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Abstract

We consider a rarefied gas mixture confined between two parallel walls consisting

of vapor passing through the walls (evaporation, condensation), and a noncondens-

able which is totally reflected at the walls. Under a diffusive scaling we derive a

macroscopic limit in which the noncondensable forms a well-defined boundary layer

slowing down the vapor flow. The results differ substantially from others obtained

with asymptotic analysis strategies. Our calculations are based on discrete velocity

models.
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1 Introduction

Consider a gas mixture composed of two species confined between two parallel walls.

Species A (”vapour”) is emitted according to a prescribed pressure and adsorbed at the

boundaries. Species B (”noncondensable”) is totally reflected when hitting the walls. If

there is a pressure decay from the wall at x = a to the wall at x = b, then a flow of vapour

is induced from a to b. At the same time one expects the noncondensable to follow the

flow and form a boundary layer at b which slows down the vapor flow.

This problem has been studied in a couple of papers in recent years and in particular the

fluid dynamic limit was of interest (see, e.g. [11, 1]). It turned out that the application of

the standard asymptotic analysis for the fluid dynamic limit leads to a curious situation.

In the limit both A and B are governed by the same Maxwellian with an infinitesimally

small bulk velocity v, (in fact, v = 0) and a thin boundary layer of noncondensable

is formed at b completely suppressing the vapour flow. This phenomenon contradicts

physical intuition and is known in the literature as ghost effect [10].

In the present work we propose a different macroscopic limit, based on a scaling (“diffusive

scaling”) which in the past has been applied in a variety of problems for the derivation of

diffusion phenomena (see, e.g. [2, 5, 6]).It turns out that this kind of scaling leads in the

limit to a boundary layer of well-defined thickness for the noncondensable which slows

down but does not stop the vapor flow. The results are based on a careful investigation of

the governing transport operator in the presence of a small drift. In case of zero drift, its

nullspace has geometric dimension one (related to mass flow conservation) but algebraic

multiplicity two. At the emergence of a drift, the two-dimensional nullspace splits up into

two simple eigenspaces giving rise to a new nonzero eigenvalue.

We investigate the problem in the framework of Discrete Velocity Models (DVM). We

consider the steady spatially one-dimensional problem in the simplest possible case of

mechanically identical species A and B. This means that both are driven by the same

Boltzmann collision operator. The only difference is the wall interaction. Denote by g

the distribution of A and by h that of B. Then the sum f = g + h is governed by a

nonlinear one-species Boltzmann collision operator J . If f is known, then g and h evolve

according to a linear transport operator. We restrict to the case of f being a fixed global

Maxwellian. In the case of zero flow between 0 and 1, f is a centered Maxwellian with

zero bulk velocity. The corresponding transport operator L0 exhibits a typical structure

concerning the algebraic nullspace which in a similar situation has been observed in a
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couple of papers ([8] for the continuum case, [3, 7] for DVM).

For our investigation we require the DVM to satisfy four assumptions (see (2.3), (2.4),

(3.2), (3.8) below), two of them being crucial. The first one is a symmetry condition

and requires the velocity grid and the collision model to be invariant under a change of

sign of the velocity components perpendicular to the walls. This leads to a linear ODE

system with a matrix having a special antisymmetric block structure which is essential.

(In the paper we exclude the case of zero normal velocities which would lead to a DAE

rather than an ODE system. However, numerical experiments indicate that this condition

can be weakened.) The second assumption concerns the existence of a maximal number

of pairwise different nonzero eigenvectors. This in particular prohibits the existence of

artificial invariants of the transport operator. (A discussion of this point may be found

in [3, 7].)

2 The evaporation condensation problem

2.1 The model

Consider a gas mixture confined in the slab [0, 1]. The two components of the gas are

species A (“vapour”) with density function g(t, x,v) and species B (“noncondensable”)

with density function h(t, x,v). The two-dimensional velocities are represented in the

form v = (vx, v⊥).

