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Abstract 

 

In the electroencephalography (EEG) and magnetoencephalography (MEG) studies of brain 

cognition functions and cortical networks, dynamic causal modeling (DCM) provides an 

useful tool to explore the effective coupling among brain regions. DCM is a computational 

method that enables the best brain models as well as parameters to be identified from the 

observed EEG/MEG data. One main challenge of DCM is how to construct a reasonably 

realistic model that can capture the important microscopic generative mechanisms of brain 

functions, at the same time can predict those macroscopic effects like observable oscillations 

or evoked responses in EEG/MEG. Such a model will allow for the integration of data from 

different sources, both microscopic (i.e. anatomical and physiological features of neurons) 

and macroscopic (i.e. measurable brain activity), as well as enabling us to test hypotheses 

and quantify microscopic dynamics for given macroscopic observations. 

In order to achieve a more biological plausible model for DCM, this thesis contributes to the 

development of a biologically realistic local cortical circuit model (LCCM), based on neural 

masses that incorporates important aspects of the functional organization of the brain that 

have not been covered by previous models: 

1. activity dependent plasticity of excitatory synaptic couplings via depleting and recycling 

of neurotransmitters and 

2. realistic inter-laminar dynamics via laminar-specific distribution of and connections 

between neural populations. 

The potential of the LCCM was demonstrated by accounting for the processes of auditory as 

well as somatosensory neural response adaptation of repetitive stimulation. The model 

parameters were specified using Bayesian inference. 

In the auditory MEG study, it was found that: 

1. besides the major serial excitatory information pathway (layer IV to layers II/III to layers 

V/VI), there existed a parallel “short-cut” pathway (layer IV to layers V/VI), 

2. the inhibitory signal flow from inhibitory interneurons in layers V/VI to the pyramidal 
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cells seemed to be both intra- and inter-laminar, 

3. the adaptation and recovery rates of the connections were different: the connection 

from layer IV to layers II/III was more strongly suppressed and more slowly recovered 

than the connection from layer IV to layers V/VI, and 

4. the auditory adaptation effect seemed to last about 5 seconds. 

In the somatosensory MEG study, it was found that in the excitatory pathway from Layer IV 

to layers V/VI: 

1. Alzheimer patients showed an increased effective connection compared to healthy 

elderly people, 

2. Alzheimer patients showed an over-activation in NMDA receptors, and 

3. in comparison to both healthy young and the healthy elderly, the NMDA-receptors 

showed an age-related decrease in activity. 

Our evaluation demonstrated that the novel features of the LCCM are of crucial importance 

for mechanistic explanations of brain functions. The incorporation of these features into a 

neural mass model makes it applicable to modeling the macroscopic data like EEG/MEG, 

which are usually available in human experiments. Our LCCM is therefore a valuable building 

block for future realistic models of human cognitive function. 
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Zusammenfassung 

 

Neuronale Massenmodelle sind sparsam hinsichtlich der verwendeten Parameter und 

biologisch plausible in ihrer Struktur. Sie sind gut geeignet für die Modellieurng der 

Kortikalen Ativität, die durch extrakranielle Messungen wie Elektroenzephalographie (EEG) 

oder Magnetoenzephalographie (MEG) erfasst werden. Die in bisherigen Studien 

verwendeten Modelle machen jedoch starke Annahmen und Vereinfachungen. So wird zum 

Beispiel die synaptische Plastizität, wichtig für Gehirnfunktionen wie Gedächtnis und Lernen, 

bisher nicht repräsentiert. Weiterhin wird die Vielfalt aller kortikalen Neuronen häufig nur 

durch drei verschiedene Populationen berücksichtigt. 

Um die lokale Informationsverarbeitung besser zu verstehen ist es außerdem notwendig, die 

Organization der Neuronen und ihre synaptischen Verbindungen hinsichtlich der Laminas des 

Kortexes detailliert darustellen. 

Das Forschungsvorhaben dieser Doktorarbeit ist es, ein solches neuronales Massenmodell 

mit synaptischer Plastizität und detaillierten synaptischen Verbindungen zu konstruieren und 

dessen Simulationen mit klinisch relevanten Messungen (Habituation von auditorisch und 

somatosensorisch evozierter Aktivität) zu vergleichen. Insbesondere wird gezeigt, dass das 

Modell eine Möglichkeit bietet, den Informationsfluss zwischen verschiedenen kortikalen 

Laminas und den Grad der Plastizität in verschiedenen Verbindungen zu ermittlen. Die Studie 

ist relevant für die Erforschung von Erkrankungen des Gehirns, die auf der Pathologie der 

neuronalen Konnektivität beruhen, zum Beispiel im Falle einer Alzheimererkrankung. 

Da das entwickelte Modell die kognitiven Prozessen des Gehirns zur Generation von 

EEG/MEG-Daten erklärt, ist der wissenschaftliche Beitrag dieser Studie nicht nur für 

Entwickler neuronaler Massenmodelle relevant, sondern auch für ein breites Feld von 

Neurowissenschaftlern.  
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Abbreviations 

 

Aß amyloid-ß 

AD Alzheimer's disease 

AEF auditory evoked field 

AEP auditory evoked potential 

AMDA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

BEM boundary element model  

CCPC cortico-cortical pyramidal cell 

CTPC cortico-thalamic pyramidal cell 

DCM dynamic causal modeling 

dIIN inhibitory interneuron in infragranular layer 

dPC pyramidal cell in infragranular layer 

eCB endocannabinoid 

EM Expectation-Maximization algorithm 

EIN excitatory interneuon 

EPSC excitatory postsynaptic current 

EPSP   excitatory postsynaptic potential 

fMRI functional magnet resonance imaging  

GABA gamma-aminobutyric acid 

GoF goodness of fit 

GoP goodness of prediction  

IC inferior colliculus 

INN  inhibitory interneuron 

IPSP inhibitory postsynaptic potential 

ISI inter-stimuli-interval 

JRM Jansen and Rit model 

LCCM local cortical circuit model 

LFP local field potentials 

LM Levenberg-Marquardt algorithm 

LTP long-term potentiation 

NM neural mass 

NMDA N-methyl-D-aspartate acid 

NMM neural mass model 
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nRT nucleus reticularis thalami 

MCI mild cognitive impairment 

MRI magnet resonance imaging 

PC pyramidal cell 

PSP postsynaptic potential 

PT planum temporale  

sIIN inhibitory interneuron  in supragranular layer  

sPC pyramidal cell in supragranular layer 

STG superior temporal gyrus 

VPm ventroposterio-medial nuclei  
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Chapter 1:  Introduction 

"That is the story. Do you think there is any way of making them believe it?" 

         - Plato, 428/427BC - 348/347 BC 

 

1.1 Motivation 

Minicolumn - column - macrocolumn 

The human cortex is perhaps the most complex thing in the world. It's a thin and folded 

tissue about 2-4 mm thick with a surface area of around 2600 cm2 [1-2]. It contains up to 16 

billion neurons and about the same number of glial cells [3-4]. These neurons are distributed 

in six different laminar layers vertically from the pial surface to the deep cortex [5]. The basic 

unit of the cortex is the minicolumn [1]. There are about 80 to 100 neurons inside a 

minicolumn. These neurons are grouped in a narrow chain and extend vertically across the 

layers II-VI of the cortex, perpendicular to the pial surface. The diameter of a minicolumn is 

about 50 µm. Many minicolumns, which share the similar physiological static and dynamic 

properties, are bounded together by short-range horizontal connections to form a cortical 

column [1]. For example, a cortical column in the cat somatosensory cortex, which consists 

of about 80 minicolumns, has a width of about 300-400 µm [6]. Even between species 

cortical columns vary only from 300 to 600 µm. In the evolution of the cortical expansion, 

only the number of the cortical columns has increased, not the individual column size [7]. 

Cortical columns are complex signal processing and distributing units. They receive, select 

and integrate the inputs from other cortical areas or subcortical areas, such as the thalamus 

and then provide output further to various other areas of the brain. In order to perform a 

given functional task, the cortical columns may cooperate with each other to form a 

physiological macrocolumn [8]. These physiological macrocolumns must be considered as 

dynamic ensembles. The number of joint columns is not fixed and may vary as a function of 



2| Introduction 

time [9-10]. Research and understanding of the signal processing inside cortical columns or 

macrocolumns lead to understanding of the two fundamental principles of the brain 

organization [11]: functional integration and functional specialization. The integration within 

or/and among the functional specialized brain areas is through the neural connections 

among them. 

 

Microcircuit of a cortical column 

The neural network inside a cortical column has a specific laminar architecture. The 

supragranular layers (layers I-III) are the primary origin and termination of intracortical 

connections. Layer III receives the input from other cortical columns and layers II-III project 

to the other part of the cortex. The internal granular layer (layer IV) receives the input from 

the thalamus and sends signals to the other layers of the column, primarily up to layer II and 

layer III. The infragranular layers (layer V-VI) receive the signal from the supragranular layers 

and primarily target the subcortical regions (see [12] for review). This is an oversimplified 

overview of the laminar synaptic connections, which ignores numerous differences 

depending on cortical areas and species [13]. The laminar synaptic connection patterns 

across different species or different cortical areas may be fundamentally different in terms of 

specific functionalities [12]. 

 

Current methods to study connectivity in a cortical column: a microscopic approach 

To date, there are several approaches to directly study neuronal synaptic connections in vivo 

or in vitro in animal studies, such as the paired neural patch-clamp recording [14], the single 

neuron recording with photostimulation [15-16] as well as the optical probing [17]. In brief, 

neurons can be dyed or labeled with biocytin to be visualizable under the microscope. 

Combining infrared video microscopy with patch-clamp recording makes it possible to record 

visually identified neurons in a defined cortical microcircuit of several hundred micrometers 

[14]. The paired neural recording can be applied to study the synaptic dynamics such as short 

and long-term synaptic plasticity between the pre- and postsynaptic neuron pair. But usually 
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a single neuron receives multiple inputs from different neurons in different cortical layers 

and also sends signals to different targets. To study connections from other layers to a 

specific neuron type, combining single neuron recording with photostimulation using caged 

glutamate [15-16] is more efficient than the paired neural recording [18]. The neurons in a 

small region (within 50µm) are selectively activated by the glutamate released by a light 

beam. These activated neurons are presynaptic to the recorded neuron. This technique can 

rapidly scan over a wide cortical surface in about 500 µm to find the regions that contain 

those presynaptic neurons to the recorded neuron. However, how many neurons contribute 

to this postsynaptic neuron or the type of those presynaptic neurons cannot be clearly 

identified. The synaptic dynamics cannot be studied either. Another technique called optical 

probing [17] can be used to identify either input or output regions from a recorded neuron. 

The neurons are labeled with a calcium indicator. Regions of connected neurons can be 

studied by driving one recorded neuron to fire and using calcium imaging to identify the 

positions of other neurons activated by that cell. The inverse can also be applied [19], e.g. 

recording from one postsynaptic neuron and using reverse correlation to estimate the 

presynaptic neurons whose activity correlated with the recorded neuron. However, like the 

caged glutamate study, no information about the synaptic dynamics can be obtained. 

These in vivo or in vitro microscopic measurements provide a direct access to neural synaptic 

connectivity and provide qualitative and quantitative information about the morphological 

and functional properties of synaptic connections in single neuron level. However, these 

experiments are carried out in acute brain slices, generally from animals. Stimulations are 

applied through microelectrodes and biocytin-fillings. Direct measurements in the healthy 

human cortex in vivo under real cognition tasks and behaviors are strictly not allowed. 

 

Research purpose 

So the purpose of this research is to develop a method for the community of computational 

neural science, which can be used on humans through non-invasivly measured data such as 

electroencephalography (EEG) and magnetoencephalography (MEG) to retrieve information 



4| Introduction 

about the synaptic connections among cortical layers in a local cortical area under real 

cognition tasks. 

 

1.2 Suggested solution 

In order to reach the research purpose, the author suggested: i) Composing a simple but 

biological plausible local cortical circuit model (LCCM) [20] , which is a further extended 

neural mass model (NMM) of Jansen and Rit [21-22] with laminar-specific connections and 

dynamic synapses. The model represents the physiological macrocolumn under specific 

cognition tasks. ii) Composing a framework to estimate the properties of the laminar 

connections from the recorded cortical neural activity through non-invasive EEG/MEG data. 

The estimation relies on the Bayesian inversion method and is similar to the schema of 

dynamic causal modeling (DCM) [23]. 

 

The data - EEG/MEG: a macroscopic non-invasive measurement of neural activity 

In current human brain studies, non-invasive image techniques are used to obtain the 

anatomical and functional properties of the cortex. These techniques include EEG/MEG, 

magnet resonance imaging (MRI), functional MRI (fMRI) as well as diffusion-weighted MRI. 

They are able to record the signals while the experiment participants can perform their 

cognitive behaviors as usual. However, these techniques acquire the physiological data of 

the cortex on a different scale level: They do not measure the activity of a single neuron, but 

rather the activity of a large number of grouped neurons. For example, the fMRI of 3 Tesla is 

able to detect the changes in metabolism and blood flow with fine spatial resolution e.g. 0.5 

millimeter, which are correlated with the summarized activities of neurons in this cortex 

volume. EEG/MEG are only capable of measuring the electric and magnetic fields, which are 

generated by a group of synchronized pyramidal cells (at least about fifty thousand) in a 

local cortical area with diameter more than 0.9 mm [24]. 

Although these macroscopic data are not able to discriminate the activity of a single neuron, 
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they still serve well to our research of the various brain functionalities because brain 

functions are not performed by a single particular neuron. Motivated by the anatomical 

theory of Franz Joseph Gall and the anatomical evidence from Korbinian Brodmann [5], the 

cerebral cortex is considered to be organized into spatially separated regions with different 

specialized functionalities. Functional MRI is able to locate the activated brain area with a 

high spatial accuracy. This is useful to identify which particular brain regions are involved in 

what particular tasks or task components. However, change in blood oxygenation is a 

relatively slow and delayed process in comparison to the rapid neural activation processes 

governed by the changes of ion fluxes and membrane potentials. Thus, fMRI has a relatively 

poor time resolution to provide information about the timing of the involvement of cortical 

areas. On the other hand, EEG/MEG measure the changes of electric and magnetic fields, 

which are real-time induced by intercellular currents of the pyramidal cells [25]. Because 

those pyramidal cells are arranged in palisades and their apical dendrites are long and well 

aligned perpendicularly to the cortex surface, the intercellular currents flow longitudinally 

along the dendrites or axons, thus generating the electric and magnetic fields, which do not 

cancel with each other but add together and contribute to the majority of the EEG/MEG 

signal. Analyzing the spatiotemporal evolution of the EEG/MEG data, for example projecting 

them into a single or a set of equivalent current dipoles, gives the EEG/MEG the power to 

provide i) locations of the centers of the activated brain areas with a reasonable spatial 

accuracy in millimeters, which can be superimposed onto the anatomical structure provided 

by the MRI, as well as ii) time courses of activations in these areas with an excellent temporal 

resolution in milliseconds and sub-milliseconds [24]. 

Decomposing the EEG/MEG sensor signal into the activity of specific neural sources 

enhances and clarifies stimulus and task effects. These sources could be considered to 

represent the functional macrocolumns in the cortex. However the source activity alone 

does not directly reveal any information about the laminar synaptic connectivity such as the 

causal effect of one cortical layer over another as well as the temporal change of the 

synaptic connection strength. Therefore, a suitable generative model with laminar synaptic 
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connections and synaptic plasticity is required in order to estimate the properties of the 

connections. 

 

The model - neural mass model: a generative model for EEG/MEG signals 

Traditionally, two main classes of models have been commonly used to explore the dynamic 

of neural circuits. One is based on single neuron simulation using spiking neuron models, for 

example, of the leaky integrate-and-fire or the more elaborate Hodgkin-Huxley types [26-27]. 

Such networks include multiple interconnected neurons and their short-term synaptic 

plasticity depends on the dynamic of the presynaptic spike trains [28-29]. These models are, 

for example, relevant for single cell recordings in animals, while their state variables are not 

captured adequately by macroscopic measurements, like EEG, MEG, local field potentials 

(LFP), or fMRI. In contrast, NMMs [21-22, 30-35] describe the mean activity of entire neural 

populations, represented by their average firing rates and average membrane potentials. 

Such models are, therefore, more suitable for modeling macroscopic brain signals. Despite 

their parsimony in parameter formulation, NMMs are still biologically realistic, that is, their 

parameters are related to microscopically measurable quantities, such as the receptor time 

constant. 

In the past, brain networks and functions have been investigated using NMMs with different 

sets of assumptions, e.g., by Wilson and Cowan [36], Freeman [30], Wright and Liley [37], 

Robinson and colleagues [38], Rennie and colleagues [39], Jansen and Rit [21-22], and Lopes 

da Silva and colleagues [31-32]. One of the most widely used ways to account for the 

dynamic of a cortical circuit is the approach of Jansen and Rit [21-22], which comprises three 

interconnected neural populations: pyramidal cells (PCs), excitatory interneurons (EINs), and 

inhibitory interneurons (IINs). The average membrane potentials of the PCs are considered 

proportional to the observed EEG/MEG signal [25]. David and colleagues [40] added an 

inter-area connectivity scheme following the hierarchical rules described by Felleman and 

Van Essen [41], in order to assemble a network of coupled sources. Wendling and colleagues 

[42] separated the originally singular IIN population into a fast GABAergic and a slow 
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GABAergic IIN. Zavaglia and colleagues [43] added a recurrent loop to the circuit of fast 

GABAergic IINs. These models have been used to simulate various EEG/MEG features in both 

time and frequency domains, such as brain rhythms ranging from the delta to the gamma 

bands [22, 43-44], event-related evoked responses [40, 45-48], induced responses [35, 49], 

spectral responses [50-52] and epilepsy-like activities [42, 53]. Moreover these models have 

also been used to account for effects in other brain image modalities such as fMRI [54] and 

voltage sensitive dyes [55]. 

However, most of these approaches lack two crucial properties to serve our research 

purpose. First, they embody neither clear definition of the laminar distribution of the neural 

populations inside a column nor the laminar-specific connections among the neural 

populations. This severely limits their potential to study the signal pathway among the layers 

inside a cortical column. Second, they are based on static network structures with fixed 

connection strength, synaptic weights and time constants. Synaptic plasticity is another 

essential functional property in synaptic microcircuit and is the fundamental neural basis to 

high cognition abilities like memory and learning [56]. Signal transmission between different 

layers and neural population types can be either depressed or enhanced through the 

dynamic change of synaptic connections[12]. 

Therefore, the author proposed an extension to the Jansen and Rit model (JRM) [22] 

comprising 5 neural masses : one for EINs in layer IV, one for superficial pyramidal cells (sPCs) 

in supragranular layers II/III, one for deep pyramidal cells (dPCs) in infragranular layers V/VI 

as well as two for the supragranular and infragranular inhibitory interneuron populations 

(sIINs & dIINs). The laminar-specific connections among the populations are motivated by 

previous modeling attempts [12, 22, 40, 57] and animal studies [58-59]. Each synaptic 

connection is able to increase or decrease as a function of the dynamic change in 

presynaptic average firing rate. The synaptic connection strength is associated with the 

presynaptic neuronal release probability. Repetition of stimuli causes either an increase or 

decrease of the release probability of the neural vesicles, which in turn causes facilitation or 

adaptation in synaptic connection strength and hence EEG/MEG signal amplitude. The 
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resulting LCCM is more detailed and realistic with respect to the laminar organization of 

information processing. It is worth noting that, in this work, the "cortical column" simulated 

by the neural mass model indicates the physiological macrocolumn. 

 

The estimation - Bayesian inference: an inverse estimation of synaptic connection 

properties 

In order to link the generative model to observed data in an EEG/MEG experiment and, in 

particular, explore the information pathway among the cortical layers, a Bayesian inference 

technique is applied, which is similar to the well-known dynamical causal modeling approach 

(DCM) [45, 60]. It estimates the model parameters from measured EEG/MEG data as well as 

from prior information about these parameters. In previous studies, Garrido and colleagues 

[48] used DCM to analyze the connection among the cortical areas, which were involved in 

auditory processing and David and colleagues [61] used DCM to analyze the subcortical 

connectivity in language processing. The model evidence is approximated to account for 

model accuracy and model complexity [62]. It is used as an index for finding the most 

“optimized” connectional organization in the light of the data [63]. Here, a new technique is 

proposed for the formulation of priors for the connectivity parameters, which allows for 

accommodating larger portions of the model space within a single model that can be 

specified by fitting to the data. 

 

1.3 Structure of the thesis 

Chapter 2: Method is divided into two parts in the aspect of the two key methodological 

issues of this presented dissertation: the modeling and the model parameter estimation. In 

the modeling part, the major purpose is to introduce the LCCM. It is further divided into two 

parts according to the two hallmarks of the LCCM in comparison of the previous neural mass 

models: the laminar organization of the neural population as well as the short-term synaptic 

plasticity. In order to theoretically support the LCCM, the mathematic background as well as 
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the biological evidence is described in detail. The model parameter estimation relies on the 

implementation of the Bayesian inverse estimation. The crucial parts such as the application 

of the Bayesian theorem, implementation of the Expectation-Maximization-Algorithm (EM) 

as well as the computation of the model evidence for the model selection are reviewed from 

previous literature. A novel prior formulation technique that embodies large portions of the 

model space within a single model is subsequently proposed. Furthermore, in order to 

improve the fitting accuracy of the EM-algorithm, the implementation of the 

Levenberg-Marquardt-Algorithm (LM) is suggested and empirically evaluated as well. 

In Chapter 3: Application and Evaluation, two MEG experiments are chosen in order to 

prove and evaluate if the LCCM is advantageous for explaining and researching phenomena 

such as adaptation or memory effects in evoked MEG. The first MEG experiment is related to 

the auditory modality. The data was acquired by the author at the Max-Planck-Institute of 

Cognition and Brain Sciences in Leipzig. The second MEG experiment is related to the 

somatosensory modality. The data was provided by Dr. Akinori Nakamura from the National 

Center for Geriatrics and Gerontology Center for Development of Advanced Medicine for 

Dementia in Aichi, Japan. In each experiment section, the author focuses on three points: 

the model specification, the fitting validation and the parameter representation and 

interpretation. 

The last chapter is Chapter 4: Summary and Future Direction. 
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Chapter 2: Methods 

"The object of knowledge is what exists and its function to know about reality. " 

 - Plato, 428/427BC - 348/347 BC 

 

2.1 Generative model 

2.1.1 Neural mass model 

Neurons consist of several components: a cell body (soma) with a nucleus, dendrites and 

axonal branches including an axon covered by myelin sheathes and with synapses at its 

terminal (Fig. 2.1). A neuron collects the information from other neurons through its 

dendrites. The information is integrated and processed at the soma and then sent further 

through the axon to the axon terminals. From there the information can move to the next 

neuron. A whole neuron may cross several layers of the cortex, but neurons are generally 

classified to a specific cortical layer depending on where their somas are located. However, 

their dendrites and axon terminals can pass through different layers. Therefore, two neurons 

may contact with each other in a layer where neither of their somas belong to. 

Neurons can be characterized by four main functional properties: a) electrical excitability of 

the cell membrane, b) secretion of neurotransmitters, c) plasticity, and d) protein synthesis. 

The first three properties are closely related to information processing among neurons. The 

signal transmission of neurons involves changes in the resting membrane potential, which is 

defined as the electrical potential difference between the intra- and extracellular space of a 

neuron at the rest state. The transient change of the resting membrane potential caused by 

synaptic inputs is called postsynaptic potential. This change in the potential is mediated by 

the changes in the concentration of ions (Na+, K+, Ca2+, etc.) in the intra- and extracellular 

space. The concentration of the ions is regulated by the ion channels presenting in the 
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cellular membrane. The opening or closing of these ion channels depends on the current 

membrane potential and the received neurotransmitters. These neurotransmitters bind to 

receptors on the membrane in order to depolarize or hyperpolarize the cell. When the 

postsynaptic potential exceeds a certain threshold, the neuron fires an impulse (spike). This 

impulse is also called action potential, and is characterized by its amplitude and duration. 

Information transmission at the interneuron level is considered to be encoded in terms of 

the frequency of the action potentials (also called spiking, firing rate) or their timing. 

Neurons also have the ability to strengthen or weaken the information transmission over 

time via varied neural mechanisms such as changing the amount of released neuronal 

transmitters or altering the sensitivity of the receptors. 

The neural mass models (NMMs) [21-22, 30-35] are designed to describe the functional 

properties of a population of neurons in term of the neural signal transmission. These 

neurons are considered to share the similar anatomical and physiological properties and are 

lumped together in a limited defined volume. Together they form a neural ensemble or a 

neural mass (NM). The basic idea of the NMM is to describe the average 

input-output-behavior of a NM. The signal process is modeled by two transformation 

operators (Fig. 2.1). 

 

 

 

 

 

 

 

Figure 2.1 Two operators to simulate the neuron signal transmission in the neural mass model. 

The first operator, rate-to-potential operator, describes that the dendrites receive the input signal and 

send them to soma, on where they then cause changes in the membrane potential. The second 

operator, potential-to-rate operator, describes that the depolarization of membrane potential causes 

firing action potential, and is sent further through the axon to other neural populations. 
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Rate-to-potential operator 

The first operator, called rate-to-potential operator, converts the average pulse density of the 

action potentials coming to the population into an average postsynaptic membrane 

potential. 
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 (1) 

Here, each NM receives an average firing rate, Q(t), as an input and converts it into an 

average membrane potential, u(t). H denotes the average synaptic gain and tunes the 

maximum amplitude of the average membrane potential. The time constant   describes 

the rise and the fall of the average membrane potential evoked by a spike, and it can be 

considered as a lumped representation of the activation of different receptors such as the 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMDA) and the 

N-methyl-D-aspartate receptor (NMDA). The Form of the Kernel function h(t) is inspired by 

the observed value of impulse response of prepyriform cortex [64-65] (Fig. 2.2). The 

simulated response using parameter H = 3.25 mV, = 10 ms [22] is shown in Fig. 2.3 in blue 

and the impulse response using H = 13 mV, = 4 ms is shown in red. 

 

 

Figure 2.2 Observed value of impulse response of prepyriform cortex (Picture from Freeman, 

1975, Mass action in nervous system) 
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Figure 2.3 The kernel function h(t). The blue curve uses parameter H = 3.25 mV, = 10 ms [22] 

and the red curve uses parameter H = 13 mV, = 4 ms. The red one is similar to that measured in the 

literature, see Figure 2.2. 

 

The kernel, h(t), can be interpreted as Green’s function of a second-order ordinary 

differential equation, which can be further expressed as two first-order linear 

inhomogeneous differential equations: 
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The kernel h(t) can also be extended with two time constant randfThey describe the 

rise and the fall of the membrane potential separately [66] (Fig. 2.4). 
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The expression of the ordinary differential equation is changed to  
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Figure 2.4 The kernel function h(t) with two time constants. The parameters are selected from 

the literature [66]: r= 2ms, f= 5,68ms, H = 1mV. 

 

Potential-to-rate operator 

The second operator, called potential-to-rate operator, converts the average membrane 

potential of the population into an average pulse density of action potentials/spikes fired by 

the neurons. This potential-rate transformation is obtained through a sigmoid function (Fig. 

