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Abstract

The aim of this thesis is to address two major issues in planning and operation of large
scale water distribution systems (WDSs), which are operational pressure regulations
to reduce leakage amount on the one hand and optimization of pumping energy and
maintenance costs on the other hand. The optimal pressure regulation is achieved by
optimal localization of pressure reducing valves (PRVs) and the operational optimiza-
tion of PRVs is carried out to minimize the excessive pressure in water distribution
systems while the minimization of pumping energy and maintenance costs is gained by
optimal scheduling on/off operations of pumps. To effectively reduce the leakage flows in
a WDS, this thesis proposes a new solution approach, namely, mathematical programs
with complementarity constraints (MPCC), to solve the mixed integer nonlinear pro-
gramming problem for optimal localization of PRVs. In addition, a new rounding scheme
is developed to accelerate the solution procedure as well as improve the quality of the
MPCC solution. The MPCC approach is then applied to optimal locations of PRVs for
benchmark WDSs and the result reveals new optimal locations of PRVs, which results
in higher decreases of leakage amounts and excessive pressures as compared with those
found by the existing approaches. With water distribution systems where PRVs have
already been installed, leakage reduction can be addressed by optimizing operations of
PRVs. An extended model of PRVs is proposed in this thesis to describe a complete
model of PRVs with three operation modes. This model, represented by a non-smooth
equation, can circumstantiate many scenarios occurring in water distribution systems
where the existing PRV model is not capable. Numerical experiments have shown that
the extended PRV model outperforms the existing ones in terms of the quality and
accuracy of the optimal solution.
Beside the pressure regulation to leakage reduction, this thesis also develops a general
mixed-integer nonlinear programming (MINLP) approach for optimizing on/off opera-
tions of pumps in water supply systems with multiple reservoirs. A set of linear equality
constraints is proposed to formulate the MINLP problem to effectively restrict the num-
ber of pump switches. As a result, the optimized pump scheduling leads at most to the
specified maximum number of pump switches with reduced pumping energy costs. Fur-
thermore, to optimize operations of large-scale WDSs, a software package is developed
so as to automatically extract the optimization model from the simulation model in
the EPANET environment and carry out the two-stage optimization approach to de-
termine the optimal pump scheduling for a real and large-scale drinking water system.
The software enables users to optimize operations of WDSs with a minimum effort.
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Zusammenfassung

Das Ziel dieser Arbeit besteht darin, sich zwei Hauptaspekten bei der Planung und Be-
triebsführung von großen Wasserverteilungssystemen (WVS) zu widmen, die einerseits
in der Druckregelung im laufenden Betrieb zur Wasserverlustreduzierung sowie ander-
erseits in der Optimierung der Pumpenergie- und Wartungskosten bestehen. Die op-
timale Druckregelung wird durch die optimale Platzierung von Druckreduzierungsven-
tilen (DRV) erreicht. Die Optimierung des Betriebs der DRVs wird durch die Min-
imierung des überschüssigen Drucks im Wasserverteilungssystem erreicht, während die
Minimierung der Pumpenergie- und Wartungskosten durch die optimale Berechnung
der Ein- und Ausschaltvorgänge der Pumpen erzielt wird.
Zur effektiven Wasserverlustreduzierung in einem WVS wird in dieser Arbeit ein neuer
Lösungsansatz vorgeschlagen, nämlich ein mathematisches Optimierungsprogramm mit
Komplementaritätsbeschränkungen (MOKB), um ein gemischt-ganzzahliges nichtlin-
eares Optimierungsproblem zur optimalen Platzierung von DRVs zu lösen. Zusät-
zlich wurde ein neues Rundungsschema entwickelt, um sowohl die Lösungsproze-
dur zu beschleunigen als auch die Qualität der MOKB-Lösung zu verbessern. Der
MOKB-Ansatz wurde danach auf die optimale Platzierung von DRVs für so genan-
nte Benchmark-WVSs angewendet und brachte neue optimale Platzierungen von DRVs
hervor. Diese Ergebnisse äußern sich in einer erhöhten Reduzierung von Verlustwasser-
mengen und überschüssigen Drücken verglichen mit den Resultaten, die mit bisherigen
Lösungsansätzen gefunden wurden.
In WVSs , in denen schon DRVs installiert worden sind, kann man die Wasserverlus-
treduzierung untersuchen, indem man den Betrieb der DRVs optimiert. Ein erweitertes
Modell der DRVs wird in dieser Arbeit vorgeschlagen, in dem ein Gesamtmodell mit
drei Betriebsmodi aufgestellt wird. Dieses Modell repräsentiert durch eine nichtlineare
nicht-glatte Gleichung kann bei vielen Szenarios, die in WVSs auftreten, in die Details
gehen, die mit existierenden DRV-Modellen nicht behandelbar sind. Numerische Unter-
suchungen haben gezeigt, dass das erweiterte DRV-Modell die existierenden Modelle in
puncto Qualität und Genauigkeit der optimalen Lösung übertrifft.
Neben der Druckregelung zur Verlustreduzierung wurde in dieser Arbeit ebenfalls ein
allgemeiner gemischt-ganzzahliger nichtlinearer Programmierungsansatz (GGNLP) zur
Optimierung der Ein- und Ausschaltvorgänge von Pumpen in Wasserversorgungssyste-
men mit mehreren Speichern entwickelt. Eine Menge von linearen Gleichungsnebenbe-
dingungen zur Formulierung des GGNLP und für eine effektive Beschränkung der An-
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zahl von Ein-/Ausschaltungen wird vorgeschlagen. Als ein Ergebnis führt die optimale
Berechnung höchstens zu einer spezifizierten maximalen Anzahl von Schaltvorgängen
mit reduzierten Pumpenergiekosten.
Um darüber hinaus die Betriebsweise von großen WVSs zu optimieren, wurde ein Soft-
warepaket entwickelt, das automatisch das Optimierungsmodell aus einem Simulation-
smodell aus der EPANET-Simulationsumgebung extrahiert und einen zweistufigen Op-
timierungsansatz ausführt, der den optimalen Pumpenbetrieb für ein real existierendes
großes Trinkwasserversorgungssystem bestimmt. Die Software gestattet dem Nutzer die
Optimierung der Betriebsführung von WVSs mit minimalem Aufwand.
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Nomenclature

Q Link flow
Qi,j Flow on pipe ij
Q Vector of link flows
H Nodal head
H Vector of nodal heads
hp Additional head of pumps
H0 Shutoff head of pumps
γ The specific weight of the liquid
p Nodal pressure
P Power consumption of pump
k Iteration
x continuous variables
y Integer variables
Ap, Bp, Cp, Dp Power coefficients of pumps
ap, bp, cp hydraulic coefficients of pumps
Aη, Bη, Cη, Dη Efficiency coefficients of pumps
s Relative speed of pump
Qp Flow of pump
n Number of pumps in a pump station
η Efficiency of pump
L Pipe length
g Acceleration of gravity
Re Reynolds number
f friction factor of Darcy-Weisbach equation
ε the roughness of pipe
∆h the head loss on pipe
K Head loss coefficient
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li Leakage amount associated with node i
di Demand associated with node i
Vi Water volume of tank i
Si Cross-sectional area of tank i
hi Water level in tank i
∆t Length of time interval
V Average water velocity
Hset The pressure setting of PRV
ν Water viscosity
a, b, c, d The parameters for the smoothed head loss
Ks The slope of the smoothed head loss at Q=0.0
β, α, γ, z, fk The parameters for the smoothed head loss
Rp The parameters for the smoothed head loss
G The diagonal matrix with derivatives of head losses
A12 The connectivity matrix
A10 The connectivity matrix edge reservoir/tank node
AT

12 The transpose matrix of A12

AT
12 The transpose matrix of A12

H0 Column vectors of reservoir and tank heads
A11 The diagonal matrix with head losses dividing their flows
x a vector of continuous variable
y a vector of binary variable
f The objective function
g(x) Constraint
ρ Penalty parameter
ε The relaxation parameter
zL, zU The lower and upper bounds of a MINLP
Mi,j The big number associated with pipe i, j
HM Maximum head
Np Number of pipes in a WDS
Nn Number of nodes in a WDS
NL Number of demand patterns
NV Number of PRVs
vi,j, vj,j Binary variables in chapter 4
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v
′
i,j, v

′
j,j Binary values

θ A predefined threshold value in chapter 4
zNLP Objective function value
zbest The best objective function value found
µ Penalty value in chapter 4
Ri,j Resistance of PRV
vi,j A variable coefficient for a PRV in chapter 5
zi Binary variables in chapter 6
λi, λ

′
i the friction factors in chapter 6

Nmax Maximum number of pump switches
LUi, LDi Minimum up and down times
np Number of pump switches on in chapter 7
sp Relative speed of pumps in chapter 7
∆i Allowable deficiency of the water tank level in chapter 7
∆p Allowable change of pump station flows in chapter 7
TFLdi,tpi

Total flow of pump station produced by the discrete pump scheduling
TFLci,tpi

Total flow of pump station produced by the continuous pump scheduling
k Time step
kd Discretized time step in chapter 7
tpi Tariff time period
Ntp Number of tariff time periods
∆tkd

Discretized tim interval
∆tp Tolerance of flow deviation
Q̃p Pump cutoff flow
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Acronyms

NLP Nonlinear programming
MINLP Mixed integer nonlinear programming
LP Linear programming
MILP Mixed integer Linear programming
GA Genetic algorithm
MPCC Mathematical program with complementarity constraints
OA Outer approximation
BB Branch and bound
NCP Nonlinear complementarity problem function
PRV Pressure reducing valve
WDS Water distribution system
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Chapter 1

Problem statements

1.1 Optimal pump scheduling problem in water
supply and distribution systems

Water is transported through the water network as shown in Fig. 1.1. The water network
includes water supply and distribution systems. The task of a water supply system is to
convey raw water (e.g., from a dam) to a water treatment plant where it is treated by
various chemical and physical processes to guarantee the required quality standard. The
treated water is stored in reservoirs that serve as water buffers to regulate the daily water
demand. Water is delivered to customers and services through pipeline and pumping
systems in a water distribution system. The significant amount of energy is associated
with the pump operation to transport water in both water supply and distribution
systems. Due to its dramatic price increases in the recent years, the electricity cost of
pumping takes the most part of the total operating costs of water supply systems. In the
United States, the energy consumption by pumping is 5% of all generated electricity [9]
and similarly high amount of energy consumption in the European countries. Therefore,
minimizing the energy costs while delivering water to meet customer demands is more
and more important to water utilities
The pumping energy costs depend on the energy consumption and the energy rates
(or electrical tariff). Energy rates are varied to encourage the energy usage in off- peak
periods with lower rates whereas it penalizes the energy consumption in peak periods
with higher rates [10]. To reduce the pumping energy consumption, many strategies
have been taken such as pump testing, replacing or repairing inefficient pumps, mod-
ifying the pump characteristics to match the system, and selecting the best pumps
for the application [11]. One of the most effective approaches for reducing the energy
consumption is optimal scheduling of the pump operations [12].
The aim of optimal pump scheduling is to determine on/off operations of pumps in
order to reduce the pumping energy cost while fulfilling the physical and operational
constraints [13]. Although the optimal pump scheduling is highly desirable, it leads to a

9



CHAPTER 1. PROBLEM STATEMENTS

Dam

Pump sation

Water 

treatment plant
Reservoirs

Water distribution 

system

Water supply system

Raw water

Figure 1.1: A water network [3]

very difficult mixed integer nonlinear optimization problem, since binary variables have
to be introduced to represent the on/off operations of the pumps [3, 14]. In addition,
an optimal pump scheduling in which pumps are switched on and off many times may
reduce the pumping energy cost significantly, but it may increase the wear and tear on
the pumps and thus the resulting pump maintenance and repair costs [15]. By restrict-
ing the number of on/off pump switches in the operation of pumps, the maintenance
and repair costs can be decreased [15]. To solve the mixed integer nonlinear optimiza-
tion problem (MINLP) for optimal pump scheduling in water supply and distribution
systems, many optimization algorithms have been developed such as: linear program-
ing (LP) [16, 17], mixed integer nonlinear programming (MINLP) [18, 19], dynamic
programing (DP) [15], and heuristic algorithms [20].

1.2 Pressure regulating problem in water distribu-
tion systems

Water loss occurs in all water distribution systems (WDSs) [21] due to many reasons,
from physical network to operation policies (e.g., a WDS operate with high pressure).
For this reason, reducing and controlling water loss is very important to water utilities
worldwide, especially in the age of rapidly growing demands and scarcity of the water
resources. The non-revenue water (NRW) in many Asian cites reaches to 46% of total
demand in which the real loss is as high as 75% [10, 22]. In European Union (EU)
countries, the average water loss level is about 20% of the treated drinking water.
The average yearly water loss in Turkish cities is as high as 51% of the total water
production [23, 24]. In City of Mutare in Zimbabwe, the average water loss is about
57% [25]. Leakage is not only an economical issue for water utilities, but it is also an
environmental, sustainability and potentially a health and safety issue [26, 27]. Leakage
leads the energy for pumping water to be wasted and it may cause a serious effect
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Figure 1.2: The four primary methods of controlling water losses (IWA water loss task
force and AWWA Water loss control committee)

on water quality since toxic materials and chemicals can inject into water systems
through leak hotspots or pipe breaks and bursts in low pressure conditions. Water loss
is defined as a total loss and equals to real losses and apparent losses from a network.
Real losses include leakage from pipes, seepage from joints, fittings, pipe bursts, and
from services, tank over flows. Real losses can exist for months, or even years [10] due
to undetected leak hotspots or bursts. The quantity of the water loss depends on the
network characteristics (i.e., length of mains, number of service connections, length and
material of the supply pipe) and operating parameters such as system pressures and
leakage detection/ repair activities. In contrast to real losses, the apparent loss is due
to illegal uses of water and metering inaccuracy.

To reduce the water loss, four primary approaches, shown in Fig. 1.2, are proposed by
the Water Losses Task Force of IWA. They are pipeline assessment management, speed
and quality of repairs, active leakage control, and pressure management. The yearly
number of new leaks is influenced primarily by long term pipeline rehabilitation and
management. The speed and quality of repairs determine the average duration of leaks
lasts, while the active leakage control strategy involves in detecting or locating unre-
ported leaks. Pressure management has a significant influence on the reduction of new
leaks, and the flow rates of all leaks and bursts. Experimental data has indicated that
the leakage flow at a node is proportional to a power function of the pressure at this
node, with the exponent ranging from 1.15 to 1.18 [28, 29]. Therefore, pressure man-
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agement is considered as a cost- effective means of reducing leakage [30]. Basically, the
higher the system pressure is, the larger the leakage flow appears in the system and
vice versa [27].
Pressure management to leakage reduction in a water distribution system can be
achieved by optimizing locations and operations of pressure reducing valves. This leads
to a mixed integer nonlinear optimization problem and a nonlinear optimization prob-
lem, respectively. Many algorithms have been developed to solve the two corresponding
optimization problems such as Genetic algorithms (GAs) [31], multi-objective opti-
mization (MOGA) [32], Scatter search [33], evolutionary algorithms [34], mixed-integer
nonlinear programming (MINLP) [35, 36], and nonlinear programing (NLP) [37].

1.3 Motivation of the research

The overall motivation of the research of this thesis is to develop efficient solution
approaches for solving the optimal pressure management to reduce leakage in water
distribution systems and the optimal pump scheduling to reduce pumping energy and
maintenance costs in water supply and distribution systems

1.3.1 Pressure management to leakage reduction

Optimal localization of pressure reducing valves (PRVs) to minimize the leakage flows
in WDSs is formulated as a mixed integer nonlinear program (MINLP), since the binary
variables are introduced in the optimization problem to identify whether or not. PRVs
are placed on links. For large scale water distribution systems, this leads to a large-
scale MINLP with a large number of binary variables [35, 36]. In addition, locations of
PRVs should be accounted for multiple demand scenarios and leakage at nodes should
be considered to represent realistic operations of WDSs. These two issues make the
MINLP problem more complicated and thus not easily to be solved by available MINLP
solvers. Meta-heuristic algorithms have been applied to solve such MINLP problems
such as: Genetic algorithms, scatter search, multi-objective optimization etc. Although
the meta-heuristic algorithms are suitable to deal with both binary and continuous
variables, they sometimes cannot locate highly accurate solutions and may produce
only suboptimal solutions [38]. Moreover, they require a large number of objective and
constraint function evaluations, and hence are inefficient for solving large-scale MINLP
problems [38]. For this reason, it is essential to develop an efficient approach to optimal
localization of PRVs. Mathematical program with complementarity constraints (MPCC)
is a promising solution approach to a certain class of MINLP problems [39], however it
has not been investigated yet to address the optimal localization of PRVs in WDSs. This
motivates the research of this thesis to further develop a general approach of MPCC to
solve the optimal localization of PRVs in WDSs.
MPCC solution strategy is implemented by solving a sequence of NLP problems in
which the relaxed complementarity constraints are gradually tightened or the penalty
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coefficients are gradually increased [40, 41]. The successive solutions of NLPs, called
stationary points, will converge to a final solution (or limit point). It is due to the
fact that the NLP solutions depend on their initial guesses and MPCC parameters like
penalty coefficients or relaxed parameters, there may be several limit points of MPCC.
These limit points could be undesired local solutions of the MINLP. Therefore, the
MPCC solution approach should be improved to avoid such local solutions. In this
thesis, a novel rounding scheme is proposed to improve the effectiveness of the MPCC
solution approach.
For water distribution systems where PRVs have been already installed, leakage reduc-
tion can be attained by optimal control operations of the PRVs. To effectively reduce
leakage, a fast and efficient method to calculate optimal PRV pressure settings is nec-
essary [42]. Optimal operations of PRVs can be achieved by model based optimization
and one of the fast optimization approaches to solve such an optimization problem is
the nonlinear programming method [42]. The head- flow relation for describing pipeline
hydraulics and PRVs represents the most important part in the optimization model.
However, the model for PRVs having been using until now for optimal regulation using
nonlinear programming methods is a two-mode model [37, 42] which cannot circumstan-
tiate many situations in WDSs where the PRVs can operate as a check valve to prevent
reverse flows. Therefore, an extended model representing full operation modes of PRVs
is developed in this thesis. Numerical experiments are carried out to demonstrate the
advantage of the extended model.

1.3.2 Optimal pump scheduling to pumping energy and main-
tenance cost reduction

For water supply systems, demands are lumped at reservoirs, and pumps convey water
directly to reservoirs. For these reasons, the mass balance hydraulic model representing
linear relationships between flows coming in and out of reservoirs and their heads is
widely used in the formulation of the optimization problem [3, 19]. The pumping energy
cost is commonly represented by a nonlinear function. Pumps operating with excessive
pump switches will increase the maintenance and repair costs. Thus an optimal pumping
schedule should consider the pumping energy cost and the number of pump switches.
Therefore, in this work a constraint to restrict pump switching is introduced in the
optimization problem. However, such a constraint is described by a non-smooth func-
tion, and thus, it cannot be used in the formulation of MINLP or MILP. An efficient
approach for handling the number of pump switches is developed in this thesis which
allows the formulated the MINLP problem to be solved by MINLP algorithms while
does not increase the complexity of the MINLP problem by retaining the linear con-
straints. In this way, the limitation on number of the pump switches can be carried out
by constraints restricting the total number of pump switches or restricting the on/off
time periods of pumps.
In contrast to water supply systems, demands are distributed in water distribution
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systems, and the relationships between the elements in WDSs are nonlinear and non-
convex. Thus the resulting optimization problem is a nonlinear and non-convex mixed
integer nonlinear programming (MINLP). It is difficult for existing MINLP solvers to
solve such MINLP problems, especially MINLP problems for large-scale WDSs [8, 43].
Genetic algorithms are well suited to solve such optimization problems. However, it
requires a large amount of computation time and hence cannot be employed for online
optimization of large - scale water distribution systems. Therefore, a systematic and
fast solution approach should be developed. In this thesis, a two-stage optimization is
proposed to determine optimal pump scheduling for a real and large scale WDS. The
first optimization stage will determine the continuous flow set-points for pump stations
while the on/off operations of pumps in each pump station will be deduced in the
second optimization stage to approximate the continuous flow set-points using a simple
heuristic algorithm.

1.4 Contributions of the thesis

The contributions of this thesis can be summarized as follows:

1. A numerical approach to mathematical program with complementarity con-
straints (MPCC) for solving the optimal localization of pressure reducing valves
(PRV) in WDSs is developed. Moreover, a novel rounding scheme is proposed to
accelerate the solution procedure as well as the quality of the MPCC solution.
The optimal results reveal new locations and combinations of PRVs, which result
in a higher decrease of leakage amount and excessive pressure as compared with
those (PRV locations) reported in the literature. The contribution is presented in
chapter 4 and published in [36].

2. An extended PRV model, which can circumstantiate three operation modes of
pressure reducing valves (PRVs), is proposed. The model is shown to be more
accurate than the existing one in optimal pressure regulations in WDSs. In fact,
the use of three mode model of PRVs will result in lower leakage amount and
excessive pressure as compared with the use of the existing PRV model. The
contribution is given in chapter 5 and submitted for publication in [44].

3. For handling the number of pump switches in optimization of pumping energy and
maintenance costs a set of linear equality constraints instead of the non-smooth
one is proposed. This allows the use of MINLP solvers for solving the optimization
problem. The optimized pump scheduling reduces the pumping energy cost and
meanwhile leads to a user-defined number of pump switches. The contribution is
presented in chapter 6 and published in [45].

4. An application of a two-stage optimization approach to optimize the operation of
a real and large-scale drinking water network is carried out. In addition, a software
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package is developed to extract the optimization models from simulation models
in the EPANET environment. This will significantly relive the burdens as well as
avoid prune errors in formulating the optimization problem. The contribution is
presented in chapter 7.

1.5 Structure of the thesis

The structure of this thesis including chapters is shown in Fig. 1.3
Chapter 2 presents the state-of-the-art about three following research areas in water
distribution systems (WDSs): 1) the optimization approaches to identify optimal local-
ization of pressure reducing valves (PRVs) to minimize excessive pressure in WDSs, 2)
the optimization approaches and model of PRVs to optimize the operation of PRVs for
leakage reduction in WDSs, and 3) the optimization approach to optimize the pumping
energy and maintenance costs in water supply and distribution systems.
Chapter 3 introduces the modeling of water distribution systems. In addition, optimiza-
tion algorithms used in this thesis such as the mathematical program with complemen-
tarity constraints (MPCC), nonlinear programming (NLP), and MINLP algorithms are
briefly presented.
In Chapter 4 an optimal localization approach for pressure reducing valves to minimize
the excessive pressure in a WDS is developed. The optimal localization is formulated
as a MINLP problem and the mathematical program with complementary constraint
(MPCC) approach is applied to solve it. In addition, a novel rounding scheme is pro-
posed to improve the MPCC solution approach.
Chapter 5 presents an extended model of PRVs. This model is applied in optimal
pressure regulation in WDSs. In addition, comparisons between the extended PRV
model and the existing ones is carried out by considering optimal pressure regulations
in WDSs with different demand scenarios.
In Chapter 6 an optimization approach for energy and maintenance costs in water sup-
ply system with multiple reservoirs is proposed. This approach employs a set of linear
equality constraints instead of using the non-smooth constraints for handling the num-
ber of pump switches and hence the maintenance cost. As a result, the desired number
of pump switches can be accomplished by constraints regulating the total number of
pump switches or regulating the on/off time periods for each pump.
Chapter 7 presents an operational optimization of water distribution systems based on
a two-stage optimization approach. In the first optimization stage, a continuous NLP
problem is formulated and solved to determine optimal flow set-points for pump sta-
tions. The discrete (on/off) operations of pumps in pump stations will be deduced in the
second optimization stage to approximate the optimal continuous flows. This approach
is applied to solve the operational optimization of a real and large-scale drinking water
network.
Finally, conclusions of this work and future research aspects are given in Chapter 8.
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Chapter 2

The state of the art

2.1 Optimal localizations of pressure reducing
valves in Water distribution systems

It is a commonly recognized fact that the water loss in water distribution systems takes
a large part of the total supplied volume[1, 21, 32]. Water losses are generally classified
into apparent and real losses [21, 46]. The apparent loss is due to inaccurate meters
and/or unauthorized consumption, whereas the real loss is caused by leakages at net-
work fittings, pipe joints, breaks and/or bursts in pipes. To reduce leakages in water dis-
tribution systems many strategies have been proposed ranging from pipe rehabilitation,
detection and reparation of existing leaks to operational pressure management [30, 32].
Water leakages can be considered as additional demands at nodes and mathematically
modeled as a proportional relation to the nodal pressures [30, 47]. The amount of water
losses increases significantly as the average system pressure rises [48]. For this reason, it
is desired to decrease system pressures in order to reduce water losses [48]. In addition,
due to the decreased operating pressure, the risk of further leaks and incidences of pipe
bursts can be avoided or limited [21, 30].
The placement of PRVs and regulation of system pressures are considered as major
tasks for operational pressure management [1, 31, 32, 33, 35, 48]. To formulate the
localization problem, a binary variable for each link has to be introduced to represent
the valve placement (i.e., 1 means a valve is present and 0 not present on the link).
Therefore, the localization task leads to a MINLP problem with a large number of
integer (binary) variables which usually cannot be easily solved directly by an existing
MINLP software package [49, 50]. Moreover, to achieve a robust decision for the valve
placement, multiple demand scenarios ought to be included which makes the problem
formulation even more difficult to solve.
There are many optimization methods which have been applied to address the optimal
location of PRVs. They can be classified into mixed integer linear programming (MILP),
mixed integer nonlinear programming (MINLP), and meta-heuristic algorithms (e.g.,
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genetic algorithm, scatter search, evolutionary algorithm, etc).

2.1.1 Mixed integer linear programming

The localization of control valves was first considered in [51] for pressure reduction.
The authors proposed a method to select pipes where control valves can be placed
so as to minimize both the pressure and the capital cost of installing valves by one
objective function. The optimization problem is formulated as a mixed integer nonlinear
programming (MINLP) in which binary variables are introduced to represent locations
and types of control valves. It was then approximated to a mixed-integer linear program
(MILP) by separable linearization of nonlinear equations. The solution approach applied
to localization of control valves for a network with 15 nodes and 21 pipes demonstrates
a good computational efficiency.
Although MILP problem can be solved efficiently using branch and bound search, a
shortcoming of this approach is that the linearized model for large scale WDSs (e.g., a
WDS has thousands of pipes and nodes) leads to a low accuracy which may cause an
infeasible solution.

