Simulations of solutal Marangoni convection
In two liquid layers: complex and transient
patterns

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

vorgelegt der
Fakultat fur Maschinenbau der
Technischen Universitat Imenau

von Herrn

M.Sc. Thomas Koéllner
geboren am 03.01.1986 in Rudolstadt/Deutschland

Erster Gutachter: Priv.-Doz. Dr. Thomas Boeck

Zweiter Gutachter: apl. Prof. Dr.-Ing. habil. Christian Karcher
Dritter Gutachter: Prof. Dr. Michael Bestehorn

Tag der Einreichung: 06.07.2015

Tag der mindlichen Prufung: 11.11.2015

urn:nbn:de:gbv:iim1-2015000626



Zusammenfassung

Stofftransport iiber die Grenzfliche zwischen nicht mischbarer Fliissigkeiten ist in der Lage
Konvektion durch Dichtegradienten (Rayleigh-Konvektion) oder Gradienten in der Grenz-
flichenspannung (Marangoni-Konvektion) zu erzeugen. Direkte numerische Simulationen ei-
nes Zweischichtsystems wurden durchgefithrt, um zwei klassische Experimente aus diesem
Bereich zu reproduzieren und zu erkléren.

Dazu wurden die Navier-Stokes-Boussinesq- und die Transportgleichung fiir einen gelosten
Stoff in zwei, durch eine ebene Grenzfliche gekoppelten Schichten, fiir all drei Raumdimensio-
nen gelost. Eine Pseudo-Spektral-Methode wurde zur numerischen Losung der Gleichungen
eingesetzt, wobei Fourier-Moden in beiden horizontalen Richtungen und Chebyshev-Moden
in der vertikalen Richtung eingesetzt wurden. Der anfénglich nur in einer Phase geltste Stoff
diffundiert in die andere Phase, welches im Laufe des Stofftransportes Konvektion auslost.
Zwei unterschiedliche Stoffsysteme wurden simuliert, zuerst das ternédre Gemisch aus Cyclohe-
xanol, Wasser und Butanol. Dabei ist Butanol zu Beginn nur in der oberen organischen Phase
gelost. Da Butanol die Grenzflichenspannung sowie Dichte verringert, entsteht Marangoni-
Konvektion mit einer stabilisierenden Dichteschichtung. Die durchgefiihrten Simulationen re-
produzierten erfolgreich die experimentell bekannten mehrskaligen Stromungsmuster. Eine
zweistufige Hierarchie von Konvektionszellen wurde beobachtet: grofie, langsam wachsende
Zellen, welche kleinere, stetig bewegte Zellen einschlieflen. Die Ursache fiir den Musterauf-
bau wurde durch zwei Mechanismen, Vergréberung und eine lokale Instabilitét, erklédrt. Die
zeitliche Entwicklung der Muster wurde mit zwei unabhéngigen Experimenten aus der Li-
teratur verglichen. Dazu wurden Léngenskalen und der optische Fluss aus Schlierenbildern
abgeleitet. Neben einer guten qualitativen Ubereinstimmung erschienen jedoch Simulatio-
nen verlangsamt im Vergleich mit den Experimenten. Parameterstudien zeigten, dass Kon-
zentrationsdnderungen von Butanol teilweise durch eine Reskalierung von Lénge und Zeit
beriicksichtigt werden koénnen.

Bei dem zweiten Stoffsystem wurde die Ubergangskomponente durch Isopropanol er-
setzt (dhnliche Eigenschaften wie Butanol) und nun in der unteren wéssrigen Phase gelost.
Hierfiir konnten Simulationen die experimentell beobachteten Strukturen (Eruptionen) re-
produzieren und deren Ursprung durch die Wechselwirkung von Rayleigh- und Marangoni-
Konvektion erkldren. Ein Vergleich mit experimentellen Ergebnissen zeigte eine gute qua-
litative Ubereinstimmung, jedoch waren auch hier die experimentell ermittelten Geschwin-
digkeiten hoher. Parameterstudien ergaben, dass Variationen in der Ausgangskonzentration
teilweise durch eine Reskalierung der Zeit beriicksichtigt werden kénnen.
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Abstract

Mass transfer through the interface between immiscible liquids potentially causes convection
by interfacial tension gradients (Marangoni convection) and by density differences (Rayleigh
convection). Three-dimensional direct numerical simulations of two liquid layers were car-
ried out to explain and to firstly reproduce classical experimental observations of Marangoni
convection. The Navier-Stokes-Boussinesq equations were solved with a plane interface that
couples layers. A pseudospectral-numerical method was employed with Fourier-modes in both
horizontal directions and Chebyshev modes for the vertical direction. Initially, the solute is
dissolved only in one of the quiescent, equally sized layers. As it starts to diffuse in the other
layer convection is triggered.

Two kinds of mass-transfer systems were simulated: First, the ternary system made of
cyclohexanol, water and butanol, which is initially dissolved in the lighter organic phase. Since
butanol lowers interfacial tension as well as density, Marangoni convection under a stabilizing
density stratification evolves. Simulations successfully reproduce multiscale flow patterns
that were reported by experiments. Especially, we observe a two-level hierarchy of convection
cells that consist of large, slowly growing cells that host smaller, rapidly changing cells.
These multiscale patterns are explained by the action of coarsening and a local instability.
The temporal development was compared to two independent experiments from literature by
measuring length scales and the optical flow of shadowgraph images. Overall, experiments
qualitatively agree but appeared accelerated in time versus simulations. Parametric studies
revealed that the concentration changes of butanol can be partly accounted for by a scale
transformation.

For a second configuration, the transferred solute is changed to isopropanol (similar prop-
erties as butanol) and now dissolved in the lower aqueous phase. Former experimental obser-
vation of structures called eruptions could be reproduced, and their origin was explained by
the coupling of Rayleigh and Marangoni convection. A comparison with recent experimental
results showed a good qualitative agreement, but experimentally measured velocity appeared
roughly twice as high as the simulated ones. Parametric studies showed that variations in
initial concentration could be partly accounted for by another scale transformation.
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Chapter 1

Introduction

The transfer of substances between two liquid phases occurs in numerous of natural as well
as technological processes. E.g., when Champagne is uncorked [136], supersaturated COq
is released to the ambient air while producing the well-known bubbling. Many industrial
processes involve solvent extraction [85] that relies on the solute’s relative solubility between
phases and has specific applications in the fields of hydrometallurgy, pharmacy, petrochem-
istry and wastewater treatment [108].

The theoretical description of such mass transfer processes involves various physical phe-
nomena [25] (e.g. chemical reaction, mixing, hydrodynamic instabilities, the heat of solution,
adsorption of surfactants, electromagnetic effects, emulsification, solubilization). Understand-
ing these phenomena and their coupling are crucial for the design of unit operations system
and the development of novel processes.

The present thesis is dedicated to such a transport phenomenon, namely, the convection
due to gradients in interfacial tension, which is known as solutal Marangoni convection.

The physics of interfaces deals with all sorts of phenomena that are related to the com-
mon boundary between two different phases of matter, such as solid/liquid, liquid/liquid or
liquid/gas. The main macroscopic mechanical property of an interface is its interfacial ten-
sion |69] — like the pressure is for the ambient air. It represents the force per unit length
normal to a ”"virtual” cut through the interface. Microscopically, it is attributed to the un-
balanced molecular attraction that tends to pull molecules into the interior of a phase [189].
The consequences of interfacial tensiorﬂ (known as capillary phenomena) are readily observed
by the peculiar shape of liquid interfaces from drops or soap films [74].

The theoretical connection between gradients in interfacial tension (due to inhomogeneities
in composition or temperature) and observable motions near the interface was made (more
or less independently) by three people: Thomson (1855), Van der Mensbrugghe (1869) and
Marangoni (1871) (cf. Ref. [203]) by the analysis of experiments. However, Marangoni was
primarily credited for this by the scientific community. Nowadays, several thousands of sci-
entific publications (more than three thousand include ”Marangoni” in their title) deal with
all kinds of questions related to Marangoni convection. An important, canonical problem

IThe interface between a condensed phase and non-condensed (e.g. water /air) is in particular called surface
and consequently it possesses a surface tension.



was established by Sternling & Scriven in 1959 [219]; they were able to predict under which
circumstances Marangoni convection can be expected when a solute is transported from one
immiscible phase to another. This fostered several experimental works, e.g. Refs. [143,/166],
which confirmed the theoretical predictions of Sternling & Scriven but also showed that even
in a careful experiment, very complex, transient convective patterns arise, which could not
be reproduced by the mathematical methods at that time. And even fifty years later many
of those — now classical — observation still lack a numerical study.

This thesis endeavors to reproduce such experiments of solutal Marangoni convection in
their fully transient, three-dimensional continuum-mechanical description by means of nu-
merical simulation. Specifically, two different material systems are examined, which showed
rather different convective structures [197]: (1) The transport of butanol from a cyclohexanol-
rich into a water-rich phase, showing hierarchical patterns of Marangoni cells [197[198], which
were attributed to the stationary Marangoni instability according to the theory of Sterling
& Scriven. (2) The transport of isopropanol from an aqueous to a cyclohexanol-rich phase,
exhibiting eruptions, which were attributed to the interplay between buoyant convection and
the Marangoni effect.

The scientific value of the following theoretical study is twofold. (1) The used models
are probed whether they are able to reproduce the experimental observation or not, which
may lead to a refined theoretical description afterward. (2) Experimental observations of
Marangoni convection are usually limited to a few physical properties, whereas simulations
include detailed knowledge of all physical properties from the supposed model. This complete
knowledge in turn leads to a better picture of the involved physical mechanisms.

This dissertation consists of eight chapters. Ch.[2reviews the key literature relevant to the
stated issues and introduces the paradigmatic model, used to describe mass-transfer experi-
ments. It also reviews those two sample systems that are studied subsequently and formulates
the detailed aims of this thesis. Chapter [3| derives general conclusions from the paradigmatic
model and treats the stability of solute diffusion perturbed by Marangoni convection. The
methods employed for numerical simulations are described in Ch.[d] The results of numerical
simulations and their comparison to experimental observation is presented and discussed in
Chs. Especially, the case when stationary Marangoni instability is prevailing is treated:
at an extended interface in Ch. [ and inside a Hele-Shaw cell in Ch. [§] Chapter [7] treats a
case where buoyant convection is the prevailing source for convection. Finally, conclusion and
recommendations for further work are outlined in Ch. [8l



Chapter 2

Solutal Marangoni convection in
two-layer systems

2.1 Literature review on Marangoni convection

The modern, academic research on interfacial tension driven flows dates back to Thompson
in 1855 [229], who suggested surface tension gradients as the source for convective patterns in
drops at an alcohol-water interface. However, it was Carlo Marangoni(1871) [153], who has
been credited for his experiments and their interpretation in terms of surface-tension-driven
flows.

In the first half of the 20th century numerous experiments [125||148] were carried out
related to the action of Marangoni convection — see excellent review of Scriven & Sternling
[203] from 1960 or Ref. [188]. A distinctly influential study — viewed from the perspective
of hydrodynamics — was provided by the seminal work of Bénard [16]. He observed highly
regular patterns of convection cells that were caused by a steady temperature gradient across
a liquid layer. His work received significant attention since it was tractable for a quantitative,
theoretical description, which was initiated by Rayleigh(1916) [182]. Rayleigh attempted
to explain Bénard’s cells by solving linearized model equations, which describe the onset of
buoyancy driven flow from a quiescent state of steady heat conduction. Rayleigh showed that
convection could be expected when the nondimensional group

_ ApgL?

R 2.1
a= S0 21)

(the Rayleigh number) exceeds a certain value depending on the boundary conditions. The
Rayleigh number compares the density difference Ap between top and bottom owing to a
temperature difference (density should be lower at the bottom for convection), gravitational
acceleration g, the height of the layer L with the dynamic viscosity 4 and the thermal diffu-
sivity k.

Roughly, forty years later in 1958, Pearson [172] published a pioneering work that also
treated Bénard’s problem. He also analyzed the steady heat transfer state — similar to
Rayleigh [182] — but now included that interfacial tension depends on the temperature but
disregarded the variation of density. Observation of drying films of paint drew his attention to
the fact that no matter what orientation the film possessed against gravitational acceleration,
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patterns of convection were observed — which was in contrast to the buoyancy based model
by Rayleigh [182].

By this, Pearson showed that the steady state of heat conduction is also unstable if the
dimensionless parameter Ma, defined by

Ma = 2L (2.2)

UK

exceeds a critical positive value, e.g. Mac.iy ~ 80 (for an isothermal, no-slip bottom and a
"insulating”, stress-free surface) with critical a wavelength A ~ 2w L/2 of sinusoidal pertur-
bations. The non-dimensional group Ma is called the Marangoni number; it expresses the
relative importance of the characteristic surface tension difference Ao to opposing viscous
forces. The effect that surface tension changes by temperature gradients is also known as
thermocapillarity. A sound physical introduction to Marangoni convection is given in Sec.

Motivated by experimental observations on spontaneous interfacial motions during mass
transfer |122}|133}137,207,213], Sternling & Scriven [219] tackled the mass-transfer analog of
Pearson’s problem in a similarly important paper in 1959. They analyzed the linear stability
of diffusive solute transfer through the interface of two semi-infinite layers. They predicted
that stationary and oscillatory types of motion might appear depending on: the Marangoni
number, the ratios of viscosity and diffusivities between layers as well as the direction of
transport. Their analysis showed great success in explaining the onset of convection during
mass transfer up to excluded physical effect such as: adsorption of surfactants, heat of solution,
deformable interfaces or buoyant effect — which were treated by other authors later following
their example.

Another important theoretical work was provided by Nield [165] in 1964. He solved
the mathematical problem of Rayleigh and Pearson (single layer) with both effects acting
in parallel, using the help of a digital computer. He showed that the marginal Marangoni
and Rayleigh number (i.e. the threshold for onset of convection) are now coupled by the
approximate formula

Ra/Ra.+ Ma/Ma, =1, (2.3)

where Ra. and Ma, are the values with the other effect respectively excluded, e.g. Ra. =~ 669,
Magriy = 80. Later, Palmer & Berg (1971) [169] confirmed this with convection experiments
using silicone oil. Then at the beginning of the Sixties, investigations of surface tension driven
phenomena branched, i.e. becoming more and more specialized.

One direction was the fundamental visual observation of convective patterns during the
transfer of a solute through a plane interface [9,/78,|141,|143,|143,|{166,{197,|198|, in the spirit
of Bénard’s experiments. However, in contrast to Bénard’s thermal set up, mass transfer
appeared more involved. A complete experimental and theoretical description could not be
obtained due to the time-dependent, multiscale and irregular structures.

Several reason for the increased difficulty — compared to the thermal setup — can be
noted: (1) Observed patterns are usually time-dependent since only a limited amount of
solute can be transfer with a usual experimental setup — which is in contrast to the thermal
setup where a steady supply of heat could be maintained without mechanical disturbance of
the system. (2) In systems composed of two liquid layers, usually, the transport properties
of both phases have to be accounted for in detail, which consequently extends the set of
free parameters of a theoretical model. (3) Solute transfer inherently implies phase change



effects, making experiments more demanding and theoretical modeling more uncertain. (4)
The change of interfacial tension by solute concentration is usually much higher than by
temperature variation, which leads to increased nonlinearity and therefore to more complex
dynamics.

The present work will study this issues from the theoretical point of view since nowadays
scientific methods — especially computing resources — are available to simulate these time-
dependent three-dimensional processes in detail. Before concentrating on the principal topic
of this thesis in Secs. the general review on solutal Marangoni convection is continued
by further addressing some new important subtopics.

The oscillatory mode of solutal Marangoni instability, predicted by Sternling & Scriven,
was first detected by Linde and coworkers in the 1960s [139,(140,(145,|198]. Single capillary
waves sustained by Marangoni convection are triggered when a gas/liquid system is heated
from the air side (if the kinematic viscosity of the air is higher) or for example if acetone is
adsorbed from air into water. The complex patterns observed could be traced back essentially
to the interaction of three dominant wave types |50} /76,(147,162./163,(183].

Many efforts [22,[23}30,54,(664/115],194,[226] have been undertaken — rather successfully —
to describe polygonal convection patterns in the classical setup of Benérd, i.e. the transport
of heat trough a liquid layer into the ambient air — referred as Bendrd-Marangoni convection.
Also, the thermal problem of two liquid layers between isothermal solids has been studied ex-
perimentally [1004230] and theoretical [29//72,99] see [164] for further references. Furthermore,
thermal Marangoni convection has been studied for temperature gradient applied parallel to
the interface [56], especially in liquid bridges [124L[232] which appear in applications of crystal
growth.

Heat of solution: The transfer of solute —i.e. a solution in one phase and dissolution in the
other — between phases is accompanied by the release or consumption of latent heat. This was
studied experimentally [87,158],174.244] and theoretically [58}90,(173,216]. Generally, it was
found that heat release can trigger Marangoni instability [173] as well as a Rayleigh instability.
However, in ternary systems the impact of temperature variation on interfacial tension was
experimentally assessed as insignificant [87] compared to the compositional impact for a large
number of material systems (mainly mixtures of organic liquids and water).

The coupling between the thermal and the solutal Marangoni effect is of peculiar impor-
tance in liquid/gas system, in particular where evaporation or condensation takes place. Berg
et al. [19] outstandingly demonstrated the influence of Marangoni convection for evaporating
liquids with and without surface active agents (surfactants). The convection patterns were
only sustained in thicker layers (those were attributed to buoyant convection) when the in-
terface was contaminated with surfactants. Thereafter, numerous works dealt with related
topics, e.g.: Marangoni instability in evaporating droplets [534,60,/150], theoretical works in
layered systems with evaporation [33}/159,1231], experimental observations of interesting cir-
cular patterns during evaporation of binary mixture [247], uneven drying of thin films [242],
onset of convection in drying polymer solution [62], Marangoni patterns during the evapora-
tion of a planar liquid layer of hydrofluoroethers [46,49].

Generally, Marangoni convection at dispersed, pendant or sessile droplets is an active and
broad field of research. Especially, the motion of drops on solid substrates poses an extra
difficulty due to the physics of triple line motion [211]. Some examples of recent studies are
self-propulsion of liquid droplets [109}243], spreading and dissolving droplets [21,/131,{177] and
Marangoni induced agitation [79]. Moreover, computer simulations of evaporating pinned ses-



sile water droplets of submicrometer size [204] have shown that the thermal Marangoni flow
loses its importance for very small droplets with diameters L < 107 m. The coalescence
of neighboring sessile droplets of different but miscible liquids is suppressed by a Marangoni
flow [35/102,/103]. Wegner performed extensive studies (experimental and numerical) on mass
transfer at single dispersed, rising drops [71,[234-236,238] showing how the Marangoni effect
influences mass transfer and motion.

Interfaces often contain traces of surfactants [63]; sometimes roughly labeled as contami-
nants. Surfactants have a high technological relevance in all branches of chemical engineering
as: emulsifier, dispersants, foaming agents, detergents, wetting agents [17]. Their special
physical properties result from their adsorption at interfaces, by this, very small amounts
can alter interfacial tension significantly [63]. Although, the effect of interfacial adsorption is
out of the scope of our following theoretical studies, we will include this important class of
substances in our review.

The adsorption of surfactants causes a new dynamical effect: When, for any reason, an
interface expands locally, interfacial surfactant concentration I' (in mol/m?) locally decreases.
This concentration gradients cause an interfacial tension gradient opposite to the initial expan-
sion and consequently damps the motion. This effect has been referred to as Gibbs elasticity,
or more appropriately, as the Plateau-Marangoni-Gibbs effect [203].

Numerous studies addressed the effect of adsorbed surfactants on convection, of which
Berg and Acrivos [18] provided a theoretical explanation by extending Pearsons model by
an insoluble surfactant. They demonstrated that the Plateau-Marangoni-Gibbs effect may
increase the critical Marangoni number thousand-fold. This fact makes experiments with free
water surfaces (since they have high surface tension) very demanding by means of purifying
components since very small amounts of contamination may cause this effects.

The transport of a soluble surfactant was considered by linear stability analysis [39/89214].
In particular, the linear stability analysis (for stationary Marangoni instability) [214] showed
that a second threshold for the smallest amplifiable wavelength appears, which is (beside
other quantities) proportional to the square root of the Gibbs length d¢, i.e. Amin X VoG-
The Gibbs length is the thickness of a virtual layer that contains as much of the surfactant
as is adsorbed dg = I'/c (here ¢ means the bulk concentration at the interface).

Recently, periodic non-linear oscillations of interfacial tension were measured during mass
transfer of typical surfactants in a liquid-liquid system with plane interface. Namely, in the
system water/dichloromethane with CTAB as diffusing species [129], here, the system alter-
nates between phases of strong convection with simultaneously low interfacial tension and
phases of weak convection with high interfacial tension. Experiments in heptane/water with
oxyethylated alcohols [121] showed that for a given experimental geometry the occurrence of
periodic oscillation vitally depends on the used surfactants and their initial concentration,
especially a partition coefficient near unity was mentioned as requirement for oscillations.
Corresponding numerical simulations of a simplified model system [121] showed an explana-
tion. In this study, a single convection cell covered the whole interface, which is suddenly
increasing in strength. Further experimental studies [223] in the same system heptane/water
with oxyethylated alcohols as diffusing species discussed the influence of the surfactant prop-
erties on the occurrence of the periodic oscillation, e.g. the critical micelle concentration and
the partition coeflicient.

Periodic decay and re-amplification of Marangoni convection was also observed for a point-
like source of surfactant located under an air-liquid interface. There, a flow was caused by the



combined action of adsorption-desorption kinetics and geometric confinement [117H120]. In
further studies, the interaction of Marangoni convection and buoyancy-driven convection led
to oscillations of an organic drop, which was placed in an aqueous surfactant solution with
vertical concentration gradient [116].

Recently, the coupling between chemical reactions and Marangoni convection — via pro-
duction of heat or surface active products — has received considerable attention [6[594(67.(149,
187,|199]. For instance, the shape of propagating autocatalytic reaction fronts [186], front
velocity [210] or the dissolution of alkyl formates in water with their subsequent hydrolysis
has been studied [40].

Finally, let us note some studies with direct impact on applications. Besides the obser-
vation of fundamental processes, the description of the integral amount of transferred mass
between phases— commonly noted as mass transfer studies — has a long history in chemical
engineering for various configurations [10}39,(78/97,|138}207,1237]. Especially, it is aimed at
accelerating the rate of mass or heat transfer in different configuration: mass transfer en-
hancement due to the Marangoni effect in extraction [4,10,/39,(97,237], distillation [73.|181],
efficiency of cooling devices [105},/106] or enhanced oil recovery by gas injection changing in-
terfacial tension [221] |[104]. Moreover, the occurrence of Marangoni effects in LiBr absorbers
was observed [53,93].

Another topic is the drying of lacquers or polymer solutions on which many industrial
applications such as coating or printing are based on [24],86,94,220]. The goal of a smooth
surface finish is sometimes not achieved because the solvent evaporation can trigger Marangoni
convection, which may in turn cause marked surface corrugations [14]. Moreover, the impact
of Marangoni convection on the film thickness during wire coating was studied [167]. Another,
related application is ”Marangoni drying” that influences drying by contacting a thin film of
water with a vapor of organic liquid [95}({154].

2.2 Mass transfer between plane layers: paradigmatic system

After broadly overviewing relevant studies on solutal Marangoni convection, this section will
further pinpoint the objectives and defining the scope of this thesis by introducing our paradig-
matic theoretical model. This model will be the basis of the numerical studies.

Fig. shows the geometry of the paradigmatic model (PM). The system consist of two
liquid phases (synonymously called layers), which are indicated by a number in brackets (1)
and (2) for the bottom and top phase, receptivelyﬂ Each phase occupies a rectangular cuboid
QW = (0,L;) x (0,Ly) x (—d™,0) c R® and Q@ = (0,L,) x (0,L,) x (0,d?) c R3,
whose extent is taken as time independent. These cuboids are separated by the interface
Q) = (0, L,) x (0, L,)x {0} C R3, thus the interface is plane and undeformable, consequently.
Usually the layer heights are taken as equal, i.e. dV) = d®. The spatial domain Q of the
system is the union of the layers and the interface Q = Q) U Q@ U Q).

Both layers consist of a fluid with a potentially dissolved solute. The amount of solute is
described by the field of molar concentration ¢ (x,t) at the point x = (z,%, z) € Q and time
t € RT. The fluid moves with the mass averaged velocity u(?) (x,t) and its dynamic pressure
is pg(x,t). The fluid’s mass density p is assumed to depend linearly on solute concentration

P = oy + iy B0, (24)

IThe notion of ”top” and ”bottom” displays that the acceleration of gravity acts against the z-direction
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Figure 2.1: Sketch of the two-layer-mass-transfer system.

where ﬁ((;i) is the solutal expansion coefficient and pffe) f is the reference density (the one without
solute), each in layer (i) respectively. Furthermore, we assume that layers are stable stratified,
,0(2) < p(l), which is crucial for the assumption that the interface is plane A second material

law is that interfacial tension o depends linearly on solute concentrations
O = Oref + Jrefozcc(l) for z =0, (2.5)

where o is the solutal interfacial tension coefficient and o,y the reference interfacial tension
(without solute). In literature, it is widely customary to change signs in the material laws,
e.g. writing 7o = oyef — Ope facc(l)” if a. < 0. This custom is not followed in this work since
interfacial tension may also rise for certain solutes (although a. < 0 is more common) and
for the density dependence on solute both signs are equally observed.

The fluid motion and the distribution of solute obey the following equations

(4)

au® +u® . vu = _V%l + DA 4 0l g for x € O, (2.6)
pref

V-u® =0 for x € Q0 (2.7)

8 +u® . Vel = pOAL) for x € Q). (2.8)

Equation is known as the Navier-Stokes-Boussinesq equation (NSB equation) describing
transport of momentum in a Newtonian liquid, whereas density changes are only regarded
in the buoyancy term ¢ Bgi)g. Equation enforces the fluid being incompressibe and
Eq. describes the transport of solute by advection ul® - Ve and diffusion D® A,

" Consult Smith [217] for condition to apply the plane layer model, which is usually a good approximation
for deep layers; moreover see discussion in Ref. |[164] that qualifies the plane interface assumption as essential
for the framework of Boussinesq approximation in the present context of natural convection.



Transport parameter appearing in Egs. are kinematic viscosity (9 and the diffusivity
of the solute D. These are constant in each layer but usually differ between layers. Note
that 7 (4)” is just a dummy index that takes values of i € {1,2}.

Both layers are coupled at the plane interface (z = 0) through the matching conditions:

ugjl) = uf), uél):uém, (2.9)
ul? = u® =0, (2.10)
DWa,cN) = D@g, ) (2.11)
NH = 2, (2.12)
arefacaxc(l) = —u(z)azug)—ku(l)@zug), (2.13)
a,«efacayc(l) = —u(2)azu§2)+u(l)8zu§1). (2.14)

These relations enforce: the continuity of velocity at the interface , the assumption of
a plane, undeformable interface @ , the continuity of solute flux through the interface
, Henry’s model of partitioning ED (by means of the partitioning constant H — also
called Henry’s constant) and the balance of tangential stresses (by means of dynamic viscosity
p) = 1/( i) ( ) ) between layers with interfacial tension gradients (2.13] -

The velomty, the solute and the pressure are periodic at the boundary of the x — y
dimension, wich reads as follows

u (@ + Ly, y, 2,t) = ul (2,9, 2,1), uD(z,y+ Ly, 2,t) = u(z,y,2,1t), (2.15)
D@+ Ly, y, 2,t) = D (x,y, 2, 1), c(z (z,y+ Ly, 2,t) = (93 Y, 2,t), (2.16)
P @+ Layy, 208) = (w0, 2,8), P @,y + Ly, 2,t) = pi (w9, 2, 1), (2.17)

with periodicity lengths L, L,. At the bottom (z = —d™) and the top (z = d®), no-slip
and impermeability is imposed by

9.t = M) =) = uz(}) =0 forz=—dW, (2.18)

z

9.c? = 4P =2 = u(2) =0 forz=d?. (2.19)

z

These kinds of models are heavily used in the field of fluid mechanics, describing mass
transfer, furthermore, they are the classical conceptual framework of solutal Marangoni con-
vection [25,/164,219]. For a discussion of the physical basis and the inherent assumption of
the presented model equations consult Refs. [50,164]. In general, the model rest on the theory
of classical continuum mechanics (especially in the connection with interfaces see [69] and on
linear non-equilibrium thermodynamics [15/57].

In this thesis, we are concerned with two initial states. First, solute initially dissolved in
layer (1),

u = u® =0+ N(x), (2.20)
D = ¢, =, (2.21)

with concentration ¢cp, thus, transport from bottom to top (1) — (2). This situation is
depicted in Fig. 2.1} Second, just the reversed transport direction (2) — (1) is considered:

u = u® =0+ N(x), (2.22)
M=o, ) = ¢. (2.23)
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In order to trigger convection, the initial velocity fields is set to be nonzero by a sort of white
noise N/ (X)E. In the following Egs. (2.6)-(2.19) are referred to as the paradigmatic model,
which is abbreviated as PM.

The same equations are able to describe the extensively studied thermal problem [50,
165],/172,|182,217},246], i.e. the model describing internal energy changes due to temperature
gradients but with a uniform composition. In this case, the solutal properties can be bijectively
identified by the thermal ones, e.g. the temperature T is identified by the concentration
T =~ FeW) 7R =~ ) This unique identification and the thermal equations are collected
in App. [A]

The presented equations give rise to a semi-dynamical system since from a given initial
state a unique state in the future is specified implicitly. m In this context, we introduce some
further abbreviatory notion: The state of the system is denoted by a tupel X, composed of
velocity and concentration fields in space (not in time)

X = [uW(x),u? (x), VY (x), 2 (x)], (2.24)

which belongs to an abstract state space V [185]. Note that in the incompressible equation
pressure pg is uniquely determined by this state X (up to an additive constant). A state X
given at top = 0 is called initial state (or synonymously initial condition). Given a specific
initial state Xy, our paradigmatic model Egs. -) gives rise to a unique solution X ()
with X (0) = Xp.

2.3 Mechanisms of convection

In this section, the different convection regimes that the PM is able to describe are categorized
by their instability behavior. This and quoted experimental patterns prepare us to formulate
the aims and scope of the present thesis in the subsequent Sec.

Depending on the physical parameters, rather different material systems with various dy-
namics can be described. Nevertheless, they all share that solute spreads over both layers,
which finally amounts to a global equilibrium with ¢V = 1/(H+1), ¢® = H/(H+1), u® =0
(assuming that D@ > 0, 0 < H < oo and dV) = d®)). The hydrodynamic processes in the
"interim period” are governed by the action of gravitational acceleration (Rayleigh effect) and
interfacial tension gradients (Marangoni effect), which are able to render the pure diffusional
equilibration unstable, i.e. the system evolves in a state of convection u® # 0. Both sources
for convection will be explained next.

In Fig. (a), a situation short after initialization is depicted. In this figure, dark color
depicts a high concentration. Thus, a transport (2) — (1) is shown. At the interface, a
positive perturbation of solute concentration is considered. Furthermore, assume that solute
decreases interfacial tension, . < 0. Inevitably, interfacial tension gradients will create a flow

M This is done since it is desired that those perturbations not introduce a ”qualitative” impact on the
dynamics, while the particular choice is detailed later.

IV Here we assumed that this rather casually stated mathematical problem is well-posed. Surely, a rigorous
mathematical treatment is needed to decide the well-posedness since the underlying function spaces had to
be specified, which is not done here as common for the engineering mathematics. Moreover, the question of
well-posedness of the Navier-Stokes equation is still an open problem [61L[185] for a general class of initial and
boundary conditions
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tension high density
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Figure 2.2: Sketch of Marangoni effect (a) and Rayleigh effect (b). Dark color depicts high

concentration and arrows depict fluid motion. Solute increases density but lowers interfacial
tension.

that spreads solute tangentially away from this initial variation [cf. ”Marangoni condition”
of Eq.(2.13)]. The ensuing flow carries fluid from the bulk to the interface. The flow can be
considered symmetric to the interface if: vertical boundaries are far away, the ensuing flow is
not strong (Stokes flow cf. Sec. , and density gradients can be neglectedm

The subsequent impact on the interfacial concentration depends on the relative size of
diffusivities — whether DM > D® or DM < D@ _ gince the assumed perturbation could
be amplified or damped by the ensuing motion. If transport is from the phase with lower
diffusivity into the phase with higher diffusivity, the interfacial concentration will decrease
from the point where bulk fluid impinges the interface, consequently, concentration is highest
at the inflow and convection is amplified. This behavior is explained by considering the
approximately parallel flow of fluid near the interface, here the phase with stronger diffusion
will force the interfacial concentration closer to its bulk value than the other phase with lower
diffusivity. In the sketched situation of transport (2)— (1), Marangoni instability requires
D@ < DO because in this way concentration will decrease from the point of inflow.

These considerations are formalized in the classical analysis of stationary instability, i.e.
disregarding oscillatory instabilities, cf. Sec. The conditions on physical properties for
such a stationary Marangoni instability (in line with the verbal explanation) are sketched

in Fig. they are fulfilled if the term 51/120 is positive, whereas £ and v are defined in
c

the legend of Fig. and account for the direction of transport and the relative size of
diffusivities, respectively.

The strength of Marangoni convection can be estimated by relating the competing effects
of solute transport to the interface and diffusion of solute gradients. The velocity of convective
motion can be estimated from the stress balance at the interface Eq. . Consider a
driving difference of interfacial tension Ag, then a flow of magnitude U is established of order
U ~ Aa/u@) — where we assumed that p() < ). Thus a convection time tyz, for the
transport over a distance 1 is established by 17, = p(21 /Ao , parallelly, a diffusion time for

V_In this work, exclusively liquid/liquid layers will be considered; these usually have high Schmidt numbers
Sl = V(”/D“) > 1000. For gas/liquid system or for the thermal problem, this is not the case, which can
give rise to oscillatory instabilities due to the additional time scales.
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equilibrating over a distance 1 is tq = 12/ D® . When the time for diffusion is large compared
to the convective time, concentration differences are expected to be effectively converted into
motion. Therefore, the higher the Marangoni number

Ma = tq/tya = Aol (WP DP), (2.25)

is, the stronger is the transport of bulk fluid with high concentration differences to the inter-
face.

The second source for convection is sketched in Fig. (b) Here, again a transport of
solute from the top to the bottom is depicted. A portion of fluid with higher concentration
is sketched that — taking ﬁci) > 0 — has a higher density than fluid at the same vertical
level. Necessarily, a flow sets in that lowers the dense fluid against the lighter fluid. A self-
sustained motion, i.e. Rayleigh convection, might be triggered. In the sketched situation the
perturbation is amplified since a dense layer (dark color) overlays a light layer. However, if
the direction of transport is reversed or the dependence of density on solute changes its sign
(ﬂéi) < ﬁthe diffusive equilibration might be stable. This consideration is also condensed

0
in Fig. Rayleigh convection is expected if & a—p < 0. Note that this is a rather simple
c

picture since the coupling between both effects and oscillatory instabilities are neglected, for
a more comprehensive account consult Ref. [164].

The presented characterization of main convective regimes triggered by mass transfer in
liquid /liquid system has been theoretically and experimentally confirmed, e.g. demonstrated
by the quoted experimental shadowgraphs in Fig. [2.3] However, a detailed theoretical predic-
tion of the complex and transient patterns in a realistic three-dimensional two-layer system
is poorly available. This leads us to formulate the aims of this thesis and to provide a review
on characteristic convective structures this thesis want to reproduce.

2.4 Pattern formation during mass transfer

It is our aim to reproduce closely experimentally observed structures (Fig. that are
triggered by mass transfer. Consequently, the paradigmatic model is probed whether it is
able to reproduce these patterns. In the following two subsections, observation regarding
type I(Sec. and type III (Sec. [2.4.2) systems are reviewed, and open questions are
explicated as well as our strategy to solve them.

2.4.1 Marangoni convection with stable density stratification

Perhaps the most frequently studied regime is that of type I [9,/78,/141}|143,/143,|166|/197,
198]; this might be due to its complex but also highly ordered patterns (see cell pattern
type I in Fig. The process of mass transfer and the corresponding patterns driven by
the Marangoni effect were experimentally observed via optical methods. These methods
are mainly schlieren shadowgraphs or simply shadowgraph methods, i.e. they prescribing
horizontal concentration gradients in z-y planes near the interface [160].

To overcome the vague description, ”interfacial turbulence”, of early scientific works [219],
Orell & Westwater [166] made a first attempt to classify experimentally observed patterns in
terms of: polygonal cells, stripes and ripples. After half a century of work, Linde et al. [146]
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Figure 2.3: Scheme representing conditions for the stationary Marangoni instability, cf.
Eq. , and Rayleigh instability (cf. Ref. ) in the paradigmatic system. The value of
1 and £ code the direction of mass transfer and the ratio of diffusivities, which is noted in the
legend in quadrant four. A characteristic experimental pattern is shown for each quadrant.
Note that for type I also Rayleigh and for type III also Marangoni effects impact the nonlinear
process of natural convection.
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finally proposed a complete classification of the highly complex and unsteady patterns in the
form of a few hypotheses, based on a broad range of experiments. His hypotheses are briefly
quoted from Ref. [146]:

L; "Interfacial convection is built up of three basic structures: (a) Marangoni roll cells (b)
relaxation oscillation and (c¢) synchronized relaxation oscillation waves.

Lo Each of these structures may occur in n different hierarchy steps of different size, which
we call nth order, referring to the number of substructures which are embedded. Sub-
structure(s) of all three types can occur in any of the three patterns.

Ls Driving force of all these structures is the Marangoni shear stress, do/dC - 9C/dx, oper-
ating on different length scales.

L4 Interfacial convection can consist of numerous periodic cycles of amplification and decay
of the three basic structures. The complexity in large containers, whose size exceeds
the largest wavelength, arises from the fact that structures of different types or of a
different hierarchy might occur simultaneously in different regions of the container”.

Linde’s first point (L;) proposes three main structures that should cover all patterns in
mass transfer system of type I.

The first structure is the Marangoni roll cell RC, sketched in the left column of Fig. 2.4
These RCs are similar to the polygonal cells studied in Bénard-Marangoni convection [36),
66,/114]. They form a relatively stable polygonal network, which is driven by low interfacial
tension in the cell centers and high at the boundaries. This interfacial tension distribution
results from the inflow in the cell centers and outflow at the cell borders["] Such structures
are seen in Fig. type II.

The second structure identified by Linde is the relazation oscillation of Marangoni roll
cells-ROs, cf. middle column of Fig. This patterns is proposed to have the same origin
as the RC but is highly unsteady. Individual cells grow fast in size and thereby compress-
ing neighboring structures. After the spreading of an individual cell, the motion will cease
(relaxation). Note that this pattern shares features to the observed eruptions in Rayleigh
unstable system (see next Sec. [2.4.2), but has been observed [146] in systems where Rayleigh
convection is not likely to be amplified.

