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Limit-point / limit-circle classification
of second-order differential operators
arising in PT quantum mechanics

Florian Büttner and Carsten Trunk

Abstract

We consider a second-order differential equation −y′′+ q(x)y(x) =
λy(x) with complex-valued potential q and eigenvalue parameter λ ∈
C. In PT quantum mechanics the potential has the form q(x) =
−(ix)N+2 and is defined on a contour Γ ⊂ C. Via a parametrization
we obtain two differential equations on [0,∞) and (−∞, 0]. With a
WKB-analysis we classify this problem according to the limit-point/
limit-circle scheme.

Keywords : non-Hermitian Hamiltonian, Stokes wedges, limit point, limit
circle, PT symmetric operator, spectrum, eigenvalues

1 Introduction

We consider a quantum system described by the Non-Hermitian Hamiltonian
(see [3])

H =
1

2m
p2 − (iz)N+2, (1.1)

with a natural number N . The associated Schrödinger eigenvalue problem

−y′′(z)− (iz)N+2y(z) = λy(z), z ∈ Γ (1.2)
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is defined on a contour Γ in the complex plane and Γ is symmetric with
respect to the imaginary axis. For simplicity we choose

Γ :=
{
z = xeiϕsgn(x) : x ∈ R

}
, ϕ ∈ (−π/2, π/2), (1.3)

cf. [2]. Via the parametrization

z(x) := xeiϕsgn(x)

we obtain two Sturm-Liouville differential equations on [0,∞) and on (−∞, 0],
repectively. In 1957 A. R. Sims developed a limit-point/ limit-circle classifi-
cation for complex potentials, see [7]. A further refinement was obtained in
[4], see also [6]. For the eigenvalue problem (1.2) we give a full classification
into limit-point/ limit-circle according to the angle ϕ in (1.3). In particular
we show limit-point at Stokes line and limit-circle at Stokes wedges. With
(1.1) we associate an operator in a L2(R) space. The associated operator
is a PT -symmetric operator, where P is the parity operator and T is time
reversal, cf. [3] and [1].

2 Limit-point/ Limit-circle classification

We recall the limit-point/ limit-circle-classification from [4, Theorem 2.1].
We consider

−w(x)′′ + q(x)w(x) on [0,∞) (2.1)

with q locally integrable and complex valued. We assume

Q := clconv {q(x) + r : x ∈ [0,∞), 0 < r < ∞} ̸= C, (2.2)

where clconv denotes the closed convex hull. For λ0 ̸∈ C\Q is K the nearest
point in Q and L a line touching Q in K. We translate K via z 7→ z −K in
the origin and rotate via the angle η ∈ (−π, π] so that L coincide with the
imaginary axis and λ0 and Q lie in the negative and non-negative half-planes.
For such K and η define ΛK,η := {λ ∈ C : Re(λ−K)eiη < 0}. The following
theorem is taken from [4, Theorem 2.1].

Theorem 2.1. For λ ∈ ΛK,η, exactly one of the following holds.
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(I) There exists a, up to a constant, unique solution w of (2.1) satisfying∫ ∞

0

Re
[
eiη

(
|w′|2 + (q −K)|w|2

)]
dx+

∫ ∞

0

|w|2 dx < ∞ (2.3)

and this is the only solution satisfying w ∈ L2(R+).

(II) There exists a, up to a constant, unique solution w of (2.1) satisfying
(2.3) but all solutions satisfy w ∈ L2(R+).

(III) All solutions w of (2.1) satisfy (2.3) and w ∈ L2(R+).

Cases (I) and (II) are called limit-point cases and case (III) is called limit-
circle case.