2.5): 

 0 0
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2 2
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Here e0 tunes the maximal firing rate of the NM. u0 is the average membrane potential at the 

half of the maximal firing rate. r is the slope of the sigmoid function. The Equation (6) is a 

modified version of the original sigmoid function used by Jansen and Rit [21-22] with an 

additional term 0 02 /1 exp( )e ru . The motivation of this alteration is to achieve a stable 
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fixed-point (at u(t) = 0, S(u) = 0), where all the states are equal to zero. The fixed-point 

corresponds to the system’s equilibrium or steady state meaning that state variations can be 

interpreted as the deviation from the steady state: i.e., positive and negative firing rate can 

be interpreted as higher or lower neural activity compared to steady state activity [67]. 

 

 

Figure 2.5 The modified sigmoid function. The parameters are e0 = 2.5 Hz, u0 = 560 mV
-1

. 

 

The form of the sigmoid function represents the statistical distribution of the firing threshold 

u0 of each signal neuron in the NM. Fig. 2.6 shows a normal distribution of the firing 

threshold in a NM simulated with 50,000 neurons, which is a theoretically estimated 

necessary number for the generation of recordable signals in the human MEG [24]. Fig. 2.7 

shows two courses of the summarized firing rate of the 50,000 neurons. Their firing 

threshold distributions are shown in Fig. 2.6. The slope of the sigmoid function is verified 

after the standard deviation of the firing threshold. 
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Figure 2.6 Simulated normal distributions of 50,000 Neurons. The mean of the firing threshold 

for both distributions is 6 mV and the standard deviation are 1 mV (thin) and 3 mV (broad). 

 

 

Figure 2.7 Simulated summarized firing rate of 50,000 Neurons in a Neural mass. Blue: ~N(6 

mV, 3 mV), red: ~N(6 mV, 1 mV). 

 

2.1.2 Jansen and Rit model 

The JRM [22] comprises three different neuron types to simulate a cortical column (Fig. 2.8): 

excitatory interneurons (EINs), inhibitory interneurons (IINs) and pyramidal cells (PCs). The 

EINs represent the spiny stellate cells in cortical layer IV, and the INNs represent the 

GABA-ergic neural types, which are distributed throughout all the layers. EINs and PCs form 

an excitatory feedback loop while INNs and PCs form an inhibitory feedback loop. These two 

loops interactively control the rise and fall of the average membrane potential of the PCs, 

which is assumed to be proportional to the reordered EEG/MEG. 

mV 

mV 

mV 

 average membrane potential (mV) 

av
er

ag
e 

fi
ri

n
g 

ra
te

 (
H

z)
 



  Methods | 17 

 

External input to a cortical column 

There are different models of the external input to a NMM under different modeling aspects. 

In the original JRM [22], the external input targeted PCs. In the work of Haeusler and Maass 

[57] (although they used the Hodgkin-Huxley neuron model), the external input, which was 

considered as a thalamic input to a sensory cortex, targeted both pyramidal and 

nonpyramidal neurons throughout layers II-V. It was inspired by the biological evidence cited 

by White [68]. But considering that the major thalamic signals target the spiny stellate cells 

in the cortical layer IV in sensory cortical areas [12, 16, 59, 69-73], a simplified thalamic input 

pathway was used in the other research works [20, 45-47, 51-52, 60]. It assumed that the 

sensory evoked response was prominently driven by the thalamic input to excitatory 

interneuron. The external input density function is also described with different mathematic 

expressions. For the purpose of modeling oscillations like alpha or beta brain waves, a 

constant input is usually used [22, 44]. To simulate the evoked response, Equation (7) was 

proposed by Jansen and colleagues [21]. 

 7( ) ( ) exp( )
t t

P t q
w w

   (7) 

The form of the function (Fig. 2.9a) represents the signal transmission from the retina 

through the metathalamus to the visual cortex, where q tunes the maximal amplitude of the 

density function while w adjusts the latency and width (Fig. 2.9, blue one). Equation (8) was 

proposed by David and colleagues [45]. 

Inhibitory internuerons 

Excitatory internuerons 

Pyramidal cells 

Figure 2.8 Jansen and Rit model for a single cortical column. The neural mass 

model of Jansen and Rit (1995) composed three interconnected neural masses in a 

cortical column: excitatory interneuons, inhibitory interneurons and pyramidal cells. 



 18| Methods 

 1 1 1

2 2 1( ) exp( ) / ( )
n n

P t qn t n t gamma n


   (8) 

In comparison to the Equation (7), which uses only one parameter to tune the form of the 

signal, using two parameters n1 and n2 at the same time it is much easier to control the input: 

The width and latency could be separately tuned. n1 and n2 both determinate the rise and fall 

of the impulse, the latency of the maximal peak is approximated by n1/ n2 (Fig. 2.9, red one). 

 

 

Figure 2.9 Input density functions. The simulated input density functions of Equation (7) (blue 

circle) and Equation (8). The amplitude could be considered as incoming firing rate density (Hz) 

and normalized of 1. a) Parameter for Equation (7): w = 0.005; parameter for Equation (8): n1 = 8, n2 

= 200. b) Parameter for Equation (7): w = 0.0035; parameter for Equation (8); n1 = 8, n2 = 286. 

 

The ordinary differential equation system and parameters of Jansen and Rit model  

From Equation (3) the ordinary differential equation system of JRM [22] is composed as 

followed: 

Connection to EINs, from PCs and external input P(t): 
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Connection to IINs, from PCs: 
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Connection to PCs, from EINs and IINs: 
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Depolarization of the PCs: 

      0 7 9y t y t y t   (12) 

The parameters are listed in Table 2.1 [22]. y1(t) and y3(t) describe the average evoked 

membrane potential of EINs. y5(t) describe the average evoked membrane potential of INNs. 

y7(t) and y9(t) describe the average evoked membrane potential of PCs. Figure 2.10 shows the 

output of the JRM (10Hz oscillation) with a constant input P(t) = 220 and parameter values 

in Table 2.1. 

 

 

Figure 2.10 Output of the Jansen and Rit model. The simulated 10Hz oscillation of Jansen and 

Rit model using the input P(t) = 220 and parameters in Table 2.1. 
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Table 2.1 Parameters of the Jansen and Rit model (1995) 

Parameter Value Description 

He 3.25 mV synaptic gain of EPSP 

Hi 22 mV synpatic gain of IPSP 

e 10 ms time constant of EPSP 

i 20 ms time constoant of IPSP 

v0 6 mV average firing threshold of a NM 

2e0 5 Hz maximal average firing rate of a NM 

r0 0.56 mV
-1

 slope of sigmid fuction 

CEIN,PC 108 synaptic connection strength from EIN to PC 

CPC,EIN 135 synaptic connection strength from PC to EIN 

CPC,INN 33.25 synaptic connection strength from PC to INN 

CINN,PC 33.25 synaptic connection strength from INN to PC 

EPSP = excitatory postsynaptic potential, IPSP = inhibitory postsynaptic potential, 

NM = neural mass, EIN = excitatory interneuron, PC = pyramidal cell, INN = inhibitory interneuron 

 

 

2.1.3 Local cortical circuit model 

2.1.3.1 Motivation 

The purpose of Local cortical circuit model (LCCM) is to refine the very parsimonious NMM 

of a local cortical circuit proposed by Jansen and Rit [22]. In particularly, it is aimed at 

composing a more realistic laminar dynamics. To keep the balance between biological 

plausibility and model complexity, the LCCM consists of five NMs, which are distributed in 

three well-distinguished layers: excitatory interneuons in layer IV, pyramidal cells and 

inhibitory interneuron populations in supragranular layers II/III as well as in the infragranular 

layers IV/V. 
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In this chapter, at first, some important neurons in cortical layers and their prominent 

synaptic connections are briefly reviewed. The findings heavily rely on the data obtained by 

paired intracellular and paired whole-cell recordings in cortical slices in animal studies ([12, 

16, 58-59, 72, 74] and their citations). These methods allow the properties of the neurons 

and their synaptic connections to be studied in some detail under experimenter-controlled 

conditions. However in any one experiment only a small number of connections can be 

studied. Thus, the results comprise a relatively poor representation of the ultrastructure like 

a certain brain tissue. At the end of the chapter, based on this evidence, the structure of 

LCCM is composed and discussed. 

 

2.1.3.2 Brief review of some important neurons in 

cortical layers 

Inhibitory GABAergic interneuorns in all layers 

Inhibitory Interneurons (INNs) can be divided into two major classes [72] by their axon 

targets: i) those that target proximal regions of pyramidal cells (PCs) (e.g., basket cells, 

chandelier cells); or ii) those that target pyramidal dendrites (e.g., Martionotti , bitufted, 

double-bouquet, bipolar and neurogliaform cells). 

INNs are distributed throughout cortical layers II-VI (Fig. 2.11). For example, small and 

medium sized basket cells can be found in all these layers and their axons and dendrites are 

confined to the layer of their somas. Some large basket cells in layers III and IV have long 

horizontal axon branches and provide input to discrete regions at the same layer [75]. These 

larger cells may also have axons vertically descending two or three layers deeper, e.g. from 

layer III to layer V or from layer IV to layer VI [58]. Large basket cells in layer V can also target 

both layer V and layer III [72]. Larger bitufted inerneurons including Martionotti cells in layer 

II-VI have their axons course toward the pial surface and extend horizontally in layer I [76]. 

Double bouquet cells in layer III and layer IV have their axonal arbours near their origin [77] 
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and long narrow vertically descending axons that extend until deep layers V/VI [78]. Evidence 

also shows that, in thalamo-cortical slices, electrical stimulation of the thalamus causes 

depressed PSPs in layer 4 INNs [79]. On the other hand, in contrast to the synaptic 

connections of INNs to PCs, very little evidence has been documented for synaptic 

connections among the INNs. 

Summary for the modeling aspect: Throughout layers II-IV, each layer contains INNs that 

intralaminar connect (within the same layer) with the pyramidal cells. Interlaminar (between 

different layers) inhibition is also possiable due to the large basket cells and bitufted cells (Fig. 

2.11) . 

 

Pyramidal cells and spiny stellate cells in layer IV 

It's very difficult to distinguish between spiny stellate cells and PCs in layer IV. The spiny 

neurons in this layer receive thalamic afferents from thalamus "core" regions and then 

project to layers III and V [80-86], where they innervate PCs and may, in very rare case, 

innervate INNs in layer III [58]. They may also receive excitatory inputs from cortico-thalamic 

PCs in layer VI [87]. Synaptic input from the thalamus seems to be via depressing synapses 

[88-89]. Synaptic connection from layer IV to layer III is also via depressing synapses [90].  

Summary for the modeling aspect: One NM could be used to represent both spiny stellate 

cells and PCs in layer IV, and it should receive excitatory input from thalamic "core" regions 

(probably depressing) and from PCs in layer VI. It sends excitatory output to PCs in layer III 

(probably depressing) and layer V (Fig. 2.12) and IINs in the same layer and layer III (Fig. 

2.13). 

 

Pyramidal cells in layer VI 

There are three broad classes of PCs in cortical layer VI [91]: cortico-thalamic pyramidal cells 

(CTPCs) , cortico-cortical pyramidal cells (CCPCs) as well as claustrum projecting pyramidal 

cells. 

CTPCs in layer VI. There are two kinds of CTPCs in layer VI: the "longer" ones as well as the 
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"shorter" ones. Both types of CTPCs have a narrow apical dendritic tree and a vertically 

projecting axonal arbour. However, the axonal arbour and the dendritic tree of the "longer" 

CTPC extend to layers IV-V, while the apical dendrites and axons of the "shorter" ones end at 

layer V. Moreover, they have different cortico-thalamic projections. The "longer " CTPCs 

project to the nucleus reticularis thalami (nRT) and/or to "specific" or "core" thalamic nuclei 

such as the ventroposterio-medial nuclei (VPm), while the "shorter" ones project to both 

VPm and "non-specific" thalamic regions, but not the nRT. The CTPCs of primary sensory 

regions receive input from thalamic "core" areas, while other PCs in layer VI receive much 

smaller proportions of their input from thalamo-cortical afferents [92-95]. The CTPCs 

innervate and deliver facilitating input to IINs in layer VI [96] as well as the nuclei in thalamus 

(e.g.: VPm, nRT, posterior nuclei) [97]. They are also reported to target interneurons in layer 

IV [79, 98-99]. 

CCPCs in layer VI. There are three kinds of CCPCs in layer VI: short upright PCs, modified and 

inverted PCs as well as spiny bipolar cells. All CCPCs appear to have similar long and 

horizontally oriented axonal arbours and their dendritic trees can be found in deep layers 

VI-V. Their apical dendrites do not project beyond layer V. The dendrites of modified and 

inverted PCs and spiny bipolar cells may occasionsly project into the underlying white matter. 

The CCPCs innervate the other PCs in layers VI-V and deliver strongly depressing excitatory 

postsynaptic potentials (EPSPs) [100]. 

Claustrum projecting cells. These pyramidal cells project output to claustrum. They have a 

very long apical dendrites that may reach layer I but without well-developed dendritic trees 

in layer IV [101]. They have long and horizontally extended axonal arbours similar to CCPCs in 

layers VI-V and end there. The claustrum projecting cells, similar to CCPCs, innervate the 

other PCs in layers VI-V and deliver strongly depressing excitatory postsynaptic potentials 

(EPSPs) [100]. 

Summary for modeling aspect: In a simplified case, one may assume only one PC population 

representing all types of PCs in layer VI, which are interconnected with each other. In that 

case, this PC NM should be considered to receive excitatory input from thalamus ("core" as 
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well as "non-specific" areas), cortico-cortical connections and PCs in layer V. It sends 

excitatory output to PCs in layer V (probably depressing), spiny cells in layer IV (Fig. 2.12), 

INNs in layer IV-VI (probably faciliation) (Fig. 2.13), thalamus (probably facilitation in EPSP) 

and other cortical areas. 

 

Pyramidal cells in layer V 

There are two major subclasses of PCs in layer V: CTPCs and CCPCs. The large CTPCs extend 

their long apical dendritic trees to layer II and layer I and project to several subcortical 

regions, including non-specific thalamus regions, the spinal cord, pons as well as superior 

colliculus. But the smaller and shorter CCPCs rarely extend beyond layers II/III [102]. PCs in 

layer V receive short and long range CC projections, but CTPCs receive no inputs from the 

thalamus [103]. They also receive the descending excitation from PCs in layer III via 

depressing synapses [58, 104] and may also receive a week projection from layer IV, too [74]. 

In contrast, PCs in layer III receive only extremely weak inputs from ascending layer V 

pyramidal axons [104]. The target of PCs in layer V may be PCs in layer V-VI [74] and INNs in 

layer V [58] and layer 2/3 [72].  

Summary for modeling aspect: If it is assumed that only one PC NM is used to represent the 

PCs in layer V, this PC NM should be considered to receive excitatory input from 

cortico-cortical connection, PCs in layer VI and PCs in layer III. It sends excitatory output to 

PCs in layer V (Fig. 2.12), INNs in layer V and layer II/III (Fig. 2.13) and other cortical and 

subcortical areas. 

 

Pyramdial cells in layer II/III 

PCs in layer III are trans-callosal neurons and are heavily interconnected. They receive inputs 

from the opposite hemisphere [105]. In contrast with the other callosal CCPCs in layer VI, 

which target the layers IV and VI, the CCPCs in layer III target all layers [106], both in the 

same or in the opposite hemisphere [107]. The PCs in layer III also receive input from spiny 

stellate cells in layer IV. They may also receive thalamo-cortical inputs from primary sensory 
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thalamus through their basal dendrites in layer IV [92]. The axons of layer III PCs arborize 

primarily into layers II/III and V. The vertical descending axons may pass through layer IV with 

little or no ramification there [108]. Both PCs in layers II/III provide outputs to association 

brain regions. INNs in layer IV [74] and layer V [109] are found to be innervated by layer III 

pyramidal axons. PCs in layers II/III send descending projection to layer V PCs via depressing 

synapses [104]. 

Summary for modeling aspect: When it is assumed that only one NM is used to present the 

PCs in layer II/III, this PC NM should be considered to receive excitatory input from 

cortico-cortical connections, spiny stellate cells in layer IV. It sends excitatory output to PCs in 

layer V (Fig. 2.12), INNs in layers II-V (Fig. 2.13) and other cortical areas. 

 

 

 

 

Figure 2.11 The major interlaminar inhibitory projections. The major interlaminar inhibitory 

projections that have been documented in primarily anatomical studies. The numbers on the left 

indicate the cortical layers. The larger circles indicate the positions of the soma and the smaller ones 

the positions of the axon terminals. All the inhibitory interneurons also provide intra-laminar and 

sometimes long horizontal collaterals, e.g. large basket cells in layer III and layer IV, which are not 

shown here. (Picture from Thomson and Bannister, 2003 [74]) 
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Table 2.2 Excitatory and inhibitory inputs and targets from each cortical layer [72]. 

 The major 

external input 

Spiny cells send 

excitatory input to 

INNs send 

inhibitory input to 

External  

output 

Layers 

II/III 

Cortico-cortical PCs in layer V; 

INNs in layer II/III, INNs 

in layer IV, INNs in layer 

V 

PCs in layer II/III, 

(spiny cells in layer 

IV), 

PCs in layer V, 

(PCs in layer VI) 

Higher cortical 

areas 

layer IV Thalamus core, 

Cortico-cortical 

PCs in layer II/III, (PCs in 

layer V); 

IINs in layer IV, (IINs in 

layer III) 

Spiny cells in layer 

IV, 

PCs in layer III, 

(PCs in layer V), 

PCs in layer VI 

 

layer V Cortico-cortical PCs in layer VI, (PCs in 

layer III); 

IINs in layer V, 

(IINs in layer II/III) 

PCs in layer V, 

PCs in layer II/ III, 

(Spiny cells in layer 

IV), 

(PCs in layer IV) 

Thalamus 

non-specific, 

Subcortical 

areas, 

Cortico-cortical 

layer VI Thalamus core, 

Thalamus 

non-specific, 

Cortico-cortical 

PCs in layer V, spiny cells 

in layer IV; 

IINs in layer VI, 

(IINs in layer IV) 

PCs in layer VI, 

(PCs in layer V), 

(Spiny cells in layer 

IV), 

(PCs in layer II/III) 

Thalamus core 

Thalamus 

non-specific 

Cortico-cortical 

Claustrum 

Note. PCs = pyramidal cells, IINs = inhibitory interneurons. 

 

2.1.3.2 Construction of the local cortical circuit model 

One of the functional interpretations of a simple cortical local circuit diagram was provide by 

Gilbert and Wiesel in 1983 [82, 108], which was based on their intracellular recordings and 

reconstructions of individual neurons in the cat visual cortex. In its simplest form, the specific 

thalamic input first arrives at layer IV, which is considered as the first station of the 

sensory/columnar processing [12]. There, the excitatory spiny stellate cells project to 

superficial layers, from layer IV to layer III and thence to layer II. The layer III is considered as 
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the second station of the columnar processing. PCs in layers II/III project vertically further 

deeper into layer V, the third columnar processing station, and then from layer V to layer VI. 

The loop is closed by a projection from layer VI back to the input layer IV. The processed 

information leaves layer III to other cortical regions and/or from deep layers to other cortical 

and subcortical regions. 

Inspired by this description, the local cortical circuit model (LCCM) [20] (Fig. 2.14) comprises 

5 NMs in 3 different sublayers: one for EINs in input layer IV, one for sPCs in supragranular 

layers II/III, one for dPCs in infragranular layers V/VI, as well as two for the supragranular 

sIINs and infragranular dIINs. The layers II and III are lumped together as the PCs in these 

layers are interconnected and share large similarities in terms of output connections (Fig. 

2.12 & Fig. 2.13). They were usually not separately discussed in previous animal studies 

[58-59]. Layers V and VI are also lumped together to form the NM of infragranular dPCs in 

consideration of their interconnection as well as the large similarity of their projections (to 

the thalamus and other cortical areas, Table 2.3). The IINs in layer IV are lumped into sIINs, 

while they share the same inputs (EINs/PCs in layer IV as well as PCs in layer III) and outputs 

(PCs in layer II/III, EINs/PCs in layer IV as well as PCs in layer V/VI) (Table 2.3). 

 

Figure 2.14 Local cortical circuit model. The local cortical circuit model is composed of 5 neural 

masses. Thirteen intrinsic connections are classified into two groups: "certain" connections in red 

and "uncertain " ones in blue (see text for further explanation). The sensory input from the 

thalamus is assumed to target excitatory interneurons. The measured evoked EEG/MEG data is 

simulated by the superposition of the average membrane potentials of both pyramidal cell 

populations. 
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The excitatory connections between EINs and PCs were motivated by previous modeling 

studies [12, 22, 57, 70] as well as animal studies [58-59]. In particular, EINsPC was 

considered as the most prominent connection in a cortical column of the sensory cortex (for 

reviews, see [110] and references cited therein). However, the interlaminar connectivity 

between the EINs in layer IV and the sPCs in layers 2/3 has been suggested to be 

uni-directional in the sensory cortex [58-59]. In terms of information flow, the anatomical 

existence of the connection sPCdPC [59, 104, 108] inspired the proposition of a serial 

signal pathway from layer IV up to layers II/II and then down to layers V/VI [12, 57, 70]. The 

reciprocal connection dPCsPC has also been confirmed in animal studies [58, 111-114], 

but has been found to be much weaker than sPCdPC [58]. The feedback connection 

dPCEIN has been reported as a projection from PCs in layer VI to the input layer IV in 

visual cortex [108] and an interaction between layer IV spiny stellate cells and layer V PCs in 

the somatosensory cortex [85]. This connection was not mentioned in animal study [58]. The 

direct connection from layer IV to infragranular layers (EINdPC) was motivated by reports 

of a synaptic connection between layer IV spiny stellate neurons and layer 5A PCs in rat 

barrel cortex [85-86]. As a consequence, in additional to the serial path way 

(EINsPCdPC), a parallel pathway from layer IV to layers II/III and to layers V/VI [111-112] 

is proposed here. The connections between IINs and PCs are motivated by previous studies 

of Thomson and colleagues on rat and cat cortexes [58, 74].  

In summary, the LCCM structure could be simply considered as one input layer (EIN) with 

two output layers (sPC & dPC). The sPC targets of other cortical areas. The dPC targets of 

cortical and subcortical areas. 

Based on our a priori knowledge, these 13 intrinsic synaptic connections of LCCM are 

classified into two groups. The first group of “certain” connections included EINsPC, 

sPCdPC, and dPCEIN. They form the basic laminar circuit of a column with forward 

(EINsPC & sPCdPC) and backward (dPCEIN) connections, as well as intra-laminar 

connections between PCs and IINs (sPCsIIN, sIINsPC, dPCdIIN as well as dIINdPC). 

The second group of “uncertain” connections, in relation to our study perspective, 
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comprised the key connection for the parallel signal processing EINdPC as well as 

additional cross-laminar connections (sPCdIIN, dIINsPC , dPCsIIN as well as sIINdPC). 

These "uncertain" connections are given zero prior expectation (see chapter 2.2.5.1). 

From Equation (3) the ordinary differential equation system of LCCM could be composed as 

followed: 

Connection to EIN (E), from dPC (dP) and external thalamo-cortical input P(t) (P): 
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Connection to sIIN (sI), from sPC (sP) and dPC (dP): 
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Connection to dIIN (dI), from dPC (dP) and sPC (sP): 
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Connection to sPC (sP), from EIN(E), dPC (dP), sIIN (sI) and dIIN (dI): 
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Connection to dPC (dP), from EIN (E), sPC (sP), dIIN (dI) and sIIN (sI): 
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Depolarization of pyramid cells:  
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 (18) 

The lowercase indices e and i indicate the connection types: excitatory or inhibitory; E, sP, 

dP, sI and dI indicates the neural populations EIN, sPC, dPC, sIIN and dIIN, respectively. The 

uniform synaptic gain parameters He and Hi  are used for the excitatory and inhibitory 

connections, but the connection time constants e,xy and i,xy are individually specific. The 

pair of indices xy indicates the connection from neural population x to neural population y 

(EIN, sPC, dPC, sIIN or dIIN). This means that each connection will be uniquely characterized 

by three parameters: the static coupling strength C, the dynamic coupling strength W (see 

Chapter 2.1.4) and the time constant . The EEG/MEG signal is assumed to be proportional 

to the superposition of the average membrane potential of neural population sPCs and dPCs. 

The linear relationship between the measurable dipole moment y0 [nAm] and the 

depolarization of the pyramidal cell populations [mV] is described by the parameter 0 

 

 

 

dP 

y0 

sP sI 

dI 

E 

sP sP 

dP 
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[nAm/mV]. Considering the fact that the dendrites of the pyramidal cells in layer V are much 

larger than the those in layer II/III, the parameter 0 describes the different contribution of 

sPCs and dPCs to the measurement. This value is suggested to be about from 1/6 to 1/3 by 

the simulation study of Murakami and Okada [115]. 

 

2.1.4 Model of synaptic short-term plasticity 

2.1.4.1 Motivation 

Short-term plasticity [116-119] including short-term habituation and short-term facilitation. 

It is one of the important and necessecy processes for all brain functions. The words 

"short-term" indicate that the induced change of the synaptic efficacy is rapid and temporary 

on very short time scales from milliseconds to minutes [117-119]. The modulation of the 

synaptic efficacy is use-dependent. Without continued presynaptic activity, the synaptic 

efficacy will quickly return back to its resting state level. In this chapter, first, the short-term 

adaptation is focused. A phenomenological model of short-term adaptation is composed to 

describe the depleting and recycling of neurotransmitters depending on average presynaptic 

firing rates. Then, this model is extended to fit short-term facilitation according to the Abbott 

model [29, 120]. 

 

Short-term adaptation 

The words "adaptation" or "habituation" refer to the suppression of neural and behavioral 

responses as a result of repeated stimulation. In this dissertation the term "adaptation" is 

used to describe the decay of neural responses to repetitive sensory stimuli. It usually 

follows an exponential decay function and it is reversible if the stimulation changes [121]. 

This neural mechanism helps us to use our limited brain resources to interact with our 

environment in an efficient way: repeated irrelevant information will be ignored. Short-term 

adaptation could be observed through auditory event-related responses using EEG/MEG 

http://www.scholarpedia.org/article/Short-term_synaptic_plasticity#Phenomenological_model
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[122-123]. The N100 and N100m are the most reliable and prominent peaks observed in the 

auditory evoked potential (AEP) and auditory evoked field (AEF), respectively, and appear 

about 100 ms after stimulus onset [124]. Repeated stimulation causes attenuation of the 

N100/N100m amplitude, if the stimuli (e.g. short tones) are presented in rapid succession 

(e.g. with 500 ms spacing) [123, 125-126] . This amplitude suppression recovers after about 

6 to 10 seconds of stimuli free time [127]. This effect is of great interest in clinical 

neuroscience because impaired adaptation has been observed in patients suffering from 

schizophrenia [128], Alzheimer’s disease [129] and migraines [130]. In cognitive 

neuroscience, the neuronal adaptation in the auditory cortex is associated with the 

mismatch negativity. This is a negative EEG deflection in response to deviant stimuli and has 

been explained in terms of short-term adaptation [131-132]. Its MEG counterpart is called 

the mismatch field [126].  

