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"Indes sie forschten, röntgten, filmten, funkten, entstand von selbst die köstlichste Erfindung:
der Umweg als die kürzeste Verbindung zwischen zwei Punkten."

— Erich Kästner





ABSTRACT

Nowadays, there is an increasing demand on reliable and efficient methods to evaluate
materials and components in a nondestructive way. Particularly in the field of aerospace
engineering, the components are subject to fulfill high quality and safety standards,

which necessitate methods with a high accuracy, repeatability and inspection speed.
This work deals with the nondestructive testing method Lorentz force eddy current testing.

Unlike traditional eddy current methods, the induction process is based on relative motion
between a permanent magnet and the object under test. An integral part of this thesis is the
development of a new magnet system with improved characteristics. The proposed design is
based on the Halbach principle and is made of Neodymium-Iron-Boron alloys. Besides that, it
contains a piece made of highly saturating iron-cobalt. In this sense, it was possible to increase
and focus the magnetic flux density in the vicinity of the specimen. The development of a decent
optimization strategy allows to determine problem specific magnet designs in dependence on
the measurement requirements.

In the further course of this thesis, numerical simulations are performed addressing the
uncertainty and sensitivity analysis of the system. Therefore, the model parameters are inves-
tigated in terms of their statistical properties. The resulting stochastic electromagnetic field
problem is solved by means of the generalized polynomial chaos technique in combination with
the finite element method. This enabled the identification of most influencing parameters in the
system.

In the context of the uncertainty analysis, it is observed that the velocity obeys characteristic
oscillations. In order to deepen the understanding of this phenomenon, an analytical approach
is presented to evaluate the electromagnetic fields and forces while taking into account the
resistive and inductive character of the moving conductor.

Finally, an alternative Lorentz force eddy current testing system is proposed where the
object under test is encompassed by a ring magnet. The working principle is exemplified by
theoretical considerations.

This work contributes to increase the knowledge and understanding about Lorentz force
eddy current testing and intends to advance the current state of the art with new and innovative
approaches.
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ZUSAMMENFASSUNG

In der heutigen Zeit steigt der Bedarf an effizienten und leistungsfähigen Verfahren zur zer-
störungsfreien Prüfung von Werkstoffen und Bauteilen rasant an. Besonders in den Bere-
ichen Luft- und Raumfahrttechnik unterliegen die Bauteile hohen Qualitätsstandards im

Sinne der Sicherheit. Dies setzt Verfahren mit hoher Genauigkeit, Wiederholbarkeit und Schnel-
ligkeit voraus. Diese Arbeit befasst sich mit der Methode der Lorentzkraft-Wirbelstromprüfung.
Im Gegensatz zu klassischen Induktionsverfahren werden die Wirbelströme aufgrund einer
Relativbewegung zwischen einem Permanentmagneten und dem Prüfobjekt hervorgerufen.

Ein zentraler Gegenstand dieser Arbeit stellt die Entwicklung eines neuen Magnetsystems
dar. Dieses basiert auf dem Halbach-Prinzip und besteht neben den bekannten Neodym-Eisen-
Bor Legierungen aus einer Eisen-Kobalt-Verbindung mit hoher Sättigungsmagnetisierung.
In diesem Sinn war es möglich die magnetische Flussdichte in der Nähe des Prüfkörpers zu
fokussieren und zu verstärken. Die Entwicklung einer geeigneten Optimierungsroutine erlaubt
die flexible Identifikation der Magnetgeometrie in Abhängigkeit der gestellten Anforderungen.

Im weiteren Verlauf wurden numerische Simulationen zur Unsicherheits- und Sensitivitäts-
analyse durchgeführt. Im Zuge dessen wurden die Modellparameter hinsichtlich ihrer statistis-
chen Eigenschaften untersucht. Das zugrunde liegende stochastische Feldproblem wurde mit
Hilfe der Methode des "Generalized Polynomial Chaos" gelöst. Dies ermöglichte die Identifika-
tion der wichtigsten Einflussgrößen im System.

Im Zusammenhang mit der Unsicherheitsanalyse wurden charakteristische Oszillationen
der Relativgeschwindigkeit zwischen Permanentmagnet und Prüfkörper beobachtet. Um diese
Phänomene besser verstehen zu können, wurde ein analytischer Zugang entwickelt, der die
Bestimmung der elektromagnetischen Felder und Lorentzkräfte ermöglicht.

Zu guter Letzt wird ein alternatives System zur Lorentzkraft-Wirbelstromprüfung vorgestellt,
indem der Prüfkörper von einem Ringmagneten umschlossen ist. Die prinzipielle Funktions-
weise des neuen Systems wird mit theoretischen Vorbetrachtungen in Form von analytischen
Lösungen aufgezeigt.

Die Arbeit vertieft die Kenntnisse über die Lorentzkraft-Wirbelstromprüfung und enthält
neue sowie innovative Ansätze, die den Stand der Technik vorantreiben.
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NOMENCLATURE

Acronyms
ADRA Absolute defect response amplitude

AGM Arithmetic geometric mean

ANOVA Analysis of variance

cdf Cumulative distribution function

C Cylinder

CM Collocation method

dWRA Direct weak reaction approach

DoF Degrees of freedom

eWRA Extended weak reaction approach

ECT Eddy current testing

FEM Finite element method

gPC Generalized polynomial chaos

GMR Giant magneto-resistance

HC Halbach-Cylinder

HCp Halbach-Cylinder with (passive) ferromagnetic material

LET Lorentz force eddy current testing

LFV Lorentz force velocimetry

LHS Latin hypercube sampling

LoFoS Lorentz force sigmometry

MAGLEV Magnetic levitation

MC Monte Carlo sampling

MDA Moving defect approach

MECT Motion induced eddy current testing

MMA Moving magnet approach

NDT Nondestructive testing

NRMSD Normalized root mean square deviation

pdf Probability density function

PoD Probability of detection

QMC Quasi Monte Carlo sampling

QSA Quasi stationary approach
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RD Relative difference

SDT Spin-dependent tunneling

SNR Signal-to-noise ratio

SQP Sequential quadratic programming

SQUID Superconducting quantum interference device

VaFc Volume adaptive force constraint

VcFc Volume constraint force constraint

Variables (Greek symbols)
α First shape parameter of a β-distributed random variable or

Step size of optimization solver

β Second shape parameter of a β-distributed random variable

Γa Air boundary

Γc Conductor boundary

Γ(·) Gamma function

δ(·) Dirac delta distribution

∆ Laplace operator

ε Electric permittivity

εr Relative electric permittivity

γ Multi-index of orthogonal basis functions

λ Set of multi-indices

µ Magnetic permeability

µm Expected value of the m-th quantity in gPC

µr Relative magnetic permeability

∇ Nabla operator

ω Angular frequency

ωv Angular frequency of the oscillating velocity

Ωa Air domain

Ωc Conducting domain

Ωd Defect domain

ΩFe Ferromagnetic domain

Ωm Magnet domain

φ Scalar electric potential

ψ Magnetic scalar potential

ψ(p) Primary magnetic scalar potential

ψ(ξ) Orthogonal basis function

Ψ(ξ) Joint orthogonal basis function

ρ Electric volume charge density or mass density

σ Electrical conductivity

x



[σ] Electrical conductivity tensor of second rank

σ2
m Variance of the m-th quantity

Σ Set of events

Θ Event space

ξ Vector of random variables

Variables (Latin symbols)
a Lower bound of β-distributed random variable in gPC or

Edge length of equivalent defect in optimization or

Length of parallelepipedial permanent magnet in analytical modeling

aσ Anisotropy vector of the electrical conductivity

A Magnetic vector potential

A∗ Modified magnetic vector potential

Ã Fourier transform of the magnetic vector potential

[AHCp] Linear inequality constraint matrix for HCp magnets

b Upper bound of β-distributed random variable or

Width of parallelepipedial permanent magnet in analytical modeling

bHCp Linear inequality constraint vector for HCp magnets

B Magnetic flux density

B(d) Distorted magnetic flux density

B(p) Primary magnetic flux density

B(s) Secondary magnetic flux density

Br Magnetic remanence

c Height of parallelepipedial permanent magnet in analytical modeling

cnl Nonlinear inequality constraint

cl Linear inequality constraints

C̃ Complex constant in analytical modeling

d Defect depth

dx Search direction in optimization

D̃ Complex constant in analytical modeling

D Electric displacement field

E Electric field

f Frequency

fv Frequency of the oscillating permanent magnet

∆F̃x Absolute defect response signal amplitude

∆F̃ (s)
x Scaled absolute defect response signal amplitude

∆F Absolute defect response signal

F (c)
x Scaled maximum drag-force (constraint)

F (max)
x Unscaled maximum drag-force

xi



F Lorentz force

F(0) Stationary unperturbed Lorentz force

F Feasible set of solutions

Fx(·) Fourier transform with respect to the variable x

G gPC Computational grid of the gPC

GMC Computational grid of the MC

h Lift-off distance

h Nonlinear equality constraints

H Height of permanent magnet

H Magnetic field strength

H (·) Hilbert transform

Ĩ Fourier transformed current distribution

Ĩ Vector of Fourier transformed source current distribution

In n-th order modified Bessel function of the first kind

Jn n-th order Bessel function of the first kind

J Current density

Je External current density

kx|y Spatial frequencies in x or y

K Laboratory frame of reference (source)

K ′ Fixed frame of reference (conductor)

Kn n-th order modified Bessel function of the second kind

L Characteristic length

[L] Hessian of Lagrangian

L Lagrangian

M Number of output quantities of a system in gPC

Mm Mass of the magnet

M Magnetization

n Unit normal vector

N Number of random variables

Nc Number of gPC coefficients

Nd Number of deterministic forward simulations

p Expansion order of the gPC

p(ξ) Probability density function

p Set of system parameters

P Function assigning an event to a probability

P
p
Nc

Polynomial space of dimension Nc and order p

q Number of grid points in one dimension in gPC

rect(·) Rectangular function

R Radius
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Rm Magnetic Reynolds number

s Vector of scaling parameters

S Scaling parameter

S(δ)
i,m Derivative based sensitivity coefficient

S(n)
i,m n-th order Sobol index

∆t Time step

t Time

T Electric current vector potential

û gPC-coefficient

u Lagrangian multipliers of equality constraints

Usec Induced voltage in secondary ECT coil

v0 Rectilinear part of the velocity

v1 Oscillation amplitude of the velocity

v Velocity or

Lagrangian multipliers of inequality constraints

Vd Volume of defect

Vm Volume of magnet system

w Wall-thickness ratio of tubular conductors

W gPC Grid of weights used in the Gauss-quadrature of the gPC

∆x Step size

x Design variables

x̃ Optimal design variables

Xd x-dimension of the defect

Xs x-dimension of the specimen

Yd y-dimension of the defect

Ys y-dimension of the specimen

Y Vector of output quantities of a system in gPC

Zd z-dimension of the defect

Zs z-dimension of the specimen

Constants
ε0 Electrical permittivity of free space

(
8.854×10−12 As

Vm
)

µ0 Magnetic permeability of free space
(
4π×10−7 Vs

Am
)

c0 Velocity of light in vacuum
(
2.998×108 m

s
)

g Standard gravitational acceleration
(
9.807 m

s2

)
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1
INTRODUCTION

1.1 Motivation

Nondestructive testing (NDT) of materials and products is of great interest in a variety of

modern engineering applications. Nowadays, the expectancy in performance of new devices has

been increasing. NDT in general enables the initial inspection of test samples to confirm the

structural integrity of safety-relevant components without causing damage. In this sense, it

provides quality control while being cost effective in the same way. The presence of NDT is

hard to perceive in everyday life. However, NDT provides ground to identify and prevent failure

of socially relevant parts of our life like airplanes, railroads and power plants. It is therefore

essential to maintain a uniform quality level to avoid accidents and save human life. Besides

that, it allows in service monitoring of test pieces before assembling. It also plays a major role

in the framework of process control to prevent undesirable and dangerous operation of systems.

Combining all this, manufacturers and other users are interested to apply methods, which are

reliable, accurate and cheap.

The present work focuses on electromagnetic NDT methods and more specifically on the

technique Lorentz force eddy current testing (LET). Traditional eddy current testing methods

(ECT) make use of time-dependent magnetic fields to induce eddy currents in the object under

test. Those are altered in the presence of physical irregularities such as flaws, cracks or

inclusions. In ECT, the variations are detected by measuring the magnetic field produced by

the eddy currents. In contrast to traditional eddy current methods, LET makes use of relative

motion between the object under test and a permanent magnet. The induced eddy currents

interact with the applied magnetic field and result in a Lorentz force. Considering Newtons

third law, this force acts on both, the specimen and the magnet itself, where it is measured. This

quantity is used to evaluate the integrity of the structure under test. In this sense, LET differs
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CHAPTER 1. INTRODUCTION

from traditional ECT methods in the way how the eddy currents are induced and how signals

are evaluated. The LET method was originally proposed by Brauer and Ziolkowski in 2008 [11].

Decent advantages are lying in the application of stationary magnetic fields, which potentially

allows the detection of defects lying deep inside the object under test. The working principle of

LET permits the inspection of moving parts as it is frequently found in an industrial setting.

The fabrication process of aluminium for example takes place at velocities of up to 20−30 m/s.

Even higher velocities can be observed in wire drawing processes where speeds in the range of

40−60 m/s can be observed. This necessitates an NDT method like LET which is capable to test

moving objects.

1.2 Thesis Aims

This thesis aims to enhance and deepen the understanding of the LET method and underlying

principles associated with it. The work is primarily focused on the theoretical and numerical

analysis of the electromagnetic field problem, which involves moving conductors in the vicinity

of stationary magnetic field sources.

One important goal of this thesis is the development of more advanced LET sensor sys-

tems in order to increase the feasibility as well as the testing capability of the method. It is

intended to propose magnet systems with inherently improved characteristics in form of an

increased signal-to-noise ratio. An increase in energy density directly affects the performance

of the sensor system. It is intended to determine the optimal volume and mass according to

the imposed measuring task, which provides ground for future sensor miniaturization. This

way, LET becomes competitive and comparable to other NDT techniques. Another goal is to

provide valuable support for an extended experimental validation. Since no laboratory setup

can be assumed to be ideal, such an investigation involves a stochastic treatment of the most

influencing parameters. It is intended to quantify force intervals by means of numerical simula-

tions in which the measured quantities are expected. This is in accordance to the treatment

and analysis of parasitic effects, such as non-constant velocity profiles. When those effects are

sufficiently understood, one is able to find a valuable and useful solution to it or even make use

thereof.

In order to reach the intended goals, the following objectives are defined:

1. Development of an optimization approach to determine enhanced magnet designs for LET.

2. Sensitivity and uncertainty analysis of the LET system under investigation to identify

the most important sources of uncertainty.

3. Analysis of the impact of parasitic effects such as non-constant velocity profiles on the

resulting Lorentz force.

4. Verification and validation of the obtained results and expressions by comparing them to

other numerical techniques or measurement data.
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5. Extension of the fields of application of LET by proposing innovative system designs.

1.3 Thesis Layout

At first, an introduction and overview about NDT is given in Chapter 22, which is primarily

focused on eddy current methods including recent developments. The mathematical description

and the physical basics of the LET problem is given in Chapter 33. In this regard, the different

numerical methods used throughout this thesis are described. Their applicability is studied

and a comparison between them is drawn. Chapter 44 contains the main part of this thesis.

It is subdivided into three sections, the first of which is concerned with the description of

the developed optimization strategy to determine magnet designs with inherently improved

characteristics. In the further course of this study, a new type of Halbach-magnet is proposed,

designed and manufactured. The second section of this chapter addresses the sensitivity and

uncertainty analysis of the present LET setup from the numerical point of view, which is

supported by statistical data obtained experimentally. In the last section of this chapter, the

impact of time-dependent velocity profiles is investigated. Those were observed during the

uncertainty analysis. In Chapter 55, an alternative LET system, consisting of a ring magnet

which encompasses the object under test, is presented. Analytical formulas are provided to

deepen the understanding of the working principle. The thesis concludes with a summary and

suggestions for future work in Chapter 66.
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2
STATE OF THE ART IN NONDESTRUCTIVE TESTING

This chapter is an introduction into the state-of-the-art of nondestructive testing methods

with a primary focus on electromagnetic techniques. The basic principle of the traditional

eddy current testing method is described, followed by an introduction and overview of

motion-induced eddy current testing methods. Finally, the Lorentz force eddy current testing

technique is described and a closer look on preparatory work is given. The chapter concludes

with a comparison between the classical eddy current testing method and Lorentz force eddy

current testing.

2.1 Nondestructive Testing and Evaluation

The first NDT method, which was applied in an industrial setting, was the nowadays well

known X-ray technique. It was discovered in 1895 by Wilhelm Conrad Roentgen who explicitly

mentioned the possibility of flaw detection [22]. Beside X-ray imaging, numerous NDT methods

evolved over time and are commonly used in the field of electrical, mechanical or civil engineer-

ing. Nowadays, a variety of methods exist which are developed to solve distinct measurement

tasks. An overview of those, depending on the underlying frequencies, is shown in Fig. 2.12.1. The

variety ranges from vibration analysis, acoustic emission up to ultrasonic testing [33]. On the

other hand, electromagnetic methods are very popular and find application in form of magnetic

particle, eddy current, microwave, thermography, X-ray and gamma-ray inspection [44].

In the general public, one of the most prominent application of NDT is given in the frame-

work of airport security. Every piece of luggage undergoes X-ray inspection prior loading on

board. Currently, it can be observed that security screening of passengers based on conventional

metal screening devices and palpation is going to be replaced by full body imaging using Tera-

hertz scanners. Those devices provide advanced imaging of non-metallic objects in a shorter
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Figure 2.1: Overview of NDT methods.

time. They are already in service in the United States of America since 2010. In Germany, they

are still heavily discussed and the passengers have the freedom to decide which security gate to

pass.

During the last decades, NDT equipment advanced rapidly. The periphery around the sensor

system offers the computational power to adaptively control the NDT equipment or to evaluate

a tremendous amount of data in real-time. Considering the sensor technology, regardless of the

particular testing method, a trend towards continuous improvement and miniaturization can

be observed. The development of more compact, robust and sensitive sensor systems with a

high resolution defines the shape of future sensor systems. Besides that, there is a demand of

accelerating the testing process. In consequence, the time factor gains in importance expressing

the need of faster methods which are capable to fulfill the imposed requirements. Recent

developments in ultrasonic testing made use of perfect gas impedance matching to be able to

compete with laser profiling technology. By these attempts, it was possible to apply ultrasonic

testing in the framework of surface flaw detection in case of moving objects.

In recent decades, a number of companies are founded to access the NDT market. An analysis

by Frost & Sullivan [55] points out the expected market share of NDT equipment in 2016. The

pie chart in Fig. 2.22.2 shows that electromagnetic NDT methods are well represented beside

ultrasonic, visual, and radiographic testing. The commercialization resulted in a restricted

accessibility of knowledge to the scientific community. Much of it is declared as confidential and

remains in the companies. This circumstance often hampers the scientific activity.

The present work focuses on the analysis of motion-induced eddy current testing techniques

and more specifically, Lorentz force eddy current testing. In motion-induced eddy current testing,

a precise classification in terms of frequency, as it is done in Fig. 2.12.1, is not possible since the

incident field is non-harmonic and consists of a plurality of frequencies. However, when the

relative velocity between the test object and the stationary magnetic field is in the range of
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Ultrasonic Testing (30.3%)Magnetic and Electromagnetic
Testing (15.5%)
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Figure 2.2: Expected global sales breakdown by technology of total NDT equipment in 2016 [55].

a few m/s, the method may be considered as "low-frequency" in the medium Hertz range. In

contrast, traditional eddy current methods make use of alternating fields, whose frequency can

be adjusted according to the underlying measurement task. In the next section, the state-of-

the-art of the traditional ECT method is presented. It is directly followed by an overview of

currently available motion-induced eddy current testing methods with a primary focus on LET.

2.2 Eddy Current Testing

Eddy current testing is an extensively used method for the inspection of electrically conducting

objects. The method allows the contactless detection of defects in ferromagnetic and non-

ferromagnetic materials. The general principle of ECT is shown in Fig. 2.32.3. It is based on

the induction of eddy currents inside the object under test. This is achieved by a coil, driven

by an alternating current, which generates a time-dependent primary magnetic field B(p).

Conductivity anomalies are revealed by measuring the variations in the magnetic field resulting

from a perturbed eddy current distribution J. The origin of the method can be traced back to

the work done by Dr. Friedrich Foerster in the 1960s. Early work on the analytical analysis of

the field problem in ECT is done by Dodd and Deeds in 1968 [66]. They evaluated the impedance

variations in secondary pick-up coils as a direct consequence of a perturbed eddy current profile

in case of defective conductors.

Typical areas of application include the evaluation of safety-sensitive parts in nuclear

power plants, aircraft structures [77, 88] as well as in the petroleum or automotive industry,

respectively, or for the inspection of printed circuit boards [99]. Very recently, its application is

extended to inspect carbon-fiber-reinforced polymers [1010,1111], which shows that the continued

development of eddy current techniques is still of great interest. The challenging task in ECT

is to detect deep-lying defects. The measurement task lies in the detection of weak changes in

the magnetic field in close vicinity of the excitation coil. The induced eddy currents generate a

secondary magnetic field B(s) for itself. This counteracts the exciting primary field B(p). The

total magnetic field B=B(p) +B(s) is expelled out of the conductor with electrical conductivity σ
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Excitation coil

Sensing unit

Defect

Specimen

Figure 2.3: Basic principle of eddy current testing. An excitation coil, including a sensing unit,
is located at a lift-off distance h above the specimen. A defect of length Xd, width, Yd, and
height Zd is located at a depth d.

and magnetic permeability µ in case of high frequencies ω= 2π f . Thus, the eddy currents are

concentrated near the surface of the conductor. This phenomenon is called skin-effect and can

be approximated by the skin-depth δ:

δ=
√

2
ωσµ

. (2.1)

It approximates the depth below the surface of the conductor at which the current density is

decreased to 1/e of its surface value. This definition is derived from the case of a sinusoidal

current in a homogeneous conducting half-space. It represents a physical limit, which cannot

be overcome. Therefore, in order to inspect deep-lying defects, the excitation frequency has

to be reduced. However, the detection of subsurface defects requires sensors having a high

sensitivity and low intrinsic magnetic noise to improve the signal to noise ratio (SNR). At the

early stage of ECT, the most common sensors were secondary pick-up coils. In that case, the

defect signal consists of the relative change in impedance with respect to the sensor position.

When decreasing the frequency, the rate of change of the magnetic flux density perturbation

due to impurities is reduced and pick-up coil-type sensors become ineffective. In the following,

some alternative magnetic field sensors, applied in the framework of ECT, are presented. It is

emphasized that those are not restricted to ECT and are also applied to some extend in the

framework of motion-induced eddy current testing.

To overcome the disadvantages of pick-up coils, Hall probes [1212] or fluxgate sensors [1313] are

often used. However, the currently most prevalent magnetic field sensors in ECT are highly

sensitive giant-magnetoresistive sensors (GMR) [1414]. Some disadvantages are lying in their

hysteretic nature and the need to bias them with a distinct external magnetic field in order to

reach the linear operating point. A promising alternative to the previously mentioned sensors

are spin-dependent tunneling (SDT) devices [1515]. This type of sensor makes use of the principle
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of the electron spin dependent quantum mechanical tunneling through a thin insulating layer

(e.g. 1−2 nm, Al2O3) located in between two magnetic layers (e.g. FeCo/CrPtMn and NiFe). This

is in contrast to GMR sensors, which make use of a conducting layer. The relative magnetization

direction between the two magnetic layers determines the resistance of the device which is in

turn proportional to the external magnetic field to be sensed. Their application in the framework

of ECT is reported by Wincheski et al. in [1515]. They showed that the use of SDT sensors allows

the detection of defects in close vicinity to ferromagnetic fasteners located in a depth of around

5 mm considering an excitation frequency of 500 Hz.

The application of superconducting quantum interference devices (SQUIDS) seems inherent

when it comes to most challenging measuring tasks considering magnetic fields [1616]. This

technology offers an unrivaled sensitivity which enables the detection of very deep faults.

However, these systems are disadvantageous in terms of increased cost and the requirement

of cooling. Due to the presence of the cooler, the lift-off distance between the sensor and the

specimen is considerable higher compared to room temperature systems. The increased distance

between source and sensor influences the effective sensitivity. Typical lift-off values of SQUID

ECT systems are in the range of about 7−20 mm [1717] compared to 0.5−2 mm of traditional

setups. Initial work on this topic can be dated back to the late 1970s [1818]. Following this, SQUID

based applications in NDT were published in the early 1980s [1616]. In general, there are two

kinds of systems. These are either shielded systems, which are based on standard SQUIDs or

unshielded systems which make use of SQUID gradiometers. One challenge in such systems

is the cancellation of the excitation field at the location of the SQUID. This is done either

by a double D-shaped excitation coil [1919] or by a circular primary coil in combination with a

local compensation coil [1717]. It is reported, that with the latter it was possible to achieve a

considerably better compensation. In 1995 Tavrin et al. demonstrated a gradiometric based

SQUID ECT system which worked in a magnetically unshielded laboratory environment [2020].

This study confirmed that this kind of system could find practical application. The group around

Tavrin measured very deep-lying slot like flaws covered by 34.5 mm of aluminium. An overview

about potential applications and developed SQUID based ECT systems is given in [2121] and [2222].

Recently, the ECT method became greatly enhanced in terms of testing time by the de-

velopment of array based systems. Studies by Mook et al. [2323], Postolache et al. [2424] and Jun

et al. [2525] proposed arrays made of secondary coils, GMRs or Hall sensors, respectively. Over the

years, a variety of modifications of the ECT method came into existence as for example pulsed

eddy current testing [2626] or remote field eddy current testing [2727]. Further readings about the

ECT method, its extensions, and the application of different sensor technologies can be found

in [1414,2828,2929].

The main disadvantage of ECT is the frequency-dependent field attenuation. In order

to provide an overview about the current detection limits in ECT, a summary of selected

publications distinguished by the applied sensor technology is given in Table 2.12.1. It focuses

on the detection of subsurface defects located deep inside the specimen. The defect depth d is
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Table 2.1: Overview of ECT studies using different magnetic field sensors to detect deep-lying
subsurface defects. The geometrical dimensions [Xd,Yd, Zd] and d are defined in Fig. 2.32.3.

Author Year Ref. frequency Xd in mm Yd in mm Zd in mm d in mm

Secondary pick-up coils

Mook et al. 2006 [3030] 350 Hz 3 100 3 8.5

100 Hz < 0.1c > 100i 25 22.5

50 Hz < 0.1c > 100i 25 28.8

Almeida et al. 2013 [3131] 100 kHz 2−3? 2−3? 7 3

Carlstedt et al. 2014 [3232] 100 Hz 12 2 2 6

Fluxgate sensors

Gasparics et al. 1998 [3333] 20 kHz 10 < 0.1c 1 4

Kreutzbruck et al. 2000 [1313] 180 Hz < 0.1c 40 0.6 12.4

GMR sensors

Dogaru et al. 2001 [3434] 1.5 kHz 15 0.5 2 1.5

Sikora et al. 2003 [3535] 20−120 Hz 0.5 > 50? 4 16

Tsukada et al. 2006 [3636] 50 Hz 1 25 1 6

Yamada et al. 2008 [3737] 50 Hz 1 25 1 8 |14∗

Wincheski et al. 2010 [88] 185 Hz 0.13 14 1 9

Hamia et al. 2010 [3838] 325 Hz 0.5 50 2 8

Cacciola et al. 2010 [3939] 60 kHz 2 2 4 4

SQUID sensors

Tavrin et al. 1996 [2020] 10 Hz < 0.1c 200 1.5 34.5

Krause et al. 2002 [1616] 90 Hz 0.15 40 1.2 12.7

Horng et al. 2002 [4040] 400 Hz 1 50 1.5 7.2

Jeng et al. 2002 [4141] 2−20 kHz 1 50 1.5 7.2

Allweins et al. 2003 [4242] 15 Hz 20 < 0.1c 15 31

Fardmanesh et al. 2009 [4343] 20 Hz 0.05 > 100i 5 24
? approximated; explicit value not provided
∗ maximum detectable defect depth for solid and layered specimens respectively
c the defect was represented by a thin cut whose explicit width is not provided
i the defect is assumed as infinitely long and extends along the whole specimen; the explicit value

is not provided

defined by the distance from the surface of the specimen up to the upper surface of the defect

such that it represents the amount of flawless material covering the defect (see Fig. 2.32.3). The

size of the investigated defect [Xd, Yd, Zd] plays a major role during the investigations of the

detection limit. Most of the studies listed in Table 2.12.1 do assume slit like cracks such that the

length of the defect is much larger than the characteristic diameter of the sensor system itself.

This considerably increases the depth limit compared to isolated inclusions of finite size which

are surrounded by conductive material. That circumstance has to be considered when comparing
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the results of the studies to each other. The advancements of the eddy current technique by

applying alternative magnetic field sensors can be clearly seen from Table 2.12.1. As expected,

SQUID sensors outperform all other sensors which operate at room temperature. However, the

requirement of cooling and eventually shielding leads to increased maintenance and cost.

In contrast to classical ECT, alternative methods exist which make use of relative motion

instead of alternating currents to induce eddy currents in the object under test. These methods

are presented in the next section since they obey decent advantageous regarding the penetration

of the electromagnetic fields when considering moderate velocities in the range of a few m/s.

2.3 Motion-Induced Eddy Current Testing

The induction of eddy currents in the object under test is not restricted to the use of alternating

magnetic field sources. If an electrical conductor and a magnetic field source experience relative

movement, eddy currents are induced inside the conductor. Besides in the field of NDT, the

calculation of the involved electromagnetic fields and retarding forces is of great general

theoretical interest in electromagnetism. Saslow [4444] provided a comprehensive review about

the theory of motion-induced eddy currents and Maxwell’s receding image theory. In the

past, this topic was of special practical interest in the framework of magnetic levitation and

transportation which was initially proposed in 1912 by Bachelet [4545]. However, as late as in the

1970s this topic became popular and Reitz [4646,4747], Richards [4848], Borcherts and Davis [4949–5151],

Permanent Magnet
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Figure 2.4: Two different MECT methods reported in the literature. (a) Linear motion using a ly-
ing axially magnetized permanent magnet [5959] and (b) rotary motion of a diametral magnetized
permanent magnet in close vicinity of a defective conductor [6262].
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Lee and Menendez [5252] and many others [5353–5555] studied the behavior of the electromagnetic

fields in the vicinity of moving conductors extensively.

In recent years, an increase of a variety of methods can be observed which make use of

relative motion between a magnetic field source producing a stationary magnetic field and the

object under test. Techniques based on this principle can be classified as motion-induced eddy

current testing (MECT) methods. A few examples of MECT type methods which were developed

in the recent years are given in the following.

Ramos et al. [5656, 5757] investigated the applicability of moving stationary magnetic field

sources using DC coils in the framework of NDT. They measured the disturbances of the

magnetic field resulting from a defect directly by means of GMR sensors. Following this approach,

these studies are extended in [5858] and [5959] to the use of single or differential pick-up coils,

respectively. Moreover, they also exchanged the magnetic field source with a permanent magnet

in order to achieve higher flux densities and an increased induced eddy current density inside

the moving specimen. The sensor orientation has to be chosen carefully when using GMR

sensors in order to avoid saturation effects. This can be overcome by applying differential coils

as magnetic field sensors as it is also done in the framework of ECT. In this way, only the

temporal change of the magnetic flux resulting from a passing defect is measured. The general

principle of the proposed method is shown in Fig. 2.42.4(a). Thereupon, Rocha et al. extended the

analysis to the application of Hall sensors instead of GMRs and pick-up coils in [6060]. They also

investigated the defect response signals for different permanent magnet configurations and

proposed the use of sensor arrays to expedite the assessment of larger areas. In a subsequent

study, the application of GMRs, differential coils and Hall sensors is compared in the framework

of MECT [6161]. As a result, it turned out that GMRs were able to detect defects when crossing

the edges of the defect. In contrast, pick-up coils and Hall sensors also provided signals when

the probe passed the defect in its centerline (see Fig. 2.42.4(a)).

In 2015, another MECT technique is proposed by Tan et al. [6262]. In contrast to previous

studies which made use of translational motion, they proposed a system using rotational motion

of the magnetic field source to induce eddy currents inside the object under test. The basic

principle of the method is shown in Fig. 2.42.4(b). A diametral magnetized cylindrical permanent

magnet rotates in close vicinity of a conductive object and anomalies are analyzed by means

of the variations in the electromagnetic torque. The use of rotational motion provides the

opportunity to design portable MECT systems according to ECT devices nowadays available.

The presented studies are all limited to the analysis of surface touching defects indicating

the early state of MECT systems. However, it is emphasized that MECT is not restricted to

detect flaws on the surface which will be shown in the further course of this thesis in the

framework of LET.
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2.4 Lorentz Force Eddy Current Testing

2.4.1 General Principle and Preparatory Work

LET belongs to the group of MECT type methods. It is a technique for nondestructive and

contactless evaluation of electrically conducting specimens. The basic principle, shown in

Fig. 2.52.5, is based on the interaction between a permanent magnet and a moving specimen.

As a consequence of their relative motion, eddy currents are induced inside the object under

test, which in turn react with the magnetic field, producing a Lorentz force acting on both, the

specimen and the permanent magnet itself. The novelty of the method lies in the determination

of the measurement signal. In contrast to ECT and other MECT techniques, the force acting

on the magnet is measured using force sensors. In the presence of a defect, the eddy current

profile and hence, the resulting Lorentz force, are perturbed. The physical principle of LET is in

analogy to Lorentz force velocimetry (LFV) [6363]. In LFV, the main goal is to determine the flow

rate of a conducting liquid by means of the Lorentz force which is proportional to the velocity of

the liquid [6464].

LET was initially demonstrated as an alternative NDT method by Brauer et al. in 2008 [11].

Ziolkowski et al. [6565] tackled the numerical analysis of the reported experimental setup and

proposed techniques to analyze the electromagnetic field problem with increased computational

efficiency. The work on LET in an experimental and numerical framework was continued by

Uhlig [6666] and Zec [6767]. A conceptional model of LET is proposed and investigated in [6868]. It

consists of a modification to the famous creeping magnet experiment [6969], where a permanent

magnet is slowly falling down a copper pipe. The modification in this study consists of adding

defects into the pipe wall such that the eddy current distribution and Lorentz force profile is

disturbed. The LET method is extended to the determination of the electrical conductivity of

the specimen assuming that the object under test is free of defects [7070]. This technique is called

Permanent
magnet

(a) Solid specimen

Defect sheet

Permanent
magnet

(b) Layered specimen

Figure 2.5: General principle of Lorentz force eddy current testing for contactless evaluation of
electrically conducting material. The specimens and the geometrical parameters of the LET
problem under investigation are shown in (a) for solids and in (b) for layered structures.
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Lorentz force sigmometry (LoFoS). It is shown that the lift-to-drag ratio of the Lorentz force

components is proportional to the conductivity of the specimen such that σ = αFz/Fx with a

calibration factor α which is determined experimentally. Besides the mentioned investigations,

fundamental studies exist on the influence of the Lorentz force on geometrical parameters such

as the lift-off distance, the size of the magnet as well as the size and depth of the defect [7171,7272].