3 PT -symmetric Problem

We can decompose the complex plane with the angle ϕ = − N+2
2N+8

π + 2k
4+N

π
in N + 4 sectors, so-called Stokes wedges,

Sk : =

{
z ∈ C : − N + 2

2N + 8
π +

2k − 2

4 +N
π < arg(z) < − N + 2

2N + 8
π +

2k

4 +N
π

}
,

k = 0, . . . , N + 3

and the N + 4 Stokes lines

Lk :=

{
z ∈ C : arg(z) = − N + 2

2N + 8
π +

2k

4 +N
π

}
, k = 0, . . . , N + 3.

Therefore Γ is either contained in two Stokes wedges or corresponds to two
Stokes lines.

We map the problem back to the real line via the parametrization

z : R → C, z(x) := xeiϕsgn(x).

Thus y solves (1.2) for z ̸= 0 if and only if w, w(x) := y(z(x)) solves

−e∓2iϕw′′(x)− (ix)N+2e±(N+2)iϕw(x) = λw(x), x ∈ R±.

This differential equation can be written as

−w′′(x)− (ix)N+2e±(N+4)iϕw(x) = λ̃w(x), x ∈ R± (3.1)

with λ̃ := λe±2iϕ.

3



Proposition 3.1. (i) If ϕ ̸= − N+2
2N+8

π+ 2k
4+N

π, k = 0, . . . , N+3, then (3.1)
is in the limit-point case, cf. case (I) in Theorem 2.1. In particular this
implies that only one solution of (3.1) is in L2(R+) resp. L

2(R−).

(ii) If ϕ = − N+2
2N+8

π + 2k
4+N

π, k = 0, . . . , N + 3, then (3.1) is in the limit-
circle case, cf. case (III) in Theorem 2.1. In particular this implies that
all solutions of (3.1) are in L2(R+) resp. L

2(R−).

Proof. The two corresponding linear independent solutions w1 and w2 of the
Schrödinger eigenvalue differential equation −w′′(x)−(ix)N+2e(N+4)iϕw(x) =
λ̃w(x), x ∈ R+ satisfy [5, Corollary 2.2.1]

w1,2(x) ∼ q(x)−1/4exp

(
±
∫ x

1

Re(q(t)1/2) dt

)
, for x → ∞

with q(x) := −(ix)N+2e(N+4)iϕ−λe2iϕ. The notation f(x) ∼ g(x) means that
f(x)/g(x) → 1 as x → ∞. The same holds for the solutions as x → −∞
with q(x) := −(ix)N+2e−(N+4)iϕ − λe−2iϕ, which is easily seen by replacing x
by −x.

If ϕ ̸= − N+2
2N+8

π + 2k
4+N

π and λ = 0 then Re(q(t)1/2) ̸= 0 and there exists
exactly one solution in L2(R+) resp. L2(R−). This implies, see [4, Remark
2.2], that we have case (I), limit point case, in Theorem 2.1.

For ϕ = − N+2
2N+8

π + 2k
4+N

π we obtain −w′′(x) − xN+2w(x) = λ̃w(x) and
therefore we are in the limit-circle case with [8, Remark 7.4.2], if N > 0, i.
e. case (III) in Theorem 2.1. In particular case (II) in Theorem 2.1 is not
possible.

Let ϕ be as in Proposition 3.1(i), limit-point case. Consider the following
operators (cf. [4, Theorem 4.4])

dom(A±) :=
{
y ∈ L2(R±) : A±y ∈ L2(R±), y, y

′ loc. abs. cont., y(0) = 0
}

A±y(x) := −y′′(x)− (ix)N+2e±(N+4)iϕy(x).

Theorem 3.2. The spectrum σ(A±) is contained in Q, cf. (2.2), and consists
only of isolated eigenvalues of finite algebraic multiplicity.

A similar conclusion holds for ϕ is as in Proposition 3.1(ii) (limit-circle
case), cf. [4].

4



Remark 3.3. One can show that the operator A+ ⊕ A− with the coupling
y′(0+) = αy′(0−) (α ∈ C) in zero is PT -symmetric if and only if |α| = 1.
This gives a way to characterize all PT -symmetric operators associated with
(1.2).
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