ IA[instances(it) 6= ∅ ∧ instances−1(ii) ∈ IA]. Example: Figure 5.8
sketches an example of valid artifact implementations as Venn diagram. The shown
example is valid because all required artifact types are implemented by artifact types
that have artifact instances (complete) and all implemented artifacts are an instance of
a required artifact type and therefore required (appropriate).

IA

IA

instance instance

R A
implements

Figure 5.8.: Example of valid artifact implementation

Trace Link. For the completeness of traceability it is also required that each artifact
that is an instance of an artifact type belonging to a trace link type is part of a trace
link that instantiate this trace link type. For the appropriateness of traceability it is
necessary that all implemented trace links are an instance of an implemented trace
link type. For the correctness of the traceability it is necessary that the implemented
trace link types are instantiated by trace paths. Reference state: For each artifact that
is an instance of an artifact type as either source or target of a trace link type t in
the TID there exists a trace link that is an instance of this t. For each implemented
trace link l in the TID there exists a trace link type that is instantiated by l. For-

55

5. Assessing the Fitness for Purpose of Implemented Traceability

mal expression: ∀as ⊆ instance(source(IL))∃ls ∈ IL[ls ∈ source−1(instance−1(as))] ∧
∀at ⊆ instance(target(IL))∃lt ∈ IL[lt ∈ target−1(instance−1(at))]. Example: Figure
5.9 sketches an example of a trace link implementation as Venn diagram. The shown
example is valid, because for all artifacts a trace link is available that are instances of
the trace link type to which the artifacts belong (complete), all implemented trace links
are instances of a trace link type to which the related artifacts belong (appropriate), all
trace link types are instantiated by a trace link (correct).

IL

IL

(instances)

R L
(implements)

Figure 5.9.: Example of a valid trace link implementations

Trace Path. For the completeness of traceability it is required that each artifact being
an instance of an artifact type that belongs to a trace path type is part of a trace path
to instantiate this trace path type. For the appropriateness of traceability it is necessary
that all implemented trace paths are an instance of an implemented trace path type.
For the correctness of the traceability it is necessary that the implemented trace path
types are instantiated by trace paths. Reference state: For each artifact that is an
instance of an artifact type being either a source or a target of a trace path type t in the
TID there exists a trace path that is an instance of this t. For each implemented trace
path p in the TID there exists a trace path type that is instantiated by p. Formal ex-
pression: ∀as ⊆ instance(source(IP))∃ps ∈ IP [ps ∈ source−1(instance−1(as))] ∧ ∀at ⊆
instance(target(IP))∃pt ∈ IP [pt ∈ target−1(instance−1(at))]. Example: Figure 5.10
sketches an example of a valid trace path implementation as Venn diagram. The shown
example is valid, because for all artifacts a trace path is available that is an instances of
the trace path type to which the artifacts belong (complete), all implemented trace paths
are instances of a trace path type to which the related artifacts belong (appropriate),
all trace path types are instantiated by a trace path (correct).

56

5.4. Traceability Problems

IP

IP

(instances)

R P
(implements)

Figure 5.10.: Example of a valid trace path implementations

5.4. Traceability Problems

Implemented traceability data can deviate from the reference state. These reference
state deviations indicate traceability problems with respect to the fitness for purpose
of a project’s traceability implementation. This section provides a comprehensive clas-
sification of traceability problems. The discussion of traceability problems is organized
by the quality attributes completeness (see Section 5.4.1), appropriateness (see Section
5.4.2), and correctness (5.4.3).

5.4.1. Problems Related to the Completeness

This section presents traceability problems that are related to the completeness of trace-
ability implementation data. For each traceability implementation data element, the
traceability problem is discussed. Additionally, a generalized reference state deviation
is defined that indicate the existence of this problem. Additionally, a formal expression
is provided for each reference state deviation. This formal expression can be used to
determine unambiguously whether or not a specific traceability implementation data
instance deviates from its reference state. For each traceability problem, an illustrating
example is provided.

Missing Artifact Type (MA). A traceability implementation is incomplete if a re-
quired artifact class is not implemented. This implies that the implementation of an
artifact type is missing. Reference state deviation: There exists a required artifact type
that is a source or a target artifact type of a required trace link type in the TIM for
which no corresponding artifact type is implemented within the TID. Formal expres-
sion: ∃a ∈ R A [implements−1(a) = ∅] =⇒ a ∈ MA . Example: Figure 5.11 sketches
an example of an incomplete traceability implementation that misses an artifact type.
The first of the required artifact types that is highlighted with a question-mark is not
implemented by an artifact type.

57

5. Assessing the Fitness for Purpose of Implemented Traceability

R A IA

?
implements

implements

Figure 5.11.: Example of an incomplete traceability implementation that misses artifact
type

Missing Trace Link Type (ML). A traceability implementation is incomplete if a
required trace link type is not implemented. This implies that the implementation of
a trace link type is missing. Reference state deviation: There exists a required trace
link type in the TIM for which no corresponding trace link type is implemented within
the TID. Formal expression: ∃l ∈ R L [implements−1(l) = ∅] =⇒ l ∈ ML . Ex-
ample: Figure 5.12 sketches an example of an incomplete traceability implementation
that misses a trace link type. The required trace link type that is highlighted with a
question-mark is not implemented by a trace link type.

R L IL

?

implements

implements

Figure 5.12.: Example of an incomplete traceability implementation that misses a trace
link type

Missing Trace Path Type (MP). A traceability implementation is incomplete if a
required trace path type is not implemented. This implies that the implementation
of a trace path type is missing. Reference state deviation: There exists a required
trace path type in the TIM for which no corresponding trace path type is implemented
within the TID. Formal expression: ∃p ∈ R P [implements−1(p) = ∅] =⇒ p ∈ MP .
Example: Figure 5.13 sketches an example of an incomplete traceability implementation
that misses a trace path type. The required trace path type that is highlighted with a
question-mark is not implemented by a trace path type.

Missing Artifact (MA). A traceability implementation is incomplete if an artifact
type is not instantiated by an artifact. This implies that the implementation of an

58

5.4. Traceability Problems

R P IP

implements

implements

implements

?

Figure 5.13.: Example of an incomplete traceability implementation that misses a trace
path type

artifact is missing. Reference state deviation: There exists an artifact type in the TID
for which no artifact is implemented that is an instances of the artifact type. Formal
expression: ∃a ∈ IA [instances(a) = ∅] =⇒ a ∈ MA. Example: Figure 5.14 sketches
an example of an incomplete traceability implementation that misses an artifact. The
artifact type that is highlighted with a question-mark is not implemented by any artifact
instance.

IA

?

IA

R A
implements

Figure 5.14.: Example of an incomplete traceability implementation that misses artifacts

Missing Trace Link (ML). A traceability implementation is incomplete if an artifact
that is an instance of an artifact type belonging to a trace link type is not part of a
trace link that instantiate this trace link type. This implies that the implementation of
a trace link is missing. Reference state deviation: There exists an artifact which is an
instance of an artifact type that is either a source or a target of a trace link type t in
the TID for which no trace link is implemented which is an instance of this t. Formal
expression: ∃as ⊆ instance(source(IL))¬∃ls ∈ IL[ls ∈ source−1(instance−1(as))] =⇒
ls ∈ ML. ∃at ⊆ instance(target(IL))¬∃lt ∈ IL[lt ∈ target−1(instance−1(at))] =⇒
lt ∈ ML. Example: Figure 5.15 sketches an example of an incomplete traceability
implementation that misses a trace link. The artifact that is highlighted with a question-
mark is an instance of an artifact type that is the target of a trace link type. However,
this highlighted artifact is not a target of a trace link that instantiates the trace link

59

5. Assessing the Fitness for Purpose of Implemented Traceability

type.

IL

IL
?

(instances)

R L
(implements)

Figure 5.15.: Example of an incomplete traceability implementation that misses trace
links

Missing Trace Path (MP). A traceability implementation is incomplete if an ar-
tifact that is an instance of an artifact type belonging to a trace path type which is
not part of a trace path that instantiates this trace path type. This implies that the
implementation of a trace path is missing. Reference state deviation: There exists an
artifact which is an instance of an artifact type that is either a source or a target of
a trace path type t in the TID for which no trace path is implemented which is an
instance of this t. Formal expression: ∃as ⊆ instance(source(IP))¬∃ps ∈ IP [ps ∈
source−1(instance−1(as))] =⇒ ps ∈ MP . ∃at ⊆ instance(target(IP))¬∃pt ∈ IP [pt ∈
target−1(instance−1(at))] =⇒ pt ∈ MP . Example: Figure 5.16 sketches an example of
an incomplete traceability implementation that misses a trace path. The artifact that
is highlighted with a question-mark is an instance of an artifact type that is the target
of a trace path type. However, this highlighted artifact is not a target of a trace path
that instantiates the trace path type.

5.4.2. Problems Related to the Appropriateness

This section presents traceability problems that are related to the appropriateness of
traceability implementation data. The presentation of the traceability problems is or-
ganized as in the previous section.

Superfluous Artifact Type (SA). A traceability implementation is not appropriate
if an implemented artifact type does not correspond to a required artifact type. This
implies that the implementation of this artifact type is superfluous. Reference state devi-
ation: There exists an artifact type that is implemented in TID that does not correspond
to a required artifact type of the TIM. Formal expression: ∃a ∈ IA [implements(a) =

∅] =⇒ a ∈ SA . Example: Figure 5.17 sketches an example of an inappropriate

60

5.4. Traceability Problems

IP

IP

?

(instances)

R P
(implements)

Figure 5.16.: Example of an incomplete traceability implementation that misses trace
paths

traceability implementation, which contains a superfluous artifact type. The artifact
type that is highlighted with a question-mark does not correspond to a required artifact
type.

R A IA

?
implements

Figure 5.17.: Example of an inappropriate traceability implementation that contains a
superfluous artifact type

Superfluous Trace Link Type (SL). A traceability implementation is not appropriate
if an implemented trace link type does not correspond to a required trace link type.
This implies that the implementation of this trace link type is superfluous. Refer-
ence state deviation: There exists a trace link type that is implemented in the TID
that does not correspond to a required trace link type of the TIM. Formal expression:
∃l ∈ IL [implements(l) = ∅] =⇒ l ∈ SL . Example: Figure 5.18 sketches an example
of an inappropriate traceability implementation, which contains a superfluous trace link
type. The trace link type that is highlighted with a question-mark does not correspond
to a required trace link type.

Superfluous Trace Path Type (SP). A traceability implementation is not appropri-
ate if an implemented trace path type does not correspond to a required trace path type.
This implies that the implementation of this trace path type is superfluous. Reference
state deviation: There exists a trace path type that is implemented in TID and that

61

5. Assessing the Fitness for Purpose of Implemented Traceability

R L IL

?

implements

implements

Figure 5.18.: Example of an inappropriate traceability implementation that contains a
superfluous trace link type

does not correspond to one required trace path type of the TIM. Formal expression:
∃p ∈ IP [implements(p) = ∅] =⇒ p ∈ SP . Example: Figure 5.19 sketches an example
of an inappropriate traceability implementation, which contains a superfluous trace path
type. The trace path type that is highlighted with a question-mark does not correspond
to a required trace path type.

R P IP

implements

implements

implements

?

Figure 5.19.: Example of an inappropriate traceability implementation that contains a
superfluous trace path type

Superfluous Artifact (SA). A traceability implementation is not appropriate if an
implemented artifact is an instance of an artifact type that does not correspond to
a required artifact type. This implies that the implementation of this artifact is su-
perfluous. Reference state deviation: There exists an artifact that is implemented
in that TID and that is an instance of an artifact type. However, this artifact type
does not correspond to a required artifact type in the TIM. Formal expression: ∃a ∈
IA[implements(instance−1(a)) = ∅] =⇒ a ∈ SA. Example: Figure 5.20 sketches
an example of an inappropriate traceability implementation, which contains a super-
fluous artifact. All artifacts that are highlighted with a question-mark are an instance
of an artifact type, which is also highlighted with a question-mark and that does not
correspond to a required artifact type.

62

5.4. Traceability Problems

IA

?

IA

? ?

instance instance

R A

Figure 5.20.: Example of an inappropriate traceability implementation that contains
superfluous artifacts

Superfluous Trace Link (SL). A traceability implementation is not appropriate if an
implemented trace link is an instance of a trace link type, which does not correspond to
a required trace link type. This implies that the implementation of this trace link is su-
perfluous. Reference state deviation: There exists a trace link that is implemented in the
TID and that is an instance of a trace link type, which does not correspond to a required
trace link type of the TIM. Formal expression: ∃l ∈ IL[implements(instance−1(l)) =

∅] =⇒ l ∈ SL. Example: Figure 5.21 sketches an example of an inappropriate trace-
ability implementation, which contains superfluous trace links. All trace links that are
highlighted with a question mark are an instance of the trace link type that is also
highlighted with a question-mark, which does not correspond to a required trace link
type.

IL

IL

(instances)

?

?
?

R L
(implements)

Figure 5.21.: Example of an inappropriate traceability implementation that contains
superfluous trace links

Superfluous Trace Path (SP). A traceability implementation is not appropriate if
an implemented trace path is an instance of a trace path type that does not correspond

63

5. Assessing the Fitness for Purpose of Implemented Traceability

to a required trace path type. This implies that the implementation of this trace path
is superfluous. Reference state deviation: There exists a trace path implemented in
TID that is an instance of a trace path type, which does not correspond to a required
trace path type of the TIM. Formal expression: ∃p ∈ IP [implements(instance−1(p)) =

∅] =⇒ p ∈ SP . Example: Figure 5.22 sketches an example of an inappropriate
traceability implementation, which contains superfluous trace paths. All trace paths
that are highlighted with a question mark are an instance of the trace path type that
is also highlighted with a question-mark, which does not correspond to a required trace
path type.

IP

IP

(instances)

R P
(implements)

?

?

?

Figure 5.22.: Example of an inappropriate traceability implementation that contains
superfluous trace paths

5.4.3. Problems Related to the Correctness

This section presents traceability problems that are related to the correctness of trace-
ability implementation data. The presentation of the traceability problems is organized
as in the previous section. As discussed in Section 5.3, the correctness of traceability
is not directly affected by artifacts or artifact types. Accordingly, this section does not
define correctness problems for these two traceability implementation data elements.

Wrong Trace Link Type (WL). A traceability implementation is incorrect if a re-
quired trace path type is implemented by a trace link type. This implies that the
implementation of the trace link type is wrong. Reference state deviation: There exists
a required trace path type in the TIM for which a corresponding trace link type is imple-
mented within the TID. Formal expression: ∃l ∈ IL [implements(l) ∈ R P] =⇒ l ∈WL .
Example: Figure 5.23 sketches an example of an incorrect traceability implementation
that contains a wrong trace link type. The trace link type that is highlighted with a
question mark implements a required trace path type.

64

5.4. Traceability Problems

R P IL

?

implements

implements

implements

Figure 5.23.: Example of an incorrect traceability implementation that contains a wrong
trace link type

Wrong Trace Path Type (WP). An implemented trace path type can be wrongly
implemented in two ways. A traceability implementation is incorrect if either a required
trace link type is implemented by a trace path type or if a required trace path type
is implemented by a trace path type where at least one intermediate artifact type at
the n-th position of the path does not implement the corresponding required artifact
type at the n-th position of the required trace path type. Both cases imply that the
implementation of a Trace Path Type is wrong. Reference state deviation-A: There
exists a trace path type within the TID that implements a required trace link type in
the TIM. Formal expression-A: ∃p ∈ IP [implements(p) ∈ R L] =⇒ p ∈WP . Example-
A: Figure 5.24 sketches an example of the first alternative of an incorrect traceability
implementation that contains a wrong trace path type. The trace path type that is
highlighted with a question mark implements a required trace link type. Reference state
deviation-B: There exists a trace path type within the TID that implements a required
trace path type of the TIM. For the latter one, there exists a trace link type that is a step
of the trace path type but does not implement any step of the required trace path type.
Formal expression-B: ∃p ∈ IP∃l ∈ steps(p)[l /∈ steps(implements(p))] =⇒ p ∈ WP .
Example-B: Figure 5.25 sketches an example of the second alternative of an incorrect
traceability implementation that contains a wrong trace path type. The trace path type
that is highlighted with a question-mark contains two steps that do not implement the
corresponding step of the implemented required trace path type.

Wrong Trace Link (WL). A traceability implementation is incorrect if a wrong trace
link type is instantiated by trace links. This implies that the created trace link instances
are wrong too. Reference state deviation: There exists a trace link within the TID that
instantiates a trace link type that implements a required trace path type. Formal expres-
sion: ∃l ∈ IL[implements(instance−1(l)) ∈ R P] =⇒ l ∈ WL. Example: Figure 5.26
sketches an example of an incorrect traceability implementation that contains wrong
trace links. The trace links that are highlighted with a question mark, are instances of

65

5. Assessing the Fitness for Purpose of Implemented Traceability

R L IP

implements

implements

implements

?

Figure 5.24.: Example of an incorrect traceability implementation that contains a wrong
trace path type

R P IP

implements

implements

implements

?

Figure 5.25.: Example of an inappropriate traceability implementation that contains
superfluous trace paths

a trace link type that implements a required trace path type.

Wrong Trace Path (WP). A traceability implementation is incorrect if a wrong
trace path type is instantiated by trace paths. This implies that the created trace path
instances are wrong, too. Since trace path types can be wrongly implemented in two
ways, there are also two alternatives cases for wrongly implemented trace links. Ref-
erence state deviation-A: There exists a trace path that is an instance of a trace path
type within the TID that implements a required trace link type of the TIM. Formal
expression-A: ∃p ∈ IP [implements(instance−1(p)) ∈ R L] =⇒ p ∈ WP . Example-
A: Figure 5.27 sketches an example of the first alternative of an incorrect traceability
implementation that contains a wrong trace path. The trace paths that are highlighted
with a question mark are instances of a trace path type that implements a required trace
link type. Reference state deviation-B: There exists a trace path that is an instance of
a trace path type within the TID, which implements a required trace path type of the
TIM. For this trace path type there exists a trace link type that is a step of the trace path
type but does not implement any step of the required trace path type. Formal expres-
sion-B: ∃p ∈ IP∃l ∈ steps(p)[l /∈ steps(implements(instance−1(p)))] =⇒ p ∈ WP .
Example-B: Figure 5.28 sketches an example of the second alternative of an incorrect

66

5.5. Dependencies Among the Traceability Problems

IL

IL

(instances)

?

?
?

R P
(implements)

Figure 5.26.: Example of an incorrect traceability implementation that contains wrong
trace links

traceability implementation that contains a wrong trace path. The trace paths that are
highlighted with a question-mark are instances of a trace path type. This trace path
contains two steps that do not implement the steps of the corresponding required trace
path type.

IP

IP

(instances)

R L
(implements)

?

?

?

Figure 5.27.: Example of an inappropriate traceability implementation that contains
superfluous trace paths

5.5. Dependencies Among the Traceability Problems

There exist dependencies among the traceability problems. These dependencies result
from the fact that the traceability implementation data itself are interdependent, as
discussed in Section 3.2. Knowing them can help to understand the implications of
traceability assessment results. The top part of Figure 5.29 shows the dependencies
among the traceability implementation data as dependency graph. The bottom part
of Figure 5.29 shows the derived dependencies among the traceability problems as de-
pendency graph. Each derived traceability problem is marked with a number. In the
remainder of this section, each derivation step is discussed.

67

5. Assessing the Fitness for Purpose of Implemented Traceability

IP

IP

(instances)

R P
(implements)

?

?

?

Figure 5.28.: Example of an inappropriate traceability implementation that contains
superfluous trace paths

Ê A trace path type consists of a sequence of steps. Each step is represented by
a trace link type. Due to this dependency, the existence of a trace path type related
problem, such as a missing trace path type, superfluous trace path type, or wrong trace
path type, implies for each trace link type that is a step the trace path type the existence
of a corresponding missing trace link type, superfluous trace link type, or wrong trace
link type problem.

Ë A trace path type is instantiated by trace path elements. Due to this dependency,
the existence of a trace path type related problem, such as a missing trace path type,
superfluous trace path type, or wrong trace path type, implies for each trace path that
is an instance of the trace path type the existence of a corresponding missing trace path,
superfluous trace path, or wrong trace path problem.

Ì A trace link type consists of a source and a target artifact type. Due to this
dependency, the existence of an artifact type related problem, such as a missing artifact
type or superfluous artifact type implies for the trace link type that consists of this
artifact type the existence of a corresponding missing trace link type or superfluous
trace link type problem.

Í A trace link type is instantiated by trace link elements. Due to this dependency,
the existence of a trace link type related problem, such as a missing trace link type,
superfluous trace link type, or wrong trace link type implies for each trace link that is
an instance of the trace link type the existence of a corresponding missing trace link,
superfluous trace link, or wrong trace link problem.

Î A trace path consists of a sequence of steps. Each step is represented by a trace
link. Due to this dependency, the existence of a trace path related problem, such as a
missing trace path, superfluous trace path, or wrong trace path, implies for each trace
link that is a step of the trace path the existence of a corresponding missing trace link,
superfluous trace link, or wrong trace link problem.