Concerning the gas particle interaction, both types are mechanically identical in the sense

that both are governed by the same Boltzmann collision operator. The only difference lies

in the gas-wall interaction. While species A may pass through the walls in both directions

(condensation, evaporation), species B is totally reflected. As a consequence, there may

be a total nonzero mass flux of A through the wall while the mass flux of B is zero.

We write f =g+h and let the governing equations for g and h be the nonlinear two-species

Boltzmann equation

(∂t + vx∂x)g = J [f ,g] (2.1)

(∂t + vx∂x)h = J [f ,h] (2.2)

with the collision operator J [., .] to be specified below. Since J [., .] is bilinear, a conse-

quence of (2.1), (2.2) is that f solves the nonlinear Boltzmann equation

(∂t + vx∂x)f = J [f , f ] (2.3)
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In most of the paper we restrict to the steady variant of the system,

vx∂xg = J [f ,g] (2.4)

vx∂xh = J [f ,h] (2.5)

In order to extend the equations to a well-posed boundary value problem, they have to

be supplemented with boundary conditions either in the form of reflection laws or by

prescribing the flows into the domain [0, 1]. For our purposes such a detailed description

is not necessary.

(2.1) Definition: We call a pair (g,h) a solution to the evaporation condensation prob-

lem, if equations (2.4), (2.5) are satisfied and if h has zero mass flux, i.e.

φ[h](x) = 〈vxh(x)〉 = 0. (2.6)

In the rest of the paper we simplify the problem by considering only solutions of the

evaporation condensation problem for which f is a known global equilibrium function of

the Boltzmann collision operator. In this case, equations (2.4), (2.5) turn into a system of

linear transport equations which can be solved by analyzing the corresponding transport

operator. Furthermore, it is sufficient to construct h, since h is a solution of the transport

equation if and only if g = f − h is.

2.2 The discrete system

Let V = {v1, . . . ,vN} ⊂ lRd (d ≥ 2) be a finite velocity set, vi = (v
(i)
x , v

(i)
⊥ ). (v

(i)
x denotes

the component in x-direction, and v
(i)
⊥ the orthogonal complement.) Let f = (fi)

N
i=1 be

a distribution function on lRN . A single collision event means a momentum exchange

betwen pairs,

(vi,vl) ↔ (vj,vk)

For short we write α = (i, j, k, l) and rα[f , f ] = fjfk−fifl. The above collision is described

by the elementary collision operator

(Jα[f , f ])m =


rα[f , f ] if m ∈ {i, l}
−rα[f , f ] if m ∈ {j, k}

0 else
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From physical considerations (momentum and energy conservation) we consider only el-

ementary collisions for which vivl and vjvk are the diagonals of a rectangle in lRd. We

denote by R ⊂ {1, . . . , N}4 all α = (i, j, k, l) representing a non-degenerate rectangle in

the above sense. With this we can now choose collision frequencies γα ≥ 0 to define the

Boltzmann collision operator on V ,

J [f , f ] =
∑
α∈R

γαJα[f , f ] (2.7)

A linear version of this is otained when considering the dynamics of a test particle (with

distribution g) in a given scattering field with distribution f . The corresponding linear

transport operator J [f ]g is given by the matrix

J [f ] =
∑
α∈R

γαJα[f ]

with

(Jα[f ]g)m =



0.5(fjgk + fkgj)− flgi if m = i

0.5(figl + flgi)− fkgj if m = j

0.5(figl + flgi)− fjgk if m = k

0.5(fjgk + fkgj)− figl if m = l

0 else

Its matrix representation is

Jα[f ] = Pα


−fl 0.5fk 0.5fj 0

0.5fl −fk 0 0.5fi

0.5fl 0 −fj 0.5fi

0 0.5fk 0.5fj −fi

P T
α

with the N × 4-Matrix Pα defined in column representation as

Pα = (ei, ej, ek, el)

(em the m-th canonical unit vector). It is well-known that Maxwellians, i.e. functions of

the form

f(v) = exp
(
−|v − v|2/2Θ

)
are equilibrium solutions of the nonlinear collision operator (and they are the only ones, if

a sufficient number of rectangles appears in the sum (2.7), see [4]). In this case, a special
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situation arises. One easily checks that α = (i, j, k, l) describes a rectangle with vivl and

vjvk as diagonals if and only if

fifl = fjfk =: φα (2.8)

Thus we can rewrite the terms of the transport operator, e.g.

