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Abstract

Magnetohydrodynamic duct flows have so far been studied only in the limit of neg-

ligible magnetic Reynolds numbers (Rm). When Rm is finite, the secondary magnetic

field becomes significant, leading to a fully coupled evolution of the magnetic field

and the conducting flow. Characterization of such flows is essential in understanding

wall-bounded magnetohydrodynamic turbulence at finite Rm as well as in industrial

applications like the design of electromagnetic pumps and measurement of transient

flows using techniques such as Lorentz force velocimetry. This thesis presents the de-

velopment of a numerical framework for direct numerical simulations (DNS) of mag-

netohydrodynamic flows in straight rectagular ducts at finite Rm, which is subsequently

used to study three specific problems.

The thesis opens with a brief overview of MHD and a review of the existing state of

art in duct and channel MHD flows. This is followed by a description of the physical

model governing the problem of MHD duct flow with insulating walls and stream-

wise periodicity. In the main part of the thesis, a hybrid finite difference-boundary

element computational procedure is developed that is used to solve the magnetic in-

duction equation with boundary conditions that satisfy interior-exterior matching of

the magnetic field at the domain wall boundaries. The numerical procedure is imple-

mented into a code and a detailed verification of the same is performed in the limit of

low Rm by comparing with the results obtained using a quasistatic approach that has

no coupling with the exterior.

Following this, the effect of Rm on the transient response of Lorentz force is studied

using the problem of a strongly accelerated solid conducting bar in the presence of an

imposed localized magnetic field. The response time of Lorentz force depends linearly

on Rm and shows a good agreement with the existing experiments. For sufficiently

large values of Rm, the peak Lorentz force is found to show an Rm
−1 dependence.

After this, the phenomenon of dynamic runaway due to magnetic flux expulsion in a

two-dimensional channel flow is studied. Comparison with an existing one-dimensional

model shows a close agreement for the Hartmann regime and the bifurcation location

but the model overpredicts the core velocities in the Poisuelle regime significantly.

Parametric studies indicate the importance of the streamwise wavenumber of the im-

posed magnetic field on the bifurcation point.

Finally, turbulent Hartmann duct flow is investigated at moderate vaues of Rm. A

higher Rm is found to delay the onset of relaminarization to a higher value of Hartmann

number. Large scale turbulence is induced at moderate Rm and the effect increases

with Rm. Between the core and the Shercliff layers, Reynolds stresses decrease with

increase in Rm, leading to larger mean velocities in that region.
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Zusammenfassung
Magnetohydrodynamische Kanalströmungen (MHD-KS) wurden bisher nur bei ver-

nachlässigbar kleiner magnetischer Reynoldszahl Rm untersucht. Bei endlichem Rm

wird das sekundäre Magnetfeld signifikant, was zu einer gekoppelten Entwicklung von

Magnetfeld und leitfähiger Strömung führt. Die Charakterisierung solcher Strömungen

ist essentiell für das Verständnis von wandbegrenzter MHD-Turbulenz und in Anwen-

dungen wie z.B. elektromagnetischen Pumpen und der induktiven Strömungsmessung.

Die Dissertation stellt ein Verfahren für die direkte numerische Simulation (DNS) von

MHD-KS bei endlichem Rm vor, welches dann auf drei Probleme angewendet wird.

Am Anfang der Arbeit steht eine kurze Übersicht zur MHD und zum Stand des Wis-

sens zu MHD-KS. Danach folgt eine Beschreibung des physikalischen Modells für die

MHD-KS mit elektrisch isolierenden Wänden. Im Hauptteil der Arbeit wird ein hy-

brides Berechnungsverfahren entwickelt und implementiert, das auf finiten Differen-

zen sowie dem Randintegralverfahren basiert. Es dient zur Lösung der Induktionsgle-

ichung mit Randbedingungen, die für einen stetigen Anschluss des Magnetfelds auf

den Gebietsrändern zwischen Innen- und Außenraum sorgen. Eine detaillierte Veri-

fikation des Codes wird durch Vergleich mit der quasistatischen Näherung vorgenom-

men.

Anschliessend wird das Zeitverhalten der Lorentzkraft bei beschleunigter Bewegung

einer leitfähigen rechteckigen Stange in einem lokalisierten Magnetfeld untersucht.

Die Zeitantwort der Lorentzkraft hängt linear von Rm ab und stimmt gut mit Exper-

imenten überein. Für große Rm sind die Maximalwerte der Lorentzkraft umgekehrt

proportional zu Rm.

Im weiteren wird das dynamische “Weglaufen” der Geschwindigkeit infolge von mag-

netischer Flussverdrängung in einer zweidimensionalen MHD-KS untersucht. Der

Vergleich mit einem eindimensionalen Modell zeigt eine gute Übereinstimmung für

das sogenannte Hartmann-Regime und den Bifurkationspunkt zum sogenannten Poiseu-

ille-Regime, bei dem allerdings die Geschwindigkeit vom Modell überschätzt wird.

Die Wellenlänge des Magnetfelds ist für den Bifurkationspunkt entscheidend.

Abschliessend wird die turbulente Hartmannströmung untersucht. Bei endlichem Rm

verschiebt sich die Relaminarisierung zu größeren Hartmannzahlen und es wird großsk-

alige Turbulenz angeregt. Zwischen den Shercliff-Schichten und dem Strömungskern

verringern sich die Reynoldsspannungen mit steigendem Rm, was zu höherer mittlerer

Geschwindigkeit und flacheren Geschwindigkeitsprofilen führt.
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Chapter 1

Introduction

1.1 Magnetohydrodynamics - a brief overview

Magnetohydrodynamics (MHD) is the theory of the macroscopic interaction be-

tween magnetic fields and the flow of electrically conducting non-magnetic fluids.

Fluids that come under the ambit of this definition fall broadly into the category of

liquid metals, electrolytes and plasmas. The field of MHD concerns a wide range

of applications ranging from astro- and geophysical phenomena to the manipulation

and control of liquid metal flows in the metallurgical industry. The subject is not

of a recent origin but rather considered to have gained momentum during the 1930s

and 40s, although sporadic ideas and contributions occured right from the days of

Michael Faraday. Of important mention concerning early work are the 1832 experi-

ment of William Ritchie in which he could propel a fluid into motion electromagnet-

ically (Ritchie [1832]) and Faraday’s speculation attributing the frequent changes in

earth’s magnetic field to ocean currents. From these modest beginnings, MHD has

come a long way in the last 180 years.

That MHD was relevant in the astrophysical context was apparent only by the early

20th century, when it was realized that plasmas and magnetic fields were ubiquitous in

the cosmos, which was first suggested by Kristian Birkeland (it is now estimated that

about 99% of the known universe is plasma). Subsequently in 1919, Larmor pro-

posed that the sun’s magnetic field was the result of a dynamo action (Larmor [1919]),

followed later by the discovery of Alfvén waves in 1942 which was a significant mile-

stone (Alfvén [1942]). Today, after decades of continued research, significant progress

has been made in our understanding of MHD phenomena in nature. It is now fairly

well established that magnetohydrodynamic interactions are primarily responsible for

the formation of stars from interstellar matter, for the generation and sustenance of

magnetic fields of the sun, the earth and other planets by the dynamo action, and for
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1. Introduction

phenomena such as sunspots and solar flares, to name a few. Yet, a number of open

questions continue to remain and are a subject of ongoing research. For example, the

exact details of the mechanism of geodynamo have some missing links till date.

On the other hand, industrial/engineering applications of MHD began rather late

only by around the 1960s. It started due to the need to pump liquid Sodium that

was used as a coolant in fast breeder reactors and to enable confining plasma (stably)

which was necessary to perform controlled thermonuclear fusion for power generation.

Subsequently, the metallurgical industry is considered to have been through a ‘boom’

period in the 1970s, driven by economic factors. During this period, many traditional

processes related to metal casting were revisited and were modified/replaced in ways

that involved utilizing magnetic fields in order to improve process efficiency and prod-

uct quality. Continuous casting of steel also started during the same time. As a result,

pumping of liquid metal using electromagnetic pumps, stirring of molten metal using

rotating magnetic fields during the casting process to obtain better and homogenous in-

gots, damping of molten metal flow using static magnetic fields to prevent surface con-

tamination occuring due to entrainment, and magnetic levitation to melt highly reactive

metals like Titanium, have become some of the common processes in the metallurgical

industry that take advantage of magnetohydrodynamic phenomena. Controlled silicon

crystal growth using magnetic fields (see e.g. Langlois [1985]) and non-intrusive flow

measurement techniques are a few more applications of recent interest. Currently, the

engineering applications of MHD are myriad and it is possible to mention only a few

important ones here for reasons of brevity. A detailed overview of the industrial ap-

plications of MHD and the physics involved in some of the processes can be found in

Davidson [1999] and Davidson [2001] .

It is already easy to see that magnetohydrodynamic flows span a wide spectrum and

in general, it is useful to broadly distinguish them on the basis of a non-dimensional

parameter, the magnetic Reynolds number defined as

Rm =
UL

λ
, (1.1)

where U and L are the characteristic velocity and length scales in the flow and λ is the

magnetic diffusivity of the fluid given by λ = (µ0σ)−1
, µ0 and σ being the magnetic

permeability of free space and the electrical conductivity of the fluid respectively. Rm

is a measure of the relative magnitude of advection to the diffusion of magnetic field

in the flow. Astrophysical MHD and the geodynamo fall into the category of advec-

tion dominated high Rm flows (Rm ≫ 1) whereas most industrial and laboratory flows

involve moderate to low magnetic Reynolds numbers.

The focus of this work is on MHD flows in duct and channel geometries at finite

2



1. Introduction

Rm. A detailed background and motivation for the same will follow next.

1.2 Magnetohydrodynamic flow in ducts and channels

- state of the art

The study of MHD flows in rectangular ducts and channels have been of signif-

icant interest during the last 80 years. Due to their potential applicability in liquid

metal cooling blankets in fusion reactors, these flow continue to attract a lot of scien-

tific research even today. The study of such flows started with the first mercury flow

experiments by Hartmann and Lazarus in 1937 in ducts and pipes with an imposed

wall normal magnetic field (Hartmann & Lazarus [1937]). These experiments were

performed at rather low flow Reynolds numbers Re < 5000 (Re =UL/ν , ν being the

kinematic viscosity of the fluid) but yielded some important results. It was observed

through the measurements of pressure loss that the imposition of magnetic field lead to

the formation of very thin velocity boundary layers at the two walls perpendicular to

the magnetic field (which are now known as Hartmann layers) with relatively flat ve-

locity profile away from these walls and the suppression of turbulence (partly/wholly)

if any was present. It was also shown that the pressure drop initially decreases with

increase in magnetic field and then increases when the flow has laminarized. This was

attributed to the combined effect of the two independent effects of turbulence suppres-

sion and Hartmann flattening.

Very few experiments were conducted in the next few decades with continued fo-

cus on the effect of magnetic field on the flow pressure drop and to identify the critical

parameter space at which turbulence-laminar transition occured. Notable are Murga-

troyd’s experiments on mercury flows at Re∼ 105 in a duct with 15:1 aspect ratio which

can be considered as a channel. He found that the skin friction factor was an increasing

function of R = Re/Ha, the Reynolds number based on the Hartmann layer thickness

and that the laminar-turbulence transition occured at R ≈ 225 (Murgatroyd [1953]).

Broulliette & Lykoudis [1967] confirmed these results and in addition noted that in

the turbulent regime, the flattening effect at the Hartmann walls is more pronounced

than the turbulence suppression effect, due to which the skin-friction increases with

R. Meanwhile, several analytical studies were carried out on steady laminar Hartmann

duct flows (see e.g. Shercliff [1953], Williams [1963] and Hunt [1965]). Boundary

layers on the walls parallel to the magnetic field were identified (now known as Sher-

cliff layers or side layers) that were quite different from the Hartmann layers and the

effect of insulting/perfectly conducting wall boundary conditions on the flow profiles

were understood.

3



1. Introduction

Measurements of turbulent fluctuations in shear flow MHD started only in the

1970s, with pipe flow experiments of Gardner & Lykoudis [1971] and studies of chan-

nel flow by Reed & Lykoudis [1978]. By this time, it was clear that turbulent fluctua-

tions in the side layers are the last to get suppressed due to the magnetic field whereas

they are strongly suppressed in the core/middle region. Furthermore, the magnetic

field suppressed the Reynolds stress more effectively than the individual fluctuations

contributing to the stress. Although direct numerical simulations (DNS) of MHD tur-

bulence in 3D periodic boxes started already by this time (see e.g. Schumann [1976]),

such simulations of MHD duct/channel flows started only in the nineties. These stud-

ies were motivated by the idea that near-wall streamwise vortices that are considered

to be the reason for high Reynolds stresses, could be inhibited by a magnetic field ap-

plied either in the streamwise or spanwise direction (Crawford & Karniadakis [1997],

Lim et al. [1998]). Since then, a number of DNS studies have been conducted mostly

in channel geometries (e.g. Lee & Choi [2001], Boeck et al. [2007], Krasnov et al.

[2008]) and a lot has been unravelled on the structure of turbulence and the stability

of the boundary layers. However, very few DNS studies exists for MHD duct flows,

infact the only ones being Kobayashi [2008], Chaudhary et al. [2010], Shatrov & Ger-

beth [2010], and Krasnov et al. [2013]. All these studies have been performed in the

low Rm limit. There exists no study of MHD duct flows in the case when Rm becomes

finite and the effect of magnetic field on turbulence in such a scenario is unknown.

This is the primary motivation of the present work.

Figure 1.1: Schematic showing the principle of Lorentz Force Velocimetry (LFV).

As mentioned earlier, there exist contactless flow measurement techniques, which

have gained attention in the past decade. The need for these arise from the fact that

4



1. Introduction

optical methods are unsuitable for flows involving liquid metals due to their opacity,

whereas traditional flow measuring probes cannot withstand the environment of hot

and chemically aggressive melts. Some of such recent measurement methods that

are promising are the contactless inductive flow tomography (CIFT) (Stefani et al.

[2004]), Lorentz force velocimetry (LFV) (Thess et al. [2006]) and the rotary flow

meter (Pride et al. [2011]). Although each of these techniques have their own pros

and cons, here we limit our scope only to LFV, the fundamental principle of which is

to reconstruct velocity fields in conducting flows by measuring the Lorentz force that

acts on a permanent magnet (or magnet systems) placed in the vicinity of the flow (see

Fig. 1.1). For quite some time, this technique has been mostly limited to measuring

integral quantities like volume flow rates in channels, but has recently been shown to be

feasible for local single-component velocity measurements (Heinicke [2013]). Today,

three-dimensional velocity vectors fields are already being mapped, with the use of

high precision multi-component force and torque sensors (Hernández et al. [2015]).

However, currently it is only possible to measure steady flows through LFV. This is

because, in a strongly transient flow, the magnetic Reynolds number becomes finite,

as a consequence of which, the Lorentz force will no more be a linear function of

the velocity and an additional time lag will occur between the flow velocity and the

measured force signal. Such a behavior is currently not well understood as there exist

no studies that quantify the response of Lorentz force to time-varying/finite Rm flows.

This is the second motivating factor for the present work. We now move on to define

the scope of the present work and the questions that it intends to answer.

1.3 Scope of the thesis

The aim of the present work is to develop a numerical framework to perform direct

numerical simulations (DNS) and study magnetohydrodynamic flows in straight rect-

angular ducts and channels at finite magnetic Reynolds numbers. As mentioned in the

previous section, this has never been attempted before, primarily due to the complex-

ities involved in incorporating the non-trivial magnetic boundary conditions that arise

at finite Rm. Numerical procedures and the corresponding code are developed for this

purpose on the basis of an existing DNS code that uses the low Rm approximation. The

code is used to study three specific finite Rm MHD problems, namely, a) Lorentz force

response in a solid conducting bar strongly accelerating in the presence of a localized

magentic field, b) the phenomenon of dynamic runaway in MHD channel flow, and c)

turbulent Hartmann duct flow at moderate Rm. Wherever necessary, the code is cus-

tomized to the needs of the specific problem being studied. The work aims to answer

5



1. Introduction

the following general questions

1. Is it feasible to perform DNS of magnetohydrodynamic duct flow at finite Rm

with fully consistent treatment of the exterior magnetic field ? If so, what numer-

ical procedures are best suited ? How good are the often used pseudo-vacuum

magnetic boundary conditions ?

2. What is the response of the integral Lorentz force in LFV, when Rm becomes

finite due to strongly transient motions. How does the time delay between the

velocity and Lorentz force depend on Rm ?

3. What is the nature of flux expulsion and the associated bifurcations that occur in

an MHD channel flow ? How do they depend on the hydrodynamic and magnetic

Reynolds numbers ?

4. Are the statistically steady states of Hartmann duct flow very different at finite

Rm as compared to the case of low Rm ? What kind of fundamental differences

arise in the structure of the flow ?

The thesis is structured as follows. In the next chapter, we describe the physical

model that governs the problem being considered. In chapter 3, we develop the com-

putational procedures necessary for the solution of the full set of governing equations.

In chapter 3 we also present detailed studies of verification of the numerical imple-

mentation and the study of how an external magnetic field permeates into a conducting

medium that is either stationary or in a state of laminar flow. Later on, in chapter 4,

the study of Lorentz force transient response at finite Rm is presented, in the context

of an accelerating solid bar. This is followed by the study of magnetic flux expulsion

and runaway in MHD channel flow, in chapter 5. After that, we take up the study of

turbulent Hartmann duct flow at moderate magnetic Reynolds numbers in chapter 6.

Finally, in chapter 7, the conclusions arising out of the present work are summarized

with a brief outlook towards future work.

6



Chapter 2

Mathematical model

2.1 The MHD approximation

As mentioned earlier, the theory of magnetohydrodynamics is a subdiscipline of

plasma physics and is related to it in the same way as classical hydrodynamics is related

to the kinetic theory of fluids. It is a macroscopic theory and hence all field variables

including charge distributions are described as spatially continuous. Due to this, some

of the fundamental equations of electromagnetism applicable for single charges cannot

be used as it is in the context of MHD and hence suitable continuum forms of the

equations must be obtained. Several facts and assumptions are taken into account

in doing this. The aim of this section is to briefly describe how, starting from the

basic laws, the particular forms of the electrodynamic equations that govern MHD

are obtained. It must be mentioned at the outset that the description given in this

section is standard and is provided here for the sake of completeness. A comprehensive

discussion of the same can be found in Shercliff [1965].

The force on a single charged particle i of charge qi and moving with a velocity Ui

in an environment with electric field E and magnetic flux density Bt is given by

fi = qi (E+Ui ×Bt) (2.1)

and this force is known as Lorentz force in electromagnetism. The force on a unit

volume containing such charged particles will be

f =
i=N

∑
i=1

qiE+

(

i=N

∑
i=1

qiUi

)

×Bt = qE+J ×Bt , (2.2)

where the summation is over all the charged particles N in the volume, q is the charge/unit

volume and J is the electric current density. Now, the relative magnitudes of the

7



2. Mathematical model

two terms in the above equation can be estimated using a scaling argument with typ-

ical scales for the length, velocity and magnetic field as d, v and B respectively.

From Gauss’ law ∇ ·E = q/ε0 and on the assumtion that E ∼ vB, one can see that

qE ∼ ε0B2v2/d, where ε0 is the permittivity of free space. Furthermore, from Ampere’s

law, the current density can be taken to scale as J ∼ B/µd, where µ is the permeability

of the medium. It now follows that the ratio qE/J ×Bt ∼
(

ε0B2v2/d
)(

B2/µd
)−1 ∼

v2/c2, c being the speed of light in vacuum. Hence, the force is assumed to be com-

prised of only the magnetic part as

f = J ×Bt , (2.3)

which is customarily called as Lorentz force in MHD.

