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CHAPTER 1

Introduction

This thesis is, in a broad sense, about modelling black hole (BH) binaries within the
framework of General Relativity (GR). We will be dealing with the problem of finding

solutions to Einstein’s equations
G,ul/ - 87TT/J,V (11)

by means of computer simulations, i.e. within Numerical (General) Relativity (NR).
Eq’s (1.1) constitute the core of Einstein’s theory of gravitation [1, 2]. In essence, solving
Einstein’s equations means to find solutions for the coupled system of variables (g, 1)),
where g, is the metric tensor, which fixes the Einstein tensor G, and T}, is the energy-

momentum tensor, which determines the distribution of matter/energy.

Despite the elegant appearance of Eq.’s (1.1), only a few astrophysically relevant analytical
solutions are known today. These are usually based on assumptions of high symmetry,
like the famous BH solutions of Schwarzschild [3] and Kerr [4], for vacuum, or the Tolman-
Oppenheimer-Volkoft [5] solution, for matter. With state-of-the-art numerical algorithms
and high-performance computers NR is nowadays able to find solutions to Eq’s (1.1)
for complicated configurations (see, e.g., [6, 7, 8, 9, 10]). A major interest is in the
prediction of radiation which might be emitted from such systems and, once observed
on Earth, disclose interesting physical information. In particular, Eq.’s (1.1) predict the
existence of gravitational waves (GWs); small perturbations of a given metric g,,, which
travel at the speed of light c. Observations of radio pulses from the Hulse-Taylor binary
pulsar [11] allow the deduction of the orbital decay of the system, and, indeed, it agrees
with the one expected from energy losses through GW emission. A direct detection of
GWs, however, has not been possible so far, but it is highly desirable because systematic
detections would open up a new window for astrophysical observations, complementary
to the electromagnetic channel. Moreover, the observation of GWs would further confirm
the efficiency of GR as a good theory of gravitation. In the search for GWs, one of the
most promising sources strong enough to be detected on Earth is the merger of compact
binaries. As advanced GW-detectors [12, 13, 14] will reach the needed sensitivity in the

near future, accurate predictions for the expected waveforms are more than ever needed.
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Figure 1.1: Illustration of the central topic of this thesis: Gravitational waves from binaries in the test-
particle approximation. The left panel illustrates the configuration of a small mass p orbiting a black hole
of mass M > u, and of spin |S|| = aM. The system emits gravitational waves, which can, in principle,
be measured on Earth as gravitational strains. To detect these strains, numerical simulations need to
provide highly accurate templates to help distinguish physics from noise. The right panel shows a typical
prediction for the waveform, with a maximum at merger (time ~ 4300) and a raise of the frequency and
the amplitude (“chirp”) during the inspiral.

Topics of this thesis

In this thesis we will study the GWs produced from a compact binary system in the
test-particle approximation. In this approximation the binary system is modelled as a
central, non-moving BH of mass M and a small, almost structureless companion of mass
i << M (see illustration in Fig. 1.1). To understand the applicability of our results,
let us point out the assumptions of the test-particle model. First, the influence of the
small companion on the metric is negligible, i.e. the system can be described by a fixed
background metric g,,, defined by the big companion, plus a perturbation field h,,,
produced by the particle, propagating upon the background. Second, concerning the
dynamics of the particle, the perturbations are ignored at any order, i.e. the gravitational
self-force is not taken into account and the particle is assumed to move along geodesics
of the background spacetime. For a stationary background, like the rotating Kerr BH,
geodesic motion implies the existence of a conserved total energy of the particle and thus
we call such motion “conservative”. In view of the fact that the small body is assumed to be
a compact object, which could be a BH as well, the negligence of the self-force requires an
additional argument; namely, that we restrict to relatively short-time scenarios, in which
effects of the self-force do not manifest themselves noticeably, due to u < M. Note,
though, that in many experiments we may deviate from the strict geodesic test-particle
motion by including a hand made radiation reaction (RR) term, which takes into account
radiative energy losses. Like the self-force the RR leads to deviations from geodesics
of the background, but it is conceptually different, being confined to an energy balance
argument. Third, regarding the evolution of the perturbations f,,, all non-linearities are

neglected, i.e. we will restrict ourselves to a fully linear treatment. The relevant equations



of linear BH perturbation theory are the Regge-Wheeler-Zerilli (RWZ) equations [15, 16],
in case the central BH is non-rotating, and the Teukolsky equation (TKEQ) [17, 18], in
case the central BH rotates with angular momentum ]§1] = a M. Finally, note that the
test-particle model, which is also called the “particle limit”, is a quantitative description
only if 4 — 0. In practice, one regards this to hold when binaries are in an extreme
mass-ratio (EMR), typically defined by p/M < 1075,

In the following we will mainly work with the TKEQ. A new algorithm to find its nu-
merical solutions in the time-domain will be developed, tested, and finally applied to
compute GWs from a particle orbiting a Kerr BH. Our realisation of the new approach
in a computer code is called the “teukode”. We will prove that the implementation in
the teukode is successful; all comparisons against the literature are passed consistently.
We have also been able to add new knowledge to the literature concerning topics like the
structure of merger waveforms, GW energy fluxes, consistency of RR models, kick and
antikick velocities, and GWs from a spinning particle. Our work in the particle limit is
relevant because, (i) such systems are promising sources for GW detectors [19], (ii) in
this limit nearly-extremal mass ratios and spins can be treated, which is complement-
ing NR information, and (iii) (semi-)analytical models like the etfective-one-body (EOB)
model rely on information from the particle limit. Many of our results have been already
published in [H1, H2, H3|, and others will be published in the near future [H4].

The plan of the thesis is roughly divided into (a) theoretical concepts, (b) implementation
details and validation, and (c¢) new results. We start with the discussion of the dynamics
of a test-particle in Ch. 2. This includes the well-known theory on “spinning” particles in
GR, and on EOB-dynamics with a RR. In Ch. 3 the “Teukolsky formalism” is reviewed,
with focus on the traditional routes to solve the TKEQ. In Ch. 4 we discuss our inno-
vative time-domain approach for solving the TKEQ with a spinning-particle-source-term
in a hyperboloidal and horizon-penetrating coordinate system. After the theoretical part
we will describe our implementation, the teukode, in Ch. 5, which also contains numer-
ous confirmations of the correctness of our results; among them numerical convergence
tests, replications of existing numerical experiments, and accuracy comparisons with the
literature. Thus, the stage is set for the presentation of results which exceed previous
literature knowledge. New results for the vacuum TKEQ), continuing the investigations
of [HO], are gathered in Ch. 6. New results on GWs from point-particle inspirals on a
BH are presented in Ch. 7. The studies presented in Ch. 7 are, as usual in the literature,
neglecting the spin of the small body. In Ch. 8 we will present our latest development, i.e.
preliminary results regarding GWs from a spinning particle on circular equatorial orbit.
Finally, in Ch. 9 the conclusion is drawn and an outlook is given.

Throughout the thesis we will adopt geometric units G = ¢ = 1. Often, mass-reduced

quantities, denoted by a hat, are employed; e.g., @ = a/M = |§1]/]\42, or # =r/M.



CHAPTER 2

Dynamics of a point-particle

In full nonlinear simulations of the Einsteins Equations (1.1) with some matter equations,
at each evolution step, the metric affects the evolution of matter 7", and vice versa. The
problem of motion, however, drastically simplifies when we can ignore the influence of
the matter on the metric so that we can just evolve 7" on a fixed background metric.
In the context of point particles, this is the “test-particle” limit, as described in Ch. 1.
The GWs produced by such matter perturbations of the vacuum Kerr background can
be found by solving the TKEQ with an appropriate source term. The information on
the matter distribution enters that source term through the stress-energy tensor TH.
Thus, the computation of GWs from test-particles consists of two separate steps. First,
we compute the dynamics T (7, p, 0, ¢) for some interval 7 € (0, Tena), where (7, p, 6, @)
denote the coordinates mainly used in this thesis, the HH-coordinates of [20] (cf. App. B
for details). Second, evaluate the GWs produced from that dynamics, i.e. solve the TKEQ

using that T in the source term.

Concerning the dynamics used in this work, we have restricted the motion of the particle
to the equatorial plane because our preliminary tests on non-equatorial dynamics show
a small uncertainty with respect to handling such motion in our implementation of the
TKEQ (Sec. 5.2); a more thorough validation is postponed to the future. In this thesis, two
different kinds of dynamics have been investigated within the equatorial plane. The first
kind of dynamics are characterised by the tag “conservative”, for there is a constant total
energy of the particle along its worldline. In the case of a non-spinning particle this is just
saying geodesic motions. In the case of a spinning particle (SP) the conservative motion
is no longer geodesic but described by the Mathisson-Papapetrou equations (MPEQs)
(see Eq’s (2.6)). The dynamics for SPs employed here were produced by Dr. Lukes-
Gerakopoulos [21]. The second kind of dynamics are “non-conservative”; the conservative
equations of motion (EOM) are enhanced by an artificial radiation reaction (RR). We
have used and investigated the effective-one-body (EOB) RR for a non-spinning particle
(cf. Sec. 7.2). These “EOB-dynamics” were provided by Dr. Alessandro Nagar [22]. As
yet, the EOB-dynamics are limited to non-spinning particles. The generalisation to SPs

is one of the future goals and likely to be supported from the results of Ch. 8 and [H4].
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The following review shall lay the basis for understanding the dynamics used in this thesis.
In the first part, Sec.2.1, the formalism for “spinning particles” in GR is described, with
focus on Mathisson’s gravitational skeleton for the 7" of a small body and, in particular,
on the pole-dipole approximation and the associated Mathisson-Papapetrou dynamics. In
the second part, Sec.2.2, the EOB-dynamics and the RR are outlined. It is explained how

Post-Newtonian (PN) results can be resummed to extend the range of applicability.

2.1 A spinning particle in GR

Intuitively, the motion of an extended body is separated into the motion of its center of
mass (COM) as a whole and internal rotations of each element of the body about that
center. Assuming that the body is rigid and all elements are rotating in the same manner
about the COM, all internal rotations can be described by a single 3d “spin”-vector.
In GR the such defined spin of a body is an ambiguous concept because the COM is
observer dependent and, therefore, one has to pick some arbitrary frame before it can
be defined. Nevertheless, an abstraction of the internal motions of the body’s elements
is indispensable for a physical model of compact binaries because these internal motions

can have significant influence on the dynamics and GWs of compact binaries.

2.1.1 Ambiguity of spin in relativity

In order to understand the caveats related to SPs in GR, it is instructive to return, for a

brief moment, to basic Newtonian physics in order to recollect the relevant notation.

Spin in a Newtonian binary

In Newtonian physics the location of the COM is observer independent. Thus, we can
always separate the motion of an extended body into the motion of its COM and internal
rotations of each element of the body about that center. We have conservation of energy,
of linear momentum of the COM, and of angular momentum with respect to that center.
Consider now a system of two such bodies with masses M; and M, < M, i.e. a binary in
the special case that one of the two bodies is much heavier than the other one. This means
we have an (almost) non-moving central object and a small orbiting object attracted by
gravity. The COM of the total system, Ci, coincides with the COM of the heavy body,
Ci. Thus, the linear momentum of the system is vanishing. The problem of motion of

such a binary system can be separated into several sub-problems,

(i) the motion of the COM of the big body, C, about Ciy; for My < M absent,
(ii) the motion of the COM of the small body, Cy, about Ciot,
(iii) the internal rotation of the big body about Cf,
(iv) the internal rotation of the small body about Cs.
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Since all of these motions can be described by conserved angular momenta, one can define
a total angular momentum J which is as well conserved, by J=L+S , with L = L, for
My < My and S = 5’1 + 52. It is conventional to call the internal rotations of the isolated
bodies “spins”, while the rotation of the one body around the other is called “orbital
angular momentum” L. Since there are two spins, one sometimes writes “spin(1)” and

“spin(2)” for the spin of the central and the orbiting body respectively.

Ambiguity of the center of mass

The above separation of the conserved total angular momentum into its orbital and its spin
contributions is manifestly bound to the notion of a COM. While the COM is an invariant
location in Newtonian gravity, it is observer dependent already in special relativity. This

is the origin of the ambiguities in the definition of spin in GR.

The observer dependence of the COM can be understood by imagining a homogeneous,
two dimensional disc rotating about its geometrical center. An observer in this center
sees an isotropic mass distribution and thus measures the COM right at his position. On
the contrary, an observer moving past the disc, in the opposite direction of its rotation,
will measure a higher velocity above the geometrical center than below. The equivalence
of mass and energy, thus, results in a higher relativistic mass in the upper half than in
the lower one. The two different centers are sometimes called “center of inertia” and
“energetic center”, respectively. A nice visualisation of this issue can be found, e.g., in
the thesis of Steinhoft [23] (cf. also [24]).

The absence of a preferred point like the COM leads to a freedom in the definition of
the spin of an extended body in GR. Nevertheless, one might hope that this freedom
vanishes at least in the limit of a point-like body. Unfortunately, this hope is in vain since
Mgller [25] proved that any system with mass M and angular momentum S has a finite
lower bound for its radial extension R > S/(Mc). Consequently, a point-like spinning
body can only be viewed as a mathematical model, which, however, cannot be considered
the limit of any physically reasonable matter distribution [26]. Instead, a SP has to be
understood as a very small, spinning body, and a physically reasonable description of this
body has to account for the freedom in the choice of its COM. With this in mind, certain

aspects of the formalism for SPs in GR, as reviewed below, become plausible.

2.1.2 Formalism for spinning particles

The treatment of SPs has a long history in special and general relativity [27, 28, 29].
Uncountable studies have developed the theory since; e.g., consult [30, 31, 23, 32] for
more recent works. In the following we restrict to those aspects important for handling

a SP within the Teukolsky formalism (see Ch. 3). This means to give an overview of the
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prevalent model for the stress-energy tensor and the associated EOM. Also, the “spin-
supplementary” conditions (SSC) shall be discussed with reference to the above mentioned

ambiguities of spin.

Mathisson’s gravitational skeleton

The standard model for the stress energy tensor of a SP is part of the “gravitational
skeleton” approach devised by Mathisson [33] and developed in a series of works by
Dixon [34, 35, 36, 37]. The basic idea is to replace the full energy-momentum tensor
of a physical body by multipole moments defined only at a single reference point inside

the body. Formally, the multipolar expansion of 7" reads
1
V—gTH = /d)\ {t‘“’é‘l — Va(tHe5%) + 5v()lvﬁ(ﬂ“’a@(s‘*) - : (2.1)

where the t* terms are the “multipole moments” and ¢ is the determinant of the back-
ground metric. The distributions §* = § (z° — X°(\)) § (' — X?(\)), where z* are arbi-
trary coordinates, realise the reduction of the system onto the worldline X*#(\) of some yet
undefined reference point inside the body, A being the proper time (cf. [23, 38]). The n-th
multipole moment, t*##1-#n represents spatial integrals on a given hypersurface over the
actual stress-energy tensor of the considered body, weighted with the n-th power of the de-
viation from the worldline with respect to the chosen reference point, [ T*?§x* .5zt da?,
with dz# = (z# — X*(\)) [39]. Following Dixon [35], physically meaningful quantities are
standardly used nowadays to express the multipole moments (cf., e.g., Sec. IT A in [40]).

For instance, zeroth moments can be encoded in the linear four momentum [26]

P = / ™ =gd’x . (2.2)
20=const.

Similarly, first moments can be encoded in the internal angular momentum tensor [30],

or, perhaps more conventionally, the “spin tensor”,

ghv — / (528 170 — 52/ T) V=g d’x . (2.3)
20=const.

In this definition the yet unspecified reference point tracked by X*(A) is used as the
center against which the spin is measured. The antisymmetry implies that there are six
independent components for spin. These can be interpreted as being the components of a
spatial spin vector in the well-known sense, plus the freedom of choosing the spatial center
with respect to which the spin is defined. This center for the spin serves, at the same time,
as the reference point whose worldline X*(\) bears the gravitational skeleton (see [26]).
Note that the spatial integrals of Eq.’s (2.2)&(2.3), in fact, only have to be computed for
getting initial data for pt, S*”. Then, p" and S* are used as worldline-variables which
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are encoding zeroth and first moments respectively, and which are evolved according to
some EOM (as introduced below).

The above description (2.1) of a physical body as a series of multipole moments becomes
approximative by, (i) making a simplified consideration of the factual 7" when comput-
ing the integrals which define the moments, or the variables representing the moments
(p*, S*), and/or (ii) neglecting higher nonzero multipoles in the series. Note, however,
that the representation can be very accurate when considering idealised bodies of small
size and high symmetry, like a point-like mass or a spherical top. A point-like mass can
be reduced to its monopole, with t** = v(#p*). Here, v*(A) is the tangent vector to the
worldline X#(\). Note that for multipolar bodies v* need not be parallel to p#, as we
will discuss below (cf. Sec. 2.1.3). The dipole moment can be written in terms of the spin
tensor t#® = SUy¥) Thus truncating Eq. (2.1) at the first order, we get the following

“pole-dipole approximation” of a small body
=g = / dX [op?5t = Vo (2] (2.4)

which is obviously linear in the spin. It is important to understand that this does not nec-
essarily mean to neglect quadratic in spin information, nor, equivalently, second moments.
One can easily imagine situations where monopole and dipole completely characterise the
considered body; e.g., a spherical top. Loosely speaking, one cannot loose quadrupole
information when there is none. In general, however, astrophysically relevant objects like
a black hole may exhibit quadrupolar deformations, which can be written as a quadratic
in spin term [41]. It, therefore, depends on the object that we want to subject to the pole-
dipole representation whether this approximation is or is not neglecting relevant quadratic

in spin information.

Equations of motion (EOM)

The problem of motion of a binary configuration in GR is, in general, too complex to be
solved analytically from EOM for the metric and the energy-momentum tensor. In the
limit of a fixed background gravitational field we can, however, find evolution equations

for a matter perturbation 7" by demanding that the dynamical equation holds,
VvV, =0 . (2.5)

In the case of a small body the gravitational skeleton representation of T"" is adequate.
Inserting the skeleton Eq. (2.4) into Eq. (2.5), one obtains evolution equations for the mul-
tipole moments, or for the characteristic quantities used to encode the multipole moments

(pt, S* in our case), rather than equations for the components of 7" themselves.

Restricting to a zeroth order description of 7", i.e. to the mass monopole, one obtains
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the geodesic EOM (cf., e.g., Ex. 3 in Ch. 4 of Carroll’s book [42]). Including the first
order moments, i.e. representing a body in the pole-dipole approximation, Papapetrou
derived the EOM for a spinning body [39]. Several rederivations, which were especially
important with respect to the different choice of evolution variables, were performed
in [38, 43, 26, 37]. Today’s standard formulation is given in terms of {v* p#, S*} and

reads

1
vV, pt' = —3 R, 0" SP7 | (2.6)

V'V S = pfo” — pPot ,

where R,s,5 is the Riemann tensor of the background. In this chapter we will sometimes
denote v*V, by a dot on the respective quantity. This system of ordinary differential
equations is manifestly linear, in the sense that no higher order terms of the variables
appear. But, moreover, it is underdetermined; there are three degrees of freedom. The
system has to be closed by some supplementary condition. The three degrees of freedom
can be interpreted as the freedom in the choice for the reference point that is tracked by the
EOM. Usually this reference point is chosen as the COM with respect to some preferred
observer; which explains why it is reasonable to also use the worldline as the spatial center
against which to measure the spin in Eq. (2.3). In this convention, a condition which fixes
the notion of spin also fixes the location of the reference point. Such a condition is called
a “spin-supplementary-condition” (SSC). Since Mathisson already derived Eq.’s (2.6) in
a special SSC, one often sees them called “Mathisson-Papapetrou” equations (MPEQs).
Sometimes even “Mathisson-Papapetrou-Dixon” equations to acknowledge the important

reformulation of Dixon.

The validity of Eq’s (2.6) can lead to some confusion and the literature is not always clear
in that respect. The crucial point is to recall the conditions that were imposed in deriving
Eq’s (2.6). Most importantly, the energy-momentum tensor was assumed to be of pole-
dipole form. Thus, the equations hold strictly only for those bodies which are, as a matter
of fact, sufficiently, with respect to the physical context, described by their pole and dipole;
i.e. as a spherical top. However, as usual in physics, the situation becomes more subtle
when one wants to stretch the limits of the model; in particular, when one considers
bodies which have, to a small extent, more structure than a spherical top, i.e. bodies
which are significantly, with respect to the physical context, squeezable. Certainly, if one
subjects such bodies to the pole-dipole model, the representation becomes approximative
by neglecting at least second moments, which are expressible as quadratic in spin terms.
Hence, the MPEQs are rigorous/quantitative only for bodies which are perfectly described
by their pole and dipole. For bodies with quadrupolar or even higher order features the

MPEQs are only a qualitative description of the evolution. This discussion will become
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important in view of the meaningfulness of sustaining non-linearities introduced to the

system by certain SSCs.

In general, the trajectories of SPs as obtained from Eq.s (2.6) under some SSC deviate
from geodesic motion but converge towards them for S*” — 0. The constants of motion
for single pole particles, the energy —p; and the z-component of the orbital angular mo-
mentum p,, are no longer preserved for a pole-dipole particle evolving under Eq’s (2.6).

Instead, we have conservation of
L L
E = —pr + 55 augtu y Jz =Py — 55 auggbu 5 (27)

when considering a stationary and axisymmetric background like Kerr [30, 35], with stan-

dard Boyer-Lindquist coordinates (t,r,6,¢). Without a SSC one cannot find a mass

parameter which is conserved. The definitions p#p, =: —p? and p,v* = —m lead to
%u = ’% , and %m = Up Uy SP7 | respectively, which can both yield conservation

given a suitable SSC [30]. In fact, p is the rest mass of the body with respect to an
observer with four velocity equal to the specific linear momentum u, = %, while m is the
rest mass with respect to an observer with four velocity equal to the tangent vector v* of
the reference worldline. Furthermore, the conservation of the spin measure 2 5 = S, S*

depends, as well, on the SSC.

Before proceeding to the discussion of a common choice for the SSC, note that EOM for
bodies with nonvanishing quadrupole or even higher moments can be derived following
the same procedure of inserting the truncated gravitational skeleton into the dynamical
equation, Eq. (2.5). Details can be found in [23, 44] and several works of Bini et al. [45,
46, 47].

2.1.3 Spin supplementary conditions (SSCs)

Among the infinite choices for closing the system (2.6) only those should be picked which
lead to physically reasonable results. In principle, one could directly impose some relation
between v*, p* and S*, but, in practice, this can lead to questionable motion of the
reference point within the body (cf., e.g., [31, 48] for a detailed study of SSCs). To avoid
this, the SSC is chosen such that the implied reference worldline tracks the COM of some
physical observer (see beginning of Sec. 3 in [31]). For that choice of the spin the observer
will measure a purely spacelike spin tensor, i.e. S% = 0. One can, in fact, show that for
an observer with S% = 0 the COM coincides with the reference point tracked by v* in
the MPEQs [31]. The covariant formulation of such a condition reads w,S*” = 0, where
w,, is the four velocity of the chosen observer. In his rest frame we have w, = (wo, 0,0,0).

Notably, the imposition of such conditions reduces the independent components of S*” to



2.1. A SPINNING PARTICLE IN GR 18

three, which allows the construction of a spin-vector as done below for a specific SSC.

One of the prevalent SSCs was suggested by Tulczyjew [38] (TUL-SSC)
PuS™ =0 | 23)

and it will be the SSC chosen in this work. It features the strict conservation of p? =
o » With a conserved
spin measure 25% = 2515, =SS, Here, €0 = \/—9€ups is the Levi-Civita tensor

with €123 = 1. Condition (2.8) prescribes a unique relation between the tangent and the

—pup!, and allows the definition of the spin-vector S = %e“”p" %” S

specific linear momentum

(2.9)

LY 2 SH Ry peauf S
4412 + Ry 5P 570 ’

where in this case m is not a constant of motion, but rather used as a correction factor
which is set at every time step such that v#v, = —1 (cf. [21]). In general, Eq. (2.9) implies
that v* and u# differ by terms of the order O(S5?), i.e. we have v* = ut + O(S?).

Concerning the meaningfulness of O(S?) terms, recall the discussion on the validity of
Eq’s (2.6). For bodies with more than dipolar structure the MPEQs are only a qualita-
tive description; in particular, they are neglecting O(S?) terms connected to the second
moments of the body. For instance, if we consider BHs in the pole-dipole model, we are
likely neglecting a quadrupole moment, i.e. quadratic in spin terms [23, 41]. Consequently,
the evolution of a deformed BH is only qualitatively given by Eq/s (2.6). In this case it
would make no sense to sustain the O(S?) terms in Eq. (2.9) introduced by the SSC.
For such bodies the whole formalism is only a qualitative picture, which is consistent at
linear order in the spin. Conversely, for bodies which are sufficiently described by the
pole-dipole model the formalism has at no place neglected O(S?) terms. Thus, the intro-
duced quadratic in spin relation Eq. (2.9) has to be solved strictly. It would be a further
linearisation /approximation to demand that O(S?) terms can be neglected; for example,

by virtue of the assumption that the body be slowly rotating, S < 1.

We do not linearize Eq.s (2.6) with respect to the spin. The dynamics used in this work
are produced solving the full, quadratic in spin relation Eq. (2.9). This means that our
dynamics are rigorous for pole-dipole bodies while higher order bodies are not consistently
described. Moreover, to obtain qualitative insights on the influence of spin, we study spin
values of order S/(uM) ~ O(1), which are theoretically too high [30, 40]. Note that all

relevant references used for comparisons made the same choice (cf. App. D).
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2.2 Effective-one-body dynamics

This thesis is intimately related to the topic of EOB-dynamics because the considered
realistic, non-geodesic trajectories of a nonspinning particle (cf. Fig. 2.1), as produced
by Dr. Nagar [49], were obtained within the EOB formalism. The orbits are used in
Ch. 7 in investigations of waveforms and fluxes from binaries in the point-particle limit.
In the future it may be possible to use the results of this thesis for a SP (cf. Ch. 8) to
improve the accuracy, or the range of validity, of the RR of the model; currently the RR
is built in the non-spinning limit. Also, our numerical waveforms could be used to find
the flexibility parameters of the EOB-model in the EMR limit. These tight relations and
future prospects motivate a quick overview on the EOB-dynamics for a point particle.
Especially, the procedure of recasting analytical PN-waveforms into a better-behaved
multiplicative vesture and the implied improvement of the RR shall be demonstrated. We
have, so far, only used EOB-dynamics for a nonspinning particle and equatorial motion.

The discussion below is held within these limits.

The EOB model is probably the most advanced semi-analytical approach to the general
relativistic two-body problem in the strong-field region. Originally introduced in [50],
“the basic idea is to map the two-body problem (...) onto an effective-one-body problem,
i.e. the motion of a test particle in some effective external metric”. More precisely, the

Hamiltonian dynamics of a compact binary with masses M; and M, are mapped onto

M Mo
Mi+Ms?

a deformed Kerr metric with mass M = M; + M,. The deformation parameter is the

those of an effective particle of mass pu = which moves on the background of

symmetric mass ratio v = 47 = % The EOM of the effective particle are obtained
from an effective Hamiltonian, which is constructed from analytical information of PN
theory. The waveform along the dynamics is computed as a PN multipolar waveform.
In both, dynamics and the waveform, one applies certain resummation procedures to the
expressions, which turn out to extend the validity of the employed PN results from the
weak-field-slow-motion regime across almost the whole parameter space. The missing
higher PN information are wrapped into a few flexibility parameters, which are finally
computed by iterative comparison of the outcome with accurate numerical data. Since
the EOB model aims at covering all mass-ratios, those comparisons need both data from
full NR simulations and perturbative particle simulations. This directly explains part of
the connection to a time-domain Teukolsky solver. The second connection is the RR. The
limit ¥ — 0, for which the RR is given by the fluxes of a particle in circular orbit, is
used as the starting point. With respect to this “fixed end” at v — 0 the RR is suitably

deformed in v to agree with NR data for finite v.

Working in the point-particle approximation, we are mostly interested in the EMR limit
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Figure 2.1: Examples of realistic trajectories (r,(¢), ¢, (¢)) of a non-spinning point particle in the equato-
rial plane, starting from circular motion with adiabatically shrinking radius and final plunge, as produced
within the EOB formalism. The plots refer to a Kerr background with dimensionless spin ¢ = —0.9 (left),
@ =0 (center), and a = +0.9 (right). Plot adopted from [H2].

of the model. In this case M; > M, and we have M ~ My, u ~ M,. A test-particle does
not deform the background. Thus we omit further details on the v-dependent mappings
(for more details on the deformation cf. [49]). It is enough to keep in mind here that they
(i) deform the point particle Hamiltonian to the effective one, and (ii) deform the point
particle RR to the NR-adapted one. We stress that the EOB-dynamics used in this work
were created with p/M = 1073 in order to reduce the inspiral time. At this value the
RR is noticeably deformed from the EMR limit, which means we consider a somewhat
inconsistent trajectory for the test particle limit. That is why investigations like those of

Sec. 7.2.2 have to probe this well-known procedure.

2.2.1 Equations of motion for a point particle

The conservative part of the dynamics of a nonspinning particle is the geodesic motion of
a test-particle on the Kerr background. Geodesic motion can be described by the four-
dimensional Hamiltonian H = —l/ﬂ = =g’ paps , where p, are the conjugate momenta
of the coordinates ¢*(\) (usually BL-coordinates (,7,6,¢)), with A the proper time.
Because A does not appear explicitly in the system one can separately solve for ¢(\) and
use t instead of A as the integration parameter. The time component of the momenta, p,
is a conserved quantity for geodesic motion on Kerr. Therefore, one can reduce the system
and consider equivalently the three-dimensional Hamiltonian H = —p;, which is the total
energy of a test-particle on a geodesic. An explicit expression in terms of coordinates and
momenta can be found from the normalisation ¢*’p,ps = —1 , where p, = p, /i are the
momenta per unit mass, equal to the four-velocity dq®/d\ for a nonspinning particle, and,

then, solving for p;

0i 0in ija A 1/2
9D 9D g"pip; +1
<goo g0 > ’ (2.10)

[—A[EH/M:_pt_ gOO
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where g"” is the inverse metric tensor. H is the conserved energy per unit mass for a

test-mass. According to % = %F[ and % = —a%ilﬁ[ we thus obtain six Hamilton EOM.

Two of them are trivial in the equatorial plane. At this point one can add, by hand,

dissipative terms to account for the emission of GWs. In doing this we depart from the

pure test-particle limit. The resulting EOM in the equatorial plane read

T S
apr / aqu

; H—a @:—%H+ﬁ Cde=F 1)
where the dot, differently from the notation used in Sec. 2.1.3, stands for differentiation
with respect to t. We decided to set F, to zero because a robustly performing expression
seems to be missing from the literature [51]. Eq.’s (2.11) are the ones used for producing
what is called “realistic trajectories” in this thesis; orbits which evolve through a series
of circular orbits with gradually shrinking radii until the orbit becomes unstable and the
particle plunges geodesically into the BH (cf. Fig. 2.1). The piece driving the particle
away from the geodesic motion is the RR, .7-2,. For EMRs ]:"¢ is prescribed in analytical

form by employing PN multipolar waveforms for a particle on circular orbits.

2.2.2 Multiplicative post-Newtonian multipolar waveforms

The PN waveform is an essential ingredient to the whole EOB formalism. It is used to
generate the wave signal from the EOB dynamics. But, in addition, it is also important for
the dynamics themselves, where it is used, in the specification to quasi-circular binaries, to
build the EOB-RR. A RR is supposed to lead to adiabatic, quasi-circular inspiral motion.
In the EOB formalism the RR is built on the basis of the test-particle energy fluxes; at each
radius of a quasi-circular inspiral, the RR is demanded to coincide with the energy fluxes
of a test-particle in circular orbit at that radius. To handle finite mass ratios v, the such
obtained RR is deformed in a suitable way, calibrated by NR simulations. The fluxes of a
test-particle are available in analytic form in the PN-approximation. Pure PN-waveforms,
however, fail to capture the numerical fluxes of a test-particle in the strong-field. As it
turns out, rewriting the PN-information in a certain multiplicative way, together with
doing new expansions, leads to a much better behaved analytical waveform for a test-
particle. This idea was invented as the “multiplicative approach” for PN waveforms by
Damour and Nagar [52, 53]. Below, the procedure to obtain the improved waveform from

a given PN waveform in the case of a test-mass in circular orbit, shall be described.

Originally, any PN-approximation is a Taylor-expansion in z = (v/c)?, where v is the
characteristic velocity of the system. The 2" term is named the “n-th order” PN term.
Evidently, one has a sum of the Newtonian-approximation and corrections; more precisely,
for the multipolar waveform we have hi~ = Al + hPN 4 pL5PN L p2PN 4 Note that

hY already contains factors of v so that the PN corrections here are not actually ordered
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like v*, v2, ..-terms but like successively higher powers of v, starting with the Newtonian-
term-power of v plus 1. In [52, 53] Damour and Nagar proposed a rewriting of the PN-
waveform which turns out to be much better converging towards numerical data. Later

on, the convergence was further improved in [54], which the following overview leans on.

The basic idea is to replace the PN-sum in favour of a product of physically motivated
contributions, wrapped up in a correction factor to the Newtonian part. Essentially, one
writes hgy, = h%’e) l%ﬁ;{ , where € denotes the parity of the multipole; for circular equatorial

orbits simply € = 0 when ¢ + m even and € = 1 when ¢ + m odd. The leading term h%’e)
is the Newtonian contribution. It is given by
N,e M Vo (e 6 T

him” = S Cee (V) 0 Yoseoml(5.0) (2.12)
with the relative distance R. The numerical values of the constants néz and cpy(v),
are irrelevant for our discussion (cf. references [54, 55| for exact definitions). Inspecting
Eq. (2.12), the meaning of the “characteristic” velocity v has to be fixed. In case of the
particle limit there is a natural choice, i.e. the orbital velocity of the particle, on circular
orbits vo, = 7r€). The angular velocity €2 is given by the geodesic equations. It reads
Q=% iwﬁ% , which can be rewritten as a Kepler-constraint for some modified
radius 7, Q?7® = const. (see Eq. (54) in [H2]). For a = 0 and M = 1 this means we
have Q = r=3/ 2 and, thus, Vorba=0 = Q3. If we use Uorh, as the PN-parameter v, we get
r=02=Q5 = 1/r. Proceeding to a # 0, one has to take special care when choosing

1/2 ghall refer to. Some confusion enters

what exactly the PN ordering parameter v = x
the field because one might use, (i) v? = 1/r (e.g., in [56, 57]), (ii) v? = Q2/3 (cf. [55, 58)),
both of which choices are motivated by being the orbital velocity in case of Schwarzschild,

or (iii) strictly v = v = Q.

Let us come to the correction factor ﬁg,)l = 14+0O(z). This correction is further decomposed
into a product of factors, which are given as resummed PN-terms, as well of the form
~ 14 O(z). First, there is a contribution called the “source of gravitational radiation”.
Since its leading order is the energy density, one defines ng:()) = ﬁeg, where H.q is the
effective Hamiltonian. In our case the “effective” can be dropped; the Hamiltonian for
a test-particle in circular orbit about Kerr is known in closed form. The specific version
reads
1 2M aM1/2

H(e=0) A _ T r3/2
S0 — () = N (2.13)
7372

r

For odd parity modes another choice performs better, namely identifying the angular
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momentum as the source and normalising it by the Newtonian value. In our case this is

_ 2aM1/? a_
S(e D _ / I , (2.14)
\/1 3M 2aM1/2

Z
372

where LY = pM/v is the Newtonian angular momentum (cf. Eq. (24) and Eq.(25) in
[55]). The second physical contribution to the waveform is assigned to the backscattering
of radiation on its journey towards future null infinity. This backscattering is encoded in

the “tail factor” T},,. The standard form for this factor is given in terms of the I'-function

T(04+1—20k) i iy
Ty = ™ ik log(4mQM/+\/e) 215
‘ re+1n  ° ’ (2.15)

where & = M mQ (cf. Eq. (26) in [55]).

Of course, these two physically identified contributions can not make the complete picture.
Thus, one allows for residual correction factors in amplitude, f;,,, and in phase, e%m. As
shown in [54, 55|, the replacement pg,, = f;n/f leads to further improvements. Assembling

all the pieces, the final decomposition of the waveform into multiplicative factors reads

i = Wi - 88 Ty e%m (pp)t . (2.16)

Im

Since in the particle limit S‘éﬁf) and Ty, are given in closed form, the task of deducing the
multiplicative waveform from a given “exact” waveform, either some PN-waveform or a
numerical one, consists of determining the residual corrections &g, pemn. With respect to
using the waveform for energy fluxes from circular orbits even the phase is irrelevant. We

only need to compute the amplitude corrections pg,.

2.2.3 Resummed energy fluxes and py,, corrections

The pg,, corrections at a given PN order can be computed from the respective PN expres-
sion, either for the waveform or the energy fluxes. Here we assume to be given energy
fluxes. The following procedure was adopted in [55] by employing 5.5PN results for en-
ergy fluxes of a non-spinning particle on Schwarzschild [59] together with 4PN-results on
Kerr [61] (apparently some results were not published explicitly, cf. App. C of [62]). The
pem’s of [55] were adopted in this thesis for the EOB-dynamics.

The energy fluxes of a particle in circular orbit follow from the strain as

d 1o,
EE—E%ﬂM|m0Mm, (2.17)
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Figure 2.2: Performance of analytical models for the energy fluxes of a particle in circular equatorial
orbit on Schwarzschild. For large distances x = 1/7# — 0 the 5PN energy flux (green) converges towards
the numerical data (red). Close to the last-stable-orbit, at 2 = 1/6, the PN-result deviates from the
numerics. The resummation procedure (see text) can help to yield a better agreement (blue dashed). The
formulas for the analytic fluxes are given in [59] together with detailed assessments of the improvements
due to resummation. The numerical fluxes are provided by a frequency domain code of Hughes [60], but,
at slightly worse accuracy, can also be computed with the teukode (cf. Sec. 5).

which can be decomposed into modes

L S SE-T NI o UM TR o S I GRS
—F = —FEyy, = — Thom|” = — m TNgm ) :
dt =2 m=1 dt ‘ 167 (=2 m=1 ‘ 167 (=2 m=1 ‘

where the term %Egm is often called Fy,,, and it wraps up both £m contributions. Here
one could simply insert the PN-waveform at some order to get the corresponding PN-
fluxes. For the sake of extending the reliability of the fluxes, one can rewrite the PN-
waveform in the form of Eq. (2.16). The modulus in the fluxes actually allows to forget

about phase corrections.

Using energy fluxes instead of the waveform for the computation of the pg,,, first note that
\hem| ~ v/ Fum. Normalising with the leading order term, we get equality, ‘Z’ZT’"‘ = 1/]l?—;y,
m Lm

with, e.g., FJy = %vlo. Reorganising Eq. (2.16) and using this relation, the expansion
fom = Taylor ( % LU,V = O) gives the wanted corrections. The expansion
can be equivalently performed in = v?. Of course, one has to truncate at the order
dictated by the given PN-flux. At high orders this expansion can get involved. In checking

2

the herein used results of [55] we employed mathematica’s “Series|..]” command. This
allows to separately expand the pieces, and to afterwards multiply the results. Finally,
to further improve the performance, one computes ps,, = Taylor ( f;ﬁ,v,vo = O) . The
explicit expressions of the pg,’s as series in v are given in Eq.’s (29a-29i) of [55]. To
convince ourselves of the improved performance one can compare the pure-PN fluxes
with the ones obtained after the above procedure. Fig. 2.2 gives an impression of the
amendment due to the resummation at 5PN. Detailed comparisons of PN-fluxes and their

resummed versions can be found in [55, 59].
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Teukolsky formalism

The Teukolsky Equation (TKEQ) describes the evolution of linear perturbations on a
rotating BH background. It is essentially the result of linearizing the Bianchi-identities,
Rapps,) = 0, where the semicolon denotes a covariant derivative and R,s,5 the Riemann
tensor, written in tetrad notation [63], and imposing the Einstein Eq.’s (1.1). Mathe-
matically the TKEQ is a linear partial differential equation (PDE) of second order with
a wave-equation-like structure for the variable U(t,r, 0, ¢), written in Boyer-Lindquist
(BL) coordinates. Depending on the character of the considered perturbation (gravita-
tional, electromagnetic, neutrino or scalar), W represents different fields which contain
full information on the respective perturbation. The TKEQ was derived by Teukolsky in
1972 [17, 18, 64] and used in a first study to show that a rotating BH spacetime is dynam-
ically stable against linear perturbations. Besides stability studies [65, 66, 67], the TKEQ
finds important application in the computation of quasi-normal modes [68, 69, 70, 71, 72],
GWs of EMR systems [73, 74, 75, 76, 77| and effects of the self-force [78, 79].