0.5(fjgk + fkgj)− flgi = φα
(
0.5(f−1

j gj + f−1
k gk)− f−1

i gi
)

We end up with the compact formulation

J [f ] = CF−1 (2.9)

with F = diag(fi, i = 1 . . . N),

C =
∑
α∈R

παPα


−1 0.5 0.5 0

0.5 −1 0 0.5

0.5 0 −1 0.5

0 0.5 0.5 −1


︸ ︷︷ ︸

=:Γ

P T
α (2.10)

and πα = γαφα.

Define

l1 := (1 . . . 1)T ∈ lRN and f−1 := (f−1
i , i = 1 . . . N) = F−1 l1

The following result follows immediately from inspection of the matrix Γ.

(2.2) Lemma: (a) C conserves the total mass, i.e. l1T · C = 0.

(b) l1 ∈ ker(C).

The first model assumption requires that the number of collisions is large enough to pro-

hibit artificial invariants.

(2.3) Model assumption: ClRN = l1⊥.

Equivalent to this assumption is that the restriction C : l1⊥ → l1⊥ is bijective. (When writ-

ing about the inverse C−1 of C we mean in the following the restriction C−1 : l1⊥ → l1⊥.)

A great part of the considerations to follow are symmetry arguments. Therefore we have

to ensure that the velocity space and the collision model are symmetric with respect to

reflections about the x-axes in the following sense.
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(2.4) Model assumption: (i) If v = (vx, v⊥) ∈ V , then vx 6= 0, and the reflected veloc-

ity Txv := (−vx, v⊥) ∈ V .

(ii) The collision frequencies γα are Tx-invariant. This means: If α = (i, j, k, l) and

α′ = (i′, j′, k′, l′) are such that the corresponding velocities vm and vm′ satisfy vm′ = Txvm

for m ∈ {i, j, k, l}, then γα′ = γα.

From this follows that N is even, N = 2n. We choose a numering of V such that v
(i)
x > 0

for i = 1 . . . n, and vi+n = Txvi. Notice that due to the model assumption (2.3) C is

symmetric and has the block matrix stucture

C =

(
A∗ B∗

B∗ A∗

)
(see the discussion in [3]).

Since V contains no velocities v with vx = 0, the matrix

Vx = diag(v(i)
x , i = 1 . . . N)

is regular, and the system (2.5) can be rewritten as the ODE system

∂xh = Lh (2.11)

with

L = V −1
x CF−1 (2.12)

We easily find the following properties, denoting by v⊥x the hyperplane perpendicular to

vx = (v
(i)
x , i = 1 . . . N).

(2.5) Lemma: (a) ker(L) = span(f) and L(lRN) = v⊥x .

(b) The equation Lg = h is solvable if and only if h ∈ v⊥x .

(c) Any eigenvector t to an eigenvalue λ 6= 0 is orthogonal to vx.

Proof: (a) follows from the corresponding properties of C, see Lemma (2.2)(b) and

assumption (2.3).

(b) is an application of Fredholm’s alternative.