We now consider an electrical conductor (but non-magnetic) moving with a veloc-

ity V , with free charges moving with a velocity Uc relative to the conductor under

the influence of an electric field E and a magnetic field Bt . In this case, one can as-

sume that the inertia of the free charges are negligible. This means that irrespective

of whether a free charge accelerates or not, the net force on the particle must van-

ish. The theory of electrical resistivity suggests that the electric forces are balanced by

dissipative forces that are proportional to the velocity of the charge as

qc,i [E+(Uc,i +V )×Bt ] = κc,iUc,i, (2.4)

where the proportionality constant κi is specific to the particular free charge qc,i. Again,

adding these terms over a small element yields

qcE+Jc ×Bt +qcV ×Bt = ∑κc,iUc,i (2.5)

on a per unit volume basis. Here qc is the charge/unit volume contributed by the free

charges and Jc = ∑qc,iUc,i is known as the conduction current. Furthermore, it is well

known that the quantity ∑
i
(κc,iUc,i)/qc is proportional to the conduction current as

∑
i
(κiUi)/qc = Jc/σ , σ being the electrical conductivity of the material. Using this,

we obtain

E+
Jc ×Bt

qc

+V ×Bt =
Jc

σ
. (2.6)

At this juncture, a number of simplifications are made. At first, the second term of

(2.6) known as the Hall effect, is neglected in the low-frequency approximation which

is relevant for MHD (this is essentially due to the fact that qc is relatively large due to

8



2. Mathematical model

the large number density of free electrons in solid or liquid conductors). Furthermore,

the total current density J due to the motion of all kinds of charges (free and bound)

can be expressed as

J = qV +
i=N

∑
i=1

qiUi = qV +
i=Nb

∑
i=1

qb,iUb,i +
i=Nc

∑
i=1

qc,iUc,i = qV +
∂P

∂ t
+Jc, (2.7)

where the subscripts b and c respresent bound and free charges respectively. The first

and second terms on the right hand side represent convection and polarization cur-

rents respectively (P is the polarization density and the subscript b represents bound

charges). The polarization current is due to the changing of the state of polarization (or

seperation) of charges within the molecules that comprise the conductor. It is interest-

ing to note that the total charge density q ∼ ε0∇ ·E and hence the ratio of convection

current to the total current is qV /J ∼
(

ε0Bv2/d
)

(B/µd)−1 ∼ v2/c2 which is negligi-

ble. Further, the polarization current ∂P/∂ t ∼ ε0∂E/∂ t is small compared to J and

is neglected. Hence, the total current density J in MHD is taken to be equal to the

conduction current density Jc. Using these simplications, (2.6) becomes

J = σ (E+V ×Bt) , (2.8)

which is essentially an equation of force balance on free charges and is known as

Ohm’s law in the context of continuous charge distributions (and in MHD as well).

Finally, we also see that neglecting the term ε0∂E/∂ t leads to simplified forms of

the Ampère’s law and Kirchoff’s law as

µJ = ∇×Bt , (2.9)

∇ ·J = 0. (2.10)

The Faraday’s law retains its form and reads as

∂Bt

∂ t
=−∇×E. (2.11)

Equations (2.3), (2.8), (2.9), (2.10) and (2.11) represents the fundamental forms of

electromagnetic laws as relevant to the study of magnetohydrodynamics. We now

move on to describe the complete physical model that describes the main prototype

problem that we are concerned with in this thesis, namely the MHD periodic duct flow.

9



2. Mathematical model

2.2 Physical model and governing equations

We consider the flow of an incompressible and electrically conducting fluid (e.g.,

liquid metal or plasma) that is driven by a mean streamwise pressure gradient along

a straight rectangular duct and is subjected to an externally imposed magnetic field

B0(x, t) (see Fig. 2.1). The flow with a velocity field V (x, t) crossing the imposed

magnetic field lines induces eddy currents J(x, t) in the fluid, which in turn produce a

secondary (or induced) magnetic field B(x, t). The resultant total magnetic field

Bt =B0 +B (2.12)

interacts with the eddy currents to produce a Lorentz force that is proportional to J ×
Bt which affects the flow field. We are interested in the computation of the velocity

and the magnetic fields in the interior of the duct through DNS. This means that the

smallest scales, the Kolmogorov length and magnetic diffusion scales are resolved.

Further, the mass flux through the duct is assumed to be constant and the direction

along the mean flow - the streamwise direction - is assumed to be periodic.

Figure 2.1: Schematic of the flow in a straight rectangular duct with periodic inflow and outflow.

Throughout this study, Ly = Lz = 2L. x, y and z represent the streamwise, spanwise and the wall-normal

directions respectively.

In the case of a flow at low magnetic Reynolds number (Rm ≪ 1), the secondary

magnetic field is assumed negligible when compared to the imposed magnetic field and

hence the evolution of such MHD flows can be described by the so-called quasistatic

or inductionless approximation (Roberts [1967]). However, when Rm ∼ 1, the case that

we consider, the induced magnetic field is comparable to the imposed magnetic field

and it becomes necessary to model the time evolution of B. The physics of the coupled

evolution of the flow and magnetic fields is described by the Navier-Stokes equations

and the magnetic field transport equations respectively, together with solenoidal con-

straints for both fields. We denote the half-channel width as L, the average streamwise

velocity as U and the maximum value of the imposed magnetic field (generated from

10



2. Mathematical model

electric currents in the exterior) on the duct walls as B0. Upon non-dimensionalization

with the scales L, U , L/U , ρU2, B0 and σUB0 for the length, velocity, time, pressure,

magnetic field and current density respectively, and using small letters as the variable

names for all the non-dimensional quantities, the system of governing equations in the

interior of the duct Ωi can be written as

∂v

∂ t
+(v ·∇)v =−∇p+

1

Re

(

∇2v+Ha2 (j×bt)
)

, (2.13)

∂b

∂ t
+(v ·∇)bt = (bt ·∇)v+

1

Rm
∇2b, (2.14)

∇ ·v = 0, (2.15)

∇ ·b= 0, (2.16)

j =
1

Rm
(∇×b) , (2.17)

v = 0 on Σ ; v, b periodic in x-direction (2.18)

where x, y and z denote the streamwise, spanwise and wall normal directions respec-

tively. The standard no-slip and no penetration boundary conditions are assumed for v

on the wall boundaries Σ , along with periodicity in the streamwise direction. The duct

walls Σ are considered to be electrically insulating (σ = 0 on Σ ) which translates to

vanishing wall normal current density jn = 0.

The non-dimensional parameters involved in the system are the Reynolds number

(Re), the Hartmann number (Ha) defined as

Re =
UL

ν
, Ha = B0L

√

σ

ρν
(2.19)

and the magnetic Reynolds number (Rm). Here, ν and ρ represent the kinematic vis-

cosity and the density of the fluid respectively. The magnetic Prandtl number relates

the magnetic and hydrodynamic Reynolds numbers, and is defined as

Prm =
Rm

Re
. (2.20)

However, we treat Rm as an independent parameter (instead of Prm) throughout this

thesis.

The region outside the duct Ωe is considered to be electrically insulating (e.g., air

or vacuum). It is evident that the secondary magnetic field is not limited to the duct

interior but extends across the duct walls and pervades the space outside the duct. This

happens unless the duct walls are perfectly conducting, in which case the magnetic
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2. Mathematical model

field is bound within the interior of the duct. We denote the secondary magnetic field

extending outside the duct as the exterior magnetic field. Although our primary in-

terest is in the magnetic field inside the duct, a consistent treatment requires that the

magnetic field is continuous across the duct walls. This is ensured by considering the

magnetic field in the extended domain including the region outside the duct. Since

electric currents cannot exist in the exterior, the magnetic field is curl free and hence

can be expressed as the gradient of a magnetic scalar potential, b = −∇ψ . Impos-

ing the solenoidality condition (Gauss law, ∇ · b = 0) yields the following governing

equations for the magnetic field in the exterior

∇2ψ = 0 , b=−∇ψ in Ωe∪Σ , (2.21)

where Σ represents the duct wall boundary. In addition, it is assumed that no net

streamwise current is applied, due to which the scalar potential ψ far away from the

walls decreases faster than O(r−1) as r → ∞, satisfying the far field condition, where

r is the normal distance from the duct walls. Equations (2.13) to (2.18) together with

(2.21) and the far field condition completely determine the physical system under con-

sideration. However, since we are interested only in the solution of the magnetic field

inside the duct, by means of the boundary integral approach, boundary conditions are

obtained for the magnetic field that characterizes the matching of the exterior and inte-

rior fields at the wall boundary. This leads to non-local magnetic boundary conditions

on the duct walls. A detailed discussion of the boundary integral procedure and the

particular form of the non-local conditions will be given in the next chapter.

2.3 Jump conditions at the wall boundaries

As the electrical conductivity of the media changes across the wall boundaries of

the domain, it is important to know the continuity properties of the electromagnetic

field at the boundary in order to obtain consistent boundary conditions. Choosing the

dimensional form of Maxwell’s equations for the time being, the following equations

are valid on both the sides of the interface Σ .

∂Bt

∂ t
=−∇×E, (2.22)

µ0J = ∇×Bt . (2.23)

A thin rectangular strip of area ly × lz across the interface is considered as shown

in Fig. 2.2. Indicating the variables on the conducting and the insulating sides of the
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Figure 2.2: Schematic showing the rectangular area of integration extending slightly on both sides

of the conductor-insulator interface Σ . The origin of the yz-coordinates shown in this figure is only

representative and does not indicate the centre of the duct cross-section.

boundary by superscripts c and i respectively and integrating (2.22) over the area in

the limit lz → 0, we get Ec
y ly −E i

yly = 0 or Ec
y = E i

y. In other words, the tangential

components of the electric field are continuous across the interface,

Ec
τ
|Σ = E i

τ
|Σ (2.24)

Similarly, integrating equation (2.23) over the strip yields the jump conditions for the

tangential components of the magnetic field as

Bc
tτ |Σ = Bi

tτ |Σ (2.25)

It must be noted that conditions (2.24) and (2.25) are valid for the general case of

finite conductivity of the exterior medium. However, in the special case of insulating

exterior, the condition (2.24) is not useful. In this case, integrating the dimensional

version of (2.16) as in the previous cases, yields

Bc
tn|Σ = Bi

tn|Σ (2.26)

for the wall normal component of the magnetic field. A detailed discussion of these

conditions can be found in Shercliff [1965] and Iskakov & Dormy [2005]. To sum-

marize, for the case of an insulating exterior, all the components of the magnetic field

and only the tangential components of the electric field are continuous across the wall
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boundaries. Advantage of this fact will be taken while obtaining proper boundary con-

ditions for the magnetic field, which will be explained in the next chapter.

2.4 The quasistatic approximation - a brief note

In the case when the magnetic diffusivity is high or Rm ≪ 1, the magnitude of

the secondary magnetic field b is small (and can be neglected), although the Lorentz

forces are significant. In the limiting case of Rm → 0, it is possible to obtain a sim-

plified governing model which is approximate to the first order and get rid of dealing

with the secondary magnetic field altogether. This is commonly known as the low-

Rm or the quasistatic approximation in MHD. In fact, the value of Rm is very low in

most industrial applications and laboratory experiments of MHD in which case the

quasistatic approximation is fully justified and is commonly used. A very brief outline

of the simplifications leading to the quasistatic approximation is as follows. The fact

that b is negligible means that the total magnetic field remains equal to b0 and does not

vary with time. This implies that the electric field e is curl-free and can be expressed

as the gradient of a scalar potential φ as e = −∇φ . With this, the Ohm’s law and its

divergence will read as

j =−∇φ +v×b0, (2.27)

∇2φ = ∇ · (v×b0) . (2.28)

One can easily see that the main advantage of the quasistatic model (with respect to

numerical treatment) lies in the fact that since j is limited/bound to the conducting

flow domain, simple boundary conditions arise, that does not require considering the

exterior at all. For example, the condition of insulating walls translate to a Neumann

boundary condition, ∂φ/∂n on Σ .
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Chapter 3

Numerical procedure

This chapter presents a coupled finite-difference/boundary integral numerical pro-

cedure that is implemented and used to perform direct numerical simulations (DNS) of

turbulent magnetohydrodynamic duct flows at finite magnetic Reynolds numbers. Var-

ious levels of verification of the implementation of the numerical procedure are also

presented hereby. The chapter ends with a brief study of magnetic field permeation

into conductors/conducting flows at finite magnetic Reynolds numbers.

3.1 The problem of magnetic boundary conditions

The aim of this chapter is to present a computational procedure for direct numeri-

cal simulations (DNS) of MHD duct flow at finite magnetic Reynolds number. In this

regime, as discussed in the previous chapter, the coupling between the flow and the

magnetic field is significant and the effect of their interactions on turbulence is one of

the primary motivations for this work. We choose the rectangular duct flow configura-

tion for our study as it is frequently encountered in experimental studies of MHD and

also in industrial applications.

Earlier studies of finite Rm MHD turbulence have mostly been performed in the

periodic box setting (see e.g. Knaepen et al. [2004]; Oughton et al. [1994]). There are

few existing studies of MHD turbulence at finite Rm that include the presence of a mean

shear with wall boundaries (e.g., Hamba & Tsuchiya [2010]). The main challenge

in the numerical computation of finite Rm MHD flows is the problem of magnetic

boundary conditions that ensure proper matching of the magnetic field in the interior

with that in the insulating exterior. This arises due to the fact that when Rm is finite, the

secondary magnetic field is non-negligible and the equations governing it in the interior

and exterior are different. In the case of spectral simulations in spherical geometries (as

is the case with planets and stars), this problem is circumvented by poloidal-toroidal
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decomposition of the magnetic field and the use of expansions in spherical harmonics

(Christensen et al. [2001]). Such a procedure leads to boundary conditions that are

decoupled for each harmonic. Similar simplification of boundary conditions is possible

in configurations with two periodic directions like that of a cylindrical pipe or plane

channel flows. However such simplifying procedures cannot be employed for non-

periodic geometries (e.g., a duct).

Several strategies have been adopted by prior studies to incorporate the effect of the

exterior magnetic field. One of them is the vertical field or pseudo-vacuum boundary

condition that has been used in several instances of astrophysical and dynamo sim-

ulations (Brandenburg et al. [1995]; Gailitis et al. [2004]; Hubbard & Brandenburg

[2010]; Hurlburt & Toomre [1988]; Kenjereš & Hanjalić [2007]; Rüdiger & Zhang

[2001]) particularly due to its simplicity. An alternative method that was used in the

simulation of the Karlsruhe dynamo experiment (see Rädler et al. [1998, 2002]), was

to immerse the conducting dynamo domain into a sphere, with the region between the

sphere and the boundary of the conducting domain assumed to be filled with a mate-

rial of low conductivity. However, both of these methods are associated with loss of

solution accuracy. A rather straightforward procedure is to find a solution for the mag-

netic field in the exterior domain together with the interior (e.g. Kenjereš et al. [2006];

Stefani et al. [1999]). An approach similar to this but using the finite element method

was proposed by Guermond et al. [2007, 2003] and subsequently applied for dynamo

problems (see Guermond et al. [2009]; Nore et al. [2011]). This approach is however

computationally demanding and is necessary only if one is interested in the solution of

the exterior magnetic field.

An alternative and elegant formulation, the velocity-current formulation, was first

proposed and rigorously analyzed by Meir et al. (Meir & Schmidt [1994, 1996, 1999])

for stationary MHD flows and was further extended to time dependent flows in Schmidt

[1999]. This formulation takes advantage of the fact that the current density field is

bounded within the domain (unlike the magnetic field) and instead of the induction

equation for the magnetic field, an integro-differential transport equation for the cur-

rent density is proposed. Subsequently Stefani et al. (Stefani et al. [2000]; Xu et al.

[2004]) introduced similar formulations (the integral equation approach) to kinematic

dynamo problems and used it to simulate the von Kármán Sodium and Riga dynamo

experiments (Xu et al. [2008]). More recent developments and applications of this

method can be found in Stefani et al. [2013]. Nevertheless, it has been suggested that

this procedure too requires large computational resources (Giesecke et al. [2008]), pri-

marily due to the volume integrals that have to be evaluated at every time step. Compu-

tationally more efficient is the coupled finite element-boundary integral approach that
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has been traditionally used to solve pure electromagnetic problems (see e.g. Bossavit

[1991]; Bossavit & Vérité [1982]). A finite-volume variant of this method was first

proposed by Iskakov et al. (Iskakov et al. [2004]; Iskakov & Dormy [2005]) to solve

the induction equation and subsequently applied to kinematic dynamo simulations by

Giesecke et al. [2008].

Clearly, DNS of MHD duct flow at finite Rm with consistent treatment of the ex-

terior domain has not been attempted in prior studies. In this chapter, the general ap-

proach of the coupled interior-exterior solution using the boundary integral procedure

is applied to the problem of turbulent magnetohydrodynamic flow in rectangular ducts.

Specific geometric features such as the existence of corners and two non-periodic di-

rections along with the need to treat magnetic diffusion in an implicit manner (unlike

the case of high Rm flows, where explicit schemes are typical) with integral boundary

conditions, makes the problem computationally challenging. Here, we describe a di-

vergence preserving semi-implicit hybrid finite-difference boundary integral numerical

procedure for the problem of MHD duct flow with streamwise periodicity.

This chapter is organized as follows. In section 3.2, the general details of the nu-

merical procedure adopted for the hydrodynamic part is briefly described followed by

the elaboration of the boundary integral approach and the algorithm for the coupled

numerical procedure adopted to solve for the magnetic field. In section 3.3, several

test cases are presented in the limiting regime of low Rm to verify the numerical imple-

mentation of the magnetic boundary conditions. In section 3.4, an explicit version of

the numerical procedure is briefly outlined. Finally, in section 3.5, study of magnetic

field permeation in stationary conductors and laminar flow at finite Rm are presented.

3.2 Numerical procedure

3.2.1 The interior problem

The governing partial differential equations for the velocity and the magnetic fields

inside the duct are solved numerically using the finite difference approach. The domain

is discretized into a structured rectangular Cartesian grid and the solution variables are

approximated at the grid points which correspond to the collocated grid arrangement.

In duct MHD flows in a uniform external magnetic field, specific boundary layers with

steep velocity gradients and high current densities are formed near the walls (Müller

& Büller [2001]). These correspond to the Hartmann layers at the walls normal to

the imposed magnetic field and the Shercliff layers at the walls aligned with the initial

magnetic field b0. In order to resolve the thin boundary layers, the grid in the cross
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section is stretched to obtain a non-uniform grid with high grid clustering near the

walls. The non-uniform grid in both wall-normal directions is obtained by a coordinate

transformation from the uniform-grid coordinates (ζ ,η) according to

y = L
tanh(Syζ )

tanh(Sy)
, z = L

tanh(Szη)

tanh(Sz)
, (3.1)

where Sy, Sz correspond to the degree of stretching in the y- and z- directions respec-

tively. However, a uniform grid in the x-direction is considered so as to take advantage

of the periodicity through Fourier decomposition. In order to keep the chapter self con-

tained, we now briefly describe the computational procedure adopted for the solution of

velocity field from the Navier-Stokes equations. The time discretization is performed

by a second-order backward difference scheme using the 3 time levels n−1, n, n+1

when marching from time level n to n+1 as

∂v

∂ t
≈ 3vn+1 −4vn +vn−1

2∆t
. (3.2)

The viscous term can be treated using either an explicit or implicit procedure, whereas

the non-linear advective term and the Lorentz force term are treated explicitly using

the Adams-Bashforth method. The advective, Lorentz force and viscous terms can be

summed up into F n as

F n =−(vn ·∇)vn +
Ha2

Re
(j×bt

n)+
(1−θ)

Re
∇2vn, (3.3)

where binary factor θ assumes the values 0 and 1 for the explicit and implicit treat-

ments respectively. The implicit treatment of the viscous term can be advantageous

for the case of small Re. The velocity field is obtained by the well known projection

method, wherein an intermediate velocity field v∗ is computed using

3v∗−4vn +vn−1

2∆t
= 2F n−F n−1 +

θ

Re
∇2v∗, (3.4)

which leads to a Poisson-type equation for v∗ in the implicit case. The pressure field

pn+1 is then computed from the continuity equation by solving another Poisson prob-

lem,

∇2 pn+1 =
3

2∆t
∇ ·v∗. (3.5)
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Integrating (3.5) over the whole domain and applying the Gauss-divergence theorem

will yield the boundary condition for pressure on Σ as

∂ pn+1

∂n
=

3

2∆t
v∗n, (3.6)

where the subscript n refers to the wall normal component. Subsequently the interme-

diate non-solenoidal velocity field v∗ is projected onto a divergence-free velocity field

v at the time level n+1 using the pressure field obtained from (3.5) as

vn+1 = v∗− 2∆t

3
∇pn+1. (3.7)

A Fourier transformation is applied in the x-direction to the discrete forms of the Pois-

son equations (3.4), (3.5) for the velocity and pressure. The transformed equations are

then solved in the wavenumber space as a series of 2D (y-z plane) problems using the

Fortran software package FISHPACK (Adams et al. [1999]) that uses a cyclic reduc-

tion algorithm (direct solver) for the solution of 2D elliptic equations. Further details

of the numerical procedure for the hydrodynamic solution can be found in Krasnov

et al. [2011].

We now turn our attention to the solution of the magnetic induction equation (2.14).