68

5.5. Dependencies Among the Traceability Problems

Trace Path
Type

Trace Link
Type

Artifact
Type

Trace Path Trace Link Artifact

consists of

instantiated by

consists of

instantiated by instantiated by

consists of consists of

Missing Trace
Path Type

Superfluous
Trace Path Type

Wrong Trace
Path Type

Missing Trace
Link Type

Superfluous
Trace Link Type

Wrong Trace
Link Type

❶
Missing

Trace Path
❷

Superfluous
Trace Path

❷

Wrong
Trace Path

❷

Missing
Artifact Type

Superfluous
Artifact Type

❶

❶

❸

❸

Missing Trace
Link

❹

Superfluous
Trace Link

Wrong Trace
Link

❹

❹

❺

❺

❺

Missing
Artifact

❻

Superfluous
Artifact

❻

❼

❼

❷

❺

❶

❹

❸

❻

❼

Figure 5.29.: Dependencies among the traceability implementation data and the derived
dependencies among the traceability problems

Ï A trace link consists of a source and a target artifact. Due to this dependency, the
existence of an artifact related problem, such as a missing artifact or superfluous artifact,
implies for the trace link that consists of this artifact the existence of a corresponding
missing trace link or superfluous trace link problem.

Ð An artifact type is instantiated by artifact elements. Due to this dependency,
the existence of an artifact type related problem, such as a missing artifact type or
superfluous artifact type, implies for each artifact that is an instance of the artifact
type the existence of a corresponding missing artifact or superfluous artifact problem.

As envisioned in the beginning of this section, knowing these dependencies can be
helpful for the interpretation of the assessment results. The existence of traceability
problems that are related to an artifact type, trace link type or trace path type have
typically a much higher impact, because they automatically imply the existence of this
problem in all the respective instances as well. For example, a project with thousands
of artifacts that are instances of a trace link type’s source artifact type, the assessment
result that this trace link type is missing would imply that thousands of trace links are
missing as well. Thus, problems related to the elements artifact type, trace link type,
or trace path type can used as a leading indicator to detect critical areas of the project
with respect to traceability. Problems related to the elements artifact, trace link and

69

5. Assessing the Fitness for Purpose of Implemented Traceability

trace path can then be used to draw very detailed conclusions with respect to particular
artifacts.

5.6. Performing a Traceability Assessment

The proposed TAM provides means to assess the fitness for purpose of a project’s
traceability implementation. This section provides a discussion how the proposed TAM
can be operationalized. This discussion assumes that a project specific TIM has been
created already (see Section 4) and can be used as a target state for the traceability
assessment.

AssessmentAssessment preparation

Step 1:
Collecting traceability
implementation data

Step 2:
Extracting types from

implemented traceability data

Step 3:
Mapping Implemented

Traceability Data to Required
Traceability Information

Traceability
Information
Model (TIM)

Traceability
Implementation

Data (TID)

Step 4:
Assessing the implemented

traceability data

Traceability
Assessment

Model (TAM)

Figure 5.30.: Overview of the three preparation steps (step 1-3) and the one assessment
step (step 4) that are required to perform a traceability assessment

As depicted in Figure 5.30, performing a traceability assessment consists of three TID
preparation steps (step 1-3) and one TID assessment steps (step 4). In step 1, the project
specific traceability information data are collected (see Section 5.6.1). Step 2 extracts
type information from the collected traceability implementation data (see Section 5.6.2).
Step 3 maps the extracted types to the corresponding required traceability information
(see Section 5.6.3). In Step 4, the TAM is applied to the prepared TID in order to assess
their fitness for purpose.

5.6.1. Step 1: Collecting Traceability Implementation Data

The first step towards assessing the quality of a traceability implementation is to collect
all artifacts and trace links that existing in the software development project. This step
depends on the electronic formats and the tooling to manage artifacts and trace links.
In Figure 5.31, an excerpt of the software requirements specification and the soft-

ware verification plan of the open source project [TOPCASE-SAM 2015] is shown.

70

5.6. Performing a Traceability Assessment

1
2
3

1

2

3

Notation:

Identified artifact Identified trace link

4

4

i i i Identified trace path

Excerpt from a project's software
requirements specification document

Excerpt from a project's software
verpification plan document

Excerpt from a project's software
verification results document

Figure 5.31.: Example of collecting artifacts, trace links, and trace paths from textual
specification documents

As highlighted with red ellipses, the excerpt of the software requirements specification
document contains three requirements artifacts: R-TPC-SAM-Modeler-DataStorage-
10, R-TPC-SAM-Modeler-DataStorage-20, and R-TPC-SAM-Modeler-DataStorage-30
. The excerpt of the software verification plan shows one verification procedure T-
SAM-Modeler-005 that is supposed to verify the correct implementation of the three
requirements artifacts. Accordingly, the verification plan document refers to the ver-
ified requirements via text references. These references are marked with blue shaded
numbers in Figure 5.31. Each textual reference represents a trace link from the verifi-
cation plan artifact to one of the three requirement artifact. Accordingly, these three
trace links are illustrated with blue arrows in Figure 5.31. Since these textual refer-
ences are merely created within the software verification plan, the trace links are only
unidirectional and can only be traversed from the verification procedure to the referred
requirements. This means, five artifacts (red ellipses) and four trace links (blue arrow)
can be identified in the shown excerpt of the document. Additionally, the four trace
links establish three unidirectional trace paths from the verification result artifact to
the three requirements artifacts.
Figure 5.32 shows another example where artifacts and trace links are managed with

the requirements management tool IBM Rational DOORS [IBM 2015b]. All artifacts
and trace links are stored in a dedicated repository. A graphical user interface is pro-
vided to access the managed artifacts and trace links. It also provides the opportunity
to automatically collect artifacts and trace links via the DOORS eXtension Language

71

5. Assessing the Fitness for Purpose of Implemented Traceability

1

2

12

Notation:

Identified artifact Identified trace linki i i Identified trace path

Figure 5.32.: Example of collecting artifacts, trace links, and trace paths from IBM
Rational DOORS

(DXL). The left screen-shot in Figure 5.32 shows an excerpt of system requirements
for an Automated Meter Reader, that are managed within a DOORS repository. As
highlighted with red circles, four system requirement artifacts can be identified from
the excerpt: AMR-SR-118, AMR-SR-122, AMR-SR-123, and AMR-SR-124. The right
screen-shot in Figure 5.32 shows an excerpt of hazards and risks for an Automated Meter
Reader, that are managed within the same DOORS repository. As highlighted with red
circles, three system level hazards can be identified from the excerpt: AMR-SysHZ-42,
AMR-SysHZ-43, and AMR-SysHZ-44. The two artifacts AMR-SysHZ-42 and AMR-SR-
118 are connected by a bidirectional trace link, which can be traversed in both, forward
and backward direction. This bidirectional trace link is illustrated as two blue arrows.

5.6.2. Step 2: Extracting Types from Implemented Traceability Data

Once all artifacts, trace links, and trace paths have been collected, artifact types, trace
link types, and trace path types can be extracted from the collected data. Extracting
these types is necessary to map the collected TID to the required traceability informa-
tion, because these information are specified at a type level.
Depending on the representation of artifacts, the artifact type needs to be extracted

from different sources. The simplest case is that an artifact has an explicit type property,
which specifies the artifact type. If an artifact type is not specified explicitly, it needs to
be extracted from the name and description of the context of an artifact. This context
could be the section, module, document, or the like, in which the artifact is documented
or stored.
Figure 5.33 illustrates the extraction of artifact types, trace link types, and trace path

types from textual specification documents. Extractions from artifacts to artifact types
and from trace links to trace link types are visualized as dotted lines. Extracted artifact
types are shown are displayed as red rectangles. Extracted trace link types are displayed
as blue arrows between the extracted artifact types.

72

5.6. Performing a Traceability Assessment

1
2
3

1

2

3

Notation:

Identified artifact Identified trace link

4

4

i i i Identified trace path

high-level
requirement

software
verifcation procedure

software
verifcation result

Extracted artifact type Extracted trace link type Extracted trace path type

Artifact type extraction mapping

Trace link type extraction mapping

C
o

lle
ct

e
d

 t
ra

ce
ab

ili
ty

 im
p

le
m

e
n

at
io

n
 d

at
a

E
xt

ra
ct

e
d

 t
yp

e
s

Excerpt from a project's software
requirements specification document

Excerpt from a project's software
verpification plan document

Excerpt from a project's software
verification results document

Figure 5.33.: Example of extracting artifact types, trace link types, and trace path types
from textual specification documents

The artifacts R-TPC-SAM-Modeler-DataStorage-10, R-TPC-SAM-Modeler-DataStorage-
20, and R-TPC-SAM-Modeler-DataStorage-30 belong to a section of the software re-
quirements specification document, which is entitled with “Functional requirements”.
Further, the “Purpose of the document” section states that the document focuses on
specifying high-level software requirements. From this information, the artifact type
high-level requirement can be derived for all three artifacts.
The artifact T-SAM-Modeler-005 belongs to a section of the verification plan docu-

ment, which is entitled with “Description of the verifications”. From this information, the
artifact type software verification procedure can be derived. Furthermore, the trace link
type high-level requirement ← software verification procedure can be derived from the
three trace links from T-SAM-Modeler-005 to R-TPC-SAM-Modeler-DataStorage-10,
R-TPC-SAM-Modeler-DataStorage-20, and R-TPC-SAM-Modeler-DataStorage-30.
The artifact VR-SAM-Modeler-005 belongs to a section of the verification results doc-

ument, which is entitled with “Verification results”. From this information, the artifact
type software verification result can be derived. Furthermore, the trace link type soft-
ware verification result ← software verification procedure can be derived from the trace
link between VR-SAM-Modeler-005 and T-SAM-Modeler-005.

The extracted trace link types high-level requirement ← software verification procedure

73

5. Assessing the Fitness for Purpose of Implemented Traceability

and software verification result ← software verification procedure form a trace path
type high-level requirement ← software verification procedure ← software verification
procedure.

5.6.3. Step 3: Mapping Implemented Traceability Data to Required
Traceability Information

Due to the extraction of types (see Section 5.6.2), TID are available at the same level
of abstraction as the required traceability information within the TIM. To apply the
proposed traceability assessment model to the extracted TID, the extracted artifact
types need to be mapped to the corresponding required artifact types of the TIM.
This mapping is the last necessary preparation step to apply the proposed traceability
assessment model to an existing software development project.
Figure 5.34 exemplifies the mapping between the artifact types extracted from the

project’s traceability implementation data and the required artifact types of a TIM that
was derived from the safety guideline DO-178B [DO-178B]. These required traceability
information is relevant for the project [TOPCASE-SAM 2015], because it aims to comply
with this guideline.

5.6.4. Step 4: Assessing the Implemented Traceability Data

After performing the three preparation steps, the resulting TID can be assessed for its
fitness for purpose by applying the proposed TAM. As shown in figure 5.34, the following
elements are available and can be used for performing an assessment: required artifact
type, artifact type, artifact, required trace link type, trace link type, trace link, required
trace path type, trace path type, and trace path. The corresponding required artifact
types and artifact types are mapped.
In Section 5.4, all possible traceability problems were introduced and how the ex-

istence of this problem can be detected. Each of the formalized expressions can be
applied to the resulting TID for detecting respective traceability problems. To illustrate
the application of the formalized expression, an example is provided for the traceability
problem missing artifact type (MA), which is related to incomplete traceability. For
demonstration purposes, it is assumed that the shown excerpt in Figure 5.34 represent
the complete set of TID for the project.
The following facts are shown in Figure 5.34. The TIM specifies the following required

artifact types: R A = {SyR, HLR, SwA, LLR, SC, TC, TP, TR}. The project implements the
following artifact types: IA = {Impl-HLR, Impl-SVP, Impl-SVR}. The artifact type Impl-
HLR implements the required artifact type HLR so that: implements(Impl-HLR) = {HLR}.
The artifact type Impl-SVP implements the required artifact types TC and TR so that:
implements(Impl-SVP) = {TC, TR}. The artifact type Impl-SVR implements the required
artifact types TC and TP so that: implements(Impl-SVR) = {TR}. The formal expression

74

5.6. Performing a Traceability Assessment

1
2
3

1

2

3

Notation:

Identified artifact Identified trace link

4

4

i i i Identified trace path

[Impl-HLR]
 high-level

requirement

[Impl-SVP]
software

verifcation procedure

[Impl-SVR]
software

verifcation result

Extracted artifact type Extracted trace link type Extracted trace path type

Artifact type extraction mapping

Trace link type extraction mapping

C
ol

le
ct

ed
 t

ra
ce

ab
ili

ty
 im

p
le

m
en

at
io

n
da

ta
E

xt
ra

ct
e

d
 t

yp
e

s
T

ra
ce

ab
ili

ty
 I

n
fo

rm
a

ti
o

n
 M

o
d

e
l (

D
O

-1
78

B
)

Required trace link typeRequired artifact type Mapping between required and
extracted artifact types

[SyR]
System

Requirement

[SwA]
Software

Architecture

[SC]
Source Code

[TR]
Test

Result

[TC]
Test Case

[TP]
Test

Procedure

[LLR]
Low-Level

Requirement

«trace link type»

HLR -> LLR
HLR <- LLR

«trace link type»

SyR -> HLR
SyR <- HLR

[HLR]
High-Level

Requirement

«trace link type»

HLR -> SwA
HLR <- SwA

«trace link type»

HLR -> TC
HLR <- TC

«trace link type»

LLR -> SC
LLR <- SC

«trace link type»

LLR -> TC
LLR <- TC

«trace link type»

TC -> TP
TC <- TP

«trace link type»

TP -> TR
TP <- TR

Excerpt from a project's software
requirements specification document

Excerpt from a project's software
verpification plan document

Excerpt from a project's software
verification results document

Figure 5.34.: Example of mapping the extracted artifact types with the required artifact
types of the TIM

for identifying missing artifact types is defined as: ∃a ∈ R A [implements−1(a) = ∅] =⇒
a ∈ MA . As specified by the formal expression, for each element that is member of the
set R A (all required artifact types) it is necessary to assess if it is implemented by a
corresponding artifact type. In the following, the evaluations of the formal expression
are shown for each required artifact type:

• (implements−1(SyR) = ∅) is TRUE.

• (implements−1(HLR) = ∅) is FALSE.

75

5. Assessing the Fitness for Purpose of Implemented Traceability

• (implements−1(SwA) = ∅) is TRUE.

• (implements−1(LLR) = ∅) is TRUE.

• (implements−1(SC) = ∅) is TRUE.

• (implements−1(TC) = ∅) is FALSE.

• (implements−1(TP) = ∅) is FALSE.

• (implements−1(TR) = ∅) is FALSE.

For the example shown in Figure 5.34 it is implied that the set of missing artifacts
types contains four elements: MA = {SyR, SwA, LLR, SC}. This would lead to the as-
sessment result that four required artifact types are missing. Each formal expression,
which is provided in Section 5.4 can be used in the same way as illustrated for the
traceability problem missing artifact type to quantify the number of existing traceabil-
ity problems within a project specific traceability implementation. These quantified
traceability problems can be summarized in a traceability assessment report.

Instance of absolute absolute relative absolute relative absolute relative

7 2 28,57% 1 14,29% - -

10 3 30,00% 1 10,00% 0 0,00%

6 4 66,67% 0 0,00% 0 0,00%

All 588 - - 17 2,89% - -

HLR 102 - - 0 0,00% - -

SVC 67 - - 0 0,00% - -

All 1013 71 7,01% 32 3,16% 0 0,00%

SVC -> HLR 71 8 11,27% 14 19,72% 0 0,00%

All 495 32 6,46% 11 2,22% 0 0,00%

VR -> SVC -> HLR 57 5 8,77% 0 0,00% 0 0,00%

Element

Completeness problems

(missing elements)

Implementation data

(available elements)

Approriateness problems

(superfluous elements)

Correctness problems

(wrong elements)

trace path

artifact type

trace link type

trace path type

artifact

trace link

Figure 5.35.: Traceability assessment report example

Figure 5.35 shows a traceability assessment report example, which summarizes the
number of problems per element type and problem type. The first column enumerates
the assessed TID element names. The second column outlines the numbers’ frequency
of the TID. The third column summarizes absolute and relative frequencies of detected
completeness problems. The fourth column outlines absolute and relative frequencies of
detected appropriateness problems. The last column summarizes absolute and relative
frequencies of detected correctness problems.

76

5.7. Summary

Apart from quantifying the traceability problems of an assessed project, the problem
definitions provided in Section 5.4 can also be used to provide detailed reporting about
the location of the problems. Problems related to appropriateness and correctness of
traceability are the simplest cases for detailed reporting, because the entity itself ex-
ists, which causes the traceability problem. Accordingly, the concrete problem causing
traceability entity can be reported. However, reporting problems of incompleteness is
more challenging, as the traceability entity itself is missing and coherently does not
exist. Missing artifact types and missing artifacts are caused by a required artifact type
within the TIM. Accordingly, the name of the required artifact type from the TIM can
be reported. Missing trace link types and missing trace path types are caused by a
required trace link type or a required trace path type of the TIM, whose name can be
reported as well. A missing trace link and a missing trace path always corresponds to
an existing artifact for which the trace link or trace path is missing. Accordingly, the
name of the artifact that misses the trace link or trace path can be reported.

5.7. Summary

This chapter has presented a method for assessing the fitness for purpose of a project’s
traceability implementation. It represents the second and core part of the proposed
traceability assessment approach (see Section 3.3). Main objective of this part is to
ensure trusted traceability. In this section, a summary of the presented method is
provided with respect to the challenges that are related to trusted traceability (see
Section 3.1.2).
As stated in Challenge 3, the term “fitness for purpose” needs to be defined clearly

by the traceability assessment approach. To address this challenge, the relevant quality
attributes completeness, appropriateness, and correctness were identified and defined
with respect to the traceability assessment context (see Section 5.2).
The demand for clear assessment criteria is expressed in Challenge 4. This challenge

is addressed by providing formal expressions for each assessment criterion. Illustrating
examples are provided for all assessment criteria (see Section 5.4). Additionally, the
application of one assessment criterion is illustrated Section 5.6.
Challenge 5 emphasized that the assessment approach needs cover the detection of

all relevant traceability problems. To ensure a complete coverage, assessment criteria
were defined for all elements of the TID and all three quality attributes. Additionally,
this aspect was qualitatively evaluated with traceability experts. The results of this
evaluation are presented in Section 7.3.
Assessing a project’s traceability implementation for its fitness for purpose is the main

part of the proposed traceability assessment approach (see Section 3.3). The following
chapter will discuss the implementation of prototype that automates the assessment
approach.

77

6. Tool Support for Continuous
Traceability Assessment

This chapter discusses the implementation of a prototype called PurISTA. The PurISTA
tool was implemented to automate the assessment of a project’s traceability implemen-
tation for its fitness for purpose.
Section 6.1 provides an overview of the PurISTA tool, which consists of five compo-

nents. Each component is discussed with respect to relevant implementation details.
Section 6.2 summarizes the prototypical implementation of the traceability assessment
approach with respect to the identified challenges that are related to automation (see
Section 3.1.3).

6.1. The PurISTA Prototype

The PurISTA tool was implemented using the Microsoft .Net Framework 4.5 platform.
As depicted in Figure 6.1, the PurISTA tool consists of the following five components:

• The traceability store is the central data store that contains all traceability plan-
ning and implementation data (see Section 6.1.1).

• All the project specific traceability planning data are established through the
traceability planner component (see Section 6.1.2) and stored in the traceability
store.

• All the project specific traceability implementation data are collected via the trace-
ability collector component (see Section 6.1.3) and stored in the traceability store.

• The traceability browser can be used to visualize collected traceability planning
and implementation data to browse through the traceability network (see Section
6.1.4).

• The traceability assessor makes use of the traceability planning and implementa-
tion data from the traceability store to assess the fitness for purpose of the actual
traceability implementation (see Section 6.1.5).

The PurISTA tool features a service-oriented architecture [Huhns and Singh 2005].
Each component is a self-contained unit of functionality.

79

6. Tool Support for Continuous Traceability Assessment

 «component»
Traceability Store

«component»
Traceability

Implementation
Data

«component»
Relational
Database

Traceability
Implementation

Data

«component»
Traceability
Information

Model

Required
Traceability
Information

Traceability
Implementation
Data (TID)

Required
Artifact
Type

TIDTIM

Traceability
Information
Model (TIM)

TIM TIMTID TID

«component»
Traceability

Browser

«component»
Traceability

Assessor

«component»
Traceability

Collector

«component»
Traceability

Planner

«component»
Object

Relational
 Mapper

Figure 6.1.: Overview of the PurISTA tool components

6.1.1. Traceability Store

The traceability store is the component that persists all traceability related data, which
are necessary to automate the assessment approach as introduced in Section 5. The
following two design goals were formulated when designing the persistence layer. First,
the persistence layer should provide an object-oriented access to the persisted data. The
reasoning for this design goal is that the traceability planning and assessment approach
(see also Chapter 4 and 5) rests on object-oriented models such as TIM, TRM, and TID.
Second, the persistence layer should not be dependent on a specific Relational Database
Management System (RDBMS) technology. This design goal should guarantee a more
general applicability of the PurISTA tool, which is not restricted by severe RDBMS
technology constraints. Since the PurISTA tool is developed on the Microsoft .Net
Framework 4.5 platform, the object relational mapping platform NHibernate [NHiber-
nate 2015] was chosen to develop the persistence layer. It runs on the Microsoft .Net
Platform and supports numerous relational databases, such as MS SQL Server [Mi-
crosoft 2015a], Oracle Database [Oracle 2015c], IBM DB2 [IBM 2015a], MySQL [Oracle
2015b], and SQLite [SQLite 2015].

