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CHAPTER 1

Introduction

Exactly one hundred years ago Albert Einstein presented his theory of general rela-
tivity. Since then a lot of progress has been made and the theory has been confirmed
several times, but its foundations have not changed. His famous equations connect

the distribution of energy and matter with the curvature of spacetime

1
Gab = Rab — §gabR = liTab. (11)

Here, the energy and matter distribution is described via the stress energy tensor Ty,
while the curvature is given in terms of the Ricci tensor R, and scalar R, which in
turn can be expressed in terms of the spacetime metric g, and its derivatives.

One of the predictions of general relativity which remains to be directly proved is the
existence of gravitational waves. Today we know that the coalescences of compact
binary objects, such as neutrons stars or black holes, are prominent sources for ground

based gravitational wave (GW) detectors.

With the rise of computer technology came the desire and the possibility to run gen-
eral relativistic simulations. In the early phase of numerical relativity, many groups
focused on binary black hole systems, but especially within the last years, binary
neutron star systems have got a lot of attention as well. In contrast to black hole
binaries, binary neutron stars (BNS) have been observed via electromagnetic obser-
vations of binary pulsars and within this work, we will focus on such systems. The
astronomy and relativity community are confidently looking forward to see the first
detections of gravitational waves from neutron star or mixed black hole neutron star
binaries within the next few years. Faber and Rasio [2012] (in particular Table 1
within their work) and more recently Dominik et al. [2015], give a review of esti-
mated merger rates from population synthesis calculations. Besides the context of
gravitational wave astronomy, neutron star binaries are also interesting from another
points of view. For example, as suggested by Eichler et al. [1989], short gamma ray

bursts could likely originate from neutron star coalescences. They could also play
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an important role in the r-process, where heavy elements are produced which can be
found in the interstellar medium.

Based on the observed BNS systems where at least one star is seen as a radio pulsar,
one obtains some expectations on the stellar properties that have to be fulfilled in
most cases (see the work of Lattimer [2012] and the corresponding link in the bib-
liography). Additionally, we can narrow down our range of expectations by looking
at studies from Peters [1964] or Kowalska et al. [2011], where it is explained that the
GW emission during long inspirals efficiently reduces the eccentricities of compact
binaries. Summarizing these results, we would expect to observe coalescing binary
neutron stars with low spins, negligible eccentricity and almost equal masses around
1.35M. On the other hand, from a statistical point of view, the ~ 12 systems which
have been observed so far and serve as a basis of the above considerations, are not
sufficient to give definite results. It is thus possible that current observations are
influenced by random selection effects. In fact, recent population synthesis models
by Dominik et al. [2012] predict that the range of mass ratios and masses is wider
than what has been found so far. Furthermore, the observable neutron star spins
at merger could be larger than the current observations suggest. We pick up those
discussions and astrophysical predictions in the appendix of [Mol3].

These points already show that it might not be sufficient to focus on neutron star
simulations with restrictive choices of spins and mass ratios (most common choices
are irrotational equal mass stars), but they also show that the negligible eccentricity
is no safe assumption. In fact, all known BNS systems are eccentric to a certain
degree. Postnov and Yungelson [2014] show in tables 2 and 3 of their work that those
systems have eccentricities between e = 0.085 and e = 0.681 (we will define eccen-
tricities e and various measurements later in this thesis). However, these mergers
will occur within the next few hundred million years, and, due to GW radiation,
the eccentricities before merger will admittedly be negligible. Nevertheless, there
are other mechanisms which could produce highly eccentric binaries close to merger.
As described in Lee et al. [2010], one of those scenarios are dynamical captures, i.e.
the binary is formed in a dense stellar region such as globular clusters [Lee et al.,
2010; O’'Leary et al., 2009; Samsing et al., 2014; Tsang, 2013], where stars can be
captured at small periapsis distance with high eccentricities. Alternatively, the Kozai
mechanism in a hierarchical triple (see Antognini et al. [2014]; Antonini and Perets
[2012]; Naoz et al. [2013]; Seto [2013]) can excite eccentricities in neutron star sys-
tems. According to Verbunt and Freire [2014], the production of eccentric systems
in globular clusters is possible. But in general, compared to circular binaries, the

eccentric counterparts are probably quite rare events.



On the other hand, the underlying physics allows interesting observations from those
systems. Highly eccentric systems produce gravitational wave signals with repeated
bursts. Although these signals are challenging for gravitational wave astronomy, they
provide rewarding insights as it has been investigated by several other groups. Kyu-
toku and Seto [2014] find improvements in the accuracy of premerger sky localization
and timing in comparison to the quasicircular case. In Loutrel et al. [2014], burst sig-
nals from highly eccentric binaries are considered as test regimes for general relativity,
while East et al. [2013] and Tai et al. [2014] discuss strategies for detection of such
systems. Furthermore, physical phenomena like electromagnetic flares from crust
cracking during close encounters of eccentric binaries have been considerd by Tsang
[2013]. In summary, neutron star binaries cover a large parameter space of which
several parts provide interesting physics, although these interesting parts might not
be the first to be detected. In order to successfully detect gravitational waves, the

models have to be carefully tuned.

This thesis puts its focus on binaries with arbitrary eccentricities. The only way
to make accurate theoretical predictions of the properties of binary neutron star
systems are full general relativistic hydrodynamical simulations. The neutron star
binary parameter space has been explored in the context of varying eccentricities
by other authors before. The first full numerical relativistic evolutions of neutron
stars with large eccentricities have been performed by Gold et al. [2012], with some
further investigations by East and Pretorius [2012]. Additionally, Lee et al. [2010]
and Rosswog et al. [2013] have carried out simulations with Newtonian methods. The
very similar topic of highly eccentric black hole-neutron star binaries has also been
considered in papers by Stephens et al. [2011] and East et al. [2012a] (furthermore,
it has to be mentioned that eccentric black hole binaries have been investigated for
instance by Gold and Briigmann [2010, 2013], but due to the absence of matter, the
treatment is different here). In general, all simulations need accurate initial data
that fulfill Einstein’s equations along with the Euler equation on a certain hyper-
surface. These data have to describe a system with the desired physical properties,
and ideally should not be too far in time from merger, avoiding computationally
expensive evolutions. Unfortunately, the works cited above, dealing with eccentric
neutron stars, were lacking adequate initial data. Instead, they used inconsistent
initial data, since it is not possible to apply the standard techniques of initial data
construction, which have been used before. These techniques employ the binary’s
approximate helical Killing vector to solve the Euler equations via a first integral,

but for eccentric binaries this vector is not valid. The workarounds used by the other
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groups are fairly straightforward: Gold et al. [2012] boosted two superimposed spher-
ical stars, which resulted in large violations of the Einstein constraint equations and
additionally yielded unphysical matter configurations. The Princeton group [East
and Pretorius, 2012; East et al., 2012a; Stephens et al., 2011] do solve the constraint
equations, but their solutions did not satisfy Euler’s equation. Thus, it is not clear
how accurate the simulations are and to what extent the tidally induced oscillations
of the neutron stars found in these simulations are affected by the initial spurious

oscillations of the stars due to polluted initial data.

There is a clear need of consistent initial data for these eccentric scenarios. Moreover,
on the opposite end of the parameter space, i.e. for circular orbits, one encounters
some problems as well. Numerous well-developed, sophisticated codes are in exis-
tence, which are capable of computing binary neutron star initial data. One of the
most well known examples is the LORENE code from the Meudon group [Gour-
goulhon et al.]. Other important codes are the Princeton solver East et al. [2012b]
mentioned before, or COCAL as described in Tsokaros et al. [2015]. Recently, Tichy
[2009a, 2011, 2012] made significant progress on the topic of spinning neutron star
binary initial data. His code SGRID plays a major role in the advancement of these
investigations (see e.g. Bernuzzi et al. [2014]). The problem at the lower end of the
eccentricity range is that these codes produce data which result in evolutions with
eccentricities e ~ 1072, Contrary to the expected, almost vanishing values of e in
long lasting inspirals, these values are orders of magnitude too large. In case of
binary black holes, there are techniques to reduce the residual eccentricities via iter-
ation (see [Buonanno et al., 2011; Piirrer et al., 2012; Tichy and Marronetti, 2011]).
But again, these methods are not applicable for standard binary neutron initial data
construction schemes and need a generalization of the helical Killing vector. Note
that during the development of this thesis Kyutoku et al. [2014] presented a method
similar to the one we employ and that is used by the black hole community, but we

come to this later in more detail.

In this thesis, we present a method which we published in [Moll] and which allows
to construct initial data with arbitrary eccentricity by generalizing the helical Killing
vector to a pair of inscribed helical symmetry vectors. This takes into account a
more general situation of an eccentric orbit at apoapsis. Also, we further extend
the obtained symmetry vector by adding radial components, which are appropriate
for gravitational wave radiation, and thus provide the opportunity to construct low-
eccentric initial data. Our method yields constraint solved initial data under the

assumption of conformal flatness (also known as Isenberg-Wilson-Mathews approxi-



mation [Isenberg, 2008; Wilson and Mathews, 1989]) with a self-consistent iteration
scheme, keeping the geometry and matter in a momentarily stationary frame. Since
we perform all evolutions with the fully general relativistic BAM code of the Jena
group, we used the same code for a first proof-of-principle implementation of our
scheme. These tests have been presented in [Moll] and were restricted to equal-mass
binaries with an irrotational flow. This flow was approximated by a homogeneous
velocity field in order to make a simple implementation in Cartesian coordinates
possible avoiding surface-fitted coordinates. The assumption of irrotational flow is
standard and not too restrictive, since the known spins in binaries are at most 44 Hz
for the more massive star in the double pulsar (see Table 2 of Postnov and Yungel-
son [2014]) and these spins will further decrease until merger. A couple of dozen
orbits before merger, the system’s orbital frequency is expected to be 2 100 Hz for

quasicircular binaries, hence the assumption is justified.

After successfully computing the first eccentric orbits, we tried to obtain more accu-
racy and implemented the method in Tichy’s pseudo-spectral SGRID code in order
to achieve higher accuracy. This also allows the computation of low-eccentricity ini-
tial data and yields the opportunity to compute eccentric binaries with spin. Such
binaries are interesting, since Bernuzzi et al. [2014] have found that spins of real-
istic magnitude can have a sizable effect on the system’s dynamics. Especially in
the eccentric scenarios originating from dynamic captures in globular clusters, larger
spins of the individual stars are expected. The results of our SGRID implementation
are published in [Mol3] and include a wide range of parameters. The generalized
symmetry vector in addition to the existing, and recently implemented, features of
SGRID allows us to compute more realistic equations of state (EoS), add individual
spins to each star, vary the eccentricity of the orbits and consider larger mass ratios
up to g ~ 2. Here, we focus on different eccentricities, while we make use of piecewise
polytropic EoS and, furthermore, we provide some first experiments with eccentric
spinning stars. We provide the framework to compute consistent initial data for neu-
tron stars exploring regions of the parameter space not reached before. Though we
provide several simulations to test our scheme, we do not concentrate on evolutions.
Due to the vast number of combinations in parameter space, there are several inter-
esting configurations that cannot be covered in this thesis. Current investigations
about highly eccentric evolutions are to be published in [Mol4], but are only partially

included here.

The structure of this thesis is as follows: After this initial introduction, we cover

the fundamental work done on initial data. The standard approach to construct ini-
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tial data in general relativity starts with the discussion of the 341 decomposition
of spacetime. That chapter also provides the choice of our fluid model and a brief
summary of relativistic hydrodynamics as needed for simulations including matter.
Afterwards, in the third chapter we introduce our fluid model along with the assump-
tions we made and we discuss how this setup influences the equations from the first
chapter. The fourth chapter gives details about the numerical methods. Here we
show the recipe of our initial data construction scheme and the way we implemented
it first in BAM and then in SGRID. Since large parts of the implementation rely on an
elliptic multigrid solver, we briefly explain that concept as well. We finally show the
results of our computations in chapter 5. These are divided into three subcategorie:
(i) The implementation has to be verified against existing codes, which has to be
done in the limit of quasi circular data. (ii) The code can be tested for arbitrary,
but large eccentricities, since these are fundamentally different from (iii) eccentricity
reduced orbits. In part (i), we use data constructed with BAM and SGRID results as
a reference. In (ii) we use both codes interchangeably, while the last part is studied
with SGRID data.

The penultimate chapter is a short digression to an evolution scheme, particularly
useful for irrotational binaries in our approximation made within BAM. We want to
advertise the potential use of such a scheme that does not need an artificial atmo-
sphere. We include this part due to the effort that has been invested, but wish to state
upfront that this is work in progress and the results are promising, but preliminary.

Finally, chapter 7 concludes this thesis and give some further prospects.

Throughout this work, we use the following notation adapted from Baumgarte and
Shapiro [2010]: Latin letters from the beginning and the end of the alphabet a, b, ..., h
resp. o,p,..., z denote spacetime indices running from 0 to 3, while 7, j, ..., n denote
spatial indices running from 1 to 3. We raise and lower all indices with the physical
metric, i.e. the 3-metric for spatial indices and the 4-metric for spacetime indices. The
summation convention is always employed and we shall also use index-free notation
when convenient, denoting vectors using overset harpoons. We use geometric units
with G = ¢ = M, = 1 almost exclusively, apart from the cases where we show the

appearances of GG explicitly for clarity when making some Newtonian calculations.



CHAPTER 2

Theoretical background in

numerical relativity

2.1 341 decomposition

To achieve our main goal, i.e. the construction of initial data, we have to specify the
meaning of initial data in general relativity. Therefore it is inevitable to have a closer
look at the numerical treatment of Einstein’s equations. The struggle arises from
the fact that Einstein’s equations are written in an entirely covariant way, where
time and space are treated equally. To recast this as an initial value problem, a
split of time and spatial components is required. Although most of the approaches
to these fundamental derivations are similar, they differ in details and styles. Many
authors have covered this topic (e.g. [Alcubierre, 2008; Baumgarte and Shapiro, 2010;
Gourgoulhon, 2006; Rezzolla and Zanotti, 2013]), and here we follow the route of
Baumgarte and Shapiro [2010].

Projection operators and extrinsic curvature

We assume that the spacetime (M, g,,) can be foliated into spacelike hypersurfaces
Y., which do not intersect each other. These surfaces should be (at least locally) the
level surfaces of a scalar function ¢. The idea is to decompose an arbitrary vector
v® (and of course in a similar way also arbitrary tensors) into its spatial part L%u°
and its timelike part N%uv®. Therefore, we start with constructing the unit normal
vector to the hypersurfaces »; and thus consider the 1-form €, = V,t, respectively
its normalized counterpart w, = afl,, with a normalization function o — also called

lapse. The unit normal vector is now given by

n® = —g%wy. (2.1)
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This now allows us to compute the induced spatial metric v,, = gup + ngnp, Which

serves as a projection operator if we raise one index
a a a a
1% =% = g% +nny. (2.2)

While this operator projects 4-dimensional tensors into the spatial hypersurface, we
need to define another projection operator N%,, which does an analogous projection

into the normal direction,
N = —n'ny = 0% — 7%, (2.3)

Equipped with these tools, we are now able to project tensors into the spatial hyper-
surface or along the normal direction and we can also decompose tensors into their
spatial and timelike parts. We first use the spatial projection operator to construct

the extrinsic curvature K.

The geometry of any spatial hypersurface > can be described by the intrinsic cur-
vature, given by the three-dimensional Riemann tensor, i.e. the Riemann tensor
constructed with the 3-metric 7;;. To describe the embedding of the hypersurfaces
into the four-dimensional manifold, we use the extrinsic curvature, which measures
the change of a normal vector when it is parallel transported from one point to an-
other one. As already indicated, we apply the projection tensor to construct K,

which makes the result purely spatial and symmetric and yields
Kap = =YW Veng. (2.4)

Note that it is equivalently possible to define the extrinsic curvature via the Lie
derivative )
Kab = _§£n Vabs (25)

if one expands (2.4) by inserting the definition of the projection operator (2.2) and
introduces the acceleration of the unit normal vector a, = n’Vyn,. Both versions
will be used interchangeably, depending on the situation. Additionally, we introduce
the trace of the curvature

K = g"Kay, (2.6)

which is also called the mean curvature (and could be written with the induced metric

as well, due to the purely spatial nature of Kg).



2.1 341 decomposition 11

Projections of the Riemann tensor

In order to split Einstein’s equations into spatial and timelike parts, we have to find
a relation of the three-dimensional Riemann tensor R%.q4 of the hypersurfaces ¥ and
the four-dimensional counterpart ) R%,.; of the manifold M. Therefore, we want to
look at different projections of the 4D Riemann tensor and due to the symmetries one
can find that only three different non-vanishing projections exist. However, before
we can relate these quantities, we have to express the covariant derivative V in terms

of covariant spatial derivatives, denoted by D.

For a spatial vector V?, we want to look at the spatial gradient and we use the fact
that n,V,V?% = —VIV,n,, which follows directly from the spatial nature of V¢ and

the product rule. Now, we can follow

DyV" = 9"V, V'
=7."(g," + ngn")V, V4
=7,"V, V' — 4,PnVIV,n,
=7a"VpV" = V11V ,n,
= 7"V V + VK,

Analogously, one can write second derivative terms as
DaDyVE = 7,399,V V VT — Koy yenPV, VT — K C K, VP (2.7)

We define the three dimensional Riemann tensor according to its higher dimensional
counterpart
R¥,,Vy = 2Dy, DyV*. (2.8)

Together with equation (2.7), this yields
RacaV" =707 ¢ O Rargs V! = 2Kea KyaV* |
and with a re-summation allows us to write
Raped + KacKng — Kaallor = 777"V 0 Y Rogrs. (2.9)

which is known as Gauss’ equation. In the subsequent calculations, we will make use

of a slightly modified version of this equation, namely the contracted Gauss equation,
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Figure 2.1: Depicted is the 3+1 Decomposition of the spacetime. A 4D Manifold
M is sliced into three-dimensional non-intersecting hypersurfaces 3;, where each of
them is parametrized by a constant coordinate value ¢t. Two neighboring slices are
connected via the normal vector scaled with the lapse an®. The shift 3’ lies inside a
slice and measures the difference between this vector and the time vector t¢, which
connects the points x;(t) and x;(t + dt) at two different times.

which can be written as
Ryg + KKy — KqKa = 7" v57% 0 Y Rpgrs. (2.10)

The second projection of the Riemann tensor that is needed, can be obtained by

looking at

DaKbc - Pypaﬁyqb’chvqur
= ="V (VpVen, + Vp(nga,))
- _,.ypa,.yqb,yrcvpvan + acKaba

where we inserted the definition of the extrinsic curvature (2.4) in the last equality.
The last summand on the right-hand side can be dropped by anti-symmetrizing and

we can plug in the definition of the four dimensional Riemann again:
DyKoe — Doy = 4P 707" en® D Ry, (2.11)

Equation (2.11) is known as Codazzi equation and once again, we use its contracted
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counterpart
DyK,* — D,K =~? 7"n® DR,,,.. (2.12)

Finally, we look at the last non-trivial projection of the Riemann tensor, i.e. projected
twice against the timelike direction. In particular we take the definition of the Lie
derivative L, Koy = n°V Kg + 2K, Vin© and insert (2.4), which yields:

ﬁn Kab = —nCVcVanb — TLCVC(naCLb) — QKC(aKb)C — QKC(anb)CLC. (2.13)

Once again, we can employ the definition of the Riemann tensor and insert V.V n, =
W Rapacn® + V,Veny, and we get

Ly Koy = —nn? DR ypee — Vo Veny —nVo(ngap) — 2K (oK) — 2K oanpya®. (2.14)

Another substitution can be made by using n°V,V.n, = Vaea, — (Von©)(Veny) =
Vaay — KKy — ny,a°Ky, where the product rule and the definition of the extrinsic

curvature are employed, and in (2.14) several terms are canceled out:
Lo Koy = =10 YD Rypae — Vaay — nnoVeap — aoty — Ky Koo — Keghpa. (2.15)

Finally, by rewriting the spatial derivative of the acceleration as D,a, = —aq,ap +
1/aD,Dya and by exploiting the spatial nature of L, Ky, i.e. spatial projections do

not effect it, we obtain Ricci’s equation

1
Ly Koy =107 W Rgpeq — aDana — K9%K,. . (2.16)

Constraint and evolution equations

Using the equations derived in the previous subsection, it is straightforward to derive
the 3+1 decomposed Einstein equations. First, the contracted Gauss equation (2.10)

is further contracted by multiplying it with ¢, which yields

,ypr,yqs (4)qurs — R+ K2 o KabKab' (217)
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Expanding the three dimensional metric by virtue of (2.2) and using the identity
—n'n, = nPn" (v, —nyn,) = 1, we can finally write (2.17) as
onPn” DR, —nPn"g, YR =R+ K? — K, K®

20Pn" Gy = R+ K? — Ky K™ = 167py, (2.18)

where we used py = n,nyT® to define the total energy density as measured by a

normal observer n® and Eq. (2.18) is known as Hamiltonian constraint. In a similar

manner, we can derive another constraint equation by looking at the contracted

Codazzi equation (2.12). Its right-hand side can be written as
-7, (g" + nn")n’ (4)qus = —P n’ (4)Rps
1
= P n® (4)Rps _ 5%5718 @R
1
= _7pans (4)Rps - §7pansgps (4)R = _7pansts )

where we just added a zero in the second step. This enables us now to write the

mixed projection of Einstein’s equations as
DyK," — D,K =8rS, |, (2.19)

with the momentum density S, = —7°,n°T}.. This equation is known as the momen-
tum constraint. The constraints (2.18) and (2.19) correspond to four equations that

contain no time derivatives and have to be fulfilled at all times.

On the other hand, we want to derive the evolution equations from the remaining,
fully spatial projection of Einstein’s field equations. Inserting the contracted Gauss
equation (2.10) into Ricci’s equation (2.16), while expanding v according to its

definition, leads to
1
f)/qaf)/sb (4)Rqs — —,Cn Kab — aDanOé — 2chKac + Rab + KKab. (220)

Looking at the full spatial projection of Einstein’s equations yields

1
YV (4)Rqs =81 < quﬁsqus - §7qb78dT9qs)

=8m (de — %’ybd(S — p)) s (2.21)

where we recognize py and introduced the momentum current Syq = v9,v°,1}s along
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with its trace S = S?%,. Combining (2.20) and (2.21) gives us an evolution equation

for the extrinsic curvature, which is the last equation we were looking for

L Koy = —DyDyo+Ls Ko+ (—QKCbKaC + Ry + KK, — 87 (de — %%d(S — p))

(2.22)
To obtain this result, it is necessary to decompose t* = an®+ 3* with the lapse a and
the spatial shift 5%, since n® is not dual to the surface 1-form €2, and therefore, £,,
is no natural time derivative with respect to t. Together with the coordinate choice

we will make, the Lie derivative then reduces to a partial derivative.