A discretization procedure similar to that used for the implicit treatment of the mo-

mentum equation is followed with only the diffusive term treated implicitly. Unlike

the momentum equation, the implicit treatment here is really essential due to the fact

that the diffusive time scale in the case of Rm ∼ 1 is comparable to the time scale of

advection of the magnetic field. Discretization of the induction equation yields

3bn+1 −4bn +bn−1

2∆t
= 2T n −T n−1 +

1

Rm
∇2bn+1 (3.8)

for the secondary magnetic field b at the n+1 level where T n includes the advective

and the magnetic field stretching terms and is given by

T n =−(vn ·∇)bt
n +(bt

n ·∇)vn. (3.9)

Further simplification of (3.8) leads to a Poisson-type equation for bn+1 as

− fbn+1 +∇2bn+1 =− fq, (3.10)

where f = 3Rm

2∆t
is a discretization coefficient and q is the right hand side that retains

the known terms from the time steps n and n− 1. The system being periodic in the
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streamwise direction, we now introduce a Fourier transformation in the x-direction as

b(x,y,z) = ℜ







k=Nx
2 −1

∑
k=0

b̂k(y,z)e
iαkx







, (3.11)

where ℜ represents the real part, Nx is the number of grid intervals along the x-direction

and αk is the streamwise wavenumber defined as αk = 2πk/Lx, Lx being the length of

the duct. Substituting (3.11) into (3.10) leads to a 2D elliptic equation in the yz-plane

for the complex Fourier coefficients b̂k as

(

− f −α2
k

)

b̂k +∇2
yzb̂k =− f q̂k, (3.12)

with b̂k =
[

b̂xk, b̂yk, b̂zk

]

and ∇2
yz = ∂ 2

y + ∂ 2
z is the 2D Laplace operator. This step

is essential as we reduce the complexity of matching the magnetic field of a three-

dimensional interior (Ωi) and an exterior (Ωe) to a planar problem for each Fourier

coefficient. Here, the superscript n+1 is dropped for the sake of simplicity. Solution

of (3.12) requires proper boundary conditions for the magnetic field that matches the

exterior field, which will be the subject of the following section.

3.2.2 Boundary integral equation and the coupled numerical pro-

cedure

In this section we will derive suitable boundary conditions (in the Fourier space)

required for the closure of (3.12) and present a coupled iterative solution procedure to

solve the resulting system. This is done through the boundary integral approach, by

which the matching of the interior solution with the exterior solution at the boundary

translates into non-local boundary conditions. The governing Laplace equation (2.21)

for the exterior magnetic potential transforms to the 2D Helmholtz equation in the

k-space as

(∇2 −α2
k )ψ̂k = 0. (3.13)

The Green’s function or the fundamental solution of the 2D Helmholtz operator

is denoted by Gk (r
′,r) that satisfies (∇2 −α2

k )Gk(r
′,r) = −δ (r′−r) where δ (r′−

r) is the Dirac delta function centered around the pole r′ = y′j + z′k, with j and

k representing the unit vectors in the y and z directions respectively (see Fig. 3.1).
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Considering r′ to be a point on the rectangular boundary Γ , we see that

∫

Λe

∇ ·
(

ψ̂k (r)∇Gk(r
′,r)−Gk(r

′,r)∇ψ̂k (r)
)

dA

=
∫

Λe

(

ψ̂k (r)∇2Gk(r
′,r)−Gk(r

′,r)∇2ψ̂k (r)
)

dA

=−
∫

Λe

ψ̂k (r)δ
(

r′−r
)

dA = 0,

(3.14)

where the area of integration includes the exterior region between the big circle and

the rectangular domain excluding a small semi-circle of radius ε in the vicinity of the

pole r′ as shown in Fig. 3.1.

Figure 3.1: Region of integration between the rectangular boundary Γ and an outer circle S∞ excluding

a small semi-circle χ of radius ε . This part of the solution procedure is done in a plane. Thus Λi relates

to Ωi, Λe to Ωe and Γ to Σ from the original 3D setting.

Using Gauss-divergence theorem, equation (3.14) can be rewritten as

∫

Γ

(

ψ̂k (r)∇Gk(r
′,r)−Gk(r

′,r)∇ψ̂k (r)
)

·ndl

+

∫

χ

(

ψ̂k (r)∇Gk(r
′,r)−Gk(r

′,r)∇ψ̂k (r)
)

·ndl

+
∫

S∞

(

ψ̂k (r)∇Gk(r
′,r)−Gk(r

′,r)∇ψ̂k (r)
)

·ndl = 0,

(3.15)

where n is the local unit outward normal vector at r on the boundaries and l is the

arc length. The third term (integral over S∞) vanishes as r → ∞. The second term

(integral over χ) is simplified with the assumption that ψ̂k and
∂ψ̂k

∂n
do not vary within
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the half-circle χ as the radius ε is considered small:

∫

χ

ψ̂k (r)∇Gk(r
′,r) ·ndl = ψ̂k

(

r′
)

∫

S

∇2Gk(r
′,r)dS

= ψ̂k

(

r′
)

∫

S

(

−δ
(

r′−r
)

+α2
k Gk(r

′,r)
)

dS

=−1

2

(

r′
)

ψ̂k

(

r′
)

+α2
k ψ̂k

(

r′
)

∫

S

Gk(r
′,r)dS,

(3.16)

where l is the coordinate along χ and S represents the area bounded by the half-circle

χ . Using the fact that Gk(r
′,r)∼ ln(|r′−r|) for small ε , the second term in the above

equation vanishes as ε → 0. In the case when r′ lies at one of the four corners of Γ , χ

would correspond to a three-quarter circle. Furthermore,

∫

χ

−Gk(r
′,r)∇ψ̂k (r) ·ndl =−∂ψ̂k

∂n

(

r′
)

∫

χ

Gk(r
′,r)dl

=−∂ψ̂k

∂n

(

r′
)

ln(ε)2πε → 0, ε → 0.

(3.17)

With the above simplifications, the boundary integral equation in the general form can

be written as

β
(

r′
)

ψ̂k(r
′) = P.V.

∮

Γ
[Gk(r

′,r)b̂nk(r)+ ψ̂k(r)
∂Gk

∂n
(r′,r)]dl(r), (3.18)

where b̂nk(r) =−∂ψ̂k

∂n
(r), β (r′) is a constant that depends on the location of the pole

r′ on the rectangular boundary Γ and is given by

β
(

r′
)

=







3
4
, if r′ ∈ corner,

1
2
, otherwise,

(3.19)

n being the local outward wall normal coordinate at r. It should be mentioned that

the integration along the rectangular contour Γ must be performed in the sense of a

Cauchy principal value (CPV) (Bronshtein & Semendyayev [1997]). The boundary

condition (3.18) is a Fredholm integral equation of the 2nd kind with a singular kernel.

The singularity would be apparent from the specific form of the Green’s function given

by

Gk

(

r′,r
)

=
1

2π
K0

(

αk

(

|r′−r|
))

, (3.20)

K0 being the MacDonald function which corresponds to the complex valued Hankel
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function of zero order H0 (Stakgold [2000]). For numerical evaluation, the following

series expansion formulae from Abramowitz & Stegun [1964] are particularly useful

K0 (x) =















− ln
(

x
2

)

I0 (x)+
7

∑
n=1

Cn

(

x2

4

)n−1

, if x ≤ 2

e−x√
x

7

∑
n=1

Dn

(

2
x

)n−1
, otherwise

(3.21)

I0 (x) = 1+
6

∑
n=1

Enyn, y =
( x

3.75

)2

, |x|< 3.75, (3.22)

in which I0 represents the modified Bessel function of the first kind and Cn,Dn,En are

the series coefficients (Abramowitz & Stegun [1964]). It can be seen that for x → 0,

K0 (x) ∼− lnx which explains the logarithmic singularity at the pole.

Solution of (3.12) for the in-plane components b̂yk and b̂zk requires the normal and

tangential components b̂nk and b̂τk on the boundary Γ which are connected through

the potential ψ̂k given by (3.18). The normal component b̂n on the boundary can be

evaluated from the Gauss’s law as

∂ b̂nk

∂n
+

∂ b̂τk

∂τ
=−α2

k ψ̂k (3.23)

and the tangential component b̂τk obtained from

b̂τk =−∂ψ̂k

∂τ
, (3.24)

which closes the problem of evaluating the in-plane components b̂yk and b̂zk.

Equations (3.12), (3.23) and (3.24) are discretized by finite differences and equa-

tion (3.18) is discretized by the boundary element method and are solved together

iteratively for the numerical solution of the two components. A coupled iterative pro-

cedure between the interior and the boundary has been adopted here. The discrete

form of the elliptic equation (3.12) is used to update b̂yk and b̂zk in the strict interior

by a Gauss-Seidel like method using boundary values from the previous iteration. The

component of b̂nk on grid points adjacent to the boundary is then used to update b̂nk on

Γ through (3.23). The updated b̂nk is used to update ψ̂k (r
′) on Γ through the discrete

form of (3.18) which is subsequently used to evaluate b̂τk from (3.24). This iterative

procedure alternating between the interior and the boundary is performed until the re-

quired convergence criterion is met. The procedure for a single iteration is summarized

below

• Compute b̂yk and b̂zk on Λi with
(

− f −α2
k

)

b̂k +∇2
yzb̂k =− f q̂k
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• Compute b̂nk on Γ with
∂ b̂nk

∂n
+ ∂ b̂τk

∂τ =−α2
k ψ̂k

• Compute ψ̂k on Γ with

β (r′) ψ̂k(r
′) = P.V.

∮

Γ [Gk(r
′,r)b̂nk(r)+ ψ̂k(r)

∂Gk

∂n
(r′,r)]dl(r)

• Compute b̂τk on Γ with b̂τk =−∂ψ̂k

∂τ .

It must be noted that although it is possible to use direct solvers to solve the discretized

forms of equations (3.12), (3.23), (3.24) and (3.18), the iterative procedure is found to

be computationally efficient mainly due to the very good initial guess obtained for the

unknown variables from the previous time step.

We now turn to the discretization of the boundary integral equation (3.18) which

forms the basis of the coupled iterative procedure just described. Equation (3.18) is

Figure 3.2: Representative discretization of the rectangular boundary Γ into nodes and boundary ele-

ments.

discretized to obtain a set of algebraic equations by the formalism of boundary element

method (Brebbia & Walker [1978]). The rectangular boundary is divided into a number

of small line segments called boundary elements and the contour integral along Γ is

approximated as a sum of integrals along each of these elements. The solution variable

ψ̂k is approximated at the ends of the boundary elements which are denoted as nodes.

The nodes are numbered with the variable i and the elements are numbered using the

variable j. The locations of the boundary elements and nodes are shown in Fig. 3.2.

This layout of the elements leads to a double node at each of the four corners of Γ

which is essential in order to deal with the singularity that exists for the normal vector

n̂ at the corners. A piecewise linear variation of ψ̂k is assumed along each element.

Denoting the length of the jth element by h j and temporarily omitting the subscript k
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3. Numerical Procedure

for simplicity of notation, the discrete version of (3.18) for node i at r′ can then be

written as

βiψ̂i −
j=Nb

∑
j=1

h j
∫

0

(

ψ̂ j

(

h j − l
)

+ ψ̂ j+1l

h j

)

∂G

∂n
(r′i ,r j)dl

=
j=Nb

∑
j=1

h j
∫

0

(

b̂n j

(

h j − l
)

+ b̂n j+1l

h j

)

G
(

r′i ,r j

)

dl

(3.25)

for 1 ≤ i ≤ Nb, Nb being the number of boundary nodes (see Fig. 3.2). The index i is

considered to run in the clockwise direction starting from i = 1 at the lower left corner

node to i = Nb = 2(Ny +Nz) at the node next (on the right) to it. We now first focus

on evaluating the summation of numerical integrals on the right hand side. The idea is

to evaluate the integral along each element j using a 4-point Gauss-Legendre quadra-

ture (Abramowitz & Stegun [1964]). Such a quadrature even within each element is

important in order to be able to capture the steep gradients in the Green’s function for

the wide range of wavenumbers (αk) involved. However, caution is necessary for the

computation of the integral over those elements/panels j that contain the pole r′i (or the

node i) as the function K0 is singular at the pole. The logarithm poses a weak singular-

ity and is dealt with analytical integration over the two elements ( j = i−1 and j = i)

lying on either side of the node i which is possible since the integral is convergent

(Christiansen [1971]). With this in mind, the right hand side term of (3.25), denoted as

mi hereafterwards, is decomposed as

mi =
1

h j

j=Nb

∑
j=1

j 6=i−1
j 6=i

h j
∫

0

(

b̂n j

(

h j − l
)

+ b̂n j+1l

h j

)

G
(

r′i ,r j

)

dl

+
1

h j

j=i

∑
j=i−1

h j
∫

0

(

b̂n j

(

h j − l
)

+ b̂n j+1l

h j

)

G
(

r′i ,r j

)

dl

= m1
i +m2

i .

(3.26)

Now, in order to accomodate for the general case of also including the corners (that has

two different normal directions), we now introduce the notation bnb, j and bn f , j to rep-

resent the backward normal and forward normal directions with additional subscripts

b and f respectively. It can be immediately seen that bnb, j = bn f , j for all nodes j that

are not corners. Using this and also denoting G
(

r′i ,r j

)

as Gi, j, the first term of (3.26)
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can be writen as

m1
i =

1

h j

j=Nb

∑
j=1

j 6=i−1
j 6=i

h j
∫

0

(

b̂n f , j

(

h j − l
)

+ b̂nb, j+1l

h j

)

Gi, jdl

=
j=Nb

∑
j=1

j 6=i−1
j 6=i

b̂n f , j

h j
∫

0

Gi, jdl +
1

h j

(

b̂nb, j+1 − b̂n f , j

)

h j
∫

0

Gi, jldl

(3.27)

Choosing four Gaussian points withing each element, denoting the value of Gi, j at

these locations as Gi, j,1,Gi, j,2,Gi, j,3 and Gi, j,4, the Gaussian weights as w1,w2,w3 and

w4 and the locations of these points within the element as l1,l2,l3 and l4, the above

equation can be evaluated as

m1
i =

j=Nb

∑
j=1

j 6=i−1
j 6=i

h j

2
b̂n f , j

j′=4

∑
j′=1

w j′Gi, j, j′ +
1

2

(

b̂nb, j+1 − b̂n f , j

)

j′=4

∑
j′=1

w j′ l j′Gi, j, j′ (3.28)

The second term (m2
i ) of (3.26) that contains the kernel singularity can be evaluated as

m2
i = b̂n f ,i−1

hi−1
∫

0

G
(

r′i ,ri−1

)

dl +
1

hi−1

(

b̂nb,i − b̂n f ,i−1

)

hi−1
∫

0

G
(

r′i ,ri−1

)

ldl

+ b̂n f ,i

hi
∫

0

G
(

r′i ,ri

)

dl +
1

hi

(

b̂nb,i+1 − b̂n f ,i

)

hi
∫

0

G
(

r′i ,ri

)

ldl

(3.29)

Using the specific form of the Green’s function as in (3.21), we can analytically eval-

uate the integral over the panel i in the above equation as

hi
∫

0

G
(

r′i ,ri

)

dl = hi

[

1− ln

(

αkhi

2

)]

+
n=6

∑
n=1

En

( αk

3.75

)2n hi
2n+1

(2n+1)2

[

1− (2n+1) ln

(

αkhi

2

)]

+
n=7

∑
n=1

Cn

(αk

2

)2n−2 hi
2n−1

(2n−1)
= I1(i).

(3.30)
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Additionally, it can be easily verified that

hi−1
∫

0

G
(

r′i ,ri−1

)

dl = I1(i−1). (3.31)

Furthermore,

hi
∫

0

lG
(

r′i ,ri

)

dl =
hi

2

4

[

1−2ln

(

αkhi

2

)]

+
n=6

∑
n=1

En

( αk

3.75

)2n hi
2n+2

(2n+2)2

[

1− (2n+2) ln

(

αkhi

2

)]

+
n=7

∑
n=1

Cn

(αk

2

)2n hi
2n−1

2n
= I2(i).

(3.32)

With a little simplification, it can also be seen that

hi−1
∫

0

lG
(

r′i ,ri−1

)

dl = hi−1I1(i−1)− I2(i−1). (3.33)

Now, using equations (3.30), (3.31), (3.32) and (3.33), equation (3.29) can be written

in a condensed form as

m2
i = b̂n f ,i−1I1(i−1)+

1

hi−1

(

b̂nb,i − b̂n f ,i−1

)

[hi−1I1(i−1)− I2(i−1)]+ b̂n f ,iI1(i)

+
1

hi

(

b̂nb,i+1 − b̂n f ,i

)

I2(i)

= b̂nb,iI1(i−1)+
1

hi−1

(

b̂n f ,i−1 − b̂nb,i

)

I2(i−1)+ b̂n f ,iI1(i)

+
1

hi

(

b̂nb,i+1 − b̂n f ,i

)

I2(i).

(3.34)

The terms on the left hand side of (3.25) will be evaluated as

βiψ̂i −
j=Nb

∑
j=1

h j
∫

0

(

ψ̂ j

(

h j − l
)

+ ψ̂ j+1l

h j

)

∂G

∂n
(r′i ,r j)dl

= βiψ̂i −
j=Nb

∑
j=1



ψ̂ j

h j
∫

0

∂Gi, j

∂n
dl+

1

h j

(

ψ̂ j+1 − ψ̂ j

)

h j
∫

0

∂Gi, j

∂n
ldl



 .

(3.35)

Choosing four Gaussian points withing each element, denoting the value of
∂Gi, j, j′

∂n
at

these locations as
∂Gi, j,1

∂n
,
∂Gi, j,2

∂n
,

∂Gi, j,3

∂n
and

∂Gi, j,4

∂n
, the above term can be further evalu-

27



3. Numerical Procedure

ated as

βiψ̂i −
j=Nb

∑
j=1

[

h j

2
ψ̂ j

j=4

∑
j′=1

w j′
∂Gi, j, j′

∂n
+

1

2

(

ψ̂ j+1 − ψ̂ j

)

j=4

∑
j′=1

w j′l j′
∂Gi, j, j′

∂n

]

. (3.36)

The above term being applicable for all boundary nodes i, can be written in the matrix

form as Sii′ψ̂i where

Sii′
(

r′
)

=















βi, if i = i′

−
[

hi′
2

j′=4

∑
j′=1

w j′
∂Gi,i′ , j′

∂n
+ 1

2

j′=4

∑
j′=1

(

w j′ li′−1, j′
∂Gi,i′−1, j′

∂n
−w j′ li′, j′

∂Gi,i′ , j′
∂n

)

]

, i 6= i′,
(3.37)

Through this procedure we obtain a linear system of equations for ψ̂k as

Sψ̂k = m. (3.38)

The matrix S is fully occupied due to the non-local nature of the boundary conditions

and vector m = m1+m21
contains the right hand side of (3.25). This concludes the nu-

merical computation of the in-plane components b̂yk and b̂zk, and it remains to evaluate

the streamwise component b̂xk which will be discussed next.

In principle, the streamwise Fourier coefficient b̂xk can be computed from the dis-

crete form of the induction equation in k-space (3.12), with the Dirichlet condition

b̂xk = −iαkψ̂k on the boundary Γ . However this raises the issue of preserving the di-

vergence of the magnetic field (∇ ·b= 0) during the course of its evolution, due to the

reason that equations (2.14) and (2.16) form an overdetermined system for the b field.

Maintaining ∇ ·b= 0 numerically is a non-trivial issue and various strategies are often

adopted to ensure solenoidality (see Tóth [2000] for a detailed discussion). The issue

becomes even more challenging when a semi-implicit or a fully implicit procedure is

used for the magnetic field along with non-local boundary conditions. The numerical

source of generation of ∇ · b can be understood as follows. Taking the divergence of

(3.10) and rearranging the terms gives

Dn+1 =
1

f
∇2Dn+1 +Dq, (3.39)

where Dn+1 = ∇ · bn+1 and Dq = ∇ · q. Although the initial fields vn and bn are

divergence-free (hence the last term on the right hand side vanishes), the boundary

conditions act as a source of Dn+1 during the solution of the Poisson equation for

Dn+1. This contaminates Dn+1 on the interior points adjacent to the boundary and the

divergence diffuses into the domain interior subsequently.

28



3. Numerical Procedure

In order to preserve the solenoidality of the magnetic field, the streamwise compo-

nent b̂xk is reconstructed from the in-plane components using

b̂xk =
−1

iαk

(

∂ b̂yk

∂y
+

∂ b̂zk

∂ z

)

, for wavenumbers k 6= 0. (3.40)

This ensures a divergence-free magnetic field for all the non-zero Fourier modes.

3.2.3 Treatment of the zero mode (k = 0)

The reconstruction of bx is however not possible for the zero mode due to the reason

that when k = 0, the streamwise mean component b̄x is decoupled from the in-plane

mean components b̄y and b̄z, where the overbar denotes averaging with respect to x.

Hence we solve (3.12) for the mean component b̄x which can be written as

− f b̄x +∇2
yzb̄x =− f q̄x. (3.41)

The boundary condition for this is obtained again from ∇× b̄ = 0 which leads to the

Dirichlet condition b̄x = constant and the constant can be conveniently chosen to be

zero,

b̄x = 0. (3.42)

The discrete form of (3.41) is solved with the Dirichlet boundary condition using the

Poisson solver similar to that of pressure.

