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INTRODUCTION 1

Introduction

The purpose of this work is to highlight some aspects concerning the close connection
between fractal geometry, the theory of function spaces, Fourier analysis, and spectral theory
of differential operators, and to complement the theory developed by H. Triebel in his recent

book [Tri97].

The thesis has five parts: in the first three chapters we introduce the concepts and present
our main results whereas the fourth chapter and the Appendix contain the details for the

proofs.

The first chapter is based on [1] and is concerned with the distribution of eigenfrequencies

of regular anisotropic fractal drums.

Let Q be a bounded domain in R? having C° boundary 92 and let 0 < dy < 2. An
anisotropic dg-set I' C Q having anisotropic deviation 0 < a < 1 is, roughly speaking, a
compact set which can be covered for any j € Ny with N; ~ 2744 disjoint rectangles R
({=1,...,N;) with vol Rj; ~ 2727 having sides parallel to the axes and side lengths r{’l, r%’l
satisfying

2—j(l—l—a) < rg,l < r{,l < 2—j(1—a)
for any [ = 1,..., N;. This concept was introduced by H. Triebel in [Tri97, 5.2]. If I' is such
an anisotropic d4-set then there exists a uniquely determined Radon measure p in R? with
suppp =T and p(T N R;;) = (vol R;)%4/2if j € Ny and [ = 1, ..., N; (see [Tri97, 5.5]).

Let (—A)~! be the inverse of the Dirichlet Laplacian in . Let W.(2) be the usual Sobolev
space and let I/?/%(Q) = {f e WHQ) : trag f = 0}. The operator tr',

(tr" () = /F(tf‘rf)(v) (eID)(v) dul(y), » € D(Q), (0.1)

makes sense as a mapping from I/?/%(Q) into D'(2) and it turns out that the fractal differential

operator
T=(-A)"totrt (0.2)

o
generates a compact, non-negative, self adjoint operator in W1 ().
Furthermore, as proved in [Tri97, 30.7], there exist positive constants ¢; > 0 and ¢; > 0 such

that for the positive eigenvalues \;(T") of T
ey k(at2a)/da <\ (7)) < ¢y kmdal(dat2e) 0 p e N (0.3)

(for the first inequality in (0.3) it is additionally required that I' is a so-called proper
anisotropic d4-set, see [Tri97, Definition 5.11]).

If the deviation @ = 0 then we have A\i(T) ~ k~'. This means that the Weyl exponent occurs
also in the case of proper anisotropic d 4-sets in the plane with deviation zero. But this fact
is not a surprise since those fractals are close to compact isotropic d4-sets as described in
[Tri97, 3.1]. On the other hand, when a > 0 the two exponents in (0.3) are not equal.

The study of operators of type (—=A)~! o tr!" is motivated in a natural way by the so-
called fractal drums: the problem of finding the eigenfrequencies of a vibrating membrane
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(interpreted as a bounded domain €2 in the plane R?), fixed at its boundary, having the whole
mass concentrated on some fractal compact set I' C €2, can be reduced to the study of the
eigenvalues of operators of that type. We give the necessary explanations in Section 1.1.

We want to mention here that the notion of fractal drums has several meanings. The
best known version is connected with fractal boundaries €2 whereas the membrane itself is
smoothly distributed in €2.

More information about this subject is given in [Tri97], especially in Sections 26.2 and 30.1-
30.5, where one can find a detailed discussion on these different aspects.

As for the intention here (and in [Tri97]) to study fractal membranes in smooth domains
we know only a few papers in literature, see [Fuj87], [NaS94], [NaS95] and [SoV95] and the
recent preprint [EdT98].

The aim of the first chapter is to discuss the sharpness of (0.3) and to shed some new light
on these estimates.
We consider the class of the so-called regular anisotropic fractals (or Sierpinski carpets, see
the description given in [Mul84]) which are in fact anisotropic generalisations of the Cantor

set in the plane, and prove that there exist two constants C7,C5 > 0 such that for all k¥ € N,
Cy k™ < A\(T) < Cy k™2 (0.4)

for appropriate numbers wy and wy satisfying

dq+ 2a da
- > - -
> wy Wy > %a

where A, (T') are again the eigenvalues of the operator T' = (=A)~! o tr! acting in I/?/%(Q)
This is an improvement of the results from [Tri97, 30.7] for the class of regular anisotropic
fractals and it means that the estimates from [Tri97, 30.7], briefly presented in (0.3), are not
sharp in general.

Furthermore, we indicate a large class of regular anisotropic fractals for which Ag(T) ~ k™1,
the so-called strongly regular anisotropic fractals.

The main result of this chapter, containing the precise formulation of (0.4), is presented

with comments in Section 1.4.

The second chapter deals mainly with decompositions in anisotropic function spaces of
B;,(R") and F,,(R") type and is, with the exception of Section 2.4, based on [2].
< oo}

If 1 < p<ooand (sq,...,5,) is an n- tuple of natural numbers then
is the classical anisotropic Sobolev space on R". In contrast to the usual (isotropic) Sobolev

W) R = Wi (RY) = {f € SR ¢ 1| LR+ 3
k=1

0% f "
g | Lo ()

space (s; = ... = $,) the smoothness properties of an element from W, (R") depend on the
chosen direction in R™ The number s defined by

1 1 /71 1
_ = — (— —I— e _I_ _) (0‘5)
S n S1 Sn,
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is usually called the "mean smoothness” and a = (aq, ..., a,), where
S S
ag=—, -, a,=— (0.6)
51 Sp,

characterises the anisotropy.
Anisotropic Bessel potential spaces, or fractional Sobolev spaces, defined by

s

where 1 < p < 00, s € R and a = (ay,...,a,) is a given anisotropy, generalise in a natural

Hp*(R") = {f € S'(R") H(i:(ﬂrii)s/(z“’“)f) | Lp(R")
k=1

way the above spaces (as usual, S’'(R"™) is the space of tempered distributions and f, f are
respectively the Fourier and the inverse Fourier transform of f).

Similar to the isotropic case, the study of anisotropic Bessel potential spaces H,"(R")
for a fixed anisotropy a = (aq, ..., a,), is a part of the more general theory of the spaces of
Bpi'(R™) and Fp;" (R™) type. Spaces of that type (or on domains in R™) have been studied in
great detail by S. M. Nikol’skij, [Nik77], and by O. V. Besov, V. P. II'in and S. M. Nikol’skij,
[BIN75]. It is well known that this theory has a more or less full counterpart to the basic
facts (definitions, elementary properties, embeddings for different metrics, interpolation) of
isotropic spaces By (R") and F} (R"), usually known in the literature as Besov - Triebel -
Lizorkin spaces, as it was presented in the books of H. Triebel, [Tri83] and [Tri92].

This second chapter starts presenting the definition of the anisotropic function spaces
By (R™) and Fj"(R"™). They are defined in terms of Fourier analytical quasi-norms: any
function f € S'(R™) is decomposed in a sum of entire analytic functions (c,ojf)v and this
decomposition is used to introduce the spaces.

Hence, as in the isotropic case, entire analytic functions may be considered as building blocks
for the spaces B,y (R™) and F;"(R™) in the following sense: let a problem be given, for
example mapping properties for PDE’s or ¥’DE’s between spaces of the above type or traces
on hyperplanes etc. First one asks what happens when the problem is applied to entire

analytic functions; then the rest reduces to a discussion of convergence.

In the theory of isotropic function spaces there is a well known other type of decomposition
in simple building blocks, the so-called atomic decomposition. Atoms have a history of some
twenty years and in [Tri92, 1.9], cf. also [AdH96], a historically report on this topic was given
and we do not repeat it here. We only want to mention that the (smooth) atoms in isotropic
B}, (R") and Fj; (R") spaces as they were defined by M. Frazier and B. Jawerth in [FrJ85],
[FrJ90] (cf. also [FJWO1]), proved to be a powerful tool in the theory of function spaces.
We also wish to emphasise that there exist many other types of atomic decompositions in
isotropic spaces but we will not discuss this point here.

More information about this subject is given in [FrJ90], [Tri92] and [AdH96] where one can
find many modifications and applications as well as comprehensive references extending the
subject.

Several authors were concerned in the last years with the problem of obtaining useful
decompositions of anisotropic function spaces in simple building blocks. A construction of
unconditional bases in Bp;'(R") and Fp;"(R™) spaces using Meyer wavelets was done by
M. Z. Berkolaiko and I. Ya. Novikov in [BeN93] (and then used in [BeN95]). In [Din95a,
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Theorem 1] P. Dintelmann obtained a decomposition for anisotropic function spaces which
is the counterpart of the characterisation of isotropic function spaces with the help of the
¢-transform of M. Frazier and B. Jawerth (see [FrJ90] and the survey [FJWO91]) and used it
in connection with the theory of Fourier- multipliers for anisotropic function spaces.

Our approach is different, especially from the point of view of the localisation of the building

blocks.

The main aim of this chapter is to define smooth anisotropic atoms and to obtain a de-
composition theorem which extends the atomic decomposition theorem of M. Frazier and B.
Jawerth, see [FrJ85] and [FrJ90], to the anisotropic function spaces Bpy (R™) and F,g" (R™).
Roughly speaking, we prove that for any element g € Fy;"(R") it is possible to find a decom-

position (convergence in S’(R™))

oo

9= Mom Pl (0.7)
v=0mezZ"

where p?%  are the anisotropic atoms and A = {A,,, : v € Ng,m € Z"} belongs to an

appropriate sequence space fg, such that |lg| Fpy"(R”)|| ~ [[A| f2,]] (and a similar assertion

for Byy' (R™) spaces).

Hence the study of function spaces can be done with the help of some sequence spaces in an

analogous way as it is done in the isotropic case in the above cited works of M. Frazier and

B. Jawerth. The necessary explanations and details are given in Section 2.3.

The essential ingredient in proving (0.7) (which is Theorem 2.6) was a theorem on local
means in anisotropic function spaces, briefly presented in Section 2.2, which is of independent
interest because it extends the results from the isotropic case, see [Tri92, 2.4.6, 2.5.3].

As an application of our atomic decomposition theorem we give in Section 2.4 a unified
approach to the study of traces of anisotropic function spaces.
This technique allows us to re-obtain the trace theorems proved in [Nik77], [BuG79], [Gol79a],
[Gol79b], [Kal79] and to extend them to the whole admissible range of parameters from the

definition of the anisotropic function spaces By, (R") and F,*(R").

However in (0.7) (and in Theorem 2.6) no information is given about the possibility
of obtaining atomic decompositions in which the atoms are constructed with the help of
(anisotropic) dilatations and translations from one smooth function p having compact sup-
port, cf. also [BeN93, Comment 2].

For isotropic function spaces this was already done by M. Frazier and B. Jawerth, see [FrJ90,
4.2], and by W. Sickel, see [Sic90]. It might be possible to extend the technique of W. Sickel,
at least for large values of the smoothness parameter, using the characterisation of anisotropic
function spaces via oscillation from the work of A. Seeger, [See89]. But to construct such
a basic (or mother) function p for the atoms having all required properties seems to be not

very easy, at least at the first glance, see the above cited papers.

We arrive at the subatomic (or quarkonial) decomposition theorem (Theorem 2.12) which
is presented in Section 2.5. This theorem states that given g € F)"(R") (with s sufficiently

large) it is possible to obtain the decomposition

0= 3 S A (Gau), (0.5)

BENT v=0 meZn



INTRODUCTION 5

convergence being in S'(R"), with

g | F3i* (R™)|[ ~ sup 277 A7) ol (0.9)
BENY

where r > 0 is large enough, af = a1/ + ... + a, 3, if § is the multi-index (51, ..., 8,),
N = {/\fm : v € Ng,m € Z"} and where each (fqu)?,, is an extremely simple building block
(in particular an anisotropic atom without moment conditions), called anisotropic quark,
compactly supported and which can be obtained starting from one smooth function (and a
corresponding assertion for B,y (R™)).

One obtains a total decoupling and decomposition in elementary building blocks which re-
sembles the Taylor expansion of analytic functions.

Of course in (0.8) there are infinitely many sums over (v, m) € Ng X Z" but this is well com-
pensated by (0.9) with r large. Furthermore, it turns out from the proof that the dependence
of the coeflicients /\fm on ¢ is linear.

Isotropic quarks were recently introduced by H. Triebel in [Tri97] and the subatomic
(quarkonial) decomposition theorem he obtained in [Tri97, Chapter 14] proved to be a very
useful ingredient for the estimation of entropy numbers of compact embeddings between func-
tion spaces on fractals. Compared with the results in [Tri97, Chapter 14] our Theorem 2.12
is in fact the extension of quarkonial decompositions to anisotropic function spaces in the
case of large values of the smoothness parameter, in particular for s > 0if p > 1 and ¢ > 1.
Explanations about the reason why we restricted ourselves only to large values of the smooth-
ness parameter are given in Remark 2.14.

In the third chapter we use the powerful tools that we have now at our disposal, the
atomic and the subatomic decomposition theorems in anisotropic function spaces from Chap-
ter 2, to study the eigenvalue distribution of some fractal semi - elliptic differential operators.
This should complement the theory developed in Chapter 1 for the (fractal elliptic) operator
(=A)~' o trh,

To make our plans clearer let us briefly return to what is done in Chapter 1. In Theorem

1 o trl', T being a regular

1.10 we obtain estimates of type (0.4) for the operator (—A)
anisotropic fractal. The exponents in (0.4) are not equal in general, see the precise formulation
in Theorem 1.10.

This fact should be not a big surprise since one can imagine that the different nature of the
(isotropic) operator —A and the (anisotropic) structure of I' would cause difficulties, see also

the discussion in [Tri97, 4.16].

In the third chapter our intention is to replace the Dirichlet Laplacian —A in (0.2) by a
model semi - elliptic differential operator A which was studied by H. Triebel in [Tri83*] and
V. Shevchik in [She98].

We will investigate spectral properties of the new operator A~! o t7!" acting in an appropriate
o

anisotropic Sobolev space W(zsl’SQ)(Q). Furthermore, if the anisotropy of the fractal I' is the

o
same with that of the Sobolev space Wgsl’sz))(Q) where the new operator is acting, we are
interested in the possibility of obtaining estimates of type

M(A7 o tr!)y ~ k7Y, keN, (0.10)
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(equivalence constants independent of k € N) for its eigenvalues, where w is an appropriate

positive number.

The main result of Chapter 3 is presented in Section 3.3, Theorem 3.16, but there are two
preparatory sections which are of independent interest.

Having the two - dimensional anisotropic Cantor sets in mind we define in Section 3.1
regular anisotropic d-sets (0 < d < n) in R™.
Roughly speaking, given an anisotropy a = (aq, ..., a,), a regular anisotropic d-set (0 < d < n)
is a compact set I' C R™ which can be covered for any j € Ny with N; ~ 274 disjoint rectangles
having sides parallel to the axes and with side lengths r{’l 4
Js
;

e it = 1,..., N; satisfying
rit 0 27301 for any ¢ = 1,...,n (the equivalence constants being independent of j, [, ¢); this
definition extends in a natural way the anisotropic Cantor sets described in the first chapter,

see Example 3.8 below.

Clearly there exists a Radon measure underlying to a regular anisotropic d-set I'.
Interpreting any fr € L,(I'), 1 < p < 00, as a tempered distribution on R” in the usual way,
in Section 3.2 it is shown that certain subspaces of some anisotropic function spaces By, (R")
can be identified with L,(I"); more precisely it is proved that

d

L) = {7 e ) f9) =0 i peS®), dr=0} (a1

and

n—d7a

trrB, 7 (R") = Ly(T) (0.12)
where ¢|I" is the restriction of ¢ to I' and zl? + z% =1.

The main tool in obtaining (0.11) and (0.12) is the atomic decomposition theorem in anisotropic
function spaces.

The above characterisations for the spaces L,(I'), (0.11) and (0.12), are not only anisotropic
counterparts of the results obtained in [TrW96b] (where H. Triebel and H. Winkelvof proved
that there is a perfect link between L, spaces on isotropic d-sets and the Fourier analytically
defined - isotropic - Besov spaces Bj, on R", see also [Tri97, 18.2,18.6]), but they play a key
role in the proof of the main result of this chapter, see Theorem 3.16 and the proof in Section
4.5.

Let Q = {2 = (z1,22) € R? : 2% 4+ 23 < 1} be the unit disc in the plane and let dQ be its
boundary.

In order to extend the theory of regular elliptic operators to more general classes of oper-
ators, H. Triebel considered in [Tri83*] the semi - elliptic differential operator:

_8%(9@) d*u(x) r
du? ox} n?(x1)

(Aru)(z) = u(z), @ =(z1,22) €,

where r € R, and 7 is a C*° function on the interval [—1, 1] with 5(¢) > 0 if |[{| < 1 and

limwzlimwzl7
11—t tl-11+1¢

and a corresponding boundary value problem

Aru(z) = f(z), @€,
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W) =) ) = 0als) v € 0D,

where f, g1 and gy are given functions.

In [Tri®3*] he obtained a-priori estimates for the operator A, in the framework of the

anisotropic Besov spaces BZ();’ZS) (Q, 2%, 21) and the anisotropic Sobolev spaces WZSS’QS) (Q,2° 2
where 1 < p < o0.
These two scales of spaces (our notation here is slightly different from the original one in
[Tri83*] where they were denoted BZ();’ZS) (2) and WZSS’QS) (2)) were considered in [Tri84] taking
into account the singular points 2% = (=1, 0) and 2! = (1,0). They are close to the anisotropic
spaces on 2 but their elements show (roughly speaking) a peculiar behaviour near the singular
points 2% and z'.

A description of this theory may be found also in [ScT87, Section 4.8].

Spectral properties of A, acting as an unbounded operator defined in L,(Q), 1 < p < oo,
having domain of definition D(A,) = {u € WZSQA)(Q,xo,xl) w0 = 887“2 | 0 = 0}, see
(4.57), were discussed by V. Shevchik in [She98]. In particular he proved that the asymptotic
behaviour of the eigenvalues of A, is ”intermediate” between that one of the homogeneous
boundary value problem for the Laplace operator on a domain (A;(A) ~ k) and the same
problem for the biharmonic operator (A;(A?) ~ k%), namely (A, ) ~ k3.

Considering I' C € a regular anisotropic d-set with respect to the anisotropy ¢ = (%, %)
and trl the trace operator in the interpretation (0.1), the main objective of this chapter is

to show that for sufficiently large r the operator
At otr!

is compact, non-negative, self adjoint in the anisotropic Sobolev space
o J
wi2(Q) = {u e W(Q) : uloQ = 87“@9 = 0}
2

and that there exist constants ¢, C' > 0 such that its positive eigenvalues Az(A ! o trr),
repeated according to multiplicity and ordered by their magnitude, can be estimated by

ek ) <A onT) < CRTHIR) | pe. (013)

We think (0.13) is a satisfactory result since it is an estimate of type (0.10) to which we
aimed at.

We also think that the proof of (0.13) is of interest for its own sake. The methods how the
two sides of (0.13) are obtained are rather different.
Using the subatomic decomposition theorem we estimate (see Subsection 3.2.3) the entropy
numbers of some embeddings between function spaces which generalise to the anisotropic
case the results from [Tri97, 20.5,20.6] and complement Theorem 22.2 in [Tri97]; to return to
the eigenvalues and to the proof of the estimate from above in (0.13) one has then only to
apply Carl’s inequality (see [Carl81]).
To prove the estimate from below in (0.13) we investigate the approximation numbers of
the operator (A" o t71)1/2 (and here we use again the atomic decomposition theorem in
anisotropic function spaces).



8 NOTATION

Finally we want to give here some technical explanations. As it was already mentioned, the
details of the proofs are given in Chapter 4 and in the Appendix. What we called ” Appendix”
congsists of the two papers:

[1] W. Farkas and H. TRIEBEL, ‘The distribution of eigenfrequencies of anisotropic fractal
drums’, J. London Math. Soc., to appear

[2] W. Farkas, ‘Atomic and subatomic decompositions in anisotropic function spaces’,
Math. Nachr., to appear.

We always refer to the above papers as indicated above in order to emphasise that those
publications belong to the present work itself, whereas all the other literature is quoted in a
different way.

Notation

As usual, R” denotes the n-dimensional real Euclidean space, N are the natural numbers,
No = NU {0}, and C stands for the complex numbers.

Let S(R™) be the Schwartz space of all complex-valued rapidly decreasing C'* functions on
R"™ equipped with the usual topology. By S’'(R") we denote its topological dual, the space of
all tempered distributions on R”. If ¢ € S(R") then § = F and ¢ = F~1¢p are respectively
the Fourier and inverse Fourier transform of ¢. One extends F and F~! in the usual way
from S(R") to S"(R™).

For a normed or quasi-normed space X we denote by ||z | X|| the norm of the vector z.
Recall that X is quasi-normed when the triangle inequality is weakened to ||z + y| X <
c(le | X[+ ||y | X||) for some ¢ > 1 independent of 2 and y.

The embedding of the quasi-normed space X into the quasi-normed space Y is denoted
X =Y.

All unimportant positive constants are denoted with ¢, occasionally with additional subscripts
within the same formulas. The equivalence "term; ~ terms” means that there exist two
constants c¢g,co > 0 independent of the variables in the two terms such that ¢; term; <
termy < ¢y term;.



1 The distribution of eigenfrequencies of regular anisotropic
fractal drums

1.1 Motivation

Let Q be a bounded domain in the plane R? with C*° boundary 042, interpreted as a membrane
fixed at its boundary. Vibrations of such a membrane in R® are measured by the deflection
u(z,t) where & = (21,22) € Q and t > 0 stands for the time. In other words, the point
(z1,22,0) in R® with (z1,22) €  of the membrane at rest, is deflected to (z1, z2, u(x,t)).

Up to constants the usual physical description is given by

O*u(x,t)

Au(z,t) = m(x)aT,

zeQ, >0, (1.1)

and
u(y,t)=0 if yeoQ, ¢>0,

where the right-hand side of (1.1) is Newton’s law with the mass density m(z). Of course,
A= % + % stands for the Laplacian.

To find the eigenfrequencies one has to insert u(x,t) = €"v(x) with n € R in (1.1) and
obtains

~Av(z) = *m(z)v(z), =€Q; ovly)=0 if ycIQ

where one is interested in non-trivial solutions v(z). Hence one asks for the eigenfunctions

and the eigenvalues of the operator
T=(-A)"tom(") (1.2)

where —A stands for the Dirichlet Laplacian. If A is such a positive eigenvalue then n = A3
is the related eigenfrequency.
If the mass is evenly distributed, that means that the mass density is constant, then the
eigenvalues A, (T') of T satisfy

M(T) ~ k™Y keN,

2

where ”~” means that there exist two constants 0 < ¢; < ¢9 < oo such that

Clk_l S Ak(T) S CQ]C_I s k € N.

If the mass is concentrated on some compact fractal set I' with I' C € the situation becomes
more complicated.
Recall that a compact I' C R? is called a d-set if there exists a Radon measure g in R? with
suppp = I' and there are two constants ¢1,c2 > 0 such that for all v € I' and all » with
0 <r <1 we have

erd < w(B(y,r)nT) < e re,

see [Tri97] and references given there. It turns out that up to equivalence constants the
above measure p is H|I' where H? is the d-dimensional Hausdorff measure. Fractal geometry
supplies us with a large number of d-sets such as self-similar fractals, see [Fal90].

If I' is a compact d-set in R? with measure y then, according to H. Triebel [Tri97, Sections
28-30], the operator corresponding to (1.2) looks like

T=(-A)"totrt (1.3)
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where trl" (closely related to the trace operator trr) is the operator defined in (0.1).
It turns out that if 0 < d < 2 then the operator T is compact, self adjoint and non-negative

in I/?/%(Q) As proved in [Tri97, 30.2] for its positive eigenvalues one has again
M(T)~ k™, keEN,

or, in an n- dimensional (n > 2) setting if n — 2 < d < n then

Me(T) ~ k=0 keN.

New effects will occur if one replaces isotropic d-sets by more general compact fractals [I' with
I’ € Q. This is the point where anisotropic constructions are coming in.

As mentioned in the introduction, the main aim of this chapter is the study of the eigenvalue
distribution of the operator 1" defined in (1.3) in the case that I' C Q is a regular anisotropic
fractal and to shed new light on the estimates from [Tri97, 30.7] (briefly presented in (0.3)).

1.2 Regular anisotropic fractals

Let @ = [0,1] x [0,1] and let log be taken with respect to the base 2, let 1 < Ky < Ky be
natural numbers, and let

2 log I(l . 2 log I(Q

= log(Kl I(Q) ' 2= log(Kl I(Q)

_ %1og(1(11(2). (1.4)

Let (A,,)N_, be N > 2 contractions of R? into itself specified by
Ay 1 = (zy,29) = (" 27"y, my 272 xg) + 2™ (1.5)

for every m = 1, ..., N where n*, nj* € {—1 —|—1} (including possible reﬂections)
We assume A,,QQ C Qforallm=1,...., N; A, Q NA, Q 0if m # m' and Z vol A,,Q < 1.

=1
We suppose, in addition, that the rectangles A,, () are located in the Columns as indicated in
Figure 1.

-
\\&\\Vh g

o 5\\\\§ _______
. x\w\ _____ |

Fig. 1

Let
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(AQ)" = A ((AQ)"™") = U Ap 0..0A,,Q : veN.

1<my,....mp<N
This sequence of sets is monotonically decreasing and by [Fal85, Theorem 8.3] its limit

I'=(AQ)™ = [ (4Q)" = lim (AQ)

V— 00
veN

is the uniquely determined fractal generated by the contractions (A,,)N_,.

Fractals constructed in this way are anisotropic generalisations of the Cantor set in R? and
were called generalised Sierpinski carpets in [Mul84] (since Sierpinski’s universal curve is a
special case of this construction) or regular anisotropic fractals in [Tri97, 4.18].

Let n; denote the number of rectangles A,,@ in the [th column, [ =1, ..., K;.
Throughout this work we will assume that n; > 1 for any [ = 1, ..., Ky (in each column there

is at least one rectangle A,,Q located).

The Hausdorff dimension (see [Fal90, 2.2] for definition) of I" is

K
. 1 log K1/ log K
dimyT = 1 B/ To8 e 1.6
and the box-counting dimension (see [Fal90, 3.1] for definition) of I is
. log (N/ K1)
d r=14+————+-—-. 1.
s —I_ log I(Q ( 7)

Proofs of (1.6) and (1.7) are given in [Mul84], see also [Fal90, Example 9.11].
Notice that in this type of examples the Hausdorff dimension depends not only on the number
of rectangles selected at each stage but also on their relative position. Moreover, it is clear

that dimy " and dimgl" are not, in general, equal.

Let (A,,)N_, be the N > 2 affine maps introduced in (1.5). The affine dimension of I' =
(AQ)®°, see [Tri97, 4.12], is the uniquely determined positive number d4 = dim 41" such that

Z (vol A,,Q)%4/% = (1.8)

m=1
By construction we have N = 294,

Recall we assumed a; < ay (which is equivalent to K; < K3) so let
a=1—a; =ay — 1.

Definition 1.1 Ifny = ... =ng, = N 2-r(1=a) (in any column there is the same number of

rectangles) then we call I a strongly regular anisotropic fractal.

dA-I—Qa

1.~ asasimple

Remark 1.2 If [ is strongly regular then dimy' = dimgl’ =
consequence of (1.6), (1.7) and (1.8).

It will be clear from all what follows that the typical number which also appears in case of
arbitrary regular anisotropic fractals is
dq+2a

1+a ’

d=

see also Remark 1.7 below.
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Theorem 1.3 ([1ri97, 4.15]) Let I' be the regular anisotropic fractal introduced above having
the affine dimension d 4 according to (1.8).

Then there exists a Radon measure i in R? uniquely determined with supp u =T and
PN A, 0.0 Ay Q) = (vol Ay, 0.0 Ay Q)72
for all j € N and all mq,...,m; € {1,..., N}.

Definition 1.4 Let n,,q, = max{n; : 1 <1 < Ky} and ng,;, = min{n; : 1 <[ < Ky},
Then there exist two numbers AT >0 and A\~ < 0 such that

g = N 2700 9rl=alXT gy = N g=r1=a) gr(i=a)A™, (1.9)

We call AT the upper mass concentration factor of I' and A\~ the lower mass concentration
factor of I since these numbers give information about the distribution of the rectangles in

Figure 1 and about the structure of I'.

Remark 1.5 (i) Clearly A* < 1 since we assumed n; > 1 for every [ € {1, ..., K}.
(ii) We have AT = A~ = 0 if, and only if, " is strongly regular according to Definition 1.1.

It is clear that for any j € N there are N7 = 27794 rectangles of type R;j=Ap,0...04,,Q,
having side lengths 2=7%(1=%) 9=i%(144) helonging to (AQ).

Let R; be such a rectangle. We subdivide R; in rectangles I/;; having side lengths
2-(tm)r(l=a) and 2-i5(1+2) guch that

2—jﬁ(1+a) —~ 2—(j+m)ﬁ(1—a) )

The rectangles F/;; are almost squares; it is immaterial for what follows to assume that £

are squares, what means
2—jﬁ(1+a) — 2—(j+m)ﬁ(1—a)‘

The lemma below gives an information about the mass concentration in £j; ([ = 1, ..., 2/%2%)

and it played a key role in our considerations.

Lemma 1.6 There exist constants ci,cy > 0 such that for any square L of side length
27v(1=2) e have

e 27T < (T 0 By < e 27T AT (1.10)
where

. dA—I—Qa(l—/\_)
o 1+a

dA—I—Qa(l—/\"')
1+a )

d(A\7) and d(AT) =

The detailed proof is given in [1, 2.6,2.7].

Remark 1.7 If [' is strongly regular then I' is an isotropic d-set (see the previous section for

definition) where d = d"i_l_%za. This is a simple consequence of (1.10) and of Remark 1.5/(ii).
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1.3 L,- spaces on regular anisotropic fractals
Some preliminaries. We recall here the definition of Besov spaces on R2.
Let ¢o be a C°° function on R?, @o(z) = 1if |2| < 15 supppo C {z € R? : |z| < 2} and let

0i(z) = ©o(2792) — po(279F a) if j € N. Then Y p;(z) = 1if € R? and (¢;)jen, is a
7=0

smooth dyadic resolution of unity.

Let 0 < p < 00, 0 < g < o0, s € R; the Besov space B;q(Rz) consists of all tempered
distributions f € S'(R?) for which the quasi-norm

1/q

11 Bs, (BRI = [ D27 1(, /)Y | L (RP)|°
7=0

(with the usual modification if ¢ = o) is finite. Here g = F'g and § = F'~1g are respectively
the Fourier and inverse Fourier transform on S’(R?). These are quasi-Banach spaces (Banach
spaces if p > 1 and ¢ > 1) which are independent of the choice of (¢;);en,.

The space H3(R?) = B$,(R?) is the fractional Sobolev space.