2.1.2 Mixed integer nonlinear programming

More recently, optimal localization of PRVs is formulated as a MINLP problem [35]
in which binary variables represent locations of PRVs on links in bidirectional flows.
Using this approach, the computation time for solving a small MINLP problem with
74 binary variables was 555 seconds and it took over 150 hours for solving a large
one with 4926 binary variables [35]. Although this formulation of MINLP is general
and can be applied to any water distribution systems, leakage at nodes and multiple
demand patterns were not considered in the approach. To represent real water system
operations leakage should be considered in the formulation of MINLP. Moreover, it is
critical to consider multiple demand patterns so that the locations of PRVs account for
all operating scenarios. Adding these two major issues in the problem formulation makes
the MINLP problem more difficult to solve since the number of continuous variables
increase dramatically.

2.1.3 Meta-heuristic algorithms

Under one demand scenario, Savic and Walters. 1996 addressed the localization problem
by considering only on and off states of isolating valves as binary variables [34, 48]. They
employed an evolution program (EP) to search for optimal valve locations to minimize
the average excessive pressure. The EP is coupled with a hydraulic solver which uses a
method based loop equations, namely, the linear theory method to accelerate the search
of EP.
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Reis et al in [31] also used GA combined with a linear theory method to optimize
control valve locations for minimizing leakages under different demand, the number of
control valves, and reservoir levels. While the GA procedure identifies optimal locations
of control valves, the linear theory method [7, 52] determines the optimal valve settings
for these corresponding valve combinations and calculate the objective function value.
To evaluate the efficiency of the solution approach, the optimal control valve location for
a benchmark WDS with 37 pipes and 25 nodes in [7] is considered. The results showed
that a considerable leakage amount can be reduced even with a few valves when they are
located optimally. Moreover, it was shown that the leakage in the system is relatively
insensitive to changes of the demands and reservoir levels.
In [53], a GA solution approach was used to solve the optimal locations of PRVs for a
real WDS in the city of Mahalat in Iran. Two objective functions are defined includ-
ing the maximization of the number of nodes having appropriate pressures and the
minimization of leakage flows in a WDS. The results showed that both optimal solu-
tions result in higher leakage decrease and a higher number of nodes with appropriate
pressure as compared with the solution suggested by the expert choice. In addition,
there are no correlations between the optimal solutions obtained from the two objective
functions.
It is due to the fact that a WDS can have thousands of pipes, and if all pipes are
considered as potential locations for PRVs, the search space will be very large. A GA
based two-phase method was proposed by Ajauro et al. in [1] to solve the pressure man-
agement problem. In the first phase, the number of possible valves in the network was
determined. In the second phase, the combinations of the possible valves were consid-
ered based on their frequency appearance and then the valve openings were determined
so that a compromise between the leakage reduction and the number of valves can be
gained. Also, a two-phase optimization approach based scatter search was also used by
Liberatore and Sechi. 2007 in [33]. In the first phase, the pressure reference method
[33] was used to limit PRV locations into a set of limited pipes. Due to the approach,
the links were considered as candidates if they connect two nodes in which one node
has a pressure exceeding the reference pressure. In the second phase, a scatter search
algorithm was employed to calibrate the valve openings under multiple demand scenar-
ios. Since the search space was limited to the reduced link candidates, the computation
time could be considerably decreased. However, only a limited set of link candidates,
determined based on the mean demand in the first phase, were used in the second phase
for the search space which may not cover the optimal solution.
Using the same idea to limit locations of PRVs to a set of potential pipes, significant
indexes (SI) for pipes in WDSs were introduced in [54] to indicates the relative impor-
tance of a pipe over the others. The pipe with a higher value of SI will have more impact
on the water distribution system than the others with lower values of SI. The pipes are
then arranged due to their SI values. Only a certain number of pipes among these pipes
(i.e., 60%) are chosen as potential locations for PRVs [54]. Similar to the approaches in
[1] and [33], the use of SI will eliminate inefficient solutions for PRV locating problems
and, more importantly, it reduces the search space for Genetic Algorithms. As a result,
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the computation time for GA solution can be significantly reduced. However, the num-
ber of potential links for PRV locations was estimated for the mean demand in that
study, which may not cover the best combinations of PRVs.
To reduce computation time required by GA approaches for solving PRV locating prob-
lems, a hybrid approach (LLHA) was proposed in [55]. In this approach, optimal open-
ings of control valves is solved using iterative linear programming while the optimal
locations of control valves and on/off operations of isolated valves are determined by
a multi-objective optimization (NSGA II) to minimize two objective functions: daily
leakage volume and the cost of installing control valves. The results demonstrated that
the hybrid approach achieves higher computational efficiency as compared with the use
of NSGA II. In [32], Nicolini and Zovatto. 2009 proposed to use a multi-objective GA
(NSGA II) to optimize both the number of PRVs installed and their locations under
multiple demand scenarios. As a result, a Pareto set of optimal solutions was achieved,
leading to a trade-off between the number of valves installed and the amount of water
leakages.
For design of water distribution systems, the authors in [29] addressed the design of
pipelines in a water distribution system simultaneously with determining optimal lo-
cations of PRVs. A combined solution approach, namely, Genetic algorithm combined
with a nonlinear programming algorithm, is used to solve the optimization problem.
In this approach, the GA procedure is used to choose optimal diameters of pipes and
identifies optimal locations of PRVs, while a nonlinear programming solver is used to
determine the optimal valve settings.
Although meta-heuristic algorithms are suitable to deal with both binary and continu-
ous variables, they sometimes cannot locate highly accurate solutions and may produce
only suboptimal solutions, In addition, they require a large number of objective and
constraint function evaluations, and hence are inefficient for solving large scale opti-
mization problems [38].

2.2 Optimal operations of pressure reducing valves
in Water distribution system

The leakage amount in a WDS increases significantly when operating at an excessive
pressure [48]. For this reason, reducing the excessive pressure will lead to a reduction of
the leakage amount and the risk of further leaks in a WDS [30, 47, 48]. The leakage re-
duction problem can be accomplished by a model-based optimization aiming at optimal
regulations (or schedules) of the pressure reducing valves (PRVs) and/or the isolated
valves in WDSs. [7, 37, 42]. For the isolated valves the optimization task is to deter-
mine their on/off operations [34], while for the PRVs their pressure settings (openings)
is to be determined by the optimization [37]. The minimization of excessive pressure
by optimal operations of PRVs and/or isolated valves can be achieved by formulating
and solving a nonlinear programming (NLP) problem [37, 42] and/or a mixed-integer
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nonlinear programming (MINLP) problem [34], respectively.

2.2.1 Successive linear programming

The method of successive linear programming [6, 7, 47] was used to solve the NLP
problem where the objective function was defined as the sum of differences between
each nodal pressure and the minimum allowable pressure. It was an iterative approach
that involves a linearization of the objective function and the constraints around the
current solution and then a LP problem is solved to obtain the new solution. The
procedure is repeated until a convergence criterion is satisfied. In particular, the authors
in [7, 47] used the linear theory method [52] to linearize the nonlinear equations of the
optimization problem and then the linear programming problem is solved to obtain
the new solution. In [6], the authors used the Newton-Raphson method to linearize the
nonlinear equations and then a LP was solved to calculate the quantities for updating
the current solution to the new one.

2.2.2 Nonlinear Programming

In [37] the authors formulated a NLP problem for optimal pressure regulation to min-
imize the leakage flow in WDSs, in which the nodal pressures are allowed to be lower
than their minimum values by a minor violation in order to achieve a higher decrease
of leakage amount in a WDS. Two different objective functions were used: 1) the sum
of excessive pressures and 2) the sum of available leakages. It was shown that the use
of the first option will lead to a higher reduction of leakage amount as compared with
the use of the second option. In [56] the authors used parallel computing technology to
accelerate the minimization of leakage flows in water distribution systems. The opti-
mization problem to determine PRV pressure settings was carried out for a time horizon
of 24 hours. It is due to the fact that sub NLP problems are independent, so parallel
computation can be implemented. In fact, the sub NLP problems were organized by
a master processor and solved by slave processors. Numerical results have shown that
using the approach, the leakage flow decreases significantly and the computation time
is reduced.
Ulanicki et al. in [30] proposed an on-line control strategy for pressure regulations in the
Domestic Metter Areas (DMAs). Two control schemes for PRVs were proposed: predic-
tive control and feedback control. In the first scheme, the model of network and demand
was hourly updated and hourly PRV set points were calculated by a NLP method. On
contrary to the predictive scheme, the feedback control scheme instead requires the
model and demand updated hourly, it optimizes the PRV set points for a certain num-
ber of demand patterns (e.g., 24 demand patterns). The relationships between optimal
outlet pressures (or pressure settings) and flows of PRVs were constructed for PRV con-
trollers. The controllers continuously adjusted the pressure settings for the PRVs due
to measurements of flows at the outlet of the PRVs. The feedback schedule scheme, if
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possible, was valid for a wide range of demands and did not require re-calculation when
the demand changes. Therefore, it is suitable for on-line regulations of PRVs. Ulanicki
et al. in [42] presented an approach to optimize the schedules of both boundary and
internal PRVs for 24 hours to minimize the leakage flows in DMAs. The nonlinear opti-
mization problem was formulated and solved by the CONOPT solver [57]. As a result,
the control flow modulation curves for PRVs, i.e., the relations between the flows and
the pressure settings which are essential for online PRV control, were deduced.

2.2.3 Meta-heuristic algorithms

Savic and Walters in [34] optimized the on/off operations of isolated valves to minimize
the excessive pressure in a WDS using an evolutionary algorithm. Genetic algorithms
combined with EPANET 2 [58] were also used to determine optimal outlet pressures
of PRVs for pressure regulations in WDSs [53, 59, 60]. From the optimal solution, the
outlet pressures of a PRV can be calculated hourly using time schedule [42, 59] or
adjusted continuously using flow modulating schedule [60].

In [60], the authors developed the flow modulation curves for PRV controllers using
a genetic algorithm. The pressure control in a district metering area was formulated
as a NLP problem in which constraints relating to PRV pressure settings and their
flows by second order curves with unknown coefficients were introduced. The unknown
coefficients for the modulation curves of PRVs are decision variables and determined by
solving the optimization problem using GA. Numerical experiments have shown that
the resulting modulation curves operate robustly over a large range of demands. Scatter
search was employed by Liberatore and Sechi in [33] to solve the optimal locations and
operations of PRVs in a WDS.

2.2.4 Model of Pressure reducing valves

The PRV model usually comprises of three operation modes: open, normal, and close
(or check valve mode) [53, 58]. However, in the formulation of optimization problem
and the solution based on gradient methods for pressure regulations, the model of PRVs
is commonly described by the Hazen-Williams equation and it is a two-mode model of
PRV [37, 42]. In particular, this model can only represent the normal mode when a PRV
maintains the downstream pressure at the preset value and the open mode when the
downstream pressure is lower than the pressure setting. The NLP problem formulated
with the two-mode model of PRVs may not have a solution due to the case that the
check valve operation mode of PRVs occurs in WDSs, but it is not handled in the PRV
model equation.
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2.3 Summary about optimal pressure managements
in WDSs

The optimization approaches to the optimal pressure managements in WDSs can be
summarized as bellows:

• The optimal pressure management by regulating the pressure in WDSs reduces
the leakage flow significantly [37, 42]. In addition, it is considered as one of the
most effective means to decrease the magnitude of existing leakage flows and
possibilities of creating new leaks.

• The optimal pressure management can be accomplished by optimization of loca-
tions and operations of PRVs. Although many solution approaches in which most
of them are meta-heuristic approaches have been applied to solve these optimiza-
tion problems [1, 31, 32, 33, 35, 48], these approaches own their limitations such
as: 1) they require a large amount of computation time, 2) they result in low qual-
ity solutions, 3) they are only applicable to solve the optimization problems for
small-scale WDSs [51], and 4) they employ PRV models which are not capable of
representing full operation modes of PRVs [37, 42] in the formulations of optimal
pressure management problems.

In this thesis, the optimal localization of PRVs will be considered. In particular, a new
solution approach, namely mathematical program with complementarity constraints,
will be proposed to solve the optimization problem efficiently. Also, an extended PRV
model representing fully operation modes of PRVs will be introduced and applied to
solve the optimal pressure management problems in WDSs.

2.4 Optimization of energy and maintenance costs
for water supply and distribution systems

There are many optimization algorithms which have been developed in the literature
to carry out the operational optimization of water supply and distribution systems.
The optimization model plays a central role in the algorithms. There are several kinds
of optimization models which can be classified into linear programming, mixed integer
linear programming, mixed integer nonlinear programming, and simulation based model
(e.g., model in EPANET), and Artificial Neural Network model (ANN). First, this
section reviews the optimization models and then the algorithms which have been used
so far to solve the optimization problems. Summaries will be presented in the last
section.
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2.4.1 Optimization model

2.4.1.1 The mass-balance model

The mass-balance model is considered as the simplest model. The system flow rate
is determined by the demand plus the flow rate variation in a tank. Only the linear
equation relating to the change of water levels with the system flow is used. The pressure
requirement for obtaining the flow of water in the tank as well as the minimum pressures
at nodes is neglected. This is based on the assumption that as the water levels in tank
remains in a specified range of values, the pressures at nodes will be ensured to be
larger than a minimum allowable value. The mass balance model is mainly employed
for water supply systems instead of water distribution systems [61]. In the water supply
system, pump stations supply water to the tanks through a main pipe line system. The
total dynamic pump heads are calculated by the summation of the static head and
the head loss in the pipe [19]. The resulting optimization is a mixed integer nonlinear
programming problem with linear constraints and nonlinear objective function in which
binary variables were introduced to represent on/off operations of pumps [3, 19]

2.4.1.2 The regression model

This model is more accurate than the mass-balance model as it captures the nonlinearity
of hydraulic characteristics of the system. Several strategies can be used to model the
non-linear equations that represent the hydraulic conditions of the WDS. For example,
the specified pump combinations, demand scenarios, initial water tank levels are inputs
for carrying out simulation. The output can be the energy cost, tank water flow rates,
pressures at substantial nodes. The curves (quadratic or cubic polynomials) relating
the output and input can be established by using interpolation of data points. The
advantage of the regression model lies in the fact that the hydraulic quantities can be
calculated in a very efficient computation manner and appropriate for online or fast
optimal control [15, 62]. However, the regression model must be calculated again as
there is any change in the system configuration and demand.

2.4.1.3 The simplified hydraulic model

This model is considered as an intermediate model between the regression model and
the full hydraulic model [61]. In particular, the system hydraulics may be approximated
using a macroscopic system model [61] or using a system of linear hydraulic equations.
In the macroscopic system model, a highly skeletonized system model is used. Typically,
only a pump, a lumped demand, and lumped resistance term of a pipe are included in an
optimization model. In particular cases, some linear equations are enough to represent
the system hydraulics [61, 63]. Jowitt and Germanopoulos in [64] developed a LP model
relying on assumptions that decouplethe pumping station operation from the network
hydraulic characteristics (e.g., the pump station flow reaching each reservoir can be
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expressed directly in terms of the pump control at station and is not affected by pump
and valve controls elsewhere in the system).

2.4.1.4 Linearized model

A methodology for the derivation of this model is to linearize the hydraulic nonlinear
equations around the given operating point [65] or using the iterative linearization
scheme [66].The LP model is tractable in computation and hence it is widely employed
for online optimal control [65]. However, using LP model, only continuous flow set
points for pumps (or pump stations) are determined. Hence, a second optimization step
is needed to translate the continuous set points (e.g., pump flows) to 0/1 operations
of pumps [18, 65, 67, 68]. In particular, Giacomello et al. in [65] passed the solution of
the LP model (i.e. a nonzero pump flow means that the pump operates, otherwise it is
closed) to a stochastic search to improve the 0/1 operation of pumps.

2.4.1.5 The full hydraulic model

This model or nonlinear model is based on the energy and mass conservation laws.
In contrast to the mass-balance and regression models, the full hydraulic model are
adaptive to both system changes and spatial demand variations [61]. To account for
the on/off operation of pumps, the optimal pump scheduling problem is formulated
as a MINLP problem [18, 43, 69]. The full hydraulic model is also implemented in
the EPANET software which allows incorporating if-then-rules for manipulating the
discrete operations of pumps and valves.
According to optimization models, many solution approaches have been proposed such
as dynamic programming (DP), meta-heuristic algorithms [20], hybrid GA [70], linear
programming [65, 71] combined with a heuristic method, and NLP algorithm combined
with a heuristic discretization algorithm[72].

2.4.2 Solution approaches to solve the optimal pump schedul-
ing problems

2.4.2.1 Dynamic programming

Dynamic programming (DP) has been used to solve the optimal operation of pumps.
The optimization problem was formulated in which water tank levels are state variables.
The operation of pumps was found so as to minimize the energy cost while satisfying
bound constraints of nodal pressure heads, water tank levels. The mass balance with
the lumped demand or the regression model was widely used in conjunction with the
DP method [15, 61]. To solve the optimization problem with the DP method, the
optimization problem was broken into a series of discrete time steps or stages. Each
stage has prescribed set of pump combinations and water tank levels. The optimal
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solution was obtained by evaluating all the state transitions between the adjacent stages
instead of all state transitions between the stages (enumeration). The DP was efficient
in obtaining the optimal solution for the small-scale system with a single tank. Zessler
and Shamir in [73] used an iterative dynamic programming (DP) method that found
an optimal pump scheduling for 24 hours given demands, the initial and final water
levels in the tanks. Lansey and Awumah in [15] developed an online optimization of
pump scheduling with consideration of pump switching using the DP method. The
curves relating the energy consumption, rate of water level change with initial tank
levels, needed for online optimization, were calculated offline while the optimization
problem was solving on-line. To solve the optimization problem with DP, in each stage,
each pump combination was evaluated with all initial tank levels. When all pump
combinations for all states have been examined, the minimum cost for each pump
combination for each ending state is retained. The algorithm moves to the next stage
then continue until all stages have been examined. The optimal combinations of pumps
are selected as providing the lowest energy cost in the planning time period.
Although DP is efficient in computing manner, it was mostly used for small-scale water
supply systems or a single pressure zone with limited number of storage tanks [15, 61].
For a water supply network with many tanks, the state space for DP becomes too large
and the computational burden would be very high [16, 61]. To overcome such complexity,
the spatial decomposition approach was used in which a WDS with multiple storage
tanks is broken into subsystems with one or two storage tanks. Optimal operations were
carried out for each subsystem and were coordinated by a upper control level [15, 61].

2.4.2.2 Nonlinear programming and mixed integer nonlinear programming

Brion and Mays [74] as well as Ormsbee and Reddy [62] used NLP for operation op-
timization of pumping stations in a WDS, where a simulation model (i.e., KYPIPE)
was used. The problem was solved using a generalized reduced gradient method (i.e.,
in GRG2 [75]) to determine operating time periods of pumps which were then passed
to the simulation model to calculate the state and constraint values. The procedure is
repeated until the convergence is reached. Zhong et al. in [76] also used a two-stage hier-
archical scheme to optimize pump operations. In the first optimization stage, the NLP
problem was formulated and solved by the augmented Lagrange and active set method
to determine optimal head set-points for pump stations. In the second optimization
stage, dynamic programming was used to translate the optimal head set-points into
discrete operation of pump combinations. Yu et al. in [77] used the generalized reduced
gradient method for determining the optimal operation of general water distribution
systems with multiple sources and reservoirs. The optimization problem was formulated
and solved with given 24 forecasted demands, initial and final water tank levels. The
method starts with a feasible initial guess and iterates so that all the intermediate so-
lutions are feasible. Sakarya and Mays in [78] presented a methodology to determine
the optimal pump scheduling problem in water distribution system with water quality
consideration. Also, a nonlinear optimization solver (GRG2) was coupled with a hy-
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draulic simulator to address the optimization problem. For large-scale WDSs, nonlin-
ear programming (NLP) and mixed-integer nonlinear programming (MINLP) has been
applied to determine optimal pumping schedules of single and variable speed pump
stations [8, 14, 18, 43]. This method consists of two optimization levels [8, 18, 68]. A
relaxed NLP problem was solved in the first level optimization and a mixed-integer
solution was found in the second level [8, 18]. The drawback of the approach lies in
the fact that solving the MINLP in the second optimization level by available MINLP
algorithms is difficult and it usually takes a large computation time. In addition, due
to the challenges from treating discrete variables and handling non-convex equations,
the solution of a large-scale MINLP suffers from a lack of robustness, reliability and
efficiency [50]. To address the issue, a simple heuristic method was proposed by Skwor-
cow et al in [72] to discretize the continuous solution to the discrete one. According to
the method, fractional values of numbers of pumps in operation (i.e., 2.5 pumps) from
NLP solution are translated into a series of discrete number of pumps switched on in
discretized time intervals (i.e., 15 or 30 minutes). The discretized pumping schedules
are passed to Epanet 2 for evaluating and improving the accuracy. The advantage of
combining NLP algorithm with a heuristic discretization procedure lies in the fact it
is simple to implement and the solution can be obtained in a short computation time
[72]. Cembrano et al. in [69] proposed a penalization approach to penalize the non-
integer variables (e.g., number of pumps switched on) in the optimization problem.
The optimization was finally solved by using a generalized reduced gradient method.
Burgschweiger et al. in [8] developed an optimization model and a two-stage solution ap-
proach for operation of a large-scale WDS. In the first optimization stage, an aggregated
model for pumps in each waterworks was developed. The NLP was then formulated and
solved for the overall network with a continuous aggregated output for each pump sta-
tion. In the second optimization stage this optimal continuous output is approximated
by solving a small scale mixed integer nonlinear problem to determine on/off operations
of pumps in each pump station in the WDS [8, 79].
Mouatasim in [19] formulated a MINLP problem for operational optimization of a water
supply system with multiple reservoirs. Instead of using a MINLP solver, the author
proposed to solve the optimization problem by a random perturbation of a reduced
gradient method. Better results were shown than those obtained from solving the same
problem by using a global MINLP solver. Although this solution approach is promising,
it is only applied to solve small-scale pump scheduling problems up to 10 pumps with
10 binary variables [19]. In addition, the MINLP problem is only formulated for several
time intervals without considering the dynamic changes of water levels in reservoirs and
moreover, and pump switching was not considered in the study.
Recently, Ghaddar et al. in [80] presented a two-level optimization approach to solve the
pump scheduling problem in water networks. In particular, a Lagrangian decomposition
approach was used to decompose the large-scale MINLP problem into smaller scale
MINLP problems. Then the best lower bounds of the optimization problem in each time
interval are found by solving the corresponding Lagrangian master problems and the
sub MINLP problems. Since the solutions from the Lagrangian decomposition algorithm
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may not feasible for the original MINLP problem, a limited discrepancy search in [81]
was used to transform the infeasible solution to a feasible one.

2.4.2.3 Linear programming and Mixed integer linear programming

Jowitt and Germanopoulos in [64] presented a linear programming model to optimize
the pump scheduling problem in a water supply system. The nonlinear network equa-
tions were linearized and their parameters are determined by using the extended-period
simulation. McCormick and Powell in [16] proposed to use a mixed integer linear pro-
gramming model (MILP) for operational optimization of a water distribution system.
The binary variables represent hourly on/off operations of combinations of pumps in
each pump group [16]. To solve the large scale MILP problem, a progressive solution
approach was proposed. At first, the MILP is relaxed and solved by a linear solver.
Then, the 0 and 1 values of relaxed binary variables are frozen, while fractional values
of relaxed binary variables in only one or two time intervals are declared as binary
variables in the MILP problem. A mixed integer solution is found and this procedure
is repeated until binary decisions have been made for all time intervals [16]. Finally, a
greedy algorithm was used to further improve the quality of the binary solution. This
approach has been applied to the optimal pump scheduling problem for a system with
13 sources, 10 reservoirs, and 35 pumps [16].

2.4.2.4 Meta-heuristic approach

Genetic algorithms (GAs) and multi-objective evolutionary algorithms (MOEA) have
been extensively used to optimize the design and operation of WDS [12, 20, 70, 82]. Due
to no requirement of gradient computation, GAs can be applied to complex, nonlinear,
combinatorial optimization problems [83, 84, 85]. However, a major disadvantage of GA
lies in that, while it is efficient in finding the region of optimal solution, it is much less
efficient in identifying the local optimum inside this region [70]. For this reason, a GA
requires high computational intensity to reach the optimal or near an optimal solution
[11, 65, 86, 87].
To improve the efficiency of GA, a hill-climber search algorithm (Hook and Jeeves
algorithm) was coupled to GA in order to find a local optimum [70]. Also, to accelerate
the computation of the GA, artificial neural networks (ANNs) were used as simulation
models for carrying out optimization [86, 88] with which the computation time can be
significantly reduced. However, an ANN model requires high computational burden in
developing the model by training the ANNs [86]. The advantage of the use of meta-
heuristic algorithm is due to the flexible formulation of the optimization problem. For
examples, instead of defining explicitly the pump operation using binary variable in
each hour, it is possible to define the time periods for pump operations (i.e., continuous
variable) or tank levels as decision variables. With such reformulation, the number
of decision variables in the optimization problem is significantly reduced [89]. Another
advantage of the genetic algorithm is due the possibility of utilizing parallel computation
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to accelerate the GA solution procedure [89, 90]. The reason lies in the fact that carrying
out simulation for each individual of a population in GA is independent, and hence
they can be in parallel implemented. Parallel computation can be achieved by using the
message passing interface programming or Open-Multi-Processor programming [90].
Bargio et al. in [38] proposed a novel approach for modeling the pump scheduling
problem explicitly so as to minimize the operating cost. According to the approach, the
pump start/end run times are considered as continuous decision variables. In addition,
binary variables are introduced to describe the statuses of pumps at the beginning of
the scheduling period. The optimization is formulated as a mixed integer nonlinear
programming problem (MINLP). To solve the problem, the authors proposed to use
the combination of grid search with the Hooke-Jeeves pattern search. At first, a set
of feasible combinations of start/end run times and on/off states of the pumps at
the beginning period is determined. Then, Hooke-Jeeves method was used to further
improve each feasible combination (or solution). The final solution was chosen as the
best one among the feasible solutions. The approach was efficient to solve the pump
scheduling problems for small-scale WDS benchmarks. However, feasible combinations
of on/off pumps and start/end time runs (Grid search) are not easily identified for
large-scale WDSs with multiple pump stations.