80

6.1. The PurISTA Prototype

To provide an object oriented access to the persistence layer, two models were created.
One model for traceability requirements data and another model for traceability imple-
mentation data. Each entity that belongs to a model is defined as follows: First, a class
is created that represents entity. Thereby, the properties of an entity are represented
by class properties. Second, for each entity a NHibernate mapping file is created, which
defines how an entity is persisted within the relational data store. Figure 6.2 shows an
example of a model entity to relational database mapping definition. The mapping is
defined with eXtensible Markup Language (XML) files that must conform to an XML
schema, which was defined by the NHibernate project.

❷

❶

❸

❹

❺

Figure 6.2.: Example of a model entity to relational database mapping definition

As highlighted with Ê, the element hibernate−mapping, defines the mapping for one
entity. The attribute assembly and namespace specify the class can that implements the
entity. The class element (Ë) defines the class name of the entity with the attribute
name and relational table name where the entity is stored with the attribute table.
The id element (Ì) specifies the column name that represents the primary key and
how the primary key values are created for new entities. The property elements (Í)
specify entity properties of primitive types. The name attribute specifies the property
name of the entity class and the column name of the relational table that represents
the entity. Relations to other entities or non primitive types are defined by one-to-one,
many-to-one, and many-to-many elements. The first many-to-one element (Î) defines a
entity property named Type which contains values that are represented by instances of
another entity. Accordingly, a foreign-key column is defined by the attribute column.
Another technical configuration file defines the connection parameter to the relational
data store that persists model entity instances.

81

6. Tool Support for Continuous Traceability Assessment

Once, all entity classes are implemented and all entity mapping files are created, the
NHibnerate framework can be used to initially generate the relational database schema
and then to create, read, update, delete, and query entities in an object oriented manner.
As depicted in Figure 6.1, the traceability store component provides two public data
access interfaces. One interface provides access to the entities of the traceability imple-
mentation model. The other interface provides access to the entities of the traceability
requirements model. Therefore, the access to the different models can be managed and
controlled independently.

6.1.2. Traceability Planner

A main prerequisite for assessing the fitness for purpose of a project’s traceability imple-
mentation is to plan for purposed traceability as discussed in Section 4. The traceabil-
ity planner component can be used to specify and import the traceability requirements,
which were derived by the creation of the TIM and the Traceability Goal Model (TGM).
For the specification of the traceability requirements, predefined spreadsheet templates
are provided, which are filled by the person who is responsible for planning the trace-
ability. The traceability planner can automatically import and parse the data from the
filled spreadsheet. The traceability planner component communicates with the trace-
ability requirements model interface of the traceability store component to persist the
collected traceability requirements data.

6.1.3. Traceability Collector

The main purpose of the traceability collector component is to collect and parse trace-
ability implementation data of a software development project. These project imple-
mentation data are typically not managed in one homogeneous tool. Instead, different
special purpose tools are used depending on the focus of an artifact. For example, re-
quirement artifacts are typically managed by specialized tools such as Rational DOORS
[IBM 2015b] or general purpose word processors such as Microsoft Word [Microsoft
2015b] or Open Office [Apache 2015a]. Source code artifacts are mostly managed by
Version Control Systems (VCS) such as, for example, Git [Git Team 2015], Subversion
[Apache 2015b], or Mercurial [Mercurial Team 2015]. Due to the fact that traceability
implementation data are managed by different tools, the traceability collector needs to
be capable of collecting these data from multiple sources.
As depicted in Figure 6.3, the traceability collector implements interfaces to different

external artifact management tools to automatically collect traceability implementa-
tion data. Rational DOORS [IBM 2015b] is typically used to manage artifacts such
as system requirements, software requirements, low-level requirements, risks, hazards,
and test cases. Trace links are stored as independent artifacts and can be traversed
in both, forward and backward direction. The tool provides a programmable interface

82

6.1. The PurISTA Prototype

Atlassian JiraIBM Rational DOORS Git Text files ..

Traceability Collector

XML Parser CSV Parser ANTLR ParserRegEx Parser ..

Figure 6.3.: Overview of implemented external interfaces with artifact management tools

DXL through which each artifact and trace link can be retrieved as an atomic element.
Atlassian Jira [Jira 2015] is the second external tool from which artifacts can automati-
cally collected. The tool, a widely spread issue tracking tool for managing artifacts such
as features, bugs, or tasks. All managed artifacts and trace links are accessible through
web service. Since the artifacts and trace links are provided as XML structures, an addi-
tional XML parser was implemented to extract the relevant traceability implementation
information. As source code artifacts are typically managed by VCS, the traceability
collector implements an interface to Git [Git Team 2015], which is a prominent represen-
tative of this kind of tools. A git repository can be remotely accessed via the git access
protocol. The prototype leverages the open source .Net LibGit2Sharp [LibGit2Sharp
Team 2015] for implementing this access protocol. To extract artifact properties from
the versioned source code files such as, for example, identifier and package name of
each implemented class, a parser for the Java programming language [Oracle 2015a] was
implemented by using the parser generator framework ANTLR [ANTLR Team 2015a].
The parser was generated with the “Java 1.7 grammar for ANTLR v4”, which is provided
in [ANTLR Team 2015b]. Trace links within Git are typically represented within the
commit messages as textual references. For this purpose, a regular expression parser was
implemented which searches for artifact references identifier references that conform to a
specific pattern. Due to the fact that many artifacts are managed with general purpose
word processors, the traceability collector also implements an interface to import text
documents. Depending on the provided format, different text parsers (XML, comma
separated value, or regular expressions) are used to extract the containing artifacts and
textual references. As indicated with dotted boxes in Figure 6.3 additional interfaces to
artifact management tools as well as additional parsers can be implemented if needed.
Since the collector can never provide a full coverage of all available artifact manage-
ment tools, this data integration is always a project specific integration effort. In the
future, the currently developed Open Services for Lifecycle Collaboration (OSLC) stan-

83

6. Tool Support for Continuous Traceability Assessment

dard could be a feasible solution to sufficiently address this data integration problem,
provided that the standard achieves acceptance by the tool vendors. The traceability
collector component communicates with the traceability implementation model interface
of the traceability store component to persist the collected traceability implementation
data.

6.1.4. Traceability Browser

The main purpose of the traceability browser component to provide an graphical user
interface for the traceability engineer to review the planned and the implemented trace-
ability data, which were established by the traceability planner and traceability collector
components. The Windows Presentation Foundation (WPF) was leveraged to imple-
ment the graphical user interface. The component features the Model View ViewModel
(MVVM) design pattern [Smith 2009].
Figure 6.4 shows a screenshot of the traceability browser component at the lowest

zoom level zero. As marked with Ê, the green framed box in the center of the diagram
visualizes the traceability requirements that were derived from the safety standard DO-
178B [DO-178B]. The other two green framed boxes, which are marked with Ë, represent
traceability implementation data at the artifact type level of two different development
projects. As annotated with Ì, the green dotted lines represent mappings of the projects’
artifact types to the corresponding required artifact types of the DO-178B standard.
Since these traceability networks can get very comprehensive, the user can interac-

tively zoom into and browse through the visualized structure. Further, the visualization
of certain edges within the graph can be disabled. The Figure 6.5 visualizes the same
traceability requirements as an implementation data at zoom level one. The visualiza-
tion of all edges except of required trace link types and required trace path types are
disabled. The context of the visualized artifact types is still visualized by a green frame
(Ê). The selected vertex is arranged in the center of the diagram (Ë). Starting from
this selected vertex, only the related vertices (Í) are shown which are directly related
trough any edge (Ì). At this zoom level, only the selected vertex and all directly related
vertices in the graph are shown. By clicking on one of the connected vertices, this vertex
becomes selected and for this vertex all related vertices are shown. Thereby, the user of
the tool can browser through the entire graph of connected artifact types.
Since zoom level zero and one only visualize vertices at the granularity level arti-

fact types, the user can further zoom into the visualized structure. Figure 6.6 shows a
screenshot of traceability browser that visualizes the traceability implementation data
at artifact level, which corresponds to zoom-level two. While the artifact types are rep-
resented as green frames (Ê), the corresponding artifact instances are shown as vertices
(Ë) within the frame. Trace links between artifacts are represented as dotted black lines
(Ì). The user can further zoom into the model to only show the selected artifact and

84

6.1. The PurISTA Prototype

❶ Overview of the
traceability requirements
according to the DO-178B

standard

❷ Traceability
implementation data of two
projects that are mapped to

the traceability requirements

❸ Mapping between an
implemented Artifact Type

and a required Artifact Type

Figure 6.4.: Screenshot of the traceability browser that visualizes the traceability re-
quirements derived from the DO-178B standard [DO-178B] and the artifact
types of two projects at zoom level zero

all directly related artifacts. Similarly to zoom level one, the user can browse through
all the connected artifacts by clicking on a directly related artifact, which becomes
interactively the selected vertex.

6.1.5. Traceability Assessor

Once, the traceability requirements data and the traceability implementation data are
imported to the traceability store, the traceability assessor can analyze the persisted
traceability implementation data for its fitness for purpose.
To enable an effective analysis, an in-memory graph structure is created from the

persisted data. For this purpose, the traceability assessor component leverages the open

85

6. Tool Support for Continuous Traceability Assessment

❶ Context of
the shown

Traceability data

❷ Selected
vertex representing
a required Artifact

Type

❹ Vertex that is
directly connected
with the selected

vertex

❸ Edge
representing a

required Trace Link
Type

Figure 6.5.: Screenshot of the traceability browser shows the currently selected artifact
type and all directly related elements

source library QickGraph [Jonathan de Halleux 2015]. This library provides ready to
use implementation of graph algorithms to solve standard graph problems. For exam-
ple, the implementation of the Dijkstra shortest-path algorithm [Dijkstra 1959] is used
by the traceability assessor to derive for any vertex in the graph the sub-graph of all
connected vertices. The traceability assessor component analyzes the in-memory graph
representation for potential traceability problems. Therefore, it iterates over all ver-
tices of the graph. For each vertex, it checks the existence of traceability problems as
presented in Section 5.4. For each problem, one problem analysis rule is implemented.
These rules are applied for each assessed vertex of the in-memory graph sequentially.
Figure 6.7 shows an example assessment report of identified traceability problems,

which was produced by the traceability assessor. The area marked with Ê reports
identified traceability problems with respect to missing trace path types (MP). The
report area marked with Ë lists all required trace link types and required trace link
paths. The identified traceability problems are listed in the report area marked with
Ì. The area marked with Í shows the quantity of identified problems. The quantities
of identified problems can also be exported to a spreadsheet. As a result, similar to
the manual assessment traceability assessment as exemplified in Section 5.6.4, the same
result spreadsheet as depicted in Figure 5.35 is generated by the traceability assessor.

86

6.2. Summary

❶ Artifact type of the shown
Artifacts

❷ Artifact
❸ Trace Link

Between Artifacts

Figure 6.6.: Screenshot of the traceability browser that visualizes the traceability imple-
mentation data at artifact level

❶
Assessment
report of the
traceability
problems missing
trace path type
(MP) ❸

Identified
traceability
problems

❷
Required
Trace Link
Types and
required
Trace Path
Types

❹
Quantity of
identified
traceability
problems

Figure 6.7.: Example of an assessment report for the traceability problems missing trace
path type (MP)

6.2. Summary

This chapter has presented a prototypical implementation of the proposed traceability
assessment approach. Main objective of the PurISTA tool is the automation of the
traceability assessment approach. This section provides a summarizing discussion of the
implemented prototype with respect to the challenge that is related to the automation
(see Section 3.1.3).
As stated in Challenge 6, the automated assessment of a project’s entire traceability

implementation should be supported. To support the assessment of a project’s entire
traceability implementation, the traceability collector implements interfaces to a variety

87

6. Tool Support for Continuous Traceability Assessment

of external artifact management tools. These interfaces were sufficient to automatically
assess any traceability implementation data of four software development projects that
were aiming to comply with safety related guidelines (see Section 7.4). However, since
the collector can never provide a full coverage of all available artifact management tools,
this data integration is always a project specific integration effort. Although the initial
TID import potentially requires project specific adaptations to cover all artifact manage-
ment tools, the assessment of the imported data is fully automated by the traceability
assessor component, which does not require any project specific adoptions. It executes
in-memory traceability graph assessment rules. Each rule corresponds to the one of the
formal expressions that are provided in Section 5.4.

88

7. Evaluation

This chapter outlines the evaluation of the proposed traceability assessment approach.
In preparation for evaluating the approach, seven research questions were derived from
the traceability assessment challenges (see Section 3.1) and the usage scenarios of trace-
ability assessment (see Section 3.1). Four studies have been undertaken to answer these
research questions. The first study collected feedback from 12 traceability experts on the
TAM that was introduced in Section 5.1. The second study conducted interviews with
stakeholders from 17 software projects to evaluate the traceability assessment approach
(see Section 3.3) with respect to the traceability driver value. In a third study, the
traceability assessment approach was evaluated with respect to the traceability driver
regulation. Therefore, the approach was applied to the TID of four safety-critical soft-
ware projects. The fourth study collected feedback from 17 safety project participants
and certifiers.
In Section 7.1, the research questions will be derived. Section 7.2 refers to the first

study that focuses on the evaluation of the TAM. The second study is presented in
Section 7.3, evaluating the assessment approach within the context of projects that are
driven by the value of traceability. Section 7.4 refers to the third study, evaluating the
approach for domains that are regulated by safety guidelines. In Section 7.5, the ques-
tionnaire survey with 17 safety project participants and certifiers is outlined. Section
7.6 provides a discussion of the study results with respect to the research questions. In
Section 7.7, potential threats to validity will be discussed, as well as how these threats
have been mitigated.

7.1. Research Questions

This section defines research question for the evaluation of the proposed traceability
assessment approach. These questions are derived from identified traceability assess-
ment challenges (see Section 3.1) and from intended usage scenarios of the assessment
approach (see Section 3.4).
To establish trust in the assessment results, the traceability assessment approach

needs to ensure that all traceability problems can be detected with respect to the fitness
for purpose (see Challenge 5). This implies that the assessment criteria of the TAM
need to cover all traceability problems and each traceability problem should be relevant
with respect to the fitness for purpose. Hence, the following two research questions can

89

7. Evaluation

be derived:

Research Question 1 (Relevance). Does the problem classification of the defined TAM
specify relevant traceability problems with respect to the fitness for purpose of a project’s
traceability implementation?

Research Question 2 (Completeness). Does the problem classification of the defined
TAM completely cover all relevant traceability problems with respect to the fitness for
purpose of a project’s traceability implementation?

Traceability is required by numerous software lifecycle activities such as, for example,
safety analysis, change impact analysis, coverage analysis, and compliance verification.
This requires the planning for purposed traceability (see Challenge 1), which supports
the planning for multiple purposes (see Challenge 2). The set of trace links required by
one activity can be different to the set required by another activity. Thus, the feasibility
of a particular activity depends on the completeness and correctness of the respective set
of trace links. As claimed in Scenario 5, the assessment approach provides support for
determining the feasibility of software lifecycle activities. Thus, the following research
question can be derived:

Research Question 3 (Feasibility of software lifecycle activities). Can the assessment
approach be used to determine the feasibility of a software lifecycle activity that requires
traceability?

The manual creation of trace links is cost-intensive [Cleland-Huang et al. 2004; Heindl
and Biffl 2005]. Hence, the creation of superfluous trace links should be avoided, in
order to ensure a cost effective traceability implementation. This requires the planning
for purposed traceability (see Challenge 1), which supports the planning for multiple
purposes (see Challenge 2). The description of Scenario 6 envisions the support for
determining the cost-effectiveness of a traceability implementation, which leads to the
following research question:

Research Question 4 (Cost-effective implementation). Can the assessment approach
be used to determine if a project’s traceability implementation is cost-effective?

Safety critical software products need to be certified by the responsible authority
before they can be released to the market. During this certification process, the authority
checks whether or not the developed systems can be considered as safe to be used.
As part of this certification process, certifiers check compliance of the implemented
traceability with traceability requirements of the relevant guideline. A product may need
to comply to multiple guidelines if it is released into multiple markets. The Scenarios
1 and 3 envision that the assessment approach provide support for these compliance
checks:

90

7.2. Study 1: Traceability Assessment Model

Research Question 5 (Compliance). Can the assessment approach be used to deter-
mine if a project’s traceability implementation complies to one or many guidelines?

When an existing product is introduced into a new market, it may be necessary to
certify the product under a new guideline. Similarly, existing guidelines may be revised
(for example, DO-178B→ DO-178C) and the new version becomes immediately relevant
for product development. As claimed in Scenario 4, these guideline migrations can be
supported:

Research Question 6 (Migration). Can the assessment approach be used to support
the migration to a new guideline?

Consistently maintaining a project in a ready-to-certify state requires a rigorous as-
sessment process built into the development environment, continuous integration, and
accurately maintained traceability, available at any time to support the certification
process. The support of a continuous assessment is claimed in Scenario 2, leading to
the following research question:

Research Question 7 (Continuous assessment). Can the assessment approach be used
to assess a project’s traceability implementation in a continuous manner?

These research questions were used for the evaluation of the proposed traceability
assessment approach.

7.2. Study 1: Traceability Assessment Model

This section describes a survey that was carried out with traceability experts, in order
to evaluate the proposed TAM (see Section 5.1). This study was partly published in
[Rempel and Mäder 2015a].

Study objectives. In this study, the TAM was evaluated with respect to the Research
Question 1 and 2 (see Section 7.1). The TAM provides criteria that can be used to
detect traceability problems (see Section 5.4). Each problem specifies a situation where
an element of the TID is either missing, superfluous, or wrong with respect to the
required traceability information as defined within the TIM. Two study objectives can
be derived from the research questions. To answer Research Question 1, the relevance
of each problem type needs to be evaluated. The completeness of the entire problem
type classification needs to be evaluated to answer Research Question 2.

Study instrument. Experienced traceability experts with extensive industrial experi-
ence are a good source to provide reliable judgments. Surveys provide effective means to
generalize about opinions of many experts by studying a subset of them [Kitchenham and
S. L. Pfleeger 2008]. The above stated study objectives demand for a descriptive survey,

91

7. Evaluation

as described in [Wohlin et al. 2012]. The survey for this study was conducted through
questionnaire method, which can define standardized opinion scales. This method al-
lows to produce quantitative survey results. Based on these results, averages and trends
can be determined with respect to the experts’ opinions.

Target audience of the questionnaire survey. Evaluating the relevance of each
problem and the completeness of the problem classification requires practical expertise
with software traceability. To characterize the population of traceability experts, the
international requirements engineering conference was used as reference [RE 2015], be-
cause traceability is an explicit topic of interest that was introduced at the first issue
of this conference [Gotel and C. Finkelstein 1994]. Between 1994 and 2013, traceability
contributions were mainly coming from academia (70%), allocated to the following in-
stitutions: the University of Kentucky (9), University of Toronto (7), DePaul University
(6), Johannes Kepler University (4), and City University London (4) [Nair et al. 2013].
These numbers indicate that the population of traceability experts is relatively small.
Authors of traceability related contributions to this conference were considered as target
audience for the survey. This target audience was extended by authors who contributed
to the international symposium on software and systems traceability [SST 2015].

Sampling strategy. The institutions were ranked based on the number of contri-
butions. To avoid bias from accidental sampling, the quota sampling approach was
applied [Thompson 2012]. The participants of the questionnaire survey were limited to
two participants per institution.

Data collection. The feedback from traceability experts was collected via a question-
naire, which comprised five parts: 1) introduction, 2) preliminary questions, 3) software
traceability definitions, 4) the traceability problem classification, and 5) a debriefing. In
the introduction, the purpose of the assessment approach was introduced. This part also
introduced the scales that were used throughout the questionnaire to ask each subject
for his or her rating of each traceability problem classification. The second part asked
questions about the traceability expertise of each subject. In the third part, illustrating
diagrams were provided to make the subject familiar with the preliminary assumptions
from which the traceability problems were derived. In the fourth part, each subject
was requested to rate the level of importance for each problem. Therefore, an ordinal
scale was used ranging from 1 (minor) to 5 (major). In the last part, each subject
was asked to state any structural problem that was missing in the classification. Any
subject’s response was considered as agreement to the completeness of the classification,
if no missing problem type was mentioned. The complete questionnaire is provided in
Appendix A.

Over a period of two weeks, 13 of the 22 contacted subjects returned a completely filled

92

7.3. Study 2: Value Driven Traceability Implementations

questionnaire. The participating subjects had an average practical software traceability
experience of 8.61 years. Additionally, 12 out of the 13 participants had either worked
in a project that captured traceability information or had professionally assessed the
quality of captured traceability information in a software project. Ten participants
answered that they had done both.

Data Analysis. The returned questionnaires data were analyzed to quantify the trace-
ability experts opinion on the relevance per traceability problem and the completeness
of the traceability problem classification. The subjects were requested to rate each
traceability problem’s relevance on an ordinal scale between 1 (minor) and 5 (major).
Based on these opinion scores, aggregated values over all subjects were calculated. The
last part asked the subjects to enumerate the problem types that are missing in the
their opinion. Depending on the answer provided by each subject to this question, the
completeness was either coded as true (no missing problem type were enumerated) or
false (one or many missing problem types were enumerated).