Function spaces of F, (R?) type, 0 < p < oo, are defined changing the roles of the spaces
L,(R? and [, in the above definition but we do not stress this point here.

A systematic treatment of the theory of BS (R?) and F? (R?) spaces may be found in the
books [Tri83] and [Tri92]; for a more recent account we refer also to [EdT96] and [RuS96].
These two scales of function spaces include many well-known classical spaces such as Sobolev
spaces, Holder - Zygmund spaces and inhomogeneous Hardy spaces.

The structure theorem. 1f T' is a closed set with Lebesgue measure |[I'| = 0 and if s € R,
0<p<oo,0<g<oothen we define

s, A s AR _ : 2 _
By R ={feB},(R") : flp) =0 if ¢eSRY, ¢ll'=0}
where ¢|I" is the restriction of ¢ to I'.

We have supp f C I'if f € B;EJF (R?) in any case. Remark also that if 0 < p < 00, 0 < ¢ < 00
and s > 2(% — 1)4 (if b € R then by = max(b,0)) then B (R?) — LP(R?) ([Tri92, Remark
2.3.2/3]) and, hence, B3 (R2) = {0} is trivial.

In other words, only values s < 2(% — 1)+ (in particular s < 0 if 1 < p < c0) are of interest.

Let I' be the regular anisotropic fractal constructed above. The L,- spaces on I', 0 < p < o0,
are introduced in the usual way with respect to the underlying Radon measure p on I’
according to Theorem 1.3.

If 1 < p < oo then any fr € L,(I') can be interpreted as a tempered distribution f € S'(R?)
given by

f(g) = /F fe() (@D () du(y), o € SR?). (111)

Theorem 1.8 Let I' be a reqular anisotropic fractal with upper mass concentration factor
AT and affine dimension dy. If 1 < p < 0o and Zl)—l— z% = 1 then (in the sense of (1.11))

_ﬂ}_"'l d 2a9(1 — \t
Ly(D) = Bpoo ®  (R?*)  where d(A*) = At 1a—|(_ )
a

(1.12)
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Moreover, if I' is strongly regular and if 1 < p < oo then (in the sense of (1.11))

da+2a

L,(T) = Bpo' " (R where d= T

(1.13)

One has to consider a square Q(x,t) centred at € R? and with side length 9-va(l=a). py
the right-hand side of (1.10) we have u(I' N Q(x,1)) < ¢t%*"),

To prove (1.12) one has now to follow the lines of the proof of [Tri97, Theorem 18.15/ Step
1] making the above modification.

If I' is strongly regular then d(A%) = d and I' becomes an isotropic d-set; then (1.13) is in
fact [TrW96b, Theorem 2/(8)].

Traces. Assume that [ is a regular anisotropic fractal; if ¢ € S(R?) then trpe = ¢|I makes
sense pointwise. If 0 < p,¢ < co and s € R then trpBg, (R?) < L,(I') must be understood
as follows: there exists a positive number ¢ > 0 such that for any ¢ € S(R?)

[tree | Lyl < e [[o] By, (R

Since S(R?) is dense in B;, (R?) this inequality can be extended by completion to any f €
B, (R?) and the resulting function is denoted trr f.

In addition, the equality trpBj, (R?) = L,(I') means that any fr € L,(I') is the trace of a
suitable g € B? (R?) on I' and

1fo [ Lp(D)|| ~ inf{llg| By, (R?)|| : trrg = fr}.

Theorem 1.9 Let I' be a reqular anisotropic fractal with upper mass concentration factor
At and affine dimension da. If 1 < p < oo then

2-d0t) dy+2a(1— AT
trrB,; © (R%) < L,(I) where d(\*) = + 1“J(r ) (1.14)
a
Moreover, if I' is strongly reqular and if 1 < p < oo then
2=d di+2a
N A
trerlp (R ) = Lp(F) where d = 1—|—7a (115)

If p = oo we have B, (R?) < C'(R? and (1.14) is obvious (here C'(R?) is the space of all
uniformly continuous bounded functions on R?). To prove (1.14) for p < oo one has to repeat
the arguments from [Tri97, Theorem 18.15/ Step 2] with d(AT) instead of ﬂ_—f“a. In addition,
(1.15) is [TrW96b, Theorem 2/(9)].

Theorems 1.8 and 1.9 pave the way to the main result of this first chapter (which is presented
in the next section) but we hope that they are also of independent interest. They complement
the results from [Tri97, 18.15,18.17] and are closely related to the theorems in [TrW96b], see
also [Tri97, 18.2,18.6].

1.4 The main result

As usual, Q stands for a bounded domain in R? with C* boundary and D'(Q2) denotes the
space of all complex-valued distributions on €2.

Let 0 < p < o0, 0 < g < oo, s€R;the space B; () is defined as the restriction of B}, (R?)
to Q, that means BS (Q) = {f € D'(Q) : there exists a g € B3, (R?) with g[Q= [},
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£ 1 B5,(Q)|| = inf ||g | BS,(R?)|] where the infimum is taken over all g € B$, (R?) such that its
restriction to €, denoted by ¢|€2, coincides in D'(€) with f. In particular Bi,(Q) = W1(Q).

In the sequel I' C © will be a regular anisotropic fractal and we shall not distinguish between
Jr as an element of some L,(I') and as the distribution belonging to some B 7 (€2) according
to (1.12).

To avoid any misunderstanding we emphasise that the trace operator has two different mean-
ings which we distinguish by ¢rr and ¢! if extra clarity is desirable.

If, for example, 1 < p < oo, then

2-d(xTt)
trr @ By T (Q2) = Ly(l) (1.16)
by (1.14) and
2-dxt) _2=d0h)
' s Byt ()= By T (Q) (1.17)

if one applies in addition (1.12). The latter can be rephrased asking for an optimal extension
of trl' considered as a mapping from D(Q) into D'(Q) given by (0.1).

Recall (—A)~! stands for the inverse of the Dirichlet Laplacian in €.

Theorem 1.10 Let Q be a bounded domain in R? with C*° boundary. Let ' C Q be a regular
anisotropic fractal having respectively upper and lower mass concentration factors At and A\~
according to (1.9) and having affine dimension d4 according to (1.8).

Let

. dg + 2@(1 — /\_)
o 1+a

dA—I—Qa(l— /\+)
1+a

d(A\7) and d(\T) =

and

d:dA—I_Qa.
1+a

(1.18)

Let tr' be the trace operator in the interpretation (1.17) and (0.1) whereas trp stands for the
trace operator according to (1.16).

(i) The operator T = (=A)~'otrl is compact, non-negative, self adjoint in I/?/%(Q), has null
space N(T) ={f EI/?/%(Q) ttrrf =0} and is generated by the quadratic form in I/?/%(Q)

[ I = (T fghwyy where W), g @@,

and p is the Radon measure according to Theorem 1.3.
(ii)  There exist constants c1,cy > 0 such that the positive eigenvalues A (T) of T, repeated
according to multiplicity and ordered by their magnitude, can be estimated by

- +
kST <MD < ek~ ke (1.19)

Furthermore, if I is strongly regular then there are constants ¢y, co > 0 such that

(4] k_l S Ak(T) S C9 k_l.
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We want to mention that the proof of (1.19) is splitted up into two different approaches. The
estimate from above is proved using entropy numbers of some embeddings between function
spaces and then applying Carl’s inequality (see [Carl81]) to return to the eigenvalues whereas
the estimate from below is based on the investigation of the approximation numbers of the
operator \/T .

All details (including some basic facts on entropy and approximation numbers) are given in
[1], Sections 4 and 5.

Remark 1.11 According to Definition 1.4 and to Remark 1.5/(i) we have 0 < At < 1 and
this implies d(i;) > dfﬁ' Hence the estimate from above in (1.19) is an improvement of

the estimate from above in [Tri97, 30.7], see (0.3).

Remark 1.12 If —1 < A7 < 0 then d(z_) < dAdLAza and the estimate from below obtained in

(1.19) is better than the estimate from below in [Tri97, 30.7], see (0.3).

Remark 1.13 By [Tri97, 30.2] (isotropic fractal drum) it is not a surprise that if AT = A~ =
0 then the two exponents in (1.19) are both —1 since in this case the regular anisotropic fractal
I' becomes an isotropic d-set, where d is the number from (1.18).

We think that Remarks 1.11 and 1.12 give a satisfactory answer to the question posed in
[Tri97, 30.11] if additional geometric information on the self affine fractals provide the possi-
bility of an improvement of the estimates from [1ri97, 30.7], see (0.3).
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2 Decompositions in anisotropic function spaces

2.1 The spaces B;*(R") and [*(R")

From now on let n > 2 and let @ = (ay, ..., a,) be a given anisotropy (an n- tuple of strictly
positive numbers with ay + ... + a,, = n).

We put a5, = min{a; : 1 <i<n}and a4, = max{a; : 1 <i<n}.

If a=(1,...,1) then we will speak about the "isotropic case”.

The action of t € [0,00) on @ € R” is defined by the formula:
e = (t" 2y, .., t"2,) .
For t > 0 and s € R we put t**z = (t*)%x. In particular we write {™%z = (t7!)%z and
2770 = (277) %,
For . = (21, ...,2,) € R", & # 0, let ||, be the unique positive number ¢ such that

2 2

x x
bt =1 (2.1)

t2an

and let |0|, = 0.
By M. Yamazaki, [Yam86, 1.4/3,8], | - |, is an anisotropic distance function in C*°(R"\{0}).
Remark that in the isotropic case |z|, is the Euclidean distance of & to the origin.

Let o a C* function on R, ¢po(z) = 1if |2], < 1, supppo C {z € R" : |z|, < 2} and

0;(2) = po(277%) — o (207D if j € N. Then . ¢;(2) = 1if 2 € R™ and (¢;);en, is a
J=0
smooth anisotropic dyadic resolution of unity, cf. [ScT87, 4.2].

For f € S'(R") since ; f is compactly supported the Paley - Wiener - Schwartz theorem
provides that (¢;f)" is an entire analytic function on R".

Definition 2.1 (i) Let 0 < p < 00, 0 < g < 00, s € R; then B,y (R™) is the collection of all
f € S"(R™) for which the quasi-norm
- 1/q
1£1 By R = { D27 (i /)Y | Lp(R™)|° (2.2)

=0

(usual modification if ¢ = oo) is finite.
(ii) Let 0 < p < 00, 0 < g < 00, s € R; then Fpy"(R") is the collection of all f € S'(R™) for
which the quasi-norm

1/q

11 Epg* (R = Zstql(@jf)v(-)lq | Lp(R") (2.3)

(usual modification if ¢ = oo) is finite.

Of course the quasi-norms in (2.2) and (2.3) depend on the chosen system (¢;);en,. But this
is not the case for the spaces Bp;' (R") and F,"(R") (in the sense of equivalent quasi-norms)

and that is the reason why we may omit in our notation the subscript (¢;);en,-



18 CHAPTER 2: DECOMPOSITIONS IN ANISOTROPIC FUNCTION SPACES

The above spaces are denoted B (R™) respectively F} (R") in the isotropic case. As men-
tioned in the previous chapter, a systematic treatment of the theory of B (R") and I}, (R")
spaces may be found in the books of H. Triebel [Tri83], [Tri92]; for a more recent account of
the theory we refer the reader also to [EdT96] and [RuS96].

A survey on the basic results for the (anisotropic) spaces By (R") and Fp;"(R™) may be
found in [ScT87, 4.2.1-4.2.4] and [Joh95, 2.1-2.2]. In this context we refer to the works of
S. M. Nikol’skij [Nik77], O. V. Besov, V. P. II'in and S. M. Nikol’skij [BIN75], B. Stockert
and H. Triebel [StT79], M. Yamazaki [Yam86], A. Seeger [See89], P. Dintelmann [Din95b,
1.2.8-1.2.10] ete.

An extension of (2.3) to p = oo is not reasonable; in [Tri92, 1.5.2] this point was discussed in
detail.
Both B, (R") and Fj;"(R") are quasi-Banach spaces (Banach spaces if p > 1 and ¢ > 1).

As in the isotropic case, see [Tri83, 2.3.3], the embeddings S(R") < By (R™) < S/(R™) and
S(R") < Fp"(R") <= S(R") hold true for all admissible values of p, ¢, s. Furthermore, if
se€Rand 0 < p< o0, 0 < ¢ < oothen S(R") is dense in Byy' (R") and F,"(R"™), see [Yam86,
3.5] and [Din95b, 1.2.10].

We want to point out that if 0 < p < co and s € R then By,'(R™) = I (R").
If 1 <p < ocands € R then (in the sense of equivalent quasi-norms) I75"(R") = Hy*(R")

where
< oo}

is the anisotropic Bessel potential space (see [StT79, Remark 11], [Tri77, 2.5.2], and [Yam86,
3.11)).
Furthermore, if 1 < p < oo, s € R and if s; = s/a; € N,..., s, = s/a,, € N then (in the sense
of equivalent quasi-norms) I75"(R") = W, (R") where

< oo}

Hp*(R") = {f € S'(R") : H (Z(Hfi)s/@“’“)f) | Lp(R")
k=1

Wy (R") = {f € S'(R™) : [IF I LRI+
k=1

0% f "
g | o)

is the classical anisotropic Sobolev space on R™.

2.2 Local means

Given the anisotropy ¢ = (ay,...,a,) if £t > 0 and @ = (21, ..., 24), ¥y = (Y1, .-, Yn) € R™ we
will use the notation z +t*y = (x1 +t* y1, ..., 2, +t*"y,). If B* ={y € R" : |y|, < 1} is the
anisotropic unit ball in R”, k is a €™ function on R" with suppk C B® then we introduce
the local means (cf. [Tri92, 2.4.6/1])

K@) = [ Ko S+ endy = [ im0y fee @)

n n

which make sense for any f € S’(R"™) (appropriately interpreted).

1
Up:n(——l) .
p +

If0<p<oolet
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Theorem 2.2 Let ky and k be two C*° functions on R™ such that

suppko C B, |ko(&)| >0 if  |¢l. <2
~ 1
suppk C B®, |E(&)] >0 if 3 S €], < 2.

Let r > 0 and assume that there exists a constant ¢ > 0 such that
|E(E)| <cl&lh for & near zero. (2.5)

(i) Let 0 < p < o0, 0< ¢g< oo andse€R. Ifr > max(s,o,) + 0, then

1/q
o0

Iko(L, £) I Lp(R™) |+ | D027 1k(277, £) | Ly(R™)||?

J=1

(usual modification if ¢ = o) is an equivalent quasi-norm in By (R™).

(i) Let 0 < p< o0, 0 < g<ooandseR. Ifr> max(s,ap)—l—#(%q) then

1/q

1o (L, F) [ Lp(R")| + Zstqlk(ijf)(-)lq | Lp(R")

(usual modification if ¢ = o) is an equivalent quasi-norm in Fp;" (R").

o~

The advantage of (2.4) compared with (¢, f)" from Definition 2.1 is its strictly local nature:
in order to calculate k(t, f)(z) in a given point z € R" one needs only a knowledge of f(z)
in an anisotropic ball {z € R" : |z — 2|, < t}. This observation was of great service for us in
the proof at the atomic decomposition theorem, see the next section.

The detailed proof of the above theorem is given in [2, Theorem 4.9]. The main ingredient
for proving it is a rather general but highly technical characterisation of the spaces Bp;' (R")
and Fp;"(R™) which extends to the anisotropic situation the results from [Tri97, 2.4.1,2.5.1],
see [2, Theorem 4.4].

Remark 2.3 Theorem 2.2 is the main tool in obtaining the atomic decomposition theorem
for the anisotropic function spaces Bp;' (R") and F;"(R™) but it is also of independent inter-
est. Its isotropic counterpart can be found in [Tri92, 2.4.6, 2.5.3]; instead of (2.5) it is used
the representation

(with 2N = r sufficiently large and k° € S(R")) which is in fact
k(€)= €V ROE).

But this assumption was taken only for simplicity and it can be replaced by (2.5) with the

Euclidean distance | - | instead of | - |,.

Remark 2.4 Examples of functions k satisfying the assumptions of the theorem can be
constructed as in [FrJ85, p.783].
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2.3 Anisotropic atoms and the atomic decomposition theorem

Recall @ = (aq, ..., a,) denotes a given anisotropy. Let Z" be the lattice of all points in R”
with integer-valued components. If v € Ny and m = (my, ..., m,) € Z" we denote Q. the
rectangle in R™ centred at 27"*m = (27"*'my, ..., 277*"m,,) which has sides parallel to the
axes and side lengths respectively 277%1, ..., 277" Remark that @, is a cube with side
length 1. If @)%, is such a rectangle in R"™ and ¢ > 0 then ¢Q)},, is the rectangle in R"
concentric with Q% . and with side lengths respectively ¢277%1, ..., 27",

If 6= (B1,...,3,) € Ny is a multi-index the derivatives D? have the usual meaning and if
r = (21,...,2,) € R” then 2P = ! .o-af". The scalar product between the anisotropy a
and the multi-index 5 is a8 = a101 + ... + a,0,.

If F'is a Lebesgue measurable subset of R” then |E/| denotes its Lebesgue measure.

We are now prepared to introduce the anisotropic atoms.

Definition 2.5 (i) Let K € R, ¢ > 1; a function p : R™ — C for which there exist all
derivatives DPp if a3 < K (continuous if K < 0) is called an anisotropic 15 -atom if:

suppp C cQg,, for some m € Z" (2.6)
and
|Dp(a)] <1 if af < K. (2.7)

(ii) Let s e R, 0 < p< oo, K,L €R, ¢>1; a function p: R" — C for which there exist all
derivatives DPp if a} < K (continuous if K < 0) is called an anisotropic (s, p) i p-atom, if:

suppp C Q5.  for some v €N and some m € Z", (2.8)
s_1_af | -

1DPp(@)| < |QL,. 777 i af < K, (2.9)

/ xﬁp(w)dx =0 i ap<L. (2.10)

If the atom p is located at %, (that means suppp?  C Q%  with v € Ng, m € Z", ¢ > 1)

then we will write it p?, ..

We begin with some technical explanations. The value of the number ¢ > 1in (2.6) and (2.8)
is unimportant. It simply makes clear that at the level v some controlled overlapping of the
supports of p?  must be allowed.

Since |Q%,,| = 27" condition (2.9) may be written as
1DPp(z)| < 27" Pl it 48 < K

and if K <0 then (2.9)is |p(z)| < g=v(s=2)

The moment conditions (2.10) can be reformulated as

DP3(0)=0 if af <L,
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which shows that a sufficiently strong decay of p at the origin is required. If L < 0 then
(2.10) simply means that there are no moment conditions.

The reason for the normalising factor in (2.7) and (2.9) is that there exists a constant ¢ > 0
such that for all these atoms we have ||p | Bpy' (R™)]| < ¢, ||p| Fpy" (R™)|| < c. Hence, as in the
isotropic case, atoms are normalised building blocks satisfying some moment conditions.

This construction generalises isotropic atoms as they are in the works of M. Frazier and B.
Jawerth, see [FrJ85] and [FrJ90] and the survey [FJWO91]. It is also slightly related to the
concept of anisotropic building blocks (compactly supported and satisfying some norming and
some moment conditions) used by P. Soardi in [Soa83] to define anisotropic Hardy spaces and

to study the relation of these spaces to anisotropic Lipschitz and Campanato - Morrey spaces.

Before presenting the atomic decomposition theorem we introduce the sequence spaces b,
and fj.. If v € No, m € Z" and ()}, is a rectangle as above let x,,, be the characteristic
function of Q2 ;if 0 < p < oo let Xff;l = 2Py, (obvious modification if p = co) be the

L,(R™)-normalised characteristic function of Q7.

If 0 < p,q < oo then by, is the collection of all sequences A = {A,,, € C : v € Ny, m € Z"}

such that
1/q

0 qa/p
A ] bpgll = Z ( Z |/\um|p)

v=0 \meEZn

(usual modification if p = oo and/or ¢ = o0) is finite.
If 0 < p,q < oo then fj, is the collection of all sequences A = {Avm € C:veNy,meZ"}
such that

o] l/q
A ] foll = (Z > I/\umx(yﬁl('ﬂ‘]) | Lp(R")
v=0meZn

(usual modification if p = oo and/or ¢ = o0) is finite.

It is easy to see that by, and f;, are quasi-Banach spaces and by, pin(p.q) < fpg < bp.mac(p.g)
and, in particular, b,, = f5 , see [Tri97, 13.6].

For 0 < p < oo and 0 < ¢ < oo we will use the abbreviations

(1 1) d (71 1) (2.11)
o,=nl-— and o,, =n - — . .
! p N e min(p, ¢) n

Theorem 2.6 (i) Let 0 < p< oo, 0< g< oo, s€R andlet K, L € R such that
K> ana:+s if s>0
and
L>o0,—s.
Then g € S’'(R™) belongs to Byy' (R™) if, and only if, it can be represented as
g = io: Z NompPom  convergence being in S'(R™), (2.12)
v=0mezZ"

where pl . are anisotropic 1i-atoms (v = 0) or anisotropic (s,p)x, r-atoms (v € N) and
A € byy where A\={\,,,, : v € Ng,m € Z"}.
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Furthermore, inf ||| by,|| where the infimum is taken over all admissible representations
(2.12), is an equivalent quasi-norm in By (R™).

(ii) Let 0 < p< oo, 0< ¢<oo, seRandlet K, L € R such that
K> apee+s if s>0

and
L >0, —s.

Then g € S'(R") belongs to Fp;" (R™) if, and only if, it can be represented as

g= Z Z AompPom  convergence being in S’ (R"), (2.13)

v=0mezL"

where p} . are anisotropic 1i-atoms (v = 0) or anisotropic (s, p)i r-atoms (v € N) and
A€ fy, where A ={X,,, : v €No,m € Z"}.
Furthermore, inf ||| f.|| where the infimum is taken over all admissible representations

(2.13), is an equivalent quasi-norm in Fpy" (R™).

The convergence in S'(R™) can be obtained as a by-product of the proof using the same
method as in [Tri97, 13.9]. We will refer to the above theorem as to the atomic decomposition
theorem in anisotropic function spaces. As mentioned in the introduction it generalises to
anisotropic function spaces the results of M. Frazier and B. Jawerth from [FrJ85] and [FrJ90].

Remark 2.7 Let d > 0 be given, let v € Ny and m € Z" fixed and let us denote R}  a
rectangle with sides parallel to the axes, centred at «*” where

|af™ — 27 % m,| < d277% for all i€{l,..,n}, (2.14)

and with side lengths respectively 27%%1 .. 27V,
Then let ¢ > 0 be chosen in dependence of d such that for every choice of v € Ny and all
choices of "™ in (2.14) we have

U cr:, =R" (2.15)
meL™

It will be clear from the proof that we may replace in Definition 2.5 the rectangle Q)¢ = by
R? . where the number ¢ is defined in (2.15). A similar remark in the isotropic case was very
useful in the work of H. Triebel and H. Winkelvo8, [TrW96a], cf. also [EdT96, 2.2.3].

The detailed proof of the theorem is given in [2, Section 5.1] but we make here some comments.
The first part of the proof, that in which the atoms are constructed and where it is shown
that the decompositions (2.12) and (2.13) hold, is essentially based on an anisotropic version
of a resolution of unity of Calderon type, see [2, Lemma 5.1] and cf. [FJW91, 5.12]; this
construction is the anisotropic counterpart of what was done in [FJW91, Theorem 5.11].

To prove the second part we used the theorem on local means in anisotropic function spaces
(presented in the previous section), the technique of maximal functions, see [2, Theorem 4.3],
an inequality of Fefferman - Stein type, see [2, (4.2)], and an anisotropic version of Taylor’s
expansion theorem, see [2, Theorem 5.3].



2.4 APPLICATION TO TRACE THEOREMS 23

2.4 Application to traces of anisotropic function spaces

The technique of obtaining trace theorems for isotropic function spaces of B (R") and
F;,(R") type using various type of atomic decompositions in these spaces was already used
by several authors, see for example the works of M. Frazier and B. Jawerth, [FrJ85], [FrJ90]
and of H. Triebel, [Tri92, 4.4.1-4.4.3], where comprehensive references to this topic are given.
The aim of this section is to give a unified self contained approach to the study of traces
of anisotropic function spaces of Besov - Triebel - Lizorkin type based on the atomic de-
composition theorem for these spaces proved in [2] and briefly presented in the previous
section.

This technique allows us to re-obtain the trace theorems proved in [Nik77], [BuG79], [Gol79a],
[Gol79b], [Kal79] and to extend them to the whole admissible range of parameters from the
definition of the anisotropic function spaces of Bp;' (R™) and Fpy"(R") type.

The trace problem reads as follows. Let ¢ = (2/,2,) € R" with 2/ € R"~! and z,, € R (we
always assume in the sequel that n € N and n > 2). We ask whether

trea—1 = f(z)— f(2,0) (2.16)

makes sense if f belongs to some spaces B,," (R") or F,;" (R").
Rather final answers are known in the isotropic case, see the above mentioned works of M.
Frazier, B. Jawerth and H. Triebel and the references given there.

Starting with the n- dimensional anisotropy @ = (ay, ..., a,) we define the (n—1)- dimensional
anisotropy «* = (aj, ...,a’_,) where:
. n—1
ap = ap for all 1<k<n-1 (2.17)
n—a,

Clearly aj +...4a;_; =n—1.

If n =2 then a] = 1; this corresponds to the isotropic 1- dimensional case.

The first result we will prove is the following:

Theorem 2.8 Let 0 < p<oo, 0< g< oo, s €R and let

r:”—l(s_“_n). (2.18)

n—dan, P

If

rs (n—1) (1 _ 1)+ (2.19)

P
then trga-1 is a linear and bounded operator from Biy(R™) onto BL{ (R™1),
trpn—t BE(R") = By (R™) (2.20)
and (if 0 < p < 00) trpa—i is a linear and bounded operator from Fiy' (R™) onto By (R™~1),

trgn—t 50 (R™) = By (R™1). (2.21)
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The proof of this theorem is shifted to Section 4.6.

Comments. 1f 1 < p < oo then (2.20) is well known, see the proof given by S. M. Nikol’skij
in [Nik77, 6.5;6.7], see also [ScT87, 4.2.3].

But our proof in Section 4.6 is essentially different and it allows us to extend S. M. Nikol’skij’s
result to all 0 < p < oco.

The most interesting assertion of the theorem seems to be the independence of ¢ in the trace
of Fpi"(R™) on R"™L If 1 < p < 00, 1 < ¢ < oo then (2.21) has been proved (independently)
by M. L. Gol’dman in [Gol79a] and G. A. Kaljabin in [Kal79]. Furthermore, let us mention
that if 1 < p < oo then (2.21) was first proved for the space Hp"(R") = )" (R") by S. M.
Nikol’skij in [Nik77, 9.5].

Our proof of (2.21) (which may be interpreted as the anisotropic version of the technique
used in [FrJ90, 11.1]) allows us to obtain the result for all 0 < p < oc.

It is clear that if n = 2 then Bl (R™1) is the isotropic space B, (R), and BT (R™Y) s
the isotropic space B} (R), the number r being defined from (2.18) and (2.19).

The next theorem gives information about traces in the limiting case » = 0 in (2.19).

Theorem 2.9 (i) If0<p<ooand0 < ¢ < min (1,p) then trgn—1 is a linear and bounded
operator from Bg’a(R”) onto L,(R™™1),

trpn-i Byt " (R™) = L,(R"™Y). (2.22)

(ii) If0 < p<1and0 < q < oo then trga—1 is a linear and bounded operator from
F,2 7 (R™) onto Ly(R™™1),

,a

tran—t B2 (R™) = L,(R™ ). (2.23)

The proof of this theorem is also given in Section 4.6.

Comments. 1If 1 < p < oo and ¢ = 1 then (2.22) is well known, a proof was given by
V. 1. Burenkov and M. L. Gol’dman, see [BuG79] and [Gol79b]. They generalised to the
anisotropic case

1

trpa-1 BI (R™) = L,(R"™), 1< p< oo, (2.24)

result which was proved (independently) by J. Peetre, see [P75%].
M. Frazier and B. Jawerth extended (2.24) in [FrJ85, Theorem 5.1] to

1

trpaa1 B (R™) = L,(R™™Y), 0<p<oo, 0<q<min(l,p),

and it is clear that (2.22) is the expected extension to the anisotropic situation.

The restriction on the range of p in (2.23) will be clear from the proof we will give; only in

this case the trace of qu77a(R”) exists and belongs to L,(R"™!). The isotropic counterpart
of (2.23) can be found in [Tri92, 4.4.3].

For the sake of completeness let us mention that if p = oo then ngﬁ (R") is contained in
the space C'(R"™) of bounded uniformly continuous functions on R™. By [BuG79] the trace of
BY%(R™) coincides with C'(R™1).
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2.5 Anisotropic quarks and the subatomic decomposition theorem

In this subsection we will assume that the anisotropic distance function | - |, defined in (2.1)
satisfies in addition
{ eR" : |2|, <2} C [-7,7]™

The above restriction, which is of technical nature, was introduced by P. Dintelmann in
[Din95a] and seems to be a natural one compared with the isotropic case.

For v € Ny and m € Z" let ()3, be the rectangles introduced in Definition 2.5. Recall (§, is
the cube with side length 1 centred at the origin and let 2%Q)§, be the rectangle concentric
with QQf, and with side lengths respectively 291,...,297,

Definition 2.10 Let v € S(R"™) such that

supp ) C 2°Q%, and Z vz —k)y=1 if =e€R"”
kezn

and let for any multi-index 3 € Nj, 1% (z) = 2% (x). If 0 < p < o0 and s € R then

(ﬁqu)gm ($) - 2—1/(5_%) ¢ﬁ(2uax . m)
is called an anisotropic (s, p) — B-quark related to Q7,,,.

Remark 2.11 It is easy to see that up to normalising constants the anisotropic (s, p) — 3-
quarks are anisotropic (s, p)x,r-atoms for any given K € R and any given L < 0. Moreover,
the normalising constants by which the anisotropic (s, p) — #-quark must be divided to become
an anisotropic (s, p)x,r-atom can be estimated from above by 25 swhere ¢ > 0 and K > 0
are independent of 3 (recall the notation a8 = a151 + ... + a,3, where 5 = (51, ..., 8,) is a
multi-index).

We will use below the sequence spaces by, and fj, with respect to the sequences
M={\ ecC:veNy,meZ"}

where now § € NJ} is a multi-index and we will keep the notation (Squ)?,. for an anisotropic
(s, p) —f-quark related to the rectangle Q% . The numbers o, and o,, have the same meaning
as in (2.11).

Theorem 2.12 (i) Let 0 < p < 00, 0 < ¢ < 00 and s > 0,. There exists a number £ > 0
with the following property: let r > r; then g € S’'(R™) belongs to By (R™) if, and only if, it
can be represented as

9= > > A, (B, (2.25)
BeENy v=0 meEL™

convergence being in S'(R") (first m, then v, then (3), and

sup 279 A% | bl < oo. (2.26)
BENY

0
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Furthermore, the infimum in (2.26) over all admissible representations (2.25) is an equivalent

) s o
quasi-norm in By (R").