2.4.2.5 Linear programming and hybrid approach

Pasha and Lansey. 2009 in [71] presented an approach for optimal pump scheduling
to minimize energy cost in WDS. A linear programming (LP) problem was formulated
based on the mass balance model and the regression method. In particular, the objec-
tive function relating the pumping energy cost with pump station flow and tank level
was approximated by a linear function by using the regression method. The data for
the approximation is produced by simulating a water distribution system with specified
water tank levels and pump combinations. Solution of the linear programming problem
provides the continuous flow set- points for pump stations. Scheduling algorithms such
as integer programming and stochastic search can be used to translate the continuous
flow set-points into 0/1 operation of pumps or pump combinations. Although this ap-
proach is very efficient in computation time since solving LP problem requires a very
short computation time, the formulation of LP model for the systems with many tanks
and many pump stations is not a trivial task. Puleo et al. in [67] translated the LP
solution to the discrete one and used it as an initial solution for the hybrid discrete
dynamically dimensioned search [91] to further improve the discrete pump scheduling.
A hybrid optimization scheme combining a linear programming (LP) method and a
greedy algorithm was proposed by Giacomello et al. in [65] to solve the optimal pump
scheduling problem. The LP model was derived by linearizing the nonlinear model
equations around a given operating point. By solving the LP problem, for each time in-
terval, pumps with zero flows will be switched off while (on/off) operation of pumps with
nonzero flows will be further determined by the greedy algorithm coupled to EPANET
2. Similar to the approach in [71], this solution approach is suitable for application
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of real- time control. However, the operating point at which the LP model is derived
must be given in prior. Price and Ostfeld in [92] proposed an iterative linearization
approach to solve the optimal operation of a WDS. The non-linear and non-convex
Hazen-Williams head loss was linearized and the resulting linear programming problem
was solved iteratively until a defined convergence criterion is satisfied. The approach
has been applied to minimize the annual operation cost of a water distribution system.

2.4.3 Summary about operational optimizations of water sup-
ply and distribution systems

The optimization models and solution approaches for operational optimizations of water
supply/distribution systems can be summarized as bellows:

• Optimal operations of water supply and distribution systems, in general, are for-
mulated as mixed integer nonlinear optimization problems (MINLPs) [8, 43]. The
non-linear and non-convex MINLPs are usually very hard to solve. As an effort
to relieve the complexity of the optimization problem, many optimization models
are simplified to linear ones or use mass balance models which enable the opti-
mization algorithms to solve the optimization problem easily. It is important to
recognize that mass balance linear model is suitable for the water supply systems
in which water is conveyed to reservoirs by main pipeline systems, whereas it is
not the case for water distribution systems in general [61]. When a linearized or
mass balance model is used to describe a water distribution system, the optimiza-
tion model usually has low accuracy. Moreover, the continuous solutions for pump
stations must be translated to on/off operations for individual pumps in pump
stations [67, 71].

• GA [12, 20, 70] is considered as a general solution approach for solving the
MINLPs for pump scheduling problems, but it requires an expensive computa-
tion time. In addition, although GA was mostly used for solving the operational
optimizations of water distribution systems, it was usually applied for small-scale
WDSs in the literature [14].

• A two stage optimization approach can be applied to solve large scale optimization
problems. This is a promising approach, since it can solve large scale optimization
problems in an reasonable computing time [8, 14, 18, 43].

In this thesis, we also consider the operational optimizations of water supply and dis-
tribution systems. For a water supply system, a general MINLP is formulated in which
the constraints are mass-balance linear equations. We propose a set of linear inequality
constraints to handle the number of pump switches (or the maintenance cost). These
constraints as added to the MINLP problem will effectively restrict the number of pump
switches and do not increase the complexity of the optimization problem significantly.
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To optimize operation of a water distribution system in such an efficient manner, we
implement the two-stage optimization approach for solving a real and large scale drink-
ing water system in a software package. Different to many applications reported in the
literature [14, 43], the computation framework proposed in this thesis is beneficial for
large-scale WDSs.
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Chapter 3

Modeling of water distribution
systems and optimization methods

3.1 Modeling of water distribution systems

The aim of a water network is to supply water to customer or services. A small water
distribution system may have a single source node such as an elevated service reservoir
or a pumping arrangement directly supplying water from the treatment plant to the
system, while a large network may have several sources nodes, service and balancing
reservoirs and pumping stations. A water distribution system includes hydraulic compo-
nents like pipes, pumps, valves, reservoirs, storage tanks which are classified into active
and passive elements. Passive elements are pipes, reservoirs, storage tanks. They are
parts of a water network and are used to transport the water to services and customers
or to contain the water and supply water to the system by gravity. Pumps and valves
are active elements. They are controlled by operators to lift water from lower areas
to higher areas or/and to maintain pressures, flows (i.e., pressure reducing valves, flow
control valves, etc.) in the system. Active and passive elements of a water distribution
system are represented by hydraulic equations which are derived from continuity and
energy principles for nodes (or junctions) and links, respectively. The energy princi-
ple or energy conservation is applied for incompressible flows on links. In a WDS, the
Bernoulli’s equation is used to establish equations describing pipes, valves, and pumps.
The model of a water distribution system with the control inputs and outputs is depicted
in Fig. 3.1. The pump scheduling is a set of rules indicating pumps to be turned on or
off (for single speed pumps) or indicating at which speed pumps operate (for variable
speed pumps). Pressure control can be accomplished via regulating valve openings.
The valve openings, and relative pump speeds are continuous control variables while
the pump controls are binary or integer control variables [43]. A water distribution
system is described by nonlinear differential algebraic equation [43]. The dynamic part
is represented by storage tanks and the static nonlinear part by a hydraulic network
[43]
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Figure 3.1: Modeling and optimizations of water distribution systems.

3.1.1 Pumps

Pumps or pump groups are installed in pipelines to supply extra head to lift water from
a lower level to a higher level. In pipe systems, pumps may be placed externally and
serve as supply pumps to provide water from external sources to the pipe systems, or
may be placed internally within a system as booster pumps to boost up the pressure
at some nodes within the system.

3.1.1.1 Single speed pumps

At a constant rotational speed, a pump has a relationship between the added head hp
and its discharge Q. This relationship is described by a quadratic function or a power
law function [93]

hp = apQ
2 + bpQ+H0 (3.1)

hp = H0 − apQα (3.2)

where ap,bp, cp are constants which are obtained by regression analysis from the data
of pumps; H0 is the shut-off head, i.e., the maximum head that can be provided by the
pump as Q→ 0.
The power of a pump can be calculated by the following equation

P = γQhp
1000η (3.3)
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where P is the power consumption in kilowatts; γ is the specific weight of the liquid in
newton per cubic meter; Q is the pump discharge in cubic meters per second; hp is the
additional head added by the pump in meters and η is the pump efficiency.
The efficiency of pump can be approximated by a cubic polynomial function as [93]

η = AηQ
3 +BηQ

2 + CηQ+Dη (3.4)

It is due to the fact that Eq. (3.3) is complicated when used in the formulation of
optimization problems [93], the power consumption of pump can be approximated by
a cubic polynomial function of flow [93]

P = ApQ
3 +BpQ

2 + CpQ+Dp (3.5)

where Ap,Bp, Cp, and Dp are constants obtained by regression method from available
pump data .

3.1.1.2 Variable speed pumps

For variable speed pumps, the scaling to relative pump speed is applied for discharge,
head, and power of pumps using affinity laws [93]. The equations in Eq. (3.1) and (3.2)
are scaled as bellows

hp = s2
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Q
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)2
+ bp

(
Q
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)
+H0

)
(3.6)

and
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Q

s

)α)
(3.7)

The efficiency equation in (3.4) is scaled to the speed of pump

η = Aη

(
Q

s

)3
+Bη

(
Q

s

)2
+ Cη

(
Q

s

)
+Dη (3.8)

Similarly, the power consumed by pumps can be scaled from Eq. (3.5) as bellows

P = s3
(
Ap

(
Q

s

)3
+Bp

(
Q

s

)2
+ Cp

(
Q

s

)
+Dp

)
(3.9)

3.1.1.3 A group of identical pumps

For a pump group with n identical pumps configured in parallel, the relationships
between flow and head (hp-Q), flow and efficiency (ηp-Q), flow and power consumption
(P -Q) for a pump group are scaled to the number of pumps in operation and their
speed [93]. In fact, we have

hp = s2
(
ap

(
Q

ns

)2
+ bp

(
Q

ns

)
+ cp

)
(3.10)
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or
hp = s2

(
H0 − ap

(
Q

ns

)α)
(3.11)

The efficiency can be scaled due to speed and number of operating pumps

η = Aη

(
Q

ns

)3
+Bη

(
Q

ns

)2
+ Cη

(
Q

ns

)
+Dη (3.12)

Similarly, the power consumption for a pump group is

P (Q, n, s) =


ns3

[
Ap

(
Q

ns

)3
+Bp

(
Q

ns

)2
+ Cp

(
Q

ns

)
+Dp

]
if n 6= 0

0 if n = 0
(3.13)

3.1.2 Pipes

Pipes are used for transporting water to services. When a fluid flows through a pipe,
a part of the total energy of the fluid is spent in maintaining the flow [94]. It is char-
acterized by the head loss in the pipe. The head loss is classified into two categories:
the head loss due to pipe friction is considered as major head loss, while the head
loss caused by minor appearances (i.e., sudden change of flow or local obstruction to
flow) is termed as minor head loss. Pipe friction loss is produced by the shear stress
between the wall of the pipe and the fluid moving through the pipe. The shear stress
developing within the fluid (i.e., water) depends on the fluid viscosity. The fluid with
higher viscosity will result in higher shear stress and, consequently, a greater head loss
across a pipeline [8, 95]. There are two formulas, mostly used for predicting the friction
loss through a pipe, are Darcy-Weisbach and Hazen-Williams. The Darcy-Weisbach
formula is dimensionally homogeneous, while the Hazen-Williams formula is empirical.
The Darcy-Weisbach is regarded as the most accurate means of relating head loss and
flow for the complete range of the Reynolds number, while the Hazen-Williams is less
accurate and is applicable for a limited Reynolds number range [96, 97].

3.1.2.1 The Darcy-Weisbach equation

∆h = f
8L

π2gD5Q|Q| (3.14)

The friction factor f depends on the Reynolds number (Re) and relative roughness of
the pipe (ε/D). The friction is represented by a graph on the Moody diagram.
For laminar flow (Re ≤ 2000), f is calculated by the Hagen-Poiseuille equation

f = 64
Re (3.15)
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Turbulent flow with Re≥4000 includes smooth turbulent flow (or smooth pipe), transi-
tional turbulent flow (between smooth and rough turbulent regions) and rough turbulent
flow (or rough pipe).
The smooth turbulent flow occurs in a pipeline as the pipe wall roughness is within the
laminar sub layer [94]. The friction factor depends only on the Reynolds number, and
is calculated according to the Prandtl-von Karman equation

1√
f

= 2 log
(

Re
√
f

2.51

)
(3.16)

The rough turbulent flow (rough pipe) is verified that , the effect of viscosity is negligible,
and the friction factor depends only on the relative roughness (ε/D) and is computed
by the Von-Karman equation as

1√
f

= 2 log
(

3.7
ε/D

)
(3.17)

For transition turbulent flows, the friction factors are estimated by the Colebrook-White
equation. It depends on both ε/D and Re.

1√
f

= −2 log
(

ε

3.7D + 2.51
Re
√
f

)
(3.18)

where ε/D is the relative pipe roughness; and Re is the Reynolds number. The fiction
factor f in the Darcy-Weisbach equation calculated by the Colebrook and White equa-
tion has been preferred because of its presumed superior accuracy and sound theoretical
basis [98]. The Colebrook and White equation is valid for the Re ranging from 4×103 to
108 and values of relative roughness ε/D ranging from 0 to 5×10−2 [98]. The Colebrook
and White equation is asymptotic to the equation for the smooth turbulent flow when
ε/D→ 0 and the equation for rough turbulent flow when Re→∞
Some notes on the Colebrook-White equations
The solution of the Colebrook and White equation in (3.18) is implicit and solved by an
iterative numerical scheme such as the Newton-Raphson method or by the reference to
Moody-diagram [98]. However, the iterative calculus can cause overburden in simulation
of flows in a pipe system in which it is necessary to evaluate friction factor hundreds
or thousands of times [99]. The reference to Moody-diagram to obtain friction factors
is not convenient [98]. An alternative solution to the iterative methods is the direct use
of an explicit equation which is precise enough to compute the friction factor. Recently,
numerous researchers provide many explicit equations in [99, 100, 101], which are highly
accurate in simulations of WDSs. A well-known explicit equation for calculating the
friction factor given in (3.19) is proposed by Swamee and Jain (1976). This equation
was also used in EPANET [58].

f = 0.25[
log

(
ε

3.7D + 5.74
Re0.9

)]2 (3.19)
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Re = 4 |Q|
πvD

(3.20)

Although the friction factor can be explicitly calculated by Eq. (3.19), this equation
is non-smooth (e.g., it is dependent on the absolute value of Q). Thus, the resulting
optimization problem, e.g., operational optimization of water distribution systems, is
non-smooth and cannot be solved by gradient based methods. The non-smooth Darcy-
Weisbach head loss equation is approximated by a smooth one in section 3.2.2

3.1.2.2 The Hazen-Williams equation

The Hazen-Williams equation in Eq. (3.21) (G.S. Williams and A. Hazen 1933) is
empirical and it is widely used in the design and modeling of water distribution network.

∆h = 10.68L
C1.852D4.87Q|Q|

0.852 (3.21)

where C is the Hazen-Williams coefficient; L and D are length and diameter of the
pipe in m, respectively; Q is the flow rate through the pipe in (m3/s). The Hazen-
Williams equation is more suitable for smooth pipes, i.e., new pipes with medium to
large diameter [94]. To use the formula for old pipes (for most WDSs), the Hazen-
Williams coefficient should be reduced or modified so as to obtain high accuracy of
head loss [94]

3.1.3 Valves

Valves in WDSs are used to control the rate of flow (i.e., flow control valves), shut
off pipelines (i.e., isolated valves), or reduce pressure (pressure reducing valve) for low
elevation water supply areas, and prevent reserve flow (check valve) [94]. Considering
a valve on a link which connects node i to node j. The head loss across the valve is
calculated by [94]

Hi −Hj = K
V 2

2g =
(

8K
π2gD4

)
Q2 (3.22)

where K is the minor loss coefficient and is determined by the flow or by the shape of
the valve and the aperture percent; V is the average velocity through the valve.

3.1.3.1 Check valves

Check valves are a special kind of flow control valves and allow the flow in one direction
only. The state of closing or opening is managed by the valve itself. In particular, it
opens when the flow is in the desired direction whereas it closes when the flow is in the
opposite direction. Check valves are mainly used in suction and delivery sides of pumps
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[94]. The following equation is used to describe the operation of a check valve on a link
in direction i→ j [102]

max (0, Hi −Hj) = 8K
π2gD4Q

2 (3.23)

It can be seen that as Hi > Hj, Q > 0, and whereas if Hi < Hj, Q = 0

3.1.3.2 Pressure reducing valves

A pressure reducing valve (PRV) is used to keep a constant pressure at the downstream
node regardless of how large upstream pressure is [94]. For this reason, it is mostly used
in WDSs in order to reduce system pressures and hence control leakage losses [103].
A PRV is characterized by the downstream pressure that it attempts to maintain, its
controlling status and its valve resistance coefficient [104]. A PRV can operate in one of
the three operation modes: open when the downstream pressure is less than the pressure
setting of PRV, normal when the downstream pressure is limited by the pressure setting
of PRV, and closed when the back flow is detected and the PRV acts as a check valve
to prevent flow in opposite direction [94, 104].

Hj =


Hi −RQ2, Q > 0 and Hj < Hset : open
Hset , Q > 0 and Hj > Hset : normal
Hj , Q = 0 and Hi < Hj : close

(3.24)

As a PRV operates in the normal mode, its resistance is a control variable and varies
due to the head loss reduction [94]. We have

R =
(
Hi −Hset

Q

) 1
2

>
8K

π2gD4 (3.25)

where K is the head loss coefficient of PRV; Hset is the pressure setting.

3.1.4 Mass balance at nodes (or junctions)

The continuity equation for steady incompressible flow at a junction is defined that the
sum of the mass flow rate entering a junction must be equal to the sum of the mass
flow rate leaving it. Consider a node j

∑
j

Qi,j − dj − li = 0 (3.26)

where di and li are demand and leakage amount at node i, respectively. Leakage li is
calculated in section 3.1.7
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3.1.5 Reservoirs

Reservoir is a considered as unlimited water supply source (i.e., lake). Mathematically,
it is represented by a junction with a constant head H i.

Hi = H i (3.27)

3.1.6 Storage Tanks

Tanks are often installed near consumption centers to supply water at sufficient pressure.
They are also used to reduce the fluctuation of system pressure when demand changes
or there are abruptions caused by switching on/off pumps. In addition, tanks can store
water for the purpose of fire protection. Appropriate operation of filling- emptying of
tank can help water utilities to reduce the pumping energy cost. In a WDS with a
pumping system and tanks, as the rate of pumping exceeds the rate of demand, the
tanks are filled and emptied with reserve condition. The model of a tank is described
by the mass balance equation. Consider a storage tank i, the following equation is used

dVt,i

dt
=
∑
i

Qji (3.28)

where Vt,i is the volume of water in the storage tank; Qji is flow coming in and out of
the tank . If the tank has a constant cross-sectional area (e.g., a cylindrical tank), the
water volume in the tank is

Vt,i = Siht,i (3.29)

where ht,i and Si are the water level in the tank i and the cross-sectional area of tank
i, respectively. Replacing this equation into Eq. (3.28), we have

Si
dht,i

dt
=
∑
j

Qji (3.30)

Using the Euler integration method to discretize the differential equation in Eq. (3.30),
we obtain the equation describing the relationship between the heads of tanks at two
successive time intervals. The length of time interval is ∆t.

hi,k+1 − hi,k =
∆t∑

j
Qji

Si
(3.31)

where hi,k and hi,k+1 are water levels in the tank i at time interval k and k+ 1, respec-
tively.
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3.1.7 Modeling of leakage

3.1.7.1 Leakage model in a water distribution system

The leakage includes background and burst leak components. The background leakage
is due to small seepages through numerous connections, joints and fittings. The back
ground leak is distributed over nodes and its magnitude is proportional to the pressure
as shown in Eq. (3.32) [42]. In the continuity equation, it is considered as an additional
demand.

li = cip
γ
i (3.32)

where li is the leakage flow at node i; ci is the leakage coefficient; γ is the leakage
exponent and pi is the pressure at node i. The leakage exponent depends on many
factors described in the literature [7, 42, 47, 56]
Another equation for modeling of the background leakage (for a pipe) is to use the
average pressures of two end nodes of pipes, namely pi and pj. The difference between
this model and the model in Eq. (3.32) is due to the fact that the length of pipe (ij) is
taken into consideration. The back ground leakage for a pipe is calculated as [7, 37, 47]

lij = cijLij

[1
2 {pi + pj}

]1.18
(3.33)

where Lij is the length of the pipe between node i and node j; cij is a constant value.
This value is estimated based on the level of leakage and the corresponding average
zonal pressures in the network [37] or based on the minimum night flows [47]. For
modeling purpose, the distributed leakage flow at node i is calculated by the following
equation

li = 1
2
∑
j∈Ji

lij (3.34)

where Ji is a set of pipe connected to node i.
Araujo et al in [105] proposed a leakage flow model at node as following

li = Kf,ip
1.18
i

Kf,i = 1
2c
∑
j∈Ji

Lji
(3.35)

where c is the leakage coefficient.

3.1.7.2 Estimation of the parameters of the leakage model

There are several methods to estimate the parameters for the leakage model. The
parameter c in Eq. (3.35) and cij in Eq. (3.33) are estimated due to the minimum night
flows (MNF) and water balance. The estimation is usually carried out for a domestic
meter area and a calibration model is used. The heuristic or trial and error algorithms
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are commonly used to solve the calibration problem.

One method is proposed by Araujo et al in [105]
Araujo et al in [105] proposed a method to estimate the leakage flow at distributed
nodes in the network. At first, the leakage coefficient c in Eq. (3.35) is estimated using
the minimum night flow (QMNF ), and then the nodal demand is reallocated for each
time step. In particular, parameter c is estimated by solving the following optimization
problem [105] where the leakage model in Eq. (3.35) is used.

min f (∆Q) = (0.8QMNF −QF,tmin,Mod)
0.8QMNF

QF,tmin,Mod = 0.5× c×
N∑
i=1

p1.18
i ×

M∑
j=1

Lji

 (3.36)

Wwere index Mod denotes the value calculated by the model in EPANET
The demand pattern fc,t for 24 hours should be calibrated since the model now takes the
leakage dependent pressure into account. Now the total flow in the model is calculated
by

QT,t =
N∑
i=1

(qbi,t × fc,t) +
N∑
i=1

(
Kf,ip

1.81
i,t

)
(3.37)

where qbi,t is base demand at node i.
The parameter fc,t for 24 hours are estimated by solving the least square optimization
problem. The objective function is the square of the deviation between the measured
system flow (Qm,t) and modelled system flow (QT,t,mod)

min f (∆QT,t) =
24∑

t=1,t 6=tmin

(Qm,t −QT,t,Mod)2

Qm,t

(3.38)

Genetic algorithms coupled to EPANET [106] were used to address the two above
optimization problems.

The second method is proposed by Ulanicki et al in [42]
The second approach is described in [42] and following equations are used to estimate
parameter ci in Eq. (3.32).

QMNF =
N∑
i=1

cip
1.1
i =

N∑
i=1

βdip
1.1
i (3.39)

where di and pi denote the demand flow and pressure of node i at the time of minimum
flow, respectively. The unknown leakage coefficient ci is proportional to the demand
flow of node di [42] by a common constant factor β. And this factor is calculated by
the following equation

β = QMNF

N∑
i=1

dip1.1
i

(3.40)
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3.2 Smoothing non-smooth equations in the water
system

3.2.1 Smoothing non-smooth equations

In this thesis, we use the gradient based optimization methods to solve the optimization
problem. It requires that the model is smooth and continuous. The following non-smooth
terms are used in the thesis and they are approximated by the smooth ones [102].

|Q| ≈
√
Q2 + ε2 (3.41)

and
max (Q1, Q2) ≈ 1

2

(
Q1 +Q2 +

√
(Q1 −Q2)2 + ε2

)
(3.42)

where ε is a small number.

3.2.2 A smooth model of Darcy-Weisbach equation

Although the Darcy-Weisbach equation is theoretically sound and very accurate for
describing the pipe head losses, it has not been widely used in gradient-based WDS
optimization. This is due to its non-smooth expression which leads to difficulties in the
gradient computation. The non-smooth Darcy-Weisbach equation was approximated
by a smooth one in [8]. The approximation is made on the turbulent flow range. This
approximation is appropriate, since turbulent flows are dominant in operations of water
distribution systems [95]. The non-smooth Darcy-Weisbach equation is expressed as

∆H = sign (q) f L
D

V 2

2g (3.43)

which is correlated, for friction factor f , with the Colebrook-White equation

1√
f

= −2 log
(

(ε/D)
3.7 + 2.51

Re
√
f

)
(3.44)

where Re is the Reynolds number and is described by

Re = V D

ν
and V = 4 |Q|

πD2 (3.45)

In Eq. (3.44) and Eq. (3.45), V is the average velocity of water, ν is the viscosity of
water, ε is the roughness coefficient of pipe. L, D, and g are the pipe length, the pipe
diameter, and the acceleration of gravity, respectively. The head loss in Eq. (3.43)
depends on Q. For a given value of q, the nonlinear equations ((3.43),(3.44) and (3.45))
can be solved to obtain ∆h. Since the flow rate Q can be in both directions, the
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absolute value has to be used for Q in Eq. (3.45) and sign(Q) in Eq. (3.43). This leads
to a non-smooth relation which causes a serious difficulty in gradient computations for
solving the optimization problem by a gradient-based method.

A smoothed model

We consider the flow in the forward direction Q ≥ 0, therefore sign(Q) = 1
and |Q| = Q. The Eq. (3.44) can be written in the following form

1√
f

= −2 log
(

ε

3.7D

)
− 2 log

1 + 3.7× 2.51
Re×

√
f × ε

/
D

 (3.46)

For the sake of simplicity, we define

z = 3.7× 2.51
Re
√
fε
/
D

(3.47)

Denote Re∗ as the boundary value of Re of the range between the transitional and
rough turbulent flow and there is [97]

1√
f

= ε

D

Re∗

200 (3.48)

From Eq. (3.47) and (3.48) there will be z � 1 for any Re≥Re∗. Therefore,

ln (1 + z) = z − z2

2! + z3

3! − .... ' z (3.49)

Now the Eq. (3.46) can be written as [107]

1√
f

= −2 log
(

ε

3.7D

)
− 2ln (1 + z)

ln (10) ' −2 log
(

ε

3.7D

)
− 2

ln (10)z (3.50)

Let 1√
fk

= −2 log
(

ε
3.7D

)
, which is known as the Karman-Prandtl equation [94]. The

friction factor fk is independent of Re and only a function of ε/D. Thus the Eq. (3.50)
becomes

1√
f

= 1√
fk
− 2

ln (10)z (3.51)

For Q ≥ 0, replace z with Eq. (3.47), Re = V D
ν
, and V = 4Q

πD2 into the Eq. (3.51), we
can obtain the following friction factor function [8]

f = fk

(
1 + δ

Q

)2

(3.52)

where
1√
fk

= −2 log
(

ε

3.7D

)
(3.53)
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δ = 2α
β ln (10) (3.54)

with
β = ε

3.7D (3.55)

α = 2.51
4/πvD (3.56)

Eq.(3.53) is known as the Karman-Prandtl equation. Using Eq. (3.52) for an approxi-
mation of f , the head loss in Eq.(3.43) becomes

∆H = Rp

(
Q2 + 2δQ+ δ2

)
(3.57)

where Rp = 8Lfk

π2gD5 . This equation is asymptotically corrected to a constant Rp ln (β) [8].
Therefore the asymptotic approximation of head loss (∆Ha) is

∆Ha = Rp

(
Q2 + 2δQ+ (ln (β) + 1) δ2

)
(3.58)

To describe the flow rate in both directions, an approximation Q '
√
Q2 + a2 is used,

and hence the following smooth equation (∆Hs) is proposed

∆Hs = RpQ

(√
Q2 + a2 + b+ c√

Q2 + d2

)
(3.59)

The parameters a,b,c, and d for the smooth head loss are estimated by using asymptotic
correctness between the smooth head loss equation in (3.58) and (3.59)[8]. To the end,
with a given slope of the smooth head loss (i.e., Ks) at a zero flow (Q=0), following
equations relating the parameters are deduced [8]:

b = 2δ

c = (ln (β) + 1) δ2 − a2

2
Rp

(
a+ b+ c

d

)
= Ks

(3.60)

To evaluate the accuracy of the smooth head loss, we calculate the parameters c and
d for the smooth head loss of a pipe with different diameters. Parameters Ks and
a are chosen as 0.35 and 1.e-6, respectively. The results are given in Table 3.1. The
comparisons of the smooth head loss with the non-smooth Darcy-Weisbach equation
are shown in Fig. 3.2 for the different ranges of flows and different roughness coefficients.
It can be seen in this figure that the accuracy of the smooth head loss varies according
to the range of flows and the relative roughness factors ε/D . In particular, the smooth
head loss will attain higher accuracy for pipes with larger relative roughness factors
and it is true reversely. This is because the rough turbulent range of the flow for a pipe
with a large relative roughness factor extends to the left side of the moody diagram
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and the approximation of the smooth head loss in Eq. (3.59) with parameters a,c, and
d is made on a narrow range of flows, hence it achieves the high accuracy. For smooth
pipes with small relative roughness factors, the head loss equation in Eq. (3.59) with
the parameters a,c, and d cannot compensate the errors caused by Eq. (3.49) in a wide
range of flows, thus it attains low accuracy.