(c) follows from (b) and Lt = λt ⊥ vx. ©

As a consequence, the restriction L : (f−1)⊥ = (F−1 l1)⊥ → v⊥x is bijective. For short,

when writing about the inverse L−1, we mean the restriction

L−1 : v⊥x → (f−1)⊥, L−1 = FC−1Vx

If h ⊥ vx, then g = L−1h is the unique solution of Lg = h orthogonal to f−1.
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3 The steady transport operator

3.1 Zero bulk velocity

We start with the case of a centered Maxwellian,

f0(v) = exp(−|v|2/2Θ)

Due to assumption (2.3) and the chosen numbering, the corresponding diagonal matrix

F0 takes the block diagonal structure

F0 = diag(f0(vi), i = 1 . . . N) =

(
diag(f0(vi), i = 1 . . . n) 0

0 diag(f0(vi), i = 1 . . . n)

)

=:

(
F

(1/2)
0 0

0 F
(1/2)
0

)
For the same reasons we can decompose Vx into

Vx = diag(V (1/2)
x ,−V (1/2)

x )

This equips the operator L0 = V −1
x CF−1

0 with the block structure

L0 =

(
(V

(1/2)
x )−1A∗(F

(1/2)
0 )−1 (V

(1/2)
x )−1B∗(F

(1/2)
0 )−1

−(V
(1/2)
x )−1B∗(F

(1/2)
0 )−1 −(V

(1/2)
x )−1A∗(F

(1/2)
0 )−1

)
=:

(
A B

−B −A

)
(3.1)

The spectrum of matrices of this form was studied in [3, 7]. The following results are of

interest for our purposes.

(3.1) Lemma: λ > 0 is an eigenvalue of L0 if and only if −λ is eigenvalue.

Proof: Define t+ := (p,q)T and t− := (q,p)T . Then we find easily

L0t
+ = λt+ ⇔ L0t

− = −λt− ©

The following model assumption is generic in the class of DVM we are considering (see

the discussions in [3, 7]).

(3.2) Model assumption: L0 has n − 1 pairwise different strictly positive eigenvalues

λi, i = 1 . . . n− 1.

We collect the results concerning the spectrum of L0. A central property if the solvability

of the equation

L0r0 = f0 (3.2)
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which follows from the Lemma below. We call a vector even if it is of the form (p,p)T ,

and odd if it is (p,−p)T . The subset of even resp. odd vectors is denoted by lRN
even resp.

lRN
odd. Furthermore we call an operator M even if it maps even into even and odd into

odd; we call M odd if it maps even into odd and odd into even.

(3.3) Lemma: (a) L0 is odd.

(b) L0(lRN
odd) = lRN

even.

(c) There exists a unique solution r0 = L−1
0 f0 ∈ lRN

odd to equation (3.2).

(d) L0(lRN
even) ( L0(lRN

even)⊕ span{r0} = lRN
odd

Proof: (a) By model assumption (2.3) and the numbering of the velocity space V , C and

F0 are even and V −1
x is odd.

(b) follows from (a) and

v⊥x = lRN
even ∪

(
lRodd ∩ v⊥x

)
= L(lRN

odd) ∪ L(lRN
even)

(c) follows from f0 ∈ lReven ⊥ vx and Lemma (2.4).

(d) Let be t+
i = (pi,qi)

T be eigenvectors for the positive eigenvalues λi and denote

t−i = (qi,pi)
T as the corresponding eigenvectors vor −λi, i = 1 . . . n − 1. Then s+

i =

t+
i + t−i ∈ lRN

even and s−i = t+
i − t−i ∈ lRN

odd span (n − 1)-dimensional subspaces of lRN
even

resp. lRN
odd, and L2

0s
−
i = λ2

i s
−
i and L2

0r0 = 0. Thus

r0 /∈ span(s−i , i = 1 . . . n− 1) = L0(lRN
even) ©

This result yields a complete description of the eigenspace structure of L0 and proves the

following theorem.