We start in Sec. 3.1 by quoting the explicit TKEQ in BL coordinates. Sec. 3.2 outlines the
traditional route to find its numerical solutions in the frequency-domain, which is often
called the “Teukolsky formalism”. It is, however, also possible to solve the TKEQ in the
time-domain. We will review the one and only, besides that used in this thesis, published
time-domain approach of Krivan et al. [80] in Sec. 3.3, and also describe its development

and applications over the last twenty years.

Additionally, App. A describes the derivation of the gravitational TKEQ within the
“Newman-Penrose” (NP) formalism. For our purpose here it is enough to note just a
few things. First, Teukolsky’s “master-equation”, Eq. (3.3) below, represents a family of
evolution equations. All of these evolution equations share a similar form and are param-
eterised in the TKEQ by the spin weight s of the considered field: the field represented
by W has the spin weight, (i) s = 0 in the scalar case, (ii) |s| = 1/2 in the neutrino case,
(iii) |s| = 1 in the electromagnetic case, and (iv) |s| = 2 in the gravitational case (cf.
Sec. A.3). Second, for a given s each of the explicit equations follows from certain more

general perturbation equations for tetrad scalars, i.e. for the Weyl scalars ¥, and ¥ in
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the gravitational case, by specifying some key ingredients to the Kerr background: the

coordinate system and the null-tetrad basis.

3.1 Explicit Teukolsky Equation

In App. A we have quoted Teukolsky’s decoupled gravitational perturbation equations
for W, and ¥y, Eq’s (A.16)-(A.19) respectively. These equations are written in tetrad
notation and are more general than the explicit TKEQ because they hold for arbitrary
vacuum type D spacetimes and for arbitrary choices of the tetrad and the coordinates. To
arrive at the explicit TKEQ below, one specifies these equations to the Kerr background

and then follows Teukolsky’s choices [18] for the tetrad and the coordinate system.

The explicit TKEQ uses the Kerr metric in BL coordinates {t,r,0, ¢}

oM daM 5
dsy == (1- 5 ) de? = =" sin? 0 dedg + 5 dr? (3.1)
h 2 MaPr sin® h
+ 2 do? + (r2+a2+—a —— 9) sin2 0 do? |

where the two parameters are the mass of the Kerr spacetime M and its spin parameter
a. We further have ¥ = r? + a%cos?6 and A = r? +a? — 2Mr = (r —r,)(r — r_), which
defines the horizons ry. A well-known null-tetrad basis for the Kerr metric is given by

the Kinnersley null-tetrad [81], defined in BL coordinates as

(r* +a? A,0,a)
A

o (r2 4 a2, —A,0,a) o — (iasin6,0,1,icsch) 32)
’ 2% 7 V2(r + ia cos 0)

With these choices Eq’s (A.16)-(A.19) can be made explicit. Then, deriving the TKEQ is

just a matter of computing the respective spin coefficients Eq.’s (A.13), and the directional

o=

derivatives Eq.s (A.12). To arrive at the exact form given by Teukolsky, one has to be
mindful of the meaning of the master variable ¥ in the different spin-weight cases, as
listed in Table 1 of [18]. The TKEQ does, for example, not consider ¥, directly but, for
the sake of achieving separability, ¥ = p=4 U, = (r—iacos)*¥,. The resulting equations
are summarised, together with the analogous equations for electromagnetic, neutrino and

scalar field perturbations, to Teukolsky’s master equation. In BL-coordinates it reads

r? + a? . 4aMr e s 1 ,
[ T a’® sin? 0] OuVU + Op¥ — AT°0, (A 1o,w) — g Op(sinf O W)
a? 1 r? —a? _
+ (Z - m) Opp ¥ — 25 (M N (r+iacos 9)> o
a(r— M)  cotf ) B
23( A +1Sin9>8¢\11+s(scot 06—V =47XT : (3.3)
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which gives the gravitational equations for ¥ = U, for s = +2, and for ¥ = p=* U,
for s = —2. To avoid confusion note that Wy, actually means \1103/4 in the notation
of App. A, where the superscript B denotes that this is a perturbation. Furthermore,
it includes the equations for perturbations of the electromagnetic field for |s| = 1, for
neutrino fields for |s| = 1/2, and for scalar fields s = 0, in which case it just becomes
the scalar wave equation on Kerr spacetime. The source term 7" has different meanings
accordingly. For instance, in the s = 42 case it becomes T = 2Ty, and for s = —2 it
becomes T' = 2 (r —iacos 0)4 Ty, where the scalars T4 are built from 7" and quoted in
Eq’s (A.17)&(A.19). In the remainder of this thesis only the gravitational case |s| = 2

will be of interest.

3.2 Separability in the frequency domain

The 1973 Teukolsky paper [18] contained several useful new results. First, the bare
derivation of decoupled gravitational perturbation equations for arbitrary vacuum Petrov-
type D backgrounds. Second, the insight that the analogy with electromagnetic, neutrino
and scalar perturbations allowed to summarise all of them to a single master equation
ordered by the spin-weight character of the field. The probably most surprising finding was
the possibility to derive equations which are separable to ordinary differential equations
(ODEs). As noted in [82], it was clear that ¢ and ¢ can be separated out, but there was
“no obvious reason why the r and 6 dependence would separate”. Yet, it turned out to
be possible. The previously mentioned change of variables to a rescaled version, ¥, — W,
led to the explicit form Eq. (3.3).

Let us follow the procedure to separate the master equation Eq. (3.3) into ODEs, which is
not difficult, as it was constructed for that purpose. By Fourier decomposition in time and
azimuthal direction W = e~1“! ™ f(r ) | two dependencies become trivial by virtue of
Oy - —iw and 0y — im. Then, assuming that the radial and the polar dependencies
separate as well, one can insert the ansatz

I — e*i"-”fei””b aw (9) Rwém(r) (34)

slm

into the master equation for vacuum. This is enough to have the equation separate nicely

aw
slm

into two ODEs. The sub- and superscripts on 5%’ and R, already display the different
parameters in the explicit definition equations below. Without that knowledge one would
just have called them S(6) and R(r), and for brevity we will do so sometimes. The radial

equation takes effective potential form and reads

AS%<N“%RM>+Wﬂmm_O : (3.5)
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with the “potential” V' (r) = (M +4diswr — )\). The appearing quantities are
K=?+ad)w—am, A\ = Eym + a?>w? —2amw — s(s + 1), whereat the E,,, will be
specified momentarily. This potential is complex and, in contrast to the RWZ-equations,

not short-ranged. The angular equation as written in [83] is

1 d d
sin 0 do (bm T (9>)

2 2 0
+ <a2w2 cos? ) — _m29 —2aws COSQ—L;;S—SQ cot? 0 + Egom — 5% S(0) = 0.
sin sin

(3.6)

For fixed {s,aw,m} the latter equation can be seen as an eigenvalue problem for an
angular operator. This operator has eigenvalues Eyn (s, aw) and eigenfunctions S%. (),
which are called “spin-weighted spheroidal harmonics”, see App. F for an algorithm to
compute these functions. In the limit of aw = 0, the operator is just the angular part
of the wave-operator in spherical coordinates. In that limit the eigenfunctions reduce to
the well-known spin-weighted spherical harmonics Y,. Like the Y., the Sy, form a

complete set of basis functions. Thus, we can reconstruct our full solution for s = —2 as

\114 = (7“ — 1acos€ / <Z ngm Z‘ggm(e) e—uut 1m¢> dw (37)

—o0 m

which means we have to combine the solutions for R, (r) and S%,,,(0) for all relevant
¢, m and w to obtain the full solution. Note that this procedure is ultimately effective if the
physical solution consists of a single discrete frequency, in which case the integration over
dw becomes trivial. Moreover, note that the S%,, (6) can be computed independently of
a possible matter source, whereas the Ry, have to account for the source. In this case

one has to expand the source term using the pre-computed 5%, (0) functions

srsT= [ (zemm s, (0) et 1m¢>dw (35)
_0o m

with the result that Eq. (3.5) is enhanced by the source term G, (r) on the right-hand-
side. Thus, the effort of solving the TKEQ mainly resides in solving the radial equation
(3.5), which is, therefore, often referred to as the TKEQ.

Solving the radial equation turns out to be rather difficult. As described by Sasaki and
Nakamura [84], see also [60] for a more recent work, the problem originates from the long-
range character of the potential V'(r) and from the divergence of the source term Gy, ()
at large distances. The first problem can be surmounted by a suitable transformation

of the function R(r), which results in an equivalent formulation with a short-ranged
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potential [85, 86]. The second problem was tackled by Sasaki and Nakamura [84], who
succeeded in transforming the equation for R(r) to one which is governed by a short-ranged
potential and a non-divergent source term. Until ca. 2010, numerical frequency domain
solutions of the TKEQ were usually found by solving the Sasaki-Nakamura equation and
transforming back the solution to R(r) [87, 88, 60]. Today, expansion-techniques in terms
of hypergeometric functions dominate the community [89, 59, 58, 57] and set the literature

benchmarks for the highest accuracy.

3.3 Traditional time domain approach

In general, a solution to the TKEQ consists of a wide range of frequencies w, which makes
the frequency domain approach computationally expensive. Therefore, it becomes very
appealing to have a time-domain solver of the TKEQ. The problem is still only 2+1
dimensional because, given coordinates that manifest the symmetry, one can exploit the

axisymmetry of the background by a Fourier-ansatz in azimuthal direction
U(t,r0,0) => "W, (t,r60) . (3.9)

For the situations considered in this thesis we estimate that evolving for m € {0,..,6}
yields 2 95% of the full signal, as observed in a few test cases. Here, one should note
here that Teukolsky was using the standard BL coordinate ¢, whereas the above used ¢
anticipates the change of coordinates ¢ — ¢, Eq. (3.10). Due to d, = 0,, the symmetry
remains manifest in the new coordinate and the obtained 241 equation’s coefficients are
independent of (. Since the master equation is also a linear PDE, the different (..)e™#¥,,
terms do not mix and the equation can be decomposed into separate sub-equations for
the W,,. For the full equation to hold, each of the single W,,-equations has to hold
independently. Thus, the evolutions of different m-modes completely decouple. For every
m-mode equation the only remaining ¢ appearance is in the overall factor ¢!™%, which
can consequently be discarded; in vacuum the factor is irrelevant because the equation
can trivially be divided by the €™ ¢: in case of a matter perturbation one has to Fourier-

expand the source term as well in order to make /™% an overall term.

The first and to our knowledge only one successful scheme for such numerical time-domain
integration of the 2+1 TKEQ for gravitational perturbations was introduced by Krivan et
al. in [80]. The authors discussed severe numerical instabilities in case of a straightforward
implementation in BL-coordinates. They were able to suppress those by a certain refor-
mulation. First, the azimuthal BL coordinate leads to numerical problems at the horizon,
even in the case of scalar perturbations [90]. These can be easily cured by transforming

to the azimuthal Kerr-ingoing coordinate. Additionally, the tortoise radial coordinate
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is used in order to push the horizon to minus infinity, r* T oo Together these
T T4+

transformations read dy = d¢ + %dr , dr* = %dr (cf. Eq’s (2.4)-(2.7) in [91]), or

explicitly

— 2M — 2Mr_ —r_
©=0¢+ log(r h’),r*:r—l— ik logr ™+ _ 4 logr iy

rT—1r_ ry—7r_ 2M Ty —7r- 2M
(3.10)

re —Tr_

The r — oo behaviour of the variable W was given by Teukolsky as Tlgglo U(t,r,0,¢)~1rd
for s = —2, which invokes the rescaling of the field variable U, (t,7*,0) — 73 ®,,(t,r*, ),
to avoid the growth for large r. Unfortunately, these modifications are not yet enough to
avoid numerical instabilities when implementing the 2+1-reduced TKEQ for s = —2 as a

second order in time and space equation. The particular first order reduction IT = 9,® +
’{‘2+(L2
(r2+a2)* —a? A sin2 0

in combination with a modified Lax-Wendroff time integration scheme of second order.

0+® was found to allow stable simulations; however, apparently only

Spatial derivatives were approximated by centered finite differences of second order. The
grid in # direction was staggered to avoid problems at the axis. The boundary conditions
on the axis were imposed by ® = 0 for even m and dy® = 0 for odd m. This originates
from the parity behaviour of the spheroidal harmonic associated with the considered m
mode and spin weight s (see, e.g., the discussion on boundary conditions in [92]). At the
inner radial boundary the fields were set to ® = II = 0 in order to have no propagation of
the fields close to the horizon, i.e. no outgoing radiation. At the outer radial boundary one
would need a purely outflow boundary condition. In a numerical approximation boundary
conditions can lead to small reflections, which gradually pollute the simulation. Without
the hope of a clean outer boundary the fields were set to ® = II = 0 as well. The expected
unphysical reflections were made tolerable by pushing out the boundary so far that the
physically relevant part of the simulation ended before the first reflections reached the

extraction zone.

3.3.1 Applications and upgrades

Krivan et al’s time-domain approach [80] from 1997 was a great advance at the time, for
it allowed stable simulations at the order of ~ 1000/ . The reported usual resolution was
N, x Ny = 8000 x 32 grid points, on the domain r* € [—=100M, 5000 | and 6 € [0, 71]. Sec-
ond order convergence was found for ¢ < 50M, with a subsequent drop of the convergence
to ~ 1.3. For the first time it was possible to measure power-law decay rates for s = —2
fields on Kerr in a numerical time-domain approach. The main limitations of the scheme
were the second order accuracy inherited from the special Lax-Wendroft integration algo-
rithm and the outer boundary problem. The latter required huge computational domains

for the radiation extraction to be not too close to the BH (at a radius r* = 20M). Thus,
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extrapolation errors were induced when computing the relevant information at future null
infinity. Furthermore, the approach was tailored for s = —2 gravitational perturbations.
The very interesting ingoing radiation, which in general has to be computed from s = +2
perturbations, is not treatable in BL-coordinates. Note that, when speaking of the “BL”
version of the Krivan et al. scheme, it has to be understood as including the necessary
transformations to the tortoise coordinate and to the well-behaved azimuthal coordinate.

As discussed above, pure BL coordinates are not suitable at all.

In the almost 20 years from the development of this scheme until now several follow-up
works have adopted and enhanced it. The algorithm was initially developed for evolutions
of scalar fields [90, 93], and used in this context in 2001 to crosscheck the analytically found
superradiance resonance of a scalar field around a nearly-extremal Kerr BH [94, 95, 96]. A
few months after the original paper [80] the Krivan et al. code was used in [97] to crosscheck
a time-domain Zerilli-Equation solver. Krivan and Price [98] performed simulations in the
“close-limit” of two black holes. Surprisingly, besides the above references, there are no
further publications on the basis of Krivan et al’s code. In 2000 Campanelli, Khanna et
al. [99] transformed the TKEQ to ingoing Kerr-Schild coordinates, but otherwise adopted
the Krivan et al. scheme into a code named “penetrating Teukolsky Code”. In January
2002, Khanna used this code to evolve two-black hole initial data [100]. Later in 2002
the same code was used by Burko and Khanna [101] to investigate power-law decay rates
of generic spin, including also s = 42, and to compare the numerical results with the
analytic predictions of Hod [102, 103, 104] and Barack and Ori [105, 106, 107]'. In 2004

the penetrating Teukolsky code was used in an analysis of scalar fields [108].

After [108] the focus of the research moved away from the penetrating Teukolsky code
back towards the standard BL-coordinate scheme of Krivan et al.. The first step in this
direction was done by Lopez-Aleman, Khanna and Pullin in 2003 [109]. In their study a
nonspinning point-particle perturbation was added as a source term to the TKEQ. This
might explain the return to BL coordinates since the source term requires the computation
of orbits, and typically codes will produce orbits in BL coordinates. That implementation
has been used and developed steadily ever since. To date it is probably the most advanced
time-domain Teukolsky solver, besides ours, and the following review on developments is

almost exclusively related to that code.

In their first study [109] the authors considered a source term with a stress-energy ten-
sor that models a point-particle on circular, equatorial geodesics. The distributional
character of the particle was represented by narrow Gaussian functions. The code was

found to be second order convergent up to 500M and reproduced energy fluxes obtained

1A detailed review on the topic of late-time tail decay rates, including scalar field studies, can be
found in [HO, H1].
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from frequency-domain calculations, though with significant deviations (around 30%)
at the stated typical resolution of 6400 x 60 grid-points. Later on the authors noted
in [110] that Eq. (20) of [109] was unnecessary and largely responsible for the inaccu-
racy. In September 2003, Khanna enhanced the study of gravitational radiation from a
point-particle to elliptic and inclined orbits [111]. Besides Khanna’s implementation also
Pazos-Avalos&Lousto [92] adopted Krivan et al’s approach and developed a code with a
modified fourth-order Lax-Wendroff algorithm in 2004. The expected convergence rate
was sustained up to ~ 1000M . The authors were able to accurately compute quasi-normal
modes’ frequencies and power-law decay rates and reported a significant gain in accuracy;
they did, however, not embark into modelling a point particle. It is noteworthy to men-
tion that Pazos-Avalos&Lousto’s development of a fourth order accurate scheme seems
not to have been ported to the code of Khanna et al.. In 2007 Burko and Khanna [110]
improved the accuracy of their code to a level of ~ 1% difference for energy fluxes of a
particle in circular equatorial orbit (CEO). The improvement was assigned to the correc-
tion of two errors in the source computation and a higher grid resolution, by a factor ~ 3
in radial direction compared to [109]. Additionally, the authors investigated waveforms
emitted from “zoom-whirl” orbits. In 2008 a major progress was made by the fabrication
of a few-point numerical delta-function that mimics a delta-distribution in its integral
properties [91]. Using resolutions of N,« x Ny = 9600 x 40 grid points, the new delta
representation allowed to reproduce energy fluxes for CEOs computed in the frequency
domain with deviations < 1%. In case of more generic orbits the new delta-representation
was found to produce high-frequency noise [112]. By enlarging the support of the delta,
raising the order of the interpolation used in the derivation, and by applying a low-pass
filter it was possible to remove the noise and to reproduce frequency-domain waveforms
for eccentric, inclined orbits. Furthermore, a hybrid method was devised, which consists
of, (i) computing the energy fluxes for CEOs within the frequency domain [113, 114],
(ii) adding the energy losses as a RR force to a geodesic solver, and (iii) feeding the
obtained quasi-circular-inspiral+plunge trajectory to the time-domain code in order to
produce the waveform. Building on such realistic trajectories, the authors investigated
recoil velocities in the particle limit over the spin range a € [—0.9,0.9] [115]. In 2009
Burko and Khanna [116] revisited the homogeneous TKEQ and studied the influence
of BL and ingoing-Kerr slicing on the late-time decay rates of scalar fields by reviving
the penetrating Teukolsky code. Further investigations of tails of scalar fields followed
in [117] within the BL code, enhanced by quadruple precision, sixth-order finite differ-
ences in angular direction and resolutions up to 64000 x 64 grid points. Also, starting
from 2009 [118, 119, 120] the code was developed in the direction of high performance
parallel computing on the basis of a domain decomposition strategy realised with either

OPENMPI or corresponding libraries on graphics processing units. In 2011 significant
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conceptual progress was achieved by remediating the outer boundary problem of Krivan
et al’s scheme through the application of the hyperboloidal layer technique [75], as devel-
oped in [121, 122, 123, 124, 125, 126]. This drastically reduced the computational costs.
For example, a small resolution of only 3125 x 32 grid points still reduced the deviations
in CEO energy fluxes to the level of ~ 0.05%. Remarkably, the simulation of a long-scale
t ~ 109M inspiral within the hyperboloidal layer code only took ~ 1 day when run on
1000 cores. The boundary problem at the horizon was resolved analogously with a layer
technique in [127].

Around 2010 the effective-one-body models for spinning binaries [49, 128, 129] became
sufficiently mature to stimulate the onset of comparisons against numerical data in the
particle limit also for Kerr. For Schwarzschild the strategies of informing the EOB-model
by computing the GWs from a particle on quasi-circular orbits that are slowly shrinking
due to an EOB RR force until merger, were developed by Damour, Nagar, Bernuzzi et
al. in [22, 52, 130, 131, 132, 133]. For Kerr the comparison against frequency-domain
Teukolsky solvers [134, 74] was limited to slowly evolving CEOs, until in 2011 Barausse et
al. [135] complemented the comparison using Khanna et al’s time-domain code to tackle
inspiral trajectories. Besides improving the EOB model in this direction, Barausse’s study
comprised of interesting analyses of certain characteristics of the multipolar waveforms
such as the hierarchy of the dominant modes. For completeness note that this study was
not yet employing the simultaneously integrated hyperboloidal layer technique. In 2012
Taracchini et al. incorporated these numerical results to a prototype EOB model [136].
In 2014 Taracchini et al. [76] performed a detailed analysis of merger waveforms in the
particle limit using energy fluxes from the frequency-domain as a RR instead of the EOB
one. The study focused in particular on nearly extremal configurations with |a| = 0.99,
and found interesting features such as the flattening of the waveform for ¢ — 1. Apart
from the EOB applications, a theoretical interest in time-domain numerical data was
ignited by the study of self-force effects. From 2012 on the time-domain code was used for
producing waveforms from orbits around Schwarzschild spacetime that accounted for self-
force effects [137], and in the context of overspinning an extremal Kerr BH [138, 139]. In
2015 the latest work in this direction accounted for spin-orbit coupling effects in producing
the orbit, though neglecting the spin of the particle in the source term of the TKEQ [140].
Finally, another recent application of Krivan et al’s scheme was a time domain code that

evolves a scalar field in the spacetime of a Kerr Anti-de-Sitter BH [141].



CHAPTER 4

A new time-domain approach to the

Teukolsky Equation

As described in the previous chapter, the traditional time-domain approach to the TKEQ
due to Krivan et al. [80] has been developed by Khanna and collaborators to an extreme
accuracy and utility. Nonetheless, there is room for further improvements. This chapter
presents an alternative approach to the numerical solution of the TKEQ in the time-
domain, which is based on a reformulation of the TKEQ using hyperboloidal, horizon
penetrating coordinates and a suitably rotated null-tetrad. This idea has been followed,
though unknowingly, as explained below, already in [H0] for the homogeneous TKEQ (see

Ch. 6 and [H1]), and is extended here to the case of a point-particle source term.

A key feature of the new approach is the use of hyperboloidal, horizon-penetrating co-
ordinates, which allow a perfect boundary treatment at both the outer and the inner
radial boundary and the elimination of extrapolation errors for waves at scri. For certain
important applications the new approach is advantageous over Krivan et al’s original
scheme, even after the multiple amendments of the last years; namely, our approach al-
lows the computation of ingoing gravitational radiation from s = +2 simulations, and,
it yields well-behaved numerics when implemented with standard numerical techniques
(cf. Sec. 5.1 for details on our implementation). This is important because it opens the
door for higher order algorithms and greatly simplifies possible future implementations.
Notably, our simulations, apart from the most challenging cases of spin parameter values

|a| — 1, do not require the numerical Kreiss-Oliger dissipation [142].

First, we explain in Sec. 4.1 how a regular form of the TKEQ in hyperboloidal, horizon-
penetrating coordinates can be obtained. Two apparently different approaches are com-
pared and shown to be equivalent. For readers interested in more details, the main ideas
of the hyperboloidal compactification technique in the context of BH perturbation the-
ory are gathered in Appendix B. In this work two such hyperboloidal coordinate systems
are used; mainly, the HH-coordinates (7, p,0,¢) (cf. Sec.B.2) and the RT-coordinates
(T, R,0,¢) (cf. Sec.B.3). In Sec. 4.2 we collect the relevant formulas for computing en-
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ergy and angular momentum fluxes from our evolution variable . Finally, in Sec. 4.3 the
calculation of the TKEQ source term will be sketched, which also gives the opportunity
to describe the derivation of the explicit energy-momentum tensor for a spinning particle
(cf. Ch. 2).

The following discussion assumes basic knowledge of tetrad calculus and the Newman-
Penrose (NP) formalism; especially of terminology like spin coefficients, NP-operators, and
a null-rotation. A short reminder on these topics can be found during the discussion of
the derivation of the TKEQ in App. A. In addition, basic knowledge on the hyperboloidal
coordinate systems is required; most notably, that future null infinity 7+ (“scri”) is part
of the domain. In the here used HH-coordinates the radial coordinate value of scri is
denoted by pseri = S. (Not to be confused with the spin magnitude, which is also labelled

by S in the relevant sections treating spinning particles.)

4.1 Regular TKEQ in hyperboloidal coordinates

For many purposes hyperboloidal, horizon penetrating coordinates are known to have the
mentioned favourable properties. Therefore, we would like to apply such coordinates, more
precisely, the HH-coordinates to the TKEQ. An explicit reformulation which is regular at
the horizon and scri, and thus suitable for numerical simulations, shall be derived. There
are two mathematically equivalent ways of obtaining a regular form, and both shall be
explained here. It turns out that one of them is preferable when considering a source term

that is non-vanishing at the horizon.

4.1.1 Approach 1

Transformation of coordinate basis and rescaling of field variable:
The intuitive way of obtaining a regular version of the TKEQ in HH-coordinates starts

from the explicit TKEQ (3.3) as derived in BL-coordinates and in the Kinnersley null-

tetrad. Then transform the coordinate basis in the usual manner % = gi: agy , where z#
shall label the new hyperboloidal coordinates and z* the BL-coordinates. The Jacobians

97 can be read off from the explicit transformations (B.1) specified to (B.6). Inserting
these into (3.3) brings us half way to the desired reformulation. The second half consists
of finding a cure for the fact that some coefficients of the resulting equation are singular
at the horizon and others at future null infinity. Fortunately, these singularities can be
directly attributed to the behaviour of the considered field variables in the asymptotic
regions r — oo and r — r,.. Moreover, the behaviour of the field can be classified by the

spin weight s. Already in the original work of Teukolsky [18] (specifically after Eq. (5.3)
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and in Eq. (5.6)) we find the asymptotic behaviour of the master variable

v Ty AT, ¥ r—00 rm ey ) (4.1)

Note that this is consistent with the fact that U, falls off as 7! since the master variable
for s = =2 is ¥ = (r —iacosf)* ¥, In order to get rid off the unwanted behaviour
of W, one can simply consider a rescaled field variable. Note that this is only necessary
because the horizon and scri are part of the domain, whereas in the standard BL-approach
these delicate points are not included. Noting that asymptotically A ~ 72 leads to the

combined rescaling
U =A%y, (4.2)

with the new master variable ). Indeed, this yields the desired regularity of the coef-
ficients in the entire domain p € [p4,S]. After the reduction to 2+1 form by Fourier-
decomposition of ¢ in azimuthal direction (3.9), the equation schematically takes the

form

Crr Oty + Crgrgt) + CopOppth + Condagty + Crrt) + Codyt) + Codth + Cotp = S,
(4.3)

where ¢ now abbreviates the Fourier-mode contribution %, and S represents the spin-
weight dependent source term. The coefficients in HH-coordinates are given in explicit

form in Appendix C.

While this approach is perfectly working in the case of the homogeneous TKEQ, one
encounters problems once Sg(p) # 0. To understand the issue, note that the coefficients
of Eq. (4.3) obtained following the above steps contain an overall factor, which, depending
on s, vanishes or explodes at the horizon. The reason for the appearance of this factor is
the rescaling with A~°, where the trouble is A(p,) = 0. On a more abstract level, the
reason is the use of the Kinnersley tetrad, which is singular at p,.. To relieve the equation
of this factor, we multiplied (A®r(p)S?) to the whole equation, which results in the
coefficients stated in App. C. As a consequence, in the inhomogeneous case that factor is
absorbed by the source term. For example, looking at the s = —2 case, the multiplication
will introduce an overall A=2 to the source S_,. Thus, the source is corrupted at the
horizon unless one can find a corresponding A? in the many pieces that form S_,. In
practice, this is cumbersome and we were not able to find all potentially hidden factors
of A? to cancel out the singular factor. Note that the same argumentation holds for the
analogous transformations to RT-coordinates (cf. [H1]), in which case the overall factor
Afr(R)

(T) was multiplied to the equation. In conclusion, this makes the above procedure

unwieldy for a point-particle perturbation which reaches the horizon.
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4.1.2 Approach 2

Rotation of null-tetrad and rederivation of the TKEQ:

A slightly different approach goes back to the decoupled equations for ¥y and ¥, (and
the analogous scalars for the other cases), i.e. to the state before these equations were
specified to the Kerr background, a tetrad and a coordinate system. For clarity let us
follow this approach on the example of the s = —2 equation (A.18) with the source term
(A.19). The idea is to replace the Kinnersley-tetrad by a tetrad that is well-behaved
on the horizon as motivated by Teukolsky in examinations of horizon fluxes [83]. The
reasoning is that if the tetrad legs are regular, the corresponding NP-operators will be so,
and after some algebra we are bound to obtain a TKEQ that is regular by construction

also in the source term.

The Kinnersley null-tetrad (3.2) can be rotated according to a null rotation of class three
(cf. Eq. (A.10)) to become, once rewritten with respect to horizon-penetrating coordinates,

regular at the horizon. The choice A = ) and © = 0 corresponds to the “Hawking-

A
2(r2+a?)
Hartle”-tetrad [143] and was adopted by Teukolsky. We basically follow this procedure
with the restriction to its essential part, i.e. we rotate by A = A following Campanelli et
al. [99]'. The resulting tetrad, written with respect to the iK-coordinate basis, has the

same m-leg as the Kinnersley tetrad in BL coordinates. The components of l_:ﬁ read

(1,—1,0,0)

[= (A +4Mr.A.0.2 7=
( + r? 77a>7 n 22 )

(4.4)

which are manifestly well-behaved at the horizon, A = 0. Subsequently, the tetrad is
transformed to the HH-coordinate basis and written in terms of the new radial coordinate
p. The explicit expressions of these legs are a bit lengthy and not quoted here since
they are irrelevant for the argument. Before computing the spin coefficients needed for
the NP-operators (A.13), one should recall that they are tetrad scalars. This means
they are independent of the coordinate system but dependent on the tetrad. Therefore,
we can compute the NP-operators of the rotated tetrad written in simple coordinates;
for instance, just take the iK-coordinate expressions (4.4), and in the end switch the
coordinates by letting r — r(p). In order to convince oneself of the correctness of the above
procedure, one may want to cross-check some expressions and repeat the computation of
the spin-coefficients starting directly from the legs in the HH-coordinate basis. In doing
this it is advisable to avoid the lengthy covariant derivatives appearing in the definition
equation (A.4) by rather consulting Ch. 1 of Chandrasekhar’s book [144]. Eq. (265) therein

provides an equivalent but more convenient definition of the spin-coefficients in terms of

Note that in rederiving the TKEQ we found slight disagreements with Eq. (31) of [99]. More precisely,
there seem to be typos in the imaginary part of the non-derivative coefficient and in the 92 coefficient.
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the A-symbols Agpe = €1y [e(a)ie(c)j — e(a)je(c)i], where the round brackets denote that
these indices run over the different tetrad legs rather than their components. Following
Eq. (268) in [144], the A symbols yield the spin-coefficients via yup. = % [Aabe + Aeab — Nveal -

After some algebra, the insertion of the tetrad-legs written in the HH-coordinate basis and
of the associated NP-operators into the decoupled equation Eq. (A.18) gives an explicit
equation, which is obviously different from the explicit result of approach 1, Eq. (4.3).
Evidently, the disparity is due to the different field variables considered. Recall that in
approach 1 the additional rescaling used by Teukolsky, in order to obtain from Eq. (A.18)
a separable equation when specified to Kerr, reads ¥ = p=4W,. To check if approach 2 can
give the same result, we name our master variable ) and rescale accordingly ¥, = p*e.
This yields, indeed, a form of the equation which is, at first sight, quite similar (many
coefficients agree) to the explicit TKEQ in HH-coordinates, Eq. (4.3). Recapitulating
the procedures, this similarity may sound odd because in approach 1 we had additionally
rescaled the field variable with factors of A, which are apparently missing in approach
2. The puzzling similarity will be explained in a moment. First, let us mention that
even the small remaining differences with respect to Eq. (4.3) can be removed. The main
difference is that, in approach 2, some coefficients are still singular at scri. This makes
sense because in rotating the tetrad we were only concerned with the horizon. Addressing

scri, the remaining singularities disappear by virtue of the rescaling ©oq = r pew. In

r(R)
R

RT-coordinates, approach 2 results in exactly the same equation (4.3) which was obtained

in case of

fact, once one multiplies the equation with the overall factor r S?, or with

in approach 1, i.e. with exactly the same coefficients given in Appendix C.

While this may come as a surprise, one can actually comprehend the equivalence of the
two approaches. Recall the consequences of null rotations of class three on the considered
field variable (cf. Eq. (A.11)). A null rotation of the tetrad with A = A implies for a
spin-weight s field that ¢ew = A%ag, ie. , e.g., for s = —2 we have Ypew = A" 2y4.
A rescaling of the field and a tetrad rotation are thus equivalent. This means that the
considered field variable 1., is exactly the same in both approaches. Consequently, the

Yin approach 2 could

equations have to coincide. Actually, the rescaling of the field with »~
have been as well wrapped in a second null rotation. The simpler rescaling just works
as fine because the inherited overall factor in the source term is well-behaved, except for
scri. (We do not care about the regularity of the source at scri, for there is anyway no

chance to consider sources which are non-vanishing at scri.)

Even though the resulting homogeneous parts of the equations are the same in both ap-
proaches, the source term is artificially different. It is explicitly regular at the horizon only

in the second approach. In the first approach the source term S; must be implicitly regular
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as well, but the explicit cancellation of the é factor with hidden A? factors is practically
impossible. Since the computation of Sy (sketched below) involves lengthy algebra it is
invaluable to have the complete expression regular at the horizon by construction, i.e.
given of course a regular behaviour of 7},,. In our case this is needed to track the parti-
cle until it reaches the horizon. This is, by the way, an interesting difference compared
to Krivan et al’s time-domain approach to the TKEQ in BL-coordinates (Sec. 3.3). As
mentioned several times in the literature (e.g., in the last part of Sec. IIT A of [135]), the
TKEQ source term for a point-particle which approaches the horizon in BL-coordinates
is smoothly “red-shifted”. That is to say it vanishes due to the factor ﬁ 00, with A
the proper time, in the denominator of . On the contrary, using hor1zon penetrating

coordinates like the HH-coordinates remains finite, and we observe nothing special at

’ d>\
the horizon crossing.

4.1.3 Related quantities

For many practical purposes our evolution variable ¢ has to be converted to related
quantities. Here, we describe the relevant relations for s = £2. Note that in our 2+1-
approach we actually solve for the m-mode of ¢, and the following relations are employed

in terms of the m-modes of the respective quantities.

To compare with other perturbation approaches, it is useful to compute the metric per-
turbations h,, in the transverse-traceless gauge. In fact, we just have to integrate the
relation h = 2 [ [1)4dt’dl” to obtain the strain h = hy —ihy (cf. Eq. (A.9), but note that
this only holds asymptotically. For a better physical intuition it is useful to decompose
the perturbation with respect to the spin-weighted spherical harmonic basis functions,
Yeem (6, @) (see, e.g., Sec.3.3 in [145]). We will call the coefficients hy,, of the following

expansion

t(? gb Z Z T‘hzm Y_ggm(0,¢> s (45)

(=2 m=—¢

the “multipoles” or “modes” of h. Multipoles of related quantities like W, are defined

analogously. To compute these modes we evaluate the inner products of h and Yy,,, i.e. we

integrate over 6 and ¢. Since we are working in an azimuthal mode-decomposed approach,

a single simulation will only yield the (distance scaled) Fourier-m-mode contribution rh,,,

which is defined like rh(t, 0, ¢) = %o: rhy(t,0)e™?. In practice we therefore only project
m=—oco

7 hy(t,0) in the O-direction, i.e. against Y/_ng(e), with Y_opn(0,0) = ?_ng(ﬁ)eim¢. The

multipoles A, can as well be connected to the “+7/“x” polarisations via 7 hey = rhy om—
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t7 hy om. Let us also introduce another common normalisation convention,

£+2)v
2)

h(t,0,¢) = ZZ

(=2 m=—/4

(t) Y—%m(ev ¢) ) (46)

where, in a slight abuse of the symbol W, the complex quantities Wy, = \111(52 + 1\11((;2

to the RWZ variables [146]. The explicit relations read R(hem) = hyom = 1/&3%%2

refer

and Z(hey) = —hym = \/ﬂ \If(o) In fact, in [146] the Uy, were defined with respect
to a slightly different convention of the Yy, i.e. our Wy, are not exactly those of [146].
For completeness, let us mention how the exact quantity of [146] can be retrieved from
ours, Wy, opig = i 0dEHm2 ()M, Tn many plots we will use the RWZ-normalised
version of hy,,, motivated from the ease of applying RWZ-equation-related formalisms and

comparing waveforms.

For clarity, let us recall the now multiple appearances of the symbol W. Teukolsky used ¥
as his master variable, which represents, depending on the actually considered spin-weight
s perturbation, different quantities; e.g., for s = 2 simply ¥ = ;. In our approach
described above we consider a further rescaled version of W, and call the new master
variable, i.e. our evolution variable, ©). In the s = —2 case ¥ is asymptotically nothing
else but rW,, the radius scaled fourth Weyl scalar in the Kinnersley tetrad. After two time
integrations one obtains the strain r A. The RWZ-convention works in a RWZ-normalised
form of hgy,, introduced in Eq. (4.6). Whenever we will speak of Wy,,, this will refer to the

modes of the RWZ-normalised strain (not to modes of Teukolsky’s master variable ¥).

Knowing the relation between h <+ W4, it remains to relate our evolution variable 1)
to Wy. Therefore, one has to relate 1) to Teukolsky’s master variable W, which reads
U = A=~ and, then, to look up Table 1 of [18]. For s = —2 we concretely have
Y = A?rp=*W, with p being a NP-operator and W, referring to the Kinnersley tetrad as
usual. Asymptotically A=2 ~ r~* and p=* ~ r?, so extraction at scri means 1) = r¥,. At

scri, we thus just have to integrate the relation 7h = 21) to obtain the strain r h(u, ) (cf.

Eq. (A.9)).

For s = 42 our evolution variable is 1) = rW¥o campa, Where the subscript stresses the usage
of the Campanelli et al. [99] tetrad (see Eq. (4.4)). The time-domain flux formulas below
will be given instead in terms of W awk. The “Hawking-Hartle” tetrad (see Eq’s (4.14) in

[83]) is trivially related to the Campanelli one. First, we have Wg pawk = U, where

A?
12 +a?)?
U, refers to the Kinnersley tetrad (cf. Eq. (4.43) in [83]). Note that ¥, cannot be evaluated
at the horizon while W p.wk can be, once the tetrad is written in horizon penetrating
coordinates; e.g., the Kerr-ingoing coordinates of Eq.s (2.1) in [83] or the slightly different

Kerr-ingoing coordinates of Eq.’s (B.2) (remember both coordinates give the same Wo pawk
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as it is a tetrad scalar). In the Campanelli tetrad we have W campa = A*W. Hence, our
s = 42 evolution variable connects to the relevant Hawking-Hartle tetrad scalar like
Y = 1% campa = T A2 Wy = 14 (r? + a®)? Vg gawk. Specifically at the horizon, we have
Y/ (4ry(ri + a®)?) = Wopawk; note the factor ry that we have to divide by due to our

rescaling for regularity at scri.

4.2 Flux computations

GWs carry away energy and angular momentum from the emitting system, say a compact
binary. In general, this drives the motion from eccentric orbits towards quasi-circular
motion [147, 148] and finally to merger. In the point-particle limit the focus of flux
computations is usually on circular orbits because the corresponding fluxes can be used
in some form, e.g., incorporated to analytic models or simply using the numerically found
values, as a RR force on the basis of an energy balance argument. For example, one can
enrich the equations of motion of a test-particle by the found radiative energy losses to
obtain more realistic orbits with quasi-circular spiral, plunge and merger. FEventually,
one can measure the fluxes for these realistic orbits, and assess the performance of the

constructed radiation reaction by comparing with the produced fluxes.

4.2.1 Frequency domain formulas

Let us start with the most simple and yet relevant case of circular equatorial orbits. These
orbits are special in the sense that they can be characterised by a single frequency €2, of
motion. Thus, we can employ in our time-domain approach formulas usually associated

with the frequency-domain.

The possibility is appealing because, (i) it allows us to crosscheck the time-domain for-
mulas, especially in the case of Poisson’s untested time-domain method for computing
horizon-fluxes [149] (see Sec.s 4.2.2&5.2.2), (ii) the formulas can be written in terms of
our field variable v, whereas the time-domain formulas below require to compute related
quantities (h ~ [ [4dr at scri or W pawk(7) from 7 = —00 to 7 = 400 at the horizon),
and (iii) one is able to compute horizon and infinity fluxes in a single s = 42 or s = —2

simulation exploiting a frequency-domain relation between W, and Wy.