These studies are accomplished with the analysis how the velocity or conductivity affects the

resulting Lorentz force profile. The investigations on the forward models are supported by

Petković in [7373] who addressed the inverse problem. She proposed reconstruction algorithms

to determine the shape and the location of the defects solely out of the Lorentz force profiles.

In 2014, the state-of-the-art in LET is reported by Brauer et al. in [7474]. It includes a summary

about the experimental setup, the numerical modeling techniques and currently applied defect

reconstruction methods.

This thesis aims to continue the work on LET with a primary focus on the optimization of

the magnet system, the uncertainty analysis of the LET setup at hand and the development of

analytical modeling techniques to analyze time-dependent velocity profiles.

2.4.2 Problem Definition and Laboratory Setup

The LET system investigated numerically is strongly related to the laboratory setup in order

to compare the simulation results with experimental data. The problem geometry utilized in

the numerical analysis is shown in Fig. 2.52.5 and an overview of the involved parameters is

given in Table 2.22.2. Throughout this work, two different kinds of specimens are investigated.

These are either solid or layered specimen. Both types are shown in Fig. 2.52.5 together with the

Table 2.2: Parameters of the LET setup and characteristic values.

Parameter Value Description

Br ∼ 1 . . . 1.4 T Remanence of the magnet (NdFeB)

d ∼ 1 . . . 10 mm Depth of the defect

h 1 mm Lift-off distance

v ∼ 0.1 . . . 2 m/s Velocity of the specimen

Xd ∼ 1 . . . 10 mm Length of the defect

Yd ∼ 1 . . . 10 mm Width of the defect

Zd ∼ 1 . . . 10 mm Height of the defect

Xs 250 mm Length of the specimen

Ys 50 mm Width of the specimen

Zs 50 mm Height of the specimen

σ� (19.88±0.05) MS/m Electrical conductivity of solid specimen

σ∥ (30.61±0.20) MS/m Electrical conductivity of layered specimen
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Permanent

magnet

Conductor

Conductor

(Top view)

(Front view)

(a) Solid specimen

Conductor

Permanent

magnet

(Front view)

Conductor

(Top view)

(b) Layered specimen

Figure 2.6: Sketch of the perturbed eddy currents induced in a moving plate located below
a permanent magnet. Differences between (a) solid and (b) layered specimen. The layered
structure restricts the eddy currents to flow in the respective sheet.

corresponding geometrical parameters. The conductivity of solid specimen, shown in Fig. 2.52.5(a),

can be assumed as isotropic. Meanwhile, the layered specimens are advantageous when varying

the depth and size of defects which is demanding and expensive in case of solid bars. As a direct

consequence, their conductivity profile has to be treated differently compared to solid bodies.

As a result of their stratified structure, an oxidation layer on the surface of each conducting

sheet is present. This prevents the current to flow from one layer to the next. As an admissible

approximation, which was tested experimentally in [7474], the anisotropic conductivity profile

is homogenized assuming a vanishing vertical conductivity (σzz = 0) throughout the whole

conductor. The characteristic eddy current profiles are illustrated in Fig. 2.62.6 for both types

of specimen. Throughout this thesis, it is assumed that the defect is non-conductive and non-

magnetic. The eddy current profiles would considerably change when one of both assumptions

is violated. A permanent magnet, which is magnetized perpendicular to the surface of the

15



CHAPTER 2. STATE OF THE ART IN NONDESTRUCTIVE TESTING

3-D force sensor

Permanent magnet

Specimen

Linear drive

Figure 2.7: Laboratory LET setup developed by R. P. Uhlig [6666] and M. Carlstedt [7575].

specimen, generates a characteristic eddy current profile in the xy-plane with a shape of an

eight. The induced eddy current density is highest right under the permanent magnet. The

conductivity anisotropy in the z-direction does not affect this general behavior. In the case of

a defect, the induced eddy currents circumvent the defect. The major difference between both

conductivity profiles is that in case of anisotropic specimen, the induced eddy currents are

restricted to flow in the respective sheet omitting any z-component.

The present laboratory LET setup, shown in Fig. 2.72.7, is developed by Uhlig [6666] and

Carlstedt [7575]. The 3-D force sensor K3D40 [7676] (ME-Messsysteme GmbH, www.me-systeme.dewww.me-systeme.de)

based on the strain-gauge technology is used to determine the dynamic forces acting on the

permanent magnet. The data is acquired using the commercial PXI system NI PXI-1036

(National Instruments Corporation, www.ni.comwww.ni.com) together with the signal acquisition module

NI PXI-4472. The output voltage of the force sensor amplifier is sampled with a frequency of fs =
10 kHz. The specimen is moved by a customized linear belt-driven drive (Jenaer Antriebstechnik

GmbH, www.jat-gmbh.dewww.jat-gmbh.de). The maximum velocity which can be reached is about 2 m/s. More

information about the experimental setup can be found in [6666] and [7575].

2.5 Comparison of ECT and LET

A comparison between the ECT technique and LET is reported by the author and colleagues

in [3232] and [7777]. In the context of this thesis, a brief summary of those studies is given in

the following. In order to compare both methods from the numerical point of view, a detailed

model of the applied ECT sensor is necessary. For that reason, preliminary work was done by

the author in [7878]. This study describes the modeling procedure of a commercial ECT probe
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Secondary Coil
Primary Coil

(a) X-ray images

Case
Core
Secondary coil
Primary coil
Shield
Specimen

Defect x

z

y

(b) Finite element model

Figure 2.8: X-ray images and model of the ECT probe PKA-48 (Rohmann GmbH) [7878].

with unknown internal geometrical and material properties. The probe under investigation

(PKA-48, Rohmann GmbH) was of differential type, including secondary pick-up coils. It is used

in combination with the ECT device Elotest N300 (Rohmann GmbH). X-ray images were taken

in order to get information about the internal structure of the probe. Those are shown together

with the constructed finite-element model in Fig. 2.82.8. This enabled the possibility to compare

the defect response signals obtained experimentally with numerical simulations.

The major differences between ECT and LET are given by the shape and the magnitude

of the induced eddy current profile as well as by the evaluated signal. In [3232], the impedance

variations of the imaginary part ∆Zi and the back induced voltage Usec in the secondary pick-

up coil from ECT are compared to the force perturbations in case of LET. An example of the

normalized defect response signals from both methods is shown in Fig. 2.92.9.

Usually, the ECT method is applied in stationary applications. However, when the object
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Figure 2.9: Normalized defect response signals in case of ECT and LET assuming equivalent
dimensions [7777].
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Case

Shield
Core

Primary coil
Secondary coil

Conductor

v = 0.25 m/ss = 30.61 MS/m

Defect

d = 2 mm
d = 4 mm
d = 6 mm

d = 2 mm
d = 4 mm
d = 6 mm

Figure 2.10: Modulated secondary induced voltage in the pick-up coils in case of moving objects
under test [3232].

under test is moving relative to the ECT probe, the induced voltage in the pick-up coil is

modulated in the defect region. This effect is shown in Fig. 2.102.10. If the velocity-to-frequency

ratio v/ f increases, the amount of sinusoidal periods in the defect region decreases. It is shown

in [3232] that the use of the Hilbert transform of the secondary induced voltage H {Usec(t)} is

suitable to post-process the modulated defect response signals to determine the envelope of

the modulated signal. In practice, this requires additional adjustments of currently available

ECT devices. A direct comparison between both methods in terms of defect depth and velocity

showed that with ECT it was possible to detect defects of size [Xd,Yd, Zd]= [12,2,2] mm up to

a depth of 6 mm at a velocity of v = 0.25 m/s considering a frequency of f = 100 Hz. In contrast,

the LET method was able to resolve the defect up to a depth of 8 mm at v = 0.5 m/s.

It can be concluded that both methods obey individual advantages. The classical ECT method

is suitable to inspect stationary objects which is not possible with LET or any other MECT type

method. However, if the object is in motion, the use of alternating currents can be omitted. In

this way, it is possible to apply permanent magnets which produce considerably higher magnetic

flux densities compared to current carrying coils. Comparative studies [3232, 7777] showed that

LET is a promising and competitive alternative to traditional ECT methods considering the

contactless evaluation of moving electrical conductors. In the further course of this thesis, a

similar defect depth study is conducted as it is presented by Mook et al. in Table 2.12.1. In this

way, it is intended to incorporate LET into the current state-of-the-art of electromagnetic NDT

methods.
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In this chapter, an overview of electrodynamic phenomena in the case of moving media is

given. The relations between the electromagnetic fields in two coordinate systems that

move with a relative velocity v with respect to each other are provided. One coordinate

system is associated with the magnetic field source and the other is associated with the moving

electrical conducting media. In this situation, the Maxwell-Lorentz and the Maxwell-Galilean

transformations are studied. The characteristics of motion-induced eddy currents are described.

This analysis extends to the formulation of the governing equations of different numerical

approaches used throughout this thesis. Several relevant assumptions and simplifications are

presented and discussed. Finally, several approaches are compared and their applicability is

investigated.

3.1 Electrodynamics of Moving Media

The electrodynamics of moving bodies were a significant challenge to physicists of the nineteenth

and twentieth centuries. This chapter provides a brief overview of the underlying physics

of electromagnetic fields in the case of relative motion between magnetic field sources and

conducting objects. This description is focused on the use of principles to formulate and solve

problems in the LET framework.

To describe the effects of relative motion, two frames of reference are defined; both frames

are shown in Fig. 3.13.1. The first frame is associated with the magnetic field source and is called

the laboratory frame of reference K . The second frame is fixed with respect to the conductor; it

is the rest frame of reference K ′. As a consequence of the relativity theorem, time is not absolute

between the frames. The famous physicist H. A. Lorentz introduced a local time for the frame

K ′. To relate both frames to each other, he formulated ad hoc transformation laws for space and
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Magnetic field source

Conductor

Defect

Figure 3.1: Laboratory frame K and rest frame K ′. The red and blue colors indicate the frame
of reference and the corresponding direction of motion, respectively. Only one velocity vector
may be considered, depending one the frame of reference under consideration.

time. For uniform motion in the x direction, these laws are given by:

x′ = x−vxt√
1−β2

(3.1a)

y′ = y (3.1b)

z′ = z (3.1c)

t′ = 1√
1−β2

(
t−β x

c0

)
(3.1d)

with a velocity ratio β= vx/c0, where c0 is the speed of light in free space. Using this system,

events in K and K ′ are not simultaneous in time. Moreover, they are contracted in space.

Einstein postulated that the laws of electrodynamics are invariant in all frames of reference

[7979]. This leads to the transformation equations for the fields E (electric field), D (electric

displacement field), H (magnetic field), and B (magnetic flux density):

E′ =E∥+
1√

1−β2
(E⊥+v×B) (3.2a)

D′ =D∥+
1√

1−β2

(
D⊥+ v×H

c2
0

)
(3.2b)

H′ =H∥+
1√

1−β2
(H⊥−v×D) (3.2c)

B′ =B∥+
1√

1−β2

(
B⊥− v×E

c2
0

)
. (3.2d)

Note that the field components parallel "∥" and perpendicular "⊥" to the direction of motion

must be treated differently in the general case. In the presence of some material, the constitutive
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equations in K ′ are given in the same way as for the stationary case [8080]:

D′ = εE′ (3.3a)

B′ =µH′ (3.3b)

J′ =σE′, (3.3c)

for a permittivity ε= ε0εr and a permeability µ=µ0µr, which include the permittivity ε0 and

permeability µ0 of free space. The current density is calculated using the electric field by means

of the electrical conductivity σ.

In LET, β is exceedingly small, because |v|¿ c0. In this case, the Lorentz transformation

can be simplified, and the Galilean transformation can be applied. In this case, the absolute

time is preserved such that t = t′ and (3.2a3.2a)-(3.2d3.2d) simplify to:

E′ =E+v×B (3.4a)

D′ =D (3.4b)

H′ =H−v×D (3.4c)

B′ =B. (3.4d)

Considering Maxwell’s equations, which are independent of the frame of reference, the relations

between magnetic and electric fields are given by:

∇×H=J+ ∂D
∂t

(3.5a)

∇×E=−∂B
∂t

(3.5b)

∇·B= 0 (3.5c)

∇·D= ρ. (3.5d)

Eq. (3.5d3.5d) includes a (possibly present) charge density ρ. By substituting the simplified rela-

tions from (3.4a3.4a)-(3.4d3.4d) into Maxwell’s equations (3.5a3.5a)-(3.5d3.5d) and considering the presence of

magnetic field sources, i.e., a permanent magnet with magnetization M or a DC coil driven by

an external current density Je, one obtains:

∇×
(

B′

µ0
−M

)
= [σ](E+v×B)+ ∂D

∂t
−∇× (v×D)+ρv+Je (3.6a)

∇×E′ =−∂B
∂t

(3.6b)

∇·B′ = 0 (3.6c)

E′ =E+v×B (3.6d)

J= ρv+ [σ](E+v×B) (3.6e)

B=B′ =µH′, D=D′ = εE, ρ′ = ρ.

The conductivity σ is now expressed as a tensor of second rank [σ] so as to take the conductivity

profile of the conductor into account, which can be either isotropic (in the case of solids) or
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anisotropic (in the case of composites, e.g., stacked sheets). Assuming that the material is

completely described by the diagonal terms, [σ] is given by:

[σ]= diag(σ)=


σxx 0 0

0 σyy 0

0 0 σzz

 . (3.7)

The above relations are general and can be applied in the case of finite conductors and in

the presence of defects. Introducing the magnetic vector potential A defined by B=∇×A and

combining it with the electric scalar potential φ, the electric field E is given by:

E=−∇φ− ∂A
∂t

. (3.8)

The scalar electric potential φ inhibits the induced current, causing it to flow through the

boundary of the conductor into the air or defect domain.

Laboratory Frame of Reference (Magnetic Field Source): When considering good con-

ductors at non-relativistic speeds, as in the case of LET, the displacement field D and the

displacement current density ∂D/∂t can be neglected [8181]. In this way, a Coulomb gauge,

∇·A = 0, applies for the magnetic vector together. Moreover, convection currents, ρv, do not

exist. As a result, (3.6a3.6a) and (3.6b3.6b) can be further simplified. This simplification yields the gov-

erning equations of the electromagnetic fields if the observer is located in the laboratory frame

of reference K associated with the magnetic field source (see Fig. 3.13.1). In this environment,

the conductor passes the magnetic field source with a positive velocity +v, and the governing

equations are given by:

∇×
(

B
µ0

−M
)
= [σ](E+v×B)+Je (3.9a)

∇×E=−∂B
∂t

(3.9b)

∇·B= 0 (3.9c)

J= [σ](E+v×B) (3.9d)

∇·J= 0. (3.9e)

Rewriting (3.9a3.9a) and (3.9b3.9b) in terms of potentials A and φ yields the transient magnetic diffusion

equation in the laboratory frame of reference; combining this equation with the law of current

conservation ∇·J= 0 one obtains:

∇×
(

1
µ0

∇×A−M
)
= [σ]

(
−∂A
∂t

−∇φ+v× (∇×A)
)
+Je (3.10a)

∇·J= 0 → ∇·
(
[σ]

(−∇φ+v× (∇×A)
))= 0. (3.10b)

The driving function of the induced eddy currents is given by only the v× (∇×A) term if the

conductor has an infinite extent and a constant cross section. The observer sees a stationary
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magnetic field with ∂A/∂t = 0. However, if a defect or a boundary passes by or if the body is

accelerated such that the velocity is time-dependent, the induced eddy currents change over

time, which, in turn, generates a time-dependent magnetic field. As a consequence, ∂A/∂t 6= 0
and transient induction effects, which are superimposed with the velocity term v×B, can be

observed. Under certain circumstances, the decoupling between quasi-stationary and time-

dependent effects simplifies the analytical calculation of the electromagnetic fields. This fact

will be utilized later in this thesis during the analysis of ring magnets in the framework of LET

(Chapter 55).

Rest Frame of Reference (Conductor): The field problem can also be solved in the rest

frame of reference that is associated with the moving conductor (see Fig. 3.13.1). In this case, the

conductor is stationary and the magnetic field source moves along the conductor with a negative

velocity −v. Then, the governing equations are given by:

∇×
(

B
µ0

−M
)
= [σ]E+Je (3.11a)

∇×E=−∂B
∂t

(3.11b)

∇·B= 0 (3.11c)

J= [σ]E (3.11d)

∇·J= 0. (3.11e)

Similar to the former case, the transient magnetic diffusion equation can be reformulated by

rewriting (3.11a3.11a) and (3.11b3.11b) in terms of the potentials A and φ:

∇×
(

1
µ0

∇×A−M
)
= [σ]

(
−∂A
∂t

−∇φ
)
+Je (3.12a)

∇·J= 0 → ∇· ([σ]∇φ)= 0. (3.12b)

In the rest frame K ′, the observer is fixed with respect to the conductor and experiences a

time-dependent magnetic field when the magnetic field source passes by. Therefore, the driving

function of the motion-induced eddy currents is given by only the time-derivative of the magnetic

field such that ∂A/∂t 6= 0 in every case. All time-dependent effects (resulting from, for example,

defects or nonuniform motion) are now included in the ∂A/∂t term. This characteristic proved to

be useful during the analytical treatment of accelerated bodies [8282]. Reference to this property

will be made at a later time when analytically investigating the effects of oscillatory motion of

permanent magnets above a conducting slab (section 4.34.3).

Magnetic Reynolds Number: The magnitude of the induced eddy currents and their spatial

distribution depend on several parameters such as the conductivity σ, the velocity |v|, and the

dimensions of the problem. The magnetic Reynolds number Rm can be used to approximate

the ratio between the secondary magnetic field B(s) produced by the induced eddy currents and
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the primary magnetic fields B(p) generated by the magnetic field source (Rm~B(s)/B(p)). The

magnetic Reynolds number is a dimensionless quantity that is obtained by normalization of the

transient magnetic diffusion equation (3.10a3.10a) [8383]:

Rm =µ0σvL. (3.13)

The magnetic Reynolds number is inconclusive, because it includes a characteristic length L that

cannot be uniquely defined. The magnetic Reynolds number strongly depends on the problem

under investigation. In LET, L is defined by the size of the moving conductor (e.g., L = Zs/2) or,

if not applicable, the lift-off distance h of the magnetic field source. Using this convention, one

can state that the secondary magnetic fields can be neglected if Rm ¿ 1. Otherwise, if Rm À 1,

secondary magnetic fields become prevalent and the primary magnetic field is expelled from the

conductor. This phenomenon is similar to the well-known skin effect.

Calculation of Forces: The forces acting on the magnetic field source can be calculated

using a volume integration of the Lorentz force density over the conducting domain Ωc, taking

into consideration Newton’s third law, such that the forces on the magnet and on the conductor

are equal but act in opposite directions:

F=−
∫
Ωc

J×B dΩ. (3.14)

This approach can be applied as long as the conductor is non-ferromagnetic (µr = 1); if this is

not the case, other methods such as the Maxwell stress tensor method [8484], the principle of

virtual work [8585], or the magnetizing current model [8686] must be applied. A comparison of the

aforementioned force calculation methods can be found in [8686,8787].

3.2 Numerical Approaches

To determine the forces acting on the magnet system in the presence of defects, the finite element

method (FEM) is used throughout this thesis [8888]. The method is based on the discretization

of the computational domain into elementary sub-domains (hereinafter referred to as finite

elements). FEM is a suitable method to handle complex geometries with inhomogeneous and

anisotropic material properties. The solution inside each element is approximated by low-order

polynomials called shape functions. Depending on the unknown quantity, φ or A, scalar shape

functions associated with the nodes, or vector shape functions associated with the edges of each

finite element, are typically defined. The unknowns are also referred to as degrees of freedom

(DoFs). Depending on the differential equation and the technique used to incorporate time-

dependent effects in the model, the computational domain, and hence, the number of DoFs, can

be reduced. As a consequence, the computational time required to solve the problem is reduced.

Further reading regarding FEM can be found in [8888–9292]. In general, analysis requires accurate

and time-efficient numerical approaches to allow either extensive scans of an object under test
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or parametric studies. The software package Comsol Multiphysics v4.4 [9393] (COMSOL, Inc.,

Burlington, MA, USA, www.comsol.comwww.comsol.com) is used in this framework.

3.2.1 Computational Domains and Potential Functions

To efficiently determine the solutions for the magnetic and electric fields from (3.10a3.10a) and (3.10b3.10b),

or (3.12a3.12a) and (3.12b3.12b), different computational domains and potential functions are defined.

The entire computational domain Ω is divided into the magnet domain Ωm, the ferromagnetic

domain ΩFe, and the surrounding air domain Ωa. All of these domains are assumed to be

non-conducting, such that the induced eddy currents are only present inside the conducting

domain Ωc.

Magnet Domain Ωm: In the magnet domain Ωm (i.e. the permanent magnet), the magnetic

field H can be described by the magnetic scalar potential ψ such that H=−∇ψ. The magnetic

field source is defined by the remanence Br of the permanent-magnet material. As a reasonable

approximation, the relative permeability of the magnetic material is assumed to be equal to

that of free space (µr = 1). Thus, the magnetization is given by M=Br/µ0. Then, the governing

equation for the magnetic field in Ωm is given by:

∇· (−∇ψ+M)= 0 (3.15a)

∇·B= 0 (3.15b)

H=−∇ψ (3.15c)

B=µ0 (H+M) . (3.15d)

Nonlinear Ferromagnetic Domain ΩFe: The magnet system could include a domain ΩFe,

which is made of soft-magnetic material. It is described by the nonlinear constitutive relation

|B| = f (|H|). In this case, the magnetization of the material depends on the externally applied

magnetic field provided by the permanent magnet in Ωm. The function f (|H|) depends on the

magnetic material; it must be monotonic so as to prevent instable operation of the numerical

solvers.ΩFe is assumed to be fixed with respect toΩm; a combination of both domains is assumed

to represent a magnet system. As long as the time-derivative of the secondary magnetic field

is small (∂B(s)/∂t → 0), the induced eddy currents inside ΩFe can be neglected, which allows

the use of a scalar potential formulation similar to that used in previous cases. The nonlinear

governing equations are given by (3.15a3.15a)-(3.15c3.15c), which use the nonlinear constitutive relation

|B| = f (|H|) instead of (3.15d3.15d):

Air Domain Ωa: In the surrounding air-region Ωa, no magnetic material is present and

(3.15a3.15a) can be simplified to:

∆ψ= 0. (3.16)
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Conducting Domain Ωc: The magnetic and electric fields inside the conducting region Ωc

(i.e. the specimen) can be expressed by the magnetic vector potential A and the electric scalar

potential φ, as already given in the governing equations (3.10a3.10a) and (3.12a3.12a). However, in time-

dependent approaches, a modified A∗ formulation is used to more effectively solve the given field

problem inside the conducting region [9494]. In this way, the modified magnetic vector potential

A∗ can be defined as:

A∗ =A−
∫ t

0
∇φdt (3.17a)

∂A∗

∂t
= ∂A
∂t

−∇φ. (3.17b)

To ensure the uniqueness of A∗, the gauge ∇ · ([σ]A∗) = 0 must be imposed [9494]. Using the

modified vector potential formulation, the electric scalar potential φ is excluded from the

governing equations and the number of DoFs is reduced from 4 to 3 inside the conductor.

Boundary Conditions and Domain Coupling: Across all interfaces, the normal compo-

nent of the magnetic flux density B and the tangential component of the magnetic field H must

be continuous:

(B1 −B2) ·n= 0 (3.18a)

(H1 −H2)×n= 0. (3.18b)

To provide continuity at the interface Γc between non-conducting and conducting regions, the

potential functions must be appropriately coupled:

∇×A∗ ·n−µ0∇ψ ·n= 0 (3.19a)
1
µ0

∇×A∗×n−∇ψ×n= 0. (3.19b)

Note that in the case of a conductivity jump inside the conductor, the normal component of

A∗ is not continuous across the interface, because J=−[σ]∂A∗/∂t [9595]. However, the description

of A∗ based on edge elements allows a jump in the normal component and, at the same time,

enforces the continuity of the tangential component [9696]. On the contrary, when applying an

A−φ formulation, the magnetic vector potential A is continuous and the electric scalar potential

φ restricts the current to the conducting domain.

The boundary conditions for the electric quantities are defined in a similar way to the

magnetic quantities. The normal component of the current density and the tangential component

of the electric field are continuous across all interfaces:

(J1 −J2) ·n= 0 (3.20)

(E1 −E2)×n= 0. (3.21)

In finite element analysis, the computational domain must be bounded by an outer air

domain. On the boundary, the normal component of the magnetic field is set to zero such that
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n · (µ0∇ψ) = 0. The air domain chosen must be large enough to avoid field distortion effects.

Typically, the air domain is approximately 3-5 times larger than the characteristic size of the

problem. A comprehensive summary of the use of different potential functions in conducting

and non-conducting domains and their coupling can be found in [9696,9797].

In the following, different model approaches, including their applicability and limitations,

are described.

3.2.2 Time Dependent Approaches

3.2.2.1 Moving Defect Approach

The electromagnetic fields in the moving defect approach (MDA) are calculated in the laboratory

frame of reference (see Fig. 3.13.1). The basic principle and the computational domains involved are

shown in Fig. 3.23.2. In MDA, it is assumed that the conductor moves with a constant rectilinear

velocity v. Inside the conductor, a defect-domain Ωd is defined. A special feature of the MDA is

used in the defect modeling scheme. Defects are defined by time-dependent logical expressions

(LEs) in Ωd, which is discretized by a structured hexahedral grid. In this case, the conductivity

distribution is time-dependent; it is described by:

[σ(r, t)]= (1−LE(r, t))[σc]+LE(r, t)[σd], (3.22)

whereas the indices c and d distinguish the conductivity tensors between the conductor and the

defect, respectively. The use of logical expressions allows for the definition of multiple defects at

the same time. The defect assembly in Ω′
d moves in the direction of motion by redefining the

logical expression at every time step. In MDA, the governing equations from (3.10a3.10a) and (3.10b3.10b)

Magnet system

ConductorDefects

S

N

S NSN

Figure 3.2: General principle of the moving defect approach (MDA).
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in terms of the modified magnetic vector potential A∗ are given by:

∇×
(

1
µ0

∇×A∗−M
)
= [σ]

(
−∂A∗

∂t
+v×∇×A∗

)
(3.23a)

∇·
(
[σ]

(
−∂A∗

∂t
+v×∇×A∗

))
= 0. (3.23b)

The problem is solved by considering a fixed time step v∆t = N∆x for any positive integer N.

Therefore, time consuming re-meshing procedures are avoided. If the time-stepping scheme is

not compatible with the structured mesh of the defect domain, numerical oscillations in the

Lorentz force due to volume fluctuations may occur [9898].

The quasi-stationary part of the induced eddy currents is incorporated in the term v×∇×A∗.

However, the presence of defects leads to time-dependent magnetic fields, which are represented

by the term ∂A∗/∂t. In this way, the approach includes the reaction of the conductor and the

response due to the defect by taking time-dependent secondary magnetic fields B(s) into account.

As a result of the stationarity ofΩm andΩFe with respect toΩc, complicated magnet geometries

such as Halbach arrays combined with ferromagnetic materials can be considered. However,

note that the MDA is applicable as long as the defects are located far from any leading (front) or

trailing edge (rear) of the conductor in the direction of motion. Moreover, complex defect shapes

require sophisticated definitions in the logical expressions and very fine discretization so as

to reduce staircasing effects, which, in turn, directly affects the overall efficiency of the MDA.

Further reading regarding this approach can be found in [6767] and [9898].

3.2.2.2 Moving Magnet Approach

The time-dependent problem can be also solved in the rest frame of reference (see Fig. 3.13.1)

using the moving magnet approach (MMA). The basic principle of MMA is shown in Fig. 3.33.3.

The governing equations in terms of A∗ are given by:

∇×
(

1
µ0

∇×A∗−M
)
=−[σ]

∂A∗

∂t
(3.24a)

∇·
(
[σ]

∂A∗

∂t

)
= 0. (3.24b)

As mentioned previously, in this formulation, the velocity term is omitted and motion-induced

eddy currents are incorporated with the time-derivative of the magnetic vector potential. Both

solutions should be equivalent, as shown in section 3.13.1. In this case, secondary magnetic fields

B(s) and their time-derivatives ∂B(s)/∂t are taken into account.

The discretization scheme is similar to the scheme used in MDA, permitting the definition of

multiple objects at the same time. However, in the present case, the defects are stationary and

the remanence of an assembly of magnets is defined by direction-dependent logical expressions

LE i where i = {x, y, z}. For the sake of simplicity, the magnet assembly is assumed to be made of

the same magnetic material, with a nominal remanence of Br; then, its spatial distribution is
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Magnet system
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Figure 3.3: General principle of the moving magnet approach (MMA).

given by:

Br(r, t)= [LEx(r, t), LE y(r, t), LEz(r, t)]T Br. (3.25)

The assembly inΩ′
m moves with a constant velocity −v with respect to the conductor. The magnet

domain Ωm is discretized by an equidistant hexahedral finite element mesh. One advantage

of MMA is its ability to model the complete force response signal resulting from specimens of

finite size. Transient induction phenomena resulting from leading and trailing edges can be

considered in the time-dependent case. Presently, the method is restricted to relatively simple

magnet geometries, avoiding the presence of a region of ferromagnetic material ΩFe.

Both MDA and MMA are applicable in the case of constant velocities, because the time-

dependent logical expressions are strongly related to the underlying equidistant finite element

mesh. In principle, it is possible to adjust the step size ∆x or the time step ∆t in the case of

time-dependent velocities accordingly. However, this adjustment requires a comprehensive

analysis of the stability of the underlying solver (which was not performed in this thesis, but

could be part of further investigations). Current implementations of MDA and MMA make

use of an initial quasi-stationary solution for the field potentials to achieve fast convergence

of physical solutions. An initial magnetic field and eddy current distribution is imported into

the time-dependent solver for subsequent transient simulations [9999]. Otherwise, the transient

simulations must start with a zero initial condition (A∗|t=0 = 0, ψ|t=0 = 0), assuming that no

magnetic field penetrates through the conductor in the first time step. This situation would

lead to non-physical diffusion effects during analysis. More information regarding MMA can be

found in [6767] and [9898].

3.2.3 Quasi Stationary Approach

The quasi-stationary approach (QSA) is based on the analysis of induction phenomena in the

laboratory frame of reference (see Fig. 3.13.1); its basic principle is shown in Fig. 3.43.4. In QSA, the
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ConductorDefects
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Figure 3.4: General principle of the quasi-stationary approach (QSA).

velocity term is included in the governing equations. Similar to time-dependent approaches, the

modified vector potential A∗ from (3.17a3.17a) is divided into a magnetic vector potential A and an

electric scalar potential φ. The governing equations are simplified into quasi-stationary form,

neglecting any time-dependency of the magnetic field, such that ∂A/∂t = 0 leading to ∂B(s)/∂t = 0.

However, the QSA takes into account the stationary part of B(s):

∇×
(

1
µ0

∇×A−M
)
= [σ]

(−∇φ+v×∇×A
)

(3.26a)

∇· ([σ]
(−∇φ+v×∇×A

))= 0. (3.26b)

The solution is exact as long as the moving conductor has a constant cross section, which is the

case if there are no defects and the leading and trailing edges are far from the magnet system.

One advantage of QSA is that every solution is treated independently, and therefore, the use

of logical expressions can be avoided. Thus, no extended structured mesh region is needed in the

defect domain or the magnet domain, unlike the cases of MDA and MMA. Thus, the numbers

of finite elements and DoFs are reduced. The modeling procedure in the QSA is, therefore,

more flexible regarding the positioning of objects. The actual geometry of the objects can be

modeled in more detail, especially in the case of shapes with a certain curvature such as spheres,

ellipsoids, or cylinders. These advantages are compensated for by the necessity to generate a

new finite element mesh when altering the magnet position. Assuming a rectilinear velocity

in the x direction, an artificial time scale can be defined such that the position of the magnet

system is altered step-wise along the direction of motion to a position xn = |vx|tn (see Fig. 3.43.4).

Similar to MMA, the force profiles can be determined along the entire specimen, including

its edges. However, time-dependent secondary magnetic fields are neglected, which affects the

resulting force profile in the case of high magnetic Reynolds numbers Rm À 1. In general, QSA

can be used if defects or other geometrical inhomogeneities are present, as long as the magnetic

Reynolds number Rm is moderately large. A more detailed analysis of the applicability of the
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quasi-static approximation and the differences in time-dependent solutions will be given in

section 3.33.3.

3.2.4 Weak Reaction Approaches

The induction problem at hand can be further simplified in the case of low magnetic Reynolds

numbers (Rm ¿ 1). In this case, the induced eddy current density is so small that its magnetic

field B(s) is vanishingly small compared to the primary magnetic field B(p) of the magnet system.

By setting B(s) = 0, the magnetic and electric fields are decoupled, and therefore, can be treated

independently. Hereinafter, this effect will be referred to as a weak reaction by the conductor

to the magnetic field. Special attention must be paid to the emerging Lorentz forces when

using weak-reaction-based approaches. By neglecting the secondary magnetic field, the spatial

symmetry of the electric and magnetic field is enforced. As a consequence, the lift component

of the Lorentz force vanishes if the conductor is free of defects and if the magnet is far from

any outer edge of the conductor, such that F (0)
z = 0. However, in the presence of defects, the

symmetry of the fields no longer holds and the defect response signal ∆F can be determined. In

the following section, two approaches are presented to illustrate the weak reaction principle,

because the procedures have major advantages in terms of computational cost.

3.2.4.1 Extended Weak Reaction Approach

The basic principle of the extended weak reaction approach (eWRA) is shown in Fig. 3.53.5.

The electromagnetic fields are determined in the laboratory frame of reference such that the

conductor moves with a velocity v with respect to the magnet system. The eWRA is based on a

two-step procedure. In the first step, the primary magnetic field B(p) is determined using the

(primary) scalar magnetic potential ψ(p), including (possibly present) ferromagnetic material

and neglecting any conductor in motion:

∇·
(
−∇ψ(p) +M

)
= 0. (3.27)

In the second step, only the moving conductor is considered. The primary magnetic field,

B(p) =−µ0∇ψ(p), is imported from the first step and mapped onto the nodes of the finite elements

inside the conductor. The induced eddy currents are calculated using the scalar electric potential

φ. Using Ohm’s law for moving conductors, the induced eddy current density is given by:

J= [σ]
[
−∇φ−µ0v×

(
∇ψ(p)

)]
. (3.28)

Applying the law of current conservation ∇·J= 0 yields:

∇· ([σ]∇φ)=−µ0∇·
[
[σ]v×

(
∇ψ(p)

)]
. (3.29)
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Figure 3.5: General principle of the extended weak reaction approach (eWRA).

The right-hand side of (3.293.29) can be simplified because the velocity v and the primary magnetic

field ∇ψ(p) are curl-free inside the conductor, such that:

∇·
[
v×

(
∇ψ(p)

)]
=−v ·

[
∇×

(
∇ψ(p)

)]
︸ ︷︷ ︸

=0

+∇ψ(p) · (∇×v)︸ ︷︷ ︸
=0

= 0. (3.30)

Thus, the governing equation for φ is given by the following elliptic differential equation of

second order with piecewise homogeneous material properties:

∇· ([σ]∇φ)= 0. (3.31)

Defining the boundary conditions n ·J= 0 at the boundaries of the conducting domain allows

the computation of φ:

∇φ ·n=−
[
µ0v×

(
∇ψ(p)

)]
·n. (3.32)

In this way, the current density is forced to flow inside the conducting domain.