Since reconstruction of b̄x is not possible when k = 0, satisfying ∇ · b̄ = 0 is not

guaranteed with the usage of primitive variables. Therefore the mean in-plane compo-

nents b̄y and b̄z are computed through the magnetic vector potential A which is defined

by

b̄y =
∂A

∂ z
, b̄z =−∂A

∂y
. (3.43)

The governing equation for A is derived as follows. Averaging equation (2.14) along

the x-direction and rewriting the advective and field stretching terms in the curl form

gives

∂ b̄

∂ t
= ∇× (v×bt)+

1

Rm

∇2
yzb̄. (3.44)

Further simplification yields the mean equations for the in-plane components as

∂ b̄y

∂ t
=

∂

∂ z

(

vybzt −bytvz

)

+
1

Rm
∇2

yzb̄y, (3.45)

∂ b̄z

∂ t
=− ∂

∂y

(

vybzt −bytvz

)

+
1

Rm

∇2
yzb̄z. (3.46)
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Introducing the vector potential and integrating yields the following governing equa-

tion for A in the interior

∂A

∂ t
= vybzt −bytvz +

1

Rm

(

∂ 2A

∂y2
+

∂ 2A

∂ z2

)

+ ς (t) , (3.47)

where ς (t) is a constant of integration that depends only on time.

In the exterior, ∇×b= 0 yields

∂ 2A

∂y2
+

∂ 2A

∂ z2
= 0, (3.48)

for which the corresponding boundary integral form can be written as

β
(

r′
)

A(r′) = P.V.

∮

Γ
[G0(r

′,r)
∂A

∂n
(r)+A(r)

∂G0

∂n
(r′,r)]dl(r), (3.49)

similar to equation (3.18), which is used as the boundary condition to solve (3.47).

The constant ς (t) is determined by integrating (3.48) in the exterior and applying the

Gauss-divergence theorem to obtain the following constraint for A on Γ

∮

Γ

∂A

∂n
dl = 0. (3.50)

The above equation implies that the net mean streamwise current is zero. Equations

(3.43), (3.47), (3.49) and (3.50) form the closure for the problem of computing the

x-averaged in-plane components b̄y and b̄z.

The Fourier coefficient components b̂xk, b̂yk and b̂zk obtained for k = 0,1,2..Nx/2−
1 are transformed back to the real space using an inverse FFT operation, which com-

pletes the computation of the secondary magnetic field evolution at a given time step.

The b field obtained is used to compute the j field according to (2.17) and subsequently

the Lorentz force term j×bt in the momentum balance (2.13) for the computation of

the velocity field at the next time step. The computational procedure described here is

conducive for easy parallelization due to the fact that the numerical scheme is based

on solution in the Fourier space. The computation of the Fourier coefficients in the

k-space can be performed independently by distributing the k-modes among several

processors. Our particular implementation of this numerical procedure for the solution

of the induction equation with the integral boundary conditions was done through a

FORTRAN code with hybrid MPI-OpenMP parallelization, starting with an existing

quasistatic MHD code DUCAT (Krasnov et al. [2011]).
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3.3 Verification and comparative study

Verification of the implementation of the numerical procedure has been performed

at various levels, which are described in this section.

3.3.1 Verification of BEM implementation with analytical solution

At first, the specific implementation of the boundary element method (as a stan-

dalone problem) for the Fredholm integral equation (3.18) on a rectangular boundary

is verified by comparing the numerical solution obtained so with a suitable analyti-

cal solution. In other words, it is intended to test if, given a function ∂ψ̂k/∂n on the

rectangular boundary, the numerical solution using BEM produces the correct solu-

tion for ψ̂ . The idea here is to choose the known free space function K0(r) (r be-

ing the absolute distance from the centroid of the rectangle) and force the condition

∂ψ̂k/∂n = ∂K0(r)/∂n. Now, since ψ̂k itself satisfies the far field condition (ψ̂k(r)→ 0

as r → ∞), ideally the numerical solution for ψ̂k on the rectangular boundary must

yield the free space function itself. This is tested by computing the numerical solution

of (3.18) on a square boundary with grid sizes ranging from 32 grid points per edge

to 512 grid points per edge. A typical comparison of the numerical solution to the

analytical function is shown in Fig. 3.3.
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Figure 3.3: Magnetic potential ψ̂k along the rectangular contour for wavenumbers a) αk = 2.0 and b)

αk = 8.0 . Node number runs clockwise starting from the bottom left corner. Grid: 32 elements/edge

with a stretch factor of 2.0.

It can be seen that very accurate solutions are obtained even with a course grid of 32

elements per edge. This clearly shows that the numerical solution of (3.18) performed

using BEM is consistent with the governing Helmholtz equation for ψ̂k along with the

far field condition.
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3.3.2 Convergence of the coupled FD-BEM iterative procedure

It is important to ensure proper convergence of the coupled iterative scheme de-

scribed in the previous section, that is used to numerically solve the Poisson equations

for the components b̂yk and b̂zk in the interior along with the integral boundary con-

ditions, at each time step of the DNS. For this purpose, the two-dimensional problem

of expulsion of magnetic flux by a single rotating eddy in a square geometry is cho-

sen. This problem dates back to Weiss [1966] when it was first studied numerically

in the context of astrophysical MHD. The original problem setup consists of a two-

dimensional square domain (in the y-z plane) with a uniform vertical magnetic field

(B = B0k̂) in the initial state (at t = 0), upon which a single conducting eddy is im-

posed to observe how the magnetic field undergoes twisting and reconnections leading

to the final steady state. The idea is that, at high Rm the magnetic flux is expected to

be expelled in most part of the domain due to the fact that flux cannot exist within the

closed streamlines of an electrically conducting fluid. The problem is purely kinematic

in the sense that the flow is assumed to be unaffected by the evolving magnetic field.

The time-invariant velocity field of the eddy is represented by the streamfunction

φ(y,z) =
−1

π
(1−4z2)

4
cos(πy), (3.51)

the streamlines of which are shown in Fig. 3.4. The boundary conditions used by Weiss

Figure 3.4: Two dimensional domain showing the velocity streamlines of the eddy (full lines) and the

initial uniform magnetic field (dotted lines).
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involved perfectly conducting top and bottom walls and mirror symmetry on the left

and right walls. Both these conditions essentially lead to a vanishing normal compo-

nent of the secondary magnetic field at the boundary, which are hereafter called ideal-

ized boundary conditions. The governing equation for the evolution of the secondary

magnetic field b(y,z, t) and the corresponding boundary conditions can be summarized

in the non-dimensional form as

∂b

∂ t
= ∇× (v×bt)+

1

Rm

∇2b, (3.52)

∇ ·b= 0, (3.53)

by(−0.5,z) = by(0.5,z) = bz(y,−0.5) = bz(y,0.5) = 0. (3.54)

As a first step, the above equations were numerically solved using second-order finite

differences, which yielded results very similar to that of Weiss’ as can be seen from

the steady state magnetic field lines shown in Fig. 3.5. It must be noted here that there

are no quantitative results available from Weiss and hence only a visual comparison

is possible. Furthermore, the time dependent reconnection sequences leading to the

expelled steady state were also observed to match very closely to that of Weiss’, the

details of which are not being shown here for the sake of brevity.

(a)
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(b)

Figure 3.5: Magnetic field lines in the steady state for Rm = 40 obtained by a) Weiss (1966) and b) the

present simulation.

In the next step, the idealized boundary conditions are replaced by integral bound-

ary conditions and the iterative procedure is used to solve the system numerically.

Fastest convergence rates were obtained when the updates of the solution variable is

performed in the form of concentric squares starting from the middle of the domain
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and going outward towards the boundary and back. Figure. 3.6 shows the final state

for the case of Rm = 80.
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Figure 3.6: Steady state magnetic field lines for Rm = 80 obtained using a) idealized boundary conditions

and b) fully consistent integral boundary conditions. Contours are colored by the total magnetic field

magnitude |bt |.

One can clearly observe significant differences in both the cases. Apart from dif-

ferent field line slopes near the boundaries (where the flux is non-negligible), with the

integral boundary conditions, a more realistic expulsion scenario is observed unlike the

case of ideal boundary conditions where a huge piling up of magnetic field occurs near

the boundaries. This can be readily seen from the upper limits of the contour scales.

This is a first indication that a consistent treatment of magnetic boundary conditions

might have significant effects on the overall solution.

Although the solution of this problem involves the boundary integral equation cor-

responding to the Laplace equation (special case of the Helmholtz equation for k = 0)

in the exterior and the interior problem is formulated using the magnetic streamfunc-

tion, this case points to several useful conclusions regarding the iterative procedure.

Firstly, the procedure shows very good convergence at various values of the magnetic

Reynolds number (upto Rm = 1000 was tested). Further, iterative updates in cyclical

pattern going in concentric squares significantly accelerates the rate of convergence.

3.3.3 Verification in the limiting case of low Rm

An ideal verification of the implementation of the computational procedure de-

scribed in the previous section would involve comparison of numerical results at Rm ∼
1 and higher obtained from this procedure to those obtained using a full MHD numer-

ical code that solves for the magnetic field on a grid covering an extended domain.
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However, since this is not possible, we limit our scope rather to verification of the

computational procedure in the quasistatic limit. In this section, we present results for

the case when the magnetic Reynolds number is low i.e. Rm ≪ 1 that aid as a verifi-

cation of the implementation of the numerical procedure. As described in chapter 2,

it is customary to describe magnetohydrodynamics at low Rm with the quasistatic or

inductionless approximation. This will be referred as QS formulation hereafter. For

easy reference, the QS formulation is briefly summarized below as

j = −∇φ +(v×b0) , (3.55)

∇2φ = ∇ · (v×b0) Boundary condition:
∂φ

∂n
= 0, (3.56)

fL =
Ha2

Re
(j×b0) , (3.57)

where fL is the Lorentz force source term in the Navier-Stokes equation (2.13) and the

boundary condition corresponds to perfectly insulating walls. An alternative formula-

tion of the quasistatic approximation is the induced electric current based formulation

that uses the current density j as the primary variable instead of the electric potential

φ (see Smolentsev et al. [2010]).

(a) (b)

Figure 3.7: (a) Contour of the x-component of the initial turbulent velocity field at Re = 2000 and (b)

imposed magnetic field b0 = b0k, shown at the cross-section x = Lx/2; Ha = 15.

Furthermore, when Rm is low, the secondary magnetic field is nevertheless finite

and its evolution can be described by another formulation of the quasistatic approxi-

mation based on the induced magnetic field rather than on the electric potential. This

is the so-called quasistationary formulation (referred to as QST formulation hereafter).
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The QST formulation can be obtained as follows. Approximating the electromag-

netic fields by ̟ = ̟0 + ε̟1 where ε = Rm is considered to be a small value and

̟= [b,e,j] denoting the magnetic, electric and the current density fields respectively,

the induction equation can be rewritten as

ε
∂

∂ t

(

b0 + εb1
)

= ε∇×
(

v×
(

b0 + εb1
))

+∇2
(

b0 + εb1
)

. (3.58)

Equating terms of the same order of ε and assuming the imposed magnetic field b0 to

be time-independent, we obtain

∇2b1 = (v ·∇)b0 − (b0 ·∇)v, j1 = ∇×b1, (3.59)

with the same integral wall boundary conditions for the magnetic field as described in

the previous sections. Through (3.59), the magnetic field is parametrically dependent

on time and evolves as a passive vector field that depends on the velocity field. It can be

shown that ∇×e1 = ∂b0/∂ t = 0, making the electric field expressible as e1 = −∇φ ,

through which the exact equivalence between the QS and QST formulations is estab-

lished (see Boeck [2010]) . Due to this equivalence, the current densities j computed

by the QS formulation and the resulting secondary magnetic field must match with

those computed by the QST formulation.

In the particular case that we consider, a uniform magnetic field along the z-direction

is imposed on a fully turbulent 3D velocity field at Re = 2000 (see Fig. 3.7) in a duct

of length Lx = 4π and a square cross-section Ly = Lz = 2 and the numerical compu-

tation is performed for a single time step with both the QS and the QST procedures.

A grid resolution of 2563 is used for this computation. In order to perform the in-

ductionless computations, the quasistatic MHD code DUCAT (DNS code based on

finite differences) was used which has been extensively validated (see Krasnov et al.

[2011]). The resulting components of current densities from the two methods are com-

pared at a particular cross section (x = Lx/2) as shown in Fig. 3.8(a) and (b) and a

close match between the two methods is observed. However, it must be mentioned

that a good agreement of current densities is only a necessary requirement for the cor-

rectness of the quasistationary procedure with BEM but not a sufficient one. This is

attributed to the fact that in the case of low magnetic Reynolds number, when jn = 0 is

ensured on the wall, the current density field j in the interior is uniquely determined.

Due to this reason, the current densities will match even if a simplified approach, the

so-called pseudo-vacuum magnetic boundary conditions (explained in the next sub-

section), are applied to the quasistationary formulation. This is shown in Fig. 3.8(c),

where the component jz shows a good agreement between the QS, QST and the QST
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Figure 3.8: Current density components plotted at the cross-section x = Lx/2. (a) jx and (b) jy along

the line y = 0; (c) jz along the line z =−0.5; (d) jy from full MHD. Grid: 256×256×256, Re = 2000,

Ha = 15.

with pseudo-vacuum BCs which is denoted as QSTpv in the legend. A proof for the

uniqueness of j in the case of jn = 0 is provided in Appendix A.

Of particular interest is the order of Rm at which the validity of the quasistatic

approximation really holds. For this purpose, the full MHD system (the induction

equation) with the integral boundary conditions was used to compute the b field for a

single time step at various orders of Rm. The resulting current component jy is com-

pared with that obtained from the QST formulation. It can be seen (from Fig. 3.8(d))

that a convergence to the quasistatic limit occurs when Rm ∼ 10−3.

To complement the verification, a comparison is made for the secondary magnetic

field in the exterior of the duct. Therefore, the current density field j obtained from the

quasistatic computation is used to compute the secondary magnetic field in the duct

exterior through the Biot-Savart law

b
(

r′
)

=
1

4π

∫

j (r)× (r′−r)dV

(|r′−r|)3
, (3.60)

which is evaluated numerically using a trapezoidal quadrature. The corresponding
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Figure 3.9: Secondary magnetic field components in the exterior (a) by (b) bz and (c) non-zero modes of

bx (k 6= 0), at the streamwise location x = Lx/2. The exterior corresponds to z > 1. (d) Mean streamwise

component of the secondary magnetic field bx (k = 0) in the interior of the duct; Grid: 256×256×256,

Re = 2000, Ha = 15.

magnetic field from the quasistationary computation is obtained by evaluating the

scalar potential ψ̂k in the duct exterior using equation (3.18) from the known values

of ψ̂k and b̂nk at the boundary but with β (r′) = 1. A comparison of the exterior field

components by and bz along the line y = 0, z > 1 is shown in Fig. 3.9(a) and (b) re-

spectively.

The streamwise component bx is decomposed into bx (k 6= 0) and bx (k = 0) that

contain the non-zero modes and the zero mode respectively for which the comparison

is shown in Fig. 3.9(c) and (d). Since the mean component b̄x vanishes in the exterior,

its comparison is made only in the interior of the duct. This concludes the verification

of the numerical procedure adopted to model the magnetic boundary conditions for the

induction equation.
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3.3.4 Comparison with pseudo-vacuum boundary conditions

As mentioned in section 3.1, finite/high Rm MHD simulations are often conducted

using the so-called pseudo-vacuum magnetic boundary conditions, which can be sum-

marized as below,

Pseudo-vacuum BCs : b‖ = 0,
∂bn

∂n
= 0 at y,z =±1, (3.61)

where the subscript ‖ refers to the two wall tangential directions. This formulation
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Figure 3.10: Secondary magnetic field components (a) bx (b) by and (c) bz along the line y = 0 on the

cross-sectional plane x = Lx/2; Grid: 256× 256× 256, Re = 2000, Ha = 15.

achieves vanishing wall normal currents jn through the assumption of zero tangential

magnetic field, a trivial solution of (∇×bwall) ·n= 0, and leads to considerable simpli-

fication of the computational procedure. However, numerical solutions obtained with

this simplified model can result in significant loss of accuracy in the near wall veloc-

ity and magnetic fields. This becomes particularly important for wall-bounded MHD

flows at transitional regimes, since instabilities are triggered in the thin boundary lay-

ers (either Shercliff layers that appear near the walls parallel to the magnetic field or

Hartmann layers that appear near the walls perpendicular to the magnetic field). Here,

differences that arise using the pseudo-vacuum conditions are quantified for the case

of low Rm. In Fig. 3.10 magnetic field components in the duct interior computed using

the boundary integral procedure are compared to those computed using the pseudo-

vacuum conditions.

It is observed that the primary streamwise magnetic field component bx matches

very well. However the secondary components by and bz show significant differences

(especially near the walls) in both the cases. In this particular case of low Rm, the

Lorentz force being proportional to j× b0, these differences do not impact the flow

field. However, at finite/high Rm, the effect of these differences on the velocity field

can be significant.
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3.4 Explicit procedure for the induction equation

As described earlier, the semi-implicit numerical procedure outlined in section 3.2

requires at every time step, the solution of a Poisson equation each for b̂yk and b̂zk in the

strict interior of the domain, together with the boundary integral equation. The discrete

linear systems arising out of the two Poisson equations and the integral equation is

sparse to most extent and reasonably occupied for the rest. There are no known fast

solvers available to solve such linear systems, due to which it was preferred to use

the coupled iterative procedure. However, the iterative procedure is sometimes not

estimated to be fast enough to perform DNS on larger grid sizes within reasonable

time periods. Due to this, the explicit procedure can be very useful especially in cases

when the Rm is higher, leading to faster DNS runtimes. Hence, such a procedure has

also been implemented in the code. A brief outline of this procedure and some of its

features are presented in this section.

An explicit treatment of all the source terms of the induction equation leads to

3bi+1 −4bi +bi−1

2∆t
=−

[

2(∇×e)i − (∇×e)i−1
]

, (3.62)

where e is the electric field given by e = j−v× bt and i represents the time level.

In addition, since the boundary normal component of ∇×e is continuous across the

wall boundaries, the discrete form of the induction equation can be applied only for

the normal component of the secondary magnetic field bn as

3bn
i+1 −4bn

i +bn
i−1

2∆t
=−

[

2(∇×e)n
i − (∇×e)n

i−1
]

. (3.63)

Transforming only bn on the wall boundaries into the Fourier space and represent-

ing the Fourier coefficient by b̂nk, the discrete linear system of the boundary integral

equation for each wavenumber k can be written as

Sψ̂ i+1
k = mi+1. (3.64)

The tangential components are a function of ψ̂ i+1
k as

b̂i+1
xk =−iαkψ̂ i+1

k , b̂i+1
τk =−∂ψ̂ i+1

k

∂τ
. (3.65)

Solving equations (3.62), (3.63) , (3.64) and (3.65) completes the computation of b at

each time step.

There are two main advantages in using this scheme. Firstly, the computation of
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Figure 3.11: Current density field components a) jx, b) jy, c) jz and the d) secondary magnetic field

component bx along the line y = 0 on the cross-sectional plane x = Lx/2; Grid: 256× 256× 256,

Re = 2000, Ha = 15, Rm = 10.

b in the strict interior is decoupled from the boundary integral equation. Due to this,

the computation time per time step is much smaller, as the integral equation simpli-

fies to the inversion of a much smaller fully occupied linear system of equations. The

matrix inverse for each wavenumber k is precomputed and stored before the start of

the simulation, which reduces the computation overhead at each time step to a sim-

ple matrix-vector multiplication (S−1mi+1, S being known beforehand as it is a pure

function of the geometry of the problem). In addition, since b on the interior and bn

on the wall boundary are computed using equations (3.62) and (3.63) in the real space

itself, the problem of zero-mode (k = 0) divergence does not arise at all. Due to this

any special treatment of the zero-mode is obviated. However, the main disadvantage

of this scheme is clearly the fact that a much lower integration time step is required

(for numerical stability) when Rm is low. Only at much higher Rm can the shorter time

per time step of the explicit scheme over weigh the effect of smaller time step width.

As a verification of the implementation of the explicit scheme in the code, a simple

test was performed as follows. Starting with a statistically steady turbulent velocity
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field in the duct (obtained from a hydrodynamic simulation), as the intitial state, both

the explicit and the semi-implicit versions of the code were run for the same amount

of time (0.01 convective units) for the Hartmann case with the parameters Rm = 10,

Re= 2000 and Ha= 15. The results obtained at the end were compared, some of which

are shown in Fig. 3.11. Clearly, the equivalence of the results of both the schemes is

confirmed.

3.5 Permeation of an exterior magnetic field into a con-

ductor - finite Rm effects

When an external electric current source is switched on near the flow of a con-

ducting fluid, the magnetic field due to the currents do not permeate the fluid instan-

taneously but take a finite time to ‘seep’ through. The time it takes for this process

depends on Rm of the flow under consideration, higher the Rm the longer is this tran-

sient state. In the case of modelling low Rm flows, with the quasistatic approximation,

one assumes that this proceeds instantaneously which is indeed the case. Hence the

externally imposed magnetic field is assumed to be present throughout the flow from

time t = 0. However, in finite Rm flows such an assumption is not realistic for obvious

reasons. Here, the external magnetic field is initially present only on the flow bound-

aries and will be simultaneously distorted by the flow as it penetrates. In other words,

the external magnetic field never manifests within the flow in its ‘original’ (as if there

is no conductor) form. Taking this into account can become very important in the case

of wall bounded MHD turbulence at finite Rm. The key point here is that when Rm is

finite, the effect of the magnetic field is felt first only in the boundary layers and only

subsequently (and gradually) the core region of the flow will ‘see’ the magnetic field.