(3.4) Theorem: (a) L0 is similar to the Jordan normal form

N = diag(Λ,−Λ, N0) with Λ = diag(λi, i = 1 . . . n− 1), N0 =

(
0 1

0 0

)

(b) A corresponding transformation matrix is

T (0) = {t+
1 , . . . t

+
n−1, t

−
1 , . . . t

−
n−1, f0, r0}

with t±i = t±i (0) as in the proof of Lemma (3.3)(d), and r0 = L−1
0 f0.
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(3.5) Corollary: The general solution h of ∂xh = L0h in the slab [0, 1] takes the form

h(x) =
n−1∑
i=1

γ−i exp(−λix)t−i +
n−1∑
i=1

γ+
i exp(−λi(1− x))t+

i + (γ0 + γr · x)f0 + γrr0

The first two sums represent boundary layers at x = 0 and x = 1 which are used to model

prescribed inflow conditions at the boundaries.

(3.6) Remark: Model assumption (2.3) is quite restrictive since it prohibits zero x-

components of the velocities. It turns out that this can be weakened. In all numerical

experiments we performed as far, the system (2.5) turned out to represent an index-1

differential algebraic system which could be transformed into an ODE system with a

matrix which has precisely the same Jordan structure as that given in the Theorem.

3.2 Shifted Maxwellian

We replace the centered Maxwellian f0 with a new one shifted in x-direction,

fv(v) = exp

(
− 1

2Θ
|v − v|2

)
= f0 + v ·∆f(v)

v = (v, 0)T . ∆f is continuous with

f ′ := ∆f(0) =
1

Θ
· Vxf0

This introduces an analytic change of all operators introduced above. These are in par-

ticular continuously differentiable with respect to v. The prime indicates in the following

the derivative at v = 0. The transport operator is affected by the change in two ways.

The operator C0 changes into Cv = C0 + v ·∆C(v) with ∆C continuous,

∆C(0) = C ′ =
∑
α∈R

γαφ
′
αPαΓP T

α ,

φ′α =
v

(i)
x + v

(l)
x

Θ
· f0(vi)f0(vl), α = (i, j, k, l)

and F−1
0 is to be replaced with F−1

v = F−1
0 + v∆F−1(v) with

(F−1)′ := ∆F−1(0) = − 1

Θ
· F−2

0 Vx

Finally, L0 = V −1
x CF−1

0 changes into L0 + v∆L(v) with

∆L(0) = L′ = V −1
x C ′F−1

0 − 1

Θ
· L0 · F−1

0 Vx
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It is important to mention that L′ is an even operator. We list some of the main proper-

ties.

(3.7) Lemma: For small v there exist positive eigenvalues λ+
i (v) and negative eigenval-

ues −λ−i (v) depending analytically on v with λ±i → λi for v → 0.

Proof: This is a standard result from perturbation theory since all ±λi are simple eigen-

values of L0 (see Kato). ©

Crucial for the following is how the algebraic nullspace is affected by the change. If there

were a solution of Lvrv = fv then its Jordan normal form remained the same as before.

The following (generic) model assumption prohibits this. Recall that lRN
odd is spanned by

s−i = t+
i − t−i , i = 1 . . . n− 1, and r0 (Lemma (3.3)(d)).

(3.8) Model assumption: f ′ + L′r0 /∈ {s−i , i = 1 . . . n− 1}.

Under this assumption the two-dimensional nullspace splits up into two simple eigenspaces

as is shown now.

(3.9) Lemma: In a neighborhood U0 = (−v0, v0) of v = 0 there exists a continuous

mapping v → (∆λ(v),∆r(v)) such that the pair

(λ(v), rv) = (v ·∆λ(v), r0 + v ·∆r(v)) (3.3)

solves

Lvrv = fv + λv · rv (3.4)

λ−1
v fv + rv is eigenvector with eigenvalue λv. Furthermore,

λ′ := ∆λ(0) =
vTx (L′r0 − f ′)

vTx r0

(3.5)

and r′ := ∆r(0) is solution of

L0r
′ = f ′ − L′r0 + λ′ · r0 (3.6)

Proof: A necessary condition for the continuity of ∆λ and ∆r at v = 0 is obtained

inserting the ansatz (3.3) into equation (3.4) and taking the limit v → 0. This leads to

equation (3.6). From Fredholm’s alternative, this equation is solvable if and only if the

right hand side is orthogonal to vx. Thus f ′ − L′r0 + λ′ · r0 has to be the projection of
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f ′ − L′r0 along r0 onto vTx . From this follows (3.5).