Results. Figure 7.1 compares the relevance ratings given by the 13 subjects for the
traceability problems introduced in Section 5.4. The individual statistics for each trace-
ability problem type are as follows: MA - missing artifact type (avg: 4.61, med: 5, std:
0.87), ML - missing trace link type (avg: 4.38, med: 5, std: 0.77), MP - missing trace
path type (avg: 4.15, med: 4, std: 0.69), MA - missing artifact (avg: 3.23, med: 3, std:
1.24), ML - missing trace link (avg: 3.69, med: 4, std: 1.03), MP - missing trace path
(avg: 3.46, med: 4, std: 1.05), SL - superfluous trace link type (avg: 2.15, med: 2, std:
0.99), SP - superfluous trace path type (avg: 2.38, med: 3, std: 0.77), SL - superfluous
trace link (avg: 3.15, med: 3, std: 1.28), SP - superfluous trace path (avg: 3.07, med:
3, std: 1.32), WL - wrong trace link type (avg: 4, med: 4, std: 0.71), WP - wrong trace
path type (avg: 3.92, med: 4, std: 0.64), WL - wrong trace link (avg: 3.69, med: 4, std:
1.03), WP - wrong trace path (avg: 3.46, med: 4, std: 0.97).
The traceability problem classification was rated by 12 subjects as complete. The

remaining subject raised the following issue: “[..] maybe directions of trace links are not
covered fully by your proposal? For example, bi-directional link obligated, but available
only in one direction”.

7.3. Study 2: Value Driven Traceability Implementations

This section outlines a survey that was carried out with software engineers from indus-
trial software development projects to evaluate the assessment approach for value driven
traceability implementations. This study was partly published in [Rempel et al. 2013].

Study objectives. In this study, the proposed traceability assessment approach was

93

7. Evaluation

●●

●

●

●●●

●●

●●●

●●

1
2

3
4

5

MA ML MP MA ML MP SL SP SL SP WL WP WL WP

Figure 7.1.: Results of study 1: average relevance ratings per traceability problem

evaluated with respect to the Research Question 3 and 4 (see Section 7.1).

Two study objectives can be derived from the two research questions. To answer
Research Question 3, the assessment approach needs to be evaluated for its capability
to determine whether or not a software lifecyce activity that requires traceability is
feasible. To answer Research Question 4, the assessment approach needs to be valuated
for its capability to determine whether or not an existing traceability implementation is
cost-effective.

Study instrument. Stakeholder specific traceability goals need to be identified, in or-
der to plan for purposed traceability (see Section 4.1.2). Therefore, relevant stakeholders
of the project, that may be concerned with the result of a software lifecycle activity re-
quiring traceability, need to be interviewed to identify and document their goals. Hence,
the survey for this study was conducted through interview method. This method allows
to collect the relevant data as required by the proposed assessment approach. Subjects
were interviewed face-to-face within their natural working environment. With every
single subject, an in-depth interview was conducted, which lasted three to six hours.
Semi-structured interviewing was employed, in order to guarantee that the investiga-
tions were guided by the research questions, while keeping the flexibility to react on
unforeseen subject responses and to explore unexpected phenomena.

Target audience of the interview survey. The target audience for this interview
study were the stakeholders of software development projects that implemented and
used traceability to support software lifecycle activities. The population of the tar-
get audience is large, because stakeholders of any software development are potential
candidates.

Sampling strategy. Initially, a list of 85 potential companies was assembled. To pri-
oritize this list, general information about each company was collected from the Internet
and possible contact persons were identified. To select the suitable cases and subjects
for this study, each potential case was prioritized. For this purpose, the framework
proposed by Curtis et al. was applied [Curtis et al. 2000]. After prioritizing the list of

94

7.3. Study 2: Value Driven Traceability Implementations

potential cases, the contact persons of highest prioritized cases were contacted in order
to arrange an interview. Provided that the sampled subject agreed, either one or multi-
ple interviews were conducted with key informants who are familiar with the company’s
software development process and its traceability practice.

Data collection. In advance, an interview guide was prepared, which comprises the
following three parts: First, some general information about the subject and his or her
working environment were collected. Each subject was asked to focus on a particular
software development project for the remaining interview. Additionally, each subject
was requested to select a project representative for the company’s software development
practice. Second, the subject was asked about the reasons for applying traceability
in the concrete project. Thereby, detailed information on how and why every single
project participant used traceability was collected. For this purpose, the aspects of a
traceability usage scenario were recorded, such as actors, trace paths, artifacts, tools,
tasks, and intention. Third, each subject was asked for important software process
elements in the reported project, such as activities, tasks, actors, stakeholders, goals,
artifacts, and tools to get a holistic view on the software process from beginning to the
end. This part of the interview collected the data as described in Section 4.1, in order
to identify traceability related requirements. Interview minutes and field notes were
produced by a designated minute taker. Table 7.1 summarizes the characteristics of the
participating subjects, their project and their company.

Data analysis. Qualitative content analysis [Schreier 2014] was applied to systemati-
cally extract relevant data from the interview minutes. The research question and the
interview guide served as qualitative description model. A system of codes was derived
for all three interview parts. These codes were used to classify all written interview
minutes and field notes with the qualitative analysis tool MAXQDA10 [VERBI 2015].
After each interview two tasks were performed. First, a project specific TRM and TIM
was extracted, based on the interview minutes. Therefore, the planning for purposed
traceability method was applied (see Section 4.1 and 4.2). Second, the fitness for pur-
pose of each project’s traceability implementation was assessed. The assessment was
carried out as described in Section 5.6. Step 1 : the first step of the assessment procedure
was skipped, because the subjects did not provide access to their development artifacts.
Step2 : implemented artifact types, trace link types and trace path types were extracted
from the interview minutes. Step 3 : the implemented artifact types were linked to
the required artifact types of the project specific TIM. Step 4 : the implemented arti-
fact types, trace link types, and trace path types were assessed for possible traceability
problems.

Results. Table 7.2 summarizes the overall results of this study. As the projects were

95

7. Evaluation

T
able

7.1.:C
haracteristics

of
the

interview
ed

subjects,their
project,and

their
com

pany
P
ro
ject

C
om

p
any

C
ase

D
om

ain
O
ff
erin

g
In
form

ant
In
form

ant’s
In
form

ant’s
M
em

b
ers

E
m
p
loyees

ID
ID

R
ole

E
xp

erien
ce

[yr]

5..9
>

10,00
0

10
Insurance

Service
10.1

P
rocess

M
anager

10
..20

10.2
R
elease

M
anager

5..10

1
0..10

0

1
,00

1
..1

0
,00

0
9

IT
Security

SW
P
roduct

9.1
D
evelopm

ent
Lead

10
..20

>
10,00

0
14

A
vionic

H
W

P
roduct

14.1
T
ester

10
..20

<
1
00

16
R
equirem

ents
T
ool

SW
P
roduct

16.1
D
evelopm

ent
Lead

10
..20

>
1
00

1
,00

1
..1

0
,00

0
3

F
inance

Service
3.1

P
roject

M
anager

10
..20

1
0
0
..1,000

17
T
elecom

m
unication

H
W

P
roduct

17.1
P
rocess

M
anager

10
..20

<
5

<
1
00

6
R
obotic

H
W

P
roduct

6.1
D
evelopm

ent
Lead

5..10

1
0
0
..1,000

8
F
inance

SW
P
roduct

8.1
P
roject

M
anager

>
20

5..9

<
1
00

2
Insurance

Service
2.1

P
roject

M
anager

10
..20

1
0
0
..1,000

7
F
inance

Service
7.1

Specification
M
anager

5..10

13
F
inance

Service
13.1

C
om

pliance
M
anager

>
20

>
10,00

0
12

R
etail

Service
12.1

P
ortfolio

M
anager

5..10

12.2
T
est

M
anager

10
..20

>
1
00

1
0
0
..1,000

5
E
-C

om
m
erce

SW
P
roduct

5.1
D
evelopm

ent
H
ead

10
..20

>
10,00

0
15

Logistic
Service

15.1
B
usiness

A
nalyst

>
20

<
5

<
1
00

1
P
ublic

Service
Service

1.1
D
eveloper

<
5

1.2
P
roject

M
anager

10
..20

4
R
etail

SW
P
roduct

4.1
D
evelopm

ent
Lead

5..10

5..9
<

1
00

11
Insurance

Service
11.1

D
evelopm

ent
Lead

10
..20

96

7.4. Study 3: Regulated Traceability Implementations

assessed at the type level only (artifact type, trace link type, and trace path type), the
depiction of traceability problems related to the entities artifact, trace link and trace
path were omitted in Table 7.2. None of the studied cases suffered from missing artifact
type problems. Missing trace link types and missing trace path types were identified in
all assessed projects. Two projects implemented superfluous trace link types as well as
superfluous trace path types. Wrong trace link types and wrong trace path types were
not found in any project.

Table 7.2.: Results of study 2: assessment results across the 17 studied cases
Traceability problem Case ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
MA - missing artifact type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ML - missing trace link type 3 3 4 6 6 4 3 3 2 1 2 5 8 2 7 3 5
MP - missing trace path type 5 6 6 9 9 7 4 5 2 1 3 6 12 3 9 4 7
SL - superfluous trace link type 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
SP - superfluous trace path type 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
WL - wrong trace link type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WP - wrong trace path type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.4. Study 3: Regulated Traceability Implementations

This case study describes the application of the traceability planning and assessment
approach in the domain of safety critical software development. This study was partly
published in [Rempel et al. 2014].

Study objectives. In this study, the proposed traceability assessment approach was
evaluated with respect to the Research Question 5, 6, and 7 (see Section 7.1).
Three study objectives can be derived from the two research questions. To answer

Research Question 5, the assessment approach needs to be evaluated for its capability
to determine whether or not the traceability implementation of a regulated software
project complies with the relevant guidelines. To answer Research Question 6, the
support for guideline migration needs to be evaluated. The capability of conducting
traceability assessments in an automated manner needs to be evaluated for answering
Research Question 7.

Study instrument. To explore the capabilities of the proposed assessment with respect
to its automation, the approach needs to be directly applied to projects’ traceability
implementations. Case study research provides a suitable methodology with respect to
these objectives [Runeson and Höst 2009]. The focus of this case study was traceability

97

7. Evaluation

implementations of safety-critical software projects that need to comply with one or
multiple safety guidelines. Each project represents one unit of analysis.

Sampling strategy. In this study, a combination of the following two sampling strate-
gies was chosen. First, cases from multiple domains (e.g. automotive and avionics) were
chosen, which aimed for compliance with the different domain specific safety guidelines,
in order to have a context where the results are generalizable. Second, only cases were
included that aimed for compliance with multiple safety guidelines to ensure that the
migration scenario is supported.

Data collection. Two sources information were identified for this study. First, the
safety guidelines were used to derive required traceability information as a TIM (see
Section 4.2). Second, the TID of the software projects were used for the assessment.
Throughout this case study, three safety guidelines, applicable for the development of

safety-critical software in different domains, were analyzed. Table 7.3 shows these an-
alyzed safety guidelines and each of their application domains. It outlines the number
required traceability information. It provides an impression of the complexity of the de-
scribed development process per guideline. All three guidelines were modeled following
the traceability planning approach described in Chapter 4.

Table 7.3.: Characteristics of the formalized safety guidelines

Safety guideline Domain Required traceability

R A
1 R L

2 R P \ R L
3

I [DO-178B] Aviation 31 3 5

II [ISO 26262-6:2011] Automotive 21 2 2

III [ECSS 2009] Space 73 6 2
1required artifact types, 2required trace link types, 3required trace path types with more
than one step

Traceability implementation data were assessed for four different software develop-
ment projects. TOPCASED-SAM is a subproject of the TOPCASED initiative [Farail
et al. 2006], which provides a set of modeling, transformation and verification tools for
functional structured analysis [TOPCASE-SAM 2015]. Relevant guidelines: ISO 26262,
ECSS-E-40, DO-178B; Artifacts: 123 requirements, 14 designs, 23 test cases, 15 test re-
sults, 1018 classes; Relevant trace links: 250. TOPCASED-REQ is a subproject of the
TOPCASED initiative [Farail et al. 2006], which develops a generic, tool independent
way for ensuring traceability between requirements and model elements and for manag-
ing requirements [TOPCASE-REQ 2015]. Relevant guidelines: ECSS-E-40, ISO 26262,
DO-178B; Artifacts: 58 requirements, 9 designs, 6 test cases, 6 test results, 638 classes;
Relevant trace links: 56. GeneAuto is an open-source toolset for converting Simulink,

98

7.4. Study 3: Regulated Traceability Implementations

Table 7.4.: Characteristics of the assessed software projects

Project Relevant guideline(s) Implemented traceability

I 1
A I 2

L

TOPCASED-SAM DO-178B, ISO 26262,
ECSS-E-40

1,193 250

TOPCASED-REQ DO-178B, ISO 26262,
ECSS-E-40

717 56

GeneAuto DO-178B 537 209

RAMI DO-178B 443 553
1implemented artifacts, 2implemented trace links

Stateflow, and Scicos models into executable program code [Gene-Auto 2013]. C code
output is supported, Ada output is under development. Relevant guideline: DO-178B;
Artifacts: 69 requirements, 216 design description artifacts, 240 source code artifacts,
12 test cases; Relevant trace links: 209. Rate Adjustment by Managing Inflows (RAMI)
develops a TCP/IP flow control module for the Linux kernel and a suite of network
evaluation utilities [RAMI 2015]. Relevant guideline: project dependent; Artifacts: 48
requirements, 120 design description artifacts, source code functions 275, test cases not
accessible; Relevant trace links: 553.

Data analysis. The collected traceability implementation data of the studied cases were
assessed for their compliance with the traceability that is prescribed by relevant safety
guidelines. Therefore, the proposed assessment procedure, along with the PurISTA
prototype, was used to quantify the number of traceability problems per studied case
with respect to the relevant guideline as shown in Table 7.4.

Results. The projects were assessed for safety guideline compliance. Traceability prob-
lems that indicate superfluous traceability entities are not relevant for compliance as-
sessments, because a superfluous entity does not violate the required traceability infor-
mation. It would only be an indicator that the implementation is not cost-effective. For
this reason, problems related to superfluous elements were omitted from the assessment.
Table 7.5 shows the aggregated results of the projects versus guidelines traceability as-
sessment. The first and second column refer to the project and the guidelines that were
compared. As this study focus on investigating the compliance between project specific
traceability implementation and traceability prescribed by safety guidelines, only those
traceability problems related to the quality attributes completeness and correctness (see
Section 5.4) were investigated. Columns three to six refer to the identified traceability
problems that were found during the assessment. Column three summarizes the number
of missing artifact types (MA). Column four shows the aggregated number of missing

99

7. Evaluation

trace link types (ML) and missing trace path types (MP), while the entailed aggregated
number of missing trace links (ML) and missing trace paths (MP) is shown in brackets.
The aggregated number of missing trace links (ML) and missing trace paths (MP) for
implemented trace link types and implemented trace path types is shown in column five.
Column six shows the aggregated number of wrong trace link types (WL) and wrong
trace path types (WP), while the aggregated number of entailed wrong trace links (WL)
and wrong trace paths (WL) is shown in brackets.

Table 7.5.: Results of study 3: overview of assessment results per project

Assessment Identified traceability problems

Project ←→ Guideline MA
1 ML ∪M 2

P ML ∪M 4
P WL ∪W 5

P

�

(ML ∪M 3
P)

�

(WL ∪W 6
P)

TC-SAM

DO-178B 4 7 (3,480) 8 0 (0)

ISO 26262-6 3 2 (1,268) 45 0 (0)

ECSS-E-40 1 5 (2,316) 8 0 (0)

TC-REQ

DO-178B 4 7 (2,115) 0 0 (0)

ISO 26262-6 3 2 (757) 0 0 (0)

ECSS-E-40 1 5 (1,413) 0 0 (0)

GeneAuto DO-178B 3 7 (1,383) 167 0 (0)

RAMI DO-178B 3 7 (1,377) 74 0 (0)
1missing artifact types, 2missing trace link types or trace path types, 3entailed missing
trace links or trace paths, 4missing trace links or trace paths for implemented trace link
types or trace path types, 5wrong trace link types or trace path types, 6entailed wrong
trace links or trace paths

The TIMs that were derived from multiple guidelines were compared to identify dif-
ferences with respect to the required traceability information. The assessment results
are shown in Table 7.6. The first two columns show the compared guidelines. Column
three quantifies the number of required artifact types, which were required by the first
but not by the second guideline. Column four quantifies the number of required artifact
types that the two guidelines had in common. Column five quantifies the number of
required artifact types, which were required by the second but not by the first guideline.
The columns six to eight repeat these comparisons with respect trace path types. This
comparison includes trace links, because the set of all required trace path types contains
all required trace link types. The results demonstrate that differences among the guide-
lines are relatively small in terms of required traceability. However, these differences
are required to be addressed if a project needs to be migrated to a different or revised
guideline.

100

7.5. Study 4: Traceability Assessment Results

Table 7.6.: Results of study 3: comparison of guidelines with respect to required artifact
types and required trace paths

Guideline Comparison R A
1 R P

2

I ←→ II I \ II I ∩ II II \ I I \ II I ∩ II II \ I
ISO 26262 DO-178B 0 6 2 0 4 4

DO-178B ECSS-E-40 0 8 1 0 8 1
1required artifact types, 2required trace path types

7.5. Study 4: Traceability Assessment Results

This section describes a survey that was carried out with participants of the assessed
safety projects and safety certifiers to evaluate the usefulness of the generated assessment
results.

Study objectives. In this study, the assessment results of study 3 were evaluated
with respect to the Research Question 5 and 3 (see Section 7.1). Two study objectives
can be derived. To answer Research Question 5, the generated assessment results need
to be evaluated for its usefulness to assess the compliance of a project’s traceability
implementation to a guideline. The main concern of safety guidelines is to ensure that
the safety analysis activity can be executed. This means that, in order to answer
Research Question 5 with respect to safety-critical software development, it is necessary
to evaluate if the assessment results can be used to determine if a safety analysis is
feasible with a project’s traceability implementation.

Study instrument. Project participants of the assessed projects and experienced
safety certifiers can provide reliable judgments with respect to the study objectives.
The above stated study objectives demand for a descriptive survey. The survey for
this study was conducted through questionnaire method with standardized Liker scales
[Kitchenham and S. L. Pfleeger 2008]. This method allows producing quantitative survey
results. Based on these results, averages and trends can be determined with respect to
the opinions of the project participants and certifiers.

Target audience of the questionnaire survey. The study objectives reduced the
number of potential survey participants notably. The target audience are project par-
ticipants of study 3 (see Section 7.4) and safety certifiers. Due to this constraint, the
population of the target audience is relatively small.

Sampling strategy. The following three strategies were applied to find safety project
participants and certifiers that answered the questionnaire. First, members of the as-
sessed projects were contacted. Second, safety certification professionals known through
social networks were asked for participation. Third, the snowball sampling technique

101

7. Evaluation

[Biernacki and Waldorf 1981] was applied. Study participants who returned the ques-
tionnaire were asked if they knew other safety project member or safety certifier.

Data collection. The qualitative feedback on the assessment results was collected via
a questionnaire, which comprised the following four parts:

1. The first part (Preliminaries) provided preliminary information how the question-
naire is structured, contact information, anonymity assurance, and which questions
are expected to be answered.

2. To remove ambiguity, elementary concepts such as traceability, functional safety,
and software safety guidelines were defined and explained in the Introduction part.

3. The third part (Preliminary questions) asked preliminary questions about the
professional background of the study participant. The questions about the famil-
iarity with functional safety and the participation in projects that were aiming
for functional safety served as the inclusion criteria for this study. Only partici-
pants who confirmed familiarity with functional safety and the participation in a
safety-critical project were included to the results.

4. The main part of the questionnaire (Questions about the assessment) asked the
study participants for their opinion on the usefulness of the assessment results
of five traceability problems (missing trace link, missing trace link type, missing
artifact type, incorrect trace path, and incorrect trace link). For each problem,
an illustrating example was provided in textual and graphical form. Additionally,
an assessment report excerpt from case C was provided for each problem. The
participants were asked to indicate their opinion on a Likert scale strongly agree,
agree, neither agree nor disagree, disagree, and strongly disagree [Kitchenham and
S. L. Pfleeger 2008]. The first statement claimed that the assessment results
indicate non-compliance of traceability with a guideline. The second statement
claimed that the assessment results indicate a safety risk. The third statement
asked, whether or not, the assessment results are helpful for a certifier. The fourth
statement asked, whether or not, the assessment results are helpful for a project
member in a safety project.

The complete questionnaire is provided in Appendix B. Before distributing the ques-
tionnaire to the project participants and certifiers, its content was verified and improved,
following an iterative approach. First, other PhD students were asked to provide critical
feedback on the content of the questionnaire in terms of suitability and understandabil-
ity. Second, two persons who worked in safety-critical development projects were asked
to fill-out the questionnaire. After the questionnaire was completed, each person was
interviewed for one hour to further improve the suitability and understandability of

102

7.5. Study 4: Traceability Assessment Results

the questionnaire. Main objective of this second iteration was to pretest the developed
questionnaire. Accordingly, all results of this iteration were excluded from the study
results. This iteration was also used to measure, whether or not the estimated duration
of 40 minutes was sufficient to fill-out the questionnaire. Third, 51 safety project par-
ticipants and certifiers were contacted over a period of three months. After this period,
17 subjects returned a completely filled questionnaire that fulfilled the study inclusion
criteria. The participating subjects had an average overall professional experience of
15.29 years (std: 9.58, min: 4, med: 13, max: 45). The vast majority had great ex-
pertise in the field of safety-critical software systems (expert: 7, more than two years
experience: 8, less than two years experience: 2). All subjects either participated in a
safety project or certified a safety project (participated in safety project: 16, partici-
pated in certified project: 11, certified a project: 6). Each subject was asked to indicate
his or her primary project role as well as one or many secondary roles in the project.
As depicted in Figure 7.2, the subjects held a great variety of roles such as developer,
manager, architect, tester, analyst, auditor, consultant, administrator, trainer, safety en-
gineer, and certification engineer. As shown in Figure 7.3, the subjects came from a
wide range of different domains, namely aviation, space, military, automotive, medical,
energy, agriculture, railway, and industrial automation.