Despite using a two-step procedure, eWRA has a higher computational efficiency than

QSA, because only scalar potentials are involved, which leads to a decrease in the number of

DoFs. The eWRA provides efficient numerical analysis, which is needed, for example, in an

optimization framework.

3.2.4.2 Direct Weak Reaction Approach

The direct weak reaction approach (dWRA) is similar to eWRA described in the previous section.

However, in dWRA, the primary magnetic field is analytically calculated. Thus, the numerical

procedure is reduced to the calculation of the electric scalar potential φ. The general principle

of the approach is shown in Fig. 3.63.6. The governing equation and the boundary conditions are

given in (3.313.31) and (3.323.32), respectively. The dWRA has an even higher computational efficiency

than eWRA. However, the analytical treatment of B(p) permits the analysis of simple magnet

geometries and prohibits the presence of ferromagnetic material in ΩFe.
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Figure 3.6: General principle of the direct weak reaction approach (dWRA).

Analytical expressions for the magnetic flux density for spherical magnets are obtained by

considering a single magnetic dipole with a magnetic moment of m= 4
3πR3M [8484]. Closed-form

analytical expressions for parallelepipedal or cuboidal magnets are given in [100100]. However,

the magnetic flux density of cylindrical magnets involves elliptic integrals, which cannot be

expressed in terms of elementary functions [101101]. An implementation in the framework of

LET is presented by the author in [102102]. The elliptic integrals are approximated using the

mid-point rule [103103] and the iterative arithmetic geometric mean (AGM) method [104104]. AGM

proves suitable because it provides fast convergence, which is needed to evaluate the force

density in every node within the conductor so as to determine the total force using (3.143.14).

The magnetic flux density of more complex magnet geometries can be approximated by

employing the principle of superposition of the field generated by multiple magnetic dipoles.

This modeling approach is addressed by Mengelkamp et al. [105105] in a framework of Lorentz

force evaluation. More information regarding dWRA can be found in [102102] and [106106].

3.2.5 Summary and Overview

An overview of the presented methods is given in Table 3.13.1. The methods can be classified as

time-dependent, quasi-stationary, or weak-reaction with decreasing computational complexity,

as indicated by the governing equations. Additionally, the table provides the unknown quantities

(DoFs) to be determined in the respective domains and the driving term of the induced eddy

currents (J-term). The relation between the secondary magnetic field and the range of validity

with respect to Rm can be readily identified. In the following section, the methods are compared

for a typical LET problem so as to provide more information regarding the actual applicability

for different magnetic Reynolds numbers Rm.

3.3 Comparison of Numerical Approaches

The approaches differ in their treatment of the secondary magnetic field B(s). Hence, it is

necessary to investigate their applicability in terms of magnetic Reynolds number Rm. The
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Table 3.2: Parameters of the exemplary LET problem used for comparisons among different
model approaches.

Parameter Value Description

Br 1.17 T Remanence

Xm 10 mm Length of the magnet

Ym 10 mm Width of the magnet

Zm 10 mm Height of the magnet

h 1 mm Lift-off distance

Xd 12 mm Length of the defect

Yd 2 mm Width of the defect

Zd 2 mm Height of the defect

d 2 mm Defect depth

Xs 250 mm Length of the specimen

Ys 50 mm Width of the specimen

Zs 50 mm Height of the specimen

σAl 30.61 MS/m Electrical conductivity of aluminium

σCu 59.8 MS/m Electrical conductivity of copper

ratio between primary and secondary magnetic fields depends on the underlying geometry

of the problem, as indicated by the characteristic length L in Rm in (3.133.13). To conduct an

expressive comparison, an exemplary LET problem that corresponds to the dimensions of the

available laboratory setup is defined. In this numerical experiment, a cuboidal permanent

magnet, which is magnetized in the z direction, acts as the magnetic field source. Because of the

simple geometry of the magnet, dWRA is used in the present analysis. Because eWRA uses the

same treatment of secondary magnetic fields, the analysis is limited to dWRA (it will be simply

referred to WRA in the following discussion). The direction of motion is defined such that the

conductor moves with a positive velocity vx along the x axis in MDA, QSA, and WRA; in the

case of MMA, the magnet moves with a negative velocity −vx with respect to the conductor. The

magnet and the defect are located symmetrically with respect to the specimen at y= 0 such that

the object is analyzed on its centerline. Therefore, the side component of the Lorentz force Fy

vanishes. The geometrical and material parameters of the exemplary problem are summarized

in Table 3.23.2. Because the exemplary problem is strongly related to the experimental setup,

all calculations are performed for isotropic specimens where σxx =σyy =σzz (e.g., solids) and

anisotropic specimens where σxx =σyy 6= 0 and σzz = 0 (e.g., composites or stacked sheets).

The absolute defect response signal (ADRS) ∆F is defined as the force perturbation resulting

from a defect. Because Lorentz forces are also present in the unperturbed case, the ADRS can be

mathematically defined by the difference between the perturbed force profile F and unperturbed
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force profile F(0):

∆F=F−F(0). (3.33)

The ADRSs are calculated for different magnetic Reynolds numbers Rm by varying the velocity.

The force profiles in the case of isotropic and anisotropic specimens are shown in Fig. 3.73.7 and 3.83.8,

respectively. The ADRS is plotted over the spatial coordinate x. Positive x values are sampled

first (in time), based on the direction of motion defined above. Thus, the curves must be read

from the right to left when considering the signal over time and not over space.

The first row shows the drag and lift components of the ADRS for low values of Rm. In

this case, the secondary magnetic field is considerably smaller than the primary field from the

magnet (B(s) ¿ B(p)). The induced eddy current distribution and the total magnetic field are

nearly symmetric, which results in a symmetric force profile when the magnet passes the defect.

No significant differences can be identified between time-dependent approaches and WRA,

which indicates that time-dependent effects are negligible. When increasing Rm, secondary

fields and time-dependent effects become prevalent, resulting in non-symmetric field and force

profiles. The ADRS obtained using WRA retains its symmetry because the secondary fields

are neglected. As a consequence, WRA overestimates the ADRS amplitude by more than 100%

compared to time-dependent approaches in the case of high Rm (see Fig. 3.73.7(e) and (f), and

Fig. 3.83.8(e) and (f)). The ADRS obtained using QSA is closer to ADRS values obtained using MDA

and MMA, because it includes the stationary part of the secondary magnetic field (B(s) 6= 0).

Specifically, in the case of high Rm, the time-dependent part of the secondary magnetic field

∂B(s)/∂t has an increasing influence on the ADRS. By comparing the curve of QSA to those of

MDA and MMA in Fig. 3.73.7(e) and (f), it can be seen that this results in a delayed and damped

force response. As expected, the solutions from MMA and MDA are equivalent and yield very

similar force profiles, because they only differ in the definition of the frame of reference.

The described effects pertain to both isotropic and anisotropic specimens. However, the

ADRS has higher amplitudes in the case of anisotropic specimens than in the case of isotropic

specimens. This phenomenon can be explained based on the imposed condition that Jz = 0

because σzz = 0. As a consequence, the current flows around the defect only in the xy-plane (i.e.,

not vertically). This phenomenon positively influences the resulting Lorentz force in terms of

the ADRS amplitude. The shape of the ADRS is weakly influenced by this condition because in

the unperturbed case, the induced eddy currents already flow solely in the xy-plane. However,

some differences between the two cases can be identified; their anisotropic profiles show slightly

sharper ADRSs, producing higher gradients. We conclude that the present anisotropy condition

influences the profile but does not significantly change it, as is, for example, intended in the

case of transformer sheets to prevent eddy current losses. This result confirms the applicability

of layered specimens for the investigation of deep-lying defects.

To quantify the differences between the individual approaches depending on Rm, the norma-

lized root mean square deviation (NRMSD) is calculated for the solutions obtained using MDA.
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Figure 3.7: Comparison of the absolute defect response signals of the drag-force ∆Fx (left)
and lift-force ∆Fz (right) determined using different model approaches in the case of isotropic
specimens. The magnetic Reynolds number Rm and the corresponding velocities in the case of
specimens made of aluminium (σAl = 30.61 MS/m) or copper (σCu = 59.8 MS/m) are provided.
(a) and (b) low Rm, (c) and (d) medium Rm, (e) and (f) high Rm.
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Figure 3.8: Comparison of the absolute defect response signals of the drag-force ∆Fx (left) and
lift-force ∆Fz (right) determined using different model approaches in the case of anisotropic
specimens. The magnetic Reynolds number Rm and the corresponding velocities in the case of
specimens made of aluminium (σAl = 30.61 MS/m) or copper (σCu = 59.8 MS/m) are provided.
(a) and (b) low Rm, (c) and (d) medium Rm, (e) and (f) high Rm.
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Figure 3.9: Normalized root mean square deviation of the defect response signals of (a) the drag-
force ∆Fx and (b) the lift-force ∆Fz for different model approaches in the case of isotropic and
anisotropic conductivity profiles. Additional abscissae are provided for velocities of specimens
made of copper (σCu = 59.8 MS/m) and aluminium (σAl = 30.61 MS/m).

The NRMSD is defined as:

NRMSDx|z = 100%

max
(
∆F (MDA)

x|z
)
−min

(
∆F (MDA)

x|z
)
√√√√ 1

N

N∑
i=1

(
∆Fx|z,i −∆F (MDA)

x|z,i

)2
. (3.34)

The force components ∆Fx|z,i are compared at discrete points separated by ∆x = 1 mm indexed

by i over the plotted range, as shown in Fig. 3.73.7 and 3.83.8. The defined error allows us to quantify

the derivation of the shape and the amplitude between the different methods with respect to

MDA. The NRMSDs are shown with double logarithmic scale in Fig. 3.93.9. The abscissa is shown

in two different velocity ranges considering specimens made of copper and aluminium to better

illustrate the process in terms of potential NDT applications. During the analysis, the applied

discretization (a finite element mesh) is defined such that it is as similar as possible among the

individual approaches.

The error in the drag-force is shown in Fig. 3.93.9(a). WRA and QSA are at nearly the same

level, up to moderate values of Rm. However, the error in WRA increases to 100% when Rm

reaches values of roughly 10, which corresponds to velocities of roughly 6 m/s or 10 m/s for

specimens made of copper or aluminium, respectively. The error in the lift-force perturbation is

shown in Fig. 3.93.9(b). The NRMSD is significantly larger in the case of WRA, relative to QSA.

This limits the applicability of WRA to the low Rm regime. For both force components, the error

in MMA is at a nearly constant level, resulting from numerical inaccuracies. The conductivity

anisotropy has a minor effect on the relative error in the case of the drag-force. Slightly larger
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Figure 3.10: Relative difference of (a) the unperturbed drag-force F (0)
x and (b) the unperturbed

lift-force F (0)
z for different model approaches in the case of isotropic and anisotropic conductivity

profiles. Additional abscissae are provided for velocities of specimens made of copper (σCu = 59.8
MS/m) and aluminium (σAl = 30.61 MS/m).

errors can be observed for the lift-force of the isotropic specimen when applying WRA (see the

dotted blue line in Fig. 3.93.9(b)).

In addition to the drag-force perturbation ∆F, the methods differ in the estimation of the

unperturbed drag-force F(0). Because the Lorentz forces are measured in an absolute sense, a

correct estimation of F(0) is necessary when designing new systems. The absolute value of the

relative difference (RD) of the unperturbed drag force is evaluated with respect to the reference

solution obtained using MDA. The RD is defined by:

RDx|z =
∣∣∣∣∣∣
F (0)

x|z −F (0,MDA)
x|z

F (0,MDA)
x|z

∣∣∣∣∣∣100%. (3.35)

Similar to the NRMSD, the individual force components indexed by c are independently com-

pared to each other. The relative errors are shown in Fig. 3.103.10. Regarding WRA, similar behavior

can be observed concerning the drag-force when increasing the magnetic Reynolds number Rm.

However, the error in QSA remains at a constant level (as does that of MMA). This result is

expected, because QSA yields exact results as long as the stationarity of the process is ensured

(which is the case if the material is free of defects).

One major drawback of WRA is the absence of the unperturbed lift force F (0)
z , which is an

immediate result of the decoupling of electric and magnetic fields. The imposed symmetry in

B(p), and therefore also in J, eliminates the lift force after the volume integration:

F (0)
z =−

∫
Ωc

(
JxB(p)

y − JyB(p)
x

)
dΩ= 0. (3.36)
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As a consequence, the relative difference of F (0)
z is 100% in Fig. 3.103.10(b).

The present chapter provides an introduction to the underlying physics of motion-induced

eddy currents. The expressions are simplified by analyzing the nondestructive testing problem

at hand. Additionally, different numerical approaches are presented and their basic principles

are explained. The problem is simplified step-by-step, starting from time-dependent approaches,

applying quasi-static approximations, and assuming a weak reaction from the conductor. The

applicability of the different approaches is exemplified on a typical (representative) LET problem.

The approaches are verified for time-dependent MDA. The derived errors indicate the limits

of applicability with respect to the magnetic Reynolds number Rm. The derived errors may

slightly change when altering the geometrical parameters of the problem, for example, the size

or location of the magnet or the defect. However, the present analysis provides valuable insight

regarding how time-dependent effects are projected onto the Lorentz force profile in the case of

moving conductors.
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4
SIMULATION STUDIES

This chapter contains the results of different interconnected simulation studies, which are

performed to develop and refine the LET method. At first, an optimization strategy to

determine improved magnet designs for LET is presented. In this study, optimal magnet

designs are proposed and manufactured prototypes for future LET systems are presented.

Secondly, an uncertainty analysis of the LET system under investigation is performed. The

statistical properties of the dependent parameters are determined experimentally and their

influence on the resulting Lorentz force is analyzed by means of numerical simulations. During

this analysis, it is observed that the velocity of the specimen varies sinusoidally. A mathematical

description of this problem was not yet provided. This phenomenon is addressed in the last

section of this chapter, providing an analysis on the influence of time-dependent velocity

variations on the Lorentz force.

4.1 Optimal Magnet Design for LET

4.1.1 Introduction and Motivation

Comparative studies between LET and ECT indicated the potential and competitiveness of

LET [3232,7777]. However, the performance of an LET system can be enhanced further by applying

optimization schemes to determine advanced magnet systems with improved characteristics.

This involves an appropriate problem definition and associated criteria.

The optimization goal in LET is to maximize the response resulting from an inclusion

surrounded by conductive material, thereby increasing the signal-to-noise ratio and, hence,

improving the detection rate. However, due to the high variety of NDT problems, it is self-

evident that the final details of an optimized setup strongly depend on the detection goal

and external testing conditions for the particular application. The proposed methodology is
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developed as generally as possible, to describe and address the problem specificity. However,

when considering permanent magnet systems, generality is limited by practicability, and so

the geometry and associated design variables are chosen such that practical feasibility is

assured. The optimization process is performed with nondimensional parameters. This provides

the opportunity to determine scale-independent and generalized optimization results while

decreasing the number of independent parameters. This approach can then be applied to

different applications to determine optimal magnet designs for specific cases.

At first, the required parameters and the optimization problem is described in sections 4.1.2.14.1.2.1

to 4.1.2.44.1.2.4. It is followed by the definition of the objective function and the corresponding con-

straints in sections 4.1.2.54.1.2.5 and 4.1.2.64.1.2.6, respectively. The developed optimization strategies

are presented in section 4.1.2.74.1.2.7 and the applied optimization algorithm, sequential quadratic

programming (SQP), is briefly described in section 4.1.2.84.1.2.8. The numerical procedure to evaluate

the objective function and the constraints is described in section 4.1.2.94.1.2.9. In section 4.1.34.1.3, the

numerical optimization results are presented and discussed. The design process of prototypes

of optimized magnet designs is described in section 4.1.44.1.4. It is followed by a study regarding

the current detection limit of deep-lying defects in section 4.1.54.1.5. The chapter is summarized

and conclusions are drawn in section 4.1.64.1.6. The presented optimization approach and the

corresponding results are published by the author and can be found in [107107].

4.1.2 Methods

4.1.2.1 Problem Definition

The optimal magnet design is focused on non-magnetic, electrically conducting specimens.

The optimization is performed under the assumptions of a smooth specimen surface and that

the defect is located far from any lateral boundary, to neglect parasitic edge effects. Since

the resulting Lorentz force profile depends on the shape and the depth of the inclusion, an

equivalent defect of cuboidal shape is defined to represent a general flaw. The assumptions can

be modified to any particular case of interest, since this would involve only the geometry of the

specimens defined in the forward solution, which are described in one of the following sections.

The optimization is performed with respect to the drag-force Fx and the associated absolute

defect response amplitude (ADRA) ∆F̂x, resulting from the difference between the unperturbed

drag-force F (0)
x and the perturbed drag-force F (d)

x :

∆F̂x =max
∣∣∣F (d)

x −F (0)
x

∣∣∣ . (4.1)

As it has been shown in the previous chapter, the force profile is symmetric, if the interac-

tion between the primary magnetic field B(p), generated by the permanent magnet, and the

secondary magnetic field B(s) from the induced eddy currents, is negligible.

In Fig. 4.14.1, the geometrical parameters of the problem are shown together with the ADRA.

The specimen is modeled as a pseudo-infinite half-space including a defect with edge length a,

located at a depth d. The magnet system is located at a lift-off distance h above the specimen.
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The optimization scheme presented here covers, but is not limited to, purely isotropic

specimens (σxx =σyy =σzz) and laminated structures (σxx =σyy 6= 0, σzz = 0), as they are shown

in Fig. 2.52.5 on page 1313.

4.1.2.2 Magnet System and Design Variables

Three related magnet geometries with increasing manufacturing complexity are investigated,

originating from empirical pre-investigations. These are:

• Standard cylindrical permanent magnets (C)

• Cylindrical Halbach-structures (HC)

• Cylindrical Halbach-structures supported by highly saturated soft magnetic material,

such as iron-cobalt-alloys (HCp)

In the general case, the nondimensional design variables x, shown in Fig. 4.14.1, are defined as:

x=
[

H2

R2
,

R1

R2
,

H1

H2

]
, (4.2)

where H2 and R2 are the height and radius of the outer cylinder, respectively; R1 is the inner

radius of the Halbach-structure; and H1 is the height of the ferromagnetic material. The inner

cylinder is axially magnetized, whereas the surrounding cylinder is magnetized in the radial

direction.

For C- and HC-systems, particular design variables become constant and the number of

free variables is reduced such that for C-systems, R1/R2 = 1 and H1/H2 = 0, and for HC-systems
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Figure 4.1: Geometrical parameters of the LET setup, design variables of the magnet system
and illustration of the absolute defect response amplitude used as objective function [107107].
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H1/H2 = 0. Thus, the configurations are subproblems of each other; i.e., C-magnets are included

in HC-configurations, which in turn are included in HCp-systems. As a consequence, by applying

the presented optimization scheme considering all three design variables as free variables, a

wide variety of different designs is included in the optimization. An optimal magnet system can

be determined for a standard cylinder or a Halbach-structure with or without ferromagnetic

material.

The construction of interchanging magnetization direction corresponds to the concept of

Mallinson [110110] and Halbach [111111]. Changing the magnetization direction of adjacent parts of

the magnet forms a semi-open magnetic circuit. Hence, the magnetic flux density is increased on

one side of the magnet system and decreased on the opposite side. In the ideal case, it is possible

to eliminate the magnetic flux on one side completely by employing dual magnetizations

determined by means of the Hilbert transformation [110110]. Practical feasibility of this form

of magnetization is still a challenge. Nevertheless, geometrical approximations in the form

of segments can be employed instead. These structures are typically termed as Halbach-

arrays and find application in particle accelerators [111111], high-speed motors/generators and

servomotors [112112], loudspeakers [113113], magnetic bearings [114114, 115115], and nuclear magnetic

resonance spectroscopy [116116]. In the framework of Lorentz force velocimetry of electrically weak

conducting liquids, commonly applied linear Halbach-arrays are already used to increase the

Figure 4.2: Overview of soft and hard magnetic materials. The used materials in the optimiza-
tion, VACOFLUX® 50 [108108] and VACODYM® 745HR [109109], are highlighted.
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drag-force signal [117117]. These systems are not optimized in terms of the defective specimen,

which further motivates to investigate the optimization problem in LET.

A radially magnetized Halbach-cylinder of infinite height produces no magnetic field in the

inner or outer air domain surrounding the cylindrical magnet [118118]. However, in case of finite

heights, this effect vanishes and strong directed fields are present at the terminations. In this

work, the concept of Halbach-arrays is extended to a novel rotationally symmetric structure

including an axially magnetized cylinder, which is supported by ferromagnetic material to

intensify the magnetic flux density close to the object under test.

In this work, a part of the permanent magnet is replaced by ferromagnetic material with high

saturation magnetization and hence a stronger residual field [119119]. In general, ferromagnetic

material can be used to focus and concentrate the flux, known as flux compression. Thus,

the magnetic flux density is amplified when the ferromagnetic part is exposed to the external

magnetic field of the permanent magnets. Consequently, the resulting Lorentz force is potentially

increased. The choice of suitable materials is decisive for a successful optimization. An overview

of soft and hard magnetic materials is given in Fig. 4.24.2. In the present study, the hard magnetic

material VACODYM® 745HR [109109] with a nominal magnetic remanence of Br = 1.44 T is used

(VACUUMSCHMELZE GmbH & Co. KG, Hanau, Germany, [120120], www.vacuumschmelze.dewww.vacuumschmelze.de)

together with the soft magnetic iron-cobalt-alloy VACOFLUX® 50 [108108] with a saturation

polarization of 2.3 T. The B(H) curves of both materials are shown in Fig. 4.34.3, illustrating

the principle to increase the magnetic flux density. A similar approach is proposed during

the design process of focus lenses for linear collider accelerators [121121, 122122], as well as for

superconducting cyclotron magnets [119119]. The chosen materials represent the current state of

the art in magnetism and are thus most suitable for an optimal LET sensor.
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Figure 4.3: B(H) curve of the iron-cobalt-alloy VACOFLUX® 50 used as ferromagnetic material
in HCp-magnet systems in FEM simulations and a part of the hysteresis of the hard mag-
netic permanent magnet material NdFeB of type VACODYM® 745HR (Br = 1.44 T) at room
temperature [107107].
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4.1.2.3 Scaling Parameters

To reduce the number of parameters, it is advisable to exploit a priori known dependencies

between certain input parameters and the drag-component of the Lorentz force. A scaling

factor S can be defined to scale the forces accordingly. If the ADRA, which will be used later

as the objective function, can be simply scaled, the global optimum of the design variables

x̃ is scale invariant with respect to the reduced parameters. This reduces the need to rerun

numerically expensive simulations and provides the desired generality. The scaling quantities

are summarized in the vector of scaling parameters:

s= [σ, v, Br, h] . (4.3)

The scaling properties of individual quantities can be determined considering the following

estimate, which is valid provided secondary magnetic fields generated by the induced eddy

currents are negligible [6363]:

Fx ∼σvm2h−3, (4.4)

where m is the equivalent magnetic dipole moment of the magnet system, which can be

expressed in terms of remanence and magnet volume Vm such that m ∼ BrVm. For geometric

scaling, it is assumed that the whole geometry of the problem scales with the lift-off distance h

so that Vm ∼ h3, without loss of generality. Thus, (4.44.4) can be expressed as:

Fx ∼σvB2
r h3. (4.5)

Note that the drag-force Fx depends linearly on the velocity v and the electrical conductivity

σ. This property can be extended to the case of possibly anisotropic specimens by defining

the conductivity tensor [σ] from (3.73.7) in terms of a scalar conductivity σ, which defines the

magnitude of the conductivity and the anisotropy vector aσ:

[σ]=σdiag(aT
σ). (4.6)

In the isotropic case, the anisotropy vector is given by aσ = [1,1,1]T. If the specimen is made

from metal sheets, as in the case of the laboratory setup (see Fig. 2.72.7 on page 1616), the anisotropy

vector is aσ = [1,1,0]T. The prescribed scaling property of the electrical conductivity addresses

the scalar conductivity σ, and, thus, holds for both isotropic and anisotropic specimens.

Closer inspection of (4.54.5) shows that the Lorentz force increases with the square of the rema-

nence Br. However, this scaling property can be applied if and only if nonlinear ferromagnetic

material is omitted or considered as linear in the whole domain. Since the nonlinearity between

H and B is accounted for, this factor can only be modified for C- and HC-systems, and must be

fixed at a predefined remanence in the case of HCp-systems. The magnetic remanence can be

used as a scaling factor if the whole magnet system is made from the same magnetic material.

If this is not the case, the remanence of each compartment has to be scaled in the same way.

The system parameters, described later in detail, define the geometrical relationships of

the problem. However, it is of interest how F (0)
x and ∆F̂x scale with respect to the geometrical

48



4.1. OPTIMAL MAGNET DESIGN FOR LET

size of the problem. Reformulating (4.44.4) to (4.54.5) provides the scaling property of the drag-force

directly as a cubical relationship with respect to h, serving as the characteristic length and

thus defining the geometrical size of the problem. In this sense, h is eliminated from the set of

independent parameters and only the geometrical ratios with respect to h define the problem.

According to the chosen h, the actual geometry can be stretched or clinched to any scale of

interest.

Finally, by combining the individual scaling parameters into one, the scalar scaling factor S

contains linear, quadratic, and cubic terms:

S =
(
σv
σ0v0

)(
Br

Br0

)2 (
h
h0

)3
. (4.7)

As reference values for the simulations, the velocity is set to v0 = 1 m/s, the conductivity

is σ0 = 1 MS/m, the magnetic remanence is Br0 = 1 T, and the lift-off distance is h0 = 1 mm.

Consequently, the scaling factor can be used to convert the forces F (0,s)
x = SF (0)

x and∆F̂ (s)
x = S∆F̂x,

according to the previously mentioned conditions. Thus, the total number of independent

parameters is reduced by the number of scaling parameters.

4.1.2.4 System Parameters

Given the design variables x of the magnet system and the scaling parameters s, the LET setup

is defined by the set of system parameters:

p =
{

Vm

Vd
,

d
h

,
a
h

, aσ, Br, B(H)
}

, (4.8)

where Vm =πR2
2H2 is the total volume of the magnet system and Vd = a3 is the volume of the

equivalent cuboidal defect. The magnet to defect volume ratio Vm/Vd defines the weight of the

magnet system at constant defect volumes. The depth-to-lift-off ratio d/h defines the defect

depth measured from the surface of the conductor to the upper surface of the defect. The system

is geometrically completely described by the third ratio a/h between the edge length of the

defect a and the lift-off distance of the magnet h. Since the material anisotropy of the specimen

affects the eddy current distribution, the anisotropy vector aσ is included in the set of system

parameters. The remanence Br only appears as a system parameter if nonlinear ferromagnetic

material is included in the magnet design. Otherwise, Br is a scaling parameter. Finally, B(H)

is the initial magnetization curve of the ferromagnetic material.

4.1.2.5 Objective Function

The optimization goal is to maximize the ADRA ∆F̂x(x, p). The scaling factor S from (4.74.7)

allows generalizing the calculated ADRA independently for conductivity, velocity, and geometric

scale (and in the linear case also for magnetic remanence). Given the defined set of system

parameters p, the optimal design variables x̃ of the magnet system can be determined by

applying distinct optimization schemes. Subsequently, the optimal ADRA ∆F̃x(x̃, p), together
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with its corresponding unperturbed drag-force F̃ (0)
x (x̃, p) is provided and the limits of the system

are determined. To this end, the objective function f (x, p) to be minimized is defined by the

negative ADRA from (4.14.1):

min
x∈F

f (x, p)=−∆F̂x(x, p). (4.9)

The objective function is nonlinear and depends on both the design variables and the system

parameters. Thus, the optimal solutions x̃(p) depend on the predefined system parameters p,

which can be understood as a mathematical description of problem specificity with respect to

external conditions. However, the optimal design variables have to be part of the feasible set of

solutions F . The feasibility of a solution is defined by constraints, which are described next.

4.1.2.6 Definition of Constraints

The feasible set of solutions F is defined by two types of constraints. The first are linear

inequality constraints, also known as bound constraints, resulting from the limits of the design

variables x, defined by the geometry of the magnet system. They are covered by the linear

inequality constraints cl, which must not be violated:

cl(x, p) ≤ 0 (4.10)

cl(x, p) = [
AHCp

]
xT −bHCp. (4.11)

The linear inequality constraint matrix [AHCp] and constraint vector bHCp are determined

considering the limits: H2/R2 > 0, 0≤ R1/R2 ≤ 1, and 0≤ H1/H2 ≤ 1 (see Fig. 4.14.1):

[
AHCp

]=


−1 0 0

0 −1 0

0 1 0

0 0 −1

0 0 1

 , bHCp =



ε

0

1

0

1

 , (4.12)

with ε→ 0 to ensure magnet volumes greater than zero (H2/R2 > 0).

The second type of constraint is a nonlinear inequality cnl. This constraint is defined by

the maximum force F (max)
x measurable by the applied force sensor, which corresponds to the

maximum drag-force in the unperturbed case F (0)
x :

cnl(x, p,F (c)
x ) ≤ 0, (4.13)

where

cnl(x, p,F (c)
x ) = F (0)

x (x, p)−F (c)
x , (4.14)

with

F (c)
x = F (max)

x

S

(
Br

Br0

)2
. (4.15)
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By this definition, optimization is performed in the reference space, such that the forces are

determined by the defined reference values v0, σ0, and h0. However, the maximum drag-force

F (max)
x is defined in the unscaled space and has to be scaled accordingly using the scaling factor

S (Br/Br0)−2. If nonlinear magnetic material is omitted in the magnet design, F (c)
x is simplified

and the ratio (Br/Br0)−2 may be excluded from (4.154.15). Depending on external conditions, S can

be calculated by (4.74.7) and acts as a weighting factor in the nonlinear constraint function cnl. The

normalized maximum drag-force F (c)
x from (4.154.15), directly affects the feasible set of solutions

and plays a central role in the optimization. By scaling the constraint, it is possible to identify

similarities between different LET setups. For example, consider two configurations with the

same system parameters p. The first system which obeys a scaling factor S1 = 10, resulting

from a velocity v1 = 0.5 m/s together with a maximum drag-force of F (max)
x = 3 N is equivalent to

the second with S2 = 20, v2 = 1 m/s, and F (max)
x = 6 N. In the same way, similarities between the

optimal designs can be identified considering the geometric scale of the whole problem defined

by h. A more detailed and vivid explanation is given in the results part in section 4.1.34.1.3. The

nonlinear constraint is optional, since it strongly depends on the system parameters and the

force sensor technology employed. As already mentioned, a force sensor based on the strain

gauge technology is used in the experimental setup at hand. Linear behavior of this sensor

type is guaranteed until a nominal force F (max)
x is reached. Plastic deformation of the deflection

body will occur if the applied force exceeds the safe load, which is approximately in the range of

2F (max)
x [7676]. Consequently, an optimized magnet system which operates at the global optimum

probably could not be applied and must be replaced by a system which considers the drag-force

limit. The constrained optimization problem can now be classified as a parametric multivariate

nonlinear optimization problem with linear and nonlinear inequality constraints [123123].

4.1.2.7 Optimization Strategies

To address this problem, two different approaches are presented. Depending on the needs and

external conditions, one or the other approach can be applied. A combination of both principles

is also possible to improve the performance of the magnet system further.

Volume and Force Constraint Optimization: The volume and force constraint optimiza-

tion approach (VcFc) is based on the definition of a fixed magnet volume as well as a maximum

drag-force given by the applied force sensor. Thus, the Vm/Vd ratio is fixed besides all other

system parameters, and the constraints are satisfied by adjusting the design variables x in

an optimal way. Depending on previously defined external conditions, it is possible that the

nonlinear constraint is active and the constrained solution x̃c(p) is located at the constraint

boundary. Consequently, the nonlinear constrained optimum differs from the unconstrained

solution (x̃c(p) 6= x̃(p)). Thus, the feasible set for the case of a HCp-magnet system is:

F =
{
x ∈R3 |cl(x, p)≤ 0, cnl(x, p,F (c)

x )≤ 0
}

. (4.16)
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Volume Adaptive Force Constraint Optimization: In general, the system parameters

are defined by the given detection goal and the particular application of interest. However,

the volume ratio Vm/Vd can be used as a free parameter by the system designer. The volume

adaptive force constraint optimization approach (VaFc) is motivated by considerations related

to mechanical dynamics. To improve the dynamic range of the sensor system, it is desirable

to increase its eigenfrequency. This offers the possibility to perform measurements at higher

testing velocities and can be achieved by reducing the mass of the magnet system as much

as possible, while retaining the maximum ADRA as the primary optimization goal. The VaFc

approach is proposed to determine a magnet system with a Vm/Vd ratio, which operates at

the transition before the nonlinear constraint becomes active. The role of the Vm/Vd ratio is

changed from fixed to a variable system parameter, while all other system parameters are

kept constant. The corresponding optimal solution is then x̃(pc), and the general procedure

is illustrated in Fig. 4.44.4. The procedure starts by defining the maximum drag-force F (max)
x

and the fixed system parameters d/h, a/h, and aσ. The starting point x(0) and the initial

Stopping criterion

noyes

Stop

Initialize

Magnet volume correction step

SQP
Run optimization 

to determine

Update system parameters

with

Reinitialize
set new starting point:

Define: maximum drag-force:

fixed system parameters: d / h, a / h, a  , B  , B(H)rs

relative tolerance:

starting points:

Set: n = 0 

and

Figure 4.4: Optimization procedure of the volume adaptive force constraint (VaFc) approach to
determine the optimal design variables x̃(pc) of a magnet system operating at the unconstrained
global optimum, while retaining the nonlinear constraint given by the limiting drag-force
F (max)

x [107107].
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volume ratio (Vm/Vd)(0) are defined to initialize the VaFc procedure. The method iterates by

determining the unconstrained optimal design x̃(p(n)) by a distinct optimization method, where

the superscript (n) is an iteration counter. The sequential quadratic programming algorithm is

used, as described in the following section. After determining the optimal design by neglecting

the nonlinear inequality constraint, the associated drag-force F̃x(x̃(p(n)), p(n)) can be calculated.

The relative difference to the defined maximal drag-force is evaluated and compared to the

predefined relative tolerance εF . If the criterion is fulfilled, the algorithm stops and provides

the optimal design variables together with the corresponding volume ratio (Vm/Vd)(n). If not,

the volume ratio is updated in a correction step. During the first iteration, the next volume is

approximated proportional to the force ratio:

(Vm/Vd)(1) = F (max)
x (Vm/Vd)(0)

SFx(x̃(p(0)), p(0))
. (4.17)

For all following iterations (n > 1), a more robust Newton-Raphson step is used, which considers

the gradient information of F̃ (0)
x with respect to Vm/Vd:

∆(Vm/Vd)(n) =−SFx(x̃(p(n)), p(n))−F (max)
x

S ∂Fx(x̃(p(n)),p(n))
∂(Vm/Vd)

. (4.18)

A backward approximation is applied to determine the partial derivative of the drag-force. After

determining (Vm/Vd)(n+1), the system parameters p(n+1) are updated. Before starting a new

iteration, the starting point of the design variables is set to the optimal solution of the previous

optimization step x(0) = x̃(p(n)), since the optimal design between two iterations may be assumed

to be similar. Thus, the process is accelerated. The proposed approach can be used to determine

the critical Vm/Vd ratio when the optimal magnet system still operates at the unconstrained

global optimum while still considering the previously defined constraint of maximum drag-force.