Given r 6= 0, define its corresponding normalized vector r̂ = ‖r‖−1r and the projection Pr̂

along r onto vTx ,

Pr̂g = g − vTx g · r̂

vTx r̂

The solution of (3.4) is equivalent to finding a fixed point of the mapping

r̂→ c · L−1Pr̂fv (3.7)

(with c normalizing constant). Since vTx fv = O(v) and since r0 is fixed point for v = 0, it

follows that for v small the mapping (3.7) is a contraction with a unique fixed point. The

continuity of the mapping follows from the continuity of simple eigenvectors of analytically

perturbed operators (see [9]). ©

This leads to the proof of the main result of this section.

(3.10) Main Theorem:

(a) For |v| 6= 0 sufficiently small there exists a new eigenvalue λ(v) = v ·∆λ(v) depending

analytically on v with ∆λ(0) = λ′ 6= 0 and a corresponding eigenvector of the form

t = rv + λ(v)−1 · fv. rv ⊥ vx is the unique solution of Lvrv = fv + λ(v)rv.

(b) Lv is similar to the diagonal matrix

N = diag(λ+
1 . . . λ

+
n−1,−λ−1 . . .− λ−n−1, 0, λ(v))

Proof: In order to prove (a) we remark that the Jordan block J0 of the nullspace of L0

changes into

Jv =

(
0 1

0 λ(v)

)

which is similar to diag(0, λ(v)). (b) follows then immediately. ©

4 A macroscopic limit

In order to derive a meaningful macroscopic limit we introduce the diffusive scaling (see,

e.g. [2, 5, 6]) for the equation

(∂t + vx∂x)g = J [f ]g
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It consists in replacing the macroscopic variables t and x with ε−2t and ε−1x and leads to

the rescaled equation

(∂t + ε−1vx∂x)g = ε−2J [f ]g (4.1)

Formally this is equivalent to replacing the space V of microscopic velocities with ε−1V
and scaling up the collision frequency by a factor ε−2. This is the approach which we take

here.

Replacing vi with wi = ε−1vi requires to change the Maxwellians fv = (exp(−|vi −
v|2/2Θ), i = 1 . . . N) to f

(ε)
v = (exp(−|wi−v|2/2Θ), i = 1 . . . N) = (exp(−|v−εv|2/2ε2Θ), i =

1 . . . N) (leaving the macroscopic bulk velocity v unchanged) which itself makes only sense

if we rescale the temperature as T = ε2Θ. From now on we define

f
(ε)
v = f

(1)
εv = (exp(−|v − εv|2/2T ), i = 1 . . . N) (4.2)

with T > 0 constant. For convenience we assume in the following λ′v > 0.

(4.1) Remark: Associated to f
(ε)
v are the moments

density ρ
(ε)
v = 〈 l1 f

(1)
0 〉+O(ε2)

flux φ
(ε)
v = 〈wxf (ε)

v 〉 = (v/T ) · 〈v2
xf

(1)
0 〉+O(ε2)

F
(ε)
v is the diagonal matrix with the coefficients of f

(ε)
v as entries,

F
(ε)
v = F

(1)
εv = diag(f

(ε)
v ) = F0

(
I +

εv

T
Vx

)
+O(ε2) (4.3)

The steady version of (4.1) is

vx∂xg = ε−1J [f ]g (4.4)

Thus we have to study the rescaled transport operator

L
(ε)
v = ε−1V −1

x C
(ε)
v (F

(ε)
v )−1 = ε−1L

(1)
εv (4.5)

with

C
(ε)
v = C

(1)
εv =

∑
α∈R

π(εv)
α PαΓP T

α (4.6)

and

π(εv)
α = γαf

(1)
εv (vi)f

(1)
εv (vl) = π(0)