ADM equations

To obtain numerically useful equations, we still have to specify basis vectors. Arnowitt
et al. [1962] suggested to chose spatial basis vectors €l which lie completely in the
hypersurface and a time basis vector ¢, which has to fulfill t* = (1,0,0,0). Making
these choices has consequences for the derived 3+1 decomposed equations. From
the spatial nature of the basis vectors, 0 = Qac?i) = —1/omaefi), it follows n; = 0.
Using this together with the decomposition of t* into lapse and shift, we can write
n® =1/a(1, %) and from nn, = —1, it is obvious that n, = (—a,0,0,0). Altogether,

this yields
a2 —23i
g’ =" —n'n’ = ° ; op -, (2.23)
a - a g

which can be written as a 3+1 line element

ds* = —a’dt® + i;(da’ + Fdt) (da? + 3 dt). (2.24)

Due to the simplicity of the time vector, the Lie derivative simplifies to partial deriva-

tives and the 3+1 equations can be written as

1
(%Kab = (—QKszjk + Rij + KKU — 87 (SU — 5’)/@](5 - pH>>

— DiDja + B*DyK;j + K D;B* + Ki; D 3", (2.27)

Opyij = — 20K + D3 + D;3; (2.28)
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where the evolution equation for the metric is directly coming from the definition
of the curvature. We want to note that this is not the final form of the evolution
equations for numerical purposes. Due to the limited extent of this thesis, we cannot
go into details about other formulations, but we use the BSSN and Z4c reformulation

within the thesis, since they are better suited for numerical approximation.

2.2 Initial data construction

In section 2.1, we saw that Einstein’s equations can be decomposed into evolution
equations (2.22) and constraint equations (2.18) and (2.19), when we want to bring
them into a suitable form for numerical treatment. This also means that it is not
trivial to start an evolution on an arbitrary slice by freely specifying (v;;, /;;). We
have to keep in mind that every choice we make has to fulfill the constraint equations,
while fitting the desired physical situation. Similar properties are well known from
other topics in physics, like electrodynamics, where we also find a set of coupled
differential equations. In analogy to the 341 equations, two of Maxwell’s equations
contain time derivatives and are used to determine the evolution of a system, while
on the other hand two equations constrain the solutign, including the initial slice.
For instance, if the divergence of the magnetic field VB does not vanish, we are not

solving Maxwell’s equations.

The idea behind initial data construction is to simplify the problem by decomposing
the constraints. An example from the simpler electromagnetic equations would be a
scaling of the electric field E' = ¢*E?. Instead of choosing values for two components
of E and then solving the constraint D;E" = 4mp for the third, the scaling enables
us to arbitrarily choose a background field £ and then solve the constraint for the

scaling factor.

2.2.1 Conformal transformation

Similarly, we can make a conformal transformation of the metric and introduce a

conformally related background metric

7 = i, (2.20)
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as it was done by Lichnerowicz [1944] and York [1971]. With det(v;;) := v = ¢, we

can write the inverse relation as
Vi =7 (2.30)

with the benefit that the determinant of the conformal metric 4 equals one. Further
note that all quantities associated with the conformal metric are denoted with a
bar. The following procedure is straightforward and consists of using (2.29) with the
definition of the Christoffel symbols to compute their transformed counterparts and

use these to calculate the modified Ricci scalar. Doing this yields
R=v¢""R—8)°D%*), (2.31)
which can directly be plugged into the Hamiltonian constraint (2.18) to obtain
8D*) — R+ VKKV = —16m°py . (2.32)

In the same manner, we can modify the momentum constraint equations. Addition-
ally to the conformal transformation, we insert another transformation, which is a
decomposition of the extrinsic curvature Kj;; into its traceless part A;; and its trace
K

1

Finally, we define conformally related quantities by multiplying with powers of the
conformal factor, where the exponents are chosen such that a convenient form will be

obtained later (again, for further details we refer to a full discussion as in Baumgarte
and Shapiro [2010]).

AT =y 1047 Ay =9T?A; . K=K. (2.34)

Inserting (2.33) and (2.34) into the constraints results in the following set of equations
Hamiltonian constraint: 8D?%t) — R+~ A;; AV — %WKQ = —16m°py  (2.35)
Momentum constraint: Djflij — gwﬁfy”DjK = 8mtl st (2.36)

A closer look at the operators of (2.35) shows that we have a Laplacian on the left-
hand side and we will further modify the momentum constraint (2.36) as well, in

order to obtain elliptic equations that we have to solve.
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2.2.2 Conformal thin-sandwich decomposition

Until now we were able to recast the problem of initial data construction and intro-
duced a Laplace operator. However, the constraint equations are only specified on
a single hypersurface. As a natural consequence of this, nothing can be said about
the gauge quantities o and 3°. The problem that often arises in this case is the
difficulty in choosing the freely specifiable data and the corresponding influence on
the resulting physical solutions. An idea to circumvent this problem was proposed
by York [1999] with the so-called conformal-thin sandwich decomposition or for short
CTS. Instead of choosing the conformal metric 7;; and e.g. the transverse traceless
part of the extrinsic curvature A%, (as it is done in the conformal transverse traceless
[CTT] decomposition) on a single hypersurface, we want to specify the three-metric
on two neighboring slices >; and >;,5, which corresponds to the specification of a
time derivate of the metric if we take the limit dt — 0. In this spirit, we define

Uij := OYij (2.37)

in addition to the definitions from Sec. 2.2.1 to denote the time derivative of the

three-metric. We do not want the conformal volume element to vary in time, i.e.
Y9, =0 . (2.38)
In the next step, the trace-free part of u;; is defined as

1 .
uij = OYij — 37 (YM0rvm) - (2.39)

We can make use of the evolution equation (2.28) and insert it into (2.39), which
yields
u? = —20AY + (L)Y, (2.40)

where we used the vector gradient L with (LS)Y = D'/ 4+Vi i =240V, 5% Equation
(2.38) lets us derive 1201 = 9t In(7y), which in turn can be combined with (2.40) to
rewrite the time derivative of the conformal three-metric as

Uiy = O 1yy) =7 (at%‘j — %%‘jat 111(7)) = ¢ty (2.41)

Plugging equation (2.41) in a rearranged version of (2.40), we finally find

w(i
20

A=~ (il — (Lp)Y). (2.42)
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Equation (2.42) relates the conformal traceless part of the extrinsic curvature AY
to the shift 8 and we can make use of this relation by modifying the momentum
constraint (2.36)

(ALB)" — (LB)YD;In(a) = aD;(a ') + gawﬁDiK +16may’®st | (2.43)

where we introduced the densitized lapse & = 1) "%a to get a convenient form.
At this point all necessary material has been gathered to construct a solution of the

initial value problem for given background data.

CTS and XCTS equations

Similar to other approaches, like the CTT decomposition mentioned before, the CTS
decomposition allows us to freely specify the background metric 7;;, which fixes five
degrees of freedom. Another five degrees can be fixed by choosing its time derivate
", which is a particular feature of the CTS approach. Furthermore, we have to take
into account the free choice of the trace of the extrinsic curvature K and the rescaled
lapse &, which each fix one additional degree of freedom. This makes 12 variables
from a total of 16 independent variables that are provided by the CTS decomposition.
The derived Hamiltonian constraint, see Eq. (2.35)

_ 1 - 1 o1
D2w — gwR + gwi’?AijA” — E¢5K2 - —27T¢5PH (244)

and momentum constraint (2.43) can then be used to compute the remaining four
variables ¢ and /3°.

The full recipe to obtain initial data is to start with the momentum constraint (2.43)
and solve it for the shift 5?, which enables us to compute
1

At =
20

((LB)7 —u"). (2.45)
Having A% at hand, we can proceed by solving the Hamiltonian constraint (2.44) for
1. After gathering the information about the variables in the CTS equations, we can

construct the physical solution similar to the example of Maxwell’s equations in the
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beginning of this section. The quantities we are looking for are obtained through

Yij = 1/)471‘3'7 (2.46)
|

Kij =07 Ay + 27K, (2.47)

a = Ya. (2.48)

This is one way to construct the constraint-solved physical data v;; and K;; by solv-
ing an elliptical problem with four coupled equations. However, there exists a slight
alteration to this decomposition, which was also described by York [1999], i.e. the
extended conformal thin-sandwich formalism. Instead of freely specifying the densi-
tized lapse @ we want the freedom to choose the time derivate of the trace of the
extrinsic curvature 0; K. The result of this formalism is the free choice of the metric

7i; and the mean curvature K as well as their time derivatives.

Therefore, the evolution equation of the extrinsic curvature (2.27) has to be con-

tracted once and combined with the Hamiltonian constrain (2.35), which yields

D?*(ap) = o) (gwsAiinj + %w4K2 + %R + 21 (pr + 25)) — O, K+¢°B'D; K.

(2.49)
We refer to equation (2.49) as the lapse equation, since it is another elliptic equation
we have to solve in order to obtain the lapse. We now ended up with a set of five
coupled nonlinear elliptic equations. In fact, the extended conformal thin-sandwich
formalism is the one we choose throughout this work as a foundation of our method.
As we will see later, we choose this decomposition over the others since it allows us

to easily specify the given data.

2.3 Perfect fluid model

When dealing with neutron star simulations, i.e. considering evolutions as well as
initial data, we have to handle matter in order to describe the stars properly. Typi-
cally, this means that we have to choose a model which describes the matter and we
have to fulfill the equations governing the matter and energy behavior. We start by

choosing a fluid model and we briefly explain the consequences.
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2.3.1 Thermodynamic quantities

Throughout all parts of this thesis we assume that the matter of the neutron star can
be modeled as a perfect fluid, which neglects phenomena such as heat conduction or
shear stresses. A good overview about different models and their justifications was
given by Andersson and Comer [2007]. The mathematic description of such a fluid is

given by an energy-momentum tensor
Tw = ph UqUp + PYab, (25())

where p is the rest mass density, h the specific enthalpy, p the fluid pressure and
U, is the four-velocity. As in the previous sections g, is the Lorentzian metric used
to describe a spacetime (M, gqp) together with a four dimensional manifold M. the
specific enthalpy h can be expressed in terms of the pressure p, the rest-mass density

p and the proper energy density e, i.e.

(2.51)

We further restrict our fluid to be simple, which means that the equation of state of

the fluid can be described by some function
e =¢€(o,n), (2.52)

where o is the entropy density and n the baryon number density. In other words
this means that all thermodynamic quantities that describe the fluid can be seen
as only depending on ¢ and n. From thermodynamics we know how to define the
temperature 7" and the baryon chemical potential y in terms of the quantities we
introduced so far

Oe Oe

T := B and = o

Another very elemental feature that arises from thermodynamics is the conservation

(2.53)

of energy, also known as the first law of thermodynamics. In our case it can be

expressed as
de = pdn + T'do. (2.54)

We can now make use of the fundamental thermodynamic relation, which expresses

the internal energy U as
AU =TdS — pdV, (2.55)
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where S is the entropy, and exploit the assumption that ¢ depends only on o and n

(2.52) to express the pressure as
p=—€+To+ un. (2.56)

Taking into account the definitions of the rest-mass density from the atomic mass
unit my = 1.66 x 10~%"kg
p = myn (2.57)

and of the specific entropy
s:=a/p, (2.58)

we can rewrite the specific enthalpy (2.51) as

h=L 1Ts (2.59)
my
Finally, we can use Egs. (2.54)—(2.59), to derive the thermodynamic relations as in

Gourgoulhon [2006]

de = hdp + pT'ds, dp = p(dh — Tds). (2.60)

2.3.2 Equations of state

In order to close the system of equations, we have to specify an equation of state,
which describes the matter inside the neutron star. The correct description of neutron
star matter is unknown. However, a one parameter EoS for cold matter above nuclear
density can be used to model the matter rather accurately, due to the low temperature
of the star compared to its particle’s Fermi energy. Moreover, it is fairly easy to
implement a more realistic model as it was done by Read et al. [2009b], who used a

piecewise polytropic approach to approximate the EoSs.

Polytropic EoS

In most parts of this work we only consider simple polytropic equations of state, since
these are perfectly fine for a large series of tests as they have been showed in [Moll].

These EoS assume a relation of the pressure p and the rest-mass density p

p=kptm, (2.61)
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where k is the polytropic constant, n = ﬁ is the polytropic index and I is known as
the adiabatic index. We restrict our parameter space for simple polytropes to I' = 2,
which corresponds to n = 1. This is a common choice, since it is sufficient for testing
and it is close to the effective polytropic index of realistic nuclear physics equations
of state as shown in Lattimer and Prakash [2001]. The basic quantity in our code is

the specific enthalpy h, so we want to express p, p, and € in terms of h

p= {ﬁ]n (2.62a)
I {%1 o (2.62b)
¢ = [1 + n(1h+—n1)} [H(hllln)]n (2.62c)

The advantage of taking h as a basic variable will become clear in the next section. In
this approach, the matter variables inside the star are C'* except for the star’s surface,
which needs to be handled carefully. However, as a next step the above approach
can be generalized by stitching several polytropes together in order to compute a
more realistic model. In that case, h is more accurate and for a single TOV star it is
differentiable inside the star, which makes it more suitable than p (or more precisely

p/p, as it is chosen in many codes) for taking derivatives.

Piecewise polytropic EoS

Piecewise polytropes consist of different density intervals and thus provide more pa-
rameters to tweak the EoS. Read et al. [2009a,b] show that these more realistic de-
scriptions of the neutron star’s matter can potentially be used in gravitational wave
astronomy to constrain free parameters and get more insight into the underlying
physics. On the technical side, the drawback of the piecewise polytropic approach
is given by the fact that the matter variables are losing their nice properties and
are only C° continuous inside the star instead of arbitrarily differentiable. Tn [Mol3]
we constructed piecewise polytropes by taking the possible range of densities and
divided it into intervals [0, pol,[po, p1],[p1, p2l;-.., where the intervals are labeled by

1=0,1,2,.... The EoS in each interval is given by a polytropic relation of the same
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kind as (2.62), but with varying parameters n and s, so that we obtain

p=rip T (2.63a)
h=(n;+1)kip™ + K;, (2.63b)
€ = (nikip"/™ + K;)p. (2.63¢)

When we compare (2.62) and (2.63) we see immediately that K, must be one, since
the enthalpy has to be unity at the outer region. While x;«y and Ko are determined
by demanding continuity, the other parameters n; and k¢ can be chosen freely so that

a desired EoS is modeled. The relations arising from continuity are given by

R = K},L'_lp;/ni_l_l/ni, (264&)
Ko =1, (2.64b)
Ki = Ki—l + ni_mi_lp;/m_l — nimpil/". (2640)

Throughout this work we use values for the parameters as given by Read et al. [2009b]
and we study some exemplary models such as H4, MS1b and SLy. All of these setups
result in reasonable maximal masses of a neutron star with My > 1.99M; and

adiabatic sound speeds less than the speed of light.

2.4 Relativistic hydrodynamics

After presenting the fluid model to handle the matter model in our simulations, the
next step is to discuss the treatment of matter in a physically reasonable way. We
start with a short summary of the equations governing the matter evolutions. This
is useful, since we perform several evolutions throughout the work using the below
introduced concepts. Moreover, in chapter 6 we present the concept of a new matter
evolution scheme. However, the focus of this thesis is the construction of initial data.
Thus we keep that investigation brief and discuss the crucially needed Euler equation

in the subsequent section in more detail.

2.4.1 Matter evolution

In order to provide the concepts and information needed within this thesis, we follow
the route of Rezzolla and Zanotti [2013], to which we also refer for a complete, more
detailed description.

The starting point for this discussion are the general relativistic hydrodynamic equa-
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tions

Vo.J* =0, (2.65)
VT =0, (2.66)

where J® is the rest-mass density current, while 7% is again the energy-momentum
tensor, introduced in (1.1). Eq. (2.65) represents the conservation of the rest mass,
while (2.66) represents conservation of energy and momentum. First, we have to make
the derivation less general by choosing a certain fluid model, which in our case is the
perfect fluid model, as it was explained in Section 2.3.1. Inserting the stress-energy
tensor (2.50) into (2.66) yields

VoJ* = V(pu®) = uVop + pVau® = 0, (2.67)
VT =V, ((e + p)uu’ + pg*) = 0. (2.68)

Marti et al. [1991] introduced a formulation of the relativistic hydrodynamic equations
in conservative form, which is particularly useful for numerical purposes. Due to the
strong geographical concentration of its creators, this formulation is also known as the
“Valencia” formulation. The basic idea is to rewrite (2.65) and (2.66) in conservative

form by introducing a new set of conservative variables.

We can easily transform the equation of rest-mass conservation by using the identity
VX% = ﬁ@a(\/— 9X) and afterwards define the conserved variable

D := pau, (2.69)
so that we can write (2.65) as
(VD) + 0; (VAD(av' — 3%)) =0, (2.70)

which provides a conservative form. In order to bring the energy-momentum con-
servation equations to a conservative form, we use the definitions of the different

projections of the energy-momentum tensor 7' from section 2.1 to rewrite it as
T% = (e + p)uu’ + pg™ = punn” + S*n® + S'n" + 9. (2.71)

On the other hand, inserting a decomposition of the fluid four-velocity as u® =
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W(n® + v®) yields
T% = phW?(n® + v*)(n® 4 v°) + p(v** — nn). (2.72)

A term by term comparison of (2.71) and (2.72) gives us the expressions

pr = phW? — p, (2.73)
S* = phW2*, (2.74)
S = phW2u%® + py®. (2.75)

We can express the conservative form of the momentum conservation equations with
the same methods as above. We use an identity to rewrite the four-divergence of a
symmetric rank-2 tensor as

1

V=3

Substituting (2.71) into (2.76) while only considering spatial indices, yields the con-

1
Do (V=9T%) = §T“c<9bgac. (2.76)

servative form of the momentum equation

0(/35)) + 0 (VA0S — 515)) = 5V =TT 0yg0 @.77)

The last step is to bring the energy equation into its conservative form. Therefore,
one has to contract (2.66) with n, and substitute the energy momentum tensor as
we did it before

Oi(vApm) + 0 (VA (aS' = Bpr)) = —/=gT*Vany. (2.78)
It is possible to describe the conservative equations in a more convenient form

oAU +0,(TF ) = 5, 279

N

where we used the conserved variables U and a flux vector F" in direction i, i.e.
R av'D — 3'D

D
U= Sj y F’z = OtSij — 6153 (280)
PH aS'— 'E
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and a source vector given by

0
CYSinij — Sj('?joz

0l
I

The problem with this formulation that is addressed later in chapter 6 is the fact
that the primitive variables p, v and e cannot be expressed trivially in terms of
the conservative variables, but rather have to be reconstructed using a root finder.
During this step an artificial atmosphere is often employed in the exterior of the stars

to prevent the code from having zero densities in the denominator.

2.4.2 Euler equation

In the previous section we discussed the treatment of matter with the focus on evo-
lutions. However, when we want to construct initial data, the emphasis is placed on
Euler’s equation, which will turn out to be very useful. Taking this into account, we
want to give an overview of that equation, starting with the conservation of energy

and momentum (2.66), which can easily be written as
V1% =0, (2.82)

due to the compatibility of the covariant derivate with the metric. We define the

canonical momentum 1-form of a fluid element to be
Ta = g (2.83)

and its derivative (dm)q = Vom,— Vym, is known as canonical vorticity 2-form. These
definitions can be used together with (2.54)—(2.60) to decompose the divergence of

the energy momentum tensor (2.50) as
VoI = p (u™(dm)ay — TVss) + mVa(pu®). (2.84)

Equation 2.84 has to vanish due to (2.82) and we can further exploit conservation
of rest-mass density (2.65) to obtain the Carter-Lichnerowicz form (Carter [1979];
Lichnerowicz [1941] or more recently summarized by Gourgoulhon [2006]) of Euler’s
equation

u(dm) g = T'Vps. (2.85)
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We focus on barotropic fluids, which means that we assume the matter quantities
are only depending on the rest-mass density p, which is equivalent to the proper
baryon number density n and thus in accordance with our definition of a perfect fluid
(2.52). Again, this can be justified with the absence of shock heating and a fluid
temperature, which is far below the Fermi temperature for neutron star binaries, as
discussed in Friedman and Stergioulas [2013]. Invoking this assumption to simplify

equation (2.85) yields a simplified version of the Euler equation
u*(dm)a, =0 (2.86)

It is possible to use equation (2.86) to construct a first integral if we take into account

the normalization condition u*u, = —1 and one obtains
a 1 a, b 2
uVo,€ = —iu u’ Ly, (h*gap) = 0. (2.87)
1
Here &€ = —k%m, is a constant of the integration. As we discussed in [Moll], this can

be interpreted as streamlines for barotropic flows. These can be seen as geodesics of
a Riemannian manifold with a metric h?gy, as described in Lichnerowicz [1967]. An
alternative derivation of the Euler equation (2.86) can be obtained by minimizing the

fluid element action

S = /72 L(x,u)dr = — /T2 h()\/ —gap(2)usubdr, (2.88)
n 1
with canonical velocity given by u® = da®/dr and canonical momentum given by
Ta = OL/Ou® = hu,. Finally, we can invoke Noether’s theorem, which states that
the quantity

E=—k, (2.89)

is conserved along streamlines, if the e-family of infinitesimal coordinate transforma-
tions &% — x* 4+ £ k® is a continuous symmetry of the fluid element action (2.88).
This agrees with what we found in equation (2.87) and can be explained geometri-
cally with the conformal metric h?gqp, which vanishes if it is Lie-derived by k¢, i.e.

k* is a Killing vector.
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Model and assumptions

After gathering the general information about initial data in numerical relativity and
the treatment of neutron stars in the last sections, we now want to give a more detailed
description of the particular scheme we use to construct initial data, especially for

neutron stars on orbits with arbitrary eccentricity.