The machinery for computing fluxes from the TKEQ in the frequency-domain was set up
already in the 1974 Teukolsky paper [83]. With slight modifications, due to the differences
between the master variables ¢ and ¥, we can use Eq.s (4.12a) and (4.44) of [83]. For a
given Yy, contribution of our master variable ¢) within the s = —2 version of the TKEQ),

tem, the energy flux to infinity can be computed according to the first part of Eq. (4.12a)
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of [83]

dEZ, 1
dt  4dnw?

[ (4.7)

where w = €2y m. Analogously, our full 2+1-variable v, can be used to compute the full
flux (including all [-modes) by
dE® ™ 1 5
— = —— |, |* sin 6 db ) 4.8
2~ [ | sin (48)
The flux at the horizon is computed from the zeroth Weyl scalar in the “Hawking-Hartle”
tetrad Wo gawk (s€e Sec. 4.1.2). From a s = +2 TKEQ-simulation we obtain ¢» = ¥y campas
where the subscript emphasises the use of the tetrad of Campanelli et al. [99]. This is
related to the desired W awik by a trivial factor (see Sec. 4.1.3 for details). Accounting
for an additional factor r, which is introduced by our rescaling for regularity at J ', we
can use the first part of Eq. (4.44) in [83] for computing the ¢m-flux and the full-m fluxes?

dt 27 2k(k2+4e2)(2Mr,)? r.2 ‘
dE;, w ™ [Pl
m o_ i 4.1
at 32k (k21 4e) (2Mry) /0 p2 smbde (4.10)

where k = w — 537 (see after Eq. (2.11) in [83]) and € = vV M? —a?/(4 M ry) (see
Eq. (4.30) in [83]). Note that the above formulas also yield the angular momentum fluxes

via the relation

dJ m dE
—_ = — 4.11

dt w dt ( )
cf. Eq. (4.13) in [83], which is why one often sees circular orbits fluxes being discussed in

terms of either the energy or the angular momentum fluxes.

“Miraculous identities”

The title of this subsection is taken from the corresponding subsection in [82] because it
seems to be the most adequate description for the following fact: “the decoupled compo-
nents (¥, and ¥y| contain complete information about all nontrivial features of the full
perturbed field” [18]. In other words, having solved the master equation for ¥, allows
to compute ¥, without re-solving the master equation a second time, and vice versa.
The reason is that the Einstein Equations imply certain relations ¥, <+ ¥, which Chan-
drasekhar [144] called “Starobinsky-Teukolsky” identities [150] (see [82, 64, 83] for more

details). These relations are more than unexpected, for one is used to think of U, and

2These formulas are validated by our numerical tests. For completeness, note that in the step from
(4.37) to (4.44) in [83] we could not follow the apparent cancellation of the factor 4(r? + a?)?, which
seems to appear last in (4.43).
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Uy as outgoing and ingoing radiation respectively. The explicit relations are not quoted
here because we do not employ them directly, but they can be found in Sec. 1T of [83].

Below we will only state the relevant implications for the energy fluxes.

Unfortunately, the conversion Wy <+ W, relies on the assumption of a discrete frequency
solution, Wy = |Wy0|e™, so for us it is only useful in very restricted cases; namely,
when the solution, as a matter of fact, consists of a single frequency, like for a point-
particle on circular equatorial orbits. Moreover, the identities hold only for multipolar

decompositions with respect to the eigenfunctions of the angular operator of the TKEQ),

aw
slm

i.e. we have to work with the spin-weighted spheroidal harmonics projection-modes
of the solution. In addition, we need their eigenvalues. When a = 0.0 we can use the
spin-weighted spherical harmonics with gy, (aw = 0) = £(¢ + 1). For the algorithm used

to compute the S%° consult Appendix F.

Teukolsky translated the relations ¥, <> W, into formulas for the energy fluxes of the
corresponding Sg,,-modes (cf. also [60]). For s = —2 our field variable v corresponds
to ~ ¥, modulo some factors (emphatically not to ~ W), but still we can use it at the

horizon to compute

dEgl o Kstm W}ém’Q
dt drw? ry2

(4.12)

aw

o .. The conversion

where, mentioned again for clarity, 1, refers to a projection against S

coefficient avgy, is given by Eq. (4.17) in [60],

256 (2M71, ) k (k2 + 4€2) (k2 + 16€2) w?

sbm — ; , 4.13

ot |Cs£m’2 ( )
with k and € as defined below Eq. (4.10), and with the Starobinsky constant?

|Coom|* = (Q* + dawm — 4a*w?) [(Q —2)? + 36awm — 36a2w2} (4.14)

+ (2Q — 1)(96a*w?® — 48awm) + 144 w*(M — a®) | (4.15)

where Q = Egm — 2awm + (aw)?, cf. Eq’s (3.23)-(3.24) in [83]. Analogously, one can
compute the multipolar infinity flux from a s = 42 simulation, where the field variable 1)

is some form of ~ Wy, using

dEZ, 16

dt - 47_‘_|C€ |2 |¢Em|2 ) (416)

cf. Eq. (4.12a) in [83]. We have tested these relations for a point particle on circular

3Do not get confused when comparing this with Eq. (4.18) of [60], which employs the symbol A =
Q@ — s(s+1) for the special case s = —2. Instead, Eq. (4.14) here holds for both s = —2 and s = +2.
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orbits and found excellent agreement with the standard computations, but since we were
also interested in the full-¢ summed fluxes (not accessible by these conversions) we had
to perform both s = £2 simulations anyway. Thus, in practice, we could rarely exploit

the relations except for cross-checks.

4.2.2 Time domain formulas

To compute the fluxes for arbitrary trajectories, which emit GWs over continuous fre-
quency bands, we need time-domain formulas. These formulas are usually written in
terms of the gravitational strain h and the Weyl scalar W pawik (cmp. Sec. 3.3 of [H2]).
Notably, W gawk cannot be computed in a BL-approach at the horizon, and therefore the
Poisson horizon-flux formalism is not applicable in BL-coordinates. On the contrary, our
new time-domain approach enabled us to employ the formalism and to check its validity
for the first time.

Let us first consider outgoing GWs at scri. Following [91] the energy flux is given by

: 1 . 1 1 ,
E:—/ dQ |rhf? = — /d o2 417
167 Js, Ir b 16%% -1 &l hml™ ( )

where in the last expression we have used ¢ = cos # and introduced the mode-decomposition
of h to express the flux in terms of the 2+1 fields. The angular momentum J = (S, Jy, J2)
flux is given by

Ji = —%&e{ [ a0 (rh)*ji(rh)} | (4.18)

where J; are the spin 2 quantum mechanical operators, in particular J, = 0J4. For

equatorial orbits J, = J, = 0, so the relevant quantity is
: 1 . 1 : .
_ ' . , 1
Jo= =8 {;m [ dg i) (r hm)} (4.19)

Similarly, the linear momentum P= (P,, P, P,) flux can be computed from

. 1 .
Pi=— [ dQnirh*, (4.20)
167 /s,

where n; = (sin d cos ¢, sin 0 sin ¢, cos ). For equatorial orbits P, = 0.

Coming to the horizon-absorbed energy and angular momentum fluxes, one starts from
the first law of BH mechanics [143, 151]. This relates the horizon area Ay to the fluxes of
mass/energy My and angular momentum Ji; more precisely, %AH = My — QuJyu, where
k= (ry —M)/(ri —a?) is the surface gravity and Qg = a/(2Mr,) is the angular velocity

of the horizon. Following [83, 152, 149], the variation of the horizon mass and angular
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momentum can be expressed as

. 1 . 1
M :—/dS AB J :—/dS AB 421
H 167 o tYAB H 16m g dVAB ( )

048 is the “shear

where dS is the horizon area element of the induced 2-metric v4?
tensor” (see Eq. (3.4) in [149]), and L4 are Lie derivatives with respect to the Killing

vectors of the background. Poisson [149] gives the final flux equations for the 2+1 fields

- ri 4 a? 1 e o Lo
. 7"2 _|_a2 1

= | /d o fitm = Tt o 123
H A ;lm . § (Hmem Tim Hm) (4.23)

The complex quantities fi,, are defined as integrals of the m-mode components of the
Weyl scalar W pawk at the horizon

fii (0,6) = / '~ I g L e 6) (4.24)

me v, ‘9 / d'U/ imSgv’ qu,HaWk, m(v » 'y 9) y (425)

where v = t+ [ drA~*(r*+a?) is the advanced time coordinate, see Eq. (B.8). Let us stress
again that the needed Wgpawk, m cannot be computed at the horizon in the traditional
BL-approach to the TKEQ. Note also that fi, (v) depends on the future behaviour v’ > v
of the field, and can thus only be computed in post-processing. For this reason and in
connection with the failure of computing the waveform at the particle’s position, the
formalism is not yet optimal for 2+1 simulations. We will come back to this issue when

discussing the numerical experiments on horizon-fluxes for plunging orbits in Sec. 7.2.

4.3 Source term for a spinning particle

The derived reformulation of the homogeneous TKEQ in HH-coordinates, Eq. (4.3), is
already useful for any kind of vacuum investigations like stability analyses of Kerr or
measurements of quasi-normal modes and decay rates. To address matter perturbations,
however, one needs to add the source term S, which is built from the energy momentum
tensor appropriate for the considered scenario. For instance, the BH binary problem in the
point-particle approximation requires to compute a 7}, which corresponds to a “spinning
particle” in orbit about Kerr. The aim of the following section is to provide such a 7,
and to sketch the computation of S;. We are interested in gravitational perturbations,
and therefore the source term is implemented and discussed only for the |s| = 2 version
of Eq. (4.3). For further details the interested reader might also want to have a look at

the continuative comments in Appendix G.
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4.3.1 Computing the source term from pieces

The source terms for the gravitational equations read

S_y = 81X (r —iacos0)* Ty , (4.26)
S_|_2 = 812 To 5 (427)

where Ty and Tj are the tetrad scalars defined in Eq.s (A.19) and (A.17) respectively. The
explicit form of these sources follows from straightforward algebra, but is too lengthy to
be stated here. We will only outline a strategy of wrapping up different parts into smaller
units, which can be handled more conveniently. We focus on 7T} but the discussion holds

analogously for 7.

The scalar T} is defined in terms of NP-operators like A or 6%, cf. Eq. (A.19) for the
exact definition. FExpanding the expressions by performing the multiplications of the
NP-operators, one will obtain several products. Separate those, that contain derivative
operators, i.e. A% 82 A8*, 0%, ud*, ..., from the non-derivative ones. Denoting with C'

non-derivative terms and with D derivative ones, we schematically get
T4 - Dnm* Tnm* - DTrL*’rrL*TTrL*m* - D'rann + Onm* Tnm* - Om*’rn*Tm*’rn* - CnnTrm; (428)

where, e.g., D+ T+ contains all pieces with derivatives of T,,,,,-. Note that these terms
are complex-valued. The explicit expressions in terms of Ty, Or Trmr, O2 T, Lo, - - -
can be found with computer algebra. We made the overall choice to compute the stress
energy-tensor (and its derivatives) in contravariant form 7", and the tetrad legs (and their
derivatives) in covariant form n,, m?, [, ; for instance, 9,1, = 21"'n,,0pn, +n,m,0,TH" .
Up to this point the calculation holds for arbitrary sources, and in a simulation the coef-
ficients D,,, C,, can be computed once and for all in the initialisation. The information
on what kind of perturbation is considered will be fixed by the determination of the

energy-momentum tensor 7.

Besides from T"", the source term is built from the derivatives 9T* and 00T*"", where 0
can refer to any of our coordinates. In principle, the calculation of T*, 9T*", Q0T" can
be done in a pre-processing step for all relevant points (7, p, 0, ), or (7, p,0) in a 2+1-
approach, and, afterwards, be read into the simulation. In practice, this requires to know a
priori the time steps 7,, and the grid setup (p;, 8, ¢x) of the simulation, or, alternatively, a
very dense, computationally expensive data set, which can be used for interpolation to the
needed points. In our case of a point-particle perturbation we can find a better solution.
The corresponding model for T*”, which will be introduced in the following subsection,

is of distributional form. Thus, T"” has a trivial spatial dependence. It is nonzero only
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along the worldline of the particle. In this special case, we can assemble 7" (7x, p;, 0, ¢r)
for each evolution step 74 at runtime from only a few characteristic quantities given along
the worldline; namely, the particle’s position, four velocity, linear momentum and spin
tensor. We therefore call these quantities “the dynamics”. The spatial dependence of T+
is solely determined by the numerical approximation of the distribution. Consequently,
it is possible to not precompute T (7, p, 0, ¢) and its derivatives on dense 4D-grids, but
only the dynamics for a dense set of coordinate time steps. The dynamics are, then,
read into the code at the initialisation. At runtime and evolution step 7%, the numerical
energy-momentum distribution is computed by interpolating the dynamics to 7, and,
finally, by “smearing” it over a few grid points according to the spatial profile of the

numerical approximation of the distribution.

4.3.2 Explicit pole-dipole energy-momentum tensor

The physical core of the source term S is the energy-momentum tensor 7#”, in our case
the one for a spinning particle. The formalism for “spinning particles” has been reviewed in
Ch. 2. The main information to be used here is that the whole theory relies on Mathisson’s
“gravitational skeleton” representation of a small body (see Sec. 2.1.2). This means to
reduce the body to quantities which define the moments of a multipole expansion of its
energy-momentum tensor, and to track these along the worldline X*(\), with A the proper
time, of a fixed reference point inside the body. Thus the corresponding energy-momentum
tensor is of distributional form, containing §* = §(z° — X°(\)) (2* — X*(\)). In the
“pole-dipole approximation” we content ourselves with accounting for the zeroth and the
first moments, and the chosen quantities, which fix these moments, are usually {v* =
%719“,5“”}7 i.e. the tangent, the linear momentum and the spin-tensor respectively.
These dynamical quantities are defined only along the worldline. Concretely, the pole-
dipole skeleton of T is given by Eq. (2.4). To employ this 7, in the source of the
TKEQ), we have to process it to an explicit form. Then, it remains to insert the dynamical
quantities {v*, p*, S*'}, obtained after integrating the equations of motion, Eq. (2.5), into
that 7},, to compute the TKEQ source.

The energy momentum tensor of Eq. (2.4) can be made explicit by performing the inte-

gration over the worldline with affine parameter A. The calculation starts by the trans-
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formation d\ — dX°/ (d%X 0()\)) = dX"/v°()\) and the subsequent integration over X°

V=T = [ S [o8 (o = X)) 0= 9 (570078 (2 - X0() 6°)
v(r)* T”)3 i i dX° alp, v 0 3
= HRHEE 6 (af = X)) = [ S5 ¥ (570075 (7 = X°(0) )

= V=gTNs +V—9Tép (4.29)

where we have used the symmetry [ f(X°)§(z° — X°)dX? = | f(X?)6(X° — 2°)d X" and
named z = 7 according to our time coordinate in the HH-coordinate system. Note,
however, that the computation shown here holds in any coordinate system. The part
called Th's is the stress-energy tensor for a monopole particle. The integration in T%} is

not straightforward due to the covariant derivative. Schematically, we can write

5= e Xy ¢
0; [S"H0)5 (7= X°(N)) 6°] + ; [5")5 (7 = X°(N)) o]
+Th [SO‘(’\U”) J (T — XO()\)) 53} + index permuted I" terms } : (4.30)

where the Christoffel symbols I are functions of the background and emphatically not
of the worldline. This point of view is in contrast to the note in the discussion around
Eq. (2.16) of reference [153], which treats the Christoffels as quantities only defined along
the worldline. Certainly, one may argue that the presence of § distributions allows the
untroubled interchange of field and source points 2* <— X*(\). This is, however, strictly
true only under a corresponding integral. But in our case the spatial delta-distributions
are not integrated against and thus have to be understood as delta-functions that mimic
the properties of distributions. We therefore prefer to not make use of the interchange of
source and field points, in which case the Christoftels clearly remain background quan-
tities. In the end, the whole discussion is anyway rather academic since a good delta-

function representation will vanish except for a few field points close to the source points.

Coming back to Eq. (4.30), most of the terms can be trivially integrated. Special care
has only to be taken of the d, term
1 . 1
0 0(p, V) v 3| 0 0(p,,v) 53 _ vO
/dX w0y & (5206 (7 — X)) 5}_/61)( oy S oo (5 (r = x°()]
(4.31)

where we have used that dynamical quantities along the worldline like v*, p*, S* are \-

dependent but not 7-dependent unless the integration along the worldline is performed.
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Now we want to exploit the defining property for the derivative of a ¢ distribution

/ FX®) Oxo [6(X° —7)] dX° = - / (0x0 (X)) §(X° —7)dX".

But inspecting Eq. (4.31), we face the problem that the integrand is not obeying the same
form; the integration variable, X°, is not the same as the one that the § is differentiated
with respect to, 7. Given that we want to keep the integration over X°, we need to
somehow transform the term 9.6 (1 — X°()\)) to a derivative with respect to X°. Since
X% and 7 are completely independent at this point, we only have a chance by exploiting
some ¢ properties. The first property we need is [ f(x)0,0(x — y)dz = [ f(2)0.0(y —
x)dx, which can be understood when replacing §(z — y) by a narrow Gaussian (that in
the limit of zero width defines a §). Then, we have essentially [ f ()8, e 03’y =
— [ f(x) {(1‘ —y) e 05y } de = [ f(2)0, e "> W= dz. Thus, we can write

/dXOSO o (% (5(7’—X0()\)>> —/dXO% (8% 5 (X°(\) - )) = (%) .

(4.32)
Now, treating the distribution as a conventional function, 9,6(y — x) = —9,0(y — x), we
may proceed as
. SO(,u,Uu) 53 o
_ 0 0
(%) f/dX ) <—8X0 5 (X°(N) —r)> , (4.33)

which is finally of a form that we can handle. We can now exploit the defining property
of the o-distribution. Being mindful of the dependence of the dynamical quantities on
X through A\(X?), e.g., v = v*(A\(X")), we can summarise the calculation starting from

Eq. (4.31) up to here by the following result

/dXO - [5%006 (7 — XO(V)) 6] = -+ = la?@ (SO(“::) 53)])@_7 . (4.34)

Thus, the hard part of Eq. (4.30) is resolved. After performing the integrations against
X% in the remaining trivial parts of Eq. (4.30), which are of the form [ f(A(X"))d(X" —
7)dX? = f(\(T)), we can, at last, replace all A-dependence by coordinate time 7 depen-

dence.

Assembling all the pieces together, we obtain the ready-to-use expression
1 () Skqv)
Y AN T S S e iy N VN U5 : (4.35)
\/__g 0 9
which coincides with the result (2.16) of [153]. Let us emphasise, for clarity, that the dy-

namical quantities are now coordinate time dependent v*(7), p*(7), S**(7), as well as the
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S-functions 6* = & (p — p,(7)) 6 (6 — 0,(7)) § (¢ — p,(7)), where the subscript p denotes
the particle’s coordinates. The factor from the volume element, \/—g, is a function of the
background; more precisely, gp;, = —sin? § %% and gyy = —sin? 922(3—;)2. Furthermore,
in the non-spinning limit p* and v* are trivially related by the rest mass u of the particle,

ie. p’ = .

Finally, let us describe how this 7}, can be separated into pieces. While Ty is rather
short, T} is quite longish. Therefore, we split the spin-dependent part into Th, =
—o= (QW + Q + Q¢ + Q) with

QY = 0- (Vv 6*) QY =81V 9,67
Q' = SHVITY 87, Qlpy = S"VTh 5, (4.36)

where we have introduced the coordinate velocities V* = v*/v™ and exploited the an-
tisymmetry of S* in combination with the symmetry of Ffw. As a matter of fact, in
the code derivatives of T%} are computed as sums of derivatives of the @%’. Then, one
can build the tetrad contractions like, e.g., T}, sp,Tnn, Ns,... and their derivatives, and,

ultimately, bring them together as T, = Tyn Ns + Lo, sp-

4.3.3 Numerical /-functions and their derivatives

The energy momentum tensor of Eq. (4.35) contains distributional terms, like §(z" —
X'(7)), and, in the spin-part T§p, also their derivatives, 9,6(z" — X'(7)). Once this 7"
is inserted into the source term S, of the TKEQ), it will be hit by all combinations of first
and second partial derivatives with respect to the coordinate basis used. In a numerical
approach we therefore have to approximate these distributions, and their derivatives up
to third order, by some functions which mimic the distributional properties. This section
will discuss two possible choices for such functions, a narrow Gaussian J-function and a
few-point discrete representation. A closer look at their numerical performance will follow
in Sec. 5.2.4.

A natural choice for a numerical § is the narrow Gaussian peak

1 W] 7 (4.37)

o\ 2T

Mz —X(1)) — 0,(x—X(1)) =

exp [— 92

where the width o is chosen a multiple of the grid spacing h, i.e. 0 ~n,h < M, n, € N
(as in, e.g., [22, 130]). This function satisfies [ d,dx = 1 and it depends sensitively on the
width o. The method is very simple, smooth, and completely analytical but, in principle,
computationally expensive because, (i) the Gaussian must be well resolved on the grid

(ny = 4), and (ii) exponential functions must be often evaluated during evolution.
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The second method is a 2n-points discrete o-function as described in [154, 155, 91, 112].
The authors provided several slight modifications with respect to the choice for n and the
order of accuracy. We focus here on sketching the main idea using the example of then =1
option (for more details the reader is referred to Sec. III.A of [91] and Sec. 4.3 of [H2]).
Assume that the position of the particle « lies between two grid points, o € [xg, Tpi1].
Then, the n = 1 discrete o-function has support for maximally two points J; around .

These values are given requiring that the integral properties of the J-function, e.g.,

fla) = / def(2)8(x — ) ~ 3" hfis; | (4.38)

be preserved also on the discrete level. If by chance o = zy, setting 6, = 1/h and 6; = 0
elsewhere solves the problem. In general, a does not lie on a grid point, so interpolation
has to be used. Considering the n = 1 option with linear interpolation at o and enforcing
Eq. (4.38) leads to

v ht =k
0z — X(7)) — da(z; = X(7))=q(1—y)h~" j=k+1 (4.39)
0 ,otherwise ,

where v = (2511 — a)/h. Overall, this method is expected to be computationally more
efficient than the Gaussian. However, too narrow a representation of the o may lead
to numerical instabilities (see discussions in Sec. 5.2.4 and [91, 112]). Note that similar
formulas were derived for the first two derivatives [91], both of which take (2n +2)-points;
the third derivative was not given, albeit in principle conceivable as well. Since for a
spinning particle we have to handle third derivatives like 9,0,0,6(z" — X'(7)), we have

used the d4-function only in the nonspinning limit.

Having introduced the employed numerical §-representations, a short comment on how we
handle derivatives of these d-functions seems useful. For both ¢ representations the spatial
derivatives are completely harmless because they are given analytically. Instead, time-
derivatives deserve a moment of thought. The intuitive idea of treating the J-function
like a usual composite function o(F (7, x)) turns out to work fine. More precisely, in 1D,

_9OF 9 _ 0

setting F(7,z) := 2 — X(7) and using & = 2£-2. = -8 amounts to

0.8(F(1,2)) = (0, F(r,2)) 0pd(F) = — (8. X()) dud(z — X (7)) . (4.40)

In this manner, time derivatives are converted to spatial derivatives. The time derivatives

of the particle’s position 9, X*(7) are provided in the dynamics.

Before proceeding, it may be helpful to stress here that the J-functions under discussion

are only needed in radial and polar direction. In a 2+1 approach, the J-distribution in
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azimuthal direction has to be handled by a Fourier decomposition, otherwise the coordi-
nate ¢ can not be erased from the picture. We follow [91] and employ d(¢ — (7)) =
= eim(e=¢e(T) with 9, — im and 9, — —imd,p, (7). Thus, the source term contains
then;ame overall factor /™% that was contained in the homogeneous TKEQ after the 2+1
reduction; we simply have to multiply the inhomogeneous TKEQ by e™'"% to get rid of
all ¢ appearances. What remains is only the information on the particle’s ¢ position at
a given time by virtue of the factor %e’im‘h’(ﬂ. Note, however, that this assumes to
use the same coordinates for the homogeneous TKEQ as for the source computation. If
doing otherwise, consult the discussion on the coordinate invariance of the source term

commented on in Appendix G.

4.3.4 Dynamics in HH-coordinates

The equations of motion for a test-particle (see Ch. 2) are conventionally integrated in
BL-coordinates and, hence, one expects to be provided with dynamics in BL-coordinates.
It remains to calculate the source term in HH-coordinates from the given BL-data. The
source term requires the energy-momentum tensor with respect to the HH-coordinate
basis, say Tl/y, or in case of a point particle the relevant quantities {vijy, Py, Sty to
compute T4';. As tensorial quantities these can just be transformed from one to the other
basis. However, the source computation for a spinning particle also requires the knowledge
of up to third time derivatives of { X* v# pt S} with respect to the coordinate time. We
shall briefly discuss how to analytically compute these derivatives in the HH-coordinate
time from the given BL-data. Note that this concerns only the dynamics and can be done

prior to the simulation.

The idea is to convert any HH-coordinate time 7 derivative to an “eigentime” derivative.

For example, seeking 2p};,; we can exploit

o ., (orW\ o . Zrhu
EPHH_< I\ > 5]71111— Vot ) (4-41)

where v}, is obtained by transformation of v/5; and it remains to compute a%p“H z- Thus,

ozt .
HH v v v
Do ) Pl , where pf can be obtained from pf,

consider the transformation pl,, = <
analogously. The relevant non-vanishing Jacobian factors from BL to iK coordinates are

9% _

or 00 oor AT Ogbil

ot ot r? 4 a® orix 00, do a
R E (I ! Lo
(4.42)
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The analogous factors from iK to HH coordinates are

or dr _ 4Mp +p® —4MS — 2pS dp _ (p=95)° DWun _ | donn
o~ or S2 oor 82 T 0k Opix
(4.43)
For completeness, we state the factors from iK to RT coordinates as well
or . OT _2R(-1+2M(-1+R?)) OR  (~1+ R’ e _ | Oonr _,
A 1+ R2 Coor 200+ R2) T 0k 7 Opixk
(4.44)
Coming back to the example of transforming the p*, we can write
. 7 AMp+p®—4MS —2pS - 8)% |
pr=p 4 =L = Ppe 1= %pm . Pam =0k .+ Phm =0k
(4.45)

Note that for a test-particle the momenta are only defined along the worldline; in trans-
forming these the coordinates have to be understood as the particle’s position coordinates,
i.e. actually p — p,(A\) with A the proper time. Then, we can compute the desired %p’ﬁH.

The p component, for example, reads

ipp _ (pp —5)* 0 9 (pp(N) = 5)°

which only requires knowledge of proper time derivatives of the iK-momenta and of the
iK-coordinates (p,(\) can be expressed in terms of r,(A)). In the same manner, time
derivatives of the iK-momenta can be computed from time derivatives of the BL-momenta
and of the BL-coordinates. In practice, we need to compute up to 92 derivatives of all
quantities in the HH-system. In order to be able to calculate the third HH-time derivatives
of all relevant quantities { X*, v*, p*, S*}, the BL-data has to provide up to 95 derivatives

of these. Alternatively, if the data is densely sampled one can, of course, compute HH-time

derivatives numerically.



CHAPTER 5

The teukode

The previous chapter presented a new approach to the Teukolsky-Equation (TKEQ) us-
ing hyperboloidal, horizon-penetrating coordinates. The bottom line was a reformulated
version of the TKEQ, Eq. (4.3), which is a wavelike partial differential equation (PDE)
of second order in the HH-coordinates (7, p,#). This chapter describes our strategy of
solving this PDE numerically. Our implementation in the C programming language is
named the teukode. The code works with standard numerical algorithms, which will be
quoted here, and, which shows that the new approach of Ch. 4 can be relatively simply
realised. Note that the teukode was set up in collaboration with Dr. Bernuzzi, Dr. Nagar
and Dr. Zenginoglu in [H2]. Dr. Bernuzzi set up the infrastructure, Dr. Nagar provided
guidelines comparing with the implementation of [132], and Dr. Zenginoglu derived the
explicit TKEQ in HH-coordinates. The author’s main responsibility was to implement
the TKEQ), especially the point-particle source term, and to conduct extensive numerical

experiments in order to validate the code and to produce the new results.

Sec. 5.1 gives a description of the adopted numerical techniques. In Sec. 5.2 the correctness
and the significance of the implementation is approved by performing standard conver-
gence tests. Numerical experiments in terms of physical quantities which can be compared
to the literature are presented. First, we shall recall experiments with the homogeneous
TKEQ; more precisely, the measurement of decay-rates of initial perturbations. As a
second step, we shall cross-check waveforms of a point particle against (i) results from a
frequency domain code (with data kindly provided by Hughes [91, 62, 60]), (ii) a paper
of Shibata [87], (iii) an existing Regge-Wheeler-Zerilli code (kindly provided by Bernuzzi,
Nagar and Zenginoglu [132]), and (iv) further frequency domain data kindly provided by
Berti et al. [156]. Finally, Sec. 5.3 discusses the remaining limitations of the teukode with

respect to stability and accuracy.

5.1 Numerical techniques and code details

For the numerical time-evolution the 2+1 TKEQ, Eq. (4.3), is written as a first-order

in time and second-order in space system with reduction variables {¢, 9;1}. We use a
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standard method-of-lines approach and discretize the spatial domain (p,0) € [py,S] X
(0,7), where p, and S are the locations of the horizon and null infinity respectively, with
a uniformly spaced grid of N, x Ny points. At each grid point, the PDE is turned into
an ODE in time by virtue of discrete representation of spatial derivatives; more precisely,
finite differences up to eighth order of accuracy (though typically we use fourth and sixth
order stencils). The stencils in the radial direction are centered in the bulk of the domain.
At the boundaries one can either use lop-sided/sided stencils or ghost points filled by
extrapolation. We observed no advantage in either of them, and decided, arbitrarily, to
make (lop-)sided stencils our default choice. In angular direction the grid is staggered
to avoid the well-known coordinate problems on the axis § = 0 or § = w. The polar
direction is enhanced by ghost points to capture the boundary conditions on the axis.

m—4s

The ghost points are filled according to the parity condition 7 = (—1)""* which mimics

the behaviour of the spin-weighted spherical harmonics Y, .

At each grid point, the fields are advanced in time by integrating the ODEs with a
standard Runge-Kutta integrator of fourth order. The time step is chosen according
to a CFL condition of type At = Cepr, min(hy,, hy), where h, is the grid spacing in
direction x and the factor Ccpy, is restricted by the maximum coordinate speed of the
PDE system. Usually there is a window [Ccpr, i, Copr¢] which allows stable evolutions.
The exact numerical values depend on the coordinate choice. As mentioned in Sec. B.4,
our choice is the HH;p-system. For this choice simulations are stable in the range Ccpyr, ~
[1,2.5] and our default choice is Ccpr, = 2.0. Instabilities arise for higher values but can
be damped by artificial dissipation operators. These are implemented but in general not

used for our simulations.

The computational costs of a simulation within the above outlined implementation depend
on the numerical experiment. The homogeneous TKEQ allows very cheap simulations; at
a reasonable resolution of N, x Ny = 2400 x 200 points late times ~ 10000/ are reached
within ~ 60 minutes on a standard Linux desktop computer using one core (3.2GHz) and
the GNU C compiler. The nonspinning point particle simulations in the equatorial plane
are relatively fast. For instance, the EOB inspiral experiments (see Sec. 5.2.3) required
long simulations up to 7 ~ 5000 M and only took maximum runtimes of ~ 2 weeks at
resolutions of IV, x Ny = 3600 x 160, which is the resolution standardly used in our sci-
ence runs. Note that the relatively low number of points in 6 direction relies on the use
of very accurate discrete § representations (see Sec’s. 4.3.3 and 5.2.4). In contrast, spin-
ning particle simulations are relatively expensive because they suffer from the algebraic
complexity of the source term computation. In addition, such simulations require third
derivatives of d-functions, which can only be handled with the more expensive narrow

Gaussian representation (see Sec. 4.3.3). Since the Gaussian is less accurate at a given
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resolution, we usually employed resolutions of N, x Ny = 4800 x 400 for those numerical
experiments (see Ch. 8). To keep the runtimes reasonable at such high resolutions, we
recently implemented the option to use parallel computing on multiple cores, using a stan-
dard grid decomposition strategy and the OPENMPI library. This process is still under
development. Within this thesis only the experiments of Ch. 8 have been computed in
parallel (8 cores). The runtimes for these experiments, which reach the needed 7 ~ 500M

in ~ 5 days using a single core, were thus reduced to ~ 2 days.

At this point a few words shall be spent on the methods used to convert our evolution
variables {¢, 0,1} to directly related quantities of interest. For instance, there is the
decomposition of the fields into their projections on spin-weighted spherical/spheroidal
harmonics. For accuracy reasons, we want to employ all # points for the required integra-
tion in #-direction, i.e. this has to be done at runtime. Concretely, we interpolate the fields
to a non-staggered uniform grid of Ny + 1 points and apply the Simpson rule. Further re-
lated quantities are the GW energy and angular momentum fluxes. For discrete-frequency
solutions, like the waves from a particle in circular orbit, we can evaluate these in terms
of the field variables with frequency domain formulas (cf. Sec. 4.2.1). This can easily be
done at simulation time. The equivalent time-domain flux computations (see Sec. 4.2.2)
are related to the gravitational strain, which can be computed at future null infinity from
our evolution variable (cf. Sec. 4.1.3). To exploit the fine time-stepping, we perform this
cumulative integration at runtime, using the trapezoidal rule and storing the concerned
fields of the previous time step. The subsequent normalisation of the strain to the RWZ-
convention (see Eq. (4.5)) is done in a post-simulation step using matlab. Furthermore,
there are the time-domain absorbed fluxes (see Sec. 4.2.2). These stem, theoretically,
from global time-integrals fif, ; they cannot be evaluated at runtime. Instead, they re-
quire the complete output and, thus, have to be computed in a post-processing step. In
practice, the exponentially decaying function in the integrals fif, compresses the relevant
information at a given time v, to some interval (v. — Av, v, + Av). We choose Av such
that the exponential satisfies e™*(*="*) > 1079, with & € [0.25,0.35] for |a| € [0,0.9]. This
typically amounts to intervals v € [v, — 50M, v, + 50M]. Note that the accuracy of inte-
grals in post-processing depends on the sampling of the output. To keep the amount of
output reasonable, we implemented the option of interpolating to Gauss-Lobatto points
for output in angular direction. This reduces the number of points needed for efficient

angular integration to ~ 50.

5.1.1 A spectral version of the teukode

We have also implemented another version of the teukode which employs spectral differen-

tiation in spatial directions. We use Chebyshev-polynomials on a Gauss-Lobatto grid in
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radial direction and Fourier-modes on a staggered grid in polar direction. Apart from the
discrete derivative approximation the main differences are, (i) the use of RT-coordinates
instead of the HH-coordinates (see Sec. B.4), (ii) the implemented option of using quadru-
ple precision, and (iii) the restriction to the vacuum TKEQ since the pseudo-spectral grid
is not able to resolve a very localised structure like a point-particle. Referring to issue
(iii), it might be noteworthy to mention that it would be conceivable, though, for the
future to perform spectral simulations with a point-particle source term, after investing

some time in technical developments like a mesh-refinement.

The spectral code was used in [HO] to conduct a proof of principle of the functionality of
our new approach to the TKEQ in vacuum. In Ch. 6 the investigations in this direction
will be completed with only those results which were found after the presentation of [HO].
Therefore, we will not go into further detail on this spectral implementation. Except, note
that it was validated to be exponentially convergent (see Fig. 5 in [H1]) and capable of
reproducing analytical and numerical predictions for late-time tail decay rates with high
accuracy (cf. [HO, H1]).

5.2 Code validation

In this section the trust in the teukode shall be established. First, we recall that the
code reproduces results obtained with the spectral implementation, which was validated
already in [H1]. Second, we present convergence tests for the most interesting setup of
a point particle on a realistic inspiral trajectory. After these intrinsic numerical tests,
physical quantities, like waveforms and energy fluxes, are examined. These quantities are
thoroughly studied in the literature, and thus give a further opportunity to assess the

capabilities of the new approach and its implementation in the teukode.

5.2.1 Convergence

The numerical convergence of a code refers to the property of approaching towards a
unique solution when the resolution is increased. This is important to guarantee the
significance of the outcome and a higher accuracy at higher resolutions. There are several
ways of assessing the convergence by examining the behaviour of “errors”. When analytical
solutions are known, one can simply measure the errors as deviations from the analytics,
and monitor their decrease with higher resolutions. In our case we do not possess analytic
solutions, but one can treat highly-accurate numerical solutions as such, at least to a
reasonable extent. A first benchmark is obtained by comparing the teukode with the
spectral code, which was validated in [H1]. In all cases tested, the teukode output was
visually on top of the spectral code’s output, even in the measurement of the challenging

decay-rates (see Fig. 8 in [H1]). Thus, the teukode appears to function correctly at least
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Figure 5.1: Self-convergence for the amplitude and phase of the waveform at the extraction point
(p,0) = (S =10, 7/2) for inspiral simulations on Kerr with @ = 0 (left) and @ = 0.9 (right). The merger
is at u/M ~ 4300 and u/M ~ 880 respectively (not included in plots). The triplet uses radial resolutions
N, = (400, 600,900), with Gaussian widths n, = (4,6,9) and Ny = 30. The expected scaling for the
error is 1.5% ~ 5.0625 for 4th-order finite differences. Top panels: absolute differences in phase A¢ and
amplitude AA between various resolutions. The differences between medium and high resolution are
rescaled by the expected factor assuming convergence and lay on top of the differences between low and
medium resolution. For visualisation the differences in amplitude are rescaled by an arbitrary factor 200
in the left panel. Bottom panels: ratios of absolute differences. Plots adopted from [H2].

for the vacuum equation. Note, though, that it does not yet support quadruple precision,
which prevents its usage in extensive late-time decay experiments. Another way to assess
the convergence stems from the assumption that the numerical solution constitutes the
analytical solution plus an error term proportional to a power of the grid-step, h¢. In
this case a three-level self-convergence test would yield the order ¢ by comparison of
the outcomes at three resolutions. We have performed such a test for the most relevant
setup of EOB-inspiral motion of a point particle at resolutions N, = (400,600,900).
The number of points in polar direction is fixed at Ny = 30 because the motion of the
particle takes place in radial direction only (plus azimuthal motion, but this is not part
of the computational domain). The number of points for the Gaussian representation of
the particle has to be adapted as well to see the expected order of convergence, i.e. the
width is set to 0 = n,h, with n, = (4,6,9). Using 4th order finite differencing, one
expects a convergence-order of ¢ = 4. (Repeating the convergence test without adapting
the size of the Gaussian leads to a different convergence rate, namely the one of the
Gaussian representation, i.e. ¢ ~ 2.) In Fig. 5.1 the results of our convergence tests for

the phase and amplitude of the waveforms are shown. For Kerr parameters a = 0 (left)
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and a = 0.9 (right) the two bottom panels display the expected fourth order convergence
during the complete inspiral, but for the more challenging @ = 0.9 case we observe a loss
of convergence towards the end of the inspiral. Due to the fast acceleration of the particle
during the plunge phase, the experimental convergence rate starts to drift away from the
expected fourth order some time before merger; for @ = 0.9 (right) this reflects in the
gradual drop of the phase convergence (blue dashed). The absolute differences in phase
and amplitude between the low and medium resolutions are at the level of A¢ ~ 1077
and AA ~ 107® (top panel). After the merger (not shown in the plots) the fields decay
exponentially during the ringdown phase and a clean convergence is totally lost. Hence,
we expect larger relative errors after the merger and during the ringdown. Note that the
science runs used for obtaining actual results employed a much higher resolution than the

ones used for the convergence test.

5.2.2 Point-particle perturbations - geodesic motions

Having convinced ourselves of the intrinsic convergence properties, we proceed with nu-
merical experiments which can be compared with the literature. First, we constrain
ourselves to a nonspinning particle on circular orbits and compare the energy fluxes with
data kindly provided to us by Prof. Hughes, using an improved version of his frequency
domain code from [91, 62, 60]. Second, we treat inclined orbits, which can be compared
to a paper of Hughes [60] and a paper of Shibata [87]. Third, we consider radial infalls
on Schwarzschild, and compare the emitted waveforms with an existing RWZ solver [132].
For the scenario of a plunging particle we also compute the energy spectra and contrast

our results with data kindly made available to us by Berti et al. [156].

Circular equatorial orbits

The measurement of energy fluxes from a particle on circular orbits is a thorough test
for the correctness and the accuracy of the implementation. This check is especially
helpful because one can use analytical solutions for the dynamics; circular motion features
constant dynamics, except for the trivially time-dependent phase ¢,(t) = 2, t (see, e.g.,
Sec.2 A in [60] for Q). In addition, it provides physical information for probing RR
models (see Sec. 2.2.3).

