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Kurzzusammenfassung 

Wälder haben eine wichtige Bedeutung als natürliche Kohlenstoffsenke für den 

Klimawandel und den globalen Kohlenstoffkreislauf. Insbesondere tropische 

Wälder und vor allem tropische Torfsumpfwälder spielen trotz ihrer relativ 

geringen Ausdehnung eine große Rolle im globalen Kohlenstoffkreislauf. 

Entwaldung und Walddegradierung sind die zweitgrößten Ursachen anthropogen 

verursachter Kohlenstoffemission und deren Raten sind in tropischen Ländern am 

höchsten. Daher soll Entwaldung und Walddegradierung beispielsweise durch das 

UN (United Nations) Programm REDD+ (Reducing Emissions from Deforestation and 

Degradation) verhindert bzw. minimiert werden. Um dieses Ziel zu erreichen, ist es 

von großer Bedeutung Landnutzungsänderungen zu erfassen und den Status der 

Wälder als Kohlenstoffsenke zu schätzen. Dies kann für nachhaltiges 
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Waldmanagement, Landnutzungsplanung, Kohlenstoffmodellierung und zur 

Umsetzung von internationalen Initiativen wie REDD+ nützlich sein, indem 

tropische Länder für den Schutz ihrer Wälder finanziell belohnt werden. Tropische 

Wälder sind in der Regel schwer zu erreichen und Feldmessungen sind daher nur 

mit großem Aufwand möglich. Eine Kombination von Feldmessungen und 

Fernerkundung wird daher als am nützlichsten betrachtet, um tropische Wälder zu 

überwachen. 

Radarsensoren haben großes Potential für die Überwachung tropischer Wälder,¨ 

da sie von Wetter und Tageszeit unabhängig sind. Zusätzlich sind bereits oftmals die 

Nützlichkeit von SAR-Rückstreuung (SAR=synthetic aperture radar) und deren 

interferometrische Fähigkeiten in der Waldüberwachung und Biomasseschätzung 

unter Beweis gestellt worden. SAR-Sensoren mit kurzen Wellenlängen erzielen eine 

geringe Eindringtiefe in die Waldbedeckung. Daher wird häufig angenommen, dass 

kurzwellige SAR-Sensoren ein geringes Potential für die Abschätzung der 

Waldbiomasse mithilfe der Radarrückstreuung haben. Dies beruht auf der 

unzureichenden Interaktion der kurzen Wellenlänge mit tieferen bodennäheren 

Baumteilen, wie Asten und Stämmen, aufgrund der geringen Eindringung. 

Interferometrische Fähigkeiten von SAR-Sensoren könnten diese Limitierungen 

überwinden, wobei eine geringe Eindringtiefe sich als Vorteil erweisen kann. Die 

interferometrische Höhe kann bei geringer Eindringung als Waldbedeckungshöhe 

angenommen werden, die wiederum mit der Waldbiomasse korreliert ist. Daher 

sollen in dieser Arbeit die Möglichkeiten eines interferometrischen SAR-Systems 

mit kurzen Wellenlängen zur Waldüberwachung und zur Abschätzung der Biomasse 

untersucht werden. Die Zielsetzung dieser Arbeit ist somit die Erfassung des 

Potentials von interferometrischen TanDEM-X Daten für die 

Landnutzungskartierung und Biomasseschätzung. 

Die TanDEM-X Mission ist ein X-Band SAR, das in geringen Eindringtiefen in den 

Wald resultiert. TanDEM-X ist eine bistatische SAR-Mission bestehend aus zwei 

Satelliten, die in enger Formation fliegen. Zusammen bilden die beiden Satelliten ein 

single-pass (einfacher Überflug mit simultanen Aufnahmen) interferometrisches 

System. Die Landmassen der Erde wurden dabei mehrere Male zwischen 2010 und 

2014 in hoher Auflösung aufgenommen, um ein globales, digitales Höhenmodell zu 

erstellen. Daher bieten Radardaten der TanDEM-X Mission die potentielle 

Möglichkeit die Gesamtheit der Tropenwälder der Erde innerhalb dieses Zeitraums 

multi-temporal und in hoher Auflösung zu untersuchen. Gleichzeitig eröffnen sie die 

Möglichkeit als hochgenaue Grundlage für ein globales Waldmonitoring zu dienen. 

Die Sensoren von TanDEM-X können gleichzeitig aufnehmen, wobei ein Sensor als 

Sender und Empfänger (aktiv/monostatisch) und der andere lediglich als 

Empfänger (passiv/bistatisch) dient. Die Rückstreuinformationen beider Sensoren 
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können genutzt werden. Weiterhin können interferometrische Daten, wie 

interferometrische Kohärenz und Höhe, abgeleitet werden. Diese Informationen 

können für Landnutzungsüberwachungen sowie für biophysikalische 

Parameterabschätzung wie Waldbiomasse genutzt werden. 

Für die Untersuchung des Informationsgehalts einer interferometrischen X-Band 

SAR-Aufnahme für das Tropenwaldmonitoring wurden TanDEM-X Daten genutzt. 

Rückstreukoeffizienten sowie Texturinformationen und interferometrische 

Kohärenz wurden in einer Klassifikation von tropischen Torfsumpfwald in 

Zentralkalimantan (Indonesien) angewendet, um zwischen grundlegenden 

Landbedeckungsklassen (Wald, Wasser, Buschland, Grasland) und 

unterschiedlichen Waldtypen zu trennen. Die Signifikanz der abgeleiteten SAR-

Merkmale wurde mit einem Merkmalsauswahlprozess analysiert, um den 

zusätzlichen Nutzen einer bistatischen SAR-Aufnahme im Vergleich zu einer 

üblichen monostatischen Aufnahme zu bestimmen. Der resultierende optimale 

Merkmalsdatensatz bestehend aus monostatischen und bistatischen SAR-

Merkmalen wurde anschließend in einer Klassifikation angewendet, um die 

Verbesserung der Trennbarkeit und Klassifikationsgenauigkeit von bistatischen 

TanDEM-X Merkmalen im Vergleich zu monostatischen zu evaluieren. 

Die Ergebnisse der Merkmalsauswahl und Klassifikation indizierten, dass die 

interferometrische Kohärenz die Trennbarkeit von thematischen Klassen 

signifikant im Vergleich zu monostatischen Aufnahmen erhöhte. Die 

interferometrische Kohärenz verbesserte Ergebnisse im Vergleich zu 

Landnutzungsklassifikationen ohne Kohärenz um 10 % (75 % vs. 85 %). Speziell die 

Unterscheidung zwischen Waldklassen und Wald/Nicht-Wald profitierte von der 

Kohärenz aufgrund der Volumendekorrelation in Wäldern. Im Gegensatz dazu 

lieferten Rückstreukoeffizienten keine signifikanten Informationen zur Trennung 

von Waldklassen. Diese Analysen wurden in dem Artikel “Importance of bistatic SAR 

features from TanDEM-X for forest mapping and monitoring”, erschienen in Remote 

Sensing of Environment, beschrieben. 

Feldmessungen wurden als Referenz für Waldbiomasse in den Jahren 2013 und 

2014 im Untersuchungsgebiet von Zentralkalimantan durchgeführt. Diese 

Feldmessungen wurden mit Waldbedeckungshöhen von LiDAR (Light Detection and 

Ranging) korreliert. Diese Korrelation diente zur Herleitung eines 

Regressionsmodells, um über die gemessenen LiDAR-Baumhöhen die Biomasse 

innerhalb der beflogenen Gebiete abzuschätzen. Die in situ erhobenen 

Biomassemittelwerte entsprachen den mittels des Regressionsmodells geschätzten 

Biomassewerten aus den LiDAR-Daten. Die LiDAR basierende Biomasseschätzung 

konnte somit als eine verlässliche Datenquelle angesehen werden, um 

Korrelationen der Biomasse mit Rückstreuung und interferometrischer Kohärenz 
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von TanDEM-X zu untersuchen. Zusa¨tzlich wurde das Potential des global 

verfu¨gbaren digitalen Ho¨henmodells der TanDEM-X Mission WorldDEMTM in 

Bezug auf Biomassescha¨tzungen in dem tropischen Torfsumpfwald in 

Zentralkalimantan untersucht. Auch hier wurden die Feldmessungen mit 

verschiedenen Waldho¨henmodellen korreliert. Diese Waldh¨ohenmodelle wurden 

auf Basis des TanDEM-X intermediate digital elevation model (iDEM; als Pr¨akursor 

fu¨r WorldDEMTM) und LiDAR-Messungen berechnet. Diese Korrelationen 

resultierten wiederum in Regressionsmodellen, die zur Skalierung der Biomasse 

der kleinr¨aumigen Feldmessungen auf großr¨aumige Fernerkundungsdaten 

genutzt wurden. 

Die interferometrische Koh¨arenz war hilfreich bei Klassifikationen (wie oben 

beschrieben) sowie bei der Sch¨atzung der Waldbiomasse. Volumendekorrelation 

der X-Band SAR-Daten in Wa¨ldern nahm mit der Biomasse zu. Die Koha¨renz 

korrelierte daher mit der Biomasse mit einer Modellgenauigkeit von 0,5, 

beschrieben durch das Bestimmtheitsmaß (R2). Diese Korrelation resultierte in 

einem Fehler von 14 %, der mithilfe der Wurzel aus dem mittleren quadratischen 

Fehler (root mean square error=RMSE) in Bezug auf unabh¨angigen 

Validierungsdaten berechnet wurde. Der beobachtete Biomassewertebereich lag 

zwischen 183 t/ha und 495 t/ha. Degradierte Waldgebiete ließen sich aufgrund von 

Auflockerung der Besta¨nde und damit verbundener geringerer Biomasse im 

Vergleich zu intaktem Wald identifizieren. 

Im Vergleich zu den LiDAR-Referenzmessungen lagen die mittleren 

Abweichungen der aus den TanDEM-X Daten abgeleiteten Ho¨henmodelle unter 5 

m. Die interferometrische Ho¨he kombiniert mit einem genauem Gel¨andemodell 

erreichte ho¨here Korrelationen mit der Biomasse (R2 = 0,68) im Vergleich zur 

Koha¨renz und resultierte in einem kreuz-validiertem RMSE von 7,5 %. TanDEM-X 

Ho¨hen korrelierten jedoch geringer mit der Biomasse ohne externes 

Gel¨andemodell (R2 = 0,2) resultierend in ho¨herem RMSE (16 %). 

Sehr genaue Gel¨andemodelle stehen jedoch nicht auf globalem Maßstab zur 

Verfu¨gung. Dennoch zeigen die Ergebnisse, dass ein Ansatz basierend auf 

WorldDEMTM alleine in Gebieten ohne genauem Gela¨ndemodell genutzt werden 

kann. Dies resultiert zwar in geringeren Genauigkeiten, kann aber global 

angewendet werden. Diese Analysen sind in den Artikeln “TanDEM-X data for 

aboveground biomass retrieval in a tropical peat swamp forest”, erschienen in 

Remote Sensing of Environment, und “WorldDEMTM data for canopy height and 

aboveground biomass retrieval in a tropical peat swamp forest”, eingereicht bei 

ISPRS Journal of Photogrammetry & Remote Sensing, beschrieben. 

Die Ergebnisse zeigen, dass TanDEM-X als nu¨tzliche und konsistente Datenquelle 

fu¨r Waldu¨berwachung angewendet werden kann. Speziell die interferometrische 
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Information ist nützlich in der Landbedeckungskartierung und Biomasseschätzung. 

TanDEM-X Daten können daher beispielsweise für Stratifizierung im Kontext von 

REDD+ oder Walddegradierungsdetektion genutzt werden, um die räumliche 

Verteilung von Waldtypen und Biomasse abzubilden. Der global verfügbare 

TanDEM-X Datensatz könnte daher auch als Referenz für zukünftige, weltweite 

Entwaldungs- und Degradationsüberwachung dienen. Hierbei könnte der Status 

Quo von Wäldern für die Jahre 2010 bis 2014 mit TanDEM-X präzise analysiert 

werden. Änderungen des Status könnten anschließend mit bereits existierenden¨ 

oder zukünftigen SAR oder optischen Fernerkundungsmissionen erfasst werden. 

Abstract 

Forests are of significance as natural carbon sink in climate change mitigation and 

the global carbon cycle. Tropical forests and tropical peat swamp forests in 

particular play an important role in the global carbon cycle despite their relatively 

small extent. Deforestation and forest degradation are the second largest source of 

anthropogenic caused carbon emissions and and the highest rates are found in 

tropical regions. Therefore, deforestation and forest degradation should be 

prevented or minimized. In order to achieve this goal, it is of high importance to 

track land use changes as well as to estimate their status as carbon sink. This is 

useful for sustainable forest management, land use planning, carbon modeling, and 

supports to implement international initiatives like REDD+ (Reducing Emissions 

from Deforestation and Degradation), through which tropical countries are 

incentivized to protect their forests. However, tropical forests are difficult to reach 

and field measurements are only feasible with high effort. Therefore, the 

combination of field measurements and remote sensing seems most suitable for 

tropical forest monitoring purposes. 

Radar sensors are considered having high potential for tropical forest monitoring 

due to their weather and daytime independence. In addition, SAR (synthetic 

aperture radar) backscatter and interferometric capabilities have been proved in 

many cases to be useful in forest monitoring and aboveground biomass estimation. 

However, short wavelengths like X-band SAR systems have a low penetration depth 

into the forest canopy. Therefore, it is assumed that such systems have limited 

potential for forest biomass estimation via backscatter information due to 

insufficient interaction with lower forest constituents. However, the interferometric 

capabilities of X-band SAR can overcome such limitations, whereas the low 

penetration depth can be considered an advantage. The interferometric height is 

assumed as canopy height as the signal mainly stems from the upper canopy due to 

the low penetration depth. The resulting canopy height over forest stands is 
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assumed to have a high correlation with aboveground biomass (AGB). Thus, the 

capabilities of a short wavelength interferometric SAR system for tropical forest 

monitoring and biomass estimation is analyzed in this study. The main objective is 

to assess the potential of single-pass bistatic interferometric information from 

TanDEM-X mission for land use mapping and biomass estimation. 

TanDEM-X is a SAR mission consisting of two X-band SAR satellites flying in close 

formation and realizing a single-pass interferometric SAR mission in space. 

TanDEM-X delivers backscatter information from active/monostatic (transmitting 

and receiving) and passive/bistatic (transmitting only) sensor as well as 

interferometric data, such as interferometric coherence and surface height. The 

interferometric coherence is mainly governed by volume decorrelation, whereas 

temporal decorrelation is minimized due to simultaneous acquisition of single-pass 

interferometric data. The interferometric coherence and height can be used for land 

use monitoring as well as for estimation of biophysical parameters, like 

aboveground biomass of forests. Earth’s land mass has been acquired between 2010 

and 2014 multiple times in high resolution in order to create a global digital 

elevation model. Therefore, radar data from the TanDEM-X mission provide a 

unique opportunity to monitor large areas of tropical forests with the multi-

temporal global coverage and in high resolution. 

TanDEM-X data was used in this study to assess the information content delivered 

by a bistatic SAR acquisition for land cover information derivation and biomass 

estimation in a tropical peat swamp forest in Central Kalimantan, Indonesia. 

Backscatter coefficients of active and passive sensors including texture measures as 

well as interferometric coherence served for the classification of tropical peatland 

in order to distinguish basic land use categories suggested from IPCC 

(Intergovernmental Panel on Climate Change) and different forest types. Feature 

importance was assessed with a feature selection process in order to assess the 

added value of a bistatic SAR acquisition from TanDEM-X mission data compared to 

the monostatic case, available from all other spaceborne SAR missions in the past 

and at present. The resulting optimal feature sets, representing a monostatic and a 

bistatic SAR dataset, were used in a subsequent classification to assess the 

improvement of classification accuracies using the bistatic TanDEM-X features in 

order to separate land cover and forest type classes. 

The feature selection and classification results obtained demonstrated that the 

interferometric coherence significantly increased the separability of thematic 

classes compared to a dataset of monostatic acquisitions. The interferometric 

coherence improved results in comparison to land use classifications without 

coherence about 10 % (75 % vs. 85 %). Especially the differentiation between forest 

classes and forest/non-forest profited from coherence due to the volume 
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decorrelation in forests and subsequent information about forest structure. In 

contrast, backscatter coefficients did not provide significant information content to 

separate forest classes. This analysis was described in the article “Importance of 

bistatic SAR features from TanDEM-X for forest mapping and monitoring”, 

published in Remote Sensing of Environment. 

In order to quantify the quality of aboveground biomass estimates from TanDEMX 

mission data, field analysis was conducted in the years 2013 and 2014 as a reference 

for forest biomass in the study area in Central Kalimantan. LiDAR (Light Detection 

and Ranging) data was available for the study area in addition to field 

measurements. LiDAR data was used as a reference for aboveground biomass 

estimation from TanDEM-X for larger areas compared to field measurements alone. 

The field measurements were correlated with canopy height models of LiDAR. This 

correlation calibrated a regression model used to up-scale the limited number of in 

situ measurements in this difficult accessible area in order to increase the number 

of observations. This regression model resulted in similar mean values of biomass 

for the area of interest. Thus, the LiDAR biomass estimation represented a reliable 

data source to correlate biomass and TanDEM-X features like backscatter and 

interferometric coherence. In addition, the potential of the globally available digital 

elevation model from the TanDEM-X mission, namely WorldDEMTM, was 

investigated for aboveground biomass estimation in this tropical peat swamp forest 

in Central Kalimantan, Indonesia. Again, existing field measurements were 

correlated with different canopy height models. These canopy height models were 

derived from an intermediate TanDEM-X DEM (iDEM; as a precursor for 

WorldDEMTM) and LiDAR measurements. These correlations resulted in regression 

models, which were used to transfer pointwise biomass estimations from field 

measurements to aerial estimations via remote sensing data. 

The interferometric coherence was helpful in classifications, as mentioned above, 

as well as for the estimation of aboveground biomass. Volume decorrelation in 

forests increased with aboveground biomass. Therefore, it was shown that the 

interferometric coherence correlated with the aboveground biomass with a 

coefficient of determination (R2) of about 0.5. This resulted in an error of 14 % 

(calculated as root mean square error (RMSE) with an independent validation 

dataset) within highly variable forest stands showing variations of biomass in the 

range of 183 t/ha to 495 t/ha. Degraded forest areas were clearly identified due to 

openings in the forest canopy and lower biomass compared to relatively 

undisturbed forest. 

The canopy height models derived from TanDEM-X achieved accuracies of about 

5 m compared to the LiDAR reference. Correlation of canopy height models, derived 

by subtracting interferometric height models from TanDEM-X with high accurate 
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terrain heights from LiDAR, and biomass achieved a R2 of 0.68. This was an even 

higher correlation with biomass compared to coherence and resulted in cross-

validated RMSE of 7.5 %. TanDEM-X heights correlated lower to the biomass 

without an external terrain height (R2 = 0.2) resulting in higher RMSE (16 %). 

High accurate terrain models are not available on global scale. Nevertheless, the 

results of this study suggest that the estimation of aboveground biomass exclusively 

based on WorldDEMTM can be used in areas where no accurate terrain model is 

available. Even though this will result in moderately lower accuracies, it can be 

applied globally in a consistent way. The analysis of biomass estimation with 

interferometric coherence and height from TanDEM-X is explained in “TanDEM-X 

data for aboveground biomass retrieval in a tropical peat swamp forest”, published 

in Remote Sensing of Environment, and “WorldDEMTM data for canopy height and 

aboveground biomass retrieval in a tropical peat swamp forest”, submitted to ISPRS 

Journal of Photogrammetry & Remote Sensing. 

These results indicate that TanDEM-X can be considered as a valuable and 

consistent data source for forest monitoring in particular - but not only for tropical 

forests. Especially interferometric information seems suitable for land cover 

mapping and biomass estimation. TanDEM-X data is thus usable at least for 

stratification purposes in the context of REDD+ or forest degradation identification 

in order to assess the spatial distribution of forest types and aboveground biomass. 

Therefore, the global TanDEM-X database can serve as a reference for future 

deforestation and forest degradation assessment worldwide. The status quo of 

forests for the years 2010 to 2014 can be analyzed accurately with TanDEM-X and 

changes of this status can be assessed with existing or future SAR or optical remote 

sensing missions.  
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1 Introduction 

TanDEM-X is a single-pass interferometer in space acquiring the whole Earth 

multiple times (Krieger et al. 2007). This makes TanDEM-X an unique dataset, 

resulting in plenty of application possibilities. The most obvious is the creation of a 

digital elevation model (DEM), which is also the main mission objective of TanDEM-

X (Krieger et al. 2010, Krieger et al. 2007). The interferometric dataset, which is used 

to create the elevation model, as well as the elevation model itself are again of use 

for many applications. These applications can be found in topographic mapping, 

orthorecrification, radiometric correction, glaciology, hydrology and also ecology 

and vegetation analysis (Rosen et al. 2000, Bamler & Hartl 1998, Krieger et al. 2010). 

Such dataset could be also of high interest for the mapping and monitoring of 

tropical forests. These are usually not easy to access and high temperature, high 

moisture level together with high tree density hinder field measurements in tropical 

forests. Thus, in situ measurements can only be conducted with high effort resulting 

in small spatial coverage with regard to the huge extent and variability of tropical 

forests (Rosenqvist et al. 2003, Asner 2009). 

Tropical forests are relevant due to their function as carbon sink and can also act 

as carbon emission source via deforestation and forest degradation (Werf et al. 

2009, Page et al. 2002). Therefore, programs like REDD+ (Reducing Emissions from 

Deforestation and Degradation) are developed in order to incentivize tropical 

countries to protect their forests. However, the implementation of such a program 

needs effective monitoring systems. The combination of high accurate field 

measurements and remote sensing seems most promising for such a purpose (De Sy 

et al. 2012). 

A global dataset like TanDEM-X has high potential for forest monitoring since the 

dataset is globally consistent. In addition, interferometric SAR (synthetic aperture 

radar) was already used in vegetation analysis (e.g. Solberg et al. 2010, Wegmuller 

& Werner 1995, Santoro et al. 2007, Kugler et al. 2014). The objective of this thesis 

is the analysis of TanDEM-X in the context of tropical forest mapping, monitoring 

and aboveground biomass estimation. It is expected that the methodology can be 

used for measurement, verification and reporting (MRV) systems in REDD+. Special 

emphasis is on a study area in Central Kalimantan. This study area consists of 

tropical peat swamp forest, which on the one hand functions as huge carbon store 

and on the other hand is highly endangered through deforestation, degradation and 

drainage (Page et al. 2002, Hooijer et al. 2010, Werf et al. 2009, Aldhous 2004). 

Therefore, the estimation and monitoring of biomass in such an area is of high 1 
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interest (Lawson et al. 2014). 

The thesis on hand is structured as follows: TanDEM-X is a bistatic SAR formation 

consisting of two similar SAR satellites. Therefore, basics of radar remote sensing 

are explained in Chapter 2.1. Subsequently, bistatic SAR systems, their properties 

and utilization are illustrated (Chapter 2.2). A description of the main data source 

TanDEM-X follows (Chapter 2.3.2). Some fundamentals of REDD+ and the 

implementation via measurement, verification and reporting concepts with remote 

sensing are explained further (Chapter 2.4). The need for research is presented in 

Chapter 3: The significance of tropical peat swamp forests and thus the study area 

is discussed (Chapter 3.1). Subsequently, the necessity for research of using 

TanDEM-X in the context of tropical forest mapping, monitoring and biophysical 

parameter estimation is outlined guiding to the research questions of this thesis 

(Chapter 3.2). 

The research questions are examined in the following chapters. These chapters 

comprise research published in three publications in scientific journals. Chapter 4 

represents a publication in the journal Remote Sensing of Environment about the 

usage of TanDEM-X for land cover classifications. The usage of interferometric 

coherence of TanDEM-X for biomass estimation is analyzed in Chapter 5, which is 

also based on a publication in Remote Sensing of Environment. The derivation of a 

canopy height model and subsequently the estimation of aboveground biomass with 

interferometric height from TanDEM-X DEM with regard to the final global product 

WorldDEMTM is described in Chapter 6, which is based on a submitted publication 

in ISPRS Journal of Photogrammetry & Remote Sensing. 

Finally, the findings of the papers are reflected and discussed in Chapter 7 and an 

outlook to further potential research is presented. Chapter 8 concludes the thesis. 

2 Technical background & state of the art 

2.1 Radar remote sensing 

Radar sensors acquire data in the microwave domain of the electromagnetic 

spectrum with wavelengths between 1 mm and 1 m (Henderson & Lewis 1998). 

Figure 2.1 represents the electromagnetic spectrum, the corresponding remote 

sensing sensors and the atmospheric transmissibility. Penetration into media like 

vegetation or soil is possible with radar due to the long wavelength. Microwaves are 

barely influenced by atmospheric conditions and are able to penetrate through 

clouds depending on the wavelength. In addition, radars are active systems, which 

transmit and receive the electromagnetic wave making them independent of 

external sources of energy (Ulaby et al. 1981). Systems receiving only microwaves 
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are called passive microwave radiometers (Lillesand et al. 2008). The independence 

of illumination of the sun and the (almost) all-weather capability are advantages 

compared to optical sensors (Leckie 1998). Furthermore, the penetration into 

media is another advantage leading to possible information extraction from beneath 

the surface of media. This is appropriate especially for vegetation and soil analysis 

(Ulaby et al. 1981). Radars are also able to record the phase of the electromagnetic 

wave, which yields additional applications and advantages compared to optical 

systems. The phase information of coherent radar acquisitions are comparable, 

which is called interferometry. Topographic heights and surface motion can be 

estimated with this technique (Massonnet & Souyris 2008, Chapter 2.2). 

Remote sensing radars where transmitter and receiver of the electromagnetic 

wave are spatially at the same position are called monostatic. Systems where 

transmitter and receiver are spatially separated are referred to as bistatic (Richards 

2009, Chapter 2.2). Three major types of radar systems are differentiated in remote 

sensing, which are imaging radar, altimeter and scatterometer (Ulaby et al. 1981). 

Major part of the thesis is about TanDEM-X, which is an imaging radar. Therefore, in 

the following only the imaging radar is described. 

The radar cross section (RCS) per unit area is of high importance for remote 

sensing with such systems. The radar cross section describes the backscattered 

signal of a target. The unit area is defined by the resolution cell. Different properties 

of the 
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Fig. 2.1: Properties of energy sources (a), atmospheric transmissibility (b) & sensors 

(c) (from Lillesand et al. 2008:11) 

illuminated elements, like electric and geometric properties, as well as sensor 

properties, like wavelength (frequency), polarization and incidence angle, have 

influence on the backscatter and thus on radar cross section (Klausing & Holpp 

2000). These properties are described in the next chapter. 

2.1.1 Influences on radar backscatter & backscatter processes 

The backscatter is influenced by many factors. These can be differentiated into 

object and system properties (Lewis & Henderson 1998). Two major factors 

influencing the properties of illuminated objects are the geometry and 

electromagnetic properties of those objects. Geometric properties are determined 

by the orientation to the sensor and the roughness. Generally, backscatter increases 

if the objects tend towards the sensor (Raney 1998). The orientation of objects with 

respect to the sensor is described by the local incidence angle, which is the angle 

between the line of sight and a normal at the illuminated object (Fig. 2.2). Therefore, 

the slope of the object and the position of the sensor with the resulting look angle 

influence the local incidence angle. The look angle is defined by the line of sight and 

a vertical to a reference height (Lewis & Henderson 1998, Fig. 2.2). The look angle 

or the depression angle, which is complementary to the look angle, and the local 

incidence angle are of high significance for the description of the acquisition 

geometry. 
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Another geometric property is the roughness of the illuminated surface of the 

objects. The roughness is a description of height variability with respect to the 

 

Fig. 2.2: Important angles of a SAR system (A) & illustrations of local incidence angle 

(B) (from Lewis & Henderson 1998:133) 

wavelength (Raney 1998). The backscatter at rough objects can be separated into 

two components, on the one hand are scattering and on the other hand specular 

portion (Ulaby et al. 1981, Raney 1998). Increased roughness results in decreased 

specular portion. The signal is scattered away from the transmitter with the same 

exit angle as the incidence angle at specular surfaces. Side looking monostatic 

imaging radar does not receive any signal in this case. Therefore, the term 

backscatter is commonly used in radar remote sensing, because the radar measures 

the scattering back to the sensor and hence the scattering object is referred as 

scatterer (Raney 1998, Knott 1990). 

The moisture content is similarly influencing the radar backscatter. The moisture 

content determines the complex dielectric constant, which is an electromagnetic 

property of objects. Increased moisture of an object results in higher dielectric 

constant and thus causes higher backscatter (Ulaby & Dobson 1989). Other 

electromagnetic properties are the permeability and electrical conductivity. 

However, the dielectric constant has the highest consequence on radar backscatter 

(Richards 2009). 

The moisture and thus the dielectric constant have influence on the penetration 

depth. Increased moisture of an object results in decreased penetration (Lewis & 

Henderson 1998). However, the wavelength has also a major impact on the 

penetration. Long wavelengths penetrate deeper compared to short wavelengths. 

The penetration into a medium with many scatterers results in multiple reflections. 

This is called volume scattering and occurs mainly in vegetation and in sea ice 

(Raney 1998, Richards 2009). This kind of scattering is based on the dielectric 

heterogeneity of the medium (Ulaby et al. 1982). The spatial distribution of the 

dielectric differences is normally random. Therefore, the volume scattering is not 
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directed and thus the signal is scattered into every direction (Raney 1998, Ulaby et 

al. 1982). The intensity of backscatter at volume scattering depends on one hand on 

dielectric differences, their density and size with respect to the wavelength and on 

the other hand on the surface roughness and the average dielectric constant of the 

medium (Ulaby et al. 1982). 

Besides direct backscattering mainly at rough objects (Fig. 2.3 left) or objects 

tending to the sensor (Fig. 2.3 right) and the volume scattering (Fig. 2.3 center) 

dihedral, trihedral or polyhedral scattering is possible. Dihedral scattering is also 

called double bounce and depends on the orientation to the sensor (Fig. 2.3 right). 

Double bounce is possible at artificial or natural objects. For instance, a specular 

surface and stem of a tree can create a double bounce. Trihedral and polyhedral 

scattering occurs mainly at artificial objects like ships or vehicles and in cities 

(Raney 1998). 

 

Fig. 2.3: Exemplary illustration of backscatter mechanisms (from
 Richards 2009:136) 

Sensor properties have influence on backscatter as well. The look angle is one 

influencing sensor property as described above. Additional important sensor 

properties are the frequency and polarization. The radar frequency (fc) defines the 

wavelength (λ) of the system (λ = fcc , where c is the velocity of light) (Massonnet & 

Souyris 2008). A specific wavelength is acquired in contrast to optical systems with 

bands of wavelengths (Henderson & Lewis 1998). The used frequencies are 

abbreviated with letters stemming from World War II (Table 2.1). Each frequency 

has individual properties and advantages for different applications (Skolnik 1990). 

Two additional important elements are sampling and pulse repetition frequency, 

which influence the resolution of the system (Massonnet & Souyris 2008, Chapter 

2.1.2). 

In addition, the polarization of the transmitting wave can be determined by the 

system. The receiver can also define the receiving polarization. The polarization is a 

description of the orientation of the electrical field vector, which influences the 

interaction between the electromagnetic wave and the object (Raney 1998). 
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Scattering processes alter the polarization of the electromagnetic wave (Raney 

1998). A horizontal plane is used as reference for defining the polarization. Linear 

polarizations, which are mainly used in remote sensing, are separated into 

horizontal (H) and vertical (V) polarization. The transmitted polarization is in first 

place and received polarization in the second place when describing the system. 