3.1 Gravitational field equations

An overview about the conformal thin-sandwich equations has been given in section
2.2 and we also gave the equations of the extended decomposition, which we use in
this work. We have five equations (2.44), (2.49) and (2.43), which we wish to solve
for the five metric coefficients ¢, @ and 5° on some initial slice ¥5. We now assume

maximal slicing

K=0 (3.1)
0K =0 (3.2)

and spatial conformal flatness, which is also known as Isenberg-Wilson-Mathews
[IWM] approximation [Isenberg, 2008; Wilson and Mathews, 1989], with the flat

metric fup

Yab = fab (33)
IVab = 0, (3.4)

as well as the preservation of these conditions for a short time. These assumptions

allow us to rewrite the extended conformal thin-sandwich equations in a much simpler
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form
. 1
'O = —gws(Az‘jA” + 167 pn), (3.5a)
P0;8" + 200, = 201 A79;(anp™%) + 16Ty S’ (3.5b)
- 7 .
9'0; (o)) = an” gAijAU + 27(pg + 29) | . (3.5¢)

Here we used Cartesian coordinates, which further simplify f;; = d6;;. The matter
terms are given by straightforwardly computing the projections of the stress energy

tensor, which was introduced in section 2.1 and from equations (2.73) — (2.75) we

obtain
pu = phlau’ — 1) + ¢, (3.6a)
S = pha(ut)? (8 + u' fuh), (3.6b)
S = phl(au’)? — 1] + 3p. (3.6¢)

Note that the spatial indices are raised and lowered with the flat conformal metric.

At this point we stress the difference of our approach to many other works in the
literature, e.g. as reviewed in Baumgarte and Shapiro [2010] or Rezzolla and Zanotti
[2013]. Tt is common to assume maximal slicing (3.1) and spatial conformal flatness
(3.3) later on and for now use a time-like Killing symmetry or quasi-equilibrium in
order to obtain our imposed condition of preservation for an infinitesimal small time
interval (3.2) and (3.4). This means, since we assume maximal slicing (3.1) and
spatial conformal flatness (3.3) anyway, we can simply swap the order of assumptions
and assume it right now. The advantage is that we can naturally assume that these
conditions are preserved in time and we do not have to employ quasi-equilibrium or
Killing-symmetry. If we invoke spatial conformal flatness, we do not need a notion
of stationarity for the gravitational part of our system. Nevertheless, we discuss the

stationarity of the fluid part in section 3.2.

Unfortunately, these assumptions do not come for free. Although the IWM approxi-
mation is very helpful in order to simplify the equations and to make the computation
of initial data easier, it is known that the metric of a non-spinning binary system is
only fulfilling spatial conformal flatness to first post-Newtonian order. Thus the er-
rors introduced might be quite large. In the case of quasi-circular binaries this has
been discussed by Johnson-McDaniel et al. [2009] or Rieth and Schéfer [1996], who

also include eccentricity in their studies. Hence, it is not possible to obtain a setup
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with purely outgoing gravitational radiation and this results in some artificial ini-
tial oscillations that can be observed at the beginning of all simulations. A possible
method to solve this issue would be the waveless approach as suggested by Uryii
et al. [2006, 2009], which represents a way to compute constraint solved initial data
for binary neutron stars without assuming the IWM approximation. On the other
hand, this method has not been studied very well and most groups resort to using
the IWM approximation, since studies with black hole binaries have shown that the

overall physics is not significantly affected [Garcia et al., 2012].

3.2 Stationary fluid approximation

Until now we have discussed the gravitational part and also the equations that govern
the fluid part of our system. However, if we want to construct initial data by solving
all equations, we still do not have enough equations to consistently give a solution.
We have to invoke another symmetry in order to be able to describe the desired

equilibrium character of our system.

3.2.1 Helical symmetry

Before we go into any detail about the more general symmetries that can be em-
ployed to construct stars with arbitrary eccentricities, it is necessary to summarize
the methods that already have been used. In most cases, people construct initial
data for irrotational binaries on circular orbits. The most common choice to describe
these circular binaries is to assume that the stars are stationary in a frame that is
corotating with the stars. The symmetry vector k., which describes such stationarity
is called helical Killing vector

ke = 1%+ Qqep™ = 1 + Qg (xy* — y ), (3.7)

where the vectors ? = 51&; T = 535, and § = 5y generate translations in the ¢, x,
and y directions, respectively, while @ = 5(,0 generates rotations about the z-axis.
The subscript qc denotes the quasicircular character of the vector. The idea behind
Equation 3.7 is that in strict equilibrium, we should be able to exploit the rotational
symmetry of our spacetime to construct two Killing vectors, 0, and d,. Although in
case of our quasi-equilibrium binaries we do not have these two Killing vectors, we
can construct an approximate Killing vector as a linear combination of those, where

24 denotes the orbital angular velocity. This means that the movement along an
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Figure 3.1: Illustrating a helical Killing vector. The black and the white line denote
the field vectors at the stars center. Two time slices are shown, where the  and y

components of the vector field are inscribed.

angle d¢ = Qq.dt within a time d¢ would leave the spacetime invariant, or expressed
mathematically Ly . gy = 0.
In order to construct initial data for neutron stars, we have to find a matter distribu-
tion that is in equilibrium with the gravitational field. Therefore, a rotation of our
system at time ¢, along the helical Killing vector k. has to be able to generate the
configuration of the binaries at an arbitrary time ¢;. As discussed in Baumgarte and
Shapiro [2010], for the fluid quantities p and u® this can be expressed by Lie dragging
them along k., i.e.

Li.p=0 and Ly u*=0. (3.8)

In order to make this more explicit, we exploit stationarity of the system in a rotating
frame, which lets us utilize Noether’s theorem (2.89) and (2.87) to obtain the energy

in a rotating frame

E = —kn,, (3.9)

which is conserved along streamlines. In analogy to the Jacobi constant of motion
of test particles on Newtonian orbits [Carter, 1979], this quantity is also often called

injection energy, as in Friedman and Stergioulas [2013].

Many other groups have set up self-consistent field methods to construct initial data,
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where they use the fact that the injection energy is constant throughout the star
for irrotational or corotating binaries [Bonazzola et al., 1999; Foucart et al., 2008;
Gourgoulhon, 1998; Price et al., 2009; Shibata, 1998; Teukolsky, 1998].

In [Mol1], we showed that this conservation law can be derived from Cartan’s identity
[Carter, 1979; Gourgoulhon, 2006] and that it can be interpreted as a relativistic
generalization of the strong Bernoulli principle. The Cartan identity relates the Lie
derivative operator £ to the exterior derivative operator d. In case of a vector w and

a differential form w, it states
Lyw = udw+ d(uw). (3.10)
Particularly, we obtain
Ly Tq = k(dm)p + Va(kbm) = 0, (3.11)

and given a flow u® parallel to kg as it is true for rigid rotation or rigid translation,

the first term of (3.11) vanishes by considering Euler’s equation (2.86).

For irrotational flows, the situation is slightly more complicated, but the above term

vanishes as well, since the canonical vorticity is vanishing for some potential W
Ta = VU < (dm) g = Vemp, — Vi, = 0. (3.12)

So we can see that for both types of flows the first term in (3.11) is vanishing, which

implies that the injection energy (3.9) is constant throughout the star:
Vo€ =0. (3.13)

The approximation of irrotational stars is rather common and is a natural choice
since the spin frequencies of the stars are known to be much smaller than the orbital
frequency for the last orbits before merger. However, we use a more generalized

ansatz with arbitrary spins later on.

3.2.2 Constant three-velocity approximation

From this point on, the basic idea to proceed is the following: we would like to take
the integrated Euler equation to derive an expression for the time component of the
four velocity u' and together with the normalization condition u%u, = —1 this can

be further used to find an algebraic expression for the enthalpy A. Thus we would
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be able to compute the enthalpy profile (and with a given EoS we could obtain the

other fluid quantities) as a function of the gravitational quantities a, 3%, .

However, depending on the flow we want to construct, this task can be complicated.
While corotating binaries yield a simple algebraic expression in the way we outlined,
irrotational flows are more troublesome. In the latter case, the obtained algebraic
equation additionally depends on the velocity potential ¥, which can be computed
with the help of another elliptic equation. A common way to do this is to insert the

canonical vorticity (3.12) in the continuity equation (2.67), which yields

v, (%vaxp) —0. (3.14)
In order to solve this elliptic equation, one has to impose boundary conditions at the
star’s surface, which is technically complicated and typically requires special coordi-
nates. Since we want to give the possibility to compute initial data with simpler ex-
isting codes, we have to find an appropriate way to solve (3.14) without surface-fitting
coordinates or an approximation that circumvents these problems. In particular the
multigrid solver we use for testing our new method, works with Cartesian coordinates
and cannot be straightforwardly generalized. Hence, we take advantage of Kelvin’s
circulation theorem [Friedman and Stergioulas, 2013], which states that in an ideal
barotropic fluid, an initially irrotational flow will remain irrotational at later times.
We assume a homogeneous fluid three-velocity, which means the velocity measured
by coordinate observers is approximated as constant throughout the fluid. Since we
are free to specify the initial position of the stars, we assume that the binary start
at maximal distance of its elliptic orbit, i.e. at apoapsis. The coordinate system is
chosen such that the x-axis goes through the stellar centers, which means that each of

the stars is initially moving rigidly in y-direction with and instantaneous four-velocity
u® = u' (" + oY y"), (3.15)

where we introduced the instantaneous three-velocity of a fluid element measured by
a coordinate observer v¥ := u¥/u' = dy/dt. The Lorentz factor u* can be obtained

through the normalization condition u®u, = —1, which yields
ut = [_gtt - 29tyvy - gyy(vy)2]71/2- (316)

The parameter v¥ is approximated to be constant throughout the fluid, but with

different sign for each star and also with different magnitudes if one wants to construct



3.2.2 Constant three-velocity approximation 35

0.18 , , ,
— BAM,d = 31.2
0.16 |- BAM, d = 67.0
0.14 | .- - - SGRID,d=31.2
N : - D, d = 67.
o1z b . | SGRID, d = 67.0
0.10 | : R . i
= : e :
0.08 |- : - : 4
| : ]
0.04 | : L : i
0.02 | : o E -
0.00 — ' N !
0 10 20 30 40 50

xT

Figure 3.2: Shown are two different implementations (in BAM, respectively in
SGRID) of the initial data scheme, where the first is using the constant three-velocity
approximation (solid lines) and the latter performs a full solve for the velocity po-
tential (dashed lines). We vary the coordinate distance d of the stars’ centers from
67 ~ 100km to 31.2 ~ 47km (note that M, = 1) and compare the y-component of
the fluid velocity along the z-axis. The thin dotted vertical lines denote the star’s
surfaces, where the data is cut, because the velocity is not well-defined in the outer
region. Plot adopted from [Moll].

the most generic setup.

In the general relativistic case for irrotational, compressible fluids, this assumption
is an approximation that becomes better if we increase the distances or decrease the
velocities, i.e. if we consider less relativistic setups. However in the limit of incom-
pressible Newtonian flows, the constant three-velocity assumption is exact as we show
in a small calculation in appendix B.

After implementing the initial data scheme using the constant three-velocity assump-
tion and also a “full” scheme, where we solve for the velocity potential using surface
fitting coordinates, we were able to compare both versions. The results are shown
in Figure 3.2, where we see the parameter v¥ for different distances, given in terms
of the separation of both star’s coordinate centers. At a distance of 47km, the devi-
ation of the fully-solved fluid three-velocity from a constant is clearly visible and is
roughly ~ 10%. However, if we increase the distance to 100km and calculate v¥ from
solving the velocity potential, the deviation from the approximated constant velocity
reduces to ~ 1%. As we will see later, we do not restrict ourselves to the constant
three-velocity assumption (3.15), but we use it as a method to easily implement our

method on Cartesian grids. We drop the assumption in more complicated codes,
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which provide surface fitting coordinates and the way of solving the elliptic equation

for the velocity potential is outlined in the following section.

3.2.3 Full velocity potential and spin

In section 3.2.1, we assumed to have a symmetry vector and constructed a first integral
of the Euler equation using Cartan’s identity. We solved that equation and had to
know the fluid velocity, which we approximated in Sec. 3.2.2 instead of computing
u, = h™'V,¥, because ¥ would be determined with an elliptic equation (3.14).
At this point, we do want to solve this elliptic equation and we could do this by
eliminating the time derivatives 9;¥ in (3.14) by using (2.89) (see [Friedman and
Stergioulas, 2013] or briefly sketched in [Moll]). However, we now also want to
describe the way Tichy added arbitrary spins to neutron stars in his code SGRID,
thus we adopt his notion of constructing the first integral of the Euler equation for
spinning stars and the velocity potential'. The original derivation is given in [Tichy,
2011] for circular binaries (see also [Tichy, 2012] for more details), but can be adopted
without changes (apart from the symmetry vector) for eccentric stars. The necessary
assumptions are briefly described below, cf. [Mol3].

The starting point is given by Shibata [1998] who decomposes the four velocity u®

into a piece along the symmetry vector and a piece orthogonal to it
u” = u' (k" +V®), (3.17)

with ' = —u%n,/a. The assumption (3.11) we used in the irrotational case in Section
3.2.1 is not valid for general spins, as shown in Appendix A of Tichy [2011]. Instead,
we split the canonical 3-momentum 1-form of a fluid element m; = +,%r, into an
irrotational part which can be written as the gradient of a potential, D;¢p, and a
rotational part w;:

™ = D¢ + w;. (3.18)

Furthermore, three reasonable assumptions are made

Ly (pu') = 0, (3.19a)
V"L (Vap) = 0, (3.19D)
vi'Lrw, = 0, (3.19¢)

!Note that we give a derivation of the first integral for spinning stars in the appendix of [Mol3],
which uses Cartan’s identity and is shorter than the original derivation. Since it has slightly stronger
assumptions we stick with the original one here.
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where the vector
o V%0
" hud

is parallel to the worldline of the star’s center and is used to denote the stationarity

= k% — AKS, (3.20)

of the rotational piece. With some effort, one can now derive the relations

YL py (Sllng)%bﬁk Wy = V" Ly a Wh

(3£C)%b£m wy = (3)£A,~€ Wy, (3.21a)
Vi Al (35)% K+ AR = % R % (3.21D)
(3)£V+A,;; w; :%(S)E,ﬁjo hu® + w? (3)5# vij = 0. (3.21c¢)

where Ak® is given by (0, Ak") and (3.21c) used the fact that hu and v,; are approx-
imately constant along % The continuity equation (2.67) can be written in terms

of £ and V* and can be formulated as
Di(pau' V) + oLy, (pu') + pu'g™ Lk Gas). (3.22)
Further following Tichy, this can be simplified through assuming
009" L gap = po(12L;, Invp + 2L, Ina) ~ 0, (3.23)

which follows from our metric assumptions (also compare the discussion about the
minimal assumption necessary in appendix of [Mol3]). Plugging (3.17) into the con-

tinuity equation (2.67) and using (3.23) and (3.19a) we obtain
D; (poau’V*) = 0. (3.24)

Next, the Euler equation (2.86) can be reformulated with the help of (3.21a), (3.21b),
and (3.21c) and integrated

ﬁt +VIDj¢p = —E = const. (3.25)
u

As we describe in section 4, we choose £ such that the baryonic mass is kept constant.
The generic expression of the velocity is given by

D'+

Vie oo — (54 K, (3.26)
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thus the continuity equation can finally be written as

D, [%(D% + ') — paul (B + k)] = 0. (3.27)
Equation (3.27) represents the nonlinear elliptic equation in ¢ which was mentioned
earlier, where we have to know the boundary conditions at the stars’ surfaces. SGRID
uses surface-fitted coordinates to handle this issue, which are described in Sec. 4.4.
The normalization condition u%u, = —1 can be used to compute h as a function of

the elliptic quantities, analogues as we did in the previous section.

h=+/L?— (D¢ +w;)(Dip + wi), (3.28)

with

, b+ VP — 401 [(Dig + wu
202 '

b= [(k + B)Dip — C]* + 20> (D + w;)w'. (3.29b)

L (3.29a)

3.2.4 FEccentric orbits

In section 3.2.1 we described how helical symmetry is often used to construct stars on
circular orbits. In this section we describe how we we extended this scheme in order
to be able to generate non-circular orbits. It is not possible to describe eccentric
binaries using the notion of helical symmetry, since eccentric binaries are not station-
ary in a rotating frame?. However, a simple way to construct initial data for binaries
on arbitrary orbits has been used by e.g. Gold et al. [2012] or Stephens et al. [2011].
Their solution is to boost two superimposed, spherical stars in arbitrary (most often
opposite) directions. Later implementations like East et al. [2012b] additionally solve
for the Einstein constraints, but not for the Euler equation. Other groups [Alic et al.,
2013] suggested to use inconsistent initial data along with constraint damping evolu-
tion schemes, such as Z4c, in order improve accuracy. However, constraint damping is
not guaranteed to yield physically meaningful data and we are even able to construct
constraint solved data, which behaves unphysically if we choose unsuitable frames
of stationarity. On the other hand, this approach is justified if the obtained viola-

tions are comparably small with respect to constraint solved data and the evolutions

2Note that we use the term “stationary” in a sense that neglects higher order contributions,
in particular gravitational wave radiation. This allows us to say that stars on circular orbits are
stationary in a rotating frame.
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always behave properly in a physical sense. Obviously, the best solution would be
to construct constrain solved, consistent initial data and then evolve these data with
constraint damping evolution schemes. For accurate investigations we employ exactly
this combination of initial data and evolutions.

In the works cited above, interesting physical results can be found, especially the
f-mode oscillations of highly eccentric neutron stars [East and Pretorius, 2012; Gold
et al., 2012] and black hole-neutron star binaries [East et al., 2012a; Stephens et al.,
2011]. Nevertheless, it is possible that these oscillations are spuriously excited due to
inconsistencies within the initial data. Hence we have to provide further numerical
evidence to rule out such issues.

Following our investigation in [Moll], we can distinguish between four different ap-
proximations that are hidden in the superimposed data:

(i) The metric obtained via superposition of boosted spherical stars gives rise to
violations of the Einstein constraint equations, which are much stronger than the vi-
olations in typical evolutions. The other three approximations can be found regarding
the fluid part of the data and would only be exact at infinitely large separations:
(ii) Since the stars are spherical by definition, they obviously lack tidal deformation.
(iii) Boosting the stars in different directions leads to data that are spherical in a
linearly comoving frame (in a Lorentzian sense) rather than in a corotating frame.
(iv) The initial velocity is assumed to be homogeneously constant throughout each

star.

Coming straight to our implementation and anticipating some of the results, the
scheme allows us to separately estimate the influence of these approximations. Look-
ing at an evolution of purely boosted TOV stars, it is striking how the central densities
(here in terms of rest-mass, but of course this is true for all related quantities) oscil-
late around 20%. We will see that solving the constraint equations and allowing for
tidal deformations, i.e. getting rid of assumption (i) and (ii), does not improve the
quality of the initial data and still leads to similar oscillations. Contrary, we will find
that retaining the constant velocity approximation (iv) and dropping assumption (iii)
drastically decreases the spurious oscillations, which led us to the conclusion that the
main source of error is given by assuming stationarity in a linearly comoving frame.
Finally, we will see that the second largest source of error is given by assumption

(iv), which can be relaxed later.

So the idea is to eliminate the artificial oscillations by finding a proper notion of
stationarity. We found two equivalent ways to tackle this problem, where one is

based on geometric arguments and the other is a more “physical” ansatz.
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Physical approach

We start with the latter, by formulating the problem differently: we seek a general-
ization of the vector field (3.7) for which the energy (3.9) is approximately constant.
Similarly to the quasicircular case, we are free to specify an arbitrary location of the
stars with respect to the coordinate system. On the basis of Keplerian orbits, we
choose the stars with masses m; and msy to be initially located at apoapsis on the
x-axis. This is a good choice in particular, since it maximizes the distance of the stars
and thus improves the constant three-velocity approximation. Also, it represents a

moment of time symmetry, due to the vanishing radial velocity. We write

ma

= 1 +e)— + cms 3.30¢
& a( )m1 -+ Mo v ( d)
Lo = a(l + 6) Ul + Zep (3 30b)
my + me o ’

where the “position” of a star is given by its maximum rest-mass density. In the
above equations xn, describes the center of mass (there is no y-component, since the
stars are placed on the z-axis) and e = m expresses the eccentricity of the
ellipse in terms of the semimajor axis a and the semiminor axis b. It is important
to note that e is not necessarily the eccentricity of the computed orbits, since fully
general relativistic evolutions are certainly causing the stars to inspiral and thus
deviate from Newtonian point particle ellipses. e can rather be seen as a parameter
to monotonically adjust the output eccentricity of the data, where we define a notion

of eccentricity for inspiralling orbits later.

If we are able to find a vector field £* which approximately Lie-derives the flow
that is assumed to be irrotational, then we can use the Cartan identity (3.11) as for
quasicircular orbits and yield similar constant injection energy £ as before in equation
(3.9). A natural choice to generalize this vector field is to manipulate the tangential
velocity of the stars. Assuming the binary is in a quasicircular configuration, then
decreasing the tangential part of the initial three-velocity of the stars will inevitably
lead to an elliptic configuration, where the stars are at apoapsis. For our choice of
coordinates this corresponds to applying a boost along the y-direction to (3.7), which
yields

E* =1+ w " + Ay”. (3.31a)

We refer to this vector field as “helliptical” vector or more strictly speaking instan-
taneously inscribed helical vector, which we justify later within the more geometrical

approach section. Similar to the orbital frequency . we introduce a rotation fre-
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quency w, however, both quantities are not equal in general. The boost parameter A
is chosen on physical grounds. For example, setting A = v¥ and w = 0 would lead to
k* = t*4+vYy®, which implies stationarity in a linearly comoving frame. On the other
hand, we can rewrite the boost parameter as a displacement parameter x., where

A = —wx,, which then reads
E*=t"4+ w((z — x)y® —yz?]. (3.310)

Stationarity in a linearly comoving frame is not a good assumption as we already
mentioned before and a short calculation in appendix A shows why spurious oscilla-
tions are to be expected within this approximation. In fact, one should rather choose
w # 0 and comparing (3.31a) to (3.7) it is obvious by construction that the circular

limit is recovered for vanishing A and x. respectively.

In order to give a more concrete, reasonable choice of w, we considered the limit of
incompressible binaries on Newtonian eccentric orbits, for which equation (3.11) has
to hold exactly. For a more detailed calculation we refer again to the appendix B.

For the mean motion Q = 27 /7T (with an orbital period T), we find the expression

Q=w(l+e)V1—e2 (3.32)

The second parameter A, respectively x. can be found by demanding u* and k* to be
initially parallel at the stars’ centers. A simple comparison of (3.31a) to (3.15), with
a substitution of (3.30) yields

e

>‘172 = Wy, = _0?1/21 — Wxem- (3.33)
' “l—e
Both parameters are connected via the relation
/0?1172 - (,U(l - 6) (1’1’2 - xcm) (334)

Here we immediately see the desired behavior of the tangential velocity component
as it vanishes for e = 1 and results in a head-on collision. On the other hand, the

limit of circular orbits is recovered for e = 0.

