

Preprint No. M **16/03**

Limit-point / limit-circle classification of second-order differential operators arising in PT quantum mechanics

Florian Büttner and Carsten Trunk

2016

Impressum: Hrsg.: Leiter des Instituts für Mathematik Weimarer Straße 25 98693 Ilmenau Tel.: +49 3677 69-3621 Fax: +49 3677 69-3270 http://www.tu-ilmenau.de/math/

ilmedia

Limit-point / limit-circle classification of second-order differential operators arising in *PT* **quantum mechanics**

Florian Büttner and Carsten Trunk

Abstract

We consider a second-order differential equation $-y'' + q(x)y(x) =$ $\lambda y(x)$ with complex-valued potential *q* and eigenvalue parameter $\lambda \in$ C. In \mathcal{PT} quantum mechanics the potential has the form $q(x)$ *−*(*ix*) *^N*+2 and is defined on a contour Γ *⊂* C. Via a parametrization we obtain two differential equations on $[0, \infty)$ and $(-\infty, 0]$. With a WKB-analysis we classify this problem according to the limit-point/ limit-circle scheme.

Keywords: non-Hermitian Hamiltonian, Stokes wedges, limit point, limit circle, *PT* symmetric operator, spectrum, eigenvalues

1 Introduction

We consider a quantum system described by the Non-Hermitian Hamiltonian (see[[3](#page-5-0)])

$$
H = \frac{1}{2m}p^2 - (iz)^{N+2},\tag{1.1}
$$

with a natural number N . The associated Schrödinger eigenvalue problem

$$
-y''(z) - (iz)^{N+2}y(z) = \lambda y(z), \ z \in \Gamma
$$
 (1.2)

is defined on a contour Γ in the complex plane and Γ is symmetric with respect to the imaginary axis. For simplicity we choose

$$
\Gamma := \left\{ z = x e^{i\phi sgn(x)} : x \in \mathbb{R} \right\}, \quad \phi \in (-\pi/2, \pi/2), \tag{1.3}
$$

cf. [\[2\]](#page-5-1). Via the parametrization

$$
z(x) := xe^{i\phi sgn(x)}
$$

we obtain two Sturm-Liouville differential equations on $[0, \infty)$ and on $(-\infty, 0]$, repectively. In 1957 A. R. Sims developed a limit-point/ limit-circle classification for complex potentials, see [\[7](#page-5-2)]. A further refinement was obtained in [\[4\]](#page-5-3), see also[[6\]](#page-5-4). For the eigenvalue problem [\(1.2](#page-1-0)) we give a full classification intolimit-point/ limit-circle according to the angle ϕ in ([1.3\)](#page-2-0). In particular we show limit-point at Stokes line and limit-circle at Stokes wedges. With (1.1) (1.1) we associate an operator in a $L^2(\mathbb{R})$ space. The associated operator is a \mathcal{PT} -symmetric operator, where $\mathcal P$ is the parity operator and $\mathcal T$ is time reversal, cf. [\[3](#page-5-0)] and [\[1](#page-5-5)].

2 Limit-point/ Limit-circle classification

Werecall the limit-point/ limit-circle-classification from [[4](#page-5-3), Theorem 2.1]. We consider

$$
-w(x)'' + q(x)w(x) \quad \text{on } [0, \infty)
$$
\n
$$
(2.1)
$$

with *q* locally integrable and complex valued. We assume

$$
Q := \text{clconv}\{q(x) + r : x \in [0, \infty), 0 < r < \infty\} \neq \mathbb{C},
$$
 (2.2)

where clconv denotes the closed convex hull. For $\lambda_0 \notin \mathbb{C} \backslash Q$ is K the nearest point in *Q* and *L* a line touching *Q* in *K*. We translate *K* via $z \mapsto z - K$ in the origin and rotate via the angle $\eta \in (-\pi, \pi]$ so that *L* coincide with the imaginary axis and λ_0 and Q lie in the negative and non-negative half-planes. For such *K* and *η* define $\Lambda_{K,\eta} := {\lambda \in \mathbb{C} : \text{Re}(\lambda - K)e^{i\eta} < 0}.$ The following theorem is taken from[[4,](#page-5-3) Theorem 2.1].