Since transmitter and receiver are able to define their used polarization individually, 

four possibilities can result (HH, HV, VH, VV). Nevertheless, cross-polarizations HV 

and Tab. 2.1: Examples of used frequencies, wavelengths and abbreviations (after 

Lillesand et al. 2008) 

 

 Abbreviation Wavelength λ (in cm) Frequency fc (in MHz) 

 

 Ku 1.67-2.4 18000-12500 

 X 2.4-3.75 12500-8000 

 C 3.75-7.5 8000-4000 

 S 7.5-15 4000-2000 

 L 15-30 2000-1000 

 P 30-100 1000-300 

 

VH are identical after the reciprocal theorem (Klausing & Holpp 2000). 

2.1.2 Imaging radar & resolution 

The image representation of an object is based on the amplitude or intensity of its 

backscatter. The intensity is the square of amplitude (Lillesand et al. 2008). 

Resolution cells must be used in order to create an image representation. Spatial 

resolutions in direction of the movement of the sensor (along-track or azimuth) and 

orthogonal to that (across-track or range) are differentiated (Richards 2009). 

Measurement of wave run time is possible using radar sensors due to their active 

nature. Objects can be separated via this measurement, if they have not the same 

distance to the sensor. Therefore, radars are side looking in order to avoid 

ambiguities (Massonnet & Souyris 2008). Imaging radar is a 3-dimensional 

representation due to the side looking effect. The representation along a linear plane 

towards the sensor is called slant range (Raney 1998). Radars transmit the 

electromagnetic wave in continuous pulses. Close neighboring objects superimpose 

each other and cannot be separated by the radar (Richards 2009). The resolution in 

range (rR) is thus defined by the pulse length (τP): 
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 cτP c 

 rR = = (2.1) 

 2 BC2 

where 2 means the path of the wave to target and back, c the velocity of light and 

BC the chirp bandwidth (Ulaby et al. 1982). The representation relative to a 

horizontal plane (ground range) is dependent on the look angle (Raney 1998): 

 cτP c 

 rR = = (2.2) 

 2sinθ BC2sinθ 

where θ describes the look angle (Ulaby et al. 1982). Some conclusions can be 

drawn from these equations. Firstly, a look angle of 0 (θ = 0) results in no resolution. 

Therefore, imaging radar must acquire side looking. Secondly, no term for range is 

included in these equations resulting in independence of range for the resolution in 

across-track. However, the resolution is dependent on the look angle, whereas an 

increase of the look angle results in an increase of spatial resolution (Richards 

2009). Furthermore, higher resolutions are only achievable by decreasing the pulse 

length. A substantial increase of the look angle is usually not possible. A decrease of 

the pulse length results in less signal energy and thus decreased probability to 

detect objects. Another possibility is the application of long pulses with linear 

oscillating and modulated frequency, which is called chirp (BC; Klausing & Holpp 

2000). 

 

Fig. 2.4: Principle of SAR system (from Richards 2009:62) 

The resolution in along-track is calculated from bandwidth in azimuth BA and 

range to the target (R). The bandwidth in azimuth is defined by the ratio of 

wavelength (λ) and length of aperture (lA) (Ulaby et al. 1981): 

λR 
rA = BAR =  (2.3) lA 



2 Technical background & state of the art 9 

The range distance can be calculated by the velocity of light and the time from 

transmitter to target or target to receiver (R = c·t), which is similar in the monostatic 

case (Ulaby et al. 1982). Formula 2.3 emphasizes that the resolution depends on 

wavelength, aperture length and range. Therefore, such a system is not feasible for 

high flying altitudes of the sensor due to the large range. An increase in resolution is 

only possible by increasing the aperture size (Klausing & Holpp 2000). The 

development of SAR systems can overcome those limitations of a system with real 

aperture (RAR=real aperture radar or SLAR=side looking aperture radar). A long 

aperture is synthesized at SAR systems via forward movement of the sensor (Lewis 

& Henderson 1998). Signals are transmitted and backscatter is coherently stored 

during the movement. The resulting multiple single images are coherently 

processed and phase differences are corrected via knowledge about the relative 

position of points to the target (Cutrona 1990, Klausing & Holpp 2000). The final 

image is thus a combination out of multiple images, while synthesizing a long 

aperture (Raney 1998; Fig. 2.4). The length of the synthetic aperture depends on the 

illumination time of the target. The illumination time and thus the potential length 

of the aperture is directly proportional to the range to the target, whereby the 

resolution in azimuth at SAR is independent from the range (Ulaby et al. 1982, 

Klausing & Holpp 2000). The theoretical resolution of a SAR in azimuth is calculated 

by (Ulaby et al. 1981): 

lA 

 rA =  (2.4) 

2 

where lA is the length of the real aperture. Formula 2.4 shows that an increased 

resolution is achievable by using smaller antennas. The pulse repetition frequency 

and velocity of the sensor platform determine the actual azimuth resolution (rA). 

The Doppler frequency of space borne sensors is high and thus potentially results in 

ambiguities (Ulaby et al. 1982). Therefore, Massonnet & Souyris (2008) suggest 

transmitting a pulse every half length of the antenna. Furthermore, the width should 

not be too large in order to minimize ambiguities (Ulaby et al. 1982). The usage of a 

synthetic aperture requires system specification like coherent processing, a stable 

platform and movement compensation since a constant antenna along the flight 

direction is assumed in the processing (Cutrona 1990). 

Pixel size and resolution is usually similar within passive optical systems. This is 

different for imaging radar. The pixel size depends on sampling of the signal and 

synthesis of the aperture. In contrast, the resolution depends only on the synthesis 

of aperture. An oversampling of 15 to 20 % is common resulting in a lower 

geometrical resolution compared to pixel size (Massonnet & Souyris 2008). 
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The final image is created via determining the coordinate of the resolution cell in 

azimuth using the Doppler frequency gradient. The coordinate in range is recorded 

via run time measurement of the signal (Raney 1998). It is obvious that this could 

result in image distortions. This is, for instance, the case if an object is higher 

compared to surroundings and hence closer to the sensor compared to its 

surroundings. Consequently, the run time is shorter and the object is represented 

closer to the sensor as the real position (Ulaby et al. 1982). The pixel may result out 

of multiple superimposed objects, which have a similar distance to the sensor. This 

phenomenon is known as layover, which occurs if the look angle is smaller than the 

slope of the object (Fig. 2.5, Raney 1998). A similar geometric distortion is 

foreshortening, where the distance of two points is represented smaller than it is in 

reality (Fig. 2.5). This is also caused by the run time measurement. In contrast, radar 

shadow occurs if an object is not visible for the radar and thus is not illuminated by 

the electromagnetic wave (Fig. 2.5, Ulaby et al. 1982). These distortions increase 

with steeper look angles (Fig. 2.5) as well as with strong relief (Lillesand et al. 2008). 

 

Fig. 2.5: Influences of topographic relief & geometric distortions in radar image 

(from Lillesand et al. 2008:644) 

2.1.3 Speckle 

A resolution cell consists of multiple individual distributed scatterers. The received 

signal is the vector sum of all signals of the individual scatterers within a resolution 
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cell (Raney 1998, Klausing & Holpp 2000, Chitroub et al. 2002). Therefore, the radar 

signal is a complex sum, which can be described by phase and amplitude (Fig. 2.6). 

The phase is randomly and uniformly distributed between 0 and 2π (Raney 1998). 

The addition of scattering from individual scatterers results in phase displacement, 

which results in constructive or destructive noise depending on the type of 

displacement (Raney 1998, Klausing & Holpp 2000, Chitroub et al. 2002, Fig. 2.6). 

This noise, which is called speckle, leads to a radiometrically weaker or stronger 

signal (Massonnet & Souyris 2008). Surfaces with similar properties can have 

different backscatter due to the speckle resulting in a granular texture in the image 

(Durand et al. 1987). It is usually assumed that the speckle is a multiplicative and 

random noise. Therefore, the speckle is stronger in higher backscatter areas 

(Klausing & Holpp 2000). However, this assumption is simplified and in reality not 

appropriate (Raney 1998). 

After Raney (1998) fully developed speckle occurs at targets fulfilling the 

following criteria: The resolution cell consists of a large amount of scatterers, no 

dominant scatterer exists in the resolution cell, the scatterers are statistically 

independent and the phase is uniformly distributed. An average of multiple pixels 

should be used in 

 

Fig. 2.6: Illustration of complex sum within a resolution cell (from Raney 1998:69) 

order to estimate the radar cross section of a surface (Ulaby et al. 1982). The radar 

cross section is explained in more detail in Section 2.2.1. 

Interpretations, classifications and segmentations are difficult because of the 

speckle, since similar land cover surfaces have fluctuations in their backscatter 

intensity and edges are difficult to detect (Huang & Liu 2007). Therefore, reduction 

of speckle is usually necessary (Ulaby et al. 1982). Different methods exist to reduce 

speckle. They can be separated into multi-looking and filtering approaches. The 
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incoherent addition of single sub-images reduces the speckle (= multi-looking), 

whereas the resolution decreases. The number of looks determines the number of 

additions (Massonnet & Souyris 2008, Raney 1998). In contrast, filters are applied 

locally on the pixel. Grey values are changed on the basis of neighboring pixels 

(Lillesand et al. 2008). Filters have a high noise suppression resulting in potential 

improvement of the subjective perception of the image. However, simple filters 

suppress also high grey values and anomalies, whereas loosing details and edges. 

Therefore, adaptive filters were developed, which suppress noise and preserve 

edges. Frost, Gamma-MAP and Lee filters are examples of adaptive speckle filters 

(Massonnet & Souyris 2008, Huang & Liu 2007). The choice of filter and/or number 

of looks should fit to the application and requires a good understanding of the object 

properties (Gupta & Gupta 2007). 

2.2 Bistatic radar systems, properties & utilization 

Bistatic radar systems are defined by a spatial separation of the transmitter and the 

receiver of the electromagnetic wave (Willis 1991). Definitions of bistatic systems 

are not commonly used in literature. For instance, quasi-monostatic, pseudo-

monostatic and others are used for bistatic systems (Willis 1990). If transmitter and 

receiver are spatially separated, but are at the same place or within short distance 

compared to the distance to the target, it is called a monostatic system (Klausing & 

Holpp 2000, Willis 1991). Therefore, the distance of transmitter and receiver is 

important for some definitions (Willis 1991). The term bistatic will be used in the 

following if spatially separation is fulfilled without considering the distance. Figure 

2.7 shows the principle of a bistatic system, whereas Figure 2.7 (a) represents a 

bistatic system with spatially separated transmitter and receiver and Figure 2.7 (b) 

a monostatic system. 

 

Fig. 2.7: Bistatic (a) & monostatic (b) system (from Richards 2009:54) 

A transmitter can normally act as receiver as well and thus a combination of 

monostatic and bistatic system exists. Willis (1991) refers to that as hybrid radar. 

Hybrid radars have huge potential for applications. The transmitting and receiving 
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antenna is usually referred to as active or monostatic and the antenna which only 

receives is referred to as passive or bistatic (Krieger et al. 2007, Richards 2009). The 

radar formation of TanDEM-X is such a hybrid system (see Section 2.3, Krieger et al. 

2007). 

The spatial separation of the sensors is called baseline (L in Fig. 2.8). The angle 

between the target and both sensors is referred to as bistatic angle (β, Fig. 2.8). It is 

a monostatic system if baseline and β equal 0 (Willis 1990). Therefore, the bistatic 

angle (β) is unique for bistatic systems (Willis 1991). Furthermore, two different 

look angles exist, one for active and one for passive sensors (Fig. 2.8). The 

backscatter of a bistatic system differs compared to the monostatic case due to the 

spatial separation of transmitter and receiver (Kell 1965). 

 

Fig. 2.8: Bistatic coordinate system (from Willis 1991:60) 

2.2.1 Monostatic & bistatic radar cross section 

The concept of radar cross section (RCS) was developed to define interactions of 

radar, target and the received signal. The target is described by size, shape and 

orientation. The radar cross section was introduced in order to characterize those 

properties (Knott 1990). The interactions can be divided in three steps. First, the 

signal is transmitted directional by the radar. Second, the radar signal hits and 

interacts with the target. Third, the receiver receives the signal (Massonnet & 

Souyris 2008). Formula 2.5 describes the receiving signal at sensor (Pr, Ulaby et al. 

1982): 

PtGtArσ 
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 Pr = (4 π)2RtRr (2.5) 

The indexes t and r mean transmit and receive. R is the range from transmitter to 

target or target to receiver. Pt means the density of electromagnetic energy, which 

was transmitted with gain Gt. σ means cross section in square meter (Skolnik 1990). 

This cross section is the area of a metal sphere, which would result in the same 

backscatter as the actual target (Knott 1990). The loss of energy via spreading is 

defined as (4π)2RtRr (Ulaby et al. 1982). The scattered energy to the sensor in square 

meter is calculated by Pt, Gt and σ. The actual received energy is described by the 

effective aperture Ar (Skolnik 1990). Rt and Rr, At and At as well as Gt and Gr are equal 

in the monostatic case. Therefore, formula 2.5 is valid for the bistatic case. The 

effective aperture is defined by the wavelength (λ) and gain (G), thus formula 2.5 

can be formulated for the monostatic case: 

  (2.6) 

This formula is valid for point scatterers, whereas mainly areas are observed in 

remote sensing (Ulaby et al. 1982). Thus, most important in radar remote sensing is 

the RCS per unit area. This is calculated by the differential coefficient ( ), 

which is simplified by substituting the unit area A with the resolution cell (Klausing 

& Holpp 2000). The formula for area targets is: 

  (2.7) 

Two conditions must be fulfilled in order to use this model. The unit area must 

consist of multiple scatterers and a large amount of scatterers must exist in the 

whole observed area (Ulaby et al. 1982). These conditions are usually fulfilled in 

natural areas. In contrast, in urban areas or in acquisitions with high resolution the 

first condition may fail since often one scatterer dominates resulting in a single 

scatterer in the unit area (Bamler & Hartl 1998). 

The bistatic RCS is more complex compared to monostatic RCS, because multiple 

look angles (σt and σr) as well as the bistatic angle (β) influence the backscatter 

(Richards 2009, Villard & Borderies 2015). Normally, the bistatic cross section is 

different and often smaller compared to the monostatic one (Willis 1991). Kell 

(1965) suggest three major sources of differences between bistatic and monostatic 

RCS: 

• Difference in relative phase of the individual scatterer 

• Difference in backscatter of scatterers 
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• Difference in existence of scatterers (appearance or disappearance) 

The first source is similar to fluctuations in a monostatic system when the look 

angle changes. However, the difference in bistatic systems is caused by the bistatic 

angle. The second source is based on reduced backscattered energy due to 

separation of transmitter and receiver (Willis 1990). The third source is caused by 

additional shadow or appearances of new targets due to the different look angles 

(Willis 1990, Richards 2009). However, a comprehensive analysis of bistatic radar 

cross sections does not exist (Krieger & Moreira 2006). 

2.2.2 Utilization of a bistatic SAR system 

Nowadays, most of the radar sensors are monostatic. Bistatic systems must have 

substantial advantages in order to justify the increased costs, reduced extent and 

higher complexity than monostatic systems (Willis 1991). However, the first 

developments in radar were mainly based on bistatic radars. Most of the first radar 

experiments were bistatic and focused on target recognition. The developments 

stopped after the World War II, but were continued again in the 1950s for military 

purposes (Willis 1990). Willis (1990) and Willis (1991) provide more historic 

information on bistatic radar. 

As mentioned above, bistatic systems have some drawbacks. Usually, the common 

imaged extent of monostatic and bistatic sensor is used. Therefore, the extent is at 

best the same as in monostatic case, but it is mostly smaller (Willis 1991). However, 

bistatic systems have multiple advantages. Some advantages are of special interest 

for military purposes. For instance, the safety of the systems can be improved by 

placing the transmitter out of reach for enemies and the detection of the position of 

a receiver is challenging (Walterscheid et al. 2004). In addition, the difference of 

look angles can be used to increase the RCS for some targets in order to detect better 

those that are undetectable. E.g. specular reflecting targets are not visible for a 

monostatic system but may be detected by bistatic systems due to the different look 

angle (Willis 1991). Generally, a combination of monostatic and bistatic systems 

delivers more information since they observe objects out of different angles 

(Krieger & Moreira 2006). However, this cannot be used only for military purposes. 

Bistatic systems may serve for an improved feature selection and classification. On 

one hand, objects may be detected that are not visible for monostatic only. On the 

other hand, dihedral and trihedral backscatter is reduced, which is especially the 

case in urban areas (Villard & Borderies 2015, Walterscheid et al. 2006). Therefore, 

the grey value range of bistatic SAR amplitude can be smaller compared to 

monostatic acquisition (Richards 2009), resulting in a more homogeneous image 
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(Walterscheid et al. 2006). Dubois-Fernandez et al. (2006) reported such 

advantages in airborne experiments in urban areas as well as in agricultural areas 

even with a very small bistatic angle of 0.1◦ . The biggest advantage of hybrid 

systems (combination of monostatic and bistatic) is the single-pass interferometry 

(Krieger & Moreira 2006). 

2.2.3 SAR interferometry 

The usage of phase information from SAR is, according to Hanssen (2001), the main 

idea of interferometry and for Massonnet & Souyris (2008) it is an unique feature 

compared to other sensors. Interferometry can deliver information about 

topography and surface movement making interferometry a key application for 

radar remote sensing (Bamler & Hartl 1998). SAR interferometry (InSAR) expands 

the two dimensional imaging of SAR to a third dimension (Rosen et al. 2000). 

Operational application of interferometry started in early 1990s and plays an 

important role in remote sensing (Krieger et al. 2010). Interferometry means the 

comparison of phase information from two or more SAR acquisitions in order to 

retrieve information (Bamler & Hartl 1998). Radar cannot separate targets having 

the same distance to the sensor (Chapter 2.1.2). However, two sensors with 

(slightly) different positions and comparable phases can result in the separation of 

those targets. 

The main principle of interferometry is the comparison of the phases of two 

complex SAR images (Bamler & Hartl 1998). A resolution cell consists of multiple 

scatterers with different distance to the sensor. Therefore, the phase can be 

assumed as random. The phase information is only useful if compared to another 

(Massonnet & Souyris 2008). The images must be acquired either from another 

position and/or another time. The distance between the acquisitions is defined as 

baseline. The spatial separation (spatial baseline) defines the geometry of the 

acquisitions, whereas the separation in time is called temporal baseline (Hanssen 

2001). The comparison of the phases shows differences in run time of the signal 

between the acquisitions, which is named interferogram. These differences can be 

measured in the order of a fraction of the wavelength (Madsen & Zebker 1998). 

Two different kinds of interferometry exist, which are differentiated in 

acrosstrack and along-track interferometry. An acquisition at different positions 

with a spatial separation across the flight direction is across-track interferometry 

(Klausing & Holpp 2000). Both sensors should acquire the same area from different 

position resulting in different look angles. In this case, two sensors with spatial 

separation but simultaneous acquisition are used (Bamler & Hartl 1998). This 

configuration is called single-pass interferometry (Klausing & Holpp 2000). Hybrid 
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radar (see Chapter 2.2) enables such a configuration. Nevertheless, the same or a 

similar sensor can be used which overflies the area of interest at another time. This 

means at least two overflights are necessary, which is called repeat-pass 

interferometry (Bamler & Hartl 1998). The phase differences reflect differences in 

run time of the signal, which can be attributed to topography resulting from a 

function of look angle and spatial baseline (Rosen et al. 2000, Fig. 2.9). 

 

Fig. 2.9: Across-track interferometry for topographic derivation (from Bamler & 

Hartl 1998:R12) 

The interferogram is created by precise co-registration of the complex images and 

their multiplication of one image with the complex conjugate of the second image 

(Madsen & Zebker 1998, Bamler & Hartl 1998): 

  (2.8) 

where u1 means complex image 1 and  means complex conjugate of complex 

image 2. This results in the interferomteric phase (φ), representing the phase 

difference of image 1 (φ1) and image 2 (φ2): 

 φ = φ1 − φ2 (2.9) 

The equality of both phases is eliminated and phase differences are preserved 

(Rosen et al. 2000). A phase cycle in interferogram of 0 to 2π is a fringe (Hanssen 

2001). The phase difference ∆φ depends on differences in distance ∆R: 

  (2.10) 

p equals 1 if one transmitter and two receivers are used or p equals 2 if two 

transmitters and two receivers are used (Madsen & Zebker 1998, Fig. 2.10). 
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Fig. 2.10: Distances of the signal for a shared (a) & separated (b) transmitting 

antenna (from Richards 2009:191) 

The term ∆R is a function of the acquisition geometry. Horizontal, vertical, 

parallel, effective and perpendicular baselines describe the geometry (Hanssen 

2001, Fig. 2.11). Another important parameter is the baseline orientation angle α 

(Rosen et al. 2000). The sensors create a right angle triangle, whereas the baseline 

is the hypotenuse and the vertical and horizontal baseline are the cathetus. The line 

of sight and a right angle define the parallel and perpendicular baseline (Hanssen 

2001). In case of one transmitter and two receivers the perpendicular baseline is 

double of effective baseline, which is the effective distance between both sensors 

(Hanssen 2001). In other cases, the perpendicular baseline equals the effective 

baseline (Hanssen 2001). 

The interferometric phase is the modulus of the absolute phase since the phase of 

complex numbers are calculated by the arc tangent (Klausing & Holpp 2000). This 

means that every distance difference (∆R) in the order of half wavelength results in 

repetition of phase difference (Cloude 2009). Nevertheless, the phase differences 

can be multiple of the wavelength and thus greater than 2π (Rosen et al. 2000). A 

phase unwrapping is necessary in order to transform the relative wrapped phase 

consisting of the multiple phase cycle to absolute phase. 

 

Fig. 2.11: Baselines & baseline orientation angle of SAR interferometry (after 

Hanssen 2001:115) 



2 Technical background & state of the art 19 

The phase difference finally consists of an unwrapped phase and a reference 

phase. The reference phase is visible in high frequency of phase changes (fringes) in 

range direction in the interferogram. Therefore, the reference phase has to be 

subtracted (Cloude 2009). These fringes are caused by the side looking acquisition 

geometry resulting in distance differences in range direction (Klausing & Holpp 

2000). Distance differences to a reference height and both sensors must be 

converted in phase differences in order to eliminate the reference phase. Finally, the 

reference is subtracted from the measured interferometric phase (Hanssen 2001). 

The height of the reference phase compared to a reference height is assumed to be 

0 and thus the reference phase is named flat earth phase (Cloude 2009) and the 

process of subtraction is named flattening (Rosen et al. 2000). The flat earth phase 

(φfe) is calculated as follows: 

  (2.11) 

whereby the measured interferometric phase is defined: 

 , (2.12) 

where λ means the wavelength, B the baseline, α the baseline orientation angle, 

Dp the surface movement, Hp the topographic component, θ the look angle of 

transmitter and R the range from transmitter to scatterer (Hanssen 2001). The 

removal of the flat earth phase is mostly the first step in interferometric processing 

and is achieved by the multiplication of complex images (Cloude 2009): 

  (2.13) 

where again u1 means complex image 1 and  means complex conjugate of 

complex image 2. 

Formula 2.12 shows that the interferometric phase is based on the look angle (θ), 

the baseline (B) and the baseline orientation angle (α). Some calculations, e.g. after 

Madsen et al. (1993) and Madsen & Zebker (1998), are necessary in order to retrieve 

the topographic height (h) above the reference height (H) and exact position in 

range (y): 

  (2.14) 

h = H − Rcosθ (2.15) 

y = Rsinθ (2.16) 
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If the acquisitions differ in time but are taken from the same position, the sensors 

are separated spatially in flight direction. This is called along-track interferometry 

(Klausing & Holpp 2000). This formation is applicable for change detection and 

surface movement since the phase difference is mainly based on changes between 

the acquisition dates. The sensors should have similar orbits in order to minimize 

the topographic effect in the phase difference, which is mostly not possible 

(Richards 2009). Formula 2.12 shows that phase differences are mainly based on 

surface movement if the topographic component is minimized. The topographic 

component can be eliminated by using differential interferometry, where a digital 

elevation model is used to eliminate the topographic effect (Rosen et al. 2000). 

The interferometric phase of along-track interferometry consists of the same 

components as across-track interferometry. Therefore, topographic height retrieval 

is also possible with along-track InSAR. However, the along-track interferometry 

has major drawbacks in topographic height retrieval depending on the size of the 

spatial and temporal baseline (Madsen & Zebker 1998). 

2.2.4 Conditions for interferometry & description of performance 

It has been explained in chapter 2.1 that radar is (almost) independent from 

atmospheric influences due to the long wavelengths. This is not completely true for 

radar interferometry. The phase is sensitive to changes (e.g. changes in acquisition 

conditions), which result in phase differences causing errors in retrieval of 

topographic height or surface movement (Massonnet & Souyris 2008). 

Interferometry is only possible with coherent images and thus the coherence is a 

descriptor of the quality of the interferogram (Bamler & Hartl 1998). The coherence 

enables the separation between useful and useless image parts. It is the modulus of 

the complex interferogram and defined between 0 and 1 (Massonnet & Souyris 

2008, Bamler & Hartl 1998): 

  (2.17) 

E means expectation value, ui denotes complex image i and vertical lines are for 

magnitude of complex data. The expectation value is difficult to estimate. Therefore, 

it is replaced by mean value of neighboring pixels. This is valid due to the 

assumption of ergodicity for coherence (Hanssen 2001). It is assumed that 

neighboring pixels have similar mean value for their phase and thus the phase is not 

random resulting in high coherence (Massonnet & Souyris 2008). The complex 

cross-correlation is then calculated as follows: 
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  (2.18) 

where ui denotes complex image i, the brackets mean ensemble average and 

vertical lines are for magnitude of complex data (Rosen et al. 2000). Low coherence 

values mean that the signal is decorrelated and no extraction of interferometric 

information is possible. At |γ| = 0 there does not exist any interferometric phase 

information (Bamler & Hartl 1998). Decorrelation is caused by different factors, 

which are related to the system or the scatterers. However, definitions of 

decorrelation are not distinct. Geometric decorrelation, Doppler centroid 

decorrelation, thermal noise, processing, temporal decorrelation and volume 

decorrelation as well as atmospheric decorrelation are such factors (Hanssen 2001). 

Atmospheric decorrelation is not a decorrelation term for Hanssen (2001), but 

should be mentioned here. Generally, every factor which changes the signal results 

in decorrelation (Richards 2009). In addition, it should be mentioned that single-

pass interferometers like TanDEM-X have the significant advantage of simultaneous 

acquisition and thus there does not exist any decorrelation by the atmosphere since 

it is similar for both images (Bamler & Hartl 1998, Krieger et al. 2007). The 

decorrelation is the product of all decorrelation factors: 

 γTotal = γGeom · γDoppler · γSNR · γProc · γTemp · γVol · γAtmospheric (2.19) 

The difference of the look angles results in geometric decorrelation (γGeom) 

causing a spectral shift (Hanssen 2001). This decorrelation can be described by the 

critical baseline, which calculates the maximal spectral shift for interferometric 

exploitation (Bamler & Hartl 1998): 

  (2.20) 

where λ represents the wavelength, B the system bandwidth, R the range, θ the 

look angle of transmitter and α the slope of the area. No interferometry is possible 

if the spectral shift is too high and thus the images are completely decorrelated. 

Therefore, the effective baseline should not exceed the critical baseline otherwise a 

phase difference of more than 2π exists and thus the signal is completely 

decorrelated (Richards 2009, Bamler & Hartl 1998). The geometric decorrelation is 

reducable by applying bandpass filters (Rosen et al. 2000). The filter is applied 

before the interferogram calculation and reduces the spectral shift. Similar to 

geometric decorrelation is the Doppler centroid decorrelation (γDoppler). This 

decorrelation is in azimuth and stems from different Doppler centroid frequencies 

(Hanssen 2001). 
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Noise concerns the individual SAR images and thus causes also decorrelation in 

the interferogram (γSNR), depending on the sensor and the observed area (Rosen et 

al. 2000). Decorrelation via processing (γProc) means, on the one hand, imprecise co-

registration and, on the other hand, errors via interpolation (Hanssen 2001). 

Coregistration means the fitting of position of the images, whereas corresponding 

pixels are overlaying. This should be conducted in sub-pixel accuracy. In addition, 

pixels must be resampled in order to create pixels of the same size for the images, 

which means an interpolation of pixels (Hanssen 2001). 

The γGeom, γDoppler, γSNR, and γProc are decorrelation terms concerning the system 

and its processing. Two other important terms are the temporal and volume 

decorrelation. Temporal decorrelation occurs if the scattering properties of the 

objects change between the acquisitions and in this way changes also the phase. 

Temporal decorrelation is caused by movement of objects or/and change of 

dielectric properties (Wegmuller & Werner 1995). This decorrelation is observable 

for some surfaces like water bodies already after a fraction of seconds. Temporal 

decorrelation can also occur after a short amount of time in vegetation, whereas 

movement of leaves, twigs and branches through wind can cause changes of 

scattering properties resulting in temporal decorrelation (Bamler & Hartl 1998). 

Another decorrelation factor occurring mostly in vegetation is the volume 

decorrelation. This decorrelation occurs in all volume scattering processes, where 

the backscatter is random (Ulaby et al. 1982). The resolution cell consists of multiple 

vertical layered scatterers due to the penetration into the volume, which contribute 

to the backscatter and are projected into the resolution cell (Krieger et al. 2010, 

Rosen et al. 2000). The projection of the vertical layered scatterers may be different 

for two images due to the randomness of the volume backscatter causing the volume 

decorrelation (Rosen et al. 2000). However, this can also include information about 

the vertical structure (Krieger et al. 2010, Rosen et al. 2000). Figure 2.12 shows the 

principle of volume decorrelation. The resolution cell in range (∆ρ) is projected and 

the size of the projected area (in grey) is larger in vegetation compared to bare soil. 

Therefore, the coherence contains information about the objects due to their 

temporal and volume decorrelation, whereby Massonnet & Souyris (2008) refer to 

information about lifetime through temporal decorrelation and volume properties 
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Fig. 2.12: Projection of resolution cell in range at volume scattering (left) & bare soil 

(right) (after Rosen et al. 2000:351) 

through volume decorrelation. Thus, the coherence can be used in classifications or 

biophysical parameter retrieval adding additional or more information to the 

backscatter amplitude (e.g. Wegmuller & Werner 1995). 

Temporal decorrelation emphasizes that the usage of repeat-pass interferometry 

may be inappropriate. TanDEM-X is a single-pass interferometer minimizing the 

temporal and atmospheric decorrelation due to simultaneous acquisition (Krieger 

et al. 2007). The coherence of a single-pass interferometer is generally higher 

compared to repeat-pass constellations. This suggests that single-pass 

interferometers are better suited for topographic height retrieval resulting in better 

phase information and finally less height errors (Bamler & Hartl 1998). 

Different concepts exist in order to describe the height sensitivity of an 

interferometer. The effective baseline is the most important factor, whereas the 

sensitivity increases with increasing baseline (Rosen et al. 2000). Two formulas 

express the height sensitivity: 

  (2.21) 

Bamler & Hartl (1998) suggest using the height of ambiguity (Hoa). This expresses 

the height, which results in a phase difference of 2π: 

  (2.22) 

where λ means the wavelength, B⊥ the perpendicular baseline, θ the look angle of 

transmitter, R the range from transmitter to scatterer and p is 1 if bistatic and 2 if 

monostatic acquisition is used. 
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2.3 TanDEM-X mission 

The main objective of TanDEM-X mission is the creation of a global digital elevation 

model with a vertical relative accuracy of 2 m and a vertical absolute accuracy of 4 

m (Krieger et al. 2007, Airbus Defence and Space 2014). Single-pass InSAR is used 

to accomplish this mission. An almost perfect twin of the TerraSAR-X satellite 

named TanDEM-X was built and both are flying in close formation. Therefore, the 

formation TanDEM-X is the first single-pass interferometer in space with two 

satellites (Krieger et al. 2010). 