This affects the way turbulence evolves as compared to the scenario when the external

field is assumed to be present throughout the flow in the initial state. Although sta-

tistically steady states might not be affected by this phenomenon, transition and flow

instabilities can be very sensitive to this circumstance. This motivates to study the ex-

act details of the transient process in rather simpler cases of a uniform magnetic field

imposed on a stationary conducting bar and a laminar flow in a duct.

3.5.1 Pure diffusion into a stationary conducting bar

At first, the problem of a uniform magnetic field (B0 = B0k̂) from an external

current source imposed on a stationary (v = 0) straight bar of square cross-section is

considered. Choosing L as the half width and B0, B0/µ0L and L2/λ as the scales for the
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magnetic field, current density and time, the non-dimensional form of the governing

equations will be

∂b

∂ t
=−∇×j, ∇ ·b= 0, (3.66)

j = ∇×b. (3.67)

As is evident, there are no parameters involved in this problem. Furthermore, the prob-

lem is essentially two-dimensional due to the uniform magnetic field and there being

no reason for any gradients of the field variables along the x-direction. Nevertheless, it

is solved as a 3D problem with periodic boundary conditions in the x-direction. On the

y and z boundaries, integral magnetic boundary conditions are used as detailed earlier

in this chapter. Choosing consistent initial conditions for the magnetic field is very

essential and is done as follows. The background field b0 = k̂ in the initial state is

considered to be present everywhere in the domain and the secondary magnetic field b

is set to ensure that the total magnetic field in the strict interior and the boundary nor-

mal component of the total magnetic field vanishes. This involves predetermining the

tangential component of b at time t = 0 using the boundary integral procedure. These

initial conditions can be summarized as

b=−b0 in Ωi at t = 0, (3.68)

bn =−bn0 , ψ = F (bn) , bτ =−∂ψ

∂τ
on Σ at t = 0, (3.69)

where the function F represents the non-local relation of ψ on bn. These initial con-

ditions ensure that the total magnetic field is strictly tangential on the boundary as if

the magnetic lines flow around the square cross-section from the bottom to the top (see

Fig. 3.12(a)).

The governing equations are solved numerically using the explicit scheme outlined

in the previous section on a cross-sectional grid size of 128×128. It should be noted

that only the mode k = 0 is relevant here and bx = jy = jz = 0. Magnetic field lines in

the cross-section at various instants during the diffusion process are shown in Fig. 3.12.

The vertical component of the field diffuses gradually in the y-direction and in about

t ∼ 1 a steady state is reached with a uniform vertical magnetic field across the domain.

Also, it is interesting to see how a large streamwise current density jx on the surface

at t = 0 (see Fig. 3.13(a)) leads to a secondary magnetic field that ensures that the

net/total magnetic field is zero within the domain. In our case, the maximum current

density on the boundary | jx,t=0|max ∼ 1073. The streamwise currents diffuse into the

domain (see Fig. 3.13) with a very quick decay in their magnitude and finally vanish
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throughout the domain in the steady state with the magnetic field becoming curl-free.

3.5.2 Simultaneous advection-diffusion in a laminar duct flow

Here, we consider a similar problem as in the previous subsection, but with the uni-

form field being imposed on a fully developed laminar duct flow instead of a stationary

conductor. This becomes the well known Hartmann duct flow but with the exception of

a finite Rm. The full governing equations including the Navier-Stokes system are used

here along with the initial magnetic conditions mentioned in the previous subsection.

The parameters Re = 4000 and Rm = 50 are chosen for this study. As can be seen from

Fig. 3.14, the streamwise velocity in the initial stages is affected only in the boundary

layers (see Fig. 3.14(c)) with the core velocity still not yet decelerated. With time, the

Lorentz forces diffuse, to start affecting the core flow leading to the final steady state

with the steep Hartmann and Shercliff boundary layers. Correspondingly, the primary

component of the secondary magnetic field bx shows a peak before returning to the

steady state with the maximum bx in the Hartmann layers. This means that the field

lines are stretched significantly to about bx ∼ 5.3 and subsequently relax back without

showing any oscillatory behavior.

During the same time, the various configurations visited by the cross-sectional cur-

rent density streamlines are shown in Fig. 3.15.
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Figure 3.12: Streamlines of the total magnetic field in the cross-section at time a) t = 0, b) t = 0.01, c)

t = 0.1, d) t = 0.22, e) t = 0.4 and f) t = 1.0; Contour coloring is done with respect to the magnitude of

the magnetic field. |B|max is out of the coloring bounds and is ≈ 6.76 for the first figure. Grid size in

the plane: 128× 128.
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Figure 3.13: Cross sectional contour of the current density component jx at time a) t = 0, b) t = 0.01, c)

t = 0.1, d) t = 0.22, e) t = 0.4 and f) t = 1.0; | jx,max| is out of the coloring bounds and is 1073.0, 12.8,

2.5 and 1.4 respectively for the first four figures. Grid size in the plane: 128× 128.

46



3. Numerical Procedure

v x

0

1

2

y

­1

0

1

z

­1

0

1

(a)

bx

­5
­4

­3
­2

­1
0

1
2

3
4

5
y

­1

0

1

z

­1

0

1

(b)

v x

0

1

2

y

­1

0

1

z

­1

0

1

(c)

bx

­5
­4

­3
­2

­1
0

1
2

3
4

5
y

­1

0

1

z

­1

0

1

(d)

v x

0

1

2

y

­1

0

1

z

­1

0

1

(e)

bx

­5
­4

­3
­2

­1
0

1
2

3
4

5
y

­1

0

1

z

­1

0

1

(f)

v x

0

1

2

y

­1

0

1

z

­1

0

1

(g)

bx

­5
­4

­3
­2

­1
0

1
2

3
4

5
y

­1

0

1

z

­1

0

1

(h)

Figure 3.14: Contours of streamwise velocity vx (left panel) and secondary magnetic field bx (right

panel) in the cross-section at time a),b) t = 0, c),d) t = 5.7, e),f) t = 19.2 and g),h) t = 51.84; Parameters

are Rm = 50, Re = 4000 and Ha = 25; Grid size in the plane: 128× 128.
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Figure 3.15: Streamlines of current density in the cross-section at time a) t = 0.27, b) t = 0.81, c)

t = 4.59, d) t = 7.56, e) t = 19.44 and f) t = 51.84; Parameters are Rm = 50, Re = 4000 and Ha = 25;

Grid size in the plane: 128× 128.

48



Chapter 4

Transient response of Lorentz force at

finite magnetic Reynolds numbers

This chapter presents the study of the effect of magnetic Reynolds number on the

time response of Lorentz force in a quickly accelerated solid conducting bar in the pres-

ence of a localized magnetic field. The results are compared with existing laboratory

experiments on the subject.

4.1 Overview and problem setup

As mentioned in Chapter 1, finite Rm phenomena can occur not only due to large

conductivities, length scales or velocities, but also due to relatively small advective

time scales. This particular case is especially relevant in the context of LFV, where

sudden changes in the fluid velocities can lead to finite Rm effects. Hence, it is im-

portant to understand the effects qualitatively and also to quantify finite Rm effects on

Lorentz forces. This is done in this chapter by studying the problem in the simpler case

of the motion of a solid conductor under an applied localized magnetic field. The con-

figuration is based on recent experiments that were conducted by Sokolov et al. [2014]

and hence wherever possible, comparison is made between the results of simulations

and experiments.

The problem setup consists of a straight conducting bar of length 1m and square

cross-section upon which a strong magnetic field (up to 0.2 T) is imposed only on a

short section of the bar. The magnetic field is produced by placing a set of six equisized

permanent magnets of size 30mm×30mm×70mm (three on either side of the bar)

forming a linear Halbach array. The Halbach configuration is used so as to effectively

channelize the resultant magnetic field from all the six magnets normal to the bar.

The bar is accelerated very quickly from rest, along its length. Typical accelerations
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4. Lorentz force transient response

considered here range from 0.4 ms−2 to 4 ms−2. The setup is shown in Fig. 4.1, which

is very similar to that of the experimental setup of Sokolov et al. [2014] except for the

difference that rods of circular cross-section were used in the experiments.

(a) (b)

Figure 4.1: a) Schematic of the problem setup showing the strongly accelerated conducting bar with

three magnets placed on either side forming a linear Halbach configuration. The black arrows indicate

the direction of magnetization of the individual magnets. b) the top view of the same configuration.

A typical acceleration profile is shown in Fig. 4.2, that shows a rise in bar velocity

from rest to ≈136 mms−1 in a time of ≈0.07 s and then settles to an approximately

constant speed that is close to the peak velocity. The profile has been chosen to be

the same as that generated by the motor accelerating the rods in the experiments. This

explains why the curve is not smooth. We now turn to the physical modelling of the

problem in the next section.

4.2 Physical model

The magnetic field from the Halbach array is completely diffused into the bar be-

fore it is accelerated. Hence the initial magnetic field distribution inside the bar is taken

to be the same as it would be without the bar. The advective time scale is chosen to be

the typical time that it takes to accelerate the bar from rest to its peak velocity, which is
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Figure 4.2: Typical velocity of the conducting bar as a function of time.

taken as tadv = 0.067s in our case. Since there is no inherent velocity scale, we choose

L/tadv, where L is the width of the bar. Using these scales along with B0 and B0/µ0L

as the scales for the magnetic field and the current densities respectively, we obtain the

non-dimensional form of the induction equation as

∂b

∂ t
=−∇×

[

j

Rm
−v× (b0 +b)

]

(4.1)

where Rm = L2/(λ tadv) and j = ∇×b. Here v (t) = v(t) î is the time dependent uni-

form bar velocity known apriori from the experiment as for example in Fig. 4.2. The

domain bounds are (0 ≤ x ≤ lx), (−0.5 ≤ y ≤ 0.5) and , (−0.5 ≤ z ≤ 0.5). The induc-

tion equation is numerically solved using the coupled FD-BEM procedure outlined in

the previous chapter. The size of the grid used was 256×642 with an equal grid stretch

factor S = 1.5 in the y- and z-directions and a uniform grid in the x-direction.

4.2.1 Magnetic field of the Halbach array

In order to model the magnetic field distribution b0 arising from the Halbach array,

it is assumed that each of the six magnets have unidirectional and constant magneti-

zation. Furthermore, it is also assumed that the huge magnetic repulsive forces that

are overcome to form the Halbach configuration do not affect the magnetization in the

magnets. In such a case, the magnetic field from a single cuboidal magnet can be ex-

pressed in a closed analytical form. For example, the magnetic field at a point (x,y,z)

outside a magnet of magnetization Msk̂ and with edge coordinates (x1,x2), (y1,y2) and
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(z1,z2) is given by

B0(x,y,z) =
µ0Ms

4π

k=2

∑
k=1

m=2

∑
m=1











(−1)k+m
ln [F(x,y,z,xm,y1,y2,zk)]

(−1)k+m
ln [H(x,y,z,x1,x2,ym,zk)]

n=2

∑
n=1

(−1)k+n+m
tan−1

[

(x−xn)(y−ym)
(z−zk)

g(x,y,z,xn,ym,zk)
]











(4.2)

where the functions F , H and g are given by

F(x,y,z,xm,y1,y2,zk) =
(y− y1)+

[

(x− xm)
2 +(y− y1)

2 (z− zk)
2
]1/2

(y− y2)+
[

(x− xm)
2 +(y− y2)

2 (z− zk)
2
]1/2

, (4.3)

H(x,y,z,x1,x2,ym,zk) =
(x− x1)+

[

(x− x1)
2 +(y− ym)

2 (z− zk)
2
]1/2

(x− x2)+
[

(x− x2)
2 +(y− ym)

2 (z− zk)
2
]1/2

, (4.4)

g(x,y,z,xn,ym,zk) =
1

[

(x− xn)
2 +(y− ym)

2 (z− zk)
2
]1/2

. (4.5)

See Furlani [2001] for the derivation of the above the equations. The imposed magnetic

field distribution b0 in the simulation is the superposition of the fields of the six mag-

nets, each of which is evaluated according to the dimensionless versions of equations

(4.2) to (4.5), with a suitable transformation when the magnetization is not aligned in

the z-direction. The magnetic field distribution inside the bar due to the Halbach array

is shown in Fig. 4.3(b). It can be seen that the primary field component B0z reverses its

direction (as one moves along the length of the bar) through an X-point.

In order to verify that such an analytical description is close to the field produced

in the experiment, we compared the magnetic field density measurements taken at

specific locations in the vicinity of the magnet system. In the experiment, a Gauss

sensor and a Hall sensor array (with 7 sensors) have been used to obtain the magnetic

field data.

Figure 4.4(b) shows the variation of the primary component of the magnetic field

B0z at a point midway between the magnets (marked ‘G’ in Fig. 4.4(a)) with the dis-

tance of seperation between the magnets. A very close agreement between the ex-

periment and the analytical model is observed in this case. In fact, the value of the

magnetization Ms was determined as that which leads to this close match of B0z.

This is necessary because of insufficient information about Ms of the magnets used

in the experiment. Furthermore, Fig. 4.4(c) and Fig. 4.4(d) show respectively the vari-

52



4. Lorentz force transient response

(a)

x

z

4 5 6
­0.5

0

0.5

b
0z

0.9

0.6

0.3

0

­0.3

­0.6

­0.9

(b)

Figure 4.3: Streamlines of the initial magnetic field b0 in the bar. a) Three-dimensional, line coloring

represents the field magnitude. b) In the xz-plane. The direction of motion is from left to right. Only

a part of the bar length is shown. The white dotted lines indicate the extent of the magnets in that

direction.

ation of B0z along the lines X ′ = −7mm (below the bottom level of the magnets) and

Z′ = 45mm (along the symmetry line). The data were obtained in the experiment by

sequentially traversing the Gauss sensor along these paths. In this case too, the agree-

ment between the analytical model and the experiment is good with slight differences

observed at certain locations. However, it can be seen from Fig. 4.4(e) that the values of

the out-of-plane component B0y along the centerline does not match well. For reasons

of symmetry, the analytical model predicts vanishing y-component in those locations

contrary to a clear trend seen from the measurements (although the magnitude itself is

very low ∼10 mT). In addition, Fig. 4.4(f) show the comparison of B0z at the fixed lo-

53



4. Lorentz force transient response

(a)

 0

 50

 100

 150

 200

 250

 50  100  150  200  250

B
0
z (

m
T

)

Lsep (mm)

Experiment

Analytical

(b)

 100

 110

 120

 130

 10  20  30  40  50  60

B
0
z (

m
T

)

Z’ (mm)

Experiment

Analytical

(c)

-150

-100

-50

 0

 50

 100

 150

 0  20  40  60  80

B
0
z (

m
T

)

X’ (mm)

Experiment

Analytical

(d)

-10

-5

 0

 5

 10

 0  20  40  60  80

B
0
y
 (m

T
)

X’ (mm)

Experiment

Analytical

(e)

-400

-300

-200

-100

 0

 100

 200

 300

 1  2  3  4  5  6  7

-B
0
z (

m
T

)

Sensor number

Experiment

Analytical

(f)

Figure 4.4: a) Schematic showing the coordinate system and the magnetic field sensor locations in

the setup. H1 to H7 represent the Hall sensor array placed between the rod and the magnet system.

Comparison of the imposed magnetic field component B0z b) at the location of the Gauss sensor located

midway betwen the magnets (marked by the black dot labelled ‘G’ in the schematic), as a function of

the seperation distance (Lsep) between the magnets, c) along the line X
′
= −7mm and d) along the line

Z
′
= 45mm. e) B0y along the line Z

′
= 45mm and f) B0z at the locations of the Hall sensors. All the

plots correspond to the mid-plane y = 0.

cations of the seven Hall sensors. It is observed that the analytical model overpredicts

significantly at the locations of the sensors H4 and H5, although the agreement is fairly

good at the other locations. These differences can be attributed to the shortcomings of
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the asssumptions of uniform (and unidirectional) magnetization and neglecting the al-

teration that might occur in the magnetization when the strong magnets are brought

together. It must be noted that the differences observed at the sensors H4 and H5 (that

are exterior to the bar) are 54% and 73% respectively, indicating that there is a possi-

bility that the differences of the imposed magnetic field might be of the same order of

magnitude at other locations inside the material of the bar. In summary, the analytical

model describes the Halbach magnetic field very well for the most part, but also shows

significant differences at some locations that were examined. With this in mind, we

now turn to the results obtained from the simulations.

4.3 Results and comparison with experiments

In order to facilitate comparison with experiments, simulations were done for square

cross-section bars of the same cross-sectional area as that of the rods used in the ex-

periments. This would imply that the Rm in the simulations will be slightly lower than

that in the experiments of the corresponding configuration. Although several different

bar sizes were considered, the primary focus here will be on the configuration with a

copper bar of 53.2 mm×53.26 mm cross-section (that corresponds to the rod of diam-

eter 60 mm used in the experiments) and a bar-to-magnet surface distance of 15 mm.

This will be the case for most part of this section, unless otherwise explicitly stated.

Simulations are carried out during the same time window as shown in Fig. 4.2, i.e.

from the state of rest until an approximately steady state is reached, with a velocity

peak in between.

At first, a qualitative picture of the steady state can be obtained from the streamlines

of b at Rm = 10 in the mid-plane (xz-plane) shown in Fig. 4.5. One can see that the

field lines are advected (the X-point as well) in the direction of motion of the bar. This

is seen to occur through a series of severing and reconnections occuring in the vicinity

of the X-point. Specific patterns in which reconnection occurs near the X-point in the

case of a 2D flow will be discussed in Chapter 5.

The current density streamlines display a three roll structure as can be seen from

Fig. 4.6, which corresponds to Rm = 3.2. The current density on the surface has the

largest magnitude as displayed by the streamline coloring. In particular, the maximum

values of |j| was observed on the four edges of the bar. The corresponding surface

streamlines are shown in Fig. 4.7(a), of particular mention being the existance of criti-

cal points of current density on the y-faces (green coloured streamlines).

We now move on to the quantitative results concerning the integral streamwise

Lorentz force over the domain, which is the quantity of primary interest in this study.
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Figure 4.5: a) Field lines of the magnetic field in the xz-midplane near the X-point at a) the initial state

t = 0 and b) the final steady state when the rod reached a constant velocity, at Rm = 10. Contour coloring

is by the two-dimensional magnitude
√

bxt
2 + bzt

2 of the total magnetic field.

Figure 4.6: Streamlines of the current density in the steady state, at Rm = 3.2. Contour coloring is by

the magnitude of current density.

This is computed at regular time intervals using

Fl =
B0

2L2

µ0

∫

[j× (b+b0)]dxdydz. (4.6)

In the case of a bar acceleration involving a peak velocity Vmax = 136.5mms−1, the

time response of Lorentz force is shown in Fig. 4.8(a). The velocity of the rod is also

plotted here (with a dotted line) for reference. One can observe that the Lorentz force

follows a similar profile as the bar velocity, but with a time lag/shift that can be seen

from the respective peak values. Qualitatively, this is similar to the curve obtained

in the experiment using piezoelectric force sensors. However, the value of the peak

Lorentz force is overpredicted in the simulation by a factor of ≈ 3.4. This can be

clearly attributed to two reasons, both related to the geometry of the problem. The
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(a) (b)

Figure 4.7: Projected streamlines on the a) Boundary faces and b) at specific planes, of the current

density j in the steady state at Rm = 3.2. Streamlines colored red are on xy-planes.

primary geometric difference is in the magnetic field distribution of the Halbach array,

where there were indications (although in the bar exterior) that the model overpredicts

the field by a factor of about 73%, which roughly translates to a factor of 1.732 ≈ 3.0 in

the Lorentz force (since L f ∼ B0
2). The second difference is in the shape of the cross-

section. For these reasons, only qualitative comparisons between the experiment and

simulations will be discussed. It must also be noted here that the experimental curve

shows a slow decay of Lorentz force even in the steady state (which has been attributed

to charge leakage effects in the piezoelectric sensors), whereas the simulations predict

a flat profile physically consistent with the velocity profile.

Study of the sensitivity of the result to the grid resolution, grid stretching and the

bar length considered, indicate that the problem is well resolved beyond doubt. Details

of the sensitivity study is given in Appendix C.

Furthermore, simulations were also performed with a wide range of peak velocities

occuring within the same time interval. As expected, the peak Lorentz force shows a

linear dependence on the peak bar velocity (see Fig. 4.8(b)) and with a different slope

as compared to the measured values. Of key interest is the dependence of the peak

Lorentz force on Rm. This is done with a fixed configuration and only changing the
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Figure 4.8: a) Lorentz force as a function of time for the copper rod (experiment) and bar (simulation)

of the same cross-section. Rod diameter D = 60mm and the bar cross-section is 53.2 mm×53.26 mm.