The underlying neural mechanisms of short-term adaptation, however, are still not fully 

understood. On a microscopic level, considerable insight has been gained from animal 

studies. In the 1970s, based on series of experiments of the aplysia gill-withdrawal reflex, 

Castellucci and Kandel [133-134] showed that synaptic modification might be a possible 

basis for adaptation. They found that after adaptation there were fewer synaptic vesicles 

released per action potential. Furthermore, studies of frog neuromuscular junctions as well 

as hippocampal synapses in rats suggested that a decrease in transmitter release can be 

caused by a depletion of the readily releasable pool of vesicles, or a decrease in the release 

probability of each docked vesicle, or both [118, 135-138].  

On a very different level of detail, there are a number of EEG and MEG studies that have 

shed light on the mechanisms of the adaptation. Garrido and colleagues [48] used human 

EEG and computational modeling techniques to suggest that the reduction of evoked 

responses is associated with a reduction in the connectivity within or between the involved 

cortical areas. In their MEG study, Rosburg and colleagues [125] found that only the first 

repetition of auditory stimuli resulted in a decrease of the amplitude of the AEF. There was 

no evidence for any further reduction in responses after the second stimulus. The results 
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suggested that the suppression of the AEF was probably due to the refractoriness of cell 

populations involved in the generation of AEF components. Todorovic and colleagues [139] 

demonstrated in their MEG auditory experiment that the reduction of the AEF was larger for 

expected repetitions than for unexpected ones and, thereby, provided evidence for a 

top-down prior expectation modulation of the adaptation. 

The question is: How can these different scales of description be linked together? That is, 

how to construct a comprehensive model of neural circuits that can capture important 

aspects of the microscopic generative mechanism of short-term adaptation and, at the same 

time, predict macroscopic effects like N100 or N100m amplitude reduction? Such a 

comprehensive model would allow for data from different sources, both macroscopic and 

microscopic, to be integrated and enable testing of hypotheses and quantification of 

microscopic dynamics for given macroscopic observations [51]. 

In this approach, the neural adaptation is modeled as a function of the dynamic change in 

average firing rate. The synaptic connection strength is associated with the neuronal vesicles’ 

release probability. Repetition of stimuli causes insufficient availability of vesicles in 

releasing pools and reduces the release probability that in turn causes a reduction in 

synaptic connection strength and hence EEG/MEG signal amplitude. The recovery from 

adaptation is linked to the process of recycling these vesicles back to the releasing pools, 

which occurs spontaneously. 

 

2.1.4.2. Modeling short-term plasticity in local cortical 

circuit model 

Principal synaptic transmission mechanisms for the short-term adaptation 

The neurons connect with each other primarily through chemical synapses. A synapse 

consists of presynaptic and postsynaptic sides [140]. The presynaptic side is located at an 

axon terminal of the signal origin neuron and the postsynaptic side may be located at 



 36| Methods 

different parts of the target neuron's membrane, depending on the different pre- and post 

synaptic neuron types such as: dendrites, soma or axon internal segment [141]. A 

morphologically specialized area at the presynaptic side is called the active zone, where the 

neural vesicles [142], which are containers for neuronal transmitters, are clustered and 

prepared for release. A presynaptic action potential travels through the axon and arrivies at 

the terminal side. The change of the membrane potential there opens the voltage-gated Ca2+ 

channels, thus causing an brief elevation in the intercellular calcium-ions concentration at 

the active zone, which increases probability of vesicle fusion with the cell membrane and 

subsequent release of the neuron transmitters into the synaptic cleft between the pre- and 

postsynaptic sides [143-144]. The neural transmitters bind to the receptors at the 

postsynaptic side and evoke the postsynaptic potential at the target neuron. The released 

neural vesicles are recycled rapidly through transporter proteins in neurons or glial cells 

[145]. 

There are two anatomically distinguishable neural vesicle populations inside the active zone 

[118] (Fig. 2.15): docked vesicles form the releasable pool and those in waiting from the 

reserve pool. At most, only a very small fraction of the neural vesicles are attached directly 

to the release sites. They are close to the Ca2+ channels and are immediately releasable due 

to high concentration of the local Ca2+ after the opening of the channel. These vesicles are 

rapidly replaced by other docked vesicles in the readily releasable pool. However, most 

vesicles are stored more distant in a large cluster behind the cell plasma membrane and are 

unable to respond rapidly. These are referred to as the reserve pool and they refill the 

readily releasable pool after it is depleted. The vesicle release process is called excocytosis. 

The retrieval process of the empty vesicles is called endocytosis. The refill process of vesicles 

from the reserve pool to the releasable pool is called replenishment. 
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Each active zone contains very a few vesicles attached to release sites docked at the plasma 

membrane and these vesicles are releasable by the local high concentration of the Ca
2+

. These 

vesicles are rapidly replaced by other docked vesicles in the readily releasable pool. Most vesicles 

are stored in a large reserve pool behind the plasma membrane. They refill the readily releasable 

pool after it is depleted. Released vesicles are recovered by fast and slow endocytic processes into 

readily releasable and reserve pools. (Picture from Zucker and Regehr, 2002 [118]) 

 

A key characteristic of depression in many synapses is use-dependence [133-134]. The 

releasable neural vesicles under presynaptic action potentials are limited. Thus, their 

depletion during ongoing activity can lead to suppression of the postsynaptic response. A 

simple form of a vesicle depletion model was postulated in the studies of neuromuscular 

junction of rats by Liley and North [135] as well as of frogs by Betz [136]. According to this 

model, a synaptic connection is assumed to contain a store of releasable vesicles, R(t) is the 

occupancy of the release pool and bounded between 0 and 1. Each presynaptic action 

potential t-tj) releases a fraction of the vesicles F and this fraction is assumed to be 

constant. So if each vesicle evokes a synaptic current , the evoked postsynaptic response 

FR(t) is related to the occupancy of the current releasable pool. The refill of the readily 

releasable store is followed by a mono-exponential function with the time constant r. A 

simple first order differential equation can be used to describe this process: 

Ca2+ 

Ca2+ 

Figure 2.15 Functional anatomy of an active zone. 
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  (19) 

I(t) indicates the evoked postsynaptic current by the total amount of released 

neurotransmitter FR(t) in the synaptic cleft, i is the time constant of the evoked postsynatic 

current I(t), which is related to the dynamics of the neural processes at the postsynaptic 

sides, such as the time constant for the fast AMPA receptor or the slow NMDA receptor. 

With a global firing rate G(t), the time evolution for the postsynaptic current I(t) can be 

obtained by averaging Equation (19) over different realizations of the Poisson processes 

according to different spikes [146]: 
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 (20) 

This model predicts an exponential decay of the postsynaptic response during the 

stimulation and can fit in vitro recordings from some depressing synapses very well at the 

microscopic level [135, 147]. 

In spite of its success, the form of the depletion model is inadequate on several points such 

as the assumption of a constant release fraction, which is actually modulated by the 

concentration of the calcium-ions [143, 148-149]. The study of the hippocampal synapses by 

Murthy and colleagues [150] also suggested that different release sides have different initial 

release probabilities. The increase in release fraction, which is produced by increasing the 

Ca2+ concentration, also depends on the initial value.  

Some improved depletion models have taken these considerations into account. For 

example, the model proposed by Tsodyks and Markram [147] extended Equation (20) with 

an additional first-order differential equation to to describe the dynamic of the vesicle 

release probability. The depression of the postsynaptic response was a resultant effect of 

both the current amount of readily releasable vesicles R(t) and the release probability F(t): 
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where U is the fraction of release probability incremented by increased Ca2+ concentration 

evoked by incoming presynaptic action potentials and f is the time constant for the recovery 

of the release probability.  

It is also worth considering the anatomy of synapses, such as in the models composed by 

Zucker and Regehr [118] as well as Sara and colleagues [138]. Instead of using only two state 

of the vesicles: in a readily releasable pool or in a reserve pool, a more realistic and biological 

motivated structure of vesicles pools was used: 
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Equation (22) [138] shows the dynamic mobilization of neural vesicles in three different 

states: in a readily releasable pool C0, mobilizing to the fused state C1 with rate as well as 

being taken back into the reserve pool C2 by endocytsis with rate. indicates the rate that 

the reserve pool refills the readily release pool. 

 

Short-term adaptation model for LCCM 

The adaptation model of the LCCM embodies the simple form of the depletion model of a 

single neuron in the microscopical level. This kind of model captures the central biophysical 

processes in synaptic transmission and keeps a relativly simple mathematical form. In the 

NMM, parameter C (see Equation (9)-(11)) describes the connection strength between two 

neural populations. It highlights the anatomical and physiological features such as: the 

amount of the synaptic connections, the amount of neural transmitter released by 

presynaptic activity as well as the amount of neural receptors opened at the postsynaptic 

side. In a very parsimonious view, parameter C could be considered as a coefficient of the 

signal transmission between two neural populations, which determinates how effectively 



 40| Methods 

one neural population will be driven by another. According to the preceding outline, it is 

impossible for connection strength C to remain a static value over the time, while it is 

affected by at least one or both pre- and post synaptic neural transmitter transmission 

processes, which results depression or enhancement of the connection. 

Accordingly, the synaptic connection strength in LCCM is assumed to be a dynamic process: 

 0( ) ( ) ( )pre postC t W t W t C  (23) 

where C0 is the initial base value of the connection strength, which could be determinated by 

biological features (e.g., the total amount of synapse connections, the size of the neural 

vesicle pools, the vesicle initial release probability, the amount of postsynaptic receptors, 

etc.) that cannot be suddenly changed in millisecond to minutes (the time scale of the 

short-term plasticity). Therefore, it can be considered as a constant. Wpre(t) as well as Wpost (t) 

indicate the change rates of the C0 and they are determined by presynaptic neural processes 

(i.e. releasing neurotransmitter) as well as postsynaptic neural processes (i.e. opening 

postsynaptic channels). Since the short-term plasticity is only involved at the presynaptic side 

and will not affect the receptors at the postsynaptic side [133-134, 140], Wpost (t) is irrelevant 

here and is considered to have a constant value of 1 and, for the short-term adaptation, 

Wpre(t) is bound between 0 and 1. Wpre(t) here is equal to Wi  in Equation (14)–(17) of the 

LCCM. 

It is assumed that the dynamic synaptic efficacy Wi  is proportional to the averaged neural 

transmitter release probability of the whole presynaptic neural population. It is considered 

as a result of a series of involved neural processes, such as the increase of the neural vesicle 

release induced by the changing of the Ca2+ concentration as well as the depletion of the 

readily releasable pool. While the short-term adaptation is a consequence dominated by the 

insufficient supply of neural vesicles in the readily releasable pool during the release 

processes heavily overloaded by the presynaptic activities, in order to keep the balance 

between the biological plausibility and the model complexity, the dynamic synaptic efficacy 

Wi  in the LCCM is assumed to take the most parsimonious form of the depletion model (see 

Equation (20)) :  
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It is assumed that the dynamic synaptic efficacy W (0<W≤1) is determined by the averaged 

activity of the presynaptic NM (in the NMM the relevant parameter is the averaged firing 

rate Q (t), see Equation (6)), which has the maximal adaptation ratio at Q(t) = Qmax. The term 

Q(t)/Qmax indicates a semi-linear relationship before Q(t) reach its maximum (Fig. 2.5), which 

is somehow in agreement with the increment of neural vesicle releasable probability caused 

by the elevation of the Ca2+ concentration, which per se is caused by the incoming 

presynaptic action potentials. However, some evidence points out that the relationship 

between Ca2+ concentration and vesicles release probability is not linear but follow a steep 

power function with an exponent between three or four [148-149, 151]. The parameters n1 

and n2 indicate the adaptation and recovery rates of the averaged synaptic connection 

strength between two neural populations. Although W takes a form similar to the depletion 

model (Equation (20)), n1 and n2 do not directly describe parameters at the microscopical 

level, such as the time constant of depletion of the readily releasable pool or the time 

constant of its refill. They describe average activities of a neural population. They may have 

totally different time scales. n1 and n2 should be considered as the indicators for how easily 

the synaptic connection strength will be suppressed (n1) by presynaptic activity or how 

strongly it will resist the suppression (n2). 

Wehr and Zador [152] reported in their in vivo studies that the forward masking of auditory 

cortex cells was due to synaptic depression rather than inhibitory postsynaptic potentials 

(IPSPs), and Galarreta and Hestrin [153] showed that excitatory synapses were depressed 

much more strongly than inhibitory ones. Motivated by these studies, in the LCCM, the 

adaptation was assumed to only affect the excitatory pathways. Moreover, because the 

same presynaptic neuron may have different short-term plasticity for connections to 

different types of target neurons [154], different depression and recovery rates are aloowed 

for each excitatory connection. 
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Extension of short-term adaptation model to short-term facilitation model 

A previous paired-pulse facilitation study of the synapses from granule to Purkinje cells (in 

the cerebellum) by Atluri and Regehr [155] as well as the study of the synapses from 

interneurons to pyramidal cells by Batow and colleges [156] suggested that a potential 

underlying neural mechanism for facilitation is an increment of residual calcium ions in the 

presynaptic sides. Increased concentration of the residual Ca2+ causes rapid facilitation of the 

voltage-gated calcium channels [144, 157]. As a result, it increases the release probability of 

the neural vesicles. A simple phenomenological model was developed by Abbott and 

colleagues [29, 120]: 
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(1 ( )) ( )rel rel
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d t P P t
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dt
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where the parameter Prel  indicates the fraction of the released neural transmitters on the 

presynaptic side, which is assumed to be proportional to the synaptic connection strength. 

P0 indicates the resting state level. Without the presence of a presynaptic action potential 

t-tj, the release fraction Prel will drop exponentially with time constant p  back to P0. The 

parameter fP controls the degree of the facilitation. The term (1-Prel(t)) assumes that the 

maximal release probability is 1. 

The model of Tsodyks and Markram [147] (see Equation (21)) is also able to explain the 

facilitation by assuming that the release probability facilitation counteracts the readily 

releasable pool depletion [136]. The joint effect of readily releasable vesicles and release 

probability F(t)R(t) determines whether facilitation or depression of the postsynaptic current. 

With a small change rate U of the release probability F(t) and a very small recovery time 

constant r  of the readily releasable pool R(t) (r should be much smaller than the recovery 

time constant f of the release probability F(t)), the dominant effect will be facilitation. In the 

opposite case, the dominent effect will be adaptation. 

The Abbott model [29, 120] (Equation (25)) is adapted to the LCCM to mimic short-term 

facilitation. It is assumed that there is only one kind of domimant short-term plasticity: 

adaptation or facilitation during the time period of one hundred milliseconds to about one 

second of an evoked potential/field of EEG/MEG. According to Equation (25) and Equation 
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(24), the synaptic short-term facilitation model in LCCM is composed as: 
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where the synaptic efficacy W (1≤W<2) of facilitation is symmetric to the adaptation W 

(0<W≤1). Parameter n1 indicates the rate of the increase of the synaptic connection under 

the averaged presynaptic firing rate Q(t)/Qmax, Parameter n2 indicates the recovery rate.  

 

2.2 Bayesian inversion for parameter estimation 

2.2.1 Motivation 

In spite of its parsimony, the local cortical circuits model (LCCM) still embodies some 

important properties of the neural dynamics such as detailed distribution of neural 

populations among cortical layers, rich available signal transmission pathways among the 

populations as well as short-term plasticity of the signal transmission. These properties 

should ensure enough space for the researchers to compose their hypotheses and test them 

against the experiment's observations, e.g., the EEG/MEG data. Transfering biophysical 

theories into detailed model parameter sets for predicting observations is called solving the 

"forward modeling problem". The reciprocal situation, where observations are used to 

estimate the values of model parameters corresponds to the "inverse modeling problem".  

In this dissertation, the MEG data were used to inference the parameters of those neural 

mass models, i.e. the LCCM and the JRM. It is an inverse problem. Howerver, the forward 

modeling has an unique solution, because of the causality principle, the inverse modeling 

may have many solutions: when different models predict similar observations. This problem 

then turns out to be: which model best "fits" the observations. A specifical mathematical 

method is introduced here to solve this problem. 

The term dynamic causal modeling (DCM) was first proposed by Friston [23, 158] in his work 

studying the effective connectivity between different brain areas using fMRI data. Later this 
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framework was adapted by David and colleagues [45] as well as Kiebel and colleagues [67] to 

EEG/MEG data. 

In principle, the DCM for EEG / MEG consists of three parts: 

 Forward modeling, using a generative model to predict the EEG/MEG observations. 

 Inverse modeling, updating the model parameters via finding the maximum of the 

Bayesian a-posteriori distribution. 

 Model comparison, if more than two generative models are used, the "best" model to 

explain the experimental observation is chosen via highest model evidence. 

In the forward modeling, a predicted EEG/MEG signal is generated by the selected neural 

mass model, which is composed under some hypotheses. In the inverse modeling, the 

generated data is then compared with the collected EEG/MEG measurements. The difference 

between them is described by the likelihood-function. According to the Bayesian theory (see 

chapter 2.2.3.1), the a-posterior distribution of the model parameters is proportional to the 

product of the likelihood function and the a-priori distribution (Fig. 2.16). The a-priori 

distribution of the parameters reflects prior knowledge and confidence about the 

hypotheses. The maximum of the a-posterior distribution (i.e. in this work, it is assumed that 

the a-posterior distribution is a normal distribution) is the optimized parameter set and can 

be obtained via the Expectation-Maximization-Algorithm iteratively (see chapter 2.2.3.2). In 

the model comparison, different models are compared with each other via their model 

evidences [62-63] in order to determine the "best" model that can explain the observed 

data. 

In this chapter, first the basic framework of the DCM will be introduced in the following order: 

(1) forward modeling, (2) inverse modeling using Bayesian inversion and (3) model selection 

They include the introduction of the Bayesian theorem, computation of the a-posterior 

distribution (based on the generative model, the EEG/MEG measurement and the prior), the 

EM-algorithm for optimization and the calculation of the model comparison. The 

introduction of Bayesian inversion (computation of the a-posterior distribution and the 

EM-algorithm) is cited from the previous works of Fristion and colleagues [23, 158]. The 
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introduction of model selection is cited from previous work of Penny and colleagues [62] . 

After that, the author suggests some new methods to improve the current DCM framework 

including an improved optimization algorithm using the  Levenberg - Marquardt algorithm 

[159-160] and a new technique for the formulation of the priors, which allows for 

accommodating larger portions of the model space within a single model that can be 

specified by fitting to the data. 

 

Figure 2.16 Illustration of probability density functions of normal distributed prior, 

likelihood as well as posterior. The assumed mean and variance of the prior distribution are 20 and 

and 1. The assumed mean and variance of the likelihood function are 25 and 0.25. Thus, the 

estimated mean and variance of the posterior distribution are 24 and 0.2.  

 

2.2.2 Forward modeling 

Depending on different research purposes as well as different detail levels of the models, the 

forward modeling is usually composed of several concatenated blocks. For example, first, a 

measurable neural activity can be modeled by a dynamic model, e.g., in this study, the post 

synaptic potential (PSP) of the pyramidal cells is simulated by the NMM. The NMM describes 

the average PSP of the pyramidal cells population for each generator or source. Based on the 

postsynaptic transmembrane currents as well as the geometric (e.g., dendrite length as well 

as radius) and physical properties of the dendrites (e.g., membrane conductivity, membrane 

resistance, intracellular resistance), the PSP can be converted into a dipole model that 

regards the dendrite as a coaxial cable and uses the cable equation to determine the primary 
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strom for the current dipole. The dipole model is applied to describe the cause of the 

electromagnetic field, which is detectable by the EEG/MEG. In this dissertation, the output of 

the neural mass model is simply assumed to be proportional to the source activity generated 

by the dipole model. The source activity is obtained by the inverse source estimation method 

such as equivalent dipole approach or source image approach [24] (Fig. 2.17) via appropriate 

software solutions, i.e. Brainstorm [161]. Finally, the propagation of the electromagnetic field 

through the head is described by a volume conductivity model/head model (lead field) [162], 

which describes the geometry and the tissue conductivity of the head. 

 

 

 

Figure 2.17 Estimation of source location and activity via image approach. The figure on the 

top left shows the recorded MEG signal in sensor space. The figure on the top right and bottom left 

left show the estimated (sLORETA [163-164]) most active area of the cortex 85ms (N100m) later 

after a tone stimulation in both ears. As expected, it was localized in the right hemisphere Heschl's 

gyrus (on the top of the superior temporal gyrus). The figure on the bottom right shows the average 

average (over about 5.73 cm
2
) source activity of Heschl's gyrus and it is assumed to be proportional 

proportional to the output of the neural mass model.  
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The mathematical description of the simplified forward modeling (the relationship between 

the observation and the simulation) is: 

 H( )N T  Y θ E  (27) 

where Y is the estimated source activity with N sources (or N experimental conditions for 

the same source) and T is the number of time samples. H() is the N x T output of the NMM. 

 is the P x 1 parameter vector for the NMM. E is the noise/error matrix with the dimension 

N x T.  

In order to compute the likelihood function later (see chapter 2.2.3.1), the estimated source 

activity Y is further converted from a N x T matrix into a NT x 1 vector y. Each column of the 

matrix Y is successively written into the vector y. The other terms in Equation (27) are also 

treated accordingly. 

 
T T T

1 vec( ) vec(H( ) ) vec( )

h( )
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 

y Y θ E

y θ ε
 (28) 

It is assumed that the noise follows the zero mean normal distribution and the  NT x NT 

covariance matrix C is assumed to be given the following form: 
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The noise covariance matrix C is computed with the Kronecker product   between 

hyperparameter vector  and temporal autocorrelation matrix V [60, 165]. is an unknown 

N x 1 vector of the source specific variables, which represent the noise/error level between 

the estimated sources and the NMM outputs. This vector is estimated iteratively in the 

M-step in the EM algorithm (see chapter 2.2.3.2) and can be used to represent the goodness 

of the fit (GoF). The exponential operator exp(.) ensures the positive value of the covariance 

matrix. The matrix V represents the T x T autocorrelation of the noise processes between 

the N sources. Under the assumption that the noise process of each source is independent, 

V is simply assumed to be an identity matrix.  

Assuming that Qi is the derivative of C at i, the noise covariance matrix Cisreformulated 

as: 
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2.2.3 Bayesian inverse estimation 

2.2.3.1 Bayesian theorem 

In Bayesian inverse estimation, the optimal parameters of the dynamic model will be inferred 

using both observations and a-priori knowledge on the model (i.e., the expectation of the 

model structure and the model parameters). Under the Bayesian aspect, the a-posteriori 

information can be described by a probability P(|y), which means a parameter set with the 

maximal occurring probability regarding to the observed data y. 

According to the Bayesian Theorem (Equation (31)), the a-posterior probability is 

proportional to the product of the Likelihood P(y|) and the a-priori probability P() of the 

parameter : 

 
P( | ) P( )

P( | )
P( )


y θ θ

θ y
y

 (31) 

The Likelihood P(y|) describes the probability of the observation y generated through 

parameter . It can also be regarded as the similarity between the model output and the 

measurement. The a-priori probability P() represents the previous expectation of the 

model parameter according to prior knowledge. P(y) is the occurring probability of the 

measured data y. 

The product rules of probability, as well as Bayesian theorem, applies equally to the case of 

probability densities (Equation (32)). Its validity can be seen by dividing each real variable 

into intervals of width , taking the limit Δ → 0 and considering the discrete probability 

distribution over these intervals [166]. 
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 (32) 

Under the assumption that p(y) is a constant, then the a-posteriori distribution p(|y) is 
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proportional to the product of the Likelihood function p(y|) and the a-priori distribution p() 

of the model parameter: 

 p( | ) p( | )p( )θ y y θ θ  (33) 

Now the search of the optimal parameter set for the maximum of the a-posteriori probability 

P(|y) is equivalent to the search of a parameter set for the maximum of the a-posteriori 

distribution p(|y): 

 arg (max(p( | )))
θ

θ θ y  (34) 

In this dissertation, both the likelihood function and the a-priori distribution of the 

parameter are assumed to be Gaussian. According to the definition of the multi variable 

normal distribution: p(x)～N(, C), the n dimension vector x with the expectation vector 

as well as the covariance C can be expressed as: 
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The a-priori distribution of the parameters is defined as: p()～N(, C) with the  

expectation vector as well as the covariance C: 
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According to Equation (28), the likelihood function p(y|)～N(h(), C) can be obtained 

through a Taylor series approximation of the non-linear system h():  
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So according to Equation (33), Equation (35) and Equation (37), the a-posterori distribution 

p(|y) ～N(y, Cy) can be expressed as: 
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2.2.3.2 Expectation-Maximization algorithm 

The Expectation-Maximization algorithm (EM) [167] is an iterative parameter estimation 

method. This method was used by Fristion [23] in his work on dynamic causal modeling 

(DCM) to solve the maximum a-posteriori problem (MAP) of the Bayesian a-posteriori 

distribution (Equation (40)). 

Generally, there are two estimation steps in the EM-algorithm: The expectation step (E-step) 

and the maximization step (M-step). In the E-step, the conditional mean y as well as the 

conditional covariance Cy of the a-posteriori distribution p(|y) will be estimated. These 

two parameters will be then be considered as a constant and will be further used in the 

following M-step. In the M-step, the hyperparameter  (see Equation (29)) will be estimated 

through the maximization of the likelihood function p(y|) to acquire the noise/error 

covariance C, which will be used in the next E-step to estimate the new conditional mean 

y : 

E-step:     arg(max(p(|y)))       →   y  

M-step:    arg(max(p(y |)))   →    

 

According to the previous work of Firstion [23], the EM-algorithm in the Bayesian inversion 

framework can be computed as followed: 

 

The E-step 

As the a-posteriori distribution p(|y) is defined to be normal distributed here, so in the 

E-step, estimation of the conditional mean y is equal to searching for the maximum of the 

a-posteriori distribution. To solve this optimization problem, a simple Newton's Method is 

applied. 

It is assumed that there is a function f(x). It is differentiable with x and has a maximum. Then 

the maximum can be found at x where f'(x) = 0. Newton's Method can find the solution for 

f'(x) = 0 iteratively with the first and second derivative at xi : 
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 1 f '( )

f ''( )

i
i i

i

x
x x

x

    (41) 

x
i
 is the i-th step estimated value. 

According to the Newton's Method (Equation 41), the first and second derivatives of the 

a-posteriori distribution p(|y) should be calculated. In order to simplify the calculation, the 

a-posteriori distribution in Equation (39) is converted to a Log a-posteriori distribution 

through the natural logarithm operator ln(.). This way the multiplication of the likelihood 

function and the a-priori distribution can be replaced by the addition of the log likelihood 

function and the log a-priori distribution: 

 

     
T

1

| |

T 1

1
 = ln p( | ) ( ) ( )

2

1
                      + ( ) ( )

2

l 



 
        
 

 
   
 

θ y ε θ y

θ θ θ

θ y r J θ η C r J θ η

θ η C θ η

 (42) 

While the natural logarithm is a monotonic function , the parameter vector y for the 

maximum of the a-posteriori distribution p(|y) is the same as the one for the maximum of 

the Log a-posteriori distribution ln (p(|y)).  