Table 3.1: Parameters for the smooth head loss with ε=0.08(mm), Ks=0.35, and a=1.e-
6

D(mm) c d
80 -2.000e-6 0.002
100 -6.000e-6 0.0032
150 -3.000e-5 0.0077
200 -9.800e-5 0.014
300 -5.210e-4 0.035
375 -1.305e-3 0.059
400 -1.701e-3 0.069
600 -9.009e-3 0.247
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Figure 3.2: Darcy-Weisbach and its smooth equation with ε=0.08(mm), Ks=0.35,
a=1.e-6
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3.3 Simulation of water distribution systems

3.3.1 The Newton- Raphson method

The model equations for a general network includes equations describing components
available in a WDS such as pipes, nodes, reservoirs, storage tanks, pumps stations
and valves. Among these equations, equations for nodes are linear equations, while the
others are nonlinear ones. The set of equations for a WDS can be represented in which
nodal heads are unknown only or both flows and nodal heads are unknown [94].
Here, a set of nonlinear equations relating unknown nodal heads and link flows for a
water distribution system is solved by using the Newton-Raphson method. Given initial
values of link flows (Q0), nodal heads and link flows are computed by solving a system
of linearized equations iteratively [4, 56] until a defined convergence criterion is satisfied.
Consider the WDS with NP links, NR reservoirs and tanks, NJ nodes. The nonlinear
model equations of a WDS can be written in a general form as following [4]

f (Q,H) =
(

A11 A12

AT
12 0

)(
Q
H

)
−
(

A10H0

d

)
= 0 (3.61)

where H0 is the column vector of the head of the source nodes and reservoirs; Q is the
column vector of the link flows with NP elements; d is the given nodal demand, column
vector of NJ- NR elements; A12 is the connectivity matrix of edges- to nodes (without
reservoir/ tank nodes) NP x (NJ-NR); AT

12 is the transpose of matrix A12; A10 is the
connectivity matrix edge-reservoir/tank node (NP x NR ); A11 is a diagonal matrix
with NP x NP elements. The value of the diagonal element is ∆hk

i

Qk
i

(i.e., Ri

∣∣∣Qk
i

∣∣∣n−1
for

pipe and a
Qi

k
+ b|Qi

k|
α−1 for pumps);k is the gradient iteration counter.

At iteration k, the set of linear equations approximated from Eq. (3.61) by using Taylor
expansion is(

G A12

AT
12 0

)Qk+1

Hk+1

 = −
(

A11 A12

AT
12 0

)Qk

Hk

+
(

A10H0

d

)
+
(

G A12

AT
12 0

)Qk

Hk

 (3.62)

where G is a diagonal matrix of NP x NP elements. The diagonal elements are deriva-
tives of pipe head loss or pump additional head with respect to flow (i.e., nRi

∣∣∣Qk
i

∣∣∣n−1

for pipe and αb|Qi
k|
α−1 for pumps).

After several mathematical derivations, we obtain the following linear system for up-
dated nodal heads and link flows

GQ(k+1) + A12H(k+1) = −A11Q(k) + A10H0 + GQ(k) (3.63)
And

AT
12Q(k+1) = d (3.64)
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Multiplying the equation Eq.(3.63) with AT
12G−1, we have

AT
12Q(k+1) + AT

12G−1A12H(k+1) = AT
12G−1 (G−A11) Q(k) + AT

12G−1A10H0 (3.65)

Replace equation Eq.(3.64) to equation Eq.(3.65), we obtain the following equation for
calculating updated nodal heads(

AT
12G−1A12

)
H(k+1) = −AT

12G−1
(
A11Q(k) + A10H0

)
+
(
AT

12Q(k) − d
)

(3.66)

and the equation for calculating updated link flows

Q(k+1) =
(
I−G−1A11

)
Q(k) −G−1

(
A12H(k+1) + A10H0

)
(3.67)

It can be seen that equation Eq.(3.66) is a linear system which can be written as
Ax = b. where matrix A = AT

12G−1A12 is sparse, symmetric, and positive definite
[108]. After solving the linear system to get H(k+1), we replace this vector to equation
Eq.(3.67) to obtain Q(k+1). The iterative procedure will be terminated (e.g., solution is
convergent) until the convergent criterion in Eq. (3.68) is satisfied:

nQ∑
i=1

∣∣∣Qk+1
i −Qk

i

∣∣∣
nQ∑
i=1

∣∣∣Qk+1
i

∣∣∣ 6 δstop (3.68)

(a) (b)

Figure 3.3: A test network in [4] and EXNET water distribution system in [5]
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Table 3.2: Data of the network

Pipe ID L(m) D(mm) Node Demand(m3/s)
1 400 200 1
2 100 300 2 0.05
3 500 200 3 0.03
4 700 300 4 0.02
5 700 200 5 0.03
6 400 300 6 0
7 400 250 7 0.08
8 100 300 8 0.09
9 900 300 9 0.09
10 500 300 10 0.09
11 900 300 11 0.08
12 700 100 12 0.06
13 100 200
14 1000 200
15 300 300
16 800 200
17 700 150

Table 3.3: Reservoir heads

Time 1 2 3 4 5 6 7 8 9 10 11 12
53.6 53.6 28.9 28.9 28.9 28.9 87.9 87.9 190.9 190.9 162.5 162.5

Time 13 14 15 16 17 18 19 20 21 22 23 24
110.8 110.8 110.8 110.8 136.6 136.6 110.8 110.8 89.9 89.9 53.6 53.6

3.3.2 Case study- simulations of water distribution systems

We consider a water distribution system investigated in [4]. The system consists of 17
pipes, 12 nodes, and one reservoir. Data of the system and 24 reservoir heads (node
1) are given in Table 3.2 and Table 3.3, respectively. To evaluate the accuracy of the
smooth head loss, the Newton- Raphson method described above is employed to solve
the flows and heads of the system (38 variables) in which the developed smooth head
loss is used to calculate the pipe head loss. To solve the linear systems, we use a linear
sparse solver provided in [109]. The corresponding results (flows and nodal heads) are
compared with the ones resulted by simulating the water distribution system with the
same data using EPANET 2 [58] (where the non-smooth Darcy-Weisbach equation is
used). It can be seen in Fig. 3.4 and 3.5 that the flows and heads obtained from using the
smooth head loss are almost the same with those obtained from using the non-smooth
Darcy-Weisbach equation in EPANET 2 [58].
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Figure 3.4: The dotted red lines are heads using the smooth head loss, the solid black
lines are heads using the non-smooth Darcy-Weisbach from EPANET 2
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Now we consider the EXNET system in [2]. This water distribution system is one of
the largest scale systems with 1892 nodes and 2350 links. The smooth head loss is used
for the pipe head loss computation. The heads of reservoirs 3001, and 3002 are fixed
to 91.4246 and 73.486 m ,respectively. Similarly, the link flows and nodal heads (4242
variables) resulted by using the smooth head loss and the Newton-Rapshson method
are compared with those resulted from simulating the EXNET by EPANET 2 are
compared. The absolute and relative discrepancies of flows and heads are given in Fig.
3.6. It can be seen in the figure that the use of the smoothed head loss model results in
very high accurate heads. In particular, the largest absolute discrepancy of nodal heads
is smaller than 0.5 (m), and the largest relative discrepancy of heads is 3.5%. As for
the flows, the largest relative discrepancy is 5% and the most of them is less than 2.5%
for flows larger than 10 (l/s). These correspond to the fact that the largest absolute
discrepancy is 3 (l/s) and most of them is less than 1 (l/s). More importantly, the
flows through the most pipes (i.e., pipes with large diameters) have small relative and
absolute discrepancies of flows and heads. From the simulation comparisons of the two
case studies using the smooth head loss, it can be concluded that the use of smooth head
loss in [8] is accurate enough and suitable for the formulation of nonlinear continuous
optimization for pressure managements and operations of water distribution systems.
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Figure 3.5: The dotted red lines are flows using the smooth head loss, the solid black
lines are flows using the non-smooth Darcy-Weisbach from EPANET 2

Optimization Approaches for Planning and Operation of Large-scale Water Distribution Networks 53



CHAPTER 3. MODELING OF WATER DISTRIBUTION SYSTEMS AND OPTIMIZATION METHODS

−2000 −1500 −1000 −500 0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

A
bs

ol
ut

e 
di

sc
re

pa
nc

ie
s 

of
 fl

ow
 r

at
es

[l/
s]

Flow rates[l/s]

(a) Pipe flows

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
bs

ol
ut

e 
di

sc
re

pa
nc

ie
s 

of
 n

od
al

 h
ea

ds
[m

]

Nodal heads[m]

(b) Nodal heads

−100 −50 0 50 100
0

5

10

15

20

25

30

35

40

R
el

at
iv

e 
di

sc
re

pa
nc

ie
s 

of
 fl

ow
 r

at
es

[%
]

Flow rates[l/s]

(c) Pipe flows

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

R
el

at
iv

e 
di

sc
ep

an
ci

es
 o

f n
od

al
 h

ea
ds

[%
]

Nodal heads[m]

(d) Nodal heads

Figure 3.6: Relative and absolute discrepancies of pipe flows and nodal heads with
Ks=0.35, a=1.e-6
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Chapter 4

Optimal Localization of Pressure
Reducing Valves Using a
Reformulation Approach

Leakage reduction represents one of the most challenging tasks in managing water
distribution systems(WDSs). An effective way to leakage reduction is to carry out net-
work operational pressure management through optimizing locations and regulations for
pressure reducing valves (PRVs) and system pressures. This leads to a mixed-integer
nonlinear program (MINLP) with a large number of binary variables which make it
difficult to solve by an available software package. In this chapter, instead of directly
solving the MINLP problem, we reformulate it to a mathematical program with com-
plementarity constraints which can be efficiently solved by available NLP algorithms.
The binary variables are replaced by continuous ones with complementarity constraints
to be satisfied by a penalization scheme. To improve the quality of the solution and also
to accelerate the convergence, in each relaxed NLP the results of the binary variables
are rounded to binary values with which the NLP problem is solved again to achieve
a MINLP solution. The final solution will be determined by the best one among the
MINLP solutions. The results from two case studies reveal new and better combinations
of PRVs as compared with those given in the literature.

4.1 Introduction

The amount of water leakage loss in water distribution systems, mainly due to the dete-
rioration of pipes and high values of operating pressure, is one of the major concerns of
municipalities [32]. To reduce water leakage, four basic methods in leakage management
are proposed which are pipeline and assets management, pressure management, speed
and quality of repairs, and active leakage control [21, 32, 46]. Among which pressure
management is one of the most effective approaches to leakage reduction as it influences
the frequency of new leaks and the flow rates of all leaks and bursts [30, 32].
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Pressure regulations in WDSs can be accomplished in several means such as installing
isolated valves to subdivide the network into smaller sectors or districts having different
pressure regimes and/or installing control or pressure reducing valves [32]. In this chap-
ter, we address the optimal localization of pressure reducing valves (PRVs) in WDSs so
as to minimize the excessive pressure and thus leakage flows. The optimal localization
of PRVs is formulated as a mixed integer nonlinear programming problem (MINLP)
since binary variables are introduced to each link to indicate whether or not PRVs are
placed on the links. It is obvious that for a large scale WDS with thousand pipes, the
formulated MINLP become large and it is difficult to be solved by available MINLP
algorithms. In addition, the MINLP model has to consider multiple demand scenarios
to ensure that optimized locations of PRVs account all operating scenarios. This makes
the MINLP even more difficult to solve.

MINLP algorithms rely on either solving NLP sub-problems based on a branch
and bound method or solving NLP and MILP based on a decomposition method
[110]. Due to the challenges from treating integer variables and handling nonlinear
non-convex equations, the solution of a large-scale MINLP problem suffers from a lack
of robustness, reliability, and efficiency [50]. Alternatively, continuous reformulation
approaches reformulate MINLP as NLP with complementarity constraints [49, 50, 111]
which is then solved by a regularization approach such as smoothing, relaxation,
and penalization methods [112, 113]. A MINLP problem for the process synthesis
was reformulated into a MPCC in [50]. It is then solved by subsequently tightening
the Fischer- Burmeister function to enforce relaxed binary variables to obtain binary
values. In [39], the MPCC approach was applied to solve MINLP problems by solving
sequence of NLPs with relaxation (e.g., tightening the Fischer- Burmeister function)
and penalization (e.g., increasing the penalty parameter value) schemes. Numerical
experiments with the both schemes carried out for a selection of MINLP problems in
MINLPlib have demonstrated that the penalization scheme is slightly superior than
the relaxation scheme. Although many studies have been made on the development of
reformulation and regularization approaches and these approaches have been applied
in many engineering fields, no application can be found to the optimal localization of
PRVs for managing pressures in WDSs.

In this chapter, the MINLP problem for PRV localization is reformulated as a mathe-
matical program with complementarity constraints (MPCC). The MPCC is solved in
a sequence of NLPs with an increasing penalty parameter. In addition, a novel scheme
to round the relaxed solutions of each NLP to binary values of the binary variables is
proposed and the rounding ensures the feasibility of the original MINLP. This scheme
enables to find potential local solutions of the MINLP during solving the sequence of
NLPs. As a result, the quality of the solution can be improved and the convergence
of the algorithm can be accelerated. Two case studies are taken to demonstrate the
effectiveness of the proposed approach. Comparing with the solutions by a MINLP
solver, optimal localization problems of PRVs for large-scale WDSs can be solved by
the proposed reformulation approach with higher robustness and in less computation
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time. Comparing with the solutions of the case studies by the meta-heuristic methods
reported in the literature, we found more accurate solutions with higher reduction of
system pressure and of leakage amount.
The remainder of this chapter is organized as follows. In section 4.2 the MINLP for PRV
localization considering multiple demand patterns and leakage terms is formulated. In
section 4.3 we present a reformulation of the MINLP by mathematical programming
complementarity constraints (MPCC) with a penalization method. In section 4.4 a new
scheme to relate the rounded solution of NLP to that of MINLP and a computation
framework is introduced. Two case studies are carried out in section 4.5 and conclusions
are given in section 4.6.

4.2 Problem formulation and solution approach

In this section we will formulate a MINLP problem for optimal localization of PRVs for
the pressure management of WDSs. PRVs should be placed on proper links to reduce the
downstream heads so that the system pressure is minimized. For unidirectional flows,
a binary variable is needed for each link to represent whether a valve is placed on the
link or not. We consider bidirectional flows which require two binary variables (vi,j and
vj,i) for each link corresponding to the forward and backward flows, respectively. The
placement of a PRV increases the head loss across the link and thus the downstream
head will be reduced. The head loss on a link with flow direction i to j for load pattern
k can be expressed by [35, 114].

∆Hi,j,k ≤ Hi,k −Hj,k ≤ ∆Hi,j,k +Mi,jvi,j (4.1)

where the pipe head loss ∆Hi,j,k can be computed either by the Hazen-Williams
equation

∆Hi,j.k = 10.67Li,j
D4.87

(
Qi,j,k

C

)1.852
(4.2)

or by the Darcy-Weisbach equation

∆Hi,j,k = 8Lf
gπ2D5 |Qi,j,k|Qi,j,k (4.3)

The friction factor f in (4.3) is calculated from the Colebrook-White equation

1√
f

= 2 log
(

2.51
Re
√
f

+ ε

3.71D

)
(4.4)

where L, D and C are the length, diameter and Hazen-William coefficient of pipe,
respectively; ε and Re in (4.4) are the pipe roughness coefficient and Reynolds number,
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respectively.
The difference between (4.2) and (4.3) lies in the fact that (4.2) is a simple and smooth
model with a lower accuracy, while the accuracy of (4.3) is much higher but it is more
complicated and non-smooth. One smooth form of (4.3) was proposed in [8] allowing
the use of the Darcy-Weisbach equation in the NLP formulation. In this work, we will
use both equations in the case studies for the head loss computation. To formulate the
optimal localization problem for PRVs, we consider a WDS with Nn nodes, Np pipes,
and NL demand patterns.
The optimization problem is defined as the minimization of the total excessive pressure
under multiple demand patterns.

minF =
Nn∑
i=1

NL∑
k=1

(
Hi,k −HL

i

)
(4.5)

subject to the continuity equation at node i for demand pattern k
∑
j,k

Qj,i,k −
∑
j,k

Qi,j,k − di,k − li = 0 (4.6)

where di,k represents demand of node i at pattern k; Qj,i,k, Qi,j,k denote the flows of
the forward (j→i) and backward (i→j) flow directions, respectively. Since only one
flow direction should be active and only one valve can be placed on a link, following
constraints are introduced

0 ≤ Qj,i,k ≤ QU (4.7)
0 ≤ Qi,j,k ≤ QU (4.8)

0 ≤ vi,j + vj,i ≤ 1 (4.9)

The head loss constraints of a link described by (4.1) should be held if the flow is in
the forward direction, whereas they should be relaxed if the flow is in the backward
direction. Therefore, the head loss constraints in the forward direction (the backward
direction can be formulated in the similar way) are expressed by [35, 115]

Qi,j,k (Hi,k −Hj,k −∆Hi,j,k) ≥ 0 (4.10)
Hi,k −Hj,k −∆Hi,j,k −Mi,jvi,j ≤ 0 (4.11)

In addition, the head constraints should be satisfied,

HL ≤ Hi,k ≤ HU (4.12)

Moreover, if Nv pressure reducing valves are to be placed in the system, there should be
∑
i,j

(vi,j + vj,i) = Nv (4.13)
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The leakage amount associated to node i is calculated by [1, 32] .

li = CLLt,ip
γ
i (4.14)

where

Lt,i = 0.5
∑
j

Li,j (4.15)

In (4.14) CL is the discharge coefficient of the orifice and γ is the pressure exponent [1].
The big Mi,j number associated to link i, j is chosen so that the head loss dropped
across the link can lower the pressure at downstream node j to the target pressure (or
the minimum allowable pressure). For this reason, we can determine its value by

Mi,j = Hm −HL
j (4.16)

where Hm is the maximum head and HL
j the minimum allowable head at node j. The

above MINLP problem for optimal PRV localization can be described in a general form

min f (x,y) (4.17a)
subject to

g (x) = 0 (4.17b)
h (x,y) ≥ 0 (4.17c)

y = {0, 1}2Np (4.17d)
xU ≥ x ≥ xL (4.17e)

where x = (Q,H) represents the vector of continuous variables and y = (vi,j,vj,i)
the vector of binary variables, respectively; f , g, and h denote the objective function,
equality constraints, and inequality constraints. The number of continuous and binary
variables is (2Np+Nn)NL and 2Np, respectively.

4.3 Reformulation of the MINLP as MPCC

Now we relax the MINLP (4.17) into a NLP problem in which the binary variables
yi ∈ {0, 1}2Np are treated as continuous ones 0 ≤ yi ≤ 1. To obtain a binary solution,
we need to enforce that for each i (i = 1, ..., 2Np) one of the bounds is active (such
that yi ∈ {0, 1}2Np). This calls for the complementarity condition [39, 111].

0 ≤ yi⊥1− yi ≥ 0 (4.18)

Replacing the binary constraints in (4.17) by the complementarity constraints in (4.18)
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leads to a MPCC problem [39, 49, 111].

min f (x,y) (4.19a)
subject to

g (x) = 0 (4.19b)
h (x,y) ≥ 0 (4.19c)

0 ≤ yi⊥1− yi ≥ 0 (4.19d)
xU ≥ x ≥ xL (4.19e)
i = 1, ...., 2Np (4.19f)

To solve (4.19), we use a penalization scheme, i.e. the complementarity constraints in
(4.19) will be expressed as a penalty term in the objective function [112, 113, 116]. In
this way, (4.19) becomes

min f (x,y) + µΨ (yi, 1− yi) (4.20a)

subject to

g (x) = 0 (4.20b)
h (x,y) ≥ 0 (4.20c)

1 ≥ yi ≥ 0 (4.20d)
xU ≥ x ≥ xL (4.20e)
i = 1, ...., 2Np (4.20f)

where µ is a penalty parameter; Ψ (yi, 1− yi) can be either [39]

Ψ (yi, 1− yi) =
2Np∑
i=1

yi (1− yi) (4.21)

or

Ψ (yi, 1− yi) =
2Np∑
i=1

(
1−

√
y2
i + (1− yi)2

)
(4.22)

In this work we use (4.21). It can be seen that (4.20) is a continuous NLP problem
which can be efficiently solved by an available NLP solver. The solution strategy of a
MPCC is given in the appendix B.2
Using the MPCC approach, a sequence of NLPs with an increasing value of the penalty
parameter will be solved. The corresponding solutions are called stationary points(
xk, yk

)
of NLP(µk) and

(
xk, yk

)
→ (x, y) as µk → +∞, which is a limit point or

solution of MPCC [112, 113]. In the MPCC computation framework, instead of driving
µk → +∞, the penalty parameter µk needs to increase to a large enough value at which
the stopping criterion is satisfied [112, 113].
Unfortunately, MPCC problems are in general non-convex and thus a stationary point
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depends on the initial guess. Therefore, there may be several sequences of stationary
points

(
xk, yk

)
which lead to different limit points (x, y) for the MPCC. Since theoret-

ically it is necessary that µk → +∞, i.e. a lot of NLPs have to be solved. This will
leads to large computation expense. Our question now is how to accelerate the search
procedure by utilizing the available stationary solutions during the NLP sequence.

4.4 A new rounding scheme for finding feasible
MINLP solutions and the computation frame-
work

Locations of PRVs should be on links at which they can lower the downstream link
pressures. By using simulation studies, Liberatore and Sechi in [33] proposed to deter-
mine a set of link candidates for PRV locations based on comparing the nodal pressure
with a pre-defined reference pressure value. Links connected to nodes with pressures
higher than the reference pressure value can be considered for PRV placements. In the
same manner, nonzero values of vi,j or vj,i can also be considered as link candidates for
PRV locations.
In fact, a nonzero vi,j or vj,i is equivalent to the effect of an increase of the roughness
of a pipe or a decrease in the Hazen-Williams coefficient, since both increase the head
loss across the link. The links with a larger roughness than real ones (i.e. nonzero vi,j or
vj,i) can be considered for PRV locations [1]. Using the MPCC approach described in
section 4.3, the solution of each relaxed NLP problem provides the information about
the links and their directions for PRV placements. Therefore, the links associated with
nonzero vi,j or vj,i are candidates for PRV locations.
As we increase the penalty parameter µk, the number of link candidates will decrease
and it will be equal to the defined number of PRVs (Nv) as µk approach to a sufficiently
large value. Our question now is that can the solution of the MINLP problem be found
before a large enough penalty parameter is reached?. This can be answered by consid-
ering the feasibility of constraints if we round fractional values vi,j (or vj,i) to 1 or 0.
For a set of N link candidates with nonzero values vi,j or (vj,i), we have

0 ≤ Hi −Hj −∆Hi,j −Mi,jvi,j ≤ 0; i, j = 1, ..., N (4.23a)

If a set of Nv nonzero values, chosen from N link candidates, is rounded to 1, the
constraints (4.23a) representing a PRV on the link becomes

0 ≤ Hi −Hj −∆Hi,j −Mi,j ≤ 0; i, j = 1, ..., Nv (4.23b)

while others nonzero values are rounded to 0, for which the (4.23a) becomes

0 ≤ Hi −Hj −∆Hi,j ≤ 0 (4.23c)

From (4.23a), (4.23b) and (4.23c) we can conclude there exist Q and H satisfying the
constraints of the MINLP (4.17) after rounding vi,j and vj,i and the rounded values
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is one feasible solution of the MINLP (4.17). The first reason is that the constraints
(4.23b) cover the constraints (4.23a), so that if the constraints (4.23a) are satisfied,
(4.23b) will be satisfied. The second reason is due to the fact that solutions of Q and
H by solving the equations (4.6) and (4.23c) satisfy the MINLP problem in the case of
no PRVs. As a result, the MINLP problem with the set of constraints (4.23c), (4.23b),
and (4.6) has a feasible solution. With this rounding scheme, a solution for optimal
PRV locations will be found in the sense of the approach of Liberatore and Sechi in
[33] and the approach of Ajauro et al in [1]. This means that the solution is determined
from the link candidates. The difference between our approach and these approaches
lies in the fact that the link candidates are found during solving a sequence of relaxed
NLPs, while the mentioned approaches use heuristic algorithms.
To round the nonzero values of vi,j and vj,i, we propose the following strategy

v′i,j =
{

1 if vi,j ≥ δ
0 if vi,j < δ

and v′j,i =
{

1 if vj,i ≥ δ
0 if vj,i < δ

(4.24)

and ∑
i,j

(
v′i,j + v′j,i

)
= Nv (4.25)

where δ > 0 is a predefined threshold value. It means the nonzero values y = (vi,j,vj,i)
and rounded values y′ = round (y) = (v′i,j,v′j,i). In addition, a limit point is determined
if the following condition is satisfied [113].√√√√∑

i,j

(
(min (vi,j, 1− vi,j))2 + (min (vj,i, 1− vj,i))2

)
≤ θ (4.26)

where θ > 0 is a convergence threshold which we chose as 0.001. In our approach, local
solutions are searched during solving a sequence of NLPs with rounded values of the
binary variables from (4.24), while the limit point will be found when (4.26) is satisfied.
It can be seen from (4.24) that, as δ → 0, the solution obtained by solving the NLP
will be a limit point.
Based on the rounding scheme and the reformulation approach described in Section 4.3,
we propose the computation framework as shown in Table 4.1 for solving optimal PRV
localization problems. The computation starts with initial parameters for the optimiza-
tion problem such as the number of valves (Nv), the coefficient value (α), and the initial
penalty parameter (µ0). µ0 is chosen as a fraction (i.e. β = [0.05 0.1]) of the objective
function value of the NLP problem (4.20) solved with µ = 0 (z0

NLP ). The solution of
MPCC depends on how the penalty parameter is updated [113]. However, there is no
available strategy in the literature to update this parameter. In our implementation, we
at first use α = 1.1 for updating the penalty parameter. When the first local solution
is found, we use α = [1.0001 1.001]. Initial guesses for the relaxed NLPs are randomly
generated.
The Epanet Toolkit [106] is used to access the data and structure of the water distribu-
tion system and formulate the NLP problem. The NLP solver IPOPT [117] is used to
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Table 4.1: The computation framework

Initialization: Nv, α,δ,zbest = +∞;k = 0, maxIter.
Solve the relaxed NLP with µ = 0 gives the objective function
value z0

NLP .
Assign µ0 = βz0

NLP .
repeat
If the condition (4.25) is satisfied then
If zkNLP < zbest then
solve the NLP problem (4.20) with the rounded values

of vi,j and vj,i, obtain the objective function value z; zbest =
min(z, zbest)
Update the iteration k = k + 1.
Update penalty parameter µk = αµk−1.
Generate random initial guesses for NLP(µk).
Solve the NLP(µk) to obtain the objective function value
zkNLP .
until k = maxIter.

solve the relaxed NLP problem. The brief description of IPOPT is given in the appendix
B.1.