A comparable mission was SRTM (shuttle radar topography mission), where a 

space shuttle with a mast was used to create an interferometer. Main objective of 

this mission was to create a digital elevation model with C-band interferometry 

between 60◦  northern latitudes and 56◦  southern latitudes (Rosen et al. 2000). Here, 

the additional X-band antenna was used also to create elevation models and 

achieved higher accuracies than C-band. However, the X-band elevation models had 

a limited coverage (Rosen et al. 2000). Another important interferometric space 

mission was Tandem mission of ERS (European Remote Sensing Satellite). ERS-1 

and ERS-2 flew with a temporal baseline of one day. Temporal decorrelation was 

reduced compared to other missions with larger temporal baselines resulting in 

higher coherences (Zhou et al. 2009). Nevertheless, areas with high vegetation cover 

still showed high temporal decorrelation after one day. Thus, it was recommended 

to use single-pass interferometers for digital elevation model creation (Rosen et al. 

2000). 

2.3.1 TerraSAR-X 

The satellite TerraSAR-X was launched on June 06, 2007 from Baikonur. Since then 

it acquires data with a carrier frequency of 9.65 GHz resulting in a wavelength of 

about 3 cm (Pitz & Miller 2010). TerraSAR-X is the continuation of German X-band 

radar technology. TerraSAR-X and TanDEM-X are part of a public private 

partnership (PPP) between Airbus DS GmbH (former EADS Astrium GmbH) and the 

German Aerospace Center (DLR) (Werninghaus & Buckreuss 2010). 

TerraSAR-X is able to transmit and receive in horizontal and vertical polarization. 

Single polarization and dual polarization modes are operational. In total, twelve 

different polarizations are combinable, whereas nine of them include no additional 

information and thus three combinations for dual-polarization are offered as 

product (HH/VV, HH/HV and VV/VH) (Fritz & Eineder 2013). For Pitz & Miller 

(2010) the most significant feature of TerraSAR-X is the phased array aperture 

enabling different acquisition modes. The antenna has a size of 4.8 m x 0.7 m 
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(Krieger et al. 2007). The spatial resolution and extent varies within the different 

modes. The use of single- or dual-polarization affects also the resolution and extent. 

The acquisition modes and use of polarization are as follows: 

Tab. 2.2: Properties of different single-polarization acquisition modes of TerraSARX 

(after Fritz & Eineder 2013:15ff.) 

 

 
  

 

 

SM 30 50 3.3 1.7 – 3.49 
20◦  – 45◦  

HS 10 5 1.1 1.48 – 3.49 20◦  – 55◦  

ST 7.5 2.5 0.24 0.85 – 1.77 20◦  – 45◦  

SL 10 10 1.7 1.48 – 3.49 20◦  – 55◦  

SC 100 150 18.5 1.7 – 3.49 20◦  – 45◦  

• StripMap (SM) (single- or dual-polarization) 

• High Resolution SpotLight (HS) (single- or dual-polarization) 

• Staring SpotLight (ST) (single-polarization) 

• SpotLight (SL) (single- or dual-polarization) 

• ScanSAR (SC) (single-polarization) (Fritz & Eineder 2013) 

The modes are defined by the configuration of the phased array antenna. The 

antenna is fixed orthogonal to the flight direction at StripMap mode (Klausing & 

Holpp 2000). Higher resolutions in azimuth are achieved by longer illumination 

time (Massonnet & Souyris 2008, see Section 2.1.2). The antenna is squinted 

forward and backward in SpotLight modes in order to increase the illumination time 

increasing the synthetic aperture. This results in higher resolution in azimuth (Table 

2.2, Raney 1998, Klausing & Holpp 2000). The phased array antenna enables such 

squinting (Klausing & Holpp 2000). The antenna is panned orthogonal to the flight 

direction in ScanSAR mode (Klausing & Holpp 2000). Sub-strips are acquired, which 

are combined to a single big strip resulting in large overall swath width (Table 2.2, 

Raney 1998). However, each sub-strip is acquired with limited proportion of 

Doppler bandwidth resulting in lower resolution in azimuth (Massonnet & Souyris 
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2008). The extent in azimuth direction is extendable to 1,500 km for StripMap and 

ScanSAR mode (Pitz & Miller 2010). The properties, acquisition modes, etc. of 

TerraSAR-X are also applicable for TanDEM-X. 

StripMap mode is used in this study in order to trade-off resolution and extent. In 

addition, this mode is also used for the creation of the global digital elevation model 

and thus worldwide available (see Section 2.3.2). Therefore, results of this study can 

be transferred globally or to any place on earth. The delivery of the data is in the 

following product types: 

• Single Look Slant Range Complex (SSC) 

• Multi Look Ground Range Detected (MGD) 

• Geocoded Ellipsoid Corrected (GEC) 

• Enhanced Ellipsoid Corrected (EEC) (Fritz & Eineder 2013) 

The phase information is the major prerequisite for interferometry. Only SSC data 

can be used for interferometry since this is the only mode containing complex data 

and thus phase information (Fritz & Eineder 2013). TanDEM-X mission data is 

subject to additional processing steps. Both sensors, TerraSAR-X and TanDEM-X, 

received data simultaneously resulting in an image (SSC) for each sensor. These 

pairs are co-registered and resampled. Furthermore, common band filtering and 

Doppler centroid filtering is applied resulting in co-registered single-look slant 

range complex data (CoSSC, Fritz 2012). 

2.3.2 TanDEM-X 

The TanDEM-X satellite is a reproduction of TerraSAR-X with minor differences 

(Krieger et al. 2007). It was launched on June 21, 2010 and completes the TanDEM- 

X formation. The differences concern mainly the TanDEM-X mission. Therefore, 

TanDEM-X has an additional cold gas impulsion in order to allow frequent 

adjustments for the formation flight. An S-band receiver was added for intersatellite 

communication. However, TerraSAR-X was already built for the mission and thus 

has horn antennas for synchronization, dual-frequency GPS (global positioning 

system) for exact orbit positioning and high phase stability (Krieger et al. 2010). 

Different interferometric modes are enabled by the TanDEM-X formation, which 

are bistatic, alternating bistatic and pursuit monostatic (Fig. 2.13). The global digital 

elevation model is created in the bistatic mode. TanDEM-X or TerraSAR-X is 

transmitter and both receive synchronously in this mode (center of Fig. 2.13, Krieger 

et al. 2007). Therefore, TanDEM-X is a fully active system, because both sensors are 
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able to transmit and receive. Such a system is more flexible compared to semi-active 

systems, where only one transmitter and multiple receivers are used (Krieger & 

Moreira 2006). The interferometric modes are combined with the acquisition 

modes (see Chapter 2.3.1) and thus the global DEM is acquired in bistatic StripMap. 

Temporal decorrelation and atmospheric effects are minimized due to the 

simultaneous reception, which results in highest accuracy for topographic height 

estimation (Krieger et al. 2007). 

Different prerequisites must be fulfilled in order to use that mode for 

interferometry. The Doppler spectra must overlap sufficiently in order to compare 

the phases. 

 

Fig. 2.13: Interferometric modes of TanDEM-X (from Krieger et al. 2007:3318) 

The decorrelation by changes in Doppler centroid frequency (γDoppler) is described 

in Chapter 2.2.4. The Doppler spectra is linearly related to the baseline in flight 

direction (along-track) and consequently the along-track baseline is limited to a 

maximum of one kilometer for TanDEM-X (Krieger et al. 2010). Another 

prerequisite is the phase stability. The horn antennas are used to reference the 

phases and maintain phase stability (Krieger et al. 2007, Krieger et al. 2010). 

Another mode is the pursuit monostatic mode (left in Fig. 2.13), where the 

satellites are flying separated in along-track with a very short distance. The sensors 

are independent and no synchronization is necessary (Krieger et al. 2007). This 

mode enables along-track interferometry with very short temporal baselines (in the 

order of seconds). However, vegetation and water can already affect the coherence. 

Nevertheless, this mode can be used for object detection, sea current and sea ice 

movement estimation and monitoring. In addition, super-resolution can be 

performed where the single images are coherently combined in order to increase 

spatial resolution (Krieger et al. 2010). 

The transmitter is switched from pulse to pulse in alternating bistatic mode (right 

in Fig. 2.13), whereas both receive every signal. This mode results in one monostatic 

and two bistatic images in one overflight (Krieger et al. 2007). Two interferograms 

are calculable, which have doubled height of ambiguity and effective baseline 

(Krieger et al. 2010). However, the swath width is reduced due to overlap of 

monostatic images in range and azimuth (Krieger et al. 2007). 
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The orbit and security play an important role in a formation like TanDEM-X 

(Krieger & Moreira 2006). The TanDEM-X mission is flying in a helix formation (Fig. 

2.14), which maximizes the security of the satellites (Krieger et al. 2010). This helix 

formation results in a vertical and horizontal baseline component. The satellites 

never cross their orbits in this formation, which makes that formation very safe 

(Krieger & Moreira 2006). In addition, flexible along-track baseline is possible. The 

along-track baseline should be minimal for single-pass interferometry in order to 

have highest overlap of Doppler spectra. An along-track baseline is necessary for 

along-track interferometry or other applications like super-resolution (Krieger et al. 

2007). Therefore, many applications are possible besides the topographic height 

estimation (Krieger et al. 2010). Furthermore, the height of ambiguity is almost 

constant and in this way comparable height accuracies are achievable over the 

whole Earth. The helix formation is a significant advantage compared to SRTM, 

because here only one fixed baseline was used due to the mast (Krieger & Moreira 

2006, Krieger et al. 2010). 

 

Fig. 2.14: Helix-formation of TanDEM-X mission (from Krieger et al. 2007:3324) 

It is worth noting that a TanDEM-X acquisition depends on more parameters than 

a usual monostatic acquisition from TerraSAR-X mission. The interferometric mode 

and baseline are important parameters in a TanDEM-X acquisition. The largest 

across-track baseline is up to four kilometer, whereas the along-track baseline is 

limited to one kilometer (Krieger et al. 2007). This is based on the critical baseline, 

the geometric decorrelation and the Doppler centroid decorrelation (Krieger et al. 

2010, see Section 2.2.4). An exception to this is the pursuit monostatic mode, where 

two independent monostatic acquisitions are combined (Fritz 2012). 

2.4 REDD+ & remote sensing 

Forests have significance in mitigation of greenhouse gas emissions and climate 

change. They act as carbon sink in the global carbon cycle and at the same time as 

emitters of carbon via deforestation and degradation. The latter is caused by 
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burning the forest through fire clearing, harvesting, pests as well as decomposition 

of organic material and soil organic matter. Therefore, deforestation and 

degradation are the second largest sources of anthropogenic caused carbon 

emissions after fossil fuels (Werf et al. 2009). Especially tropical forests are of high 

importance due to their large extent and high carbon storage related to their high 

biomasses (Olander et al. 2008, Lucas et al. 2004). The UN (United Nations) program 

Reducing Emissions from Deforestation and Degradation (REDD+) is aimed to 

incentivize tropical countries with financial compensation to reduce their 

deforestation and degradation rates in order to reduce carbon emissions (Olander 

et al. 2008). Concepts to realize that system are developed, where a carbon emission 

baseline should be established based on historic data. The emissions should be 

reduced compared to this baseline. The saved carbon is valuable at the carbon 

market. Therefore, tropical countries have access to the carbon market and are 

enabled to reduce their contribution to or mitigate climate change (Gibbs et al. 2007, 

Olander et al. 2008). 

The countries are obliged to verify the reduction of their carbon emissions by 

using measurement, reporting and verification (MRV) concepts based on proven 

methods by IPCC Good Practice Guidelines (De Sy et al. 2012). Precise carbon 

emission estimations are necessary to implement a MRV. Firstly, the area of change 

between land categories must be assessed (activity data; De Sy et al. 2012). Basic 

land categories are suggested from IPCC in their Good Practice Guidelines for Land 

Use, Land-Use Change, and Forestry (LULUCF) and are namely forest land, 

grassland, cropland, wetland, settlements and other land (IPCC 2003). Secondly, the 

emitted or lost carbon of the activity data unit has to be estimated (emission factor; 

De Fries et al. 2007, De Sy et al. 2012). Therefore, the carbon emission is calculated 

as follows: 

 Emissions = Activity data ∗ Emission factor (2.23) 

The application of methods based on remote sensing is of high importance in 

order to implement such a MRV system. Field measurements are reliable 

estimations, but are not applicable to large areas due to high costs based on their 

labor intensive and time consuming nature. In contrast, remote sensing can be 

applied at large extent and with low costs compared to field measurements 

(Rosenqvist et al. 2003, Asner 2009). Hence, De Sy et al. (2012) suggest the 

combination of field measurements and remote sensing in order to implement cost 

efficient MRV concepts. 

The detection of forest area and deforestation with optical remote sensing is 

already operational. This is based on the fact that forest, open areas, bare soil and 
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settlements have different spectral properties and thus they are easily 

differentiable resulting in high accuracies (Souza et al. 2005, Asner et al. 2009a, 

Cabral et al. 2010). Therefore, large area deforestation is clearly detectable. 

Nevertheless, the detection of forest degradation is limited, which is a large part 

of carbon emission and often indicates subsequent deforestation (De Fries et al. 

2007, Carreiras et al. 2006, GOFC-GOLD 2012). Optical sensors with medium and 

low resolution, like Landsat and Modis (MODerate Resolution Imaging 

Spectroradiometer), are applied in operational systems like PRODES (Amazon 

Deforestation Monitoring Project) or DETER (Near Real Time Deforestation 

Detection System) for forest monitoring with unsupervised classifications 

(Hansen et al. 2008, Shimabukuro et al. 1998). Nevertheless, supervised 

classification schemes are also often used (Souza et al. 2005, Cabral et al. 2010). 

Sub-pixel analysis, like spectral mixture models, are commonly applied using 

optical data (Franke et al. 2012, Souza et al. 2005, Shimabukuro et al. 1998). 

Hansen et al. (2013) even provide a global forest cover map and gain/loss 

information on a global, annual basis. However, a global optical based map has 

limited consistency due to frequent cloud cover in tropical areas. For example, 39 

acquisitions per scene were necessary to produce 5-year composites with a 

coverage of 99 % of the Democratic Republic of Congo, whereas areas of frequent 

cloud cover had still gaps of 18 % (Potapov et al. 2012). Similarly, multiple 

acquisitions are necessary in Southeast Asia to avoid data gaps caused by clouds 

(Wijedasa et al. 2012). 

Optical sensors acquire electromagnetic waves in the visible and infrared 

spectrum (see Chapter 2.1). These waves are not able to penetrate into a medium 

due to their short wavelength, and mainly interact with the surface. Differentiation 

between intact high biomass and lower degraded biomass is very difficult and only 

applicable to large biomass differences with limited quality (Carreiras et al. 2006, 

Koch 2010, Thenkabail et al. 2004). Therefore, not any generally accepted method 

exists to detect forest degradation with remote sensing (De Fries et al. 2007). 

Frequent cloud cover hinders consistent spatial and temporal coverage with 

optical systems. Thus, radar sensors can be a possibility for consistent and large area 

tropical forest monitoring due to their weather and day/night independence (Castro 

et al. 2003, Kuntz 2010). The electromagnetic waves interact with forest 

constituents based on their longer wavelengths and ability to penetrate the forests. 

This can be used for the retrieval of information about biomass, density or tree 

height (Leckie 1998). In comparison to optical satellites, SAR sensors achieve 

similarly high accuracies in detection of forest area and deforestation, but are not 

used operationally. L- and P-band SAR systems use decimeter wavelengths resulting 

in deep penetration into the forest. Hence, such wavelengths are considered to be 

more appropriate for tropical forest information retrieval compared to short 

wavelengths, like X- and C-band (Castro et al. 2003, Saatchi et al. 1997). JERS-1 L-

band mosaics are used for the classification of tropical forests with high accuracies 
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(Sgrenzaroli et al. 2004, Simard et al. 2000, Simard et al. 2002), which can be 

improved by using dual-polarized ALOS PALSAR data (Hoekman et al. 2010, Walker 

et al. 2010). For instance, Dong et al. (2014) used ALOS PALSAR data to create a 

forest cover map of Southeast Asia. Nevertheless, the detection and classification of 

degraded forest is still a demanding task resulting in lower accuracies (Morel et al. 

2011, Castro et al. 2003, Almeida-Filho et al. 2007). ALOS PALSAR data has 

limitations when mapping subtle changes and thus is limited when mapping forest 

degradation due to low spatial resolution (Reiche et al. 2013, Reiche et al. 2015). 

Hame et al. (2013a) reported also that ALOS PALSAR is not suitable for finer 

classifications than forest/non-forest. 

Nevertheless, high resolution C- and X-band SAR systems are already applied 

successfully to tropical forest mapping. Especially high resolutions and retrieved 

texture measurements (Sanden & Hoekman 1999, De Grandi et al. 2015) as well as 

multiple polarisations (Otukei et al. 2011, Santos et al. 2010, Ullmann et al. 2012) 

achieved promising results. For instance, De Grandi et al. (2015) separated intact 

forest from degraded forest with spatial wavelet statistics in C-band, whereas Lband 

data did not achieve any differentiation. Furthermore, backscatter of X-band was 

applied to classify tropical forests and estimate aboveground biomass in certain 

biomass ranges in Central Kalimantan (Englhart et al. 2011, Ullmann et al. 2012). 

However, limitations exist in X-band data for differentiation of intact and degraded 

forest (Santos et al. 2010). The use of single-polarization did not achieve sufficient 

accuracy (Del Frate et al. 2008, Santos et al. 2010, Sanden & Hoekman 1999), which 

is demanded by REDD+ MRV concepts. 

The biomass of a forest is the most important parameter in REDD+ since it is 

closely related to the stored carbon (Martin & Thomas 2011). The assessment of 

biomass can be used for the emission factors in MRV systems (De Fries et al. 2007, 

De Sy et al. 2012). Koch (2010) suggests two basic principles to assess biomass via 

remote sensing. On the one hand, biomass is directly related to the remote sensing 

measurement. On the other hand, remote sensing is used to estimate parameters 

like forest height or density, which are subsequently related to biomass (Lu 2006, 

Koch 2010). Biophysical parameters like density, height or biomass are hardly 

assessable via optical remote sensing (Koch 2010, Thenkabail et al. 2004). Indices 

of optical and hyperspectral data are frequently used in order to retrieve leaf area 

index and/or biomass (Myneni et al. 2001, Schlerf et al. 2005, Rahman et al. 2008), 

but usually result in low accuracies (Schlerf et al. 2005, Koch 2010, Beer et al. 2006). 

This is based on the fact that the spectral response of optical data does not have any 

physical relationship with biomass and thus spectral properties have a low 

correlation with biomass (Schlerf et al. 2005, Koch 2010, Le Toan et al. 2011). 
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Consequently, direct estimations of biomass with optical remote sensing is 

demanding, because of low saturation values and low differentiation (Lu 2006, 

Gibbs et al. 2007). However, tropical forests have usually high biomass values with 

complex structure. Solely qualitative classifications like forest type, health status, 

and so on are possible, where biomass values could be related. Nevertheless, these 

methods have low accuracies for biomass estimation (Koch 2010). An additional 

disadvantage for optical remote sensing is its dependence on sun illumination. 

Additionally, they are not able to penetrate through clouds, and are influenced by 

atmosphere. All these disadvantages can result in inconsistent datasets and/or low 

repetition frequency as explained before (Nezry et al. 1993, Koch 2010). 

In contrast to passive optical systems, the potential of active systems (laser 

scanning or SAR) for biomass estimation is recognized. Combined methods with 

different active sensor types and field measurements were applied successfully 

(Asner et al. 2010, Dandois & Ellis 2013, Lefsky et al. 2005, Mitchard et al. 2011, 

Santoro et al. 2007, Solberg et al. 2013). LiDAR (Light Detection and Ranging) are 

used for biomass estimation with high accuracies in tropical forests in combination 

with field measurements (Lefsky et al. 2005, Drake et al. 2002, Asner et al. 2009b, 

Gonzalez et al. 2010, Dandois & Ellis 2013, Boehm et al. 2013, St-Onge et al. 2008). 

A big advantage of active systems is their independence from sunlight. However, 

today’s LiDARs are mostly airborne and thus a consistent coverage is time-

consuming and expensive (Koch 2010, Koehl et al. 2011). Therefore, the usefulness 

of LiDAR for large areas is limited (Koehl et al. 2011). ICESat/GLAS (Ice, Cloud, and 

land Elevation Satellite / Geoscience Laser Altimetry System) is a space borne LiDAR 

sensor, but it is a pointwise measurement. This can be used for pointwise estimation 

and up-scaling of MODIS based estimations (Lefsky et al. 2005, Baccini et al. 2008, 

Simard et al. 2011). Two pan-tropical biomass maps were created with upscaling 

from field measurements to ICESat/GLAS and further with optical MODIS imagery 

(Baccini et al. 2008, Saatchi et al. 2011a). Saatchi et al. (2011a) utilized SRTM and 

quick scatterometer (QSCAT) data in addition to MODIS. Nevertheless, MODIS has a 

low spatial resolution and is also a passive optical system, resulting in spatial and 

temporal inconsistencies due to frequent cloud cover. In addition, the pan-tropical 

biomass maps differed significantly despite similar input data, showing that large 

uncertainties still exist for such pan-tropical maps (Mitchard et al. 2013). 

The potential of SAR data for biomass estimation is already successfully analyzed 

(e.g. Mitchard et al. 2011, Santoro et al. 2007, Naidoo et al. 2015, Luckman et al. 

2000, Solberg et al. 2010). A correlation between radar backscatter and biomass is 

frequently used and achieved similarly to classifications more accurate results with 

longer wavelengths like L- and P-band compared to short wavelengths, like C- and 
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X-band (Saatchi et al. 1997, Luckman et al. 2000, Naidoo et al. 2015, Englhart et al. 

2011, Gama et al. 2010, Neeff et al. 2005, Mitchard et al. 2011). This is based on the 

penetration capacity into the canopy, the subsequent interaction with forest 

constituents and related volume scattering (Dobson et al. 1995, Leckie 1998, Le 

Toan et al. 1992, Saatchi et al. 2011b). Especially X-band has been rated as 

inappropriate for biomass estimation in tropical forests (Gama et al. 2010, Naidoo 

et al. 2015, Castro et al. 2003). The X-band backscatter can only be used for small 

biomass values (Englhart et al. 2011), since the wave has a low penetration depth 

interacting mainly with upper canopy constituents. This results in low correlation 

with biomass (Gama et al. 2010). However, the synergetic use of different 

wavelengths achieved improved results compared to single wavelength (Naidoo et 

al. 2015, Luckman et al. 2000). But simply adding shorter wavelengths to L-band 

data did not enhance the results significantly (Saatchi et al. 1997, Naidoo et al. 2015, 

Luckman et al. 2000). 

In contrast, phase based approaches can overcome the limitations of short 

wavelengths (Balzter 2001, Santoro et al. 2007, Solberg et al. 2010, Solberg et al. 

2013, Soja et al. 2015). Here, interferometric coherence (Santoro et al. 2002, Santoro 

et al. 2007, Cartus et al. 2011) as well as InSAR height are usable (Solberg et al. 2010, 

Gama et al. 2010, Neeff et al. 2005, Solberg et al. 2013). The interferometric 

coherence seems to be correlated to biophysical parameters like volume and 

subsequently biomass (Askne et al. 1997). C-band data is frequently used in the 

interferometric water cloud model to estimate growing stock volume of boreal 

forests (Askne et al. 2003, Santoro et al. 2002, Santoro et al. 2007, Cartus et al. 2011). 

Volume decorrelation information is also used in a two-level model in order to 

assess aboveground biomass of boreal forests (Soja et al. 2015). InSAR height of C- 

or X-band is frequently used in order to estimate forest canopy height, which is 

further correlated with biomass (Solberg et al. 2010, Solberg et al. 2013, Neeff et al. 

2005). In addition, interferometric coherence can be used in the Random Volume 

over Ground (RVoG) model in order to estimate canopy height as well (Cloude & 

Papathanassiou 1998, Papathanassiou & Cloude 2001, Neumann et al. 2010, 

Hajnsek et al. 2009). 

However, generally it is assumed that full-polarimetric and long wavelengths, like 

L-band data, should be used in order to achieve highest accuracies (Neumann et al. 

2010, Hajnsek et al. 2009). If those assumptions are not fulfilled, the model has 

limitations and assumptions have to be made (Askne et al. 2013, Kugler et al. 2014, 

Caicoya et al. 2012). 

TanDEM-X offers new possibilities for deploying bistatic interferometric 

information applicable to tropical forest monitoring and biomass estimation. The 
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use of interferometry and derived products could achieve higher accuracies 

compared to results without interferometry on high spatial resolution for 

classification as well as estimation of biophysical parameters. The estimation of 

biomass with TanDEM-X is possible utilizing the two approaches suggested by Koch 

(2010). The interferometric coherence can be used for direct estimation of biomass 

and can overcome limitations of backscatter in higher frequency data, like C- and X-

band (Santoro et al. 2007, Santoro et al. 2002, Cartus et al. 2011). The potential of 

InSAR data for estimation of canopy height models and subsequently biomass was 

analyzed by e.g. Neeff et al. (2005), Sexton et al. (2009), Solberg et al. (2010), 

Weydahl et al. (2007) and Gama et al. (2010). However, the use of high resolution 

space borne X-band interferometric information for such purposes still lacks 

scientific analysis and results. 



35 

3 Need for research 

It has been explained that some systems/sensors have high potential for REDD+ 

MRV concepts and are already operational in use. Nevertheless, all of them have 

deficiencies (e.g. coarse resolution, inconsistent coverage due to cloud cover, 

inaccuracies; Koch 2010, Mitchard et al. 2013). It is assumed that radar remote 

sensing has high potential due to its weather and day/night independence as well 

as its interaction with forest constituent beneath the canopy (Leckie 1998). But 

there is still a need for research in the field of (tropical) forest monitoring (Saatchi 

et al. 

2007). 

3.1 Significance of the study area in context of climate change 

and REDD+ 

The study area is covered by tropical peat swamp forest. Peat areas exist in low 

drainage areas resulting in acidification of substrates and lack of nutrients as well 

as gathering of organic material (Phillips 1998, Page et al. 1999, Hooijer et al. 2010). 

Peat areas can be divided into ombrogene and topogene ones, whereas most are 

ombrogene (Sorensen 1993). The study area in Central Kalimantan, Indonesia is an 

ombrogene peat swamp area. Ombrogene peat areas are convex shaped where 

precipitation is the only water source for plants at the top of the convex shape 

(Phillips 1998). After Page et al. (2011) 440,000 km2 are covered by peat swamps, 

whereas the majority (57 % of total area) exist in Southeast Asia. 

Tropical peat swamps are mostly covered with forest. Usually, tropical peat 

swamp forests are dividable in different zones, which are related to the convex 

shape. At the center of the convex shape is the top with the deepest peat layer and 

the lowest nutrient content (Sorensen 1993, Phillips 1998, Page et al. 1999). The 

convex shape is also often called peat dome. Here, the nutrients are washed away by 

precipitation (Phillips 1998). Therefore, nutrient content increases to the edge of 

the peat dome and is highest at the thinnest peat layer. This nutrient distribution 

causes differences in species composition and forest structure. The tallest trees with 

highest biomass are at the edge of the peat dome, while the tree height and biomass 

decreases but with increasing the stem density towards the center of the dome 

(Sorensen 1993, Page et al. 1999). 

Peat formations store a huge amount of carbon in addition to the biomass of the 

forests (Sorensen 1993, Page et al. 1999). Therefore, peat swamp forests despite 
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their relatively small extent are of high significance as carbon storage. After Werf 

et al. (2009) the emissions from peat swamp forests equal 1/4 of the emissions 

from all deforestation and degradation activities. Deforestation and drainage 

result in higher vulnerability to fires. For instance, droughts and fires in El Nin˜o 

year 1997 resulted in carbon emission equal to 13 - 40 % of emissions from fossil 

fuels (Page et al. 2002). Werf et al. (2009) address the consideration of peat 

swamp forests in REDD+. Peat swamp forests have important ecological functions 

like regulation of local climate and hydrology as well as habitat in addition to 

carbon sink (Phillips 1998). Indonesia has the highest extent of peat swamp 

forests (Page et al. 2011) and thus Indonesia is one of largest emission sources via 

deforestation, degradation and decomposition of peat (Hooijer et al. 2010, Werf 

et al. 2009). Peat swamps in Indonesia are mostly located at coastal zones and 

lowlands of Sumatra and Kalimantan (Sorensen 1993, Phillips 1998). 

The study area of this study is a peat swamp forest in Central Kalimantan, 

Indonesia and is located at about 60 km from provincial capital Palangkaraya. Large 

parts of Central Kalimantan were part of the mega rice project (MRP). The transition 

of 1 million hectare for agricultural purposes was the main objective of this project, 

whereas peat swamps were most affected. The project was initiated in 1995 and 

stopped in 1999 (Muhamad & Rieley 2002, Woesten et al. 2008). Nevertheless, large 

parts of pristine forest were drained by canals and subsequently deforested (Boehm 

& Siegert 2001, Aldhous 2004). The forests of Kalimantan are still under pressure 

despite the abundance of the project. The drainage and fire clearing are still utilized 

for agricultural purposes, like oil palm cultivation. The huge demand for oil palm 

products are major drivers (Germer & Sauerborn 2008). Nevertheless, the study 

area is less affected from drainage and fire clearing due to the declaration as 

protected conservation area (Aldhous 2004). Today, the study area contains one of 

the largest populations of wild Orang-Utans (about 3,500 individuals, Wich et al. 

2008). 

Despite the significance of peat swamp forests, still a huge need for research exists 

(Lawson et al. 2014). This applies especially to the extent of peat swamp forests, 

their classification and their estimation of biomass (Hooijer et al. 2010, Lawson et 

al. 2014). Remote sensing can play an important role to serve those needs. After 

Hooijer et al. (2010) the need for land cover information as well as for deforestation 

and degradation rates exist. Further, estimation of biomass in peat swamp forests 

with remote sensing demands efforts for research (Lawson et al. 2014). Although, 

this is generally the case for every forest in the world, but a high need for research 

is recognized in tropical peat swamp forests (Lawson et al. 2014, Kronseder et al. 

2012, Englhart et al. 2013). For Phillips (1998), the lack of research results in 
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tropical peat swamp forests is caused by their difficult accessibility. Peat swamp 

forests have a high water table at least during half the year, and the high density of 

trees and underwood hinder the access for field measurements (Phillips 1998). 

However, the suggestion of Werf et al. (2009) to consider peat swamps in REDD+ 

also, indicates that the importance of tropical peat swamp forests is recognized at 

an international level and might increase further. Therefore, need for research of 

tropical forest monitoring exists and is probably even more important for tropical 

peat swamp forests. 

3.2 Need for research & research questions 

It has been mentioned that some applications are already operational with optical 

data. Nevertheless, these applications have still limitations and drawbacks mainly 

related to cloud cover and thus inconsistent coverage. Medium to coarse spatial 

resolution with high revisit are used to achieve large coverage (Hansen et al. 2008, 

Hansen et al. 2013). But with such data subtle changes in forest, like small scale 

deforestation or degradation, are not detectable. In addition, biophysical parameter 

estimation with optical sensors is a demanding task often resulting in low accuracies 

(Koch 2010). TanDEM-X offers the possibility to use a global, multi-temporal, high-

resolution (∼3 m) InSAR dataset. This SAR system is almost independent of weather 

and day/night. Additionally, the acquisitions for the creation of a digital elevation 

model were finished within 3 years resulting in a consistent global coverage in the 

time between 2010 and 2013/2014 (Krieger et al. 2010). The high resolution and 

consistent coverage enables mapping of large (up to global) areas and on every place 

on earth within a similar time frame. This can be used for baseline mapping 

supporting deforestation and degradation monitoring (Poncet et al. 2014, Schlund 

et al. 2014a, Schlund et al. 2014b). Nevertheless, TanDEM-X is the first operational 

single-pass interferometer in space. The analysis and utilization of this data for land 

cover classifications is not assessed yet. TerraSAR-X or other X-band systems were 

used (Breidenbach et al. 2010, Otukei et al. 2011, Santos et al. 2010, Sanden & 

Hoekman 1999, Ullmann et al. 2012), but had limitations which could be resolved 

by single-pass interferometry of TanDEM-X. More land cover types distinguishing 

features could be derived with one acquisition compared to a monostatic TerraSAR-

X acquisition. This is especially the case for the coherence and bistatic amplitude. 