Maximum velocity during the acceleration, Vmax = 136.5mms−1 b) Maximum Lorentz force as a func-

tion of Vmax.

electrical conductivity σ of the bar to values both much lower and higher than that of

Copper. A range of magnetic Reynolds numbers 0.5 ≤ Rm ≤ 50000 was considered.

The dependence is shown in Fig. 4.9. Here, the Lorentz force plotted is normalized by

σVmaxB0
2L2lmag, which is the ideal force that would act on a bar length equal to the

length of the magnet array, when a uniform field of magnitude B0 is imposed.
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Figure 4.9: Normalized Lorentz force FL
∗ as a function of Rm, a) shown only for Rm ≤ 10 and b) over

the entire range of Rm considered. Constant A = 21 and F∗
L,0 = 0.3376.

The low range of Rm is relevant to LFV, in which as one can observe from Fig. 4.9(a),

the Lorentz force decays very slowly with increasing Rm until about Rm ≈ 10. In quan-

titative terms, at Rm = 10, the peak Lorentz force is reduced by approximately 12%

than it is at Rm = 0. Such information is extremely useful in the design and calibration

of LFV in transient flow applications. It is also interesting to note that the limiting

Lorentz force value obtained for low Rm nicely agrees with the Lorentz force obtained

by a simulation performed using the quasistatic formulation (using the electic poten-
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tial). This is represented by the blue triangle in Fig. 4.9(a). Further increase in Rm

leads to a drastic drop in the Lorentz force in the range approximately 10 ≤ Rm ≤ 500

as shown in Fig. 4.9(b). Beyond this, the Lorentz force continues to decay at a rate

∼ R−1
m for sufficiently high values of Rm. The behavior in the whole range fits well

to the function F∗
L = A

(

R0.95
m +A/F∗

L,0

)−1

, where F∗
L,0 is the peak Lorentz force at

Rm = 0.
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Figure 4.10: Time taken to reach from 2% to 98% of the peak Lorentz force, t∗rise (normalized by the

advective time scale), as a function of the magnetic Reynolds number Rm.

Table 4.1: Comparison of t∗rise between experiment and simulation.

t∗rise

Material D (mm) Rm Experiment Simulation Difference (%)

Copper 40 1.78 0.961 1.016 5.6
Copper 50 2.72 1.006 1.067 6.1
Copper 60 3.97 1.072 1.116 4.1

Aluminium 50 0.94 1.034 1.020 −1.4
Aluminium 60 1.29 1.032 0.986 −4.5
Aluminium 80 2.42 0.968 1.063 9.9

Beside the Lorentz force magnitude, the time lag (as compared to Rm = 0) that is

expected to occur at finite Rm is important in transient LFV applications. Information

regarding this is obtained through the non-dimensional time t∗rise, which is the time in

advective units that it takes for the Lorentz force to increase from a value of 2% to 98%

of the peak Lorentz force. As can be seen from Fig. 4.10, the time lag increases linearly

with Rm. Consistently, at low values of Rm, t∗rise tends to the baseline, which is the time
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taken by the velocity itself to rise from 2% to 98% of its peak value. At Rm = 10,

the time lag is already very significant, being approximately 40% of the time it takes

for the corresponding velocity rise. The slight deviation of the curve from linearity

is attributed to the not so smooth nature of the acceleration profile, due to which a

small ambiguity occurs in determining the exact time instants at which the 2% and

98% Lorentz force values occur. Further, the time lag is seen to be reasonably close to

the only measured value in the experiment that corresponds to this configuration.

In the experiments, several measurements of t∗rise were made with slightly different

configuration and two different rod materials, namely Copper and Aluminium. These

cases were simulated as well and a comparison of the rise time is shown in Table. 4.1. A

maximum difference of ≈ 10% was observed between the simulation and experimental

values. This supports a reasonable agreement between the experiment and simulations.
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Chapter 5

Magnetic flux expulsion and

bifurcations in a plane channel flow

This chapter presents the study of magnetic flux expulsion and the associated bifur-

cation in an MHD plane channel flow configuration, using direct numerical simulations

(DNS).

5.1 Introduction

As mentioned in Chapter 3, an interesting feature of MHD flows at high magnetic

Reynolds numbers is the expulsion of magnetic flux that typically occurs under the im-

position of an electrically conducting fluid flow with closed streamlines. This follows

from an analogy with the well known Prandtl-Batchelor theorem (Batchelor [1967])

in classical hydrodynamics. The kinematic problem of magnetic flux expulsion under

rotation has been extensively studied during the sixties (see e.g. Parker [1963, 1966];

Weiss [1966]) in the context of astrophysics. That flux expulsion also persists in the

dynamic regime was pointed out by Galloway et al. [1978] and was followed by further

analysis of the dynamic effects of flux ropes in Rayleigh-Bénard magnetoconvection

(Proctor & Galloway [1979]).

An important aspect of the dynamic behavior associated with flux expulsion is the

‘runaway’ effect, which can be explained as follows. When magnetic field lines start

to get expelled in a region of the flow, there is a decrease in the Lorentz forces that

opposes the mean flow leading to an acceleration of the flow in that region. This in

turn leads to further expulsion of magnetic flux and subsequently results in a cascading

effect of flow acceleration and flux expulsion, wherein dissipative forces like viscosity

ultimately balances the driving force, leading to a steady state. This effect can play

a significant role in the performance of electromagnetic pumps that are used to pump
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liquid metal. Early analytical studies of this phenomenon by Gimblett & Peckover

[1979] using rotating cylindrical and spherical solid bodies under an applied normal

magnetic field showed an associated Thom cusp catastrophe and hysteresis effect. Such

behavior was seen further in the fluid context by Moffatt (Moffatt [1980]).

However, flux expulsion can also happen in flow configurations without closed

streamlines, if the imposed magnetic field is non-uniform and periodic in the mean

flow direction. A particularly interesting configuration is that of a plane channel flow

driven by a mean pressure gradient with an imposed sinusoidal magnetic field that

was analysed by Kamkar & Moffatt [1982] which will be denoted as KM82 hereafter.

In their study, the interaction of the flow and magnetic fields was described by sim-

plified one-dimensional model equations. Steady state solutions were obtained from

which two different flow regimes were identified, namely the Hartmann and Poiseuille

regimes and the location of the bifurcation leading to the transition between these two

regimes was computed. However, various simplifications were assumed in that study.

For example, the non-linear terms (and hence the Reynolds stress terms) in the Navier-

Stokes equation and the variations along the streamwise direction were neglected. Al-

though it enables one to obtain quick solutions, the approximate model can lead to

significant loss of accuracy and underprediction/overprediction of the jump that occurs

during the bifurcation. The focus of this chapter is on 2D direct numerical simulations

of the problem similar to KM82 with a twofold purpose. On one hand, it helps one

to validate the 1D model predictions at the steady state and quantify the differences

arising out of the simplifications of the model. On the other hand, the presence of

non-linearities can result in time-dependent solutions for the flow and magnetic fields

in both the regimes in the final state.

This chapter is organized as follows: section 5.2 describes the problem setup and

the full governing equations along with a brief overview of the KM82 model. This is

followed by the details of the numerical procedure in section 5.2.2. In section 5.3, nu-

merical results of the DNS are presented and compared to the predictions of the model,

including the effect of various parameters on the characteristics of the bifurcation.

5.2 Problem setup and governing equations

5.2.1 Problem formulation and full governing equations

We consider the two-dimensional incompressible flow of an electrically conducting

fluid (e.g. a liquid metal) driven by a mean pressure gradient in a straight rectangular

channel. Periodicity is assumed along the streamwise direction x and the wall normal
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direction is denoted by z. A magnetic field B0(x,z) = B(x,z, t = 0) (generated by

electric current or magnet sources outside the channel) with a prescribed wall normal

component B0z = cos(kx) with a wavenumber k, is imposed on the flow 1. Such a

periodic magnetic field can be ideally produced e.g. by magnets distributed on the

channel walls with alternating north and south poles in the streamwise direction (see

Kamkar & Moffatt [1982]). The action of the flow on the magnetic field generates

plane-normal electric current densities J = (0,J(x,z),0) in the flow which leads to the

generation of a secondary magnetic field and Lorentz forces that affect the flow. The

imposed magnetic field which is divergence-free can be expressed as B0 = ∇×A0,

where A0 = (0,A0(x,z),0) is the magnetic vector potential. Choosing the scales of half

channel height L for the length, the maximum value of the imposed magnetic field B0

for the magnetic field, B0L for the vector potential and applying the curl-free condition

on B0, we get in the non-dimensional form,

∂ 2a0

∂x2
+

∂ 2a0

∂ z2
= 0, (5.1)

with the boundary conditions

∂a0

∂x
= cos(κx) on z =±1 ; a0 (0,z) = a0 (lx,z) (5.2)

where the symbol κ = kL represents the normalized wavenumber, lx is the non-dimensional

streamwise length of the channel and a0 is the normalized vector potential. Solution

of equation (5.1) using seperation of variables yields

a0 =
1

κ

sin(κx)cosh(κz)

cosh(κ)
. (5.3)

This leads to the form of the non-dimensional initial (or imposed) magnetic field b0 as

b0 =−sin(κx)sinh(κz)

cosh(κ)
i+

cos(κx)cosh(κz)

cosh(κ)
k, (5.4)

the field lines of which are shown in Fig. 5.1. Here i and k refer to the unit vectors in

the streamwise (x) and wall-normal (z) directions respectively.

The physics of the problem is governed by the Navier-Stokes equation for the mo-

mentum balance including the additional source term representing the Lorentz force

(body force) produced by the induced electric currents and the induction equation

for magnetic field transport along with the constraints of mass conservation (conti-

1Throughout this chapter, the subscript 0 indicates conditions at time t = 0 rather than an “imposed

field” and the total magnetic field is denoted by B or b without a subscript t.
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Figure 5.1: Field lines of the imposed magnetic field b0 as given by equation (5.4). Two magnetic

X-points at (x = π/2,z = 0) and (x = 3π/2,z = 0) can be observed at the centerline.

nuity) and solenoidality of the magnetic field. The pressure gradient is decomposed as

∇PT =−ρGi+∇P, where ∇PT represents the cumulative pressure gradient and −ρG

the constant mean pressure gradient that is applied in the streamwise direction. Non-

dimensionalizing using the scales λ/L2k, λ/L2kG, ρGL and σλB0/L2k for velocity,

time, pressure and the current densities respectively, and denoting all non-dimensional

variables by small letters, the system of governing equations can be written as

∂v

∂ t
+

1

βκ
(v ·∇)v = 1−∇p+ ε∇2v+

1

Q
(j×b) , (5.5)

∂b

∂ t
+

1

βκ
(v ·∇)b=

1

βκ
(b ·∇)v+

1

β
∇2b, (5.6)

∇ ·v = 0, (5.7)

∇ ·b= 0, (5.8)

j = κ (∇×b) , (5.9)

u = w = 0, bz = cos(κx) on z =±1, (5.10)

v(0,z) = v(lx,z), b(0,z) = b(lx,z) (5.11)

with the no-slip and no penetration boundary conditions for the fluid velocity on the

walls and periodicity assumed in the streamwise direction. Furthermore, the wall

normal component of the magnetic field bz on the walls remain unchanged (equal

to the imposed magnetic field, b0z) and the streamwise component follows from the

divergence-free condition (5.8). The parameters involved in the problem are

ε =
νλ

L4kG
, β =

L4kG

λ 2
, Q =

ρL2kG

σλB2
0

, κ = kL (5.12)
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where ν and ρ represent the kinematic viscosity and the mass density of the fluid re-

spectively. The parameter β represents the magnetic Reynolds number and the param-

eters ε , Q can be regarded as the inverse of the hydrodynamic Reynolds number and

the Stuart numbers respectively. All the fluid properties are assumed to be constant.

The coupled evolution of the velocity and magnetic fields is computed by solving the

governing equations numerically, a brief summary of which is presented next.

5.2.2 Numerical Procedure

The numerical solution of the system (5.5) to (5.11) is obtained using second or-

der finite differences, on similar lines as the procedure described in chapter 3 but with

specific differences. Therefore a brief outline of the key differences and features will

be discussed here. The domain is discretized into a rectangular Cartesian grid with

uniform grid spacing along the streamwise direction and a non-uniform stretched grid

in the wall normal direction in order to resolve the thin Hartmann boundary layers near

the walls. A typical grid used in our studies is shown in Fig. 5.2. Here, since we con-

x

z

0 1 2 3 4 5 6
-1

0

1

Figure 5.2: Non-uniform structured grid in the xz-plane with 129× 129 grid points and S = 2.2.

sider a constant imposed streamwise pressure gradient, the volume flux through the

channel is not set to a constant value. The explicit scheme is used for the integration

of the momentum equation. Other details of the numerical procedure to compute the

velocity field remains the same and can be found in chapter 3. However, for the mag-

netic field, one can see that the conditions on the boundary are specified and hence the

boundary integral procedure described in chapter 3 will not be used. The normal com-

ponent of the magnetic field bz is computed by using a semi-implicit procedure. The

resulting Poisson equation for bz is computed using FISHPACK (Adams et al. [1999]).

Subsequently, the streamwise component bx is reconstructed from bz using equation

(5.8), in order to satisfy the solenoidality of the magnetic field. Alternatively, it is

possible to solve for the vector potential A (since the problem is 2D, A has only one
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component) and recover the magnetic field components bx and bz from A. OpenMP

parallelization has been used in performing the computations for the results presented

in this chapter.

5.2.3 One-dimensional approximate model of Kamkar and Mof-

fatt (KM82)

In view of the fact that the results of our DNS are compared with the 1D approxi-

mate model of KM82, we present a brief overview of their model here. The following

assumptions have been made in the model:

• The secondary magnetic field consists of only a single mode (wavenumber)

along the streamwise direction, which is taken to be the wavenumber (k) of the

applied magnetic field. To this effect, the vector potential A of the magetic field

b is expanded as

A(x,z, t) = B0k−1ℜ
[

i f (z, t)eikx
]

(5.13)

where ℜ represents the real part and f (z, t) is the dimensionless profile function.

• The variation of dynamics in the streamwise direction is neglected and hence the

mean (x-averaged) governing equations are considered.

• The velocity fluctuations v′ are small compared to the mean (x-averaged) stream-

wise velocity U , |v′|≪U and hence the Reynolds stress terms in the momentum

equation and the fluctuating parts of advection terms in the A-transport are ne-

glected. This assumption is supposed to be valid when β ≪ Q2.

The assumptions stated above lead to the following mean governing equations for

U(z, t) and f (z, t) in the non-dimensional form,

∂U

∂ t
= 1− 1

2Q
ℜ

[

i f

(

∂ 2

∂ z2
−κ2

)

f ∗
]

+ ε
∂ 2U

∂ z2
, (5.14)

β
∂ f

∂ t
+ iU f =

(

∂ 2

∂ z2
−κ2

)

f (5.15)

U = 0, f = 1 on z =±1 ; (5.16)

which correspond to equations (2.33) and (2.38) in KM82, where f ∗ is the complex

conjugate of f . For later comparisons with the DNS results, we solve the above model

equations (5.14) to (5.16) by a finite-difference method on a uniform grid.
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5.3 Results and comparison

Starting with either an initial laminar velocity profile (with no streamwise varia-

tion) or fluid at rest (v= 0) and the imposed magnetic field b0, the governing equations

are numerically integrated in time to obtain the final equilibrium states. All the compu-

tations have been performed for a streamwise domain length of one period, lx = 2π/κ

on a 129× 129 grid. A grid sensitivity study was performed which indicated that

further increase in grid resolution does not improve the solution accuracy significantly,

within the parameter space studied here. Depending on the velocity profiles of the final

states, two regimes of flows are defined (as in KM82), namely the Hartmann regime

and the Poiseuille regime.
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Figure 5.3: Steady state streamwise velocity profiles in the Hartmann regime at (a) x = π/2 and (b)

x = π . Parameters are β = 1, κ = 1 and ε = 5× 10−3.

The Hartmann regime is characterized by very steep velocity gradients in the bound-

ary layers as compared to the core region. Pressure gradient in the core is dominantly

balanced by Lorentz forces whereas in the boundary layers it is a combination of

viscous and Lorentz forces that balances the pressure gradient. Flows at relatively

small Q or high interaction parameter belong to this regime. In contrast, the Poiseuille

regime typically demonstrates ‘Poiseuille-like’ (parabolic) axial velocity profiles and

is dominated by viscosity in the core region. Flows at relatively higher Q belong to the

Poiseuille regime. The final equilibrium state of the Hartmann regime is observed to

be steady in time unlike the Poiseuille regime where significant velocity fluctuations

persist in final state. Transition between the two regimes occurs over a narrow band of

Q through a bifurcation that is a manifestation of the runaway effect. We now provide

a very brief account of the nature of the solutions in these two regimes.
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Figure 5.4: Typical streamwise velocity and magnetic field configuration in the Hartmann regime. (a)

Contours of streamwise velocity and (b) magnetic field lines in the steady state at Q = 0.3, for β = 1,

κ = 1 and ε = 5× 10−3. We observe how the magnetic X-points are slightly shifted by the flow.

5.3.1 Hartmann regime

Typical axial velocity profiles in the Hartmann regime are shown in Fig. 5.3 at

two different axial locations of the channel, x = π
2

and x = π and at various values of

the parameter Q. These two locations correspond to the streamwise extreme values

of the imposed magnetic field b0. It can be observed from Fig. 5.3 that higher axial

velocities (or flow acceleration from the initial state) are observed with increase in Q

and the profiles in the boundary layers at x = π look more ‘Hartmann-like’ than at

x = π
2

due to the pronounced effect of the wall normal component b0z. The distribution

of axial velocity vx in the domain as shown in Fig. 5.4(a) (along with the velocity

streamlines) clearly indicates the laminar nature of the flow in the Hartmann regime.

Advection of the magnetic field can be observed from the corresponding field lines

shown in Fig. 5.4(b) that indicate only a slight bending of the field lines. As is clear

from the velocity field, no significant events of severing or reconnection of field lines
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Figure 5.5: Contours for the evolution of velocity field to the Poiseuille-like state as the flow accelerates

from rest. (a) t = 0, (b) t = 16.1, (c) t = 60.1. Parameters are Q = 0.5, β = 1, κ = 1 and ε = 5× 10−3.

Left column: streamwise velocity vx. Right column: wall-normal velocity vz.

are observed in this regime.

5.3.2 Poiseuille regime

The Poiseuille regime is a result of the runaway effect, where there is a significant

acceleration of the flow due to considerable bending and severing of field lines and sub-

sequent expulsion of magnetic flux. The streamwise velocity profiles show significant

gradients in the wall normal direction and hence look ‘Poiseuille-like’. It is observed

that the flow exhibits strongly unsteady behavior even in the final (steady on average)

state. Of particular interest is the initial phase of the transient flow that ensues when

the flow starts to accelerate from rest, due to the applied mean pressure gradient. The

evolution of the velocity field leading to almost complete expulsion of magnetic flux

in the core (z = 0) in such a case is shown in Fig. 5.5 through snapshots of velocity

component contours. It can be seen that the gradual acceleration of the streamwise

velocity is accompanied by relatively small wall normal velocity component on both

side sides of the core, in a staggered arrangement. At the same time, the normal com-

ponent of the magnetic field (which leads to streamwise Lorentz force) in the core is

gradually destroyed, due to the bending of the vertical field lines (due to advection) as
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Figure 5.6: Advection and expulsion of magnetic flux as the flow starts to accelerate from rest. (a)

t = 0, (b) t = 16.1, (c) t = 60.1. Parameters are Q = 0.5, β = 1, κ = 1 and ε = 5× 10−3. Contours

coloured by bz.

well as the reconnection of the field lines, depending on the streamwise location in the

channel. Reconnection here refers to the rearrangement of magnetic field line topol-

ogy. When two field lines come into contact and locally compress, gradients in the
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Figure 5.7: Severing and reconnection of magnetic field lines shown in a small section of the channel

when the flow accelerates from rest. (a) t = 0, (b) t = 2.0, (c) t = 2.1, (d) t = 2.9, (e) t = 3.0, (f) t = 15.4,

(g) t = 15.5, (h) t = 37.0. Parameters are Q = 0.5, β = 1, κ = 1 and ε = 5× 10−3. Following the line

marked AA’ shows a characteristic reconnection and stretching pattern that it undergoes leading to the

expulsion of magnetic flux in the core.
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magnetic field becomes large. This leads to significant magnetic diffusion and results

in the reconnection of the field lines (Sweet [1956]). Flux expulsion can be observed

in Fig. 5.6, where snapshots of the configuration of the magnetic field lines show the

eventual decay of magnetic flux in the core and significant shifting (advection) of the

X-points, due to reconnection events (the mean flow is from left to right). A specific
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Figure 5.8: Evolution of the wall normal component of the magnetic field (bz) along the channel cen-

terline z = 0 when the flow accelerates from rest (obtained from DNS). Parameters are β = 1, Q = 0.5
and ε = 5× 10−3. Inset shows corresponding time decay of the mean magnetic energy on the center-

line < Eb > at z = 0. We mark the magnetic X-points and their steady shift further downstream by

reconnection events.

common pattern in the reconnetion of the magnetic field lines was observed during the

process of dynamic runaway. A field line in the region with a strong negative wall nor-

mal component bz (those that are approximately located at 2.5 < x < π in Fig. 5.6(a)),

undergo a two-fold reconnection process and transform into a field line with positive

bz (except at the core, where it is zero). A typical example of this is shown in more

detail in Fig. 5.7, where the field line (marked at the ends by A and A’) corresponding

to the imposed magnetic field initially develops a sharp ‘pinch’ at z = 0 (Fig. 5.7(b))

before a reconnection event leading to both ends of the line attached to the top wall

(Fig. 5.7(c)). After some further stretching, another reconnection event occurs as seen

from Fig. 5.7(d) to Fig. 5.7(e) leading to a reversal of the direction of the magnetic field

as compared to the initial state. Subsequently the field line is stretched significantly

in the flow direction as shown from Fig. 5.7(d) through Fig. 5.7(h) leading to the final
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Figure 5.9: Snapshots of streamlines of the velocity field in the final (steady on average) state showing

the transport of vortices near the wall. Coloured by contours of vx. (a) t = 0.3, (b) t = 1.1, (c) t = 1.9.