4.5 Case studies

4.5.1 Case study 1: PRV localization for a benchmark WDS

Optimal PRV localization is carried out for a well-known water distribution system,
as shown in Figure 4.1, which was studied by [6, 7, 31, 32].The system comprises 22
nodes, 3 reservoirs, and 37 links. The coefficients relating the leakage per unit length
of the links to the service pressure and leakage exponent are CL = 10−5 and γ = 1.18,
respectively. The constant heads at reservoir nodes 23, 24, and 25 are 54.66 (m), 54.60
(m), and 54.55(m), respectively, as taken from Nicolini and Zovatto in [32]. At first,
we consider three demand patterns (i.e. with three demand multipliers defined as 0.6,
1.0, and 1.4). The minimum pressure required at all nodes in the WDS is 30.0(m). Five
cases with numbers of valves ranging from 2 to 6 are considered. The resulting MINLP
problem contains 288 continuous variables, 74 binary variables, and 288 constraints.
The optimal locations of PRVs and their pressure settings obtained from our approach
are passed to EPANET 2 [106] which calculates the excessive pressure and leakage
amount. In this way, we can compare our results with those given in the literature.
It can be seen in Table 4.2 and 4.3, in the case of 2 PRVs our approach finds the link
11 and 20 which are the same as those found by Nicolini and Zovatto in [32]. In the
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Figure 4.1: A WDS benchmark for PRV localization [6, 7]

Table 4.2: Optimal PRV locations for the WDS benchmark with 3 demand patterns

Reformulation approach Nicolini and Zovatto [32] MINLP

No.of
PRVs

LinkIDs CPU
time[s]

LinkIDs LinkIDs CPU
time[s]

1 11 9.57 11 11 8.67

2 11,20 16.00 11,20 11, 20 237.29

3 11,20,21 26.26 1,11,20 11,20,21 505.349

4 1,11,20,21 20.03 1,11,20,21 1,11,20,21 1156.64

5 1,11,8,20,29 21.93 1,11,20,21,27 1,11,19,20,21 3471.02
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case of 3 PRVs, the best locations from our approach are on the links of 11, 20, and
21, which results in an average excessive pressure of 2.467(m) and an average leakage
amount of 23.60(l/s). Nicolini and Zovatto in [32] reported the best locations are on
the links of 1, 11, and 20 with the average of excessive pressure of 3.187(m) and the
average leakage amount of 23.39(l/s). The solution from our approach leads to a higher
reduction of the excessive pressure, while the solution by Nicolini and Zovatto in [32]
causes a higher reduction of the leakage amount. The difference between both solutions
may lie in the fact that our approach minimizes the system excessive pressure, while
the approach by Nicolini and Zovatto in [32] minimized the system leakage amount. In
the case of 4 PRVs, the best PRV locations found are on the links of 1, 11, 20 and 21
which are the same as reported by Nicolini and Zovatto in [32]. However, the average
excessive pressure and leakage amount by our approach are 1.807(m) and 22.89(l/s),
respectively, while they are 2.013(m) and 22.98(l/s) in [32]. For this case, our solution
leads to a higher reduction of both the excessive pressure and the leakage amount.
In the case of 5 PRVs, our approach finds the optimal locations of PRVs on the links of
1, 8, 11, 20, and 29 with an average excessive pressure and leakage amount as 1.647 (m),
and 22.73(l/s), respectively. The optimal PRV locations by Nicolini and Zovatto [32] are
on the links of 1, 11, 20, 21, and 27 which result in an average excessive pressure of 1.873
(m) and 22.89 (l/s) of leakage amount. The pressure settings (pj,1, pj,2, pj,3) for the three
demand patters in the case of 5 PRVs are given in Table 4.4. It can be seen that the
PRVs located on the links of 20 and 29 are 100% closed for all demand patterns, while
the PRVs on the links of 1, 8, and 11 operate with appropriate openings (i.e., the PRVs
maintain their pressure settings on their downstream nodes). The penalty parameter
values, with which the solution obtains the lowest objective value, are given in Table
4.5. This means that the computation does not needs a large number of iterations
for solving the relaxed NLP problem. Moreover, the CPU time for solving each of
localization problems is about 26(s) on an Intel (R) Core (TM) 3.40GHz 2.99GB RAM
desktop, as shown in Table 4.2.
For the purpose of a comparison, we also solved this localization problem by directly
solving the MINLP problem using the BONMIN solver [118] in GAMS [119]. The results
are also shown in Table 4.2 and 4.3. It can be seen that for the cases of 2, 3, and 4 PRVs,
the locations are the same as those by our reformulation approach. However, it takes
much longer computation time by directly solving the MINLP problem. In particular,
in the case of 5 PRVs, it takes 3471.02(s) and converges to a lower quality solution with
the average of excessive pressure of 1.990(m).
Now we consider the localization problem for the WDS with 24 demand patterns and
24 reservoir water heads. The demand patterns and reservoir heads in a time horizon
of 24 hours are given in Table 4.6.
This case was studied by Araujo et al in [1] in which the so-called throttle control valves
(TCVs) were used to manage the system pressure, using a two-phase GA approach. In
principle, both TCVs and PRVs are controlled by adjusting their resistances or head
losses [106]. Thus we can compare the results from our approach with those given in
[1]. For 24 demand patterns, the MINLP problem is formulated with 2304 continuous
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Table 4.3: Average excessive pressure and leakage from the WDS benchmark with 3
demand patterns

Reformulation approach Nicolini and Zovatto [32] MINLP

No.of
PRVs

Average-

leakage
[l· s-1]

Average-

excessive
pressure
[m]

Average-

leakage
[l· s-1]

Average-

excessive
pressure
[m]

Average-

leakage
[l· s-1]

Average-

excessive
pressure
[m]

1 24.55 3.939 24.70 4.013 24.55 3.939

2 23.81 2.872 24.08 3.187 23.81 2.872

3 23.60 2.467 23.39 2.501 23.60 2.467

4 22.89 1.807 22.98 2.013 22.89 1.807

5 22.73 1.647 22.89 1.873 22.97 1.990

Table 4.4: Operations of 5 PRVs

Pressure settings 1 8 11 20 29
pj,1 30.03 30.10 30.60 Closed Closed
pj,2 30.05 30.26 31.75 Closed Closed
pj,3 30.08 30.39 34.45 Closed Closed

Table 4.5: .Penalty parameter values in different cases with 3 demand patterns

No. of PRVs Penalty parameter values Number of iterations
1 126.48 19
2 129.76 31
3 76.13 19
4 52.94 22
5 42.88 24
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Table 4.6: Data for the demand patterns and reservoir water levels at nodes 23, 24, and
25 [1]

Time 1 2 3 4 5 6 7 8 9 10 11 12
Fc 0.61 0.61 0.41 0.41 0.41 0.41 0.81 0.81 1.23 1.23 1.13 1.13
23 55.2 55.3 55.5 55.6 55.7 55.8 55.9 56.0 55.7 55.4 55.2 55.1
24 55.2 55.3 55.3 55.4 55.4 55.5 55.5 55.5 55.3 55.2 55.0 54.8
25 55.0 55.1 55.2 55.3 55.4 55.4 55.5 55.5 55.5 55.0 54.8 54.7

Time 13 14 15 16 17 18 19 20 21 22 23 24
Fc 0.92 0.92 0.92 0.92 1.03 1.03 0.92 0.92 0.82 0.82 0.61 0.61
23 54.9 54.7 54.6 54.6 54.5 54.5 54.6 54.7 54.8 54.9 55.0 55.2
24 54.8 54.8 54.7 54.6 54.5 54.7 54.7 54.7 54.7 54.8 54.9 55.0
25 54.5 54.4 54.3 54.1 54.0 54.0 54.2 54.3 54.5 54.6 54.8 54.9

variables, 74 binary variables, and 2376 constraints. The PRV locations with respect to
different numbers of PRVs are shown in Table 4.7. It can be seen that the links of 1, 5,
8, 11, 20, 21, 29, and 31 are determined for possible PRV locations, which are the same
as the locations determined by Araujo et al in [1]. However, the PRV locations for the
specified number of PRVs are different. In the case of 2 PRVs, our approach found links
1, 11 as locations which are the same as those found by Araujo et al in [1]. With these
PRV locations, the decreases of the average leakage amounts by both approaches are
4.5(l/s). The locations of 3, 4, 5, and 6 PRVs by our approach are different to those by
Araujo et al in [1]. As shown in Table 4.8, in these cases our approach leads to a higher
reduction of the average leakage amount.
Figure 4.2 shows the dynamic leak flows for the specified number of PRVs in 24 hours by
our approach. Table 4.8 shows the decreases of average leakage amounts as compared
with the case of no PRVs. In particular, the case of 6 PRVs reduces an average leakage
of 5.77(l/s), followed by 5.7(l/s) using 5 PRVs, 5.50(l/s) using 4 PRVs, 4.77(l/s) using
3 PRVs, and 4.53(l/s) using 2 PRVs, respectively. As shown in Table 4.7, the CPU time
for solving the problems with 24 demand patterns is higher than in the case of 3 demand
patterns shown in Table 4.2. And the penalty parameter values, at which the solutions
are found, are also higher in comparison to those in the case of 3 demand patterns, due
to the higher number of NLP iterations, as shown in Table 4.9.
Using the BONMIN solver [118] in GAMS [119], we also solved the MINLP problems
with 24 demand patterns. However, we could only obtain solutions in the case of 1 and
2 PRVs. With more than 2 PRVs, the computation failed to converge.
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Table 4.7: Optimal PRV locations with 24 demand patterns

Reformulation approach Araujo et al [1]

No.of
PRVs

LinkIDs Total ex-
cessive
pressure
[m]

CPU
time[s]

LinkIDs

2 1,11 1721.89 428.57 1,11

3 11,20,21 1327.98 899.47 11,21,29

4 1,11,20,29 984.13 651.8 1,8,11,20

5 1,11,20,21,29 840.01 350.49 1,8,11,21,29

6 1,11,20,21,29,31 798.53 819.14 1,5,11,8,20,21

Table 4.8: Comparison of the average decrease in leakage amount with 24 demand
patterns

Reformulation approach Araujo et al [1]

No.of
PRVs

Average
decrease-
leakage[l· s-1]

Average
decrease-
leakage[l· s-1]

2 4.53 4.5

3 4.77 4.0

4 5.50 5.1

5 5.70 4.7

6 5.76 5.2

Table 4.9: Penalty parameter values in different cases with 24 demand patterns

No. of PRVs Penalty parameter values Number of iterations
2 1763.39 46
3 782.98 33
4 1404.11 29
5 434.23 28
6 440.78 65
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Figure 4.2: Dynamic leak flows

Figure 4.3: EXNET water distribution system[5]
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Table 4.10: Penalty parameter values in different cases for solving the large-scale prob-
lem

No. of PRVs Penalty parameter values Number of iterations
3 4732.73 9
4 4976.60 63
5 2694.05 15
6 3899.49 28
7 4936.84 10
8 4993.80 62
9 4110.41 121
10 4265.89 107

4.5.2 Case study 2: Optimal PRV localization for a large-scale
WDS

To evaluate the applicability of our approach to a large-scale WDS, the EXNET water
distribution system [5] comprising 2463 links, 1890 nodes, and 2 reservoirs as shown
in Figure 4.3 is studied. It should be noted that there exist a PRV and a TCV in
the system. To study the PRV localization problem, we remove these two valves and
replace them with the pipes with the same diameters. The minimal pressure required
at all nodes is set to 8.0(m) as used by Eck and Mevissen in [35]. The resulting MINLP
problem for one demand pattern has 6816 continuous variables, 4926 binary variables,
and 6762 constraints. Using our approach, the optimal locations of PRVs are found
for 3 to 10 PRVs. These optimal locations of PRVs and their pressure settings are
passed to EPANET 2 [106] which calculates the excessive pressure as listed in Table
4.11. In the case of 3 PRVs, our approach obtains the links of 2699, 5162, and 3244,
while the MINLP approach by Eck and Mevissen in [35] found optimal locations on
the links of 2699, 4154, and 3046. The PRV locations found by our approach result in
an excessive pressure of 48245.72(m), while it is 50293.55(m) with PRV locations by
Eck and Mevissen [35]. Therefore, with the PRV locations from our approach a higher
reduction of the excessive pressure (i.e. 2047.83 m) can be achieved. In addition, we
solved the problem with more than 3 PRVs. As shown in Table 4.11, a higher number
of PRVs leads to a higher reduction of the excessive pressure. The penalty parameter
values, at which the solution is found by our approach and the number of iterations for
solving the NLP problems are shown in Table 4.10. The computation time for solving
the problems is shown in Table 4.11. In particular, in the case of 3 PRVs, it takes
1521.05(s) by our approach, while it took 456000.0(s) reported by Eck and Mevissen in
[35].
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Table 4.11: Optimal PRV locations for the EXNET network

Reformulation approach Eck and Mevissen [35]

No.
of
PRVs

LinkIDs CPU
time
[s]

Excessive-

pressure
[m]

LinkIDs CPU
time
[s]

Excessive-

pressure
[m]

3 5162; 3244; 2699 1521.05 48245.72 4154; 3046;
2699

456000.0 50293.55

4 2938; 3244;
2699; 5120

7948.22 47465.01

5 5162; 3046;
2699; 5120; 3244

1841.35 46768.24

6 2938; 3046;
5162; 3244;
3593; 2699

3262.72 46354.12

7 2700; 3783;
3046; 3244;5162;
5120;2699

1344.88 45594.31

8 2700; 2938
;4186; 3046;
5162; 5120;
3783; 2699

7620.85 45449.05

9 2938; 3244;
2700; 3593;
3438; 5162;
5120; 3783; 2699

13164.56 44139.64

10 2938; 3438;
3244; 3593;
2700; 5089;
5162; 5120;
3783; 2699

12910.89 43755.85

Optimization Approaches for Planning and Operation of Large-scale Water Distribution Networks 71



CHAPTER 4. OPTIMAL LOCALIZATION OF PRESSURE REDUCING VALVES USING A REFORMULATION
APPROACH

4.6 Conclusions

In this chapter, we presented a reformulation approach for solving the MINLP problem
for identifying optimal locations of PRVs in a WDS. The MINLP problem is refor-
mulated as a MPCC which can be efficiently solved by NLP algorithms. The MPCC
problem is regularized to a NLP using a penalization method which is solved by a se-
quence of NLP problems. A rounding scheme for the binary variables is proposed to
accelerate the solution procedure and improve the quality of the MINLP solution. As a
result, the solution will be found not only at the end of the MPCC (i.e., the limit point),
but also during solving the sequence of NLPs. Using two case studies, the proposed ap-
proach was applied to the optimal PRV localization for a small and a large-scale WDS.
The results revealed new locations of PRVs which result in higher reductions of leakage
amounts and excessive pressures as compared with those given in the literature.
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Chapter 5

Optimal Pressure Regulation in
Water Distribution Systems Based
on an Extended Model for Pressure
Reducing Valves

In chapter 4, we have proposed a MPCC approach to identify optimal location of PRVs
in a water distribution system to reduce the leakage flow. This chapter will present
a nonlinear programming optimization approach to optimal pressure regulation in a
WDS through controlling operations of pressure reducing valves (which have already
been placed in a WDS).
Optimal pressure regulation to reduce water losses in water distribution systems
(WDSs) becomes an important concern due to the increasing water demand and the
threat of drought in many areas of the world. The leakage amount in a WDS depends
heavily on its operating pressure and thus can be minimized by implementing optimal
pressure strategies through pressure reducing valves (PRVs). To achieve this, a model-
based optimization is necessary, where an accurate model of the PRVs is required. The
PRV models having been used until now for pressure regulations are two-mode models
which cannot circumstantiate many situations occurring in WDSs. In this chapter, we
extend the existing model by a three-mode one for PRVs which is able to describe the
required circumstances of pressure regulations in WDSs. The non-smoothness of this
model is smoothed by an approximation approach, thus allowing the formulation and
solution of a continuous nonlinear optimization problem for optimal pressure regula-
tion. Two benchmark WDSs are used to verify our approach and it can be shown from
the results that our PRV model outperforms the existing models in terms of the quality
and accuracy of the optimal solutions.
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CHAPTER 5. OPTIMAL PRESSURE REGULATION IN WATER DISTRIBUTION SYSTEMS BASED ON AN
EXTENDED MODEL FOR PRESSURE REDUCING VALVES

5.1 Introduction

The increase of domestic and industrial demand leads to drastic water shortages in
developing countries and the climate change causes growing water scarcities in drought
areas. As a result, the reduction of water losses in water distribution systems (WDSs)
has become a high priority for water utilities and regulators [23, 24].Water utilities
have made major investments in many areas of water management such as detection
and repairing of leakage, pipe rehabilitation programs, and optimal pressure control to
decrease leakage [30].
Water leakages can be considered as additional demands at nodes and mathematically
modeled as proportional relation to the nodal pressure [47]. The leakage amount in
a WDS increases significantly when operating at an excessive pressure [48]. For this
reason, reducing the excessive pressure will lead to a reduction of the leakage amount
and the risk of further leaks in a WDS [30, 47, 48]. This can be accomplished by a
model-based optimization aiming at optimal regulations (or schedules) of the pressure
reducing valves (PRVs) and/or the isolated valves in WDSs [7, 37, 42].
Optimal pressure management can be casted as a nonlinear optimization problem
[37, 42]. Many solution approaches have been proposed to address the optimization
problem such as heuristic algorithms [34, 60] and nonlinear programming methods
[37, 42]. In this work, our aim is to develop a fast and efficient algorithm to solve
the optimization problem, so that a nonlinear programming method is used. The ac-
curacy of the model used to describe the WDS under consideration plays an essential
role in a NLP solution. Till now the model for PRVs having been used for optimal pres-
sure regulation using NLP method is a two-mode model. A variable denoting the valve
setting, varying between zero (fully closed) and one (fully open) is usually introduced
to represent the operation of a PRV. This model can only represent the normal mode
when a PRV maintains the downstream pressure at the preset value and the open mode
when the downstream pressure is lower than the pressure setting. However, it cannot
account for the check valve mode for preventing reverse flows when upstream pressure is
lower than the downstream pressure. The check valve mode is important for situations
with varying water demand, i.e., the water consumption drop considerably in the night,
which take place in most WDSs.
In this chapter, we propose a non-smooth model, which is an extension of the exist-
ing model, to describe the hydraulic behaviors of PRVs. This model is able to cir-
cumstantiate the three (open, normal, check valve) operational modes of a PRV. The
non-smoothness of the model is smoothed by using an interior-point approximation
approach, so that it can be employed for the formulation of a NLP problem for opti-
mal pressure regulations of WDSs. Two benchmark WDSs are taken as case studies to
demonstrate the advantages of using the extended PRV model. It can be shown from
many scenarios of demand patterns that the optimal results by using our PRV model
outperform those by using the previous models. In addition, a higher accuracy of the
solution can be achieved with our PRV model in comparison to that by using the models
from the literature.
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The remainder of this chapter is organized as follows. In section 5.2, we at first analyze
the shortcomings of the existing PRV models and then propose an extended model.
The formulation of a general optimization problem for optimal pressure regulation in
WDSs is presented in section 5.3. In section 5.4, we apply the proposed PRV model to
optimize pressure regulations for two benchmark WDSs. Conclusions of the paper are
provided in section 5.5.

5.2 Model of a pressure reducing valve

5.2.1 The existing models

A pressure reducing valve is commonly described by the following equation [37]

Qi,j = Ri,jVi,jsign (Hi −Hj) |Hi −Hj|0.54 (5.1)

where
Ri,j =

278.54Ci,jD2.63
i,j

L0.54
i,j

0 ≤ Vi,j ≤ 1.0
(5.2)

where Ci,j, Di,j, Li,j are the Hazen-Williams coefficient, the diameter, and the length
of pipes.
It can be seen that Eq.(5.1) is non-smooth and thus its gradient will be discontinuous.
Therefore the optimization problem based on this model will also be non-smooth and
cannot be solved directly by a NLP solver. For this reason, a smoothing strategy is
needed. In addition, it is important to prevent the evaluation of the derivatives at the
point of discontinuity, i.e., when the heads Hi and Hj at the two end nodes of the PRV
are equal [37]
Another form of a PRV model is described as [42].

Hi −Hj = ki,j (νi,j)Ri,jQi,j|Qi,j|0.852 (5.3)

where Ri,j is the resistance of PRV; ki,j (νi,j) is a resistance factor of the head loss
related to valve opening νi,j. ki,j (νi,j) can take a value from 1.0 to a very large positive
number (i.e., infinity)[42].
To use Eq.(5.3) in formulation of the NLP problem, an approximation Qi,j '(
Q2
i,j + β2

)0.5
can be used where β is a small value to smooth Eq.(5.3), so that it

becomes
Hi −Hj = ki,j (νi,j)RijQi,j

(
Q2
i,j + β2

)0.426
(5.4)

It can be seen that Eq.(5.4) can be used only if PRV operates with condition Hi ≥ Hj,
i.e. in the normal or open modes. However, the diurnal demand pattern in a WDS can
fluctuate arbitrarily (i.e., the water consumption decreases significantly at the night)
and thus there may be the case where the PRVs are forced to shut off whenHi < Hj (the
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check valve mode). Therefore, it is not suitable to use this model in the formulation of
the optimization problem for optimal pressure regulation with varying demand patterns.
From the numerical solution point of view, it can make the NLP solver failed to solve
the problem or converged to bad local solutions in many demand scenarios.

5.2.2 An extended model

In general, a PRV in a WDS can operate in one of the following three modes [120]. First,
it operates in a normal mode (mode 1), i.e., its resistance (Ri,j ) is adjusted to maintain
the preset pressure on its downstream side. Second, it operates as a fully opened valve
(mode 2), when its downstream pressure cannot be maintained, i.e., the pressure on
the upstream and downstream side is less than the pressure setting. Third, it acts as
a check valve to prevent the water flow in a reverse direction (mode 3), i.e., when the
pressure on the downstream side is higher than the one on the upstream side. Therefore,
it is necessary to model a PRV which can describe all three modes. Considering a PRV
on a pipe connecting node i with head Hi to node j with head Hj, we can use the
following equation to describe its head loss when operating in mode 1 and 2 with flow
Qi,j [94, 121]

Hi −Hj = Ri,jQ
2
i,j (5.5)

In the normal mode (mode 1), the resistance Ri,j is adjusted to maintain the pressure
at node to a preset pressure setting. Mathematically, depending on the pressure setting,
Ri,j can range from a small value when the PRV acts as a fully opened valve to a very
large value when it acts as a fully closed valve. In particular, in the open mode (mode
2), the resistance can be expressed as [94]

Ri,j = 8Ki,j

π2gD4 (5.6)

where Ki,j is the head-loss coefficient and it can be taken as 10.0 [122, 123]. This means
that in the open mode Ri,j is fixed. In the normal mode (mode 1), we have

Ri,j >
8Ki,j

π2gD4 (5.7)

To represent the operation of PRV in the normal mode, we introduce a variable coef-
ficient vi,j with 0 < vi,j ≤ 1 to account for the variable resistance, so that Eq. (5.5)
becomes

Hi −Hj = 1
vi,j

Ri,jQ
2
i,j (5.8)

where Qi,j ≥ 0 , i.e., the flow through the valve should be kept in one direction. The
boundaries of this coefficient correspond to the two limiting operation cases of the
normal mode of a PRV, namely it is fully closed in the case of vi,j → 0 and is fully
opened in the case of vi,j = 1.
Similar to Eq. (5.4), Eq. (5.8) can only describe mode 1 and mode 2 of PRVs. In the
check valve mode (mode 3), the PRV should be fully closed and thus the flow though
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it is zero, i.e. Qi,j = 0. To consider the operation mode 3 where a PRV acts to prevent
a reverse flow when Hi < Hj, we extend Eq. (5.8) in the following form

max (0, Hi −Hj) = 1
vi,j

Ri,jQ
2
i,j (5.9)

This PRV model is able to describe all three operation modes required in optimal
pressure regulation. However, Eq. (5.9) is a non-smooth equation and hence cannot be
directly used for the formulation of a NLP problem. In this study, we propose to use
the interior-point smoothing approach proposed in [102] to approximate the left-hand
side of Eq. (5.9) by the following function

max (0, Hi −Hj) '
(Hi −Hj) +

√
(Hi −Hj)2 + τ 2

2 (5.10)

where τ is a small value and chosen as 0.001. In this way, the smooth model which is
able to describe the three modes of a PRV is expressed as

(Hi −Hj) +
√

(Hi −Hj)2 + τ 2 = 2
vi,j

Ri,jQ
2
i,j (5.11)

In the next section, we will integrate the models in the forms of Eq.(5.4), Eq. (5.8),
and Eq.(5.11) in the formulation of NLP problems for optimal pressure regulation in
WDSs. Results from case studies in section 5.4 will show the differences of the three
models in terms of accuracy and feasibility.