The interferometric coherence was used frequently in classification, but this was 

limited on repeat-pass coherence (e.g. Bruzzone et al. 2004, Engdahl & Hyyppa 

2003, Strozzi et al. 2000). Additionally, a TanDEM-X acquisition results in active and 

passive amplitudes. The active amplitude is similar to a monostatic acquisition 
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whereas the passive amplitude can include other information than active amplitude 

due to the little different look angle (see Section 2.2.1). Dubois-Fernandez et al. 

(2006) suggested additional information by using the passive amplitude even at 

very small bistatic angles, but emphasized additional need for research. Therefore, 

the possibility to use TanDEM-X for highly accurate land cover classifications needs 

to be analyzed in order to evaluate the additional information which comes with a 

hybrid radar system like TanDEM-X. 

As mentioned before, biomass is one of the most important parameters for REDD+ 

and generally important for estimation of carbon sinks. Some potential approaches 

exist for biomass estimations (Koch 2010). Best results are achieved with LiDAR, 

which is mostly airborne and thus expensive and/or only applicable to small areas 

(Koehl et al. 2011, Koch 2010). Similarly to classifications, TanDEM-X can be used 

as basis for global consistent coverages. The backscatter of X-band is considered to 

be of low potential for biomass estimations due to the short wavelength (Castro et 

al. 2003, Luckman et al. 2000, Gama et al. 2010). However, the interferometric 

information could be used for biomass estimations and could overcome the 

limitations of X-band backscatter. The interferometric coherence was used 

frequently for volume estimation with C-band or longer wavelengths (Askne et al. 

1997, Santoro et al. 2007, Santoro et al. 2002) as well as for tree height estimation 

with full-polarimetric L-band data (e.g. Hajnsek et al. 2009, Neumann et al. 2010). 

First analyses indicate the potential of TanDEM-X for tree height estimation (Kugler 

et al. 2014, Askne et al. 2013, see Section 2.4). The biggest advantage is the 

minimization of temporal decorrelation (Krieger et al. 2007). The interferometric 

coherence is thus mainly governed by volume decorrelation, signal-to-noise-ratio 

and system parameters. This information could be used to estimate biophysical 

parameters of tropical forests. For instance, canopy cover or tree height could be 

derived by the interferometric coherence, which are subsequently correlated with 

the biomass. Consequently, coherence can be also directly correlated with the 

biomass. 

Further information given by TanDEM-X is the global surface height. This is the 

primary mission objective and is defined with a global accuracy of 2 m relative and 

4 m absolute vertical error (Airbus Defence and Space 2014). The TanDEMX height 

could be assumed as real surface due to the short wavelength and low penetration 

depth. This represents the height including the vegetation height. The subtraction 

of the digital surface model (DSM) with a digital terrain model (DTM) results in a 

canopy height model (CHM). This canopy height model could be used for biomass 

estimation. Existing studies show the potential of canopy height models and 

biomass estimations with different data sources like SRTM, LiDAR and airborne SAR 
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(Sexton et al. 2009, Solberg et al. 2010, Weydahl et al. 2007). The creation of an 

accurate DTM is of high importance for calculating the CHM, whereas different 

approaches exist. For instance, LiDAR is used (Sexton et al. 2009, Kellndorfer et al. 

2004, Weydahl et al. 2007) and other studies showed also the potential of long 

wavelength InSAR for creating the DTM (Neeff et al. 2005, Rombach & Moreira 2003, 

Gama et al. 2010). Most of the aforementioned approaches are airborne, but the 

global digital surface model (WorldDEMTM) could be edited to a terrain model 

(WorldDEM DTM). The difference of both models would also represent the 

vegetation height to be used for biomass estimations. This is also globally applicable. 

Lawson et al. (2014) emphasize the need for research of mapping and biomass 

estimations with (radar) remote sensing in tropical peat swamp forests. Optical 

sensors are also used in peat swamp forests successfully, but Lawson et al. (2014) 

suggest also high potential of active remote sensing (radar and LiDAR) for fine 

differentiation and estimation of biophysical parameters in tropical peat swamp 

forests. Therefore, the following research question can be concluded: 

• Do bistatic TanDEM-X data and features have a significant benefit of 

information for land cover classification compared to usual monostatic 

acquisitions and for which classes is this relevant? 

• Can interferometric information from TanDEM-X be used for estimation of 

biomass? 

– To what extent is the interferometric coherence correlated with 

biophysical parameters, like canopy cover and biomass, and is this usable 

for spatial estimation of biomass? 

– Is the interferometric height of global TanDEM-X data accurate and 

related to vegetation height in order to create a canopy height model and 

estimate biomass? 

– Is it necessary to use a high accurate terrain model (e.g. from LiDAR) or 

is the editing of the global surface model to terrain model sufficient for 

canopy height and biomass estimation? 

The next three chapters analyze these questions by presenting published articles 

in scientific journals. The first question is analyzed in the paper called “Importance 

of bistatic SAR features from TanDEM-X for forest mapping and monitoring” published 

in Remote Sensing of Environment presented in the next chapter. The second and 

third question are evaluated in a journal paper entitled “TanDEM-X data for 

aboveground biomass retrieval in a tropical peat swamp forest” published in Remote 
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Sensing of Environment as well. Journal paper “WorldDEMTM data for canopy height 

and aboveground biomass retrieval in a tropical peat swamp forest” submitted to 

ISPRS Journal of Photogrammetry & Remote Sensing analyses the fourth and the fifth 

question. 
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Abstract 

Deforestation and forest degradation are one of the important sources for human 

induced carbon dioxide emissions and their rates are highest in tropical forests. For 

man-kind, it is of great importance to track land-use conversions like deforestation, 

e.g. for sustainable forest management and land use planning, for carbon balancing 

and to support the implementation of international initiatives like REDD+ (Reducing 

Emissions from Deforestation and Degradation). SAR (synthetic aperture radar) 

sensors are suitable to reliably and frequently monitor tropical forests due to their 

weather independence. The TanDEM-X mission (which is mainly aimed to create a 

unique global high resolution digital elevation model) currently operates two X-

band SAR satellites, acquiring interferometric SAR data for the Earth’s entire land 

surface multiple times. The operational mission provides interferometric data as 

well as mono- and bistatic scattering coefficients. These datasets are homogeneous, 

globally consistent and are acquired in high spatial resolution. Hence, they may offer 

a unique basic dataset which could be useful in land cover monitoring. 

Based on first datasets available from the TanDEM-X mission, the main goal of this 

research is to investigate the information content of TanDEM-X data for mapping 

forests and other land cover classes in a tropical peatland area. More specifically, 

the study explores the utility of bistatic features for distinguishing between open 

and closed forest canopies, which is of relevance in the context of deforestation and 

forest degradation monitoring. To assess the predominant information content of 

TanDEM-X data, the importance of information derived from the bistatic system is 

compared against the monostatic case, usually available from SAR systems. The 
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usefulness of the TanDEM-X mission data, i.e. scattering coefficients, derived 

textural information and interferometric coherence is investigated via a feature 

selection process. The resulting optimal feature sets representing a monostatic and 

a bistatic SAR dataset were used in a subsequent classification to assess the added 

value of the bistatic TanDEM-X features in the separability of land cover classes. The 

results obtained indicated that especially the interferometric coherence 

significantly improved the separability of thematic classes compared to a dataset of 

monostatic acquisition. The bistatic coherence was mainly governed by volume 

decorrelation of forest canopy constituents and carries information about the 

canopy structure which is related to canopy cover. In contrast, the bistatic scattering 

coefficient had no significant contribution to class separability. The classification 

with coherence and textural information outperformed the classification with the 

monostatic scattering coefficient and texture by more than 10 % and achieved an 

overall accuracy of 85 %. These results indicate that TanDEM-X can serve as a 

valuable and consistent source for mapping and monitoring tropical forests. 

4.1 Introduction 

Human activities, summarized by the UNFCCC (United Nations Framework 

Convention on Climate Change) as land use, land-use change and forestry (LULUCF), 

affect changes in carbon stocks (Intergovernmental Panel on Climate Change IPCC 

2003). Their role in the mitigation of climate change has long been recognized. The 

knowledge of carbon storage at a certain point in time as well as its changes due to 

deforestation, afforestation, and other land-use transformations are therefore of 

great importance (Watson et al. 2000). Thus, the mapping and monitoring of tropical 

forests as a potential significant carbon store are relevant in climate change studies 

and in the implementation of REDD+ (Reducing Emissions from Deforestation and 

Degradation; Gibbs et al. 2007). 

Synthetic aperture radar (SAR) systems are considered an important tool for 

mapping and monitoring tropical forests due to their weather independence (e.g. 

Kuntz 2010). High accuracies in land cover and forest/non-forest classifications 

have been obtained in the temperate forests of Germany using very high-resolution, 

multiple polarization, multi-temporal X-band SAR data from the TerraSAR-X 

mission (Breidenbach et al. 2010) and in Austria in combination with a LiDAR 

dataset (Perko et al. 2011). However, longer wavelengths, such as L- and P-band are 

considered more appropriate than X- and C-band in the separation of different forest 

types and in the detection of secondary or degraded forest due to their increased 

penetration into the forest canopy (Castro et al. 2003, Saatchi et al. 1997, Stolz & 
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Mauser 1995). A number of studies show the suitability of space-borne L-band SAR 

systems for the large scale classification of tropical forest areas. For example, the 

classification of multi-temporal JERS-1 mosaics (Sgrenzaroli et al. 2004, Simard et 

al. 2000, Simard et al. 2002) achieved high accuracies, which could even be 

increased by high resolution dual-polarization ALOS PALSAR data (Hoekman et al. 

2010, Longepe et al. 2011, Walker et al. 2010). Even though Morel et al. (2011) also 

classified plantations and forests with a high accuracy using ALOS PALSAR in a study 

area in Borneo, they found a significant decrease in the accuracy by adding a logged 

forest class to the classification. Moreover, there is a significant gap in globally 

available high resolution SAR coverages, especially since ALOS PALSAR and 

ENVISAT ended their missions in 2011 and 2012, respectively and the continuation 

of climate change studies must be ensured without those systems (European Space 

Agency 2012). 

On the other hand, single polarization X-band data show limitations in the 

separability of forest classes (Castro et al. 2003). Case studies using TerraSAR-X 

mission data in the tropical forests of Brazil, Uganda, and Central Kalimantan 

(Otukei et al. 2011, Santos et al. 2010, Ullmann et al. 2012) suggested that the use of 

multiple polarizations can provide satisfactory results for land cover and forest 

classifications. For example, Santos et al. (2010) used dual polarimetric TerraSAR-X 

data in order to classify primary forest, degraded forest, pasture, and bare soil. He 

emphasized the significance of the entropy obtained from the Cloude decomposition 

(Cloude & Pottier 1997). Although primary forest was separable from pasture and 

bare soil in X-band, confusions with degraded forest were found (Santos et al. 2010). 

Previous investigations showed that automated mapping with single channel high 

frequency SAR data does not achieve a sufficient degree of detail and accuracy, 

especially in the mapping of different forest types or degraded forests (Del Frate et 

al. 2008, Santos et al. 2010, Sanden & Hoekman 1999). Therefore, very high 

resolution, different wavelengths or synergetic use with optical data, multiple 

polarizations and/or multi-temporal analysis are necessary to achieve high 

accuracies with high frequency radar (Breidenbach et al. 2010, Bruzzone et al. 2004, 

Erasmi & Twele 2009, Sanden & Hoekman 1999). 

Nevertheless, the objective of this investigation is to show that accurate forest 

monitoring results can be achieved without the necessity to deploy multiple 

polarizations and multi-temporal data, which may be inconsistent in acquisition 

modes and timing due to acquisition constraints. Those constraints are caused by 

the fact that available radar systems providing high resolution and polarimetric or 

repeatpass capabilities are commercially operated and thus, data acquisition is 

tasked on demand, making consistent coverages nearly impossible. 
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The TanDEM-X mission might be an option to overcome these constraints given by 

incomplete coverage or information content. Starting in 2010, the aim of the 

TanDEM-X mission is the acquisition of global coverage of bistatic, single-pass 

interferometric SAR images to produce an accurate digital elevation model (Krieger 

et al. 2007). For that, the two TanDEM-X sensors acquire Earth’s entire land surface 

several times during the three-year mission duration in high resolution mode. Thus, 

the mission offers a suitable data source for up-to-date, homogeneous and globally 

consistent, high resolution land cover survey as baseline for LULUCF monitoring. An 

initial global coverage was achieved in 2011 and the second coverage will be 

completed in 2013. The TanDEM-X data are acquired simultaneously from two 

spatially separated sensors (TerraSAR-X and TanDEM-X). Together, they form a 

bistatic SAR system and a SAR interferometer in space, where both satellites receive 

the signal from a common illuminated footprint under different look angles (Krieger 

et al. 2007, Krieger et al. 2010). Due to the constellation of two closely flying SAR 

sensors, one sensor is used as transmitter and receiver (monostatic/active), whereas 

the other sensor is only a receiver (bistatic/passive). According to Willis (1991), this 

is called bistatic acquisition. 

This acquisition results in a combination of two scattering coefficients. The 

simultaneous multi-angle view enables the detection of objects not visible in 

monostatic mode (Walterscheid et al. 2006). The angular difference between the 

two sensors leads to a modification of the received signals depending on the 

scattering mechanisms and thus provides additional information on the geometric 

properties of the objects. A number of studies (Dubois-Fernandez et al. 2006, 

Krieger & Moreira 2006, Krieger et al. 2010) suggest the hypothesis that the 

availability of mono- and bistatic scattering coefficients will improve not only the 

segmentation and classification of land cover classes like urban areas which are 

mainly affected by dihedral scattering and thus are sensitive to aspect angle, but also 

natural surfaces like agricultural fields or forests. The difference in the received 

signal is predominant for dihedral scattering observed from man-made objects 

which is reduced at the passive (receive only) sensor. This in turn results in more 

homogenous image statistics which is more favorable for the classification of natural 

surfaces (Walterscheid et al. 2006). Dubois-Fernandez et al. (2006) detected a 

modification in backscatter even at a very small angle difference between the two 

sensors. However, they did not use this information in a land cover classification, 

but identified the need for further analysis. 

For the interferometric generation of a high-quality 3-D surface model from the 

TanDEM-X mission data the most significant advantage of the bistatic acquisition is 

the reduction of temporal decorrelation and atmospheric disturbances (Krieger et 
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al. 2007). Therefore, the bistatic interferometric coherence – a measure of the phase 

decorrelation and the quality of the interferometric derivate (Bamler & Hartl 1998) 

– reveals special characteristics compared to the repeat-pass constellation normally 

used. The interferometric coherence is influenced by the baseline, the Doppler 

centroid frequency, the system noise, the SAR processing, and relevant scene 

properties like temporal and volume decorrelation (Hanssen 2001, Wegmuller & 

Werner 1997). 

Even for the repeat-pass ERS-1 mission providing only moderate resolution 

Wegmuller & Werner (1995) demonstrated the benefit of interferometric coherence 

in land cover classifications, based on the information of the temporal and volume 

decorrelation. Following the interferometric coherence in combination with the 

radar backscatter has been used frequently for land-use classifications (e.g. 

Bruzzone et al. 2004, Engdahl & Hyyppa 2003, Strozzi et al. 2000, Wegmuller & 

Werner 1995, Wegmuller & Werner 1997). Moreover, the use of ERS interferometric 

coherence for land cover classifications in Sumatra, Indonesia resulted in an 

increased separability of forest, plantations and deforested areas, whereas certain 

vegetation classes could not be distinguished (Stussi et al. 1997). Perko et al. (2011) 

demonstrated confusions in the repeat-pass interferometric coherence of X-band 

due to temporal decorrelation of agriculture and forest classes. According to Ribbes 

et al. (1997), it could be argued that a minimization of the temporal baseline would 

be beneficial for the use of interferometric coherence in classifications (Ribbes et al. 

1997, Stussi et al. 1997). In fact, the two satellites of TanDEM-X have been flying in 

close formation since October 2010, resulting in a temporal baseline of about a tenth 

of a second. Thus, temporal decorrelation effects can be neglected (Caicoya et al. 

2012), e.g. effects due to differences in moisture content or moving objects. 

Therefore, the goal of this research is to investigate and exploit the information 

content of mono-temporal bistatic TanDEM-X data for land cover and forest 

mapping in a tropical forest. The TanDEM-X data are used to classify basic land cover 

classes which are in line with the IPCC good practice guidance for land use, land use 

change and forestry (IPCC 2003). In addition, the study investigates if the bistatic 

interferometric coherence improves the separation of open and closed forest, which 

today is not feasible in deploying monostatic TerraSAR-X data (Santos et al. 2010). 

The temporal transition from closed to open canopy forest can be seen as an 

indication of forest degradation and thus, is relevant in the context of REDD+. 
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4.2 Study site & data 

4.2.1 Test site description 

The test site covers a peat swamp forest area in Central Kalimantan (114◦ 310E, 

2◦ 100S) with a flat topography (Hajnsek et al. 2009). The provincial capital 

Palangkaraya is located about 60 km west of the study area and the Kapuas River is 

in the western part of the study area (Fig. 4.1). The climate is influenced by a dry 

southeast monsoon, resulting in a dry season from June to September. The wet 

season, defined by a wet northeast monsoon, is from October to May. In general, the 

climate is humid tropic (Jauhiainen et al. 2005). 

The peat swamp forests of Indonesia are highly endangered. Large parts of 

pristine forest were already converted into agriculture and plantations. For that 

purpose, they are drained by canals. The investigation area is heavily affected by the 

construction of canals and related deforestation originating from the Mega Rice 

Project (MRP) initiated by the Indonesian government in 1995. Some canals are 

visible in the southern part of the amplitude image (Fig. 4.1). The MRP aimed to 

transform about 1 million hectares of tropical peat lands in rice cultivation, which 

failed and was abandoned in 1999 (Muhamad & Rieley 2002, Woesten et al. 2008). 

 

Fig. 4.1: Location of study site in Kalimantan (left) and the corresponding TanDEM-
X amplitude image with the location of the field measurements (black dots; 
right) 

The central and the northern parts of the study area are now part of the Mawas 

conservation area, where the forests are relatively pristine (Aldhous 2004). The 
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dense forests close to the rivers and at the edge of the peat dome, (located mainly in 

the eastern part of the amplitude image) are up to 30 m high with aboveground tree 

biomass values up to 350 t/ha. Towards the center of the peat dome, forest height 

decreases to 15 m and aboveground biomass to 20 t/ha (Hajnsek et al. 2009). The 

Mega Rice Project was divided into five spatial blocks with a size of 160,000 to 

500,000 ha. Boehm & Siegert (2001) estimated that forest cover decreased from 65 

% to 48 % between 1991 and 2000 for the two blocks of the Mega Rice Project 

within the study area. Drying of the peat due to drainage and illegal logging are still 

a threat for the forests. On the one hand, increasing decomposition processes 

releases methane and on the other hand the dried accumulated biomass makes 

these areas more vulnerable to fire, both resulting in increased greenhouse gas 

emissions (Aldhous 2004, Hooijer et al. 2010, Page et al. 2002). 

4.2.2 Remote sensing & reference datasets 

4.2.2.1 TanDEM-X dataset 

The SAR data for this study were acquired during the TanDEM-X mission over 

Central Kalimantan on December 21, 2010. The mode used is called bistatic mode 

and is applied for the operational TanDEM-X mission acquisitions (Krieger et al. 

2007). 

Tab. 4.1: Parameters of the TanDEM-X StripMap acquisition 

Acquisition parameter Value 

Acquisition date December 21, 2010 

Incidence angle 47.9◦  – 49.3◦  

Orbit direction Descending 

Look direction Right 

Effective baseline (image center) 163.3 m 

Height of ambiguity (image center) 51.2 m 

Polarization HH 

Resolution 2.4 m (ground range) x 3.3 m (azimuth) 

Both sensors are able to transmit the electromagnetic wave with a phased-array 

X-band antenna having a carrier frequency of 9.65 GHz (Pitz & Miller 2010), 

corresponding to a wavelength of ∼3.1 cm. The datasets from the operational 

TanDEM-X mission were acquired in StripMap mode with HH (horizontal) 
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polarization, resulting in a resolution of approximately 3 m in azimuth and 2 m in 

range direction. The effective baseline of the available dataset was 163 m (Table 

4.1), which is calculated perpendicular to the look direction and is an estimate of the 

effective distance of both sensors (Hanssen 2001). The data was co-registered, 

resampled and delivered as CoSSC (co-registered single look slant range complex; 

Fritz 2012) from the German Aerospace Center (DLR) ground segment. 

4.2.2.2 Reference dataset 

Field data and aerial photographs were acquired in 2005. Furthermore, 

georeferenced photos acquired from a low-altitude aircraft were available from 

2011 (Table 4.2). Those datasets were used to interpret the training and validation 

samples (see Section 4.3.1). Overall, 8 transects with a size of 100 m x 10 m were 

available as reference data. All trees with a diameter at breast height (dbh) greater 

than 10 cm were recorded within these areas. The average of two field transects was 

calculated due to spatial adjacency of the measurements, finally resulting in 4 

transects (Fig. 

4.1). The tree crown cover for the field plots was calculated as the average crown 

cover per square meter for each field transect which is the product of tree density 

(trees/m2) and the average circular tree crown projection area (m2). 

Due to the difficult accessibility of this peat swamp forest, only these 8 transects 

were available for the study. However, in 2005 during the INDREX-II (Indonesian 

Radar Experiment) campaign, aerial photos in true color were acquired from an 

ultra-light aircraft, while the position of the photos and the corresponding altitude 

of the aircraft were recorded. The average altitude of the aircraft was about 554 m. 

The images were acquired from January 13 until January 15, 2005 in nadir view, 

resulting in a total of 343 available photos which cover about 100 km2. From these 

photographs a quantitative analysis, like the estimation of the number of trees per 

area and canopy cover was performed. 

Tab. 4.2: Overview of available reference dataset (after Hajnsek & Hoekman 2005) 

Dataset Acquisition year 

Field samples 

(Tree location, tree height, height of first branch, 

diameter at breast height [dbh], crown extent, and 

species) 

2005 

Aerial photographs 2005 

Photos from low-altitude aircraft 2011 

SPOT 5 2011 



4 Importance of bistatic SAR features from TanDEM-X for forest mapping and 
49monitoring 

ALOS PALSAR 2007 – 2010 

In order to select aerial photos over areas which had not changed between 2005 

and 2010 we used SPOT 5 and ALOS PALSAR available in fine beam single 

polarization HH and fine beam dual polarization HH and HV. These remote sensing 

data were interpreted in combination with the photos from 2005. Aerial photos 

showing areas of land cover change between major cover types (e.g. from forest to 

grassland) in comparison to ALOS PALSAR or SPOT were excluded from the analysis. 

The changes within the forest, such as forest degradation or regrowth, could not be 

interpreted from those remote sensing datasets. Based on the visual analysis we 

excluded aerial photos from 2005 for areas that underwent a land cover change. 

In addition, more recent photos were available, which had been acquired in a 

flight campaign by a low altitude aircraft in December, 2011. From this mission, 

approximately 145 photos in oblique view were used for interpretation of the main 

land cover classes. However, in contrast to the photos from 2005 a quantitative 

analysis of tree cover was not possible due to the oblique view. 

4.3 Methods 

4.3.1 Class definition 

The IPCC (2003) provide methods and classes in their good practice guidance for 

land use, land-use change and forestry (LULUCF) to estimate and report carbon 

stock changes. These classes, called “main categories” are forest land, cropland, 

grassland, wetlands, settlements, and other land. Nevertheless, binding definitions 

of these classes are not given and can be adjusted. Here, forest land, for instance, 

was determined using the definition by the Food and Agriculture Organization of the 

United Nations (FAO 2000). The definitions listed in Table 4.3 were used for the 

interpretation key in order to interpret the aerial photographs. The IPCC (2003) 

suggests distinguishing forest land into open and closed canopy forest and advised 

a threshold of 40 % canopy cover. However, this is not a binding definition and can 

be adjusted. Thus, in this study a threshold of 50 % was used to distinguish between 

open and closed canopy forests (Table 4.3). 

The canopy cover was estimated directly via photo interpretation of the 

acquisitions from 2005. The nadir view enabled the estimation of the canopy cover 

from the aerial photographs, each covering an area of about 300,000 m2. 

Quantitative measurements about the number of trees, crown size and derived 

crown cover within the field transects were used to create a template to extrapolate 

the knowledge from photos covering the transects to the rest of the aerial photos, 

where no reference data had been collected. Note that canopy cover (ground 

projected area of the crowns irrespective to the crown overlap) is assessable by 



4 Importance of bistatic SAR features from TanDEM-X for forest mapping and 
50monitoring 

photo interpretation of the aerial imagery but not the crown cover (the average sum 

of all crowns, which can exceed 100 % due to overlapping crowns) which had been 

measured in the field. Therefore the number of trees was used as an additional 

control variable to relate crown and canopy cover to each other. 

Tab. 4.3: Definition of the investigated classes (after FAO 2000, IPCC 2003) 

Class Definition 

Forest land >0.5 ha and >10 % tree canopy cover 

Closed forest Forest with canopy cover >50 % 

Open forest Forest with canopy cover <50 % 

Shrubland Not covered by forest (<10 %) with shrubs dominant 

Grassland Not covered by forest or shrubs (<10 %) with grasses 

and ferns dominant 

Wetlands Covered or saturated by water at acquisition dates of 

aerial photos and is not covered by forest land 

Water bodies Bodies of flowing or standing water (e.g. rivers, lakes) 

The canopy cover in each photo was estimated via comparison with the template 

(Nowak et al. 1996). However, due to the multi-layer structure of tropical forest 

canopies, understory next to dominating trees can be misinterpreted as forest floor 

and thus lead to underestimation of canopy coverage for example. Therefore, the 

number of trees per unit area, related to canopy cover, was counted for all selected 

georeferenced aerial photographs from 2005 to calibrate and confirm the visual 

interpretation. The photos were then assigned to the respective canopy cover class 

(Table 4.3). 

Fig. 4.2 shows some examples of the defined forest classes in the aerial 

photographs with their crown cover derived from field data. A decrease in tree 

crown size is visible in the images from left to right (Fig. 4.2). However, the crowns 

of the 45 % and 30 % crown cover have a similar appearance. This analysis 

facilitated the definition of different forest classes namely “forest with more than 50 

% canopy cover” and “forest with less than 50 % canopy cover”. 
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Fig. 4.2: Aerial photographs & crown cover of field transects 

The photos from 2011 were used, together with those from 2005, for the 

assessment of the classes “Water bodies”, “Wetlands”, “Shrubland” and “Grassland” 

where oblique view was acceptable for interpretation. In total 361 training samples 

have been interpreted which are distributed to the defined classes as follows, where 

the number in parentheses behind each respective class represents the individual 

number of training samples. Suitable training polygons for the classes “open forest” 

(88) and “closed forest” (84) were selected based on the interpretation of the aerial 

photographs from 2005. Training polygons for the classes “grassland” (57), 

“shrubland” (61), “wetlands” (33) and “water bodies” (38) were selected based on a 

combination of the aerial photographs from 2011 and 2005. 

4.3.2 Feature extraction and segmentation 

The active and passive amplitudes were computed from the two complex TanDEMX 

CoSSC datasets with a multi-looking of 3 in range and 2 in azimuth, respectively. This 

resulted in a resolution of about 6 m in both directions. To evaluate the difference 

and information content of active and passive amplitudes, the ratio of the intensities 

(amplitudes2) was calculated. A mean value filter with a kernel size of 7 x 7 was 

applied to both amplitudes in order to reduce the noise of their ratio. The 7 x 7 

kernel size was considered to be best by visual interpretation to suppress noise 

while preserving resolution. The complex interferometric phase was derived via the 

multiplication of the first complex image with the complex conjugate of the second 

complex image. The phase of the flat earth was removed. Furthermore, the 

interferometric coherence was estimated with the following equation: 

  (4.1) 
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where si denote complex image i, the brackets mean ensemble average and 

vertical lines are for magnitude of complex data (Rosen et al. 2000). All features 

were geocoded using the orbit parameters and the DEM (digital elevation model) 

derived from the interferometric analysis of the TanDEM-X data and resampled to a 

pixel size of 5 m using 4th cubic convolution method. Previous studies showed the 

geometric accuracy of TerraSAR-X using a high-precision DEM (Reinartz et al. 2011). 

Sanden & Hoekman (1999) suggest that the textural information of 

highresolution X-band images is more useful than backscatter for tropical forest 

classification. Texture measures were used in this study in order to increase class 

separability (Dekker 2003). Therefore, the co-occurrence texture measures mean, 

variance, dissimilarity, homogeneity, contrast, entropy, second moment and 

correlation, as described by Haralick et al. (1973), were derived from the active 

amplitude. Additionally, the coefficient of variation was estimated. A kernel size for 

all texture measurements of 5 x 5 was used. The images were processed in the R 

environment (R Core Team 2013) with the help of additional packages called 

“raster” (Hijmans 2013), “rgdal” (Keitt et al. 2013), and “sp” (Bivand et al. 2008). 

In order to improve the feature estimates the use of object-based approaches is 

more appropriate than pixel based processing, bearing in mind that due to the high 

resolution of the data, details such as logging gaps are still captured. For this, the 

multi-resolution segmentation (Baatz & Schaepe 2000) within the eCognition 

software was used. The data were segmented using all derived SAR features and the 

following parameters: scale parameter 40, shape 0.05 and compactness 0.95. The 

mean values of the image objects for each feature were exported for further 

statistical analysis in the R environment. 

4.3.3 Feature selection 

A separability analysis and feature selection was performed in order to assess the 

contribution of the derived features to class separability. More specifically, the 

relevance of the TanDEM-X bistatic SAR parameters in comparison to monostatic 

parameters, as available from TerraSAR-X, was investigated with this analysis. 

The fact that amplitudes, and their derived features, generally do not follow a 

normal distribution (Gao 2010) and are well correlated leads to the choice of a non-

parametric feature selection approach based on a random forest decision tree 

algorithm (Breiman 2001). The feature importance within the random forest 

algorithm was calculated by the so called z-score, which is the normalization of the 

raw importance. However, according to Kursa et al. (2010), the correlation of 

prediction variables leads to difficulties in the feature selection process within the 

random forest algorithm. The Boruta algorithm was developed to account for these 

shortcomings by assessing the importance of the input features compared to 
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random features (Kursa & Rudnicki 2010, Kursa et al. 2010). Each feature that has 

a higher importance than a random feature is considered to be important and the 

algorithm is repeated several times (Kursa et al. 2010). 

Tab. 4.4: Overview of the used feature sets (features in classification used in bold) 

Monostatic feature set Bistatic feature set 

Active amplitude Active amplitude 

Passive amplitude 

Ratio of active and passive amplitude 

Textures of active amplitude Textures of active amplitude 

Coefficient of variation Coefficient of variation 

Mean Mean 

Variance Variance 

Dissimilarity Dissimilarity 

Homogeneity Homogeneity 

Contrast Contrast 

Entropy Entropy 

Second moment Second moment 

Correlation Correlation 

Interferometric coherence 

The feature selection was performed using image object information of the 

training objects (see Section 4.3.1). Table 4.4 summarizes the monostatic and 

bistatic feature set constellation, whereas the bistatic feature set included all 

available variables. The feature selection was conducted for both feature sets 

respectively. Note that conclusions concerning feature relevance were drawn based 

on all features as listed in Table 4.4 (Bistatic feature set). 