If y 
i  is the i-th estimated parameter of the maximum of the log a-posteriori distribution l 

= ln (p(|y)), Newton's Method (Equation (41)), gives: 

 

1
2

| |1

| | T

( ) ( )i i

i i
l l




  

       

θ y θ y

θ y θ y

η η
η η

θ θ θ
 (43) 

According to Equation (42), the first derivative at y 
i  is given by: 

 

 

|

|

T 1 1

|

T 1 1

( ) ( )

( )
( )

i

i

l

l

 

 


     




  



θ y

θ y

ε θ y θ θ

ε θ θ

J C r J θ η C η θ
θ

η
J C r C η η

θ

 (44) 

and the second derivative at y 
i  is: 

 
2

| T 1 1

T

( )il
 


  

 

θ y

ε θ

η
J C J C

θ θ
 (45) 

Substituting Equation (44) and Equation (45) into Equation (43), the iterative search schema 

for the conditional mean y is given by: 

    
1

1 T 1 1 T 1 1

| | |( )i i i


        
θ y θ y ε θ ε θ θ θ y

η η J C J C J C r C η η  (46) 

The term
T 1

ε
J C r ensures a minimization of the residuals . The term 1

|( )i θ θ θ yC η η
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ensures a minimization of the difference between the a-priori expectation and the 

a-posteriori estimation. The relative strength of these two terms is moderated by the 

precisions of the measurements as well as the a-priori information. If the error covariance 

matrix is smaller than the variability of the prior, more weight is given to minimizing the 

residuals and vice versa [23]. 

The conditional covariance Cy for the normal distributed a-posteriori distribution p(|y) can 

be estimated with the help of the second derivative of l. It is assumed that for the normal 

distributed functions g(a) and ln(g(a)) exists a maximum at â. The first order Taylor series 

expansion of ln(g(a)) at â is: 

 
2

T

2

ˆ1 ln(g( ))
ˆ ˆ ˆln(g( )) ln(g( )) ( ) ( )

2


   



a
a a a a a a

a
 (47) 

Then follows the estimation of the covariance V for g(a) 

 

2
T

2

T 1

2
1

2

ˆ1 ( g( ))
ˆ ˆg( ) constant exp{- ( ) ( )}

2

1
ˆ ˆ       constant exp{- ( ) ( )}

2

ˆg( )





 
   



   


 



a
a a a a a

a

a a V a a

a
V

a

 (48) 

According to Equation (45) and Equation (48), the conditional covariance Cy is computed 

by:  

 1 T 1 1

|

   
θ y ε θ

C J C J C  (49) 

 

The M-step 

In the M-step, the conditional mean y  as well as the conditional covariance Cy, which is 

estimated from the previous E-step, will be regarded as a constant to update the 

hyperparemter for the unknown error covariance C. 

According to the rules of probability calculation: 

 p( ) p( , )dA A B B





   (50) 

The log likelihood function ln(p(y|)) can be written as:  
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 ln p( | ) ln p( , | )d

q( )
                  ln p( , | ) d

q( )









 
  

 

 
  

 





y λ y θ λ θ

θ
y θ λ θ

θ

 (51) 

As the logarithm is a concave function , according to the Jensen's inequality [168]: 

 

 

f( ) 0, f( )d 1,     

g( ) f( )d g( ) f( )d

x x x is concave

x x x x x x





 

 

  

 
   
 



 

 (52) 

further gives: 

  
p( , | ) p( , | )

ln p( | ) ln q( ) d q( ) ln d
q( ) q( )

 

 

   
    

  
 

y θ λ y θ λ
y λ θ θ θ θ

θ θ
 (53) 

with substitution ln(.) = , f(x) = q( )θ , g(x)=
p( , | )

q( )

y θ λ

θ
. 

Assuming the goal function
p( , | )

F q( ) ln d
q( )





 
  

 


y θ λ
θ θ

θ
, with p( , | ) p( | , )dy θ λ y θ λ θ , then 

gives: 

 

 

p( | , ) p( )
F q( ) ln d

q( )

q( )
q( ) ln p( | , ) d q( ) ln d

p( )





 

 

 
  

 

 
   

 



 

y θ λ θ
θ θ

θ

θ
θ y θ λ θ θ θ

θ

 (54) 

q( )θ here is the estimated a-posteriori distribution p(|y), which is computed from the 

previous E-step. p( )θ is the a-priori distribution of the parameter. The first term 

 q( ) ln p( | , ) d





 θ y θ λ θ  in Equation (54) represents the expectation of the log likelihood 

function ln(p( | , ))y θ λ under the a-posteriori distribution q( )θ . It describes the similarity 

between the model's simulated data and the observation. The second term 

q( )
q( ) ln d

p( )





 
 
 


θ

θ θ
θ

represents the Kullback-Leibler-divergence [169]. It describes the 

difference between the a-posteriori distribution and the a-priori distribution and it is always 

positive. The goal function F can be maximized, if the expectation term is maximized and the 

difference between the a-posteriori distribution and the a-priori distribution is minimized. As 

the divergence term is independent of the hyperparameter ,the maximization of the log 

likelihood function ln(p(y|)) is equivalent to the search for the maximum of the expectation 
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term  E{ln p( | , ) }qf  y θ λ  with respect to . 

According to the formula of multivariable normal distribution (Equation (35)) as well as the 

log likelihood function (Equation (39)), the formula of ln(p(y|)) can be expressed as :  

 

     

    

 

T 1

| |

TT 1 1

| |

T 1 T T 1

| |

1 1
ln p( | , ) ln | | ( ) ( ) const.

2 2

1 1
ln | | ( ) ( ) const.

2 2

1 1
= ln | | ( ) J ( ) const.

2 2



 

 

         

        

      

ε θ y ε θ y

ε ε θ y ε θ y

ε ε θ y ε θ y

y θ λ C r J θ η C r J θ η

C r C r J θ η C J θ η

C r C r θ η C J θ η

 (55) 

Substituting T 1 1 1

|J    ε θ y θC J C C (Equation (49)) in Equation (55), gives: 

     T 1 T 1 1

| | |

1 1
ln p( | , ) = ln | | ( ) ( ) const.

2 2

         
ε ε θ y θ y θ θ y

y θ λ C r C r θ η C C θ η  (56) 

The term 
1

ln | |
2

 εC  and the term T 11

2

 εr C r  are independent of . According to Equation 

(54), Equation (56) multiplies with q() and then integrates over , which gives the 

expectation term  E{ln p( | , ) }qf  y θ λ : 

 

 

 T 1 T 1 1

| | |

q( ) ln p( | , ) d

1 1 1
ln | | q( )( ) ( )d const.

2 2 2

f







  





        



ε ε θ y θ y θ θ y

θ y θ λ θ

C r C r θ θ η C C θ η θ

 (57) 

Because the distribution of term (y) is Gaussian: (y)～N(0, Cy), according to the 

lemma for every normal distribution p(x)～N(,C): 

 T TE{ } tr{ } x Ax μ Cμ AC  (58) 

this gives the second term of Equation (57):  

 
 

 

T 1 1

| | |

1 1

| |

1
q( )( ) ( )d

2

1
tr{ }

2



 



 

    

  

 θ y θ y θ θ y

θ y θ θ y

θ θ η C C θ η θ

C C C

 (59) 

Substituting Equation (59) in Equation (57) then gives the expectation term f: 

  T 1 1 1

| |

1 1 1
ln | | tr{ } const

2 2 2
f        

ε ε θ y θ θ y
C r C r C C C  (60) 

where Cy is estimated from the previous E-step and is regarded as a constant here. Now 
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only the term 
1

ln | |
2

 εC  and the term T 11

2

 εr C r  depend on the .1
 The first and second 

derivatives of f are necessary for Newton's method. It is difficult to calculate the second 

derivative of f directly. Instead, a modification of Newton's method involving the 

Fisher-Scoring-Method has been suggested by a previous study of Fristion [23]. The second 

derivative can be approximated by the Fisher information matrix.  

The updating procedure for the is then formulated as [23]: 

 

1 1

T

2

1 1 T 1

|

1 1
tr{ }+

2 2

1
E{ } tr{ }

2

i i

i i i

i

ij i j

i j

f
g

f



 

 

  

 


  



  

 

 
ε ε θ y ε

λ λ g

PQ r PQ Pr

PQ PQ

P C C JC J C

I

I
 (61) 


i+1 is the updated new hyperparameter for the new error covariance matrix C(Equation 

(30) ) and will be use in the next E-step. 

 

Summary 

In the EM-algorithm, the conditional mean y for the a-posteriori distribution in E-step and 

the hyperparameter for the error covariance C in M-step will be iteratively estimated. 

The initial value for y
1 is generally the expectation of the a-priori distribution of the 

parameter (the prior). The initial value for  depends on the noise level of the measurement. 

With the consideration to the exponential operator in Equation (29), a large positive value 

reflects noisy data and a small negative value represents "clean" data. 

 

The complete EM-algorithm procedure is presented as following:  

 

I. initialization  
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until convergence { 

 

h( )

h( )

s

s








 

θ|yθ η

θ|y

θ
J

θ

r y η

 

II. M-step 
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III. E-step 
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  


  
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θ
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ε

ε
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ε
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θ
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C

C

C
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check the convergence criterion 

} 

The convergence criterion by the simplest case used in this dissertation is that the sum of 

squared change in conditional means falls below 10-5 .  

 

2.2.4 Bayesian model selection 

In order to find out which kind of model m ( m = 1,2,...k) is more favored by the observed 

data y according to the Bayesian theorem, a probability distribution of models is considered 

to be a posterior distribution of the prior belief of the model p(m) and the model evidence 

p(y|m): 

 
p( | ) p( )

p( | )
p( )

y m m
m y

y
  (62) 

It is assumed that the distribution of a-priori information on the model p(m) is an uniform 

distribution: p(m) = 1/k, due to the absence of any specific prior information here. Moreover, 



  Methods | 57 

the model evidence p(y|m) is given by: 

 ( | ) p( | )p( | )dp y m y ,m m     (63) 

In Bayesian model selection, a model will be selected, which can maximize the posterior: 

 

     |arg max p |m m ym y   (64) 

Under the assumption of a uniform prior, this is equal to selecting the model with the 

highest model evidence: 

     |arg max p |m y my m   (65) 

The Bayesian model selection is then implemented through the comparison of the Bayes 

factors [170]. 

 

Bayes factor 

To compare model m = i and model m = j, the Bayes factor is defined by the model evidence 

as [170]: 

 

 

 

p |

p |
ij

y m i
B

y m j





 (66) 

which is also equal to using logarithms of the model evidence: 

      ln ln p | ln p |ijB y m i y m j     (67) 

when Bij > 1, the measured data is more in favor of model m = i, when Bij < 1, the data is 

more in favor of model m = j. If there are more than two models to compare, then a 

reference model will be chosen and the Bayesian factors will be calculated relative to the 

reference. 

The Bayesi factor is the summary of the evidence provided by the data in favor of one 

scientific hypothesis against another. An interpretation of the Bayesi factor was presented by 

Raftery [171] and is summarized in Table 2.3. Considering the two given models m = i and m 

= j, a Bayesian factor Bij of 20 corresponds to a belief of 95% in the statement "the data is in 

favor of the model m = i ". This is a strong evidence in favor of the model m = i. While a 
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Bayesian factor Bij of 3 corresponds to positive evidence in favor of the model m = i. 

 

Table 2.3 Interpretation of Bayes factor 

Bij p(m=i|y) (%) Evidence in favor of model m=i 

1 to 3 50-75 weak 

3 to 20 75-95 positive 

20 to 150 95-99 strong 

≥ 150 ≥99 very strong 

 

Computing log model evidence 

The log model evidence can be computed according to the previous work of Penny and 

colleagues [62] as follows: 

Assuming the a-priori distribution and the likelihood function for a given model m are:

p( | )~N( , )m θ θθ η C  and p( | , )~N(h( ), )m εy θ θ C , then according to Equation (35), they can be 

expanded as: 

 
|

T 1 T 1

| | | |

1 1 1
( | ) ln(2 ) ln | | ln(2 ) ln | | ln(2 ) | |

2 2 2 2 2 2

1 1
                 ( h( )) ( h( )) ( ) ( )

2 2

Ns p p
p y m   

 

      

     

ε θ θ y

θ y ε θ y θ y θ θ θ y θ

C C C

y η C y η η η C η η

 (68) 

The model evidence is then given by: 

 
1 1

2 2 2 2

( | ) p( | , ) p( | )d

(2 ) | | (2 ) | | I( )

    

Ns p

p m m m

 
   







ε θ

y y θ θ θ

C C θ  (69) 

where, 

 T 1 T 11 1
I( ) exp{ ( h( )) ( h( )) ( ) ( )}d

2 2

        ε θ θ θ
θ y θ C y θ θ η C θ η θ  (70) 

Assuming that the estimated a-posterior distribution is | |p( | , )~N( , )m θ y θ yθy η C , then  

substituting | |h( ) ( h( )) (h( ) h( ))    θ y θ yy θ y η η θ  and | |( ) ( )    θ θ y θ y θθ η θ η η η  in 

Equation (70) and removing the terms, which do not depend on , from the integral gives: 
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| | |
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| | | |

1
I( ) exp{ ( ) ( )}d

2

1 1
          exp{ h( ) h( ) ( ) ( )}

2 2
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 

   
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 (71) 

where the first term is the normalizing term of the multivariable normal distribution, hence: 
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Substituting Equation( 66) into Equation (65), and taking the ln() operator gives: 
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where, the first term is expressed as the accuracy term of the log model evidence and the 

second term is expressed as the complexity term [62]. 

The complex term depends on the prior covariance C and the prior expectation . This 

means that the model comparison could be biased by the fixed prior (mean and covariance) 

[62]. When a large covariance is present, for example when the prior is uninformative, the 

model comparison will consistently favor the models that are less complex (i.e. the 

parameters are estimated near to the prior expectation) over the true model. 

 

2.2.5 Improved Bayesian inverse framework 

2.2.5.1 Prior formulations 

The prior distribution reflects our a-priori knowledge about the model structure and the 

parameters that is based on anatomical and physiological studies. In the previously 

introduced Bayesian framework (see Chapter 2.2.3), the prior distributions are defined as 

Gaussian. The a-priori knowledge about the parameters is specified in terms of their means 

and variances. The mean corresponds to the expectation on a particular parameter value 

and the variance reflects the beliefs in this expectation. The assumption of Gaussian priors is 

useful in order to simplify the problem of computing the posterior distribution as well as the 
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model evidence. However, in the neural mass model, some parameter classes, such as 

synaptic receptor time constants (see Chapter 2.1.1) can only be positive. To ensure 

non-negativity during the parameter estimation, a reformulation of the original model 

parameters is necessary. 

 

Exponential formulation 

David and colleagues [45] suggested a re-parameterization method using the exponential 

formulation: 

 exp( )    (74) 

The original model parameter is expressed through its original expectation as well as a 

new normal distributed parameter N(0, ). The expectation of this new parameter 

corresponds to the a-priori expectation of the original model parameter . The 

variance of the new parameter corresponds to the amount of prior information about 

the model parameter. A loose distribution (large variance) reflects uninformative a-priori 

information and a tight distribution (small variance) reflects informative a-priori information. 

The variance is suggested to be 1/2 for an uninformative prior and 1/16 for an informative 

one [45, 60]. This re-parameterization with a zero mean normally distributed new parameter 

yields a shrinkage prior behavior, i.e. the new parameter is assumed to be zero (a-priori 

expectation) unless the data provides sufficient evidence to the contrary. 

After the re-parameterization, the model parameters as well as follow the 

log-normal distribution (Fig. 2.18) and 95% of the possible values of are found between 

[exp(-2), exp(2)], i.e. by an uninformative prior (
1/2) from 0.24 to 4.11 and 

by an informative prior (
1/16) from 0.61to 1.65 
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Figure 2.18 Illustration of the log normal distribution. exp(,  ~ N(0,1/16) is used for 

the informative prior and  ~ N(0,1/16) is used for the uninformative prior. 

 

Quadratic formulation  

Wang and Knösche [20] further extended this re-parameterization method with a quadratic 

formulation: 
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 (75) 

This new formulation enables the model parameter to keep positive while also including the 

value zero. For the LCCM with six (N = 6) uncertain connections, there are total 

1

C 63
N

i

N

i

n


   possible combination of connections. If the exponential formulation is used 

for each connection parameter, there are total of 63 different models that need to be 

compared to find the most "optimized" one in light of the data using the Bayesian model 

selection (see Chapter 2.2.4). By contrast, the quadrate formulation allows a single model to 

embody the whole possible connection variants, in that, assuming the connection strength 

to be zero and let the data to provide the sufficient evidence to contrast it. 

After the re-parameterization, the model parameter follows an exponential 

distribution (Fig. 2.19): 
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where the expectation value of the prior is zero (corresponding to an uninformative 

connection) and 95% of all possible value are found in [, (
].  is a scaling factor to 

avoid using too large value of variance  for the large prior range. When the prior 

range is from 0 to 4. It is similar to the uninformative prior 0.24 to 4.11using the 

exponential formulation. 

 

Figure 2.19 Illustration of the exponential distribution. 

,  ~ N(0,1), the model 

parameter follows an exponential distribution. 

 

Summary 

Table 2.4 is the summary of the prior formulation of the synaptic connections among the 

neural populations in the LCCM. In the LCCM, each synaptic connection between two neural 

populations can be described by four parameters: the synaptic connection strength C, the 

synaptic receptor constant  (see Chapter 2.1.1), the habituation/facilitation rate n1, and the 

recovery rate n2 (see Chapter 2.1.4.2). The synaptic gains, as well as the parameters of the 

sigmoid function (see Chapter 2.1.1) are kept constant. There are in total 14 connections 

(including the input to EINs) among the five neural populations in the LCCM. These 

connections are classified into two groups: "certain" connections and "uncertain" 

connections (see Chapter 2.1.3.2). 

It is assumed under the conditions of the experiment that the synaptic connection could only 

experience either adaptation or facilitation. Under these circumstances, the synaptic 

dynamic W(t) (adaptation/facilitation) can be formulated in respect of Equation( 25) as well 

as Equation (26): 
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 (77) 

The parameter n1~N(0,
2
) has a zero mean normal distribution prior. The property of the 

synaptic dynamics, adaptation (positive n1) or facilitation (negative n1), should be determined 

by the observed data. 

 

Table 2.4 Prior formulations of the synaptic connections in the LCCM  

parameter 

definition 

re- 

parameterization 

original 

parameter 

parameter 

classes 

suggested 


2
  

95% parameter 

interval 

positive ln() 

N(0,
2
) 

exp() 

expectaton  

C of "certain" 

connections, 

n2 

1/2 

1/16 

[0.24,4.11

[0.61,1.65 

positive, 

including 

zero 

0/     

N(0,
2
) 




expectaton  

C of "certain" 

connections 

1 [, 4] 

no 

specific 



N(0,
2
) 



expectaton  

n1 10 [-6, 6] 

C: synaptic connection strength, synaptic time constant, n1: habituation or facilitation rate, n2: recovery rate. 

 

2.2.5.2 Implementation of Levenberg-Marquardt 

algorithm 

Motivation 

The EM-algorithm (see Chapter 2.2.3.2) is an iterative parameter estimation method that 

searches for the maximum of the a-posterior distribution in the E-step as well as the 

maximum of the likelihood function in the M-step. Both a-posterior distribution and the 
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likelihood function are expressed through the non-linear functions of the NMM. This search 

algorithm is based on Newton's Method (Equation (41)). In practice, by using a larger 

parameter space, such as in the LCCM, this search algorithm performs relatively poorly. 

Figure 2.20 shows the goodness of fits of 28 time courses using the original EM algorithm 

[23]. The GoFs were calculated through: 

 mess model messGoF=1-(var( - )/var( ))y h y  (78) 

The GoF describes the proportion of variance in the observed data ymess explained by the 

simulated data hmodel. When the model output is identical to the observed data, the GoF has 

the maximum value of 1. The observed data here are the 1x301 time series of the estimated 

somatosensory evoked brain activity (for details about the data and the priors, see Chapter 

3.2.3 and Chapter 3.2.4). There are a total of 59 free parameters and the maximal number of 

iterative steps is 512. 

A high goodness of fit plays an essential role in studies based on the Bayesian framework. A 

model that is uanable to explain the measured data may be seen as a "bad" model, but it 

may only have failed in the optimization. To improve the performance of the optimization/fit, 

the Newton method (Equation (41)) in the E-step of EM algorithm is modified by the 

Levenberg-Maquardt-algorithm [159-160] . 

 

The Levenberg-Marquardt algorithm 

Equation (79) shows a modified E-step in the EM-algorithm using the LM-algorithm in 

respect of Equation (43): 
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 (79) 

where is a damping factor, I is an identity matrix with the dimension p x p, and p is equal 

to the number of free parameters in the model. If the damping factor is set to a small 

value, the searching algorithm approximates to the original Newton's Method. If the 

damping factor is set to a large value, the searching algorithm approximates to a steepest 

descent algorithm. The damping factor is reduced when the iterative step can improve the fit, 
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otherwise it is increased. In this way, the LM algorithm is adaptive; it can alternate between 

a slow descent approach (when far away from the minimum) and a fast convergence (when 

brought closer to the minimum) [160]. However, like Newton's Method, it could be trapped 

into the local minimum if the search landscape is complex and there are a lot of local 

extremes. 

 

The iterative steps of the LM-algorithm implementation are summarized as: 

(1)  initializing sminmax ; 

begin of the E-step 

(2)  updating the estimated parameters through Equation 79 in E-step and calculate   

the log model evidence (Equation (73)) as well as the GoF (Equation (78)). 

(3a)  if the log model evidence is increased by  if GoF ≤ 0.9, 0.5; otherwise   

0.1max(s, min) 

(3b)  otherwise min(smax) and back to step 2); 

(3c)  if max and the log model evidence is still not improved by , keep the    

     result from  

end the of E-step 

(4)  if  waiting for the next E-step.

 

2.2.5.3 Evaluation of the Levenberg-Maquardt 

implementation 

2.2.5.3.1 Hypothesis 

Null-Hypothesis H0: There is no improvement in the GoF by implementation of the 

LM-algorithm to fit the data.  

Alternative-Hypothesis HA: The GoF is increased through implementation of LM-algorithm.  
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2.2.5.3.2 Method specification 

Test data: The estimated somatosensoary evoked brain activity time courses of 26 

participants (for details, see Chapter 3.2.3). The dimension of the time 

series (300ms) is 1 x 301. 

Test model: The LCCM (for priors and initial values see Table 3.8) 

Estimation setup: The maximal number of iterative steps is set to 512. The LM-group is 

implemented with the LM-algorithm in the E-step (Equation (79)) of the 

Bayesian inverse estimation framework. The No-LM-group uses the 

original E-step (Equation (43)). 

Statistics:  one way ANOVA 

 

2.2.5.3.3 Results 

The fit results (GoFs) are shown in Figure 2.20. The value table is listed in Appendix B Table 

B.4. The GoF for the LM-group range from to 0.71 to 0.99 (except two extreme low value: 

-0.11 as well as 0.07). The mean is 0.88, variance is 0.07, median is 0.97. The GoF for 

No-LM-group are range from 0.29 to 0.89 (except one extremely low value 0.04). The mean 

is 0.57, the variance is 0.04, the median is 0.59. The p-value of the ANOVA test is 1e-5, far 

below the significance level p = 0.05. The GoF of LM-group is significantly better than 

No-LM-group.  

Figure 2.21 shows the GoF of each iterative step by data AD4, which has the same GoF by 

using LM-algorithm as well as not using LM-algorithm. With the LM-algorithm the fit 

converged much earlier. 

By using the LM-algorithm, the two extremely low fit results( -0.11 of data H2 as well as 0.04 

of data H15) were improved to be 0.98 and 0.97, when initialized with the estimated 

parameter of data H10 (GoF = 0.99). 

 



  Methods | 67 

2.2.5.3.4. Conclusions 

Modifying the EM-algorithm with the LM-algorithm in E-step can improve the GoF of the 

Bayesian inverse estimation framework. The fit result can also be influenced by the 

"suitability" of the initial value.  

 

Note. LM = Levenberg-Maquardt algorithm, AD = Alzheimer Disease, MCI = mild conginive impariment, H = 

Healthy elderly 

Figure 2.20 Goodness of Fits of using as well as not using Levenberg-Maquardt algorithm in 

the E-step of the Bayesian inverse estimation. 
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Figure 2.21 The Goodness of fit of each iterative steps of using as well as not using 

levenberg-Maquardt algorithm. The blue line shows the iterative GoFs of fitting the data A4 

using LM-algorithm. In contrast, the iterative GoFs of not using LM-algorithm are shown in red. 

Although both estimation procedures were convergent at value 0.85, using LM-algorithm helped to 

to accelerate the convergence.

Iterative steps 
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Chapter 3: Applications and Evaluations 

Essentially, all models are wrong, but some are useful. 

- George E. P. Box 1919-2013 

 

3.1 Modeling auditory adaptation 

3.1.1 Motivation 

A simple, repetitive pure tone evokes reduced brain activity in the auditory cortex (auditory 

adaptation). This phenomenon can be observed through non-invasive brain image 

techniques such as EEG/MEG with excellent temporal resolution. The repetitive auditory 

stimuli evoke auditory evoked fields (AEFs) and auditory evoked potentials (AEPs), which are 

generated by mass synchronized neurons in superior temporal gyrus (STG), Heschl's gyrus 

and planum temporale (PT) [124, 126, 131, 172-174]. The most prominent AEF/AEP 

deflection is referred to as N100/N100m, which occurs around 100ms after the stimulus 

onset [124]. The N100/N100m peak is sensitive to the repeated stimulations in a short 

inter-stimuli-interval (ISI), i.e. 500ms ISI can strongly suppress the N100/N100m amplitude 

[123, 125-126, 175]. This amplitude suppression recovers after about 6 to 10 seconds of 

stimuli free time [127]. 

Different approaches have been used in previous studies to account for the generators of 

the auditory N100/N100m response in EEG/MEG observations. Zouridakis and colleagues 

[173] found that using a single moving dipole within the primary auditory cortex could 

account for the entire duration of the N100m (from about 70 ms to 150 ms after stimulus) 

and that, during the evolution of the component, it followed a bilateral posterior-anterior, 

medial-lateral, superior-inferior trajectory extending about 2 cm into the superior surface of 

the temporal lobes. This finding was confirmed by several other MEG studies [126, 172]. Lu 
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and colleagues [176] postulated that it might be possible for one neural source in the 

primary auditory cortex to account for a short ISI response but an additional one would be 

needed in the auditory association cortex for the long ISI response. Näätänen and Picton 

[124] reviewed the previous literature on the N100 (50–150 ms after stimulus) and 

postulated three neural generators. The first one tangentially oriented to the head surface 

and bilaterally located in the auditory cortices and makes the largest contribution to the 

N100 recording [177]. Due to its radial orientation, the second generator in auditory 

association cortex in STG is insensitive to MEG. Finally, the third generator was found only 

with intracranial recordings [178-179]. Its location remains unclear but is supposedly located 

somewhat posterior to the first generator. Another multi-generator approach was reported 

by Jääskeläinen and colleagues [131]. They found two separate sources in the anterior STG 

and posterior STG/PT contributing to the N100 by combining MEG, EEG and fMRI recordings. 

The posterior source activated at around 85 ms and is considered related to the “where” 

information. The anterior source activated at around 150 ms and is related to the “what” 

information [174]. 