4.1.2.8 Sequential Quadratic Programming Algorithm

To solve the optimization problem, the Sequential Quadratic Programming (SQP) algorithm

is used. This method is an extension of the Broyden-Fletcher-Goldfarb-Shanno-Quasi-Newton

method by introducing Lagrangian multipliers. The first Quasi-Newton based method was

introduced by Davidon [124124, 125125]. The advantage of Newton-type methods is in the use of

the gradient and curvature information provided by the Jacobian and Hessian matrix of the

objective function. Quasi-Newton methods avoid the computationally intensive evaluation of

the Hessian, which is beneficial when comparatively expensive numerical solvers are involved

to evaluate the objective function. The Hessian is approximated during the iterative process

successively.

Early work on SQP was done by Biggs [126126], Han [127127], and Powell [128128]. However, the

method has been continuously improved. The method is also referred to as a quadratic program-

ming based projected Lagrangian method [123123]. SQP is one of the most powerful methods in

the framework of nonlinear constrained optimization. In the following, the mathematical basics
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of the optimization problem and the SQP algorithm are described to provide a general overview

about the applied methodology in the present context.

In general, a parametric multivariate nonlinear optimization problem with nonlinear con-

straints is mathematically described by:

min
x∈Rn

f (x, p)

such that h(x, p)= 0

c(x, p)≤ 0.

(4.19)

In the present case, the objective function f (x, p) is given by (4.94.9) and the constrained function

vector c(x, p) of length m contains the inequality constraints cl(x) from (4.114.11) and cnl(x) from

(4.144.14). To provide a general overview about the method, the (possibly nonlinear) equality

constraints, concentrated in the vector h(x, p) of length w, are included in the description.

In constrained optimization, the Lagrangian L plays a central role. It combines the objective

function with the given constraints by means of Lagrangian multipliers summarized in the

vectors u and v:

L (x, p,u,v)= f (x, p)+uTh(x, p)+vTc(x, p). (4.20)

For every constraint, there exists one Lagrangian multiplier. It can be proven that the local

optimum x̃ of the objective function with respect to the given constraints is a stationary point

of the Lagrangian with the corresponding optimal multipliers ũ and ṽ, such that the gradient

of the objective function is a linear combination of the gradients of the constraints [123123]. The

name of the SQP algorithm originates from the approach to solve the nonlinear problem from

(4.194.19). This is done sequentially by approximating the Lagrangian using a quadratic function

around the point x(k), where the superscript (k) is the iteration counter. The constraint functions

are linearized so that the quadratic subproblem of (4.194.19) is given by a Taylor expansion of the

Lagrangian from (4.204.20). The problem is reformulated to determine the optimal search direction

d(k) from the point x(k), such that the constraints are fulfilled. The vector ∇ f is the Jacobian, i.e.

the gradient of the objective function with respect to x. In the SQP algorithm, the quadratic

subproblem of (4.204.20) is solved iteratively. In every iteration, two additional subproblems have

to be solved. First, the search direction d(k) and the Lagrangian multipliers u(k+1), and v(k+1)

are evaluated. Then the step size α is determined to provide a certain decrease in the objective

function while still satisfying the given constraints. The next iteration is performed at the

updated point x(k+1) = x(k) +αd(k). In order to determine the first step, the following linear

system of equations is solved for d(k), u(k+1), and v(k+1):
[L(k)] ∇h(k) ∇c(k)

∇h(k)T 0 0

∇c(k)T 0 0




d(k)

u(k+1)

v(k+1)

=


−∇ f (k)

−h(k)

−c(k)

 . (4.21)

The symmetric matrix [L(k)]=∇2L is an approximation of the second order partial derivatives

of the Lagrangian from (4.204.20), which is also called the Hessian of the Lagrangian. Since the
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Hessian is not given analytically, the matrix [L(k)] is successively approximated rather than

explicitly calculated. In the present case, a very robust and efficient approximation, the BFGS-

update formula, derived by Broyden [129129,130130], Fletcher [131131], Goldfarb [132132] and Shanno [133133]

is used. The first row of the system matrix in (4.214.21) corresponds to the partial derivative of

the quadratic approximation of the Lagrangian from (4.204.20) with respect to d(k). The remaining

rows correspond to the linearly approximated constraint functions.

The step size α is determined by means of a merit function. This function is incorporated into

an SQP algorithm for the purpose of robustness. In constrained optimization, a merit function

balances the drive to decrease the objective function while satisfying the defined constraints,

and measures the progress of convergence towards x̃ as a function of α. The solution of the

quadratic subproblem has a unit step size α= 1. If the constraints are not violated, this step size

is taken and a new iteration is started. However, if the constraints are violated, the step-length

is reduced to the nearest constraint. For the proposed approach, the merit function developed

by Han [127127] and Powell [128128] is employed. The procedure is repeated until the Karush-Kuhn-

Tucker conditions [134134] are satisfied up to a certain limit of defined tolerances. The SQP

converges to a local optimum and returns the corresponding solution. Further literature about

nonlinear constrained optimization can be found in, for example, [123123, 135135] and [136136]. SQP

theory is covered in detail by Han [127127,137137] and Powell [128128,138138,139139], to note some of the first

but still frequently applied concepts of this method. A more general overview about SQP is

given by Boggs and Tolle [140140] and by Gill and Wong [141141].

The performance of the proposed approach strongly depends on the implementation due

to nontrivial technical and algorithmic issues. For that reason, it is highly recommended to

use professional and well-tested software. Some of the first successful implementations are

reported by Schittkowski [142142–144144]. These references also cover the proof of convergence of the

SQP. More advanced but commercial code is available, for example by the MATLAB® function

fmincon [145145] or FORTRAN based routines NPSOL [146146] and SNOPT [147147,148148] from Gill et al..

Partially free software with the restriction to apply the routines in an academic framework is

available (NLPQLP) [149149]. This implementation is also used in commercial software such as

ANSYS® [150150]. This software has been tested on 306 optimization problems with a reported

success rate of better than 90%, which underlines the efforts for implementation of SQP based

algorithms [149149]. In this work, the MATLAB® implementation fmincon is used to couple the

FEM Solver of COMSOL Multiphysics® [9393] and the SQP algorithm by means of the MATLAB

Livelink™ [151151]. The implementation includes the BFGS-update formula as well as an adaptive

step size using the merit function discussed above. In the subsequent sections the methodology

to evaluate the objective and nonlinear constraint function with low computational cost is

described.
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4.1.2.9 Objective and Constraint Function Evaluation

To apply the SQP algorithm, a time-efficient approach is essential to evaluate both the objective

function f (x, p) as well as the nonlinear constraint function cnl(x, p). The governing equations

are simplified such that secondary magnetic fields are neglected. Hence, it is possible to analyze

the problem in the stationary case, which takes into account the symmetry of the field and

force profiles. This significantly reduces the computational cost and offers the possibility for

efficient numerical analysis. The FEM in combination with eWRA, described in section 3.2.4.13.2.4.1

on page 3131, is applied as the numerical method. The nonlinearity of the ferromagnetic material

significantly influences the profile and magnitude of the magnetic field. Consequently, the

resulting Lorentz force is also affected. This necessitates the use of nonlinear models. Linear

models are too inaccurate and falsify the optimization results, especially if the drag-force must

not exceed F (max)
x . In the case of HCp-magnet systems, the iron-cobalt-alloy VACOFLUX® 50,

together with the corresponding B(H) curve from Fig. 4.34.3, is used. To minimize computational

cost, the field problem is subdivided into three successive steps, illustrated in Fig. 4.54.5.

Step 1: Primary Magnetic Flux Density (2-D) In the first step, the primary magnetic

flux density B(p) of the permanent magnet is calculated with a scalar magnetic potential

formulation ψ, neglecting any moving conductor. Thus, the primary magnetic field is given by

(3.273.27). Given the axisymmetry of the magnet geometry, the magnetic field is determined in 2-D

employing a cylindrical coordinate system, which significantly accelerates the solving process of

the nonlinear problem.

Step 2: Induced Eddy Currents in the Conductor Free of Defects (3-D) In the second

step, only the conductor in motion is considered. It is modeled as a large cylindrical domain with

finite radius 10R2 proportional to the outer radius of the magnet system, assuming that the

edges are far enough away to prevent any parasitic disturbance of the induced eddy currents.

The height Hs of the moving conductor is defined according to the following conditional relation:

Hs =
10R2, if 10R2 ≥ 2d+a

10R2 +2d+a, if 10R2 < 2d+a.
(4.22)

This implies that the size of the conducting domain is adjusted according to the magnet system,

while ensuring geometrical models with defects deeper than 10R2. Thus, ensuring that the

conducting domain is sufficiently large for all sets of p and x.

The primary magnetic field B(p) is imported from the first step and transformed from

cylindrical coordinates into the three-dimensional Cartesian coordinate system. The induced

eddy currents inside the conductor in motion are calculated by (3.313.31) and (3.323.32) using a scalar

electric potential formulation φ. The 3-D model contains symmetry with respect to the xz- and

yz-planes, when secondary magnetic fields are neglected. This reduces the modeled geometry of

the specimen to only one quarter. On the xz-plane, the tangential components of the current
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Figure 4.5: Procedure to compute the nonlinear objective and constraint function [107107].
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density vanish:

Jt =J×n= [σ]
(
−∇φ+v×B(p)

)
×n= 0. (4.23)

As a result of the axisymmetry of the magnet system, the magnetic field is zero in the direction

of the boundary normal at this plane (B(p)
y = 0). Considering the linear motion of the conductor

in the x-direction v= [vx,0,0]T leads to v×B(p) =−vxB(p)
z ey. Substituting this into (4.234.23) shows

that ∂φ
∂x = 0 and ∂φ

∂z = 0, which can be achieved by defining the Dirichlet boundary condition

φ= const. at the xz-plane.

In contrast, the normal component of the induced current density Jn vanishes at the

yz-plane, such that:

Jn =J ·n= [σ]
(
−∇φ+v×B(p)

)
·n= 0. (4.24)

On this plane, the magnetic field is zero in the x-direction B(p)
x = 0, so:

v×B(p) =−vxB(p)
z ey +vxB(p)

y ez. (4.25)

Since this expression has no component normal to the boundary, a Neumann boundary condition

for the electric scalar potential ∂φ
∂x = 0 must be defined. All other boundaries of the moving

conductor share the boundary condition J ·n= 0 to prevent any current leaving the conducting

domain.

Step 3: Induced Eddy Currents in the Conductor With Defect (3-D) To determine the

ADRA, a third simulation is performed. The primary magnetic field B(p) from the first step

is incorporated in the same way as in the previous step. However, in this step the conductor

contains an equivalent cuboidal defect with volume Vd located at a depth d. The governing

equations from the previous step remain valid and in consequence, the boundary condition

J ·n= 0 now also applies for the defect boundaries, preventing any current flow into the defect

region. To further decrease the computational cost, the same 3-D FEM mesh can be used in

step two and three. As a result, the 3-D mesh needs only to be built once and then transferred

between steps two and three as necessary. As a positive side effect, using the same mesh

decreases numerical noise when computing the ADRA. Finally, the resulting Lorentz force is

calculated by spatial integration over the conductor:

F (i)
x = −4

∫
Ωi

J(i) ×B(p) dΩ (4.26)

= −4
∫
Ωi

(
[σ]

(
−∇φ(i) +v×B(p)

))
×B(p) dΩ,

where the superscript i ∈ {0,d} indicates the quantities obtained in the defect-free and defective

case, respectively.

The computation of one objective function evaluation takes 20–25 s on a common desktop

PC (i7-3770, 4 GHz). This includes building the geometry, meshing, assembling the systems of

equations, solving, and post-processing of all three steps. The memory consumption is moderate

and does not exceed 1 GB since geometrical symmetry is taken into account in all individual

steps.
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4.1.3 Optimization Results and Discussion

The optimization results of an HCp-system are presented using VACODYM® 745HR [109109] as

permanent magnet material and the iron-cobalt-alloy VACOFLUX® 50 [108108] as ferromagnetic

material. The scaling factor S is chosen such that it corresponds to the currently available labo-

ratory setup. The specimen is constructed from stacked aluminium sheets (aσ = [1,1,0]T) with

electrical conductivity σ= 30.66 MS/m, moving with velocity v = 0.5 m/s. The lift-off distance of

h = 1 mm is assumed, together with a magnetic remanence Br = 1.44 T (VACODYM® 745HR).

This results in a scaling factor S(lab) = 31.79. In the experimental setup, a force sensor based

on the strain gauge technology (K3D40, ME-Messsysteme GmbH, Hennigsdorf, Germany,

www.me-systeme.dewww.me-systeme.de, [7676]) is employed. According to the manufacturer, the applied load is

limited to F (max)
x = 3 N.

Two particular setups of system parameters are investigated. The first represented the case

of medium sized defects located deep inside the specimen. The corresponding system parameters

are Vm/Vd = 56, d/h = 10, and a/h = 5. The optimization results are shown in Fig. 4.64.6. The insets

in the upper left corner of each figure show cross sections of the optimal magnet systems

colored according to Fig. 4.14.1. The ADRA is shown in Fig. 4.64.6(a) over the space of design

variables H2/R2 = (0...2.5], R1/R2 = (0...1], and H1/H2 = [0...1]. The planes intersect in the

global unconstrained optimum at x̃= [H2/R2,R1/R2,H1/H2]= [0.5,0.6,0], with a denormalized

ADRA of ∆F̃ (lab)
x = 21.9 mN. The continuous objective function does not contain local optima.

The unperturbed drag-force is shown in Fig. 4.64.6(b). The ADRA-optimal magnet generates

an unperturbed drag-force of F̃ (0,lab)
x = 5.2 N, which is too high for the experimental force sensor.

To fulfill the constraint, the VcFc approach is applied. To illustrate the impact of nonlinear

constraints, Fig. 4.64.6(c) and (d) show the equi-force surfaces for different values of F (max)
x over

the same space of design variables. Figure 4.64.6(c) shows the surface for F (max)
x = F̃ (0,lab)

x = 3 N.

This plane is colored according to the value of the objective function (ADRA). The points inside

the equi-force surface correspond to solutions which violate the predefined nonlinear constraint

(cnl > 0) and hence do not belong to the feasible set of solutions. Since the global optimum is not

part of the feasible set, the constrained optimum is located at the constraint boundary. The SQP

algorithm converged to the constrained optimal solution, which describes the magnet system

as a standard cylinder x̃c = [1.6,1,0]. The solution is located at the boundary of the design

space and the linear inequality constraints (bounds) are active (H1/H2 = 0). Thus, the number

of free design variables is reduced from three to two at the optimal solution. Compared to the

unconstrained optimum, the ADRA decreased to ∆F̃ (lab)
x = 15.6 mN. Considering the ADRA

projected on the constraint hyperplane, the proposed problem is non-convex. Consequently, if

initial values x(0) are chosen such that H2/R2 < 0.5 and R1/R2 < 0.4, the derivative based SQP

algorithm converges to a local optimum located in the region of H2/R2 ≈ 0.2 and R1/R2 ≈ 0.1. To

avoid local convergence, the use of a multistart approach using three to five different starting

points is recommended. In the multistart approach, the first starting point is defined by the

user, whereas the following are chosen randomly.

59

www.me-systeme.de


CHAPTER 4. SIMULATION STUDIES

(a) Absolute defect response amplitude ∆F̂x(x, p) (b) Unperturbed drag-force F(0)
x (x, p)

(c) F(max)
x = 3 N: x̃c = [1.6,1,0], ∆F̃(lab)

x = 15.6 mN (d) F(max)
x = 4 N: x̃c = [1,0.8,0], ∆F̃(lab)

x = 18.8 mN

Figure 4.6: HCp-magnet system made of VACODYM® 745HR and VACOFLUX® 50 for the case
of system parameters Vm/Vd = 56, d/h = 10, and a/h = 5 (anisotropic specimen aσ = [1,1,0]T).
The scaling factor of the laboratory setup is S(lab) = 31.79. Crosses and circles indicate the
unconstrained and constrained optima, x̃, and x̃c, respectively. The insets are sketches of
the individual optimized magnet systems. The data are shown as a function of the design
variables x= [H2/R2,R1/R2,H1/H2]. (a) Cutplanes of the denormalized ADRA ∆Fx(x, p) inter-
secting at the unconstrained global optimum x̃= [0.5,0.6,0]. (b) Cutplanes of the corresponding
denormalized unperturbed drag-force F (0)

x (x, p). (c) and (d) Semi-transparent isosurfaces of
maximum drag-forces F (max)

x = {3,4} N colored by the according ADRA. The solid lines indicate
the optimization paths for the initial starting point, x(0) = [1.6,0.3,0.8] (red star) [107107].

The constraint hyperplane for F (max)
x = 4 N is shown in Fig. 4.64.6(d). As expected, the enclosed

domain shrinks and the feasible set increases. The constrained optimal solution changes to

x̃c = [1,0.8,0] and the ADRA increases to ∆F̃ (lab)
x = 18.8 mN. The optimization path of the initial

starting point is shown in Fig. 4.64.6(c) and (d) with a solid line. Each dot corresponds to one

iteration taken by the SQP algorithm.

In a second example, the system parameters are changed to Vm/Vd = 875, d/h = 2, and

a/h = 2, which corresponds to the case of small defects located close to the surface of the

60



4.1. OPTIMAL MAGNET DESIGN FOR LET

specimen. The associated results are presented in a similar way as in the former case in

Fig. 4.74.7. The unconstrained optimum, shown in Fig. 4.74.7(a), is relocated compared to the previous

case because of the variation in the system parameters. A Halbach-structure emerges, which

includes ferromagnetic material (x̃= [0.8,0.2,0.5]). Considering the behavior of the ADRA

and the unperturbed drag-force in Fig. 4.74.7(a) and (b), the maxima do not correlate. Thus,

magnet systems which generate high unperturbed drag-forces do not inherently produce high

defect responses. This particular magnet system generates an ADRA of ∆F̃ (lab)
x = 36 mN, while

generating an unperturbed drag-force of F̃ (0,lab)
x = 3.6 N. Since the constraint of maximum drag-

force is again not fulfilled, the VcFc approach must be applied. The constraint hyperplane of

F (max)
x = 3 N is shown in Fig. 4.74.7(c). The constraint optimum is x̃c = [1.1,0.2,0.6] and is located

close to the unconstrained solution. The modified magnet has an ADRA of ∆F̃ (lab)
x = 34.5 mN and

satisfies the 3 N constraint. Assuming a maximum drag-force F (max)
x = 4 N, the unconstrained

global optimum is located in the feasible set of solutions. Consequently, the nonlinear constraint

is inactive and the SQP algorithm converges to the global optimum as shown in Fig. 4.74.7(d).

Both examples show that if F (c)
x from (4.154.15) changes by modifying F (max)

x or the scaling

factor S, the constraint hyperplane defined by cnl from (4.164.16) grows or shrinks accordingly.

In a similar sense, the constraint function is influenced by the system parameters p. As a

consequence of scaling, the unconstrained optimization results can be adopted to setups with a

different scaling parameter, provided they share the same system parameters. However, the

constrained optimization results are generally valid as long as the different setups share the

same normalized maximum drag-force from (4.154.15).

The influence of the Vm/Vd ratio on the ADRA and the optimal magnet design is investigated

further. The study is performed assuming the same two sets of system parameters defined

previously. To compare the individual magnet systems with each other, the investigation is

performed for HCp-, HC-, and C-magnets separately. Since the HCp-configuration covers HC-

and C-magnet systems, the corresponding ADRA must be equal or larger than the other cases,

which are geometrically restricted beforehand. The optimizations are performed as a function

of Vm/Vd in the unconstrained case as well the VaFc and VcFc approaches.

The results for deep defects (d/h = 10, a/h = 5) are shown in Fig. 4.84.8(a). Each point on

the curves represents an optimal magnet system. The dashed lines indicate the ADRA of the

unconstrained optimal solutions (uc). In this parameter range, the ADRA increases almost

linearly as a function of the Vm/Vd ratio. The critical Vm/Vd ratios are determined for C-, HC-,

and HCp-magnet systems using the VaFc approach, and are shown with a single marker

each. The magnet system is defined by the unconstrained global optimum but still satisfies

the constraint. The magnet designs which obey these parameters are lying on the constraint

hyperplane cnl intersecting with the global optimum x̃. Hence, the critical Vm/Vd ratio is

where the constraint becomes active and the curve of the constrained solution diverges from

unconstrained solution. However, magnet systems with higher Vm/Vd ratios have to be restricted

by applying the VcFc approach such that all presented configurations indicated with solid lines
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(a) Absolute defect response amplitude ∆F̂x(x, p) (b) Unperturbed drag-force F(0)
x (x, p)

(c) F(max)
x = 3 N: x̃c = [1.1,0.2,0.6], ∆F̃(lab)

x = 34.5 mN (d) F(max)
x = 4 N: x̃c = [0.8,0.2,0.5], ∆F̃(lab)

x = 36 mN

Figure 4.7: HCp-magnet system made of VACODYM® 745HR and VACOFLUX® 50 for the case
of system parameters Vm/Vd = 875, d/h = 2, and a/h = 2 (anisotropic specimen aσ = [1,1,0]T).
The scaling factor of the laboratory setup is S(lab) = 31.79. Crosses and circles indicate the
unconstrained and constrained optima, x̃, and x̃c, respectively. The insets are sketches of the
individual optimized magnet systems. The data are shown as a function of the design variables
x= [H2/R2,R1/R2,H1/H2]. (a) Cutplanes of the denormalized ADRA ∆Fx(x, p) intersecting
at the unconstrained global optimum x̃= [0.8,0.2,0.5]. (b) Cutplanes of the corresponding
denormalized unperturbed drag-force F (0)

x (x, p). (c) and (d) Semi-transparent isosurfaces of
maximum drag-forces F (max)

x = {3,4} N colored by the according ADRA; The solid lines indicate
the optimization paths for the initial starting point x(0) = [0.9,1,0.2] (red star) [107107].

fulfill the defined force constraint F (max)
x = 3 N. The insets show cross sections of particular

magnet systems together with the corresponding optimal design variables. As expected, optimal

magnet systems do not include ferromagnetic material (H1/H2 = 0) if the defect is located deep

within the specimen, which was also shown in Fig. 4.64.6. Thus, the curves of HCp- and HC-magnet

systems are the same. The critical volume ratio obtained by the VaFc approach is 33.7 and 48.5

for HC- and C-magnets, respectively. Hence, VaFc-optimal HC-magnets are smaller but have a
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lower ADRA with 11.9 mN compared to 14.8 mN for cylindrical magnets. Increasing the Vm/Vd

ratio beyond the critical point and applying the VcFc, saturates the ADRA while keeping the

maximum drag-force at the defined limit. The further gain in ADRA results in consequential

increased magnet volume and weight. For this set of system parameters, that the optimal design

variables of the HC-magnet system converge to a C-magnet, which was observed in context of

Fig. 4.64.6(c). Hence, a further increase in the magnet volume ratio beyond Vm/Vd > 56 leads to an

overlap of the VcFc-optimal ADRA curves (see solid lines in Fig. 4.84.8(a)). Meanwhile, the optimal

H2/R2 ratio increases with Vm/Vd in a specific way such that the magnet gets higher to fulfill

the given constraint. Considering the present case for practical reasons, it can be concluded that

an increase beyond Vm/Vd ≈ 55...60 does not lead to further significant gain in ADRA. Regular

cylinders are favorable in the case of deep defects if the unperturbed drag-force is limited.

However, Halbach-structures generate higher ADRAs compared to standard cylinders when

comparing both at a given Vm/Vd ratio omitting any constraint (see dashed lines in Fig. 4.84.8(a)).

Figure 4.84.8(b) shows the second set of system parameters which covers the case of small

defects located close to the surface of the specimen (d/h = 2, a/h = 2). The optimal magnet designs

are presented in a similar way as in the former case. There are distinct performance differences

between C-, HC-, and HCp-magnet systems. Cylindrical magnets show a critical volume ratio

of 1033 together with an ADRA of 11.5 mN. In contrast, HC- and HCp-configurations are

approximately 30% smaller and generate defect responses of 28.1 mN and 32.4 mN which

correspond to a gain of approximately 140% and 180%, respectively. Considering the VcFc

solutions, the ADRA increases slightly further by increasing the Vm/Vd ratio beyond the critical

point. However, this effect is comparatively smaller than in the case of deep defects (see

Fig. 4.84.8(a)). Comparing HC- and HCp-systems, the presence of ferromagnetic material increases

the ADRA by about 15%. Regarding the unconstrained solutions, the ADRA is saturating slowly

when increasing the Vm/Vd ratio. This has also been observed but not explicitly shown here for

high Vm/Vd ratios of the case from Fig. 4.84.8(a).

In the following, two distinct magnet systems of both scenarios are compared considering

the same magnet volume Vm. For medium sized deep defects (green marker in Fig. 4.84.8(a)), the

optimal C-magnet with a volume ratio of Vm/Vd = 56 is chosen. The corresponding HCp-magnet

system optimized for small subsurface defects (green marker in Fig. 4.84.8(b)) has a volume

ratio Vm/Vd = 875. The geometrical parameters are obtained by denormalizing both systems

assuming a lift-off distance and hence geometric scale of h = 1 mm. The spatial distribution

of the magnitude of the magnetic flux density B and the induced eddy current density J are

shown in Fig. 4.94.9. The eddy currents for regular C-magnets (Fig. 4.94.9(a)) are less concentrated

compared to HCp-systems (Fig. 4.94.9(b)). The Halbach-structure leads to a considerably more

focused magnetic flux and eddy current distribution under the inner part of the magnet system.

The flux density is increased to 1.6 T on the surface of the specimen, which is significant larger

compared to standard magnet systems.

All investigations are also performed assuming a specimen with an isotropic conductivity
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[4, 1, 0]

[0.94, 1, 0]
 48.5 

 56 

[1.6, 1, 0]

 33.7  96 

[0.4, 0.6, 0]

[1.56, 1, 0]

(a) Medium sized deep defects (d/h = 10, a/h = 5)

[3, 0.2, 0.6]

[5, 1, 0]

 1033 

 733 

[2.5, 0.2, 0]
 733 

[0.7, 0.2, 0]

[0.8, 0.2, 0.5]

[2.3, 1, 0]

+15%

+143%

+180%

 1800 

[1.17, 0.22, 0.54]

(b) Small subsurface defects (d/h = 2, a/h = 2)

Figure 4.8: Comparison of the denormalized ADRA between C-, HC- and HCp-magnet systems as
a function of the system parameter Vm/Vd in the case of anisotropic specimens, aσ = [1,1,0]T, for
two different sets of system parameters. The optimizations are performed in the unconstrained
case (dashed lines) as well using the VaFc (single marker) and VcFc (solid lines) approaches. A
maximum drag-force of F (max)

x = 3 N is considered. The numbers in brackets correspond to the
optimal design variables x̃c = [H2/R2, R1/R2, H1/H2] [107107].
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B J

11.3mm

M17.6mm

(a) Deep defect (Vm/Vd = 56, d/h = 10, a/h = 5)

M

B J

7.9mm

2.7mm

12.4mm

14.5mm

FeCo

(b) Subsurface defect (Vm/Vd = 875, d/h = 2, a/h = 2)

Figure 4.9: Magnitude of the magnetic flux density B and induced eddy current density J
of VcFc optimized magnet systems for the case of anisotropic specimens, aσ = [1,1,0]T. The
magnet systems are denormalized assuming a lift-off distance of h = 1 mm. Both generate
an unperturbed drag-force of F (0,lab)

x = 3 N considering a scaling factor of S(lab) = 31.79. Cross
section of (a) a cylindrical magnet with x̃c = [1.56,1,0] and (b) a Halbach-cylinder with iron-
cobalt x̃c = [1.17,0.22,0.54] [107107].

profile (aσ = [1,1,1]T). In the range of system parameters considered, the optimal design

variables differed only by approximately ±5% compared to the anisotropic cases. For deep

defects, the ADRA decreased by 23% compared to the anisotropic case. However, for d/h ≤ 2 the

ADRA only decreased by approximately 15%, which can be described by the circumstance that

the isotropic profile becomes gradually anisotropic from the top side if the defect gets closer to

the surface of the specimen. The nonlinear constraint function is not affected when comparing

the two cases of aσ = [1,1,1]T and aσ = [1,1,0]T. This is due to the unperturbed drag-force F (0)
x

being the same for both conductivity profiles, since the unperturbed eddy currents only flow in

the xy-plane. Hence, anisotropy in the z-direction does not influence F (0)
x , and so the nonlinear

constraint function cnl is unaltered.

4.1.4 Prototypes of Optimized LET Magnet Systems

Prototypes of the proposed optimized magnet systems from Fig. 4.94.9 are designed and manufac-

tured. The optimal C-magnet is a custom design ordered from the company HKCM engineering

e.K. (www.hkcm.dewww.hkcm.de). As assumed during the optimization, it is made of NdFeB with a ma-

terial grade of N52 with a nominal remanence of 1.43 T. The diameter D and height H are

[D,H]= [22.5,17.6] mm.

The realization of the HCp-magnet system is more intricate. The radially magnetized outer

part of the magnet system is constructed by diametrically magnetized segments. The influence

of the segmented structure on the ADRA, compared to the ideal case with a continuous radial
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92.4%

98%

Figure 4.10: Relative defect response of the optimized segmented HCp-magnet. The ADRA is
calculated with respect to an ideal HCp-magnet assuming a continuous radial magnetization.

(a) Top view (b) Side view (c) Prototype

Figure 4.11: Geometry of the HCp-prototype manufactured by the company Vacuumschmelze
Hanau GmbH & Co. KG (www.vacuumschmelze.dewww.vacuumschmelze.de).

magnetization, is shown in Fig. 4.104.10. As expected, the ADRA converges with an increasing

number of segments. For the prototype of the HCp-magnet system, a structure made of 12

segments is chosen, which results in an ADRA of 98% compared to the ideal case. The final

geometry and the manufactured prototype is shown in Fig. 4.114.11. It is made of the hard magnetic

material VACODYM® 745HR and the iron-cobalt-alloy VACOFLUX® 50 as it is assumed during

the optimization. The prototype is manufactured in collaboration with the company Vacuum-

schmelze Hanau GmbH & Co. KG (www.vacuumschmelze.dewww.vacuumschmelze.de). An experimental validation of

the proposed magnet systems considering the investigated defect scenarios is presented in [7575].

Moreover, both the optimized C- and HCp-magnet are used to detect defects in glass laminate

aluminium reinforced epoxy (GLARE) [152152]. The presented results demonstrate the expected

performance of the proposed designs. In the next section, the depth-optimized C-magnet is

used for the detection of deep-lying slits to point out the current state of the art and further

perspectives in LET.
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4.1.5 Defect Depth Study

Previous ECT studies often assumed quasi-infinite cracks to evaluate the detection limit (see

Table 2.12.1 on page 1010). In this case, the defect is a slit obeying a pronounced length compared to

the sensor system. In order to provide comparability to the results reported in the literature, the

following benchmark problem is defined [153153]. The problem geometry is inspired by the study

from Mook et al. [3030] and is shown in Fig. 4.124.12. The specimen consists of a solid block of size

[250,50,24] mm made of aluminium, which contains a slit of size [Xd,Yd, Zd]= [75,1.5,24] mm.

The artificial crack is oriented in parallel to the direction of motion. On top of this structure,

a variable number of aluminium sheets is situated. Each sheet has a thickness of 2 mm.

The defect depth d is varied from 0 to 36 mm using 18 sheets. The sheets which are not

on top of the specimen are situated on the bottom in order to ensure a constant height of

the total assembly and to not alter the outer dimensions of the problem. By doing so, the

magnetic Reynolds number is also kept constant. The overall dimensions of the specimen are

then [Xs,Ys, Zs] = [250,50,60] mm. During the measurements, the magnet is located on the

centerline with respect to the y-axis in a height of h = 1 mm. All measurements are performed

at a velocity of v = 0.5 m/s. The picture from Fig 2.72.7 on page 1616 shows the particular laboratory

setup with 18 aluminium sheets on top of the slotted bar.

The measurement data is post-processed with a 10-th order Butterworth low-pass filter

having a cutoff frequency of 100 Hz. The force profiles are normalized with respect to the

stationary values which occur far away from the defect. The results of the normalized drag- and

lift-force over the whole specimen are shown in Fig. 4.134.13(a) and (b), respectively. The area, where

the slit is located, is shown on the right hand side in enlarged form. Based on the definition

of the velocity of the specimen, the data is recorded over time from the right to left such that

positive x-positions are sampled first in time. When the specimen comes close to the magnet, the

Permanent
magnet

Al-sheets

Figure 4.12: Geometry of the experimental setup to detect a deep-lying slit defect.
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(a) Normalized drag-force

(b) Normalized lift-force

Figure 4.13: Measured profiles of the drag- and lift-force during the investigation on the
maximum defect depth. The specimen contains a slit of size [Xd,Yd, Zd] = [75,1.5,24] mm,
which is located at different depths d.

drag-force ramps up and the lift-force shows a characteristic peak before both components reach

their steady state (F (0)
x and F (0)

z ). In the defect region, it can be observed that the perturbations

of the Lorentz force can be distinguished up to a depth of d = 12 mm for the drag-force. In

contrast, when considering the lift-force, the slit can be clearly observed up to a depth of 24 mm.

It can be seen that the lift-component is superimposed by parasitic oscillations. These are

systematic nature and do partially result from the measurement frame of the system, where

the magnet and the force sensor are mounted. A more detailed explanation and analysis of this

phenomenon can be found in [7575]. The presented results chart out the possibility to increase

the reported depth limit in the future when the disturbances in both force components can be

reduced. An exclusive construction of an optimized magnet system for this particular defect

scenario is not necessary since it has less practical relevance.
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By means of this analysis, it is possible to classify LET in the framework of electromagnetic

eddy current methods in a qualitative sense. Considering the values obtained by Mook et al. [3030]

from Table 2.12.1 on page 1010, it can be stated that the LET method within its present realization

is highly comparable in terms of defect depth. It is worth to mention that depth-optimized ECT

probes were employed in the comparative study from Mook et al. (Leotest MDF 1701 and MDF

3301, Leotest-Medium Center). However, it is emphasized that in LET the object is tested when

it is in motion and within fractions of a second while avoiding any contact to its surface, which

is the decisive difference to traditional ECT methods.

4.1.6 Conclusions

For the first time, the optimal magnet design in the LET framework is addressed. Parameters

were classified as design, system and scaling parameters and the number of free variables

was reduced, which simplified the optimization procedure. It was possible to clearly define

the optimization problem while preserving universal applicability, motivated by the high

specificity of NDT problems. The definition of a scaling factor offers the possibility to identify and

convert similarities between different setups. The proposed methodology considers the strong

interrelation to the applied force sensor. Therefore, three different optimization approaches were

presented, the unconstrained optimization scheme (uc), the volume adaptive force constraint

(VaFc), and the volume constraint force constraint (VcFc) approach. The VaFc approach can be

employed to determine the critical Vm/Vd ratio. Then the ADRA can be further increased while

still satisfying the given force limit by applying the VcFc approach.

Unconstrained optimization schemes are applicable for force sensors with high force limits,

e.g. piezoelectric sensors [154154]. On the other hand, the VaFc approach in combination with

the VcFc approach is especially suited for systems with a limited force range, e.g. strain

gauge sensors. The different locations of the unconstrained global optima demonstrate that

the detection goal, expressed in form of the system parameters, strongly influences the optimal

magnet design. In the case of constrained optimization for subsurface defects, a Halbach-

structure in combination with soft magnetic material clearly outperforms cylindrical magnets

of the same geometrical dimension. In contrast, for deep defects, the optimal magnet design

converged to a regular cylindrical magnet when force constraints have to be considered.