In this approach, we were utilizing the limit of incompressible Newtonian stars to find
the required parameters. In the next section, we show an equivalent, but on some

level more elegant way to obtain the result.



42 Model and assumptions

Figure 3.3: An illustration of the approximation of the orbits by using circles
inscribed into the orbital ellipse in a way that their curvature is the same as the one
47, semiminor axis by = b7,
and the radius r., = b7/a; and center z., of the inscribed circle as well as the center

of the ellipse. We show the scaled semimajor axis a; = a

xy of one of the stars. The center of mass is denoted by 2cy. Plot taken from [Moll].

Geometrical approach

The following derivation was first described in [Moll] and later on in [Mol3]. We
use Fig. 3.3 to support the calculations with a schematic representation. The idea is
to generalize the standard helical Killing vector to an approximate helical symmetry
vector by making three reasonable assumptions:

(i) There exists a vector k* that approximately Lie-derives the flow.

(ii) k* is along the motion of the star center.

(iii) Each star’s center moves along a segment of an elliptic orbit at apoapsis. We
can use assumption (iii) to specify the kind of orbit we want to construct. We do not
need a complete orbit for the construction, but only a small segment of an orbit near
apoapsis, which allows us to model this segment by an circle that is inscribed into
the ellipse (see Fig. 3.3). It is straightforward to see that the radius of such a circle
depends on the eccentricity and on the semimajor axis of the ellipse. The curvature
of a circle with radius R, is given by —1/R., while the curvature of an ellipse (with
semimajor and semiminor-axis A and B) at apoapsis is given by —A/B?%. Thus, an
inscribed circle has to have the radius R, = (1 —¢?)A. In Newtonian theory we know
that two particles with masses m; and msy are orbiting around each other on ellipses
with semimajor axes a2 = di2/(1 + e), where d; » denotes the maximal distance of

each particle form the center of mass. In our case this leads to radii of the inscribed
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circles
Tero = (1 —€)di. (3.35)

In order to find the centers of these circles, we have to consider the stars positions

and subtract their radii
:I;CLQ - x172 + TCLQ = Tem + e(xl,Q - xcm)y (336)

where the distance was replaced by dis = |r12 — %em| and the upper and lower
signs are belonging to the different stars as they are denoted by subscripts 1 and 2.
Assumption (ii) is necessary, since if k% is not along the motion of the star center, k“
can never be an approximate Killing vector. So, our the symmetry vector k* must
be along the trajectory of the particles, which can be approximated by two circles
centered at @, , with radii r., ,. Let us assume that the angular velocity of these two
particles along the circles is given by w; and ws. We can further assume that the

center of mass is at rest and conservation of momentum yields
MW Tey = Mol e, - (337)

We obtain the balance mid; = mody from the definition of the center of mass and

together with Equation 3.35 it is straightforward to see that
MATe, = Malcy. (3.38)

Finally, we can combine (3.37) and (3.38) to see that both frequencies have to be the
same
W] = Wy = W. (3.39)

Altogether, this means that the symmetry vector should look like
Ky =1"4+w (2 — 2, ,)y" —y 2] (3.40)

A nice property that comes along with the identity of the frequencies is that although
kS and k$ look different, there is only one approximate Killing vector at large distances

since @ > T, ,-

If we make the constant three velocity approximation (3.15), assumption (ii) also tells

us how to choose the velocity parameter

U11/,2 = :l:wrCLz = (1 - 6)W('xl,2 - xcm)- (341)
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In order to provide further consistency checks of our derived equations, we consider
the Newtonian limit and see whether the vector £ leads to the correct physics. We
use a force balance equation to compute w, which has the form (3.13) and can be

simplified in the Newtonian limit to be
where the injection energy in star 1 is given by

8:%UQ—I—QD—I—h—w[(x—xCI)vy—yv‘”] (3.43)
and @ is the Newtonian gravitational potential and D denotes the covariant derivative
in flat Euclidean space. Assuming that the stars are far apart, then they are almost
spherical and the orbits are approximately elliptic. In this case, the potential due to
star 2 can be approximated as that of a point mass by ® = —Gmy /|| — 25| and
we neglect the gradient of star 1’s potential at its center. Note that factors of G
are shown explicitly so that the distinction between the gravitational and centripetal
forces becomes more clear. We take (3.42) and evaluate it at the center of the star
x = x7. Here, the density is maximum and for the enthalpy this yields a vanishing

derivative d,h,—,, = 0, hence we obtain

mao
GF —wv? =0, (3.44)

where r is the separation of the stars. Inserting (3.41) gives

mymes

G = miw?r,,, (3.45)

?"2
which shows that w yields a centripetal force, which is needed to keep star 1 on the
inscribed circular orbit, and is exactly provided by the gravitational force due to star
2. Further it is straightforward to see that (3.45) can be used together with relation
(3.32) and (3.35) to obtain

mo =9 a1
G—=0"—— 3.46
r? (1+e)? (3:46)
where we can further substitute » = a(1 + e) to obtain Kepler’s third law
- G
0% = M (3.47)
a
The above paragraphs demonstrate how it is possible to give a geometrical interpre-

tation of the symmetry vector and thus justifies the term instantaneously inscribed
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helical vector field, since it generates time translations in a frame that rotates about a
point (z, ,,0,0). In the circular case, the integral curves of the helical Killing vector
field coincide with the trajectory of the star center when we project them onto a
spatial slice ;. However, in the elliptic case, the projections of the integral curves
are given by circles, which are inscribed into the elliptic trajectory at apoapsis. The
center of those circles is placed at (., ,,0,0) , while the radius is given by r,,,
corresponding to the radius of curvature of the ellipse at apoapsis. Only initially at
t = 0, the trajectory of the star is tangent to the integral curves of the symmetry
vector field. Additionally, the injection energy (3.9) is only spatially constant, but
not conserved in time. This means, for ¢ = 0 the energy is constant throughout
the fluid, while this is violated for ¢ > 0, which is why we call the symmetry vector

instantaneous. Nevertheless, operating with £%9, on the vector yields
HE + ki 1,0, =0, (3.48)

and since the injection energy is spatially constant, the time derivative has to vanish
initially as well. Since (2.87) is satisfied, one could call £f, approximate Killing

vectors for the regions of spacetime occupied by each star.

3.2.5 Generalized orbits with radial velocity

There are several ways how one could further generalize the symmetry vector. One
starting point is the construction of initial data that are not at apoapsis, but at
an arbitrary other time. Based on the previous description in section 3.2.4, we can
straightforwardly generalize the inscribed circles to be inscribed into an arbitrary
position of the elliptic trajectory. This complicates the equations and the “helliptical”

vector takes the form
kY =t 4+ wl(r — x)y® — (y — yo)z"], (3.49)

where we have an additional parameter y.. However, this generalization comes
with many disadvantages, since other points than apoastron naturally correspond to
smaller separations and the approximations we made becomes worse. Non-vanishing
radial derivatives increase the bad properties such as lower iteration stability and
increased artificial oscillations. On the other hand, we do not see the need for con-
structing stars at different locations. Thus we have not tested this generalization in

detail and restrict ourselves to the case y. = 0
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A much more promising extension of our scheme is to add radial velocity to the
stars and allow for a slow inspiral of the orbit. This inspiral is expected due to the
emission of gravitational wave radiation, hence it has to be present initially as well.
Simply setting the eccentricity parameter e to zero generates helically symmetric data,
but neglects these initial radial velocity components. The consequence are intrinsic
residual eccentricities, which lead to an oscillatory behavior of the separation as seen
in Kyutoku et al. [2014] and thus pollute the data. When incorporating radial velocity
it is useful to look back at our three assumptions from the geometrical approach in
section 3.2.4. Considering assumption (ii), we see that assumption (iii) has to be
modified to include a radial part. The approximate Killing vector then takes the
form

k?l,? = kin + %T‘a =t tw [(I’ - $C1,2)ya -y xa] + %ra7 (350)

where r* = (0,x,y,2) is a vector pointing in radial direction and r is again the
separation of the star’s centers. Note that we drop the subscript r of the vector and
just denote it by k{,, since it is sufficient to say that we set v, = 0 in many cases
and mention explicitly if we use the full vector. A scheme that uses this new vector

o needs to provide a way to compute the parameter v,. A possible method is
given by approximating it with post-Newtonian or effective-one-body theory, where
one can possibly add tidal correction terms to take the finite size of the stars into
account. Read et al. [2009a] used a similar technique to decrease the eccentricity,
where they applied a Lorentz boost in radial direction based on post-Newtonian
theory in the point particle limit and they obtained significantly lower eccentricities

than in previous simulations without such improvements [Read et al., 2013].

Other techniques require to change both, the radial and the tangential velocity of
the stars. We are able to change the tangential velocity by varying the eccentricity
parameter e as it changes the y-component of the fluid three-velocity by construction.
Several other groups [Husa et al., 2008; Mroué and Pfeiffer, 2012; Pfeiffer et al.,
2007; Piirrer et al., 2012; Tichy and Marronetti, 2011] used evolved data of black
holes in order to find parameters which improve the tangential and radial velocity so
that the residual eccentricity was minimized. We are now able to do the same for
neutron stars, where we start with e = 0 and v, = 0 and evolve the data for a short
period of time (usually one to one and a half orbits) and then iteratively find better
parameters. We describe the iteration method later in section 5.3. Note that while
we were investigating this type of eccentricity reduction, Kyutoku et al. [2014] have
set up a similar method with slightly different treatment of the tangential velocity

but also suitable for neutron star binaries.



CHAPTER 4

Numerical method

So far, we have described the model we want to use for the implementation includ-
ing the approximations we have made. In this section discuss the numerical method
to solve the equations, where start by summarizing the recipe to construct initial
data through an iterative self-consistent method by gathering the accumulated re-
sults from previous sections. Then we briefly discuss the preferred technique to solve
elliptic equations in our Cartesian finite-differencing implementation BaAmM. The im-
plementation itself is considered in more detail in the subsequent section and at last,
we describe the pseudo-spectral SGRID code, where we implemented our scheme using

surface fitting coordinates.

4.1 Iteration recipe

The general concept of finding initial data for neutron star binaries has been reduced
to finding solutions to the elliptic conformal thin-sandwich equations (3.5), which
also satisfy the first integral of the Euler equation (4.1). In other words, we want
to end up with expressions for the matter density profile A (and thus p, p, etc ...
via some specified EoS) and for the five elliptic gravitational quantities ¢, o and 3°.
To tackle this task, we use the helliptical vector from (3.31a) and compute the first
integral (3.9) to the relativistic Euler equation (2.86)

E=—{u +wl(r—2r)uy —yugl}. (4.1)

For simplicity, we just consider the case of the constant three-velocity approximation

(3.15) for now, thus we can write

Uy = Gptt’ = u(gar + vV Gay)- (4.2)
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The start of the iteration scheme has to be made with an initial guess. It turns out
that the method is rather sensitive to the initial guess and whether the code converges
or not, crucially depends on the quality of this guess. Usually, a good initial guess is
given by superimposing two single neutron stars. Solutions to Einstein’s equations for
such isolated objects have been extensively studied and are fairly easy to construct.
Our initial guess is basically the type of initial data that was used in Gold et al. [2012]
and we proceed in the same way to construct it: The first step consists of computing
the solution to the Tolman-Oppenheimer-Volkoff (TOV) equations [Oppenheimer and
Volkoff, 1939; Tolman, 1939]. These solutions are non-rotating and spherical and the
stars are constructed such that either the central density or the baryonic mass is the
same as for the desired initial data. The exact choice depends on the quantity that
is chosen to be fixed during the iteration process. The second step is to boost the
computed solutions by applying a Lorentz transformation in the 4y direction, which
approximates the orbital motion. Finally, the two boosted stars are superimposed by

adding their metrics and subtracting the flat Minkowski metric 7,,. This yields

1 2
g™ = 9% + 95 = N (4.3)

where 922’2) denotes the metric of star 1 and star 2 respectively. Now we have an ap-
proximate solution and the metric serves as an initial guess for the elliptic quantities.
Therefore, * is taken to be the za component of the 3-metric, since the boost pro-
hibits spatial conformal flatness. The density profile is simply initialized by setting
it to the TOV solution.

Finding an initial guess is only the first obstacle. In the next step, this guess is used
to solve the XCTS equations (3.5) for fixed source terms. This can be done with an
elliptic solver, but the result will not satisfy the matter equations. However, we know

the metric and can use (3.15) with the normalization condition u,u® = —1, yielding

—-1/2

ut = (_gtt - 2gty - gyy“j) (4'4)

to find the time component of the fluid four-velocity. The remaining components can

be constructed via

up = Blu; — an/yuu, + 1 (4.5a)

u' = g'ue + g%y ="y — a7 BN R+ 1 (4.5b)

Additionally to the metric (and thus ¢, @ and 3), we now have the fluid four-velocity
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u® at hand and want to solve the integrated Euler equation (4.1) for the enthalpy h.
However, we are still missing a value for w (and also A, resp. x., but these are given
in terms of w and the center of mass x., by equation (3.41) or (3.33)) and for & ».
In short this means that we are left with four parameters that have to be calculated,
namely the orbital frequency w, the center of mass .y, and the injection energy of
each star &£ 5. To do so we have two equations left, the integrated Euler equation

(4.1) and its derivative, the force balance equation

0= {0,uy +w [(x — x¢) Oputy + uy — Y Dytty] (4.6)

}‘1’:551,2 Y

where we have set d,h = 0, which fixes the location of the stars’ centers. We evaluate
these equations each at two points — the centers of the stars as defined by the
maximum density — and obtain four equations for four parameters to solve. The
typical way is to solve the force balance equation (4.6) first, which yields w and .
The solving process is done with a root finding algorithm. We can then simply plug
the solutions into the integrated Euler equation (4.1) evaluated at the centers to
obtain the injection energy (which is constant throughout the star). Finally, we can
evaluate (4.1) at arbitrary points and thus solve for h in order to update our fluid
quantities. These updated values can be used to calculate new source terms via (3.6)

and the next iteration step can start.

Note that during this whole process we have fixed the stars’ centers x; » and thus also
the separation of the stars. Furthermore, the central density is a free parameter as
well, which is fixed throughout the iteration, unless we want to fix the total rest-mass
instead. We employ the latter especially to perform calculations of sequences. We

provide another example of this scheme for equal mass stars in section 4.3.

4.2 Elliptic solver

Solving the constraint equations is the main duty of initial data computation in terms
of time consumption. Nonlinear elliptic partial differential equations (PDE’s) are not
trivial to solve. Several different approaches have been developed in order to increase
the efficiency of elliptic solvers and people still keep trying to improve the accuracy
and runtime. A detailed analysis of various algorithms is given by Press et al. [2007].
While we employed a conjugate gradient method in our stand-alone implementation
in Moldenhauer [2012], the nested boxes grid structure of BAM is perfectly suited for
the use of multigrid methods. We do not want to go into much detail at this point

and thus assume that the basic numerical concepts of finite differencing (or later for
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SCGRID pseudo-spectral representation) are known. However, since the solution of
elliptic equations is crucial to the initial data construction, we want to summarize

the methods of our choice.

4.2.1 Multigrid methods

One of the most famous introducing works on multigrid solvers was done by Brandt
[1977] and thus multigrid methods are quite young in comparison to many other
algorithms. The basic idea behind this concept is to use not one, but several grids
with different resolutions. Common relaxation methods like Gauf3-Seidel are applied
on the coarsest grid, where they work comparably fast and then the solution is used
to accelerate the computation on finer grids. It is thus possible to reach extremely
low numbers of necessary operations. A differential equation, discretized on a grid
with IV points can be solved within O(N) operations (see Press et al. [2007]). For our
nonlinear problems it is also a major advantage that multigrid methods are able to
handle nonlinear equations without much further effort. From the range of different
multigrid approaches (also see Briggs et al. [2000]) we choose the full approximation
storage multigrid algorithm (or often just short FAS), which fits best to the intrinsic

grid structure in BAM.

The general framework of such multigrid solvers can be described as follows. The
PDE is assumed to be written as a nonlinear operator A acting on the state vector

5, where we denote the grid spacing by A for the fine grid, yielding

An(Th) = fu, (4.7)

and respectively the grid spacing H = 2h for the coarse grid gives

RN

Au(zn) = fu. (4.8)
If v is an approximate solution to the exact solution 5, then the error is given by
e=1x— E, while the residual is defined as

r=f—Av). (4.9)

We have to be able to interpolate a solution from a fine grid to a coarser one and vice
versa. This is done via restriction and prolongation operators RhH and PP, where
the subscripts and superscripts denote that RE restricts a solution from a grid with

spacing h to a grid with spacing H and the other way round for the prolongation
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operator. There are different possibilities to define these operators. A typical choice
is given by a bilinear interpolation operator for prolongation and the adjoint operator

for restriction.

Defining the residual on the fine grid according to (4.9) yields
ry, = fn— Ah(?h) = Ah(gh + _U\h) — Ah(?h). (4.10)

Similarly, we can consider the coarse grid, where (4.8) together with the definition of

the residual yields

Ap(zy) = Au(og) +rp
= Ag(REv,) + REr, (4.11)

and can be solved on the coarse grid (which is fast compared with solving on the fine
grid) and results in an approximate solution v . Thus we have a correction of the
coarse grid by

ey =vy—RIv, (4.12)

The important step is now to use the coarse grid correction to improve the approxi-

mate solution on the fine grid by prolongation

—new

v, = v;ﬂ—PZeH

— 0+ Pl (?H - Rf?h) . (4.13)

Iterating over this procedure yields further improvement of the approximate solution
v. This concept can be extended to several grids. This means that instead of solving
(4.11), we can take it as the starting point of another multigrid level, where now
H = 2h is the fine grid in comparison to an even coarser grid with a grid spacing of
4h. Only on the coarsest grid we really have to solve the system, for instance with a
relaxation method like Gauf3-Seidel. Finally, there are different schemes for the order
of restriction and prolongation, which have a large influence on the performance and
accuracy of the solver. In Fig. 4.1, we show the two schemes implemented in BAM,
the V and W-cycle. The above discussion reveals that there are several settings
that can be changed to adjust and tweak the multigrid solver such as restriction
and prolongation operators, relaxation schemes and interpolation cycles. We tested
different settings in order to find a stable and fast scheme, but a detailed analysis is

not the goal of this thesis and can be found in the literature.
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Figure 4.1: Shown are the two different types of cycles that are used in BAM for
prolongation and restriction. Descending lines denote restriction from a fine to a
coarser grid, while ascending lines denote prolongation from a coarse to a finer grid.
A smoothening is applied in each step, but the full system of nonlinear equations has

only to be solved on the coarsest grid.

4.3 BAM implementation

An early implementation of a previous version of the scheme outlined in 4.1 was
presented within the master thesis [Moldenhauer, 2012] and first steps using the BAm
code were already done. Unfortunately, this version of the scheme turned out to be
insufficient and did not yield correct data. The new version was first implemented
in the BAM code as described and tested in [Moll]. A detailed description of BAM,
in particular with respect to the neutron star treatment (and their evolutions) can
be found in the work by Thierfelder et al. [2011] or in Briigmann et al. [2008] for a
discussion focused on black holes. The code uses second order-finite differences in
a full approximation storage multigrid scheme. This multigrid solver, which is used
to solve the elliptic equations as described in section 4.2, provides a nested boxes
structure, where each refinement level doubles the resolution. The relaxation scheme
that is employed on the coarsest level is a red-black Gauf-Seidel method [Press et al.,
2007]. The code is fully parallelized with a hybrid OpenMP /MPT implementation and
is able to use bitant or octant symmetry if desired. Due to the second order finite
differencing operator, second order convergence is expected, but there is no obvious
reason against the implementation of higher order multigrid methods to improve the
convergence order. In fact, the OLLIPTIC code by Galaviz et al. [2010] would be
available for an improvement to up to eighth-order stencils. However, we chose to
increase the accuracy by implementing the scheme in the spectral SGRID code that

is described in section 4.4.

Since the recipe as well as the multigrid elliptic solver have already been explained,
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we want to provide more insight into the method by examining an example and
discuss the different steps that are taken by BAm. For the sake of simplicity, we
are looking at equal-mass stars. We specify a location of the stars’ centers +x., a
central density h. and some parameters I' and  for the EoS. At first, the built-in
TOV solver is called to compute a single spherical star, which is then placed at £z,
and superimposed. If the stars are too close, the scheme requires a good initial guess
and we have to add a boost (where we choose the parameter by hand) to the stars.
For larger distances, the scheme works well with unboosted (head-on) data as an
initial guess. After computing the source terms according to (3.6), we can solve the
elliptic equations by feeding them to the multigrid solver, which provides us with
updated values of 1, @ and 3'. We have to stress that we use Cartesian coordinates,
which means that we do not have the benefits of any spatial compactification. We
use a Robin boundary condition and provide the fall-off behavior of the quantities

according to Duez et al. [2003] as

an~1—rt (4.14a)
Y~ l+rt (4.14D)
BT~ pY T (4.14c)
B3~ (4.14d)

Due to the mesh refinement, we are able to choose outer boundary locations far away
at t ~ 3000, and hence yield good agreement for quasi-circular test cases with existing

codes.

Since we chose equal mass stars, the center of mass x., has to be at x = 0, which
allows us to algebraically solve the force-balance-equation (4.6) without calling a
Newton-Raphson root finder. Therefore, we use (4.5) to construct the fluid velocity
components and use second order finite differencing stencils to compute their deriva-
tives. Plugging these values into the force-balance equation immediately yields the
frequency w. Using the constant three-velocity approximation, the Euler equation in
BAM takes the form

Erp = —hu{—a® + BB + v1268Y —wy B +w(@ —ex)(BY +vi2)]}.  (4.15)

We choose a fixed central density h. thus we can evaluate (4.15) at the centers (if
we chose to fix the mass, we would now have to compute the integrated mass) and
obtain & 5. This in turn allows us to evaluate (4.15) at an arbitrary location, since all

variables are known and BAM computes an updated density profile i out of the elliptic
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quantities ¥, o and 3°. Afterwards, the equation of state is used to compute the mass
density and the pressure. At this point, the end of the iteration loop is reached. Next,
we start again by computing the source terms and repeat the procedure until a fixed
point is reached. Usually we end the iteration, if the overall change in the elliptic
variables falls below a certain threshold. Note that we use a technique called softening
to avoid overshooting the solution. More precisely, this means that instead of taking
the full solution of the elliptic variables after a multigrid solve, we use a weighted
average of old and new variables. Usually (if X denotes an elliptic variable), we
choose

X = 0.25X ew + 0.75X 1q. (4.16)

This procedure is similar to the one used by Tichy [2012] and is crucial in order to

achieve convergence.