(i1) Let 0 < p < o0, 0 < ¢ < oo and s > o,,. There exists a number k > 0 with the following
property: let r > r; then g € S'(R") belongs to Fy;" (R™) if, and only if, it can be represented

as

9=, > D N (Bau)i, (2.27)

BEND v=0 meLn
convergence being in S'(R™) (first m, then v, then (3), and

sup 27|\ | fo || < oc. (2.28)
BENY
Furthermore, the infimum in (2.28) over all admissible representations (2.27) is an equivalent

y y 5,a n
quasi-norm in Fpy" (R").

The technique developed in [2, Section 5.2] to prove the above theorem goes back to H.
Triebel, see [Tri97, 14.15]. However the proof given there covered only isotropic B- spaces;
the considerations in [2, Section 5.2] show that the method can be extended to F- spaces.

Remark 2.13 To prove that g € F,)"(R") (respectively g € Bpy'(R")) can be decomposed
as in (2.27) with (2.28) (respectively as in (2.25) with (2.26)) we did not need the assumption
s > 0p, (respectively s > o,). This restriction is needed only to prove the converse assertion.

Remark 2.14 If one wishes to extend the result to all s € R then a lifting argument would
be needed. But while the lift operator (id — A)%i between isotropic function spaces causes
no problem in keeping the localisation of the (isotropic) quarks (and this fact was essentially
used in [Tri97, 14.4]) the situation becomes difficult in case of the anisotropic lift operator.

It is well known that if ¢ € R then the operator

L(f) = ((iuwz)ﬁ) f)

k=1

maps F;" (R") isomorphically onto Fy, 7" (R") and || 1, (+) | Fpg 7" (R™)|| is an equivalent quasi-
norm on Fy*(R™) (similar result for B,y (R™)), see [Leo86]; it is clear that I, causes a lot of
troubles in keeping the localisation of the anisotropic quarks and this is the reason why we

restricted ourselves to large values of the (mean) smoothness parameter.
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3 Eigenvalue distribution of some fractal semi - elliptic oper-
ators

3.1 Regular anisotropic d-sets in R”

Let again @ = (ay, ..., a,) a given anisotropy (a; + ...+ a,, = n) and recall our abbreviations
min = min{a; : 1 <i<n} and a4, = max{a; : 1 <i<n}.

If j € Ny and N; € Ny we deal with sets of open rectangles {R;; : [ =1,..., N;} in R” having
sides parallel to the axes; the side length of the rectangle R;; with respect to the z; - axis is
denoted by rf’l where 1 = 1, ..., n.

We will always assume that the side lengths of the rectangles R;; are ordered in the same
way, for example ri’l <...< i for any j € Ngand any [ =1, ..., N;.

Definition 3.1 Let Q) be a cube in R™ with side length 1, let 0 < d < n, let a = (ay, ..., a,)
a given anisotropy and let ¢y, ¢ > 0 given numbers.

Let No =1 and for any j € N let N; be a natural number satisfying

(4] 2]d S N] S C9 2]d

A compact set I' C R™ is called a regular anisotropic d-set (with respect to the anisotropy a)

if for any j € Ny there exists a finite sequence of open rectangles {R;; : | =1,...,N;} having
o

sides parallel to the axves, Ry =), such that:

(i) there exists a constant 0 < c¢o < 1 such that for all i = 1,...,n, all j € Ny and all
I=1,..,N;

(c277)% < Pt <2790 (3.1)

(i) if l# 1 then RN Ry = 0;
(iii)  for any rectangle R;yq ) there exists a rectangle Ry , | = [(k), such that Rj41 5 C Ry ;
(iv) for any j € Ng and any l =1, ..., N;

kel d
23 23

= Y (volRjpap)n (3.2)

RJ+17kCRJl

(volR;)

oo Ny
AU
7=0 I=1

Remark 3.2 Let n = 2. If there exists a number 0 < ¢ < 1 such that ¢27%7 < vol R < 272
for any j € Ny and any [ =1, ..., N; and if condition (i) in the above definition is replaced by:
(i*) there exists a number 0 < & < 1 (called the anisotropic deviation) and a number j, € Ny
such that the side lengths ri’l and r%’l of the rectangle R;; satisfy

2-/01+e) < r{’l < r%’l <2799 forany j>j, andany [=1,..., N; (3.3)

then we obtain the definition of an anisotropic d-set (with anisotropic deviation &) as it was
given by H. Triebel in [Tri97, 5.2].
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Corollary 3.3 Letn =2, let a = (a1, az) a 2- dimensional anisotropy and let 0 < d < 2. If
I' ¢ R? is a regular anisotropic d-set in the sense of Definition 3.1 then I' is an anisotropic
d-set in the sense of [Tri97, 5.2]. Any e <1 with € > @pup — 1 = 1 — @i can be chosen for

the anisotropic deviation in (3.3).

Remark 3.4 Using the normalisation Ry =@ and (3.2) we have

NJ

d
D (volRj)w =1 if j €N, (3.4)
=1

For basic facts about Radon measures on subsets of R” we refer to [Mat95] and to [Rud87].

Theorem 3.5 Let 0 < d < n and let ' be the reqular anisotropic d-set (with respect to the
given anisotropy a = (ay, ..., a,)) introduced above.
Then there exists a Radon measure p in R™ uniquely determined with suppp =1 and

p(TARy) = (volRy)n , je€Ny and 1=1,..,N,. (3.5)
Proof.  We use the repeated mass distribution procedure from [Fal90, Proposition 1.7].
Starting with p(Q)) = 1 we distribute the mass via p(Ry;) = (VO]RU)% for I =1,...,N; and,
subsequently p(R;) = (vol Rﬂ)% forl=1,..., ;.
By (3.4) and (3.2) the unit mass is finally distributed on I'; the result is the desired measure
I
Without going into details since this proofis the counterpart of [Tri97, 4.15,5.5], we outline the
main idea: on the set of all positive continuous functions f on I' we construct a positive linear
functional f +— Lf by following the above limit process in the same way as one introduces
the Riemann integral via partial sums. By the Riesz representation theorem (see [Rud87,
2.14]) there is a Radon measure p uniquely determined such that

sz/rf(v)du(v)

and the measure p has the desired properties.

By [Tri97, Definition 3.1]if I" is an isotropic d-set with underlying measure g and if 0 < xk < 1
then

U(B(7, k1) 1 T) ~ a(B(y,7) O T) ~ 1 (3.6)

where the equivalence constants depend on & but not on v € I' and 0 < r < 1.

For a regular anisotropic d-set I' we have (3.5) but no counterpart of (3.6). At least a weak
version of (3.6) will be needed. If 0 < x < 1 then kRj; denotes the rectangle concentric with
R;; and with side lengths respectively m‘{’l,..., rrit,

Definition 3.6 The regular anisotropic d-set introduced in Definition 3.1 equipped with the
measure | according to Theorem 3.5 is called proper if there exist two numbers 0 < rk < 1
and 0 < ¢ <1 such that

3|

p('NkR;) > ¢ (vol Rj) , JENg , I=1,..,N;, (3.7)
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Remark 3.7 Following the lines of the proof of [Tri97, 5.13] it turns out that if I is generated

o
by linear contractions and if T'N @Q# @ then T' is proper. Hence condition (3.7) is rather
natural, see also the examples below.

Example 3.8 Let I' be a regular anisotropic fractal (see Section 1.2) generated by the con-
tractions A, from (1.5) now with a; > ag, see Figure 2.

AlQ\L\) \\\ _"§i\ANQ
W W
N\ A
— §\§\§§§+
N\ \
0 2 1

Fig. 2

We keep the same notation as in Section 1.2 and claim that I" is a regular anisotropic d-set
with respect to the anisotropy @ = (a1, az), d being the uniquely determined positive number
such that

d
2

(vol A,,Q)2 = 1. (3.8)

WE

1

3
Il

Indeed, let us first remark that by (3.8) we have 0 < d < 2 and N = 2"<.
It is clear that for any v € N and any mq,...,m, € {1,..., N} the set A,,, o0...0 A4, Q is
a rectangle having sides parallel to the axes and having side lengths 277%%1 277792 . the

number of such rectangles is N¥ = 2%,

If jeNletv=vr(j) = {ﬂ + 1, let N; = N*U) and let

{Rji : l=1,..,N;} ={A4,,, 0.0 A, é 1< myq,...,m, <N}

Clearly we find two constants ¢y, ¢; > 0 such that ¢; 27¢ < N; < ¢ 274 for any j € N.
Furthermore, the side lengths rl’l and r%’l of the rectangle R;; satisfy rl’l < r%’l and

(co279)% < rPt < 279%  with i=1,2

where ¢g = 27%. Using (3.8) it is easy to see that all the other properties from the definition
of a regular anisotropic d-set are satisfied.

We have to remark that compared with the Hausdorff dimension the number d defined from
(3.8) (which is nothing else than the affine dimension of I', see (1.8)) depends only on the
number N of the rectangles A,,Q selected at the first stage of the construction and not on
their relative position.
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Example 3.9 In specification of the situation in Figure 2 we suppose now that in each
column precisely one rectangle A,,Q is located. Let

K—}:Qk—l—l for some k€N

I(Q
be an odd natural number and let the rectangles A,,() be arranged as depicted in Figure 3
where we choose in the counterpart of (1.5) always 75" = 1 and we choose n{* = 1 in the first
Ky columns, n{* = —1 in the second Kj columns (additional reflection) then again n* = 1
in the third Ky columns and so on, see Figure 3.

2—/1(12

Fig. 3

Under these assumptions the resulting anisotropic fractal I' is the graph of a continuous
function, for a proof see [Tri97, 4.21]. It is clear that I' may be interpreted as a generalisation
of Hironaka’s curve (briefly presented in [Mul84]).

Moreover, I' is an isotropic d-set where d = dimyl' = 2 — ay/ay, see [Tri97, 4.22, 4.23]. It is
not difficult to see that I' is a regular anisotropic d-set with d = a;.

Example 3.10 Let A;, A, be the affine contractions on R? which map the unit square
[0,1] x [0,1] onto the rectangles Ry and Ry of sides 27% and 27 where 0 < az < ay and
a1 + ay = 2 as in Figure 4.

Rl Rl

. -
2 o »m
. '

Ry

<> >

Fig. 4

The rectangle Ry abuts the upper side of the square ) but the end of R is at distance A > 0
from it. If [ is the invariant set for A; and A, then by [Fal90, Example 9.10, p.127,128] we
have dimgl' > 1 when A > 0 and dimgyI’ < 1 when A = 0.
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It is easy to see that in both cases [ is a regular anisotropic 1-set with respect to the anisotropy
a = (ay,az); as in [Tri97, 5.13] it follows that I' is proper if, and only if, A > 0.

Comments. 1t is possible to define the ’dimension’ of a set in many ways, some satisfactory
and other less so but it is important to realise that different definitions may give different
values of dimension for the same set and may have also different properties.

First, it is clear that proper anisotropic d-sets as defined by H. Triebel in [Tri97, 5.2] with
deviation € = 0 in (3.3) are closely related to isotropic compact d-sets (see the definition in
Section 1.1).

Secondly, if the anisotropy a is non-trivial, that means a # (1, ..., 1), then the number d in
Definition 3.1 and the Hausdorff dimension dimg " are completely unrelated, see also [Tri97,
4.14,4.22].

Furthermore, it can happen that the regular anisotropic d-set I' is also an isotropic d’-set
with d # d’, see Example 3.9.

3.2 The spaces L,(I)
3.2.1 The structure theorem

Let a = (ay, ..., a,,) a given anisotropy. As in the isotropic case, if I is a closed set in R™ with
Lebesgue measure |[I'| =0 and if s € R, 0 < p < 00, 0 < ¢ < 0o we define
Byt (R™) = {f € By (R") : f(p) =0 if pe SR, ¢l =0}

2]
where ¢|I" is the restriction of ¢ to I'.

We have supp f C I'if f € B;&a;F(R”) in any case. Remark also that if 0 < p < oo,
0 < ¢ <ooands>n(;—1); then By (R") < LP¢(R™) (this can be proved as in [Tri92,
Remark 2.3.2/3]) and, hence, B3 (R™) = {0} is trivial.

In other words, only values s < n(% — 1)+ (in particular s < 0if 1 < p < c0) are of interest.

Let I' be a regular anisotropic d-set with respect to the given anisotropy ¢ = (aq, ..., a,). Let
i the uniquely determined Radon measure underlying I' according to Theorem 3.5.

The L,- spaces on I', 0 < p < oo, are introduced in the usual way with respect to the
underlying Radon measure g on I' according to Theorem 3.5.

If 1 <p<ooany fr € L,(I') will be interpreted as a tempered distribution f € S'(R”) as in
(1.11) with R™ in place of R*:

f(g) = /F fe () (@D du(r), € SR, (3.9)

Theorem 3.11 Let 0 < d < n and let I' be a regular anisotropic d-set in R™ with respect to
the anisotropy a = (ay, ..., a,).
If 1 <p<ooand ]l)—l— ]% =1 then (in the sense of (3.9))

—@,a'lﬂ

L,(I) = By 7 (R™). (3.10)

d

Moreover, || fr | Ly(D)|| ~ I/ | By ™ (R7)].

The proof is given in Section 4.1.
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3.2.2 Traces

Assume that I' is a regular anisotropic d-set in R™ with respect to the anisotropy a =
(a1, ...;ap). If ¢ € S(R") then trre = ¢|I' makes sense pointwise. If 0 < p,¢ < oo and
s € R then the embedding trr By’ (R™) < L,(I') must be understood as follows: there exists
a positive number ¢ > 0 such that for any ¢ € S(R")

[tree | Ly (D)l < e [Jo] By (R™)])-

Since S(R") is dense in Bp; (R™) for 0 < p,q < oo this inequality can be extended by
completion to any f € By (R™) and the resulting function is denoted trpf.

In addition, the equality trpBpy' (R") = L,(I') means that any fr € L,(I') is the trace of a
suitable g € Byy'(R™) on I' and

[ [ Lp(D)|| ~ inf{[lg | By (R[] = trrg = fr}.

Theorem 3.12 Let 0 < d < n and let 1" be a regular anisotropic d-set in R"™ with respect to
the anisotropy a = (a1, ..., a,). If % <p<ooand 0< ¢ <min(l,p) then

n—a

da
treByy " (R") = Ly(I). (3.11)

The proof of this theorem is shifted to Section 4.2.
—d

It will be clear from the proof that the embedding trpBZF@(R”) — L,(I') holds for 0 <
p < oo and 0 < ¢ < min(1,p). Possible extensions of Theorem 3.12 to all 0 < p < co are
briefly discussed in Section 4.3 where we will make also some additional remarks concerning
Theorems 3.11 and 3.12.

As mentioned in the Introduction, Theorems 3.11 and 3.12 seem to be of independent interest
since they are anisotropic counterparts of Theorems 2 and 3 in [TrW96b], see also [Tri97,
18.2,18.6]. Furthermore, they complement Theorems 1.8 and 1.9.

3.2.3 Compactness of embeddings into L,(I)

In this subsection we will obtain estimates for the entropy numbers of traces on regular
anisotropic d-sets from R”.

Let A and B two quasi-Banach spaces. The family of all linear bounded operators T : A — B
will be denoted by L(A, B) or L(A) if A= B.

We will assume that the reader is familiar with the definition of the entropy numbers e (1),
k € N, of a compact map 1" € L(A, B). This definition is given, for example, in [EdT96,
1.3.1] where one can find also comments and historical references.

The first result is an anisotropic counterpart of Theorem 20.6 in [Tri97].
Theorem 3.13 Let 0 < d < n and let 1" be a regular anisotropic d-set in R"™ with respect to

the anisotropy a = (a1, ..., a,).
Let 0 < pp <00, 0<py <00, 0<qg< oo ands€R such that

5+:s—d65—3) > 0. (3.12)
1 P2 +
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Then the trace operator
n—d
AT

trr @ Bpg (R™) — L, (I) (3.13)

1s compact and there exists a constant C' > 0 such that for all k € N,

s—I—%,a

er(trr : Bpy " (R™) = L,,(I)) < Ck™4. (3.14)

If, in addition, I' is proper according to Definition 3.6 then there exists a constant ¢ > 0 such

that for all k € N,

n—

s s+ dya
ck™d <eg(trr : Bpg ™' (R") — L, () (3.15)

We want to remark that the assumption (3.12) is crucial for the compactness of the operator
in (3.13) and that this assumption cannot be weakened by 64 = 0. The result below is the
anisotropic version of [Tri97, 20.7].

Proposition 3.14 Let 0 < d < n and let I' be a proper regular anisotropic d-set in R™ with
respect to the anisotropy a = (ay, ..., a,).
Let 0 < p1 < pp < 00, pz = min (1, pz) and s > 0 such that

s_d(i_i): . (3.16)

Then the trace operator

tre @ B, (R = Ly, () (3.17)
is continuous but non-compact.

The proofs of Theorem 3.13 and of Proposition 3.14 are shifted to Section 4.4.

3.3 A model fractal semi - elliptic operator

Let
Q={r=(r1,29) €eR*: 2] + 23 <1}
be the unit disc in the plane and let 9Q = {z = (x1,22) € R? : 2} +23 = 1} be its boundary.
Let  be a C*° function on the interval [—1,1] with n(¢) > 0 if |{| < 1 and
t t

lim —77( ) = lim —77( ) =

11—t ¢-11+1¢
We consider the semi - elliptic differential operator:

_ _azu(ac) L 84u($) L r

T - 1 - 1 Q? '1
(Aru) () 727 72 nz(xl)u(f) v = (21,22) € (3.18)
where r € R.
We will consider the anisotropic Sobolev space
du 0%u
W2(1,2)(Q) = {u € 5'(Q) : JJul L2(Q)]] + ‘ pr | LQ(Q)H + HW | LQ(Q)H < oo} . (3.19)
2

Clearly, see (0.5) and (0.6), the mean smoothness is s = 3 and a = (3, 2) characterises the

anisotropy. Using the notation from the previous sections we have

wWi@) = witd(@). (3.20)
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Remark 3.15 Let
i@ = fuewi e : ujoe= 24100 =0}.
2

We know from [Tri83*, Proposition 1] that there exists an ro € R such that for any r > rg
the operator Ai/z maps I/?/gl’z)(Q) isomorphically onto L3(2); consequently, we may fix the
norm on I/?/(Ql’z)(Q) by
° (1,2
lul W52 @) = 14| L@

and a corresponding scalar product.

Let I' be a regular anisotropic fractal as presented in Figure 2, now with a; = % and ay = %
By Example 3.8 I' can be interpreted as a regular anisotropic d-set with respect to the
anisotropy a = (%, %) so that we may use Theorems 3.11 and 3.12.

fl<p<oo, 1<g<ooandséeR then we introduce the spaces
B () = {f € By (R : supp f C O} (3.21)

normed in the usual way, see also [Tri78, 4.3.2] and [Tri97, 27.11].

In the sequel we shall not distinguish between fr as an element of some L,(I') and as the
distribution belonging to some Bp5" () according to (3.10).

To avoid any misunderstanding, see also Section 1.4, we emphasise that the trace operator has
again two different meanings which we distinguish by trr and tr! if extra clarity is desirable.
Let, for example, 1 < p < oo, then

e B Q) = Ly(T) (3.22)
by (3.11) and
_2=d , _2=d
' s BP () = B T (Q) (3.23)

if one applies in addition (3.10). The latter can be rephrased asking for an optimal extension
of tr! considered as a mapping from D(Q) into D'(Q2) given by (0.1).

Theorem 3.16  Let 0 < d < 2 and let Q be the unit disc in the plane. Let I' C Q be a

reqular anisotropic d-set with respect to the anisotropy a = (%, %)
Let tr' be the trace operator in the interpretation (3.23) and (0.1) whereas trr stands for the
trace operator according to (3.22). Let A, be the operator from (3.18).

(i) There exists ro € R such that for any r > rq the operator
A ot (320

(12)

is compact, non-negative, self adjoint in W5 '~ (Q) and has null space

N(T) = {f e 2Q) : trpf = 0} (3.25)
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Furthermore, T is generated by the quadratic form in I/?/(Ql’z)(Q)

/F TGV 9O An() = (Tf.9)yppuo gy where [ eWs (@), g W@ (3.26)

and p is the Radon measure according to Theorem 3.5.
(ii) Letr > ro. There exists a constant C' > 0 such that the positive eigenvalues A\ (T) of
T, repeated according to multiplicity and ordered by their magnitude, can be estimated by

M(T) < Ckmal3) | ke, (3.27)

If, in addition, I' is proper according to Definition 3.6 then there exists a constant ¢ > 0 such
that
—l(d-l—z)
ck™a\ T ) < X\ (T) , keN. (3.28)

The proof of this theorem is given in Section 4.5.

Remark 3.17 Let I' be a regular anisotropic d-set with respect to the anisotropy ¢ = (%, %)
which is generated by linear contractions.

For example one can take Ky = 16, Ky = 4 and let I" be generated by the N mappings A,,
defined in (1.5) with (1.4) and let the rectangles A4,,Q arranged as depicted in Figure 2.
The additional assumption on I' to be proper in the estimate (3.28) excludes by Remark
3.7 only pathological cases where the whole fractal retreats in the boundary of the starting

square.

Remark 3.18 We want to point out that in the proof of the estimate (3.27) the key role is
played by the mapping property in the third line of (4.56), more precisely by the fact that for
2

_2=d
sufficiently large r the operator A~ maps the anisotropic Besov space B,__? ’a(Q) bounded

into
08 _2—d

372 @ %_¥7a 8f

This is obtained in Section 4.5 as a consequence of the results from [Tri83*] using some

oa=0}.

interpolation results from [Bes96] and [Bes97].

On the other hand the proof of the estimate (3.28) depends on Hilbert space techniques, in
particular on Theorem 4.11 which states that for a compact, non-negative and self adjoint
operator acting in a Hilbert space its approximation numbers coincide with its eigenvalues.

Comments. Let us recall a result which was briefly mentioned in the Introduction.
V. Shevchik considered in [She98] the operator A, acting as an unbounded operator defined
in L,(Q), 1 < p < oo, having domain of definition

D(A,) ={ue€ VVZSQA)(Q7 202ty w0 = 887“ |02 =0},
2

see (4.57) for the precise definition of the space VVZSZA)(Q7 2% 2ty if p= 2.
He proved that the asymptotic behaviour of the eigenvalues of A, is

Ae(A) ~ k3 keN. (3.29)
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Clearly the exponent % is exactly the half of the mean smoothness parameter of the anisotropic
Sobolev space considered as domain of definition.

Let us remark that comparing (3.29) with our result (3.27), complemented by (3.28), one can

o
see that not only the half mean smoothness of the space W(Ql’z)(Q) (as domain of definition
for the operator T') but also the anisotropic dimension d of the fractal [' is coming in.

Of course a natural question appears: what happens if the model operator A, is replaced

o
by a more general (semi - elliptic) operator and if the space W(Ql’z)(Q) is replaced by another
anisotropic function space while the fractal is still considered having the same anisotropy as

the function space ¢

Nothing has been done so far in this direction. Based on the proof in Section 4.5 and on

Remark 3.18 this can be a subject of further investigation.
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4 Proofs
4.1 Proof of Theorem 3.11

Step 1. Let fr € L,(I') and let f be given by (3.9). We prove that f is an element of

_uﬂl;r‘
By’ (R™) and that for some ¢ > 0

d

11 B "R < e [l | Ly(D)]] (4.1)

If kis a C* function in R” with suppk C {y € R" : |y|, < 1} and f € S'(R") let

k(hf)(w)Z/ k(y)f(wrt“y)dy:t_”/ k(17 (z —2)) f(2) dz

n n

be the local means introduced in (2.4).

In [2, Theorem 4.9] we obtained equivalent quasi-norms in anisotropic function spaces using
local means, see also the brief presentation from Section 2.2. In case of negative smoothness
we can weaken the assumptions used there; to do this we have only to repeat the arguments

from [Win95, 3.1] and [TrW96b, Remark 6] and obtain:

n—d

11 B ")~ sup (27700 k274, p) | L,(R")]) (12)
J€No

where £ is a C* function on R” with suppk C {y € R” : |y|, < 1} and such that |E(€)| >0

if 3 <1¢la < 2.

Let p < oo; the modification of the following estimates are obvious if p = oo. Using the

definition of f and of k(?‘j, f) and applying Holder’s inequality there exists a constant ¢ > 0

such that:

k277 @) =

| ko sy dy‘

< ¥ /F|k(2j“(7—w))l”p|fr(7)l (B2 (y = 2 )| ()

IA

4 4 1/p , ,
2 ([P G~ o)ldu) ) (a2 )

where B (2,277 ={y € R" : |y — 2, <279} C{y € R™ : |y; — x| < e277% [ i=1,..,n}.
By Definition 3.1/(i) B®(x,277) has a nonempty intersection with at most N rectangles R
({=1,...,N;) where N is independent of j so that using (3.5) we get

(B (2,27)NT) < 2774
where ¢’ > 0 is independent of j. It follows
, , e , 1/p
ke Nl < a2 [1r@P ke o - ala))
Using Fubini’s theorem we obtain

, , L, , 1/p
1R279, SR < e 2277 (/ Ifr(v)lpdu(v)/ Ik(QJ“(v—w))ldw)
r R
= 2 e Ly (D) (4.3)
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where ¢; and ¢, are independent of j € Ny. Clearly (4.3) and (4.2) lead to (4.1).

It is easy to see that we can use the above technique also for p = 1 and obtain L{(I') —
B?(ﬁ) (R™) but this case is not especially interesting since the dimension d of I' completely

disappears in the smoothness parameter of the B- space.

Step 2. To prove the reverse inclusion we need some elementary preparations; we adapt the
technique from [TrW96b] to our anisotropic situation.

Let 0 < ¢ < oo and suppose I' is a regular anisotropic d-set with the underlying measure y;
the space Ly(I') has the above meaning with respect to p.

Let » > 0 be a fixed number which will be chosen sufficiently large later on. For v € Ny let
R, (with [ =1,...;N,) be the rectangles from Definition 3.1 and let 2" be the centre of the
rectangle R,;. For any [ = 1,..., N, we fix a point z,; € R,; N T such that |x”’l — Zuila =
inf{|a"' = 2|, : 2 € R,yNT}.

From {z,; : [ =1,..., N} we extract a maximal r 27" anisotropic distant set, that is, a set
of points {z,; : t € T} where T' C {1, ..., N,,} such that

|20t — 2ppta > 7277 if t £t and T C U "R,
teT

and where r®R,; is the open rectangle concentric with R,; and with side lengths respectively

rerptt L rtent (vecall the side lengths of the rectangle R, are denoted 1 ..., #ih).

For any m € Z™ we fix a reference point y,., € {z,¢+ : t € T'} which minimises the anisotropic
distance between 27"*m (the centre of the rectangle Q)% introduced in Section 2.3) and the
set {z,0 : t€Th:

|Yym — 27""m|, = min |z,; — 277 m],.
teT
We assume r to be so large such that
Ypm = 20 If meZ" with 2°Q% N R, #0. (4.4)

Using the maximality of {z,; : ¢ € T'} one easily derives the existence of a constant b; > 0

which is independent of v and m such that
|y1/m - 2—uam|a S bl 27 y Ve I\IO y m € Z" ) QGng nr 7£ @

(of course by can depend on r). Consequently, there exists another constant bz > 0 indepen-
dent of v and m such that

%~ Yomla < 02277 if @ €2°Q), NT #0. (4.5)
Let now i a C*° function on R™ such that

supp C 2°Qg, and Z Pple—m)=1 if zeR"™ (4.6)
meL"

Let g be a continuous function on I' with compact support. Denoting
9o = 9(yom) V(2" - —m)|T (4.7)

where the sum was taken over those m € Z" such that 2¢Q% NI # 0, using (4.5) and the fact
that p is a Radon measure supported on I' it follows that g, tends to ¢ in L, (') if v — 0.
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Furthermore, by (4.6) and (4.4) we have g,(z) = ¢(z,¢) if z € N R,
The rectangles {R,; : ¢t € T'} are in any case disjoint. Hence:

IARXUTERESD S SNPGRS CAIIGE
teT Y TNEue teT
> 27 Y g ()l
teT

where in the last inequality we used (3.5).
On the other hand ¢(y,.m) = ¢(z.,¢) for at most N of the lattice points m € Z", where N does
not depend on v and ¢. Thus we arrive at:

1/q 1/q
279 (Dg(ymw) < el (Dg(zm) < llgn | LoDl (48)

teT

The functions ¥ (2¥* - —m) overlap at most N’ times where N’ does not depend on v and m.

So
190 1 LoD < ¢ > 19 (0om)|"0(2°Q0,, N T) < 27 g (ym ) |? (4.9)

with ¢ > 0 independent of v, where in the last inequality we used the fact that by (3.1) the
rectangle 2°Q)%  has a non-empty intersection with at most N” rectangles R,; (I =1,..., N,),
the number N” being independent of v. From (4.8) and (4.9) we obtain

1/q
g | Lo(D) || ~ 2744/ (Z Ig(yum)lq) (4.10)

(recall that the sum is taken over those m € Z™ such that 2°Q%, NT # ().

Step 3. 1f I' is a regular anisotropic d-set with 0 < d < n and if 0 < p < oo then Cy(I'), the
space of all compactly supported continuous functions on I', is dense in L, ().

The proof of the above assertion is well known if 1 < p < oo see, for example, [Rud87,
Theorem 3.14]. The method used in [Rud87] for 1 < p < oo can be extended to all
0 < p < oo using basic properties of the Radon measure p, using the inequality |u — v]P <
max {1,271} (Ju|P + |v|P) and making appropriate changes at the ends of the proofs of The-
orems 3.13 and 3.14 in [Rud&7].

Step 4. NOW we are able to prove the reverse of what has been done in Step 1.

—d
Let f € BpOO e (R") and let g € Cy(I'). Let ¢ be a function chosen according to (4.6) and
let g, = ¢, |I' be an approximating sequence for ¢ € L,/(I') where

=Y 9(om) (27 — m) = 277 Zg ) 2P (2700 — m),

see (4.7). Up to constants each term 24/?"4(2Y* . —m) is an anisotropic (%;,d,p’)KL—atom
n—d

in B /| (R”) where K is sufficiently large and L < 0 (since p’ > 1 and n > d there are no
moment conditions required). Using the atomic decomposition theorem we obtain

1/p'
‘ < comvily (Z |g<ym>|p')

%IB o (R")
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and using (4.10) this leads (for large values of v) to

_n—d

In particular 1, belongs to the pre-dual of Bp..” 7a(R”). The

da
B ®Y|| < cllgs | L) < ¢ llg] Ly(D)]l. (1.11)

n—d n—d
7 1@ I @

B (R = Bp"  (RY)

duality (see [Din95b, 2.2.3/a], cf. also [Tri83, 2.11.2(i)]) leads to

)| < el B " (®Y) "%IBK "R
< |FIBp “®Y| g | LD (4.12)

Since (||g, | Ly/(I')]])ven, converges, the last inequality implies the convergence of (f(1,)),en,
in C. We denote the limit with f(g) and have to make sure of its independence of the
approximating sequence. Let 1y another function satisfying (4.6). Then the limits of the
traces of the corresponding approximating functions on ' coincide and (4.12) yields the
desired independence.