Table I.1 in the Appendix I lists the results of our experiments at radii 7y = 4,6, 8, 10,
for a = 0,0.9 and m = 2,3 obtained at resolutions of N, x Ny = 2400 x 200. Note
that, (i) such runs only take a few hours on one core (3.2GHz) of a standard desktop
machine, and (ii) even resolutions of 1200 x 100 (~ 0.5 hours) would reproduce two digits
of the target solution. The first vertical block of Tab. I.1 displays our fluxes at scri
and the percental deviations from the extremely accurate frequency domain results of

Hughes [91, 62]. As outlined in Sec. 4.2.1, our results can be equivalently obtained from
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frequency domain and time-domain formulas and both yield the same ~ 0.01% agreement
with the target solution. This beautiful coincidence is due to the nice features of the new
approach; e.g., the direct extraction at scri and the possibility to use the few point discrete
delta representation of [91] (see Sec. 4.3.3). The second vertical block of Tab. 1.1 repeats
the same analysis for fluxes at the horizon. In this case we show both the frequency-
domain fluxes and the time-domain ones (in brackets) because they differ slightly. The
frequency-domain numbers are again in agreement of ~ 0.01% with the target, while the
results within Poisson’s time-domain formalism are slightly off. The reason for the offset
must likely be attributed to a lack of accuracy in our implementation of the time-domain
algorithm devised by Poisson [149], which is employed here for the first time (see also
Sec. 4.2.2). More precisely, our approximations of the appearing global time-integrals on
finite intervals (see Sec. 5.1) and the time integration in post-processing seem to spoil the
accuracy. The more important information is, however, that the formalism is approved
to work in practice. Thus, we are equipped with a tool for measuring horizon fluxes from
a particle on general trajectories, and we are not restricted to narrow-frequency-band

orbits.

For completeness, let us support the expectation that the extraction at scri is important.
For the £ = m = 2 mode and the # = 6 and a = 0.9 case, Table .2 in the appendix lists
the energy fluxes computed from waveforms extracted at different finite radii and scri.
We observe a significant loss of accuracy at small extraction radii. But assuming that the

finite-radii waveform behaves like a Kth order polynomial in 1/r, the extrapolation

flur) = fOu) + Zr‘kf(k)(U) : (5.1)

where we have chosen K = 2 leads to the “correct” result (see Sec.7.4 in [H2] for a

discussion on extrapolation with other choices for K).

Circular inclined orbits

A future prospect is to generalise the equatorial motion investigated in this thesis to
arbitrary trajectories, especially when non-aligned spins come into play. The teukode has
already passed some preliminary tests for non-equatorial motion, which shall be presented
here. The first level of complication is to treat tilted circular motion. On a Schwarzschild
background the spherical symmetry would allow to view any circular orbit as an equatorial
one (by adopting the coordinate system appropriately), but, of course, one can also choose
to make the orbit non-equatorial. Such a tilted circular orbit is shown in the left panel of
Fig. 5.2. For a = 0 the inclined circular orbit stays closed or equivalently the fundamental
orbital frequencies €2, and €2y of motion are integer multiples of one another. Instead

looking at the right panel of the same figure for @ # 0, one sees the orbital axis precessing.
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Figure 5.2: Visualisation of inclined circular orbits, see text for definition of the inclination angle i.
Orbits start at 6 = 7/2,¢ = 0 (marked as a red cross). On Schwarzschild @ = 0 (left) any inclination is
artificial in the sense that the coordinate system could be adapted to make it equatorial again. The orbit
is closed, i.e. the frequencies of motion Q4 and €y coincide modulo integer multiples. On Kerr @ = 0.9
(right) the orbits do not close. Instead, one observes a precession of the orbital axis around the spin axis
of the BH. We have highlighted the whole first revolution of the orbit in red to demonstrate the deviation
from closure.

At this point it seems constructive to briefly describe how one obtains such orbits in
BL-coordinates. The equations of motion (EOM) are most conveniently derived from
a Hamiltonian approach! with H = 0.5¢"’p,ps. Since the mass p = \/—Pup" is only
a scale parameter, it is convenient to use the dimensionless version H =05 9P Pads
with po = gap/p=525 (N), where 2#()\) denotes the sought-after worldline with proper
time A. Employing the classical Hamilton equations gives an evolution system for the
variables {x,p,}. (See system (A13) in Appendix A of [157] for explicit expressions, and
Sec. 2.2.1 in this thesis for a description confined to equatorial movement). These EOM
can be implemented and integrated straightforwardly using professional ODE-integrators

in matlab or mathematica. Noting that for axisymmetric and stationary spacetimes two

momenta are constants of geodesic motion, p, = —F and p, = L., one can use the
equation g—i = (...) to replace the affine parameter A by the coordinate time ¢, and, thus,

to consider only five variables {r,, 6,, ¢, pr,Po}. A complete family of geodesic orbits is
given by fixing a fourth constant of motion besides F, L., u, the Carter Constant ). We
follow [60] in the definition of @, but note that any combination of F, L., u, Q) gives a
fourth constant that can replace (), so the definition is not unique. Prescribing the four
constants of motion plus initial data for the variables defines a unique member-orbit of
this family. While the integration of the EOM is unproblematic, the specification of the

“correct” initial data, yielding the desired orbits, can be onerous. An especially simple

!Note that such Hamiltonian approach leads to an advantageous form of the geodesic equations. In-
stead writing out the geodesic equations as a system for {r,, 6,, ¢, }, one obtains &, = :I:\/() expressions
which represent motions in positive or negative direction respectively. Non-monotonic motion in r and
0, then, requires clever case distinctions for picking the correct root, see Sec. IT of [60].
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case is the circular equatorial motion. In this case 2 = 0, and it is enough to specify
just the radial coordinate r, to compute E(r,) and L,(r,) according to the conditions

for circular motion % =0 = L% (see Eq’s. (2.6) in [60]). In angular directions we

N T axdx
always start the orbit at 6, = 7/2 and ¢, = 0. To obtain the missing initial data for
Dry Do, insert (rp,0,, E, L,,Q) into the geodesic equations Xp" = :l:\/R(u,E,LZ7Q,r, 0)
and Lp? = i\/@(u,E,Lz,Q,r, 0), cf. (A3) in [157] for explicit expressions of R and ©;

then, just lower the indices, p, = %ﬁr and pg = X9, cf. Eq’s (A7) in [157]. If everything is

correct, for circular equatorial orbits p,(t = 0) = 0 and py(t = 0) = 0 should be satisfied.

Now, let us come to inclined circular orbits, where the situation is a bit more complicated.
A nice procedure is given in Sec. IT B of [60], which, instead of prescribing @) directly,
aims at providing initial data for a given r, and inclination angle i = cos™ (\/ﬁ

This inclination angle is not trivial to be interpreted. Following the discussion in [113],
it corresponds to the intuitive inclination of the orbital axis only strictly for a = 0, but
holds approximately in general (cf. Sec. IT of [158]). Let us discuss how to find initial data
corresponding to a given i. First, note that this inclination is 0° or 180° for equatorial
motion, i.e. for () = 0. Second, note that at a given r, there is a range of inclinations
(i;,17) which allow stable circular motion. Maximally the range is (0°,180°). The most
stable inclination is ¢« = 0°, i.e. prograde equatorial motion. For ¢ = 0° and ¢ = 180°
we can use Eq’s (2.6) of [60] to find L, of prograde and retrograde equatorial motion
respectively. L,(i = 0°) provides a maximum stable value, L, j,.x. Starting from L, yax
one gradually decreases® L, and checks if one reaches L, (i = 180°) without the stability
condition %RHS(rp(t)) < 0 being violated. In case of violation, only a confined range
(L.(1 = 0°), L, mmn) is stable or equivalently ¢ € (0° i) with iy < 180°. If the desired
inclination 7 lies within the stable region, one can find the suitable values of L., () in the
following way. The conditions for circular motion allow the derivation of expressions for
Q(rp, L.) and E(r,, L.) (see Eq’s (2.8) and (2.9) in [60]). Thus, one can evaluate Q(r,, L.)
and i(L., Q) for all stable L. and interpolate to the desired inclination and its associated
L, and @ values. This way one finds initial data which produces circular motion for a
desired (r,, 7). After integrating the EOM, one can check the conservation of r, and the

conservation of the Hamiltonian to convince oneself of the result.

We have investigated a few such inclined circular orbits by measuring the emitted energy

fluxes. The first test regards an ¢ = 60° orbit at # = 10 on Schwarzschild. The appro-

ZNote that in this thesis we mainly use the convention L, > 0 and a € [—1,1]. Instead Hughes [60]
uses @ > 0 and switches from prograde to retrograde motion by the sign of L,. The latter convention will
be adopted here as an exception since it simplifies Hughes’ procedure for finding initial data for inclined
orbits. This means L, (i = 180°) will be < 0.
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Figure 5.3: Comparison of energy fluxes for inclined circular orbits. The coloured lines are the different
m-mode contributions between My, = —4 and mmax = 4. The solid black line is the sum of those. The

dashed and dotted black lines are certain reference solutions. On Schwarzschild @ = 0 (left) we consider
an orbit at 7 = 10 with ¢ = 60°. The computed total energy flux is constant in time and agrees with the
reference solution of Hughes [60] and a corresponding run with ¢ = 0° (the small difference between our
i = 0° and i = 60° results is due to different resolutions employed in these test runs). On Kerr ¢ = 0.9
(right) we consider a case covered by Shibata [87], i.e. # = 30 with ¢ = 33.71°. Our result for the total
energy flux (solid black) agrees with the reference solution of Shibata (dashed black). A comparison with
Hughes’ i = 0° result (dotted) reveals that the impact of inclination is small. This is explained by the
large distance, which makes the background relatively spherical and also reflects in the constancy of the
total flux over time.

priate initial data® is £ = 0.9562, L./M = 1.8898 and Q/M? = 10.7143. The employed
resolution is 4000 x 400 and we use a Gaussian-representation of the particle. One expects
the total energy flux to possess two main features due to the spherical symmetry of the
background, that is (i) to be constant at every instant of time, and (ii) to coincide with
the equatorial flux. As shown in the left panel of Fig. 5.3, the teukode results meet the
expectations for the total energy flux computed from mp;, = —4 to Mmax = 4. Note how
the different m-mode contributions (coloured lines) oscillate in time while their sum (solid
black) gives approximately the constant flux obtained from the respective equatorial run
(dotted). The remaining small oscillations in the solid black line, highlighted in the insets,
must be attributed to numerical inaccuracies, probably accumulated through the sums of
the mode projections. The target solution of Hughes [60] is shown as a dashed black line.
Furthermore, it is interesting to see that the sign of the m-mode matters, i.e. it causes a
phase shift between + and — modes. As a second test we consider a spinning BH with
a = 0.9 . For comparison with Shibata’s results [87], we pick a fairly distant location of

the particle, 7 = 30 (the minimal value considered in [87]). We pick the i = 33.71° case of

3Recall that here the hat is used to denote particle specific quantities, like momenta per unit mass

pH = % = djg\” (with A the proper time), i.e. they are reduced with respect to the particle’s mass . That
is we have £ = —p, = E/pu, L, = Py = L./p and Q= Q/u?, cf. [60]. Note that this does not necessarily

mean hatted quantities are dimensionless. For example, for @ = 0 we have L, = Py =1r2p? =12 %, ie.

the dimension [L.] = [M]. From [Q] = [LQ] it follows that [Q] = [Q/u2] = [L2/p?] = [L2] = [M?], while

E=(1- 2M/r)4 .. the dimension is [E] = [1].
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Figure 5.4: Comparison of energy fluxes for inclined circular orbits in the strong-field at # = 7 as covered
by Hughes [60]. For @ = 0.05 (left) we find very good visual agreement with the target solution (dashed).
The PN-result due to Ryan [159] (dotted) is shown for comparison. At such low spins the total energy
flux is approximately constant in time. For ¢ = 0.95 (right) the agreement between the three black lines
with analogous meaning is rather poor. The origin of these differences is unclear at the moment, but
maybe due to remaining differences in the dynamics (see discussion in text) or actual discrepancies in the
implementations. Notably the oscillation of the total energy flux is physical and reflects the 6-dependence
of the background.

Table I in [87], and find as initial data £ = 0.9837, L./M = 4.7379 and Q/M? = 9.9917.
At large 7 the frequencies of motion €2, and {2y are very small so that we had to lower
the resolution to 4000 x 260 to simulate several periods at reasonable runtimes. The right
panel of Fig. 5.3 shows that the teukode (solid black line) again approximately reproduces
the correct total energy flux of Shibata (dashed black line). As expected, at large 7 the
background is approaching spherical symmetry and therefore it comes as no surprise that
the non-inclined circular orbit i = 0° (value taken from Hughes) has approximately the
same energy (dotted). In a third test, we consider a small spin @ = 0.05 and a strong-field
orbit at # = 7. Such an orbit was investigated in [60] for i = 60.17°. We find initial
data £ = 0.9445, L./M = 1.7322 and Q/M? = 9.1263. The left panel of Fig. 5.4 shows
the comparison between Hughes (dashed), a quadrupole-order PN-result of Ryan [159]
(dotted) and the teukode (solid black) at resolution 3600 x 300. Evidently, the low spin
does not lead to significant f-dependence and the total flux is approximately constant
in time. All three lines are in good agreement. Finally, our most challenging test is the
second case shown in [60], i.e. @ = 0.95 and 7 = 7 at ¢ = 62.43°. We find initial data
E = 09372, L,/M = 14757 and Q/M?* = 7.9888 and use a resolution of 4000 x 300.
In contrast to the previous configurations, the total flux as computed from the teukode
(solid black) exhibits a visible oscillation. This oscillation is physical. It reflects the
f-dependence of the background and the inherent change of instantaneous radiation emis-
sion along the orbit. The reference lines from Hughes (dashed black) and Ryan (dotted)
have to be understood as average numbers as well. The agreement is reasonable also

in this test, but not perfect. Thus, for inclined strong-field orbits on a highly spinning
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background it cannot be excluded that the teukode produces a result significantly different
from the reference code of Hughes. Searching for reasons, the comparison of the found
frequencies §2¢ = 5.4765e-02 and Qy = 4.9812e-02, where Q=M ), with the stated values
(Q¢ = 5.424e-02, Qp = 4.954e-02) indicates that there are non-negligible differences in the
dynamics, which could explain the deviations. Further tests are needed to unambiguously

validate the code for investigations of non-equatorial motions (not further covered here).

Radial infalls in the equatorial plane

A complementary test to the circular motion is the radial infall. Bernuzzi, Nagar and
Zenginoglu have set up a 1+1-RWZ-equation-solver [130, 131, 132, 133], which gives us
the great opportunity to check the teukode for arbitrary trajectories with @ = 0. First,
we shall consider a head-on-collision with ¢, = 0 in the equatorial plane (cmp. also
Martel [160, 161]). Further, we shall skim through the topic of particle-BH scattering
experiments by comparison of energy spectra for exemplary plunge trajectories, which
includes the complication of ¢, = ¢,(7), with data kindly provided to us by Berti et
al. [156]. Finally, though not discussed here, we mention that waveforms obtained from
particle-BH scattering provide important insights also for full numerical relativity; for
remnants of spinning neutron star collapses the qualitative features of the waveforms

were shown to be in complete accord with our data [162].

Let us begin by considering a radial trajectory which starts from rest at 7o = 25 and falls
along the x-axis. We focus on the ¢ = 2, m = 0 multipole. Note that the axis of the
infall is, in principle, irrelevant for a spherically symmetric background, but the usage
of spin-weighted spherical harmonics for mode decomposition fixes the axes. Therefore,
infall along the z-axis triggers other multipoles than infall along the z-axis; in our case
m # 0 multipoles are present, whereas analogous calculations for the radial plunge along
the z-axis [160] only have to account for the polar m = 0 multipoles. In Fig. 5.5 we
compare the outcome of the teukode with the RWZ-solver [130] in the £ =2, m = 0 RWZ
variable Wag(u) (left) and in the Weyl mode Wy o0(u) (right). Recall that we can convert
our evolution variables to the RWZ-normalised strain and vice versa using Eq’s (A.9)
and (4.6). We find visual agreement with quantitative differences below a few percent.
Notably, the W, oo(u) variables (right panel) agree also during the tail phase, and both
codes capture the correct tail decay. Instead, repeating the tail comparison in the RWZ-
normalised variable Wy, (not shown), tiny errors appear and the tail cannot be captured
as well. The compilation of the correct tail is very sensitive and is one of the few cases
which require artificial dissipation. The remaining differences at the few percent level
can be assigned to the differences in the setups of the independent codes. For instance,
the waveforms from the RWZ code were, in this case, not extracted at scri but at large

finite radius 7 ~ 2200. Furthermore, the RWZ code solves the linearized Hamiltonian
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Figure 5.5: Comparison of waveforms for geodetic radial infall dynamics obtained from solving the
2+1 TKEQ (here labelled TE) and the 14+1 RWZ-equation (RWZE) respectively. The particle is falling
from 7y = 25 along the z-axis onto a Schwarzschild black hole. Left: The £ = 2, m = 0 waveform in
the RWZ-normalised strain Woo(u) at J (teukode) and large finite radius (RWZE code). Right: The
¢ =2, m =0 component of the Weyl scalar WUy oy at J (teukode) and large finite radius (RWZE code) in
logarithmic scale. Plots adopted from [H2].

constraint [160] and imposes physical initial data. On the contrary, the teukode starts
from ¢) = 1) = 0, which is an unphysical choice in the presence of a matter perturbation;

an initial burst of junk radiation pollutes the simulation for at least ~ 200M.

Dropping the ¢,(7) = 0 condition, one can do more generic scattering experiments. We
investigate these by measuring the energy spectra, which are especially interesting for
ultra-relativistic collisions with v ~ ¢. The work of Berti et al. [156] provides a description
of the topic and serves as a target solution for us. The authors integrate the geodesic
EOM starting with r, ~ oo, and solve the inhomogeneous Sasaki-Nakamura equation
(cf. Sec. (3.2)) on a Schwarzschild background to calculate the GWs. The considered
“shooting” experiments are typically classified as either plunging or scattering. A useful
characterisation is given by the impact parameter b, which describes the distance of the
central BH to the initially straight motion of the particle (artificially continued until
perpendicularly meeting a radial coordinate line). Further, one can argue in terms of the
energy of the particle, £, with respect to the maximum of the effective potential for the
radial motion Vg (L,). Unbound orbits with E? > V%X are captured, while those with
E? < V3 are scattered. Solving E? = V3™ for L,, gives a critical value L, i with the
condition for plunge being L, < L, .. The critical impact parameter can be found by
the relation b = L.(E? — 1)7'/2. Finally, trajectories can be classified by (E, L,), where
L, = L,/L, i Here we settle with a qualitative comparison for two exemplary E=1
trajectories with L, = 0,0.9999. The obtained teukode waves are converted to RWZ-
normalised variables Wy, and Fourier-transformed within matlab. The energy spectra is
found following Eq. (20) of [163]

dEp, 1 (£+2)!

= =W FFT(Wy,) 12 5.2
T 1o =2y @ FFT(Ta)l (52)
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Figure 5.6: Energy spectra for particle-BH collisions without spins. Comparison of the multipolar
energy spectra for the dominant modes between the teukode (solid lines) and the target data of Berti et
al. [156] (dotted lines) for a direct plunge L, = 0 (left panel), and an indirect plunge with L, = 0.9999
(right panel). The agreement is qualitatively convincing, but an arbitrary scale factor was used for the
teukode data (see text); the reason is as yet unclear.

where w is obtained in our data sets as wy, = k 2 w/dr with k € {1,--+ , kmax} and
kmax the number of data points used for the Fourier transformation. Fig. 5.6 compares
the results from the teukode (solid lines), scaled with a not, as yet, understood factor of
1072 to obtain agreement, with the target data of [156]. The left panel shows the head-
on-collision and the right panel the indirect plunge with L, = 0.9999. Apart from the
scale factor, the agreement is qualitatively nice. The reasons for remaining deviations are
potentially (i) the low resolution 2400 x 60 employed in our tests, (ii) the underresolution
of large radii # > 50 in our hyperboloidal coordinates, and (iii) the junk radiation due
to the unphysical initial data; we observed that the here used large initial separations,
7 ~ 500, significantly amplify the spurious radiation. Note also that, motivated from the
condition that scattering orbits for E>1 only exist for L, > 4M, we used L, i = 4M
as a rough approximation. The exact solution for L, . is different, unless @ = 0, and
would have to be found numerically. This is surely another reason for the deviations seen
in the indirect plunge case. In summary, the qualitative agreement is satisfactory at this
stage of testing. When the reason for the disagreement can be identified, the interesting

plunges with E>1anda # 0 are a promising direction of future research.

5.2.3 Realistic inspiral trajectories from EOB-dynamics

A final test is the treatment of realistic inspiral trajectories created within the EOB-
formalism (see Sec. (2.2)). For the dynamics we use a mass ratio of u/M = 1073, Note
that the mass ratio is just a scale parameter for geodesics, but for EOB-dynamics it

determines the deviation of the RR from the particle limit. Starting at 7 = 7, the chosen
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Figure 5.7: Case @ = 0: comparison between the inspiral-merger-ringdown waveforms with /M =
1073 obtained from solving the 2+1 TKEQ (here labelled TE) and the 14+1 RWZ-equation (RWZE)
respectively. Shown is the real part of the Woy metric waveform (in the RWZ-convention), extracted
at JT, together with its amplitude and frequency. The vertical lines mark the time of the light-ring
crossing (tLr = uLr = Uqmax = 4308.39M). Twice the orbital frequency 2 = 2M(Q is represented with
a dash-dotted black line (bottom left panel). The dotted horizontal line in the right panel marks the
fundamental QNM frequency [72]. Plots adopted from [H2].

mass-ratio yields ~ 37 orbits during the quasi-circular motion, which slowly descends to
a plunge, with the particle crossing the light-ring (LR) at rpg = 3M at upg = 4308.39M.
This is the same dynamics already used for the convergence test in Sec. 5.2.1. This
dynamics was already extensively studied in [130, 131, 132, 133] by means of the RWZ-
solver. Our next check is to reproduce those results. Note that in this case the RWZ-code
was already developed to use the hyperboloidal layer technique [126], and thus we can

compare the two wave-signals directly at scri.

Figure 5.7 shows the complete (inspiral-plunge-ringdown) waveform in the RWZ-normalised
variable W,,. The figure proves the excellent visual agreement of both waveforms also dur-
ing the ringdown. To assess the absolute differences in phase and amplitude no time/phase
alignment is required when employing the retarded time u (see Sec. B.2) because both sets
of waveforms are extracted at scri and generated from the same dynamics. We measured
phase differences of A¢p, = |0fEF — ¢EWZ| < 107% rad until the time of the light ring
crossing (urr = 4308.39M), and below 0.01 during the ringdown (u > urr). The relative
amplitude differences A Ay, /As, are at the order of 0.25% until upr and remain < 1.25%
during the ringdown. These numbers are illustrated for the dominant multipoles in Fig. 9

of [H2]. The agreement between the independent codes is small enough to be neglected
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Figure 5.8: Multipolar structure around merger of the Wy, waveforms for p/M = 1072 and @ = 0 as
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as a black line in the right panel). The horizontal lines in the right panel mark the QNM frequencies of
the black hole [72]. Plots adopted from [H2].
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for many practical purposes. In particular, the phase differences A¢y,, are significantly
smaller than the differences between the RWZ-waveforms and the EOB-waveforms as
found in [131, 164]. Still, one has to mention that the differences in phase and amplitude
are larger than those estimated from the self-convergence test shown above. Consequently,
they must be of systematic origin and are not expected to disappear with resolution. The
reason is likely to reside in one of the conceptual differences between the independent
codes, like, e.g., (i) the different coordinate systems and their implied numerical features,
(ii) the treatment of different equations (141 vs. 2+1), and (iii) many different details in
the implementation and the source treatment. Furthermore, the strain-variables hy,, or

W,,, have to be reconstructed from the teukode evolution variable ¢ by integration.

Besides the obvious comparison of the strain variables, we compare the multipolar ampli-
tudes and frequencies near merger in Fig. 5.8. The analysis is visually in agreement with
the analysis of the multipolar structure performed in [130] (see Fig. 3 therein). Note in
particular the oscillations in the quasi-normal mode (QNM) frequencies; e.g., in modes
(2,1),(2,2) and (3,1). As explained in [52, 130], these oscillations arise from the inter-
ference between positive and negative QNM frequencies triggered during the plunge (cf.
also [76]). Going quantitative, one can measure characteristics of the waveform at merger,
where it contains most structure. For instance, in [131] it was reported for the first time
that the peak of the £ = m = 2 multipole is located earlier in time than the peak of the
orbital frequency (for @ = 0 this peak coincides with upg, i.e. upr = ugmax), which we can

confirm here. Table L.1 in Appendix L presents our measurements of such characteristic
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features like (i) the time lags At,, between the time when the amplitude of the f/m-mode
peaks u max and the time when the orbital frequency peaks ugmax, (ii) the peak value of
the amplitude A7R*, and (iii) the wave’s frequency at the time umax. The teukode values

m >

and the RWZ-code ones (in brackets) agree nicely.

In conclusion, the results of the RWZ-code can be fully confirmed with the teukode. This
gives great confidence that the implementation is correct, at least for a = 0. Analogous
confirmations for @ # 0 EOB-inspirals will be given in Sec. 7.1, in the analysis of the

waveform characteristics over a set of spin parameters a.

5.2.4 Comparison of different )-representations

In Sec. 4.3.3 we have introduced the discrete d-representations with 2-point-support from
[91]. This representation shall be labelled as option (a) in order to compare it with
other options derived in [91]. We omit the explicit prescriptions since irrelevant for the
argument, but distinguish those options by their essential property, i.e. the number of
points involved. We call the 4-point option “(b)” and the variable 2n-point option “(c)”.
Options (a),(b) and (c) shall be contrasted with the simple, narrow Gaussian method

with respect to the criteria of stability and accuracy.

Fig. 5.9 shows the waveforms obtained with the different § options in the case of an
EOB-inspiral trajectory (left panel) and a circular equatorial orbit at 7# = 10 (right panel)
respectively. As revealed by the left panel, a fast motion of the source in radial direction,
as experienced here towards merger, can be problematic when the particle is modelled
with the discrete representations. Severe numerical instabilities in the evolution variable
Y, (shown for m = 2) are visible for options (a), (b) and (c¢) with n = 4. A larger support
makes the discrete representation smoother, but only for n 2 6 option (c) gives noise-free
results comparable to using the smooth, analytical Gaussian. On the contrary, in case of
circular orbits (right panel) all options are unproblematic. In fact, options (a) and (b) are
most accurate and efficient. The accuracy of the circular fluxes is here evaluated against
a reference solution taken from the frequency domain results of Ref. [91] shown as a black

solid line. Notably, the Gaussian is more accurate than option (¢) with n = 6.

Summarising our findings, the tests indicate that the few-point discrete § methods are
efficient and accurate for simulating a source that is effectively not moving on the com-
putational domain; e.g., for circular orbits. In case the particle is moving in r or 6 the
respective § must contain enough points (n 2 6) to avoid instabilities. Alternatively one
has to apply filtering of the high-frequency noise (not done here, see [112]). For such
large a support, the discrete delta results in lower accuracy than the simple Gaussian.

Thus, we conclude that, choosing between these methods, a generically moving particle
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Figure 5.9: Weaknesses (left) and strengths (right) of the 2n-points discrete d-representations [91] in
comparison with the narrow Gaussian method (see Sec. 4.3.3). The left panel refers to an EOB-inspiral
trajectory. Instabilities in the evolution variable v,,, here m = 2, occur when the § comprises too few
points. The label (a) refers to the 2-point prescription discussed in Sec. 4.3.3. Label (b) is a 4-point
option, label (c) a variable 2n option (both are not quoted explicitly in the text, see [91] for details).
The results are noise-free when enough points are employed, i.e. 2n 2 12. The right panel considers a
different kind of trajectory: circular motion at fixed r, = 10M,6, = 7/2. In this effectively non-moving
case a particle can be modelled stably by all tested d-options. We compare the accuracy in the resulting
m = 2 GW fluxes. Options (a) and (b) come closest to the reference solution taken from the frequency
domain results of Ref. [91], shown as a black solid line. Option (¢) with n 2 6 is less accurate than the
Gaussian representation. Plots adopted from [H2].

is modelled most efficiently with the Gaussian method. Finally, note that one can mix
the representations, i.e. for equatorial motion, as considered in this thesis, the best option
is to use a Gaussian representation in radial direction and a discrete representation in 6

direction (we adopted option (b) in most cases).

5.3 Remaining limitations

So far, this chapter was dedicated to attesting the new approach to solve the TKEQ
in the time-domain capability and applicability, and our implementation in the teukode

correctness and accuracy. Still, there are some minor flaws which deserve short comments.

First, let us point out a certain drawback which comes along with the extensively men-
tioned benefits of using hyperboloidal coordinates; this drawback is, of course, much
smaller than the benefits. As discussed in [H1| for the late-time tail experiments, one
observes that the decay is “slower” at scri than at finite radii. This leads to the decaying
perturbation pile up at the last grid point, creating a shock-like shape of ¢ in radial
direction. Numerically, this introduces inaccuracies in the derivatives and, especially for
spectral methods, this behaviour is suboptimal. One might be able to conceive more
optimal coordinates that prevent such piling up. Note, however, that this is a detail in

a very special application and the approach, as it is, performed extraordinary well in the
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measurement of late-time decay rates. For the waveforms of point-particle simulations the
late-time tail behaviour is not of interest. In this context, another minor problem appears.
On the hyperboloidal grid large radii , 2 500 are underresolved. For us those weak-field
orbits are only interesting to compare with infalls from “infinity” or with Post-Newtonian
results. The main focus is the strong-field regime, where the hyperboloidal coordinates

demonstrate their full power. In that sense, one might call our approach “strong-field”.

While the above issues are small details, there is one major technical limitation. For
too large ratios Ny/N, the simulations go unstable, in the sense that at some point the
solution starts to grow without bound. A rough ratio of 1 : 12 turns out to be stable
in most cases, but the ratio is sensitive to the considered values of m and a. For the
challenging a = 0.9999 case we had to increase the ratio to 1 : 30 to attain well-behaved
numerics at m = 6. Dissipation and fine-tuning of the CFL-factor can help to enhance
the range of stable ratios, but not drastically. For equatorial motion this is not a severe
problem because the few points discrete d-prescriptions can be applied and yield excellent
accuracy at low 6 resolutions of ~ 150 points. For non-equatorial motion, however, we
have to use the Gaussian method (see Sec. 5.2.4). For comparable accuracy we then have
to increase the resolution to Ny ~ 400 points. This, in turn, requires to increase the
radial resolution to at least NV, = 4800 to obey the ratio for stability, though 2400 would
probably be enough in terms of accuracy. This seems to be the main limitation of the
whole approach and the only issue one should really improve if possible. In fact, it might
be an intrinsic problem of the TKEQ because, judging from the ratios of points stated in
the works that follow Krivan et als original approach (e.g., 64000 x 64 in [117] or 3125 x 32
in [75]), one might suspect that it suffers from the same limitation in the ratio of points.
As a first option to alleviate the problem, we implemented the 3rd order partially-implicit
Runge-Kutta (PIRK) scheme as described in [165]. In [166] this method has been used
successfully for wavelike equations in spherical coordinates to suppress instabilities which
usually arise at the coordinate singularities » = 0 and # = 0, 7. The idea is to separate
off the problematic terms in the evolution equations into an operator called L5, which is
then treated implicitly. We suspect our instabilities to arise from the axis and, therefore,
choose Ly = Co 1)+ Cyog1), cf. Eq. (4.3) and the coefficients in App. C. Indeed, we observe
that the ratio Ny/N, of stable simulations can be enhanced to some extent when using
a PIRK scheme. Unfortunately, this success comes with the cost of a reduction of the
CFL factor, i.e. the time stepping. Effectively, the gained stability from the PIRK scheme
therefore relied on a similar increase of the computational costs, but with the collateral
effect of dropping from fourth to third order in the time integration. At that point we
decided to just accept the high resolutions needed for high # accuracy, and to leave this

problem for future work, possibly addressing the boundary condition in 6.



CHAPTER 6

Vacuum Teukolsky-Equation

The vacuum TKEQ describes the evolution of some initial perturbation on a BH back-
ground. Physically, a perturbed BH can be viewed as an approximation of, for example,
the end state of a compact binary system after merger, or of a collapsing hypermassive
neutron star. Following the no-hair theorems, the body would radiate off the acquired
higher multipoles and leave behind a settled BH solution. Naturally two questions arise,
(i) what are the characteristic features of a typical decay, and (ii) does, indeed, every per-
turbation radiate away, i.e. is the Kerr BH stable against linear perturbation, especially

in the nearly-extremal regime. We have performed analyses in both these directions.

In this chapter the investigations of [HO| are completed with the continuative studies pub-
lished in [H1]. Note that, in contrast to the point-particle simulations (mainly discussed
in this thesis), the following results were obtained with a spectral version of our teukode
(as recalled in Sec. 5.1.1). Thus, the reader should not be confused when encountering

the RT-coordinates 7', R instead of the otherwise used HH-coordinates 7, p.

6.1 Late-time decay rates

The structure of the decay of perturbations on BH spacetimes is well-known. After the
initial burst of radiation, one measures, for a certain time, an exponential decay modulated
with frequencies characteristic of the BH’s mass and angular momentum (“quasi-normal-
modes (QNM) phase”) ¢ o e“!| where w is complex. The real part of w determines
the characteristic frequency; the imaginary part the damping time. At some point, the
oscillations die out, and a phase of polynomial decay ¥ oc t7#, with p an integer power,

follows. This is called the late-time “tail” phase.

Starting from the pioneering work of Price [167], the evolution pattern of vacuum per-
turbations has been observed in uncountable studies of decays since to be universal for
any spin weight s. Fig. 6.1 shows a typical evolution of a s = —2 perturbation on a BH
background. The different lines correspond to different observers along the radial direc-

tion of the used RT-grid (see Sec. B.3). One clearly recognises the mentioned QNM-phase
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Figure 6.1: A typical decay of some perturbation field 1) on a BH spacetime, illustrated at the example
of a gravitational s = —2 perturbation on Schwarzschild with an initial Gaussian profile in radial direction
and a Y_gg¢ profile in angular direction (see text for meaning of initial data ID0). The different lines refer
to different observers distributed along the hyperboloidal RT-grid in the equatorial plane (see Sec. B.3),
from the horizon Ry to scri Rs. The logarithmic scale reveals the exponential decay in the quasi-
normal-mode phase. Counting the peaks over time allows to measure the characteristic frequencies of the
oscillations. The late-time tail phase starts in this case at T' ~ 300M. For T' > 300M the decay rates p
could be read-off in a log-log plot as the gradients of straight lines.

for T < 300M, and a subsequent tail phase. Detailed analyses of such data allows to
measure the characteristic QNM-frequencies and the decay rates. In addition, analytical
computations can provide a cross-check, see [H1] for the relevant literature. We checked a
few QNM-frequencies for confirming our simulations and found discrepancies at the order
of 1% compared to the tables of Berti et al. [72].

The main goal of our work on vacuum perturbations of a rotating Kerr BH was to set up
compilations for the decay rates p in dependence of several parameters; the considered
(-component (with respect to Yy,) of the field variable v,,, the spin-weight s of the
perturbation, and the initial angular distribution specified by a Y, profile. Furthermore,
we studied the influence of four different kinds of initial data, labelled by IDO0, ID1, ID2,
ID3 and defined by

DO / ID2 : vO.R) =GR /1 (6.1)
D1 / ID3 : vOR) =0 (6.2)

where G(R) = e~ (/2 (F=Ro)® with w > 0, and, mentioned to avoid confusion, the slashes
denote case distinction rather than division. These initial data are commonly used in
the literature, in which they are referred to as stationary (IDO, ID2) or non-stationary
(ID1, ID3), and compact (IDO, ID1) or non-compact (ID2, ID3) support initial data. We

verified that the Gaussian reasonably models a compact support initial data by checking
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that, with the typical parameters for w and Ry, the field values reach below the round-off
level at radii well away from the horizon and J*; for example, setting w = 3000 and
Ro = 0.8, G(R) ~ 107** at the horizon (for a = 0.9 R, ~ 0.5222) and at R = 1.

The decay rates of a )y, field are different for @ = 0.0 and @ # 0 because in the spherically
symmetric case the Y, modes completely decouple. The larger is |a| the stronger is
the coupling between different ¢-modes (of the same parity) and, therefore, small spins
might lead numerically to in-between results for the decay rates. Only for ¢t — oo all
(non-extremal) rotating BHs will share the same values. We focused on a Kerr BH with
a = 0.9 and the axisymmetric m = 0 modes. The measured decay rates were predicted
to be different at finite radii and scri, and for the special case s > 0, m = 0 to even take a
distinct value at the horizon. This fact is referred to as “splitting” of decay rates. In [H1]
we were able to verify numerically, for the first time, the splitting into three distinct values
if s > 0,m = 0. Additionally, we verified the possibility of an intermediate behaviour of
decay rates, i.e. one which is different at early and late times, so one should distinguish
between splitting in time and space. For brevity, more details on this phenomenon are
omitted here but can be found in [168, 169, 127, H1|. The results of our computations
on decay rates are summarised in Tables H.3 and H.4 in the Appendix H. We stress
that the usage of quadruple-precision was essential in finding many of the stated values.
This is one reason why these tables are among the most detailed of their kind presented
in the literature. In the conclusion of [H1| the found decay rates were abstracted into
empirical formulas. Meanwhile, [170] confirmed many of the measured decay rates and the
mentioned splitting phenomenon with an independent implementation, which is based as
well on the hyperboloidal approach to the TKEQ of Ch. 4, albeit in a modified coordinate
system. Notably, our experiments also confirm Hod’s analytic predictions [102, 103, 104]
for the values of decay rates, with only a small discrepancy for the ¢ = ¢+ 1 cases, where
(o labels the lowest allowed ¢-mode following ¢ > max(]|s|,|m|). Encouraged by a small
set of comparative simulations for m # 0 (see Tab. H.2), for which the values surprisingly
agreed also in the problematic cases, we were able to find the origin of the discrepancy for
m = 0. Following Hod’s derivation (based on a Green’s function approach to the TKEQ)
it turned out that the final formulas missed a small case distinction for the s # 0,m =0
case. The correction yielded, indeed, the numerical results obtained from our simulations,

see Appendix B of [H1] for our explicit calculation.

6.2 (Nearly-)Extremal Kerr backgrounds

The study of nearly-extremal black holes @ — 1 is astrophysically less relevant but inter-
esting from a theoretical point of view. For instance, one would like to prove dynamical

stability of the Kerr BH against linear perturbations, and find out how the decay might
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Figure 6.2: Late time decay of s = —2 non-axisymmetric perturbations for highly spinning backgrounds.

The plots show the field variable R{v'} extracted at R = Ry and R =1 (i.e. at J1) and 6 = 7/2 for
a € {0.9,0.9999} (setting M = 1 here) and 6 = 1.1345 for @ = 1. Initial data are ID1 and I’ = m = 2.
From left to right the field decays with a power law tail (& = 0.9), or with an oscillatory behaviour
damped by either a slow exponential (¢ = 0.9999) or a power law 1/T (& = 1). Plots taken from [H1].

change in this limit. References [95, 96] have investigated the problem both analytically
and numerically using the original time-domain Teukolsky code discussed in [90, 80, 94]
(cf. Sec. 3.3). They found that ¢ = m QNM-modes could become extremely long-lived
on a nearly-extremal Kerr background and that, in the extreme case, the late-time tail is
replaced by an oscillatory signal with amplitude decaying as ¢t~'. These observations were
explained in terms of a “superradiance resonance cavity”. That is to say, near the BH, the
effective potential of the background features a peak, which acts reflective for frequencies
close to w ~ mwy (the horizon frequency). QNMs of such frequencies are produced in
the nearly-extremal case and are subsequently trapped between the BH and the peak.
Only by leakage through the potential barrier escape is possible, which explains the very

long-lived and characteristic decay features for a — 1.

This section presents a cross-check of the results of [95, 96] against results from our
implementation (as published in [H1]). We analysed the evolution for s = —2,m = 2 and
s = 0,m = 1 perturbations as the angular momentum of the background approaches the
extremal value a = 1. The feasibility of such challenging parameters supports, again, the

robustness of our approach.