The third basic structures according to Linde are the synchronized relaxation oscillations
waves - ROWs. Mostly, they appear as aligned (straight or circular concentric) convection
cells that move in a common direction. The concentric type has been termed ripples by
Orell and Westwater |[166]. Both types are divided into approximately equidistant relaxation
zones [199] and can occur either as a single structure or in the form of a substructure (see
Ly). Fig[2.3 (type I) shows a mixture of ROWs and RCs.

At present, only the simplest Marangoni roll cells without substructure have been thor-
oughly investigated by experiments and two-dimensional simulations, including recent work
[37,147.65]/80,152,[206]. Especially, no one-to-one comparison between experimental observa-
tions and simulations of the three-dimensional problem has been carried out. In this view,
several open questions remained unsolved:

VI Linde also reported on RC with a reversed flow orientation in chemical system involving the transport of
strong surfactant [143], which is out of the scope of the present work since in this system the adsorbed amount
of surfactant has to the taken into account in the mass balance.
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Figure 2.4: Sketch of basic Marangoni patterns according to theory of Linde [146]. Lines
depict the highest contrast in experimental shadowgraph images and arrows fluid velocity at
the interface.

(M) Is the paradigmatic model, introduced in Sec. able to describe experimentally
observed patterns [143]/146,|166], triggered by mass transfer? Or, are other physical effects
(e.g. adsorption of surfactants, interfacial deformation, heat of solution, wall effects) necessary
to understand the pattern formation?

(Ms) What physical mechanism are responsible for the appearance of basic structures (L1),
hierarchy formation (Ly) and ”periodic cycles” (Ly). Thus, can we confirm the hypotheses of
Linde?

(M3) Can we perform a quantitative one-to-one comparison between experimental obser-
vation and numerical simulation, and what is its outcome?

(My) How do physical parameters influence Marangoni convection, and can we make
further fundamental predictions for this equilibration process?

These open issues will be addressed by three-dimensional simulations of a sample system
made of cyclohexanol,water and butanol in Ch. The simulated data will be compared
to classical experimental observation from literature |[198] and recent experiments of Karin
Schwarzenberger and Kerstin Eckert [111]. In the preceding Ch. [3| theoretical work on the
PM is presented as an aid for the interpretation of numerical results. Especially, we will
use linear stability methods to obtain information on convection onset. Chapter [6] will study
convection not in a three-dimensional box as introduced by the PM, but in a Hele-Shaw cell,
i.e. liquid confined in a narrow gap between two plates. This will further assess question Ms.

2.4.2 Rayleigh-Marangoni convection

As a second parameter regime, we will study a type III system (see Fig [2.3]), i.e. where
Rayleigh convection is the primary mechanism. Particular attention is given to a system that
nevertheless showed a distinct impact by the Marangoni effect in terms of a structure noted
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as ”eruptions.” In this view, the state of these systems is classified as Rayleigh-Marangoni
convection.

An early observation of a type III system ETI was published by Kroepelin & Neumann
(1957) [123]. They considered the transport of acetic acid from ethyl acetate into water (see
Fig. inside a kind of Hele-Shaw cell. They observed Rayleigh convection (reproduced in
Fig. in both phases and vigorous movements at the interface, which they called eruptions
(from the german word ”Eruptionen”). They also mentioned the analogy of this Rayleigh
induced eruptions with eruption triggered by forced convection. The experiments on the plane
interface were motivated from their former experiments at pending drops [122].

Orell & Westwater [166] also studied this combination of materials, but at an extended
interface. They characterized the interfacial structures as ”interfacial turbulence, chaotic and
unorganized activity”, but did not provide images of this regime. Due to this "unorganized”
appearance this convective regime received less attention and its structures are often just
termed as ”interfacial turbulence”.

Further similar observation were published from Berg & Morig’s experiments [20] of a
benzene-chlorobenzene - water system with the transport of acetic acid between phases (in a
Hele-Shaw cell). With this system, they could alter the density dependence of the phases on
acetic acid by the concentration of chlorobenzene. Especially, they compared an experiment
from type II and one from type III; they noted that no difference between convective pattern
is evident. Nevertheless, their observation for the type III regime resembled the observations
of Kroepelin & Neumann.

Fortunately, Schwarz [197,/198] paid more attention to this convection regime and pub-
lished observation in the material system cyclohexanol/water+1-propanol (see Fig type
III). For this, he reported on erratic motions of circular spreadings (german ”Spreitungen”),
which he also called eruptions [197]. These structures of interfacial convection showed a close
similarity to the dynamics reported on the ROs (Fig. of Linde but are obviously trig-
gered by Rayleigh convection. Schwarz reported such eruption for numerous systems that are
designated to type III in his doctoral thesis [198].

In a broader context, numerous authors have studied the interplay between buoyant con-
vection and the Marangoni effect. For instance, early studies on thermal convection revealed
the damping effect of dissolved surfactant [18,[55]/170,[246]. Or recently, studies (see re-
view [117]) on the localized addition of surfactants under a surface showed an oscillatory
behavior.

Similar to the eruptions in the layered systems, the coupling of buoyant convection and
the Marangoni effect manifests in droplet geometries: For instance Lappa et al. observed
structures like eruptions (they called shooting) at dissolving drops |127,|128]. Also, a com-
prehensive study of dissolving droplets has been performed by Agble and coworkers [2-4]
in binary systems. They showed that additionally introduced surfactants trigger irregular
Marangoni convection with otherwise only buoyant convection.

Despite this interest, the detailed theoretical reproduction of classically observed eruptions

Vet us roughly estimate physical parameters, to check if it is indeed of type III (Fig . Water is denser
(p<1) ~ 1kg/1) than ethyl acetate (,0<2> ~ 0.9kg/1) viscosity of the pure liquids is pV ~ 1mPas, u® &~ 0.4mPas
(from handbook [135]). The diffusivity of acetic acid in the pure liquids under infinite dilution is also found in
Ref. [135], namely, DY) = 1.29 x 107° m/s?, D = 2.18 x 10~°m/s®. The density dependence is estimated as
8p(1‘2)8c > 0 since acetic acid is denser than water and ethyl acetate. Interfacial tension decrease via adding
acetic acid do/dc < 0 [166]. As a result of our estimation, for transport (2) — (1) (the situation shown in
Fig. the system belongs to the third quadrant, i.e. type III Rayleigh unstable.
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Figure 2.5: Eruptions and solutal plumes during transport of acetic acid from ethyl acetate
into water. The shadowgraph image is reproduced from || and shows the water-rich phase.

from mass transfer experiments is still lacking. Therefore — as in the former
Marangoni case — no one-to-one comparison between experimental observation of complex
and time-dependent structures and theoretical predictions is available. Consequently, several
open questions remain:

(Rq) Is the introduced PM able to reproduce the experimentally observed structures?

(R2) What physical mechanisms are responsible for the observed eruptions?

(R3) Can we perform a one-to-one comparison between experimental observations and a
numerical simulation?

(R4) How do physical parameters fundamentally influence the equilibration process of
type 1117

In line with the proposed strategy to study Marangoni convection (Sec. , we will
study ”Rayleigh-Marangoni convection” for a realistic mass transfer system, namely, the
ternary system cyclohexanol/water+2-propanol (= isopropanol). For a similar system, ex-
perimental results have been already reported (done with 1-propanol instead of
2-propanol isopropanol). However, for the isopropanol system, detailed experimental data
has been provided by Karin Schwarzenberger and Kerstin Eckert to us.

Chapter [7] will present three-dimensional simulations and compare them to corresponding
experiments. We will comprehensively study properties of convection and especially the way
eruptions are produced. Furthermore, the variations of the initial concentration and the
disregard of the Marangoni effect (o, = 0) are addressed by parametric studies.



Chapter 3

Theoretical analysis

This chapter is devoted to the analysis of our PM equations from Sec. It is organized as
follows.

Different units are introduced to nondimensionalize the governing equation in Sec.
In Sec. a symmetry property of the PM is shown that appears in the limit of vanishing
buoyancy (G = 0), and when viscous momentum transport dominates (Stokes flow). Sec.
presents the development of solute profiles under pure diffusion in the limit of two semi-infinite
layers. Sec. [3.4] formulates the linear stability problem of a diffusive basic state. Based on
this, classical stability results are reviewed (Sec. , and new results on the stability of
the nonlinear diffusive profiles (only Marangoni effect) are derived in Sec. Section
applies these new results to a specific system and compares them to nonlinear simulations.
This chapter is finally summarized in Sec.

3.1 Nondimensionalization and scale invariance

The present section reformulates the dimensional PM (introduced in Sec. into different
nondimensional forms. The essential physical parameters that govern the paradigmatic prob-
lem are gained by measuring independent (z,v,z,t) and dependent (u(i),c(i),pg)) physical
quantities in intrinsic units. The first two choices of units show a valuable scale invariance
in the case of two semi-infinite domains, i.e. the change in the initial concentration does not
alter the nondimensional problem. After that, the basis for numerical simulations is prepared
by introducing units based on the layer height as reference length, which is in contrast to the
first two. For an independent account of nondimensional equations for our specific problem

consult Ref. [50}/164].

The PM relates fields (u(i),c(i),pg)) via Eqgs. —, describing balance laws and
boundary conditions. If an initial state X is presupposed, a unique solution X () will solve
the problem. However, in Egs. — numerous free physical and geometrical variables
appear. These depend on the peculiar physical system under study. Let us gather those prop-
erties into a set P and call them the dimensional parameters. Exemplary, these parameters
can be read up in Eqgs. — 2.19)) for example they are P = {l/(i), pgf, 00, e, €0, Ly, dV) .. g
However, not any change in the dimensional parameters P lead to another mathematical prob-
lem, which is trivially observed when doubling a. and halving o for instance since they only
appear as a product in the PM. See Barenblatt [11] for a comprehensive and general account
on this issue.
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In order to reduce the number of governing parameters in a corresponding nondimensional
problem, units are defined in terms of the dimensional parameters P. For nondimensional-
ization four basic units are chosen: length L, time T, mass M and molar concentration C
while the other units are derived (in the sense of SI-unit system): velocity L / T and pressure
M /(T?L). In these terms, nondimensional variables (with a hat) are generated by

0@ (x/L,t)T) = u(x,t)-T/L, (3.1)
¢D(x/L,t)T) = D(x,t)/C, (3.2)
B /LTy = p(x,1) - (T2L)/M, (3.3)
x = x/L, (3.4)
i = T, (3.5)

Note that the new functions, e.g. ﬁ(f(,f), are treated as a functions defined on the new
domain 2 = {x/L : x € Q} of the scaled coordinate X, and also differential operators (e.g
V,0;) are acting on this new set of independent variables. Right away, we limit our consider-

ations to a unit of mass that is related to the density of the lower layer M = pfnle)ff/?) and set

the unit for molar concentration equal to the initial molar concentration in one layer C = ¢.

With these choices, the PM is reformulated. The equations that change non-trivially, i.e.
where new parameters appear are listed in the following. For the bulk, they read

(i ~ A(0) (1) ~
Da® @2 VP p T o~
Du  aigig@l”  VPa Prep T )R 6G0)
D_E Bc g f/ (Z) + [NJZV Au ) (36)
pref
8£é(i) = —a®.ved 4 L2 DO A (3.7)
For the matching conditions at z = 0, it is
[ . (2)
Tooaco g o B 540 4+ 9,00, (3.8)
Ly pu(®)
D2
o) — (2)
0s¢ D(l)azc , (3.9)
dVH &), (3.10)

For the boundary, E| it yields

@+ Lo/L,g,2) = &D(2,9,2), (3.12)
(&, 9+ Ly/L,2) = é9(&,9,2), (3.13)
a:et) = al =all) = ag) =0 fors=-dV/L (3.14)

(3.15)

8:¢¥ = 4@ =aP =P =0 forz= d(2)/[~/7

and initial conditions read

"We omitted to write all periodicity conditions for the other variables.
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Before discussing the first set of units, we analyze the nondimensional equations whether
they can be made invariant under a change of initial concentration cg. In order to eliminate
co in Egs. — length and time have to be related to the concentration unit. Thus,
consider T o cj and L x cg, then it is sufficient for the elimination of ¢y in Eqs. — if

1+2a—b = 0, (3.17)
a—2b = 0, (3.18)
l+a—b = 0, (3.19)

hold. Tt is readily shown that all three relations cannot apply. However when one relation is
omitted, it is well possible. This leads to two subcases: pure Rayleigh and pure Marangoni
convection. For pure Rayleigh (. = 0) only Eqgs. (3.17) and have to be regarded,
which yields

f)occo_l/3,To<co_2/3:>Uo<carl/3. (3.20)

On the other hand, when buoyant effects are disregarded (B(Ei) = 0), only Egs. 1} and
(3-19) need to be considered, consequently

f/occal,foc052:>00(ca’1. (3.21)

Note that these choices generates boundary and initial conditions Eqs. — that
depend on ¢, especially, the position of the boundary (e.g. d()/ L ) and the periodicity
lengths (L, /L) change.

However, in the limit of an infinite spatial domain Q = R?, the nondimensional problem
is almost invariant under a change of ¢p, which is discussed in the next subsection for the
Marangoni case.

3.1.1 Marangoni scaling

When buoyant effects are disregarded ,Béi):O, Eqgs. 1}1' are independent of Ao =
|orefacco| for the following interfacial units

(1),,(1)
wHy
Lint = 22
nt Ao 5 (3 )
1),,1),,(1)
- pWpWy
Tine = (Ao (3.23)
A
0

This directly applies the idea expressed in Eq. (3.21)). Though, «. is not allowed to change
sig Surely, other choices are possible, e.g. v(!) could be replaced by DM,
Note that the tangential stress balance (3.8) becomes

sgn(og)dpet = =@ /M0 + o4l (3.25)
sgn(ae)dyct) = —u(2)/u(1)ﬁzu§2)+8zu§1). (3.26)

Nevertheless, the sign change of a could also be allowed, meaning a change of sign would change the sign
of nondimensional coordinates, which would complicate the discussion.
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It does not contain the absolute value of cy.

Obviously, the nondimensional domain QO changes in size by variation of L, o (Ac)™L.
Nevertheless, as noted before, we proceed by considering an infinite domain Q = R3. Thus,
boundary conditions get invariant. However, the initial conditions for the velocity field are
still involved by

Thus once a dimensional noise N is given, it breaks the scale invariance even in the infinite
case.

For example consider the dimensional noise as a sum of Fourier modes [with some fixed
expansion coefficients a(k;)]

N(x) =) a(ky)e™s™, (3.28)
J
then its nondimensional counterpart is

- 1 iKRL
N = 0 ija(kj)e kjXLint (3.29)

Consider increasing interfacial tension difference Ao and note that U, o< Ao, Lin:
(Ac)~!; consequently, N decreases and the spectrum is shifted to smaller wavenumbers. So
if initial perturbations are "relatively structureless”, the main impact (of increasing Aco) will
be a decrease of amplitude and therefore onset of convection might appear later — in those
nondimensional terms since any other terms are unchanged. However, the impact of initial
perturbations on the long-term dynamics is unclear a priori.

But the question remains, in what situations can the finitely sized system (L, L, dM d® <
o0) be approximately described by the infinite one? For the author a rigorous mathematical
answer seem rather involved since the governing equations have elliptic and parabolic prop-
erties, thus the full domain is immediately impacted by changes of field quantities, also very
far away from the interface. Nevertheless, in Ch. [p| these ideas are practically applied to the
simulations that investigate a change in initial concentrations.

Before proceeding with the system of units actually used for simulations, a last issue,
namely, the impact of buoyancy is discussed. Therefore, consider the application of interfacial

units [Egs. (3.22)-(3.24)] in Eq. (3.6]), which yields

oa® = —a®.va® — vl + Aa® — D oe,, (3.30)
- (2) @) oa@ VAL 12 _ A2
o;u = —u¥-va“w — - +vAu'Y — ¥ Mope,, (3.31)

where a new dimensionless parameter appears: the Morton number

coB) (D)3 Mg

Mo = (Ao)3

(3.32)
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The Morton number measures the relative impact of buoyant forces. Consequently, if buoyant
effects are compensated by a hydrostatic pressure

Vpgl) ~ M Moe, (3.33)

the effects of scale variance can still persist.

Finally, let us conclude with the four necessary conditions for the scale invariance under
a variation of Ac. (1) The system has to obey the PM, and the rest of parameters are
unchanged. (2) The system has to be practically semi-infinite, i.e. no outer length is present.
(3) When buoyant effects are present, the Morton number has to be constant (including
trivially zero). (4) Initial conditions have to be rescaled since they introduce an outer scale.

3.1.2 Viscous scaling

In the present section, the basis for our later numerical investigations is derived: the nondi-
mensional equations in viscous scales. The intrinsic units are based on the layer height and
the characteristic time of viscous equilibration across the layer height d¥). They read

Lvis - d(l)y (334)
This = (d1)2 /D), (3.35)

Uvis - Lvis/Tvis = T (336)

Recall that units for mass and molar concentration are set by M = pﬁ)f, C = ¢y and that
pressure is measured by P = v() pd) / (d(l))Q; furthermore, dynamic and kinematic viscosity

are coupled via the reference densities p(9 = pffg v,
The nondimensionalization [i.e. application of (3.1))-(3.5))] yields the following equations
in the bulk

ga = —a®.va® - v + Aa® — éMge,, (3.37)
v-a) = o, (3.38)
90 = —a®.va® - ;Wf) +vAa® — é2Gge,, (3.39)
v-a® = o, (3.40)
~ 1 -
A g g LA
Oy = —u"/-Ve +SC(1)AC ) (3.41)
N D .
o@D — _5®@ . ga@ 2(2)
0;¢ a'” - Ve +Sc(1)Ac . (3.42)

No-slip and impermeable boundary conditions are imposed for the solid walls at the bot-
tom and top:

9:¢M = ) =4V =a) =0 for 2= -1 (3.43)
0:¢? = 4P =P =aP =0 for z=d. (3.44)

The matching conditions at the plane interface (£=0) are:

a =a, A =aP), o) =a® =0, 0:¢) = Doz, HeW =@, (3.45)
Ma Ma
Ma g )~ 5.4 1+ 5.0 ) — 0.0 4 9.a®)
Sc(l)ﬁzc = —uozuy” + 0z, Sc(l)ayc = —pozty” + 0zt . (3.46)
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Periodicity is enforced by

D@+ 10,9, 2) = éD(&,9,2), D&, §+1,,2) =D (2,7, 2), (3.47)
PO + 10,9, 2) = P2, 9,2), Y (8,9 + 1y, 2) = DY) (8,9, 2), (3.48)
A& + 1y, 9, 2) = 0D (2,9, 2), aD(&,9+1y,2) = ad (2,7, 2). (3.49)
Intial conditions for transport (1) — (2) are
at = a® =04 N(xdW) /Uy, (3.50)
M =1, ) =o. (3.51)

Still we let the initial velocity perturbation A unspecified.

Several nondimensional parameters arise in these equation; Tab. lists them. The
physical importance of the Marangoni number Ma and the Rayleigh number Ra = G SelV)
as a measure for the expected convection strength was already noted in the previous chapter.
Let us note that due to the boundary conditions that describe the system as closed, the layer
heights may have low impact on the dynamics, when convection and mass flux is mainly
restricted to a zone near the interface. Such a situation will be called a deep layer regime in
the following.

The essential nondimensional parameters 75, i.e. the minimal set of governing parameters
for a unique definition of the nondimensional problem is given by

P ={G, 5V Ma,H,p,v,D,B,d,1,,1,}, (3.52)

being eleven in number. This is a seemingly large parameter space, though several constraints
may be noted: (1) In the later course, we will restrict to equal layer heights d = 1 and
mostly to situations with a square base I, =1,. (2) We aim to study situations with a large
base, i.e. when the system state X exhibits some internal translation invariance X (%) ~
(X (%4 (e, + pey))e with some A,y < Iy, ly, at least in the sense of an ensemble average. (3)
Also, parameter space is constrained by focusing on liquid/liquid system in this work. There
ratios of diffusivity D = D® /D) and ratios of viscosities v = v(?) /u(1) are approximately
linked by the Stokes-Einstein relations, i.e. D® ~ 1/(y(i)pf,2f) [52,/70]. (4) The Schmidt

number in liquids is usually large Sc¢(® > 1000.

3.1.3 Diffusive scaling

For completeness, we will give the equations when the nondimensionalization is based on a
diffusive time. It is presented here because of its frequent appearance in literature as well as

its application in linear stability analysis.
Relative to equations in viscous units (Sec.|3.1.2)), the viscous time Eq. (3.35) is replaced
by the characteristic time for diffusion in the lower layer:

Taigs = (dM)?/DW. (3.53)
Consequently, the unit for velocity changes accordingly

D)
Uairy = Laiss/Taiss = —ay (3.54)
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dimensionless quantity definition
(1) L3
Grashof number = coBe gL~
(V)2
(1)
Schmidt number in (1) Seh) = %

. N Coaco-refL
Marangoni number Ma = 7p(1)y(1)D(1)
partition coeflicient H = cg]) / c(e;)

!
density ratio =0
(2
kinematic viscosity ratio V=0
)
diffusivity ratio D= e~
d%)
layer height ratio =0
/3(2)
solutal expansion coefficient ratio (= %
Be
horizontal domain size lp = Ly/dV
horizontal domain size l, = L,/d"
@D 73
- _ G5y — 0B gL”
Rayleigh number Ra=GSc y(l)D(Ql)
v

Schmidt number in (2)

dynamic viscosity ratio

2 = gcM) = —
Sc ScYv/D )

p=vp

Table 3.1: Nondimensional parameters, the last three depend on the parameters above.
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Relative to the presentation in Sec. the following equations change:

oa® = —a®.va® — vt 4+ M Aa® — e RasWe,, (3.55)
902 = —a?.va® - ;w)g + ScWpAa® — 6@ Rap ScWe., (3.56)
9;¢M = —aW.vel® 4 Agl), (3.57)
9;¢» = —a®.ve® 4 DA, (3.58)
and in the matching conditions (£ = 0)
Madzet) = —pdsal® + osal)), (3.59)
MadyeV = —pozal) + ozal), (3.60)

Here the Rayleigh rather than the Grashof number is used for brevity.

3.2 Symmetry of motion for Stokes flow

In the course of this work, it will turn out that convection, in the chosen sample system, is
in the Stokes flow regime, i.e. viscous force outweighs inertia. In this regime, the momentum
balance can be reduced to the time-independent Stokes equations. By additionally neglecting
buoyancy terms (G = 0),these Stokes equations read

0 = —vp +Au®), (3.61)
0 = —Vp£l2)—|—uAu(2), (3.62)

in viscous units with hats dropped.

The analysis of Stokes equations — with boundary conditions — re-
veals that the flow governed by these equations possesses a mirror symmetry at the interface
for equally sized layers d = 1. This mirror symmetry is expressed for z > 0 by

u(l)(x7y’ _Z) = —ug)(l’,y,z), u(xl)(‘rvy’ _Z) = u(x2)(1:7y7 Z)7

1

ul) (@, y,—2) = u{P (2, y, 2) (3.63)

or with the Cartesian tensor T' = e e, + e, e, — e.e, expressed as
T-u(T-x)=u?(x) for z >0 (3.64)

A proof of Eq. is sketched as follows: Consider a solution is known for the bottom
pl(jl)(x),u(l)(x) layer. Then insert the proposed velocity in Eq. . We find that
the pressures are related by Vpgf) = uTVpEll)(T - x) by using Eq. , therewith indeed
the proposed velocity solves Eq. . Furthermore, the proposed velocity field obeys the
boundary conditions that are periodicity, no-slip at the bottom and continuity at z = 0.
These condition are simply enforced by . Consequently, by explicitly constructing a
symmetric velocity field in layer (2) from any solution in layer (1), it follows that any solution
of the given problem obeys the mirror symmetry.

Furthermore, note that these arguments fail for G # 0 because — in this case — the
concentration fields appear in the momentum balance. By this, we can not construct the
pressure gradient in the layer (2) if curl(c®(x)e,) # 0.
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The consequences of this symmetry property are twofold: Firstly, results from a full
simulation may show this interesting behavior; therefore, this relation can be used to check
the numerical code and enriches the interpretation of results. Secondly, when Stokes flow
with G = 0 is assumed, the Stokes equations have top be calculated in one layer only. This
reduction is possible since the boundary condition can be reformulated with the help of
Eq. , thereby saving numerical cost. Also, note that for Stokes flow, several semi-
analytical methods exist [179,227], especially useful for moving boundary problems.

3.3 Equilibration under pure diffusion

When fluid motion is absent u(® = 0, then solute spreads by molecular diffusion only. In this
case, the dimensional governing equations reduce to

&:C(l) — DWAD for —d® <« 2 <0 (3.65)
2e® = DOA for 0 < 2 < d®), (3.66)

Initially at ¢ = 0, it is assumed that solute is present only in the top layer,
M =0, @ = (3.67)
Furthermore, the matching condition (at z =0 ) are
0,cVDW = 9,ApR - MH =) (3.68)
and no flux concentration boundary conditions are
9.V (z = —dM) = 0.c?(z = d?) = 0. (3.69)

An exact solution of this problem might be derived by Laplace transform methods (cf. Ref.
[43./77] for solutions of similar problems), which typically leads to a series expansion of the
solution.

However, a simple description can be obtained by considering two semi-infinite layers, i.e.
the limit of dY) — 0o, d? — co. In this case, a solution of the two layer diffusion problem
is known [51,233] by[l"]

1 z
@ - - - -1p=05 _c
c 1+ H-1D-05 [1 +H D erf (2 tD(2)>] o, (3.70)
1 -z
o - - |1 -z
c RN [1 erf <2 tD(l))] co, (3.71)
with D =D®/pW), (3.72)

Note that concentration only depends on the vertical coordinate z and time t.
These functions may approximate the solution for finite heights dV),d® for early times,
when the mixing has propagated only a small distance compared to the full layer height. In

Note that the errorfunction erf yields value erf(0) = 0 and erf(+00) = +1; the complementary errorfunction
is defined as erfc(x)=1-erf(x)
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order to estimate an upper time limit for a valid approximation, we consider how positions
of constant concentration develop over time. Therewith, the upper time limit is found by
requiring that a small change from the initial concentration value be still in the proximity of
the interface. If the system is in such a state, it is in a deep layer regime.

Formally, consider a given concentration C (should only deviate slightly from the initial
concentration ¢) and time ¢: the position z = —d, for which ¢V (z = —4,,t) = C is §, =
K2VtD( with a constant K depending on the special choice of C [cf. Eq. (3.71)]. Note
that we assumed a faster diffusion in layer (1), D > D®)_ The unknown constant K is
calculated by the inverse of the complementary errorfunction

K =erfc! [C/eo (H + D7P)]. (3.73)

Finally, the time such that this perturbations C has not travelled more than a distance of

dM /a from the interface is
2
d® 1

Transport from layer (2) to layer (1) in viscous units: The transport from the upper
layer (2) to the lower layer (1) can also be expressed in viscous units. Quantities in viscous
units are related by

D =eey, 2=2L, t =HLM)?2/ M), (3.75)

see also Sec. Carrying out this replacement from dimensional to viscous quantities in

Eqs. (3.70)3.71)) yields

1 -
OO S P (3.76)
C er .
1 R Y
Ht —o 2,/i/5c)
1 1 :
@ = 1 erf | ———=— |, (3.77)

1 HDO'5 n 1
1+W 2\/tD/SC()

The mol per interfacial area that are transferred from one phase to another at time ¢ is

[t
2 -
Scll) (3.78)

A (5 P\ s —
(2, t)dz =
/[07_00} D8 = 005y v

given by

The interfacial concentration gradient is given by

0.5
)5 =0,4) = D (3.79)

(1+ HDO5)4/tr/Sc)

9,e1
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Transport from layer (1) to layer (2) in viscous units: In preparation for future
applications, the diffusion from the lower layer (1) to the upper layer(2) is written out in
viscous units.

Carrying out the replacement from dimensional to viscous quantities in Egs.
and accounting for the changed transport direction yields

1 —Z
(1) 0.5
M= ———— |1+ D" Herf , (3.80)
L+ D% H 2, /1/5c)
RO N 1—erf | ——2 . (3.81)

- 0.5 ~
1+ D%°H 2\/Di/Sch)

Furthermore, the concentration gradient at the interface reads

DOSH

(14 DO5H)/7t/ScD)

(3.82)

Exemplary calculations: To show an application of the developed formulas, a specific
example is discussed next. In Ch. [7] the transport of isopropanol is studied. The relevant
material properties are Sc())=1348, H=1.6, D=0.082. Therefore, we apply relation
(now adapted to viscous units and the changed direction of transfer) and compare it to the
numerical solution (see Ch for numerical method) of the finite model. Therefore, take
C = 0.99¢p and « = 2 for instance. Since layer (1) has higher diffusivity, analysis is focused
there. Firstly, we calculate the auxiliary constant: K = 1.52. Therewith, the maximum time
for which d. < 0.5d1) holds is

A 1)°
i<(=—=) S ~36.56 3.83
< (M> c , (3.83)
where Eq. (3.74) has been applied and transformed to viscous units.

Fig. [3.1(a) displays the relative error of the infinite model approximating the finite case
in terms of the concentration gradient at the interface

({)ch)) z=0)— 820(1) L (z=0
e= ( (3) finite(* = 0) (3.84)
0,c (z=0)

finite

Observe that, in this case, the relative error is lower than 10~* for ¢ < 150 and that the finite
case is overestimated by the infinite one. So, the time calculated with Eq. served as
a conservative estimate for applicability of the infinite layer model. Additionally, Fig.
(b) shows the mean concentration in layer (2) normalized with the concentration in global
equilibrium cé?]) = H/(H + 1) as function of time. Note that at ¢ > 10000 more than 95%
of the potential solute has been transported across the interface. In fact, the diffusive time
scales of layers are Sc(!) = 1348 and ScV) D=16438.



29

1
0 e l/.//”
10 B 08| T
o ‘/'/ '/'/
o Vs N 7’
g : =S 06} o
) / >
= I 5 04l ¢
° | I !
= !
i n
104 ' 0.2 i
I P — diffusion-finite
0 N N N N
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000
Time Time

Figure 3.1: Diffusion of solute from layer (1) to (2) in viscous units and Sc(1)=1348, H=1.6,
D=0.082: (a) error of the infinite layer model according to Eq. (3.84]), (b) averaged concen-
tration in the finite model normalized by global equilibrium value.

3.4 Neutral linear stability for the pure Marangoni case

As discussed in Sec. the PM with the ideal/unperturbed initial condition,

u) = u® =0, (3.85)
M=1 =0 (3.86)

permits a simple, quiescent solution for which solute is transported by pure diffusion only.
In experiments, convection is though observed. Commonly, this is theoretically accounted
for by the uncertainty of the initial states, i.e. a perturbation to the ideal initial state. In
the following section, we derive the marginal (also called neutral) stability threshold for a
system of two semi-infinite layers without Rayleigh effect (Ra = 0) and for stationary (non-
oscillatory) perturbations. This is done for two concentration profiles:

(1) We start with the common linear profiles, used by Sternling & Scriven [219] in
Sec. The calculations will reproduce their central result for the PM. Thus, it leads
to an exact and closed-form expression for the condition of marginal stability. This is in
contrast to most other problem settings, where the solutions demands a numerical treatment,
especially when Rayleigh and Marangoni effect are included in parallel — even for the single
layer problem, cf. classical work of Nield [165].

(2) We will replace the often studied linear concentration profiles by the more appropriate
nonlinear, time-dependent profiles in Sec. [3.4:2] In order to still obtain a closed-form stability
threshold, the time evolution of the basic state is treated as decoupled (frozen in time) from
the time evolution of the perturbations. A discussion of this stability results is postponed to
the subsequent Sec. where we combine these analytical results with an exemplary solution
of the full equations.

Generally, the issue of stability in the two-layer setup has been studied thoroughly by
former authors with different physical effects included, see [50,{164] for an overview. In fact,
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stability results for two finite layers with linear basic profiles were performed in: Ref. [217](de-
formable interface), Ref. [96](with Rayleigh effect included) and [184] (deformable interface
and also oscillatory modes). Recently, also time-dependent and nonlinear basic states received
some interest. For this see the paper of Sun [222] and references therein, which however mostly
rely on a ”Biot boundary condition” for the solute transport at the interface, since they are
tailored to a liquid/gas interface.

One study of a nonlinear basic state in the full two-layer setup has been performed by
Gross&Hixon [83]. However, they used different initial and boundary condition, i.e. initially
zero concentrations in both layers with a fixed concentration at the boundaries. There are
also linear stability analysis that included the effects of adsorbed surfactants [39,214] and
heat of solution [173}[215,[216].

For the stability analysis, we will work in diffusive units Tg; sy = (L2 /DM L, Py i =

1) (p)y(2)
p”f(T), C = c¢p, while keeping the unit for length L unspecified. Perturbations are

represented by normal modes [45]

uld (z,y, z,t) = w9 (2) exp(ikyx + ikyy + ot), (3.87)
D (x,y, z,t) = 09)(2) exp(ikyz + ikyy + ot) + C9(z,1). (3.88)

The profiles C?)(z,t) are the basic state (solving the PM in the quiescent case). Qunatities
ks, k, are arbitrary wavenumbers with k = /k2 + k:g being their magnitude; and o is the

generally complex growth rate (although later it is assumed as real valued).

We restrict us to high Schmidt numbers and zero buoyancy Ra = 0. In this case, the
perturbations are governed by the time-independent Stokes equations, i.e. Eqgs. , ,
which are further simplified by taking twice the curl. This yields

= (= k) w0, (3.89)
= (42— k)%®. (3.90)
The derivative with respect to the z-coordinate in the "profile functions” [w?)(2), 01 (z), CU)(z,1)]

is denoted by d.. Including the perturbation ansatz in Eqgs. (3.57)), (3.58|) and afterwards lin-
earizing around perturbations yields

oV = —wMd,cW(z 1)+ (d,2 - K)o, (3.91)
o0V = —w®d,0¥(2,t) + D(d,2 — k*)0?. (3.92)

Note that the exponential ansatz in time is only formally admissible if the basic state C()
does not depend on time. Nevertheless, the basic states are used with time ”as a parameter”;
thus, it is assumed that the basic state is frozen in time compared to the time evolution of
the perturbations.

The matching condition for the perturbations at z = 0 read

HoW — 9@ = 4,60 — De?)) = 0, (3.93)
pd,2w® — d, 2w = —Mak?6W, (3.94)
w® = w?® =0, dyw® = d,w?. (3.95)

In the present section, the Marangoni number is understood with the unspecified length

L
scale L, thus Ma = %. The velocity perturbation equations (3.89)),(3.90) permit a
pMy
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general solution by
wD(2) = W exp(—kz) + D exp(kz) + Dz exp(—kz) + d¥ z exp(kz) (3.96)

with eight constants depending on the boundary and matching conditions, thus in turn on
wavenumber k and time of the basic state ¢. In the next sections, we will specify boundary
conditions and the basic profiles C)(z, t).

3.4.1 Steady basic state

The finite system is approximated by two semi-infinite layers. Thus, boundary conditions
alter to the assumptions that dependent variables are bounded at infinity or even decay to
zero, i.e.

w(z = —00) = 0, w?(z = +00) = 0,

0 (z = —00) = 0, (2 = +00) — 0. (3.97)
By means of these condition and the continuity of velocities Eq. (3.95)), the free parameters
in the general solution of vertical velocities Eq. (3.96]) are determined and incorporated into

the solution:
wM(z) = Kzexp(kz) and w® (2) = Kz exp(—kz), (3.98)

where all eight constants were reduced to one free constant K.
The basic concentration profiles C(")(z,t) are assumed linear with slope m in layer (1).
They read
9.C") = m and with regard to Eq.([3.45) 9,C? =mD™1, (3.99)

This together with the derived velocity disturbances is plugged into the equations for concen-
tration perturbations [Egs. (3.92)-(3.92))]. Taking o = 0 yields

Kzexp(kz)m = (d,?—k*)oW, (3.100)
Kzexp(—kz)mD™' = D(d,? — k%)@, (3.101)

These Eqgs. (3.100)),(3.101)) are solved by
(—z + k:zg) Kmek?

1 kz
oW (z) = =0y + e : (3.102)
(3.103)
DV 2 —kz
0D (5) = e kegy, 4 (ZETKZ)Kme (3.104)

4k2D?

Here, the terms unbounded for z — +oo are disregarded right away, resulting to two free
constants C1,(Cy. As a next step, the Henry condition relates the free constants by
Cy = C1H. The continuity of mass fluxes gives: C1 = Km(—1+ D)/(4DK*(DH +1)).
Concentration perturbations (with determined free constants) are

Km(—1+ D)e*  Kme" (—z + k2?)
4k3(DH + 1)D 452 ’
HEm(-1+ D)e ™™  (—z — k2%)Kme™**

@(y) —
() WB(DH+ 1D 4kD? ' (8-106)

(3.105)
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In the last step, the Marangoni condition ({3.94]) provides the condition for marginal stability,

which reads as follows
8k%(1+ w)D(DH + 1)

(—1+D)
while K is canceling out due to linearity. Recall that the choice of L is arbitrary. It cancels out

when we state the neutral curve with a dimensional wavenumber k& = k/L and dimensional
concentration gradient m = mcy/L

mMa =

(3.107)

maeorer  8k*(1+ p)D(DH + 1)

p(l)y(l)D(l) B (_1 + D) (3108)
or with the wavelength \ = 2 /k
< M1 pMg(1 D(DH + 1
o, PV 8(1+wD(DH +1) .
(_1 + D)macgref

Finally, the parameter range to satisfy Eq. (3.108) is discussed. Since k is an arbitrary
positive number, only the sign of the right and left-hand side have to equate. Since most
parameters are positive and appear as a simple factor, instability requires

sign (—1 4+ D) = sign (am) . (3.110)

For example, when transfer is from (1) to (2) m < 0 and solute decreases tension a,. < 0,
then for instability it is required that D > 1; thus, layer (1) should have a lower diffusivity.
By this, the onset of convection depends on: the mass-transfer direction, the solutal effect on
interfacial tension and the diffusivity ratio. One may conclude that for most classes of solute
¢ < 0 holds, and by this, stationary instability appears for the transport out of the phase
with lower diffusivity.