Theorem 2.1. *For* $\lambda \in \Lambda_{K,\eta}$ *, exactly one of the following holds.*

(I) There exists a, up to a constant, unique solution w of ([2.1\)](#page-2-1) *satisfying*

$$
\int_0^\infty \text{Re} \left[e^{i\eta} \left(|w'|^2 + (q - K)|w|^2 \right) \right] dx + \int_0^\infty |w|^2 dx < \infty \qquad (2.3)
$$

and this is the only solution satisfying $w \in L^2(\mathbb{R}_+).$

- *(II) There exists a, up to a constant, unique solution w of* ([2.1\)](#page-2-1) *satisfying* ([2.3\)](#page-3-0) *but all solutions satisfy* $w \in L^2(\mathbb{R}_+).$
- *(III) All solutions w of* ([2.1\)](#page-2-1) *satisfy* ([2.3\)](#page-3-0) *and* $w \in L^2(\mathbb{R}_+).$

Cases (I) and (II) are called limit-point cases and case (III) is called limitcircle case.

3 *PT* **-symmetric Problem**

We can decompose the complex plane with the angle $\phi = -\frac{N+2}{2N+8}\pi + \frac{2k}{4+l}$ $\frac{2k}{4+N}\pi$ in $N+4$ sectors, so-called Stokes wedges,

$$
S_k := \left\{ z \in \mathbb{C} : -\frac{N+2}{2N+8}\pi + \frac{2k-2}{4+N}\pi < \arg(z) < -\frac{N+2}{2N+8}\pi + \frac{2k}{4+N}\pi \right\},
$$

$$
k = 0, \dots, N+3
$$

and the $N+4$ Stokes lines

$$
L_k := \left\{ z \in \mathbb{C} : \arg(z) = -\frac{N+2}{2N+8}\pi + \frac{2k}{4+N}\pi \right\}, k = 0, \dots, N+3.
$$

Therefore Γ is either contained in two Stokes wedges or corresponds to two Stokes lines.

We map the problem back to the real line via the parametrization

$$
z : \mathbb{R} \to \mathbb{C}, \quad z(x) := x e^{i\phi sgn(x)}.
$$

Thus *y* solves [\(1.2](#page-1-0)) for $z \neq 0$ if and only if *w*, $w(x) := y(z(x))$ solves

$$
-e^{\mp 2i\phi}w''(x) - (ix)^{N+2}e^{\pm (N+2)i\phi}w(x) = \lambda w(x), \ x \in \mathbb{R}_{\pm}.
$$

This differential equation can be written as

$$
-w''(x) - (ix)^{N+2}e^{\pm(N+4)i\phi}w(x) = \tilde{\lambda}w(x), x \in \mathbb{R}_{\pm}
$$
 (3.1)

with $\tilde{\lambda} := \lambda e^{\pm 2i\phi}$.

- $Proposition 3.1.$ $\frac{N+2}{2N+8}\pi + \frac{2k}{4+l}$ $\frac{2k}{4+N}\pi$, $k = 0, \ldots, N+3$, then (3.1) (3.1) *is in the limit-point case, cf. case (I) in Theorem [2.1.](#page-2-2) In particular this implies that only one solution of* ([3.1\)](#page-3-1) *is in* $L^2(\mathbb{R}_+)$ *resp.* $L^2(\mathbb{R}_-)$ *.*
	- *(ii) If* $\phi = -\frac{N+2}{2N+8}\pi + \frac{2k}{4+i}$ $\frac{2k}{4+N}\pi$, $k = 0, \ldots, N+3$, then [\(3.1](#page-3-1)) *is in the limitcircle case, cf. case (III) in Theorem [2.1.](#page-2-2) In particular this implies that all solutions of* ([3.1\)](#page-3-1) *are in* $L^2(\mathbb{R}_+)$ *resp.* $L^2(\mathbb{R}_-)$ *.*

Proof. The two corresponding linear independent solutions w_1 and w_2 of the Schrödinger eigenvalue differential equation $-w''(x) - (ix)^{N+2}e^{(N+4)i\phi}w(x) =$ $\lambda w(x)$, $x \in \mathbb{R}_+$ satisfy [\[5,](#page-5-6) Corollary 2.2.1]

$$
w_{1,2}(x) \sim q(x)^{-1/4} \exp\left(\pm \int_1^x \text{Re}(q(t)^{1/2}) dt\right)
$$
, for $x \to \infty$

with $q(x) := -(ix)^{N+2}e^{(N+4)i\phi} - \lambda e^{2i\phi}$. The notation $f(x) \sim g(x)$ means that $f(x)/g(x) \to 1$ as $x \to \infty$. The same holds for the solutions as $x \to -\infty$ with $q(x) := -(ix)^{N+2}e^{-(N+4)i\phi} - \lambda e^{-2i\phi}$, which is easily seen by replacing x $by -x$.