4.4 Sgrid implementation

After discussing the BAM implementation, we want to give insight into the imple-
mentation of our scheme in the SGRID code developed by Tichy [2009b, 2012]. The
BaAM implementation was designed to be fast in terms of runtime and should serve
as a testing environment for the scheme, which allowed us to vary all kinds of imple-
mentation details in order to find a stable and working algorithm. After successfully
constructing initial data, we wanted to proceed by using a more specialized code to
improve the accuracy of our computations. SGRID is a pseudo-spectral code and
provides an advanced grid structure, which allows us to impose boundary conditions
at the stellar surfaces. Thus the constant three-velocity approximation (3.15) can be
dropped and we can solve the full velocity potential. We present that grid structure
in the following and then briefly discuss the iteration procedure of SGRID, which is
similar to the one used in BAM. Note that increased accuracy is not the only ad-
vantage of SGRID. It is also the first code that handles neutron stars with spins and
recently, as we described in [Mol3], the EoS treatment has been generalized to handle

piecewise polytropes in order to construct more realistic stars !.

'For a detailed analysis of binary neutron star mergers with realistic equations of state for various
mass ratios, and also a nice summary of single rotating stars we refer the reader to the PhD thesis
of Tim Dietrich.
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Figure 4.2: This Figure shows a 2 = 0,y > 0 cross section for the density profile of
an equal mass configuration. The grid structure becomes evident by lines of constant
A and B and also the Cartesian boxes with Chebychev grids are drawn. The lines
of constant A = 0 and A = A,.« are drawn in red and green respectively. The
parameters used to construct this grid are (chosen according to the simulation to
produce the density profile) b = 16,0, = —o_ = 1.304 and Ay« = 0.5. Adapted
from [Mol3].

4.4.1 Grid configuration

Attempting to accurately solve neutron star initial data requires specialized grid
setups. As we already discussed, we have to impose a boundary condition at the stellar
surface and although the fluid quantities are smooth in the interior, they become non-
differentiable at the surface. Thus, it would be best if the stellar surfaces were domain
boundaries, however, the matter distribution and hence the star shapes change with
each update of the fluid density. To solve this issue, Tichy [2009b] introduced special
coordinates, based on the coordinates by Ansorg [2007] and divides the domain into
6 separate parts. We have one domain for the interior of each star and another two
domains, which describe the outer region; again one domain for each star. Finally,
the interior domains posses a coordinate singularity, which has to be covered by
a Cartesian box, so that we obtain a total of six domains. Figure 4.2 shows the

computational domains and the grid structure, which we are about to introduce.

The chosen coordinates provide a compactified domain and include spatial infinity,
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which makes it easy to impose outer boundary conditions

lim¢ = 1, (4.17a)
=00
lim B" = 0, (4.17D)
r—00
lim ap = 1. (4.17¢)
r—00

Denoting the new coordinates by X € [0,1], R € [0,v1 — X?] and ¢ € [0,27), we
can give the relation to Cartesian coordinates by (cf. Tichy [2009b])

b 1 2 2
€r = 5 {m + 11 (X - R ), (4.18&)
y = b {(XLi—RW — 1] X R cos(p), (4.18b)

1

Here, b is a parameter to specify the distance of the stars. Another transformation is
applied to obtain coordinates A, B, ¢, which take into account the different compu-
tational domains. The two exterior domains include spatial infinity (A, B) = (1,0)

and use

X =(1-A)[Re(Cx(B,¢)) — BRe(CL(1, 9))]
A
+ Bos <Tﬂ (1= A)arg(Cu(1, @)) , (4.19a)
R=(1- A)[In(C+(B,¢)) — BIm(Cx(1,9))]
A
+ Bsin (Tﬂ +(1— A)arg(Ca(l, cp))) . (4.19b)
The stellar surfaces are given by the inner domain boundary A = 0, where we employ

a strictly positive function C', and a strictly negative function C_ to describe the

shape of the surface

CyL(B,yp) = \/tanh <Ui<B’i) il iﬂB). (4.20)

Here, o4 gives the relation of the star’s surface to Cartesian coordinates. While
A = 0 always describes the surface, o determines the (x,y, z) location, for instance

a spherical star is given by constant o.

The coordinate transformations are different for the inner region of the stars and can
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be expressed by

+ Beos(Dy) +64(1 — B)A, (4.21a)
R =(1—-A)[Im(C(B,¢)) — Blm(CL(L, ¢))]
+ Bsin (Dy) 4+ 0_(1 — B)A, (4.21D)
where
Dy = (1 — A)arg(Cy(1, ) + 5,;4 (4.22)

and the abbreviations 0, = 1 for the star located at + > 0 and 6, = 0 for x < 0, and

the other way round for o_.

As indicated before, a Cartesian grid is employed at the stars’ centers. Looking at
(4.18a) and (4.21a) one can see that the coordinates are indeed singular at the center
of the star A = 1. Therefore, A goes to a maximum value Ay, < 1 (often ~ 0.8
and depending on the choice, the Cartesian box will be larger or smaller and the grid
points will be more or less clustered) and the Cartesian boxes are given with grid
points

)

i Lrnin — x’inax km lﬂr;nin + ‘fznax
x' = “08 , 4.23
'y 5 Cos (nl — 1) + 5 , (4.23)

where 2t = (2,9, 2), with 0 < k < ncay. For the A, B directions Chebychev expan-
sions are employed, while we use Fourier expansions in ¢ direction. The collocation

points are given by

A = Ama [1 —cos< o )] : (4.24a)
2 nag — 1

1 T

B, = —-|1-— 4.24

I 5 { cos (TLB—1>]’ (4.24D)

27k

o = —=, (4.24¢)
My

where 0 <@ <ny, 0 < j<npand 0 <k <ny,. Typical setups we are running make
use of 20 to 28 points in A and B direction, while 8 points in ¢ direction are sufficient.
In the Cartesian box we employ n, = ny = n, = ncarx = 16, ..., 24 points. Note that

piecewise polytropic setups naturally require more points, since the different pieces

may be not resolved at the lower end of these specifications.

The elliptic variables are written altogether into a state vector and the XCTS equa-

tions (3.5) are imposed at each grid point. The nonlinear system is solved within
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Figure 4.3: Schematic representation of the iteration scheme as outlined in the text.

Ay denotes the set of elliptic equations. Plot adapted from [Mol3].

a Newton-Raphson iteration, while the linearized equations can be solve via matrix
inversion, where the UMFPACK sparse matrix solvers are used [Davis, a,b] or the

references within the original description [Tichy, 2009b]).

4.4.2 Iteration

The iteration scheme that is used in SGRID is similar to the one used in BAM,
but with the additional complication of solving the elliptic equation for the velocity
potential. Tichy [2012] describes the following iterative procedure (see also Figure 4.3)
to construct initial data and our additions to the SGRID code do not change this

overall behavior.

(i) Similar to the initialization of the BAM implementation, we either start with solv-
ing the TOV equations and superimposing them or by using a previously constructed
solution. The latter will become handy when we construct low eccentric data in
Sec. 5.3. The orbital angular velocity is computed with the help of post-Newtonian
theory and the velocity potential is set to ¢ = Q(x,, , — Tem )y, Which corresponds to
a spatially constant velocity field.

(ii) Next, we compute the residuals of all elliptic equations and leave the iteration
loop if the combined residual falls below a threshold.

(iii) The third step consists of computing the residual of (3.14) and see if it exceeds
a tenth of the previously computed combined residual of the elliptic equations. If so,
we solve the elliptic equation for ¢ to update the velocity potential with a softening
Onew = 0.2¢ + 0.801q.

(iv) In this step the main solve of the five elliptic equations is performed and again
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softening is applied A%X"Y = 0.4A.; + 0.6A%¢, where Agy; stands for the elliptic vari-
ables 1, o, B

(v) The maximum of A along the z-axis is searched in order to find the positions of
the stars’ centers, x., ,. Then € and z., are computed through the force balance
equation (4.6).

(vi) One of the last steps is to compute h and & 5 such that the baryonic mass of
each star remains constant. Finally, o4 is updated to take into account the changes
in the shape of the stars’ surfaces and adjust the domain boundaries with respect to
that. In order to improve the overall stability, it might be necessary to filter out high
frequencies in oy and impose dpoy(B, ¢)|p=o1 = 0 to keep the stars on the z-axis.
(vii) We go back to step (ii).
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CHAPTER 5

Neutron star initial data

It is now time to use the presented scheme for initial data construction. Therefore, we
start with consistency checks in the quasicircular test case, where we set e = v, = 0.
We do not have to check the constructed SGRID data in the circular case, since
these data have been examined before [Tichy, 2009b] (of course, we have to ensure
that the data is still the same, which has to be the case if the implementation was
done correctly). Nevertheless, we verify that the BAM implementation constructs
reasonable initial data in this limit, based on our investigations published in [Moll].
Afterwards we examine eccentric initial data and show the advantages of the scheme
compared to previous initial data sets. We also present the improvements we recently
achieved in [Mol3] through the use of surface-fitted coordinates. Finally, we are
considering low eccentric initial data and use our scheme to compute orbits with an
inward velocity to improve the noise in the extracted gravitational waves due to the
residual eccentricity. Note that all evolutions are done with BAM and that the SGRID
data has to be interpolated onto the BAM grid before evolving it, while the multigrid

data can be used directly, since it uses the same grid structure (compare Fig. 5.1).

5.1 Quasicircular orbits

SGRID has been compared against other codes, such as the Lorene code from the
Meudon group as it is described e.g. by Taniguchi and Gourgoulhon [2002] in the
limit of irrotational stars on circular orbits. These studies show good agreement and
we thus use SGRID as a reference for the BAM implementation. We provide a table
with different datasets in Table 5.1, where we list the basic parameter choices for

several setups for quasicircular data and also eccentric data that is used later on.

First, we check the convergence of the code in order to provide a solid basis for further
discussions. We use the setup mgQC' and compare the constraints at three different

resolutions in Fig. 5.2, where the finest grid (the innermost of six levels) has a grid
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Figure 5.1: Example of a BAM setup corresponding to mg@QC' from Table 5.1. The
multigrid solver of BAM uses the same grid setup as the evolutions. Shown is the
density profile in the xy-plane. One can see the innermost levels [ = ba, b, [ = 4 and
partially [ = 3. Levels [ = 2,1, 0 are not depicted. Instead of the full grid, only every
fourth grid point is shown for better visibility.

spacing of h = 0.09375, which corresponds to the range of resolutions we target for
production runs. The boundary is chosen to be at © = y = z ~ £500 and is fixed
for the convergence checks. Although this might be too close for production runs, we
tried to keep the computational efforts low, hence exceedingly accurate boundaries are
not needed for convergence analysis. In fact, unless we want to extract gravitational
waves, the boundary distance is large enough in order to obtain accurate results from
the Robin boundary conditions for the elliptic variables. Later we add additional
refinement levels to push the outer boundary further out than we have done now
for our five refinement levels, which is especially necessary for gravitational wave
extraction. The results clearly show convergence of second order as it is expected
for the multigrid solver. The left panel of Fig. 5.2 shows the Hamiltonian constraint
‘H, while the right panel shows the y-component of the momentum constraint DY.
These quantities were chosen, since they yield the largest constraint violations (D*
and D* are much smaller, because the stars are initially moving in +y-direction.),
but in principle every other elliptic or constraint monitoring quantity we tested shows
the same behavior. It is noteworthy that the constraint violations are computed with
second-order finite differencing as well and thus corresponds to the multigrid order.
Without surface-fitting coordinates it is hard to remove numerical artifacts at the
surface of the stars. We cut off those features to show the details in the center of

the stars, but we show them later in Fig. 5.5 and we postpone the discussion of the
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Figure 5.2: Shown is the convergence of the multigrid implementation with the
help of the Hamiltonian constraint (left) and the y-component of the momentum
constraint (right, adopted from [Moll]). Each constraint is plotted along the -
axis passing through the stars’ centers. We show the interior of one star for three
different resolutions, the standard one with a grid spacing Ax = 0.1875 and double
2Ax respectively half 0.5Axz the resolution for the others. The medium and the fine
grid solution are scaled with factors of 22 and 2* in order to match the coarse grid
solution. Note that we are focusing on the strong-field interior of the star on purpose
in these plots. Convergence (and the constraint violations) is worse at the surface
and produces spikes due to inaccuracies. These features are the same in the eccentric

case and will therefore be discussed later in Sec. 5.2.

spikes to the corresponding section.

In Sec. 3.2.2 we already showed a preview of some evolutions to justify the constant
three-velocity approximation and we want to add another point here. But before,
we have to give some details about the evolution setups. The setups we employ
are similar to the ones used by Bernuzzi et al. [2012b] with some modifications.
We use second-order spatial finite differencing for the geometry, consistent with the
order of the multigrid algorithm, and fourth-order Runge-Kutta integration in time.
Additionally, we employ fourth-order Kreiss-Oliger dissipation as it is appropriate
for second-order spatial finite differencing. A fifth-order weighted-essentially-non-
oscillatory WENOZ scheme [Bernuzzi et al., 2012a] is employed for the evolution of
the fluid quantities as well as a LLF flux scheme. Note that the evolutions of the
multigrid solver are designed to run with good performance, as we are later going to
use them for quick parameter estimates, so we can construct SGRID data with the
desired properties (cf. the run times mentioned in Sec. 5.2). For high accuracy runs

and most SGRID evolutions we use slightly different setups.

Fig. 5.3 presents another justification for the constant three-velocity (CTV) approxi-
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Figure 5.3: Comparison of the constant three-velocity approximation. Shown are
the central density oscillations pmax(t)/pmax,0 normalized by the initial central density
and shifted by the corresponding central density of the run without approximation
p(t). These deviations caused by the approximation are shown for different initial
separations d and are clearly decreasing for higher initial distances. The horizontal

lines, which the curves are oscillating around, represent the average deviation.

mation by looking at the oscillations of the central rest-mass density pmax(t). Instead
of looking at the density directly, we look at the difference of the density oscillations
with and without the CTV approximation (here we denote the latter by a tilde)
and normalize it by the initial value [pmax(t) — p(t)]/pmax,0- Originally, the density
is more noisy, which required us to use simple low-pass filters in order to make a
clean analysis. Then we compare three different initial separations d = 30, 36 and 44
and find that the average deviation from the run, where we perform a full solve for
the velocity potential indeed decreases with increasing separation. Together with the
considerations in Fig. 3.2, we can confirm that the CTV approximation is especially
useful for runs with large initial separations, as we deal with for highly eccentric runs.
For small separations, those eccentric setups would just immediately merge, similar

to head-on collisions.

The last check we perform on initial data for quasicircular binaries is a further inves-
tigation of the central density oscillations. So far, we just considered the oscillations
we obtain with the CTV approximation. Now, we want to have a look at these spu-
rious oscillations for different kinds of initial data and demonstrate how the CTV
approximation is indeed a huge improvement over superimposed TOV stars, which
were used by Gold et al. [2012]. Fig. 5.4 shows a range of different initial data types
and confirms that inconsistencies of the data with the hydrodynamic properties of the

system lead to unphysical oscillations. The worst result — in terms of the oscillation
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Figure 5.4: Comparison of the stellar density oscillations over time, where py.x de-
notes the central density and is normalized by the maximum density at ¢ = 0, denoted
by pmax, 0. We show evolutions of various initial data types, where we distinguish be-
tween SGRID initial data (solid), multigrid initial data (dotted) and superimposed,
boosted TOV stars (dot-dashed). We further distinguish between the SGRID setup
with (cyan) and without (black) constant-three velocity approximation. Two differ-
ent multigrid setups show the influence of the stationarity frame, i.e. stationarity in
a rotating frame (red) and in a linearly comoving frame (green) . While the improve-
ment of the spurious oscillations is not large for the latter, the effect of the rotating
frame is clearly visible (red and cyan) and the remaining oscillations vanish if we

solve for the full velocity potential (black).

amplitude — is obtained when we take superimposed TOV stars. We tried to find a
boost parameter that results in velocities similar to those we obtained through our
schemes and thus approximating circular data. The remaining eccentricity can be
further reduced iteratively via bisection, but this would not even be necessary for
the kind of comparison we are doing, since the central density oscillations are in-
sensitive. The resulting oscillations are roughly 20%. If we now assume stationarity
in a linearly comoving frame, as it is the case for boosted TOV stars, but solve the
constraint and the hydrodynamic equations, the spurious oscillations are not signif-
icantly reduced (note that these configurations are also not easily converging, since
they require strong softening and careful treatment of the iteration order and param-
eters. A more detailed view on this can be found in [Moll]). On the other hand,
Tsatsin and Marronetti [2013] were able to reduce the oscillations without solving
these equations, by “simply” changing the shape of the stars. They found a way

to reduce the oscillations in non-constraint solved data by tuning the profile of the
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matter density and the velocities. However, this kind of fine tuning is undesirable
and violating the constraints is not satisfying from a physical point of view. Fig. 5.4
also shows data which assumes stationarity in a corotating frame, which is consistent
with the hydrodynamic properties of the system (see the discussion in Sec. 5.2.1). If
we use the CTV approximation in SGRID (recall that we always use it in the multi-
grid solver, due to the Cartesian coordinates) and compare to the multigrid solution,
then we see almost identical spurious oscillations, which are improved by an order of
magnitude with respect to the superimposed data. Finally, we consider SGRID data,
where we solve for the full velocity potential and see that the spurious oscillations are

basically removed (apart from initial perturbations that are present in all datasets).

Another possible way to verify the consistency of the data and check the quality is to
look at constant rest-mass sequences. These are provided in Sec. 5.2.2 for eccentric

systems, where we also include the limit of circular binaries.

5.2 Eccentric orbits

After assuring that the data we produce with our code are giving reasonable results
in the limit of circular orbits, we can proceed to more interesting cases that have
not been treated before. We test our scheme for large eccentricities and start by
investigating the convergence behavior, similar to what we did for circular orbits.
Next, we produce highly eccentric binaries and discuss their properties and compare
the features to previous studies from Gold et al. [2012] with inconsistent initial data.
Furthermore, we are trying to give some estimates of the reasonability of our data
with respect to post-Newtonian estimates. During all these examinations we are

considering data computed with SGRID as well as with BAM’s multigrid solver.

Before discussing any details we want to have a brief look at the runtimes of the two
different implementations. As we mentioned many times before, due to spectral accu-
racy and a complicated surface-fitting grid structure, SGRID is more accurate as the
multigrid solver. However the major advantage of the multigrid method is its compu-
tational speed. Due to the use of MPI, the BAM code scales well for large numbers of
cores (we tested up to 512 cores), whereas SGRID’s pure OpenMP parallelization usu-
ally does not allow more than twelve cores. Additionally, the computation in SGRID
is more expensive because of the different computational domains. Computing data
with BAM with 258% points — which is higher than most production runs — takes
0.9 hours on 256 cores on the JUROPA cluster (130% points can be computed on 96

cores in 0.6 hours), while typical SGRID computations need roughly two weeks (with
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Figure 5.5: Convergence of the two implementations are shown. Left: The Hamil-
tonian and y-component of the momentum constraint for an eccentric configuration
(mgEcc0.915) computed with BAM. The results are plotted along the z axis, which
connects the two star centers and one star is shown at the finest grid box, including
the surface, where spikes are occurring. We use two different resolutions and scale
the results with the appropriate factor of second order convergence. Plot adopted
from [Moll]. Right: Convergence of SGRID shown with the help of the Hamiltonian
constraint ‘H inside the two stars in the regions A € [0, Apax), Which includes the
surface. We compare different setups sgEccOI'2 and sgFEcc0.3'2, and sqgEccOH/ and
sgEcc0.3H4, where w000/5 denotes the spin. The top panel shows simple polytropic
I'2 EoS and the lower panel shows more complicated piecewise polytropic H4 EoS.
In both cases we give the convergence for eccentric, non eccentric, eccentric spinning
and non spinning setups. We have fixed ny, = 8 and use nay = np, ncat = na — 4.
Plot adapted from [Mol3].

na = ng = 26, Neay = 22) on twelve cores to finish. These different speeds are a
nice illustration of the benefit of the simplicity of this implementation. In particular,
one should have in mind that the time to compute initial data with BAM vanishes
in comparison with typical evolution times, which are larger by a factor of ~ 50
for short runs with direct merger. In case of (several) encounters or inspiral, the

evolution times drastically increase.

5.2.1 Convergence

Again, we start by discussing the converge properties of our implementations. Con-

sidering the left part of Fig. 5.5, we compare different initial data sets, which have
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been computed with the BAM multigrid. The following grid setup is employed and
can be used for production quality runs: We use 6 refinement levels and an outer
boundary at x = y = 2 ~ £103. The resolutions we compare employ 130® points
with a spacing of h = 0.25 at the finest level and 258% points with a spacing of
h = 0.125 respectively. Similar to the discussion in Sec. 5.1, we look at the constraint
violations along the z-axis and we can see clear second order convergence in most
parts of the plot, as it is expected. One can see some exceptions at the surface of
the star, where the constraint violations are forming spikes. However, this can also
be expected, since the density of an I'2 polytropic star is not differentiable at the
surface. Moreover, we use sixth order finite differencing during the evolution of the
metric variables in order to increase accuracy, i.e. reducing the constraint violations.
This implies that we also use sixth order finite differencing to compute the constraints
of our data, which itself is computed with second order stencils, and thus amplify the
spiky features at the surface. At least for the Hamiltonian constraint, these artifacts
are much smaller if we use second order finite differencing to compute the constraints.
Furthermore, the usage of higher order stencils also leads to a qualitative change in
the shape of the momentum constraint if we compare Figs. 5.5 and 5.2. This is not
unexpected, since the remainders from second-order finite differencing are relatively

large here.

We are pointing out that the difference in terms of convergence properties between
eccentric and non-eccentric data is extremely small. Hence, the e = 0.915 case
represents all eccentric runs, since we could not see any qualitative differences between

high and low (or even zero) eccentricity.

Let us now consider the right panels of Fig. 5.5, where we show convergence for
SGRID. First, in the upper plot we show simple polytropic stars as we also computed
wit BAM. Since SGRID is a spectral code, we show a different type of convergence
— namely, the falloff of the overall constraint (here e.g. the Hamiltonian constraint.
We could also show the momentum constraint, which looks similar but an order of
magnitude smaller) with an increased number of points. We investigated spinning
and non-spinning [wYy = wk = (0.005,0.005,0.005), resp. wYy = wh = (0,0,0)] with
and without eccentricity. We can clearly see that spinning stars are harder to solve
and show larger violations as non-spinning setups. On the other hand, we can also
see that adding eccentricity does not influence the convergence properties of SGRID.
The lower right panel of the figure shows more complicated piecewise polytropic
equations of state, as represented by the H4 EoS. Here we see again that adding

eccentricity has a negligible effect on the converge properties. However, as we discuss
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Figure 5.6: Convergence of the spurious density oscillations from data computed
with BAM. The central density is shown for two different resolutions (datasets MGe09
and MGe09high), which has an eccentricity e = 0.915. We show for the two resolu-
tions (blue dotted and solid green) and also the rescaled high resolution results (red
dashed), where we did not rescale the whole result, but only the oscillations Appax

with a scaling factor 22 for second order convergence. Plot adopted from [Moll].

in more detail in [Mol3], we can see that the overall convergence is worse for these
EoSs, since the solution is only C! at the interfaces between different pieces and thus

one does no longer obtain exponential convergence.