3.4.2 Non-linear basic state: frozen time analysis

In the present section, the basic state on which perturbations evolve is changed to the non-
linear semi-infinite layer solution (Sec.|3.3). On this basis, the neutral curve is developed.
The basic state [for transport (1) — (2)] from Egs. (3.80)),(3.81) is adapted to diffusive

scales; it reads
= (14 D" Het [ = 3.111
1—|—D0-5H< + er <2\/i>>’ ( )

H z
2

Actually, we only need the vertical derivative m

a,0M = TTDYHE e e T, (3.113)
— 22
9,C? = il ! Dt . (3.114)

T 1+ D%H aDio

VRecall that for constant B it holds that d,(erf(Bz))= 2Bexp(—B®2?)/\/x
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These profiles are inserted into the perturbation equation (3.91)),(3.92)), which results to

—-DH 1 22

K k ' o= (4,2 -k 11
zexp( Z)D0~5 T DH T = ( )0+, (3.115)
Kzexp(—kz) bt = D(d,” —k*)0'?. (3.116)

D0-5+DH.\/He !

where the time ¢ in the basic profiles is treated as a parameter; this time is ”frozen”. Alter-
natively, the perturbation would not grow exponentially, as was supposed and one is forced
to proceed with other methods of hydrodynamic stability theory [195], which usually demand
a numerical treatment.

Let us proceed with the following abbreviation,

HK 1
A= . . 3.117
D5 L DH /nt ( )
By using Eq. (3.117)), Egs. (3.115)),(3.116)) simplify to

z2
—ADze mt = (4,2 — K?)oW), (3.118)

z2
—Aze"ipi ** = D(d,? — k?)0®. (3.119)

Note that the reversed direction of transport (2)— (1), can be obtained by replacing

Eq. (3.117) by
ATev — —-K 1

_D0'5—|—DH'\/H‘

Equation (3.120)) is deduced by using the concentration profiles of the reversed direction
Eq. (3.79).

(3.120)

The general solutions of Eqgs. (3.118]),(3.119) read as follows

0V (z) = e **C; + M Cy — 2 AD 132 /mert (W’L)e—kzﬂ K (3.121)

z+4kDt
2v/ Dt

Now, more care has to be taken with the boundedness at infinity, i.e. condition (3.97)
since two terms diverge. Nevertheless, constant C; and C'5 can be chosen properly, e.g.

02 (z) = ekzcg+ekzc4+2A@t3/2ﬁerf< >ekz+4k2Dt (3.122)

Cy = 2ADt3/?\[re'*’t, (3.123)

Consequently, perturbations are further specified by

—z+4kt
0 (2) = ek*Cy + 2 AD3/2/rrerfc (Z;\_/%>e_l"’ZJr4 Rt (3.124)

02 (2) = e 20y — 2 AVDI3/ 2 /merfc <Z+24\/1%'%> ks AR DL (3.125)
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where the complementary errorfunction is used, erfc(x)=1-erf(z). Next, the Henry condition
(3.93)) relates Cy as a function of Cy by

Cy = HCy +2 AD £3/2/merfc (2 kﬁ) AR 19 AV D2 /rerfc (2 k:\/D)f) DL (3.196)

and the continuity of mass fluxes (3.93) are used to determine C5 as a function of physical
parameters only

A (kD263/2 frerfe (2kv/T) o4 ¥ H + 2 D3/243/2 /rexfc (2kv/DE) ket KDt — D ¢3/2 /rerfe (2 ki) ket ¥t
k(DH+1) ’

Coy = -2
(3.127)

Finally, the Marangoni conditions ([3.94)) is applied to Eqs.(3.124)),(3.125) and constants
are included in order to derive the neutral curve Ma(k,t):

—(1+p) (DH +1) (D*° + DH)
2Hkt (4 P1D32(1 ~ exf (2kv/DVE)) — Det*t (1~ Derf (2kv7)) )

Ma = (3.128)

with the definition for A inserted. This expression is written in a more compact form by

introducing the similarity variable
n =kt (3.129)

namely

k(1+p)(DH +1) (D% + DH)

Ma = 2Hn D [e*nerfc (2 /) — e*1P D/ 2erfc (2+/nD)]

(3.130)

Relation can be regarded as a function for the marginal Marangoni number
May,(p, k,t) depending on time t (at which basic state is taken), wavenumber k and the
tupel of material-property ratios p = (u, D, H). As noted in the beginning, the current
problem has to be independent of the chosen length unit L. This can be readily checked by
introducing dimensional time = tL2/D®), wavenumber k = k/L and the similarity variable
n = k%DM in Eq. as consistency check. Consequently, from the independence of
L (which is equivalent to principal of scale invariance discussed in Sec. the following
relation holds

Map,(p,t,k)/s = Many(p,t-s? k/s), VseRF. (3.131)

Here, the factor ”s” can be intepreted as a change of the arbitrary length unit according
t0 Lpew = Lold/s'

This relation is useful, to determine unstable Marangoni number in time-wavenumber
space from a known marginal point by a simple transformation. For instance, consider a
marginal point (t*, k™) for a specific Marangoni number Ma™, then it holds that

Mat = May,(p*,t7, k™). (3.132)

From Eq. (3.131)), we infer that for any s > 1 the point (t* - s2, k% /s) is the marginal point
for Marangoni number of smaller modulus Ma™/s. Thus, we can deduce that the full curve,

(tt 5% kT/s) s> 1 with constant p™, Ma™ (3.133)
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represent unstable conditions. With this, we followed standard reasoning of stability theory.
Formally, one might show that for this Marangoni number Ma™, the growth rate o has a
positive real part.

The relation implicitly provides a set of marginal times and wavenumbers (kyy, t,,)
for a given set of physical parameters, i.e. p, Ma. To plot these pairs, is rearranged
as follows:

- (1+p) (DH +1) (D" + DH) L\
m = 2H\/77D[e4nerfc(2\/ﬁ)*e4nDD1/2€rfc(2\/niD)] e

A valuable information, we like to derived form , is the smallest time for which in-
stability might be observed. Unfortunately, we were not able to derive the position (7.) of
the minimal time, i.e. Oyt (ne, p, Ma) = 0, in a closed form expression. Therefore, it is
proceeded with a specific example which treats Eq. numerically. Nevertheless, as a
further step (not developed here), Eq. might be expanded for n — 0, co.

(3.134)

3.5 Application of linear theory

In the current section, the just derived stability results [Eq. ] are applied to a specific
system and compared to fully nonlinear simulation.

Therefore, let us choose the following |Z| set of physical parameters: D = 0.082, H = 1.6,
Ma = 1.69-106, = 20.74- 0.96, v = 20.74, p=0.96, ScV) = 1348.3, G = 0. The marginal
times, according to , are plotted in Fig. [3.2(a) as a function of the similarity variable
7. From this data the marginal curve (t,,, k) is derived by the definition of the similarity
variable (3.129), i.e.

(tn (s Vo) /1) (3.135)

and plotted in Fig. [3.2(b). This figure shows the instable region (ruled area) with instable
curves according to . The smallest marginal time — noted as critical time t. — is
approximately ¢, = 5- 1078 with a wavenumber of k. = 1420.

A general problem in the interpretation of this data is that the basic state may change
significantly faster than the disturbance grows since this has been ignored by the ” frozen time”
assumption. Some additional evidence to judge if convection sets in is provided by defining a

concentration boundary layer depth 50? and comparing it to the unstable wavenumbers by

27/ 50?). These boundary layer widths [for a transport (1) — (2)] are defined by

@)

2) (s

5t B Dtr, (3.136)
W _ 1=(W),

de;’ = |<azc(1)>s| =tm, (3.137)

here the basic state , has been inserted. Both of these length scales are included
into Fig.|3.2(b) (circles and diamonds), they pierce the instable region at times that are higher
than the critical time. Before that, the wavelength of growing modes is larger than the size
of this boundary layers.

VThis is motivated by the isopropanol system used in Ch. E with a reversed a. however. Already used in

Sec. @
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Figure 3.2: Marginal stability results for the sample system (parameters introduced in the
text): (a) Marginal time versus similarity variable according to Eq. (3.134]) and (b) versus

(a)

wavenumber according to Eq. (3.128§)).
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Figure 3.3: Full simulation in 2D domain, material parameter are given in the text, numerical
parameters are [, = 0.2,1, — 0, N, = 1024,]\72(1) = 128, NZ(Q) = 256, Otmaz = 7 - 10710,

(a) Shows root mean squared velocity 1/2 <\/(u(1) cuM)y,, + \/(u(2) . u(2)>myz> with onset

times (defined in the text) ¢, = 3.05-1079,2.81-1076, 2.97.1076 and ¢,3=4.81-107%, 3.73-10?,
2.79-107° — in the order of increasing initial amplitude, respectively.
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wavenumber according to Eq. (3.143|) by means of interfacial concentration.
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These predictions from linear stability analysis are now compared to full simulations of the
PM in a 2D domain for three different cases. Each case is initialized with a random velocity
field (resembling white noise), where each case has a different initial amplitude and velocity
fields are uncorrelated between the various simulations. The general approach for setting the
initial conditions is noted in Ch. Bl

As far as the general situation is concerned, no canonical definition of ” convection onset”
and ”characteristic wavenumbers” of structures is available. Thus, to define an onset of
convection let us focus on the root-mean-squared (rms) velocity of both layers w,s(t), which
seems most appropriate to us. Fig.[3.3(a) shows the results for the three simulations.

Now, different kinds of onset times can be defined. Firstly, the earliest time t. is taken
for that rms velocity is growing, i.e.

dttrms

Fral Q) (3.138)

te1 = min{t: 0 <

These times are drawn as a crosses in Fig. [3.3|(a). It is approximately ¢, ~ 3 -107° for all
three, so, it changes only slightly with initial amplitude; compared to the linear prediction
t. = 5-107%, it is distinctly later. However, it is in the time range when concentration
boundary layer width cross the instable domian (see Fig. [3.2)).

The difference in times may result from the interplay of stable modes that were damped
(being introduced by initial perturbations) and some unstable modes that were growing. The
time when growing modes outperform damped modes can not be predicted without the initial
distribution of modes is known. Therefore the definite time t.; may critically depend on the
initial distribution of modes in the perturbation. Between cases, the qualitative distribution
of modes (normalized amplitude per wavenumber) are supposed to be similar since they are
generated by the same random variable.

Another possibility to characterize onset — clearly later in time — is the time t.o when the
positive growth rate has its first (local) maximum, i.e. an inflection point

A% Upns(tea) /At = 0. (3.139)

This location in time .9 is maybe more related to an experimentally observed onset, but was
observed to be not robust (in the sense that it reflects a similar ”convective state” for our
problem). Therefore is is not included in the figures.

A third choice is the first time (excluding ¢ < t.1) when rms velocity is maximal

te3 = min{t : dtyms(t)/dt = 0 A d®upms(t)/dt? < 0}. (3.140)

These times are drawn as a circle in [3.3(a). At this time (if at all) convection is definitively
observable in an experiment. It clearly decreases ( t.3=4.81-107°, 3.73-107°, 2.79-107°) with
increasing initial perturbation strength. This behavior gets obvious by observing the evo-
lution of the rms velocity in Fig. [3.3[(a). The initial net damping of modes and subsequent
growth appears with a similar (between cases) exponential growth rate.

To quantify the length scales of structures, interfacial concentration c(l)(:v,y,z =0) is
analyzed. Namely, a characteristic wavenumbers kqyq(t) is calculated by a weighted mean
of wavenumbers that uses the square of corresponding Fourier coefficients. Formally, for a
generic function Q(z,y,t), the discrete Fourier coefficients are computed by the values given
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at the discrete points z,, ym

Np—1Ny—1
A 1 —ikeTn —1
Qkas ky,t) = 57 ST N Q@ ym, t)eFeonemikuun, (3.141)
xlVy

n=0 m=0

with the set of wavenumbers used in the numerical scheme (see Ch. 4| for details). From this
amplitudes, an averaged powerspectrum Ha(k,t) is calculated

HS (k,t) = > 1Q (K, Ky, )], (3.142)
A /k%Jrkge[kig]

and a dominant wavenumber is identified by a weighted average kqug,

_ S HE(k )k
S H (k1)

Fig. [3.3(a) shows the time evolution of kf,, for the three cases. Overall, the range of
wavenumbers is in line with the predicted range from the linear analysis [Fig.[3.3(b)]. All three
cases show a similar behavior: around ?.; the averaged wavenumber is slightly decreasing,
while around t.3 (which is shifted between cases) wavenumbers drop steeply due to nonlinear
effects of strong convection. After the definite onset, all three cases show similar wavenumbers.

k() (3.143)

3.6 Conclusion

Let us shortly summarize the main points of this chapter.

(1) In the first Sec. the PM equations are nondimensionalized with different units.
Under the assumption that no outer scale influences the evolution (i.e. the system consists
practically of two semi-infinite layers), the mathematical problem will be invariant under a
change of initial concentration if only Rayleigh or Marangoni effect is present. Consequently,
changes in concentration can be accounted by a scaling of units: for the Marangoni case
(G =0)

Loceg!, Tex cg? = U x ¢, (3.144)

and for the Rayleigh case (Ma = 0)
I~/o<cal/3,To<c(;2/3:>l~]o<ca'l/3. (3.145)

Although these relations are no novel ﬁmdings{ﬂ7 a rigorous discussion appeared valuable to us,
especially, in the view of simulations in following chapters. Nevertheless, since layer heights
are generally important parameters, viscous units that measure length in multiples of the
lower layer height were introduced. In this units, the essential non-dimensional parameters
are identified and introduced in Tab. Bl

(2) In Sec. it is shown that if inertial effects can be neglected (Stokes flow) and buoy-
ancy effects are absent (G = 0), the velocity field is mirror symmetric to the interface (in the

VIFor example, Blair&Quinn [27] noted these relations and used them to analysis the onset of convection for
varied initial concentration
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framework of the PM).

(3) In the case of two semi-infinite layers and zero motion u = 0, the PM obeys a solution
of closed form (Sec.[3.3]). The solution for this purely diffusive transport is presented for both
directions of transport. Although, this is a classical result [51], we outlined it in detail owing
to its frequent application in this thesis.

(4) In Sec. the onset of convection (for G = 0) is analyzed in terms of the linear
stability of the pure diffusive evolution (i.e. the basic state). Classical results were reviewed,
and the central finding of Sterling&Scriven [219] for marginal stability was reproduced in
detail.

Based on this, we performed a novel linear stability analysis of the time-dependent, nonlin-
ear concentration profile. The dependence of the basic state on time is regarded as decoupled
from the time on which perturbations are evolving (frozen time). Under this assumption, a
closed form expression Eq. for the conditions of marginal stability has been derived.
This relation shows that the basic state is stable for early times and that the range of unstable
wavenumber grows with time.

Let us note that this analysis could be naturally extended by: assuming a finite systems
in line with the analysis in (83| (they used a different basic state) and by relaxing the frozen
in time assumption by more sophisticated non-modal methods [110L{195] of stability analysis.

(5) In Sec. these predictions are applied to a specific system, for which a nonlinear
simulation was carried out. The comparison leads to the conclusion that the predicted times
(of linear analysis) might be considered as a lower bound for an observable time of onset.
Furthermore, it was observed that onset time f.3, crucially depends on the initial strength
of perturbations. Furthermore, if one requires that the width of the concentration boundary
layers being comparable to the unstable wavelength, then a better match between the linear
prediction and the start of net kinetic energy growth was observed.



Chapter 4

Numerical methods

This chapter presents the numerical method used to solve the PM in viscous units, stated
in Sec. A pseudospectral method is employed. It has been developed for previous
investigations of thermal interfacial convection by Boeck and co-workers [28-30]. Since this
numerical scheme is well established, tested and only marginal changes in the main proce-
dure were necessary; only a minimal amount of information is provided here to describe our
numerical methods (see also thesis of Boeck [31] for further details). A general treatment of
pseudospectral discretization methods and their application in the realm of fluid mechanics
can be found in the classical book of Canuto et al. [42] or from Peyret [176].

For the current application, the temperature (relative to [29]) is replaced by the concen-
tration field with its jump condition at the interface. Additional, de-aliasing was applied for
the horizontal directions, i.e. expansion coefficients related to wavenumbers k; or k, bigger
than three fourth of their maximum absolute value were zeroed. To account for the tran-
sient features of the equilibration process, an automatic adjustment of the time-step size is
included. This adjustment is included to account for the reduction of concentration difference
over time, which is in contrast to the fixed forcing used in Ref. [29]

Furthermore, the increased problem size was accounted by including new output rou-
tines, which enabled a parallel input/output for full snapshots and new routines for saving
visualization files in a binary format to save disk space.

The numerical scheme is programmed in the C language, and beside a few simulation done
at FZ Jilich (NIC), computations were carried out at the computing center (UniRZ) of TU
Ilmenau.

This chapter proceeds as follows. The momentum balance is reformulated into a pressure
free formulation in Sec. A spectral Galerkin approximation for the periodic directions
and a finite difference approximation for the time are applied to the governing equations in
Sec. In this framework, the strategy to enforce boundary and matching conditions related
to the vertical direction are described in Sec. [4.3|

4.1 Pressure-free formulation
This section reformulates the PM in viscous units (Sec. [3.1.2)) into a pressure free formu-
lation, using the incompressibility constraint. Since the velocity field is periodic in the x-y

dimension and divergence-free (V - u), it can be represented by the new scalar functions

40
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() (4) (@) () (@) ;
o\ (x,t), P\ (x,1), Fy ' (2, 1), Fy ' (2,t), Fz 7 (t) [196] in the form of
u® = v x [V X (ezqﬁ(i))} +V x (e;p D) + FWe, + Fggi)ey + Fle,, (4.1)

or in an equivalent form

| 0.0,\ AN F (1)
u(x,t) = | 0.9, | oV (x.t) + | =0: | v (x,t) + | BV (2,%) (4.2)
AV 0 Fz(i) (t)

This representation is unique and P = V X V x (e,¢) is denoted as the poloidal part und
T = V x (¢e,) as the toroidal part, respectively. Both yield zero when averaged over a
horizontal plane [196]

(D) = (D), =0, (4.3)

thus, Féi), Fy(i), F. z(i) describe the mean velocity. Right away we can set F Z(i) to zero F z(i) =0
since no fluid enter the solid boundaries [see Eqs. , ] Furthermore, it is used that
the scalar potentials ¢V, @ are related to the vertical velocity and the vertical vorticity
(with the horizontal Laplacian Ay = 92 + 85), which reads

ul) = —Aggl? (4.4)

and
w =w e, = (Vxu"), = Ay (4.5)

In the following, the vertical velocity and the vertical vorticity are used as the primary
quantities for calculations. Starting with these quantities the full velocity field is calculated
by solving

Agul) = —8,0.u) — 9w, (4.6)
Azugf) = —9,0.ul) + 9w

These relations, derived with the help of the divergence free constraint, determine the velocity
up the mean velocities F’, Fy .

In the next stage, the momentum balance [(3.37)),(3.39)] is formulated in terms of u) und
wgl). For this, the curl is applied to the momentum balance [(3.37)),(3.39)], which yields

dw® — ¥ x (uV x w®) = Aw) + o, Ve, — Gd,cWe,, (4.8)
Bw® -V x (u? x w®) = vAw® + GBI Pe, — GBI, Pe,. (4.9)

Again applying the curl on these equations, we derive |E|

AU +0,V - (uM) x w) —e, - AP x wM) = AAUD — AycVG, (4.10)
AU +0,V - (u? x w?) —e, - AP x w?) = vAAUP) — Ayc?Gp. (4.11)

T Tt is used that for any smooth tensor field A (we only treat Cartesian tensor [1,[193]) V(A - A) =
2A x (V x A) +2A - VA holds.
Note the following useful identity V x V x A =VV-A - AA
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The equations to determine the mean flows FQE”, und Féi) are derived by averaging the
momentum balance [(3.37)),(3.39))] over x-y planes and including the periodicity conditions

[(3.47)-(3.49)]. These equations are

0P (2) + dy(ufDulV) gy = d,2FLY, (4.12)
8151;‘:1/(1) (Z) + dZ <uy1)uz1)>wy = dZQFy(l)a (413)
8th£2)(z) + dz<u$2)u(22 >xy = UdZQFg(;2)7 (4.14)
O FP (2) + d, (uPul) oy = vd,*F). (4.15)

To close the problem, boundary and matching conditions [Egs. (3.43)-(3.46])] are adapted to
the new formulation with the help of the divergence free constraint V-ul”. Those conditions

are

HeW — @ =,V — D@ =0, (4.16)

10,02 = 9.1 W) = @) (4.17)

1000 — 9,000 = MU0, (4.18)

z z SC(I)

uzl) = Ug) = 07 8Z'LL(1) = 8zu(2)7 (419)

FO = FO 9, uF® — 5, (4.20)

FV = F®, o.uF? = 0.F}Y (4.21)

4.2 Discretization of the governing equations

The discretization method is pseudospectral [42]. Both planar layers are treated as separate
computational domains that are coupled at the interface. In each layer, the fields are expanded
in truncated Fourier series in the two periodic horizontal directions x,y. The vertical direction
z is expanded in Chebyshev polynomials 7}, of order p, which read

Tp(s) = cos[parccos(s)] with s € [—1,1]. (4.22)

The smallest wavenumbers for the x,y directions are kyo = 27/1,, kyo = 27/l,, respectively.
For example, the expansion of a generic field ¢ in the upper layer, where (z,y, z) € [0,1,] X
[0,,] x [0,d], reads

Nz/2-1 Ny/2—1 N®

¢Dley,zt)= Y Y Y M hou (92 /d — 1) (1), (4.23)

m=—Ng/2n=—N,/2 p=0
and in the lower layer (z,y, z) € [0,1;] x [0,1,] x [0, —1],

Nz/2—1 Ny/2-1 N
q(l)(x7 y, 2, t) = Z Z Z eimkzoerz‘nkyoyTp(Qz + 1)@(1);mnp(t)7 (4.24)

m=—Ng/2n=—N,/2 p=0

where 7 is the imaginary number. The expansion coefficients ¢""P are calculated from the
values at the equidistant grid points in the z — y plane and the Chebyshev-Gauss-Lobatto
points [42] in the z dimension, for layer (2) they are

(w5 21) = (i lo/Nas 3 1y/ Ny, d- 051+ cos(kr/NP))), (4.25)
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with i € {0,1,...,N,},j € {0,1,...,N, 1.k € {0,1,...,N{?}. The collocation points for
layer (1) are

<a:i, Yj, zk) = (2 Ay /Ny, j -ly/Ny,O.E)[COS(kW/NZ(l)) — 1}), (4.26)
now with k € {0,1,... ,Nz(l)}. Furthermore, let use introduce the set of wave vectors K by

K = {(m2n/lye, + n2x/lye,) for m € {—N,/2,...,N,/2 -1}, n € {-N,/2,...,N,/2 — 1}}.

(4.27)

The discrete transform from the grid values to the ”coefficient space” is first done with
respect to the Fourier basis for each wavevector k € K by

Ny—1Ny—1

3> Gl@n,ym, z, ) oI Rosum - (4.98)

n=0 m=0

1
NN,

Qk(zut) = (j(’f‘kx078k’y0,2,t) -

then for the Chebyshev basis, cf. [42](p. 67)

N .
. ~ 2 TJp
P — Fgmnp _
q.(t) = = E q(mkyzo, nkyo, 2, t cos( >, 4.29
k() =0 ( o0 Yo )NijCp Nz ( )
where
)2 i=0,N,
cj—{l 1<j<N, -1 (4.30)

=7

The expansion coefficents qi are complex numbers; they obey (jﬁ =4’ x> Where 7q” means
complex conjugate, since a real valued function is expanded.

Practically, the transformation between expansion coefficients and point values is done
with a Fast Fourier Transformation (FFT) and a Fast Cosine Transformation, see [31,/180] for
details. Parallelization uses a domain decomposition in one horizontal direction — of physical
as well as coefficient space, see [31] for details. It is implemented with the message passing
interface (MPI) standard. The number of grid points in each direction is a power of two
because only base two FFTs are used.

In the next stage, the PM is formulated in a semi-discrete manner. Thus, for the x-y
plane the projection of the residual onto the Fourier basis (Galerkin method) is required to
vanish [42]. For a generic equation Q(g) = 0, this requirement reads

/ [Q(g(w, y))le HatvildA = 0, Vk e K (4.31)
[0,l2]%[0,1]

but with the z-direction treated as continuous. A time-stepping scheme is employed that is
based on an equidistant temporal discretization t" = ty + nh with time-step h. The linear
terms are treated with the Euler backward formula, and the non-linear terms are treated
explicitly with the Adams-Bashforth method [29]. Formally, for a generic transport equation
with linear term L and non-linear term @),

9rq(t) = L(t) + Q(1), (4.32)
the time discretization (using q(t") = ¢") is
n+1

% — " 1 150" — 0.5Q" L, (4.33)
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Furthemore, a convenient abbreviation for the Adams-Bashforth formulas is used: AB{Q}" =

1.5Q™ — 0.5Q™ 1.

On this basis, the semi-discrete PM by means of the momentum balance [Eqs. (4.8)-(4.15))]

and the mass balance [(3.42) - (3.42))] is reformulated as follows:

(1);n

1. (1)m w,,
(@2 =1 = D™ = - = AB{le. -V x (W)
L (@)m+1 (21)(;71 1
2 .2 1 m+l o Tzk 1 ) (2) (2) n
(d,* — k hu)wz?k o VAB{[eZ V x (u* x w9 )]k ",
(Lin
(@2 = Dy = e B0V - (a® x wl?)
—e, - A(u® x w1 — AB{kzcg{l)G}”,
(d,? — k2 — i)n(Z);nH _ _771(3);” n lAB{[E? v. (u(z) % w(2))
z hy’ 'k vh v ?
—e. - A(u® x w@)n — AB{k2 Gﬁ}”
(@ =Rl =
(A2 = KB = gD
(1);n
1 " F n
(@2~ byEmt = U}y
(2)in
1 o F 1 .
(dz2_ﬁ)Fx(2)7 o= ho + AB{B (u u( ey}
1)n
(d 2 l) (mn+1 P <u(1)u(1)> I
VA h - z Yy z Ty 9
2 1 @m B 1 @)\ n
(d, E)Fy 7 = T + AB{(“) (u uz”)ay ",
M Ding ®
(dz2 2 Sch )cl({l)yn-i-l _ TC + Sc(l)AB{[ 1), VC ]k}n
Sc) . g g
2 1.2 @+l _ % 2.y
(d,* —k Dh )y 5 T D AB{[u"” - V¥ 1,

where we have used a short notion for the Laplacian of the vertical velocity, namely

—~
=

Auy’ =
The conditions on the top boundary (3.44) (z = d) are
FO =FP =) =uf) = ,ul) = d,e?) =0,

kT

and on the bottom z = —1 ([3.43)) are

(4.34)

(4.35)

(4.36)

(4.46)

(4.47)

(4.48)
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The matching conditions [(3.45))-(3.46))] in terms of expansion coefficients at z = 0 are

Hcl((l) C1(<2) dzcl({) Ddzcl(() =0 (4.49)
o) = gl Wl = wl2 (450
pd 2 - 2ull) = - e (4.51)
uly = uly = 0; douly = dulf, (4.52)
FM = g2 dZMFf) = d,FV (4.53)
FV = FP, duF® = d,FV (4.54)

4.3 Application of boundary and matching conditions

The merits (in the sense of numerical efficiency) of this formulation is that the ordinary
differential Egs. — decouple for each wavevector. And all of these Eqs. (4.34)-
are Helmholtz equation of the form (d,2 — A)g(z) = f(z) with X is a constant real
number, f(z) a complex valued function, and ¢(z) the unknwon function. These equations
are solved directly with the Chebyshev tau method [42]. The solution procedure is decoupled
for the top and bottom layer by introducing auxiliary functions that enforce boundary and
matching condition (known as ”matrix influence method” [176]).

To achieve this decoupling the following ansatz is taken

Aot 459
S = ol (150
nl({) _ (1)’p+an() +bm<<1>;b7 (4.57)
771({2) _ ()p+dn<2)d+em({2>;e7 (4.58)
RO (150
o = uP+du® s eud, (4.60)
AV = PP el (4.61)
P = cl(< Py f e (4.62)
where for any wavevector k eight real parameters («,f3, a, ..., f) — generally different — are

to be calculated from the matching and boundary conditions.

The particular functions q( P are set to obey Eqs. (4.34)-(4.45) but with a zero Dirichlet
boundary condition, namely

0P (z = ~1,0) = 0,¢%0" (= = 0:d) = 0. (4.63)

Furthermore, the remaining functions, say auxiliary functions, are set to obey the homoge-
neous problem but with nonzero boundary conditions. Formally, the auxiliary functions are
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set by
1 a a a
(A2~ = Dl = 0, Wiz =-1)=0 w{(z=0)=1, (4.64)
h
1 . .
(d,% — K — E)wf&"’ = 0, wW’=0=103"=ad) =0, (4.65)
1 ;a,b a a
(A =1 = ™" =0, ger(0) = 1M (-1) = —1, nMP(-1) = 1, (4.66)
1 id,e ;d,e ; ;e
(A2 =12 = e =0, e (0) = 1, n@(d) = —1, () =1, (4.67)
(42 = K2uly ™ = g W0, -1) =0, (4.68)
(4 = kAul = g2 il 0,0) = 0, (4.69)
Sc) . . .
(A2 =1 = Z)d" = 0, dq (<) = 0, d,d () = 1, (4.70)
Sc 2 2); 2);
(@ =& = "5t = 0, 4 (-1) = 0, 4,7 (0) = 1. (4.71)

At this stage, the free parameters can be calculated by employing the matching conditions

(4.49)-(4.52)) and no-slip conditions at the top and bottom [Eqgs. (4.47)-(4.48)]. For example,

the vertical vorticity and its interface normal derivative obey (at z = 0),

ol — P = WP, )
adzw;ll){;a — B,udzwgl){;b = —1—,udzw(2)’p dzwgl){;p, (4.73)
consequently, paramters « und 3 are calculated by (at z = 0)
(~wiae” + w5 — (i + dwl w5

Y , (4.74)
T+ T
2); Dipy (Dsa 2); L 1ia
5 el Mt~ G — ol (475
(1) aq, CL)(21)(1; _'_wizl){bdzwi;ll){;a

The remaining conditions can be summarlzed by the following system

dul e (-1)  dul)(-1) 0 0 0 0
0 0 0 du{%(d) dul?)(d) 0
0 0 Hel*(0) 0 0 —e ()
0 0 d,c"¢(0) 0 0 —Dd, c(2) (0)
dull?0)  dul)(0) 0 ~dulVN0)  —dul)(0) 0
4,2u)0)  d2ul)00)  —Ma/ScMR2e(0)  —pd,2ulkh0)  —pd, a2 (0) 0
a —dzui;(%’).(—l)
b _dzuz;km(d)
c| —H"P(0) + 27 (0) 76
d - —d (1);p Dd (2)710 ( . )
20k (0) + Ddyey P (0)
: ~dul)7(0) + d, u<2>p(0)

—dz2ugl)<;p(0)+udz uP(0) + Ma/SeMk2eP(0)
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Figure 4.1: Flow chart of two layer flow solver.
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4.4 Workflow

Fig[d.1] summarizes the principal numerical solution procedure. After setting initial values
and allocating memory, the auxiliary functions, Eqgs. —, are calculated with a
Chebyshev tau method [42], note that they do not change over time as long as the time
step size h is unchanged. Then, the nonlinear terms (say at time step n) resulting from the
Adams-Bashforth formula are calculated in a pseudospectral manner, i.e. by transforming
from coefficient space into physical space, doing multiplication and then back to coefficient
space. Specifically, these nonlinear terms are all terms with ” AB” in Egs. —. This
is the only step, which requires all MPI processes to communicate to each other, namely
to perform the FFT, while the other procedure decouple in the coefficient space, say, for
each wavevector k. The next step is the solution of the particular functions (by Chebychev
tau-method), i.e. Egs. — with boundary conditions . On this basis, pa-
rameters that enforce the matching condition are calculated according to Eqs. (4.74))-(4.76)),
which leads to the assembly of the new fields at time step n+1 according to Eqs. (4.55])-(4.62)).

Due to the explicit treatment of nonlinear terms, the time stepping scheme is only con-
ditional stable [42]. Therefore, we adjust time-step size h according to the current grid
Courant-Friedrichs-Lewy (CFL) number C,,

Az’ Ay’ Az

=h h uyh
Cg:max{u Yyt U }

(4.77)

This number is calculated every time step by dividing the local displacement un,h by the
collocation grid sizes Az, Ay, Az. We force Cy to be smaller than a constant C and to be
larger than C3/2, i.e.

Cy/2 < Cy < Cp. (4.78)

Specifically, if Cy > Cj the next time step h is set such that Cy = Cp/2 and if Cy < Cp/2
the next time step h is set such that Cy = (5. Additionally, we require the time step h to be
smaller than 0t,,...

Finally, whenever the time step h is changed, the auxiliary functions are recalculated.
Otherwise, time marching loops starts directly without recalculations. This procedure avoids
the continuous change of the time step, to save numerical cost for recalculating auxiliary
functions; also the accuracy is lowered by every change in time step, since the first step is
only computed with first order Euler forward formula.

Except, the concentration boundary conditions, the code was well tested for accurate
implementation by Boeck et al. [28,29,31]. The changes in implementation were simply
verified with the analytical solution for pure diffusion with H = 1, D = 1 and with an
independent solver for the general case H # 1, D # 1 for pure diffusion.



Chapter 5

Results on Marangoni convection
with stable density stratification

This chapter is dedicated to the simulation of a peculiar material system that has shown
hierarchical Marangoni cell patterns [197]. As already noted in Sec. we employ the
ternary system made of cyclohexanol and water with butanol as transferred species. This is
because of its good documentation [197,|198]. Furthermore, this chemical system appeared
manageable, from the view of numerical cost, due to its high viscosity and low interfacial
tension. A further advantage of this system is that we were supported by recent experimental
data from Karin Schwarzenberger and Kerstin Eckert. A large part of the numerical results
and the experimental data (also shown here) have been already published in joint work [111}
113},200-202].

The present chapter is organized as follows. The material properties of the system under
study, (cyclohexanol4butanol)/water, are estimated in Sec. whereas the detailed proce-
dure of estimation is shifted to the App. The physical model in viscous units is restated
in Sec. for a quicker reference, however already introduced in Sec. Afterward, we
present the numerical setup for the specific simulations. The details of the numerical method
have been described in the former Ch. 4

The large Sec. presents the evolution of Marangoni convection in the reference sim-
ulation, focusing on the different convective structures that evolve over time. Section is
further subdivided: Sec. overviews the simulated time, thereby classifying the different
regimes of convection — in accordance with Linde’s concepts of basic pattern [146] — into
three regimes. The properties of each regime are detailed separately: onset of convection in
Sec. initial ROs in Sec. and hierarchical patterns of RC in Sec. [5.2.4]

Section compares the simulated patterns with experimental results from literature [198]
and recent experimental observation. For this, the experimental procedure is sketched and
then the development of cell sizes is presented qualitatively as well as quantitatively. Section
discusses what is identified as the two main mechanisms of pattern formation. The role of
the stable density stratification on convection is studied in Sec. by simulations with zero
buoyancy (G = 0) and with changed initial concentration ¢g. In Sec. computation within
a two-dimensional domain (I, — 0) are related to the reference simulation. Finally, Sec.
provides a brief discussion and conclusions of the presented data.

49
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5.1 Cyclohexanol-water-butanol system

5.1.1 Physical modeling

Solutal Marangoni convection at the planar interface between an aqueous phase [bottom
layer (1)] and a lighter organic phase [top layer (2)] is studied. These layers are the mutually
saturated phases of a water-cyclohexanol (HoO - CgH;1OH) mixture. In this binary system, a
third species 1-butanol (C4H9OH) is dissolved in the organic phase. The subsequent natural
transport of butanol to the aqueous phase has shown convective patterns in experiments of
E. Schwarz [197,(198].

To perform simulations, we require the material properties that appear in the paradigmatic
model (Sec. . Several of these material properties have been measured by E. Schwarz,
but not all of them are documented in his works. The remaining parameters were taken from
literature [135] or were estimated by suitable relationships as described in App The
results of this estimation are collected in Tab. 5.1l

Based on this data, the system is of type I (Fig. for transport out of the top layer
(2)— (1). This is because, butanol lowers density as well as interfacial tension (Bﬁi) < 0,
e < 0 cf. Tab. , and it is transported out of the phase with lower diffusivity D < D)
and in the direction of gravitational acceleration. Consequently, a stationary Marangoni
instability and a stable density stratification is expected, which was indeed concluded from
the experimental studies of Schwarz [197,/198]. Also the reversed transport direction has
been studied experimentally (grouped as type III according to Fig. ; where the discussed
eruption regime was observed [197,[198].

The transport of butanol, accompanied by Marangoni convection, is modeled by the PM
in viscous scales. Although already introduced in Sec. this theoretical framework is
shortly restated here, since we will omit the hats at the nondimensional quantities, i.e. the
replacement § — ¢ is implied in present chapter.

In accordance with the experiments (described later in Sec. , we consider two super-
posed immiscible, isothermal, liquid phases in a cubical computational domain with horizontal
extent of 0 < z < 1,0 <y <l,. The vertical extent is —1 < z < 0 for the lower, water-rich
phase and 0 < z < d for the upper, cyclohexanol-rich phase. Both phases are in contact at a
plane interface z = 0. Initially, the system is quiescent, and the solute is solely present in the
upper organic phase. This setup is sketched in Fig.

In both layers, the momentum transport is modeled by the incompressible Navier-Stokes-
Boussinesq equations and the transport of solute by an advection-diffusion equation. The
dimensionless equations were derived by introducing the following units (cf. Sec.[3.1.2): The
mass is measured in multiples of M = p™M (dM))3] time in viscous units 7' = (dV)2 /v length

in multiples of the lower layer height L = d(!) and amount of substance in N = ¢o(d™)3.