5.3 Problem formulation for optimal pressure reg-
ulation

The aim of our optimization is to find optimal pressure settings for PRVs so as to
minimize the excessive pressure in a WDS. Therefore, the objective function is defined
as the excessive pressure at all nodes in the WDS in the optimization time horizon [47]

minF =
Nn∑
i=1

T∑
k=1

(
Hi,k −HL

i,k

)
(5.12)

where Nn is the total number of nodes, T=24 hours is the time horizon, and k = 1, ..., 24
is time interval. We consider a WDS with NP pipes, Nr reservoirs and Nprv pressure
reducing valves. The equality constraints consist of the following equations.

The continuity equation at nodes i∑
j,k

Qj,i,k − di,k − li,k = 0; i = 1, ..., Nn (5.13)
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The energy equations for pipes connecting node i to node j

−Hi,k +Hj,k + ∆Hi,j,k = 0; i, j = 1, ..., NP (5.14)

where the head loss (∆Hi,j,k) through a pipe connecting node i to node j is computed
either by the Hazen- Williams equation [94]

∆Hi,j,k = 10.67Li,j
D4.87
i,j

(
Qi,j,k

Ci,j

)1.852

(5.15)

or by the Darcy-Weisbach equation [94]

∆Hi,j,k = 8Li,jf
gπ2D5

i,j

|Qi,j,k|Qi,j,k (5.16)

The friction factor f in (5.16) is implicitly calculated using the Colebrook-White equa-
tion [94]

1√
f

= −2 log
(

(ε/D)
3.7 + 2.51

Re
√
f

)
(5.17)

where Re is the Reynolds number

Re = V D

ν
(5.18)

In Eq.(5.15) and Eq.(5.16) L, D and C are the length, diameter and Hazen-William
coefficient of pipe, respectively; ε in Eq. (5.17) is the pipe roughness coefficient; V and
ν are the velocity of flow through the pipe and the viscosity of water, respectively.
The difference between Eq. (5.15) and Eq. (5.16) lies in the fact that Eq. (5.15) is a
simple and smooth model with a lower accuracy [96], while the accuracy of Eq. (5.16)
is much higher but it is more complicated and non-smooth. To use Eq.(5.16) in the
formulation of a NLP, we use the smooth form proposed by [8]

The leakage amount associated to node i is calculated by [1, 32] .

li,k = CLLt,ip
γ
i,k (5.19)

where

Lt,i = 0.5
∑
j

Li,j (5.20)

In (5.19) CL is the discharge coefficient of the orifice and γ is the pressure exponent
[1].
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The energy equations for PRVs located in the pipe from node i to node j (see
Eq. (5.11))

(Hi −Hj) +
√

(Hi −Hj)2 + τ 2 − 2
vi,j

Ri,jQ
2
i,j = 0 (5.21)

where Ri,j is calculated by Eq.(5.6)

The head of reservoir i is considered as a constant (H i), i.e.

Hi,k −H i = 0; ; i = 1, .., Nr (5.22)

The inequality constraints consist of following operational restrictions.

Nodal head constraints
HL ≤ Hj,k ≤ HU ; j = 1, ..., Nn (5.23)

Pipe flow constraints
QL ≤ Qi,j,k ≤ QU ; i, j = 1, ..., NP (5.24)

Valve flow constraints
0 ≤ Qi,j,k ≤ QU ; i, j = 1, ..., Nprv (5.25)

Valve variable coefficient constraints

0 < vi,j,k ≤ 1; i, j = 1, ..., Nprv (5.26)

The model equations (Eq. (5.13) - Eq. (5.20)) and related parameters can be extracted
from a simulation model in the EPANET 2 environment [58] using the EPANET Pro-
grammers Toolkit [124], if available. We use the IPOPT solver [117] to solve the nonlin-
ear optimization problem formulated above. The Jacobian of the constraints as well as
the gradient of the objective function are calculated and supplied to IPOPT. The brief
description of IPOPT is given in the appendix B.1. All the computation experiments
in the following case studies are carried out on an Intel (R) Core (TM) i7-2600 CPU
3.4GHz 12GB RAM desktop.

5.4 Case studies

5.4.1 Case study 1

At first, we apply our PRV model for optimal PRV pressure settings in a water distri-
bution system as depicted in Fig.5.1. This WDS has 41 links and 29 nodes and was used
as a case study for the PRV localization in [1]. We use the Hazen-Williams equations
for the head loss calculation. We consider 5 PRVs located in pipes 1,11,20,21, and 29
as suggested in [36]. The data for the demand pattern and reservoir heads for 24 hours,
the leakage coefficient CL and the leakage exponent parameter γ are from [1]. The
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Figure 5.1: A water distribution system with 5 PRVs [6]

lower bounds for the pressure at the nodes are 30.0 (m). The optimal pressure regula-
tion problem is formulated for 24 hours and the resulting NLP has 1608 equality and
inequality constraints and 1800 variables. For comparison, we consider three demand
patterns extended from the pattern given in [1] by different factors, as shown in Fig.
5.2.

IPOPT took an average of 4.53 s for solving the optimization problem. Corresponding
to the demand pattern with factor equal to 1, the optimal pressure settings for PRVs
on the link 1, 11, and 21 are given in Fig.5.3, while the PRV 20 and 29 are fully closed
in the whole 24 hours. As a result, the average excessive pressure per hour and the
average hourly leakage amount are given in Table 5.1. It can be seen that the average
leakage amount and the average excessive pressure decrease 5.71(l/s) and 157.57(m),
respectively, as compared with the case in which no pressure management (i.e., no PRV
is installed in the WDS) is made.

To evaluate the accuracy of our proposed PRV model with the one in EPANET 2, we
pass the optimal pressure settings for PRVs to EPANET 2 for comparison. It can be
seen from Fig.5.4 that the leakage flows from the EPANET model are almost the same
as those from our model. The absolute and relative discrepancies of flows and heads
from the two models are shown in Fig. 5.6. The largest absolute discrepancy for the
flows is less than 0.25(l/s) and it is about 0.022(m) for the heads. Therefore, it can be
concluded that our PRV model is as accurate as the one used in EPANET 2.
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Figure 5.2: Demand profile for case study 1 [1]
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Figure 5.3: Optimal pressure settings
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Table 5.1: Average leakage and excessive pressure in case study 1

Without PRVs in
WDS

With optimized
regularization of
PRVs

Average excessive pres-
sure [m]

192.03 34.46

Average leakage
flow[l/s]

27.14 21.42
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Figure 5.4: Simulated and optimized leak flows
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Figure 5.5: Flows through PRV 20 and 29 using the existing PRV model

To compare our PRV model with the existing model in the form of Eq.(5.4), we for-
mulate the same optimization problem but with Eq.(5.4) as the PRV model in which
ki,j (νi,j) is bounded by 1.0 and 1.E+20 [42]. Then, we solve both optimization prob-
lems by IPOPT. It can be seen in Fig.5.4 that the existing model results in a bit higher
leakage flows than those resulted from our model. This is because that the optimal
flows through valves 29 and 20 should be zero (i.e., they are closed) with our PRV
model, while they are nonzero (i.e., they operate in mode 1) with the existing PRV
model as seen in Fig.5.5. In addition, as we pass the optimal PRV settings from the
existing model to EPANET for simulation, EPANET 2 gives warnings that the system
is unbalanced, while the solution from our PRV model is feasible for EPANET 2.

To illustrate the capability of our PRV model in handling varying demand scenarios,
we change the current diurnal demand pattern by multiplying it with two factors 0.5
and 0.1 (as seen in Fig. 5.2). The results of the objective function and computation
time for solving the problems based on Eq.(5.11) and Eq.(5.4) are given in Table 5.2. It
can be seen that for both demand patterns our PRV model results in a lower objective
function value (i.e., lower excessive pressure) than that by the existing PRV model. This
is because the optimization problem based on Eq.(5.4) has a smaller feasible region, i.e.,
only when ki,j has a very large value (except for the caseHi = Hj) there will be a feasible
solution for a PRV with Qi,j = 0. On the contrary, using Eq.(11), a feasible solution
for a PRV can be Qi,j = 0 without requiring a very small value of vi,j (except the case
Hi = Hj). The leak flows found by solving optimization problems corresponding to
demand factors of 0.5 and 0.1 are shown in Fig.5.7. Again, it can be seen for both cases
that our PRV model leads to higher decreases of leakage flows.
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Figure 5.6: Relative and absolute discrepancies of flows and heads for case study 1

Table 5.2: Comparisons of solutions from two NLP problems

Multiplied
factor for
24 demand
patterns

Objective
function
value of
NLP with
Eq.(5.11)

Computation
time(s)

Objective
function
value of
NLP with
Eq.(5.4)

Computation
time (s)

0.1 5822.821 4.478 6079.166 0.736
0.5 2951.945 4.932 3026.338 0.738
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(b) demand factor =0.1

Figure 5.7: Leak flows for two demand factors

5.4.2 Case study 2

Now we apply our PRV model to minimize the excessive pressure in the EXNET net-
work as depicted in Fig.5.8 [2]. EXNET is one of the largest benchmark WDSs in the
literature with 1892 nodes and 2465 links.To carry out optimal pressure regulation for
this network, several modifications of the original model from [2] are necessary. We re-
place the existing TCV and the PRV in the network by a pipe with the same diameter
and with the length of 10 (m) and the roughness of 1.5(mm) as well as 0.1(mm), re-
spectively. The heads of reservoirs at nodes 3001 and 3002 are set to 80.0 (m) to avoid
negative nodal pressures [35].
To regulate the excessive pressures, we consider 8 PRVs placed on link 5162 from node
155 to 1191, link 2699 from node 1390 to 1409, link 3046 from node 402 to 443, link
5120 from node 665 to 552, link 3783 from node 879 to 893, link 2700 from node 1397
to 1380, link 4186 from node 1081 to 1026, and link 2938 from node 643 to 590, as
suggested in [36], as shown in Fig. 5.8.
In the EXNET network, at nodes 3003, 3004, 3005, 3006, and 3007 water is supplied
from adjacent systems with the average flow rate values of 63.00, 1388.0, 10.77970,
926.0001, and 26.1027 (l/s), respectively [2]. We assume that the demand at these
nodes is kept constant with these values for 24 hours. For all other nodes, we use the
same basic demand data given in [2] with the demand pattern factors for 24 hours which
are listed in Table 5.3. The lower bounds for pressures at all demand nodes are set to
be 8.0 (m) [35].
Since the pipe hydraulics in EXNET is modelled by the non-smooth Darcy-Weisbach
equation, we use the method by [8] to smooth the model, thus allowing formulating a
continuous optimization problem. The resulting NLP has totally 104520 inequality and
equality constraints and 104760 variables, respectively. It took only 237.195 s to solve
this huge NLP problem. The optimal pressure settings (pj) for the 8 PRVs are shown
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Figure 5.8: EXNET water distribution system[5]

Table 5.3: Daily water use pattern [2]

Time 1 2 3 4 5 6 7 8 9 10 11 12
0.251 0.175 0.147 0.143 0.148 0.199 0.444 0.731 0.763 0.656 0.627 0.613

Time 13 14 15 16 17 18 19 20 21 22 23 24
0.586 0.538 0.536 0.541 0.595 0.690 0.830 0.933 1.00 0.971 0.735 0.456
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Figure 5.9: PRV pressure settings

in Fig. 5.9.
The average excessive pressures for 24 hours both with (dotted line) and without opti-
mal pressure regulation (solid line) are computed using EPANET which are shown in
Fig. 5.10. The solid line is generated by the simulation of the network with the same
demand patterns, but without considering PRVs. It can be seen that with the optimal
pressure regulation by controlling PRV operations, a significant reduction of the aver-
age excessive pressure is achieved. This pressure reduction will consequently lead to a
significant decrease of the flow rates of the existing leakages and limit potential leaks
which may occur in the network.
It can be also seen from Fig. 5.9 that the average excessive pressure will decrease when
the demand increases (e.g., at time 21:00, demand factor =1.0). This is because, when
more water is taken out at the nodes, the nodal pressures will be reduced and thus the
excessive pressures (Hi −HL) decreased. Reversely, when the demand is small during
the night, the excessive pressure will be high and thus the leakage amount will be
increased. In addition, the pressure settings for the PRVs with a lower demand pattern
factor tend to be higher than those with a higher demand pattern factor (see Table 5.3,
Fig. 5.9 and Fig. 5.10).
The optimal flows through the PRVs by the proposed (solid line) and the EPANET
(dotted line) model are given in Fig. 5.11 and 5.12. It can be seen that the discrepancies
of the flows are quite small. In particular, the flows through the PRVs over the links
5162, 2699, 3046, 5120, 3783, and 2938 by our model are almost the same as the ones
by EPANET 2. The discrepancies in flows of the PRVs over link 2700 and 4186 in
several time intervals, caused by the smoothing method, do not affect much to the
overall operation of the network since their values are very small (i.e., 1.8 and 0.37
l/s). Moreover, through a comparison of pipe flows and nodal heads resulted from our
optimization model and those from EPANET 2, the largest absolute discrepancy of
nodal heads is smaller than 0.75 (m), and the largest relative discrepancy is 5.7% and
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Figure 5.10: Average excessive pressure reduction

most of them is less than 2%. Similarly, for flows larger than 10 (l/s), the largest relative
discrepancy is 5% and the most of them is less than 2.5%. Therefore, it can be concluded
that the hydraulic model used in our optimization is sufficiently accurate
To demonstrate the advantage of our PRVmodel over the existing one, we also formulate
an optimization problem based on Eq. (5.8). However, the NLP solver fails to solve
the optimization problem in which 24 hours are considered. It can only solve the single
optimization problem for several individual demand factors such as 1.0, 0.971, 0.933, and
0.830. For demand factors smaller than 0.830, it fails, since the conditionHi−Hj ≥ 0 for
the PRVs using Eq. (5.8) cannot be satisfied, i.e., the model cannot describe operation
mode 3 (the check valve mode).
To see the operation of the PRVs using our model, we now take the PRV over the link
4186 as an example. As shown in Fig. 5.13, the head (Hi) at the upstream node is lower
than that at the downstream node (Hj) from 3:00 to 11:00 and from 13:00 to 22:00.
It means that during these time periods, this PRV operates in mode 3 that cannot be
handled by Eq. (5.8).
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PRV 5162 with the proposed PRV model
PRV 5162 with Epanet

(a) Flows of PRV 5162
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PRV 2699 with the proposed PRV model
PRV 2699 with Epanet

(b) Flows of PRV 2699
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PRV 3046 with the proposed PRV model
PRV 3046 with Epanet

(c) Flows of PRV 3046
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PRV 5120 with the proposed PRV model
PRV 5120 with Epanet

(d) Flows of PRV 5120

Figure 5.11: Comparisons of PRV flows
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PRV 3783 with the proposed PRV model
PRV 3783 with Epanet

(a) Flows of PRV 3783
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PRV 2700 with the proposed PRV model
PRV 2700 with Epanet

(b) Flows of PRV 2700
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PRV 4186 with the proposed PRV model
PRV 4186 with Epanet

(c) Flows of PRV 4186
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PRV 4186 with the proposed PRV model
PRV 4186 with Epanet

(d) Flows of PRV 2938

Figure 5.12: Comparisons of PRV flows
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Figure 5.13: Heads at upstream and downstream nodes of PRV 4186

5.5 Conclusions

The task for the minimization of water leakage in WDSs poses a significant challenge.
In this chapter, we present a systematic approach for optimal pressure regulation in
WDSs by optimizing control of PRVs. An extended model for properly describing the
three-mode behaviors of PRVs is proposed. This non-smooth model is then smoothed
by using an interior-point approximation method, so that a continuous optimization
problem is formulated and solved by a NLP solver. Based on the proposed PRV model,
the minimization of the excessive pressures is carried out for two benchmark WDSs
and the optimal results are compared with those obtained by using the existing PRV
models. It can be shown that our PRV model is more beneficial and robust than the
existing ones in terms of both quality and accuracy of the optimal solutions for many
demand scenarios.
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Chapter 6

Optimization of Energy and
Maintenance Costs in Water Supply
Systems

In this chapter, we develop a general mixed-integer nonlinear programming (MINLP)
approach for optimizing the on/off operations of pumps in water supply systems with
multiple reservoirs. The objective is to minimize the pumping energy cost and, at the
same time, the pump maintenance cost should be kept at certain levels, which is achieved
by constraining the number of pump switches. Due to the fact that pump switching
is represented by a non-smooth function it is impossible to solve the resulting opti-
mization problem by gradient based optimization methods. In this chapter, we propose
to replace the switching function with linear inequality constraints in the formulation
of MINLP. The reformulated constraints not only restrict pump switching, but also
tighten the formulation by eliminating inefficient MINLP solutions. Two case studies
with many different scenarios on the user-specified number of pump switches are taken
to evaluate the performance of the proposed approach. It is shown that the optimized
pump scheduling leads to the specified number of pump switches with reduced pumping
energy costs.

6.1 Introduction

Water supply systems consume a significant amount of electrical energy to delivery wa-
ter through the systems to customers and services. The largest cost in a water supply
system is associated with the pump operation. Therefore, an optimal pumping schedule
can reduce the energy cost significantly while fulfilling hydraulic and operational con-
straints. The basic idea of optimal pump scheduling for water utilities is to utilize the
advantages of low priced tariff periods and shift the energy load in high priced tariff
periods [3, 12, 61]. It can be shown that the application of an appropriate optimal pump
scheduling can save 10% of the annual expenditure on energy and related costs [3].
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Dam

Pump sation

Water 

treatment plant

Storage 

Reservoirs

Water supply system

Raw water

Figure 6.1: A water supply system with multiple reservoirs [3]

To utilize the advantage of low priced energy tariff, a time horizon for 24 hours should
be considered for optimal pump scheduling [12]. McCormick and Powell in [125] used a
two-stage optimization to minimize the pumping energy and maintenance costs. In the
first stage, the optimal pump scheduling is found by solving a MILP problem, and it
is further improved towards reduction of the energy cost and number of pump switches
in the second stage by using Simulated Annealing (SA). The Dynamic programming
(DP), Scatter search, and Tabu search were also applied to optimize pump scheduling
problems [3, 126].
Operating with excessive pump switches will cause wear and tear of the pumps. This
will increase the maintenance and repair costs [15, 125]. Thus an optimal pumping
schedule should consider the pumping energy cost and the number of pump switches
[15]. For this reason, a constraint to restrict pump switching is necessary. However,
such a constraint is described by a non-smooth function [15], it cannot be used in
the formulation of MINLP or MILP [125]. In [125, 127], a penalty function on pump
switching is added to the objective function to address this issue.
We consider the water supply system as shown in Fig. 6.1 in which the raw water is
pumped into the treatment plant where it is treated by chemical and physical processes.
The pure water is stored in multiple reservoirs that serve as water buffers to satisfy the
community’s water demand by gravity [3, 19]. The purpose of chapter is twofold. First,
we develop a general MINLP model for optimization of pump scheduling problems in
water supply systems with multiple reservoirs. Second, we propose to use linear inequal-
ity constraints instead of the non-smooth pump switching constraint in formulation of
MINLP. The idea of this kind of formulation comes from solving mixed-integer opti-
mal control problems [128]. To the best of our knowledge, this method has not been
applied to the restriction on pump switching in formulating optimal pump scheduling
problems. The resulting MINLP has a nonlinear objective function and linear inequal-
ity constraints and hence it can be efficiently solved by available MINLP solvers. The
difference between our proposed approach on handling pump switches and the ones in
[125] lies in the fact that the maximum number of pump switches is clearly defined,
while it is not the case when a penalty function is used as in [125]. Two case studies with
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Figure 6.2: Pumping system in the water supply system

different scenarios on specified number of pump switches with multiple reservoirs are
taken to evaluate the proposed approach. Based on the optimal results, the operators
can select the pump scheduling with both the pumping energy cost and the desirable
number of pump switches.
The remainder of this chapter is organized as follows. Section 6.2 presents the MINLP
model for optimization of pump scheduling for water supply systems. Section 6.3
presents two case studies for determining optimal pump scheduling. Handling the num-
ber of pump switches by restricting the on/off time periods for pump is given in section
6.4. Conclusions of the paper are provided in section 6.5.

6.2 Problem definition and solution approach

We consider a water supply system with np pumps and nr reservoirs depicted in Fig.6.2.
The water demand pattern and electrical tariff are given. The MINLP is formulated in
a time horizon T=24 (hours).

6.2.1 Pumping energy cost

For simplification, we at first formulate the MINLP for the system with one reservoir
(i.e., R1). The formulation of MINLP for the system with multiple reservoirs is then
extended.
The electrical power consumption of pump i is calculated by [19]

Pi = ρgziQiHi

ηi
(6.1)

where Qi is the flow of pump i (m3/s); Hi is the total dynamic pump head (m); g is
the acceleration to gravity (m/s2); ηi is the efficiency of pump i; zi ∈ {0, 1} is a binary
variable representing on/off operation of the pump.
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For a system with np pumps, the pumping energy cost in the time horizon T will be

E=
T∑
k=1

np∑
i=1

Pi,kγk∆tk (6.2)

where γk is electrical tariff at time interval k; ∆tk=1 (hour) is length of time interval k
(k =1,...,T ).
In equation (6.1), the total dynamic head of pump i is calculated by [3]

Hi = Hst +Hr (Q) + ∆Hf (Q) + ∆Hm (Q) (6.3)

where Hst is static head and it is equal to the difference between elevation of reservoir
and pump discharge; Hr(Q) is the water level in reservoir. It depends on the amount
of pumping water, water demand, and initial water level in the reservoir; ∆Hm (Q) is
local head loss of pump i; ∆Hf (Q) is the head loss across pipe sections from pumps
to reservoirs (i.e., pipe sections from pump pi to reservoir R1 at index np + 1 as shown
in Fig.6.2). The sum of local and pipe section head losses can be approximated by [19]

∆Hf + ∆Hm ' 1.1∆Hli (6.4)

with
∆Hli = ∆Hpi,i +

np∑
j=i

∆Hj (6.5)

where ∆Hpi,i is the head loss in the pipe section (pi, i); ∆Hj is the head loss in the pipe
section (j; j + 1), with j = 1, ..., np, i = 1, ..., np .

∆Hpi,i = 8λiLi(ziQi)2

gπD5
i

(6.6)

where Li is the length of pipe section (pi, i); Di is the diameter of the pipe; Here we
use the approximated value of friction factor λi ≈ 0.109 [19]. In addition, head loss on
pipe section (j; j + 1) is calculated by

∆Hj =
8λ′

jLj

(
j∑

m=1
zmQm

)2

gπD5
j

(6.7)

with λ′
j ≈ 0.093 [19] and

j∑
m=1

zmQm is the flow in the pipe section (j; j + 1). From the
above equations, we obtain the equation of total head loss on pipe sections from pump
pi to reservoir R1 is

∆Hli =
(

8λiLiQ2
i

gπ2D5
i

)
z2
i +

np∑
j=i

8λ′
jLj

(
j∑

m=1
zmQm

)2

gπ2D5
j

(6.8)
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Replace equations (6.3), (6.8), and (6.1) into (6.2), the energy cost by pump i during
time period ∆tk is

Ei,k = γk
ρg (zi,kQi) (Hst +Hr,k (zi,k, Q) + 1.1∆Hli)

ηi
∆tk

= γk∆tk
ρg (zi,kQi)

ηi


Hst +Hr,k (zi,k, Q) + 1.1


(

8λiLiQ2
i

gπ2D5
i

)
z2
i,k +

np∑
j=i

8λ′
jLj

(
j∑

m=1
zm,kQm

)2

gπ2D5
j




(6.9)

6.2.2 Linear inequality constraints

In this work, the hydraulic mass balance model is used to represent the equilibrium
principle between the amount of water coming to and out of the reservoirs (i.e., water
demand Qr,j) [15, 19, 125, 126]. The water levels (Hr,k) of reservoir r with cross-sectional
area Sr is calculated by the following equation:

Hr,k = Hr,1 +
k−1∑
j=1

∆tj
Sr

( np∑
i=1

(zi,jQi)−Qr,j

)
(6.10)

and it is bounded by the minimum and maximum allowable water levels (Hmin and
Hmax)

Hmin 6 Hr,k 6 Hmax (6.11)

Moreover, the final water levels in reservoirs should be at least the initial ones. So that,

Hr,1 6 Hr,T (6.12)

In order to reduce maintenance cost for pumps, a constraint on pump switching is to
be introduced. In this study, we use the following constraint [45, 128]

np∑
i=1

T−1∑
k=1
|zi,k − zi,k+1| 6 Nmax (6.13)

This constraint is non-smooth since it contains the absolute term. However, it can be
handled by a set of linear inequalities defining facets of feasible MINLP solution [128]

swi,k > zi,k − zi,k+1

swi,k > −zi,k + zi,k+1
np∑
i=1

T−1∑
k=1

swi,k 6 Nmax

(6.14)

Optimization Approaches for Planning and Operation of Large-scale Water Distribution Networks 97



CHAPTER 6. OPTIMIZATION OF ENERGY AND MAINTENANCE COSTS IN WATER SUPPLY SYSTEMS

where swi,k = |zi,k − zi,k+1|; Nmax is maximum number of pump switches and it is
predefined. From the equation of energy cost (6.9) and constraints (6.11),(6.12), and
(6.14), we have the following MINLP problem for optimal pump scheduling:

min E =
T∑
k=1

∆tkγk


np∑
i=1

ρgQi

ηi
zi,k



Hst +Hr,k (zi, Q)

+1.1


(

8λiLiQ2
i

gπ2D5
i

)
z2
i,k +

np∑
j=i

8λ′
Lk

(
j∑

m=1
zm,kQm

)2

gπ2D5
k






s.t.