4.3.4 Feature analysis of open and closed forest class 

In addition to the automatic feature selection, the separability of the classes “open 

forest” and “closed forest” was analyzed with the box plot method for the most 

important features using the training objects of the respective classes. The box-plots 

can indicate an overlap between classes in specific features. The Jeffries-Matusita 

Distance between the two forest classes was calculated for each feature in order to 

statistically evaluate the class overlap and separation. This statistical test describes 

the similarity of class distributions and reveals the class differences for each feature 
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(Richards & Jia 2006). It is bounded between 0 and the square root of 2, whereas 

higher values mean larger separability. 

Mean and standard deviation for each field plot within the transects were 

calculated for each SAR feature. The differences of feature means and their standard 

deviation have been analyzed with respect to their corresponding field measured 

crown cover. This facilitated the information, which derived feature is particularly 

well suited to separate the different canopy cover classes related to the crown cover. 

4.3.5 Classification 

An object-based classification was conducted with the automatically ranked most 

important features based on the random forest selection. Two feature sets built the 

basis for the benchmark of the monostatic and bistatic constellation. The first 

feature set was composed of the most important monostatic features, active 

amplitude and the derived textures, such as coefficient of variation, correlation, 

mean and entropy for the “monostatic classification”. The second feature set 

consisted of the same features as the monostatic constellation apart from entropy 

which was replaced by the single-pass interferometric coherence which is only 

available from a bistatic acquisition. The classification using these five features is 

therefore called “bistatic classification” in the following discussion. Hence, both 

classifications consisted of five features resulting in the same feature space 

dimensionality to allow comparison of their accuracies. The features used for the 

classifications are listed in Table 4.4 in bold. 

A parametric maximum likelihood classifier was used for the object based 

classifications. On one hand maximum likelihood classifier achieves satisfactory 

results, on the other because it is relatively easy to interpret and simple (Waske & 

Braun 2009). Furthermore, the impact of the most relevant features on classification 

accuracies was investigated. Therefore, classifications with all features and with the 

amplitude and coherence alone were performed in addition to the classifications 

with the most important features. The training and testing of the classifications were 

performed on image object level. The same set of training samples was used as input 

for the feature selection and training of the classifications. 

4.3.6 Accuracy analysis 

The accuracy of the classifications was assessed using a stratified random sampling 

approach. Objects selected by this sampling process were interpreted via the aerial 

photographs. The photos from 2005 were used for evaluating the forest classes. The 

combined photos from 2005 and 2011 were used for the other classes. A total of 481 
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objects were analyzed for the accuracy assessment. Training areas were buffered 

with 100 m and validation objects were distributed outside the buffered areas. 

Therefore, training areas were spatially separated from the validation objects and 

thus excluded from the accuracy assessment to avoid any bias. The same sampled 

objects were used to compare the classifications of monostatic versus bistatic 

features. 

This accuracy assessment resulted in objective and comparable accuracy 

measures. However, differences in spatial details cannot be evaluated in this way. 

Therefore, a quantitative analysis using a fuzzy similarity measurement was 

performed which takes not only the thematic class agreement between maps but 

also the spatial pattern into consideration. This provides a comparison of 

differences in spatial patterns of monostatic and bistatic classification as can be 

delivered by visual interpretation. The method assumes that the examined pixel is 

affected by its neighbors (Hagen 2003, Hagen-Zanker 2006) and is according to 

Walker et al. (2010) particularly suitable when the compared maps are based on 

different sources. This was the case in the comparison of monostatic and bistatic 

classification due to different feature sets. A two-way comparison was applied to 

avoid an overestimation of the similarity (Hagen 2003). The similarity measure 

ranges between 0 % and 100 %, of which 0 % indicates totally different and 100 % 

indicates totally identical maps. Different kernel sizes (1 x 1, 3 x 3, 5 x 5, 7 x 7, 9 x 9, 

11 x 11) for the consideration of the spatial patterns were considered to obtain a 

kind of a confidence interval (Walker et al. 2010). The application is implemented 

in the Dinamica EGO software (Soares-Filho et al. 2012). 

4.4 Results 

4.4.1 Coherence for distinguishing forest classes 

Difference in tree canopy structure and crown coverage can be seen in the 

photographs matching the field plots (Fig. 4.2). The extracted mean value of the 

interferometric coherence within the field plots was 0.787 at 130 % crown cover. 

The coherence increased to 0.791 at 80 %, to 0.84 at 45 %, and showed a similar 

value of 0.834 compared to the latter at 30 %. 

The visual analysis of the box-plots of the interferometric coherence showed that 

there is no overlap between the forest canopy cover classes in the training dataset 

(Fig. 4.3). In contrast, the active amplitude showed an overlapping area of the two 

classes at about -9 dB. The coherence had an overall mean of 0.78 within the whole 

image and a standard deviation of 0.12. The active amplitude had a mean of -9.46 
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decibels (dB) and standard deviation of 3.51. The statistcal test proved the 

interpretation of the box-plots. The interferometric coherence achieved a 

JeffriesMatusita Distance of 1.1, whereas the active amplitude had a distance of 0.45. 

 

Fig. 4.3: Box plots of forest canopy classes for coherence (left) & active amplitude 

(right; white boxes = 1st and 3rd quantile; black line = median, outer lines 

= 1.5 x inner quartile range) 

The textures showed, similarly to the amplitude, an overlap between the two 

canopy classes. The texture features achieved Jeffries-Matusita Distances between 

0.35 and 0.6. The amplitude ratio had the lowest Jeffries-Matusita Distance between 

the two forest canopy cover classes of 0.25. The interferometric coherence achieved 

the highest distance between the two classes and is therefore the only feature 

substantially separating open and closed forest classes. 

4.4.2 Analysis of feature selection 

The applied feature selection (see Section 4.3.3) demonstrated that the 

interferometric coherence was the most important feature in the separation of all 

thematic classes. Coherence achieved the highest z-score of 1.6 on average, while 

texture features considerably increased class separability (Fig. 4.4). The coefficient 

of variation (CoV) was the most important texture feature and second most 

important overall with a mean z-score of 1.3. 

All selected features proved to be more important than the random features 

generated by the Boruta algorithm. The active amplitude, the passive amplitude and 

the ratio scored a feature importance of 1.2, 1 and 0.6, respectively. This indicated 

that active and passive amplitude and their ratio contributed far less to the class 

separability than the coherence. The difference in the importance of coefficient of 
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Fig. 4.4: Overview of random forest selection (illustrated by z-score) 

variation as 2nd most important and dissimilarity as 12th most important feature 

was 0.3. This was the same as the distance between the coherence as the most 

important feature and the 2nd most important feature. This implied that coherence 

was, by far, the most important. The other features do not differ substantially in 

their contribution to the class separability, except the ratio, which had the lowest 

importance. 

4.4.3 Classification results 

With an overall accuracy of 85 % the bistatic classification was 10 % more accurate 

than the classification using monostatic features. Considering the categories for 

Kappa values proposed by Landis & Koch (1977), the bistatic classification achieved 

a very good result, whereas the monostatic classification achieved a good result. The 

classification with bistatic features yielded more accurate results in each class than 

the classification with the monostatic features (Table 4.4) except for the user’s 

accuracy of wetlands (Table 4.5). For forest classes, the commission errors were 

particularly lower in the bistatic classification, by 14 % and 16 %, respectively. The 

omission errors were 17 % lower for the open canopy forest than in the monostatic 

case. This implied that the coherence was suitable to detect two different canopy 

cover classes in peat forests. Confusion between shrubland and forest (open) 
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occurred in the monostatic classification, where 11 objects were misclassified as 

open canopy forest. Therefore, the producer’s accuracy of the shrubland class was 

59 %. 

This could be improved to 94 % by adding the coherence to the classification (Table 

4.5). 

Tab. 4.5: Comparison of classification accuracies with 95 % confidence interval of 

bistatic & monostatic classification (in brackets). 
accu- 

acc. 

The image segmentation resulted in objects with a minimum size of an image 

object of 300 m2, whereas the mean size of the image objects was 5,000 m2. In 

general, both classification results showed a similar land cover distribution (Fig. 

4.5). The fuzzy similarity analysis to quantify the difference between the results 

demonstrated that the spatial pattern of the two classifications had an agreement of 

72.7 % using 1 x 1 kernel to 75.5 % using 11 x 11 kernel. The classification using 

bistatic features was less noisy compared to the monostatic case and, showed at the 

same time a higher level of detail. The bistatic classification result clearly indicated 

degradation patterns within the closed canopy forest which was classified correctly 

as open canopy forest (at approximately 2◦ 100 S, 114◦ 280E, Fig. 4.5 subset). These 

 Forest (open) Forest 
(closed) 

Grassland Shrubland Wetlands Water bodies User’s racy (in 

%) 

Forest (open) 127 
(100) 

17 (23) 2 (3) 0 (11) 0 (0) 0 (0) 
 

Forest 
(closed) 

9 (32) 130 
(126) 

0 (1) 0 (0) 0 (2) 0 (0) 94±4 (78±7) 

Grassland 3 (7) 0 (0) 57 (55) 1 (2) 1 (1) 0 (0) 92±7 (85±8) 

Shrubland 11 (13) 1 (2) 6 (4) 32 (20) 1 (1) 0 (0) 63±13 
(50±16) 

Wetlands 8 (6) 8 (5) 3 (5) 1 (1) 30 (25) 0 (0) 60±14 
(61±14) 

Water bodies 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 32 (31) 97±6 (97±6) 

Prodcuer’s accuracy 
(in 
%)       

Overall 

in % 
Kappa: 
0.84±0.03 
(0.73±0.04) 
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were classified as closed forest in the monostatic classification with randomly 

scattered small scale patches of open forest canopy. 

A classification with two features (active amplitude and coherence) achieved an 

accuracy of 71 %, which was improved to 85 % by the addition of the textures 

coefficient of variation, mean, and correlation. This considerable improvement in 

classification accuracy suggests that texture can add additional information content 

complementing the bistatic feature set. More generally it confirms that textural 

information is useful in the classification of tropical forests (Sanden & Hoekman 

1999). In comparison a classification with all derived features resulted in an 

accuracy of 81 %. 

 

Fig. 4.5: Detailed overview of classification results with monostatic (left) & bistatic 
features (right) 

4.5 Discussion 

4.5.1 Feature importance 

The quasi simultaneous acquisition of TanDEM-X image pairs result in neglectable 

temporal decorrelation. Thus, TanDEM-X coherence is mainly governed by volume 

decorrelation and noise, which in turn is influenced by the height of volume 

scatterers (like trees in forests) and their structure. Therefore, Caicoya et al. (2012) 

demonstrated the possibility of tree height derivation from TanDEM-X coherence 
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via inversion of the Random Volume over Ground Model (RVoG, Papathanassiou & 

Cloude 2001) in boreal forests. However, RVoG model inversion requires 

appropriate assumptions, as it is designed to describe volume decorrelation using 

PolInSAR (polarimetric interferometry) features, while for operational TanDEM-X 

acquisition only HH polarization is available. Appropriate assumptions were 

derived by comparison of modeled versus LiDAR height measurements (Caicoya et 

al. 2012). 

In this study, the interpretation of coherence with field data indicates that there 

is a relationship between interferometric coherence and crown cover. This suggests 

that the coherence is also useful in describing the forest structure apart from tree 

height. Forest structure information can be used directly in land cover and forest 

surveys. This analysis supports the assumption that the coherence decreases with 

higher crown coverage, since the electromagnetic waves interact with a denser 

volume (i.e. more leaves in tree crowns) and, thus, volume decorrelation occurs. If 

the crown coverage is low, then the probability that the wave interacts with 

branches, twigs and stems due to side looking geometry is higher compared to cases 

of higher coverage. This results in a higher proportion of direct and multiple returns 

compared to volume interaction and thus less volume decorrelation. This suggests 

the conclusion that the bistatic coherence contains information about the vegetation 

structure. However, the sensitivity is limited as the coherence ranges between 0.79 

and 0.84 whereas crown coverages differ by 100 %. 

Several studies have examined the use of coherence from repeat pass 

constellations to improve class separability and achieved higher classification 

accuracies compared to classifications without the interferometric coherence. Most 

of these studies used the coherence only for the separation of vegetation and other 

land cover classes or forest/non-forest (Bruzzone et al. 2004, Perko et al. 2011, 

Strozzi et al. 2000). Differentiation between vegetation classes is not successful with 

repeat-pass X-band coherence due to the temporal decorrelation (Perko et al. 2011). 

The X-band coherence over vegetation is generally very low and does not show 

differences in vegetation type since it is dominated by temporal decorrelation. 

Therefore, it is only possible to separate between vegetation and non-vegetation in 

the best case (Perko et al. 2011). 

Our results suggest that the single-pass interferometric coherence is suitable to 

substantially distinguish between at least two different canopy cover degrees in 

peat forests. Furthermore, it is assumed that this feature is helpful in separating the 

shrubland and grassland class from forest classes due to the lower volume 

decorrelation of grasses and shrubs in comparison to trees, thus improving the 

classification accuracy. The feature selection shows that the interferometric 
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coherence is the most important feature. This is confirmed by the classification 

results benchmarking a feature set using coherence against one without coherence. 

The bistatic features, passive amplitude and ratio, had a low contribution to the 

separability in contrast to the coherence. Thus, it could be assumed that the angular 

difference of the two satellites in the operational TanDEM-X acquisition is not 

sufficient to achieve an improvement in classification when using bistatic scattering 

coefficients as proposed by Dubois-Fernandez et al. (2006) using an angular 

difference of 0.1◦ . This could be expected since the angular difference of an 

operational TanDEM-X acquisition is approximately only a tenth up to a hundredth 

of that used in Dubois-Fernandez et al. (2006). Therefore, the improvement in 

information content using the bistatic scattering coefficient is marginal. In contrast, 

texture measurements improved the separability and the overall accuracy 

substantially. They contribute information for class separability and some were 

ranked with a higher importance in a feature selection than the amplitude. 

Especially when using highresolution monostatic SAR data texture was proved to be 

very important to improve class separability. However, the classification with 

monostatic constellation showed that the texture measurements were not able to 

distinguish the forest classes substantially. Even considering that quantitative 

evaluation (e.g. box plots) did not show the difference in class separation between 

bistatic coherence and other features so clearly, visual analysis of the classification 

result exhibits that small scale degraded areas can only be detected using the 

coherence. The degraded patches were subordinate to the noise of small scale 

misclassifications in the monostatic constellation including the textures. 

The classification with all derived features achieved an accuracy of 81 % and 

therefore, was 4 % less accurate compared to the classification with the most 

important features from the bistatic set (85 %). Hence, it could be argued that some 

derived features contained disinformation which decreases the separability of the 

classes and the resulting accuracy. 

4.5.2 Classification results 

The 10 % higher classification accuracy indicates the importance of the 

interferometric coherence compared to the classification without coherence and its 

contribution to improved class separability. Due to the fact that temporal 

decorrelation is neglectable for operational TanDEM-X bistatic acquisitions the 

coherence is mainly influenced by volume decorrelation and noise in flat terrain 

areas. This study suggests that volume decorrelation is influenced by the structure 

and height of the volume and tree canopy coverage. However, a similar classification 

in strong relief could be more vulnerable to misclassifications whereas this study 



4 Importance of bistatic SAR features from TanDEM-X for forest mapping and 
62monitoring 

area is flat (Hajnsek et al. 2009), and thus other sources of decorrelation as layover 

or shadow could be avoided. Furthermore, the coherence is also dependent on the 

effective baseline. A shorter baseline results in a high level of coherence, even over 

forest areas, which limit the sensitivity to the canopy coverage and differences in 

land cover. Larger baselines result in a larger range of coherence values which is 

advantageous for classification purposes, whereas too large baselines can result in 

total decorrelation (Krieger et al. 2010). 

The use of aerial photographs from 2005 for the generation of the training areas 

for the classes open and closed forests and their validation, could lead to 

inconsistencies due to the time difference to the TanDEM-X acquisition. The field 

transects could not cover the whole range of canopy cover and understory could 

cause misinterpretations. Furthermore, the estimation of the number of trees per 

unit area and the interpretation of the appearance of the crowns via the aerial 

photos can be misleading. Trees hidden by larger trees cannot be differentiated in 

the photos and omission errors arise when smaller trees are growing close to large 

trees and thus cannot be detected as an individual tree. However, the photo 

interpretation may be considered as sufficient for classifying the photos into two 

classes and not continuous canopy cover values. 

Besides these sources of possible uncertainty, our results show that the X-band 

single-pass interferometric coherence can discriminate substantially open or 

degraded forest from closed undisturbed forest. In contrast, Santos et al. (2010) 

were not only able to separate forest from pasture and bare soil with dual-

polarimetric TerraSAR-X data, but have also observed confusion between primary 

forest and degraded forest and have achieved an overall accuracy of 76 % and a 

kappa of 0.67 in the Brazilian Amazon. Even when using L-band from ALOS PALSAR 

Morel et al. (2011) found confusion between degraded and intact forest on Borneo. 

Longepe et al. (2011) also reported confusion between regrowth, plantations and 

intact forest with ALOS PALSAR on Sumatra. 

Confusion between disturbed or peat swamp forest regrowth with primary peat 

swamp forest and with agriculture was observed in classifications with the optical 

Landsat sensor in other studies (e.g. Wijedasa et al. 2012). Although overall 

accuracies of 77 % - 86 % were achieved in classifications of peat swamp forests in 

Sundaland, the user’s accuracy for the disturbed peat swamp forest class only 

achieved 53 % - 59 % (Wijedasa et al. 2012). The use of coarser scale data such as 

MODIS to map peat swamp forests of Indonesia achieved an accuracy of 82 % 85 % 

(Miettinen et al. 2008, Miettinen et al. 2012). Nevertheless, Wijedasa et al. (2012) 

suggested that smaller peat swamp forest fragments can be overlooked due to the 

moderate resolution of the MODIS data. In addition, using optical sensors can result 
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in data gaps caused by the high degree of cloud cover in the tropical area (Nezry et 

al. 1993). Creating composites by multi-temporal images could indeed reduce the 

gaps in the data, but it can lead to inconsistencies through possible changes between 

the acquisitions. Even with the use of composite mosaics, consisting of up to 4 or 

more images, there were still gaps of 7.8 % - 10.3 % of the study area (Wijedasa et 

al. 2012). Another possibility is the synergetic use of optical and SAR data (Erasmi 

& Twele 2009, Lehmann et al. 2012). 

However such an approach consumes a lot of resources regarding data and 

processing time. TanDEM-X on the other hand, exhibits the advantage of weather 

and day/night independence. Profiting from the on-going TanDEM-X mission 

objectives aiming to produce a homogeneous and globally consistent, high 

resolution DEM, the interferometric TanDEM-X data could be used as a consistent 

data source for mapping and monitoring tropical forests. 

4.6 Conclusions 

The bistatic features from the TanDEM-X mission can significantly improve the 

separability of forest cover and forest density, namely forest classes with more and 

less than 50 % canopy cover. From all parameters investigated, the single-pass 

interferometric coherence proved to be the most important feature for class 

separability. A non-parametric random forest feature selection confirmed this 

result. 

Due to the correlation of interferometric coherence with canopy cover, it is 

possible to derive more spatial detail at a higher accuracy, which is important, for 

example, in forest degradation mapping. In addition, the classification including 

bistatic features is less noisy compared to monostatic features only. This leads to an 

increase in the overall classification accuracy by more than 10 %, resulting in an 

overall accuracy of 85 %. The accuracies from a classification including coherence 

were superior in every class compared to a classification without coherence. 

Improvements have been observed especially in the differentiation between the 

forest cover classes as well as between shrublands and forest land. In contrast, the 

passive amplitude and ratio of active and passive amplitude did not improve the 

classification results. This suggests the conclusion that the angular difference 

between the two sensors is not suitable to increase the information content and 

class separability via a bistatic scattering coefficient. 

The IPCC (2003) recommends, in its good practice guidance for LULUCF the 

separation of forest land in open and closed canopy forest. Distinguishing between 

these two forest classes is relevant in the monitoring of forest degradation. It is of 
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key importance for national carbon accounting and REDD projects to reduce the 

uncertainty in the estimation of carbon stock changes (GOFC-GOLD 2012). 

Therefore, the globally available high resolution bistatic dataset from the TanDEMX 

mission is considered an important contribution for baseline mapping for the years 

2011 - 2013 in LULUCF and in REDD measurement, reporting and verification 

concepts. 
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Abstract 

Forests play an important role in the global carbon cycle as a carbon sink. 

Deforestation and degradation of forests lead to carbon emissions, which should be 

prevented or minimized by protecting forests. Radar remote sensing has proven to 

be particularly useful to monitor forests especially in the tropics due to weather and 

daytime independence. Radar data from the TanDEM-X mission provide a potential 

opportunity to monitor large areas of tropical forests due to the multi-temporal 

global coverage and the high resolution. 

Tropical peat swamp forests are difficult to access and thus high effort to conduct 

field measurements is necessary. Therefore, aboveground biomass was estimated 

from a limited amount of in-situ measurements of relatively undisturbed peat 

swamp forest and a LiDAR based canopy height model to achieve a representative 

amount of biomass estimates for radar analysis. The LiDAR and field measurements 

resulted in an identical estimate of mean biomass and thus provided a reliable 
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source to correlate with SAR (synthetic aperture radar) features from the TanDEM-

X mission and ultimately up-scale the found relation to the entire study site. 

The relationship of interferometric coherence of the bistatic TanDEM-X data 

showed a moderate to high correlation with the biomass (R2 = 0.5) and RMSE of 53 

t/ha corresponding to a biomass range from 183 to 495 t/ha. Thus, it could be used 

to indicate forest degradation areas, which are characterized by larger opening of 

the canopy cover and thus lower biomass. The results indicate that interferometric 

coherence is useful for quantification of aboveground biomass in tropical peat 

swamp forest. TanDEM-X coherence can at minimum serve as a stratification to 

assess spatial distribution of qualitative biomass classes in the context of REDD+ 

monitoring, reporting, and verification schemes and for the identification of forest 

degradation areas. 

5.1 Introduction 

Forests act as natural carbon storage and thus play an important role in the global 

carbon cycle and for climate change mitigation (Gibbs et al. 2007, Olander et al. 

2008, Werf et al. 2009). The stored carbon is directly linked with the biomass of 

forests and can be converted to carbon stock using a factor of 50 % or less (Martin 

& Thomas 2011). Quantifying biomass and its change over time is a prerequisite to 

implement programs like REDD+ (Reducing Emission from Deforestation and 

Degradation). This program aims to incentivize the reduction of carbon emissions 

from deforestation and forest degradation and enhancement of carbon stocks in 

order to mitigate climate change. Tropical forests, especially peat swamp forests, 

and their soils store high amounts of carbon (Page et al. 2002, Page et al. 2011, Werf 

et al. 2009). According to Werf et al. (2009), the emissions from tropical peat swamp 

forests and their soils equal approximately 1/4 of the emissions of the total tropical 

forests. This demonstrates the significance of these ecosystems despite their 

relatively small extent compared to the overall tropical forest cover. Nevertheless, 

they are threatened by more frequent and stronger droughts due to climate change, 

deforestation and degradation, which can turn them to a tremendous source of 

carbon emissions (Page et al. 2002, Page et al. 2011). 

Field measurements alone have limitations assessing biomass over large areas. 

Thus, for implementing REDD+ field work alone may not be feasible in many tropical 

countries due to the difficult accessibility, the large spatial extent and the variation 

of biophysical parameters in tropical forests. Thus, combinations of remote sensing 

and field measurements are recommended for REDD+, because of their ability to up-
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scale the field measurements on a larger scale (Asner et al. 2009b, Gibbs et al. 2007). 

For instance, LiDAR (Light detection and ranging) sensors and algorithms based on 

those sensors for estimating biomass are successfully used in combination with field 

measurements (Asner et al. 2009b, Boehm et al. 2013, Gonzalez et al. 2010, Lefsky 

et al. 2005, St-Onge et al. 2008). However, LiDAR sensors are mostly airborne and 

thus relatively expensive compared to space borne data. Consequently, they will 

have a small spatial coverage compared to space borne sensors, resulting in limited 

consistency regarding large area surveillance and estimation of the biomass (Koch 

2010, Koehl et al. 2011). 

SAR (synthetic aperture radar) systems are an alternative for mapping and 

monitoring tropical forests consistently because of their weather and day/night 

independence (e.g. Kuntz 2010). The received signals from SAR sensors are not a 

direct measurement of aboveground biomass (Woodhouse et al. 2012). Instead it is 

found that the SAR signal correlates with biomass, since the electromagnetic wave 

penetrates the vegetation canopy and interacts with the vegetation constituents 

such as leaves, twigs, branches, and stems (Balzter 2001, Dobson et al. 1995, Le Toan 

et al. 1992, Saatchi et al. 2011b). Therefore, it has been shown that backscatter 

increases with the biomass up to signal saturation depending on wavelength 

(Balzter et al. 2007, Englhart et al. 2011, Mitchard et al. 2011). Systems with longer 

wavelengths such as L- and P-band sensors are considered more appropriate to 

determine biomass due to their greater penetration into the canopy, compared to X- 

and C-band sensors (Castro et al. 2003, Kasischke et al. 1997, Luckman et al. 2000, 

Saatchi et al. 1997). With L-band systems a saturation of the signal at biomass values 

around 100 to 150 t/ha is frequently observed (Kasischke et al. 1997, Luckman et 

al. 1998, Luckman et al. 2000, Mitchard et al. 2011). A saturation of C-band ERS 

sensors was found at about 30 to 50 t/ha (Castro et al. 2003, Gama et al. 2010, 

Luckman et al. 2000). A lower saturation threshold or no correlation was 

demonstrated with X-band data due to the shorter wavelength (Gama et al. 2010). 

Nevertheless, Englhart et al. (2011) found a saturation threshold of X-band 

amplitude data in tropical peat swamp forest of 80 t/ha. 

However, not only radar backscatter can be correlated to aboveground tree 

biomass, but also the interferometric coherence can be regarded as a significant 

indicator of biophysical characteristics in forests (Luckman et al. 2000, Santoro et 

al. 2007, Schlund et al. 2014a). The interferometric coherence is a measure of the 

phase decorrelation and the quality of the interferometric estimates derived from 

two SAR acquisitions (Bamler & Hartl 1998). It is influenced by the baseline, the 

Doppler centroid frequency, the system noise, the SAR processing, and relevant 
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scene properties like temporal and volume decorrelation (Hanssen 2001, 

Wegmuller & Werner 1997). The coherence decreases with increasing biomass due 

to increased volume and potentially temporal decorrelation, which in turn are 

influenced by the spatial and temporal separation of the acquisitions (Balzter 2001). 

The interferometric coherence is correlated to biophysical parameters and thus 

enables modeling of biophysical forest parameters (Askne et al. 1997). 

L-band coherence proofed to be related to growing stock volume in boreal forests 

(Eriksson et al. 2003). But also shorter wavelengths such as C-band have frequently 

been used to estimate growing stock volume using ERS data (Askne et al. 2003, 

Santoro et al. 2002, Santoro et al. 2007). Empirical models were applied with linear 

or exponential functions (Fransson et al. 2001, Wagner et al. 2003) as well as 

semiempirical models such as the water cloud model for the derivation of growing 

stock volume in boreal forests (Cartus et al. 2011, Santoro et al. 2002, Santoro et al. 

2007). However, the relationship partially depends on weather conditions (e.g. 

moisture, frozen or thaw) and thus optimal acquisition conditions are necessary in 

order to achieve high accuracies, whereas the typically utilized ERS tandem data 

were inconsistent in their availability for large-scale applications (Cartus et al. 

2011). In contrast to conventional spaceborne SAR missions, the bistatic TanDEM-X 

mission acquires multiple globally consistent single-pass interferometric datasets 

to create a highly accurate global digital elevation model (Krieger et al. 2007). The 

two SAR sensors of the TanDEM-X mission acquired data of the entire land mass 

several times during the lifetime of the mission, allowing a homogenous, large scale 

analysis at high spatial resolution. 

In general, repeat-pass interferometric coherence of X-band sensors is low in 

vegetation (Perko et al. 2011) and thus not correlated with volume or biomass 

(Gama et al. 2010). The main reason is the temporal decorrelation. However, the 

temporal decorrelation can be minimized using the across-track interferometer 

TanDEM-X, which is one of the most significant advantages of the mission (Krieger 

et al. 2007). Initial analysis shows that TanDEM-X data are very useful to create 

highly accurate land cover mapping with different vegetation type classes. 

Classifications with TanDEM-X data achieved an accuracy of 85 % (Schlund et al. 

2014a). The high accuracy is mainly based on the single-pass interferometric 

coherence, which can be used in classifications or quantitative estimations. 

Caicoya et al. (2012) and Kugler et al. (2014) showed the potential to derive mean 

forest stand height based on the interferometric coherence from operational 

TanDEM-X mission and a LiDAR dataset by inverting the Random Volume over 

Ground model (RVoG). Nevertheless, the volume decorrelation and thus the 
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coherence are not only influenced by the height of the volume, but also by the 

structure of the volume. The size of the volume, which is equivalent to the height of 

the forest, and the structure are related to the biomass. Therefore, it can be 

concluded that the coherence can be directly correlated with the biomass. The 

correlation of the biomass with the interferometric coherence from TanDEM-X and 

the resulting potential for improvement in context of forest mapping and 

monitoring will be investigated in this study. Englhart et al. (2011) suggested a 

correlation with X-band backscatter for low biomass values. Thus, the backscatter 

of TanDEM-X in order to derive biomass will be investigated as well. Field 

measurements in combination with LiDAR data will be used in order to increase the 

number of observations to be correlated with the SAR measurements. 

5.2 Data & study site 

5.2.1 Study site 

The study site in Central Kalimantan exhibits a flat terrain and is covered by tropical 

peat swamp forest limited through the Kapuas River in the West (Fig. 5.1). The 

provincial capital Palangkaraya is located about 60 km west of the study area. In 

general, the climate is humid tropic divided into a dry season from June to 

September and a wet season from October to May (Jauhiainen et al. 2005). 

 

Fig. 5.1: TanDEM-X acquisition, LiDAR coverage and location of field measurements 
from 2005 (white dots) and 2013 (black dots; right) located in Central 
Kalimantan, Indonesia (left) 

The peat swamp forests of Indonesia are highly endangered. Large parts of 

pristine forest were already converted into agriculture and plantations. For that 
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purpose, the peat swamp areas are drained by canals. The study area is heavily 

affected by the construction of canals and related deforestation, which is visible in 

the southern part of the SAR amplitude image (Fig. 5.1). These canals and the related 

deforestation originated from the Mega Rice Project (MRP), which was initiated by 

the Indonesian government in 1995. The main objective of the MRP was to 

transform about 1 million hectares of tropical peat lands in rice cultivation. The MRP 

was divided into five spatial blocks with a size of 160,000 to 500,000 ha. Boehm & 

Siegert (2001) estimated that forest cover decreased from 65 % to 48 % between 

1991 and 2000 for the two blocks of the MRP within the study area. The project 

failed and was abandoned in 1999 (Muhamad & Rieley 2002, Woesten et al. 2008), 

but drying of the peat due to drainage and illegal logging is still a threat for the 

forests. On the one hand, increasing decomposition processes release methane and 

carbon. On the other hand, the dried accumulated biomass makes these areas more 

vulnerable to fire, both resulting in increased greenhouse gas emissions (Aldhous 

2004, Hooijer et al. 2010, Jauhiainen et al. 2005, Page et al. 2002). Nevertheless, 

large forested regions in the central, eastern and northern parts of the study area 

belong to the Mawas conservation area and thus are undisturbed since the end of 

the 1990s. The dense forests close to the rivers and at the edge of the peat dome are 

up to 30 m high. Towards the center of the peat dome, forest height decreases to 15 

m (Boehm et al. 2010, Hajnsek et al. 2009). 

5.2.2 TanDEM-X datasets 

The bistatic TanDEM-X datasets were acquired in repeat-pass in December 21, 2010 

and April 21, 2011 over Central Kalimantan, Indonesia. The TanDEM-X mission 

operates two X-band SAR satellites, acquiring interferometric SAR data. Both 

sensors are able to transmit the electromagnetic wave with a phased-array X-band 

antenna havinga carrier frequency of 9.65 GHz (Pitz & Miller 2010), corresponding 

to a wavelength of ∼3.1 cm. 