The nondimensionalization yields the following equations (cf. Sec. [3.1.2)), which are the
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description symbol  unit value
molar mass butanol My g/mol 74.12
mass density HoO sat. CgHy1OH oL kg/m3 0.997 - 103
mass density CgHy1OH sat. HaO o2 kg/m3 0.955 - 103
mass density butanol Ob kg/m3 0.81-103
kinematic viscosity (1) v m?/s 1.2-10°6
kinematic viscosity (2) with yéz):0.075 v m? /s 20-107¢
partition coefficient cgz) / c(eé) H (mol/1) /(mol/1) 31
diffusivity solute (1) DM m?/s 5-10710
diffusivity solute (2) D) m? /s 7-1071
interfacial tension of the binary system Oref N/m 3.4-1073
change in interfacial tension per mol/l of ¢ o,..;a.  N/m/(mol/l) —~8.77-1073
solutal expansion coefficient (1) (L 1/mol —0.0172
solutal expansion coefficient (2) (2) 1/mol —0.0128
density change per solute conc. (1) ﬁ)f (U (kg/m3)/(mol/1) -17.11
density change per solute conc. (2) f«?f 2 (kg/m3)/(mol/1) -12.26
initial concentration for y£2)20.05 o mol/1 0.55
initial concentration for y£2):().075 co mol/1 0.82
gravitational acceleration g m/s? 9.81

Table 5.1: Properties of the system (cyclohexanol+butanol)/water. Phase 1 is the water-rich
phase marked with upper index ) and phase 2 the organic cyclohexanol-rich phase marked
with (). The data sources are detailed in App. The volume concentration is denoted as

(2)

y,,~, this is the volume of pure butanol at standard condition divided by the volume of the

mixture phase (2) with butanol dissolved.
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Figure 5.1: Two-layer cyclohexanol-water-butanol system in viscous units with (2) — (1)
transport. Throughout the present chapter the layer height ratio d is fixed to unity d=1.
basis of our numerical investigations. These are
ou® = —u®.vu® - vpl) 4 Au® — Dge,, (5.1)
v-ul) = o, (5.2)
1
ou? = —u®.vu® - ;fo) +vAu® — PGge,, (5.3)
v-u® = o, (5.4)
1
V) = —u.vel) 4 A, (5.5)
Sc( )
@ = _g® .y 4 @)
Orc u'” - Ve Sc( )Ac (5.6)

In these equations ¢(¥)-¢q is the molar concentration and u(¥- L /T is the dimensional velocity in
phase i. According to the experimental set-up, no-slip and impermeable boundary conditions
are imposed for the solid walls at the bottom and top:

820(2) — ug2) = U(mQ) = uég) =0 fOI' Z:d, (57)
¢ = ugl) — ug}) — u(yl) =0 for z=-1. (5.8)

The matching conditions at the plane interface (2=0) are

ull) = u?), uz(/l) = ul(/z), u) =u® =0, 9,6V =Do.c?, H =2, (5.9)
Ma

Wﬁxc(l) —vp0, u( )+ 0 u; ), Wayc(l) = —Vp@zu?(f) + 8zu7gl). (5.10)
c c



93

dimensionless quantity definition value
(1) (133
Grashof number G = M —7.67-10°
(V)2
(1)
Schmidt number aqueous phase Sc!) = % 2400
. _ COOécUrefd(l) ) 108
Marangoni number Ma = 7[)(1)”(1)1)(1) 2.4 -10
partition coefficient H = cg]) / cgl) 31
(2)
density ratio p= Pref 0.96
p(l)
(2
kinematic viscosity ratio V=1 16.7
v
D@
diffusivity ratio D= 0 0.14
dl(?z)
layer height ratio d= 20 1
(2)
ratio of expansion coeff. f=" 0.75

Table 5.2: Nondimensional parameters of the reference configuration calculated with: values
from Tab. layer heights d) = d® = 20 mm, ¢y = 0.82 mol/l, i.e. 7.5 vol% butanol
dissolved in the organic phase.

The arising nondimensional parameters from these governing equations are collected in
Tab. and evaluated for a reference configuration. The specific values result from the
general material properties of Tab. and the experimental set-up that will be introduced
in Sec. Namely, we were supported with recent experimental data for an initial volume
concentration ['| of 7.5 vol% (3/152) = 0.075) in a system with layers of 20 mm height d(!) =
d® = 20 mm. The dimensional initial concentration cp and the volume concentration are
related by

oy (5.11)
co = Mb y .
where Mj, is the molar mass and p, the density of pure butanol at standard condition.

The last step to uniquely define the problem is to set initial conditions. Standard initial
conditions are set as follows. The velocity field is initialized (¢ = 0) with pseudorandom
numbers for u, and (V x u) - e, that are uniformly distributed between [0, 11073 |E| at each
collocation point x independently

ul = 1(0,107%),V x u® - e, = U(0,1073). (5.12)

z

Furthermore, the yet unspecified mean flow is set to zero Fggi)(z,t =0) = Fy(i)(z,t =0)=0.

T The volume concentration of butanol in phase (2) is denoted yéz). It is the volume of pure butanol
at standard condition divided by the volume of the mixture phase (2), in which it was dissolved (including
butanol)

IThe uniform random distribution between a, b is abbreviated as U(a, b)
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The solute is initialized with a homogeneous concentration of unity for layer (2) and zero for
layer (1)
M=o, =1 (5.13)

5.1.2 Sample configurations

Stationary Marangoni convection is studied by simulating different parameter sets. This sec-
tion names simulations with a short string and relates the changes in physical parameters
(relative to Tab. [5.2]) and numerical parameters (e.g. Iy, ly, Ny, Ny, ...) to them.

First, simulations were carried out for our reference configuration. The corresponding
reference simulation is named E_1_1, see Tab. The simulation E_1.2 uses the same
material parameters but is calculated on a smaller domain where it is easier to process data.
Simulation E_1_3 used a peculiar small time step to especially resolve the onset of convection.
Simulation E_2 realizes a decrease in initial concentration yéz) = 0.05.

The name is built by the following structure: The first literal denotes a group of simulation.
The second number stands for a change in material parameters in this respective group. The
third number just distinguishes between different simulation and a potential change in the
numerical parameters with independent realization of the initial random velocity fields. E
The literal "E” denotes simulations that correspond to recent experiments with the 20mm
layers.

A further group of simulations correspond to experiments of Schwarz [198] with a de-
crease in layer height ") = d®) = 15mm. This group is denoted by (S-...). Different butanol
concentration were simulated, see Tab. . For the simulation with the lowest solute con-
centration S_3 (see Tab. we used stronger noise to lower the onset time of convection. In
particular, u; (V x u) - e, is initialized with values in [0,1-1072] and also solute is perturbed
by ¢ =1(0,1-1073),¢® =14+4(0,1-1073).

To analyze the influence of a stable density stratification, the group G_... of simulations
is established. Simulation G_1_1 is the counterpart of the reference simulation E_1_1 with the
Grashof number is set to zero G = 0. In the framework of zero gravity, the influence of the
domain size [, 1, is also probed. For G_1_1, the domain size [;,[, was chosen large enough
so that the influence of the periodic horizontal boundaries on the pattern evolution might be
neglected in the time frame considered, however, for runs G_1.2-G_1_4 we decreased [, [, to
demonstrate how geometric limitations influence convection patterns.

Furthermore, two-dimensional (2D) simulation were performed by setting [, — 0, which
are denoted by E_1_2D, G_1_2D. The last group of simulations is denoted by "L_” with a low
Marangoni number and no buoyancy. These parameters enabled us to simulate the almost
full equilibration process.

The numerical resolution requirements turned out to be quite severe. For the reference
simulation, a very high vertical resolution Nz(l) = 256 N§2):512 was required to capture the
vertical structures near the interface properly. The horizontal resolutions (N, N,) are set
to resolve the fine solute structures in the horizontal directions. We verified grid convergence
for selected test cases, cf. Tab. 5.4 by changing the number of expansion coefficients in the

Please, note that the last number is occasionally omitted. So for instance S_2_1 denotes the same simulation
as S_2



95

horizontal N, N, and vertical direction N, Z(l), N. 2(2). Furthermore, we changed the maximum
time step 0t,q: and the bound for the grid CFL number Cj.

To provide comparability, all test simulations are based on exactly the same initial con-
ditions. For that purposes, the standard random initial conditions are generated for the case
of lowest resolution, i.e. N_0. The resulting fields are then used as an input for N_O-N_15.
We checked two necessary properties: the numerical stability and the smoothness of the
shadowgraph image s(z,y) [see Eq. ] as shown in the last two columns of Tab. Pos-
sibly appearing shortwave oscillations (last column) are characteristic for insufficient spatial
resolution.

Those simulations that satisfy the requirements of numerical stability and absence of visi-
ble oscillations differ only marginally in the relevant field quantities, cf. Fig. [5.2(a) where two
simulations are plotted simultaneously. However, for post processing purposes, e.g. in the
reference simulation E_1_1 (Tab. , we used a finer grid size than the marginal grid size of
N_3 (Tab. . Note that if the maximum time step is set too large — case N_9 — the initial
perturbation are damped stronger such that convection is not triggered. The validity of the
numerical method is also proven by the comparison with the experimental data.

The reference simulation E_1_1 consumed approximately 650 GB main memory. On 512
processors, it took 1.24 - 10° core hours for the simulation to be advanced until ¢ = 2.07 with
17800 time steps. The size of these time steps is governed by the CFL restriction given in
Eq. except before the onset of convection.

5.2 Marangoni convection in the reference configuration

In this section, the evolution of Marangoni convection in the reference configuration is pre-
sented. The first subsection outlines the general development over the simulate time
range. The following subsections chronologically examine the typical flow regimes more
closely: convection onset in Sec. initial relaxation oscillations (RO) in Sec. and
hierarchical convection cells in Sec. 5.2.4

5.2.1 Overview

To give an overview of the temporal evolution of the Marangoni convection, Figs. |5.2(a,b,c)

depict the root-mean-square velocities uﬁ’%s, u&f%s in the bulk and at the interfase, respectively

ulpha(t) = /(@@ D)y, ) () = V/(u- ). (5.14)

They are obtained by averaging over the entire layer (),,. and over the interface ()s. Fig.[5.2(d)
shows the amount of solute transferred to the lower layer normalized with the global equi-

librium value in the bottom layer cgl) =1/(H +1). In parallel, Figs. show synthetic
shadowgraph images m

= 2 2 C{X z .
sz, 1) —/[_1’d](8z+5y) (x,1)d (5.15)

VPlease note that the legends in the synthetic shadowgraph images denote the negative value of s(z,y),
thus (—s(z,y)), which is indicated in the figure captions. This has ”historical” reasons, as we changed the
definition of s at some point and we wanted to have a uniform definition throughout this work.
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# yl(f) Cy Otmaa l.(Ny) NV NP varied phys. parameter

E11 0075 3-107!' 5.107% 0.5(2048) 256 512 Ma= —-2.4-10% G = —7.67-10°
E12 0075 1-107Y 1-107* 0.15(1024) 256 512 Ma=—2.4-10% G = —-7.67-10°
E13 0075 3-107' 1-1077 0.2(1024) 256 512 Ma=—2.4-10% G = —7.67-10°
E.2 005 3-107% 1-107* 0.8(2048) 256 256 Ma=—-1.6-10% G = —5.11-10°
E12D 0075 3-107'1 5-107% 0.5(2048) 256 512 Ma=—-24-10% G=-7.67-10°1,=0
S.1 0.1 3-1071 1-107% 0.15(1024) 256 512 Ma=—2.4-10% G = —4.13-10%
S-2 005 3-107% 1-107* 0.3(1024) 256 256 Ma=-1.2-10%; G = —2.16-10°
S.3 0.025 3-107' 1-107* 0.4(1024) 256 256 Ma=—6.0-10"; G = —1.08-10°
D_1 - 3-1001 1-107* - 256 512 Ma=0; G=0

G111 0075 3-1071 1-107* 0.5(2048) 256 512 Ma= —2.4-10% G=0

G12 0075 3-107' 1-107* 0.1(512) 256 512  Ma=—2.4-10% G=0

G13 0075 3-1071 1-107* 0.05(256) 256 512 Ma= —2.4-10% G=0

G1l4 0075 3-107' 1-107* 0.01(128) 256 512 Ma= —2.4-10% G=0

G.12D 0.075 3-107' 1-107*% 0.5(2048) 256 512 Ma=—2.4-10% G=01,=0

L1 - 2-1071 5-1072  4(1024) 128 128 Ma=-12-10"; G=0

L2 - 2-107% 1-1071 8(1024) 64 128 Ma=—-0.6-10"; G=0

Table 5.3: Parameters for different simulation runs. The names are constructed as follows:
we use E for simulations related to recent experiments, S for those related to experiments of
Schwarz [198], G’s are without buoyancy, D is a simulation with pure diffusion and the L’s
denote simulation with low Marangoni number and without buoyancy. Parameters not given
here are collected in Tab. The computational domain has a square horizontal cross-section
(ly =1y, Ny = Ny) except simulations E_1.2D, G_1_2D with [, = 0.
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£ Cp Otmer (N L)  NYONP num. stability vis. oscill.
NO 0.3 b5e4 0.3(256)  0.3(256) 64 64 unstable -

N1 0.3 b5e4 0.3(256)  0.3(256) 512 256  unstable -

N2 03 5e4 0.3(512) 0.3(512) 512 256  stable yes

N3 0.3 b5e4 0.3(1024) 0.3(1024) 512 256  stable no

N4 03 5ed  0.3(2048) 0.3(2048) 512 256  stable 1o

N5 03 bed 0.3(1024) 03(1024) 64 64  unstable _

N6 0.3 b5e4 0.3(1024) 0.3(1024) 128 128  unstable -

N.7 0.3 b5e4 0.3(1024) 0.3(1024) 256 256  stable no

N3 03 5ed  0.3(1024) 0.3(1024) 512 256  stable no

N8 0.3 5ed  0.3(1024) 0.3(1024) 512 512 stable 1o

N9 03 1le2 0.3(1024) 0.3(1024) 512 256 stable/no convection -

N.10 0.3 1e3  0.3(1024) 0.3(1024) 512 256 stable 1o

N3 0.3 5ed  0.3(1024) 0.3(1024) 512 256  stable 1o

N.11 0.3 led 0.3(1024) 0.3(1024) 512 256 stable no

N.12 0.3 5e5  0.3(1024) 0.3(1024) 512 256  stable 1o

N.13 0. b5ed 0.3(1024) 0.3(1024) 512 256 stable 1o

N3 03 5ed  0.3(1024) 0.3(1024) 512 256  stable no

N.14 0.6 5ed4  0.3(1024) 0.3(1024) 512 256  stable 1o

N_15 1  5e4 0.3(1024) 0.3(1024) 512 256  stable early phase

Table 5.4: Overview of test simulations with exactly the same initial conditions but changed
numerical parameters. For these test simulations, we use the numerical parameters from the
reference configuration, cf. Tab.
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at selected times, obtained from the reference simulation E_1_1 and E_1_2. This quantity is
employed to enable a direct comparison with experimental shadowgraph images, see details
in Sec. 5.3

For the present physical configuration, s(z,y) basically displays the horizontal solute dis-
tribution near the interface (due to highest horizontal solute gradients there) preferentially
for the top layer. Bright regions (s(x,y) > 0) in the synthetic shadowgraph images can be
considered as locations with a gain in solute by horizontal diffusion, which is mostly equal
to a low concentration and hence high surface tension. This interpretation is simply deduced
by comparing the definition with the diffusion equation for the solute. Furthermore,
the following correlations were observed: (bright region )<+ (flow from the interface to the
bulk, high interfacial tension) and (dark regions) <+ (flow from the bulk to the interface, low
interfacial tension). Note that the specific grayscale is not generic. It depends on the specific
experimental configuration. At present, the grayscale is simply adapted to the experimental
data.

On comparing the shadowgraphs from Figs. with the time history in Fig. the
evolution is divided into two main phases, see Fig. m(a). The rapid phase I is called initial
spreading, which encompasses two short sub-phases. The first subphase Ia is that of exponen-
tial growth, detailed in Fig. ﬂ(b) by using logarithmic scales. After a maximum in interfacial
velocity, the second subphase Ib —named saturation — sets in. Phase Ib is terminated after
approaching the inflection point at t=0.07, cf. Figs. a,b). Thereafter, the long phase II,
named hierarchy formation and coarsening, starts by substructuring of the cells in Fig. [5.3{c)

() (s)

and continues with only minor changes in s and Upms.

Fig. [5.3(a) shows phase la with a spotted pattern of small cells, being nuclei for a vivid
spreading of cells. According to Linde’s classification [146](see Sec. ), these growing
structures are called (initial) relaxation oscillations — ROs.

The next subphase Ib saturation [Fig. [5.3(b)] shows strongly growing cells and cells that
are either squeezed or incorporated by the stronger advective motion of their neighbors. Due
to the balance of equally strong neighbors, the extensive spreading motion comes to a halt
with a maximum in cell sizes. The cell borders orient in mostly straight lines and thus build
a polygonal pattern.

Phase II, termed hierarchy formation and coarsening, is initiated by the breakdown of the
initial ROs, where the biggest cells (e.g. in the region marked with a square in Fig.|5.3) split
into a network of smaller polygonal, more persistent cells.

In Fig. a—d), the more vigorous cells grow and develop an internal substructure of
smaller Marangoni cells. In line with [146], we term these polygonal patterns with substruc-
ture Marangoni roll cells of second order RC-1Is. The enclosed cellular substructures and the
individual cells without substructure are called Marangoni roll cells of first order, RC-Is [146].
They constitute the lowest level of the hierarchy. In the early stage, presented in Fig. ﬂ(a),
an unambiguous assignment of the individual cells to a hierarchy order is hardly possible due
to the continuous evolution of length scales. However, from Fig. |5.4{(b) to (d) the beginning
spatial hierarchy formation is clearly discernible because the RC-IIs steadily increase in size
and the separation of scales between RC-Is and RC-IIs grows.

Another type of pattern, in contrast to the closed polygonal RC-Is, is observed in Fig. b-
d). Particularly in those RC-IIs that are about to shrink and disappear, e.g. white A mark
in Fig. |5.4(b), arrays of aligned, straight solute fronts are visible. According to its wavelike
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appearance, this pattern is referred to as relazation oscillation waves - ROWs [146], see also
Fig. This pattern is not that persistent and appears favored in host RC-II that have a
distinctly elongated geometry.

In the late Fig. [5.4(d) the periodicity length of the domain becomes of the same order as
the RC-IIs and consequently influences their behavior. In this view, no numerical resources
are invested to progress this simulation further. At this time, only approximately 4% of the
maximum transferable amount of solute was transferred, see Fig. [5.2(d). In the following
sections, we will describe the observed structures in depth.
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Figure 5.2: Overview of convection in the reference configuration: (a) Root-mean-squared
velocity in the bulk for simulation E_1_2 performed with a higher temporal resolution than
E_1_1, (b) rms velocity at the interface for both simulations E_1_1,E_1_2 (no visible difference),
(c) rms velocity for the reference simulation E_1_1. The global maximum of u%)ns and ufn‘f%s is
around t=0.053. (d) Averaged solute concentration in the bottom layer normalized by global

equilibrium value.
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Figure 5.3: Synthetic shadowgraph images (—s(z,y)) show the pattern formation at start-up
of interfacial convection: (a) the end of phase Ia—exponential growth, (b) phase Ib with initial
RO mark the saturation of perturbation growth, (c,d) transition to phase I/ by breakdown
of initial RO. All subfigures show simulation E_1_2. The black boxes depict details that are

illustrated more precisely later in Figs.
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Figure 5.4: Synthetic shadowgraph images (—s(x,y)) in phase II — formation of substructures
and coarsening of interfacial convection — in simulation E_1_1. The black lines in (a) and (c)
mark the vertical cuts shown in Fig. b), Fig. b), respectively. Note the change in
the domain size from (a) to (b) and also the adaption of the grayscale.
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5.2.2 States of convection: onset

After simulations started, the initial perturbations [see velocity u,ms in Fig. |5.5(a)] get
damped and consequently the solute distribution evolved mainly under the action of pure
diffusion. Profiles of solute concentrations as a function of the vertical coordinate z — evolv-
ing under pure diffusion — are plotted in Fig. [5.6] showing the small mixing layers near the
interface.

According to the ”frozen time” linear stability analysis of Sec. the first time ¢, a
sinusoidal perturbation with wavenumber k is predicted to grow is

o (1+p) (DH + 1) (D705 + H) 1) (5.16)
" 2,1 [e*"Perfc (2y/nD) DV/2 — etnerfc (2,/7)] Ma ’

with similarity variable
n = k*ty/ScL). (5.17)

This formula is derived in the same way as Eq. , but with utilizing Eq.
owing to a changed in transport direction as well as a change from diffusive to viscous units.

Fig. [5.5 shows these pairs of (t,,,n) in (¢) and (t,, k) in (d) in accordance with Eq. (5.16]).
The first time when linear theory predicts a growing mode is at t. ~ 1.4-1075, k. ~ 4.2 x 103,
which is distinctly earlier than the first net growth in velocity t.; = 8.0 - 10~* [Fig. m(a)
based on simulation E_1_3] (see Sec. for definition of times t.1,t.3). Fig.[5.5(b) shows the
dominate wavenumber of the interfacial concentration (see Eq. decreasing over time;
observe the sharp bend around t=0.02 when strong convection set in; the linear prediction k.
passably represent the dominant mode at ¢.;.

Also note that in simulation E_1_3, the peak in velocity (Fig.[5.5(a), t.3 = 0.029 ) appeared
earlier than in the reference simulation (maximum around ¢ ~ 0.05), although they started
from a similar velocity amplitude tu,,s(t = 0) ~ 5.5-10~%. This behavior is attributed to
the numerical error in the first few time steps, which let the velocity amplitude drop stronger
for the reference simulation as it is calculated with a larger time step, cf. Tab. However,
the subsequent process of pattern formation is observed as generic and independent of initial
velocity perturbation.

In addition to the instability domain of linear theory [Fig. [5.5(d) ruled areal, also the
boundary layer width 5c§l) (of the the semi-infinite solution analogue to Egs. ,
are included. They pierce the marginal boundary around ¢ =~ 1073, k ~ 5000. Before this time
the boundary layer width is smaller (in terms of wavelength) than the smallest instable modes.
This time when boundary layer is comparable to the instable mode is in better agreement
with the simulated onset time t..
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Figure 5.5: Onset of convection in simulation E_1.3: (a) Root-mean-squared velocity and
(b) mean wave number of interfacial concentration [according to Eq. (3.143))]. Derived onset
times (see Sec. for definition) from simulation E_1.3 are t.; = 8- 107, t.;3 = 0.029. (c)
Marginal stability threshold according to Eq. with time versus the similarity variable
and marginal wavenumber versus time (d) with boundary layer widths (5cy) , Eq.
adapted to viscous unis.
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Figure 5.6: Initial pure diffusive evolution of concentration profiles (simulation D_1) in top

: : 2 _ O 5.0 _
layer (a) and bottom layer (b) with noted boundary layer width éc;”” = /Dtr/ScV), oc;” =
Vir/Sc) | see Eq. (3.136]) (does not change with the transport direction).
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5.2.3 States of convection: growth and saturation of initial ROs
Growth of initial ROs

The unsteady initial ROs [Fig. (a,b)] arose in phase I after the onset of instability. Their
self-energizing mechanism was driven by the inflow of solute-rich fluid in the center and the
outflow of depleted fluid at the periphery. The ROs were heterogeneously distributed; some
cells were amplified more rapidly than others. Such a dominant cell is detailed next.

Figs. and focus on the spreading of the initial ROs and highlight: (1) The pri-
mary instability of the pure diffusive evolution where cells still have a common length scale
[Fig. (a)]. (2) Amplification and the ensuing growth of the most intense RO by a spreading
motion [Fig.[5.7(b)]. (3) A polygonal network is what remains from the nonlinear competition

of spreading ROs [Fig. [5.§|(a)].

1
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Figure 5.7: Growth of the initial ROs. Synthetic shadowgraph pictures (—s(z,y)) in the
upper row and the corresponding concentration distributions ¢ H and ¢® at y=0.077 in the
lower row, both with the corresponding velocity field. The synthetic shadowgraph pictures
are a detail of the simulation F_1_2 marked by a black square in Fig. [5.3
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Breakdown of initial ROs

At the stage of Fig. (a), the largest cells developed an inner region with a fairly constant
interfacial concentration distribution together with a large stagnation point in its center. This
situation lead to a substructuring in Fig. b) at x=0.067 and y=0.077. The shape of these
newly created convection cells is governed by the spatial structure of the hosting cell, that is
the position of the inner stagnant zone and the distance to the hosting cell boundaries.
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Figure 5.8: Splitting of a large RO into RC-Is. Synthetic shadowgraph pictures (—s(z,y)) in
the upper and concentration distributions ¢(Y) H and ¢®) at y=0.077 in the lower row, both
with the corresponding velocity field. The synthetic shadowgraph pictures are a detail of the
simulation F_1_2 marked by a black square in Fig.
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5.2.4 States of convection: hierarchical patterns
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Figure 5.9: Polygonal network of mainly first order cells (RC-Is) at t=0.10 (E_1_1). (a)
Synthetic shadowgraph image(- s(x,y)) with ta, , (b) velocity magnitude |u|(z = 0) with
velocity vectors at the interface and (c) concentration at the interface ¢(?) (2 = 0) with marks
A-D used in the text.

After the spreading of ROs, the interface was occupied by Marangoni roll cells without
substructure RC-1. The RC-Is pattern is characterized in Fig. by: (a) the shadowgraph
with interfacial force (as arrows)

tara = VeV Ma, (5.18)

(b) the velocity magnitude and (c) the interfacial concentration ¢ (= He),

At this early stage of phase II, the neighboring RCs form a polygonal network, featuring
high local Marangoni stresses towards the bright, solute poor boundaries in (a). The stresses
are still synchronized with the velocity in (b), i.e. no large-scale advection has developed yet.
Fig. also reveals characteristic features of the pattern dynamics. Firstly, large cells grow
at the expense of the small ones, e.g. a large cell marked with A in Fig. |5.9(c) expands in
the negative y-direction, thereby incorporating the weak (= white) small cell B. Second, the
splitting of large cells by elongated solute fronts is observed at C. Furthermore, new solute
fronts can develop out of large stagnant inflow zones, as visible at D.

Fig. shows horizontally averaged concentration (a) and velocity (c) profiles for subse-
quent times together with a 2D concentration and velocity field (b) at ¢ = 0.16 and y = 0.18.
The velocity field of the 3D polygonal cells appear as a double vortex in this 2D cut.

The concentration profiles in Fig.[5.10|(a) correspond to characteristic states of run E_1_1,
namely (i) the state of emerging initial ROs at t=0.047, cf. Fig. a), (ii) a polygonal
network of RC-Is at t=0.163, cf. Fig. (a), where some of the cells already begin to develop
irregular small substructures, and (iii) large RC-II at t=1.436, cf. Fig. c). Note that the
profiles are the horizontal averages over the whole x-y plane. The curves with light gray
(or green in color) plus signs (4) depict a purely diffusive evolution, i.e. starting with ideal
initial conditions without noise. The individual data points in the 1D profiles correspond to
the collocation points in the z-direction.

In both layers, the initially thin concentration boundary layers grow with time as the mass
transfer proceeds and the individual convection cells increase in size. The mean interface
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Figure 5.10: Marangoni roll cells in simulation F_1_1: Horizontally averaged concentration
(a) and rms velocity profiles (c) together with a vertical cross section through a network of
RC-Is at t=0.163 for y= 0.18 in (b). This cut is along the black line in Fig. [5.4(a). The color
shows the concentration distribution in the upper layer ¢@ and the scaled concentration in
the lower layer ¢ H. Vectors for velocity are plotted on a coarse grid to emphasize the
large-scale flow. The individual markers in the profiles (a) and (c) represent the collocation
points. Note that solid walls are at z = +1.

concentration rises, and the bottom layer is progressively saturated with solute. In the top
layer, the bulk concentration is necessarily lowered.

Furthermore, the graphs illustrate the influence of the diffusivity ratio on the concentration
profiles. Due to the distinctly higher diffusivity in the bottom layer (D /DM = 0.14),
Marangoni convection affects the shape of the concentration profiles less pronounced there,
but additional convection intensifies mixing of solute, cf. green (+)-curve for pure diffusion
and black (+)-curve with convection at z < 0 in Fig. [5.10|(a).

Additional profiles and a concentration distribution are plotted in Fig. for a larger
z-range at t = 1.436. In the upper phase (z > 0) in Fig.[5.10|(a) and [5.11}(a) the concentration
profiles (t = 0.163, ¢t = 1.436) have two characteristic gradients separated by turning points.
The first gradient near the interface is formed by the combined action of small-scale flow of
RC-Is, large-scale advection by RC-IIs and the diffusive transport near the interface. The
second gradient connects the mized fluid near the interface with almost unchanged bulk fluid.
This situation is visualized by the vertical cross section of the RC-Is pattern in Fig. [5.10(b)
and the large-scale RC-II in Fig. b). In both of these 2D concentration distributions, the
mixed fluid appears in light gray. Mixing extends up to z ~ 0.01 for ¢ = 0.163 [Fig. [5.10(a)]
and z ~ 0.04 for ¢ = 1.436 [Fig. [5.11|(a)] in the top layer.

The cross-section in Fig. b) explains the local maximum in the concentration profile
of Fig. a) at z =~ 0.005, which results from the general flow structure of the RC-IIs in
this system. The jet-like inflow in the center carries solute-rich fluid from the deeper bulk
regions towards the interface, where the flow is diverted parallel to the interface. The fluid
depleted of butanol, however, accumulates in the rather flat vortices at the cell boundaries
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with a local minimum of concentration at z ~ 0.02.

The velocity profiles
urd o (2) = 1/ (u-u)gy (5.19)

ms

for the same states as the concentration profiles are shown in Figs. (c) and (c) In
line with the concentration profiles, the zone influenced by interfacial convection grows in
time. For late times, the rms velocity reaches a weak local maximum in the bottom layer at
z ~ —0.015 [Fig. |5.11|(c)]. This maximum can be assigned to the flow of the large RC-II-vortex
in Fig. [5.11{(b).

The shape of the presented velocity profile with the global maximum at the interface and
the local maximum of the RC-II vortex qualitatively agrees with measured velocity profiles
of substructured Marangoni cells in a Hele-Shaw geometry .
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Figure 5.11: Marangoni roll cells in simulation F_1_1: Horizontally averaged concentration
(a) and rms velocity profiles (c) together with a vertical cross section of a RC-II with a sub-
structure of smaller RC-Is at t=1.436 for y=0.24 in (b), so along the black line in Fig. c).
The color depicts the concentration distribution in the upper layer ¢ and the scaled con-
centration in the lower layer ¢(Y) H. Vectors for velocity are plotted on a much coarser grid
than used in the simulation rendering the large-scale flow. The individual markers in the
profiles (a) and (c) represent the collocation points. The size of the domain presented is
roughly tripled relative to Fig.[5.10] Additional locations dcy, dcrr, du represent length scales

introduced in Sec.

The potential mirror symmetry of the flow (for Stokes flow with G = 0), discussed in Sec.
[3:2] was increasingly broken with advancing time. This asymmetry of the velocity is seen by
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the difference between rms velocities of individual layers [Fig. [5.2(c)] and the just discussed
profiles. The velocity distribution in Fig. (b—c) reaches further into the upper organic
bulk phase.

We expect the asymmetry is due to the action of buoyancy arising in the course of mass
transfer. The confinement of roll cell motion to the proximity of the interface is more pro-
nounced in the lower aqueous phase. This asymmetry could be owing to the higher solutal
expansion coefficient there 5 = 0.75 but is maybe also impacted by the higher diffusivity in
the bottom layer. Other potential reasosn for the asymmetry are inertial effects. However,
in our units the Reynolds number is calculated by the velocity times a length Re = ul. Since
the velocity at the interface is usually lower than one and every arising length scale is also
lower than one, so Re < 1. Buoyancy effects are further studied in Sec. [5.5

Finally, the vertical cut through the RC-II in Fig. is supplemented with the planar
view in Fig. It combines the synthetic shadowgraph image with stress vectors in (a)
and the velocity amplitude with velocity vectors in (b). The velocity field at the interface
is primarily governed by the large-scale flow of the RC-II; secondary the RC-I substructure
modulates this flow. The individual small RC-Is can be identified in both the distribution of
the local Marangoni stresses (a) and the velocity magnitude of the central cells (b).
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Figure 5.12: Fully developed RC-II (E_1_1): (a) Synthetic shadowgraph image (-s(x,y)) with
tara, (b) velocity magnitude |u|(z = 0) with velocity vectors at the interface, both at t=1.436.

5.3 Comparison of simulations with experiments

The present section compares the performed simulations with experimental observation.
We will use data from two independent experimental studies: Results from the thesis of
Schwarz and recent experimental data from Schwarzenberger and Eckert [111]. Before
the comparison, the experimental procedure is presented in Sec. according to Ref. .
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Thereafter, a qualitative (Sec. [5.3.2) and quantitative (Secs. [5.3.3}5.3.5) comparison is per-
formed.

5.3.1 Experimental procedure

This section briefly quotes the experimental procedure from Schwarzenberger & Eckert [111].
Cyclohexanol and water were mutually presaturated by gently stirring the superposed fluids
each with the same volume for at least 24 hours. After separation of both phases, the
desired solution of butanol in the cyclohexanol-rich phase with a molar concentration of
co was prepared and stirred well to distribute the solute homogeneously in the organic phase.
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Figure 5.13: Experimental setup to superimpose the two phases. Image reproduced from [111].

The prepared phases were then filled in a glass cuvette (A),(B) (see Fig. with an
inner size of LxW x H = 60 mm x 60 mm X 20 mm. As indicated by the horizontal block arrow
both phases were joined by sliding cuvette B over A. After this procedure of superposition
(referred as layering), the whole apparatus was introduced into the shadowgraph optics (beam
path sketched by the vertical arrows).

The experimental shadowgraph images sezp(, y) result from the deflection of light that is
caused by the dependence of the refractive index on solute concentration. The experimental
images were mimicked in the simulations by averaging the horizontal Laplacian of the solute
concentration distribution over both layers [160] as already introduced in Eq.

Thus, the synthetic shadowgraph images s(x, y) permits a visual comparison of the emerg-
ing structures with the experiments. However, note that the experimental shadowgraph
records were affected by potential deflections at the deformed interface and general nonlin-
earities in ray propagation and detection, in addition to the basic model Eq..

A similar experimental setup was used by Linde & Schwarz [197,198], but with a cuvette
height H=15mm. Schwarz [198] described three experiments — with the current material
system — that differ in the initial butanol concentration, i.e. 1y, = 0.025,0.05,0.1. The
corresponding numerical parameters were already presented in Tab. under the group ”S_
...”. He showed several consecutive images of pattern formation for y = 0.05 and y = 0.1 and
measured the RC-I sizes. This data will be discussed in the following sections.

Furthermore, in experiments of Schwarzenberger & Eckert, a larger field of view allowed
to monitor the growth of the higher-order patterns, which cannot be extracted from the data
of Schwarz. This was done for two initial concentration y = 0.05,y = 0.075. In this way, the
multi-scale properties of the interfacial convection were substantiated. However, the images
of Schwarz [198] were recorded with a higher magnification, i.e. they are suitable for an exact
visual comparison with the high-resolution simulations. Whereas in the recent experiments,
the smallest structures were not fully resolved.
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5.3.2 Qualitative comparison

Sec. [5.2.1] showed the emerging Marangoni patterns in their temporal succession for the refer-
ence simulation. These images are compared versus two experimental images from the thesis
of Schwarz in Fig. |5.14] Although this experiments corresponds to parameters S_1 of
Tab. it differs from E_1_1 only by a slightly lower Grashof number G = —4.35-10°, which
has only marginal influence on pattern formation, cf. Sec. For this reason, no additional
images from simulation S_1 are shown. Additional experimental images are shown in Fig. [5.15
from recent experiment that correspond to reference parameters.

Generally, a remarkably good agreement, regarding the visual nature and the overall
development of the structures is found between experimental images m and our simulations.
Two main differences might be noted.

Firstly, the first phase I with initial RO is not covered with images or verbally by Schwarz.
The earliest image that Schwarz showed is for a pattern of RC-I without substructure, Fig.12
in . However, Linde noted such a phase of initial spreading in his review . Recent
experiments failed to resolve these very small cells.

A second and clearer difference is that experimental pattern formation appeared acceler-
ated relative to simulations. This acceleration is in two respects: the onset of convection as
well as the consecutive speed of hierarchy formation. This becomes apparent when Schwarz’s
images are compared to the simulated images (Fig. versus Fig. and with recent
experiments (Fig. [5.15)).

0.2

0.1 0.1

0.1 0.2 0.3 0.1 0.2 0.3
(a) Schwarz; t = 0.16 = 30 s (b) Schwarz; t = 1.44 = 270 s

Figure 5.14: Coarsening phase of interfacial convection: experimental shadowgraph records
of Schwarz [198]. The grid lines were inserted afterwards.

5.3.3 Horizontal size of RC-Is

The first-order Marangoni cells RC-Is are the basic modules of the solutal Marangoni pattern.
Schwarz [198] measured their averaged diameter as a function of time. This circumstance calls
for a unique and robust method to identify individual RC-Is from simulations automatically.

VThis also applies to the additional images from Schwarz \\ not shown here and to his verbal description.
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(d) t=0.16 | (e) =051 N o (f) t=1.44

Figure 5.15: Growing size of RC-1Is: (a,b,c) In the experimental shadowgraph images (window
of approx. 0.5x0.5) corresponding to the physical parameters of the reference simulation E_1_1
and (d,e,f) simulated pattern (—s(x,y)) in domain of 0.5x0.5 in (cf. Fig|5.4). Experiments
from Schwarzenberger & Eckert reproduced from [111].

We identify individual RC-I by dividing the interfacial area into two parts, one with a
negative and one with a positive vertical velocity gradient 0,u,(z = 0). Note that d,u, is
continuous at the interface, so we do not mark the phase. This definition accounts for the
source of convection, i.e. the Marangoni stresses between the inflow region (0,u, < 0, low
interfacial tension) and the outflow region (0,u, > 0, high interfacial tension). Specifically,
we produce a binary distribution Iy(0,u.)(z,y) of white Ip(0,u;)(x,y) = 1 for d,u, > 0
(outflow) and black Ip(9,uy)(z,y) = 0 for O,u, <0 (inflow). An example of such a binarized
image is shown in Fig. [5.16

A conspicuous feature in Fig. is the general bounding of the black inflow regions
by the white outflow regions. These connected black subareas are identified as individual
cells. The characteristic horizontal length scale, Arc_j, of the RC-Is is calculated from the
individual cell areas A; as the mean of the circular diameters

N,
1 c
ARC-1 = A Z \/ Ajd/m, (5.20)
C ]:1

where V. denotes the total number of cells. Details of the image processing are described in

App.
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Figure 5.16: Vertical velocity gradient in binary representation Ip(0,u.(z = 0,t = 1.44)) of
E_1_1 together with calculated length scales (Ar, Arc—71).

The mean diameter of the RC-Is for the reference simulation E_1_1 is presented in Fig.[5.17|(a).
The diameter grows until it reaches a fairly constant value of A\grc_; ~0.013, which agrees
well with the corresponding measurement of Schwarz [198] (circles), see his Fig. 56. The end
of the RC-Is growth phase coincides with the occurrence of the RC-IIs.

For a further comparison of the RC-I sizes, we have performed simulations corresponding
to experiments of Schwarz [198] with lower butanol concentrations yéz) = 0.025 (S-3) and

P = 0.05 (S2), cf. Tab.

The size of RC-Is increased with lowered butanol concentration, which is reflected both in
the experiment [198] and simulation when considering Figs. [5.17(a,b). Note that simulation
S_3 had to be conducted with stronger initial perturbations to better match better the onset
time of interfacial convection according to the experiments for this low butanol concentra-
tion. However, even under these conditions, the simulation S_3 shows a significantly retarded
growth phase in Fig. (b) The simulation and the experiment agree better for 91(72) = 0.05.