If $\phi \neq -\frac{N+2}{2N+8}\pi + \frac{2k}{4+l}$ $\frac{2k}{4+N}\pi$ and $\lambda = 0$ then $\text{Re}(q(t)^{1/2}) \neq 0$ and there exists exactlyone solution in $L^2(\mathbb{R}_+)$ resp. $L^2(\mathbb{R}_-)$. This implies, see [[4,](#page-5-3) Remark 2.2], that we have case (I), limit point case, in Theorem [2.1.](#page-2-2)

 $\frac{2k}{4+N}\pi$ we obtain $-w''(x) - x^{N+2}w(x) = \tilde{\lambda}w(x)$ and For $\phi = -\frac{N+2}{2N+8}\pi + \frac{2k}{4+l}$ therefore we are in the limit-circle case with $[8,$ Remark 7.4.2], if $N > 0$, i. e. case (III) in Theorem [2.1](#page-2-2). In particular case (II) in Theorem [2.1](#page-2-2) is not possible. \Box

Let ϕ be as in Proposition 3.1(i), limit-point case. Consider the following operators (cf.[[4,](#page-5-3) Theorem 4.4])

dom(
$$
A_{\pm}
$$
) := { $y \in L^2(\mathbb{R}_{\pm})$: $A_{\pm}y \in L^2(\mathbb{R}_{\pm}), y, y'$ loc. abs. cont., $y(0) = 0$ }

$$
A_{\pm}y(x) := -y''(x) - (ix)^{N+2}e^{\pm(N+4)i\phi}y(x).
$$

Theorem 3.2. *The spectrum* $\sigma(A_+)$ *is contained in Q, cf.* [\(2.2](#page-2-3))*, and consists only of isolated eigenvalues of finite algebraic multiplicity.*

A similar conclusion holds for ϕ is as in Proposition 3.1(ii) (limit-circle case), cf.[[4\]](#page-5-3).

Remark 3.3. One can show that the operator $A_+ \oplus A_-$ with the coupling $y'(0+) = \alpha y'(0-)$ ($\alpha \in \mathbb{C}$) in zero is *PT*-symmetric if and only if $|\alpha| = 1$. This gives a way to characterize all *PT* -symmetric operators associated with $(1.2).$ $(1.2).$

References

- [1] T.Ya. Azizov and C. Trunk, *On domains of PT symmetric operators related to* $-y''(x) + (-1)^n x^{2n} y(x)$, J. Phys. A: Math. Theor. **43** (2010), 175303.
- [2] T.Ya. Azizov und C. Trunk, *PT* , Proc. Appl. Math. Mech. **14** (2014), 991–992.
- [3] C.M. Bender and S. Boettcher, *Real spectra in non-Hermitian Hamiltonians having PT symmetry*, Phys. Rev. Lett. **80** (1998), 5243–5246.
- [4] B.M. Brown, D.K.R. McCormack, W.D. Evans and M. Plum, *On the spectrum of second-order differential operators with complex coefficients*, Proc. R. Soc. A **455** (1999), 1235–1257.
- [5] M.S.P. Eastham, *The Asymptotic Solution of Linear Differential Systems*, London Mathematical Society, Monograph **4**, 1989.
- [6] J. Qi, H. Sun and Z. Zheng, *Classification of Sturm-Liouville differential equations with complex coefficients and operator realizations*, Proc. R. Soc. A **467** (2011), 1835–1850.
- [7] A.R. Sims, *Secondary conditions for linear differential operators of the second order*, J. Math. Mech. **6** (1957), 247–285.
- [8] A. Zettl, *Sturm-Liouville Theory*, American Mathematical Society, Mathematical Surveys and Monographs **121**, 2005.

Contact information

Florian B¨uttner

Institut für Mathematik, Technische Universität Ilmenau

Postfach 100565, D-98684 Ilmenau, Germany florian.buettner@tu-ilmenau.de

Carsten Trunk

Institut für Mathematik, Technische Universität Ilmenau Postfach 100565, D-98684 Ilmenau, Germany carsten.trunk@tu-ilmenau.de