As we showed for circular orbits in Sec. 5.1, the spurious density oscillations are
greatly improved for our data computed with BAM and almost vanishing if we employ
SGRID and its surface fitting coordinates. This behavior does not change for eccentric
orbits and the density oscillations look almost identical. However, we can show
another nice convergence property if we again consider the BAM implementation from
this section’s beginning. Fig. 5.6 monitors the central density for the MGe09(high)
setup. We see a clear improvement in the oscillations when doubling the resolution
and the convergence can be estimated by multiplying the oscillations Apmax = Pmax —
Pmax,0 Dy the appropriate scaling factor, i.e., considering 4A pmax 4 Pmax,0 for second-
order convergence with a factor of 2 difference in the grid spacing. Although we can
observe some small superimposed features around, e.g., t = 50 or t = 180, it is safe to
say that the oscillations are decreasing with increasing resolution with almost second-
order convergence. Due to spatial conformal flatness and the fact that we neglect
radial radiation reaction velocity components, we do not expect the oscillations to

completely converge away in the continuum limit. However, based on the results



5.2.2 Eccentric sequences and post-Newtonian comparisons 71

shown in Fig. 5.6 and our results with SGRID, we expect that these oscillations would

be at the same level as we see for SGRID.

5.2.2 Eccentric sequences and post-Newtonian comparisons

The convergence tests strengthened the trust in the numerics of our implementations.
Now we want to check our results in a more physically motivated way by the means
of sequences. This means, we compute a series of equal mass initial data sets with
fixed baryonic mass m; = 1.625 and vary the initial separation. We additionally
vary the eccentricity of such sequences. To the best of our knowledge we have thus
been the first to construct eccentric sequences in [Moll]. Our results are shown in the
following. In our particular setup, an isolated star with the same baryonic mass would
yield a gravitational mass M; = 1.5149. Using this mass, we can define a quantity
typically used in sequences — the binding energy E, = Mapy — M. Here M = 2M,;
and Mapy denotes the Arnowitt-Deser-Misner (ADM) mass, an asymptotic quantity
that gives a measure of the total mass of the spacetime.

We take a short detour to discuss the measurement of the ADM mass, since there
have been proposed several different ways. For example O Murchadha and York [1974]
show how to define Mapy via an integral at spatial infinity, requiring extrapolation
in codes such as BAM, which do not support compactified coordinates. A realization
of this idea can be found e.g. in the work of Briigmann et al. [2008]. However, we
noticed that the resolutions we use at the outer levels is not fine enough to give good
results. Therefore we extract the ADM mass at a single radius which is sufficiently
large, but not too close to the outer boundary where the resolution drops. Equation
(16) of O Murchadha and York [1974] provides a useful formula to compute the
ADM mass in spatial conformal flatness. As explained in that work, this simplified
expression of the ADM mass can be evaluated in any region that satisfies the Laplace
equation. Looking at equation (3.5a) in our case, it is evident that Laplace’s equation
is approximately fulfilled, since the matter source vanishes outside of the star and
A;;AY goes like the shift squared, which falls off to zero at infinity. Thus we can
extract the ADM mass more easily and accurately. Actual experiments with SGRID
data yielded a change in the mass of less than 0.01% when we changed the extraction
radius of the simplified computation from r = 150 to » = 500, while the same change
amounts to a deviation in mass of ~ 4% for the original ADM mass computation.
The standard measure for the ADM angular momentum is sufficiently accurate for
finite radii, so that we do not use extrapolation here, as well. We find a deviation

caused by the change of the extraction radius of roughly 0.05%.



72

Neutron

star initial data

0.025

0.020

3 0.015

0.010

0.005

0.000

2.0

1.5

J/M?
=

0.5

0.005
0.000
0.005

0.010

By/M

0.015
0.020
0.025

0.030

0.01

Figure 5.7:

.01

@@ =00 AA e=02 9 =05 Bl =09

1 [l L 1
35 40 45 50
coordinate separation d
T T T T T

T T T T T

1 1 L L L

0.02 0.03 0.04

MQ

0.05 0.06 0.07

Shown are sequences for BNS with equal masses and varying eccen-

tricity, where the eccentricity parameter e ranges from e = 0 to e = 0.9, i.e. we cover

the limit of quasicircular sequences and go close to head-on collisions (see Tab. 5.1

mgSeq). The data has been computed with BAM for stars with individual gravi-

tational masses of My p = 1.5149 (compare Tab. 5.1). The top panel shows the

rotation w as a function of the coordinate separation of the two stars’ centers. In

the middle and bottom panel, we give the ADM angular momentum J4py; and the

binding energy £ in dependence of the normalized mean motion M. Dashed lines

represent the expected Newtonian behavior (black in the lower plot, since in this case

all Newtonian curves coincide) and the dotted lines denote the 3PN prediction for

e = 0. Figure taken from [Moll].
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We can now come back to consider eccentric equilibrium sequences, where we show
the dependency of the binding energy FEj, and the ADM angular momentum Japy
on the orbital frequency 2. It has to be mentioned that the usual orbital frequency
is no longer appearing in the Killing vector as in the circular case. For eccentric
systems we use the orbital mean motion € instead of w (which is the internally used
computational quantity in the new symmetry vector (3.31a)) or €2. The reason is that
only Q satisfies Kepler’s third law in the Newtonian limit. In particular, increasing
either w or € corresponds to decreasing the binary’s initial coordinate separation.
We expect from the Newtonian limit that the frequency decreases with increasing
eccentricity e, which is only true for , while w oc 1/4/1 — ¢ in the Newtonian limit.

The increase of w with larger eccentricities is illustrated in the top panel of Figure 5.7.

The lower two panels of the figure show the sequences computed with BAM and com-
pare them to Newtonian theory. Note that we also include the well studied case of
circular orbits e = 0 and see a qualitative agreement of the results with Newtonian
estimates. In this case we can further improve the agreement by considering higher
order post-Newtonian calculations as done by Mora and Will [2004] so that the devi-
ation from our circular data is less than 1%. For brevity, we do not show sequences
computed with SGRID explicitly here, since the circular case was considered already
by Tichy [2012]. Tichy demonstrated a nice match of irrotational data with PN the-
ory and our results of SGRID for ¢ = 0 are the same, while the BAM data are visually
almost on top of that. However SGRID data is slightly more accurate (especially for
lower separations) due to the precise treatment of the velocity potential. The sim-
ilarity of the data computed by the two implementations is the same for eccentric

orbits, thus we only show the BAM sequences.

The eccentric sequences in Fig. 5.7 reveal a qualitative agreement with Newtonian
theory as it is indicated by the dashed lines. The binding energy Ej, degenerates in

the Newtonian limit and is independent of the eccentricity

E, (/P
2= (M) 5.1
where 7 := mymy/M? denotes the symmetric mass ratio, with M the total mass,

so 7 = 1/4 in the equal-mass case we are considering. We see in the lower panel,

that our solution approximately describes such behavior. The angular momentum in
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Newtonian theory! is given by

% = (1 — )V (MQ)~V3 (5.2)
and indeed, we see J decreasing for larger eccentricities. The next step we initially
intended to investigate in [Moll] as well, is an extension of our PN comparison. Sim-
ilar to the improved matching of our results for circular orbits with 3PN calculations,
we expected an improvement for eccentric orbits compared with 3PN over Newto-
nian theory. Again, the PN calculations were taken from Mora and Will, however
the results we obtained were not in a good agreement with our data. After reconsid-
ering our ansatz it turned out that the PN results obtained in that manner are not
well-behaved for head-on collisions. In our scheme, we approach such configurations
for increasing eccentricities and reach them for e = 1. On the other hand, Mora and
Will approach an unbound parabolic orbit, i.e. with nonzero angular momentum,
hence our comparison is not valid and one cannot expect it to work at large eccen-
tricities. Sec. 10 of Blanchet [2014] gives an approach to alternative quasi-Keplerian
parametrization of eccentric orbits. This could be a solution for this issue, since these
solutions remain well-behaved even for vanishing angular momentum through 1PN.
Unfortunately it is not clear how to relate the quantities used to describe the orbit in
this parametrization to our  variable using only data at apoapsis. Additional com-
plications might arise from the fact that the zero angular momentum limit is special
even in the Newtonian limit, since all three types of orbits (elliptic, parabolic, and
hyperbolic) degenerate to head-on collisions when the angular momentum vanishes,
as discussed in Sperhake et al. [2008]. Thus it is not surprising that the PN results

do not match our eccentric data as initially expected.

In [Mol3] we compared eccentric sequences computed with SGRID and we chose a
different approach. Because of the compactified grid, which includes spatial infinity,
SGRID is capable of calculating the ADM quantities Eapy and Japy more precisely
than BAM’s multigrid solver. We can thus try to compute the PN eccentricity based
on these expressions and compare to the eccentricity parameter e we plug in. The re-
sults are shown in Fig. 5.8. The SGRID data is computed with nq = np = 24, ngy = 8
and nc, = 20 points and we choose the same physical setup as for the data computed

with BAM before. A feature that all plots of that figure have in common is the nice

to derive this and the previous equation one plugs Q, = [(1 —¢)/(1 + €)*]*/2Q into Eqgs. (2.2)
in Mora and Will [2004]. The expression for the angular velocity at aphelion, Q,, in terms of
comes from the standard Newtonian expressions above Eqgs. (2.2) in Mora and Will, noting that
02 = M/a?, where a is the binary’s semimajor axis, by Kepler’s third law.



5.2.3 Trajectories and waveforms 75

convergence of the PN eccentricity (denoted by épam, where the index stands for har-
monic coordinates) towards the input eccentricity for large distances of the neutron
stars. However, as can be seen in the bottom panels, only small eccentricities behave
properly if we increase the PN order. For larger values of e = 0.5, increasing PN
orders do not lead to better agreements of input and PN eccentricity, since the 1PN
results are closer to the input value than the 3PN results. The intention behind this
kind of comparison was to avoid using PN expressions that are not well-behaved for
large eccentricities, which corresponds to head-on collisions in our scheme. However,
even if we started with regular expressions (in particular we constructed EJ? from
Mora and Will’s expressions such that it is well behaved for large e) we end up with
terms that can blow up at higher PN orders if we finally compute the PN eccentricity.
Hence as e goes to one, the comparisons become worse. A more detailed description
of the computation of the PN eccentricity can be found in [Mol3]. In short, we take
3PN expressions for the eccentricity derived from Mora and Will [2004] in harmonic
coordinates (we also used ADM coordinates and found only minor differences as ex-
pected). The PN series of the binding energy? E can be inverted, so that the PN
expansion parameter  can be expressed in terms of E. Using this expression, we can
eliminate ¢ from the PN angular momentum .J. Ultimately this allows us to expand
a series of F and J to construct the square of the eccentricity parameter €pappy.

Due to the shortcomings of that PN expansion for large eccentricities, we also looked
at PN expressions given by Memmesheimer et al. [2004]. Although these are singular
for vanishing angular momentum (which occurs in head on collision) at constant en-
ergy, they give good agreement even for relatively large eccentricities. We computed
the three eccentricities (e, e, and e;) defined from post-Keplerian parametrization
(see equation (20) and (25) within Memmesheimer et al. [2004]), where we again
plugged in the values of the binding energy and angular momentum obtained from
SGRID. In particular, the value of e; is in good agreement with the specified eccen-
tricity and we find a maximum deviation of < 2.4% for all considered separations of

the e = 0.5 sequence.

5.2.3 Trajectories and waveforms

Transitioning from circular orbits to head-on collisions by decreasing the tangential
velocity yields an intuitive picture of the “orbits” one obtains. The smaller velocity

should lead to a less circular orbit as the stars fall faster towards each other. We

2here the tilde just denotes a rescaling of our quantities in comparison to Mora and Will. Again,
details are given in the corresponding paper.
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Figure 5.8: This figures shows different comparisons of initial data computed with
SGRID and PN estimates (datasets sgSeq0— sgSeq0.5). In the top panels, we compare
our data to fixed PN order (3PN on the left and 1PN on the right), while we compare
different PN orders at fixed eccentricities (e = 0.1 left and e = 0.5 right) at the
bottom panel. All panels show the squared eccentricity éy.,m as calculated from the
ADM energy Eapy and angular momentum Japy using PN expressions. The dashed
lines denote the input eccentricities and all four panels show convergence of €pam
towards the input eccentricity for larger distances. Also, for small eccentricities we
see convergence with increasing PN order. All plots are given as a function of the
normalized mean motion MQ. Adopted from [Mol3].

characterize these orbits by the stars trajectories, which are defined as the local
minimum of the lapse during an evolution. We want to ensure that our data shows
the physical features which eccentric initial data are required to have. Before we can
discuss further details, it is necessary to agree on the terminology and the way we

measure eccentricities.

Eccentricity definitions

As we mentioned before, our scheme is only exactly valid in the limit of Newtonian
point particles. Thus we do not expect the eccentricities that occur in our fully
general relativistic evolution to perfectly match the initially specified eccentricity.
Nevertheless, this does not pose any serious problems, since we do not necessarily
need to specify a certain eccentricity, but want to be able to set up consistent ec-

centric initial data. Later we can use empiric relations of the input eccentricity ep,
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Figure 5.9: Shown is the relation of the eccentricity we specify as a parameter
for initial data computation e;p and the eccentricity we measure during evolutions
eevol- The black dashed line gives the “ideal” relation ejp = €eyo1. Our results from
mgFEcc0.45-MgFEcc0.96 datasets in Table 5.1 are plotted as blue and green lines. We
distinguish between different methods to measure the eccentricity, where one is based
on the coordinate distance, while the other relies on proper distance as described in
more detail in the text. Both curves agree within the tolerance so that they can serve

as empirical relations to estimate the final eccentricity before computing data.

which is the specified initial data parameter®, and the eccentricity during evolution
€evol 10 easily obtain the desired orbits.

A major problem with these relations is that there exists no obvious method to de-
termine the eccentricity of a comparable mass system in general relativity. In the
literature one can find numerous ideas on how to estimate the eccentricity in evolu-
tions. Mroué and Pfeiffer [2012] give several references and more recently, Kyutoku
et al. [2014] also worked on this topic. However, most of these methods are designed
to work for small eccentricities (of the order < 0.1) and are not appropriate for the
highly eccentric systems we are interested in. A possible way to give a reasonable
estimate of the eccentricity of the system is to fit an ellipse to a short section of
the trajectory. Ideally, this section is taken from the beginning of the simulation,
but late enough that the initial perturbations have settled down. It is expected that
the trajectories are approximately elliptical in these segments, since radiation reac-

tion and other strong-gravity effects did not have much time to affect the orbit. A

3Note that we often drop the index ID for simplicity. In this section we refer to the eccentricity
parameter e as ejp and we return to the short notation afterwards.
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quick estimate can be given by fitting the coordinate trajectory directly to an ellipse.
One has to keep in mind that the coordinate distance is gauge dependent and one
would likely want to estimate the extent of the gauge dependency on the eccentricity
measure. Therefore, we compute the position angle of the trajectory and the proper
distance between the stars and construct a “proper distance trajectory”, which we
then fit with an ellipse. Note the caveat that the proper distance in BAM is not
exactly gauge invariant, since it is not measured along a geodesic. It still depends on
the foliation, but is much less influenced by initial gauge choices.

In highly relativistic simulations it does not make sense to define an orbit as a full
ellipse in view of the fact that orbital precession and radiation reaction will radically
affect the orbit. On the other hand we do not have to define such orbits; we just need
a segment of the trajectory and find the best fit of an ellipse to that section in order
to obtain the eccentricity. This procedure does not require us to define a semimajor
and semiminor axis for the orbit as a whole, as one would expect from the Newtonian
definition e = (1 — b?/a?)"/2.

In Fig. 5.9 we show the relation of eq, and erp for the two different fitting proce-
dures of the ellipse. To compute this figure we fixed the central enthalpy h = 0.255
in BAM’s multigrid solver, which results in a star with an isolated gravitational mass
of 1.399. We further fix the coordinate separation to d = 80 and only vary the ec-
centricity parameter. The evolution setup is the same as in the previous sections
with sixth order finite differencing and eighth order dissipation as it is appropriate.
Fortunately, the results are comparably stable with respect to different masses. More
precisely, we found that changing the stellar mass by ~ 10% amounts to a change
In €eyo of less than 0.5%, independent of the method used to compute it. The two
methods agree with each other within 3% for eccentricities larger than e > 0.4, which
is enough for our purpose of estimating the evolution eccentricity. Note that we also
experimented with the intervals we considered for the elliptical fit. In particular, we
varied the length interval of the section from 200 to 3000 points, which corresponds
to coordinate displacements from ~ 0.8 to ~ 9 or a evolution timespan of At ~ 30
to At ~ 200. All experiments yielded deviations of ~ 1%, or even less if one just

considers medium sized intervals and leaves out the very first points.

Extrapolating the results of Fig. 5.9, we would obtain ey, = 0.5 for vanishing input
eccentricity, while the actual fits would yield around 0.2 to 0.3 output eccentricity in
these cases, depending on the fitting procedure. One immediately sees that the fits
are more sensitive in these regimes and the deviation of different methods is larger.

Also the “real” residual eccentricities should be around 0.01, which shows that the
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ellipse fitting method is not applicable for small eccentricities and thus we only use
it for e 2 0.5. In Sec. 5.3 we consider low eccentricities and different measurement

techniques that are more suitable.

We are aware that these estimates are not gauge independent and that other groups
may have different results. For example the Princeton group [East and Pretorius,
2012; East et al., 2012a; Stephens et al., 2011] studied highly eccentric systems in
generalized harmonic coordinates, which could considerably deviate from our results.
However, in light of the above results from Fig. 5.9, we can use the relation of input
and evolution eccentricity to give a very reasonable estimate of the system’s charac-
ter. Furthermore, the figure also shows that the eccentricities are behaving well in
the sense that eqyo increases monotonically with erp.

The gauge independent quantity that would be preferable is the gravitational wave-
form. Unfortunately, the highly eccentric evolutions do not perform several inspirals
before merger, but in most cases very short plunges or chaotic zoom whirl orbits.
Quantities such as GW frequency or amplitude are hard to measure in these cases

and not suitable for eccentricity estimates.

Evaluating eccentric orbits

Finally we want to check the physical properties of the initial data we have con-
structed. Looking at Fig. 5.10, we find that the orbits are indeed crucially depending
on the value of the eccentricity parameter e. The performed evolutions are done with
initial data from BAM’s multigrid with a fixed central enthalpy h = 0.255 just as
before when we considered the eccentricity estimates and the evolution setup is the
same. The trajectories show the expected behavior, i.e. the orbits are less circular
for large values of the eccentricity parameter e and approach a direct head-on merger
for e — 1. However, these short evolutions are less interesting than the more compli-
cated setups we can find. Similar to the results of Gold et al. [2012] for superimposed
initial data, we can produce orbits with one or several encounters before merger. For
the specific separation and stellar mass, we find e = 0.45 to generate an orbit with
two encounters before merger. Later we consider more generic setups constructed
with SGRID with even more encounters, but for a first analysis we want to stick with
the BAM multigrid initial data. The setups in the figure are chosen such that they
are close to the data sets considered by Gold et al., although they are not exactly
the same. It is be desirable to have a close comparison to these setups. However,
finding such configurations is not trivial, since small differences have a huge influence

on the overall trajectory. The resulting gravitational waves differ and a comparison
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Figure 5.10: The trajectories of one star from an equal mass binary with varying
eccentricity parameter e. The setup is the same for all four different runs, apart
from e as can be seen in 5.1 from which we use MGe0.45, MGe0.5, MGe0.73 and
MGe0.915. The influence of e on the star's trajectory is crucial. While large values
lead to a direct merger, smaller values can be found which produce one or more

encounters. Plot adopted from [Moll].

might not be very illuminating. Moreover, comparing the trajectories is also not very
helpful, because the coordinate trajectories and thus gauge dependent. Although we
choose the same gauge conditions during the evolution as Gold et al., we do not have
the same initial gauge. While we are initializing the lapse and shift with values com-
puted by our initial data solver, Gold et al. use a zero shift initialization. Regardless
of gauge initialization, the data are in a region of phase space, which is sensitively
dependent on initial parameters, such as velocity (profile), separation or mass. The
bottom line is that we can see the same qualitative behavior, i.e. zoom-whirl features
where the separation decreases and subsequently increases again, as for superimposed
data. But especially the first segments of the trajectories of the superimposed data
look different compared to ours. In cases where we reproduce the qualitative features
of zoom-whirl orbits for similar separations and masses as Gold et al. used, we have
initially less eccentric trajectory segments. This issue is also related to the question
how to define the eccentricity of the obtained orbits, particularly if we keep in mind
that the trajectories are gauge dependent. We discuss this at the end of this section,

but we discuss the gauge independent gravitational waves of the e = 0.45 run first.

The waveform, given in terms of the ¢ = m = 2 mode of the Newman-Penrose scalar

Wy, can be seen in Fig. 5.11 and reveals some interesting features. On the z-axis we



5.2.3 Trajectories and waveforms 81

0.006

0.004

0.002

0.000

Re(r \114722)

—0.002

—0.004

—0.006

0 500 1000 1500 2000 2500 3000 3500
u/M

Figure 5.11: The gravitational waveform expressed through the £ = m = 2 mode of
the Newman-Penrose scalar W, for the mgFEcc0.45 case (see Table 5.1). We extracted
the waveform at a distance r = 500 from the binary’s center-of-mass and use the
retarded time u for the x-axis (see text) to account for the wave’s travel time. The two
small bursts (at u ~ 900M and 2100M) correspond to close encounters before merger.
One can also see the tidally induced f-mode oscillations of the stars inbetween the
bursts. Plot adapted from [Moll].

show the retarded time
u=t—r,=t—r—2MIn(r/2M — 1), (5.3)

which accounts for the wave’s travel time and where r denotes the extraction radius.
Instead of the well known inspiral waveforms, which monotonically increase in ampli-
tude and frequency until merger (the famous chirp signals), we obtain a completely
different signal since we do not observe a long inspiral phase but merely a couple of
“orbits”. While the stars approach each other there is almost no measurable signal
until they are near periastron where we measure a burst. Then the two companions
move apart and high frequency oscillations can be measured until the next burst dur-
ing another encounter encounter. Finally, the stars merge and the merger signal can
be seen. The same qualitative features were observed by Gold et al.. In particular,
the high frequency oscillations between the bursts have been measured and assigned
to stellar oscillations induced by tidal forces. We checked the frequency of these
f-modes for an isolated non-rotating star with the same baryonic mass and equa-
tion of state as in our setup and found that the frequency agrees with the interburst

signal. In particular, we compute this frequency using the fits given in Lau et al.
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Figure 5.12: Illustrated is an SLy run with an eccentricity of e = 0.45, compare
sgEccSLy from Table 5.1, which leads to four encounters before merger. We show
the trajectories of the stars on the right panel, where star 1 is denoted by the solid
blue line and star 2 by the dashed gray line. On the left panel, the proper distance

and the real part of the mode (2,2) of W, are shown as functions of time.