According to our analysis in Sec. we tried to account for the concentration change
by the rescaling of time and length scales in Fig [5.17|(c),(d). The rescaling is done by the
relative Marangoni number Ma, = Ma/—2.4-10%. Fig. (c) shows an effectively identical
behavior of the RC-I sizes for different concentrations, especially in the early stage.

Rescaling is also applied to the data of Schwarz in Fig. [5.17(d). The differences between
the early evolution of experiments are larger, although diameters for large times approximately
show the assumed scaling. These differences might be explained by changes in material prop-
erties (e.g. diffusivities, viscosities, Henry coefficient) with concentration or the superposition
procedure for creating the initial state.

VIThe deviation of S_3 is due to increased initial perturbations.
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Figure 5.17: Sizes of RC-Is in the simulation and experiments of Schwarz [198]: (a) Mean
circular diameter Agro_; of the RC-Is from image analysis of simulation £_1_1 and measure-
ments of the mean RC-Is size by Schwarz (see Fig.56 in [198]). (b) Mean circular diameter
Arc—1 of the RC-Is of two simulations (S_3_-1, S_2_1), cf. Tab. and corresponding mea-
surements of Schwarz [198], (c) mean circular diameters Arc—; from the simulations scaled
with relative Marangoni number, (d) experimental data from Schwarz [198] rescaled but in

dimensional representation.
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5.3.4 Horizontal size of RC-IIs

After the RC-Is growth phase, the hierarchy formation towards the RC-IIs regime was the
prevailing process, i.e. the difference in the length scales of the RC-IIs compared to the RC-Is
rose in time. This difference is reflected in the synthetic shadowgraph pictures in Fig. as
well as in the experimental ones in Fig.

The mean RC-1IIs size was quantified by the dominant Fourier modes in the shadowgraph
image and denoted as Ap (with the subscript F' for Fourier). The calculation is explained
in App. [Ef cf. Eq. . Please note that we applied a rather non-standard definition for Ap
to extract a length scale from experimental as well as simulated images that indeed represent
RC-II sizes in agreement with the visual impression. This is because the power spectrum of
s(z,y) peaks for wavenumbers that are related to the width of cell boundaries, which is not
the desired length and also not accurately resolved in the experimental images.

The quantity Ap reflects the RC-1Is size after t=0.3 (E_1_1) when the RC-II regime started
to dominate. The same evaluation procedure was carried out for the experimental shadow-
graph records, cf. Fig. Experiments with a lower concentration of solute (corresponding
to E_2_1) merely produced a poor signal-to-noise ratio due to the low contrast of the shad-
owgraph images; so, they were not used.
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Figure 5.18: Length scales of RC-IIs from experiment [111] and simulation: (a) Evolution of
Ar from the radially averaged spectrum of s(z,y) in the reference configuration, (b) ratio of
Ar and the RC-Is size A\p/Arco—; for the simulations with rescaled time. The discrete nature
originates from averaging the spectrum around wavelength [, /i for i € (1,2,3,..., N, /2).

The growth of A\p is shown in Fig. [5.18((a). It agrees between the simulations (dots) and
the observations from the reference experiment (black circles). However, as already noticed
in the progression of the RC-Is sizes in Fig. ‘b)7 the experimental length scales exceed
the ones from the simulations. This is in line with the visual impression from Fig.

Fig. (b) illustrates the degree of hierarchy formation, which is manifested in the ratio
of Ar to the formerly calculated RC-Is size Agc—7. This length ratio Ap/Agc—r is related to
the number of subcells in a RC-II and increases with time.
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5.3.5 Optical flow

In this section, a third method to compare the simulated with the experimental data is
presented. On the basis of shadowgraph records, it is also possible to obtain information on
the flow field of the RC-II. This is done by calculating the optical flow field u,¢ [12] from
two consecutive shadowgraph images. However, as the quantity (u,s) is not identical to any
direct physical quantity, the interpretation of the optical flow requires special care. In the
following we will relate this optical flow with the interfacial velocity.

A standard commercial particle image velocimetry (PIV) tool "PivView” [241] was used
to calculate an optical flow u,r. Basically, the PIV method partitions the image into inter-
rogation regions. Then, it calculates a displacement of these interrogation regions between
successive images such that the cross-correlation functions between displaced [239] interroga-
tions regions is maximized. These optimal displacements are afterwards divided by the time
between images to yield the optical flow. m

Fig. |5.19 shows such an optical flow from an experiment with the reference parameters

(E-1.1). The root mean squared value of the optical flow is ,/((u’of)2>xy = 0.2226, where

the mean flow has been subtracted as it is substantial (u,;) = —0.42e, + 0.0531e,. This is
probably caused by the interaction of the curved interface near the cuvette walls.

The same procedure is applied to the simulated synthetic shadowgraph distribution and
displayed in Fig.[5.20|(b) for a similar state of pattern formation than shown in the experimen-
tal image. For comparison, the interfacial velocity is plotted beside in Fig. [5.20[(a). In fact,
both flow fields from Fig.[5.20|agree to a large extent for the hierarchical RC-II. A quantitative
comparison, however, reveals that the optical flow underestimates the actual velocity at the

interface: The mean interfacial velocity is wls), = V{(u(z =0))2),, = 0.2516 and the mean
optical flow is , /<(ugf)2>xy = 0.1363, both calculated for the state in Fig.|5.20 Furthermore,

the experimental optical flow is twice as high as the simulated one (0.2226/0.1363), although
a similar pattern is picked from the experiment.

From the purely theoretical point of view, one reason for the general underestimation
of interfacial velocity by the optical flow is the spatial averaging, which is inherent in PIV
method. Namely, the cross-correlation is determined for discrete image subdomains of finite
width. The impact of spatial averaging was estimated by downsampling interfacial velocity
and thereafter calculating the mean.

In detail, the data is given at the gridpoints (z;,y;) for i € {0,1,...,N, — 1},j €
{0,1,...,N, — 1}

For downsampling, we defined a square of edge length 1, Ng/(N;) (with Ny < N,) in which
the velocity is averaged and then assigned to the center of these squares. We call N the sub-
sampling factor and reduce the resolution by covering the full area by these disjoint squares.
The outcome of downsampling and afterwards averaging the velocity is shown in Fig. M(a).
As expected the rms velocity drops with increasing N.

A second reason why the optical flow underestimated interfacial flow is that the flow
induced by the smallest structures cannot be detected, since they do not transport a detectable

VIIFor comprehensive theoretical understanding this procedure is a bit unsatisfactory since the exact algorithm
is only partly laid out to the public. However, this method is widely used in experimental fluid mechanics so
we will proceed. The data of optical flow calculations is provided to us by Karin Schwazenberger.
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optical inhomogeneity. This effect is visualized in Fig. for the early state of mass transfer,
where the pronounced hierarchical patterns have not developed yet and mainly RC-I exist.
In this case, optical flow and interfacial velocity distinctly deviate. Flow is only detected
in regions where RC-IIs begin to form. Hence, the mean magnitude of the optical flow
is very small (Ju)[) = 0.0355 compared to the mean magnitude of the interfacial velocity
(Jul) = 0.3338, see also Fig. [5.22|(b) for the impact of subsampling .

Figure 5.19: Experimental pattern of RC-II with optical flow field. A window of 0.5 X
0.5 (corresponding to 1 cm x 1 cm) is shown. (u;)=-0.42, (uy)=0.0531. We plot u;,, =

Uor — (Uof)ay. The avergaged velocity is (|u;,,[) = 0.2021 , /((u};)?) = 0.2226 . Image
reproduced from Ref. [200].
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(a) (b)

Figure 5.20: (a) Interfacial velocity and optical flow (b) for a pattern of RC-II at t = 1.5
(simulation E_1_1). The interfacial velocity in (a) is plotted on a coarse grid, i.e. averaged
over 64 x 64 points. The domain size is 0.5 x 0.5. Mean flow is very small (u(z = 0)),y =
2.1-107%e, + 1.57 - 10~%e,. Averaged velocity is (Ju]) = 0.2303 , \/((u)2?) = 0.2516 and
averaged optical flow is (Juys|) = 0.1228 /((uef)?)zy = 0.1363.
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Figure 5.21: (a) Interfacial velocity and optical flow (b) for a pattern of mainly RC-I at ¢t = 0.2
(simulation E_1_1). The interfacial velocity in (a) is plotted on a coarse grid, i.e. averaged
over 16 x 16 collocation points. The size of the shown domain is 0.125 x 0.125.
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Figure 5.22: Averaged interfacial velocity and optical flow for t=1.5(a) and t=0.188 (b) in
simulation E_1_1. Interfacial velocity is shown for different subsampling factors Ng, whereas

for N; is the size of the interrogation window for PIV method.
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5.4 Discussion: mechanism of multiscale structures

Section [5.2] illustrated the main evolution and generic structures of solutal Marangoni in a
regime of deep layer convection, where convection is restricted to the proximity of the interface
and the largest structures are smaller than the periodicity length. This was done until ¢ ~ 1.5
for simulation E_1_1. In this framework, the question of how structures change and transform
locally is addressed in the following.

To classify the pattern evolution, we identified two main mechanisms: The coarsening of
convection patterns and their subdivision by a local instability at the inflow regions. The
two mechanisms are present in both the very early phase and in the later evolution. In the
following subsections, both mechanisms are discussed on the basis of a hierarchical cellular
pattern.

5.4.1 Coarsening of hierarchical pattern: general properties

We expect that coarsening is caused by the continuing equilibration of concentration differ-
ences between the phases. Therefore, cells with large vertical dimensions are favored as they
are more efficient at transporting solute over a mixed layer of width dcy;. The growth of
individual cells leads to a growing velocity penetration depth du, which in turn causes an
increase in the horizontal length scales as both quantities are coupled by the cellular flow
structure. The horizontal length scales Agc_; and Ar have been determined in Sec. In
the following, we further describe these interactions by displaying additional data from the
reference simulation. The noted vertical length scales (du,dcrr) are calculated in the next

Sec. 5.4.21

The coarsening and substructuring of individual cells continues after the vigorous initial
phase, and the most efficient cells keep expanding to compensate the growing mixing zone
in the organic phase, illustrated in Fig. by a sequence of shadowgraph images together
with corresponding cross sections at y=0.24.

In Fig. b)7 the inflow zones — i.e. where fluid streams towards the interface — of
two major RC-IIs are visible in the center (x=0.25) and at the right-hand side (x=0.46) as
dark zones in the upper organic phase (violet color). At x=0.165, a weak inflow zone of a
fading RC-II can be observed. It is incorporated by its neighbors in Fig. [5.23{c,d). Finally,
in Fig. m(e,f), the inflow zones of two remaining large RC-IIs are visible in the center and
at the left and right margin (due to the periodicity of the displayed image section in the
x-direction) separated by the outflow with white, plume-shaped depletion zones. Contrary
to Fig.[5.23(b), where these depletion zones are modulated by different smaller RC-IIs, they
now appear as continuous white regions.

Figs. |5.23|(b,d,f) illustrate that a characteristic feature of the RC-IIs is their slow evolution
based on the history of these depleted zones. Fig. depicts the topography of these zones
at t=1.44 by the isosurface of concentration ¢(?) = 0.98 in the organic phase. The large, bulky
depletion zones are interconnected and bound the individual inflow regions. At the inflow
regions, the fine RC-Is that are created by the local instability can be observed because the
high concentration of the bulk phase is carried to the interface.
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Figure 5.23: RC-IIs development for E_1_1:. Synthetic shadowgraph pictures (—s(z,y)) on
the left and concentration distributions ¢ H and ¢ along the black dashed line at y=0.24
on the right hand side with the velocity field.

5.4.2 Coarsening of hierarchical pattern: vertical length scales

In line with the former discussion, the solute concentration can be characterized by two length

scales: the boundary layer width 50?)—already introduced to analyze the onset of convection—

(2)

and the larger mixing-zone width dc;;/,

@ 1=(@)y o 1=(P)ge

) =+ /9 = 5.22
T [Ee@y, O T Ty, (5.22)

We only discuss the upper phase concerning concentration since division of scales is stronger
there.

The highest numerical requirements for spatial resolution are set by the boundary layer
width 5c§2). Its temporal behavior is shown in Fig. (a) for four different initial concentra-
tions of butanol. At the beginning, its evolution is governed by pure diffusion, and it grows as
V/t. The onset time of Marangoni convection is given by the local maximum in Fig. [5.25|a).
At this instant of time, 505-2) drops due to the strong advection of the initial ROs. The sub-
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Figure 5.24: Isosurface of concentration at ¢(2) = 0.98 in the upper layer for t = 1.44, E_1_1.

sequent growth of (50?) is associated with the general reduction of concentration difference

across the layers.
The mixing-zone width corresponds to a virtual layer of height 5c§21), base areas [, X
l,, a concentration of 1 — (¢(®)), (i.e. the difference to the initial concentration) and that
contains the transported amount of solute (1 — <c(2)>9(2))lmly. The growth of (ch) is therefore
accelerated by the convective motion compared to the case of pure diffusion, cf. Fig. b).
Similar to the mixing zone width 5c§21), we define a vertical velocity penetration depth
sul® by the ratio . _
sul?) = M (5.23)
<u(2) . u(l)>5

The penetration depth of velocity, see Figs. a) follows the coarsening trend in time just
as the formerly introduced scales Agpc—_1, Ap, 50&2), 5052[).
With this length éu(? and the interfacial rms velocity, a Reynolds number Re® for the

top layer is defined by

Re® = 5u® /Ty = % (5.24)

This definition uses the length scale of characteristic structures. Therefore, Re estimates
the common ratio of advective to viscous momentum transport. Fig. [5.26(b) shows that
Re® is clearly below unity, hence momentum transport is mainly due to viscous diffusion.
Furthermore, the mass transport mechanisms can be characterized by the Peclet number
Pe® = Re®Sc® = Re(? .2.86 - 105, which takes values around 10! in the upper phase and
around unity in the lower phase (because Pe(t) = Sc(Mgu(),/(u - u),). Thus mass transport
of butanol is dominated by advection despite small Re, particularly in the upper phase on
account of the low diffusivity there.
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Figure 5.25: Temporal evolution of (a) concentration boundary layer and (b) mixing zone for
four different simulations, cf. Tab. The thin solid line represents the analytical solution
of the diffusion problem in two semi-infinite layers (Sec. .

5.4.3 Substructuring of hierarchical pattern

The second mechanism is the local instability that leads to a subdivision of the inflow regions.
It appears clearly visible during the creation of new solute fronts in the shadowgraph images.
It limits the maximum size of RC-Is since the probability of splitting seems to increase with
the size of a contiguous inflow region and with the local concentration gradient.

The generation and drift of substructures are shown in Fig. [5.27] This image sequence is
taken from the center of the large RC-II in the middle of Fig. [5.23] while the time range is
located in between Fig. [5.23(a) and (c). The mean drift of the substructure cells is directed
from the center to the left and right margins of the images. In Fig. [5.27|(a), large inflow zones
with a stagnant velocity are visible at A and B. Subsequently, they split into two smaller
cells. The bright cell boundaries that divide the freshly generated substructure cells become
visible in the shadowgraph images (b) and (c).

Comparable to the breakdown of the initial ROs (Fig. , the local instabilities appeared
in the growing inflow zones. We expect that this instability to be governed by the high vertical
concentration gradients there. As a result, small length scales are produced in the inflow zones
that are subsequently advected by the large-scale flow throughout the RC-IIs. This process
of small length scale production competes with coarsening and may, therefore, explain the
plateau phase in the Arc—1 evolution from ¢ ~ 0.3 on, cf. Fig.
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Figure 5.27: Drift and creation of substructures in shadowgraph images (—s(x,y)) from the
reference simulation £_1_1 with the corresponding velocity field at consecutive times.
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5.5 Role of gravity and geometrical constraints

This section is dedicated to further parametric studies. Parameter space is obviously quite
large, and yet the experimental parameters used were such that we could not afford a suffi-
ciently large interface (l,1;) to study the process of pattern coarsening beyond ¢ ~ 3, since
largest cell were comparable to the interface size (I,[,). Of course, one has to pick config-
urations that are of distinct theoretical and practical importance. Therefore, we investigate
further the role of scale invariance under a change of Ma noted in Sec. and already
applied in the former sections. This is done by a selective variation of the prerequisites for
scale invariance — i.e. geometrical limitations and buoyancy influence. The principle of scale
invariance is important with regard to two aspects: the change of initial concentration (and
thereby Ma) is simple to apply in experiments and the impact of concentration variations
(thus Ma) on mass transfer rates is important for industrial extraction processes.

Density stratification, which grows with advancing equilibration, is analyzed by perform-
ing an additional simulation without gravity influence G_1_1, but otherwise the same pa-
rameters as in the reference simulation E_1_1. Furthermore, with simulations G_.1 2-G_1_4
(see Tab, it is demonstrated how reduction of periodicity lengths I,,[, change patterns
and mass transfer. Finally, two simulations L_1, L_2 are presented, having lower Marangoni
numbers and also vanishing Grashof number G = 0. These simulations capture the full
equilibration process, thereby probing the vertical constraints set by the layer heights.

5.5.1 Impact of density stratification

The impact of density stratification on mass transfer of will be characterized by two quantities:
(1) The transient Sherwood number

(8Zc(1)(t, 2=0,2,9))ay

Bzcgi}f(t, z=0)

Sh(t) = (5.25)

which relates the actual mass flux to the one from the pure diffusive solution D_1. Note that

(1)

(9ch1 7 is obviously also time dependent. (2) The enhancement factor

1
R = <c(i))>””y (5.26)
(Caitplay=
represents the actual amount of transported solute normalized by the one from the purely
diffusive solution.

The difference in Sh due to the presence (G # 0) or absence (G = 0) of a stabilizing
density stratification is shown in Fig. |5.29(a). It compares the reference simulation E_1_1
with its counterpart with zero Grashof number G_1_1. Both show a steep increase in Sh at
the onset of interfacial convection. In the phase of hierarchy formation (¢ > 0.1), Sh was
growing further in the zero Grashof number case (G_1_1) but leveled off for the reference
simulation. The same behavior is reflected in the enhancement factor R in Fig. [5.29(c).

A further difference is seen in the rms-velocity for the separate layers [Fig. [5.29(b)]. For
G = 0, the velocity in both layers is almost identical (blue lines no visible difference), which
is in line with the symmetry properties of the Stokes equations for G = 0, cf. Sec. A bit
unexpected is that the upper layer (2) velocity is lower for G = 0 than for G = —7.7 - 10°.
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This situation might be caused by a difference in flow structure. For instance, RC-IIs have
smaller horizontal extent for G=0: see Fig. b) and compare to Fig. d).

The simulation G_1_1 shows the same key properties in terms of pattern formation as
described for the reference simulation. Additional shadowgraph images of simulation G_1_1
are collected in Fig. in App.

In former Sec. [5.3] different initial concentration were simulated. In the presence of gravity,
lower solute concentrations yield higher Morton numbers Mo = (|G|(ScM)3)/(|Mal?), see
legend of Fig. [5.29(d). We introduced the Morton number in Sec. where we discussed
the scaling of equations without external length scale. There we showed that in the deep
layer regime (i.e. when the system appears as practically semi-infinite) Mo should be used
to measure the impact of buoyancy.

In this view, Fig. d) shows the increased deviation from G_1_1 with increased Morton
number as well as with increased rescaled time.

(a) I, = 0.5, t =0.23 (b) I, = 0.5, t = 2.70

Figure 5.28: Computed shadowgraph images showing the pattern formation for a domain size
of I, 1, = 0.5 in G_1_1.
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Figure 5.29: Impact of density stratification: (a) Sherwood number Sh for simulation E_1_1
and G_1_1 both with Ma=-2.4-108, (b) rms velocity in each layer for E_1_1 and G_1_1, (c)
enhancement factor R for simulation E_1_1 and G_1_1 and (d) Sh for different Morton numbers
and rescaled time with Ma, = Ma/ — 2.4 - 108.
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5.5.2 Impact of geometrical constraints

We imposed limitations on the coarsening of flow patterns in horizontal direction by reducing
the lateral dimensions [, = [, but fixing the other parameters (cf. Tab. simulation G_1_2,
G_1-3, G_1.4). Figure[5.30|(a) shows that Sh decreased with decreasing domain size.

This plot is substantiated by snapshots of the pattern evolution in the small domain of
l, =1, =0.05 (Fig. . At t =~ 0.2, the Sh-curve for I, = 0.05 still followed that of the
largest domain size [, = 0.5. It distinctly deviates for ¢ > 0.4. Correspondingly, the pattern
in Fig.|5.31|(b) shows one large cell with substrutures. For ¢ > 1.5 the Sherwood number levels
off, the flow pattern consists of a single square cell with (at t=2) a circular substructure.

We found that when the ratio of domain size normalized with the concentration boundary
layer width (calculated for the pure diffusion case)

—1
tm

was smaller than three [see Fig. |5.30(b), dashed cyan line], a clear deviations from the Sh
curve of [, = 0.5 appeared.

Another notable feature is the extent of fluctuations in the Sherwood number evolution
[Fig. [5.30(a)]. As the curve for I, = 0.5 results from averaging over a large number of cells,
structural changes give rise to only a slight modulation. Accordingly, fluctuations are more
pronounced for the smaller domain sizes.

10* - ;
T8 ‘ ‘
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Figure 5.30: Mass transfer in reduced domain sizes: (a) Progression of Sherwood number
and (b) comparison of domain size to boundary layer width for pure diffusion with horizontal
dashed line at a value of three.

Finally, we present the impact of vertical confinement. Therefore two simulation with low
Marangoni number and G = 0 are performed: L_1 (Ma=-1.2-107) and L2 (Ma=-0.6-107).
This could be realized in an experiment by reducing layer heights to 1 mm or 0.5 mm with
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Figure 5.31: Computed shadowgraph images showing the pattern formation for a domain size
of I =0.05 in G_1_3.

7.5Vol% butanol. IV_I'[II In Fig. a), the interfacial velocity is presented for these simulations
and G_1_1 (Ma=-2.4-10%). In these plots, quantities are rescaled according to the principle
of scale invariance. Initially, scaled velocities match since convection is not influenced by the
finite vertical size.

Simulations clearly deviated from deep layer regime (G_1_1) when one half of the solute
passed the interface, i.e. (¢()) /Cg) > 0.5, see Fig. [5.32(b). Scaling of the averaged concen-
tration is not applied in Fig. b) to show the meanigful absolute value but it is applied
in (c). There, the deviations from the deep layer regimes get obvious. Note that the mean
concentration scales as (c(V)(t - Ma;2) o« Ma; ! in the deep layer regime.

Figure [5.33] shows the development of patterns for L_1. As expected from the former
graph, until ¢- Ma? = 0.6 they followed the generic evolution of G_1_1 qualitatively. However,
when RC-IIs were reaching a characteristic size of unity — that is the layer height — the finite
vertical size impacts pattern formation. As a final stage, a pattern of RC-I appears with a
characteristic size of twice a layer height [Fig. [5.33(d)].

Simulations L_1, L_2 showed that if lateral confinement and buoyant influences are ex-
cluded, the change in Marangoni number could be accounted for by a simple scale transforma-
tion from a generic simulation until approximately one-half of the solute has been transferred
and the size of the largest convection cell is not more than unity. However, we would be
careful to extrapolate our results to even smaller Marangoni numbers, i.e. when even initial
cells are not distinctly smaller than a length of unity.

VIIOf course this reduction could be also enforced by lowering ¢o. However, this leads to a dramatic reduc-

tion in sensitivity of the shadowgraph method since the dimensional horizontal Laplacian of concentration is

expected to scale like Asé x 3.



93

1 . . : : : :
— G.1.1 Ma, =1 1! . S ]
- — = L. Ma, =1/20 - -
0.8 - ) e g - -
ot L2 Ma; = 1/40 08l v 7 e
I & / - -
s 0.6 Do -
= S 06f---/ -
~ '
oy = |-
3t O =04t/ L7
S I> /
/
0.2 - =< 0.2 i/
T = /
0 : — - == 0 ' ' '
0 1 2 3 4 0 1 2 3 4
Timex Ma? Time x Ma?2
(a) (b)
0.06
0.05 | ‘
,—g , - = ]
0.04 | -
= -
X s
oo 0.03} z
e
= e T T T T 7]
2002} ‘7 .
< G 1 1Mar=1
0.01} = = = L1 May=1/20 {
----- L_2 Ma; =1/40
O N " n
0 1 2 3 4

Time xMa?

()
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velocity against time and (b) mean concentration in the lower layer partly scaled, (c) mean
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Figure 5.33: Computed shadowgraph images showing the pattern formation in simulation
L_1, the relative Marangoni number Ma, is 1/20.
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5.6 Two-dimensional geometry

A common strategy to reduce computational cost is to disregard one of the three spatial
dimensions. This strategy is also applied to our reference configuration by disregarding the
dependence on the y dimension for all fields and setting u, = 0. This section compares 3D
(E-1-1, G_1_1) and 2D simulations (E_1.2D, G_1_2D), which we think is of general interest
due to the convenience of solving a 2D model and extrapolating to three dimensions. The
reduction of governing equations is straightforward. These 2D equations are equal to Hele-
Shaw model equations introduced in the next Ch. [f] with zero wall friction (y = 0).

x10~4
B —— -1 0 1 2 3

...

(a) (b)

Time

e e SR S S

Figure 5.34: Temporal evolution of concentration variation at the interface: (a) ¢(M(z,z =
0,t) — (cW(z,z = 0,t)), for the 2D simulation E_1.2D, (b) ¢ (z,y = 0.25,z = 0,t) —
(M (z,y = 0.25, 2,1)), for a horizontal line y = 0.25 of the 3D simulation E_1_1.

Figure [5.34] shows two space-time plots of the concentration variation at the interface
M (z,t) — (W (x,t)),: one for the 2D simulation in (a) and one for the 3D simulation in
(b). In the 3D case, the concentration variation is taken along a fixed value of the y-position
(y = 0.25). In Fig. dark colors (equal to high concentrations, therefore low interfacial
tension) mainly correspond to inflow regions. Whereas, bright colors mark outflow regions
(low concentration). Small-scale modulations indicate substructure RC-Is, which are advected
by the RC-II. For both models, the coarsening and substructuring are well visible. However,
some differences between the 2D and 3D case are observed:
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(1) The instability sets in earlier for the 2D simulation in Fig. |5.34(a), which is simply a
result of decreasing the first time step size to 10719.

(2) The additional dimension in the 3D simulation affects the appearance of substructure
cells. At locations with considerable flow in y-direction (i.e. out-of-plane), the substructures
manifest as closed cellular structures in Fig. [5.34(b) in the ¢ — = plane and so the impression
of finer structures in the 3D case is created.

In order to quantify this, the size of RC-I is again measured. Though now, a procedure
slightly adapted (relative to the procedure in Sec. ) to the 2D simulation is used. The
calculation of characteristic size A of the RC-I follows the same procedure as described in
Sec. except the last step after individual cells (N, in number) are identified. Now
instead measuring the area of every cell, A is set to the edge length of supposed square cells
that fill the complete area I, x I,

(5.28)

In the 2D case, the mean interval length is used

Ly

A= N (5.29)

This RC-I size A is plotted in Fig. [5.35(a) for 2D and 3D and each for G = 0, 7.7 - 10°.
Due to the higher variance in time for the 2D system, the ensemble average over three inde-
pendent runs is plotted in Fig. |5.35|(a). For all cases, A grows until it reaches a fairly constant
value. For nonzero Grashof number G = —7.7 - 10°, the 2D simulations had larger cells.
On the other hand for zero Grashofnumber G = 0, the difference between 2D and 3D was
less pronounced. For both 2D and 3D simulations, G=0 showed smaller A than G = —7.7-10°.

(3) The enhancement of mass transfer is depicted in Fig. b). For the 2D simulations,
R is plotted separately for the three different runs (dashes curves). After the initial phase,
the 3D simulation yields higher values in R.
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Figure 5.35: Comparison between the 2D simulation and the 3D simulation: Temporal evo-
lution of (a) the cell size A [Egs. (5.28),(5.29))], (b) the enhancement factor R. In (a), we
averaged over three simulations for the 2D case.
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5.7 Discussion and conclusion

Motivated by a long history of experimental observations of complex and transient patterns
in solutal Marangoni convection [142,/146L|166,198|, a numerical study has been performed to
clarify the open questions(M;-M,) stated in Sec. which are explicitly answered in the
following.

(M;) Reproduction of experimental patterns: Simulations based on the PM indeed
resembled the experimentally observed hierarchical patterns in most aspect. However, only
a statistical reproduction of experiments was possible due to the nonlinear, transient and
chaotic character of convection patterns. In this way, we have shown that the nonlinear
evolution towards a multiscale flow pattern is primary not the result of any other physical
effect (e.g. adsorption of contaminants or interactions with interfacial deformations).

Main differences between experiments and simulation were found owing to: the problem-
atic reproduction of the experimental layering procedure, the limited size of the numerical
domain (due to computational resources), the disregard of lateral walls by the periodicity con-
ditions, uncertainty in material properties, but also a lack of the resolution of experimental
images affected the quality of comparison.

(M3) Basic structures according to Linde’s hypotheses: Indeed, the proposed scheme
of Linde et al. [146] has been found as a sound basis to describe the simulated structures. The
simulated chemical system has covered all three basic structures RC, RO, ROW (Fig.
that Linde proposed in his first hypothesis Li. His second hypothesis Lo has been confirmed
by observing a hierarchical pattern. The observation of higher order patterns requires an
increased numerical effort, whereas some geometric order between the RC-II might be already
claimed for the simulations presented (see Fig. [D.I)).

Linde’s third hypothesis L3 also holds since we have found that the RCs-II are driven by
an integral (disregarding the modulation of the RC-I) concentration difference between the
cell center and its margin. Linde’s fourth hypothesis Ly, i.e. a potential decay and ream-
plification of convective regimes, has not been confirmed. This is however in line with the
experimental observation in the sample system; so, another chemical system might be studied
to simulate this aspect in future. Possibly, such a cyclic behavior might be partly caused by
buoyant effects, which would imply a correction of Linde’s fourth hypothesis. Further recom-
mendations can be found in Ch. [

Two mechanisms that control the formation of hierarchical patterns have been identified,
namely coarsening and local instability. It has been revealed that the largest cells RC-II grow
in parallel with the layer of mixed fluid near the interface (coarsening). Furthermore, the RC-
II cause a critical distribution of solute near the interface that is susceptible to a continuous
creation of smaller Marangoni cells (local instability). In this view, we expect that the number
of hierarchy levels indeed increases with the Marangoni number as described by Linde [146],
since coarsening sets the largest size independent of Ma, but smallest cells are further scaled
down with increasing Ma.

The transition between basic structures of RC and ROW is observed as fluent. The ROW
structure appeared as a substructure of those RC-II that had a distinguished dimension (i.e.
like elongated rolls), where the local instability produces substructures with a preferential
orientation (e.g. perpendicular to the distinguished dimension of the hosting cell). In this
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view, the questions on the appearance of ROW (when disregarding the crucial effect of coars-
ening in time) might be of a similar type as the questions whether rolls or cell are selected
depending on the governing parameters, which was studied in thermal convection [44}66).

An analogy to the local instability mechanism might be drawn to Bénard-Marangoni con-
vection with silicone oil in containers with small aspect ratio [115,156]. Namely, we have seen
that the boundaries of hosting cell (RC-II) consist of solute poor fluid (at the interface) with
the flow directed away from the interface, which is similar to the conditions at the container
walls [115,[156]. In both configurations, the respective number of smaller structures arranges
according to the available space. However, in contrast to rigid walls, the boundaries of the
hosting cells move so that the generated structures are not stationary in our case. Also,
local instability might be related to dynamical regimes in Bénard-Marangoni convection for
high Prandtl numbers, e.g. pulsating and splitting cells were found in a recent simulation of
Medale&Cerisier [157].

Another connection to established works on interfacial tension driven flow is to consider
an isolated large cell (RC-II) that produces horizontal gradients of interfacial tension and its
velocity field. Such situations of horizontal concentration or temperature gradients have been
classically studied by instability analysis of Smith&Davis [56,[218], known as hydrothermal
instabilities. However, the base states that they considered (i.e. a return flow or a linear flow)
deviates too much from the flow state of a RC-II to make a reasonable comparison.

(M3) Comparison of simulations with experiments: The manual cell-size measure-
ments of Schwarz for cells without substructure (RC-I) based on shadowgraph images have
been related to simulated cell sizes. The simulated cell sizes have been calculated with an
automatic method based on the gradient of vertical velocity at the interface. Generally, sim-
ulations have shown a good qualitative agreement with experiments. However, simulations
appeared retarded relative to the experimental data; differences were especially present in
low concentration. These differences might be partly explained by the uncertainty of material
properties as well as a variation of transport parameters with the concentration of butanol.

Recent experiments focused on observing the largest structures, which were measured by
a Fourier method based on the shadowgraph images for both experiment and simulation. A
similar conclusion is drawn, i.e. experiments appeared accelerated (structures were larger
for equal times). The quality of experimental observations might be improved by observing
the large scale but also resolving the small scale structures, completely. It should be also at-
tempted to improve the method of comparing shadowgraph images, e.g. based on geometrical
methods [228], which might be less affected by optical artifacts.

A third quantitative comparison has been done in terms of the optical flow of the shad-
owgraph images. The optical flow has been found to be a capable method to analyze sub-
structured patterns since substructures serve as tracers that are advected by the hosting cell.
The comparison between simulations and experiments has revealed similar findings as both
other methods before. Namely, a reasonable qualitative agreement with the flow structures
was observed, but optical flow in experiments was two times as high as the simulated value.

(M,) Influence of governing parameters and further predictions: The influence of
physical parameters on the development has been studied in several respects. Mainly the role
of scale invariance (see Sec. has been examined, and we have reported the respective
deviations from the generic development (simulation G_1_1).
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In this framework, the role of the stabilizing-density stratification has been studied by sim-
ulating different Morton number Mo = (|G|(ScM)3)/(|Mal?). As expected from theoretical
considerations, a non-zero Morton number prohibits the application of the scale transforma-
tion, and it leads to a reduction of mass transfer. This effect on mass transfer is already
known from experimental observation of Berg& Morig [20}/191].

A second observation has been the matching of cases via scale transformation gets worse
as time increases, which could be explained when considering that the influence of gravita-
tional work increases with the characteristic length scales of stratification.

Moreover, we excluded buoyancy (Mo=0) and considered a geometrical confinement of
convection. For both lateral confinement (decreasing l,l,) and vertical confinement (low
Ma and high times), there was a departure from the generic development, when convection
cells reached the typical outer length (I, [, or unity for vertical confinement). This departure
manifested itself by a lower rate of mass transfer. For the cases with vertical confinement
(low Ma), mass transfer could be described by a scale transformation until approximately
one-half of possible solute was transferred through the interface. The effect of geometrical
confinement also occurs for droplet geometries where it is particularly obvious.



Chapter 6

Marangoni convection in a HS cell

In the present chapter, the cyclohexanol+butanol/water system is further studied inside a
Hele-Shaw cell. In a Hele-Shaw setup, the fluids are enclosed between two parallel plates that
are sufficiently close together such that the fluid motion becomes mainly two-dimensional.
The Hele-Shaw (HS) cell is a versatile experimental and numerical configuration in chemical
engineering studies of biphasic systems [8,37,40,(65.68,80.,88,116], e.g. to investigate transport
processes at liquid interfaces. It provides simplified access to the vertical structures by optical
methods such as shadowgraphy, interferometry and particle image velocimetry. By varying
the orientation of the HS cell, it is possible to reveal information about the influence of
gravity [64,(1411]199}208].

Also from the viewpoint of theoretical modeling, the HS setup is advantageous since it may
be described by a two-dimensional (2D) model based on gap-averaged equations [37], which
significantly saves computational cost compared to full three-dimensional (3D) simulations.
A similar motivation underlies studies that assume a pure 2D model without the influence of
wall friction [26},206]. Despite this interest, a detailed one-to-one comparison of experimental
observations to numerical simulations of solutal Marangoni convection in the HS setup is still
lacking.

The aim of the present chapter is to study Marangoni convection in the HS geometry
with the same material as in the three-dimensional setup (Ch. [5). There the horizontal
structure of the simulated hierarchical Marangoni roll cells compared well to our own and to
independent experiments. Now, by using a HS cell instead of the 3D setup, we are able to
compare numerical results to experimental measurements that observe the vertical structure
of the emerging Marangoni roll cells. Four cases are considered using 0.5 mm and 1 mm gap
width and a vertical and horizontal orientation of the HS cell. On this basis, we discuss the
applicability of the 2D gap-averaged model by comparing structures and measured heights of
Marangoni cells from simulations and experiments.

The following chapter reproduces the authors publication [112] with only small changes,
where experimental and numerical results have already been published in a joint work.

It is divided into four main sections. Sec. presents the experimental setup and the
corresponding theoretical model. The comparison of experimental and numerical results are
consecutively presented in Sec. for the four different cases. A rough analytic estimation
is given in Sec. for the parasitic density convection in the horizontally oriented HS cell.
A concluding discussion in Sec. interprets deviations of the experiment from the model.

101
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6.1 Methods

6.1.1 Experiments

In this section, the experimental setup of Schwarzenberger & FEckert is introduced. They
performed a mass transfer of 1-butanol from an upper cyclohexanol-rich layer (2) to a lower
water-rich layer (1). The preparation of phases proceeds as described in Sec. Now it is
exclusively focused on an initial concentration of ¢y = 0.82 mol/l, identical to the reference
configuration in the former chapter.
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Figure 6.1: Hele-Shaw (HS) geometry: experimental setup (a) from Schwarzenberger & Eckert
[112] with gray inset of numerical domain; detailed numerical domain (b) in viscous units
(scaled by lower layer height d(!) = 20 mm).

To obtain the HS configuration, the phases were placed in a narrow gap between two glass
plates. Fig. sketches the experimental HS setup (a) and the computational domain (b),
which is drawn as a gray inset in (a) for comparison. A spacer made of polytetrafluoroethylene
(PTFE) foil, whose inner contour is shown as a dashed line in Fig. [6.1](a), acted as a container
for the liquids. The gap width 2e, see Fig. [6.1(b), was set by the thickness of the foil: a
thickness of 0.5 mm and 1 mm was used. The width of the interface, marked by a dotted line
and horizontal arrow in Fig. [6.1a), amounts to 30 mm.

For the analysis of the experimental data (Sec. only the central 20 mm of the interface
are considered. This is done to disregard boundary effects that arise in the vicinity of the
pinning edges and near the outflow channels. In the simulations, we use these 20 mm as the
horizontal domain size L,, see Fig. b). According to former simulations, layer heights
are set to d) = d® = 20 mm. In the experimental HS cell, the height of the liquid layers
(approx. 35 mm) was larger. However, since Marangoni convection was restricted to a small
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zone near the interface, this difference is expected to be negligible.