The proposed optimization strategy is highly flexible, i.e., the magnet system can be replaced

by a different system in the first evaluation step of the forward solver. Moreover, the model

of the specimen and/or the defect in the second and third evaluation step can be adjusted to

particular scenarios of interest. The latter has been applied during the optimization of magnet

systems, which are used for the inspection of small metal injection molding specimens [155155]. In

this study, the proposed procedure is extended to cuboidal specimens of finite size and defects of

different edge lengths.

When considering high-speed applications, secondary magnetic fields become prevalent and

cannot be neglected as it is shown in section 3.33.3. In this case, the magnetic field formulation
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used in the forward solver can be adjusted, e.g. to an A,φ−ψ formulation, as it is described in

section 3.23.2, albeit at the expense of computational cost.

In ECT, there exists a trade-off between penetration depth and resolution, which can be

controlled by means of the diameter of the exciting coil [3030]. This fact can be also observed in

LET and is inherently a limiting factor of both methods. Our results (particularly Figs. 4.74.7

and 4.84.8(b)) demonstrate the advantage of combining active and passive magnetic materials

in form of a Halbach-structure in an LET sensor for selected applications. The results of the

unconstrained optimization demonstrate that the use of those structures is counteracting the

trade-off between penetration depth and resolution, revealing additional potential of future

sensor systems.

In the present case, the optimization procedure is applied considering two different defect

scenarios taking into account a force constraint of F (0)
x = 3 N. The associated optimal magnet

designs are manufactured and made available for experimental studies presented in [7575]

and [152152].

A defect depth study, adopting the concept of a quasi-infinite crack, revealed a current

detection limit of 24 mm when considering the lift-component of the Lorentz force.
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4.2 Uncertainty Analysis in LET

4.2.1 Introduction and Motivation

Especially in the framework of NDT, the analysis of uncertainties plays an important role

during the design process of new systems [156156,157157]. Though by means of numerical simulations

it is possible to predict the Lorentz force profile but the intrinsic variability of the input

parameters were not accounted yet. Hence, one cannot rely on a single deterministic simulation

if a comparison to experimental data is intended and a quantification of uncertain model data

on the resulting force profiles is essential. As a consequence, it is necessary to identify prior

sources of uncertainty in order to improve the experimental setup at hand.

In order to determine the statistical information of the output quantities of a system, such as

the mean or the variance, one of the most common methods is Monte Carlo sampling (MC). The

MC method is based on repetitive calculations of the forward model, while defining the random

inputs according to their probability distributions. This results in an ensemble of solutions from

which statistical properties can be derived. However, a large number of simulations is needed

due to the slow convergence rate of the MC method. The mean for example converges with

1/
√

Nd , where Nd is the number of deterministic forward calculations [158158]. This limits the

applicability to problems with low computational cost. Nevertheless, different approaches were

developed to improve MC type methods in terms of convergence for example Latin Hypercube

sampling (LHS) [159159] or Quasi Monte Carlo (QMC) [160160,161161]. On the other hand, perturbation

methods, which are based on Taylor expansions, and operator based methods, based on Neumann

expansion, are restricted to small uncertainty intervals in the in- and output variables of around

10% [162162] and will not be further discussed here.

The primary focus of this work rests on spectral methods, which are based on the determina-

tion of a functional dependence between the probabilistic in- and output of a system by means

of a series of suitable selected functionals. The practical realization of spectral methods can

be further subdivided into intrusive and non-intrusive approaches. Intrusive approaches are

based on Galerkin methods, where the governing equations have to be modified to incorporate

the probabilistic character of the model parameters. This includes the determination of the

stochastic weak form of the problem according to the given uncertainties [163163]. On the contrary,

non-intrusive approaches are based on a reduced sampling of the probability space without

any modification of the deterministic solvers. Those methods are more flexible and thus more

suitable for universal application. Typical applications can be found in the fields of computa-

tional fluid dynamics [164164–166166], heat transfer [167167,168168], multibody dynamics [169169,170170], robust

design optimization [171171] or in biomedical engineering [172172,173173]. During the last years, spectral

approaches are becoming increasingly popular in an engineering framework. However, those

are not a reference tool yet and still unknown for many people. For that reason, particular

emphasis is placed to describe the method and to further elucidate the principle by means of an

example.
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Uncertainty Analysis

Stochastic expansion

Intrusive Non-Intrusive

Stochastic Galerkin Stochastic Collocation
Generalized Polynomial Chaos 

Expansion

Cubature 
Gauss-Quadrature

Regression Pseudo spectral gPC Lagrange Interpolation

Monte Carlo

Quasi Monte Carlo

Latin Hypercube Sampling

Sampling methods

Figure 4.14: Overview of methods in uncertainty analysis. The gray-shaded boxes indicate the
approaches used in the following investigations.

In more detail, the focus in this work is on non-intrusive approaches of spectral methods,

which can be further subdivided into generalized polynomial chaos expansion (gPC) techniques

and collocation methods (CM). The gPC in the framework of the FEM was first introduced by

Ghanem in 1991 [174174] and is based on the theory of Wiener-Hermite homogeneous chaos [175175].

Therein, orthogonal polynomials are used to determine the functional dependence of the problem

in the probability space. The CM was first introduced in [176176] and later independently in [177177].

In contrast to gPC, the CM determines the functional dependence by constructing interpolation

functions in the probability space.

From the mathematical point of view, there exists a variety of approaches to determine

the gPC-coefficients. On the one hand, it is possible to apply spectral projection techniques,

which make use of numerical integration schemes such as the Gauss-quadrature. On the other

hand, the regression approach can be applied, which is based on solving a least-square problem.

Alternatively, in CM, a pseudo spectral gPC or Lagrange interpolation approach can be applied.

An overview about all mentioned approaches is shown in Fig. 4.144.14. The present work focuses on

the gPC expansion using a Gauss-quadrature approach. A comparison between the MC method,

the Gauss-quadrature approach, the regression approach and the collocation method in view of

an electromagnetic induction problem in a biomedical engineering framework is published by

the author in [172172] and the results of the present study, which is related to LET, can be found

in [178178].

At first, the theoretical background of the gPC expansion is described in section 4.2.24.2.2. The

principle is further illustrated by means of an example. It is followed by the definition of the

stochastic problem at hand in section 4.2.34.2.3, including a description how the formalism can be

applied to an LET scenario. In section 4.2.44.2.4, the model parameters are investigated in terms of

their variabilities, which is a vital part of every uncertainty analysis. Finally, the results are

presented and discussed in section 4.2.54.2.5 and conclusions are drawn in section 4.2.64.2.6.
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4.2.2 The Generalized Polynomial Chaos Method

At first, the theoretical background of the gPC method is explained before it is adopted to the

LET problem. The parameters of interest, which are assumed to underlie a distinct level of

uncertainty, are denoted as ξ= (ξ1, ξ2, ...ξN ). It is assumed that the parameters are statistically

mutually independent from each other. In order to perform a gPC expansion, the random

variables must have a finite variance, which defines the problem in the L2-Hilbert space.

The M observables (output quantities), which are going to be analyzed in terms of the input

uncertainties, are Y = [Y1, Y2, ..., YM]. The input ξ will be modeled as an N-variate random

vector in the probability space (Θ,Σ,P). The event space Θ contains all possible events. Σ is a

σ-Algebra over Θ, containing sets of events, and P is a function assigning the probabilities of

occurrence to the events.

The probability density function (pdf) pn(ξn), with n = 1, ..., N, has to be defined for each

random variable ξn. In the present framework, it is advisable to transform the pdf from the

original space into the normalized space by shifting and scaling, assuming standardized random

variables. For example, uniform or β-distributed random variables are shifted and scaled from

a range of (a,b) to (−1,1), similar to the element basis functions in the FEM. The joint pdf is

then given by:

p(ξ)=
N∏

n=1
pn(ξn). (4.27)

In consequence, the probability space in case of uniform or β-distributed random variables

is an N-dimensional hypercube of size (−1,1)N . The idea of the gPC is to find a functional

dependence between the random variables ξ and the solutions Y by means of an orthogonal

polynomial basis. Since the random variables are functions, the gPC can be seen as a functional.

The set of polynomials for an optimal basis of continuous probability distributions is derived

from the Askey scheme [179179]. These polynomials ψi(ξn) are orthogonal with respect to the pdf,

e.g. Legendre polynomials are used in the case of uniform distributions or Jacobi polynomials

are used for β-distributions.

E[ψiψ j]=
∫
Θ

ψi(ξ)ψ j(ξ)p(ξ)dξ= δi j
〈
ψ2

i
〉

(4.28)

Where δi j is the Kronecker delta function, which equals 1 for i = j and 0 otherwise. The term

〈·, ·〉 denotes the inner product with respect to the pdf and is defined as:

〈x, y〉 =
∫
Θ

x(ξ)y(ξ)p(ξ)dξ. (4.29)

Table 4.14.1 provides examples of the relationship between the families of orthogonal polynomials

and different types of pdfs.

The gPC is defined by the following expansion using the joint orthogonal polynomial basis

functions Ψk(ξ).

Ym(ξ)=
∞∑

k=0
ûk,mΨk(ξ)≈

Nc−1∑
k=0

ûk,mΨk(ξ) (4.30)
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Table 4.1: Connection between probability distributions and polynomial basis functions [162162].

Type Distribution Orthogonal polynomials Range

continuous uniform Legendre (a,b)

continuous beta Jacobi (a,b)

continuous gaussian Hermite (−∞,+∞)

discrete poisson Charlier (0,1, ...)

The series is performed for every output quantity separately, indexed by m = 1, ..., M. It is

truncated at a certain order p, which results in Nc terms and gPC-coefficients ûk,m. The

construction of the multi-variate polynomialsΨk(ξ) is described in the following. By introducing

a multi-index γ(k) = {γ(k)
1 , ...,γ(k)

N }, which is an array of integers of size N, a distinct set of

multi-indices λ(k)(p) can be defined such that its sum is equal to a certain order of expansion p.

λ(k)(p)=
{
γ(k) :

N∑
i=1

γ(k)
i = p

}
(4.31)

The p-th order polynomials are the products over all polynomials associated to the corresponding

random variable ξn and form the Hilbertian basis.

Ψk(ξ)=
{ ⋃
γ∈λ(k)(p)

N∏
n=1

ψ
γ(k)

n
(ξn)

}
(4.32)

It is mentioned, that the number of polynomials increases for higher orders p since the set of

multi-indices λ(k)(p) grows as a consequence of an increased number of available combinations

resulting from (4.314.31). In a full tensor gPC, the maximum polynomial order of each random

variable is p. In consequence, the number of coefficients Nc increases exponentially:

Nc = (p+1)N . (4.33)

In practical applications, the more economical maximum order gPC is preferably used. In this

case, the total order of the polynomial must not exceed p. The number of coefficients, and hence,

the dimension of the space spanned by the polynomials, is then given by [180180]:

Nc =
(
N + p

N

)
= (N + p)!

N!p!
. (4.34)

In order to elucidate the construction process of the joint basis functions, the following example

is considered. Applying a 2nd order approximation (p = 2) to a problem with N = 3 random

variables results in the following Nc = 10 polynomials indexed in lexicographic order:

0thorder :

Ψ0(ξ)=
3∏

n=1
ψ
γ(0)

n
(ξn)=ψ0(ξ1)ψ0(ξ2)ψ0(ξ3) (4.35a)
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1storder :

Ψ1(ξ)=
3∏

n=1
ψ
γ(1)

n
(ξn)=ψ1(ξ1)ψ0(ξ2)ψ0(ξ3) (4.35b)

Ψ2(ξ)=
3∏

n=1
ψ
γ(2)

n
(ξn)=ψ0(ξ1)ψ1(ξ2)ψ0(ξ3) (4.35c)

Ψ3(ξ)=
3∏

n=1
ψ
γ(3)

n
(ξn)=ψ0(ξ1)ψ0(ξ2)ψ1(ξ3) (4.35d)

2ndorder :

Ψ4(ξ)=
3∏

n=1
ψ
γ(4)

n
(ξn)=ψ2(ξ1)ψ0(ξ2)ψ0(ξ3) (4.35e)

Ψ5(ξ)=
3∏

n=1
ψ
γ(5)

n
(ξn)=ψ1(ξ1)ψ1(ξ2)ψ0(ξ3) (4.35f)

Ψ6(ξ)=
3∏

n=1
ψ
γ(6)

n
(ξn)=ψ1(ξ1)ψ0(ξ2)ψ1(ξ3) (4.35g)

Ψ7(ξ)=
3∏

n=1
ψ
γ(7)

n
(ξn)=ψ0(ξ1)ψ2(ξ2)ψ0(ξ3) (4.35h)

Ψ8(ξ)=
3∏

n=1
ψ
γ(8)

n
(ξn)=ψ0(ξ1)ψ1(ξ2)ψ1(ξ3) (4.35i)

Ψ9(ξ)=
3∏

n=1
ψ
γ(9)

n
(ξn)=ψ0(ξ1)ψ0(ξ2)ψ2(ξ3). (4.35j)

After constructing the polynomial basis, the corresponding gPC-coefficients ûk,m have to be de-

termined. In this regard, the output variable Ym is projected from the N-dimensional probability

space ΘN into the Nc-dimensional polynomial space P
p
Nc

of order p. In this regard, an analytical

approximation of the solution Ym as a function of its random input parameters ξ is derived.

This enables computational efficient investigations on its stochastics. Different methods exist to

calculate the gPC-coefficients ûk,m, whereas in the following, a cubature approach based on the

Gauss-quadrature is described.

Estimation of the gPC Coefficients by Means of the Gauss-Quadrature: Due to the

orthogonality of the joint polynomial basis functions Ψ(ξ), the gPC-coefficients ûk,m can be

determined by the following expression [163163]:

ûk,m =
〈
Ym(ξ),Ψk(ξ)

〉〈
Ψk(ξ),Ψk(ξ)

〉 , k = 0,1, ..., Nc −1. (4.36)

On the one hand, the denominator in (4.364.36) acts as a scalar weight for each coefficient. It is

given in closed form and can be calculated analytically for each k. For example, in case of N = 3

standardized random variables, the denominator would be given by:

〈
Ψk(ξ),Ψk(ξ)

〉= +1∫
−1

+1∫
−1

+1∫
−1

Ψk(ξ1,ξ2,ξ3)2 p1(ξ1)p2(ξ2)p3(ξ3)︸ ︷︷ ︸
p(ξ)

dξ1dξ2dξ3. (4.37)
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On the other hand, the integral in the nominator in (4.364.36) has to be calculated numerically,

since the model function Ym(ξ), reflecting the problem under consideration, is not known in

closed form. In order to determine the nominator, the problem has to be calculated multiple

times on a distinct set of sampling points. For N = 3 random variables, the nominator would be

given by:

〈
Ym(ξ),Ψk(ξ)

〉= +1∫
−1

+1∫
−1

+1∫
−1

Ym(ξ1,ξ2,ξ3)Ψk(ξ1,ξ2,ξ3)︸ ︷︷ ︸
f (ξ)

p1(ξ1)p2(ξ2)p3(ξ3)︸ ︷︷ ︸
p(ξ)

dξ1dξ2dξ3. (4.38)

In this context, the joint pdf p(ξ) can be interpreted as a weighting function. This integral can

be solved by means of a distinct type of Gauss-quadrature resulting in the following finite sum

over Ng grid points.
+1∫

−1

f (ξ)p(ξ)dξ≈
Ng∑
i=1

f (ξi)wi (4.39)

According to the types of the probability distributions, the location of the samples ξi and weights

wi are defined. Then, for uniform or β-distributions, a Gauss-Legendre- or a Gauss-Jacobi-

quadrature has to be applied. The sampling-points in the i-th dimension x(i) are determined

by the roots of the orthogonal polynomial of some order q, which determines the number of

grid points. In practice, it is recommended to adapt the grid to the intended expansion order of

the gPC, such that q ≥ p. The grid G gPC contains all sampling points and is determined by the

tensor product of the nodes in each dimension:

G gPC = x(1) ⊗ ...⊗ x(N). (4.40)

The corresponding weights are calculated by solving the eigenvalue problem considering the

recurrence relationship of the orthogonal polynomials [181181]. In accordance to the grid coordi-

nates, the set of weights W gPC is calculated by the tensor product between the weights in each

dimension:

W gPC = w(1) ⊗ ...⊗w(N). (4.41)

Returning back to (4.384.38), the cubature formula of the nominator for N = 3 random variables

would be given by:

〈
Ym(ξ),Ψk(ξ)

〉≈ m1∑
i1=1

m2∑
i2=1

m3∑
i3=1

Ym
(
ξi1,i2,i3

)
Ψk

(
ξi1,i2,i3

)
wi1,i2,i3 . (4.42)

The parameter mi denotes the number of sample points in each dimension. In other words, for a

given polynomial indexed by k, the integral is approximated by a sum over the determined values

Ym(ξi), with i = (i1, ..., iN ), calculated at distinct points ξi, multiplied by the corresponding

value of the polynomial Ψ(ξi), and weighted by the weights wi at these points. Finally, the

gPC-coefficients ûk,m can be calculated by (4.364.36).
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Post-processing: After calculating the gPC-coefficients ûk,m, the statistical moments of the

output quantity of interest Ym(ξ) can be calculated. The expectation µm and the variance σ2
m of

the m-th output quantity are then given by:

µm = û0,m (4.43)

σ2
m =

Nc−1∑
k=1

û2
k,m 〈Ψk(ξ),Ψk(ξ)〉 . (4.44)

An important part during the investigation of new and partially known systems is an

analysis regarding its sensitivity. If it is possible to quantify the sensitivity of a system with

respect to its input parameters, it is possible to identify the most important variables which

influence the output quantities. This allows the implementation of targeted improvement

measures to the setup under investigation. In gPC, the global derivative based sensitivity

coefficients S(∂)
i,m with respect to the i-th variable can be approximated by means of the gPC-

coefficients and the corresponding partial derivatives of the basis functions. They are given by

the following expression [162162]:

S(∂)
i,m = E

[
∂Ym

∂ξi

]
≈

Nc−1∑
k=0

ûk,m

+1∫
−1

∂Ψk

∂ξi
p(ξ)dξ

 . (4.45)

On the other hand, variance-based sensitivity measures indicate the influence of the indivi-

dual random input variables ξi on the total variances σ2
m of the output quantities. This concept

is also known as analysis of variance (ANOVA). The Sobol indices are determined by a Sobol

decomposition [182182]. The first order Sobol indices provide an estimate about the influence of the

single variables ξi on the output quantities. In most cases, they are the most significant indices.

Introducing subsets K i, which contain indices k that target those polynomials Ψk that only

depend on the i-th random variable, the first order Sobol indices S(1)
k,m are given by [183183]:

S(1)
i,m = 1

σ2
m

∑
k∈K i

û2
k,m

〈
Ψk(ξi),Ψk(ξi)

〉
. (4.46)

In a similar way, the analysis can be extended up to Sobol indices of the order N, including the

influence of all random variables at the same time.

The pdf of Ym(ξ) can be determined by applying sampling strategies such as Monte Carlo,

Latin Hypercube or Quasi Monte Carlo sampling with NMC realizations. Since a determi-

nistic functional dependence is calculated by the gPC, a large number of samples such as

NMC ≈ 105 −106 can be used with vanishingly small computational effort compared to direct

sampling.

Example: The general principle of the gPC is illustrated considering the following two-

dimensional model function, which represents the exemplary system to be investigated:

Y (ξ1,ξ2)= 3(1−ξ1)2e−ξ
2
1−(ξ2+1)2 −10

(
ξ1

5
−ξ3

1 −ξ5
2

)
e−ξ

2
1−ξ2

2 − 1
3

e−(ξ1+1)2−ξ2
2 . (4.47)
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In the present case, there exists only one output quantity such that M = 1. The model function

is shown in Fig. 4.154.15(a). The input parameters ξ1 and ξ2 are modeled as β-distributed random

variables. The probability density function in the range of (a,b) is given by:

p(ξ)= Γ(α+β)
Γ(α)Γ(β)(b−a)α+β−1 (ξ−a)α−1(b−ξ)β−1, (4.48)

where Γ(·) is the Gamma function [184184]. The parameters α and β define the shape of the distri-

bution, whereas the parameters a and b correspond to the outer bounds. It can be noticed that

uniform distributions are a subset of (4.484.48) by choosing α=β= 1. In the present example, the

shape parameters are set to [α1,β1]= [5,10] and [α2,β2]= [12,3] in the region [a1,b1]= [−1,1]

and [a2,b2]= [−1,0] for ξ1 and ξ2, respectively. Both distributions are shown in Fig. 4.154.15(b). As

previously mentioned, the distributions have to be normalized to the range of (−1,1) in every

dimension. Since the random variables are β-distributed, the orthogonal polynomial basis has

to be constructed using n-th order Jacobi polynomials Pα,β
n (ξ) (see Table 4.14.1 on page 7474):

Pα,β
n (ξ)= Γ(α+n+1)

n!Γ(α+β+n+1)

n∑
j=0

(
n
j

)
Γ(α+β+n+ j+1)

Γ(α+ j+1)

(
ξ−1

2

) j
. (4.49)

Those functions are used to construct the polynomial basis according to (4.324.32). It is noted that

the shape parameters α and β significantly influence the shape of the polynomials. If those

differ between the random variables, the polynomial basis differs between the dimensions as

well. In the next step, the grid of sampling points G gPC and the corresponding weights W gPC,

needed for the Gauss-quadrature, are constructed. In the present example, a gPC expansion

of the order p = 5 is performed. According to (4.344.34), this results in a total number of Nc = 21

gPC-coefficients. The number of grid points is defined to be the same in every dimension and

is set to q = 6. This results in a total number of Ng = qN = 36 grid points. For ξ1, the roots x(1)

of the Jacobi polynomials Pα1,β1
6 (ξ1) are determined in addition to their corresponding weights

w(1). The same applies for the second variable ξ2. Since the β-distributions differ from each

other, the roots and weights are not the same. By applying the tensor products from (4.404.40) and

(4.414.41), the computational grid G gPC is determined together with the grid of weights W gPC. In

the next step, the solutions of the model function (4.474.47) are computed on the grid G gPC. The

gPC-coefficients of the output quantity Y (ξ1,ξ2) are then determined by solving (4.364.36) using

the quadrature approach. In this way, a polynomial estimate of the model function is available,

which is shown in Fig. 4.154.15(c) in its denormalized form. The points indicate the location of

the grid points and their sizes correspond to their respective weight. It can be observed that

the grid obeys an adaptive character such that it is concentrated in the region, where the

probability of occurrence of the input variables is high. The accuracy of the approximated model

function is evaluated considering the absolute difference to the original function. The results

are shown in Fig. 4.154.15(e). A very good agreement in the region of interest can be observed,

whereas the approximation is less accurate at the borders where the probability of occurrence

is low. In order to compare the pdf of the output variable, the original and the estimated model
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Example containing two random variables ξ1 and ξ2 to illustrate the working
principle of the gPC. The grid G gPC contains Ng = 36 grid points and the gPC is performed
with an order p = 5 approximation. (a) Original model function Y (ξ1,ξ2); (b) pdfs of the β-
distributed random input variables; (c) Estimated model function by the gPC; (d) pdf of the
output quantity Y (ξ1,ξ2); (e) Absolute difference of the model function between the original and
the gPC estimate; (f) Absolute difference of the output pdf between MC and gPC; The white
points in (b), (c) and (e) indicate the location of the sampling points. Their sizes in (c) and (e)
are proportional to the corresponding weight of the Gauss-quadrature integration.
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function are both sampled 106 times. In the present example, the evaluation of the original

model function is computational not demanding. However, in a real scenario, direct sampling of

the original model function is often not practical. The resulting output pdfs of both approaches

and their absolute difference are shown in Fig. 4.154.15(d) and (f), respectively. It can be observed

that the gPC provides an accurate estimate requiring only Ng = 36 evaluations of the original

model function compared to traditional MC approaches with 106 direct samples. The mean, the

standard deviation, and the sensitivity measures of the output quantity are given in Table 4.24.2.

The first order Sobol indices S(1)
i indicate that the first variable ξ1 contributes to 68.2% of the

total variance. The second order Sobol index S(2)
12 quantifies the impact if both parameters are

varied at the same time. As expected, its contribution is substantially lower compared to the

linear Sobol indices.

In contrast, the derivative based sensitivity coefficients S(∂)
i indicate that the model is less

sensitive with respect to the first variable ξ1. This results from the shape of the model function,

which obeys both an increase and a decrease over the investigated range of ξ1. In consequence,

the gradients do partly compensate over the whole parameter space. However, it can be observed

that the model function slowly decreases in the ξ2-direction considering the region of interest,

which explains the negative derivative based sensitivity coefficient of S(∂)
2 =−1.835. The small

example demonstrates the working principle of the gPC and the complexity to interpret the

results from an uncertainty and sensitivity analysis in a probabilistic context.

In the next section, the gPC is applied to the LET problem, which obeys higher computational

cost compared to the previous example.

Table 4.2: Results of the exemplary problem, investigated with the gPC.

Mean Std. Variance based sensitivity Derivative based sensitivity

µ σ S(1)
1 S(1)

2 S(2)
12 S(∂)

1 S(∂)
2

2.0621 0.6685 68.2% 29.9% 1.9% 0.191 −1.835

4.2.3 Problem Definition in LET

In the present framework of LET, the velocity v, the electrical conductivity σ, the lift-off

distance h, and the magnetic remanence Br are modeled as uniform as well as β-distributed

random variables. The corresponding shape parameters [α,β] and bounds [a,b] are determined

by experiments, which are described in the next section. In this case, the probability space

has N = 4 dimensions. It is assumed that the specimen is analyzed along its centerline. The

quantities of interest are the drag- and lift-component of the Lorentz force Fx|z. The analysis

of the side-force Fy is omitted since it vanishes for symmetry reasons. A non-intrusive gPC is

applied considering M = 11 characteristic positions of the permanent magnet with respect to the

specimen in order to investigate the propagation of uncertainties throughout the LET system.
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Therefore, the magnetic convection equation is solved in its quasi-static form using the QSA,

described in section 3.2.33.2.3, assuming moderate magnetic Reynolds numbers (Rm =µ0σvZs/2≤ 1).

In this sense, time-dependent effects resulting from passing defects and the edges of the

specimen are neglected.

If α=β= 1, the Jacobi polynomials of the β-pdfs become Legendre polynomials, which are

in turn orthogonal with respect to uniform pdfs. The N = 4 random variables are summarized

in the vector ξ= (ξ1, ...,ξ4). Similar to the previous example, (4.364.36) is calculated numerically by

means of the Gauss-Jacobi-quadrature scheme using the forces Fx|z determined by the FEM at

the points in the 4-D grid G gPC. As in the previous example, the grid points differ between each

dimension since they depend on the corresponding input pdfs. On the contrary, the denominator

of (4.364.36) is calculated analytically.

The results of the gPC are verified by evaluating the normalized root mean square deviation

of both force components δFx|z with respect to MC simulations, which are independently

determined in a random grid GMC containing NMC samples. The general principle is shown

in Fig. 4.164.16. The forces at the grid points in GMC are approximated by the gPC expansion and

termed F̃gPC
x|z . In a consecutive step, the relative difference between the approximated and the

exact values is determined by:

δFx|z = 100%

max
(
FMC

x|z
)
−min

(
FMC

x|z
)
√√√√ 1

NMC

NMC∑
i=1

(
FMC

x|z,i − F̃gPC
x|z,i

)2
(4.50)

δF = 1
2 (δFx +δFz) , (4.51)

where δF denotes the mean error of the Lorentz force. This error definition involves additional

computations. However, it is a suitable measure to analyze the convergence properties for

different approximation orders p and number of sample points Ng = qN .

values calculated by MC
and approximated by gPC

Figure 4.16: Illustration of the computational grids from the gPC and the MC approach. The blue
points indicate the locations of the solutions obtained by MC sampling. After the gPC expansion
is performed, the approximated solution is computed on GMC by means of the polynomial
expansion and compared to the exact values in a root mean square sense.
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4.2.4 Uncertainty Quantification of Model Parameters

In order to perform a gPC expansion, it is necessary to determine the statistical properties of the

model parameters. On the one hand, the variations in the lift-off distance are approximated by

the accuracy of the 2-D linear stage NLS4 (Newmark Systems Inc., www.newmarksystems.comwww.newmarksystems.com),

as well as by the mounting accuracy and surface roughness of the specimen. On the other

hand, the statistical properties of the remaining parameters σ, v, and Br are determined

experimentally.

The conductivity of 60 Al-sheets is measured two times at three different locations, resulting

in 360 samples in total. The measurements are performed with the eddy current testing device

Elotest N300 (Rohmann GmbH, www.rohmann.dewww.rohmann.de) using the probe KAS 7H190.03.1, operating

at a frequency of 60 kHz. The measurement uncertainty is ±0.06 MS/m considering the standard

deviation from the repetitions.

The velocity variations are determined by means of the incremental position encoder TONiC

T1000 (Renishaw plc, www.renishaw.comwww.renishaw.com). The position is sampled with a frequency of 10 kHz.

After differentiating the position data with respect to the time, the velocity is obtained with a

measurement uncertainty of ±1 mm/s. The total number of samples is approximately 19.000.

The determination of the stochastic properties of the effective remanence is more difficult.

In order to provide comparability to the cylindrical magnet applied in the LET setup, it is

ensured that the magnet samples are ordered from the same distributor and are made of

the same magnetic material. The statistics are determined by 100 cylindrical magnets of

size [R,H]= [5,10] mm with a material grade of N52 delivered from the company HKCM-

engineering (Z10x10Ni-N52, Art.No: 9962-2336, www.hkcm.dewww.hkcm.de). The effective remanence of the

magnets is determined by measuring the axial component Bz of the magnetic flux density on

the cylinder axis. The experimental setup is shown in Fig. 4.174.17. The magnetic flux is measured

using the Gaussmeter FH36 (Magnet-Physik Dr. Steingroever GmbH, www.magnet-physik.dewww.magnet-physik.de)

in combination with the probe HS-MMT-6J08VH. All measurements are performed at room

temperature of about 23◦ C. The magnets are located at a distance z0 above the Hall-probe,

which is determined during calibration. In order to ensure that all magnets are positioned at

almost the same lateral position, a mask-sheet with a hole is used.

The distance z0, at which the magnetic flux is measured, has a major influences on the

resulting remanence due to the high sensitivity of the magnetic field and its rapid decrease with

distance. The calibration of the experimental setup consists of the determination of this distance.

It is done using a coil with 5000 turns supplied by a defined current of I0 = 3 mA, which is pro-

vided by the high precision current source SMU 2614 (Tektronix GmbH, Keithley Instruments,

www.keithley.comwww.keithley.com). The experimental setup during calibration is shown in Fig. 4.174.17(b)-(d). The

dimensions of the coil are D i = 2Ri = 24.5 mm, Do = 2Ro = 30.2 mm, and Hc = 5.5 mm. The

winding body has a wall-thickness of 1 mm and the wire has a diameter of only 0.05 mm. Due

to the high number of turns, stray fluxes from the coil terminals are reduced. In this way, a well

defined magnetic flux distribution is produced, whereas its axial component as a function of the
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distance is given [185185]:

Bz(z0)=µ0

2
I0N

Hc(Ro −Ri)

(Hc + z0) ln

Ro +
√

(Hc + z0)2 +R2
o

Ri +
√

(Hc + z0)2 +R2
i

− z0 ln

Ro +
√

z2
0 +R2

o

Ri +
√

z2
0 +R2

i


 .

(4.52)

The distance z0 is found by solving (4.524.52) iteratively together with the measured values of Bz. In

the current setup, it is determined to be z0 = 1.155±0.042 mm. The measurement uncertainty

is determined by 104 MC runs of (4.524.52) considering the tolerances of all geometrical dimensions

of ±0.05 mm resulting from the caliper together with an uncertainty of ±0.25% of the magnetic

Magnet-sample

Mask-sheet

Distance-sheet

Hall-sensor Magnet-Physik
Dr. Steingroever GmbH

FH36 Gaussmeter

(a) Side view of experimental setup during measurements.

Calibration-coil

Mask-sheet

Distance-sheet

Hall-sensor Magnet-Physik
Dr. Steingroever GmbH

FH36 Gaussmeter

(b) Side view of experimental setup during calibration.

(c) Experimental setup with the Gaussmeter (top
left) and high precision current source (to the right)

(d) Detailed view on the calibration coil connected to the high
precision current source

Figure 4.17: Experimental setup to determine the effective remanence.
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flux measurements. All variables are assumed to be uniform distributed. In a consecutive step,

the magnetic flux density from each magnet of the 100 samples is determined. Afterwards, their

effective remanences are calculated by:

Br = 2Bz(z0)

 z0 +H√
(z0 +H)2 +R2

− z0√
z2

0 +R2


−1

. (4.53)

The measurement uncertainty of the Br measurements is ±0.014 T. It is determined by sampling

(4.534.53) while taking into account the variability of the magnetic flux measurements and of all

geometrical dimensions including z0.

The pdfs of the model parameters are determined by fitting the β-distributions to the

obtained data using the software environment "R" together with the package fitdistrplus

[186186]. The limits (a,b) are defined considering a 20% tolerance interval with respect to the

extrema of the empirical data. A maximum likelihood estimation is applied to determine

the individual shape parameters α and β. The upper and lower bounds of the equivalent

uniform distributions are determined numerically in a consecutive step by means of the inverse

cumulative distribution function (cdf), assuming that the uniform distributions cover 99% of

the fitted β-cdfs. The fitted pdfs are shown in Fig. 4.184.18 together with their modes v̂, σ̂, and

B̂r, which are the points of maximum probability density. The corresponding parameters are

summarized in Table 4.34.3. The pdfs of the velocity and the conductivity are in the expected

range and are fairly symmetric with respect to the modes. On the contrary, the values of the

effective remanence are considerably lower compared to the nominal values provided by the

manufacturer. The maximum probability of the fitted distribution is located at B̂r = 1.32 T,

which is 7.7% lower compared to Br = 1.43 T as specified by the manufacturer. Moreover, it
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(c) B̂r = (1.32±0.014) T

Figure 4.18: Statistical properties and modes of the input parameters: (a) velocity, (b) conduc-
tivity and (c) effective remanence. The graphs show the histograms obtained by experiments
(Exp), the associated empirical pdfs (E-pdf) and the fitted distributions used in the numerical
simulations. The E-pdfs are obtained numerically using a Gaussian kernel smoother together
with a bandwidth, which equals 50% of the bin width in the respective histogram. The labels
u-fit and β-fit correspond to the fits to the uniform- and β-distribution, respectively [178178].
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Table 4.3: Limits and shape parameters of the fitted probability distributions of the different
model parameters [178178].

pdf parameter v σ Br h

uniform
a 0.4949 30.32 1.254 0.9

b 0.5051 30.77 1.365 1.1

beta

a 0.4906 30.22 1.201 0.86

b 0.5090 30.85 1.383 1.14

α 9.4273 5.0283 8.336 5

β 8.9109 4.6166 4.910 5

can be observed that the distribution is not symmetric, which motivates the choice to model

the probability density functions by means of β-distributions. In regard of the experimentally

determined intervals from Fig. 4.184.18, it can be observed that the measurement uncertainty

is considerably lower compared to the degree of variation. Hence, it was possible to provide

information about the actual variability of the model parameters.