Hence we obtain a well defined linear functional ¢ — f(g) on Cp(I') and by (4.11) and (4.12)
it is also continuous with respect to the topology of L,/ (I")

_n—d

[ By (R

[flg)l < e

Mgl Ly (M5 g € Co(I).

Since p’ < oo by Step 3 we can extend with a standard completion argument the functional
g — f(g) from Cy(I') in a unique way to L, (I'). The representation theorem for linear
continuous functionals on L, (I') implies the existence of an fr € L,(I'), uniquely determined
such that f is given by (3.9) and

—d

1 Ly = [1F] Ly (D) = Cf < e || £] Bro” “ (R?)

4.2 Proof of Theorem 3.12

n—d

Step 1. 1f 0 < p < oo and 0 < ¢ < min(1, p) we will prove that trrBZF@(R”) — L,(I).

Let K, L given numbers such that K > a4, + ”p%d and L < 0. Let ¢ € S(R"); using the
n=d .
atomic decomposition theorem (Theorem 2.6) in B,/ = (R") we represent ¢ as

= Z Z Aumpi,  convergence in S'(R™),
v=0 meL"™

where p% is an anisotropic 1x-atom (v = 0) or an anisotropic (Z%d,p)]g];—atom (v € N) and

d

P | Bpg

,a

HA | bpq” <c

(R")

: (4.13)
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In particular (2.9) with s = 2=2 leads to [p?,, ()] < 2v4/7.

P
For every v € Ny we denote ¢, = > Aypnp%,,. Using the controlled overlapping of the
meL™
supports at the level v we have:
P
P I = [ S Ampl)| dula)
r meL™
_ P
= / S Dol [2° S0 ()| ()
FmEZ"
< D Pl (4.14)
meL™

where in the calculation above we denoted Y,,, the characteristic function of the rectangle
cQQ? . where p?  is supported.

Applying now the triangle inequality for the L,- norm if p > 1 or the p- triangle inequality
if 0 < p < 1 and using the restriction on ¢ we obtain from (4.13) and (4.14):

n=d .
[l | Lp(D)] < e IA ] bpgll < " ||| Bpg” — (RT)

and this shows, after a standard completion argument, that trp is a well defined linear and

,a

n—d
bounded operator from B,y  (R”) into L,(I').
Finally we want to remark that if p = co then we have BY% (R") < C'(R") and the embedding
trr B (R™) < Lo (T') is obvious.

Step 2. Let % < p < ooand 0 < ¢ < min(l,p). We prove that trr is onto and that the
related quasi-norms are equivalent.

We follow [TrW96b, p.161] making appropriate anisotropic changes. Let again ¢ be a C'*
function on R” with

supp C 2°Qgy  and Z (e —m)=1 forall ze€R"
meL™

Using the arguments in Step 2 of the proof of Theorem 3.11 we obtain that any h € L,(I")
can be approximated in L,(I') by a sequence (h;);en, where h; = 1; |I' and

pi(x) = Z Avym (2% —m) for every jeNy (4.15)

the sum being taken over those m € Z™ such that 2°Q% NI # (), and where the coefficients
/\l,]m and the numbers v; are determined successively such that

N
h=> hi| Ly(T)|| < c27 V||| L(T)|| if N € No. (4.16)
7=0

In particular (4.16) implies
17 | Ly(D)| < e277 ||| Ly (D) (4.17)

where ¢ > 0 is independent of j. Furthermore, by (4.10)

1/p
g | Ly () ~ 2775 (z |Aw|p) . (@18)
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If we rewrite (4.15) as
Yia) =Y 27N, 2 (2450 — m) (4.19)

n—d
then (4.19) turns out to be an atomic decomposition of ¥; in Byg 7a(R”) forevery 0 < ¢ < o0

(there are no moment conditions required since % < p). Hence the atomic decomposition
theorem leads to

n—d . 1/p
H¢] | qup 7 (Rn)H S ¢ 2—u]d/p (Z |A1/Jm|p) . (420)

N n—d
Recall ¢ < min (1, p); applying the ¢- triangle inequality to || Y~ ©; | By "
J=0

N
into account (4.17), (4.18) and (4.20) we obtain the convergence of {>  #; : N € Ny} in
=0

(R™)]| and taking

,a

n—d
Byf  (R").
We denote the limit with ezt h and clearly its definition and the properties of the function
provide that it is independent of the approximating sequence. We may write ext h as follows:

exth = Z ZQ_VJd/p Avjm 22 IP 4 (%% — ).

j=0 m

n—d
But this is an atomic decomposition of ezt h, the convergence being in B,y 7a(R”).

Consequently, using the atomic decomposition theorem, (4.17) and (4.18) yield

—d o l/p q l/q
@] <o (3 (2o (S
=0 m
- 1/q
< DN L)) <R Ly(T)I-
7=0

Finally, it is clear that (trp o exzt)(h) = h and this completes the proof.

4.3 Comments and complements to Theorems 3.11 and 3.12

Remark 4.1 Theorems 3.11 and 3.12 are dual on(_edto each other. To make clear what is

meant we give a new proof of the embedding trpBZF@(R”) — L,(I') in the case 1 < p < o0
and ¢ < 1 by dualising (3.10). We use the technique from [TrW96b, Remark 7], see also
[Tri97, 18.8].

Let ¢ € S(R"); using the L,(I') — L, (I') duality we obtain

ltrrg | (D) = sup {\ [ o)) () o) 5 fo € L), e | L] < 1}.
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Reading now (3.9) from the right to the left, where we call the generated tempered distribution
[, and applying Theorem 3.11 we get:

ltrre | LD < csup{|f<so>|:feB;Z? e, || 71857 ®Y }
< sup{Hf|B "R -HsolB:?’a(R”) :wa;?“(w) }
< @|qup o (Rn)

_n—=d n—d a
where we used the B (R”) B, " (R") duality (see [Din95b, 2.2. 3/&]) and the re-

strlctlon on ¢, ¢ < 1 which enabled us to use the elementary embedding qu (R”)
n—d

B p “ (R™).

Slnce p < oo and q < p applying the standard completion procedure we may extend trp to

all elements of qup o (R™).

Hence traces of anisotropic spaces By (R") on a regular anisotropic d-set I' on the one hand
and interpretations of L,(I") as spaces on R”™ as in Theorem 3.11 are two sides of the same
coin.

Remark 4.2 The extension of Theorem 3.12 to all p < 1 causes some trouble if p < %; the
restriction p > % comes from Step 2 of the proof were we used the atomic decomposition
theorem, no moment conditions being needed for the atoms. An extension to all 0 < p < o0

is presented below.

If 2 € R and ¢ > 0 then B*(z,t) = {z € R" : |z — 2|, < t} denotes the (closed) anisotropic
ball centred at z and of (anisotropic) radius ¢.

Definition 4.3 Let a« = (ay,...,a,) a given anisotropy. A non - empty Borel set I' C R"
with |I'| = 0 is said to satisfy the anisotropic ball condition if there exists a number 0 < n < 1
with the following property:

for any anisotropic ball B*(x,r) centred at x € I' and of radius 0 < r < 1 there exists an
anisotropic ball B*(y, nr) centred at some y € R", depending on , and of radius nr such that
B(y,nr) C B*(z,r) and B*(y,nr)nT = 0.

This is the anisotropic counterpart of Definition 18.10 in [Tri97] and it is clear that conditions
of this type are related to the open set condition for self similar fractals, see [Fal85, p. 121]
and [Tri97, 4.5] for further comments and details.

Theorem 4.4 Let 0 < d < n and let I be a regular anisotropic d-set (with respect to the
anisotropy a = (ay, ..., a,)) which satisfy the anisotropic ball condition. If 0 < p < % and
0 < ¢ < min(l,p) then

n—d

trrByd T (R™) = L,(D).

Of course using the atomic decomposition theorem atoms with moment conditions are coming
in, see Theorem 2.6. To prove Theorem 4.4 one has to use the anisotropic ball condition and
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then the technique from the proof of Theorem 3/ Step 2 in [TrW96b]. But we do not go into
further details.

The above results have a counterpart for anisotropic function spaces of F* (R") type. With-
out going into details we mention the following:

Theorem 4.5 Let 0 < d < n and let I be a regular anisotropic d-set (with respect to the
anisotropy a = (ay, ..., a,)) which satisfy the anisotropic ball condition. If 0 < p < 1 and
0 < q < oo then

n—d

treFy " (R”) = Ly(I).

n—d

For the proof one has to use the method from [FrJ90, 11.1] to show that trp Fp,"

n—d n—d

independent of ¢; using FppT@(R”) = B,y (R") the conclusion follows from Theorem 4.4.
The rest is similar to what was done in [TrW96b].

By this idea of the proof the restriction on the range of p is now clear since only in this case
n—d

the trace of quT@(R”) exists and belongs to L,(I).

"(R™) s

)

4.4 Proofs of the results in Subsection 3.2.3
Some preparatory results

Lemma 4.6 Let A, B,C' be quasi-Banach spaces, let T € L(A, B) and let V € L(B,C).
(i) ||T|| > er(T) > ex(T) > ...>0; e (T) = ||T|| if B is a Banach space.
(i) For all k,l € N,

i1 (V o T) < e (V) er(T). (4.21)

A proof is given in [EdT96, Lemma 1.3.1/1]. In case of quasi-Banach spaces it may happen
that ||T|| > e1(T).

Let M € N and let 0 < p < . By lZ])W we shall mean the linear space of all complex M-
tuples y = (y1, ..., yamr) endowed with the quasi-norm

M 1/p
2] = (zw)
=1

(modification by sup{|y;| : ¢ =1,..., M} if p = 00).

Proposition 4.7 ([Tri97, 7.2]) Let 0 < p; < o0, 0 < pg < oo and let ey be the entropy
numbers of the embedding id : l% — l%. Then

e >c if 1<k<log(2M)

and
1 1
er > c2 (2M)r2 P if k€N,

where ¢ is a positive constant which is independent of M and of k but may depend upon py
and ps.
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Let d > 0,8 > 0 and let (M,),en, be a sequence of natural numbers. We will assume that
there exist two positive numbers ¢; and ¢y with

c12"Y < M, < 32" for every v € N. (4.22)

Let 0 < p < oo and 0 < ¢ < oco. Then lq(QVSZZ])W”) denotes the linear space of all complex
sequences b = {b,; : v € Ny, i = 1,..., N,} endowed with the quasi-norm

0 M, qa/p /g
b2 = (S (Z 59 |bm»|p) (1.23)
v=0 \i=1

(obvious modification if p = co and/or ¢ = o0).
In case of 6 = 0 we write lq(lzjjw") and if, in addition, p = ¢ then we have the [, spaces with
the components ordered in the given way.
Plainly, lq(QVSZZ])W”) consists of dyadic blocks of spaces l]])m clipped together with the weights
2V,
Let, in addition, r > 0; then by
Lo 2771, (27 1))

we shall mean the linear space of all lq(2”5l£4”) valued sequences b = {b’ : j € Ny} endowed
with the quasi-norm

6] Loa[27 1, (272 13| = sup 277 |[67 [ 1,(2° 1)), (4.24)

J€N

Theorem 4.8 ([Tri97, 9.2]) Let d > 0, 6 > 0, r1,r9 > 0 and M, with (4.22).
Let 0 < pp < py <00, 0<q1,q2 < oo and let e be the entropy numbers of the identity map

id ¢ 1o [2771 0, (27 D1)] — 1o [27720,, (121)].
Then there exist two constants ¢,C' > 0 such that for all k € N,

I3 1 1
kTR <o < ORI

Proof of the estimate (3.14) in Theorem 3.13

Let s; =
1
Step 1. We first assume 0 < p; < py < co. Replacing (if necessary) |- |, by an equivalent

anisotropic distance function we may assume that
{r eR" : |2|, <2} C [-7,7]™

So we can use the subatomic decomposition theorem in anisotropic function spaces, see [2,
Theorem 3.7] and Section 2.5, see also Remark 2.13, and decompose any f € Byl (R") as

=3 Y ) e (4:29
BEND v=0meLn

where 1 is a C'*° function on R™ with

suppth C 2°Q%, and > ez —m)=1 if z€R",
mEL”™
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¥ (@) = P4 (x) and

sup 27190 AT byl < e || By (R (4.26)
BENY

with ry > 0 large and A% = {\J,, : v € Ny, m € Z"}.
For v € Ny and m € Z" let ()¢, be the rectangles defined in Section 2.3. Let

ML= N8 e Ny, meZ™, CQ% NT # 0} (4.27)

where we may assume that C' > 1 is fixed and sufficiently large such that all what follows is
justified.

For a fixed v € Ny let M, be the number of the rectangles Q% such that CQ¢%, NT # (. By
Definition 3.1/(i) it follows that there exist two constants ¢y, ¢z > 0, independent of v, with

 2°P < M, < ey 270 (4.28)

and this coincides with (4.22).
Let lq(2”5lé\4”) and loo[eraﬁlq(Ql"gléw”)] be the sequence spaces introduced in (4.23) and (4.24)

adapted to our present situation where § = s — d (p% — p%)) and ry and M, have the same
meaning as in (4.26) and (4.28) and the [, norm is now modified by sup .

BENY
Let us define the (non-linear) operator

Ut B R — 1o [27°71,(27°00)) by Uf=1{0"": 3 e Ny}

P19
with
eﬁ,F = {Q_USAgm cv eENpg, me va Cng nr 7£ ®}

where f is given by (4.25) with (4.26). By (4.26) it follows that U is a bounded map.
Let ro > 0 at our disposal. We define

Vo zoo[2f2aﬁzq(2”5z§{v)] — L, (T)

by

Vi) = > > 0, 274 P27y —m)  where y €T, (4.29)
g

eNgv=0 m

and the sum over m in (4.29) is taken according to (4.27) now with 75, in place of AJ,,.
By Definition 3.1/(i) and (3.5) there exists a constant ¢ > 0 independent of v € Ny with
p(CQ%,, NT) < e2774. Hence we have for fixed 3 € N and v € Ny:

1/p2
< o (z |n5’m|p2)

where ¢ > 1 is independent of 3. Let p; = min(1, pg); then

D0 27 P27 —m) | Ly, (1)

P2

DD w2 P20 —m) | Ly, (1)

v=0 m

P2
[oe]

L/p2
< ¢ (Z Infm|p2) = "7
e

v=0

Pz

7 | (100
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where % = {nﬁm v €Ny, m€Z"} and ¢ > 1 is independent of 5. Since ry > 0 is at our
disposal it follows from

P2 P2 9—r2a0p2 roa v Pz
V) [ Ly (DI < 37 oo sup (2720013 | 1120
peNT BENT

< o2 (1) P

that V is linear and bounded. With é = s —d (L — L) we have the decomposition

P1 P2
trr=V oidoU : B3 (R") — Ly, () (4.30)

where
id - loo[eraﬁlq(QuSl%y)] N loo[QmaﬁlE(l%D)]

is the identity operator and the final outcome is independent of ambiguities in the non-linear
construction of U. Using now the multiplication property (4.21) for entropy numbers and
Theorem 4.8 it follows from (4.30) that there exists a constant ¢ > 0 such that for all k£ € N

8 1
ex(trr : B3 R™) — L, (1)) < ck™ @ %2 o (4.31)

P19

and this completes the proof if 0 < p; < py < oo since we have only to insert (3.12) in (4.31).
Step 2. Let 0 < py < p; < 005 then we have

Ly (T) < Ly, (T). (1.32)

The desired estimate follows now from Step 1 with p; = pz and (4.32).

Proof of the estimate (3.15) in Theorem 3.13

Let I' be a proper regular anisotropic d-set in R™ according to Definition 3.6.

Step 1. We first assume 0 < p; < oo and 1 < py < 0o. Let 27! be the centre of the rectangle
R;; of side lengths r{’l,...,r%’l and let N; ~ 27% having the same meaning as in Definition 3.1.
We use the abbreviation

2(y — ) (2(71 —at) 20 - xﬁ)) . (4.33)

7,1 7,1 1T 7,1
7"]7 r{7 r%7

Let ¢ and v be two non-negative € functions on R"™ having supports in
{ eR" : |z;] < 1,7=1,...,n} and

: 2(y — a) 2(y — a)
Gl 2]d/r99 (T (8 — ol dp(y) = 1. (4.34)
Of course the integral above can be restricted to I' N R;;. We may assume that
el)Y(x)>n>0 if ze{yeR": |yl <k i=1,..,n}

where 0 < k < 1 is the number from Definition 3.6 of a proper set. Then

o () o257
o (20 4 (2020 g

4

en2'® (vol Rj))n > ¢ >0 (4.35)

v

v
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¢’ being independent of j and [. So, using (4.35) and (3.5), we may assume that there are
two constants 0 < ¢; < ¢g < oo such that

c1<cjy<cy forany jeENy andany [=1,...,N;. (4.36)

n—d

s+ —,a
We define the operator U : l]])\ij — By (R") by

Ur={\:l=1,...N;}) = g;Al [2‘?’(5—%)99 (M)] (4.37)

7"]71
and may interpret the term in brackets as an anisotropic (s + ”p_ld
sufficiently large and L < 0 (it follows from (3.12) and p; > 1 that

n—d (1 )
s+ >n|—-—1
J41 J41 +

so there are no moment conditions required for the atoms). Hence the right-hand side of

n—d
+ .

(4.37) is an atomic decomposition in B;lq L (R™). Consequently, there exists a constant
¢ > 0 (independent of j) such that

,p1)K,r-atom where K is

N.
<MY (4.39)

s—I—"—_d,a
HU(A) B Y

We define now V' : L, (I') — lgj by

Vi = {ezima [ gere ((OoE ) ey = 1n) wa

(with the usual modification if py = 00); again the integral can be restricted to I' N Rj;. Let

b;; be the numbers in (4.39). Applying Hélder’s inequality with plz) + pl—, = 1, using the fact
2
that for a fixed j the rectangles R;; are disjoint and using (3.5) there exists a constant ¢ > 0

(independent of j) such that:

b < 2 ami i /F g dnGa) el 1 Ry
Nty

< e [ lgtnlduta). (4.40)
FORJZ

From (4.36) and (4.40) it follows that there exists a constant ¢ > 0 independent of j such

that
1/p2

N]
> lbjal”? <cllgl Ly, (D]
=1

(usual modification if p; = 00). In other words, both U and V' are well defined linear and
bounded operators and the corresponding norms can be estimated independently of j.
Denoting id’ : l]])\ij — lgj the identity operator, by (4.34) we have

R A :
VotrroU: 1 =1 and VotrpolU= 2_]<5_P1> 234/ i, (4.41)
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Using the multiplication property (4.21) for entropy numbers we obtain
n—d

A =i (=) o-jdfa . (; i
er(trr @ Bpig (R™) = L,,(I') > ¢2 P/ 2 e (id”) (4.42)

for some ¢ > 0. By Proposition 4.7 with k = 2N; ~ ¢ 2% we have
, a1
€pgsa(id’) > d 2]d<P2 P1>.

Inserting this last inequality in (4.42) we obtain the desired estimate for k = ¢2/%; using
Lemma 4.6 this is sufficient to prove the assertion for all £ € N.

Step 2. Let now 0 < p; < oo and 0 < py < 1. Assume that there is no ¢ > 0 such that
(3.15) is satisfied. Then we find a sequence k; — oo such that

n—d
£ s+ p—,a

ki ey, (trr @ Bpg ™t (R") = Ly, (1)) = 0 if j — oo, (4.43)

Using the multiplication property (4.21) for entropy numbers and elementary embeddings
between anisotropic Besov spaces it is clear that we may assume in (4.43) p; > 1.
By Theorem 3.12 the operator
s—I—u,a
trr : Bpg ™ (R") = Ly, (')
is bounded and by the previous considerations we know the behaviour of its entropy numbers.
If now

1 1-86 0
0<f8<1l and -= 4+ —
p yal P2

(4.44)

then for any f € Ly, (I) we have |f| Ly(D)|| < 1] Ly, (D7 - |1£] Ly, (D)
Using the interpolation property for entropy numbers from [EdT96, 1.3.2] and the estimate
(3.14) we find constants ¢, ¢’ > 0 independent of j with

n—d

s+—,a
eak, (trr = Bpg ™ (R") = Ly(I))

s+2=d ¢ " _ s+2=d ¢ "
< elen; (trr = Bpyg ™ (R™) = Ly, (O] [en (trr = Bpyg ™7 (R™) = Ly, (1))
_s s s+2=2d g 0
< k1 (kjd cep;(trr  Bpg "' (RY) — Lp2(F))) .
Hence
s s—I—u,a
BT ean (trr = Bo ™ (R?) = Ly(I)) = 0. (4.45)

By (4.44) we may assume p > 1 so that (4.45) contradicts Step 1.
The proof is complete.
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Proof of Proposition 3.14

The continuity of the operator in (3.17) is a simple consequence of the embedding from
[Joh95, (2.13)] and of Theorem 3.12/Step 1.

As in the proof of Theorem 3.13 we choose ¢ a non-negative C'°° function on R”™ having
support in {z € R™ : |z;| < 1,i=1,...,n}. Let 27! be the same points as there and let

Ny .
() (2w = 2 .
¢]($):ZA12 ]< pl)g@(T) y fER
=1
as in (4.37) where we used again the abbreviation (4.33).
Assuming that ¢ satisfies the necessary moment conditions, as in the proof of (4.38), we find

a constant ¢ > 0 independent of j such that

N 1/]?2
s—I—%,a n -
OBz TR <e | Y [l
=1

On the other hand, we find two constants ¢y, ¢ > 0 independent of j such that

1/p2 1/p2

N]
<Ny | Ly, (D) oo | D [N : (4.46)
=1

N]
a | DI
=1

Indeed, we may assume @(z) > n > 0if |2;] < Kk, 7 =1,...,n where 0 < k < 1 is the number
from Definition 3.6 of a proper set. Then

1/p2
—j(s—i> ak 2(y — 2l
s 12l = 2 CE S0 [ g (2O
I=1 FORJZ ro
N; 1/p2 N; 1/p2
(o d
> 2—]<5_p1> Z|Al|p2np2u(FﬂHle) > ¢ Z|/\l|p2

where we used (3.16). The second part of (4.46) is a simple consequence of (3.5).
Hence by the analogue of (4.41) we find a constant ¢ > 0 independent of j with

n—d

s+ N
eplid : 0 = 1) < cepltry « B, 7' (R") = L, (I')). (4.47)

P1P2

Assuming that the operator from (3.17) is compact it follows from (4.47) that

sup ey (id : l]])\ij — lgj) —0 for k— oo.
i>0

But this contradicts Proposition 4.7 and proves our assertion.

4.5 Proof of Theorem 3.16

Step 0. Prerequisites.
We start recalling some basic facts about entropy numbers and approximation numbers of
operators and about their relation to eigenvalues.
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Let A be a complex quasi-Banach space and 7" € L(A) a compact map. We know from
[EdT96, Theorem 1.2] that the spectrum of 7', apart from the point 0, consists solely of
eigenvalues of finite algebraic multiplicity: let {Ax(7") : k € N} be the sequence of all non-

zero eigenvalues of T, repeated according to algebraic multiplicity and ordered so that
AM(T)] = [A(T)] > ... > 0. (4.48)

If T has only m(< oo) distinct eigenvalues and M is the sum of their algebraic multiplicities,
we put Ag(7T) =0 for k > M.

Perhaps the most useful connection for our purposes between the eigenvalues of the operator

T and its entropy numbers is the following;:
Theorem 4.9 Let T and {\(T) : k € N} as above. Then
(D) < VB er(T). (4.49)

A proof of this result, originally proved by B. Carl in [Carl81], see also [CaT80], is given in
[EdT96, Theorem 1.3.4].

Definition 4.10 Let A, B be two quasi-Banach spaces and let T' € L(A, B). Then given any
k € N, the kth approzimation number ay(T) of T is defined by

ap(T) =inf {||T'— L|| : L € L(A, B), rank L < k}
where rank L is the dimension of the range of L.

Usually the approximation numbers are denoted ay(7"). The above notation is used only to
avoid any possible confusion between these numbers and the anisotropy a = (ay, ..., a,).
These numbers have various properties similar to those of the entropy numbers: we have
IT|| = a1 (T) > ag(T) > ... > 0 and a counterpart of the multiplication property (4.21) for
entropy numbers, see [EdT96, Lemma 1.3.1/2].

On the other hand there are radical differences between entropy numbers and approximation
numbers, see [EdT96, Remark 1.3.2/6] and [EEv87, 11.2.3], but we do not go into details
here.

The approximation numbers have important connections with eigenvalues, the picture being
clearest in a Hilbert space setting.

Theorem 4.11 Let H be a Hilbert space and let T € L(H) be a compact, non-negative
and self adjoint operator. Then the approximation numbers ay(T) of T coincide with its
eigenvalues (ordered as in (4.48)).

A proof can be found in [EEv87, 11.5.10], see also [EAT96, p.21].

Step 1. We prove now part (i) of Theorem 3.16.
Using (3.11) and the elementary embedding

2—d

Wih(Q) = W (Q) = B2 Q)
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see [Tri83, Proposition 2.3.2/2] and [Joh95, (2.11)] for the anisotropic counterpart, there
exists a constant ¢ > 0 such that

ltref | Lo(T)]| < e|lf| Wi 2(@))) forany fewi (). (4.50)

Defining
/f g()dp(y) forany f, g eWi (),

o]
it is clear that ¢(-,-) is a non-negative quadratic form in W(zl’z)(Q). By [Tri92*, p. 91] there
exists a non-negative and self adjoint operator T" uniquely determined such that

q(f7g) = (Tf7g)W2(l’2)(Q) for any fvg GW(QLz)(Q)

Furthermore,

[t f | Lo(D)] = VT f | w2 (@) (4.51)

where /T = T'/? and this proves (3.25).
So it remains to prove that the above operator is the same as in (3.24). Let f EI/?/(QI’Q)(Q)
and ¢ € D(Q?). Then

/Ff(v) e(dp(r) = (TF.9)y0 g = (ATLA 01,0

the second equality in (4.52) being justified by the fact that we fixed the norm in I/?/gl’z)(Q)

by || f| I/?/(Ql’z)(Q)H = HAi/zf | Lo(Q2)]] for r > rg, see Remark 3.15.

Considered as a dual pairing in (D(Q), D'(Q)) we obtain A, T f = tr! f and (3.26) follows by
the same arguments as in [1ri97, Theorem 27.15/Step 1].

This completes the first part of the proof of Theorem 3.16.

Step 2. We prove now (3.27).

Step 2.1.  Anisotropic function spaces on domains.
IfseR,1 <p<ooandl<gq<oothen By () is the restriction of Byy' (R?) to © normed
by

1£1 By ()l = inf [lg | By (R?)]] (4.53)

where the infimum is taken over all g € By, (R?) with ¢|2 = f|Q (in the sense of distributions
on Q). Of course this definition works for all (bounded or unbounded) domains €2 but we are
interested here only in the unit disc.

Let us recall that

W Q) = B3HQ) if s> 0. (4.54)

Fors e R, 1< p<ooand 1< ¢g< oo we will use the (non-standard) notation

Byi(@) = {f € By (Q) : floo= 8f -l 0% = 0} (4.55)
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Step 2.2. Let a = (%, %) and let, according to (3.20),

w3 (@) =i Q).

We prove now that the operator T =A=' o tr" can be factorised by T' = idy o A7' 0 idy o trp
where

I
trr 0 W3 (Q) —  Lyo(l)

2—d

idy : Ly(T) — By” (%)
_2=d , 08_2=d .
ATl s B (@) = Bt ()
o8_2-d , o4,
idy : B3 2 ()= wit(Q). (4.56)

The boundedness of trr in the first line of (4.56) was discussed in Step 1, see (4.50).
According to (3.21) and (4.53) the embedding idy is (3.10) whereas the embedding id; is a
simple consequence of the inequality

8 2—d>4
3 2 3

and of the elementary embedding between anisotropic function spaces from [Joh95, (2.11)]
(see [Tri83, Proposition 2.3.2/2] for the isotropic counterpart).
So it remains only to justify the boundedness of A1 as indicated in the third line of (4.56).
Let us denote 2 = (—1,0) and 2! = (1,0) and
8 a
Wy (Q,2% ') = (4.57)
8 . gmitma gmitme 3
= {feWi”” Q) : 7][(900)— 7f($1):0 if 2m1—|—m2—|—§ <4}7

Qa0 — QaM ol
see [Tri83*, (17)], and let
o8, & a 8f
Wi (Q,2% ") = {f c Wy (Q,2%2Y) : £l0Q = 87|89: 0} . (4.58)
2
Recall that there exists a number rg € R such that for any r > rg the operator
o8 .
A, maps W3 (Q,2%2') isomorphically onto Ly(Q); (4.59)

this was proved by H. Triebel in [Tri83*, Theorem 4], see also [She98, Theorem 2.1].
Furthermore, by Proposition 2 and Remark 6 in [Tri83*] the operator

o4 4 —ta
A, maps W3 () isomorphically onto B,,*" (€). (4.60)
Let
(4.61)

Then clearly we have 0 < # < 1 and

(1—0)-0+0-(—§) :-%.
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Since the unit disc Qis a domain in R? having the so-called C™ flexible (%, %) horn condition
for any m € N2 | (see [Bes96, Definition 1.2]) by [Bes97] with the above 6 we have the following

interpolation result:

(LQ(Q),B;Q%’G(Q)) —B,.® (). (4.62)

d,00
From (4.59), (4.60) and (4.62) it follows that for r > r( sufficiently large the operator

2—d

2—d , o8 4 o4,
A7l maps B, _? " (Q) bounded into (WS” (Q,2° Yy, Wi (Q)) . (4.63)
d,00

Since

{f e Wy (Q,2% Yy + W (Q) ¢ floQ= % | 0Q = 0}
2

8, 4,
is a complemented subspace of W™ (Q, 2% a') + W3 (Q) with the same projection operator
we may use [Tri78, Theorem 1.17.1/1] and have

o8 , o4,
(Wg’ (Q,2° 2, Wi (Q)) = (4.64)
d,00

_ {fe (Wf’“(gz,x(ﬁxl),wf’“(g)) floa= 2 |8Q:0}.

0700 8$2

On the other hand, using (4.54), by [Bes96, Theorem 4.2/a] we have
8 4 4, 8_2-d,
(wi @i @) =BT (4.69)

d,00

where # is the number defined in (4.61). It follows from (4.63), (4.64), (4.65) and elementary
properties of real interpolation that

2—d oﬁ_ﬂ@

2%(Q) bounded into B ?