The shape of the PTFE foil was optimized to provide a robust filling procedure for different
two-phase systems [209]. The numbered arrows in Fig. [6.1a) mark relevant stages of this
filling procedure. In step 1, the aqueous phase is injected in the lower half of the container
until its surface is pinned at the lateral edges of the PTFE foil. During the filling of the organic
phase in the second half of the container (step 2), the HS cell has to be placed in a horizontal
position, i.e. the acceleration due to gravity is g = ge, (Fig. . When the organic phase
contacts the aqueous surface, the interface (dotted line) is established quickly via spreading
of the organic phase. Finally in step 3, the exhaust channels are filled to avoid side effects
of the air-liquid interface. The duration of the last step involves a compromise between an
uncontrolled mass transfer during slow filling and an increased interfacial deformation for
rapid filling. This rather delicate filling procedure was due to the interfacial tension of the
system cyclohexanol/water (o,.f = 3.4 x 1073 N/m), which is low when compared to the
alkane/water systems mostly used in this HS cell design [64,65, 68199} 208,209].

To vary gravity influence, the HS cell can either remain horizontally (g =ge,) or it is
tilted to a vertical position (g = —ge., Fig. immediately after filling.

The concave meniscuﬂ (wrt the aqueous phase) that is formed across the plates is char-
acterized by its height @& given by the wall-parallel distance of the triple line to the apex
(the lowest point) of the meniscus. It was measured at both plate distances of 2¢ = 0.5 mm
(1 mm) and is @=0.094 mm (0.180 mm). The corresponding contact angle (with respect to
the aqueous layer) is estimated to # ~ 50°. This calculation assumes a circular interface as
the corresponding Bond number is below unity.

Pattern evolution in the course of the experiment were visualized by a shadowgraph optics
operating in transmission (TSSO, Germany). Additionally, particle image velocimetry (PIV)
measurements were conducted in the vertically oriented HS cell for two different gap widths
(0.5 and 1 mm).

6.1.2 Theoretical Hele-Shaw model

The mass transfer process is simulated on the basis of the PM in viscous units (cf. Sec. .
However to account for the effects of the plates, the model is adapted by a common gap-
averaging procedure [32,37,38,80], which assumes a parabolic flow profile, no solute variation
along the y-direction and a plane undeformable interface.

A new nondimensional paramter appears, i.e. the ratio of the squared layer height to the
half plate distance v = “52° = 6400 (2¢ = 0.5 mm), 1600 (2¢ = 1 mm), cf. Fig. [6.1[b).
By this definition, the nondimensional plate distance is 2y~/2=0.025 (thin), 0.05 (thick). As
introduced in Sec. and illustrated by Fig. [6.1(b), the fluid is located in a box (z,y,2) €
[0,1,] x [-y~1/2,41/2] x [~1, 1] composed of layer") for z < 0 and layer(?) for z > 0.

For the modeling, we follow the formulation of Ref. [37] by averaging over the gap. Specif-
ically, the following two assumptions are applied. First, the velocity field u® (x,y,2,t) in

(4)

layer(® is assumed two-dimensional (uy’ = 0) with a parabolic dependence (see Eq. (1) in

IThe interface position might be described by a height function z = &(z,y). In these terms, ”concave”
means 825(30, y) > 0 and the measured meniscus height (being effectively constant over z) is @ = max(&(z,y)) —
y

min(&(z,y)), cf. Fig In our theoretical model &(z,y) = 0.
Y
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Ref. [37]) on y, i.e.

. 3 , A
u®(z,y,2) = S(1- v (W (x, 2)er + v (z, 2)es). (6.1)

In what follows, we are concerned with velocity fields that are gap-averaged over y and denoted
by v (z, z,t) = (u?),. The second assumption is that solute concentration is constant across
the gap, i.e. it does not depend on the y-coordinate: e = @) (z,2,t).

With these assumptions, the governing equations that were presented in Sec. simplify
to the two-dimensional HS model, which reads

ovih = —gv(l) cvv — Vpgll) +AvY — (Mge, — 3yvV), (6.2)
1
ov® = —gv(2) Vv — ;Vpﬁf) +vAv® — 2Gge, — 3ywv®), (6.3)
v.vl = 0, v.v® =y, (6.4)
1 D
O = v .y 4 @Ac(l), 8P = v . v 4 @AC(Q). (6.5)

The values of non-dimensional parameters are summarized in Table [6.1] Note that these
coincide with the reference configuration, except that v appears as a new parameter. Bottom

z=—1) and top (z = oundaries are considered as impermeable solid walls
1 d 1) boundari idered as i ble solid wall
9. = @ =0@ =0 forz=1, .M =0 =01 =0 forz=-1. (6.6)

At the plane interface (z = 0), the solute mass fluxes and velocities are continuous, bulk
concentrations are in equilibrium and tangential stresses are related to interfacial tension
gradients:

0.1 = Do, o) =of), o) =P =0, (6.7)
g = (@ My )o@ 4 a0, (6.8)
Se) r v

The x-direction is periodic, so velocity v(? and concentrations ¢(¥) obey f (x + 1y, 2,t) =
f(z, z,t), where the horizontal length is set to unity [, = 1. Initially, butanol is only present in
layer®, i.e. ¢M(x, 2,t =0) =0, ¢@(x, z,t = 0) = 1. Furthermore, velocity is zero except for
a small amount of noise added to the vertical velocity in order to trigger Marangoni instability
as described in Sec. B.1.1]

The resolution was N, = 2048 and NV = N{? = 256. The additional damping with
prefactor 3~ in Eq. is well known from Darcy’s law. It is discretized implicitly in time.
Our implementation was validated by simulating a case presented in [38] for pure density
convection (results not shown here). Reasonable agreement was found regarding the pattern
characteristics and the evolution of length scales.

6.1.3 Discussion of the Hele-Shaw model

After the introduction of our theoretical model, we give a short review on the modeling of
flows in a HS-cell and show the problems which are inherent to our assumptions. Generally,
the gap-averaged model is clearly restricted to a physical situation where viscous and diffusive
perturbations equilibrate sufficiently fast across the gap on a comparable time scale. Apart
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Description Symbol Value

Schmidt number aqueous phase  Sclb) = ly)((ll)) 2400

Marangoni number Ma = M —2.4 x 108

Grashof number = W —7.67 x 10°(vertical)

partition coefficient

density ratio

kinematic viscosity ratio
diffusivity ratio

ratio of expansion coefficients

layer height to thickness squared ~y=

= el

2

or 0 (horizontal)
31

0.96

16.7

0.14

0.75

6400(thin), 1600(thick)

Table 6.1: Basic parameters for HS simulation in the cyclohexanol + 7.5 vol% butanol —
water system. The acceleration due to gravity is g = 9.81 m/SZ. Both layer heights are set
to dV = d@ = 20mm, material properties can be found in Tab.
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from the deviations caused by 3D flow effects and interfacial deformations (will be discussed
in Sec. , which mainly have an effect in the vicinity of the interface, the bulk flow HS
model might as well be a source of discrepancies between experiment and simulation. Former
works have proposed certain model corrections for the bulk. However, they have typically
focused either on the momentum or on the species balance but not on both.

Momentum transport: The assumption of a parabolic profile in the Navier-Stokes equa-
tion may be violated due to gradients in density, viscosity, or geometrical effects. Ruyer-
Quil [190] derived a gap-averaged equation as a first order correction to the parabolic profile.
He found inertial terms with other prefactors: gatv(l) + %v(l) Vv = —vp —3yvD). An-
other approach is pursued by Zeng et al. [245], who started with the steady Stokes equation
in three dimensions and solved different examples including a density-driven case and a case
with viscosity gradients. It is concluded there that the viscous term (the so-called Brinkmann
correction) should carry a prefactor = 12/72, which yields 0 = —Vp — 3yv() + Av(D, A
later work [98] adopted this approach with modifications of .

In the Stokes limit for interfacial-tension driven flows, however, Boos et al. [32] and Gallaire
et al. [75] discussed and showed the good quality of the parabolic assumption, i.e. § = 1. By
examining the Rayleigh-Taylor instability, Martin et al. [155] compared Ruyer-Quil’s model
(with additional second order correction 6/5Av()) to the one we introduced, i.e. Eqs.
and . In summary, they recommended the model we are using.

As a final remark on the momentum balance, let us note that when inertia is small
compared to viscous forces (Reynolds number Re < 1), the Brinkman equation [32] can
be used instead of Egs. and 1) ie. the terms 9,v(® + gv(i) - Vv are omitted in
these equations. Actually, by estimating Re a posteriori from the typical velocity and size
of the convection cells in Fig. it can be shown that Re < 1 applies for our system.
Consequently, neglecting inertial terms in the momentum balance is possible. However, for
other Marangoni-unstable systems this may not be the case. Therefore, we adopt the more
general model.

Species transport: The second assumption is the quasi instantaneous equilibration of the
concentration field across the gap. It demands that the diffusion time 75 = €2/D® is much
lower than the characteristic time for advection 7, = €/ U. The ”cross-gap” Peclet number
Pe = 14/7a = Ue/DW is evaluated with the experimentally measured velocity U ~ 10 um/s
(see Fig. [6.7). In the case of the thin cell (e = 0.25 mm), the Peclet number in the lower
(upper) layer is Pe= 5 (35.7) and for the thicker cell (e = 0.5 mm) it is Pe=10 (71.4).

Clearly, this leads to the effect of Taylor dispersion [224], i.e. solute in the middle of the
gap is transported faster than in the vicinity of the plates. Taylor and later Aris [7] showed
for a simpler geometrical configuration that this process could be accounted for by transport
with the mean velocity and an additional dispersion term. Recently, the dispersion effect for
unidirectional flows has been incorporated in density-driven flows [98,/130].

For non-unidirectional flows, we are concerned within this study, Zimmermann et al. [24§]
proposed a model based on the analysis of Horne et al. [92] that which Zimmerman et al. and
Petitjeans et al. |[175] used to study miscible displacement in the Hele-Shaw setup. To the best
of our knowledge, this is the most reasonable two-dimensional model that includes the effect of
Taylor dispersion. Zimmermann et al. cast the effect of Taylor dispersion into an anisotropic
and velocity-dependent diffusivity tensor D. The new transport equation for solute in layer
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() then reads (for dimensional quantities that have a nondimensional counterpart we add a
tilde)

8;¢V + v . ve = v . (DO . ve&d), (6.9)
The dispersion tensor is given as follows:
D@ = pOT 4 iv<i) @ vd (6.10)
105D () ’

where I is the unity tensor. This formulation leads to an enhanced diffusion in flow direction
while there is only molecular diffusion orthogonal to the flow. Since this model is just a
heuristic extension of the analysis of Horne et al. [92], the validity of this approach is not
assured, especially near the interface where the dispersion effect should increase the transport
of solute in the center of the HS cell.

Nevertheless, to roughly estimate the influence of Taylor dispersion, we applied this model
for the case of the thin and vertically oriented cell. The simulations with the dispersion model
only marginally departed from our standard model without dispersion. After an initial phase
(t < 1) for which the dispersion model evolves faster, the difference in the cell height 7
(introduced in the following section) amounted to the typical variance between all simulation
runs, i.e. distinctly below 10% relative deviation. In view of these small differences and the
weak rigorous foundation of the dispersion correction, we decided to work with the formulation
described in Sec. [6.1.21

6.2 Results

Based on the HS model, we study butanol transport from the top(?) to the bottom®) layer
that causes Marangoni convection. We consider four cases that differ in the plate distance
2¢ = 0.5 mm (thin), 1 mm (thick) and in the orientation of the cell, i.e. vertical or horizontal.

6.2.1 Thin and wvertically oriented Hele-Shaw cell

The convective structures in experiment and simulation have the closest resemblance in the
thin cell (2¢ = 0.5 mm) and for vertical orientation. A sequence of experimental and corre-
sponding numerical shadowgraph images s(z, z) [160]

s(x,2) = (02 + 0)c(x, 2, t) (6.11)

is given in Fig. m The maximum and minimum of the numerical gray scale, see Fig.|6.2(b),
is adapted to the experimental images (a) at one time and remains unchanged thereafter.

A conspicuous feature is the region of mized fluid (poor in solute, i.e. butanol). It is
bordered by a slightly darker rim to fluid rich in solute at the top and by the interface at the
bottom. As dark colors mainly correspond to negative values s(z, z,t) < 0, see Eq. they
could be interpreted as a loss of solute (here to the mixed fluid) by molecular diffusion. The
dark rim is bent to the interface at the inflow regions, which is illustrated by white circles
with ”A” mark in Fig. [6.2)c,d), where butanol-rich fluid from the bulk flows to the interface.
Apparently, the horizontal size of the roll cells (distance from inflow to inflow) is larger in
experiments, but the trend for coarseming, i.e. a general growth of length scales in time,
is seen both in experiment and simulation. Between the inflow regions, the outflow regions
(where fluid is diverted into the bulk) are well resolved in simulations by small bright spikes,
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e.g. detailed in Fig. f) by white ”B” mark. In the experimental images, the outflow
regions are not visible. Moreover, the interface between both layers appears thicker in the
experiment due to the deflection of light at the curved meniscus.

A quantitative comparison is carried out by measuring the roll-cell height 1 marked by the
distance between the horizontal lines in the shadowgraph images of Fig.[6.2] The experimental
cell height was extracted at the outflow points of the roll cells x,,; illustrated with a vertical
line in Fig. |6.2(a). It was measured as the distance from the lower edge of the concave
meniscus to the local minimum (darkest gray shade) of s(x = x,ut,2 > 0) in the organic
phase. This procedure was performed manually since the experimental images are perturbed
by optical inhomogeneities. A mean value over all cells is plotted in Fig. (black crosses)
together with the standard deviation as error bars.

For the cell height data, only experiments with the least pronounced interfacial deforma-
tions (also shown in Figs. were evaluated. These experiments required a quite
slow filling of the HS cell, lasting approx. 0.4 viscous time units. The starting point ¢t = 0
is defined as the average between the moment of phase contact and the end of the filling
procedure with a related temporal uncertainty of ¢ + 0.2(viscous time units).

The simulated cell height 7 (full lines in Fig. |6.3]) was determined similarly but in a fully
automated way: the synthetic shadowgraph distribution was averaged along the x-direction
(s(x, z)), and searched for the local minimum with highest vertical distance to the interface,
formally,

n = max{z : 0,(s(z,2)), = 0}. (6.12)

As expected, the coarsening of roll cells according to Fig. [6.2] is also reflected in the
calculated cell height (Fig. for both experiment and simulation. Experimental heights
exceed simulated ones by approximately 0.025 length units, which is considerable compared
to the meniscus height w = &J/d(l) = 0.0047 or the gap size 2y~1/2 = 0.025. Furthermore, n
was simulated for purely diffusive transport (Ma = 0, blue dashed line in Fig. . It turns
out that already for the small gap size the deviations of the experimental data are of the
same order of magnitude as the accelerating effect of interfacial convection in the simulations.
However, it is in line with former simulations (Ch. |5 that height and horizontal dimension of
experimental cells increase simultaneously (readily visible in Fig. , since both scales are
coupled by the coarsening mechanism.

6.2.2 Thin and horizontally oriented Hele-Shaw cell

The transport of butanol leads to a stabilizing density stratification in both phases for vertical
orientation as the mized fluid (adjacent to the interface) becomes denser in the upper organic
and lighter in the lower aqueous phase. Sec. already showed that this density stratification
retards mass transfer when compared to no variation in density. The influence of gravity
was studied experimentally by leaving the HS cell in a horizontal position after filling and
numerically by zeroing the Grashof number, G = 0. Figs. and show that the growth
of cell height is increased when density stratification by solute transport is excluded. As for
vertical orientation, the experiment appears distinctly accelerated when compared with the
simulation, but the main flow structures appear identical.
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(a) Experiment, t=1.1 (b) Simulation, t=1.1

(c) Experiment, t=4.0 (d) Simulation, t=4.0

(e) Experiment, t=9.4 (f) Simulation, t=9.4

Figure 6.2: Thin, vertical HS cell: shadowgraph images for experiment with 2¢ = 0.5 mm,
corresponding to v = 6400 in the simulation (right column). All figures show the same domain
with horizontal extent of one length unit I, = 1 (20 mm) and vertical extent of 0.4 length units
with 0.3 in the upper phase and 0.1 in the lower phase (20 mm x 8 mm). The grayscale for
simulations is fixed and given in (b). The vertical distance between the white lines illustrates
the derived cell heights 7, cf. Fig. White circles with mark A (c),(d) illustrate what is
called an inflow region, the white circle with B in (f) marks an outflow region. Experimental
images were provided by Schwarzenberger & Eckert.

6.2.3 Thick and wvertically oriented Hele-Shaw cell

Next the impact of a doubled plate distance 2¢ = 1 mm is studied. Notice the shadowgraph
images for vertical orientation in Fig. in the experimental image (a) the dark boundary
of the mixed fluid is still well visible but the clear horizontal division into individual roll cells
has disappeared. A second remarkable observation is the appearance of a hierarchical pattern
of small and large roll cells in the simulation, cf. Fig. [6.5(b). In the experimental image (a)
small substructures — observed in simulation — are only faintly visible by a dim horizontal
modulation near the interface. This lacking agreement migth be due to the shadowing effect
of the curved meniscus.The corresponding cell heights were again calculated (Fig. blue
circles exp ): they increased relative to the thin cell (black crosses exp, again plotted for
direct comparison). Remarkably, cell heights were of similar magnitude as the plate distance
2¢~1/2 = 0.05 (meniscus height is w = ©/dD) = 0.009), i.e. three-dimensional flow effects
have to be expected.
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Figure 6.3: Thin HS geometry with varied orientation: cell height n of the Marangoni cells
versus time for experiment with 2¢ = 0.5 mm and corresponding simulation with v = 6400.
Experimental data were provided by Schwarzenberger & Eckert.

(a) Experiment horizontal (b) Simulation G =0

Figure 6.4: Thin, horizontal HS cell: shadowgraph images at t=4.0 for (a) experiment with
2¢ = 0.5 mm and (b) simulation with G = 0, 7 = 6400. Experimental images were provided
by Schwarzenberger & Eckert.

Likewise, the cell heights increases in the simulations for the large plate distance, see
blue dashed line in Fig. [6.6)(a). However, the distinct deviations to the experimental data
remained, see blue circles and blue dashed line in Fig. [6.6]a).

Fig. 6.7 displays an experimental (upper row) and a numerical (lower row) velocity field in
the top fluid layer for both plate distances and vertical orientation. In general, these velocity
fields confirm and augment the two main findings, derived so far from the shadowgraph
images. First, Marangoni convection in the experiments operated on larger length scales and
at higher velocities but has the same flow topology as in the simulations. Second, increased
plate distance led to an intensified flow.

6.2.4 Thick and horizontally oriented Hele-Shaw cell

In the case of a thick HS cell (2¢ = 1 mm, v = 1600) with horizontal orientation (G = 0),
the simulation shows an intensified flow [Fig. [6.6(b) and [6.8|(b)], i.e. smaller substructures
and increased n compared to the vertical orientation. However, the corresponding experiment
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Figure 6.5: Thick, vertical HS cell: shadowgraph images at t=1.1 for (a) experiment with
2¢ = 1 mm and (b) simulation with v = 1600. Experimental images were provided by
Schwarzenberger & Eckert.
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Figure 6.6: HS cell with varied gap size and varied orientation: (a) cell height for vertical
orientation and both plate distances (experiment with 2¢ = 0.5 mm, 1 mm and simulation
with v = 6400, v = 1600); data for thin cell previously shown in Fig. is repeated for
direct comparison. (b) cell height for horizontal orientation with thick gap size (experiment
with 2¢ = 1 mm and simulation with G = 0, v = 1600). The dashed line is plotted to guide
the eye. Experimental data were provided by Schwarzenberger & Eckert.

differs clearly in the observed flow structures, cf. Fig. a): a solute front (see ”C” mark)
emerged which is almost equidistant to the interface along with a regular horizontal modula-
tion adjacent to the interface. The solute front moved away from the interface. Its position
is measured analogously to the cell height and plotted in Fig. [6.6(b). A probable cause of
the different appearances is the interference of Marangoni convection with a buoyancy-driven
flow as discussed in Sec. [(6.3]

6.3 Density convection in horizontal orientation

This section suggests an explanation for the solute front that is observed in the thick and
horizontal cell, cf. Fig. [6.§(a). For this, let us consider layer (2) when the HS cell is filled
and mass transfer has started (see Fig. for illustration): Dense mixed fluid (adjacent to
the interface) lies next to lighter unmixed fluid situated further away from the interface (dark
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Figure 6.7: Vertical HS cell with varied gap size: experimental (PIV) and simulated velocity
(v(?)) fields at t=1.6. The color illustrates the amplitude of velocity. Note that the velocity
scale is (1) /d1) = 60 pum/s. Experimental images were provided by Schwarzenberger & Eckert.

color in Fig. .

Since gravity (g) acts perpendicular (in —ey-direction for horizontal orientation) to the
density gradient, a flow (u, # 0) is inevitably established due to the horizontal pressure
gradient d,p. The present 2D model is not able to capture such a flow across the gap, but
we discuss how its amplitude can roughly be estimated by the so-called Hadley flow (cf. [126]
p. 80).

This Hadley flow is pictured as follows: Consider a fluid layer infinitely extended in z-
direction -0o < Z < +oo which is bounded in g direction by solid walls at § = €, —e with
a constant solute gradient 0:¢ of magnitude A¢/dl. This well-known problem has a time-
independent solution [126]. The dimensional velocity U established in the z-direction with

material properties of layer (2) reads
-\ 3 -
y yl
L) -2 1
<26> 2¢ 4] (6.13)

In order to apply this simple model to the experimental situation, we estimate the solute
difference A¢ in phase (2) by the difference between the initial concentration ¢y and the
concentration at the interface for a semi-infinite system undergoing only pure diffusion [51],
ie. AG=co—co/(1+ H D795 ~ 0.0794cy. The selection of an appropriate length 6l on
which concentration gradients exist is a delicate task as our flow is not infinitely extended.
For simplicity, we assume a distance of 6 = 0.1d(!), which is approximately the vertical extent
of the convective structures (a more sophisticated approach can be found in [171]). Finally,
a characteristic nondimensional velocity U is taken at § = €/2 (with material parameters
tabulated in Table . For 0.5 mm (1 mm) plate distance this amounts to U=0.0033
(U=0.027).

Consequently, a buoyancy-driven convection explains the appearance of a solute front for
the thick and horizontal cell in Fig. (a). This interpretation is supported by three facts.

(2) 3 A
o~ __9/86 (2¢) &
Vo) =—""a5
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(a) Experiment horizontal (b) Simulation G=0

Figure 6.8: Thick, horizontal HS cell: shadowgraph images at t=1.1 for (a) experiment with
2¢ = 1 mm and (b) simulation with G = 0, v = 1600. White circle with C' mark (a)
illustrates the solute front observed in experiment. Experimental images were provided by
Schwarzenberger & Eckert.
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Figure 6.9: Sketch of horizontal HS cell to illustrate density-gradient driven convection.

First, the estimated value U=0.027 is of similar order as the measured speed of ~ 0.04,
corresponding to the dashed line in Fig. (b) Second, no solute front is visible in the thin
cell, which is in line with the small velocity (U=0.0033) predicted. Third, the propagation of
the solute front in the thick cell bears a strong resemblance with that of an A+ B — C' reaction
front for which the buoyancy-driven origin was clearly proved in . Moreover, in
interference with the buoyant convection, the fine Marangoni-driven solute structures at the
interface seem to be drawn towards the solute front as visible in Fig. a). These flow
characteristics were also observed in a similar setup of chemo-Marangoni convection (Fig. 6a

in [68]).

6.4 Discussion and conclusion

The major findings of this chapter are summarized as follows:

(1) Thin, vertical HS cell: Marangoni roll cells without internal substructure devel-
oped. The experimental flow structures were qualitatively well represented by the simulated
Marangoni roll cells.

(2) Thick, vertical HS cell: The reduced wall friction caused an increased mass transfer
and more substructures. In experiments, cell height growth was also enhanced with increased
gap width, but the substructures were only faintly visible.
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(3) Thin, horizontal HS cell: In simulations with zero Grashof number, the suppression of
stabilizing density stratification led to an increased mass transfer. This enhanced cell height
growth was also observed in the experiment.

(4) Thick, horizontal HS cell: In the experiment, a propagating solute front appeared,
which is not explained by our gap-averaged model.

(5) In general, experiments appeared accelerated in time compared to simulations, which
is in line with former observation in Sec.

Besides the uncertainty of material properties, the observed differences can be explained
by the limitations of the 2D model and the experimental filling procedure. The most obvious
limitations are 3D flow effects, i.e. a variation of concentration across the gap and deviations
from the parabolic velocity profile. In detail, three features that lead to 3D effects might be
noted. Firstly, the Marangoni roll cells that occur in the simulations are smaller than the
gap size. By this, it is expected that Marangoni roll cells are also amplified across the gap
(Oyc # 0). Secondly, the circular meniscusﬂ might lead to flow from the three phase contact
line to the meniscus apex, since the meniscus apex reaches further into the water-rich phase.
Thus, higher interfacial tension owing to a lower concentration is aspected there. Thirdly,
for horizontal orientation, a density instability is induced, which leads to a buoyancy-driven
flow across the gap (uy, # 0). Although its impact is not that obvious for the small gap
width, a certain influence of this additional transport mechanism on the pattern growth can
be assumed here as well.

Besides the 3D flow effects, deviations from the assumed plane interface are another
source of discrepancies between experimental and numerical results. Apart from the circular
meniscus, the position of the interface £(z,y) also changes in lateral direction (9,¢(z,y) # 0)
as a result of the filling procedure. This imposes a higher concentration at parts reaching
deeper into the delivering phase. Furthermore, the interfacial area increases by 10-15 % due
to interfacial deformations (circular meniscus and lateral undulation).

Despite the limitations of our theoretical and experimental approach, the qualitative agree-
ment of our results for the vertical orientation and the small gap width show promising options
for a quantitative analysis of solutal Marangoni convection. However, we can also conclude
that the HS model is expected to be more precise for systems where large Marangoni cells
without substructure develop, e.g. in [65], since 3D flow effects will be less pronounced in that
case. These limitations also concern 2D simulations without the influence of wall friction.

A further option to check the applicability of the 2D model to an experiment might be
deduced from the scale invariance noted in Sec. A change in the initial concentration cg
is equivalent to the change of length L ~ ¢y Land timescale T' ~ co 2. The HS model includes
an additional outer length, i.e. the plate distance 2¢, which also needs to be scaled 2¢ ~ ¢, L
For instance, by doubling the plate distance and halving the concentration in an experiment,
the pattern could remain unchanged if the 2D model is applicable. However, note that the
requirement of negligible interfacial deformations still holds for this comparison.

"The interface position z = &(x,y) has a circular shape for fixed z.



Chapter 7

Results on Rayleigh-Marangoni
convection

7.1 Introduction

In line with studies on Marangoni driven roll-cell convection in Ch. [5] the present chapter is
once again motivated by former experimental works and their still pending detailed theoretical
reproduction. In Sec. [2.4.2] it was shown that convective structures, named eruptions, were
reported in situations when Rayleigh convection is expected (see type III system of Fig. .
Along the lines of Chlp] this issue is studied for a specific mass-transfer system for which
experimental results are reported in literature [197,198] and furthermore detailed experimental
data has been provided to us by K. Schwarzenberger (currently unpublished).

We consider the ternary system cyclohexanol/water+isopropanol undergoing an equili-
bration of the composition. Specifically, a cyclohexanol-rich phase is placed over a denser
water-rich phase — both are mutually saturated and initial taken as ideally quiescent (identi-
cal to Ch. . But as a driving force for convection, isopropanol is dissolved in the aqueous
layer, which then spreads into the organic phase.

This system is stable with respect to the stationary Marangoni instability (cf. Sec.
since isopropanol lowers the interfacial tension and diffuses much faster in the aqueous phase.
This change from butanol to isopropanol is primarily because of the quality of experimental
observations: Isopropanol dissolves much better in the aqueous phase [(H = 1.6 = cg]) / cg]) )
than butanol (H = 31) | and therewith improves the quality of shadowgraph images.

The following sections are organized as follows. The different cases studied numerically
are introduced in Sec. Section [7.3] reports on the evolution of convection in a reference
configuration. It is subdivide in: the early development of convection including the appearance
of eruptions (Sec. [7.3.)), details on the onset of convection (Sec. and the long term
evolution, i.e. when the convection regime only marginally changes (Sec. .

A comparison to experimental data is performed in Sec. Especially, we compare
typical patterns, observed by shadowgraphy, and explain their formation by the visualization
of numerical results (Sec. . Section compares the optical flow calculated from the
experimental and numerical shadowgraph images.

Section[7.5| presents numerical results with varied parameters. We undertook three studies:
(1) The initial concentration of isopropanol is changed (relative to the reference configuration)
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Figure 7.1: Two layer system in viscous units. Transport of isopropanol in direction (1) —

2).

with the resulting impact on temporal evolution is studied (Sec. [7.5.1)). (2) The evolution
of pure Rayleigh convection is presented (Sec. , i.e. with Ma=0 but otherwise keeping
parameters of the reference configuration. (3) The impact on mass transfer rates is shown for
a two dimensional system (Sec. . Finally, Sec. provides a discussion of results and
Sec. outlines our conclusions.

7.2 Sample configurations

Fluid motion and mass transport are modeled by the PM introduced in Sec. [3.1.2] and re-
stated in the presently used form (without hats for nondimensional quantities) in Sec.
According to a change in transfer direction, i.e. (1) — (2), the dimensionless initial conditions
are changed and read as follows

c(l)(t =0,z,y,2) =1, 2 (t=0,z,y,2) =0. (7.1)

Figure[7.I] shows a sketch of the computational domain. The velocity field is again initialized
(t = 0) with random numbers for u,; (V x u) - e,, which are uniformly distributed in the
interval [0,1073], and zero mean flow.

The aim of our theoretical study is to explain the observations in mass-transfer experi-
ments. Besides a few results that are reported by Schwarz [197,198] (few single images), using
a cuvette of dV) = d@ = 15mm; we were provided with detailed experimental results from
Schwarzenberger performed in the experimental setup that is already described in Sec.
(dM) = d® = 20mm).

In contrast to the water/cyclohexanol+1-butanol system that was discussed in Sec.
the transferred solute (butanol) is replaced by isopropanol (equivalently called 2-propanol).
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The experimental preparation of the water+isopropanol / cyclohexanol system proceeds sim-
ilar to the butanol system: First, the phases of a water and cyclohexanol (CgH11 OH) mixture
are separated — so both binary phases are in equilibrium due to mutual saturation. Secondly,
isopropanol (C3HgO), which lowers interfacial tension as well as density, is dissolved in the
aqueous phase. Note that this leads to the desired regime, i.e. a density lowering substance
is transported against gravitational acceleration and out of the phase with higher diffusivity.
The detailed estimation of material properties is given in App. [B:2]

Experimental data (shadowgraph images) are provided to us for initial volumetric con-
centration of 2.5vol% and 5vol%, which correspond to molar concentration of ¢y = 0.32,0.65
mol/], respectively. Experiments were performed in two geometries: (1) screening experi-
ments in a low cuvette d) = 5mm [related simulations are denoted by RM_2a (2.5vol%) and
RM_3a (5vol% )] and (2) the tall cuvette d) = 20mm described in Sec. [simulation
denoted as RM_2at (2.5vol%) and RM_3at (5vol%)]. For each concentration (and additional
1vol%), we give the physical parameters in Tab.[7.1| (low cuvette) and Tab. (tall cuvette).
An overview of the different simulations is given in Tab. [7.3]

For the detailed presentation of evolving convection, we shall focus on the RM_2a case,
as it requires less numerical effort (versus the tall cuvette case) for both the simulation and
the post-processing. In the following we will call this the reference configuration, i.e. the low
cuvette with initially 2.5vol% dissolved isopropanol.

However, for a one-to-one comparison, experiment versus simulation, the RM_2at case
is mainly employed since experiments in the tall cuvette are more suitable to the PM than
in the lower one. This is because, in the low cuvette layering was performed by a tilting
procedure of a previously filled single cuvette, as sketched in Fig. Nevertheless, optical
flow calculation from the shadowgraph images in both experimental devices will be presented.

Additional parameters studies were performed: (1) Convection is observed for the Marangoni
effect turned off (Ma=0), noted as the RM_2b case in Tab. (2) Similar to the proce-
dure in Ch. 5] the onset of convection is studied by changing the initial strength of velocity
perturbation in simulations RM_2a_onset and RM_2b_onset. (3) The computational domain
is reduced to a two-dimensional one by neglecting variations in the y-dimension, referred as
cases RM_2a_2d and RM_2b_2d.
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dimensionless quantity definition value
(1) ¢ 7(1)3\3
Grashof number G = C(’ﬁc((glgc)z) (—1.15, —2.83, —5.76) x 10°
v
(D) ¢ 7(1)3\3
Rayleigh number RaV) = @SV = C()ﬂc(l)ggfl)) (—1.55, —3.82, —7.76) x 10
v
(1)
Schmidt number aqueous phase Sc) = lV) 0 1348
2)
Schmidt number organic phase c? = 2(2) 3.41-10°
c¥Yre d !
Marangoni number Ma = 9%erel (-0.69, -1.69, -3.44) 106
p(Mp 1) D)
partition coefficient H = c(%) / cé}) 1.6
density ratio = Pref 0.96
p(l)
&
kinematic viscosity ratio V=0 20.74
"D
diffusivity ratio D= 0 0.082
dl(%)
layer height ratio d= 20 1.
(2
compressibility ratio p == 0.92
By
intrinsic mass Myis = (d(l))3pq(é) 1.24-10~*kg
intrinsic length scale Lyis = dV) 5 mm
4D . g0
intrinsic time scale Tyis = o 20.833 s
v
(1)
intrinsic velocity scale Viis = % 0.24 - 10*3m/s

Table 7.1: Nondimensional parameters for the isopropanol system in the low cuvette calcu-
lated with values from material properties (Tab. , layer heights dV) = d® = 5 mm,
and concentrations ¢y = 0.13,0.32,0.65 mol/l, corresponding to volumetric concentration of

1vol%, 2.5%, 5%, respectively.
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name definition value
D (a3
Grashof number G = % (—0.74,—1.81,-3.68) x 10°
v
D (a3
Rayleigh number Ra) = GScV) = C()ﬂc(l)gl()(l)) (1.00, 2.4, 4.96) x 10
v
(1)
Schmidt number aqueous phase Sc) = lV) 0 1348
2)
Schmidt number organic phase 2 = 2(2) 3.41 x 10°
cOre d !
Marangoni number Ma = CO(T; J(l);)(l) (-0.28 -0.68 -1.38) x107
pWMy
partition coefficient H = c(%) / cé}) 1.6
density ratio = p:f)f 0.96
pre
&
kinematic viscosity ratio V=0 20.74
v
D@
diffusivity ratio D= W 0.082
d®
layer height ratio d= 20 1
(2
compressibility ratio p == 0.92
By
intrinsic mass Myis = (d(l))3pq(é) 8 x 107 3kg
intrinsic length scale Lyis = dV) 20mm
1) (1
intrinsic time scale Tyis = d z(l)d 333.33s
v
(1)
intrinsic velocity scale Viis = % 6 X 10*5m/ s

Table 7.2: Nondimensional parameters for the isopropanol system in the tall cuvettes with
values from Tab. and layer heights d) = d® = 20 mm. The concentrations used are
cp = 0.13,0.32,0.65 mol/l, corresponding to volumetric concentration of 1vol%, 2.5%, 5%,

respectively.
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Shadowgraph

(a)

Figure 7.2: Sketch showing the low-cuvette experimental geometry: (a) Vertical position for
the filling. (b) Horizontal position for the observation of mass transfer. The dimensions are
d1) = d®=5mm and L,=50mm with a square base area thus L,=50mm (not drawn).

# tmazr  z(Nz) ly(Ny) Nz(l) Nz(z) phys parameter

RM _la 5e-2  5(1024) 5(1024) 128 256 G=-1.15 x10%, Ma=-0.69x10°
RM 2a 5e-2  3(1024) 3(1024) 128 256 G=-2.83x10%, Ma=-1.69x10°
RM_2b 5e-2  3(1024) 3(1024) 128 256 G=-2.83x103, Ma=0

RM 2at le-3  0.75(1024) 0.75(1024) 256 512 G=-1.81x10%, Ma=-0.68x10"
RM _3a 5e-3  2(1024) 2(1024) 128 256 G=-5.76x10%, Ma=-3.44x10°
RM_2a_onset 5e-2  3(1024) 3(1024) 128 256 G=-2.83x10%, Ma=-1.69x10°
RM _2b onset 5e-2  3(1024) 3(1024) 128 256 G=-2.83x103, Ma=0

RM 2a2d 5e-2  3(1024) le-6(2) 128 256 G=-2.83x10%, Ma=-1.69x10°
RM_2b2d 5e-2  3(1024) le-6(2) 128 256 G=-2.83x103, Ma=0

RM_diff le-d - - 128 256 G=0 Ma=0

Table 7.3: Numerical parameter for different Rayleigh-Marangoni runs, with C, = 0.2. Pa-
rameters that are not listed are unchanged and can be found in Tab.
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Figure 7.3: Onset of convection in the reference configuration: (a) Concentration profiles for
pure diffusion, i.e. G=Ma=0, from numerics (RM_diff), (b) rms velocities.

7.3 Rayleigh-Marangoni convection in the reference configu-
ration

7.3.1 Early phase of convection

Based on the numerical data of simulation run RM_2a, the present section reports on the
onset and the subsequent basic structures of convection.

The simulation was started with an initial homogeneous solute distribution in the bottom
(¢ = 1), no solute in top layer (2) and slightly perturbed velocity field (tms(t = 0) =
7.2 x 10%). This initial disturbance is dissipated firstly (cf. Sec. for further details).
Consequently, before onset of noticeable convection (i.e. for ¢ <3.5), the transport of solute
was mainly driven by pure diffusion [see rms velocities in Fig. b)]

Thus, the solute concentration evolves as a function of time and the vertical coordinate
D = (2 t) only, within a very good approximation. Fig. [7.3(a) shows the temporal
succession of solute profiles for pure diffusion (u = 0): A lighter fluid layer above the interface
and a denser layer under the interface develops since density decreases with solute (G(l) < 0,
B > 0). This density configuration is susceptible to a Rayleigh instability [182] (also noted
as Rayleigh-Taylor or Rayleigh-Bénard instability) [45]). This means that fluid motion may
be triggered due to the fact that lifting of lighter fluid and sinking of denser fluid could lower
potential energy globally.

