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Limit-point / limit-circle classification
of second-order differential operators
arising in P7 quantum mechanics

Florian Biuttner and Carsten Trunk

Abstract

We consider a second-order differential equation —y” + ¢(x)y(x) =
Ay(x) with complex-valued potential ¢ and eigenvalue parameter \ €
C. In PT quantum mechanics the potential has the form ¢(x) =
—(iz)N*2 and is defined on a contour I' C C. Via a parametrization
we obtain two differential equations on [0,00) and (—o0,0]. With a
WXKB-analysis we classify this problem according to the limit-point/
limit-circle scheme.

Keywords: non-Hermitian Hamiltonian, Stokes wedges, limit point, limit
circle, PT symmetric operator, spectrum, eigenvalues

1 Introduction

We consider a quantum system described by the Non-Hermitian Hamiltonian
(see [3])

1
H = %pz — (i), (1.1)

with a natural number N. The associated Schrodinger eigenvalue problem

(=) = (2)*2y(z) = Ay(2), z €T (1.2)



is defined on a contour I' in the complex plane and I' is symmetric with
respect to the imaginary axis. For simplicity we choose

I={z= 26?59 g € R}, ¢e(-n/2,7/2), (1.3)
cf. [2]. Via the parametrization
2(x) == x5 @)

we obtain two Sturm-Liouville differential equations on [0, c0) and on (—o0, 0],
repectively. In 1957 A. R. Sims developed a limit-point/ limit-circle classifi-
cation for complex potentials, see [7]. A further refinement was obtained in
4], see also [6]. For the eigenvalue problem (1.2) we give a full classification
into limit-point/ limit-circle according to the angle ¢ in (1.3). In particular
we show limit-point at Stokes line and limit-circle at Stokes wedges. With
(1.1) we associate an operator in a L?*(R) space. The associated operator
is a PT-symmetric operator, where P is the parity operator and 7T is time
reversal, cf. [3] and [1].

2 Limit-point/ Limit-circle classification

We recall the limit-point/ limit-circle-classification from [4, Theorem 2.1].
We consider

—w(z)” + q(x)w(x) on [0,00) (2.1)
with ¢ locally integrable and complex valued. We assume
Q) := cleonv{q(z) +r:x €[0,00), 0 <r < oo} #C, (2.2)

where clconv denotes the closed convex hull. For \g € C\Q is K the nearest
point in @) and L a line touching @) in K. We translate K via z — 2z — K in
the origin and rotate via the angle n € (—m, 7] so that L coincide with the
imaginary axis and A\g and @ lie in the negative and non-negative half-planes.
For such K and 7 define Ag,, := {\ € C: Re(A — K)e" < 0}. The following
theorem is taken from [4, Theorem 2.1].

Theorem 2.1. For A € Ak, exactly one of the following holds.



(1) There ezists a, up to a constant, unique solution w of (2.1) satisfying

/ Re [¢" (Jw'|* + (¢ — K)|w]*)] d= +/ lw|? dz < oo (2.3)
0 0
and this is the only solution satisfying w € L*(R.).

(II) There exists a, up to a constant, unique solution w of (2.1) satisfying
(2.3) but all solutions satisfy w € L*(Ry).

(I1I) All solutions w of (2.1) satisfy (2.3) and w € L*(R,).

Cases (1) and (II) are called limit-point cases and case (III) is called limit-
circle case.

3 PT-symmetric Problem

We can decompose the complex plane with the angle ¢ = —gvfgﬂ + ﬁ—kNﬂ'
in N + 4 sectors, so-called Stokes wedges,
g cC N +2 +2k—2 - (2) < N 42 n 2k
=4z D= s m < arg(z — T 7
¢ ON+8" A+ N s OIN+8 T4+ N’

k=0,....,N+3
and the N + 4 Stokes lines

N+2 2k
Ly := {ZGC:arg(z) = i

TNt s TArNT

Therefore I is either contained in two Stokes wedges or corresponds to two
Stokes lines.

},kzO,...,N+3.

We map the problem back to the real line via the parametrization
2:R—=C, z(z):=ze®9®),
Thus y solves (1.2) for z # 0 if and only if w, w(z) := y(z(z)) solves
—e T2 () — (iz) N 2Ny () = Mw(z), z € Ra.
This differential equation can be written as
—w"(z) — (iz)NF2eENIy (1) = hw(z), © € Ry (3.1)

with \ := \e*2i¢,



Proposition 3.1. (i) If¢ # — 2N+8 +4+—N7r k=0,...,N+3, then (3.1)

is in the limit-point case, cf. case (I) in Theorem 2.1. In particular this
implies that only one solution of (3.1) is in L*(Ry) resp. L*(R_).

(i) If ¢ = —2%12871' + 4+—N7r k=0,...,N +3, then (3.1) is in the limit-
circle case, cf. case (II1) in Theorem 2.1. In particular this implies that
all solutions of (3.1) are in L*(Ry) resp. L*(R_).

Proof. The two corresponding linear independent solutions w; and ws, of the
Schrodinger eigenvalue differential equation —w”(z) — (iz)N 2™y (1) =
Aw(z), x € Ry satisfy [5, Corollary 2.2.1]

wy o(z) ~ q(z)"Yexp (:I:/ Re(q(t)?) dt) , for v — o0
1

with q(z) := —(iz)N*2eW+i¢ _ \e2® The notation f(z) ~ g(z) means that
f(z)/g(z) = 1 as © — oo. The same holds for the solutions as © — —o0
with q(z) 1= —(ix)V+2e~VH+i6 _ \e=2%9¢ which is easily seen by replacing x
by —x.

If ¢ # — 2N+8 T+ 4+—N7T and A = 0 then Re(q(t)'/?) # 0 and there exists

exactly one solution in L*(R,) resp. L?(R_). This implies, see [4, Remark
2.2], that we have case (I) limit point case, in Theorem 2.1.

For ¢ = QJJVVJfSW + 4+N7r we obtain —w”(z) — 2V 2w(x) = Aw(x) and
therefore we are in the limit-circle case with [8, Remark 7.4.2], if N > 0, i.
e. case (III) in Theorem 2.1. In particular case (II) in Theorem 2.1 is not

possible. O]

Let ¢ be as in Proposition 3.1(i), limit-point case. Consider the following
operators (cf. [4, Theorem 4.4])

dom(Ay) = {y € L*(Ry) : Avy € L*(R),y, loc. abs. cont.,y(0) = O}

Asy(z) = —y"(x) = (iz) V2V 0y (),

Theorem 3.2. The spectrum o(Ay) is contained in Q, cf. (2.2), and consists
only of isolated eigenvalues of finite algebraic multiplicity.

A similar conclusion holds for ¢ is as in Proposition 3.1(ii) (limit-circle
case), cf. [4].



Remark 3.3. One can show that the operator A, @& A_ with the coupling
y'(0+) = ay’'(0—) (o € C) in zero is PT-symmetric if and only if |o| = 1.
This gives a way to characterize all PT-symmetric operators associated with
(1.2).
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