0

1

2

3

4

5

6

7

8

9

10

Primary Role

Secondary Role

Aggregated

Figure 7.2.: Roles of the subjects in study 4

Data analysis. The returned questionnaires data were analyzed to quantify how useful

103

7. Evaluation

0

1

2

3

4

5

6

7

8

9

10

Aviation Space Military Automotive Medical Energy Agriculture Railway Industrial
Automation

Figure 7.3.: Safety domains of the subjects in study 4

safety project participants and certifiers perceive the assessment results. Therefore, each
of the subjects’ answers was converted into a number. Subjects were asked to indicate
their opinion on various statements and questions using an agreement scale strongly
agree, agree, neither agree nor disagree, disagree, and strongly disagree [Kitchenham
and S. L. Pfleeger 2008]. Each opinion was coded by the following scheme: strongly
agree = 2, agree = 1, neither agree nor disagree = 0, disagree = −1, strongly disagree =
−2. Based on these opinion scores, aggregated values over all subjects were calculated.

Results. Figure 7.4 compares the subjects’ agreement or disagreement to the claim
that the reported assessment result is an indicator for traceability non-compliance with
the safety guideline. As stated above, opinions are coded as strongly agree = 2, agree
= 1, neither agree nor disagree = 0, disagree = −1, strongly disagree = −2. For each of
the four reported traceability problems (missing artifact type, missing trace link type or
trace path type, incomplete trace link type or trace path type, and wrong trace link type
or trace path type), the 17 subjects agreed or strongly agreed that the assessment result
is an indicator for traceability non-compliance with the safety guideline. Individual
statistics are as follows: missing artifact types (avg: 0.94, med: 1, std: 1.19), missing
trace link type or trace path type (avg: 1.59, med: 2, std: 0.79), incomplete trace link
type or trace path type (avg: 1.12, med: 2, std: 1.27), wrong trace link type or trace
path type (avg: 0.59, med: 1, std: 1.37).

104

7.5. Study 4: Traceability Assessment Results

●

●

● ● ●●●●

−
2

−
1

0
1

2

MA ML MP ML MP WL WP

Figure 7.4.: Results of study 4: subjects’ opinions on the traceability assessment results
with respect to indicate compliance problems

Figure 7.5 compares the subjects’ agreement or disagreement to the claim that the
reported assessment result is an indicator for a safety risk within the project. For each
of the four reported traceability problems, the 17 subjects agreed or strongly agreed
that the assessment result is an indicator for a safety risk in the project. Individual
statistics are as follows: missing artifact types (avg: 0.65, med: 1, std: 1.06), missing
trace link type or trace path type (avg: 1.41, med: 2, std: 0.79), incomplete trace link
type or trace path type (avg: 1.18, med: 2, std: 1.13), wrong trace link type or trace
path type (avg: 0.12, med: 1, std: 1.32).

● ●●●

−
2

−
1

0
1

2

MA ML MP ML MP WL WP

Figure 7.5.: Results of study 4: subjects’ opinions on the traceability assessment results
with respect to indicate safety problems

Figure 7.6 compares the subjects’ agreement or disagreement to the claim that the
reported assessment result is helpful for a certifier to check the compliance of a project’s
traceability with a safety guideline. For three of the four reported traceability problems,
the 17 subjects agreed that the assessment result is an indicator for a safety risk in the
project. For one of the reported traceability problems, the 17 subjects neither agreed
nor disagreed. Individual statistics are as follows: missing artifact types (avg: 0.29,
med: 1, std: 1.04), missing trace link type or trace path type (avg: 0.76, med: 1, std:
1.15), incomplete trace link type or trace path type (avg: 0.82, med: 1, std: 1.19),
wrong trace link type or trace path type (avg: 0.24, med: 0, std: 1.2).
Figure 7.7 compares the subjects’ agreement or disagreement to the claim that the

reported assessment result is helpful for a project participant to ensure the compliance of
a project’s traceability with a safety guideline. For three of the four reported traceability

105

7. Evaluation

● ●●

Missing artifact type Missing trace link/path type Incomplete trace link/path type Wrong trace link/path type

−
2

−
1

0
1

2

Figure 7.6.: Results of study 4: certifiers’ opinions on the usefulness of the traceability
assessment results for their work

problems, the 17 subjects agreed that the assessment result is an indicator for a safety
risk in the project. For one of the reported traceability problems, the 17 subjects neither
agreed nor disagreed. Individual statistics are as follows: missing artifact types (avg:
0.41, med: 1, std: 1.12), missing trace link type or trace path type (avg: 1, med: 1,
std: 1.72), incomplete trace link type or trace path type (avg: 0.94, med: 1, std: 1.03),
wrong trace link type or trace path type (avg: 0.24, med: 0, std: 1.3).

● ●

●

●

Missing artifact type Missing trace link/path type Incomplete trace link/path type Wrong trace link/path type

−
2

−
1

0
1

2

Figure 7.7.: Results of study 4: project participants’ opinions on the usefulness of the
traceability assessment results for their work

7.6. Discussion

This section discusses the findings the conducted studies (see Sections 7.2 and 7.4) with
respect to the stated research questions.

7.6.1. Research Question 1: Relevance

The results concerning the relevance of each traceability problem (see Figure 7.1) show
a clear trend. Problems related to the quality attributes completeness and correctness
are consistently rated as more relevant than problems related to the quality attributes
appropriateness. A possible reason for this disparity could be the difference in the prob-
lem implication, depending on the quality attribute. On the one hand, problems related
to the quality attribute appropriateness imply that unnecessary effort was spent to im-

106

7.6. Discussion

plement superfluous traceability data. Addressing these problems avoids unnecessary
effort and save costs. On the other hand, problems related to the quality attributes cor-
rectness imply that decisions are made on wrong assumptions and problems related to
completeness imply that either important artifacts or activities were missed. As found
within the safety case study in Section 7.4, within the context of safety critical software
development, these problems represent a potential safety risk. Comparing the potential
threat of safety risks with the potential threat of monetary risks, the observed relevance
disparity between the quality attributes appears logical.
The results also show traceability implementation data specific trends. For the quality

attributes completeness and correctness, problems related to traceability implementation
data types (artifact type, trace link type, and trace path type) are rated as more relevant
than problems related to traceability implementation data instances (artifact, trace link,
and trace path). A possible reason for this disparity could be the different root cause
of these problems. While a problem related to traceability types typically indicates
a systematic failure within the development process, a problem related to traceability
instances typically indicates an oversight. For example, completely missing traceability
between high-level and low-level requirements is an indicator for the fact that the activity
to implement traceability between these two artifact types was completely missed out,
which would be reported as a missing trace link type. By contrast, for example, a
single low-level requirement, which is not traceable to a high-level requirement, indicates
a shortcoming of an executed traceability implementation activity. Although, both
problems indicate a potential safety risk and are rated relatively high compared to other
quality attributes, the impact of a systematic failure within the development process is
potentially even higher than an individual oversight. Also, after detecting a problem,
the effort to fix such a systematic failure is much higher than fixing a single oversight.
For the quality attribute appropriateness, problems related to traceability implemen-

tation data types (artifact type, trace link type, and trace path type) are rated as less
relevant than problems related to traceability implementation data instances (artifact,
trace link, and trace path). A possible reason for this disparity could be the different
level of detail. As described above, problems related to this quality attribute indicates
unnecessary effort. While an appropriateness problem related to traceability types only
indicate that unnecessary effort was spent, appropriateness problems at the instance
level can be used to explicitly quantify the number of superfluous trace links that were
implemented.

7.6.2. Research Question 2: Completeness

According to the feedback collected with a traceability experts survey (see Section 7.2),
11 subjects agreed with the assumption that the proposed assessment model covers
all possible traceability problems with respect to the fitness for purpose of a project’s

107

7. Evaluation

traceability implementation. One subject argued that the support of bidirectional trace
link types is missing. Since trace link types and trace path types are directed in the
TAM and TIM, each trace link type or trace path type has a source and a target (see
Section 3.2 and 4.2.1). A bidirectional required trace link type between two artifact
types A1 and A2 would be specified by the following two trace link types: A1 → A2 and
A2 → A1. If a trace link type was be implemented unidirectional only, e.g. A1 → A2,
a missing trace link type would be detected by the assessment criterion of ML . Hence,
bidirectional link types are covered by the proposed traceability problem classification.
This result leads to the finding that the proposed assessment approach is based on

a complete problem classification with respect to its objective. The potential risks of
producing incomplete assessment results are mitigated. This complete coverage of all
possible structural traceability problems is an important contribution to the traceabil-
ity community. For the first time, a comprehensive traceability assessment method is
presented. Recently, Merilinna and Pärssinen lamented the fact that no comprehensive
traceability assessment method exists [Merilinna and Pärssinen 2010], which emphasizes
the relevance of this contribution.

7.6.3. Research Question 3: Feasibility of Software Lifecycle Activities

Traceability is required by numerous software lifecycle activities such as, change impact
analysis, coverage analysis, and compliance verification. As demonstrated in study 2,
the feasibility of these software lifecycle activities can be determined with the proposed
assessment approach. The planning for a purposed traceability method (see Chapter 4)
can be used to identify traceability goals and derive required traceability information as
TIM. This required traceability information specifies the target state of a traceability
implementation. If a project fails to implement complete and correct traceability with
respect to this target state, the activities that require these missing or wrong traceability
implementation data cannot be supported. Traceability problems with respect to com-
pleteness were identified in all 17 assessed cases in study 2. The assessment approach
identified activities in all projects, which were essential to the project but not feasible
due to missing trace link types or missing trace path types.
Determining the feasibility of a safety analysis is essential for safety-critical software

systems. To argue the safety of a developed system, a safety case is compiled as a
result of a safety assurance process [Zeller et al. 2014]. The safety argument needs to
make clear that all safety risks were identified and to demonstrate how these risks were
mitigated. To demonstrate that all safety requirements have been validated, satisfied,
and realized, and that their origin is documented, complete and correct, traceability is
required for all safety requirements. In study 4 (see Section 7.5), safety-critical project
participants and certifiers agreed that the generated results of the proposed assessment
approach are suitable to determine the feasibility of the safety analysis activity. As

108

7.6. Discussion

summarized in Figure 7.5, the safety project participants and certifiers agreed that the
traceability problems are an important indicator for a safety risk within the project.
They agreed that the identified traceability problems indicate that the required trace-
ability implementation data for the safety argument were missing. A case study of an
emergency brake system at Daimler Chrysler came to similar findings [Ridderhof et al.
2007]. Thereby, a safety case was created by assessing traceability for missing links with
constraints formulated in OCL. However, it suffers from two shortcomings. First, the
assessment focuses on missing trace links only, which does not cover all possible trace-
ability problems as discussed in Section 7.6.2. Second, instead of providing a general
traceability assessment approach, the assessment procedure was specifically developed
for the automotive domain, which impedes its generalizability.

7.6.4. Research Question 4: Cost-effective Implementation

The manual creation and maintenance of trace links is cost-intensive [Cleland-Huang
et al. 2004; Heindl and Biffl 2005]. Implementing superfluous TID should be avoided
to ensure cost effective traceability implementations. In study 2, the application of the
traceability assessment approach was demonstrated to detect superfluous TID. These
detected superfluous TID are relevant for the cost-effectiveness, as unnecessary main-
tenance effort is avoided. This study also demonstrated its support for creating cost-
effective traceability implementation. The applied planning method supports the specifi-
cation of a TIM that does not require the implementation of any superfluous traceability
data, which would imply unnecessary traceability creation effort.

7.6.5. Research Question 5: Compliance

As described in Section 7.4, a comprehensive case study was conducted with software
projects aiming to comply with safety guidelines. Thereby, the proposed traceability
planning and assessment approach was applied, which demonstrated its practical appli-
cability. This applicability of the planning and assessment approach was an important
finding of the case study with respect to the industrial usage potential of the approach.
The traceability assessment results in Table 7.5 show that projects mainly struggled

with the traceability completeness. This results confirm earlier non-systematic trace-
ability compliance assessments [Mäder et al. 2013; Panesar-Walawege et al. 2010].
The results of the survey with safety project participants and certifiers in study 4

(see Section 7.5) suggests that the assessment approach is useful for both parties. As
summarized in Figure 7.7, safety project participants confirmed that the assessment and
reporting of traceability problems with respect to the quality attribute completeness is
useful for their daily work. This result is anything but surprising. As elaborated in Sec-
tion 7.6.1, a safety argument can only be based on complete traceability. Similarly to
the project participants, certifiers agreed that the assessment and reporting of traceabil-

109

7. Evaluation

ity problems with respect to the quality attribute completeness is useful for their daily
work, as summarized in Figure 7.6. The similarity in how the usefulness of the trace-
ability assessment results is perceived by project participants and certifiers emphasizes
the similarity of concerns from different perspectives. Both parties are concerned about
the safety of the developed system. The project participant perspective is to build a
coherent safety argument. The certifiers perspective is to judge the coherence of the pro-
vided arguments. As suggested by the results of study 3, reporting exiting traceability
problems with respect to the completeness is a useful tool for both perspectives.

7.6.6. Research Question 6: Migration

When an existing product is introduced into a new market, it may be necessary to
certify the product under a new guideline. Migrating to a new guideline implies the
risk that new traceability requirements needs to be addressed. The planning approach
can be used to support these migration scenarios. Multiple TIMs can be derived for
multiple guidelines. As demonstrated in study 3, these multiple TIMs can be compared
for deviating traceability requirements. Based on these results, the migration of the
existing traceability implementation can be planned accordingly.

7.6.7. Research Question 7: Continuous Assessment

The case study conducted in Section 7.4 demonstrated a main contribution of the assess-
ment approach. Due to the PurISTA tool (see Chapter 6), the traceability assessment
can be executed automatically with TID of an entire project. The solution is not limited
to specific artifact types. Especially the cases where artifact types comprised hundreds
or thousands of artifacts that had to be assessed, in order to check the compliance of
the implemented traceability, illustrated the high practical potential of the automated
compliance assessment. The PurISTA tool can analyze the traceability network faster
than humans can do. This automatic assessment approach can be scaled up to millions
of artifacts as demonstrated in [Rempel and Mäder 2015b]. Manual traceability assess-
ments, as conducted in [Mäder et al. 2013], would be impossible for this project sizes. In
[Panesar-Walawege et al. 2010], a case study specific traceability assessment approach
was implemented, which supports automatic traceability assessment. However, the ap-
proach was limited to two specific trace link types and a specific guideline (IEC 61508
[IEC 61508:2010]). A comprehensive conceptual model for the traceability assessment
was missing.

7.6.8. Limitations

Despite the argued benefits of the proposed traceability planning and assessment ap-
proach, it also has some limitations, which will be discussed in this section.

110

7.7. Threats to Validity

As discussed in Sections 7.6.3 and 7.6.5, the assessing and reporting traceability prob-
lems are useful to build a coherent safety argument. An automatically executed assess-
ment approach, as demonstrated in study 3 (see Section 7.4) with the application of the
PurISTA prototype (see Section 6.1.5), can be used to replace time consuming manual
assessments and support incremental approaches due to its fast repeatability. However,
the final safety argument is compiled by humans [Storey 2010]. Although the automated
assessment approach supports the compilation of a safety argument, a safety argument
still requires final expert’s engineering judgment.
Another important limitation of the implemented PurISTA prototype (see Section

6.1.5) was highlighted by several subjects of the survey in study 3. They argued that
users of the traceability assessment tool need to trust the correctness of the assessment
result. The ultimate approach for establishing trust would be to qualify the traceability
assessment tool, which has not yet been achieved. At the present moment, trust can
only be established through the demonstration in case studies.
As discussed in Section 6.1.3, the collector component of the PurISTA prototype

supports a variety of existing artifact management tools and formats. However, a full
coverage of all the existing formats is not realistic. Therefore, depending on the project
specific representation of the traceability implementation data, additional development
effort may be required to automatically parse existing artifacts and trace links. A po-
tential solution to this limitation could be the OSLC guideline [OASIS 2015], which
aims to establish a unified communication protocol for tools that manage software life-
cycle artifacts. Once such a guideline is supported by all software engineering tools, this
current limitation would disappear.

7.7. Threats to Validity

In this section, the threats to the validity of the presented study will be discussed as
well as how these threats have been mitigated. The discussion is organized by the types
of validity. Therefore, a common validity classification scheme [Runeson and Höst 2009;
Yin 2009] is applied, which distinguishes the following four types of threats to validity:

• Construct validity: The degree to which the operational measures that are stud-
ied really represent what the researchers have in mind and what is investigated
according to the research questions (see Section 7.7.1).

• External validity: The degree to which the findings of the study can be generalized
to the studied population and to other research settings (see 7.7.2).

• Internal validity: The degree to which a causal effect of the independent on the
dependent variable can be concluded (see 7.7.3).

111

7. Evaluation

• Reliability: The degree to which the empirical results depend on the researcher
conducting the study (see 7.7.4).

7.7.1. Construct Validity

As an important part of the propose traceability planning and assessment approach, a
classification of traceability problems was introduced (see Section 5.4). As demonstrated
within the safety cases study (see Section 7.4), this classification can be used to mea-
sure the fitness for purpose of a traceability implementation with respect to the quality
attributes completeness, correctness, and appropriateness. To mitigate the threat that
those operational measures are not suitable for the purpose of assessing the suitability
of traceability, the set of measures was qualitatively evaluated in two steps. First, for
each proposed measure, feedback was collected from 13 traceability experts. The results
in Figure 7.1 suggest the agreement of the experts with the validity of the proposed
measures. Second, 17 safety domain experts were asked to provide their opinion on the
suitability of the proposed measures with respect to the domain specific goals safety
and safety guideline compliance. The results in Figure 7.5 and Figure 7.4 suggest the
agreement of the safety domain experts with the validity of the proposed measures to
indicate safety and compliance risks within safety critical software projects. Addition-
ally, one of the proposed measures, namely, missing trace links was used in similar safety
related case studies [Ridderhof et al. 2007; Panesar-Walawege et al. 2010; Mäder et al.
2013] for assessing the implemented traceability.

7.7.2. External Validity

For this work, external validity concerns whether the observed findings and drawn con-
clusions from the case study consisting of four cases and three safety guidelines hold
over variations in guidelines and projects. The fact that the studied cases diverge across
multiple guidelines and industrial projects of various sizes and domains suggests that the
approach is applicable across a wide variety of projects. However, a larger multi-domain
and longitudinal evaluation is required to draw final conclusions.

7.7.3. Internal Validity

In both studies (see Section 7.2 and 7.4), quantitative feedback was collected from ei-
ther traceability experts or safety domain experts through a questionnaire survey. The
potential threat of any subject’s misunderstanding about the underlying concepts of
a question was addressed by the following countermeasures. First, a comprehensive
briefing section was added to both questionnaires, which in each case was extensively
tested with pilot participants, who were excluded from the results. The pilot partici-
pants were independently interviewed to eleminate potential shortcomings in the ques-

112

7.7. Threats to Validity

tionnaire. Second, within the questionnaire that was answered by the safety domain
experts illustrating examples of the traceability problem classifications were provided
from the project GeneAuto [Gene-Auto 2013] and the safety guideline DO-178B [DO-
178B]. Third, additional qualitative feedback was collected from all subjects to identify
potential misunderstandings. For this purpose, a free text form was provided next to
each question, where the subject could explain his or her reasoning, which was exten-
sively used by the subjects. This qualitative feedback also provided valuable insights on
the limitations of the proposed approach (see Section 7.6.8).
For the case study in the safety context, another potential threat exists due to the

required studying and understanding of the safety guidelines and the creation of the
respective prescribed traceability model. The responsible person may misunderstand or
entirely miss requirements of a guideline. For mitigation purposes, three countermea-
sures were taken. First, the same traceability planning procedure (see Section 4) was
followed all analyzed guidelines, searching for the concepts: traceability goals, traceabil-
ity usage tasks, traceability implementation tasks, required artifact types, required trace
link types, and required trace path types. Second, the four eyes principle was applied.
Thereby, all safety guideline models used for the safety case study were reviewed by a
colleague with extensive experience in the development of safety-critical software.
To automatically assess the cases’ traceability implementation data, the traceability

collector ot the PurISTA prototype had to be adapted according to the project spe-
cific structure. The artifacts were typically diverse and often spread across multiple
tools and repositories. To mitigate the risk that all traceability implementation data
were collected correctly, the structure of each project and its available artifacts was
carefully examined. Additionally, completeness and consistency checks of the generated
results were preformed, where possible. However, due to the amount of assessed data,
which prevents complete coverage of the manual verification procedure, there remains a
potential risk that artifacts or trace links may have missed or misclassified.

7.7.4. Reliability

The reliability threat concerns whether a replication of the safety related case study
would produce similar assessment results. A potential threat exists in the collection
and preparation of the project data used to produce the assessment results. To avoid
especially manual bias during the project data preparation and to ensure reproducible
results, the process of data collection and assessment was fully automated. Due to
the public availability of the project artifacts and the fully automated collection and
analysis process, the study can be replicated and additional projects could be included
to further broaden the data corpus.