Parameters are Q = 0.5, β = 1, κ = 1 and ε = 5× 10−3.

topology of the line that also results in bz = 0 at z = 0. Interestingly, these series of

events is seen to occur to every flux line (in the region considered, 2.5 < x < π) in a

sequential manner from left to right. This is clearly seen from the pinching and recon-

nections occuring to the field line next to AA’ seen from Fig. 5.7(f) through Fig. 5.7(h).
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The decay of the magnetic flux in the core during this period (from t = 0 to t =

37) is shown in Fig. 5.8, where the evolution of bz(x) along the channel centerline

is plotted. Advection of X-points in the streamwise direction and the decay of the

amplitude of bz can be clearly observed. This is accompanied by the temporal decay

of the mean magnetic energy at the channel centerline which is defined as

< Eb >= lx
−1

lx
∫

0

(

b2
x +b2

z

)

dx. (5.17)

This decay contributes to the growth of kinetic energy and hence the runaway process.

As mentioned previously, the final state occuring in the Poiseuille regime shows a

strongly unsteady behavior, with secondary flow structures which become more fre-

quent at lower viscosities. A typical example is shown in Fig. 5.9, where two large

vortex structures are observed, one on either wall and separated in the streamwise

direction. These vortices (or recirculation zones) are advected along the mean flow

(Figs. 5.9(a) through 5.9(c)), leading to an almost time-periodic behavior of the flow.

Absence of chaotic states might be attributed to low Reynolds numbers and short do-

main length in the problem.

5.3.3 Comparison with the predictions of KM82

We now turn to the comparison of DNS results with the model results of KM82 to

investigate the validity of the model in predicting the steady states in both the regimes

and also the location of bifurcation that leads to the transition between the two regimes.

All the comparisons shown in this subsection correspond to ε = 5×10−3, β = 1 and

κ = 1 with a channel length Lx = 2π . Fig. 5.10 shows the mean streamwise velocity

profiles in the Hartmann regime compared to the prediction of KM82 at various values

of the parameter Q. It can be observed that the model is accurate in this regime in

terms of the magnitude of axial velocity although some differences can be seen in the

shape of the profiles.

However this is in contrast to the behavior in the Poiseuille regime (see Fig. 5.11),

where the model strongly underpredicts the axial velocity vx and significant differences

are observed in the shape of the velocity profiles. These differences can be attributed

to the effect of non-linearity which is more pronounced in the Poiseuille regime and

the fact that the non-linear terms are neglected in the model equations of KM82. It

must be pointed out that in the case of Poiseuille regime, as the final state of the flow

is strongly time-dependent, the axial velocity profiles from the DNS are obtained by

time and streamwise averaging.
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Figure 5.10: Steady state mean streamwise velocity profiles in the Hartmann regime. Parameters are

β = 1, κ = 1 and ε = 5× 10−3.
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Figure 5.11: Mean streamwise velocity profiles in the Poiseuille regime (streamwise and time averaged).

Parameters are β = 1, κ = 1 and ε = 5× 10−3.

The dependance of the core axial velocity (Uc = vx at z = 0) on Q is shown in

Fig. 5.12. The bifurcation from the Hartmann regime to the Poiseuille regime is ob-

served at Q ∼ 0.43, which is very close to that predicted by KM82 and the shape

of the curve is in close match. The fact that non-linearity leads to the differences is

confirmed through a simulation that we performed dropping out the non-linear term

(βκ)−1 (v ·∇)v in equation (5.5). Figure. 5.12 shows that the curve obtained from
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Figure 5.12: Comparison of DNS results with the model predictions for ε = 5×10−3, β = 1 and κ = 1.

The dotted line (denoted as DNS-NLT) indicates results obtained from DNS by excluding the non-linear

term.

DNS without the non-linear term tends very close to that of KM82.

5.3.4 Effect of parameters ε , β and κ

In this subsection, we present the effect of the parameters ε , β and κ on the nature

and location of the bifurcation along with the magnitude of core velocity in the final

state. Fig. 5.13 shows Uc versus Q at different values of ε . It is clear that at higher

values of ε or lower Reynolds numbers, the transition from the Hartmann to Poiseuille

regimes does not show a distict jump but rather occurs in a continuous manner. In the

parameter space with a clear bifurcation, the value of Q at which the jump occurs is

almost independent of the hydrodynamic Reynolds number (or ε). In addition, when ε

is low, a two-valued solution or hysteresis is observed near the bifurcation point (e.g.

near Q ∼ 0.43 for ε = 5×10−3), depending on whether the steady state is approached

by increasing Q or decreasing Q. Such a hysteresis effect was also predicted by KM82.

The effect of ε on the core velocity (Uc) is negligible in the Hartmann regime but

is strong in the Poiseuille zone. All these observations are akin (qualitatively) to the

predictions of KM82. Interestingly, the effect of the magnetic Reynolds number β

on the Uc-Q curve is very similar to that of the hydrodynamic Reynolds number, with
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Figure 5.13: Streamwise core velocities Uc as a function of Q obtained from DNS for various values of

ε . Dotted lines indicate that no hysteresis is observed. Parameters are β = 1 and κ = 1.
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Figure 5.14: Effect of variation of magnetic Reynolds number β in the Uc-Q plane, obtained from DNS.

Parameters are κ = 1 and ε = 5× 10−3.
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Figure 5.15: Effect of variation of streamwise wavenumber κ of the imposed magnetic field, obtained

from DNS and KM82. Parameters are β = 1 and ε = 5× 10−3.

higher levels of flux expulsion and core flow occuring at higher values of β , as can

be seen in Fig. 5.14. It is interesting to note that steady state solutions of KM82 are

independent of the magnetic Reynolds number due to the association of β with only

the non-linear term (which is neglected in the model) in the momentum balance, as can

be seen from equations (5.5) and (5.14). Furthermore, the location of the bifurcation

to the Poiseuille regime is almost unaffected by variations in ε or β . In contrast,

the jump is observed to be very sensitive to the streamwise wavenumber (κ) of the

imposed magnetic field b0. This is shown in Fig. 5.15, indicating a clear increase in

the value of Q at which the bifurcation occurs and also the magnitude of the jump when

κ is decreased. This is very similar to the dependance on κ predicted by the inviscid

version of KM82 (not shown in the plot), i.e. by using ε = 0 in equation (5.14). In

specific, for κ = 0.5, inviscid KM82 predicts Qc ≈ 0.55 as compared to Qc ≈ 0.59 from

viscous KM82 and Qc ≈ 0.6 obtained from DNS with β = 1 and ε = 5×10−3. At a

higher wavenumber (κ = 2), KM82 in the inviscid limit predicts a jump at a value of

Qc = 0.15 whereas the viscous KM82 shows a continuous transition between the two

regimes. Interestingly in this case (κ = 2), DNS shows no clear demarcation between

the Hartmann and the Poiseuille regimes, although a very small fall (rather than a jump)

in Uc is observed when Q is increased from 0.17 to 0.18 and a corresponding onset of

78



5. Flux Expulsion

near wall recirculation zones at Q = 0.18.

In this chapter, we presented results of direct numerical simulations of the dynamic

runaway effect due to flux expulsion in a plane channel MHD flow. General features of

the flow and magnetic fields in the two regimes - the Hartmann and Poiseuille regimes

- were studied.
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Chapter 6

Turbulence in Hartmann duct flow at

low and moderate Reynolds numbers

6.1 Turbulence at low Reynolds number

In this section, we study the properties of a turbulent duct flow in the presence of a

uniform wall normal magnetic field at moderate magnetic Reynolds numbers Rm = 50

and Rm = 100 and at a low hydrodynamic Reynolds number Re = 5000. We study

the effect of Rm on the evolution of turbulence at relatively low Hartmann number as

well as on the relaminarization of the flow at Hartmann numbers close to the threshold

values. The aim of this study is to obtain a sense of the impact of Rm on turbulent

Hartmann duct flow. A comprehensive study of the dependencies on Rm in larger

Reynolds number and Stuart number flows will be taken up in the next section. For

this purpose, a purely hydrodynamic turbulent duct flow in a domain of size 4π×2×2,

that has evolved to a statistically steady state, is chosen as the initial state and a uniform

magnetic field along the z-direction, b0 = b0k̂ is imposed on the flow. The subsequent

evolution of the velocity and magnetic fields are computed on a grid size of 256×
192× 192, with an equal grid stretch factor in the y and z directions, Sy = Sz = 1.8.

It must be noted that, in practice when a magnetic field (generated by external current

sources) is applied onto a conducting flow at finite magnetic Reynolds number, the

field diffuses at a rate proportional to
√

λ , unlike the case of a low Rm flow where the

magnetic field diffuses instantly (relative to the time scales relevant to this problem)

throughout the conducting medium. However, in order to have an initial state that

allows direct comparison with the low Rm case, we assume here that an initial uniform

magnetic field is present throughout even in the case of flows with moderate Rm.
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6. MHD turbulence

6.1.1 Relaminarization threshold

Transition from a laminar flow to a turbulent flow or vice versa and the critical pa-

rameters at which this happens in Hartmann duct and channel flows have been of sig-

nificant interest right from the time Hartmann performed his first experimental studies

in 1937 (Hartmann & Lazarus [1937]). One of the reasons for this is the significant

impact that transition to turbulence can have on quantities of engineering interest like

the skin friction factor. Since then, numerous experiments and several numerical stud-

ies have been conducted that lead to a better understanding of transition in Hartmann

duct and channel flows at low magnetic Reynolds numbers (see e.g. Kobayashi [2008];

Krasnov et al. [2013]; Murgatroyd [1953]; Reed & Lykoudis [1978]). However, the

effect of finite magnetic Reynolds number on the suppression of duct flow turbulence

by a magnetic field is unknown, which we explore here. To this end, we simulate the

evolution of a turbulent duct flow at Re= 5000 in the presence of a uniform initial mag-
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Figure 6.1: Evolution of turbulent kinetic energy 〈Ek〉 at Re = 5000 and Hartmann numbers close to the

relaminarization threshold.

netic field at Rm = 100 and at Hartmann numbers close to the critical values (Ha ≈ 25)

obtained from quasistatic (QS) DNS (Rm ≪ 1) studies performed by Krasnov et al.

[2013]. It is observed from the QS simulations that the flow becomes laminar between

Ha = 25 and Ha = 26, which can be clearly seen in Fig. 6.1 from the near exponential

decay of turbulent kinetic energy 〈Ek〉 to negligible values when Ha = 26. Turbulent
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kinetic energy is defined in this case as

〈Ek〉(t) =
1

4lx

lx
∫

0

1
∫

−1

1
∫

−1

(

v′x
2 + v′y

2 + v′z
2
)

2
dxdydz, (6.1)

where the velocity fluctuation v′ = [v′x,v
′
y,v

′
z] is defined as

v′ = v− lx
−1

lx
∫

0

vdx (6.2)

(it must be noted that the definition of velocity fluctuation used here involves subtract-

ing a time dependent mean velocity and does not correspond to a typical Reynolds

decomposition. However, it is expected that the present definition is a reasonably good

approximation of the fluctuation). Furthermore, the flow is also observed to laminarize

for all cases of Ha > 26, for example at Ha = 28 shown in Fig. 6.1.

However, when Rm = 100 the flow remains turbulent at Ha = 26, shown by the

settling of 〈Ek〉 in contrast to the QS case. This can also be observed from the instan-

taneous axial velocity profiles shown in Fig. 6.2(b) and Fig. 6.2(c) where the QS case

shows almost complete laminarization at t = 122 while the Rm = 100 case shows turbu-

lent Shercliff layers. Nevertheless, with a slightly stronger magnetic field (Ha= 28), at

Rm = 100, turbulence is completely suppressed as in the QS case but with a slower rate

of decay. This is further evident from Fig. 6.2(d) and Fig. 6.2(e), with the Rm = 100

case showing much higher intensity of turbulence in the Shercliff layers at t = 46 as

compared to the QS case. From these observations, it seems very likely that in the low

Re regime, a higher Rm tends to sustain turbulence and hence delays the laminarization

threshold to a higher value of Hartmann number. This behavior can be attributed to the

independent dynamics of the magnetic field that reduces dissipation and hence delays

the energy decay.

6.1.2 Turbulence at lower Hartmann number

In this subsection, we discuss a few features of the evolution of the turbulent flow

at Re = 5000 and a relatively low Stuart number, corresponding to a Hartmann number

Ha = 15. This is performed at Rm = 50 and Rm = 100 along with the quasistatic case.

In Fig. 6.3(a), the decay of turbulent kinetic energy with time is shown until t = 140.

It is observed that the initial phase until around t = 30 shows a lower decay rate with

higher Rm. However, the flow apparently reaches a statistically steady state earlier

in the quasistatic case as compared to the cases with higher Rm, which show a low

83



6. MHD turbulence

(a)

(b) (c)

(d) (e)

Figure 6.2: Instantaneous axial velocity profiles at x = lx/2. (a) Initial state at t = 0 without the magnetic

field, (b) Ha = 26, Rm = 0 at t = 122, the flow is almost laminarized, (c) Ha = 26, Rm = 100 at t = 122,

the Shercliff layers continue to be turbulent, (d) Ha = 28, Rm = 0 at t = 46, (e) Ha = 28, Rm = 100 at

t = 46.
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frequency oscillatory behavior after the initial steep transients. This is in line with the

findings of Knaepen et al. [2004] through DNS at 1 ≤ Rm ≤ 20 in a periodic box.
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Figure 6.3: Time evolution of (a) turbulent kinetic energy 〈Ek〉 and (b) skin friction coefficient C f .

Common parameters are Re = 5000 and Ha = 15.

In addition, the evolved state seems to settle at turbulent energy levels roughly the

same, independent of Rm. The reason for this is not fully clear and could be attributed

to a low value of Stuart number or to the low variability in the magnetic field allowed

due to the uniformity in the imposed magnetic field.

It is known from quasistatic MHD that the Hartmann flow has two opposing effects

namely the Hartmann flattening and turbulence suppression effects that determine the

evolution of skin friction coefficient under the application of a magnetic field. This can

be observed from the corresponding behavior of skin friction coefficient defined as

C f =
1

4Re

∫

Γ

−∂ v̄x

∂n
dl, (6.3)

(v̄x being the mean axial velocity and n the wall normal direction) which is shown in

Fig. 6.3(b). An initial increase in C f occurs until around t = 2.3 due to the dominance

of the Hartmann flattening followed by a decease in C f when suppression of turbu-

lence becomes important. Such a qualitative behavior is unaffected by the magnetic

Reynolds number, although a slight increase in the magnitude of the peak is observed.

Finally, the oscillatory behavior at higher Rm is also seen with C f as in the case of

turbulent kinetic energy.

The effect of Rm on the suppression of turbulence by the magnetic field can be

observed from the instantaneous cross-sectional distribution of Reynolds stress tensor

component 〈v′z2〉
x
, shown at t = 80 in Fig. 6.4. Our first studies indicate clearly that

with increasing Rm, the stress component is increasingly suppressed in the core region

close to the Hartmann layer.
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(a) (b)

(c) (d)

Figure 6.4: Suppression of the Reynolds stress component 〈v′z2〉
x

due to the applied magnetic field at

t = 80. (a) Common to all the three cases at t = 0; (b) quasistatic case, Rm = 0, (c) Rm = 50 and (d)

Rm = 100. Common parameters are Re = 5000 and Ha = 15.

6.2 Turbulence at moderate Reynolds number

In the previous section, a preliminary investigation was conducted to obtain a sense

of the effect of Rm on very low Re turbulence. In this section, we take it a step further

by performing a more detailed study of MHD turbulence in a Hartmann duct flow at

moderate Re and Rm. In particular, we study the effect of Rm on the statistically steady

states obtained when a pure hydrodynamic turbulent flow in a duct is subjected to a

uniform magnetic field.
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6.2.1 Parameters and grid sensitivity

We choose a Reynolds number Re = 14500 and a Hartmann number Ha = 43.5 for

this purpose. The choice is driven by the availability of results for low Rm (quasistatic)

Hartmann duct flow in the form of LES results by Kobayashi [2008]. Hence, wherever

possible we shall make a comparison beween our DNS at Rm = 0 and LES results

by Kobayashi (this will be done with the DNS results without filtering). It must be

noted that in this parameter space (R = Re/Ha ≈ 333), turbulence in the duct at low

Rm is limited to the side layers, whereas the Hartmann layers and the core region are

laminar. This is confirmed from the results of Kobayashi [2008]. Here, two different

moderate values of Rm = 400 and Rm = 2000 have been chosen along with baseline

quasistatic case Rm = 0. Further, the duct cross-section is chosen of size 2× 2 and

the streamwise length is either 4π or 2π . The shorter length has been used in some

simulations in order to reduce the computational overhead, which is very high for

DNS at moderate Rm. The reason for this will be apparent shortly. The grid resolution

in the cross-section was taken to be 192×192 with an equal stretch factor of S = 2.0.

The streamwise grid resolution is Nx = 1024 when the duct length is 4π and Nx = 512

when the duct length is 2π . These resolutions were chosen through grid independence

tests that were performed using quasistatic DNS for both the streamwise and cross-

sectional resolutions seperately. This is shown in Fig. 6.5(a) and Fig. 6.5(b), that shows

the convergence of the statistically steady skin friction coefficient as the grid resolution

is increased beyond a certain level. That the shorter streamwise duct length lx = 2π
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Figure 6.5: Sensitivity of the statistically steady skin friction coefficient with a) streamwise grid resolu-

tion and b) cross-sectional grid resolution. Domain size: 4π×2×2. Parameters are Rm = 0, Re= 14500

and Ha = 43.5.

is already sufficient is confirmed from the clear decay of the two-point correlations

(along the streamwise direction) of the velocity component fluctuations. This is shown

in Fig. 6.6. The correlation coefficient C (x′) is defined for the velocity component vi
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as

C
(

x′
)

=
1

T

T
∫

0





1

lx/2

lx/2
∫

0

vi (x)vi

(

x+ x′
)

dx



dt. (6.4)

In our case, the time averaging has been done over 2500 snapshots that are spaced at

0.1 convective time units. One can observe that the velocity fluctuations are completely

decorrelated within a distance of π .
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Figure 6.6: Two-point correlations of the cross stream velocity fluctuations at the location (y,z) =
(0.7,0.0) in the Shercliff layer as a function of the streamwise seperation. The domain length lx = 2π .

Parameters are Rm = 0, Re = 14500 and Ha = 43.5.

6.2.2 Flow structure at different values of Rm

We first look into the possible change in the turbulent flow structure that might

arise when Rm is increased. From the basic studies performed at low Re in the previ-

ous section, one could expect that when Rm is increased, the flow might show some

turbulent behavior at locations where it is initially laminar. This is indeed the case and

can be observed from the instantaneous contours of axial velocity vx at a cross-section

shown in Fig. 6.7. These are obtained when the flow has reached a statistically steady

state. One can see that the flow in the core region is almost laminar when Rm = 0,

whereas the flow at Rm = 400 and Rm = 2000 displays a distinctly visible large scale

turbulence in the core. Visualization of the time evolution of these contours (that are

not shown here) showed that at Rm = 2000 structure of the turbulent state in the core

region is more complicated since it varies significantly with time than it is in the case
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of Rm = 400.
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Figure 6.7: Instantaneous contours of streamwise velocity at the cross-section x = lx/2 for a) Rm = 0, b)

Rm = 400 and c) Rm = 2000. Contour coloring : light end, white (vx = 1.3) and dark end, green (vx = 0).

Common parameters: Re = 14500 and Ha = 43.5.