Indeed, our results seem to confirm the investigations of [95, 96]. Varying the angular mo-
mentum @ in the range {0.9, 0.99, 0.999, 0.9999, 1} in otherwise identical simulations, we
observe qualitative alterations in the decay behaviour. The signal is more and more dom-
inated by a gradually prolonged oscillatory QNM phase, i.e. the damping time increases.
For a — 1 the amplitude of the oscillating field grows by a few orders of magnitude near
R, at the beginning of the simulation (especially for s = —2), before the exponential
decay in a typical QNM-phase begins. For three representative values a € {0.9,0.9999, 1}
the evolution of the field variable ¢ for s = —2, m = 2 and ID ¢ = 2 is illustrated in
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Fig. 6.2 at the horizon (blue lines) and J* (green lines). On the simulated timescale, a
power law tail is observed for values a < 0.999, see @ = 0.9 case in the left panel. For
larger values, like @ = 0.9999 (central panel), an oscillatory and exponentially damped
behaviour dominates at both the horizon and J . For a@ = 0.9999 a power law tail is not
observed up to 1" ~ 8000M, but may eventually arise at later times. This behaviour is
consistent with the findings of [95, 96|, and with the given explanation in terms of modes
trapped in the superradiance resonance cavity. For @ = 1 the field remains oscillatory,
but it does not decay exponentially during the simulated time. At the horizon the field
amplitude is still growing at 7" = 2500M, while at J* the decay departs from an expo-
nential law. A similar qualitative behaviour is observed in the case s = 0, m = 1 with ID

(" =1 (not shown here).

To convince oneself of the correctness of the results, it is instructive to compare the
complex QNM-frequencies w = (w,,w;) extracted from the s = —2 simulations with the
data of Berti et al. [72] (listed there up to @ = 0.9999). The real part corresponds
to the frequency of oscillation while the imaginary part gives the damping time. We
measure the frequency of the fundamental (longest lived) QNM by counting the periods
of the signal for long times. Damping times (or w;) are extracted by fitting the envelope
(maxima) of the field. For instance, the envelope of the field for @ = 0.9999 is well
represented by the fit logo |R¢| = ¢ — 0.0015064 7T , where ¢ is some constant. Note
that the fitting coefficient proportional to T needs to be divided by log,y(e) to obtain
w; = 0.0035. Analogous measurements for a = 0.9 yield w ~ (0.6827,0.0649) both at
R, and J*, which agrees very well with the target values (0.6715,0.0649). For a = 0.99
we find w ~ (0.8747,0.0294) compared to the target values of (0.8709,0.0294), and for
a = 0.999 we get w ~ (0.9584,0.0105) compared to (0.9558,0.0105). For a@ = 0.9999 we
obtain w ~ (0.9862,0.0035), again in agreement with (0.9857,0.0035). These results, also,
agree with the analytical formulas for QNM frequencies of nearly-extremal BHs proposed
in [171, 172]; the discrepancy is (~ 1%, ~ 5%) for @ = 0.99 and (~ 0.02%, ~ 0.5%) for
a = 0.9999. Note that for a — 1 the frequencies of the overtones accumulate around
the same value, which reduces errors when counting the peaks. In the extreme case,
we measure slightly different values at J+, w, ~ 0.9970, and at R, w, ~ 1.0015. Tt
is interesting to notice that both are very close to the superradiance frequency w, =
ma/(2Mry) — m/2|p=1. (This holds, by the way, for the extreme-case result for
s = 0 with m = 1 as well; we measure w, ~ 0.5011 both at R, and J*). The envelope of
the field is best fitted by the power law log,, |R¢| = ¢ — 1.051log,, T, for some constant
c. Thus, our numerical results support the expected late-time v ~ T~! behaviour for
s = —2[96].

Finally, let us comment on the numerical challenges connected to such (nearly-)extremal
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setups. As mentioned above, close to the horizon the evolution of the field starts with
a strong growth, which does not propagate to the rest of the grid. This leads to a step-
like shape of v in radial direction which makes numerical differentiation difficult. If the
number of radial grid points Ng is too small, the convergence is then corrupted and
instabilities may arise. Therefore, we had to employ exorbitantly high number of points
for a spectral evolution; N ~ 281 points for non-extreme cases, and, in the extreme
case, Ngp = 561 for s = 0 and Nr = 701 for s = —2. In addition, the interesting
transition from the QNM-phase to the tail phase is progressively postponed to T" — oo,
i.e. we need to simulate for long times. For this reason, further technical development,
like a parallelisation or a mesh-refinement, would seem desirable to perform more detailed

numerical studies of the extremal regime.



CHAPTER 7

GWs from a non-spinning particle

The major goal of this thesis was to develop an accurate GW-laboratory, appropriate to
study binary BH mergers numerically in the test-particle limit. The teukode provides
such a tool. In Ch. 5 it was already described in detail, and validated against plenty of
numerical results available in the literature on GWs from a nonspinning particle. In this
chapter we present those results which exceed previous knowledge on the topic (cmp. [H2,
H3)); notably, the novel results span almost the complete range of Kerr spin parameter
values @ € (—0.9999,0.9999)".

In Sec. 7.1 we start with a multipolar analysis of merger waveforms on Kerr. Such analysis
was shown for Schwarzschild in [130] and repeated in Sec. 5.2 here, and for Kerr, in a
more restricted range of spin parameters, in [135]. Second goes a study of the fluxes which
are emitted during the inspiral, both to the horizon and scri. In this context, we devise
a numerical procedure for the construction of a consistent numerical RR. The third topic
is the exploration of kick and antikick velocities in the test-particle limit, over the whole
parameter range @ € (—0.9999,0.9999).

All the following results relate to particle trajectories that describe realistic inspiral mo-
tion, i.e. from adiabatically shrinking circular orbits over a plunge to merger. These
trajectories are created from EOB-dynamics with a RR which in the p — 0 limit re-
sembles the circular orbits fluxes from a test-particle. Here, to obtain shorter inspirals,
we use a mass ratio p/M = 1073, which implies a certain deviation of the RR from the
test-particle limit (see Sec. 2.2). We have performed inspiral simulations for all ),,-fields
in m € {0,1,..,8} for a number of background spins a € (—0.9999,0.9999). Table J.1 in
App. J collects detailed information on the used dynamics; e.g., the time when the particle
crosses the light-ring (LR) upg, etc.. The simulations featured resolutions of 3600 x 160
points and sixth order finite differencing. The angular ¢ function was modelled by the

4-point § prescription called option (b) in Sec. 5.2.4, the radial § by a narrow Gaussian.

'Even higher spins @, up to the extremal case, are, in principle, feasible with our approach, but require
progressively larger resolutions to avoid instabilities. As explained for the vacuum TKEQ in Sec. 6.2, a
spectral implementation requires ~ 700 collocation points to allow extremal simulations, so the here used
finite-differencing version would devour costs too high for going beyond @ = 0.9999.
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The nearly-extremal simulations were exceptionally challenging so that we employed the
resolution 3600 x 100 and artificial dissipation to guarantee well-behaved numerics, in the

sense that no unbounded growth of the numerical solution is observed (see Sec. 5.3).

7.1 Multipolar analysis of merger waveforms

The waveform from a compact binary system consists of the inspiral, plunge, merger and
the ringdown to a settled BH solution. The plunge happens on a rather short timescale
compared to the inspiral, i.e. the gradual advance through a series of shrinking circular
orbits (~ 25 in most of our simulations). Yet, the merger signal, which is understood
here as the segment of the waveform ~ £100M around the time when the particle crosses
the horizon, is very interesting; it is the strongest part of the signal and it can exhibit
complicated structure, which may convey additional physical information. In this section
the simulations of GWs from EOB-dynamics are analysed with respect to the multipo-
lar hierarchy and multipolar frequencies at merger. Further, characteristic numbers are

measured and discussed, possibly useful for building waveform models (cf. [H2]).

7.1.1 Multipolar amplitudes

Let us first discuss qualitatively the relative importance of the dimensionless amplitudes
Ay = A/ = Yol /10 = |hem|/ (u\/%) where the Uy, are the RWZ-normalised
strain variables and hgy, = hy g — 1 hy om (cf. Eq. (4.6)). These amplitudes are collected
for the six representative cases @ = {£0.9999, £0.9,4+0.5} in Fig. 7.1. The use of the
advanced time u allows the connection of the dynamics with the waveform (see Sec. B.2).
For instance, the vertical dashed lines indicate the time when the particle crosses the light-
ring (LR); except for a = 0.9999, in which case it marks the end of the trajectory, slightly
before the LR. The reason for not reaching the LR is the inaccuracy of the used RR for
fast prograde orbits @ — 1, as examined below in Sec. 7.2. In these cases unphysically
high losses of angular momentum lead to a corruption of the dynamics close to the merger.
Note, though, that the LR for a = 0.9999 is at r = 1.05M, and thus we do expect to not

miss a significant part of the wave creation.

Surveying Fig. 7.1, let us concentrate first on the relative importance of the modes during
the inspiral. Above all, it is striking that in all six panels of Fig. 7.1, i.e. over the whole
range of @, the 22-mode is the most dominant. The relative ordering for other modes
can change with the spin a. For a = —0.9999 the hierarchy reads 22, 21, 33, 44, 32, 55.
Instead, for a = 0.9999 the rearranged hierarchy reads 22, 33, 44, 21, 32, 55. Diagonal
modes like the 33 and the 44 are more dominant for a = 0.9999. It is an overall conclusion
to be drawn that for @ — —1 the sub-diagonal modes become increasingly important. For

concreteness, look at the retrograde orbits in the top row of Fig. 7.1; the 21 is clearly
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Figure 7.1: Multipolar amplitudes of the ¥, waveforms for six representative values of a and the mass
ratio /M = 1073. The vertical line on each plot marks the time when the particle crosses the LR, except
for +0.9999, in which case it marks the end of the trajectory (in this case our trajectory stops slightly
before the LR, see text). The @ = 0.9 case can be compared with Fig. 3 of [135]. Plots adopted from
[H2].

stronger than the 33, and, at merger, even close to the 22 for @ — —1. The situation
is gradually reversed for the prograde orbits, shown in the three bottom panels; the 33
becomes stronger than the 21. For a = 0.9999 even the 44 is strong enough to fight
with the 21 for the third place, whereas for a = —0.9999 the 44 is smaller than the 21
by an order of magnitude. Monitoring the absolute values, it is noticeable that part of
the modes, mostly the diagonal ones, display a rather large increase from retrograde to
prograde orbits. For example, Ags grows from ~ 107%% at @ = —0.9999 to ~ 10732
at a = 0.9999. Also, some off-diagonal modes grow strongly in absolute value with a.
For example, Az from ~ 10726 to ~ 10719, and Ay from ~ 10732 to ~ 10723, For
other modes the growth with & is much less pronounced. For example, the 22 grows from

~ 107%9 to ~ 10795, Similarly, the 21 and the 31 remain rather constant.

Including now the merger part to the discussion, another interesting observation is that
the amplitudes of all the modes are extremely flat over time for & — 1. For example,

the 22 mode in the bottom right panel of Fig. 7.1 very clearly misses the usual ascent at
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merger. This observation was made first by Taracchini et al. [76] in a similar? analysis of
test-particle Teukolsky-waveforms, using the latest version of the Khanna et al. code (cf.
Sec. 3.3). Taracchini et al. give a convincing explanation of the flattening in terms of the
dynamics. The relative closeness of the LSO and the LR to the horizon for @ — 1 results
in a gradually shorter final plunge phase. In other words, for @ — 1 we basically consider
a quasi-circular inspiral from 7y all the way to the horizon. The amount of non-circularity
in the dynamics can be nicely quantified by looking at the radial momentum p,~ around
the LR crossing time. Fig. 15 of [H2] reveals the strong magnification of p,« for 4 — —1,
i.e. we see a sudden change in the motion due to acceleration in radial direction, which is
absent for @ — 1 dynamics. The resulting uniformity in the dynamics is simply translated

to the waveform.

Let us now have a closer look at the actual merger-signal. For @ — 1, the mentioned
flattening of the waveforms greatly simplifies the analysis because the hierarchy of the
modes basically remains the same at merger as during the inspiral. Comparing the bottom
row of Fig. 7.1, this holds more or less for all prograde orbits. Even for a = 0.5, which
contains a clearly distinguished plunge phase, the growth of the signal at merger is shallow
and very homogeneous for all modes. One exception is given by the 20 mode (gray), which
arises out of nothing to play a significant role at merger. In general, one may record that
the articulate plunge in retrograde orbits (top row) seems to introduce more prominent
reallocations in the relative importance of the modes at merger than for prograde orbits
(bottom row). For example, looking at the top middle panel for @ = —0.9, the off diagonal
modes seem to grow stronger at merger than the diagonal ones. The 32 and the 31 overtake
the 44; the 43 the 55 (also the 54 the 66 etc.). To conclude our discussion of hierarchies
at merger, the picture is complemented by the illustration of the factual maximum values
Apax — max(Ay,y,) in Fig. 7.2, which can be compared with the & = 0 case in Appendix A

‘m

of [131]. The left plot shows the variation of A2%* versus (¢,m,a) in a 3d figure. The
right panel is a 2d projection over a. A similar plot can be found in the Appendix of
[76]. The most surprising feature, which can be added to the discussion in [76], is the
enormous importance of m = 0 modes for fast retrograde orbits. For a = —0.9999 the
maxima of the amplitudes follow the ranking 22,21,20,33,32,31,30, whereas for a = 0.9999
the order reads 22,33,44,21,32,43. Apart from the m = 0 modes, other off-diagonal modes
become increasingly important at merger for @ — —1, similarly to the discussion for
the inspiral. This observation is highlighted in the 2d-cut in Fig. 7.2. A reasonable

explanation, similarly to the discussion of the flattening of the waveforms, can be given in

2A major difference to our study is in the radiation reaction used in the dynamics. Taracchini et al.
use highly accurate numerical energy fluxes, found from the frequency domain code of Hughes [91, 62, 60],
instead of applying resummed analytical PN-information. Thus, horizon fluxes are included, which
become very important due to superradiance for @ — 1 at r, — rir (see Fig. 5 of [76]). The range
of spins considered in [76] is @ € (—0.99,0.99).
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Figure 7.2: Peaks of multipolar amplitudes as functions of the black hole spin. Left: 3D visualisation
of all the data up to £ = m = 8. Different /-modes are classified by colours, the spin dependence is shown
by solid lines. Right: peaks of the dominant multipoles as functions of the spin. This plot is a 2D cut
of the left panel (restricting to ¢ < 4). The m = 0 and m = 1 modes have the largest amplitudes for
a — —1. The diagonal modes have weak dependence on the spin and attain a maximum for spin values
0.8 < @ < 1. The right panel can be compared with Fig. 14 in [76]. Plots adopted from [H2].

terms of the last part of the dynamics, which are progressively dominated by the plunge
for a — —1.

Coming to the subsequent ringdown phase, we have omitted a detailed analysis so far.
Visually, it is obvious from Fig. 7.1 that for nearly-extremal cases the trapping of modes,
as discussed for the vacuum TKEQ in Sec. 6.2 (see also [95, 96, 72, H1, 20]), leads to
very weakly damped QNMs. In the nearly-extremal regime the exponential decay holds
for much longer times than shown in the plots. For a = 0.9999 we made an exemplary
computation of the damping time by fitting over the interval u € [5400M, 6800M]. For
(¢,m) ={(2,2),(2,1),(3,3)} the resulting damping exponents of the dominant overtones
are {—3.52, —39.11, —3.61} x 107 respectively. These numbers match at < 4% with the
corresponding values for free QNM ringing [72].

7.1.2 Multipolar frequencies

Further physical insights can be gained by monitoring the frequencies M wy,, of the multi-
polar waveforms around merger. These can be determined numerically by extracting the
phase and subsequent differentiation. Alternatively, one can use use wy,, = —Z (hgm [hem),
which is usually more accurate in our case. A collection of these frequencies for the six
representative cases @ = {£0.9999, +0.9, £0.5} is given in Fig. 7.3. The vertical dashed
lines mark again the time of the LR-crossing, except for a = 0.9999, in which case the
trajectory stops before the LR (see discussion in Sec. 7.1.1). The dotted horizontal lines
represent the BH QNM-frequencies, as stated in [72]. In addition, there is the orbital

frequency €2 of the particle, shown as a solid black line. One immediately notices two
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Figure 7.3: Multipolar GW frequencies of the ¥, waveforms for six representative values of @ and the
mass ratio /M = 1073, The vertical line on each plot marks the crossing of the LR, except for +0.9999,
where it marks the end of the trajectory (in this case our trajectory stops slightly before the LR, see
discussion in text). Horizontal lines are the QNM frequencies of [72]. For nearly-extremal negative a we
find negative frequencies due to the inversion of the trajectory after the LSO-crossing. The panels can
be compared with Fig’s. 7-10 in [76] and Fig. 4 of [135]. Plots adopted from [H2].

general features, (i) during the inspiral the multipolar frequencies are characterised by
Wem = m Y, i.e. just multiples of the particle’s frequency, and (ii) after the LR~crossing,
any ¢m-mode assumes some fundamental (n = 0) QNM-frequency o,,,». For the prograde
a — 1 cases, to which we count the @ = 0.9 case here, the frequencies wy,, and wy,11,m
assume the QNM value 0,,,. The a = 0.5 case reveals a slight alteration. Though also
featuring wy,, approach o.,,, we observe w11, oscillate around 0,41 m+1; €.g, the wgs
around the o4 value, and, accordingly, the wss around the os5 value. Altogether, these
findings confirm the analysis of [76], where, for @ = 0.99, Fig. 7 shows the wsy approach
029, and for a = 0.0, instead, o3, . Notably, the small oscillations of the multipolar
frequency around some QNM-value are a generic feature, and were already observed for
a = 0.0 in [52, 130] (cf. also Fig. 5.7 in this thesis). References [52, 130] explained that
the oscillations have a physical reason, namely the interference of +m-modes. During
the plunge both of them can be triggered, which explains why the oscillations vanish for
a — 1. In this case the inspiral is quasi-circular until the very end, a plunge is basically

absent. To understand the effect, we follow the argument given in Sec. V of [76]. The an-
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gular part of the TKEQ), explicitly separable in the frequency domain, Eq. (3.6), admits a
pair of QNM-solutions o/, for the eigenvalue &,,,. In other words, g4, are two possible
solutions that can be superposed. Thus, if we solve for a given Sgu,-mode, we may, in
principle, see both +m-frequency contributions. If, due to a change in the rotation sense
of the orbit, both are triggered, we observe interference. The argument holds, similarly,
for a Y, mode because it contains contributions from all Sg;,, modes (in many cases,
though, Yim =~ Ssem). The dramatic change of the pictures, from right to left in the
top row of Fig. 7.3, reflects this interference of +m modes in a fascinating and illumi-
nating way. For a — —1 the trajectories develop a turning point due to the increasing
strength of the frame dragging as the particle approaches the BH. At the turning point
the motion of the particle stops being retrograde and follows, instead, the BH rotation,
as depicted for a = —0.9 in Fig. 2.1. Note that for a = —0.9999 several prograde orbits
are traversed after the turning point. This switched rotation mainly triggers the opposite
sign m-mode and, since our ¢m-projection is open to both £m-frequency solutions, we
see Wy, approach —o,, _,, in the top left panel. Moreover, for @ # 0 the multipolar ¢/m-
frequencies can possess further structure due to the “mode-mixing” phenomenon; a given
Ysem mode projection does not decouple from other Y, contributions, i.e. an m-mode in
the Y-basis can be influenced by other jm-modes (see [H1] for a discussion of this effect
in the context of late-time tail decay rates). Only the eigenfunctions of Eq. (3.6), the
Ssem, would decouple upon evolution. Further fine-structure in the ringdown originates
from the subdominant overtones (n > 0), which can modulate the signal at early times

after merger, but die out faster than the fundamental one.

7.1.3 Characteristic numbers for waveform modelling

Waveform modelling, i.e. the (semi-)analytic representation of waveforms, is an extremely
important topic. GW-detectors will require vast amounts of templates which cannot
entirely be produced by numerical simulations. Our data may be useful in the future in
this context. Therefore, we have measured some characteristic numbers usually employed
within the EOB-model to describe the waveforms. In addition, the collection of these

numbers provides a further cross-check with the corresponding literature.

The extracted values are (i) the dimensionless maxima of the amplitudes AP**, and (ii) the
frequencies of the multipolar waveforms at the time when that amplitude maximum is
assumed wf,ggx. In addition, to match the possibly different waveform descriptions for
inspiral+merger and the ringdown parts, models need anchor points. In the EOB-model
the time at which the particle’s frequency () peaks is assigned such role; one demands
that hoo peaks at tomax. Other fm-modes are demanded to peak at slightly different times.

These times are found by comparing the numerically obtained times at which an /m-mode
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peaks with the time tomax (see, e.g., discussion around Eq. (42) in [135]). We, therefore,
evaluated the time-lag At,,, = u Amax — Ugmax. Table L.1 lists our results for a = 0.0, and
Table L.2 for a # 0. Note the remarkable agreement in the extracted key numbers with
[135] (values in brackets), despite the differences in the totally independent codes and in
the dynamics, due to the different RRs used.

7.2 Fluxes for realistic inspirals

Let us proceed with the discussion of energy and angular momentum fluxes. These are

extracted from the waveforms using the time-domain formulas gathered in Sec. 4.2.2.

7.2.1 Horizon fluxes

Horizon fluxes are somewhat less thoroughly studied than the fluxes at scri. Probably
because circular orbits experiments show that the absorbed fluxes are orders of magnitude
smaller than those at scri, except for nearly-extremal spins and small distances to the light-
ring (LR), cf. Fig. 1 of [62]. This section compares horizon fluxes with infinity fluxes for

inspirals on Kerr backgrounds with @ = £0.9 (cmp. [133] for @ = 0.0).

Surprisingly, the horizon fluxes for a complete inspiral of a particle on Kerr spacetime
seem to be a missing piece in the literature. The reason is likely the unwieldiness of
the only available practical formalism devised by Poisson [149] (cf. Sec. 4.2.2). Major
complications of the formalism reside in the facts that (i) it relies on the ingoing radiation
encoded in the Weyl-scalar U .k (“Hawk” for “Hawking-Hartle” tetrad, see Sec. 4.2.2),
and (ii) on global in time information. The evolution of Wy follows the s = +2
instead of the s = —2 TKEQ. Of course, also the source terms are different and have to
be computed independently. Maybe that is why s = 42 point particle simulations with
the TKEQ are totally absent from the literature. The following study breaks new grounds
in two aspects. For the first time, we (i) numerically evolve the s = +2 TKEQ with a
point particle source term, and (ii) apply Poisson’s formalism to compute the associated
energy fluxes absorbed by the horizon during a realistic inspiral motion of a particle. Note
that the time-domain horizon fluxes are computed in post-processing (cf. Sec. 5.1), and

were cross-checked to be accurate for the case of circular orbits (cf. Sec. 5.2.2).

Fig. 7.4 compares the m = 2 horizon flux (red) with the infinity flux (blue) for EOB-
inspirals on @ = —0.9 (left panel) and @ = 0.9 (right panel). The top panels show the
most interesting segment around the merger; the bottom panels include the whole inspiral.
Note that the horizon fluxes are scaled by arbitrary factors for this visual comparison.
The first (second) vertical line marks the crossing of the LSO (LR). The horizontal lines
show the circular orbits fluxes at the initial separation. It is reassuring to note that both
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Figure 7.4: Comparison of m = 2 energy fluxes at the horizon (red) and scri (blue dashed) for @ = —0.9

(left panel) and @ = 0.9 (right panel). The time coordinate u refers to the retarded time for scri and the
advanced time v for the horizon. The first (second) vertical line marks the crossing of the LSO (LR).
The horizontal lines show the circular orbits fluxes at the initial separation. Note the absorbed fluxes
are scaled by multiplicative factors, and, in the right panel, the factor is negative, i.e. the two fluxes
have different signs. The relative importance of horizon fluxes to infinity fluxes remains at ~ 1% (~ 3%)
for & = —0.9 (0.9). The waveforms at the horizon are contaminated by the source at late times. As a
consequence, the horizon fluxes are reliable until v ~ v,, — 100M, as marked by the solid linestyle (see
discussion in the text). The dash-dotted linestyle illustrates the part which is analytically continued in
order to build a self-consistent radiation reaction (see Sec. 7.2.3). Plots adopted from [H2].

horizon and infinity fluxes approach the circular orbits fluxes at the beginning of the
inspiral (which starts from quasi-circular motion). The main observation in the present
plots is that nothing surprising happens. Throughout the inspiral the horizon fluxes
stay at the level of ~ 1% (3%) for @ = —0.9 (@ = 0.9) as expected from circular orbits
experiments. Unfortunately, the most interesting part of the trajectory close to the merger
cannot be analysed within the present formalism. The reason is twofold. First, note that
the field variable ¢ is singular at the particle’s position (even though the singularity
is smeared out in our Gaussian approximation). The energy flux can, therefore, not
reliably be measured at the particle’s position. Consequently, once the Gaussian reaches
the horizon our waveform at the horizon is corrupted (see analogous discussion of the
same problem in Sec. IV and Fig. 3 of [133]). While this issue alone would only spoil a
negligible part of the late plunge, the Poisson formalism breaks down Av ~ 50M — 100M
before the corruption of the horizon waveform. This early corruption is due to a second
problem. At (advanced) time v the energy flux is computed from the waveform at times
v € (v—Av, v+Awv); the formalism looks to the past and, in particular, to the future. Thus,
we can only measure the absorbed fluxes until some time Av before the corruption of the
waveform at merger. That is why without a further development of Poisson’s formalism

we can not deal with the interesting question of how important the horizon fluxes become
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close to merger, especially for nearly-extremal backgrounds. For the time being, we can
nevertheless work with the obtained energy fluxes (see Sec. 7.2.3) by continuing them in a
reasonable manner. We choose to smoothly switch off the horizon fluxes with a hyperbolic

tangent, as indicated in Fig. 7.4 by the dash-dotted red lines.

7.2.2 Consistency of the radiation reaction

Our setup allows an important cross-check of the analytical RR used in the EOB-dynamics
(see Sec. 2.2.3). For consistency, one wants the angular momentum fluxes from a point
particle, measured a posteriori from a TKEQ-simulation, to coincide with the a priori
assumed energy losses which drive the particle away from the initial circular motion. Such
an analysis was already performed for @ = 0.0 in [52, 130, 132], and yielded consistency
up to the level of a few percent until merger (employing 5PN information for the RR). In
[55], for @ # 0, the analytical RR was found to significantly overestimate the numerically
found circular orbits fluxes for prograde orbits with @ > 0.7 (see also follow-up works
(74, 135, 62, 76]). In Appendix C of [62] the analytic RR was enhanced by a fit to
numerical circular orbits data, which drastically improved the agreement (see Fig. 13
therein). Here we will not employ the fit in order to check how the deviations present in

the purely analytic information translate to the inspiral waveforms.

In our consistency check we test two prescriptions for producing the EOB-dynamics.
They are basically the same, except for slightly different forms of the analytical RR. To
understand the difference, recall that EOB-RRs are built from PN information, which
are, in turn, expansions in the characteristic velocity v of the considered system. More
concretely, the RR is built from several multiplicative factors, among them the Newtonian
waveform AN (v) and the “amplitude corrections” pen(v) (see Sec. 2.2.3). A particle
orbiting a Schwarzschild-BH on circular orbit is known to satisfy the “Kepler-constraint”
M = Q%r® (see [173]). With a certain reinterpretation of the radius this constraint
remains true for the Kerr background (see Eq. (53) in [H2]). For circular motion the
implied orbital velocity v = Qr provides a natural choice for the expansion parameter
v. Instead, once the particle starts to deviate from circular motion and turns towards
the plunge, the constraint has to be relaxed and some choice for v has to be made. A
careful inspection of the literature reveals that two different choices have been made. On
the one hand, there is the original prescription of reference [174] (and references therein),
and, on the other hand, there is the suggestion of references [135, 129, 76]. We label the
former choice by v or “EOB(A)” and the latter by vg or “EOB(B)”. Heuristically, the v
prescription is less-Keplerian due to the complete relaxation of the constraint during the
plunge, while vgq still imposes the constraint in some form. For explicit definitions of v,

and v, and for a more detailed discussion of the subtle differences in their usage for the
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Figure 7.5: Consistency of numerical and EOB fluxes for @ = —0.9 (left) and @ = +0.9 (right). The
top panels show the two analytical EOB-flux-prescriptions (A), i.e. 7]:';¢’, and (B), i.e. f]:';’“ (see text)
and the respective numerical fluxes produced from the teukode (labelled here TE) when using those
prescriptions. The vertical lines correspond to the LSO and the LR crossing. The horizontal line is the
circular flux corresponding to the initial separation. The bottom panels show the difference between the
numerical and the analytical flux when using prescription (A) (the respective line for (B) would lie on
top in the plotted sector). Looking at the bottom left panel, the analytical prescriptions for ¢ = —0.9
match the numerical fluxes within < 1% until well beyond the LSO. Instead, for @ = 0.9 the analytical
information is less accurate (~ 100% off at LSO). The numerical fluxes (A) and (B) are visually the same
in both plots, though close to the LR the flux prescriptions differ. Plots adopted from [H2].

RR the reader is referred to Sec. 5 of [H2]. In all experiments, apart from the tests in this
section, we employed the vy prescription as our standard choice. The associated RR was
built in [55] for modes ¢, m < 4 from the py, stated up to 5.5PN in the nonspinning part
and 4PN in the spinning part (cf. Tab. 1 in [55]), and augmented with the nonspinning

5.5PN expressions from [59] for modes ¢,m < 8.

For the consistency check we create two dynamics with the two slightly different flux
prescriptions. For both we perform a set of nine simulations to obtain the ), with
m € {0, 1, ..,8}; we are not performing m < 0 runs because for equatorial motion they are
equivalent to the m > 0 ones, so we obtain the total flux by multiplying the m > 0 results
by a factor two. The respective m-mode angular momentum fluxes to infinity, .J,,, are
computed from the v, (cf. Sec. 4.2.2), and summed up to a total flux .J. The total flux J
is, then, contrasted with the analytical RRs employed for the dynamics, —]:";f"’ and —.7:';;9.
Fig. 7.5 shows this comparison for @ = —0.9 (left) and @ = 0.9 (right) in the relevant time
interval before merger. The two vertical dashed lines on the plots indicate, from left to
right, the LSO and the LR crossing; the horizontal lines show the circular orbits flux at
the initial separation. Concentrating on the left panel, the main observation is the nice
coincidence of all compared fluxes up to well beyond the LSO (~ 40000 ). More precisely,
we conclude that, (i) —f;¢ (green) and —.7:';,’“ (magenta dashed) are visually on top of
each other except for some ~ 5M close to the LR, (ii) the two obtained TKEQ fluxes
(red and blue dashed) agree perfectly, as will be quantified at the end of this paragraph,

throughout the evolution, and (iii) the deviations between the “input” —]:";"’ and the
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Figure 7.6: Consistency of numerical and EOB analytical fluxes for @ = —0.9 (left) and a = +0.9 (right).
The two major panels show the EOB-fluxes as obtained with prescriptions (A), i.e. —]7;"’7 and (B), i.e.

fff;‘;“, and the two respective numerical fluxes as functions of twice the orbital frequency € = M.
The bottom panels show the difference between the numerical flux as produced with prescription (A)
and (B). The vertical lines correspond to the LSO, the plots terminate at the LR. The horizontal line is
the circular flux corresponding to the initial separation, which was chosen to provide ~ 25 orbits before
merger. Note that all orbits are spent before the LSO, Q < Quso. Plots adopted from [H2].

“output” J lie at the level of ~ 3% almost up to the LR crossing, as highlighted in the
small bottom panel. In summary, the retrograde case a = —0.9 is excellently modelled
with both the (5.5 + 4)PN accurate EOB-RRs. This demonstrates the fact that both,
essentially, produce the same dynamics. The unphysical spike in —,7/:';“ (magenta) appears
shortly after the LR, where the dynamics is quasi-geodesic and not sensitive to the RR.
Therefore, it is a little bit academic to be bothered with discerning which of the two is
actually the better choice. Nevertheless, we briefly investigated what happens for a — —1,
and found the unphysical spike become more and more pronounced (cf. Fig. 5 in [H2] for
the @ = —0.99 case). The reason is the behaviour of v, also shown in Fig. 5 in [H2] and
discussed in the text around. Therefore, from a conceptual point of view, —]:":;4’ is likely
the advisable starting point for further improvements on the RR. Coming to the right
panel of Fig. 7.5 for the prograde case, the agreement of both fluxes with the numerical
outcome seems less convincing. One immediately notices the coincidence of —]—:f¢ and
— A;“ on the one hand, and the two respective TKEQ fluxes on the other hand. But the
agreement between the “input” and the “output” is poor, with ~ 100% deviation at the
LSO crossing. Surveying the tendencies of the analytic RRs towards the horizontal line
indicates already that even the circular orbits flux is not accurately reproduced. Probably
this happens because the orbit starts at # = 3.05, i.e. well in the strong-field regime. The
comparison is complemented by Fig. 7.6, which illustrates the fluxes versus the particle’s
frequency €2 (instead of the more intuitive time coordinate). This produces a close-up of
the LSO-LR regime (the plots end at the LR) because € sweeps through most of its range
on that timescale and remains rather constant during the inspiral. One clearly perceives
the good agreement of all curves in the @ = —0.9 case (left), while for @ = 0.9 (right)
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the TKEQ-curves are not even comparable with the RRs on the same scale. The failure
originates from the character of the dynamics for @ — 1, in which case they start at small
separations and are very circular until the end. Thus, the RR plays a significant role, also
in the strong-field regime, where it is not accurate. Furthermore, the bottom panels of
Fig. 7.6 show that the resulting TKEQ-fluxes (red and blue-dashed) agree at a level of
< 0.1% throughout the whole evolution, which confirms the insensitivity of the dynamics
on the slight differences in the RRs.

In conclusion, for fast prograde orbits the consistency check confirms the lack of higher or-
der PN information for the py,,’s to improve the RR used in the EOB-dynamics. Possibly,
the effective fits to numerical data given in [62] can help until the available informa-
tion at 22 PN for the nonspinning case [175] and 20 PN for the spinning case [57]| have
been incorporated into the model. Two slightly different versions of the RR are found to
be equivalent at the practical level, but the —.7:";2“’ version seems better-behaved from a

conceptual point of view.

7.2.3 Iterative procedure for improved radiation reaction

Motivated by the poor performance of the analytical RR for @ = 0.9 (see Sec. 7.2.2), one
is inclined to search for improvements. A natural idea is to perform an iteration proce-
dure which starts from the analytical RR, computes the TKEQ-fluxes for the obtained
dynamics, and uses these TKEQ-flux as a new RR to produce slightly different dynamics.
Then, iterate. If a fixed point exists and the first guess is close enough, we expect con-
vergence against a RR which is self-consistent at linear order in the mass ratio v. When
the initial guess of the EOB-fluxes is not accurate enough, one can encounter problems.
For example, for a = +0.9 we were only able to obtain iterative convergence when the
initial EOB trajectory was computed incorporating the refined py,,’s obtained in Ref. [62]
by fitting the RR to numerical data. Preliminary tests for higher spins a > 0.9 were not

successful.

In this section we present the performance of the procedure for a case study with a = 0.9
(as published in [H2]). Differently from the @ = 0.9 dynamics used in other sections and
described in Table J.1, here the dynamics start at ro = 4M to obtain ~ 120 orbits before
merger. The resolution was lowered to 1200 x 60 to ease the computational costs. This
resolution is sufficient for our purpose here. A higher resolution would only be necessary
to make high accuracy runs with the finally obtained form of the RR. In order to include
both the horizon fluxes and the infinity fluxes, we actually have to render 16 simulations
at each iteration step, i.e. for s = £2 and m = 1,...,8 (m = 0 is negligible, see Fig. 7.1).
As discussed in Sec. 7.2.1, the very last parts of the horizon fluxes are smoothly continued

to zero. At early times < 200M, our numerical fluxes are corrupted by “junk radiation”
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Figure 7.7: Convergence of the iterative self-consistent procedure for the radiation reaction (RR) along
inspiral dynamics with ¢ = 0.9 and ro = 4M. Left: GW fluxes after each iteration. Note the large
differences with respect to iteration 0, i.e. the EOB-RR, —.7:"¢, even though we used the refining fit given
in [62]. Right: Convergence of the fluxes after each iteration. After 9 iterations we obtain a self-consistent
RR including both infinity and horizon fluxes. Plots adopted from [H2].

due to the crude initial data; we complete our fluxes at early times by linear extrapolation
from u/M € [500,250] to u = 0. To check that this does not introduce a significant error,
we compared the value extrapolated to © = 0 with the circular flux at the relative radius,

and found an agreement of ~ 0.2%.

The result of the iterative procedure is summarised in Fig. 7.7. The left panel shows the
complete (scri and horizon) GW flux J at each iteration. The peak position of the flux
significantly changes for the first iterations and in total from wupeqr = 5450M, at the Oth
iteration, to Upeqar ~ 5553M , after the 9th iteration. On the contrary, the peak amplitude
remains approximately the same after the first iteration (see inset). This is consistent
with the intuition that the amplitude at merger is not a RR-driven effect, but, rather, the
merger waveform depends on the plunge phase. The right panel shows that the relative
differences in the fluxes between the previous and the next iteration converge very rapidly
to zero. At iteration 9 the relative flux differences saturate around 10~7 during most of
the evolution, and the radiation emitted during the inspiral is well-consistent with the

one used for the particle’s dynamics.

The impact of using the consistent flux on the GW modelling is quantified by considering
the difference in the number of GW-cycles, ANy, between the final waveform (after 9
iterations) and the starting one (iteration 0): ANy, ~ 6.7. Note, however, that our Oth
iteration dynamics is already different from the usual EOB-dynamics due to the use of
the fit of [62] for the RR. The latter difference amounts to ANy, ~ 28.8; so, overall, the

self-consistent simulation differs from the corresponding EOB one by about AN, ~ 35.5.

We also tested the importance of horizon absorbed fluxes by performing another self-

consistent calculation which neglects these contributions. We found that the final tra-
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jectory is shorter, and the particle reaches the horizon ~ 117M earlier compared to the
final trajectory that includes horizon absorption. The fact that in presence of horizon
absorption effects the inspiral is longer is explained by superradiance. The net effect of
horizon-absorption for @ = 0.9 is essentially an emission of energy/angular momentum
from the horizon. The differences in the dynamics correspond to ANgy ~ 5.4, i.e. ~ 127.1
instead of ~ 124.4 orbits before merger. This result highlights the importance of including
horizon-absorbed fluxes during the inspiral.

7.3 Kick and antikick velocities

A strong-field phenomenon as surprising as fascinating, revealed by the first fully nonlinear
simulations of binary BH mergers, is the recoil of the remnant, potentially at speeds of
~ 1000km/s (see, e.g., [176, 177] for recent works and a collection of references). The
effect is explained by the anisotropic emission of GWs, and with them linear momentum,
which leads to a kick of the center-of-mass by virtue of momentum conservation. By
tracing the emission of linear momentum through the evolution one can measure the
instantaneous recoil velocity v(t), i.e. the potential recoil that would result if the process
of emission was stopped at the time ¢. For some spins and mass ratios the shape of
v(t) was found to attain a maximum around the merger and to decrease to a smaller
final value [178, 179]. The drop from the maximum vy, to the final recoil velocity venq,
AV = VUpax — Vend, Was called “unkick” or “antikick” (see, e.g., Fig. 1 in [179]). In the
particle limit the recoil was recently investigated by reference [130] for @ = 0.0 solving
the RWZ-equations, and by Sundararajan, Khanna and Hughes [115] (hereafter SKH) for
a # 0 solving the TKEQ. The latter study considered spin magnitudes |a| < 0.9 and found
that the antikick is strong for large spin prograde orbits and “essentially non-existent” for
large spin retrograde coalescences (see Fig. 5 in [115]). Using the teukode, we revisited
the recoil in the particle limit and extended the SKH-analysis of [115] to nearly extremal

spin-values |a| < 0.9999. The following results and further details were published in [H3].