A7' maps B

()

and this completes the proof of the boundedness from the third line of (4.56).

200

Step 2.3. Let f EI/?/(QI’Q)(Q) be an eigenfunction of 7. Then it follows from (4.56) that f

belongs also to
2—d

o8 _2-d,

By, © ()
and so it is an eigenfunction of the operator T restricted to this space. Obviously the converse
is also true. s oy
Hence the root systems considered in I/?/(Ql’z)(Q) and in ég;T’a(Q) coincide. Then the
eigenvalues of T considered in these spaces also coincide, inclusively their multiplicities.
Using the multiplicity property for entropy numbers and (4.56) there exists a constant ¢ > 0
such that for all k € N,

08 2-d 08 2-d 08 2-d

er(T = B 2 "(Q) —>B§;?’“(Q)) <cep(trr :Bs. 2 Q) = Ly(I). (4.66)
Inserting in Theorem 3.13 n =2, a = (%, %), P =p2 =2, ¢ =00 and
. 2—d 8 2-d
TR T3 2
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we have from (4.66)

08 _2—=d 08_2=d

en(T B 2 () = By * () < ch-ald+3), (4.67)

The estimate (3.27) is now a simple consequence of (4.67) using Carl’s inequality (4.49).

Step 3. 1f one applies Theorem 4.11 then the estimate (3.28) is covered by the next Propo-
sition.

Proposition 4.12 Let €2, d as above, let I’ be proper and let T be the compact, non-negative,
self adjoint operator in I/%/(Ql’z)(Q) defined in (3.24).

There exists a constant ¢ > 0 such that the approzimation numbers ak(\/T) of VT = T'/?
can be estimated by

ay(VT) > ck~a(3t3) | keN. (4.68)

Proof of Proposition 4.12.

Let 27 be the centre of the rectangle R;; of side lengths r{’l, r%’l and let N; ~ 274 having the
same meaning as in Definition 3.1. Since I' C € it is clear that there exists a jo € Ny such
that for any j > jo the rectangles R;; (I =1, ..., N;) are contained in €.

Let ¢ a non-negative C*° function on R? with support in {z € R? : |z1| < 1,]zz| < 1}.

We may assume |p(z)| > § > 0if |21] < &, |z2] < k where 0 < k < 1 is the number from
Definition 3.6 of a proper set.

If 4 4
2xy — a7 2(wy — 22
pifz) = ( il =, 7l :

] b

then supp ¢;; C Rj;. Furthermore, there exist two constants ¢y, ¢ > 0 such that

N, 1/2 N, N, 1/2
1 27792 [ e <D el La(D)|| < 2772 [ S Jepl? (4.69)
=1 =1 =1
for any complex numbers ¢;; and for any 7 > joand [ =1,..., N;.
Indeed, using (3.7) we have
N, 2 N,
gl L(D)|| = Z/ et [ (D1 dp(y)
=1 1=1 /NG
N] N]
> Y leplP 8 p(T N kR > 279y feq)?
=1 =1

and this is the first inequality in (4.69). The second part of (4.69) is a simple consequence of
(3.5).
Remark now that if j > jo is fixed and [ € {1, ..., N;} then

2775
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is an anisotropic (3,2) tom in I/V2 )(Q) Hence, using (3.20) and the atomic decomposition
theorem with n =2, s == and p= ¢ =2 we have
1/2
2 (1,2) L - 2
llgi | W (@) < e2’7 [ Y feql (4.70)
for any function g; of type
NJ NJ
g; = Z Cil @41 = 273 Z Cjl (2 ]399]‘1) s (4.71)

the constant ¢ > 0 in (4.70) being independent of j, [ and of the complex numbers ¢;;.
By (4.51), (4.69) and (4.70) we find a constant ¢q such that

N, 1/2
IVTg; | W2 @ ~ 2795 [ 3 Jeql?
=1
> o275 g5 | WP (@) (4.72)

There exists an operator L = L(N;) in I/V(2 )(Q) with rank L < N; such that

+5)

MI&

an,(VT) > |WT = L|| - —002 i(

where ¢q is the number from the last line in (4.72).

We may assume that the dimension of the span of the admitted functions g¢; in (4.71) is
larger than N; ~ 2/¢. Then we find a function g; of type (4.71) in I/?/(Ql’z)(Q) such that
llg; | I/?/(Ql’z)(Q)H =1and Lg; = 0. It follows

ay, (VT)

v

0 1 dyl
IVTg; — Lg; | W @] = 5 e 27 (3+2)

> 27 (5+3) (4.73)

where ¢g > 0 is independent of j. Using elementary properties of approximation numbers it
is easy to see that (4.73) implies (4.68).

4.6 Proofs of the results in Section 2.4

We begin with some remarks on the notation and terminology which we will use in the proofs.

If n > 2 then a = (ay,...,a,) will be a given anisotropy. We call ¢ an n- dimensional
anisotropy and write it @« = (a’, a,,) where, of course, ¢’ = (ay, ..., a,—1).

In analogy to our notation in the previous sections, @,,., = max{a; : 1 < k < n}, let
ar.y =max{a; : 1 <k <n—1} where any ay, is defined from (2.18).

We will use the notation a*a’ = ajoq + ... + a),_ o, for the scalar product of a* with the
multi-index o' = (e, ..., a,_1) € NI7L

Throughout the proofs we will assume that the involved functions are smooth enough, for
example f in (2.16). The necessary approximation procedures and Fatou arguments have
been discussed with details in [Tri92, Remark 4.2.2/1] and will not be repeated here.
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Proof of Theorem 2.8

Step 1. We first prove (2.20). By (2.19) there are no moment conditions required for the
atoms in the atomic decomposition theorem for the space B;;f* (R"1). Using both (2.18) and
(2.19) one can see that s > o, and so the same assertion is valid for the atomic decomposition
theorem for the space Bp;' (R").

We will assume p < oo; for p = oo one has to make obvious changes in the proof below.

Let K and L be fixed numbers such that K > a,,,, +s and L < 0.

Let g € Bpy'(R™) decomposed as in (2.12) with |[A | byl < ¢ |lg| Bpy' (R™)||. Recall that each
atom p?  is supported in some rectangle Q% =~ with ¢ > 1, see (2.8).

For the trace problem only rectangles ()¢ = are of interest for which ¢@)?  has a non-empty

vm

intersection with the hyperplane { = (2/,2,) € R" : 2, = 0}. Let us denote
A={(vym) e Ngx Z" : cQ}, N{z=(a',2,) ER" : 2, =0} £0}. (4.74)

Fix (v,m) € A and let Q' be the projection of ¢ = Q% _ on that hyperplane, now being
identified with R"™'. Clearly @’ is an (n — 1)- dimensional rectangle with side lengths
respectively 27741 .. 277% =1 and |Q| = |Q'|"/ ("~ ).

If « = (/,0) € Ny such that a’a’ < K then using (2.18) and (2.9) we get:

s 1 [ *®

’ s_1_dla' s _ n _aa _r _l1_a o
|DY py (2, 0)| < QI P77 = |Q|rmen T Trmanlp T nman = | QT TR T AT (4.75)

If K/ = ﬁK then K’ > a, ... + r and by (4.75) it follows that p? (2’,0) is an (n — 1)-
dimensional a*- anisotropic (r, p)xr s-atom located at some rectangle ¢Q’, where L’ can be
chosen such that L’ < 0 (recall that by (2.18) and (2.19) there are no moment conditions
required for the atomic decomposition theorem in By, (R"~1)).
From g(z/,0) = 32 Ay pl (27,0) we get trga—i g € Bhy (R"~'). Furthermore,

(rym)eA

1/q

00 q/p
lg(-0) | By (R* N[ <e [ Y ( >, IAumlp) <d|lg| By (R™)]|

v=0 \mezn
(usual modification if ¢ = oco) which shows that ¢rgs-1 is a linear bounded operator from
B (R™) into By (R™1).
It remains to show that if h € B;}la*(R”_l) then there exists a function g € By (R™) with
9(a',0) = h(a’) and |lg| By (R™) | < c |Ih| Bs” (R™)]1.
We start choosing a real number K’ such that
(n—1)a,
(n—ay)p

*

a1 (4.76)

K'>a . +r+

and a number L’ < 0.

We decompose h € B;}la*(R”_l) via the atomic decomposition theorem in S’(R"™!) as
[oe]
=YY A
=0 m/eZn—l

where pff:n, is an a*- anisotropic l1gs-atom (¥ = 0) or an a*- anisotropic (r,p)xr -atom
(v € N). More precisely, let us denote Q% , the (n — 1)- dimensional rectangle with sides
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parallel to the axes, centred at (Q_V“Tml, e 2_”“2—1mn_1) and with side lengths respectively
2-val . 27V%-1, We have:

SUpp P C Q'
[ — _n—l ® 1
| DY pl (2] <2 U<r v ) 27 it o < K

if v € N and the standard modification if v = 0.
We will extend the (n — 1)- dimensional atoms to atoms on R™. To do this we consider a
function ¥ € C§°(R),

¢(0) = 17 |¢(t)| S 17 and Supplb C [_17 1]7

and define

gla)=eath(z) =3 D A plp(a)) 2/ nDen/nmen)g (4.77)

v=0 m/eZn-1

Let K = =% K’ and remark that by (4.76) we have K > a4, + 5; choose also L < 0.
Denoting

pgm’(xlv xn) = pi:n/(ac’) Qﬁ(Ql/(n_1)"’71/(71—1171)xn)7

one can see that p? , is, besides an unimportant constant (independent of v and m'),
an n- dimensional anisotropic (s, p)k r-atom supported in a rectangle with sides parallel
to the axes and with side lengths respectively c2-vin=Dar/(n=an) = o=vin=1)an_1/(n=an)
¢2-v(n=ban/(n=an) for an appropriate constant ¢ > 0.

Hence (4.77) yields an atomic decomposition for ¢ in the sense of Remark 2.7. So

g/p\ /4

g By R <e [ D1 Do [l < nl B (R

v=0 m!eZn—1

(usual modification if ¢ = co0) and this completes the proof.

Step 2. To prove (2.21) we use the method from [FrJ90, 11.1] and show that trgn—1 F," (R™
is independent of ¢. Then we have trp.—1 Fp;" (R") = trgn—1 Fp' (R™) and using F,p' (R™) =
Bpy' (R™) the conclusion follows from (2.20).

Let 0 < ¢ <t < co. The elementary embedding F;"(R™) < F*(R") (see [Joh95, (2.10)])
implies trpn-1 Fpg' (R”) < trpn—1 F" (R7).

To prove the converse inclusion let K and L be real numbers such that K > ., + s and
L >0y —sandlet g € F)"(R") decomposed as

9= Amplih

v=0 meZ"

(convergence in §'(R™)) with piir, anisotropic 1x-atoms (v = 0) or anisotropic (s, p) g z-atoms
(v € N) and with |]\] f3]| < e lg| F52 R

We claim that there exists a function g € Fp*(R") with trpa-19 = trga-14.

Again only rectangles (9% . are of interest for which ¢Q?¢, has a non-empty intersection with
the hyperplane {z = (2/,z,) € R" : 2, = 0}; let A be the same set of pairs (v, m) as in
(4.74).
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We define Xl,m = Ay if (v,m) € A and Xl,m = 0 else and put A= {Xl,m : v E€Ny,meZ"}.
Let now

11
¢€S(R)7 Supp¢c [_575] s ¢(0):17
and
/ zﬁnzb(z)dz =0 forall p,¢€ Ny suchthat a,8, <L.
R
We define:

Pom (@’ an) = pi (2, 0) (27" ,)

and remark that pJ;i is supported in a rectangle c@fﬁm where @ﬁm has sides parallel to
the axes, is centred at (27"*'my,...,27"*1m,,_1,0) and its side lengths are respectively

97val | 97Van—1 9=Van

Furthermore, if o = (o/, v,) € Njj such that e < K and if v € N then

D ()] < e | D gt (2!, 0)] - 2vnen < ¢ 97 (o7 gran.

It follows that each py; is, besides an unimportant constant, an anisotropic 1x-atom for
v = 0 or an anisotropic (s, p)k r-atom (due to its product structure and to the assumptions
on the function 1 there are no problems to check the moment conditions, too).

Defining

9= > Aemfih= D Aemiih (4.78)
v=0 mez" (v;m)€eA
clearly trpn-1g = trpn-1g.

For (v,m) € A let

- ~ 1
By = {x € QU 1 527 < <

o).

N | —

Obviously, :g’Z’"" = % > (0. Then

1/q

A ol ~ Yo P XBOP ] L RY (4.79)
(rym)eA

with the usual modification if ¢ = oo, where %S];)L denotes the L,(R™)-normalised characteristic
function of the rectangle Eﬁm
This is a consequence of an inequality of Fefferman - Stein type for the anisotropic Hardy
- Littlewood maximal function and the proof is a simple anisotropic counterpart of [FrJ90,
2.7].
For (v, m) € A the sets Eﬁm are pairwise disjoint and so at most one term in the sum on the
right-hand side from above is nonzero. Hence ¢ and 1/¢ can be canceled in (4.79) and can
be replaced by ¢ and 1/t. It follows

1/t

AL Sl ~ Yo P XELOM] LR < e lIM Sl
(v;m)€eA
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(with the usual modification if ¢ = c0).
The last relation together with (4.78) prove the fact that g € F,)"(R™) and

191 E55" RN < e IM fll < S NAHE< e llg T F (R

This verifies our claim and shows that trga—1 F;" (R™) < trgn—1Fp" (R”) and, consequently,
the trace of Fj;"(R") is independent of q.

Proof of Theorem 2.9

To prove Theorem 2.9 we will use the technique developed in Section 4.1. But since Theorem
2.9 is of independent interest we give all details.

Step 1. Let K, L given numbers such that

Kzamax—l—a—n and LZUp—a—n
P P

an
,a

and let g € By (R").

We decompose g via the atomic decomposition theorem as in (2.12) where now p?_ is an
lx-atom (v = 0) or an (%,p)KL—atom (v € N) and ||[A] byl < c g B;?n (R™)]|.

Clearly p? . (2',0) is supported in an (n — 1)- dimensional rectangle ¢@!, = where @/, = has

,a

side lengths respectively 27741 ... 27V%n-1: by (2.9) with s = “7" we have also
(2, 0)] < 220, (1.80)

For every v € Ny we denote g, (2',0) = > A, p%,,(2',0). Using the controlled overlapping
meL™
of the supports at the level v and (4.80) we have:

P
lgu(,0) | L(R™1) P = / S Aumpln (a,0)] da’
Rn—l mEZ"
< C/ Z Ayml? - 270070 P 5 (2 Y de
Rn—l mEZ"
< D Pl (4.81)
meEZL™

where in the calculation above we denoted X,,, the characteristic function of the rectangle
c@’,,, where p% (2',0) is supported.

Applying now the triangle inequality for the L,(R"™!)- norm if p > 1 and the p- triangle
inequality if 0 < p < 1, using the restriction on ¢ we obtain from (4.81):

llg (- 0) | Lp(R"™HI| < e [|A] byl

and this shows that trg,-1 is a linear bounded operator from Bg’a(R”) into L,(R™™1).
Step 2. To prove that trpn—1 is onto we begin with a preparation. Let us consider ¢ a C™
function on R™ with suppe C 2°Q¢, (the rectangle concentric with @8, and side lengths

respectively 21, ... 2%) which satisfies Y (2 —m) =1 for all € R".
meL™
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As in Step 2 of the proof of Theorem 3.11 (see Section 4.1), see also [TrW96b, Theorem 2/ (i),
p.159] and [Win95, 5.4.1], one can show that

U { Z Avm @(27%2 — m) ‘R”_l A € (C}
v=0 \UmeZn

is dense in L,(R™™1) for 0 < p < oo (of course 2"%x — m = (2" xy — my, ..., 2V "2, — my)).
Now we return to our proof and let i € L,(R"™1).

Step 2.1. We first assume === < p.
By the above mentioned approximation result we may construct an approximating sequence

(h])]eNo fOI’ h in Lp(Rn_l) Where h] = Qb] ‘Rn—l a‘nd

= Z Avym @(27%2 —m) for every je€Ng (4.82)

the sum being taken over those m € Z" such that 2°Q% NR"™! = () and where the coefficients
/\l,]m and the numbers v; are determined successively such that

N
h=> hi| LR < c27V|h| LR if N €N (4.83)

=0
In particular (4.83) implies
17 | LpR™H]] < c277 [|h] Ly (R™H)| (4.84)

where ¢ > 0 is independent of j.

Using now the same technique as in the proof of Theorem 3.11 (see Section 4.1) in particular
formula (4.10), see also [TrW96b, Theorem 2/(ii), p.161] and [Win95, Corollary 5.4.1/2], we
get:

1/p
1 | Lp(R™H|| ~ 27 (Z|/\um| ) : (4.85)

If we rewrite (4.82) as

vy (n—an) vy (n—an)

Vie) =277 7 Aym 2T 7 (29 —m) (4.86)

an

then (4.86) turns out to be an atomic decomposition of #; in By} 7a(R”) for every 0 < ¢ < oo;
there are no moment conditions required since *=*» < p. Hence the atomic decomposition
theorem leads to

1/p
[ | By~ (R™)|| < 27 (Z [Av,ml? ) : (4.87)

N an g
Recall ¢ < min (1, p); applying the ¢- triangle inequality to || 3 ¢; | By5 = (R™)]] and taking
7=0

into account (4.84), (4.85) and (4.87) we obtain the convergence of {Z ; + N € Ng}in
7=0

an

B,r " (R™).
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We denote the limit with ezt h and clearly its definition and the properties of the function ¢
provide that it is independent of the approximating sequence. We may write ext h as follows:

> uz(n—an) Vz(n—an)
exth = Z Z 27 Am 2 (2 —m).
j=0 m

But this is an atomic decomposition of ezt h, the convergence being in Bg’a(R”).
Consequently, Theorem 2.6, (4.84) and (4.85) yield

o ( | 1/p\ ¢ 1/q
a_n7a " _uj n—an
exth| By "(R™)| < e | Y (2777 (Zlkumlp)
7=0 m

1/q

< DI TLRHIT ) <R LR
j=0

Finally, it is clear that (frgn-1 o ext) (h) = h and this completes the proof.

Step 2.2. Let now 0 < p < ===,

Here we will use the same technique as in [TrW96b, Theorem 3, p. 164]. If v € Ny and
m € Z" let 2°Q)? ~ be the rectangle concentric with (¢ having side lengths respectively
20-vjar  o(l=v)an [t ig clear that R®™!, identified in the usual way with the hyperplane
{z = (2',2,) : 2, = 0}, satisfies an anisotropic ball condition, i.e. there exists a k € N
such that for every rectangle Q2,. with 2°Q% N {x = (2',2,) : x, = 0} # () one of the 2"
congruent sub-rectangles of ¢, with side lengths o(l—v=kjar  o(l-v=k)an (oes not intersect
{z = (2 2,) : 2, =0}

We proceed as in Step 2.1 and obtain (4.86). Then QMQO(QVJG$ — m) is almost an
anisotropic (%,p)—atom. It may be furnished with the necessary moment conditions and for
this purpose we make a similar construction to that one in the proof of [TrW96a, 3.6], in

other words we put
Prym — (2% —m) — Mvim
where 17, is a C°° function supported in the proportional rectangle related to 2¢Q7,, via

the anisotropic ball condition such that

/ wﬁcpl,]m(w)dxzo if aB <L

where L > o, — %2,
- P

Since the proportional rectangles do not intersect {z = (2/,2,,) : =, = 0} we have

Z Prym =1

meL™
on that hyperplane which is sufficient for the rest of the proof. Moreover, the construction in
[TrW96a, 3.6] guarantees that the sequence {¢,, : j € No, m € Z"} is uniformly bounded
and so we may proceed as in Step 2.1; this completes the proof of (2.22).
Step 3. To prove (2.23) we may repeat the arguments in the proof of (2.21) and ob-

,a

tain that trgn—: qu77a(R”) is independent of the parameter ¢. Hence trpn— F,7  (R") =
trpn—1 Fpp77a(R”) and (2.23) follows from Fpp77a(R”) = Bg’a(R”) applying (2.22).
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Appendix 1: The distribution of eigenfrequencies of anisotropic
fractal drums

Walter Farkas and Hans Triebel

Abstract. Let I' be an anisotropic fractal as it was defined in [Tri97, 5.2]. The aim of the
paper is to investigate the distribution of the eigenvalues of the fractal differential operator

(—A)~! otrt

acting in the classical Sobolev space I/?/%(Q) where Q is a bounded " domain in the plane
R? with ' C Q. Here —A is the Dirichlet Laplacian in Q and ¢rl is closely related to the
trace operator trp. Our results shed new light on [Tri97, 30.7].

1991 AMS Subject Classification: 46135, 35P15, 28 A90
Key words: regular anisotropic fractals, distribution of eigenvalues, entropy numbers

1 Introduction

Motivated by some aspects of boundary value problems for partial differential equations,
several authors were concerned in the last years with the study of function spaces on and
of fractals. We refer mainly to the works by A. Jonsson and H. Wallin [JoW84], [Jon93],
[Jon94], [Jow95] and to the recent book [Tri97] where complete references to this topic are

given.

Let © be a bounded domain in R? having C°° boundary 9Q and let 0 < d4 < 2. An
anisotropic d4-set I' C Q having anisotropic deviation 0 < a < 1 is, roughly speaking, a
compact set which can be covered for any j € Ny with N; ~ 2744 disjoint rectangles R
({=1,...,N;) with vol Rj; ~ 2727 having sides parallel to the axes and side lengths r{’l, r%’l
satisfying

9—i(l+a) < r%}l < ri’l < 9—i(l-a)

for any [ =1,..., N;. This concept was introduced in [Tri97, 5.2].

If " is such an anisotropic d4-set then there exists an uniquely determined Radon measure p
in R? with suppp = T and (' N Ry;) = (vol Rj)#4/2 if j € N and [ = 1, ..., N; (see [Tri97,
5.5]).

Let (—=A)~! be the inverse of the Dirichlet Laplacian in Q. Let W3 () be the usual Sobolev
space and let I/?/%(Q) = {f € Wi (Q) : traq f = 0}. The operator trl,

(tr" () = /(trrf)(v) (D) (v) dul(y), » € D(Q), (1.1)

r

makes sense as a mapping from I/?/%(Q) into D'(€2) and it turns out that the fractal differential

o
operator T = (—A)~!'otr! generates a compact, non-negative, self adjoint operator in ().



APPENDIX 1 69

Furthermore, as proved in [Tri97, 30.7], there exist positive constants ¢; > 0 and ¢; > 0 such
that for the positive eigenvalues A\i(7T") of T

er kTR < N(T) < e k= /B0 e N (12)

(for the first inequality in (1.2) it is additionally required that I' is a so-called proper
anisotropic d4-set, see [Tri97, Definition 5.11]).

If the deviation @ = 0 then we have A, (T) ~ k~1. This means that the Weyl exponent occurs
also in the case of proper anisotropic d 4-sets in the plane with deviation zero. But this fact
is not a surprise since those fractals are close to compact isotropic d4-sets as described in
[Tri97, 3.1]. On the other hand, when a > 0 the two exponents in (1.2) are not equal.

1 o ¢rI' is motivated in a natural way by the so-

The study of operators of type (—A)
called fractal drums: the problem of finding the eigenfrequencies of a vibrating membrane
(interpreted as a bounded domain © in the plane R?), fixed at its boundary, having the
whole mass concentrated on some fractal compact set I' C 2, can be reduced to the study of
eigenvalues of operators of that type.

More information about this subject is given in [Tri97], especially in Sections 26.2 and 30.1-
30.5, where one can find some modifications and a detailed discussion about this topic as well

as further references extending the problem.

The aim of this paper is to discuss the sharpness of (1.2) and to shed some new light on these
estimates.

Restricting ourselves to the class of regular anisotropic fractals (anisotropic generalisations
of the Cantor set in the plane) we prove that there exist two constants Cy,Cy > 0 such that
for all £ € N,

Cyk™Pr < M\(T) < Cyk™r (1.3)
for appropriate numbers p; and py satisfying
(da+2a)/ds > p1 > p2>da/(da+ 2a)

where A,(T') are, again, the eigenvalues of the operator T'= (=A)~! o trl acting in I/%/%(Q)
This means, in particular, that the estimates in (1.2) are not sharp in general.
Furthermore, we will indicate a large class of regular anisotropic fractals for which Ay (1) ~
k=, the so-called strongly regular anisotropic fractals.

Briefly about the organising of the manuscript. In Section 2 we present the basic facts
concerning regular anisotropic fractals. The main result, containing the precise formulation
of (1.3), is presented with comments in Section 3. The proof is shifted to Section 5, whereas
Section 4 contains some preparatory facts for the proof.

All unimportant positive constants are denoted with ¢, occasionally with additional subscripts
within the same formulas. The equivalence "term; ~ terms” means that there exist two
constants c¢g,cs > 0 independent of the variables in the two terms such that ¢; term; <

termg < ¢y term;.
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2 Preliminaries

2.1 Regular anisotropic fractals

Let N denote the natural numbers and let No = NU {0}.
Let @ = [0,1] x [0,1] and let log be taken with respect to the base 2, let 1 < Ky < Ky be
natural numbers, let

2 log I(l 2 log I(Q

= log(Kl I(Q) ’ 4= log(Kl I(Q) ’

1
K = 5 log(Kl I(Q)

andlet a=1—a; = a9 — 1.
Let (A,,)N_, be N > 2 contractions of R? into itself specified by

Ay 0w = (g, 29) = (f 2_“(1_“)361 , N5 2_“(1+“)x2) + 2™ (2.1)

for every m = 1, ..., N where n*, nj* € {—1 —|—1} (including possible reﬂections)
We assume A,,QQ C Qforallm=1,...., N; A, Q NA, Q 0if m # m' and Z vol A,,Q < 1.

=1
We suppose, in addition, that the rectangles A,, () are located in the Columns as indicated in

Figure 1.

-
\\&\\Vh g

N\ i """"

Fig. 1

Let N
AQ=(AQ)' = |J 4,Q ; (AQ)°=Q ;

(AQ)" = A ((AQ)"™1) = U Ap 0..0A,,Q : veN.

1<my,eeymp <N

This sequence of sets is monotonically decreasing and by [Fal85, Theorem 8.3] its limit

I'=(AQ)™ = [(4Q)" = lim (AQ)

e deel
veN
is the uniquely determined fractal generated by the contractions (A,,)N_,.
Fractals constructed in this way are anisotropic generalisations of the Cantor set in R? and
were called generalised Sierpinski carpets in [Mul84] (since Sierpinski’s universal curve is a

special case of this construction) or regular anisotropic fractals in [Tri97, 4.18].
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Let n; denote the number of rectangles A,,@ in the [th column, [ =1, ..., K;.
Throughout the paper we will assume that n; > 1 for any [ = 1, ..., K; (in each column there
is at least one rectangle A,,Q located).

The Hausdorff dimension (see [Fal90, 2.2] for definition) of I" is

K
. 1 log K1/ log K.
dimpyl = I I T i 2.2
impy g 15, og (1_1 n, ) (2.2)

and the box-counting dimension (see [Fal90, 3.1] for definition) of I is

log(N/ K1)

dimgl' =1
B + log I(Q

(2.3)
Proofs of (2.2) and (2.3) are given in [Mul84], see also [Fal90, Example 9.11].

Notice that in this type of examples the Hausdorff dimension depends not only on the number
of rectangles selected at each stage but also on their relative position. Moreover, it is clear
that dimy " and dimgl" are not, in general, equal.

Let (A,,)N_, be the N > 2 affine maps introduced in (2.1). The affine dimension of I' =
(AQ)=, see [Tri97, 4.12], is the uniquely determined positive number d4 = dim4I" such that

N
> (vol A, Q)42 = 1. (2.4)
m=1
By construction we have N = 294,
Definition 2.1 Ifny =...=ng, = N 2-r(1-a) (in any column there is the same number of

rectangles) then we call I a strongly regular anisotropic fractal.

Remark 2.2 If I is strongly regular then

dq+2a

dimygl' = dimgl = T+a

as a simple consequence of (2.2), (2.3) and (2.4).

It will be clear from all what follows that the typical number which also appears in case of
arbitrary regular anisotropic fractals is

_dA—I—Qa
T o1l4a

Theorem 2.3 ([Tri97, 4.15]) Let ' be the regular anisotropic fractal introduced above hav-
ing the affine dimension dy according to (2.4).

Then there exists a Radon measure i in R? uniquely determined with supp u =T and
(TN A, 000 Ay Q) = (vol Ay, 0.0 Ay Q)72 (2.5)

for all j € N and all my,...,m; € {1,...,N}.
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Definition 2.4 Let n,,q, = max{n; : 1 <1< Ky} and ng,;, = min{n; : 1 <[ < Ky},
Then there exist two numbers At > 0 and A\~ < 0 such that

+

Nae = N 278070 9 (I=aAT gy = N 27 rll=a) gr(l=a)A™ (2.6)

We call AT the upper mass concentration factor of I' and A\~ the lower mass concentration
factor of I since these numbers give information about the distribution of the rectangles in

Figure 1 and about the structure of I'.

Remark 2.5 Clearly AT < 1 since we assumed n; > 1 for every [ € {1, ..., K1}.
Remark also that AT = A= = 0 if, and only if, I is strongly regular according to Definition
2.1.

It is clear that for any j € N there are N7 = 27794 rectangles of type R;j=Ap,0...04,,Q,
having side lengths 2-7#(1=2)  2=i5(1+9) helonging to (AQ).

Let R; be such a rectangle. We subdivide R; in rectangles I/;; having side lengths
2-(tm)r(l=a) and 2-i5(1+2) guch that

2—jﬁ(1+a) —~ 2—(j+m)ﬁ(1—a) )

The rectangles F/;; are almost squares; it is immaterial for what follows to assume that £
are squares, what means

o—ik(1+a) — 9—(j+m)r(1-a) (2.7)
The lemma below gives an information about the mass concentration in £;; (I = 1, ..., 2/%29).

Lemma 2.6 There exist constants ¢y, co > 0 such that the measure of any square I;; can be
estimated by

¢y 270Rdat 207D < (P By < eg 2700 dat2a(120T), (2:8)

Proof. For j € Nlet v = j4+min (2.7). Then the rectangle R; contains N¥=7 rectangles R,
with side lengths 27#(1=2) 2=v#(1+4) helonging to (AQ)” which are obtained from R; after
v — 7 steps of iteration.

Hence any square IV;; contains at most nfn_a]x of those rectangles R, , see Figure 2.