In summary, the generation of the major component of the N100m for a series of identical 

(location and pitch) stimuli with short ISI might be explained by a single dipole at each time 

step. All dipoles are located near the primary auditory cortex and their orientations seem to 

be very similar [126]. Hence, they have very similar leadfields and their dynamics cannot be 

separated easily. Consequently, in this study these sources are decided to be lumped 

together and described by a single LCCM in Heschl's gyrus in order to count the N100m 

(70-130ms) component in contrast to the pervious EEG study of the auditory adaptation 

done by Garrido and colleagues[46], where two different neural mass models were used to 

account for different source areas (primary auditory cortex and STG) in each hemisphere 

while modeling the whole 400ms response duration.  

Furthermore, MEG was chosen to be the measurement modality despite its high cost in 

comparison to an EEG, because the MEG can more accurately localize the superficial and 

tangential sources in the somatosensory or auditory cortex. The MEG is less effected by 
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other possible "unexpected" sources because it is particularly insensible to radial sources[24, 

180] perpendicular to the scalp surface as well as deep source in the center of the head. The 

most prominent sensor of EEG to capture the auditory N100 is the Cz, which is placed at the 

middle of the scalp surface [124]. The observed data are a result of the superposition of the 

sources in both left and right hemisphere. In contrast, the MEG can capture the activity of 

the right and left auditory cortex separately with the sensor sets that are closely above 

them. 

In this LCCM approach, the adaptation of the AEF is assumed to be associated with the 

decrease of the excitatory connections, i.e. the synaptic connections originate from neural 

populations of EINs and PCs. This can be modeled by the synaptic dynamic model (see 

Chapter 2.1.4.2) with respect to depletion and refill of the neurotransmitters at the 

presynaptic sides of the neurons. The repetitive stimuli cause an insufficient availability of 

vesicles in the releasing pool, thus the release probability of the vesicles it reduced and that, 

in turn, causes a reduction in the synaptic connection strength and hence the EEG/MEG 

signal amplitude. The recovery from the adaptation is linked to the process of refilling these 

vesicles back to the releasing pool, all of which occurs spontaneously. 

In the modeling process, the goal was not only to test the hypothesis for the short-term 

adaptation on the basis of current knowledge from cellular research, but also to prove the 

necessity to refine the very parsimonious NMM of a local cortical circuit proposed by Jansen 

and Rit [22]. In particular, the expectation is that a more realistic laminar organization of 

information processing can better explain the measured EEG/MEG data. 

The specific aim of this modeling was also to study the effect of stimulus repetition on the 

inter-/intra-columnar connections among the different sub-populations. The research asked 

the following questions: How was the information processing organized with respect to the 

different cortical layers, and how were these connections affected by the stimuli repetition? 

There were two different hypotheses concerning the information pathways following the 

arrival of the bottom-up input at EINs in layer IV: (1) information follows a serial pathway 

where it first ascends from layer IV to the sPC in layers II/III and then goes down to the dPC 
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in layers V/VI; (2) information follows parallel pathways where it flows simultaneously from 

layer IV to both layers II/III and layers V/VI and then integrates at the dPC. The excitatory 

and the inhibitory cross-layer connection probability between the superficial layers and the 

deep layers were also investigated. 

 

3.1.2 Tasks 

i. To evaluate if the synaptic dynamic model is able to mimic the adaptation as well as the 

recovery of the AEF. 

ii. To evaluate if the LCCM has an advantage against the JRM with respect to explaining the 

observed AEFs. 

iii. To explore the relationship between the adaptation and the ISIs. 

iv. To explore the laminar organization of the synaptic connections and to test the parallel 

signal pathway hypothesis. 

v. To explore the temporal changes of the synaptic connections. 

 

3.1.3 Model specification 

The specification of the priors was crucially important for the performance of the Bayesian 

inversion. The priors reflect the a-priori information about the model structure and the 

parameters, which are based on previous anatomical and physiological knowledge. They are 

coded in terms of Gaussian priors in the Bayesian inversion framework (see Chapter 2.2.5.1). 

The mean corresponds to the expectation on a particular parameter value and the variance 

reflects the beliefs in these expectation. The author prefers to divide the parameters of the 

LCCM (see Chapter 2.1.3.2 ) into four groups:  

(i) Parameters for connection dynamics that reflect prior knowledge on the connections 

between the NMs within a cortical area such as: the connection strength C, which describes 
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how strong is the connection from one NM to another one; the synaptic time constant  

which is a lumped representation of the conduction time delays and synaptic receptor time 

constants of the target NM; the adaptation rate n1 as well as the recovery rate n2. These are 

the key parameters for this research and explain the laminar organization of the signal 

processing inside a cortical column. 

(ii) Parameters for the NM dynamics per se such as: the synaptic gate H, which tunes the 

maximum amplitude of the average membrane potential of a NM as well as parameters for 

the sigmoid functions (e0, u0, r) (Equation (6)), which control the convolution from the 

averaged membrane potential to the averaged firing rate of a NM. Considering the 

mathematic description of the LCCM (Equation (13)-(17)), there is redundancy between 

these parameters and the parameters of the connection dynamics (C and W) in the Bayesian 

inversion. These parameters are assumed to be constant (prior variance equal to zero) and 

they take their values from the literature [22]. 

(iii) Parameters for the inputs (q, w) (Equation (7)), which control the maximum amplitude as 

well as the width of the input. It is assumed that the thalamic input going into the LCCM has 

a Gaussian-like form (Fig. 2.9), which is inspired by the previous modeling work of Jansen 

and colleagues [21] and mimics the signal transmission from the retina through the 

metathalamus to the visual cortex. In this study, only the parameter w, which tunes the 

latency as well as the width of the input, is taken into account. The maximum amplitude of 

the input is normalized to 5 Hz, the same as the maximum averaged firing rate of a NM, 

which is according to the previous work of the JRM [22]. 

(iv) Parameters (0, 0) (Equation (18)) describe the linear proportionality from simulated 

neural activity, i.e. the average membrane potential of PCs, to experimental observations, i.e. 

the measurable evoked magnetic field in MEG. In this study, it is simply assumed that the 

sPCs and the dPCs have the same contribution to the sensors (0 = 1) and the maximum 

amplitude of the source (N100m) is normalized to 1. 

The prior expectations of the synaptic time constants as well as the synaptic connection 

strength values are chosen according to the study by Jansen and Rit [22].  
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Wehr and Zador [152] reported in their in vivo studies that the forward masking of auditory 

cortex cells was due to synaptic depression rather than inhibitory postsynaptic potentials 

(IPSPs) and Galarreta and Hestrin [153] showed that excitatory synapses depressed much 

more strongly than inhibitory ones. Motivated by these studies, it was assumed that the 

adaptation would only affect the excitatory pathways. It was also assumed that there was no 

adaptation on the input signal. According to the animal study of the spike-frequency 

adaptation of inferior colliculus (IC) by Ingham and McAlpine [181], the IC's recovery could 

be approximated with an exponential function with a time constant 225.5 ± 210.2 ms. 

Therefore, in this study, using an ISI larger than 500ms, the observed adaptation of AEFs 

were assumed to depend primarily on adaptation processes inside the auditory cortex and 

not on the input from the thalamus. Moreover, because the same presynaptic neuron may 

have different short-term plasticity for connections to different types of target neurons 

[154], different depression and recovery rates for each excitatory connection were used. 

It was assumed that the expectation of the recovery rate was 2s-1. This value ensures that in 

the absence of concurrent adaptation, the connection efficiency could rise from 0 to 1 

within 3 seconds (5 = 3s, time constant= 600 ms). It was similar to the time constants of 

recovery from depression observed in the animal studies that were fitted with an 

exponential function: 476 ± 104 ms (least-squares fit ± estimated fitting error) for synapses 

between excitatory layer IV neurons [182], 634 ± 96 ms [183] and 480 ± 40 ms [184] 

reported for EPSPs in layers II/III pyramidal cells evoked by extracellular field stimulation, 

813 ± 240 ms for connected neighboring layer V pyramidal cells and 399 ± 295ms for layer V 

pyramidal to interneuron synapses [154]. The adaptation should be far faster than the 

recovery, so this parameter was assumed to be 20s-1. By using this pair of 

adaptation-recovery parameters, simulated N100m data decreased in amplitude at a similar 

rate as observed in other experiments. 

The prior setup of the LCCM are summarized in Table 3.1. The prior setup of the JRM are 

summarized in Table 3.2 
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Table 3.1  Prior setup of the LCCM for the auditory adaptation experiment 

 Expectation Prior Type (U/I/C) 

Intrinsic connection parameters 

Certain intrinsic connections 

EINsPC  108 U 

sPCsIIN 33.75 U 

sIINsPC 33.75 U 

sPCdPC 135 U 

dPCEIN 135 U 

dPCdIIN 33.75 U 

dIINdPC  33.75 U 

Thalamic input EIN 50 I 

Uncertain intrinsic connections 

dPCsPC 0 U 

EINdPC 0 U 

sIINdPC 0 U 

dPCsIIN 0 U 

dIINsPC 0 U 

sPCdIIN 0 U 

Synaptic gain parameters 

He 3.25x10
-3

[V] C 

Hi 22x10
-3

[V] C 

Synaptic time constants (from NM x to NM y) 

e,xy 10x10
-3

[s] U 

i,xy 20x10
-3

[s] U 

Sigmoid parameter 

e0 2.5 [s
-1

] C 

r 560 [V
-1

] C 
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u0 6x10
-3

[V] C 

Input parameter 

w 0.005[s] I 

   

Depression and recovery rate (from NM i to NM j) 

Depression rate n1,ij 20[s
-1

] U 

Recovery rate  n2,ij 2[s
-1

] U 

Note. Re-parameterization for uncertain intrinsic connections used: 
, p()~N(0,1) for uninformative prior. 

Re-parameterization for other parameters use:  108exp(), is the expectation. The un-informative priors are 

p()~N(0, 1/2), the informative priors are p()~N(0, 1/16). EIN = excitatory interneurons, sPC = superficial 

pyramidal cells, sIIN = superficial inhibitory interneurons, dPC = deep pyramidal cells, dIIN = deep inhibitory 

interneurons. U = uninformative prior, I = informative prior, C = constant.  

 

Table 3.2 Prior setup of the JRM for the auditory adaptation experiment 

 Expectation Prior Type (U/I/C) 

Intrinsic connection parameters 

Certain intrinsic connections 

EINPC  108 U 

PCEIN  135 U 

PCIIN  33.75 U 

IINPC  33.75 U 

Thlamic input  EIN 100 I 

Synaptic gain parameters   

He 3.25x10
-3

[V] C 

Hi 22x10
-3

[V] C 

Dendritic time constants (from NM x to NM y) 

e,xy 10x10
-3

[s] U 

i,xy 20x10
-3

[s] U 
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Sigmoid parameter   

e0 2.5 [s
-1

] C 

r 560 [V
-1

] C 

u0 6x10
-3

[V] C 

Input parameter 

w 0.005[s] I 

Depression and recovery rate (from NM i to NM j) 

Depression rate n1,ij 20[s
-1

] U 

Recovery rate  n2,ij 2[s
-1

] U 

Note. Re-parameterization for parameters use: =exp()，u is the expectation. The un-informative priors are 

p()~N(0, 1/2), the informative priors are p()~N(0, 1/16). EIN = excitatory interneurons, PC = pyramidal cells, 

IIN = inhibitory interneurons. U = uninformative prior, I = informative prior, C = constant. 

 

3.1.4 Data acquisition and processing 

3.1.4.1 Experiment 

Ethic statement 

The study follows the guidelines of the declaration of Helsinki and has the ethical approval of 

the ethics commission of the University of Leipzig, Germany. 

 

Description 

Thirteen right-handed and normal-hearing participants participated in the experiment. 

Written informed consent was obtained from all subjects prior to the experiment. The 

stimulation paradigm was based on previous auditory short-term adaptation studies [123, 

125-126]. The subjects were binaurally stimulated via earphones with a total of 160 

sequences (divided into two equal blocks of ca. 20 min duration) of ten identical tones each. 

The tones were 900 Hz sine waves 15 ms long (including 1.5 ms fade-in and 1.5 ms fade-out 

time). Within one sequence, the tones were separated by 500 ms (from onset to onset). 
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Sequences were separated by 10 s of silence (Fig. 3.1). The participants were instructed to 

recline on a comfortable bed and watch a silent movie with subtitles of their own choice 

during the MEG recordings.  

 

Figure 3.1 Stimulation design of the experiment of auditory adaptation. Ten identical tones 

were separated by 0.5s (from onset to onset). Sequences were separated by 10s of silence. 

 

3.1.4.2 MEG recording 

MEG was recorded with a NEUROMAG-306 system (Elekta Oy, Helsinki) with 204 planar 

gradiometers and 102 magnetometers. Two EOG channels (vertical, horizontal) were used to 

detect eye blink and eye movement artifacts. The head position relative to the sensors was 

monitored online with 5 Head Position Indicator (HPI) coils. The signal was digitized with a 

bandwidth from DC to 330 Hz and a sampling rate of 1000 Hz. The raw data were corrected 

using MaxFilterTM
 for noise contamination. MaxFilterTM is based on the Signal Space 

Separation (SSS) method [185], which separates the biomagnetic and external interference 

signals. The raw MEG data were filtered offline with a 1–20 Hz band-pass filter (4096 points, 

FIR). The AEF of each stimulus (1-10) was separately averaged: from 0 ms (presentation time 

of each stimulus 1-10) to 499 ms (1 ms before next stimulus presenting time). The time 

range from -100 ms to 0 ms of the first stimulus was used for base-line correction. The 

averaging and base line correction was performed by software MNE [186]. 



  Applications and Evaluations | 79 

3.1.4.3 Data preparation 

A volume conductor model was prepared for each participant for the source estimation. It 

was a realistically shaped boundary element model (BEM), which was constructed from 

individual anatomical MRI data. The segmentation of the MRI-data was performed in 

software FreeSurfer [187]. The BEM surfaces were created in software OpenMEEG [188]. The 

BEM surfaces included three layers (scalp, inner skull, outer skull) as well as the source space 

(cortex space). The scalp layer used 1082 vertices, the outer skull used 642 vertices, the 

inner skull used 642 vertices, and the cortex surface used 15002 vertices. The source activity 

was computed using software Brainstrom [161] with the sLORETA Algorithm [163-164]. It 

was considered that each vertex of the cortex surface contained only one dipole, which was 

perpendicular to the cortex surface. A region of interest (ROI) was chosen by each participant 

individually to represent their Heschel's gyrus (Fig. 3.2). It is worth noting that, in this study, 

the ROI was not required to have a high anatomical accuracy, but it should functionally 

represent the source generator of the N100m on the upper side of the STG. The vertex, 

which was located on the right STG and had the highest activity at the N100m peak time of 

the first stimulus response, was marked as the centre of the ROI. The ROI covered about 3-5 

cm2 (Fig. 3.3). The activity of the ROI is calculated through the average of the activities of all 

dipoles inside the ROI. This time course would be used as the observed source activity of the 

N100m generator in the Bayesian inversion. For each participant, the first five responses to 

the repetitive stimuli were used to estimate the model parameters, while the last five 

responses were used to check the prediction ability of the model. 
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Figure 3.2 Anatomical view of the Heschl's gyrus as well as Planum temporale. 

(Picture from Dickey, 2002 [189]. Reprinted with permission from The American Journal of 

Psychiatry, (Copyright ©2002). American Psychiatric Association.) 

 

 

 

Figure 3.3 ROI of the N100m. A region of interest (ROI) (right panel) was selected to represent 

the source generator of the N100m peak. The centre of the ROI was determined by the vertex with 

the highest activity on the upper side of the right STG. Each vertex included a dipole 

perpendicular to the cortex surface. 

 

fT 
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3.1.5 Results 

3.1.5.1 Data observation and description 

The source activations of the 13 participants at the time point of N100m peak (see Appendix 

A, Table A.1.) were averaged to examine the adaptation effect. The source activity dropped 

off about 50% off for the second repetition of the tone (Fig. 3.4). Further presentation of the 

stimuli evoked less additional depression and seemed to reach a boundary value at 

approximately 30% of the strength of the first response after 6 stimuli with the ISI 500ms.  

 

 

 

Figure 3.4 Adaptation of the source activities at N100m peak time. A repetitive stimulus in 

short ISI (500ms) evoked the adaptation of the N100m component of the auditory evoked field. 

For each participant, the source activities at the N100m peak time of each stimulus were 

normalized to the first one. The mean value and the standard error are shown in the figure in red. 

The adaptation effect seems to have been converged after 6 stimuli.  
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3.1.5.2 Comparison of the LCCM and the JRM 

3.1.5.2.1 Comparison of the goodness of fit 

The GoFs (of the first 5 responses) of both the LCCM as well as the JRM are shown in Figure 

3.5. The value table is documented in Appendix A, Table A.2. 

The mean GoF of the LCCM was 0.89, and the mean GoF of the JRM was 0.85. The p value of 

the one way ANOVA test was 0.10. There was no significant benefit in respect to fitting the 

observed data by using the LCCM. 

Both the LCCM and the JRM were able to fit the main peak as well as its adaptation at the 

N100m peak time. The individual fitting results are shown in Figure 3.6. 

 

 

 

       Note. LCCM = local cortical circuit model, JRM = Jansen and Rit model. 

Figure 3.5 Goodness of fits for the first five responses. 
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Note. LCCM = local cortical circuit model, JRM = Jansen and Rit model. 

 

 

a) 
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Note. LCCM = local cortical circuit model, JRM = Jansen and Rit model. 

 

Figure 3.6 Individual fitting results. The figures a) and b) show the individual fitting results of 

the estimated source activity of the N100m source generator by using LCCM as well as JRM. Five 

identical auditory stimuli were presented at 0s, 0.5s, 1s, 1.5s as well as 2s. 

 

 

 

b) 
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3.1.5.2.2 Comparison of the goodness of prediction 

The goodness of prediction for the last 5 responses of both the LCCM as well as the JRM are 

shown in Figure 3.7. The value table is documented in Appendix A, Table A.2. 

The goodness of predictions (GoPs) describe how well the model can be used to predict 

future data. The mean GoP of the LCCM was 0.52, the mean GoP of the JRM was 0.41. The p 

value of the one way ANOVA-test was 0.13. There is no significant benefit in respect to 

predicting future data by the LCCM. 

Both the LCCM and the JRM were able to qualitatively simulate the preservation of the 

n100m amplitude at the presentation of the 6th-10th. The individual prediction results are 

shown in Figure 3.8. 

 

 

 

Note. LCCM = local cortical circuit model, JRM = Jansen and Rit model. no recovery = after 10s stimulus free 

time, the simulated source activity is not able to fully recovered from the habituation. 

Figure 3.7 Goodness of predictions for the last five responses 
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Note. LCCM = local cortical circuit model, JRM = Jansen and Rit model. 

 

a) 
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Note. LCCM = local cortical circuit model, JRM = Jansen and Rit model. 

 

Figure 3.8 Individual prediction results. The figures a) and b) show the individual prediction 

results of the estimated source activity of the N100m source generator by using LCCM as well as 

JRM. Five identical auditory stimuli were presented at 2.5s, 3.5s, 3.5s, 4s as well as 4.5s, directly 

after the adaptation of five stimuli (ISI = 500ms). 

 

Furthermore, the adaptation (using 10 stimuli) - recovery (10s stimuli free time) - adaptation 

(using 10 stimuli again - circle (Fig. 3.9) was simulated for each estimated model. Four JRMs 

(hb06, hb07, hb08, hb12) as well as one LCCM (hb08) failed to simulate the recovery process. 

b) 
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Note that the LCCM of hb08 as well as of hb07 were discarded and removed from further 

analysis in consideration of their bad GoP. 

 

 

 

Figure 3.9 Simulation of a 10 stimuli - 10 second pause - 10 stimuli - circle. The estimated local 

cortical circuit models as well as the Jansen and Rit models were used to stimulation the 

adaptation-recovery-adaptation circle. It was expected that after 10s stimulus free time the 

amplitude of the first response should able to recover. The models were estimated from subject 

hb02. 

 

3.1.5.2.3 Comparison of the model evidence 

The Bayesian factor (see Chapter 2.2.4) describes how one model is "more" favored than 

another in respect to the observed data. According to Equation (67), the log Bayesian factor 

was computed as: 

      ln ln p | ln p |B y m LCCM y m JRM     (80) 

By a value B > 20, equivalent to ln(B) > 3, means that the data favors the LCCM more than 

the JRM.  
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Twelve of the thirteen participants' data favored the LCCM (Fig. 3.10). The value table is 

documented in Appendix A, Table A.2.  

 

Figure 3.10 Log Bayesian factors. The Bayesian factors described the differences of the log 

model evidence between LCCM and JRM (LCCM minus JRM). By a value bigger as three mean 

that the observed data strongly favor the LCCM. 

 

3.1.5.3 Simulated adaptation effect with different 

stimulation frequencies 

To study the relationship between the adaptation level and the ISIs, the estimated LCCMs 

were used to simulate the evoked source activity in source space with different stimulation 

frequencies.  

Each model was stimulated with 5 stimuli with followed ISIs: 

stimulation 

frequency 

0.1 Hz 0.2 Hz 0.4 Hz 1Hz 2Hz 

ISI 10 s 5 s 2.5 s 1 s 500 ms 

The N100m peak amplitudes of each corresponding response (1.AEF, 2.AEF, 3.AEF, 4.AEF and 

5.AEF) evoked by different stimulation frequencies were recorded and normalized of the first 

evoked N100m peak (1.AEF) (Fig. 3.11). The mean values of 11 participants (having removed 
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hb07 and hb8) are listed in Table 3.3. The value table for each estimated LCCM is 

documented in Appendix A, Table A.2.  

No adaptation was observed in the simulation when the stimulation frequency dropped 

lower than 0.2Hz (ISI longer than 5s) (Fig. 3.12). With higher stimulation frequency such as 

2Hz (ISI = 500ms), the second AEF already decreased by about 50% (Fig.3.12). 

 

 

 

       Note. AEF = auditory evoked field 

Figure 3.11 Simulation of auditory adaptation with different inter-stimuli-intervals  

The estimated LCCM (of hb13) was used to simulate the adaptation effect with different ISIs (10s, 

5s, 2.5s as well as 500ms). The N100m peak amplitudes of five evoked responses (in source 

space): 1.AEF, 2.AEF, 3.AEF, 4.AEF and 5.AEF were recorded and normalized of the first evoked 

N100m peak (1.AEF). This figure shows that the strength of the evoked N100m is dependent on 

the stimulation frequency. Higher stimulation frequencies evoke stronger adaptation. With 0.1 Hz 

stimulation frequency (ISI = 10s), there was no adaptation to be observed. With stimulation 

frequency 1 Hz, strong adaptation was already observable at the second response (2.AEF). 
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Table 3.3 Adaptation in respect of the stimulation frequency 

mean 

±std 

0,1Hz 0,2Hz 0,4Hz 1Hz 2Hz 

2. AEF 1±0,009 0,97±0,03 0,86±0,09 0,65±0,14 0,52±0,16 

3. AEF 1±0,009 0,97±0,03 0,86±0,08 0,62±0,1 0,45±0,11 

4. AEF 1±0,009 0,97±0,03 0,86±0,09 0,61±0,11 0,43±0,11 

5. AEF 1±0,009 0,97±0,03 0,86±0,09 0,61±0,11 0,42±0,11 

Note. AEF = auditory evoked field, std = standard deviation. 

The LCCM simulated source activities at the N100m peak time. The amplitudes were normalized 

to the first AEF and averaged over 11 participants. No adaptation was observed when the 

stimulation frequency dropped lower than 0.2 Hz. With higher stimulation frequency such as 2 Hz, 

the second AEF already decreased about 50%.  

 

 

 0,1 Hz 0,2 Hz 0,4 Hz 1 Hz 2 Hz 

mean 1 0,97 0,86 0,65 0,52 

std ±0,01 ±0,03 ±0,10 ±0,14 ±0,16 

          Note. AEF = auditory evoked field, std = standard deviation. 

Figure 3.12 Simulation of adaptation of paired stimuli with different stimulation frequencies 

The estimated LCCM of each participant was used to simulate the adaptation level of different 

ISIs (10s, 5s, 2.5s as well as 500ms). The amplitudes were normalized of the N100m of the first 

evoked response and averaged over 11 participants. 
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3.1.5.4 Laminar organization of the synaptic connections 

3.1.5.4.1 Synaptic pathways 

Estimated "uncertain" connections 

In the LCCM, there were six connections (EIN->dPC, dPC->EIN, dPC->sPC, sPC->dIIN, 

dPC->sIIN)  assumed to be zero at the beginning. The estimated results are listed in Table 

3.4. 

 

Table 3.4 Estimated “uncertain“ connections. Non-zero connections are marked with “X”. 

 Parallel  

pathway 

Inter-laminar  

excitatory 

Inter-laminar  

inhibitory 

Backwards 

 EIN->dPC sPC->dIIN dPC->sIIN sIIN->dPC dIIN->sPC dPC->sPC 

hb01 x x  x x  

hb02 x x x  x  

hb03 x    x  

hb04 x    x x 

hb05 x x x x   

hb06  x x x   

hb09 x   x x  

hb10  x   x x 

hb11 x x   x x 

hb12 x      

hb13 x  x x   

       

counter 81% 54% 36% 45% 63% 27% 

Note. EIN = excitatory interneurons, sPC = superficial pyramidal cells, sIIN = superficial inhibitory interneurons, 

dPC = deep pyramidal cells, dIIN = deep inhibitory interneurons. "x" = the connection is estimated away from 

zero. 

The posterior distribution of the estimated parameter is Gaussian. The criterion for a 
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non-zero estimation was defined as: the value zero should be inside the 0-5% quantile of the 

posterior distribution (Fig. 3.13):  

 | |1.6 0 0    
y y

 (81) 

where | y  is the estimated mean of the posterior, | y is the estimated standard 

deviation. 

 

Figure 3.13 The 5% quantile of a normal distribution. The figure shows a Gaussian distribution 

N~(2.5,1). The upper boundary of the 5% quantile is 0.9. The value zero is inside the 5% quantile.  

 

In this study, the connection probabilities of the "uncertain" connections were counted on 

the occurring frequency (the number of subjects with a non-zero estimate). The "uncertain" 

connections over 60% probability are illustrated in red in Figure 3.14. 

  

5% quantile 
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Figure 3.14 Estimated laminar connection pattern of the N100m source generator. "Certain 

connections" are shown in blue, "uncertain" connections over 60% probability are shown in red. 

EIN = excitatory interneurons, sPC = superficial pyramical cells, dPC = deep pyramidal cells, sIIN 

= superior inhibitory interneurons, dIIN = deep inhibitory interneurons.  

 

Pathway/Connection patterns analysis 

In this section, the laminar connection patterns in respect of having the same NM origin 

were analyzed. The connection strengths were normalized to the Cesp (EIN->sPC). All 

available connections that originated from the same NM were compared. The most 

prominent connections were marked in red. The value table is documented in the Appendix, 

Table A.4 

 

Table 3.5 Estimated most prominent connections in auditory N100m source generator 

from Connection Pattern 
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hb01, hb09, hb13 hb05, hb06  
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hb06, hb10   

Note. sPC = superficial pyramidal cells, dPC = deep pyramidal cells, EIN = excitatory interneuorns, sIIN = 

superficial inhibitory interneurons, dIIN = deep inhibitory interneurons,  

Those connections that have the same original NM were compared in their connection strength. 