Experimental LET setup: In the setup under investigation, the optimized cylindrical per-

manent magnet of size [D,H]= [22.5,17.6] mm is used (see section 4.14.1). The layered specimen,

which is made of stacked aluminium sheets, is used throughout the analysis (see Fig. 2.52.5(b) on

page 1313). One sheet contains a defect of size [Xd,Yd, Zd]= [12,2,2] mm and is located in a depth

of d = 2 mm. The velocity and the lift-off distance are set to 0.5 m/s and 1 mm, respectively.

4.2.5 Results and Discussion

The gPC is evaluated for different grids G gPC and approximation orders p, considering M = 11

different positions of the magnet. The gPC is expanded as long as the number of coefficients

is smaller or equal to the number of sampling points (Nc ≤ Nd). The mean error (4.514.51) is

computed using NMC = 104 direct samples. The errors are calculated for two characteristic

magnet positions P1(x = 0), when the magnet is located right over the defect (highly perturbed

eddy current profile) and P2(x = 65.5mm), when the magnet is located between the defect and

the outer edge of the specimen (unperturbed eddy current profile). The estimated errors are

summarized in Table 4.44.4.

Differences below 0.3% can be observed even in case of coarse grids, i.e., q = 2 (Ng = 16).

The error is converging fast to the accuracy limit of the FEM indicated by the slightly higher

errors if the magnet is located in P1. The study indicates that a grid with q = 3 points in each

dimension in combination with an approximation order of p = 3 is sufficient in this case to

determine the uncertainties of both force components with an error of < 0.18%.
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Table 4.4: Averaged δF between gPC and MC for two characteristic magnet positions P1 and P2
in case of β-distributions (p expansion order, Nc number of coefficients, q number of grid points
in one dimension, Ng total number of grid points) [178178].

p Nc pos.
q / Ng

2 / 16 3 / 81 4 / 256 5 / 625

1 5
P1 0.3613 0.3366 0.3326 0.3311
P2 0.2912 0.2911 0.2907 0.2908

2 15
P1 0.2851 0.1705 0.1614 0.1583
P2 0.1877 0.0178 0.0162 0.0149

3 35
P1 - 0.1705 0.1615 0.1599
P2 - 0.0172 0.0163 0.0136

4 70
P1 - 0.2403 0.1615 0.1614
P2 - 0.1647 0.0164 0.0140

5 126
P1 - - 0.1615 0.1620
P2 - - 0.0172 0.0141

6 210
P1 - - 0.2034 0.1638
P2 - - 0.1263 0.0139

7 330
P1 - - - 0.1655
P2 - - - 0.0140

8 495
P1 - - - 0.2014
P2 - - - 0.1680

The estimated force profiles are depicted in Fig. 4.194.19 together with the experimental data.

The graphs show the uncertainty intervals µx|z ±2σx|z for the forces Fx|z obtained by the gPC

in case of β-distributed random variables. The intervals are shown at the M = 11 selected

points of interest. The dashed line shows one single deterministic simulation considering the

modes of the input parameters. The measurements are in the numerically predicted range when

uncertainties are taken into account. The relative standard deviation with respect to the mean

value of both force components is nearly independent of the observation point and amounts

3.8% and 5.2% in case of β- and uniform distributed random variables, respectively. Moreover,

the pdfs of the forces are evaluated by sampling the gPC expansion 106 times. They are shown

in the lower part of Fig. 4.194.19 in the event that the magnet is located right over the defect at

the point P1. The pdfs are compared to those obtained by the MC method using NMC = 104

direct samples. As expected from the estimated errors, a very good agreement between both

approaches can be observed.

The first order Sobol indices of Fx and Fz are determined at each of the M = 11 points and

showed only minor variations with respect to the magnet position. They are averaged over

all M positions and listed in Table 4.54.5. The first order Sobol indices are most significant and
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Figure 4.19: Numerical and experimental results of the Lorentz forces profiles. The uncertainty
intervals are shown in case of β-distributed random variables for µx|z ±2σx|z using a grid with
q = 3 points in each direction and an expansion order of p = 3. The figures at the bottom show
the estimated pdfs in the point P1 when the magnet is located over the defect at x = 0 for
uniform distributions (u) and β-distributions (β) [178178].

Table 4.5: First order Sobol indices of Fx and Fz averaged over M = 11 magnet positions
calculated with a grid of q = 3 points in each direction and an expansion order of p = 3 [178178].

pdf S(1)
x,B S(1)

z,B S(1)
x,h S(1)

z,h S(1)
x,v S(1)

z,v S(1)
x,σ S(1)

z,σ

uni 88.4 84.2 9.6 10.2 1.3 3.7 0.7 1.9
beta 87.9 83.7 10.2 10.7 1.2 3.6 0.7 2.0

almost cover the total variance. Keeping in mind that the whole system is treated as a black box,

assuming that the experimentalist has no detailed knowledge about the applied magnet, it is

observed that the uncertainty in the magnetic remanence has with ~85% the greatest influence

on the total variance of the resulting forces. In addition, the lift-off distance contributed to

approximately ~10%, whereas the velocity and the conductivity showed only minor impact.

4.2.6 Conclusions

The present study shows that the analysis of uncertainties by means of gPC based meth-

ods can be readily used for extended experimental validation in the framework of LET. The
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applied methodology is very efficient in terms of computation time compared to traditional

MC approaches. The gPC already converged after Ng = 81 simulations using an order p = 3

approximation. The statistical properties of the velocity, the conductivity, and the magnetic

remanence were determined experimentally. The use of β-distributions allowed to model each

variable individually and in a more realistic sense compared to uniform distributions. The

analysis provides the possibility to identify most influencing parameters in order to improve

the measurement accuracy of the experimental setup. This serves as a starting point to reduce

the variance of the resulting Lorentz forces and to increase the SNR, which directly enhances

the reproducibility and the defect detection capabilities of the LET method.

The study shows that the magnetic remanence is the most influencing factor when consider-

ing the absolute value of the Lorentz force. If possible, it should be determined in advance using

the proposed experimental setup. It could be observed that the effective remanence is generally

lower compared to the values specified by the manufacturer. This should be taken into account

during the optimization of magnet systems in the future. However, the use of the dimensionless

scaling factor from (4.74.7) allows to correct the remanence variations retrospectively by increasing

the velocity accordingly, while ensuring that the system does not violate the constraints and

remains to operate in the linear Rm regime. Nevertheless, its value does not change over time

and is thus not contributing to the noise level considering the SNR. The quantities, which may

change over time, are the lift-off distance and the velocity. Since the eddy current density is

highest at the surface of the specimen, the lift-off distance should be kept at a constant level in

order to decrease the disturbances resulting from lift-off variations.

Despite of that, the velocity variations have an apparently small share of about 1−4% to

the total variance, their time-dependent nature blurs the defect signal and reduces the SNR.

Comparing the relative contribution to the experimental data of the defect depth study in

section 4.1.54.1.5, it seems inherent that the velocity variations and vibrations should be reduced as

much as possible in order to keep the Lorentz force at a constant level. This would enable the

identification of weakest force perturbations resulting from small or deep lying defects.

It is emphasized that the current study is valid for the proposed working point of the system.

It is assumed that the system operates in the linear regime of low to moderate Rm, where the

back-reaction of the induced eddy currents is moderate (QSA). If the working point considerably

changes, the study has to be repeated together with an estimation of the involved uncertainties.

In the same way, alternative numerical approaches have to be considered, as for example MDA

or MMA described in section 3.23.2.

During the present analysis, it is observed that the velocity profile obeys characteristic

oscillations, which superimpose the rectilinear part of the motion. So far, the influence of

sinusoidal velocity profiles on the Lorentz force has not been investigated in detail. In the next

section, this effect is studied further and a full 3-D analytical approach is presented to solve

this kind of electromagnetic field problem.
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4.3 Lorentz Forces in the Case of Oscillating Velocity Profiles

4.3.1 Introduction and Motivation

The present study addresses the analysis of motion-induced eddy currents in the case of

harmonic motion of current carrying coils or permanent magnets in the vicinity of electrical

conductors. The study is motivated by the observation of velocity oscillations of the specimen,

resulting for example from the control circuit of the linear drive. Three normalized velocity pro-

files, which are obtained during operation, are shown in Fig. 4.204.20. The velocities are determined

using the incremental position encoder TONiC T1000 (Renishaw plc, www.renishaw.comwww.renishaw.com). It

has been observed that the relative oscillation amplitudes reach up to 3% in the present case.

The time-dependent velocity influences the induced eddy current density together with the total

magnetic field. In consequence, the Lorentz force is influenced as well. The goal of the present

study is to determine this electromagnetic force F(EM) resulting from the observed oscillations.

This quantity serves as an input of the force sensing unit. An ideal sensor would convert this

force into another physical quantity, which is proportional to the measured force without any

alteration such that F(EM) =F(MEAS). However, in reality, every sensor obeys a distinct charac-

teristic, which can be described by its transfer function. As a result, the output of the sensor

differs with respect to its input. Despite of the academic nature of this problem, analogies can be

found in many modern engineering problems where oscillations occur and motion-induced eddy

currents, together with the associated forces, are utilized. A typical example are eddy current

brakes. Strong magnetic fields are used to generate drag-forces, which act on moving actua-

tors [187187,188188]. In the contrary, in magnetic levitation (MAGLEV), one is interested to maximize

the lift-to-drag ratio for increased efficiency. This kind of transportation systems avoid ground

friction and are able to provide high speed transportation [189189]. First reports on this topic can be

dated back to Bachelet [4545] in 1912. Several analytical approaches considering constant motion,

especially in case of high speeds, can be found in the literature [4444,4646,4747,5252,5454,5555,190190–192192].

Permanent magnet

Conductor

v

Velocity oscillations Electromagnetic model Mechanical model

Problem definition

Electromagnetic field calculation

Determine electromagnetic force

Model identification

Parameter estimation

Determine measured force

M

K

R

(EM)F

Figure 4.20: Problem under investigation. A permanent magnet moves with a sinusoidal velocity
profile relative to a conductive slab. (left) Observed velocity oscillations in the experimental LET
setup; (middle) Electromagnetic model including time-dependent velocities; (right) Mechanical
model of the force sensor unit altering the electromagnetic input force.
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Another area of application is given in the framework of electromagnetic damping [193193–195195]

and electromagnetic coupling [196196]. Modern skyscrapers for example include passive structural

dampers in the basement to reduce vibrations [197197]. Velocity induced eddy currents and Lorentz

forces are also used in electromagnetic vibration isolation systems such as gravity compen-

sation devices or suspension systems [198198,199199]. Very recent activities can be also found in the

framework of energy harvesting, where electromagnetic transducers are used to convert the

energy from mechanical vibrations to electric energy [200200]. Large scale vibrations occur as a

consequence of wind-induced oscillations of civil structures [201201]. Linear electromagnetic trans-

ducers are either analyzed with simplified analytical approximations neglecting the reactance

of the conductor [202202] or by means of time-consuming numerical simulations [203203]. Together

with LET, all these applications have in common that they involve mechanical systems which

obey eigenfrequencies and the tendency to oscillate, either intended or parasitic, in form of

undesired vibrations of laboratory setups. A typical example of the latter was also observed by

Ramos et al. [5959] in the framework of NDT.

The time-dependent velocity accounts for a more intricate eddy current profile inside the

conductor. As a consequence, the problem cannot be treated as stationary or quasi-static

anymore. The resistive and inductive nature of the conductor implies a complex interaction

between the primary magnetic field generated by the magnetic field source, which oscillates

at a given frequency, and the temporally as well as spatially pulsating secondary magnetic

field generated by the induced eddy currents. During analytical analysis of oscillating systems,

the back reaction of the conductor was merely taken into account [204204]. Admittedly, Amati

et al. [205205] addressed the question of sinusoidal speed variations in torsional eddy current

dampers but neglected the inductive character of the conductor supported by the assumption of

small amplitude oscillations. Considerable studies from Ooi et al. [206206–210210] tackled the analysis

of several transient problems using the concept of dynamic circuit theory. The method is based

on the evaluation of lumped parameter matrices which are determined by the stored magnetic

energy. Besides the good agreement to experimental results, the modeling of source- and

induced eddy currents as pure surface currents can be disadvantageous. Recently, Weidermann

et al. [211211] addressed the problem of time-dependent velocities and the associated Lorentz forces

in the framework of LFV in 2014. However, they assumed a homogeneous external magnetic

field and simplified the problem to the 1-D case. Besides the intelligible and descriptive nature

of this study, it is far from a realistic scenario. Its actuality indicates a lack of knowledge in this

field and confirms the need for more advanced solutions. In the following, an analytical approach

is presented to model this kind of electromagnetic field problems bypassing the mentioned

simplifications. The present study is published by the author of this thesis and can be found

in [8282].

At first, the problem is formulated and the solution of the governing equations is presented

in section 4.3.24.3.2. The obtained analytical expressions are verified by comparing them to FEM

simulations in section 4.3.34.3.3. Subsequently, the influence of oscillatory motion on the resulting
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Lorentz force is investigated in section 4.3.44.3.4. The chapter closes by drawing the conclusions in

section 4.3.54.3.5.

4.3.2 Mathematical Formulation of the Problem

4.3.2.1 Solution of the Governing Equation

In this section, the solution of the governing equations is presented. A sketch of the investigated

problem is given in Fig. 4.214.21. The computational domain is divided into four sub-domains.

Domain I, II and IV are air domains and domain III represents the conductor. The origin of

the Cartesian coordinate system is defined at the surface of the conductor. The conducting

slab is infinitely extended in the xy-plane but has a finite thickness d. The magnetic field

source is modeled by an arrangement of current carrying wires located at a height z′. It

moves along the x-axis with a time-dependent velocity v(t)= v0 +v1 cos(ωvt). The problem is

addressed in rest frame of reference K ′, considering that the magnetic field source moves and

the conductor is at rest. Hence, motion-induced eddy currents are induced in consequence of a

time-dependent magnetic field B(t). Displacement currents are neglected under the assumption

that the velocity is much smaller than the speed of light and that the oscillation frequency is

moderate such that ωε/σ<< 1. If bodies are accelerated, stresses can arise which could alter

the material properties. However, the present analysis is based on the hypothesis that the

electrical properties in the instantaneous rest frame K ′ are unaffected by the acceleration [8181].

The negligence of acceleration effects can be motivated by an electron-theoretical viewpoint

considering an example of rotary motion. This particular effect was studied by Shiozawa in [212212].

It is stated that acceleration effects can be neglected if the angular frequency of the solid body

ωv is much smaller than the angular frequency of the mass me and the electron-nucleus spring

I

II

III

IV

Figure 4.21: Cross section of the problem under investigation. A configuration of current carrying
coils is moving over a conducting slab, infinitely extended in the xy-plane but of finite thickness
d [8282].
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ω0, which lies in the range of infrared and ultraviolet light. Because moderate velocities are

assumed in the present analysis, it is possible to continue with the phenomenological viewpoint,

where electromagnetic effects of matter are solely described by the material properties σ, µ, and

ε, without taking into account its internal structure. In this sense, the constitutive equations

derived in section 3.13.1 are still valid and hold [213213,214214].

In short, the governing equations are derived from Maxwell’s equations in the rest frame

K ′, omitting primed quantities to simplify matters:

∇×H=J (4.54a)

∇×E=−∂B
∂t

. (4.54b)

The magnetic flux density B=µH is expressed by the magnetic vector potential A (B=∇×A,

∇·A= 0) under the assumption that the magnetic material is linear and obeys a constant

relative permeability µr. In the present case, the induced eddy currents are given by J=−σ(∇φ+
∂A/∂t). Because the source currents are assumed to flow solely in the xy-plane, the scalar electric

potential φ is constant and can be omitted in further calculations. Additionally, Az = 0 and the

calculations are simplified to the components Ax and A y. As a result, (4.54a4.54a) and (4.54b4.54b) can be

written as:

∂2 Ax|y
∂x2 + ∂2 Ax|y

∂y2 + ∂2 Ax|y
∂z2 =µσ∂Ax|y

∂t
(4.55)

The variable separation method is applied by taking the Fourier transform of A with respect to

the spatial coordinates x and y as well as with respect to the time t such that Ã=FxFyFt{A}.

In consequence, the problem is described in the aforementioned dimensions by the spatial

angular frequencies kx and ky and the temporal angular frequency ω. In the following, the x-

and y-component of the magnetic vector potential are termed as Ãx|y.

The governing equations in the respective domains are then given by:

∂2 ÃI,II,IV
x|y
∂z2 = k2 ÃI,II,IV

x|y (4.56a)

∂2 ÃIII
x|y

∂z2 = γ2 ÃIII
x|y, (4.56b)

with

k =
√

k2
x +k2

y (4.57a)

γ=
√

k2
x +k2

y + jωµσ . (4.57b)

The corresponding solutions of (4.56a4.56a) and (4.56b4.56b) are:

ÃI,II,IV
x|y = C̃I,II,IV

x|y ekz + D̃I,II,IV
x|y e−kz (4.58a)

ÃIII
x|y = C̃III

x|yeγz + D̃III
x|ye−γz. (4.58b)
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This results in a total number of 16 constants C̃I-IV
x|y and D̃I-IV

x|y , which are determined by means

of the underlying boundary conditions.

The magnetic vector potential vanishes at infinity, such that:

ÃI
x|y = 0

∣∣
z→∞ (4.59a)

ÃIV
x|y = 0

∣∣
z→−∞ . (4.59b)

Hence, C̃I
x|y = 0 and D̃IV

x|y = 0.

The normal component of the magnetic flux density B̃ is continuous across the interfaces

such that B̃i
z = B̃i+1

z , where i = {I, II, III}. This condition is fulfilled by ensuring the continuity of

Ãx|y across the interfaces:

ÃI
x|y = ÃII

x|y
∣∣
z=z′ (4.60a)

ÃII
x|y = ÃIII

x|y
∣∣
z=0 (4.60b)

ÃIII
x|y = ÃIV

x|y
∣∣
z=−d . (4.60c)

The remaining constants are determined by ensuring the continuity of the tangential

component of the magnetic field H̃ across the interfaces, such that H̃ i
x|y = H̃ i+1

x|y :

∂ÃII
x|y

∂z
−
∂ÃI

x|y
∂z

= µ0 Ĩx|y
∣∣
z=z′ (4.61a)

∂ÃII
x|y

∂z
− 1
µr

∂ÃIII
x|y

∂z
= 0

∣∣
z=0 (4.61b)

∂ÃIV
x|y

∂z
− 1
µr

∂ÃIII
x|y

∂z
= 0

∣∣
z=−d . (4.61c)

The function Ĩx|y =FxFyFt{Ix|y} in (4.61a4.61a) is the Fourier transform of the x- and y-component

of the oscillating source current above the conductor.

Using the boundary conditions together with the ansatz from (4.58a4.58a) and (4.58b4.58b), a system

of equations (4.624.62) can be derived to determine the unknown constants. The solutions are given

in (4.63a4.63a)-(4.63f4.63f). The expressions for Ãx and Ã y are similar, with the only difference regarding

the source current Ĩx and Ĩ y.



e−kz′ −ekz′ −e−kz′ 0 0 0

e−kz′ ekz′ −e−kz′ 0 0 0

0 1 1 −1 −1 0

0 k −k −γµ−1
r γµ−1

r 0

0 0 0 e−γd eγd −e−γd

0 0 0 γµ−1
r e−γd −γµ−1

r eγd −ke−kd





D̃I
x|y

C̃II
x|y

D̃II
x|y

C̃III
x|y

D̃III
x|y

C̃IV
x|y



=



0

k−1µ0 Ĩx|y

0

0

0

0



(4.62)
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D̃I
x|y =µ0Ĩx|y

γ

k sinh(kz′)[kµr +γtanh(γd)]+µr cosh(kz′)[γ+kµr tanh(γd)]

(γ2 +k2µ2
r )tanh(γd)+2kγµr

(4.63a)

C̃II
x|y =µ0Ĩx|y

e−kz′

2k
(4.63b)

D̃II
x|y =µ0Ĩx|y

k2µ2
r −γ2

(γ2 +k2µ2
r )+2kγµr tanh−1(γd)

e−kz′

2k
(4.63c)

C̃III
x|y =µ0Ĩx|y

µr(γ+kµr)
(γ+kµr)2 − (γ−kµr)2e−2dγ e−kz′ (4.63d)

D̃III
x|y =µ0Ĩx|y

µr(γ−kµr)
(γ+kµr)2e2dγ− (γ−kµr)2 e−kz′ (4.63e)

C̃IV
x|y =µ0Ĩx|y

γµre(d−z′)k

2kγµr cosh(γd)+ (γ2 +k2µ2
r )sinh(γd)

(4.63f)

4.3.2.2 Fourier Transform of the Source Current

The Fourier transformation with respect to the spatial coordinates x and y as well as the

time t of the x- and y-component of the source current is required in order to evaluate the

magnetic vector potential. It is assumed that the magnetic field source moves along the negative

x-direction with a periodically changing velocity v = −v(t)ex. The velocity oscillates with a

frequency of ωv = 2π fv around a nominal value of v0 with an amplitude of v1:

v(t)= v0 +v1 cos(ωvt). (4.64)

Hence, the time-dependent position of the magnetic field source is given by:

ξ(t)= v0t+ v1

ωv
sin(ωvt). (4.65)

The ratio v1/ωv can be interpreted as a displacement amplitude of the magnetic field source.

In the present context, rectangular and circular coil shapes are considered. In the further

course of this work, the planar cases are extended to stacked configurations as they are shown in

Fig. 4.224.22. This is equivalent to the current model of permanent magnets [100100]. Hence, cuboidal

and cylindrical permanent magnets are included in the present analysis.

Rectangular Current Sources: The x- and y-component of the source current of a rectan-

gular coil in the spatial domain are given by:

I(rect)
x = Is

[
rect

(
x−ξ(t)

a

)
δ

(
y+ b

2

)
−rect

(
x−ξ(t)

a

)
δ

(
y− b

2

)]
(4.66a)

I(rect)
y = Is

[
rect

( y
b

)
δ

(
x− a

2
−ξ(t)

)
−rect

( y
b

)
δ

(
x+ a

2
−ξ(t)

)]
, (4.66b)

where rect(·) is the rectangular function, δ(·) is the Dirac delta distribution, and Is is the current

strength. In the case of permanent magnets, Is is the outer surface current density in A/m
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Figure 4.22: Current models used to model permanent magnets [8282].

determined by Js = Ist=M×n, where M is the magnetization, and n and t are the unit normal

and tangential vectors of the outer surface of the magnet, respectively. Their spatial Fourier

transforms with respect to the coordinates x and y are:

FxFy{I(rect)
x }= Is

4 j
kx

sin
(
kx

a
2

)
sin

(
ky

b
2

)
︸ ︷︷ ︸

Î(rect)
x

f̄ (t) (4.67a)

FxFy{I(rect)
y }=−Is

4 j
ky

sin
(
kx

a
2

)
sin

(
ky

b
2

)
︸ ︷︷ ︸

Î(rect)
y

f̄ (t). (4.67b)

The terms which solely depend on the spatial frequencies kx and ky are indicated by Îx|y in

further calculations. The complex function f̄ (t) includes the time-dependency of the vibrating

source current. Since the magnetic field source moves as a whole, it does not depend on the

explicit geometry of the current carrying wire and can be treated independently. The calculation

of the Fourier transform will be treated separately in the further course.

Circular Current Sources: In case of circular coils, the x- and y-component of the source

current can be described by:

I(circ)
x =−2Is

y
a
δ

(√
(x−ξ(t))2 + y2 − a

2

)
(4.68a)

I(circ)
y = 2Is

x
a
δ

(√
(x−ξ(t))2 + y2 − a

2

)
. (4.68b)

Their Fourier transforms with respect to x and y are:

FxFy{I(circ)
x }= jaπIs

ky

k
J1

(
k

a
2

)
︸ ︷︷ ︸

Î(circ)
x

f̄ (t) (4.69a)
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FxFy{I(circ)
y }=− jaπIs

kx

k
J1

(
k

a
2

)
︸ ︷︷ ︸

Î(circ)
y

f̄ (t), (4.69b)

where J1(·) is the first order Bessel function of the first kind. The calculation of the Fourier

transform is explained in more detail in Appendix AA.

Mathematical Modeling of Oscillating Current Sources: The expressions in (4.67a4.67a) and

(4.67b4.67b) as well as in (4.69a4.69a) and (4.69b4.69b) have to be additionally transformed with respect to the

time t. The complex function f̄ (t) results from applying the law of displacement to the x−ξ(t)
terms in (4.66a4.66a), (4.66b4.66b) and (4.68a4.68a), (4.68b4.68b), and is given by:

f̄ (t)= exp
[
− jkx

(
v0t+ v1

ωv
sin(ωvt)

)]
. (4.70)

It is noted, that it contains a harmonic function in the exponent due to the periodically changing

velocity. This function bears analogies to phase modulated signals, which are well known in

communication engineering [215215]. Its Fourier transform is obtained by applying the Jacobi-

Anger expansion [184184] of the nested harmonics using the following identities:

cos
(
αsin(β)

)= J0(α)+2
∞∑

n=1
J2n(α)cos(2nβ) (4.71a)

sin
(
αsin(β)

)= 2
∞∑

n=1
J2n−1(α)sin

(
(2n−1)β

)
, (4.71b)

where Jn(·) are the n-th order Bessel functions. In this sense, f̄ (t) is decomposed to an infinite

sum of harmonics:

f̄ (t)= [
cos(kxv0t)− j sin(kxv0t)

]× (4.72)

×
[
J0

(
kx

v1

ωv

)
+2

∞∑
n=1

J2n

(
kx

v1

ωv

)
cos(2nωvt)− jJ2n−1

(
kx

v1

ωv

)
sin

(
(2n−1)ωvt

)]
.

In consequence, its Fourier transform can be represented by a sum of Dirac delta distributions:

Ft{ f̄ (t)}= J0

(
kx

v1

ωv

)
δ(ω+kxv0)+ (4.73)

+
∞∑

n=1
(−1)nJn

(
kx

v1

ωv

)[
δ(ω−nωv +kxv0)+ (−1)nδ(ω+nωv +kxv0)

]
.

A graphical representation of the signal in the frequency domain is shown in Fig. 4.234.23.

The main component of the spectrum is determined by the nominal velocity v0. However,

the oscillatory motion introduces additional side components, displaced by multiples of the

oscillation frequency ωv. Their magnitudes are determined by the corresponding n-th order

Bessel functions of the first kind Jn(·). The higher order harmonics vanish if the magnetic field

source moves at a constant velocity v0 with v1 = 0 since Jn(0)= 0 for n > 0 and J0(0)= 1.
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Figure 4.23: Harmonics of Fourier transformed oscillating magnetic field sources [8282].

4.3.2.3 Force Calculation

As a result of the harmonic oscillation, the forces which act on the current carrying wires

are time-dependent. They can be determined directly in the Fourier domain by applying the

theorem of Parseval [216216]:

F(t)= 1
8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ĩ∗× B̃I(d)e jωt dωdkxdky, (4.74)

where Ĩ is the Fourier transformed source current vector and the superscript ∗ indicates

complex conjugation. The distorted magnetic flux B̃I(d) can be interpreted as the part of the total

magnetic field, B̃I, in the air domain I, which is affected by the magnetic flux of the induced

eddy currents and the magnetic properties of the conductor. The drag-force Fx and the lift-force

Fz are then:

Fx(t)= 1
8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ĩ∗yB̃I(d)
z e jωt dωdkxdky (4.75a)

Fz(t)= 1
8π3

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
Ĩ∗x B̃I(d)

y − Ĩ∗yB̃I(d)
x

)
e jωtdωdkxdky. (4.75b)

The components of B̃I(d) can be determined by subtracting the primary field B̃I(p), generated by

the magnetic field source, from the total field:

B̃I(d) = B̃I − B̃I(p) =∇×
(
ÃI

∣∣∣µr

σ
− ÃI

∣∣∣µr=1

σ=0

)
. (4.76)

For B̃I(d)
x , one gets:

B̃I(d)
x =

(
D̃I

y −µ0 Ĩ y
ekz′

2k

)
ke−kz. (4.77)
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Since the constant D̃I
y contains Ĩ y, the following expressions can be simplified by using the

identity D̃I
y = Ĩ yD̂I:

B̃I(d)
x = kĨ y

(
D̂I −µ0

ekz′

2k

)
︸ ︷︷ ︸
G(ω,k)e−kz′

e−kz, (4.78)

with k= [kx,ky]. The remaining components of the distorted magnetic field can be determined

in a similar way:

B̃I(d)
x = kĨ yG(ω,k)e−k(z+z′) (4.79a)

B̃I(d)
y =−kĨxG(ω,k)e−k(z+z′) (4.79b)

B̃I(d)
z = j

(
ky Ĩx −kx Ĩ y

)
G(ω,k)e−k(z+z′). (4.79c)

The function G(ω,k) contains properties of the conductor such as its thickness, conductivity and

relative permeability:

G(ω,k)= µ0(e2dγ−1)(k2µ2
r −γ2)

2k
[
(γ+kµr)2e2dγ− (γ−kµr)2

] . (4.80)

The final expression for the drag- and lift-force in case of a single winding can be determined

by combining the following expressions in (4.75a4.75a) and (4.75b4.75b):

• The Fourier transformed source currents, i.e., the functions describing the spatial trans-

formation from (4.67a4.67a) and (4.67b4.67b) or (4.69a4.69a) and (4.69b4.69b)

• The transformed time-dependent part of the source currents from (4.734.73)

• The distorted magnetic field from (4.79a4.79a)-(4.79c4.79c) at the location z = z′ of the current

Additionally, an inverse Fourier transform from frequency to time domain is applied in order

to evaluate the waveforms of both force components. As a consequence of the symmetry in the

spatial Fourier domain, the integration limits can be changed to 0 and ∞. Finally, Fx|z(t) is then

given by:

Fx|z(t)= 1
π2

∞∫
0

∞∫
0

Ix|z(k)G (t,k)Sw|m(k) f̄ (t)−1 dkxdky, (4.81)

with the auxiliary functions:

Ix(k)=− j Î∗y
(
ky Îx −kx Î y

)
(4.82a)

Iz(k)=−k
(
Î∗x Îx + Î∗y Î y

)
, (4.82b)
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G (t,k)= J0

(
kx

v1

ωv

)
G(−kxv0,k)e− jkxv0 t +

N∑
n=1

(−1)nJn

(
kx

v1

ωv

)
×

× [
G(−kxv0 +nωv,k)e− j(v0kx−nωv)t + (−1)nG(−kxv0 −nωv,k)e− j(v0kx+nωv)t], (4.83)

Sw(k)= e−2kz′ . (4.84)

The functions Ix(k) and Iz(k) include information about the shape of the source current in

the xy-plane and have to be used depending on the force component to be calculated. They can

be determined using (4.67a4.67a) and (4.67b4.67b) for rectangular current sources or (4.69a4.69a) and (4.69b4.69b)

for circular current sources, respectively. The function G (t,k) includes the time-dependence

of the magnetic field, originating from the oscillating current source. The infinite bandwidth

of the function leads to a sum of harmonics with their amplitudes determined by the velocity

oscillation amplitude v1 and the frequencies ωv and kx. In numerical calculations, the sum in

(4.834.83) is truncated after N terms. Finally, the function Sw,m(k) includes the height information

of the magnetic field source. The index w and m distinguishes between the single wire with

c = 0 or a magnet of height c > 0, respectively.

The solution of a single wire can be extended to permanent magnets by means of the surface

current model shown in Fig. 4.224.22. It is assumed that the permanent magnets have a height

of c and their lower surface is located at a lift-off distance h above the plate. The total force

is determined by integrating the force on each wire over the z-coordinate, resulting from the

superposition of the total distorted magnetic flux density generated from all wires. Hence, (4.814.81)

becomes:

Fx|z(t)= 1
π2

∞∫
−∞

∞∫
−∞

Ix|zG (t,k) f (t)−1
h+c∫
h

h+c∫
h

e−k(z+z′) dzdz′

︸ ︷︷ ︸
Sm(k)

dkxdky. (4.85)

Carrying out the integration over z and z′ yields the expression of the function Sm(k) valid as

long as c > 0:

Sm(k)= 1
k2

(
e−kh −e−k(h+c)

)2
. (4.86)

By inserting (4.864.86) in (4.814.81), one gets the final expression for the drag- and lift-force for perma-

nent magnets. In order to evaluate (4.814.81) at a certain point in time, an adaptive two dimensional

numerical integration technique based on a weighted quadrature approach is applied [217217,218218].

4.3.3 Comparison to Numerical Simulations

The analytical solution is compared to numerical simulations obtained using the FEM. The

numerical simulation of the complete time-dependent 3-D problem is not trivial. Difficulties are
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arising in the case of high velocities, when the skin-effect becomes dominant. Hence, the element

size has to be reduced, which results in large system matrices. Moreover, the time-step has to

be chosen appropriately, depending on the oscillation frequency ωv, and the conducting slab has

to be truncated at a sufficient distance to avoid edge effects. In view of those circumstances, the

decision was taken to perform the verification in a simplified 2-D model, which can be solved

numerically with a high accuracy and within reasonable time. At first, the numerical model is

described, which is followed by the derivation of the analytical solution in 2-D. It is noted that

the basic concept of the analytical approach is unaltered by the dimensional reduction and that

the solutions of the 2-D and 3-D case are similar.

4.3.3.1 The 2-D Numerical Model

The FEM model is set up using the software environment Comsol Multiphysics [9393]. The

problem is defined in the same way as in the 3-D case from Fig. 4.214.21, on the assumption that

the setup has an infinite extend along the y-axis. The geometrical parameters of the model

are given in Table 4.64.6. The problem can be completely described by the y-component of the

magnetic vector potential A y. Efficient numerical modeling is realized by changing the frame of

reference from the conductor to the magnet. In this way, the time-dependent velocity is modeled

by the v×B term rather than the ∂B/∂t term used in the analytical approach. In this way, it

is possible to use a stationary mesh, avoiding the time consuming re-meshing procedure after

every time-step. The governing equation for A y in the whole computational domain, including

the conductor, the magnet, and the surrounding air region, is given by:

σ

(
∂A y

∂t
+vx

∂A y

∂x

)
+ ∂

∂x

(
1
µ

∂A y

∂x

)
+ ∂

∂z

(
1
µ

∂A y

∂z

)
= 0. (4.87)

Equation (4.874.87) is solved by the FEM in the time-domain using a fifth order backward differen-

tiation formula. The time-step is chosen such that every oscillation period contains 100 steps

∆t = 1/(100 fv).

Table 4.6: Parameters of the exemplary problem used in the analysis of harmonic motion [8282].

Parameter Value Description

a 15 mm Length of the magnet

b 15 mm Width of the magnet

c 25 mm Height of the magnet

d 50 mm Thickness of the plate

h 1 mm Lift-off distance

Br 1.17 T Remanence of the magnet (NdFeB-N35)

σAl 30.66 MSm−1 Electrical conductivity of aluminium

µr 1 Relative permeability
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4.3.3.2 The 2-D Analytical Model

The evaluation of the 2-D analytical solution follows the same procedure as in the former case.