Working with RWZ-normalised variables \I/m7 the GW linear momentum flux can be

computed following

maz

FP=Fy +iF, = Z v (7.1)
1 (pag
ST Z Z ia, \II £m+1 Z \I] \IJZ-&—I m41 |
=2 m=—{ e=0,1

where € is the parity of (¢ 4+ m), and the asterisk indicates complex conjugation. Note
that Eq. (7.1) already implements the fact that the motion is planar so that even-parity

modes with ¢{+m = odd and odd-parity modes with ¢+ m = even are zero. We extracted
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GW multipoles up to £;,q, = 8. The real-valued coefficients (asm, bey,) > 0 can be found
in [130]

Qo = 2(0 = 1)(£+2)/( = m)(£ +m + 1), (7.2)

(¢ +3)! (l+m+1)l+m+2)
(C+1)(¢—2)! (2¢+1)(20+3)

berm = (7.3)
From the linear momentum fluxes accumulated by the system up to a certain time ¢ the
instantaneous recoil velocity can be computed as the magnitude of the complex velocity
vector v = v, + iv,, defined by

v(t) :—% _t dt' (FY +iFy)

— Vo — % /tt dt' (FF +iFy). (7.4)
The complex integration constant v accounts for the velocity that the system has acquired
in evolving from ¢ = —o0 to t = to. In practice, vy is unknown of course. If it is set
arbitrarily to zero, unphysical oscillations show up in the time evolution of the modulus
of the velocity v(t) = |v(t)|. Note that in the ring-down, after the peak of v(t), oscillations
in the modulus are physical, whereas oscillations before the peak are typical for a crude
integration constant (see, e.g., Fig. 5 in [115]). Though the effect is small, it can eventually
result in an inaccurate estimate of the final recoil velocity. Therefore, we determine the
vectorial integration constant vy by finding the center of the hodograph of the velocity in
the complex plane following [180, 130]. This procedure is tuned iteratively until the time
evolution of v(t) grows monotonically during inspiral, without spurious oscillations. The
correct determination of the integration constant is especially important when a — +1,
as it can strongly influence the rather small value of the final recoil velocity. Fig. 4 of [H3]
shows the evolution of v(t) for some examples, and proves that we were able to remove

the spurious oscillations, at least visually.

The results of our recoil computations for ve,q are summarised in Tab. M.1 in App. M; the
table also contains v,.x, the associated antikick Av, and certain analysis numbers, which
will be discussed in a moment. The results for a > 0.95 are separated to indicate that
they are uncertain, in view of the inaccuracy of the employed analytical RR for @ — 1 (see
discussion in Sec. 7.2.2). The left panel of Fig. 7.8 visualises the data from Tab. M.1 for
the different recoil quantities, with the uncertain a > 0.95 data points shown in gray. One
clearly sees the nice agreement between our recoil velocities v(t) (red circles) with the fit
representing the SKH-results (dashed black). The small deviations are remarkable, given
the differences between the SKH-study and ours. Among others the main differences are
(i) the restriction to mmax = 6 in SKH, (ii) probably different choices for the integration
constants, and (iii) the usage of numerical circular orbits fluxes for y = 107*M in SKH,

in contrast to the analytical EOB-RR, deformed at mass ratio ;1 = 10730, here.
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Figure 7.8: Summary of kick/antikick data and analysis. Left: Dependence of the maximum (blue,
crosses) and the final (red, circles) recoil velocities on the spin a for mass ratio v = 1072, The dashed
black line refers to the fit of [115]. Although the antikick is suppressed in the interval —0.9 < a < —0.5,
it strikes back for large negative spins, i.e. for a < —0.9 we find again that v,,4: > Veng. The data points
for a > 0.9 are plotted in gray to indicate that they are affected by larger systematic uncertainties due

max

to inaccuracy of the radiation reaction as @ — +1. Right: The analysis quantities 7, and () resemble
elobally the behaviour of Aw, and even predict the return of the antikick for ¢ — —1. Red crosses mark
the minima of each quantity, cf. Tab. M.1. Plots adopted from [H3].

In order to get an impression of the antikick, the plot additionally shows vy., (blue
crosses), and the resulting Av, separately depicted in the small bottom panel (solid black
line). We can confirm the SKH results that the antikick is strongest for @ — 1, and
apparently vanishing for —0.9 < a < 0.2. But in the previously unreachable regime of
a < —0.9, we make an exciting discovery: the antikick behaves non-monotonically in a.
Instead of continuing to zero for a — —1, it gradually rises again for @ < —0.9, reaching
at @ ~ —1 values which are comparable with @ = —0.2 (cf. the inset in the bottom
panel). Similarly interesting is the finding that, as @ — 1, the final recoil velocity seems
to vanish; this result, though, requires future investigations to rule out artificial effects

from the inaccuracy of the RR in that regime.

Trying to get some grasp of our results, especially with respect to the antikick, one can
employ a variety of analysis tools. In the test-particle limit it is natural to connect
the waveforms to the trajectories. As argued in [181, 182], it is simply the form of the
trajectory that determines the kick/antikick and not the spacetime in which the waves are
generated and propagated. To follow the argument, recall that the velocity is computed as
an integral over the linear momentum flux. If the latter is smoothly oscillating towards a
final zero amplitude, one expects that its integral vanishes. For the quasi-circular inspiral
for @ — 1 this is the case. For retrograde orbits, however, the clean oscillation is modified

with a burst-like structure during the plunge, which results in a net emission of linear
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momentum (cf., e.g., Fig’s. 8, 9 of [182]). In order to quantify the circularity of the plunge,
we have studied the radial momentum p,« with respect to a. The time derivative p,« is

found to have a bell-like peak around the merger (see Fig. 1 in [H3]). One can quantify the
width of the peak by its characteristic variation time (T;,ffx)z = —%
corresponds to the peak of —p,. Before discussing the performance of 7,2
the antikick, let us introduce another tool proposed in the literature. Following Damour
and Gopakumar [173], the kick and the antikick can be directly connected to the short

timescale of non-adiabatic emission of linear momentum during the plunge, i.e. to the

where tPr*

Dok
t:tn’lrax Y max

in analysing

peak of the modulus of the linear momentum flux. The antikick, as a function of a, can
then be understood in terms of a “quality factor” @), associated to that maximum of the
GW linear momentum flux, Fp'** = max |Fp|. At time ¢, the accumulated kick velocity
is given by the complex integral Eq. (7.4). The integrand can be split into amplitude and
phase to write v = — [*__ | Fp(t)|e¥)dt', where p(t) is the phase of the linear momentum
flux. Expanding around the time ¢,,,x corresponding to Fp**, one gets an approximation
for v(t) (see Eq. (9) in [H3]). The important quantities are the characteristic time scale
of the peak of the flux 72, = —F§>*/(|Fp|)™> and the phase derivative at the time of

the peak wmax = @(t)]i=t,.... The quality factor is defined as @ = WmaxTmax-

The right panel of Fig. 7.8 compares the behaviour of the two mentioned analysis tools,
7 (green) and @ (blue), with the found antikick (black) over G. Red crosses mark the
respective minima. The associated data is listed in Tab. M.1, which additionally contains
an analytic estimate of the final recoil velocity (cf. Eq. (11) in [H3|, not discussed here).
The global behaviour is similar in all three quantities, with a strong growth towards
a — 1, a minimum in the range —0.8 < a < —0.5, and, compellingly, a small increase
towards @ — —1. Hence, both analysis tools actually predict the surprising return of the
antikick for nearly extremal negative spin values. The small spike in ) around @ ~ —0.3
reveals that it does not yet work perfectly. @ only surveys the maximum of the GW
linear momentum flux Fg**. While, normally, Fp** has a very distinct peak (cf. Fig. 2
of [H3]), in the region a ~ —0.3 it exhibits two rather equal maxima, close together. This
behaviour cannot be captured in the current form of ). Still, we draw the conclusion that
the quality factor is a very efficient and functional tool. In fact, it might also be useful
for comparable mass binaries, where a clean “trajectory” is not defined, but the analysis

of the peak of the linear momentum flux is still possible.



CHAPTER 8

GWs from a spinning particle

A crucial missing piece of technology in our point particle laboratory is the “spin”. The
honest effect of non-extremal, realistic spins of binaries which can be described quan-
titatively in the point-particle limit is expected to be, at best, relevant for the secular
dynamics [30, 183]. Nonetheless, the investigation of spins in the particle approxima-
tion, especially at extremal values (9(|§2]) ~ pM, can provide interesting qualitative
information [40] on spin(1)-spin(2) and spin(2)-orbit coupling effects. To the best of our
knowledge, a spinning particle has never been considered as a source term for time-domain
TKEQ studies. Consequently, results on GWs from a spinning particle on a spinning BH
background are restricted to a hand full of frequency-domain studies for conservative mo-
tions like (i) radial infalls [184, 185], and (ii) circular, equatorial orbits [56, 186] (cf. the

small review in App. D).

As discussed in Sec. 4.3, we have derived the TKEQ source term for a spinning particle
within Mathisson’s pole-dipole approximation (see Sec. 2.1). The associated equations of
motion are the Mathisson-Papapetrou equations (MPEQs) (see Eq.’s 2.6). A promising
future prospect is the recapitulation of all experiments presented in this thesis with re-
spect to the effect of spin. As a first step, we have investigated circular equatorial orbits
with aligned or anti-aligned spins. This section presents preliminary results, which show,
at large radial distances, a nice confirmation of the PN-results obtained in [56]. This
indicates that our implementation is correct (or at least agrees with the one in [56]), and
paves the way for future experiments. The dynamics are kindly provided by Dr. Lukes-
Gerakopoulos [21]. Below we follow the convention to include into the multipolar energy
flux Ey,, both contributions £m because they are equivalent for equatorial motion; more
precisely, the quantity 4 Ey, contains both the (¢,m)- and the (¢, —m)-contributions.
Leaning on this convention, we will mean the summed flux including both +m contribu-
tions when speaking of an ¢m-flux. This is consistent with the definition of the Fj,, in
Eq. (2) of [54], which is used below for defining the leading-order fluxes. Further, we use
the dimensionless spin parameter o = S/(;u M), with S = |S,| the spin-magnitude of the
particle’s spin (cf. Sec. 2.1.3).
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8.1 2.5PN result of Tanaka et al.

For the /m-modes € (22,21,33,31,32,44,42) Eq’s (5.16) of [56] state the normalised
energy fluxes of a spinning particle in circular equatorial orbit about a Kerr BH at 2.5PN-
32,10
?U

is the Newtonian-flux of the 22-mode within the quadrupole formula. Following Tanaka,

we set the characteristic velocity to v = /M /r. In our notation the 2.5PN-formulas read

order. These normalised fluxes are defined as e, = %£Ep,/LE), where LEY =
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where we have omitted the 44 and 42 results because they do not exhibit spin-dependence
at 2.5PN. Unfortunately, the 31-mode is too weak to be measured accurately in our
numerics, especially for orbits in the weak-field, which we rely on for the validation of
our data. Consequently, we restrict the comparison to the 22,21, 33, 32 modes. There are
several other important remarks to be made here, i.e. , (i) the formulas are linear in the
dimensionless spin o = |S,|/(uM) (called 3 in [56)), (i) Nem is understood here as twice
the actual flux in a given fm-mode, in accord with Ej,,, (iii) the expansion parameter v
of Tanaka et al. [56] is defined as x = v?> = M/r; note that this is not strictly the orbital
velocity (only for @ = o = 0), and (iv) the 7, refer to the projection onto spin-weighted
spheroidal harmonics Sg,, (cf. [18, 64]), which only for @ = 0.0 coincide with the well-
known spin-weighted spherical harmonics Yys,. For our comparison we find it convenient
to further divide the 7y, by their leading-order term. In fact, we consider the completely
Newton-normalised quantities 7y, = %Egm / %Eﬁ@, where %Eﬁn is the leading order flux
defined by Eq. (2) and Eq. (4) in [54]. The relevant fluxes, called F}, in [54], are
8 243 1y v 32 4 pw L

Eé\{ = 4—5’012, E?])g—

o8 U T g3t 0 BT 19g0”

Thus, the quantities 7, are all of the form 7, = 1+ O(x).
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8.2 Energy fluxes at scri: numerics vs. analytics

We have computed the energy fluxes to infinity from a spinning particle in circular equato-
rial orbit on Schwarzschild for particle spin values o € {£0.9, £0.7, £0.5, £0.3, £0.1} and
for radii r, € {5,6,7,8,10,12,15,20}. There are two references to compare with, (i) the
2.5PN results of Tanaka et al. [56] (cf. Eq’s 8.1 above), and (ii) Fig’s 4-6 of Han [186],

which show the energy fluxes vs. o for 7 = 10.

In order to validate the numerics, one would first like to observe an unambiguous trend
towards the PN result for » — oo, or, equivalently, as the inverse radial distance x =
1/# — 0. Hence, we consider orbits in the weak-field regime, up to # = 20. Unfortunately,
two obstacles prevent us from examining arbitrarily huge radii 7; (i) the energy fluxes
become smaller, eventually beyond our numerical precision, and (ii) our hyperboloidal
coordinates drastically loose resolution as # — oo. The latter issue can be mediated by
higher computational expenses, of course, but # = 20 suffices, as shown below, to observe
the trend. Fig. 8.1 shows plots of the normalised energy-fluxes versus z, for o = —0.9
(left column) and o = 0.9 (right column). In all cases, we observe, as x — 0, the expected
trend of our results towards the PN-prediction. While the agreement usually reaches
~ 1% at # = 20, independently of the considered o, the worst case is a bit farther off,
with ~ 15%, namely, the 32-mode for ¢ = 0.9 (bottom right panel). This offset is not
surprising because the PN information for the 32-mode only go one term beyond the
leading-order (cf. Eq’s (8.1)). Overall, the plots indicate that our data converge towards
the PN-results. As a final test, we plan to perform an extremely high resolved simulation
of even larger radius to further support the hypothetical agreement. In [H4| we plan on

repeating the comparison of the energy fluxes for a # 0.

Building on the reasonable behaviour of our data in the weak-field, we assume their
correctness and discuss the dependence on o for some fixed radial distances. Fig. 8.2
shows, at the fixed radii # = 20 (left column) and # = 5 (right column), the normalised
fluxes for the modes 22, 21, 33, 32; on the one hand, as obtained from the teukode (red
with dots) and, on the other hand, the PN results (blue). For # = 20 we observe, in all
modes, qualitative agreement between the teukode and the 2.5PN formula. One can make

several observations for the four investigated modes at 7 = 20 and 7 = 5,

(i) in most cases, for o < 0 the fluxes are stronger than at ¢ = 0; for ¢ > 0 they are
weaker than at o = 0; exceptions are the 32- and 21-mode at 7 = 20,
(ii) in most cases, the fluxes are monotonic in o; exceptions are the 32- and 21-mode at
7 =5,
(iii) for the 22- and the 33-mode the dependence on ¢ is roughly the same at # = 20 and

7 = 5, whereas for the 32- and 21-mode the behaviour changes drastically,
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Figure 8.1: Convergence of numerics against analytics as © — 0. The plots show the multipolar energy
fluxes in the Y_999 (top), Y_ o901 (top middle), Y 533 (bottom middle), and Y_o35 (bottom) modes for a
spinning particle with o = —0.9 (left) and o = 0.9 (right) on circular, equatorial orbit on Schwarzschild.
The vertical line shows the LSO for o = 0.0. At # = 20 the agreement is at the order of ~ 1 — 5%, only
the 32-mode is farther off, ~ 15% for o = 0.9. The reason is, likely, that the PN-information in this mode
only reaches the next-to-leading order term.
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Figure 8.2: Multipolar energy fluxes in the Y_ 222 (top), Y_201 (top middle), Y 233 (bottom middle),

and Y_o35 (bottom) modes for a spinning particle on circular, equatorial orbit at # = 20 (left) and # =5
(right) on Schwarzschild. The horizontal dotted lines are the reference points for a non-spinning particle
from the frequency-domain data of Hughes [60]. Our o 0.0 data points were produced at higher
accuracy and, therefore, we see a small kink in the red lines.
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(iv) in the strong-field we observe non-linear dependence on ¢ in all four modes,
(v) in the weak-field we observe linear dependence on o in all four modes, and
(vi) for the 21 and the 33 modes the PN-formulas capture the qualitative dependence

on o rather well even in the strong field

Going through the list of statements, we can draw some conclusions. In this context, one
often argues in terms of “couplings” between different angular momenta, which refers to
effects that disappear when either of them disappears; e.g., if a term in a PN-formula
contains a product o - @, it is counted as a spin(2)-spin(1) coupling. So, first, point (i)
must be attributed to the spin(2)-orbit coupling because on Schwarzschild spin(1)-orbit
and spin(1)-spin(2) couplings are excluded. As a consequence of point (i), we expect slower
(faster) inspirals when the spin and the orbital momentum are (anti-)aligned. Intuitively,
this can be interpreted as “aligned moments repel” while “antialigned moments attract”
each other. This was found to be different for plunging orbits in the equatorial plane [185],
which supports the claim that the amount of radiation does not simply depend on o,
but, also, on the type of the trajectory. Observations (iv) and (v) must be interpreted as
reflections of the degree of non-linearity in the dynamics. The TKEQ-source term depends
only linearly on the spin; any non-linearity that we observe must reside intrinsically in
the dynamic quantities. Apparently, far away from the BH the dynamics do not sense the
O(S?) term introduced to the EOM by the TUL-SSC (cf. Eq. 2.9). This seems reasonable,
as the O(S?)-terms appear in combination with the curvature tensor, which vanishes as
7 — oo. Instead, in the strong-field its influence becomes significant for the dynamics and
thus we can observe a non-linear effect in the fluxes. Finally, point (vi) indicates that the
behaviour on ¢ can be captured rather well by the PN-formulas. This is very encouraging
because non-spinning PN-information are available up to 22-PN [175] on Schwarzschild
and 20-PN on Kerr [57]. Their inclusion could possibly suffice to remove the major part

of the offset between numerics and analytics.

Coming to the second reference [186], unfortunately, numerical values are not given ex-
plicitly, so we can only compare our data visually. Thus, we prefer to spare a detailed
discussion here. We only mention that we made the comparison for the example of the
22-energy-flux for a = 0 at the fixed radius 7 = 10. We found fluxes which disagree
qualitatively with the numerical results of [186]. At # = 10 we observe a rather linear de-
pendence of the fluxes on o, whereas [186] shows a quadratic dependence. The agreement
of our data with the 2.5PN prediction at that radius appeared, instead, very reasonable
(comparable to the results for # = 20), especially when sorting out the offset due to miss-
ing PN information for the non-spinning case at ¢ = 0.0. A similar confirmation was not
shown in [186], so there is some reason to trust our results over those of [186]. A detailed

analysis on the origin of the deviations with respect to [186] is left to the future.
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Conclusions and outlook

Conclusions

In this work we have presented a novel, numerical approach to compute gravitational
waves (GWs) from black hole (BH) binaries in the point-particle limit. The realisation of
this approach in the teukode has proved to be a useful test-suite, in which we can model

GWs from BH mergers at low cost, with high-accuracy and for nearly-extremal spins.

Our new approach relies on a reformulation of the Teukolsky-Equation (TKEQ) within
horizon-penetrating, hyperboloidal coordinates (HH-coordinates [20]). The approach is
in some aspects advantageous over the 20-years-old algorithm introduced by Krivan et
al. [80], even though the latter was improved over the years to be equally accurate and
efficient [75, 127]. Potential sources of error like unphysical numerical boundary condi-
tions and extrapolation to future null infinity are superseded due to the advantageous
coordinates. In the traditional approach, these problems can be resolved as well [127] by
attaching layers that connect a Boyer-Lindquist (BL) interior to the horizon and future
null infinity. The remaining limitations of the traditional scheme are the second-order con-
vergence inherited from the special Lax-Wendroff time-advancing algorithm and the use
of non-horizon penetrating coordinates, which prevents the extraction of horizon fluxes for
generic trajectories. Both problems are resolved in our scheme; it works with a standard

Runge-Kutta integrator of fourth order, and allows extraction of horizon fluxes.

Several obstacles had to be removed to enhance the approach, previously known only for
the homogeneous TKEQ (cf. [HO, H1|), to the point-particle setup. A major problem
was the artificial singularity of the TKEQ source term at the horizon, which we were
able to resolve by rederiving the TKE(Q in the Campanelli et al.-tetrad [99] instead of
the originally used Kinnersley-tetrad. A minor complication was the computation of the

dynamics of a point-particle in HH-coordinates.

Our implementation in the teukode was found to be numerically convergent with the

expected order, and could be validated against a number of results in the literature;
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among them, our previous spectral code for the homogeneous TKEQ [H1], a Regge-
Wheeler-Zerilli-code [132, 133], waveform characteristics from the prevailing Teukolsky-
solver 76, 135], and frequency domain Teukolsky data from [60], [156] and [87]. All these

tests were passed consistently, and, moreover, confirmed the efficiency of the approach.

After the validation of the teukode, we produced several new results. First, extending pre-
vious knowledge from Schwarzschild to Kerr, we studied the consistency of the commonly
used effective-one-body radiation reaction (RR) force. We found problematic inconsis-
tencies in the case of fast prograde spins a ~ +0.9; for retrograde spins @ < 0 we could
confirm the model. Another interesting new insight was the previously unnoticed im-
portance of the axisymmetric m = 0 modes in the merger waveforms of BH binaries in
the point-particle approximation for ¢ — —1. Here, m refers to the projection against
spin-weighted spherical harmonics Yy,,. Also, we performed the first, to the best of our
knowledge, s = +2 TKEQ simulations in the time domain for a point particle source
term. In analysing these runs, the horizon penetrating coordinates allowed us to apply
the time-domain formalism proposed by Poisson [149], and thus to measure energy fluxes
down the event horizon in realistic inspiral simulations. This, in turn, allowed to build a
fully self-consistent in the mass ratio x/M numerical RR by an iterative procedure. This
numerical RR does not suffer from the problems of the analytic RR for fast prograde
spins, and even includes the effects of horizon fluxes. In a subsequent study we revisited
the computation of BH recoil velocities in the particle limit and discovered an unexpected
growth of the anti-kick for @ — —1. Interestingly, a comparison with analytical considera-
tions on the fluxes revealed that the “quality-factor” of [173] actually predicts this result.
This finding motivates the application of the quality-factor also in comparable mass bi-
naries. Finally, we enhanced the applicability of our approach to consider the spin of the
small companion, which means we were dealing with spinning particles in GR. To our
knowledge, the teukode is the first successful time-domain Teukolsky solver that allows
to investigate the GWs from a spinning particle. In a study of circular equatorial orbits
we provided a first check of energy fluxes to infinity, and found discrepancies with the
only other published numerical study [186]. Our results are supported by approximative

Post-Newtonian results [56], and thus useful for further analyses.

Outlook

The point-particle laboratory which was established in this thesis provides several possi-

bilities for subsequent studies.

Without further development the teukode can be used in different directions. For instance,

more generic geodesic motions could be studied in detail. The preliminary tests for
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non-equatorial movement presented here (Sec. 5.2.2) seem to indicate the capability to
investigate inclined circular orbits. Also the investigation of inspiral motions that leave
the equatorial plane [187] seems within reach. Furthermore, one could consider eccentric
orbits, or even a combination, i.e. inclined eccentric orbits [60, 188, 189]. Possibly, one
could also revisit the interesting zoom-whirl orbits studied in [110, 190]. For sure, a focus
of future research should lay on scattering experiments with ultra-relativistic collisions
as performed in [156]. The preliminary tests shown here (Sec. 5.2.2) are promising, but
it is yet unclear whether the infall from “infinity” can be accurately approximated by
large-distance infalls in our hyperboloidal coordinates.

With respect to the inspiral simulations investigated here, there are two main perspectives
which call for immediate attention. On the one hand, one would like to find out whether
the available high order PN information for energy fluxes of a particle [57] can be used
to obtain an accurate model for the RR, also for @ — +1. For this one would just have
to perform standard resummation procedures (Sec. 2.2.3), create modified dynamics and
repeat our consistency analysis. Especially the interesting question whether the antikick
vanishes as @ — +1 can only be answered if the consistency is confirmed. On the other
hand, one would like to stretch the limits of the point-particle approximation and find
out how much information can actually be gained for the comparable mass case. Possibly,

extrapolation could even be quantitative as demonstrated in [191] for a = 0.0.

Of course, the most obvious prospect is the investigation of effects of the spin. The
implementation is completed and the first tests, shown in Sec. 8.2, are very promising. The
ultimate goal is to repeat the whole procedure of creating a RR, checking its consistency,
producing inspiral dynamics and corresponding merger waveforms, and, finally, to analyse
how the spin influences the waveforms. This would allow to break completely new grounds.
One could, e.g., investigate, for the first time, recoil velocities and the antikick from a

spinning particle.

Finally, once all the immediate applications are covered, one can think about other matter
perturbations like a ring of particles, or a disk of dust in the equatorial plane. Also,
further technical development could be useful. For example, a mesh refinement around
the particle could drastically alleviate the computational costs, or one could improve the

scaling on multiple processors to speed up the code.






APPENDIX A

Derivation of the Teukolsky
Equation

This Appendix shall convey a basic understanding of how the TKEQ (3.3) can be de-
rived. The discussion given below follows the reasoning in the original papers [17, 18],
and Sec.’s (8.4-8.5) from Alcubierre’s book [6] in the description of the tetrad calculus. The
main idea is the linearization and clever combination of certain Newman-Penrose equa-
tions. Details on the Newman-Penrose (NP) formalism, which leads to the mentioned
NP-equations, and the complete derivation of the TKEQ can be found in the original
works [63] and [18] respectively.

A.1 From metric to curvature perturbations

Let us forget for a moment that there exists such a thing as the TKEQ and start from
scratch. If we were given the task to linearize the Einstein Equations around the Kerr
solution, we would probably start by adding a small extra term to the Kerr metric

Guw = G+ € By (A.1)

with the assumption that € ~ 0, and then insert this to Eq.’s (1.1). Ditferentiating with
respect to € and setting € = 0 leads to equations linear in . Indeed, in the non-rotating
limit, this logic was followed by Regge-Wheeler [15] and Zerilli [16] to obtain their famous
Regge-Wheeler-Zerilli (RWZ) Equations, which describe the evolution of spin-weighted
spherical harmonic modes of linear perturbations about a non-rotating BH as a PDE in
two coordinates, the Schwarzschild-(¢, r) (cf., also, [146]). The same procedure would also
work for a rotating BH background (cf., e.g., [192]), but one expects much higher algebraic
complexity. Also, the transition from spherical symmetry to axi-symmetry would have
one believe that there remains no chance of separating the #-dependency to obtain sim-
pler equations. However, Teukolsky succeeded in finding completely separable equations
following a different route of attack based on the Bianchi-equations and tetrad calculus.

As Teukolsky vividly shared in his review on the Kerr metric [82], see Sec. 8 therein, he was

a second-year graduate student at Caltech at the time, and inspired by the works of his
local colleagues, like Price, Fackerell, Ipser, and Press, then likewise a graduate student at
Caltech. All of them had worked with a special tetrad calculus as introduced by Newman-

Penrose [63], later called the “NP-formalism”. Price employed the NP-formalism in a
simpler rederivation of the RWZ equations, which enabled his pioneering work on the late-
time decay of BH perturbations [167]. Fackerell and Ipser followed the NP-formalism in
their study of the Maxwell-Equations on a Kerr background [193]. Bardeen and Press had
derived decoupled equations for the Weyl scalars ¥y and W4 on Schwarzschild, extending
Price’s study [194]. As depicted by Teukolsky in [82], it was apparently no problem to

transfer Bardeen&Press’ result to Kerr. The struggle was to find the rescaling of the field
variable, Uy — W, such that the resulting explicit equation would actually allow, once the
variable W is mode decomposed, a separation of the four dimensional PDE; surprisingly,
not just into simpler PDEs but even into ordinary differential equations (ODEs).
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A.2 A tetrad basis

In GR a tetrad basis can be a very useful tool. It provides a basis which is freely speci-
fiable to the respective needs and independent of the chosen coordinates. This means,
in particular, that tetrad components of tensors are invariant under coordinate transfor-
mations, which gives rise to the name “tetrad scalars” for components of tensors in the
tetrad basis (we will come back to this feature in App. G.1).

A tetrad basis is defined as a set of four, linearly independent vectors {€,} that maintain

the same angles in a given metric at each point of spacetime. More precisely, the scalar
products of the tetrad vectors have to be constant

— — v !
€q " €y = 65 €y g/ﬂ/ =MNab (AZ)

where the indices a, b, c... run over the tetrad vectors, while u, v, ... run over the com-
ponents with respect to the coordinate basis, 1., is a matrix with everywhere constant
components, and the e/ are called “tetrad legs” The name 7,, already suggests that

the tetrad basis vectors are often chosen orthonormal so that one gets Minkowski form
Nay = diag(—1,1,1,1).

Having introduced a tetrad basis, all tensors can be projected onto that basis. For instance
the constant relations between the tetrad legs can be reformulated from a new perspective
to the demand that the metric in the tetrad basis reduce to the Minkowski metric

!
Jab = 65 Cé/ Guv = Nab - (A'3)

For us the Ricci rotation coefficients
Yabe = e'segvu(eb)u (A4)

are of special interest since the Riemann tensor can be written as a combination of Ricci
rotation coefficients and their directional derivatives along the tetrad legs (cf. Eq. (2.6)
in [63]). The knowledge of all Ricci rotation coefficients and derivatives thus encodes the
information on the geometry.

A.3 Newman-Penrose spin coefficient formalism

The Newman-Penrose (NP) formalism is a tetrad approach to GR, which is especially
useful in the study of gravitational radiation in asymptotically flat spacetimes. It relies on
a special “null-tetrad”, which is a tetrad in the sense described above, with the additional

feature that the four legs are null vectors, ||€,|| = 0. To construct four linearly independent
null vectors one needs to allow them to be complex. The legs of a null-tetrad are commonly
called {l, 7, m,m*}, with [, 7 being real, and m* being the complex conjugate of 7. These
null vectors can be constructed by superposition once one has found an orthonormal
tetrad, i.e. one that yields g,, in Minkowski form,

_dbtel A L did
V2 V2 V2 V2

In the null tetrad basis the orthonormality relations take the slightly different form

l#

0 -1 0 0
10 0 0
=10 0 0 +1 - (A.6)

0 0 +1 0
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Newman and Penrose used such a tetrad and spinor calculus to derive a set of equations,
later called “NP-equations”, which provide relations between the different Ricci rota-
tion coefficients, the “Weyl-scalars” (see below) and the “Ricci-scalars”, see Eq.’s (4.2a-r)
in [63]. These equations are the central ingredients to the derivation of the TKEQ. No-
tably, the NP-equations partly stem from the Bianchi-identities Rqgpys,,) = 0, which take
rather simple form when written in tetrad notation (cf., e.g., the first one of Eq/s (4.5)
in [63] with Eq. (2.2) in [18]). These differential relations for the Riemann tensor, i.e.

in vacuum equivalently for the Weyl tensor, can be interpreted as containing the propa-
gation equation of GWs. The considered fields are the five complex-valued Weyl-scalars
Vo, Uy, Wy, Uy, W,. As suggested from the name, these scalars are built from contractions
of the Weyl tensor with the tetrad legs. The two most important ones are

W = Conoz = Cagyu 1% m” 1# m” ; (A.7)
Uy = Ciz13 = Cogp n®m* P n# m*” : (A.8)

and the remaining ¥y = Cyio3, Vo = Cooz1, Y3 = Cphiz1. Any other contraction of the
Weyl tensor with the tetrad legs vanishes or can be expressed from these five contractions,
which, therefore, represent all 10 independent components of the Weyl tensor. Loosely
speaking, one may think of W, and ¥, as representing ingoing and outgoing radiation
respectively, with the other scalars vanishing for a suitable choice of the tetrad basis. In
the weak fleld limit, » — oo, the GW metric perturbations h,, satisfy the Einstein Eq.s

linearized about flat space time. In this region the linearized Riemann tensor coincides
with the Weyl tensor and there we get a direct relation between h,,, and the Weyl scalars.

In the transverse-traceless gauge with the usual labels i, and h, for the two independent
components one gets

t t/ 1m0
h:h+—z’hX:2/ / v di'dl (A.9)

see Sec/s (1.14) and (8.9) in [6] for more details.

As mentioned above tetrad scalars like the Weyl scalars are invariant under coordinate
transformations. Nevertheless, they are, of course, dependent on the choice of the null
tetrad or equivalently on the choice of the orthonormal tetrad used for its construction. In

fact, the orthonormality relations (A.6) are preserved under spatial rotations and Lorentz-

boosts of the orthonormal tetrad. This corresponds to six degrees of freedom, which are
usually wrapped into two complex parameters, d and e and two real parameters, A and ©.
The transformations are often sorted into three classes of “null rotations”, see Sec. 8.5.2

in [6] or Appendix A of [18]. It is useful to note that these null rotations can be exploited

in order to make one or more Weyl scalars vanish. The transformation behaviour of
the Weyl scalars also leads to the Petrov-classification of spacetimes. The fact that in
this classification both Schwarzschild and Kerr are of the same “type D” was a major
motivation for Teukolsky to believe in the possibility of transferring Bardeen&Press’s
result of decoupled equations for Wy and W4 from Schwarzschild to Kerr, see Sec. 8 in [82].

Here we mention only one of the three null rotations, namely the one of class three,
= A ot AT e mf =l m , (A.10)
which is used to define the “conformal weight” and the “spin-weight” of a NP-tetrad-

scalar. A tetrad scalar Z that transforms like Z — A°e’*©Z under a transformation
(A.10) is ascribed the conformal weight ¢ and the spin-weight s, see, e.g., Sec. 3.3 in [145].

As can be easily checked for the two interesting Weyl scalars we have
\I/() — A2 621@ \I/() s \114 — A_2 6_2i@ \114 , (All)

which means W, is of spin-weight s = —2, while ¥, of spin-weight s = +2. Note that
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such a transformation is needed in our approach to the TKEQ for obtaining fields that
are regular on the horizon and future null infinity (cf. Ch. 4).

Before proceeding, let us introduce some naming conventions of the NP-formalism, as
they were also adopted by Teukolsky. Directional derivatives along tetrad legs get their
own names

D =1"9,, A=n"0,, b =m'o, , 0" =m*o

o

(A.12)

see Eq.s (2.12) in [63]. Note that we use A for what was called A by NP because we use

A =712 —2Mr+r? In addition, we use the asterisk for complex conjugation instead of
an overbar. Furthermore, the Ricci-rotation coefficients are called “spin coefficients” in
the context of a null tetrad and they get their own names,

K= 7200 , T = 7201 , 0 = 7202, P = 7203, (A-13)
T = =310 , V= =311 poi= Y312 , A= =313,
7100 — 7320 o1 — Y321 5= Y102 — V322 7103 — 7323
= = = =

These 12 complex quantities describe the 24 independent components of 4. (the anti-
symmetry of the first two indices reduces the independent components to 6 - 4 = 24).

A.4 Tetrad perturbations

In order to find his famous equations, Teukolsky essentially linearised certain NP equa-
tions. These equations deal with tetrad-scalars and it is somewhat natural to deviate
from the intuitive linearisation procedure of Eq. (A.1). Instead, consider a perturbed
tetrad-scalar U = U4 + WB where the perturbation is labelled with the superscript B
and the unperturbed quantity with the superscript A. Intuitively one assigns the pertur-
bation to the field that the tetrad scalar is built of. However, such a perturbation can
be equivalently obtained when the unperturbed field is expressed in a perturbed tetrad
basis. Such perturbed tetrad basis can be the result of perturbations of the metric g,

that was used to define the tetrad in Eq. (A.2). Then the tetrad can be decomposed into
[=14+18, fg=i*+ia?, m=m+m?, (A.14)

with, for example, A being the fixed tetrad leg and B a small perturbation to it that
accounts for dynamical changes of the metric. From this point of view a perturbation of a
field ¥ = U4 4+ UP is explained as a perturbation of the underlying tetrad, which directly
leads to perturbations in all tetrad related quantities like the Ricci-rotation-coefficients
of Eq’s (A.4) and in tetrad related equations like the NP-equations. In the context of
the (gravitational) TKEQ, the perturbed field ¥ is a Weyl scalar and, therefore, one
also speaks of “curvature perturbations” in contrast to metric perturbations. Notably, it
seems a non-trivial and not fully solved problem to reconstruct tﬁe full metric perturbation

(needed in the Lorenz-gauge for the self-force problem) from the curvature perturbations
that are attained by solving the TKEQ), see Sec. 8.4 in [82].

A.5 Decoupled gravitational perturbation equations

Having introduced the idea of tetrad perturbations, all concepts for the derivation of
decoupled gravitational perturbation equations are at hand. In essence, the procedure can
be described as a clever superposition of certain NP-equations that are linearized in terms
of a tetrad perturbation, plus an advantageous choice of the underlying null-tetrad, which

leads to the vanishing of many NP quantities; more precisely, ¥4 = U4 = gl = U4t =0
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and k4 = 04 = 4 = M =01 To get an impression of the NP-equations let us display
explicitly one of them used by Teukolsky

(0" —da+m)Vo—(D—4p—2¢)¥; —3K T,
:(5 —|—7'('>|< — 20" — 25)@00 — (D —2€— Qp*)q)()l + 20’@01 — 2/{@11 — K" CI)(]Q s (A15)

where the ®,, are contractions of the Ricci tensor with the tetrad legs, see Eq.’s (4.3) in
[63]. They are intentionally on the right-hand-side of the equation because by virtue of
the Einstein field equations they represent the matter terms; e.g., ®g9 = —% Ry, MY =
Ar Ty, M1V = 47Ty .

Inserting the decompositions of the fields ¥ = W4 + WB and accordingly the Ricci-
contractions ® = ®4 + &% and all the NP-operators like o = 04 +¢®, into three such NP-
equations like Eq. (A.15) yields a system of equations, which can be linearised in order to
get equations for the perturbations W”. The particular case shown by Teukolsky in more
detail in [18] is UZ = U and we will follow the derivation for this case. First, note that the
@4 vanish identically due to the demand that we consider a vacuum background metric.
Second, the background spin coefficients, like, e.g., o, can simply be computed given the
background metric. Following Sec. II of [18], the only obstacles in obtaining the desired
equation for UZ are a few remaining NP-operator perturbations, like, e.g., 0¥, and a few
appearances of the U2 field. By a clever combination of further NP-equations Teukolsky
was able to eliminate W%, and to replace the remaining NP-operator perturbations in
favour of W5'WH. The final result, Eq. (2.12) in [18], omitting the superscript A on all the
background quantities, reads

[(D=3e+e —4dp—p")(A—4y+p)
—(+ 7 —a* =3B —47)(0" + 7 —4a) -3, U} =47Ty. (A.16)

Here, Ty means the perturbation T;Z but, because T3 = 0, the distinction is not necessary.
The source term T contains all the matter contributions, and reads

To=(0+7"—a" =3 —47)[(D—2€—2p") T}, — (6 + 7" — 2" — 2 3) Ty

+(D—=3e+e" —4dp—p)[(0+27" —=208)T1 — (D —2€+2€ — p*) Ty .
(A.17)

The corresponding decoupled equation for U2 is found by exploiting the fact that the NP-
equations are invariant under the change [ <— 77, m <— m™*. Consequently, Eq. (A.16)
holds under the interchange of tetrad legs and we obtain the equation for % as a corollary

[(A+3y =" +4p+p)(D+4e—p)
—(F =T B+ 3a+4Am)(6—T+4B) =3V, U =47 Ty (A.18)

with the source term

Ty=(A+3y—~"+4p+ p*)[(6" — 27" + 20) T — (A + 2y — 29" + ") Tpemr]
+(0* — 7"+ B+ 3a+47) [(A + 2y + 20" ) Ty — (6 — 75+ 28% + 2) T}, .
(A.19)

We are mainly interested in gravitational perturbations here, but the discussion is similar for elec-
tromagnetic perturbations. In that case one considers the Maxwell-equations on the Kerr background
written in terms of NP quantities, see Eq’s (3.1-3.4) in [18].
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Since in the final result, Eq.s (A.16)&A.18), the only remaining non-matter perturbation
quantities are the fields % and WP, the superscript B is usually dropped as well. The
decoupled equations for ¥y and Wy (A.16-A.19) hold for any vacuum, Petrov-type-D
background metric. In particular for a Schwarzschild background they reduce to the
Bardeen-Press equations [194]. It is interesting to read in [82] how Teukolsky derived these
decoupled equations in “a few hours” after he was told by Press that Bardeen&Press had
succeeded in obtaining such decoupled equations for Schwarzschild. The trouble was that
the above equations did not allow, once specified to the Kerr spacetime and written out
explicitly using the Kinnersley null tetrad in BL coordinates (cf. Eq. (3.2)), a separation
of variables, as Teukolsky had hoped for [82]. It took several months until he realised that,
instead of Wy, the quantity p~* W% leads to the celebrated separable equations. In Sec. 3
we quoted the explicit TKEQ, Eq. (3.3). Deriving the gravitational parts of Eq. (3.3)
from Eq’s (A.16)-(A.19) is just a matter of computing the respective spin coefficients
Eq’s (A.13), and the directional derivatives Eq.s (A.12). One only has to mind to consider
suitably rescaled variables as listed in Table 1 of [18].