113

8. Conclusions and Outlook

This final chapter summarizes the conclusions in Section 8.1 that can be drawn from
this thesis. In Section 8.2, future work is identified and discussed, which is related to
the contributions of this thesis. Potential directions to carry on with the presented work
are outlined.

8.1. Summary

This thesis has presented an approach to assess the fitness for purpose of a project’s
traceability implementation. It supports the implementation of purposed traceability
that can be trusted. The proposed approach addresses multiple shortcomings of existing
work. Current traceability planning approaches do not sufficiently support the planning
for purposed traceability. Existing definitional approaches lack a definition of the term
fitness for purpose of a traceability implementation. Existing analytical approaches lack
clear and comprehensive assessment criteria to support the performance of systematic
and reproduceable assessments. Only two existing analytical approaches support the
automated assessment of traceability. However, both approaches are limited to UML or
SysML design artifacts. Other analytical approaches support manual assessments only.
The presented assessment approach consists of two important parts. First, a method

to plan for purposed traceability was presented. This is a prerequisite for assessing the
fitness for purpose of a project’s traceability implementation. Second, a traceability
assessment approach was proposed that compares the traceability implementation data
of a project with the traceability implementation target state that was specified with
the proposed planning method. The proposed TAM provides clear assessment criteria
for detecting traceability problems with respect to the fitness for purpose. A question-
naire survey with traceability experts was conducted to evaluate the TAM’s traceability
problem classification for its completeness and each problem type for its relevance. The
study results suggests that the TAM provides a complete classification of relevant prob-
lem types.
The proposed assessment approach provides support for non-safety-critical. It can be

used for non-safety-critical projects to determine the feasibility of important software
lifecycle activities. It can also be used to determine the cost-effectiveness of a project’s
traceability implementation. Furthermore, the planning cost-effective traceability im-
plementations is supported.

115

8. Conclusions and Outlook

Safety-critical software projects are supported with their safety argument. The assess-
ment approach provides detailed information about the traceability of safety require-
ments with respect to its completeness and correctness. The approach also supports
the compliance assessment of a traceability implementation with respect to the safety
guidelines that need to be followed. Migration scenarios to new or revised guidelines
are supported by the purposed traceability planning approach. Different traceability
requirements can be detected easily and provide important informations to prepare the
migration.
The PurISTA tool provides support for automated traceability implementation as-

sessments. Automated assessments are relevant for safety-critical and non-safety-critical
projects. Especially in project environments with hundreds or thousands of artifacts,
the execution of automated assessments is required to verify the fitness for purpose in
a continuous manner.

8.2. Future Work

There is always potential to proceed and improve. This section outlines further research
directions.
The main focus of the proposed approach was to detect traceability problems in-

dicating traceability that is not suitable to achieve all traceability related goals of a
project. Although, detecting those traceability problems is an important first step,
further measures need to be taken to control the fitness for purpose of a project’s trace-
ability implementation. Other engineering disciplines introduced the idea of feedback
loops in quality control systems [Deming 2000]. Central idea of this quality feedback
loop is to continuously monitor the product quality. Detected problems are addressed
by correcting the undesired deviations. A commonly applied feedback control approach
is the Plan-Do-Check-Act (PDCA) cycle, which is recommended by the ISO 9000 stan-
dard [ISO 9001:2008]. Leveraging the assessment approach presented in this work, a
traceability control system could be developed, which aims to automatically correct
traceability to preserve its fitness for purpose.
The idea of establishing a traceability control system can be further extended. Exist-

ing traceability problems may be the effect of other root causes, such as process short-
comings. Detecting and eliminating these root causes can prevent the re-occurrence of
detected traceability problems. Leading to sustained improvement of the traceability
implementation process. Systematizing the root cause analysis of traceability problems
and providing effective change methods can provide important benefits for projects,
especially within the context of safety critical software.
Qualitative studies on the reason of structural traceability problems, such as miss-

ing trace links found that the implementation of traceability is often considered as too
expensive [Arkley and Riddle 2005; Mäder et al. 2009b] with respect to its benefits.

116

8.2. Future Work

At present, resilient and accepted traceability implantation cost models are lacking
[Cleland-Huang et al. 2014]. Developing such cost models would provide project man-
agers some important input for estimating traceability related cost. Combining such a
cost model with the proposed assessment approach would further allow to quantify the
impact of the identified traceability problems with respect to its expected rectification
costs.
The proposed approach focused on the assessments of a project’s fitness for purpose.

The implemented traceability is assessed with respect to the traceability implementation
target state. The semantic analysis of existing trace links could be a completely differ-
ent direction for analytical assessment approaches. The detection of semantic defects
could be used to identify contradictions, inconsistencies or other shortcomings related
to trace link semantics. Similar to the problem of the automatic generation of trace
links, machine learning approaches or information retrieval techniques could be useful
to support the detection of semantic traceability defects.

117

List of Figures

2.1. Directed trace link between two artifacts, a source and a target artifact,
that supports bi-directional traversal (adapted from [Gotel et al. 2012b]) 8

2.2. Overview of the traceability lifecycle activities and their sub-activities . 11

3.1. Meta-model of relevant Traceability Implementation Data (TID) charac-
terizing the fundamental concepts of a project’s traceability implementation 24

3.2. Overview of the traceability assessment approach 26

4.1. Meta-model of the Traceability Requirements Model (TRM) 33
4.2. Illustrating autopilot project: goals of the stakeholder Federal Aviation

Administration (FAA) that were derived from the guideline DO-178B . . 35
4.3. The autopilot project: activities derived from the guideline DO-178B that

are supposed to address the goals of the stakeholder Federal Aviation
Administration (FAA) . 36

4.4. The autopilot project: identified activities that require traceability (trace-
ability usage activities) and their related goals (traceability goals) 37

4.5. The autopilot project: derived traceability requirements (traceability im-
plementation activities) . 40

4.6. Meta-model of the extended Traceability Information Model (TIM) . . . 41
4.7. The autopilot project: deriving required trace path types from a trace-

ability implementation activity . 43
4.8. The autopilot project: deriving required trace link types from required

trace path types and software lifecycle activities 44
4.9. The autopilot project: chain of evidence to justify the purpose of the

required trace link type HLR -> LLR . 46

5.1. Overview of the traceability lifecycle including the new traceability veri-
fication activity . 49

5.2. Meta-model of the Traceability Assessment Model (TAM) 50
5.3. Overview of the traceability implementation elements that are subsumed

by the TAM element traceability entity 51
5.4. Quality tree of the high-level attribute functional suitability 52
5.5. Example of valid artifact type implementations 53
5.6. Example of a valid trace link type implementation 54

119

List of Figures

5.7. Example of a valid trace path type implementation 55
5.8. Example of valid artifact implementation 55
5.9. Example of a valid trace link implementations 56
5.10. Example of a valid trace path implementations 57
5.11. Example of an incomplete traceability implementation that misses arti-

fact type . 58
5.12. Example of an incomplete traceability implementation that misses a trace

link type . 58
5.13. Example of an incomplete traceability implementation that misses a trace

path type . 59
5.14. Example of an incomplete traceability implementation that misses artifacts 59
5.15. Example of an incomplete traceability implementation that misses trace

links . 60
5.16. Example of an incomplete traceability implementation that misses trace

paths . 61
5.17. Example of an inappropriate traceability implementation that contains a

superfluous artifact type . 61
5.18. Example of an inappropriate traceability implementation that contains a

superfluous trace link type . 62
5.19. Example of an inappropriate traceability implementation that contains a

superfluous trace path type . 62
5.20. Example of an inappropriate traceability implementation that contains

superfluous artifacts . 63
5.21. Example of an inappropriate traceability implementation that contains

superfluous trace links . 63
5.22. Example of an inappropriate traceability implementation that contains

superfluous trace paths . 64
5.23. Example of an incorrect traceability implementation that contains a wrong

trace link type . 65
5.24. Example of an incorrect traceability implementation that contains a wrong

trace path type . 66
5.25. Example of an inappropriate traceability implementation that contains

superfluous trace paths . 66
5.26. Example of an incorrect traceability implementation that contains wrong

trace links . 67
5.27. Example of an inappropriate traceability implementation that contains

superfluous trace paths . 67
5.28. Example of an inappropriate traceability implementation that contains

superfluous trace paths . 68

120

List of Figures

5.29. Dependencies among the traceability implementation data and the de-
rived dependencies among the traceability problems 69

5.30. Overview of the three preparation steps (step 1-3) and the one assessment
step (step 4) that are required to perform a traceability assessment . . . 70

5.31. Example of collecting artifacts, trace links, and trace paths from textual
specification documents . 71

5.32. Example of collecting artifacts, trace links, and trace paths from IBM
Rational DOORS . 72

5.33. Example of extracting artifact types, trace link types, and trace path
types from textual specification documents 73

5.34. Example of mapping the extracted artifact types with the required arti-
fact types of the TIM . 75

5.35. Traceability assessment report example 76

6.1. Overview of the PurISTA tool components 80
6.2. Example of a model entity to relational database mapping definition . . 81
6.3. Overview of implemented external interfaces with artifact management

tools . 83
6.4. Screenshot of the traceability browser that visualizes the traceability re-

quirements derived from the DO-178B standard [DO-178B] and the arti-
fact types of two projects at zoom level zero 85

6.5. Screenshot of the traceability browser shows the currently selected artifact
type and all directly related elements . 86

6.6. Screenshot of the traceability browser that visualizes the traceability im-
plementation data at artifact level . 87

6.7. Example of an assessment report for the traceability problems missing
trace path type (MP) . 87

7.1. Results of study 1: average relevance ratings per traceability problem . . 94
7.2. Roles of the subjects in study 4 . 103
7.3. Safety domains of the subjects in study 4 104
7.4. Results of study 4: subjects’ opinions on the traceability assessment re-

sults with respect to indicate compliance problems 105
7.5. Results of study 4: subjects’ opinions on the traceability assessment re-

sults with respect to indicate safety problems 105
7.6. Results of study 4: certifiers’ opinions on the usefulness of the traceability

assessment results for their work . 106
7.7. Results of study 4: project participants’ opinions on the usefulness of the

traceability assessment results for their work 106

121

List of Tables

2.1. Overview of desired traceability qualities and their related goals [Cleland-
Huang et al. 2014] . 13

7.1. Characteristics of the interviewed subjects, their project, and their company 96
7.2. Results of study 2: assessment results across the 17 studied cases 97
7.3. Characteristics of the formalized safety guidelines 98
7.4. Characteristics of the assessed software projects 99
7.5. Results of study 3: overview of assessment results per project 100
7.6. Results of study 3: comparison of guidelines with respect to required

artifact types and required trace paths 101

123

Bibliography

Amyot, D. (2003). “Introduction to the User Requirements Notation: learning by exam-
ple”. en. In: Computer Networks 42.3, pp. 285–301.

ANTLR Team (2015a). ANother Tool for Language Recognition (ANTLR) [Online].
http://www.antlr.org.

ANTLR Team (2015b). Java 1.7 grammar for ANTLR v4 [Online]. https://github.
com/antlr/grammars-v4/blob/master/java/Java.g4.

Anton, A. (1996). “Goal-based requirements analysis”. In: Proceedings of the Second
International Conference on Requirements Engineering. IEEE Comput. Soc. Press,
pp. 136–144.

Arkley, P. and S. Riddle (2005). “Overcoming the traceability benefit problem”. In:
Proceedings of the 13th IEEE International Conference on Requirements Engineering.
IEEE, pp. 385–389.

Arkley, P. and S. Riddle (2006). “Tailoring Traceability Information to Business Needs”.
In: Proceedings of the 14th IEEE International Requirements Engineering Conference.
IEEE, pp. 239–244.

Arkley, P., P. Mason, and S. Riddle (2002). “Position paper: Enabling traceability”. In:
Proceedings of the 1st International Workshop on Traceability in Emerging Forms of
Software Engineering, Edinburgh, Scotland (September 2002). Citeseer, pp. 61–65.

Bellamy, J. L., S. E. Bledsoe, and D. E. Traube (2006). “The Current State of Evidence-
Based Practice in Social Work: A Review of the Literature and Qualitative Analysis
of Expert Interviews”. en. In: Journal of Evidence-Based Social Work 3.1, pp. 23–48.

Bianchi, A., A. Fasolino, and G. Visaggio (2000). “An exploratory case study of the
maintenance effectiveness of traceability models”. In: Proceedings of the 8th Interna-
tional Workshop on Program Comprehension (IWPC). IEEE Comput. Soc, pp. 149–
158.

Biernacki, P. and D. Waldorf (1981). “Snowball sampling: Problems and techniques of
chain referral sampling”. In: Sociological methods & research 10.2, pp. 141–163.

Boehm, B. W., ed. (1978). Characteristics of software quality. TRW series of software
technology v. 1. Amsterdam : New York: North-Holland Pub. Co. ; American Elsevier.

Bohner (1996). “Impact analysis in the software change process: a year 2000 perspec-
tive”. In: Proceedings of the International Conference on Software Maintenance. IEEE,
pp. 42–51.

125

http://www.antlr.org
https://github.com/antlr/grammars-v4/blob/master/java/Java.g4
https://github.com/antlr/grammars-v4/blob/master/java/Java.g4

Bibliography

Bohner, S. A. (1995). “A Graph Traceability Approach for Software Change Impact
Analysis”. PhD thesis. Fairfax, VA, USA: George Mason University.

Bondy, J. A. and U. S. R. Murty (1976). Graph theory with applications. New York:
North Holland.

Breaux, T. D., M. W. Vail, and A. Antón (2006). “Towards regulatory compliance: Ex-
tracting rights and obligations to align requirements with regulations”. In: Proceedings
of the 14th IEEE International Conference Requirements Engineering. IEEE, pp. 49–
58.

Briand, L., Y. Labiche, and G. Soccar (2002). “Automating impact analysis and re-
gression test selection based on UML designs”. In: Proceedings of the International
Conference on Software Maintenance. IEEE Comput. Soc, pp. 252–261.

Briand, L., D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue (2014). “Traceability and
SysML design slices to support safety inspections: A controlled experiment”. en. In:
ACM Transactions on Software Engineering and Methodology 23.1, pp. 1–43.

Canfora, G. and L. Cerulo (2005). “Impact Analysis by Mining Software and Change
Request Repositories”. In: Proceedings of the 11th IEEE International Symposium
Software Metrics. IEEE, pp. 29–29.

Casey, V. and F. Mc Caffery (2011). “Med-Trace: traceability assessment method for
medical device software development”. In: Proceedings of the European Systems and
Software Process Imporvement and Innovation Conference.

CENELEC (2011). EN 50126: Railway applications. The specification and demonstration
of reliability, availability, maintainability and safety (RAMS). standard.

Center of Excellence for Software Traceability (COEST) (2015a). Software Traceability
[Online]. http://coest.org/bok/index.php/Main_Page.

Center of Excellence for Software Traceability (COEST) (2015b). What is Traceability?
[Online]. http://coest.org/index.php/what-is-traceability.

Cleland-Huang, J., G. Zemont, and W. Lukasik (2004). “A heterogeneous solution for
improving the return on investment of requirements traceability”. In: Proceedings of
the 12th IEEE International Requirements Engineering Conference. IEEE, pp. 214–
223.

Cleland-Huang, J., B. Berenbach, S. Clark, R. Settimi, and E. Romanova (2007). “Best
Practices for Automated Traceability”. In: Computer 40.6, pp. 27–35.

Cleland-Huang, J., C. K. Chang, and M. Christensen (2003). “Event-based traceability
for managing evolutionary change”. In: IEEE Transactions on Software Engineering
29.9, pp. 796–810.

Cleland-Huang, J., A. Czauderna, M. Gibiec, and J. Emenecker (2010). “A machine
learning approach for tracing regulatory codes to product specific requirements”. en.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering. Vol. 1. ACM Press, p. 155.

126

http://coest.org/bok/index.php/Main_Page
http://coest.org/index.php/what-is-traceability

Bibliography

Cleland-Huang, J., O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman (2014).
“Software traceability: trends and future directions”. en. In: Proceedings of the Future
of Software Engineering. ACM Press, pp. 55–69.

Cleland-Huang, J., J. H. Hayes, and J. M. Domel (2009). “Model-based traceability”.
In: Proceedings of the ICSE Workshop on Traceability in Emerging Forms of Software
Engineering. IEEE, pp. 6–10.

Cleland-Huang, J., M. Heimdahl, J. Huffman Hayes, R. Lutz, and P. Maeder (2012).
“Trace Queries for Safety Requirements in High Assurance Systems”. In: Requirements
Engineering: Foundation for Software Quality. Ed. by D. Hutchison, T. Kanade, J.
Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu
Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
B. Regnell, and D. Damian. Vol. 7195. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 179–193.

CMMI Product Team (2006). CMU/SEI-2006-TR-008: CMMI for Development, Ver-
sion 1.2. Tech. rep. Carnegie Mellon University / Software Engineering Institute.

Comar, C., F. Gasperoni, and J. Ruiz (2009). “Open-DO: an open-source initiative
for the development of safety-critical software”. en. In: Proceedings of the 4th IET
International Conference on System Safety. IET, P3–P3.

Costello, R. J. and D.-B. Liu (1995). “Metrics for requirements engineering”. en. In:
Journal of Systems and Software 29.1, pp. 39–63.

Curtis, S., W. Gesler, G. Smith, and S. Washburn (2000). “Approaches to sampling and
case selection in qualitative research: examples in the geography of health”. en. In:
Social Science & Medicine 50.7-8, pp. 1001–1014.

Davis, A., S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G. Kincaid, G.
Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos (1993). “Identifying
and measuring quality in a software requirements specification”. In: Proceedings of the
First International Software Metrics Symposium. IEEE Comput. Soc. Press, pp. 141–
152.

De Lucia, A., F. Fasano, and R. Oliveto (2008). “Traceability management for impact
analysis”. In: Proceedings of the Frontiers of Software Maintenance conference. IEEE,
pp. 21–30.

Delater, A. and B. Paech (2013). “Tracing Requirements and Source Code during Soft-
ware Development: An Empirical Study”. In: Proceedings of the ACM / IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement. IEEE,
pp. 25–34.

Deming, W. E. (2000). Out of the crisis. eng. 1. MIT Press ed. Cambridge, Mass.: The
MIT Press.

Dick, J. (2002). “Rich traceability”. In: Proceedings of the 1st international workshop on
traceability in emerging forms of software engineering, Edinburgh, Scotland, pp. 18–
23.

127

Bibliography

Dijkstra, E. W. (1959). “A note on two problems in connexion with graphs”. en. In:
Numerische Mathematik 1.1, pp. 269–271.

Dömges, R. and K. Pohl (1998). “Adapting traceability environments to project-specific
needs”. In: Communications of the ACM 41.12, pp. 54–62.

Ebner, G. and H. Kaindl (2002). “Tracing all around in reengineering”. en. In: IEEE
Software 19.3, pp. 70–77.

ECSS (2009). ECSS-E-ST-40C: Space engineering – Software. standard.
Egyed, A. (2001). “A scenario-driven approach to traceability”. In: Proceedings of the
23rd international conference on Software engineering. IEEE Computer Society, pp. 123–
132.

Farail, P., P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,
and M. Pantel (2006). “The TOPCASED project: a toolkit in open source for critical
aeronautic systems design”. In: Embedded Real Time Software (ERTS) 781, pp. 54–59.

FDA (2002). General Principles of Software Validation; Final Guidance for Industry
and FDA Staff. standard. Food and Drug Administration.

Fitzpatrick, J. L., C. A. Christie, and M. M. Mark, eds. (2009). Evaluation in action:
interviews with expert evaluators. Los Angeles: Sage Publications.

Gene-Auto Team (2013).Gene-Auto [Online]. http://gforge.enseeiht.fr/projects/
geneauto.

Git Team (2015). Git: a free and open source distributed version control system de-
signed to handle everything from small to very large projects with speed and efficiency
[Online]. http://git-scm.com.

Gorden, R. L. (1980). Interviewing: strategy, techniques, and tactics. 3d ed. The Dorsey
series in sociology. Homewood, Ill. : Georgetown, Ont: Dorsey Press ; Irwin-Dorsey
Ltd.

Gordon, D. G. and T. D. Breaux (2013). “A cross-domain empirical study and legal eval-
uation of the requirements water marking method”. en. In: Requirements Engineering
18.2, pp. 147–173.

Gotel, O. and A. Finkelstein (1997). “Extended requirements traceability: results of an
industrial case study”. In: Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering. IEEE Comput. Soc. Press, pp. 169–178.

Gotel, O. and C. Finkelstein (1994). “An analysis of the requirements traceability prob-
lem”. In: Proceedings of 1st International Conference on Requirements Engineering.
IEEE, pp. 94–101.

Gotel, O., J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed, P. Grünbacher, A.
Dekhtyar, G. Antoniol, and J. Maletic (2012a). “The Grand Challenge of Traceability
(v1.0)”. en. In: Software and Systems Traceability. Ed. by J. Cleland-Huang, O. Gotel,
and A. Zisman. London: Springer London, pp. 343–409.