The geometry of the problem is unaltered and already given in Fig. 4.214.21. The governing equation

(4.554.55) is simplified to determine A y since Ax = 0. As a consequence of the infinite extend in the

y-direction, the spatial frequency ky vanishes, which simplifies the expressions for k and γ from

(4.57a4.57a) and (4.57b4.57b), respectively. Applying the boundary conditions (4.59a4.59a)-(4.61c4.61c) results in the

same coefficients C̃I-IV and D̃I-IV from (4.63a4.63a)-(4.63f4.63f) as in the 3-D case.

The major difference between the 2-D and 3-D solution arises considering the source current

above the conducting slab, which is now described by:

I(2D)
y = Is

[
δ

(
x+ a

2
−ξ(t)

)
−δ

(
x− a

2
−ξ(t)

)]
. (4.88)

Its Fourier transform with respect to x is:

Fx{I(2D)
y }= 2 jIs sin

(
kx

a
2

)
︸ ︷︷ ︸

Î(2D)
y

f̄ (t). (4.89)

The expressions for the magnetic field can be readily derived from the 3-D case considering

Ĩx = 0 and ky = 0 in (4.79a4.79a)-(4.79c4.79c). The forces are calculated by integrating (4.814.81), but now only

with respect to the spatial frequency kx. It is noted that the pre-factor of 1/π2 becomes 1/π by

omitting the integration with respect to ky. This confirms the analogy between the 2-D and 3-D

solution necessary to perform a meaningful verification.

4.3.3.3 Comparison of Analytical and Numerical Results

The verification problem is defined using the parameters from Table 4.64.6. The rectilinear part

of the velocity is v(max)
0 = 14.5 m/s. The velocity is chosen such that the system operates at the

point of maximal drag-force, i.e., in the nonlinear regime. This characteristic velocity will be

addressed and explained in more detail in section 4.3.4.14.3.4.1 for the 3-D case. The velocity oscillates

at a frequency of fv = 100 Hz considering a rather high oscillation amplitude of v1 = 0.5v0. The

direction of motion is chosen such that the drag-force is positive (see Fig. 4.214.21). The parameters

of the verification are defined to correspond to a numerically challenging benchmark problem.

The relative difference between analytical (ANA) and numerical (FEM) results are quantified

using the NRMSD over one oscillation period T:

NRMSDx|z = 100%

max
(
FFEM

x|z (t)
)
−min

(
FFEM

x|z (t)
)
√√√√√ 1

T

T∫
0

(
FFEM

x|z (t)−FANA
x|z (t)

)2
dt . (4.90)

The results obtained by both approaches are shown in Fig. 4.244.24. They show an almost perfect

agreement with an NRMSD of only 0.051% and 0.049% for the drag-force Fx and lift-force Fz,

respectively. It can be clearly seen that both force components are delayed and do not follow
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(a) Drag-force Fx
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(b) Lift-force Fz

Figure 4.24: Comparison of the time-dependent drag- and lift-force density in (N/m) acting on a
moving rectangular magnet evaluated by the analytical and numerical approaches. The dashed
line indicates the underlying velocity profile considering a rectilinear velocity, superimposed by
an oscillation with a frequency of fv = 100 Hz, and an amplitude of v1 = 0.5v0. The different 3-D
analytical solutions are normalized with respect to the individual y-extensions of the magnet
b [8282].

the underlying velocity profile. Especially the drag-force is heavily distorted, illustrating the

presence of higher order harmonics. A more comprehensive analysis on the amplitude and

phase-shift of the Lorentz force will be given in section 4.3.44.3.4 for the 3-D case.

If the y-extension of the magnet is sufficiently large compared to the other dimensions, the

3-D problem can be approximated by the 2-D model. Hence, in order to compare the results

of the 3-D analytical solution, the force profiles are evaluated for different y-extensions b of

the magnet. By normalizing the forces with respect to the individual b values, it is possible to

determine the equivalent force densities. The expected convergence towards the 2-D case can

be clearly seen in Fig. 4.244.24, which proves the validity of the 3-D solution.

In order to illustrate the impact of skin-effect and the influence of time-dependent velocity

profiles, the induced eddy current density is shown in Fig. 4.254.25 together with the streamlines of

the magnetic flux density. The first illustration in Fig. 4.254.25(a) exemplifies the situation when

the velocity reaches its minimum value of v(t) = 7.5 m/s at t = 5 ms (see Fig. 4.244.24). At this

stage, field suppression can be already observed. With progression in time, the velocity is rising

and the induced eddy current density increases. As a consequence, the secondary magnetic

field increases and further expels the primary field out of the conductor. This procedure is

harmonically repeating. The time-dependent current density fluctuations generate an also

time-dependent magnetic flux density. This in turn leads to the induction of (secondary) induced

eddy currents, which counteract the periodic oscillation. This particular effect explains the

inductive character of the conductor and the observed phase-shift between the force and the

velocity oscillation.
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Figure 4.25: Induced eddy current density Jy and streamlines of the total magnetic flux density
B for three different instances, namely at (a) the minimal velocity, (b) the mean velocity, and (c)
the maximal velocity [8282].

4.3.4 Results and Discussion

As mentioned previously, the parameters influencing the time-dependent force profiles are v0,

v1, and fv. In this section, the underlying effects are described, differentiating between three

different kinds of motion: (i) Constant rectilinear motion without oscillation (v0 6= 0, v1 = 0)

similar to those already reported in the literature [4747, 5252], (ii) pure harmonic motion (v0 = 0,

v1 6= 0) such that the magnet is vibrating over the conductive slab and (iii), the most complicated

case, a mixture of both (v0 6= 0, v1 6= 0).

4.3.4.1 Constant Rectilinear Motion

At first, the case of constant rectilinear motion is considered, such that the oscillation amplitude

of the velocity is zero (v1 = 0). This case is in analogy to electromagnetic damping or magnetic

levitation where the speed is assumed to be constant or slowly varying. The results are obtained

considering an axially magnetized cylindrical permanent magnet with a diameter of 15 mm

and a height of 25 mm and a cuboidal permanent magnet of size [a, b, c]= [15, 15, 25] mm. The

remaining parameters of the magnet and the conducting slab are the same used during the

verification and are given in Table 4.64.6.

The drag- and lift-force as a function of the nominal velocity v0 is shown in Fig. 4.264.26. As

expected from Lenz’s law, the drag-component acts against the direction of motion and the

lift-component intends to push the magnet away from the conductor. It can be observed that

the cuboidal magnet generates higher Lorentz forces than the cylindrical one. On the one hand,

this originates from the difference in magnet volume. On the other hand, it results from the

difference in area of the magnet surface close to the specimen. Both are higher in case of the

cuboidal magnet. In general, three characteristic velocity regions indicated by 1 - 3 can be

identified.

Region 1 corresponds to the low velocity regime which extends in this particular example
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up to 5 m/s. In this regime, diffusion effects dominate over advection phenomena and the

resistive nature of the conductor is prevalent. The secondary magnetic field from the induced

eddy currents is much weaker than the primary magnetic field from the source (B(s) << B(p)).

Numerical methods dealing with computational expensive problems benefit from this circum-

stance by simplifying the numerical model (see the e/dWRA in section 3.23.2). Typical examples

can be found in magneto-hydro dynamics [6464]. As already observed by Reitz [4646] and others, the

drag- and lift-force show a linear and quadratic proportionality with respect to the σv product.

It can be stated that the reaction from the conductor is low compared to the primary field of the

magnetic field source.

In region 2 , advection phenomena become more important and inductive effects can be

observed. For example, the drag-force generated by the cylindrical permanent magnet reaches

its maximum at a velocity of v(max)
0 = 29.8 m/s, which is higher compared to the 2-D case, where

the maximum was already reached at 14.5 m/s (see section 4.3.3.34.3.3.3). This can be explained by

emerging edge effects originating from the finite y-extension of the magnet. In contrast to the

drag-force, the lift-force behaves different and starts to saturate.

Finally, regime 3 is characterized by the precedence of advection phenomena. The secondary

magnetic field, generated by the induced eddy currents, is as strong as the primary field inside

the conductor. Hence, the effect of field suppression is distinctive and cannot be neglected. As a

consequence, Joule losses, which are directly proportional to the drag-force, decrease while the

lift-force continues to saturate.

1
2 3

Figure 4.26: Stationary drag- (Fx) and lift-force (Fz) acting on a moving cuboidal or cylindrical
permanent magnet as a function of constant velocity v0 for three characteristic regions without
oscillations (v1 = 0) [8282].
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4.3.4.2 Harmonic Motion

In the following, the force on a periodically oscillating cylindrical permanent magnet is inves-

tigated. This case corresponds to the damping mode in electromagnetic damping. The same

geometrical parameters as in the previous section are used for the calculations. It is assumed

that the magnet moves with a nominal velocity of v0 = 0 but oscillates with a frequency of

fv = 100 Hz. The oscillation amplitude is varied between v1 = 0.1...0.5 m/s, which is typical for

a shock absorber [201201].

The drag- and lift-force over one period are shown in Fig. 4.274.27(a) and (b), respectively. The

dashed line indicates the normalized velocity profile for the purpose of illustration. As expected,

it can be observed that the drag-force changes the direction with respect to the underlying

velocity. In contrast, the lift-force stays positive over the whole period, resulting in a doubled

frequency. When the oscillation amplitude v1 increases, the lift-force does not become zero at the

reversal point. However, if only the maxima are considered, the linear and quadratic behavior

of both components can still be observed in this velocity regime. A clear phase shift between the

velocity profile and the forces is visible, resulting from the inductive nature of the conductor,

which nicely illustrates Lenz’s law of induction. It is observed that the lift-force is influenced

slightly more by this effect than the drag-force.

4.3.4.3 Constant Rectilinear Motion Superimposed by Harmonic Oscillations

The present study is extended to the case of mixed motion. In analogy to electromagnetic damp-

ing, this corresponds to the coupler operation. In this sense, the cylindrical permanent magnet

moves rectilinear with a constant velocity v0 superimposed by an oscillation of v1 cos(ωvt). The

forces are calculated as a function of the oscillation frequency fv and the nominal velocity v0.
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Figure 4.27: Time-dependent drag- and lift-force acting on a cylindrical permanent magnet
purely harmonically oscillating (v0 = 0) with a frequency of fv = 100 Hz for different oscillation
amplitudes v1. The dashed line indicates the normalized velocity profile [8282].
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The oscillation amplitude v1 is chosen to be 3% of v0 such that v1/v0 = 0.03. In this regard, it

corresponds to the observations from the laboratory LET setup shown in Fig. 4.204.20 on page 8989.

At very low frequencies, i.e. fv < 10 Hz, it is observed that a high approximation order of

around N = 200 in (4.834.83) is needed in order to evaluate a converged solution of (4.814.81). Lower

approximation orders lead to noisy signals in the frequency domain which complicated the

numerical integration. In order to provide compact information about the magnitude of the

time-dependent forces, the relative oscillation amplitude ∆F (rel)
x|z with respect to the stationary

force F (0)
x|z, without any oscillation (v1 = 0), is calculated as:

∆F (rel)
x|z = max

(
Fx|z(t)

)−min
(
Fx|z(t)

)
F (0)

x|z
100%. (4.91)

It provides a relative measure of the force perturbation at a given working point. The corre-

sponding results for the cylindrical permanent magnet, analyzed in the previous section, are

shown in Fig. 4.284.28(a) and (b) for the drag- and lift-component of the Lorentz force, respectively.

It can be observed that both components show diverse characteristics. The highest relative

oscillation amplitude of the drag-force can be observed at low frequencies and when the system

operates at low velocities, i.e., in the linear regime (see 1 in Fig. 4.284.28(a)). As expected from

the linear relationship between the velocity and the drag-force, slow velocity oscillations are

directly projected onto the drag-force, i.e., oscillations of about v1/v0 = 0.03 result in relative

force perturbations of ∆F (rel)
x ≈ 6%. The force oscillations are damped by the secondary magnetic

field of the induced eddy currents when the frequency of the velocity oscillation increases. In

this sense, the conductor acts like a nonlinear inductance and similarities to a low pass filter can

be observed. In consequence, high-frequency oscillations are weakly projected onto the Lorentz

force. On the other hand, the relative oscillation amplitudes of both forces also decrease, when

increasing the nominal velocity v0. A local minimum can be observed in region a in Fig. 4.284.28(a),

where the drag-force reaches its maximum at v(max)
0 = 29.8 m/s (see 2 in Fig. 4.284.28(a)). Reason

for this effect is the small gradient of the drag-force with respect to the velocity in this region.

However, with increasing frequency, the oscillation amplitude increases before high-frequency

damping effects become inherent. This can be explained by the time-dependent secondary

induced eddy currents, emerging from the oscillating velocity.

The relative oscillation amplitude of the lift-force is shown in Fig. 4.284.28(b). Compared to

the drag-force, similar characteristics regarding the oscillation frequency fv can be observed.

However, its quadratic behavior at low velocities leads to relative force oscillation ampli-

tudes of ∆F (rel)
z > 11%. In contrast to the drag-force, no local minimum can be observed at

v(max)
0 = 29.8 m/s, resulting from its overall monotonic increasing nature.

The above observations are further illustrated by showing the waveforms of the forces for

distinct parameter combinations, which are marked by crosses in Fig. 4.284.28. The chosen nominal

velocities are v0 = {0.5, 29.8, 100} m/s, which correspond to the three velocity regions 1 - 3

described previously. The results are presented considering velocity oscillation frequencies of

fv = {10, 100} Hz. The forces are calculated over one period, and are shown in Fig. 4.294.29.
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(a) Relative force perturbation of the drag-force ∆F(rel)
x .
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3

X X

X X

X X

(b) Relative force perturbation of the lift-force ∆F(rel)
z .

Figure 4.28: Relative force perturbations defined by (4.914.91) as a function of the oscillation
frequency fv and the nominal velocity v0. The plots on the left correspond to the forces for
constant rectilinear motion in logarithmic scale (see Fig. 4.264.26). All calculations are performed
with a cylindrical magnet considering a velocity oscillation amplitude of v1/v0 = 0.03. The
markers indicate the parameters used in the calculations shown in Fig. 4.294.29 [8282].
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Figure 4.29: Time-dependent drag- and lift-force waveforms in case of (a) and (d) low velocities
(v0 = 0.5 m/s), (b) and (e) moderate velocities (v0 = 29.8 m/s) and (c) and (f) high velocities
(v0 = 100 m/s), considering a relative velocity oscillation amplitude of v1/v0 = 0.03. The top row
corresponds to an oscillation frequency of fv = 10 Hz and the bottom row to fv = 100 Hz. The
results correspond to the working points marked with crosses in Fig. 4.284.28. The blue and red
lines correspond to the drag- and lift-force, respectively. The dotted line indicates the principal
velocity profile of the permanent magnet for visual orientation [8282].

The force profiles of v0 = 0.5 m/s and fv = 10 Hz are shown in Fig. 4.294.29(a). Both force

components are oscillating almost in phase with respect to the velocity. Due to the low oscillation

amplitude of v1/v0 = 0.03, the quadratic behavior of the stationary lift-force in this regime is

weakly projected to the oscillating case. In Fig. 4.294.29(b), the velocity is increased up to the turning

point of the drag-force (v(max)
0 = 29.8 m/s). The perturbed waveform indicates the superposition

of multiple harmonics. As shown before, the oscillation amplitude of the drag-force is very small

in this region. Finally, the case of v0 = 100 m/s is shown in Fig. 4.294.29(c). It can be observed that

the waveform of the drag-force is inverted with respect to the velocity as a result of its degressive

proportionality and the regressive characteristic in this regime (see 3 in Fig. 4.284.28(a)).

The bottom row of Fig. 4.294.29 shows both forces considering a velocity frequency of fv = 100 Hz.

At higher frequencies, inductive effects become prevalent and the phase shift between the forces

and the velocity increases. Concomitant with the observations from Fig. 4.274.27, it can be seen

that the drag- and lift-forces do not obey the same delay. The effect of magnetic inertia is well

exemplified by comparing the drag-forces between Fig. 4.294.29(b) and (e). In a figurative sense, the

drag-force is not able to follow the nonlinear profile anymore. Hence, higher order harmonics

are damped and the number of effective harmonics is reduced. Formally, this can be explained

by the fact that ωv is in the denominator of the argument of the higher order Bessel functions
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Figure 4.30: Time-dependent drag-force at the nominal velocity of v(max)
0 = 29.8 m/s for different

velocity oscillation frequencies fv, considering an oscillation amplitude of v1/v0 = 0.03. The
dashed line indicates the underlying velocity profile of the cylindrical permanent magnet; (a)-(c)
correspond to the highlighted regions in Fig. 4.284.28 [8282].

in (4.834.83). As a consequence, the nonlinearities are linearized and (4.834.83) can be truncated after a

few terms, e.g. N = 10. Considering the lift-force at fv = 100 Hz for different values of v0, it can

be seen that the phase delay decreases when the nominal velocity v0 increases.

The behavior of the time-dependent drag-force in the nonlinear region 2 around the point of

maximal drag-force is further illustrated in Fig. 4.304.30. The results correspond to the highlighted

intervals in Fig. 4.284.28(a). The abscissae in Fig. 4.304.30 are normalized with respect to fv to compare

the different waveforms to each other. It can be seen that the explicit waveform strongly depends

on the velocity oscillation frequency fv. Fig. 4.304.30(a) illustrates the non-harmonic character of

the drag-force in the low frequency regime. The time-dependent results are compared to the

stationary case obtained by sampling the force-velocity-curve from Fig. 4.264.26 according to the

harmonic oscillation. The stationary maximum F (0)
x is indicated by the horizontal solid line. It

can be observed that the amplitude of the drag-force increases with increasing frequency and

even exceeds the maximum from the stationary study in the second half of the period.

Fig. 4.304.30(b) shows the drag-force for frequencies up to 1 kHz. It can be seen, that the force

perturbation amplitude continuously increases together with the phase-shift. At fv = 1 kHz, the

time-dependent drag-force has its maximum and exceeds F (0)
x by up to 1.3%. The waveforms for

frequencies up to 10 kHz are shown in Fig. 4.304.30(c). It can be observed that the low-pass character

of the conductor becomes predominant and the amplitudes decrease, while the phase-shift still

increases. The present study demonstrates the complexity of the problem and underlines the

necessity to consider the reactance of the conductor in the case of time-dependent velocity

profiles.
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4.3.5 Conclusions

Vibrations play a major role in laboratory setups or electromagnetic dampers. The present

study shows that the force profiles strongly depend on the operating point of the system under

investigation, which is determined by the level of constant motion together with the oscillation

amplitude and frequency. The complex interaction between induced eddy currents, resulting

from the constant part and the time-dependent part of the velocity is exemplified. The back

reaction of the conductor and its reactance cause phase shifts and lower damping forces. This

should be taken into account when evaluating the dynamic characteristics of oscillating systems

in the future. Due to the nonlinear characteristic of the drag-force as a function of velocity v0,

higher order harmonics are emerging in the oscillatory case.

In contrast, the gradual nature of the lift-force mitigates this effect. It seems inherent

that these effects should be considered in future developments of new systems involving time-

dependent motion in order to provide more accurate predictions. Current research for example

is devoted to apply ball screw mechanisms to energy harvesters which can significantly magnify

the vibrational motion [198198] and in turn increase the performance of such devices.

The analytical integral expressions can be easily modified according to different coil geome-

tries by replacing the corresponding Fourier transforms of the source current in (4.82a4.82a) and

(4.82b4.82b), respectively. The presented approach to model the time-dependent velocity term by

means of the Jacobi-Anger expansion could be adopted to other application scenarios as for

example to analyze the dynamics of linear or rotating eddy current couplers [219219] or MAGLEV

systems. Moreover, the presented approach can be used as a reference during the development

of more advanced numerical models.

The phase and amplitude of the drag- and lift-force provide information about the material

properties of the conductor. Oscillating magnet systems could be applied in the future within

the context of NDT as an alternative to systems which are based on constant rectilinear motion.

By this analysis, it is possible to provide the required electromagnetic force F(EM), acting on a

mechanical system to determine the measured force F(MEAS) (see Fig. 4.204.20 on page 8989). Future

investigations could proceed further to construct a mechanical model of the force sensor and to

couple into the electromagnetic force, provided in the present study.
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5
ALTERNATIVE LET SYSTEM USING A RING MAGNET

In this chapter, a new type of LET system is presented. It consists of a ring magnet

which encompasses the object under test. The boundary value problem is solved using

the variable separation method and the Fourier transformation while considering the

interaction between the magnetic field of the ring magnet and the induced eddy currents. The

Lorentz force and the induced eddy current density is evaluated in integral form including

modified Bessel functions of the first and second kind. The famous creeping magnet problem,

where a magnet travels inside a conducting pipe, is extended to ring magnets. Finally, the ring

magnet is combined with the proposed HCp-magnet system, which forms the basis for a novel

generation of LET systems.

5.1 Introduction and Motivation

The previously investigated LET systems made use of sensor systems, which locally induced

a distinct eddy current profile. Thus, an exhaustive test of the whole object requires sophis-

ticated scanning procedures. This considerably increases the inspection time and could be

disadvantageous during production processes. One possible solution is the application of a

magnet system, which encompasses the whole object under test as it is shown in Fig. 5.15.1. In this

way, a homogeneous eddy current distribution is induced, which spins around the circumference

of the conductor. Such a system could be applied to monitor the material characteristics of

pre-products in rolling mills or during casting processes. Other fields of application include

the contactless inspection of wires, pipes, tube welding lines or valve springs, which must obey

high standards. All these examples entail moving objects, which predestines the application of

MECT techniques such as LET. This kind of ring magnet can be also applied in the framework

of Lorentz force velocimetry (LFV) [6464,220220] to determine the flow rate of moving media. Similar
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Conductor

Ring magnet

Figure 5.1: A ferromagnetic electrical conductor is moving with a constant rectilinear velocity
through a ring magnet [236236].

configurations are reported in the framework of time-of-flight LFV [221221] and electromagnetic

LFV [222222], where the problem of a cylindrical conductor surrounded by a single wire is ad-

dressed under the assumption of low magnetic Reynolds numbers. A very similar problem is

addressed in [223223] considering solid rods, taking into account secondary magnetic fields.

In this chapter, the electromagnetic field problem of motion-induced eddy currents is further

studied and extended to the case of permanent magnets with different magnetization direc-

tions moving along solid rods and pipes. A mathematical model is described to determine the

unperturbed stationary forces. In this context, the famous creeping magnet experiment, where

a permanent magnet is slowly falling down a conducting pipe, is extended to ring magnets.

Because of its ease and inexpensive realization, it is a great illustration of Faraday’s law for

undergraduate students. Previous studies only treated falling magnets inside the pipe. They

either neglected self inductance effects of the conductor [6868,6969,224224–229229] or included the back

reaction resulting from the induced eddy currents [101101,230230,231231]. Besides the impressing pre-

sentation of Faraday’s law, the disadvantage of the original experiment is that the magnet is

hidden inside the conducting pipe.

The calculation of the magnetic field of an axial or radial magnetized ring includes non-

trivial analysis including elliptical integrals [114114,232232–235235]. In this thesis, the boundary value

problem is solved for non-relativistic speeds such that the velocity is much smaller than the

speed of light (|v| ¿ c). The Lorentz force acting on the ring magnet is determined for both

magnetization directions of the magnet. The results are compared to numerical simulations

using the FEM. Self-inductance effects are taken into account such that the magnetic field of

the induced eddy currents interacts with the primary magnetic field of the ring magnet. The

effect of field suppression at high velocities is illustrated by calculations of the induced eddy

current density inside a conducting pipe of finite thickness at both low and high velocities.

At first, the mathematical formulation of the problem is given in section 5.25.2. It includes

the solution of the boundary value problem of a single current carrying wire. The solution

112



5.2. MATHEMATICAL FORMULATION OF THE PROBLEM

is extended to axially and radially magnetized ring magnets. Moreover, the creeping magnet

problem and the finite element model are described. The results part in section 5.35.3 contains

studies on the electromagnetic fields as well as on the Lorentz forces in case of different

velocities, permeabilities, and wall thicknesses of the conducting pipe. The conclusions of this

study are given in section 5.45.4. The obtained results are published by the author and can be

found in [236236]. At the end of this chapter, in section 5.55.5, the patented concept of an alternative

LET system is presented. It summarizes the gained knowledge from the individual simulation

studies presented in this thesis into one system and is a key result of this work.

5.2 Mathematical Formulation of the Problem

5.2.1 Single Wire Model

In order to determine general expressions for the magnetic field, the problem of a single wire

wound around a tubular conductor is considered first. The underlying geometry of the problem is

shown in Fig. 5.25.2. The symmetry allows to describe the problem using cylindrical coordinates. In

contrast to the study of harmonic oscillations from section 4.34.3, the present problem is addressed

in the laboratory frame of reference K , which is associated to the magnetic field source (see

section 3.13.1). Assuming non-relativistic velocities such that |v|¿ c, the governing equations are

given in (3.9a3.9a)-(3.9e3.9e) on page 2222. As long as the velocity and the cross section of the conductor do

not change over time, the problem can be treated as quasi-stationary such that ∂B/∂t = 0. As in

the previous analysis, the calculations can be simplified by expressing the magnetic flux density

B in terms of the magnetic vector potential A. In the present analysis, only linear ferromagnetic

Conductor

Wire

IIIIIIIV

Figure 5.2: Symmetry-plane of the problem under investigation divided into four computational
domains [236236].
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materials are considered such that µ=µ0µr. The governing equation is then given by:

∇×
(

1
µ
∇×A

)
=σ(−∇φ+v×∇×A

)+Je. (5.1)

In the present case, the external source current density Je, i.e. the wire in Fig. 5.25.2, can be

described by:

Je =Jsδ(r− r′)= Js(z)δ(r− r′)eϕ, (5.2)

where Js is the source surface current density and δ(·) is the Dirac delta function (see Fig. 5.25.2).

Because the source current flows only on the boundary, it can directly be incorporated in the

boundary conditions between domain I and II, and omitted in the field equations in a similar

way as it has been done in the previous analysis. Since the source current flows only in the

azimuthal direction, the magnetic vector potential A has only an azimuthal component Aϕ and

(5.15.1) can be written as:

∇×
(

1
µ
∇×A

)
−σ

−∇φ−


0

vz
∂Aϕ

∂z

0


= 0. (5.3)

As a result of the cylindrical symmetry of the problem, the scalar electric potential φ is constant

and its gradient can be omitted in further calculations. Finally, by expressing the double curl

operator from (5.35.3) in the cylindrical coordinate system, one gets:

∂2 Aϕ

∂r2 + 1
r
∂Aϕ

∂r
− Aϕ

r2 + ∂2 Aϕ

∂z2 −µσvz
∂Aϕ

∂z
= 0. (5.4)

By applying the Fourier transform to the magnetic vector potential in the axial direction:

Fz{Aϕ}= Ãϕ =
∞∫

−∞
Aϕe− jkz dz, (5.5)

the governing equation (5.45.4) can be written as:

∂2 Ãϕ

∂r2 + 1
r
∂Ãϕ

∂r
− Ãϕ

r2 −k2 Ãϕ− jkµσvz Ãϕ = 0. (5.6)

In order to determine Ãϕ, the computational domain is divided into four sub-domains, as shown

in Fig. 5.25.2. The inner and outer radius of the conductor are denoted as Ric and Roc, respectively.

The current carrying wire is located at the radius r′. Domains I, II and IV are air domains,

whereas domain III includes the moving ferromagnetic conductor. Hence, the following modified

Bessel equations describe the magnetic vector potential in the specific domains:

d2 ÃI,II,IV
ϕ

dr2 + 1
r

dÃI,II,IV
ϕ

dr
−

(
k2 + 1

r2

)
ÃI,II,IV
ϕ = 0 (5.7a)

d2 ÃIII
ϕ

dr2 + 1
r

dÃIII
ϕ

dr
−

(
k2 + jµσvzk+ 1

r2

)
ÃIII
ϕ = 0. (5.7b)
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The corresponding solutions are given by first order modified Bessel functions of the first and

second kinds I1(kr) and K1(kr), respectively [237237]:

ÃI,II,IV
ϕ (r,k)= C̃I,II,IVI1(kr)+ D̃I,II,IVK1(kr) (5.8a)

ÃIII
ϕ (r,k)= C̃IIII1(k′r)+ D̃IIIK1(k′r), (5.8b)

with k′ =
√

k2 + jλk and λ= µ0µrσvz. The complex constants C̃I to C̃IV and D̃I to D̃IV can be

determined from the imposed boundary conditions:

ÃI
ϕ = 0

∣∣∣
r→∞ (5.9a)

ÃIV
ϕ = 0

∣∣∣
r=0

(5.9b)

ÃI
ϕ = ÃII

ϕ

∣∣∣
r=r′

(5.9c)

ÃII
ϕ = ÃIII

ϕ

∣∣∣
r=Roc

(5.9d)

ÃIII
ϕ = ÃIV

ϕ

∣∣∣
r=Ric

(5.9e)

1
µr

∂

∂r

(
rÃIII

ϕ

)
= ∂

∂r

(
rÃII

ϕ

) ∣∣∣
r=Roc

(5.9f)

1
µr

∂

∂r

(
rÃIII

ϕ

)
= ∂

∂r

(
rÃIV

ϕ

) ∣∣∣
r=Ric

(5.9g)

1
r
∂

∂r

(
rÃII

ϕ − rÃI
ϕ

)
=µ0 J̃s(k)

∣∣∣
r=r′

. (5.9h)

The boundary conditions (5.9a5.9a) and (5.9b5.9b) imply that the radial component of the magnetic field

vanishes at the cylinder axis and at infinity. As a consequence of the asymptotic behavior of

the modified Bessel functions, such that K1 is singular at r = 0 and I1 diverges exponentially

as r →∞, the constants C̃I = D̃IV = 0 can be readily determined. Equations (5.9c5.9c)-(5.9e5.9e) ensure

the continuity of the normal component of the magnetic flux density at the domain interfaces.

Moreover, (5.9f5.9f)-(5.9h5.9h) result from the continuity of the tangential component of the magnetic

field, where J̃s denotes the Fourier transform of the source current density at the interface

between domain I and II. The source current is now designated with the letter J to avoid

confusion with the modified Bessel function of the first kind I1.

Substituting (5.8a5.8a) and (5.8b5.8b) into the boundary conditions results into the following linear

system of equations for the unknown constants:

K1(kr′) −I1(kr′) −K1(kr′) 0 0 0

K0(kr′) I0(kr′) −K0(kr′) 0 0 0

0 I1(kRoc) K1(kRoc) −I1(k′Roc) −K1(k′Roc) 0

0 kI0(kRoc) −kK0(kRoc) −k′µ−1
r I0(k′Roc) k′µ−1

r K0(k′Roc) 0

0 0 0 I1(k′Ric) K1(k′Ric) −I1(kRic)

0 0 0 k′µ−1
r I0(k′Ric) −k′µ−1

r K0(k′Ric) −kI0(kRic)





D̃I

C̃II

D̃II

C̃III

D̃III

C̃IV


=



0

k−1µ0 J̃s

0

0

0

0


(5.10)
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The differentiation of the modified Bessel functions is carried out considering the following

identities [184184]:

∂

∂r

(
rI1(kr)

)
= krI0(kr) (5.11a)

∂

∂r

(
rK1(kr)

)
=−krK0(kr). (5.11b)

The solutions of (5.105.10) are lengthy expressions of modified Bessel functions and are given

in Appendix BB. It is noted, that the same principle can also be applied for a solid cylindrical

conductor. In this case, the air domain inside the conductor has to be omitted and the problem

simplifies to only four unknown constants. As a result, the magnetic field is completely described

by the obtained analytical expressions.

In order to determine the force on the current carrying wire, the theorem of Parseval is

employed11 [216216]. As in the previous analysis of harmonic motion, the force is calculated in the

frequency domain by integrating the cross product J̃∗
s × B̃I(d) between the distorted part of the

magnetic flux density B̃I(d) and the complex conjugate of the source surface current density

J̃∗
s in domain I. Additional integrations have to be performed with respect to the azimuthal

coordinate ϕ and the position of the current carrying coils located at r′ representing the ring

magnet. The model of the ring magnet for axial and radial magnetizations is described in more

detail in the next section. Due to the fact that the radial component of the primary magnetic

field B̃I(p) vanishes at the position of the wire, the total magnetic flux B̃I can be used instead of

B̃I(d). Finally, the force acting on the ring magnet is given by:

F=Re

 1
2π

∞∫
−∞

Rom∫
Rim

2π∫
0

J̃∗
s × B̃I r′dϕdr′dk

 . (5.12)

Due to the symmetry of the problem, the radial component of the Lorentz force Fr vanishes

and the analysis is limited to the axial component Fz.

The radial and axial component of B̃I are determined by differentiation of the magnetic

vector potential ÃI such that:

B̃I
r =− jkÃI

ϕ (5.13a)

B̃I
z =

1
r
∂

∂r

(
rÃI

ϕ

)
= 1

r
ÃI
ϕ+

∂ÃI
ϕ

∂r
. (5.13b)

The axial component of the Lorentz force Fz is calculated by inserting (5.13a5.13a) and (5.13b5.13b)

in (5.125.12) and by integrating over the azimuthal angle ϕ. Finally, considering that the Lorentz

force is a symmetric function in the frequency domain, Fz is given by:

Fz = 2Re

{ ∞∫
0

Rom∫
Rim

jkr′ J̃∗
s ÃI

ϕdr′dk
}

. (5.14)

1Alternatively, the axisymmetry of the problem makes the Poynting vector an elegant tool to calculate the
drag-force out of the resulting power loss as it is used by Ciric in [223223].
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The induced eddy current density in the frequency domain inside the conductor can be

calculated by J̃=σv× (∇× ÃIII), using the magnetic vector potential ÃIII given in (5.8b5.8b):

J̃ϕ =σvzB̃III
r =− jσvzkÃIII

ϕ . (5.15)

This expression has to be transformed from the frequency domain back into the spatial domain

by an inverse Fourier transformation:

Jϕ =−σvz

π
Re

{ ∞∫
0

jkÃIII
ϕ e jkzdk

}
. (5.16)

In the following, the above considerations are used to determine Jϕ and Fz for axially

and radially magnetized ring magnets by means of the surface current model of permanent

magnets [100100].

5.2.2 Axially Magnetized Ring Magnets

In order to model axially magnetized ring magnets, an azimuthal source surface current density

Js is considered on the inner and outer face of the magnet as shown in Fig. 5.35.3(a). The inner

and outer radius of the ring magnet is given by Rim and Rom, respectively. The magnitude and

the direction of the source surface current density is determined by Js = Jseϕ =M×n, where

M=Br/µ0. The vector n denotes the unit normal vector of the corresponding face. In this way,

the source current in the spatial domain is given by:

Js =Jsi + Jso = Js0 rect
(

z
Hm

)[
δ(r−Rom)−δ(r−Rim)

]
,

where Js0 = Br/µ0 is the magnitude of the source surface current density and rect(·) is the

rectangular function. The quantities Jsi and Jso are the source surface currents on the inner

and outer face, respectively. The Fourier transform of the source surface current density

J̃s =Fz{Js} with respect to z is given by:

J̃s =J̃si + J̃so = Js0Hm sinc
(
k

Hm

2

)[
δ(r−Rom)−δ(r−Rim)

]
. (5.17)

As a consequence of the Dirac delta function in the radial direction, the Lorentz force can

be calculated by the superposition of the force acting on the inner and outer equivalent coil.