[2010] and the values of 1.399 and 9.586 for the isolated star’s gravitational mass and
areal radius. We perform a similar analysis for different EoSs and find interesting
orbits with several encounters. Fig. 5.12 shows the evolution of the SLy setup from
Table 5.1 with the same eccentricity parameter as for the I'2 setups. We evidently see
differences of those evolutions, originating from different EoS. The SLy setup results
in four encounters before merger as it can be seen in all panels, most easily in the
upper left plot, which shows the proper distance. We see the interburst signals in
the (2,2) mode of the gravitational waveform W, with frequencies matching the f
mode oscillations. The amplitude of these oscillations is varying from encounter to
encounter. Depending on the phase at which the oscillations are excited, the am-
plitude is increased (for instance after the second encounter) or even decreased (see
the third encounter). The right panel shows the trajectories, which produce a fairly

crowded but interesting path.

5.3 Eccentricity reduced orbits

So far we have only used one of the two introduced additional parameters provided
by our helliptical symmetry vector Eq. (3.50), namely the eccentricity parameter e.
We used this to control the tangential velocity of the star and left the radial velocity

parameter v, = 0 unattended.
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5.3.1 Eccentricity reduction scheme

In subsection 5.2.3 we discussed how to estimate large eccentricities in the evolutions
and later in this section we show how small eccentricities can be measured by apply-
ing different techniques known in literature.

Assuming for the moment that we are able to accurately measure those eccentricities
and we consider “circular” data in a sense that e = v, = 0 in our initial data com-
putation. In this case we measure a non-vanishing evolution eccentricity €eyo ~ 0.01
and the influence is sufficiently large that it can be seen with the naked eye by looking
at the proper distance (compare the results we obtain in Fig. 5.14 and Fig. 5.15).
However for the vast majority of astrophysical scenarios these eccentricities are of
completely artificial nature. During the long lasting inspiral phase, the correspond-
ing GW emission would efficiently circularize the orbit so that the eccentricity should
vanish before merger. Kowalska et al. [2011] report that the measured eccentricity at
merger of the six binary neutron star systems, which will coalesce within a Hubble
time, will be eeo < 1075, Hence, the expected eccentricities are several orders of
magnitude smaller than what is often employed by the numerical relativity commu-
nity.

These residual eccentricities influence various quantities, but the main effect can be
observed on the gravitational waveform. In [Moll] we already outlined a procedure
to iteratively reduce the artificial eccentricity, which was based on studies done by
Pfeiffer et al. [2007] and Husa et al. [2008], who reduced the eccentricity for binary
black holes. We explained our method in detail in [Mol3] and presented results for
eccentricity reduced neutron stars. In the meantime, Kyutoku et al. [2014] used
a similar technique to compute eccentricity reduced neutron star binaries as well.
Next, we describe the method we used to minimize the residual orbital eccentricity

by tweaking the two parameters e and v, in our approach.

In order to set up such a method we need two ingredients, i.e. (i) a measure for low
eccentricities and (ii) a scheme for finding better suited parameters for initial data
construction. Here we use two different approaches to measure the eccentricity, where
one uses the gravitational wave frequency w to estimate the remaining eccentricity
€evol, While the other uses the proper distance d inside the hypersurface. As already
mentioned in the previous section, the latter is measured within BAM along the
coordinate line connecting the two local minima of the lapse, corresponding to the
centers of the two stars, and is not exactly gauge independent. However it is much less
influenced by gauge choices than the coordinate distance d.oorq, Which is considered

by others to estimate the eccentricity and thus seemed to be the better choice. For
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more details, see also the description of the crucial impact of initial gauge choices on
eccentricity reduction with the coordinate distance in Kyutoku et al. [2014]. After
measuring eqyo1, we apply corrections to the tangential and radial velocity that would
remove the eccentricity from a Keplerian orbit (see the above mentioned works for
black hole binary realization of this idea).

We assume that the stars are moving towards each other with a linearly increasing
speed during the evolution, which means that the proper distance is second order
polynomial in time. The ellipticity part of the model is given by —g cos(wt + ).
Altogether we are modeling the proper distance as

1 B
d(t) = Sy + Apt + §A1t2 — — cos(wt + ¢) (5.4)
w

and try to find the best fitting parameters for our data. Note that it is as well possible
to fit the time derivative d(t) instead. The advantage is the reduction of the fitting
parameters, but for lower eccentricities the computation of the time derivate of d
introduces noise and makes the fit more complicated. We have tried both methods and
also apply low-pass filters to help improving the results. There is no clear conclusion
which model, i.e. fitting either d or d works better. We notice the tendency that the
direct fits of d yield slightly better results in terms of residual eccentricity after a fixed
number of iterations, thus we employ that model, although the following procedure
is the same for both.

For a Keplerian orbit, the stellar separation is described by

2p

dyep(t) = 1—1—TOS[¢>(1§)]7

(5.5)
where p is the semi-latus rectum and ¢ is the true anomaly, i.e. the angle between
the star’s current position and its location at apoapsis. We can write the derivative

of the distance as

doew sin[o(t)]

= Trecodlo] ~ ew dysin[g(t)] + O(e)?. (5.6)

dKep(t)
Here we used ¢ = w and d; denotes the initial separation and we approximated the
result by assuming the eccentricity e is small. Comparing (5.4) and (5.6) yields an

eccentricity

B
— 2.7

The radial velocity caused by the ellipticity, i.e. the component of d originating from
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the cosine term, is given by Bsin(¢). Hence, we have to correct the initial radial
velocity v, by
dv, = —Bsing (5.8)

in order to remove the eccentricity caused by the radial velocity. After fixing the
radial component, it remains to correct the orbital angular velocity €2, which induces
artificial eccentricity by radial acceleration and can be controlled via the eccentricity
parameter e. The relation of the orbital angular frequency at apoastron 2,,, to the
orbital angular frequency of the quasi-circular data is given by Q.p0 ~ /1 — eQ.
Changing e by a small de leads to a change in 2 by 62 ~ 2\/_%90(56. In general, a
change of the orbital Q by 692 yields a change of the acceleration Q%dy/2 by dy25€,
Similar to the considerations for the radial velocity, the ellipticity contribution of the
radial acceleration of one star is given by (Bw/2)cos(¢). Thus, the correction we
have to add to the eccentricity parameter in order to balance the orbital acceleration
Is

se = Bweosd) —p (5.9)

do§23

In summary, we can track the proper distance of the stars during an evolution for
the first one to two orbits. This is sufficient to fit the proper distance to our model
(5.4). Afterwards we can compute the necessary corrections (5.8) and (5.9) and
start a new evolution. We can iterate over this procedure and in most cases two or
three iterations are sufficient to drive the residual eccentricity down by more than an
order of magnitude. A reduction of that order is similar to the findings reported by
Pfeiffer et al. [2007] for black holes. Note that it is not possible to arbitrarily reduce
the eccentricities, since after 2 5 iterations the measured distance is too smooth to

accurately apply our fitting procedure.

As mentioned in the beginning of this section, we want to give another estimate of the
eccentricity in order to verify our results. Instead of the proper distance we employ
the gravitational waves. The eccentricity of an evolution estimated based on GWs is
denoted by eqw. To determine eqw we follow the description of Walther et al. [2009],
which itself is based on Baker et al. [2007]. Post-Newtonian calculations suggest to

model the GW frequency as
1
Wiy = 17'*3/8 (L4 a7 4 er™/8) (5.10)

where ¢y, co are determined by fitting and

2 2
2 n(t. —t) 2

—1rc 7 . 11

T TIVE +d (5.11)
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Figure 5.13: The eccentricity estimated from the gravitational wave frequency w as
a function of the retarded time u. The initial data are computed with SGRID for SLy
equation of state with an initial separation Mwyy = 0.0365. We show quasicircular
data for e = v, = 0 (red) and the third iteration of the eccentricity reduction (blue).
The global extremum is marked by the points and gives the eccentricity estimate
of these runs. We find eqw s = 0.00084 and eqw, = 0.0156 respectively, which is
a factor of 20 improvement. The horizontal dashed lines mark the eccentricities ey
calculated based on the the proper distance. Plot adapted from [Mol3].

Here, t. and d are further fitting parameters and n = mymo/M? is the symmetric

mass ratio. We measure the eccentricity based on the gravitational wave frequency

w(t) — wee(t) .

ew(t) = QWﬁt (t)

(5.12)
Equation (5.12) depends on time and is strongly oscillating. Nevertheless, we can use
it to define a time independent measure of the eccentricity by computing the global
extremum

caw = max lew(t)] - (5.13)

As one can see for example in Fig. 5.13 and as one would intuitively expect, this
maximum occurs for the vast majority of simulations in the beginning. Note that we
cut off the initial noise at the first time steps in order to obtain reasonable results. We
additionally compare the estimates obtained via gravitational waves with estimates
based on the proper distance fits for the standard quasicircular setup e = v, = 0
and for the third iteration of the eccentricity reduction procedure (more details on

the setups can be found in table 5.2). One can clearly see that these estimates agree
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Table 5.2: The results of applying our eccentricity reduction iteration to two binary
setups. The stars distance is given by Mwsy = 0.0365 in both cases. The first configuration
is a I'2 binary with individual masses of M4 = MP = 1.515 and a total ADM mass of
Mapwm = 3.006. The second one is an equal mass SLy configuration with M A= MB =1.350
and Mapy = 2.6782. For both runs we performed three iterations of the method and
give the parameters e and v, that are used as input. We further measure the remaining
eccentricity during evolution eg,o based on the proper distance, so we call it e; here.
Additionally we provide the values of the binding energy Ej, = Mapym — M and the angular
momentum Japyr, which we normalize by M and M?, respectively.

EOS | Iter e [10_3] Uy [10_5] €d [10_3] Eb/M [10_3] JADM/MQ
0 0 0 9.77 -7.984 1.0700

9 1 -6.8 -1.63 1.38 -7.922 1.0729
2 -5.7 -1.14 0.91 -7.920 1.0738
3 -6.3 -1.16 0.56 -7.920 1.0734
0 0 0 12.41 -8.115 1.0541

SLy 1 -6.0 -1.13 7.80 -8.103 1.0580
2 -12.1 -1.91 3.97 -8.088 1.0615
3 -13.7 -1.09 0.87 -8.085 1.0625

quite well within roughly 5% (comparing eqw s = 8.4 x 107* to €43 = 8.7 x 107* for
the third eccentricity reduction iteration step of an SLy EOS run). Especially for
lower eccentricities (i.e. higher iterations) the numerical noise is increasing relatively
to the measured proper distance oscillations, and thus the accuracy of the proper
distance fits is reduced. Therefore we expect both methods to deviate. On the other
hand the qualitative agreement shows the consistency of the measures. For actual
numerical computations it is beneficial to use the proper distance based estimates
for iterative applications of the eccentricity reduction scheme. The reason is the
increased runtime one would need to evaluate the gravitational wave signal. The
proper distance is tracked immediately and we have to evolve the data for one or two

orbits, while the gravitational waves additionally have to reach the extraction radius.

5.3.2 'Trajectories and waveforms

The initial data for eccentricity reduction are exclusively computed with SGRID due to
the increased accuracy. We presented the results in [Mol3] and have already previewed
some of our findings for a SLy EoS run in Fig. 5.13. Additionally, we investigate a
similar setup with polytropic I'2 EoS for two equal mass stars. Both initial data sets
differ only in the EoS and thus the stellar masses. Details about the parameters and
in particular about the iterative changes of the eccentricity reduction parameters can

be found in table 5.2. To compute the data we used ny = np = 26, n, = 8, nca = 22
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Figure 5.14: The proper distance d as a function of time for the polytropic I'2 setup
from table 5.2. The original data is drawn as blue dotted line. The evolutions of the
first and second iterative improvement are shown as red and green lines, while the
third iteration is denoted by the solid black line. Plot adopted from [Mol3].

points in SGRID and for the evolution with BAM we used the constraint damping Z4c
evolution scheme, as described in Bernuzzi and Hilditch [2010]; Hilditch et al. [2013].
The grid consists of seven refinement levels, where the two innermost boxes contain
96 points with a finest grid spacing of 0.15, while the outer boxes use 192 points and
the grid spacing is doubled from level to level as usual. The outermost box is a cubed
sphere with 192 points in radial and 84 points in azimuthal direction (see Bernuzzi
and Hilditch [2010] for specific details and Ronchi et al. [1996]; Thornburg [2004] for
a more general discussion on cubed spheres). Tab. 5.2 shows the results of the ec-
centricity reduction for different iteration steps. Initially, we measured large residual
eccentricities of e = 9.8 x 1073 for the I'2 setup and eqo0 = 1.2 % 102 for SLy. After
three iterations we could decrease these to e;3 = 5.6 x 10~ and eqo = 8.8 X 10~4
respectively, which corresponds to improvements of at least a factor 20. In Fig. 5.14
we also show the I'2 setup’s proper distance d for the first two orbits as a function of
time. The original circular data before our iteration procedure is clearly oscillating
in the proper distance. The improvement after each iteration is evident and after the
third iteration the oscillations are hardly visible.

Fig. 5.15 shows a setup similar to the I'2 setup, but with smaller initial separation
so that the merger occurs earlier. One can see the trajectories of the stars with
and without eccentricity reduction. Note that we have to initialize the simulation
with zero shift in contrast to all other runs, in order to make the eccentricity intu-
itively visible in the tracks. One can clearly see that the trajectories are intersecting

each other for standard circular data, whereas the improved data performs a fairly
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Figure 5.15: The trajectories of the centers of the stars for the original data (blue)
and for eccentricity reduced data (orange). The solid and dashed lines distinguish
between the two stars. The setup was chosen similar to the I'2 case from Table 5.2,
but with closer initial separation, which results in fewer orbits and earlier merger.
The eccentricity was reduced by an order of magnitude as the proper distance (top
panel) shows as a function of time.

symmetric inspiral.

We can now discuss the influence of the residual eccentricity on the physical quanti-
ties. Additionally, it is possible to estimate the improvement of the data by looking
at the ADM angular momentum and the binding energy and comparing with post-
Newtonian calculations. Similar to Sec. 5.2.2, we look at PN expression by Mora
and Will [2004], but an extension to fourth PN order does not change the results
significantly. In view of the fact that the initial separations of the stars are rather
large, we expect the third order post-Newtonian results for the ADM energy and
angular momentum in terms of the binary’s angular velocity to be fairly accurate.

Indeed, we find that these quantities are closer to PN calculations for circular orbits,
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if we consider our eccentricity reduced data sets instead of the original ones. Using
the binding energy Ej and the angular momentum Japy as listed in Tab. 5.2, we
compare those values to the PN results for

(i) the SLy setup, where Japy, py = 1.0637M? and Ej, px = —0.008088M, and

(ii) the I'2 setup, where Japy, pny = 1.0730M?2 and Ej, px = —0.007920M .

In both cases we see the mentioned improvement. Case (i) yields a relative error of
~ 1% for the original data and an error of ~ 0.15% for the data at the third itera-
tion. Furthermore, in setup (ii) we find a deviation of ~ 0.4% for the original and a
deviation of ~ 0.04% for the eccentricity reduced data. Thus, the PN comparisons
as well as the reduced proper distance and gravitational wave frequency oscillations

prove the functionality of our iteration procedure.

Influence of low-eccentric data on waveform phasing

As already mentioned in the beginning of this section, Kyutoku et al. [2014] indepen-
dently presented an eccentricity reduction procedure similar to ours. However, the
influence on the GW phase and amplitude as relevant measurable quantities was not
discussed. Thus we presented these observations in [Mol3] and summarize them in

the following enriched with some more recent results.

The idea is to directly compare the data evolved with BAM and produced with SGRID,
where we once use the eccentricity reduction iteration and once just compute e =
v, = 0 circular data. Such investigations are necessary since the eccentricity reduction
procedure is computationally expensive so that one does not want to do it as default.
Whenever truncation errors or other uncertainties affect the data such that their
influence is larger than the gain of eccentricity reduction, we can skip that additional
effort. Therefore we consider the SLy setup we used before (see Table 5.2) and a H4
EoS setup with the same mass and initial separation. The eccentricities are reduced
from ey = 1.241 x 1072 (It0) to eq = 8.7 x 10~* after three iterations (It3) in the
SLy setup. Similarly the H4 eccentricities during the evolutions are reduced from
eq = 1.31 x 1072 (It0) to eq = 7.0 x 107 (1t3).

As before we focus on the dominant mode, i.e. the ¢ = m = 2 multipole. The
subscript is omitted for brevity. In order to accurately compare the waveforms they
have to be aligned. we proceed as outlined in Bernuzzi et al. [2012b]. An interval
[t1,12] = [1000,6000] ~ [370M,2222M| is chosen, where the waveforms are brought
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Figure 5.16: Comparison of the gravitational wave phasing of the evolutions of
initial data without (It0, blue) and with (It3, green) eccentricity reduction for the
SLy EoS (left) and H4 EoS (right) configuration. One can see the phase difference
and the real part of the (2,2) mode of Wy, as well as its amplitude. The shaded region

shows the region used for waveform alignment.

in congruence by shifting by constant time and phase offsets T', ® according to

G(T, ®) = /b 61(t) — po(t + T)) — ®|dt. (5.14)

Here ¢, 2 denotes the GW phase of the two datasets, when we write the curvature
scalar as rW¥y = aexp(—i¢). Note that Bernuzzi et al. [2015] present a more robust
alignment procedure based on a frequency interval, which in principle could be em-
ployed as well. However the above procedure is sufficient for our purposes. Fig. 5.16
shows the results of our investigations, where we used green lines for the eccentric-
ity reduced data and blue lines to denote the original data. The waveform is nicely
aligned within the interval, which is illustrated as the shaded region. One can clearly
see the reduced oscillations in the amplitude of the gravitational waveform. The cir-
cular data amplitude is oscillating around the eccentricity reduced data’s amplitude
with ~ 5% at early times u ~ 400M. Both simulations, SLy and H4, are looking
qualitatively similar with the difference that the H4 setup has a later merger. We
also provide the phase difference Agys, which oscillates between [—0.06,0.06] rad for
both setups, where the amplitudes at early times are slightly larger for the H4 EoS.

Ultimately, these results demonstrate that the eccentricity reduction procedure —
with roughly three iterations, corresponding to eccentricities of order eq ~ 1074 —
improves the waveform quality for GW modeling purposes, and should be employed

in future precision studies of the gravitational waveform. On the other hand, we
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have to note that eccentricity reduction is likely to be effective only if combined
together with an improvement of other error sources, most notably truncation errors.
Bernuzzi et al. [2015] showed that A¢ ~ 0.12 rad is at least a factor two smaller than
the typical uncertainty introduced by truncation errors at the resolutions employed

here.



CHAPTER 6

Irrotational binary inspiral

Although the focus of this thesis is squarely on initial data for neutron stars, we want
to outline preliminary results of a related project, namely the usage of a Hamilton-
Jacobi scheme for irrotational binary inspiral evolutions. The scheme has been de-
veloped by Markakis [2014] and we include it here, since considerable effort went
into the first implementation of this scheme in a full general relativistic code and the
considerations made within the derivation are similar to the equations we treated
here. Furthermore, the BAM implementation we are striving for, would be particu-
larly well-suited for evolutions of our initial data, which exclusively uses irrotational
flows if computed with the BAM multigrid solver.

However, we have to stress that this is work in progress and the current implemen-
tation has lead to several modifications of the scheme. We are thus only able to
present preliminary results restricted to single TOV stars in this section, as there
still exist open problems. Nevertheless, we do not want to leave this scheme and
its implementation undiscussed, since it provides technical simplification and gain in
efficiency and accuracy to binary inspiral problems, as explained in Markakis [2014],

most notably the potential elimination of artificial atmospheres (compare Sec. 2.4.1).

6.1 Irrotational Hamilton-Jacobi hydrodynamics

We focused on the implementation of the irrotational Hamiltonian-Jacobi method
and on overcoming the numerical challenges, hence we do not give the derivation
here. Instead we refer to Markakis [2014] for details and briefly summarize the idea
to gather the important equations. As in previous chapters, a simple barotropic fluid
is considered. The starting point is the Euler-Lagrange equation of motion (Eq. (3)
in [Markakis, 2014]) from which one can obtain the covariant Hamilton equation
through Cartan’s identity such that
dr, OH

O by (Vi — Vamy) + Vol =0 (6.1
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Here we use the canonical fluid momentum 7;, which we already introduced earlier

and the Hamiltonian of a fluid element is defined as
H = —huy = —3m; + a\/h? + yimm, a—ﬁyj (6.2)
t — 7 v iy = \/71/2 .
The fluid velocity as measured by normal observers is given by
vi=a (v + Y. (6.3)

Following Markakis [2014], an important property stated in [Friedman and Ster-
gioulas, 2013] can be exploited, i.e. binaries modeled as barotropic fluids without
viscosity or dissipation exactly conserve circulation and thus if they are initially
irrotational they remain irrotational. This enables us to assume the flows to be irro-
tational wy, = Vym, — Vem, = 0, hence we can simplify (6.1) to become strictly flux

conservative (meaning that it has no source terms)
O + Vo H = 0. (6.4)

Further considering the conservation of rest-mass, the irrotational evolution scheme
can be written in flux conservative form analogous to the Valencia formulation in
Sec. 2.4.1. Tt thus reads R

U + O FF =0, (6.5)

—

where we can give the conservative variables U and the flux vectors F* via

U:(p* R =) fori=1,23 (6.6)

and the 7-th row of the vector is label with index 7. Additionally, we employed the
weighted rest mass density p, = ay/ypu', which is closely related to D as the only
difference is the factor of the determinant. The conserved variables m; are coupled

with p, via the equation of state p = p(h) and the usual normalization condition

u' =~ yiiuug 4 1. (6.7)

It is now possible to evolve (6.5) together with the spacetime metric. A nice feature of

u,u* = —1, thus

this formulation can be seen by looking at the construction of the primitive variables

)

h,u; from the conservative ones, which is necessary to compute the fluxes F' at each
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time step. This reconstruction can be done by numerically solving

p(h) = —— L (6.8)

ﬁ\/’}/ijﬂ'iﬂ'j + h2’

which can be obtained through (6.7). One can notice that the reconstruction can

solely be done by dividing by the specific enthalpy h instead of the rest-mass density.
h = 1 in the exterior of the stars and thus no artificial atmosphere is needed for
reconstruction. However, because strong hyperbolicity is lost for zero sound speed,
a modification near the surface (not necessarily an atmosphere) is still needed for
stability.