As a side note, it is interesting to mention that our approach in Ch. 4 actually starts
from the Eq’s (A.16)-(A.19) above. In fact, for our purpose of a time-domain solution
the effort of finding separable equations, which seem to be the most celebrated result of
the 1973 Teukolsky paper, would (likely) not have been necessary. In our approach we
do not exploit the full separability to ODEs. The decoupled equations given above are
enough in the sense that they can simply be written out explicitly for Kerr spacetime and
solved numerically in 341 form, or in 241 form exploiting the trivial decomposition in
azimuthal direction, possible in suitable coordinates. In Ch. 4 we have started from the
decoupled equations (A.16-A.19) and chosen a different tetrad and different coordinates to
derive an advantageous reformulation. Nevertheless, note that in order to start from the
same explicit equation as usual, we have followed Teukolsky to rescale the field according
to p~* WP on top of additional rescalings needed in our approach. Therefore, we cannot

exclude that dropping the rescaling needed for separability might lead to unexpected
numerical side eftects.



APPENDIX B

Hyperboloidal compactification
technique

The first part of this Appendix, Sec. B.1, provides the basic ideas on the topic of hy-
perboloidal foliations of spacetimes, i.e. the representation of the spacetime as a set of
hypersurfaces with the defining properties to be spacelike everywhere, but to still extend

through future null infinity 7. Two specific hyperboloidal foliations shall be introduced,
the HH-coordinates in Sec. B.2, and the RT-coordinates in Sec. B.3. Finally, Sec. B.4 dis-
cusses briefly why we pick HH-coordinates as our standard choice. To avoid confusion with
other parts of this thesis, we mention that in this Appendix the symbol S is used to de-
note the flexible coordinate value of future null infinity in HH-coordinates. In general, we
loosely follow Sec. 2.9 of [195], and a series of works of Zenginoglu [121, 123, 124, 126, 196],
which are recommended for a rigorous introduction to the topic, and for further references
to pioneering works of, e.g., Penrose [197, 198], Friedrich [199, 200], Frauendiener [201],
and Moncrief [202].

Hyperboloidal foliations are relevant for their conceptual strength to allow a clean ex-
traction of radiation information. Conventional 3+1-foliations have to extrapolate the
signal to future null infinity because the radiation signal measured there is expected to
be the best approximation for observers at large distances from the astrophysical sources?
(see Sec. 4.1.2 in [122] and end of Sec. 5 in [203]). Such a foliation implies automatically
beneficial effects on the issue of boundary treatment in computational simulations of un-
bounded domains [126]. This conceptual elegance makes hyperboloidal foliations a very
promising strategy also for full numerical relativity simulations. This thesis deals only
with BH perturbation theory and the below discussion is conducted with respect to this
special application. Nonetheless, the successful application of hyperboloidal compacti-
fication observed here can certainly reinforce the motivation of studying the concept of

hyperboloidal foliations in the context of the full Einstein Equations (see, e.g., [204, 205]).

B.1 1Ideas of hyperboloidal foliations

In order to understand the ideas of constructing hyperboloidal coordinates let us con-
sider one-dimensional flat spacetime in standard coordinates (t,z) with metric 1, =
diag(—1,1). In the search for foliations adapted to radiation extraction the most intuitive
approach considers null rays. Outgoing gravitational radiation (travelling at the speed of
light ¢ = 1) will traverse ¢t = 4+ + const. lines, while ingoing radiation ¢ = —x + const.
lines, both of which are “null”. Visualising these as 45° lines in a (¢,x) diagram one can
easily imagine that the translation of either of these lines foliates the spacetime just as well

as the conventional t = const. foliation. This is basically the idea of the “characteristic
approach”. It turns out that in practice such foliation is prone to the formation of caustics

in regions of strong gravitational fields (see Sec. 2.9 in [195] and [121]). This drawback
leads to the idea of slices that are spacelike everywhere, i.e. not suffering from caustics,
but still asymptotically reach J*. They are called “hyperboloidal slices”. In the picture

Note that the signal itself will obviously have died out at infinity, but assuming a certain fall-off
behaviour like r~! one can consider the suitably rescaled signal, see below in this section for our rescaling
of the field variables.
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of the (¢,z) diagram such slices are nothing else but the well-known t(z) = £vk? + 22
hyperbolae for some constant k£ > 0, which flatten in the limit of £ < z to the light cone.
Again the translation along t of these hyperbolae provides a slicing of flat spacetime of
the form 7(t,z) = £v/k?> + 22 +t. A nice visualisation of such hyperboloidal slicing for a
non-trivial BH spacetime can, e.g., be found in Fig. 1 of [196].

Hyperboloidal slices reach out to J, but in order to exploit this fact a further step is
needed. A spatial compactification must pull J+ to a finite coordinate value that can
be part of a computational domain. It is advantageous to make the spatial coordinate
value of J7* independent of the time function so that it is constantly represented by
the same grid point in a numerical evolution [121]. Altogether, the procedure is called
“hyperboloidal compactification”. One should be aware of the positive effect of a hyper-
boloidal time coordinate on the “compactification problem”, which would be entailed in a
purely spatial compactification [126]. Imagine a wave travelling towards J+ (hyperbolic

equations typically feature wavelike solutions ~ ¢!(**=%Y)). There will be infinitely many

oscillations on the way. A rash spatial compactification will, therefore, squeeze infinitely
many oscillations into a finite coordinate domain, which can obviously not be resolved

(see Fig. 2 in [126] for a nice visualisation). This problem is surmounted by a suitable
transformation of the time coordinate, as a matter of fact, a hyperboloidal foliation. As
explained in [206], the “bending up” of the slices is necessary to guarantee also in the
asymptotic region a finite outgoing radial coordinate light speed, which allows to resolve
the outgoing radiation.

Consider now the Kerr spacetime in standard BL-coordinates (¢,7,6,¢). In general

Zenginoglu summarises the hyperboloidal compactification technique (see Eq.’s (12) of [126])
as

T(t,r)=t—"h(r) , r=—— : (B.1)

where h is called the height function and €2 the conformal factor. The zero set of
determines the coordinate value of p corresponding to spatial infinity, with the demand

that Q # 0 elsewhere. One requires that |[£h(r)| < 1 (for ¢ = 1) and dipo\Q(p):O # 0.

Usually € is chosen such that J* is at the fixed coordinate position p = S by simply
setting Q = 1 — p/S. Here S is freely specifiable, except S > p(ry), but the choice
affects the numerical features of the foliation (the name S is used because J+ is often
called “scri”). The attribution of the label “conformal factor” to € can be understood
by inspecting the metric in the compactified coordinates. There will be singularities at
(2 = 0 corresponding to » — oo, which require a conformal transformation of the physical
metric §,, = Q7 %g,, for regularity at scri. The height function becomes more intuitive
when the foliation is examined in a conformal Penrose diagram, where it literally governs
the offset of the hyperboloidal 7 = const. slices from the original ¢ = const. ones. Note
that the above prescriptions (B.1) are not unique but likely the most simple ones. Note,

also, that the time transformation satisfies 0, = 0;. This means that if 0; was adapted to
the timelike Killing field of some stationary spacetime 0, remains so, and thus one avoids
to introduce time-dependence in the metric coefficients.

A main motivation for hyperboloidal foliations is the resolution of the outer boundary
problem, which refers to the spurious unphysical effects produced when employing stan-
dard outgoing boundary conditions called transparent or radiative (also absorbing or
nonreflecting). The possibility to include J* as the outer boundary in a computational
domain removes that problem because the coordinate light speed is by construction purely
outgoing at J*. Speaking more technically, any strongly hyperbolic system of equations
can be decomposed into advection like equations for the characteristic variables (see, e.g.,
Sec. 5.3 in [195]), and the therein appearing speeds of ingoing fields vanish at J+. This
means nothing physical will ever enter the computational domain from the outer boundary
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(in general, gauge effects could still be superluminal, and thus have non-zero coordinate
speeds with respect to a null coordinate system). This removes, in particular, the unphys-

ical numerical reflections which decrease the accuracy. This fact is visualised in Fig. B.2
of the next subsection for a special choice of such coordinates, the “HH-coordinates”.

B.2 “HH-coordinates”

After emphasising the motivation of hyperboloidal coordinates as an elegant way to han-
dle the outer boundary problem, one might wonder about the inner boundary problem.
Indeed, standard coordinates suffer from the same problem of unphysical numerical re-
flections at the inner boundary. It does not get as much attention because there is a
well-known and simple solution: horizon-penetrating coordinates. These can be viewed
as the counterpart to hyperboloidal coordinates. Since the inner region of the horizon is
causally disconnected from the outer region, the inclusion of the horizon to the covered
domain as the innermost grid point leads by construction to the suppression of outgoing
radiation at the inner boundary. Combining both coordinate transformations yields a grid
which constitutes a causally c osed domain. Thus, no spurious radiation can propagate
from the boundaries into the domain.

One such realisation is the “HH”-coordinate system (7, , 6, ¢) (HH for horizon-penetrating,
hyperboloidal), which was first introduced in [20], and adopted in this thesis and the
associated publications [H2, H3| as the standard choice for the algorithm. The horizon-
penetration is achieved by using the ingoing-Kerr (iK) coordinates

2M
di = dt + rdr, dg0:d<b+%dr (B.2)
d
& t—r+/a+r dr, tp:gb+a/zr. (B.3)

The level sets of the iK-slicing are visualised as dotted, green lines in the conformal
diagram Fig. B.1. For clarity let us point out a maybe obvious subtlety; namely, after the

transformation (B.2) a Fourier-decomposition of a field variable refers to ¢™#- instead of
e™?-modes (cf. Eq. (3.9)). Applying the transformations to the Kerr metric (3.1) results
in the line element

2M daM ~ 2Mr
dsiy = — (1 — Zr) dt* — aE " in? 6 di dy — 2asin® 6 (1 + T) drdp+ (B.4)
2M a’rsin® 6

AMr - 2Mr ‘ ‘
—|—Trdtdr—|—<1+ 5 >d + Ydo? + <r2—|—a2+ S

> sin® 0dp? |

where X = 72 + a? cos? 0 and A = r? + a* — 2Mr as defined after Eq. (3.1).

On top of these first transformations comes the hyperboloidal compactification. Follow-
ing the insights gained in [132], a favourable choice for the height function satisfies the
demand that the coordinate expression of the outgoing radial coordinate light speed be
asymptotically the same in the old as in the hyperboloidal coordinate system. Before
computing the outgoing characteristics, note that we can ignore angular dependencies
and set a = 0 since we are only interested in the asymptotic behaviour of the charac-

teristics. For the iK-system we then find j—f = =+ :*g% from ds* = 0 for radial null

curves. After integration this yields £ = r +4M In(r — 2M), which motivates the retarded
time u =t — (r +4M In(r — 2M)). We can drop the 2M subtraction in the logarithmic
term because, again, we are interested in an asymptotic condition. Denoting the new
coordinates by (7, p), we, therefore, demand

f—(r+4MInr) =7 — (p+4MInp) . (B.5)
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Figure B.1: Foliations of Schwarzschild spacetime (a = 0): ingoing Kerr (iK; green dotted; see Sec. B.2),
Récz—T6th (RT; blue dashed; see Sec. B.3), and horizon-penetrating-hyperboloidal (HH; red solid; see
Sec. B.2) coordinates with S = 10. Plot adopted from [H2].

Rearranging terms according to (B.1), we find the height function h(p). Imposing the
simplest choice for the compress function €2, we arrive at

h(p):é—p—élMan, Qp)=1-2 . (B.6)

. . . . 2q 321/ M2S4_42G4 .
The horizon in the new coordinates is located at p, = ¢ S “V(i 5 JEMJSWJrgZ 25" The resulting

foliation of Kerr spacetime for S = 10 is shown as solid red lines in Fig. B.1; together
with the iK-slices, and another hyperboloidal, horizon-penetrating foliation (labelled RT),
which is introduced in the next section. The conformal diagram shows that the foliation
is manifestly horizon-penetrating and smoothly reaches scri. In the following we denote
the choice of the flexible parameter S by an indexed suffix HHg. To get an idea of the
effect of S one can argue that it is inversely correlated with the mean curvature along the
slice [121]. Large S are therefore connected with small mean curvature, and vice versa.
Furthermore, vanishing mean curvature is asymptotically given on Cauchy surfaces while
infinite mean curvature is related to characteristic surfaces. In this picture large S are
pulling the hyperboloidal surfaces towards a more Cauchy-like behaviour, whereas small
S are pushing the surface to more characteristic-like behaviour. The behaviour of the
characteristics ¢4 for some choices of S (HH;,HHyo and HHyy) is illustrated in Fig. B.2. As
expected, the outgoing radial coordinate speeds c, vanish at the horizon and the ingoing
radial coordinate speeds c_ vanish at scri. This allows simulations without imposing any
boundary conditions and it is the reason for the excellent accuracy of the approach (prove
of which is given in Ch. 5). After several tests, as discussed in Sec. B.4, we made S = 10
our standard choice.

In practical applications it is useful to assign features of the waveforms to the responsible
event in the dynamics. The dynamics are computed within BL-coordinates and, hence,
the time parameter is associated to an observer at infinity. The waves at future null
infinity can be connected to this observer’s time by accounting for the required travel
time?, i.e. by applying a retarded time coordinate. GWs travel along null geodesics and
for our purpose it is enough to approximate them in Schwarzschild. Thus, we introduce

the tortoise coordinate r* = r +2M In (ﬁ — 1) , which allows to characterise radial null
curves by t = +r*. We can define retarded and advanced time coordinates by u =t — r,

and v =t +r,. Setting in the transformations to iK-f and the subsequent transformation

2Note that in the hyperboloidal coordinates a wave reaches scri in a finite coordinate time A7.
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Figure B.2: Visualisation of ingoing (c_, negative) and outgoing (cy, positive) radial coordinate light
speeds, when a = 0. On the left panel we use HH; (solid) and RT (dashed) coordinates (RT for Récz and
T6th [168], see Sec. B.3). On the right panel we use HHyg (solid) and HHyo (dashed) coordinates. The
incoming (with respect to the domain) characteristic speeds vanish at both boundaries (horizon and scri),
so no boundary conditions are needed. Note the radial domains are rescaled to [0, 1] for the comparison.
Plot adopted from [H2], credits are due to Dr. Zenginoglu.

to HH-coordinates we can compute the retarded time

U(T,p):T—p—4Mln(Sp+2M;_2MS)+2M1n2M, (B.7)
and the advanced time
S S —
o(rp) =7 +p S—tﬁ ~4Mn (Tp) oM In(2M) . (B.8)

The constant term 2M In 2M comes from our convention for the integration constant of
the tortoise coordinate. We use u(7,S) to visualise waveforms at scri and v(7,p,) at
the horizon. Then v = 0 and v = 0 correspond to the start of the dynamics, and one
does not have to align by hand waveforms and dynamical quantities (like, e.g., the orbital
frequency of the point-particle).

B.3 “RT-coordinates”

Another important hyperboloidal foliation was introduced already in 2011 by Récz and
Té6th [168], hereafter RT-coordinates, and used in a study of late-time tail decay rates
for the scalar wave equation on Kerr. We adopted these coordinates in our continuative
study of decay rates of gravitational and electromagnetic perturbations in [HO, H1]. In
this thesis only the results shown in Ch. 6 were obtained within the RT-coordinate system.

The RT-coordinates are very similar to Moncrief’s scri-fixing coordinates in Minkowski
spacetime (see slide 4 in [202], with k = 1, and [207, 208]), but with an additional loga-
rithmic term, necessary to satisfy the asymptotic properties presented in [121]. As done
for the HH-coordinates, one starts with a transformation to iK-coordinates to obtain
horizon-penetrating coordinates. Subsequently, one adds a hyperboloidal compactifica-
tion. Denoting the time and space RT-coordinates by {7, R}, the height function and the
conformal factor are given by

1R
20

1-R
=,

h(R) —4MIn2Q,  QR) (B.9)
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which results in the explicit transformations

1+ R? 2R

f:T—4M1n(1—RQ)+1_—R2, P

(B.10)

Note that the height function blows up at infinity, where the conformal factor van-
ishes in a suitable way. The first term in the height function is the same term as in
Minkowski spacetime; the second term is needed due to the presence of the BH. The
resulting hyperboloidal foliation of Kerr spacetime is horizon penetrating and smoothly
reaches scri at R = 1. The event horizon R, in the new radial coordinate R is located at
n.— 20/ 2MV/MZ—aZ— a2 +2M241-2
+ 2(VM2Z—aZ+ M)
in a conformal diagram for the non-rotating a = 0 case (blue lines). The characteristics
c+ vanish at scri and the horizon respectively and are similar to the HH; characteristics as
displayed in Fig. B.2. Note that RT-coordinates can also be modified to allow a prescribed
scri position [H1], but this choice does not seem to affect the numerical properties.

. Figure B.1 shows the time surfaces of the RT coordinates

B.4 Numerical comparison: “RT” vs. “HH”

Let us conclude with a comparison of RT- and HH-coordinates with respect to their
numerical efficiency in solving the TKEQ. Both of the coordinate systems have the desired

properties of hyperboloidal coordinates, i.e. (i) no boundary conditions are needed, and
(ii) no extrapolation is needed for clean wave extractions at the horizon and scri. Still, in a
numerical implementation there can be differences in stability and efficiency. In particular
the flexible parameter S in the HH-coordinates affects the numerical properties and can
be fine-tuned towards maximal efficiency.

We compared RT-coordinates with HHg coordinates for S = 1,10,20 for a = 0. RT
and HH; coordinates behave very similarly numerically, which can be expected from the
similarity of the coordinate speeds shown in the left panel of Fig. B.2. Increasing S
allows to use larger time stepping and, thereby, increases the efficiency. But the number
of waves that have to be resolved on the spatial grid becomes larger as well (remember
that large S means slices that are more Cauchy-like). For too large S this blue-shifting
of the wave (cf. Fig.2 of [126]) leads to wavelengths which cannot be resolved anymore
near the compactification boundary. In practice, one has to find a good balance between
the resolution at this boundary and the time stepping, which is restricted by a Courant-
Friedrichs-Lewy condition, and, therefore, depends on the characteristic speeds. From
our numerical experiments we found that S = 10 allows a doubling of the time stepping,
compared with S =1 and RT-coordinates, without any sign of instability. Values of S >
20 can, in principle, be even faster, but requlre artificial dissipation to guarantee stable
snnulatlons which reduces the accuracy and, moreover, slows down the code again. The
effect is not yet understood at a quantitative level in terms of a physical argumentation,
but it is certainly related to the connection between S, the mean extrinsic curvature and
the characteristic speeds. Therefore, we just settle for S = 10 as our standard choice
motivated from its performance in the numerical experiments.



APPENDIX C

Explicit coefficients of the TKEQ in
HH-coordinates

For completeness, this Appendix provides the explicit expressions for the coefficients of
Eq. (4.3) in HH-coordinates (see [H1] for RT-coordinates). Remember that Eq. (4.3) is
the 241 reduced form of the full equation, i.e. ¢ derivatives have been processed to im
factors. We separate real and imaginary part for the complex-valued coefficients. Denoting
the mass of the central BH M, its specific angular momentum a, the spin-weight of the
considered field s, the coordinate location of scri in the HH-coordinates S, and the radial
coordinate p, the coefficients read

2 2Q2 4 2
R(Co) = — apZS apS —2a® +m?S% csc? () + 2msS? cot(6) csc(0)
2M 5S> 2M S?
+ 255 ones + B oS+ s252 cot?(8) — 552, (C.1)
2amS(S —
7(Cy) = 2B 0) (©2)

P
R(Cr) = fp; {a> (2M(p+25)(p — )% + p (p* + 5° = 2p%5))

+pS (AM*(p— S)(p+sS+S) + M (2p° — (s + 1)5° + 2psS® + p*(s — 1)S) + pS(p— S)(p+59)) } ,

(C.3)
Z(C) = 2a (s5% cos(0) — m(4M (p — S) + p(p — 25))) , (C4
R(C,) = 22 =5) (@®(p+8)(p - 5)* + pS(ﬂ[')fég —S)@0+55+5) + S0 +55)) (5)
Z(C,) = —2am(p — 5)?, (C.6)
Cy = —S%cot(9) , (C.7)
Crr = —% {(4M(p—S) + p* — 5% = 2pS) -
(a*(p— S)(4M +p— S) + pS (8M* + 2M(p+ S) + pS)) + a*S*sin*(0) } , (C.8)
= (p—9)? (a*(p-5)? 4;205(2M(p —S) +p85)) 7 (C.9)
Cop = —5%, (C.10)
o __2(a%(p = 5)*(4M(p - 5) + plp — 25)) + pS (BM?(p — 5)* + 2M (p — 5)*(p + 5) + p*S(p — 25)))
TP — S2 '

(C.11)



APPENDIX D

Review: GWs from spinning
particles

In this Appendix we provide a short literature review on GWs produced with the TKEQ
from spinning particle matter perturbations. The TKEQ is the standard tool to compute
the GWs of binaries in the point-particle limit when the spin of the central object needs to
be taken into account (cf. Ch. 3). The spin of the test-particle, however, is usually ignored
by virtue of the argument that the body be too small to have measurable spin [19]. The-
oretical considerations exclude large values of the spin in astrophysical configurations (cf.
[40]); more precisely, S/(uM) ~ O(1) is unphysical if y < M. But, the spin of the parti-
cle might become more important if (i) the mass ratio is mildly extreme, O(107%) [183],
or (ii) one considers secular evolutions [30]. In addition, investigations of spin effects are
of theoretical interest and conclusions for comparable mass binaries can be drawn at least
qualitatively. Therefore, it is highly desirable to have a GW algorithm which accounts for
both the central object’s and the particle’s spins.

The literature on GWs from a SP orbiting about a Kerr background is far less extensive
than that on the dynamics. Basically, there is only a hand full of studies to be used as a

guide line [184, 185, 56, 186]. In order to not repeat recurrent discussions let us summarize
what all of them bear in common, (i) the direction of the spin vector is limited to be
parallel or anti-parallel to the rotation axis of the central Kerr BH, which is necessary for
particular motions like equatorial orbits or radial plunges as investigated in these works,
(ii) the MPEQs (2.6) are closed with the TUL-SSC, and simplified for the restricted class
of orbits, (iii) theoretically too high spin magnitudes S/(uM) ~ O(1) are considered, and
(iv) the obtained dynamics are used to build the source term for the s = —2 TKEQ); the
TKEQ is transformed to the Sasaki-Nakamura Equation and the GWs are computed in
the frequency domain (cf. Sec. 3.2).

Let us now have a more detailed look at the respective results. The first study of Mino
et al. [184] dates in 1995 and considers radial infalls along the z-axis with the spin-vector
parallel to the z-axis. The main result is that the energy fluxes can significantly depend
on the spin-magnitude and its direction. For large aligned, with respect to the spin of
the central BH, spins the flux is comparable to the nonspinning case, whereas for large
anti-aligned spins the flux is larger by a factor three. The authors also point out that the
changes in the GWs of a SP compared to those of a nonspinning particle originate from

two effects, (i) the different dynamics due to spin(1)-spin(2) and spin(2)-orbit interactions,
and (ii) the appearance of spin dependent terms in the source term of the TKEQ. They
find out that the second effect is the dominant one. Chronologically next is the analytic
study of circular equatorial orbits due to Tanaka et al. [56] in 1996. The authors compute,

within the PN framework, the energy fluxes to infinity and their projections, therein 7,

on spin-weighted spheroidal harmonics up to 5PN. The PN parameter v is chosen as
v? := M /ry, i.e. it is not the orbital velocity unless a = S = 0. The results for 7, are
our target solution; for large orbital radii our numerical solutions should reproduce the

PN formulas. In addition, the authors estimate the RR from the found fluxes, and show
an interesting plot on the position of the ISCO depending on a and S (see, also, [209] for
a study of the ISCO for SPs). Next comes the work of Saijo et al. [185] in 1998, which
complements reference [184], in the sense that here radial infalls in the x-y-plane are
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considered. Throughout the study, the conserved total energy of the particle is restricted
to E = p (cf. Eq. (2.7)). Orbits are parameterised by the “orbital angular momentum”,
which they define as the conserved total angular momentum (z-component only, as usual)
minus the spin L, = J, — S. As mentioned by Semerak et al. [30] (cf. discussion after
Eq. (34) therein), for some trajectories obtained within the MPEQs and the TUL-SSC the
tangent stops being timelike. This failure is interpreted as an indication of the insufficiency
of the pole-dipole approximation, and of the MPEQs, for too large spins or/and for too
inhomogeneous gravitational fields. Saijo et al. mention the same problem; especially
for S/(uM) ~ O(1), the region of L, which results in reasonable trajectories is highly
restricted (cf. Fig. 2 in [185]). The main results of the paper are imparted in plots, among
these, e.g., (i) the total radiated energy versus L, for spin(1) values a € {0,0.3,0.6,0.9}
and spin(2) magnitudes in S/(uM) € {—0.9,0.0,0.9}, (ii) energy spectra for different
combinations of a, S at fixed L,, and (iii) the gravitational strain h, and h, for different
L, and S at fixed @ = 0.6. Contrarily to infalls along the z-axis [184], for infalls in the
equatorial plane, parallel spins (a .S > 0) are found to enhance the energy fluxes compared
with the nonspinning case; anti-aligned spins (a .S < 0), instead, decrease the fluxes (see
Fig. 3 in [185]). Note that a is chosen strictly positive, with the sign of L. defining
the sense of the orbit (instead in this thesis we allow a < 0 with L, always positive).
Furthermore, the gravitational fluxes are found to become maximal when spin(1), spin(2)
and the orbital angular momentum are aligned. In 2010, almost 15 years later, the recent
study of Wen-Biao Han appears [186]. Therein fluxes from a SP in circular, equatorial
orbits are computed, but differently from [56] the GWs are found numerically. The main
results are three plots for energy fluxes to infinity and down the horizon for a = £0.996, 0
at r = 10M. In principle, these plots should be as well target solutions for our work.
But, as mentioned in Ch. 8, our results disagree significantly. While the origin of the
discrepancies is not entirely clear, one may notice that reference [186] only cross-checks
the results against PN solutions for S = 0.
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Other spin supplementary conditions

In Sec. 2.1.3 we have introduced the TUL-SSC as our choice for fixing the notion of spin.
Since it is useful to know a few other important SSCs, this Appendix shall quote a few
relevant possibilites. Following the notation of Sec. 2.1 a dot denotes v*V,,.

First, there is the Pirani SSC (in [32] called “Frenkel” [27] respectively) condition [210]

v, S" =0 , (E.1)
which, following [23], was also used in the early works [27, 28, 29]. This SSC features the
strict conservation of m = —p,v" and allows the definition of the spin-vector

w1 o IS E
st = 3 € Uy Spe (E.2)

with a conserved spin measure 25?% = 2 s#s, = S##S,,,. Condition (E.1) does not constrain
a unique relation between the tangent and the specific linear momentum and the spin-
tensor. While a unique relation can be found for o* [31], one is left with the freedom
of the initial values for v!', and the choice obviously influences the obtained dynamics.
In particular, if vf is not chosen parallel to p* with respect to the initial choice for
the reference point, one will observe helical motion! of the reference point on top of
the overall motion [31]. As already argued by Tulczyjew [34, 38|, restricting to linear
in spin considerations allows to spare the quadratic term in Eq. (2.9). In that case,
typically seen in PN-expansions [153, 211], the Pirani- and the TUL-SSC are equivalent,
and v*V,S" = 0.

For completeness, three other useful SSC are mentioned here. First, there is the coordinate
dependent SSC suggested by Corinaldesi and Papapetrou [212], S% = 0. This SSC might
be applicable if one has some preferred coordinate system like the one adapted to a fixed
BH background. The COM which serves as the reference point for the worldline could
then be the one measured in the background coordinates, i.e. in the rest frame of the
source of the gravitational field. This choice results in a unique relation for v*, p*, S
and, consequently, in a unique worldline [31]. Second, there is the generalized Newton-
Wigner [213] SSC as introduced by [214]. The condition chooses the four velocity with

respect to which the spin shall vanish as the sum of the specific linear momentum and a
timelike tetrad leg. It allows the construction of a Hamiltonian with variables which are

canonical at linear order in the particle’s spin [214]. Finally, there is the recent Kyrian-
Semerak SSC [31], which demands only w* = 0, and w,w" = —1, without specifying w,
further. This SSC leads to a particularly simple form of the evolution equations because
it implies m = p and u* = v*. Consequently, the MPEQs simplify to S*” = 0. In this
casei the v&lforldline is, obviously, not unique unless w!' is specified, respecting w# = 0 and
wpwt = —1.

!Note that [48] explains such helical motions as pure gauge effects without physical influence on the
overall motion. Therefore, such motion is viewed as an equally valid description of the same motion, only
a more complicated one.
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Algorithm to compute the S/,

It can be useful to compute the S% functions defined by Eq. (3.6), even when not working

in the frequency-domain. For circular equatorial orbits, for example, the solution consists
of a single frequency w; thus, aw is fixed and we have a unique set of basis functions S, .

The S, can be used, (i) as a projection basis in order to compare against frequency
domain results employing that basis, and (ii) to exploit the “Starobinsky-Teukolsky”
identities, saving computation time (cf. Sec. 4.2.1).

A nice algorithm to compute the Sy, is presented in App. A.1 of [60] (cf. also [55]). The
idea is to expand the S, (0, ¢) in terms of the well-known Yis, (6, ¢); more precisely,
noting the same etme terms,

Seim(®) = D2 b5 Yyym(0) (F.1)

J=lmin

where Y (0, 9) = ffsjm(e) e™? and {,,;, = max(|m|,|s|). It remains to compute the
expansion coefficients b7 for a given aw up to sufficiently large j. A way to get some
equation determining these coefficients is to, (i) insert the expansion Eq. (F.1) into the
definition equation (3.6), (ii) note that the Y;,, satisfy the equation for aw = 0, and (iii)
finally, to integrate the remaining pieces against ~s>;m. The appearing integrals can be
expressed in terms of Clebsch-Gordan coefficients. Their properties are known and reveal
that the different integrals in the obtained sum are nonvanishing only for those Y;,, with
je{l—2,0—1,0,0+1,0+2}. For a given m this yields a relation between the coefficient b3*
and the five other coefficients b~ for j € {¢—2,£—1,¢,{+1,{+2}. Repeating this for all
¢, and collecting the equations as lines into a (infinite) matrix, one obtains an eigenvalue-
problem Mmgf,‘;’ =&, 53;" (see Eq. (A6) in [60]). Truncating at ¢ = (. restricts the
matrix to n x n with n = lyax — fmin + 1. One just has to solve this eigenproblem to get
as solutions the desired eigenvalues &,, and the coefficients-vector 5m Since the matrix is
band-diagonal with nonzeros only at {(i,i — 2), (¢, — 1), (¢,4), (¢,i+ 1), (¢,7 + 2) }, where
i €{1,..,n}, it is quickly solvable with standard methods.

Our implementation restricts to s = £2. We avoid the cumbersome development of a
Clebsch-Gordan calculator by employing mathematica for precomputing the matrix M,,
with /. = 20 and unspecified aw. Xt simulation time, when aw is known, we determine
the numerical values for M,,, and solve the eigenproblem by means of the gnu scientific
library <gsl_eigen.h> [215]. As a crosscheck, the results for the Sy, can be inserted back
in the definition equation, or compared to the polynomial fits given by Press&Teukolsky

in [64]. Tt is interesting to look at some example for the £’th eigenvector b3~ . For s = —2,
a =09 m =2 ro =4 and Q(a,ry) = 0.11236, e.g., we have aw = 0.202247. We
get Egg = (0.999273, —0.0381148, 0.00113455, —0.0000262984, 5.02749 - 1077, —8.11421 -
1072,1.13519 - 10719 ~ 0, ..) with eigenvalue E am(aw = 0.202247) = 5.43011086. This
indicates that, for some modes (but not all!), S_o, is dominated by Y_o, for most aw,
whereas the eigenvalue is rather different from the a = 0 value £_s22(aw = 0) = 6.



APPENDIX G

Further Comments

In this appendix two less important, though possibly useful, conclusions drawn in the
course of this thesis shall be mentioned. Both refer to the point particle treatment within
the TKEQ. The first comment, Sec. G.1, describes the possibility to perform the source
computation in BL-coordinates even when the HH-TKEQ is used (“mixed approach”).
The second comment, Sec. G.2, points out certain ambiguities in the calculation of a

distributional source. The content here could be thought of as continuing the discussions
of Sec. 4.3.

G.1 Coordinate invariance of the source

It seems useful to highlight the possibility of choosing other coordinates for the evolution
than for the source term computation. One may notice that the source term Ss is a
tetrad scalar and, therefore, theoretically invariant from the choice of coordinates. Yet,
in practice, it is clear that the coordinates are crucial; e.g., a source in BL-coordinates
cannot be regular at the horizon. Still, if one is only interested in configurations in which
the matter perturbation does not reach the horizon it is tempting to employ a mixed
approach, i.e. the HH-TKEQ with a simple source term in BL-coordinates. One such
scenario is the investigation of fluxes from a point-particle in circular orbit. In this case
the mixed approach proved highly useful to extinguish implementation errors. Therefore,
some caveats and the limitations that have to be taken into account in the mixed approach
shall be explained here.

Imagine to use a grid in hyperboloidal coordinates to evolve the TKEQ (4.3), but having
performed the source calculation in BL-coordinates; this means, in particular, to have
the 0, refer to (0, 0,,0p,0,) and time-dependencies in the d’s to refer to t. In BL-
coordinates the corresponding 7}, will contain delta-functions like §(r — r,(¢)). The first
problem is the representation of a d-function in BL-r on a HH-p grid. For example,
considering the Gaussian one could try to evaluate the ¢ at every p; like 0,(r — 1,(t)) ~
e~ 05072 (r(pi)=rp(t(m:p))* " This would, though, significantly deterioate the approximation of
the delta on the evolution grid because a Gaussian narrow in BL-r can be smeared out

in HH-p. For a good ¢ approximation we have to insist on representing the ¢ directly
on the evolution grid. A way out is to exploit the known transformation behaviour of

-distributions [91]

5(r —ry(t)) = o —m() (G.1)

2]
dp

It is important to note that, (i) the particle position p, remains a time-dependent quan-
tity (more explicitly BL t dependent), and (ii) in a BL source computation this ¢ is
hit only by BL-t derivatives, so we have to compute the BL-t derivative of the HH-p

position of the particle dip,(t) = O 55;::152) A second minor issue arises from the use

of BL-¢ in the source while the HH-¢ is used for the homogeneous part of the TKEQ.
The overall factor e™¥, which is multiplied to the equation to erase ¢ dependencies
in the homogeneous part, appears in the source term. When the source term is com-
puted in BL-coordinates the ¢ in azimuthal direction refers to BL-¢ and the decompo-
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sition in modes reads §(¢ — ¢,(t)) = &= e™@= %" Using the relation between ¢

and ¢, Eq. (3.10), we observe that the ¢ and ¢ dependences still disappear because of
em(¢=¢) = g—im(a/(ry=r-))log((r=r)/(r=7-)) = Accounting for this remaining factor is impor-
tant to get the correct result. The third issue is the most subtle one. At each time slice
T = const. one will be traversing the computational grid points p; to compute pointwise
the source term S needed for the evolution. This source term requires knowledge of the
particle’s position (r,(t),0,(t), ¢p(t)). The crucial point is that the extraction of these
positions from the precomputed dynamics implies to compute (7, p;). Thus, at a fixed
evolution time 7, each point of the evolution grid p; posseses a different BL-¢, and, as
a consequence, each p; observes the particle at a different BL-position. In particular,
observers close to the horizon suffer from (7, p) PR because 7,(1) = T+

In our first tests we followed this mixed procedure. It turned out that it is working well
as long as the particle is far enough away from the horizon; e.g., on a circular orbit.
As expected, the source term on the hyperboloidal grid takes exactly the same form
no matter if calculated in BL- or HH-coordinates. Yet, in general, the BL-approach is
disadvantageous for two reasons. First, the computational costs are drastically higher if
we have to interpolate the particle’s position at every p; again. It is much more convenient
to have a unique particle’s position at a given slice 7 = const.. This is only possible when
the source is computed in HH-coordinates (or, more precisely, in the same coordinates
as used for the evolution). In addition, for realistic infall trajectories one has to track
the particle until close before the horizon. Most of the GW signal is already produced
before the actual merger, but for high accuracy throughout the quasi-normal ringing and
tail phase our tests indicated that one needs to monitor the motion until the very end.
Unfortunately, in this mixed approach, grid points p; which are moderately separated
from p, may see so far into the future that the singular behaviour of the source written
in BL-coordinates is triggered significantly far away from the horizon.

In summary, the mixed approach of evolving the TKEQ on a hyperboloidal grid with
a source in BL-coordinates is appealing for its simplicity; as an example, the explicit
source term in BL coordinates for a radial infall on Schwarzschild is provided below. The
mixed approach provides an unvalueable tool for debugging the code since it works for
the important case of circular orbits. In this case it allows to remove a possible source
of error in the implementation; namely, in the transformation of the dynamics to the
HH-system. Yet, in general, the source in BL-coordinates is impracticle. Thus, in our

simulations we always compute the source term in HH-coordinates, using Eq’s (A.17)
and (A.19) respectively, with the tetrad-legs represented in the HH-coordinate basis and
written in HH-coordinates, and with the corresponding NP-operators.

G.1.1 Example: radial infall with ¢« =0 and S*" =0

In restricted cases the source calculation results in very simple expressions when performed
in the BL-coordinate system and with the Kinnersley tetrad.

Let us consider the radial plunge of a non-spinning test-particle along the z-axis onto
a Schwarzschild BH. The particle has constant coordinates 6, = 7/2,¢, = 0, and the
constant momenta p; = —FE, psg = 0, p, = 0. Thus, the angular parts of the energy-
momentum tensor vanish, Ty, = Ty, = 0. In the case a = 0 the tetrad legs simplify to
nt = 0.5(1,—(1 — 2]\/[/7“) 0,0), and m* = (v/2r)71(0,0,1,icscf). Due to m! = m" = 0,
we find Thpepms = T 0 Also, the Newmann-Penrose operators simplify significantly
fora=0;eg., 7= T =0and a— —( = —p*. The only terms that survive are

Ty = — (8" +20)6" T, (G.2)



G.2. AMBIGUITIES FOR A POINTLIKE SOURCE 121

where T,,,, is given by

p () ) ( QM) < QM)2 )
Ton = —— E - — " - — . .
4r? sin 6 dt/d\ 21 r Ept (1 r )P (G3)

The derivative operator §* reduces to §* = m**9, = (v/2r)"1(ds +icsc 9;). In the 2+1

decomposition the ¢ derivative amounts to a factor im. If one further specifies to m = 0,
one is left with the very simple source term

H 2 2 2
- T
Iy g sin30dt/d>\{E +2As Ep —|—Aspr}><
[(2 cos? 0 +1)6®) — 3cosf sinh 9pd® + sin® 0 92 5(3)} , (G.4)

where Ag(r) = (1 — 24).

T

G.2 Ambiguities for a pointlike source

There is one more subtle issue which deserves a short comment. Working with a pointlike
source, we are faced with ambiguities due to the impossibility of treating a o-distribution
numerically. The smearing out of the ¢ over a few grid points implies that the energy-
momentum tensor 7" is nonvanishing in some region around the wordline. The following
discussion holds in any coordinate system.

The ambiguity enters when one wants to raise/lower indices. Let us look at an easy
example. Set a = 0 and consider a nonspinning particle in circular equatorial orbit
p. = (—FE,0,0,L.). In the source term one encounters pieces like p,n* (coming from T,,,,).
Using the Kinnersley tetrad, we have n# = (% —(1— %),0,0). That is, p,nt = —%.
Now look at the theoretically equivalently expression p*n,. Given only data for p, in
the dynamics, one might compute p* like p"(A) = g/ (\)p, (), with g£i”()) the metric at
the particle’s position (motivated by the fact that p* is only defined along the worldline).
—1
The result reads p*(\) = (—E (1 — Ti](‘f)) ,0,0,—L, Tp()\)_z). Instead, n, is defined
over the whole spacetime; in particular, it is needed at all the points with nonvanishing
o-function around the particle’s position. Naturally, it is lowered with the background

_2M :
metric, and we get n, = (1TT, 1,0, 0). This results in two different expressions

E EF 124
punt' = ) # P, = 91 o (G.5)
rp(A)

which coincide if the source term is exactly computed at the field point » = r,()). Since
we are computing the source in a finite region around the r,, the two expressions will
evaluate slightly differently. In addition, note the implications for the subsequent calcu-
lations in terms of derivatives hitting these pieces. In the example we have 0, (p,.n*) = 0,
whereas 0,(p"n,) # 0. The same holds for time derivatives. One could be alarmed that

the different final expressions in the source calculation might lead to ambiguos numerical
results. However, we have tested in a few examples that the different expressions are
pleasingly converging with resolution to the exact same form of the source term. There-

fore, any choice for lowering/raising the quantities is legitimate when the J-function is
restricting the source to narrow enough a region.