Gotel, O., J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed, P. Grünbacher, A.
Dekhtyar, G. Antoniol, J. Maletic, and P. Mäder (2012b). “Traceability Fundamen-

128

http://gforge.enseeiht.fr/projects/geneauto
http://gforge.enseeiht.fr/projects/geneauto
http://git-scm.com

Bibliography

tals”. en. In: Software and Systems Traceability. Ed. by J. Cleland-Huang, O. Gotel,
and A. Zisman. Springer, pp. 3–22.

Grand View Research (2014). Embedded System Market Analysis By Product (Hard-
ware, Software), By Application (Automotive, Telecommunication, Healthcare, Indus-
trial, Consumer Electronics, Military & Aerospace) And Segment Forecasts To 2020
[Online]. http://www.grandviewresearch.com/industry-analysis/embedded-
system-market.

Hayes, J. H. and A. Dekhtyar (2005). “Humans in the traceability loop: can’t live with
’em, can’t live without ’em”. en. In: Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering. ACM Press, p. 20.

Hayes, J. H., A. Dekhtyar, S. K. Sundaram, E. A. Holbrook, S. Vadlamudi, and A.
April (2007). “REquirements TRacing On target (RETRO): improving software main-
tenance through traceability recovery”. en. In: Innovations in Systems and Software
Engineering 3.3, pp. 193–202.

Heindl, M. and S. Biffl (2005). “A case study on value-based requirements tracing”. en.
In: Proceedings of the 10th European software engineering conference. ACM Press,
pp. 60–69.

Heindl, M. and S. Biffl (2006). Requirements Tracing Strategies for Change Impact Anal-
ysis and Re-Testing. Technical Report. Institute of Software Technology and Interac-
tive Systems Vienna University of Technology.

Huhns, M. and M. Singh (2005). “Service-oriented computing: key concepts and princi-
ples”. en. In: IEEE Internet Computing 9.1, pp. 75–81.

Hull, E., K. Jackson, and J. Dick (2011). Requirements engineering. 3rd. Springer.
IBM (2015a). DB2 [Online]. http://www.ibm.com/software/data/db2/.
IBM (2015b). Rational DOORS [Online]. http://www.ibm.com/software/products/
en/ratidoor.

IEC (2010). IEC 61508: Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems. Standard. IEC.

Ingram, C. and S. Riddle (2012). “Cost-Benefits of Traceability”. en. In: Software and
Systems Traceability. Ed. by J. Cleland-Huang, O. Gotel, and A. Zisman. Springer,
pp. 23–42.

“International Requirements Engineering Conference (RE)” (2015). In:
“International Symposium on Software and Systems Traceability (SST)” (2015). In:
ISO (2008). ISO 9001:2008 – Quality management systems – Requirements. Tech. rep.
ISO.

ISO (2011a). ISO 25010:2011 – Systems and software engineering – Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) – System and software quality
models. standard. ISO.

ISO (2011b). ISO 26262-6:2011 – Road vehicles – Functional safety – Part 6: Product
development at the software level. standard. ISO.

129

http://www.grandviewresearch.com/industry-analysis/embedded-system-market
http://www.grandviewresearch.com/industry-analysis/embedded-system-market
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/products/en/ratidoor
http://www.ibm.com/software/products/en/ratidoor

Bibliography

ISO and IEC (2004). ISO/IEC 15504:2004 Information technology – Process assessment.
Standard. ISO/IEC.

ISO, IEC, and IEEE (2011a). ISO/IEC/IEEE 12207:2008 – Standard for Systems and
Software Engineering – Software Life Cycle Processes. standard. ISO/IEC/IEEE.

ISO, IEC, and IEEE (2011b). ISO/IEC/IEEE 29148:2011 – Systems and software engi-
neering – Life cycle processes – Requirements engineering. standard. ISO/IEC/IEEE.

Atlassian (2015). Jira [Online]. http://www.atlassian.com/software/jira.]
Jönsson, P. and M. Lindvall (2005). “Impact Analysis”. en. In: Engineering and Managing
Software Requirements. Ed. by A. Aurum and C. Wohlin. Berlin/Heidelberg: Springer-
Verlag, pp. 117–142.

Kelly, T. P. (1999). Arguing safety-a systematic approach to managing safety cases.
University of York.

Kirova, V., N. Kirby, D. Kothari, and G. Childress (2008). “Effective requirements trace-
ability: Models, tools, and practices”. en. In: Bell Labs Technical Journal 12.4, pp. 143–
157.

Kitchenham, B. A. and S. L. Pfleeger (2008). “Personal Opinion Surveys”. en. In: Guide
to Advanced Empirical Software Engineering. Ed. by F. Shull, J. Singer, and D. I. K.
Sjøberg. London: Springer London, pp. 63–92.

Kornecki, A. J. and J. Zalewski (2005). “Experimental evaluation of software develop-
ment tools for safety-critical real-time systems”. en. In: Innovations in Systems and
Software Engineering 1.2, pp. 176–188.

Kroll, P. and P. Kruchten (2003). The rational unified process made easy: a practitioner’s
guide to the RUP. Addison-Wesley object technology series. Boston: Addison-Wesley.

Leffingwell, D. (1997). “Calculating your return on investment from more effective re-
quirements management”. In: American Programmer 10.4, pp. 13–16.

LibGit2Sharp Team (2015). LibGit2Sharp [Online]. http://github.com/libgit2/
libgit2sharp.

Lindvall, M. and K. Sandahl (1996). “Practical implications of traceability”. In: Software
Practice and Experience 26.10, pp. 1161–1180.

Lormans, M. and A. van Deursen (2005). “Reconstructing requirements coverage views
from design and test using traceability recovery via LSI”. en. In: Proceedings of the
3rd international workshop on Traceability in emerging forms of software engineering.
ACM Press, p. 37.

Mäder, P. (2010). Rule-based maintenance of post-requirements traceability. eng. Mün-
ster: MV-Verl.

Mäder, P., O. Gotel, and I. Philippow (2008). “Rule-Based Maintenance of Post-Requirements
Traceability Relations”. In: Proceedings of the 16th IEEE International Requirements
Engineering Conference. IEEE, pp. 23–32.

Mäder, P., O. Gotel, and I. Philippow (2009a). “Getting back to basics: Promoting
the use of a traceability information model in practice”. In: Proceedings of the ICSE

130

http://www.atlassian.com/software/jira
http://github.com/libgit2/libgit2sharp
http://github.com/libgit2/libgit2sharp

Bibliography

Workshop on Traceability in Emerging Forms of Software Engineering. IEEE, pp. 21–
25.

Mäder, P., O. Gotel, and I. Philippow (2009b). “Motivation Matters in the Traceability
Trenches”. In: Proceedings of the 17th IEEE International Requirements Engineering
Conference. IEEE, pp. 143–148.

Mäder, P., P. L. Jones, Y. Zhang, and J. Cleland-Huang (2013). “Strategic Traceability
for Safety-Critical Projects”. In: IEEE Software 30.3, pp. 58–66.

Mäder, P., I. Philippow, and M. Riebisch (2007). “A Traceability Link Model for the Uni-
fied Process”. In: Proceedings of the 8th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing.
IEEE, pp. 700–705.

Maletic, J. I. and M. L. Collard (2009). “TQL: A query language to support traceability”.
In: Proceedings of the ICSE Workshop on Traceability in Emerging Forms of Software
Engineering. IEEE, pp. 16–20.

Marcus, A. and J. Maletic (2003). “Recovering documentation-to-source-code traceabil-
ity links using latent semantic indexing”. In: Proceedings of the 25th International
Conference on Software Engineering. IEEE, pp. 125–135.

McCall, J. A., P. K. Richards, and G. F. Walters (1977). Factors in software qual-
ity. Volume 1. Concepts and definitions of software quality. Technical Report. DTIC
Document.

Mercurial Team (2015). Mercurial [Online]. https://www.mercurial-scm.org/.
Merilinna, J. and J. Pärssinen (2010). “Verification and validation in the context of
domain-specific modelling”. en. In: Proceedings of the 10th Workshop on Domain-
Specific Modeling. ACM Press, p. 1.

Microsoft (2015a). Microsoft SQL Server [Online]. https://www.microsoft.com/en-
us/server-cloud/products/sql-server/default.aspx.

Microsoft (2015b). Microsoft Word [Online]. http://products.office.com/word.
Middleton, P., P. Kjeldsen, and J. Tully (2013). Gartner Forecast: The Internet of
Things, Worldwide [Online]. https://www.gartner.com/doc/2625419/forecast-
internet-things-worldwide.

Mirakhorli, M. and J. Cleland-Huang (2011). “Using tactic traceability information mod-
els to reduce the risk of architectural degradation during system maintenance”. In:
Proceedings of the 27th IEEE International Conference on Software Maintenance.
IEEE, pp. 123–132.

Nair, S., J. L. de la Vara, and S. Sen (2013). “A review of traceability research at
the requirements engineering conference RE@21”. In: Proceedings of the 21st IEEE
International Requirements Engineering Conference (RE). IEEE, pp. 222–229.

Nejati, S., M. Sabetzadeh, D. Falessi, L. Briand, and T. Coq (2012). “A SysML-based
approach to traceability management and design slicing in support of safety certifi-

131

https://www.mercurial-scm.org/
https://www.microsoft.com/en-us/server-cloud/products/sql-server/default.aspx
https://www.microsoft.com/en-us/server-cloud/products/sql-server/default.aspx
http://products.office.com/word
https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide
https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide

Bibliography

cation: Framework, tool support, and case studies”. en. In: Information and Software
Technology 54.6, pp. 569–590.

NHibernate (2015). NHibernate [Online]. http://nhibernate.info.
OASIS (2015). Open Services for Lifecycle Collaboration Core Specifications Version 3.0
[Online]. http://open-services.net/wiki/core/Specification-3.0.

Omoronyia, I., G. Sindre, and T. Stålhane (2011). “Exploring a Bayesian and linear
approach to requirements traceability”. en. In: Information and Software Technology
53.8, pp. 851–871.

Apache (2015a). Open Office [Online]. http://www.openoffice.org.
Oracle (2015a). Java [Online]. http://java.com.
Oracle (2015b). MySQL [Online]. http://www.mysql.com.
Oracle (2015c). Oracle Database [Online]. https://www.oracle.com/database.
Panesar-Walawege, R. K., M. Sabetzadeh, L. Briand, and T. Coq (2010). “Characterizing
the Chain of Evidence for Software Safety Cases: A Conceptual Model Based on
the IEC 61508 Standard”. In: Proceedings of the Third International Conference on
Software Testing, Verification and Validation (ICST). IEEE, pp. 335–344.

Pfleeger, S. and S. Bohner (1990). “A framework for software maintenance metrics”. In:
Proceedings of the Conference on Software Maintenance. IEEE, pp. 320–327.

Pinheiro, F. and J. Goguen (1996). “An object-oriented tool for tracing requirements”.
In: Proceedings of the Second International Conference on Requirements Engineering.
IEEE Comput. Soc. Press, p. 219.

Pinheiro, F. A. C. (2004). “Requirements Traceability”. In: Perspectives on Software
Requirements. Ed. by J. C. S. Prado Leite and J. H. Doorn. Springer, pp. 91–113.

Pohl, K. (1996). “PRO-ART: enabling requirements pre-traceability”. In: Proceedings of
the 2nd International Conference on Requirements Engineering. IEEE, pp. 76–84.

Pohl, K. (2010). Requirements engineering: fundamentals, principles, and techniques.
Springer.

Pohl, K., K. Weidenhaupt, R. Dömges, P. Haumer, M. Jarke, and R. Klamma (1999).
“PRIME—toward process-integrated modeling environments: 1”. In: ACM Transac-
tions on Software Engineering and Methodology 8.4, pp. 343–410.

Jonathan de Halleux (2015). QuickGraph: Graph Data Structures And Algorithms for
.NET [Online]. http://quickgraph.codeplex.com.

Ramesh, B. and M. Edwards (1992). “Issues in the development of a requirements trace-
ability model”. In: Proceedings of IEEE International Symposium on Requirements
Engineering. IEEE Comput. Soc. Press, pp. 256–259.

Ramesh, B. and M. Jarke (2001). “Toward reference models for requirements traceabil-
ity”. In: IEEE Transactions on Software Engineering 27.1, pp. 58–93.

Ramesh, B., T. Powers, C. Stubbs, and M. Edwards (1995). “Implementing requirements
traceability: a case study”. In: Proceedings of the 2nd IEEE International Symposium
on Requirements Engineering. IEEE, pp. 89–95.

132

http://nhibernate.info
http://open-services.net/wiki/core/Specification-3.0
http://www.openoffice.org
http://java.com
http://www.mysql.com
https://www.oracle.com/database
http://quickgraph.codeplex.com

Bibliography

Ramesh, B. (1997). “Representing and reasoning with traceability in model life cycle
management”. English. In: Annals of Operations Research 75, pp. 123–145.

Ramesh, B. (1998). “Factors influencing requirements traceability practice”. In: Com-
munications of the ACM 41.12, pp. 37–44.

RAMI (2015). Rate Adjustment by Managing Inflows (RAMI) [Online]. http://www.
chris-edwards.org/340.

Regan, G., M. Biro, F. Mc Caffery, K. Mc Daid, and D. Flood (2014). “A Traceability
Process Assessment Model for the Medical Device Domain”. In: Systems, Software
and Services Process Improvement. Vol. 425. Springer, pp. 206–216.

Regan, G., F. McCaffery, K. McDaid, and D. Flood (2012). “The Barriers to Traceability
and their Potential Solutions: Towards a Reference Framework”. In: Proceedings of the
38th EUROMICRO Conference on Software Engineering and Advanced Applications.
IEEE, pp. 319–322.

Rempel, P. and P. Mäder (2015a). “A quality model for the systematic assessment of re-
quirements traceability”. In: Proceedings of the 23rd IEEE International Requirements
Engineering Conference. IEEE, pp. 176–185.

Rempel, P. and P. Mäder (2015b). “Estimating the Implementation Risk of Require-
ments in Agile Software Development Projects with Traceability Metrics”. In: Re-
quirements Engineering: Foundation for Software Quality. Ed. by S. A. Fricker and
K. Schneider. Vol. 9013. Springer, pp. 81–97.

Rempel, P., P. Mäder, and T. Kuschke (2013). “An empirical study on project-specific
traceability strategies”. In: Proceedings of the 21st IEEE International Requirements
Engineering Conference. IEEE, pp. 195–204.

Rempel, P., P. Mäder, T. Kuschke, and J. Cleland-Huang (2014). “Mind the gap: as-
sessing the conformance of software traceability to relevant guidelines”. en. In: Pro-
ceedings of the 36th International Conference on Software Engineering ICSE. ACM
Press, pp. 943–954.

Ridderhof, W., H.-G. Gross, and H. Doerr (2007). “Establishing Evidence for Safety
Cases in Automotive Systems – A Case Study”. In: Computer Safety, Reliability, and
Security. Ed. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D.
Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, F. Saglietti, and N. Oster. Vol. 4680.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–13.

Rierson, L. (2013). Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance. CRC Press.

RTCA (2000). DO-178B: Software Considerations in Airborne Systems and Equipment
Certification. Guideline. RTCA.

RTCA (2011). DO-178C: Software Considerations in Airborne Systems and Equipment
Certification. Guideline. RTCA.

133

http://www.chris-edwards.org/340
http://www.chris-edwards.org/340

Bibliography

Runeson, P. and M. Höst (2009). “Guidelines for conducting and reporting case study re-
search in software engineering”. en. In: Empirical Software Engineering 14.2, pp. 131–
164.

Schreier, M. (2014). “Qualitative content analysis”. In: The SAGE Handbook of Quali-
tative Data Analysis, pp. 170–183.

Schwarz, H., J. Ebert, and A. Winter (2010). “Graph-based traceability: a comprehensive
approach”. en. In: Software & Systems Modeling 9.4, pp. 473–492.

Smith, J. (2009). “PATTERNS-WPF Apps With The Model-View-ViewModel Design
Pattern”. In: MSDN magazine, p. 72.

SQLite (2015). SQLite [Online]. http://www.sqlite.org.
Stevenson, A. (2010). Oxford dictionary of English. Oxford University Press.
Storey, N. (2010). Safety-critical computer systems. eng. Nachdr. Harlow: Prentice Hall.
Apache (2015b). Subversion [Online]. http://subversion.apache.org.
Thompson, S. K. (2012). Sampling. 3rd edition. Wiley Series in Probability and Statis-
tics. Hoboken, NJ, USA: John Wiley & Sons, Inc.

TOPCASE-REQ (2015). TOPCASE-REQ [Online]. http://gforge.enseeiht.fr/
projects/topcasedreq.

TOPCASE-SAM (2015). TOPCASE-SAM [Online]. http://gforge.enseeiht.fr/
projects/topcasedsam.

Vanhooff, B., S. Van Baelen, W. Joosen, and Y. Berbers (2007). “Traceability as input
for model transformations”. In: Proceedings of the ECMDA Traceability Workshop.
Citeseer, pp. 37–46.

VERBI (2015). MAXQDA - the art of data analysis [Online]. http://www.maxqda.com.
von Knethen, A. (2002). “Change-oriented requirements traceability. Support for evolu-
tion of embedded systems”. In: Proceedings of the International Conference on Soft-
ware Maintenance. IEEE Comput. Soc, pp. 482–485.

von Knethen, A., B. Paech, F. Kiedaisch, and F. Houdek (2002). “Systematic require-
ments recycling through abstraction and traceability”. In: Proceedings of the IEEE
Joint International Conference on Requirements Engineering. IEEE, pp. 273–281.

von Knethen, A. and B. Paech (2002). “A survey on tracing approaches in Practice and
Research”. In: 095.01/E.

Watkins, R. and M. Neal (1994). “Why and how of requirements tracing”. In: IEEE
Software 11.4, pp. 104–106.

Wieringa, R. (1995). An Introduction to Requirements Traceability. Technical Report
IR-389. Amsterdam, the Netherlands: Free University, Faculty of Mathematics and
Computer Science.

Winkler, S. and J. von Pilgrim (2010). “A survey of traceability in requirements en-
gineering and model-driven development”. en. In: Software & Systems Modeling 9.4,
pp. 529–565.

134

http://www.sqlite.org
http://subversion.apache.org
http://gforge.enseeiht.fr/projects/topcasedreq
http://gforge.enseeiht.fr/projects/topcasedreq
http://gforge.enseeiht.fr/projects/topcasedsam
http://gforge.enseeiht.fr/projects/topcasedsam
http://www.maxqda.com

Bibliography

Wohlin, C., P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslen (2012).
Experimentation in software engineering. New York: Springer.

Yin, R. K. (2009). Case study research: design and methods. 4th. Applied social research
methods. Sage Publications.

Zeller, M., K. Höfig, and M. Rothfelder (2014). “Towards a Cross-Domain Software
Safety Assurance Process for Embedded Systems”. In: Computer Safety, Reliability,
and Security. Ed. by A. Bondavalli, A. Ceccarelli, and F. Ortmeier. Vol. 8696. Cham:
Springer International Publishing, pp. 396–400.

135

A. Evaluation Material of Study 1

Questionnaire for a Classification
of Structural Software Traceability Problems

1

Introduction

We developed a classification of all possible Structural Traceability Problems, which may occur in
a software development project, and which can be used to systematically assess the quality of a
projects’ software traceability. Semantical Traceability Problems such as incorrect trace link
between artifacts are out-of-scope of this classification.

In this questionnaire, we ask for your opinion on our classification based on your experience.

Questions, we would like you to answer are marked with a symbol.

The questionnaire consists of four parts:

Part 1. We ask preliminary questions about your software traceability experience.
Part 2. To make you familiar with our preliminary assumptions from which we derived the

classification, we provide definitions of the relevant traceability elements, traceability
actors, and sets of elements.

Part 3. We present our developed classification and ask for your opinion. Thereby, for every
traceability element, we define a Quality Gate describing its acceptable state and
Traceability Problems describing inacceptable deviations from this acceptable state.

Part 4. We ask four your opinion whether or not the developed classification is exhaustive.

With the scale: you rate the relevance of a Quality Gate.

With the scale: you rate the criticality of a Problem.

Please check one circle of each scale as exemplified above.

Part 1: Preliminary Questions

 Q1: Please indicate your practical software traceability experience in years:

 Q2: Have you ever participated in a project that captured traceability information?

 Q3: Have you ever assessed the quality of captured traceability information in a project?

Yes No

Yes No

137

A. Evaluation Material of Study 1

Questionnaire for a Classification
of Structural Software Traceability Problems

2

Part 2: Software Traceability Definitions
The following two figures are supposed to make you familiar with our preliminary assumptions from
which we derived our classification of structural traceability problems.

Traceability Data Model (TDM)

Traceability Information Model (TIM)

Traceability
Creator

Traceability
Planner

Traceability
Stakeholder

TIM Elements

TDM Elements

Artifact Class

Trace Link Class

Trace Path Class

Requirement

Design

Code

satisfies

implements

Artifact

Trace Link

Trace Path

(instance)

r1

d1 d2

satisfies

c1 c2 c3 c4

implements implements

Obligates

Specifies

Establishes

(instance)

Figure 1 – The figure shows the interplay of traceability elements and traceability actors in a software project. As
depicted in the upper part, a Traceability Planner specifies traceability (modeled as TIM) in order to address the projects’
traceability obligations, which are stated by one or many Traceability Stakeholders (e.g. client, organization, regulation,
etc.). As depicted in the lower part, a Traceability Creator establishes traceability (modeled as TDM) in order to satisfy
the Traceability Planners’ specified traceability.