6.2.3 Integral characteristics

The evolution of turbulent kinetic energy for the three different values of Rm is

shown in Fig. 6.8(a). Similar to the situation with low Re, we see that with higher

Rm, the time (in convective units) that the flow takes to reach the statistically steady

state is much higher. For example, it took about 600 convective units of runtime in

order to get convergent statistics for the simulation with Rm = 400 as compared to
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about 200 convective time units for Rm = 0. Hence the computational overhead for

the moderate Rm DNS runs is higher. Further, we also see the large amplitude and

wavelength oscillatory behavior of the turbulent kinetic energy in the final states of

the moderate Rm turbulent flow. The difference in the level of turbulent kinetic energy

at moderate Rm is slightly higher than that at Rm = 0 and also does not show a clear

trend. This is seen from the approximately same energy levels at which the curves of

Rm = 400 and Rm = 2000 settle to. During the same time, an increase in the magnetic
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Figure 6.8: Time evolution of domain averaged a) Turbulent kinetic energy and b) Magnetic energy.

Common parameters: Re = 14500 and Ha = 43.5.

energy is observed as in Fig. 6.8(b). Here the domain averaged magnetic energy is

defined as

〈Eb〉(t) =
Ha2

4lxReRm

lx
∫

0

1
∫

−1

1
∫

−1

(

bx
2 +by

2 +bz
2
)

2
dxdydz, (6.5)

where we consider only the energy of the secondary magnetic field b in the domain.

We now turn to the non-dimensional wall shear stresses or the skin-friction coef-

ficients. At first, we compare the results of skin-friction coefficients from the present

DNS to the LES results of Kobayashi. This is shown in the table below. Here the

Table 6.1: Comparison of skin-frictions coefficients at Rm = 0 between the LES results of Kobayashi

and the present results from quasistatic DNS.

LES (Kobayashi) DNS (present study)

C f ×103 5.30 5.03

C f ,Sh ×103 4.20 3.66

C f ,Ha ×103 6.40 6.40

coefficients C f ,Sh and C f ,Ha are the skin-friction factors that are computed considering
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Figure 6.9: Evolution of the skin friction coefficient at different values of Rm, taking into account a) all

the four walls of the duct, and b) only one pair of walls (either Shercliff or Hartmann walls) at a time.

only one set of walls (either Hartmann or Shercliff walls) at a time as

C f ,Sh =
1

Re

1
∫
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∂ 〈u〉x,t
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∣
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∣

∣
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dz, (6.6)

C f ,Ha =
1
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1
∫

−1

(

∂ 〈u〉x,t
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∂ z

∣

∣

∣

∣

z=1

)
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and hence satisfy the relation C f =
(

C f ,Sh +C f ,Ha

)

/2. One can see a close match for

C f ,Ha due to the fact that the Hartmann layers are laminar in this case. However, LES

slightly overpredicts C f ,Sh as compared to the DNS. Furthermore, the effect of Rm on

C f is similar as in the case of turbulent kinetic energy, in the sense that there exists

no clear trend with increase in Rm. It can be observed from Fig. 6.9(a) that C f settles

to a significantly lower value when Rm = 2000, whereas the value is much higher and

approximately the same for Rm = 0 and Rm = 400. Taking a closer look, one can

see that the reason for this behavior is actually due to two different effects occuring

respectively at the Hartmann and Shercliff walls. This is shown in Fig. 6.9(b). There

is a clear trend of decreasing C f ,Ha with increase in Rm while C f ,Sh roughly remains

independent of Rm. In other words, this implies that the Hartmann flattenning effect

is reduced with increasing Rm, but the intensity of turbulence near the Shercliff walls

does not change much.
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6.2.4 Mean flow quantities, Reynolds stresses and turbulence in-

tensities

The effect of Rm on the mean flow is shown through the axial velocity profiles

in Fig. 6.10. These are obtained by performing both streamwise and time averaging.

Interestingly, when Rm = 400, the mean velocity profile along the spanwise direction

is significantly higher as compared to the quasistatic case, except in the region close to

the center of the duct. However, along the wall normal direction, the effect of Rm on the

mean velocity profile is not so significant in the Hartmann layers and near the centre

of the duct, but the velocity is slightly lower at Rm = 400 in the region in between. In

other words, along the spanwise (y-) direction, the velocity profile of Rm = 400 is much

flatter than the quasistatic case, whereas it is the opposite trend along the wall-normal

(z-) direction. That the effect on the mean flow is more significant in the spanwise

direction is also confirmed by the profiles of u+ with distance from the boundary in

wall units (y+ and z+). Here, the distance in wall units is defined as

y+ = (y+1)Reτ , z+ = (z+1)Reτ , (6.8)

where, Reτ = 0.5Re
√

C f ,Sh +C f ,Ha represents the wall-friction Reynolds number. The

velocity u+ is obtained by normalizing the mean velocity 〈u〉x,t by Reτ/Re.

In all the cases, the results of LES show a very close agreement to our DNS results

at Rm = 0. The reason for the higher mean velocity along z = 0 at Rm = 400 will

be apparent from the Reynolds stress profile shown in Fig. 6.11. Here the primary

Reynolds stress component −〈u′
v
′〉x,t (streamwise and time averaged) is plotted along

the spanwise direction. The mostly lower values of Reynolds stress in the case of Rm =

400 is clearly seen to lead to corresponding higher values of the mean axial velocity.

A slight asymmetry about y = 0 can be observed for the Rm = 400 curve. Convergence

to a fully symmetric curve requires an extremely long time averaging window, which

was not possible to achive due to constraints of computational resources.

The intensity of turbulence itself is seen to be systematically higher in the case of

Rm = 400. The RMS profiles of the axial velocity fluctuations is shown in Fig. 6.12(a)

and Fig. 6.12(b). In fact, the intensity is seen to be higher by a significant factor in

the profile along the z-direction. This picture is very much consistent with the earlier

observation from axial velocity contours of large scale turbulence being induced in the

core region in the case of moderate Rm. However, for a small region near the edge of

the Hartmann layer, the intensity is lower in the case of Rm = 400. The exact reason

for this is yet unclear.
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Figure 6.10: Mean velocity profiles along the a) spanwise direction at z = 0 and b) wall normal direction

at y = 0. Mean velocity profiles in wall units along the c) spanwise direction at z = 0 and d) wall normal

direction at y = 0. Common parameters are Re = 14500 and Ha = 43.5.
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Figure 6.11: Profile of Reynolds stress component −〈u′
v
′〉x,t along the spanwise direction at z = 0.

Common parameters are Re = 14500 and Ha = 43.5.
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Figure 6.12: Profiles of streamwise turbulent flutuation intensity a) along the spanwise direction at z = 0

and b) along the wall normal direction at y = 0. Common parameters are Re = 14500 and Ha = 43.5.

Profiles that extend to only one half of the range of the horizontal scale are from Kobayashi [2008].

6.2.5 Anisotropy

We close this chapter with a brief look into the effect of Rm on the anistropy of

the turbulent flow. It is well known from quasistatic MHD that a magnetic field tends

to diffuse vorticity along the field lines. This is because of the fact that Lorentz force

decelerates only the velocity components perpendicular to the magnetic field and in

addition, the magnitude of the force is proportional to the local velocity of the fluid.

From studies of MHD turbulence at low Rm in periodix boxes, it has been shown that

the joule dissipation of turbulent kinetic energy is given by N| ˆv (k, t)|2cos2θ , where

v̂ (k, t) is the Fourier coefficient of the velocity field for wavenumber vector k and θ

is the angle between k and the applied magnetic field b0 (Schumann [1976]). This

means that gradients of cross-field velocity components along the field lines decay and

hence one would find that the vorticity does not tend to change along the field lines.

This manifests as a source of anisotropy in the structure of turbulence and has been

a parameter of key interest in the study of MHD turbulence. An extreme scenario

of this aspect is the so-called two-dimensionality in MHD turbulence, wherein for a

sufficiently strong magnetic field, the vorticity is seen to be completely aligned with

the magnetic field lines (Moffatt [1967]). By anisotropy, here we mean in specific

the structural anisotropy, that occurs as a consequence of differences in length scales

with direction. Anisotropy itself is indeed not a new feature in turbulence, but has

been a key ingredient of shear flows. It has been observed in the case of wall bounded

flows such as in channels and ducts, that the flow exhibits long streaky structures that

are elongated in the direction of mean flow. This is commonly known as anisotropy

induced by mean shear. On the other hand, anisotropy induced by a uniform magnetic

field and its relative magnitude (and effects) in the backdrop of mean shear induced
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6. MHD turbulence

anisotropy, has been studied extensively in the case of Hartmann channel and duct

flows at low Rm. Our aim here is to investigate, how anisotropy is affected by the

presence of an actively evolving magnetic field (as is the case at moderate Rm) as

compared to the quasistatic case.

(a)

(b)

(c)

Figure 6.13: Contours of λ2 in the x−z plane. a) Rm = 0, b) Rm = 400 and c) Rm = 2000 at the spanwise

location y = −0.95 which is close to the wall. Contour coloring: λ2 = −3 (light end) and λ2 = −15

(dark end). Common parameters are Re = 14500 and Ha = 43.5.

There are several measures of quantifying anisotropy in a turbulent flow. However,

here we seek only a qualitative picture by looking at the instantaneous vortical stuctures

in the flow.
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This is shown in Fig. 6.13 by the contours of negative λ2 at the plane y = −0.95,

which is located close to and parallel to the side walls in the Shercliff layer. Here, λ2

is the second largest eigen value of the tensor S2 +Ω
2, where the tensors S and Ω are

defined as

Si j =
1

2

(

∂ui

∂x j
+

∂u j

∂xi

)

, Ωi j =
1

2

(

∂ui

∂x j
− ∂u j

∂xi

)

. (6.9)

With increase in Rm, one can observe that the structures are only slightly more elon-

gated in the streamwise direction without any clear indication of an increased dom-

inance of mean shear induced anisotropy. Furthermore, at Rm = 2000, intense vor-

tices become much rarer, especially in the near-wall region as can be observed from

Fig. 6.13(c). Observations here can only be confirmed through quantitative measures

of anisotropy which is currently being studied and is not reported here.
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Chapter 7

Summary and Outlook

In this work, a coupled finite-difference/boundary element computational proce-

dure was developed to enable direct numerical simulations of finite Rm phenomena in

MHD duct flows. The method is a useful tool to perform direct numerical simulations

of MHD turbulence with uniform magnetic fields as well as localized magnetic fields

that have been of recent interest. The procedure was subsequently used to analyse three

specific problems and a number of interesting results were obtained. A summary of

the significant results and outcome of this work is as follows:

1. At first, it is shown that DNS of turbulent magnetohydrodynamic duct flows at

moderate Re and Rm can be performed in a practical manner with the currently

available resources. A coupled finite-difference/boundary element procedure is

proposed for the magnetic induction equation and is implemented into a nu-

merical code. The procedure is thoroughly verified in the limiting case of low

Rm. Given the non-existence of standard solvers for a system of two Poisson

equations and a Fredholm integral equation, the explicit scheme is found to be

favourable in most cases, to perform DNS. The often used pseudo-vacuum mag-

netic boundary conditions were found to accurately describe the current density

field j in the limit of low Rm, although the magnetic fields show significant dif-

ferences with those computed with the fully consistent boundary conditions. The

results are published in Bandaru et al. [2016].

2. The transient response of Lorentz force in the case of a strongly accelerating

conducting bar in the presence of a localized magnetic field was analysed. The

Lorentz force shows a time lag as compared to the velocity and the rise time is

seen to be a linear function of Rm, apart from showing a close agreement with

the experiment. The peak Lorentz force as a function of Rm shows an asymptotic

behavior near low values (Rm ∼ 1) and an Rm
−1 dependence for sufficiently high
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values of Rm.

3. The phenomenon of dynamic runaway due to magnetic flux expulsion in a two-

dimensional channel MHD flow was explored. The existence of two distinct

regimes - the Hartmann and Poisuelle regimes that are seperated by a bifurca-

tion was confirmed. The existing one-dimensional analytical model is found to

accurately describe the Hartmann regime and the location of the bifurcation but

significantly overpredicts the core velocities in the Poisuelle regime, due to the

neglect of non-linearity. The Poiseuille regime is seen to be strongly unsteady

similar to that of travelling waves, but does not show spatial irregularity for the

parameters explored here. The location of the bifurcation is found to be in-

dependent of the hydrodynamic and magnetic Reynolds numbers, but however

is strongly affected by the wavenumber of the imposed magnetic field as lower

streamwise wavenumber (κ) leads to bifurcation to the Poiseuille regime at much

higher values of the inverse Stuart number Q and vice versa. In contrast to the

model, the magnetic Reynolds number has a substantial effect on the Uc-Q curve

(Uc is the core axial velocity), that is similar to the effect of the hydrodynamic

Reynolds number. These results were published in Bandaru et al. [2015b].

4. At moderate magnetic Reynolds numbers and low hydrodynamic Reynolds num-

bers, turbulence in a Hartmann duct flow sustains until a higher Hartmann num-

ber without relaminarizing, as compared to the flow at low Rm (Bandaru et al.

[2016]).

5. At moderate hydrodynamic and magnetic Reynolds numbers, large scale turbu-

lence is induced at moderate Rm and the effect increases with Rm. Skin-friction

coefficient due to the Hartmann walls show a systematical decrease with increase

in Rm, whereas that due to the Shercliff walls remains roughly the same. Between

the core and the Shercliff layers, Reynolds stresses decrease with increase in Rm,

leading to larger mean velocities (and flatter velocity profiles) in that region.

There are several avenues for future research building upon the present work. The

effect of moderate Rm on turbulence in the Hartmann duct flow can be better under-

stood from the nature of energy exchange between the magnetic field and turbulence

and the energy spectra. These and other studies are already in progress by the au-

thor and T. Boeck. Our present focus has been on fluids with relatively high magnetic

Prandtl numbers Prm ∼ 10−2, as compared to typical liquid metals with Prm ∼ 10−6

that would correspond to a very high Re when Rm becomes finite. Modeling flows with

realistic magnetic Prandtl numbers would be feasible with the use of large eddy simu-
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lations (LES) that requires subgrid-scale turbulence modeling coupled with the bound-

ary integral procedure. Furthermore, extending the numerical procedure to incorporate

non-periodic inlet-outlet boundary conditions in the streamwise direction will be use-

ful in enabling shorter duct lengths for DNS. The effect of an inhomogenous localized

field on duct turbulence will also be of significant interest, as it is expected to show

strong differences from the quasistatic case.

Related to the dynamic runaway studies in the channel flow, it is expected that

transition to turbulence ensues when the flow bifurcates to the Poisuelle state. In our

studies, two-dimensionality of the problem did not allow distinct chaotic states to man-

ifest, and hence we observed only strongly transient states. Hence it is desirable to

extend this study to a three-dimensional duct flow with magnetic field imposed from

externally placed magnet systems, with full-consistent magnetic boundary conditions.

Such a study is planned to be performed in the near future.
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Appendix A

Uniqueness of the current density field

when jn = 0

The current density field is observed to be independent of the exact form of the

magnetic boundary conditions which satisfy jn = 0, to which we provide a simple

proof. Considering two numerical realizations of computing the secondary magnetic

field b from the QST formulation with a given velocity field v , we denote the solutions

obtained as b1 and b2. As an example, one of the cases can correspond to the integral

boundary conditions shown in this paper and the other case can correspond to the

pseudo-vacuum boundary conditions. Both boundary conditions ensure that the wall

normal current vanishes, jn = 0. The difference between the two solutions is denoted

by db = b2 −b1. It follows from equation (3.59) that

∇2db = 0 or ∇(∇ ·db)−∇× (∇×db) = 0. (A.1)

Since both the solutions b1 and b2 are solenoidal, ∇× (∇×db) = 0 and we can intro-

duce a scalar potential φ as ∇×db =−∇φ . Taking the divergence, we obtain

∇2φ = 0. (A.2)

Moreover, ∇φ = −∇ × db = −∇ × (b2 −b1) = j1 − j2. Therefore, it follows that
∂φ
∂n

= jn1− jn2 = 0 on the boundary. Equation (A.2) with the Neumann condition gives

φ = constant and hence j1 = j2. This explains why the solution for j obtained from

the pseudo-vacuum boundary conditions is in agreement with that obtained using the

rigorous boundary integral procedure.
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Appendix B

Effective wavenumbers for Fast

Fourier transformation

The system considered here is periodic in the x-direction and hence FFT is ap-

plied in that direction. This enables efficient parallelization through the solution of

the elliptic Poisson equations for velocity (v), pressure (p) and the mean streamwise

magnetic field (b̄x) using the Fishpack 2D solver. In addition, parallelization of the

coupled BEM procedure with non-local boundary conditions becomes much easier

without inter-processor communication. However, the streamwise derivatives com-

puted in the Fourier space are not equivalent to the derivatives approximated using

finite differences. Equivalence can be attained by the use of effective wavenumbers

αk1 and αk2 that correspond to the first and second x-derivatives respectively as

αk1 =
sin(αδx)

δx
, αk2 =

sin
(

α 1
2
δx
)

1
2
δx

. (B.1)

Ferziger & Perić [2002]. These relations are obtained by substituting the function eiαkx

into the central finite-difference stencils for the first and second derivatives, respec-

tively. It must be mentioned that in our procedure, αk1 is applied only in reconstruct-

ing the streamwise component b̂xk from b̂yk and b̂zk from the divergence-free condition

using

b̂xk =
−1

iαk1

(

∂ b̂yk

∂y
+

∂ b̂zk

∂ z

)

, k 6= 0 (B.2)

and αk2 is used for the rest of the procedure.
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Appendix C

Sensitivity of Lorentz force time

response

The aim of this study is to ensure that the results of Lorentz force response ob-

tained from the simulations of the accelerating bar problem are insensitive to the grid

parameters and the chosen length lx of the domain. Figure. C.1(a) shows the transient

response of the integral Lorentz force in the bar with various non-dimensional lengths

considered.
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Figure C.1: Sensitivity of the Lorentz force response to the a) length of the bar lx in the simulation.

lx = 6π corresponds to the actual length of the rod in the exeriment. b) grid stretch factor S.

The actual length of the bar in the experiment was Lx,exp = 1m, which translates

to a non-dimensional value of lx,exp = 18.8 ≈ 6π . It can be seen that already with a

length lx = 2π , convergent results are obtained and hence all the simulations are per-

formed by modeling a length of 3π instead of the full length of the bar. This also

justifies the usage of periodic boundary conditions in the streamwise direction. Fur-

thermore, Figs. C.1(b), C.2(a) and C.2(b) show clearly that the grid size of 256×642

and grid stretch factor S = 1.5 that we use, provides sufficient resolution required for
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Figure C.2: Sensitivity of the Lorentz force response to the a) grid resolution in the x−direction (direc-

tion of motion) and b) grid resolution in the cross-section.

this problem.
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BOSSAVIT, A. & VÉRITÉ, J.C. 1982 A Mixed FEM-BIEM method to solve 3D eddy-

current problems. IEEE Trans. Mag. 18(2), 431–436.

BRANDENBURG, A., NORDLUND, A., STEIN, R.F. & TORKELSSON, U. 1995 Dy-

namo generated turbulence and large scale magnetic fields in a Keplerian shear flow.

Astrophys. J. 446, 741–754.

BREBBIA, C. & WALKER, S. 1978 The Boundary Element Method for Engineers.

Pentech Press.

BRONSHTEIN, I. N. & SEMENDYAYEV, K. A. 1997 Handbook of Mathematics, 3rd

ed.. New York: Springer-Verlag.

109

https://www2.cisl.ucar.edu/resources/legacy/fishpack


REFERENCES

BROULLIETTE, E.C. & LYKOUDIS, P.S. 1967 Magneto-fluid-mechanic channel flow.

i.Experiment. Phys. Fluids 10, 995–1001.

CHAUDHARY, R., VANKA, S.P. & THOMAS, B.G. 2010 Direct numerical simulations

of magnetic field effects on turbulent flow in a square duct. Phys. Fluids 22, 075102.

CHRISTENSEN, U.R., AUBERT, J., CARDIN, P., DORMY, E., GIBBONS, S., GLATZ-

MAIER, G.A., GROTE, E., HONKURA, H., JONES, C., KONO, M., MATSUSHIMA,

M., SAKURABA, A., TAKAHASHI, F., TILGNER, A., WICHT, J. & ZHANG, K.

2001 A numerical dynamo benchmark. Phys. Earth Planet. Int. 128, 25–34.

CHRISTIANSEN, S. 1971 Numerical solution of an integral equation with a logarithmic

kernel. BIT 11, 276–287.

CRAWFORD, C.H. & KARNIADAKIS, G.E. 1997 Reynolds stress analysis of EMHD-

controlled wall turbulence. Part 1. Streamwise forcing. Phys. Fluids 10(8), 788–806.

DAVIDSON, P.A. 1999 Magnetohydrodynamics in materials processing. Annu. Rev.

Fluid Mech. 31, 273–300.

DAVIDSON, P.A. 2001 An introduction to Magnetohydrodynamics. Cambridge Uni-

versity Press.
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RÄDLER, K.-H., APSTEIN, E., RHEINHARDT, M. & SCHÜLER, M. 1998 The Karl-
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