The data were acquired in the horizontal polarization (HH) using the bistatic 

acquisition mode. One sensor acted as transmitter and receiver (monostatic/active) 

while the other only received (bistatic/passive) the electromagnetic waves in this 

mode. This acquisition configuration was enabled by the close formation flight of 

the two satellites. Therefore, the temporal baseline was about a tenth of a second 

resulting in negligible temporal decorrelation caused e.g. by different moisture 

content, wind or moving objects. The effective baseline describing the effective 

distance between the two sensors (Hanssen 2001) constituted 163 m and 123 m, 

respectively (Table 5.1). The bistatic mode in HH polarization is also the operational 
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acquisition mode of the TanDEM-X mission used to create the global digital 

elevation model (Krieger et al. 2007). The data were acquired in StripMap mode, 

resulting in a resolution of about 3 m (Table 5.1). The data were co-registered, 

resampled and delivered as CoSSC (co-registered single-look slant range complex; 

Fritz 2012). 

Tab. 5.1: Overview of TanDEM-X dataset 

Properties Value Value 

Acquisition date December 21, 2010 April 21, 2011 

Incidence angle 47.9◦  – 49.3◦  47.9◦  – 49.3◦  

Resolution (azimuth) 3.3 m 3.3 m 

Resolution (ground range) 2.4 m 2.4 m 

Orbit direction Descending Descending 

Look direction Right Right 

Polarization HH HH 

Effective baseline (image center) 163.3 m 123.3 m 

The acquisition dates took place in the middle and end of the rainy season. Since 

the moisture of the illuminated objects has major influence on the backscatter due 

to the associated dielectric constant, the rainfall for days previous to the 

acquisition and at acquisition was investigated. For this purpose the one-degree 

daily product of the Global Precipitation Climatology Project (GPCP 1DD; Huffman 

et al. 2001) was purchased for the months of December, 2010 and April, 2011. 

This product was created using infrared and microwave space borne sensors and 

provides information on the daily precipitation of a 1◦  by 1◦  cell. The analysis 

showed relatively dry conditions at the day of the SAR acquisition April 21, 2011 

(0 mm/day) and the week before with an average rainfall of 5 mm/day despite 

the rainy season. The week before the acquisition of December, 2010 had an 

average rainfall of about 9 mm/ day. However, the two days before data 

acquisition were dry without any recorded precipitation. Therefore, the influence 

of moisture within the trees could be neglected. 

5.2.3 Reference datasets 

5.2.3.1 LiDAR & other remote sensing data 

Full-waveform LiDAR data were acquired on August 05, 2007 on a sunny and 

cloudfree day with a Riegl LMS-Q560 instrument (Table 5.2). The helicopter had an 
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altitude of 500 m aboveground. The acquisition date was in the dry season in order 

to avoid inaccurate derivation of the DTM due to high water levels on the ground. A 

terrain-adaptive bare earth algorithm was used for classifying the laser beams into 

ground and over ground classes. Delaunay triangulation was utilized to create a 

triangular irregular network (TIN) which was the basis for the extraction of square 

grid pixels with a linear interpolation (Boehm et al. 2013, Liesenberg et al. 2013). 

The extraction of the DSM and DTM was performed by an IDL software package used 

by company Milan (Boehm et al. 2013). The final dataset had a horizontal resolution 

of one meter and a vertical resolution of 0.15 m. A digital surface model (DSM) and 

a digital terrain model (DTM) were derived and delivered as a final product as well 

as the full-waveform for a strip in the study area. The LiDAR acquisition covered a 

whole peat dome in the Mawas area with a riverine forest in the west to mixed 

swamp forest and low pole forest located in the center and east of the LiDAR strip 

(Fig. 5.1; Boehm et al. 2010, Boehm et al. 2013, Page et al. 1999). Therefore, this 

dataset covered a large range of tree heights and aboveground tree biomass values 

related to these forest types. The LiDAR dataset covered about 31 km2 of the 

TanDEM-X acquisition. 

A Pleiades image was acquired on March 21, 2012 for additional interpretation 

and plausibility analysis of degradation patterns found in SAR imagery. The spatial 

resolution of the acquisition was 2 m with a spectral resolution of four bands in the 

wavelengths of blue, green, red, and near infrared. In addition, Pleiades acquired a 

Tab. 5.2: Properties of the airborne LiDAR system LMS-Q560 (Riegl) 

Property Value 

Scan angle ±30◦  

Swath width ∼500 m 

Scan frequency 66 to 100 kHz 

Vertical laser beam accuracy ≤0.1 m 

Horizontal laser beam accuracy ≤0.5 m (for x- & y-direction) 

Laser beam (mrad) 0.5 (footprint up to 30 cm) 

Laser wavelength 1.5 µm (near-infrared) 

Point density 1.4 points/m2 

panchromatic image with 0.5 m resolution as well, which was used to pan-sharpen 

the multispectral bands. Therefore, the final product was resampled to a resolution 

of 0.5 m and was delivered as an ortho-rectified product (Astrium GEO-Information 

Services 2012). The image was used for visual interpretation and thus the 
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pansharpening did not hinder any quantitative analysis of the image, whereas 

improved the interpretability. The image was acquired with a very low incidence 

angle of 1.5◦  which was close to nadir view. Therefore, the interpretation of 

openings in the forests was feasible. The cloud cover of the acquisition was 

estimated with 11 %. 

5.2.3.2 Field data 

Field measurements were collected in January 2005 at eight transects in addition to 

the remote sensing data. The field measurements were conducted in transects with 

a size of 100 m by 10 m. However, two transects were averaged due to their spatial 

adjacency resulting finally in four field transects with a size of 100 m ∗ 20 m. 

Additional field measurements were conducted in June 2013, where eight transects 

with a size of 50 m by 20 m were conducted. The smaller size was chosen assuming 

no drastic change of the forest within the length of transects (50 m vs. 100 m), in 

order to sample more field transects in this difficult to access peat swamp forest. 

The field transects were located with GPS. All trees with a diameter at breast height 

(dbh) larger than 10 cm were measured in both campaigns and tree species were 

recorded. In total, 12 transects with tree measurements were available (Table 5.3). 

A clinometer was used for the tree height measurements. The dbh was estimated by 

the division of the measured girth with π. The stems of peat swamp forest trees are 

relatively thin (in average 15 cm) and most of them were regular. Irregular cross 

sections of stems were not handled individually. 

The location of the field measurements was systematically distributed along the 

peat dome of the study area. Hence, a great range and variability of the aboveground 

tree biomass values and vegetation zones of a tropical peat swamp forest Tab. 5.3: 

Field measurements and according mean, minimum and maximum of all measured 

trees 

Measurement Mean Minimum Maximum 

Tree height (in m) 15.6 2.2 m 37.8 m 

Height of first green branch (in m) 9.8 0.5 26.9 

Diameter of crowns (in m) 4 0.8 10.7 

DBH (in cm) 15.2 10 63.3 

Average number of trees/ha 1075.8 - - 

with different vertical structures were covered between the transects despite the 

difficult accessibility of the area. The field measurements covered a range of 
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aboveground biomass between 160 t/ha and 440 t/ha. However, only seven 

transects with a biomass range between 230 t/ha and 440 t/ha were located within 

the LiDAR dataset due to the restricted accessibility of this peat swamp forest. The 

aboveground biomass values were calculated by allometric equations as described 

in Section 5.3.2. 

5.3 Methods 

5.3.1 Feature extraction from TanDEM-X 

The active and passive amplitudes were computed from the complex TanDEM-X 

CoSSC datasets. A multi-looking with a factor of 3 in range direction and 2 in azimuth 

direction was applied, in order to suppress speckle noise. This resulted in a (slant 

range) resolution of about 6 m in both directions. The amplitudes were calibrated 

to beta nought values in decibels (βdB0 ) with the following formula (Fritz & Eineder 

2013): 

 βdB0 = 10 ∗ log10(ks ∗ |DN|2) (5.1) 

where ks means calibration and processing scaling factor, and DN is the modulus 

of the complex values represented as digital number for each pixel. 

A frost filter with 5 by 5 and 9 by 9 moving window size was applied in addition 

to the multi-looking in order to suppress speckle noise thus increasing the accuracy 

of the observations. The choice of the frost adaptive speckle filter aimed at reducing 

the speckle noise while preserving edges, spatial resolution and radiometric 

properties (Huang & Liu 2007). According to Hajnsek et al. (2009) the area is flat, 

which could be confirmed by the LiDAR dataset. Therefore, an incidence angle 

correction was not applied, in order to avoid errors related to the DEM inaccuracies 

caused for example by volume decorrelation. 

The multi-look interferogram of the TanDEM-X CoSSC datasets was calculated 

with the same multi-looking factors used in the amplitude processing. The 

interferogram was calculated as follows: 

  (5.2) 

where s1 denotes complex dataset 1 and  means complex conjugate of dataset 2. 

This was equivalent to the subtraction of the two phase information from both 

datasets, thereby obtaining only the phase difference (Bamler & Hartl 1998). 

Systematic phase changes occurred in range direction in the interferogram due to 
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the side looking acquisition geometry and the associated changes in the distance 

from the target to the sensors. These phase changes were removed by an 

interferometric processing step called interferogram flattening (Cloude 2009). 

The interferometric coherence is the modulus of complex cross correlation 

between two SAR acquisitions and is defined as (Bamler & Hartl 1998): 

  (5.3) 

where E is the expectation value, si denote complex image i and vertical lines are 

for magnitude of complex data. 

However, the expectation value is an unknown and is estimated via spatial 

averaging (Bamler & Hartl 1998, Hanssen 2001). The interferometric coherence 

was thus calculated using the following formula after application of the 

interferogram flattening: 

  (5.4) 

where si denotes complex image i, the brackets mean ensemble average and 

vertical lines are for magnitude of complex data resulting in a range for the 

coherence from 0 to 1, whereas 1 means completely coherent (Rosen et al. 2000). 

Kernel sizes of 3 by 3, 5 by 5, and 7 by 7 were used. 

The amplitudes and interferometric coherences were geocoded using the orbit 

parameters with the digital elevation model obtained from the interferometric 

analysis of the datasets and were resampled to a pixel size of 3 m with 4th cubic 

convolution. Previous studies showed the high geometric accuracy of TerraSAR-X 

using a high precision DEM (Reinartz et al. 2011), and thus localization errors 

between TanDEM-X, LiDAR, and field measurements could be minimized. However, 

the GPS measurements for the field transects have a limited accuracy of a few meter. 

But it can be assumed that the forest changes not drastically within a few meters 

and thus possible errors should be small (Mascaro et al. 2011). 

5.3.2 Biomass estimation via field measurements and LiDAR 

The aboveground tree biomass density in tons per hectare for each transect was 

calculated according to different allometric equations based on stand tables and 

volume data. In total, six different approaches for biomass estimation were 

compared. The choice was in favor of global or pan-tropical models (Brown & 

Iverson 1992, Brown & Lugo 1992, Chave et al. 2005, Hajnsek & Hoekman 2005), 

because these are based on a large number of destructive measurements (Brown & 
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Iverson 1992, Brown & Lugo 1992, Brown et al. 1989, Chave et al. 2005, Reyes et al. 

1992). Regional or local models exhibit a higher risk of biased predictions due to the 

small sample size (Chave et al. 2005). 

The results differed in their aboveground biomass values. The mean value of the 

different models ranged from 117.91 to 294.21. Therefore, a comparison with other 

studies in peat swamp forests was conducted and the equation which resulted in 

similar aboveground biomass values compared to literature values was finally used 

(see Section 5.5.3). It is worth noting that some models, Brown et al. (1989) for 

example, resulted in significant lower aboveground biomass values compared to 

other studies in peat swamp forests. The aboveground tree biomass density used as 

field reference for each transect was calculated according following allometric 

equations resulting in similar biomass values compared to other studies (Brown & 

Lugo 1992, Hajnsek & Hoekman 2005): 

 biomass = vob ∗ wd ∗ bef(t/ha) (5.5) 

where vob is the volume over bark, wd is volume-weighted average wood density 

which was determined as 0.57 t/m representing the arithmetic mean for Asian 

forests (Reyes et al. 1992). The bef is the biomass expansion factor in order to 

include leaves, twigs, and branches. 

The volume over bark was calculated as the sum of bole volume (bv): 

bole volume = basal area ∗ total tree height ∗ shape factor (5.6) with a shape 

factor of 0.7. The biomass expansion factor for bole volume equal 

or greater than 190 t/ha was determined as 1.74. 

The biomass expansion factor for a bole volume lower than 190 t/ha was 

calculated (Brown & Lugo 1992): 

 bef = exp(3.213 − 0.506 ∗ ln(bv)) (5.7) 

In order to increase the number of observations for correlations between biomass 

and SAR features, the biomass was estimated with the LiDAR canopy height model. 

The DSM and DTM of the LiDAR acquisition were subtracted and resulted in the 

canopy height model (CHM) representing the vegetation height and the surface of 

the canopy (Koch et al. 2006). This approach was chosen since a number of studies 

proved the feasibility of deriving aboveground biomass with LiDAR CHM metrics 

(Boehm et al. 2013, Koch 2010, Kronseder et al. 2012, St-Onge et al. 2008). 

Subsequently, metrics such as mean, percentiles in steps of 5, and standard 
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deviation of the CHM were calculated for each field transect located within the 

LiDAR coverage. These estimations were considered as accurate predictors for 

forest parameters (Kronseder et al. 2012, St-Onge et al. 2008). Those metrics were 

correlated with the total aboveground biomass of the field transect measurements. 

An inversion model based on the metrics of the LiDAR canopy height model and 

related field transect measurements was developed using a multiple linear 

regression approach with a least square fitting (Dandois & Ellis 2013, Kronseder et 

al. 2012). The model yielded a R2 of 0.49 and a root mean square error of 33.6 t/ha 

for the aboveground biomass estimation. The biomass model was based on the field 

transects which were consistent with the LiDAR dataset. Field transects from 2007 

having a size of 0.1 ha and one field transect from 2005 having a size of 0.2 ha were 

used. The field transect from 2005 was split into 2 ∗ 0.1 ha in order to keep spatial 

consistency. Therefore, a total of eight 0.1 ha areas were consequently used to apply 

the biomass model to a 0.1 regular grid over the whole LiDAR coverage. 

However, Asner et al. (2010) suggested that the error decreases with the spatial 

resolution. Mascaro et al. (2011) demonstrated a decrease in error up to 40 % with 

decreasing spatial resolution of the estimation from 0.36 ha to 1 ha. Therefore, the 

0.1 ha grid used for biomass estimation from LiDAR data was bilinear resampled to 

1 ha in order to reduce potential estimation and localization errors. Furthermore, a 

hectare unit was considered as a reasonable unit for biomass estimation in line with 

minimum mapping unit used in science, management and policy (Asner et al. 2013, 

GOFC-GOLD 2012, Maniatis & Mollicone 2010, Mascaro et al. 2011). In total, 926 

biomass estimates of 1 ha size were derived from the LiDAR dataset, ranging from 

119 t/ha to 510 t/ha. 

5.3.3 Empirical analysis of relationship between biomass and SAR 

features 

The mean value of interferometric coherence and amplitude for each 1 ha sampling 

grid cell was calculated. Each 1 ha grid cell contained about 1111 pixel with a pixel 

spacing of 3 m and thus noise in the amplitude and coherence images were 

appropriately suppressed. The aboveground biomass value for each grid cell was 

correlated with the corresponding mean value of the coherence and amplitude. A 

linear model was developed via least squares regression (Seber & Lee 2003) for the 

interferometric coherence and for the amplitude with the response variable 

aboveground biomass. In addition, a non-linear power function was tested to 

describe the coherence and biomass relationship: 

 y = a ∗ xb (5.8) 
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An exponential function was applied for the amplitude as well as for coherence 

and biomass relationship in addition to linear and power regressions with least-

square estimates (Bates & Watts 1988): 

 y = a ∗ exp(x ∗ b) (5.9) 

where a and b were parameters of the functions and x represented the variable 

which was in that case the amplitude value in dB or the coherence. This equation 

was used, because it achieved higher R2 compared to other non-linear relationships 

without consideration of theoretical reasons. 

The analysis was focused on 1 ha grid cells covered by forest, undisturbed since 

the end of the 1990s. Woodhouse et al. (2012) questioned establishing relations 

based on data sets mixed across forest types, because the resulting relation of 

aboveground biomass and SAR intensity is formed by clusters representing 

different forest types. This phenomenon should be even more pronounced when 

considering different land cover types. Therefore, a previously conducted accurate 

classification was used (Schlund et al. 2014a) to exclude areas classified as 

grassland, shrub land, water, and wetlands. Thus, it was ensured with high accuracy 

of 91 % that only forest biomass was considered without any surfaces with low or 

no biomass. This stratification resulted in a total of 926 LiDAR derived forest 

biomass estimates which were randomly divided into 2/3 for model development 

(n = 617) and 1/3 (n = 309) for independent model validation. 

The predictive accuracy of the model was described by comparing the modeled 

biomass via coherence or amplitude and actual aboveground biomass from LiDAR 

estimation. The root mean square (RMSE), coefficient of determination (R2), and the 

relative volume error (V Erel) were considered in order to evaluate the model. The 

R2 is the fraction of variance explained by the model and defined as (Seber & Lee 

2003): 

  (5.10) 

where yi is the actual value of i and ˆyi the predicted value of i, and ¯y is the mean 

of actual values. The relative volume error was calculated as follows: 

  (5.11) 
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where yi is the actual value of i and ˆyi the predicted value of i and thus positive 

values indicated a systematic underestimated biomass in the models whereas 

negative values indicated a systematic overestimation of the prediction. 

According to Krause et al. (2005) the volume error is an appropriate indicator for 

a systematic over- or underestimation of a model. 

The SAR based biomass inversion model was applied to the entire coverage of the 

coherence and amplitude to provide an overview of the distribution of aboveground 

biomass in the study area for visual evaluation purposes. In addition, the five field 

measurements not used for biomass up-scaling with LiDAR were used as 

independent validation for the inversion model. The total biomass of these field 

measurements was calculated per 1 ha grid cell. The image processing and statistical 

analysis was conducted in the R environment (R Core Team 2013) with the help of 

additional packages called “raster” (Hijmans 2013), “rgdal” (Keitt et al. 2013), and 

“sp” (Bivand et al. 2008). 

5.4 Results 

5.4.1 SAR features vs. LiDAR estimated biomass 

The coherence had a substantially higher coefficient of determination with the 

actual aboveground tree biomass compared to the amplitude (Fig. 5.2). 

Nevertheless, the deviations from the linear fitted line were highest at greater 

biomass values at about 350 t/ha and higher. Therefore, it was concluded that the 

relationship of coherence and biomass saturated at those aboveground biomass 

values. The application of the exponential and power functions to the biomass 

estimation with coherence resulted in lower R2 compared to linear models with 0.43 

and 0.42. The R2 of 0.31 for the unfiltered amplitude was significantly lower than the 

coherence. The application of the best non-linear model resulted in an even lower 

R2 compared to the linear model of 0.3. The application of speckle filters did not 

improve the coefficient of determination substantially and resulted in a R2 of 0.32 

for both filtered amplitude images. The interferometric coherence and amplitude 

resulted in similar R2 for both acquisitions (Fig. 5.2). The R2 decreased with kernel 

size in the coherence calculation from 0.5 (3 by 3), 0.46 (5 by 5) to 0.4 (7 by 7). 

However, the R2 was still substantially higher for each used kernel size than for the 

amplitude. 

In total, the actual aboveground biomass values ranged from 119 t/ha to 510 t/ha 

with an average of 282.7 t/ha, with a standard deviation of 74.3 t/ha. The dynamic 

range of the single-pass interferometric coherence from April 2011 is between 0.75 
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and 0.9, whereas the values of the amplitude range between -11.5 dB and -8.5 dB. In 

contrast, the amplitude values of December 2010 were increased compared to April 

2011 between -9.6 dB and -7.4 dB, whereas the interferometric coherence range 

decreased to 0.65 and 0.86. The overall observed mean values for the coherence 

images were 0.81 for December 2010 and 0.86 for April 2011, whereas Fig. 5.2: 

Linear relationship of coherence (left) & active amplitude (right) from acquisitions 

from December 21, 2010 (top) & April 21, 2011 (bottom) with biomass estimated 

from LiDAR (n = 617) 

the respective standard deviation constituted about 0.04 and 0.03. The overall 

observed mean values for the amplitudes were -8.5 dB (2010) and -10.3 dB (2011) 

with a respective standard deviation of 0.36 and 0.46. The passive amplitudes 

showed a similar relationship compared to the active amplitudes, indicating that the 

bistatic angle was not large enough to result in a different correlation. 

5.4.2 Inverting the models to full extent 

The application of the models with the highest R2 for the amplitude and coherence 

to the full extent of the respective acquisition showed substantial differences 

between the coherence and amplitude. The acquisition from April 21, 2011 resulted 

in the highest R2 for the interferometric coherence as well as for the amplitude and 

thus these images were used for the model (Fig. 5.3). The coherence derived 

estimates resulted in a larger overall range of estimated biomass values. Higher 

biomass values of 300 to 500 t/ha were more frequent in the coherence compared 

to the amplitude. Those were observed mainly in the vicinity of rivers in the west 

and southeast of the map (Fig. 5.3). Furthermore, the biomass gradient from the 

lowland river regions with high biomass decreasing towards the top of the peat 

dome was well represented in the coherence based biomass map (Fig. 5.4). This 

observation was in line with general descriptions of tropical peat swamp forests 

regarding their ecology, species composition, and spatial structure (Boehm et al. 

2013, Page et al. 1999, Phillips 1998, Sorensen 1993). In general, the result of the 

interferometric coherence was less noisy. The result of the amplitude inversion 

generally showed lower biomass values. 
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Fig. 5.3: Biomass estimation via up-scaling from field measurements to LiDAR to 
TanDEM-X coherence (left) and amplitude (right) from April 21, 2011 

In addition, the coherence contained more information about biomass 

degradation as a consequence of anthropogenic disturbances of the forests in the 

past decades. Former logging tracks were observed in the interferometric 

coherence and its biomass derivate. Those tracks were constructed in preparation 

of the Mega Rice Project and prior to the declaration as conservation area in 2003 

to selectively log trees with high timber values. The tracks were also visible in the 

very high resolution Pleiades image where the decrease of near-infrared reflection 

(compared to the surroundings) was interpreted as forest degradation areas (Fig. 

5.4). These areas were not detectable by investigating neither the unfiltered nor the 

filtered amplitude images. 

 

Fig. 5.4: Detailed view of biomass estimation fromTanDEM-X coherence (left), 
amplitude (right), and comparison to Pleiades false-color image (center; 
R=near-infrared, G=red, B=green) 

The model evaluation with the randomly selected validation samples from the 

LiDAR data showed a RMSE of 53 t/ha in the interferometric coherence model. 
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This represented about 14 % of the value range of the actual biomass from LiDAR 

(Fig. 5.5). The R2 of validation samples was slightly higher than in the model 

development. The spatial distribution and the scatter plot of the biomass 

derivation showed that the biomass of the model was underestimated at higher 

actual biomass levels (center & west; Fig. 5.5). In contrast, the model 

overestimated the predicted biomass at lower actual aboveground biomass (east; 

Fig. 5.5). A moderate systematic overestimation of the model was documented 

with the relative volume error of -0.3 %. As expected, the independent validation 

of the biomass derived from the amplitude model had a higher RMSE of 72 t/ha 

and a higher relative volume error of -0.32 %. However, the relative volume error 

was not substantially higher, but it also indicated a systematic overestimation of 

the model. Similarly to the correlation with the samples for model development, 

the prediction achieved a low R2 of 0.3 in the validation. 

 

Fig. 5.5: Spatial distribution of errors from biomass derived from interferometric 
coherence estimation against LiDAR estimated biomass with all samples 
(left) & scatterplot of independent validation samples with 1:1 line (n= 
309) 

The evaluation of the predicted results with the five field measurements, which 

were not used for up-scaling of the LiDAR data set, also showed a lower RMSE of 

86.6 t/ha for the interferometric coherence compared to 102.2 t/ha for the 

amplitude. The relative volume errors of -12 % and -13 % indicated also a 

systematic overestimation of both SAR inversion models compared to the actual 

biomass from field measurements. Nonetheless, this volume error was significantly 

higher compared to the LiDAR evaluation which was attributable to the lower 

number of observations and at the sampling range of a lower total biomass in the 

validation dataset. Therefore, deviations resulted in a larger impact. The 

comparison of SAR based biomass model with the five independent field samples 

could be used only as indication. Nevertheless, these results confirmed that the 

interferometric coherence had a closer correlation with the biomass and resulted in 

improved estimates compared to the amplitude. 
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A comparison of the resulting descriptive values for aboveground biomass from 

field measurements, LiDAR, and interferometric coherence estimation showed 

simTab. 5.4: Comparison of aboveground biomass values from field measurements, 

LiDAR and TanDEM-X interferometric coherence estimation 

 Field mea- 

surements 

(all; in t/ha) 

Field mea- 

surements 

(used for 

up-scaling; 

in t/ha) 

LiDAR es- 

timated 

aboveground 

biomass

 (independ

ent validation set; 

in t/ha) 

Coherence 

estimated 

aboveground 

biomass

 (independ

ent validation set; 

in t/ha) 

Mean 282.7 308.0 282.7 277.3 

Standard 

deviation 

82.4 61.3 73.5 51.5 

Minimum 161.4 230.0 119.3 183.2 

Maximum 439.8 439.8 511.1 495.2 

n 12 7 309 309 

ilar mean values for all estimations (Table 5.4). The LiDAR estimated mean value 

was equal to the field measured mean value of all transects. The aboveground 

biomass mean value based on interfometric coherence differed 5 t/ha compared to 

field measured and LiDAR estimated mean value. In addition, the standard 

deviations as well as the ranges varied not substantially. 

5.5 Discussion 

5.5.1 Coherence as a function of biomass 

The results imply that the volume decorrelation and thus the interferometric 

coherence are correlated to the forest structure and the aboveground tree biomass. 

Schlund et al. (2013); Schlund et al. (2014a) suggested that the interferometric 

coherence of the single-pass system TanDEM-X is - among other factors - dependent 

on canopy cover, which was used to differentiate the forest in a high accurate land 

cover classification. 

In addition, other studies suggested that the coherence is related to forest 

structure as well as to the forest height (Kugler et al. 2013, Kugler et al. 2014, 

Caicoya et al. 2012). Volume decorrelation occurs when the electromagnetic wave 

interacts with volume scatterers. The volume consists of vertical components, which 
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contribute to the backscatter and are projected in the resolution cell. Differences in 

the projection of the vertical components within a resolution cell of the 

interferometric image pairs result in a decorrelation (Krieger et al. 2010, Rosen et 

al. 2000). The forests act as a volume and the vertical height and the density of the 

volume influences the interferometric coherence. This phenomenon is described for 

example in the random volume over ground model (RVoG) in order to derive tree 

heights (Cloude & Papathanassiou 1998, Cloude & Papathanassiou 2003, 

Papathanassiou & Cloude 2001). Operational TanDEM-X data together with a LiDAR 

dataset (Caicoya et al. 2012) or experimental TanDEM-X data with different 

baselines and polarizations (Kugler et al. 2014, Kugler et al. 2013) enable potentially 

to derive tree heights using the RVoG. A coefficient of determination of 0.5 (without 

external DTM) and 0.97 (with external DTM) was achieved between RVoG model 

results and actual tree heights in the Mawas tropical peat swamp forests resulting 

in RMSE values of 6 m to 2 m (Kugler et al. 2014). Nevertheless, the RVoG was 

developed for lower frequency and multi-polarized SAR data and thus, different 

assumptions of the earth phase had to be made when applying the model to 

TanDEM-X data (Cloude & Papathanassiou 1998, Kugler et al. 2014, Papathanassiou 

& Cloude 2001, Caicoya et al. 2012). 

The biomass is a function of different structure parameters such as forest height 

and canopy cover. Consequently the interferometric coherence was directly related 

to the aboveground biomass and achieved a R2 of about 0.5 (Figs. 5.3; 5.4). In 

comparison to the presented results, the estimation of growing stock volume with 

C-band coherence in Boreal forests at optimal acquisition conditions reached a 

coefficient of determination of about 0.5 and errors of 15-25 % compared to field 

measurements (Cartus et al. 2011, Santoro et al. 2002, Santoro et al. 2007). 

The coherence decreases with increasing biomass due to higher volume 

decorrelation caused by larger vertical height and more closed canopy. The 

interferometric measurement is thus related to multiple forest structure 

parameters such as the vertical height, vertical structure and canopy cover. The up-

scaling from LiDAR to TanDEM-X showed a marginal difference of 5 t/ha estimating 

the mean biomass (277 t/ha; Table 5.4). Therefore, the information derived by X-

band coherence could be used as complementary information to traditional biomass 

estimations using long-wavelength SAR backscatter data. A suitable and efficient 

combination of long-wavelength backscatter biomass estimation (e.g. in Mitchard et 

al. 2011, Englhart et al. 2011) and estimations derived from short-wavelength 

interferometric information potentially improves biomass estimation results 

substantially. In addition, forest degradation leads to less biomass and more 
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openings in the canopy, which can result in more direct scattering interactions with 

trunks and branches. The probability of volume scattering and volume 

decorrelation is higher with a more closed canopy resulting in lower interferometric 

coherence. Nevertheless, the relationship between forest structure and 

interferometric coherence suggests a sensitivity limitation. The derived coherence 

is only an estimation of the real coherence, whereas lower coherence values have a 

lower estimation accuracy of the real coherence and thus can result in lower 

accuracy of biophysical derivations (Askne et al. 1997, Santoro et al. 2002). The 

slight decrease of the correlation with increasing window size could be due to 

coarser spatial coherence estimation. The sensitivity is also dependent on the 

interferometric baseline (Balzter 2001). A similar projection of the vertical 

component within the resolution cell, resulting in less volume decorrelation, is more 

probable with a smaller baseline. This is evident in the slightly increase of the 

coherence values with decreasing baseline. However, the interferometric coherence 

from baselines compared in this study (163 m versus 123 m) did not show 

substantial differences in their correlation to aboveground biomass and the related 

sensitivity to biomass, which is an important fact regarding transferability of results. 

Nevertheless, the parameters of the linear functions differed slightly, which limits 

the exact transfer of one model to different acquisition properties. 

However, the coherence and the derived aboveground biomass can provide an 

indication of information about the spatial distribution of the biomass, different 

forest structure types, conditions of forests and forest degradation despite possible 

inaccuracies in absolute aboveground biomass estimation (Fig. 5.4). This 

information can be used for instance in REDD+ sampling schemes for stratification 

purposes. 

5.5.2 SAR amplitude in a peat swamp forest 

The results of the amplitude (in dB) showed a decrease with increasing 

aboveground biomass in contrast to other studies in a peat swamp forest (Englhart 

et al. 2011). The amplitude increases typically with increasing aboveground 

biomass due to higher volume backscattering (Balzter et al. 2007, Mitchard et al. 

2011). However, the X-band wave is very short and mostly interacts with near-

surface elements of the canopy and thus longer wavelengths are considered more 

appropriate for aboveground biomass correlation (Castro et al. 2003, Luckman et al. 

2000, Saatchi et al. 1997). The observed increased backscattering at forest with less 

biomass could be due to more direct or double bounce interactions. The trees are 

more distant, the forest canopy is open and therefore the wave interacts more likely 
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with trunks and branches due to the side-looking acquisition geometry. This results 

in no or less volume scattering. Direct, dihedral or trihedral backscattering is 

generally higher than volume scattering. 

In this study, the amplitude of a X-band SAR shows a weak relation with the 

biomass in this tropical peat swamp forest. Unlike other studies (e.g. Englhart et al. 