Hr,k = Hr,1 +
k−1∑
j=1

∆tj
Sr

( np∑
i=1

(zi,jQi)−Qr,j

)
Hr,1 6 Hr,T

swi,k > zi,k − zi,k+1

swi,k > −zi,k + zi,k+1
np∑
i=1

T−1∑
k=1

swi,k 6 Nmax

i = 1, ..., np; k = 1, ..., T − 1; g = 1, .., k − 1
(6.15)

To simplify the expression, we further represent the objective function in the following
form

E =
T∑
k=1

∆tkγk


np∑
i=1

ai,k (z) zi,k + ciz
3
i,k + bizi,k


np∑
j=i

Lj

(
j∑

m=1
zj,kQj

)
D5
j



 (6.16)

where ai,k,bi, and ci are defined as:
ai,k (z) = ai (Hst +Hr,k (zi, Q)), ai = ρgQi

ηi
, ci = 8.8ρλiLiQ

3
i

π2ηiD5
i

, bi = 8.8ρλ′
iQi

π2ηi
. The term ai,k (z)

can be further expressed as

np∑
i=1

zi,kai,k = ρgQi

ηi

np∑
i=1

zi,k (Hr,1 +Hst) +
k−1∑
g=1

∆tg
Sr

( np∑
u=1

ziu,kgQu − zi,kQr,g

) (6.17)

where ziu,kg = zi,kzu,g, i = 1, ..., np;u = 1, ..., np; g = 1, ..., k − 1. Because zi,k is binary
variable, we have zi,k = z2

i,k = z3
i,k [129]. In this way, the objective function in (6.16) is
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simplified and generalized to the expression bellows:

E =
T∑
k=1

∆tkγk



ρgQi

ηi

np∑
i=1

zi,k (Hr,1 +Hst) +
k−1∑
g=1

∆tg
Sr

( np∑
u=1

ziu,kgQu − zi,kQr,g

)
+

np∑
i=1

ci + biQ
2
i

np∑
j=i

LDj

zi,k

+
np−1∑

i=1,i<j<np


bi

 np∑
l=j

LDl

(Q2
j + 2QiQj

)
+

bj

 np∑
l=j

LDl

(Q2
i + 2QiQj

)


zij,k

+2
 np∑
i=1,i<j<h<np

( np∑
l=h

(LDl) (bhQiQj + biQhQj + bjQiQh) zijh,k
)


(6.18)

In the expression, we define zij,k = zi,kzj,k, zijh,k = zi,kzj,kzh,k, and LDj = Lj
/
D5
j

6.2.3 The formulation of MINLP for water supply system with
multiple reservoirs

Now the objective function E in (6.18) is extended for a system with nr reservoirs as
follows:

E =
T∑
k=1

∆tkγk
nr∑
r=1



ρgQi

ηi

np∑
i=1

zi,r,k (Hr,1 +Hst,r) +
k−1∑
g=1

∆tg
Sr

( np∑
u=1

ziu,r,k,gQu − zi,r,kQr,g

)
+

np∑
i=1

ci + biQ
2
i

np∑
j=i

LDj

zi,r,k

+
np−1∑

i=1,i<j<np


bi

 np∑
l=j

LDl

(Q2
j + 2QiQj

)
+

bj

 np∑
l=j

LDl

(Q2
i + 2QiQj

)


zij,r,k

+2
 np∑
i=1,i<j<h<np

( np∑
l=h

(LDl) (bhQiQj + biQhQj + bjQiQh) zijh,r,k
)


(6.19)

where zi,r,k, a binary variable which is used to indicate whether pump i supplies water
to reservoir r or not. In addition, following constraints are used to ensure that at a
particular time interval (k) a switched on pump will only supply water to one of the
reservoirs.

nr∑
r=1

zi,r,k 6 1, i = 1, ..., np, k = 1, .., T (6.20)
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Table 6.1: Data for case study 1

ai bi ci Qi(m3/s) Lk(m) Dk(m)
86.33 0.005 4.8 0.04 938.6 0.25
59.2 0.005 1.89 0.035 1,936.3 0.35
65.18 0.005 4.331 0.04 1,352.6 0.4
55.42 0.005 4.069 0.035 1,191 0.45
70.89 0.005 1.414 0.05 3,684 0.5
64.94 0.005 2.456 0.05 864 0.6
68.09 0.005 0.074 0.05 2,381 0.6
81.61 0.005 5.276 0.07 331.1 0.7
32.07 0.0032 11.693 0.025 625 0.8
28.03 0.005 3.21 0.025 11,3 0.9

The linear inequality constraints on number of pump switches in (6.14) are extended
as:

swi,r,k > zi,r,k − zi,r,k+1

swi,r,k > −zi,r,k + zi,r,k+1
nr∑
r=1

np∑
i=1

T−1∑
k=1

swi,r,k 6 Nmax

(6.21)

To solve the optimization problem formulated above, we employ the MINLP solver
BONMIN [130] in GAMS [119]. In BONMIN, several MINLP algorithms are integrated
(See in the appendix C). All the computation experiments in the following case studies
are conducted on an Intel (R) Core (TM) i7-2600 CPU 3.4GHz 12GB RAM desktop.

6.3 Case studies

6.3.1 Case study 1

We consider at first a water supply system comprising of ten pumps and one reservoir
as shown in Fig.6.3. The data for formulating the optimization problem modified from
[19] is given in Table 6.1 The MINLP problem formulated has 240 binary variables and
507 linear constraints. The base water demand (Qr) for the reservoir is assumed to be
0.35(m3/s). The demand patterns are assumed to be 0.8 for periods from 1.00 a.m. to
6.00 a.m., 1.0 for periods from 7.00 a.m. to 20.00 , and 0.8 for periods from 21.00 to
24.00. The energy priced tariff is assumed to be 0.024($/kW) for periods from 1.00a.m.
to 6.00a.m., and 0.1194 ($/kW) for periods from 7.00 a.m. to 24.00. The initial water
level in the reservoir (Hr,0) is 15(m). The lower and upper bounds for water levels in
the reservoir are 7.0 (m) and 28.0(m), respectively. Static heads (Hst) for all pumps are
assumed to be 35(m).
The energy costs with respect to the scenarios on the maximum number of pump
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p1

...

p2 p10

R1
1 2

Figure 6.3: A water supply system in case study 1

Table 6.2: Objective function values with number of pump switches

Objective function values Computation time Maximum number
($/day) (s) of pump switches (Nmax)

869.77 0.196 1
825.85 115.924 2
812.25 109.699 3
799.28 172.319 4
787.91 97.298 5
768.73 62.666 6
757.88 1.529 7
757.88 2.901 8
757.88 14.352 −

-: without pump switching constraint
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Figure 6.4: Optimal pumping schedules with Nmax=7.

switches are given in Table 6.2. It can be seen that the pump scheduling with higher
allowable number of pump switches will result in a lower pumping energy cost, and the
same is true reversely. Interestingly, as the allowable number of pump switches is larger
than 6, the optimized pumping schedules produce the same pumping energy costs (see
in Table 6.2). The computation time for solving each of the MINLP problems is also
shown in Table 6.2. It can be seen that while BONMIN takes 14.352 (s) to solve the
optimization problem without using the pump switching constraint, it requires only
1.529 (s) for solving the one with the pump switching constraint (Nmax=7). It means
that the introduction of the constraint on the number of pump switches tightens the
MINLP by eliminating inefficient MINLP solutions and therefore the computation time
can be reduced.

The optimal solution (for the case Nmax=7) shown in Fig.6.4 indicates that all pumps
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Figure 6.5: Reservoir head trajectories for different allowable number of pump switches.

are scheduled to operate in the low tariff periods (e.g., 1 to 6). In the high tariff periods,
the optimized scheduling will use the pumps with higher efficiency (e.g., low value of
ai) which are near the reservoir to operate. In particular, during the high tariff periods
pumps 5,6,7, and 8 are operated, while pump 1 and 2 are switched off (see Fig.6.4). The
reason for the priority of selecting pumps near reservoir to be switched on is due to the
fact that the total head losses on the sections of pipes will be much smaller than those
located far from the reservoir. As shown in Fig.6.5, the optimized pump scheduling also
allows the reservoir to be filled during the low tariff periods and emptied during the
high tariff periods to supply water to the systems. Moreover, the reservoir recovers its
initial water level by the end of scheduling period. It can be also seen in Fig. 6.6, as
the maximum number of pump switches increases, the pumping energy cost decreases.
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Figure 6.6: Objective function values with different allowable number of pump switches.

p1

...

p2 p10

R1
1 2

R2

Figure 6.7: A water supply system in case study 2
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Table 6.3: Data of reservoirs in case study 2

Tank Initial head(m) Minimum head(m) Maximum head(m) Surface(m2)
1 50 42 65 176.715
2 50 42 65 78.538

Table 6.4: Pumping energy costs and maximum number of pump switches

Objective function values ($/day) Maximum number of pump switches (Nmax)

672.626 5
654.321 10
639.637 15
637.665 20
635.522 25
633.646 -

-: without pump switching constraint

6.3.2 Case study 2

Now we extend the same system considered above with two reservoirs as shown in Fig.
6.7. The data of pumps are the same as used as in case study 1. The data of reservoir 1
and 2 are given in Table 6.3. The base water demands (Qr) for reservoir 1 and reservoir
2 are assumed to be 0.2(m3/s) and 0.15(m3/s), respectively. The formulated MINLP
has 480 binary variables, 1007 linear constraints. For solving the problem using GAMS,
the time limitation for MINLP is set to 50000.0 (s).
The results of energy costs corresponding to different Nmax are given in Table 6.4. The
optimal pumping schedules for the case Nmax =10 and Nmax =20 are shown in Fig. 6.8a
and Fig. 6.8b, respectively. The water head trajectories of two reservoirs for different
maximum number of pump switches are shown in Fig. 6.9a and Fig. 6.9b, respectively.
Again it can be seen that as the allowable number of pump switches increases, more
pumping energy cost is saved. However, the energy cost deceases will be slow (about
2.0($/day)) as the number of pump switches is larger than 15. The optimal pump
scheduling uses the pumps located near the reservoirs to be turned on instead of the
ones far from the reservoirs as shown in Fig. 6.8a and Fig. 6.8b. Similar to the results
from the case study 1, due to the optimized pump scheduling, the pumps are operated
intensively to pump water to both reservoirs during low priced tariff periods as shown in
Fig. 6.9a and Fig. 6.9b. And the stored water in the reservoirs is supplied to the system
by the gravity of reservoirs during the high priced tariff periods; hence it significantly
relieves operations of the pumps in these periods.
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(a) Optimal pumping schedules with Nmax=10.
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(b) Optimal pumping schedules with Nmax=20.

Figure 6.8: Optimal pumping schedules
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(a) Optimal heads of reservoir 1

(b) Optimal heads of reservoir 2

Figure 6.9: Optimal trajectories for reservoir 1 and 2
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Table 6.5: Pumping energy costs and minimum up/down times

LU LD Objective function values ($/day)
4 3 635.935
2 3 637.672
2 4 634.262
5 4 644.648
6 2 638.512
2 6 633.557

6.4 Handling the number of pump switches using
minimum up and down constraints

The MINLP formulation in the previous section only limits the total number of pump
switches of all pumps in the water supply system. There will be a case that a pump
will have much number of pump switches, while others have less or a case that a pump
has desired number of pump switches, but has high frequency of on/off switching.
The aim of this section is to propose an approach to limit the frequency on/off switching
in operations of pumps. To do this, the on/off time periods for pumps is handled by
using the minimum up and down constraints [131].

zi,k − zi,k−1 6 zi,τ , 2 6 k < τ 6 min {k + LUi − 1, T} (6.22)
zi,k−1 − zi,k 6 1− zi,τ , 2 6 k < τ 6 min {k + LDi − 1, T} (6.23)

In Eq. (6.22) and (6.23) LDi and LUi are given. The constraints ensure that pumps
cannot be switched on less than LDi -1 hours and switched off less than LUi-1 hours
[131]. Now the MINLP problem for optimization of pumping energy and maintenance
costs is formulated with the constraints on the number of pump switches in Eq. (6.22)
and Eq. (6.23). To evaluate this approach, we take case study 2 into consideration.
Numerous MINLP problems are formulated and solved with different values of LDi

and LUi and the corresponding optimal solutions are given in Table 6.5.
The figure 6.10a and 6.10b represent the optimal operations of pumps and the corre-
sponding optimal head trajectories of two reservoirs for the case LU=5 and LD=4. For
the case LU=2 and LD=6, the optimal pump scheduling is shown in Fig. 6.11a, and
the corresponding optimal heads of two reservoirs is depicted in Fig. 6.11b.
It can be seen that, due to the optimal pump scheduling, most of pumps will is switched
on in the low priced tariff, while they are switched off in the high priced tariff. For this
reason, the pumping energy cost is reduced significantly. In addition, the constraints on
time periods will lead pump not to switch on/off with high frequency. It is recognized
that as we increase the values of LDi and LUi, the maintenance cost will reduce while
the pumping energy cost will increase.
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(a) Optimal pump schedules with LU=5, LD=4.

(b) Optimal head trajectories of reservoirs with with LU=5, LD=4.

Figure 6.10: Optimal pump scheduling and reservoir trajectories

Optimization Approaches for Planning and Operation of Large-scale Water Distribution Networks 109



CHAPTER 6. OPTIMIZATION OF ENERGY AND MAINTENANCE COSTS IN WATER SUPPLY SYSTEMS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z1

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z2

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z3

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z4

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z5

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z6

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z7

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z8

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z6

Time [hours]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.5
1

z1
0

Time [hours]

(a) Optimal pump schedules with LU=2, LD=6.

(b) Optimal head trajectories of reservoirs with with LU=2, LD=6.

Figure 6.11: Optimal pump scheduling and reservoir trajectories
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6.5 Conclusions

In this chapter, we developed a general MINLP model for optimizing the operations of
pumps in water supply systems with multiple reservoirs. The optimized pump schedul-
ing will result in a reduction of the pumping energy cost with a user-specified number
of pump switches. We proposed to use linear inequalities defining the facets of the
feasible MINLP solution for effectively restricting the number of pump switches. In ad-
dition, we also considered the minimum up/down time constraints in MINLP problem
to handle the number of pump switches for each pump independently. The efficiency
of the proposed approach for handling pump switching was demonstrated by deter-
mining optimal pump scheduling strategies in two case studies with different scenarios
on allowable numbers of pump switches and with different numbers of reservoirs. The
introduction of linear inequalities may tighten the formulation of MINLP and help to
reduce the computational burden in solving the formulated MINLP problem. This will
be further investigated in the future works.

Optimization Approaches for Planning and Operation of Large-scale Water Distribution Networks 111



CHAPTER 6. OPTIMIZATION OF ENERGY AND MAINTENANCE COSTS IN WATER SUPPLY SYSTEMS

112 Optimization Approaches for Planning and Operation of Large-scale Water Distribution Networks



Chapter 7

Optimization operation of water
distribution systems

In chapter 6, we have discussed about the operational optimization of water supply
systems with multiple reservoirs. This chapter presents an application of a fast and effi-
cient approach, namely the two-stage optimization approach, to solve the optimal pump
scheduling problem for a large-scale water distribution system. The optimized pump
scheduling results in the reduction of the operating cost while fulfilling the hydraulic as
well as operational constraints. In addition, a software package is developed to extract
an optimization model from a simulation model in the EPANET environment [58] and
solve it by a nonlinear programming solver (e.g., IPOPT in [117]). The software enables
users to carry out operational optimizations of WDSs with a minimum effort.

7.1 Introduction

Due to the price increases of electrical energy in the recent years, the energy consump-
tion of pumping takes the most part of the total operating costs of water distribu-
tion systems (WDSs). Therefore, minimizing the energy costs while delivering water to
meet customer demands is more and more important to water utilities. To reduce the
pumping energy consumption, many strategies have been taken such as pump testing,
replacing or repairing inefficient pumps, modifying the pump characteristics to match
the system, and selecting the best pumps for the application [11]. One of the most
effective approaches for reducing the energy consumption is optimal scheduling of the
pump operations [12]. A water distribution system comprises of pipes, nodes, valves,
and pumps to transport water to customers and services. Water is pumped into the
system from sources (e.g., reservoirs) by pump stations as in Fig. 7.1.
Since pumps are embedded in WDSs, the optimization of pump scheduling has to be
carried out based on a model describing the whole distribution system. According to the
descriptions of hydraulic models, the existing optimization models can be classified into
linear programming (LP), mixed-integer linear programming (MILP), mixed-integer
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Storage 

Reservoirs

Storage 

Reservoirs

…..

Distribution system

Pumping station

Figure 7.1: A water distribution system [8]

nonlinear programming (MINLP), and simulation based models. The LP and MILP
models are either based on mass balance hydraulic relations [16, 17, 71] or derived by
linearizing the nonlinear hydraulic equations [65], while the MINLP models are formu-
lated by considering the nonlinear hydraulic equations. The binary variables represent
hourly on/off operations of the pumps [8, 18, 43]. The simulation based optimization
models are based on a simulation model (e.g. the EPANET model) which allows incor-
porating if-then-rules for manipulating the operations of pumps and valves. Such models
are usually used in conjunction with meta-heuristic algorithms (e.g., genetic algorithms
and ant colony algorithms etc.) for carrying out the optimization [12, 20, 70, 89].
To solve the optimal pump scheduling problem, many approaches have been used such
as dynamic programming (DP) [61], meta-heuristic genetic algorithm (GA) [20], hybrid
GA [70], LP combined with a heuristic algorithm [65, 71], and a two-stage optimization
method including NLP combined with local MINLPs in [8, 18] or with a heuristic dis-
cretization algorithm in [72], and NLP combined with DP [76]. Although meta-heuristic
genetic algorithms are the most generic technique for solving the pump scheduling prob-
lems, they cannot be employed easily in online optimizations for large- scale WDSs [43].
This is because they require a large amount of computation time [43].
The two-stage optimization approach has often been applied to solve the MINLP prob-
lem for the optimal pump scheduling [8, 18, 43, 68, 72, 80, 127]. In [18], the MINLP
problem was relaxed and solved in the first stage. Then, the discrete pump scheduling
was found using decomposition method [18] or a heuristic algorithm [72] in the second
stage. In [8], it is due to the fact that solving the complete MINLP problem for the
whole system was difficult, each pump station is replaced by an aggregated model and
the resulting NLP was solved to determine optimal continuous flow and additional head
set-points for each pumps station [127]. The on/off operations of individual pumps was
determined by solving smaller-scale MINLP problems locally at each pump station to
approximate their corresponding continuous flows and heads. It is recognized that the
two stage optimization approach is suitable for solving the operational optimizations of
large scale WDSs where the interactions between pump stations are small (e.g., small-
scale MINLP problems formulated at each pump stations are solved separately to track
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their continuous flows set-points) and the tank trajectories from a continuous relaxed
NLP solution are sufficiently close to optimal tank trajectories of the MINLP solution
[43].

The objective of this chapter is to develop a software package which extracts the opti-
mization model from the simulation model in the EPANET environment and carry out
the two-stage optimization approach [8, 43] to determine the optimal pump scheduling
for large-scale WDSs. At the first stage, the integer variables (e.g., number of pumps
in operations for each pump station) are relaxed to the continuous ones, and the NLP
problem is solved by a NLP solver to obtain continuous flow set-points for each pump
station. At the second stage, a heuristic algorithm is used to translate optimal continu-
ous set-point flows to on/off operations of individual pumps. The accuracy of the on/off
pump scheduling is evaluated by EPANET 2 [58].

The remainder of this chapter is organized as follows. Section 7.2 presents the formu-
lation of operational optimization of water distribution systems. Section 7.3 presents
a simple heuristic algorithm to deduce 0/1 operations of pumps from the continuous
pump station flows. An operational optimization of a real and large-scale drinking water
network is given in section 7.4. Conclusions of the paper are provided in section 7.5.

7.2 Problem definition for optimization operation
of a water distribution system

Now we formulate an optimization problem in a general form for operations of a WDS.
The aim of optimization is to minimize operating costs based on the daily electricity
tariff and water demand profile. Consider a WDS including NPU pumps, NP pipes,
NJ junction nodes, NT tanks, and NR reservoirs. The time horizon is considered to be
T=24 hours and the length of time intervals (∆tk) is 1 hour. The decision variables are
the numbers of switched-on pumps for the pump stations and their normalized speed
which then provide optimal flow profiles for each pump station. In the first stage, we
relax the integer decision variables (the numbers of switched-on pumps np) to continuous
variables. The integer solution of the numbers of switched-on pumps will be determined
in the second stage optimization [18, 43, 72] in section 7.3

Objective function

Although other forms can be considered, the objective function is defined as the
minimization of the energy cost of pump operations

minF =
T∑
k=1

NPU∑
p=1

γ (k)Pp (Qp (k) , np (k) , sp (k)) (7.1)

The electrical power consumed by pump station p (Pp) with np identical pumps in
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parallel is calculated by a cubic polynomial [93]

Pp = np(k)s3
p(k)

Ap
(

Qp(k)
np(k)sp(k)

)3

+Bp

(
Qp(k)

np(k)sp(k)

)2

+ Cp

(
Qp(k)

np(k)sp(k)

)
+Dp


(7.2)

where Ap, Bp, Cp, Dp are power coefficients for a given pump which can be obtained
from interpolating the power-flow data; np and sp are number of pumps switched on
and their corresponding relative speeds, respectively. k = 0, ..., 23 is the time step.

Equality constraints

At junction node i we have∑
l

Qi,l (k) + di (k) = 0; i = 1, ..., NJ (7.3)

where Qi,l(k) are flows coming or leaving node i, di(k) is the demand at node i .
Based on the smoothed hydraulic equation Eq. (3.59) (see [8]), the head loss of pipe l
connecting node i and j is described as

−Hi (k)+Hj (k)+RpQi,l (k)
√Q2

i,l (k) + a2
l + 2bl + cl√

Q2
i,l (k) + d2

l

 = 0, l = 1, ..., NP

(7.4)
where Rp, al, bl, cl, and dl are calculated according to Eq. (3.60) for each pipe available
in the network; Hi(k) and Hj(k) are the head at node i and j, respectively.
The energy conservation of pump station connecting node (inlet) and (outlet) is given
in [93]

Hi (k)−Hj (k) + ap

(
Qp (k)
np (k)

)2

+ bpsp (k)
(
Qp (k)
np (k)

)
+ cpsp(k)2 = 0 (7.5)

where ap, bp, bp are pump head-flow coefficients; p=1,...,NPU

The mass balance for tank i for each time interval (∆tk) is given by

Hi (k + 1)−Hi (k)−
(

∆tk
Si

)∑
l

Qi,l (k) = 0; i = 1, ..., NT (7.6)

where Qi,l(k) is inflow or outflow of tank i; Si is the cross-sectional of tank i

The head of reservoir i is considered as a constant, i.e.

Hi (k)−H i = 0, i = 1, ..., NR (7.7)
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Inequality constraints

Nodal head constraints

HL
j 6 Hj (k) 6 HU

j , j = 1, 2, ..., NJ (7.8)

Pipe/link flow constraints connecting node i

QL
i,l 6 Qi,l (k) 6 QU

i,l, l = 1, ..., NP (7.9)

Head constraints in the tanks

HL
i 6 Hi (k) 6 HU

i

|Hi (T )−Hi (0)| 6 ∆i

(7.10)

where ∆i is the allowable deficiency of the water tank level at the end of a day.
Flow constraints and the constraints of normalized speed of pumps in pump station p
[43]

Qp (k)− Q̃pnp (k) sp (k) 6 0 (7.11)

sLp 6 sp (k) 6 sUp (7.12)

nLp 6 np (k) 6 nUp (7.13)

where Q̃p is the pump cutoff flow.

Constraints on the changes of pump station flows between two successive time
intervals

|Qp (k)−Qp (k + 1)| 6 ∆p; p = 1, ..., NPU (7.14)

In summary, the above problem can be formulated as the following general NLP form

min Φ(x,u)
s.t. g(x,u) = 0

h(x,u) 6 0
xL 6 x 6 xU

uL 6 u 6 uU

(7.15)

The decision variables u include the numbers of switched-on pumps in the pump stations
and their relative speed. Thus the total number of decision variables is NPU×2×T. The
state variables x include the pipe flows and node heads and therefore the total number of
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state variables is (NP+NJ+NT+NR)×T. The number of equality constraints g is equal
to the number of state variables. In addition, there are a large number of inequality
constraints.
As a result, an optimal operation problem of a WDS leads to a large-scale NLP which
should be solved in an efficient way. Here we use a simultaneous solution framework,
i.e. both the decision and state variables in the whole time horizon are considered as
optimization variables. And both equality and inequality constraints in the whole time
horizon are treated as constraints of the NLP problem [132]. The IPOPT software [117]
is used as the nonlinear optimization solver. In each iteration, values of the objective
function, the equality and inequality constraints and their gradients are computed and
delivered to IPOPT which will then update the optimization variables for the next iter-
ation. The solution procedure will converge when the optimality conditions in IPOPT
are satisfied, which then will provide optimal operation strategies for the WDS. Since
the function values and gradient values are exactly computed, this approach can be
considered as being highly efficient. The solution procedure will converge when the
optimality conditions in IPOPT are satisfied, which then will provide optimal opera-
tion strategies for the WDS. Since the function values and gradient values are exactly
computed, this approach can be considered as being highly efficient.