α ·
(

1 +
εv

T
· (v(i)

x + v(l)
x )

)
+O(ε2) (4.7)
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L
(1)
v is identical to the operator Lv investigated in the previous section. Finally define

r
(ε)
v = εrεv

λ
(ε)
v = ε−1λ(εv)

where rεv = r0 + εv∆r(εv) is given as in Lemma (3.9), and

λ
(ε)
v → λ′v > 0 for ε→ 0

with λ′ given by (3.4). The following results are easy to prove from the Main Theorem

(3.10).

(4.2) Corollary: (a) L
(ε)
v is similar to the diagonal matrix

diag(ε−1λ+
1 (εv), . . . , ε−1λ+

n−1(εv),−ε−1λ−1 (εv), . . . ,−ε−1λ−n−1(εv), 0, λ
(ε)
v )

The corresponding eigenvectors are

t+
i (εv) (i = 1 . . . n− 1), t−i (εv) (i = 1 . . . n− 1), f

(ε)
v , r

(ε)
v + (λ

(ε)
v )−1f

(ε)
v

(b) The general solution of the rescaled system (4.4) is

n−1∑
i=1

γ+
i exp

(
−ε−1λ+

i (εv)(1− x)
)
· t+

i (εv) +
n−1∑
i=1

γ−i exp
(
−ε−1λ−i (εv)x

)
· t−i (εv)

+γnf
(ε)
v + γr exp

(
−λ(ε)

v (1− x)
)
· (r(ε)

v + (λ
(ε)
v )−1f

(ε)
v ) (4.8)

Recall that the only term in (4.8) with nonzero flux is that related to the eigenvector f
(ε)
v

(see Lemma (2.5)(c)), and that 〈wxf (ε)
v 〉 converges to a nonzero value for ε↘ 0 (Remark

(4.1)). Suppose the pair (g
(ε)
v ,h

(ε)
v ) = (f

(ε)
v −h

(ε)
v ,h

(ε)
v ) be a solution of the rescaled steady

evaporation condensation problem (in the sense of Definition (2.1)). Then h
(ε)
v is of the

form

h
(ε)
v =

n−1∑
i=1

γ+
i exp

(
ε−1λ+

i (εv)x
)
· t+

i (εv) +
n−1∑
i=1

γ−i exp
(
−ε−1λ−i (εv)(1− x)

)
· t−i (εv)

+γr exp
(
−λ(ε)

v (1− x)
)
· (r(ε)

v + (λ
(ε)
v )−1f

(ε)
v ) (4.9)

with coefficients γ±i and γr depending on ε. We call a family of pairs (f
(ε)
v − h

(ε)
v ,h

(ε)
v )ε>0

of solutions asymptotically bounded, if γ±i , γr are bounded for ε↘ 0.

(4.3) Corollary: Suppose (f
(ε)
v − h

(ε)
v ,h

(ε)
v )ε>0 is an asymptotically bounded family of
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solutions to the evaporation condensation problem with a prescribed amount of noncon-

densable, ∫ 1

0

〈 l1 h
(ε)
v (x)〉dx = H = const

Then it converges for ε↘ 0 pointwise in x to (f0 − h0,h0) given by

h0 = γH exp(−λ′v(1− x)) · f (1)
0 , γH = H(λ′v)2(exp(λ′v)− 1)−1 = H · λ′v +O(v2)

The limits of the associated moments are

density 〈 l1 f
(ε)
v 〉 → 〈 l1 f

(1)
0 〉

flux 〈wxf (ε)
v 〉 → v · 〈v2

xf
(1)
0 〉/T

The concentration profile of the noncondensable, i.e. the layer at the wall point x = 1 is

given as

noncondensable concentration 〈 l1 h
(ε)
v 〉/〈 l1 f

(ε)
v 〉 → γH exp(−λ′v(1− x))
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