2011, Luckman et al. 2000, Mitchard et al. 2011), the backscatter is decreasing with 

the biomass and the relation is close to a linear function. Woodhouse et al. (2012) 

addressed that different forest types with their respective biomass are analyzed 

together in most studies. The biomass differs even more among land cover types 

and thus exhibits a large range of biomass values correlated with different scattering 

mechanism of open and vegetation covered surfaces. Therefore, conclusions of an 

individual land cover type have limited validity. Therefore, only the biomass within 

the forest area was investigated, exceeding the saturation limit in X-band of 80 t/ha 

reported by Englhart et al. (2011). Thus, it could be concluded that the amplitude is 

not correlated to the biomass of tropical peat swamp forest in the Mawas area, 

investigated in our study. 

5.5.3 Up-scaling of biomass measurements to LiDAR dataset 

A number of studies proofed the ability of LiDAR metrics to accurately estimate 

biomass of tropical forests (e.g. Asner et al. 2009b, Asner et al. 2013, Boehm et al. 

2013, Mascaro et al. 2011). The application of LiDAR CHM showed relatively high 

accuracies for biomass estimation also in peat swamp forests with an error budget 

of about 20 % (Boehm et al. 2013) and comparable results to Kronseder et al. (2012) 

and Englhart et al. (2011) in the Sebangau Catchment were reported (Boehm et al. 

2013). Consequently it was inferred that LiDAR based biomass estimates provide a 

reliable reference to compensate for the small number of available field samples for 

SAR inversion model development. According to Asner et al. (2009b) only few field 

measurements are necessary to transform LiDAR metrics to biomass, if the field 

measurements are distributed over the entire range of biomass. The biomass of the 

used field transects ranged from 230 t/ha to 440 t/ha. Field transects in the very 

low biomass regions were not sampled within the LiDAR strip due to the very 

limited accessibility of these areas. Therefore, additional field measurements 

especially in low biomass regions could potentially improve the LiDAR based 

biomass estimation. Nevertheless, the LiDAR based estimate of the mean biomass 

achieved an identical mean as calculated from all field samples (Table 5.4) and thus 

confirmed that LiDAR CHM based biomass estimation can serve as suitable mean for 

following SAR feature analysis and inversion modeling. 
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Furthermore, one might argue that the different acquisition dates of the field 

measurements and LiDAR dataset could result in inconsistencies. However, the area 

of interest is part of a conservation area where the forests are relatively undisturbed 

after the abandonment of the Mega Rice Project in the year 1999 (Aldhous 2004). 

Moreover, investigations showed that the biomass increases only marginally in 

undisturbed peat swamp forests of Central Kalimantan as well as in the study area 

(Boehm et al. 2012, Boehm et al. 2013, Englhart et al. 2013, Sweda et al. 2012). 

Therefore, it can be concluded that inconsistencies between the different acquisition 

dates are minimal and may not affect the results substantially. 

Other sources of error to consider in the up-scaling from field measurements to 

LiDAR are related to the field sampling like GPS localization inaccuracies and in the 

transformation of field measurements to biomass with allometric equations. The 

biomass values of our study were compared with other studies in tropical peat 

swamp forests of south-east Asia, in order to evidence the quality of biomass 

estimation. The statistical distribution of dbh and tree height measured in peat 

swamp forests within other studies (Page et al. 1999, Nishimua et al. 2007, Boehm 

et al. 2013) was similar to the values measured in our investigation and thus it was 

assumed that related biomass estimates are comparable to other studies. 

Several allometric equations were tested in order to choose the most appropriate 

for biomass estimation in peat swamp forest. Mainly global or pan-tropical models 

with a large sample size were used in order to avoid potential biases of local or 

regional models with very small sample sizes (Chave et al. 2005). It was assumed 

that the advantage of using a local model will not compensate the potential bias. The 

results of the used allometric equations differed significantly (see Section 5.3.2) and 

thus the choice was guided by the goal to attain similar values as other studies 

conducted in peat swamp forests. 

The chosen equation resulted in a mean of 282.73 t/ha for the estimation of 

aboveground biomass from field data (as well as from LIDAR data) ranging from 

161.4 t/ha to 439.8 t/ha (Table 5.4). A number of studies investigated aboveground 

biomass in the peat swamp forest of Sebangau national park, Central Kalimantan 

and found values ranging between 1 t/ha and 369 t/ha (Boehm et al. 2013, Englhart 

et al. 2011, Kronseder et al. 2012). Kronseder et al. (2012) classified the forest into 

three disturbance classes, which had values of about 228 t/ha for unlogged forest, 

160 t/ha for logged forest, and 15 t/ha for burned forests. Waldes & Page (2002) 

measured slightly higher biomass of 248-311 t/ha in six field plots compared to 

Kronseder et al. (2012) in the peat swamp forests of Sebangau. LiDAR estimated 

biomass values above 300 t/ha are also confirmed by Boehm et al. (2013) for the 
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Sebangau area. Verwer & Meer (2010) reported an aboveground biomass of 

relatively undisturbed peat swamp forest between 264 and 397.4 t/ha. Thus the 

estimated biomass from field data and LiDAR corresponds well to the 

measurements from Central Kalimantan. 

In contrast, Morel et al. (2011) measured biomass in Malaysian Borneo peat 

swamp forests of 104 t/ha for secondary forest, 66 t/ha for forest with medium and 

128 t/ha with low disturbances. Kaneko (1992) measured considerably higher 

aboveground biomass in the range of 287-491 t/ha in peat swamp forests in 

Thailand. Koh et al. (2011), Koh et al. (2012) and Murdiyarso et al. (2010) provide a 

carbon stock value of 179.7 ± 38.2 t/ha corresponding to a mean biomass of 359.6 

± 76.4 t/ha (Martin & Thomas 2011) for peat swamp forest on Java, Borneo and 

Peninsular Malaysia. 

The differences in those estimates could of course be related to the different 

geographical locations and the associated conditions as well as different allometric 

equations used for biomass calculation. However, the initiated preparation and 

partly drainage of the area for the abandoned Mega Rice Project (Aldhous 2004), 

resulted in forest degradation which is still interpretable in the Pleiades image and 

interferometric coherence. Logging patterns are still visible in the imagery. This 

could explain the slightly lower biomass compared to e.g. Kaneko (1992). 

Nevertheless, the values of the biomass estimation derived from the field 

measurements and LiDAR are in the range of other studies in peat swamp forests of 

south-east Asia. Therefore, it can be concluded that the biomass values used in this 

study are representative and can be used for the purpose of this study. 

5.6 Conclusions 

The results of the study show that TanDEM-X data can provide an important 

contribution to the mapping of the aboveground tree biomass of tropical regions. 

This is especially the case in areas frequently covered by clouds and difficult to 

access, resulting normally in a small number of field measurements. It was shown 

that the up-scaling approach of a few field measurements to LiDAR data and 

ultimately to TanDEM-X for large-scale applications can achieve reliable results. The 

SAR features were not directly linked to the limited number of field measurements 

for model development, but the LiDAR data were used to estimate aboveground 

biomass in order to increase the number of observations and were subsequently 

sampled for model development and error assessment. 
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The investigations were mainly focused on relatively undisturbed tropical peat 

swamp forest and not on other land cover classes with low aboveground biomass. 

As expected, the relationship between biomass and interferometric coherence was 

significantly stronger compared to the amplitude of the high frequency X-band 

system with its 3 cm wavelength. This was demonstrated by a higher R2 of 0.5 

compared to 0.3. Similarly, these results could be confirmed by the application of 

coherence based biomass inversion model and independent validation. The biomass 

estimation using the interferometric coherence was less noisy and included more 

spatial details, indicating forest degradation. Thus, the bistatic interferometric 

coherence can be used to provide at least the geographical distribution and 

dynamics of the biomass, the status of forests and forest degradation, despite of any 

possible error in the direct absolute biomass derivative. The provided wall-to-wall 

biomass stratification can be used as a prerequisite for efficient forest carbon 

inventories. 

These are of key importance for national carbon accounting and REDD+ projects 

to reduce the uncertainty in the estimation of carbon stock changes (GOFC-GOLD 

2012). Therefore, the globally available high resolution interferometric dataset 

from the TanDEM-X mission should be considered as an important contribution for 

stratification or biophysical estimation purposes in REDD+ measurement, reporting 

and verification concepts. 
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Abstract 

Forests have significance as natural carbon storage. Especially tropical peat 

swamp forests play an important role in the global carbon cycle despite their 

relatively small extent. Radar data has proven to be useful to estimate aboveground 

biomass due to their interferometric capability. Therefore, the potential of the 

globally available digital elevation model WorldDEMTM was investigated for 

aboveground biomass estimation in a tropical peat swamp forest. Existing field 

samples were used to up-scale field measured biomass to larger areas via canopy 

height models. These canopy height models were derived from an intermediate 

TanDEM-X DEM (iDEM; as a precursor for WorldDEMTM) and LiDAR measurements. 

The analysis showed high accuracies (RMSE = 5 m) for canopy height models 

based on iDEM and reliable estimation of aboveground biomass. The iDEM canopy 

height model, exclusively based on TanDEM-X, achieved a R2 of 0.2, nonetheless 

resulted in a cross-validated RMSE of 54 t/ha (16 %). This is comparable to other 

aboveground biomass estimations in tropical peat swamp forests. A canopy height 

model retrieved from the difference of iDEM and an accurate LiDAR terrain model 
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achieved a considerably higher correlation with aboveground biomass (R2 = 0.68) 

and low cross-validated RMSE of 24.5 t /ha (7.5 %). High accurate terrain models 

are not available on global scale. Therefore, the results suggest that an approach 

exclusively based on WorldDEMTM could be used in areas where no accurate terrain 

model is available. Even though this will result in moderately lower accuracies it can 

be applied globally consistent. 

6.1 Introduction 

Forests have the ability to sequester carbon and thus are important in the global 

carbon cycle and for climate change mitigation (Werf et al. 2009, Gibbs et al. 2007, 

Olander et al. 2008). Using a conversion factor of approximately 50 % or less the 

stored carbon correlates with the biomass of the trees (Martin & Thomas 2011). 

Therefore, it is a prerequisite to estimate the aboveground biomass and its change 

over time to implement programs like REDD+ (Reducing Emissions from 

Deforestation and Degradation), where the reduction of carbon emission from 

deforestation and degradation and the enhancement of carbon stocks are 

incentivized. The REDD+ program is mainly intended for tropical countries due to 

their large forest cover and the high amount of carbon stored in tropical forests 

(Werf et al. 2009). Tropical peat swamp forests and their soils play a significant role 

in the global carbon cycle because their carbon emissions equal 1/4 of total 

emissions from tropical forests despite their relatively small extent compared to the 

overall tropical forests (Page et al. 2002, Page et al. 2011, Werf et al. 2009, Lawson 

et al. 2014). 

Field measurements can be an important source to estimate aboveground 

biomass. Nevertheless, field measurements have their limits in inaccessible regions 

and/or over large areas. Therefore, it is recommended to use field measurements in 

sampling based schemes in combination with remote sensing due to their ability to 

up-scale the field measurements to a larger scale (Gibbs et al. 2007, Asner et al. 

2009b). According to Koch (2010) exists two basic methods to estimate 

aboveground biomass with remote sensing, which can be called direct or indirect 

methods. Estimating aboveground biomass via direct methods means to relate the 

signal response with the biomass and establish a regression between those 

parameters (Koch 2010). Optical and SAR (Synthetic Aperture Radar) sensors are 

mainly used for the direct method. However, passive optical sensors have limited 

applicability due to the low correlation of the signal with the biomass (Schlerf et al. 

2005, Rahman et al. 2008, Koch 2010). Their estimations are often not accurate 
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enough or saturate at biomass levels even lower than typically found in dense 

tropical forests. 

SAR sensors seem more promising for directly assessing aboveground biomass 

since microwaves can penetrate into the forest canopy and interact with vegetation 

constituents (Balzter 2001, Dobson et al. 1995, Le Toan et al. 1992). Therefore, it is 

found that the SAR signal correlates with the biomass (Dobson et al. 1995, Le Toan 

et al. 1992). This is the case for SAR backscatter as well as interferometric coherence 

(Luckman et al. 2000, Saatchi et al. 1997, Dobson et al. 1995, Le Toan et al. 1992, 

Eriksson et al. 2003, Askne et al. 2003). Compared to C- and X-band, systems with 

longer wavelengths such as L- and P-band are considered more appropriate for 

backscatter based biomass estimations due to the ability to penetrate deeper into 

the canopy (Castro et al. 2003, Kasischke et al. 1997, Luckman et al. 2000, Saatchi et 

al. 1997). However, saturation levels of 100 to 150 t/ha were found for L-band SAR 

backscatter (Kasischke et al. 1997, Luckman et al. 1998, Luckman et al. 2000, 

Mitchard et al. 2011). Even lower saturation levels were reported using shorter 

wavelengths such as C-band (30 to 50 t/ha; Castro et al. 2003, Luckman et al. 2000, 

Gama et al. 2010) or X-band (no correlation to 80 t/ha; Gama et al. 2010, Englhart 

et al. 2011). In contrast, the interferometric coherence from L-, C- and X- band is 

frequently used to estimate growing stock volume or aboveground biomass 

showing higher saturation levels (Fransson et al. 2001, Wagner et al. 2003, Santoro 

et al. 2002, Santoro et al. 2007, Schlund et al. 2015). For example, Schlund et al. 

(2015) estimated a saturation level of approximately 350 t/ha for X-band coherence 

in a tropical peat swamp forest. 

However, indirect methods for aboveground biomass estimation can even 

overcome the saturation limitation. Indirect methods estimate biomass via forest 

parameters like forest height, crown closure and stand type, which are used to 

estimate the biomass (Koch 2010, Lefsky et al. 2005). A frequently used method is 

to produce a digital surface model (DSM) and derive a canopy height model (CHM) 

by subtracting a digital terrain model (DTM). The CHM represents the vegetation 

height as well as the canopy surface (Koch et al. 2006) and is therefore used to 

estimate the biomass in combination with field measured data (Boehm et al. 2013, 

St-Onge et al. 2008, Dandois & Ellis 2013, Solberg et al. 2010, Drake et al. 2002). A 

number of studies proved the capability of LiDAR sensors in this approach (Boehm 

et al. 2013, St-Onge et al. 2008, Dandois & Ellis 2013, Drake et al. 2002). However, 

LiDAR campaigns today are mostly airborne and thus cost-intensive compared to 

space borne systems (Koehl et al. 2011, Koch 2010). Consequently, aboveground 

biomass estimations via LiDAR sensors are applicable mainly for small spatial 

coverage or should be integrated in sampling schemes for large area applications 
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(Asner et al. 2009b). Space borne systems can acquire large areas consistently but 

only with moderate resolutions. Optical as well as SAR sensor can be used to derive 

digital elevation models, allowing the CHM estimation. However, only SAR sensors 

can consistently acquire data over tropical forests because of their weather and 

day/night independence. 

The potential of InSAR (interferometric synthetic aperture radar) for canopy 

height and aboveground biomass estimation has long been recognized. The method 

is based on the assumption that short wavelength SAR will penetrate marginally into 

the canopy. Thus, the resulting digital elevation model can be considered as surface 

model (DSM). SRTM (Shuttle Radar Topography Mission) C- and X-band were 

frequently used to estimate canopy height in combination with an external DTM 

(Sexton et al. 2009, Solberg et al. 2010, Weydahl et al. 2007). Sexton et al. (2009), 

for instance, found a RMSE of 4.7 m and 3.9 m estimating canopy height from SRTM 

and airborne LiDAR. Solberg et al. (2010) used SRTM X-band heights and LiDAR to 

determine a canopy height model, which resulted in a R2 of 0.72 and 0.52 for biomass 

estimations with relative errors of 19 %. In order to yield stable estimates of SRTM 

height Kellndorfer et al. (2004) suggested a minimum mapping unit of 1.8 ha. 

Accuracy of canopy height model derivation with single-pass InSAR of X- and L-band 

from airborne sensors with high spatial resolution was assessed with a RMSE of 3.5 

m in temperate woodlands (Balzter et al. 2007). The potential of X- and P-band 

InSAR for canopy height estimation was evaluated in tropical forests (Rombach & 

Moreira 2003, Gama et al. 2010, Neeff et al. 2005). For instance, Neeff et al. (2005) 

demonstrated the potential of airborne InSAR with X- and P-band for canopy height 

(R2 = 0.83, RMSE = 4.1 m) and biomass estimation (R2 = 0.89, cross-validated RMSE 

= 46.1 t/ha) in the tropical forest of the Amazon basin. 

In contrast to airborne system, the TanDEM-X mission aims to create a global 

digital elevation model (DEM) on basis of interferometric SAR exploitation (Krieger 

et al. 2007). Digital elevation models derived from TanDEM-X InSAR dataset were 

used to estimate canopy height and biomass of boreal forests resulting in a relative 

error of 43 % on plot level and 19 % on stand level (Solberg et al. 2013, Rahlf et al. 

2014, Solberg et al. 2015). The final product, which is called WorldDEMTM, consists 

of multiple TanDEM-X InSAR datasets resulting in specified vertical accuracies of 2 

m (relative) and 4 m (absolute) on 12 m horizontal resolution (Airbus Defence and 

Space 2014). 

However, REDD+ is focusing on tropical environments. Likewise the biomass 

estimation in tropical peatlands is becoming more important since their carbon 

content is not well studied, despite their importance in the global carbon cycle 

(Lawson et al. 2014, Werf et al. 2009). Therefore, the potential of the TanDEM-X 
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mission with its final surface model product called WorldDEMTM is evaluated in a 

tropical peat swamp forest. Canopy height models from WorldDEMTM are calculated 

and used for aboveground biomass estimation. However, main challenge of this 

approach is the availability of a digital terrain model representing the bare earth 

height. A number of studies show different approaches to retrieve canopy height 

from InSAR data via using a LiDAR DTM (Sexton et al. 2009, Solberg et al. 2010, 

Solberg et al. 2013, Rahlf et al. 2014), interferometric SAR exploitation of long 

wavelengths (Balzter et al. 2007, Sexton et al. 2009, Gama et al. 2010) or other data 

sources like topographic maps (Weydahl et al. 2007, Kellndorfer et al. 2004, Hyde et 

al. 2006). Therefore, the derivation of a canopy height model using the X-band 

elevation model and an airborne LiDAR DTM is evaluated in this study. 

Furthermore, a digital terrain model is extracted via interpolation and manual 

processing from the WorldDEMTM. The accuracy and potential of WorldDEMTM for 

the retrieval of the canopy height model is evaluated and compared to LiDAR. 

Finally, the different canopy height models are used to estimate aboveground 

biomass via correlation with field measurements in a tropical peat swamp forest. 

6.2 Study area 

The study area is located in Central Kalimantan and is about 60 km west of the 

provincial capital Palangkaraya. In general, the climate is humid tropic divided into 

an averaged dry season from June to September and a wet season from October to 

May (Jauhiainen et al. 2005). The study area exhibits a flat terrain and is covered by 

tropical peat swamp forest, which is limited through the Kapuas River in the west 

(Fig. 6.1). 
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Fig. 6.1: Location of study area in Central Kalimantan, Indonesia (left) and iDEM of 

study area with location of field plots, LiDAR transect (grey) and profile 
from figure 2 and 6 (black line; right) 

Tropical peat swamp forests differ significantly from tropical dryland forests 

(Lawson et al. 2014). Peat lands develop usually in low drainage areas with a high 

water table almost throughout the whole year resulting in a deficit of nutrients and 

accumulation of organic material (Phillips 1998, Page et al. 1999, Hooijer et al. 2010, 

Lawson et al. 2014). The study area has a convex topography, which results in a 

dome shaped terrain, visible in the digital terrain models (Fig. 6.2). This dome shape 

is typical for many peat lands (Phillips 1998). 

The largest peat layer is at the top of the peat dome with decreasing peat thickness 

towards the edge of the dome (Sorensen 1993, Phillips 1998, Page et al. 1999). The 

 

Fig. 6.2: Profile of LiDAR as well as iDEM DSM and DTM over peat dome (from 

west to east) with location of field transects 

nutrients are elutriated from the top and thus the nutrient level decreases from the 

edges towards the top of the peat dome (Phillips 1998, Sorensen 1993, Page et al. 

1999). This nutrient distribution results in a typical species composition and forest 

structure. Forests with high trees up to 35 m and high biomass are located towards 

the edge of the peat dome close to the river (Fig. 6.2, Fig. 6.3). The height and 

biomass of the trees decreases towards the top of the peat dome, whereas the tree 

density increases (Fig. 6.2, Fig. 6.3, Sorensen 1993, Page et al. 1999). Physiognomic 
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and structural profiles were created from field measurements (see Section 6.3.3) 

showing the transition from tall trees to smaller and thin trees, whereas increase in 

number of trees within the field transect. Field plots (a) to (d) are heterogeneous 

with dominating large trees resulting in high biomass, whereas (j) to (p) exhibit 

small trees with a homogenous height (Fig. 6.3). 

6.3 Data description 

6.3.1 Interferometric height models 

The potential of a globally available digital elevation model based on interferometric 

estimations was evaluated. This digital elevation model was created by using a close 

formation of the two German SAR satellites, TerraSAR-X and TanDEM-X. Both SAR 

sensors of the TanDEM-X mission acquired interferometric data of the 
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Fig. 6.3: Physiognomic - structural profiles of the 16 field plots allocated along the 
transect 

entire land mass several times between 2010 and 2014. Both sensors are able to 

transmit the electromagnetic wave with a phased-array X-band antenna having a 

carrier frequency of 9.65 GHz (Pitz & Miller 2010), corresponding to a wavelength 

of ∼3.1 cm. The data for the creation of the global digital elevation model were 

acquired in the horizontal polarization (HH) using the so-called bistatic acquisition 

in StripMap mode (i.e. one satellite transmits the SAR signal and both receive the 

signal simultaneously from slightly different orbit positions resulting in negligible 

temporal decorrelation effects). 
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However, it is worth noting that the interferometric exploitation is a demanding 

task in dense tropical forests due to higher volume decorrelation compared to other 

land cover with low volume scattering or even bare soil. Therefore, for this 

investigation WorldDEMTM data was not yet available in the study area, as the 

processing at present focuses first on temperate regions. Nevertheless, a TanDEM-

X intermediate DEM (iDEM) was available for the test site in Central Kalimantan in 

order to assess the potential of the WorldDEMTM coming soon. The iDEM was 

created using only one baseline configuration out of several interferometric 

acquisitions of the mission’s first year. The final WorldDEMTM will be created out of 

multiple acquisitions and baseline configurations in order to fulfill the specified 

vertical accuracy (Krieger et al. 2007, Airbus Defence and Space 2014). Thus the 

accuracy of this intermediate product (iDEM) may be lower than the WorldDEMTM. 

However, it can be argued that the assessment of its potential for aboveground 

biomass estimations is already useful with the iDEM. This is due to the similar data 

source and processing differing only in the multiple-baseline phase unwrapping, 

affecting mainly mountainous regions (Wessel et al. 2013). The iDEM tile used in 

this study was created with TanDEM-X acquisitions from December 21, 2010 to 

January 15, 2012 covering a 1◦  by 1◦  cell. In a semi-automated process a digital 

terrain model representing the bare earth terrain was created on basis of the iDEM. 

Firstly, objects were delineated and their height estimated. Secondly, this estimated 

height was subtracted from the respective objects. Finally, small objects were 

removed and the terrain height interpolated. Both interferometric height models 

had a posting of about 12 m (0.4” by 0.4”, Wessel et al. 2013, Airbus Defence and 

Space 2014). Since the iDEM is an intermediate product its accuracy as well as the 

accuracy of the derived DTM was not specified in the product description. In 

contrast, the final WorldDEMTM is specified with an absolute vertical accuracy of 4 

m and a relative vertical accuracy of 2 m at slopes with ≤ 20 % and 4 m at slopes 

with > 20 %, respectively (Airbus Defence and Space 2014). 

6.3.2 LiDAR height models 

Full-waveform LiDAR data were acquired on August 05, 2007 on a sunny and 

cloudfree day with a Riegl LMS-Q560 instrument (Table 6.1). The Riegl LMS-Q560 

instrument was mounted on a helicopter and flown in an altitude of 500 m above 

ground. The acquisition date was in the dry season in order to avoid inaccurate 

derivation of the DTM due to high water levels on the ground. The laser beams were 

classified with a terrain-adaptive bare earth algorithm into ground and over ground 

classes. Delaunay triangulation was utilized in order to create a triangular irregular 

network (TIN), which was the basis for the extraction of square grid pixels with a 
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linear interpolation (Boehm et al. 2013, Liesenberg et al. 2013). The DTM were 

extracted from the DSM by an IDL software package used by company Milan (Boehm 

et al. 2013). The final dataset had a horizontal resolution of half meter and a vertical 

resolution of 0.15 m. The LiDAR dataset covered about 34 km2 of the iDEM. 

Tab. 6.1: Properties of the airborne LiDAR system LMS-Q560 (Riegl) 

Property Value 

Scan angle ±30◦  

Swath width ∼500 m 

Scan frequency 66 to 100 kHz 

Vertical laser beam accuracy ≤0.1 m 

Horizontal laser beam accuracy ≤0.5 m (for x- & y-direction) 

Laser beam (mrad) 0.5 (footprint up to 30 cm) 

Laser wavelength 1.5 µm (near-infrared) 

Point density 1.4 points/m2 

6.3.3 Field data 

Field measurements were conducted in 2013 and 2014. A transect along west-east 

direction in the study area covering the whole peat dome from riverine forest to low 

pole forest were used to sample field plots systematically every kilometer (Fig. 6.1). 

Hence, a large range of aboveground tree biomass values and variability of 

vegetation zones of a tropical peat swamp forest with different vertical structures 

were covered despite the difficult accessibility of the area. In total, 16 sample plots 

with a size of 50 m by 20 m were measured. The small size of field plots was chosen 

assuming no drastic change of the forest within the length of the plots in order to 

sample more field plots in this peat swamp forest, which is quite difficult to assess 

on ground. All field plots were located with GPS. Within a plot all trees with a 

diameter at breast height (dbh) larger than 10 cm were measured and tree species 

recorded (Table 6.2). 

In total, 16 field plots with tree measurements were located within iDEM and 13 

within LiDAR coverage. The field measurements covered a range of aboveground 

biomass between 250 t/ha and 450 t/ha. The aboveground biomass values were 

calculated by allometric equations as described in Section 6.4.2. A clinometer was 

used for the tree height measurements. The stems of the measured peat swamp 

forest trees were relatively thin (in average 14.4 cm; Tab. 6.2) and most of them 

were regularly shaped. Irregular cross sections of stems were not handled 

individually. 
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Tab. 6.2: Field measurements and according mean, minimum and maximum of all 

measured trees 

Measurement Mean Minimum Maximum 

Tree height (in m) 15.6 5.3 m 37.8 m 

Height of first green branch (in m) 9.6 1.5 26.9 

DBH (in cm) 14.4 10 63.3 

Average number of trees/ha 1329.4 - - 

6.4 Methods 

6.4.1 Verification of height models 

The accuracy of the iDEM and the derived DTM was assessed by comparison with 

the respective LiDAR DSM and DTM. For this purpose, the LiDAR elevation models 

were resampled to similar pixel-size as the iDEM (12 m). Different canopy height 

models were calculated by subtracting the LiDAR DTM from LiDAR DSM 

(CHMLiDAR), the LiDAR DTM from iDEM (CHMiDEM/LiDAR) as well as the iDEM from 

iDEM DTM (CHMiDEM; Table 6.3). 

Tab. 6.3: Overview of available canopy height models 

Canopy 

height model 
Input DSM Input DTM 

Original spatial 

resolution 

Number of 

used field 

transects 

CHMiDEM 
iDEM DSM iDEM DTM 12 m 16 

CHMiDEM/LiDAR iDEM DSM LiDAR DTM 12 m 13 

CHMLiDAR LiDAR DSM LiDAR DTM 0.5 m 13 

In order to evaluate the different height models quantitatively, a statistical 

analysis was carried out using statistical quality criterions on pixel basis. The root 

mean square error (RMSE) and linear error of 90 % (LE 90) were used as absolute 

accuracy measures. The RMSE was calculated with the following formula: 

 (in %) =  (6.1) 

The LE 90 is a commonly used criterion to evaluate a DEM in vertical dimensions. 

This value describes the vertical distance in which 90 % of the control points and 

corresponding model values should be found from each other. The mean error (ME), 

standard error (SE), and a ratio of both errors (k) were used to calculate the LE 90: 
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  (6.2) 

  (6.3) 

 

 LE90 = ME + (k ∗ SE) (6.5) 

The relative volume error (V Erel) was calculated in order to estimate the 

systematic over- or underestimation of the model: 

  (6.6) 

Positive values indicate a systematic underestimation of the model versus the 

reference whereas negative values indicate a systematic overestimation of the 

model against the reference. Additionally the coefficient of determination (R2) was 

calculated as follows: 

  (6.7) 

, where yi is the actual value of i and ˆyi the predicted value of i, and ¯y is the mean 

of actual values. The iDEM DSM heights were hardly comparable to LiDAR DSM 

heights considering differing penetration depths of the used signals. Therefore, the 

accuracy of the DSM was assessed over ground cover types with and without 

vegetation. Areas without vegetation cover were delineated assuming no 

penetration effects where the LiDAR CHM was below 2 m. In addition, the CHMiDEM 

as well CHMiDEM/LiDAR were verified against CHMLiDAR in order to assess the error 

propagation into canopy height models for biomass estimation. 

6.4.2 Biomass estimation & verification 

The aboveground tree biomass density in tons per hectare for each field plot was 

calculated using different allometric equations based on stand tables and volume 

data. Lawson et al. (2014) suggested that standard allometric equations have to be 

tested in peat forests since they were not developed for peat forests. Nevertheless, 

the choice was in favor of global or pan-tropical models (Brown & Lugo 1992, Brown 

et al. 1989, Chave et al. 2005, Hajnsek & Hoekman 2005, Chave et al. 2014), because 
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these are based on a large number of destructive measurements (Brown & Iverson 

1992, Brown & Lugo 1992, Brown et al. 1989, Chave et al. 2005, Reyes et al. 1992, 

Manuri et al. 2014). Regional or local models exhibit a higher risk of biased 

predictions due to the small sample size (Chave et al. 2005, Manuri et al. 2014). In 

total, nine different approaches for biomass estimation were compared. The 

resulting aboveground biomass values differed substantially. The mean value of the 

different models ranged between 129 t/ha to 340 t/ha. Therefore, a comparison 

with other studies in peat swamp forests was conducted and the equation which 

resulted in similar aboveground biomass values compared to literature values was 

finally used (see Section 6.6.3). The aboveground tree biomass density used as field 

reference for each field plot was calculated according to following allometric 

equations (Brown & Lugo 1992, Hajnsek & Hoekman 2005): 

 biomass = vob ∗ wd ∗ bef(t/ha) (6.8) 

where vob is the volume over bark, wd is volume-weighted average wood density 

which was determined as 0.57 t/m3 representing the arithmetic mean for Asian 

forests (Reyes et al. 1992). The bef is the biomass expansion factor in order to 

include leaves, twigs, and branches. The volume over bark was calculated as the sum 

of bole volume (bv): 

bole volume = basal area ∗ total tree height ∗ shape factor (6.9) with a 

shape factor of 0.7. The biomass expansion factor for bole volume equal or larger 

than 190 t/ha was determined as 1.74. The biomass expansion factor for a bole 

volume below 190 t/ha was calculated (Brown & Lugo 1992): 

 bef = exp(3.213 − 0.506 ∗ ln(bv)) (6.10) 

Mean values of the different canopy height models were extracted for each field 

plot. Each 0.1 ha grid cell contained about 10 pixels with a pixel spacing of 12 m for 

iDEM models. It can be assumed that this yielded stable results due to the high 

accuracy specified for WorldDEMTM, which was also achieved in this iDEM sample 

(see Section 6.5.1). The aboveground biomass value for each plot was correlated 

with the corresponding mean value of the CHM from iDEM (CHMiDEM as well as 

CHMiDEM/LiDAR) and CHMLiDAR. A linear model via least squares regression fitting 

(Seber & Lee 2003) was applied for the different canopy height models with the 

response variable aboveground biomass. However, not all field plots were located 

within the LiDAR dataset. Therefore, those field plots were not used for any model 
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based on LiDAR DTM or DSM resulting in a smaller number of field observation with 

13 samples (Table 6.3). 