APPENDIX H

Tables: Decay rates for Kerr

This Appendix collects results of our experiments with the homogeneous TKEQ. More
precisely, it contains tables of late-time decay rates found from numerical simulations

with the spectral version of the teukode (cf. Sec. 5.1.1). The tables complete the studies
presented in [HO|, and were published in [H1] (see that reference for corresponding plots
and discussion).

The tables concern i.) s = 0,m = 1, Tab. H.1, ii.) s = —2,m = 2, Tab. H.2, iii.)
s =+1,m = 0, Tab. H.3, and iv.) s = £2,m = 0 Tab. H.4. All tables refer to a Kerr
background with @ = 0.9. The notation p; relates to the late-time decay rate of the Yy,

projection of the field, p; to the local in time measurement of the power index (LPI), I’

to the angular profile of the initial data sets IDO, ID1, ID2 and ID3, defined in Sec. 6.1,
and R to the hyperboloidal radial coordinate of the RT-system. See Sec. 6.1 for a short
reminder of the topic.

Table H.1: Decay rates y; for s = 0 and m = 1 with ID1 at finite radiijnull infinity. Brackets
point to uncertainties in the LPI assessment due to possible inaccuracies or not verifiable split-
ting, X to ambiguous or immeasurable values, — to modes excluded by symmetry. Bold values
denote splitting in time, i.e at intermediate times p; # —u; for R < 1. Square brackets point
out different values compared to our m = 0 tables. Table adopted from [H1].

(UVi=1]1=2]1=3[1=4]1=5|

153 — [ 75 — | 9
20 — |74 — |6 | -
3 53] — | 75| — | 9
Al — | M| = | xl6| -
50 75 | — | 95 | — | x|7

Table H.2: Decay rates y; for s = —2 and m = 2 with ID1 at finite radiijnull infinity. Bold
values denote splitting in time, i.e at intermediate times p; # —p; for R < 1. Square brackets
point out different values compared to our m = 0 tables. Table adopted from [H1].

[V][1=2]1=3]1=4]1=5|
2| 76 | 87 | 9[8 | 10[9
3| [7lle) | [8]17 | [o18 | [10]9
4 716 | 87 | 98 | 10]9
50 8|7 | 9|7 | 108 | 11]9
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Table H.3: Decay rates j; for s = —1 (left) at finite radii|null infinity and for s = 41 (right) at
the horizon|finite radiijnull infinity. Brackets point to uncertainties in the LPI assessment due to
possible inaccuracies or not verifiable splitting, X to ambiguous or immeasurable values. Bold
values denote splitting in time, i.e. at intermediate times p; # —p; for R < 1. Table adopted

from [H1].
IDO
'fil=1|1=2|1= [ = | =
T 514 | 65 | 716 | 8|7 | 93
2 514 | 65 | 76 | 87 | 98
30 65 | 715 | 86 | 9|7 | 108
4l 706 | 86 | 916 | x|(7) | x|(8)
50 87 | o7 | 107 | (11)|7| x|8
ID1
'fil=1|1=2|1= [ = | =
1 514 | 65 | 706 | 87 | 93
2 65 | 7[5 | 8|6 | 97 | 108
30 514 | 65 | 76 | 87 | 98
all 65 | 75 | sl6 | 9|7 | 108
50 706 | 86 | 96 | 10]7 | x|8
ID2
l'fii=1(l=2|1= [ = =5
Tl 43 | 54 | 65 | 76 | 8|7
2 43 | 54 | 65 | 76 | 8|7
30 504 | 64 | 75| 86 | 97
4l 65 | 75 | 85 | xl6 | x|7
50 716 | 86 | 96 | x|6 | x|7
ID3
'ii=1(l=2|1= [ = [ =
1l 43 | 5[4 | 65 | 716 | 8|7
2 514 | 64 | 75 | 86 | 97
30 43 | 514 | 65 | 76 | 8|7
41 5[4 | 614 | 75 | (8)]6 | (9)|7
54 65 | 715 | (8)]5 ] (9)]x | x|x

DO
Vi=1]1=27] i= =1 =5
1652 | 716]3 | 874 | 985 x[9]6
2| 6512 | 71613 | 8714 | 985 | x|x|[6
30 76]3 | 87|13 | 984 | 10/9)5 | x|x[6
41l 874 | 9j8]4 | 109)14 | 11](10)|5 | x| x |6
50 985 | 109]5 | 11]105 | 12]11[5 | x| x |6
D1
Vi=111=21 i= =1 =5
162 | 7/6[3 | 874 | 985 | x]9](6)
2| 7/6]3 | 87|13 | 98|14 | 10[9/5 | x|10[6
306512 71613 | 8714 | 985 | x|x|[6
4|l 76]3 ] 87|13 | 98]4 | 10|95 | x|(10)[6
5 8714 | 9ls|4 | 10/9]4 | 11]10/5 | x| x |6
D2
Vi=111=21 i= =1 =5
1 B[A[1 | 6512 | 7]6]3 | 874 MEE
21l 5]4]1 | 6[5]2 | 76|13 | 8|74 % |8]5
31652 76]2 | 8713 | 9 x4 | x|x]5
all 71613 87)3 | 9813 | 10/ x4 | x| x5
5 8714 | 9ls|4 | 1009]4 | 11]x]4 | x| x5
D3
Vi=111=21 I= =1 =5
1| 5[41 ] 652 | 76[3 | 874 MEE
2 | 6ls2 | 762 | 8I71(3) | 9I8I(4) | x|9|(5)
30541 | 652 | 71613 | 874 | x|x]5
alloes2| 762 | 8713 | 984 | x|x|5
510 71613 ] 8]7[3 | 9I8]3 | 109]x | x| x5
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Table H.4: Decay rates y; for s = —2 (left) at finite radii|null infinity and for s = 42 (right) at
the horizon|finite radiijnull infinity. Brackets point to uncertainties in the LPI assessment due to
possible inaccuracies or not verifiable splitting, x to ambiguous or immeasurable values. Bold
values denote splitting in time, i.e. at intermediate times p; # —p; for R < 1. Table adopted
from [H1].

1DO IDO
[V]i=2]1=3]1=4]1=5] [(V]1=2]1=3] 1=4 [1=5]
2 716 | 87 [ 98 | 109 2| 8712 | 918[3 101914 | x[10]5
30 76 | 87 | 98 | 10/9 3 81712 | 9813 10(9]4 | x|10[5
4 87 | 97 | 10[8 | 11]9 4 91813 | 10/9]3 | 11]10]4 | x[11[5
5 918 | 10[8 | 11]8 | x](9) 5 109}4 | 11]10[4 | 12114 | x| x |5
ID1 ID1
[V]1=2]1=3]1=4]1=5] (/] i=2]1=3] 1=4 [ 1=5]
2 716 | 87 [ 918 | 109 2| 8J7[2 | 98[3 101914 | x[10]5
30 8|7 | 9|7 | 108 | 11]9 30 91813 | 10/9[3 | 11]10[4 | x|11]5
4 716 | 87 |9(8) | 10[(9) 4| 8|7(2 | 98[(3) | 10[9]4 | x[10]5
5 8|7 | 9|7 | 108 | 119 51 9183 | 10]9[3 | 11]10[x | x| x |5
1D2 1D2
[V]i=2|1=3]1=4]1=5 | ' 1=2]1=3] 1=4 | 1=5]
20 65 [ 716 [ 87 [ 98 2 [ 7l6[1 [ 8[7[2 9[8[3 x |9[4
30 65 | 716 | 87 | 9I8 3| 7l6[1 | 8[7]2 9|83 x[9]4
4 76 | 86 | 97 | 108 40 8712 | 9|(8)|2 | 10| x |3 | x|x |4
50 8|7 | 9|7 | 107 | x|8 51 9183 | 10]9[3 | 11](10)[(3) | x| x |4
ID3 ID3
[V]1=2]1=3]1=4]1=5] (V| i=2]1=3] 1=4 [ 1=5|
20 65 | 716 [ 87 [ 98 2 76[1 | 8|7]2 9[8[3 x[9]4
30 716 | 86 | 9|7 | 108 3 81712 | 918[(2) | 10]9](3) | x|10]x
a0 65 | 716 | 87 | 9I8 4| 7061 | 8|7((2) 98|13 | x| x |4
50 716 | 8|6 | 9[x | x|x 518|712 | 9I8]2 | 10[(9)](3) | x| x |4




Tables: Energy fluxes from

APPENDIX [

nonspinning particles on CEQOs

Table I.1: GW energy fluxes at scri, £

m

and at the horizon, Eg , for circular, equatorial orbits at

various 7o for m = 2,3 and background rotations @ = 0.0,0.9. The values are normalized by (M/u)?.
Radii below the last-stable-orbit (LSO) are marked with *. The resolution used for the shown results is
N, x Ny = 2400 x 200. The horizon fluxes are computed with two different methods: the usual frequency
domain formula [83] applicable in our time domain setup because of circular orbits, and the time domain
formula in Eq. (4.22) (in brackets). AES>H /E2H are the percentual relative differences to the frequency
domain values of [91, 62]. Note that our results include all the f-mode contributions, while the reference
solution truncates the sums at £ = 8. Table adopted from [H2].

a  m | E¥ AER [EX[%] El AER ) EX[%]
0 2 4%[8580479 03  8.33¢-03 5.64953¢-04 (5.64849¢-04) 2.036-02
0 2 6 [7.368338e04  3.58¢-04 2.62484e-06 (2.62443e-06) 3.91e-03
0 2 8 [1.650495e04  1.520-03 1.09970e-07  (1.09953e-07) 4.00e-05
0 2 105373492 05  2.75¢-03 1.13139¢-08  (1.13122¢-08) 2.14e-03
0.9 2 4 |2.661563 €03  2.57¢-03 | -5.284236-05 (-5.28346e-05)  4.72¢-03
0.9 2 6 |[4.621241 04  2.81e-03 | -3.98467e-06 (-3.98441e-06)  1.30e-03
0.9 2 8 |[1.254217e-04  3.44e-03 | -5.68006e-07 (-5.67988¢-07)  9.13e-04
0.9 2 10| 4.455009 e-05  3.49¢-03 | -1.19689e-07 (-1.19702e-07)  1.36e-03
0 3 472710318 e03  7.95¢.03 6.92585e-05 (6.92581e-05) 5.34e-03
0 3 6 |1.450721e04  1.22¢-02 5.41814e-08 (5.41814e-08) 8.866-03
0 3 8 [2449258 05  1.31e-02 8.61375e-10 (8.61376e-10) 1.17e-02
0 3 10|6.434177 06  1.34e-02 4.69154e-11 (4.69155¢-11) 1.28¢-02
09 3 4 |6.466345e04  1.37¢-02 | -3.00663e-06 (-3.00675¢-06)  8.98¢-03
09 3 6 |8.042190 e-05  1.34e-02 | -1.17094e-07 (-1.17111e-07)  1.11e-02
09 3 8 |1.717198 e-05  1.35e-02 | -1.00392e-08 (-1.00421e-08)  1.20e-02
0.9 3 10|5.043443 e-06  1.34e-02 | -1.40038¢-09 (-1.40118e-09)  1.21e-02

Table 1.2: GW energy fluxes for a circular, equatorial orbit at #p = 6 for & = 0.9 in the £ = m = 2 mode
at different finite extraction radii, for waves extrapolated using Eq. (5.1) and K = 2, and for waves at
null infinity. The values are normalized by (M/u)?. Table adopted from [H2].

N

7

100 | 200

300 | 500

740 | 1000

Extrp. (K = 2)

J

EQQ X 104

4.546 | 4.595

4.604 | 4.608

4.610 | 4.610

4611

4.611
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Table: EOB-dynamics

Using the procedure outlined in Sec. 2.2.3, we have produced and investigated the EOB-
dynamics for backgrounds @ € (—0.9999, 0.9999). The RR was built from the 5.5PN+4PN
(denoting the PN-order for Kerr+Schwarzschild) exact pg, computed in [55] and aug-
mented with 5.5PN expressions [59] for modes up to {p.x = 8. The obtained RR fails to
reproduce the circular orbit fluxes of a particle for fast positive spins in the strong-field.
Looking, e.g., at Fig. 5 of [76], which depicts the multipolar 22 energy flux for a particle

in circular orbit over the radial distance, it is the sudden drop of the fluxes for a — 1 and
r — rpr due to superradiance which is not captured by our analytical formulas. Due to
these inaccuracies we encountered unphysical behaviour of the dynamical quantities close

to the merger for a > 0.97; e.g., L. could become negative due to ,7:"¢ being too large.
Therefore, the dynamics for such fast spinning backgrounds do not cover the crossing of
the light-ring (LR), which is very close to the horizon for @ — 1. Note, though, that the

particle still reached as close as # ~ 1.05 in these cases, so we do not expect to miss a
significant part of the wave creation.

In Tab. J.1 some key numbers of the used dynamics are listed. Given a value for the
background spin a the initial radial position 7y was tuned to provide at least ~ 20 orbits
before merger. Note, however, that we were not very strict in this respect. For instance,
|| — 1 simulations need a lot of time, u = 1000M, to disperse the initial junk radiation
(remember the “radiation cavity” for nearly-extremal BH’s, Sec. 6.2), so we had to consider
longer inspirals in order to have a clean signal at merger. Inspecting the initial positions
of the particle shows that they can be rather weak-field for a — —1 and strong-field
for @ — 1. The reason is the structure of the spacetime as reflected in the values of
the last-stable circular orbit (LSO) 7Lso and of the light-ring (LR)! #pr also listed in
Tab. J.1. Note how large the LSO and the LR are for a — —1; e.g., frso = 9 for
a = —0.9999. Thus, for a — —1 initial positions have to be even larger than 7 = 9 to allow
enough revolutions. Instead, initial positions are small for a — +1; e.g., Prso = 1.016 for
a = 0.9999. Furthermore, Tab. J.1 provides the frequencies of the particle at the start,
at the LSO and at the LR. Prograde orbits exhibit higher frequencies than retrograde
orbits at each of these characteristic positions. Finally, Tab. J.1 includes the LR~crossing

time 7, r and the time of the maximum of the orbital frequency fomax. Both coincide for

a = 0.0, which is no longer true for @ — 1. Note that fgmax is often used as an anchor point
for analytic models, at which one switches to the ringdown description of the waveform

using superposition of QNMs (see, e.g., [76]).

1See [216] for a nice collection of formulas for the LSO, LR and other test-particle related quantities.
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Table J.1: Key numbers for the simulations discussed in this work (see Fig’s. 5.1, 5.7, 5.8, 7.1, 7.2,
7.3, 7.4 , 7.8 ). From left to right: 7y is the initial separation, Qo = (f“’g/Q —+ d)71 the initial (circular)
orbital frequency; QLSO =0 (fLso) and QLR =0 (fLR) refer to the orbital frequency of the particle
at the LSO and LR crossing respectively. The last column of the table lists the time corresponding to
max(MQ). For & — 1 the trajectories stop slightly outside the LR (see discussion in text). Note, how
(i) for positive spins the inspiral starts already in the strong-field regime, and (ii) for @ # 0, tqmex # fLr

with progressively larger differences as @ — 1. Table adopted from [H2].

~

a 7o MQy | frso MQiso  tuso LR MO LR Loymax
-0.9999 || 10.00 0.03266 | 9.000 0.0385 6858.3 | 4.000 0.03846 7321.7 | 7321.3
-0.9995 9.90 0.03317 | 8.999 0.0385  5541.0 | 4.000 0.03846 6004.4 | 6004.0
-0.9990 9.80 0.03369 | 8.997 0.0385 4382.9 | 3.999 0.03847 4846.3 | 4845.8
-0.9950 9.75 0.03396 | 8.986 0.0385  3963.1 | 3.996 0.03854 4425.2 | 4424.8
-0.9900 9.50 0.03535 | 8.972 0.0386 1931.5 | 3.991 0.03863 2392.6 | 2392.2
-0.9700 9.40 0.03591 | 8.916 0.0390 1629.7 | 3.973 0.03898 2085.5 | 2085.1
-0.9500 9.50 0.03530 | 8.859  0.0393 2747.8 | 3.955 0.03934 3198.1 | 3197.7
-0.9000 9.50 0.03523 | 8.717  0.0403 3985.5 | 3.910 0.04025 4423.4 | 4423.0
-0.8000 9.20 0.03689 | 8.432 0.0422 3668.1 | 3.819 0.04222 4080.8 | 4080.4
-0.7000 8.90 0.03868 | 8.143  0.0444 3397.0 | 3.725 0.04436 3785.2 | 3784.8
-0.6000 8.60 0.04062 | 7.851 0.0467  3168.7 | 3.630 0.04673 3533.0 | 3532.7
-0.5000 8.30 0.04271 | 7.555  0.0493  2980.4 | 3.532 0.04934 3321.3 | 3321.0
-0.4000 8.00 0.04499 | 7.254  0.0522 2829.6 | 3.432 0.05224 3147.7 | 3147.5
-0.3000 7.70 0.04747 | 6.949 0.0555 < 2714.6 | 3.329 0.05548 3010.4 | 3010.2
-0.2000 7.40  0.05018 | 6.639 0.0591 2634.3 | 3.223 0.05913 2908.4 | 2908.3
-0.1000 7.10 0.05314 | 6.323  0.0633 2588.9 | 3.113 0.06328 2841.8 | 2841.8
0.0000 7.00 0.05399 | 6.000 0.0680  4076.1 | 3.000 0.06802 4308.4 | 4308.4
0.1000 6.40 0.06138 | 5.669 0.0735 2012.0 | 2.882 0.07352 2224.2 | 2224.3
0.2000 6.10 0.06551 | 5.329  0.0800 2088.2 | 2.759 0.07995 2281.0 | 2281.1
0.3000 5.80  0.07009 | 4.979 0.0876 2207.2 | 2.630 0.08762 2381.0 | 2381.2
0.4000 5.40 0.07723 | 4.614  0.0969 1862.8 | 2.493 0.09694 2018.3 | 2018.6
0.5000 5.01  0.08537 | 4.233  0.1085 1671.1 | 2.347 0.10854 1808.8 | 1809.2
0.6000 4.70  0.09268 | 3.829 0.1235 1914.2 | 2.189 0.12351 2034.5 | 2035.0
0.7000 4.10 0.11109 | 3.393  0.1438 1126.9 | 2.013 0.14379 1230.1 | 1230.9
0.8000 3.80 0.12184 | 2.907 0.1736 1571.6 | 1.811 0.17360 1657.3 | 1658.5
0.9000 3.05  0.16060 | 2.321 0.2251 820.7 | 1.558 0.22514  8K3.6 886.2
0.9500 3.02 0.16134 | 1.937 0.2732 1432.9 | 1.386 0.27316 1472.5 | 1491.6
0.9700 3.30  0.14358 | 1.738 0.3037 2813.7 | 1.296 0.30368 2841.9 | 2862.4
0.9900 3.01 0.16097 | 1.454 0.3510 2010.0 | 1.168 0.35101 2032.6 | 2058.5
0.9950 3.60 0.12779 | 1.341 0.3722 4914.9 | 1.118 0.37215 4941.1 | 4945.2
0.9990 3.60 0.12772 | 1.182 0.4137 5018.1 | 1.052 0.45258 X 5032.5
0.9995 3.60 0.12771 | 1.140  0.4308 5034.2 | 1.037 0.45309 X 5043.6
0.9999 3.60 0.12771 | 1.079 0.4537 X 1.016 0.45368 X 5052.5




APPENDIX K

Tables: Angular momentum fluxes
from spinning-particle on CEOQOs

As an orientation for further studies, we collect here the angular momentum fluxes ob-
tained from our simulations of a spinning-particle in circular equatorial motion around
Schwarzschild. These are related to the energy fluxes plotted in Ch. 8 by relation (4.11)
with w = mf2,, where Q, is the frequency of the particle. An analytic expression for this

frequency is given in Eq. (12) of [186] (though, we have to use —a and —o for agreement).

Table K.1: Multipolar £ = 2, m = 2 angular momentum flux to infinity for a spinning particle in circular,

equatorial orbit at different radii about a BH with @ = 0.0. The values are normalized by (M/u?).

r[M] -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

04 |8.518e-026.943e-02 | 5.645e-02 [ 4.595e-02 | 3.753e-02 | 3.081e-02 | 2.545e-02 | 2.119e-02 | 1.779e-02 | 1.507e-02
05 [1.878e-02[1.678e-021.499e-02 | 1.338e-02 | 1.195e-02 | 1.068e-02 | 9.552e-03 | 8.563e-03 | 7.693e-03 | 6.930e-03
06 |7.676e-03|7.097e-03[6.559e-03 [6.062e-03 | 5.603e-03 | 5.181e-03 | 4.793e-03 | 4.438e-03 | 4.113e-03 | 3.816e-03
07 [3.948e-03|3.719e-03 | 3.503e-03 | 3.300e-03 | 3.109e-03 | 2.930e-03 | 2.762e-03 | 2.605e-03 | 2.457e-03 | 2.320e-03
08 |2.304e-032.197e-032.095e-03 | 1.998e-03 | 1.905e-03 | 1.817e-03 | 1.734e-03 | 1.655e-03 | 1.580e-03 | 1.508e-03
10 19.822e-04]9.504e-0419.196e-04 | 8.898e-04 | 8.611e-04 | 8.334e-04 | 8.067e-04 | 7.809e-04 | 7.561e-04 | 7.322e-04
12 15.029e-04]4.906e-04 | 4.787e-04 | 4.671e-04 | 4.558e-04 | 4.448e-04 | 4.341e-04 | 4.237e-04 | 4.136e-04 | 4.037e-04
15 12.260e-042.221e-04|2.183e-04 | 2.146e-04 | 2.109e-04 | 2.073e-04 | 2.038e-04 | 2.003e-04 | 1.969e-04 | 1.936e-04
20 |8.210e-05]8.119e-05|8.030e-05 | 7.942e-05 | 7.854e-05| 7.768e-05 | 7.683e-05| 7.599e-05 | 7.516e-05 | 7.434e-05

Table K.2: Multipolar £ = 2, m = 1 angular momentum flux to infinity for a spinning particle in circular,
equatorial orbit at different radii about a BH with @ = 0.0. The values are normalized by (M/u?). The
x symbol refers to runs that were not yet performed.

r[M] -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

04 X X X X X X X X X X

05 8.916e-0519.467e-05[9.773e-05 [ 9.886e-05 | 9.855e-05 | 9.723e-05 | 9.525e-05 | 9.288e-05 [ 9.034e-05 | 8.779¢-05
06 2.627e-05(2.943e-05]3.211e-05 | 3.432e-05 | 3.612e-05| 3.754e-05 | 3.864e-05 | 3.948e-05|4.011e-05 | 4.056e-05
07 X 1.224e-05(1.373e-05|1.510e-05| 1.634e-05 | 1.746e-05 | 1.847e-05|1.937e-05 | 2.017e-05 | 2.088e-05
08 5.177e-06 [ 6.033e-06 | 6.867¢e-06 | 7.669e-06 | 8.434e-06 | 9.160e-06 | 9.844e-06 | 1.049¢-05|1.109e-05 | 1.165e-05
10 1.689¢-06 | 1.985e-06 | 2.286e-06 | 2.588e-06 | 2.890e-06 | 3.188e-06 X 3.773e-06 X 4.332e-06
12 7.121e-07(8.364e-07]9.647e-07 | 1.096e-06 | 1.230e-06 | 1.365e-06 | 1.501e-06 | 1.638e-06 | 1.774e-06 | 1.910e-06
15 2.574e-07(3.002e-07]3.449¢e-07 | 3.913e-07 | 4.392e-07 | 4.883e-07 | 5.384e-07 | 5.895e-07 | 6.414e-07 | 6.938e-07
20 7.198e-08 [ 8.283e-0819.421e-08 [ 1.061e-07 | 1.185e-07| 1.313e-07 | 1.445e-07 | 1.581e-07| 1.720e-07 | 1.863e-07
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Table K.3: Multipolar £ = 3, m = 2 angular momentum flux to infinity for a spinning particle in circular,

equatorial orbit at different radii about a BH with a = 0.0. The values are normalized by (M/u?).

r[M] -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

04 |3.521e-043.697e-04 | 3.512e-04 | 3.156e-04 | 2.750e-04 | 2.360e-04 | 2.013e-04 | 1.720e-04 | 1.478e-04 | 1.283e-04
05 [3.203e-05 | 3.947e-05 | 4.448e-05 | 4.734e-05 | 4.852e-05 | 4.844e-05 | 4.751e-05 | 4.604e-05 | 4.428e-05 | 4.240e-05
06 |7.398e-06 [9.650e-06 [ 1.160e-05 | 1.321e-05 | 1.448e-05 | 1.544e-05 | 1.613e-05 | 1.659e-05 | 1.686e-05 | 1.699e-05
07 12.538e-063.382e-06 | 4.187¢-06 | 4.927¢-06 | 5.590e-06 | 6.170e-06 | 6.668e-06 | 7.090e-06 | 7.440e-06 | 7.726e-06
08 [1.088e-06 [1.458e-06 [1.829e-06 | 2.188e-06 | 2.529e-06 | 2.848e-06 | 3.141e-06 | 3.407e-06 | 3.648e-06 | 3.862e-06
10 12.933e-07]3.906e-07|4.924e-07|5.963e-07| 7.007e-07 | 8.039e-07 | 9.050e-07| 1.003e-06 | 1.097e-06 | 1.188e-06
12 |1.070e-07|1.404e-07 | 1.760e-07 | 2.132e-07 | 2.515e-07 | 2.905e-07 | 3.297e-07 | 3.688e-07 | 4.077e-07 | 4.460e-07
15 13.248e-08|4.167e-08 | 5.158e-08 | 6.207e-08 | 7.306e-08 | 8.445e-08 | 9.615e-08 | 1.081e-07 | 1.202e-07 | 1.325e-07
20 [7.239e-09(9.002e-09 [ 1.091e-08 | 1.294e-08 | 1.508e-08 | 1.733e-08 | 1.968e-08 | 2.211e-08 | 2.461e-08 | 2.718e-08

Table K.4: Multipolar ¢ = 3, m = 3 angular momentum flux to infinity for a spinning particle in circular,
equatorial orbit at different radii about a BH with a = 0.0. The values are normalized by (M/u?). The
x symbol refers to runs that were not yet performed.

r[M] -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

04 X X X X X X X X X X

05 5.569e-03 [4.751e-03 | 4.049¢-03 | 3.450e-03 | 2.940e-03 | 2.507e-03 | 2.142e-03 | 1.834e-03 | 1.575e-03 | 1.357e-03
06 1.784e-03|1.590e-03 | 1.418e-03 | 1.264e-03 | 1.127e-03 | 1.006e-03 | 8.986e-04 | 8.036e-04 | 7.197e-04 | 6.456e-04
07 7.586e-04(6.942e-0416.353e-04 | 5.817e-04 | 5.327e-04 | 4.881e-04 | 4.475e-04 | 4.106e-04 | 3.770e-04 | 3.465e-04
08 3.792e-04 [ 3.531e-04 | 3.289¢-04 | 3.064e-04 | 2.855e-04 | 2.662e-04 | 2.483e-04 | 2.316e-04 | 2.163e-04 | 2.020e-04
10 1.266e-04 | 1.204e-04 | 1.146e-04 | 1.091e-04 | 1.038e-04 | 9.885e-05|9.414e-05 | 8.967e-05 | 8.544e-05 | 8.143e-05
12 5.357e-05[5.160e-05 | 4.972¢e-05| 4.790e-05 | 4.616e-05 | 4.449e-05 | 4.289e-05 | 4.135¢e-05 | 3.987¢e-05 | 3.845e-05
15 1.921e-05|1.871e-05]1.822e-05| 1.775e-05 | 1.729e-05 | 1.684e-05|1.641e-05 | 1.599e-05| 1.558e-05 | 1.518e-05
20 5.247e-06[5.159e-06 | 5.073e-06 | 4.987e-06 | 4.904e-06 | 4.822e-06 | 4.742e-06 | 4.663e-06 | 4.585e-06 | 4.509e-06




APPENDIX L

Tables: Characteristic waveform
numbers

In this appendix the extracted key numbers measured from our waveforms of a nonspin-
ning particle on realistic EOB-inspiral trajectories are gathererd (see Sec. 7.1.3). These

numbers might become useful in the future for waveform modeling. At the moment,
they rather provide a further quantitative comparison of the teukode with the RWZ-code

of [132] for @ = 0.0, and the prevailing Teukolsky-code used in [135].

Table L.1: Properties of multipolar waveforms at merger for ¢ = 0. The retarded time at the crossing
of the light ring upgr, coincides with the time of the maximum of the orbital frequency, upr = ugmax =
4308.39M (for a # 0 they can differ, see Table J.1) , with MQ™** = 0.136. The peak of each multipolar
amplitude divided by p, Amax = gmax /e occurs at another time u Amax # ugmex. The table lists the

‘m Im

tm
frequencies at that time Mw?rf?ix. Values in brackets refer to 141 RWZ simulations of [131]. Table
adopted from [H2].

differences Ats, = u Amax — UQmasx. For completeness, we also state the peak values A%¥* and the

¢ om At Amax Muwjim

2 2 238 (-256)  0.20580 (0.29472)  0.27335 (0.27213)
2 1 941 (9.37) 0.10694 (0.10692)  0.20067 (0.29064)
3 3 L11(1.00)  0.051673 (0.051456)  0.45462 (0.45321)
3 2 6.85(6.84)  0.018170 (0.018174)  0.45181 (0.45174)
3 1 1055 (1054)  0.0056954 (0.0056872)  0.41176 (0.41129)
44 290(282)  0.014581 (0.014523)  0.63541 (0.63400)
43 722(7.21)  0.0049634 (0.0049653)  0.63686 (0.63668)
4 2 954(951)  0.0016570 (0.0016543)  0.62603 (0.62533)
5 5 418(412)  0.0052278 (0.0052093)  0.81811 (0.81672)
54 T.63(7.63)  0.0017267 (0.0017277)  0.82170 (0.82148)
6 6 520 (5.14) 00021703 (0.0021636)  1.00027 (1.00013)
6 5  809(8.09) 0.00069673 (0.00069726) 1.00079 (1.00077)
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Table L.2: Properties of multipolar waveforms at merger for representative values of . See Table L.1
for definitions. The values in brackets are the numbers found in [135]. Crosses indicate that, for m = 0
modes, the phase is not measurable. Table adopted from [H2].

¢ mla At Amac o pptimT | Aty dmax g,y i
2 2 |05 —723(—7.22) 03147 03396 | 0.5 —0.03 (—0.08) 0.2820 0.2378
2 1[05 383 0.0666  0.2912 | —0.5 1279 0.1508  0.2391
2 0105 8.45 0.0155 X —0.5 12.81 0.1108 X

3 3[05 —1.99 0.0576  0.5678 | —0.5  2.76 0.0480  0.3916
3 2005 —161 0.0146 04262 | —05 1215 0.0220  0.4422
3 1]05 312 0.0025 03514 | —05 1210 0.0115  0.3162
3 0[05 894 0.0004 x| —05  17.93 0.0091  x

4 4005 032 0.0160 07954 | —05  4.40 0.0132  0.5458
4 3|05 054 0.0046  0.6535 | —0.5  10.10 0.0056  0.5934
4 2005 106 0.0009 05306 | —0.5 1244 0.0027  0.5719
4 1105 4.81 0.0001 0.4958 | —0.5 16.38 0.0015 0.4168
4 0105 8.69 2.16e-05 X —0.5 16.22 0.0011 X

2 2 ]07 —12.74 (—12.77) 0.3228  0.3886 | —0.7 0.76 (x) 0.2776  0.2279
2 107 —002 0.0472  0.2950 | —0.7 13.62 0.1728  0.2095
2 007 650 0.0061 x| =07 1343 0.1418  x

3 3(07 —510 0.0611  0.6505 | —0.7 3.28 0.0468  0.3729
3 207 —957 0.0143  0.4236 | —0.7 13.24 0.0241  0.4015
3 1(07 —1.12 0.0018  0.3196 | —0.7 18.65 0.0151  0.2230
3 0[07 830 0.0001 x| —07 1838 0.0138  x

4 4|07 —212 00183 09117 | —0.7 4.90 0.0128  0.5192
4 3|07 —466 0.0047  0.6832 | —0.7 12.92 0.0058  0.5907
4207 —9.29 0.0007 04515 | —0.7 17.17 0.0032  0.5043
4 1107 -039 5.97e-05 0.3849 | —0.7 16.79 0.0022  0.3207
4 0107 2791 4.68e-06 x —0.7 16.61 0.0018 x

2 2109 -39.16 (—39.09) 0.3212 0.4771 —0.9 1.54 (1.60) 0.2738  0.2198
2 1109 -=-3501 0.0249 0.2509 | —0.9 14.36 0.1996  0.1738
2 0[09 0.0 0.0009 x| —09 1403 01788  x

3 3]09 —1803 0.0645  0.8013 | —0.9 3.75 0.0459  0.3567
3 2009 —3546 0.0148 04860 | —0.9 13.94 0.0267  0.3442
3 1]09 —26.01 0.0010 02711 | —0.9 19.13 0.0209  0.1295
3 0109 5.18 1.75e-05 X —0.9 18.82 0.0203 X

4 4109 -—-1211 0.0201 1.1223 | —0.9 5.37 0.0125  0.4960
4 3(09 —19.96 0.0052  0.7959 | —0.9 13.93 0.0062  0.5318
4 209 -51.22 0.0007 04624 | —0.9 17.65 0.0042  0.3645
4 109 -1343 3.11e-05  0.3218 | —0.9 17.18 0.0032  0.2089
4 0109 21.41 4.17e-07 X —0.9 16.98 0.0029 X




APPENDIX M

Table: Recoil velocities

Table M.1: The columns list: the BH spin a; the magnitude of the maximal and final recoil velocities,
Vmaz/V? and Venq/v?; the magnitude of the antikick Av/v?: for —0.9 < a < —0.5 no significant antikick
is observed; the quality factor @ associated with the maximum of the amplitude of the linear momentum
flux, as an indicator of the adiabaticity of the emission of linear momentum: the larger @ is, the more

max

adiabatic is the emission process, the larger is the antikick; the characteristic time scale 7" of —p,,
(see Sec. (7.3)), as a complementary indicator of the adiabaticity of the dynamics; an approximate

analytic calculation of the kick velocity, v2"4! /1% (not discussed here, see Eq. (11) in [H3]). Minima of

Av/v?,Q, " are shown in boldface. The (more uncertain) results for nearly extremal positive spins
are separated by a horizontal line. Tab. adopted from [H3].

a || VUmaz [V Vend/V? Av/v? | Q T;’:fz UZZSZ/VQ
-0.9999 0.07972 0.07634 3.377e-03 1.0060 3.8436 0.04060
-0.9990 0.07967 0.07637 3.303e-03 1.0065 3.8411 0.04091
-0.9950 0.07884 0.07587 2.972e-03 0.9942 3.8302 0.04052
-0.9900 0.07798 0.07539 2.589e-03 0.9639 3.8171 0.04050
-0.9800 0.07571 0.07383 1.883e-03 0.9518 3.7924 0.04017
-0.9700 0.07452 0.07320 1.326e-03 0.9356 3.7696 0.03996
-0.9500 0.07093 0.07040 5.264e-04 0.9015 3.7292 0.03942
-0.9000 0.06545 0.06539 5.589e-05 0.8663 3.6508 0.03855
-0.8000 0.05910 0.05909 9.332e-06 0.8378 3.5570 0.03807
-0.7000 0.05501 0.05501 8.223e-07 0.8402 3.5123 0.03910
-0.6000 0.05183 0.05183 1.915e-08 0.8650 3.4977 0.04189
-0.5000 0.05003 0.05003 2.289e-09 0.9024 3.5044 0.04765
-0.4400 0.04914 0.04879 3.485e-04 0.9491 3.5167 0.05318
-0.4000 0.04948 0.04882 6.618e-04 1.0038 3.5280 0.05801
-0.3500 0.04889 0.04787 1.024e-03 1.1444 3.5456 0.06704
-0.3000 0.04913 0.04766 1.479e-03 1.9191 3.5667 0.09562
-0.2500 0.04956 0.04730 2.255e-03 1.6508 3.5914 0.10402
-0.2000 0.04981 0.04658 3.224e-03 1.4625 3.6198 0.09148
-0.1000 0.05060 0.04534 5.266e-03 1.4011 3.6878 0.07821
0.0000 0.05319 0.04530 7.892e-03 1.4364 3.7722 0.07029
0.1000 0.05471 0.04377 1.094e-02 1.5086 3.8755 0.06279
0.2000 0.05771 0.04252 1.519e-02 1.6045 4.0019 0.05655
0.3000 0.06105 0.04053 2.052e-02 1.7207 4.1580 0.05116
0.4000 0.06606 0.03822 2.785e-02 1.8678 4.3534 0.04578
0.5000 0.07131 0.03398 3.733e-02 2.0643 4.6049 0.03887
0.6000 0.07796 0.02831 4.965e-02 2.3413 4.9426 0.02766
0.7000 0.08719 0.02056 6.663e-02 2.7528 5.4289 0.01406
0.8000 0.09919 0.01085 8.835e-02 3.5249 6.2242 0.00431
0.9000 0.11293 0.00206 1.109e-01 5.3834 7.8682 0.00031
0.9500 0.11186 0.00065 1.112e-01 7.1404 8.6964 0.00015
0.9700 0.10821 0.00046 1.077e-01 7.9190 8.8428 0.00008
0.9800 0.10524 0.00043 1.048e-01 8.7525 9.0199 0.00021
0.9900 0.10307 0.00044 1.026e-01 9.2251 9.4295 0.00045
0.9950 0.10127 0.00038 1.009e-01 9.3933 9.8429 0.00039
0.9990 0.09968 0.00036 9.933e-02 9.2492 10.4124 0.00019
0.9999 0.09914 0.00035 9.878e-02 9.1388 10.5938 0.00031
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Zusammenfassung

Das Thema dieser Arbeit war die numerische Berechnung von Gravitationswellen eines all-
gemein relativistischen Zweikorpersystems bestehend aus schwarzen Lochern. Die Ergeb-
nisse beziehen sich auf die Test-Teilchen-Naherung, in welcher man das System als eine
Punktteilchenstorung auf der festen Hintergrundmetrik eines supermassiven schwarzen
Lochs betrachtet. Somit sind die Ergebnisse quantitativ nur fiir extreme Massenverhélt-
nisse (M > M) giiltig, qualitativ jedoch im Allgemeinen niitzlich. Insbesondere wurde

der Einfluss des “Spin” des zentralen schwarzen Lochs analysiert.

Die relevante Gleichung, die eben genannte Punktteilchenstorungen auf der Hintergrund-
metrik eines schwarzen Lochs beschreiben kann, wurde 1972 von Teukolsky hergeleitet.
Traditionell wird ein Schema von Krivan aus dem Jahr 1997 zur numerischen Losung der
Gleichung verwendet. Hier jedoch wurde die Teukolsky-Gleichung in einem fiir unsere
Zwecke gilinstigeren Koordinatensystem neu hergeleitet. Genauer gesagt handelt es sich
dabei um Horizont-angepasste, hyperboloidale Koordinaten. Diese beinhalten den Hor-
izont und das lichtartig Unendliche als Randpunkte der Domane und stellen damit ein
abgeschlossenes Gebiet dar. Weil somit keine Information von auflen eindringen kann
benotigen wir keine unphysikalischen Randbedingungen in unseren Simulationen. In vie-

len Fallen bedeutet dies eine deutliche Verbesserung der Genauigkeit.

Ein Grofiteil der Arbeit bestand in der Entwicklung des Computercodes teukode, welcher
die Teukolsky-Gleichung in den neuen Koordinaten fiir eine Punktteilchenstorung nu-
merisch 10st. Zunéchst wurde der teukode in einfachen Situationen, wie z.B. der Bewegung
des Teilchens entlang zirkuldrer Bahnen in der Equatorialebene, gegen bestehende Ergeb-
nisse der Literatur validiert. In allen Féllen waren die Daten konsistent. In Spezialféllen,
welche in der Literatur mit extremer Genauigkeit gelost werden konnen, zeigte sich die

hervorragende Effizienz unserer Heransgehensweise.

Nach Bestehen der Literaturvergleiche konnte der teukode auch fiir weiterfithrende Un-
tersuchungen verwendet werden. Neuartige Ergebnisse wurden beziiglich analytischer
Modelle fiir die Strahlungsriickwirkung eines Punktteilchens, fiir Wellenformen zur Zeit
der Kollision und fiir den gravitativen Riickstofl gefunden. Als neueste Entwicklung wurde
der teukode so erweitert, dass der “Spin” des Punktteilchens mit einbezogen werden kann.
Damit ist der teukode der erste Teukolsky-Loser, der Gravitationswellen eines rotierenden
Teilchens auf allgemeiner Bahn berechnen kann. Erste Ergebnisse sind vielversprechend

und erlauben eine Fiille von neuen Studien in naher Zukunft.
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