Fig.|7.3|(b) depicts an increasing velocity for a time around ¢ ~ 3.5 [first in layer (1)]. To
visualize the onset of convection, the distribution of solute and velocity arrows are displayed
in a vertical plane of y = 0 for five time instances in Fig. [7.4 In a first stage, the unstable
layer of mixed fluid gathered in rather regular portions, which tended to sink in the bottom
layer and rise in the top layer [Fig. [7.4(b) ¢=3.93]. The influence of surface tension becomes
apparent by inspecting the related space-time plot of interfacial concentration [Fig. [7.4(a)].
Therefore, consider location = = 1.5, t = 3.93 [at (b) line]. Here fluid departs from the inter-
face due to the Rayleigh effect. At the same time, interfacial concentration is slightly lower
here (compared to a neighborhood of x = 1.5) which means a local maximum of surface ten-
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sion. Hence, interfacial forces were supporting the Rayleigh effect at t=3.93. This particular
situation is potentially related to the asymmetry of the velocity amplitude between layers, i.e.
convection dominates in the bottom layer. Fig. (b) also reflects this, namely ug])w > ug]ls
As an explanation for this relation, note the lower viscosity (V(l) < V(Q)) and higher density

impact A1) > 8 in the bottom layer.

The next stage in the development of convection is central to our present work, because
interfacial tension, now, influences the dynamics essentially. A unique convective structure,
called eruption [123] appears. Therefore, observe at z=1.5, t=4.56 [Fig.[7.4(a), (c) line)], how
concentration rises, forming a cone of high concentration in the x —t plane that is open to the
future. In the vertical cuts, the inflow of fluid from the bulk to the interface is seen at x=1.5
[Fig. [7.4(c)]. It appears as if portions of enriched fluid that accumulated (by the Rayleigh
convection) above the interface are drawn back to the interface by the Marangoni effect. For
this, see also next time t=4.69 [Fig. [7.4(d)], revealing the strong growth in velocity and the
spreading of solute portions. The onset of eruptions, around t=4.5, also manifests in the rise
of interfacial velocity u&f%s in Fig. (b)

The subsequent Figs. (e,f) show that the system dynamics get rather chaotic, but can
be characterized by three features: (1) frequent emission of solutal plumes in the bottom
layer, (2) the presence of erratic and continuous interfacial motion (eruptions), (3) formation
of larger portions of enriched fluid in the top layer that slowly rise.

In order to visualize the three stages of convection onset: ” diffusion — Rayleigh insta-
bility — eruptions” by means of their fully three-dimensional characteristics, isosurfaces of
concentration are drawn in Fig. at the relevant times. Let us note two observations: (1)
Rayleigh instability occurred in polygonal planforms that were disrupted by the eruptions.
(2) Sinking plumes were much faster than rising ones and were only marginally influenced by
the eruptions.

In the next Sec. time of onset is quantified, especially regarding its dependence on
initial disturbance amplitude. Further aspects of the long-term evolution of convection are
presented in Sec.
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Figure 7.4: Onset of convection for simulation RM_2a: (a) Space-time plot of interfacial
concentration ¢ (z,y = 0,z = 0,t) and (b-f) concentration and velocity field at a plane
y = 0 for increasing times.
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(a) t=3.93 (b) t=4.21

(e) t=4.95 (f) t=7.60

Figure 7.5: Onset of convection in RM_2a simulation: isosurfaces of concentration ¢)=0.85
(bottom layer), ¢?)=0.45 (top layer), time instances partly correspond to Fig.
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7.3.2 Onset time and onset wavenumbers

In the current section, the instability of the primary diffusive evolution is studied by additional
simulations (RM_2a_onset, see Tab. . Material parameters were kept constant relative to
simulation RM_2a, but the initial velocity perturbations were varied in strenght while keeping
the initial homogeneous concentration. This choice of initial perturbations might be in line
with a hypothetical experiment, whereby homogenization of each layer seems feasible, but
not with a simultaneous quiescent state when homogeneous phases are brought into contact.

The present analysis proceeds along the same lines as our study in Sec. Namely, to
quantify the onset of convection, the averaged rms velocity of both layers w,,s(t) is consid-
ered. Figure[7.6{a) shows its development for four simulations with different initial amplitudes
(velocity fields are uncorrelated between different simulations). Furthermore, length scales of
structures are quantified by analyzing interfacial concentration c(l)(x, y,z = 0) and the syn-
thetic shadowgraph images s(z,y) by their Fourier spectrum: Wavelengths A, [Fig. (b)}, As
[Fig. (c)] are defined by their weighted means A\, = 27/ kg%’y’zzo), As =27/ kfb%’y accord-
ing to Eq. We shall use A, favorably since derived from a primary quantity. Therefore,
it is more comparable with the common modal, linear stability analysis from literature.

In line with former procedures (Sec. , two representative times are extracted from each
rms velocity curve [Fig. [7.6(a)], i.e. tc1 (crosses) for the first net growth and t.3(circles) when
rms-velocity is maximal.

The times ¢, are correlated with the initial amplitude (see caption of Fig. for specific
values of t.1).We suspect that in a real system or at least in a very well prepared experiment,
the time t.; is hardly detected as its amplitude is very low.

The time of maximal motion (¢.3) decreased with an increase in initial amplitude. The
influence of the initial amplitude on t.3 (cf. Fig. [7.6)) is roughly described by fitting data to
a logarithmic dependence, namely t.3 = 4.18 — 0.171n(urm5(0))ﬂ Such behavior would be
exactly observed for a purely exponential growth with equal exponential growth rates but
starting from different amplitudes.

The derived mean wavelengths A.,As show only a marginal dependency on the initial am-
plitudes [Fig. [7.6(b,c)]. Here the analysis of the interfacial concentration A, better reflects
the actual size of convective structure, namely, initial polygonal cells with characteristic size
around 0.5 (cf. isosurfaces in Fig. or shadowgraph images in the appendix Fig. . The
analysis of shadowgraph images (As) only shortly reflects the size of convection cells. Espe-
cially, when eruption set in (around ¢.3), the spectrum is shifted to smaller features.

Several authors [48,/101},107,222] have experimentally and theoretically (mainly with linear
stability methods) tried to measure and predict times for convection onset. Our nonlinear
simulations can be viewed as a methodical connection between classical linear methods and
experiment since we exactly have control over the physical effects involved, which is not the
case when analyzing an experimental situation. This issue is discussed in Sec. where
results of the linear stability analysis from Kim and coworkers [107] are related to the present
findings.

IThis should not be extrapolated to higher onset amplitudes than simulated
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Figure 7.6: Onset of convection in RM_2a_onset: (a) rms velocity uyms(t) with derived onset
times t.1=0.73, 0.72, 0.66, 0.65 and t.3 = 5.89,5.38,4.89,4.74 in order of increasing initial
amplitude; (b) weighted mean averaged wavenumber of interfacial concentration [Eq. (3.143)];
(c) weighted mean averaged wavenumber of synthetic shadowgraph [Eq. ]
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7.3.3 Long term evolution

The present section outlines further details on the development of convection in the reference
configuration. After the onset of convection, solutal plumes and eruptions kept on supporting
fluid motion. This equilibration process is simulated up to ¢ ~ 60, when one-third of the solute
was transferred [cf. Fig. [7.7(a)]. Nevertheless, some results for very late times (i.e. when 90%
of the potential mass is transferred) are reported from the two-dimensional simulation in
Sec. [1.5.3

After onset of convection, the velocity and the solute flux show a global maximum at
t=5 (= t.3) see Fig. n(b,c). Subsequently, the system evolves chaotically, but with a clear
trend in a decline of convective motion [see rms velocity Fig. (c)]7 surely correlated with
the decline in concentration difference between layers [see Fig. [7.7(a)]. Accordingly, the mass
flux [Fig. [7.7(b)] and the rate of work done on the system Fig. [7.7(d) decrease with time as
well. Note that the work performed by interfacial forces wy is distinctly higher than the work
due to gravitation wy. |E|

The presentation of isosurfaces of concentration is continued from Fig. in Fig. to
visualize the transport of solute. These isosurfaces are supported by horizontally averaged
profiles from velocity and concentration in Fig Particular features from both figures are
noted next:

The vertical [Fig. [7.9(a)] and horizontal [Fig. [7.9)(c)] variation of concentration is smaller
in the bottom layer — readily explained by the higher diffusivity D = D) / DM = 0.082 there.
This is also reflected by the isosurfaces, namely, it is difficult to visualize sinking fluid portions
[in layer (1)] by a fixed concentration value over time (Fig. [7.8) — e.g. at =58 concentration
is completely below ¢! = 0.85.

In the top layer, mixing was rather poor. Concentration profiles are even inverted (9,¢(?) >
0 for some z), because of the high concentration of ascending solutal plumes. Their concen-

tration is higher than the global equilibrium value cg]) = 0.65).

The velocity profiles [Fig. [7.9(b)] in the bottom layer with a local maximum around the
mid height(z ~ —0.3) indicate the prevalence of convection cells with a typical size of the
whole layer. However, in the top layer, velocity monotonically decreased with distance from
the interface. The peak at the interface can be assigned to the Marangoni convection, the
velocity field is directly influenced around |z| <a 0.1. Moreover, by inspection of velocity
profiles, the Reynolds number might be calculated using the layer heights and the rms-velocity,
i.e. Re(t) = u,(%)w, Re® = uﬁ%s/y. This shows that fluid motion is still in a Stokes flow regime,
similar to the case of stationary Marangoni convection in Ch.

The profiles of (u.c)., [Fig. [7.9(d)] illustrate the distribution of work done by gravity
on the system (see Eq. . Generally, these profiles show (especially their variation) the
nature of sinking and rising fluid in discrete portions (solutal plumes). The higher variation
in the top layer, might be interrelated to the horizontal variance of concentration [Fig.{7.9|c)],
i.e. coherent plumes have a higher concentration contrast in the top layer.

"The rate of work done on the fluid is almost equal to the viscous dissipation e since temporal changes in

kinetic energy are negligible in the energy balance, see Eqgs. (C.12]),(C.11]).
M This indicates that a ”paradox” late state might be possible (for deeper layers), for which the net mass

flux reverses its direction due to accumulation of solute with over-equilibrium concentration ¢(® > cg) in the
top.
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Figure 7.7: Simulation RM_2a scalar properties over time: (a) integral top layer concentration

normalized by the final concentration cg]) =0.615 (b) vertical concentration gradient at the

interface (c) root mean squared velocity (d) kinetic energy budget with viscous dissipation e,
rate of work due to gravity w, and interfacial forces w; (see Eq. [C.10)



129

(c) t=45.02 (d) t=58.00

Figure 7.8: Simulation RM_2a concentration isosurfaces ¢) = 0.85, ¢ = 0.45 for four
consecutive times.
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7.4 Comparison to experiments

This section compares a mass-transfer experiment (by K. Schwarzenberger, personal com-
munication) to our simulations. This comparison is based on the tall cuvette configuration
(simulation RM _2at), since there, the initial conditions and the geometry are better suited to
our paradigmatic model.

Although, we introduced non-dimensional equations based on the layer height — now
dV = d® = 20mm — in this section we depart from this agreement. Namely, we will stick
to L,is = 5mm as a length scale, consequently time scale and velocity scale are T = 20.83s,
U =240u m/s, respectively. By this, the results of simulation RM_2at [Tab. [7.3] are scaled
accordingly, i.e. nondimensional lengths were multiplied by 4, the time by 4% and the velocity
by 471; also, dimensional quantities are given partly. This is done to get a better compara-
bility to former and following sections since the effect of the increased layer heights affected
dynamics (in dimensional terms) only marginally.

The experiments were carried out by the procedure described in Sec. The start of
the mass-transfer experiment (t.;, = 0) is regarded as the time when both phases come into
contact for the first time. The subsequent sliding of both layers against each other took one
time units (20.6s).

Fig. shows the early phase of convection onset. At t=4.79 (simulation) a polygonal
pattern due to Rayleigh instability has established — quite similar to the pattern observed
in simulation RM_2a (Fig. [D.3). In the experiment (fe,;=1.29) a similar pattern is found,
although not in such a polygonal order. Times between experiment and simulations were
matched by adding 3.5 time units (= 72.9s) to the experimental time, i.e. t=t¢yp+3.5 in
Fig. [7.10] This particular time difference was motivated by comparing the optical flow of
shadowgraph images (Fig. [7.13)) — this will be commented on later. Insofar, the experiment
appears advanced with respect to the simulation. A reason for this might be the numer-
ical initial conditions (low level of random noise) that give only a poor description of the
experimental layering procedure.

The following two subsection compare typical patterns arising in the shadowgraph images
(Sec. , and a quantitative comparison is carried out between the characteristic velocities
in the simulated and the experimental shadowgraph (Sec. .

7.4.1 Typical patterns

In the following, we describe and compare characteristic structures seen in the experimental
and simulated shadowgraph images. To identify structures reliably, we examined the full
time-resolved data since motion and interaction among structures is especially characteristic.
Our observations of different structures is listed below:

e A — Transferred solute at interface (Fig.[7.10): The transferred solute accumulated
in connected outflow zones in the top layer — observed as a stripy pattern at the boundary
of convection cells. In the simulation, the convection cells formed a polygonal pattern
at the onset of convection. After that, images became more disordered.

e B — Downwelling plume (Fig. [7.10): The plumes in the bottom layer were only
visible during the first strong Rayleigh instability. They were not observed in the ex-
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periment (low contrast). They showed a poor lateral (z —y) movement and disappeared
with time while growing in radius.

e C — Eruptions (Fig. [7.10) were well observed in experiment and simulation due to
fast radial growth of an initial nearly circular but later deflected schlieren, see further

details in Fig.

e D — Distorted cell boundaries (Fig. [7.11): Mixed fluid portions in the top layer
were deformed by eruptions with tendency to rise from the interface. These portions of
solute show: a strong visibility, lateral movement due to eruptions and a long life time.

e E1 — Upwelling plumes in the bulk (Fig.|7.11)): Their visibility was correlated with
the amount of jointly upwelling solute. The visible circumferences kept almost constant
in time while rising, unless they approached the top region, see E2. Plumes were well
observed in experiment due to long life time, i.e. the time between departure from
interfacial region and the arrival at the top. They could be exhibited by observing a

time averaged shadowgraph image, formally sgp = (s(x,y,t) — (s(2, Y, 1)) ay) gcrp-

e E2 — Upwelling plumes approaching top (Fig.[7.11)): The corresponding circular
patterns grew accelerated, no mechanical interaction with structures near the interface
(A,C,D) was observed.

In addition to the described structures, some experimental features are not reproduced
numerically. Firstly, observe the thick stripes aligned with the z-axis (Fig. in the
experimental images. They were present right after the layering procedure and changed only
very slowly. Furthermore, experimental shadowgraph image appeared more crowded with
structures.

Dynamics of eruptions

In the present paragraph, a single eruption for both experiment and simulation is monitored.
Therefore, consecutive shadowgraph images including interfacial velocity (simulations) or the
optical flow (experiment) are plotted in Fig. Thereby, the details of this striking con-
vective structure are examined.

For analyzing the experimental shadowgraph image a standard commercial particle image
velocimetry (PIV) tool was used "PivView” [241] to calculate an optical flow u,y. Basically,
PIV method partitions the image into interrogation regions. Then it calculates a displacement
of interrogation regions between successive images such that a cross-correlation functions be-
tween displaced [239] interrogations regions is maximized. These optimal displacements are
afterward divided by the time between images to yield the optical flow u,y. m

For Fig. an exemplary eruption was picked from the experiment and the simulation,
each for three consecutive time instances. In general, eruptions proceed in a common sequence,
which is accounted in Fig. by the selection of time instances.

First (7 = 0), there is the initialization, where solute-rich fluid (in the upper phase) that
gathered near the interface is abruptly transported towards to the interface (cf. Sec. .

VFor a comprehensive theoretical understanding this procedure is a bit unsatisfactory since the exact al-
gorithm is only partly laid out to the public. However, this method is widely used in experimental fluid
mechanics, so, we will proceed.
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isosurface sim shadow exp shadow

t=5.18 t=5.18 (107.9s) teap= 1.68 (34.95)

Figure 7.10: Simulated (RM_2at) and experimental pattern (received from K. Schwarzen-
berger, personal communication) for tall cuvette and 2.5vol% initial isopropanol: (left) sim-
ulated isosurface ) = 0.97 ¢® = 0.2 in a box of 3(15mm)x3 (15mm)x 8(40mm); (center)
synthetic shadowgraph image s(x,y) in a domain of 3(15mm) x 3(15 mm); (right) experi-
mental shadowgraph image from a detail of 15 mm x 15mm. White circles facilitate the
interpretations in the text. In this view, the upper phase was combined by sliding it from left
to right.
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isosurface sim shadow exp shadow

teap= 10.96 ( 228.3s)

Figure 7.11: Simulated (RM_2at) and experimental pattern (K. Schwarzenberger, personal
communication) for tall cuvette and 2.5vol% initial isopropanol: (left) simulated isosurface
M =0.97 ¢® = 0.2 in a box of 3(15mm)x3 (15mm)x 8(40mm); (center) synthetic shad-
owgraph images s(x,y)in domain of 3(15mm) x 3(15 mm); (right) experimental shadowgraph
image from a detail of 15 mm x 15mm. White circles facilitate the interpretations in the
text.
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For this, concentrate at position marked with the with circle an A letter. This flow towards
the interface is seen by the diverging radial motion in both images.

Secondly (7 = 0.07), the spreading of solute accelerates and adopts a state of mazimum
speed. Such a state is seen in Fig. [7.12| at 7 = 0.07 in the experiment as well as in the
simulation.

Thirdly(7 = 0.07), the eruptions decay, i.e. the spreading of solute declines by interfering
with the neighboring structures.

7.4.2 Quantitative comparison - optical flow

In the following paragraph, we apply the optical low method in order to determine a charac-
teristic velocity as function of timem The optical flow of shadowgraph images u,y is deter-
mined in the middle of the cuvette for a square of 15mmx15mm, as in Fig. Afterwards
the established velocity field is averaged over the domain to get a characteristic velocity at
time t, namely o (t) = /(u? f (x,y,t))2y. Simulations are also represented by applying this
method to the synthetic shadowgraph images s(x,y) but also characterized by the interfacial
velocity u,(af%s(t) =/ (2(z,y,2 = 0,1))ay

Fig. depicts the optical flows and interfacial velocities as functions of time. The
data from the tall cuvette (RM_2at) is plotted together in Fig.|7.13[a). To match the onset
of convection between experiment and simulation, an offset time At=3.5 was added to the
experimental time ¢, +3.5. Note that ¢.,, = 0 corresponds to the first contact of phases. All
three velocity curves show the same characteristic behavior: vigorous onset with subsequent
decline of motion, which is in line with Sec.

The experimental flow appears accelerated, approximately twice when compared with the
simulated optical flow. Furthermore, optical flow and interfacial velocity (of the simulation)
seem to be well correlated, but interfacial velocity was roughly twice as high as the simulated
optical flow.

A similar behavior was observed in the low cuvette Fig. b). Two independent ex-
periments are displayed. Note that in the low cuvette, the layering procedure was changed:
it is done by tilting the cuvette around 90 degrees, cf. Fig. [T.2} here start of tilting is de-
fined as teyp = 0. To match the onset of convection in this setup, At = 4 was added to the
experimental time.

V' This method is already applied in Sec. to study Marangoni cell convection.
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7=0.32, sim 7 =0.33(6.9s), exp

Figure 7.12: Development of eruption: (left) Shadowgraph images for RM _2at with interfacial
velocity u(z,y, z = 0,t) and (right) optical flow u,; (experiments, provided by K. Schwarzen-
berger, personal communication). Both simulated and experimental image have dimension of
1.37x1.37 (6.9mmx 6.9mm). The simulated images (left) start at t=5.08 (7 = 0) and the
experimental at t¢;,=5.55(115.6.s), thus, 7 refers to the relative time which is matched.
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Figure 7.13: Comparision of optical flow from simulations and experiments as well as the
interfacial velocity from the simulations: (a) tall cuvette (RM_2at) with offset time At=3.5,
(b) low cuvette (RM_2a) with At=4. So ”"Time” refers to " Time” =t for the simulation and
"Time” = teyp + At for the experiments. Velocity and time is nondimensionalized by T,;s =
20.83s, Uyis =0.24 mm/s, respectively. Optical flow data is provided by K. Schwarzenberger,

personal communication.
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7.5 Parametric study

7.5.1 Variation of concentration

The present section studies the impact of the initial concentration on the development of
convection. The so far studied case RM_2a (2.5vol%) is supplemented by simulations related
to 1vol% (RM_la) and 5vol% (RM_3a). In terms of the numerical parameter, this amounts
to a change of Grashof and Marangoni number (see Tab. . However, the relative strength
between Marangoni and Rayleigh effect is constant in terms of the dynamic Bond number
[Bog = Sc) G /Ma] which is Bog = 2.25.

Before presenting the numerical data, we like to recall our remarks of Sec. [3.1] Namely,
that the PM obeys a scale invariance, if either the Marangoni or the Rayleigh effect are
excluded and no outer scale (like layer heights) impacts the dynamics. For the reference
configuration, it has been shown (Sec. that initially Rayleigh convection evolved from an
unstable density stratification localized near the interface (see Fig. . In this view, we try
to account for concentration changes by the noted scaling; this scaling for length, time and
velocity units reads

Loccal/3,Toccag/3%Uo<c(l)/3. (7.2)

Of course, in the view of yet presented data, such scaling fails owing to the violation of its
premises: the impact of Marangoni convection (eruptions) and the complete coverage of bulk
volumes by solutal plumes. Nevertheless, we will see that especially time can be reasonably
scaled. For scaling, the relative Grashof number G, is employed. It is the actual Grashof
number normalized by the one for the reference configuration G,=G/-2.83x103 € {0.4, 1, 2}.

Fig. combines several integral quantities over time. In (a), the top layer mean con-
centration without scaling depicts that mass transport is enhanced with growing initial con-
centration, which seems natural since forces are increased. When the naive Rayleigh scaling
in a deep layer regime is applied, i.e. <C(2)>xyz(TG;2/3) x G;1/37 see (b), onset times perfectly
match but the mass transfer is distinctly underestimated, which is certainly caused by the
Marangoni effect.

In the second row of Fig. (c,d), characteristic velocities are depicted; they increase
with initial concentration. Here we applied the Rayleigh scaling for time, which lets the onsets
of convection nicely fall to the same scaled time. However, for the actual value of velocity
measures, a power law behavior is suggested by simply fitting to the data: for the rms velocity
urms(TGT_Q/S) o G and the interfacial velocity u$i,ls(TG;2/3) ox G2,

In the last row of Fig. [T.14](e,f), the averaged concentration gradient at the interface (e)
and the enhancement factor (f) are plotted. Again, a power law scaling is proposed by roughly
fitting the data. In the present context of transport (1) — (2), the enhancement factor relates
the actual top layer mean concentration with the one for pure diffusion, formally

() ays

2
<C¢(iz'3‘ f>:ryz

R= (7.3)

We refrain from introducing a mass transfer coefficient (or Sherwood number) based on
the concentration difference between layers — as often done in such a context — since this would

VINote that the prediction for a deep layer (cf. Sec. l with pure Marangoni is u{3s (1G7%) o G}. For
pure Rayleigh it is ugf%s(TGZQ/B) o< Gi/?’.
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anticipate that the actual mass flux does not depend on the detailed distribution of solute in
the system, but rather on a single number, i.e. a concentration difference, which seem not the
case when the poorly mixed top layer is regarded. However, we could still define a Sherwood
number as in Ch. [5| by relating the actual mass flux versus the one for pure diffusion.

Qualitatively, the development of convection proceeded similar for the three cases, i.e. as
presented for the reference case in Sec. However, we expect that if the initial concentration
is further reduced, the vertical size of buoyant structures is more restricted by the finite layer
size and so dynamics may also qualitatively change.

7.5.2 Pure Rayleigh convection

This section presents simulations without Marangoni effect (RM_2b see Tab. , i.e. setting
Ma = 0, noted as Rayleigh convection (RC), but otherwise keeping parameters from RM _2a.

Fig. [7.15] shows four integral quantities developing over time derived from the RC simu-
lation. The evolution is divided by the marked events visible in the interfacial concentration
gradient [Fig.[7.15(a)]: (I) Onset of Rayleigh convection in the bottom layer with peak around
t ~ 6; (IT) Onset of Rayleigh convection in top layer ¢ ~ 13; (III) Anticipated half-life time
of mass transfer (not simulated so far). This interpretation of a ”staggered” (first bottom
then top) onset is supported by isosurfaces of concentration in Fig. Let us comment on
further observation in the form of the list below.

e Onset in the RC case appears a little later, which is further discussed in Sec. [7.6.1

e For RC, there is a synchronized emission of plumes in the top layer at onset [Fig.|7.16{b)],
which is disturbed by eruptions for RMC.

e For RC, velocity is distinctly larger in the bottom than in the top layer, and velocity
does not peak at the interface, cf. Fig.[7.15(b) versus Fig. [7.9(b).

e The energy balance for RC [Fig. [7.15|(c)] is augmented with the hypothetical interfacial
power w, (using Ma from RM_2a). It would support RC until ¢ ~ 7, but afterwards,
when convection in the top layer started, interfacial forces would act against RC.

e The Marangoni effect increased mass transfer, see Fig. [7.15(d).

e For RC, structures appeared more persistent in time, i.e. mainly fragmented roll cells
that slowly change their orientation and emit solutal plumes were observed. These
structures can be observed in the isosurfaces (Fig. and the synthetic shadowgraph
images (Fig.(7.17)).

This comparison again documents the outstanding role of the Marangoni effect.
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Figure 7.14: Comparison of simulations with changed initial concentration, thus we fix Bog =
RaV /Ma = 2.25: (a) unscaled averaged concentration in the top layer normalized with global
equilibrium value, (b) scaled concentration in the top layer normalized with global equilibrium
value, (c) scaled rms velocity, (d) scaled interfacial velocity, (e) scaled interfacial concentration
gradient of the bottom layer, (f) scaled enhancement factor Eq..
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Figure 7.15: Pure Rayleigh convection RM_2b: (a) interfacial concentration gradient with
marked events noted in the text; (b) rms velocity profiles for four different times that approx-
imately correspond to isosurfaces in Fig.|7.16} (c) energy budget according to Eq. while
setting Ma=—1.69 x 10° artificially, (d) enhancement factor according to Eq. comparing
RC and RMC case.
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(c) t=50.45 (d) t=74.48

Figure 7.16: Pure Rayleigh convection RM_2b: isosurfaces of concentration ¢(? = 0.45 fixed
over time and ¢ = 0.9 (a,b), ¢V = 0.83 (c), ¢V = 0.77 (d).
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Figure 7.17: Pure Rayleigh convection RM_2b: synthetic shadowgraph images 0.5s(z, y) (sic)

[Eq. (5.15)] for four consecutive times.
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7.5.3 Two-dimensional simulations

As a last class of simulations, any variation in the y-dimension was disregarded by 2D simu-
lations, namely RM_2a2d, RM_3a_2d (RMC) and RM_2b2d (RC), cf. Tab.

Figure (a,b) compares the development of RMC in 2D and 3D. The velocity was higher
(on average) in the 2D than in the 3D case [Fig.|7.18(a)]. In the early course, the transport
of mass proceeded faster in 3D, i.e. until ¢t ~ 15(RM 2a) t ~ 30(RM 2a). Afterwards, mass
transport was faster in the 2D configuration [Fig. [7.1§|(b)].

The disregard of one dimension allowed us to simulate a much larger time range of equili-
bration owing to huge savings in computing resources. Fig.[7.18|(c) shows the mean concentra-
tion normalized with the final equilibrium value for the RC and RMC case. Two interesting
features might be noted: (1) For a long time span, mass transport proceeded faster in the
RMC, namely up to ¢ ~ 500. Moreover, half of solute is transferred at ¢ ~ 100 (RM_2a2d)
and t ~ 140 (RM_2b2d). (2) But after t ~ 500, less solute was transported in the RMC case.
In this context, the viscous dissipations are plotted in Fig. d). Note the decreasing differ-
ence between RC and RMC with time. Consequently, it seems that the damping of Rayleigh
convection by the Marangoni effect — as monitored in Fig. (c) by negative hypothetical
interfacial work — outperforms the increased mixing via eruptions in the late stage.

7.6 Discussion

During the presentation of results, several interpretations and potential connections have been
already given. The present section will discuss some of the results more in detail in three
subsections: the onset of convection, the features of eruption, and the deviation between
experiment and simulation.

7.6.1 Onset of convection

In the earlier Sec. the onset of convection (RM_2a_onset) has been characterized in
terms of onset time and typical length scales. The current section relates these finding with
the predictions of Kim et al. [107].

Kim et al. described the transport of a solute from a semi-infinite liquid layer into a
gaseous phase with fixed interfacial concentration. They treated the instability due to the
Rayleigh effect (i.e. without Marangoni effect) and proposed a critical time 7,, for which
convection is expected to appear and a related wavelength A, (by means of a linear stability
method). By applying their findings to the bottom layer, we find that

(~2/3)
_Pl/2
o, (( GDV?H (1)> | (7.4)

1+ DV2H)V/Sc

Ao = (7.5)

or [ —RaO D2\ Y
b \ 1+ Dl2H '

The parameters a,b depend on the whether a free slip interface (a=4.21 b=0.149) or a
rigid boundary (a=7.38 b=0.195) is assumed; the constant concentration at the interface was
approximated by the prediction of the pure diffusion problem, cf. Eq.. For the present
system the rigid case seems more suitable, because of the high viscosity in the top layer. The
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Figure 7.19: Onset of convection for RM_2b_onset: (a) rms velocity over time with derived
onset times t.1=0.74, 0.74, 0.74, 0.72 and t.3=6.90, 6.32, 5.78, 5.59.

nondimensional time and length for case RM_2b is 7,,, = 0.88(0.50) A,,=0.30(0.40) with rigid
(free) interface condition.

This prediction fits reasonably well to the onset times measured in the RM_2a configura-
tion (cf. Fig. . There it has been found that the first net growth is around t.; ~ 0.7 with
related wavelength A =~ 0.4. Our choice to compare analytical predictions with the first net
growth t.; seems natural to us since predictions of Kim et al. are based on a linear analysis.
Although the analysis of Kim et al. does not account for the presence of the top layer neither
in the momentum balance nor the mass balance, it seems to give a reasonable prediction.

The impact of the Marangoni effect is further examined by simulations in line with the
procedure applied in Sec. but now for the case of pure RC (RM_2b_onset). Once
again, the rms velocity and the dominant mode of interfacial concentration are monitored for
different initial amplitudes of velocity (Fig. . For RC, the first net growth of velocity is
observed at a similar time ¢.; &~ 0.7 than in the RMC (a bit later). In the RC case, times (t.1)
dependent less on the initial amplitudes. However, the peak in velocity t.3 =~ 6 was monitored
roughly one time unit later, possibly explained by the absence of the early supporting effect
of Marangoni convection [see Fig. [7.15(c) positive interfacial work].

Kim and coworkers [107] pointed out that their predicted onset time 7o, should be mul-
tiplied by a fitting factor of 4 to reflect a measurable onset time in an experiment. Indeed,
in the view of our data, we can certainly conclude that the instability at ¢.; is hardly de-
tectable in an experiment due to simple lack of sensitivity of typical measurement devices.
However, without further knowledge of the initial state and the specific experimental method
that defines the onset of convection, any time between t.; and t.3 could be the outcome of
an experiment, which would lead to a potential fitting factor between 1 and 9 for the present
configuration (instead of exactly 4). Thus, for the author, it seems only possible to predict the
first time for the ”observation” of convection in a range of fitting factors, unless the specific
non-linear effects of an experiment (initial state, detection) are taken into account.
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7.6.2 Mechanism of eruptions

This section explains the different interactions between transport processes that are respon-
sible for eruptions.

In previous sections, the appearance of eruptions was documented for our reference con-
figuration (Sec. and the experimental setup (Sec. [7.4.1)). In Fig. the mechanism
leading to this kind of structure are outlined via two steps:

(1) Fig. a) "build up” sketches Rayleigh convection with the departure of mixed fluid
in the bottom layer. In Fig. we monitored a situation as sketched in the Fig. [7.20] with
profiles of the concentration field and the vertical velocity field at the center of an eruption.
The ”build up” corresponds to profiles at t=3.97, 4.22. Here, a relative low concentration is
seen under the interface and a thick solute rich sheet above the interface.

(2) Fig. [7.20(b) ”burst” shows the action of the Marangoni effect acting on the solute
distribution, which corresponds to profiles of Fig. [7.21] at times t=4.56, 4.69. See also vertical
cuts with concentration in Fig. [D.2] from the appendix.

In this view, eruptions might be also regarded as a kind of oscillation due to the ”sign”
change in the velocity and the surface tension gradient, thus a change from Rayleigh to the
Marangoni effect. However, the oscillation shown here are certainly more involved than those
predicted from a linear stability analysis [50,|164] of a steady conduction state since the cause
for the spreading is the peculiar distribution of transferred solute, which is a result of the
Rayleigh instability. So is it unclear and should be examined in further studies, if eruptions
could be predicted by stability methods.

From the presented data, one is not able to predict under which circumstances eruption are
to be expected or when eruption have a peculiar effect on Rayleigh convection, except earlier
classification of types in Fig. 2.3] However, the probability of eruptions seems to increase
with growing Schmidt number and low dynamic Bond number Bog; = Ra/M a since these are
peculiar properties of the solutal setup compared to the thermal one, for which the author
is not aware of such eruption regime [100,/164]. The comprehensive experimental data of
Schwarz (see Tab. 1 in [198]) outlines that in most liquid/liquid mass transfer system of type
III eruptions appear. Also, note that a similar coupling between Rayleigh and Marangoni
convection at dissolving drops has been experimentally observed by Agble et al. [2-4], but is
not yet fully understood. They tuned the Marangoni effect by including different surfactants
into the continuous phase.

7.6.3 Reproducion of experiments

In Sec. [7.4] we attempted to reproduce specific experiments. Our main findings were that
structures could be qualitatively reproduced, but simulated velocities appeared clearly smaller
than in experiment. We like to note three main reasons for this deviation:

(1) Physico-chemical modeling: The uncertainty of material properties (see Sec. ,
especially the estimation of diffusivities introduces an error to the calculation. Also note that
the dependence on the interfacial tension o,.fa. may include a large error since it relies on
the measurements of Schwarz. The specific surface tension difference employed for calculating
material properties was only 0.2 mN/m (see Eq. and Schwarz noted [198| a sensitivity
of his measurement device of 0.1mN/m. So without taking into account the several other
uncertain parameters, a relative error of 50% for Ma or even more has to be expected.

Moreover, an impact on the deviation is inherent to the model since transport properties
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(a) "build up” (b) "burst”

Figure 7.20: Sketch to explain the nature of eruptions: Dark color represents high concentra-
tion of a solute that lowers density and interfacial tension: (a) Rayleigh convection in both
layers, bottom layer fluid is more mobile with sinking dense fluid. (b) Fluid portion poor in
solute has departed from the interface, but solute-rich fluid (black ellipse) is still localized
near the interface to trigger Marangoni convection.
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Figure 7.21: Simulation RM _2a, development of eruptions depicted by: (a) Concentration
profiles and (b) vertical velocity profiles at z=1.5, y=0. Interfacial concentration evolves as
Dz =1.5y=0,2=0,t) = 0.685,0.693,0.849,0.787 in order of increasing time.
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(as v, D(i)) depend on the composition of phases in general. Such uncertainties could be
resolved by including dependencies into the physical model. In turn, this would require using
other material systems that are better known (e.g. tuluol-water-acetone [81,(161]) or additional
measurements on the current system were required.

However, when such compositional effects are included, then one may also model the
full composition, i.e. including additionally a transport equation for water or cyclohexanol,
which in general requires to account for the cross effects in diffusion between species [225].
Consequently, one may account for the changes in partition equilibrium [192] and the variation
of phase volumes, which would demand to solve for a moving interface.

The experimental setup is composed of two finite sized cuvettes, whereas we have solved a
model with periodic boundary conditions. Generally, the solid boundaries could be included
into the physical model with different levels of physical — and consequently — mathematical
complexity, but then also, the dynamics near the boundary should be observed experimentally.
For instance, the wetting properties [211] of the cuvette walls had to be controlled or the actual
geometry of the three phase contact line needs to be known from experimental observation
(it could be pinned at the edges of both cuvettes). Already Berg&Morig [20] noted that the
meniscus formed at the solid boundary is able to trigger buoyant convection.

Another physical effect neglected in the present model is the heat of solution, which cer-
tainly takes place in the current system. For instance Perez de Ortiz & Sawistowski [174] ob-
served that the partially miscible system of water and cyclohexanol shows a heat-of-solution-
driven Marangoni instability, when water is transported to the organic as well as when cyclo-
hexanol is transported to the aqueous phase. Certainly, all those named physical mechanism
have a part in the net deviation, but it is unclear which is the most significant one.

(2) The layering procedure is another source for deviations, i.e. the initial state of the
simulations does not represent a state in the experiments. Two strategies for the solution of
this problem will be noted below.

First, the layering procedure could be modeled. Exactly, this would require solving the full
cuvette geometry with an interaction of four phases: air, cuvette material, aqueous phase,
organic phase. Or one may do a simplified model of the layering, which would require a
combined experimental and theoretical study.

Secondly, a state of the system could be measured. This would demand the knowledge
of the fully three-dimensional concentration field (while velocity is not needed due to the low
Reynolds numbers), which would mean a considerable experimental effort. Or the experimen-
tal geometry is changed such that a constant concentration boundary condition could be used,
which may lead to a statictical independence from the initial state, cf. experimental setup
in [82]. Another strategy is to approximate the experimental shadowgraph s, image by
setting a corresponding concentration field ¢ such that it minimizes an appropriate functional
E

Elsen(w.9) ~ [ el )], (76)
[_17d]

that measures the deviation. The solution of such an inverse problem requires further ”ad-

hoc” constraints to derive a physical reasonable concentration field and very carefully prepared

experimental data.

(3) Representation of shadowgraph images might be improved. Several optical effects are
not modeled by Eq. (5.15) [160]. For instance, the index of refraction as a function of the
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composition could be modeled (would require experimental characterization), or the impact
of interfacial deformation may be taken into account. From an experimental point of view,
optical artifacts should be reduced, and optical resolution increased.

One may also think of not using a commercial tool for deriving an optical flow, but rather
using a strategy that can be better described theoretically. For instance, the optical flow of
an image sequence I(z,y,t) € R can be defined as the vector field(u,y) for which

||6tI + Uyt - VQIH =0 (77)

holds. Without further constraints, this provides not a unique definition [91] for u,r. Now
depending on the application, different constraints could be used, e.g. the minimization of
the smoothness Asu,;.

7.7 Conclusion

With respect to the reported data and the central questions(R;-R4) pointed out in Sec.
the following conclusion can be drawn:

(R1) Our simulations show that the experimentally observed eruption regime is well pre-
dicted by the PM. Beside recent experimental observation that have been included in our
presentation, also former observation of Schwarz [197,[198| are in qualitative agreement with
our simulation.