An explicit validation data set was not available due the difficult accessibility of 

the area resulting in the low number of field plots. Therefore, a k-fold 

crossvalidation was applied in order to estimate the goodness of the models 

(Breiman et al. 1984, Kohavi 1995), where k was set to 10. The 10-fold cross-

validation was frequently used and recommended for such purposes (Molinaro et 

al. 2005, Kohavi 1995, Breiman & Spector 1992, Breiman 1996). 

6.5 Results 

6.5.1 Goodness of the height models 

The iDEM DSM achieved a RMSE of 0.74 m and a LE90 of 0.79 m compared to 

LiDAR measurements in areas without vegetation cover without any significant 

overor underestimation (VErel = 0.1 %, Fig. 6.5). Thus the accuracy of this iDEM even 

exceeded the value specified for WorldDEMTM. The main topologic features were 

clearly visible in both models. The forest edge in the western part of the height 

models had a similar shape and extent. The canal from north to south was also 

visible in both DSMs (Fig. 6.4). When including areas with vegetation cover, the 

accuracy decreased to a RMSE of 5.1 m and a LE90 of 7.48 m. The observed VErel of 

-3 %. revealed a small systematic overestimation. The investigations confirmed that 

the value variations were much smaller in the iDEM DSM compared to LiDAR DSM 

(Fig. 6.2, Fig. 6.5). 

In contrast to the DSM, the variations in the iDEM DTM were larger compared to 

LiDAR DTM. The iDEM DTM represented the terrain topography in general, with 

minor overestimations where taller trees and underestimations where smaller trees 

were present (Fig. 6.2). However, the iDEM DTM achieved also very high accuracies 

even underneath forest cover with a RMSE of 1.39 m and LE90 of 1.49 m (Fig. 6.5). 

The iDEM DTM showed no systematic over- or underestimation with a relative 

volume error of 0.1 %. 

Overall, the iDEM DSM ranged between 47 m and 79 m, whereas the 

corresponding DTM had a value range of 46 m and 62 m. The LiDAR DTM suggested 

a similar value range of about 47 m and 65 m. This confirmed the flatness of the area. 

The LiDAR DSM resulted in a similar minimum value of 47 m, but had a higher 

maximum of about 90 m. As expected, the errors from both models propagated to 

the CHMiDEM. Nevertheless, the canopy height model derived exclusively from 
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Fig. 6.4: Comparison of iDEM DSM (and corresponding shaded relief; top) & LiDAR 
DSM (and corresponding shaded relief, bottom) 

Fig. 6.5: Color density representation of scatterplots from iDEM DSM (left) and iDEM 
DTM (right) validation under vegetation cover (top) and without 
vegetation cover (bottom) 

iDEM achieved a moderate RMSE of 5.2 m and LE90 of 7.6. The lower variations of 

the DSM and the overestimation of DTM at taller trees and underestimation at 

smaller trees resulted in a lower spatial variability of the forest canopy height 

compared to LiDAR. The CHMiDEM were homogenous over all forest areas, whereas 
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the CHMLiDAR indicated trends of lower and higher vegetation. This was clearly 

visible in the east of the height profile (Fig. 6.6 top). In contrast, the CHMiDEM/LiDAR 

represented differences in vegetation height quite well compared to CHMLiDAR (Fig. 

6.6 lower part). Nevertheless, CHMiDEM/LiDAR achieved similar accuracies compared 

to CHMiDEM with a RMSE of 5.1 m and LE90 7.5 m. The value range of the CHMiDEM 

was substantially lower compared to LiDAR. The CHM based on iDEM had a range 

from 0 m to 25 m, whereas the CHMLiDAR ranged between 0 m and 37 m. 

 

Fig. 6.6: Profile of CHMLiDAR (black) and two different iDEM CHMs (CHMiDEM = up, 

CHMiDEM/LiDAR = low) 

6.5.2 Biomass estimation 

The CHMiDEM/LiDAR and field measured aboveground biomass showed a high 

coefficient of determination with 0.68 (Fig. 6.7). The CHMiDEM resulted in a 

substantially lower R2 of 0.18. The CHMiDEM ranged between 12 m and 14 m for the 
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field plots, whereas the biomass ranged between 258 t/ha and 440 t/ha. In contrast, 

the 

CHMiDEM/LiDAR had a larger range of 9.9 m and 14.8 m compared to the CHMiDEM, 

although the derived biomass range was almost similar (258 t/ha - 410 t/ha). The 

CHMLiDAR ranged between 6.3 m and 12.9 m and resulted in a R2 of 0.75 (Fig. 6.7). 

 

Fig. 6.7: Regression of canopy height models versus aboveground biomass 

Despite the low coefficient of determination for the CHMiDEM, the 10-fold-

crossvalidation resulted in a moderate average RMSE of 54.1 t/ha representing 16.3 

% of the mean biomass. As expected due to the substantial higher R2 the other CHMs 

resulted in substantially lower average RMSEs of 24.5 t/a (7.5 %; CHMiDEM/LiDAR) and 

21.3 t/ha (6.5 %, CHMLiDAR), respectively. The uniform CHMiDEM resulted in weak 

biomass differences along the transect, whereas the CHMiDEM/LiDAR and CHMLiDAR 

biomass estimation clearly indicated high biomass in the west close to the river and 

lower biomass in the east and at the top of the peat dome (Fig. 6.8). However, the 

range of all biomass estimation was quite similar in forested areas with about 200 

t/ha and 500 t/ha. 

 

Fig. 6.8: Comparison of aboveground biomass estimation from CHMiDEM, 

CHMiDEM/LiDAR & CHMLiDAR 
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6.6 Discussion 

6.6.1 Height accuracy and implications for canopy height models 

The results indicated a high accuracy for the iDEM DSM for surfaces without forest 

cover, which is expected to further improve with the availability of WorldDEMTM. 

Thus the iDEM DSM already fulfilled the height accuracy specified for the 

WorldDEMTM product (Airbus Defence and Space 2014). However, the surface 

height variability in areas with vegetation cover of the iDEM DSM was small 

compared to LiDAR DSM. These differences have multiple reasons. Firstly, the 

acquisition geometry of an InSAR and LiDAR system is different. The iDEM was 

acquired with a space borne SAR interferometer, which acquired the data in 

sidelooking geometry. This results in a lower probability to detect the ground or 

smaller trees in openings of the forest canopy compared to a nadir looking system 

like LiDAR. Secondly, the resolution of both systems is different. LiDAR acquired the 

data with one meter resolution. The iDEM was derived from TanDEM-X StripMap 

data with a resolution of about 3 m and was posted to 12 m (Wessel et al. 2013). 

Thirdly, short wavelength of X-band interacts mainly with constituents of the upper 

canopy resulting in a low penetration depth (Solberg et al. 2010, Dobson et al. 1995). 

In addition, the measured surface height, often called InSAR height, is a combination 

of the height and density of the forest in X-band (Treuhaft & Siqueira 2004, Askne et 

al. 2013). Differences in signal sampling resolution and averaging for noise 

reduction in combination with side-looking geometry and low penetration depth 

explain the lower amplitude and variation of the iDEM compared to LiDAR. In 

contrast, LiDAR acquired the data with a high resolution of about 0.5 m mainly in 

nadir from a helicopter resulting in a higher probability to detect the height of 

smaller trees and even openings in the forest canopy. This could explain the small 

overestimation of iDEM compared to LiDAR despite the penetration depth of X-band 

InSAR. 

Wallington et al. (2004) found low accuracies for DTM generated from X-band 

InSAR interpolation, resulting in low accuracies in the canopy height model (RMSE 

= 23.5 m). In contrast, the iDEM DTM achieved high accuracies with and without 

vegetation cover fulfilling the WorldDEMTM specifications. This suggests that the 

iDEM DTM can be used for canopy height model calculation. Nevertheless, the 

reconstruction and quality of the terrain model largely depends on ground visibility 

and complexity of the terrain. Generally, the actual terrain height values are lowest 

where the highest vegetation existed, whereas highest terrain values are present 

where the lowest vegetation occurred. The iDEM DTM did not represent the shape 

of the terrain in areas where bare earth within the forest was not visible. Therefore, 
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the DTM follows the canopy surface thus resulting in an almost constant canopy 

height model. The inaccuracies of iDEM DSM and iDEM DTM propagated into the 

canopy height estimation. The CHMiDEM resulted in a uniform forest canopy, whereas 

the LiDAR showed trends of higher vegetation in the west and lower vegetation on 

top of the peat dome and in the east of the top. Therefore, the canopy surface is 

uniform, but not the terrain underneath. Nevertheless, the RMSE of the CHMiDEM is 

low and similar to other canopy height model estimations with InSAR (Neeff et al. 

2005, Balzter et al. 2007, Rombach & Moreira 2003, Hyde et al. 2006). As expected, 

canopy height models with combining InSAR surface height and LiDAR terrain 

height achieved higher accuracies (Sexton et al. 2009). Nevertheless, the CHMiDEM 

based on a single data source achieved comparable accuracies in dense tropical 

forest. However, the derivation of the WorldDEM DTM still is a limitation, which can 

potentially result in inaccuracies especially in difficult terrain and closed forests. 

6.6.2 Biomass estimation with canopy height models 

The biomass estimations resulted in relative RMSE of 16 % for TanDEM-X based 

CHMiDEM compared to 6.5 % for LiDAR based CHMLiDAR and 7.5 % for the combination 

of both sources (CHMiDEM/LiDAR). Since the CHMLiDAR and CHMiDEM/LiDAR resulted in a 

similar RMSE, it could be argued that the iDEM DSM is suitable to estimate 

aboveground biomass with high accuracy in cases where an accurate terrain model 

exists. However, a highly accurate DTM is often not available on larger scales. In this 

case, the iDEM DTM is a useful option to produce a CHM and estimate the 

aboveground biomass. This has impact on the accuracy, but could be still sufficient 

for biomass estimations (RMSE=16 %) as indicated by this study. 

It was previously found that LiDAR compared to InSAR resulted in significantly 

lower RMSE in biomass estimations in boreal forests or temperate forests (Rahlf et 

al. 2014, Naesset et al. 2011, Hyde et al. 2006). This was not confirmed by this study 

in tropical forests showing similar strength of correlation to biomass for 

CHMiDEM/LiDAR and CHMLiDAR. The height and density of the forest influence the 

resulting surface height of X-band InSAR estimate, whereas both parameters explain 

the biomass variation to a large extent (Askne et al. 2013, Treuhaft & Siqueira 2004, 

Solberg et al. 2010). Therefore, it could be argued that the InSAR surface height 

estimation can achieve comparable accuracies to LiDAR. The iDEM as precursor for 

WorldDEMTM performed similar to previously investigated biomass estimations in 

tropical forests based on airborne InSAR canopy height models (Neeff et al. 2005, 

Gama et al. 2010, Treuhaft et al. 2009). For instance, Treuhaft et al. (2009) estimated 

the aboveground biomass of tropical forests in Costa Rica resulting in an accuracy 

of 30 %, whereas 14 - 19 % were attributed to InSAR errors. Neeff et al. (2005) 



6 WorldDEMTM data for canopy height and aboveground biomass retrieval in a 

124tropical peat swamp forest 
reported a cross-validated RMSE of 46.1 t/ha on basis of an InSAR CHM and P-band 

backscatter, whereas Gama et al. 2010 reported a RMSE of 16 t/ha (20 % of mean 

biomass). 

Biomass estimations in tropical peat swamp forest were mainly based on 

combination of field measurements and LiDAR data (Boehm et al. 2013, 

Kronseder et al. 2012, Englhart et al. 2013, Ballhorn et al. 2011). Kronseder et al. 

(2012) estimated the biomass via LiDAR with a RMSE of 95 t/ha (41 %) in the 

tropical peat swamp forest of the Sebangau Catchment. Boehm et al. (2013) and 

Englhart et al. (2013) achieved accuracies in their biomass estimation of 20 % and 

50 t/ha with LiDAR in peat swamp forests. SAR data was also frequently used to 

estimate biomass of tropical peat swamp forests (Englhart et al. 2011, Morel et al. 

2011, Schlund et al. 2015). However, SAR backscatter based methods suffer 

mostly from saturation effects. Morel et al. (2011) suggested a saturation at 88 

t/ha for L-band from ALOS PALSAR, whereas Englhart et al. (2011) reported a 

saturation of 80 t/ha for X-band. The biomass of the investigated area is largely 

exceeding this saturation limit for most of the forest area. Exploiting the phase of 

the SAR signal using the coherence increased the saturation level and accuracy 

(Schlund et al. 2015). The measurement of the canopy height for estimating 

biomass could overcome the current saturation limitations for short wavelength 

SAR systems. 

6.6.3 Up-scaling of biomass measurements to LiDAR dataset 

Only a few field measurements are necessary to transform LiDAR metrics to biomass 

(Asner et al. 2009b). A prerequisite of this assumption is the distribution of the field 

measurements over the entire range of biomass. The biomass of the used field plots 

ranged from 250 t/ha to 440 t/ha. The field measurements were sampled 

systematically on a transect over the peat dome. Therefore, it could be assumed that 

the whole range of biomass was covered despite the difficult terrain accessibility. 

Nevertheless, more ground reference could potentially improve the estimation of 

biomass and its uncertainties using an explicit validation data set. In general, studies 

in tropical peat swamp forests need more field measured data to increase 

confidentiality. However, as explained before this is hardly achievable due to their 

remoteness and frequently high water tables (Lawson et al. 2014, Phillips 1998). 

Additional errors may result from different acquisition dates of field 

measurements and remote sensing data (i.e. the LiDAR dataset 2007 vs. 2014). 

However, the study area is part of a conservation area where the forests are 

relatively undisturbed since the abandonment of the Mega Rice Project in 1999 

(Aldhous 2004). Moreover, investigations showed that the biomass increases only 

marginally in undisturbed peat swamp forests of Central Kalimantan as well as in 

the study area (Boehm et al. 2012, Englhart et al. 2013, Sweda et al. 2012). 
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Therefore, it can be concluded that inconsistencies between the different acquisition 

dates are minimal and may not affect the results substantially. 

GPS localization is also an error source to be considered. However, assuming no 

drastic change of the forest structure within the field plots and sampling the biomass 

to 0.1 ha or coarser minimizes the error of GPS localization inaccuracies. 

Another source of error to be considered is the transformation of field 

measurements to biomass with allometric equations. Lawson et al. (2014) 

suggested pan-tropical equations could not be suitable to apply on tropical peat 

land. This should be tested, but it could be argued that the advantage of using a local 

model with low number of samples will not compensate the potential bias compared 

to pan-tropical equations with large number of samples (Chave et al. 2005, Manuri 

et al. 2014, Lawson et al. 2014). Therefore, several pan-tropical allometric equations 

were tested in order to select the most appropriate for biomass estimation in the 

peat swamp forest investigated. The results of the allometric equations differed 

significantly (see Section 6.4.2) and thus the choice was guided by the goal to attain 

similar values as other studies conducted in peat swamp forests. In addition, 

statistical values of the field measurements were compared to other studies in order 

to achieve comparable results. The statistical distributions of dbh and tree height 

measured in peat swamp forests were similar to other studies (Page et al. 1999, 

Nishimua et al. 2007, Boehm et al. 2013). 

The field measurements resulted in an average biomass of 330 t/ha, whereas the 

range was 250 t/ha to 450 t/ha. The derived biomass is in the order of other studies 

in peat swamp forests of south-east Asia (Table 6.4). Therefore, it can be concluded 

that the biomass values used in this study are representative and can be used for the 

purpose of this study. The differences in those estimates could of course be related 

to the different geographical locations and the associated conditions as well as 

different allometric equations used for biomass calculation. 

Tab. 6.4: Comparison of aboveground biomass values from different studies in 

southeast Asia 

Aboveground 

biomass (in t/ha) 
Area Source 

0-370 

Sebangau national 

park 

(Central Kalimantan) 

Boehm et al. (2013), 

Englhart et al. (2011), 

Kronseder et al. (2012) 

228 

Sebangau national 

park 

(Central Kalimantan) 

Kronseder et al. (2012) 

248-311 
Sebangau national 

park 
Waldes & Page (2002) 
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(Central Kalimantan) 

264-397 South-east Asia Verwer & Meer (2010) 

287-491 Thailand Kaneko (1992) 

359.6±76.4 
Java, Borneo and 

Peninsular Malaysia 

Koh et al. (2011), Koh et al. 
(2012), Murdiyarso et al. 
(2010) 

6.7 Conclusions 

Although based on iDEM precursor data, the results of this study show that 

WorldDEMTM has high potential for estimation of canopy height models and 

aboveground biomass of tropical forests. Due to the global consistency of 

WorldDEMTM and its expected high accuracy, the investigations have shown that up-

scaling from field samples to a canopy height model can achieve reliable accuracies 

for aboveground biomass estimations in tropical forest. WorldDEMTM is especially 

appropriate in remote tropical areas where other means would be either too 

expensive or even not possible. 

The iDEM (especially in combination with an accurate DTM) resulted in a canopy 

height model, showing high correlation with biomass (R2 = 0.68). However, an 

accurate DTM is not always available. The iDEM or WorldDEMTM can be used for 

reconstructing a terrain model, which achieving a high accuracy in relatively flat 

terrain. The combination of iDEM DSM and iDEM DTM resulted in a reliable 

estimation of a canopy height model, with a RMSE of 5 m compared to LiDAR 

reference. This resulted in a moderate cross-validated RMSE for aboveground 

biomass of 54 t/ha (16 %), which is comparable to other studies in tropical peat 

swamp forests based on InSAR or LiDAR biomass estimation. Therefore, it could be 

argued that this solution can be used where no accurate DTM is available resulting 

in lower but still reliable accuracy. The WorldDEMTM will be globally available 

resulting in potential cost-efficient and consistent estimations on a large up to 

worldwide scale compared to LiDAR. 
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7 Discussion & outlook 

After Lawson et al. (2014) active remote sensing systems could be potentially 

successfully used in tropical peat swamp forests, but also in tropical forests in 

general (e.g. Englhart et al. 2011, Le Toan et al. 2011, Treuhaft et al. 2015, De Grandi 

et al. 2015). This was proved in the study on hand with TanDEM-X. It could be shown 

that active bistatic radar remote sensing can support improved mapping of tropical 

peat swamp forest compared to monostatic systems (75 % vs. 85 %). TanDEMX 

achieved comparable or even better results than other classifications in tropical 

(peat swamp) forests. Especially the classification of different forest classes and 

small scale objects were improved compared to other classifications of peat swamp 

forests in Southeast Asia (Wijedasa et al. 2012, Miettinen et al. 2008, Miettinen et al. 

2012). The high accuracy and detection of small scale objects due to the high 

resolution can be beneficial e.g. in a forest fragmentation analysis, being of high 

importance in assessing ecosystem services and the biodiversity of forests (Dong et 

al. 2014, Wijedasa et al. 2012). 

The classification approach tested on TanDEM-X can generally be transferred to 

tropical forests, whereas also comparable or improved results were achieved in this 

study with TanDEM-X in forest classification and degraded forest mapping (Schlund 

et al. 2014a, Schlund et al. 2014b, Santos et al. 2010, Morel et al. 2011, Longepe et 

al. 2011). The potential to differentiate different forest classes and the high 

resolution are the most significant advantages of TanDEM-X. The relationship of 

interferometric coherence and biophysical parameters supports classifications with 

a higher level of detail and accuracy compared to classifications without 

interferometric coherence. Therefore, TanDEM-X has a high potential to be utilized 

in the context of forest mapping and forest degradation monitoring. Another 

advantage is the global availability for the years 2010-2014 (Krieger et al. 2007), 

which could establish a baseline for LULUCF (Land Use, Land-Use Change and 

Forestry) suggested from the IPCC (2003) and in REDD+ MRV concepts. For 

instance, TanDEM-X classifications can be considered as benchmark mapping and 

represent the status quo of land cover. TanDEM-X amplitude and future SAR data 

could then be used in automated change detection algorithms, whereas changes 

within forest land are considered as forest disturbance or deforestation (Poncet et 

al. 2014). 

De Grandi et al. (2015) showed the potential of spatial wavelet analysis with 

Cband data for the differentiation of intact and degraded forest. The necessity to use 

high frequency radar like C- and X-band was stressed in order to use data interacting 

with upper canopy constituents (De Grandi et al. 2015). High resolution such as in 

TanDEM-X could be used also in this analysis and would potentially improve the 



7 Discussion & outlook 137 

differentiation of intact and degraded forest in addition to the inteferometric 

coherence (Schlund et al. 2014a, De Grandi et al. 2015). Such a spatial wavelet 

analysis would increase the usage of amplitude data in classification schemes (De 

Grandi et al. 2015). 

First tests of transferability to other test areas achieved similar promising results 

(e.g. Poncet et al. 2014, Schlund et al. 2014b). Nevertheless, it is worth noting that 

the Mawas study area has a homogenous landscape and does not contain any 

agroforestry plantations. Heterogeneous landscapes and tree plantations resulted 

in confusions and degraded the classification accuracy (Poncet et al. 2014, Schlund 

et al. 2014b). Hierarchical classification and/or synergetic approaches with optical 

data could improve classification results, which is especially the case in 

heterogeneous landscapes (Schlund et al. 2014b). Hame et al. (2013a) suggested a 

multi-stage approach using optical and radar data as well. The analysis was 

examined applying a supervised classification demanding user interaction. But the 

exploration and implementation of automatic or semi-automatic classifications 

should be investigated in the future, as first trials with unsupervised techniques 

achieved promising results. 

The second major part of the study investigated aboveground biomass estimation 

with TanDEM-X. The potential of TanDEM-X was also shown here, whereas again 

the interferometric capabilities of TanDEM-X were most important. Both described 

approaches after Koch (2010) were applied. First, the aboveground biomass was 

directly correlated with backscatter and interferometric coherence. As expected, the 

backscatter correlation was weak (R2 = 0.3, Schlund et al. 2015, Englhart et al. 2011, 

Castro et al. 2003, Gama et al. 2010). This is mainly based on high biomass values in 

this tropical peat swamp forest and low penetration depth of X-band resulting in 

low saturation values (Schlund et al. 2015, Englhart et al. 2011, Gama et al. 2010). 

In contrast, the interferometric coherence achieved higher accuracies in biomass 

estimation (R2 = 0.5 & RMSE=53 t/ha [14 %]) showing similar results to other 

studies using interferometric coherence of C-band in boreal forests (Schlund et al. 

2015, Cartus et al. 2011, Santoro et al. 2002, Santoro et al. 2007). This proofs the 

relationship of volume decorrelation with forest structure and tree height (Schlund 

et al. 2015, Schlund et al. 2013, Kugler et al. 2014) being correlated to the biomass 

(Schlund et al. 2015). The volume decorrelation increases with increasing biomass 

resulting in lower coherence (Schlund et al. 2015, Treuhaft et al. 2015). 

This correlation was investigated with an empirical model and similar 

relationships were observed in other study areas. Treuhaft et al. (2015) estimated 

biomass also with a linear function from TanDEM-X coherence and phase with an 

accuracy of 52 to 62 t/ha (29 % - 35 %) in tropical forests of Brazil. However, 
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empirical models are dependent on training data from field measurements or other 

data sources. Fur- 
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thermore, the exact correlation and resulting model is also dependent on additional 

parameters like baseline, incidence angle, etc. This can limit the transferability of 

the models depending on individual training data. These limitations can be resolved 

partially by using semi-empirical models. However, most semi-empirical models 

also need training data (Askne et al. 2013, Askne & Santoro 2014). For instance, the 

interferometric water-cloud model can be used. However, this model achieved 

comparable or less accuracies compared to the empirical model used (Schlund et al. 

2015, Cartus et al. 2011, Santoro et al. 2002, Santoro et al. 2007, Askne et al. 2013, 

Askne & Santoro 2014). 

Another approach to assess biomass is to estimate other biophysical parameters, 

like tree height or density, and correlate these results with the aboveground 

biomass (Koch 2010). InSAR heights of TanDEM-X were used to estimate vegetation 

height and were correlated with biomass (Schlund et al. without year). The InSAR 

height of a X-band system is assumed to represent a digital surface model on top of 

vegetation. The subtraction of a digital terrain model would result in a canopy height 

model. However, the existence of a DTM is a limiting factor in this approach. 

Different scenarios were analyzed in order to overcome this limitation. As expected 

the derivation of a canopy height model with LiDAR achieved best results, while a 

terrain model out of the TanDEM-X surface model achieved moderate results only 

(Schlund et al. without year). Nevertheless, this dataset is globally available due to 

the TanDEM-X mission objective. This is not the case for LiDAR at present. The 

correlation with the biomass was moderate to high (Schlund et al. without year). It 

is worth noting that error propagation needs to be taken into account. The 

estimation of canopy height may result in errors, which propagates in the biomass 

correlation. The biomass correlation contains errors as well. 

Therefore, the extraction of a DTM could be improved in order to generate more 

accurate height estimations. Alternatively, other data sources like LiDAR or long 

wavelength SAR should be considered (Balzter et al. 2007, Solberg et al. 2010, 

Weydahl et al. 2007, Neeff et al. 2005, Rombach & Moreira 2003). The vegetation 

height is also assessable via semi-empirical models, like the Random Volume over 

Ground (RVoG) model (Kugler et al. 2014, Askne et al. 2013, Askne & Santoro 2014). 

However, certain limitations exist when using TanDEM-X in this model. The RVoG 

was developed for long-wavelength SAR (like L- or P-band) and quadpolarizations 

(Cloude & Papathanassiou 1998, Papathanassiou & Cloude 2001, Hajnsek et al. 

2009, Neumann et al. 2010). Therefore, simplifications have to be applied for 

TanDEM-X. The necessary ground phase is extractable from LiDAR, which results in 

accurate height estimations (Kugler et al. 2014). However, a LiDAR dataset is again 

necessary for this approach in order to achieve accurate results especially in tropical 
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forests (Kugler et al. 2014). Furthermore, error propagation in biomass estimation 

exists also in this method, since first the vegetation height is assessed, which is then 

correlated with the biomass (Askne et al. 2013). Such error propagation should be 

investigated in further studies, especially in the tropics. 

In general, different error sources exist in the biomass estimation with remote 

sensing. The reference measurement needs high location accuracy and must fit the 

remote sensing data in their location and timing. Furthermore, the aboveground 

biomass is mostly estimated via allometric equations. Different equations exist, 

which contains errors and may not fit heterogeneous tropical forest and tropical 

peat swamp forest in particular (Lawson et al. 2014). Biomass estimations of other 

studies in tropical peat swamp forests were compared in order to assess the 

biomass estimations (Schlund et al. 2015, Boehm et al. 2013, Englhart et al. 2011, 

Kronseder et al. 2012, Koh et al. 2011, Koh et al. 2012, Murdiyarso et al. 2010). The 

values of aboveground biomass in this study are in the range of other studies and 

thus were considered as representative for such an analysis. 

In contrast to backscatter of TanDEM-X, the phase information of TanDEMX 

provides biomass estimation via interferometric coherence and interferometric 

height. This suggests that the phase information of X-band is more sensitive and 

correlated to forest structure (e.g. aboveground biomass) compared to the 

backscatter. The interferometric coherence and height can be combined. For 

instance, Treuhaft et al. (2015) combined phase height with coherence from 

TanDEM-X in order to estimate biomass in Tapajos National Forest, Brazil. The 

combination of both estimations can potentially improve the biomass assessment 

substantially. Similar findings were observed when combining biomass estimation 

with intensity and forest height estimation with polarimetric SAR interfometry of P-

band data (Le Toan et al. 2011, Dubois-Fernandez et al. 2012). Le Toan et al. (2011) 

emphasized the complementarity of both measurements compensating the 

drawbacks of the other. 

In addition, TanDEM-X biomass estimation via coherence and/or height can be 

used synergetically with other sensors and wavelengths. The combination of short 

and long wavelength backscatter did not substantially improve results (Naidoo et 

al. 2015, Luckman et al. 2000). But it can be expected that the combination of short 

wavelength interferometric and long wavelength backscatter information improves 

biomass estimations substantially. It is expected that the combination of optical data 

and TanDEM-X would not potentially improve biomass estimation since optical data 

is generally low correlated with biomass (Koch 2010). For instance, Hame et al. 

(2013b) did not observe improvements of biomass estimation by combining optical 

data with ALOS PALSAR. 
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8 Conclusions 

The results show that TanDEM-X has a high potential as a highly valuable data 

source for forestry applications. Therefore, TanDEM-X could be recommended for 

REDD+ MRV systems. This is especially relevant in tropical countries where 

frequent cloud cover hinders the application of optical data resulting in spatially or 

timely inconsistent coverages and analysis. 

TanDEM-X analysis is globally and consistently applicable. The bistatic properties 

of TanDEM-X mission show the most significant advantages. Interferometric 

coherence was the most significant of all tested features in land cover classifications. 

The classification results improved by 10 % with coherence, whereas the 

differentiation of different forest classes as well as forest/non-forest benefited from 

the coherence. The amplitudes and especially bistatic amplitude and ratio of 

monostatic and bistatic amplitude resulted in lower significance for classifications. 

Therefore, the incidence angle difference of monostatic and bistatic sensor is not 

large enough to measure different backscatter properties with the amplitude and 

did not result in higher information content. 

The interferometric coherence exhibits information about forest structure due to 

the volume decorrelation. This is beneficial for classification purposes. In addition, 

the correlation of coherence with aboveground biomass was analyzed. A LiDAR 

dataset was used in order to up-scale the field estimated biomass and thus increased 

the number of observations substantially. The coherence correlated in that study 

with the aboveground forest biomass due to volume decorrelation (R2 = 0.5). The 

volume decorrelation increased with the biomass and thus the coherence 

decreased. The amplitude resulted in lower correlations and accuracies (R2 = 0.3). 

This was expected due to the short wavelength and subsequently low saturation 

value. In contrast, the phase information seemed more sensitive to biomass and thus 

the interferometric coherence achieved more accurate and less noisy results with 

more spatial detail for land cover classifications and biomass estimations compared 

to amplitude data. This is of high importance in forest applications as well as REDD+ 

MRV and is also beneficial for forest degradation monitoring. 

The interferometric height, represented as iDEM, achieved an even higher 

correlation with the aboveground biomass (R2 = 0.68) compared to coherence. The 

combination with an accurate digital terrain model resulted in high accuracies of 

biomass estimation (RMSE=24 t/ha [7.5 %]). However, a digital terrain model is not 

globally, consistently available. But a digital terrain model can be extracted 
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8 Conclusions 

from TanDEM-X height models directly (in this case iDEM) as well. This did not 

represent the actual terrain height perfectly and resulted, in this study, in 

homogenous canopy heights. This propagated to a biomass estimation with 

overestimation in actual lower biomass and underestimation in actual higher 

biomass areas. Nevertheless, the cross-validated RMSE using this terrain model for 

biomass estimations was moderate with 54 t/ha (16 %). This dataset can be applied 

globally in a consistent way in contrast to LiDAR datasets. 

These results indicate that TanDEM-X is a valuable and consistent data source for 

mapping and monitoring applications in tropical forests and beyond. Especially the 

interferometric information in form of coherence and height are promising. The 

interferometric coherence can be used for accurate land cover mapping and 

estimation of aboveground biomass. The interferometric height is valuable for 

biomass estimations as well. TanDEM-X data can thus be used as a starting point to 

deliver spatial distribution of biomass e.g. for stratification purposes. In the context 

of REDD+, this information supports measurement, verification, reporting (MRV) 

and forest degradation monitoring systems.  
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