Eﬂ

R,

/
7
| 2—jﬁ(1+a) _ 2—1//1(1—(1)

DX XXX XX

R/

2—jﬁ(1—a)
Fig. 2



APPENDIX 1 73

Clearly p(I'nEj;) < cnbie (D NR,). By (2.4), (2.5), (2.6) and v(1 — a) = j(1 + a) the
estimate from above in (2.8) follows from

M(F N E]l) < CNu—j 2—(u—j)ﬁ(1—a)(1—/\+) 2—1//1dA — CQ—jﬁdA 2—jﬁ2a(1—/\+)‘

The estimate from below can be obtained in the same way.
As a simple consequence of v(1 — a) = j(1 4 a) we obtain:

Corollary 2.7 There exist constants c1,ca > 0 such that for any square I of side length
2-vi(1=9) e have

¢ 27U A7) < (1A By < e 27 0= 40T (2.9)

where

. dA—I—Qa(l—/\_)
o 1+a

dg + 2@(1 — /\+)

(A7) 14+a

and d(\T) =
We want to remark that if [' is strongly regular then ['is an isotropic d-set (see [1ri97, 3.1]
for definition) where

dq+2a
1+a °

This is a simple consequence of (2.9) and of Remark 2.5.

d=

Remark 2.8 In specification of the situation in Figure 1 and with changing the roles of
columns and rows we suppose now that in each column precisely one rectangle A,,Q is
located; then 1 < a; < 2 (which is equivalent to K7 > K3). Let

K—,l:2k+1 for some k€N

Ky
be an odd natural number and let the rectangles A,,() be arranged as depicted in Figure 3
where we choose in the counterpart of (2.1) always 75" = 1 and we choose 1{” = 1 in the first
Ky columns, " = —1 in the second K; columns (additional reflection) then again n{* = 1

in the third K3 columns and so on, see Figure 3.

2—/1(12

Fig. 3

Under these assumptions the resulting anisotropic fractal I' is the graph of a continuous
function, for a proof see [Tri97, 4.21]. It is clear that I' may be interpreted as a generalisation
of Hironaka’s curve (briefly presented in [Mul84]).

The Hausdorff dimension of I' is dimy ' = 2 — az/ay, see [Tri97, 4.22]. It is not difficult to
see that I' is a strongly regular anisotropic fractal with affine dimension d4 = a;.
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2.2 The spaces [,(I')

Some preliminaries. We recall here the definition of Besov spaces on R2.

Let ¢o be a C°° function on R?, @o(z) = 1if |2| < 15 supppe C {z € R? : |z| < 2} and let

0i(z) = o(2792) — po(279F a) if j € N. Then Y ¢j(z) = 1if 2 € R? and (¢,) en, is a
=0

smooth dyadic resolution of unity.

Let 0 < p < 00, 0 < ¢ < o0, s € R; the Besov space B;q(Rz) consists of all tempered

distributions f € S’(R?) for which the quasi-norm

1/q

1F1 B2, (R = D279 (¢, /)Y | L(R)?
7=0

(with the usual modification if ¢ = o) is finite. Here § = Flg and § = F'~1g are respectively
the Fourier and inverse Fourier transform on S’(R?). These are quasi-Banach spaces (Banach
spaces if p > 1 and ¢ > 1) which are independent of the choice of (¢;);en,.

The space H3(R?) = Bj,(R?) is the fractional Sobolev space.

Function spaces of I, (R?) type, 0 < p < oo, are defined changing the roles of the spaces
L,(R? and [, in the definition above but we do not stress this point here.

A systematic treatment of the theory of Bj (R?) and F} (R?) spaces may be found in the
books [Tri83] and [Tri92]; for a more recent account we refer also to [EdT96] and [RuS96].
These two scales of function spaces include many well-known classical spaces such as Sobolev

spaces, Holder - Zygmund spaces and inhomogeneous Hardy spaces.

The structure theorem. If I' is a closed set with Lebesgue measure |I'| = 0 and if s € R,
0<p<oo,0<g<oothen we define

Byl (R ={f€B,(R”) : f(p)=0 if p€SR?, ¢l'=0}

where ¢|I" is the restriction of ¢ to I'.

We have supp f C I'if f € B;EJF (R?) in any case. Remark also that if 0 < p < 00,0 < ¢ < 0
and s > 2(% — 1)4 (if b € R then by = max(b,0)) then B (R?) < LP*(R?) ([Tri92, Remark
2.3.2/3]) and, hence, B;&F(Rz) = {0} is trivial.

In other words, only values s < 2(% — 1)+ (in particular s < 0 if 1 < p < o) are of interest.

Let I' be the regular anisotropic fractal constructed above. The L,- spaces on I', 0 < p < o0,
are introduced in the usual way with respect to the underlying Radon measure p on I’
according to Theorem 2.3.

If 1 < p < oo then any fr € L,(I') can be interpreted as a tempered distribution f € S’(R?)
given by

f(g) = /F fe() (@D () du(y), € SR?). (2.10)

Theorem 2.9 Let I' be a reqular anisotropic fractal with upper mass concentration factor
AT and affine dimension dy. If 1 < p < oo and Zl? + Z% = 1 then (in the sense of (2.10))

_2=d0F) da+2a(1 — N\
Ly(D) = Bpoo ®  (R*)  where d(A1) = At 1a—|(_ )
a

(2.11)
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Moreover, if I is strongly reqular and if 1 < p < oo then (in the sense of (2.10))

2—d
=7 7F

L,(I') = Bpo' " (R?)  where d =

dq+ 2a
1+a °

(2.12)

Proof.  We consider a square Q(z,t) centred at x € R? and with side length 2-va(l=a). Ly
the right-hand side of (2.9) we have pu(I' N Q(x,1)) < ¢t/

To prove (2.11) one has now to follow the lines of the proof of [Tri97, Theorem 18.15/ Step
1] making the above modification.

If T is strongly regular then d(AT) = d and T’ becomes an isotropic d-set; then (2.12) is in
fact [TrW96, Theorem 2/(8)].

Traces. Assume that I' is a regular anisotropic fractal; if ¢ € S(R?) then trpep = ¢|I’ makes
sense pointwise. If 0 < p,q < co and s € R then trpBg, (R?) < L,(I') must be understood
as follows: there exists a positive number ¢ > 0 such that for any ¢ € S(R?)

ltree ] Lyl < e o] By, (R

Since S(R?) is dense in B;, (R?) this inequality can be extended by completion to any f €
B (R?) and the resulting function is denoted trr f.

In addition, the equality trpBj, (R?) = L,(T') means that any fr € L,(T') is the trace of a
suitable g € B (R?) on I' and

/0 | L)) ~ inf{llg | By, (R = treg = fr}.

Theorem 2.10 Let I' be a regular anisotropic fractal with upper mass concentration factor
At and affine dimension da. If 1 < p < oo then

2-dt) dy +2a(l — AT
trrB,; * (R%) < Ly(I) where d(\*) = + 1“J(r ) (2.13)
a
Moreover, if I' is strongly regular and if 1 < p < oo then
2-d dq+ 2a
N _ _
trrB, (R%) = Ly(I') where d= T (2.14)

Proof. If p = oo we have B2 | (R?) < C(R?) and (2.13) is obvious (here C'(R?) is the space
of all uniformly continuous bounded functions on R?). To prove (2.13) for p < co one has
to repeat the arguments from [Tri97, Theorem 18.15/ Step 2] with d(AT) instead of ld_lf_“a. In
addition, (2.14) is [TrW96, Theorem 2/(9)].

Theorems 2.9 and 2.10 pave the way to our main result (which is presented in the next Section)
but we hope they are also of independent interest. They are the anisotropic counterparts of
Theorems 2 and 3 in [TrW96], see also [Tri97, 18.2,18.6], and complement the results from
[Tri97, 18.15,18.17].
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3 The main result

As usual, Q stands for a bounded domain in R? with C* boundary and D'(Q2) denotes the
space of all complex-valued distributions on €2.
Let 0 < p < o0, 0 < g < 0o, s€R;the space By, (2) is defined as the restriction of B, (R?)

to 2, that means
B, () = {f € D'() : there exists a g € B, (R?) with g|Q= [},

s : s 2
1/ 1 By ()| = inf [|g | By, (R7)|

where the infimum is taken over all g € B}, (R?) such that its restriction to €, denoted by
g|$2, coincides in D'(2) with f. In particular Bl,(Q) = W3 (Q).

In the sequel I" C ©Q will be a regular anisotropic fractal and we shall not distinguish between
Jr as an element of some L, (I') and as the distribution belonging to some B2 (€2) according
to (2.11).

To avoid any misunderstanding we emphasise that the trace operator has two different
meanings which we distinguish by trr and tr' if extra clarity is desirable. If, for exam-
ple, 1 < p < oo, then

2—d(xt)
tre s B P (Q) = Ly(I) (3.1)
by (2.13) and
2—d(xt) _2-d(xTt)
0t BT (Q) = By P (Q) (3.2)

if one applies in addition (2.11). The latter can be rephrased asking for an optimal extension
of tr!" considered as a mapping from D(€) into D'(2) given by (1.1).

Recall (—A)~! stands for the inverse of the Dirichlet Laplacian in €.

Theorem 3.1 Let Q be a bounded domain in R? with C*° boundary. Let T C Q be a regular
anisotropic fractal having respectively upper and lower mass concentration factors \T and A\~
according to (2.6) and having affine dimension d4 according to (2.4).

Let
d 2a(1 — A~ d 2a(1 — AT
dpmy = X2 ZAT) g gy = dat 2ol = AT)
1+a 1+a
and
dq+ 2a
d= . .
o (3.3)

Let tr! be the trace operator in the interpretation (3.2) and (1.1) whereas trp stands for the
trace operator according to (3.1).

(i) The operator T = (—A)~'otrl is compact, non-negative, self adjoint in I/?/%(Q), has null
space N(T) ={f EI/?/%(Q) s trrf =0} and is generated by the quadratic form in I/?/%(Q)

[ IO ) = (T fghwyy where [EWYR), geTh®)  34)



APPENDIX 1 77

and p is the Radon measure according to Theorem 2.3.
(ii)  There exist constants c1,cy > 0 such that the positive eigenvalues A (T) of T, repeated
according to multiplicity and ordered by their magnitude, can be estimated by

+

kS <MD < ek kel (3.5)

Furthermore, if I is strongly reqular then there are constants ¢y, c9 > 0 such that
(4] k_l S Ak(T) S C9 k_l.

The proof of the theorem is shifted to Section 5 but we make here some comments.

Remark 3.2 According to Definition 2.4 and to Remark 2.5 we have 0 < AT < 1 and this

. . + . . . .
implies d(il S dAd-fza' Hence the estimate from above in (3.5) is an improvement of the

estimate from above in [Tri97, 30.7], see (1.2).

Remark 3.3 If —1 < A~ < 0 then d(il_) < dAdLAQ“ and so the estimate from below obtained

in (3.5) is better than the estimate from below in [Tri97, 30.7], see (1.2).

Remark 3.4 By [Tri97, 30.2] (isotropic fractal drum) it is not a surprise that if AT = A~ =0
then the two exponents in (3.5) are both —1 since in this case the regular anisotropic fractal

I' becomes an isotropic d-set, where d is the number from (3.3).

4 Prerequisites for the proof

4.1 Basic facts about entropy numbers and approximation numbers

Let A and B two quasi-Banach spaces and let T': A — B be linear. Just as for the Banach
space case, T" will be called bounded or continuous if

1T = sup |7 | B : @ € A, |}z | Al < 1} < .

The family of all such 7" will be denoted by L(A, B) or L(A)if A= B.
Otherwise terminology which is standard in the context of Banach spaces will be taken over

without special comments to the quasi-Banach situation.
If B is a quasi-Banach space then Ug = {b € B : ||b| B|| < 1} stands for the unit ball in B.

Definition 4.1 Let A, B be two quasi-Banach spaces and let T € L(A,B). Then for all
k € N, the kth entropy number e, (T) of T is defined by
2k—1
er(T)y=1infqe>0:TUs) C U (b; +cUg) for some by,...,by—1 € B
s
This formulation, which simply generalises to quasi-Banach spaces what has been done before

for Banach spaces, coincides with the definition given in [EdT96, 1.3.1] where the reader can

find further comments and historical references.

Lemma 4.2 Let A, B,C' be quasi-Banach spaces, let T € L(A, B) and let V € L(B,C).
(i) |IT|| > er(T) > ex(T) > ... > 0; e (T) = ||T]| if B is a Banach space.
(ii) For all k,l € N,

eyt (V o T) < ex(V) e(T). (4.1)
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A proof can be found in [EdT96, Lemma 1.3.1/1]. In case of quasi-Banach spaces it may
happen that ||T']| > e (7).

Remark 4.3 Since the numbers e (1) decrease as k increases and are non-negative,
lim ey (7)) exists and plainly equals
k—o0

inf{e >0 : T(Us) can be covered by finitely B- balls of radius ¢}.

Recall that 7" € L(A, B) is compact if, and only if, for every £ > 0 there is a finite e- net in
B covering T'(Uy4). Hence T' € L(A, B) is compact if, and only if, klim er(T) = 0.
—+00

Let A be a complex quasi-Banach space and 7" € L(A) a compact map. We know from
[EdT96, Theorem 1.2] that the spectrum of 7', apart from the point 0, consists solely of
eigenvalues of finite algebraic multiplicity: let {Ax(7T") : k& € N} be the sequence of all non-
zero eigenvalues of T, repeated according to algebraic multiplicity and ordered so that

M (D) > [X2(T)] > ... > 0. (4.2)

If T has only m(< oo) distinct eigenvalues and M is the sum of their algebraic multiplicities,
we put Ag(7T) =0 for k > M.

Perhaps the most useful connection for our purposes between the eigenvalues of the operator
T and its entropy numbers is the following;:

Theorem 4.4 Let T and {\(T) : k € N} as above. Then
A(T)] < VEer(T). (13)

A proof of this result, originally proved by B. Carl in [Carl81], see also [CaT80], is given in
[EdT96, Theorem 1.3.4].

Definition 4.5 Let A, B be two quasi-Banach spaces and let T' € L(A, B). Then given any
k € N, the kth approzimation number ay(T) of T is defined by

ap(T) =inf {||T = L|| : L € L(A,B), rank L < k}
where rank L is the dimension of the range of L.

These numbers have various properties similar to those of the entropy numbers: we have
IT|| = a1 (T) > az(T) > ... > 0 and a counterpart of the multiplication property (4.1) for
entropy numbers, see [EdT96, Lemma 1.3.1/2].

On the other hand there are radical differences between entropy numbers and approximation
numbers, see [EdT96, Remark 1.3.2/6] and [EEv87, 11.2.3], but we do not go into further
details.

The approximation numbers have important connections with eigenvalues, the picture being

clearest in a Hilbert space setting.

Theorem 4.6 Let H be a Hilbert space and let T € L(H) be a compact, non-negative and self

adjoint operator. Then the approzimation numbers a(T) of T coincide with its eigenvalues
(ordered as in (4.2) ).

A proof can be found in [EEv87, 11.5.10], see also [EAT96, p.21].
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4.2 Compactness of embeddings into L,(I")

We will use the following improvement of [1ri97, 22.2].

Theorem 4.7 Let I be a regular anisotropic fractal having upper mass concentration factor

. . _ da+t2a
A1, affine dimension ds and let d = et

Let 0 < pp <py <00, 0<qg< oo and

_ 2 4R
s(p1,p2) = o by (4.4)

If s > 0 then the trace operator
trp : Bilevr) TR 5 L, (T)
is compact and there exists a constant ¢ > 0 such that for any k € N,
exltrr B PIR(R) 5 L, (1) < kTR
Proof.  One has only to repeat the arguments from [Tri97, 22.2] using (4.4) instead of [Tri97,
(22.1)].
5 Proof of Theorem 3.1

Step 1. Part (i) of the theorem is covered by [1ri97, Theorem 30.7]. In particular from
[Tri97, (30.25)] it follows that there exists a constant ¢ > 0 such that

[t f| LoD < e[ f|WHQ)]| forany f €Wh(R) (5.1)
and from (3.4) we have
[tro f | Lo(D)|) = VT f | W3 ()] (5.2)

where VT = T2,

Step 2. To prove the estimate from above in (3.5) we factorise the operator 7' by
T =1idy o (—A)™! 0 idy o trp with

trp W%(Q) —  Ly(I")

2—d(xt
’Ldl LQ(F) — B2_oo 2 (Q)
_2-d(xt) g_2=d(t)
(=A)7" ¢ By T (W)= By, 7 (Q)
2_% o
idy @ By, * () — Wi(Q). (5.3)

The boundedness of trr in the first line of (5.3) is (5.1) and the embedding id; is (2.11).
Recall (—A) maps any space By, ((Q) = {g € B},(Q) : tragg = 0} onto B *(Q2) provided
1 <p<oo, 1 <qg<ooands > ]l). This is a consequence of [Tri78, 5.7.1, Remark 1]
complemented by [Tri®3, 4.3.3-4.3.4].

By this mapping property the boundedness of (—A)~! as indicated in the third line in (5.3)

is justified.
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Finally, the embedding ids is a consequence of the elementary embedding from [Tri83, Propo-
sition 2.3.2/2].

o g_2=d(xt)
Let f €W3(2) be an eigenfunction of 7. Then it follows that f belongs also to B, 2 ()
and so it is also an eigenfunction of the operator T restricted to this space. Obviously the
converse is also true.

Hence the root systems of 7' considered in W3 () (or I/?/%(Q) which is the same in our

2—d(xt

2 (Q) coincide. Then the eigenvalues of T" considered in these spaces

context) and in B;O_O
also coincide, inclusively their multiplicities.
Using the multiplication property (4.1) for entropy numbers and (5.3) there exists a constant

¢ > 0 such that for all k£ € N,

g_2=d(xt)
2

200

—d(xt
9_2 d2£>\ )

200

—d(xt
9_2 d2£>\ )

ex(T' : B Q) — B (Q)) < ceg(trr : B, (Q) — Lo(I).  (5.4)

From Theorem 4.7 (with p; = p; = 2) if s > 0 then there exists a constant ¢ > 0 such that
for all £ € N,

er(trr : By (R — Ly(T)) < ck™1d. (5.5)

Inserting s = d(AT) in (5.5) and using Carl’s inequality (4.3), from (5.4) we obtain the
estimate from above in (3.5).

Step 3. We prove that there exists a constant ¢ > 0 such that the approximation numbers

ak(\/T) of /T can be estimated by

a(WT) > ek~ | kel (5.6)

The estimate from below in (3.5) is then a simple application of Theorem 4.6.
We rely on Lemma 2.6 and Figure 2 assuming again (2.7) without restriction of generality.
By (2.4) we have N = 2794 and hence by (3.3) for any j € N there are

22jﬁaNj — 22jﬁa+deA — 2jﬁ(l—l—a)d

squares Ej; (of side length 277%0%9)) " We put m = m(j) = jk(1 + a) and denote the
corresponding squares ", Of course m = m(j) need not to be a natural number but this is
immaterial for what follows. In other words, the disjoint squares E* (I =1,..., 274} of side
length 27 cover I' and originate from the squares £/;; in Lemma 2.6.

Let 27! be the centre of the square E.

Let ¢ be an appropriately chosen non-trivial ¢ function on R? supported near the origin.

If
(@) = ¢ (27 (@ = ™))

then supp ¢, C E7*. Furthermore, as a simple consequence of (2.9), there exists a constant
¢ > 0 such that

2md 2md 1/2

> it | La(T)|| > 27O LN e,y (5.7)
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for any complex numbers ¢,,,; and for any m and [ =1, ..., 274,
By (5.2) and (5.7) there exists a constant ¢ > 0 such that

Jmd 1/2

VT g | W3 (Q)]| > 2702 Y e, y|? (5.8)
=1

for any function ¢, of type
2md

9m = Z Cml Pml

=1
the constant ¢ > 0 in (5.8) being independent of m, [ and of the complex numbers ¢,,;.

Then there exists a number ¢ > 0 which is independent of m such that

gma(VT) > ¢27m4A7)/2, (5.9)
Using elementary properties of approximation numbers it is easy to see that (5.9) implies
(5.6) and this completes the proof of the estimate from below in (3.5).
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Appendix 2: Atomic and subatomic decompositions in anisotropic
function spaces

Walter Farkas

Abstract.  This work deals with decompositions in anisotropic function spaces. Defining
anisotropic atoms as smooth building blocks which are the counterpart of the atoms from
the works of M. Frazier and B. Jawerth, it is shown that the study of anisotropic function
spaces can be done with the help of some sequence spaces in a similar way as it is done in
the isotropic case. It is also shown that the subatomic decomposition theorem for isotropic
function spaces, recently proved by H. Triebel, can be extended to the anisotropic case if the

mean smoothness parameter is sufficiently large.
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1 Introduction

If 1 < p<ooand (sq,...,5,) is an n- tuple of natural numbers then

0% f "
g | o)

s

is the classical anisotropic Sobolev space on R”. In contrast to the usual (isotropic) Sobolev

Wy (R") = {f € S'(R™) + |IFI LR+
k=1

space ($; = ... = s,) the smoothness properties of an element from W, (R") depend on the

chosen direction in R”™. The number s defined by

1 1 /1 1
_:—(——I_..._I_—)
S n S1 Sn,

is usually called the "mean smoothness” and a = (ay, ..., a,), where ay = s/s1, ..., @, = /5n,
characterises the anisotropy.

Anisotropic Bessel potential spaces, or fractional Sobolev spaces, defined by

.

H*(R") = {f € S'(R") : H(Z(Nrfi)s/(?“’“)f) | Lp(R")
k=1
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where 1 < p < 00, s € R and a = (ay,...,a,) is a given anisotropy, generalise in a natural
way the above spaces (as usual, S’(R") is the space of tempered distributions and f, f are
respectively the Fourier and the inverse Fourier transform of f).

Similar to the isotropic case, the study of anisotropic Bessel potential spaces H,(R") for a
fixed anisotropy @ = (ay, ..., a,), is a part of the more general theory of the spaces of B} (R")
and Fp;"(R™) type. Spaces of that type (or on domains in R") have been studied in great
detail by S. M. Nikol’skij, [Nik77], and by O. V. Besov, V. P. II'in and S. M. Nikol’skij,
[BIN75], and it is well known that this theory has a more or less full counterpart to the basic
facts (definitions, elementary properties, embeddings for different metrics, interpolation) of
isotropic spaces B, (R") and I}, (R") as it was presented in the works of H. Triebel, [Tri83]
and [Tri92].

The anisotropic function spaces By;'(R") and Fj;"(R") are defined in terms of Fourier an-

alytical quasi-norms: any function f € S/(R") is decomposed in a sum of entire analytic
v

o~

functions (¢;f)" and this decomposition is used to introduce the spaces.

Hence, as in the isotropic case, entire analytic functions may be considered as building blocks
for the spaces B,y (R™) and Fj;"(R") in the following sense: let a problem be given, for
example mapping properties for PDE’s or ¥ DE’s between spaces of the above type or traces
on hyperplanes etc. First one asks what happens when the problem is applied to entire

analytic functions; then the rest reduces to a discussion of convergence.

In the theory of isotropic function spaces there is a well known other type of decomposition
in simple building blocks, the so-called atoms. They have a history of some twenty years
and in [Tri92, 1.9], cf. also [AdH96], a historical report was given on this topic; we do not
repeat it here. We only want to mention that the (smooth) atoms in isotropic B}, (R") and
F;,(R") spaces as they were defined by M. Frazier and B. Jawerth in [FrJ85], [FrJ90] (cf.
also [FJW91]), proved to be a powerful tool in the theory of function spaces. We also wish
to emphasise that there exist many other types of atomic decompositions in isotropic spaces
but we will not discuss this point here.

More information about this subject is given in [FrJ90], [Tri92] and [AdH96] where one can
find many modifications and applications as well as comprehensive references extending the
subject.

Several authors were concerned in the last years with the problem of obtaining useful de-
compositions of anisotropic function spaces in simple building blocks: a construction of un-
conditional bases in By, (R") and F,;"(R") spaces using Meyer wavelets was done by M.
7. Berkolaiko and 1. Ya. Novikov in [BeN93] (and used then in [BeN95]). P. Dintelmann
obtained in [Din95a, Theorem 1] a decomposition for anisotropic function spaces which is
the counterpart of the characterisation of isotropic function spaces with the help of the -
transform of M. Frazier and B. Jawerth (see [FrJ90] and the survey [FJW91]) and used it
in connection with the theory of Fourier- multipliers for anisotropic function spaces (we will
return to his result in Section 5). Our approach will be different, especially from the point
of view of the localisation of the building blocks.

The first aim of this paper is to introduce smooth anisotropic atoms and to obtain a decom-
position theorem which extends the atomic decomposition theorem of M. Frazier and B.
Jawerth, see [FrJ85] and [FrJ90], to the anisotropic function spaces Bpy' (R") and F" (R™).
Roughly speaking, we will show that for any g € F,;*(R") it is possible to find a decomposition
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(convergence in S'(R"))

9= Mm Pl (1.10)

v=0meZ"
where p? =~ are the anisotropic atoms and A = {A,,, : v € Ng,m € Z"} belongs to an
appropriate sequence space Z‘}q, such that
g 1 Epg" (R~ AT Fq (1.11)

(and a similar assertion for By (R") spaces).

Hence the study of function spaces can be done with the help of some sequence spaces in an
analogous way as it is done in the isotropic case in the above cited works of M. Frazier and
B. Jawerth. The necessary explanations and details are given in Section 3.

However in (1.10) (and in Theorem 3.3) no information is given about the possibility to obtain
atomic decompositions in which the atoms are constructed with the help of (anisotropic)
dilatations and translations from one smooth function p having compact support, cf. also
[BeN93, Comment 2].

For isotropic function spaces this was already done by M. Frazier and B. Jawerth, see [FrJ90,
4.2], and W. Sickel, see [Sic90]. It might be possible to extend the technique of W. Sickel, at
least for large values of the smoothness parameter, using the characterisation of anisotropic
function spaces via oscillation from the work of A. Seeger, [See89]. But to construct such
a basic (or mother) function p for the atoms having all required properties seems to be not
very easy, at least at the first glance, see the above cited papers.

We arrive at the second aim of this paper, the subatomic (or quarkonial) decomposition
theorem (Theorem 3.7) which states that given ¢ € F,;"(R"™) (with s sufficiently large) it is
possible to obtain the decomposition

0= 3 S N (au, (1.12)

BENT v=0 meLn
convergence being in S'(R"), with

g | F3i* (R™)|[ ~ sup 277 A7) ol (1.13)
BENY

where r > 0 is large enough, af = a1/ + ... + a, 3, if § is the multi-index (51, ..., 8,),
A\ = {/\fm : v € Ng,m € Z"} and where each (fqu)?,, is an extremely simple building block
(in particular an anisotropic atom without moment conditions), called anisotropic quark,
compactly supported and which can be obtained starting from one smooth function (and a
corresponding assertion for B,y (R™)).

Of course in (1.12) there are infinitely many sums over (v, m) € Ny x Z" but this is well
compensated by (1.13) with r large. Furthermore, it turns out from the proof that the
dependence of the coefficients AS. on g is linear.

Isotropic quarks were recently introduced by H. Triebel in [Tri97] and the subatomic (quarko-
nial) decomposition theorem he obtained in [Tri97, Chapter 14] proved to be a very useful
ingredient for the estimation of entropy numbers of compact embeddings between function
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spaces on fractals. Compared with the results in [Tri97, Chapter 14] our Theorem 3.7 is in
fact the extension of quarkonial decompositions to anisotropic function spaces in the case of
large values of the smoothness parameter, in particular for s > 0if p > 1 and ¢ > 1.

If one wishes to extend the result to all s € R then a lifting argument would be needed. But
while the lift operator (id — A)%i

keeping the localisation of the (isotropic) quarks (and this fact was essentially used in [Tri97,

between isotropic function spaces causes no problem in

14.4]) the situation becomes difficult in case of the anisotropic lift operator. It is well known
that if ¢ € R then the operator

1,(f) = ((imsz)ﬁ) f)

k=1

maps F;" (R") isomorphically onto Fy, 7" (R") and || 1, (+) | Fpg 7" (R™)|| is an equivalent quasi-
norm on Fy*(R™) (similar result for B,y (R™)), see [Leo86]; it is clear that I, causes a lot of
troubles in keeping the localisation of the anisotropic quarks and this is the reason why we
will restrict ourselves to large values of the smoothness parameter.

Briefly about the organising of the manuscript. In Section 2 we set up notation and termi-
nology and summarise some basic facts on anisotropic function spaces. In Section 3 the main
results are presented with comments but without proofs. Section 4 will be concerned with
the extension to anisotropic function spaces of some powerful tools (especially a theorem on
local means) from the isotropic case. All these results are used in Section 5 were we prove
the results announced in Section 3.

2 Definitions and basic facts

2.1 Notation

As usual, R™ denotes the n-dimensional real euclidean space, N are the natural numbers,
Np = NU {0}, and C stands for the complex numbers.
If o = (a1, ..., ) € Nj is a multi-index its length is |a| = aq + ... + o, the derivatives D

On

have the usual meaning and if @ = (24, ..., 2,) € R” then 2% = 27" -- -2

Let S(R™) be the Schwartz space of all complex-valued rapidly decreasing C'* functions on
R™ equipped with the usual topology. By S/(R") we denote its topological dual, the space of
all tempered distributions on R”. If ¢ € S(R") then $ = F¢ and ¢ = F~1¢ are respectively
the Fourier and inverse Fourier transform of . One extends F' and F~! in the usual way
from S(R") to S'(R"™).

We adopt here and in the sequel the following convention: if there is no danger of confusion
we omit R™ in S(R") and in the other spaces below.

For a normed or quasi-normed space X we denote by ||z | X|| the norm of the vector z.
Recall that X is quasi-normed when the triangle inequality is weakened to ||z + y| X <
c(le | X[+ ||y | X||) for some ¢ > 1 independent of 2 and y.

If 0 < p < oo then L, denotes the usual Lebesgue space on R” quasi-normed by || - | L,||.

All unimportant positive constants are denoted with ¢, occasionally with additional subscripts

9

within the same formulas. The equivalence "term; ~ terms” means that there exist two

constants ¢y, cg > 0 such that ¢; termy < termy < ¢ termy.
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2.2 Anisotropic distance functions

Through the whole work n > 2 and a = (ay, ..., a,) will designate a given anisotropy, that is
a fixed n- tuple of positive numbers with a; + ... + a,, = n. We will denote a,,;, = min {a; :
1 <i<n}and apee = max{a; : 1 <i<n}. Ifa=(1,...,1) we speak about the ”isotropic
case”.

The action of t € [0,00) on @ € R” is defined by the formula:

e = (t" 2y, ..., t"2,) . (2.1)

For t > 0 and s € R we put t**2 = (t*)%z. In particular we write {2 = (t7')%z and
270 = (277).

Definition 2.1 An anisotropic distance function is a continuous function v : R™ — R with
the properties u(xz) > 0 if  # 0 and u(t*z) = tu(x) for allt > 0 and all € R".