The most prominent one was marked in red.  

 

According to Table 3.5:  

(1) Six of the eleven models favored the serial pathway (EIN->sPC) and two of them 

suggested there was no parallel pathway (EIN->dPC). Additonally, five of the eleven models 

favored the parallel pathway. The simulation results did not show which signal pathway was 

more prominant after the thalamic input arrived at layer IV.  

(2) Sugested by ten of the eleven models, the most prominent connection from sPC is the 

connection from sPC to dPC. 

(3) The most prominent connection from dPC is the feed forward connection from dPC to 

EIN.  

(4) The sIIN (9 of 11) seemed to send the most prominent inhibitory connection to the 

pyramidal cells of the same layer. In contrast, it is hard to ascertain which kind of inhibitory 

connection from deep layers V/VI (dIIN) is more prominant, the intra-inhibitory (6 of 11) or 

the inter-inhibitory (5 of 11).  

 

The estimated most prominent signal pathways of the auditory N100m source generator are 

illustrated in Figure 3.15. 
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dPC 
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Note. sPC = superficial pyramidal cells, dPC = deep pyramidal cells, EIN = excitatory interneuorns, sIIN = 

superficial inhibitory interneurons, dIIN = deep inhibitory interneurons,  

Figure 3.15 The estimated prominent laminar signal pathways of the auditory N100m source 

generator. After the thalamic input reaches the layer IV excitatory interneurons, the signal may 

proceed following a serial pathway (EIN->sPC) as well as a parallel pathway (EIN->dPC). The 

prominent synaptic connection from superficial pyramidal cells is sPC-> dPC. The prominent 

synaptic connection from deep pyramidal cells is dPC->EIN. The prominent inhibitory connection 

from superficial inhibitory interneurons is sIIN->sPC. The deep inhibitory interneurons inhibited 

both superficial as well as deep pyramidal cells. 

 

3.1.5.4.2 Synaptic dynamics 

Adaptation patterns 

The estimated LCCMs were stimulated with ten identical stimuli (ISI = 500ms). Among the 

synaptic connections, the adaptation-recovery patterns can be categorized into three types 

according to when they reach the maximal adaptation level ( = lowest connection efficacy, 

the maximal value of connection efficacy is 1 ) as well as how they preserve it (Fig. 3.16).  

 

Type A: The synaptic connection already reaches its maximal adaptation level during the first 

stimulus.  

Type B: The synaptic connection reaches its maximal adaptation level during the stimulus 

occurring after the first one. 

Type C:  The synaptic connection has a maximal adaptation level during the first stimulus, 

but it decreased with each additional stimulus and converged at a much lower adaptation 

level (= higher connection efficacy).  

EIN 

 

sPC 

 

dPC 

 

sIIN 

 

dIIN

NN 
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The details of each connection type for each estimated LCCM are listed in Table 3.6. Figure 

3.17 illustrated a histogram of the connection types. 

 

 

Figure 3.16 Adaptation-recovery patterns of laminar synaptic connections. Estimated LCCMs 

were stimulated with a simulation train of ten identical tones with ISI 500ms. Adaptation-recovery 

patterns of the synaptic connections can be categorized into three types (A, B and C, see text for 

details) according to how they reach their maximal adaptation level as well as how they preserve it. 

The line Cmin marked the boundary of the lowest connection efficacy after adaptation 

(converged). The interval C illustrated the amount of the recovered connection efficacy insider 

the 500ms inter stimuli interval. 

  



 100| Applications and Evaluations 

 

note. EIN = excitatory interneurons, sPC = superficial pyramidal cells, dPC = deep pyramidal cells, sIIN = 

superficial inhibitory interneurons, dIIN = deep inhibitory interneurons 

Figure 3.17 Histogram of the adaptation-recovery patterns 

 

Table 3.6 Adaptation-recovery pattern of each laminar synaptic connection 

 e->sp e->dp sp->dp sp->si sp->di dp->e dp->sp dp->di dp->si 

hb01 B A A A A C - C - 

hb02 B B C C C A - A A 

hb03 B A C C - A - A - 

hb04 B A C C - A - A - 

hb05 A B C C C B - B B 

hb06 B - C C C B - B B 

hb09 B A C C - A - A - 

hb10 B - C C C C C C - 

hb11 B A C C C C C C - 

hb12 A A B A - C - C - 

hb13 A A C C - A - A A 

note. e = excitatory interneurons, sp = superficial pyramidal cells, dp = deep pyramidal cells, si = superficial 

inhibitory interneurons, di = deep inhibitory interneurons. 

The Adaptation-recovery patterns of laminar synaptic connections are categorized categorized into 

three types (A, B and C, see text for details). "-" means that the estimated connection strength is 

zero. 
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The simulated results suggested that those synaptic connections originating from sPC mostly 

have the adaptation pattern type C. The serial pathway (EIN->sPC) mostly have the pattern 

type B, the parallel pathway (EIN->dPC) mostly have the pattern type A. 

 

Adaptation recovery dynamics 

For each estimated LCCM, the maximal adaptation level Cmin (converged after 4-6 stimuli) 

as well as the recovered amount innerhalb 500ms C (Fig. 3.16) are documented in 

Appendix A, Table A.5. The median values are illustrated in Table 3.7 as well as in Figure 3.18. 

Note that the synaptic connections dPC->sPC, dPC->sIIN as well as sPC->dIIN had less than 

five candidates for statistic analysis. The histograms of Cmin and C for all excitatory 

connectionsare illustrated in Figure 3.19. 

The simulation result showed that those connections originating from EIN as well as deep 

dPC were strongly suppressed by the repetition of the stimulus. In contrast, the connections 

originating from superficial pyramidal cells were less affected. The serial connection pathway 

(e->sp) was strongly suppressed but recovered less in comparison to the parallel connection 

pathway (e->dp) (Fig. 3.18) 

 

Table 3.7 The median values of the connection efficiency after adaptation as well as the 

median values of the amount of recovery inside 500ms. 

 Cmin Δ C  Cmin Δ C 

EIN->sPC 0,2 0,1 dPC->EIN 0,35 0,25 

EIN->dPC 0,35 0,4 dPC->sPC 0,84 0,1 

sPC->dPC 0,8 0,1 dPC->dIIN 0,4 0,3 

sPC->sIIN 0,85 0,1 dPC->sIIN 0,35 0,28 

sPC->dIIN 0,73 0,18    

Note. EIN = excitatory interneuons, sPC = superficial pyramidal cells, dPC = deep pyramidal cells, sIIN = 

superficial inhibitory interneurons, dIIN = deep inhibitory interneurons. Cmin = lowest connection efficacy after 6 

stimuli. C = amount of recovered connection efficiency in 500ms. 
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note. EIN = excitatory interneurons, sPC = superficial pyramidal cells, dPC = deep pyramidal cells, sIIN = 

superficial inhibitory interneurons, dIIN = deep inhibitory interneurons. 

Figure 3.18 Estimated adaptation - recovery dynamics of the synaptic connections. Eleven 

estimated LCCMs were stimulated with a simulated train of ten identical tones with ISI=500ms. 

The blue bar illustrates the median value of each connection efficiency after the adaptation 

(converged after 6 stimuli ). The red bar illustrates the median value of the amount of recovery for 

each connection inside the 500ms inter stimuli interval. The maximum connection efficiency is 1 

(before the stimuli presentation).  
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note. EIN = excitatory interneurons, sPC = superficial pyramidal cells, dPC = deep pyramidal cells, sIIN = 

superficial inhibitory interneurons, dIIN = deep inhibitory interneurons, Cmin = lowest connection efficiency after 

6 stimuli. dC = amount of recovered connection efficiency within 500ms. 

Figure 3.19 Histograms of synaptic adaptation - recovery dynamics 
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3.1.6 Discussion and conclusion 

The LCCM extends the NMM proposed by Jansen and Rit [6] by distinguishing populations in 

three different cortical layers (input layer IV, superficial layers II/III and deep layers V/VI) 

with anatomically motivated intra- as well as inter-layer connections. The excitatory 

connections among the neural populations were endowed with dynamic synapses. These 

synapses decreased their efficacy in response to the input and recovered spontaneously. 

The rate of this adaptation was related to the processes of exhaustion and recycling of 

neurotransmitters, in this case glutamate. The modeling results show that these 

assumptions are sufficient to reproduce the adaptation as well as the recovery effects in the 

observed experiment. Furthermore, the employed Bayesian inference technique allowed us 

to examine both model structure and model parameters. It enabled the observed data to 

identify the most probable signal flow circuits inside a defined cortical area as well. The 

results suggest that beside the main signal flow, which first ascended from input layer IV to 

superficial layers and then ran down to the deep layers, there possibly exists a “short-cut” 

parallel input flow running directly from layer IV into deep layers. The results also show that 

the excitatory signal flow from the pyramidal cells to the inhibitory interneurons seemed to 

be preferably intra-laminar, in contrast, the signal flow from the deep inhibitory 

interneurons to the pyramidal cells seems to be both intra- and interlaminar. The most 

prominent excitatory signal circuit is suggested to be EIN->sPC->dPC->EIN as well as 

EIN->dPC. The most prominent inhibitory connections might be sIIN->sPC, dIIN->dPC as well 

as dIIN->sPC. Further interesting findings were acquired through the examination of the 

estimated temporal dynamics of the connection strengths. Three different adaptation 

patterns were observed in the simulation: Type A, which arrived the maximal adaptation 

during the first stimulus and preserved it by the further presentations of the stimulus; Type 

B, which reached the maximal adaptation during the stimulus occurring later than the first 

one; Type C, which has the maximal adaptation during the first stimulus, but it decreased 

with each additional presentation of stimulus and converged after 4-6 stimuli. It is found 
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that the connections originating from sPC prefer Type C. The serial pathway (layer IV -> 

layers II/III ) as well as the parallel pathway (layer IV -> layers V/VI) seem to have different 

adaptation patterns: respectively Type B and Type A. Finally, the serial pathway is also far 

more suppressed by the adaptation process than the parallel pathway, and the serial 

pathway is also recovered slower. The synaptic connections from sPC seem to be less 

affected by the stimuli repetition in comparison to those originating from dPC as well as 

from EIN. These computational findings are summarized and illustrated in Figure 3.20. 

 

 

 

Note. EIN = excitatory interneurons, sPC = superficial pyramidal cells, dPC = deep pyramidal cells, sIIN = 

superficial inhibitory interneurons, dIIN = deep inhibitory interneurons, Cmin = lowest connection efficiency after 

6 stimuli. C = amount of recovered connection efficiency within 500ms. 

Figure 3.20 Summarized computational findings for the N100m source generator in right 

Heschl's gyrus. 

 

The most challenging part of the interpretation of the computational findings (in fact, the 

most challenging part of the modeling in general) was to show that our model is reasonable 

in terms of the reflected level of detail and physical realism. Concerning detail, the model 

should be adapted to the quality and the quantity of the available data as well as to the 
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questions the model is supposed to answer. Physical realism concerns the interpretability of 

structure, state variables, and parameters of the model in terms of physically observable 

quantities. The LCCM is a suitable candidate for modeling cortex as will be discussed, with 

respect to the aforementioned aspects, in the following sections. 

 

LCCM versus JRM 

According to the GoF (Fig. 3.5) as well as GoP (Fig. 3.7), there was no significant statistic 

difference supporting the claim that the LCCM yielded a better fitting than the JRM in 

respect to the main N100m peak. However, the LCCM might have a small advantage in 

mimicking the later component (after 130ms) of the source activity (fitting details, see Fig. 

3.6) as well as the recovery from the adaptation (Fig. 3.7). Why and in what respect is the 

LCCM proposed in this work more biologically realistic than the classical model of Jansen and 

Rit? 

The cortex has a clear laminar structure and neural populations in different layers are 

structurally and functionally different. In particular, the cortical connections are 

layer-dependent: forward and backward connections target different neural populations in 

different layers [41]: the sPC projects to the input layers and superficial layers of other 

cortical areas, while the dPC sends its axons through the white matter to more distant 

cortical and subcortical areas. The JRM features only one neural mass of pyramidal cells and 

is, therefore, not capable of separating the different types of long-range connectivity. Using 

separate supra- and infragranular populations also allows a distinction to be made between 

different local information processing schemes (serial vs. parallel pathway) that might relate 

to different cognitive functions. It is also worth noting that in the orignal JRM the synaptic 

connections are constant, therefore without the short-term synaptic plasticity model, it 

alone can not explain the observed adaptation of the AEF. In these respects, the LCCM 

constitutes an improvement in biological realism as compared to the JRM. This improvement 

appears relevant in light of the available MEG data as shown by our model comparison 

results (Fig. 3.10). It is expected that the LCCM will be useful in building more extended 
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models in the future, endowing them with the above-described advantages. 

 

Laminar connections and signal flow 

In this study, MEG recordings were combined with the LCCM in order to infer the laminar 

connections in the auditory cortex. It was postulated that there are thirteen connections 

within and between cortical layers divided into “certain” and “uncertain” (with logarithmic 

and quadratic prior, respectively connections. The results show that, in some subjects, 

beside the main serial excitatory signal flow circuit (layer IV -> layers II/III -> layers V/VI), a 

“short-cut” parallel pathway allows the sensory input directly from EINs access to the 

pyramid cells in deep layers V/VI. The functional meaning of this finding is not entirely clear. 

The serial and parallel pathway could be related to “specific” and “unspecific” input; in this 

case, the “unspecific” input might be able to bypass the superficial layer through the 

connection EINdPC [86]. Clearly, the question remains as to whether this phenomenon is 

universal but not visible in some subjects due to unfortunate anatomical circumstances or 

other peculiarities of measurement, or if there are variable processing modes across 

subjects. 

Another interesting finding was that most of the models (10 of 11) needed a cross-layer 

inhibition in order to achieve reasonable fitting results. Seven of them suggested an 

inter-layer inhibitory connection from deep inhibitory interneurons (dIIN->sPC) (Table 3.5). 

Among the seven, five suggested that this inter-layer inhibition was even stronger than 

intra-layer inhibition (dIIN->dPC) (Table 3.5). This result might suggest that the hierarchical 

signal flow descending from superficial to deep layers is excitatory dominate but the signal 

flow ascending from deep layers to superficial layers is inhibitory dominate. 

From the computational evidence of the laminar signal flows, the author postulates a 

hypothesis of the information processing schema in the sensory cortex. For the important 

sensory input, the input information will be send to the superficial layers II/III for the 

processing and from there it will be further sent to higher cortical areas. For the 

unimportant sensory input, this signal will "bypass" layers II/III and be sent directly to the 
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deep layers V/VI. The signal processing in sPCs will be strongly suppressed through the 

adaption on input (EIN->sPC) as well as the inhibition from deep layers (dIIN->sPC), therefore 

the information flows to the higher cortical area for the further processing will be 

suppressed. The Author hopes that this hypothesis will interest neuroscientists to test it in 

animal models and it may inspire the future animal studies to look into the functional 

laminar connectivity associatively with the special feature of the stimulations. 

 

Modeling adaptation 

In this study, the short-term adaptation of the N100m and its recovery was successfully 

reproduced via a dynamic modification of the synaptic strength. The simulations of the 

different ISIs (Table. 3.3) were qualitatively in agreement with the previous experiment 

observations [125, 175] and suggests that the auditory adaptation effect last around 5s. This 

may give a hint to the auditory short-term memory time. The suppression and recovery of 

the synaptic connections were related to the exhaustion and refilling of the neural vesicles 

at the readily releasable pool. The key notion is that the brain is not a static machine nor 

does it have unlimited resources. The brain will change its reaction to the incoming 

information depending on strategies of how to assign these resources. It is worth noting that 

we did not directly modify our model output with an adaptation rule based on 

phenomenological observation as was the case in previous work by Laxminarayan and 

colleagues [190] developing an NMM for rat EEG or by Petersen [182] modeling the 

excitatory postsynaptic potentials on single neuron level. Instead, a physiologically 

motivated process was implemented to generate dynamic synapses in the NMM, which 

increased the biological plausibility. The observed stimuli repetition related short-term 

adaptation is only the final result of a series of dynamic processes. In other words, the main 

purpose here was not to just to mimic the phenomenon of adaptation (like parameterized 

curve fitting), but to develop a simple yet biological plausible model, which contains 

sufficient detail to reproduce this aspect of real brain activity and makes testable predictions 

on the underlying mechanisms. These mechanisms may concern, for example, the recycling 
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rate of neurotransmitters, the effect of ISIs, the different suppression patterns of the 

connection, and the existence of a parallel bypass pathway.  
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3.2 Modeling somatosensory adaptation - a pilot 

application in Alzheimer's disease study 

3.2.1 Motivation 

Alzheimer's disease 

According to the fact report [191] of the World Health Organization in 2015, Alzheimer's 

disease (AD) is the most common cause of dementia in individuals over 65 years of age. The 

total number of people with dementia worldwide in 2010 is estimated at 35.6 million and is 

projected to nearly double every 20 years (i.e. to 65.7 million in 2030) and 60%-70% of the 

cases are AD related [192]. AD is a chronic neurodegenerative disease that progressively 

decreases the patients' cognitive abilities including memory, thinking, language and learning 

and disables their behaviours and abilities that allow them to carry out normal everyday 

activities. It often starts with mild symptoms, such as impaired memory, apathy and 

depression, and ends up with neuron death and severe brain damage [193]. People with AD 

lose their abilities at different rates [194-197] and right now there are no available 

treatments to reverse or stop the progression of AD. The etiology of AD remains unclear, 

however, the risk factors include age, genetics and environment [192]. There are currently 

no specific biomarkers that can confirm an AD diagnosis with a 100% certainty. A 

combination of brain imaging, such as MRI, fMRI and PET [198-200], and clinical assessment 

checking for signs of memory impairment are used to identify patients with AD [201]. 

Definitive diagnosis can only be only obtained after an autopsy of patient's brain tissues 

[202-203]. Therefore, there is a clear need for tangible advances in the area of biomarkers 

for assessment of risk, diagnosis and monitoring disease progression.  

 

Hypothesis of Amyloid-ß and impaired glutamatergic system 

Recent AD Studies from animal models suggest that amyloid-ß peptide (Aß) plays a crucial 

role in the pathological genesis of AD (for review, see [204-205] and their citations). 
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Glutamate is the most abundant excitatory neurotransmitter in the central nervous system 

and the glutamatergic system (e.g., the neurotransmitter, receptors and glial cells) is known 

to be involved in a variety of functions such as neural signal transmission, synaptic plasticity, 

learning and memory [206-207]. Aß causes the deregulation of the glutamate 

neurotransmission, which is implicated as the primary mechanism of synapse failures in AD 

(Fig. 3.21).  

In the pathological synaptic signal transmission, Aß increases the release of glutamate at the 

presynaptic terminal [208-209] and inhibits recycling the rest of the  glutamate from the 

synaptic cleft through the glial cells [210-213]. These abnormal neural mechanisms lead to 

the accumulation of glutamate in the synaptic cleft, which is highly toxic to neurons and 

triggers a cell death cascade [214]. This phenomenon comprises a self-propagating cycle. 

First, the high concentration level of the glutamate at the synaptic cleft overstimulates 

glutamate receptors, which causes abnormal increases in intracellular calcium by directly 

opening ion channels and secondarily affecting calcium homeostatic mechanisms [215]. The 

accumulation of high intracellular calcium levels triggers a cascade of membrane, 

cytoplasmic, and nuclear events leading to cell death [216-217]. Second, the dead neurons 

leak additional glutamate to the extracellular space, which in turns kills more neurons 

[218-219].  

Aß also increases the release of the D-serine into the synaptic cleft. D-serine is the co-agonist 

to NMDA-receptors [220-221]. The NMDA-receptor is the glutamate receptor known to be 

extremely important for the synaptic plasticity mechanisms, such as long-term potentiation 

(LTP) of the synaptic connection strength [222-223]. This synaptic modification is widely 

accepted to be an underlying mechanism for learning and memory [223-224]. In comparison 

to other glutamate receptors such as AMPA, the NMDA receptor has some crucial 

biophysical properties that are responsible for its important role in mediating postsynaptic 

responses to the input signal, which are important for the learning function: high 

permeability to Ca2+
 ions, voltage dependent blocking by Mg2+ ions and relatively slow ligand 

gated kinetics [224-225]. Under normal resting membrane potential or even normal fast 
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transient depolarization (by activation of the AMPA receptors), NMDA receptors are blocked 

by Mg2+ and the intracellular Ca2+ levels remain low. This means that the neural background 

activity or irrelevant incoming information are associated with low activation of NMDA and 

low intracellular Ca2+ level. Only during strong and long lasting excitation caused by 

important neural events that are required for the learning process, the Mg2+ block is lifted 

due to the sufficiently high membrane potential. Then Ca2+
  can freely move into the 

neurons through the NMDA receptor channel and trigger a cascade of second messenger 

processes that are involved in the fixation or enhancement of synaptic connections. The 

slow dynamics of the EPSP mediated by the NNMDA also facilitates the temporal summation 

of the output signal that strengthens the further signal transmission [225]. 

The excessive D-serine in the synaptic cleft abnormally enhances the NMDA to bind with the 

glutamate and leads to a hyperactivation of the NMDA [204]. This triggers the pathological 

influx of Ca2+ into neurons. The prolonged Ca2+ overload leads first to impaired synaptic 

function and energy metabolism, then is followed by excitotoxicity and ultimately cell death 

[216-217], which correlates with the loss of memory function and learning ability in AD 

patients. 

Taken together, in AD brains the Aß promotes an accumulation of glutamate and D-serine in 

the synaptic cleft and this leads to an overactivation of glutamate receptors, especially the 

NMDA-receptors. This triggers abnormally high levels of intracellular Ca2+ with noxious 

impacts and causes the loss of neurons, which correlates with the loss of the NMDA function, 

memory and learning ability. 
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Figure 3.21 Pathological synaptic signal transmission in Alzheimer Disease. 

1) The Aß plaques increase the glutamate release at the presynaptic terminal and 2) inhibit the 

glutamate recycling through the glial cells. Both promote accumulation of concentration of the 

glutamate in the synaptic cleft and leads to overactivation of the glutamate receptors and it 

abnormally enhances the excitatory signal pathway in the brain network. 

3) The Aß plaques also increase the release of the D-serine into the synaptic cleft and 4) D-serine 

is a co-agonist to the NMDA-receptor and enhances the NMDA to bind with the glutamate leading 

to a hyperactivation of the NMDA. The NMDA is also known for its high permeability to calcium. 

Opening the channel of the NMDA leads to an influx of calcium into the neurons, which increases 

the intercellular calcium level. This will trigger a series of neural toxic processes and leads to cell 

death. 

 

Recovery function of paired somatosensory stimulation 

A pilot study using non-invasive EEG/MEG to measure the pathological hyper-activation of 

the glutamatergic excitatory neurotransmission in AD patients was composed here. The 

cortical responses to paired identical somatosensory stimulation can be used to evaluate the 

cortical excitability [226]. The measured ratios of two corresponding paired responses in 

relationship to different inter-stimuli-intervals are know as the recovery-function of the 

somatosensory evoked fields/potentials (SEF-R) (Fig. 3.22B) [226]. Two identical stimuli, 

which are close to each other, result in an attenuated second cortical response. By increasing 
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the inter-stimuli-interval, a recovered second response can be observed (Fig. 3.22A). This 

phenomenon is considered to reflect the synaptic plasticity such as the adaptation and the 

recovery of the connection strength, which is associated with the dynamic of the neural 

transmission like depletion and recycling of neurotransmitters (see Chapter 2.4.1.1). The 

cortical responses were measured with MEG using a 1000Hz sampling rate. The excellent 

temporal resolution of 1ms is capable of capturing the rapid changes in membrane 

potentials (averaged membrane potentials of the pyramidal cell populations) governed by 

the activations of the neural receptors. The time constant (estimated with an exponential 

model: I=I0⋅exp(−t/)) of the AMPA-mediated excitatory postsynaptic current (EPSC) of the 

synaptic connection from pyramidal cell to inhibitory interneuron in rats was reported at 

about 2ms, the NMDA-mediated one was reported at about 52 ms in rat neocortex [227]. In 

comparison to the measurement at single neuron level, the time dynamic for the grouped 

neural populations were considered to be much slower [21, 66]. 

 

Computational model for analyzing of the neural circuit in the somatosensory cortex 

The neuronal mass models have been proposed as realistic, yet parsimonious, mesoscopic 

model of cortical activity (see Chapter 2.1). They are especially suited to accounting for 

extracranial measurements like EEG/MEG. In particular, the local cortical circuit model [20], 

which embodies the use-dependent dynamic synapses, is especially suitable to those 

EEG/MEG researches involved short-term synaptic plasticity like adaptation or facilitation. 

Moreover, the LCCM provides detailed inter- as well as intra-excitatory-inhibitory circuits, 

which allows to draw specific conclusions on the information of the neurotransmission 

among different cortical layers such as the effective connection strength, the receptor time 

constant and the degree of the synaptic plasticity. Therefore, in this pilot study, the 

measured MEG-data were analyzed with the LCCM to explore pathological changes in the 

somatosensory cortex and to see if the same impaired glutamatergic neurotransmission 

result could be obtained from computational evidence. 
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Note. S = stimulus, R = cortical response, SEF-R = somatosensory recovery, ISI = inter-stimuli-interval, 

Figure 3.22 Recovery function of Somatosensory evoked fields. (A) Two identical stimuli that 

are close to each other evoked an attenuated second cortical response. The amplitude of the second 

response recovers with increasing inter-stimuli-interval. (B) The recovery function of 

somatosensory evoked fields describes the relationship of the ratios of two cortical responses to 

the inter-stimuli-intervals. 

 

3.2.2 Tasks 

i. Modeling the SEF-R process using the LCCM. 

ii. Evaluating if the LCCM has an advantage against the JRM with respect to explaining the 

observed SEF. 

iii. Exploring the model parameters to find the group differences among patients, healthy 

elderly and the young people and interpreting the findings. 
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3.2.3 Data acquisition and processing 

3.2.3.1 Experiment  

Ethic statement 

This experiment was approved by the Ethic Committee of National Center for Geriatrics and 

Gerontology, Aichi, Japan. A written informed consent was obtained from all participants or 

their proxies. 

 

Declaration 

The experiment as well as the data acquisition and pre-processing were done by Dr. Akinori 

Nakumura from the National Center for Geriatrics and Gerontology Center for Development 

of Advanced Medicine for Dementia in Aichi, Japan. 

 

Description 

The left median nerves (wrist) of the participants were electrically stimulated. Stimulus 

intensity was 1.3 times above the motor threshold. One single and five pairs of stimuli 

utilizing different inter-stimuli-intervals (ISI = 30, 60, 90, 120, 150 ms) were randomly 

administered with 150 repetitions each. The stimulus onset asynchrony (SOA) is randomly 

jittered from 400ms to 600ms (Fig. 3.23). 40 participants' data were available for this pilot 

study. Among them were 10 healthy young people ranging from 20 to 33 years of age 

(median: 24, 4 females), 18 healthy elderly people ranging from 61 to 77 years of age 

(median: 69, 10 females), which were amyloid-negative (Aß-/PiB-,PiB-PET amyloid imaging 

see Chapter 3.2.3.2) and 12 patients ranging from 66 to 82 years of age (median:78, 9 

females), which were amyloid-positive (Aß+/PiB+). The patient group consisted of 6 people 

with a clinical diagnosis of AD and 6 others diagnosed with mild cognitive impairment (MCI). 
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Note. S = stimulus, ISI = inter-stimuli-interval 

Figure 3.23 Stimulation design of the somatosensory adaptation. 5 pairs of stimuli utilizing 

different ISIs (30, 60, 90, 120, 150 ms) were randomly administered with 150 repetitions each. 