Substituting (5.175.17) in (5.125.12) yields:

Fz = 2Re


∞∫

0

[
Rim J̃∗

siB̃r(Rim)+Rom J̃∗
soB̃r(Rom)

]
dk

 . (5.18)

The Fourier transformed source surface currents on the inside and outside face are equivalent

but flow in opposite direction such that J̃si =−J̃so. The radial component of the magnetic flux

density B̃I
r(r) in the air domain can be calculated by (5.13a5.13a), while considering the superposition

of terms from both source surface currents:

B̃I
r(r)= jk

(
D̃I∣∣

r′=Rim
+ D̃I∣∣

r′=Rom

)
K1(kr). (5.19)
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(a) Axial magnetization (b) Radial magnetization

Figure 5.3: Current models of permanent magnet rings [236236].

The constant D̃I is given by solving (5.105.10) and is provided in Appendix BB. Substituting (5.175.17)

and (5.195.19) in (5.185.18) and using the identity D̃I = J̃sD̂
I yields the integral expression for Fz:

Fz = 2J2
s0H2

mRe

{ ∞∫
0

jksinc2
(
k

Hm

2

)[
D̂I∣∣

r′=Rim
− D̂I∣∣

r′=Rom

]
× (5.20)

×
[
RimK1(kRim)−RomK1(kRom)

]
dk

}
.

Similarly, the induced eddy current density can be calculated by means of (5.8b5.8b), (5.165.16) and

(5.175.17) using the identities D̃III = J̃sD̂
III and C̃III = J̃sĈ

III. The final expression for Jϕ(r, z) is then

given by:

Jϕ(r, z)=−Js0Hmσvz

π
Re

{ ∞∫
0

jksinc
(
k

Hm

2

)(
I1(k′r)

[
ĈIII∣∣

r′=Rom
− ĈIII∣∣

r′=Rim

]
(5.21)

+K1(k′r)
[
D̂III∣∣

r′=Rom
− D̂III∣∣

r′=Rim

])
e jkz dk

}
.

5.2.3 Radially Magnetized Ring Magnets

Radially magnetized ring magnets can be modelled by defining the source surface current

density on the upper and lower surface of the magnet as it is shown in Fig. 5.35.3(b). Hence, in the

spatial domain, Js is given by:

Js =Js0 rect
(

r
Rom −Rim

)[
δ

(
z+ Hm

2

)
−δ

(
z− Hm

2

)]
. (5.22)
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Its Fourier transform with respect to z can be determined by applying the displacement law of

the Dirac delta function:

J̃s =2 jJs0 rect
(

r
Rom −Rim

)
sin

(
k

Hm

2

)
. (5.23)

The Lorentz force and the induced eddy current density can be calculated in the similar way as

for axially magnetized ring magnets. However, this case involves additional integrations with

respect to the radial coordinate, resulting from the superposition of the magnetic field from and

between each source current element. The expression for Fz is then given by:

Fz = 2Re


∞∫

0

Rom∫
Rim

J̃∗
s B̃I

r(r′)r′dr′dk

 . (5.24)

The radial component of the magnetic flux density B̃I
r(r) can be determined by (5.13a5.13a) consider-

ing the superposition of each current element:

B̃I
r(r)= jkK1(kr)

Rom∫
Rim

D̃I∣∣
r′=r′′ dr′′. (5.25)

Substituting (5.235.23) and (5.255.25) in (5.125.12) yields the final expression for Fz:

Fz = 8J2
s0Re

{ ∞∫
0

Rom∫
Rim

Rom∫
Rim

jkr′ sin2
(
k

Hm

2

)
K1(kr′)D̂I∣∣

r′=r′′ dr′′dr′dk
}

. (5.26)

The expression for the eddy current density is determined by substituting (5.8b5.8b) and (5.175.17) in

(5.165.16). The final expression for Jϕ(r, z) is then given by:

Jϕ(r, z)= 2Js0σvz

π
Re

{ ∞∫
0

Rom∫
Rim

ksin
(
k

Hm

2

)[
I1(k′r)ĈIII∣∣

r′ +K1(k′r)D̂III∣∣
r′

]
e jkz dr′dk

}
. (5.27)

5.2.4 The Creeping Ring Magnet

In the following, a ring magnet, which is falling along the axis of the conductor starting with an

initial velocity of v = 0, is considered. After an acceleration phase, the gravitational force Mm g

is in equilibrium with the Lorentz force Fz(v), and the magnet reaches the terminal velocity vt.

The velocity as a function of time is calculated considering the differential equation of motion:

Mm
∂v
∂t

= Mm g−Fz(v), (5.28)
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where Mm = ρVm denotes the mass of the magnet, ρ its mass density and Vm its volume.

Equation (5.285.28) is a nonlinear differential equation of first order, which can be solved numerically.

The damping term Fz(v) is calculated by (5.205.20) or (5.265.26) depending on the magnetization

direction. It is mentioned that the derived expressions for Fz(v) are determined under the

assumption of a constant velocity. Hence, the solution can only be approximated by the analytical

method since the velocity is time-dependent. On the contrary, the terminal velocity vt can be

directly calculated by setting the left hand side of (5.285.28) to zero. Thereat, an iterative scheme

can be applied in order to determine the roots of the right-hand side.

5.2.5 Numerical Model

In order to check the rather intricate expressions for Fz and Jϕ for correctness, the analytical

results are compared to numerical simulations obtained by means of the FEM. Maxwell’s equa-

tions are solved in the laboratory frame of reference K neglecting the presence of displacement

currents (see section 3.13.1). A magnetic vector potential formulation is used while taking the

axisymmetry of the problem into account. The governing equation solved by the FEM is given

by:

∇×
(

1
µ
∇×A−M

)
−σv× (∇×A)+σ∂A

∂t
= 0. (5.29)

By expressing (5.295.29) in cylindrical coordinates, it is possible to identify the equivalence to the

governing equation of the analytical approach (5.45.4) in the spatial domain:

∂2 Aϕ

∂r2 + 1
r
∂Aϕ

∂r
− Aϕ

r2 + ∂2 Aϕ

∂z2 +σ∂Aϕ

∂t
+µ

(
∂Mz

∂r
− ∂Mr

∂z︸ ︷︷ ︸
Js

−σvz
∂Aϕ

∂z

)
= 0. (5.30)

Assuming homogeneous permanent magnets, the spatial derivatives of the magnetizations

∂Mz/∂r and ∂Mr/∂z are non-zero at the respective boundaries. Hence, the sources are incor-

porated in the same way as in the analytical approach (see Fig. 5.35.3). In the FEM, (5.305.30) is

solved considering a discretized geometry by finite elements using second-order shape functions.

In case of constant velocities (∂Aϕ/∂t = 0), both approaches are equivalent and should yield

the same results under the assumption that numerical errors are negligible. However, for

time-dependent velocities, as in the case of the creeping ring magnet, the magnetic field is

non-stationary (∂Aϕ/∂t 6= 0) during the acceleration phase. As it could be shown during the

analysis of time-dependent velocities in section 4.34.3, this accounts for a modified eddy current

density inside the conductor which affects the force as well as the resulting velocity profile.

For non-magnetic conductors, the Lorentz force exerted on the magnet is calculated by

integrating the force density over the volume of the moving conductor Ωc:

Fz =−
∫
Ωc

JϕBr dΩ. (5.31)

However, for µr > 1, the force is calculated by means of the Maxwell stress tensor on the surface

of the conductor Γc, which has proved to be the more accurate approach in this particular
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problem:

Fz =−2π
µ0

∫
Γc

rBrBz dS. (5.32)

During the numerical analysis, it is ensured that the conductor sufficiently extends towards the

axial direction to avoid edge effects.

5.3 Results and Discussion

Magnetic Flux Density: The obtained analytical expressions for the magnetic vector poten-

tial, and hence, the magnetic flux density, are compared to numerical results obtained by the

FEM for both magnetization directions. The calculations are performed considering the para-

meters given in Table 5.15.1. The integrals are determined numerically using a Gauss-Legendre-

quadrature [238238] for axially magnetizations and a global adaptive Simpson quadrature [239239]

for radial magnetizations.

The difference between analytical and FEM solutions is quantified by means of the norma-

lized root mean square deviation (NRMSD) over N equidistantly spaced data points:

δFz = 100%

max
(
F (ANA)

z
)−min

(
F (ANA)

z
)
√√√√ 1

N

N∑
i=1

(
F (ANA)

z,i −F (FEM)
z,i

)2
. (5.33)

As an exemplary configuration, a tubular conductor with a wall-thickness ratio of w/Roc =
(Roc −Ric)/Roc = 0.2, and a relative permeability of µr = 10 is considered. The conductivity and

the velocity of the conductor are chosen such that µ0σv = 10 m−1. The remaining parameters

are given in Table 5.15.1. Both components of the magnetic flux density are evaluated along a

radial line crossing all computational domains, located at a height of z = Hm. The corresponding

results are shown in Fig. 5.45.4. It should be noted that the evaluation of the magnetic flux density

Table 5.1: Parameters of the exemplary problem involving a ring magnet [236236].

Parameter Value Description

Ric 0...24.5 mm Inner radius of the conductor

Roc 25 mm Outer radius of the conductor

Rim 30 mm Inner radius of the ring magnet

Rom 40 mm Outer radius of the ring magnet

Hm 10 mm Height of the ring magnet

Br 1 T Remanence of the ring magnet

µ0σv 0...7800 m−1 Diffusion coefficient

µr 1...100 Relative permeability

ρ 7500 kg/m3 Mass density of NdFeB

σCu 58.1 MS/m Electrical conductivity of copper
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(a) Axial magnetization
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Figure 5.4: Components of the magnetic flux density computed analytically and by means of the
FEM along the radial axis at z = Hm for µ0σv = 10 m−1, µr = 10, and a wall-thickness ratio of
w/Roc = 0.2. The insets indicate the location where the magnetic flux is evaluated [236236].

in between the magnet region, where Rim < r < Rom, merits special attention. The integration

has to be divided into two parts, one contributing from domain I and the second from domain II,

considering the corresponding limits. A very good agreement between analytical and numerical

results is observed for both magnetization directions. The NRMSD over N = 300 data points

did not exceed 0.3% and 1%, respectively. The reason for the slightly increased error in case of

the magnet with radial magnetization results from the numerical integration accuracy in the

region Rim < r < Rom. The relative permeability of the conductor leads to discontinuities of Bz.

However, Br is continuous across the interfaces and therewith fulfills the imposed boundary

condition.

Lorentz Force: The Lorentz force is calculated as a function of the diffusion coefficient µ0σv

for both magnetization directions. In this way, it is assumed that the magnet is fixed and the

conductor travels through it with a given velocity. Moreover, the wall-thickness ratio w/Roc of

the pipe is varied according to the values from Table 5.15.1.

At first, non-magnetic conductors are considered assuming a relative permeability of µr = 1.

The corresponding results are shown in Fig. 5.55.5(a) and (b) for axially and radially magnetized

ring magnets, respectively. As expected, a very good agreement between analytical and numeri-

cal results can be observed in case of constant velocities. For every w/Roc ratio, the NRMSD

over N = 100 data points is smaller than 0.03%. It can be seen that the Lorentz force is about

25% higher in case of radially magnetized magnets compared to axially magnetized ones. As

expected, for low µ0σv values, a linear dependency of the Lorentz force can be observed. In this

regime, the magnetic field generated by the induced eddy currents is negligible. However, if the

conductor moves faster (or has a higher conductivity), the electromagnetic field gets suppressed
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(a) Axial magnetization (b) Radial magnetization

Figure 5.5: Lorentz force as function of the parameter µ0σv for different wall-thickness ratios
w/Roc [236236].

(a) Axial magnetization (b) Radial magnetization

Figure 5.6: Lorentz force as function of µ0σv in case of w/Roc = 1 for different values of µr [236236].

out of the conductor and the resulting Lorentz force decreases. It can be observed, that the

wall-thickness ratio w/Roc of the conductor greatly affects the resulting Lorentz force profile

due to the complex interaction between the primary and secondary magnetic fields. For thin

walls, the linear regime lasts longer and the maximum Lorentz force increases. This effect can

be explained by a decrease of the total conductance. As a consequence, the amount of Joule heat

and power loss increases, which is directly proportional to the evaluated Lorentz force.

The study is extended to the case of ferromagnetic conductors with µr > 1. In Fig. 5.65.6, the

Lorentz force profiles are shown for different values of µr, now only considering a solid cylinder

(w/Roc = 1). Again, the analytical and the numerical results show a very good agreement with

an NRMSD not exceeding 0.1%. As expected, the linear regime shifts to lower µ0σv values

compared to non-magnetic conductors since µr is included in λ. Besides that, ferromagnetic

conductors affect the magnetic field even without any motion-induced eddy currents. It can
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A/m²

(a) Axial magnetization (µ0σv = 1 m−1)

A/m²

(b) Radial magnetization (µ0σv = 1 m−1)

A/m²

(c) Axial magnetization (µ0σv = 1000 m−1)

A/m²

(d) Radial magnetization (µ0σv = 1000 m−1)

Figure 5.7: Induced eddy current density distribution Jϕ for different µ0σv products considering
non-ferromagnetic conductors (µr = 1) and a wall-thickness ratio of w/Roc = 0.2 [236236].

be seen that an increase in µr leads to higher Lorentz forces. However, for µr > 10, the force

profile changes considerably and the Lorentz force is saturating instead of decreasing for high

µ0σv values. Similar to the former case, the analytical and numerical results show a very good

agreement. It is mentioned that such a scenario is difficult to handle from the experimental

point of view since stable operation is hard to maintain. However, it is of expressive nature from

the numerical point of view to proof the validity of the analytical expressions.
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Induced Eddy Current Density: In order to illustrate the effect of field suppression, the

induced eddy current density is exemplarily calculated for a wall-thickness ratio of w/Roc = 0.2.

Fig 5.75.7(a) and (c) show the field distributions for axially magnetized ring magnets in case of

µ0σv = 1 m−1 and µ0σv = 1000 m−1, respectively. The field profile is symmetric at low velocities

and conductivities and has similarities to an odd function with respect to the z-axis. In the upper

part, the induced eddy currents flow clockwise, whereas in the lower part, the eddy currents

flow in the opposite direction. However, for higher velocities, self inductance effects dominate

over self resistance effects and the field is distorted in the direction of motion. The induced

eddy current density generated by radially magnetized ring magnets is shown in Fig. 5.75.7(b) and

(d). It can be seen that the distribution of the induced eddy currents for µ0σv = 1 m−1 is more

concentrated close to the magnet and similarities to an even function with respect to the z-axis

can be observed. Together with the strong magnetic field in this region, this accounts for an

increased Lorentz force observed previously. For µ0σv = 1000 m−1, the field is distorted into the

direction of motion in a similar sense compared to the axial case.

Creeping Ring Magnet: Next, the velocity profile of the ring magnet falling down a solid

copper rod (w/Roc = 1) with an electrical conductivity of σCu = 58.1 MS/m is studied. The

remaining dimensions of the investigated problem are listed in Table 5.15.1. The differential

equation of motion from (5.285.28) is solved by calculating the damping term of the Lorentz force

with the analytical and the numerical approaches. In the case of the analytic calculations, the

time-dependent velocity profile is determined using the explicit Runge-Kutta-based Dormand-

Prince method [240240]. In the case of the FEM, the generalized-α method is used [241241]. The

solutions are shown in Fig. 5.85.8. Both magnets reach the steady state after approximately 0.15 s.
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Figure 5.8: Time-dependent velocity of axially and radially magnetized ring magnets falling
down a solid copper rod (w/Roc = 1, µr = 1) [236236].
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The time constants for the radially and the axially magnetized ring magnet are approximated

to 26 ms and 32 ms, respectively. The terminal velocity of the axially magnetized magnet

is vt = 0.32 m/s and thus 28% higher compared to its radial counterpart with vt = 0.25 m/s.

This observation is in accordance to the previous results, where radially magnetized magnets

generated higher Lorentz forces compared to axial ones (see Figs. 5.55.5 and 5.65.6).

In general, a good agreement between the velocity profiles obtained by the analytical and

the numerical method can be observed. However, small differences arise during the acceleration

phase, which can be explained by the time-dependent character of the velocity. By calculating

the magnetic diffusion time τ= µσL2, it is possible to approximate the influence of magnetic

advection. The characteristic length of the problem L is chosen as L = Roc. This results in a

diffusion time of τ= 45.6 ms, which is in the range of the observed time constants, providing

ground to consider time-dependent effects.

An explanation regarding the mutual influence of electric and magnetic fields during the

acceleration phase is given in the following. At the beginning, the velocity increases and the

(primary) induced eddy currents increase as well due to the relative motion. These in turn

generate a time-dependent secondary magnetic field, which in turn induces (secondary) eddy

currents. They are directed in such a way to oppose the change which produces them. As a

consequence, the total induced eddy current density decreases together with the damping term

in the differential equation of motion. This leads to higher accelerations and slightly increased

velocities compared to the analytical method, which neglects the presence of the secondary

induced eddy currents.

5.4 Conclusions

The presented study provides analytic expressions for the magnetic vector potential generated

by a ring-shaped permanent magnet falling down a possibly ferromagnetic electrical conducting

pipe. Moreover, integral expressions are provided for the Lorentz force and the induced eddy

current density. The magnetic field can be readily determined by means of the magnetic vector

potential. The obtained expressions are applicable as long as the velocity is much lower than

the speed of light (|v|¿ c). The interaction between the magnetic field of the ring magnet and

the induced eddy currents is considered, and the effect of flux expulsion is demonstrated for

axially and radially magnetized ring magnets. The terminal velocity of one exemplary setup

is calculated by solving the underlying differential equation of motion. Such a design could be

used as a laboratory project at an intermediate or advanced undergraduate level.

Besides the application in LET, the obtained expressions could be adopted and applied in

the framework of eddy current damping [195195] or energy harvesting [202202], where ring magnets

are used in electromagnetic transducers to generate braking forces or electric energy. In this

sense, the analytical expressions provide valuable support for time efficient analysis as it is

required for example in optimization studies.

126



5.5. PATENTED LET SYSTEM

5.5 Patented LET System

In this thesis, an alternative LET system is proposed, which is a pending patent at the German

Patent and Trade Mark Office [242242]. An overview of the system is shown in Fig. 5.95.9. It consists of

a magnet system, which encompasses the moving object under test. It is supported by additional

magnet systems located further downstream together with a marker device. In the presence of

a defect, the symmetry of the structure is disturbed. This leads to perturbations of the lateral

forces in the xy-plane. The waveforms of the perturbations depend on the angular position of the

defect ϕdef . The resulting perturbations are exemplarily shown in Fig. 5.105.10, considering four

different defect positions. Hence, it is possible to determine the angular position of the defect in

real-time by evaluating the obtained force profiles of the ring magnet. This information is used

for positioning of the downstream magnet systems. Depending on the defined detection goal,

these systems are optimized for a variety of defect classes and could consist of different C-, HC-

or HCp-systems as it is proposed in section 4.14.1. Finally, a marker device indicates the position

of the suspected defect. The proposed system is capable to detect and localize subsurface defects

in conducting objects during production processes, while considering the thermal constraints of

permanent magnets in hot environments, which could require additional equipment for cooling.

The application of encompassing magnet systems, such as ring magnets, shares similarities

to the principle of tomography. It enables the targeted search for defects with highly specialized

magnet systems and avoids time-consuming scanning procedures.

Specimen

Ring magnet

Halbach-magnet

Defect

Defect detection

Localized testing

Cylinder-magnet

Defect-marker

Indication

Figure 5.9: Patented LET system consisting of a ring magnet and different optimized position-
able magnet systems for the local evaluation of material anomalies [242242].
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Figure 5.10: Lateral forces Fx and Fy of a ring magnet system in case of a passing subsur-
face defect, located at different angular positions ϕdef . The results are obtained from a 3-D
FEM model using the QSA (Rim = 30 mm, Rom = 40 mm, Hm = 10 mm, Br = 1.17 T (radially
magnetized), Ric = 0 mm (solid cylinder), Roc = 25 mm, σ = 30.66 MS/m, v = 0.5 m/s, µr = 1,
[Xd,Yd, Zd]= [2,2,12] mm (parallelepiped), d = 2 mm (defect depth)).
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SUMMARY AND OUTLOOK

6.1 Summary

In this work, the nondestructive testing technique Lorentz force eddy current testing (LET) was

successfully developed further and it is believed that the obtained results will stand the test of

time. The undertaken investigations elucidated and deepened the understanding of underlying

mechanism related to motion-induced eddy currents and the detection of defects in conductive

specimens by means of LET.

A procedure to determine optimal magnet systems in the framework of LET is proposed.

The underlying optimization problem is clearly defined considering the problem specificity of

nondestructive testing scenarios. The proposed optimization procedure is highly adaptive and

provides a high level of generality. It is thus suitable for future developments. The optimization

studies demonstrate that the limiting factor in LET, which is given by the confined value

of the magnetic remanence, can be counteracted by the proposed Halbach-magnet system.

This design shows inherently improved characteristics in terms of weight and performance.

The impressed magnetic flux density into the specimen is focused and increased compared to

standard geometries. As a consequence, it was possible to further increase the defect response

signal. The combination of both soft and hard magnetic materials using highly saturating

iron-cobalt-alloys leads to a new generation of LET sensors. The proposed concepts are made

available for experimental studies by the design of prototypes. Moreover, a defect depth study

considering the concept of a quasi-infinite crack, exemplified the potential of the LET method

and revealed a maximum defect depth of 24 mm in aluminium when considering the lift-force.

The LET setup is further investigated in terms of the underlying uncertainties. A non-

intrusive generalized polynomial chaos expansion is used in order to quantify the impact and

interaction of multiple unknown input parameters. In this context, the stochastic properties
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of the velocity and the conductivity of the specimen as well as the magnetic remanence of

the permanent magnet are determined experimentally. The quantities under investigation

are modeled as β- and uniform distributed random variables. The results are compared to

Monte Carlo simulations and showed errors < 0.2%. Furthermore, the experimentally obtained

force profiles are compared to the numerical predictions and do lie in the prognosticated range.

The sensitivity analysis considerably contributed to extend the knowledge about the most

influencing parameters. A Sobol decomposition revealed that the magnetic remanence and

the lift-off distance contribute to more than 90% to the total variance of the resulting Lorentz

force profile and should be considered first to improve reproducibility. It turned out that the

numerical treatment of this kind of problem in a probabilistic framework is an essential part

during the experimental validation.

The electromagnetic fields and forces are calculated, which emerge when a coil or a per-

manent magnet moves with a sinusoidal velocity profile relative to a conducting slab of finite

thickness. The 3-D time-dependent analytical solution of this problem is presented. Besides

of the application in LET, the results can be readily used in application scenarios related to

electromagnetic damping, eddy current braking or energy harvesting in order to analyze diffu-

sion and advection processes in case of harmonic motion efficiently. The study is performed for

rectangular and circular coils as well as for cuboidal and cylindrical permanent magnets. The

back reaction of the conductor and therewith associated inductive effects are considered. The

solutions of the governing equations and the integral expressions for the time-dependent drag-

and lift-force are provided. The analytical results are verified by a comparison to numerical sim-

ulations obtained by the FEM. The relative difference between the analytically and numerically

evaluated force profiles was < 0.1%. Exemplary calculations showed that the waveforms of both

force components strongly depend on the level of constant nominal velocity v0, the magnitude of

the velocity oscillation amplitude v1, and the underlying oscillation frequency fv.

The proposed ring magnet design enables new fields of application. Analytical solutions

of the electromagnetic fields and Lorentz forces, generated by axially or radially magnetized

ring magnets due to passing conductors, are provided. The results are verified by numerical

simulations. In this regard, the analytical solutions are an important basis when assessing new

numerical techniques and can be referred to for comparison. It has been shown numerically

that such a system has the potential for advanced defect detection and localization.

6.2 Outlook and Future Work

The present work provides valuable theoretical support of the LET method. On this basis,

suggestions for future investigations are provided in the following:

• Besides of the applied magnetic vector potential formulation described in section 3.23.2, the

use of alternative magnetic field formulations could be subject of numerical studies in

the future. In this regard, the electric current vector potential T in combination with

130



6.2. OUTLOOK AND FUTURE WORK

the magnetic scalar potential ψ could be applied. This formulation is often referred to as

the T−Ω formulation. It is noted that special attention has to be paid in the presence

of a defect. In this case, the air region is not simply connected. However, multivalued

scalar potentials can be avoided by defining very low conductivities inside the defect

region. The T−Ω formulation is advantageous for the modeling of thin flaws, where the

normal component of the induced current density can be set to zero by enforcing that the

tangential component of T vanishes over the defect surface [9696].

• The application of highly saturating iron-cobalt-alloys in LET sensors to focus and magnify

the impressed magnetic flux density could play a central role in future sensor designs.

The ADRA generated by more advanced magnet geometries could be investigated to

further increase the signal to noise ratio of LET sensors. In this context, the application

of anisotropic topology optimization schemes has the potential to identify the optimal

magnetization directions inside the permanent magnet system. However, care must be

taken to ensure practical feasibility.

• During the development of new magnet systems, the effective remanence instead of its

nominal value, provided by the manufacturer, should be considered. As a direct conse-

quence of the quadratic dependency with respect to the Lorentz force, this significantly

influences the obtained critical volume ratios obtained by the volume adaptive force

constraint approach (VaFc) during the optimization.

• Current research is devoted to investigate the influence of the demagnetizing field on the

effective remanence, theoretically and experimentally. The knowledge gained from this

study should be considered when performing numerical simulations in the future.

• The parasitic oscillations in the Lorentz force, which were observed in the experimental

data, should be reduced as much as possible. This would increase the signal-to-distortion

ratio and could enable the detection of smaller and deeper lying defects.

• The ring magnet system provides certain advantages in combination with local LET

sensors. However, an experimental validation of the proposed system is not yet provided.

The design of such a system is challenging and requires decent expertise in mechanical

engineering and force measurement systems.

• An important step towards the application of the LET method in an industrial setting is to

provide reliable statements about the probability of detection (PoD) [243243]. This is usually

done by determining the probability of detected flaws as a function of its size [244244]. As a

result, the so called PoD-curve can be provided together with a certain confidence interval.

Those studies are done experimentally and do require a large number of specimens.

Besides of the usual question of "What is the smallest flaw that can be found?", one has to

reformulate this question in the framework of NDT to "What is the largest flaw that could

be missed?" [244244].
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2-D FOURIER TRANSFORM OF A CIRCULAR CURRENT LOOP

In the following, the Fourier transform of a circular current loop is derived. The time dependency

of its position is omitted in the first place, without loss of generality. The current loop in the

spatial domain, considering a Cartesian coordinate system, is described by:

I(circ)
x =−2Is

y
a
δ

(√
x2 + y2 − a

2

)
(A.1a)

I(circ)
y = 2Is

x
a
δ

(√
x2 + y2 − a

2

)
. (A.1b)

The parameter a denotes the diameter of the current loop. In analogy, the expressions can be

described in the cylindrical coordinate system:

I(circ)
x =−Is sin(ϕ)δ

(
r− a

2

)
(A.2a)

I(circ)
y = Is cos(ϕ)δ

(
r− a

2

)
. (A.2b)

The Fourier transform of a two dimensional function f (x, y) is given by:

FxFy{ f (x, y)}=
∞∫

−∞

∞∫
−∞

f (x, y)e− j(xkx+yky) dxdy, (A.3)

with the spatial frequencies kx and ky. This expression can be transformed into the cylindrical

coordinate system by considering the following identities:

ke jβ = kx + jky → sin(β)= ky

k
, cos(β)= kx

k
, k =

√
k2

x +k2
y (A.4)

re jϕ = x+ j y → sin(ϕ)= y
r

, cos(ϕ)= x
r

, r =
√

x2 + y2 (A.5)

xkx = kr cos(β)cos(ϕ) (A.6)

yky = krsin(β)sin(ϕ) (A.7)
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xkx + yky = kr
(
cos(β)cos(ϕ)+sin(β)sin(ϕ)

)
(A.8)

= kr cos(ϕ−β). (A.9)

Substituting (A.9A.9) in (A.3A.3) and performing the integration with respect to the radial coordinate,

r, and the azimuthal angle, ϕ, yields:
∞∫

−∞

∞∫
−∞

f (x, y)e− j(xkx+yky) dxdy=
∞∫

0

2π∫
0

f (r,ϕ)e− jkr cos(ϕ−β)rdrdϕ. (A.10)

By substituting θ =ϕ−β one gets:

∞∫
0

2π−β∫
−β

f (r,θ+β)e− jkr cos(θ)rdrdθ. (A.11)

Substituting the expressions of the current loop (A.2aA.2a) and (A.2bA.2b) in (A.11A.11) for the function

f (r,θ+β) leads to:

Is

∞∫
0

2π−β∫
−β

[
−sin(θ+β)

cos(θ+β)

]
δ

(
r− a

2

)
e− jkr cos(θ)rdrdθ (A.12)

The integral over the radial coordinate can be solved by using the sifting property of the Dirac

delta function at r = a
2 .

Is
a
2

2π−β∫
−β

[
−sin(θ+β)

cos(θ+β)

]
e− jk a

2 cos(θ) dθ (A.13)

By reformulating the expressions in brackets by means of the following trigonometric identities:

sin(θ+β)= sin(θ)cos(β)+cos(θ)sin(β)= 1
k

(
kx sin(θ)+ky cos(θ)

)
(A.14)

cos(θ+β)= cos(θ)cos(β)−sin(θ)sin(β)= 1
k

(
kx cos(θ)−ky sin(θ)

)
, (A.15)

eq. (A.13A.13) can be written as:

Is
a

2k

2π−β∫
−β

[
−kx sin(θ)−ky cos(θ)

−ky sin(θ)+kx cos(θ)

]
e− jk a

2 cos(θ) dθ. (A.16)

In the following, only the first component is considered since the considerations do also apply

for the second one.

Splitting up the integral involving the sine and the cosine term, one can identify the

following relationship using Eulers identity:
2π−β∫
−β

sin(θ)e− jk a
2 cos(θ) dθ =

2π−β∫
−β

sin(θ)cos
(
k

a
2

cos(θ)
)
dθ− j

2π−β∫
−β

sin(θ)sin
(
k

a
2

cos(θ)
)
dθ (A.17)

=−
[

sin
(
k a

2 cos(θ)
)

k a
2

]2π−β

−β︸ ︷︷ ︸
=0

− j

[
cos

(
k a

2 cos(θ)
)

k a
2

]2π−β

−β︸ ︷︷ ︸
=0

= 0. (A.18)
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As a consequence, the integrals involving the sine terms vanish. Next, the cosine terms are

considered, taking into account the following identities of the Bessel functions of the first

kind [184184]:

Jn(z)= i−n

π

π∫
0

cos(nθ)e jzcos(θ) (A.19)

Jn(ze jmπ)= e jmπnJn(z) m=n=1−−−−−→ J1(−z)=−J1(z). (A.20)

Substituting z =−k a
2 and considering the symmetry of the function, one gets:

−2π jJ1

(
k

a
2

)
=

2π∫
0

cos(θ)e− jk a
2 cos(θ). (A.21)

Finally, by using this analogy in (A.16A.16), the two dimensional Fourier transforms of both current

components are given by:

FxFy{I(circ)
x }= jaπIs

ky

k
J1

(
k

a
2

)
(A.22a)

FxFy{I(circ)
y }=− jaπIs

kx

k
J1

(
k

a
2

)
. (A.22b)
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SOLUTION OF THE MAGNETIC VECTOR POTENTIAL FOR RING

MAGNETS

B.1 Solid Conductors

In case of cylindrical conductors, domain IV from Fig. 5.25.2 on page 113113 vanishes. The remaining

constants C̃II, C̃III, D̃I, and D̃II are determined by solving the system of equations resulting

from the corresponding boundary conditions. The argument r′ denotes the radial position of the

source current. The corresponding constants are given in (B.1aB.1a)-(B.1dB.1d). The functions In(·) and

Kn(·) are the n-th order modified Bessel functions of the first and second kind respectively [184184].

D̃I = µ0 J̃sr′

Q0

{
kI1(βo)

[
I1(γ)K0(αo)+ I0(αo)K1(γ)

]
+ k′

µr
I0(βo)

[
I1(γ)K1(αo)− I1(αo)K1(γ)

]}
(B.1a)

C̃II =µ0 J̃sr′K1(γ) (B.1b)

D̃II = µ0 J̃sr′

Q0
K1(γ)

[
kI1(βo)I0(αo)− k′

µr
I1(αo)I0(βo)

]
(B.1c)

C̃III = µ0 J̃sr′K1(γ)
Q0Roc

(B.1d)

B.2 Tubular Conductors

Tubular conductors, such as pipes, contain an air domain inside. The constants C̃II to C̃IV

and D̃I to D̃III are determined by solving the system of equations in (5.105.10). The corresponding

solutions are given in (B.2aB.2a)-(B.2fB.2f). Auxiliary functions, which are included in the expressions,
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are provided in (B.3aB.3a)-(B.3fB.3f).

D̃I = µ0 J̃sr′

Q1

{
I1(γ)

[
K1(α0)Q2 +K0(α0)Q3

]
−K1(γ)

[
I1(α0)Q2 − I0(α0)Q3

]}
(B.2a)

C̃II =µ0 J̃sr′K1(γ) (B.2b)

D̃II = µ0 J̃sr′

Q1
K1(γ)

[
k′
µr

I1(αi)Q4 +kI0(αi)Q5

]
(B.2c)

C̃III = µ0 J̃sr′

RocQ1
K1(γ)

[
k′
µr

I1(αi)K0(βi)+kK1(βi)I0(αi)
]

(B.2d)

D̃III = µ0 J̃sr′

RocQ1
K1(γ)

[
k′
µr

I1(αi)I0(βi)−kI1(βi)I0(αi)
]

(B.2e)

C̃IV = µ0 J̃sr′

µrRicRocQ1
K1(γ) (B.2f)

Auxiliary functions:

Q0 = kI1(βo)K0(αo)+ k′
µr

I0(βo)K1(αo) (B.3a)

Q1 = k′2
µ2

r
I1(αi)K1(αo)

[
I0(βo)K0(βi)− I0(βi)K0(βo)

]
+ (B.3b)

+k2I0(αi)K0(αo)
[
I1(βo)K1(βi)− I1(βi)K1(βo)

]
+

+k k′
µr

{
I0(αi)K1(αo)

[
I0(βo)K1(βi)+ I1(βi)K0(βo)

]
+

+ I1(αi)K0(αo)
[
I1(βo)K0(βi)+ I0(βi)K1(βo)

]}
Q2 = k′2

µ2
r
I1(αi)

[
I0(βo)K0(βi)− I0(βi)K0(βo)

]
+k k′

µr
I0(αi)

[
I0(βo)K1(βi)+ I1(βi)K0(βo)

]
(B.3c)

Q3 = k2I0(αi)
[
I1(βo)K1(βi)− I1(βi)K1(βo)

]
+k k′

µr
I1(αi)

[
I1(βo)K0(βi)+ I0(βi)K1(βo)

]
(B.3d)

Q4 = k′
µr

I1(αo)
[
I0(βi)K0(βo)− I0(βo)K0(βi)

]
+kI0(αo)

[
I1(βo)K0(βi)+ I0(βi)K1(βo)

]
(B.3e)

Q5 =− k′
µr

I1(αo)
[
I0(βo)K1(βi)+ I1(βi)K0(βo)

]
+kI0(αo)

[
I1(βo)K1(βi)− I1(βi)K1(βo)

]
(B.3f)

k′ =
√

k2 + jλk , λ=µ0µrσvz, αo = kRoc, βo = k′Roc, , αi = kRic, βi = k′Ric, γ= kr′
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