7.3 Discrete pump scheduling

The two-stage optimization is proposed in Fig. 7.2 where the first stage is to determine
the continuous pumping schedule for each pump station by solving the NLP problem
as in section 7.2. The second stage is to calculate discrete pumping schedules for pump
stations so as to approximate the continuous solution [8, 18, 43, 68]. It is due to the
fact that a fractional number of pumps switched on will be carried out by a sequence
of integer number of pump switched on in smaller time intervals [68, 72]. Here, in
the second stage, we employ a heuristic procedure [72] to calculate integer number of
pumps switched on from the fractional number of pump switched on. To do this, the
time interval (e.g., ∆tk=1 hour) is divided into several smaller time intervals which are
referred to as discretized time intervals (∆tkd

). kd is the time step of the discretized
time interval ∆tkd

. The number of pumps switched on in a discretized time intervals
(e.g.,∆tkd

) is calculated by the method proposed in [72]. At first, in each time interval
kd, the number of switched-on pumps is assigned to bnpc. Then, additional number of
switched-on pumps are calculated as ∆nd

∆nd =
⌊
frac (np)

∆tkc

∆tkd

+ 0.5
⌋

(7.16)

where frac (np) = np − bnpc; bnpc is the floor rounding of np.
In addition, we deduce the discrete pump scheduling for each pump station so that total
flows resulted by it in each of tariff time periods will approximate the total continuous
flows in the same tariff time periods. The reason lies in the fact that pump scheduling
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Solving the relaxed NLP problem 
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Produce discrete pump schedules
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Q(k)

Q(kd )
On/off operations of 

pumps

Stage 1

Stage 2

Figure 7.2: Dicretize the continuous pump schedules

varies significantly according to electrical tariff periods [72]. For a electrical time period
tpj, we expect that

TFLdi,tpj
' TFLci,tpj

(7.17)

where TFLd (tpj) is the total flow of pump station i resulted by discrete pump schedul-
ing over the time period of tpj and; TFLc (tpj) is the total continuous flow of pump
station i. The total discrete and continuous flows can be calculated as

TFLdi,tpj
=
∑
kd

Qi (kd) ∆tkd
(7.18)

and
TFLci,tpj

=
∑
k

Qi (k) ∆tk (7.19)

where Qi (kd) and Qi (k) are flows resulted from dsicrete pump scheduling (EPANET)
and continuous set-point flows, respectively.
To minimize the deviation between TFLdi,tpj

and TFLci,tpj
, the simple way is to use

a small refined discrete time interval (∆tkd
). However, this may lead pump switching
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Table 7.1: The basic heuristic algorithm

Initialization: the water distribution system file in EPANET.
Solve the relaxed NLP to calculate the continuous flow set points for pump stations
(TFLci,tpj

)
for i=1: NPU
for j=1:Ntp

while (abs(TFLdi,tpj
− TFLci,tpj

) > ∆tp)
if(TFLdi,tpj

< TFLci,tpj
)

ni = ni + 1.
else
ni = ni − 1.
end if
Simulation the WDS with the modified discrete pump scheduling to calculate

TFLdi,tpj
.

end while
end for

end for .

on/off in many times. For this reason, the value of ∆tkd
should be chosen appropriately.

Here, we choose ∆tkd
= 10 minutes.

We also use a heuristic algorithm to further modify the discrete pumping schedules in
Eq. (7.16) so as to reduce the deviation in Eq. (7.17). The modification is made for
successive discrete time intervals (∆tkd

). For example, if the continuous flow set-point
of a pump station is larger than the discrete flow in a tariff time period (tpj), additional
pumps will be switched on. Also in the case, if all pumps in a pump station has been
already switched on at a specified discretized time step kd, additional pumps will be
switched on in the next discretized time step kd+1. This procedure continues until
TFLdi,tpj

' TFLci,tpj
is reached. The basic algorithm is given in Table 7.1 in which ni

is the number of pumps switched on in each pump station, ∆tp is the flow tolerance
over a tariff time period tp, and Ntp is the number of electrical tariff time periods. It is
noted that for variable speed pump stations the algorithm only modifies the number of
pumps switched on while keeping the pump relative speeds the same as those found in
the continuous solution [72].
The brief description of the software package is given in the appendix D. The soft-
ware package extracts the optimization problem from the simulation model described
in EPANET 2 [58], solves the optimization problem using a NLP solver, and produces
the on/off pumping schedule using the heuristic algorithm described above. For a wa-
ter distribution system described by a file in EPANET, with our developed software
package, users only need to define the electrical tariff, deviation of the final tank levels,
bound constraints for optimization variables (flows, heads, number of pump switched
on, and relative speeds), then the relaxed NLP in section 7.2 and the heuristic algorithm
are implemented automatically .

120 Optimization Approaches for Planning and Operation of Large-scale Water Distribution Networks



7.4. CASE STUDY: OPTIMIZATION OF A REAL DRINKING WATER DISTRIBUTION NETWORK

7.4 Case study: Optimization of a real drinking wa-
ter distribution network

Figure 7.3: Schematic description of the drinking water network of Hof city.

In this section, we apply our modeling and optimization approach to a real WDS of
Hof city in Germany (the EPANET file of the system is taken from group of water
supply and waste water treatment in [133] ). The WDS is schematically depicted in
Fig. 7.3. The network consists of 790 pipes, 643 nodes, 4 storage tanks, 4 single speed
booster pumps, 3 pump stations, and 2 reservoirs. The total length of the main pipes
is 133.561 km and their diameters range from 80mm to 600mm. Pump station 1 and
3 have three and two identical fixed speed pumps, respectively, while pump station 2
has two identical variable speed pumps. The pipe roughness coefficients for all pipes
are estimated to be 1mm. Due to space limitation, detailed data of pipes and nodes are
not given, only physical characteristics of the pumps and tanks are listed in Tables 7.4
and 7.3. An available EPANET simulation model is used to extract the network data
for establishing the optimization model. For the pipe hydraulic relation, the smoothed
head loss model proposed in [8] is used instead of the Darcy-Weisbach equation. The
lower and upper bounds of the variables are specified based on their physical ranges.
For formulating the cost function, a changing daily electricity tariff shown in Fig. 7.7a
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is considered. In addition, we consider a daily total demand scenario given from the
network operation of the city, also as shown in Fig. 7.7b. The deficiency of water tank
level at the end of day is set to 0.01m for all tanks and the lower and upper bounds
of the normalized speed of pumps are specified as 0.6 and 1.0, respectively. The details
of the NLP problem are given in Table 7.2. Computations for solving the optimization
problem were performed using diverse initializations for the optimization variables. It
took less than 2 minutes for running the optimization on an Intel (R) Core (TM) i7-
2600 CPU 3.4GHz 12GB RAM desktop. The heuristic algorithm took 125.6 s to derive
the discrete pump scheduling from the continuous one. The continuous flow set points
and corresponding discrete flows are shown in Fig. 7.5. In Table 7.2, it can be seen that

Table 7.2: The property and results of the optimization problem in the case study

Total number of variables 34608
Total number of equality constraints 34512
Total number of inequality constraints 333
CPU time (s) 76.71
Objective function value with continuous pump scheduling (e) 1178.47
Objective function value with discrete pump scheduling(e) 1263.30

the objective function value resulted by the discretized pump scheduling is higher than
the one resulted by the continuous solution.
The discrete pump scheduling and the corresponding tank heads are shown in Fig.
7.4 and Fig. 7.6, respectively. Tank 4 has the largest diameter and lower initial head as
compared to that of tank 2 and tank 3. Tank 3 locates near the water source. Therefore,
the optimal schedule will enable pump station 1 to pump water heavily from tank 4 to
supply for the network and the other tanks during the low tariff from midnight to 6:00
a.m., as seen in Fig. 7.4a. As shown in Fig. 7.4b, pump station 2 also operates in the full
capacity during the low tariff from 2:00 a.m. to 6:00a.m. to withdraw water from the
reservoir to the system. As a result, the tank heads in tank 1, 2, and 3 rise during this
period, as shown in Fig. 7.6a, 7.6b and 7.6c. Since tank 3 has the highest initial tank
head and the second largest diameter, much more water is reserved in tank 3 during the
low tariff period. Due to the tariff increase from 6:00 a.m., tank 4 starts filling and all
pump stations are switched off for a certain time period, as shown in Fig. 7.4. In this
period, tank 1 and 3 supply water to the network and to tank 2 and 4. From 10:00 to
22:00 the tariff has the highest level, the optimal operation utilizes the reserved water
in the tanks as much as possible. This can be seen in Fig. 7.6 where all tanks except for
tank 4 supply water to the network. However, the optimal operation must ensure that
the tank level at the end of the day will return to the tank level at the beginning of the
day. For this reason, pump station 2 and 3 have to operate during the high tariff time
period to fill water to tank 3 and tank 4. After 22:00 all pump stations are switched on
due to the low tariff and thus the tank levels finally approach to the specified values.
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Figure 7.4: Continuous and discrete pump scheduling

Table 7.3: Data of storage tanks for the case study

Tanks/reservoirs Initial
head
(m)

Minimum
head
(m)

Maximum
head
(m)

Surface
(m2)

1 510.0 509.0 512.0 380.1
2 514.0 512.0 517.0 350.0
3 516.0 514.0 518.0 580.0
4 512.0 509.0 513.0 920.0
Reservoir
1&2

Fixed
head:
480.0
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Figure 7.5: Continuous and discrete pump station flows

Table 7.4: Pump station data for the case study

Pump station Hydraulic coefficients Power coefficients

1,2,3 ap bp cp Q̃p Ap Bp Cp Dp

-0.002344 96.0 2.8 49.0(l/s) −5.6E − 4 25E − 3 0.37 11.79
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Figure 7.6: Continuous and discrete tank trajectories
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Figure 7.7: Daily demand and electrical tariff

7.5 Conclusions

In this chapter we present a systematic way to carry out optimization of large-scale
WDSs. A two-stage optimization approach is used to determine the on/off optimal
pumping schedules in which the relaxed NLP is solved to provide continuous flow set-
points for pump stations while the on/off operations of individual pumps are translated
from the continuous flow set points using a heuristic algorithm. To carry out the op-
timization problem in such an efficient manner, we also develop a software package
for formulating and solving the optimization problem automatically. This enables wa-
ter utilities to optimize operations of WDSs with a minimum effort. The results from
carrying out of operational optimization of a real and large scale drinking water dis-
tribution system have shown that the operation strategy provided by the optimization
enables the water system to minimize the operating costs while keeping the specified
operating constraints. Besides the advantages of the approach such as it can solve the
pump scheduling problems for large-scale WDSs in a short computation time, necessary
conditions should be investigated to ensure that the continuous solution of the relaxed
NLP is practical (e.g., relaxed continuous pump flows must lies in a feasible range like
Qp ∈ {0} ∪

{
QL
p , Q

U
p

}
) and it can be implemented by on/off operations of individual

pumps in each pump station.
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Chapter 8

Conclusions and future works

8.1 Conclusions

Globally climatic changes, droughts, and high temperatures have led to shortages of
water sources and water restrictions in many locations over the world. Moreover, the
population, economic, manufacturing, and industrial growth significantly affect the abil-
ity of water systems to deliver sufficient water. A water loss control program is therefore
necessarily developed in order to lessen the severity of the effects of drought and cli-
mate change on water systems by retention of more water in their distribution system.
This will retain more water for the customers on one hand and decrease the amount
withdrawn from water sources on the other hand [134]. Nowadays, many water utilities
have been developing control strategies to reduce water losses to an economic and ac-
ceptable level so as to preserve valuable water resources and to relieve operating and
maintenance costs [42].
This thesis developed efficient solution approaches for solving the optimal pressure
management to reduce leakage in water distribution systems and the optimal pump
scheduling to reduce pumping energy and maintenance costs in water supply and dis-
tribution systems. Our contributions are summarized as bellows

• First, mathematical program with complementarity constraints (MPCC) was pro-
posed to solve the MINLP problem for optimal localization of PRVs in large-scale
water distribution systems. In addition, a novel rounding scheme is developed to
improve the quality of optimal solution as well as accelerate the MPCC solution
procedure. The MPCC approach has been applied for two benchmark water dis-
tribution systems in the literature and the results reveal new optimal locations
of PRVs which result in higher decrease of leakage flows and excessive pressure
reduction as compared with those given in the literature.

• Second, it is due to the fact that the existing PRV model is described by a two-
mode model. This model cannot account the check valve mode for preventing
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reverse flows when the upstream pressure of a PRV is lower than its downstream
pressure. In this thesis, an extended PRV model representing fully operation
modes of PRVs was introduced. Then, this model was applied to solve the op-
timal pressure regulating problems in water distribution systems. Numerical ex-
periments have revealed that the extended PRV model outperforms the existing
ones in both accuracy and quality of optimal solutions.

• Third, a general MINLP problem was formulated to minimize the pumping energy
cost and, at the same time keep the maintenance cost at certain levels. A set of
linear inequality constraints was proposed to handle the number of pump switches
instead of using the non-smooth constraints as in the literature. In addition,
restriction on the number of pump switches can be accomplished by limiting the
total number of pump switches of all pumps in the water system or by limiting
on/off time periods of each pump.

• Fourth, optimal pump scheduling problem in a water distribution system was for-
mulated as a MINLP problem. Due to difficulties in solving such the MINLP by
available MINLP solvers, we proposed to apply a two-stage optimization approach
to solve the optimal pump scheduling for a real and large scale drinking water
distribution network in which the relaxed NLP is solved in the first optimization
stage to determine the flow set-points while the discrete on/off operations of indi-
vidual pump in each pump station are deduced in the second optimization stage
to approximate the set point flows using a simple heuristic algorithm. In addition,
a software package was also developed in C language in order to formulate and
solve the optimization problem automatically.

8.2 Future works

In water distribution systems, pumps are scheduled to deliver water with sufficient
flow and pressure quantities to customers and services. In addition, the water quality
is required to meet the standard. Therefore, optimal planning and managements of
WDSs have to take the water quality factor into consideration. The future works will
concentrate on following research aspects:

• Modeling of water quality as well as introducing it into the optimization problem
for optimal operations of water distribution systems.

• Developing a model predictive control to water loss reduction.

• Developing a fast optimization algorithm in order to control water distribution
systems efficiently.
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Chapter 9

Appendix

A Optimization tasks and optimization methods

Optimization of pressure managements to leakage reduction and operational optimiza-
tion of pumps to reduce pumping energy and maintenance costs are addressed in this
thesis. A brief explanation of these problems is given as bellows:

• The optimization of pressure management is to minimize excessive pressure of
the system by optimizing operations of control valves (e.g., pressure reducing
valves) in WDSs. It is necessary to distinguish two optimization problems to be
solved 1) optimization of the locations of control valves in the water distribution
system and 2) optimization of operations of control valves in the water distribu-
tion system where the their locations have been already determined. The optimal
localization of control valves is formulated as a mixed integer nonlinear program-
ming (MINLP) since the binary variables are introduced to each link to indicate
whether a control valve is placed on the link or not [35]. For a water distribu-
tion system where valves have already been installed, the optimization of pressure
management is casted as a nonlinear optimization problem (NLP) [37] in which
the pressure settings of valves (or valve openings) are decision variables. In this
NLP problem, the model of control valves is critical to the quality of optimal
solutions.

• Operational optimization of a WDS to minimize the pumping energy while keep-
ing the maintenance cost at certain levels is achieved by scheduling on/off oper-
ations of pumps. To represent on/off operations of pumps, binary variables are
introduced. Therefore, the optimal pump scheduling is casted as a mixed inte-
ger nonlinear programming (MINLP) [18]. A MINLP solver is used to solve the
optimization problem.
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B Optimization algorithms used in this thesis

In this thesis, MINLP and NLP algorithms are used to solve the formulated optimiza-
tion problems. In particular, the MINLP problem is solved by using MINLP algorithms
integrated in BONMIN solver [135] or by the mathematical program with complemen-
tarity constraints (MPCC) approach, while the NLP problem is solved by a NLP solver
such as IPOPT [117]. A brief introduction to these algorithms is given as bellows:

B.1 Nonlinear algorithms

The nonlinear optimization algorithms can be interior point (IP), sequence quadratic
programming (SPQ). In this thesis, we use the IP algorithm in the IPOPT solver [117]
to solve the NLP problem. IPOPT solver can solve large scale NLP problems efficiently
[132, 136] and it can perform well as a NLP solver for the MPCC solution approach
[137]. Here we briefly describe the IP algorithm. The general NLP problem is given in
Eq. (9.1)

min
x∈<n

f (x)

s.t.
g (x) = 0
xL 6 x 6 xU

(9.1)

The IP algorithm follows a barrier approach in which the bound constraints are replaced
by logarithmic barrier terms which are added to the objective function [132]

min ϕ (x) = f (x)− µ
n∑
i=1

ln
(
x(i) − x(i)

L

)
− µ

n∑
i=1

ln
(
x

(i)
U − x(i)

)
s.t.
g (x) = 0

(9.2)

where µ > 0 is a barrier parameter. It can be seen that the objective function of the
barrier problem becomes arbitrarily large when x(i) approaches either of its bounds so
that a local solution of the barrier problem x∗ (µ) lies in the interior of bounds, i.e.,
xL 6 x 6 xU . Under mild conditions, a local solution x∗ (µ) converges to the solution
of the original NLP problem as µ → 0 [132]. Therefore, a strategy for solving the
original NLP problem is to solve a sequence of barrier problems with decreasing barrier
parameters µl, where l is the counter for the sequence of subproblems. In addition, to
solve the barrier problem, IPOPT uses a primal-dual approach and applies the Newton
method with a novel filter line search strategy for solving the Karush-Kuhn-Tucker
condition [117, 132].

B.2 Mathematical program with complementarity constraints (MPCC)

MINLP problems can be reformulated into a mathematical program with complemen-
tarity constraints (MCCC) [39, 50] in which binary variables are relaxed and the binary
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constraints (e.g., y = {0,1}) are replaced by complementarity constraints in the MPCC.
We consider a general MPCC problem given in Eq. (9.3)

min f (x, y)
s.t.
h (x, y) = 0
g (x, y) = 0
x, y > 0
0 6 xi⊥yi > 0, i = 1, ..., nc

(9.3)

Since obtaining solutions to complementarity constrained NLPs pose a challenge,
MPCCs usually fail to satisfy constraint qualifications such as linear independence
of constraint gradients and Mangasarian Fromovitz constraint qualification, commonly
assumed to hold for NLPs [40, 138]. There are two most efficient formulations of MPCC
[40, 41, 137]: Reg(ε) regularized formulation in Eq. (9.4), and PF(ρ) penalty formulation
in Eq. (9.5), respectively.

min f (x, y)
s.t.
h (x, y) = 0
g (x, y) = 0
x, y > 0
xiyi 6 ε, i = 1, ..., nc

(9.4)

min f (x, y) + ρxTy

s.t.
h (x, y) = 0
g (x, y) = 0
x, y > 0

(9.5)

It is noted that a complementarity constraint (e.g., 0 6 xi⊥yi > 0 or xiyi = 0 )
can be replaced by a nonlinear complementarity problem function (NCP) such as the
Fischer-Burmeister function in Eq. (9.6) for efficient computation [139].

φi (xi, yi) = xi + yi −
√
x2
i + y2

i (9.6)

In particular, the constraint φi (xi, yi) 6 ε can be used for the constraint xiyi 6 ε in
Eq. (9.4) . Similarly, the penalty function ρ

∑
i
φi (xi, yi) can be used for the penalty

function ρxTy in Eq. (9.5). The solutions of NLPs are called stationary points which
converge to a final solution, called a limit point of the MPCC.
In regularized formulation, the complementarities are relaxed with a positive relaxation
parameter ε, and the MPCC solution can be obtained by solving a sequence of relaxed
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NLPs with decreasing relaxation parameter ε [137]. In contrast to the regularized for-
mulations, in the penalty formulation, complementarities are added to the objective
function and the resulting NLP problem is solved for a particular value of ρ or by a
sequence of NLP problems with increasing penalty coefficients ρ [40, 41]. The penalty
reformulation is more reliable than the regularized reformulation since the complemen-
tarity constraints are not included as constraints but only in the objective function, so
that the problem size is maintained despite the complementarities [137]. In addition,
the MPCC solution can be obtained by solving the relaxed NLP in a single time instead
of multiple times, if an appropriate value of ρ is chosen [41, 137, 140]

C MINLP algorithms

The basic MINLP algorithms for solving the MINLP problem given in Eq. (9.7) are
branch and bound and outer approximation methods. The MINLP algorithms have
been developed for many years based on two basis algorithms to solve MINLP problem
efficiently. For example, there are several algorithmic choices that can be selected with
BONMIN [135], namely, B-BB is a NLP-based branch-and-bound algorithm, B-OA
is an outer-approximation decomposition algorithm, B-QG is an implementation of
Quesada and Grossmann’s branch-and-cut algorithm, and B-Hyb is a hybrid outer-
approximation based branch-and-cut algorithm [130]. In this section, we briefly present
basic algorithms of branch and bound and outer approximation methods.

min
x,y

f (x, y)

s.t.

g (x, y) 6 0
x ∈ X, y ∈ Y

(9.7)

C.1 Branch and Bound method

The fundamental idea is to subdivide the original MINLP into subproblems. The reason
is due to the fact that the original problem is difficult to solve as a whole. The solutions
of these subproblems yield optimal solution for the original MINLP problem. The pro-
cess of subdivision is generally referred to as the branching strategy [141, 142, 143]. Let
zU is the best current upper bound on the optimal solution value of MINLP problem.
At each stage in the solution process, a search strategy is used to select an unsolved
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subproblem P (k) at node k

P (k) min
x,y

f (x, y)

s.t

g (x, y) 6 0
xL 6 x 6 xU

yL 6 y 6 yU

(9.8)

There are following four cases:

1. if P (k) is infeasible, then this node is eliminated by infeasibility

2. if P (k) is feasible, and if f
(
xk, yk

)
> zU . The node is pruned by bound.

3. if P (k) is feasible, and if y is integer, and if f
(
xk, yk

)
< zU . The upper bound

zU is updated by f(xk, yk) and the node is pruned by optimality.

4. if P (k) is feasible and f
(
xk, yk

)
< zU , and yki is not integer. In this case node k

is further subdivided into two new subproblems corresponding to two new nodes
[143].

The solution process (a search strategy, subdivision, and elimination) continues until
all subproblems are fathomed.

C.2 Outer approximation method

The outer approximation (OA) algorithm alternates between solving a MILP problem
and one or two NLP problems [143, 144]. The main idea is to linearize a MINLP to a
MILP problem at a set of linearization points [143, 144]. The formulated MILP is solved
to obtain an integer solution. The integer solution is fixed and the MINLP problem
becomes a NLP problem. If the NLP solution is feasible, the solution will be added to
the set of linearization points and they are used for next linearization, otherwise another
NLP is formulated to minimize the violation of constraints. The solution of this NLP
is also added to the set of linearization points T = {(x0, y0) , (x1, y1) , ..., (xn, yn)}. The
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MILP problem is formulated using linearization

min
α,x,y

α

s.t.

∇f
(
xk, yk

)T x− xk
y − yk

+ f
(
xk, yk

)
6 α

∇g
(
xk, yk

)T x− xk
y − yk

+ g
(
xk, yk

)
6 0

∀
(
xk, yk

)
∈ T

xL 6 x 6 xU ; y ∈ Y

(9.9)

The lower bound of MINLP is updated by zL = α. The integer solution yk is fixed and
the resulting NLP is solved

min
x
f (x, ŷ)

s.t.
g (x, ŷ) 6 0
xL 6 x 6 xU

(9.10)

If the NLP is feasible, and if f
(
xk, yk

)
< zU , then update zU = f

(
xk, yk

)
. If the NLP

is infeasible, the following NLP is formulated to minimize violations of constraints

min
x,u

m∑
j=1

ui

s.t.
g (x, ŷ) 6 u

u > 0
xL 6 x 6 xU , u ∈ <m

(9.11)

Solution of one of two NLPs will be added to the set of linearization points T . The
outer approximation algorithm continues until zU − zL 6 δ.

D Extraction of an optimization model from a simulation
model in EPANET

The objective of this section is to develop a method to directly extract models from
EPANET simulation models for easily and accurately formulating optimization prob-
lems, so that the expense needed for establishing the model equations can be reduced
and prune-errors can be avoided. Model equations of a WDS consist of conservation
laws of all components in the system. To formulate these equations, the structure of the
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network, the data as well as the variables of each component in the network are needed.
The structure and component data of WDSs, as shown in Table 9.1, can be accessed by
using the EPANET Programmer Toolkit [124]. Therefore, we develop a C program to
access such information from EPANET. Based on this information, model equations for
the components can be established according to their conservation laws. Struct types

Water Distribution 

networks in EPANET

Water Distribution 

networks in EPANET
EPANET Toolkit

Main program

Pipes

Length

Diameter

Roughness

Two connected 

nodes

Pumps

Hydraulic 

coefficients

Valves

Loss coefficient

Nodes

Base demand 

and pattern

Links connected 

to this node

Reservoirs

Head 

Defined 

variables

Defined 

variables

Defined 

variables
Defined 

variables

Jacobian 

Jacobian Jacobian Jacobian 

Tanks

Initial heads

Jacobian 

Two connected 

nodes

Two connected 

nodes
Links connected 

to this node

Defined 

variables

Defined 

variables

Links connected 

to this node

NLP solver (IPOPT)

Figure 9.1: The extraction of optimization model from EPANET simulation environ-
ment

in the C programming language are used to manage data of each component in a WDS.
As seen in Fig.9.1, variables necessary for formulation of the optimization problem are
defined for each component (e.g., pipes,valves,pumps,nodes,tanks). As an example, 24
variables are defined for every pipe to represent their flows in 24hours.The C program
is linked to a NLP solver, i.e., IPOPT [117], to solve the formulated NLP problem.
In addition, the jacobian of equality/inequality constraints describing components in
WDSs is calculated and supplied to the NLP solver. The objective functions can be
changed according to different optimization tasks. For examples, with optimization of
pressure regulation, the objective function is the sum of excessive pressures at nodes
while the objective function is pumping energy costs for optimizations of pump schedul-
ing problems. The gradient information of these objective functions is calculated and
also supplied to the NLP solver.
In Table 9.1 NJ is the number of junctions (nodes); NP is the number of pipes; NT
is the number of tanks; NPU is the number of pump stations; NR is the number of
reservoirs; NV is the number of valves.
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Table 9.1: Properties for modeling network components

Components Properties Variables in time
horizon T.

Number of
variables

Junctions/nodes ID label Heads NJ×T
Elevation
Demand
Demand pattern
Pipes connected to
the node

Reservoirs ID label Heads NR×T
Elevation

Tanks ID label Heads NT× (T+1)
Bottom elevation
Initial water level
Pipes connected to
this node
Water level-volume
curve

Pipes ID label Flow rates NP×T
Start node label
End node label
Diameter
Length
Roughness

Pumps ID label Flow rates. NPU×T
Start node label
End node label Pump speeds NPU×T
Head-discharge
curve

Valves ID label Flow rates NV×T
Start node label
End node label Valve setting NV×T
Loss coefficient
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