The stimulus onset asynchrony (SOA) is randomly jittered between 400ms and 600ms (Fig. 3.23) 

 

3.2.3.2 Data acquisition 

PiB-PET amyloid imaging 

The positron emission tomography (PET) imaging data were recorded using PET-CT camera 

(Biograph True V, Siemens). The participants were scanned 50-70min after the intravenous 

injection of 555 ± 185 MBq 11C- Pittsburgh compound B (PiB) [198-200]. The PiB retention 

was visually determined by a trained neuroradiologist. 

 

MEG 

MEG data was recorded using a Neuromag Vectorview MEG device (306 channels). The 

signal was digitized with a bandwidth from 0.1 to 120 Hz and a sampling rate of 1000 Hz. The 

raw data were first offline corrected using Signal Space Separation (SSS) [185], which 

separates the biomagnetic and external interference signals. The setup for the SSS 

correction were: 4s epoch length and 0.99 correlation value. Before averaging, the MEG data 

were epoched from -100ms to 300ms. The first stimulation pulse was registered at 0ms. The 

thresholds for automatic artifact rejection were: 6 pT for magnetometers and 3 pT/cm for 

gradiometers. 
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3.2.3.3 Data preparation 

Considering the anatomical structure as well as the somatotopic arrangement of the primary 

somatosensory cortex [228], the source of SEFs is expected to be locally restricted and 

located superficially under the scalp [229]. The gradiometers are sensitive to superficial and 

tangential sources and relatively insensitive to distant disturbing sources. It was expected 

that a single gradiometer pair, which is nearest to the source generator of the SEFs, can 

record the source activation with little contamination. Therefore, the somatosensory cortex 

activity was modeled by the first PCA (principal component analysis [230]) component of the 

pair of gradiometers with the largest amplitude at about 20ms (Figure 3.24). Activity strength 

was estimated for each participant: It was expected that the estimated signal should to be 

able to explain over 80% of the original SEFs. 

 

 

Figure 3.24 The gradiometer pair chosen according to having the largest amplitude at about 

20ms 
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3.2.3.4 Data observation and description 

Figure 3.25a illustrates the estimated SEFs, which were assumed to represent the 

somatosensory activity. The ISIs between the paired stimuli were: 30ms, 60ms, 90ms, 120ms 

and 150ms. The relevant SEF component is called N20m, which occurs about 20-25ms after 

the stimulus presentation. The N20m peak values were measured through the peak-to-peak 

values of P10m-N20m. For short ISIs, such as ISI = 30ms as well as ISI = 60ms, the N20m 

peaks of the second SEFs (s2) were in most cases overlapped by the late component of the 

first SEFs (s1). To obtain a clear structure of the s2-N20m, the paired stimuli data (s1&s2) 

were subtracted from the recording of the single stimulus condition(s1) (Fig. 3.25b). 

The amplitudes of the N20m for the single stimulation condition as well as the paired 

stimulations are documented in Appendix B, Table B.1. The SEF-R functions [226] of patients, 

healthy elderly and young people are illustrated in the Fig. 3.26. The N20m peaks of the 

second responses showed the most prominent adaptation effect at the shorter ISIs such as 

30ms and 60ms. However, no group differences among the three groups were observed. In 

contrast, with the longer ISIs such as 90ms to 150ms, it was found that the young people still 

kept the adaptation, the healthy elderly showed less adaptation, but the patients showed an 

enhancement of the second response, especially by 120ms. 
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                Note. ISI = inter-stimuli-interval 

Figure 3.25 The first PCA component of the somatosensory evoked fields. The somatosensory 

cortex activites were modeled by the first PCA component of a paired gradiometer that showed 

largest amplitude at about 20ms. The inter stimulus interval (ISI) was varied from 30ms to 150ms, 

at steps of 30ms. The first stimulus was presented at 0ms. (a) The components s1-N20m (response 

to the first stimulus) as well as s2-N20m (response to the second stimulus). (b) The paired SEFs 

after subtraction of the single SEF recordings. 
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Figure 3.26 Recovery function of Somatosensory evoked fields for patients, healthy elderly 

and young people. The recovery function represents the mean ratio of N20m of the second 

response (s2-N20m) to the first one (s1-N20m) in paired stimuli conditions with different 

inter-stimuli-intervals (ISI = 30, 60, 90, 120, 150ms).  

 

The significant differences (tested by one-way ANOVA) in the amplitude ratio 

s2-N20m/s1-N20m among the healthy elderly, the young and the patient group are listed 

below: 

 

o Healthy elderly v.s. patient   

ISI120: p < 0.05, larger for patient 

o Young v.s. patient   

ISI90: p < 0.05, larger for patient 

ISI120: p < 0.01, larger for patient 

ISI150: p < 0.01, larger for patient 

o Young v.s. healthy elderly 

ISI90: p < 0.05, larger for healthy elderly 

ISI120: p < 0.01, larger for healthy elderly 

ISI150: p < 0.05, larger for healthy elderly 
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The second responses of ISI = 120ms were significantly different among all three groups (Fig. 

3.27). In general, with longer ISIs (i.e. from 90ms to 150ms) the patients showed larger 

s2-N20m than the healthy elderly and the young people. 

It is worth noting that the observed s1-N20m amplitude in single and other paired conditions 

were not the same (they were expected to be identical) (Fig. 3.25A). The small differences 

were considered as the noise and the data were normalized to the mean value of the 

s1-N20m over single and paired conditions. These mean values are documented in Appendix 

B, Table B.2.  

 

3.2.4 Model specification 

The prior specifications were similar to the previous modeling study of auditory adaptation 

(see Chapter 3.1.3). Considering the differences between the AEFs and the SEFs, some prior 

expectations were adjusted. 

First the excitatory synaptic time constant is change to 2.5 ms, which is similar to the time 

constant of the AMPA-mediated EPSC of about 2ms reported in the previous animal study 

[227]. This prior expectation could be considered as that it was assumed that the dominantly 

activated receptors were AMPA-receptors. In comparison to the NMDA-receptors, the 

AMPA-receptors were reported to be less affected by the aging process (see review [231] 

and its citations) and the major contribution to the EPSP shifted from NMDA mediated 

neurotransmission to AMPA mediated over the lifespan [232]. This assumption on the 

parameter prior is suitable for the healthy elderly group. However, for the patient group as 

well as the young group, NMDA-receptor mediated neurotransmission, which is much 

slower than the AMPA-mediate one [227], is excepted to be more dominant. It means that 

the estimated parameter value is expected to be much larger than the prior expectation. 

Second, the adaptation and the recovery rate were changed in order to fit the much faster 

adaptation-recovery cycle of the SEFs. It seems that the N20m has already recovered from 

the adaptation after 90 ms stimulus free time (Fig. 3.26), while the N100m needs more than 
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5 s (Fig. 3.12) for the recovery. The adaptation as well as the recovery rate were set to be 33 

(3 = 0.09, 1/ = 33).  

Third, considering that the inter stimulus interval is short, that is 30ms, the adaptation of the 

input signal cannot be neglected [181]. 

Furthermore, in this study, it was assumed that the sPC and dPC had different signal 

contributions to the sensors (Equation (18)) with consideration to their anatomical and 

geometrical differences. The expectation of the ratio was set to 1/3 according to the previous 

modeling study of Murakami and Okada [115]. 

The prior specification of the LCCM as well as the JRM for this pilot study are listed in Table 

3.8 as well as Table 3.9. 

 

Table 3.8 Prior setup for LCCM in the somatosensory adaptation experiment 

 Expectation Prior Type (U/I/C) 

Intrinsic connection parameters 

"Certain" intrinsic connections 

EINsPC  108*4 U 

sPCsIIN 33.75*4 U 

sIINsPC 33.75*4 U 

sPCdPC 135*4 U 

dPCEIN 135*4 U 

dPCdIIN 33.75*4 U 

dIINdPC  33.75*4 U 

Thalamic input EIN 500 U 

"Uncertain" intrinsic connections 

dPCsPC 0 U 

EINdPC 0 U 

sIINdPC 0 U 

dPCsIIN 0 U 
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dIINsPC 0 U 

sPCdIIN 0 U 

Synaptic gain parameters 

He 3.25x10
-3

[V] C 

Hi 22x10
-3

[V] C 

Synaptic time constants (from NM x to NM y) 

e,xy 2.5x10
-3

[s] U 

i,xy 5x10
-3

[s] U 

Sigmoid parameter 

e0 2.5 [s
-1

] C 

r 560 [V
-1

] C 

u0 6x10
-3

[V] C 

Input parameter 

w 0.0035[s] I 

   

Depression and recovery rate (from NM i to NM j) 

Depression rate n1,ij 33[s
-1

] U 

Recovery rate  n2,ij 33[s
-1

] U 

Linear scaling factor   

Linear fitting factor  100 U 

Contribution ratio   1/3 I 

Note. Re-parameterization for "uncertain" intrinsic connections used: 
, p()~N(0,1) for uninformative 

priors. Re-parameterization for other parameters use: xp(), p()~N(0, 1/2) for uninformative priors and 

xp(), p()~N(0, 1/16) for informative priors. is the prior expectation. EIN = excitatory interneurons, 

sPC = superficial pyramidal cells, sIIN = superficial inhibitory interneurons, dPC = deep pyramidal cells, dIIN = 

deep inhibitory interneurons. U = uninformative prior, I = informative prior, C = constant. 
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Table 3.9 Prior setup for JRM in the somatosensory adaptation experiment 

 Expectation Prior Type (U/I/C) 

Intrinsic connection parameters 

Certain intrinsic connections 

EINPC  108*4 U 

PCEIN  135*4 U 

PCIIN  33.75*4 U 

IINPC  33.75*4 U 

Thlamic input  EIN 500 U 

Synaptic gain parameters   

He 3.25x10
-3

[V] C 

Hi 22x10
-3

[V] C 

Dendritic time constants (from NM x to NM y) 

e,xy 2.5x10
-3

[s] U 

i,xy 5x10
-3

[s] U 

Sigmoid parameter   

e0 2.5 [s
-1

] C 

r 560 [V
-1

] C 

u0 6x10
-3

[V] C 

Input parameter 

w 0.0035[s] I 

Depression and recovery rate (from NM i to NM j) 

Depression rate n1,ij 20[s
-1

] U 

Recovery rate  n2,ij 2[s
-1

] U 

Linear scaling factor   

Linear fitting facto  100 U 

Note. Re-parameterization for uninformative parameters use: =exp(), p()~N(0, 1/2). Re-parameterization for 

informative parameters use: =exp(), p()~N(0, 1/16).  is the prior expectation. EIN = excitatory 

interneurons, PC = pyramidal cells, IIN = inhibitory interneurons. U = uninformative prior, I = informative prior, C 

= constant. 
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In this study, two model pairs were proposed and compared to fulfill the followed research 

purpose: 

(i) Comparison of the LCCM and the JRM in fitting SEF: 

Using LCCM as well as JRM to fit the SEF of single stimulus conditions.  

(ii) Comparision of the LCCM with adapted and constant inhibitory synaptic connections: 

Two LCCMs were compared. One was composed of suppresed inhibitory synpatic 

connections (sIIN->sPC, sIIN->dPC, dIIN->sPC,dIIN->dPC). The other one was composed of 

constant inhibitory connections. The excitatory pathway of both models was assumed to 

have suppressed synaptic connections. 
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3.2.5. Results 

3.2.5.1 Comparison of LCCM and JRM in modeling 

somatosensory activity. 

The LCCM fitted the somatosensory cortex activity better than the JRM. In both models, all 

synaptic connections were assumed to have the property of use-dependent adaptation. 

Figure 3.27 illustrates the GoFs of the SEFs of a single stimulus (time course: 300ms) using 

the LCCM as well as the JRM. The average GoF of the JRM was lower than the average GoF of 

the LCCM (GoFJRM < GoFLCCM, p < 0.01, ANOVA). The median GoF of the LCCM is 0.97. The 

median GoF of the JRM is 0.71. The values are documented in Appendix B.4. 

 

 

Note.LCCM = local cortical circuit model, JRM = Jansen and Rit model, AD = Alzheimer Disease, MCI = mild 

cognitive imparision, H = healthy elderly. 

Figure 3.27 Goodness of Fits of using LCCM and JRM to fit the somatosensory evoked field 

of the single stimulus condition. 
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3.2.5.2 Goodness of fit of the LCCM using suppressed 

synaptic connections 

The LCCM was used to fit all experimental conditions: single, ISI = 30,60,90,120 and 150ms. 

Use-dependent short-term adaptation was modeled at all synaptic connections.  

Figure 3.28 illustrates the GoFs. The value table is given in Appendix B, Table B.5. In Appendix 

C, Figure C.1 illustrated an example of the fitting results. The median GoF over all 

participants and all conditions is 0.95. All GoF values were larger than 0.75.  

 

 

           Note. GoF = goodness of fit, ISI = inter-stimulus-interval 

Figure 3.28 Box-plot of goodness of fit (GOF) of LCCM. It is over 40 subjects and 6 different 

experimental conditions: single stimulus as well as paired stimuli with different 

inter-stimuli-intervals (ISI = 30, 90, 120, 150 ms). 
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3.2.5.3 Comparison of the LCCM using suppressed and 

constant inhibitory synaptic connections 

The data sets of the observed somatosensory cortex activity were grouped into three 

subclasses:  

(a) all conditions = SEF of single stimulus condition plus all paired stimulus conditions. (b) 

short ISIs = SEF of single stimulus condition plus 2 paired stimuli conditions with short ISI: 30 

& 60ms. 

(c) long ISIs = SEF of single stimulus condition plus 3 paired stimuli conditions with long ISI: 

90, 120 & 150ms. 

 

The LCCMs with suppressed synaptic connections for both excitatory and inhibitory synapses 

were able to fit the data sets of all experimental conditions at the same time. The GoFs are 

documented in Table 3.10. The median value was GoFsupp. inhib. = 0.94, the worst fit result was 

0.87. In contrast, the LCCM with constant inhibitory connections yielded a worse fit result 

(mean value GoFconst. inhib.< GoFsupp. inhib. , p < 0.01, ANOVA) (Table 3.10). The median was GoF 

const.inhib.= 0.85. 

The LCCM with constant inhibitory connections was further tested with the data of short ISIs 

as well as long ISIs separately (Table 3.11). The median value of the GoFs for long ISIs was 

GoFconst. inhib., long ISIs = 0.91. The median value of the GoFs for short ISIs was 0.89. It seemed 

that the best fit result was obtained by fitting long ISIs. (GoF const. inhib. < GoF const. inhib., long ISIs, p < 

0.01; GoF const. inhib. < GoFconst. inhib., short ISIs, p = 0.36, GoFconst. inhib., short ISIs < GoFconst. inhib., long ISIs, p < 

0.05, ANOVA). There was no statistically significant difference between the fitting of all 

conditions and fitting of the short ISIs. 

The log model evidence of the LCCM using suppressed inhibitory connections and the LCCM 

using constant inhibitory connections are shown in Table 3.12. The natural logarithm 

Bayesian factor was calculated as the difference between the two log model evidences: 

log(p(y|m = suppressed inhibitory connections)) - log(p(y|m = constant inhibitory 
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connections)). A value larger than 3 indicates there is strong evidence to support the LCCM 

with suppressed inhibitory connections (Table 2.3).  

The data (fitting all six experimental conditions) suggests that the adaptation of the 

inhibitory connections may play a key role in the observed SEFs of the paired stimuli. 

 

 

Table 3.10 Fitting somatosensory cortex activity (single as well as paired conditions) using 

suppressed as well as constant inhibitory connections. 

Participants/GoF supp. const. Participants/GoF supp. const. 

AD1 0,95 0,85 H3 0,94 0,93 

AD2 0,94 0,93 H4 0,9 0,84 

AD3 0,97 0,93 H5 0,92 0,71 

AD4 0,96 0,92 H6 0,92 0,44 

AD5 0,96 0,91 H7 0,92 0,89 

MCI1 0,96 0,88 H8 0,91 0,76 

MCI2 0,9 0,62 H9 0,87 0,78 

MCI3 0,93 0,85 H10 0,96 0,93 

MCI4 0,95 0,84 H11 0,96 0,89 

MCI5 0,9 0,82 H12 0,93 0,89 

MCI6 0,92 0,72 H13 0,93 0,82 

H1 0,94 0,84 H14 0,93 0,37 

H2 0,96 0,95 H15 0,95 0,47 

Note. GoF = goodness of fit, supp. = LCCM using suppressed inhibitory connections, const. = LCCM using 

constant inhibitory connections. AD = Azheimer disease, MCI = mild congnitive impairment, H = healthy elderly. 
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Table 3.11  GoFs of LCCM using constant inhibitory synaptic connections 

Participants/ 

GoF 

all 

conditions 

single  

+ ISI30  

+ ISI60 

single  

+ ISI90  

+ ISI120  

+ ISI150 

[ms] 

Participants/ 

GoF 

all 

conditions 

single  

+ ISI30  

+ ISI60 

single  

+ ISI90  

+ ISI120  

+ ISI150 

[ms] 

AD1 0,85 0,95 0,92 H3 0,93 0,89 0,91 

AD2 0,93 0,95 0,9 H4 0,84 0,85 0,88 

AD3 0,93 0,97 0,94 H5 0,71 0,91 0,9 

AD4 0,92 0,82 0,96 H6 0,44 0,42 0,87 

AD5 0,91 0,89 0,87 H7 0,89 0,94 0,9 

MCI1 0,88 0,96 0,94 H8 0,76 0,94 0,88 

MCI2 0,62 0,83 0,79 H9 0,78 0,67 0,84 

MCI3 0,85 0,44 0,87 H10 0,93 0,95 0,94 

MCI4 0,84 0,86 0,92 H11 0,89 0,57 0,94 

MCI5 0,82 0,86 0,9 H12 0,89 0,95 0,91 

MCI6 0,72 0,86 0,9 H13 0,82 0,94 0,92 

H1 0,84 0,94 0,91 H14 0,37 0,75 0,91 

H2 0,95 0,95 0,94 H15 0,47 0,71 0,92 

Note. GoF = goodness of fit, ISI = inter stimulus interval, AD = Azheimer disease, MCI = mild congnitive   

impairment, H = healthy elderly. 

The LCCM using constant inhibitory synaptic connections were tested by three data sets: using 

observed data of all experimental conditions, using only short ISIs (single, ISI = 30ms, ISI = 90ms) 

as well as using only long ISIs (single, ISI = 90ms, ISI = 120ms and ISI = 150ms). 
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Table 3.12  Log model evidence of models using suppressed and constant inhibitory 

connections. 

Participants/ 

Log model 

evidence 

supp. const. Log 

Bayesian 

factor 

Participants/ 

Log model 

evidence 

supp. const. Log 

Bayesian 

factor 

AD1 1215 187 1028 H4 1376 1152 224 

AD2 1907 1814 93 H5 1288 1050 238 

AD3 -350 -1017 667 H6 1745 1419 326 

AD4 2222 1792 430 H7 1159 205 954 

AD5 1033 461 572 H8 975 -573 1548 

MCI1 1848 1046 802 H9 2031 1789 242 

MCI2 360 8 352 H10 856 347 509 

MCI3 1183 561 622 H11 1559 1102 457 

MCI4 765 -140 905 H12 1678 1271 407 

MCI5 1475 1022 453 H13 1031 301 730 

MCI6 1341 287 1054 H14 910 655 255 

H1 1956 1357 599 H15 1790 117 1673 

H2 2364 1782 582 H16 592 -1153 1745 

H3 1082 229 853 H17 1958 1166 792 

Note. supp. = LCCM using suppressed inhibitory connections, const. = LCCM using constant inhibitory 

connections.  

The Log Bayesian factors were calculated by the difference between the two log model evidence: 

log (p(y|m = suppressed inhibitory connections)) - log(p(y|m = constant inhibitory connections)  
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3.2.5.4 Parameter comparison of different participants' 

groups 

For the LCCM in this study, there were a total of 14 synaptic connections (Table 3.8). Each 

connection was described through 4 parameters: (i) synaptic connection strength C, (ii) 

synaptic time constant  , (iii) adaptation rate n1, (iv) recovery rate n2. Furthermore, there 

were three additional parameters to describe the input as well as the output: (v) input 

parameter w as well as (vi) scaling parameter andTherefore,  there were 59 free 

parameters. The comparison of the parameter group differences was according to the 

estimated parameters from Chapter 3.2.5.2. Fourty participants from three different groups 

were included. 

A series of 59 one-way AONVAs were conducted to compare the estimated parameters 

between groups (patients vs. healthy elderly, patients vs. young and healthy elderly vs. 

young). The significant p values after the Bonferroni correction (factor 59) are listed below: 

 

Significantly different model parameters between groups: 

o Healthy elder vs. patient   

effective connection strength CEIN->dPC, p < 0.01, larger for patient 

synaptic receptor time constant  EIN->dPC, p < 0.01, larger for patient 

o Healthy young vs. healthy elderly   

synaptic time constant  EIN->dPC, p < 0.01, larger for young 

 

The ANOVA-test suggests two significantly different model parameters among the groups: 

the effective connection strength CEIN->dPC as well as the synaptic time constant  EIN->dPC. Both 

parameters are related to the excitatory connection from EIN in layer IV to dPC in layers V/VI. 

The patients show strong excitatory neurotransmission as well as larger time constants than 

the healthy elderly (Fig. 3.29). The young people also showed larger time constants than the 

healthy elderly (Fig 3.29). 
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The effective synaptic connection strength CEIN->dPC represents the glutamate-mediated 

neurotransmission. The increase in the connection strength may implicate an increase in 

glutamate neurotransmission. The time constant EIN->dPC can be interpreted as superposition 

effect of two synaptic receptors having different time scales: the faster AMPA and slower 

NMDA. A slower time constant may implicate a change in relevance between NMDA and 

AMPA, such that NMDA gains more importance. 

The estimated connection strength as well as time constants are further analysed in their 

relationship to the participants' age in Figure 3.30. An age-related decrease of the synaptic 

time constant is observed in Figure 3.30B, but the effective connection strength didn't show 

such clear tendency (Fig. 3.30A). However, an AD-related increase in the synaptic connection 

as well as time constant can be clearly observed (Fig. 3.30). 

 
Note. EIN = excitatory interneurons, dPC = deep pyramidal cells 

Figure 3.29 Significantly different model parameters between young, healthy elderly and 

patient group. 
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Note. AD = Alzheimer disease, MCI = mild cognitive impairment. 

Figure 3.30 Scatter plots of estimated LCCM model parameters "effective connectivity " (A) 

and (A) and "synaptic time constant " (B) of excitatory connection from excitatory 

interneurons in layer IV to deep pyramidal cells in layers V/VI over age for all subjects. Data 

of young participants is shown in green, of healthy elderly in blue, Azheimer patients in red and 

mild cognivtive impairment patients in black. 

 

 

 

 

A 
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3.2.6. Discussion and conclusion 

In this pilot study, the LCCM was used to simulate the somatosensory cortex activity of 

paired stimuli, in particular using the same model to account for all different ISIs. Suggested 

by previous AD research [204], the glutamatergic system in an AD brain appears to be 

dysregulated by the Aß. It promotes the accumulation of glutamate and D-serine at the 

synaptic clefts and this leads to overactivation of glutamate receptors and later neuron death. 

The NMDA-receptors seem to be centrally involved in this pathological neurotransmission 

process. The consequences of the dysfunction of the NMDA-receptors may be associated 

with the dysfunction of the synaptic plasticity and the loss of the memory function in AD 

patients. This abnormally increased glutamate neurotransmission as well as increased 

receptors activation was expected to be observable through the non-invasive imaging 

techniques such as EEG/MEG. The excitability of the somatosensory cortex was calculated 

through the ratio of the SEFs to paired stimuli [226]. The patient group showed an 

enhancement of the second cortical response to the paired stimulation with long ISIs, such 

as 90ms and 120ms (Fig. 3.26). This finding was further analyzed through the LCCM. The 

LCCM was featured with intra-/inter laminar organization of the excitatory and inhibitory 

signal flows as well as use-dependent dynamic synapses. This modeling approach mapped 

the differences in SEFs captured by macroscopic extracranial measurements into mesocopic 

biological plausible model parameters such as the synaptic connections among different 

neural populations inside the somatosensory cortex and the synaptic time constant 

governing the rise and fall of the EPSPs through the Bayesian inversion method. The Bayesian 

inversion estimated the model parameters with a compromise of satisfying both prior 

assumption as well as the observed data at the same time. An uninformative prior was 

applied in this study, and the specific weight was given more to the data. Interesting findings 

were obtained by comparing the model parameters between patient, healthy elderly and 

healthy young groups: (i) patients seemed to have a stronger excitatory connection from EIN 

to dPC than the healthy elderly, (ii) patients seemed to have a larger synaptic time constant 
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of the excitatory connection from EIN to dPC then the healthy elderly, and (iii) the young 

people showed a larger synaptic time constant of the excitatory connection from EIN to dPC 

than the healthy elderly. 

 

Modeling approaches 

The most challenging part of this pilot study is the interpretation of these computational 

findings. First, it is important to show that the model is reliable in explaining the observed 

data. In contrast to the previous modeling study using the LCCM in the auditory modality 

(see Chapter 3.1.5.2), the LCCM outperformed the JRM in fitting the SEFs (Fig. 3.27). 

Moreover, in this study, the LCCM was not restricted on a single prominent component of 

the evoked field with short duration, such as AEF-N100m (70ms-130ms), but it was used to 

simulate the whole duration of the SEF as well as its rich dynamics implicated by stimulation 

with different ISIs. The LCCM yielded reasonable GoFs (Fig. 3.28) of all available observed 

data in the different experimental conditions. This fit result may suggest that the cortical 

activity with short latency and fast dynamics relies more on complicated information 

exchange between the inter- and intra-laminar, excitatory and inhibitory neurons. Therefore, 

the previous neural mass models, which summarized all cells into three neural populations, 

seem to have oversimplified the aspect of the laminar organization of the local cortical area. 

Our modeling also indicates that in addition to the laminar organization of the 

excitatory/inhibitory signal flow, the short-term synaptic plasticity (adaptation) of inhibitory 

interneurons is another crucial aspect in the modeling of cortical activity (see Chapter 

3.2.5.3). Inhibitory interneurons use GABA as neurotransmitter and shape the neural 

network activity in cortex by filtering incoming information and dictating the activity of 

postsynaptic neurons. Recent studies show that similar to the excitatory (glutamatergic) 

synapses, also inhibitory synapses can undergo use-dependent plasticity (for review: 

[233-234] and their citations). Among the vast different types of the inhibitory interneurons, 

retrograde signaling has been shown to play a prominent role in the modulation of 

GABAergic synaptic plasticity. In simple words, endocannabinoids (eCBs) [235] are 
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synthesized by postsynaptic neurons in response to increased Ca+2 concentrations, action 

potential trains and metabotropic glutamate [236]. After their synthesis, eCbs travel 

backwards from the postsynaptic cells to presynaptic terminals and generate a short-term 

suppression of GABA release in seconds to minutes and/or long-term depression in minutes 

to hours [237-238]. However, in this pilot study, the observed data suggests a much faster 

short-term plasticity of the inhibitory synapses, which recovered in about 150ms (Fig. 3.26). 