It is easy to see that u) : R — R defined by

. 1/A

A a;

s () = (Z|$i| / ) (2.2)
=1

is an anisotropic distance function for every 0 < A < co. If 2 € R™ then wuy(z) is usually

called the anisotropic distance of z to the origin, see [ScT87, 4.2.1].

It is well known, see [Din95b, 1.2.3] and [Yam®&6, 1.4], that any two anisotropic distance
functions u and u’ are equivalent (in the sense that there exist constants ¢, ¢’ > 0 such that
cu(z) < u'(z) < u(x) for all z € R”) and that if u is an anisotropic distance function then
there exists a constant ¢ > 0 such that u(z +y) < ¢ (u(2) 4+ u(y)) for all z,y € R™

We are interested to use smooth anisotropic distance functions. Remark that for appropriate
values of A\ we can obtain arbitrary (finite) smoothness of the function uy from above (cf.
[Din95b, 1.2.4]). A standard method concerning the construction of anisotropic distance
functions in C°°(R™{0}) was given by E. M. Stein and S. Wainger in [StW78].

The lemma below will play an essential role in our considerations. Given the anisotropy
a = (ay, ..., a,) and the multi-index @ = (ay, ..., av,) we use the notation aav = a1y +...4a, o,

Lemma 2.2 There exists an anisotropic distance function | - |, € C°(R™{0}) with the
following property: for any real number s and for any multi-index o there exists a constant
c=c(s,a) > 0 such that

D% (J2l3)] < e |27 for all @€ R™\{0}. (2.3)

Proof.  We have only to recall the construction of M. Yamazaki from [Yam86, 1.4/3,8]: for
x # 0 one can define |z|, as the unique positive number ¢ such that

Ty L _

Ty + oot By 1 (2.4)
and then put |0|, = 0 for z = 0.
Given the anisotropy a = (aq, ..., a,,) through the whole work we will keep the notation | - |,

for a fixed anisotropic distance function as in the lemma above.
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Let us remark that to work with an anisotropic distance function | - |, satisfying (2.3) is
natural since denoting | - | the euclidean distance in R”, for every real number s and for
any multi-index « there exists a constant ¢ > 0 such that |D* (Jz|*)] < ¢ |z[*~I°l for all

z € R™\{0} (see [RuS96, Lemma 2.3.1/(20)]).

2.3 Anisotropic function spaces

Let o a C function on R"™, po(z) = 1if 2], < 1, supppo C {z € R" : |z|, < 2} and

0 () = o(277%2) — @o(20=7FDeg) if j € N. Then Y ¢;(2) = 1if « € R™ and (¢;);eny, is a
J=0
smooth anisotropic dyadic resolution of unity, cf. [ScT87, 4.2].

For f € S’ since ; f is compactly supported the Paley - Wiener - Schwartz theorem provides

that (c,oj]?)v is an entire analytic function on R™.

Definition 2.3 (i) Let 0 < p< o0, 0 < g < 00, s € R; then

1/q

Bii =L e IFIB I = | 22 M@l [ Lll ) <o (2:5)
J=0
(with the usual modification if ¢ = 00).
(ii) Let 0 < p < o0, 0< ¢ < oo, s€R; then
- 1/q
Frr =S fes \f 1 E = D227 @i DY )l | Ly|| < o0 (2.6)
=0

(with the usual modification if ¢ = 00).

Of course the quasi-norms in (2.5) and (2.6) depend on the chosen system (¢;);en,. But this
is not the case for the spaces B,;' and F," (in the sense of equivalent quasi-norms) and that

is the reason why we omit in our notation the subscript (¢;);en,-

A systematic treatment of the theory of (isotropic) Bj, and Fj, spaces may be found in
the works of H. Triebel [Tri83], [Tri92], for a more recent account of the theory we refer the
reader also to [EdT96] and [RuS96]. A survey on the basic results for the (anisotropic) spaces
Bpy' and Fp;" may be found in [ScT87, 4.2.1-4.2.4] and [Joh95, 2.1-2.2]. In this context we
refer to the works of S. M. Nikol’skij [Nik77], O. V. Besov, V. P. Il'in and S. M. Nikol’skij
[BIN75], B. Stockert and H. Triebel [StT79], M. Yamazaki [Yam86], A. Seeger [See89], P.
Dintelmann [Din95b, 1.2.8-1.2.10] etc.

An extension of (2.6) to p = oo is not reasonable; in [Tri92, 1.5.2] this point was discussed in
detail.
Both B,;" and F};" are quasi-Banach spaces (Banach spaces if p > 1 and ¢ > 1).

As in the isotropic case, see [Tri83, 2.3.3]tril, the embeddings S < B,;' < S’ and S <
Fp;" < 5" hold true for all admissible values of p,¢,s. If s € Rand 0 < p < 00, 0 < ¢ < o0
then S is dense in By and Fj;", see [Yam&6, 3.5] and [Din95b, 1.2.10].

We want to point out that if 1 < p < 0o, s € R then Fpséa is the anisotropic Bessel potential
space H,; a proof can be found in [StT79, Remark 11] (see also [Tri77, 2.5.2]) and in [Yam®&6,
3.11].
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It will be very useful to remark that if denoting for each &k € {1,...,n}, sy = s/a; and

g, ={res izl = |(a+ &)77) 15, < oo @7)

by [Nik77, 9.1] we have (in the sense of equivalent quasi-norms):

n

Hyt = (VHye,  and  ([FLHP = I THESI (2.8)
k=1 k=1

and if s; € N then (in the sense of equivalent quasi-norms)

5,a 5,a 8Skf
ety = {r e UL =1l + |G 1] <o) (29)
In particular, if sq,...,s, € N then (in the sense of equivalent quasi-norms) H," = W, is

the classical anisotropic Sobolev space.

3 The main results

3.1 Anisotropic atoms and the atomic decomposition theorem

Recall @ = (aq,...,a,) is a given anisotropy and let Z" be the lattice of all points in R”
with integer-valued components. If v € Ny and m = (my, ..., m,) € Z™ we denote Q% _ the
rectangle in R™ centred at 277%m = (27"%'my, ..., 27"%"m,,) which has sides parallel to the
axes and side lengths respectively 2771, ..., 277" Remark that (f,, is a cube with side
length 1. If @3, is such a rectangle in R"™ and ¢ > 0 then cQ)},, is the rectangle in R"
concentric with Q% and with side lengths respectively ¢277%1 ... 27",

If Fis a Lebesgue measurable subset of R” then | F/| denotes its Lebesgue measure; recall our
notation: aa = ajoy + ... + a,a, where o = (aq, ..., o) is a multi-index.

We are now prepared to introduce the anisotropic atoms.

Definition 3.1 (i) Let K € R, ¢ > 1; a function p : R* — C for which there exist all
derivatives D%p if aoce < K (continuous if K < 0) is called an anisotropic 1y -atom if:

suppp C cQg,, for some m €Z", (3.1)

|D% ()| <1 if aoe < K. (3.2)

(ii) Let s e R, 0 < p< oo, K,L€R, c>1;a function p: R" — C for which there exist all
derivatives D%p if ace < K (continuous if K <0) is called an anisotropic (s, p)x,r-atom if:

suppp C cQ% . for some veN,meZ", (3.3)

s 1

ID%p(2)] < 1QL, 777" if aa <K, (3.4)

/ p(z)de =0 if af <L. (3.5)
Rn
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If the atom p is located at Q% (that means suppp?, C Q% with v € Ng, m € Z", ¢ > 1)

then we will write it p¢, .

We give some technical explanations.

The value of the number ¢ > 1 in (3.1) and (3.3) is unimportant. It simply makes clear that
at the level v some controlled overlapping of the supports of p¢, . must be allowed.

Since |Q?,.| = 277" condition (3.4) may be written as

ID%p(2)| < 27707927 i aa < K (3.6)

and if K < 0 then (3.4) is [p(z)| < 27075,

The moment conditions (3.5) can be reformulated as D’p(0) = 0if a3 < L, which shows that
a sufficiently strong decay of p at the origin is required. If L < 0 then (3.5) simply means
that there are no moment conditions.

The reason for the normalising factor in (3.2) and (3.4) is that there exists a constant ¢ > 0
such that for all these atoms we have ||p | By)'|| < ¢, ||p| Fp;'|| < ¢. Hence, as in the isotropic
case, atoms are normalised building blocks satisfying some moment conditions.

Our construction of anisotropic atoms which generalise isotropic atoms as they are in the
works of M. Frazier and B. Jawerth, is slightly related to the concept of anisotropic building
blocks (compactly supported and satisfying some norming and some moment conditions) used
by P. Soardi in [Soa83] to define anisotropic Hardy spaces and to study the relations of these
spaces to anisotropic Lipschitz and Campanato - Morrey spaces.

We introduce now the sequence spaces by, and [, .

If v € No, m € Z" and Q?,, is a rectangle as above let x,,, be the characteristic function of
2 if0 < p<oolet Xff;l = 2v"Py,. (obvious modification if p = 00) be the L,-normalised

characteristic function of Q7 .

Definition 3.2 Let 0 < p < o0, 0 < g < co. Then:
(1) bpy is the collection of all sequences A ={\,,, € C : v € Ng,m € Z"} such that

1/q

0 a/p
A bpgll = Z ( Z |/\um|p) (3.7)

v=0 \meEZn

(with the usual modification if p = co and/or ¢ = o) is finite;
(ii) f2&, is the collection of all sequences A = {A,,, € C : v € Ny, m € Z"} such that

rq
o] 1/q
AT foqll = (Z > IAumX(J%l(-)Iq) | Ly (3.8)

v=0 mgezZ™
(with the usual modification if p = co and/or ¢ = o) is finite.

a
pq

is clear that comparing [[A|b,,]| and [|A| f7 || the roles of the quasi-norms in L, and [, are

One can easily see that b,, and are quasi-Banach spaces and using HXS};)L | Lyl = 1 it

interchanged.

Let d4 = max (d,0). For 0 < p < oo and 0 < ¢ < oo we introduce the abbreviations

1 1
o,=nl|—-—-1 and o :n(,i—l) . 3.9
8 (p )+ e min(p, q) N (3.9)
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Theorem 3.3 Let 0 < p < oo (respectively) < p<o0), 0 < g< o0, s €ERandlet K, L € R
such that

K> apar+s if s>0, (3.10)

L >0y, —s (respectively L > o, —s). (3.11)

Then g € S” belongs to Fp;" (respectively Bpy' ) if, and only if, it can be represented as

9= Aombim (3.12)

v=0 mgEeZ"™

convergence being in S’, where p?, . are anisotropic 1x-atoms (v = 0) or anisotropic (s, p) K 1~
atoms (v € N) and X € f3, (respectively A € by,) where A = {\,, : v € No,m € Z"}.
Furthermore, inf |[A] f7 || (respectively inf ||A]byyl|), where the infimum is taken over all
admissible representations (3.12), is an equivalent quasi-norm in Fy;" (respectively Bpy' ).

The convergence in S’ can be obtained as a by-product of the proof using the same method
as in [Tri97, 13.9] so we will not stress this point. We refer to the above theorem as to the
atomic decomposition theorem in anisotropic function spaces.

Remark 3.4 Let d > 0 be given, let v € Ny and m € Z" fixed and let us denote R}  a
rectangle with sides parallel to the axes, centred at "™ where

|af™ — 27 my| < d277% for all i€ {l,...n}, (3.13)

and with side lengths respectively 27%%1 ..., 27V,
Then let ¢ > 0 be chosen in dependence of d such that for every choice of v € Ny and all

choices of 2™ in (3.13) we have

U cRL. =R" (3.14)
meL™

It will be clear from the proof that we may replace in Definition 3.1 the rectangle Q% . by
Ra

¢ ., the number ¢ being that from (3.14). A similar remark in the isotropic case was very
useful in the work of H. Triebel and H. Winkelvo8, [TrW96a], cf. also [EdT96, 2.2.3].

We shift the proof of the theorem to Section 5 but let us made here some remarks. The first
part of the proof, that in which the atoms are constructed and where it is shown that the
decomposition (3.12) holds, is essentially based on an anisotropic version of a resolution of
unity of Calderon type, cf. [FIJW91, 5.12]; this construction is the anisotropic counterpart of
what was done in [FJW91, Theorem 5.11].

To prove the second part we will use a theorem on local means in anisotropic function spaces,
the technique of maximal functions and an inequality of Fefferman - Stein type. All needed
results are presented in the next section.
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3.2 Anisotropic quarks and the subatomic decomposition theorem

In this subsection we will assume that |-|, € C*(R™\{0}) is an anisotropic distance function
according to (2.3) satisfying in addition

{z eR" : |z|, <2} C [—7, 7" (3.15)

The above restriction, which is of technical nature, was introduced by P. Dintelmann in
[Din95a] and seems to be a natural one compared with the isotropic case.

For v € Ny and m € Z" let (%, be the rectangles introduced in Definition 3.1. Let in
particular @, be the cube with side length 1 centred at the origin and let 2%°Q)g, be the
rectangle concentric with @Qf, and with side lengths respectively 291,...,2%7,

Definition 3.5 Let o € S such that

suppp C 2°Qg, and Z Ple—k)y=1 if z€eR" (3.16)
keZm

and let for any 3 € N&, ¢vP(x) = 2%¢(z). If0 < p < oo and s € R then

(Bgu)t, (v) = 27 ("3 B (2rag — m) 517
is called an anisotropic (s,p) — B-quark related to Q...

Remark 3.6 It is easy to see that up to normalising constants the anisotropic (s, p) — -
quarks are anisotropic (s, p)x,r-atoms for any given K € R and any given L < 0. Moreover,
the normalising constants by which the anisotropic (s, p) — #-quark must be divided to become
an anisotropic (s, p)x,r-atom can be estimated from above by 25 swhere ¢ > 0 and k > 0
are independent of 3 (recall the notation a8 = a1/ + ... + a3, where 3 = (51, ..., 8,) is a
multi-index).

We will use below the sequence spaces by, and f;, with respect to the sequences N = {/\fm €
C : v e Nyg,m € Z"} where now § € Nj is a multi-index and we will keep the notation
(Bqu)?,. for an anisotropic (s,p) — f-quark related to the rectangle ¢, . The numbers o,
and o, have the same meaning as in (3.9).

Theorem 3.7 Let 0 < p < oo (respectively0 < p < o00), 0 < g < oo and s > o, (respectively
s > 0,). There exists a number k > 0 with the following property: let r > k; then g € S’
belongs to Fy" (respectively By ) if, and only if, it can be represented as

9= > > M. (B, (3.18)
BeENy v=0 meEL™

convergence being in S’ (first m, then v, then 3), and

sup 27PN | foll < oo (respectively  sup 27*P||A7 | byl < o). (3.19)
BeNy BeENy

Furthermore, the infimum in (3.19) over all admissible representations (3.18) is an equivalent
quasi-norm in Fy," (respectively Bpy' ).
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The technique developed in Section 5 to prove the above theorem is that of H. Triebel
from [Tri97, 14.15]. However the proof given there covered only isotropic B- spaces; the
considerations in Section 5 show that the method can be extended to F- spaces.

To show that g € Fp;" (respectively ¢ € B,y') can be decomposed as in (3.18) with (3.19)
we need not the assumption s > o,, (respectively s > ¢,,). This restriction is needed only to
prove the converse assertion.

4 Results on anisotropic function spaces

4.1 Prerequisites

If z€ R”and ¢t > 0 then the set Q%(z,t) ={y € R" : |y — z|, <t} is the (closed) anisotropic
ball centred at z with (anisotropic) radius t. The Lebesgue measure of such an anisotropic
ball is |[2*(z,t)| = ¢t” with ¢ independent of ¢.

If fis a complex-valued locally integrable function on R” then

u 1
M fa) =supie [ 15wl (4.1)
€29 Jqe
is the anisotropic Hardy - Littlewood maximal function, where the supremum is taken over

all anisotropic balls 2% containing z.

Let 1 <p< oo, 1< q<oo. There exists a constant ¢ > 0 such that:

1M f)jen | Lol < e [ [ Lp(lg) ] (4.2)

for all sequences f = (f;);en, of complex-valued locally Lebesgue integrable functions on R™.

Comments and further information to the isotropic version of (4.2) which essentially goes
back to C. Fefferman and E. M. Stein, see [FeS71], may be found in [Tri92, 2.2.2] and
[Tris3, 1.2.3].

B. Stéckert and H. Triebel remarked in [StT79, p.257] that the maximal function in (4.1) is
equivalent to a maximal function where in (4.1) we can take rectangles with sides parallel to
the axes (containing x) and that the iterative application of the isotropic one dimensional case
(n = 1) leads to (4.2). Different proofs of (4.2) can be found in the works of M. Yamazaki
[Yam86, 2.2], A. Seeger [See89] and P. Dintelmann [Din95b, A.1.3-A.1.4].

For 0 < p < oo let againap:n(%—l)
_I_
To prove the theorem below one has only to adapt the method from [Tri83, 1.5.2].

Theorem 4.1 Let Q be a compact subset of R, 0 < p < oco. Let r > 0 and let w be a weight
function for which there exists a constant ¢ > 0 such that

0<w(z)<cuwy)(l+|z—yld)", for all z,y € R"™. (4.3)
If s>r+ % + 0, then there exists a constant ¢ > 0 such that
[w(m )Y | Ly|l < ellm| HZ|| - |lwf| Ly (4.4)

Jor allm € HY" and all f € 5, supp f C Q with wf € L,.
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If0<p<o0,0<¢<ooandQ=(Q);en,is a collection of compact subsets in R™ we define
the space Lg(lq) as the collection of all systems f = (f;);en, C 5’ such that supp f; C Q; if
j € No which satisfy || f| L,(ly)|| < co. By [Tri83, 1.6.1] Li}(l,) is a quasi-Banach space with
quasi-norm | f | Ly (ly)[[ it f = (f;)jeno-

Theorem 4.2 Let 0 < p < o0, 0 < g <oc. For every j € Ng let R; > 0 be a given number,
let Q; ={£ eR" : [§|, < R;} and let Q = () e,
(1) If 0 <t < min(p,q) then there exists a constant ¢ > 0 such that

(wpiﬁi—{%) | Lo(0)| < e 171 Lot (4.5)
sl L[R2 Jj€N

ﬁwaﬂf—(E%@%GLg%%

(ii) If s > 5 + mm( ” then there exists a constant ¢ > 0 such that
[(ms50) o 1200 < st sy L 2521 2,0 (4.6
J€No J€Ng

Jor all (mj)jen, such that m;(R%-) € Hy" if j € No and all f = (f;)jen, € L3} (1,).

The above result is the anisotropic counterpart of [Tri®3, 1.6.2;1.6.3] and the proof can be
done in the same manner as there making standard anisotropic changes, see also [Tr192, 2.2.4],
[BeN93, Proposition 1]be-nol and [Din95b, A.1.4].

4.2 Equivalent quasi-norms

If (¥;)jen, C S and r > 0 we define the maximal functions

(0, ])Y (x — 2)]|
ZER" 1 + |2jaz|2

(4.7)
for f € 5" where * € R™ and j € Ny. The above maximal function essentially goes back to

J. Peetre, see [P75] and [P76]; see also [Tri83, 2.3.6/Remark 2] and [Yam86].

The result below is the anisotropic version of [Tri92, 2.3.2] and it can be obtained as a simple
consequence of (4.5), cf. also [Din95b, A.1.5].

Theorem 4.3 Let (¢;);en, be a smooth anisotropic dyadic resolution of unity.
(i) Let 0 < p < o0, 0 < ¢ < oo, 86Rand7‘>%. Then:

1/q
Byl =S fes If B = ZQJS‘JH i) | Lll" ] <oo (4.8)
(modification if ¢ = 00 ) in the sense of equivalent quasinorms.
(it) Let 0 < p < 00, 0 < g < o0, 86Rand7‘>mm .Then:
1/q
e = myszW“ﬁ o) 1] < "

(modification if ¢ = 00 ) in the sense of equivalent quasi-norms.
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4.3 General characterisations

We present now a rather general, but highly technical, characterisation of the space Fp;"
(respectively of Bpy'). This characterisation is the anisotropic counterpart of [Tri92, 2.4.1]
(respectively [Tri92, 2.5.1]).

In the theorem below ¢ need not to be an element of S and it is not immediately clear what
is meant by (@(Q_j“-)f)v. It is defined via limiting procedures as in Step 3 of the proof in
[Tri92, 2.4.1].

The numbers ¢, and o,, have the same meaning as in (3.9).

Given the anisotropy a = (ai,...,a,) recall our notations 2%z = (2%%1z, ..., 2% ) and
270 = (279 gy, L., 270y, ).

Let h € S and G € § with
supph C {z € R" : |z|, < 2}, h(z)=1 if x|, <1, (4.10)
1 1
suppG C {xERn : Zg |96|UL§4}7 Gz)=1 if B <|z|s < 2. (4.11)
Theorem 4.4 Let 0 < p< oo, 0< g < o0, s €R. Let sg, s1 be two real numbers with
S0+ 0, < s5<s1 and s> 0. (4.12)

Let @o and ¢ be two complex-valued C*° functions on R™ and R™\{0}, respectively, which
satisfy the following Tauberian conditions:

oo@)[ >0 i Jzl<2, (4.13)
>0 i S <leda<2 (114)
Let r > mig(p,q) and assume:

/n (ﬂ()ﬁ()) (y)‘(1+|y|a)rdy< oo, (4.15)
Sup 2He / (@G ()Y W) (1 + lyla) dy < o0, (4.16)

keN n
Sup 2He / (2025 )G )1+ yla) dy < oo (4.17)

keN n

Let p;(z) = p(277%) if » € R"\{0} and j € N.
Then

Y20l 1L, (1.18)

=0

1/q
o0

. . . . . . s
(usual modification if ¢ = 00) is an equivalent quasi-norm in Fp;".
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Proof. The proof is following the lines of the proof of [Tri92, 2.4.1]. We indicate briefly the
necessary modifications.

Starting with a smooth anisotropic dyadic resolution of unity we have to make usual anisotropic
changes and to use the maximal function from (4.7) to obtain counterparts of (14-19) in [Tri92,
2.4.1].

Since r > =

min(p.g)
multiplier theorem (4.6) and obtain counterparts of (21-23) in [Tri92, 2.4.1]. The term with

74 = 0 is critical but it may be incorporated by the lemma below.

we may use the maximal inequality (4.5); then we use the vector valued

Using again the maximal function (4.7) and the multiplier theorem (4.4) with weight w(y) =
(1+ |y|a)" we obtain anisotropic counterparts of (24-29) in [Tri92, 2.4.1].

Counterparts of (30-33) in [Tri92, 2.4.1] can be obtained in the same manner using in addition
the embedding for different metrics F3" < F{;* which holds for 0 < p < 1, 0 = s — 0, see
[Joh95, (2.14)].

To obtain counterparts of (36-45) in [1ri92, 2.4.1] we have to use the anisotropic version of
the Plancherel - Polya - Nikol’skij inequality from [Yam&6, 2.13] and the Fefferman - Stein
inequality (4.2).

Finally, to complete the proof, we have to replace Remark 1 from the end of the proof of
[Tri92, 2.4.1] by the lemma below.

Lemma 4.5 Let0<p<ocando €S, o(x)=1if |z, <1, suppo C{z € R™ : |z|, < 2}.
If s1 > o, then there exists a constant ¢ > 0 such that

10 151 (G I Lyl < e llg] Ll (4.19)
forall g € 8" N L, with suppg C {£ € R™ : |{|, < 1}.

Proof. By the unweighted version (r = 0, w(z) = 1) of the multiplier theorem (4.4) the
estimate is valid if ¢(2) = |z|5'o(x) € Hy" where v > & 4 0,. Since s; > 0, we may choose
Stsi>0> 5+ o0,

Let now x a C'* function on R” such that y(z) =0 if |2], < 1 and x(z) =1 if |z], > 2 and
let ¥;(z) = |z[51o(2)x(27%2) for every j € N.

The sequence (¢;);er is fundamental in H)"; by (2.8) it is sufficient to prove that it is
fundamental in each H%) where 1 <k < n.

If v, = = € N this can be done by straightforward calculations using (2.9) and the estimate
1D (2 f2)] < e 2217 for any [z, > 0.

If v, = a“—k ¢ N it is a matter of interpolation: we write s, = #my, with § € (0,1), my, € N and
use the interpolation result (Ly, La(wg))g2 = Lo(w) with wy (&) = (1 4 &3)™/? and w = w!
which is a simple consequence of [Tri78, 1.18.4] where Ly(wy) and Ly (w) are the weighted L,
spaces with weights respectively wy and w.

Remark that an isotropic version of the assertion o (z) = [z|5'0(z) € Hy* where v > 2 4 o,
is presented in a more general context in [RuS96, Lemma 2.3.1/1].

It is clear that following the lines of the above proof we can obtain an anisotropic counterpart
of [Tri92, 2.5.1] for Bpy' spaces.

As in [Tri92] conditions (4.15-4.17) can be reformulated.
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Corollary 4.6 Let p,q, s, sg, s1 and r be the same numbers as in the theorem. Let ¢p, ¢ be
two complez-valued C™ functions on R™ and R™\{0}, respectively, which satisfy the Tauberian
conditions (4.13), (4.14) and let v > r+ 5. Assume:

PO | e

H S | <o (4.20)
sup 2740 [0 (24) G () | Hy || < oo, (1.21)
keN
sup 2740 (25 )G | Hy | < oo, (1.22)

keEN

where h, G' have the same meaning as in (4.10), (4.11).
Let p;(z) = ¢(277%) if 2 € R™\{0} and j € N. Then (4.18) is an equivalent quasi-norm in
i

Proof.  The result is a simple consequence of the inequality ||(1+]- |a)7’1/b\| Ly|| < el|v ]| HYY|
for all ¥ € H,"* where v > r 4 % which can be proved as in [ScT87, 1.7.5].

The counterpart of the above corollary for B,;' spaces reads as follows:

Corollary 4.7 Let 0 < p < 00, 0 < ¢ < 00, s € R and let sp, s1 two real numbers with
so+ 0, < s < sy and sy > 0, Let pg, ¢ be two complex-valued C*° functions on R" and
R™\{0}, respectively, which satisfy the Tauberian conditions (4.13), (4.14); let v > 0, + %
and assume (4.20), (4.21) and (4.22) are satisfied. Let ¢;(z) = ¢(277%) if 2 € R™\{0} and
JjEN.

Then (io: QquH(cpjf)v | L,||9)"? (usual modification if ¢ = c0) is an equivalent quasi-norm

J=0
. 5,a
mn Bpy .

4.4 Local means

For the anisotropy @ = (ay, ..., a,) we will use the notation 2 +t*y = (21+t" Y1, ..., T+ y,).
If B* ={y € R" : |y|, < 1} is the anisotropic unit ball in R™, k is a C*® function on R",
suppk C B® then we introduce the local means (cf. [Tri92, 2.4.6/1])

e i) = [

which make sense for any f € ' (appropriately interpreted).

b S+ ey =1 [ bt o) fds (423)

n n

Lemma 4.8 Let sy > 0 a given number and assume k € S such that there exists a constant
¢ > 0 with |k(€)] < ¢ |£]5* for & near zero. Then [,,x*k(x)dx = 0 for all « € N§ with
ace < S7.

o~

Proof.  We have to prove that D*k(0) = 0 for all @ € Njj with aa < s1. If 51 < @ip the
assertion is clear so let us assume that s7 = [s1/amin] > 1.
By Taylor’s expansion theorem we get for £ near zero

Ho= Y P01 5 rg (1.2)
jaf<sy jal=s}
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where |R,(€)| < ¢y |€9 < ¢, |€]%e for € small and for some constants ¢,, ¢, > 0.

o~

By standard limit arguments we arrive at D*k(0) = 0 for all o with |a| < s7 and this leads

immediately to the conclusion.
Theorem 4.9 Let kg and k be two C*° functions on R™ such that

supp ko C B*, |kAo(€)| >0 if 1€]a < 2, (4.25)
~ 1
suppk C B*, k(&) >0 if B < [¢], < 2. (4.26)

Let s1 > 0 and assume that there exists a constant ¢ > 0 such that
|E(€)| < c|é]pt for € near zero. (4.27)

(i) Let 0 < p< oo, 0< ¢g<ooandsecR. Ifs; > max(s,0,) + o, then

- 1/q
k(Lo S Lpll + [ D21k (27, ) | Ly)|? (4.28)
7=1
usual modification if ¢ = oc) is an equivalent quasi-norm in B} .
2
(ii) Let 0 < p< oo, 0 < ¢g<ooandsecR. Ifsg > maav(s,ap)—l—#(%q) then
- 1/q
lko(L ) Ll + [ | D02 k@ DI 1L, (4.29)
7=1

. . . . . . s
(usual modification if ¢ = oo) is an equivalent quasi-norm in Fpy".

Proof. We sketch the proof for F- spaces. By our assumption on s; we find numbers s, v

and r such that sy > max (s, a,), r > i gy nd v > 5+ such that

s1 > sy +v— g (4.30)
The functions ko and k fulfill the Tauberian conditions (4.13), (4.14) and we will identify
them respectively with ¢ and ¢ in Corollary 4.6, now with sy in place of sq.
To prove (4.20) we use (2.8). Fix ¢ € {1,...,n}.
If v; = - € N then we recall (2.9); clearly E()h()| - |77 € Ly where h is the function from
(4.10). Let {; € {0, ...,v;}; then by Lemma 2.2 there exists a constant ¢ > 0 such that for £
near zero

D= (1) < el (431

Using the above lemma we find also a constant ¢ > 0 such that for £ near zero

Dl (ken())] < e el (132)

By (4.31) and (4.32) using (4.30) we get D" (E()h()| . |;52) € L, which is just what we
want.
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If v; = = ¢ N we have to use the interpolation result which was mentioned at the end of the
proof of Lemma 4.5 and this completes the proof of (4.20).

To prove (4.21) let so € R with so + 0,, < s and let G be the function from (4.11). If m € N
then v, (-) = k(2) G(-) has a compact support which is at most @ = {z € R" : 1 < [z], <
4}.

If j € N such that 7 > 1+ {a%} for all ¢ € {1,...,n} then there exists a constant ¢ > 0 such
that

[ | Hy [ < e Y (1D | Lo (4.33)

aa<;

To prove (4.33) we have only to recall (2.8) and to distinguish between v; = = € N and
vi=2¢N l

Let [ € N such that j — < s and such that [D%k(z)| < ¢ (14 |z|,)~" for all z € R™ and any
a € Nj with aar < 5.

Then there exist constants ¢, ¢’ > 0 independent of m € N such that for any z € € we have
| D%y, ()] < €270 (1 4 |27 ],) 7L < ¢ 270D < ¢ 2750 if o € N§ with aa < j.

It follows that there exists a constant ¢ > 0 independent of m € N such that

D D | Loo|| < 250, (4.34)

aa<;

The condition (4.21) is now a simple consequence of (4.33) and (4.34). A similar argument
can be used to check (4.22).