(R2) It is found that eruptions are triggered by the Rayleigh convection, causing a distri-
bution of solute near the interface that is susceptible to the Marangoni effect.

(R3) Simulations successfully reproduced key experimental observations in the water +
isopropanol / cyclohexanol system. Especially, the chaotic appearance of the shadowgraph
images — sometimes noted as interfacial turbulence — could be interpreted with the help sim-
ulations. A reproduction of the early experimental phase was not achieved since onset of
convection and the layering procedure act on similar time scales, and the complex process of
layering cannot be described by the PM. By analyzing the shadowgraph images in terms of
optical flow, experiments show higher ”interfacial” velocities, approximately twice the sim-
ulated value. A clear physical reason could not be identified due to the complexity of the
physical system, the uncertainty of material properties and the numerous simplification in
the PM, which are, however, necessary for an efficient numerical treatment.

(R4) Simulations with varied initial concentrations suggested that the change in initial

concentration can be partly accounted for by a scale transformation of time 7" o< ¢, 23 for an
early stage of mass transfer. This can be explained by our earlier consideration in Sec.
Physical quantities (e.g. transferred mass, rms velocity at the interface) at the scaled time
seem to obey power laws with respect to Grashof numbers, whose explanation could be a
vital issue for further work. In this respect, it seems a valuable task to study the ”extreme”
cases for which a prediction seem feasible, i.e. deep layers with only Rayleigh convection or
a steady transfer with fixed concentration at the boundaries.

Furthermore, the simulations describe only one-third of the full equilibration process in
the 3D setup for the experimental parameters (in the low cuvettes), which could be extended
by spending more computational resources.
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Simulations without the Marangoni effect (so pure Rayleigh convection) showed no erup-
tions and a retarded transfer of solute. However, evidence was also found that mass transfer
could be retarded —in contrast — by the Marangoni effect for lower concentration differences. It
is left open for further works, to determine additional requirements for such eruption regimes.



Chapter 8

Conclusion and Recommendations

Conclusion

In the first and largest part of this thesis, we have theoretically examined a case of stationary
Marangoni instability under a stabilizing density stratification (Fig type I). Especially, we
employed the ternary system made of cyclohexanol and water with butanol initially dissolved
in the lighter organic phase. Taking into account Linde’s classification of patterns and former
experimental observation by Schwarz, a comprehensive numerical study was carried out to
reproduce and explain experimental observations.

Simulations based on the PM successfully reproduced a two-level hierarchy of convection
cells that consist of large, slowly growing cells (called RC-1IIs according to Linde’s classifica-
tion), which host smaller rapidly changing cells (named RC-Is). The main hypotheses of Linde
(Sec. regarding patterns in type I systems could be effectively applied. Nevertheless,
his last hypothesis L4 that the integral activity of convection may fluctuate on a large time
scale in "cycles” was not encountered in the present material systems.

The experimental results of Schwarz and Schwarzenberger & Eckert have agreed in most
aspects with our simulated results. Deviations were within a range that could be expected
from the uncertainty of material properties and experimental conditions. In this way, it has
been demonstrated that multiscale flow patterns can indeed be described by the PM, although
a considerable amount of numerical resources had to be spent.

The formation of hierarchical patterns has been explained by the action of coarsening
and local instability. It has been reasoned that the RC-IIs grow as a result of advancing
equilibration of the butanol distribution (coarsening). The RC-IIs induce a distribution of
solute near the interface that is susceptible to a continuous creation of smaller Marangoni
cells (local instability).

By deriving new stability results, we attempted to predict the onset of convection by
means of its time instant and characteristic wavelength. The predictions from our frozen
time analysis underpredict the simulated onset times but were able to predict approximately
the characteristic size of convection cells at onset. The predictions seemed to improve when
it is required that the size of the concentration boundary layer be similar to the perturbation
wavelength.

If buoyant effects and a geometrical confinement can be excluded, a change in the Marangoni
number Ma could be accounted for by a scale transformation of the time unit 7' < Ma~2 and
the length unit L oc Ma~!. Parametric studies probed the deviation to this scaling laws by
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systematically probing its requirements and comparing the respective simulations to a generic
simulation (G-1_1), where requirements are fulfilled. By this, it has been found that non-zero
Morton numbers perturb the application of scale transformation, except at the early time of
convection. Later, it leads to a reduction of mass transfer.

For both situations of lateral and vertical confinement, a departure from the generic de-
velopment (noted as deep layer regime) has been observed if convection cells reach the typical
outer length, which is manifesting by a lower rate of mass transfer. For vertical confinement,
this departure started approximately when one-half of possible solute was transferred through
the interface. However, care has to be taken with a generalization of these findings to other
material system; their behavior may especially depend on the Schmidt number.

Additionally, we performed simulations in the framework of a 2D Hele-Shaw model and
compared these to experiments that were provided to us for four different configurations. For
the thin (0.5mm gap) and vertical HS cell, the numerical results qualitatively represented
the experiments, but the time evolution in the simulations appeared retarded as in the 3D
simulation. Furthermore, it seems that three-dimensional flow effects have to be expected for
a horizontal orientation and a large gap width (1 mm).

In the second part of this thesis, the transfer of isopropanol (classified as type III system in
Fig. ) that triggered eruptions was simulated. The physical mechanisms (before unclear)
that led to eruptions have been explained by the coupling of Rayleigh and Marangoni convec-
tion. A comparison with recent experimental results showed a good qualitative agreement,
but experimentally measured velocities were roughly two times as high as the simulated ones.

Simulations with varied initial concentrations suggested that the change in initial concen-
tration can be partly accounted for by a scale transformation of time 7" o< ¢, 23 for an early
stage of the mass transfer. This scaling behavior has been explained by our theoretical con-
sideration in Sec. The actual change of quantities (e.g. transferred mass, rms velocity)
at the scaled time also seems to obey a power law. Simulations without the Marangoni effect
(pure Rayleigh convection) showed no eruptions and a retarded transfer of mass.

Recommendations

Some recommendations — mainly from the viewpoint of theoretical modeling — for future work
are made in this section.

A first first suggestion is that effort should be made to decrease the deviation between
simulations and experiments in the same or similar chemical systems. Different aspects re-
garding this issue are already noted in Sec. these suggestions also apply to the butanol
system. We will not repeat them here in detail. Nevertheless, two main issues are noted: (1)
Material properties should be characterized more accurate and also their dependence on com-
position. (2) The physical model can be extended in several respects, e.g. physical properties
depending on composition, interfacial deformation, phase changes, wall effects. However, the
inclusion of some physical mechanism may distinctly decrease numerical efficiency. In this
respect, the Hele-Shaw system seems to be a promising configuration to simulate the effect
of a curved interface and solid walls.

A second valuable task is to consider mass transport in a binary system of partially
miscible liquids (like cyclohexanol and water). Fundamentally, the physical modeling ap-
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pears easier since only two substances are involved. However, due to the phase rule, there is
no degree of freedom for the composition at the interface (if pressure and temperature are
constant). Thus, Marangoni convection is triggered by the heat of solution. Classical ex-
periments [87}/158,174.244] and theoretical works [58,(90L/173],216] are available in literature.
Especially, note that the water-cyclohexanol system was reported unstable to convection in
Ref. [174] (relevant parameters are given therein) for any situation, i.e. no matter which
phase has an excess versus the equilibrium composition of its main component. In such a
configuration, the shortcomings in physical modeling noted for the present ternary system
might be accounted easier and more precisely. For example, the dependence of transport pa-
rameters or density on the composition can be characterized more certain in a binary system
than in a ternary one. Disadvantages are that the thermal ”boundary condition” had to be
characterized, and one may encounter large interface deformations, which requires a different
numerical strategy.

As a third direction, we propose to keep the present theoretical and numerical framework:

(1) The parameter analysis in the Rayleigh-Marangoni case showed a power-law behavior
whose range of applicability is yet unclear. Its examination could be performed by further
simulations and theoretical work. Additionally, a parameter study of the pure Rayleigh
unstable case (Ma=0) should be done. It is of peculiar importance to determine what the
conditions are for which an exact scaling behavior applies, i.e. are there conditions for that
dynamics near the interface (e.g. the integral mass transport) are practically taking place in
two semi-infinite layers?

(2) The classification of patterns in type I systems by Linde (quoted in Sec. still
addresses features that we have not seen in the present material systems. These features
are the cyclic behavior Ly and relaxations oscillations (ROs) beside those at the onset of
convection. The transport of dioxane from a benzol-rich into a water-rich phase has shown
these yet not simulated features, cf. Fig. 44-49 in Ref. [198]. Consequently, this might be a
candidate to assess further the hypotheses of Linde.

(3) The study of more complex systems should go in hand with improvements in the nu-
merical methods in terms of efficiency. On the one hand, the present code could be better
parallelized by including a domain decomposition in both horizontal directions. On the other
hand, the undesired clustering of collocation points at the top and bottom could be reduced
by using another discretization for the z-direction or a mapping of collocation points [42,/176].

A fourth and last suggestion for further work, we like to make is treating other physical
effects that were not present in the PM or to be expected in the studied material system but
wich could be studied in the current framework with some few extension of the numerical
code. We like to point out two issues.

(1) Chemical reactions and electrochemistry: For instance, the ethyl acetate-water system
with the transport of acetic acid out of the organic phase was estimated of type III (see
Sec. and corresponding observation of eruption were indeed done Ref. [9,/123,/166).
However, for the transport in the reversed direction, the same authors did not report on
sustained Marangoni convection, which would be predicted by our simple scheme in Fig.
E.g., Bakker et al. [9] reported "cells faded away after some time, reappearing later”. It
seems possible that the electrochemical properties [2552] (ions of acetic acid might be partly
dissociated in the aqueous but associated in the organic phase) of acetic acid have to be taken
into account for a correct description. Thus, a further study of this material system might be
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useful.

Furthermore, in recent years, several experimental observations [6,59,67,(149,|199] (in
HS cells) were reported on different types of Marangoni convection that were triggered by
chemical reactions. All these might be valuable candidates for numerical studies in order to
advance our knowledge in the physical modeling of such systems since effects like a curved
interface (HS-cell), diffusion of electrolytes, chemical kinetics, latent heat release, triple line
motion are observed there. These issues are also related to the industrial application of
reactive extraction [13].

(2) A last point we like to emphasize on is the modeling of surfactants for which the
author already did some attempts to include them into the present numerical code — however
not described in this thesis. The main new physical feature that had to be modeled is the
interfacially adsorbed amount of solute I'(x,y,t) [69]. For a plane interface this amounts to
revised matching conditions for the bulk concentration field in the form of

T + 8y (uzT) + 9, (uy,T) — DyAT) = DD, (2 = 0) — DWW (2 =0), (8.1)

which poses some numerical difficulties due to its nonlinearity (e.g. by 9y,(u,I')). Besides
numerous applications of surfactants, also experiments showed their impact on Marangoni
convection (already noted in Sec. . Nevertheless, we like to indicate two experimental
publication for a numerical study: Firstly, the mass-transfer experiments of Linde |144] with
"ditalan” (mixture of different surfactants) showing interesting round cells and secondly the
comprehensive study of Agble et al. reporting mass transfer rates in binary system with an
without surfactants [2,4].



Appendix A

Thermal model

The paradigmatic model, introduced in Sec. is also able to describe the extensively studied
thermal problem [504/66,99./100,(165|172.|182,194.217,[246], i.e. the model describing internal
energy changes due to temperature gradients, but possessing a uniform composition. The
necessary transformation rules are presented next.

The thermal two layer problem [50] — in the form of Boussinesq approximation — is mathe-
matically isomorphic to the solutal PM. Consequently, works discussing the thermal problem
are equally important to the solutal problem. The governing equations for thermal convection
read as follows, for the bulk:

(@)

du® +u® . vul® = T<i)ﬁ¥)g—v€§l + v Au, (A1)
Ioref

v.u® = o, (A.2)

T +u) . v1 = OATO, (A.3)

and matching conditions at the interface (z = 0)

ug}) = ug?), u?gl) = ul(f), u(zl) = ug) =0

ADo, 7 = \@p, 7@ 70 = 7(2)
UrefaTamT(l) = —1P,u? + pMo,ull),
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arefaT(?yT(l) = —M(Q)azu?(f) + u(l)&zuz(}).

Material laws are given by

P = Pl + ol BT, (A.8)
o = Opf+ UrefOéTT(l)(Z =0) (A.9)

The former equations involve the temperatures in both layers T with thermal diffusivity
% and thermal conductivity A(*). The notion of the thermal problem can be mapped into
our ”solute language” by the following identification

k@ = DO A2\ = gp@/pM 70 o ) 1)
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Furthermore, note that the comprehensively studied one layer model [165,172}|182] is also
included in the formulation. Therefore only the lower layer z € [—d!), 0] is considered. This
single layer problem has been studied employing different boundary conditions.

The most prominent instance is the Rayleigh-Bénard setup [41},45,/182,212], which pos-
sesses two isothermal and no-slip boundaries at (z = —1,0). However, this model excludes
the existence of Marangoni convection and its application to solute transport is sparse.

The second prominently studied setup is a liquid-layer bounded on the top by a gaseous
layer. In the case of a thin gaseous upper layer, this can also be described by a single layer
model [66]. Then the temparature boundary condition at the free surface are accounted by a
Biot number condition and the viscous stress from the gaseous layer are neglected.



Appendix B

Material properties

B.1 Water-cyclohexanol-butanol system

This section provides details on the estimation of material properties of the cyclohexanol-
water-butanol system used in Ch. Finally, this estimation leads to the parameters intro-
duced formerly in Tab.

We assume isothermal conditions and will not distinguish between measurements of mate-
rial parameters that have been taken at 20°C or 25°C. The volume and molar concentrations
of butanol in the phase i are denoted as yél) and cl(f), and given in Vol% and mol/l, respectively.
They are related by

, (4)
) PoYy (B.1)

b Mb )
where Mj, is the molar mass and p; the density of pure butanol.
Density: The reference densities pffgf of the two mutually saturated binary phases, i.e. for

zero butanol concentration are reported in [198] to be pf}e)f = 0.997kg/1, pg)f = 0.955kg/1.
According to our paradigmatic model, the density depends on the butanol concentration. In
the aqueous phase (1), it may only change with zero excess volume of mixing, i.e.

(1)
¢’ M,
p(l) — pﬁ)f 4 b 70 o b(pb — pile)]c) (B.2)

This linear relation is reformulated with the solutal expansion coefficient Bél) (Eq.(2.4)) to

M,
5£1) = (bl) (Pb - P,(ﬂ? ) (B?’)
PoPrcy

A linear relation is also applied for phase (2). However, in this case the solutal expansion
coefficient ﬂ£2) can be determined more precisely, based on the data of Schwarz [198] for

p? =0.9416 kg/l at y, = 0.1 = cl(f) = 1.093 mol/l Eq. (B.1). For the values of py, M; see
Tab. they are provided by Ref. [135].
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Solute partition coefficient: The bulk concentrations at the interface are assumed to
be in thermodynamic equilibrium with the local excess concentration of the interface I'.
Furthermore, we apply Henry’s model, stating that the excess concentration depends linearly
on the concentrations adjacent to the interface I' = K 101(71) and I' = Kgcl(f). Both relations
yield the concentration partition coefficient or Henry’s constant H,

V= Ky Ky =P /H. (B.4)

H is approximated by means of a correlation method [132], which relies on the partition co-
efficient of 1-butanol in an octanol-water system How = 6.92 [135] as input. This correlation
method estimates the equilibrium concentration of butanol to be 31 times higher in the upper
organic phase compared to the aqueous phase, i.e. H = 31. Thus, the absolute concentra-
tion of butanol in both layers changes only slightly for our configuration, making the applied
linearizations and the further assumption of constant material properties more robust.

Interfacial tension dependence: General thermodynamic considerations [63}/69] imply
that the excess concentration I' of the interface is related to the interfacial tension o by the
Gibbs adsorption isotherm. For Henry’s model this yields a linear relationship between the
interfacial tension and the concentration,

0 = Oref + Urefacclgl). (B.5)

This solutal surface tension coefficient «.. is determined from the measurements of Schwarz
[198]. He measured an interfacial tension of o = 3.1-1072 N/m at a concentration of cl(,l) =
34.2-1073 mol/l and 0,5 = 3.4- 1073 N/m at zero concentration.

Note that Schwarz describes his measurements by an initial volumetric concentration of
butanol yéQ):().l, which is equivalent to a molar concentration of 01(72) = 1.093 mol/l. However,
the corresponding equilibrium state (at which he measures interfacial tension) establishes
after a sufficient long time and butanol spreads over both phases. The concentrations at
equilibrium are calculated by using the global conservation of mass the formerly calculated
Henry coeflicient and taking into account that the volumes of individual phases may gradually
change. These assumption lead to a concentration in equilibrium of cl()Z)zl.OGlmol/ 1 and

clsl) = 34.2-1073 mol/l via a nonlinear relation (not presented here).

Viscosity: Schwarz [198] also listed the kinematic viscosity of phase (2) for different
butanol concentrations. We use the value v(2) = 201076 m? /s corresponding to a volume
concentration of yl(f) = 0.075. For the lower aqueous phase (1) without butanol, it is v =

1.2-107% m?/s [198].

Diffusivity: The diffusivity of butanol in the aqueous phase D) is approximated by the
value in pure water [135] D) = 5.10710 m?/s. To estimate the diffusivity in the organic
phase, we performed the methods discussed in Ref. [134]. Thus four different empirical for-
mulas (corresponding to the Scheibel, Reddy-Doraiswamy, Lusis-Ratcliff and Wilke-Chang
correlations) are applied to the organic phase, which yields D® =7.107 m? /s as a mean
value. The lower diffusivity in layer (2) is mainly due to the higher viscosity since all corre-
lations contain the relation D o 1/p.
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B.2 Water-cyclohexanol-isopropanol system

In contrast to our sample water/cyclohexanol+butanol system used for the study of stationary
Marangoni convection in Ch. [5], we replace the transferred solute from 1-butanol to isopropanol
(also called 2-propanol), but keep the solvent binary phase (cyclohexanol/water). Why do
we change to isopropanol? Isopropanol is solvable to a higher degree in the aqueous phase,
resulting in a better visibility by shadowgraph optical methods. The remainder of this section
is devoted to the estimation of the physical properties of this second sample system (say
”isopropanol system”), which was used for numerical simulation (see Ch. .

Preparation of the isopropanol system proceed similar to the butanol system: First, the
phases of a water and cyclohexanol (CgH;1OH) mixture are produced — so both binary phases
are in equilibrium due to mutual saturation. Secondly, isopropanol (C3HgO), which lowers
interfacial tension, is dissolved in the aqueous phase. The material properties demanded to
solve our paradigmatic model (see Sec. will be derived below and collected in Tab.

Viscosity: The viscosity of the binary system (water+cyclohexanol) was measured by
Schwarz [198]. These values are used for the present system, which is a bit different to
the butanol case, where we took the viscosity measured with dissolved butanol in the organic
phase.

Density: The density of the binary system and the ternary system is provided to us by
pycnometric measurements from Karin Schwarzenberger (personal communications). The
density of the binary system is determined to pf,le)f: 0.9962 kg/1, pf,?f: 0.9515kg/1 at room
temperature(~ 20°C' ) and typical atmospheric pressure. Note that this values slightly deviate
from the values reported by Schwarz.

The ternary system (with addition of isopropanol) is probed at the first tie-line compo-
sition reported by Sayar [192] (see our Tab. . In this table, w](-z) is the mass fraction of
component j in phase (i). These mass fraction have been measured for different composi-
tions by Sayar [192]. After mixing (at the first tie-line of Sayar) the density is measured to
p) = 993.78 kg/m3, p? = 948.37 kg/m3 with standard deviation (three samples, uncor-
rected) of o, = 0.265 kg/m3,op(2) = 0.220 kg/m3. So the isopropanol concentration can be

calculated to c(l) = 0.2315mol /I, 0(22) = 0.34715mol/1 (generally it holds that mass fractions
and molar concentration are related by cg) = pM -wél) /My ). With this values and the

data from the binary system, the soltual-expansion coefficients 6@ are derived (Tab. D
according to the linear model

p( )= p7("ef + pre /8 Z) (l (B6)

Equilibrium composition: Sayar [192] measured the equilibrium compositions of the
water-cyclohexanol-isopropanol mixture The mass fraction ratios of 2-propanol for the two

lowest propanol concentration are w, )/w21)—0 022/0.014 = 1.57, 0.038/0.021= 1.81 (first and
second tie line [192]).
(1)

The molar concentration (mol/l) in phase (1) results from the mass fraction w,’ by

cgl) =p . wgl) /Mj. An analogous relation holds for phase (2), with this, the ratio of molar
concentrations (Henry coefficient H) reads

H = /i) = i p /() pM). (B.7)
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Using the density ratio of the binary phases, p ~ 0.96, it yields H € {1.53,1.74}. We will us
H = 1.6. as a rational mean.

Generally, the density is a function of both concentrations, so for an improved modeling
one may also solve the transport equation for the water concentration. In such an approach,
the effects of multicomponent diffusion may taken into account. Thus, diffusion of both
constituents is coupled due to cross diffusion [225]. Without further elaboration of this point,
we suspect that the error introduced with this single solute modeling has its main impact far
from the interface in the phase where isopropanol [layer (1)] is introduced. Because departure
from the equilibrium composition (we have implicitly employed) is highest there.

Surface tension: Schwarz |197,|198] measured for an overall mass fraction mg/m = 0.04
of 1-propanol (i.e an isomer of 2-propanol) the interfacial tension to o = 3.2mN/m. We will
use this values for 2-propanol. The knowledge of corresponding 1-propanol concentration in
each phase requires additional calculations. So, an equilibrium ratio of mass fractions for
1-propanol of H, = wg) /wél) ~ 2.75 (cf. measurements of Ref. [168] for low 1-propanol
concentrations ) is used and we assume the individual phases of Schwarz had the same mass,
i.e. mY) = m® the corresponding mass fractions after equilibration are

Wi =0.04/(1 + H,)), (B.8)
Wi =0.0107 — ¢V = 0.1774mol /1. (B.9)

The interfacial tension is taken as a linear function of solute concentration

0 = Opef + arefozccél), (B.10)
, thus,
1
O'(Cg )) - Ur@f = a, (Bll)
O-TefCQ
2mN/m — 3.4mN
o = SHN/m = 3AWN/M ooy o) (B.12)

¢ 3.4mN/m-0.1774mol/l

Evidence for the applicability of 1-propanol data to the 2-propanol system is given by
the fact that the plait points (critical point) are located in both systems around we = 0.2 —
co = 3.3mol/l(see |168] and [192]), which is in accordance with the calculated coefficient since
there 0 = 0 by our linear model.

Diffusivity: is estimated as follows. For the aqueous phase we took the value from 1-
propanol in water from [135] Dgl) = 8.7-107m?/s at T = 15°C and further extrapolated
this for a higher temperature of 22.5° C, resulting to D) = 8.9 - 107 19m? /s.

For the organic phase (2), we use the methods reviewed in |[134]. A prerequisite for all those
methods is to know the molar volume of the involved pure substances at their normal boiling

TAnother way could be calculating equilibrium data from the UNIFAC data [151], which is not straightfor-
ward as it needs some optimization calculations and care with the parameters.

Some methods for estimation of surface tension are available [205], but these might be too uncertain for
the small interfacial tension change we have.
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point. These are deduced for cyclohexanol(CgH120)(six membered ring), propanol(CsHgO)
with the LeBas method [134]

Veyelo = 6 - 14.8 + 12+ 3.7 4+ 7.4 — 15 = 125.6cm* /mol, (B.13)
Virop = 3 14.8 + 8 - 3.7+ 7.4 = 79cm® /mol, (B.14)
Visater = 18.9cm® /mol. (B.15)

In [84] it is noted that the desired molar volumes at normal boiling point are related to
the critical volume by Vg = 0.285 * V1048 Actually, the critical volume of 2-propanol is
VETP=222 5cm? /mol , thus, Vy.op = 82.2. Let us use Vprop = 8lem?/mol as a mean value.

Just for checking the estimation methods, we estimate propanol diffusion in water. With
the Wilke-Chang [134,240] method it gives D = 9.66 - 107!% m/s? , the Hayduk formula [52]
with dissociation factor of 2.26 gives 9.89 - 1071 m/s?, both using V=82 ml/mol. So
diffusivity is estimated a little higher then measured (8.7 - 10~1%m?).

To estimate diffusion in the organic phase, the mixing molecular volume is needed as an
input value [134]. The molar volume of the binary solvent is calculated by

‘7(2) = ng)‘/cyclo + xEQ)Vwaterv (B16)
V) = 0.5925 - 125.6 cm® /mol + 0.4075 - 18.9cm* /mol = 82.12, (B.17)

(2)

where 25" is the molar fraction of constituent 3 in phase (2). The correlation of Scheibel [134]
gives

_ 2/3
82-107%. TK V®[em? /mol
D - gy (gl mol ) (B.19
112 [10-3Pas] Vpop[cm3 /mol] Vproplem?® /mol]
8.2-1078 - 203K 82.12mL/mol \ /*
D = i ~7.3-10'm? B.1
2 23.68mPas(81mL/mol)1/3[ <3 81mL/m01> 73107 s, (B.19)

which is used in the following.
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description symbol  unit value

molar mass water(H20) M, kg/mol 18.02-1073
molar mass propanol(C3HgO) My kg /mol 60.10 - 1073
molar mass cyclohexanol(CgH120) M3 kg/mol 100.12-1073
mass density HoO sat. CgHyOH oL kg/m? 0.9962 - 103

mass density CoH11OH sat. HyO o2 kg/m? 0.9515 - 103

mass density propan-2-ol pure kg/m3 0.781 - 103
kinematic viscosity (1) cgl) =0 [19§] v m? /s 1.2-1076
kinematic viscosity (2) with cg2):() [198] v m? /s 24.89 - 1076
partition coefficient 0(2)/0(1) H (mol/1) /(mol/l) 1.6

diffusivity isopropanol (1) D) m? /s 8.9-10710
diffusivity isopropanol (2) D® m? /s 7.3-10711
interfacial tension of the binary system Oref N/m 3.4-1073

change in interfacial tension per mol /I of (1) Oref0e  N/m/(mol/l) 1.13-1073

solutal expansion coefficient (1) (U 1/mol -0.0104

solutal expansion coefficient (2) (2) 1/mol -0.0096

density change per surfactant conc. (1) pfﬂle) (L) (kg/1)/(mol/1) -0.0104

density change per surfactant conc. (2) pg)f 2) (kg/1)/(mol/1) -0.0091
concentration for y$"=(0.01, 0.025, 0.05) Y mol/1 (0.130 ,0.32, 0.65)
compostion (aqueous) (w1, ws,ws) Oth tie-line [192] wgl) kg /kg (0.961 0 0.039)
compostion (organic)(wi,ws,ws) Oth tie-line [192] w?) kg/kg (0.103 0 0.897)
compostion (aqueous) (w1, ws,ws) 1st tie-line [192] wgl) kg/kg (0.917 0.014 0.069)
compostion (organic)(wy, ws,ws) 1st tie-line [192] wl@) kg/kg (0.136 0.022 0.842)

Table B.1: Properties of the system (cyclohexanol42-propanol)/water. Phase 1 is the water
rich phase marked with (.)(1) and phase 2 the organic, cyclohexanol-rich phase marked with
(.)®. The data sources are detailed in the text of Sec. The subscripts refer to the
different constituents: ;=water, o= isopropanol, 3= cyclohexanol. Molar concentration is
related to the volumetric concentration by cgl) = (pgweygl)) /M.



Appendix C

Kinetic energy balance

In this Appendix, the kinetic energy balance in accordance with the PM (Sec.[2.2) is derived.
Generally, the momentum balance with the stress tensor T and volume forces f reads

Du
— =V .T+f. C.1
P Di + (C.1)
Multiplying every term with the velocity yields,
D(u -
MW o) utfou, (C.2)

P oDt
which is the transport equation of kinetic energy of any material point in the respective bulk
volume, see Ref. [57] on p.16.

The only external force considered is gravity (f = gp). Also we assume an incompressible
Newtonian behavior and constant viscosity, so (C.2)) leads to

D(u-u)
2Dt

cf. [178], p. 123. Here, the symmetric part of the velocity gradient is denoted by E, given in
a Cartesian basis e; by E;; = 1/2(0x,uj + Oz, u;).

To be consistent with the Boussinesq approximations, the density before the material
derivative has to be taken as a constant but the density related to the gravitational accel-
eration has to be assumed as spatial dependent. In what follows the integral kinetic energy
balance of both phases is deduced by including boundary and matching conditions according
to our PM. The time rate of change of kinetic energy in layer (2) is

+V-(up—2pu-E)=-2uE:E)+gp-u, (C.3)

8t/ p(Q)l(uu) = —/ 1@ WP 0,02 +u§,2>azu§/2>) —i—/ —2uPE:E+pPg-u (C4)
o2 2 Q) Q@

and for layer (1)
1
at/ pM = (uu) = / p D (wPo,ul) 4 uél)azu(yl)) —1—/ —2uVE:E+ pMg.u. (C.5)
Q) 2 Q) Q@)
Adding both layers and taking density as p(i) = pfzf(l + Bgi)c(i)), the gravity to g = —ge,,
interfacial tension as 0 = o,¢f + Urefacc(l)(:c, y,z = 0) yields

o o a0 = [ oy / —2uDED : BO—pl) g0 guld). (C.6)
QOUO® 2 Q) QU@
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The constant part in the density does not add to the energy [last term in ((C.5)] since there is
no mean vertical velocity. This is not true for a deformable interface with a density difference
between the phase.

Now we introduce the usual nondimesional viscous units dV), (d)2 /v (W) /(q(1))2

and pﬁ)f (d(l))3 for length, time, pressure and mass, respectively. Considering these units, the

dimensionless kinetic energy balance reads

(1))3 , (1 @, W2 D 50 o)
) aﬁ/ (i) l(ﬁ.ﬁ) = JrefQcCoV 7 Vsé.ﬁ_/ GO WD) ey g Prerle 990V
@ Q) a

(d)3 9 Jo Prera (dM)3 (dDYa ' )

For comparing different geometries, volume and interfacial(()s) averaged quantities are
introduced by dividing (C.7)) by the base area I,l, and multipling by v (dM)*

1 L 2) o
(2507 | (ol ) g +d(pl2H(a- ) ge | =
d(l)arefacco<vsé )
—( [ V2E : E)g) + d(pP2E : B)g)
(@) geol{pfp BN 6D+l SO ED AP0 (C8)
Furthermore, it is divide by pfn?f and (v™)2, which reads as follows

508 [0 W) g0 + dp{(8- )] =

d(l)arefacco
Py (v1))2
- [2<E LB ) + dvp2(E : E)m)]

(dD)3geept)
()2

(Vsé-1)s

[(é(l)fbgl)>§2(1) + dpﬂc<é(2)’&,(22)>§2(2)]' (CQ)

Finally, this can be written by the Grashofnumber GG, the Marangoni number Ma and Schmidt
number Sc

%af [<(ﬁ : ﬁ)>Q(1) + dp{(t- ﬁ)>§2(2>] = %(Vsé S0

- [2<E : E)Q(l) + dvp2(E E}Q@)}
—G(eMaM) o) + dpBe(cPaP) 0] (C.10)

We introduce the following abbreviations for power density due to gravitational force
(positive if work is done on the system)

wy = =G a) g0) + dpBe(eP i) g, (C.11)
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power density due to interface work

_Ma

Wy = §<vsc ) (C.12)

and viscous dissipation (positive for heat production)
€= [2(B : B + dvp2(E : E>Q(2)} . (C.13)

The factor relating interfacial work to buoyant work (see (C.10)) is the dynamic Bond
number

A g(dW)?

QcOref

Bog = G/(Ma/ScV) (C.14)



Appendix D

Supplementary numerical results

D.1 Marangoni convection
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t=0.074

t=0.13 t=0.25

t=0.53 t=1.05 t=1.50

t=2.03 t=2.51 t=3.02

Figure D.1: Simulation G_1_1 (see Tab. |5.3)) synthetic shadowgraph images s(z,y) gray scale
adapted to the extrem value (white <» maximum and black <> minimum) for consecutive
times, full domain is shown (z,y) € [0,0.5] x [0, 0.5].



0.
0.
0.
0.
0
- 0.2 A ¥
/, RS AN
—0.5 : & o ¥ 0 -0.5
1 1.5 2 1 1.5 2
(c) t=4.69 (d) t=4.93

Figure D.2: Details of Figl7.4]on the onset of convection for simulation RM_2a: Vertical cut
at y = 0 showing concentration and velocity.

D.2 Rayleigh-Marangoni convection
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t=38.02 t=45.02 t=58.00

Figure D.3: Simulation RM_2a synthetic shadowgraph images s(z,y) (black < s(z,y) =
+200; white <+ s(x,y) = —400) for consecutive times, full domain is shown (x,y) € [0,] x

[0,1,].



Appendix E

Image processing

RC-I size Apo—_;
This section provides details about the image analysis that we applied in the scope
of Sec After mapping the raw data 0,u,(x,y,z = 0) into the binary representation

50 ‘ ‘ ‘ Holes per cell
- 05l —Normalized std diameter |
40} HIL '
2 |-
g *7 - 0.4¢
« 30} M [l o
N =03
3 s
2 20}
=] 0.2¢
=z
10
0.1
OO 0.01 0.02 OOEm mm0 04 0 ‘ ‘ ‘ ‘
" Circular diameter ' 0 05 1Time 15 2

(a) (b)

Figure E.1: Image processing of simulation E_1_1:(a) Histogram of circular diameters y/A;4/7
corresponding to Fig. and (b) time evolution of the standard deviation of diameter
distribution and averaged number of white spots ("holes”) included in a cell.

Iy(0,uy)(x,y), we erase all connected inflow regions at the image boundary. This is apparent
in Fig. Otherwise, all cells at the boundary have to be merged with their periodic
continuation, which is avoided for simplicity. The connected black subareas in Fig. are
defined as the individual cells C; with j € [1,..., N.]. Some of the RC-Is exhibit a completely
enclosed white spot in their middle, corresponding to surfactant fronts. They are included
into the individual sets C;. This identification of individual cells disregards the area of the
white outflow zones, which constitute the periphery of the RC-Is. However, as can be seen
from Fig. the inflow zones (black) occupy most of the actual cell areas and therefore
serve as an adequate approximation for the manual measurements of Schwarz. After the
identification of cells C their area A; is calculated and used in Eq. .

Our procedure does not distinguish between the RC-Is as the compact type of substructure
and ROWSs, which feature an elongated shape. Fig. [E.1|(a) shows the respective histogram of
circular diameters y/A;4/7 corresponding to Fig. Additional parameters of the evalu-
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ation procedure are depicted in Fig. [E.1(b). These parameters are the normalized standard
deviation of the RC-Is diameters and the number of erased white spots per cell (holes per
cell).

RC-II size Ap  The RC-II cell size is calculated from the shadowgraph images s(z,y) by
the following procedure. The 2D FFT 3(k,, k) of the shadowgraph image is radially averaged,

. 1 .
Sr(km) = N § ‘S(kﬂ“ ky)|7 (El)
M o — Ak /2< K| <km+Ak/2

and divided afterwards by the global maximum. This yields the single data points in Fig.
The wavenumber intervals over which it is averaged have midpoints k,, = 2mm/l, and size
Ak = 2m/ly; the factors Ny, denote the number of individual modes in interval m. The
dominant length Ap, cf. cross in Fig [E.2] is determined as the maximum of the moving
average (full line) from 3§, (k,,), to smooth out fluctuations in the raw data. As can be seen
from Fig. the large-scale structures in their fully developed state govern the signal of the
averaged spectrum.

- radial mean
1r : by
X °F
moving average
0.8¢ s 1
[0}
e
2 0.6
a
S
< o4}y
¢
0.2ff
G L L L L T
0 0.1 0.2 0.3 0.4 0.5 0.6

' Waveiength '

Figure E.2: Radially averaged spectrum of the synthetic shadowgraph distribution of E_1_1
at t=1.44.
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List

of Symbols

Acronyms
2D two-dimensional
3D three-dimensional
FFT  Fast Fourier Transformation
PIV particle image velocimetry
PM paradigmatic model, see Sec.
RBM Rayleigh-Bénard-Marangoni
RC (Marangoni) roll cell; except in Ch. [7| there Rayleigh convection
RO chaotic relaxation oscillation
ROW  synchronized relaxation oscillation wave

Dimensionless groups

Re
Sc

Reynolds number
Schmidt number
Grashof number
Rayleigh number
Marangoni number
Péclet number
Morton number
Sherwood number
Enhancement factor
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Mathematical terms

Urms
tcb tha tcB

uof

) ng‘)
AF
ARC-I

gradient operator in the  — y plane (e,0, + e,0,)
quantity related to the top (i=2) or the bottom layer (i=1)
nondimesional quantitiy; or expansion coefficient
dimensional quantity

mean of field ¢ over its three dimensional domain Q C R3,
so ¢ : @ = R. Then it is (¢(x, ¥y, 2))ay- = [ qdV/ [o1dV .
mean of field ¢ over a horizontal shce A CR? withqg: A —
R. Then it is (q(2,y))ey = [, qdA/ [, 1dA .

mean of field g over a the interval L C R with ¢ : L — R.
Then it is (¢(x)). = [; qdz/ [; 1dx .

mean of field ¢ at the interface (q(z,y,z = 0))qy

standard deviation of field ¢(z,y) over its domain A =

(0,12)  (0.1,); s2y(q V/< a@,y)a)” ),

sample mean of quantlty q, with samples giarei € [1,...,N]

: <Q>e = % Ezj\il qi

root-mean-squared  velocity in layer (i) uf«%s =
<u(l) . u(i)>$yz

root-mean-squared velocity at the interface) wuf,
V@2 =0) - uB(.y. 2= 0),
(1)

root-mean-squared velocity of both layers uyms = (Urms
2
ulohs) /2
onset times detected from full nonlinear simulation, defini-

tion in Egs. (3.138])-(3.140

optical flow (see Sec. [5.3.5

concentration boundary layer width see Sec.
wavelength of large convection cells definition in Sec.

circular diameter of basic convection cells definition in
Eq. (5.20)

187



188

Physical quantities

are

Description Symbol | Unit

mass density - reference state ng kg/m3
kinematic viscosity () m?/s
partition coefficient (Henry constant) H (mol/1) /(mol/1)
diffusivity of solute D) m?/s
interfacial tension -reference state Oref N/m

change in interfacial tension per mol/l of ¢V | o,cra. | N/m/(mol/1)
solutal expansion coefficient {0 1/mol
gravitational acceleration g m/s?
dynamic pressure pg) N/m?
concentration field ) mol/1

initial concentration co mol/1
velocity field u® m/s
vorticity field w 1/s

Note that in the results chapter nondimensional physical quantities (acccording to Sec)3.1.2)

used without a change in the symbols.
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