A phenomenological model, similar to the short-term plasticity of excitatory synapses that 

describes the change of the inhibitory synapses in dependence of the presynaptic firing rate 

is proposed in the LCCM. This assumption is sufficient to explain the observed data. And the 

observed enhancement of the second response in the long ISI stimulation conditions (ISI = 

90ms, ISI = 120ms) by patients may relate to the insufficient inhibition, which is caused by 

the short-term synaptic adaptation, to compensate the abnormally strong excitation in the 

neural networks [239]. 

 

Estimated model parameters 

A series of 59 one-way AONVA-tests were composed to compare the estimated parameters 

between participant groups (patients vs. healthy elderly, patients vs. young, young vs. 

healthy elderly). Fifty-six estimated model parameters characterized the 14 different 

inter-/intra laminar excitatory as well as inhibitory synaptic connections in their connection 

strength, time constant and short-term plasticity (adaptation and recovery rates). Three 

additional parameters controlled the input signal timing as well as the output contribution to 

the extracranial sensors. Significant differences were confirmed through the 

Bonferroni-corrected results (multiple factor 59). Two model parameters that related to the 

excitatory connection from EINs in layer IV to dPCs in layers V/VI were found different among 

the three groups (Fig. 3.29).  

The first of the two parameters is the synatpic connection strength, which represents the 

strength of the glutamate-mediated excitatory neurotransmission. The fact that the synaptic 

connection was stronger in the patient group than in the healthy elderly group may implicate 
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an increase of glutamate neurotransmission in AD brains, which is caused by the Aß induced 

accumulation of glutatamte in the synpatic clefts and overactivation of the glutamate 

receptors [204].  

The second parameter that was found to be different between the patients and healthy 

elderly is the synaptic time constant. The time constant reflects the rise and fall of the EPSP 

and is a lumped effect of the activation of the faster AMPA and slower NMDA-receptors. A 

slower time constant in the patients compared to the healthy elderly may implicate a change 

in relevance between NMDA and AMPA so that NMDA gains more importance. The finding is 

alignment with those in animal models indicating that Aß induces a hyper-activation of the 

NMDA-receptors due to high concentration of glutamate and D-serine at synaptic clefts [204]. 

Overactivation of the NMDA triggers a cascade of excitotoxic processes [216-217] that lead 

to cell death and reduce the number of the NMDA-receptors and decrease NMDA function, 

which contributes to the loss of memory. A two-stage hypothesis [240] postulated that in 

the early stage of the AD, the NMDA receptors increase in sensitivity to the glutamate, 

which leads to hyper-activation. However, in the late stage, death and deletion of the 

NMDA-receptor bearing neurons causes hypo-function of the NMDA-receptors and disrupts 

the normal mental functions. So it will be interesting not only to show an increase in 

NMDA-activation of the AD patients (Fig. 3.30B) but also to demonstrate the 

AD-stage-related change of the NMDA. Indeed, in this pilot study, the MCI patients, who are 

considered as to be in the early stage of the AD, show a tendency to have even stronger 

NMDA activity (larger time constant) than the AD patients (Fig. 3.30B). 

Another interesting finding in this study is that there is an age-related decrease in the 

NMDA-activation (reduced time constant) (Fig. 3.30B). This computational evidence is also in 

alignment with previous studies of aging [231-232]: the AMPA-receptors are less affected by 

the aging process than the NMDA-receptors. In contrast to the NMDA-receptors, which are 

related to synaptic plasticity and memory function, the synaptic connection strength 

( EIN->dPC) seemed also less affected by age. Similar computational evidence was also 

reported by a recent study on mismatch negativity in the auditory cortex [241]. It was 
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reported that it was synaptic plasticity, and not the synaptic connectivity strength baseline, 

that was affected by age. 

Taken together, an age-related decrease and AD-related increase in synaptic time constant 

are suggested by this modeling study according to the MEG data. These findings are 

interpreted in terms of changes in NMDA-receptor activity, which is important to memory 

function. This parameter may be a suitable candidate for a biomarker in future AD research. 
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Chapter 4: Summary and Future Direction 

"One cannot know more than one knows" 

         - Karl Popper 1902-1994 

 

NMM is proposed as a biologically plausible, yet parsimonious, mesoscopic model of cortical 

activity. It is especially suited to accounting for extracranial measurements like EEG or MEG. 

However, previous models seem to be oversimplified in several aspects that are crucial for 

the mechanistic understanding of a wide range of brain processes. In particular, synaptic 

plasticity is a necessary feature for models targeting brain functions involving adaptation, 

learning and memory. Moreover, in the classical neural mass model, i.e., JRM, all cells in the 

cortex are summarized in just three populations. In order to understand better the local 

information processing mechanisms it would be necessary to account for the local circuitry 

in more detail. Therefore, in this thesis the local cortical circuit model is proposed for 

extending the NMM with (1) realistic inter-/intra-laminar connections in cortical layers, and 

(2) use-dependent synaptic plasticity via depleting and recycling of neurotransmitters. Hence, 

it can better link the observed EEG/MEG with the potential underlying neural mechanisms. 

In order to validate the LCCM and demonstrate its usefulness, two experiments of evoked 

responses in MEG are used, and both of them are related to the phenomenon of short-term 

adaptation that describes the fact that brain resources are taken away from the processing 

of repetitive information and measurable responses diminish accordingly. The models were 

fitted to the MEG-data using Bayesian inversion estimation. 

In the first auditory adaptation experiment, the LCCM shows the potential that it is able to 

account for the process of adaptation and recovery, which were observed in MEG. The simulated 

recovery time with different ISIs was qualitatively in agreement with the literature and it 

suggests that the auditory adaptation effect can last about 5s. In particular, the LCCM allows 

drawing specific conclusions on the information flow between different cortical layers and 
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the extent of plasticity in different connections caused by the adaptation. The computational 

evidence suggests that besides the major serial excitatory information pathway (layer IV to 

layers II/III to layers V/VI), there exists a parallel “short-cut” pathway (layer IV to layers V/VI). 

In case of the irrelevant repetitive information, the excitatory connection from layer IV to 

layers II/III is more strongly suppressed and more slowly recovered than the one from layer 

IV to layers V/VI, and the pyramidal cells in layers II/III are inhibited by the inhibitory 

interneurons from both layers II/III and layers V/VI. This laminar circuit may allow the 

unimportant input flow "bypassing" the layers II/III, hence not be sent from there to higher 

cortical areas for further processing.  

In the second somatosensory adaptation experiment, the LCCM demonstrates that it is 

useful for estimating the differences in the cortex amongst the young people, healthy elderly 

and Alzheimer's patients, which are related to the observable effect in MEG. More 

important, its biologically plausible parameters have the potential to give meaningful 

interpretations of the results and linking MEG data to specific biomarkers. The findings can 

be validated with those in animal models. In this experiment, it was found that the 

parameter values of effective connection strength (EIN->dPC) and the synaptic receptor time 

constant (EIN->dPC) in Alzheimer's patients were high. The young people also showed higher 

values in synaptic receptor time constant (EIN->dPC) than the healthy elderly. The estimated 

results were well in agreement with the evidence from animal models. In patient group, the 

strong connection strength indicates the abnormal enhancement of the glutamate-mediated 

excitatory neurotransmission in patients and the long synaptic constant time indicates the 

overactivation of the NMDA-receptors. The difference of the synaptic time constant between 

the young people and the healthy elderly indicates an aging process of the NMDA. The 

modeling results suggest that, in the normal aging process, the decrease of the activation of 

NMDA receptor is expected. An abnormally increase of the NMDA-activation in elderly may 

indicate a potential development of Alzheimer's disease. 

In both experiment, the LCCM outperforms the classic NMM, i.e., the JRM, in fitting the MEG 

data. But it's worth noting that the main purpose of LCCM is not just to mimic the EEG/MEG 
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data better in such a way as parameterized curve fitting. Instead, the motivation of 

extension of the parsimonious JRM into a more complex LCCM comes from the necessity for 

accounting for fundamental neural mechanisms to explain the brain function, which are 

observable in EEG/MEG experiment. 

 

The author hopes that the presented LCCM will interest other developers of neural mass 

model and, most importantly, to a broad range of neuroscientists who are, or might get, 

interested in using generative models to gain insight into cognitive processes via EEG/MEG 

data. Certainly these EEG/MEG data analyses should not be restricted to the evoked 

potentials/fields in future works. One interesting future development of LCCM may be using 

the LCCM-based nodes to simulate the whole brain network, therefore it can available for 

those experiment using the resting state data. Some other important aspects for modeling 

the brain function in such a model of whole brain should be investigated and included, i.e., 

the signal traveling time delay among the cortical areas, which is related to the neural 

myelination. 
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Appendix A 

Table A.1 Estimated source activities at the N100m peak of each stimulus in [100nAm] 

[100nAm] 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

hb01 11,85 8,242 6,546 6,136 6,247 5,438 5,287 4,669 4,912 5,386 

hb02 8,454 4,304 4,375 4,516 3,838 4,056 3,494 3,101 3,13 1,933 

hb03 11,88 5,76 5,353 3,889 4,309 4,391 3,339 3,255 3,096 3,836 

hb04 9,98 6,938 5,697 5,454 4,741 4,563 3,551 4,134 3,503 3,068 

hb05 8,695 5,115 4,848 3,932 4,121 2,799 4,177 3,681 2,509 3,568 

hb06 6,958 3,187 3,193 2,408 2,142 1,809 1,961 1,836 1,741 1,232 

hb07 14,33 4,392 3,732 3,963 3,233 3,493 2,679 3,464 2,324 2,76 

hb08 9,817 5,56 2,525 2,963 3,419 0,9223 1,326 1,091 1,627 0 

hb09 9,836 5,449 4,508 5,517 3,858 4,285 3,201 4,15 4,661 4,216 

hb10 6,499 2,436 3,23 3,479 2,12 2,492 2,548 2,292 2,717 2,675 

hb11 15,4 9,304 9,958 8,214 8,051 7 7,536 6,662 6,876 5,933 

hb12 12,06 6,24 7,293 5,343 5,083 5,197 4,136 4,057 4,021 3,874 

hb13 13,01 2,346 3,707 2,468 2,767 2,013 2,697 1,429 1,419 1,479 
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Table A.2 Goodness of fit comparison of LCCM and JRM 

 goodness of fit  goodness of prediction  Log model evidence  Log Bayesian factor 

 LCCM JRM  LCCM JRM  LCCM JRM  LCCM-JRM  

hb01 0,95 0,95  0,73 0,73  1166 1160  6  

hb02 0,92 0,88  0,61 0,75  1156 1143  13  

hb03 0,94 0,89  0,65 0,29  1190 1072  118  

hb04 0,85 0,83  0,44 0,32  825 809  16  

hb05 0,89 0,73  0,56 0,12  901 681  220  

hb06 0,91 0,87  0,49 0,34*  1010 908  102  

hb07 0,86 0,84  0,16 0,23*  1066 1051  15  

hb08 0,87 0,85  0,04* 0,03*  907 905  2  

hb09 0,91 0,87  0,59 0,35  1036 982  54  

hb10 0,91 0,9  0,47 0,49  859 848  11  

hb11 0,95 0,95  0,74 0,75  1061 970  91  

hb12 0,75 0,72  0,42 0,43*  738 691  47  

hb13 0,91 0,75  0,84 0,45  1151 790  361  

Note. LCCM = local cortical circuit model, JRM = Jansen and Rit model. 

The goodness of fit describes how good the model can be used to explain the observed data. The goodness of prediction describes how good the model can simulated/predicted 

the future data. The log Bayesian factor is calculated by that Log model evidence of LCCM minus Log model evidence of JRM, which described how much the observed data 

favor the LCCM over the JRM. A factor bigger than 3 means that strong evidence supported LCCM. By participant hb06, hb07, hb08 and hb12, the JRM failed to simulation the 

recovery process of 10s stimulus free time. The LCCM failed to simulation the recovery of hb08 as well.  
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      Note. AEF = auditory evoked field. 
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Table A.3 Simulation of auditory adaptation 

with different stimulation frequencies  

The estimated LCCMs were used to simulate the 

adaptation effect using 5 stimuli with different 

stimulation frequencies (0.1, 0.2, 0.4, 1 and 2 Hz). 

The N100m peak amplitudes of related evokated 

responses (1.AEF, 2.AEF, 3.AEF, 4.AEF and 

5.AEF) were recorded and normalized 1.AEF.  

 

b) 
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Table A.4 Estimated synaptic connection strength (normalized of e->sp) 

 sp->dp sp->si sp->di dp->sp dp->e dp->di dp->si si->sp si->dp di->dp di->sp e->sp e->dp 

hb01 0,82 0,46 0,08 0 1,17 0,29 0 0,37 0,18 0,24 0,11 1 0,72 

hb02 0,8 0,34 0,12 0 1,04 0,33 0,99 0,4 0 0,34 7,58 1 1,08 

hb03 1,2 0,29 0 0 0,72 1,68 0 0,41 0 0,23 0,04 1 1,61 

hb04 1,53 0,41 0 0 1,36 0,4 0 0,22 0 0,48 0,58 1 1,22 

hb05 1,04 0,76 1,25 0 0,63 0,21 0,42 0,68 1,6 0,64 0 1 3,73 

hb06 3,96 0,42 0,42 0 0,47 0,48 0,06 0,36 1,05 0,39 0 1 0 

hb09 1,63 0,34 0 0 1,4 0,15 0 0,22 0,1 1,51 1,62 1 1,44 

hb10 2,29 0,35 0,06 0,87 0,6 0,5 0 0,54 0 0,55 0,13 1 0 

hb11 2,27 0,26 0,75 0,75 0,9 0,13 0 0,73 0 0,31 1,24 1 0,09 

hb12 2,2 0,35 0 0 0,9 0,44 0 0,36 0 1,32 0 1 0,38 

hb13 0,31 0,16 0 0 4,1 0,25 11,5 0,11 0,03 0,25 0 1 0,68 

   Note. sp = superficial pyramidal cells, dp = deep pyramidal cells, e = excitatory interneuorns, si = superficial inhibitory interneurons, di = deep inhibitory interneurons. 
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Table A.5 Adaptation-recovery dynamics for each excitatory synaptic connection 

Cmin e->sp sp->dp sp->si sp->di e->dp dp->e dp->di dp->si dp->sp 

hb01 0,3 0,05 0,25 0,15 0,15 0,6 0,6 - - 

hb02 0,15 0,98 0,98 0,98 0,45 0,2 0,15 0,05 - 

hb03 0,1 0,8 0,75 - 0,35 0,25 0,25 - - 

hb04 0,2 0,8 0,6 - 0,3 0,15 0,2 - - 

hb05 0,1 0,93 0,95 0,93 0,3 0,1 0,2 0,3 - 

hb06 0,2 0,5 0,35 0,6 - 0,35 0,25 0,4 - 

hb09 0,15 0,8 0,85 - 0,7 0,3 0,5 - - 

hb10 0,65 0,94 0,9 0,85 - 0,7 0,4 - 0,75 

hb11 0,55 0,8 0,9 0,6 0,2 0,9 0,85 - 0,93 

hb12 0,5 0,05 0,1 - 0,35 0,55 0,65 - - 

hb13 0,1 0,93 0,96 - 0,83 0,988 0,988 0,988 - 

 

C e->sp sp->dp sp->si sp->di e->dp dp->e dp->di dp->si dp->sp 

hb07 0,1 0,15 0,4 0,4 0,5 0,2 0,25 - - 

hb08 0,1 0,1 0,1 0,1 0,1 0,5 0,45 0,2 - 

hb11 0,05 0,1 0,1 - 0,4 0,45 0,45 - - 

hb12 0,2 0,15 0,15 - 0,45 0,35 0,5 - - 

hb13 0,5 0,03 0,03 0,03 0,15 0,3 0,1 0,5 - 

hb14 0,1 0,25 0,25 0,25 - 0,25 0,4 0,35 - 

hb18 0,2 0,15 0,05 - 0,25 0,4 0,3 - - 

hb19 0,05 0,03 0,05 0,08 - 0,15 0,4 - 0,15 

hb20 0,1 0,05 0,08 0,25 0,4 0,05 0,07 - 0,05 

hb21 0,4 0,15 0,4 - 0,4 0,25 0,3 - - 

hb22 0,2 0,02 0,01 - 0,12 0,007 0,007 0,007 - 

Note. sp = superficial pyramidal cells, dp = deep pyramidal cells, e = excitatory interneuorns, si = superficial 

inhibitory interneurons, di = deep inhibitory interneurons. 

For each estimated LCCM, the maximal adaptation level (= minimal synaptic efficacy) Cmin 

(converged after 4-6 stimuli) as well as the recovery amount inside 500ms C were listed. 
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Appendix B 

Table B.1 Somatosensory activity (N20m) of the single and paired stimulations 

[fT/cm] single(s1) ISI30(s2) ISI60(s2) ISI90(s2) ISI120(s2) ISI150[ms](s2) 

AD1 153,71 60,95 98,41 212,00 187,81 143,95 

AD2 242,86 77,49 135,35 241,23 291,91 236,09 

AD3 39,27 25,27 24,82 53,43 56,82 60,03 

AD4 143,38 42,60 93,06 131,20 119,61 119,92 

AD5 85,05 30,03 66,94 126,27 127,57 97,00 

AD6 185,94 71,90 197,95 297,48 306,01 254,96 

MCI1 153,54 52,09 138,06 169,86 216,64 182,74 

MCI2 82,58 27,81 50,59 40,22 57,19 50,07 

MCI3 126,80 35,59 74,76 139,32 199,87 133,04 

MCI4 55,32 23,11 39,81 70,34 60,81 61,48 

MCI5 89,78 63,04 76,59 95,90 100,70 109,22 

MCI6 95,32 43,54 59,82 90,44 177,62 113,79 

H1 82,13 57,93 65,31 71,29 79,92 104,43 

H2 53,44 21,04 18,53 43,69 37,76 34,13 

H3 132,76 68,49 106,35 150,01 146,37 141,64 

H4 89,21 29,47 58,45 90,15 94,70 86,80 

H5 105,12 44,82 88,31 125,84 127,97 96,29 

H6 89,59 41,14 71,96 105,41 107,54 82,42 

H7 156,70 83,88 128,00 166,39 168,20 179,87 

H8 117,26 35,01 104,55 112,32 111,43 124,98 

H9 117,45 43,25 70,67 110,11 133,37 97,15 

H10 73,25 33,41 48,49 73,51 66,78 52,76 

H11 113,33 49,65 115,66 160,78 138,15 118,86 
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H12 114,08 57,31 70,23 134,58 142,47 79,55 

H13 125,45 56,18 95,45 92,37 100,31 93,27 

H14 33,10 27,59 27,56 41,72 40,18 35,97 

H15 82,84 23,69 60,07 72,93 85,06 87,36 

H16 274,40 131,29 215,16 232,07 232,53 250,56 

H17 73,65 33,06 64,65 76,11 70,81 49,32 

H18 87,15 45,58 73,41 83,19 80,31 80,80 

Y1 81,22 37,98 43,40 69,98 66,58 53,07 

Y2 87,76 49,77 61,78 84,13 79,11 82,49 

Y3 83,91 50,73 56,91 57,91 90,94 83,20 

Y4 46,02 4,40 28,05 37,76 37,91 29,94 

Y5 130,55 67,60 106,07 128,09 121,50 110,90 

Y6 106,33 49,16 55,20 70,46 85,96 71,77 

Y7 61,71 11,36 90,80 45,32 54,56 42,87 

Y8 77,03 20,82 45,97 68,67 57,39 60,10 

Y9 69,43 22,71 49,75 67,95 65,21 56,13 

Y10 49,25 13,73 33,68 48,21 41,61 45,79 

Note. AD = Alzheimer disease, MCI = mild cognitive impairment, H = healthy elderly, Y = young, ISI = inter 

stimuli interval. s1 = N20m of the first somatosensory evoked field (SEF), s2 = N20m of the second SEF 

The somatosensory activity was modeled by the first PCA component of the pair of gradiometers 

with the largest amplitude at about 20ms. The N20m amplitudes were measured with P10m-N20m 

peak to peak value. For the paired stimulation , the second evoked N20m were listed in the Table. 
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Table B.2 Average N20m ampitude of the somatosensory activity over single and paired 

stimualations 

Participent s1-N20m mean 

activity [fT/cm] 

Participent s1-N20m mean 

activity [fT/cm] 

AD1 132,3 H9 117,4 

AD2 240,6 H10 73,6 

AD3 29,8 H11 114,6 

AD4 153,9 H12 91,9 

AD5 79,8 H13 110,4 

AD6 173,8 H14 34,3 

MCI1 146,6 H15 84,1 

MCI2 65,6 H16 252,8 

MCI3 123,1 H17 68,2 

MCI4 132,1 H18 93 

MCI5 55,8 Y1 74,6 

MCI6 94,8 Y2 92,8 

H1 82,7 Y3 85,9 

H2 48,7 Y4 60,9 

H3 128,4 Y5 133,5 

H4 84,3 Y6 103,1 

H5 104 Y7 84,3 

H6 77,7 Y8 81,9 

H7 169,5 Y9 93,1 

H8 108,6 Y10 71,1 

Note. AD = Alzheimer disease, MCI = mild cognitive impairment, H = healthy elderly, Y = young 

The somatosensory activity was modeled by the first PCA component of the pair of gradiometers 

with the largest amplitude at about 20ms. The mean s1-N20m was averaged over all s1-N20ms of 

single and paired stimulations with inter-stimulus-interval 30,60,90,120 and 150 ms. 

 

 

 



  Appendix B | 167 

Table B.3 Goodness of fit of LCCM and JRM fitting somatosensory evoked field (single 

stimulus condition)  

GoF LCCM JRM GoF LCCM JRM 

AD1 0,98 0,61 H3 0,97 0,75 

AD2 0,98 0,9 H4 0,97 0,87 

AD3 0,99 0,7 H5 0,98 0,89 

AD4 0,98 0,81 H6 0,71 0,75 

AD5 0,98 0,63 H7 0,97 0,84 

MCI1 0,98 0,8 H8 0,97 0,46 

MCI2 0,85 0,58 H9 0,94 0,71 

MCI3 0,98 0,45 H10 0,99 0,89 

MCI4 0,99 0,93 H11 0,98 0,63 

MCI5 0,95 0,51 H12 0,96 0,93 

MCI6 0,98 0,69 H13 0,97 0,65 

H1 0,96 0,82 H14 0,95 0,35 

H2 0,96 -0,08 H15 0,97 0,51 

Note. AD = Alzheimer disease, MCI = mild cognitive impairment, H = healthy elderly, GoF = goodness of fit, 

LCCM = local cortical circuit model, JRM = Jansen and Rit model. 

 

Table B.4 Goodness of fit of LCCM fitting somatosensory evoked field (single stimulus 

condition) with as well as without the implementation of the Levenberg-Maquardt algorithm 

GoF with LM without LM GoF with LM without LM 

AD1 0,98 0,29 H3 0,97 0,49 

AD2 0,98 0,74 H4 0,97 0,89 

AD3 0,99 0,59 H5 0,98 0,83 

AD4 0,85 0,85 H6 0,71 0,55 

AD5 0,98 0,48 H7 0,97 0,85 

MCI1 0,98 0,68 H8 0,97 0,39 

MCI2 0,85 0,67 H9 0,94 0,59 

MCI3 0,98 0,59 H10 0,99 0,78 

MCI4 0,95 0,73 H11 0,98 0,41 

MCI5 0,95 0,51 H12 0,96 0,67 

MCI6 0,98 0,65 H13 0,97 0,67 

H1 0,96 0,48 H14 0,95 0,37 

H2 -0,11 0,12 H15 0,07 0,04 

Note. AD = Alzheimer disease, MCI = mild cognitive impairment, H = healthy elderly, GoF = goodness of fit, LM 

= Levenberg-Maquardt algorithm. 
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Table B.5 Goodness of fit of LCCM fitting somatosensory evoked field (all conditions) 

GoF single ISI30 ISI60 ISI90 ISI120 ISI150[ms] 

AD1 0,98 0,96 0,96 0,98 0,98 0,98 

AD2 0,98 0,97 0,94 0,97 0,96 0,97 

AD3 0,98 0,97 0,97 0,98 0,98 0,97 

AD4 0,97 0,96 0,98 0,99 0,97 0,98 

AD5 0,92 0,88 0,89 0,97 0,96 0,94 

AD6 0,99 0,97 0,99 0,99 0,99 0,99 

MCI1 0,98 0,96 0,97 0,97 0,97 0,97 

MCI2 0,93 0,91 0,85 0,90 0,88 0,93 

MCI3 0,94 0,92 0,90 0,95 0,94 0,94 

MCI4 0,96 0,96 0,94 0,98 0,97 0,96 

MCI5 0,89 0,90 0,89 0,92 0,90 0,90 

MCI6 0,94 0,84 0,90 0,93 0,96 0,94 

H1 0,90 0,94 0,94 0,94 0,94 0,94 

H2 0,97 0,95 0,92 0,97 0,95 0,96 

H3 0,97 0,93 0,96 0,96 0,97 0,97 

H4 0,96 0,95 0,92 0,96 0,95 0,92 

H5 0,96 0,94 0,94 0,92 0,93 0,93 

H6 0,91 0,86 0,90 0,93 0,91 0,89 

H7 0,94 0,93 0,93 0,89 0,91 0,91 

H8 0,95 0,95 0,90 0,96 0,95 0,93 

H9 0,91 0,76 0,91 0,93 0,90 0,82 

H10 0,97 0,98 0,96 0,96 0,97 0,99 

H11 0,96 0,92 0,93 0,97 0,97 0,97 

H12 0,98 0,96 0,94 0,95 0,96 0,95 

H13 0,96 0,96 0,95 0,96 0,95 0,96 

H14 0,95 0,94 0,97 0,95 0,95 0,96 
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H15 0,97 0,97 0,96 0,97 0,98 0,97 

H16 0,97 0,96 0,95 0,96 0,96 0,96 

H17 0,94 0,83 0,93 0,95 0,94 0,84 

H18 0,95 0,96 0,95 0,93 0,92 0,94 

Y1 0,93 0,92 0,88 0,94 0,88 0,89 

Y2 0,97 0,98 0,97 0,97 0,98 0,97 

Y3 0,97 0,92 0,95 0,97 0,98 0,98 

Y4 0,94 0,96 0,93 0,95 0,96 0,93 

Y5 0,97 0,97 0,94 0,97 0,96 0,97 

Y6 0,98 0,98 0,98 0,98 0,99 0,98 

Y7 0,94 0,96 0,95 0,92 0,94 0,93 

Y8 0,96 0,97 0,97 0,94 0,97 0,93 

Y9 0,95 0,93 0,93 0,93 0,95 0,93 

Y10 0,90 0,93 0,95 0,94 0,96 0,96 

Note. AD = Alzheimer disease, MCI = mild cognitive impairment, H = healthy elderly, Y = young, GoF = 

goodness of fit, ISI = inter-stimulus-inverval. 
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Figure C.1 Estimated brain activity (blue) and LCCM-modeled (red) time courses displayed 

together with the differences (green) between both.  
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