For B-spaces one has to use Corollary 4.7 and to make obvious changes above.

Remark 4.10 The isotropic counterpart of the above result can be found in [Tri92, 2.4.6,
2.5.3]; instead of (4.27) it is used the representation k = ANEO (with 2N = s; sufficiently
large and k° € S) which is in fact E(E) = |E|2Nl;0(€) But this assumption was taken only for
simplicity and it can be replaced by (4.27) with the euclidean distance |- | instead of | - |,.

Remark 4.11 Examples of functions & as in the theorem can be constructed as in [FrJ85,
p.783].

The advantage of (4.23) compared with (c,oj]?)v from Definition 2.3 is its strictly local nature:
in order to calculate k(t, f)(2) in a given point # € R™ one needs only a knowledge of f(z)
in an anisotropic ball Q*(z,t). This observation will be of great service for us in the proof af

the atomic decomposition theorem.

5 Proofs

5.1 Proof of the atomic decomposition theorem

We begin with some preparations. Our theorem is based on the following lemma which
provides the existence of an anisotropic resolution of unity of Calderon type and which is a
generalisation of the result from [FJWO91, 5.12].
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Lemma 5.1 Let 8y, 6 € S functions with:

o~

MOS0 i e <2, (5.1)
FOl>0 i S<ldh<e (5.2)

Then there exist functions g, ¢ € S and a positive number & < 2 such that

suppo C {E € R" 1 €], <2} and [po(&)] >0 if [€], <9, (5.3)
suppC {eeR s Sl <2} ad @10 f <ldisd 6
and
Bo(€)po(€) + > 027" €)p(277€) =1 for all €€ R™ (5.5)
v=1

The proof is classical and it can be done using the technique of M. Frazier, B. Jawerth, G.
Weiss from [FJW91, Lemma 6.9] adapted to our purpose so we do not go into details.

Remark 5.2 A construction as in [FrJ85, p.783] can be used to prove that if L > 0 is a

given number there exists a function 6 € S satisfying (5.2) such that, in addition,

suppf C {z € R" ¢ |z|, < 1}, (5.6)

/ 2?0(x)dz =0 if af <L (5.7)
(cf. also Remark 4.11).

An instrument which will be of considerable use is an anisotropic version of Taylor’s expansion
theorem. Recall the binomial notation 2% = z{*---20" if 2 € R” and o = (o, ..., e0,) is a

multi-index.

Theorem 5.3 Let A > 0 be a given number. Let U be an open convex subset of R™ and
assume [ :U — C is a function such that D° f exists for all o € Nj with aoce < A+ apgs-
Let y € U and t > 0 such that Q*(y,t) ={z e R" : |z —y|, <t} CU.

Then there exists a constant ¢ > 0 such that for all x € Q*(y,t):

1 (3 (3
f)= Y D) (@ - )" + Bal) (5.9
aa<A
with
Atamaz
Ra@)l<e S 0o sup D) (5.9)
aa>A zeQ(yt)
Atamaz
where the notation Y.  means that the sum is taken over all a € N} such that A < aa <
aa>A

A + Gmaz-
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We will refer to this result as to the anisotropic Taylor expansion theorem of (anisotropic)
order A on the set Q%(y,t).

The main idea in proving the above theorem is an iterative application of the one dimensional
classical Taylor expansion theorem. In lack of a convincing reference we sketch a proof in the
case n = 2.

Applying Taylor’s classical expansion theorem with Lagrange remainder there exists & =

&1(x1) between z7 and y; such that

[4/a1]
1
f(z1,29) = Z - D Yy ) (v = y)™t F R1+[A/a1](90)

a '
oq:O

where
Riypajan(e) = @ DiﬂA/al]f(fly 2a) (g — yp) T L,

Applying now Taylor’s classical expansion theorem with Lagrange remainder to each

D" f(y1, ) there exists & 5! (x3) between zy and y; such that
[(A-aiaq)/az] 1
Dy f(y e = Y @D?1D32f(ylv y2) (w2 = ¥2)™* + Roy 14[(A—ar01)/as) (T)

(85 =0

where the remainder R, 1 1((A-a;a,)/as](¥) i
ca(ay) DiﬂlD;-l-[(A—alal)/az]f(yh531) (2 — y2)1+[(A—a1a1)/a2]‘

If n = 2 the expansion (5.8) with (5.9) is now a simple consequence of the last four relations

and of
A/a1

Ra(x) = Rija/ay (@) + Z a! (@1 = y1) 1R°Y171‘|'[(A—001Ovl)/flfz](96)'

qu

The general case can be treated in a similar manner.

Proof.  (Atomic decomposition theorem)
We present here the proof for F,;" spaces; the proof for Bpj' spaces is simpler and is obtained
essentially by interchanging the roles of the L, and [/, quasi-norms in the proof below.

Part 1. Let g € F,;"; we use the method of M. Frazier, B. Jawerth and G. Weiss from
[FJW91, Theorem 5.11] to construct atoms and to decompose g as in (3.12).

Let 6y, 6, ¢o and ¢ functions in S satisfying (5.1-5.7). Then (g)Y and (p(277%-)g)" are
entire analytic functions; using 5(2_”“5) = 2" F(0(2"*-)) (&) we obtain the following equality
in S’

@) = % / o — 1) (¢0d)” (v)dy

mEZ"

b Y [ e e 510

v=1 mezLn

We define for every v € N and all m € Z"

Ao = C 27075 qup [ (p(277%99) Y (v)] (5.11)
yeQs,
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where C' = max sup |[D“#(z)| and
aa<K [z]a<1

pinle) = 52" [ 007 = ) (o270 1) (5.12)
Similarly we define for every m € Z” the numbers Ag,, and the functions p§, . taking in (5.11)
and (5.12) v = 0 and replacing ¢ and 8 by ¢ and 6y, respectively.

It is obvious that (3.12) is satisfied and it follows by straightforward calculations, using the
properties of the functions 6y, 6, ¢o and ¢, that pg,, are anisotropic 1x-atoms and that p?
are anisotropic (s, p) i r-atoms for v € N.

Finally, we will show that there exists a constant ¢ > 0 such that ||A| || < ¢ |lg| Fpg"||. We
have for a fixed v € N:

n

S oua@@) = 27 3T sup (0279 (1)) 277 Xum (@)

T)’LEZ" T)’LEZ” yngm
Q—va, Y _
S Cl 21/5 sup |(99( )gy)a ($ . Z)| (1 _I_ |2yaz|a)r
|z|a<c27¥ (1 + |2 Z|a)
< 27 (eh9) () (5.13)
since | —yl, < 27" for a,y € Q%,, and ménxl,m(x) = 1. Here ¢, = o(277%), r > i o)
and (¢3g), is the maximal function from (4.7). It follows
Z Z |/\1/m Xff;r)z(”q <c ZQUSq (@ig)f’(')q (514)
v=1 mezZn v=1

(with the usual modification if ¢ = co) where ¢ is a positive constant.
Now we have to use (5.14), its counterpart for » = 0 (which can be obtained by a similar
calculation), Theorem 4.3 and get

0 l/q
(AT foll < e (Z Q”Sq(@g)r(-)q) | Lp|[ < g1 15,7 (5.15)
v=0

(with the usual modification if ¢ = co) and this completes the proof of the first part of the
theorem.

Part 11.  Reciprocally, assume now g can be represented by (3.12), with K and L satisfying
respectively (3.10) and (3.11). We will show that g € Fp" and that ||g | Fpy'|| < ¢ [|X]f5,]| for
some constant ¢ > 0.
Let kg and k two C'°° functions on R™ as in Theorem 4.9 and let s; > 0 in that theorem
enough large such that we have also s; > K.
Temporarily let v, 7 € No, m € Z" and z € R” be fixed; we start finding convenient estimates
for 27° k(277, p%,.) (2).
Step 11.1 - Let 5 > v and let

PR ) @) =2 [ k) g+ 2 )y, (5.16)

lyla<1

Let us remark that in this case 2 is located in some ¢Q?,_ (else, the integral above would be
certainly zero by (3.3)).
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Suppose first s > 0 and let A = K — a4, > s > 0. The derivatives Dp?¢,_ exist if aocv < K s0
we can use the anisotropic Taylor expansion theorem of order A for the function w — p(w)
on the set Q%(z,277). We put then w = 2 4+ 277%y and get the expansion

pon(e+2779) = 3 o+ 270 — 7Dl () + Ric(a, ) (5.17)
aa<A
where
K 4
|Ri(z, )| < e > 277 sup |Df,(2)] (5.18)
aa>A ZGC/ng

for some ¢, ¢ > 0. We may choose A’ > A such that for all @ with A < aav < K we have
aa > A’. Using this remark and the estimate (3.6) the inequality (5.18) becomes

K
Ric(z,y)| < e Y 2mioopm6migrea g () < ¢ 2mralmDA 1) (4 (5.19)

vm
aca>A'

(»)

where Yy, is the p-normalised characteristic function of some rectangle cQ%, ..
Recall s; > K so we may use Lemma 4.8 and obtain [, (x + 2%y — 2)* k(y)dy = 0 for all
a such that e < A < s1. Hence (5.17) and (5.19) yield

‘st k(Q_j,pffm)(w)‘ <270 =9) $00) (3} where A’ > s. (5.20)

If now s < 0 we have to use only the estimate |p?,_ (2)] < 27775 S (z) from (3.6) and get

[27° k(277 p ) (2)] < e 2707 §0) (). (5.21)

™m

So, by (5.20) and (5.21), it is clear that we arrive in any case to:

‘QJS k(Q_j,pffm)(w)‘ <2708 ) (3 for some &> 0. (5.22)

vm

Step 11.2 Let now j < v; by a change of variables we have

20 K2 ) () = 2727 [ ) (o + )i (5.23)
Clearly the integration above can be restricted to the set {y € R™ : |y, < 277}; we remark
also that by our assumption on j and v, z is located in some ¢€;,,, where Q;,, = {z € R" :
|z —27"%m|, < 277} is the anisotropic ball centred at 27*%m and radius 277 (else the integral
above would be certainly zero). This can be easily proved if we recall the definition of the
rectangle Q% , the assumption (3.3) and use the generalised triangle inequality for |- |,.
Since k is a smooth function on R™ we may use the anisotropic Taylor expansion theorem
of order L for the function w + k(w) on the set Q%(z,,2/~"), where z, = z(j,v,m,z) =
21927 m — x). After that we let w = 27%y and get

E(27%) = Y eal(2y — 2,)"Dk(z) + Rp(y, x) (5.24)
aa<L
where
Lt-amax )
|Rp(y,2)| <e Y 207 (5.25)

aa>L
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for some positive constant c.
By the moment conditions (3.5) we have [,(2/%y — z,)%p% (x4 y)dy = 0 if aa < L; using
(5.24) we may replace (5.23) by:

20K ) (0) = 2027 [ Ruly,a) o+ )y (5.26)

n

where the integration can be restricted to the set {y € R™ : |y|, < 277}. As in the first step
we may choose L’ > L such that for all o with L < aa < L + @,,4» we have aa > L'. Hence
by (5.25) and (3.6) we get:

L+amaz
277 k(27 gl (@) < et T ol / 198 (@ + y)ldy
aa>L! lyla<277

n

< 9is 9in 9(i=v)L' 9=v(s=7) /| e Xvm (z + y)dy
yla<2-

— ¢ 9U=v)(L +5) 9in 2”% / Xvm (2 + y)dy (5.27)
lyla<27d

where Y,,,, is the characteristic function of some rectangle cQ?, ..
Let now x?™ be the characteristic function of the anisotropic ball )i, where z is located;

by straightforward computation we have:
/ Num (@ 4 y)dy < 277 7™ (2). (5.28)
lyla<27

Recall L' > L > 0,,—s; we may choose an w < min (1, p, ¢) such that L'+s > n (% - 1) > Opg.
Denoting, as usual, M*y% . the anisotropic Hardy - Littlewood maximal function of v we
get

X () < e 20T (Mg () (5:29)
Finally, using (5.28) and (5.29), the estimate (5.27) becomes:
127° (277, p2 Y(x)| < ¢ 9=V (L +s—n(5-1)) (Maxfl];%w(w))l/w (5.30)
which is in fact

. . . 1/w
205 k(277 p2 ) ()] < e2-(=d)e (M“X(p)‘”(x)) / for some &> 0. (5.31)

Remark that the terms with j = 0 and/or v = 0 can also be covered by the technique in
steps I1.1-2.
Step 11.3  Using (5.22) and (5.31) we get for 0 < ¢ < 1:

k(2703 T At ()

v=0 meZ"

q
<e ST Pnlr2786 {0 ()4

v<j meZLn"

£ 3 Pl (@) (5.32)

v>] meL™



APPENDIX 2 105
for some 4, ¢ > 0, with the usual modification if 1 < ¢ < oo.
We sum over j, take the %—th power and then the L,- quasi-norm and obtain that
- - 1/q
Z 275 |k(2_j7 Z Z Avm P ) ()] | Ly
j=1 v=0 mez"
can be estimated from above by

[o'e] l/q
¢ (Z > |Aum|q>z£f;1<->q) L,

v=0 mezZ"

~

00 1/q
+ ¢ (Z Z |/\um|q (MGXS/];)LW('))(]/ ) |Lp (533)

v=0 meZ"

with the usual modification if ¢ = oc.

The first term of (5.33) is just what we want since X%)l can be replaced by XS,Z;)L. With

(p)

By = Aum Xom the second term of (5.33) can be written as:

1
0 w/q @
(Z > M“hz’m«)q/“’) | Ly (5.34)

v=0 meZ"

(usual modification if ¢ = 00). Recall 1 < £ < oo and 1 < £ < 00 so that we can apply the
Fefferman - Stein inequality (4.2) and obtain again what we want.

The term with j = 0 can be incorporated by the same technique.

5.2 Proof of the subatomic decomposition theorem

For the given anisotropy a = (ay,...,a,) let | - |, € C*(R™\{0}) be an anisotropic distance
function according to (3.15). We begin with a preparation.

Theorem 5.4 Let 0 < p < 00, 0 < ¢ < 00, s € R, let (p;);en, be a smooth anisotropic
dyadic resolution of unity and let p € S with p(xz) =1 if x|, < 2 and supp p C [—7,7|". The
operators Uy = Fipi* — fo and T, : f5 — Fpy" defined by:

Us(9) = {(277)_”/2 2(5) (,9)Y (27" m) : v € No,m e Z”} (5.35)

if g € " and

T,()) = i 3 Aom == 5) pavn . _m) (5.36)

v=0 meZn”

if A€ foy A=A Avm 1 v € No,m € Z"} are bounded.
Furthermore, (T, o U,)(g) = g for any g € Fi* and [[U,(:) | f5,|| is an equivalent quasi-norm
on Fp".

The same result holds for Bpy' spaces with 0 < p < oo and with b,y in place of P
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Remark 5.5 This theorem is due to P. Dintelmann, see [Din95a, Theorem 1], and is the
anisotropic counterpart of the characterisation of isotropic function spaces by the p-transform
of M. Frazier and B. Jawerth, see [FrJ90] and [FJW91]; he considered in the cited paper
more general distance functions but for our purpose the above form of his result will be
sufficient. We have to remark that he made the proof using the density of S in By and Fpy®
(see 2.3) and, in consequence, restricted to 0 < p < 00, 0 < ¢ < co. There is no problem to

obtain his result for all admissible values of parameters; this can be done, for example, as in
[Tri97, 14.15].

Proof. (Subatomic decomposition theorem)

As usually we present here the proof for F};;" spaces; of course the same can be done for Bp;'.
Step 1. Assume that g € S” is given by (3.18) with (3.19). We show that g € F,;" and that
there exists a constant ¢ > 0 (independent of g) such that

(5.37)

lg [ Fpg'll < e P, 2PN -
BEN

Since for any given K € R and any given L < 0 the anisotropic (s, p) — f-quarks are anisotropic

(s, p) k,r-atoms multiplied with normalising constants which can be estimated from above by

258 where ¢ > 0 and k > 0 are independent of 3, it follows from the atomic decomposition

theorem that for any fixed g € Nj:

Z Z A (Bqu)?,, (5.38)

v=0 meZ"™

converges in S’, g7 € Fi" and |[g”| Fpy'|| < ¢ 25P|A| fo ]|, where ¢ > 0 and £ > 0 are
independent of  (and of course of g). So, for r > &

lg” [ Eyoll < e 270797 sup 278 A7 | p | (5.39)
BeENg

where ¢ > 0 is independent of 3. Applying now the ¢- triangle inequality, where t =

min(1, p, q) to || Z g7 | ;|| we obtain that ¢ = . ¢” converges in Fj" and that for
BENy BENY
some ¢ > 0 we have (5.37) and this completes the first part of the proof.

Remark that in this step the restriction s > 0,, was essentially for the using of the atomic
decomposition theorem with no moment conditions required for the atoms.

Step 2. If now ¢ € F,y" we will show that we can decompose it as in (3.18) with (3.19). Let
p € S with p(z) = 1if |z|, < 2 and supp p C [—7,7]" and let 1) be the function from (3.16).
We may assume r € N,

By the above theorem there exists a sequence A € f5, A = {A,, : v € No,m € Z"} such
that
=3 > dm 3 (-3) > p2 e —m) (20T — k) (5.40)
v=0 mez" kezm

if € R™ where

AT Fpgll ~ Mg TR - (5.41)
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The entire analytic function p € S can be extended from R™ to C".

Using ¢ (1 + |€|)1/am” < T4 < e (14 |€|)1/a””" for some constants ¢q, ¢z > 0 which
depend only on the anisotropy a (see [Leo86]), by the Paley - Wiener - Schwartz theorem we
have for any € > 0 and an appropriate ¢, > 0

Az +iy)| < ce exp(cly]) (1 + [z]a) ™ (5.42)

(see [Tri83, 1.2.1]) where 2 € R", y € R™.
Iterative application of Cauchy’s representation formula in the complex plane yields:

) = (27x1)7" p(Cthn)
p(z) = (2m1) /|¢1_21| 1 /|¢n et (G = 21) - (Co = 20) d¢y...d¢, (5.43)

where z = (21, ..., z,) € C". By (5.42) we obtain from (5.43) in particular

Dote)

LAY (1 +z],)™° for 2 eR” (5.44)

where ¢, does not depend on # € R"™ and on the multi-index £.
For every fixed k € Z™ we expand p(2"* - —m) at the point 2-(v+r)af and obtain
21/(15 Dﬁv 9—raf _
pR7—m) =Y p(ﬁ' m) (2 — 27 A7)y P (5.45)
BENE )

and so p(2% — m) ¥ (20F)% — k) can be replaced in (5.40) by

8 5(9=raf _
3 D752 'k M) ymra oy _ gy, (5.46)
BENE P

We get

_ io: Z A, 2—1/(5—%) Z Z Dﬁﬁ@_ﬂr?k - m) o—rafs ¢ﬁ(2(”+r)a$ _ k) —

v=0 mezL" keZ™ peNy

_ Y Y Y e wwz—k>(§:[””T§k‘"”awwhm):

BENy v=0 keZn meL™

D OB ID DL AL SIS (5.47)

BEND v=0 keZn

where (Bqu)?, (z) = 2_y<5_%> YP(2¥*2 — k) are the anisotropic (s, p) — S-quarks (related to
the rectangles )%,) and

DPp(2="ek —
27’(152 p( m)Am—Q raﬁeﬁ

B
A ﬁ' v vtrk”

v+r,k T (548)

meL”

We may replace in (5.47) v 4+ r by v and obtain (3.18) (recall we assumed r € N).
Let 6% = {Ofk : v € Ng, k € Z"}; if we would prove now that there exists a constant ¢ > 0
independent of 3 such that

167 Fogll < e lIX] £l (5.49)
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we would obtain from (5.48) and (5.41)
2N LIl < ellg L F (5.50)

for some ¢ > 0 independent of § and this is the counterpart of (3.19).
So it remains to prove (5.49) where the numbers HEk are defined from (5.48) by

DP 2Tk —
0= o 5 ™) A i vEN, and ke (5.51)

mEL”™
Let now v € Ny and k € Z" be fixed. By (5.44) there exists a constant ¢ > 0 independent of
8 with

07 sl < e D0 A7k = mla) T Al
meL"
= ¢ > (1427 = mla) T Al (5.52)
meEL™

We denote z; = 2= ("+7)ak and let m; € Z" such that z; € Q ; then clearly

v,myg?
1272, — myl, < d
for some d > 0, where d depends only on the anisotropy and is independent of v, k and my.
We decompose Z" in the sets £; = {m € Z" : 2/ —1 < |m — my|, < 2/T! — 1} where j € N.
If j is fixed, for m € E; we have on the one hand
2 <14 |m—mple < (14 2"%% — mpla + 2"k — m|o)
(14 12", — m,) (5.53)

AN

where ¢’ > 0 is independent of v, k, m and so
(14 2"y, — m|,) ™% < e 2775 (5.54)
On the other hand, if z € @, , and y € Q7 using
ly —2la <c(ly—=27""mlo + [277"m = 27" mylo + 277 mp — aplo + |21 — 2/0)
we get
ly — 2]a < ¢ 2771+ |m — my|.) < C 2777 (5.55)

where C' > 0 is independent of v, k, m but may depend on r.
Choose now 0 < w < min (1, p, q); for a fixed v the rectangles Q¢ have the volume 27" and
are disjoint so that using the embedding [, < {4 and (5.55) we obtain:

1/w

S uml <[ DD Punl”

mel); meL)
w 1/w

= 2m/ Z | Avm | Xom (1) dy
ly—=[a<C 27\ cE

w 1w
(22 (X penken ) ) (559

meEL™

IA
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for z € Q7 and where M" is the anisotropic Hardy - Littlewood maximal function and

all the constants are independent of v, k, m.

f/-lzr kT 2t )le/-I-r’ k-

Using (5.54) and (5.56) in (5.52) and assuming that ¢ > n/w is sufficiently large we have

Let xy4rk be the characteristic function of the rectangle Q“_I_r p and x

0 XL @] < e Y 2 = ml) T A 20 ()

mEZ"
S C2 2{:2 i 2{: |Aum|2 pXu+rk(:
mel);
0o w 1/w
< ey y 27000 (M“(Z lAymlxiﬁl) (w)) Xorih ()
J=0 meZL"
w 1/w
<o [ (S pen) @) vanato (557
meZL”

where the constants above do not depend on v and & but may depend on r.
In (5.57) we take the ¢-th power, sum over k£ € Z™ and then over v € Ny and get

O @) < e 3 ) (5.58)
v=0keZ" v=0

(with the usual modification if ¢ = o) where h, = > |A 4] Xff;)l.
mEL™
Taking the 5—th power and the L,- quasi-norm we obtain that ||#7 | f2 || can be estimated

from above by

1/w

(B ()M) Ly (1)

veNy

= c||(M B ())yer, [ Lpully)]] (5.59)

(with the usual modification if ¢ = oo). To obtain (5.49) we have now only to apply the

Fefferman - Stein inequality (4.2) to the right-hand side of (5.59); this can be done since
1< £ <ooand 1 < £ < oo and so the proof is finished.
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Anisotropic function spaces, fractals, and spectra

of some elliptic and semi - elliptic differential operators

Thesen zur Dissertation

eingereicht von Erich Walter Farkas

1. In der vorliegenden Arbeit werden Zusammenhénge zwischen fraktaler Geometrie (insbe-
sondere anisotroper Fraktale im Sinne von [Tri97, Kapitel 5, Kapitel 30]) und der Fourier-
analysis, der Theorie der Funktionenrdume sowie der Spektraltheorie einiger elliptischer
und semi-elliptischer Differentialoperatoren untersucht.

2. Im Mittelpunkt stehen jene fraktalen Mengen aus der Ebene R?, die in der Theorie der
fraktalen Geometrie als Sierpinski-Teppiche bekannt sind. Diese sind anisotrope Verall-
gemeinerungen der Cantor-Menge und wurden in [Tri97] regulire anisotrope Fraktale ge-
nannt.

3. Sei Q ein beschriinktes Gebiet im R? mit glattem Rand und sei A der Dirichlet-Laplace
Operator in €. Sei I' C Q ein solcher Sierpinski-Teppich. Die Verteilung der Eigenwerte

des auf dem klassischen Sobolev-Raum I/?/%(Q) definierten fraktalen Differentialoperators
T=(-A)"totr! (1)

wird untersucht; hier bezeichnet tr! den Spuroperator auf I' in einer geeigneter Inter-
pretation. Dieses Problem tritt in natiirlicher Art und Weise im Zusammenhang mit der
Verteilung der Figenfrequenzen fraktaler Trommeln auf.

4. Sei d die affine Dimension des reguldren anisotropen Fraktals I'. In [Tri97] wurde gezeigt,
daf} es zwei Konstanten ¢q, ¢z > 0 gibt, so daf§ die positiven Eigenwerte A, (7') des kompak-
ten, selbstadjungierten, nichtnegativen Operators 7" aus (1), gezéhlt entsprechend ihrer
Vielfachheit und monoton fallend geordnet, durch

ey k20D < N (T) < e k=¥ U0H20) e N, (2)

abgeschitzt werden kénnen. Die Zahl 0 < a < 1 ist die sogenannte anisotrope Abweichung.

In der vorgelegten Arbeit wird die Abschidtzung (2) verbessert. Es wird sogar gezeigt
daf es eine ganze Klasse von Sierpinski-Teppichen gibt, die sogenannten ‘stark reguldren’
anisotropen Fraktale, fiir die A\, (T) ~ k71, k € N, gilt.



5.

10.

Um die in 4. erwdhnte verbesserte Abschitzung zu erhalten, werden L,- Rdume (1 < p <
oo) auf reguldren anisotropen Fraktalen im Zusammenhang mit isotropen und anisotropen
Funktionenrdumen vom Typ B, und I, untersucht.

. Die beiden Skalen der Rdume B, und Fj, enthalten als Spezialfille u. a. die klassischen

Sobolev-Riume, die Bessel-Potential-Raume, die Hélder-Zygmund-Raume und die (inho-
mogenen) Hardy-Rdume.

. Die anisotropen Funktionenrdume erscheinen dann, wenn man Differentialoperatoren un-

tersucht, deren maximale Ableitungsordnungen verschieden von Richtung zu Richtung
sind, z. B. der Operator der Wirmeleitungsgleichung. Falls 1 < p < oo und (sy, ..., s,) ein

s

der klassische anisotrope Sobolev-Raum auf R™. Im Vergleich zum iiblichen (isotropen)

n- Tupel von natiirlichen Zahlen sind, dann ist

W) R = Wi (RY) = {f € SR ¢ 1| L®) + 3
k=1

0% f "
g | Lo ()

Sobolev-Raum (s; = ... = s,) sind die Regularititseigenschaften einer Funktion aus
W, *(R™) von der in R™ ausgewihlten Richtung abhiingig. Die Zahl s, die durch

1 171 1
_:—(——I_..._I__)
S n S1 Sn,

definiert ist, wird gewohnlich als ‘mittlere Glattheit’ bezeichnet; a = (ay, ..., a,,) bezeichnet
die ‘Anisotropie’, wobei
S S
A1 = — 0y = —
51 Sp,

. Die moderne Theorie der Funktionenrdume ist durch die Verwendung neuer weitreichender

Hilfsmittel wie atomare Zerlegungen und die Benutzung lokaler Mittel gekennzeichnet.

Es wird ein Satz iiber die Existenz lokaler Mittel in anisotropen Funktionenrdume vom
Typ B,, und Fj, bewiesen, welcher die bereits bekannten Ergebnisse aus dem isotropen
Fall erweitert.

. In Anlehnung an die von M. Frazier and B. Jawerth eingefiihrten Atome werden anisotrope

Atome definiert. Die anisotropen Atome erscheinen als glatte Bausteine (die eventuell
Momentenbedingungen erfiillen) fiir die anisotropen Raume vom Typ B;, und F}, . Es wird
die Aquivalenz der Quasi-Normen in anisotropen Réume Bj, und Fj mit entsprechenden
Normen beziiglich geeigneter Gitter gezeigt. Solche diskreten Quasi-Normen lassen sich
oftmals leichter handhaben als die urspriinglichen Fourier- analytischen Quasi-Normen.

H. Triebel definierte in [Tri97] Quarks und erhielt subatomare Zerlegungen der isotropen
Réume B und F7, . In der Arbeit wird die Definition der Quarks auf den anisotropen
Fall iibertragen und ein Satz {iber subatomare Zerlegungen anisotroper Funktionenrdume
bewiesen. Die anisotropen Quarks erscheinen als einfache Bausteine, die aus einer Funktion
erzeugt werden kénnen.



11. Die Entropiezahlen der Spuren von anisotropen Funktionenrdume auf Sierpinski-Teppichen
wurden mit Hilfe von subatomaren Zerlegungen abgeschitzt. Zur Abschitzung der Eigen-
werte des Operators aus (1) zieht man grofien Nutzen aus der Ungleichung von B. Carl,

die den Zusammenhang

()] < V2ex(T)

zwischen den Eigenwerten und den Entropiezahlen eines kompakten Operators T herstellt.

12. Sei 7 eine C°° Funktion auf dem Intervall [—1,1] mit n(¢) > 0 fiir [¢{| < 1 und

= 1.

1

IR 1)
11—t tl-11+1¢

Sei Q = {r €¢ R? : |2|] < 1} und
w2 Q) = {u e W(Q) 1 u|oQ = %mg = o}.
2

Sei r > 0. Spektraleigenschaften des semi-elliptischen Differentialoperators
A, :I/?/(Ql’z)(Q) —>I/%>/(21’2)(Q)7 der durch

?u(x) . d*u(x) L7
dx? oz n?(z1)

(Aru)(z) = - u(z), @ e,

definiert ist, wurden von H. Triebel und V. Shevchik untersucht.

13. In der Dissertation wird gezeigt, dafi falls [I' C €2 eine reguldre anisotrope d-Menge beziiglich
%, %) ist, dann ist der Operator A otr! fiir groBe r kompakt, selbst-

(12)

adjungiert und nichtnegativ im Raum W5 '~/ (€). Weiter wird gezeigt, daB zwei Konstanten

der Anisotropie a = (

c1, ¢ > 0 existieren, so daf} die Figenwerte des o. g. Operators, gezihlt entsprechend ihrer
Vielfachheit und monoton fallend geordnet, die Ungleichungen

o1 pmald+3) < M(Atotrl) < ey - ald+s) , keN,
erfiillen.

14. Eine Anwendung der unter 9. genannten diskreten dquivalenten Quasi-Normen stellen die
Beweise einiger Spursidtze fiir anisotrope Funktionenrdume dar. Dabei wir der Giiltigkeits-
bereich (bzgl. der Parameter p, ¢, s) bereits bekannter Ergebnisse von S. M. Nikol’skij,
V.I. Burenkov, M.L. Gol’dman, G. A. Kaljabin weiter ausgedehnt.
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