6.2 Preliminary numerical results

We implemented (6.5) in BAM and employed a Newton-Raphson scheme to iteratively
solve (6.8) for reconstructing primitive from conservative variables We compute the
fluxes with a local Lax-Friedrich scheme and employed second order finite differencing
for the test setups as well as a standard third order Runge-Kutta scheme for time
evolutions. For our first runs, we still make use of an atmosphere and consider a simple
polytropic equation of state with I' = 2. The star is placed on a small grid with a fine
grid size of h = 0.25. We then find that the evolution scheme encounters instabilities
in the atmosphere caused by the vanishing sound speed. However, running in octant
symmetry seems to minimize these effects and it is possible to run stable simulations
for more than 1000M. The left panel of Fig. 6.1 shows the results for a TOV star,
which is oscillating in density over time due to the scheme. We clearly see that these
oscillations are decreasing with second order as expected if we increase the resolution.
For another test scenario, we made use of a similar setup, but now tried to drop the
artificial atmosphere. Instead, we extrapolate the enthalpy h to the outer region of
the stars, so that it is perfectly smooth and we modify the crust equation of state to
be p = poch™*' with a density of the outer crust poc. Note that h is not used for
solving the gravity part of the equations in the exterior and thus setting p to zero
there to compute the sources of the gravity part does not introduce any errors.

We show the results of a full three dimensional evolution without any symmetries
in the right panel of figure 6.1. We tested the stability of the scheme by adding a
perturbation of the matter fields at around z = —2.5, y = 2z = 0 to the initial TOV
data. We see the density profile (and all related profiles) settling down to a new stable
solution after 100, while the snapshot in that figure shows the situation after 1000/ .

Unfortunately, the solution develops spikes in the velocities at the surface of the star
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Figure 6.1: Shown are the central densities for two different setups. The left panel
shows the oscillations of the density during the evolution with the irrotational scheme
still including artificial atmosphere. The black line denotes twice the resolution of
the blue line, while the red dashed line is the higher resolved run with appropriate
scaling according to the expected second order convergence (note that actually the
oscillations are rescaled and not the whole density).

In the right panel, the atmosphere is set to zero and the enthalpy is extrapolated to
the outer region. We show the density profile with an initial perturbation in black

and the solution settles down to a stable state, which is shown at ¢ = 100 in blue.

and further instabilities are originating from the boundaries. These effects take over
the dynamics after ~ 200M and the solution becomes unstable. Again, at the surface
zero sound speeds are encountered when i = 1 and then the characteristic eigenvalues
become degenerate, instead of being distinct as for positive sound speeds. So, for
polytropes instability arises for both Hamiltonian and Valencia formulation. For
Valencia, an artificial atmosphere prevents instability at the expense of accuracy. In
the Hamiltonian case, the same trick does not work. Instead, what does seem to work
but has not yet been fully implemented is the following: Modify the crust EoS so that
the sound speed remains finite and takes a constant realistic value (~ 0.05¢) in the
crust. Also, extend h to values < 1 outside. This i) restores strong hyperbolicity and
stability and ii) makes H and h smooth accross the surface. Due to this smoothness,
perturbations moving from the inside towards the outside cross the surface without
amplification or reflection (which happens in Valencia with an atmosphere), and
also numerical accuracy can be higher since smooth quantities are being numerically
differentiated.

Currently we are investigating different EoSs in the crust and although this is work

in progress, we hope that these techniques can circumvent the current problems.



CHAPTER 7

Conclusion

7.1 Summary

Full general relativistic hydrodynamic simulations are needed to precisely study gravi-
tational waves, ejecta or merger remnants of neutron stars with high accuracy. Binary
neutron star mergers have been the center of studies of several works in recent years.
A lot of progress has been made in this field by investigating topics such as differ-
ent equations of state (e.g. Shibata et al. [2005]), neutron stars with spins [Bernuzzi
et al., 2014] or large mass ratios [Taniguchi and Shibata, 2010]. However, there are
still certain scenarios that could not yet be covered in a satisfactory manner. One
of these is the topic of neutron stars which have not been circularized by gravita-
tional wave radiation and which can probably be found in globular clusters through
dynamical captures. In contrast to such highly eccentric orbits, simulations with low
eccentricities have been studied in more detail, but are not entirely unproblematic,
since usually undesired residual eccentricities of e ~ 1072 are inscribed to the initial
data.

We have developed a method that is able to compute for the first time consistent
initial data with eccentricities that cover the range from highly eccentric orbits down
to eccentricity-reduced circular orbits. To do so, we have generalized the approximate
helical Killing vector that is typically exploited to solve the Euler equation via its first
integral to a pair of inscribed helical symmetry vectors. This generalization was then
justified using two equivalent approaches. First, we added a boost to the standard
approximate helical Killing vector used for constructing quasicircular initial data in
order to vary the stars tangential velocities at apoapsis. Secondly, we showed that
the same vectors can be constructed by inscribing circles to orbits approximated by
ellipses. We further added a radial velocity component to that vector so that we are
finally able to control the tangential and the radial velocity of the stars individually

and construct arbitrary orbits, where the stars are initially located at apoapsis.
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We wrote our own initial data solver and directly implemented it into the BAM
code, which performs the evolutions. This code is based on a second order multigrid
method and designed to run fast. Due to the simple Cartesian grid structure provided
by BAM, we restrict to irrotational stars and approximate this fluid flow through a
constant velocity potential. This approximation was tested and we presented results
showing that it is a good approximation if the stars are sufficiently far apart. In
our scheme, we distinguish between different frames of stationarity to track down the
source of spurious oscillations found in evolutions of inconsistent, high eccentricity
data. Our method reduces such oscillations by at least an order of magnitude for high
resolutions if we assume stationarity in a rotating frame, while we observe the same
spurious oscillations in case of stationarity in a comoving frame is assumed. Fur-
thermore, we can confirm the physical character of the oscillations induced by tidal
deformation at close encounters of the neutron stars, since these are qualitatively the
same as found in other works with inconsistent data with unsolved constraints [Gold
et al., 2012] or without solving Euler equation [East and Pretorius, 2012].

Another implementation has been carried out in order to upgrade the SGRID code and
include our method. This code provides surface-fitted and compactified coordinates
and solves the equation for the velocity potential and thus increases the accuracy
of the data. Together with previous upgrades (described in Tichy [2012] or [Mol3]),
SGRID is now able to compute neutron stars with arbitrary eccentricities in combi-
nation with more realistic piecewise polytropic EoS, generic spins and unequal mass
ratios.

We were able to compute eccentricity reduced initial data for different equations of
state, where we used an iterative method to determine eccentricity and radial ve-
locity parameters, such that the resulting orbital eccentricity during evolutions is
minimized. The eccentricity could be decreased by more than an order of magnitude
within a few iterations, although each iteration is fairly time consuming. Evolutions
with eccentricity reduced data were performed and showed clear differences in the
waveforms amplitude and phase. However, the uncertainties are usually of compara-
ble size so that other errors, e.g. truncation errors, have to be minimized in order to
benefit from the improved data. If this can be achieved, low eccentric binaries have
to be employed for gravitational wave analysis templates. As discussed in Read et al.
[2013], the residual eccentricity in current simulations is large enough to bias the
determination of the tidal deformation, which would provide a valuable constraint on

the poorly-known equation of state of cold, dense nuclear matter.

Throughout the thesis, we provided several consistency checks of both implemen-
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tations such as convergence checks or post-Newtonian estimates. It could be shown
that our results are trustworthy and we also used different analytic estimates to define
notions of eccentricity. Overall, the ability to construct self-consistent initial data for
eccentric binary neutron stars allows us to study many interesting physical setups, in

both the high- and low-eccentricity regimes.

Finally, we introduced a side-project in which we want to set up a new evolution
scheme for irrotational binaries. This would be especially useful in our BAM initial
data implementation, which uses irrotational flows and could thus evolve our initial
data. The advantage of such a scheme is that is does not necessarily need an artificial
atmosphere, which is employed by several other schemes. We showed first results of
this work in progress and outlined the concept. Our preliminary results motivated a

more detailed investigation in the future.

7.2 Future prospects

Now that we have two implementations capable of computing initial data for stars
with arbitrary eccentricities, we are ready to explore the parameter space beyond
our previous investigations. For highly accurate simulations it is appropriate to use
SGRID’s initial data, but especially for simulations with large eccentricities, we can use
the extremely fast multigrid solver in BAM to find interesting orbits (e.g. with several
encounters) and then compute more accurate data using the obtained parameters in
SGRID. In [Mol4], we are investigating highly eccentric runs. We are considering a
range of eccentric setups with and without spin and with different piecewise polytropic
equations of state, as well as I'2 EoS. We plan to estimate the detectability of the
waveforms and estimate the energy stored in the inter-burst oscillations and its effect
on the orbit. Additionally, we hope to answer open questions about the final remnant
of such eccentric scenarios, such as the properties of the accretion disc or one might

also consider the ejecta.

Apart from these studies, there are several different things we can investigate with
SGRID in the future. Most notably, we have not looked at the influence of eccentricity
reduction on unequal mass stars and only have considered proof-of-principle tests for

spinning stars.

Furthermore, there are also some possible upgrades that we would like to include
in our scheme. On the one hand, we could tweak our schemes by considering PN

corrections to the Newtonian expressions for the orbital motion which we used to
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derive the symmetry vectors. Thus, we could try to obtain better comparisons with
analytic techniques such as EOB formulations.

On the other hand, a general extension of our scheme to include black holes would
not be complicated. Black hole-neutron star binaries would be an interesting feature
of our initial data solvers and would yield the possibility to revisit previous setups

(for instance from Stephens et al. [2011]) with consistent initial data.

The preliminary results we obtained from the Hamilton-Jacobi evolution scheme were
promising and future work has to be done on this topic. We plan to implement an
improved treatment of the neutron star crust in order to cure remaining instabilities.
The next step is the application for binary neutron stars and a first simulation of

stars on inspiralling or eccentric orbits.



Appendix

A Stationarity in a linearly comoving frame

Assuming we employ stationarity in a linearly comoving frame, i.e. setting w = 0

and A = vY, then this yields a Killing vector
EY =t +o¥y” (A.1)
and we would have an enthalpy profile determined by
(0 +vY0,)h = 0. (A.2)

However, we can consider the limit of circular orbits, where v¥, = Q1 5 and in which

case the enthalpy profile has to exactly satisfy
(Or + wdy)h = 0. (A.3)
From (A.3), we obtain that d,h = —Q0,h, which can be inserted into (A.2) to get

(O +vY0y)h = (—=Q0y +vY0,)h (A.4)

= (
= Q[(v12 — )0y +yO;| h (A.5)

for each star 1,2. Obviously, this only vanishes at the star’s center at x = 21 2,y = 0,
but nowhere else. This leads to unphysical behavior in the most parts of the stars
interiors.

Furthermore, using the injection energy to construct the force balance equation (sim-
ilar to (3.42)), we obtain violations of true force balance at the stars center if we
employ (A.1) for this construction, due to the missing centrifugal forces. Thus the
gravitational forces are unbalanced and explain the the oscillations of ~ 20% in Fig-

ure 5.4.
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B Nonrelativistic incompressible binaries

In the following, we are investigating the injection energy and the velocity poten-
tial in the limit of nonrelativistic incompressible flows based on calculations done
in [Moll]. These investigations are particularly useful for fixing parameters in the
physical approach to the symmetry vector, since we thus ensure the correct limits.
Following equation (6.49) from Gourgoulhon [2006], we can write the Crocco form of

the Euler equation as

a{Ui + /Uj (DjUi — D{Uj) = —DZH (BG)

where H = %112 + hx + @ is the Hamiltonian of a fluid element with specific enthalpy
hx, while v' = da®/dt is its velocity, ® is the gravitational potential, and D; is the
covariant derivative compatible with the Euclidian 3-metric f;; in E®. For irrotational
flows, the second term on the right hand side of Eq. (B.6) vanishes and we can write
it as

oV =—H, (B.7)

where W is the potential D;1) = v;. Employing the specific enthalpy for incompressible
flows hy = [dp/p = p/p, where the mass density p is constant, the continuity
equation

Op + Da(pv®) =0 (B.8)

simplifies to a Laplace equation for the velocity potential,
D, D"V = 0. (B.9)

Instead of considering such systems for evolutions as done in chapter 6, we no want to
focus on initial data by finding analytic solutions to Eqs. (B.7) and (B.9) for binaries

on circular and eccentric orbits.

Circular orbits

We describe the location of the star by the position of its center relative to the origin

(which we assume to be the center of mass) with

R(t) = RcosQt 2y + Rsin Qt (B.10)
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where 7 denotes the unit vector in x-direction. We can thus write the fluid velocity

as

N

v(t) = R = —QR(sin Qt 21 — cos Qtyy) = V. (B.11)

For irrotational incompressible binaries on circular orbits, all fluid elements move on
circles with different centers, but with the same radius R, and with the same speed
v = QR. Then, Egs. (B.7) and (B.9) have the exact solution *

U(t,r) = —Et+v(t) - T = —Et — QR(xsin Ot — y cos Q). (B.12)

The injection energy £ is constant throughout the star in space and time [Friedman
and Stergioulas, 2013]. Besides the Euler equation, the solution (B.12) satisfies the
incompressibility condition

Vo = V3 = 0, (B.13)

which follows from the continuity equation for constant density. Thus, this solution
is exact for irrotational incompressible stars on circular orbits. It is straightforward
to check that the velocity potential (B.12) satisfies a Hamilton-Jacobi equation in a
rotating frame

(0:Q20,)V 4 € = 0. (B.14)

This is a first integral of the equation
(8,5 -+ QE? )Ua = 0, (B]_E))

which follows from helical symmetry, i.e., stationarity in a rotating frame. The con-

served injection energy is obtained from Eqgs. (B.7) and (B.14) and given by
E=H—Qxvy, — yvy). (B.16)

Taking the gradient of this equation and evaluating at the center of the star (R, 0, 0)

at t = 0 gives a force balance equation
a:r:‘c/"x:R = 8£®’$:R - QQR = 07 (B17)

which yields Kepler’s third law for inverse square forces.

INote that V is the index-free version of D,
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Eccentric orbits

Now the derivation is generalized to eccentric binary systems, for which the position

of the stellar center can be expressed as
R(t) = [acos ((t) + aelzy + bsin C(t)y, (B.18)

The eccentric anomaly ((¢) is related to the mean anomaly Qt via the Kepler equation

Qt = ((t) +esin (1), (B.19)

where ¢ = m is the eccentricity with semi-major axis @ and semi-minor axis
b, and Q = 27/T is the mean motion for a orbital period 7. Furthermore, we employ
an extreme mass ratio and thus study an effectively one body problem, where the
massive star is at the origin (which is the center of mass) and is chosen to be the left
focus of the ellipse. This assumption is made for simplicity, but can straightforwardly
be relaxed to recover the two body equations as we point out in the end. Using e.g.
Mathematica, we compute a series solution to Kepler equation (B.19) and find

Ot ()¢

= + + O(t7), B.20
e+1  6le+1) ®) (B.20)

where we assumed that the values ( = 0 and ( = 7 correspond to apoapsis and

periapsis, respectively. The fluid velocity is homogeneous and given by

—((t)[asin((t) & —bcos((t) y] = V¥ (B.21)

—

v(t) =

.

and the velocity potential is given by

U(t,r)=—Et+v(t)-r

, (B.22)
==&t —((t)[axsin(t) — bycos(t)].
Introducing the quantity
(1) = () = =5 + O(F) (B.23)
wn = Ce+1 ’
allows us to write N N
R=oxR-oR="R— =R (B.24)
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and thus
OV =—E+R -z =—E—w[axsin(t) +bycos((t)] + gR " (B.25)

If we operate on (B.22) with 9; + k'0; = 0, + wd, + A9y, where k' is the spatial
part of our inscribed helical symmetry vector (3.31a), and demand that the resulting

expression be constant throughout the star at ¢t = 0, i.e., VE = 0. This yields
v=(1-¢ewa (B.26)

with w given by Eq. (3.32). In order to obtain Eq. (3.33), we have to assume addi-
tionally that k' = vy’ at the star center = a(1 +¢) at t = 0.
At this point it is straightforward to check that the force balance equation

02 pma(re) = 0 (B.27)

applied to the star center yields Kepler’s third law Q? = GM/a?.
In order to recover the two-body equations one can rescale the ellipse by a factor de-
pending on the mass of each companion, as indicated by Eq. (3.30). Then, Eq. (B.26)

is replaced by Egs. (3.34), while e, w, and € remain unchanged.
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Abbreviations
ADM Arnowitt-Deser-Misner
BAM Bifunctional Adaptive mesh (name of the code)
BH Black hole
CFV Constant fluid velocity
CTS Conformal thin-sandwich
CTT Conformal transverse traceless
EOB Effective-one-body
EoS Equation of state
GRHD  General relativistic hydrodynamics
GW Gravitational wave
LIGO Laser Interferometer Gravitational Wave Observatory
Lorene  Langage objet pour la relativité numérique (name of the code)
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NS Neutron Star
PDE Partial differential equation
PN Post-Newtonian
TOV Tolmann-Oppenheimer-Volkoff
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Zusammenfassung

Die Simulation von Neutronensternen erfolgt in den meisten Arbeiten durch Evolution von
Anfangsdaten, die unter der Annahme helikaler Symmetrie erzeugt wurden. Dadurch erfolgt
der Umlauf auf Kreisbahnen, die einerseits keine radiale Geschwindigkeitskomponente auf-
grund der Abstrahlung von Gravitationswellen beriicksichtigen. Andererseits konnen keine
Sterne auf exzentrischen Umlaufbahnen simuliert werden ohne starke Vereinfachungen zu
machen, sodass beispielsweise verfalschende zeitliche Oszillationen der Dichte auftreten. In
dieser Arbeit erweitern wir den benutzten Symmetrievektor, indem wir den elliptischen Or-
bit jedes Sterns als augenblicklich kreisformig approximieren und dafiir einen Kreis benutzen
der sich in die Ellipse einschmiegt. Wir zeigen dass diese zwei Symmerievektoren benutzt
werden konnen um Integrale der Euler-Gleichung innerhalb der Sterne zu bilden. Daraus
konstruieren wir ein selbst konsistentes Iterationsschema zur Konstruktion von Anfangs-
daten, welche die Einstein’schen Zwangsbedingungen und die Materiegleichungen erfiillen.
SchlieSlich erweitern wir das Schema indem wir noch radiale Geschwindigkeitskomponenten
hinzufiigen. Insgesamt ermdglicht uns das, konsistente Anfangsdaten zu erzeugen bei denen
wir erstmals die radiale und die tangentiale Geschwindigkeit der Sterne beliebig variieren

konnen.

Wir implementieren dieses Schema in zwei existierende Codes. Zunéchst in einfachen karte-
sischen Koordinaten mit einem Multigrid-Loser, wobei wir vereinfachende Annahmen fiir
das Geschwindigkeitsfeld machen. Spéater implementieren wir unsere Methode in einen
spektralen Code mit oberflaichen-angepassten Koordinaten und lassen diese Vereinfachung
wieder fallen.

Wir vergleichen beide Ergebnisse und zeigen, dass die erste Losung, insbesondere bei
grofleren Entfernungen wie sie bei exzentrischen Systemen auftreten, sehr brauchbar ist.
Fiir akkurate Berechnungen verwenden wir die spektrale Methode, in der es uns auflerdem
moglich ist, den Sternen Spin und realistische Zustandsgleichungen zu verleihen. Das Haup-
taugenmerk dieser Arbeit liegt jedoch bei den Exzentrizitdten. Wir untersuchen Evolutio-
nen von unseren stark exzentrischen Anfangsdaten und sehen drastische Verbesserungen
von mehr als einer Gréffenordnung bei den unphysikalischen Oszillationen, die bei inkonsis-
tenten Anfangsdaten auftreten. Weiterhin konnen wir die in fritheren Arbeiten gefundenen
f-Moden Oszillationen bestétigen, welche bei nahen Begegnungen der Sterne durch Gezeit-
enkréfte induziert werden.

Des Weiteren betrachten wir den Einfluss verschiedener Stationaritdtsbedingungen auf die
Anfangsdaten. Hierbei finden wir, dass die grofite Verbesserung unserer Daten im Vergle-
ich zu inkonsistenten Losungen aus der Stationaritdt im mitrotierenden Koordinatensystem

herriihrt, anstatt ein linear mitbewegtes Koordinatensystem anzunehmen.

AuBerdem benutzen wir die neue Moglichkeit der radialen Geschwindigkeitskomponente um
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Anfangsdaten mit sehr kleinen Exzentrizitdten zu erzeugen, die mehr als einen Faktor 10
unter denen bisheriger zirkuldrer Anfangsdaten liegen, und daher astrophysikalisch besser
geeignet sind. Dazu beschreiben wir ein weiteres Iterationsschema, welches auf bisherigen
Arbeiten anderer Gruppen zu schwarzen Lochern basiert. Damit finden wir sukzessive
bessere Parameter fiir die Tangential- und Radialgeschwindigkeit, mit denen ein bis zwei
Orbits simuliert werden um wiederum bessere Anfangsdaten finden zu kénnen. Wir sind
so in der Lage erstmals die Einfliisse von sehr kleinen Exzentrizitdten auf die gemessenen

Gravitationswellen zu zeigen.

Abschliefend widmen wir uns dhnlichen physikalischen Betrachtungen wie fiir Anfangs-
daten, nutzen dies aber zur Beschreibung eines Hamilton-Jacobi Evolutionsschemas fiir
nicht rotierende Sterne. Dieses Schema ist insbesondere fiir die von uns entwickelten An-
fangsdaten niitzlich. Wir beschreiben kurz die erste Implementierung eines solchen Schemas

und zeigen erste vorlaufige Ergebnisse.
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