Traceability Elements as Venn Diagramm (Ellipses represent sets)

Traceability
Stakeholder

Traceability
Planner

Traceability
Creator

Obligated Artifact
Classes

Specified Artifact
Classes

Obligated Trace
Link Classes

Obligated Trace
Path Classes

Specified Trace
Link Classes

Specified Trace
Path Classes

Existing Artifacts

Existing Trace Links

Existing Paths

Figure 2 –Depending on the actual actor, traceability elements can be distinguished as obligated, specified, and existing.
This figure depicts all sets of traceability elements as Venn diagram, which can be derived from all possible traceability
elements as depicted in Figure 1 and the actor specific distinction of traceability elements.

138

Questionnaire for a Classification
of Structural Software Traceability Problems

3

Part 3: Traceability Problem Classification

Traceability Quality Gates 1 – 6 Tracebility Problems 1 – 11

Missing Traceability Elements Superfluous Traceability Elements

Tr
ac

ea
bi

lit
y

In
fo

rm
at

io
n

M
od

el
(T

IM
) A

rt
ifa

ct
C

la
ss

(A
)

1 Quality Gate: Artifact Class
OA SA

A

Every obligated Artifact Class should
be specified in the TIM and every
Artifact Class specified in the TIM
should be obligated.

1 Missing Artifact Class
OA SA

A ′

It exists an obligated Artifact Class A ′,
which is not specified within the TIM.

2 Superfluous Artifact Class
OA SA

A ′′

The TIM specifies an Artifact Class
A ′′, which is not obligated.

P Q4: MINOR
1 2 3 4 5

MAJOR Q5: NONCRITICAL
1 2 3 4 5

CRITICAL Q6: NONCRITICAL
1 2 3 4 5

CRITICAL

Tr
ac

e
L

in
k

C
la

ss
(L

) 2 Quality Gate: Trace Link Class
OL SL

L

Every obligated Trace Link Class
should be specified in the TIM and
every Trace Link Class specified in the
TIM should be obligated.

3 Missing Trace Link Class
OL SL

L ′

It exists an obligated Trace Link Class
L ′, which is not specified within the
TIM.

4 Superfluous Trace Link Class
OL SL

L ′′

The TIM specifies an Trace Link Class
L ′′, which is not obligated.

P Q7: MINOR
1 2 3 4 5

MAJOR Q8: NONCRITICAL
1 2 3 4 5

CRITICAL Q9: NONCRITICAL
1 2 3 4 5

CRITICAL

Tr
ac

e
Pa

th
C

la
ss

(P
) 3 Quality Gate: Trace Path Class

OP SP

P
Every obligated Trace Path Class
should be specified in the TIM and
every Trace Path Class specified in the
TIM should be obligated.

5 Missing Trace Path Class
OP SP

P ′

It exists an obligated Trace Path Class
P ′, which is not specified within the
TIM.

6 Superfluous Trace Path Class
OP SP

P ′′

The TIM specifies an Trace Path Class
P ′′, which is not obligated.

P Q10: MINOR
1 2 3 4 5

MAJOR Q11: NONCRITICAL
1 2 3 4 5

CRITICAL Q12: NONCRITICAL
1 2 3 4 5

CRITICAL

Tr
ac

ea
bi

lit
y

D
at

a
M

od
el

(T
D

M
)

A
rt

ifa
ct

(A
)

4 Quality Gate: Artifact

SA

EA

A

A1 A2

(instances)

Every Artifact Class specified in the
TIM should be instantiated in the
TDM as one or many Artifacts.

7 Missing Artifact

SA

EA

A ′

It exists an Artifact Class A ′ specified
in the TIM for which no Artifact in-
stances exits in the TDM.

P Q13: MINOR
1 2 3 4 5

MAJOR Q14: NONCRITICAL
1 2 3 4 5

CRITICAL

Tr
ac

e
L

in
k

(L
)

5 Quality Gate: Trace Link

SL

EL

L

(instances) (instances)

L1

L2

Every Artifact in the TDM, which is
an instance of a source or target of a
Trace Link Class L , should have one
or many Trace Links that instantiate
the L .

8 Missing Trace Link

SL

EL
A′

L ′

(instances) (instances)

L1

It exists an Artifact A′ in the TDM
which is an instance of a source or
target of a Trace Link Class L ′, but
has no Trace Link that satisfies L ′.

9 Superfluous Trace Link

SL

EL

(instances) (instances)

L′′

It exists a Trace Link L′′ in the TDM,
which does not satisfy any Trace Link
Class of the TIM.

P Q15: MINOR
1 2 3 4 5

MAJOR Q16: NONCRITICAL
1 2 3 4 5

CRITICAL Q17: NONCRITICAL
1 2 3 4 5

CRITICAL

Tr
ac

e
Pa

th
(P

)

6 Quality Gate: Trace Path

SP

EP

P

P

(instances) (instances)

Every Artifact in the TDM, which is
an instance of a source or target of a
Trace Path Class P , should have one or
many Trace Paths that instantiate the
P .

10 Missing Trace Path

SP

EP A′

P ′

P

(instances) (instances)

It exists an Artifact A′ in the TDM
which is an instance of a source or
target of a Trace Path Class P ′, but
has no Trace Path that satisfies P ′.

11 Superfluous Trace Path

SP

EP
P ′′

(instances) (instances)

It exists a Trace Path P ′′ in the TDM,
which does not satisfy any Trace Path
Class of the TIM.

P Q18: MINOR
1 2 3 4 5

MAJOR Q19: NONCRITICAL
1 2 3 4 5

CRITICAL Q20: NONCRITICAL
1 2 3 4 5

CRITICAL

139

A. Evaluation Material of Study 1

Questionnaire for a Classification
of Structural Software Traceability Problems

4

Part 4: Missing Problems

 Q21: Are you aware of any additional Structural Traceability Problem, which is not covered
by our problem current classification? If yes, could you briefly describe which problems?

140

B. Evaluation Material of Study 2

Questionnaire

In this questionnaire we ask for your opinion on a technique we developed to automatically
assess the traceability compliance of software development data with functional safety
standards. The questionnaire is structured as follows:

1. We provide an Introduction to relevant terms (e.g. traceability, functional safety,
safety standards) and explain our traceability compliance assessment technique.

2. We ask Preliminary Questions about your software engineering background.

3. We ask for Your Opinion on our traceability compliance assessment technique
based on your practical experience.

Additional facts:

• Completing this questionnaire will take approximately 30 minutes.

• Please answer all questions that are marked withP.

• This questionnaire is anonymous and the results are used for research only.

• Target audience: people who are/were concerned (in)directly with the development
of software-based systems that need to achieve functional safety.

• All participants of this survey will receive a detailed report on the results and are
welcome to run the compliance assessment on their own software projects data.

Contact informations:

B Technische Universität Ilmenau
Patrick Rempel
Software Systems / Process Informatics
Helmholtzplatz 5
98693 Ilmenau

@ patrick.rempel@tu-ilmenau.de

� +49 3677 / 69-4182

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 1 of 13

141

B. Evaluation Material of Study 2

Introduction

Many software safety standards1 prescribe traceability2 to demonstrate that a rigo-
rous software development process has been followed. Traceability supports the achieve-
ment of Functional Safety3 of software-based systems, because it ensures that:

• all potential hazards, risks and regulations are addressed by requirements,

• all requirements are implemented and verified,

• no unintended functionality is implemented but only required functionality.

Increasingly, certification to software safety standards is desired by end-users and encou-
raged by regulatory authorities to minimize the risk of use.

It is the certifier’s responsibility during certification to check whether or
not a developed software product complies with a standard. In terms
of traceability, the certifier needs to check whether or not the software
development data (e.g. requirements, design document, source code, test
cases) are traceable as prescribed by a standard.

Software engineers, developing safety-critical software, have the re-
sponsibility to develop software products that comply with a standard.
Thus, software engineers need the ensure that all software development
data (e.g. requirements, design, source code, test cases) are traceable as
prescribed by a standard.

We have developed an assessment tool that automatically checks tra-
ceability compliance of software development data to safety standards.
The tool’s main goal is to support software engineers and certifiers.

The traceability compliance assessment tool works as follows:

• We defined 5 problem classes. We claim that the existence of such problems in
software development data indicate the non-compliance of traceability.

• The tool searches for problem instances within the software development data.

• The tool generates assessment reports for every problem class.

In this questionnaire, we provide illustrating examples, which are based on the DO-
178B standard for software within aircrafts4 and on the industrial development project
Gene-Auto, which has the explicit project goal to comply with the DO-178B standard.

1A software safety standard specifies requirements for software development that need to be satisfied
to ensure that the developed software is safe for use.

2Traceability is the ability to trace the origin, the evolution, and the result of any software development
data (e.g. requirements, design, source code), even after the development has been completed.

3The objective of Functional Safety is freedom from unacceptable risk of physical injury or of damage
to the health of people either directly or indirectly through damage to property or to the environment.

4DO-178B: Software Considerations in Airborne Systems and Equipment Certification.

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 2 of 13

142

Preliminary Questions

P
Please rate your practical experience in software development projects.

years (Please round to full years)

P
What is your primary role in software engineering? (Please select one)

Developer Tester Consultant Safety Engineer

Manager Analyst Administrator Certification Engineer

Architect Auditor Trainer

P
Are / were you concerned with additional role(s) in software engineering?
(Please select all that apply)

Developer Tester Consultant Safety Engineer

Manager Analyst Administrator Certification Engineer

Architect Auditor Trainer

P
In which domain(s) are/were you working? (Please select all that apply)

Aviation Automotive Energy Railway

Space Medical Agriculture Industrial Automation

Military Maritime Mining

P
Are you familiar with functional safety of software-based systems?
(Please select one)

Not
familiar

I know the
objectives

≤ 1 year
experience

≥ 2 years
experience

Expert

P
Have you participated in a project that was aiming to ensure functional safety?

Yes No (Please select one)

P
Have you participated in a project that was certified for functional safety?

Yes No (Please select one)

P
Have you certified the functional safety of a software project?

Yes No (Please select one)

P
Which of the following functional safety standards are/were relevant for your
current or previous work? (Please select all that apply)

IEC 61508 IEC 61513 DO-178 B/C IEC 62304

ISO 26262 EN 50128 ISO 25119

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 3 of 13

143

B. Evaluation Material of Study 2

Your Opinion - 1st Problem Class

Z Traceability between two types of software development data is incomplete .

E

Illustrating example:

Software
Requirement

Design
Description

Prescribed
Traceability

Standard The DO-178B standard prescribes:
“Desgin descriptions developed
during the design process should
be traceable to software require-
ments”.

The design description
DD1 is not traceable to any
software requirement

Design
Description%Software

Requirement

R1

R2

DD1

DD2

? ?

Project

The software requirement
R1 is not traceable to any
design description

Traceability between software requirements
and design descriptions is incomplete

Situation within the project:
Software requirements and de-
sign descriptions are available.
Traceability between software re-
quirements and design descripti-
ons is available. Though, the tracea-
bility is incomplete, because the soft-
ware requirement R1 is not traceable
to any design description and the de-
sign description DD1 is not traceable
to any software requirement.

P
We claim that incomplete traceability indicates non-compliance of traceability
with a standard.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P
We claim that incomplete traceability indicates safety risks.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 4 of 13

144

E

Exemplary assessment report for the 1st problem class:

For simplicity reasons, this is an excerpt of the complete list only.

For simplicity reasons, this is an excerpt of the complete list only.

P

Is the reported information helpful for a certifier to check the com-
pliance of GeneAuto’s traceability with the DO-178B standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P

Is the reported information helpful for a project participant to en-
sure the compliance of GeneAuto’s traceability with the DO-178B
standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 5 of 13

145

B. Evaluation Material of Study 2

Your Opinion - 2nd Problem Class

Z Traceability between two types of software development data is completely
missing.

E

Illustrating example:

Software
Requirement

Test
Case

Prescribed
Traceability

Standard The DO-178B standard prescribes:
“The verification process provides
traceability between software re-
quirements and test cases”.

Software
Requirement

Test
Case

R1

R2

TC1

TC2

?

?

?

Project

?

?

Traceability between software requirements
and test cases is completely missing

All test cases (TC1, TC2)
are not traceable to any
software requirement

All software requirements
(R1, R2) are not traceable to
any test case

Situation within the project:
Software requirements and test
cases are available. Traceability bet-
ween software requirements and
test cases is completely missing .

P
We claim that missing traceability indicates non-compliance of traceability with
a standard.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P
We claim that missing traceability indicates safety risks.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 6 of 13

146

E

Exemplary assessment report for the 2nd problem class:

P

Is the reported information helpful for a certifier to check the com-
pliance of GeneAuto’s traceability with the DO-178B standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P

Is the reported information helpful for a project participant to en-
sure the compliance of GeneAuto’s traceability with the DO-178B
standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 7 of 13

147

B. Evaluation Material of Study 2

Your Opinion - 3rd Problem Class

Z A type of software development data for which traceability is prescribed is
completely missing.

E

Illustrating example:

Software
Requirement

Software
Architecture

Prescribed
Traceability

Standard The DO-178B standard prescribes:
“Software architecture, developed
during the design process, should
be traceable to software require-
ments”.

?Software
Requirement

R1

R2

?

?

?

Project

Software architecture data
are completely missing

All software requirements
(R1, R2) are not traceable to
any software architecture

Software architecture
data are not available

Situation within the project:
Software requirements data are
available, software architecture
data are completely missing. This
implies that prescribed traceability
can not be created between software
requirements data and the missing
software architecture data.

P
We claim that missing software development data, for which traceability is pres-
cribed, indicate non-compliance of traceability with a standard.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P
We claim that missing software development data, for which traceability is pres-
cribed, indicate safety risks.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 8 of 13

148

E

Exemplary assessment report for the 3rd problem class:

P

Is the reported information helpful for a certifier to check the com-
pliance of GeneAuto’s traceability with the DO-178B standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P

Is the reported information helpful for a project participant to en-
sure the compliance of GeneAuto’s traceability with the DO-178B
standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 9 of 13

149

B. Evaluation Material of Study 2

Your Opinion - 4th Problem Class

Z Traceability is available but deviates from the prescription.

E

Illustrating example:

Software
Requirement

Design
Description

Source
Code

Prescribed Traceability

Standard

 Traceability is prescribed with intermediate design descriptions
source code  design description  software requirements

The DO-178B standard prescribes:
“Traceability between the source
code and software requirements
throughout design descriptions
should be provided to give visibility
to the design decision made during
the design process and to allow veri-
fication of the complete implementa-
tion of the software requirements.”

Software
Requirement Design

Description

Source
Code

R1

R2

DD1 DD2

SC1

SC2

Project

Traceability is available
but not through design descriptions

All software
requirements (R1,R2) are
traceable to source code
but not through design
descriptions

All software codes
(SC1,SC2) are traceable to
software requirements
but not through design
descriptions

Situation within the project:
Software requirements, design
descriptions, and source code
are available. Traceability between
software requirements and sour-
ce code is available. Traceability
deviates from the standard because
it does not include design descrip-
tions. Thus, it cannot be used to give
visibility to the design decision.

P
We claim that deviating traceability indicates non-compliance with a standard.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P
We claim that deviating traceability indicates safety risks.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 10 of 13

150

E

Exemplary assessment report for the 4th problem class:

P

Is the reported information helpful for a certifier to check the com-
pliance of GeneAuto’s traceability with the DO-178B standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P

Is the reported information helpful for a project participant to en-
sure the compliance of GeneAuto’s traceability with the DO-178B
standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 11 of 13

151

B. Evaluation Material of Study 2

Your Opinion - 5th Problem Class

Z Traceability is available but with alternative routes .

E

Illustrating example:

Software
Requirement

Design
Description

Source
Code

Prescribed Traceability

Standard

 Traceability is prescribed with intermediate design descriptions
source code  design description  software requirements

The DO-178B standard prescribes:
“Traceability between the source
code and software requirements
throughout design descriptions
should be provided to give visibility
to the design decision made during
the design process and to allow veri-
fication of the complete implementa-
tion of the software requirements.”

Route 1

Route 2Route 2

R1

R2

DD1

DD2

SC1

SC2

Design
Description

Software
Requirement

Source
Code

Project

Alternative routes for traceability:
(1) ‚source code‘  ‚software requirement‘
(2)‚source code‘  ‚design description‘  ‚software requirement‘

R1 is traceable to a
‚source code‘ through a
different route than R2

SC1 is traceable to a
‚software requirement‘
through a different route
than SC2

Situation within the project:
Software requirements, design
descriptions, and source code are
available. Traceability between soft-
ware requirements and source
code is available. Though, the pro-
ject provides ambiguous traceabi-
lity: some source codes are di-
rectly traced to software require-
ments, other source codes are tra-
ced through design descriptions to
software requirements.

P
We claim that ambiguous traceability indicates non-compliance of traceability.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P
We claim that ambiguous traceability indicates safety risks.
What is your opinion based on your practical experience? (Please select one)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 12 of 13

152

E

Exemplary assessment report for the 5th problem class:

P

Is the reported information helpful for a certifier to check the com-
pliance of GeneAuto’s traceability with the DO-178B standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

P

Is the reported information helpful for a project participant to en-
sure the compliance of GeneAuto’s traceability with the DO-178B
standard?
(Please select one answer)

Strongly Agree Agree Disagree Strongly Disagree Don’t know

P
Can you briefly explain why you agree or disagree?

Questionnaire: Traceability Compliance Assessment / ID: ZCCvHMn
Technische Universität Ilmenau, patrick.rempel@tu-ilmenau.de

Page 13 of 13

153

Selbstständigkeitserklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet.
Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden

Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in
Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leis-
tungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalte der vorgelegten
Dissertation stehen.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher

Form einer Prüfungsbehörde vorgelegt.
Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklärung

als Täuschungsversuch angesehen wird und den erfolglosen Abbruch des Promotionsver-
fahrens zu Folge hat.

Ilmenau, 29.06.2015

Patrick Rempel

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline

	2 Software Traceability
	2.1 Fundamentals
	2.2 Traceability Characteristics
	2.3 Traceability Lifecycle
	2.4 Traceability Research Issues
	2.5 State of the Art
	2.5.1 Empirical Work on Traceability Problems
	2.5.2 Definitional Approaches
	2.5.3 Anticipatory Approaches
	2.5.4 Analytical Approaches

	2.6 Critique of the State of the Art

	3 The Traceability Assessment Approach
	3.1 Traceability Assessment Challenges
	3.1.1 Purposed
	3.1.2 Trusted
	3.1.3 Automation

	3.2 Characterizing Traceability Implementations
	3.3 Overview of the Assessment Approach
	3.4 Usage Scenarios of Traceability Assessment

	4 Planning for Purposed Traceability
	4.1 Identifying Traceability Requirements
	4.1.1 A Model for Traceability Requirements
	4.1.2 Identifying Software Lifecycle Related Goals
	4.1.3 Identifying Goal Specific Activities
	4.1.4 Identifying Goals that Require Traceability
	4.1.5 Identifying Traceability Implementation Activities

	4.2 Identifying Required Traceability Information
	4.2.1 A Model for Required Traceability Information
	4.2.2 Identifying Required Trace Path Types
	4.2.3 Identifying Required Trace Link Types

	4.3 Justifying the Purpose of Required Trace Link Types
	4.4 Summary

	5 Assessing the Fitness for Purpose of Implemented Traceability
	5.1 A Traceability Assessment Model
	5.2 Quality Attributes of a Purposed Traceability Implementation
	5.3 Assessable Traceability Implementation Properties with Respect to Purposed Traceability
	5.4 Traceability Problems
	5.4.1 Problems Related to the Completeness
	5.4.2 Problems Related to the Appropriateness
	5.4.3 Problems Related to the Correctness

	5.5 Dependencies Among the Traceability Problems
	5.6 Performing a Traceability Assessment
	5.6.1 Step 1: Collecting Traceability Implementation Data
	5.6.2 Step 2: Extracting Types from Implemented Traceability Data
	5.6.3 Step 3: Mapping Implemented Traceability Data to Required Traceability Information
	5.6.4 Step 4: Assessing the Implemented Traceability Data

	5.7 Summary

	6 Tool Support for Continuous Traceability Assessment
	6.1 The acr:Purpose Induced Software Traceability Assessor Prototype
	6.1.1 Traceability Store
	6.1.2 Traceability Planner
	6.1.3 Traceability Collector
	6.1.4 Traceability Browser
	6.1.5 Traceability Assessor

	6.2 Summary

	7 Evaluation
	7.1 Research Questions
	7.2 Study 1: Traceability Assessment Model
	7.3 Study 2: Value Driven Traceability Implementations
	7.4 Study 3: Regulated Traceability Implementations
	7.5 Study 4: Traceability Assessment Results
	7.6 Discussion
	7.6.1 Research Question 1: Relevance
	7.6.2 Research Question 2: Completeness
	7.6.3 Research Question 3: Feasibility of Software Lifecycle Activities
	7.6.4 Research Question 4: Cost-effective Implementation
	7.6.5 Research Question 5: Compliance
	7.6.6 Research Question 6: Migration
	7.6.7 Research Question 7: Continuous Assessment
	7.6.8 Limitations

	7.7 Threats to Validity
	7.7.1 Construct Validity
	7.7.2 External Validity
	7.7.3 Internal Validity
	7.7.4 Reliability

	8 Conclusions and Outlook
	8.1 Summary
	8.2 Future Work

	List of Figures
	List of Tables
	Bibliography
	A Evaluation Material of Study 1
	B Evaluation Material of Study 2

